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Abstract

The NAVSTAR Global Positioning System (GPS) has been under develop-

ment by the US Department of Defense since 1973. Although GPSwas

developed for precise instantaneous position and velocity determination, it

can be used for high precision relative positioning, with numerous applica-

tions for both surveyors and geodesists. The high resolution of the satellite's

carrier phase has enabled relative positioning accuracies of the order of one

part per million to be routinely obtained, from only one or two hours of data.

These accuracies are obtained using the broadcast ephemeris, which is the

orbit data that is broadcast in the satellite's radio transmission. However,

the broadcast ephemeris is estimated to be in error by up to twenty five

metres and this error is one of the principle limitations for precise relative

positioning with GPS.

An alternative to the broadcast ephemeris, is to determine the satellite

orbits using the carrier phase measurements, obtained from a network of

GPS tracking stations. This thesis describes the algorithms and processing

techniques used for the determination of GPS satellite orbits using double

differenced carrier phase measurements. The data from three different GPS

campaigns have been analysed, which demonstrate a GPS orbital accuracy

of between two and four metres, giving baseline accuracies of the order of

one or two parts in ten million.
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CHAPTER 1

Introduction

Satellite geodesy is a science which uses measurements made to both natural

and artificial satellites, for a variety of geodetic and geophysical applica-

tions. The first measurements made from an artificial satellite were those

from Sputnik I, which was launched in 1957. The Doppler shift of the satel-

lite's radio transmissions were measured and these were used in conjunction

with the coordinates of the tracking station to determine the position of the

satellite in its orbit. The reverse computation was also possible, whereby

the coordinates of the satellite could be used with the doppler shift measure-

ments to derive the coordinates of the tracking station. These discoveries

led to the development of the United States (US) Navy Navigation Satellite

(Transit), which was first launched in 1961. These navigation satellites are

still in use today, but acquiring a position fix can take up to an hour. In

the US armed services, there was a requirement for an instantaneous, high

precision, worldwide positioning system.

The Global Positioning System (GPS) was developed to fulfill this role.

The project was a result of previous research by the US Navy on the TIMA-

TION program and the US Air Force 621B project, both of which were aimed

at producing a passive radio-navigation system. Although GPS was primarily

developed for the military, the system is currently freely available to civilian

users. The system can be used to solve a variety of real time navigation

problems on land, at sea and in the air, by the simultaneous measurement

of pseudoranges from four or more satellites. For geodetic applications, the

system can be used in a relative positioning mode, using measurements of

the satellites carrier frequency to obtain much higher positioning accuracies.
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Fundamental to both absolute and relative positioning with GPS, is a knowl-

edge of the satellite's position at every measurement epoch. Generally, the

broadcast ephemeris is used, which is computed by the US Department of

Defense and is broadcast by each GPS satellite. Typically, this has been

shown to give relative positioning accuracies of the order of one part per

million. Clearly, the accuracy. of the system has made a significant impact

on both the surveying and geodetic communities, challenging the traditional

terrestrial measuring techniques. However, certain applications require an

even higher order of accuracy, for example, the monitoring of tectonic plate

motions over continental sized networks requires an accuracy often exceeding

one part in 107,

Two other space geodetic techniques are in use, which achieve this level

of accuracy, Satellite Laser Ranging (SLR) and V~ryLong B~seline Inter-

ferometry (VLBI). SLR measures the range between a ground based

telescope and a satellite using the return flight time of a short pulse of laser

light .. These ranges. can be used in a dynamical analysis to determine the

coordinates of the laser trackingstations and the coordinates of the satellite.

Generally, the data is collected over a period of several days or even months

from several sites, to produce the coordinates the tracking stations, accurate

to within a few centimetres. VLBI uses two or more radio antennas,

measure the difference in arrival. time of the signal wavefronts from extra

galactic radio sources (such as quasars) .. Several radio sources are observed

in a session and the measurements are used to obtain the baseline vector

components between the radio antennas.

Whilst. SLR and VLBI are highly precise measuring systems, they both

require very large and expensive items of equipment, .which are usually lo-

cated at permanent tracking sites, Both SLR and VLBI have been developed

into mobile systems, but these are still relatively immobile. However, with

the advent of GPS, a highly mobile and inexpensive measurement system is

available. In order to achieve accuracies comparable with SLR and VLBI, a

thorough modelling of the GPSerror sources is necessary ..One of the prin-

ciple limitations in determining long baselines with GPS, is the accuracy of

2



the broadcast ephemeris.

A more accurate satellite orbit can be determined using a dynamical

method of analysis, where a force model is used to represent all the known

forces acting upon the satellite. The numerical integration of this force (ac-

celeration) model, twice with respect to time, will give the satellites position

at discrete intervals in time (predicted orbit). The numerical integration is

started from an initial position and velocity vector (state vector). Measure-

ments made between a network of tracking stations and the GPS satellite

can be used to improve this predicted orbit, by solving for corrections to the

satellite state vector and to any required force model components, using a

least squares method of adjustment. For GPS orbit determination, the coor-

dinates of a number of the tracking stations are held fixed in the adjustment,

to values determined from previous VLBI or SLR campaigns.

Precise GPS orbits are important not just for the determination of ground

station coordinates, but they also have applications in satellite to satellite

tracking. Low earth orbiting satellites require a particularly complex force

model in comparison with the high altitude GPS satellites. Hence, the co-

ordinates of a low earth satellite equipped with a GPS receiver, can be de-

termined in a similar manner to those of a terrestrial GPS receiver, without

the need to use a complex force model. In 1992, the US intend to launch the

TOPEX/POSEIDON oceanographic satellite. This satellite carries a GPS

receiver, with the intention of obtaining a ten centimetre orbital accuracy.

The basic concepts of the Global Positioning System and the processing

techniques used for relative positioning are described in chapter 2 of this

'thesis. Chapter 3 describes the determination of GPS satellite orbits using

the dynamical method of analysis. The software which has been used and

developed for GPS satellite orbit determination is described in chapter 4.

Three separate data sets have been analysed in this thesis, to test the GPS

orbit determination procedure and to test the integrity of the programs. The

first two data sets are based upon European networks and these are discussed

in chapters 5 and 6. A standard GPS data set is being distributed by the

Special Study Group 1.104 of the International Association of Geodesy and

3



this data set is analysed in chapter 7. The thesis is concluded in chapter 8.
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CHAPTER 2

The Global Positioning System: Overview

and Processing Algorithms

2.1 Introduction

The NAVSTAR (NAVigation Satellite Timing And Ranging) Global Po-

sitioning System (GPS) program started in 1973. The aim was to develop

a system for highly precise position and velocity determination, and for the

precise transfer of time. The system must also support an unlimited number

of users, at any time, all over the world.

The program is managed by the Joint Program Office (JPO), combining

the resources of United States, Department of Defense armed services. The

JPO established three development phases.

.. • Phase I, which was the concept validation and development of the pro-

totype Block I satellites.

• Phase II, the full scale engineering development, included the develop-

ment of the Block II satellites, and the testing of prototype satellite

receivers.

• Phase III is the production and deployment of the operational system.

The program has just entered Phase III with the launch of the first

Block II satellite in February 1989.

During the 1990s, the Navy Navigation Satellite (TRANSIT) will be

phased out for both the civilian and military users and reliance will be placed

upon the use of GPS for navigation and positioning. Other ground based

radio-navigation systems will be superseded by GPS for the military users

5



by the mid 1990s, but civilian usage will be permitted until the end of the

century.

The GPS description can be divided into three segments, called the Space,

Control and User Segments.

2.1.1 Space Segment

When GPS is fully operational, the space segment will consist of 18 Block

II satellites ( with three orbital spares ), placed in six equally spaced orbital

planes. The orbital planes will have an inclination of 550, with adjacent

planes offset by 400 in argument of latitude. The satellites have a nominal

altitude of 20183 km, with a period of 11 hours and 58 minutes. It is this

configuration that will enable the user to track a minimum of four satellites,

for real time positioning, anywhere in the world. However, some areas may

experience several minutes of degraded accuracy, when poor satellite geom-

etry occurs(Section 2.3.4). In addition to these 21 satellites, a further seven

satellites will be maintained on the ground in case of satellite malfunctions.

Each Block II satellite, produced by Rockwell International Incorporated,

will contain two rubidium and two caesium beam atomic clocks. The clocks

are powered by an array of solar panels, with batteries to power the satellite

when it is eclipsed by the earth. The proposed launch schedule. for the rest

of the Block II satellites is given in table (2.1).

Currently, there are seven research and development Block I satellites,

placed in two orbital planes, at an inclination of 630 • This configuration was

designed to maximise the daily coverage over the Army Proving Grounds in

Yuma, Arizona. In Europe, four satellite coverage is provided for approxi-

mately four hours each day.

The atomic clocks contained in the satellites, oscillate at a fundamental

frequency of 10.23 MHz. It is from this frequency, that all components of the

satellite signal are generated.

Satellite Signal

The satellite signals are transmitted on two L band carrier frequencies of

1575.42 MHz (L1) and 1227.60 MHz (L2). The L1 carrier frequency is mod-

6



ulated with two mutually orthogonal, pseudo-random noise (PRN) codes,

called the C/ A (Coarse/Acquisition) code and the P (Precise) code. The L2

carrier frequency is modulated with the P code only.

The PRN codes are formed with a sequence of the binary digits, 0 and 1,

which are generated mathematically, using a specified algorithm. The C/ A
'p.

code is a one7s'econdlong sequence and it is modulated onto the carrier at a

chipping rate of 1.023 MHz. The P code is a 267 day long binary sequence,

with a chipping rate of 10.23 MHz. Each satellite uses a unique, week long

section of the P code. The satellites may be identified by the particular

seven day section of the P code that they are using. This is referred to as the

satellite PRN number. The current Block I satellites are designated PRN

numbers 3, 6, 8, 9, 11, 12 and 13.

The PRN code is modulated onto the carrier frequency using binary

biphase modulations. These simply multiply the phase by +1 for the bi-

nary state 0, and -1 for the binary state 1. Hence a change in binary state,

will lead to a 1800 change in phase (figure 2.1).

In addition to these codes, both the carrier frequencies a~e modulated

with a satellite data message, at a rate of 50 bits per second. The message is

1500 bits long and is divided into five subframes. It is modulated onto both

the C/ A and P codes and lasts for 30 seconds.

Subframe 1 contains the satellite clock correction parameters and timing

information.

Subframes 2 and 3 contain the broadcast ephemeris, using a Keplerian

type representation (section 3.2). Six of these parameters describe a mean

orbital ellipse, with nine correction terms to allow for deviations from this

mean orbit. The ephemeris is computed in an earth-fixed earth-centered

reference system and it is valid for a period of one and a half hours from a

given reference time. The Keplerian representation has the advantage that

the ephemeris will degrade gracefully with time after this period.

Subframe 4 contains coefficients to estimate the ionospheric delay for

single frequency receivers (section 2.5.2). A data message (OPSCAP), con-

taining information from the control segment, is to be implemented at a later

7



carrier frequency

modulations

modulated carrier

Figure 2.1: Binary code modulations
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date [Barber, 1989].

Subframe 5 contains the almanac and health status for up to 25 satellites.

Each subframe contains the almanac ( approximate orbit description ) and

health status for one satellite. Hence, it would take twelve and a half minutes

to acquire a complete almanac.

2.1.2 Control Segment

The fully operational Control Segment consists of a Master Control Station

(MCS) and a number of Monitor Stations and Ground Antennas. The MCS is

located at the Consolidated Space Operations Centre (CSOC) at the Falcon

Air Force Station, near Colorado Springs. There are five Monitor Stations

at 'precisely known locations around the world. These are at CSOC, Hawaii,

Kwajalein, Ascension Islands and Diego Garcia (Figure 2.2).

The Monitor Stations record dual frequency data for each satellite, using

a caesium beam frequency standard. Each Block II satellite can be tracked

for at least 90 % of its orbit. The tracking data and surface meteorological

data are then sent to the MCS for the computation ofthe satellite clock biases

and the prediction of the satellite ephemeris. Precise time is maintained at

the MCS by using two caesium beam and three hydrogen maser frequency

standards. In addition, a direct link is maintained with the time standards,

of the United States Naval Observatory.

The broadcast ephemeris, satellite clock corrections and satellite health

information are then relayed to the three Ground Antennas, located at Kwa-

jalein, Diego Garcia and Ascension Island. The data is then uploaded to

the satellites on an eight hourly cycle. To allow GPS to be used when the

Control Segment is disabled, each upload will contain ephemeris predictions

for up to fourteen days, with a graceful degradation of accuracy up to 200

m.

2.1.3 User Segment

The User Segment covers all the receivers, that are capable of processing

the GPS satellite signals. The receiver passively tracks the signal, which al-

lows the system to support an unlimited number of users. The receiver type

9
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will be determined by the user's requirements, taking into account the size,

weight, durability and the level of processing required. For navigation, the

receiver must be capable of determining real time positions, using pseudor-

ange measurements on the P or CIA codes. For geodetic work, the receiver

must be able to measure and time tag the carrier phase and store the data

for post processing.

Two positioning services will be made available, the Standard Positioning

Service (SPS) and the Precise Positioning Service (PPS). The PPS is based

upon the dual frequency P code and will only be made available to authorised

military users. The SPS uses the single frequency CIA code and will be made

available to the civilian user.

For real time positioning the accuracy of the PPS is 16 metres (m) SEP

and 76.3 m SEP for the SPS. The SEP is the spherical error probable, defined

as the radius of a sphere, which contains 50% of all position fixes. Higher ac-

curacies may be obtained by using GPS in the differential mode, to determine

coordinate differences from a known receiver position [Blanchard, 1989].

For relative geodetic positioning, a higher order of accuracy can be ach-

ieved by making measurements on the satellite's carrier frequency. This

data can be post processed, using the algorithms described in section (2.4).

Processing data in this way can yield baseline accuracies better than one part

per million.

Signal Acquisition for Geodetic Receivers

The receiver can obtain the satellite signals in different ways, the most com-

monly used method is called code correlation.

A code correlation receiver must be able to generate a replica CIA code

from its internal oscillator. The incoming satellite code is then electronically

aligned with the replica code, by shifting this replica code ill time. This time

shift is termed the pseudorange, and it represents the signal propagation time

, biased by the satellite and receiver clock errors.

The ClA code can then be removed from the carrier by mixing it with

the replica code. The satellite data message can now be accessed, which
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contains the broadcast ephemeris and satellite clock correction parameters.

A handover word (HOW) is also contained within the message, which allows

the receiver to generate the correct portion of the week long P code.

The P code can now be accessed in the same way as the CIA code,

providing the receiver has knowledge of the P code formulation.

The TI 4100 NAVSTAR NAVIGATOR is an example of a code correlating

receiver. It is capable of obtaining pseudorange measurements on both the

ClA and P codes and can record the L1 and L2 frequency carrier phase

observables for up to four satellites. The receiver is designed for both real

time navigation work and for precise geodetic relative positioning. Data can

be recorded on a dual cassette recorder, with each cassette storing about

thirty minutes of data, if a three second measurement interval is selected.

Alternatively, a personal computer can be used to record data onto three and

a half inch floppy discs. The dual frequency capability of the receiver has

meant its extensive use, particularly for the measurement of long baselines,

where the two frequencies are used to eliminate the effects of the ionosphere

(section 2.5.2). All the data described in this thesis was recorded using TI

4000 receivers.

Some receivers do not use the CIA or P code to access the carrier fre-

quency. One receiver ofthis type, the Macrometer [Ashkenazi, 1987], demod-

ulates the carrier by using a squaring technique. The -1 and + 1 modulation

will be removed, leaving a carrier at twice the original frequency. A disadvan-

tage of this technique is the removal of both the PRN codes and the satellite

data message. This type of receiver will then require an external ephemeris,

making real time positioning very impractical.

There are many commercially available receivers, capable of recording

both the carrier phase and the code data, details can be found in other texts

[Wells, 1986].

2.2 Future Prospects for GPS

Originally it was intended to place the Block II satellites in orbit, by using

the Space Shuttle. Unfortunately, with the Challenger disaster in 1986, a
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new launch plan was required. Now, all the Block II satellites are to be

launched from the expendable Delta II, Medium Launch Vehicles (MLV).

This has necessitated the redesign of some satellites to allow for the MLV

launch, and the revised launch schedule is given in table ( 2.1 ).

The first Block II satellite was launched on the 14th of February 1989.

It's orbital position was designed to cover a gap in the observing window,

over the Yuma Proving Ground, Arizona. The three launches proposed for

later this year are designed to optimise worldwide two dimensional coverage.

It is intended to augment the 18 satellite constellation by using the 3 on-

orbit spares as active satellites. This optimised 21 satellite coverage would

reduce the areas in the world, where the poor satellite geometry adversely

affects the positioning accuracy of GPS. These occurrences are called outages.

Also, approval was given to increase this constellation to 24 satellites, but

this is not envisaged until the mid 19905.

It was realised by the Department of Defense that uncontrolled access

to the GPS signals may compromise national security. To alleviate this, it

has been proposed to degrade the potential accuracy of the system by two

methods.

Selective Availability (SA) would be used to deny access to the Precise

Positioning Service (PPS). This would be implemented by altering the satel-

lite data message (epsilon) or by manipulating the satellite clock (dither).

Full system accuracy could be obtained from encrypted corrections given in

the data message. The SA would be applied to all Block II satellites, as soon

as they are declared operational.

The second proposal, Anti-Spoofing (A-S), would be the use of a new

unpublished P code, called a Y code, which is only available to users with

the proper cryptography. This would protect against hostile imitations of

the PPS signal.

There is much speculation in the civilian sector as to the effect of SA but,
it is hoped that the carrier phase data used for geodetic applications will not

be significantly affected.
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Number to launch Period Comments

4

5

5

5

4

2

1989 PRN14 Launched on February 14th

1991 2 Dimensional capability.

1992

1993 3 Dimensional capability

1994 Spare satellites

1995 20 Block HR (replenishment}

satellites to be deployed

Table 2.1: Proposed Block H launch schedule
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2.3 Point Positioning

2.3.1 Introduction

The concept of point positioning, using GPS satellites, is based upon the

measurement of range, between receiver and satellite. If the ranges to three

satellites of known coordinates can be measured, then the receiver coordi-

nates can be determined. This assumes that the receiver and satellites do

not lie in the same plane. The basic GPS range observable, the pseudorange,

is proportional to the signal transmission time, between the satellite and re-

ceiver. Therefore for precise positioning, it is essential to use a stable time

scale, to which all measurements can be referenced. The time scale adopted

for GPS is known as GPS System Time.

2.3.2 GPS System Time

The astronomical time scales (UT) would be unsuitable for GPS because of

the daily variations in the earth's rotation rate. For GPS it is necessary to

use a linear time scale.

One of the most stable time scales in the world, is the Universal Time

Coordinated (UTC), determined by the United States Naval Observatory

(USNO). This is a constant atomic time scale, based upon 25 different cae-

sium beam frequency standards. UTC(USNO) is corrected by discrete leap

second jumps to keep it close to the astronomical time scale UTI. The

GPS System Time maintained by the Master Control Station, is physically

kept within one microsecond of UTC (USNO). However, the leap second ad-

justments made to UTC (USNO) would disrupt the continuous navigational

capacity of GPS and are consequently not applied. GPS System time is

currently (April 1989) running five seconds ahead of UTC (USNO).

GPS System Time is measured modulo 604800 seconds starting from

Saturday night/Sunday morning each week. Each week increment is counted

in GPS weeks, from midnight 5/6 January 1980.

A series of polynomial coefficients are broadcast in the navigation mes-

sage, giving the offset between UTC(USNO) and GPS System Time, to

within 100 nanoseconds. In addition, a further set of coefficients are pro-
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vided, to calculate the offset of the satellite clock from GPS System Time.

2.3.3 The Pseudorange Solution

The range between the GPS satellite and the receiver is measured by scaling

the signal propagation time by the speed of light. To establish the true

propagation time, the satellite and receiver clock offsets must be determined.

The satellite clock offset is contained within the navigation message, given

by the three terms ao, al and a2. These represent the coefficients of a second

order polynomial.

The receiver clock offset is unpredictable and must be determined as part

of the pseudorange solution. Assuming the measurements contain no other

error sources, the pseudorange can be expressed as

PR = p/c+ (6.T~- 6.TA) (2.1)

Where

PR = pseudorange measurement ( s )

p = geometrical satellite to receiver range ( m )

c = speed of light ( mls )
, 6.T, = satellite clock offset ( s )

6.TA = receiver clock offset ( s )

The earth's atmosphere will cause the satellite signal to bend and slow

down, delaying its arrival at the receiver. The ionosphere and the tropo-

sphere will both cause significant, but different delays. These effects can be

estimated and different models are considered in section (2.5.2).

Neglecting the atmospheric effects, four pseudorange measurements to

four different satellites are required. These are to solve for the three unknown

receiver coordinates and the receiver clock offset. Equation (2.1) can be

linearised about the approximate values of the receiver coordinates and the

estimated receiver clock offset.
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Where

XA, YA, ZA approximate coordinates of receiver at station A

~XA' ~YA,~ZA - corrections to approximate coordinates

TA - initial estimate of the receiver clock bias

~TA - correction to receiver clock bias

OPR - observed pseudorange (m)

CPR - computed pseudorange (m)

11 - residual value
The computed pseudorange, is determined from the satellite ephemeris

and from the approximate coordinates of the receiver. The satellite clock

offset T, and the estimated receiver dock offset are added to produce the

computed pseudorange CPR.

(2.3)

The partial differential coefficients ap / ax can be calculated from the

expression for range,

Where

x», ys, zS _ satellite coordinates

approximate coordinates of receiver

at station A
Hence,

ap (XS - XA)

aXA = p (2.5) 'l
The partial derivative of range with respect to the receiver clock offset is

given as,
ap
--=c
8TA . (2.6)

Where cis the speed of light.

To solve for the receivers position at a given epoch in time, four simul-

taneous pseudoranges are required. These four pseudorange observables will

lead to a unique solution of the position and the receiver clock bias. If five

or more satellites can be observed, redundant observations are introduced
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and a least squares approach can be adopted to determine the most probable

solution.
If real time positioning is not required, then pseudorange measurements

can be recorded over many epochs. This will lead to a more precise solution

and the receiver clock can then be modelled as a polynomial (Section 2.5.3) .

.:The pseudorange can be measured using the Cj A code or the P code.

The C] A code has a repeat period of one millisecondvwhich corresponds

to approximately 300 km in range. This manifests itself as an ambiguity,

which can be resolved by most receivers if several satellites are observed.

The P code with its week long sequence is totally unambiguous and has the

advantage that the range can be resolved more precisely.. The approximate

range resolutions for the P and Cj A codes are 0.3 m and 3.0 m respectively.

2.3.4 System Accuracies

The accuracy of a point position fix is dependent upon several factors. Errors

in the range measurements and a poor geometrical configuration of the satel-

lites will cause significant positional errors .. The range measurementetrors

are caused by atmospheric delays, satellite and receiver clock biases, satellite

ephemeris errors and measurement noise. The modelling of these errors is

considered in section ( 2.5 ).

The Geometrical Dilution Of Precision (GDOP) is used to express

satellite geometry. The GDOP is a function of the dilution of precision of

both the position (PDOP) and receiver clock biases (TDOP). Where,

GDOP.= V(PDOP)2 + (TDOP)2 (2.7)

The numerical value of GDOP can be determined from the covariance

matrix of the pseudorange solution. If the covariance matrix (section 2.4.6)

is given by,
2 2 2 2C1xx C1xy C1xz C1xt

2 2 2 2C1yx C1yy C1yz C1yt
(2.8)

2 2 2 2C1zx C1zy C1zz C1zt

2 2 2 2
(]tx (]ty (]tz (]tt
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Then,
(2.9)

The error in the user position can be estimated by multiplying the range

measurement error by the corresponding DOP values. For example, with a
.,

range error of five meters, and a PDOP of four meters,· the radial error in

the user position would be 20 meters.

For a low GDOP, the ideal four satellite configuration would be three

satellites placed equally around the horizon, with one satellite directlyover-

head (See figure 2.3). A high GDOP would be with all four satellites in one

part of the sky (See figure 2.4) .. "

2.4 Relative Positioning with GPS
2.4.1 Introduction

The removal of the PRN codes from the carrier frequency, will leave an

unmodulated wave, often referred to as the reconstructed carrier. Geodetic

receivers should be capable of measuring this carrier phase to about one per

cent of its wavelength, giving a possible resolution of 2mm, for the 19cm L1

wavelength. This ignores other errors in the system, but it gives an indication

of the accuracies that can be achieved.

The various algorithms used for the processing carrier phase

abIes are given here, but further details are given in other texts [Yau"1986],

[de la Fuente, 1988].

2.4.2 Basic Phase Observables

The measurement of the reconstructed carrier phase must be made with re-

spect to time. Hence, it is normal to measure the satellite phase, relative,

to the phase generated by the receiver oscillator. Assuming that the satel-

lite clock, and receiver clocks are synchronised to GPS System Time, the

difference in phase or the beat frequency measurement is given as,

(2.10)
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Figure 2.3: Typical satellite configuration for low GDOP

Figure 2.4: Typical satellite configuration for high Gnop
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phase of the incoming signal from satellite i

transmitted at satellite time t

phase of generated signal of receiver A,

measured at received time r
The signal propagation time can be determined from the geometrical

range p~ between satellite i and receiver A. Hence,

Where

cI>~(r) -

cI>i(t) -

cI>A(r) -

instantaneous phase measured by receiver A at

received time r

T -t = p~(t)/c (2.11)

Where c = the speed of light.

The phase of the incoming satellite signal cI>i(t) can be expressed in terms

of the received time and the range p ; giving

(2.12)
.-_',:'-,,',:';/,,': :',

This expression can be expanded using Taylors theorem, ignoring terms

higher than the first order to give,

(2.13)

The phase cI>~( r) is measured modulo one cycle, and the receiver main-

tains count of the number of whole cycles that have been received since the

first measurement epoch. However, the receiver has no knowledge of the in-

teger number of cycles that exist at the first epoch.: This integer ambiguity

can be allowed for by adding an integer termNi to equation(2.10). The

basic phase observable equation can now be written as,

(2.14)

The basic phase observable contains the constant integer term Ni and

the range term p~(t), which relates to the receiver coordinates. In order to

eliminate the time varying satellite phase cl>i{T) and receiver phase cI>A(T)

linear differences can be formed, between satellites and stations.
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2.4.3 Single Differences

A single difference is the instantaneous phase difference, between two re-

ceivers and one satellite. It is also possible to define single differences between

two satellites and one receiver [Wells, 1986]. Using the former definition, the

phase difference between two receivers A and B, and satellite i is,

<P~B(T) - <P~(T) - <P~(T)

- <PA(T) - <PB(T) + f_(p~(t) - p~(t)) + NiB
c

(2.15)

Where N~B = N1 - N~
The single difference willeliminate the satellite phase <pi(T), and the two

integers N1 and N~ are combined into one integer N~B

2.4.4 Double Differences

A double difference is formed from subtracting two single differences, mea-

sured to two satellites i and j (figure 2.5). Hence,

<P~B(T) - <P~B(T) - <P~B(T)

- f_(p~(t)-~(t) - p~(t) + p~(t)) + NXB
C

(2.16)

ij . j .
Where NAB = NAB - NAB
It can be seen from equation (2.16) that all the time dependent unknowns

have been eliminated. The only unknowns are the constant lock-on double

difference phase ambiguityNXB and the range value P~B' It is this range

term that contains the unknown receiver coordinates. For short baselines, the

value of the integer ambiguity NXB can be estimated as part of the solution

and it can be constrained to its integer value in a subsequent solution .. The

process of constraining the integers generally improves the accuracy of the

solution [Yau, 1986].

2.4.5 Triple Differences

A triple difference is formed from two double differences, measured at two

different epochs r« and Tn+1 • The triple difference observable is then written
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Satellite j

Satellite i

Receiver A Receiver B

Figure 2.5: Double diff .. 1 erence phase method

23



as,

cI>1B(rn+l,n) - cI>1B(rn+d - cI>1B(rn) (2.17)

- L(~(rn+d - tlB(rn+d - p~(rn+d + p~(rn+l))
C

-L(~(rn) - p~(rn) - p~(rn) + p~(rn)) (2.18)
c

It can be seen that the unknown initial double difference phase ambigu-

ity is eliminated. This makes the triple difference particularly robust, when

cycle slips occur (section 2.5.1). The main disadvantages of the triple differ-

ence are the increase in noise level, the reduction in number of observation

equations and the integer nature of the phase ambiguity cannot be utilised.

The selection of the time interval, which to form differences over will also

affect the solution and a discussion of this is found in [Yau, 1986].

