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Abstract

Beach cusps are swash zone morphological patterns that have been of interest

to many scientists and engineers. This study aims to improve understanding

of the formation and long-term evolution of beach cusps by numerical simu-

lation using a 2D process-based morphodynamic model, solving the coupled

NLSW equations and sediment conservation equation simultaneously. A nu-

merical implementation is applied building on the model of Dodd et al. (2008),

which succeeds in simulating the occurrence of beach cusps. The numerical

scheme improves the accuracy and stability of the swash zone computation.

Results from a comparison between different numerical implementations con-

cludes that the most suitable numerical scheme is the Roe-averaged scheme of

Castro Diaz et al. (2008) with Minmod flux-limiter using the Harten and Hy-

man (1983) entropy fix method and the Hubbard and Dodd (2002) approach for

the shoreline boundary condition.

Before simulating the 2D beach cusps, the sensitivity of the model parameters

and two different types of incoming waves are tested in the ID bed change. The

sensitivity test results show that there is a convergence of the results when the

i



minimum computational depth (dtol) ::; 1 mm. Also the relationship between

the bed profile and beach cusp parameters is that a greater maximum tip posi-

tion (xs,max) is achieved, and more erosion in the tip region occurs when the bed

friction coefficient (/w), the hydraulic conductivity (K), and dtol are smaller. On

the other hand, the effect of scaling the sediment transport coefficient (A) is to

scale the rate of change of the bed level, and appears not to lead to qualitative

differences. Moreover, the incoming sine wave creates three components of ID

beach profile (long-shore bar, trough, and swash berm) in the computational

domain, while the incoming sawtooth wave creates a wider equivalent region,

because of wave simply breaking farther offshore.

The 2D simulations give approximately the same beach cusp formation as those

of Dodd et al. (2008); however, the geometrical parameters (/) from the self-

organisation theory are still high when compared with previous field observa-

tion and numerical simulations. The evolution of the beach cusps is investi-

gated by Fourier and global analyses (Gamier et al., 2006), and can be divided

into three stages: ID development in the cross-shore profile, 2D small cusp

spacing pattern, and 2D final bigger cusp spacing pattern, caused by the coa-

lescing of two small bays and subsequent rearrangement to an equal spacing.

However, an unphysical behaviour is found during cusp evolution, which is

the reversing behaviour between horn and embayment. It appears that this

reversible behaviour is caused by deposition at the embayment head, created

from high infiltration and the usage of the velocity-only type of sediment trans-

port equation in the model.
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Notation

[*] Denotes units of the parameter or variable

Sediment transport coefficient

A [-]
-+

Roe-averaged Jacobian matrix of cross-shore direction a~
a~v

d [-] Roe-averaged Castro-Diaz Jacobian matrix

of cross-shore direction

b [m] Bed change from initial beach profile

IIbll [m] Global bed change

lib - (b) II [m] Global bed change with alongshore averaged subtraction

(b) [m] average of bed change in alongshore direction

B [m] Bed level

B, [ms"] Rate of bed change

Bt,max [ms-I] Maximum value of rate of bed change

Bt,norm [ms-I] Normalised value of rate of bed change IB Et I
t,max

BB(X) [m] Cross-shore profile of embayment section

BH(X) [m] Cross-shore profile of horn section
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B [-]

~ [-]

B [-]

c [-]
d [m]

do [m]

dtol [m]

d [-]

b [-]

f [-]

fw [-]

---+
F [-]

---+
G [-]

---+

Roe-averaged Jacobian matrix of alongshore direction a~aw
Roe-averaged Castro-Diaz Jacobian matrix

of alongshore direction

Nonlinear flux limiter function

Wave celerity

Initial wave celerity

Diffusion coefficient

Total water depth

Initial water depth

Undisturbed water depth

Minimum computation depth

Dimensionless total water depth

Sediment grain size diameter

Roe-averaged term corresponding to

the sediment transport equation

Right eigenvectors of the Roe-averaged Jacobian matrix

Roe-averaged term corresponding to

the sediment transport equation

Geometrical parameter

Bed friction coefficient

Vector of interface fluxes for cross-shore direction

Gravity acceleration

Vector of interface fluxes for alongshore direction
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ho [m]

,ff[m]

t; [m]

Ly [m]

M[m]

s, [-]

Ny [-]

p l-l

Re [-]

!!/i [-]

Be [m]

--t
B [-]

t [s]

Initial water depth at offshore boundary

Uniform bore height

Hydraulic head

Fourier coefficient of the topographic signal

Hydraulic conductivity

Length of computation domain in cross-shore direction

Length of computation domain in alongshore direction

Averaged cross-shore profile between hom and embayment

Number of computation cell in cross-shore direction

Number of computation cell in alongshore direction

Porosity of the beach material

Sediment transport rate

Modified sediment flux vector

Cross-shore sediment transport rate

Alongshore sediment transport rate

Discharge of channel flow

Ratio of upwind wave strength to the local wave strength

Reynolds number

Right eigenvector matrix

Swash excursion

Specific yield

Vector of source terms

Time
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tres [s]

tswash [s]

T [s]

u [ms "]

U [ms-I]

(U) [ms :']

u; [ms-l]

--+
U [ms=']

v [ms-l]

v [ms="]

w [ms="]

--+W [-]

X [m]

Xo [m]

x, [m]

Xs,max [m]

X~,max [m]

y [m]

z [m]

Residual time of the number of wave period

Swash period

Wave period

Cross-shore velocity

Cross-shore depth-averaged velocity

Cross-shore velocity averaged over alongshore section

Bore velocity at the initial shoreline position

Critical velocity for sediment movement

Tip speed

Vector of horizontal depth-averaged velocity

Alongshore velocity

Courant number

Alongshore depth-averaged velocity

Net volume of the bed change

Vertical flow velocity in the porous media

Vector of conserved variables

Cross-shore co-ordinate

Initial co-ordinate

Shoreline position or tip position

Maximum tip position

Maximum tip position of SM63 analytical solution

Alongshore co-ordinate

Vertical co-ordinate
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{3k [-]

tan,B [-]

"'fs [-]

t::.t [s]

t::.x [m]

t::.y [m]

€ [-]

€c [-]

€p [m]

€rms [-]

c [m]

TJ [m]

(0 [m]

Ac [m]

~k [ms"]

~ [-]

Roe-averaged wave strength

Roe-averaged source term decomposition coefficient

Beach slope

Specific gravity of sediment Ps
P

Entropy fix parameter

Time step

Cross-shore grid spacing

Alongshore grid spacing

Computation error in each cell and equation

Idealised beach cusp parameter

Perturbed elevation

Root mean square error of the computational cells

Free surface elevation in the porous media

Free surface elevation

Unperturbed surface elevation

Cusp spacing

Cusp dominant wavelength from Fourier analysis

Eigenvalues of the Roe averaged Jacobian matrix

(characteristic speed)

Kinematic viscosity

Bed porosity parameter -1 1
-p

Density of water

Density of sediment
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a [S-I]

4>[-]
Subscripts:

a

b

i

j

k

L

n

p

R

Superscripts:

F

G

L

R

n

Linear growth rate

Angle of repose of sediment

Denotes Roe-averaged Jacobian matrix component number

Denotes Roe-averaged Jacobian matrix component number

Cell number in cross-shore direction

Cell number in alongshore direction

Denotes Roe-averaged Jacobian matrix component number

Denotes left component of computational cell

Denotes number of equation

Denotes Primitive variables

Denotes right component of computational cell

-+
Denote that variable is associated with F

-+
Denote that variable is associated with G

Denotes left edge of the rarefraction wave

Denotes right edge of the rare fraction wave

Time level

Denotes non-dimensional variable

Denotes Roe-averaged variable
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CHAPTER 1

Introduction

The coastline, the boundary between land and sea, changes its shape and po-

sition continuously. Natural coastlines vary from the cohesive sediment coast

(muddy beaches), sandy beaches, to the steep rocky cliff. Since the sandy beach

is easily deformed by the action of wave and current compared with the rocky

cliff, it is of particular interest to scientists and engineers.

This study focuses on modelling the changes of a coarse sand or gravel beach

in the swash zone. On a typical beach, the swash is defined by Horikawa (1988)

as the zone extending landward from the point of collision between backwash

and the incoming waves to the wave up rush limit. This region is alternately

wetted and dried from the incoming wave runup and rundown, which process

is referred to as "Swash motion". Swash motions make the movement of water

particles dynamic and complex, and strongly influence the sediment transport

processes in this region. These sediment transport processes affect the beach
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morphology leading to the creation of a typical swash zone profile, and also of

alongshore features, including berms and beach cusps.

The major factor that makes the coastline change is wave and current action.

This interaction between incoming waves and bed change in the swash zone

is a complex process; however, it further is influenced by other factors such

as the local groundwater table (Baird et al., 1998; Butt and Russell, 2000). Wa-

ter moving up and down the beach during a swash motion has the potential

to infiltrate into and to exfiltrate out of the beach face depending on the local

position of the groundwater level. The infiltration (this study considers only

infiltration) that occurs reduces the volume of water in the swash and thus also

decreases the momentum of the swash. This infiltration action enhances the

onshore sediment transport in the swash zone (Turner and Masselink, 1998).

Since the flow in the swash is complex and highly energetic, it has led to dif-

ficulties in measuring and obtaining data from field observation (Elfrink and

Baldock, 2002). In the past, this led to an incomplete understanding of the pro-

cesses in this zone, which in tum retarded the development of numerical mod-

els; however, measuring equipments and data collection techniques have been

improved in very recent times. As a result, a better understanding of swash

zone processes has helped to drive the development of numerical models for

simulating beach change in the swash zone.

Early in the development of numerical models in the swash zone, the focus was

on determining the motion of the water and shoreline moving up and down

2
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the beach (Hibberd and Peregrine, 1979;Kobayashi et al., 1987, 1989). As swash

zone processes (especially sediment transport) have become better understood,

the focus of more recent numerical research has changed to determining sedi-

ment transport and morphology change (Hudson and Sweby, 2003; Pritchard

and Hogg, 2005; Castro Diaz et al., 2008;Kelly, 2009). 2D or 3D morphodynamic

models for determining the motion in the swash zone are becoming interesting

topics for coastal research (Karambas and Koutitas, 2002; Zyserman and John-

son, 2002; Grunnet et al., 2004; Dodd et al., 2008).

Beach cusps are a particular feature of the swash that has a quasi-regular spac-

ing. They are mostly observed in the swash zone on steeper beaches with

coarse-grained sediment. Many scientists and engineers have attempted to ex-

plain how beach cusps form and develop. As a result of this work, two con-

trasting theories for their formation have gained acceptance: the subharmonic

edge wave theory (a hydrodynamic explanation stemming from linear shallow

water theory (Guza and Inman, 1975» and the self-organisation theory (a mor-

phodynamic explanation that has been illustrated using an abstracted model

incorporating ballistic theory (Werner and Fink, 1993; Coco et al., 2000».

Although many scientists and engineers tried to explain the formation of beach

cusps by using the the sub harmonic edge wave theory, self-organisation theory,

or both of them, these previous studies either ignored the role of sediment or

simplified the water motion. The physical mechanisms of beach change, which

are depended on the hydrodynamic, are presented by Dodd et al. (2008) to de-
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scribe the relationship between incoming wave conditions and beach cusp for-

mation. In that study, the 20 process-based morphodynamic model, 'OIT2dm',

solving nonlinear shallow water equations with sediment conservation equa-

tion simultaneously is successful for simulating the beach cusps; however, they

did not describe the evolution of beach cusps and the relationship between the

beach cusp formation and sediment properties. Moreover, there still some lim-

itations in the model; therefore, a numerical implementation is required to im-

prove the accuracy of simulation.

Consequently, this study aims to improve understanding of the formation and

long-term evolution of beach cusps by numerical simulation using 20 process-

based morphodynamic model including infiltration. To achieve this aim, the

objectives of this thesis are:

• Improving the accuracy of computation of a 20 process-based morpho-

dynamic model used to simulate the beach cusps by implementing a nu-

merical scheme.

• Improved understanding of the formation and long-term evolution of

beach cusps under different incoming wave conditions, beach profiles,

and sediment properties.

• A better understanding of the importance of the physical effects leading

to sedimentation and erosion in the swash, in particular, to beach cusp

formation.
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The summary of the previous research prior to and motivating this study is de-

scribed in Chapter 2. It contains the background knowledge of the swash zone

processes including swash infiltration and swash sediment transport, theories

about the occurrence of beach cusps, and numerical modelling in the swash

zone.

Chapter 3 presents the governing equations used in this study and the numer-

ical scheme of the Dodd et al. (2008) morphodynamic model. This chapter dis-

cusses the nonlinear shallow water equations and sediment conservation equa-

tion, which are the main equations in the model. The representations of bed

diffusion and infiltration are also described. Moreover, Roe's scheme, used for

capturing the shock behaviour in the computation, is explained there.

Chapter 4 explains the new numerical implementation for improving the accu-

racy of computation for the model. Entropy fixes, the Castro Diaz et al. (2008)

numerical scheme, the time operator splitting scheme, and special numerical

treatment of the shoreline boundary condition are illustrated. To assist in these

developments, the cases of dambreak problems, the Shen and Meyer (1963)

problem, and the Hibberd and Peregrine (1979) problem are used to test for

the new implementations. The comparison between the model results and the

previous solutions including analytical and numerical solutions is also demon-

strated in this part.

After the new numerical scheme is tested, the ID long-term beach change is

simulated and shown in Chapter 5. This Chapter provides the sensitivity test
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of important parameters which can be divided into two groups: numerical and

physical parameters. The numerical parameter is minimum depth dto1, and the

physical parameters are bed friction coefficient iw, hydraulic conductivity K,

and sediment transport coefficient A.

InChapter 6, the 2D formation and long-term evolution of beach cusps are in-

vestigated. Beach cusp parameters are defined in terms of physical formation,

cusp spacing and swash excursion, and long-term evolution, and linear growth

rate; 2D simulation results of beach cusps formation for the numerically im-

proved model are also shown. With the complexity in the evolution of beach

cusps, the global analysis is introduced by Garnier et al. (2006) for analysing

the bed pattern data. Although the new numerical implementation gives the

better calculation results, there are some cusp behaviours due to the physical

properties that need more investigations. These are explained in the discussion

part of this chapter.

The particular investigation of these physical properties is, respectively, shown

in Chapter 7 and 8. In Chapter 7, the infiltration rate and volume of water that

is lost in the beach over one swash period are discussed. Moreover, variation

of the permeability conditions is implemented. Similarly in Chapter 8, the bed

change over one swash cycle is discussed. Many sediment transport equations

including Grass (1981) model, Pritchard and Hogg (2005) equations, and also

the threshold sediment transport equation are tested to see the effect on beach

change.

6
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Finally, Chapter 9 contains the conclusion and discussion of the new findings

from this thesis. Moreover, the recommendations for the future work are also

stated in order to further understanding and investigation of the physics of

swash zone morphodynamics.
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CHAPTER2

Literature Review

Beach cusps are an alongshore feature in the swash zone. The occurrence of a

cusp pattern is the natural combination between the incoming waves and beach

characteristics. To simulate this cusp pattern using a numerical model means

that the model must incorporate the relevant physical processes of the swash

zone. Therefore, the previous work on beach cusps and on numerical modelling

in the swash zone are presented in this chapter.

2.1 Swash Zone Processes

The swash zone is the relatively steep upper part of the beach profile where

the wave runs up and down the beach. The swash motion comprises a series of

strong and unsteady flows of this run up and down, and it forms a continuously

changing dynamic boundary between wet and dry zones of the beach, affecting
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the large sediment transport and morphology changes at the shoreline (Elfrink

and Baldock, 2002;Masselink et al., 2005).

Elfrink and Baldock (2002) classified the swash oscillations into two broadly

different types: non-breaking standing waves (infragravity or edge waves) and

broken short wave (bores). Edge waves are long-shore periodic wave motion

that are trapped at the shoreline, and travel alongshore parallel to the beach

(Guza and Inman, 1975; Horikawa, 1988; Butt and Russell, 2000). Cross-shore

non-breaking standing wave oscillations are usually observed at low frequen-

cies (infragravity range) corresponding to a wave period (T) between 30-300s

or edge waves, T between 15-25s, whereas swash motions due to bores which

collapse at the shoreline and propagate up the beach have T between 5-15s

(Hughes, 1992). Both types of swash oscillation occur naturally at the same

time, but one type dominates the motion behaviour depending on the site and

to a large extent on the surf zone condition (Elfrink and Baldock, 2002).

Swash motion can be broken down into two phases: the uprush and the back-

wash. During the uprush, flow velocity at the tip increases very quickly from

zero to its maximum after the arrival of the leading edge of the swash or the

bore collapse; then the flow velocities decrease steadily to zero during the re-

mainder of the uprush. On the other hand, during the backwash flow velocity

increases gradually under gravity from zero to its maximum until it meets the

next incoming wave (Hibberd and Peregrine, 1979; Hughes et al., 1997). One

of the differences of the swash oscillation that is created from infragravity and
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high frequency waves is the symmetry of the uprush and backwash velocities at

a point. The flows of infragravity oscillations are approximately symmetrical;

on the other hand, those created from bores are significantly asymmetrical (Butt

and Russell, 1999; Elfrink and Baldock, 2002). Moreover, the duration of back-

wash is typically longer than the up rush (Hughes et al., 1997; Butt and Russell,

2000; Masselink and Hughes, 1998).

High free stream velocities are commonly found in swash motion. The up-

rush and backwash velocities in the field have been observed to exceed 2 m/ s

(Hughes et al., 1997; Butt and Russell, 1999; Elfrink and Baldock, 2002; Mas-

selink et al., 2005), while the maximum velocities occur at the start of the up-

rush and at the end of backwash. With the high velocity flow and shallow water

depths in the backwash phase, this combination may result in supercritical flow

conditions and hydraulic jumps called "backwash bores" at the end of this phase,

when the backwash water meets the next incoming wave (Hibberd and Pere-

grine, 1979;Masselink et al., 2005). This is one of the examples of turbulence in

the swash zone. Other potential sources of turbulence are that advected from

the inner surf zone, initial bore collapse at the shoreline, and turbulence due

to bed friction (Elfrink and Baldock, 2002). This turbulence can affect the in-

teraction between water and sediment and therefore sediment transport and

morphology changes in the swash zone.

