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Abstract

The NAVSTAR Global Positioning System (GPS) has been under develop-
ment by the US Department of Defense since 1973. Although GPS was
developed for precise instantaneous position and velocity determination, it
can be used for high precision relative positioning, with numerous applica- =
tions for both surveybrs and geodesists. The high resolution of the satellite’s
carrier phase has enabled relative positioning accuracies of the order of one
part per million to be routinely obtained, from only one or two hours of data.
These accuracies are obtained using the broadcast ephemeris, which is the -
orbit data that is broadcast in the satellite’s radio transmission. However,
the broadcast ephemeris is estimated to be in error by up to twenty five -
metres and this error is‘ one of the principle limitations fori precise relative
positioning with GPS. ’k | -
An alternative to the broadcast ephemeris, is to determine the satellite
orbits using the carrier phase measurements, obtained from a network of
GPS trackihg stations. This thesis describes the algorithms and processing
techniques used for the determination of GPS satellite ofbits using double
differenced carrier phase measurements. The data from three different GPS
| campaigns have been analysed, w‘hichy demonstrate a GPS orbital accuracy
of between two and four metres, giving baseline:accuracies of the order of

one or two parts in ten million.
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CHAPTER 1

Introduction

Satellite geodesy is a science which oses measurements made to both natural
and artificial satellites, for a variety.of geodetic and geophysieal applica-
tions. The first measurements made from an artificial satellite were tbose
from Sputnik I, which was launched in 1957. The Doopler shift of the satel-
lite's radio transmissions were measured and these were used in conjunction
with the coordinates of the tracking station to determlne the posxtlon of the
satellite in its orblt The reverse computatlon was also poss1b1e, whereby
the coordinates of the satellite could be used with the doppler shift measure-
ments to derive the coordinates of the trackmg station. These d1scovenes
led to the development of the United States (US) Navy Nav1gatlon Satelhte
(Transit), which was first launched in 1961. These navigation satellites are
still in use today, but acquiring a position fix can take up to an hour. In
the US armed services, tbere was a requirement for a.nA instan‘ta;n‘eoﬁ‘s,'high
precision, worldwide positioning system. - | |
The Global Positioning System (GPS) was developed to fulfill thls role.
The pro;ect was a result of previous research by the US Navy on the TIMA-
TION program and the US Air Foree 621B project, both of which were aimed
at producing a passive radio-navigat'ion system. Although GPS wzis prifna,rily
developed for the mlhtary, the system is currently freely avallable to c1v1han
users. The system can be used to solve a vanety of real time nav1gat10n
problems on land, at sea and in the alr, by the mmultaneous measurement
of pseudomnges from four or more satellites. For geodetm apphcatmns the
system can be used in a relatlve pos1t1onmg mode, using mea.surements of

the satellites carrier frequency to obtain much higher positioning accuracies.



Fundamental to both absolute and relative positioning with GPS, is a knowl-
edgeof the satellite’s position at every measurement epoch. Generally, the
broadcast ephemeris is used, which’ is computed by the US Department of
Defense and is broadcast by each GPS satellite. Typically, ‘this has been
| shown to give relative positioning accuracies of the order of one part’per
million. Clearly, the accuracy of the system has made a significant impact
- on both the surveying and geodetic communities, challenging the,traditional .
terrestrial measuring techniques. However certain applications require an
even hlgher order of accuracy, for example, the momtormg of tectonic plate :
a2 motions over contmental 51zed networks requires an accuracy often exceedmg
one part in 107 ' ‘ '

- Two other space geodetic techniques are in use, which achieve this level =

of accuracy, Satellite Laser Ranging (SLR) and Very Long Baseline Inter-

ferometry (VLBI) SLR measures the range between a ground based laser

telescope and a satellite usmg the return flight time of a short pulse of laser ,

light. These ranges can be used in a dynamical analysis to determine the

coordinates of the laser tracking stations and the coordinates of the satellite. =~

Generally, the data is collected over a period of several days or even months o

from several sites, to produce the coord1nates the trackmg stations, accurate | E

~to within a few centlmetres VLBI uses two or more radro antennas, Wthh 1 e

measure the d1ﬁ'erence in arrival time of the signal wavefronts from extra . -

. galactic rad1o sources (such as qua.sars) Several radio sources are observed .
v1n a sessmn and the measurements are used to obtain the basehne vector
components between the radio antennas Gl " |

- Whilst SLR and VLBI are highly precise measuring systems, they both
require very large and expenswe items of equipment “which are usually lo-
cated at permanent tracking sites. Both SLR and VLBI have been developed :
into mobile systems but these are still relatively 1mmob11e However, w1th
the advent of GPS, a hlghly mobile and i 1nexpens1ve measurement system 1s’

available. In order to achieve accuracies comparable with SLR and VLBI, a

-thorough modelling of the GPS error sources is necessary. One of the prin- -

ciple limitations in determining long baselines with GPS, is the accuracy of =



the breadeast ephemeris. ‘

A more accurate satellite orbit can be determined using a dynamical
method of analysis, where a force model is used to represent all the known
forces acting upon the satellite. The numerical integration of this force (ac-
celeration) model, twice with respect to time, will give the satellites position
at discrete intervals in time (predicted orbit). The numerical integration is
started from an initial position and velocity vector (state vector). Measure-
ments made between a network of tracking stations and the GPS satellite
can be used to improve this predicted orbit, by solving for corrections to the
satellite state vector and to any required force model components, using a
least squares method of adjustment. For GPS orbit determination, the coor-
dinates of a number of the tracking stations are held fixed in the adjustment,
to values determined from previous VLBI or SLR campaigns.

Precise GPS orbits are imporfant not just for the determination of ground
statiqn coordinates, but they also have applications in satellite to satellite
tracking. Low earth orbiting satellites require a particularly complex force
model in comparison with the high altitude GPS satellites. Hence, the co-
ordinates of a low earth satellite equipped with a GPS receiver, can be de-
termined in a similar manner to those of a terrestrial GPS‘recei'ver, without
the need to use a complex force model. In 1992, the US intend to launch the
TOPEX/POSEIDON oceanographic satellite. This satellite carries a GPS
receiver, with the intention of obt'aining a ten centimetre orbital accuracy.

- The basic concepts of the Global Positioninz Sysfem and the processing
techniques used for relative positioning are described in chapter 2 of this
thesis. Chapter 3 describes the determination of GPS satellite orbits using
the dynamical method of analysis. The software which has been used and
developed for GPS satellite orbit determination is described in chapter 4.
Three separate data sets have been analysed in this thesis, to test the GPS
orbit determination procedure and to test the integrity of the programs. The
first two data sets are based upon European networks and these are discussed
in chapters 5 and 6. A standard GPS data set is being distributed by the
Special Study Group 1.104 of the International Association of Geodesy and



this data set is analysed in chapter 7. The thesis is concluded in chapter 8.



Chapter 2. | |
The Global Positioning System Overview
and Processing Algorithms -



CHAPTER 2

The Global P031t10n1ng System : Overv1ew

“and Processmg Algorlthms

2.1 Introductron PR

The NAVSTAR (NAVlgatlon Satellite Timing And Rangmg) Global Po- g

 sitioning System (GPS) program started in 1973. The aim was to develop" b

‘a system for highly precise posrtron and velocrty determmatmn, and for the

precise transfer of time. The system must also support an unhmrted number :
of users, at any time, all over the world

The program is managed by the Jomt Program Ofﬁce (JPO) combrmng : ’

the resources of Umted States, Department of Defense armed servrces The‘ e

JPO established three development phases. :

e Phase I whrch was the concept vahdatlon and development of the pro-',' o

totype Block I satelhtes hen

i ¢ Phase II the full scale engmeermg development 1ncluded the develop~, : -
~ ment of the Block II satelhtes, and the testing of prototype satelhte L

T ecervers

. Phase III is the product1on and deployment of the operatlonal system
The program has just entered Phase III with the launch of the ﬁrst
" Block I satelhte in February 1989, P S e

Dunng the 19908, the Navy Navrga.tron Satelhte (TRANSIT) will be

phased out for both the crvﬂxan and military users and relrance wrll be placed §

upon the use of GPS for navigation and posrtlomng Other ground based |

rad1o-nav1gatron systems will be superseded by GPS for the mlhtary users'

5



by the mid 1990s, but civilian usage will be permitted until the end of the
century. ' ‘
The GPS description can be divided into three segments, called the Space,

Control and User Segments.

2.1.1 Space Segment

When GPS is fully operat1onal the space segment wrll consist of 18 Block
I satellites ( with three orbital spares ), placed in six equally spaced orbital
planes. The orbital planes will have an inclination of 55°, with adjacent
planes offset by 40° in argument of latitude. The satellites have a nominal
altitude of 20183 km, with a period of 11 hours and 58 minntes. It is this
configuration that w‘ill‘ enable the user to track a minimum of four satellites,
for real time positioning, anywhere in the world. However, some areas may
experience several minutes of degraded accuracy, when poor satellite geom-
etry occurs(Section 2.34). In addition to these 21 satellites," a further seven
satellites will be maintained on the ground in case of satellite malfunctions.

Each Block II satellite, produced by Rockwell International Incorporated
w1ll contain two rubidium and two caes1um beam atom1c clocks. The clocks'
are powered by an array of solar panels with batteries to power the satelhte
‘when it is eclipsed by the earth. The proposed launch schedule for the rest

of the Block IT satellites is given:in table (2.1).

Currently, there are seven research and development Block I satellites,
placed m two orbital planes, at an inclination of 63° . This configuration was
designed to maximise the daily coverage otrer the Army Proving Grounds in
Yuma, Arizona. In Europe, four satellite coverage is provided for approxl-
mately four hours eaclr day. | | | : |

The atomic clocks contained in the satellites, oscillate at a fundamenta.l
frequency of 10.23 MHz. It is from this frequency, that all components of the

satellite signal are generated.

Satellite Signal

The satellite signals are transmitted on two L band carrier frequencies of

1575.42 MHz (L1) and 1227.60 MHz (L2). The L1 carrier frequency is mod-



ulated with two mutually orthogonal, pseudo-random noise (PRN) codes,
called the C/A (Coarse/Acquisition) code and the P (Precise) code. The L2
carrier frequency is modulated with the P code only. '

The PRN codes are formed with a sequence of the binary digits, 0 and 1,

which are generated mathematically, using a specified algorithm. The C/A
- codeis a on&hs;el:ond long sequence and it is modulated onto the carrier at a
chipping rate of 1.023 MHz. The P code is a 267 day long binary sequence,
- with a chipping rate of 10.23 MHz. Each satellite uses a unique, week long
section of the P code. The satelliteé may be identified by the particular
seven day section of the P code that they are using. This is referred to as the
satellite PRN number. The current Block I satellites are designated PRN "
numbers 3,6,8,9,11, 12 and 13.
7 The PRN code is modulated onto the carfier frequéricy using binary
" biphase modula’cionsT These simply multiply the phase by +1 for the bi-
nary state 0, and -1 for the binary state 1. Hénce a change in binary state,
will lead to a 180° change in phase (figure 2.1). | _

In addition to these codes, both the carrier frequencies are modulated
with a satellite data message, at a rate of 50 bits per second. The message is
1500 bits long and is divided into five subframes. It is modula.ted onto both
the C/A and P codes and lasts for 30 seconds. | | |

Subframe 1 contains the satellite clock correction parameters and timing
information. -

Subframes 2 and 3 contain ’the broadcast ephemeris, using a Keplerian
type representation (section 3.2). Six of these parameters describe a mean
orbital ellipse, with nine correétion terms to allow for deviations from this
mean orbit. The ephemeris is computed in én earth-fixed earth-centéred
reference system and it is valid for a period of one and a half hours from a
given reference time. The Keplerian representation has the advantage that
the ephemeris will degrade gracefully with time after this period. |

Subframe 4 contains coefficients to estimate the ionospheric delay for
single frequency receivers (section 2.5.2). A data message (OPSCAP), con-

taining information from the control segment, is to be implemented at a later



A NN A

. carrier frequency .

. modulations

modulated carrier - -

Figure 2.1: Binary code modulations’




date [Barber, 1989].

Subframe 5 contains the almanac and health status fo; up to 25 satellites.
Each subframe contains the almanac ( aﬁproximate orbit descﬂption ) and
health status for one satellite. Hence, it would take twelve and a half minutes

to acquire a complete almanac.

2.1.2 Control Segment

The fully operational Control Segment consists of a Master Control Station
(MCS) and a number of Monitor Stations and Ground Antennas. The MCS is
located at the Consolidated Space Operations Centre (CSOC) at the Falcon |
Air Force Station, near Colorado Sprihgs. There are five Monitor Stations -
at precisely known locations around the world. Thése are at CSOC, Hawaii,
Kwajalein, Ascension Islands and Diego Garcia (Figure 2.2).

The Monitor Stations record dual frequency data for each satellite, using

a caesium beam frequency standard. Each Block II satellite can be tracked

for at least 90 % of its orbit. The tracking data and surface meteorological o

data are then sent to the MCS for the computation of the satellite clock biases
and the prediction of thé sdtellife ephemeris. Precise time is maintained at
the MCS by using two caesium beam and three hydrogen maser frequency :
standards. In addition, a direct link is maintained with the time standards, .
of the United States Naval Observatory. |
The broadcast ephemeris, satellite clock corrections and satellite health
information are then relayed to the three Ground Antennas, located at Kwa-
jalein, Diego Garcia and Ascension Island. The data is then uploaded to
the satéllifes on an eight hourly cycle. To allow GPS to be used when the
Control Segment is disabled, each upload will contain ephemeris p:edicfions
for up to fourteen days, with a graceful degradation of a,ccuvr'acy up to 200

m.

2.1.3 User Segment

The User Segment covers all the receivers, that are capable of processing
the GPS satellite signals. The receiver passively tracks the signal, which al-

lows the system to support an unlimited number of users. The receiver type

9
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will be determined by the user’s requirements, taking into account the size,
weight, durability and the level of processing required. For navigation, the_
receiver must be capable of determining real time positions, using pseudor-
ange measurements on the P or C/A codes. For geodetic work, the receiver
must be able to mea.sure and time tag the carrier phase and store the data

for post processing.

- Two positioning services will be made available, the Standard Positioning
- Service (SPS) and the Precise Positioning Service (PPS). The‘PPS is based
upon the dual frequency P code and will only be made available to a.uthorised
military users. The SPS uses the smgle frequency C / A code and will be made”
available to the civilian user. , |

‘For real time positioning the accuracy of the PPS is 16 metres (m) SEP.
and 76.3 m SEP for the SPS. The SEP is the spherical error probable, defined
as the radius of a sphere, which contains 50% of all position ﬁkes. Higher ac-
curacies may be obtained by using GPS in the differential mode, to determine
coordinate differences from a known receiver position [Blanchard, 1989).

For relative geodetic positioning, a higher order of accuracy can be ach-
ieved by making measurements on the satellite’s carrier frequency. This
data can be post processed usmg the algorlthms descnbed in section (2 4).
Processmg data in this way can yreld baseline accuracres better than one part

per million.

Signal Acquusmon for Geodetic Recelvers

“The r receiver can obtaln the satelhte s1gnals in dlfferent ways the most com-
monly used method i is called code correlatron '

A code correlation receiver must be able to generate a replicav C/A code
from its internal oscillator. The i incoming satellite code is then electromcally'
aligned w1th the rephca code by shifting this rephca code in time. This time
shift is termed the pseudorange, and it represents the srgnal propagation time

, biased by the satellite and receiver clock errors.
The C/A code can then be removed from the carrier by mixing it with

the replica code. The satellite data message can now be accessed, which

11



contains the broadcast ephemeris and satellite clock correction pafameters.
A handover word (HOW) is also contained within the message, which allows
the receiver to generate the correct portion of the week long P code.

The P code can now be accessed in the same way as the C/A code,
providing the receiver has knowledge of the P code formulation. |

The TI 4100 NAVSTAR NAVIGATOR is an example of a code correlating
receiver. It is capable of obtaining pseudorange measurements on both the
C/A and P codes and can record the L1 and L2 frequency carrier phbase
observables for up to four satellites. The receiver is designed for both real
time navigation work and for precise geodetic relative positioning. Data can
be recorded on a dual cassette recorder, with each cassette Storing about
thirty minutes of data, if a three second measurement interval is selected.
Alternatively, a personal computer can be used to record data onto three and
a half inch floppy discs. The dual frequency capability of the receiver has
meant its extensive use, particularly for the meaéurement of long baselinés, |
where the two frequencies are used to eliminate the effects of the ionosphere
(section 2.5.2). All the data described in this thesis was recorded using TI.
4000 receivers.

Some receivers do not use the C/A or P code to access the carrier fre-
quency. One receiver of this type, the Macrometer [Ashkénazi, 1987}, demod-
ulates the carrier by using a squaring technique. The -1 and + 1 modulation
will be removed, leaving a carrier at twice the origiﬁal frequency. A disadvan-
tage of this technique is the removal of both the PRN codes and the satellite
data message. This type of receiver will then require an external ephemeris,
making real time positioning very impractical.

There é,re many commercially available receivers, capable of recording
both the carrier phase and the code data, details can be found in other texts

[Wells, 1986].

2.2 Future Prrospekcts for.GPS“

Originally it was intended to place the Block II satellites in orbit, by using
the Space Shuttle. Unfortunately, with the Challenger disaster in 1986, a

12



new launch plan was required. Now, all the Block II satellites are to be
launched from the expendable Delta II, Medium Launch Vehicles (MLV).
This has necessitated the redesign of some satellites to allow for the MLV
launch, and the revised launch schedule is given in table ( 2.1 ).

The first Block II satellite was launched on the 14th of February 1989.
It’s orbital position was designed to cover a gap in the observing window,
over the Yuma Proving Ground, Arizona. The three launches proposed for
later this year are designed to optimise worldwide two dimensional éoverage.
| It is intended to augment the 18 satellite constellation by using the 3 on-
orbit spares és_ active satellites. This optimised 21 satellite coxfe_fage would
feduc_e the areas in the world, where the poor satellite geométry adversely
affects the poéitioning aécuracy of GPS. These occurrences are called outages.
Also, approval was given to increase this constellation to 24 satellites; but
this is not envisaged until the mid 1990s. 4 v |

It was realised by the Department of Defense thaf unconfrolled access . -
to the GPS signals may compromise national securitj. To alleviate this, it
has been proposed to degrade the potential accuracy of the systém by two
methods. »

Selective Availability (SA) would be used to deny access to the Precise
’Positioning Service (PPS).’This would be implemented by ;'—thering the satel-
lite data mess_age (epsilon) or by ‘mahipulating the satellite clock-(dit_her).
Full system accuracy could be thained from encrypted co:rections given in
the data meSsage. The SA would be applied to all Block II satelhtes, as soon
as they are declaredvopera,tidna,l. A |

The second’pr»oposal, A“ntz'-Spooﬁng‘ (AFS), would be the use of a new
unpublished P code, cé,lled a Y code, which is only aﬂvailable to users with
the‘properrcryptography. This would protect against hostile imitations of
the PPS signal. ‘ | ’

There is much speculation in the civilian sector as to the effect of SA, but
it is hoped that the carrier phase data used for geodetic applicationé will not

be significantly affected.
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Number to launch | Period

Comments

4

[ CRERN U & <, B <

1989

1991
1992

1994

1990

1993

1995

PRN 14 Launched on February 14th

2 Dimensional capability -

3 Dimensional éabability L
Spare satellites =

20 Block IIR (replenishment)

satellites to be deplbyéd -

* Table 2.1: Proposed Block II launch schedule
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2.3 Point Positioning -

2.3.1 Introduction o _

The concept of point positioning, using GPS satellites, is besed upon the
measurement of range, between receiver and satellite. If the ranges to three
satellites of known coordinates can be measured, then the receiver coordi- ‘
nates can be determined. This assumes that the receiver and satellites do
not lie in the same plane. The basic GPS range observable, the pseudorange,
is proportional to the signal transmission time, between the satellite and re-
ceiver. Therefore for precise positionihg, it is essential to use a stable time
~scale, to which all measurements can be referenced. The time scale adopted -

for GPS is known as GPS System Time.

2.3.2° GPS System Tlme

The astronomical time scales (UT) would be unsultable for GPS because of
the daily variations in the earth’s rotation rate. For GPS it is necessary to -
use a linear time scale. | | S o -

One of the most stable time scales in the world, is the Universe.l Time
Coordinated (UTC), determined by the United States Neva,l Observatory
(USNO). This is a constant atomic time scale, based upon 25 different cae- -
* sium beam frequency standards. UTC(USN 0) 1s corrected by discrefe leap
second Jumps to keep it close to the astronomlcal time scale UT1. The V
GPS System Tlme maintained by the Master Control Statlon, is physmally :
~ kept within one microsecond of UTC (USN 0). However, the leap second ad-
justments made to UTC (USNO) kwould disrupt the continuous navigetional
capacity of GPS and are consequently not a.pphed GPS System tlme is
currently (Apnl 1989) runmng five seconds ahead of UTC (USNO)..

GPS System Time is measured modulo 604800 seconds startmg fro’mr '
Saturday night/Sunday morning each week. Each week iﬁcremenf is vcpuﬁted ‘
in GPS weeks, from midnight 5/6 January 1980. B ‘ i

A series of polynomial coefficients are broadcast in the navigation mes-
sage, giving the offset between UTC(USNO) and GPS System Time, te

within 100 nanoseconds. In addition, a further set of coefficients are pro-
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vided, to calculate the offset of the satellite clock from GPS System Time.

2.3.3 The Pseudorange Soiution
The range between the GPS satellite and the receiver is measured by scaling
the signal propagation time by the speed of light. To establish the true
propagation time, the satellite and receiver clock offsets must be determined.
The satellite clock offset is contained within the navigation message, given
by the three terms ag, a; and a;. These represent the coefficients of a second
order polynomial. |

The receiverdclock offset is unpredictable and must be determined as part
of the pseudorange solution. Assuming the measurements contain no other

error sources, the pseudorange can be expressed as

PR = pfc+ (AT, - ATy) (2.1)
Where
PR = pseudorange measurement (s )
p = geometrical satellite to receiver range ( m )
¢ = speed of light (m/s )

AT, = satellite clock offset (s )
)

AT,4 = receiver clock offset ( s

The earth’s atmosphere will cause the satellite eignal to bend and slow
down, delaying its arrival at the receiver. The ionosphere and the tropo-
sphere will both cause s1gn1ﬁcant but different delays. These effects can be
estimated and different models are considered in section (2 5. 2)

‘Neglecting the atmospheric effects, four pseudorange measurements to
four different satellites are required. These are to solve for the three unknown
receiver coordinates and the receiver clock offset. Eqnation ‘(2.1) can be
linearised about the approximate values of the receiver coordinates and the
estimated receiver clock offset.

6p Op
azAAZ" t a7,

Op AXA+ Op

X4 oy, AYat

— ATy = (OpR CPR) +v (22)
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' Where

X A,YA;ZA o= epprordmate coordina,l:es of receiver at station A
A,X 4, AY AZ, = corrections to approximate coordinates |

Ty ' = initial estlmate of the receiver clock bias

AT, s e correctron to receiver clock bias
Opr = observed pseudorange (m)
Cer =~ = computed pseudorange (m)

v = residual value

The computed pseudorange is determmed from the satellrte ephemens: ‘

and from the approxrmate coordmates of the receiver. The satellite clock

offset T, and the estimated receiver clock offset are added to produce thei o

_ computed pseudorange Cpg.

CPR -Pc+C(TA —*T) (23) P

The partlal drfferentml coefﬁc1ents Bp/aX can be calcula.ted from the L

expresswn for range, ,

e ¢ T (YS VAP 4 (25-Zap  (24)
there ’\ . i | R
X _S,Y‘S,‘ AR = satelhte coordmates Lo
’XA,YA,‘YZ'A ; =" approxrmate coordma.tes of recerver -
o A ;a‘qstatronA‘,_ ’ |
~ Hence, S

ap__(XS-XA),Q;,_‘f e

The part1al denvatlve of range Wlth respect to the recerver clock offset 1s, k

grven as, e ) V
e e e S ey
Where c is the speed of light. | '-

To solve for the receivers position at a given epoch in trme, four 51mul-
taneous pseudoranges are required. These four pseudorange observables will
lead to a unique solution of the position and the receiver clock bias. If five

or more satellites can be observed, redundant observations are introduced
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and a least squares apnroach can be adopted to determine the most probable
~ solution. s | ‘ " | |

If real time positioning is not requrred then pseudorange measurements
can be recorded over many epochs. This will lead to a more precise solution
~and the recelver clock can then be modelled as a polynomial (Sectlon 2.5.3).

The pseudorange can be measured using the C/A code or the P code.
| The C/A code has a repeat period of one mllhsecond which corresponds ‘
to approximately 300 km in range. ‘This manifests itself as an ambrgurty,
which can be resolved by most receiuers if several satellites are‘observed.

The P code with its week long sequence is totally unambiguous and has the

advantage that the range can be resolved more precrsely The approxrmate et

range resolutrons for the P and C/A codes are 0.3 m and 3.0 m respectwely
- 2.3.4  System Accuracies :
" The accuracy of a point position fix is dependent upon several factors. Errors

in the range measurements and a poor geometrical conﬁguration' of the satel-

htes will cause s1gn1ﬁcant posrtronal erTors. The range measurement errors st

are caused by atmospheric delays, satelhte and receiver clock b1ases, satelhte

ephemens errors and measurement noise. The modelling of these errors is S

- considered in section (25). o :
The Geometrical Dilution Of Prec1smn (GDOP) is used to express the"

satellite geometry. The GDOP is a function of the d1lutron of prec1sron of -

“both the position (PDOP) and recelver clock biases (TDOP). ‘V.Vhere, |

GDOP \/ PDOPY? (TDOP)Z, R (2.7) -

- The numerical value of GDOP can be determlned from the covariance
matrix of the pseudorange solution. If the covariance matrix (section 2.4.6)

is given by,

ve Twy e Tt | o (28)
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; Then‘,

GDOP = /02, + 0%, + 02, + 0} (29
The error in the user position can be estimated by multiplying the range
measurement error by the corresponding DOP values. For example, with a

rdnge error of five meters, and a PDOP of four meters, the radial error in

the user position would be 20 meters.

For a low GDOP, the ideal four satellite conﬁguratlon would be three - SRR

satellites placed equally aroundthe horizon, with one satellite drrectly, over- -

head (See figure 2.3). A high GDOP would be with all four satellites in one
- part of the sky (See figure 2.4). e o . )

2. 4 Relative Posrtronrng W1th GPS
2.4.1 Introductron > v

The removal of the PRN codes from the carrier frequency, wrll lea.ve an

_ unmodulated wave, often referred to as the reconstructed carrier. Geodetrc :

receivers should be capable of measunng this carrier phase to about one per

cent of its wavelength, grvrng a possible resolution of 2mm, for the 19cm L1

wavelength. This ignores other errors in the system, but it gives an ind‘icé,tion e

of the accuracies that can be achleved ” :
The various algorrthms used for the processrng of carrrer phase observ? -

ables are given here but further detarls are grven in other texts [Yau, 1986]

o [dela Fuente, 1988]

- 2.4.2 Basrc Phase Observables
The measurement of the reconstructed carrrer phase must be made with re-"i, :
spect to time. Hence, it is normal to measure the satellite phase, relative
to the phase generated by the recerver osc1llator Assummg that the satel- |
lite clock and receiver clocks are synchronised to GPS System Time, the R

difference in phase or the beat frequency measurement is given as,

WD=FO-00 @)
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Figure 2.3: Typical éa,tellité conﬁgura,vt.i‘(v)n’for low GDOP

Figure 2.4: Typical satellite conﬁgurétion for high GDOP
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Where

dy(r) = instante.neous phase measured by receiver A at e
received time 7 L
®i(t) = phase of the incoming signal from satellite i
* transmitted at satellite time t , &
®4(r) = phase of generated signal of receiver A,

RS measured at received time 7 L :
The sxgnal propagatlon time can be determmed from the geometncal ,

range pY4 between satelhte i and recelver A Hence,

et = pk(t)/c ; an - ; : T (2.11)
Where ¢ = = the speed of light. , ‘ :
The phase of the 1ncom1ng satellite srgna,l <I>’( ) can be expressed in terms

| k‘ of the recelved time 7 and the range P, ) glvmg O

0= e*(r—m)/c)' e

Thrs expresswn can be expanded usmg Taylors theorem 1gnor1ng terms SRR,

higher than the first order to glve, -

Csg-so-Law  ew

The phase ®%(7) is measured modulo one'cycle and the receiver main- i

tains count of the number of whole cycles that have been recelved since the
 first measurement epoch However, the recerver has no knowledge of the in-

teger number of cycles that exrst at the ﬁrst epoch. This mteger amblgulty
can be allowed for by addmg an 1nteger term N} A to equat10n(2 10) The v:

basic phase observable equatron can now be wrltten as,

g

()= 80 - Lo -en+my e

The basic phase observable contains the constant integer term N% and
the range term p’(t), which relates to the receiver coordinates. In order to
eliminate the time varying satellite phase (I>‘('r) and receiver phase <I>A( )

linear differences can be formed, between satellites and stations. -
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2.4.3 Single Differences
A single difference is the instantaneous phase difference, between two re-
ceivers and one satellite. It is also possible to define single differences between
two satellites and one receiver [Wells, 1986]. Using the former definition, the

phase difference between two receivers A and B, and satellite i is,

() = By -8y S

= 2u(r) - 0o(r) + L0 - A0 + Nip  (215)

Where Nip = Ni — N} . ‘
The single difference will eliminate the satellite phase $(), and the two

integers N and N are combined into one integer N 5.

