
The Growth of Graphene on Nickel Thin Films

by

Syarifah Norfaezah Sabki, B.Sc.,M.Sc.

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

May 2012

TheUniversity of
Nottingham

UNITED KINGDOM· CHINA· MALAYSIA



Abstract

The growth of graphene on Ni thin films using several different methods is

discussed.These methods include no intentional introduction of carbon, immersion

in an organic solvent, exposure to carbon-containing gas and a solid state approach

by decomposition of molecules. All the methods have produced single layer

graphene over a large area. We suggest that the graphene formation without

intentional introduction of carbon involves conversion of carbon-containing

adsorbates on Si02. This process has been verified by our experiment of graphene

growth by decomposition of eGO,in which eGOis deposited on top of Si02 and buried

under Ni thin film. Single layer graphene has successfully formed which suggests

that the carbon from eGOhas diffused and segregated to the top of the Ni surface. So

we investigate the effect of outgassing aimed to eliminate adsorbates on Si02.

Graphene growth by immersion in an organic solvent was initially performed to

investigate the effect of outgassing process, and single layer graphene is formed but

is highly defective, as determined by the intensity of the Raman 0 band. We found

that outgassing the Si02 is important to produce single layer graphene, but the

defects in graphene are not significantly reduced. Graphene growth method using

propylene is carried out to identify the factors that influence the amount of defects

and to reduce through optimization of growth parameters. The graphene defects

are reduced significantly by varying the annealing temperature and exposure time to

propylene. We found that different Ni thickness do not affect the defect formation

in graphene but do improve the Ni surface morphology. Graphene growth by

decomposition of eGOon Ni thin film produced graphene layers with controlled

thickness. This molecular carbon source provides a method of controlling the total

dosage of carbon introduced into the film with a high degree of precision. We found

that the eGOcoverage, annealing temperature, and deposition sequence influence

the properties of graphene layers. We also presented preliminary results of

graphene enhanced Raman scattering (GERS)of adsorbed PTeDI.We demonstrate



that single layer graphene is a very good substrate for Raman enhancement in which

the adsorbed molecules can be detected at a small fraction of monolayer coverage.

Using the same transfer method typically used for graphene, we managed to

transfer PlCDI on graphene from Ni film to Si02• Here we demonstrate the effect of

a substrate for graphene which can give rise to the enhancement of a Raman signal

of adsorbed molecules.
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Chapter 1

Introduction

1.1 Graphene

Carbon is known to be one of the most abundant elements in the universe by

mass. Even before carbon was identified as an element, a substance, graphite, was

discovered and named by Abraham Gotlob Werner in 1594. The word graphite is

from Greek word grafo, meaning 'to draw or to write' because it was being used in

pencils at the time. It was first recognized as an element in 1789 when Antoine

laurent de lavoisier proposed to name it carbon which came from the latin word

carbo, meaning 'charcoal'.

Since then, carbon has proved a fascinating and essential element studied in

many different research areas because of its capability to bond with other elements

and form a wide range of organic compounds. In addition there is great interest in

elemental carbon since it can form several different allotropes. The two most well

known allotropes are diamond and graphite. Interestingly, in recent decades, several

more forms of pure carbon have been discovered such. as fullerenes, carbon

nanotubes and graphene. It is even more interesting that all these recently

discovered allotropes are not three-dimensional (3D). Fullerenes are zero-
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dimensional, carbon nanotube is one-dimensional and graphene is two-dimensional.

Amongst these three allotropes, graphene has been theoretically studied for more

than sixty years (Wallace, 1947; McClure, 1956; Slonczewski & Weiss, 1958) and has

now become the focus of a rapidly growing community of researchers since its

isolation in 2004 by Novoselov and Geim (Novoselov et al., 2004; Novoselov et al.,

2005) for which they were awarded a Nobel Prize in Physics in 2010 for the

discovery.

Figure1.1:A graphenesheet with a honeycombstructure; carbon atoms are arrangedin
regularhexagons.

More than 70 years ago, landau argued that a 20 material could not exist,

since it would be thermodynamically unstable (Landau, 1937). However the isolation

of graphene has proven that a 20 material cannot only exhibit high quality of

electronic properties but can also large in coverage and extremely strong. The name

graphene is given to a 20 layer of sp2-bonded carbon atoms which form a

honeycomb structure of fused benzene rings. These basic sheets are the building

blocks of other graphitic materials such as carbon nanotubes. When several layers of

20 graphene layers are stacked and stabilised by van der Waals forces, graphite is

formed. This is no longer 20 but should be considered a bulk, or 30 material. This

raises the question of how many graphene layers are needed to form graphite.

Basedon the electronic structure of graphene, it is possible to distinguish different
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types of graphene; single-, double- and few-layer, which consists of 3 to 5 layers of

graphene. Graphene stacks that form films thicker than 5 layers are commonly

considered to be graphite. A single layer graphene with honeycomb structure is

shown in Figure 1.1.

1.2 Remarkable properties of graphene

Graphene has become so popular in nanotechnology because of its

electronic properties which opens many doors for new research and potential

applications. One advantage of graphene is the ambipolar electric field effect

whereby charge carriers (electrons and holes) can be regulated using a gate for

concentrations up to 1013ern". The mobilities of the charge carriers is very high and

can surpass 200000 cm2V1s-1 (Castro et al., 2010). This high quality gives rise to the

quantum Hall effect (QHE) that can be observed in graphene even at room

temperature (Novoselov et al., 2007). Charge carriers in graphene are described by

the Dirac equation and the interaction of carriers with the honeycomb lattice give

rise to new quasiparticles with an effective speed of 106m-1f1 at low energies (Geim

& Novoselov, 2007). These quasiparticles are also known as Dirac Fermions.

Graphene also has the complete absence of backscattering for certain

models of disorder, a properly related to the Klein paradox. The Klein paradox refers

to a counterintuitive process of perfect tunneling of relativistic electrons through

arbitrarily high and wide barriers (Geim & Novoselov, 2007). Since the concept of

the experiment may be readily implemented in graphene, this has stimulated

research on weak and strong localization effects in disordered graphene. The

superior properties put graphene a promising candidate for electronics due to

minimal resistance which allow high-power and high-speed, fast-switching

transistors, replacing analogue devices. There are many other reasons that generate

so much interest in graphene. Other than electronic transport (Geim & Novoselov,
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2007; Moroszov et al., 2008; Chen et al., 2008) and thermal conductivity (Balandin et

al., 2008), other graphene properties have also been explored such as mechanical

properties (Leeet al., 2008) and optical behavior (Nair et al., 2008).,

1.3 Graphene isolation, growth and detection

The simplest method of graphene isolation is known as mechanical

exfoliation or cleavage,which produces high quality monolayers and multilayers. An

alternative, chemical exfoliation involves chemical reduction of graphene oxide

(Stankovich et al., 2007; Edaet al., 2008). This process involves chemical conversion

from graphite to graphene oxide and then to reduced graphene oxide. Eventhough

the mechanical exfoliation is simple, graphene isolated by this method has the

highest quality.

Many researchers have started to grow graphene on metal surfaces to

acquire graphene in large coverage, particularly for electronic applications. One

method which was once considered a very good approach to graphene growth is

graphitization of SiCsurfaces (Berger et al., 2004; Berger et al., 2006), because it

produces graphene sheets on an insulating substrate. However the graphene

formed on SiC is difficult to release and transfer. Accordingly, work on graphene

growth has expanded rapidly since it becomes more challenging and interesting to

produce graphene over large area with the highest quality possible and capability to

be released and transferred. This has resulted in extensive studies of the growth of

graphene on transition metal substrates such as Ru,Ni, Pd, Rh, Ir or Cu (Sutter et al.,

2009; Reina et al., 2009; Pollard et al., 2009; Mattevi et al., 2011). Interestingly,

there are several different approaches to graphene growth. Growth processes

include the exposure to carbon containing gases (Obraztsov, 2007; Vu et al., 2008;

Reina et al., 2009; Kim et al., 2009), converting carbon-conta ining adsorbates

(Pollard et al., 2009), decomposition of molecules (Perdigao et al., 2011) and growth
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from solid carbon sources (Sunet al., 2010). It is predicted that methods in graphene

will continue to develop rapidly. Most recent research has successfully grown

graphene from food, insects and wastes on Cufoils (Ruanet al., 2011).

In conjunction with the expansion of work on graphene growth, there has

been great progress on the characterization of graphene layers. Raman

spectroscopy, optical microscopy and transmission electron microscopy (TEM) are

valuable tools that are capable to distinguishing graphene layers. Visualization of

graphene using optical microscopy (Blake et al., 2007) by relating the different

contrast with number of graphene layer is the quickest and simplest way to

distinguish graphene but the images can be difficult to interpret. TEM is a powerful

technique to distinguish graphene layers but requires the transfer of graphene

sheets to the TEM grid. In fact, one early application of graphene is as a near-

transparent TEM grid. In addition, TEM can be used to study structure and grain

boundaries of graphene (Huang et al., 2011). Raman spectroscopy is the most

powerful tool to characterize graphene layers (Ferrari et al., 2006; Casiraghi et al.,

2007; Ferrari et al., 2007; Malard et al., 2009) because of its capability to give

precise information about the graphene layer thickness and most importantly, it is

non-destructive.

1.4 Thesis motivations and outlines

Graphene growth on Ni has stimulated great interest from researchers due

to the ease of release-transfer process through sacrificial Ni films. To grow

graphene, Ni thin films need to be exposed to carbon sources. In this thesis a study

to characterize graphene growth on Ni films using various methods, such as

converting carbon-containing adsorbates, exposure to carbon containing gas in

particular, propylene and decomposition of CGOis reported. Even though graphene

growth by exposure to propylene has been probed before (Grunels et al., 2009;
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Dedkov et al., 2008), the emphasis in this thesis is on polycrystalline surfaces and on

transferred graphene, and is carried out to reduce the defect density in order to

achieve high quality graphene. Apart from the growth, this thesis describes Raman

spectroscopy of graphene. Also described is a study of PTCDI molecules on

graphene. This is relevant to the use of graphene as a substrate for surface

enhanced Ramanscattering (SERS)study for adsorbed molecules (Junget al., 2010),

also known as graphene enhanced Raman scattering (GERS).This thesis outline is

given below:

Chapter 2: Graphene - this chapter provides an introduction to graphene structure

and properties in term of the tight binding model, stacking and vibrational

properties. Also discussed is Raman spectroscopy and Raman scattering of

graphene, which are important for graphene characterization.

Chapter 3: Experimental Techniques - this chapter concentrates on the specific

instruments and procedures used in the experiments. The instruments are described

in several subsections such as graphene growth, characterization of graphene-

terminated Ni, transfer of graphene and characterization of graphene on Si02•

Chapter 4: Graphene Growth on Ni - This chapter discussesthe graphene transfer

method we have developed and the vacuum systems we used to deposit Ni thin

films. The main focus ofthis chapter is divided into two sections; graphene growth

without the intentional introduction of carbon, and secondly the intentional

introduction of carbon.

Chapter 5: Monolayer Graphene Growth on Ni Films using CVD- This chapter may

be viewed as a continuation of work in Chapter 4 and describes graphene growth by

exposing Ni films to propylene. In this chapter the reduction of defects in graphene

by fine-tuning specific parameters in the growth process is described.
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Chapter 6: Graphene Formation by Decomposition of C60 - In this chapter the

growth of graphene from the intentional indusion of the fullerene, C60,is discussed.

Two methods of C60decomposition are investigated; buried C60under a Ni film and

C60sublimed on top of a Ni film.

Chapter 7: Graphene Enhanced Raman Scattering (GERS) of PlCDI - In this chapter

the GERSeffect is studied by investigating the enhanced Raman scattering of PlCDI

adsorbed molecules on epitaxial and exfoliated graphene.

Chapter 8: Conclusions - lhis is the final chapter which summarizes and condudes

the works carried out in the above chapters. It also includes viewpoints for future

work.
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Chapter 2

Graphene

2.1lntroduction

This chapter gives an overview of the 2-dimensional graphene lattice which is

constructed from carbon-carbon bonds. The structure of graphene leads to its

interesting electronic properties with the most significant contribution arising from

the band formed by 1t electrons which will be explained within the tight-binding

model. This chapter will also include a discussion of graphene stacking, as epitaxial

graphene often contains multiple layers of graphene. It is important to understand

the vibrational properties of graphene since the phonon dispersion provides the

basis for understanding Raman scattering of graphene which is widely used to

characterize graphene layers. Raman spectroscopy can give information on the

quality and the number of layers of graphene. The techniques used in the analysis of

the Raman spectrum of graphene will also be discussed in this chapter. The

discussion of graphene growth will be focused on the use of transition metal

substrates as this is the main topic of this thesis.
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2.2 Graphene structure

Graphene is made up of carbon atoms. A carbon atom has six electrons

occupying the 1s2, 2S2and 2p2 atomic orbitals as shown in Figure 2.1. The 1s2

electrons are strongly bonded and are known as core electrons. The four remaining

electrons as in 2S2and 2p2 are valence electrons. The binding energy is the energy

required to extract electrons from their atomic orbitals. The difference in binding

energies between the 2s and 2p states is much smaller than the absolute binding

energy. This means that the wavefunctions of the four electrons can be mixed when

forming bonds with other atoms. This process is called hybridization and the

resulting states are shown in Figure 2.2. The mixed wavefunctions result in three

states, also known as Sp2states which reside in xy-plane. The Sp2states combine or

overlap to form covalent c bonds with their nearest neighbours, with an angle of

1200 between bonds, which leads to the hexagonal lattice structure of graphene. c

bonds are strong and lead to the mechanical strength of graphene.

x y z x y Z

2p2<tXt)(J 2p2<tXtXt) 2pz<U
~ !..---:

2S2@-----: 2S2<U--~-----~2Sp2 <tXtXt)

Figure 2.1: Sp2hybridization in graphene showing the occupation of the atomic orbitals in
the hybridization process.

The remaining electron occupies the 2pz orbital (see Figure 2.1) which is

oriented along the z-axis. Electrons in these states combine to form 1t bonds. The

orbital structure after the hybridization is displayed in Figure 2.2 showing 0' orbitals

which are depicted in blue while the 1t orbitals depicted in red.
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Figure 2.2: Hybridization process between two carbon atoms showing bonding of the er
orbitals (blue) and 1t orbitals (red).

The graphene structure is referred to as a honeycomb lattice structure since

the carbon atoms sit at the vertices of regular hexagons. From a crystallographic

point of view, the honeycomb lattice of graphene cannot be described by a Bravais

lattice but it has to be represented by a triangular lattice with two atoms per unit

cell. These two atoms are often referred to as A and B atoms as shown in Figure 2.3.

The unit cell of the lattice is a rhomboid and can be defined by the lattice vectors as

in equation (2.1) (Rao et al., 2009).

and (2.1)

Where a = 1.42 A is the interatomic distance. Figure 2.3 shows the lattice and the

reciprocal lattice, within the first Brillouin zone of graphene. The reciprocal lattice is

also a triangular lattice with its lattice vectors hi and bz given in equation (2.2) Rao

et al., 2009).

and
4JT

b2 =-e3a Y
(2.2)
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The first Brillouin zone as shown in Figure 2.3(b) (Castro Neto et al., 2009)

has two inequivalent corners, K and K' , and the other four corners can be obtained

from an elementary translation of the form nb I + mb» where n and m are integers. K

and K' are named Dirac points and their positions in momentum space are given in

discussed in the next section.

equation (2.3) (Castro Neto et al., 2009). The significance of K and K' will be

Figure 2.3: (a) Graphene lattice with al and a2are the unit vectors. (b) Reciprocal lattice of
graphene with the shaded hexagon as the first Brillouin lone. b, and b2are reciprocal lattice
vectors (Raoet al., 2009).

K=(2Tr , _l:!!_)andK,=(2Tr , _ _l:!!_) (2.3)
3a 3J3a 3a 3J3a

2.3 Tight-binding model of graphene

The dispersion relation of the 1t electrons in graphene is described by the

tight-binding model. The first tight-binding description of graphene was suggested

by Wallace in 1947 with consideration of the nearest- and next nearest-neighbor

interaction for the graphene pz orbitals. However he neglected the overlap between

wave functions centered at different atoms. Saito et al., 1998, has given a better

tight-binding approximation which considers the overlap between the basis
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functions, but includes only interactions between nearest neighbors within the

graphene sheet. So Reichet al., 2002, derived an improved tight-binding electronic

dispersion by including up to third-nearest-neighbor interaction and overlap.

From the Schrodinger equation in equation (2.4), we can calculate the

eigenvalues E, of the allowed states. H in equation (2.S) is the single-electron

Hamiltonian of graphene where the first term describes the kinetic energy of

electron. The second term describes the periodic potential with R as the position of

the carbon atom.

(2.4)

p2
H=-+ IV(r-R)

2m R
(2.S)

Since graphene has two atoms per unit cell, the following assumption in

equation (2.6) describes the wavefunction ;k (r) where <l>~ (r) and <I>~ (r) are the

Bloch functions. Both \fA and \fB in equation (2.6) depend on the wave vector k.

(2.6)

Where

1 N
mk () _ ~ ikR.~tS ( R )
'VAIB r - r.; ~e X r- AlB

VN RAtS

(2.7)

RAI B indicates the position of the atom A or B, x(r - RAI B) are Wannier functions

localized at the AlB atoms and the eikRA18 contains the periodicity of the lattice. In

order to obtain the energy eigenvalues, the wavefunction is substituted in the

Schrodinger equation.
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Assuming that electrons can hop to both nearest- and next-nearest-neighbor

atoms but neglecting overlap integrals for larger spacings, the tight-binding

Hamiltonian isgiven by equation (2.8) (Castro Neto et al., 2009),

H = -( I (a:,A.,j + H.c.)- r' I (a:,;Ga,j +«»: + H.c.)
(i,j),a ((i,j) ),a

(2.8)

Where ; and j refer to sublattices A and B respectively. The lattice vector aa;i

annihilates and a·ai creates an electron with spin o up and down on site R, on

sublattice A, and similarly for the annihilation and creation of electron on site Rj on

sublatice B. (is the hopping energy of electrons to the nearest-neighbor which refers

to the hopping between different sublattices. t' is the hopping energy to the next-

nearest-neighbor which refers to hopping in the same sublattice. H.c. is the

Hermition conjugate.

From the tight binding Hamiltonian given in equation (2,8), the dispersion

relation is (Wallace, 1947),

E± =±tJ3+ f{k}-t'j(k) (2.9)

Where the plus sign refers to the upper band, 1t* and minus refers to the lower

band, 7t and f{k) is the wave-vector dependent factor given by,

2( J3a] {J3a] { 3a)f(k)= 1+4cos kxT +4co kXT co kY2 (2.10)

Figure 2.4 below shows a close up at the band structure close to one of the Dirac

point, at Kor K' point in the Brillouin Zone. The dispersion energy, E can be obtained

by expanding equation (2.10) around the Dirac paint with k = K + q and Iqls 2: .
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(2.11)

_ 3ta _ 1 106 -Iv
F

_-_ X ms
2 (2.12)

where VF is the Fermi velocity and q is the momentum measured relative to the

Dirac points.

(a) (b)
Figure 2.4: Electronic dispersion in graphene honeycomb lattice structure. (a) The energy
spectrum (is in units of t) for finite values of t and t', with t=2.7eV and t'= -0.2t. (b) close up
of the energy band close to one of the Dirac points (K and K') (Castro Neto et al., 2009).

One of the most important characteristics of the energy dispersion of

graphene is that it has a linear energy-momentum relationship with the crossing of

the valence (n band) and conduction (n* band) bands at q = 0, which is

symmetrically below and above the Fermi energy EF = O. Accordingly the fermi level

is in between the nand n* bands at the crossing point. Considering that a perfect

graphene sheet has only one electron per carbon atom in the n level, zero excitation

energy is needed to excite an electron from the very top of 1t band to the very

bottom of n". Therefore graphene is a zero band-gap semiconductor, with a linear

energy dispersion for electrons in the conduction band and holes in the valence
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band as a result of two atoms per unit cell in graphene. This gives graphene metallic

properties and characteristics of a gapless semiconductor.

2.4 Graphene stacks

Graphene refers to single 2D plane of carbon atoms network, as explained

beforehand. Double layer graphene is a stack of two single layers, few layer

graphene is a stack of 3 to 5 layers, graphite is a stack of more graphene layers on

top of each other.

<
(a) (b)

(c)
Figure 2.5: (a) single layer graphene with atom A (light grey dot) and atom B (dark grey dot)
(b) double layer graphene with atom A2 on top of atom A1 (grey circle), atom B1 (dark grey
dot) and atom B2 (black dot) (c) 3-dimension unit cell of double layer (Malard et al., 2009;
Goncharuk & Srnrcka, 2010).
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Double layer graphene consists of two overlapping sheets (sheet 1and sheet

2) arranged in Bernal stacking, where the atoms in a sheet are arranged relative to

in-plane position. The distance between sheets is 3.37 A (Goncharuk & Srnrcka,

2010). The first network in sheet 1 can be represented by atoms A1 and B1,while the

second network in sheet 2 can be represented by atoms A2 and B2.Therefore bilayer

graphene has four atoms per unit cell. As shown in Figure 2.5 (b) and (c), atom A1 is

overlapping with atom A2, however atom B1 is placed underneath the vacant center

of the above hexagon, while atom B2 is placed above the vacant center of the

underlying hexagon. For instance, two overlapping layers oriented in such a way that

the atoms of the honeycomb structure of one layer are directly above one half of

the atoms in the neighboring layer (Guinea et al., 2007).