2.4.6 The Processing of GPS Observables

Four phase observables have been derived in the previous section. The ba-

sic phase and the single difference observations, both contain time depen-

dent terms relating to the unknown satellite or receiver phase. The double

difference observable leads to much simpler solution and the effects of any

instabilities in the satellite or receiver clock are very much reduced. It also

has the advantage that the integer phase ambiguities can be constrained to

integer values, for short baselines.

Further discussion of the pure phase, single and triple difference observ-

ables can be found in other texts [Yau, 1986] [de la Fuente, 1988] and they

are not considered any further in this research project. Only the double

difference observable will be used for the processing.

In order to solve for the unknown station coordinates and the integer

ambiguities, it is necessary to linearise equation (2.16) about the approxi-

mate values of the unknowns, XA, YA, ZA, XB, YB, ZB, NtB' Using Taylor's

expansion and ignoring second order terms and above,

L [( 8p~ _ 8~) ~XA + (8P~ _ 8~)~YA + (8P~ _ 8~)~ZAl
C 8XA 8XA 8YA 8YA 8ZA 8ZA

_L [( ap~ _ ariB) tJ.XB + (aph _ ariB) tJ.YB + (aph _ ariB) AZB]
c 8XB aXB aYB aYB aZB 8ZB
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(2.19)

where,
8p~ Xi - XA

'r) XA = p~
(2.20)

and,
8<f?1B
8NXB

The observed double difference phase O~ is obtained directly from the

=1 (2.21)

values recorded at the two receivers, giving

(2.22)

The computed phase <f?~ {'T)c for one satellite and one receiver is deter-

mined from the geometrical range, corrected for atmospheric delays,

(2.23)

The double difference computed phase C~ is obtained from differencing

equation (2.23) in the same way as equation (2.22).

The observation equation (2.19) refers to two satellites and two receivers.

The introduction of extra stations (receivers) or satellites will require partic-

ular differencing techniques.

Consider the use of four satellites, i, j, k, 1and two stations. At one epoch

double differences can be formed by differencing between adjacent satellites

(i-j), (j-k), (k-l) or by using a base satellite concept and differencing to one

satellite, (i-j), (i-k), (i-I).

The differences formed in this way will be highly correlated, because the

observations share some common phase measurements. Hence it is necessary

to model these correlations to avoid biasing the observations to a particular

satellite. The same problem will occur when using more than two stations.

The Correlation of Double DifferenceObservables

A geometrical correlation matrix C is used to relate the double difference

observables <PDD to the raw phase measurements <Praw, such that

(2.24)
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In general, the correlation matrix. can be expressed using the notation

given by Beutler et al [1986a],

(.
AnC'C=
A21C'

(2.25)

If the base satellite concept is used, the matrix. C' for m satellites would

have (m-1) rows and m columns.

-1 1 0 0 0 0

-1 0 1 0 0 0

C'= -1 0 0 1 0 0 (2.26)

-1 0 0 0 1 0

-1 0 0 0 0 1

The submatrix. A for n stations will have n-1 rows and n columns. The

definition of the submatrix. will depend upon the baseline configuration se-

lected for the processing. Using a base station concept the A matrix. can be

given as,
-1 1 0 0 0 0

-1 0 1 0 0 0

A= -1 0 0 1 0 0 (2.27)

-1 0 0 0 1 0

-1 0 0 0 0 1

An efficient way of computing the correlation matrix., is to use the Kro-

necker matrix. product [de la Fuente, 1988]. The Kronecker matrix. product

of A and C' is given as,

C = A ® C' (2.28)

The correlation matrix. W, by which the double difference must be mul-

tiplied, is given as,

(2.29)

Using the rules of Kronecker matrix. products, the weight matrix. Wcan

be written as,

(2.30)
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Hence W can be easily computed without having to invert the whole

correlation matrix product (CCT
).

An adjustment can now be carried out, by using a least squares procedure.

The weighted observation equations are in the form,

(2.31)

weight or correlation matrix

observation equation coefficients

vector of unknowns

observed minus computed double differenced phase

v - residual
The most probable solution to equation (2.31) is obtained from minimis-

ing the sum of the squares of the weighted residuals. The series of equations

that satisfy this condition, are called the normal equations,

where

W -
A -
x

b -

(2.32)

The normal equations are symmetric and can be solved by using Cho-

leski's triangular decomposition method [Spencer et al, 1977]. The solution

vector x contains the corrections to the unknown parameters. The residuals

v may be determined from substituting the vector x into equation (2.31).

An estimation of the precision of the unknown quantities can be obtained

by forming the covariance matrix. The mean square error of an observation

of unit weight [Ashkenazi, 1970] is given as,

2 (vTWv)
0'0 = n - k (2.33)

where,

n = number of observation equations

k = number of unknowns
The covariance matrix O'xx can then be obtain from,

(2.34)
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The standard error of any unknown quantity can then be obtained from

the respective diagonal element of the covariance matrix.

It is possible to constrain some of these unknowns to predefined values.

For example for the solution of a network, using the double difference observ-

able, it is normal to fix the coordinates of one of the stations and determine

coordinate differences relative to that station. The coordinates are held fixed

by using an observation equation of the form,

(2.35)

Xo = observed value of the station coordinate

Xc = computed value of the station coordinate
The value of Xo will be the same as Xc if the station coordinates are to be

constrained to the approximate coordinates. The equation (2.35) can then

be multiplied by a suitably high weight and added to the normal equations.

Similar equations are then formed for the y and z coordinates of the station.

2.5 Description of Error Sources in the GPS

Observables

Errors in geodetic networks can be divided into two basic types; measurement

errors and errors in the position of the satellite (ephemeris errors). The

measurement errors are caused by,

• Cycle Slips.

• Atmospheric Delays.

• Satellite and Receiver clock biases.

• Relativistic Effects.

The methods used to reduce the effects of these errors are given in the

following sections.
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2.5.1 Cycle Slips

A common problem encountered when using carrier phase observables, is the

occurrence of cycle slips. This is when the receiver loses lock on the satellite

signal. When the signal is reacquired, the integer count of the number of

cycles will be lost. The magnitude of the slip can vary between one cycle and

several thousand cycles. The fractional part of the phase is still measured

correctly, therefore it is important that cycle slips are corrected by integer

values.

The loss of lock can be due to faults in the receiver hardware, by the

obstruction of the antenna, or by a temporary power failure. For dynamic

applications of GPS, sudden accelerations of the antenna can cause a loss of

lock.

When considering a method of cycle slip reparation, the data can be

repaired either from a single station or from a number of stations, using the

residuals from a solution to check for the cycle slips.

Many methods of single station cycle slip repair have been suggested.

Dual frequency data can be used to correct for small cycle slips at a single

station [Goad, 1986]. At each epoch, the difference in carrier phase observ-

ables can be written as,

..>
(2.36)

Where

q>~(thl

q>~(t)L2

hl
h2

= Observed L1 carrier frequency at epoch t

= Observed L2 carrier frequency at epoch t

= L1 frequency (1575.42 MHz)

= L2 frequency (1227.60 MHz)

Changes in the difference at over time will caused by the ionosphere. The

coefficients in equation (2.36) are 1.0 and -1.28 for the L1 and L2 frequencies

respectively. Hence a slip of one cycle on L1 would cause at to change by 1.0,

and a slip of one cycle on L2 would cause at to change by -1.28. Providing the

magnitude of at is small enough, it is then possible to identify the occurrence

and size of a slip, and then correct the raw carrier phase data.

29



Another method of single station cycle slip reparation, is to fit a polyno-

mial expression to the raw carrier phase data using a least squares method

[de la Fuente, 1988]. A prediction of the next phase observable can be made

by extrapolating the polynomial onto the next epoch. A check can then be

made between the predicted and observed phase, to check for the occurrence

and size of any cycle slips. In practice this method has been found to work,

but it is computationally a very time consuming process.

Both these methods are only useful for data where the epoch separation

is small. When a gap occurs in the data, it is not easy to predict the value

of the cycle slip over this gap.

An alternative to fixing cycle slips at one station, is to use a phase differ-

ence solution, and check the value of the residuals. Using a triple difference

algorithm, a cycle slip will show up as a spike in the residuals (Figure 2.6).

The deletion of the phase data at the epoch of the slip will remove the spike,

and a solution free of cycle slips will remain. It is the robust nature of the

triple difference that makes it suitable for preprocessing carrier phase data.

With a double difference solution, cycle slips will show up as a jump in

the residuals (figure 2.7). This means that for a double difference solution, it

is necessary to correct the raw phase data, from the epoch of the slip, until

the end of the data. Consider the residuals from a double differenced phase

solution given in table (2.2), using satellite 12 as the base satellite.

It appears that a slip of 2 cycles has occurred in satellite 6 at epoch 7.

It is also possible that a slip of -2 has occurred in satellites 9, 11 and 12.

This is because at an epoch, common cycle slips between the satellites that

are being differenced, will be eliminated in the double differenced solution.

Hence, the phase data from epoch 7 can be corrected by 2 cycles for satellite

6, or by -2 cycles for satellites 9, 11 and 12.

When a large gap occurs in a data set, it is not always possible to deter-

mine the value of a slip exactly. One method is to solve for a new integer

term in equation (2.19). This has the disadvantage that the integer nature of

the slip is ignored and with a lot of cycle slips, a large number of unknowns

will have to be estimated.
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Time

Figure 2.6: Triple difference phase residuals

Time

Figure 2.7: Double difference phase residuals
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Satellites 6 & 12 9 & 12 11 & 12

epoch

1 -0.2167 0.1571 0.0560

2 -0.2324 0.0053 0.0361

3 -0.3175 -0.0106 -0.1212

4 -0.4087 -0.0690 -0.1312

5 -0.5194 -0.0405 -0.1028

6 -0.5146 0.1422 -0.2035

7 1.4673 0.2552 -0.0726

8 1.4439 -0.0576 -0.0669

9 1.4126 -0.0843 -0.0629

10 1.3679 -0.0694 -0.0636

11 1.3762 -0.0222 0.1381

12 1.3280 -0.0033 0.1401

13 1.2384 0.1229 0.1287

14 1.0932 0.0451 0.0843

Table 2.2: Double difference phase residuals with cycle slips
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2.5.2 Atmospheric Refraction

The earths atmosphere will cause the GPS signal to bend and slow down. The

excess path length due to the signal bending is small for satellite elevation

angles greater than 10° [Dodson, 1989], and this effect is normally ignored.

The excess path length at the zenith, due to the propagation delay can be

obtained from integrating the refractivity N, from the base, to the top of the

ionosphere.

(2.37)

Where

AS = excess path length due to the propagation delay

N = refractivity of the atmosphere

t = top of the atmosphere

b = base of the atmosphere

The refractivity changes throughout the earth's atmosphere, and for GPS

observables, the different effects of the ionosphere and the troposphere must

be considered. The troposphere extends from the ground up to height of

about 50 km, and the ionosphere extends from the top of the troposphere up

to a height of about 500 km.

Troposphere

The troposphere is a non dispersive medium and will affect the L1 and L2

frequencies similarly. The atmospheric refractivity N [Dodson, 1986] is gen-

erally given as,

N = 77.6 (;) + 3.73 x 105 (;2) (2.38)

Where

e = partial water vapour pressure (millibar)

T = atmospheric temperature (Kelvin)

P = atmospheric pressure (millibar)

The first term of equation (2.38) is the dry component of the troposphere

and it accounts for about 90% of the tropospheric delay. The second term is

the wet component, which depends upon the partial water vapour pressure.
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The inhomogenous distribution of the water vapour pressure throughout the

atmosphere makes it very difficult to model. The only instrument capable

of measuring the water vapour pressure, in the direction of the satellite is

a microwave radiometer. However, the expense and inconvenience of the

instrument, render it impractical for general GPS observations. A typical

zenithal delay due to the troposphere is about 2 m, increasing to about 26 m

at a zenith angle of 85°. Various models have been suggested to account for

the tropospheric delay, and they are generally based upon surface weather

measurements, made at each receiver.

One model proposed by Hopfield, was derived from data collected from

meteorological balloons. The excess path length at zenith, is expressed in

terms of the heights of the wet and dry tropospheres [Hopfield, 1971]. These

delays are then mapped down to the required zenith angle.

Saastamoinen used a model which assumes a constant drop in tempera-

ture up to a height of about 10 km, with a constant temperature above this

point. The range correction in meters t:.So is given as,

(
1255 ) 2t:.So=0.002277secz[P+ T+0.05 exp-Btan zJ+DR (2.39)

where

z apparent zenith angle

P - total barometric pressure ( millibars)

e - partial water vapour pressure (millibars)

T - absolute temperature ( Kelvin)
B and DR are corrections tabulated in [Saastamoinen, 1973]. The appar-

ent zenith angle z may be calculated from the true zenith distance Z,

z = Z - t:.z" (2.40)

where,

16.0 tan Z ( 4800e) P
t:.z" = T P +-r -0" .07(tan3 Z + tan Z) 1000 (2.41)
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A standard model for the variation of water vapour pressure is used, based

upon the relative humidity r.

[
(17.UT-4684) ]

e = 6.108r exp T-38.45 (2.42)

In a similar way to Hopfield, the zenithal delay is mapped down to the

required zenith angle. Both models have been tested on the GPS software

at Nottingham, and for the long baselines ( greater than 100 km ) processed

in this thesis, the Saastamoinen model was found to be the most reliable.

In the absence of any surface meteorological data, a standard atmosphere

model can be used. One such model [Curley, 1988], is used in the MAGNET

processing software, developed for the TI 4100 receiver by Mr. R. Hatch.

The pressure is estimated by,

P = (1015 - 1.75 cos <P)exp-hx (2.43)

where

P pressure (millibars)

h height (km)

<P - latitude
The term x is given as,

x = 0.113 + O.OOlh+ 0.017 sin <P(1+ 0.382 cos(0.0174(J - 30))) (2.44)

where J is the day number from the start of the year.

The delay in meters of the signal at the zenith is then given as,

DRz = 0.002276P (2.45)

This delay can then be mapped down to the required satellite elevation

angle E by the function,

DR _ DRz 0.00143cosE
- . E + . E + 0.0445cosEsin sin

(2.46)

The use of uncalibrated meteorological equipment can introduce signifi-

cant height errors in a baseline. It has been shown [Beutler et al, 1987] that
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a 1mm error in calculating the zenithal delay can introduce a height bias of

up to 2.9 mm. Indeed over small networks, the use of uncalibrated meteo-

rological equipment and any localised surface weather conditions, may not

truly represent the troposphere above. In these situations, it is usually better

to use a standard atmosphere model, than to use surface weather data.

It has also been shown that ignoring the atmospheric delay will introduce

a scale increase of about one part per million (ppm) [Beutler et al, 1987]. If

a suitable model is used, the dry part (90%) of the delay can be satisfactorily

calculated, resulting in a scale error of the order of 0.1 ppm.

N = k x (~) (2.47)

Where

E = free electron density

f = frequency

k = constant term

The free electron density will depend upon the solar activity. Factors

affecting the number of free electrons in the ionosphere include the daily and

seasonal variations in the sun and the eleven year sun spot cycle, which is

expected to reach a maximum in 1990/91. Typical zenithal delays vary from

10 meters around midday, to around 2 meters at night.

The phase advance due to the ionosphere [Ashkenazi et al, 1977] can be

shown to be,

al a2 •
<P A = <Pvac - <Pob" = f + J2 + h1,gher order terms (2.48)

Where
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<I> A = phase advance

= carrier phase measured in a vacuum

= carrier phase observed

= constants which include the total electron count
<I> ob"

1 = frequency

Using two frequencies and ignoring second order terms and higher,

Ll ,1;.Ll al
<I>vac - ":f!ob" = -I

Ll
(2.49)

L2 ,1;.L2 al
<I>vac - ":f!ob" = -1

L2
(2.50)

Hence from equation (2.50),

(2.51)

Combining equations (2.49) and (2.51), the phase measured in a vacuum
,1;.Ll .,
":f!vac ISgIven as,

(2.52)

A similar expression can be derived for the L2 frequency,

<I>L2 _ /Llh2<I>~b~ - /l2<I>~b~
vac - /2 /2

Ll - L2

Hence with dual frequency measurements, a first order correction for the

ionospheric delay can be obtained directly. For single frequency receivers,

(2.53)

the parameters broadcast in the satellite navigation message, can be used

[Rockwell, 1981]. The parameters are expected to remove up to 50% of the

ionospheric delay. Further discussion of the ionospheric correction for single

frequency receivers is beyond the scope of this research project, but it has

been considered by other authors [Georgiadou and Kleusberg, 1987].

The effect of neglecting the ionospheric delay, is a contraction in scale of

a baseline. A typical scale error of the order of 0.7 ppm has been shown with

no ionospheric modelling [Beutler et al, 1987].

The use of dual frequency measurements for short baselines is not recom-

mended, because the increased noise level of the combined L1/L2 solution
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may exceed the differential dispersive delay. The increase in noise level us-

ing the dual frequency observation can be estimated from the propagation

of error law and it can be shown to be approximately four times the magni-

tude of the single frequency observation [Kleusberg et al, 1985]. Generally,

the L1 solution is used for' baselines of up to 10 or 20 km. Above this value

the ionosphere will generally cause significant errors and a combined L1/L2

solution should be adopted.

2.5.3 Satellite and Receiver Clock Errors

In order to take accurate code and phase measurements, it is necessary to

synchronise the satellite and receiver clocks to GPS System Time. The satel-

lite clock offset can be calculated from the parameters given in the satellite

data message.

The receiver clock offset must be determined by the user and the pseu-

dorange solution can be used for this. Providing four satellite coverage is

maintained, a value for the receiver clock offset can be determined every

epoch. Alternatively, if a relatively stable receiver clock is used, a polyno-

mial can be used to model the clock offset.

(2.54)

vVhere

TA(ti) = receiver clock offset at epoch t,
cr., /3, 'Y = constants representing the receiver clock offset, drift and ageing terms.

to = reference epoch

Hence, equation (2.2) can be written as,

Where

. (2.56)

The double difference solution is relatively insensitive to receiver clock

errors and it is normally sufficient to use a second order polynomial to model

the clock.
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~r(m) ppm

orbital error baseline error

100 5

20 1

2 0.1

0.2 0.0~1

Table 2.3: Baseline errors for given orbital errors

2.5.4 Orbital Error

One of the major error sources affecting precise positioning, is the orbital

error. For a point positioning solution, errors in the satellite ephemeris

will propagate directly into the position of the receiver. For relative po-

sitioning, the baseline error can be estimated from the following expression

[Wells, 1986],

(2.57)

Where

~b = baseline error

b = baseline length

~r = orbital error

r = orbital radius

If an orbital radius of 20000 km is assumed, the effect of various orbital

errors are given in table (2.3), expressed in parts per million of the baseline

length.

The current broadcast ephemeris is estimated to be accurate to about 20

m, suggesting possible baseline accuracies of the order of one part per million.

Typical baseline errors when using the broadcast ephemeris ate given in table

(2.4),

The implication from table (2.4) is that for short baselines ( less than 10

km ), baseline accuracies of less than one centimetre can be achieved with

the broadcast ephemeris. For larger baselines and networks (greater than 10

km ), the broadcast ephemeris is often inadequate, and a more precise orbit
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Baseline (km) Error

1 Lmm

10 lcm

100 10 cm

1000 1m

Table 2.4: Baseline error for the broadcast ephemeris

will have to be used.

An alternative to using the broadcast ephemeris, is to use a post mis-

sion precise ephemeris, such as that produced by the Naval Surface Warfare

Centre! (NSWC). This is estimated to be accurate to within five meters and

is available to certain bona fide users ( section 3.3 ).

The University of Texas produce a precise ephemeris and this is available

to the general user upon request. Litton Aero Services Ltd. also produce

an ephemeris, specifically for use with their codeless M aerometer geodetic

receivers.

It is also possible to determine the satellite orbit as part of a network

adjustment, using the GPS observables. An orbit determination process is

described in chapter 3 of this thesis, and a further discussion on orbital errors

is given there.

2.5.5 Relativistic Effects

The frequency of the received signal will differ from that transmitted, due to

the effects of general and special relativity. These are caused by the difference

in potential between the satellite and receiver and by the difference in their

velocities. An average correction is made by the Control Segment by setting

the satellite clock frequency low by a factor of 4.45 X IQ-10. This will mean

that the transmitted signal is now 10.22999999545MHz [Spilker, 1978].

2.5.6 Miscellaneous Error Sources

It is not possible to describe all the. known error sources, which affect the

precision of GPS observables, but two other problems must be mentioned.

lFormerly the Naval Surface Weapons Centre
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Multipath is an error caused by the satellite signal being reflected from a

surface, before reaching the antenna. The delayed signal will interfere with

the direct signal on its arrival at the antenna. The effect of multi path will

only last for a limited period in time, until the satellite-antenna geometry

has changed sufficiently. Multipath is more problematic for receivers used in

a highly reflective environment, such as an oil rig. Careful design and siting

of the antenna can alleviate the problem.

The phase centre of an antenna is the point where the incoming phase

measurements are made. The position of the phase centre can move de-

pending upon the azimuth and elevation angles of the incoming phase signal

[Sims, 1985]. The effect can be minimised by orientating all the antennas

used in a survey in a common direction, usually towards the north. Further

care must be taken when establishing the height of the phase centre of the

antenna, which is different for the L1 and L2 frequencies on the TI4100

antenna ( figure 2.8 ).

2.6 Data Preprocessing

There are two main preprocessing stages that are required before the GPS

data can be used in a least squares network adjustment. These are necessary

to reduce the quantity of data and to correct the phase data for the receiver

clock offset.

2.6.1 Compression of Data

Typically, geodetic receivers are capable of measuring the pseudorange and

phase data at intervals of between three seconds and minute. When recording

data from several satellites, at different stations, a large amount of data is

collected. To reduce the data processing time and storage requirements, a

form of data compression is required.

A simple solution is to fit a low order polynomial to a number of these

measurements, using a least squares technique .'.' A normal point can then

be produced for this span of data, which represents all the data points. It

is necessary to ch~ the epoch of the normal point carefully, so that each

measurement is given equal weight in the determination of the normalised
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20.2 cm

22.7 cm

Figure 2.8: Position of the L1 and L2 phase centres on the TI 4100 antenna
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Baseline D.x D.y D.z Length

Normal pointed data at sixty second epochs

A to B -6508.925 15760.968 5396.580 17885.673

A to C -30718.403 32537.806 24304.935 50922.087

Raw data at three second epochs

A to B -6508.927 15760.968 5396.581 17885.674

A to C -30718.400 32537.805 24304.934 50922.084

Table 2.5: Normal pointed data results

data point. In general, for the GPS phase data, the epoch nearest to the

mean epoch has been chosen for the normal point. For phase difference

techniques, it is essential to produce normal points at simultaneous epochs

for each satellite and receiver.

A geodetic receiver will record the phase data at nominally constant in-

tervals in time. The data from each satellite can be split into equal length

sections and a polynomial can then be fit to each section using a least squares

technique. The polynomial will be a function of time t, of the form,

(2.58)

In the simplified example in figure ( 2.9 ), the normal points each represent

five phase readings, with the normal point calculated at the mid epoch of

the data span. The data recorded from each satellite must be sectioned at

the same epochs, for simultaneous normal points to be produced. This will

necessitate the rejection of some observations when satellites rise and fall,

but the normal points will then be uncorrelated.

A further use of normal pointing is to combine data from different receiver

types, where the recording interval may differ (Chapter 6).

An important requirement for any data compression technique, is that

the final solution will not be unduly affected by using the compressed data

set. Table (2.5) shows a comparison between two baselines (A to B) and (A

to C) computed using three second data and then using data normal pointed

to one minute intervals.
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The maximum difference between the two solutions for any of the baseline

components was three millimetres.

Comparisons have been conducted using different order polynomials to

fit the data. For the three second TI 4100 data that was available for this

project, a second order polynomial was found to be the most suitable for

producing one minute normal points. Higher order polynomials produced a

normal point that was more representative for the middle epoch, than for

the whole data span being compressed.

2.6.2 Time Correction of Phase Data

The geodetic receiver will record phase data and time tag it, using its internal

clock. Any offset from GPS System Time of the receiver clock, will mean that

the time tags are incorrect. The magnitude of this error can be determined

from a pseudorange solution. In figure ( 2.10 ), the measured phase reading

and corresponding time tags are denoted by the subscript m. At an epoch

i, if the GPS System Time of the measured phase is ti, then the receiver

will produce the time tag t; + Ati• The time tags could be corrected by the

receiver clock offset At;, but then observations from different receivers will

not be simultaneous. The alternative is to correct the phase by an amount

equal to (<I>i - <I>im). This is given as,

a<I><I>. = <I>. + -At
I 1m at (2.59)

The phase rate a<I>/ at can be approximated for small time intervals by,

a<I> <I>(Hl)m - <I>im
at = (tHl + AtHl)m - (ti + Ati)m (2.60)

However, the phase rate is not constant over the interval ti to ti+1' and

when normal pointed data is being used, the epoch separation may be too

large for the above approximation to hold. A more precise phase rate can be

determined from the polynomial fit of the normal points. If a second order

polynomial has been used to fit a span of data, the phase at time t, from a

given reference time to is given as,

(2.61)
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<l?(Phase)

<l?(Hl)
<l?(Hl)m

<l?i-4------------------~

<I>im -4-------------](

(ti) (tHd
(ti + Ati)m (tHl + AtHl)m

Figure 2.10: Time correction of the phase data
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where a, band care constants.

The phase rate is then obtained from differentiating with respect to t,

8iP
- = b+ 2c( ti - to)8t (2.62)

The corrected phase value is now obtained from,

(2.63)
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CHAPTER 3

Orbit Determination

3.1 Introduction

The carrier phase observable can be used to determine baseline lengths to an

accuracy of about one part per million, when using the broadcast ephemeris.

If large baselines are to be measured, the magnitude of this error may become

unacceptable. An alternative is to use the NSWC precise ephemeris, which

should be suitable for baseline determination up to an accuracy of half a part

per million. However, for higher precision work, it is necessary to model the

satellite orbit, by solving for selected orbital parameters as part of the least

squares network adjustment.

To determine elements of the orbit by any method, it is necessary to use a

network of tracking stations. For the production of the broadcast and precise

ephemerides, a global tracking network is used. However, when using a phase

difference technique to determine the orbit, simultaneous measurements are

required between the satellites and stations. This necessitates the use of a

regional or continental network.

The following two sections describe the production of the broadcast and

precise ephemerides. Section (3.4) gives details of the orbit determination

approach used in this research project for regional networks.

3.2 Broadcast Ephemeris Prediction

The prediction of the satellite ephemeris by the Master Control Station

(MeS) is a two stage process.

Initially, a reference orbit is computed by the Naval Surface Warfare Cen-
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tre (NSWC), using the CELEST! computer program [O'Toole, 1976]. This

reference orbit, is a 40 day prediction, based upon one week of pseudorange

data, collected from the GPS Monitor Stations (MS). Every two weeks, a new

reference orbit is sent to the MCS. The orbit is estimated to have a max-

imum error in the along track direction of between five and twenty meters

[Varnum and Chaffee, 1982].

The second stage of the process uses a Kalman filter to determine the cur-

rent satellite states from satellite observations. These are then used in the

filter to predict the future states of the satellite for the broadcast ephemeris.

Measurements of pseudorange and delta pseudorange are made at each MS,

every six seconds. These measurements are made with a caesium beam fre-

quency standard and the time tag of each measurement is corrected to GPS

System Time at the time of signal transmission. The pseudorange measure-

ments are smoothed to produce one value every fifteen minutes and the delta

pseudorange measurements are sampled every fifteen minutes. The reference

orbit is now subtracted from the smoothed measurements to produce mea-

surement residuals. These are corrected for the effects of the ionosphere,

troposphere, relativity, earth rotation and the antenna offsets. These mea-

surements are then used as the input to the Kalman filter, to produce esti-

mates of the satellite's position and the satellite clock offset. The predicted

satellite coordinates, which are determined in cartesian coordinates, are con-

verted into keplerian type elements, then uploaded to the satellites by the

Ground Antennas.

The first six Keplerian elements given in table (3.1) describe the satellite's

motion at the reference time to. Corrections terms are given to allow for

perturbations from this smooth orbit. The term no is not the right ascension,

but is the difference between the right ascension at the ephemeris reference

time floe and the Greenwich Apparent Sidereal Time (GASTweek) at the start

of the GPS week.
1Recently a new multi-satellite program has been developed for computing the GPS

reference orbit called OMNIS. This has been developed by the NSWC to replace the

CELEST program
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Element Description

Mo mean motion

e eccentricity

Va square root of the semi-major axis

no noe - GASTweek (see text)

to inclination at time to

w argument of perigee

~n mean motion difference

n rate of right ascension

t rate of inclination

c:»; cosine and sine corrections to argument of latitude

c.;c; cosine and sine corrections to orbital radius

c;CiIJ cosine and sine corrections to inclination

to ephemeris reference time

a/o satellite clock offset

ail satellite clock drift term

ah satellite clock ageing term

Table 3.1: Broadcast ephemeris representation
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The satellite clock offset terms are also given in the ephemeris message.