2.4.4 Double Diﬁ'erences
A double dlﬁ'erence is formed from subtractmg two s1ngle dlﬁ'erences, mea—‘ “

~ sured to two satelhtes ¢ and J (ﬁgure 2. 5) Hence, :

¥p(r) = Fhp(r) - iis(r) ST T
= Lw-Aw Ao+ am NG @e)
WhereNAB=NAB-—NAB 7 7
It can be seen from equatlon (2. 16) that all the time dependent unknowns ) |
‘ have been ehmmated The only unknowns are the constant lock-on double 7,
dlfference phase ambiguity N 8 and the range value pip. Tt is thls range
_term that contains the unknown receiver coordinates. For short baselines, the
- value of the 1nteger ambiguity N B can be estlmated as part of the solution
~and it can be constrained to its integer value in a subsequent solut1on The

- process of constrammg the integers generally 1mproves the accuracy of the

solution [Yau, 1986]

2.4.5 Triple Differences
A triple difference is formed from two double diffefences, meastired at two

different epochs 7, and 75,41 . The triple difference observable is then written

22



Satellite j

Satellite i~~~ 8 Ll

A

Receiver A- -~ . _ReceiverB . . .

Figure 2.5: Double difference phase method
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as,

@ZB(Tn+1,n) = @ia(w) - q’fZB(Tn) (2-17) ,

= %(pﬁ(nﬂ.l) = P3(Tat1) = Pia(Tas1) + pp(Tas1))
-é(P]A(Tn) — p'g(Tn) - pf‘;(Tn) + pj}(Tn)) (2'18) .

It can be seen that the unknown initial double difference phase ambigu-
ity is eliminated. This makes the tfiple difference particularly robust, when
cycle slips occur (section 2.5.1). The main disadvantages of the triple differ-
ence are the increase in noise level, the reduction in number of observaﬁion
equations and the integer nature of the phase ambiguity cannot be utilised.
The selection of the time interval, which ﬁo form differences over will also

affect the solution and a discussion of this is found in [Yau, 1986)}.

2.4.6 The Processing of GPS Observables

‘Four phase observables have been derived in the previous section. The ba-
sic phase'a,rid the single difference observations, both'cenféin time depen-
dent terms relatmg to the unknown satellite or receiver phase. The double
difference observable leads to much s1mpler solutlon and the effects of any
instabilities in the satellite or receiver clock are very much reduced. It also
has the advantage that the integer phase ambiguities can be constrained to-
integer values, for short baselines. 7 |

Further discussion of the pure phase, single and triple difference observ-
ables can be found in other texts [Yau, 1986] [de la. Fuente, 1988) and they
are not considered any further in this research project. Only the double
difference observable will be used for the processing. ’ '

In order to solve for the unknown station coordinates and the integer
anlbigﬁities, it is neeessary to linearise equationr(2.16) about the ;'ipproxi-
mate values of the unknowns, X4,Y4,Z4,Xp,Ys, Zg, NjfB'. Using Taylor’s

expansion and ignoring second order terms and above,

! [(?ﬁl _ ,‘9_&’&_) AXq+ (3“ Wf") AY, + (-‘?fl - ?-p—ji) AZA]
c

5X,  BX, 5Y, ~ 0Y, 52, 92,
f 96y %) | dply _ Oph oo _ Bp)
9pp _ AXp+ [ 2PE _ %P8 Ay, 4+ (2P _ 9Pp
5Xs  8X5) Pt \av, Tavs) 22\ 6z, "5z, ) An
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%',

+3N ANYp =(0g — Cs) +v | ;@4%
where, 0s  Xi_x :
Py t—Xa
> X4 P (2.20)
and, Sy
9% -1 | (2.21)
NI,

The observed double difference phase Og is obtamed directly from the

values recorded at the two receivers, giving
Op = 8i\(7) - ®)(7) = BH(r) + ®(r) (2.22)

The computed phase &%(7)c for one satellite and one receiver is deter-

mined from the geometrical range, corrected for atmospheric delays,
y(r)e = {-(pi)+<1>.-on"+ <I>;;;p o (e

The double difference computed phase Cg is obtained from differencing
equation (2.23) in the same way as equation (2.22).

The observation equation (2. 19) refers to two satellites and two recelvers
The introduction of extra stations (receivers) or satellites will requlre part1c-
ular differencing techniques. - " | . | B

Consider the use of four satellites i, j, k,1and tv;/o stations. At one epoch
double dlﬁerences can be formed by dlfferencmg between adJacent satelhtes | |
(i-3), (-k), ( 1) or by usmg a base satellite concept and differencing to one
satellite, (i-j), (i-k), (1- ). ‘ 7

The differences formed in this way will be highly correlated, because the
observations share some common phase measurements. Hence it is necessary
to model these correlations to avoid biasing the observations to a parﬁcular

satellite. The same problem will occur when using more than two stations.

.The Correlation of Double Difference Observables

A geometrical correlation matrix C is used to relate the double difference

observables ®pp to the raw phase measurements '<I>,.a‘,,,, such that

q)DD =C X Qraw (224)
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In general, the correlation matrix can be expressed using the notation

given by Beutler et al [1986a),

AMC AaC' ApC!
(2.25)

Ap1C' Ap2C' AgsC

If the base satellite concept is used, the matrix C’ for m satellites would

have (m-1) rows and m columns.

(-1 1000 0)

-1 01000
C'=]l-100100 ~(2.26)
| -1 00010 o

\-100001)

The submatrix A for n stations will have n-1 rows and n columns. The
definition of the submatrix will depend upon the baseline configuration se-
lected for the processing. Using a base station concept the A matrix can be

given as,

(11000 0)
-1 01000 |
A= -1 00100 | (2.27)
-1 00010
\-100001)

An efficient way of computing the correlation matrix, is to uée the Kro-
necker matrix product [de la Fuente, 1988]. The Kronecker matrix product
of A and C’ is given as, : | k

C=10C | (2.28)

The correlation matrix W, by which the double difference must be mul-

tiplied, is given as, |
| w = (cch)™? | (2.29)
Using the rules of Kronecker matrix products, the weight matrix W can

be written as,

W =(\T)tg(Cc'cT)! (2.30)
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Hence W can be easily computed without having to invert the whole

correlation matrix product (CCT).

An adjustment can now be carried out, by using a least squares procedure.

The weighted observation equations are in the form,

Wiz =wh+wh (2.31)
where
W = weight or correlation matrix
A = observation equation coefficients
z = vector ef unknowns
b = observed minus computed double differenced phase
v = residual - ‘

The most probable solution to equat1on (2.31) is obtained from minimis-
ing the sum of the squares of the weighted residuals. The series of equations

that satisfy this condition, are called the normal equations,
(ATWAz=ATWE (232)

The normal equations are symmetric and can be solved by using Cho-
leski’s tnangular decomposition method [Spencer et al, 1977] The solution
vector z contains the corrections to the unknown parameters The res1duals ,

v may be determined from subst1tut1ng the vector z into equatlon (2.31).

An estimation of the precrs1on of the unknown quantities can be obtained
by forming the covariance matrix. The mean square error of an observation :

of unit weight [Ashkenazi, 1970} is given as,

(W)
where,
n = number of observation equations
k = number of unknowns
The covariance matrix o, can then be obtain from,
Oos = CHATWA)™Y (2.34)
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The standard error of e,ny unknown quantity ean then be obtained from
the respective diagonal element of the covariance matrix.

It is possible to constrain some of these unknowns to predefined values.
For example for the solution of a network, using the double difference observ-
able, it is normal to fix the coordinates of one of the stations and determine
coordinate differences relative to that station. The coordinates are held fixed

by using an observation equation of the form, .

Az = (z,—z.) +V ' (2.35)
r, = observed value of the station coordinate
z, = computed value of the station coordinate

The value of z, will be the same as . if the station coordinates are to be
constrained to the apprommate coordinates. The equation (2.35) can then
be mult1pI1ed by a smtably hlgh welght and added to the normal equatlons
Sumlar equations are then formed for the y and z coordmates of the station.

2.5 Descrlptlon of Error Sources in the GPS
Observables |

Errors in geodetic networks can be divided into two basic types; measurement
errors and errors in the position of the satellite (ephemeris errors). The

mea,surement errors are caused by,

e Cycle Slips.
° Atmospheric Delays;'
o Satellite and Receiver clock biases.
o Relativistic Effects.

The methods used to reduce the effects of these errors are given in the

following sections.
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2.5.1 Cycle Slips

A common problem encountered when using carrier phase observables, is the
occurrence of cycle slips. This is when the receiver loses lock on the satellite
signal. - When the signal is reacquired, the integer count of the number of
cycles will be lost; The magnitude of the slip ca,n’ vary between oﬁe ’cyclé and
several thousand cycles. The fractional part of the phase is still méaSiired
correctly, therefore it is important that cycle slips are corrected by integer
values. . d _

The loss of lock can be due to faults in the receiver hardware, by the
obstruction of the antenna, or by a temporary power failure. For dynamic
applications of GPS, sudden accelerations of the antenna can cause a loss of |
lock. - |

: When considéring a method of cycle slip reparation, the data can be
repaired either from a single station or from a number of stations, ﬁsing the
residuals from a solution to check for the cycle slips. -

Many methods of single station cycle slip repair have been suggested.
Dual fréqﬁency data can be used to correct for small cycle slips at a single -

station [Goad, 1986]. At each epoch, the difference in carrier phase observ-

ables can be written as,

b =v§i(t);1‘}f-}f'ﬁ .ia(?)L.z L (2‘-3‘6)
Whereb - _—
&% ()11 = Observed L1 carrier frequency at epoch t
&% (t)12 . .= Observed L2 carrier freqﬁenby at epoch t
fr1 .= L1 frequency (1575.42 MHz)
fra ; = L2 frequency (1227.60 MHz)

Changes in the difference §; over time will caused by the ionosphere. The
coeficients in equation (2.36) are 1.0 and -1.28 for the L1 and L2 frequenéies
respectively. Hence a slip of one cycle on L1 would cause 6, to change by ‘1.0,
and a slip of one cycle on L2 would cause s to change by -1.28. Providing the
rriagniiude of 8, is small enough, it is then pbssible to identify the occurrence

and size of a slip, and then correct the raw carrier phase data.
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Another method of single station cycle slip reparatibn, 1s to ﬁt a polyno-
mial expreésion to the raw carrier phase data using a least squares method
[de la Fuente, 1988]. A prediction of the next phase observable can be made
by extrapolating the polynomial onto the next epoch. A check can then be
made between the predicted and observed phase, to chéck for the occurrence
and size of any cycle slips. In practice this method has been found to work,
but it is computationally a very time consuming process.

Both these methods are only useful for data where the epoch separation
is small. When a gap occurs in the data, it is not easy to predict the value
of the cycle slip over this gap. | |

An alternative to fixing cycle slips at one station, is to use a phase differ-
ence solution, and check the value of the residuals. Using a ttiplé difference
algorithm, a cycle slip will show up as a spike in the re51duals (Flgure 2 6).
The deletion of the phase data at the epoch of the shp w111 remove the splke
and a solution free of cycle slips will remain. It is the robust nature of the
triple difference that makes it suitable for preprocessing carrier phase data.

With a double difference solution, cycie slips will show u‘p as a jump in
 the residuals (figure 2.7). This means that for a double difference solution, it

is necessary to corréct the raw phase data, from the epoch of the slip, until
the end of the dat.a. Consider the residuals from a double differenced phase
solution given in table (2.2), using satellite 12 as the base satellite.

It appears tha.f a slip of 2 cycies has occurred in satellite 6 at epoch 7.
It is also possible that a slip of -2 has occurred in satellites 9, 11 and 12.
This is beca,use at an epoch, common’cycle slips between the satyellites that
are being differenced, will be eliminated in the double differenced solution.
Hence, the phase data from epoch 7 can be corrected by 2 cycles for satellite
6, or by -2 cycles for satellites 9, 11 and 12.

When a large gap occurs in a data set, it is not always possible to deter-
mine the value of a slip exactly. One method is to solve for a new integer
term in equation (2.19). This has the disadvantage that the integer nature of

the siip is ignored and with a lot of cycle slips, a large number of unknowns

will have to be estimated.
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h Fig‘u're’2.6: Triple difference phase fe'sidvua,ls‘ '

| Residuals

Time

Figure 2.7: Double difference phase residuals
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Satellites | 6 & 12 9 & 12 11 & 12

epoch
1 {-0.2167 0.1571 0.0560
-0.2324 0.0053 | 0.0361’
-0.3175 -0.0106 -0.1212
-0.4087 -0.0690 -0.1312

2
3
4
5 |-0.5194 -0.0405 -0.1028
6
7
g
9

-0.5146 0.1422  -0.2035
14673 0.2552 -0.0726
1.4439 -0.0576 -0.0669
| 14126 -0.0843 -0.0629
10 | 1.3679 -0.0694 -0.0636
11 | 1.3762 -0.0222 0.1381
12 | 1.3280 -0.0033 0.1401
13 | 1.2384 0.1229 0.1287
14 | 1.0932 00451 0.0843

Table 2.2: Double difference phase residuals with cycle‘ slips
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2.5.2 Atmospheric Refraction

The earths atmosphere will cause the GPS signal to bend and slow down. The
excess path length due to the signal bending is small for satellite elevation
angles greater than 10° [Dodson, 1989}, and this effect is normally ignored.
The excess path length at the zenith, due to the propagation delajr can be
obtained from integrating the refractivity N, from the base, to the top of the

ionosphere. :
AS =107 x /thas | | (2.37)

Where ~ ‘ |

AS = excess path length due té the propagationkdelay

N = refractivity of the atmosphere |

t = top qf the atmdsphere _ |

b | = ‘ba.se of the afmosphere

The refractivity changes throughout the earth’s atmosphere, and for GPS
observables, the different effects of the ionosphere and the troposphere must
be considered. The troposphere extends from the ground up to height of .
about 50 km, and the ionosphere extends from the top of the troposphere up

to a height of about 500 km.

Troposphere
The troposphere is a non dispersive medium and will affect the L1 and L2
frequencies similarly. The atmospheric refractivity N [Dodson, 1986] is gen-

erally given as,

N=716 (g) +3.73 x 10° (%) | - (2.38)
Where
e = partial water vapour pressure (millibar)
T = atmospheric temperature (Kelvin)
P = atmospheric pressure (millibar)

The first term of equation (2.38) is the dry component of the troposphere
and it accounts for about 90% of the tropospheric delay. The second terni is

the wet component, which depends upoh the partial water vapour pressure.
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The inhomogenous distribution of the water vapour pressure throughouf the
atmosphere makes it very difficult to model. The ehly instrument capable
of measuring the water vapour pressure, in the direction of the satellite is
a microwave radiometer. However, the expense and inconvenience of the
instrument, render it impractical for general GPS observations. A typical
zenithal delay due to the tro‘posphere is about 2 m, increasing to about 26 m
at a zenith angle of 85°. Various models have been suggested to account for
the tropospheric delay, and they are generally based upon surface weather
measurements, made at each receiver. |

One model proposed by Hopfield, was derived from data collected from -
meteorological balloons. The excess path length at ienith is expressed m ,
terms of the heights of the wet and dry tropospheres [Hopﬁeld 1971] These
delays are then mapped down to the requlred zenith angle

Saastamoinen used a model which assumes a constant drop in tempera—
ture up to a height of about 10 km, with a constant temperature above this

point. The range correction in meters ASj is given as,

125 el
AS, = 0.002277 sec 2[P + (—:—F—S +0. 05) exp’B tan? *] +Dp  (2.39)

where

z = appdrent zenith angle

P = total barometric pressure ( millibars )
e = partial water vapour pressure (mllhbars )
T = absolute temperature ( Kelvin )

B and Dp, are corrections tabulated in [Saastamomen 1973]. The appar-

ent zenith angle z may be calculated from the true zenith drstance Z,

i=Z-Ar (2.40)
where,
16.0tan Z " 4800e P
Apn = 18-0tanZ (P + ) »
z T = -0 07(tan Z+ta,nZ)1000A | (2.41})
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A standard model for the variation of water vapour pressure is used, based

upon the relative humidity 7.

e=6.108r expl T ] ' (2.42)

In a similar way te Hopfield, the zenithal delay is mapped down to the
required zenith angle. Both models have been tested on the GPS software
at Nottingham, and for the long baselines ( greater than 100 km ) processed
in this thesis, the Saastamoinen model was found to be the most reliable.

'In the absence of any surface meteorological data, a standard atmosphere
model can be used. One such model [Curley, 1988], is used in the MAGNET
processing software, developed for the TI 4100 receiver by Mr. R. Hatch.

The pressure is estimated by,

P =(1015—175cos D)exp™® 1 (2.43)
where
P = pressure (millibers)
h = height (km)
o = latitude

The term z is given as,
2 = 0.113 + 0.001% + 0.017 sin ®(1 + 0.382 cos(0.0174(J — 30))) (2.44)

where J is the day number from the start of the year.

The delay in meters of the signal at the zenith is then glven as,
DRz = 0.002276P 5 - (2.45)

This delay can then be map‘ped down to the required satellite elevation
angle E by the function, | | - .

DRz 0.00143cosE
DR =
SnE + B + 0 0445 cosE (2.46)

The use of uncalibrated meteorological equipment can introduce signifi-

cant height errors in a baseline. It has been shown [Beutler et al, 1987] that
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a lmm error in calculatmg the zemthal delay can introduce a he1ght bias of
up to 2. 9. mm. Indeed over small networks, the use of uncalibrated meteo-
rological equipment and any localised surface weather conditions, may not
 truly represent the troposphere above. In these situations, it is usually better
to use a standard atmosphere model, than to use surface weather date,.'

It has also been shown that ignoring the atmospheric delay will introduce
a scale increase of about one part per million (ppm) [Beutler et al, 1987]. If
a suitable model is used, the dry part (90%) of the delay can be satisfacterily’

calculated, resulting in a scale error of the order of 0.1 ppm.

- lonosphere

The ionosphere is a dispersive medium and will affect the L1 and L2 fre-
quencies differently. Also, the 1onosphere affects the signal modulations by
delaying them (group delay) but the carrier phase is advanced (phase delay) '
by an equal amount. The refractivity N is related to the frequency by the

following, _
N= ch f2 Lo (2.47)
Where ,
- F = free electron density
f = frequency .

k = constant term

. The free electron density will'devpend upon the solar a.ctivity Factors
affecting the number of free electrons in the ionosphere include the daily and |
- seasonal vana,tlons in the sun and the eleven year sun spot cycle, which is
expected to reach a maximum in 1990/91. Typical zenithal delays vary from
10 meters around midday, to around 2 meters at night.

The phase advance due to the 1onosphere [Ashkenazi et al, 1977] can be

shown to be,

ai

(bA = cbvac - (I)oba - f f2

2 4+ hzgher orderterms - (2.48)
Where
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b, = phase advance

&,,. = carrier phase measured in a vacuum

®,, = carrier phase observed '

ay,a; = constants which include the total electron count
f = frequencyv '

Using two frequencies and ignoring second order terms and higher,

ap
Ll -l = T ~ (2.49)
ay

L2 o2 = — (2.50)
Hence from equation (2.50),

fLZ L1 a v
<I>,,ac - <I>o (== 2.51
fr1 27 fro ( , )

Combining equations (2.49) and (2.51), the phase measured in a vacuum

Ll . .
... is given as,

oL SR OLL — frifra 882 | o 2,52
vac"" f12,1“fg2 _7(' )

A similar expression can be derived for the L2 frequency,

L1 : : .
@53‘: = lefL;qz)ob: f:z.LZ(Pobs (253)

Hence w1th dua.l frequency measurements, a first order correction for the

ionospheric delay can be obtained directly. For smgle frequency receivers,
the parameters broadcast in the satellite navigation message, can be used
[Rockwell, 1981]. The parameters are expected to remove up to 50% of the
ionospheric delay. Further discussion of the ionospheric correction for single
frequency receivers is beyond the ‘Scopé of this research project, but it has
been considered by other authors [Georgiadou and Kleusberg, 1987]. |

The effect of neglecting the ionospheric delay, is a contraction in scale of
a baseline. A typical scale error of the order of 0.7 ppm has been shown with
no ionospheric modelling [Beutler et al, 1987]. -

The use of dual frequency measurements for short baselines is not recom-

mended, because the increased noise level of the combined L1 /L2 solution
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may exceed the differential dispersive delay. The increase in noise level uc;
ing the dual frequency observation can be estimated from the propagation
of error law and it can be shown to be approximately four times the magni-
tude of the single frequency observation [Kleusberg et al, 1985]. Generally,
the L1 solution is used for baselines of up to 10 or 20 km. Above this value - |
the ionosphere will generally cauée significant errors and a combi’nedv L1/L2 |

solution should be adopted.

2.5.3 Satellite and Receiver Clock Errors

In order ’to té,ke"a,ccu‘rate code and phase measurements, it is necessary to

synchronise the satellite and receiver clocks to GPS System Time. The satel-
lite clock offset can be calculated from the parameters given in the’sa,tellite ‘

data message

The receiver clock offset must be determined by the user and the pseu-
dorange solution can be used for this. Providing four satellite coverage is
maintained, a value for the receiver clock offset can be determined‘ every
epoch. Alternatively, if a relatively stable receiver clock is used, a polyno-

mial can be used to model the clock offset
Ta(ts) = o+ Blti = to) + (i —t0)® - (259)

Where
- Ta(t;) = receiver clock offset at epoch ¢;

a,B,y = constaats representing the recelver clock offset dnft and ageing terms

to = reference epoch

Hence, equation (2.2) can be written as,

Op . 8p - Op Op | | '

3X AXA+8YAAYA+aZ AZA+3T ATA—(OPR—-CPR)-{'-V (2.55)
Where ,

Op ' '

o7 ATA—c(a+ﬁ(t —to)+~r<t -to) ) (256)

The double difference solution is relatively insensitive to receiver clock
errors and it is normally sufficient to use a second order polynom1a1 to model

the clock.
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Ar(m) . ppm

orbital error | baseline error

100 5
20 1

2 0.1
0.2 0.0ff1

Table 2.3: Baseline errors for given orbital errors

2.5.4 Orbital Error

One of the major error sources affecting precise positioning, is the orbital
error. For a point positioning solution, errors in the satellite ephemeris
will propagate directly into the position of the receiver. For relative po-

sitioning, the baseline error can be estimated from the following expression

[Wells, 1986],

%2=ér—r S (2.87)
Where | |
Ab = baseline error
bb - = baseline length
Ar = orbital error -
r = orbital radiué

If an orbital radius of 20000 km is assumed, the effect of various orbital
errors are given in table (2.3), expfessed in parts per million of the baseline
length, | - -

The current broadcast ephemens is estlmated to be accurate to about 20
m, suggestmg possible baseline accuracies of the order of one part per million.
Typical baselme errors when usmg the broa.dcast ephemeris ate glven in table
(2 4) ’ , _ 4

The implication from table (2.4) is that for éhort baselines ( less than 10
km ), baseline accuracies of less than one centimetre can be achieved with
the broadcast ephemens For larger baselines and networks (greater than 10

km ), the broadcast ephemens is often 1nadequa,te, and a more precise orbit
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Baseline (km) | Error
1 1 mm

10 1em

100 10 cm
1000 1m

Table 2.4: Baseline error for the broadcast ephemeris

will have to be used. |
- An alternative to using the broadcast ephemeris, is to use a post mis-
sion precise ephemeris, such as that produced by the Naval Surface Warfare :
Centre! (NSWC). This is estimated to bé accurate to within five meters and
is available to certain bona fide users ( section 3.3 ). |

The University of Texas produce a precise ephemeris and this is available
to the general user upon request. Litton Aero Services Ltd. also produce
an ephemeris, specifically for use with their codeless Macvrometer geodetic
receivers. | ‘ , v | | |

It is also possible to determine the satelhte orbit as part of a network
adjustment, using the GPS observables.” An orbit determination process is
described in chapter 3 of this thesis, and a further discussion on orbital errors - -

is given there.

2.5.5 Relativistic Effects 7 ,

The frequency of the received signal will differ from that transmitted, duo to
t‘he effects of general and special rélativityv These are caused by the difference -
m potentlal between the satellite and receiver and by the difference in the1r
velocities. An average correction is made by the Control Segment by setting
the satellite clock frequency low by a factor of 4.45 x 1019, This will mean
‘that the transmitted signal is now 10.22999999545 MHz [Spllker, 1978].

2.5.6 Mlscellaneous Error Sources

It is not possible to describe all the. known error sources, wh1ch affect the

precision of GPS observables, but two other problems must be mentxoned

1Formerly the Naval Surface Weapons Centre

40



Multlpath is an error caused by the satellite s1gna1 be1ng reflected from a
surface, before reachmg the antenna. The delayed signal will interfere with
the direct signal on its arrival at the antenna. The effect of multipath will
only last for a limited period in time, until the satellite-antenna geometry
has changed sufficiently. Multipath is more problematic for receivers used in
a highly reflective environment such as an oil rig. Careful design and siting
of the antenna can alleviate the problem

- The phase centre of an antenna is the point where the 1ncom1ng phase F
measurements are made. The position of the phase centre can move de- k
- pending upon the az1muth and elevation angles of the incoming phase s1gna1
| [Srms, 1985] The effect can be minimised by onentatmg all the antennas'
used in a survey in a common direction, usually towards the north Further
~care must be taken when estabhshmg the helght of the phase centre of the
antenna, which is dxﬁ‘erent for the L1 and L2 frequenc1es on the TI 4100 |

antenna ( ﬁgure 2.8).

2 6 Data Preprocessmg

There are two main preprocessing stages that are requlred before the GPS

data can be used in a least squares network adJustment These are necessary

to reduce the quantity of data and to correct the phase data for the receiver

clock offset

o 2.6. 1 Compress1on of Data

B Typlcally, geodetic receivers are capable of measuring the pseudorange and
phase data at mtervals of between three seconds and minute. When recordmg
data from several satelhtes, at dn‘ferent statlons, a large amount of data is
collected. To reduce the data processing time and storage requlrements, a
form of data compressmn is required.

A simple solutron is to fit a low order polynomlal to a number of these 7. :
measurements, using a least squares technique. A normal pomt can then B
be produced for this span of data, which represents all the data points . It

»

is necessary to chose the epoch of the normal point carefully, so that each

measurement is given equal weight in the determination of the normalised
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' Fig'ure: 2.8:> Posifion of the Lll and L2 phase'centr-es on the TI 4100 antenna
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Baseline Az Ay Az | Length
Normal pointed data at sixty second epochs ‘

AtoB -6508.925 | 15760.968 | 5396.580 | 17885.673 |-
A to C |[-30718.403 | 32537.806 | 24304.935 | 50922.087
Raw data at three second epochs

AtoB | -6508.927 | 15760.968 | 5396.581 | 17885.674
A to C | -30718.400 | 32537.805 | 24304.934 | 50922.084

Table 2.5: Normal pointed data results -

data point. In general, for the GPS phase data, the epoch nearest to the
mean epochy has been chosen for the normal point. For phase‘difference' ‘
techniques, it is essential to produce normal points at simultaneous epochvs
for each satelhte and receiver. ‘

A geodetic receiver will record the pha.se data at nommally constant in-
tervals in time. The data from each satellite can be spht into equal length

~ sections and a polynomla.l can then be ﬁt to each section using a least squares

technique. The polynomlal w1ll be a function of time t, of the form,

®=a +vbt + ct?+ dt3 4+ (2.58)

In the simplified exampie in ﬁgure ( 2.9 ), the normal points each represent
five phase readings, with the .noﬂrmalv point ca;lcullated at the mid epoch-of‘
the data span. The data recorded from each satellite must be sectioned at -
’ the same epochs, for simultaneous normal points to be produced. This will
necessitate the ‘rejectiAon of some observations when satellites rise and fall,
but the normal points will then be uncorrelated. |

A further use of normal pomtmg is to combme data from different recewer‘
types where the recordmg interval may differ (Chapter 6)

An important requxrement for any data compressmn technique, is s that
the final solution will not be unduly affected by usmg the compressed data
set. Table (2.5) shows a comparison between tWo baselines (A to B) and (A
to C) computed using three second data and then using data normal pointed

to one minute intervals.

43



eyep oseyd o1 10} spod [emION Jo woPANPOI 6 AN

. glas

*— —o o~ d e ¢ -

;,00,000,00;0lo‘o.;,ooﬂo:w0.0000..0,000,000‘.000 @>m
° —e— ® . *~— —o ,

ﬁmﬁ BN._

:_:

® s 0 0 0 0 0 0 0 0 00 00 oooo-ooooooooooooooo,-ooooooo

** 9AS

° o— —eo o,..o,,o ¢ ? 2

I

s S:_oa [ewiou

44




The maximum difference between the two solutions for any of the baseline
components was three millimetres.

Comparisons have beevn conducted using different order polynomials to |
fit the data. For the three second TI 4100 daté. that was available for this
project, a second order polynomial was found to be the most suitable for
produéing one minute normal points. Higher order polynomials producéd a |
normal point that ‘was more representative for the middle epoch, than for

the whole data span being compressed.

2.6.2 Time Correction of Phase Data

The geodetic receiver will record phase data and time tag it, using its internal -
clock. Any offset from GPS System Time of the receiver clock, will mean that
the time tags are incorréct. The magnitude of this error can be determined
from a pseudorange solution. In figure ( 2.10 ), the measured phase reading
and corresponding time tags are denoted by the subscript m. At an epoch
t, if the GPS System Time of the mga.sured phase is t,~,b then the receii'er '
will produce the time tag t; + At;. The time tags could be corrected by the |
receiver clock offset At;, but then observations from different recei\"ers will
not be simultaneous. The alternative is to correct th‘e phase By an/amount :
equal to (®; — q);m).kThis is given as, k

| 8%

B = <If,-m + -5%-4;: . (2.59)

The phase rate 8&/9t can be approxima,ted‘ for small time i'ntérvalis by,

8t (tigr + Atist)m — (6 + At)m (2.60)

Hc;wever, the phase rate is not constant 6ver the interval t; to t;;1, and
when normal prbintédvda‘ta, is“beir.lg uééd, the epoch sepafation may be too
large for the abové approximation fo hold. A more precise phase rate can be
determined from the polynomial fit of the normal points. If a second order
polynomial has been used to fit a span of data, the phase at time ¢, from a

given reference time f is given as,
B(t;) = a+ b(t; ~ to) + c(ti — to)? ' (2.61)

45



® (Phase)

Dlit1)
CI’(z‘+1)...