A B C

• • ,

It It

Figure 2.6: Electronic structure of (A) a single layer, (B) symmetric double layer, and (C)
asymmetric double layer of graphene. The energy bands depend only on in-plane
momentum because the electrons are restricted to motion in a two dimensional plane. The
Dirac crossing points are at Dirac energy, ED (Ohta et al., 2006).

This double layer graphene has a combination of two atoms per unit cells

from two planes making four atoms into consideration. This causes a change in band

structure whereas additional bands, such 1t and 1t* states are formed in each valley

split by interlayer (A-B) coupling, and two lower energy bands, as illustrated in

Figure 2.6. For the case of asymmetric double layer graphene, the energy gap

between 1t and 1t* states is increased at the Dirac point due to the symmetry

breaking with the Fermi energy residing within the gap. This gives rise to the
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transition from semimetal to insulator. If this symmetry breaking could be controlled

externally, the electronic conductivity would change through this transition,

suggesting that a switch with a thickness of two atomic layers could be constructed

(Ohta et al., 2006).

(a) (b)
Figure 2.7: Lattice structure of tri-Iayer graphene with (a) 1 2 1 stacking and (b) 1 2 3
stacking sequence. The yellow and blue dots represent carbon atoms in the 1 and 2
sublattices of the graphene honeycomb structure (Lui et al., 2011)

Bernal stacking (described above) has a stacking order 1 2 1 2 and so on, is

the most common and stable structure of graphite. Another stable crystallographic

configuration is 1 23 stacking order as shown in Figure 2.7. Stacking order of 12 1 is

commonly used to describe exfoliated graphene because of its thermodynamically

stablility. Interestingly, recent study shows that 1 2 1 stacked tri-Iayer graphene is a

semimetal with an electrically tunable band overlap, while 1 2 3 stacked tri-Iayer is

predicted to be a semiconductor with a tunable band gap (Lui et al., 2011). The 1 2 3

stacking can be represented by rhombohedral stacking. When the stacking

arrangement of many layers of graphene is not in a discernible order and relative

orientation of the network changed, it is called turbostratic graphite. The

characterization of graphene and graphite using Raman spectroscopy shows that

turbostratic graphite has a quite similar Raman band shape and Raman shift to the

Raman spectrum of graphene. The Raman characteristics of turbostratic graphite
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will be further detailed in section 2.6.3. The formation of turbostratic graphite has

been problematic in graphene growth and it is often neglected.

2.S Vibrational properties of graphene

Atoms in a uniform solid material interact with their neighbours so that

atoms do not vibrate independently. The vibrational energies of molecules can be

considered as quantum harmonic oscillators since the energies are quantized.

Phonons may be considered as quanta of vibrational energy in periodic solids at a

collective vibrational mode which can accept energy only in discrete amounts.

Phonon properties determine many of the thermal and mechanical processes in a

crystal.

A B

Figure 2.8: Atomic motions of atoms in graphene gives rise to 6 coordinates of phonon
branches

In graphene, the phonon dispersion may be directly investigated using

Raman spectroscopy, and this information is often used to characterize graphene

layers. The crucial aspect to consider is the Brillouin zone (shown in Figure 2.3

previously) as it describes the wave-vector dependence energy of phonons. Since

the unit cell of graphene consists of two carbon atoms, A and B, it gives rise to 6

coordinates of phonon branches as shown in Figure 2.8. The 6 phonon branches can

be divided into three acoustic branches (A) which are in-phase and three anti-phase
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optical branches (0). Both in-phase and anti-phase refer to relative motion of two

carbon atoms in reciprocal lattice; in which in-phase is the motion of carbon atoms

in the same direction while anti-phase is in opposite direction. Each of the vibrations

can be in-plane (i) or perpendicular to the graphene plane, known as out-of-plane

(0). The modes of the branches are associated with atomic motions in the direction

ofthe carbon-carbon direction, longitudinal (L] and transverse (T).

(a)
1600
1400
- 1200'E
u 1000->-oc 800<1>
::J
0- 600<1>,_
u,

400
200

0
r M K

(b)

r DOS

Figure 2.9: (a) Phonon dispersion branches and (b) the density of state (DOS).The k-space
regions from (a) contribute to the strong peaks in DOS(Malard et al., 2009).

The six phonon dispersion curves can be represented by iTO, oTO, lO, iTA,

oTA and LA as shown in Figure 2.9. The three phonon dispersion branches of

graphene represented by out-of plane transverse modes (oTA), in-plane transverse

modes (iTA) and in-plane longitudinal modes (LA) correspond to the acoustic modes

at the r point of the Brillouin zone. The iTA and LA modes have a linear dispersion

around the r point while oTA shows a q2 energy dispersion from the D6h point-group

symmetry of graphene (Malard et al., 2009).
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The optical modes are shown in the remaining three branches, which

correspond to one out-of plane mode (oTO) and two in-plane modes (iTO and LO).

The in-plane iTO and LO modes are degenerate at the I' point, and correspond to

the vibrations of the sublattice A against the sublattice B.According to group theory,

the degenerate zone-center LO and iTO phonon modes belong to the two

dimensional E2g symmetry and are Raman active (Malard et al., 2009). The linear

crossingsat oTA/oTO and the LA/LOmodes at the K-point are also a consequence of

the 06h point-group symmetry. The LA/LO crossing at the K point gives rise to a

doubly degenerate phonon with E' symmetry (Jianget al., 2005).

For instance, the regions of the Brillouin Zone in which the Ramanbands are

observed are at the T, K and K' points (see Brillouin zone in Figure 2.3). The

vibrational modes at these points contribute to the Raman bands of graphene,

observed as 0, G, 0' and 20 bands (see 2.6.2). Raman active vibrational modes of

graphene will be further detailed in section 2.6.2.

2.6 Raman spectroscopy

Raman spectroscopy is based on the Raman effect, which is the change in

light wavelength that occurs when a light beam is scattered by a material. The effect

was discovered in 1928 by Sir ChandrasekharaVenkata Ramanand named after him.

He was awarded a Nobel Prize in Physics in 1930 for the discovery. Raman

spectroscopy is widely used in chemical characterization because it is essentially a

non-destructive tool and can give detailed information about a specific material.

The measured Raman frequency shifts can give information on the

composition of a material. In addition, changes in the frequency of the Raman band

can give information related to the strain or stress of a material. The polarisation,

width and intensity of the Raman band can also provide useful information, for
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example on the crystal symmetry and orientation, the quality of crystal and the

amount of material (Ferraro et al., 2003).

Commonly, when a material is irradiated by a monochromatic beam of

radiation, there will be an interaction where the atoms in the material can be

perturbed by the radiation. The beam can then be absorbed, diffracted, reflected or

scattered. The most interesting component from this is the incident beam

scattering, which can be elastic or inelastic. Most of the photons are scattered

elastically and this process is known as Raleigh scattering. The remaining scattered

photons are inelastically scattered corresponding to the Ramaneffect.

2.6.1 Raman scattering

Raman spectroscopy provides information about the vibrational states of a

material, that is its phonon spectrum. The following explanations will therefore

focus on the interaction of an incident beam of light with phonons. As mentioned

earlier, most of the incident beam of electromagnetic radiation is elastically

scattered and is of little interest in this context. The inelastically scattered radiation

at longer wavelengths (lower photon energy) than the incident beam is known as

Stokes-shifted and arises due to excitation of phonons.

It is also possible to observe inelastically scattered radiation corresponding

to the adsorption of a phonon, and this signal, which has higher photon energy than

the incident beam is called the anti-Stokes line. As shown in the diagram in Figure

2.10, when a beam of light traverses a material of a chemical compound, most of

the transmitted light (final intensity, It) has the samewavelength as the incident light

(incident intensity, Ii), but a small part of the light (scattered intensity, Is) has

different wavelength, and is inelastically scattered, contributing to the Stokes and

anti-Stokes signals. The wavelength shift of these lines provides the basis of Raman
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spectroscopy and may be interpreted in terms of the vibrational spectrum of a

material and related to chemical information.

Vi

m

Incident intensity, I; Final intensity, Ifq
I;-If= Absorbed intensity, la

Dscattered intensity, Is

Vs

Energy

Stokes line IIIII
t

Rayleigh line

Anti-Stokes line

Figure 2.10: Interaction between incident beam and a material which contribute to Stokes
and anti-Stokes signal. Vi is incident frequency and v. is scattered frequency.

The energy shift (LlEm) can be calculated by equation (2.12) below with h is

the Planck's constant, c is the speed of light, A; and As are the wavelengths of the

incoming and the scattering photons respectively.

M=hv -hv = h (_!_-_!_)
I seA.. A.

I S

(2.12)

As shown in Figure 2.11 for Stokes interaction, the emission of a vibrational

excitation occurs when electrons in a low energy state (v = 0) are excited to a virtual

state, and then relax to a higher energy vibrational state, emitting a photon. In this

case, the scattered photons have less energy than the incident photons (1.0 - Av).
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However, in anti-Stokes scattering, the electrons are scattered in a molecule in a

higher energy vibrational state, and then relaxes to a lower energy vibrational level

(v = 0). This means that the scattered photons have more energy p.o + Av) and

shorter wavelength than the incident photons. It is expected that both Stokes and

anti-Stokes Raman scattering will occur simultaneously, with the Stokes scattering

intensity generally greatly exceeding the anti-Stokes scattering intensity. This is due

to the fact that there are more molecules in the lower vibrational states.

VIRTUAL STATE

Electronic
excited
states

.......... - - -
.......... - - - .......... - - -

Raleigh Stokes Anti-S

Ao Ai Ao x.-x,

Ac Ao+A

tokes

v

Vibrational
states

v=4
v=3
v=2
v=l
v=Q

GROUND ELECTRONICSTATE

Figure 2.11: Conservation of energy for Ramanscattering; Stokes and anti-Stokes.

Another scattering process is resonance Raman scattering which is often

used to increase the intensity of the Raman scattered signal. Many molecules adsorb

laser beam energy and strongly fluoresce, disturbing the Raman signal. This problem

often occurs when UV lasers are used, but under certain conditions, some molecules

can generate strong Raman scattering instead of fluorescence. This effect is known

as resonance Raman scattering.
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In resonance Raman scattering, the energy of the incoming laser is adjusted

such that it coincides with an electronic transition of the molecule. Since it involves

an electronic transition, the intensity of the Raman signal is enhanced by a few

orders of magnitude. This is the main advantage of the resonance Raman over the

non-resonance or traditional Raman spectroscopy. Non-resonance and resonance

Ramanscattering can be distinguished by varying the incident photons energy /..0. In

resonance Raman scattering, the incident beam energy is higher than the non-

resonance Ramanscattering, as shown in Figure 2.12 below and gives rise to a more

intense Ramanline.

excited---------------------------v = 3
electronic v = 2---------------~~~-~~~-~~--v=l

state n v = 0

Ground--r+---+;---+;------;~---rr--_rr_---v=3
electronic V ~ ~ ~

state__ L-.L __ :---:'- -:--~---__=-:-'~:__--L.....::---_:_"":_--- V = 0
Raleigh Stokes Anti- Raleigh Stokes Anti-

Stokes Stokes

I
I i I'

Ramanscattering ResonanceRamanscattering

Figure2.12:Resonanceandnon-resonanceRamanscattering.

For a molecule with many vibrational modes, resonance-Raman

spectroscopy allows a few vibrational modes to be observed at a time. This process

reduces the signal complexity which leads to easier identification of some unknown

peaks. Resonance-Ramanalso can give structural identification of a substance or
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compound. Since the intensity of Raman peaks can be increased, the resonance

Raman spectra can be generated with much lower sample concentration as

compared with conventional Raman spectroscopy. One disadvantage of resonance-

Ramanis the increased fluourescence and risk of photodegradation of the sample.

2.6.2. Raman scattering of graphene

Before a thorough discussion on Ramanscattering of graphene, it is useful to

present the main features in the Raman spectrum of graphene as in Figure 2.13

which has three dominant bands; D, G and 2D bands. The Ramanband at 1580 ern?

was initially found in graphite and named as G band. The G band is the only band

arising from a normal first-order Raman scattering process. It is associated with the

doubly degenerate phonon mode (iTOand LO)at the Brillouin zone center.

1400 2D
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Raman shift (ern")
Figure 2.13: Raman spectrum of a defected graphene showing main features of a Raman
spectrum.

The G band Ramanshift and its line shape reflects doping and strain level of

graphene. The Raman shift of the G band does not vary with the incident photon

energy, but is sensitive to charge transfer. This can provide information about the

doping or impurities within a graphene sample (Malard et al., 2009). For instance,
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negatively charged impurities in graphene correlated to electron transfer, will cause

a downshift of the G band because of the decrease in the energy of the phonon

vibration. The G band can also be an indicator ofthe number of graphene layer, as it

gives rise to a slight frequency upshift «10 cm") but its shape does not changewith

the number of layers (Charlier et al., 2008). But the G band intensity increaseswith

an increasing number of graphene layers from one to four layers (Graf et al., 2007).

The first order G band process is illustrated in Figure 2.14(a).

There is a second-order resonance mode involving a iTO phonon near the K

point and one defect which generates a frequency lower than the G band. This band,

at 1350 ern", is named the 0 band due to the interaction of photons with defects

and disordered Sp2carbons in rings (Ferrari, 2007). The 0 band mechanism requires

the interaction of a photon with the K and K' points (refer Figure 2.3) and the

process is called an inter-valley mechanism as represented in Figure 2.14(b). The 0

band is commonly observed at the graphene edges, however there are a few more

defect types which also need to be considered such as stacking order, crystalline size

and structural disorder which relate to vacancies, topological defects, bond

distortion and Sp3conversion. The 0 band is sensitive to the laser beam energy as it

relatively upshifted with higher laser beam energy.

Similar to the 0 band, a band named the 20 band, also known as the G'

band, originates from a second-order process involving two iTO phonons near the K

point. The 20 band is approximately twice the 0 band frequency due to the two iTO

phonons which contribute to the inter-valley process. This process connects states

close to inequivalent K and K' points in the first Brillouin zone and is illustrated in

Figure 2.14(c). Accordingly the 20 band frequency is observed at 2700 ern". Unlike

the 0 band, the 20 band is not associated with any kind of defects or disorder. In the

case of the 20 band, the scattering of holes also needs to be considered. Holes can

be scattered by phonon with wavevector +q and in this case, the electron and hole

scattering leads to a triple resonant process (Figure 2.14(d)), which contributes to

the intensity of the 20 band (Malard et al., 2009).
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Figure 2.14: Schematic representation of the electronic scattering mechanisms at the K and
K' points in the reciprocal space. (a) First-order G band process, (b) inter-valley process for 0
band, (c) inter-valley double resonance process of 20 band, (d) inter-valley triple resonance
of 20 band process, (e) intra-valley process for the 0' band. Resonance points are shown as
open circles near the K point and K' point (Malard et al., 2009).

Another band which typically has a frequency at 1620 ern", arises through a

double-resonance process as a result of an intra-valley scattering mechanism in a

transition occurs between states within the cone around the K point or the K' point

and it is illustrated in Figure 2.14(e). This is a weak defect and disorder induced band

(similar to D band) and involves the scattering of the iLO phonon near the r point.

This band is observed as a shoulder next to the G band and is referred to as the D'

band. Since the intensity of the D' band is much weaker than the D band, it is not

widely used in the characterization of graphene.
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A weak band is observed at -2450cm-l, called the G* band. This is a second

order band which involves one iTO and one LA phonon in a double resonance

Ramanmode (Malard et al., 2009; Maultzsch et al., 2004). The frequency of the G*

band can be influenced by the laser excitation energy in which the G* band is

downshifted with higher laser energy (Mafra et al., 2007). A peak observed at 2950

ern" is denoted as O+G band which is also a second order band and a disorder-

induced band (livneh et al, 2002). Both G* and O+G bands are very weak and

typically not of interest for graphene characterization as will be extensively

discussedin the following chapters.

2.6.3. Characterization of graphene using Raman

spectroscopy

In the characterization of graphene, the determination of the number of

layers using Raman spectroscopy is quite straightforward. However a careful

investigation requires the functional fitting of Raman bands. Previous work on

graphene characterization (Ferrari et al., 2006; Ferrari, 2007; Charlier et al., 2008)

has demonstrated that the intensity and full width half maximum (FWHM) of the

Raman bands may be used to distinguish the number of graphene layer. Typically

torentzlan functions are used to determine the number of peaks that contribute to

graphene Ramanspectrum aswell as their FWHM and intensity. The intensity ratios

can be calculated from the data obtained.

Typically, the criteria between single and multilayer graphene can be

differentiated by the ratio of 20 band to G band (12D/IG) and FWHM of the 20 band.

Characteristically, single layer shows a single sharp 20 band which is about two

times more intense than the G band (Ferrari et al., 2006). In this work, graphene is

considered as single layer graphene if 12o/IG>1 and the FWHM of the 20 band is less
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than 35 cm". Therefore a double or multi-layer graphene should has the intensity

ratio of bo/IG<l and FWHM of the 20 band more than 35 ern".

The Raman spectra of double layer and few-layer graphene have apparent

differences as compared with the spectrum of a single layer. The Raman spectra of

single and double layer graphene (Figure 2.15) show a different intensity and Raman

shift for the G and 20 bands. 20 band of double layer graphene consists of four

components 2018, 201A, 202A and 2028, two of which, 201A and 202A have higher

relative intensities than the other two (Ferrari et al., 2006). The G band for double

layer graphene shifts towards lower wave numbers (2 - 3 cm-1) and has a slightly

higher intensity (12o/IGaround 0.8 - 1). These characteristics are due to the different

electron dispersion energy in double layer graphene as shown beforehand in Figure

2.6(B) and (C). For the 7t band (or valence band) consists of two components

represented by 7tl and 7t2 while the 7t* band (or conduction band) has another two

components, 7tl* and 7t2* at the K and K' points respectively. These four different

components contribute to the four band components (2018, 201A, 202A and 2028)

(Ferrari, 2007; Malard et al., 2009).
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Figure2.15: Ramanspectraof singleand bilayer graphene (D' is also known as 2D peak)
(Grafet al., 2007).

A significant difference between the Raman spectrum of graphene and

graphite is, the decrease of the relative intensity of the lower wave number 201
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components (Ferrari et al., 2006), thus producing a shoulder on the 2D band as the

number of layers is increased. This peak evolves into only two peak components in

bulk graphite. Raman spectroscopy can differentiate a single layer from a bilayer and

from few layers (3 to 5 layers), however it is very difficult to distinguish more than

five layer graphene from bulk graphite.

Another issue which needs to be considered is turbostratic graphite which

typically has a sharp single 2D peak simila r to single layer graphene but has a FWHM

of -50 cm" and is up-shifted of 20 cm? (Ferrari et al., 2006). The similarity of the

Raman 2D band of a turbostratic graphite to that of single layer graphene provides

direct experimental evidence that a turbostratic graphite can be considered as a 2

dimensional graphite (Pimenta et al., 2007). The D band in turbostratic graphite is a

first order band (Lespade et al., 1084), unlike the D band in graphene which is

second order.

2.7 Surface Enhanced Raman Spectroscopy (SERS)

SERSis an enhancement of the Raman signal, typically by a few orders of

magnitude, due to absorption of molecules on a rough metal surface. SERSis used to

investigate the vibrational properties of adsorbed molecules yielding structural

information of the molecule and its local interactions. This surface-sensitive

technique also uniquely identifies molecules and allows the detection of single

molecules.

SERSwas first reported by Martin Fleischman and coworkers in 1974 with

pyridine molecules adsorbed onto an electrochemically roughened silver surface

(Fleischman, 1974). The mechanisms which contribute to the SERSeffect are still

debated, however the two most discussed theories are the electromagnetic

(Jeanmarie & Van Duyne, 1977) and chemical (Albrecht & Creighton, 1977)

enhancement theories. It is currently accepted that the electromagnetic

enhancement typically provides the highest contribution to SERS.
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The electromagnetic enhancement arises from the presence of localised

plasmons on a rough surface. Surface plasmons are electromagnetic waves that

propagate along the surface parallel to the metal or dielectric interface and are

generated when the incident light excites the electron gas of the metal. When a

molecule is placed in the proximity of the plasrnons, it experiences a locally

enhanced electromagnetic field which produces an increase in Ramanscattering.

Chemical enhancement involves charge transfer between the chemisorbed

species and a metal surface. In this case enhancement arises due to charge transfer

which causes the polarizability of the molecules to increase due to the larger

separation between positive and negative charge in the molecule/substrate. This

causes the cross-section for Raman scattering to increase (Ling et al., 2010).