These three terms give the clock offset with respect to the reference time,

and are perturbed by a function which describes general relativity, sO that

the user may ignore the effect.

The calculation of the satellite coordinates from the broadcast ephemeris

is done in two stages [Ashkenazi and Moore, 1986]. Initially, the cartesian

coordinates of the satellite are computed in the orbital plane. These are then

rotated through the inclination angle, to make the z axis coincident with the

terrestrial z axis. Finally, the coordinates are rotated about the z axis by the

angle 0, to make the x axis coincident with the Greenwich Meridian.

The accuracy of the broadcast ephemeris is estimated to be in the region

of 20 metres with possible degradation up to 50 metres in certain areas. Once

GPS is fully operational, the errors are not expected to exceed one metre

radially, seven metres along track and three metres across track [Wells, 1986].

3.3 Precise Ephemeris Prediction

More precise satellite coordinates can be obtained by using one of the several

post-computed ephemerides that are available.

The 'official' precise ephemeris is computed by the Naval Surface Warfare

Centre (NSWC) and is based upon measurements from the five Monitor

Stations, augmented with data collected in Australia, England, Argentina,

Bahrain and Ecuador (figure 3.1). The ephemeris is computed for spans

of eight days, covering the GPS week from Sunday to Saturday. A half

day extension at each end of the week, provides a full day overlap between

successive weeks. Comparisons have been made between these end of week

overlaps, to check the consistency of the orbit data. The agreement has

been shown to be better than five meters [Gouldman et al, 1989]. Authorised

civilian users can obtain the ephemeris through the U.S. National Geodetic

Survey, after a period of about four weeks. The ephemeris is given in earth-

fixed cartesian coordinates, describi~g the satellite's position and velocity

in kilometres and kilometres/second every fifteen minutes. An interpolation

method can be used to determine the coordinates at the required epoch.
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The University of Texas also produce a precise ephemeris from a global

tracking network. These sites are at Austin, Mojave, Westford and Richmond

in North America, Wettzell, Onsala and Tromso in Europe and Hawaii. The

ephemeris is computed using both pseudorange and phase measurements.

For users of the codeless MACROMETER receivers, the manufacturer,

Litton Aeroservices Ltd. provide a post computed ephemeris. The ephemeris

is computed from a set of American tracking stations, and is capable of pro-

ducing baseline accuracies to within one or two parts per million, suggesting

a similar accuracy to the broadcast ephemeris.

3.4 Regional GPS Orbit Determination

Two methods have been suggested for regional GPS orbit determination.

1. Free Network Approach. In this method the coordinates of one

station are held fixed in the adjustment process and the coordinates of

the other station are allowed to move freely. A priori constraints are

placed on the orbital elements.

2. Fiducial Network Approach. This method uses several stations

whose coordinates are held fixed in the adjustment. No a priori con-

straints are placed on the orbital elements.

The free network approach has been tested on a North American network

[Beutler et al, 1986b] and more recently in Australia [Rizos et al, 1989]. One

problem with this approach is deciding the level of constraint to place on

the orbit. Beutler et al [1986b] used tabulated satellite coordinates as false

observations to rigidly constrain the orbit at fifteen minute intervals.

With the fiducial network approach, no constraint on the orbit is required

and the only constraints are placed on some selected station coordinates.

This approach has been adopted in this research project.

3.4.1 Fiducial Network Concept

The fiducial network concept for GPS orbit determination is based on several

GPS receivers, which are placed at sites, whose coordinates are precisely
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known ( fiducial sites). The necessity to use precisely known coordinates

limits the choice of network, which must be located near sites where VLBI or

SLR facilities have been used. In Europe and North America this presents

no problem, but in the southern hemisphere, where there is a lack of these

facilities, a free network approach may have to be adopted.

The receivers, which are placed at these fiducial sites, are then used to

track the satellites. Simultaneous measurements are also recorded by re-

ceivers located at sites whose coordinates are unknown (figure 3.2). This

network of receivers at the fiducial sites can then be used in an orbit im-

provement process to determine more precise satellite orbits. This improve-

ment in the orbital accuracy will result in a more precise determination of

the unknown receiver coordinates.

To process the data from the network efficiently, a simultaneous adjust-

ment of the satellite orbit parameters and unknown station coordinates is

required, with the coordinates of the fiducial sites held fixed. Two methods

can be used for the orbit adjustment process,

1. Orbit Determination. An adjustment of the satellite orbit, which has

been obtained from integrating the satellite force model. (Sections 3.5

and 3.6)

2. Orbit Relaxation. An adjustment of some of the elements of the broad-

cast ephemeris. (Section 3.9)

The choice of station geometry for the fiducial network is particularly

important. Three or more receivers are required, to be located at well dis-

tributed sites in a region extending for several hundred kilometres. The

fiducial sites should not be colinear and all the unknown receiver sites should

lie within or very close to the fiducial network. Experiments have shown

that the best fiducial networks cover the maximum possible east-west and

north-south directions and have all the unknown sites located close to the

fiducial sites [Lichten et al, 1989].

In the example shown in figure (3.3), the fiducial sites W, Y and Z in

network A, occupy a long narrow network and the unknown site X is located
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a long way outside the network. This configuration would be expected to

produce a poor determination of the receiver coordinates at site X.

Network B uses the largest possible fiducial network, with the sites lo-

cated in an optimal triangular pattern. The location of receiver Z, close

to the fiducial network should enable a good estimation to be made of it's

coordinates.

The fiducial network concept uses the precision of the VLBI or SLR deter-

mined coordinates to strengthen the GPS network. It is therefore necessary

to exercise particular care when measuring and calculating the eccentrici-

ties between the VLBI or SLR reference marks and the GPS antenna phase

centres.

The use of VLBI/SLR coordinates for the fiducial sites will tie the GPS

network to the absolute reference frame of the VLBI/SLR solution. This will

enable an easy comparison to be made between the VLBI/SLR and GPS

baseline vector components.

CIGNET: A Global GPS Tracking Network

CIGNET, the Cooperative International GPS NETwork is a global network

which is continually tracking the GPS satellites. The data is recorded from

nine sites, which send the tracking data on a weekly basis to the U.S. National

Geodetic Survey, where is reformatted and archived. The data is available on

request for the determination of satellite orbits and other research purposes.

The sites use a combination of TI 4100 and Mini Mac 2861 AT satellite

receivers. The Mini Mac is a receiver capable of tracking up to ten satellites

and currently the Mini Mac receivers at the CIGNET sites track all the

available satellites, including the Block II satellite 14. The TI 4100 receivers

track a specified satellite constellation, including satellite 14, details of which

are given in the GPS Bulletin of the CSTG. The sites occupied are,
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Site location Receiver type

Tsukuba/Kashima, Japan Mini Mac

Kokee Park, Hawaii TI4100

Yellowknife, Canada TI4100

Mojave, California TI4100 Mini Mac

Westford, Massachusetts TI4100 Mini Mac

Richmond, Florida TI4100 Mini Mac

Tromso, Norway TI4100

Onsala, Sweden TI4100

Wettzell, West Germany TI4100

The data from two of these sites has been used for the computation of the

satellite orbits in chapter 6. The data is provided in a standard format, with

separate files containing the measurement records ( time-tagged pseudorange

and carrier phase ), satellite broadcast ephemeris and meteorological data.

3.5 The Principles of Orbit Determination

The purpose of any orbit determination procedure is to produce precise satel-

lite coordinates, at given epochs in time. The satellite's position in space can

be determined from a model, which represents all the known forces acting

upon the satellite. This force model can be integrated with respect to time,

once to obtain velocity, and twice to obtain position. The model will include

the gravitational and surface forces acting upon the satellite.

Errors in this reference orbit (integrated orbit) can be corrected by track-

ing the satellite from a series of well distributed sites. These tracking observa-

tions can then be used in least squares adjustment to solve for various orbital

parameters using either the free network or the fiducial network approach.

The receiver site coordinates and parts of the force model are expressed in

an earth fixed (rotating) reference frame, but the integration must be carried
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out in an inertial (non rotating/] reference frame. Hence, it is necessary to

define a set of reference frames and the relationship between them.

3.5.1 Inertial Reference Frames

The fundamental astronomical reference frame adopted by the International

Astronomical Union (IAU) in 1976 is called FK5. FK5 describes the apparent

places of over 5000 stars and extragalactic radio sources at the epoch of

January 1.5, year 2000.

The inertial reference frame used in this thesis, is a geocentric cartesian

system based upon the FK5 frame. The origin is located at the earth's centre,

with the x axis directed towards the mean equinox of J2000.0, the z axis is

normal to the equatorial plane of J2000.0, and the y axis completes the right

handed coordinate system.

A similar reference frame is used to describe the planetary ephemeris,

produced by the Jet Propulsion Laboratory, Pasadena. This is given in

heliocentric coordinates and is called DE200/LE200.

3.5.2 Earth Fixed Reference Frames

An earth fixed coordinate system has its axes fixed with respect to positions

on the earths surface. The conventional terrestrial system has its origin at

the earth's centre, with the x axis directed towards the Bureau International

de l'Heure (BIH) zero meridian. The z axis passes through the Conventional

International Origin (CIa) pole and the y axis completes the right handed

coordinate system. The CIa pole is defined by the mean axis of rotation of

the earth, between the years 1900 and 1905.

The coordinates of the receiver sites are given in an earth fixed geocentric

reference frame and the coefficients of the gravitational potential are given in

a earth fixed spherical reference frame. Many different reference frames have

been adopted by the geodetic community, but for GPS, the World Geodetic

System 1984 (WGS84) has been used since January 1987 and this is based

on the conventional terrestrial system.

2The inertial reference frame is non rotating with respect to a framework of points fixed

in space
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3.5.3 Transformation from Inertial to Earth Fixed Coordinates

Earth fixed coordinates Tel of a point can be obtained from inertial coordi-

nates Tin by using the theories of nutation and precession, and accounting for

the earth rotation and polar motion effects. The complete transformation is

given by the following expression.

Tel = P.E.N.PT Tin (3.1)

Where

P = rotation matrix for polar motion

E = rotation matrix for earth rotation

N = rotation matrix for nutation

PT = rotation matrix for precession

The reverse transformation is given by the expression using the transpose

of the matrices.

_ P T NT ET pTTin - T. • • Tel (3.2)

A description of the rotation matrices is given in the following sections,

further details can be found in several texts [Agrotis, 1984] [Moore, 1986].

Precession

If the effect of the planets is ignored, the mass centre of the earth and moon,

would move in a plane around the sun, called the ecliptic. The great circle,

formed by the ecliptic on the celestial sphere, will have a pole called the pole

of the ecliptic. The effect of the sun, moon and the earth's equatorial bulge,

will cause the axis of rotation of the earth, to move around the pole of the

ecliptic, in a complete circle, every 25800 years. This is known as luni-solar

precession, and has an amplitude of approximately 23.50•

The attraction of the planets, will cause the pole of the ecliptic to move

by about 0.47 seconds each year and the equinox will move eastwards by

about 0.12 seconds each year. This motion is called planetary precession, and

the combination with luni-solar precession is known as general precession.

60



The general precession can be calculated from three equatorial precession

parameters, (A,ZA,OA [Agrotis, 1984]. The precession matrix PT is given as,

(3.3)
The rotation matrices R2 and R3 are defined in appendix B. The mean of

date coordinates Tm of a point, are obtained from the inertial coordinates Tin

such that,

(3.4)

The mean of date coordinates are given at epochs of Barycentric Dynam-

ical Time (TDB), which is the time scale for the equations of motion, relative

to the solar system's barycentre.

Nutation

In addition to the general precession, the moon causes two other periodic

motions; long period and short period nutation. The former has a period of

18.6 years, with an amplitude of about 9 seconds. The short period nutation

has a period of two weeks, with an amplitude less than 0.5 seconds.

Nutation is described in terms of two angles, the nutation in longitude D.."p

and the nutation in obliquity D..€. These relate the mean of date coordinates

to the true of date coordinates Tt (defined by the true equator and equinox

of date) such that,

Tt = N Tm (3.5)
The rotation matrix N is given as,

(3.6)

The values of D..€ and D.."p are given by the summation of a 106 term series.

Earth Rotation

To obtain instantaneous terrestrial coordinates ri, the true equinox of date

must be rotated through the hour angle GAST ( Greenwich Apparent Side-

real Time). The angle GAST is defined in terms of UTI, the hour angle

measured from the Greenwich meridian to the mean sun. Values of UTI mi-

nus UTC are published monthly in Circular D, of the BIH. The instantaneous
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terrestrial coordinates are given by,

(3.7)

Where E = R3( GAST).

Polar Motion

The pole of the instantaneous terrestrial system is not fixed with respect to

the earth. The movement of the pole can be ascribed to three motions,

1. An annual motion around the mean position, with an amplitude be-

tween 0.06 and 0.10 seconds.

2. A similar motion with a fourteen month period, with an amplitude of

between 0.08 and 0.18 seconds.

3. A movement of the mean pole position by about 0.0033 seconds per

year, along the 700 westward meridian.

The position of the true pole with respect to the mean CIa pole, is

given in terms of two angles, Xp and yp. The CIa pole is defined to be the

mean axis of rotation over the years 1900 to 1905. Values of Xp and yp are

published by the BIH in Circular D. The rotation matrix for polar motion is

then given as

(3.8)

Then the earth fixed coordinates Tet of the point are given by,

(3.9)

3.5.4 Force Model Components

The forces acting upon any satellite can be divided into two basic groups.

The gravitational forces include the earths gravitational attraction, lunar,

solar and planetary attractions and tidal effects. The other type of forces are

the surface forces, which depend upon the altitude and physical properties of

the satellite, and these include the solar radiation pressure and atmospheric

drag.
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For GPS satellites, at an altitude of 20000 km, the atmospheric drag can

be considered negligible [Wells, 1986], and it is usually ignored in the force

model. The more significant components of the force model are described in

more detail in the following sections.

Gravitational Attraction of the Earth

The force due to the gravitational field is a function of the satellite's position

in an earth fixed reference frame. The acceleration vector ref at a point, due

to the gravitational attraction, is obtained from the gradient of the potential

field VU.

The potential U at a point above the earth, is normally expressed in terms

of a spherical harmonic expansion, where

GM[ 00" (a)n 1U = If' 1+Efo R P,:n(sin q»(C: cosmA + S:sinmA) (3.10)

Where

G - universal gravitational constant

M - mass of the earth

a earths equatorial radius

R,A,q> - earth fixed spherical polar coordinates

of the point

n,m - degree and order of the spherical

harmonic expansion

P,:n(sin q» - Legendre polynomial

C;:, S;: - spherical harmonic coefficients

The expansion of equation (3.10) is the summation of an infinite number

of terms. As the altitude of a satellite increases, the effect of the higher

order terms is reduced and the expansion is truncated after a finite number

of terms. The coefficients C;: and S;: are defined by various models.

The model recommended for use with the GPS satellites, is the WGS

84 Earth Gravitational Model (EGM). This is an expansion to degree and

order 180. However, only the coefficients up to degree and order 18 have

been declassified for civilian use. The coefficients of the EGM have been
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obtained from numerous observations of Doppler, Satellite Laser Ranging,

Surface Gravity, Satellite Altimetry, GPS and data pertaining to lumped

gravitational coefficients [D.D.D., 1986]. For this model the value of the

product GM is taken to be 3896005.0 x 108 m3 8-2.

The GEM Tl geopotential model has also been used for some of the

results obtained in this thesis. This model has been derived purely from the

tracking data obtained from seventeen different satellites, which had a large

range of inclination angles and altitudes [Marsh et al, 1988]. The value of

the product GM is taken as 3896004.36 x 108m3 8-2• The GEM T1 model

takes the axis of maximum momentum as its axis, which is defined by the

coordinates of the poles between the years 1979 and 1984. The differences

x and y between this pole and the BIH pole are 1.2 m (0."0382) and 8.7

m (0."2803) respectively. Hence, to use this model, the station coordinates

should be rotated through y about the x axis and through x about the y

axis. The polar motion values used for the reference frame transformations

should also be decreased by x and y.

The gravitational attraction of the earth decreases rapidly with increasing

altitude. For GPS satellites at an altitude of 20,000 km, only the first few

terms of the geopotential expansion are required. Figure (3.3) shows the

difference between a GPS orbit computed using the GEM-T1 geopotential

model up to degree and order twenty and one computed using the GEM-

T1 geopotential model up to degree and order eight. After 100 hours, the

maximum difference between the orbits is less than 2.5 centimetres in the

along track component. The maximum orbit lengths used in this research

project spanned four days of GPS data, equivalent to about 75 hours, for

which the (8 x 8) geopotential expansion was considered sufficient.

The coefficients C::' and S::' are given in a normalised form C and S in

most models, including the WGS84 (EGM). The coefficients are

(3.11)

and
(3.12)
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Where N: is the normalising factor,

N'" = [en - m)!(2n + 1)(2 - 80m)] t
n (n+m)! (3.13)

80m is the Kronecker delta which takes values,

{
0 ifm,eO

8om=
1 ifm=O

(3.14)

The earth fixed acceleration vector fe] is given by

.. "u eure! =v =--ere!
Where re! and re! represent the earth fixed positions and accelerations

(3.15)

x, y, z, x, ii, z. The potential U is expressed in terms of the spherical polar

coordinates R, ~ and ..x, and use of the chain rule will lead to,

r !_ eu (aR) + au (a~ ) + au ( a..x)
e - aR arel a~ arel aA are!

The inertial frame acceleration due to the earths gravitational attraction

(3.16)

can now be obtained from this,

.. P TNTETpT"rin = r re! (3.17)

Moon, Sun and Planetary Attractions

The gravitational attraction of the sun, the moon and the planets (third

bodies) will exert a force on both the satellite and the earth. The inertial

frame acceleration of the satellite due to a third body, relative to the earth

is given as,

(3.18)

Where

f. = acceleration of satellite towards the third body

f e = acceleration of earth towards the third body

Hence, the acceleration of the satellite with respect to the earth can be

given as [Agrotis, 1984],

.. GM [ r;- r r; ]
r = i Ir; _ rl3 - Ir;13 (3.19)
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Where

M, = mass of the third body j

r j = inertial frame coordinates of the third body

r = inertial frame coordinates of the satellite

The heliocentric coordinates of the moon and the planets are given in

the Jet Propulsion Laboratories ephemeris DE200/LE200. These are inertial

(J2000.0) coordinates, given at 0.0 hours TDB each day. Values for the

required epoch can be obtained by interpolation.

For GPS satellites, the moon and the sun cause the most significant per-

turbations to the orbit. Table (3.2) gives the approximate magnitudes of the

effects, for a 24 hour orbital arc [Landau and Hein, 1986].

Force Acceleration( ms -2) Perturbation( m)

Lunar 5 X 10-6 3000

Solar 2 x 10-6 800

Table 3.2: Third body effects on GPS orbits

The magnitude of the effect of the planetary attraction is negligible com-

pared to the effects listed in table (3.2), and can be ignored in most compu-

tations.

Solid Earth and Ocean Tides

The gravitational attractions of the sun and the moon cause the non-rigid

earth to deform. These deformations will affect the earths gravitational at-

traction and must be accounted for in precise orbit determination. The

oceans are also attracted towards the sun and the moon, and the earth re-

sponds to this variable ocean loading by deforming. This deformation will

also affect the gravitational attraction of the earth, but to a lesser extent

than the earth tides. The various models used to account for the solid earth

and ocean tides are discussed in [Agrotis, 1984] and [Moore, 1986]. For GPS

satellites, the magnitude of these perturbations are given in table (3.3) for a

one day arc. [Landau and Hein, 1986]. It can be seen that for arc lengths of

up to a few days, the effect of the ocean tides will be relatively small.
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Force Acceleration( ms-2) Perturbation( m)

Solid Earth 1 X 10-9 0.3

Ocean 0.5 x 10-9 0.04

Table 3.3: Tidal effects on GPS orbits

Solar Radiation Pressure

One of the most uncertain force model components is the solar radiation

pressure. The photons emitted from the sun, collide with the satellite, and

this change in momentum, will create a force in the direction away from the

sun. The intensity of the radiation obeys the inverse square law, and the

radiation pressure is then given as,

[ ]

2
P _ 10 A

- C IT - Til
(3.20)

Where

A = Astronomical unit (1.4959787 X lOll)

T = Inertial frame satellite position vector

Tj = Inertial frame sun position vector

c = Speed of light

10 = Intensity of the radiation at a distance A (= 1367.2Wm-2)

The intensity of the radiation 10 is not constant, but it varies according

to the solar activity. These variations are not expected to exceed about

7 % [Rizos and Stolz, 1985]. The inertial frame acceleration caused by the

solar radiation pressure in the direction away from the sun, is obtained by

multiplying P, by the area to mass ratio.

(3.21)

Where eu is the unit vector in the direction of the satellite from the sun.

The coefficient CR is a solar radiation reflectance coefficient, which will

absorb certain deficiencies in the model, such as a changing area to mass

ratio. The value of CR can be determined as part of the orbit determination

process (section 3.7)
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Spherical satellites such as LAGEOS can be satisfactorily modelled by

using equation (3.21). However, the GPS satellite has a complex shape, with

two large solar panels attached to either side, necessitating a more detailed

model.

One model which represents the shape and reflective properties of the

Block I satellites is the ROCK IV model, which has been developed by the

satellite manufacturers [Fliegel et al, 1985]. A local satellite coordinate sys-

tem is used, which has the z axis directed towards the centre of the earth

and the y axis directed along the axis of the solar panels. The x axis forms

a right handed system with these (figure 3.5). It is assumed that the mo-

mentum reaction wheels on the satellite, align the y axis normal to the plane

containing the satellite, sun and earth. Stepping motors then rotate the solar

panels to maximise the surface area facing the sun. For the Block II satel-

lites a new solar radiation pressure model has been developed by the satellite

manufacturer called the ROCK IV 2 model [Fliegel and Gallini, 1989].

The ROCK IV model uses thirteen distinct surfaces, which are described

as either flat or cylindrical. Associated with each surface, is a reflectivity

coefficient and a specularity coefficient. The model is used by the NSWC to

support long arc orbit computations ( 40 days). For shorter arcs, a more

simplified model can be considered.

One particular effect of the solar radiation pressure on the GPS satellite

is a y bias force. This is a force acting along the axis of the solar panels (

Le. the y axis). Several reasons have been suggested to account for this force

[Fliegel et al, 1985]

1. Misalignment of the solar panel axis with the normal to the plane con-

taining the earth, sun and satellite. This may be due to structural

misalignments or misalignments in the satellite attitude sensing mech-

anism.

2. Thermal re-radiation effects. This is caused by the heat absorbed by the

satellite being re-radiated through louvres in the sides of the satellite.

These louvres are normal to the y axis and any asymmetric radiation
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Figure 3.5: Definition of the space vehicle coordinate system
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effects will produce a force along the y axis.

The y axis force changes very slowly with time and can be treated as a

constant for orbital arcs of a few days. The magnitude of the force can be

determined by solving for an acceleration in the y axis direction, as part of

the orbit determination process.

The acceleration can be considered as a constant Cy, multiplied by the

unit vector iy, normal to the satellite, sun and earth plane (figure 3.6).

(3.22)

The unit vectors to the sun (e",,) and the earth (e.,e) can be computed

directly from the satellite coordinates and the planetary ephemeris. The unit

vector normal to these (ey) is given as the vector product,

(3.23)

Hence, the constant y bias force Cy can be introduced as part of the orbit

determination process.

The high altitude orbit of the GPS satellite means that the satellite's

are virtually in constant sunlight. Twice a year, each satellite is eclipsed by

the earth and the direct solar radiation pressure will be reduced. Initially,

the satellite just touches the area of penumbra ( partial shadow), but each

revolution increasing the period of eclipse until a maximum of about forty

minutes. During these periods it is necessary to cut off the solar radiation

pressure model, using a shadow factor 1]. Sudden changes in the satellite

force model will lead to instabilities in the numerical integration, so it is

necessary to introduce a gradual change from full sunlight, 1] = 1.0, to full

shadow in the umbra, 1] = 0.0.

A simple model can be used to reduce the shadow linearly through the

penumbra. Referring to figure (3.7), the distance from the earth to the top

of the umbra cone z can be determined by using similar triangles,

(3.24)
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Hence,
aelr,,1z = _ _.;._......:....._

(S,. - ae)

By similar triangles again, it can be seen that,

(3.25)

z -Ir cosOI z (3.26)

and,

au (:e ) (z - Ir cos 0 I)

rcosO SR~ ae- ra (3.27)

Where Ir cos 01 = 11~:il.
The value of au is the radius of the umbra cone, at the position of the

satellite. The radius of the penumbra cone ap, at the satellite position can

be determined using similar triangles again in figure (3.7).

ap - ae ae
Ir cos 01 = d"b

(3.28)

and,

(3.29)

Hence equation (3.29) can be written in terms of the distance to the sun

Ir"l·
Ir,,1 = d"b (1+ ~=)

Combining equations (3.28) and (3.30),

(ae + SR}IT cos 01
ae + Ir..1

(3.30)

rcosO SR~ ae+--
T.

(3.31)

A value for the shadow factor 1] can be determined from these values of au
and ap• If the value of cos 0 is greater than zero (0 < 90°), then the satellite

is in full sunlight. This is given for r.r. > 0, then 1]= 1.0.
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If the value of cos e is less than zero, then a further check is required,

IrAe,,1 ~Ctp 1] = 1.0

Ir Ae,,1 ~ au 1] = 0.0

ap> IT A e,,1 > au 1]= (TAe,,-au) (3.32)ap - au

Where e" is the unit vector V-i in the direction of the sun from the earth.

Hence a modified solar radiation model can be used, formed from equa-

tions (3.21) (3.22) and the shadow factor 1], giving

(3.33)

Where\

e"" = unit vector in the sun satellite direction

ey = unit vector in the satellite coordinate system y axis

A further source of solar radiation modelling error is caused by the radi-

ation reflected from the earth's surface ( the albedo effect). Modelling the

albedo is a very complex process, due to both temporal and spatial variations

in the reflected radiation. The magnitude of the albedo pressure is estimated

to be in the region of 1 to 2 % of the direct solar radiation pressure, in the

radial direction. Consequently, it is usually ignored for orbit computations

spanning only a few days. The approximate magnitude of the solar radiation

pressure for a one day arc is given in table (3.4).

Force Acceleration( ms-2) Perturbation( m)

Direct 10-7 200

Y bias 10-9 10

Table 3.4: Solar radiation pressure effects

The area to mass ratio will affect the perturbations to the satellite orbit,

caused by the solar radiation pressure. For the Block Isatellites, the following

properties are given [Fliegel et al, 1985],

A = 5.48m2

m = 440.89 kg.
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For the Block II satellites, the following values are given [Wells, 1986],

A = 7.25m2

m = 845 kg.

The mass of the satellite is not constant, but it will decrease as the on-

board propellant is used for any required orbital manoeuvres. However, any

changes in the area to mass ratio will be absorbed by the scaling coefficient

CR estimated in the least squares solution.

3.6 Equations of Motion

The Newtonian equations of motion of the satellite are given by,

r=f(t,r,r) (3.34)

Where

r = acceleration vector

r = velocity vector

r = position vector

t = time

To obtain the velocity at a given time t, equation (3.34) can be integrated

with respect to time, from an initial velocity vector i»,

r(t) = To + r rotJto (3.35)

Integrating equation (3.35) with respect to time, from an initial position

vector ro will give,

r(t) = ro + r roti; (3.36)

The integration must be carried out in a non rotating ( inertial) reference

frame, for Newton's Laws to apply. Errors in the state vector (ro, ro) can be

corrected in the least squares adjustment of the orbit (section 3.7).

The integration can be performed by using either analytical or numerical

techniques. Analytical techniques lend themselves better to qualitative orbit

analysis, whereas a numerical integration technique is more suitable for the

quantitative high precision orbit determination that is required here.
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3.6.1 Numerical Integration

There are two types of numerical integration techniques that can be used,

single step and multi-step methods.

When considering a time varying function, the single step method uses

the value of the function at time ti to evaluate the function at time ti + h,

where h is the integration step length. For the velocity and acceleration

integrals in equations (3.35) and (3.36), this can be written as,

(3.37)

and,

(3.38)

The integrals of rand r may be evaluated by approximating the func-

tion over the interval ti to (ti + h), by using one of the many single step

methods, such as the Runge-Kutta procedure [Spencer et al, 1977]. The er-

ror associated with the Runge-Kutta procedure, is not easy to determine. It

is estimated that the error is of the order hm, where m is the order of the

Runge-Kutta procedure. Single step methods are particularly time consum-

ing as each integration step will require m function evaluations.

A predictor-corrector scheme is a commonly used multi-step method. An

nth order multi-step method, will use the previous n+ 1 values of the function,

to predict the (n + 1)th. value. The corrected value of the function is now

determined, using the predicted value along with the previous n values.