The roughness of the beach affects swash motion when the flow passes over it.

Increased roughness slows the flow down as it passes over the beach and is of-
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ten described in terms of a bed friction coefficient, f u» From field observations,

fw varies with each phase of the swash cycle (Puleo and Holland, 2001; Mas-

selink et al., 2005; Masselink and Puleo, 2006); however, there is still no exact

conclusion about which phase of swash motion that has greater fw.

2.1.1 Swash Infiltration

One of the important factors that influences the swash motion is the groundwa-

ter table. The position of the local groundwater table will determine the ability

of the water in the swash to move vertically in/out of the beachface (infiltra-

tion/ exfiltration). During the uprush phase, if the beach is dry (Le. the ground-

water table is low), the water will infiltrate into the beach; hence the volume

and momentum is reduced in the backwash period decreasing the potential to

move the sediment to the offshore. Moreover, the reduction of water volume

and momentum from the infiltration is not only the main effect, but the effec-

tive weight and shear force on sediment particles are also the reason that the

infiltration processes enhance the onshore sediment transport (see more details

in Turner and Masselink (1998); Butt et al. (2001».

In contrast, when groundwater table is high, the outflow of groundwater will

exfiltrate to the beach to increase the volume of the swash; then the exfiltration

will promote the offshore sediment transport. The process of exfiltration has

been investigated in the past (Turner and Masselink, 1998; Butt et al., 2001; Li

et al., 2002; Karambas, 2003), and it has been shown that infiltration-exfiltration
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support the net upslope sediment transport during the uprush. The process of

exfiltration will not be considered in this study.

The infiltration increases the asymmetry in the swash flow by weakening the

backwash with respect to the uprush because most of the water that infiltrates

will not participate in the backwash (Butt and Russell, 2000; Masselink and Li,

2001). The reduction in water volume due to infiltration decreases significantly

the energy available for offshore sediment transport (Baird et al., 1998); there-

fore, the result is a net onshore sediment transport (Li et al., 2002).

Packwood (1983) used a numerical model based on the non-linear shallow wa-

ter (NLSW) equations to simulate the runup due to a single bore incident on

an initially dry beach. The infiltration rate was calculated using Darcy's law

assumption that the flow will be predominantly vertical into the beach, driven

by the time varying head of water above the bed, and used the model provided

by Dicker (1969). This infiltration approach is simple and easy to implement;

therefore, it is used in the model (see more detail in Section 3.4). It was also

implemented in the numerical model of Karambas (2003).

However, the approach of Dicker (1969) and Packwood (1983) relies on Darcy's

law, which depends on the laminar flow assumption. This is only valid where

Reynolds number (Re = wDso/v) is less than 0(1); thus, for example, for a grain

diameter (Dso) ~ 0.1 cm and kinematic viscosity v = 0.01 cm2/s, the assumption

of laminar vertical flow is valid when flow velocity (w) < 0.1 cm/s (Turner and

Masselink, 1998). On the other hand, the Packwood (1983) approach is also
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implicitly limited in the case of a very coarse beach (gravel beach), because the

permeability of a gravel beach is high and allows the faster flow percolation

into the beach which is beyond the limit of laminar flow (Clarke et al., 2004).

An alternative approach for modelling the groundwater flow uses a 1D Boussi-

nesq equation (Turner and Masselink, 1998;Baird et al., 1998). Turner and Mas-

selink (1998) combined Darcy's law (2.1) with a continuity equation for mass

within the bed on the assumption of homogeneous and isotropic sand beach to

derive the 1D vertical flow Boussinesq equation (2.2);

w - _K8Hh (2.1)8z
82Hh Ss8Hh

(2.2)- ---8x2 Kat

where w is the vertical flow velocity in the porous media, K is the hydraulic

conductivity, Hh is hydraulic head, x and z are horizontal (cross-shore) and

vertical co-ordinates, t is time, and Ss is the specific yield, which is the capacity

of an aquifer to release groundwater from storage. The numerical solution of

(2.2) gives the change in head; then, it can be used in (2.1) to approximate w,

and thus the infiltration rate.

The magnitude of the infiltration rate depends upon the position of the local

groundwater corresponding to the hydraulic head and the beach material prop-

erties. The hydraulic head is the vertical distance between the swash oscillation

surface elevation and the groundwater table. The greater hydraulic head has

the greater pressure head to drive the water into the beach in order to increase

the infiltration rate. With increasing volume of water in the beach, the ground-
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water table rises up; then the infiltration stops when the beach becomes satu-

rated. Two beach material properties affecting the infiltration are the porosity

of the material and its hydraulic conductivity. The porosity of the beach is a

measure how packed the beach material is. A larger porosity means the beach

material is not well packed. The hydraulic conductivity is a measure of how

fast the water moves in the beach. This factor depends on its grain size. The

bigger grain size has the higher values of the hydraulic conductivity associated

with a greater infiltration. Packwood and Peregrine (1980) provided values of

hydraulic conductivity for each type of sand to gravel beach material.

2.1.2 Swash Sediment Transport

This section describes some important physical mechanisms affecting sediment

transport in the swash zone. Initially, the sediment is moving in the same direc-

tion as the flow; therefore, sediment transport in the swash tends to be onshore

during the uprush phase and offshore during the backwash phase. The asym-

metry of the flow during the uprush and backwash leads to a corresponding

net asymmetry in the sediment transport and so to change in the cross-shore

bed profile and alongshore morphological features.

Although Horn and Mason (1994) found that bedload transport (defined as the

sediment grains roll or slide along the bed) is more important in the swash

zone than suspended load (defined as the sediment is put into suspension up

above the bed, and carried by the current), the exact nature of the sediment
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transport in the swash zone is still under discussion (Butt and Russell, 2000).

Bedload transport generally dominates the backwash, whereas the combination

of both bed load and suspended sediment is more important during the up rush

phase (Horn and Mason, 1994; Masselink and Hughes, 1998; Masselink and

Puleo,2006). The sediment suspension is caused by the sudden change from

offshore to onshore velocity (Le. flow acceleration), and also by the turbulence

in the swash-front, leading to onshore sediment advection by the uprush (Butt

and Russell, 1999). Masselink et al. (2005) recorded that near-bed suspended

sediment concentrations in the swash zone generally exceed 100 kg/rn" at the

start and the end of the backwash, and significant sediment concentrations (>

20 kg/rn") are often found more than 0.05 m from the bed.

From field observations and measurements, Hughes et al. (1997) and Masselink

and Hughes (1998) measured the flow velocity associated sediment transport

during both phases of swash motion. They found that the sediment load had a

strong relationship with the velocity cubed, consistent with sediment transport

equations for both bedload transport and total load transport. As a result of

difficulty in separation of the transport modes it may be appropriate to consider

the total load (Butt and Russell, 2000).

2.2 Beach Cusps

Many alongshore morphological features are created in the swash zone due to

the complex and high energy flows of the swash motion. This study is focused
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on only one rhythmic feature: "beach cusps". They are quasi-regularly spaced

crescentic patterns in the alongshore, formed on the beachface, and mostly ob-

served on steeper beaches with coarse-grained sediment. They consist of steep-

gradient, seaward point horns and gentle sloping, seaward facing embayments

(Masselink et al., 1997;Masselink and Pattiaratchi, 1998). Typically, the spacing

of beach cusps at the coast can be found from a few metres (Longuet-Higgins

and Parkin, 1962) up to around 40 m (Holland and Holman, 1996). Giant cusps

with spacing greater than 75 m can be found; however, Inman and Guza (1982)

claimed those giant cusps are formed by surf zone circulation and not by the

swash motion (see also Calvete et al. (2005».

Many previous studies confirmed that beach cusps are developed and main-

tained by a swash circulation pattern (Dean and Maurmeyer, 1980; Masselink

et al., 1997;Masselink and Pattiaratchi, 1998; Dodd et al., 2008). Masselink and

Pattiaratchi (1998) identified five swash flow patterns connected to the occur-

rence of beach cusps. These are oscillatory swash motion, hom divergent swash

motion, hom convergent swash motion, sweeping swash motion, and swash jet

as shown in Figure 2.1. The first three types are typical of fair-weather condi-

tions, whereas the latter two types occur during storms. The most important

of these swash flow patterns affecting the development of beach cusp is hom

divergent flow (Masselink et al., 1997; Coco et al., 2000). Horn divergent pat-

terns are characterised by the wave uprush diverging either side of the horn to

the centre of the embayment, thus promoting onshore sediment transport and

steep gradients on the cusp horns, and offshore sediment transport and gentle
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gradients in the embayments (Dean and Maurmeyer, 1980; Masselink, 1999).

SWASH WATER CIRCULATION DESCRIPTION

FAIR WEATHER CONDITIONS

(a> , ... -.... .. .. --_ ~..... r .. " "
!.J.,l-,".....!..~t...t:J.,.~,t !,.

OSCII,J..ATORY

• Predominantly two-dimensional flow up and down the beach
• Weak flow divergence on cusp horns
• Weak flow convergence in cusp embayments

(b)

• Swash runup is diverted from cusp hom to embayment
• In the embayment. flows meet to form a concentrated backwash
• Mini rips form opposite cusp embayment!

HORN CONVF.RGENT

• Swash runup enters the cusp embayment with the bore front
aligned with the embayment contours

• Uprush spreads laterally to the horns and forms backwash
• Mini rips may form opposite cusp horns

STORM CONDITIONS

(d) SWEEPING

• Swash runup sweeps obliquely across the beach face
• Backwash follows a parabolic arc
• Littoral drift is pronounced

(e) SWASH JET

• In the embayment. strong backwash retards incoming swash until it
has sufficient head to overwhelm the backwash now and rush up
the beach as a narrow jet

• Swash runup in the form of a swash jet fans out laterallv as in (c)

Figure 2.1: Typesof swash flow circulation associatedwith beach cusp mor-

phology (Masselinkand Pattiaratchi, 1998).

Although there is general agreement about the swash circulation conditions as-

sociated with cusp generation, there are still differing viewpoints on certain

details of cusp formation process. Beach cusp morphology is usually asso-

ciated with reflective wave conditions, relatively steep beach gradients, and

normally incident waves, which can either be plunging or surging breakers,

and it has also been noted that they occur on well-sorted coarser grained beach

(see more further information in Longuet-Higgins and Parkin (1962); Sallenger
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(1979); Dean and Maurmeyer (1980); Holland and Holman (1996); Masselink

et al. (1997);Masselink and Pattiaratchi (1998); Coco et al. (2000».

Historically, the views on the mechanisms leading to the beach cusp generation

have been different, but two opposing theories have been generally accepted

for describing the formation and behaviour of beach cusps: the standing edge

wave model (Guza and Inman, 1975), and the self-organisation model origi-

nally proposed by Werner and Fink (1993). The field observation results are

mixed. Longuet-Higgins and Parkin (1962); Dean and Maurmeyer (1980); Hol-

land and Holman (1996);Masselink (1999);Masselink et al. (2004) found no sta-

tistical support for cusp generation by the edge wave mechanisms, but found

a strong relationship between cusp spacing and swash excursion (the horizon-

tal distance between the highest and lowest positions of the swash front on a

beach), which supports the self-organisation theory. On the other hand Sal-

lenger (1979) and Ciriano et al. (2005) recorded that cusp spacing has a correla-

tion with edge waves.

2.2.1 Standing Edge Wave Theory

Edge waves are alongshore periodic wave motion trapped near to the shore by

refraction, and their amplitudes decay exponentially in the offshore and vary

sinusoidally alongshore (Sallenger, 1979). When a standing edge wave is super-

posited on a normally incident wave, it creates a systematic alongshore varia-

tion in swash height resulting in a regular erosional perturbation (Guza and
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Inman, 1975) leading to the cuspate pattern.

There is a possibility that more than one edge wave occurs on the beach; how-

ever, there are only two edge wave types that are generally proposed as be-

ing involved in the beach cusp formation. These are subharmonic edge waves

and synchronous edge waves (Guza and Inman, 1975). Inman and Guza (1982)

presented the relationship between the cusp spacing (Ac) associated with zero

mode subharmonic edge wave (2.3) and synchronous edge wave (2.4):

Ac = f T2 tan f3 ; for sub harmonic edge wave
'TT'

(2.3)

Ac = .!!_T2 tan f3 ; for synchronous edge wave
2'TT'

(2.4)

where T is the incident wave period, tan f3 is the beach gradient, and 9 is the

gravity acceleration.

For sub harmonic edge waves, horns correspond to edge wave nodes, where

swash excursion is minimum, and embayments correspond to antinodes, where

swash excursion is maximum. For synchronous edge waves, both horns and

embayments are located at edge wave antinodes (Coco et al., 2003). The stand-

ing edge waves provide alongshore periodic perturbations in the bed form on

an initially uniform beach. After the beach cusp formation is created, it re-

duces the subharmonic edge wave amplitude (Guza and Inman, 1975; Guza

and Bowen, 1981), so this process is self-limiting. The further development of

the cusps requires the positive feedback from the incident wave and the bed

topography to maintain the cuspate pattern (Inman and Guza, 1982).
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2.2.2 Self-Organisation Theory

The self-organisation model was originally proposed by Werner and Fink (1993)

and later developed by Coco et al. (2000,2003). In this numerical model, the

swash front is represented as water particles with an associated velocity and

sediment carrying capacity. The movement of the water particles is described

by ballistic theory on a slope, and the sediment transport flux is proportional

to the cube of local particle velocity. Water particles deposit sediment when

decelerating and erode when accelerating. A smoothing function is used for

avoiding the formation of unrealistic deposits of sediment at individual local

cells. The beach slope is limited to the angle of repose.

With this modelling, feedback between flow and morphology is continuously

activated for every time step in such a way that every time a particle moves,

the topography changes and can immediately affect the particle motion (Coco

et al., 2000). The results from self-organisation models predict that

(2.5)

where Ac is the cusp spacing, Se is swash excursion, and f is a geometrical

parameter in the range of 1-3 (Werner and Fink, 1993). Dean and Maurmeyer

(1980) also confirmed this relation (2.5) using measured cusp data. Masselink

(1999) and Coco et al. (2000) found the value of f to be 1.57 and 1.63 respectively.
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2.2.3 Physical Mechanisms

Although both theories are accepted to explain the formation of beach cusps,

they either ignored the role of sediment or simplified the water motion. Dodd

et al. (2008) used the 2D process-based morpho dynamic model solving NLSW

equations and sediment conservation equations simultaneously to simulate the

beach change in the swash zone. The infiltration effect was also included in

their model in order to investigate the beach cusp formation under the various

incoming wave conditions and beach permeabilities. Intheir work, the physical

mechanisms of the depth-averaged sediment concentration gradient and the

flow divergence at the hom are used to describe the processes leading to the

development of beach cusps. Moreover, they found that the infiltration also

enhances cusp formation by reducing further backwash.

2.3 Numerical Model in Swash Zone

The process-based morphodynamic model that is used in this study can be di-

vided into two parts: hydrodynamic and bed update part. Non-linear shallow

water (NLSW) equations are used to describe the hydrodynamic behaviour in

the swash zone. This set of equations has been successfully applied to mod-

elling wave transformations, wave reflection, swash motion, and wave over-

topping. To complete the morphodynamic model, a sediment conservation

equation is used (see Section 2.3.2).
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2.3.1 Non-Linear Shallow Water Equations

The NLSW equations are well-known to particularly apply for the computa-

tion of shallow water flows (sometimes called long wave approximation) with

a free surface under the influence of gravity; therefore, this study chooses the

NLSW equations to comprise the hydrodynamic part in the model. The NLSW

equations are the depth-averaged Navier-Stokes equations with the assump-

tions that the density of fluid is constant and the effect of external forces, Le.

coriolis force, surface tension force, viscous stresses, and turbulent stresses, are

neglected. The pressure distribution is given as hydrostatics and results form

assuming that the vertical acceleration of the water particles has a negligible

effect on the pressure (see more details in Toro (1999,2001».

The 2D NLSW equations can be written in two forms: primitive variable form

and flux conservation form. Toro (2001) showed that the primitive variable

form is mathematically conservative but physically non-conservative; thus, this

form might produce the wrong propagation speed of shock (discontinuity).

However, he also found that error in the shock speed of the non-conservative

formulation is small when the problem comprises with weak shock waves. The

2D NLSW equations including the bed friction effect the flux conservation form

can be written as:

dt + (dU)x + (dV)y

(dU)t + (dU2 + ~9d2) x + (dUV)y

(dV),+ (dUV). + (dV' +~9tf).
22
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--+
where d(x, y, t) is the total water depth, U(x, y, t) and V(x, y, t) (U = (U, V) are,

respectively, the cross- and alongshore depth-averaged velocity components,

B(x, y, t) is the bed level, t is time, x and yare the cross- and alongshore co-

ordinates, and fw is a dimensionless bed friction factor as shown in Figure 2.2.

The depth-averaged velocity is the depth integration taken from the bed, z = B,

to the free-surface, z = B + d, as:

1 t'"U = d l» udz,
1 t'"

V = d lB vdz (2.9)

z•
Free surface

z = B(~,y,t) + d(x,y,t)

d(x,y,t)
U(X,y,t)
-~

z = B(x,y,t)

Bottom
L-------~-----------------------------~xo

Figure 2.2: Shallow water flow with a surface under gravity in 10.

where u and v are the velocity in the x and y directions respectively. The result-

ing equations (2.6) to (2.8) can be solved using the numerical techniques such

as: finite difference or finite volume (Brocchini et al., 2001; Hubbard and Dodd,

2002).