Chemical enhancement has been shown to have a higher cross section for the first

monolayer of adsorbed molecules than the second layer (Otto, 1992). However the

chemical enhancement is generally less than a factor of 10, much lower than

electromagnetic enhancement.

2.7.1 SERSof Graphene

Graphene is found to be a very good substrate for enhancing the Raman

signal of adsorbed molecules. Ling et al., 2010 found that Ramansignal of adsorbed

molecules on single layer graphene are stronger than on Si02/Si and multilayer

graphene substrates. The Raman signal is found to decrease with increasing

thickness of graphene; graphite itself is a very poor Raman substrate for Raman

enhancement (Junget al., 201O). Most studies have attributed the enhancement of

the Raman signal to the charge transfer (chemical mechanism) between graphene

and the molecules (Ling & Zhang, 2010; Linget al., 2010; Ling & Zhang, 2011).

One of the important characteristics in chemical enhancement is the short

range, wherein the chemical enhancement follows a power law decay, if 10 (where d

is the distance between the probe molecule and the substrate) (Mrozek & Otto,
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1990). These authors pointed out that the chemical enhancement can be achieved

when the molecule is close enough to the substrate, which is consistent with the

first layer effect.

One of the advantages of the measurement of Raman spectra of adsorbed

molecules on graphene is that fluorescence and luminescence are quenched (Xie et

al., 2009). Jung et al., 2010, reported that the quenching rate increases as the

spacing between the molecule center to graphene plane decreases.To calculate the

Raman enhancement factor, the intensity signals of adsorbed molecules on a Si02

substrate are compared with the signalsfor adsorbed molecules on graphene.

2.8 Graphene growth

The growth of graphene over large areas is currently a rapidly developing

area of research. There are two methods of graphene growth on metal surfaces to

be considered. The first method is segregation of bulk-dissolve carbon to the

surface, which involves carbon doped samples, which in other words, contains

carbon impurities. The second method is the surface decomposition of carbon-

containing molecules, egohydrocarbon gases like ethylene, propene or methane are

used. This method has been explored experimentally since 1974 for example by

Shelton who found that at an equilibrium temperature carbon would dissolve into

nickel producing a condensed graphitic monolayer at the nickel surface, known as

graphene nowadays (Shelton et al., 1974; Fujita et al., 1995).

Both graphene growth methods are capable to produce single or multilayer

graphene by controlling the growth parameters, such as temperature. Graphene

grown by both methods were initially observed using Auger Electron Spectroscopy

(AES)(Grant & Haas, 1970; Shelton et al., 1974) and low energy electron diffraction

(LEED) (Bonzel & Krebs, 1980). Graphene had also been detected using angle-

resolved photoelectron spectroscopy and the results were compared with ab-inito
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calculations which have shown a nearly parabolic band which is assigned to the 2pz

orbitals of the carbon atom (Himpsel et al., 1982).

There has been remarkable progress in the growth of graphene on SiC.The

growth process involves annealing the SiC at very high temperature {-1100oq
resulting in the desorption of the top Si layers leaving a few layers of graphene at

the surface. The number of graphene layers could be controlled by fine tuning the

growth parameters such as annealing temperature and time. The quality of the

graphene as well as the number of layers could be controlled using different SiC

crystal orientations for the growth; as an example the C-terminated surface

produces few layers (2 to 5 layers) with low electron mobility, while the Si-

terminated surface produces several layers with higher electron mobility (de Heer et

al., 2007). One drawback of graphene grown on SiCis that it is almost impossible to

release-transfer graphene from the surface. However, there is a way to grow and

release-transfer graphene grown on transition metal substrates, such as Ru, Ni, Pd,

Rh, Ir or Cu. It is also the most promising and readily accessible route of reasonably

high quality graphene.

Graphene growth on polycrystalline ruthenium (Ru) (Sutter et al., 2009)

shows that, after an appropriate treatment, Ruthin films have a columnar structure

with highly aligned grains exposing flat (001) surface facets. A uniform monolayer of

graphene covers the entire Ru surface. Sutter et al., 2009 found that

monocrystalline graphene domains are coherent acrossa large number of substrate

grains, hence the size of graphene domains is not limited by grain boundaries in the

metal template. It has been found that graphene on Ruhas zigzagedges and ripples

which related to a 10 x 10 reconstruction (Vazquez de Parga et al., 2008). The

inhomogeneous graphene coverage is caused by locally enhanced carbon

segregation at stacking domain boundaries of metal emphasizing the importance of

the suppression of local segregation (Yoshii et al., 2011).

Research on graphene growth on Ni has attracted considerable interest

because of the high quality of graphene sheets produced and the easy release-
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transfer process through the use of sacrificial Ni films. Many methods has been

explored using Ni films since 1974 (Shelton et al., 1974; Fujita et al., 1995;

Campagnoli & Tossati, 1989) with the exposure to carbon containing gasses

(Obraztsov, 2007; Vu et al., 2008; Reina et al., 2009; Kim et al., 2009) such as

methane at atmospheric pressure. Graphene could also be formed without exposing

Ni films to carbon containing gas, instead by immersing Ni films in an organic

solvent. One interesting outcome found by Pollard et al., is that monolayer

graphene could be formed without intentional introduction of an additional carbon

source and might come unintentionally from exposure to atmosphere or during Ni

film deposition in a commercial evaporator (Pollard et al., 2009).

A quite similar approach is used to grow graphene on Cu foils and involves

heat treatment at low pressure and exposure to carbon-containing gas. Recent

research on graphene grown on copper has demonstrated high quality films with

uniform single layer coverage. It was demonstrated that graphene grown on 25 urn

copper foil could produce more than 95% single layer coverage (Mattevi et al.,

2011). Interestingly, copper is reasonably cheap, the growth process is

straightforward and it is easily etched in solvents available in most laboratories

making the transfer process of graphene over large area readily accessible. Most

recently an experiment has been carried out to omit the transfer process by

evaporating copper after graphene growth so that the as-grown graphene rests on

the dielectric substrate (Ismach et al., 2010).

Progress in graphene growth has led to a new approach to grow monolayer

graphene from solid carbon sources. The advantage ofthe graphene produced using

this approach is that it has very low concentration of structural defects however the

control of the film thickness, size and location has become a challenge. An

experiment to use PMMA as a solid carbon source has shown that graphene layers

could be controlled by controlling the PMMA thickness (Sunet al., 2010).
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2.8.1 Graphene growth mechanisms

Graphene growth on Ni thin films involves interaction of carbon and Ni

surfaces. The process of introducing carbon to a metal is called carburization which

is typically used in many processes in industry with the aim to improve surface

characteristics, such as surface hardness and resistance. Remarkably this process

provides the possibility to synthesize graphene. Many transition metals used as

substrates catalyze the formation of graphene. One of the factors determining the

graphene growth mechanism is the solubility of carbon in the chosen transition

metal. Materials that are known to have low carbon solubility are copper, platinum

and iridium but nickel is proven to exhibit high carbon solubility, in which carbon can

easily dissolve in Ni.

One important characteristic of Ni is that it can form ordered surface

carbide, which is an atomic layer of Nbe phase. It can be envisaged that the

formation of Ni2ecompetes with the growth of graphene. On Ni (111), Ni2eforms an

ordered mR16.1o x mR16.l 0 surface structure which is almost square (Klink et

aI., 1995). The base unit of the Ni2e is unmatched with respect to the Ni (111), which

is hexagonal. At elevated temperature, the carbon from the Ni2e dissolves into the

Ni bulk and when the sample is cooled, the carbons are driven out to the surface.

During this cooling process the carbon solubility of Ni decreases, which causes

carbon to expel from the Ni bulk and form graphene at the surface (Lahiri et aI., New

J. Phys.,2011).

Physisorbtion is known as a physical adsorption process, in which, the

process makes the electronic structure of the atom or molecule perturbed. If we

consider graphene is physisorbed, we would expect that the distance between

graphene and metal surfaces (eg. Ni) is the distance comparable to the layer spacing

in bulk graphite, which is -3.35 A. From the LEED-1(V)analysis of graphene on Ni

(111) (Gamo et aI., 1997), it is obtained that the graphene layer on Ni (111), is

oriented such that one carbon atom of the unit cell sits on top of a metal atom
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(Figure 2.16(a)) (Wintterlin & Bocquet, 2009). It is found that the vertical positions

(Figure 2.16(b)) of carbon on Ni are 2.11 A and 2.16 A which is shorter than the

expected layer spacing for a physisorbed layer (3.35 A). This suggests that chemical

bonds are formed between Cand Ni atoms.

(a)
(b)

side view
•••••• t t

2.11A 2.16Ao 0 ()-l--,L
ee A

top view

........1:-

Figure 2.16: The (lx1) structure models of graphene on Ni(lll) obtained from LEEO-
I(V) structure analyses. (a) Top view and (b) side view of the structure. Figure
adapted from Garnoet al., 1997.

2.8.2 Defects in graphene

Compared to three dimensional crystals, graphene, due to its dimensionality,

has a lower number of types of possible defects. One important defect in graphene

is the point defect which comprise of the Stone-Wales defects, single and multiple

vacancies,carbon and foreign adatoms, and substitutional impurities (Banhart et al.,

2010). For example hexagonal graphene rings can be reconstructed into a

nonhexagonal rings and one such arrangement is known as the Stone-Wales (SW)

defect. Note that this type of graphene does not involve any removed or added

atoms, so the defected structure has the same number of atoms as undefected

graphene. In this type of defect, the reconstruction of the graphene rings occurs by

in-plane rotation of the C-Cbonds, by simultaneously movement of the two involved

atoms. The change in the graphene rings is illustrated in Figure 2.17.
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Figure 2.17: Stone-Wales defect structure obtained by DFT calculation (Banhart et al., 2010).

Single and multiple vacancies in graphene correspond to missing

lattice carbons, which also transform a perfect graphene lattice structure. Single

vacancies only involve one missing carbon atom, which leads to the formation of a

dangling bond attaches to a new ring consists of 9 carbon atoms and a neighboring

ring with 5 carbon atoms. The example of the single vacancies is shown in Figure

2.18 (a). Double vacancies are generated by coalescence of two single vacancies or

by removal of two neighboring atoms, but no dangling bonds are generated. This is

due to the formation of two pentagons and one octagon, which is shown in Figure

2.18 (b). Multiple vacancies can be generated from these single and double

vacancies which may lead to a more complex arrangement.

Interstitial atoms can only appear in three dimensional crystals. For the case

of graphene, the interaction of a carbon adatom with carbon rings in graphene can

change the hybridization of the carbon atoms. This leads to a local carbon Sp3_

hybridization, which generates two new covalent bonds between the carbon

adatoms and the underlying carbon atoms in graphene. If foreign adatoms, which

are not carbon interact with graphene, the bonding that occur will depend on the

interaction (Banhart, 2009). The interaction leads to weak or strong bonds, which

lead to physisorption and chemisorption, respectively.
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(a) (b)
Figure 2.18: (a) Single vacancy atomic structure with dangling bonds and (b) double vacancy
atomic structure consisting two pentagons and one octagons (Banhart et al., 2010).

Another type of defect in graphene, which is one-dimensional is dislocation-

like. It is seen as line defect, separating two domains of different lattice orientations.

This defects can be considered as a line of reconstructed point defects with or

without dangling bonds (Malola et al., 2010; Yazyev & Louie, 2010). Graphene edges

is known to be one of the contributor to most defect peak in graphene Raman

bands. A well known types of graphene edges are the armchair and the zigzag

orientations, which minimizes the number of dangling bonds at the edge. These

defective edges develop due to local changes in the reconstruction type or because

of the sustained removal of carbon atoms from the edges. The armchair edges can

be transformed to the zigzag edges when the carbon atoms are displaced (Girit et

al., 2009). The transitional structure can be considered as a defective edge. If

hydrogen atoms or other chemical groups interact with the dangling bonds at the

graphene edge, that can be considered as disorder, in which the interaction leads to

an increasing number of possible defects at the edge. The armchair and the zigzag

defects orientation at the graphene edge are shown in Figure 2.19(a) and 2.19(b)

below.
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(a) (b)
Figure 2.19: Different defects orientation at the graphene edges (a) armchair edge, (b)
zigzagedge.

2.9 Summary

The graphene structure is made up of carbon atoms bonded together by

covalent 0' bonds and weak 1t system. In this chapter a discussion of the Brillouin

zone of graphene, including the K and K' points which also known as a Dirac point,

has been presented. The graphene tight-binding model gives the dispersion relation

of 1t electrons in graphene and lead to the understanding of the band structure of

graphene. Single layer graphene is a zero-band gap semiconductor with a linear

energy dispersion for electrons in the conduction band (It* band) and holes in the

valence band (It band), a result oftwo atoms per unit cell in graphene.

The networks and stacking of carbon atoms leading to the formation of

graphene band gap has also been presented. Understanding the vibrational

properties of graphene is important as the phonon dispersion of graphene is of

direct relevance to Raman spectroscopy which is used to determine graphene

quality and layer number. The graphene phonon branches contribute to the three

most prominent bands in graphene Raman spectrum, the. 0 band, G band and 20

band as well as the weaker G* and G+D bands. The characterization of graphene

based on its Raman spectrum has been described above. The surface enhanced

Ramanscattering (SERS)is also described. This chapter has also discussedgraphene

growth with an overview of the growth on SiCand on transition metals such as Ru,

Ni and Cu, including the growth mechanisms and defects.
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Chapter 3

Experimental Techniques

3.1lntroduction

This chapter will be focusing on the experimental methods used to grow and

characterize graphene on Ni films and the study of the properties of transferred

graphene on a SiOJSi substrate. To grow graphene on Ni films, firstly a layer of Ni

has to be deposited. This process has been performed using two different systems; a

standard commercial evaporator and an ultra-high vacuum (UHV) evaporator

system. Once Ni thin films are formed, they are annealed and exposed to a carbon

source in a UHV system. After graphene layers are formed on Ni films, they are

transferred onto a dielectric substrate.

Information on surface morphology and topography of the graphene layer

are investigated using optical microscopy, scanning tunneling microscopy (STM)and

atomic force microscopy (AFM). The crystal orientation and elements found in our

samples are investigated using x-ray diffraction (XRD). The transfer process of

graphene involves spin coating of PMMA, deposition of PDMS and Ni etching in

FeCh.Finally optical microscopy and Ramanspectroscopy are used to determine the

composition, quality and number of layers of the transferred graphene.
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3.2 Graphene growth

This section will be describing two different systems used for Ni film

deposition; a standard commercial evaporator and an ultra-high vacuum (UHV)

evaporator system. The commercial evaporator is using the Edwards Auto 306

vacuum coater. Finally the operation of the graphene growth chamber will be

described.

3.2.1 Ni deposition in the Edwards Auto 306 vacuum coater

Ni thin films were deposited on Si02/Si substrates using a standard

commercial evaporator, the Edwards Auto 306 vacuum coater. The Auto 306

vacuum coater is designed for standard physical vapour deposition under high

vacuum. The major components of this system are a pumping system, a baseplate

and an electrical system which incorporate the system controller. The system is

shown in Figure 3.1. The rotary roughing pump and turbomolecular pump is used to

pump the system down to -1 x 10-7mbar.

The substrates are placed on a metal surface using magnets and mounted at

the top of the bell jar with the substrate surface facing the source. The tungsten

crucible containing the Ni source is heated by passing a current through it causing

the Ni to evaporate. Once the expected deposition rate is reached, a shutter

separating the Ni source from the target substrate is opened to expose the substrate

to Ni evaporation. A crystal microbalance and a control unit are used to measure

the thickness of the films being deposited. The typical thickness of Ni thin films used

in this work is about 100 nm. The deposition rate used is around 0.02 nm/s and the

base pressure is 1 x 10-7 mbar. Once the expected thickness is achieved, the shutter

is closed and the current flowing to the crucible is reduced and turned off. Films

prepared in this manner were then transferred through the atmosphere to the UHV

system described below.
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1) Baseplate

2) Control cabinet

3) Auto 306 controller

4) Electrical supply cable

5) Services panel

6) Front door lock

7) Front door

8) Needle valve

9) Front base plate cover

10) Bell jar and

Figure 3.1: The Edwards Auto 306 vacuum coater'

implosion guard

3.2.2 Ni film deposition in ultra high vacuum (UHV)

To deposit Ni thin films in our UHVsystem, a Si02/Si substrate is cut with the

dimension of about 1 cm x 1 cm and placed on a highly doped silicon strip heater

attached to the UHVsample holder which also known as the sample stub, shown in

Figure 3.2. A clear arrangement of the substrate on the sample stub is illustrated in

the diagram in Figure 3.3. The substrate is placed on a Si strip heater which is on the

quartz disc. The Si is heated by flowing current through it via two metal (Ta)chips.

The UHVsystem has two chambers, one used to deposit Ni films and one to

grow graphene. The Ni deposition system is located at the bottom part of the

system as shown in Figure 3.4 while the graphene growth is located at the top with

both chambers being pumped down by two different ion pumps. The Si02lSi

substrate is loaded into the system from the load-lock connected to the growth

1Figure adapted from the Instruction Manual: Auto 306 Vacuum Coater with Turbomolecular
Pumping System, Boc Edwards, E090-03-860, IssueG.
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chamber as shown in Figure 3.5. The load lock is pumped to a low pressure using a

turbomolecular pump before the sample is introduced. Both chambers have a

similar base pressure {1 x 109 mbar} and are separated by a valve.

Figure 3.2: Picture of sample holder (also known as sample stub) for the UHV system with
sample placed on top of the holder (as pointed by the arrow).

Substrates are outgassed in the top chamber before Ni deposition. The

samples are heated by flowing current to the silicon strip heater at the back of the

sample holder {Figure 3.2 {b}} at -500°C. The process will cause the base pressure to

rise up to 10-7 - 10-6 mbar. Typically the sample is left to outgas overnight for about

18 hours before increasing the current slowly until reaching 800°C. The sample then

is left to outgas for another hour. The annealing is stopped by reducing the current

gradually to zero and the substrate is ready for Ni deposition.

As shown in Figure 3.4, the Ni deposition system consists of an integral

tungsten-alumina crucible with Ni wire in it. The base pressure of the chamber is

approximately 1 x 10-9 mbar and the deposition rate and thickness are measured by

a quartz microbalance. The base pressure of the chamber can rise to 1 x 10-7 mbar

during the evaporation. Once the desired evaporation rate is achieved, the sample is

turned to face the evaporator. Ni heating is reduced to stop the evaporation and the

sample surface turned away when the target thickness has been deposited.
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Figure 3.3: Diagram of the UHV sample stub in Figure 3.2. (a) the arrangement of the sample
stub in side view. (b) top view showing a sample placed on top of the quartz disc. (c) cross
section of the top area of the sample stub showing position of the sample on the sample
stub.
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Figure 3.4: (a) Photo of the UHV Ni deposition chamber (b) Schematic diagram of the Ni
deposition system.
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3.2.3 Graphene growth chamber

The chamber used for graphene growth is in the same UHVsystem discussed

above (see Figure 3.4) and a more detailed configuration is shown in Figure 3.5. The

procedure for graphene growth varies slightly depending on the specific aim of the

work. The base pressure of the growth chamber is maintained at around 10-9 to 10-10

mbar. Usually a Ni film is annealed at a certain temperature between 700°Cto 900°C

for a specified period of time. The temperature is measured using a pyrometer

placed about 30 cm from the sample surface. During the annealing process the

internal power supply connection is made by mechanically attaching a lead to the

sample using a manipulation arm. For the samples treated with a gas such as

propylene, the gas will be introduced into the chamber through a leak valve during

the annealing process and the pressure rises to 1 x 10-6mbar.
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Figure 3.5: (a) UHV system used for graphene growth (b) schematic diagram of the UHV
system for graphene growth.
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3.3 Characterization of graphene terminated Ni

Characterization of the graphene terminated Ni samples is performed using

several different methods. After the growth process, the quickest and easiest way to

observe the surface morphology is by using optical microscopy but a better

resolution of the growth morphology and surface topography of graphene can be

measured using scanning tunneling microscopy (STM) and atomic force microscopy

(AFM). The X-ray diffractometer (XRD)is used to analyze the structure of the Ni films

before and after graphene growth. All apparatus used to characterize the graphene

terminated Ni will be further detailed in the next section.

3.3.1 Atomic force microscopy (AFM)

The AFM is used to investigate conductive or non-conductive samples on the

atomic scale in various environment such as air, ultrahigh vacuum (UHV)and liquids

(Ohnesorge & Binnig, 1993). The AFM has a similar concept and design (as shown in

Figure 3.6) to the STM. However the tunneling tip that is used in STM is replaced by

a force sensing cantilever in AFM. The AFM cantilever has an atomically sharp probe

tip at its end, and is typically made of silicon or silicon nitride (Baird et al., 2004).