.. GPS

Time

(t:) 1 (ti)
(ti ~+ Ati)m (ti+1 + Ati+1)m ) ‘

Figure 2.10: Time correction of the phase data
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where a,b and c are constants. -

. The phase rate is then obtained from differentiating with respect to ¢
; [

od ‘ o
—(% = b -+ 2C(t.' — to) (262)

The corrected phase value is now obtained from,

B; = &y, + (b+ 2c(t; — o)) Aty (2.63)

47



Chapter 3.
Orbit Determination



CHAPTER 3

Orbit Determination

3.1 Introduction

The carrier phase observable can be used to determine baseline lengths to an
accuracy of about one part per million, when using the broadcast ephemeris.
If large baselines are to be measured, the magnitude of this error may become
unacceptable. An alternative is to use the NSWC precise ephemeris, which
should be suitable for baseline determination up to an accuracy of half a part
per million. However, for higher precision work, it is necessary to model the
satellite orbit, by solving for selected orbital parameters as part of the least
squares network adjustment.

To determine elements of the orbit by any method, it is necessary to use a
network of tracking stations. For the production of the broadcast and precise
ephemerides, a global tracking network is used. However, when using a phase
difference technique to determine the orbit, simultaneous measurements are
required between the satellites and stations. This necessitates the use of a
regional or continental network.

The following two sections describe the production of the broadcast and
precise ephemerides. Section (3.4) gives details of the orbit determination

approach used in this research project for regional networks.

3.2 Broadcast Ephemeris Prediction
The prediction of the satellite ephemeris by the Master Control Station

(MCS) is a two stage process.
Initially, a reference orbit is computed by the Naval Surface Warfare Cen-
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tre (NSWC), using the CELEST" computer program [O’Toole, 1976]. This
reference orbit, is a 40 day prediction, based upon one week of pseudorange
data, collected from the GPS Monitor Stations (MS). Every two weeks, a new
reference orbit is sent to the MCS. The orbit is estimated to have a max-
imum error in the along track direction of between five and twenty meters
[Varnum and Chaffee, 1982].

The second stage of the process uses a Kalman filter to determine the cur-
rent satellite states from satellite observations. These are then used in the
filter to predict the future states of the satellite for the broadcast ephemeris.
Measurements of pseudorange and delta pseudorange are made at each MS,
every six seconds. These measurements are made with a caesium beam fre-
quency standard and the time tag of each measurement is corrected to GPS
System Time at the time of signal transmission. The pseudorange measure-
ments are smoothed to produce one value every fifteen minutes and the delta
pseudorange measurements are sampled every fifteen minutes. The reference
orbit is now subtracted from the smoothed measurements to produce mea-
surement residuals. These are corrected for the effects of the ionosphere,
troposphere, relativity, earth rotation and the antenna offsets. These mea-
surements are then used as the input to the Kalman filter, to produce esti-
mates of the satellite’s position and the satellite clock offset. The predicted
satellite coordinates, which are determined in cartesian coordinates, are con-
verted into keplerian type elements, then uploaded to the satellites by the
Ground Antennas.

The first six Keplerian elements given in table (3.1) describe the satellite’s
motion at the reference time t;. Corrections terms are given to allow for
perturbations from this smooth orbit. The term  is not the right ascension,
but is the difference between the right ascension at the ephemeris reference

time £, and the Greenwich Apparent Sidereal Time (GAST,,..k) at the start
of the GPS week.

1Recently a new multi-satellite program has been developed for computing the GPS
reference orbit called OMNIS. This has been developed by the NSWC to replace the
CELEST program '
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Element | Description
M, mean motion
e eccentricity
v/a | square root of the semi-major axis
Qo Qoe — GAST ek (see text)
10 inclination at time ¢,
w argument of perigee
An | mean motion difference
Q rate of right ascension
i rate of inclination
Cuc, Cus | cosine and sine corrections to argument of latitude
C,c, Css | cosine and sine corrections to orbital radius
Cic, Ci, | cosine and sine corrections to inclination
to ephemeris reference time
afo satellite clock offset
afi satellite clock drift term
afs satellite clock ageing term

Table 3.1: Broadcast ephemeris representation
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The satellite clock offset terms are also given in the ephemeris message.
These three terms give the clock offset with respect to the reference time,
and are perturbed by a function which describes general relativity, so that
the user may ignore the effect.

The calculation of the satellite coordinates from the broadcast ephemeris
is done in two stages [Ashkenazi and Moore, 1986]. Initially, the cartesian
coordinates of the satellite are computed in the orbital plane. These are then
rotated through the inclination angle, to make the z axis coincident with the
terrestrial z axis. Finally, the coordinates are rotated about the z axis by the
angle 2, to make the x axis coincident with the Greenwich Meridian.

The accuracy of the broadcast ephemeris is estimated to be in the region
of 20 metres with possible degradation up to 50 metres in certain areas. Once
GPS is fully operational, the errors are not expected to exceed one metre

radially, seven metres along track and three metres across track [Wells, 1986].

3.3 Precise Ephemeris Prediction

More precise satellite coordinates can be obtained by using one of the several
post-computed ephemerides that are available.

The ‘official’ precise ephemeris is computed by the Naval Surface Warfare
Centre (NSWC) and is based upon measurements from the five Monitor
Stations, augmented with data collected in Australia, England, Argentina,
Bahrain and Ecuador (figure 3.1). The ephemeris is computed for spans
of eight days, covering the GPS week from Sunday to Saturday. A half
day extension at each end of the week, provides a full day overlap between
successive weeks. Comparisons have been made between these end of week
overlaps, to check the consistency of the orbit data. The agreement has
been shown to be better than five meters [Gouldman et al, 1989]. Authorised
civilian users can obtain the ephemeris through the U.S. National Geodetic
Survey, after a period of about four weeks. The ephemeris is given in earth-
fixed cartesian coordinates, describi_ng‘the satellite’s position and velocity
in kilometres and kilometres/second every fifteen minutes. An interpolation

method can be used to determine the coordinates at the required epoch.
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The University of Texas also produce a precise ephemeris from a global
tracking network. These sites are at Austin, Mojave, Westford and Richmond
in North America, Wettzell, Onsala and Tromso in Europe and Hawaii. The
~ ephemeris is computed using both pseudorange and phase measurements.

For users of the codeless MACROMETER receivers, the manufacturer,
Litton Aeroservices Ltd. provide a post computed ephemeris. The ephemeris
is computed from a set of American tracking stations, and is capable of pro-
ducing baseline accuracies to within one or two parts per million, suggesting

a similar accuracy to the broadcast ephemeris.

3.4 Regional GPS Orbit Determination

Two methods have been suggested for regional GPS orbit determination.

1. Free Network Approach. In this method the coordinates of one
station are held fixed in the adjustment process and the coordinates of
the other station are allowed to move freely. A priori constraints are

placed on the orbital elements.

2. Fiducial Network Approach. This method uses several stations
whose coordinates are held fixed in the adjustment. No a priori con-

straints are placed on the orbital elements.

The free network approach has been tested on a North American network
[Beutler et al, 1986b] and more recently in Australia [Rizos et al, 1989]. One
problem with this approach is deciding the level of constraint to place on
the orbit. Beutler et al [1986Db] used tabulated satellite coordinates as false
observations to rigidly constrain the orbit at fifteen minute intervals.

With the fiducial network approach, no constraint on the orbit is required

and the only constraints are placed on some selected station coordinates.

This approach has been adopted in this research project.

3.4.1 Fiducial Network Concept
The fiducial network concept for GPS orbit determination is based on several

GPS receivers, which are placed at sites, whose coordinates are precisely
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known ( fiducial sites ). The necessity to use precisely known coordinates
limits the choice of network, which must be located near sites where VLBI or
SLR facilities have been used. In Europe and North America this presents
no problem, but in the southern hemisphere, where there is a lack of these
facilities, a free network approach may have to be adopted.

The receivers, which are placed at these fiducial sites, are then used to
track the satellites. Simultaneous measurements are also recorded by re-
ceivers located at sites whose coordinates are unknown (figure 3.2). This
network of receivers at the fiducial sites can then be used in an orbit im-
provement process to determine more precise satellite orbits. This improve-
ment in the orbital accuracy will result in a more precise determination of
the unknown receiver coordinates.

To process the data from the network efficiently, a simultaneous adjust-
ment of the satellite orbit parameters and unknown station coordinates is
required, with the coordinates of the fiducial sites held fixed. Two methods

can be used for the orbit adjustment process,

1. Orbit Determination. An adjustment of the satellite orbit, which has

been obtained from integrating the satellite force model. (Sections 3.5

and 3.6)

2. Orbit Relaxation. An adjustment of some of the elements of the broad-

cast ephemeris. (Section 3.9)

The choice of station geometry for the fiducial network is particularly
important. Three or more receivers are required, to be located at well dis-
tributed sites in a region extending for several hundred kilometres. The
fiducial sites should not be colinear and all the unknown receiver sites should
lie within or very close to the fiducial network. Experiments have shown
that the best fiducial networks cover the maximum possible east-west and
north-south directions and have all the unknown sites located close to the
fiducial sites [Lichten et al, 1989].

In the example shown in figure (3.3), the fiducial sites W, Y and Z in

network A, occupy a long narrow network and the unknown site X is located
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Figure 3.2: Fiducial network concept
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Network A

Network B

Figure 3.3: Fiducial network configurations
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a long way outside the network. This configuration would be expected to
produce a poor determination of the receiver coordinates at site X.

Network B uses the largest possible fiducial network, with the sites lo-
cated in an optimal triangular pattern. The location of receiver Z, close
to the fiducial network should enable a good estimation to be made of it’s
coordinates.

The fiducial network concept uses the precision of the VLBI or SLR deter-
mined coordinates to strengthen the GPS network. It is therefore necessary
to exercise particular care when measuring and calculating the eccentrici-
ties between the VLBI or SLR reference marks and the GPS antenna phase
centres.

The use of VLBI/SLR coordinates for the fiducial sites will tie the GPS
network to the absolute reference frame of the VLBI/SLR solution. This will
enable an easy comparison to be made between the VLBI/SLR and GPS

baseline vector components.

CIGNET : A Global GPS Tracking Network

CIGNET, the Cooperative International GPS NETwork is a global network
which is continually tracking the GPS satellites. The data is recorded from
nine sites, which send the tracking data on a weekly basis to the U.S. National
Geodetic Survey, where is reformatted and archived. The data is available on
request for the determination of satellite orbits and other research purposes.
The sites use a combination of TT 4100 and Mini Mac 2861 AT satellite
receivers. The Mini Mac is a receiver capable of tracking up to ten satellites
and currently the Mini Mac receivers at the CIGNET sites track all the
available satellites, including the Block II satellite 14. The TI 4100 receivers
track a specified satellite constellation, including satellite 14, details of which

are given in the GPS Bulletin of the CSTG. The sites occupied are,
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Site location Receiver type

Tsukuba/Kashima, Japan Mini Mac
Kokee Park, Hawaii TI 4100
Yellowknife, Canada TI 4100
Mojave, California TI 4100 Mini Mac
Westford, Massachusetts  TI 4100 Mini Mac
Richmond, Florida TI 4100 Mini Mac
Tromso, Norway TI 4100
Onsala, Sweden TI 4100

Wettzell, West Germany  TI 4100

The data from two of these sites has been used for the computation of the
satellite orbits in chapter 6. The data is provided in a standard format, with
separate files containing the measurement records ( time-tagged pseudorange

and carrier phase ), satellite broadcast ephemeris and meteorological data.

3.5 The Principles of Orbit Determination

The purpose of any orbit determination procedure is to produce precise satel-
lite coordinates, at given epochs in time. The satellite’s position in space can
be determined from a model, which represents all the known forces acting
upon the satellite. This force model can be integrated with respect to time,
once to obtain velocity, and twice to obtain position. The model will include
the gravitational and surface forces acting upon the satellite.

Errors in this reference orbit (integrated orbit) can be corrected by track-
ing the satellite from a series of well distributed sites. These tracking observa-
tions can then be used in least squares adjustment to solve for various orbital
parameters using either the free network or the fiducial network approach.
The receiver site coordinates and parts of the force model are expressed in

an earth fixed (rotating) reference frame, but the integration must be carried
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out in an inertial (non rotating?) reference frame. Hence, it is necessary to

define a set of reference frames and the relationship between them.

3.5.1 Inertial Reference Frames

The fundamental astronomical reference frame adopted by the International
Astronomical Union (IAU) in 1976 is called FK5. FK5 describes the apparent
places of over 5000 stars and extragalactic radio sources at the epoch of
January 1.5, year 2000.

The inertial reference frame used in this thesis, is a geocentric cartesian
system based upon the FK5 frame. The origin is located at the earth’s centre,
with the x axis directed towards the mean equinox of J2000.0, the z axis is
normal to the equatorial plane of J2000.0, and the y axis completes the right
handed coordinate system.

A similar reference frame is used to describe the planetary ephemeris,
produced by the Jet Propulsion Laboratory, Pasadena. This is given in
heliocentric coordinates and is called DE200/LE200.

3.5.2 Earth Fixed Reference Frames

An earth fixed coordinate system has its axes fixed with respect to positions
on the earths surface. The conventional terrestrial system has its origin at
the earth’s centre, with the x axis directed towards the Bureau International
de I’Heure (BIH) zero meridian. The z axis passes through the Conventional
International Origin (CIO) pole and the y axis completes the right handed
coordinate system. The CIO pole is defined by the mean axis of rotation of
the earth, between the years 1900 and 1905.

The coordinates of the receiver sites are given in an earth fixed geocentric
reference frame and the coefficients of the gravitational potential are given in
a earth fixed spherical reference frame. Many different reference frames have
been adopted by the geodetic community, but for GPS, the World Geodetic
System 1984 (WGS84) has been used since January 1987 and this is based

on the conventional terrestrial system.

2The inertial reference frame is non rotating with respect to a framework of points fixed

in space
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3.5.3 Transformation from Inertial to Earth Fixed Coordinates

Earth fixed coordinates r.s of a point can be obtained from inertial coordi-
nates r;, by using the theories of nutation and precession, and accounting for
the earth rotation and polar motion effects. The complete transformation is

given by the following expression.

res = P.E.N.Pr ryy (3.1)

= rotation matrix for polar motion
= rotation matrix for earth rotation
= rotation matrix for nutation

Pr = rotation matrix for precession

The reverse transformation is given by the expression using the transpose

of the matrices.

rin = PrT.NT.ET. PT Tef (3.2)

A description of the rotation matrices is given in the following sections,

further details can be found in several texts [Agrotis, 1984] [Moore, 1986].

Precession
If the effect of the planets is ignored, the mass centre of the earth and moon,
would move in a plane around the sun, called the ecliptic. The great circle,
formed by the ecliptic on the celestial sphere, will have a pole called the pole
of the ecliptic. The effect of the sun, moon and the earth’s equatorial bulge,
will cause the axis of rotation of the earth, to move around the pole of the
ecliptic, in a complete circle, every 25800 years. This is known as luni-solar
precession, and has an amplitude of approximately 23.5°.

The attraction of the planets, will cause the pole of the ecliptic to move
by about 0.47 seconds each year and the equinox will move eastwards by
about 0.12 seconds each year. This motion is called planetary precession, and

the combination with luni-solar precession is known as general precession.
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The general precession can be calculated from three equatorial precession

parameters, (4, 24,04 [Agrotis, 1984]. The precession matrix Pr is given as,
Pr = R3(—ZA) Rz(BA) RS(—CA) (33)

The rotation matrices R, and R; are defined in appendix B. The mean of

date coordinates r,,;, of a point, are obtained from the inertial coordinates r;,
such that,

Pm = Prriy (3.4)

The mean of date coordinates are given at epochs of Barycentric Dynam-

ical Time (TDB), which is the time scale for the equations of motion, relative

to the solar system’s barycentre.

Nutation

In addition to the general precession, the moon causes two other periodic

motions; long period and short period nutation. The former has a period of

18.6 years, with an amplitude of about 9 seconds. The short period nutation

has a period of two weeks, with an amplitude less than 0.5 seconds.
Nutation is described in terms of two angles, the nutation in longitude A%

and the nutation in obliquity Ae. These relate the mean of date coordinates

to the true of date coordinates r; (defined by the true equator and equinox

of date) such that,
re=Nrp, (3.5)

The rotation matrix N is given as,
N = Ry(—€ — Ae) R3(—Ay) Ri(e) (3.6)
The values of Ae and A are given by the summation of a 106 term series.

Earth Rotation

To obtain instantaneous terrestrial coordinates r;, the true equinox of date
must be rotated through the hour angle GAST ( Greenwich Apparent Side-
real Time ). The angle GAST is defined in terms of UT1, the hour angle
measured from the Greenwich meridian to the mean sun. Values of UT1 mi-

nus UTC are published monthly in Circular D, of the BIH. The instantaneous
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terrestrial coordinates are given by,
T = E Te (3.7)

Where E = R3(GAST).

Polar Motion
The pole of the instantaneous terrestrial system is not fixed with respect to

the earth. The movement of the pole can be ascribed to three motions,

1. An annual motion around the mean position, with an amplitude be-

tween 0.06 and 0.10 seconds.

2. A similar motion with a fourteen month period, with an amplitude of

between 0.08 and 0.18 seconds.

3. A movement of the mean pole position by about 0.0033 seconds per

year, along the 70° westward meridian.

The position of the true pole with respect to the mean CIO pole, is
given in terms of two angles, zp and yp. The CIO pole is defined to be the
mean axis of rotation over the years 1900 to 1905. Values of zp and yp are
published by the BIH in Circular D. The rotation matrix for polar motion is
then given as

P = Ry(—zp)Ri(~yp) (3.8)

Then the earth fixed coordinates r.s of the point are given by,
Tef = P (3.9)

3.5.4 Force Model Components

The forces acting upon any satellite can be divided into two basic groups.
The gravitational forces include the earths gravitational attraction, lunar,
solar and planetary attractions and tidal effects. The other type of forces are
the surface forces, which depend upon the altitude and physical properties of

the satellite, and these include the solar radiation pressure and atmospheric

drag.
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For GPS satellites, at an altitude of 20000 km, the atmospheric drag can
be considered negligible [Wells, 1986], and it is usually ignored in the force
model. The more significant components of the force model are described in

more detail in the following sections.

Gravitational Attraction of the Earth

The force due to the gravitational field is a function of the satellite’s position
in an earth fixed reference frame. The acceleration vector 7.s at a point, due
to the gravitational attraction, is obtained from the gradient of the potential

field VU.

The potential U at a point above the earth, is normally expressed in terms

of a spherical harmonic expansion, where

U= [1 + i z": ( ) P} (sin ®)(Cy* cosmA + Spsinml)|  (3.10)
n=2m=0
Where
G = universal gravitational constant
M = mass of the earth
a = earths equatorial radius
R\ ® = earth fixed spherical polar coordinates

of the point

n,m = degree and order of the spherical
harmonic expansion

P™(sin®) = Legendre polynomial

cr, Sy = spherical harmonic coefficients

The expansion of equation (3.10) is the summation of an infinite number
of terms. As the altitude of a satellite increases, the effect of the higher
order terms is reduced and the expansion is truncated after a finite number
of terms. The coefficients C* and S}* are defined by various models.

The model recommended for use with the GPS satellites, is the WGS
84 Earth Gravitational Model (EGM). This is an expansion to degree and
order 180. However, only the coefficients up to degree and order 18 have

been declassified for civilian use. The coeflicients of the EGM have been
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obtained from numerous observations of Doppler, Satellite Laser Ranging,
Surface Gravity, Satellite Altimetry, GPS and data pertaining to lumped
gravitational coefficients [D.0.D., 1986]. For this model the value of the
product GM is taken to be 3896005.0 x 108 m3 s—2.

The GEM T1 geopotential model has also been used for some of the
results obtained in this thesis. This model has been derived purely from the
tracking data obtained from seventeen different satellites, which had a large
range of inclination angles and altitudes [Marsh et al, 1988]. The value of
the product GM is taken as 3896004.36 x 10® m3 s~2, The GEM T1 model
takes the axis of maximum momentum as its axis, which is defined by the
coordinates of the poles between the years 1979 and 1984. The differences
T and 7 between this pole and the BIH pole are 1.2 m (0.”0382) and 8.7
m (0.72803) respectively. Hence, to use this model, the station coordinates
should be rotated through 7 about the z axis and through Z about the y
| axis. The polar motion values used for the reference frame transformations
should also be decreased by T and 7.

The gravitational attraction of the earth decreases rapidly with increasing
altitude. For GPS satellites at an altitude of 20,000 km, only the first few
terms of the geopotential expansion are required. Figure (3.3) shows the
difference between a GPS orbit computed using the GEM-T1 geopotential
model up to degree and order twenty and one computed using the GEM-
T1 geopotential model up to degree and order eight. After 100 hours, the
maximum difference between the orbits is less than 2.5 centimetres in the
along track component. The maximum orbit lengths used in this research
project spanned four days of GPS data, equivalent to about 75 hours, for
which the (8 x 8) geopotential expansion was considered sufficient.

The coefficients C™ and S™ are given in a normalised form C and S in

most models, including the WGS84 (EGM). The coeflicients are

Cr=NpC (3.11)

and
Sp= NS (3.12)
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Where N is the normalising factor,

i
(n —m){(2n +1)(2 — éom)] 2
N = .
e @19
§om is the Kronecker delta which takes values,
0 ifm#0
Som = (3.14)
1 ifm=0
The earth fixed acceleration vector 7.f is given by
n oU
Fop = VU = orer (3.15)

Where r.; and .s represent the earth fixed positions and accelerations
z,v,2,&,9,%2 The potential U is expressed in terms of the spherical polar

coordinates R, ® and A, and use of the chain rule will lead to,

s OU(OR) OU[(9%) 0OU/( 3.16
4T B8R \Ors) T 9% \Ores) T OX \ Oy (3.16)

The inertial frame acceleration due to the earths gravitational attraction

can now be obtained from this,
Fin = PrTNTETPT #,; (3.17)

Moon, Sun and Planetary Attractions
The gravitational attraction of the sun, the moon and the planets (third
bodies) will exert a force on both the satellite and the earth. The inertial

frame acceleration of the satellite due to a third body, relative to the earth

is given as,
i: == 7.:5 - i:c (3.18)
Where
Ts = acceleration of satellite towards the third body
Te = acceleration of earth towards the third body

Hence, the acceleration of the satellite with respect to the earth can be

given as [Agrotis, 1984],

ri—r r; |
r = GM; A - ;
i ’ [l"j -3 Iles] (8.19)
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Where

M; = mass of the third body j
T = inertial frame coordinates of the third body
T = inertial frame coordinates of the satellite

The heliocentric coordinates of the moon and the planets are given in
the Jet Propulsion Laboratories ephemeris DE200/LE200. These are inertial
(J2000.0) coordinates, given at 0.0 hours TDB each day. Values for the
required epoch can be obtained by interpolation.

For GPS satellites, the moon and the sun cause the most significant per-
turbations to the orbit. Table (3.2) gives the approximate magnitudes of the
effects, for a 24 hour orbital arc [Landau and Hein, 1986].

Force | Acceleration(ms=2) | Perturbation(m)

Lunar 5x%x10°° 3000
Solar 2x10°% 800

Table 3.2: Third body effects on GPS orbits

The magnitude of the effect of the planetary attraction is negligible com-

pared to the effects listed in table (3.2), and can be ignored in most compu-

tations.

Solid Earth and Ocean Tides

The gravitational attractions of the sun and the moon cause the non-rigid
earth to deform. These deformations will affect the earths gravitational at-
traction and must be accounted for in precise orbit determination. The
oceans are also attracted towards the sun and the moon, and the earth re-
sponds to this variable ocean loading by deforming. This deformation will
also affect the gravitational attraction of the earth, but to a lesser extent
than the earth tides. The various models used to account for the solid earth
and ocean tides are discussed in [Agrotis, 1984] and [Moore, 1986]. For GPS
satellites, the magnitude of these perturbations are given in table (3.3) for a
one day arc. [Landau and Hein, 1986]. It can be seen that for arc lengths of

up to a few days, the effect of the ocean tides will be relatively small.
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Force Acceleration(ms=2) | Perturbation(m)

Solid Earth 1x10-° 0.3
Ocean 0.5 x 10~° 0.04

Table 3.3: Tidal effects on GPS orbits

Solar Radiation Pressure

One of the most uncertain force model components is the solar radiation
pressure. The photons emitted from the sun, collide with the satellite, and
this change in momentum, will create a force in the direction away from the
sun. The intensity of the radiation obeys the inverse square law, and the

radiation pressure is then given as,

‘ 2
-l
Where ’
A = Astronomical unit (1.4959787 x 10'1)
r = Inertial frame satellite position vector
T = Inertial frame sun position vector
c = Speed of light
Iy = Intensity of the radiation at a distance A (= 1367.2 Wm™2)

The intensity of the radiation I is not constant, but it varies according
to the solar activity. These variations are not expected to exceed about
7 % [Rizos and Stolz, 1985]. The inertial frame acceleration caused by the
solar radiation pressure in the direction away from the sun, is obtained by

multiplying P, by the area to mass ratio.

e Cr (I—c") (I—r_f_l—rjl)z (1—‘;—) & | (3.21)

Where €,, is the unit vector in the direction of the satellite from the sun.
The coefficient Cg is a solar radiation reflectance coefficient, which will
absorb certain deficiencies in the model, such as a changing area to mass

ratio. The value of Cr can be determined as part of the orbit determination

process (section 3.7)
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Spherical satellites such as LAGEOS can be satisfactorily modelled by
using equation (3.21). However, the GPS satellite has a complex shape, with
two large solar panels attached to either side, necessitating a more detailed
model.

One model which represents the shape and reflective properties of the
Block I satellites is the ROCK IV model, which has been developed by the
satellite manufacturers [Fliegel et al, 1985]. A local satellite coordinate sys-
tem is used, which has the z axis directed towards the centre of the earth
and the y axis directed along the axis of the solar panels. The x axis forms
a right handed system with these (figure 3.5). It is assumed that the mo-
mentum reaction wheels on the satellite, align the y axis normal to the plane
containing the satellite, sun and earth. Stepping motors then rotate the solar
panels to maximise the surface area facing the sun. For the Block II satel-
lites a new solar radiation pressure model has been developed by the satellite
manufacturer called the ROCK IV 2 model [Fliegel and Gallini, 1989).

The ROCK IV model uses thirteen distinct surfaces, which are described
as either flat or cylindrical. Associated with each surface, is a reflectivity
coeflicient and a specularity coefficient. The model] is used by the NSWC to
support long arc orbit computations ( 40 days ). For shorter arcs, a more

simplified model can be considered.

One particular effect of the solar radiation pressure on the GPS satellite
is a y bias force. This is a force acting along the axis of the solar panels (

i.e. the y axis). Several reasons have been suggested to account for this force

[Fliegel et al, 1985]

1. Misalignment of the solar panel axis with the normal to the plane con-
taining the earth, sun and satellite. This may be due to structural

misalignments or misalignments in the satellite attitude sensing mech-

anism.

2. Thermal re-radiation effects. This is caused by the heat absorbed by the
satellite being re-radiated through louvres in the sides of the satellite.

These louvres are normal to the y axis and any asymmetric radiation
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Figure 3.5: Definition of the space vehicle coordinate system
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effects will produce a force along the y axis.

The y axis force changes very slowly with time and can be treated as a
constant for orbital arcs of a few days. The magnitude of the force can be
determined by solving for an acceleration in the y axis direction, as part of
the orbit determination process.

The acceleration can be considered as a constant Cy, multiplied by the

unit vector €,, normal to the satellite, sun and earth plane (figure 3.6).

The unit vectors to the sun (€,,) and the earth (&,.) can be computed
directly from the satellite coordinates and the planetary ephemeris. The unit

vector normal to these (€,) is given as the vector product,
€y = Ess A &y (3.23)

Hence, the constant y bias force Cy can be introduced as part of the orbit
determination process.

The high altitude orbit of the GPS satellite means that the satellite’s
are virtually in constant sunlight. T'wice a year, each satellite is eclipéed by
the eé,rth and the direct solar radiation pressure will be reduced. Initially,
the satellite just touches the area of penumbra ( partial shadow ), but each
revolution increasing the period of eclipse until a maximum of about forty
minutes. During these periods it is necessary to cut off the solar radiation
pressure model, using a shadow factor 7. Sudden changes in the satellite
force model will lead to instabilities in the numerical integration, so it is
necessary to introduce a gradual change from full sunlight, n = 1.0, to full

shadow in the umbra, = 0.0.

A simple model can be used to reduce the shadow linearly through the
penumbra. Referring to figure (3.7), the distance from the earth to the top

of the umbra cone z can be determined by using similar triangles,

2 _ 24 (3.24)
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Hence, "
Q|7

(Sr —a.)

By similar triangles again, it can be seen that,

z= (3.25)

z —|r cosé| _z (3.26)
au a'e )
and,

Qe

ay = (——) (z —|r cosb))

z

rcosd

(Sr —a.)

= Qq,—
r.!

6
T COS Se (3.27)

Q
&
I

Ts
Where |r cosf| = 1%?1

The value of a, is the radius of the umbra cone, at the position of the
satellite. The radius of the penumbra cone a,, at the satellite position can

be determined using similar triangles again in figure (3.7).

ap = Qe Qe
= — 3.28
|r cosb| dg (3.28)
and, '
dsa SR
= (3.29)

Hence equation (3.29) can be written in terms of the distance to the sun

|74].