Since the study emphasises the effects of swash motion created from short bro-

ken waves (bores) on the beach, here previous applications of NLSW equations
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to the swash are discussed. Although the NLSW equations cannot model the

details of the turbulence motion within the breaking wave front, they can de-

scribe the movement of the fluid and the overall changes of the water depth and

velocity wherever it crosses bores with a reasonable approximation, especially

in the swash zone (Hu et al., 2000).

Hibberd and Peregrine (1979) implemented the NLSW equations with the finite

difference method based on a Lax-Wendroff type scheme to give a numerical so-

lution for describing the behaviour of the swash motion during both runup and

backwash phase when a uniform bore moves over a sloping beach. They also

explained the formation of a landward-facing bore in the backwash (backwash

bore).

Kobayashi et al. (1987) used an explicit dissipative Lax-Wendroff finite differ-

ence method to solve the 1D NLSW equations including the effects of bottom

friction. This numerical model is created for prediction of the flow character-

istics, including wave reflection and runup on rough slopes with a normally

incident incoming wave. A slight modification of the offshore boundary con-

dition in the model for improving the agreement between the computed and

measured mean water levels on gentle slopes is presented by Kobayashi et al.

(1989).

Titov and Synolakis (1995) developed a model solving the NLSW equations

without artificial viscosity or friction factors using an explicit second-order fi-

nite difference scheme to simulate the ID runup of solitary waves on a plane
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beach. Their model had greatly improved the efficiency in term of the computa-

tions because of the usage of the variable grid in the calculation scheme. Then,

Titov and Synolakis (1998) extended the usage of their model with a splitting

method to simulate a 20 tsunami wave attacking a conical island.

Watson et al. (1992) introduced the weighted average flux (WAF) method which

is one of the "shock-capturing" schemes where discontinuities are automatically

treated without the need for a special tracking algorithm to solve the 10NLSW

equations. They reformulated the equations to include the bed slope source

term within the local Riemann problem, which is simply the hyperbolic equa-

tion together with a piecewise constant data having a single discontinuity (LeV-

eque, 2002); then, the system of equations is solved by applying WAF method

with a total variation diminishing (TVD) flux-limiter. A TVD flux-limiter re-

weights the average flux in order to eliminate spurious oscillations near the dis-

continuity, and makes the scheme somewhere between first and second-order

to achieve a compromise between accuracy and stability (Watson et al., 1992).

Later, Brocchini et al. (2001) implemented the WAF method to solve NLSW

equations in a 20 domain, and applied their model to a dambreak and the run-

up of a large tsunami wave.

Dodd (1998) used an upwind finite volume technique incorporating a Roe-type

Riemann solver, which is another shock-capturing technique, to create a model

solving the 1D NLSW equations for simulating the wave runup and overtop-

ping of coastal structure and regeneration of waves beyond. Hubbard and
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Dodd (2002) also used a Roe-type solver to create a 2D equivalent called "OIT-

2d". It was tested with the 2D wave transformation, runup, and overtopping

cases with good results. Hu et al. (2000) also developed an upwind finite vol-

ume model, but used an HLL approximate Riemann solver for shock-capturing

scheme instead. Their model also receives a good agreement when they com-

pare the model result with analytical solutions and laboratory data for the wave

overtopping at a vertical seawall.

2.3.2 Morphodynamic Models

Morphodynamic models are useful tools for studying coastal evolution pro-

cesses. Normally coastal behaviour is a 3D process but can be understood

and predicted with modelling concepts based on fewer dimensions. Therefore,

many forms of morphodynamic models have been created to simulate changes

in the nearshore areas (surf zone and swash zone) for a variety of length and

time scales.

The typical structure of the numerical morphodynamic model consists of 3 sub-

models for calculating waves, nearshore currents, and sediment transport and

beach change as shown in Figure 2.3 (see Horikawa (1988». However, some

models combine calculation of waves and currents together and solve them at

the same time in a Hydrodynamic model, and then solve the sediment conserva-

tion equation (2.10), which calculates the change in the bed level depending on

26



CHAPTER 2: LITERATURE REVIEW

the change in the sediment transport equation (see more details in Section 3.2):

aB + _1_ (aqu + aqv) = 0
at 1-p ax ay (2.10)

where B is the bed level, p is the porosity of the beach material, and q« and

qv are the sediment transport rates in cross-shore and alongshore direction re-

spectively. An advantage of this approach is the separation of the complexity

of hydrodynamics from those of sediment transport, so the effects of reflection,

refraction, diffusion of wave, or of sediment properties, like separation of sus-

pended load and bed load are easier to add as additional modules to the model

(Nicholson et al., 1997).

Other approaches, that use the Boussinesq type equations for a nonlinear break-

ing wave model (Karambas and Koutitas, 2002), the quasi three-dimensional

approach in order to include vertical changes in water column (Zyserman and

Johnson, 2002), or fully 3D process-based model (Grunnet et al., 2004) for com-

puting in the hydrodynamic part, are quite complicated and require some com-

putational expenses. Therefore, the morpho dynamic model considered here

uses the NLSWequations for the hydrodynamic part; thus the literature in this

part emphasises in the previous studies that use the NLSW equations.

Li et al. (2002) used the uncoupled model to simulate the groundwater effect on

sediment transport and beach profile changes in the swash; thus, their model

has three major processes: wave motion, coastal groundwater flow, and cross-

shore sediment transport. The wave motion model used the Lax-Wendroff fi-

nite difference scheme to solve the ID NLSW equations, and the beach pro-
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Figure 2.3: Flowchart of the morphodynamic model (from Horikawa (1988».

file change was computed from the sediment conservation equation while the

energetics-based model of Bagnold (1966) (threshold sediment transport equa-

tion) was used to calculate the sediment transport rate. In their groundwater

flow model, Li et al. (2002) solved the Laplace equation for saturated flow in

the aquifer. Their simulation results agreed qualitatively with the experimental

observations of swash infiltration effects.

In the swash zone, the interaction of hydrodynamic and beach change is quite

quick. A large amount of sediment transport occurs in the uprush, so that sig-
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nificant changes occur in the bed configuration during half a wave cycle; sim-

ilarly on the backwash (Butt and Russell, 1999; Masselink et al., 2005). It is

necessary to consider instantaneous bed changes to correctly capture the mor-

phodynamic behaviour; therefore, a fully coupled morpho dynamic model is

considered here, solving NLSW equations and sediment conservation equa-

tion simultaneously. Hudson et al. (2005) show that significant errors can occur

when flow has the high Froude numbers, as is the case in the swash.

Hudson and Sweby (2003) compared the steady (or uncoupled) and unsteady

(or coupled) approach in a ID morpho dynamic model. The steady approach

had to compute the wave and current submodels until they reached a steady

state, and then updated the bed, whereas, the unsteady approach solves all of

three submodels simultaneously. In their study, they used the flux-limited ver-

sion of Roe's scheme to discretise the equations. Then, Hudson and Sweby

(2005) adapted the steady and unsteady approach to a 2D morphodynamic

model. The main result from these two articles showed that in ID, the steady

approach was more accurate than the unsteady approach when the bed was in-

teracting slowly with the water flow and for a small Froude number. However,

in 2D the steady approach seemed to be producing inaccurate results.

Hudson et al. (2005) investigated and compared ID morpho dynamical sys-

tems that were decoupled and a coupled approach, using the Lax-Wendroff

and the Roe schemes, applied with and without flux-limiting methods. There

were some suggestions that the Lax-Wendroff scheme can produce spurious
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oscillations, and therefore that a filtering method, such as that of Johnson and

Zyserman (2002), should be applied; and a flux-limited approach was very im-

portant for long-term modelling. Nevertheless, for a small Froude number, the

decoupled approach used less computational time than the coupled approach.

Dodd et al. (2008) combined the hydrodynamic model of Hubbard and Dodd

(2002)with the bed update equation to create a coupled process-based morpho-

dynamic model. This model solved the coupled 2D NLSW equations and sedi-

ment conservation equation simultaneously in the form of Hudson and Sweby

(2005) including the effect of bed friction, bed diffusion, and infiltration, by

using a Roe-approximated Riemann problem with a flux limiter scheme. This

model was successful for the simulations of lD mobile bed dam-break prob-

lem; then, it was used to simulate the beach change in the swash zone in order

to explain the beach cusp formation and evolution (in term of linear growth

rate).

Castro Diaz et al. (2008) created a lD coupled morphodynamic model which

also solved the non-conservative form of NLSW equation system simultane-

ously, and used the different numerical schemes for comparing the results of

each scheme. The numerical schemes used in this study were Roe-solver fi-

nite volume scheme with and without flux limiters, and high order finite vol-

ume methods using WENO (weighted essentially non-oscillatory) reconstruc-

tion scheme, which is another numerical scheme to approximate the fluxes at

cell boundaries to a high order accuracy and to avoid spurious oscillations near
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shocks Giang and Shu, 1996). The model results agreed with the analytical

solution and experimental data. Moreover, the variation of sediment trans-

port equations compared with Grass (1981)model were also presented in their

study.
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Morphodynamic Model

This study makes use of a process based morphodynamic model, OTf2dm, de-

veloped by Stoker (2005) and Dodd et al. (2008), to simulate the occurrence and

formation of beach cusps. OTf2dm originates from the hydrodynamic model,

OTf-2d, created for investigating swash zone wave behaviour: wave transfor-

mation, run-up and overtopping (see more detail in Hubbard and Dodd (2002».

Stoker (2005) and Dodd et al. (2008) combined the OTf-2d model with a sedi-

ment conservation equation, and used the numerical scheme of Hudson and

Sweby (2003) to solve the non-linear shallow water (NLSW) equations and sed-

iment conservation equation simultaneously.

This chapter gives a summary of a process based morphodynamic model in-

cluding the governing equations, the calculation of sediment transport rate, bed

diffusion and infiltration term. The Roe approximation used with the Hudson

and Sweby (2003) scheme is explained in the last part.
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3.1 Governing Equations

01T2dm of Stoker (2005) is a fully coupled morphodynamic model, which com-

prises the NLSW and sediment conservation equation. As the model uses the

Roe solver with flux limiter scheme, the coupled system of the original NLSW

equations in flux conservative form, (2.6) to (2.8) and sediment conservation

equation (2.10) has a problem in computation of Roe decomposition. Therefore,

Hudson and Sweby (2005) presented the NLSW equation system to avoid the

singular eigenvector matrices in Roe's method by substituting dBx = (dB)x -

dxB and dBy = (dB)y - dyB into (2.7) and (2.8), respectively. As a result, the

equations of fully coupled morpho dynamic model are:

dt + (dU)x + (dV)y - 0 (3.1)

(dU)t + (dU2 + ~gd2 + 9dB) x + (dUV)y fw 1--+1 (3.2)- gdxB- 2" U U

(dV), + (dUV). + (dV' + ~9d' + 9dB). fw 1--+1 (3.3)- gdyB- 2" U V

e; +~(qu)x +~(qv)y - 0 (3.4)

--+
where d(x, y, t) is the total water depth, U(x, y, t) and V(x, y, t) (U = (U, V» are,

respectively, the cross- and alongshore depth-averaged velocity components

where depth integration is taken from the bed to the free-surface as shown in

(2.9), B(x, y, t) is the bed level, t is time, x and yare the cross- and alongshore

co-ordinates, fw is a dimensionless bed friction factor, and ~ = 1/ (1 - p) where

p is the porosity of the bed. The calculation of sediment transport rates, qu and

qV! is explained in Section 3.2.
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This set of equations is implemented upon a Cartesian grid, and the solution

variables are stored at the centre of each cell, and the value assumed to be con-

stant within the cell (the Roe-type scheme of Hudson and Sweby (2003) is then

introduced to calculate the fluxes across the cell edges). With this numerical

scheme, four solution variables are solved simultaneously. Nondimensional

-A ---+---+
co-ordinates are introduced: d = d/ho, U = U /~, x = x/ho, fj = y/ho,

and i = t~, where A denotes a nondimensional variable, and ho is a rep-

resentative water depth which is the initial water depth at offshore boundary.

Therefore, the equations are then rewritten in non-dimensional variables as:

dt + (dU)x + (dV)y - 0 (3.5)

(dU)t + (dU2 + ~d2 + dB) x + (dUV)y - dxB- f; lulu (3.6)

(dV), + (dUV), + (dV' + ~d' +9B), - dyB- f; 1-uIV (3.7)

Bt + e (qu)x + e (qv)y - 0 (3.8)

where A has now been dropped for convenience. The boundary conditions of

the model are based on those of the OTT-2d model (Hubbard and Dodd, 2002),

updated to include the bed level variable, B. Each boundary cell is adjacent to

a double layer of dummy cells which are primed with information about the

solution around the boundary. There are four types of external boundary used

in the model:

• Extrapolation: dummy cells are overwritten with the solution values in

the cells along the boundary, giving a very simple absorbing boundary

suitable for outflow.
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• Reflection: the normal velocity components of the flow in the dummy cells

are taken to be a reflection in the domain boundary of the internal values,

imitating a solid wall.

• Periodic: the solution at one end of the domain provides an input bound-

ary at the opposite edge.

• Absorbing/generating boundary: the solution in the dummy cells at an off-

shore boundary is interpolated linearly from a time series of data, either

synthetic or measured.

An extrapolation, reflection, or periodic boundary are applied at the lateral

boundaries, while a simple absorbing/ generating boundary is implemented at

the offshore boundary as shown in Figure 3.1. To locate the shoreline position,

there is no special tracking technique used; rather a wetting algorithm is used,

and then these cells treated just like other cells, and then a drying algorithm

applied.

3.2 Sediment TransportRate

The model in this study uses Roe solver scheme to solve the coupled NLSW

system. The sediment transport rate, q, should be a simple formulae, because

a more complex sediment transport equation, that accounts the bed load and

the suspended load separately, such as van Rijn formulae (van Rijn (1984) and

Soulsby (1997», is considerably difficult to implement with Roe's method (the
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Shoreline BC
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x
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Wave
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Figure 3.1:Computation domain and boundary conditions.

main numerical scheme used in the present model). Therefore, this study only

considers the simple sediment transport rate of Grass (1981), based on a power

law relationship as:

(3.9)

where A is a dimensional constant related to the beach material and the flow

regime. m is a constant in the range 1 ::; m ::; 4. This approach was under-

taken in order to use the Roe decomposition of Hudson and Sweby (2005). Cas-

tro Diaz et al. (2008) simplified the complex sediment transport equations of

Meyer-Peter and Muller, Fernandez Luque and Van Beek, van Rijn, and Nielsen

to the particular form of Grass model. They found that only the van Rijn equa-

tion has m = 3.4, while the others have m = 3. Therefore, we use (3.9) with m
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= 3 to be the sediment transport equation in the model. When the sediment

transport rate is proportional to the velocity cubed (m = 3), this allows the sed-

-+
iment transport relationship to be differentiated with respect to U, and to be

-+
valid for all values of U. In 2D, the sediment transport rate is then split into its

components in the x and y directions based on:

(3.10)

where qu and qv are the components of the sediment transport rates in the x and

-+
y directions respectively, and the magnitude of the velocity is IU I = VU2 + V2.

Hence, we obtain the sediment transport rates in x and y direction as:

qv. - AU (U2 + V2)

qv - AV (U2 + V2) (3.11)

3.3 Bed Diffusion

The bed slope affects sediment transport rate, which is either enhanced or re-

duced also depending upon whether the sediment transport is down- or ups-

lope (Horikawa, 1988). In order to account for this effect the sediment transport

(3.11) is modified to include this downslope effect as follows:

-+ -+ -+ -+q * = q - Cl q IIV1bl (3.12)

where -q* is the modified sediment flux vector, and C is the dimensionless
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diffusion coefficient related to the angle of repose of sediment, <p (where C =

1/ (tan <p). In this study, we set 4> = 32° such that C = 1.6. This approach allows

sediment to move laterally down a slope; therefore the downslope sediment

transport is increased, whereas the upslope sediment transport is decreased.

Moreover, this downslope effect is only included with respect to the bed per--turbation, b (changes from the starting bed). This means that when I~ bl = tan <p,

then q* =0.

3.4 Infiltration

An important physical effect within the swash zone is infiltration into the beach

face. Since infiltration reduces the effectiveness of the backwash to transport

sediment offshore, it induces a change in net sediment transport in the swash

zone, leading to enhanced deposition onshore. In order to model this process,

Packwood (1983)proposed a method to calculate the volume of water that will

flow into the beach, and the effect of this loss of water on the momentum equa-

tions. This approach is consistent with the assumption of Darcy's law. Pack-

wood (1983) stated that the infiltration rate (w(x, y, t» is related to the rate of

change of the position of the free surface «((x, y, t» in the porous media (as

shown in Figure 3.2), and it is also related to head of water above the bed (the

water depth, d(x, y, t) and the hydraulic conductivity (K) as follows:

(3.13)
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z

Still water level

Initial saturation level

Figure 3.2: Run-up on initially dry beach.

where p is the porosity of the bed material, and K varies from 0.0001 m/ s, 0.001

m/ s, and 0.01 m/ s for fine, medium, and coarse sands, respectively (Packwood

and Peregrine, 1980). This is a reasonable assumption for coarse sands and

gravels, having been verified by Turner and Masselink (1998). In the model, the

differential equation (3.13) is solved using a fourth order Runge-Kutta scheme.

Problems arise in the solution when water initially infiltrates the beach «( =

0), because d/( in (3.13) is singular. In order to solve for the position of the

free surface at the first time, an analytical solution (3.14) is used to determine

( (Packwood, 1983) during the first computational time step. The solution is

arrived at by assuming a linear variation of d during the time step lit. The linear

variation is from zero to d, where d has been determined by the solution of the

system of modified NLSW equations prior to any infiltration. The analytical

solution is:

[ 1]1K 4pd "2
( = -_ 1+ (1+ -) lit

2 P sue (3.14)
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Once the initial infiltration has been calculated the solution to (3.13) is contin-

ued using the Runge-Kutta scheme. Then the infiltration rate w is determined

based upon the current values for ( and d in the current cell. This infiltration

computation approach has also been applied in a process based groundwater

model by Li et al. (2002), and a Boussineq model by Karambas (2003).