Figure 3.6 shows the principle of the AFM. The forces between the probe and

the sample lead to a deflection of the cantilever which can be measured using an

optical deflection system. Both the vertical and lateral deflections of the cantilever

can be measured. The optical deflection system operates by reflecting a laser beam

off the cantilever. The reflected laser beam strikes a position-sensitive photo-

detector using a photodiode device consisting of four segments. The differences

between the signals arising from the segments of the photo-detector of signals

indicate the position of the laser spot on the detector and thus the angular

deflections of the cantilever.
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Figure 3.6: The principle of atomic force microscopy with x, y and z piezo movement.

There are three commonly used modes in the AFM operation; contact mode,

non-contact mode and the tapping mode. These three modes are differentiated by

the nature of forces and the distance between the tip and surface during the

scanning process. Basically contact mode is concerned with operation in a regime in

which the dominant force arises from repulsive interactions at small tip-sample

separations. This mode has the possibility to damage some delicate sample surface.

For non-contact mode attractive interactions at larger tip-sample separations are

relevant. This mode is very suitable to image soft and fragile samples as the tip does

not come into contact with the sample surface. However the images may have lower

resolution than the contact mode due to the long range interactions. The tapping

mode is a combination of the contact and non-contact modes. Figure 3.7 shows the

forces that occur between tip-sample surface including the modes of operation of

AFM.
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Figure 3.7: AFM force separation curve that shows the AFM mode of operations consisting
contact mode (in repulsive regime, marked with red), non-contact mode (in attractive
regime, marked with blue) and tapping mode (consist of both regimes, marked with circles).

In this work, tapping mode is used in order to obtain high resolution images

and to prevent any possible damage to the graphene layer. In tapping mode the

cantilever is very close to the sample surface while oscillating at its resonant

frequency. In other words, the cantilever is driven at larger amplitude than in the

non-contact mode and as a result, the tip approaches very close to the surface over

a small fraction of its oscillation period. This tapping process is meant to improve

lateral resolution while avoiding lateral forces which are common in contact mode.

The AFM system used in this work is MFP-3D Stand Alone (MFP-3D-SA). It has low

coherence light source to eliminate optical interference.

3.3.2 Scanning tunneling microscopy (STM)

STM is used to acquire images of surface topography of graphene and it is

one of the important tools used to study graphene. The basic concept of STM is as

shown in Figure 3.8. An atomically sharp tip that has been formed by chemical

etching or mechanical grinding or cut using a wire cutter is mounted on an x, y, z,

transducer which functions as a scanning device. When the tip is brought very near
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to a sample a tunnelling current It can flow between the tip and the sample when a

voltage Vt is applied. As the probe passes over the sample surface, the variations of

the tunneling current are translated into an image. The very high resolution of the

STM rests on the strong dependence of the tunnel current on the distance between

the two tunnel electrodes, that are the metal tip and the scanned surface

(Neddermeyer, 1996).

Figure 3.8: A schematic diagram of scanning tunneling microscope (STM).

The STM tip is one of the most crucial components and ideally is atomically

sharp to ensure that an image with good atomic resolution can be obtained. The tip

is usually made of tungsten or platinum-iridium. Although the concept of STM is

simple, there are some problems that arise in its operation such as the precise

control of the tip location and movement, control of vibration and making an

atomically sharp tip (Baird et al., 2004). One of the drawbacks of STM is that it can

only image the electrically conductive samples. This limits its application to the

imaging of metals and semiconductors (Giessbl, 2003).

The ambient STM images in this study were acquired using a commercial

instrument, supplied by Molecular Imaging/ Agilent. For the STM images acquired in

vacuum a commercial Nanograph Systems instrument is used which is housed in the

same UHV system as used for graphene growth (see Figure 3.4). In both systems

Pt/lr cut tips are used.
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3.3.3 X-ray diffraction (XRO)

Although AFM and STM provide high resolution images of the graphene

terminated Ni morphology and topography, neither technique provides information

about the crystal structure. X-ray diffraction (XRD) is used to characterize and

identify the crystal structure of our samples.

Crystalline structures have periodic lattice which behave like a grating that

can diffract waves or electromagnetic radiation with wavelengths of a similar order

to the lattice period. X-rays, of interest here, can have wavelengths similar to

interatomic spacings,d.When the wavelength is close to the lattice of the crystalline

structure, X-rays may be scattered coherently by any nth order of parallel lattice

plane leading to constructive interference which can be observed as diffraction

pattern. The constructive interference can be determined by Bragg's Law as

illustrated in Figure 3.9.

From figure 3.9(a), BC+ BD = nA.where BC= BD, n is an integer determined

by the order given and A.is the wavelength of X-ray. This makes 2BCor 2BDequal to

nA.. Figure 3.9(b) shows that BC= d sin B where d is the distance between the lattice

planes and B is the angle of incidence of X-ray with the lattice plane, which gives the

Bragg'sLaw in equation (3.1).
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Figure 3.9: The Braggs Law. (a) Illustration of Bragg's Law showing X-ray scattered from a set
of parallel planes inside the crystal (b) inset of the illustration in (a) showing spacing of the

plane d, the angle (J between the incident ray and the scattering planes.

nA=2dsinB (3.1)

Braggs Law in equation 3.1 can be generalised as,

d(h,k)) = }./2 sin () (h,k,l) (3.2)

where d(h,k,/) is the distance between each corresponding (h,k,/) atomic plane and

tK.h,k,~ is the incident angle where constructive interference occurs. The lattice

plane of a crystal are defined by Miller indices. The reflection planes of the nth order

can be represented by (nh,nk,nl) plane reflection with h, k, and I are integers. The

spacing of planes with Miller indices d(nh,nk,nl) can be reduced to d(h,k,l)/n.
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Diffraction measurements discussed here were acquired in the '0-20'

arrangement in which atomic planes parallel to the substrate are picked out. The

setup is called '0-29' because the samples can be rotated by the angle 0 and the

detector rotates simultaneously by the angle 29 to pick up diffraction interference

waves. The peaks in the X-ray diffraction pattern contain d spacing which can be

used to calculate crystalline phases hence the orientation of thin films can be

identified. Our Ni films have been characterized using PANanalytical(Philips) Xpert

Materials research diffractometer (MRD). The X-ray source in the standard Philips is

a high intensity ceramic sealed tube with a Cu-Ka source with wavelength of A =

1.54A. Figure 3.10 is showing a basicsetup of a goniometer in XRDsetup.

X-ray detector

Figure3.10:Schematicdiagramof XRD'9-29' goniometersetup.

3.4 Transfer of graphene

After growth, graphene is transferred to dielectric substrates using a transfer

method which was developed as part of this thesis work (Pollard et al., 2009, Kim et

al., 2009). In the process, polymethylmethacrylate (PMMA) is spin-coated on top of

the graphene terminated Ni surface. SincePMMA is very thin and difficult to handle
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after the Ni has been etched, a polydimethylsiloxane (PDMS) layer is added to ease

mechanical transfer. The graphene terminated Ni (with PMMA and PDMS on the

top) is etched in FeCI3leaving graphene attached to PMMA which then is placed on

a Si02!Si substrate. PMMA is then dissolved in acetone leaving graphene on the

Si02/Si. This transfer process will be detailed in Chapter 4. In this section the

methods used in the transfer will be described.

3.4.1 Spin coating

Spin coating is a common technique used in many micro-fabrication

processes. In the case of the graphene transfer process, it is used to place a thin

layer of PMMA on graphene surface. The spin coating process can be divided into

three stages as shown in Figure 3.11. Initially, a quantity of solution is placed on the

stationary substrate (see Figure 3.11(a)). When the substrate is accelerated up to

the desired angular velocity, a large quantity of the solution is thrown off the

substrate (see Figure 3.11(b)). When the substrate spinning has reached a constant

angular velocity, the thinning of the surface layer is controlled by the viscous

outward flow towards the substrate edge. This results in an even layer of the

solution due to the viscous shear drag forces between the solution layer and the air

which has reached an equivalent acceleration due to the spinning (Meyerhofer,

1978). The even thinning is generated by a ,steady flow of liquid which moves

radially outwards followed by its ejection off the substrate edge. As the spinning

progresses, the outward flow of the solution does not influence the thinning

anymore. On the contrary, the thinning becomes dominated by the evaporation of

the solvent from the solution layer.

To spin coat the PMMA, the substrate (our sample is graphene/Ni/Si02/Si) is

placed on a vacuum chuck to ensure that it is stationary and stable. A drop of PMMA

solution is then placed on top of the substrate. The PMMA spin coating process for,
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our case is performed at the speed of 3000 rpm for 40 s forming -100 nm thick of

PMMA. The spin-coater used in this work is the Solitec 5110.

(a) (b)

(c) (d)

Figure 3.11: Stages in the spin coating process (a) PMMA is placed on the stationary
substrate. (b) First stage: spinning reaches angular velocity, majority of the solution is
thrown off. (c) Second stage: spinning at stable velocity, the coating is dominated by viscous
flow. (d) Third stage: spinning at stable velocity, the coating is dominated by the solvent
evaporation (this figure is adapted from Blunt, 2007).

3.4.2 Poly dimethylsiloxane (PDMS)

PDMS is commonly used as an elastomeric stamp for soft lithography

because of its unique surface behavior. The organic portion of PDMS is the methyl

group, which has very weak intermolecular forces. The inorganic siloxane makes

PDMS a very flexible polymer and has very low surface energy. This makes PDMS a

suitable candidate to be placed on our sample for easy handling. Before placing

PDMS onto PMMA and graphene terminated Ni, the PDMS need to be prepared.

PDMS consists of two component mixture which are the pre-polymer and the curing

agent. The pre-polymer used is the Sylgard silicone elastomer 184 and the curing
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agent is Sylgard silicone elastomer 184 curing agent. Both components are cured by

mixing the pre-polymer and the curing agent at 10 : 1 by weight or volume. The

mixing is usually done in a disposable plastic container because the mixture hardens

after a few hours at room temperature and is difficult to clean so that the residual

can be easily thrown away.

10P'rt;o~.. ~)N ..~artof
pre-polymer ~.'Y ~ curing agent

~- A. A.- - - --.~
0

(a) (c)

(d)

Figure 3.12: POMS preparation method (a) 10 parts of pre-polymer and 1 part of curing
agent are mixed. (b) The solution is stirred vigorously, creating air bubbles in the mixture. (c)
Leaving the mixture for 20 - 30 min at room temperature cause the air bubbles to rise up
making the mixture free of air bubbles. (d) the POMSis placed on top of the sample before
curing it at 1S0°C10 min in the furnace.

While mixing the pre-polymer and curing agent, air is unintentionally

introduced creating bubbles in the mixture. The mixture is allowed to settle for 20 -

30 min at room temperature depending on the volume of the mixture to reduce the

amount of the air bubbles. Once the bubbles are removed, a drop of this PDMS is

placed on top of the PMMA/graphene terminated Ni. Since the mixture is quite

viscous, it forms a layer about 3 mm thick. To cure the PDMS, the sample is placed in
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a furnace at 150°C for 10 min. The whole process described above is illustrated in

Figure 3.12.

3.4.3 FeCh(aq) etching

FeCI3 or ferric chloride aqueous solution is corrosive and used as an etchant

for our Ni thin film. Mixing the FeCI3 with water produces the aqueous solution. The

aqueous FeCh is the salt of combination of weak base Fe(OHh with strong acid HCI.

FeCh dissociates as in equation 3.3,

FeCI3 ------> Fe(3+) + 3CI(-1) (3.3)

When mixed with water, FeCI3combines with OH(-) present in H20, in which water

also dissociates to a very small extent as in equation 3.4. Hence Fe(OHh is obtained

as in equation 3.5, which shows that in the aqueous solution, excess of H{+} ion is

present. The solution becomes acidic with the presence of the HCI and the excess of

H(+} ion.

H20 <-----> H(+} + OH (-) (3.4)

Fe(3+) + 30H (-) ------> Fe(OHh (3.5)

The FeCh consists of atoms Fe and Cl, which has atomic mass of 55.8 g and

35.5 g respectively. Since there are three atoms Cl present in the FeCI3 formula, the

molecular weight for Cl becomes 106 g. Adding both molecular weights of Fe and Cl

gives the molar mass of FeCh, which is 162 g/mol. To prepare a 10ml of FeCI3

aqueous solution with 1 M needs 0.01 mol FeCh. Hence by multiplying 0.01 mol with

the molar mass or FeCI3gives the weight of 1.62 g FeCI3 to make the 10 ml solution.

The preparation of the aqueous solution is illustrated in Figure 3.13. The

FeCh powder is firstly weighed before adding water and stirring forming an aqueous
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solution with orange color. We usually filter the solution before keeping it in a glass

container with lid. The filtration is important to avoid any FeCI3 solid to attach to our

graphene layer during the Ni film etching. Water is used to clean our sample after

the etching process.

..tIl
•

(a) (b)

FeCI3 (aq)

(c)
Figure 3.13: Preparation method of the FeCI3aqueous solution. (a) FeCI3 is weighed. (b) High
purity water is added to the FeCI3. (c) The mixture is stirred until the FeCI3 dissolves
completely.

3.5 Characterization of graphene on Si02

After graphene is transferred to Si02 substrate, it can be easily observed

using the optical microscope. Optical microscopy is very useful in identifying the

number of graphene layers based on different contrast observed under visible light

(Blake et al., 2007). However, it was not accurate compared to Raman spectroscopy

which now has become the best tool to characterize graphene (Ferrari et al., 2006).

Now the optical microscope is only used to obtain images of graphene and to

identify the location of graphene layer before it is distinguished using Raman

spectroscopy. This section will describe the optical microscopy and Raman

spectroscopy used in the characterization of graphene on Si02.
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3.5.1 Optical microscopy

Optical microscopy is used to observe our graphene layer on Ni films and

Si02 substrates. The object is illuminated with white light through the objective lens,

which is used to provide illumination and imaging. In this process, the light is

reflected and transmitted by the glass reflector, which is placed in the optical path

between the objective lens and the ocular (or the eyepiece that one looks into) at

45° angle. The reflected light is transmitted through the glass reflector towards the

ocular. The basic arrangement of the optical microscope described above is

illustrated in Figure 3.14. When the light interacts with the object, some of it is

adsorbed, scattered and reflected, depending on the interaction. A fraction of the

light that has interacted with the object then passes through the imaging lens

system, which is used to give clear visual images of the object.

light source

objective

Glass reflector

Figure 3.14: Basicdiagram of the optical microscope.
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The optical microscope used in this work is the Olympus BX51 Microscope.

This system also has digital camera Olympus DP70 that has very good sensitivity,

resolution, color reproduction and speed. The software used with this system is the

Image Pro plus which is suitable for 20 and 3D image processing.

3.5.2 Raman spectroscopy

Raman spectroscopy is used to study graphene as it gives detailed

information of graphene quality and layers. There are four important components in

Ramansystem need to be considered; the excitation source or the laser, the sample

illumination system and light collection optics, the wavelength selector using filter

or spectrophotometer and the detector using Charge-Coupled Device (CCD).The

basicset-up for Ramanspectroscopy is shown in Figure 3.11.

The excitation laser for graphene detection usually chosen is green with a

wavelength of 514 nm. However, the green laser of the Raman system that we have

and used is with wavelength of 532 nm. The spatial resolution of the laser system

can be approximated by the minimum laser focal spot on the sample which can be

calculated by equation (3.6) below.

d = 1.22A
NA

(3.6)

d is the diameter of the laser spot, A is the wavelength of the excitation laser (532

nm) and NA is the effective numerical aperture of the objective lens (NA = 0.75). So

basedon the equation above, the laser focal spot that we used is 0.87 urn.

A confocal light illumination and collection system was used in this work. The

optical scheme for the confocal Raman spectroscopy is shown in Figure 3.15. The

laser beam travels through the pinhole aperture (or the confocal hole) and irradiates

the dichromatic mirror which is used to reflect the light at 90°. The laser light then
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passes through the microscope objective lens which focuses the laser beam onto a

point on the sample.

CCD
detector L...-------i spectrometer

laser

microscope objective

C:===::J sample
Figure 3.15: Optical scheme for confocal Raman spectroscopy including confocal
microscopy, spectrometer and CCD detector.

The scattered light from the sample is directed through a notch filter which

designed to filter a small range of light. The notch filter is used to block the Raleigh

scattering. The scattered light then travels through a lens system to focus the light

onto an entrance slit. The slit is the point where the scattered light enters the

spectrometer. The entrance slit can be adjusted from 10 urn to 2.5 mm. We typically

set the opening at 300 urn, which provided a good signal-to-noise ratio. The Raman

bands are dispersed by the grating as a function of wavelength and are then incident

on the CCD. There are different gratings that are available with the system, which
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are 600 I/mm and 1200 I/mm which provide different spectral resolution. A CCD

then detect the light and converts it into electric signal, amplifies it and sends it to

the computer for processing.

The Raman spectroscopy system used in this study is Horiba Jobin Yvon

LabRAM HR with integrated Raman microscope. The LabRAM HR provides high

spectral resolution in the order of 0.3 ern? to 1 cm". The software used with the

system is LabSpecwhich has Raman spectrum and map acquisition, data analysis

and processing.

3.6 Summary

This chapter has discussed four major aspects; graphene growth,

characterization of graphene terminated Ni, transfer of graphene, and

characterization of graphene on Si02. The first part of the graphene growth

technique describes Ni film deposition in the Edwards Auto 306 vacuum coater and

in ultra high vacuum (UHV) chamber including the graphene growth chamber. The

characterization of graphene-terminated Ni is achieved using the atomic force

microscopy (AFM), scanning tunneling microscopy (STM)and X-ray diffraction (XRD).

The graphene transfer process employs spin coating, polydimethyl siloxane (PDMS)

preparation and FeCI3etching. Finally this chapter describes the characterization of

graphene on Si02 using the optical microscopy and Ramanspectroscopy.
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Cha'pter4

Graphene Growth on Ni Thin Films

4.1lntroduction
The formation and isolation of high quality single layer graphene over large

areas remained a significant challenge until relatively recently as explained in

chapters 2 and 3. In this chapter the focus is on graphene growth on Ni thin films.

The direct growth of graphene on Ni thin films has been extensively studied since it

was the first approach which was used successfully to produce monolayer and few-

layer graphene with good physical properties over large areas (Pollard et al., 2009,

Reina et al., 2009). A common aspect of many experiments on graphene growth is

that the resulting films may be successfully released and transferred onto dielectric

substrates to provide large areas of single and bi-layer graphene. For example in our

early work, we found 75% coverage of single layer graphene (Pollard et al., 2009)

which, at that time was the highest monolayer fraction reported. Reina et al., 2009,

demonstrated 87% coverage of graphene depending on the properties during

growth on Ni films, but a significant proportion was bilayer.

In this chapter graphene growth on Ni thin films produced using two

different evaporator systems (see Chapter 2) will be discussed. Ni thin films then

undergo a series of annealing steps to optimise thermal cycling in an ultra-high

vacuum (UHV) system. We found that graphene could be formed in UHVwithout the
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intentional introduction of carbon feedstock giving films which were highly

reproducible. In addition, we will demonstrate the influence of outgassing on the

formation of graphene, which was performed before Ni deposition. We will also

demonstrate the introduction of carbon by immersion of Ni thin films in acetone.

Overall, the objective of this work is to study graphene formation on Ni thin

films, to investigate properties that lead to graphene formation, to introduce a

method to release and transfer graphene onto dielectric substrate and to explore

graphene formation with and without intentional introduction of carbon. This study

shows the importance of considering unintentional carbon sources which must be

ascertained when developing models for graphene growth.

4.2 Graphene release and transfer

We have developed a process to release graphene from the Ni thin films and

transfer it to Si02/Si substrates. Firstly, the samples which consist of

graphene/Ni/Si02/Si are spin-coated with polymethylmethacrylate (PMMA). The

PMMA spin-coating process is performed at 3000 rpm for 40 s, which produced

-250 nm thick layer on top of graphene. PMMA was then baked by placing the

sample on a hotplate at iS00Cfor 2 min.

The next step is to deposit a layer of polydimethylsiloxane (PDMS)which was

prepared by mixing elastomer base and elastomer curing agent at the ratio of 10:1.

Droplets of PDMSwere dropped on top of PMMA and cured at 1S0oCfor 10 min in a

furnace. The PDMScoating is quite thick (-0.3 cm) and typically covers the Ni films

. edges and leaked onto a supporting glass cover slip. The PDMSaround the sample

edges was cut in order to allow FeCI3to contact with the Ni films. The PDMS layer

was used to provide additional mechanical support to the thin PMMA films.

To release graphene from Ni/Si02/Si, the sample is then immersed in

aqueous FeCI] for about 18 hours to completely etch Ni film leaving graphene

attached to the PMMA/PDMS. The FeCI3 residue on graphene/PMMA/PDMS was

cleaned in de-ionized (DI) water before placing the graphene surface onto SiOJSi
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substrate (90 nm). The sample then immersed in acetone for about 3 hours to

dissolve the PMMA leaving only graphene attached to Si02 substrate. We found that

immersion of the sample in acetone for more than 3 hours provided a large

coverage of transferred graphene in which breakage of the film can be minimized.