Irs] = dus (1 +5 R) (3.30)

Qe
Combining equations (3.28) and (3.30),

(ae + Sg)|r cosd|
7|

ap = G+

rcosf

& a.+ Shr (3.31)

A value for the shadow factor 17 can be determined from these values of a,
and a,. If the value of cos 6 is greater than zero (§ < 90°), then the satellite
is in full sunlight. This is given for r.r, > 0, then = 1.0.
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If the value of cos§ is less than zero, then a further check is required,

lrAé| 2a, =10

lIrA€] <ay, 7=0.0
rAE, — ay
ap — Gy

ap>|r A&l >an 77=( (3.32)

Where €&, is the unit vector Z% in the direction of the sun from the earth.

frel

Hence a modified solar radiation model can be used, formed from equa-

tions (3.21) (3.22) and the shadow factor %, giving

A 2 Io a\ . -
Cr (ﬁ) (3) (F)#+oa

(3.33)

Tsolar = 7

Where*
€ys = unit vector in the sun satellite direction
& = unit vector in the satellite coordinate system y axis

A further source of solar radiation modelling error is caused by the radi-
ation reflected from the earth’s surface ( the albedo effect ). Modelling the
albedo is a very complex process, due to both temporal and spatial variations
in the reflected radiation. The magnitude of the albedo pressure is estimated
to be in the region of 1 to 2 % of the direct solar radiation pressure, in the
radial direction. Consequently, it is usually ignored for orbit computations
spanning only a few days. The approximate magnitude of the solar radiation

pressure for a one day arc is given in table (3.4).

Force | Acceleration(ms=2) | Perturbation(m)

Direct 1077 200
y bias 10-° 10

Table 3.4: Solar radiation pressure effects

The afea to mass ratio will affect the perturbations to the satellite orbit,
caused by the solar radiation pressure. For the Block I satellites, the following
properties are given [Fliegel et al, 1985],

A = 5.48m?
m = 440.89 kg.
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For the Block II satellites, the following values are given [Wells, 1986],
A = 7.25m?
m = 845 kg.

The mass of the satellite is not constant, but it will decrease as the on-
board propellant is used for any required orbital manoeuvres. However, any
changes in the area to mass ratio will be absorbed by the scaling coefficient

Cr estimated in the least squares solution.

3.6 Equations of Motion

The Newtonian equations of motion of the satellite are given by,

7= f(t,r7) (3.34)
Where
P = acceleration vector
P = velocity vector
r = position vector
t = time

To obtain the velocity at a given time ¢, equation (3.34) can be integrated

with respect to time, from an initial velocity vector 7,
F(t)=ro+ | F6t (3.35)

Integrating equation (3.35) with respect to time, from an initial position

vector ro will give,
t
r(t)=ro+ [ 76t (3.36)

to

The integration must be carried out in a non rotating ( inertial ) reference
frame, for Newton’s Laws to apply. Errors in the state vector (7o, %) can be
corrected in the least squares adjustment of the orbit (section 3.7).

The integration can be performed by using either analytical or numerical
techniques. Analytical techniques lend themselves better to qualitative orbit
analysis, whereas a numerical integration technique is more suitable for the

quantitative high precision orbit determination that is required here.
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3.6.1 Numerical Integration
There are two types of numerical integration techniques that can be used,
single step and multi-step methods.

When considering a time varying function, the single step method uses
the value of the function at time ¢; to evaluate the function at time ¢; + A,
where h is the integration step length. For the velocity and acceleration

integrals in equations (3.35) and (3.36), this can be written as,
. ti+h
F(t; + R) = #(t;) + /t 76t (3.37)

and,
b+ ) = () + | et (3.38)

The integrals of # and 7 may be evaluated by approximating the func-
tion over the interval ¢; to (¢; + h), by using one of the many single step
methods, such as the Runge-Kutta procedure [Spencer et al, 1977]. The er-
ror associated with the Runge-Kutta procedure, is not easy to determine. It
is estimated that the error is of the order A™, where m is the order of the
Runge-Kutta procedure. Single step methods are particularly time consum-
ing as each integration step will require m function evaluations.

~ A predictor-corrector scheme is a commonly used multi-step method. An
n'® order multi-step method, will use the previous n+1 values of the function,
to predict the (n + 1)t* value. The corrected value of the function is now
determined, using the predicted value along with the previous n values.

The Adams-Bashforth predictor-corrector scheme, uses the Newton back-
ward difference formula to determine the value of the integral. The multi-step
technique has the disadvantage that the step length cannot be altered during
the integration process, so the step length must be carefully chosen at the
start.

An estimate of the error can be obtained from the difference between
the predicted and corrected values. The multistep requires only two func-
tion evaluations at each epoch (predictor and corrector), and can use a step
length eight times larger than the single step method [Ashkenazi et al, 1984].

This makes the multi-step method much more efficient than the single step
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method. Normally, the single step method is used to determine the first n
values of the function, then an n'* order multi-step method is used. The
current generation of orbit determination software at Nottingham Univer-
sity uses a 4** order Runge-Kutta starting procedure followed by a 9** order
Adams-Bashforth predictor-corrector scheme when enough initial steps have
been evaluated. A full description of the use of single step and multi-step
methods for orbit determination is given in Agrotis [1984].

A test was carried out to determine an efficient step length for the pred-
ictor-corrector integration scheme. A compromise has to be reached between
the computational speed and the level of accuracy required. A comparison
is given in table (3.5) of an orbit computed using different step lengths. The

table shows the x, y and z coordinates of the satellite in metres after a 75

hour integration.

Step length x (m) y(m) z(m)
(seconds)
120 11913981.633 | 633699.812 | 23380570.906
240 | 11913981.633 | 633699.812 | 23380570.906
480 11913981.658 | 633699.799 | 23380570.899

Table 3.5: Comparison of different orbit integration step lengths

It can be seen that for a three day arc, the differences between the 120
and 240 second step lengths were below the millimetre level, but much larger
differences occurred when a 480 second step length was used. The 240 second
step length was selected as a maximum length for the GPS orbit integration.

The numerical integration of the force model, will produce a series of
satellite position and velocity vectors in the inertial reference frame, at dis-
crete intervals of time. If the satellite state vector, and the force model were
accurately known, this reference orbit could be used directly for the process-
ing of the GPS observables. Errors in this reference orbit can be corrected

by using a least squares adjustment, with the GPS observables.
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3.7 Least Squares Adjustment of the Orbital

Parameters

The satellite state vector 7o, (o, Yo, 20, Z0, Y0, 20) required to initialise the
integration process need not be known precisely. Corrections can be made to
the vector by using observations made between the satellites and the network
of tracking sites. The two basic GPS observables, pseudorange and carrier
phase, can both be used for this purpose.

The pseudorange has the advantage that it is an unambiguous measure-
ment, but it is less precise than the carrier phase measurement. If the phase
integer ambiguity can be satisfactorily resolved, then the carrier phase mea-
surement will give a highly precise observable. The carrier phase can be
used for a simultaneous adjustment of the selected receiver coordinates and
the satellite state vector. The double difference phase observation equation
(2.16) can be linearised about the initial value of 7., to give an expanded

form of equation (2.19),

f[(a"/‘ —%)AX +(a”" M‘)AY +(‘9”" —%)AZA]

6X, 09X, Y,  0Y4 8Z4 824
! [( 865 _ 96k 8% _ 0pp 3 _ 90k
c [(BXB %, ) 2X2 + 5y, ~av, ) AYe T \oz, "3z, ) A%E
N R AV AN
L A _SPB YA (2FA_2PB ) A
e ng [(37”' ori,) = \oria  oria ATen
+ —42 ‘94’“ “ABANY, =(0g —Cg)+v (3.39)

ONJp
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f = frequency
c = speed of light
A = geometrical range between satellite ¢ at time of signal

transmission and receiver A at time of signal reception

Xa,Ys,Z4 = approximate coordinates of receiver A
. = satellite state vector for n = 1 to 6 (zo, %o, 20, Zo, Yo, 20)
0s,Cs = observed and computed values of the double

difference phase
Nj{B = integer phase ambiguity
v = double difference phase residual
It is necessary to evaluate the various partial derivatives in equation
(3.39). The partial derivatives of the form 9p% /80X, are evaluated as in

equation (2.5), ' .
Bph _ Tt — XA
09X Pa

Where z* is the = coordinate of satellite 1.

(3.40)

The chain rule can be used to expand the partials of range with respect
to satellite vector,

BpA____BpA((?w)+3pA(8y)+6pA(8z) (3.41)

ori, Oz \ori, oyt \ori, 9z \ors,

The partials of the form 8p',/0z' can be obtained by differentiating equa-
tion (2.4) with respect to z,

aph _ XA - m‘
i (3.42)

Similar expressions can be derived for y* and z*.

The partials of the satellite position with respect to the satellite state
vector 8z*/0rt, cannot be derived analytically, instead they are obtained
from the numerical integration. A least squares adjustment will only provide
a first order correction to the estimated parameters, so it is only necessary to

integrate the most significant component of the force model, when computing
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" the partial derivatives. The effect of ignoring all the other components except
the gravitational potential is discussed in Agrotis [1984].
Considering satellite i, the acceleration vector #* due to the earths gravi-

tational attraction is given as,

iU (3.43)
i )
Differentiating with respect to the satellite vector gives,
o7 otU a [ or
ors, - ori ort T de (arfm) (3.44)

Where
# = satellite acceleration vector (&', {/%, #)
in the inertial reference frame at time ¢
r = satellite position vector (z*, 3, z*)

in the inertial reference frame at time ¢

The partial derivative of the acceleration with respect to the satellite state

vector can be expanded by the chain rule,

o o (32) o () , o (05
ori — dzri \ori,) oyt \ori,) 0z \ori,

o [ 01 ort [ 8y oFt [ 8z
v (o)t (o) tom (o) @9

The partials of the satellite’s acceleration vector with respect to the po-

sition and velocity vectors are evaluated as follows [Agrotis, 1984],

dit 8*U o8& oU o3t

9 = 2" 3y byost o (3.46)

The partial derivatives of the satellite’s position and velocity vector with

respect to the state vector are given as,

ozt [04'] t 95t
i LA R (3.47)
Ortn  |OTinl,, Y10 0T,

and integrating again gives,
dz' [ 0z'] t 5zt
—_—= . — dt 3.48
ot 1OTinly, + to OTS, (348)
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The initial values of 9ri, /873, at ¢, are easily obtained for ri, = (a, 3%, 2*)

as,

ort 0 if m
L { ks (3.49)

Oren 1 ifm=mn
Similar terms can be added to equation (3.39) to solve for any unknown
force model components. The equation for the direct solar radiation pressure

coefficient Cr would be,

I @fA_ _ p’s i aﬂi apéa 3
- [(80}2 acs ACE — 3011—%1—2 ACH (3.50)

The partial derivatives of the form 8p%/8C% are expanded in a similar

way to equation (3.41),

dply _ 9piy ( Oz ap', [ oy opYy [ 82
act ~ 3 \acy) T By \ach) T \ach (3.51)

The partials of the satellite position and velocity vector with respect to

the solar radiation reflectance coefficient are again obtained by numerical

integration,
o' [ 0% ] t 93
acy = |acs|, T o ooy @ (3.52)

to
and integrating again gives,
ozt [ dx'] t 91

5?]7,'1 = _@J + o @ dt (3.53)

to
Similar expressions are used for the y and z satellite coordinates.
The initial values of r3, /0C} at t, are obtained for ri, = (%, ', 2%, 2%, ¥, £*)
as, .
or,,
=0 3.54
OChgt (3.54)

The acceleration partials with respect to the state vector are given by,
9i* 9% ( oz f oit [ oyt + ozt [ 82
acy, — 8zt \0Cy) ' 0y \oCy) 9z \8C}k

ot (o'  o# (83  8E (o
ai \acy) T oy \acy ) T 8z \acy
ot
5t (3.55)

The partial 8£'/0C? is obtained from differentiating equation (3.33).
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The constant y bias acceleration Cy can be estimated as part of the least
squares adjustment by including the expression,

The partials are evaluated in a similar way to the partials for the solar radi-
ation reflectance coefficient Cp.

Hence, observation equations of a similar form to equation (3.39) can be
formed to estimate both the receiver and the satellite dependent unknowns.
The normal equations are formed from these observation equations and solved
using the methods described in chapter 2. In the least squares adjustment,
the coordinates of at least three of the fiducial sites will be held fixed to
VLBI or SLR determined coordinates and estimates made for the non fiducial

receiver coordinates, initial phase ambiguities, satellite state vectors and any

solar radiation pressure parameters required.

3.8 Assessment of Orbital Accuracy
One of the problems encountered in an orbit determination process, is the
estimation of the quality of the orbit. Three methods have been used in this

research project.

1. Orbit repeatability

Two overlapping, independently determined orbital arcs can be com-
pared against each other to test the repeatability of two orbits. For
example, when considering an observation period of six days, the re-
peatability of the orbits can be assessed by estimating two independent,
three day orbits from alternate days of data. This is shown in figure
(3.8), described as interleaved arcs. The orbits can then be compared

over the common time periods between days 2 and 5.

The alternative test is to use two adjacent orbits, and extrapolate the
first orbit onto the second orbit (figure 3.9). This is a more stringent
test of the orbital quality, because any errors in the satellite force model
or in the initial state vector, will cause a degradation of the accuracy of

the orbit, as it is predicted further away from the observation period.
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Figure 3.9: Orbit repeatability : extrapolated arcs
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If enough data is available, a different network of fiducial sites can be
used to compute the orbit, and a comparison can be made from orbits

computed using the same period of observations.

The orbit repeatability is not really a test of external accuracy, rather
it tests the internal accuracy, as systematic errors may well produce
the same biases in the two independent orbital arcs. The external
accuracy of the orbit can be estimated by comparison with an orbit
computed using an independent data set and software package. The

NSWC precise ephemeris can be used for this purpose.

. Comparison with a precise ephemeris

The NSWC precise ephemeris is estimated to be accurate to within five
or ten meters. Hence, it is only useful to check the accuracy of an orbit
to a similar level of accuracy. One problem with using this method
of comparison is determining the differences which may exist between
the coordinate reference frames that have been used to compute the
orbits. These differences may introduce systematic biases between the

two orbits.

. Baseline comparison of GPS with other space techniques

The simplified relationship between the orbital accuracy and baseline
error was given in equation (2.57). The baseline error can be best esti-
mated by comparison with VLBI or SLR determined baselines. Hence,
an estimate of the orbital accuracy can be derived from this. The
estimated baseline lengths will also include the effects of other error
sources and this must be considered in any comparison. Lichten [1989]
suggested that the baseline error AL on a line of length L can be ex-

pressed as,

AL~ A+ B2L? (3.57)

where A and B describe the contributions to the baseline error from
the orbit independent effects and the orbit dependent effects respec-

tively. For short baselines the orbit independent effects such as the
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measurement noise and any errors in the site eccentricity vectors will
be more dominant. However, as the baseline increases in length, the
orbit dependent terms become more dominant and the expression sim-
plifies into equation (2.57). Therefore, the longer baselines are more
suitable for estimating the accuracy of the orbit than the shorter base-

lines, which may be affected by the other error sources.

This method of comparing baselines has been used extensively in this
thesis for estimating the orbital accuracy, because one of the primary
objectives of GPS orbit determination is the computation of high ac-

curacy baselines.

3.9 Orbit Relaxation

A simpler alternative to using the GPS satellite force model to improve the
satellite orbit is to use an orbit relaxation technique. For short arcs ( up
to about three hours of data ), selected elements of the orbit are allowed to
relaz as part of the least squares adjustment. Whilst this process will not
produce a precise orbit, it has been shown with SLR data to produce precise
relative coordinates of the tracking stations [Moore and Ashkenazi, 1987].
This is possible by allowing for systematic translations and accelerations in
the orbit ( through the estimated orbital parameters ), which will absorb
certain errors in the satellite observations and the satellite orbit model (
broadcast éphemeris ). For GPS satellites, corrections can be determined to
some of the keplerian elements given in the broadcast ephemeris. Six of these

broadcast elements describe a mean orbital ellipse from a given reference time

to, which are
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e - eccentricity

v/a - square root of the semi-major axis
1 - inclination at time ¢,

w - argument of perigee

Qy - right ascension parameter

at start of GPS week

M, - Mean anomaly at time %,

The partial derivatives of the receiver to satellite range, with respect to
the these six orbital parameters can be formed by differentiating the expres-
sions given in [Ashkenazi and Moore, 1986], which give the cartesian coor-
dinates of the satellite in terms of the Keplerian elements. These can then
be included in the observation equation given in equation (2.19). These ob-
servation equations have been implemented into PANIC, the GPS network
adjustment package at Nottingham, by a postgraduate student as part of his
research project. Details of the derivation of the partial derivatives and the
results obtained can be found in his thesis [Aquino, 1989].

In the least squares adjustment process, the argument of perigee term w
is held fixed, because of its high correlation with the mean anomaly term M,.
The coordinates of three or more fiducial sites are held fixed and estimates
are made for the non fiducial coordinates, the initial phase ambiguities and

the orbital unknowns. Two methods of solution have been attempted in the

least squares adjustment,

1. Solving for one set of the five broadcast elements (e, sqrta, iQq, My) for

each satellite.

2. Solving for a new set of the five elements every hour for each satellite.

Generally, the second method of orbit relaxation has been shown to give
better relative station coordinates, in comparison to the VLBI determined
coordinates. This may be because the elements of the broadcast ephemeris
are not true keplerian elements and they only represent the satellite orbit for

a limited period of time. A comparison between the second method of orbit
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relaxation and the orbit determination process ( integrated force model ) are

given in chapter 7.
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CHAPTER 4

GPS Orbit Determination Software

4.1 Introduction

All the software used for orbit determination and GPS processing at Not-
tingham University has been written in-house by postgraduate students. The
programs are written in standard FORTRAN 77, designed to run on the Uni-
versity’s ICL 3900 mainframe computer. The majority of the programs are
designed to run as batch jobs, which is more efficient for the large programs
and data sets, which require a long run time on the computer. It is also more
convenient for repetitive computations.

Work on GPS and orbit determination has previously been considered as
two separate fields before the sta;rt of this research project, with GPS re-
search concentrating on using the broadcast ephemeris. Orbit determination
software was primarily written for the LAGEOS satellite, used for Satellite
Laser Ranging. The research work has involved the integration of these two
distinct software packages and the writing of any necessary software required
for the GPS orbit determination. A flow diagram is given in figure (4.1)
showing the main programs required for the determination of GPS satel-

lite orbits. These programs are described in further detail in the following

sections.

4.2 SODAPOP

SODAPOP ( an acronym for Satellite Orbit Determination and Analysis
Package Of Programs ) has been under development since 1981. Three
postgraduate students have been involved in writing the software and details

of the current capabilities of the package are given in [Hill, 1989]. Two of the
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Figure 4.1: Flow diagram for GPS orbit determination
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programs in this package have been used for the GPS orbit determination,

these are ORBIT and CHEBPOL.

4.2.1 ORBIT
ORBIT is a precise orbit integration program, initially developed for the
LAGEOS satellite [Agrotis, 1984]. The numerical integration is initiated
from a given state vector ( approximate position and velocity of the satellite)
and the position and velocity vectors of the satellite are output at discrete
intervals in time.

Very few changes were necessary to allow the program to be used for GPS
satellites. These involved implementing the satellite y bias acceleration to the
satellite force model and the new shadow factor model. A brief description of
the program is given in this section with the necessary parameters required

for the GPS satellites.

Input Parameters
The following parameters are required for the program and they are input in

a control file.

o Satellite state vector! given in an earth fixed or inertial (J2000.0) refer-

ence frame. This can be obtained from either the broadcast or precise

ephemeris.

o Geopotential model. The degree and order of the geopotential model
are selected. The WGS 84 and GEM-T1 models have both been tested

for the GPS satellites.

e Centre of mass correction. The distance between the centre of mass of

the satellite and the GPS antenna has been estimated as 1.0 m.

e Area to mass ratio. A value of 0.0124m2kg™! has been used for the

Block I satellites.

o GM. The recommended values. of the product GM have been
GEM-T1 3986004.36 x 10®m3s~2

1Given in cartesian coordinates
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WGS 84 3986005.00 x 108m3s—2

e Direct solar radiation pressure coefficient (Cr). An initial estimate of

1.5 has been used.
o Y bias acceleration (C,). Initial estimate of 0.0 ms~2 used.
¢ Mean earth rotation rate of 7292115 x 10~ rad s~ (WGS 84 value).

¢ Ocean tide model. Schwiderski or GEM T1 if using GEM T1 geopo-

tential model.
¢ Integration step length. 240 seconds for predictor-corrector.
o Number of integration steps required.

o Selection of force model parameters for which the partial derivatives are
to be evaluated. These include Cgr and C,. Further partial derivatives
can be evaluated for some other parameters, although they are not used

for GPS orbit determination.

¢ Time, date and year in which to start the integration. These correspond

to the satellite state vector.

Reference Frame Transformation

It is necessary to convert all the acceleration vectors into the inertial reference
frame (J2000.0) prior to the numerical integration. The model used for the
transformation includes the JAU 1976 precession and the IAU 1980 nutation
models. Earth rotation and polar motion values are obtained from the BIH
Circular D at five day intervals. These are input into ORBIT in the form
of a random access file, generated by the ancillary program CHEBPOL.
The planetary ephemeris (DE200/LE200) required for the force model is
also included in this file.

Force Model
The GPS satellite force model used in the integration is comprised of the

following components.
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WGS 84 or GEM T1 geopotential model up to degree and order eight.

Lunar, Solar and Planetary attractions (Venus, Mars, Saturn and Jup-

iter).
e Solid earth tides. Simplified Wahr, [Agrotis, 1984], [Moore, 1986].

Ocean tides. Schwiderski or GEM T1 models.

Direct solar radiation pressure.

Y bias acceleration.

Also included is the solar radiation cut-off model, to gradually reduce
the solar radiation pressure during an eclipse. The models for the planetary
attractions and the ocean tides are not essential for orbital arcs of a few days,

but they have been included for possible longer arc computations.

Numerical Integration

The numerical integration is carried out in the J2000.0 inertial reference
frame. A 4% order Runge-Kutta (single step) procedure is used to start
the integration. Once enough initial steps have been evaluated, a 9** order

Adams-Bashforth predictor-corrector scheme is then used.

Output

The main output is contained within two random access files, comprised of,

1. Satellite position and velocity vectors at discrete intervals ( same in-
terval as the predictor-corrector integration step length ). These are
given in the earth fixed or the inertial (J2000.0) coordinate reference

frames.

2. Partial derivatives of the satellite position with respect to the state

vector and any required force model components ( eg. Cg or C, ).

The orbit integration program is designed for a single satellite and it
will have to be repeated for all the GPS satellites observed. The satellite

ephemeris and partial derivatives are then used as input into the least squares
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adjustment program DDORDB, to produce a better estimate for the satellite
state vector and the force model components. These updated values can then

be input into ORBIT again to produce a more accurate orbit.

4.2.2 CHEBPOL

CHEBPOL is a program developed to reduce the computation time required
by the orbit integration and the orbit adjustment programs. It computes
daily sets of Chebyshev polynomial coefficients to represent the nutation and
precession matrices for a period of forty days. This eliminates the need to
evaluate the 106 term nutation series at every integration step in ORBIT
and at every observation epoch in the least squares adjustment program
DDORB. Also produced in the program are linear interpolation coefficients

for the (UT1 - UTC) values and the polar motion values.

Input

The following items are required,

e (UT1 - UTC) and polar motion series. BIH circular D 5 day values

used.

e Planetary ephemeris (JPL DE200/LE200). The values given at 0.0
hours TDB each day are interpolated using Everetts algorithm.

o Start day and year to begin the computations.

o Integer second difference between UT1 and UTC at the start of compu-
tation. This was 23 seconds before 1/1/88 and 24 seconds after 1/1/88
for the GPS data analysed.

Output
The output is contained in a random access which has the forty days of daily

Chebyshev polynomial coefficients for,
o Nutation matrix.
e Precession matrix.

e Planetary ephemeris.
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Linear interpolation coefficients are provided for,
e (UT1- UTC).

e Polar motion.

4.3 GPS Software Package

In the last seven years, nine postgraduate students have been involved with
GPS research projects at Nottingham. The programs currently in use have
been written, modified and updated by several of the students and it is
difficult to attribute programs to particular authors. The reader is referred
to [de la Fuente, 1988] for the description of the GPS software up to 1988.
The programs described in this section refer only to those required for tlie
GPS orbit determination, using data collected from the TI 4100 receiver.
Data preprocessing programs have also been written for the WM 101 and

the Trimble satellite receivers.

4.3.1 TIDECODE
TIDECODE was developed specifically for decoding the data collected on

the TI 4100 receiver. The program forms the pseudorange and carrier observ-
ables, the time tags at which they were recorded and the satellite ephemeris
from the binary data strings recorded by the receiver. Further data can be
decoded as required, such the broadcast ionospheric corrections. The mea-

surements are extracted and placed into two types of file,

1. Measurement file containing pseudoranges, carrier phase, time tags and

satellite identification numbers.
2. Ephemeris files for each satellite.

The program also calculates third differences with time during the decod-

ing process, to check for the occurrence of cycle slips.

4.3.2 EAFILTER
EAFILTER is a data filtering program, which serves three main purposes,
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1. Re-orders the data into a specified satellite order and rejects any un-

wanted satellites.
2. Rejects epochs containing less than a specified number of satellites.

3. Rejects satellites which lie below a specified elevation angle. This is
normally selected as 15° to minimise the effects of atmospheric refrac-

tion.

4.3.3 NORMAL

NORMAL is a data reduction program, which produces normal points for
specified spans of data. A low order polynomial is fit to the span of data
using a least squares technique and a normal point is produced at the nearest

data point to the middle of the span. Specified input parameters are,
o Epoch separation of the input data.
¢ Epoch separation required for the output data.
e Order of polynomial to use.

For TT 4100 data recorded at three second intervals, a second order poly-
nomial has normally been used for producing one minute normal points. For
one minute normal points, the program will select a one minute span of data
from which to fit the polynomial and no data points are used more than once.
The program also selects the spans of data so that the normal points are pro-
duced simultaneously for all the satellites and receivers, which is necessary
for the phase differencing techniques (section 2.6.1).

The output from NORMAL can be given in two forms,

1. Normal pointed pseudoranges and carrier phases at specified time tags.

( Similar format to the input data.)

2. Normal pointed pseudoranges and the polynomial coefficients a, b, ¢ rep-
resenting the carrier phase readings for each span of data. These co-
efficients describe the phase ® as & = a + bt + ct? at a given time ¢.
(section 2.6.2).
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4.3.4 PSEUDO

PSEUDO computes the three dimensional coordinates of the receiver and
the receiver clock offset using the pseudorange observable. The program
uses the data from a whole observation period ( several minutes to several
hours ) and carries out a least sdﬁares adjustment, solving for the receiver
coordinates and the receiver clock offset. A choice of receiver clock models

can be made,
1. Solve for one clock offset per epoch,
2. Solve for a clock offset, drift and ageing terms (2nd order polynomial).

The main use of the program in orbit determination is in the estimation of
the receiver clock parameters, which can then be used for the time correction

of the phase data in TIMECOR.

4.3.5 TIMECOR

TIMECOR corrects the phase measurements for the receiver clock error.
The clock model obtained from PSEUDO is used to alter the carrier phase
measurements to allow for the receiver clock offset at the measurement epoch.

This is achieved in two ways,

1. Using the actual carrier phase readings output from NORMAL and

linearly interpolating the phase shift due to the receiver clock offset.

2. Using the polynomial coefficients output from NORMAL to determine
the phase rate 88/6t (= b + 2ct) and produce a more accurate time

correction method (section 2.6.2).

The output file obtained will then contain the time corrected carrier phase

readings, necessary for the input to the orbit adjustment program DDORB.

4.3.6 DDORB
DDORB was developed by the author from PANIC, the GPS network
adjustment program [de la Fuente, 1988]. DDORB performs a simultaneous

least squares adjustment of the receiver coordinates, initial phase ambiguities,
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satellite state vector and the solar radiation pressure coefficients for all the
required satellites and receivers. It can be used for multiple day solutions,
solving for a new set of integer ambiguities each day. The number of unknown
parameters estimated can grow quite large, particularly with the multiple day

solution. The number of unknowns is equivalent to,

nostns X 3 + nosats X norb + (nosats — 1) x (nostns — 1) x nday  (4.1)

Where nostns = total number of stations in the network.
nosats = total number of satellites observed.
norb = number of orbital parameters estimated per satellite.
nday = number of days of data.

Input requirements
The jobdeck contains several options for the input and various flags for dif-

ferent controlling options.

1. Flag selecting reference system. i.e. WGS 84 or WGS 72. This defines

the semi-major axis and the flattening of the reference ellipsoid.
2. Flag selecting frequency. L1, L2 or L1/L2 (ionospherically corrected).
3. Flag selecting tropospheric correction
(a) No model.
(b) Simplified Hopfield.
(c) Saastamoinen/Marini.
(d) Hopfield.

(e) Saastamoinen (section 2.5.2).

(f) Standard Atmosphere (section 2.5.2).

4. Flag selecting the use of a geometrical correlation matrix.

5. Input day number at start of data.

6. Flag selecting output of double difference phase residuals.
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10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

Input maximum number of satellites in data set.
Input PRN numbers of satellites.
Input PRN number of base satellite.

Flag selecting PRN number of any satellite required to be held fixed in

the adjustment.
Input maximum number of receivers ( sites ).
Input any site whose coordinates are to be held fixed in the adjustment.

Input the approximate coordinates of the receivers and the antenna

heights above the site markers.

Input the independent baseline definitions. For a network of n receivers

there will be (n-1) independent baselines to define.

Flag to select integer fixing option.

Input the time interval in seconds of the ephemeris. This will be equiva-

lent to the predictor-corrector integration step length used in ORBIT.

Input the time at the start of the ephemeris in seconds of the GPS

week.
Input the year and day number at the start of the ephemeris.

Input the number of orbital parameters to be estimated for each satel-
lite.

3 - initial position vectors only.

6 - initial position and velocity vectors.

7 - initial position and velocity vectors and direct solar radiation pres-

sure coeflicients.

8 - initial position and velocity vectors, direct solar radiation pressure

coefficients and y bias accelerations.
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20. Input number of days of data.

21. Flag selecting the time correction option ( Chapter 7 ).

A number of files are also required by the program. These are,

Chebyshev polynomial coefficient file ( CHEBPOL ).
Earth fixed ephemeris file ( ORBIT ).

Partial derivative file ( ORBIT ).

Measurement data file for each receiver, for each day ( TIMECOR ).

Satellite state vector file.

Meteorological data file { For options 3 - b,c,d and e ).