Because the equations are fully coupled and solved simultaneously, the infiltra-

tion rate and its effects are applied in a point-wise approach every time-step.

They take into account the changing position of the bed level, and alter the

hydrodynamics prior to the next simultaneous solution of the system.

Having calculated the volume of infiltrated water, this is extracted from the

depth in the free flow region. In the momentum equations this effect applies in

the form of a sink term acting to reduce the momentum to zero. The form of

the momentum sink terms used in that suggested by Li et al. (2002) (see more

detail in Dodd et al. (2008». Equations (3.15) to (3.18) represent the final system

of equations including the effects of infiltration and bed diffusion.

(3.15)

(dU)t + (dU2 + ~d2 + dB) x + (dUV)y -

(dV), + (dUV). + (dV' + ~<f +dB). -
B, + e (qu)x + e (qv)y -

dxB - f; lui U - Uw (3.16)

dyB - ~w lui V - Vw (3.17)

--+-eClqll'Vbl (3.18)

The additional source terms describing the infiltration, bed diffusion and bed

friction are modelled using a point-wise approach with gradients expressed
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using a central difference. Moreover, this set of equation can be also written in

the vector form as:

--+ ---+ ---+ ---+Wt + Fx+ Gy = S (3.19)

where

W - [d, dU, dV, BlT

[dU,dU' + ~d' + dB, dUV, ~qur (3.20)

[dV,dUV,dV' + ~d' + dB,~qvr

[ fw 1---+1 fw 1---+1 ---+ ---+ ]T-w,dxB - 2" U U - Uw,dyB - 2" U V - Vw,~CI q II~bl

---+F -

---+G -

---+S -

3.5 Roe's Scheme

The model in this study solved the system of NLSW equations and sediment

balance equation in the non-dimensional vector form (3.19). This vector form of

the system is discretised with an explicit upwind scheme. Applying a forward

Euler timestep and central difference approximation to the spatial derivatives.

--+
where Wf,j is the vector of conserved variables in cell (i, j) at the current time-

---+ ---+ ---+step n, F"!'±l . and G"!' '±1 are numerical fluxes at interfaces, Si}' is the source
, 2'} ',} 2 '

term vector, ~t is the timestep and (~x,~y) is the grid spacing as illustrated in

Figure 3.3. All the terms on the right hand side are evaluated using values at

the current timestep (n).
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Figure 3.3: Grid system used to solve the numerical scheme within OTT2dm.

(It) is cell centre, (x) cell interface (edge).

The numerical fluxes at cell interfaces are evaluated using Roe's approximate

Riemann solver. This scheme was proposed by Roe (1981); subsequently many

researchers, such as Toro (1999, 2001), LeVeque (2002), Hubbard and Dodd

(2002), and Hudson and Sweby (2003, 2005), used and developed this scheme

to solve hyperbolic problems. Roe's scheme approximates each cell interface

as a linearised Riemann problem. Each interface flux is expressed as four com-

ponents (k = 1,2,3,4) obtained by solving four equations simultaneously, then

evaluated using the exact solution of the local Riemann problem. In order to ob-

tain higher order accuracy and to avoid the spurious oscillation near the shocks,

the Total Variational Diminishing (TVD) technique with flux-limited functions

is implemented in the model to compromise between accuracy and stability.
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Equations (3.22) introduces the Roe approximation of interface flux with the

flux-limiters.

- --+where Ak and ek are the eigenvalues and right eigenvectors of the Roe averaged
--+

Jacobian matrix, A = 8~ as shown in (3.24), Q:k is the associated wave strength,
8W

Vk = 5..k~t/ ~x is the Courant number associated with the kth wave, and B (fk)

is a nonlinear flux limiter function (see more details in Toro (1999) and LeVeque

(2002)). The flux limiter function used in this study is a Minmod flux limiter as:

(3.23)

where Tk is a ratio of wave strengths of the upwind wave strength to the local

--+ --+
wave strength. Similar expressions exist for F"!' 1 . and G"!'±l .. In the case of

1-2,) 1 2')

C"!'±l . the eigenvalues and eigenvectors are associated with the matrix, B -
...:. 2')

89,. as shown in (3.25),
8W
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0 1 0 0

(J+h)-u2 2U 0 J
A - (3.24)

-UV V U 0

--F --F -F -F 0-UD -VE D E

0 0 1 0

-UV V U 0
B - (3.25)

(J+h) - V2 0 2V d

--C --C EC bC 0-VD -UE

where the Roe-averaged values are

1 - 1
d - 2(dR+dL), B=2(BR+BL),

U ffRu R + ../di,UL V _ ffRvR + ../di,vL
- ffR + ../di,' - ffR + ../di, ,

- F ~A (JdR + ../di,) ( 2 2 - 2)
D - JdRdL + v'dLdR UR+ URUL+ UL+ V ,

~A (ffR + ~) (-2 2 2)
- JdRdL + v'dLdR U + VR+ VRVL+ VL ,

~A [2ffR~ (URVR+ ULVL)+ (dRUL+ dLUR) (VR+ VL)]
(ffRdL + ../di,dR) (ffR + ../di,)

~A [2ffR~ (URVR+ ULVL)+ (dRVL+ dLVR) (UR+ Ud]
(ffRdL + ~dR) (ffR + v'dL)

(3.26)

where band E are the Roe-averaged terms corresponding to the sediment

transport equation of Grass (1981), i.e. tr, EF, bF, and EF are respectively

8(~qu) 8(~qu) 8(~qv) 8(~qv) .computed by - _, - _, __ ,and __ . The superscript F and G de-
8(dU) 8(dV) 8(dV) 8(dU)

-+ -+
note that variables are associated with F and G, respectively.

44



CHAPTER 3: MORPHODYNAMIC MODEL

3.5.1 Source Terms

For (3.15) - (3.18), the bed slope terms of the source vector are upwinded in

the same way as the numerical fluxes in order to maintain the equilibrium that

exists in the original NLSW equations (2.7) and (2.8) (Stoker, 2005). The other

terms, bed friction, bed diffusion and infiltration terms, are evaluated pointwise

using the values at the cell centre.

The implementation of the bed slope source terms are decomposed into charac-

teristic components, similar to the flux difference shown in the discretised form

at each cell edges:

(3.27)

where superscripts refer to the direction of travel of the edge contribution and

subscripts refer to the cell edge that is contributing to the source term. Each

source term edge contribution takes the form

4s± = ~L (1± sgn (~k)) [1 - B (1\) (1 -Ivkl)] {3k~
k=l

(3.28)

where {3k are the coefficients of the decomposition of the source term onto the

~ - -eigenvector ek of the appropriate flux Jacobian (Ok = AkQk for k = 1 to 4).
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Model Development

This study aims to simulate the occurrence of beach cusps using a process-

based morphodynamic model of the coupled NLSW and sediment conserva-

tion equations. The starting point is the model of Stoker (2005) and Dodd et al.

(2008). This model was successfully used for simulating the early development

of beach cusps, but there are limitations addressed in this chapter.

Here an entropy fix, an amended numerical scheme (Castro Diaz et al., 2008), a

different method for dealing with source terms (Time Operater Splitting, TOS)

(Toro (1999,2001) and LeVeque (2002», and the shoreline boundary condition

(SBC) are addressed, to improve numerical stability and physical realism. After

implementing the new numerical methods, the model is tested by simulating

some idealised 1D cases, and compared with the analytical or numerical solu-

tions from the previous studies.
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4.1 Entropy Fix

Using a linearised Riemann problem solution like Roe's scheme can result in

some problems that are due to the resulting approximate Riemann solution con-

sisting only of discontinuities in the flow variables. On the other hand, rarefrac-

tion waves carry a continuous change in flow variables, and as time increases,

they tend to spread. This means that the spatial gradient decays, and the char-

acteristics diverge from the discontinuity. As a result, the linearised approxi-

mation via the kind of discontinuous jump is totally incorrect. In a practical

computation, this problem shows up in the form of unphysical discontinuous

waves (Toro, 1999); however, it is only significant when the rarefraction wave

is transonic which its eigenvalue, representing the characteristic speed of that

rare fraction wave, changes from negative to positive.

(4.1)

where >.~,R are the characteristic speeds of the left, L, and right, R, edges re-

spectively of the rarefraction wave. To solve this problem, Harten and Hyman

(1983) introduced the Entropy fix approach to split the single travelling rarefrac-

tion shock with Roe-averaged speed, ~b into two smaller jumps as shown in

the example of an entropy fix approach applied to a left transonic rarefraction

wave in Figure 4.1.

From the Roe's flux equation (3.22), the flux limiter term is neglected to simplify
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t

UL----+---------

---------t---- U*L

Figure 4.1: Entropy fix for left transonic rarefraction wave. The single jump

U.L - UL travelling with speed ).k is split into the two jumps USL -

ULand U.L - USL travelling with speeds .Af and >..f; where USL is

a transonic state.

the flux equation to:

(4.2)

To split the transonic wave into two smaller jumps, (4.2) is modified to so as to

implement the entropy fix by changing I'xkl as follows:

(4.3)

where

(4.4)
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where </>8(~k) is an absolute-value function for splitting the transonic rarefrac-

tion wave.

4.1.1 Harten and Hyman Entropy Fix

The widely used entropy fix approach proposed by Harten and Hyman (1983)

introduced the absolute-value function, </>8(~k)' based on increasing the viscos-

ity for recomputing the eigenvalues so that they are not too close to zero. Since

there is a little difference in the splitting wave process between the model used

in this study and the original implementation of Harten and Hyman (1983), we

need to modify the Harten and Hyman entropy fix to be compatible with the

equation (4.4):

(4.5)

where the parameter 8k can be defined as;

(4.6)

4.1.2 Hubbard and Dodd Entropy Fix

The model of Dodd et al. (2008) was based on that of Hubbard and Dodd (2002).

Although Hubbard and Dodd (2002) used the entropy fix approach to solve

the transonic rare fraction wave problem, they used a different </>8(~k) function
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from that of the original approach (Harten and Hyman, 1983). Hubbard and

Dodd (2002) constructed a smooth function by estimating it from the maximum

spreading rate of the characteristic structure of a 1D dambreak problem, which

is solved by Roe's method. The spreading rate across the rarefraction wave is

limited to 3c, where c is the Roe-averaged wave celerity. Therefore, this <Po is

given by

<PO(~I) = 3ih - -- when Al ~ U + c2c

<PO(~2) = 3&2 - - (4.7)-- when A2 ~ U - C2c

<PO(~3) = <PO(~4) = 0

where ~k is the characteristic wave speed, i.e. the kth eigenvalue of the Roe-

averaged Jacobian matrix; (; is the Roe-averaged horizontal speed, and Ok is

the Roe-averaged wave strength. Only two extreme wave characteristic com-

ponents are applied with this entropy fix, because this entropy fix is estimated

from the wave characteristic structure of a 1D dambreak problem on nonerodi-

ble beach which has only two wave characteristics. Moreover, (4.7) is applied

to (4.4) when

(4.8)

4.2 Castro-Diaz Scheme

The model of Stoker (2005) and Dodd et al. (2008) used the Roe's method to

solve the NLSW and sediment conservation equations simultaneously. For the
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ideal of SBC, it is expected to be the wet/dry interface. However, the abso-

lute wet/dry boundary condition could not be implemented by Roe's method

because certain of the Roe-average become singular at a dry bed. Instead, an ar-

tificial wetting dry bed is introduced by setting the water depth to a small positive

tolerance (minimum depth, dtol) which this magnitude has to closed to zero. Al-

though the usage of slight wetting gives a bore at the front, unlike the contact

wave that should be there (Toro, 2001), this artificial wetting dry cell approach

makes the Roe's scheme work well for the wet/ dry boundary condition. Dodd

et al. (2008) used dtol = 2 cm in their simulations, because the smaller minimum

depth found that numerical errors increased in their study.

For this reason the source of these numerical problems was investigated. It

was found that there were two sources (i) the Shoreline Boundary Condition

(SBC) (discussed in Section 4.4), and (ii) the system of equation that uses in

the model. It was found a problem that the eigenvalues of (3.24) and (3.25)

were functions of the bed elevation, B (see more details in Hudson (2001».

This either makes the wave move at an incorrect shock speed or creates a non-

physical discontinuity when B =I- 0 . For example, the Dodd et al. (2008) model

is used to simulate the two cases of the classical dambreak problem (see more

details of this problem in Section 4.5.1), which has the initial water depth is 1

m, for different bed levels. The results are shown in Figure 4.2.

For B = 1 m, the model results show that the effect of bed level which is in-

cluded in the eigenvalue function creates the non-physical shock at x = 0,
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a) B =0 m
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b) B = 1m
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Figure 4.2: Water depth results of the classical dambreak problem simulated

by Dodd et al. (2008) model where a) B = 0 m case and b) B = 1 m

case.

whereas the simulation of the B = 0 m case has not that shock. Note that Dodd

et al. (2008) took B ~ 0 in their modelling, so that this non-physical structure is

very small.

To keep away from the non-physical shock resulted by the eigenvalues and to
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avoid the singular eigenvector matrices in the Roe method, a non-conservative

numerical scheme of Castro Diaz et al. (2008) with the Roe-approximation is in-

troduced to implement in the model solving the original form of NLSW equa-

tions and sediment conservation equation, (3.1) to (3.4), which includes bed

friction, bed diffusion, and infiltration effects in the non-dimensional form as:

dt + (dU)x + (dV)y - -w (4.9)

(dU)t + (dU2 + ~d2) x + (dUV)y t: l-tl (4.10)- -dBx - 2 U U - Uw

(dV),+ (dUV). + (dV' + 4d'). Iw l-tl (4.11)- -dBY-2 U V-Vw

-t
s,+~(qu)x +~(qv)y - ~ClqllV'bl (4.12)

Following Castro Diaz et al. (2008), equations (4.9) to (4.12) can be rewritten in

the vector form of a non-conservative term and a source term.

~ -t -t -t~ ~~-t
Wt + Fx + Gy = C(W)Wx + D(W)Wy + S (4.13)
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where

d dU dV

---+ dU ---+ dU2 + ld2
---+ dUV

W= F= 2 G=
dV dUV dV2 + ld2

2

B equ eqv

0 0 0 0 o 0 0 0

---+ 0 0 0 -d ---+ 0 0 0 0
C(W) = , D(W) = (4.14)

0 0 0 0 0 0 0 -d

0 0 0 0 0 0 0 0

-w

t: 1---+1---+ 2" U U-Uw
s=

fw 1---+12" U V-Vw

---+eClqllVbl

When using the Roe-approximation to apply with the Castro-Diaz scheme, the

system (4.13) can be written as a non-conservative hyperbolic system

---+ - ---+ ---+ - ---+ ---+ ---+
Wt+d(W)Wx+~(W)Wy= S (4.15)

----+ - ---+ - ---+ - ---+ - ---+ - ---+ - ---+ - ---+where d(W) = A(W)-C(W) and ~(W) = B(W)-D(W), and A(W) and B(W)

---+ ---+
are the Roe-averaged Jacobian matrix of F and G respectively. Therefore,
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0 1 0 0

- -2 2U 0 d---+ d-U
d'(W) -

-UY V U 0

--F --F bF EF 0-UD -VE

0 0 1 0

- --+ -UY V U 0
88(W) -

- -2 0 2Y dd-V

--0 --0 -0 -0 0-VD -UE E D

(4.16)

(4.17)

where the Roe approximate value is the same as that of the Dodd et al. (2008)

model which is given by (3.26), and the superscript F and G denote that vari-

--+ --+
abIes are associated with F and G, respectively. Roe's decomposition must be

effected in each direction. Therefore, we start the calculation in the x direction.

From equation (4.16), it is found that one of the eigenvalues of d' is >.r = U and

the others are obtained by solving the cubic

The roots of P(>') are determined by using formulae for roots of a cubic, see

Hudson (2001). For a cubic equation,

if we let Q = ~ (3a2 - aD and R = _.!_ (9ala2 - 27a3 - 2aD, then the discriminant9 54
is D = Q3 + R2 and if
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1. D > 0 then one root is real and two are complex.

2. D = 0 then all roots are real and two are equal.

3. D < 0 then all roots are real and unequal.

IfD < 0 then the roots of P(x) are

Xl - 2Mcos (~B) - ~al

X2 - 2M cos (~(B+ 27r)) - ~al

X3 - 2Mcos (~(B+47r)) - ~al (4.19)

R
where cos B = v'-"Q3._Q3

Once the eigenvalues have been obtained, they are used to determine the eigen-

vectors

1

(4.20)
V

[;2 - d+ ('\k - 2U) '\k
d

for k = 1,2,3 and E =1= 0 then

1 0

-+ U -+ 0
eF - otherwise -F
4 - - U

e4 =
V--=- 1

E
-1 0

(4.21)
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After the eigenvectors are computed, the wave strengths d k are found from

-+
the right eigenvector matrix, 's,= tl-l~W. From (4.21), the computation of

d k can be divided into two conditions, (i) E =f 0 and (ii) E = O. The second

condition occurs when the depth-averaged velocities from both sides (left and

right) of the computational cell have the same magnitude, but their directions

are opposite; for example, VL = -VR while dL = dR and UL = UR. Therefore,

dk is computed by

• when E =f 0 then
_ E'l/Jk
ak = - U (~k - ~a) (~k - ~b) (4.22)

where

,pk - [( 2ii - 5.. - 5.,) iiv - dV + (5..5., +d - if2) (V - ~) ] sa

- ~ (2U - ~a- ~b) ~(dU) - (U - ~a) (U - ~b) ~(dV) + d~B

for k, a, s e {I, 2, 3} where a =f k =f band

_ E [V~d - ~(dV)]
a4 = -

U
(4.23)

• when E = 0 then

_ (~a~b+ d - U2) ~d + (2U - ~a- ~b)~(dU) + d~B
ak = (~k - ~a) (~k - ~b) (4.24)

for k, a, s e. {I, 2, 3} where a =f k =f band

_ E [V~d - ~(dV)]
a4 = -

U
(4.25)
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For the bed slope decomposition term

_ (2U - ~a - ~b)dD.B
{3k = - _"__--.,-,...--..:---,-(~k - ~a) (~k - ~b) (4.26)

for k, a, bE {I, 2, 3} where a =f. k =f. band,84 = o.