Finally the graphene on Si02/Si was cleaned in isopropanol (IPA) and blown with

nitorgen gas to dry. The whole process detailed above is shown in a diagram in

Figure 4.1. The resulting layer of graphene on 90 nm Si02 substrate is optically

visible based on the different contrast from the Si02 surface. The sample is then

characterized using Raman spectroscopy.

spin-coat
PMMA

coat with PDMS
(elastomer)

Etch Ni in FeCI3

Heated 150°C,
10min

~250nm

dissolve PMMA by
immersion in acetone

graphene on Si02..
Rinse in IPA &

blow dry

..
Si02
90nm

Heated 100°C,
10min

Figure 4.1: The process to release graphene from Ni film and transfer it to Si02 substrate (90
nm).

4.3 Overview of vacuum systems for Ni deposition

This section is focused on Ni thin film synthesis and preparation. Initially,

before we had a dedicated system for Ni deposition, the Ni thin films were prepared

in a commercial evaporator. We then built a UHV evaporator system connected to

the graphene growth system. The systems will be described below in terms of the

resulting Ni thin film morphology based on the AFM characteristics.
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4.3.1 Ni thin film deposition in commercial evaporator
In our early work, Ni thin films on Si/Si02 substrates were produced in a

standard evaporator, the Edwards Auto 306 Vacuum Coater. This system was used

to prepare some preliminary samples because initially we did not have a specific

UHV system for Ni deposition. In this section Ni thin films which were produced

using the Edwards Auto will be described. These films are used to produce large

areas of single layer graphene as described in 4.4. The substrates used in this

experiment were Si (laO) wafers with a Si02 layer of thickness 300 nm. A 100 nm

thick Ni layer is deposited and the system hasa vacuum base pressure of 10-6 to 10-7

mbar. The evaporation rate was -0.02 nm/s.

An AFM image of a sample of Ni deposited on Si02/Si substrate using this

evaporator is shown in Figure 4.2(a). Basedon the profile of the Ni grains, the size

varies between 21 nm to 33 nm. The roughness profile gives root mean square

(RMS)of the roughness of 1.3 nm. The Ni films are then removed from the system

and stored under atmospheric conditions for, typically, 1 to 3 days for AFM imaging

before they are loaded into a separate UHV system. The samples are then annealed

and Figure 4.2(b} shows that the material was re-distributed. The surface became

highly faceted with facets average size of -1 urn following vacuum annealing at

800DC in the UHV system. Further description of the annealing process in UHV will

be discussedin 4.4.
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Figure 4.2: As-grown Ni on Si02/Si substrate with thickness of 100nm (a) top - AFM image of
Ni thin film before annealing, middle - AFM height and length profile, bottom - AFM
roughness profile (b) top - AFM image of graphene on Ni after annealing at 8000e, middle -
AFM height and length profile, bottom - AFM roughness profile.

4.3.2 Ni thin film deposition using a UHV evaporator system

In order to control Ni thin film deposition and avoid exposure of the samples

to atmosphere after the deposition, we built a UHV evaporator system directly

connected to the graphene growth chamber. The Ni thin films produced in this

system have a slightly different morphology than those produced in commercial

evaporator. It should be noted that the same deposition rate was used in the
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commercial evaporator and applied in the UHV system (evaporation rate of about

0.02 nm/s) with a base pressure of about 1 x 10-10 mbar. However the design of the

UHV system for Ni deposition is slightly different in terms of the distance between

the alumina crucible (that contains Ni source) to the substrate surface which is

larger than the system in the commercial evaporator. Design of both systems are

described previously in Chapter 3.
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Figure 4.3: (a) AFM image of as-grown Ni on Si02/Si substrate with thickness of 60 nm (bl
AFM height and length profile (cl AFM roughness profile.

Figure 4.3(a) shows an AFM image of a 60 nm Ni film with Ni grain size

between 30 to 58 nm, which is larger than Ni grains deposited in Edwards Auto 306

(see 4.3.1). The RMS of roughness is 2.4 nm. We suggest that the evaporation of the

Ni in this system results in higher substrate temperature than in Edwards Auto 306

due to radiant heating.
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4.4 Graphene growth in UHV system

Both Ni films deposited in the commercial evaporator and in the UHV

evaporator system were then annealed in the UHV system to grow graphene. The

growth without and with intentional introduction of carbon sources will be

explained under this section. In the transfer process, a 90 nm thick Si02 substrate

was chosen to maximize the contrast in optical microscopy and allows the

discrimination between single and few-layer graphene. The Raman spectra in this

work were taken with a sax objective at S14 nm laser excitation and 4 mW of laser

power using a Renishaw micro-Raman spectrometer for spectra taken in

Manchester. For the spectra taken in Nottingham, the Raman system has been

described in Chapter 3.

4.4.1 Graphene growth without the intentional introduction

of carbon

In our initial work, graphene was formed by annealing Ni films in vacuum

(base pressure of -S x 10.10 mbar) without any intentional carbon source. This

means that the samples are not exposed to any carbon containing gasses or

immersed in an organic solvent. Initially, the samples are outgassed by annealing at

SOO°Cfor about 12 to 18 hours and are then followed by annealing at SOO°Cto

BOOoC for 20 min. The samples are allowed to cool to room temperature by reducing

the current through a silicon strip heater to zero over a period of approximately 60

s. A significant transformation of the Ni grains is observed for annealing

temperature between 700°Cto 800°C.
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Figure 4.4: The 9-29 XRDresult for Ni thin film appears at 44.5° which corresponds to the
lattice spacing d of 2.03 A and the peak is identified due to (111) oriented crystallites.

The Ni film crystallinity has been investigated using X-ray diffraction (XRD).

Figure 4.4 shows 9-29° XRD results using Cu : Kal radiation with wavelength of 1.54

A at 5 sec/degree angle step. The first order Bragg reflection of the Ni thin film

appears at 44.5° which corresponds to the lattice spacing d of 2.03 A. This provide

the evidence of Ni in a (U1) crystal orientation. The full width of half maximum

(FWHM) of the peak is very small (_0.2°) which implies that the crystalline quality of

the Ni is very good. The peak at 52.7° is corresponds to Ni (200), and the peak at 69°

is corresponds to Si (004).

Figure 4.5 shows an optical micrograph of a graphene layer on 90 nm Si02

substrate after the transfer process (Pollard et al., 2009). The lighter contrast is

single layer graphene while the darker contrast corresponds to few-layer graphene

(see Raman spectra below). The image has been examined using an image histogram

based on the Raman spectra obtained from different area of color contrast. It is

found that 75% of the film is single layer graphene and the other 25% is covered by
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few-layer graphene, which likely to be between two to four layers. And remarkably

only 1% ofthe film has a greater thickness.

Figure 4.5: Optical micrograph of graphene on 90nm Si02 substrate. The lower contrast is
corresponding to monolayer and the higher contrast is corresponding to few-layer
graphene. Image acquired at Manchester University with Rahul Nair.

Raman spectra have been acquired on areas of different color contrast

observed under the optical microscope (Figure 4.5). The Raman spectra of single and

few-layer graphene are shown in Figure 4.6. The disorder-induced band or D band at

1350 ern" is observed on both single- and few-layer graphene. An image acquired

using a scanning electron microscopy (SEM) is carried out to examine the film and

the presence of cracks are confirmed as shown in Figure 4.7 (Pollard et al., 2009).

However the type of defects that contribute to the D band intensity is still unclear

and is high for both spectra with ID/IG of 0.6 and 0.5 (but smaller than that observed

for graphene oxide, reduced graphene oxide (Gomez-Navaro et al., 2007), and

graphane (Elias et al., 2009)) which indicates that the film has a reasonably good

quality. An experiment aimed at reducing this D band intensity has been performed

and will be discussed in Chapter 5.
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Figure 4.6: Raman spectra of single layer (black - corresponds to lower contrast region in
Figure 4.5) and few-layer (red - corresponds to higher contrast region in Figure 4.6). This
spectra was acquired at Manchester University with Rahul Nair.

As mentioned earlier in Chapter 2, the intensity of the G band and the Raman

shift give the information about the number of graphene layers. The G band in

Figure 4.6 observed at -1590 cm' has intensity ratio (12o/IG) which agree well with

single layer (black) as the 12o/IG of 1.7. The 12o/IG for the area with higher contrast

(red) is 0.7, which suggests that the area has more than double-layer. The downshift

of the G band towards lower wavenumber of -3 ern" (Graf et al., 2006) suggests

that the lower contrast is single layer while the G band with higher wavenumber is

few-layers.

The 2D band at -2690 crn' for the lower contrast region agrees well with

single layer graphene based on the ratio 12o/IG (1.7) and the full width of half

maximum (FWHM) is -33 cm" (obtained from a fit with a single Lorentzian

functions). The FWHM of the 2D band for few-layer graphene in Figure 4.6 is -50

ern", however it exhibits a single Lorentzian peak which is likely to correspond to the

turbostratic graphite. As discussed in Chapter 2, turbostratic graphite has a single

sharp 2D band with FWHM of -50 ern" and is upshifted at -20 ern" (Ferrari et al.,
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2006). The hypothesis that the low contrast regions are single layers, is supported by

the diffraction patterns from transmission electron microscopy (TEM) as in Figure

4.7(b) and (c). These results show that single layer regions have equally intense first-

and second-order spots, while few layer regions give rise to multiple diffraction

spots caused by rotationally disordered (turbostratic) graphite (Pollard et al., 2009).

Figure 4.7(d) is the diffraction spots intensities for single layer regions which is

consistent with that reported by Meyer et al., 2007.
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Figure 4.7: (a) SEM image of graphene transfered to a holey carbon TEM sample grid with
dark grey regions are identified as graphene and black lines are identified as cracks. (b) and
(c) TEM diffraction patterns (Technai F30, accelerating voltage 300kV) from single-layer ((b)
scale bar 4.3 nm') and few-layer ((c) scale bar 3.8 ern"] regions. (d) intensity of diffraction
spots versus position (in reciprocal space) along the line between the points marked by
arrows in (b). The results are taken from Pollard et al., 2009.
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The source of carbon that contributes to the formation of graphene was

unclear. However, it has to be noted that the Ni films in this work are deposited

using the Edwards Auto 306 Vacuum Coater that uses a turbo molecular pump (oil-

based primary pump) backed by a rotary pump (secondary pump). To investigate the

possible source of carbon, several graphene growth cycleswere carried out using Ni

films in an evaporator with oil-free pumps (turbomolecular, ion and scroll pumps) as

described in the next section.

Generally, this work has shown that it is possible to obtain single layer

graphene over large area using the very simple method of annealing Ni thin films in

vacuum without intentional introduction of carbon source. It is likely that this

process involves converting trace amounts of carbon into single layer graphene and

is highly reproducible. Remarkably, this process produces films with, at the time of

publication, higher single layer fraction than alternative approaches to graphene

growth on Ni. We suggest that it is also important to consider the presence of

unintentional carbon sourceswhen developing models for graphene growth.

4.4.2 Influence of outgassing
We tried depositing Ni films in the UHV evaporator system using ion pump

which is oil-free with the same deposition parameters used for Edwards Auto 306

evaporator; evaporation rate of 0.02 nm/s, Ni thickness of -60 nm. The base

pressure is between 10-9 to 10-10 mbar. Before Ni deposition, the samples are

outgassed by annealing at 5000e for about 12 to 18 hours and then annealed at

5000e to 800°Cfor 20 min. The same processing parameters as in 4.4.1 are also used

for this type of Ni films which involves annealing the Ni films between 5000e to

BOOoe in vacuum of base pressure 1 x 10-10 mbar. However graphene is not formed

on any of the samples.

We then tried to follow the same approach as described above except that

the outgassing step was omitted. The Ni surface after the treatment has Ni grains as
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in Figure 4.8 with a size varying between 20 nm and 100 nm. Remarkably, graphene

is successfully formed on the Ni film. This suggests that without the outgassing step,

carbon-containing adsorbates remain on Si02 and can be incorporated into Ni films

during growth and subsequently converted to graphene during annealing. However,

samples produced using this approach are highly defective, as proven by the optical

micrograph and Raman spectrum.

Figure 4.8: AFM image of Ni on Si02/Si substrate with thickness of 60 nm, deposited in UHV
evaporator system, annealed at 700°C in base pressure of 1 x 10.10 mbar, 15 min, no
outgassing process. The AFM image of the as-grown Ni film is shown in Figure 4.2.

Figure 4.9(a) shows the optical micrograph of the graphene film on Si02 (90

nm) after it is transfered from the Ni film. The sample is not outgassed before the Ni

deposition process. After the Ni film is deposited, the sample is annealed in vacuum

at 700De for 15 min before it is transfered to Si02 substrate. The optical micrograph

clearly displays a continuous but broken film with dark spots which likely to be

thicker regions. Raman spectra are taken on the large region with lighter contrast

and on the dark spots.
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Figure 4.9: (a) Optical micrograph of graphene film on 90 nm SiOz (b) Raman spectra of
graphene in (a) consists of 3 to 4 layer graphene (black) and graphite (more than 5 layers)
(red) on SiOz,grown on Ni film (in Figure 4.8) where it was deposited in UHV evaporator
system, annealed at 700°C in base pressure of 1 x 10.10 mbar, 15 min, no outgassing process.

The spectra are shown in Figure 4.9(b) with the black spectrum acquired in

the lighter contrast region and the red spectrum over the dark spots in Figure 4.9(a).

Both regions have a very high intensity of the defect-induced, 0, band with IdlG of

0.9 on the dark spots and 2.3 on the continuous area. The high intensity of D band

on the lower contrast region may arise from the highly fragmented film since the D
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band is commonly observed at the graphene edges (Ferrari et al., 2006). However

the specific type of defect is unclear. The high intensity of the D band on the dark

spots may caused by defects in the stacking order or structural order of the film

since this is a thicker graphene layer.

The G band of the continuous region in Figure 4.9(b) observed at -1590 ern"

has an intensity ratio, 12D/IG of -0.95 which suggests that the film is double layer. The

spectrum of the dark spots however has a lower intensity ratio, 12o/IG of -0.7 which

suggests that the film is thicker. The D' band at -1620 ern", which forms a shoulder

at the right side of the G band, is also a defect and disorder induced band, however

its signal is weaker compared to the D band. Comparison between the D' bands of

both regions (in Figure 4.9(a)) suggests a different origin of defects in this case, the

broken film on the continuous region.
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Figure 4.10: (a) AFM image of graphene on Si02 after the transfer process (b) AFM height
profile of graphene (c) AFM roughness profile of graphene.
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The 2D band line width is related to the number of graphene layers. The 2D

band of the black spectrum has a frequency shift of 2680 ern? with FWHM of -57

ern? which indicates that the film is few-layer. The red spectrum has the frequency

shift of 2700 ern? with larger FWHM of -76 ern", suggesting a thicker film. The 12o/IG

ratio mentioned before (-0.7) illustrates that the film of the dark spots is thick and

may have more than five layers (Ferrari et al., 2006; Gupta et al., 2006). However,

the 2D band for the black spots exhibits a single Lorentzian which suggests that this

region consists of disordered or non-Bernal stacking, known as turbostratic (Reina et

al., 2009). The AFM image of the released and transferred graphene from Ni film to

Si02/Si substrate is shown in Figure 4.10 above. The image displays the RMSof the

surface roughness is 1.8 nm.

4.4.3 Introduction of carbon source

The introduction of carbon using solvent immersion was investigated by

immersing Ni thin films in acetone. Acetone is an organic compound that contains

carbon with chemical formula of (CH3hCO previously used in graphene growth on Rh

(Muller et al., 2009). To distinguish the effect of carbon from acetone and the

presence of adsorbates on Si02,we produced samples using two different methods.

The first method is performed using the outgassing process and in the second

method the outgassing process before Ni deposition was omitted. After Ni

deposition in vacuum, the Ni thin films were taken out, exposed to the atmospheric

conditions and then immersed in acetone for 1 to 2 min. The samples were then

loaded back into the vacuum system and annealed at 700°C for 15 min in base

pressure of 1 x 10-10 mbar.

Figure 4.11 shows a comparison between both samples, which were

outgassed and non-outgassed before Ni deposition. By comparing both defect

induced bands or D bands, it shows that the non-outgassed sample has higher D

band intensity compared to the outgassed sample with lo/IG of 1.75. The D' band
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which is always weak, also lower for the outgassed sample. The intensity ratio of

12D/IG for the outgassed sample is -1.65 which suggest single layer graphene. Whilst

the non-ougassed sample has the 12D/IG ratio of -1. Other than 12D/IG ratio, the width

of 2D band can indicate the number of graphene layers. The 2D band of the non-

outgassed sample has a broad 2D band with a shoulder on the left side that gives a

FWHM of -73 ern" suggesting that the film is few layer (Gupta et al., 2006). The

outgassed sample has single sharp 2D band that exhibit single Lorentzian peak with

FWHM of -34 crn' which confirm that the film is single layer.

1500 2500 3000

-1Raman shift (cm )
Figure 4.11: Raman spectra of single layer (black) and few-layer graphene (red) on 90 nm
Si02• The sample with single layer graphene was outgassed while the few layer graphene
was not outgassed before Ni deposition. Both samples were annealed at 700°C in base
pressure of 1 x 10.10 mbar, 15min ..

We have demonstrated that the outgassing process is important to produce

single layer graphene with better film quality, based on the observed Raman bands.

Even though the D band is still quite high, we believe that some growth parameters

can be tuned to reduce defects or disorder of the graphene film formed on Ni. The

immersion of the Ni films in acetone is known to provide a direct introduction of
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carbon to the sample, however exposure of the Ni film to atmosphere could

unintentionally introduce carbon to the sample and this process cannot be ignored.

Hence, we carried out further work to intentionally introduce carbon using

propylene to form graphene on a Ni film without exposing the sample to

atmospheric condition. The aim of the work is to reduce the D band or concisely to

reduce graphene film defects and disorder. The work is further detailed in Chapter

5.

4.5 Summary

The first part of this chapter has described our method to release and

transfer graphene from Ni film to Si02lSiO substrate. It follows with an overview of

the vacuum systems which we used to deposit Ni thin films. The section describes

two different systems; commercial evaporator (Edwards Auto 306 Vacuum Coater)

and UHVevaporator system in terms of the resulted Ni thin films.

The main section in this thesis is on graphene growth in our UHVsystem. on

the graphene formation without intentional introduction of carbon. Ni films

deposited using the commercial evaporator (using oil-based vacuum pump) show a

significant transformation in the Ni grain size between annealing treatment of 700°C

to 800°C, identified as (111) oriented crystallites. We have proven that is possible to

produce single layer graphene over large area (-75% coverage) using the very

simple method of annealing Ni thin films in vacuum without intentional introduction

of carbon source. We demonstrate the possibility of conversion of carbon-

containing adsorbates on Si02 to single layer graphene and find that this is highly

reproducible. Remarkably, this process produces films with higher single layer

fraction than alternatives approaches to graphene growth on Ni. We suggest that it

is important to also consider the presence of unintentional carbon sources when

developing models for graphene growth.
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We then discuss graphene formation on Ni thin films deposited in the UHV

evaporator system (using oil-free vacuum pump). We demonstrate the effect of

outgassing the Si02 substrates before Ni deposition process which has proven that

the process is essential in the elimination of any adsorbates on Si02 which can lead

to the formation of graphene on Ni films. We also demonstrate the effect of

outgassing and graphene growth with the intentional introduction of carbon by

immersing the Ni film in acetone before annealing it in vacuum, which resulted in

single layer graphene. Based on this work, we propose the importance of outgassing

the Si02 substrates to produce single layer graphene with better film quality. Based

on the Raman D band intensity ratio ,Io/IG (-0.9), we suggest that some growth

parameters can be modified to reduce the defects. It has to be noted that samples

in this work are exposed to atmosphere which can also unintentionally introduce

carbon to the sample and this process cannot be ignored. Hence, further work is

performed to intentionally introduce carbon using propylene gas to form graphene

on Ni film without exposure of the sample to atmospheric conditions. The aim of the

work is to reduce the Raman D band intensity which is a measure to the amount of

defects in graphene. The work is further detailed in Chapter 5.
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Chapter 5

Monolayer Graphene Growth on Ni Thin Films using

Chemical Vapour Deposition (CVD)

5.1lntroduction

The formation of graphene on Ni films has been explored using various

methods to introduce carbon. These include immersion of the metal in an organic

solvent (Pollard et. al., 2009) and exposing the metal to carbon containing gasses

(Obraztsov, 2007; Vu et al., 2008; Reina et al., 2009; Kim et al., 2009). In addition,

some studies focus on the use of solid carbon sources ego polymers (Sun et al.,

2010), as well as decomposition of carbon-containing molecules (Perdigao et al.,

2011). This chapter however will be focusing on the formation of graphene by

exposing Ni thin films to a carbon-containing gas, in particular, propylene. Our

approach is based on previous work on the formation of graphene (Dedkov et al.,

2008; Fariaset al., 1999) on single-crystal Ni (111) under UHV conditions.