General Outline

A brief program description is given below, describing the main steps in the

computation.

1.

Input parameters ( in jobdeck ).

Convert time of satellite state vector into modified julian day.

Read in first epoch of GPS data from each receiver.

Compute correlation matrix.

Compute earth-fixed satellite coordinates at the time of signal trans-
mission. This is done by interpolating the ephemeris from ORBIT

using an 8'* order Everett interpolation algorithm for each satellite.

Compute the rotation matrix for transforming the earth-fixed satellite
coordinates into inertial J2000.0 coordinates. The matrix is computed

at the time of satellite transmission -using the Chebyshev polynomial
coefficients [Agrotis, 1984].
Compute the satellite coordinates in inertial J2000.0 coordinates using

this matrix.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Compute the rotation matrix for transforming the earth-fixed receiver
coordinates into inertial J2000.0 coordinates at the time of signal re-

ception at each receiver.

Compute the coordinates of each receiver in inertial J2000.0 coordi-
nates using this matrix, ready for forming the partial derivatives for

the orbital unknowns.
Compute tropospheric corrections.
Compute observed double difference phase.

Compute computed double difference phase.

Form partial derivatives for,

o Satellite state vectors.

e Solar radiation pressure coefficients ( one or two parameters per

satellite).
e Receiver coordinates.

o Initial phase ambiguities.

The partial derivatives of the satellite to receiver range with respect

to the orbital unknowns ( section 3.7 ) are obtained from ORBIT
and interpolated to the required epoch using Everetts interpolation

algorithm.

Form double difference observation equations.

Apply correlation matrix and form Vthe normal equations.
Return to step (3) for successive epochs.

Form observation equations for fixing any required receiver coordinates

or any other parameter and add to the normal equations.

Solve normal equations using Choleski’s method of triangular decom-

position.
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19. Compute double difference phase residuals.
20. Solve for the covariance matrix.
21. Output ( see below ).

Output
The amount of output is specified by the program user in the jobdeck. The

estimated parameters output are,

1. Cartesian coordinates of each receiver.

2. Baseline lengths between all the receivers.

3. Geodetic coordinate differences (A®, A\, Ah) between receivers.
4. Satellite state vectors for each satellite.

5. Solar radiation pressure coefficient for each satellite ( if specified ).
6. Y bias acceleration for each satellite ( if specified ).

7. Initial phase ambiguities for each satellite, each day.

The double difference phase residuals may also be output for each satellite-
receiver pair. A statistical analysis is carried out to compute the covariance
matrix, rms error of an observation of unit weight ( unit variance ) and the

standard errors of all the estimated quantities. These are output along with

the relevant parameters.

General comments

Once the new estimates of the orbital parameters have been obtained, they
can be used to recompute a more accurate orbit for the satellites, using
ORBIT. These néw ephemeris and partial derivative files can then be used
in DDORB to recompute the solution. This iterative process continues
until no further change in the solution occurs. In practice, no change in
the solution has been seen after the first iteration, the only iteration being
necessary is to recompute the orbits using ORBIT for comparison purposes.

An example of a jobdeck used for this program is given in Appendix A.
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4.3.7 PLOTARC

PLOTARCisa plottiﬁg program, which compares the cartesian coordinates
of two separate orbits and plots a graph of the radial, along track and cross

track component differences between them ( figure 4.2 ).

Radial component

/
Alongtrack component

Cross track component

Figure 4.2: Orbit component directions

The program requires the z,y and 2 coordinates of both orbits and the
&, 7, 2 velocities of one of the satellites, at the times when the orbits are
to be compared. These can be obtained from ORBIT or from the precise
ephemeris.

For small orbit differences, the unit vector €, in the radial direction can

be approximated by,
e~ (2 Y 2
o (R’R’ R) (42)
Where R = (22 + 3% + 2%)} for either satellite.

The unit vector €, in the along track direction can be estimated from the
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velocity vector,

& (53 v f..) (4.3)
RRE

Where R = (2% + 92 + 22)7 for either satellite.
The unit vector &, in the cross track direction is given by the vector cross
product,
€. =€ ANE, (4.4)
The errors in each of these components can be approximated by the vector

dot products,

eTTO0Tradial = €EnAR
€rTOTalong track = é.a-AR
€TTOTcross track = é:_-AR (45)

Where AR = (Az, Ay, Az), the differences between the cartesian coor-

dinates of the two orbits.
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CHAPTER 5

The GINFEST Campaign

In 1982, a proposal was made to carry out VLBI, SLR, GPS and CERI!
observation campaigns at sites in Europe. This Geodetic Intercomparison
Network For Evaluating Space Techniques (GINFEST) would be used to
compare the relative accuracies and to determine any systematic biases be-
tween the techniques. The network lies over a tectonically stable region of
Europe, and could be used as a reference ﬁetwork for testing other geodetic

techniques.
The GINFEST VLBI observation campaign was comprised of two twelve

hour sessions. These were observed in June and October in 1987, at the radio

telescope sites of,
o Effelsberg

Jodrell Bank

Medicina

Onsala

Westerbork.

The GINFEST SLR data sets were selected from two existing observation
campaigns. The first set is made up from five discrete, seven day orbital arcs,
taken from the 1984 MERIT Intensive Campaign. The second set consisted
of a one month continuous arc, taken from the Monte Generoso Campaign.

The complete data set contains data from the following sites,

1Connected Element Radio Interferometry
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Monte Generoso

Zimmerwald

Kootwijk

Wettzell

o Grasse

e Graz

Royal Greenwich Observatory (RGO)
e Matera.

The GINFEST GPS campaign was part of a feasibility study for a Euro-
pean tracking network [Boucher et al, 1986], which had the aims to,

1. determine satellite orbits over the region,
2. produce an ionospheric model for the region,

3. test the use of differential positioning between the tracking sites and

the mobile receivers.

The data set is described in detail in the following section.

5.1 GINFEST GPS Campaign

5.1.1 Data Description

The GINFEST GPS observation campaign took place on the 18th, 19th
and 20th of November 1986. These are referred to by the day numbers
322, 323 and 324 in the following text. Ten TI 4100 NAVSTAR Navigator
receivers were deployed, near the SLR and VLBI sites shown in figure (5.1).
The TI 4100 receivers can acquire both the C/A and the P code, enabling
measurements of both the L1 and L2 frequencies. The data was recorded on
magnetic cassettes, capable of storing a maximum of half an hour of data

each. The dual tape drive was used to enable a quick change-over of cassettes.
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Figure 5.1: Sites for the GINFEST GPS campaign
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One limitation of the TI 4100 is its ability to only track four satellites
simultaneously. With the satellite constellation at the time of the campaign,

two separate constellations were observed. These were,
o Satellites 6, 9, 11, 12 from 0:50 to 2:20 UTC (Session A)
o Satellites 9, 11, 12, 13 from 2:20 to 3:50 UTC (Session B)

The satellite numbers refer to the PRN numbers of the satellites. The
times are the approximate observation times, which precess by four minutes
each day. A maximum of three hours of data was recorded at each of the
sites.

A sky-plot showing the azimuth and elevation angles of the satellites
during the campaign is given in figure (5.2).

Meteorological data ( pressure, wet and dry temperatures ) were recorded
at each site, to allow tropospheric corrections to be made. However, no
meteorological data was recorded at Graz for the whole campaign. This
data was estimated using the meteorological data from the two nearest sites,
Wettzell and Zimmerwald. The temperature and pressure weré assumed to
decrease uniformly with increasing height, from these two sites and this was

used to predict values corresponding to the height of Graz.

5.1.2 Data Format

The data was written on three, nine track magnetic tapes, at 1600 bits per

inch. A total of 146 files were contained on the tapes, each containing half

an hour of data. (Figure 5.3).

At the time of the processing, no data was available for the site at Zim-

merwald. Also, no data was recorded at Wettzell on day 322, due to an

equipment failure.

5.1.3 Data Preprocessing

A preprocessing of the data was carried out to compress the data, to correct
any cycle slips and to time correct the data for the receiver clock biases. The
following stages were carried out, using the computer programs described in

chapter 4.
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Figure 5.2: Satellite sky-plot for the GINFEST GPS campaign
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Tapel  Kootwijk A B C
Onsala A B
(53 files) Westerbork A B C

Q

Tape 2 Grasse A B C
RGO . A B C
(37 files) Jodrell Bank C
Tape 3  Effelsberg A B C
Wettzell B C
(56 files) Graz A B C
Jodrell Bank A B
A = Day 322
B = Day 323
C = Day 324

Figure 5.3: GINFEST : Raw data availability
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1. Each file was decoded using TIDECODE, to convert the binary data
into the respective measurement and ephemeris files. The third differ-
ences were also output from the program. Any significant jumps in the
third differences were attributed to cycle slips. These were corrected
by estimating the value of the cycle slip from the third differences and

correcting each observation after the occurrence of the slip.

2. Each file was filtered using EAFILTER. The flags in the program
were set to ignore any satellites below 15° elevation angle and any

epoch containing less than four satellites.

3. The 146 files were then concatenated to form files, containing the data

from one site, for each session, for each day. This produced 52 files.

4. Each of these files were then normal pointed using NORMAL, to

produce the data at intervals of sixty seconds.

5. The files from sessions A and B were then joined together, to give one

file per site , per day.

6. A point positioning solution was carried out using PSEUDO. This was
to determine the approximate coordinates for each site and to obtain
the values of the receiver clock offsets for each receiver. With up to
three hours of data at each site , a polynomial clock model would have

been unsuitable, so a receiver clock offset term was determined at every

epoch.

7. The phase data was then corrected for the receiver clock offsets using

TIMECOR.

8. A final stage of the preprocessing was to correct the cycle slips which oc-
curred during the change of session, from observing satellites 6,9,11,12
to observing satellites 9,11,12,13. When the receivers were attempting
to acquire satellite 13, a loss of lock often occurred on the other satel- -
lites. The approximate value of these cycle slips were estimated using

the pseudorange difference between successive epochs, to compute the
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phase difference. The accuracy of this method was estimated to be in
the order of twenty five cycles. Further cycle slips were detected at the
half hour intervals, when the magnetic cassettes were changed in the

receiver. These slips were corrected using the above technique.

The data remaining after this preprocessing stage is shown in figure (5.4).
The filtering of the data, and the removal of the some epochs where a lot of
cycle slips occurred, has left some large gaps in the data. Furthermore, the

data from Westerbork on day 323 was rejected as only a few epochs remained.

5.2 Determination of the GINFEST Site

Coordinates

Precise coordinates for the GINFEST SLR and VLBI sites have been deter-
mined in many different solutions. The coordinate set chosen for comparison
with the GPS solutions, were calculated by Dr. C.J.Hill [Hill, 1989], using
the SODAPOP suite of programs (Chapter 4). This solution was calculated
using a short-arc method, with the GINFEST SLR data set. The short-arc
method of analysis was considered the best way of producing precise coor-
dinates of the SLR sites, using the available data. However, a short arc
solution will not provide a good orientation and scale for the network. This
was achieved by transforming the short-arc solution onto a ten month long-
arc solution, using a seven parameter Helmert transformation ( table C.1 ).
This coordinate set, designated IESSG-T, will have the same origin, orien-
tation and scale as the long-arc solution, but will have the precise geometry
associated with the short-arc solution. The long-arc solution was computed
from 1986 data, using the GEM-T1 geopotential model.

Two of the GPS solutions were based on the broadcast and precise ephem-
erides, which were given in the WGS 72 terrestrial system, at the time of the
GINFEST GPS campaign. Hence, it is necessary to determine whether there
are any systematic biases between the coordinates derived in the WGS 72
terrestrial system and the IESSG-T solution.

The IESSG-T solution was compared with the WGS 84 coordinate set

given in Boucher et al [1988], through a seven parameter Helmert transfor-
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Kootwijk
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Jodrell Bank

Grasse

Graz
Effelsberg
RGO
Kootwijk
Westerbork
Onsala
Jodrell Bank
Wettzell

Day 322

I

Day 323

Day 324

Figure 5.4: Processed data availability
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mation. The resulting transformed coordinates, designated IESSG-T84 and
their derivation are given in table (C.2). These coordinates were then trans-
formed into the WGS-72 terrestrial system by applying the transformation
parameters given in table (C.3). The resulting coordinate set IESSG-T72
would then have the same scale, origin and orientation as the WGS-72 ter-
restrial system, but the precise inter-site geometry associated with the IESSG
SLR short-arc solution.

The eccentricities, between the SLR facilities and the L1 phase centres of
the GPS antennas, were obtained from terrestrial observations. These eccen-
tricities were applied to the IESSG-T72 coordinate set, to provide consistent
WGS-72 coordinates for the GPS L1 phase centres ( table 5.1 ).

x(m) y(m) 2(m)
Graz 4194426.429 | 1162690.069 | 4647240.002
R.G.O. 4033361.889 24036.622 | 4924371.434
Kootwijk | 3899219.837 | 396756.676 | 5015067.465
Grasse 4581712.927 | 556126.883 | 4389330.653
Wettzell | 4075554.175| 931813.664 | 4801583.792

Table 5.1: GINFEST GPS L1 phase centre coordinates : WGS 72

5.3 Analysis of Data

To test the relative accuracies of processing the GPS observables with differ-
ent ephemerides, three different solution types have been computed. These

are
e Broadcast Ephemeris Solution.
e Precise Ephemeris Solution.
o Orbit Determination Solution

All the solutions have been computed using the Saastamoinen model to
account for the tropospheric delays. The combined L1/L2 frequency has been

used as a first order correction for the ionospheric delays.
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5.3.1 Broadcast Ephemeris Solutions

A different solution was computed for each of the three days, using the broad-
cast ephemeris. On each day, the coordinates of Kootwijk were held fixed to
the WGS-72 coordinates.

The double difference phase residuals were inspected each day for any
remaining cycle slips and these were then corrected. On day 323, the data
from Effelsberg was rejected, due to a large number of cycle slips.

In order to test the repeatability of the broadcast ephemeris solutions,
the baseline lengths determined from days 322 and 323 were compared with
the baselines determined on day 324. The results of this comparison are
given in tables (C.5) and (C.6) of the appendices. A summarised version of
the results are shown in table (5.2), showing the root-mean-square { rms )

baseline differences between the two days.

number of rms baseline

baselines | differences ( cm )

Day 324 minus Day 322 28 13.6
Day 324 minus Day 323 21 9.3

Table 5.2: Daily baseline repeatability : Broadcast ephemeris

The baseline lengths vary from 98 km to 1553 km, and typically the
differences between the solutions were less than 0.5 ppm.

A comparison has been made between the WGS-72 coordinates derived
from the SLR solution and the baselines determined from the GPS solution
from day 324. The differences between the baseline lengths and the relative

baseline errors are presented in table (5.3).

The baseline differences are less than 0.6 ppm, which is typical of the
accuracy of the broadcast ephemeris. However, there appears to be a sys-
tematic effect, with the GPS determined baselines generally larger than the
SLR determined baselines. The GPS solution was computed using the WGS-
72 coordinates for the satellites and the fixed station of Kootwijk. The SLR

coordinates were transformed onto the WGS-72 terrestrial frame, so no scale
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Baseline | Difference | ppm
length (km) (cm)
Kootwijk - Graz 899 -40.0 | 0.445
- Grasse 939 -46.6 | 0.496
- RGO 406 0.5 | 0.013
- Wettzell 602 -12.2 | 0.202
Graz - Grasse 764 -13.1 1 0.171
- RGO 1182 -38.1 | 0.322
- Wettzell 302 -18.6 | 0.617
Grasse - RGO 932 -49.8 | 0.533
- Wettzell 753 -13.2 | 0.175
RGO - Wettzell 917 -6.8 | 0.074
rms = 29.3

Table 5.3: Comparison of day 324 broadcast ephemeris solution with the
SLR solution

difference should have been apparent between the two coordinate sets. The
baseline error has been plotted against baseline length in figure (5.5), to
investigate this scale difference. It can be seen from the figure, that the
baseline error generally increases with the baseline length, although there is
no significant linear relation between the two values.

The height differences between the SLR solution and the GPS solutions
are compared in table (5.4), for day 324. The height differences are shown
for baselines from Kootwijk, which is in the centre of the network. It is
apparent that there is a discrepancy between the height differences to Graaz.
This is unlikely to be caused by a rotation of the network, because the height
differences to the nearest station, Wettzell are of the opposite sign. The most

likely cause is the use of the incorrect eccentricity vector, or by an error in

the antenna height.

5.3.2 Precise Ephemeris Solutions

The precise ephemeris for the GINFEST GPS campaign was provided by
the Naval Surface Warfare Center, in the WGS 72 coordinate system. This
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Figure 5.5: Baseline error plotted as a function of baseline length : Day 324

l.

for the broadcast ephemeris

Height differences WGS72 | Day 324 | Difference
in metres (SLR) (GPS)

Kootwijk - Graz -447.247 | -448.694 1.447

- Gfa.sse -1228.809 -1228.620 -0.189

- RGO 22.557 22.634 -0.077

- Wettzell | -568.698 | -568.436 -0.268

Table 5.4: Height differences for the broadcast ephemeris solution
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ephemeris was given at fifteen minute epochs and it was interpolated to the
required epoch using an 8* order Everetts interpolation algorithm.

Two different types of solution were computed,

e Single day solutions were computed in a similar way to the broadcast

ephemeris solutions.

o A three day solution was computed using all the data from the GIN-
FEST campaign. For this solution, a new set of integer ambiguities

were estimated for each day.

The day to day repeatability of the single day solutions were investigated
by comparing the baselines determined from each day with the three day
solution. The differences between the solutions are given in tables (C.7),(C.8)
and (C.9) of the appendices, with a summary given in table (5.5) showing

the rms baseline differences.

Day number of | rms baseline

baselines | differences (cm)

Day 322 28 18.9
Day 323 21 57
Day 324 36 9.7

Table 5.5: Daily baseline repeatability : Precise ephemeris

The baseline agreement between the second two days of the campaign
and the three day solution shows a slight improvement over the broadcast
ephemeris solution. On day 322 the main discrepancy appears to be with
the baselines connected to Jodrell Bank. Excluding this station from the
comparison gives a rms baseline difference of 8.3 cm, between day 322 and
the three day solution. No obvious reason could be found for the poor de-
termination of the coordinates of Jodrell Bank, especially when considering
that no such differences were seen in the broadcast ephemeris solution.

The three day solution has been compared with the SLR determined

baselines, and the comparisons are shown in table (5.6).
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Length | Difference { ppm
(km) (cm)
Grasse - Kootwijk 939 -29.310.312
- Graz 764 -10.6 | 0.139
- Wettzell 753 -8.1 | 0.107
- RGO 932 -26.6 | 0.285
Kootwijk - Graz 899 -27.5 1 0.306
- Wettzell 602 -4.7 1 0.076
- RGO 406 -14.2 1 0.348
Graz - Wettzell 302 -13.1 { 0.432
- RGO 1182 -34.8 | 0.294
Wettzell - RGO 917 -10.1 { 0.110
rms = 20.5

Table 5.6: Comparison of the three day precise ephemeris solution with the

SLR solution

The rms baseline differences for table (5.6) of 20.5 cm, gives a better
agreement with the SLR solution, than the broadcast ephemeris solution.
The differences in the baseline lengths are less than 0.4 ppm, which is within
the expected accuracy of the precise ephemeris. An improvement in the
solution would also be expected when using the three days of data, when
compared to the single day of data used for the broadcast ephemeris solu-
tion. However, as in the case of the broadcast ephemeris solution, the GPS
determined baselines are all larger than the SLR determined baselines. The
baseline errors have been plotted against the baseline length in figure (5.6),
showing a similar trend to figure (5.5).

An examination of the height components of the baselines in table (5.7),
shows the same discrepancy in the height of Graz, that was seen in the
broadcast ephemeris solution. Although the baseline agreement is better
for the precise ephemeris, the agreement between the height components is

somewhat worse than for the broadcast ephemeris solution.
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Figure 5.6: Baseline error plotted as a function of baseline length : Three

day solution for the precise ephemeris

Height differences WGS 72 3 day precise | Difference

in metres (SLR) | ephemeris (GPS)

Kootwijk - Grasse |-1228.809 -1228.103 -0.706
- Wettzell | -568.694 -568.754 0.060
- RGO 22.557 22.928 -0.371
- Graz -447.247 -449.272 2.025

- Table 5.7: Height differences for the precise ephemeris solution
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5.3.3 Orbit Determination Solutions

A solution has been computed to test the fiducial network concept for orbit
determination over Europe. The first stage is the selection of the fiducial
sites, which will be held fixed in the solution. To test the repeatability of the
daily solutions, it was preferable to use the same three fiducial sites on each
day. ‘No data was available for Wettzell on the first day, and the uncertainty
in the height of Graz made this site unsuitable. This left the three SLR sites
at RGO, Grasse and Kootwijk.

The geometry of these sites is not ideal for a tracking network, because
they are not well distributed with respect to the rest of the network, instead
the rema,ininé GINFEST GPS sites lie outside these three sites (figure 5.1).
For this reason it was decided to strengthen the network by including the
GPS receiver located near the VLBI site at Onsala.

The coordinates of the VLBI site at Onsala in the same reference frame
as the SLR sites were obtained from Boucher et al [1988]. These coordinates
are given in the WGS 84 terrestrial system. A seven parameter Helmert
transformation was used to determine the systematic biases between the
WGS 84 coordinates and the IESSG-T coordinates, using the SLR sites of
Kootwijk, Wettzell, Grasse, Graz and Grasse. These biases were then applied
to the WGS 84 coordinates of Onsala to obtain coordinates consistent with
the IESSG-T SLR coordinates. The addition of the eccentricity vector to the
VLBI mark give the coordinates of the L1 phase centre of the GPS antenna
at Onsala The full set of coordinates of the GPS L1 phase centres in the
IESSG-T reference frame is given in table (5.8).

The long arc solution on which this solution was based was computed
using the GEM-T1 gravity field. In order to keep a level of comsistency
in the processing, it was decided to use the IESSG-T coordinate set as the
fiducial coordinates and use the GEM-T1 gravity field up to degree and order
eight in the orbit integration. The value of the product GM was taken to be
3986004.36 x 108m3s~2.

Two distinct types of solution were computed,

1. Three solutions were computed for each day of the campaign, with the
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Site x (m) y (m) z (m)
Grasse 4581711.574 | 556145.934 | 4389335.920
Graz 4194423.493 | 1162708.617 | 4647244.487
RGO 4033361.731 24054.932 | 4924377.521
Kootwijk | 3899218.720 | 396774.851 | 5015073.052
Wettzell | 4075551.760 | 931832.094 | 4801588.598
Onsala 3370658.685 | 711884.374 { 5349787.625

Table 5.8: GINFEST GPS L1 phase centre coordinates : IESSG-T

coordinates of Grasse, RGO and Onsala held fixed. The parameters
estimated included the remaining receiver coordinates, the initial phase
ambiguities and the six parameter state vector for each satellite. No a

priors constraints were placed on any of the estimated parameters.

2. A three day solution was computed for the whole campaign. The co-
ordinates of Grasse, RGO and Onsala were held fixed as in the single
day solution. The remaining receiver coordinates were computed for
the whole three days, with a new set of integer ambiguities computed
for each day. To assess the effect of the solar radiation pressure, two
different solution were computed. The first solution solving for the six
parameter state vector and the direct solar radiation scaling coefficient
for each satellite. Secondly a solution was computed solving for these

seven parameters and a constant y-bias acceleration for each satellite.

~ The results of the two, three day solutions are given in tables (5.9) and
(5.10), and these show the baseline differences between the SLR determined

baselines and the GPS determined baselines.

On examination of both solutions, the worse baseline agreements are on
the long baselines connected to Graz and Wettzell. These two sites are also
the furthest away from the three fiducial sites. The rms double difference
phase residual for the first solution is 0.10744 cycles, with the second solution,
solving for the additional satellite y bias accelerations, having a lower value

of 0.08831. The rms baseline differences for the two solutions are 14.0 cm
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Length | Difference | ppm
(km) (cm)
Grasse - Kootwijk 939 8.7 10.093
- Graz 764 1.1 | 0.014
- Wettzell 753 16.6 | 0.220
RGO - Kootwijk 406 -6.5 | 0.160
- Graz 1182 -18.5 | 0.157
- Wettzell 917 -1.110.012
Onsala - Kootwijk 700 -9.6 | 0.137
- Graz . 1172 -32.7 1 0.279
- Wettzell 919 -20.0 | 0.218
Kootwijk - Graz 899 -6.3 | 0.070
- Wettzell 602 4.8 | 0.080
Graz - Wettzell 302 -0.4 | 0.013
' rms = 14.0

Table 5.9: Comparison of orbit determination solution with the SLR solution

: Solving for the satellite state vector and the direct solar radiation pressure

and 11.7 cm respectively.

The second solution which solves for the y-bias acceleration appears to
have a slight improvement on the first solution, although the worst agreement
with the SLR solution in either case is about three parts in 107. In these
solutions there are no obvious systematic effects giving the scale differences
that were apparent in the broadcast and precise ephemeris solutions.

A comparison of the height components of the baselines is given in table
(5.10) for the second solution. It can be seen again that the height difference

to Graz is very high, in this case giving a height error of around two meters.

Three single day solutions were computed, solving for the receiver co-
ordinates, initial phase ambiguities and the six parameter state vector for
each satellite. No significant estimates for the direct solar radiation pressure

coefficient could be obtained. For these single day solutions, it was apparent
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length | Difference | ppm
(km) (cm)
Grasse - Kootwijk 939 5.4 | 0.058
- Graz 764 -8.2 1 0.107
- Wettzell 753 8.4 ]0.112
RGO - Kootwijk 406 |  -11.310.278
- Graz 1182 -20.8 | 0.176
- Wettzell 917 -3.6 | 0.039
Onsala - Kootwijk 700 1.7 | 0.024
- Graz 1172 -25.8 | 0.220
- Wettzell 919 -13.1 | 0.142
Kootwijk - Graz 899 -4.8 | 0.053
- Wettzell 602 6.4 | 0.106
Graz - Wettzell 302 -0.4 } 0.013
rms = 11.7

Table 5.10: Comparison of GPS orbit determination solution with the SLR
solution : Solving for the satellite state vector, direct solar radiation pressure

and the constant y-bias acceleration
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Height differences IESSG-T 3 day GPS orbit | Difference
in metres (SLR) | determination solution (m)
Kootwijk - Grasse | -1228.280 -1228.130 -0.150
- Wettzell | -568.627 -568.726 0.099
- RGO 22.7117 22.868 -0.151
- Graz -447.084 -449.232 2.148

Table 5.11: Height differences for the GPS three day orbit solution : Solving
for satellite state vector, solar radiation pressure coefficient and the y-bias

acceleration

that the satellite state vector was sufficient to account for any deficiencies in
the satellite force model. The coordinates of Grasse, RGO and Onsala were
held fixed in the adjustment, as in the three day solution.

The repeatability of the three single day solutions have been tested by
comparing the results from each day with the three day solution ( solving for
the y bias force ). The full comparisons are shown in tables (C.10), (C.11)
and (C.12) of the appendices. Figure (5.7) shows the rms differences between
the baseline components for each day and the rms differences between the
north, east and height components of the baselines.

Generally the north components of the baselines were less well determined
than the east components. The rms baseline differences are comparable with
the three day precise ephemeris solution

An inspection of the results for day 322 shows that the sites that gave
the worst baseline agreements were Jodrell Bank and Graz, which both lie
on the extreme edges of the network. The results of day 323 and 324 showed
similar trends. In general, the sites that were in the middle of the network
give the closest agreement, whereas the sites that lie well outside the three

fixed fiducial sites show the largest differences.

5.4 Discussion of Results

One of the main problems encountered with the GINFEST GPS data set was

the correction of cycle slips. The slips were easily corrected to within one
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nation solution compared with the three day solution
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or two cycles, but further refinement proved difficult when the slip occurred
after a gap in the data. This final stage of cycle slip repair was done by
visual inspection of the double difference phase residuals. The L1 and L2
frequency solutions were computed separately, to check for the cycle slips
on each frequency. Unfortunately, the unmodelled ionospheric delay on the
single frequency solutions produced large residuals over the long baselines.
This made the task of determining the value of the cycle slip troublesome
and sometimes uncertain.

The occurrence of cycle slips should affect the broadcast and precise
ephemeris solutions similarly. However, in the orbit determination solution,
any remaining cycle slips in the data from the fixed fiducial sites will affect
the accuracy of the orbit and these errors will propagate into the coordinates
of the non fiducial sites.

One limitation of the current generation of GPS software at Nottingham
University, is the necessity to use the data from the same number of satel-
lites, at every receiver site. Hence, if one of the sites in the network is only
observing three satellites, when the other sites are observing four, then all
the data from that site will be rejected at that epoch. This causes particular
problems between sessions A and B, when the receivers drop satellite 6 in
order to acquire satellite 13. This had the effect of lengthening the gap be-
tween the two observing session, making the cycle slip reparation task even
more difficult.

The single day broadcast ephemeris solutions gave a surprisingly good
repeatability. Most of the baseline lengths were well within the one part
per million accuracy expected from this ephemeris. The use of the precise
ephemeris gave a different solution to the broadcast ephemeris, although
there was no significant improvement in the solution. Both the precise and
broadcast ephemeris baseline solutions were larger than the SLR determined
WGS 72 baseline lengths. A seven parameter Helmert transformation was
used to determine whether there were any significant scale biases between

the two coordinate sets. The scale biases and their standard errors are given

in table (5.12).
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scale bias | standard error
ppm
Broadcast ephemeris | -0.320 0.3582
Precise ephemeris -0.234 0.4015

Table 5.12: Scale biases between the WGS 72 coordinate set and the broad-

cast and precise ephemeris solutions

It can be seen from table (5.12) that there were scale biases between the
two coordinate sets, although they both had large standard errors. If these
scale biases are applied to the broadcast ephemeris day 324 solution and the
precise ephemeris three day solution, the rms baseline differences compared
to the WGS 72 coordinate set are reduced to 13.7 cm and 7.7 cm respectively.
This compares to 29.3 cm and 20.5 cm before applying the biases.