The operator D. is defined as D.(e) = eR - eLi for example, D.d = dR - dL•

The subscript L and R denote as left and right components of computational

cell, and k, a, and b denote the component numbers of Roe-averaged Jacobian

matrix.

Similarly for y direction. From (4.17), one of the eigenvalues of Ii is ~¥ = V

and the other three are obtained by solving the cubic

The roots of P(~) are determined by using formulae for roots of a cubic. Eigen-

vectors are

1

(4.28)
U

>'k
V2 - d + (~k - 2V) ~k

d

for k = 1,2,3, and if E =f. 0 then

otherwise
--+
e-G -4 -

1
(4.29)

1

- Vu--;:;-
E

V

o

o

-1 o
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Wave strengths 71k are

• when E =J 0 then

(4.30)

where

,p, = [(2V - 5., - 5..) UV - Jif + (5.,5.. + d - V2) (if - ~) ] t.d

- (v - ;\a) (v - ;\b) ~(dU) - ~ (2V -;\a - ;\b) ~(dV) + J~B

for k, a, bE {I, 2, 3} where a =J k =J band

_ E[ii~d-~(dU)]
a4 = -

V
(4.31)

• when E = 0 then

ii _ (;\a;\b + J - V2) ~d + (2V -;\a - ;\b) ~(dV) + J~B

k - (;\k - ;\a) (;\k - ;\b) (4.32)

for k, a, bE {I, 2, 3} where a =J k =J band

_ E [ii~d - ~(dU)]
a4 = -

V
(4.33)

(4.34)

for k, a, s « {1, 2, 3} where a =J k =J band 134= o.

The spatial discretisation used is the same as the usual Roe's scheme with a flux-

limiter function as given by equations (3.21) and (3.22). The first order Euler

method is applied for the time increment, and the source term is evaluated

pointwise using the values at the cell centre.
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4.3 Time Operator Splitting Scheme

Only the bed slope term is treated by the upwinding scheme of Roe's method

in both models of Dodd et al. (2008) and new one which uses the Castro Diaz

et al. (2008) scheme, whereas bed friction, bed diffusion, and infiltration ef-

fects are implemented by the pointwise method. This group of source terms

-+
(S in (4.14» is integrated by the first order Euler scheme. To achieve higher

order accuracy when computing the source terms, modellers have proposed

splitting schemes, fractional-step methods, and time operator splitting scheme

(TOS) (see LeVeque (2002». The TOS scheme divides the NLSW systems to two

subproblems in space and time, and solves them independently. In the present

study, the system of NLSW and sediment conservation equations is applied

with TOS scheme by splitting the equation into the homogeneous partial dif-

ferential equation (PDE) and ordinary differential equation (ODE) as shown in

the vector form of (4.35) and (4.36), respectively.

ProblemA:
-+ -+ -+
Wt+ Fx+ Gy =0 (4.35)

Problem B: (4.36)

In each of these subproblems, there is therefore more a flexibility in choosing

the solver: the high-resolution shock-capturing methods can be used directly

for the homogeneous equation (4.35), whereas the higher accuracy scheme for

the time increment can also be applied to ODE (4.36), such as the Runge-Kutta

fourth order scheme. We discuss the application of the TOS method separately:

first the homogeneous part (4.35), and then the inhomogeneous part (4.36).
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Homogeneous Part

In equation (4.9) to (4.12), the source term, which appears on the right hands

side (RHS) of those equations, comprises the bed slope, bed friction, bed diffu-

sion, and infiltration terms consistent with the approach taken in this work, the

homogeneous equation is solved with Roe's method.

However, using the Roe-approximation with the homogeneous equation with-

out the bed slope term (solely the terms presented in the left hand side (LHS) of

(4.9)-(4.12», leads to a problem in calculating the wave strengths iik when U or

if equal to zero. This makes the right eigenvector matrix (!JiFand !JiG)of the
Jacobian matrices, (4.37) and (4.38), of this homogeneous equation is singular;

therefore, the wave strength components do not exist.

1 1 0 0

U+ Jd U- Jd 0 0!JiF - U (4.37)
V V 0 EF

iJFJd iJFJd
1 1

U+ Jd U'- Jd
1 1 0 0

U U 0
if

!JiG BG (4.38)-
if+ Jd if - Jd 0 0

iJGJd iJGJd
1 1

if+ Jd if- Jd

In order to avoid a singular matrix of right eigenvectors, the bed slope term is

treated by the source term up winding scheme of Roe's method and solved at
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the same time as flux term in this homogeneous part. Then this amended ho-

mogeneous equation can be solved using the Roe-averaged Castro-Diaz scheme

without the pointwise source term.

Inhomogeneous Part

The fourth order Runge-Kutta method is used to integrate (4.36) which now

contains the effect of bed friction, bed diffusion and infiltration. To increase

accuracy, reduce numerical oscillations, and minimise computational effort, the

adaptive stepsize control for the Runge-Kutta method is used here (see Press

et al. (1992}). This control method compares the error between one big step

and two small steps between the same two times of the fourth order Runge-

Kutta method, and adjusts the time step size on the next step, depending on the

difference between the two estimates.

Second order accuracy in time for TOS scheme

A second order accurate TOS method is introduced by Toro (1999) and LeVeque

(2002) and implemented in the model. This treatment has three steps as:

1) (ODE):
--+
W~·',J

--+ f).t --+
=W~·+-S~·'" 2 ',J

2) (PDE):
--+
W~*·',J =W~.- f).t (F ~ 1 . - F~ 1 .) - f).t (0:. 1 - 0 ~. 1)

'" f).x '+2,J '-2,J f).y ',J+2 ',J- 2

:W*~W**
3) (ODE): W~Tl = W~*.+ f).t S~*.

',J '" 2 ',J
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--+ --+
where Wi,j and Wi,j are the intermediate solutions at the end of the first and sec-

--+
ond step respectively, S i,j is the source term computed from the intermediate

--+
solutions of Wi,j. The first and the third steps use the adaptive step size control

Runge-Kutta method with the Roe-averaged Castro-Diaz scheme implemented

in the second step. The comparison of results between the TOS method and the

unsplit Roe-averaged Castro-Diaz scheme is shown in Section 4.6.2.

4.4 Shoreline Boundary Condition

In order to allow a moving boundary, a SBC must be included in the model.

A SBC for Godunov-type models consists of a wetting and drying algorithm,

and a method to estimate the fluxes at a wet/ dry boundary (see Briganti and

Dodd (2009». In the following we state the wetting/ drying algorithm and then

present two methods for computing the wet-dry flux, the first being based on

that of Hubbard and Dodd (2002), Stoker (2005), and Dodd et al. (2008) and the

second being novel.

4.4.1 Wetting/Drying Algorithm

Stoker (2005) and Dodd et al. (2008) used the wetting and drying method of

Hubbard and Dodd (2002). There is no special tracking procedure used in their

method. The shoreline is constructed from the mesh interfaces between wet and

dry cells. A cell is considered to be dry if the depth is below a minimum value,
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dto1• At the beginning of each integration of the numerical scheme in the model,

there is a search routine to find cells which have the potential to be flooded. A

cell is in a position to be flooded if the bed level is below the water level in an

adjacent cell. After the completion of each integration step with cells updated,

the drying procedure is implemented. The depth of water in certain cells may

have dropped below dto1• These cells are considered to be dry and their depth d

is reset to zero.

4.4.2 Fluxes via Hubbard and Dodd Approach

Following Hubbard and Dodd (2002), the calculation of the fluxes at the shore-

line cells can be divided into three different types of internal edge as shown in

Figure 4.3, which are treated as follows:

• wet/wet use Roe's scheme as normal for both cells.

• dry/dry ignore completely, no contribution is made to either cell.

• wet/dry no update is made to either cell from this edge. This is done be-

cause it has already been decided that the dry cell will remain dry, so a

zero flux condition is applied to this edge.

For the cell at the SHC, the wetting/ drying algorithm is a tool for searching the

flood potential cells; then the water depth of those cells is set to the minimum

depth criterion (d = dtol) and the depth averaged horizontal velocities, U and

V, are zero. Therefore, these cells become to be the wet cells which have one
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Flooding
Potential Cell

dry/dry

weUdry

weUwet

water

Figure 4.3:The wetting/ drying procedure illustrated in ID.

side is wet/wet boundary and another is wet/dry boundary when they are

considered in ID as shown in Figure 4.3. This allows the fluxes at the interfaces

of the potentially flooded cells are computed by the Roe solver scheme on the

wet/wet side, whereas the wet/dry side is applied with a zero flux condition.

Hereafter, we called this type of SBC as HDA.

4.4.3 Primitive Form BC

Using the artificial wetting dry bed method in the model might cause the nu-

merical problems in the simulation as discussed in Section 4.2. The real wet/ dry

interface is the ideal for the SBe. Therefore, the primitive variable form of the

system equations is introduced to be another alternative for calculating fluxes

only at the flooding potential cells instead of filling the water to those cells, be-

cause the Roe decompositions of the primitive variable form are valid at the dry

cell (d = 0). With this boundary condition, fluxes of the flooding potential cells
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is computed by Roe-averaged Castro-Diaz scheme of primitive variable form;

whereas, the other cells are computed by the flux conservative form.

Flooding
Potential Cell

dry/dry

wet/wet wet/dry

water

--------------------------.--------~~--------~---
i-2 i-1 l+t i+2

---+-I~

Conservative
Flux

-l---I~

Conservative
Flux

Primitive
Flux .. Zero

Flux
-I-~-

Cell i-1 Cell i

Figure 4.4: Applying the primitive and normal Roe-averaged fluxes to cells il-

lustrated in ID

Figure 4.4 illustrates the interface fluxes of the flooding potential cell and the

neighbour cells. The cell i is the potentially flooded cell, in which dependent

variables are updated by the primitive flux at the wet/dry edge and zero flux at

the dry/dry edge. On the other hand the adjacent wet cell, cell i-I, is updated

with the Roe-averaged conservative fluxes in both wet/wet and wet/dry edges.

Below we present the full Roe decomposition used for the SBe.

66



CHAPTER 4: MODEL DEVELOPMENT

Roe-averaged Castro-Diaz scheme of primitive variable form

The primitive variable form of the dimensionless NLSW equations and sedi-

ment conservation equation can be written as:

dt + Udx + dUx + V dy + dVy - -w (4.39)

Ut + UUx + dx + VUy fw I~I (4.40)- -B -- U Ux 2d

\It + UVx + VVy + dy fw I~I (4.41)- -B -- U Vv 2d
~e; +~(qu)x +~(qv)y - ~ClqllV'bl (4.42)

Linearising (4.39)-(4.42) at an interface between two constant states (right (R)

and left (L» using the Roe-averaged Castro-Diaz scheme, we get:

(4.43)

where l¥; = [d, U, V,Bf is the dependent variable vector, the source term vee-

-+ [ fw I~I fw I~I ~ ~ ]T ---+ - --+ - --+tor Bp = -w, 2d U U, 2d U V,~CI q IIV'bl ,d(Wp) = A(Wp) - C(Wp)

- --+ - --+ - --+ - --+ - --+and .@'(Wp) = B(Wp) - D(Wp), A(Wp) and B(Wp) are the Roe-averaged [a-

-+ --+ ---+---+
cobian matrices of Fp and Gp respectively, C(Wp) and D(Wp) are the Roe-

averaged Jacobian matrices of the bed slope terms in the x and y directions

respectively, and subscript P refers to primitive form. Thus,
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Up d 0 0

---+ 1 Up 0 1
d(Wp) -

0 0 Up 0

0 -F Ep 0Dp

Vp 0 d 0

- --+ 0 Vp 0 0
&6'(Wp) -

1 0 Vp 1

0 Ep -G 0Dp

(4.44)

(4.45)

where the Roe-averaged variables of the primitive form are different from the

flux conservative form as:

d 1 - 1 - 1- 2 (dR + dL), Up = 2 (UR + UL) , Vp = 2 (VR +VL) ,

-F ( 2 2 -2) (4.46)Dp - eA UR+URUL+UL+Vp ,

-G (-2 2 2)Dp - eA Up+VR+VRVL+VL ,

Ep - eA [up"p + ~(URVR + ULVL)]

To calculate the Roe's decomposition in each direction, we start with the x di-

rection equation (4.44). One of the eigenvalues of dis :X~,4 = Up and the others

are obtained by solving the cubic

Note the difference between (4.47) and (4.18) come from that the terms of D~,

D~, and Ep are not divided by the water depth, so J is no longer multiplied by
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iJ~ in the third term of RHS of (4.47). For this reason, the Roe decompositions

of the primitive form are valid in order to compute the real wetl dry condi-

tion without artificial wetting dry bed technique. Hence, the eigenvectors then

become:

1

)..P,k - Up
d

)..P,k (Up - )..P,k)2 + iJ~ (Up - )..P,k) - dEp

dApk

(Up - )..p:kr - d
d

(4.48)

for k = 1,2,3 and Ep f= 0, and when Ep = 0, we obtain

For k = 4 and Ep f= 0,

---+-Fep,4 =

---+
-Fep,k = (4.49)

1
- -Ap,k - Up

d
o

( Up - )..P,k) 2 - d
d

o

1 o

(4.50)
o---+-Fep,4 =otherwise
1

Thus, the wave strengths (1P,k are:
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• when Bp =1= 0 then

where

for k, a, bE {I, 2, 3} where a =1= k =1= b; and

where

!/JP,4 - [d (3Up - ),p" - ),P" - ),P,3)

+ (Up- ),p,,) (Up- ),p,,) (Up - ),P,3) ] l>d

+ [3U~ - 2Up (),p" + ),p" + ),P,3)

+ (),p").p,, + ),p" ),P,3 + ).P,').P,3) + d+ b: ] dl>U

+dBptl. V + (2U P _ ).P,l _ ).P,2 _ ).P,3) dtl.B

For the bed slope decomposition term

_ [ ( Up _ ).p,a) ( Up _ ).P,b) + d + iJ~] dtl.B
/3P,k = _ ().P,k _ ).p,a) ().P,k _ ).P,b) ( Up _ ).P,k)

(4.53)

for k, a, bE {I, 2, 3} where a =1= k =1= b; and

- tpP4
/3P,4 = (Up _ ).P,l) (Up -').P,2) (Up _ ).P,3)'

(4.54)
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where

<PP,. - - [3U~ - 2Up ().P,l + ).p" + ).P,3)

+ ().P,l).P" + ).P,l).P,3 + ).P,').P,3) + d+D~] dtlB

• when Bp = 0 then

(4.55)

where

for k, a, bE {I, 2, 3} where a =f k =f bi and

(4.56)

For the bed slope decomposition term

(4.57)

for k, a, s e {I, 2, 3} where a =f k =f b, and /3P,4 = o.

Similarly for y direction. From equation (4.45), one of the eig~nvalues of [$ is

~~,4 = Vp and the other three are obtained by solving the cubic
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The roots of P(~p) are determined by using formulae for roots of a cubic. Once

the eigenvalues have been obtained, they are used to determine the eigenvec-

1

~P,k (\ip - ~P,k)2 +D~ (\ip - ~P,k) - d~p,k

_ dEp_
APk - Vp,

tors

---+-Gep,k = (4.59)

d
(\ip - ~P'k)2 - d

d

for k = 1,2,3and Ep f o. When Ep = 0, we obtain

1 0
Vp

1---+ Ep ---+-G otherwise -Gep,4 = ep,4 =
0 0

-1 0

for k = 4 and and Ep f 0,

---+-Gep,k = (4.60)

1

o
~P,k - lip

d
(\ip - ~p,kr - J

d

(4.61)

After the eigenvectors are computed, the wave strengths 71P,k are

• when Ep f 0 then

Q - 'l/JP,k (4.62)
P,k - (\ip - ~P,k) (~P'k - ~p,a) (~P'k - ~P,b)
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where

for k, a, s e {l,2, 3} where a =I k =I band

where

,pP,4 - [,I ( 3Vp - ).p,[ - ).P,2 - ).P,3)

+ (Vp - ).p,[) (Vp - ).P,2) (Vp - ).P,3) ] lld

[3Vfo - 2Vp ().p,[ + ).P,2 + XP,3)

+ ().P,[XP,2 + ).P,[).P,3 + ).P,2).P,3) + ,I+D~] ,Ill V

+dEpD.U + (2Vp - ~P,! - ~P,2 - ~P,3) dD.B

For the bed slope decomposition term

[JP,k=
[( Vp - ~p,a) (Vp - ~P,b) + d +b~]dD.B
(~P,k - ~p,a) (~P'k - ~P,b) (Vp - ~P,k)

(4.64)

for k, a, b s: {l,2, 3} where a =I k =I band

{3- - CPP,4
P,4 - (_ _) (_ _) (_ _)Vp - Ap,! Vp - Ap,2 Vp - Ap,3

(4.65)
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where

'PP,' - - [3Vft - 2Vp ().p" + ).p,2 + ).P,3)

+ ().p,,). P,2 +).p,,). P,3 +).P,2). P,3) +J+ i>~1Jt.B
• when jj;p = 0 then

(4.66)

where

1/JP,k - [( Vp - ~p,a) (Vp - ~P,b) + cl]~d

+ (2Vp - ~p,a - ~P,b) cl~v + cl~B

for k, a, s « {I, 2, 3} where a =I k =I band

(4.67)

For the bed slope decomposition term

_ (~p,a + ~P,b - 2Vp ) cl~B
/3P,k = (_ _) (_ _)

Ap,k - Ap,a Ap,k - Ap,b
(4.68)

for k, a, s e {I, 2, 3} where a =I k =I b, and fjp,4 = O.

4.5 Test Cases

In this section we present test cases for one-dimensional (10) simulations which

are used to evaluate the effects of the various numerical developments de-

scribed earlier. These chosen test cases are useful for either (a) being analyti-

cal solutions of the NLSW equations; (b) being quasi-analytical solutions of the
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NLSW morphodynamic system; and (c) being useful numerical cases to com-

pare with the previous works.