The work in this chapter may be viewed as a continuation of Chapter 4 but

using the intentional introduction of carbon source. Sincethe amount of defects are

relatively high in the work described in Chapter 4 and in the initial graphene samples

formed using propylene, this work is carried out to identify the factors that affect

the amount of defects quantified by the intensity of the Raman 0 band. The

dependence on annealing temperature, exposure time to propylene and Ni film
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thickness will all be discussed. The objective of this work is to obtain large coverage

of low defective single layer graphene.

5.2 Propylene

Propylene or propene is an alkene with the chemical formula C3H6 which

contains carbon-carbon single and double bonds. Propylene is gaseous at room

temperature and atmospheric pressure. Figure 5.1 shows the molecular structure of

propylene with a carbon - carbon single and double bond as well as bonding with

hydrogen atoms.

HH, /
H C
\ / 'H
C==C
/ \H H

(a) (b)
Figure 5.1: The geometry of propylene with (al propylene molecule with carbon atoms are
represented by black spheres and hydrogen by white spheres (b) chemical structure of
propylene showing carbon - carbon single and double bonds.

Propylene is introduced into our vacuum system where it can interact with a

heated Ni thin film. Graphene is formed through decomposition of propylene gas on

Ni (111) according to the methods described in previous works (Dedkov et al., 2008;

Farias et.al., 1999). This process involves breaking the carbon-carbon and carbon-

hydrogen bonds.

5.3 Sample preparation

Several aspects of the sample preparation are similar to those described in

Chapter 4. The Si/Si02 (with Si02 thickness of 300 nm) are outgassed at -sOODC for
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14 to 18 hours. A Ni film (thickness 100 nm) is then deposited by sublimation. The Ni

films are then heated in UHV (base pressure of -1 x 10-9 to 10-10 mbar) to

temperatures varying between 600°C and 850°C. It takes 5 to 15 min to reach this

temperature. Once the required temperature is attained, the samples are exposed

to propylene for 5 to 20 min. The pressure during propylene exposure rises to 1 x 10-

6 mbar and is controlled by a leak valve. The process is then ended by closing the

leak valve and followed by cooling the sample to room temperature by reducing the

current through the silicon heater over a period of 15 sec.

The graphene films formed on the Ni thin film surface are transferred to 90

nm Si02 substrates using a similar approach to that explained in Chapter 3, 4 and

Pollard et al., 2009. The films obtained on the SiOz substrates are then examined

using Raman spectroscopy to confirm that the layers formed are graphene. The

Raman spectra obtained in this work are acquired using SOxobjective at 532 laser

excitation and -1 JlW of laser power using a Horiba Scientific LabRAMHR.

5.4 Preliminary results on graphene growth from propylene

The aim of our initial studies of graphene growth was to optimize parameters

to obtain single layer material. In the early stages,graphene was grown by annealing

the Ni films at 650°C and exposure to propylene gas for 5 min. From the Raman

bands obtained from the samples produced using these parameters, we found that

the graphene films have a relatively intense D band. However single and double

layer graphene are successfully grown as inferred from the Ramanspectra shown in

Figure 5.2. Six samples are taken for the comparison in the Figure 5.2 using similar

processes as explained in 5.3, with all samples annealed at 650°C and exposure to

propylene for 5 min. All samples have slightly differences in the Raman spectra, but

the data are, at least to a good approximation, reproducible.

As discussed in previous chapters, the signature of single layer graphene is a

single Lorentzian 2D band (Pollard et al., 2009; Ferrari et al., 2006). It is estimated
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that single layer graphene has FWHM of 2D band of around -35 ern" or less.

However, if the band exhibits single Lorentzian with very large FWHM {-50 ern"),

the film is turbostratic graphite. Bernal stacked double layer graphene is easy to

distinguish from single layer since its 2D band does not exhibit a single Lorentzian,

but it consists of four components due to different electron dispersion energy

(Ferrari et al., 2007; Malard et al., 2009). Another characteristic for single layer is to

have 2D band intensity, bD/IG > 1.
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Figure 5.2: Raman spectra of six graphene films transferred to SiOz, and prepared using the
same growth parameters; annealing at 650°C and exposure to propylene for 5 min. The
samples are cooled in 15 sec.

1200

Raman spectra in Figure 5.2 are acquired for graphene films on Si02• The

spectra confirm that the graphene films obtained from the method explained above

produce single layers. This is indicated by the full width half maximum (FWHM) of

2D bands which are between 36 to 39 ern" and the intensity ratio bD/IG between 1.5

to 2.1 in Table 5.1. However the D band intensity is high compared with exfoliated

graphene. Data from the Raman spectra obtained in Figure 5.2 is presented into

1400

86



Table 5.1, indicates the defect, or disorder induced, 0 band intensity ratio lo/IG is

between 0.8 to 1.5.This is slightly lower than 0 band intensity obtained in Chapter 4

for graphene growth by immersion in acetone. However the defects and degree of

disorder need to be reduced in order to acquire good quality of graphene films. To

achieve this objective, a series of experiments is performed by fine-tuning some

growth parameters such as annealing temperature and time dependence of Ni film

exposure to propylene. The influence of thickness of the Ni thin film is also

investigated. Further work on reducing the graphene defects is discussed in the

subsequent section.

Table5.1: Summaryof measuredvaluesobtained from the Ramanspectraof transferred
graphene (refer Figure 5.2). All the six samples are prepared using the same growth
parameters;annealingat 650°Cand exposureto propylene for 5 min. The samplesare
cooledin 15sec.

o band G band 20 band
Samples

lo/IG
Position Position FWHM

12D/IG
Position FWHM

(ern") (ern") (cm') (cm") (cm-1)
i 0.8 1341 1586 24.4 1.9 2674 38.0
ii 0.9 1343 1588 20.5 2.1 2677 36.2
iii 1.5 1343 1587 45.3 1.5 2679 38.6
iv 1.2 1343 1587 20.5 1.8 2678 37.2
v 1.2 1341 1585 24.4 2.1 2672 37.1

5.5 Effects of annealing temperature, exposure time and Ni

film thickness on graphene quality

To optimise graphene quality we first investigated the effect of exposure

time on the Raman spectral features. The exposure to propylene was varied from 3

to 25 min while maintaining annealing temperature, pressure and Ni film thickness.

It is observed that at 3, 5 and 10 min exposure to propylene, the 0 band intensities

are significantly high (lo/IG>l). However, the 0 band intensity started to reduce

when the exposure time is increased up to 20 min with intensity ratio lo/IGof -0.8.
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Longer exposure time of more than 25 min do not reduce the lo/IG intensity. Hence

the quality of graphene film appears to be slightly improved at an exposure time of

20min.

As a next step the annealing temperature was varied. Raman spectra of

Figure 5.4 compares different annealing temperature at 20 min exposure time. The

lo/IG intensity for annealing temperature at 6000e is the highest (-2.1) and produced

few-layer graphene, indicating that this is not an appropriate temperature to

produce good quality single layer graphene. Reduction of the lo/IG intensity from 0.8

for 6500e to 0.2 for 7000e suggests the film quality increases significantly over this

temperature range. It has been argued that defects are high in low-temperature

growth, while high temperature growth facilitates relaxation of metal-carbon system

toward thermal equilibrium, hence defects can anneal rapidly (Banhart et al., 2011).
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Figure 5.3: Raman spectra of single layer graphene at different exposure time to propylene.
The Ni films (lOO nm) are annealed at 650°C, pressure in propylene at I x 10.6 mbar.
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Figure 5.4: Raman spectra of graphene shows increasing Ni film annealing temperature of
6000e, 6s00e and 7000e significantly reduce the D band intensity. Ni films are exposed to
propylene for 20 min in pressure of 1 x 106 mbar.

A further increase of annealing temperature is performed to observe

changes in the Raman D band intensities as shown in Figure 5.5. All the graphene

films in the figure have ID/IG intensities of -0.2 which indicate that further annealing

above 700°C up to 850°C does not reduce the amount of defects. This suggests that

for annealing temperatures above 7000e, the relaxation of the metal-carbon system

has achieved thermal equilibrium, hence the amount of defects as obtained from

the Raman spectra do not reduce further.

A detailed study of Raman spectra in Figure 5.5 is given in Figure 5.6. The G

band position (Pos(G)) in Figure 5.6(a) varies between 1581 ern" to 1587 ern". The G

band FWHM (FWHM(G)) for 7000e and 7500e are at -20 ern", while 8000e and

8500e are at 34.7 ern" and 36.5 cm" respectively. This data is in the same range as

the data from Lespade et al., 1984, for graphene with a D band. Casiraghi et al., 2007

suggests that large FWHM (G) (>16 ern") and Pas (G) higher than 1580 ern" indicates

structural disorder.
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Figure 5.5: Raman spectra of graphene showing further increase of annealing temperature
causing a slight decrease in the D band intensity. The 100 nm Ni films are exposed to
propylene for 20min in pressure of 1 x 10.6 mbar during annealing.

To analyse the 2D band, the 12D/IG ratio is plotted as a function of Pos(G) as

shown in Figure 5.6(b). The plot shows that the 12o/IG ratio increases with annealing

temperature, with 8500e showing the highest value. Annealing temperatures of

7000e and 750°C give 12D/IG of 2.3 and 2.2 respectively. As shown previously in Table

5.1, the 12D/IG ratio for 6500e are between 1.5 to 2.1, which is lower than the ratio

shown in Figure 5.6(b). The plot also indicates that higher Pos(G) is correlated with

lower 12o/IG intensities. Overall, all the four temperatures have shown 12o/IG value

consistent with single layer graphene.

Figure 5.6(c) shows Pos(G) as a function of Pos(2D). The 2D band position

(Pos(2D)) for the four annealing temperatures is between 2672 ern? to 2677 ern"

which is in the same range with Pos(2D) for suspended graphene obtained by

Berciaud et al., 2009. The figure clearly shows that both Pos(2D) and Pos(G)

decrease with higher temperature.

90



36 3.0

.800De

-":' 32E
u
:::: 28
~
~ 24
:::c
~ 20
u.

2.8

2.6

2.2
1575 1580 1585 1590 1595

Pos(G)[cm")

(a)

1575 1580 1585 1590 1595
-IPos(G)(cm)

(b)
2678

_ 2676..
'E
u

22674
N-VI
~ 2672

1575 1580 1585 1590 1595
Pos(G) (ern")

(c)
Figure 5.6: (a) FWHM of G band and position of G band (b) bo/IG intensity ratio vs. position
of G band (c) bo/IG intensity vs. annealing temperature for graphene growth (d) position of
2D band vs. position of G band.

Images acquired using optical microscopy for graphene-terminated Ni films

(prior to transfer) are shown in Figure 5.7. As the annealing temperature increases,

the Ni film restructures with the formation of holes (this is probably due to de-

wetting) and the resulting holes can be seen in Figure S.7b) to S.7d}.The transferred

graphene from these Ni films contain holes of the same dimension as those in the Ni

layer. Whether graphene is formed inside the holes is unknown but it is not

transferred. At annealing temperatures above gOOOe much larger holes are present

in the Ni film and no graphene is transferred.
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Figure 5.7: Optical micrographs of graphene on Ni (100 nm) at different annealing
temperature. All the samples are exposed to propylene for 20 min at a pressure 1 x 10'6
mbar.

Based on the Raman spectra in Figure 5.5 and the optical images in Figure

5.7, the Raman D band intensities do not change significantly at annealing

temperatures above 700°C. However the presence of holes in the Ni films annealed

above 7500e cause a reduction in the graphene coverage. We suggest that the holes

are formed due to the high temperature that cause some Ni to evaporate or de-wet

the surface, indicating that a Ni film thickness of 100 nm is insufficient for higher

annealing temperature. Accordingly we have investigated thicker Ni films. Two

samples with a thickness 250 nm were annealed at 7500e and BOOoe by exposing to

propylene for 20 min in pressure of 1 x 10'6 mbar. The Raman spectra of the 250 nm

Ni films are shown in Figure 5.B and can be compared with the 100 nm Ni films in

Figure 5.5.
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Figure 5.8: Raman spectra for graphene grown on 250 nm Ni films at annealing temperature
of 750°c and 800°e. Both samples were exposed to propylene for 20 min, in pressure of 1 x
10-6 mbar. Raman spectra obtained for graphene transferred to 90 nm Si02 substrate.

The ID/IG intensities for the 750De and 800De are 0.3 and 0.2 respectively

which indicate that thicker Ni films does not improve the quality of the graphene

films any further. We suggest that the thicker Ni films may improve the surface

morphology by providing enough Ni (as shown in Figure 5.9) however it do not

influence the defects formation since it only occur on the surface along with

graphene formation. Optical micrographs of both samples (250 nm Ni films) are

shown in Figure 5.9, exhibit good surface morphology with small area with thin

holes. The holes area for 250 nm Ni annealed at 750De is 770 J-lm2, smaller than

holes area formed on 100 nm Ni annealed at the same temperature which is 1 x 103

J-lm2. The holes area for 250 nm Ni annealed at 800De is 297 J-lm2,which is also

smaller than holes area for 100 nm Ni (793 J-lm\
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(a) (b)

Figure 5.9: Optical micrographs of graphene on Ni (250 nm) in Figure 5.9. Both samples
were annealed at (a) 750°C and (b) 800°e. All the samples are exposed to propylene for 20
min in the pressure of 1 x 10-6 mbar.

We also investigated the surface of these Ni films with AFM. The AFM images

are shown in Figure 5.10. The image of the Ni film annealed at rso-c in Figure

S.10(a) is a 10 urn scan and has RMS roughness of 39.8 nm. Figure S.10(b) is a 1 urn

scan of the same sample which shows a faceted island with width of about 0.4 urn.

The Ni film annealed at 8000e is shown in Figure S.10(c) (lOllm scan) and has RMS

roughness of 32.5 nm. The same sample (1 urn scan) in Figure s.10(d) shows a larger

faceted island than the sample annealed at zso'c with width of 0.8 urn,

So generally, this work has shown a significant lOx reduction of D band

intensity and we found that the amount of defects in graphene is a minimum at an

annealing temperature of 7000e and exposure to propylene for 20 min. We also

suggest that the thickness of the Ni film only play a role in improving Ni morphology

however it does not influence the defect formation.
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Figure 5.10: AFM images and height profiles of graphene on 250 nm Ni thin films. (a)
and (b) are Ni films annealed at 750°(, (c) and (d) Ni films annealed at 800°e. Both
samples are exposed to propylene for 20 min in the pressure of 1 x 10-6 mbar.

95



5.6 Summary

In this chapter graphene growth on Ni film by exposure Ni surface to

propylene in vacuum was presented. This approach is successful in producing single

layer graphene with relatively high Raman 0 band intensity. Work is carried out to

reduce the defect density and it has been shown that defects in graphene (based on

o band intensity) are at minimum at annealing temperatures above 7000e and

exposure to propylene for more than 20 min. Annealing temperatures between

BOOoe to 9000e cause the Ni films to restructure with the formation of holes. Initially

we suggested that thicker Ni films could provide enough Ni so that the defects in

graphene could be reduced and its coverage will be larger due to reduction of the

holes. However, it is found that thicker Ni films do not affect the defect formation,

but do improve the Ni surface morphology.

Overall, we have successfully reduced the intensity of the defect peak by a

factor of 10 in the graphene films formed on Ni films using propylene. Thus we have

demonstrated considerable progress towards our objective to acquire a large

coverage of low defective graphene.
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Chapter 6

Graphene Formation by Decomposition of e60

6.1lntroduction

It is known that annealing Ni films on Si02 can lead to the formation of

graphene on the Ni surface due to unintentional introduction of carbon, such as

carbon containing adsorbates, or the intentional introduction of carbon sources, for

instance gaseous hydrocarbons (U et al., 2009; Vu et al., 2008; Reina et al., 2009;

Kim et al., 2009; Usachov et al., 2008), organic solvents (Muller et al., 2009; Pollard

et al., 2010) and solid sources (Sun et al., 2010). In this chapter the growth of

graphene from the intentional inclusion of the fullerene, C60, is discussed. Two

methods of C60decomposition are investigated; buried C60under a Ni film and C60

sublimed on top of a Ni film. Both methods result in a graphene layer formed on top

of Ni surface. Note that the buried layer was investigated to verify the conclusion in

Chapter 4 that unintentional carbon impurities buried at the Ni/Si02 interface can

give rise to the formation of graphene.

In the first part of this chapter basic techniques and properties used in the

sample preparation will be described. The release-transfer of the graphene films to

Si02 is achieved using a similar approach to that described in Chapter 3, 4 and 5. The

transferred graphene film on Si02 is then characterized using Raman spectroscopy.
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Both approaches will be discussed in the light of Ramanspectra obtained from three

different annealing temperatures (710°C, 766°C, 825°C). In addition, the adsorption

and transformation of C60to graphene caused by annealing is monitored using

vacuum-STMand ambient-STM.

The main objective of this work is to investigate an alternative solid-state

approach for the formation of graphene with controlled layer thickness. Particularly,

this work is carried out to prove that is possible to form single layer graphene from

the decomposition of C60.This method provides a route to control the total dosage

of carbon introduced into the film with a high degree of precision.

6.2 Sample preparation

Two methods are used which differ in the order that the C60and Ni film were

deposited. In the first method C60 is deposited on Si02, followed by Ni film

deposition on C60.In the second method C60is deposited on Ni film. Initially, the Si02

substrates are loaded in a vacuum system with base pressure of 1 x 10-9 to 10-10

mbar. The samplesare outgassed in 1 x 10-8mbar pressure at -500°C for about 12 to

18 hours followed by annealing at 800°C for over one hour. Basedon the discussion

in Chapter 4, omission of this step causesgraphene formation on Ni film even in the

absenseof the intentional introduction of carbon.

For C60deposition, a Knudsen cell is used to sublime C60molecules at

constant temperature with a deposition rate of 0.16 nm/min. It is calculated that 0.8

nm of C60is equivalent to a single layer of C60and has a surface density of 1.2 x 106

molecules/urn'. After Ni and C60 deposition, the samples are annealed at

temperatures between 650°Cand 890°C for 2 to 15 min by flowing current through

the silicon heater at the back of the sample (see Chapter 2). After this the sample is

cooled by reducing the current to zero over 15 seconds.
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The graphene films formed on the sample surface are transferred to 90 nm

Si02 subsrates using the same method as described in Chapter 3 and Pollard et al.,

2009. These films are optically visible. To confirm that the obtained film is graphene

and to determine the quality and number of layers, Raman spectroscopy is used.

The Raman spectra in this chapter were acquired with a SOxobjective at S32 laser

excitation and 1 ~W of laser power using a Horiba Scientific LabRAM HR.The STM

images are scanned using the Nanograph Systems microscope in vacuum at room

temperature using Pt/lr cut tips. The ambient STM is performed using Molecular

Imaging (Agilent) also using Pt/lr cut tips.

6.3 Buried e60 under a Ni thin film

The first part of the work is performed with C60deposited on Si02 followed

by deposition of a Ni film. The deposition of a C60layer with average thickness -1.6

nm leads to island formation on the surface with typical heights of -14 nm, island

width of 40 nm and separation between islands of 100 nm. The AFM images of the

islands are shown in Figure 6.1 and are consistent with a Volmer-Weber growth

mode for C60on Si02. Ni deposition on C60covers the islands and produces a similar

topography which shows that Ni deposition does not strongly affect the C60islands.

However, following the annealing process, the topography of the islands are

significantly flattened. It is observed that the surface is covered with polycrystalline

facets which are similar to those typically observed for annealed Ni film without the

insertion of C60.The transformation from islands to a flat surface shows a significant

reordering of surface constituents (Perdigaoet al., 2011).

Graphene formed on the Ni surface is released and transferred to Si02.

Figure 6.1e shows Raman spectra of transferred graphene for samples annealed at

710°C, 766°C and 82SoCfor 15 min. The samples annealed at 880°C provided no

transferred graphene. The Ramanspectra in Figure 6.1e confirm that graphene films
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are successfully grown on Ni films and may be transferred to a Si02 substrate. The

Raman bands observed are identified as 0, G, 0', 20 and O+G bands.

e
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Raman of transferred:
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Figure 6.1: Graphene produced from buried C60 under a Ni film. a) Sample preparation and
graphene growth process in a UHV system: (I) 1.6 nm of C60 deposited on a pre-outgassed
Si02 surface, (II) nickel film grown by evaporation, and (III) the whole assembly was
annealed at a chosen temperature for 15 min. b), c), and d) are tapping mode 2 x 2 urn AFM
images of the samples taken out after each of the stages I, II, and III, respectively. e) is the
Raman spectra of transferred graphene prepared at different annealing temperatures given,
with the peaks 0, G, 0', 20, and 0 + G assignment shown with dashed lines.

The spectra in Figure 6.1e show that the ho/IG ratio increases with higher

annealing temperatures. The spectra suggest that higher annealing temperature

gives rise to a lower number of graphene layers (refer Chapter 2). Table 6.1 shows

selected peak intensities for each temperature. The lo/IG intensity (>2) is high which
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indicates a large amount of defects or disorder in the graphene film. Basedon the

investigation of the relation between the cooling rate and reduction of defects on

graphene film, it is believed that the post annealing cooling rate plays an important

role in improving graphene film quality since it limits carbon segregation and

solvation during graphene grown by CVD(Yuet al., 2008).