The orbit determination solution, with the three fixed fiducial stations,
did not exhibit these particular scale biases, suggesting that the céordinates
of the fiducial sites constrained the scale of the network. On day 322 there
were only 51 epochs ( or minutes ) of data observed simultaneously by the
three fiducial sites. This day also produced the largest baseline differences
with the three day solution. Days 323 and 324 both had over 100 epochs
of simultaneous data from the fiducial sites, and these both produced better
baseline agreements with the three day solution. The reason for this could be
twofold; the last two days of the GPS campaign both shared more common
data with the three day solution than day 322 or it may indicate that more
observations were necessary to satisfactorily determine both the orbit and
the unknown receiver coordinates for the single day solutions.

The fiducial network approach for orbit determination is particularly sus-
ceptible to errors in the fixed fiducial coordinates. In this solution, the coor-
dinates of Onsala ( determined from VLBI ) may not have been consistent
with the SLR determined coordinates of Grasse and RGO. Ideally, the fidu-
cial sites would have been situated close to either SLR or VLBI facilities,
but not a combination of the two. In Europe, the only site with both SLR

and VLBI facilities is Wettzell, from which it is not possible to determine

129



the systematic biases between the two coordinate reference frames.

The solar radiation pressure models adopted for the three day solutions
demonstrated that modelling for the constant y-bias acceleration gave only a
slight improvement in the solution. The y-bias force is relatively small, and
only for longer arcs are the effects expected to be particularly significant.

The satellite geometry, which affects all the solutions, was not optimal for
the duration of the GINFEST GPS campaign. The sky plot shown in figure
(5.2), shows that for the first half of the observation period, the satellites
are all in a line running from the West to the East. The geometry improves
slightly, during the second half of the observation period when satellite 13 is
included. It is worth comparing this West-East satellite geometry, with the
baseline components determined in figure (5.7), where the east components
of the baselines were generally better determined than the north components.

The accuracy of all the solutions computed were in the order of a few parts
in 107. At this level of accuracy, other error sources may become significant.
The meteorological model used was the Saastamoinen model, which is based
upon surface weather readings. This is expected to satisfactorily model the
dry component of the troposphere, but the wet component, which can pro-
duce scale errors of the order of one part in 107, is more difficult to model.
Furthermore, no surface weather data was recorded at Graz, and this station

produced the largest baseline differences in all the solutions.
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CHAPTER 6

The Tide Gauge Project

6.1 Introduction

The tide gauge project was established to investigate the disrepancies be-
tween the oceanographic and the geodetic levelling techniques, which have
been used around the coast of Great Britain. The 3"¢ UK Scientific Levelling
Network of the Ordnance Survey, which connects the tide gauges of Great
Britain, indicates that there is a sea slope of 6.7¢m /100km, along the north-
south coastline. However, the oceanographic evidence suggests that thereis a
sea slope of about 1.4¢m /100km . The investigations would involve comput-
ing the ellipsoidal height differences between several of the tide gauges along
the east coast of Great Britain, using GPS observations. The orthometric
height differences between these tide gauges could then be obtained from the
GPS solutions, using a geoidal model. This would allow a direct comparison
to be made between the two levelling techniques and the GPS derived height
differences. The majority of the work is being undertaken in a separate re-
search project [Basker, 1989] and this chapter is primarily concerned with

the determination of a precise ephemeris for the GPS computations.

6.2 GPS Campaign

The GPS campaign was designed to occupy 26 sites along the east coast of
Great Britain, from Leith in Scotland down to Lowestoft in Suffolk. Five of
these GPS sites were located adjacent to the tide gauge stations of Leith,
North Shields, Whitby, Immingham and Lowestoft. The campaign lasted a
total of eight days, starting from the 25fh May 1988. Five roving receivers

were used on each day, initially occupying the five most northerly sites. On
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Figure 6.1: Location map for the tide gauge project
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each successive day, the five receivers were moved south by three sites, such
that two common sites were occupied on adjacent days. This system pro-
duced a common baseline on the adjacent days, which could be used to check
the repeatability of the GPS solution and to provide a safeguard against miss-
ing data. The effects of the ionosphere were minimised by limiting the lengths
of the baselines between adjacent sites to about 30 km.

At the same time, GPS receivers located at Onsala, Wettzell, Jodrell Bank
and the Royal Greenwich Observatory (RGO) were recording simultaneous
data (figure 6.1). These four receivers were located adjacent to VLBI or
SLR facilities and would be used as fiducial sites in the computation of the
satellite ephemerides.

The observing sessions for the roving receivers were designed to give maxi-
mum coverage of two particular satellite constellations and to give compatible
data with the receivers located at the fiducial sites. These times are shown

in table (6.1) for Wednesday 25"* May ( day number 146 ).

Satellite (PRN) Times (local times)
Session A 6 9 11 12 12:20 - 13:30
Session B 9 11 12 13 13:50 - 15:00
Session C | 3 11 12 13 15:00 - 16:10

Table 6.1: Observing sessions for the roving receivers

The observing sessions for the static receivers at the two fiducial sites of
RGO and Jodrell Bank were selected to be compatible with the observing
periods of the permanent CIGNET tracking sites at Wettzell and Onsala.
The times are given in table (6.2) for day number 1486.

The times of the observing sessions precessed by four minutes each day
after the times given in tables (6.1) and (6.2). TI 4100 GPS receivers were
used at each site, with the data recorded on IBM personal computers. Me-
teorological data was recorded at each site at fifteen minute intervals.

The satellite configuration for the tide gauge campaign is shown in figure
(6.2) with the majority of the satellites located in the western part of the sky.

This is not an ideal geometrical configuration, but no improvement could be
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Figure 6.2: Satellite sky-plot for the tide gauge project
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Satellite (PRN) Times (local times)
Session A 6 9 11 12 12:28 - 13:48
Session B 9 11 12 13 13:48 - 14:52
Session C | 3 9 11 13 14:52 - 15:56
Session D | 3 12 13 15:56 - 17:08

Table 6.2: Observing sessions for the static receivers

made with the current satellite constellation.

6.3 Derivation of the Fiducial Site Coordinates

WGS 84 coordinates for the L1 phase centre of the TI 4100 antennas at the
fiducial sites of Onsala and Wettzell were obtained from [Boucher et al, 1988].
Consistent WGS 84 coordinates of the intersection of the axes for the SLR

facility at RGO were obtained from the same source. These coordinates were,

x = 4033463.921
y =  23661.435
z = 4924304.741

The solar pillar was used for the duration of the tide gauge campaign at

the RGO, with the eccentricity vectors to the SLR intersection of axes given

a‘s’
Az = -4.651
Ay = -36.078
Az = -1.946

The height of the L1 phase centre above the solar pillar bench mark was
measured as 1.168 m. The final WGS coordinates of the L1 phase centres for
the GPS antennas at RGO, Onsala and Wettzell are given in table (6.3).

6.4 Data Preprocessing
The data from the roving receivers, Jodrell Bank and RGO was recorded on
three and a half inch floppy discs at three second intervals. The data was then

loaded onto the hard disc of a Zenith personal computer and transferred onto
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Site x(m) y(m) z(m)
RGO 4033460.008 | 23625.361 | 4924303.700
Onsala | 3370659.739 | 711876.241 | 5349787.910
Wettzell | 4075546.159 | 931824.800 | 4801598.990

Table 6.3: L1 phase centre coordinates for the tide gauge fiducial sites : WGS
84

the ICL 3900 mainframe computer at Nottingham University using Kermit,
a file transfer protocol. The data from the CIGNET sites at Onsala and
Wettzell was obtained from the U.S. National Geodetic Survey (NGS) on a
magnetic tape, which contained the satellite ephemeris, meteorological data
and the measurement data at thirty second intervals.

The data from the roving receivers was processed by another postgraduate
student, as part of his research project [Basker, 1989]. The preprocessing
work work done by the author was confined to the fiducial sites only. At the
time of the data processing, no accurate eccentricity vectors were available
for Jodrell Bank and this site was left out of the preliminary computations.
Figure (6.3) shows the availability of data from the three remaining fiducial

sites.

Day number
146 147 148 149 150 151 152 153
RGO X X X X X X X X
Wettzell | X X X X X X X
Omsala | X X X X X X

Figure 6.3: Fiducial site data availability

Unfortunately, no data was recorded at the site Wettzell on day 151 and
no data was recorded at Onsala on days 152 and 153.

The data from Onsala and Wettzell is provided by the US National Geode-
tic Survey in a standard format, already decoded into measurement data at
thirty second intervals. The data from RGO was decoded using TIDE-

CODE to obtain the measurements at three second intervals. The data
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from all these sites was then filtered to remove all the satellites below a 15°
elevation angle using EAFILTER.

In order to produce simultaneous measurement data for the three sites,
the RGO data was normal pointed to the same epochs as the thirty second
data from Onsala and Wettzell. This was done by fitting a series of sec-
ond order polynomials to each thirty second span of the RGO data using
NORMAL. The receiver clock offsets were determined in the pseudorange
solution (PSEUDO) and these were used to time correct the carrier phase
data using TIMECOR.

The last stage of the preprocessing was to detect and correct for any cycle
slips. The data from the three fiducial sites was used in a single frequency
L1 double difference solution for each day. The residuals of each solution
were then examined to detect the size and location of any cycle slips. These
were then corrected for the L1 frequency and the process repeated for the L2
frequency. A combined L1/L2 (ionospherically corrected) solution was then

computed to check the quality of the cycle slip free data.

6.5 Analysis of Data

The main objective of the GPS data analysis was to produce precise ellip-
soidal height differences between the roving receiver sites. The height dif-
ferences between the tide gauges could then be obtained by precise levelling
between the tide gauges and the adjacent roving receiver sites. Two methods

were considered possible to produce these GPS height differences,

1. Process the data from the roving receivers and the three fiducial sites
simultaneously for each day. The fiducial site coordinates would be
held fixed in the adjustment and estimates made for the roving receiver

coordinates, satellite state vectors and the initial phase ambiguities.

2. Process the data from the fiducial sites separately to produce a precise
ephemeris. This precise ephemeris could be used in a separate solution

to determine the coordinates of the roving receivers for each day.
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The first method would be similar to the processing technique used for the
single day GINFEST solutions (chapter 5). An examination of the observing
- sessions for the roving and static receivers shows there is some incompatibility
between the observation times of the different satellite sessions and also the
session C constellations are different. The data for the first five days of the
campaign, from the static receivers at the fiducial sites was of a reasonable
quality, with no large breaks in the data. However, on the last three days of
the campaign, only two of the fiducial sites recorded data.

Single day solutions were computed for the first five days of the campaign,
using both the fiducial and roving receiver data, solving for the roving receiver
coordinates and the satellite state vectors. However, the standard errors of
the estimated receiver coordinates were of the order of one metre and of the
order of several hundred metres for the satellite state vectors. A check on
the repeatabilities of the solutions were made by comparing the common
baseline lengths on the adjacent days. The differences between the common
baseline lengths were up to 20 cm for baselines of between 12 km and 29 km,
giving typical repeatabilities of between five and ten parts per million. This
poor estimation of the coordinates may have been influenced by the satellite
and receiver geometry. An examination of the sky-plot in figure (6.2) shows
the position of the satellites, which are mainly at low elevation angles in one
quadrant of the sky. In addition, on the first few days of the campaign the
roving receivers were poorly located with respect to the fiducial sites (figure
6.1), with all the sites lying outside the fiducial network. This combination of
receiver and satellite geometry would appear to have contributed to the poor
repeatability of the GPS solutions. This problem is exacerbated by the loss
of data which occurs when combining the data from the different observing
sessions of the fiducial and roving receivers. One method of fully utilising the
fiducial site data is to process it independently of the roving receiver data.
‘This is the approach adopted for the second option.

The fiducial data was divided into two sets to allow the computation of
two sets of four day orbits, covering day numbers 146 to 149 and day numbers

150 to 153. The length of the arcs were limited to four days to reduce the
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amount of data to be processed in each batch and to reduce the effect of
any unmodelled force model components. The second set of four day orbits
(150 — 153), would also test the effect of determining the orbit with only
two fiducial sites for part of the solution.

For each set of four day orbits, the following parameters were estimated,
e Initial phase ambiguities for each day.
o Satellite state vector for each satellite.

o Direct solar radiation pressure coeflicient for each satellite.

o Y bias acceleration for each satellite.

For all the solutions, the ionosphere was corrected using the combined
L1/L2 frequency and the troposphere was corrected with Saastamoinen’s
model, using the surface meteorological data recorded at each site.

Two main points were noted in the processing,

1. No estimates could be made for satellite 3 for both sets of orbits, mainly

due to a lack of observations to this satellite. The satellite was then

rejected from all the computations.

2. The lack of the fiducial data in the second set of orbits was apparent
with the number of double difference observations in the first set of

orbits as 4672 and the number in the second set as 2390.

For each four day solution, the estimated orbital parameters were used in
ORBIT to integrate the orbits e;gain. This iterative process was repeated
until no further change in the estimated parameters were noted.

Single day solutions were then computed using only the data from the
roving receivers, but with the satellite coordinates obtained from the orbits
computed in the previous two solution. The estimated parameters included
only the receiver coordinates and the initial phase ambiguities. The base-
line lengths between the roving receiver sites varied between ten and thirty
kilometres. It is over this length of baseline that the double difference solu-

tion may become sensitive to the effects of the ionosphere. Three types of
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solution were computed with the aims to test the effect of modelling for the
ionospheric delay and to test the effect of constraining the phase ambiguities

to integer values.

1. Combined L1/L2 solutions were computed with the standard first order

ionospheric correction (section 2.5.2).

2. Single frequency L1 solutions were computed, which do not include an

ionospheric correction.

3. An integer fized solution was computed for the single frequency L1. In
this solution the estimated integers from solution (2) were constrained

to integer values.

Each solution was computed with the position of one of the sites con-
strained to the coordinates determined in the pseudorange solution. The
meteorological data recorded at each site was not used to correct for the tro-
posphere, instead the standard atmosphere model (section 2.5.2) was used.
This would prevent the solutions being biased by possible uncalibrated me-
teorological equipment, which is more noticeable on shorter baselines.

The receiver sites used in the computations and the identification letters

used are,
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Quixwood Moor QUI

Shoreswood SHO
Shilbottle SHI
Helm HEL
High Moorsley HIG
Billingham BIL
Whitby WHI
Cloughton CLO
Atwick Sands ATW
Tunstall TUN
Binbrook BIN
Castcliffe Hill CAS
Thornham THO

Great Massingham GRE

Table (6.4) shows the baseline lengths and heights for the ionospherically
corrected L1/L2 solution. The single frequency L1 solution results are given
in table (6.5). Table (6.6) shows the results of the single frequency L1 solution
with the phase ambiguities constrained to integer values. These integers were
obtained from the previous L1 solution.

No data was available from the roving site QUI on day 147, preventing a
determination of the QUI - SHO baseline on day 147.

There is no external source by which to compare these results. The only
method of assessing the accuracy is to check the repeatability of the common
baseline lengths and height differences for the adjacent day solutions. These
repeatabilities are shown in table (6.7) for the seven baselines available, for
each of the three different solutions.

The most consistent solution for both the baseline length and height
differences is the L1 fixed ambiguity solution. The process of constraining the

integer ambiguities to integers gives a better solution than the L1 frequency

with no integer constraint.
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Day length Height

Baseline (km) Difference (m)

146 | QUI-SHO | 25152.084 151.172
147 | QUI-SHO | nodata

SHI - HEL | 12070.097 3.444

148 | SHI- HEL | 12070.171 3.422

HIG - BIL | 28933.506 150.679

149 | HIG - BIL | 28933.539 150.564

WHI - CLO | 17377.650 -188.573

150 | WHI - CLO | 17377.632 -188.543

ATW - TUN | 21310.098 -3.340

151 | ATW - TUN | 21310.122 -3.359

BIN - CAS | 18714.862 -8.288

152 | BIN - CAS | 18714.850 -8.237

THO - GRE | 23085.674 -42.504

153 | THO - GRE | 23085.552 -42.456

Table 6.4: Tide gauge project : L1/L2 solution
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Day length Height

Baseline (km) Difference (m)

146 | QUI- SHO | 25152.091 151.090
147 | QUI- SHO no data

SHI - HEL | 12070.095 3.440

148 | SHI- HEL | 12070.122 3.437

HIG - BIL | 28933.490 150.559

149 | HIG - BIL | 28933.512 150.644

WHI - CLO | 17377.634 -188.549

150 | WHI - CLO | 17377.611 -188.492

ATW - TUN | 21310.081 -3.340

151 | ATW - TUN | 21310.070 -3.320

BIN - CAS | 18714.826 -8.263

152 | BIN - CAS | 18714.846 -8.216

THO - GRE | 23085.649 -42.443

153 | THO - GRE | 23085.583 -42.468

Table 6.5: Tide gauge project : L1 ambiguity free
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Day length Height

Baseline (km) Difference (m)

146 | QUI- SHO | 25152.098 151.075
147 | QUI - SHO no data

SHI - HEL | 12070.090 3.440

148 | SHI- HEL | 12070.085 3.487

HIG - BIL | 28933.478 150.616

149 | HIG - BIL | 28933.508 150.660

WHI - CLO | 17377.638 -188.555

150 | WHI - CLO | 17377.600 -188.514

ATW - TUN | 21310.078 -3.338

151 | ATW - TUN | 21310.075 -3.338

BIN - CAS | 18714.834 -8.279

152 | BIN - CAS | 18714.830 -8.235

THO - GRE | 23085.627 -42.467

153 | THO - GRE | 23085.618 -42.489

Table 6.6: Tide gauge project : L1 ambiguity fixed solution
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Repeatabilities in centimetres

Baseline | (km) Baseline length Height differences
L1 | L1 fixed | L1/L2 || L1 | L1 fixed | L1/L2
SHI-HEL 12 | 2.7 0.5 74103 4.7 2.2
HIG-BIL 29 |22 3.0 3.3 | 8.5 4.4 11.5
WHO-CLO | 17 |23 3.8 1.8 5.7 4.1 3.0
ATW-TUN| 21 |11 0.3 3.3 26 0.0 1.9
BIN-CAS | 19 |20 0.4 1.2 | 4.7 4.4 5.1
THO-GRE | 23 |6.6 0.9 12.2 || 2.5 2.2 4.8

Table 6.7: Repeatability of the common baselines

The effect of neglecting the ionospheric delay is considered to be a con-
traction in the scale of a network (section 2.5.2). A comparison of the baseline
lengths given in tables (6.4) and (6.5) would generally support this theory.
However, the combined L1/L2 frequency (ionospherically corrected) solution
has produced the largest anomalies for both the baseline length and the
height differences. The two largest discrepancies in the L1/L2 solution also
correspond with the largest differences in the L1 ambiguity free solution. The
ionospheric delay would be of a similar magnitude on the eight consecutive
days of the GPS campaign, because the same satellite constellations were
observed at the same time of day. The ionospheric delay would then be ex-
pected to cause a similar scale effect on each of the networks determined over
these eight days. Hence, this may explain why the L1 solutions give a better
repeatability than the ionospherically corrected, but noisier L1/L2 solutions.

The repeatability of the WHI-CLO baseline is worth consideration as it is
determined at the break between the two sets of four day orbits. Therefore,
this represents a better test of the repeatability of the solutions, because the
coordinates of WHI and CLO on the adjacent days were determined from
two independent sets of orbits. However, the repeatability of this baseline

can be seen to be comparable with the baselines determined on the other

days.
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No obvious differences can be seen between the repeatabilities of the base-
lines determined from the two sets of orbits, with the possible exception of
the THO-GRE baseline, which was determined at the end of the second set
of orbits. This may well have been caused by the lack of data from the
fiducial sites during the latter part of the observation campaign. A compar-
ison has been made between the height differences obtained in these solu-
tions and the height differences obtained in a broadcast ephemeris solution
[Ashkenazi et al, 1989]. Whilst the average agreement between the height
differences during the first set of four day orbits was of the order of three
millimetres, this increased to over three centimetres during the second set of
four day orbits. These differences suggest that the loss of the data from the
fiducial sites, in particular the use of only two fiducial sites on the last three
days, has degraded the accuracy of the orbits. The inclusion of the data
from Jodrell Bank may strengthen the orbit determination solution, but the
location of the site is not ideal, when considering the missing fiducial site
data is from Onsala and Wettzell.

Whilst the loss of the fiducial site data has led to larger differences in the
heights during the second four days, the effect of using the different solution
types (L1, L1 fixed ambiguities and the L1/L2) would appear to be more
significant. This may indicate that the GPS derived height differences are
less susceptible to errors in the orbit than from other error sources, such as
atmospheric effects, for this length of baseline.

These results do show the advantage of using longer arcs in the orbit
determination process, where there is a loss of tracking data from the fidu-
cial sites. The longer arcs have improved the solution when comparing the
repeatabilities with those obtained from the single day solutions. One dis-
advahtage of the TI 4100 GPS receiver is that a maximum of four satellites
can be observed at any one time. The use of a receiver capable of tracking
all the available satellites would produce more data for each satellite. This
would prevent the problems encountered with this project, where the fiducial
and roving receivers observed slightly different satellite sessions. Currently

some of the TI 4100 receivers at the CIGNET sites (section 2.4.2) are being
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replaced by Mini Mac receivers, which are currently capable of tracking all
the available satellites.

The repeatabilities of the GPS height components are of the order of a
few centimetres for baselines up to 30 km. However, the discrepancy between
the oceanographic and geodetic levelling techniques is of the order of 5 cm
per 100 km. Clearly, this level of accuracy has not yet been reached if the
repeatability of the solution is of a similar magnitude to the accuracy. A
very common source of error when using GPS, is the measurement of the
antenna heights. For this campaign, where the heights were critical, each )
antenna height was measured with a Wild level and with a tape measure, in
order to reduce the possible errors. Therefore, it is unlikely that the high
repeatabilities were caused by errors in the antenna heights.

A limiting factor in the determination of the satellite orbits was the geom-
etry between the fiducial sites and the satellites. Whilst this does not change
throughout the eight day campaign, the use of the continuous four day or-
bits would appear to have provided more constraint to the solution, giving
the much better repeatabilities on the baselines of the adjacent days. Fur-
ther improvement may have been possible by including data from additional
fiducial sites, preferably located in a better distributed network.

It is not possible to determine the height difference between the tide
gauges at Leith and Lowestoft with the data collected in the GPS campaign
in 1988, due to the loss of data at several of the sites. There have been two
GPS tide gauge campaigns since this date, but they were not recorded with
data from any fiducial sites and they have not been investigated here. The
results of these campaigns and the estimated GPS height difference between

the Leith and Lowestoft tide gauges can be found in Basker [1989].
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The GPS Standard Data Set



CHAPTER 7

The GPS Standard Data Set

7.1 Introduction

A five year GPS campaign was started in December 1986, to measure tectonic
motions in central and southern California. The initial observations were
comprised of three, five day observation periods. The last five days of the
observation campaign were recorded between the 3rd and 7th of January 1987
and this is the data set analysed in this chapter. All the observations were
recorded using the dual frequency TI-4100 NAVSTAR Navigator receivers

In this campaign, nine receivers were deployed at sites around the Cali-
fornian coastline and islands. These local sites were situated near places of
tectonic interest. Five more receivers were located at regional sites within
California, four of which, Owens Valley, Mojave, Palos Verdes and Vanden-
burg have been surveyed using VLBI observations.

A further five receivers were placed outside California, at sites around
North America. These continental sites were located at Austin, Churchill,
Algonquin, Platteville and Westford. The last three of these sites have been
surveyed using VLBI observations

A description of all the sites may be found in Dong and Bock [1988]. The

regional and continental sites are shown in figure (7.1).

7.2 Description of Data Set

The GPS data set collected between the 3rd and 7th of January 1987, has
been archived by the Massachusets Institute of Technology ( MIT ). The
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Figure 7.1: Regional and continental sites in North America

149



CSTG! GPS subcommission are distributing this standard data set to en-
able comparisons to be made of different GPS data processing techniques.
The standard data set is available from the US National Geodetic Survey
, on a nine track magnetic tape. The data is stored in two forms; the raw
data sampled at 30 second intervals and a cycle slip free data set, at 120
second intervals. Also stored on the tape are the site coordinates, broadcast
ephemerides and precise ephemerides.

The site coordinates are given in spherical geocentric form, in the SV 4
reference frame developed at the MIT (Appendix D). The antenna heights
above the ground stations are given in a separate document.

The five day campaign spans over the GPS week 364 ( January 3 ) and
week 365 ( January 4, 5, 6 and 7 ), which coincides with the change of refer-
ence systems used by the Defense Mapping Agency for the satellite ephemeris.
The precise ephemeris for week 364 was given in WGS 72 coordinates and
the precise ephemeris for week 365 was given in WGS 84 coordinates.

No surface weather data was available for the data processing, and a stan-
dard atmosphere model was used to account for the tropospheric delays. The
observations were recorded at night to minimise the effects of the ionosphere.

The satellite constellation was selected to maximise the observation pe-
riods of satellites (PRNs) 3, 6, 9, 11 and 13. Satellite 12 was also tracked,
but for a much shorter period. The satellite geometry was predominantly in
a line running North-South (figure 7.2), with all the satellites exceeding an
elevation angle of 60° at some point during the pass.

For the results presented in this chapter, only the GPS receivers located

at the regional and continental sites were considered. The distribution of the

data is shown in table (7.1).

1Commission on International Coordination of Space Techniques for Geodesy and Geo-

dynamics (CSTG) was established in 1979 as Commission VIII of the International Asso-

ciation of Geodesy.
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SATELLITE SKYPLOT
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Figure 7.2: Satellite sky-plot for the North American data
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Day number {3 4 5 6 7
Continental
Algonquin (ALGO) X X X X X/|VLBIsite
Platteville (PLAT) X X X X X/|VLBIsite
Westford (WSFD) X X X X VLBI site
Churchill (CHUR) X X X X X
Austin (AUST) X X
Regional
Owens Valley (OVRO) X X X X X | VLBIsite
Ford Ord (FTOR) X X X X X
Mojave (MOJA) X X | VLBIsite
Palos Verdes (PVER) X X X X X|VLBIsite
Vandenburg  (VNDN) X X X X X|VLBIsite

Table 7.1: Data distribution for the regional and continental sites
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7.3 Analysis of Data

The standard data set was provided in two formats; the 30 second raw data
and the 120 second cycle slip free data. The 120 second data was selected
for the analysis to simplify the data preprocessing stage, especially with the
data already having been cleaned of cycle slips.

With the 120 second data, it was not possible to time correct the phase
data for the receiver clock bias, using the phase rate expression derived in
equation (2.62), because of the 120 second interval between the phase mea-
surements. Instead, it was decided to correct the carrier phase time tags
using the pseudoranges.

If the satellite clock bias, broadcast in the satellite navigation message, is
removed from the pseudorange, then the corrected pseudorange is comprised
of the true range (in seconds) and the receiver clock bias. If this corrected
pseudorange is subtracted from the carrier phase time tag, then the time of
signal transmission at the satellite in GPS System Time remains. This was
then used as the time tag in the analysis.

The orbit integration was started from a satellite state vector, obtained
from the NSWC precise ephemeris. An initial value for the direct solar
radiation pressure coefficient was estimated to be 1.5. This was equivalent
to an acceleration of about 0.848 x 107 ms~2, which was estimated from
previous computations. The WGS 84 geopotential model was used for the
numerical integration up to degree and order 8, with the recommended value
of the product GM taken to be 3986005.0 x 10® m3s~2. This was used to
allow a comparison to be made with the NSWC precise ephemeris.

Four different lengths of solution were considered:

e Single day solutions were computed for each day, solving for the six
parameter initial state vector for each satellite, receiver coordinates
and the initial phase ambiguities. Comparable single day solutions

were also computed by Mr. M. Aquino, using the orbit relaxation

techniques (section 3.8).

e Two continuous, two day solutions were computed for the days 4 and 5,
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and the days 6 and 7. For these, solutions were produced to investigate
the effect of solving for the direct solar radiation pressure coefficient

for each satellite.

e A continuous three day solution was computed, for the days 4, 5 and
6. The effects of solving for the constant y bias acceleration for each

satellite were investigated.

e A continuous four day solution was computed, for the days 4, 5, 6
and 7. The effects of solving for the constant y bias acceleration were

investigated, as in the three day solution.

All the multiple day solutions estimated a new set of initial phase ambi-
guities for each day.

In all the solutions, the L1/L2 combined frequency was used to correct
for the ionospheric effects. The tropospheric delay was accounted for, using

the standard atmosphere model given in section (2.5.2).
The coordinates of Owens Valley (OVRO), Platteville (PLAT) and Algo-
nquin (ALGO) were held fixed to their SV4 coordinates in all the solutions.

These sites were selected to provide the best geometrical configuration with

the most reliable data.

7.3.1 Single Day Solutions
The single day solutions were computed for the days 3, 4, 5 and 6, using the
data from the VLBI fiducial sites. A comparable solution was also computed
using the orbit relaxation technique. No comparisons are given for day 7,
because of problems encountered with the orbit relaxation technique when
using the broadcast ephemeris on that day.

The solutions for day 3 are presented in table (7.2). The differences shown
are the VLBI determined baselines minus the GPS determined baselines for
both types of solution. PVER had no simultaneous data observed with the

other sites and consequently the data couldn’t be used.