In the following the results from the rigid bed cases by taking a small value of A

= 1X 10-8 S2 1m and the mobile bed cases (A = 0.004 S2 1m) can be compared with

those of previous studies; however the model cannot use A = 0 s2/m, because

this value make the bF,G and EF,G = 0, corresponding to the singular matrix of

the eigenvectors; then this leads to the invalid Roe decomposition. Secondly,

dtol is an important numerical parameter for the wetl dry boundary condition.

Although this parameter should be close to zero, it could make the model crash.

Therefore, we test two values of dtol: dtol = 1 X 10-4 m and 1 x 10-8 m. Lastly,

we also use either (i) use a purely first order Upwind scheme, or (ii) the simple

Minmod flux-limiter function (Hudson, 2001; LeVeque, 2002) for comparing the

result between the first order scheme which is less accurate but more stable,

and higher order accuracy by TVD scheme which might create the spurious

oscillation near the shock.

4.5.1 Dam-break Problem

The dambreak is a classical benchmark problem for shallow water theory. This is

an instantaneous failure of a dam on a dry bed downstream (wetldry dambreak)

with no friction. Many researchers have derived exact or approximate solu-

tions to this problem, on both rigid and mobile beds. Kelly and Dodd (2009)

compared their numerical results with Ritter's (1892) analytical solution for a
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fixed bed dambreak problem (A = 1 x 10-8 s2/m). Kelly and Dodd (2009) also

provided numerical prediction using the method of characteristics, which then

compared with the results from an exact Riemann solver for a dambreak on a

mobile bed (A = 0.004 s2/m). The present model has also been tested for this

dambreak problem, Figure 4.5 shows the initial conditions, which are given by:

d(x,O) =
do if x < 0

(4.69)

o ifx>O

where the initial still water depth, do = 1m with U(x, 0) = 0 m/s, and B(x, 0) =

Om

z,

u=o Id.
/ 7 7 7 7 7 ~

X

Figure 4.5: Initial conditions of dambreak test case

4.5.2 Shen and Meyer Solution

An interesting test for shallow water theory is the dambreak onto a slope. This

dambreak on slope situation is quite similar to a uniform bore travelling over

still water with zero velocity meeting the shoreline, described by Shen and
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Meyer (1963), so we called this testing case as SM63. Figure 4.6 shows initial

conditions and definition of variables of SM63 test case.

z* z

Figure 4.6: Initial conditions of SM63 test case

where the initial water depth do = 1 m and depth-averaged velocity Uo = 0

m/s with plane beach slope of 0.1. The analytical solution of the water depth

when the bore reaches the shoreline for rigid bed SM63 case was originally de-

rived by Shen and Meyer (1963), then Peregrine and Williams (2001) (hereafter,

PWOl) who undertook further analysis and stated the explicit formulations for

the shoreline position x:(t), water depth d*(x*, t) and depth averaged velocity

U*(x*, t) in x* - z" plane as shown in Figure 4.6 with dimensional form as:

x:(t) - 2U;t - ~gt2 tan f3 (4.70)

d*(x*, t)
(U:t - ~gt2tanf3 - X*)2

(4.71)- 9gt2

U*(x*,t) U:t - 2gt2 tan f3+ 2x* (4.72)- 3t

where Ut is the bore velocity at the initial shoreline position, g = 9.81 m/s2

is gravitational acceleration, and tan f3 is beach slope. Although the Shen and
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Meyer solution of PW01 is on the x* and z" co-ordinates, it could be converted

to x - z plane which the results are approximately the same when the bed slope

is small (tan (3~ sin (3)as assigned in the present test.

4.5.3 Hibberd and Peregrine Solution

The simplest physically realisable bore for investigating the swash motion is

the so-called "uniform bore" for which height and velocity everywhere behind

the bore front remain constant. The uniform bore over a sloping beach is an

idealised problem including most of the features which can occur in the bore re-

gion and also the swash motion (Hibberd and Peregrine (1979), hereafter HP79);

therefore, this problem is another test case used for investigating the stability

of the new schemes that are implemented in the model.

In this study, the wet/wet dambreak problem (Stoker, 1957) is used to initiate

the uniform bore approaching a sloping beach; thus, the dambreak is located at

5 m (x = -5 m) before the toe of the sloping beach (x = 0 m). A definition of the

variables used for this test is illustrated in Figure 4.7.

This study sets the initial water depth of the dambreak do = 2.3 m for creating

the uniform bore height hb ~ 0.6 m moving into undisturbed water with d, =

1.0 m toward a plane beach of slope tan(3 = 0.1.
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z,
-'--1----'--'--

I hb

x

Figure 4.7: Notation and initial bathymetry for a uniform bore approaching a

plane sloping beach

4.6 Test Results

New developments of the model are tested and presented in this section. With

many changes in the model, this section is separated into three parts. The first

part shows a comparison between two entropy fixes; then the results from the

different numerical schemes (Castro-Diaz and TOS scheme) and the SBC are

examined by using the test cases. Finally, comparisons between the selected

numerical scheme in this study and the previous analytical or numerical solu-

tions are shown.

Before presenting the test results from the new development of the model, the

first order upwind Castro-Diaz scheme with Hubbard and Dodd entropy fix is

simulated for the dambreak problem when B = 0 and 1 m as shown in Figure

4.8.
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Figure 4.8:Water depth results of the dambreak problem simulated by first

order upwind Castro-Diaz scheme where a) B = 0m case and b) B

= 1mcase.

From Figure 4.8, it can be seen that the previous non-physical shock no longer

exists (see Figure 4.2 bl). Therefore, the OTT2dm of Dodd et al. (2008)will be

not compared with the other schemes in this section.
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4.6.1 Comparing the Entropy Fixes

Three types of the entropy fix are implemented within the first order upwind

Roe-averaged Castro-Diaz scheme: no entropy fix, the Harten and Hyman en-

tropy fix, and the Hubbard and Dodd entropy fix (explained in Section 4.1). The

results are tested with an effectively rigid bed, A = 1 X 10-8 s2/m, and results

shown for three test cases in Figures 4.9 to 4.11.

Results from the dambreak problem (Figure 4.9) show that no entropy fix im-

plementation creates a non-physical discontinuity at the dambreak (x = 0 m),

whereas the other two entropy fixes perform well. Although the Harten and

Hyman entropy fix creates a small kink at the start of the dambreak (x = 0 m)

in the SM63 case and at the toe of the slope in the HP79 case, the Hubbard and

Dodd entropy fix has oscillations in the backwash in both of the two test cases

as shown in Figure 4.10 and 4.11.

The reason for the backwash oscillations for the Hubbard and Dodd entropy

fix could stem from the criterion used to apply the fix (4.8) and the overesti-

mate of the spreading rate that is used in this method. In the backwash, these

oscillation occur when the depth-averaged velocity reaches the wave celerity,

[;~ -c (transonic condition). The Hubbard entropy fix is applied to induce the

splitting shock for the [; + c characteristic which it does not need to split, as we

compare with the smooth results of no entropy fix implementation during the

backwash of SM63 and HP79 test cases. On the other hand, the Harten and Hy-

man entropy fix does not meet the entropy fix criterion (4.6) in this situation;
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a) no Entropy fix
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c) Hubbard and Dodd Entropy fix
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Figure 4.9: Results of dambreak problem using a) no entropy fix,b) Harten and

Hyman entropy fix, and c) Hubbard and Dodd entropy fix.
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a) no Entropy fix
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Figure 4.10: Results of SM63 problem using a) no entropy fix, b) Harten and

Hyman entropy fix, and c) Hubbard and Dodd entropy fix.
r
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a) no Entropy fix

4~--'----'---'----'---'----'---'----'-~~==~
~
_g_
~ 3Q)

c
o
~
ai 2
ID
Q)

g
't:
::J
Cl)

Q)

~

--0
--2
--4
--6
--8

10
--12

14
16
18
20

30 40 5020
OL- L_ L_ L_ L_ L_ __ ~L_ __ ~L_ L_ L_ __ ~

-50 -40 -30 -20 -10 0 10
x [m] at y = Om (iy=1)

b) Harten and Hyman Entropy fix

~
_g_

~ 3
Co
"i6
>
Q)

ID
Q)
oro
't:
::J
Cl)

Q)

~

.. : -: .

--0
--2
--4
--6
--8
--10
--12

14
16
18
20

-40 -30 -20 -10 0 10
x [m] at y = Om (iy=1)

20 30 40 50

--0
--2
--4
--6
--8
--10. . . . . . . .. ..
--12

14
'-16

18
20

c) Hubbard and Dodd Entropy fix

Q)
oro
't:
::J
Cl)

Q)

~ OL- L- L- L- L- L- L- L_ L_ L-__~

-50 -40 -30 -20 -10 0 10 20 30 40 50
x [m] at y = Om (iy=1)

Figure 4.11:Results of HP79 problem using a) no entropy fix, b) Harten and

Hyman entropy fix, and c) Hubbard and Dodd entropy fix.
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therefore, no splitting shock occurs for this method, leading to no oscillation.

However the Harten and Hyman entropy fix covers a smaller range for split-

ting shock; therefore, it creates a small kink at the start of the dambreak in the

SM63 case, and at the toe of the slope in the HP79 case, corresponding to the

transonic rarefaction condition of the [; - c characteristic. Although this entropy

fix method creates a spurious oscillation, this oscillation disappears in time.

As a result, the Harten and Hyman entropy fix method is the most suitable

method from the tested methods; therefore, only the Harten and Hyman en-

tropy fix method is implemented in the numerical scheme for further simula-

tions.

4.6.2 Results from Test Cases

A summary of test case results for the new model developments is shown in

Table 4.1. This table reports the strange behaviours that occur in the test cases,

examples of which are shown in Figure 4.12. The meaning of the abbreviations

used in Table 4.1 are:

• FL means flux limiter.

• HDA means the Hubbard and Dodd approach for the SBC.

• "_"means the results are "acceptable" with no inappropriate shock, kink,

or oscillation.
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• Crashed means the model did not run until completion. There is a numer-

ical crash during the simulation.

• xS means that there is a shock near the tip when x is the size of shock

- SSmeans small shock

- LS means large shock

• xK means that there is a kink at starting of the dambreak in dambreak and

SM63 cases and at the toe of the slope in HP79 case, when x is the size of

kink

- SK means small kink

- LK means large kink

• xO means that there are oscillations in the results excluding the oscilla-

tions after tip when x is the size of amplitude of oscillation

- SO means small amplitude oscillation

- La means large amplitude oscillation

• The other abbreviations are the specific types of errors

- PO means that there is a jump at the tip

- POA means that there are point jump at the tip and oscillations after tip
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Figure 4.12: Examples of strange behaviours that occur in the test cases.
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To accurately simulate the hydro-and morphodynamics in the swash zone, the

model needs accuracy higher than first order; therefore, a higher order accuracy

numerical scheme is implemented by using a Minmod flux-limiter (3.23). When

comparing the minimum depth between dtol = 1 X 10-8 m and 1 x 10-4 m

from Table 4.1, the runs for dtol = 1 x 10-8 m crashed more often, because

of more numerical oscillations. These oscillations might be created from the

discontinuity at the tip (SBC), where there is a wetl dry interface, so that Roe's

method for the small water depth is not strictly valid as discussed in Section

4.2. Moreover, dtol is a parameter for drying the bed. This means that it is

also a control parameter to neglect the small oscillations before they grow up,

so the smaller dtol reduces the capacity to screen out the round-off oscillation.

Additionally, in reality we are unlikely to get films of 1 x 10-8 m thickness,

because the surface tension effect will prevent this. From these reasons about

the simulation accuracy, the stability of the scheme, and the surface tension

effect, the results discussed here are those from Minmod flux-limiter and dtol =

1 X 10-4 m.

Comparing between HDA and Primitive BC, it was found that for almost of

the rigid bed slope cases Primitive BC gave better results in term of stability.

On the other hand in the mobile bed cases, there are more oscillations, and less

stability when using the Primitive BC (see Table 4.1).

About the numerical schemes, there is not much difference between Roe aver-

aged Castro-Diaz scheme and TOS with Castro-Diaz scheme for the rigid bed
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cases; however, in the mobile bed cases the TOS with Castro-Diaz scheme pro-

duces more numerical oscillation than the other scheme. Since the aim of this

study is to simulate the occurrence of beach cusps on a mobile bed, the Roe-

averaged Castro-Diaz scheme with Minmod flux-limiter using the HDA for

SBC is selected to be the model for further simulations.

4.6.3 Comparing Testing Case Results with Previous Works

To verify the new implementation of the model, it needs to be compared with

analytical or alternative numerical solutions from previous works. Only the

rigid and mobile bed dambreak problems and the rigid bed of SM63 could be

compared with the previous works, while the other test cases (mobile bed of

SM63 case, rigid and mobile bed of HP79 cases) do not have valid analytical

or numerical solutions for the same initial condition that can be compared with

the present test cases. However, these test cases are good for testing the stability

of the new implementation schemes as discussed in Section 4.6.2.

As all test cases have to due with the wet/dry boundary condition, causing the

numerical problem there, the evolution of a sand bar in steady unidirectional

channel flow, as considered by Hudson and Sweby (2003), is also another good

test for the morphodynamic model without the wet/ dry boundary condition.

Therefore, this study provides the result from this test case in the last part of

this section.
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Rigid Bed Dambreak Problem

For the rigid bed dambreak problem, the Ritter (1892) solution is a well-known

analytical solution. Figure 4.13 illustrates the model result compared with Rit-

ter solution in the dashed black line. The model result corresponds well with

the Ritter solution except at the tip. At the tip region, there is a shock caused by

using the high dtol value, and the Minmod flux-limiter makes this shock bigger,

as can be seen when comparing the results for rigid dambreak problem in Table

4.1. This shock at the tip limits the tip speed at ~ 5 m/ s, whereas the analytical

solution shown that the tip speed = 2co (= 6.26 m/s for this test case) where

Co = ...r9do is the wave celerity.

Mobile Bed Dambreak Problem

For the mobile bed case, there is a numerical solution for mobile bed dambreak

problem presented by Kelly and Dodd (2009). Their solution is computed from

the same parameters as we set for the mobile bed dambreak test case, therefore

the comparison between the model result and Kelly and Dodd (2009) numerical

solution is illustrated in Figure 4.14.

Although the model produced a good overall result, the tip speed from the

model (4.5 m/s) is still slower than the Kelly and Dodd (2009) tip speed (5.0

m/s) with the same reason, the shock at the tip, which is discussed in rigid bed

dambreak problem comparison. Moreover, another difference is in the constant

region (around x = -2 to 2 m), which could be linked with the incorrect tip
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Figure 4.13: Comparing the model result (colour lines) with Ritter solution

(dashed black lines) for rigid bed dambreak problem when fw =

0, dtol = 0.0001 m, A = 1 X 10-8 s2/m.

speed.

SM63 Case

The results from the model for the (rigid bed) SM63 test case are plotted and

compared with this analytical solution, including comparisons for the tip re-

gion, in Figure 4.15 and 4.16.

92



CHAPTER 4: MODEL DEVELOPMENT

0
-25 -20 -15 -10 -5 0 5 10 15 20 25

6 -- 0

5
--0.4

1
--0.8

I4 ...........
--1.2

:l
1 --1.6........... "'1'

.. ~. 1 1 2
.... '1<'"t 1 --2.4

t 1
. . . . . . . . . . i '1 2.8

I

i 1 3.2
0
-25 -20 -15 -10 -5 0 5 10 15 20 25 3.6

0.15
4

0.1 ·:tt~=I.v
...."'y j..- "" •

0.05 ·;·S( 1 .. t ..
/1 •

i 1

g 0

.c -0.05 ..

'ti
<Il.c -0.1

-0.15 . . . . . . . . . . . .,. .",

-0.2 ..

-0.25
-25 -20 -15 -10 -5 0 5 10 15 20 25

x[m] at y = Om (iy=1)

0.8

,g, 0.6
.<:g. 0.4
'0

0.2 '"

Figure 4.14: Comparing the model result (colour lines) with numerical solu-

tion of Kelly and Dodd (2009)(dashed black lines) for mobile bed

dambreak problem when fw = 0, dtol = 0.0001m, A = 0.004 S2 /rn.

93



CHAPTER 4: MODEL DEVELOPMENT

--0

--1

--2
_1L-------L_------L_------~------~------~------~
-10 -5 0 5 10 15 20 -- 3

--4

--5

--6

7

8

g 1.5

~
Co
.~
~ 0.5
Qi

~
:len
<l>
~ -0.5

4

6.-------.-------.-------,-------.-------~------~

-5 o 5 10
x [m] at y = Om (iy=1)

15 20

Figure 4.15: Comparingthe model result (colourlines)with analyticalsolution

(dashed black lines) for SM63casewhen fw = a, dtol = 0.0001m,

A = 0.004s2/m.

From Figure 4.15, it can be seen that the results from the model coincide with the

analytical solution; however, there are also problems at the start of dambreak

(x = 0 m) and at the tip region. A small kink during the beginning is the same

problem with the method of entropy fix used in the model, as discussed in

Section 4.6.1.

In the tip region, there are the physical and numerical problems, which are

discussed here. Firstly, we start with the physical behaviour of the tip: the tip
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and the model result.
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speed (Us) and tip position (z,'). These variables are investigated in the terms of

non-dimensional parameters that are xsl x~,max' Usl Co, and tltswash, where x~,max

is the maximum of the tip position of SM63 analytical solution, t is time, and

tswash is swash period. Figure 4.16 shows that the starting value of the tip speed

from the model result and analytical solution are different. The tip speed of the

analytical solution starts at 2co, and then it decreases due to the slope. On the

other hand, the model tip speed starts from zero; then it increases immediately

before dropping down. For this reason, the xs,max from the model result is less

than the one from the analytical solution. The error of both Xs,max and Us of this

case are around 35% as shown in Figure 4.16. Secondly, there is a numerical

problem shown in the form of big jump at the tip during only the backwash

phase, which is also the same as PO error type in Table 4.1. This numerical

problem might be caused from SBC corresponding to the use of Roe's method

for the wetl dry condition.