The Adams-Bashforth predictor-corrector scheme, uses the Newton back-

ward difference formula to determine the value of the integral. The multi-step

technique has the disadvantage that the step length cannot be altered during

the integration process, so the step length must be carefully chosen at the

start.

An estimate of the error can be obtained from the difference between

the predicted and corrected values. The multistep requires only two func-

tion evaluations at each epoch (predictor and corrector), and can use a step

length eight times larger than the single step method [Ashkenazi et al, 1984].

This makes the multi-step method much more efficient than the single step
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method. Normally, the single step method is used to determine the first n

values of the function, then an nth order multi-step method is used. The

current generation of orbit determination software at Nottingham Univer-

sity uses a 4th order Runge-Kutta starting procedure followed by a 9th order

Adams-Bashforth predictor-corrector scheme when enough initial steps have

been evaluated. A full description of the use of single step and multi-step

methods for orbit determination is given in Agrotis [1984].

A test was carried out to determine an efficient step length for the pred-

ictor-corrector integration scheme. A compromise has to be reached between

the computational speed and the level of accuracy required. A comparison

is given in table (3.5) of an orbit computed using different step lengths. The

table shows the x, y and z coordinates of the satellite in metres after a 75

hour integration.

Step length x (m) y(m) z(m)
(seconds)

120 11913981.633 633699.812 23380570.906

240 11913981.633 633699.812 23380570.906

480 11913981.658 633699.799 23380570.899

Table 3.5: Comparison of different orbit integration step lengths

It can be seen that for a three day arc, the differences between the 120

and 240 second step lengths were below the millimetre level, but much larger

differences occurred when a 480 second step length was used. The 240 second

step length was selected as a maximum length for the GPS orbit integration.

The numerical integration of the force model, will produce a series of

satellite position and velocity vectors in the inertial reference frame, at dis-

crete intervals of time. If the satellite state vector, and the force model were

accurately known, this reference orbit could be used directly for the process-

ing of the CPS observables. Errors in this reference orbit can be corrected

by using a least squares adjustment, with the CPS observables.
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3.7 Least Squares Adjustment of the Orbital

Parameters

The satellite state vector Ton (XO' Yo, ZO, XO, Yo, zo) required to initialise the

integration process need not be known precisely. Corrections can be made to

the vector by using observations made between the satellites and the network

of tracking sites. The two basic GPS observables, pseudorange and carrier

phase, can both be used for this purpose.

The pseudorange has the advantage that it is an unambiguous measure-

ment, but it is less precise than the carrier phase measurement. If the phase

integer ambiguity can be satisfactorily resolved, then the carrier phase mea-

surement will give a highly precise observable. The carrier phase can be

used for a simultaneous adjustment of the selected receiver coordinates and

the satellite state vector. The double difference phase observation equation

(2.16) can be linearised about the initial value of Ton, to give an expanded

form of equation (2.19),

L [(8P~ _ 8~)~XA + (8P~ _ 8~)~YA + (8P~ _ 8~)~ZAl
C 8XA 8XA 8YA 8YA 8ZA 8ZA

(3.39)
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Where

frequency

- speed of light

geometrical range between satellite i at time of signal

transmission and receiver A at time of signal reception

XA, YA, ZA - approximate coordinates of receiver A

f
c

r:m satellite state vector for n = 1 to 6 (xo, Yo, zo, xo, Yo, zo)
O~, C<J observed and computed values of the double

difference phase

N1B - integer phase ambiguity

v double difference phase residual

It is necessary to evaluate the various partial derivatives in equation

(3.39). The partial derivatives of the form ap~/ aXA are evaluated as in

equation (2.5),
8p~ xi - XA

8XA = p~

Where Xi is the x coordinate of satellite i.

The chain rule can be used to expand the partials of range with respect

(3.40)

to satellite vector,

8p.~= ap~ ( 8~i ) + 8p~ (a~i ) + ap~ ( 8~i )
orl ox' or' ay' or' az' ar'on on on on

(3.41)

The partials of the form 8p~/ 8xi can be obtained by differentiating equa-

tion (2.4) with respect to xi,

ap~ XA - xi--=-.;....,...-ax' p~

Similar expressions can be derived for yi and zi.

The partials of the satellite position with respect to the satellite state

(3.42)

vector exi / er:m cannot be derived analytically, instead they are obtained

from the numerical integration. A least squares adjustment will only provide

a first order correction to the estimated parameters, so it is only necessary to

integrate the most significant component of the force model, when computing
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the partial derivatives. The effect of ignoring all the other components except

the gravitational potential is discussed in Agrotis [1984].

Considering satellite i, the acceleration vector r:i due to the earths gravi-

tational attraction is given as,

..i 8U
r =-8ri

(3.43)

Differentiating with respect to the satellite vector gives,

8r:i 82U d2 (8ri)
ari = ari 8ri = dt2 8rion on on

(3.44)

Where

r:i satellite acceleration vector (xi, ii,zi)
in the inertial reference frame at time t

ri satellite position vector (Xi, yi, Zi)

in the inertial reference frame at time t

The partial derivative of the acceleration with respect to the satellite state

vector can be expanded, by the chain rule,

8f
i

(GXi) 8f
i

( 8ii ) 8r:
i
( 8i

i
)+ ' , + 8" 8' + G" 8'8x' 8r' y' r' z' r'on on on

(~.45)

The partials of the satellite's acceleration vector with respect to the po-

sition and velocity vectors are evaluated as follows [Agrotis, 1984],

G!ii 82U 8!ii 82U 8!ii
8xi = 8Xi2' 8yi = 8yi8xi' 8xi = 0 (3.46)

The partial derivatives of the satellite's position and velocity vector with

respect to the state vector are given as,

(3.47)

and integrating again gives,

8Xi [ 8Xi 1 it 8xi-, = -, + -, dt
8r:m 8r:m to to 8r:m

(3.48)
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The initial values of 8r;"'/8r:m at to are easily obtained for r:n = (xi, yi, zi)

as,

ar~ = {o if m # n
ar:m, 1 if m = n

(3.49)

Similar terms can be added to equation (3.39) to solve for any unknown

force model components. The equation for the direct solar radiation pressure

coefficient CR would be,

f_ [(ap~ _ apk) ~Ci _ (a~ _ a~) ~C;l
c BCR 8CR R BCh aCh R

The partial derivatives of the form Bp~/ BCh are expanded in a similar

way to equation (3.41),

(3.50)

Bp~ = ap~ ( 8x
i
) Bp~ ( 8y~ ) ap~ ( azi )

BCR Bx' aCR + By' aCR + az' aCR
The partials of the satellite position and velocity vector with respect to

(3.51)

the solar radiation reflectance coefficient are again obtained by numerical

integration,

(3.52)

and integrating again gives,

8x' [ Bx' 1 r 8x'
8Ck = 8Ck to + lto 8Ck dt

Similar expressions are used for the y and z satellite coordinates.

The initial values of ar!.,.,/aCh at to are obtained for r!.,.,= (Xi, yi, Zi, xi, ii,Zi)

(3.53)

as,
(3.54)

The acceleration partials with respect to the state vector are given by,

ax~ ( ax~ ) 8x~ ( ay~ ) ax~ ( az~ )8x' aCR + ay' BCR + az· aCR
axi

+ aCk (3.55)

The partial axi/ac; is obtained from differentiating equation {3.33}.
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The constant y bias acceleration Cy can be estimated as part of the least

squares adjustment by including the expression,

f [(ap~_ ap~)se: _ (a~ _ a~) tl.Ci]
c ac~ ac; y oc; oc; y

The partials are evaluated in a similar way to the partials for the solar radi-

(3.56)

ation reflectance coefficient CR'

Hence, observation equations of a similar form to equation (3.39) can be

formed to estimate both the receiver and the satellite dependent unknowns.

The normal equations are formed from these observation equations and solved

using the methods described in chapter 2. In the least squares adjustment,

the coordinates of at least three of the fiducial sites will be held fixed to

VLBI or SLR determined coordinates and estimates made for the non fiducial

receiver coordinates, initial phase ambiguities, satellite state vectors and any

solar radiation pressure parameters required.

3.8 Assessment of Orbital Accuracy

One of the problems encountered in an orbit determination process, is the

estimation of the quality of the orbit. Three methods have been used in this

research project.

1. Orbit repeatability

Two overlapping, independently determined orbital arcs can be com-

pared against each other to test the repeatability of two orbits. For

example, when considering an observation period of six days, the re-

peatability of the orbits can be assessed by estimating two independent,

three day orbits from alternate days of data. This is shown in figure

(3.8), described as interleaved arcs. The orbits can then be compared

over the common time periods between days 2 and 5.

The alternative test is to use two adjacent orbits, and extrapolate the

first orbit onto the second orbit (figure 3.9). This is a more stringent

test of the orbital quality, because any errors in the satellite force model

or in the initial state vector, will cause a degradation of the accuracy of

the orbit, as it is predicted further away from the observation period.
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Arc 1

Figure 3.8: Orbit repeatability: interleaved arcs
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Arc 2

1• 2• 3• 4• 5• 6•

Arc 1 extrapolated over arc 2

Figure 3.9: Orbit repeatability: extrapolated arcs

85



If enough data is available, a different network of fiducial sites can be

used to compute the orbit, and a comparison can be made from orbits

computed using the same period of observations.

The orbit repeatability is not really a test of external accuracy, rather

it tests the internal accuracy, as systematic errors may well produce

the same biases in the two independent orbital arcs. The external

accuracy of the orbit can be estimated by comparison with an orbit

computed using an independent data set and software package. The

NSWC precise ephemeris can be used for this purpose.

2. Comparison with a precise ephemeris

The NSWC precise ephemeris is estimated to be accurate to within five

or ten meters. Hence, it is only useful to check the accuracy of an orbit

to a similar level of accuracy. One problem with using this method

of comparison is determining the differences which may exist between

the coordinate reference frames that have been used to compute the

orbits. These differences may introduce systematic biases between the

two orbits.

3. Baseline comparison of GPS with other space techniques

The simplified relationship between the orbital accuracy and baseline

error was given in equation (2.57). The baseline error can be best esti-

mated by comparison with VLBI or SLR determined baselines. Hence,

an estimate of the orbital accuracy can be derived from this. The

estimated baseline lengths will also include the effects of other error

sources and this must be considered in any comparison. Lichten [1989]

suggested that the baseline error ll.L on a line of length L can be ex-

pressed as,

(3.57)

where A and B describe the contributions to the baseline error from

the orbit independent effects and the orbit dependent effects respec-

tively. For short baselines the orbit independent effects such as the
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measurement noise and any errors in the site eccentricity vectors will

be more dominant. However, as the baseline increases in length, the

orbit dependent terms become more dominant and the expression sim-

plifies into equation {2.57}. Therefore, the longer baselines are more

suitable for estimating the accuracy of the orbit than the shorter base-

lines, which may be affected by the other error sources.

This method of comparing baselines has been used extensively in this

thesis for estimating the orbital accuracy, because one of the primary

objectives of GPS orbit determination is the computation of high ac-

curacy baselines.

3.9 Orbit Relaxation

A simpler alternative to using the GPS satellite force model to improve the

satellite orbit is to use an orbit relaxation technique. For short arcs ( up

to about three hours of data ), selected elements of the orbit are allowed to

relax as part of the least squares adjustment. Whilst this process will not

produce a precise orbit, it has been shown with SLR data to produce precise

relative coordinates of the tracking stations [Moore and Ashkenazi, 1987].

This is possible by allowing for systematic translations and accelerations in

the orbit ( through the estimated orbital parameters ), which will absorb

certain errors in the satellite observations and the satellite orbit model (

broadcast ephemeris ). For GPS satellites, corrections can be determined to

some of the keplerian elements given in the broadcast ephemeris. Six of these

broadcast elements describe a mean orbital ellipse from a given reference time

to, which are
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e - eccentricity

Va - square root of the semi-major axis

~ inclination at time to

w - argument of perigee

no - right ascension parameter

at start of GPS week

Mo - Mean anomaly at time to

The partial derivatives of the receiver to satellite range, with respect to

the these six orbital parameters can be formed by differentiating the expres-

sions given in [Ashkenazi and Moore, 1986], which give the cartesian coor-

dinates of the satellite in terms of the Keplerian elements. These can then

be included in the observation equation given in equation (2.19). These ob-

servation equations have been implemented into PANIC, the GPS network

adjustment package at Nottingham, by a postgraduate student as part of his

research project. Details of the derivation of the partial derivatives and the

results obtained can be found in his thesis [Aquino, 1989].

In the least squares adjustment process, the argument of perigee term w

is held fixed, because of its high correlation with the mean anomaly term Mo.
The coordinates of three or more fiducial sites are held fixed and estimates

are made for the non fiducial coordinates, the initial phase ambiguities and

the orbital unknowns. Two methods of solution have been attempted in the

least squares adjustment,

1. Solving for one set of the five broadcast elements (e, sqrta, ina, Mo) for

each satellite.

2. Solving for a new set of the five elements every hour for each satellite.

Generally, the second method of orbit relaxation has been shown to give

better relative station coordinates, in comparison to the VLBI determined

coordinates. This may be because the elements of the broadcast ephemeris

are not true keplerian elements and they only represent the satellite orbit for.
a limited period of time. A comparison between the second method of orbit

88



relaxation and the orbit determination process ( integrated force model) are

given in chapter 7.
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CHAPTER 4

GPS Orbit Determination Software

4.1 Introduction

All the software used for orbit determination and GPS processing at Not-

tingham University has been written in-house by postgraduate students. The

programs are written in standard FORTRAN 77, designed to run on the Uni-

versity's ICL 3900 mainframe computer. The majority of the programs are

designed to run as batch jobs, which is more efficient for the large programs

and data sets, which require a long run time on the computer. It is also more

convenient for repetitive computations.

Work on GPS and orbit determination has previously been considered as

two separate fields before the start of this research project, with GPS re-

search concentrating on using the broadcast ephemeris. Orbit determination

software was primarily written for the LAGEOS satellite, used for Satellite

Laser Ranging. The research work has involved the integration of these two

distinct software packages and the writing of any necessary software required

for the GPS orbit determination. A flow diagram is given in figure (4.1)

showing the main programs required for the determination of GPS satel-

lite orbits. These programs are described in further detail in the following

sections.

4.2 SODAPOP
SODAPOP ( an acronym for Satellite Orbit Determination and Analysis

Package Of Programs) has been under development since 1981. Three

postgraduate students have been involved in writing the software and details

of the current capabilities of the package are given in [Hill, 1989]. Two of the
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Figure 4.1: Flow diagram for GPS orbit determination
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programs in this package have been used for the GPS orbit determination,

these are ORBIT and CHEBPOL.

4.2.1 ORBIT

ORBIT is a precise orbit integration program, initially developed for the

LAGEOS satellite [Agrotis, 1984]. The numerical integration is initiated

from a given state vector ( approximate position and velocity of the satellite)

and the position and velocity vectors of the satellite are output at discrete

intervals in time.

Very few changes were necessary to allow the program to be used for GPS

satellites. These involved implementing the satellite y bias acceleration to the

satellite force model and the new shadow factor model. A brief description of

the program is given in this section with the necessary parameters required

for the GPS satellites.

Input Parameters

The following parameters are required for the program and they are input in

a control file.

• Satellite state vector! given in an earth fixed or inertial (J2000.0) refer-

ence frame. This can be obtained from either the broadcast or precise

ephemeris.

• Geopotential model. The degree and order of the geopotential model

are selected. The WGS 84 and GEM-T1 models have both been tested

for the GPS satellites.

• Centre of mass correction. The distance between the centre of mass of

the satellite and the GPS antenna has been estimated as 1.0 m.

• Area to mass ratio. A value of 0.Ol24m2kg-1 has been used for the

Block Isatellites.

• GM. The recommended values. of the product GM have been

GEM-Tl 3986004.36 x 1Q8m3s-2

lGiven in cartesian coordinates

92



WGS 84 3986005.00 X 108m3 s-2

• Direct solar radiation pressure coefficient (CR). An initial estimate of

1.5 has been used.

• Y bias acceleration (Cy). Initial estimate of 0.0 ms-2 used.

• Mean earth rotation rate of 7292115 x 10-11 rad s-1 (WGS 84 value).

• Ocean tide model. Schwiderski or GEM T1 if using GEM T1 geopo-

tential model.

• Integration step length. 240 seconds for predictor-corrector.

• Number of integration steps required.

• Selection of force model parameters for which the partial derivatives are

to be evaluated. These include CR and Cy. Further partial derivatives

can be evaluated for some other parameters, although they are not used

for GPS orbit determination.

• Time, date and year in which to start the integration. These correspond

to the satellite state vector.

Reference Frame Transformation

It is necessary to convert all the acceleration vectors into the inertial reference

frame (J2000.0) prior to the numerical integration. The model used for the

transformation includes the IAU 1976 precession and the IAU 1980 nutation

models. Earth rotation and polar motion values are obtained from the BIH

Circular D at five day intervals. These are input into ORBIT in the form

of a random access file, generated by the ancillary program CHEBPOL.

The planetary ephemeris (DE200/LE200) required for the force model is

also included in this file.

Force Model

The GPS satellite force model used in the integration is comprised of the

following components.

93



• WGS 84 or GEM T1 geopotential model up to degree and order eight.

• Lunar, Solar and Planetary attractions (Venus, Mars, Saturn and Jup-

iter).

• Solid earth tides. Simplified Wahr, [Agrotis, 1984], [Moore, 1986].

• Ocean tides. Schwiderski or GEM T1 models.

• Direct solar radiation pressure.

• Y bias acceleration.

Also included is the solar radiation cut-off model, to gradually reduce

the solar radiation pressure during an eclipse. The models for the planetary

attractions and the ocean tides are not essential for orbital arcs of a few days,

but they have been included for possible longer arc computations.

Numerical Integration

The numerical integration is carried out in the J2000.0 inertial reference

frame. A 4th order Runge-Kutta (single step) procedure is used to start

the integration. Once enough initial steps have been evaluated, a 9th order

Adams-Bashforth predictor-corrector scheme is then used.

Output

The main output is contained within two random access files, comprised of,

1. Satellite position and velocity vectors at discrete intervals ( same in-

terval as the predictor-corrector integration step length). These are

given in the earth fixed or the inertial (J2000.0) coordinate reference

frames.

2. Partial derivatives of the satellite position with respect to the state

vector and any required force model components ( ego CR or Cy ).

The orbit integration program is designed for a single satellite and it

will have to be repeated for all the GPS satellites observed. The satellite

ephemeris and partial derivatives are then used as input into the least squares
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adjustment program DDORB, to produce a better estimate for the satellite

state vector and the force model components. These updated values can then

be input into ORBIT again to produce a more accurate orbit.

4.2.2 CHEBPOL

CHEBPOL is a program developed to reduce the computation time required

by the orbit integration and the orbit adjustment programs. It computes

daily sets of Chebyshev polynomial coefficients to represent the nutation and

precession matrices for a period of forty days. This eliminates the need to

evaluate the 106 term nutation series at every integration step in ORBIT

and at every observation epoch in the least squares adjustment program

DDORB. Also produced in the program are linear interpolation coefficients

for the (UTI - UTe) values and the polar motion values.

Input

The following items are required,

• (UTI - UTC) and polar motion series. BIH circular D 5 day values

used.

• Planetary ephemeris (JPL DE200/LE200). The values given at 0.0

hours TDB each day are interpolated using Everetts algorithm.

• Start day and year to begin the computations.

• Integer second difference between UTI and UTC at the start of compu-

tation. This was 23 seconds before 1/1/88 and 24 seconds after 1/1/88

for the GPS data analysed.

Output

The output is contained in a random access which has the forty days of daily

Chebyshev polynomial coefficients for,

• Nutation matrix.

• Precession matrix.

• Planetary ephemeris.
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Linear interpolation coefficients are provided for,

• (UTI - UTe).

• Polar motion.

4.3 GPS Software Package

In the last seven years, nine postgraduate students have been involved with

GPS research projects at Nottingham. The programs currently in use have

been written, modified and updated by several of the students and it is

difficult to attribute programs to particular authors. The reader is referred

to [de la Fuente, 1988] for the description of the GPS software up to 1988.
,

The programs described in this section refer only to those required for the

GPS orbit determination, using data collected from the TI 4100 receiver.

Data preprocessing programs have also been written for the WM 101 and

the Trimble satellite receivers.

4.3.1 TIDECODE

TIDECODE was developed specifically for decoding the data collected on

the TI 4100 receiver. The program forms the pseudorange and carrier observ-

ables, the time tags at which they were recorded and the satellite ephemeris

from the binary data strings recorded by the receiver. Further data can be

decoded as required, such the broadcast ionospheric corrections. The mea-

surements are extracted and placed into two types of file,

1. Measurement file containing pseudoranges, carrier phase, time tags and

satellite identification numbers.

2. Ephemeris files for each satellite.

The program also calculates third differences with time during the decod-

ing process, to check for the occurrence of cycle slips.

4.3.2 EAFILTER

EAFILTER is a data filtering program, which serves three main purposes,
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1. Re-orders the data into a specified satellite order and rejects any un-

wanted satellites.

2. Rejects epochs containing less than a specified number of satellites.

3. Rejects satellites which lie below a specified elevation angle. This is

normally selected as 150 to minimise the effects of atmospheric refrac-

tion.

4.3.3 NORMAL

NORMAL is a data reduction program, which produces normal points for

specified spans of data. A low order polynomial is fit to the span of data

using a least squares technique and a normal point is produced at the nearest

data point to the middle of the span. Specified input parameters are,

• Epoch separation of the input data.

• Epoch separation required for the output data.

• Order of polynomial to use.

For TI 4100 data recorded at three second intervals, a second order poly-

nomial has normally been used for producing one minute normal points. For

one minute normal points, the program will select a one minute span of data

from which to fit the polynomial and no data points are used more than once.

The program also selects the spans of data so that the normal points are pro-

duced simultaneously for all the satellites and receivers, which is necessary

for the phase differencing techniques (section 2.6.1).

The output from NORMAL can be given in two forms,

1. Normal pointed pseudoranges and carrier phases at specified time tags.

( Similar format to the input data.)

2. Normal pointed pseudoranges and the polynomial coefficients a, b, c rep-

resenting the carrier phase readings for each span of data. These co-

efficients describe the phase ~ as ~ = a + bt + ct2 at a given time t.

(section 2.6.2).
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4.3.4 PSEUDO

PSEUDO computes the three dimensional coordinates of the receiver and

the receiver clock offset using the pseudorange observable. The program

uses the data from a whole observation period ( several minutes to several

hours ) and carries out a least squares adjustment, solving for the receiver

coordinates and the receiver clock offset. A choice of receiver clock models

can be made,

1. Solve for one clock offset per epoch,

2. Solve for a clock offset, drift and ageing terms (2nd order polynomial).

The main use of the program in orbit determination is in the estimation of

the receiver clock parameters, which can then be used for the time correction

of the phase data in TIMECOR.

4.3.5 TIMECOR

TIMECOR corrects the phase measurements for the receiver clock error.

The clock model obtained from PSEUDO is used to alter the carrier phase

measurements to allow for the receiver clock offset at the measurement epoch.

This is achieved in two ways,

1. Using the actual carrier phase readings output from NORMAL and

linearly interpolating the phase shift due to the receiver clock offset.

2. Using the polynomial coefficients output from NORMAL to determine

the phase rate 8~ / at (= b + 2ct) and produce a more accurate time

correction method (section 2.6.2).

The output file obtained will then contain the time corrected carrier phase

readings, necessary for the input to the orbit adjustment program DDORB.

4.3.6 DDORB

DDORB was developed by the author from PANIC, the GPS network

adjustment program [de la Fuente, 1988]. DDORB performs a simultaneous

least squares adjustment of the receiver coordinates, initial phase ambiguities,
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satellite state vector and the solar radiation pressure coefficients for all the

required satellites and receivers. It can be used for multiple day solutions,

solving for a new set of integer ambiguities each day. The number of unknown

parameters estimated can grow quite large, particularly with the multiple day

solution. The number of unknowns is equivalent to,

nostns X 3+ nosats X norb + (nosats - 1) X (nostns - 1) X nday (4.1)

Where nostns - total number of stations in the network.

nosats

norb

nday

total number of satellites observed.

number of orbital parameters estimated per satellite.

- number of days of data.

Input requirements

The jobdeck contains several options for the input and various flags for dif-

ferent controlling options.

1. Flag selecting reference system. Le. WGS 84 or WGS 72. This defines

the semi-major axis and the flattening of the reference ellipsoid.

2. Flag selecting frequency. Ll, L2 or Ll/L2 (ionospheric ally corrected).

3. Flag selecting tropospheric correction

(a) No model.

(b) Simplified Hopfield.

(c) Saastamoinen/Marini.

(d) Hopfield.

(e) Saastamoinen (section 2.5.2).

(f) Standard Atmosphere (section 2.5.2).

4. Flag selecting the use of a geometrical correlation matrix.

5. Input day number at start of data.

6. Flag selecting output of double difference phase residuals.
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7. Input maximum number of satellites in data set.

8. Input PRN numbers of satellites.

9. Input PRN number of base satellite.

10. Flag selecting PRN number of any satellite required to be held fixed in

the adjustment.

11. Input maximum number of receivers ( sites ).

12. Input any site whose coordinates are to be held fixed in the adjustment.

13. Input the approximate coordinates of the receivers and the antenna

heights above the site markers.

14. Input the independent baseline definitions. For a network of n receivers

there will be (n-l) independent baselines to define.

15. Flag to select integer fixing option.

16. Input the time interval in seconds of the ephemeris. This will be equiva-

lent to the predictor-corrector integration step length used in ORBIT.

17. Input the time at the start of the ephemeris in seconds of the GPS

week.

18. Input the year and day number at the start of the ephemeris.

19. Input the number of orbital parameters to be estimated for each satel-

lite.

3 - initial position vectors only.

6 - initial position and velocity vectors.

7 - initial position and velocity vectors and direct solar radiation pres-

sure coefficients.

8 - initial position and velocity vectors, direct solar radiation pressure

coefficients and y bias accelerations.
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20. Input number of days of data.

21. Flag selecting the time correction option ( Chapter 7 ).

A number of files are also required by the program. These are,

• Chebyshev polynomial coefficient file ( CHEBPOL ).

• Earth fixed ephemeris file ( ORBIT ).

• Partial derivative file ( ORBIT ).

• Measurement data file for each receiver, for each day ( TIMECOR ).

• Satellite state vector file.

• Meteorological data file ( For options 3 - b,c,d and e ).

General Outline

A brief program description is given below, describing the main steps in the

computation.

1. Input parameters ( in jobdeck ).

2. Convert time of satellite state vector into modified julian day.

3. Read in first epoch of GPS data from each receiver.

4. Compute correlation matrix.

5. Compute earth-fixed satellite coordinates at the time of signal trans-

mission. This is done by interpolating the ephemeris from ORBIT

using an 8th order Everett interpolation algorithm for each satellite.

6. Compute the rotation matrix for transforming the earth-fixed satellite

coordinates into inertial J2000.0 coordinates. The matrix is computed

at the time of satellite transmission using the Chebyshev polynomial

coefficients [Agrotis, 1984].

7. Compute the satellite coordinates in inertial J2000.0 coordinates using

this matrix.
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8. Compute the rotation matrix for transforming the earth-fixed receiver

coordinates into inertial J2000.0 coordinates at the time of signal re-

ception at each receiver.

9. Compute the coordinates of each receiver in inertial J2000.0 coordi-

nates using this matrix, ready for forming the partial derivatives for

the orbital unknowns.

10. Compute tropospheric corrections.

11. Compute observed double difference phase.

12. Compute computed double difference phase.

13. Form partial derivatives for,

• Satellite state vectors.

• Solar radiation pressure coefficients ( one or two parameters per

satellite).

• Receiver coordinates.

• Initial phase ambiguities.

The partial derivatives of the satellite to receiver range with respect

to the orbital unknowns ( section 3.7 ) are obtained from ORBIT

and interpolated to the required epoch using Everetts interpolation

algorithm.

14. Form double difference observation equations.

15. Apply correlation matrix and form the normal equations.

16. Return to step (3) for successive epochs.

17. Form observation equations for fixing any required receiver coordinates

or any other parameter and add to the normal equations.

18. Solve normal equations using Choleski's method of triangular decom-

position.
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19. Compute double difference phase residuals.

20. Solve for the covariance matrix.

21. Output ( see below).

Output

The "amount of output is specified by the program user in the jobdeck. The

estimated parameters output are,

1. Cartesian coordinates of each receiver.

2. Baseline lengths between all the receivers.

3. Geodetic coordinate differences (A<P, AA, Ah) between receivers.

4. Satellite state vectors for each satellite.

5. Solar radiation pressure coefficient for each satellite ( if specified ).

6. Y bias acceleration for each satellite ( if specified ).

7. Initial phase ambiguities for each satellite, each day.

The double difference phase residuals may also be output for each satellite-

receiver pair. A statistical analysis is carried out to compute the covariance

matrix, rms error of an observation of unit weight ( unit variance) and the

standard errors of all the estimated quantities. These are output along with

the relevant parameters.