Table 6.1: Summary of measured values obtained from the Raman spectra of transferred
graphene (refer Figure 6.1e), prepared with buried eso under Ni film and annealed at
different temperatures

Anneal D band 2D band

Samples temperature Position FWHM
(QC) lo/IG bo/IG

(cm") (ern")

1 710 2.31 1.61 2674 41.3

2 766 2.64 1.68 2676 37.7

3 825 0.95 2.18 2677 35.6

The effect of varying C60dosage is investigated and the difference can be

seen clearly in Figures6.2a and 6.2b. The C60exposure for 5 min (which results in 0.8

nm thick C60coverage) produces isolated graphene islands with near circular form.

The diameters and the separations of the graphene circles are -10 urn. However,

the 10 min C60exposure (of 1.6 nm thick C60coverage) produces a large near

complete graphene film coverage. The graphene for film coverage is corresponds to

darker contrast regions while lower contrast refers to Si02 substrate.

The Ramanspectrum of 5 min and 10 min exposures are represented by the

red and green spectrum respectively. It is clearly observed that 10 min exposure

produces multilayer films based on the low 2D band intensity with ho/IG < 1, while

the 5 min exposure has an ho/IG ratio of -2 which is consistent with a single layer.

Comparison between exposure times shows that higher exposure produces higher

coverage hence higher number of layers are obtained. This demonstrates that the

thickness of the graphene layer can be controlled by varying the C60coverage.
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Figure 6.2: a) and b) are 150 x 150 urn optical microscope images of graphene transferred to
Sia2 which were produced with buried (60 sandwiched between Sia2 and Ni film. a) is 5 min
exposure to (60 results in 0.8 nm thick coverage and b) 10 min exposure to (60 results in 1.6
nm thick coverage. Darker and lighter contrasts are graphene and bare Sia2, respectively. c)
is the Ramanspectra of the graphene regions in images a) green and b) red.

The fraction of carbon atoms that have been deposited which are

incorporated in graphene film can be estimated. A (60 layer of average thickness 0.8

nm is equivalent to -1 single layer of (60, which has sufficient carbon to form -3.2

single layers of graphene. However based on Figure 6.2, exposing the Ni film for 5

min produced 0.8 nm (60 layer which results in overall coverage of -50% or 0.5

single layer graphene. We suggest, there are possibilities that the remaining carbon

grows into pyrolitic carbon (PyC) at the interface of Ni and Si02 or remains dissolved

within the Ni film. Accordingly, we checked the Si02 surface by etching the Ni film

and this results in carbon layers remaining on the substrate. Raman spectroscopy

and optical imaging are carried out and it was confirmed that the layer formed is
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PyC based on its wide D and G bands as shown in Figure 6.3, similar to the spectra

observed for PyC formed by CVD (Kumar et al., 2010).

In addition, the results show that graphene initially grows as a single layer

due to nucleation. In terms of number of layers, the use of buried C60is comparable

to the use of amorphous carbon (Zheng et al., 2010) although there are differences

in the Raman spectra observed for the fullerene source of carbon. In particular, the

2D band is narrower and higher in intensity, as compared with films grown from

amorphous carbon.

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Ramanshift (ern")
Figure 6.3: Raman spectrum of pyrolitie carbon (PyC)on Si02 after Ni etch.

6.4 e60 deposited on a Ni thin film

The samples prepared in this section were deposited with the same dosage

as described above and annealed at 710°C, 766°C and 825°C for 15 min. The Raman

spectra of the resulting graphene after the released-transfer process is shown in

Figure 6.4. The peak intensities for the three different temperatures are specified in

Table 6.2. By comparing the intensity of the 2D band in Figure GAb with Figure 6.1e,

it is clear that the 12D/IGof C60on Ni is generally higher than buried C60under Ni film.
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This suggests that the method of depositing e60 on Ni produces a higher fraction of

single layer graphene. Moreover samples produced using this method have smaller

FWHM and less variation with annealing temperature. This indicates that single

layer graphene is best achieved with e60 deposited on Ni rather than buried e60
under Ni film.

a .(I.Ni nC60 766°C graphene
V@ 15min J.~.~

OIQLJ OIQLJ
II III

Eia
I

b D G D' 2D

Ramanof transferred.
graphene

~

D+G

766°C

825°C

1500 2000 2500
Raman shift(ern")

3000

Figure 6.4: Graphene on Si02 which is synthesized from 1.6 nm C60 on Ni film. a) is the
method of graphene growth using C60 deposition: I) Ni film is deposited on outgassed Si02

substrate, II) Exposure of the Ni film to C60 and III) the sample is annealed for 15 min
producing graphene on top of Ni film surface. b) Raman spectra of post-transferred
graphene on Si02 at different annealing temperature.

Based on the 12D/IG and the FWHM of the 2D band, we also suggest that

single layer graphene is best achieved at higher temperatures in the range 7600e to

825°C. This is consistent with previous works (Shelton et al., 1974; Fujita et al., 1994;

Eizenberg et al., 1979) that show higher-temperature annealing of Ni implanted with

carbon produces a lower number of graphene layers. However, the sample annealed

at 8800e did not provide graphene in common with the previous section. The D band

intensity for e60 on Ni film is high. However, from a comparison of the D band
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intensity (lo/IG) between Table 6.2 and Table 6.1, the eGO on Ni film has lower defects

or disorder of graphene film which indicates that this approach produces better

graphene quality.

Table 6.2: Summary of measured values obtained from the Raman spectra of transferred
graphene (refer Figure 6.3b), prepared with e60 on Ni film and annealed at different
temperatures.

Anneal D band 2D band

Samples temperature . Position FWHM
(0C) lo/lG 120/lG

(cm") (ern")

4 710 1.94 2.33 2670.0 34.9

5 766 1.26 2.40 2674.3 31.0

6 825 1.53 2.39 2674.3 33.5

To understand the conversion of eGO to graphene, we have monitored the Ni

film surface after e60 deposition and annealing process using STM. For this purpose

we used sapphire as a substrate because the Ni films formed on it are flatter and

smoother, making this a good choice of substrate for STM imaging. Figure 6.5 shows

STM images of 1 single layer of eGO (deposited for 5 min with thickness of 0.8 nm) on

Ni/sapphire after annealing.

As observed in the Figure 6.sa, generally the eGO arrangement is disordered.

However it is possible to determine individual molecules. After annealing at s400e
for 10 min, well ordered hexagonal close-packed islands with height of 0.42 nm are

observed as in Figure 6.Sb. Previous studies on the absorption of eGO on Ni (111)

using low energy electron diffraction (lEED) demonstrated that adsorption at room

temperature causes a disordered arrangement of eGo. However following annealing

process, a hexagonally ordered phase is achieved (Kusch et al., 1997). We found that

the transition from disordered to well-ordered eGO domains occur at -540oe which is

very close to the temperature observed by Kusch et al., 1997.
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Figure 6.5: Series of STM images of C60 on Ni/sapphire. a) STM image of -1 single layer of
C60 deposited on 100 nm Ni on sapphire. b) STM image of well-ordered e60 islands on
Ni/sapphire following annealing at S400e for 10. c) STM image after additional annealing to
S9Soefor 10 min. d) ambient-STM image after the sample is taken out from the UHV system
to atmosphere. e) ambient-STM image of the square region pointed with an arrow in d).
Tunneling parameters are: a-O.SV, 0.1 nA; b +0.3 V, 0.3 nA; c -1.0 V, 0.1 nA; d -0.3 V, 1.0 nA;
e -0.2 V, 1.0 nA. The images are from Perdigao et al., 2011.

The measured intermolecular e60 distance of 1.0 nm corresponds to 4 x 4

periodicity with the Ni (111) surface. It is known that surface lattice constant of Ni,

aNi is 0.249 nm which make 4 x aNiequal to 0.996 nm. At this stage, it is estimated

that the e60 coverage is -0.5 monolayers. When the annealing temperature is

increased to 595°C, the surface morphology is modified so that the C60domains are

no longer present. However the Ni terraces are still observed as before. Hence we

suggest that the dissociation of C60occurs between 540°C and 595°C. From all the

samples we produced, it is found that graphene is only obtained above 600°C.

Previous study on the decomposition and conversion of C60on Ni (110) to graphitic

layer has demonstrated a slightly lower temperature of -490°C (Cepek et al., 1996).

We found that additional annealing, above 595°C, between 655°C and 710°C did not

show a significant transformation ofthe observed surface morphology.
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Figure 6.6: Raman spectrum of double layer graphene on Si02, which was transferred from
C60on Ni/Saph in Figure 6.5.
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The sample in Figure 6.5 was taken out of the vacuum system and imaged

using an ambient-STM. As shown in Figure 6.Sd and 6.Se, generally the surface

morphology is comparable to that observed in vacuum. However shallow holes are

observed under the ambient-STM (Figure 6.Sd). The region pointed by the arrow in

the figure is imaged in a higher magnification asshown in Figure 6.Se,which shows a

common structure with a period of - 0.24 ± 0.01 nm. This is close to the expected

surface lattice constant of graphite or graphene and similar to previously published

images of graphene on Ni (Usachov et al., 2008; Hofrichter et al., 2010). Raman

spectrum (Figure 6.6) shows that the film obtained after a release-transfer process

to Si02 is double layer graphene. It has been suggested in our previous work (Pollard

et al., 2009) that a graphene layer inhibits oxidation of the metal surface and we

believe that this assistsout work with the ambient-STM. The holes or wells observed

in Figure 6.Sd have depth up to -1.5 nm. We suggest that these holes cause defects

in the graphene layer which allow, and possibly arise from, localized oxidation of the

graphene on Ni surface (Perdigao et al., 2011).
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6.5 Summary

In this chapter the decomposition of C60 on Ni was presented which

ultimately produced single and double layer graphene films. Similar release-transfer

method as described in Chapter 3 and 4 is carried out to transfer graphene from the

Ni film to a Si02 substrate. Further investigation is carried out using Raman

spectroscopy to identify the graphene layer. It is found that all the samples have a

high fraction of single layer graphene, but are relatively high in defects and disorder

which are confirmed by the high intensity of the D bands. The fraction of defects is

higher than commonly observed in few-layer graphene grown on Ni film by CVD.It is

suggested that the graphene quality can be improved by using other metals or

different molecular precursors and at the same time a high fraction of single layer is

maintained.

A few factors are identified to influence the characteristics of the resulting

graphene film, particularly the coverage of C60,annealing temperature and the

sequence of depositing CGOand Ni film. This molecular source of carbon provides a

method of controlling the total dosage of carbon introduced into the film with a high

degree of precision (Perdigaoet al., 2011). This work and our previous work (Pollard .

et al., 2009) suggest that carbon at a buried metal on Si02 has the possibility to

diffuse and segregate at the top of the surface. Overall, this chapter provides an

alternative solid-state approach for the formation of graphene, particularly using C60

with the capability to control layer thickness.
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Chapter 7

Graphene Enhanced Raman Scattering (GERS) of PlCDI

7.1lntroduction

Surface enhanced Raman scattering (SERS) is a technique which is widely

used to enhance a Raman signal. In SERSstudies, the emphasis is on increasing the

intensity of Raman signals, and this requires a substrate which is cheap and easy to

obtain, and is also chemically inert and biocompatible. A candidate which could

satisfy this requirement is graphene. Recently, a new approach for enhancing Raman

signals of adsorbed molecules using graphene as a substrate has been reported (Ling

et al., 2010; Ling & Zhang, 2010), known as graphene enhanced Raman scattering

(GERS).

Here we study the GERSeffect by investigating the Raman spectrum of PTCDI

adsorbed on epitaxial and exfoliated graphene. The first part of this chapter will

describe the SERSeffect. This is followed by an introduction to PTCDI and the sample

preparation methods used for this experiment are then discussed. The Raman

spectra of PTCDI will be discussed in detail to demonstrate the enhancement due to

GERS.We observed 12 Raman bands of the PTCDI and the assignment of each of the

band obtained will be described. Further disscussion of the effect of using single

layer and few-layer graphene will be given as well as the effect of varying the PTCDI
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coverage. This work has confirmed that graphene is a good candidate as a substrate

for Ramanenhancement for adsorbed molecules.

7.2 Sample preparation

This work involves deposition of PTCDImolecules on graphene. Graphene

films for this work are prepared using propylene, as explained in Chapter 5. After

outgassing, a Ni film is deposited on Si02. Ni films are annealed at 650°C for 10 min

in the presence of propylene. After graphene is formed on Ni surface, it is

transferred to Si02 substrates as explained in Chapter 3 and Pollard et al., 2009.

Before PTCDIdeposition, the graphene films on Si02 are characterized using Raman

spectroscopy.

For PTCDI deposition, a Knudsen cell is used to sublime PTCDI onto a

graphene surface with a deposition rate of 0.062 A/min. To perform the deposition,

the Knudsencell is heated at -400°C while substrates are held at room temperature.

Ramanspectra are then acquired using a SOxobjective at 532 nm and llJ.W of laser

power using a Horiba Scientific LabRAM HR. For the STM images, we prepared

graphene on Ni/Saphire/Si02/Si and scanned using the Nanograph Systems in

vacuum at room temperature using Pt/lr cut tips.

7.3 Perylene tetracarboxylic diimide (PTCDI)

Perylene derivatives have been widely studied in relation to two-dimensional

self-assembly on various substrates and have potential applications in molecular

electronics. The adsorption of perylene tetracarboxylic diimide (PTCDI) has been

studied on several different substrates (Zahn et al., 2004; Hauschild et al., 2005;

Kaake et al., 2007). Many studies using PTeDI are related to hydrogen bonding

guided self-assembly by co-adsorption with melamine on silver terminated silicon

(Theobald et al., 2003) or on gold surfaces (Perdigao et al., 2006). PTCDI/melamine
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arrays form two-dimensional porous nanostructures with hexagonal shape. When

deposited without melamine it has been reported that PTCDI molecules can form

canted and brick wall structures. The canted structure consists of rows or chains of

PTCDI, which are stabilized by hydrogen bonding. The brick wall structure contains

rows of PTCDI with the adjacent rows shifted with respect to each other (Mura et

al.,2009).

Figure 7.1: Perylene tetracarboxylic diimide (PTCDI)with carbon (grey), hydrogen (white),
oxygen (red) and nitrogen (blue).

The investigation of the vibrational spectra of PTCDI is limited even though a

complete assignment of IR and Raman spectra of PTCDA is available (Vu et al., 2003).

PTCDI is a planar molecule with D2h symmetry point group with 114 vibrational

normal modes. 54 of the modes are Raman active, 49 are IR active and there are 8

silent modes [Chis et al., 2009). The next section will discuss Raman spectra of PTCDI

on graphene.

7.4 Raman spectra of PTCDI on graphene

An overview of PTCDI Raman bands will be given before discussing our

results for PTCDI on graphene. Chis and colleagues have recorded Raman spectrum

of powder PTCDI and PTCDI dissolved in dimethyl sulfoxide (DMSO) at room

temperature (Chis et al., 2009). From the Raman spectrum of powder PTCDI, the

most intense Raman bands are obtained at 1066, 1302, 1377, 1444, 1572 and 1585

crn'. From the calculated counterparts, all the bands have Ag symmetry, which is an
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irreducible representation of D2h point group symmetry. The band at 1066 ern"

corresponds to carbon-hydrogen (CH) in-plane bendings coupled with in-plane rings

deformation, and the bands at 1302 ern" and 1377 ern" both correspond to single

carbon-carbon (CC) stretching coupled with CH in plane bendings (CC + CH), and the

band at 1585 cm? corresponding to CC stretching. However the assignment of the

band at 1444 cm? is not calculated because its intensity is very low, so the

assignment for it is unknown. It is also reported that there is a band at 1285 cm",
corresponds to CC stretching coupled with CH in plane bendings (CC + CH), which

has low intensity and appears as a shoulder next to the band at 1302 ern". For PTCDI

dissolved in DMSO, Raman bands at 1059, 1291, 1375, 1447 and 1571 cm? are

recorded, slightly shifted compared to the bands obtained from powder PTCDI. Note

that the spectral resolution of both powder PTCDI and PTCDI in DMSO are 4 ern"

and 10 cm" respectively.

.', ...' ....::: :'. .'. ...

-:J
n:i

.~
VI
C
Q)...c

91011 2

12345 67

8

monolayer graphene

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Raman shift (ern")
Figure 7.2: Raman spectrum of PTCDI on monolayer graphene. The labels (1 to 12) show
most intense Raman bands of PTCDI and graphene.
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From our observation on PTCDI on graphene, there are 12 intense Raman

bands observed at room temperature. The bands appear at 1293, 1302, 1356, 1371,

1443, 1567, 1581, 1607, 2592, 2607, 2670 and 2747 ern". Figure 7.2 gives an

overview for the Raman bands of PTCDI on graphene. Raman bands between 1700

ern" to 2500 ern" have low intensity and the assignment for these bands is

unknown, hence further discussion on these bands will not be included here. The

Raman band at 1066 ern? (which also observed by Chi~ et al., 2009) also has very

low intensity so will also not be discussed further. The assignments of the Raman

bands in Figure 7.2 are given in Table 7.1 based on Chi~ et al., 2009.

Table 7.1: PTCD)and graphene Raman bands and its assignment based on Figure 7.2 and
Chi~et al 2009, v represents stretching, ~ represents in-plane bending,"

Bands Raman shift Assignments
no. (ern")
1 1293 PTCDI (no assignment)

2 1302 PTCDI central ring stretch + 8(CH)

3 1356 Graphene D band

4 1371 PTCDI v(CN) + o(CH)

5 1443 PTCDI (no assignment)

6 1567 PTCDI v(CC) + o(CH)

7 1581 PTCDI v(CC) and graphene G band

8 1607 PTCDI (no assignment) and graphene D' band

9 2592 PTCDI overtone: 2 x 1293

10 2607 PTCDI overtone: 2 x 1302

11 2670 Graphene 2D band

12 2747 PTCDI overtone: 2 x 1371

As shown in Figure 7.2, the first two bands of PTCDI on graphene occur at

wave numbers 1293 cm? and 1302 Cm-I, and are identified as band 1 and band 2

respectively. From a comparison with the powder PTCDI (Chi~ et al., 2009), only a
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band at 1302 ern" is observed (no band at 1293 cm"), However, for PlCDI in DMSO,

only a band at 1291 cm? was obtained (no band at 1302 cm"). As mentioned before,

the spectral resolution for powder PlCDI is higher than PlCDI in DMSO. Note that

the reported resolution for the measurement of PlCDI in DMSO is comparable with

the spacingof bands 1 and 2, significantly lower than our spectral resolution, 1 ern".

As observed in powder PlCDl, a shoulder at 1285 cm? is also resolved in the PlCDI

on graphene spectrum in Figure 7.2, but is not observed for PlCDI in DMSO. The

band at 1293 ern? is not observed in powder PlCDt. Soboth bands at 1293 cm? and

1305 ern? (band 1 and band 2) are due to PlCDl, but the assignment for band 1 is

unknown. Band 2 corresponds to central rings stretch of PlCDI coupled with CH in-

plane bendings (8(CH)).

The third band at 1356 cm" (band 3) in Figure 7.2 corresponds to the 0 band

of graphene. The following band at 1371 ern" (band 4) is a Ramanband of PlCDI and

corresponds to carbon-nitrogen (CN)symmetric stretching coupled with CH in-plane

bendings (v(CN) + o(CH)). For the fifth Raman band at 1443 ern? (band 5) which is

also observed by Chi~et al., 2009, the assignment for the band is unknown. The sixth

band at 1567 ern? (band 6) is a CCstretching coupled with CH in plane bendings

(v(CC)+ o(CH)).The seventh band observed at 1581 ern? (band 7) is a combination

of CC stretching in PlCDI (v(CC))and graphene G band. A shoulder at 1607 ern"

(band 8) corresponds to the graphene 0' band which coincides with a Raman band

of PlCDl, but the assignment for the band is unknown. Band 8 is observed for PlCDI

on both exfoliated (no 0' band) and epitaxial graphene, as be presented in the next

section, implying it arises from PlCDI. The ninth and the tenth Raman bands are

overtones of PlCDI bands 1 and 2. The eleventh Raman band at 2670 ern? (band 11)

corresponds to graphene 20 band while the last band at 2747 cm" (band 12) is the

overtone of PlCDI band 4.