Sand Bar in Channel Flow Case

So far, the present model is verified with the test cases including the SBC. It is

found that there is a numerical problem due to the very shallow water depth;

therefore, the channel test problem is considered here to investigate the evo-

lution of a sand bar in steady unidirectional channel flow without the wetl dry

boundary condition. Hudson and Sweby (2003) introduced the initial condition
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of this test case as a channel of length 1,000 m with

d(x,O) = do _ B(x, 0) and U(x,O) = d(~,cO) (4.73)

where Qc is a constant discharge in the channel flow, do is the initial background

water depth, and the initial bathymetry is

B(x,O) -

. 2 (7r (x _ 300))
sin 200 if 300 ~ x < 500

(4.74)

o otherwise

Moreover, Hudson and Sweby (2003) also presented an approximate solution

of the channel test problem by assuming that the water level and the discharge

is constant throughout the whole domain. These assumptions are only valid

when the bed is interacting slowly the water flow (A < 0.01 S2 / m) with the dis-

charge, IQcl ~ 10m2/s. By making these assumptions, an approximate solution

for B(x, t) is

B(x, t) -
Sl·n2 (7r (xo _ 300)) if 300 _< Xo <_ 500

200 (4.75)

o otherwise

where Xo is the initial co-ordinate, and the value of x is determined by substi-

tuting values of Xo and t into

x = Xo + eAmQ~t
(

• 2 (7r (xo _ 300))) -(m+!)
do _ sm 200 if 300 s Xo ~ 500

(4.76)

otherwise

To test the present model with this test case, the values of A = 0.001 S2 / m, Qc

= 10 m2/s, do = 10 m, are set for the initial condition. Figure 4.17 illustrates
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the comparison of the model result and the approximate solution at t = 230,000

s. It can be seen that the present model can produce an acceptable numerical

result without spurious oscillations, which is similar to the results of Hudson

and Sweby (2003). The diffusive behaviour in the result might be caused by the

small time step that is used in the simulation.

· .
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Figure 4.17: Comparing the model result with approximate solution for HS03

case at t = 230,000s.

As a result, the selected modelling scheme produces overall acceptable results

when compared with analytical or numerical solutions from previous works.

The only significant problem with this scheme is the calculation of the tip po-

sition and speed corresponding to the SBC; this is still a problem for engineers

and scientists at the present day (see Briganti and Dodd (2009».
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lD Swash Zone Simulation

So far, the discussion of various numerical schemes for improving the accu-

racy and stability of the morphodynamic model in swash zone is presented.

The test cases considered in Chapter 4 involve single swash events and sim-

ple dambreaks. Chapter 5 investigates the long term evolution of the swash

zone of a ID (initially plane) beach subjected to continuous incoming waves.

Sensitivity tests are conducted to examine the influence of numerical and phys-

ical parameters. Two types of regular wave are considered: sine and sawtooth

profiles.

5.1 1D Long-term Evolution of Beach Profile

The Roe-averaged Castro-Diaz scheme with Minmod flux-limiter using Hub-

bard and Dodd approach for SBCis used here.
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ID Simulation Setup

The test cases in this chapter start from the 8° plane beach slope with continu-

ous incoming sine waves of period T = 5 s, height H = 0.25 em, and offshore

initial still water depth = 1m (see Figure 5.1). To investigate the ID long-term

evolution of beach profile, each simulation lasts 20,000s (4,000wave periods).

Incoming sine wave,
T= 55, H= O.25m

II
"0 Beach

SWL

E

Figure 5.1: ID simulation initialcondition.

To compare the results with those of Dodd et al. (2008), the reference case pa-

rameters are set as follows: fw = 0.05,K = 0.01mZs,and A = 0.004 s2/m. In the

present improved model dtol = 1 mm, unlike the value of 2 cm used by Dodd

et al. (2008).

The simulation result of the reference case is illustrated in Figure 5.2. The evo-

lution of ID beach profile of this reference case starts to develop a long-shore

bar around x = 1.5 - 3 m and swash berm, due to deposition in the upper swash

region (x = 8-9 m), while there is an erosion at the lower swash (x = 6-7 m).

Then, the long-shore broadens and moves to the offshore, whereas the erosion

at the upper swash area is found. This behaviour is different from the ID per-
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Figure 5.2: Bed change result of ID beach profile evolution for the reference

case.

meable beach case of Dodd et al. (2008) where the long-shore bar is smaller and

the swash berm has more deposition. However, the present simulation uses a

smaller dtol which caused more erosion in the upper swash region as discussed

in Section 5.2.1.

5.2 Sensitivity Test of Numerical Parameters

An important numerical parameter, that relates to the SBC and the stability of

the model, is the minimum depth dtol' The sensitivity test of this parameter is

presented.
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5.2.1 Variation in Minimum Depth

The SBC of Hubbard and Dodd (2002) uses the wetting Idrying algorithm (Sec-

tion 4.4.1 and sets the dtol as the water depth of a cell that can potentially be

flooded. This procedure causes the model to have a thin film of water on the

'dry' beach, and therefore a wetlwet Riemann problem is solved at the moving

shoreline instead of the real wetl dry boundary, because the Roe-approximation

variables are not valid for the wetl dry problem as discussed in Section 4.2. As

a result, dtol is an important numerical parameter in the model.

Dodd et al. (2008) use dtol = 2 cm for simulating 2D beach cusps to stabilise the

numerical scheme. But, this magnitude of dtol is quite a high value comparing

with the ideal wetl dry SBC. Therefore, the sensitivity of dtol is tested for inves-

tigating the effect of dtol to the beach change by varying this variable between

0.5,1,2, and 5 mm. The results are shown in Figure 5.3

Since the new numerical scheme is implemented in the model, the sensitivity

of dtol is tested for investigating the effect of dtol to the beach change by varying

this variable between 0.5,1,2, and 5 mm. The results are shown in Figure 5.3

Figure 5.3 shows the relationship between dtol and beach profile shape. When

dtol is bigger, there is more deposition at the upper swash (x = 8-10 m) and the

long-shore bar (x = 0-3 m). On the other hand the maximum of tip position

(xs,max) is farther onshore, and there is more erosion in the tip region, when dtol

is smaller.
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Figure 5.3: Bed change results of sensitivity test of minimum depth, dtol, from

t =°-20,000s. a) dto1 = 0.5 mm, b) dto1 = 1.0 mm, c) dtol = 2.0 mm, d)

dtol = 5.0 mm.
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From Figure 5.3 a), b), and c), it can be seen that the patterns of bed change

are nearly the same. For dtol = 0.5 mm and 1.0 mm, the results appear to be

convergent. Therefore, it appears that results converge as dtol gets smaller. This

implies that as long as dtol ~ 1 mm results do not vary significantly.

5.3 Sensitivity Test for Physical Parameters

This section investigates the sensitivity of the model to change in lw, K, and A,

for the case of an initially plane beach of slope 8°.

5.3.1 Variation in Bed Friction

The bed friction coefficient, lw, is an important parameter in the model. It di-

rectly affects depth averaged velocity in the momentum equation. Although

this parameter is different between uprush and backwash phase (Puleo and

Holland, 2001; Masselink et al., 2005; Masselink and Puleo, 2006), there is no

exact conclusion about which phase of swash motion that has greater Iw; there-

fore, this study uses a constant fw in the model. The reference value of Iw =

0.05; the sensitivity test considers Iw = 0.005,0.02,0.05, and 0.1. The results are

illustrated in Figure 5.4.

The results are consistent with what we expect: xs,max increases as Iw gets

smaller as shown in Figure 5.4 b), c), and d). It is the same conclusion as Stoker

(2005). However, the Iw = 0.005 case has a different result from the other cases
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Figure 5.4: Bed change results of sensitivity test of bed friction, fw from t = 0 -

20,000s. a) fw = 0.005, b) fw = 0.02, c) fw = 0.05, d) fw = 0.1.
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which will be discussed in Section 5.5.

5.3.2 Variation in Hydraulic Conductivity

This sensitivity test examines the influence of the hydraulic conductivity K

for the following values of K related to beach sediment grain size (Packwood,

1983): 0.001mls for medium sand; 0.01mls for coarse sand; and 0.04mls for

very coarse sand (Packwood and Peregrine, 1980).

The bed change in each case is significantly different: see Figure 5.5. When K is

small, there is a lot of erosion at the beach face, and the shoreline, xs,maXl recedes

further. For K = 0.04ml s there is a lot of deposition at the shoreface which is

more than in the long-shore bar area, and it seems to reach the equilibrium state

when t = 20,OOOsas seen in Figure 5.5 c).

5.3.3 Variation in Sediment TransportCoefficient

The sediment transport equation used in the model in this study is based on

that of Grass (1981). Therefore, the sediment transport coefficient, A, plays a

crucial role in determining the sediment transport rate, which will then affect

the bed change. This parameter is related to sediment properties and bed pro-

file: such as grain size (e.g. D50), sediment specific gravity bs = Psi P where Ps

and P are density of sediment and water, respectively), and the bed slope (see

more detail in Grass (1981), Hudson (2001), and Castro Diaz et al. (2008».
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Figure 5.5: Bed change results of sensitivity test of hydraulic conductivity, K

from t = 0 - 20,OOOs.a) K = 0.001 m Zs, b) K = 0.01 mis, c) K = 0.04

m/so

Following Stoker (2005), the sensitivity test for A uses A = 0.001, 0.004, and 0.04

s2/m. However, for A = 0.04 s2/m, the model crashed for reasons discussed in

Section 5.5. Figure 5.6 represents results for A = 0.001 and 0.004 s2/m. It can be

seen that the bed changes are similar, but occur at different rates. For examples,

the A = 0.004 s21m case at t = 5,000 s and the A = 0.001 s2/m case at t = 20,000 s

have approximately similar bed changes, although there is a more pronounced
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difference at the tip region. It seems that the effect of scaling A is to scale the

rate of change of the bed level which is the same conclusion as that reached by

Stoker (2005).
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Figure 5.6: Bed change results of sensitivity test of sediment transport coeffi-

dent, A from t = 0 - 20,OOOs.a) A = 0.001s2/m, b) A = 0.004S2 jm.

5.4 Variation in Incoming Wave Types

So far, the incoming wave used in the model has been a sine wave, which is

applied as the time variation of the surface elevation ('ry(t)) at the offshore BC:

H (27rt)
rJ (t) = '2 sin T ' (5.1)

where H is the incoming wave height, and T is the incoming wave period. This
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type of incoming wave always breaks when it moves on to the sloped beach.

When the wave is breaking, it initiates sediment movement and creates the

long-shore bar at the location where the wave is broken. The shape of breaking

wave is reformed from the sine wave to be a bore moving toward to the shore.

Therefore, a modified incoming wave profile is introduced at the offshore BC

as a sawtooth wave, representing an incoming broken wave (bore), which may

be describes by:

( ) _ H (1 _ 2tres)
1] tres - 2 T (5.2)

where tres is the residual time of the number of wave period (NT) which is

calculated by tres = t - NT when t > NT, and N is an integer.

Figure 5.7 illustrates the different bed profiles that evolve due to sine and saw-

tooth incoming waves. The sawtooth wave causes considerable deposition at

the upper swash region, and continuously enlarge the swash berm. The sine

wave initially creates a small swash berm that is then eroded (disappearing at

t = 15,000 s), before erosion occurs at the bed in the upper swash region by

t = 20,000 s. With the different behaviour in the upper swash region, it also

affects to the whole beach profile behaviour. The long-shore bar of the saw-

tooth wave case moves offshore corresponding to more deposition at the upper

swash, whereas the sine waves broaden the long-shore bar in time and it moves

onshore due to the movement of the shoreline.
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Figure 5.7: Bed change results of sensitivity test of sediment transport coeffi-

cient, A from t = 0 - 20,OOOs.a) A = 0.001 s21m, b) A = 0.004 s2/m.

5.5 Discussion

The evolution of ID beach profile with the infiltration effect starts from creating

the long-shore bar at location of wave breaking and the deposition in the upper

swash region. Then, the beach evolves according to the numerical and physical

parameters which are tested for their sensitivity as illustrated in Section 5.2 and

5.3. Most of the test cases do not reach the equilibrium state except the K = 0.04

m/ s case which can be compared with a cross-shore equilibrium profile from

the ID cross-shore permeable beach simulation of Dodd et al. (2008). The K =

0.04 m/ s case uses dtol = 1mm which is smaller than Dodd et al. (2008) cases (dtol

= 2 em and K = 0.01 m/s). It seems that the more erosion at the upper swash
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region from using the smaller dtol (discussed in Section 5.2.1) is compensated

by the more deposition from the higher K value (discussed in Section 5.3.2). As

a result, both resulting beach profiles from Dodd et al. (2008) and the K = 0.04

mls case in this study are similar.

Regarding to dtol, it seems that the smaller dtol makes the model more realistic

because it makes the model come closer to real wetl dry condition; however, too

small dtol might lead to the model crashing as discussed in Section 4.6.2. From

the sensitivity test of dtol, the convergence of the results is found when dtol :::; 1

mm. Therefore, dtol = 1 mm is set as the default for the further 2D simulations

in this study.

The choice of value for fw mainly affects the shoreline position, with higher

fw -+ shorter xs,max and shifting the beach profile as shown in Figure 5.4. AI-

though the beach profile results of fw = 0.02-0.1 cases have the same shapes, the

shifting effect leads to different net volume of the bed change (~) which can be

calculated by

Vb = ~x lx ..max

b(x, y, t)dx
Xoll.hore

(5.3)

where ~x is the cross-shore dimension of a calculation cell, Xof/shore is the off-

shore position, and b(x, y, t) is bed change related from the plane sloping beach.

The ~ of fw = 0.02, 0.05, and 0.1 cases are -0.319, -0.266, and -0.221 m3/m,

respectively, where the minus sign of Vb means the net volume is the erosion.

However, the fw = 0.005 case led to qualitatively different beach evolution the

other cases. It has shorter Xs,max and ~ = -0.059 m3/m. The reason why this
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case is unique is not clear. Nevertheless, the beach profile development during

the first 5,000 s is developed in the same ways as the other cases do except the

more deposition at the upper swash. Therefore, this bigger swash berm might

affect the flow and sediment movement resulting the different evolution.

As shown by the results in Section 5.3.2, increasing K led to greater deposition

at the upper swash region, a phenomenon also observed by Masselink and Li

(2001). The higher K takes more infiltration which directly affects to the wa-

ter depth and depth-averaged velocity; then, the swash berm (upper swash

deposition) is created, and deposition continuously occurs until equilibrium is

reached. On the other hand when K is small, there is less momentum and re-

duced infiltration, so that surface water can move farther up the beach leading

to more erosion at the upper swash.

From the sensitivity test of sediment transport coefficient, it appears that bed

change is the same for all A values except that for small (large) A development

is slower (faster). Therefore, the size of A appears not to lead to qualitative

differences. However, the model crashed at the highest value of A considered

(A = 0.04 S2 / m).

This problem arises because the smaller dtol used in the present model creates

a higher difference in sediment fluxes at SBC, causing the bed level to change

rapidly when the previous rundown and the new runup meet together. During

this event, the sign of depth averaged velocity is switched resulting in sudden

deposition and erosion, because the sediment transport equation in the model
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depends on the depth averaged velocity. Selection of the highest A value led to

accelerated occurrence of a discontinuity in the bed level, followed by spurious

oscillation and model break down. In the case of A = 0.04 s2/m, the abnormal

discontinuity at the maximum rundown of the swash motion (x = 6.5 m) was

found at t = 63 s before the model crashed as shown in Figure 5.8.
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Figure 5.8: Bed change results of A = 0.04 s2/m during t = 60-63 s.

The different incoming wave profiles led to very different evolved beach pro-

files. The sine wave has an erosion at t = 20,000 s, whereas the sawtooth wave

results in a large deposition at the upper swash. The reason is not clear, but

the dissimilarity may be due to differences in deposition that occur at the be-

ginning of the simulation. Since the sine wave is breaking after it moves on

the sloping beach, it transports less onshore sediment transport than the saw-

tooth wave which has already broken at the offshore BC. As the small amount

of deposition occurs for the sine wave case at the beginning, the later incoming

waves can spill over that swash berm and cause erosion. On the other hand, the
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sawtooth wave transports a considerable amount of sediment from the onset of

the simulation, resulting in the creation of a large swash berm. Later waves

cannot pass that bar, leading to continuous deposition in the upper swash zone

and the final beach profile shown in Figure 5.7.

The sine wave produces a beach profile having the same components, Le. long-

shore bar, trough, and swash berm, as the beach profile of Masselink and Li

(2001),whereas the sawtooth wave creates a wider equivalent region, with the

wave simply breaking further offshore. As a result, the sine wave is used for

the further 2D simulations in this study.
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Formation and Evolution of Beach

Cusps

Here, the method is used to investigate the formation and long-term evolu-

tion of beach cusps. The incoming wave variables and beach properties for

the simulations are presented in the first part of this chapter; then, the cusp

parameters that are used to explain the physical evolution of beach cusps are

discussed. Next, the results of beach cusp formation and long-term evolution

simulations are presented and compared with previous works. A recently de-

veloped method to investigate bed changes over the time called "Global Analy-

sis" is presented; here this method is used to investigate the change from ID to

2D dynamic. The results from the simulations are discussed in the final part.
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6.1 2D Cusp Simulation

This study aims to investigate the formation and long-term evolution of beach

cusps due to various incoming waves for a given initial beach profile. This

study considers incoming waves of period 3, 4, 5, 6, 7, and 8 s at the offshore

boundary where the still water depth of 1 m. Two types of initial beach pro-

files are considered: a plane 8° sloping beach and an initial curved beach which

is created from the evolution of the plane beach (see the details of the curved

beach creation in Section 6.6) before significant 2D evolution has taken place.