General comments

Once the new estimates of the orbital parameters have been obtained, they

can be used to recompute a more accurate orbit for the satellites, using

ORBIT. These new ephemeris and partial derivative files can then be used

in DDORB to recompute the solution. This iterative process continues

until no further change in the solution occurs. In practice, no change in

the solution has been seen after the first iteration, the only iteration being

necessary is to recompute the orbits using ORBIT for comparison purposes.

An example of a jobdeck used for this program is given in Appendix A.
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4.3.7 PLOTARC

PLOTARC is a plotting program, which compares the cartesian coordinates

of two separate orbits and plots a graph of the radial, along track and cross

track component differences between them ( figure 4.2 ).

Radial component

---Alongtrack component

Cross track component

Figure 4.2: Orbit component directions

The program requires the X, y and z coordinates of both orbits and the

X, iJ, z velocities of one of the satellites, at the times when the orbits are

to be compared. These can be obtained from ORBIT or from the precise

ephemeris.

For small orbit differences, the unit vector er in the radial direction can

be approximated by,
... (X Y Z)
er ~ R' R' R

Where R = (x2 + y2 + Z2)! for either satellite.

(4.2)

The unit vector ea in the along track direction can be estimated from the
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velocity vector,
... (X iJ Z)
ea ~ R' R' R

Where R = (X2 + iJ2 + z2)t for either satellite.

(4.3)

The unit vector €c in the cross track direction is given by the vector cross

product,

(4.4)

The errors in each of these components can be approximated by the vector

dot products,

error radial - €r.LlR

error along track - €a.LlR

error cross track - €c.LlR (4.5)

Where AR = (Ax, Ay, Az), the differences between the cartesian coor-

dinates of the two orbits.
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CHAPTER 5

The GINFEST Campaign

In 1982, a proposal was made to carry out VLBI, SLR, GPS and CERIl

observation campaigns at sites in Europe. This Geodetic Intercomparison

Network For Evaluating Space Techniques (GINFEST) would be used to

compare the relative accuracies and to determine any systematic biases be-

tween the techniques. The network lies over a tectonically stable region of

Europe, and could be used as a reference network for testing other geodetic

techniques.

The GINFEST VLBI observation campaign was comprised of two twelve

hour sessions. These were observed in June and October in 1987, at the radio

telescope sites of,

• Effelsberg

• Jodrell Bank

• Medicina

• Onsala

• Westerbork.

The GINFEST SLR data sets were selected from two existing observation

campaigns. The first set is made up from five discrete, seven day orbital arcs,

taken from the 1984 MERIT Intensive Campaign. The second set consisted

of a one month continuous arc, taken from the Monte Generoso Campaign.

The complete data set contains data from the following sites,

lConnected Element Radio Interferometry
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• Monte Generoso

• Zimmerwald

• Kootwijk

• Wettzell

• Grasse

• Graz

• Royal Greenwich Observatory (RGO)

• Matera.

The GINFEST GPS campaign was part of a feasibility study for a Euro-

pean tracking network [Boucher et al, 1986], which had the aims to,

1. determine satellite orbits over the region,

2. produce an ionospheric model for the region,

3. test the use of differential positioning between the tracking sites and

the mobile receivers.

The data set is described in detail in the following section.

5.1 GINFEST GPS Campaign

5.1.1 Data Description

The GINFEST GPS observation campaign took place on the 18th, 19th

and 20th of November 1986. These are referred to by the day numbers

322, 323 and 324 in the following text. Ten TI 4100 NAVSTAR Navigator

receivers were deployed, near the SLR and VLBI sites shown in figure (5.1).

The TI 4100 receivers can acquire both the ClA and the P code, enabling

measurements of both the L1 and L2 frequencies. The data was recorded on

magnetic cassettes, capable of storing a maximum of half an hour of data

each. The dual tape drive was used to enable a quick change-over of cassettes.
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Figure 5.1: Sites for the GINFEST GPS campaign
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One limitation of the TI 4100 is its ability to only track four satellites

simultaneously. With the satellite constellation at the time of the campaign,

two separate constellations were observed. These were,

• Satellites 6, 9, 11, 12 from 0:50 to 2:20 UTC (Session A)

• Satellites 9, 11, 12, 13 from 2:20 to 3:50 UTC (Session B)

The satellite numbers refer to the PRN numbers of the satellites. The

times are the approximate observation times, which precess by four minutes

each day. A maximum of three hours of data was recorded at each of the

sites.

A sky-plot showing the azimuth and elevation angles of the satellites

during the campaign is given in figure (5.2).

Meteorological data ( pressure, wet and dry temperatures) were recorded

at each site, to allow tropospheric corrections to be made. However, no

meteorological data was recorded at Graz for the whole campaign. This

data was estimated using the meteorological data from the two nearest sites,

Wettzell and Zimmerwald. The temperature and pressure were assumed to

decrease uniformly with increasing height, from these two sites and this was

used to predict values corresponding to the height of Graz.

5.1.2 Data Format

The data was written on three, nine track magnetic tapes, at 1600 bits per

inch. A total of 146 files were contained on the tapes, each containing half

an hour of data. (Figure 5.3).

At the time of the processing, no data was available for the site at Zim-

merwald. Also, no data was recorded at Wettzell on day 322, due to an

equipment failure.

5.1.3 Data Preprocessing

A preprocessing of the data was carried out to compress the data, to correct

any cycle slips and to time correct the data for the receiver clock biases. The

following stages were carried out, using the computer programs described in

chapter 4.
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Figure 5.2: Satellite sky-plot for the GINFEST GPS campaign
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Tape 1 Kootwijk A B C

Onsala A B C

(53 files) Westerbork A B C

Tape 2 Grasse A B C

RGO A B C

(37 files) Jodrell Bank C

Tape 3 Effelsberg A B C

Wettzell B C

(56 files) Graz A B C

Jodrell Bank A B

A = Day 322

B = Day 323

C = Day 324

Figure 5.3: GINFEST : Raw data availability
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1. Each file was decoded using TIDE CODE, to convert the binary data

into the respective measurement and ephemeris files. The third differ-

ences were also output from the program. Any significant jumps in the

third differences were attributed to cycle slips. These were corrected

by estimating the value of the cycle slip from the third differences and

correcting each observation after the occurrence of the slip.

2. Each file was filtered using EAFILTER. The flags in the program

were set to ignore any satellites below 15° elevation angle and any

epoch containing less than four satellites.

3. The 146 files were then concatenated to form files, containing the data

from one site, for each session, for each day. This produced 52 files.

4. Each of these files were then normal pointed using NORMAL, to

produce the data at intervals of sixty seconds.

5. The files from sessions A and B were then joined together, to give one

file per site , per day.

6. A point positioning solution was carried out using PSEUDO. This was

to determine the approximate coordinates for each site and to obtain

the values of the receiver clock offsets for each receiver. With up to

three hours of data at each site , a polynomial clock model would have

been unsuitable, so a receiver clock offset term was determined at every

epoch.

7. The phase data was then corrected for the receiver clock offsets using

TIMECOR.

8. A final stage of the preprocessing was to correct the cycle slips which oc-

curred during the change of session, from observing satellites 6,9,11,12

to observing satellites 9,11,12,13. When the receivers were attempting

to acquire satellite 13, a loss of lock often occurred on the other satel- .

lites. The approximate value of these cycle slips were estimated using

the pseudorange difference between successive epochs, to compute the
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phase difference. The accuracy of this method was estimated to be in

the order of twenty five cycles. Further cycle slips were detected at the

half hour intervals, when the magnetic cassettes were changed in the

receiver. These slips were corrected using the above technique.

The data remaining after this preprocessing stage is shown in figure (5.4).

The filtering of the data, and the removal of the some epochs where a lot of

cycle slips occurred, has left some large gaps in the data. Furthermore, the

data from Westerbork on day 323 was rejected as only a few epochs remained.

5.2 Determination of the GINFEST Site

Coordinates

Precise coordinates for the GINFEST SLR and VLBI sites have been deter-

mined in many different solutions. The coordinate set chosen for comparison

with the GPS solutions, were calculated by Dr. C.J.Hill [Hill, 1989], using

the SODAPOP suite of programs (Chapter 4). This solution was calculated

using a short-arc method, with the GINFEST SLR data set. The short-arc

method of analysis was considered the best way of producing precise coor-

dinates of the SLR sites, using the available data. However, a short arc

solution will not provide a good orientation and scale for the network. This

was achieved by transforming the short-arc solution onto a ten month long-

arc solution, using a seven parameter Helmert transformation ( table C.l ).

This coordinate set, designated IESSG-T, will have the same origin, orien-

tation and scale as the long-arc solution, but will have the precise geometry

associated with the short-arc solution. The long-arc solution was computed

from 1986 data, using the GEM-Tl geopotential model.

Two of the GPS solutions were based on the broadcast and precise ephem-

erides, which were given in the WGS 72 terrestrial system, at the time of the

GINFEST GPS campaign. Hence, it is necessary to determine whether there

are any systematic biases between the coordinates derived in the WGS 72

terrestrial system and the IESSG-T solution.

The IESSG- T solution was compared with the WGS 84 coordinate set

given in Boucher et al [1988], through a seven parameter Helmert transfer-
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Figure 5.4: Processed data. availability
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mation. The resulting transformed coordinates, designated IESSG-T84 and

their derivation are given in table (C.2). These coordinates were then trans-

formed into the WGS-72 terrestrial system by applying the transformation

parameters given in table (C.3). The resulting coordinate set IESSG-T72

would then have the same scale, origin and orientation as the WGS-72 ter-

restrial system, but the precise inter-site geometry associated with the IESSG

SLR short-arc solution.

The eccentricities, between the SLR facilities and the L1 phase centres of

the GPS antennas, were obtained from terrestrial observations. These eccen-

tricities were applied to the IESSG-T72 coordinate set, to provide consistent

WGS-72 coordinates for the GPS L1 phase centres ( table 5.1 ).

x(m) y(m) z(m)

Graz 4194426.429 1162690.069 4647240.002

R.G.O. 4033361.889 24036.622 4924371.434

Kootwijk 3899219.837 396756.676 5015067.465

Grasse 4581712.927 556126.883 4389330.653

Wettzell 4075554.175 931813.664 4801583.792

Table 5.1: GINFEST GPS L1 phase centre coordinates: WGS 72

5.3 Analysis of Data

To test the relative accuracies of processing the GPS observables with differ-

ent ephemerides, three different solution types have been computed. These

are

• Broadcast Ephemeris Solution.

• Precise Ephemeris Solution.

• Orbit Determination Solution

All the solutions have been computed using the Saastamoinen model to

account for the tropospheric delays. The combined L1/L2 frequency has been

used as a first order correction for the ionospheric delays.
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5.3.1 Broadcast Ephemeris Solutions

A different solution was computed for each of the three days, using the broad-

cast ephemeris. On each day, the coordinates of Kootwijk were held fixed to

the WGS-72 coordinates.

The double difference phase residuals were inspected each day for any

remaining cycle slips and these were then corrected. On day 323, the data

from Effelsberg was rejected, due to a large number of cycle slips.

In order to test the repeatability of the broadcast ephemeris solutions,

the baseline lengths determined from days 322 and 323 were compared with

the baselines determined on day 324. The results of this comparison are

given in tables (C.5) and (C.6) of the appendices. A summarised version of

the results are shown in table (5.2), showing the root-mean-square ( rms )

baseline differences between the two days.

number of rms baseline

baselines differences ( cm )

Day 324 minus Day 322 28 13.6

Day 324 minus Day 323 21 9.3

Table 5.2: Daily baseline repeatability: Broadcast ephemeris

The baseline lengths vary from 98 km to 1553 km, and typically the

differences between the solutions were less than 0.5 ppm.

A comparison has been made between the WGS-72 coordinates derived

from the SLR solution and the baselines determined from the GPS solution

from day 324. The differences between the baseline lengths and the relative

baseline errors are presented in table (5.3).

The baseline differences are less than 0.6 ppm, which is typical of the

accuracy of the broadcast ephemeris. However, there appears to be a sys-

tematic effect, with the GPS determined baselines generally larger than the

SLR determined baselines. The GPS solution was computed using the WGS-

72 coordinates for the satellites and the fixed station of Kootwijk. The SLR

coordinates were transformed onto the WGS-72 terrestrial frame, so no scale
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Baseline Difference ppm

length (km) (cm)

Kootwijk - Graz 899 -40.0 0.445

- Grasse 939 -46.6 0.496

- RGO 406 0.5 0.013

- Wettzell 602 -12.2 0.202

Graz - Grasse 764 -13.1 0.171

- RGO 1182 -38.1 0.322

- Wettzell 302 -18.6 0.617

Grasse - RGO 932 -49.8 0.533

- Wettzell 753 -13.2 0.175

RGO - Wettzell 917 -6.8 0.074

rms = 29.3

Table 5.3: Comparison of day 324 broadcast ephemeris solution with the

SLR solution

difference should have been apparent between the two coordinate sets. The

baseline error has been plotted against baseline length in figure (5.5), to

investigate this scale difference. It can be seen from the figure, that the

baseline error generally increases with the baseline length, although there is

no significant linear relation between the two values.

The height differences between the SLR solution and the GPS solutions

are compared in table (5.4), for day 324. The height differences are shown

for baselines from Kootwijk, which is in the centre of the network. It is

apparent that there is a discrepancy between the height differences to Graz.

This is unlikely to be caused by a rotation of the network, because the height

differences to the nearest station, Wettzell are of the opposite sign. The most

likely cause is the use of the incorrect eccentricity vector, or by an error in

the antenna height.

5.3.2 Precise Ephemeris Solutions

The precise ephemeris for the GINFEST GPS campaign was provided by

the Naval Surface Warfare Center, in the WGS 72 coordinate system. This
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Figure 5.5: Baseline error plotted as a function of baseline length: Day 324

for the broadcast ephemeris

Height differences WGS72 Day 324 Difference

in metres (SLR) (GPS)

Kootwijk - Graz -447.247 -448.694 1.447

- Grasse -1228.809 -1228.620 -0.189

-RGO 22.557 22.634 -0.077

- Wettzell -568.698 -568.436 -0.268

Table 5.4: Height differences for the broadcast ephemeris solution
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ephemeris was given at fifteen minute epochs and it was interpolated to the

required epoch using an 8th order Everetts interpolation algorithm.

Two different types of solution were computed,

• Single day solutions were computed in a similar way to the broadcast

ephemeris solutions .

• A three day solution was computed using all the data. from the GIN-

FEST campaign. For this solution, a new set of integer ambiguities

were estima.ted for each day.

The day to day repeatability of the single day solutions were investigated

by comparing the baselines determined from each day with the three day

solution. The differences between the solutions are given in tables (C.7),(C.8)

and (C.9) of the appendices, with a summary given in table (5.5) showing

the rms baseline differences.

Day number of rms baseline

baselines differences (cm)

Day 322 28 18.9

Day 323 21 5.7

Day 324 36 9.7

Table 5.5: Daily baseline repeatability: Precise ephemeris

The baseline agreement between the second two days of the campaign

and the three day solution shows a slight improvement over the broadcast

ephemeris solution. On day 322 the main discrepancy appears to be with

the baselines connected to Jodrell Bank. Excluding this station from the

comparison gives a rms baseline difference of 8.3 em, between day 322 and

the three day solution. No obvious reason could be found for the poor de-

termination of the coordinates of Jodrell Bank, especially when considering

that no such differences were seen in ·the broadcast ephemeris solution.

The three day solution has been compared with the SLR determined

baselines, and the comparisons are shown in table (5.6).
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Length Difference ppm

(km) (cm)

Grasse - Kootwijk 939 -29.3 0.312

- Graz 764 -10.6 0.139

- Wettzell 753 -8.1 0.107

- RGO 932 -26.6 0.285

Kootwijk - Graz 899 -27.5 0.306

- Wettzell 602 -4.7 0.076

- RGO 406 -14.2 0.348

Graz - Wettzell 302 -13.1 0.432

- RGO 1182 -34.8 0.294

Wettzell - RGO 917 -10.1 0.110

rms = 20.5

Table 5.6: Comparison of the three day precise ephemeris solution with the

SLR solution

The rms baseline differences for table (5.6) of 20.5 cm, gives a better

agreement with the SLR solution, than the broadcast ephemeris solution.

The differences in the baseline lengths are less than 0.4 ppm, which is within

the expected accuracy of the precise ephemeris. An improvement in the

solution would also be expected when using the three days of data, when

compared to the single day of data used for the broadcast ephemeris solu-

tion. However, as in the case of the broadcast ephemeris solution, the GPS

determined baselines are all larger than the SLR determined baselines. The

baseline errors have been plotted against the baseline length in figure (5.6),

showing a similar trend to figure (5.5).

An examination of the height components of the baselines in table (5.7),

shows the same discrepancy in the height of Graz, that was seen in the

broadcast ephemeris solution. Although the baseline agreement is better

for the precise ephemeris, the agreement between the height components is

somewhat worse than for the broadcast ephemeris solution.
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Figure 5.6: Baseline error plotted as a function of baseline length: Three

day solution for the precise ephemeris

Height differences WGS 72 3 day precise Difference

in metres (SLR) ephemeris (GPS)

Kootwijk - Grasse -1228.809 -1228.103 -0.706

- Wettzell -568.694 -568.754 0.060

- RGO 22.557 22.928 -0.371

- Graz -447.247 -449.272 2.025

Table 5.7: Height differences for the precise ephemeris solution
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5.3.3 Orbit Determination Solutions

A solution has been computed to test the fiducial network concept for orbit

determination over Europe. The first stage is the selection of the fiducial

sites, which will be held fixed in the solution. To test the repeatability of the

daily solutions, it was preferable to use the same three fiducial sites on each

day. No data was available for Wettzell on the first day, and the uncertainty

in the height of Graz made this site unsuitable. This left the three SLR sites

at RGO, Grasse and Kootwijk.

The geometry of these sites is not ideal for a tracking network, because

they are not well distributed with respect to the rest of the network, instead

the remaining GINFEST GPS sites lie outside these three sites (figure 5.1).

For this reason it was decided to strengthen the network by including the

GPS receiver located near the VLBI site at Onsala.

The coordinates of the VLBI site at Onsala in the same reference frame

as the SLR sites were obtained from Boucher et al [1988]. These coordinates

are given in the WGS 84 terrestrial system. A seven parameter Helmert

transformation was used to determine the systematic biases between the

WGS 84 coordinates and the IESSG-T coordinates, using the SLR sites of

Kootwijk, Wettzell, Grasse, Graz and Grasse. These biases were then applied

to the WGS 84 coordinates of Onsala to obtain coordinates consistent with

the IESSG-T SLR coordinates. The addition of the eccentricity vector to the

VLBI mark give the coordinates of the L1 phase centre of the GPS antenna

at Onsala The full set of coordinates of the GPS L1 phase centres in the

IESSG-T reference frame is given in table (5.8).

The long arc solution on which this solution was based was computed

using the GEM-T1 gravity field. In order to keep a level of consistency

in the processing, it was decided to use the IESSG-T coordinate set as the

fiducial coordinates and use the GEM-T1 gravity field up to degree and order

eight in the orbit integration. The value of the product GM was taken to be

3986004.36 x 108m3 5-2•

Two distinct types of solution were computed,

1. Three solutions were computed for each day of the campaign, with the
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Site x (m) y (m) z (m)

Grasse 4581711.574 556145.934 4389335.920

Graz 4194423.493 1162708.617 4647244.487

RGO 4033361.731 24054.932 4924377.521

Kootwijk 3899218.720 396774.851 5015073.052

Wettzell 4075551.760 931832.094 4801588.598

Onsala 3370658.685 711884.374 5349787.625

Table 5.8: GINFEST GPS L1 phase centre coordinates: IESSG-T

coordinates of Grasse, RGO and Onsala held fixed. The parameters

estimated included the remaining receiver coordinates, the initial phase

ambiguities and the six parameter state vector for each satellite. No a

priori constraints were placed on any of the estimated parameters.

2. A three day solution was computed for the whole campaign. The co-

ordinates of Grasse, RGO and Onsala were held fixed as in the single

day solution. The remaining receiver coordinates were computed for

the whole three days, with a new set of integer ambiguities computed

for each day. To assess the effect of the solar radiation pressure, two

different solution were computed. The first solution solving for the six

parameter state vector and the direct solar radiation scaling coefficient

for each satellite. Secondly a solution was computed solving for these

seven parameters and a constant y-bias acceleration for each satellite.

The results of the two, three day solutions are given in tables (5.9) and

(5.10), and these show the baseline differences between the SLR determined

baselines and the GPS determined baselines.

On examination of both solutions, the worse baseline agreements are on

the long baselines connected to Graz and Wettzell. These two sites are also

the furthest away from the three fiducial sites. The rms double difference

phase residual for the first solution is 0.10744 cycles, with the second solution,

solving for the additional satellite y bias accelerations, having a lower value

of 0.08831. The rms baseline differences for the two solutions are 14.0 cm
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Length Difference ppm

(km) (cm)

Grasse - Kootwijk 939 8.7 0.093

- Graz 764 1.1 0.014

- Wettzell 753 16.6 0.220

RGO - Kootwijk 406 -6.5 0.160

- Graz 1182 -18.5 0.157

- Wettzell 917 -1.1 0.012

Onsala - Kootwijk 700 -9.6 0.137

- Graz 1172 -32.7 0.279

- Wettzell 919 -20.0 0.218

Kootwijk - Graz 899 -6.3 0.070

- Wettzell 602 4.B O.OBO

Graz - Wettzell 302 -0.4 0.013

rms = 14.0

Table 5.9: Comparison of orbit determination solution with the SLR solution

: Solving for the satellite state vector and the direct solar radiation pressure

and 11.7 cm respectively.

The second solution which solves for the y-bias acceleration appears to

have a slight improvement on the first solution, although the worst agreement

with the SLR solution in either case is about three parts in 107, In these

solutions there are no obvious systematic effects giving the scale differences

that were apparent in the broadcast and precise ephemeris solutions.

A comparison of the height components of the baselines is given in table

(5.10) for the second solution. It can be seen again that the height difference

to Graz is very high, in this case giving a height error of around two meters.

Three single day solutions were computed, solving for the receiver co-

ordinates, initial phase ambiguities and the six. parameter state vector for

each satellite. No significant estimates for the direct solar radiation pressure

coefficient could be obtained. For these single day solutions, it was apparent
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length Difference ppm

(km) (cm)

Grasse - Kootwijk 939 5.4 0.058

- Graz 764 -8.2 0.107

- Wettzell 753 8.4 0.112

RGO - Kootwijk 406 -11.3 0.278

- Graz 1182 -20.8 0.176

- Wettzell 917 -3.6 0.039

Onsala - Kootwijk 700 1.7 0.024

- Graz 1172 -25.8 0.220

- Wettzell 919 -13.1 0.142

Kootwijk - Graz 899 -4.8 0.053

- Wettzell 602 6.4 0.106

Graz - Wettzell 302 -0.4 0.013

rms = 11.7

Table 5.10: Comparison of GPS orbit determination solution with the SLR

solution: Solving for the satellite state vector, direct solar radiation pressure

and the constant y-bias acceleration
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Height differences IESSG-T 3 day GPS orbit Difference

in metres (SLR) determination solution (m)

Kootwijk - Grasse -1228.280 -1228.130 -0.150

- Wettzell -568.627 -568.726 0.099

- RGO 22.717 22.868 -0.151

- Graz -447.084 -449.232 2.148

Table 5.11: Height differences for the GPS three day orbit solution: Solving

for satellite state vector, solar radiation pressure coefficient and the y-bias

acceleration

that the satellite state vector was sufficient to account for any deficiencies in

the satellite force model. The coordinates of Grasse, RGO and Onsala were

held fixed in the adjustment, as in the three day solution.

The repeatability of the three single day solutions have been tested by

comparing the results from each day with the three day solution ( solving for

the y bias force ). The full comparisons are shown in tables (C.10), (C.11)

and (C.12) of the appendices. Figure (5.7) shows the rms differences between

the baseline components for each day and the rms differences between the

north, east and height components of the baselines.

Generally the north components of the baselines were less well determined

than the east components. The rms baseline differences are comparable with

the three day precise ephemeris solution

An inspection of the results for day 322 shows that the sites that gave

the worst baseline agreements were Jodrell Bank and Graz, which both lie

on the extreme edges of the network. The results of day 323 and 324 showed

similar trends. In general, the sites that were in the middle of the network

give the closest agreement, whereas the sites that lie well outside the three

fixed fiducial sites show the largest differences.

5.4 Discussion of Results

One of the main problems encountered with the GINFEST GPS data set was

the correction of cycle slips. The slips were easily corrected to within one
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Figure 5.7: RMS baseline component differences: Single day orbit determi-

nation solution compared with the three day solution
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or two cycles, but further refinement proved difficult when the slip occurred

after a gap in the data. This final stage of cycle slip repair was done by

visual inspection of the double difference phase residuals. The L1 and L2

frequency solutions were computed separately, to check for the cycle slips

on each frequency. Unfortunately, the unmodelled ionospheric delay on the

single frequency solutions produced large residuals over the long baselines.

This made the task of determining the value of the cycle slip troublesome

and sometimes uncertain.

The occurrence of cycle slips should affect the broadcast and precise

ephemeris solutions similarly. However, in the orbit determination solution,

any remaining cycle slips in the data from the fixed fiducial sites will affect

the accuracy of the orbit and these errors will propagate into the coordinates

of the non fiducial sites.

One limitation of the current generation of GPS software at Nottingham

University, is the necessity to use the data from the same number of satel-

lites, at every receiver site. Hence, if one of the sites in the network is only

observing three satellites, when the other sites are observing four, then all

the data from that site will be rejected at that epoch. This causes particular

problems between sessions A and B, when the receivers drop satellite 6 in

order to acquire satellite 13. This had the effect of lengthening the gap be-

tween the two observing session, making the cycle slip reparation task even

more difficult.

The single day broadcast ephemeris solutions gave a surprisingly good

repeatability. Most of the baseline lengths were well within the one part

per million accuracy expected from this ephemeris. The use of the precise

ephemeris gave a different solution to the broadcast ephemeris, although

there was no significant improvement in the solution. Both the precise and

broadcast ephemeris baseline solutions were larger than the SLR determined

WGS 72 baseline lengths. A seven parameter Helmert transformation was

used to determine whether there were any significant scale biases between

the two coordinate sets. The scale biases and their standard errors are given

in table (5.12).
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scale bias standard error

ppm

Broadcast ephemeris -0.320 0.3582

Precise ephemeris -0.234 0.4015

Table 5.12: Scale biases between the WGS 72 coordinate set and the broad-

cast and precise ephemeris solutions

It can be seen from table (5.12) that there were scale biases between the

two coordinate sets, although they both had large standard errors. If these

scale biases are applied to the broadcast ephemeris day 324 solution and the

precise ephemeris three day solution, the rms baseline differences compared

to the WGS 72 coordinate set are reduced to 13.7 cm and 7.7 cm respectively.

This compares to 29.3 cm and 20.5 cm before applying the biases.

The orbit determination solution, with the three fixed fiducial stations,

did not exhibit these particular scale biases, suggesting that the coordinates

of the fiducial sites constrained the scale of the network. On day 322 there

were only 51 epochs ( or minutes) of data observed simultaneously by the

three fiducial sites. This day also produced the largest baseline differences

with the three day solution. Days 323 and 324 both had over 100 epochs

of simultaneous data from the fiducial sites, and these both produced better

baseline agreements with the three day solution. The reason for this could be

twofold; the last two days of the GPS campaign both shared more common

data with the three day solution than day 322 or it may indicate that more

observations were necessary to satisfactorily determine both the orbit and

the unknown receiver coordinates for the single day solutions.

The fiducial network approach for orbit determination is particularly sus-

ceptible to errors in the fixed fiducial coordinates. In this solution, the coor-

dinates of Onsala ( determined from VLBI ) may not have been consistent

with the SLR determined coordinates of Grasse and RGO. Ideally, the fidu-

cial sites would have been situated close to either SLR or VLBI facilities,

but not a combination of the two. In Europe, the only site with both SLR

and VLBI facilities is Wettzell, from which it is not possible to determine
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the systematic biases between the two coordinate reference frames.

The solar radiation pressure models adopted for the three day solutions

demonstrated that modelling for the constant y-bias acceleration gave only a

slight improvement in the solution. The y-bias force is relatively small, and

only for longer arcs are the effects expected to be particularly significant.