A comparison of the Raman spectrum of PlCDI with that of the monolayer

graphene used in this experiment (with a relatively high 0 band) is also shown in the

Figure 7.2. The three most intense bands of monolayer graphene (0, G and 20
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bands) can be distinguished in the Raman spectrum. As described in 7.2, the

enhancement in the Raman signal of PTCDI can be measured by the difference in the

intensity of the Raman bands of PTCDI on SiOz and PTCDI on graphene. Figure 7.3

compares PTCDI Raman spectra on graphene and on SiOz. The PTCDI deposition was

performed on the same sample which has patches of bare SiOz and also single layer

graphene. The exposure time for PTCDI sublimation is 5 min which corresponds to

9% of a PTCDI monolayer. Only the four most intense Raman bands are observed in

the Raman spectrum of PTCDI on SiOz. So these four bands of PTCDI on graphene

are used to compare with the signal from the signal from the PTCDI on SiOz. The

ratio of the Raman intensities in both spectra gives an average enhancement factor

of the Raman signal of PTCDI on graphene of -13. The bands intensities and ratios

are given in Appendix A.
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Figure 7.3: Raman spectrum of 9%monolayer PTCDI(S min) on graphene and on Si02•
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7.5 PTCDI on exfoliated graphene

We then deposited PTCDI on exfoliated graphene, which is known to be very

high quality without a defect induced band (or D band). Figure 7.4 shows three

different spectra which were taken on the same sample, before and after PTCDI

exposure for 5 min (9% monolayer). Figure 7.4(a) shows Raman spectrum of PTCDI

on monolayer graphene and the spectrum of monolayer graphene itself. PTCDI

Raman spectrum in Figure 7.4(b) is on few-layer graphene, and 7.4(c) shows PTCDI

on graphite.
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Figure 7.4: SERSspectra of PTCDIon graphene with coverage of 9% monolayer (5 min
exposure) (a) PTCDIon monolayer graphene (red) and graphene without PTCDI(black). (b)
PTCDI on few-layer graphene (red) and graphene without PTCDI (black). (c) PTCOI on
graphite (red) and graphite without PTCOI(black). Graphene and graphite are on 90 nm Si02

and prepared by mechanical exfoliation before PTCOIis deposited on its surface.
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The graphene layer in Figure 7.4(b) has an intensity ratio 12D/IGof 0.78 with

20 band FWHM of 38, which most likely to be two or three layers of graphene

(Ferrari et al., 2006). The graphite layer in Figure 7.4(c) consists of more than 5

layers of graphene. As expected, it is found that the 0 band (or band 3) is not

present in the PTCDI Raman spectra in Figure 7.4(a), (b) and (c). Amongst the three

spectra, it is obvious that Figure 7.4(c) shows the least PTCDI Raman bands. PTCDI

band 7 is the most intense band because it corresponds to the typical high intensity

of G band in graphite. It can also be seen in Figure 7.4(a) and (b) that Raman bands

of the PTCDI on monolayer graphene have higher intensity than PTCDI on few-layer

graphene. Band 11 in the three figures ((a), (b) and (c)) is corresponds to the 20

band of graphene.
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Figure 7.5: Raman bands of PTCDI on monolayer and few-layer graphene (a) direct
comparison of PTCDIRaman spectra (b) PTeDI Raman band intensity for bands 1, 2,4, and 6
(refer Table 7.1).

For clarity, a comparison of PTCDI spectra in Figure 7.4 is shown in Figure 7.5.

We find that PTCDI Raman intensity is the highest for monolayer graphene, followed

by few-layer and graphite. The Raman intensity of PTCDI on monolayer is 1x higher

than the few-layer graphene. The lower intensity for higher number of graphene

layers which is demonstrated in the figure is in agreement with work by Ling et al.,
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2010. Band 6 is not observed for PTCDI on graphite, but band 7 is prominent due to

the high G band intensity in graphite. The data for Figure 7.5 is presented in

Appendix B. So generally we have shown that the Raman signal of adsorbed

molecules (particularly PTCDI) on single layer graphene is stronger than few-layer

graphene and graphite substrates which agrees well with previous studies (Jung et

al., 2010; Ling et al., 2010).

To investigate the difference in the Raman intensity of PTCDI on monolayer

graphene prepared by mechanical exfoliation and epitaxial process, we compare

both Raman spectra as shown in Figure 7.6. The epitaxial graphene was grown

according to the method described in Chapter 5 and transferred to Si02. The

exposure to PTCDI is also performed for 5 min (9% monolayer). It can be seen in

Figure 7.6(b) that the intensity difference are apparent in band 2 and band 4 with

higher intensity for PTCDI on exfoliated graphene. Overall, the intensity difference

between both samples is showing that Raman intensity of PTCDI is not significantly

influenced by the quality of graphene.
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Figure 7.6: Raman bands of PTCDI on monolayer and few-layer graphene (a) direct
comparison of Raman spectra of PTCDIon exfoliated and epitaxial monolayer graphene. (b)
PTCDIRaman bands intensity for bands 1, 2,4,6, 7.
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7.6 PTeDI on transferred graphene: coverage dependence

Another set of samples were prepared by deposition of PTCDI on transferred

graphene (graphene on Si02). This section describes the dependence of the Raman

spectra on PTCDI coverage. Raman spectra acquired for different PTCDI coverages

are shown in Figure 7.7. The figure shows that the PTCDI Raman bands have

different intensities relative to the PTCDI exposure dependence.
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Figure 7.7: Raman spectra of PlCDI on graphene on 90nm Si02 with different PlCDI
exposures and percentage of monolayer (ML) coverage; 1 min or 1.8% ML (black), 2 min or
3.6% ML (red) and 5 min or 9% ML (blue) .

It is clearly seen that the 1 min exposure has the lowest PlCDI Raman

intensity, whereas bands 1, 2, 4, 6 and 7 have lower intensity than the intensity of

band 3 which corresponds to defect induced band of graphene. Based on Figure 7.7,

the Raman intensity difference is shown in Figure 7.8 by acquiring dominant PTCDI

bands (1, 2, 4, 6 and 7) intensities. The figure shows that the 5 min exposure time

has Raman bands intensity of 2x higher than the 2 min exposure and 3.5x higher
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than the 1 min exposure. The figure also demonstrates that the intensity increases

with coverage of adsorbed molecules, as expected.

An analysis is carried out by extracting the Raman band intensities from the

three spectra in Figure 7.7. Figure 7.9 shows the Raman band intensities (for bands

1, 2, 4, 6, and 7) for different coverages of PTCDI. It is found that Raman band 6 has

the highest intensity. As mentioned before, it corresponds to CC stretching coupled

with CH in plane bending. This is followed by Raman band 4 which corresponds to

CN symmetric stretching coupled with CH in plane bending. In sequence, Raman

bands 1 and 2 have lower intensities. Raman band 2 which is the lowest intensity

corresponds to the PTCDI central ring stretch, coupled with CH in plane bending.

Band 7 does not follow the intensity difference as observed in other PTCDI bands

since it corresponds to graphene G band. The data for Figure 7.8 and 7.9 is

presented in Appendix C. Overall, we have shown that the PTCDI molecules can be

detected at a small fraction of a monolayer coverage on single layer graphene.
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Figure 7.8: PTCDI Raman bands intensity difference from Figure 7.7 relative to PTCDI
exposure dependence. PTCDIRaman bands 1,2,4,6 and 7 are taken for comparison.
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7.7 PleDI deposited on graphene before transfer

We investigated whether Raman enhancement occurs for PTCDI deposited

on graphene-terminated Ni before transfer. In the course of this experiment, we

have monitored the adsorption of PTCDI on graphene using UHV STM. For this

purpose, sapphire is used as a substrate for the growth of Ni film since this surface is

flatter and smoother compared with Ni on Si02, making it more easily compatible

with STM imaging. The Ni film thickness is 100 nm and the deposition process is

described in Chapter 3 and Chapter 4, while the graphene was grown using

propylene, as described in Chapter 5,
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Figure 7.10: AFM image of as-grown Ni on sapphire substrate with thickness of 100 nm (a)
Ni before annealing (b) Ni after annealing at 750°Cand exposure to propylene for 10 min.

Figure 7.10(a) shows a 100 nm Ni film on sapphire with a grain size of about

10 to 20 nm. Figure 7.10(b) shows that after annealing at a certain temperature (in

this case, the sample is annealed at 7500e and exposure to propylene for 10 min),

the Ni grains flatten and form terraces with typical widths of 0.3 11m.This process

produced graphene (by exposure to propylene gas) on the Ni film on which PTeDI

then deposited.

(a) (b) (c)
Figure 7.11: Four STM images of PTCDImonolayers on graphene/Ni/sapphire substrate. (a)
image scale 100 x 100 nrn, Vs = l.5V, I = 0.05 nA. (b) image scale 20 x 20 nrn, Vs = 1.5 V, It =
0.05 nA. (c) image scale 10 x 10 nrn, Vs = 1.5 V, It = 0.05 nA. Images were taken by L.M.A.
Perdigao.

Figure 7.11 shows STM images of a PTeDI monolayer on as-grown graphene

on a Ni thin film. Note the coverage of PTeDI in the figure is 0.09 ML. Generally the

PTeDI in Figure 7.11(a) forms large domains that span more than 100 nm. At higher

resolution (Figure 7.ll(bL and (c)L the molecular arrangement within the adsorbed

layer may be determined.
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We investigated the PTCDI monolayer using Raman spectroscopy before

transfering it to a Si02 substrate. The Raman spectrum of PTCDI on graphene before

transfer (graphene on Ni film) is shown in Figure 7.12. The background spectrum is

quite high due to the Ni thin film but the PTCDI bands are clearly resolved. The

PTCDI Raman bands observed before transfer are represented by bands I, 2, 4,5,6,

and 11. Graphene D and G bands (bands 3 and 7) are not resolved, which may due

to the high background signal from Ni film. Graphene 2D band (band 11) is however

resolved due to typical high intensity of 2D band of single layer graphene.

Remarkably, after the transfer to Si02, all the PTCDI bands are still obtained and

have high intensity. Note that both spectra in Figure 7.12 were taken using the same

parameters ego laser wavelength, laser power and laser exposure.
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Figure 7.12: Raman spectra of PTCDI (a) on Ni/Sapphire before transfer (the data is
increased 30x) (b) on SiOJSi after transfer.

After the transfer process, the graphene Raman bands (D, G and 2D bands)

are obtained as in Figure 7.12, represented by bands 3, 7,11. The D band (band 2) is

very low suggesting that the graphene layer has a relatively low amount of defects.

The intensity difference between both samples is shown in Figure 7.13. The

123



difference is significantly large whereas the intensity after transfer is 3x higher than

before transfer.
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Figure 7.13: PlCDI Raman bands intensities from Figure 7.12 (a) on Ni/Sapphire before
transfer (b) on Si02/Si after transfer.

The data for Raman band intensities and position are given in Appendix D. As

presented in the table, band 2 is shifted 5 ern" towards higher wave number after

transfer, instead band 6 shows a shift of 3 ern" towards lower wave number.

Overall, this work has shown that the PTCDI on graphene is successfully transferred

using the same transfer method typically used for graphene and the Raman

enhancement of PTCDI on graphene is observed after the transfer.

7.8 Summary

In this chapter, preliminary results of graphene enhanced Raman scattering

{GERS}of adsorbed PTCDI have been presented. There are 12 Raman bands of PTCDI

on graphene to be considered. Based on previous measured and calculated Raman

bands of PTCDI by Chis et al., 2009, the bands occur due to the interaction of CC

stretching, CH in plane bending, CN symmetric stretching and central rings
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stretching. The three most intense bands (D, G and 2D bands) of single layer

graphene can be distinguished from the Raman spectrum. From the measurement

of the intensity of PTCDIbands on Si02 and PTCDIon graphene of 5 min exposure

(0.09 ML), we found that the enhancement factor of PTCDIon graphene is -13.

We studied PTCDIon different layers of exfoliated graphene, which is known

high quality. This work has shown that Raman signal of PTCDI on single layer

graphene is stronger than on few-layer and graphite, as expected. Then we

compared PTCDIon exfoliated graphene and on transferred epitaxial graphene,

which then we found the intensity difference is considerably small and is not

significantly influenced by the graphene quality.

We also investigated the PTCDIcoverage dependence. The PTCDIexposure

of 1 min, 2 min and 5 min, produces 1.8%, 3.6% and 9% ML of PTCDIrespectively.

From this experiment, we found that Ramanband 6 has the highest intensity, which

corresponds to CCstretching coupled with CHin plane bending. We have shown that

the PTCDImolecules can be detected at a small fraction of a monolayer coverage on

single layer graphene.

Finally we investigated a PTCDI monolayer on graphene/Ni before

transferring it to Si02 using the same transfer method typically used for graphene.

Before transfer (graphene/Ni), only bands 1, 2, 4, 5, 6, and 11 are resolved. After

transfer (graphene/Si02), all the PTCDIbands are observed and has higher intensity

than before transfer. Generally, we managed to detect GERSof PTCDIafter the

transfer and we have demonstrated the role of substrate in enhancing the Raman

signal of PTCDI.
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Chapter 8

Concfusion

In this thesis, the growth of graphene-terminated Ni thin films using several

different methods has been presented with the aim of achieving low defect single

layer graphene. The characterization of the graphene was carried out directly on the

graphene-terminated Ni and graphene on Si02 by using atomic force microscopy

(AFM), scanning tunneling microsccpy (STM), X-ray diffraction (XRD), optical

microscopy and Raman spectroscopy. The emphasis of the characterization is on

Raman spectroscopy which provides the information about the graphene layers

being investigated with the focus on the three most prominent Raman bands; D, G

and 2D bands.

Before our work was reported (Pollard et al., 2009), graphene growth on Ni

thin films mostly produced large-areas of few-layer graphene and the process was

rather complicated (Obraztsov, 2007; Vu et al., 2008; Reina et al., 2009). For the

application of graphene based devices, the growth of single layer graphene is of

interest and new methods for the controlled growth are required. We have

presented methods for the production of large areas of single layer graphene using

the very simple process of annealing Ni thin films in vacuum. This process involves

converting trace amounts into single layer graphene and is highly reproducible. The

films obtained have a higher fraction of single layer than alternative graphene
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growth process on Ni film. We also emphasize the importance of considering

unintentional carbon sources when developing models for graphene growth.

The control of graphene defects is required depending on the application, in

which commonly, high quality of graphenelayers is required. We have grown

graphene by exposure to propylene, which formed a large-area of single layer, but

with relatively high RamanD band intensity, commonly observed for eVD graphene

grown on Ni films. We have demonstrated a significant reduction of the Raman D

band by fine tuning the growth parameters; the annealing temperature, exposure

time and Ni film thickness. Our results show that higher temperature and longer

exposure to carbon containing gas with thicker Ni films produce low defect single

layer graphene with a considerably good coverage. So a considerable progress

towards a large coverage of low defect graphene grown on Ni film is presented.

The growth of graphene on Ni has been studied extensively using various

methods. In this thesis we demonstrated an alternative solid state approach for the

formation of graphene by decomposition of e60.We found that the e60coverage,

annealing temperature, and deposition sequence influence the properties of

graphene layers. This molecular source of carbon provides a method of controlling

the total dosage of carbon introduced into the film with a high degree of precision.

This approach results in high fraction of single layer graphene, but with relatively

high Raman D band intensity. Our results also show that carbon present at the

buried metal/ Si02 layer can diffuse and segregate at the surface, and has verified

that trace amounts on Si02 can give rise to the formation of graphene. This suggests

the importance of removal the trace amounts by annealing, or outgassing.

Researchon graphene enhanced Ramanscattering (GERS)was only explored

since two years ago, which has shown that graphene is a very good substrate for

enhancing the Ramansignal and there are only a few studies of Ramanspectroscopy

of PTCDI reported. We have presented preliminary results of GERSof adsorbed

molecules, PTeDI.We compared our results with Chis et al., 2009, which gives the

assignment of the PTeDI Raman bands. Our results showed that the PTCDI
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molecules can be detected at a small fraction of a monolayer coverage on single

layer graphene. We have also demonstrated the effect of a substrate for graphene

which can give rise to the enhancement of a Ramansignal of adsorbed molecules.

This thesis has presented several approaches to grow graphene on Ni films

such as converting carbon containing adsorbates into graphene, exposure to carbon

containing gas and a solid state approach to decomposition of molecules. Overall,

we have successfully produced single layer graphene over large areas and we have

shown that the amount of defects in graphene quantified by the Raman 0 band can

be controlled. We have also studied GERSof PTCDI,which is one application of

graphene.

8.1 Suggestions for future work

The graphene growth discussed previously, produces graphene with rather

high Raman 0 band intensity. The reduction of the D band intensity by fine tuning

the growth parameters need a more detailed study especially on the cooling step

after the annealing. We normally do the cooling to room temperature in 1 - 2 min

by reducing the current through a silicon strip heater to zero, but the actual

temperature of the sample does not reduce as abrupt as we expected. The actual

temperature on the sample surface during the cooling process may be measured in

the future. The effect of the cooling rate to the formation of graphene and defects

could be studied in a more structured manner.

Since some defects in graphene are zero-dimensional and pointlike, the

amount of disorder can be provided by the distance between defects, LD• Recently,

experiments on quantifying LD using Ramanspectroscopy were reported (Cancadoet

al., 2011; Lucchese et al., 2010; Martins Ferreira et al., 2010). The same approach

can be carried out to study our graphene layers to quantify the amount of pointlike
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defects based on different growth parameters, such as the annealing temperature,

exposure to carbon source and cooling rate.

The distribution of the defective area can be measured by Ramanmapping of

the graphene layer. This mapping was not carried out before becauseof the limited

accessto the Ramansystem since it will take a longer scanning time than on a point.

As presented, all the growth methods formed a majority of single layer. The

coverage of single layer and few-layer can also be measured precisely by performing

the Raman mapping. The effect of different laser excitation energy can also be

performed in the future. Other than that, parameters that influence the Ramanshift

for eachgraphene bands can also be investigated.

Graphene growth by immersion in organic solvents was initially performed to

investigate the effect of outgassing process and single layer graphene is formed but

high defective. The defects quantified by the Raman D band intensity for samples

produced using this method are 2x higher than all the graphene layers produced by

other methods presented in this thesis. A detailed study can be carried out to

reduce the defects by investigating the immersion time, annealing temperature and

time as well as the cooling rate. For alternative solid-state approach in graphene

growth on Ni film, the graphene quality can be further improved using different

molecular precursors while maintaining the high fraction of single layer.

The work on GERSof PTCDIis still in early stage. Sinceonly Chis et al., 2009,

reported an almost complete assignments for the PTCDIRaman bands, a further

experiment and calculation can be carried out, particularly for PTCDIon graphene.

As presented before, there are some PTCDIbands on graphene observed but not

obtained by Chiset al., 2009. We notice that there is a slight shift in the PTCDIbands

for different graphene layer which may influenced by the amount of defects, PTCDI

coverage and exposure. A further study can be performed to investigate the

parameters that can affect the Ramanshift and of the origin of this effect.

We have investigated fullerenes on graphene using Ramanspectroscopy but

we did not observe Raman enhancement as we obtained with PTCDI.This may



caused by the unsuitable laser excitation and the fact that graphene may not be a

suitable substrate for SERSof fullerenes. A further investigation is needed to verify

this analysis. Since graphene has proven to be a good substrate for SERSeffect,

other adsorbed molecules can be investigated.
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Appendices

Appendix A

Raman intensity ratio for spectra in Figure 7.7. The band number can be referred to Figure
7.2.

Band no. & Raman Raman intensity of PTCOI Raman intensity of

shift (ern") on graphene (A) (a.u.) PTCOI on Si02 (B) (a.u.) Ratio AlB

2:1303 1410 135 10.4
4:1374 1610 121 13.3
6:1569 1470 102 14.4
7:1585 827 56 14.8

Appendix B

PTCDI Raman band position (Raman shift, ern") and intensity (a.u.) for Figure 7.5
Exfoliated

Monolayer Few-layer Graphitegraphene
Band

Pas (cm-1)
Intensity

Pas (cm-1)
Intensity

Pas [cm")
Intensity

number (a.u.) (a.u.) (a.u.)

1 1292 2.31 1292 1.51 1295 0.39
2 1302 2.19 1302 1.30 1304 0.72
4 1370 2.92 1370 2.00 1373 0.95
6 1565 2.41 1566 2.07 1577 2.56

AppendixC

Raman bands position (Raman shift, cm'] and intensity (a.u.) for different coverages of
PTCDI.

Exposure
1 min (1.8%ML) 2 min (3.6%ML) 5 min (9%ML)(%ML)

Band No. Pos (cm")
Intensity

Pos [cm")
Intensity

Pos (cm')
Intensity

(a.u.) (a.u.) (a.u.)
1 1296 0.55 1296 1.92 1296 2.33
2 1306 0.27 1307 1.03 1307 1.81
4 1374 0.55 1374 1.96 1374 2.54
6 1569 0.61 1569 2.05 1569 2.59
7 1585 0.78 1585 1.25 1585 1.45
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Appendix 0

Raman bands position (Raman shift, ern") and intensity (a.u.) for PleDI (a) before transfer
(graphene/Ni) and (b) after transfer (graphene/Si02)

Sample (a) before transfer (b) after transfer

Band no. Pos (cm") Intensity (a.u.) Pos (cm") Intensity (a.u.)

2 1302 5130 1307 16100
4 1376 3610 1376 18700
6 1575 3440 1572 19100
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