It can be seen that the differences between the GPS and VLBI computed

baseline lengths, are of a similar magnitude for both the orbit determination
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Orbit Determination

Orbit Relaxation

Length | Difference | ppm Difference | ppm
(km) (cm) (cm)
ALGO - VNDN 3727 -_7.5 0.020 11.1 | 0.030
- WSFD 642 74| 0.115 -4.6 | 0.072
PLAT - VNDN 1533 -6.7| 0.044 9.9 | 0.065
- WSFD 2752 7.1| 0.026 -8.3 | 0.030
OVRO - VNDN 363 -7.0| 0.193 7.8 10.213
- WSFD 3929 7.1 0.018 -6.0 | 0.015
VNDN - WSFD 4228 -0.3 | 0.001 5.5 | 0.013
rms = 6.6 rms = 7.9

Table 7.2: Single day solution baseline differences with VLBI : Day 3

Orbit Determination

Orbit Relaxation

Length | Difference | ppm Difference | ppm
(km) |  (cm) (cm)
ALGO - VNDN 3727 9.1} 0.024 5.8 10.015
- WSFD 642 -1.5| 0.023 18.7 1 0.291
PLAT - VNDN 1533 11.0| 0.072 4.0 | 0.026
- WSFD 2752 -2.8 | 0.010 -3.1 ] 0.011
OVRO - VNDN 363 6.5| 0.179 8.3 |0.228
- WSFD 3929 -3.1} 0.008 0.7 | 0.002
VNDN - WSFD 4228 6.4 0.015 4.2 | 0.010
rms = 6.6 ms = 8.4

Table 7.3: Single day solution baseline differences with VLBI : Day 4
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and the orbit relaxation solutions. Baseline errors of up to 2 parts in 107
occur on the shorter 363 km OVRO-VNDN baseline, for both the solutions.
The errors on the other baseline lengths are generally less than or;e part in
107.

Similar results were obtained for day 4, given in table (7.3). Again,
the OVRO-VNDN baseline produces the largest discrepancy from the VLBI
solution. The orbit relaxation solution has also given a poor estimate for the

ALGO-WSFD baseline, producing an error of 3 parts in 107,

Orbit Determination | Orbit Relaxation
Length { Difference PpPm Difference | ppm
(km) (cm) (cm)
ALGO - VNDN 3727 -11.0 | 0.030 8.7 1 0.023
PLAT - VNDN 1533 -9.7( 0.063 7.1]0.047
OVRO - VNDN 363 -8.7| 0.239 7.4 | 0.202
rms = 9.8 rms = 7.8

Table 7.4: Single day solution baseline differences with VLB’I :Day 5

The solutions for day 5 are presented in table (7.4). Unfortunately the
data from WSFD had two satellites missing and could not be used in the
analysis. PVER had no compatible data with the other sites and also had
to be rejected. Therefore, the solutions had only one station to make a any
baseline comparisons with. The orbit determination and relaxation solutions
both gave similar answers, with maximum baseline differences of up to 2
parts in 107. It is interesting to note that the differences between the two
solutions are of opposite sign. This was also noted on day 3.

The solutions for day 6 are presented in table (7.5). This day produced the
largest differences for both the orbit determination and the orbit relaxation
solutions. The Californian sites at MOJA and PVER produced the largest
differences for the orbit determination solutions. All the baseline differences
were less than 2 parts in 107 except for the OVRO-MOJA baseline, Which

gave an error of 4 parts in 107. However, for the orbit relaxation technique,
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Orbit Determination

Orbit Relaxation

Length | Difference { ppm Difference | ppm
(km) (cm) (cm)
ALGO -MOJA 3407 18.3 | 0.054 7.8 { 0.023
- PVER 3611 20.9 | 0.058 5.3 10.015
- WSFD 642 -1.9] 0.030 37.6 | 0.585
PLAT -MOJA 1196 18.5| 0.155 5.6 | 0.046
- PVER 1407 20.4 ] 0.145 1.4 ( 0.010
- WSFD 2752 1.8 { 0.007 26.3 | 0.095
OVRO -MOJA 245 -10.0 | 0.407 4.2 10.172
- PVER 387 3.8 0.098 10.7 | 0.277
- WSFD 3929 -1.9 ] 0.005 29.9 | 0.076
MOJA -PVER 224 2.6 0.116 -1.9 1 0.086
- WSFD 3903 17.4 | 0.045 35.5 0.091
PVER - WSFD 4096 20.0 | 0.049 32.0 | 0.078
rms = 14.0 rms = 21.5

Table 7.5: Single day solution baseline differences with VLBI : Day 6
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the largest differences were for the baselines connected to WSFD. This gave
an error of 6 parts in 107 on one of the baselines, with the other differences
less than 3 parts in 107.

In general, the orbit determination technique gave better results than
the orbit relaxation technique, when comparing the baseline lengths with
the VLBI coordinates. Both of the solutions were computed using the same
number of observations and the same tropospheric models. This would sug-
gest that the differences are caused by the different methods of modelling the
orbit. The orbit relaxation technique solves for the corrections to the broad-
cast elements which describe the mean orbital ellipse. Hence, any errors in
the other nine broadcast elements, which describe the perturbations from this
mean ellipse will not be accounted for. Therefore, this method relies upon
the quality of the broadcast ephemeris. However, in the orbit determination
technique, the force model should account for any orbital perturbations.

The root-mean-square (rms) differences between the baseline components
of the single day orbit determination solution and the VLBI solution are
shown in figure (7.3). It can be seen that the north components of the
baselines are generally better determined than the east components. This
is particularly noticeable on day 6, where the rms differences for the two
components are 2.1 cm and 17.1 cm respectively. This has produced the large
discrepancies in the determination of the baselines from ALGO and PLAT
to PVER and MOJA. An examination of the sky-plot in figure (7.2) shows
the predominant north-south satellite geometry, which appears to produce a
better determination of the north-south baseline components.

The height components of the baselines are also determined better than
the east components. This is in contrast to the GINFEST data, where the
height components produced the largest errors.

For the orbit determination solution, no estimates were made for the
direct solar radiation pressure coefficient. Attempts were made to solve for
this parameter, but no significant estimates could be made. It was assumed
that the six parameter satellite state vector was sufficient to absorb any

unmodelled accelerations on the satellite, for the arc lengths of only a few
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hours.

Average of the single day solutions
A coordinate set has been computed from the unweighted mean of the four
single day solutions, for both the orbit relaxation and orbit determination
methods. These coordinates have been compared with the VLBI coordinate
set and the baseline differences are given in table (7.6) for both solutions.
For the orbit determination solution, a significant improvement is seen, in
comparison with the individual single day solutions. The maximum baseline
error, is reduced to 8 parts in 108, with all the other baselines less than 2
parts in 108,
For the orbit relaxation solutions, no significant improvement can be seen
from the individual single day solutions, with the baseline errors up to 2 parts

in 107. This error occurs on the short baseline, as with the case of the single

day solutions.

Orbit determination | Orbit relaxation
Length | Difference | ppm | Difference | ppm
(km) | (em) (cm)
ALGO - VNDN 3727 -3.1| 0.008 8.5 | 0.023
- WSFD 642 1.4 0.020 17.2 ] 0.268
PLAT - VNDN 1533 -1.8 | 0.012 7.0 | 0.046
- WSFD 2752 0.8 0.007 5.0 | 0.018
OVRO - VNDN 363 -3.0} 0.084 7.8 |0.216
- WSFD 3929 0.7 | 0.002 8.2 | 0.021
VNDN - WSFD 4228 3.1 | o0.007 4.9 | 0.011
rms = 2.2 rms = 9.2

Table 7.6: Average of the single day solutions : differences from the VLBI

baselines

The rms differences between the VLBI and the averaged orbit determi-
nation solution are shown in figure (7.4). It can be seen that the largest

rms difference is in the height component and this is mainly caused by the
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OVRO-VNDN height component, which is in error by 1.6 parts in 107. All

the other baseline components agree with the VLBI solution better than 1

part in 107.

cm 15

3.0

2.9

2.2

East North Height Length

Figure 7.4: Average single day baseline vector differences from VLBI

The results of these few comparisons, suggests that there is some form of
systematic error present in the orbit relaxation solution, possibly caused by
using the broadcast ephemeris. This effect was not seen in the orbit deter-

mination solution, where the average solution gave a much better agreement

with the VLBI coordinate set.

7.3.2 Two Day Solutions

The two continuous, two day solutions were computed for the days 4 and 5,
and the days 6 and 7. For each solution, the receiver coordinates and the
initial state vector for each satellite were estimated for the whole two days.
A new set of initial integer ambiguities were estimated for each day of the
solution. For each two day data set, a further solution was computed to solve
for the direct solar radiation coefficient for each satellite, in addition to the

other parameters. These two solutions are referred to in the text as the six
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and seven parameter (per satellite) solutions respectively. No comparable
solutions could be computed using the orbit relaxation technique and all the
comparisons given here are with VLBI determined coordinates.

The differences between the VLBI determined baselines and the two day
( 4 and 5 ) solution, are given in table (7.7). In the six parameter solution,
no estimates were made for the direct solar radiation pressure coefficient Cx.
Instead, the value of 1.5 was used for Cg in the orbit integration. In the

seven parameter solution, the coefficient Cp was estimated for each satellite.

Six parameter Seven parameter
solution solution

Length | Difference | ppm | Difference | ppm

(cm) (cm)
ALGO - VNDN 3727 13.3 {1 0.036 8.5 0.023
- WSFD 642 21.10.328 13.1 | 0.204
PLAT - VNDN 1533 14.4 | 0.094 8.9 | 0.058
- WSFD 2752 12.2 | 0.044 5.0 | 0.019
OVRO - VNDN 363 11.3 | 0.311 6.4 0.176
- WSFD 3929 16.0 | 0.041 6.4 | 0.016
VNDN - WSFD 4228 29.0 { 0.069 14.5 | 0.034

rms = 17.7 rms = 9.6

Table 7.7: Two day solution baseline differences with VLBI : Days 4 and 5

It can be seen from comparing the two solutions, that solving for the
coefficient Cp, reduces the baseline differences by a factor of two. The two
largest differences are on baselines connected to WSFD, where there is data
on day 4 only. However, for the seven parameter solution, the baseline errors
are all less than 2 parts in 107. The rms double difference phase residual
fbr the six and seven parameter solutions are 0.11103 and 0.05055 cycles
respectively.

The rms differences between the baseline components of the VLBI and
the GPS orbit determination solutions are shown in figure (7.5). The im-

provement in the solution after solving for Cr for each satellite is obvious
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from the figure. In this case the east components of the baselines are better
determined than the north components. The errors in the height components
of the baselines were also significantly reduced with the second solution.
The baseline differences between the VLBI and the GPS orbit determi-
nation solutions for days 6 and 7 are given in table (7.8). In this case it
can be seen that both solutions give remarkably low rms baseline differences
of 3.3 cm and 3.4 cm. All the baseline errors are reduced to less than 1.5
parts in 10”7, The rms double difference phase residual for the six and seven

parameter solutions are 0.10187 and 0.05064 cycles respectively.

Six parameter Seven parameter
solution solution
Length | Difference | ppm | Difference | ppm
(cm) (cm)
ALGO -MOJA 3407 -2.2 | 0.006 4.410.012
- PVER 3611 -3.6 | 0.010 6.2 |1 0.017
- VNDN 3727 -3.9 | 0.010 2.4 | 0.006
PLAT -MOJA 1196 -2.4 | 0.020 3.3 ] 0.028
- PVER 1407 -4.3 | 0.031 4.6 | 0.033
- VNDN 1533 -4.9 | 0.032 1.3 { 0.008
OVRO -MOJA 245 1.6 | 0.065 0.7 | 0.029
- PVER 387 1.8 | 0.047 5.110.132
- VNDN 363 -4.6 | 0.127 -0.6 | 0.017
MOJA -PVER 224 -1.0 | 0.045 1.7 [ 0.076
- VNDN 351 -2.5 1 0.071 -1.4 | 0.040
PVER - VNDN 223 3.6 | 0.161 3.5 0.157
rms = 3.3 rms = 3.4

Table 7.8: Two day solution baseline differences with VLBI : Days 6 and 7

The rms baseline component differences between the GPS and the VLBI
solutions are shown in figure (7.6). It can be seen that there is no significant
improvement in the seven parameter solution, which solves for the coeffi-

cient Cg for each satellite. Instead, the baseline component differences are
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generally slightly larger than the six parameter solution.

A comparison of the values of Cg, estimated in the two solutions are
given in table (7.9). It can be seen that the initial estimate of 1.5 for Cr was
generally too low for all the satellites. This was particularly noticeable for

satellites 6 and 9, which lie in a different orbital plane to satellites 3, 11 and

13.

Satellite Days 4 and 5 | Days 6 and 7
PRN number Cr Cr
3 1.5071 1.4812
6 1.7202 1.6601
9 1.6749 1.5970
11 1.5186 1.5199
13 1.5507 1.5503

Table 7.9: Two day solution : Solar radiation pressure coefficients

Orbit repeatability for the two day solutions

Two independent orbits have been computed for each satellite, using the same

data set as in the previous solutions. The same parameters were estimated

as in the previous solution,
o Initial phase ambiguities for each day

o Selected receiver coordinates for the whole solution

Satellite state vectors for the whole solution

Solar radiation pressure coefficients for the whole solution

The estimated values of the satellite state vectors and solar radiation
pressure coefficients were then used to initialise the orbit integration again.
This iteration proceeded until there was no further change in the estimated
orbital parameters.

The first orbit (arc 1) was determined from the data of days 4 and 5, and
spanned the observing periods of days 4, 5 and 6. The second orbit (arc 2)
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Figure 7.6: RMS baseline vector differences from VLBI : 2 day solution for
days 6 and 7
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was determined from the data of days 6 and 7, and spanned the observing

period of days 6 and 7 only (figure 7.7).

Four hour overlap - -

Figure 7.7: Orbit repeatability test definition

For each satellite, the differences between the two orbits have been com-
puted, during the observing period on day 6. These differences have been
separated into the along track, across track and radial components of the
orbit. The rms differences of these components are given in figure (7.8), for
satellite PRNs 3,6,9 and 11 for the four hour overlap period on day 6.

The radial component shows the best agreement between the two orbits,
with an average repeatability of 1.7 metres. The along track and across
track components gave a higher average repeatability of 5.9 and 6.4 metres
respectively.

Satellite 11 was chosen as the base satellite for processing, and has the
highest number of observations measured from it. Predictably, this gives the
best repeatability of all the satellites. Satellites 12 and 13 were not included
in the repeatability tests, as very few observations from these satellites were
used in the processing.

Figure (7.9) shows the differences between arc 1 and arc 2, for satellite
11, which was the best tracked satellite. In this example arc 1 was extrapo-
lated over the whole length of arc 2. All three components of the orbit show

periodic differences, equivalent to the orbital period of the satellite. Again,
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Figure 7.8: Orbit repeatability : rms orbit component differences
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the radial component gives the best agreement, with the maximum differ-
ence less than two meters, even up to 48 hours after the last measurement
that was used to determine arc 1. The periodic differences seen in the across
track component are less stable and gradually increase with time. The along
track component shows both periodic and secular variations. The differences
between the other satellites revealed similar trends, but those satellites hav-
ing fewer observations tended to produce larger differences, especially in the

along track component.

Two day orbit comparison with the precise ephemeris

A comparison has been made between the orbits determined from the data
collected during days 6 and 7, and the NSWC precise ephemeris. The NSWC
precise ephemeris was computed using the WGS 84 geopotential model to
produce satellite coordinates in the WGS 84 reference frame. The IESSG?
orbit computed for the comparison also used the WGS 84 geopotential model
, but the coordinates for the fixed fiducial sites were in the SV 4 reference
frame. The transformation parameters between these two reference frames
were not known at the time of writing.

The comparisons for two of the satellites, 9 and 11 are given in figures
(7.10) and (7.11). Satellite 11 was chosen because it was the most tracked
satellite and satellite 9 was more representative of the other satellites. The
orbits were identical to the arc 2 orbits used in the repeatability tests.

The radial components again produce the smallest difference between the
orbits. The along track component in both cases produces differences up to
15 metres. If the orbits are éompared only when the observations were made
(i.e. the satellite passing over the tracking sites ), a much better agreement
is seen. This is particularly noticeable in the along track component, where
differences are reduced to les§ than five meters.

Clearly, it is not easy to detect whether the differences are due to errors iﬁ
the NSWC precise ephemeris or the IESSG computed orbit. Futhermore, the

differences between the two coordinate reference frames, which were used to

2Refers to all the GPS orbits computed using the Institute of Engineering Surveying

and Space Geodesy orbit determination software
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compute the orbits, could produce systematic differences between the orbits.
However, the large differences seen between the two orbits when the satellites
are away from the North American tracking sites, are likely to be caused by
only using a continental network for the IESSG orbit. The NSWC precise
ephemeris is produced from a global tracking network, and would be expected
to produce a more consistent orbit for the whole satellite revolution.

The main point which this comparison shows is that the IESSG orbit
determined from the continental network will give good agreement with the
precise ephemeris over the continental tracking network, but the accuracy of

the IESSG orbit will degrade when the satellite passes away from the tracking

sites.

7.3.3 Three day solutions
The continuous three day solution wé.s computed using the data collected
during the days 4, 5 and 6. Two different solutions were computed. The first

solution (seven parameters per satellite) solved for the following parameters.
o One set of initial phase ambiguities for each day.
o One set of receiver coordinates for the whole solution.
o One set of satellite state vectors for each satellite, for the whole solution.

o One set of direct solar radiation pressure coefficients for each satellite,

for the whole solution.

A second solution (eight parameters per satellite) was computed, which

estimated the constant y-bias acceleration for each satellite, in addition to

the above parameters.

The baseline differences from the VLBI solutions are given in table (7.10).
In this case, a significant improvement with the solution solving for the y-bias
acceleration can be seen. The largest baseline error, which is on the shorter
OVRO-VNDN baseline is reduced from three parts in 107 to one part in 107,

with all the other errors less than four parts in 108,
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Seven parameter | Eight parameter
length | Difference | ppm | Difference | ppm
(km) (cm) (cm )
ALGO -VNDN | 3727 14.5 | 0.039 5.2 10.014
- WSFD 642 -13.3 | 0.207 -2.8 | 0.044
PLAT -VNDN| 1533 15.9 | 0.103 5.8 | 0.038
- WSFD | 2752 -20.2 | 0.074 -7.9 1 0.029
OVRO - VNDN 363 12.2 1 0.334 3.7 10.103
- WSFD | 3929 -20.3 | 0.052 -6.6 { 0.017
VNDN - WSFD | 4228 -6.0 | 0.014 -1.4 | 0.003
rms = 15.3 rms = 5.2

Table 7.10: Three day solution : Baseline comparison with VLBI

In figure (7.12), it can be seen that the main error in the baseline is in
the east component, with the estimation of the satellite y-bias acceleration
reducing the differences by a factor of two.

The estimated values of the solar radiation pressure coefficients are given
in table (7.11), with their standard errors. Although the direct solar radiation
pressure coefficients are of a similar magnitude for each satellite, there is
a much larger variation in the y-bias accelerations, from 0.346 x 10~° to
1.120 x 10~9ms~2. The basic shape and orientation of the satellites, which
will affect the Cr parameter, are similar, but the structural misalignment of
the solar panels, which are believed to cause the y bias acceleration, would
be more likely to vary from satellite to satellite. |

In this solution, the inclusion of the constant y-bias acceleration reduces

the rms double difference phase residual from 0.08889 to 0.05199 cycles.

Three day orbit comparison with the precise ephemeris

The IESSG three day orbit used for the comparison was obtained from the

eight parameter solution described in the previous section, computed from

the data collected during days 4, 5 and 6.
The differences between the IESSG orbits and the NSWC precise ephe-
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Figure 7.12: RMS baseline vector differences from VLBI : 3 day solution for
days 4, 5 and 6
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Seven parameter Eight parameter
Satellite Cr o Cr led Cy o]
PRN 10%ms=2 | 10~ %¥ms2
3 1.5038 | 0.0026 | 1.4835 | 0.0030 1.120 0.180
6 1.7184 | 0.0025 | 1.7211 | 0.0015 0.642 0.020
9 1.6568 | 0.0042 | 1.6821 | 0.0025 0.724 | 0.014
11 1.5234 | 0.0007 | 1.5132 | 0.0005 0.346 0.020
13 1.5593 | 0.0094 | 1.5511 | 0.0056 0.347 0.035

Table 7.11: Three day solution : Solar radiation pressure coefficients

meris for satellites 9 and 11 are shown in figure (7.13) and (7.14). The
figures show the same trends as the two day orbits described previously. It
is particularly noticeable that the differences in the along track component

are at a minimum during the periods of observation. This is also seen to a

lesser extent in the radial component.

Similar conclusions must be drawn from the three day solution as those in
the two day solution, with the differences between the IESSG orbits and the
precise ephemeris less than five meters when the satellite passes overhead,

but increasing up to fifteen meters when the satellite passes away from the

tracking sites.

7.3.4 Four day solution
The continuous four day solution was computed from the data collected from
days 4, 5, 6 and 7. A similar approach to the three day solution was adopted

and two separate solutions were computed. The first solution estimated the

parameters,
e One set of initial phase ambiguities each day.
o One set of receiver coordinates for the whole solution.

One set of satellite state vectors for each satellite for the whole solution.

One direct solar radiation pressure coefficient for each satellite for the

whole solution.
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The second solution estimated an additional y-bias acceleration for each

satellite.

The baseline differences between the VLBI and the first solution ( seven
parameters per satellite ) are given in table (7.12). The most obvious errors
are in the long east-west baselines, which stretch from ALGO and PLAT
to the Californian sites of VNDN, MOJA and PVER. These have caused
particularly large baseline errors of up to 5 parts in 107 on certain baselines,

and a large rms baseline difference of 21.3 cm.

Seven parameter | Eight parameter
length | Difference | ppm | Difference | ppm
(km)|  (cm) (cm)
ALGO -VNDN| 3727 21.4 | 0.057 12.0 | 0.032
- MOJA | 3407 24.1 1 0.071 13.1 | 0.038
- PVER | 3611 38.0 | 0.105 20.2 | 0.056
PLAT -VNDN/| 1533 22.6 | 0.147 11.9 | 0.077
-MOJA [ 1196 23.6 | 0.197 12.5 | 0.105
- PVER 1407 36.1 | 0.256 18.5 { 0.131
OVRO - VNDN 363 15.5 | 0.426 8.4 1 0.230
- MOJA 245 -7.0 | 0.285 -0.7 | 0.027
- PVER 387 12.0 | 0.309 11.1 | 0.286
VNDN - MOJA 351 0.7 | 0.020 0.7 | 0.019
- PVER 223 -4.5 | 0.200 2.6 | 0.116
MOJA -PVER 224 11.1 | 0.494 5.9 | 0.264
rms = 21.3 rms = 11.5

Table 7.12: Four day solution : baseline differences with VLBI

The second solution ( eight parameters per satellite ) baseline differences
are shown in the same table. There is a significant reduction in the rms
baseline difference down to 11.5 cm. This brings the maximum baseline

error down to 3 parts in 107. However, the largest baseline differences are

still on the longer east-west lines.
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The rms baseline component differences are shown in figure (7.15). The
largest component error of 26.6 cm in the east direction is reduced to 10.6 cm
with the addition of the y-bias acceleration per satellite. The determination
of the east component of PVER appears to be producing these large differ-
ences. This was also noted in the single day solution of day 6 ( table 7.5 ).
The differences between the single day 6 solution and the four day solution
for the ALGO-PVER and the PLAT-PVER baselines are only 7 mm and 19
mm respectively.

The values for the solar radiation pressure coefficients are given in table
(7.13). The direct solar radiation pressure coefficient Cpg produces values
similar to the three day solution as expected, but the y-bias acceleration
shows much larger changes, especially for satellite 3 which has the least
observations. The standard errors of these accelerations have been reduced

by a factor of two by the additional day of data.

Seven parameter Eight parameter
Satellite | Cpr o Chr bog Cy c
PRN 107%9ms~2% | 10~9ms—2
3 1.4944 | 0.0023 | 1.4839 | 0.0016 0.757 0.091
6 1.6946 | 0.0024 | 1.7073 | 0.0010 0.710 0.009
9 1.6754 | 0.0050 | 1.6666 | 0.0021 0.653 0.006
11 1.5206 | 0.0006 | 1.5134 ] 0.0003 0.312 0.011
13 1.5090 ; 0.0101 | 1.5585 | 0.0043 0.455 0.017

Table 7.13: Four day solution : Solar radiation pressure coefficients

A comparison has been made between the double difference phase resid-
uals obtained from the two four day solutions for the satellites 9 and 11,
and the sites of PLAT and OVRO. Figure (7.16) shows the residuals from
the solution using seven parameters per satellite and figure (7.17) shows the
residuals from the eight parameter per satellite solution.

The noticeable drift seen in the residuals in figure (7.16) for the first three
days has been very much reduced, by the addition of the y-bias acceleration

estimation, to give a much more random distribution of the residuals in figure
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Figure 7.15: RMS baseline vector differences from VLBI : 4 day solution for
days 4,5,6 and 7
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(PLAT and OVRO) : seven parameters estimated per satellite
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(7.17). The largest residual is now approximately 0.3 cycles or 5.7 cm.

A similar pattern is seen in figures (7.18) and (7.19) for the sites of PLAT
and VNDN, although there is still a slight drift in the first and last days of
the solution. The improvement in the solution is reflected in the rms double
difference phase residual, which reduces from 0.14596 to 0.06055 with the

estimation of the satellite y-bias acceleration.

7.3.5 The Effect of Using Different Geopotential Models

The three day solution was computed using two different geopotential models
to predict the orbit. Both of the solutions were computed using the same
data sets and the same parameters were estimated.

The orbit integrations for the first solution used the WGS 84 geopotential
model up to degree and order eight. For this the value of the product GM
was 3986005.00 x 108m3s~2,

The orbit integrations for the second solution used the GEM T1 geopo-
tential model up to degree and order eight. The value of GM was taken to
be 3986004.36 x 103m3s~2.

The differences between the Baseline lengths of the two solutions are given
in table (7.14). It can be seen that the differences between the baselines for
the two solutions are of the order of a few millimetres, corresponding to a
maximum baseline error of the order of three parts in 10°.

Beutler et al [1987] derives a theoretical equation to determine the effect

of using different values of GM in the computations. The formula,

Al AGM
T = 0.07 x -G_A-l— | (7.1)

relates the change in baseline length Al expected when the value of GM is
changed by AGM. When using the differences of the value of GM between
the WGS 84 and the GEM T1 geopotential models, a baseline difference of
0.008 ppm would be expected. This is comparable with the baseline differ-
ences seen in table (7.14). The differences between the two solutions would
indicate that the effect of using a different geopotential model is very small

and for the determination of ground coordinates, it is relatively insignificant.
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(PLAT and VNDN) : seven parameters estimated per satellite
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(PLAT and VNDN) : eight parameters estimated per satellite
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Length | WGS 84 minus GEM T1 | ppm
(km) solutions (mm)

ALGO - VNDN 3727 1 0.000
ALGO - WSFD 642 -2 0.003
PLAT - VNDN 1533 1 0.001
PLAT - WSFD 2752 -3 0.001
OVRO - VNDN 363 1 0.003
OVRO - WSFD 3929 -4 0.001
VNDN - WSFD 4228 -2 0.000

Table 7.14: Effect on the baseline length of using different geopotential mod-

els

7.3.6 The Effect of Errors in the Fiducial Site Coordinates

One of the single day solutions ( day 4 ) was computed with a 10 cm bias
added to the antenna height at the fiducial site of OVRO. The resulting
estimates of the non fiducial site coordinates were compared with the original
single day solution with the correct antenna height. The differences between

the latitude, longitude and height of the two solutions for the non fiducial

sites are given in table (7.15).

Change in | Change in | Change in
latitude | longitude height
(cm) (cm) (cm) -
VNDN 1.3 5.1 10.2
WSFD 8.8 6.8 -8.8

Table 7.15: The effect of a 10 cm error in the fiducial site antenna height

The closest non fiducial site to OVRO is VNDN and predictably the
height of this site increases by 10.2 cm, similar to the antenna height bias
at OVRO. The height of the other non fiducial site WSFD decreases by 8.8
cm suggesting the network has been rotated about the fiducial sites. The
horizontal coordinates of the two sites have also changed considerably, which

may imply a distortion of the network. The magnitude of the change in the
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horizontal coordinates is of a similar order to the antenna height bias, which
means that any error in the antenna heights will not just affect the height
components of the baselines, but it may well propagate into the determination

of the baseline lengths.

7.4 Discussion of Results

All the solutions computed in this chapter used the data from CHUR in the
adjustment. This site has not been occupied by VLBI or SLR equipment and
the coordinates have only been established by previous GPS solutions. For
this reason, no constraint has been placed on the coordinates of CHUR in
the adjustment and no previous comparisons have been made with the GPS
solutions.

A comparison of the coordinates of CHUR determined from the four single
day solutions reveals some large differences in both the latitude and the
longitude of up to half a meter. These differences were giving daily baseline
repeatabilities of up to three parts in 107.

The fiducial sites (ALGO, OVRO and PLAT) lie very much in a line
running east-west, whereas CHUR lies further to the north ( figure 7.20 ).
This geometrical configuration has been shown to give a poor estimation of
the non fiducial receiver coordinates by other authors [Lichten et al, 1989].
A better estimation of the coordinates of CHUR would be expected by using

another fiducial site located to the north of the three fiducial sites.

In separate solutions, each single day was computed without the data from
CHUR. All the estimated GPS baseline vectors showed larger differences
from the VLBI vectors, than the GPS solutions which contained the data
from CHUR. This demonstrates the importance of using a well distributed

tracking network to provide constraint for the orbit determination process ,
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Figure 7.20: Location map of fiducial stations in North America
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even if the coordinates of all the sites are not necessarily fixed.

One of the major error sources not investigated in these results is the
effect of the troposphere. All the solutions were computed using the U.S.
standard atmosphere model ( section 2.5.2 ). This uses values of the Julian
day number, height and latitude of the site to estimate the tropospheric delay

(phase advance). There are two faults with this type of model,

1. Any variations in the state of the troposphere during the observation
period will not be modelled, because a constant zenithal delay is com-

puted for each site for the whole observing period.

2. The model does not account for any localised atmospheric conditions
at each site. This will be negligible for small networks, but for the large

network considered here, it is more likely to cause further error.

When computing a multi-day solution, the tropospheric model will as-
sume a similar delay for each site, on each day of the observation campaign.
Hence, any day to day atmospheric changes will be ignored, which may well
contribute to the larger discrepancies seen in the four day solution when
compared with the two and three day solutions.