The satellite geometry, which affects all the solutions, was not optimal for

the duration of the GINFEST GPS campaign. The sky plot shown in figure

(5.2), shows that for the first half of the observation period, the satellites

are all in a line running from the West to the East. The geometry improves

slightly, during the second half of the observation period when satellite 13 is

included. It is worth comparing this West-East satellite geometry, with the

baseline components determined in figure (5.7), where the east components

of the baselines were generally better determined than the north components.

The accuracy of all the solutions computed were in the order of a few parts

in 107• At this level of accuracy, other error sources may become significant.

The meteorological model used was the Saastamoinen model, which is based

upon surface weather readings. This is expected to satisfactorily model the

dry component of the troposphere, but the wet component, which can pro-

duce scale errors of the order of one part in 107, is more difficult to model.

Furthermore, no surface weather data was recorded at Graz, and this station

produced the largest baseline differences in all the solutions.
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CHAPTER 6

The Tide Gauge Project

6.1 Introduction

The tide gauge project was established to investigate the disrepancies be-

tween the oceanographic and the geodetic levelling techniques, which have

been used around the coast of Great Britain. The 3Td UK Scientific Levelling

Network of the Ordnance Survey, which connects the tide gauges of Great

Britain, indicates that there is a sea slope of 6.7cm /100 km, along the north-

south coastline. However, the oceanographic evidence suggests that there is a

sea slope of about 1.4cm/100km. The investigations would involve comput-

ing the ellipsoidal height differences between several of the tide gauges along

the east coast of Great Britain, using GPS observations. The orthometric

height differences between these tide gauges could then be obtained from the

GPS solutions, using a geoidal model. This would allow a direct comparison

to be made between the two levelling techniques and the GPS derived height

differences. The majority of the work is being undertaken in a separate re-

search project [Basker, 1989] and this chapter is primarily concerned with

the determination of a precise ephemeris for the GPS computations.

6.2 GPS Campaign

The GPS campaign was designed to occupy 26 sites along the east coast of

Great Britain, from Leith in Scotland down to Lowestoft in Suffolk. Five of

these GPS sites were located adjacent to the tide gauge stations of Leith,

North Shields, Whitby, Immingham and Lowestoft. The campaign lasted a

total of eight days, starting from the 25th May 1988. Five roving receivers

were used on each day, initially occupying the five most northerly sites. On
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each successive day, the five receivers were moved south by three sites, such

that two common sites were occupied on adjacent days. This system pro-

duced a common baseline on the adjacent days, which could be used ,to check

the repeatability of the GPS solution and to provide a safeguard against miss-

ing data. The effects of the ionosphere were minimised by limiting the lengths

of the baselines between adjacent sites to about 30 km.

At the same time, GPS receivers located at Onsala, Wettzell, Jodrell Bank

and the Royal Greenwich Observatory (RGO) were recording simultaneous

data (figure 6.1). These four receivers were located adjacent to VLBI or

SLR facilities and would be used as fiducial sites in the computation of the

satellite ephemerides.

The observing sessions for the roving receivers were designed to give maxi-

mum coverage of two particular satellite constellations and to give compatible

data with the receivers located at the fiducial sites. These times are shown

in table (6.1) for Wednesday 25th May ( day number 146 ).

Satellite (PRN) Times (local times)

Session A 6 9 11 12 12:20 - 13:30

Session B 9 11 12 13 13:50 - 15:00

Session C 3 11 12 13 15:00 - 16:10

Table 6.1: Observing sessions for the roving receivers

The observing sessions for the static receivers at the two fiducial sites of

RGO and Jodrell Bank were selected to be compatible with the observing

periods of the permanent CIGNET tracking sites at Wettzell and Onsala.

The times are given in table (6.2) for day number 146.

The times of the observing sessions precessed by four minutes each day

after the times given in tables (6.1) and (6.2). TI 4100 GPS receivers were

used at each site, with the data recorded on IBM personal computers. Me-

teorological data was recorded at each site at fifteen minute intervals.

The satellite configuration for the tide gauge campaign is shown in figure

(6.2) with the majority of the satellites located in the western part of the sky.

This is not an ideal geometrical configuration, but no improvement could be
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Figure 6.2: Satellite sky-plot for the tide gauge project
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Satellite (PRN) Times (local times)

Session A 6 9 11 12 12:28 - 13:48

Session B 9 11 12 13 13:48 - 14:52

Session C 3 9 11 13 14:52 - 15:56

Session D 3 12 13 15:56 - 17:08

Table 6.2: Observing sessions for the static receivers

made with the current satellite constellation.

6.3 Derivation of the Fiducial Site Coordinates

was 84 coordinates for the L1 phase centre of the TI 4100 antennas at the

fiducial sites of Onsala and Wettzell were obtained from [Boucher et al, 1988].

Consistent WGS 84 coordinates of the intersection of the axes for the SLR

facility at RGO were obtained from the same source. These coordinates were,

x - 4033463.921

Y - 23661.435

z - 4924304.741

The solar pillar was used for the duration of the tide gauge campaign at

the RGO, with the eccentricity vectors to the SLR intersection of axes given

as,

~x - -4.651

~y - -36.078

~z - -1.946

. The height of the L1 phase centre above the solar pillar bench mark was

measured as 1.168 m. The final WGS coordinates of the L1 phase centres for

the GPS antennas at RGO, Onsala and Wettzell are given in table (6.3).

6.4 Data Preprocessing

The data from the roving receivers, Jodrell Bank and RGO was recorded on

three and a half inch floppy discs at three second intervals. The data was then

loaded onto the hard disc of a Zenith personal computer and transferred onto
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Site x (m) y (m) z (m)

RGO 4033460.008 23625.361 4924303.700

Onsala 3370659.739 711876.241 5349787.910

Wettzell 4075546.159 931824.800 4801598.990

Table 6.3: L1 phase centre coordinates for the tide gauge fiducial sites: WGS

84

the ICL 3900 mainframe computer at Nottingham University using Kermit,

a file transfer protocol. The data from the CIGNET sites at Onsala and

Wettzell was obtained from the U.S. National Geodetic Survey (NGS) on a

magnetic tape, which contained the satellite ephemeris, meteorological data

and the measurement data at thirty second intervals.

The data from the roving receivers was processed by another postgraduate

student, as part of his research project [Basker, 1989]. The preprocessing

work work done by the author was confined to the fiducial sites only. At the

time of the data processing, no accurate eccentricity vectors were available

for Jodrell Bank and this site was left out of the preliminary computations.

Figure (6.3) shows the availability of data from the three remaining fiducial

sites.

Day number

146 147 148 149 150 151 152 153

RGO X X X X X X X X

Wettzell X X X X X X X

Onsala X X X X X X

Figure 6.3: Fiducial site data availability

Unfortunately, no data was recorded at the site Wettzell on day 151 and

no data was recorded at Onsala on days 152 and 153.

The data from Onsala and Wettzell is provided by the US National Geode-

tic Survey in a standard format, already decoded into measurement data at

thirty second intervals. The data from RGO was decoded using TIDE-

CODE to obtain the measurements at three second intervals. The data
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from all these sites was then filtered to remove all the satellites below a 15°

elevation angle using EAFILTER.

In order to produce simultaneous measurement data for the three sites,

the RGO data was normal pointed to the same epochs as the thirty second

data from Onsala and Wettzell. This was done by fitting a series of sec-

ond order polynomials to each thirty second span of the RGO data using

NORMAL. The receiver clock offsets were determined in the pseudorange

solution (PSEUDO) and these were used to time correct the carrier phase

data using TIMECOR.

The last stage of the preprocessing was to detect and correct for any cycle

slips. The data from the three fiducial sites was used in a single frequency

L1 double difference solution for each day. The residuals of each solution

were then examined to detect the size and location of any cycle slips. These

were then corrected for the Ll frequency and the process repeated for the L2

frequency. A combined Ll/L2 (ionospherically corrected) solution was then

computed to check the quality of the cycle slip free data.

6.5 Analysis of Data

The main objective of the GPS data analysis was to produce precise ellip-

soidal height differences between the roving receiver sites. The height dif-

ferences between the tide gauges could then be obtained by precise levelling

between the tide gauges and the adjacent roving receiver sites. Two methods

were considered possible to produce these GPS height differences,

1. Process the data from the roving receivers and the three fiducial sites

simultaneously for each day. The fiducial site coordinates would be

held fixed in the adjustment and estimates made for the roving receiver

coordinates, satellite state vectors and the initial phase ambiguities.

2. Process the data from the fiducial sites separately to produce a precise

ephemeris. This precise ephemeris could be used in a separate solution

to determine the coordinates of the roving receivers for each day.
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The first method would be similar to the processing technique used for the

single day GINFEST solutions (chapter 5). An examination of the observing

sessions for the roving and static receivers shows there is some incompatibility

between the observation times of the different satellite sessions and also the

session C constellations are different. The data for the first five days of the

campaign, from the static receivers at the fiducial sites was of a reasonable

quality, with no large breaks in the data. However, on the last three days of

the campaign, only two of the fiducial sites recorded data.

Single day solutions were computed for the first five days of the campaign,

using both the fiducial and roving receiver data, solving for the roving receiver

coordinates and the satellite state vectors. However, the standard errors of

the estimated receiver coordinates were of the order of one metre and of the

order of several hundred metres for the satellite state vectors. A check on

the repeat abilities of the solutions were made by comparing the common

baseline lengths on the adjacent days. The differences between the common

baseline lengths were up to 20 cm for baselines of between 12 km and 29 km,

giving typical repeat abilities of between five and ten parts per million. This

poor estimation of the coordinates may have been influenced by the satellite

and receiver geometry. An examination of the sky-plot in figure (6.2) shows

the position of the satellites, which are mainly at low elevation angles in one

quadrant of the sky. In addition, on the first few days of the campaign the

roving receivers were poorly located with respect to the fiducial sites (figure

6.1), with all the sites lying outside the fiducial network. This combination of

receiver and satellite geometry would appear to have contributed to the poor

repeatability of the GPS solutions. This problem is exacerbated by the loss

of data which occurs when combining the data from the different observing

sessions of the fiducial and roving receivers. One method of fully utilising the

fiducial site data is to process it independently of the roving receiver data.

_This is the approach adopted for the second option.

The fiducial data was divided into two sets to allow the computation of

two sets offour day orbits, covering day numbers 146 to 149 and day numbers

150 to 153. The length of the arcs were limited to four days to reduce the
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amount of data to be processed in each batch and to reduce the effect of

any unmodelled force model components. The second set of four day orbits

(150 --+ 153), would also test the effect of determining the orbit with only

two fiducial sites for part of the solution.

For each set of four day orbits, the following parameters were estimated,

• Initial phase ambiguities for each day.

• Satellite state vector for each satellite.

• Direct solar radiation pressure coefficient for each satellite.

• Y bias acceleration for each satellite.

For all the solutions, the ionosphere was corrected using the combined

L1/L2 frequency and the troposphere was corrected with Saastamoinen's

model, using the surface meteorological data recorded at each site.

Two main points were noted in the processing,

1. No estimates could be made for satellite 3 for both sets of orbits, mainly

due to a lack of observations to this satellite. The satellite was then

rejected from all the computations.

2. The lack of the fiducial data in the second set of orbits was apparent

with the number of double difference observations in the first set of

orbits as 4672 and the number in the second set as 2390.

For each four day solution, the estimated orbital parameters were used in

ORBIT to integrate the orbits again. This iterative process was repeated

until no further change in the estimated parameters were noted.

Single day solutions were then computed using only the data from the

roving receivers, but with the satellite coordinates obtained from the orbits

computed in the previous two solution. The estimated parameters included

only the receiver coordinates and the initial phase ambiguities. The base-

line lengths between the roving receiver sites varied between ten and thirty

kilometres. It is over this length of baseline that the double difference solu-

tion may become sensitive to the effects of the ionosphere. Three types of
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solution were computed with the aims to test the effect of modelling for the

ionospheric delay and to test the effect of constraining the phase ambiguities

to integer values.

1. Combined L1/L2 solutions were computed with the standard first order

ionospheric correction (section 2.5.2).

2. Single frequency L1 solutions were computed, which do not include an

ionospheric correction.

3. An integer fixed solution was computed for the single frequency Ll. In

this solution the estimated integers from solution (2) were constrained

to integer values.

Each solution was computed with the position of one of the sites con-

strained to the coordinates determined in the pseudorange solution. The

meteorological data recorded at each site was not used to correct for the tro-

posphere, instead the standard atmosphere model (section 2.5.2) was used.

This would prevent the solutions being biased by possible uncalibrated me-

teorological equipment, which is more noticeable on shorter baselines.

The receiver sites used in the computations and the identification letters

used are,
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Quixwood Moor QUI

Shoreswood SHO

Shilbottle SHI

Helm HEL

High Moorsley HIG

Billingham BIL

Whitby WHI

Cloughton CLO

Atwick Sands ATW

Tunstall TUN

Binbrook BIN

Cast cliffe Hill CAS

Thornham THO

Great Massingham GRE

Table (6.4) shows the baseline lengths and heights for the ionospheric ally

corrected L1/L2 solution. The single frequency L1 solution results are given

in table (6.5). Table (6.6) shows the results of the single frequency L1 solution

with the phase ambiguities constrained to integer values. These integers were

obtained from the previous L1 solution.

No data was available from the roving site QUI on day 147, preventing a

determination of the QUI - SHO baseline on day 147.

There is no external source by which to compare these results. The only

method of assessing the accuracy is to check the repeatability of the common

baseline lengths and height differences for the adjacent day solutions. These

repeatabilities are shown in table (6.7) for the seven baselines available, for

each of the three different solutions.

The most consistent solution for both the baseline length and height

differences is the L1 fixed ambiguity solution. The process of constraining the

integer ambiguities to integers gives a better solution than the L1 frequency

with no integer constraint.
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Day length Height

Baseline (km) Difference (m)

146 QUI - SHO 25152.084 151.172

147 QUI - SHO no data

SHI - HEL 12070.097 3.444

148 SHI - HEL 12070.171 3.422

HIG - BIL 28933.506 150.679

149 HIG - BIL 28933.539 150.564

WHI - CLO 17377.650 -188.573

150 WHI - CLO 17377.632 -188.543

ATW - TUN 21310.098 -3.340

151 ATW - TUN 21310.122 -3.359

BIN - CAS 18714.862 -8.288

152 BIN - CAS 18714.850 -8.237

THO - GRE 23085.674 -42.504

153 THO - GRE 23085.552 -42.456

Table 6.4: Tide gauge project: L1/L2 solution
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Day length Height

Baseline (km) Difference (m)

146 QUI - SHO 25152.091 151.090

147 QUI - SHO no data

SHI - HEL 12070.095 3.440

148 SHI - HEL 12070.122 3.437

HIG - BIL 28933.490 150.559

149 HIG - BIL 28933.512 150.644

WHI - CLO 17377.634 -188.549

150 WHI - CLO 17377.611 -188.492

ATW - TUN 21310.081 -3.340

151 ATW - TUN 21310.070 -3.320

BIN - CAS 18714.826 -8.263

152 BIN - CAS 18714.846 -8.216

THO - GRE 23085.649 -42.443

153 THO - GRE 23085.583 -42.468

Table 6.5: Tide gauge project: L1 ambiguity free
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Day length Height

Baseline (km) Difference (m)

146 QUI - SHO 25152.098 151.075

147 QUI - SHO no data

SHI - HEt 12070.090 3.440

148 SHI - HEt 12070.085 3.487

HIG - BIt 28933.478 150.616

149 HIG - BIt 28933.508 150.660

WHI - Cl.O 17377.638 -188.555

150 WHI - CtO 17377.600 -188.514

ATW - TUN 21310.078 -3.338

151 ATW- TUN 21310.075 -3.338

BIN - CAS 18714.834 -8.279

152 BIN - CAS 18714.830 -8.235

THO - GRE 23085.627 -42.467

153 THO - GRE 23085.618 -42.489

Table 6.6: Tide gauge project: Ll ambiguity fixed solution
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Repeatabilities in centimetres

Baseline (km) Baseline length Height differences

L1 L1 fixed L1/L2 L1 L1 fixed L1/L2

SHI-HEL 12 2.7 0.5 7.4 0.3 4.7 2.2

HIG-BIL 29 2.2 3.0 3.3 8.5 4.4 11.5

WHO-CLO 17 2.3 3.8 1.8 5.7 4.1 3.0

ATW-TUN 21 1.1 0.3 3.3 2.6 0.0 1.9

BIN-CAS 19 2.0 0.4 1.2 4.7 4.4 5.1

THO-GRE 23 6.6 0.9 12.2 2.5 2.2 4.8

Table 6.7: Repeatability of the common baselines

The effect of neglecting the ionospheric delay is considered to be a con-

traction in the scale of a network (section 2.5.2). A comparison of the baseline

lengths given in tables (6.4) and (6.5) would generally support this theory.

However, the combined L1/L2 frequency (ionospheric ally corrected) solution

has produced the largest anomalies for both the baseline length and the

height differences. The two largest discrepancies in the L1/L2 solution also

correspond with the largest differences in the L1 ambiguity free solution. The

ionospheric delay would be of a similar magnitude on the eight consecutive

days of the GPS campaign, because the same satellite constellations were

observed at the same time of day. The ionospheric delay would then be ex-

pected to cause a similar scale effect on each of the networks determined over

these eight days. Hence, this may explain why the L1 solutions give a better

repeatability than the ionosphericaliy corrected, but noisier L1/L2 solutions.

The repeatability of the WHI-CLO baseline is worth consideration as it is

determined at the break between the two sets of four day orbits. Therefore,

this represents a better test of the repeatability of the solutions, because the

coordinates of WHI and CLO on the adjacent days were determined from

two independent sets of orbits. However, the repeatability of this baseline

can be seen to be comparable with the baselines determined on the other

days.
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No obvious differences can be seen between the repeat abilities of the base-

lines determined from the two sets of orbits, with the possible exception of

the THO-GRE baseline, which was determined at the end of the second set

of orbits. This may well have been caused by the lack of data from the

fiducial sites during the latter part of the observation campaign. A compar-

ison has been made between the height differences obtained in these solu-

tions and the height differences obtained in a broadcast ephemeris solution

[Ashkenazi et al, 1989]. Whilst the average agreement between the height

differences during the first set of four day orbits was of the order of three

millimetres, this increased to over three centimetres during the second set of

four day orbits. These differences suggest that the loss of the data from the

fiducial sites, in particular the use of only two fiducial sites on the last three

days, has degraded the accuracy of the orbits. The inclusion of the data

from Jodrell Bank may strengthen the orbit determination solution, but the

location of the site is not ideal, when considering the missing fiducial site

data is from Onsala and Wettzell.

Whilst the loss of the fiducial site data has led to larger differences in the

heights during the second four days, the effect of using the different solution

types (Ll, Ll fixed ambiguities and the L1/L2) would appear to be more

significant. This may indicate that the GPS derived height differences are

less susceptible to errors in the orbit than from other error sources, such as

atmospheric effects, for this length of baseline.

These results do show the advantage of using longer arcs in the orbit

determination process, where there is a loss of tracking data from the fidu-

cial sites. The longer arcs have improved the solution when comparing the

repeat abilities with those obtained from the single day solutions. One dis-

advantage of the TI 4100 GPS receiver is that a maximum of four satellites

can be observed at anyone time. The use of a receiver capable of tracking

all the available satellites would produce more data for each satellite. This

would prevent the problems encountered with this project, where the fiducial

and roving receivers observed slightly different satellite sessions. Currently

some of the TI 4100 receivers at the CIGNET sites (section 2.4.2) are being
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replaced by Mini Mac receivers, which are currently capable of tracking all

the available satellites.

The repeat abilities of the GPS height components are of the order of a

few centimetres for baselines up to 30 km. However, the discrepancy between

the oceanographic and geodetic levelling techniques is of the order of 5 cm

per 100 km. Clearly, this level of accuracy has not yet been reached if the

repeatability of the solution is of a similar magnitude to the accuracy. A

very common source of error when using GPS, is the measurement of the

antenna heights. For this campaign, where the heights were critical, each

antenna height was measured with a Wild level and with a tape measure, in

order to reduce the possible errors. Therefore, it is unlikely that the high

repeat abilities were caused by errors in the antenna heights.

A limiting factor in the determination of the satellite orbits was the geom-

etry between the fiducial sites and the satellites. Whilst this does not change

throughout the eight day campaign, the use of the continuous four day or-

bits would appear to have provided more constraint to the solution, giving

the much better repeat abilities on the baselines of the adjacent days. Fur-

ther improvement may have been possible by including data from additional

fiducial sites, preferably located in a better distributed network.

It is not possible to determine the height difference between the tide

gauges at Leith and Lowestoft with the data collected in the GPS campaign

in 1988, due to the loss of data at several of the sites. There have been two

GPS tide gauge campaigns since this date, but they were not recorded with

data from any fiducial sites and they have not been investigated here. The

results of these campaigns and the estimated GPS height difference between

the Leith and Lowestoft tide gauges can be found in Basker [1989].

147



Chapter 7.
The GPS Standard Data Set



CHAPTER 7

The GPS Standard Data Set

7.1 Introduction

A five year GPS campaign was started in December 1986, to measure tectonic

motions in central and southern California. The initial observations were

comprised of three, five day observation periods. The last five days of the

observation campaign were recorded between the 3rd and 7th of January 1987

and this is the data set analysed in this chapter. All the observations were

recorded using the dual frequency TI-4100 NAVSTAR Navigator receivers

In this campaign, nine receivers were deployed at sites around the Cali-

fornian coastline and islands. These local sites were situated near places of

tectonic interest. Five more receivers were located at regional sites within

California, four of which, Owens Valley, Mojave, Palos Verdes and Vanden-

burg have been surveyed using VLBI observations.

A further five receivers were placed outside California, at sites around

North America. These continental sites were located at Austin, Churchill,

Algonquin, Platteville and Westford. The last three of these sites have been

surveyed using VLBI observations

A description of all the sites may be found in Dong and Bock [1988]. The

regional and continental sites are shown in figure {7.1}.

7.2 Description of Data Set

The GPS data set collected between the 3rd and 7th of January 1987, has

been archived by the Massachusets Institute of Technology ( MIT ). The
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CSTGl GPS subcommission are distributing this standard data set to en-

able comparisons to be made of different GPS data processing techniques.

The standard data set is available from the US National Geodetic ~urvey

, on a nine track magnetic tape. The data is stored in two forms; the raw

data sampled at 30 second intervals and a cycle slip free data set, at 120

second intervals. Also stored on the tape are the site coordinates, broadcast

ephemerides and precise ephemerides.

The site coordinates are given in spherical geocentric form, in the SV 4

reference frame developed at the MIT (Appendix D). The antenna heights

above the ground stations are given in a separate document.

The five day campaign spans over the GPS week 364 ( January 3 ) and

week 365 ( January 4,5, 6 and 7 ), which coincides with the change of refer-

ence systems used by the Defense Mapping Agency for the satellite ephemeris.

The precise ephemeris for week 364 was given in WGS 72 coordinates and

the precise ephemeris for week 365 was given in WGS 84 coordinates.

No surface weather data was available for the data processing, and a stan-

dard atmosphere model was used to account for the tropospheric delays. The

observations were recorded at night to minimise the effects of the ionosphere.

The satellite constellation was selected to maximise the observation pe-

riods of satellites {PRNs} 3, 6, 9, 11 and 13. Satellite 12 was also tracked,

but for a much shorter period. The satellite geometry was predominantly in

a line running North-South (figure 7.2), with all the satellites exceeding an

elevation angle of 60° at some point during the pass.

For the results presented in this chapter, only the GPS receivers located

at the regional and continental sites were considered. The distribution of the

data is shown in table {7.1}.

lCommission on International Coordination of Space Techniques for Geodesy and Geo-

dynamics (CSTG) was established in 1979 as Commission VIII of the International Asso-

ciation of Geodesy.
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Day number 3 4 5 6 7

Continental

Algonquin (ALGO) X X X X X VLBI site

Platteville (PLAT) X X X X X VLBI site

Westford (WSFD) X X X X VLBI site

Churchill (CHUR) X X X X X

Austin (AUST) X X

Regional

Owens Valley (OVRO) X X X X X VLBI site

Ford Ord (FTOR) X X X X X

Mojave (MOJA) X X VLBI site

Palos Verdes (PVER) X X X X X VLBI site

Vandenburg (VNDN) X X X X X VLBI site

Table 7.1: Data distribution for the regional and continental sites
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7.3 Analysis of Data

The standard data set was provided in two formats; the 30 second raw data

and the 120 second cycle slip free data. The 120 second data was selected

for the analysis to simplify the data preprocessing stage, especially with the

data already having been cleaned of cycle slips.

With the 120 second data, it was not possible to time correct the phase

data for the receiver clock bias, using the phase rate expression derived in

equation (2.62), because of the 120 second interval between the phase mea-

surements. Instead, it was decided to correct the carrier phase time tags

using the pseudoranges.

If the satellite clock bias, broadcast in the satellite navigation message, is

removed from the pseudorange, then the corrected pseudorange is comprised

of the true range (in seconds) and the receiver clock bias. If this corrected

pseudorange is subtracted from the carrier phase time tag, then the time of

signal transmission at the satellite in GPS System Time remains. This was

then used as the time tag in the analysis.

The orbit integration was started from a satellite state vector, obtained

from the NSWC precise ephemeris. An initial value for the direct solar

radiation pressure coefficient was estimated to be 1.5. This was equivalent

to an acceleration of about 0.848 x 10-7 ms-2, which was estimated from

previous computations. The WGS 84 geopotential model was used for the

numerical integration up to degree and order 8, with the recommended value

of the product GM taken to be 3986005.0 X 108 rn3S-2. This was used to

allow a comparison to be made with the NSWC precise ephemeris.

Four different lengths of solution were considered:

• Single day solutions were computed for each day, solving for the six

parameter initial state vector for each satellite, receiver coordinates

and the initial phase ambiguities. Comparable single day solutions

were also computed by Mr. M. Aquino, using the orbit relaxation

techniques (section 3.8).

• Two continuous, two day solutions were computed for the days 4 and 5,
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and the days 6 and 7. For these, solutions were produced to investigate

the effect of solving for the direct solar radiation pressure coefficient

for each satellite.

• A continuous three day solution was computed, for the days 4, 5 and

6. The effects of solving for the constant y bias acceleration for each

satellite were investigated .

• A continuous four day solution was computed, for the days 4, 5, 6

and 7. The effects of solving for the constant y bias acceleration were

investigated, as in the three day solution.

All the multiple day solutions estimated a new set of initial phase ambi-

guities for each day.

In all the solutions, the L1/L2 combined frequency was used to correct

for the ionospheric effects. The tropospheric delay was accounted for, using

the standard atmosphere model given in section (2.5.2).

The coordinates of Owens Valley (OVRO), Platteville (PLAT) and Algo-

nquin (ALGO) were held fixed to their SV4 coordinates in all the solutions.

These sites were selected to provide the best geometrical configuration with

the most reliable data.

1.3.1 Single Day Solutions

The single day solutions were computed for the days 3, 4, 5 and 6, using the

data from the VLBI fiducial sites. A comparable solution was also computed

using the orbit relaxation technique. No comparisons are given for day 7,

because of problems encountered with the orbit relaxation technique when

using the broadcast ephemeris on that day.

The solutions for day 3 are presented in table (7.2). The differences shown

are the VLBI determined baselines minus the GPS determined baselines for

both types of solution. PVER had no simultaneous data observed with the

other sites and consequently the data couldn't be used.

It can be seen that the differences between the GPS and VLBI computed

baseline lengths, are of a similar magnitude for both the orbit determination
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Orbit Determination Orbit Relaxation

Length Difference ppm Difference ppm

(km) (cm) (cm)

ALGO - VNDN 3727 -7.5 0.020 11.1 0.030

- WSFD 642 7.4 0.115 -4.6 0.072

PLAT - VNDN 1533 -6.7 0.044 9.9 0.065

- WSFD 2752 7.1 0.026 -8.3 0.030

OVRO - VNDN 363 -7.0 0.193 7.8 0.213

- WSFD 3929 7.1 0.018 -6.0 0.015

VNDN - WSFD 4228 -0.3 0.001 5.5 0.013

rms = 6.6 rms = 7.9

Table 7.2: Single day solution baseline differences with VLBI : Day 3

Orbit Determination Orbit Relaxation

Length Difference ppm Difference ppm

(km) (cm) (cm)

ALGO - VNDN 3727 9.1 0.024 5.8 0.015

• WSFD 642 -1.5 0.023 18.7 0.291

PLAT - VNDN 1533 11.0 0.072 4.0 0.026

-WSFD 2752 -2.8 0.010 -3.1 0.011

OVRO - VNDN 363 6.5 0.179 8.3 0.228

• WSFD 3929 -3.1 0.008 0.7 0.002

VNDN • WSFD 4228 6.4 0.015 4.2 0.010

rms = 6.6 rms = 8.4

Table 7.3: Single day solution baseline differences with VLBI : Day 4
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and the orbit relaxation solutions. Baseline errors of up to 2 parts in 107

occur on the shorter 363 km OVRO-VNDN baseline, for both the solutions.,
The errors on the other baseline lengths are generally less than one part in

107•

Similar results were obtained for day 4, given in table (7.3). Again,

the OVRO-VNDN baseline produces the largest discrepancy from the VLBI

solution. The orbit relaxation solution has also given a poor estimate for the

ALGO-WSFD baseline, producing an error of 3 parts in 107•

Orbit Determination Orbit Relaxation

Length Difference ppm Difference ppm

(km) (cm) (cm)

ALGO - VNDN 3727 -11.0 0.030 8.7 0.023

PLAT - VNDN 1533 -9.7 0.063 7.1 0.047

OVRO -VNDN 363 -8.7 0.239 7.4 0.202

rms = 9.8 rms = 7.8

Table 7.4: Single day solution baseline differences with VLBI : Day 5

The solutions for day 5 are presented in table (7.4). Unfortunately the

data from WSFD had two satellites missing and could not be used in the

analysis. PVER had no compatible data with the other sites and also had

to be rejected. Therefore, the solutions had only one station to make a any

baseline comparisons with. The orbit determination and relaxation solutions

both gave similar answers, with maximum baseline differences of up to 2

parts in 107• It is interesting to note that the differences between the two

solutions are of opposite sign. This was also noted on day 3.

The solutions for day 6 are presented in table (7.5). This day produced the

largest differences for both the orbit determination and the orbit relaxation

solutions. The Californian sites at MOJA and PVER produced the largest

differences for the orbit determination solutions. All the baseline differences

were less than 2 parts in 107 except for the OVRO-MOJA baseline, which

gave an error of 4 parts in 107• However, for the orbit relaxation technique,

156



Orbit Determination Orbit Relaxation

Length Difference ppm Difference ppm

(km) (cm) (cm)

ALGO - MOJA 3407 18.3 0.054 7.8 0.023

- PVER 3611 20.9 0.058 5.3 0.015

- WSFD 642 -1.9 0.030 37.6 0.585

PLAT - MOJA 1196 18.5 0.155 5.6 0.046

- PVER 1407 20.4 0.145 1.4 0.010

-WSFD 2752 1.8 0.007 26.3 0.095

OVRO - MOJA 245 -10.0 0.407 4.2 0.172

-PVER 387 3.8 0.098 10.7 0.277

-WSFD 3929 -1.9 0.005 29.9 0.076

MOJA - PVER 224 2.6 0.116 -1.9 0.086

-WSFD 3903 17.4 0.045 35.5 0.091

PVER -WSFD 4096 20.0 0.049 32.0 0.078

rms = 14.0 rms = 21.5

Table 7.5: Single day solution baseline differences with VLBI : Day 6
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the largest differences were for the baselines connected to WSFD. This gave

an error of 6 parts in 107 on one of the baselines, with the other differences

less than 3 parts in 107•

In general, the orbit determination technique gave better results than

the orbit relaxation technique, when comparing the baseline lengths with

the VLBI coordinates. Both of the solutions were computed using the same

number of observations and the same tropospheric models. This would sug-

gest that the differences are caused by the different methods of modelling the

orbit. The orbit relaxation technique solves for the corrections to the broad-

cast elements which describe the mean orbital ellipse. Hence, any errors in

the other nine broadcast elements, which describe the perturbations from this

mean ellipse will not be accounted for. Therefore, this method relies upon

the quality of the broadcast ephemeris. However, in the orbit determination

technique, the force model should account for any orbital perturbations.

The root-mean-square (rms) differences between the baseline components

of the single day orbit determination solution and the VLBI solution are

shown in figure (7.3). It can be seen that the north components of the

baselines are generally better determined than the east components. This

is particularly noticeable on day 6, where the rms differences for the two

components are 2.1 cm and 17.1 cm respectively. This has produced the large

discrepancies in the determination of the baselines from ALGO and PLAT

to PVER and MOJA. An examination of the sky-plot in figure (7.2) shows

the predominant north-south satellite geometry, which appears to produce a

better determination of the north-south baseline components.

The height components of the baselines are also determined better than

the east components. This is in contrast to the GINFEST data, where the

height components produced the largest errors.

For the orbit determination solution, no estimates were made for the

direct solar radiation pressure coefficient. Attempts were made to solve for

this parameter, but no significant estimates could be made. It was assumed

that the six parameter satellite state vector was sufficient to absorb any

unmodelled accelerations on the satellite, for the arc lengths of only a few
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hours.

Average of the single day solutions

A coordinate set has been computed from the unweighted mean of the four

single day solutions, for both the orbit relaxation and orbit determination

methods. These coordinates have been compared with the VLBI coordinate

set and the baseline differences are given in table (7.6) for both solutions.

For the orbit determination solution, a significant improvement is seen, in

comparison with the individual single day solutions. The maximum baseline

error, is reduced to 8 parts in 108, with all the other baselines less than 2

parts in 108•

For the orbit relaxation solutions, no significant improvement can be seen

from the individual single day solutions, with the baseline errors up to 2 parts

in 107• This error occurs on the short baseline, as with the case of the single

day solutions.

Orbit determination Orbit relaxation

Length Difference ppm Difference ppm

(km) (cm) (cm)

ALGO -VNDN 3727 -3.1 0.008 8.5 0.023

- WSFD 642 1.4 0.020 17.2 0.268

PLAT - VNDN 1533 -1.8 0.012 7.0 0.046

- WSFD 2752 0.8 0.007 5.0 0.018

OVRO -VNDN 363 -3.0 0.084 7.8 0.216

- WSFD 3929 0.7 0.002 8.2 0.021

VNDN -WSFD 4228 3.1 0.007 4.9 0.011

rms = 2.2 rms = 9.2

Table 7.6: Average of the single day solutions : differences from the VLBI

baselines

The rms differences between the VLBI and the averaged orbit determi-

nation solution are shown in figure (7.4). It can be seen that the largest

rms difference is in the height component and this is mainly caused by the
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OVRO-VNDN height component, which is in error by 1.6 parts in 107• All

the other baseline components agree with the VLBI solution better than 1

part in 107•

cm 4.5
J.l

~.!;I

~.~

East North Height Length

Figure 7.4: Average single day baseline vector differences from VLBI

The results of these few comparisons, suggests that there is some form of

systematic error present in the orbit relaxation solution, possibly caused by

using the broadcast ephemeris. This effect was not seen in the orbit deter-

mination solution, where the average solution gave a much better agreement

with the VLBI coordinate set.

1.3.2 Two Day Solutions

The two continuous, two day solutions were computed for the days 4 and 5,

and the days 6 and 7. For each solution, the receiver coordinates and the

initial state vector for each satellite were estimated for the whole two days.

A new set of initial integer ambiguities were estimated for each day of the

solution. For each two day data set, a·further solution was computed to solve

for the direct solar radiation coefficient for each satellite, in addition to the

other parameters. These two solutions are referred to in the text as the six
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and seven parameter (per satellite) solutions respectively. No comparable

solutions could be computed using the orbit relaxation technique and all the

comparisons given here are with VLBI determined coordinates.

The differences between the VLBI determined baselines and the two day

( 4 and 5 ) solution, are given in table (7.7). In the six parameter solution,

no estimates were made for the direct solar radiation pressure coefficient CR.

Instead, the value of 1.5 was used for eR in the orbit integration. In the

seven parameter solution, the coefficient CR was estimated for each satellite.

Six parameter Seven parameter

solution solution

Length Difference ppm Difference ppm

(cm) (cm)

ALGO -VNDN 3727 13.3 0.036 8.5 0.023

-WSFD 642 21.1 0.328 13.1 0.204

PLAT -VNDN 1533 14.4 0.094 8.9 0.058

- WSFD 2752 12.2 0.044 5.0 0.019

OVRO - VNDN 363 11.3 0.311 6.4 0.176

- WSFD 3929 16.0 0.041 6.4 0.016

VNDN - WSFD 4228 29.0 0.069 14.5 0.034

rms = 17.7 rms = 9.6

Table 7.7: Two day solution baseline differences with VLBI : Days 4 and 5

It can be seen from comparing the two solutions, that solving for the

coefficient CRI reduces the baseline differences by a factor of two. The two

largest differences are on baselines connected to WSFD, where there is data

on day 4 only. However, for the seven parameter solution, the baseline errors

are all less than 2 parts in 107• The rms double difference phase residual

for the six and seven parameter solutions are 0.11103 and 0.05055 cycles

respectively.

The rms differences between the baseline components of the VLBI and

the GPS orbit determination solutions are shown in figure (7.5). The im-

provement in the solution after solving for CR for each satellite is obvious
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from the figure. In this case the east components of the baselines are better

determined than the north components. The errors in the height components

of the baselines were also significantly reduced with the second solution.

The baseline differences between the VLBI and the GPS orbit determi-

nation solutions for days 6 and 7 are given in table (7.8). In this case it

can be seen that both solutions give remarkably low rms baseline differences

of 3.3 cm and 3.4 cm. All the baseline errors are reduced to less than 1.5

parts in 107• The rms double difference phase residual for the six and seven

parameter solutions are 0.10187 and 0.05064 cycles respectively.

Six parameter Seven parameter

solution solution

Length Difference ppm Difference ppm

(cm) (cm)

ALGO - MOJA 3407 -2.2 0.006 4.4 0.012

-PVER 3611 -3.6 0.010 6.2 0.017

-VNDN 3727 -3.9 0.010 2.4 0.006

PLAT - MOJA 1196 -2.4 0.020 3.3 0.028

-PVER 1407 -4.3 0.031 4.6 0.033

-VNDN 1533 -4.9 0.032 1.3 0.008

OVRO - MOJA 245 1.6 0.065 0.7 0.029

- PVER 387 1.8 0.047 5.1 0.132

-VNDN 363 -4.6 0.127 -0.6 0.017

MOJA - PVER 224 -1.0 0.045 1.7 0.076

- VNDN 351 -2.5 0.071 -1.4 0.040

PVER -VNDN 223 3.6 0.161 3.5 0.157

rms = 3.3 rms = 3.4

Table 7.8: Two day solution baseline differences with VLBI : Days 6 and 7

The rms baseline component differences between the GPS and the VLBI

solutions are shown in figure (7.6). It can be seen that there is no significant

improvement in the seven parameter solution, which solves for the coeffi-

cient eR for each satellite. Instead, the baseline component differences are
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generally slightly larger than the six parameter solution.

A comparison of the values of CR, estimated in the two solutions are

given in table (7.9). It can be seen that the initial estimate of 1.5 for CR was

generally too low for all the satellites. This was particularly noticeable for

satellites 6 and 9, which lie in a different orbital plane to satellites 3, 11 and

13.

Satellite Days 4 and 5 Days 6 and 7

PRN number CR CR

3 1.5071 1.4812

6 1.7202 1.6601

9 1.6749 1.5970

11 1.5186 1.5199

13 1.5507 1.5503

Table 7.9: Two day solution: Solar radiation pressure coefficients

Orbit repeatability for the two day solutions

Two independent orbits have been computed for each satellite, using the same

data set as in the previous solutions. The same parameters were estimated

as in the previous solution,

• Initial phase ambiguities for each day

• Selected receiver coordinates for the whole solution

• Satellite state vectors for the whole solution

• Solar radiation pressure coefficients for the whole solution

The estimated values of the satellite state vectors and solar radiation

pressure coefficients were then used to initialise the orbit integration again.

This iteration proceeded until there was no further change in the estimated

orbital parameters.

The first orbit (arc 1) was determined from the data of days 4 and 5, and

spanned the observing periods of days 4, 5 and 6. The second orbit (arc 2)
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was determined from the data of days 6 and 7, and spanned the observing

period of days 6 and 7 only (figure 7.7).

4 5

I I
6 7

Four hour overlap

Figure 7.7: Orbit repeatability test definition

For each satellite, the differences between the two orbits have been com-

puted, during the observing period on day 6. These differences have been

separated into the along track, across track and radial components of the

orbit. The rms differences of these components are given in figure (7.8), for

satellite PRNs 3,6,9 and 11 for the four hour overlap period on day 6.

The radial component shows the best agreement between the two orbits,

with an average repeatability of 1.7 metres. The along track and across

track components gave a higher average repeatability of 5.9 and 6.4 metres

respectively.

Satellite 11 was chosen as the base satellite for processing, and has the

highest number of observations measured from it. Predictably, this gives the

best repeatability of all the satellites. Satellites 12 and 13 were not included

in the repeatability tests, as very few observations from these satellites were

used in the processing.

Figure (7.9) shows the differences between arc 1 and arc 2, for satellite

11, which was the best tracked satellite. In this example arc 1 was extrapo-

lated over the whole length of arc 2. All three components of the orbit show

periodic differences, equivalent to the orbital period of the satellite. Again,
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the radial component gives the best agreement, with the maximum differ-

ence less than two meters, even up to 48 hours after the last measurement

that was used to determine arc 1. The periodic differences seen in the across

track component are less stable and gradually increase with time. The along

track component shows both periodic and secular variations. The differences

between the other satellites revealed similar trends, but those satellites hav-

ing fewer observations tended to produce larger differences, especially in the

along track component.

Two day orbit comparison with the precise ephemeris

A comparison has been made between the orbits determined from the data

collected during days 6 and 7, and the NSWC precise ephemeris. The NSWC

precise ephemeris was computed using the WGS 84 geopotential model to

produce satellite coordinates in the WGS 84 reference frame. The IESSG2

orbit computed for the comparison also used the WGS 84 geopotential model

, but the coordinates for the fixed fiducial sites were in the SV 4 reference

frame. The transformation parameters between these two reference frames

were not known at the time of writing.

The comparisons for two of the satellites, 9 and 11 are given in figures

(7.10) and (7.11). Satellite 11 was chosen because it was the most tracked

satellite and satellite 9 was more representative of the other satellites. The

orbits were identical to the arc 2 orbits used in the repeatability tests.

The radial components again produce the smallest difference between the

orbits. The along track component in both cases produces differences up to

15 metres. If the orbits are compared only when the observations were made

( Le. the satellite passing over the tracking sites ), a much better agreement

is seen. This is particularly noticeable in the along track component, where

differences are reduced to less than five meters.

Clearly, it is not easy to detect whether the differences are due to errors in

the NSWC precise ephemeris or the IESSG computed orbit. Futhermore, the

differences between the two coordinate reference frames, which were used to

2Refers to all the GPS orbits computed using the Institute of Engineering Surveying

and Space Geodesy orbit determination software
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compute the orbits, could produce systematic differences between the orbits.

However, the large differences seen between the two orbits when the satellites

are away from the North American tracking sites, are likely to be caused by

only using a continental network for the IESSG orbit. The NSWC precise

ephemeris is produced from a global tracking network, and would be expected

to produce a more consistent orbit for the whole satellite revolution.

The main point which this comparison shows is that the IESSG orbit

determined from the continental network will give good agreement with the

precise ephemeris over the continental tracking network, but the accuracy of

the IESSG orbit will degrade when the satellite passes away from the tracking

sites.

7.3.3 Three day solutions

The continuous three day solution was computed using the data collected

during the days 4, 5 and 6. Two different solutions were computed. The first

solution (seven parameters per satellite) solved for the following parameters.

• One set of initial phase ambiguities for each day.

• One set of receiver coordinates for the whole solution.

• One set of satellite state vectors for each satellite, for the whole solution.

• One set of direct solar radiation pressure coefficients for each satellite,

for the whole solution.

A second solution (eight parameters per satellite) was computed, which

estimated the constant y-bias acceleration for each satellite, in addition to

the above parameters.

The baseline differences from the VLBI solutions are given in table (7.10).

In this case, a significant improvement with the solution solving for the y-bias

acceleration can be seen. The largest baseline error, which is on the shorter

OVRO-VNDN baseline is reduced from three parts in 107 to one part in 107,

with all the other errors less than four parts in 108•
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Seven parameter Eight parameter

length Difference ppm Difference ppm

(km) (cm) (cm)
ALGO -VNDN 3727 14.5 0.039 5.2 0.014

-WSFD 642 -13.3 0.207 -2.8 0.044
PLAT -VNDN 1533 15.9 0.103 5.8 0.038

-WSFD 2752 -20.2 0.074 -7.9 0.029
aVRO -VNDN 363 12.2 0.334 3.7 0.103

-WSFD 3929 -20.3 0.052 -6.6 0.017
VNDN -WSFD 4228 -6.0 0.014 -1.4 0.003

rms = 15.3 rms = 5.2

Table 7.10: Three day solution: Baseline comparison with VLBI

In figure (7.12), it can be seen that the main error in the baseline is in

the east component, with the estimation of the satellite y-bias acceleration

reducing the differences by a factor of two.

The estimated values of the solar radiation pressure coefficients are given

in table (7.11), with their standard errors. Although the direct solar radiation

pressure coefficients are of a similar magnitude for each satellite, there is

a much larger variation in the y-bias accelerations, from 0.346 x 10-9 to

1.120 x 1O-9ms-2• The basic shape and orientation of the satellites, which

will affect the eR parameter, are similar, but the structural misalignment of

the solar panels, which are believed to cause the y bias acceleration, would

be more likely to vary from satellite to satellite.

In this solution, the inclusion of the constant y-bias acceleration reduces

the rms double difference phase residual from 0.08889 to 0.05199 cycles.

Three day orbit comparison with the precise ephemeris

The JESSG three day orbit used for the comparison was obtained from the

eight parameter solution described in the previous section, computed from

the data collected during days 4, 5 and 6.

The differences between the IESSG orbits and the NSWC precise ephe-
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Figure 7.12: RMS baseline vector differences from VLBI : 3 day solution for

days 4, 5 and 6
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Seven parameter Eight parameter

Satellite CR er eR er c, er

PRN 1O-9ms-2 10-9ms-2

3 1.5038 0.0026 1.4835 0.0030 1.120 0.180

6 1.7184 0.0025 1.7211 0.0015 0.642 0.020

9 1.6568 0.0042 1.6821 0.0025 0.724 0.014

11 1.5234 0.0007 1.5132 0.0005 0.346 0.020
,

13 1.5593 0.0094 1.5511 0.0056 0.347 0.035

Table 7.11: Three day solution: Solar radiation pressure coefficients

meris for satellites 9 and 11 are shown in figure {7.13} and {7.14}. The

figures show the same trends as the two day orbits described previously. It

is particularly noticeable that the differences in the along track component

are at a minimum during the periods of observation. This is also seen to a

lesser extent in the radial component.

Similar conclusions must be drawn from the three day solution as those in

the two day solution, with the differences between the IESSG orbits and the

precise ephemeris less than five meters when the satellite passes overhead,

but increasing up to fifteen meters when the satellite passes away from the

tracking sites.

7.3.4 Four day solution

The continuous four day solution was computed from the data collected from

days 4,5,6 and 7. A similar approach to the three day solution was adopted

and two separate solutions were computed. The first solution estimated the

parameters,

• One set of initial phase ambiguities each day.

• One set of receiver coordinates for the whole solution.

• One set of satellite state vectors for each satellite for the whole solution.

• One direct solar radiation pressure coefficient for each satellite for the

whole solution.
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The second solution estimated an additional Y:bias acceleration for each

satellite.

The baseline differences between the VLBI and the first solution ( seven

parameters per satellite) are given in table (7.12). The most obvious errors

are in the long east-west baselines, which stretch from ALGO and PLAT

to the Californian sites of VNDN, MOJA and PVER. These have caused

particularly large baseline errors of up to 5 parts in 107 on certain baselines,

and a large rms baseline difference of 21.3 cm.

Seven parameter Eight parameter

length Difference ppm Difference ppm

(km) (cm) (cm)

ALGO - VNDN 3727 21.4 0.057 12.0 0.032

- MOJA 3407 24.1 0.071 13.1 0.038

- PVER 3611 38.0 0.105 20.2 0.056

PLAT - VNDN 1533 22.6 0.147 11.9 0.077

- MOJA 1196 23.6 0.197 12.5 0.105

- PVER 1407 36.1 0.256 18.5 0.131

OVRO -VNDN 363 15.5 0.426 8.4 0.230

- MOJA 245 -7.0 0.285 -0.7 0.027

- PVER 387 12.0 0.309 11.1 0.286

VNDN - MOJA 351 0.7 0.020 0.7 0.019

- PVER 223 -4.5 0.200 2.6 0.116

MOJA - PVER 224 11.1 0.494 5.9 0.264

rms = 21.3 rms = 11.5

Table 7.12: Four day solution: baseline differences with VLBI

The second solution ( eight parameters per satellite) baseline differences

are shown in the same table. There is a significant reduction in the rms

baseline difference down to 11.5 cm. This brings the maximum baseline

error down to 3 parts in 107• However, the largest baseline differences are

still on the longer east-west lines.
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The rms baseline component differences are shown in figure (7.15). The

largest component error of 26.6 cm in the east direction is reduced to 10.6 cm

with the addition of the y-bias acceleration per satellite. The determination

of the east component of PVER appears to be producing these large differ-

ences. This was also noted in the single day solution of day 6 ( table 7.5 ).

The differences between the single day 6 solution and the four day solution

for the ALGO-PVER and the PLAT-PVER baselines are only 7 mm and 19

mm respectively.

The values for the solar radiation pressure coefficients are given in table

(7.13). The direct solar radiation pressure coefficient CR produces values

similar to the three day solution as expected, but the y-bias acceleration

shows much larger changes, especially for satellite 3 which has the least

observations. The standard errors of these accelerations have been reduced

by a factor of two by the additional day of data.

Seven parameter Eight parameter

Satellite CR a CR a Cy a

PRN 1O-9ms-2 1O-9ms-2

3 1.4944 0.0023 1.4839 0.0016 0.757 0.091

6 1.6946 0.0024 1.7073 0.0010 0.710 0.009

9 1.6754 0.0050 1.6666 0.0021 0.653 0.006

11 1.5206 0.0006 1.5134 0.0003 0.312 0.011

13 1.5090 0.0101 1.5585 0.0043 0.455 0.017

Table 7.13: Four day solution: Solar radiation pressure coefficients

A comparison has been made between the double difference phase resid-

uals obtained from the two four day solutions for the satellites 9 and 11,

and the sites of PLAT and OVRO. Figure (7.16) shows the residuals from

the solution using seven parameters per satellite and figure (7.17) shows the

residuals from the eight parameter per satellite solution.

The noticeable drift seen in the residuals in figure (7.16) for the first three

days has been very much reduced, by the addition of the y-bias acceleration

estimation, to give a much more random distribution of the residuals in figure
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Figure 7.15: RMS baseline vector differences from VLBI : 4 day solution for

days 4, 5, 6 and 7
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Figure 7.16: Double difference phase residuals from the four day solution

(PLAT and OVRO) : seven parameters estimated per satellite
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Figure 7.17: Double difference phase residuals from the four day solution

(PLAT and OVRO) : eight parameters estimated per satellite
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(7.17). The largest residual is now approximately 0.3 cycles or 5.7 cm.

A similar pattern is seen in figures (7.18) and (7.19) for the sites of PLAT

and VNDN, although there is still a slight drift in the first and last days of

the solution. The improvement in the solution is reflected in the rms double

difference phase residual, which reduces from 0.14596 to 0.06055 with the

estimation of the satellite y-bias acceleration.

1.3.5 The Effect of Using Different Geopotential Models

The three day solution was computed using two different geopotential models

to predict the orbit. Both of the solutions were computed using the same

data sets and the same parameters were estimated.

The orbit integrations for the first solution used the WGS 84 geopotential

model up to degree and order eight. For this the value of the product GM

was 3986005.00 x 108m3 8-2•

The orbit integrations for the second solution used the GEM Tl geopo-

tential model up to degree and order eight. The value of GM was taken to

be 3986004.36 x 108m3 8-2•

The differences between the baseline lengths of the two solutions are given

in table (7.14). It can be seen that the differences between the baselines for

the two solutions are of the order of a few millimetres, corresponding to a

maximum baseline error of the order of three parts in 109•

Beutler et al [1987] derives a theoretical equation to determine the effect

of using different values of GM in the computations. The formula,

Al AGM
-l =0.07x GM (7.1)

relates the change in baseline length Al expected when the value of GM is

changed by t1GM. When using the differences of the value of GM between

the WGS 84 and the GEM Tl geopotential models, a baseline difference of

0.008 ppm would be expected. This is comparable with the baseline differ-

ences seen in table (7.14). The differences between the two solutions would

indicate that the effect of using a different geopotential model is very small

and for the determination of ground coordinates, it is relatively insignificant.
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Figure 7.18: Double difference phase residuals from the four day solution

(PLAT and VNDN) : seven parameters estimated per satellite
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Figure 7.19: Double difference phase residuals from the four day solution

(PLAT and VNDN) : eight parameters estimated per satellite
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Length WGS 84 minus GEM T1 ppm

(km) solutions (mm)

ALGa -VNDN 3727 1 0.000

ALGa - WSFD 642 -2 0.003

PLAT -VNDN 1533 1 0.001

PLAT - WSFD 2752 -3 0.001

OVRa -VNDN 363 1 0.003

OVRa - WSFD 3929 -4 0.001

VNDN -WSFD 4228 -2 0.000

Table 7.14: Effect on the baseline length of using different geopotential mod-

els

7.3.6 The Effect of Errors in the Fiducial Site Coordinates

One of the single day solutions ( day 4 ) was computed with a 10 cm bias

added to the antenna height at the fiducial site of OVRO. The resulting

estimates of the non fiducial site coordinates were compared with the original

single day solution with the correct antenna height. The differences between

the latitude, longitude and height of the two solutions for the non fiducial

sites are given in table (7.15).

Change in Change in Change in

latitude longitude height

(cm) (cm) (cm)

VNDN 1.3 5.1 10.2

WSFD 8.8 6.8 -8.8

Table 7.15: The effect of a 10 cm error in the fiducial site antenna height

The closest non fiducial site to OVRO is VNDN and predictably the

height of this site increases by 10.2 cm, similar to the antenna height bias

at OVRO. The height of the other non fiducial site WSFD decreases by 8.8

em suggesting the network has been rotated about the fiducial sites. The

horizontal coordinates of the two sites have also changed considerably, which

may imply a distortion of the network. The magnitude of the change in the
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horizontal coordinates is of a similar order to the antenna height bias, which

means that any error in the antenna heights will not just affect the height

components ofthe baselines, but it may well propagate into the determination

of the baseline lengths.

7.4 Discussion of Results

All the solutions computed in this chapter used the data from CHUR in the

adjustment. This site has not been occupied by YLBI or SLR equipment and

the coordinates have only been established by previous GPS solutions. For

this reason, no constraint has been placed on the coordinates of CHUR in

the adjustment and no previous comparisons have been made with the GPS

solutions.

A comparison of the coordinates of CHUR determined from the four single

day solutions reveals some large differences in both the latitude and the

longitude of up to half a meter. These differences were giving daily baseline

repeat abilities of up to three parts in 107•

The fiducial sites (ALGO, aYRO and PLAT) lie very much in a line

running east-west, whereas CHUR lies further to the north ( figure 7.20 ).

This geometrical configuration has been shown to give a poor estimation of

the non fiducial receiver coordinates by other authors [Lichten et al, 1989].

A better estimation of the coordinates of CHUR would be expected by using

another fiducial site located to the north of the three fiducial sites.

In separate solutions, each single day was computed without the data from

CHUR. All the estimated GPS baseline vectors showed larger differences

from the YLBI vectors, than the GPS solutions which contained the data

from CHUR. This demonstrates the importance of using a well distributed

tracking network to provide constraint for the orbit determination process,

186



OVRO
~

CHUR

ALGO

PLAT

Figure 7.20: Location map of fiducial stations in North America
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even if the coordinates of all the sites are not necessarily fixed.

One of the major error sources not investigated in these results is the

effect of the troposphere. All the solutions were computed using the U.S.

standard atmosphere model ( section 2.5.2 ). This uses values of the Julian

day number, height and latitude of the site to estimate the tropospheric delay

(phase advance). There are two faults with this type of model,

1. Any variations in the state of the troposphere during the observation

period will not be modelle~, because a constant zenithal delay is com-

puted for each site for the whole observing period.

2. The model does not account for any localised atmospheric conditions

at each site. This will be negligible for small networks, but for the large

network considered here, it is more likely to cause further error.

When computing a multi-day solution, the tropospheric model will as-

sume a similar delay for each site, on each day of the observation campaign.

Hence, any day to day atmospheric changes will be ignored, which may well

contribute to the larger discrepancies seen in the four day solution when

compared with the two and three day solutions.

It was noted previously that the determination of the east component of

the baselines were generally worse than the north components. Investiga-

tions on the same data set [Dong and Bock, 1989] have shown that resolving

the initial phase ambiguities to their integer values can significantly reduce

the uncertainty in the east component of the baselines. The scheme used

solves for the (Ll - L2)3 wide-lane integer ambiguities using either the pseu-

doranges [Blewitt, 1989] or by using the approach of ionospheric constraints

[Bender and Larden, 1985]. This work is outside the scope of this project,

but it is being investigated by another research student at Nottingham.