It was noted previously that the determination of the east component of
the baselines were generally worse than the north components. Investiga-
tions on the same data set [Dong and Bock, 1989] have shown that resolving
the initial phase ambiguities to their integer values can significantly reduce
the uncertainty in the east component of the baselines. The scheme used
solves for the (L1 - L2)® wide-lane integer ambiguities using either the pseu-
doranges [Blewitt, 1989] or by using the approach of ionospheric constraints
[Bender and Larden, 1985]. This work is outside the scope of this project,
but it is being investigated by another research student at Nottingham.

The comparison of the NSWC precise ephemeris with the IESSG orbits

has demonstrated the use of a regional tracking network for orbit deter-

3The L1 -L2 frequency is formed from the difference between the L1 and L2 frequencies.
It has a wavelength of about 86 cm making the resolution of the phase integers much easier

than the single frequency L1, which has a wavelength of about 19 cm.
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mination over a particular region. These orbits will be more accurate for
determining the coordinates of sites contained within or close to the fidu-
cial network. A more global network would be expected to produce a more
accurate global orbit, for use in determining the coordinates of sites away
from the fiducial sites. This has been demonstrated with additional data
from Europe used to supplement the North American fiducial network for
baseline determination in South America [Lichten, 1989].

An estimation of the accuracy of the GPS orbits can be obtained from,
1. Orbit repeatability tests.

2. Orbit comparison with NSWC precise ephemeris.

3. Baseline comparison with VLBI.

4. Standard errors of the estimated satellite state vectors.

The orbit repeatability tests were carried out during the observing period
of the tracking sites. Therefore, they only represent the repeatability of the
orbits over the tracking network. The effect of any unmodelled satellite force
model components or any errors in the satellite state vector will be magnified
by the extrapolation process. Hence, the average repeatabilities of 1.7 m, 5.9
m and 6.4 m for the radial, along track and across track components represent
a pessimistic estimate of the accuracy of the orbits over the region.

The comparison with the NSWC precise ephemeris showed agreements
better than five metres for the period of observation, with differences up to
three times this over the rest of the orbital arc. This an independent test
and it may well be affected by the differences between the two coordinate
references frames of the tracking sites which were used to determine the two
different orbits.

The GPS derived baselines can be compared with the VLBI determined
baselines as in independent check. However, other non-orbit error sources
such as the troposphere will affect the baseline determinations, so the com-
parisons are only an indication of the orbital accuracy. The effect of or-

bital errors is more dominant on the longer baselines, hence a comparison
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of the longer baselines will provide a better check on the orbital accuracy
than the shorter baselines where residual tropospheric effects may dominate
[Lichten et al, 1989]. In general the agreement between the GPS and VLBI
baselines were better than one or two parts in 107 on the longer baselines.
This approximates to an orbital error of between two and four metres us-
ing the simple relationship given in equation (2.57). This agrees with the
estimates obtained from the orbit repeatability and the precise ephemeris
comparison tests.

An indication of the precision of the orbit can also be obtained from the
standard errors of the estimated satellite state vectors. The standard errors
of the initial position vectors varied between 1.75 m and 4.26 m for the two
day solution, to between 1.41 m and 3.53 m for the four day solution. These
agree well with the estimates obtained above.

All the results in this chapter were obtained using less than three and a
half hours of data on each day. With the use of a better distributed tracking
network and the full GPS satellite constellation a further improvement to

both the orbital accuracy and the baseline accuracy should be achievable.
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CHAPTER 8

Conclusions and Suggestions for Further

Work

8.1

1.

Conclusions
The double difference phase observable can be used for regional GPS
orbit determination, when using the fiducial network method. This has
been demonstrated with the program DDORB, which has been devel-
oped for multiple day, multiple satellite and multiple receiver solutions,

using the least squares method of adjustment.

The comparison of the regionally (North America) determined GPS
orbits with the NSWC precise ephemeris, shows agreement better than
five metres in all three components of the satellite’s position. Larger

differences (up to fifteen metres) are seen when the orbits are compared

outside the satellite observation periods.

The root-mean-square (rms) repeatability of two independently deter-

mined, two day orbits is better than two metres in the radial direction

and typically about six metres in the along track and across track di-

rection. These comparisons are for orbits which have been extrapolated

twenty four hours beyond the last observation.

The GPS satellite is particularly sensitive to errors in the solar radi-

ation pressure model. Different lengths of orbital arc require different

modelling strategies.

(a) With the single day solutions, no estimates can be made for any

solar radiation pressure coefficients. The six parameter satellite

191



state vector is sufficient to absorb any unmodelled satellite accel-
erations.

(b) For the two day solutions, the direct solar radiation pressure coef-
ficient can be estimated for each satellite. The estimation of this
parameter reduces the rms double difference phase residuals and
also leads to a better determination of the baseline components

between the ground sites.

(c) For the three day solutions, the y-bias acceleration can be esti-
mated for each satellite, in addition to the direct solar radiation
pressure coefficients. The estimation of the y-bias acceleration
reduces the rms double difference phase residuals and gives a bet-

ter determination of the baseline components between the ground
stations.

(d) The four day solution also improves with the estimation of the
y-bias acceleration. This again is reflected in the lower rms dou-
ble difference phase residuals and the better determination of the

baseline components.

. The high altitude of the GPS satellite allows the high order terms of
the earths geopotential model to be ignored and an expansion up to

degree and order eight is suitable for the GPS satellites, for orbital arcs

up to four days.

. The use of a different geopotential model (and the implied change in

GM) has only a small effect on the determination of the baselines with

GPS.

. A simpler alternative to integrating the GPS satellite force model for
short spans of data, is to use an orbit relaxation technique. This
can produce comparable results to the orbit integration technique, al-

though the method relies very much upon the guality of the broadcast

ephemeris.
. The comparison of the GPS derived baseline components with the VLBI
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10.

11.

12.

determined baselines in North America, gives an agreement better than
1 or 2 parts in 107 in all three baseline components. This corresponds

to an orbital accuracy of between two and four metres.

The accuracy of the fiducial site coordinates is fundamental to the fidu-
cial network method for GPS orbit determination. Even small errors
in measuring the antenna height at a fiducial site, will propagate into

both the horizontal and vertical components of the non fiducial site

coordinates.

The fiducial network method is suitable for determining the coordi-
nates of the non fiducial sites, when they are located within or close
to the fiducial network. The accuracy of the estimated non fiducial

coordinates decreases, as the distance away from the fiducial network

increases.

The geometry of the satellites and the tracking sites significantly af-
fects the determination of the satellite orbits and the determination
of the tracking site coordinates. The satellite constellation over North
America provides a much better geometrical configuration, than the

constellation over Europe, which results in a more reliable solution.

Multiple day GPS orbits are useful where there is a lack of tracking
data from the fiducial sites. This was particularly noticeable in the
tide gauge project, where single day solutions were not possible, but
the estimation of the four day orbits made the determination of the

tide gauge site coordinates possible.
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8.2

Suggestions for Further Work
The resolution of the initial phase ambiguities into integers is neces-
sary to improve the accuracy of both the orbit determination and the

coordinate determination of the ground sites.

Further work is necessary on the modelling of the tropospheric delay
in the phase observable. Methods such as estimating site dependent
tropospheric delay parameters and time varying tropospheric delay pa-

rameters should be investigated.

Modifications are necessary to the GPS network adjustment programs
(PANIC and DDORB) in order to maximise the amount of phase
data that can be processed. The current géneration of programs are
relatively inflexible with the need to specify the baseline definitions

from which to form the double differences.

The ROCK 1V solar radiation pressure model should be tested in the
GPS satellite force model. The possibility of introducing time varying
solar radiation pressure coefficients should be investigated for longer

orbital arcs, where the solar radiation pressure may not be constant.

The effect of the solid earth and ocean tides on the displacement of

the GPS tracking sites should be investigated, to see if it significantly

affects the results.

Further investigation is required into the detection and repair of cycle
slips. The current methods employed, such as the visual inspection of
the double difference phase residuals and fitting polynomial expressions

to the phase data are very time consuming.

The orbit relaxation technique should be adapted for multiple day solu-

tions. This could be achieved using a Helmert-Wolf blocking technique
[Hill, 1989].
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APPENDIX A

Jobdecks for the GPS orbit determination

programs

The program DDORB is controlled from a jobdeck, which contains all the
program options, the input files required and the output files required. The
example below is of the type used for the three day solution using the GPS

standard dataset described in chapter 7.

begin

stjnld(gindat.jnldd)

] cf77(slr.ddorb,omf=omfdd9rb,LIST=N0NE)

@ Input ephemeris data on channels 1 to 7(except chan. 5)
cnf (gpslOcio,funit=1)

cnf(gpsl6cio,funit=2)

cnf (gpsl9cio,funit=3)

cnf (gpslicio,funit=4)

cnf (gpsl2cio,funit=6)

cnf (gpsl3cio,funit=7)

@ Input measurement files on channels 11 to 19
cnf (ngs004.ALG0456,funit=11)
cnf(ngs004.CHUR456, funit=12)

cnf (ngs004.VNDN456,funit=13)
cnf(ngs004.0VR0456,funit=14)

cnf (ngs004.PLAT456, funit=15)

cnf (ngs004.WSFD456,funit=16)

@ Input partial derivative files on channels 31 to 37
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cnf (gpslOparx,funit=31)

cnf (gpsl6parx,funit=32)

cnf (gpsl9parx,funit=33)

cnf (gpsliparx,funit=34)

cnf (gpsl2parx,funit=35)

cnf(gpsl3parx,funit=36)

@ Input met data files on channels 41 to 49

¢

@ NO MET DATA

e

@ Input chebyshev polynomial file

cnf (cheb86354p, funit=50)

@ Input satellite state vectors

cnf (ngs004.sv00456, funit=25)

cnf (ngs004.0sv00456,access=v,funit=26)

@ Create output files
cnf(ngsOO4.odd456,access=w,funit=21,res=ignore)
cnf(ngsOO4.covarm,access=w,funit=22,res=ignore)

alb(omfddorb,access=e)

run(ddorb)

1 INPUT ANALYSIS INFORMATION

e ————————————

2 : 1 =W 72, 2 =WGS 84

0 : frequency used. 1=L1 ,2=L2, 0=L1/L2

5 : Tropo. corrn, 0=NO 1=Hopf 2=Saast/Mar 3=Full Hopf
1 : Use of weight matrix 0=NO,1=YES (4=Saast 5=Mag
4 : day number

1 : Output of residuals 0=NO 1=YES

Z e e ———

Z e —————————————————



6 2 : Number of satellites

369 1112 13 : PRN number of each satellite

11 : Base satellite ID

1111111 : No. of ephemerides for each satellite
0000000 : 1 = satellite fixed, 0 = free

Z e e

yA

3 INPUT STATION INFORMATION

YA

6 : Number of stations

10011000 : Station fixing choice

For each station write a block in the form
Station name
Receiver type
Approx X coordinate of station (metres)
Approx Y coordinate of station (metres)
Approx Z coordinate of station (metres)

Antenna height(metres)

TI 4100

918127.4990
-4346061.9153
4561984.2599
1.399

TI 4100
-236417.0093
-3307612.0551
5430055.8889
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TI 4100

-2678071.7747
=-4525451.5663
3597427.5067

TI 4100
-2410422.5939
-4477802.4623
3838686.8365

TI 4100
-1240708.2691
-4720454.2018
4094481,7816
1.682

TI 4100
1492232.8794
-4458091.7154
4296045.9743
0.000

z Read baseline definitions(max NOSTNS-1)
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3 : IDATA O=mag,l=can,2=nor,3=GSI

100 : accumulated solution mode

0 : 0 = No integer fixing, 1 = Integer fixing
240.0 : integration step length

common start time of integration

32400.0

87,4 : year and day number for start of data

9 : number of orbital parameters from ORBIT
8 : number of orbital parameters solved for

00000000 : number of orbital parameters solved

3 : number of days of tracking data
1 : itimcor, 1 = auto. (time correction)
end
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APPENDIX B

Definition of rbtation matrices

The rotation matrices R1, R2, R3 used in chapter 3 are defined as anti-
clockwise rotations about the x, y and z axes respectively, for the angle

f. They are defined as [Moore, 1986],

1 0 0
R1(8)=| 0 cosf sind (B.1)

0 —sin@ cosf

cos§ 0 —sinf
R20)=| o 1 O (B.2)

sinf 0 cosé

cosf@ sind O
R3(8) = | —sinf cosf 0 (B.3)
0 0 1
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APPENDIX C

GINFEST GPS campaign i'esults

This appendix gives the full GINFEST solutions which were abbreviated in
chapter 5 and the derivations of the receiver coordinates from the IESSG
SLR solution. ,

Table ( C.1 ) shows the IESSG SA-T coordinate set for the SLR facilities
at the GINFEST sites. The coordinates were obtained from a short arc

solution, which has been transformed onto a ten month long arc solution.

SLR site x (m) y (m) z (m)
Grasse 4581690.988 | 556165.153 | 4389359.434
Graz 4194425.874 | 1162700.069 | 4647245.615
RGO 4033462.934 23668.925 | 4924305.704
Kootwijk | 3899223.334 | 396749.554 5015074.038
Wettzell | 4075529.209 | 931787.687 | 4801617.597

Table C.1: GINFEST SLR site coordinates : IESSG SA-T
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Table ( C.2 ) gives the IESSG SA-T coordinate set which have been
transformed onto a WGS 84 coordinate set, using a seven parameter Helmert
transformation. The following biases were found between the two coordinate

sets, given with their standard errors.

dx = 0.857 *x 0.470 metres
dy = -0.386 + 0.446 metres
dx = -1.046 =+ 0.431 metres
xrot. = -0.310 X 0.013 seconds
yrot. = -0.002 £ 0.018 seconds
zrot. = -0.015 + 0.013 seconds
scale = 0.004 *+ 0.052 ppm
SLR site x (m) y (m) z (m)
Grasse 4581691.874 | 556158.511 | 4389359.190
Graz 4194426.717 | 1162693.015 | 4647246.286

RGO 4033463.862 23661.438 | 4924304.669
Kootwijk | 3899224.235 | 396741.923 | 5015073.565
Wettzell | 4075530.071 | 931780.392 | 4801617.924

Table C.2: GINFEST SLR site coordinates : IESSG T-84
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The WGS 84 coordinates of the SLR sites were then converted into WGS
72 coordinates, using the transformation parameters given in table ( C.3 )

[D.O.D., 1986].

Transformation
parameter
AX 0.0000
AY 0.0000
AZ -4.5000
x rot. 0.0000
y rot. 0.0000
z rot. -0.5540
scale (ppm) | -0.2198

Table C.3: Transformation pafameters between WGS 84 and WGS 72
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Table ( C.4 ) gives the eccentricity vectors between the SLR/VLBI sites
and all the GPS antenna L1 phase centres for the GINFEST GPS cam-
paign. There is some uncertainty in the eccentricity vector connecting Jo-

drell Bank. The eccentricities were obtained from various sources, including

[Muller, 1988).

Site Az (m) | Ay (m)| Az (m)
Grasse 20.586 | -19.219| -23.514
Graz -2.381 8.548 -1.128
RGO -101.203 | 386.007 71.817
Kootwijk -4.614 25.297 -0.986
Wettzell 22.551 44.407 | -28.999
Zimmerwald 8.600 -0.142 -3.819
Onsala 53.327 | -40.309 | -42.745
Effelsberg -4766.905 | 3769.375 | 3569.054
Westerbork 120.687 | -611.337 | -43.512
Jodrell Bank [ 107.371 84.346 | -131.340

Table C.4: Eccentricity vectors for SLR/VLBI sites to GPS L1 phase centres
for GINFEST GPS campaign

Table ( C.5 ) gives the baseline differences between the solutions for days
322 and 324 when using the broadcast ephemeris.

Table ( C.6 ) gives the baseline differences between the solutions for day
323 and day 324 when using the broadcast ephemeris.

Table ( C.7 ) shows the baseline differences between the three day precise
ephemeris solution and the precise ephemeris solution for day 322.

Table ( C.8 ) shows the baseline differences between the three day precise
ephemeris solution and the precise ephemeris sblution for day 323.

Table ( C.9 ) shows the baseline differences between the three day precise

ephemeris solution and the precise ephemeris solution for day 324.
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Tables ( C.10 ), (C.11) and ( C.12 ) show the baseline differences between
the individual single day orbit determination solutions and the three day
orbit determination solution. The single day solutions solve for the satellite
state vector for each satellite, whereas the three day solution solves for the
satellite state vector, direct solar radiation scaling coefficient and a y bias

acceleration for each satellite.
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Length | Difference | ppm
(km) | (cm)

Kootwijk - Grasse 939 -9.2 | 0.098
- Graz 899 2.6 | 0.029

- RGO 406 16.1 | 0.396

- Effelsberg 195 0.3 | 0.015

- Onsala 700 20.5 | 0.292

- Westerbork 98 21.412.179

- Jodrell Bank 560 -5.1 | 0.091

Grasse - Graz 764 -4.3 | 0.056
- RGO 932 -5.4 | 0.058

- Effelsberg 757 -10.2 ] 0.134

- Onsala 1553 3.6 ] 0.023

- Westerbork 1017 6.1 | 0.060

- Jodrell Bank 1251 3.5]0.028

Graz - RGO 1182 14.5 | 0.123
- Effelsberg 738 4.7 | 0.064

- Onsala 1172 5.7 1 0.048

- Westerbork 908 3.30.037

- Jodrell Bank 1436 0.4 | 0.003

RGO - Effelsberg 467 12.3 | 0.262
- Onsala 1045 35.5 | 0.340

- Westerbork 487 34.2 | 0.702

- Jodrell Bank 319 11.8 | 0.369

continued on next page
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Length | Difference | ppm
(km) (cm)
Effelsberg - Onsala 825 20.4 | 0.248
- Westerbork 261 17.0 | 0.649
- Jodrell Bank 701 -1.3 1 0.019
Onsala - Westerbork 602 -1.7 | 0.028
- Jodrell Bank 1011 -0.9 | 0.009
Westerbork - Jodrell Bank 597 0.5 | 0.009
rms = 13.6

Table C.5: Comparison of baseline lengths for the broadcast ephemeris solu-

tion on day 322 with the day 324 solution
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Length | Difference | ppm
(km)|  (cm)

Wettzell - Kootwijk 602 0.5 | 0.008
- Grasse 753 -7.6 { 0.101

- Graz 302 -0.1 | 0.002

- RGO 917 -10.4 1 0.113

- Onsala 919 20.2 1 0.219

- Jodrell Bank 1150 -12.5 | 0.108

Kootwijk - Grasse 939 2.8 1 0.030
- Graz 899 1.5 0.016

- RGO 406 -8.9 1 0.216

- Onsala 700 15.6 | 0.223

- Jodrell Bank 560 -13.2 | 0.236

Grasse - Graz 764 1.5 1 0.019
- RGO 932 1.4 |1 0.015

- Onsala 1553 16.4 1 0.136

- Jodrell Bank 1251 1.1 | 0.009

Graz - RGO 1182 -6.3 | 0.053
- Onsala 1172 10.2 | 0.087

- Jodrell Bank 1436 -10.4 | 0.072

RGO - Onsala 1045 3.9 10.038
- Jodrell Bank 319 -2.2 1 0.068

Onsala - Jodrell Bank 1011 -6.4 { 0.063

rms = 9.3

Table C.6: Comparison of baseline lengths for the broadcast ephemeris solu-

tion on day 323 with the day 324 solution
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Length | Difference | ppm
(km) | (cm)

Kootwijk - Grasse 939 -13.1 ] 0.139
- Graz 899 1.7 | 0.012

- RGO 406 -4.1 [ 0.101

- Effelsberg 195 -13.4 [ 0.686

- Onsala 700 20.2 | 0.288

- Westerbork 98 13.7 | 1.399

- Jodrell Bank 560 -41.4 | 0.739

Grasse - Graz 764 -7.1 | 0.093
- RGO 932 -2.7 1 0.029

- Effelsberg 757 4.3 | 0.057

- Onsala 1553 1.3 | 0.008

- Westerbork 1017 -3.0 | 0.029

- Jodrell Bank 1251 2.3 10.018

Graz - RGO 1182 3.5 0.030
- Effelsberg 738 2.2 | 0.030

- Onsala 1172 7.3 | 0.062

- Westerbork 908 2.0 | 0.021

- Jodrell Bank 1436 -27.9 | 0.194

RGO - Effelsberg 467 5.9 10.127
- Onsala 1045 12.2 { 0.117

- Westerbork 487 6.3 | 0.129

- Jodrell Bank 319 8.1 | 0.254

continued on next page
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Length | Difference | ppm
(km) (cm)
Effelsberg - Onsala 825 -1.8 | 0.021
- Westerbork 261 -7.0 | 0.268
- Jodrell Bank 701 -28.9 | 0.413
Onsala - Westerbork 602 6.1 0.102
- Jodrell Bank 1011 -55.8 | 0.551
Westerbork - Jodrell Bank 597 -45.1 | 0.755
rms = 18.9

Table C.7: Comparison of baseline lengths for the precise ephemeris solution

on day 322 with the three day solution
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Length | Difference | ppm
(km) (cm)

Wettzell - Kootwijk 602 -4.8 1 0.079
- Grasse 753 -6.2 | 0.082

- Graz 302 -0.8 | 0.026

- RGO 917 -6.5 | 0.070

- Onsala 919 -0.6 | 0.006

- Jodrell Bank 1150 -2.8 | 0.024

Kootwijk - Grasse 939 6.4 | 0.068
- Graz 899 -4.1 | 0.046

- RGO 406 6.7 { 0.165

- Onsala 700 -16.2 | 0.232

- Jodrell Bank 560 5.4 1 0.096

Grasse - Graz 764 -1.1 | 0.014
- RGO 932 -0.8 | 0.009

- Onsala 1553 -4.8 { 0.031

- Jodrell Bank 1251 -3.3 { 0.026

Graz - RGO 1182 -4.6 { 0.039
- Onsala 1172 -5.3 | 0.043

- Jodrell Bank 1436 -2.5 | 0.017

RGO - Onsala 1045 -8.2 1 0.078
- Jodrell Bank 319 -4.1|0.126

Onsala - Jodrell Bank 1011 0.2 | 0.001

rms = 5.7

Table C.8: Comparison of baseline lengths for the precise ephemeris solution

on day 323 with the three day solution
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Length | Difference | ppm
(km)|  (em)

Wettzell - Kootwijk 602 0.8 { 0.014
- Grasse 753 2.9 1 0.039

- Graz 302 1.4 { 0.046

- RGO 917 5.7 | 0.062

- Effelsberg 455 -3.7 | 0.082

- Onsala 919 -1.4 | 0.015

- Westerbork 607 -0.4 | 0.006

- Jodrell Bank 1150 12.1 | 0.105

Kootwijk - Grasse 939 6.6 | 0.070
- Graz 899 2.8 | 0.031

- RGO 406 11.2 | 0.276

- Effelsberg 195 -9.1 | 0.465

- Onsala 700 20.2 1 0.288

- Westerbork 98 -5.9 | 0.604

- Jodrell Bank 560 15.0 | 0.268

Grasse - Graz 764 0.4 | 0.006
- RGO 932 0.0 | 0.000

- Effelsberg 757 19.2 | 0.253

- Onsala 1553 1.1 | 0.007

- Westerbork 1017 1.2 [ 0.012

- Jodrell Bank 1251 -1.9 1 0.015

Graz - RGO 1182 5.9 | 0.050
- Effelsberg 738 0.5 | 0.007

- Onsala 1172 3.2 /0.028

- Westerbork 908 1.6 { 0.017

- Jodrell Bank 1436 12.6 | 0.087

continued on next page
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Length | Difference | ppm
(km) (cm)
RGO - Effelsberg 467 12.6 | 0.269
- Onsala 1045 7.4 10.071
- Westerbork 487 7.7 0.158
- Jodrell Bank 319 -1.8 } 0.055
Effelsberg - Onsala 825 -22.7 1 0.275
- Westerbork 261 -17.8 | 0.680
- Jodrell Bank 701 9.110.130
Onsala - Westerbork 602 -1.7 | 0.028
- Jodrell Bank 1011 23.2 | 0.229
Westerbork - Jodrell Bank 597 17.2 | 0.288
rms=9.7

Table C.9: Comparison of baseline lengths for the precise ephemeris solution

on day 324 with the three day solution
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Length | Difference | ppm
(km) (cm)

Kootwijk - Grasse 939 1.7 1 0.018
- Graz 899 -2.910.032

- RGO 406 -3.3 | 0.081

- Effelsberg 195 -6.0 { 0.308

- Onsala 700 1.8 1 0.026

- Westerbork 98 14.2 | 1.449

- Jodrell Bank 560 -22.4 1 0.400

Grasse - Graz 764 33.2|0.435
- Effelsberg 757 10.6 | 0.140

- Westerbork 1017 12.0 | 0.118

- Jodrell Bank 1251 -7.4 | 0.059

Graz - RGO 1182 3.8 0.033
- Effelsberg 738 1.8 | 0.024

- Onsala 1172 -29.2 | 0.249

- Westerbork 908 -6.6 | 0.073

- Jodrell Bank 1436 -19.5 [ 0.136

RGO - Effelsberg 467 1.1 | 0.024
- Westerbork 487 9.410.193

- Jodrell Bank 319 -6.0 { 0.189

Effelsberg - Omnsala 825 -9.7 { 0.118
- Westerbork 261 1.7 | 0.065

- Jodrell Bank 701 -19.0 | 0.271

Onsala - Westerbork 602 -12.6 | 0.209
- Jodrell Bank 1011 -21.2 1 0.210

Westerbork - Jodrell Bank 597 -16.8 | 0.281

' rms = 14.1

Table C.10: Comparison of baseline lengths for the orbit determination so-

lution on day 322 with the three day solution
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Length | Difference | ppm
(km)|  (cm)

Wettzell - Kootwijk 602 5.3 1 0.088
- Grasse 753 -25.1 | 0.333

- Graz 302 -0.3 } 0.010

- RGO 917 -2.5 | 0.027

- Onsala 919 23.1 { 0.251

- Jodrell Bank 1150 -8.6 | 0.075

Kootwijk - Grasse 939 -9.6 | 0.102
- Graz 899 5.6 { 0.062

- RGO 406 | ° -7.6|0.187

- Onsala 700 11.4 | 0.163

- Jodrell Bank 560 4.5 ] 0.080

Grasse - Graz 764 -22.3 | 0.292
- Jodrell Bank 1251 -0.8 { 0.006

Graz - RGO 1182 -0.5 | 0.004
- Onsala 1172 21.30.182

- Jodrell Bank 1436 8.8 | 0.061

RGO - Jodrell Bank 319 -2.6 [ 0.082
Onsala - Jodrell Bank 1011 12.0 | 0.119

rms = 12,4

Table C.11: Comparison of baseline lengths for the orbit determination so-

lution on day 323 with the three day solution
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Length | Difference | ppm
(km) [ (cm)

Wettzell - Kootwijk 602 -0.2 | 0.003
- Grasse 753 -17.1 | 0.227

- Graz 302 -2.710.089

- RGO 917 -1.0 { 0.011

- Effelsberg 455 -4.4 | 0.096

- Onsala 919 17.2 1 0.187

- Westerbork 607 1.0 | 0.017

- Jodrell Bank 1150 12.5 | 0.108

Kootwijk - Grasse 939 -1.3 1 0.014
- Graz 899 -2.0 1 0.022

- RGO 406 5.0 | 0.123

- Effelsberg 195 4.7 | 0.240

- Onsala 700 -3.1 | 0.044

- Westerbork 98 -1.0 | 0.100

- Jodrell Bank 560 15.0 | 0.267

Grasse - Graz 764 -21.8 | 0.285
- Effelsberg 757 -7.1 | 0.094

- Westerbork 1017 -3.0 | 0.029

- Jodrell Bank 1251 7.5 ] 0.060

Graz - RGO 1182 -3.4 1 0.028
- Effelsberg 738 -6.6 | 0.089

- Onsala 1172 18.9 | 0.161

- Westerbork 908 -1.1 | 0.012

- Jodrell Bank 1436 10.1 } 0.070

continued on next page
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Length | Difference | ppm
(km) (cm)
RGO - Effelsberg 467 3.4 (0.073
- Westerbork 487 4.9 0.101
- Jodrell Bank 319 8.1 0.255
Effelsberg - Onsala 825 5.110.062
- Westerbork 261 4.1 { 0.155
- Jodrell Bank 701 15.3 | 0.218
Onsala - Westerbork 602 -2.2 1 0.036
- Jodrell Bank 1011 5.7 | 0.056
Westerbork - Jodrell Bank 597 16.0 | 0.268
rms=9.3

Table C.12: Comparison of baseline lengths for the orbit determination so-

lution on day 324 with the three day solution
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APPENDIX D

SV 4 Coordinate Set for the North

American Fiducial sites

The coordinate sets given refer to the GPS mark at each of the sites in the

standard data set used in chapter 7. The coordinates are given in the SV 4

reference developed at the Massachussets Institute of Technology.

Site

x (m)

y (m)

z (m)

ALGO
MOJA
OVRO
PLAT
PVER
VNDN
WSFD

918127.4990
-2356214.8002
-2410422.5939
-1240708.2691
-2525452.9597
-2678071.7747

1492232.8794

-4346061.9153
-4646733.8012
-4477802.4623
-4720454.2018
-4670035.4854
-4525451.5663
-4458091.7154

4561984.2599
3668460.5220
3838686.8365
4094481.7816
3522886.8679
3597427.5067
4296045.9743

Table D.1;: GPS standard data set coordinates :

SV 4 reference frame

Site

Day 3

Day 4

Day 5

Day 6

Day 7

ALGO
MOJA
OVRO
PLAT
PVER
VNDN
WSFD

1.399
0.000
1.387
1.682
1.332
1.264
0.000

1.399
0.000
1.890
1.682
1.593
1.263
0.000

1.399
0.000
1.890
1.682
1.433
1.260
0.000

1.399
0.000
1.890
1.682
1.447
1.260
0.000

1.399
0.000
1.890
1.682
1.475
1.260
0.000

Table D.2: Antenna heights for the GPS standard data set
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