The comparison of the NSWC precise ephemeris with the IESSG orbits

has demonstrated the use of a regional tracking network for orbit deter-

3The Ll -L2 frequency is formed from the difference between the Ll and L2 frequencies.

It has a wavelength of about 86 cm making the resolution of the phase integers much easier

than the single frequency Ll, which has a wavelength of about 19 cm.
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mination over a particular region. These orbits will be more accurate for

determining the coordinates of sites contained within or close to the fidu-

cial network. A more global network would be expected to produce, a more

accurate global orbit, for use in determining the coordinates of sites away

from the fiducial sites. This has been demonstrated with additional data

from Europe used to supplement the North American fiducial network for

baseline determination in South America [Lichten, 1989].

An estimation of the accuracy of the GPS orbits can be obtained from,

1. Orbit repeatability tests.

2. Orbit comparison with NSWC precise ephemeris.

3. Baseline comparison with VLBI.

4. Standard errors of the estimated satellite state vectors.

The orbit repeatability tests were carried out during the observing period

of the tracking sites. Therefore, they only represent the repeatability of the

orbits over the tracking network. The effect of any unmodelled satellite force

model components or any errors in the satellite state vector will be magnified

by the extrapolation process. Hence, the average repeatabilities of 1.7 m, 5.9

m and 6.4 m for the radial, along track and across track components represent

a pessimistic estimate of the accuracy of the orbits over the region.

The comparison with the NSWC precise ephemeris showed agreements

better than five metres for the period of observation, with differences up to

three times this over the rest of the orbital arc. This an independent test

and it may well be affected by the differences between the two coordinate

references frames of the tracking sites which were used to determine the two

different orbits.

The GPS derived baselines can be compared with the VLBI determined

baselines as in independent check. However, other non-orbit error sources

such as the troposphere will affect the baseline determinations, so the com-

parisons are only an indication of the orbital accuracy. The effect of or-

bital errors is more dominant on the longer baselines, hence a comparison
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of the longer baselines will provide a better check on the orbital accuracy

than the shorter baselines where residual tropospheric effects may dominate

[Lichten et al, 1989]. In general the agreement between the GPS and VLBI

baselines were better than one or two parts in 107 on the longer baselines.

This approximates to an orbital error of between two and four metres us-

ing the simple relationship given in equation (2.57). This agrees with the

estimates obtained from the orbit repeatability and the precise ephemeris

comparison tests.

An indication of the precision of the orbit can also be obtained from the

standard errors of the estimated satellite state vectors. The standard errors

of the initial position vectors varied between 1.75 m and 4.26 m for the two

day solution, to between 1.41 m and 3.53 m for the four day solution. These

agree well with the estimates obtained above.

All the results in this chapter were obtained using less than three and a

half hours of data on each day. With the use of a better distributed tracking

network and the full GPS satellite constellation a further improvement to

both the orbital accuracy and the baseline accuracy should be achievable.
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CHAPTER 8

Conclusions and Suggestions for Further

Work

8.1 Conclusions

1. The double difference phase observable can be used for regional GPS

orbit determination, when using the fiducial network method. This has

been demonstrated with the program DDORB, which has been devel-

oped for multiple day, multiple satellite and multiple receiver solutions,

using the least squares method of adjustment.

2. The comparison of the regionally (North America) determined GPS

orbits with the NSWC precise ephemeris, shows agreement better than

five metres in all three components of the satellite's position. Larger

differences (up to fifteen metres) are seen when the orbits are compared

outside the satellite observation periods.

3. The root-mean-square (rms) repeatability of two independently deter-

mined, two day orbits is better than two metres in the radial direction

and typically about six metres in the along track and across track di-

rection. These comparisons are for orbits which have been extrapolated

twenty four hours beyond the last observation.

4. The GPS satellite is particularly sensitive to errors in the solar radi-

ation pressure model. Different lengths of orbital arc require different

modelling strategies.

(a) With the single day solutions, no estimates can be made for any

solar radiation pressure coefficients. The six parameter satellite
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state vector is sufficient to absorb any unmodelled satellite accel-

erations.

(b) For the two day solutions, the direct solar radiation pressure coef-

ficient can be estimated for each satellite. The estimation of this

parameter reduces the rms double difference phase residuals and

also leads to a better determination of the baseline components

between the ground sites.

(c) For the three day solutions, the y-bias acceleration can be esti-

mated for each satellite, in addition to the direct solar radiation

pressure coefficients. The estimation of the y-bias acceleration

reduces the rms double difference phase residuals and gives a bet-

ter determination of the baseline components between the ground

stations.

(d) The four day solution also improves with the estimation of the

y-bias acceleration. This again is reflected in the lower rms dou-

ble difference phase residuals and the better determination of the

baseline components.

5. The high altitude of the GPS satellite allows the high order terms of

the earths geopotential model to be ignored and an expansion up to

degree and order eight is suitable for the GPS satellites, for orbital arcs

up to four days.

6. The use of a different geopotential model (and the implied change in

GM) has only a small effect on the determination of the baselines with

GPS.

7. A simpler alternative to integrating the GPS satellite force model for

short spans of data, is to use an orbit relaxation technique. This

can produce comparable results to the orbit integration technique, al-

though the method relies very much upon the quality of the broadcast

ephemeris.

8. The comparison of the GPS derived baseline components with the VLBI
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determined baselines in North America, gives an agreement better than

1 or 2 parts in 107 in all three baseline components. This corresponds

to an orbital accuracy of between two and four metres.

9. The accuracy ofthe fiducial site coordinates is fundamental to the fidu-

cial network method for GPS orbit determination. Even small errors

in measuring the antenna height at a fiducial site, will propagate into

both the horizontal and vertical components of the non fiducial site

coordinates.

10. The fiducial network method is suitable for determining the coordi-

nates of the non fiducial sites, when they are located within or close

to the fiducial network. The accuracy of the estimated non fiducial

coordinates decreases, as the distance away from the fiducial network

Increases.

11. The geometry of the satellites and the tracking sites significantly af-

fects the determination of the satellite orbits and the determination

of the tracking site coordinates. The satellite constellation over North

America provides a much better geometrical configuration, than the

constellation over Europe, which results in a more reliable solution.

12. Multiple day GPS orbits are useful where there is a lack of tracking

data from the fiducial sites. This was particularly noticeable in the

tide gauge project, where single day solutions were not possible, but

the estimation of the four day orbits made the determination of the

tide gauge site coordinates possible.
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8.2 Suggestions for Further Work

1. The resolution of the initial phase ambiguities into integers is neces-

sary to improve the accuracy of both the orbit determination and the

coordinate determination of the ground sites.

2. Further work is necessary on the modelling of the tropospheric delay

in the phase observable. Methods such as estimating site dependent

tropospheric delay parameters and time varying tropospheric delay pa-

rameters should be investigated.

3. Modifications are necessary to the GPS network adjustment programs

(PANIC and DDORB) in order to maximise the amount of phase

data that can be processed. The current generation of programs are

relatively inflexible with the need to specify the baseline definitions

from which to form the double differences.

4. The ROCK IV solar radiation pressure model should be tested in the

GPS satellite force model. The possibility of introducing time varying

solar radiation pressure coefficients should be investigated for longer

orbital arcs, where the solar radiation pressure may not be constant.

5. The effect of the solid earth and ocean tides on the displacement of

the GPS tracking sites should be investigated, to see if it significantly

affects the results.

6. Further investigation is required into the detection and repair of cycle

slips. The current methods employed, such as the visual inspection of

the double difference phase residuals and fitting polynomial expressions

to the phase data are very time consuming.

7. The orbit relaxation technique should be adapted for multiple day solu-

tions. This could be achieved using a Helmert-Wolf blocking technique

[Hill, 1989].
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ApPENDIX A

Jobdecks for the GPS orbit determination

programs

The program DDORB is controlled from a jobdeck, which contains all the

program options, the input files required and the output files required. The

example below is of the type used for the three day solution using the GPS

standard dataset described in chapter 7.

begin
stjnld(gindat.jnldd)
~ cf77(slr.ddorb,omf=omfddorb,LIST=NONE)
~ Input ephemeris data on channels 1 to 7(except chan. 5)
cnf(gpsIOcio,funit=l)
cnf(gpsI6cio,funit=2)
cnf(gpsI9cio,funit=3)
cnf(gpsllcio,funit=4)
cnf(gpsI2cio,funit=6)
cnf(gpsI3cio,funit=7)
~ Input measurement files on channels 11 to 19
cnf(ngs004.ALG0456,funit=11)
cnf(ngs004.CHUR456,funit=12)
cnf(ngs004.VNDN456,funit=13)
cnf(ngs004.0VR0456,funit=14)
cnf(ngs004.PLAT456,funit=15)
cnf(ngs004.WSFD456,funit=16)
~ Input partial derivative files on channels 31 to 37
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cnf(gpslOparx,funit=31)
cnf(gps16parx,funit=32)
cnf(gps19parx.funit=33)
cnf(gpsl1parx.funit=34)
cnf(gps12parx.funit=35)
cnf(gps13parx.funit=36)
~ Input met data files on channels 41 to 49
~

~ NO MET DATA
~

~ Input chebyshev polynomial file
cnf(cheb86354p.funit=50)
~ Input satellite state vectors
cnf(ngs004.sv00456.funit=25)
cnf(ngs004.osv00456,access=w,funit=26)
~ Create output files
cnf(ngs004.odd456,access=w,funit=21,res=ignore)
cnf (ngs004.covarm.access=w.funit=22.res=ignore)
alb(omfddorb,access=e)
run (ddorb)
1 INPUT ANALYSIS INFORMATION
Z _

2

o
1 = WGS 72 , 2 = WGS 84
frequency used. 1=L1 ,2=L2, 0=L1/L2

6 Tropo. corrn, O=NO l=Hopf 2=Saast/Mar 3=Full Hopf
1 Use of weight matrix O=NO,l=YES (4=Saast 5=Mag
4 day number
1 Output of residuals O=NO l=YES
Z _
Z -

2 INPUT SATELLITE INFORMATION
Z _

196



6 2

3 6 9 11 12 13
11

1 1 1 1 1 1 1

o 0 0 0 0 0 0

Number of satellites
PRN number of each satellite
Base satellite ID
No. of ephemerides for each satellite
1 = satellite fixed, 0 = freez _

Z

3 INPUT STATION INFORMATION
Z _

6 Number of stations
1 0 0 1 1 0 0 0 Station fixing choice
Z _

For each station write a block in the form
Station name
Receiver type
Approx X coordinate of station (metres)
Approx Y coordinate of station (metres)
Approx Z coordinate of station (metres)
Antenna height(metres)
Z _

ALGO
TI 4100

918127.4990
-4346061.9153
4561984.2599

1.399
Z _

CHUR
TI 4100
-236417.0093

-3307612.0551
5430055.8889
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1.454
Z _

VNDN
TI 4100
-2678071.7747
-4525451.5663
3597427.5067

1.263
Z _

OVRO
TI 4100
-2410422.5939
-4477802.4623
3838686.8365

1.890
z _

PLAT
TI 4100
-1240708.2691
-4720454.2018
4094481.7816

1.682z _
WSFD
TI 4100
1492232.8794

-4458091.7154
4296045.9743

0.000
z _

z
Z Read baseline definitions(max NOSTNS-1)
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z _

5 1
5 2

5 3

5 4

5 6
Z _

3

100
o
240.0

IDATA 0=mag,1=can,2=nor,3=GSI
accumulated solution mode
o = No integer fixing, 1 = Integer fixing
integration step length

common start time of integration
32400.0
87,4
9

8

000 0 0 0 0 0
3

1

end

year and day number for start of data
number of orbital parameters from ORaIT
number of orbital parameters solved for
number of orbital parameters solved
number of days of tracking data
itimcor, 1 = auto. (time correction)
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ApPENDIX B

Definition of rotation matrices

The rotation matrices RI, R2, R3 used in chapter 3 are defined as anti-

clockwise rotations about the x, y and z axes respectively, for the angle

O. They are defined as [Moore, 1986],

R1(O) = 0 cosO sinO

o - sinO cosO

1 o o
(B.1)

R2(O) = o 1 o (B.2)
cos () 0 - sin 0

sin 0 0 cos 0

cosO sinO 0

R3(O) = - sin () cos () 0

o 0 1

(B.3)
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ApPENDIX C

GINFEST GPS campaign results

This appendix gives the full GINFEST solutions which were abbreviated in

chapter 5 and the derivations of the receiver coordinates from the IESSG

SLR solution.

Table ( C.1 ) shows the IESSG SA-T coordinate set for the SLR facilities

at the GINFEST sites. The coordinates were obtained from a short arc

solution, which has been transformed onto a ten month long arc solution.

SLR site x (m) y (m) z (m)

Grasse 4581690.988 556165.153 4389359.434

Graz 4194425.874 1162700.069 4647245.615

RGO 4033462.934 23668.925 4924305.704

Kootwijk 3899223.334 396749.554 5015074.038

Wettzell 4075529.209 931787.687 4801617.597

Table C.1: GINFEST SLR site coordinates: IESSG SA-T
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Table ( C.2 ) gives the IESSG SA-T coordinate set which have been

transformed onto a WGS 84 coordinate set, using a seven parameter Helmert

transformation. The following biases were found between the two coordinate

sets, given with their standard errors.
dx - 0.857 ± 0.470 metres

dy - -0.386 ± 0.446 metres

dx - -1.046 ± 0.431 metres

x rot. - -0.310 ± 0.013 seconds

y rot. - -0.002 ± 0.018 seconds

z rot. - -0.015 ± 0.013 seconds

scale 0.004 ± 0.052 ppm

SLR site x (m) y (m) z (m)

Grasse 4581691.874 556158.511 4389359.190

Graz 4194426.717 1162693.015 4647246.286

RGO 4033463.862 23661.438 4924304.669

Kootwijk 3899224.235 396741.923 5015073.565

Wettzell 4075530.071 931780.392 4801617.924

Table C.2: GINFEST SLR site coordinates: IESSG T-84
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The \VGS 84 coordinates of the SLR sites were then converted into WGS

72 coordinates, using the transformation parameters given in table ( C.3 )

[D.D.D., 1986].

Transformation

parameter

~X 0.0000

~y 0.0000

~Z -4.5000

x rot. 0.0000

y rot. 0.0000

z rot. -0.5540

scale (ppm) -0.2198

Table C.3: Transformation parameters between was 84 and WGS 72
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Table ( CA ) gives the eccentricity vectors between the SLR/VLBI sites

and all the GPS antenna L1 phase centres for the GINFEST GPS cam-

paign. There is some uncertainty in the eccentricity vector connecting Jo-

drell Bank. The eccentricities were obtained from various sources, including

[Muller, 1988].

Site Ax (m) Ay (m) Az (m)

Grasse 20.586 -19.219 -23.514

Graz -2.381 8.548 -1.128

RGO -101.203 386.007 71.817

Kootwijk -4.614 25.297 -0.986

Wettzell 22.551 440407 -28.999

Zimmerwald 8.600 -0.142 -3.819

Onsala 53.327 -40.309 -42.745

Effelsberg -4766.905 3769.375 3569.054

Westerbork 120.687 -611.337 -43.512

Jodrell Bank 107.371 84.346 -131.340

Table CA: Eccentricity vectors for SLR/VLBI sites to GPS L1 phase centres

for GINFEST GPS campaign

Table ( C.5 ) gives the baseline differences between the solutions for days

322 and 324 when using the broadcast ephemeris.

Table ( C.6 ) gives the baseline differences between the solutions for day

323 and day 324 when using the broadcast ephemeris.

Table ( C.7 ) shows the baseline differences between the three day precise

ephemeris solution and the precise ephemeris solution for day 322.

Table ( C.8 ) shows the baseline differences between the three day precise

ephemeris solution and the precise ephemeris solution for day 323.

Table ( C.9 ) shows the baseline differences between the three day precise

ephemeris solution and the precise ephemeris solution for day 324.
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Tables ( C.lO ), ( C.1l ) and ( C.l2 ) show the baseline differences between

the individual single day orbit determination solutions and the three day

orbit determination solution. The single day solutions solve for the satellite

state vector for each satellite, whereas the three day solution solves for the

satellite state vector, direct solar radiation scaling coefficient and a y bias

acceleration for each satellite.
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Length Difference ppm

(km) {cm}

Kootwijk - Grasse 939 -9.2 0.098

- Graz 899 2.6 0.029

-RGO 406 16.1 0.396

- Effelsberg 195 0.3 0.015

- Onsala 700 20.5 0.292

- Westerbork 98 21.4 2.179

- Jcdrell Bank 560 -5.1 0.091

Grasse - Graz 764 -4.3 0.056

-RGO 932 -5.4 0.058

- Effelsberg 757 -10.2 0.134

- Onsala 1553 3.6 0.023

- Westerbork 1017 6.1 0.060

- Jodrell Bank 1251 3.5 0.028

Graz - RGO 1182 14.5 0.123

- Effelsberg 738 4.7 0.064

- Onsala 1172 5.7 0.048

- Westerbork 908 3.3 0.037

- Jodrell Bank 1436 0.4 0.003

RGO - Effelsberg 467 12.3 0.262

- Onsala 1045 35.5 0.340

- Westerbork 487 34.2 0.702

- Jodrell Bank 319 11.8 0.369

continued on next page
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Length Difference ppm

(km) (cm)

Effelsberg - Onsala 825 20.4 0.248

- Westerbork 261 17.0 0.649

- Jodrell Bank 701 -1.3 0.019

Onsala - Westerbork 602 -1.7 0.028

- Jodrell Bank 1011 -0.9 0.009

Westerbork - Jodrell Bank 597 0.5 0.009

rms = 13.6

Table C.5: Comparison of baseline lengths for the broadcast ephemeris solu-

tion on day 322 with the day 324 solution
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Length Difference ppm

(km) (cm)

Wettzell - Kootwijk 602 0.5 0.008

- Grasse 753 -7.6 0.101

- Graz 302 -0.1 0.002

-RGO 917 -lOA 0.113

- Onsala 919 20.2 0.219

- Jodrell Bank 1150 -12.5 0.108

Kootwijk - Grasse 939 2.8 0.030

- Graz 899 1.5 0.016

- RGO 406 -8.9 0.216

- Onsala 700 15.6 0.223

- Jodrell Bank 560 -13.2 0.236

Grasse - Graz 764 1.5 0.019

-RGO 932 1.4 0.015

- Onsala 1553 1604 0.136

- Jodrell Bank 1251 1.1 0.009

Graz - RGO 1182 -6.3 0.053

- Onsala 1172 10.2 0.087

- Jodrell Bank 1436 -IDA 0.072

RGO - Onsala 1045 3.9 0.038

- Jodrell Bank 319 -2.2 0.068

Onsala - Jodrell Bank 1011 -604 0.063

rms = 9.3

Table C.6: Comparison of baseline lengths for the broadcast ephemeris solu-

tion on day 323 with the day 324 solution
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Length Difference ppm

(km) (cm)

Kootwijk - Grasse 939 -13.1 0.139

- Graz 899 1.7 0.012

-RGO 406 -4.1 0.101

- Effelsberg 195 -13.4 0.686

- Onsala 700 20.2 0.288

- Westerbork 98 13.7 1.399

- Jodrell Bank 560 -41.4 0.739

Grasse - Graz 764 -7.1 0.093

-RGO 932 -2.7 0.029

- Effelsberg 757 4.3 0.057

- Onsala 1553 1.3 0.008

- Westerbork 1017 -3.0 0.029

- Jodrell Bank 1251 2.3 0.018

Graz - RGO 1182 3.5 0.030

- Effelsberg 738 2.2 0.030

- Onsala 1172 7.3 0.062

- Westerbork 908 2.0 0.021

- Jodrell Bank 1436 -27.9 0.194

RGO - Effelsberg 467 5.9 0.127

- Onsala 1045 12.2 0.117

- Westerbork 487 6.3 0.129

- Jodrell Bank 319 8.1 0.254

continued on next page
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Length Difference ppm

(km) (cm)

Effelsberg - Onsala 825 -1.8 0.021

- Westerbork 261 -7.0 0.268

- Jodrell Bank 701 -28.9 0.413

Onsala - Westerbork 602 6.1 0.102

- Jodrell Bank 1011 -55.8 0.551

Westerbork - Jodrell Bank 597 -45.1 0.755

rms = 18.9

Table C.7: Comparison of baseline lengths for the precise ephemeris solution

on day 322 with the three day solution
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Length Difference ppm

(km) (cm)

Wettzell - Kootwijk 602 -4.8 0.079

- Grasse 753 -6.2 0.082

- Graz 302 -0.8 0.026

-RGO 917 -6.5 0.070

- Onsala 919 -0.6 0.006

- Jodrell Bank 1150 -2.8 0.024

Kootwijk - Grasse 939 6.4 0.068

- Graz 899 -4.1 0.046

-RGO 406 6.7 0.165

- Onsala 700 -16.2 0.232

- Jodrell Bank 560 5.4 0.096

Grasse - Graz 764 -1.1 0.014

-RGO 932 -0.8 0.009

- Onsala 1553 -4.8 0.031

- Jodrell Bank 1251 -3.3 0.026

Graz - RGO 1182 -4.6 0.039

- Onsala 1172 -5.3 0.043

- J odrell Bank 1436 -2.5 0.017

RGO - Onsala 1045 -8.2 0.078

- J odrell Bank 319 -4.1 0.126

Onsala - J odrell Bank 1011 0.2 0.001

rms = 5.7

Table C.8: Comparison of baseline lengths for the precise ephemeris solution

on day 323 with the three day solution
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Length Difference ppm

(km) (cm)

Wettzell - Kootwijk 602 0.8 0.014

- Grasse 753 2.9 0.039

- Graz 302 1.4 0.046

-RGO 917 5.7 0.062

- Effelsberg 455 -3.7 0.082

- Onsala 919 -1.4 0.015

- Westerbork 607 -004 0.006

- Jodrell Bank 1150 12.1 0.105

Kootwijk - Grasse 939 6.6 0.070

- Graz 899 2.8 0.031

- RGO 406 11.2 0.276

- Effelsberg 195 -9.1 00465

- Onsala 700 20.2 0.288

- Westerbork 98 -5.9 0.604

- Jodrell Bank 560 15.0 0.268

Grasse - Graz 764 004 0.006

-RGO 932 0.0 0.000

- Effelsberg 757 19.2 0.253

- Onsala 1553 1.1 0.007

- Westerbork 1017 1.2 0.012

- Jodrell Bank 1251 -1.9 0.015

Graz - RGO 1182 5.9 0.050

- Effelsberg 738 0.5 0.007

- Onsala 1172 3.2 0.028

- Westerbork 908 1.6 0.017

- Jodrell Bank 1436 12.6 0.087

continued on next page

212



Length Difference ppm

(km) (cm)

RGO - Effelsberg 467 12.6 0.269

- Onsala 1045 7.4 0.071

- Westerbork 487 7.7 0.158

- JodreU Bank 319 -1.8 0.055

Effelsberg - Onsala 825 -22.7 0.275

- Westerbork 261 -17.8 0.680

- JodreU Bank 701 9.1 0.130

Onsala - Westerbork 602 -1.7 0.028

- JodreU Bank 1011 23.2 0.229

Westerbork - JodreU Bank 597 17.2 0.288

rms=9.7

Table C.9: Comparison of baseline lengths for the precise ephemeris solution

on day 324 with the three day solution
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Length Difference ppm

(km) (cm)

Kootwijk - Grasse 939 1.7 0.018

- Graz 899 -2.9 0.032

- RGO 406 -3.3 0.081

- Effelsberg 195 -6.0 0.308

- Onsala 700 1.8 0.026

- Westerbork 98 14.2 1.449

- Jodrell Bank 560 -22.4 0.400

Grasse - Graz 764 33.2 0.435

- Effelsberg 757 10.6 0.140

- Westerbork 1017 12.0 0.118

- Jodrell Bank 1251 -7.4 0.059

Graz - RGO 1182 3.8 0.033

- Effelsberg 738 1.8 0.024

- Onsala 1172 -29.2 0.249

- Westerbork 908 -6.6 0.073

- Jodrell Bank 1436 -19.5 0.136

RGO - Effelsberg 467 1.1 0.024

- Westerbork 487 9.4 0.193

- Jodrell Bank 319 -6.0 0.189

Effelsberg - Onsala 825 -9.7 0.118

- Westerbork 261 1.7 0.065

- Jodrell Bank 701 -19.0 0.271

Onsala - \Vesterbork 602 -12.6 0.209

- Jodrell Bank 1011 -21.2 0.210

Westerbork - Jodrell Bank 597 -16.8 0.281

rms = 14.1

Table C.lO: Comparison of baseline lengths for the orbit determination so-

lution on day 322 with the three day solution
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Length Difference ppm

(km) (cm)

Wettzell - Kootwijk 602 5.3 0.088

- Grasse 753 -25.1 0.333

- Graz 302 -0.3 0.010

- RGO 917 -2.5 0.027

- Onsala 919 23.1 0.251

- Jodrell Bank 1150 -8.6 0.075

Kootwijk - Grasse 939 -9.6 0.102

- Graz 899 5.6 0.062

- RGO 406 '. -7.6 0.187

- Onsala 700 11.4 0.163

- Jodrell Bank 560 4.5 0.080

Grasse - Graz 764 -22.3 0.292

- Jodrell Bank 1251 -0.8 0.006

Graz - RGO 1182 -0.5 0.004

- Onsala 1172 21.3 0.182

- Jodrell Bank 1436 8.8 0.061

RGO - J odrell Bank 319 -2.6 0.082

Onsala - J odrell Bank 1011 12.0 0.119

rms = 12.4

Table C.lI: Comparison of baseline lengths for the orbit determination so-

lution on day 323 with the three day solution
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Length Difference ppm

(km) (cm)

Wettzell - Kootwijk 602 -0.2 0.003

- Grasse 753 -17.1 0.227

- Graz 302 -2.7 0.089

- RGO 917 -1.0 0.011

- Effelsberg 455 -4.4 0.096

- Onsala 919 17.2 0.187

- Westerbork 607 1.0 0.017

- Jodrell Bank 1150 12.5 0.108

Kootwijk - Grasse 939 -1.3 0.014

- Graz 899 -2.0 0.022

-RGO 406 5.0 0.123

- Effelsberg 195 4.7 0.240

- Onsala. 700 -3.1 0.044

- Westerbork 98 -1.0 0.100

- Jodrell Bank 560 15.0 0.267

Grasse - Graz 764 -21.8 0.285

- Effelsberg 757 -7.1 0.094

- Westerbork 1017 -3.0 0.029

- Jodrell Bank 1251 7.5 0.060

Graz -RGO 1182 -3.4 0.028

- Effelsberg 738 -6.6 0.089

- Onsala 1172 18.9 0.161

- Westerbork 908 -1.1 0.012

- Jodrell Bank 1436 10.1 0.070

continued on next page
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Length Difference ppm

(km) (cm)

RGO - Effelsberg 467 3.4 0.073

- Westerbork 487 4.9 0.101

- Jodrell Bank 319 8.1 0.255

Effelsberg - Onsala 825 5.1 0.062

- Westerbork 261 4.1 0.155

- Jodrell Bank 701 15.3 0.218

Onsala - Westerbork 602 -2.2 0.036

- Jodrell Bank 1011 5.7 0.056

Westerbork - Jodrell Bank 597 16.0 0.268

rms=9.3

Table C.12: Comparison of baseline lengths for the orbit determination so-

lution on day 324 with the three day solution

217



ApPENDIX D

SV 4 Coordinate Set for the North

American Fiducial sites

The coordinate sets given refer to the GPS mark at each of the sites in the

standard data set used in chapter 7. The coordinates are given in the SV 4

reference developed at the Massachussets Institute of Technology.

Site x (m) y (m) z (m)

ALGO 918127.4990 -4346061.9153 4561984.2599

MOJA -2356214.8002 -4646733.8012 3668460.5220

OVRO -2410422.5939 -4477802.4623 3838686.8365

PLAT -1240708.2691 -4720454.2018 4094481.7816

PVER -2525452.9597 -4670035.4854 3522886.8679

VNDN -2678071.7747 -4525451.5663 3597427.5067

WSFD 1492232.8794 -4458091.7154 4296045.9743

Table D.1: GPS standard data set coordinates: SV 4 reference frame

Site Day 3 Day 4 Day 5 Day 6 Day 7

ALGO 1.399 1.399 1.399 1.399 1.399

MOJA 0.000 0.000 0.000 0.000 0.000

OVRO 1.387 1.890 1.890 1.890 1.890

PLAT 1.682 1.682 1.682 1.682 1.682

PVER 1.332 1.593 1.433 1.447 1.475

VNDN 1.264 1.263 1.260 1.260 1.260

WSFD 0.000 o.ooo 0.000 0.000 0.000

Table D.2: Antenna heights for the GPS standard data set
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