For studying the long-term evolution, all cases are simulated for 400 wave pe-

riods (e.g., the T = 6 s case the simulation starts at t = 0 s, and ends at t = 2,400

s).

Since the model used in this study is an improvement of Dodd et al. (2008)

model, the parameters of the reference case are selected to be the same as those

used by Dodd et al. (2008) for their permeable beach case: incoming wave

height (H) = 0.25 m, wave period (T) = 5 s, bed friction factor (fw) = 0.05, sedi-

ment porosity (P) = 0.4, hydraulic conductivity (K) = 0.01 mis, sediment trans-

port coefficient (A) = 0.004 s2/m, bed diffusion coefficient (C) = 0.16, but the

minimum depth (dtol) decreases to 1 mm because of the new numerical imple-

mentation. Cell sizes are D.x = D.y = 0.1 m, which are a reasonable compromise

between the model resolution and computational efficiency. The cross-shore

profile of the initially planed beach used in the 2D simulation is the same as

that used in ID test which is shown in Figure 5.1.
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6.1.1 Perturbations in the model

In Dodd et al. (2008) perturbations are imposed on an initially alongshore uni-

form state by adding a random perturbation on the offshore wave height. Here

we repeat this approach but also investigate a perturbation to the bed. This

perturbation is applied once at the initial state, and hence, does not have later

effects on beach cusp evolution after the initial transient.

Wave Perturbation

Following Dodd et al. (2008), random perturbations chosen from a normal dis-

tribution in the range of ±2 cm are added to the underlying incoming wave

height at each alongshore cell of the offshore BC, so that:

TJ(Y, t) = TJo(t) + fp(Y, t) (6.1)

where TJis the surface elevation, TJo is the unperturbed surface elevation, and fp

is the perturbed elevation. These values are subsequently smoothed in space

and time in order to avoid the formation of unrealistic shocks. A spatial 5-point

weighted average function is used, while a simple average method between the

new perturbation and the previously applied perturbation is applied for time

smoothing function (see Stoker (2005) for more details).
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Bed Perturbation

The bed perturbation is introduced to avoid the continuously perturbed signal

every computational time step. Since the bed perturbation also only affects the

simulation once at the initial state, it is significantly different from that of Dodd

et al. (2008). Nonetheless, we should expect cusp development to be similar,

and so we can make sure that the cusp results from model are not coming from

the perturbations.

In order to avoid that the initial beach topography dominates the final beach

cusp formation, the bed perturbation function should provide uniformly dis-

tributed spectral energy at the initial state (Gamier et al., 2006). Therefore,

the bed perturbation in this study uses a Dirac delta function, which adds a

perturbed elevation (€p) to the beach profile at one point in the computational

domain once before the simulation starts. To investigate the effect of bed per-

turbation elevation and position, this study considers perturbed elevations of 1

and 5 mm, and the chosen points of bed perturbation are varied in cross-shore

direction (x-direction) between 3, 5, and 7 m. In the alongshore direction the

positions are fixed at y = 25 m, which is the middle point of the domain. Be-

cause the periodic boundary condition is used for the alongshore boundary in

the model, the different alongshore positions (y-direction) affect only the posi-

tions of horns and embayments.
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6.1.2 Comparison of Wave Perturbation and Bed Perturbation

The bed perturbation has more advantage than the wave perturbation by avoid-

ing the continuous perturbation. This can be confirmed that the final beach

cusp formation is not directly created by the perturbation. However, Dodd

et al. (2008) used the wave perturbation in their study, and that previous work

is the reference for this study. Therefore, this section provides the comparison

results between wave and bed perturbation cases in order to sensitivity test be-

tween both two perturbations. The parameters in these simulations are those

of the reference case, and results are shown in the terms of change in bed level

relative to the initial plane beach, with velocity vectors averaged over the pre-

ceeding period to illustrate the circulation pattern as shown in Figures 6.1 and

6.2. The velocity vectors in all of the figures in this study are plotted in form

of (U - (U), V) to exclude the purely ID effect of cross-shore which is typi-

cally much than alongshore velocity component, and (U) is the average of the

cross-shore velocity over the alongshore section as:

1 iLl/(U(x)) =L U(x, y)dy
y 0

(6.2)

where Ly is length of computation domain in the alongshore direction.

Figures 6.1 and 6.2 illustrate the bed change for the wave and bed perturbation

at position x = 5 m, y = 25 m, (5,25), with fp = 1 mm. As these figures are used

for comparison of wave and bed perturbation, the details of the formation and

long-term evolution of these results will be discussed in Sections 6.3 and 6.4,

respectively. It can be seen that the formation of beach cusps, the circulation
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Figure 6.1: Change in bed level (m) relative to a plane beach (colours) after 20,

100,200,300, and 400 periods, and velocity vectors averaged over

preceeding period for the wave perturbation reference case.
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Figure 6.2: Change in bed level (m) relative to a plane beach (colours) after 20,

100,200,300, and 400 periods, and velocity vectors averaged over

preceeding period for the bed perturbation at (5,25)with Ep = 1mm,

and other parameters as same as reference case.
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patterns, and their developments are nearly the same. There is a difference in

the position of horns and embayments which is understandable considering

the different perturbation. At this state it can be confirmed that the usage of

bed perturbation instead of wave perturbation does not significantly affect the

results.

6.1.3 Comparison in Positions and Elevation of Bed Perturba-

tion

A Dirac delta function is applied in the present study to perturb the bed by

a given vertical distance at a given cross-shore position. This study selects

three different cross-shore positions representing the approximated future loca-

tions of long-shore bar, trough region, and shoreface region after the simulation

starts. These positions are estimated from 1D results (see Chapter 5). Compar-

isons of the bed change results from the different positions of bed perturbation,

i.e. (3,25), (5,25), and (7,25), with the same perturbed elevation (fp = 1 mm) are

respectively shown in Figure 6.3 a), b), and c), where (x,y) are the co-ordinate

of the perturbed point. In terms of perturbed elevation comparison between fp

= 1 and 5 mm cases, the result of fp = 5 mm with (5,25) for the position is shown

in Figure 6.3 d).

From Figure 6.3, there is no significant difference in bed change characteristic

and circulation pattern when comparing both different positions and pertur-

bation elevations. The specific difference again is in the position of horns and
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Figure 6.3: Change inbed level (m) relative to a plane beach (colours) after 400

periods, and velocity vectors averaged over preceeding period for

the bed perturbation at a) (3,25) with Ep = 1 mm, b) (5,25) with Ep =

1 mm, c) (7,25) with €p = 1 mm, and d) (5,25) with €p = 5 mm.
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embayments. As discussed before, bed perturbation has an advantage over

wave perturbation in terms of avoiding the continuous perturbation. It can be

confirmed that the evolution and formation of beach cusps does not come from

the perturbations. Moreover, the results of simulations for the different posi-

tions and perturbation elevation are nearly the same. Consequently, the bed

perturbation at (5,25)with €p = 1 mm case is used as the reference case in this

study.

6.2 Cusps Parameters

The cusp parameters can be divided into two groups in terms of spatial (forma-

tion) and time (evolution). The spatial group can be observed directly from the

data, and linked to the formation of beach cusps. This group has two param-

eters: cusp spacing (..xc) and swash excursion (Se). Beach cusp spacing is the

average distance from adjacent horn to hom as shown in Figure 6.4. The swash

excursion is the horizontal distance between the highest and lowest position of

the swash front on a beach in each swash event see also Figure 6.4.

6.2.1 Growth rate

An important parameter representing the initial development of beach cusps is

the growth rate. Growth rate is one indicator to show how fast beach cusps ini-

tially develop (see Dodd et al. (2008». In this study, the growth rate is computed
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Beach cusp spacing (Ad

BEACH

Horn Horn

t Incoming+ Wave

Swash excursion (Se)

~~

Section A

Figure 6.4: Definitionofbeachcusp spacing and swash excursion.

based on the assumption of that the perturbations are expected to grow initially

exponentially in time, during the cusp development from ID beach profile to

2D beach cusps, consistent with the linear stability theory (Dodd et al., 2003),

and called this growth rate the "linear growth rate", (J'. The computation of the

linear growth rate needs the discrete Fourier transform to extract the significant

bed signal.
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Fourier analysis

This study uses the Fast Fourier Transform (FFT) to find the dominant wave-

length (Am) of the cusp patterns from the bed patterns created from the simula-

tions. The FFT method can be applied only one section at each time; therefore,

an alongshore section between the upper swash and lower swash is chosen for

this analysis. After the FFT is applied, the dominant wavelength is the wave-

length corresponding to the Fourier maximum coefficient .Ye(Am, t). From the

assumption that the beach change grows exponentially in time at the initial

state of the simulation, .Ye(Am' t) ~ .Ye(Am, 0) exp (at). Therefore, the linear

growth rate (a) can be computed from the gradient of the logarithm value of

the amplitude of the dominant wavelength as:

(6.3)

Here, the comparison of the Fourier analysis between the section in the up-

per swash (x = 7.2 m) and that in the lower swash (x = 5.1 m) is considered.

The bed development, the Fourier coefficient, and the logarithmic value of the

amplitude of the dominant wavelength of section x = 7.2 m are respectively

shown in Figure 6.5 a), b), and c), while those variables of section x = 5.1 m are

also illustrated in Figure 6.5 d), e), and f). The a can be also computed from

the gradient of Figure 6.5 c) and f). When comparing the results, there are some

differences in the bed development and the Fourier coefficient; however, the Am

and a from both sections are the same. As a result, it could be implied that the

Fourier analysis of any section from the upper and lower swash zones provides
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Figure 6.5: Linear growth rate computation using discrete Fourier analysis for

the reference case (T = 5 s) at section x = 7.2 and 5.1 m. a) Series

of the x = 7.2 m section in time, b) Discrete Fourier analysis of the

section x = 7.2m, c) Logarithmic value of the amplitude of the dom-
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section in time, e) Discrete Fourier analysis of the section x = 5.1 m,

f) Logarithmic value of the amplitude of the dominant wavelength

for section x = 5.1 m.
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the same Am and (J. In this study, the alongshore section x = 7.2 m is selected

to do the Fourier analysis because this section coincides with the still water

level and the beach cusps start to form around this section for all simulations,

while the section at the lower swash is varied depending on the incoming wave

condition.

6.3 Beach Cusp Formation

This section looks at cusp formation, and the compares of the simulation results

with the previous studies by Werner and Fink (1993),Coco et al. (1999,2000),

and Dodd et al. (2008). The results of the beach cusps starting from the plane

slope beach with bed perturbation at (5,25) and various incoming wave peri-

ods after t = 400 wave periods for investigating the long-term formation and

evolution are illustrated in Figure 6.6.

As shown in Figure 6.6, Ac increases for increasing T. Although Ac can be mea-

sured directly from the plots, in certain cases it was not easy to identify the

positions of the cusp horns and embayments. From the Fourier analysis, the

dominant wave length (Am) can also represent beach cusp spacing (Ac); there-

fore, the Ac for all simulations in this study is given by the Am.

The cusp formation results are represented in terms of cusp spacing (Ac) and

swash excursion (Se), In order to compare with previous works, the geometri-

cal parameter (f) from self-organisation theory is computed using (2.5). Since
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the cases of this study are similar to those for the permeable beach of Dodd et al.

(2008), Table 6.1 provides the comparison of the results between this study sim-

ulations and the permeable beach results of Dodd et al. (2008).

Table 6.1: Summary of results of the morphodynamical simulations compar-

ing with permeable beach results of Dodd et al. (2008).

Results from simulations Results from Dodd et al. (2008)
T

(J .xc Se (J .xc Se

[s] [S-1 ] [m] [m]
f [S-I] [m] [m]

f

3 0.041 3.6 1.1 3.3 0.057 4.2 1.4 3.1

4 0.032 6.2 2.0 3.1 0.064 5.3 2.0 2.7

5 0.026 8.3 2.5 3.3 0.048 8.3 2.4 3.4

6 0.024 10.0 2.9 3.4 0.025 10.0 2.9 3.4

7 0.014 12.5 3.2 3.9 0.017 12.5 3.4 3.7

8 (0.0056) (16.6) (3.3) (5.0) (0.0064) (13.8) (3.8) (3.6)

Note that the linear growth rate, (1, is calculated by Fourier analysis of alongshore sec-

tions at x = 7.2 rn, and the figures in parentheses denote only weak evidence for cusps.

The results show that .xc and Se increase with T, with an approximately con-

stant value of the self-organisation geometrical parameter, f. From Table 6.1, it

can be seen that summary of present results of the morphological simulations

with those of Dodd et al. (2008) for a permeable beach. However, f from both

simulations and Dodd et al. (2008) are still high when compared with Werner

and Fink (1993) (1 < f < 3), and Masselink (1999) and Coco et al. (2000) (f ~ 1.6).

This might be caused from the depositions at the embayments which have not
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been observed in the field (Coco et al., 2003) as shown in Figure 6.6. Actually,

the Se is determined at the embayment, because the longest horizontal distance

between the highest and lowest position of the swash front is found there. As

there is deposition in the embayment, it causes Se to reduce and hence f to in-

crease, while ..xc does not change. However, the occurrence of these depositions

will be discussed in Section 6.7.

6.4 Beach Cusp Evolution

InFigures 6.7 to 6.10 show cusp development over 400 wave periods for the ref-

erence case. The evolution of the cusps starts from the creation of a long-shore

bar and deposition at the upper swash. Up to this point only 1D behaviour

in the cross-shore profile is observed with no appearance of 2D behaviour, as

shown in Figure 6.7 a); then, a 2D circulation pattern starts to develop at the

upper swash (around x = 9 m) at t = 200 s (Figure 6.7 bj), During this 1D de-

velopment stage most of sediment is moved from the trough area (around x =

6 m) to the long-shore bar at x = 3 m (depositions); however, some of sediment

is deposited at the upper swash.

Thereafter 2D circulation starts at the upper swash; this circulation pattern is

expanded to the trough area to create the beach cusps as seen in Figure 6.7 c).

Not only are horns and embayments created from this 2D circulation, but also

the cusp-like patterns are in anti-phase in the trough area. Sediment continues

to move from the shoreface and trough area to the long-shore bar. During this
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transition period from ID to 2D of the cusp evolution, the linear growth rate

(Table 6.1) is the appropriate measure to how fast the cusps develop.

Some beach cusps are initially created with a "small" cusp spacing; then, they

rebuild themselves to create a bigger cusp system by the coalescing of two bays

and subsequent rearrangement to an equal spacing. From Figure 6.7 c) to 6.8

c), there are 7 embayments in the computational domain; in Figure 6.8 d) and

e) (900-1,000 s), there is a transition period from 7 to 6 embayments. Finally,

after coalescing, the new bay system rearranges and maintains itself until the

simulation is as shown in Figure 6.9 and 6.10.

More surprising is the reversing behaviour between horn and embayment dur-

ing the cusp evolution as seen from the results. This strange behaviour is ob-

served after horns and embayments are already created from the 2D circulation

at the shoreface. In this reference cases, the reversing behaviour occurred both

6 and 7 bays cusp system. It seems that the horns and embayments are reversed

every 200 s (40 wave periods) by observing from Figure 6.10 a) to e). The horn

at y = 12 m when t = 1,600 s changes to be the embayment when t = 1,800 s;

then it changes back to hom again at t = 2,000 s. This reversible behaviour is

investigated and will be discussed in Section 6.7.2.

136



CHAPTER 6: FORMATION AND EVOLUTION OF BEACH CUSPS

6.5 Global Analysis

As the simulation results of beach cusp development are very dynamic each

time step and widely changeable in shape pattern, global analysis is introduced

to investigate and explain the dynamic process of cusp evolution, by consider-

ing all the bed changes relative to the initial beach in the computational domain.

Garnier et al. (2006) used the concept of global analysis to define the time de-

pendent variable of bed change, Ilbll, as:

(6.4)

where b is bed change related to the initial plane sloping beach, Lx and Ly are

lengths of the computational domain in the cross- and alongshore directions,

respectively. However, it found that more bed change occurs in the cross-shore

direction than in the alongshore direction; thus, the results from (6.4) primarily

reflect the cross-shore behaviour. To remove purely on-offshore effect and to

investigate the beach cusp which is a 20 pattern, the average of bed change in

alongshore direction is subtracted by (b):

(

L L ) 1/2
lib - (b) II = LXIL

y
1111 x (b - (b) )2dxdy (6.5)

The (b) is computed by the same method as shown in (6.2). The comparison of

Ilbll and lib - (b) II of the reference case is shown in Figure 6.11 a) and b), respec-

tively. The value of Ilbll is much higher than that of lib - (b) II. This confirms

that Ilb- (b) II is more suitable for investigating the evolution of 20 beach cusps,
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after the global b d chang parameter is taken to be IIb - ( b) II.

The global analy is plot can b compared with the behaviour of cusp evolution
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shown in Figures 6.7 to 6.10. From Figures 6.11 a) and b), Ilbll increases rapidly

during t = 0-150 s, after that the rate of change of Ilbll increases linearly, while

lib - (b) II, extracting the cross-shore effect, starts from nearly zero at t = 0 s

because of the Dirac function on the plane beach slope, and increases to a small

constant value until t ~ 150 s. This implies that only ID development occurred

during t = 0-150 s, which is approximately the same time as observed in Section

6.4.

There are still two main different features in lib - (b) II plot: two big jumps

around t = 150-300 sand 1,000-1,150s, and the periodic cycles during t = 300-

1000 sand 1150-2000 s. The first jump occurs during the development from

a ID to 20 morphology. The 20 circulation pattern can start to be observed

during this time. The second jump is the transition period from a 7 bay to a

6 bay system. Moreover, the periodic cycles can reflect the behaviour of horn

and embayment reversibility. Horns and embayments are well defined when

lib - (b) II is at the peak of the cycle, whereas the transition of hom to embay-

ment and vice versa appears at the trough of the cycle. The time corresponding

to the peak of the cycle in the plot of lib - (b) II is similar to the time when the

Fourier analysis of the section x = 7.2 m has a peak, while the trough of that

cycle occurs at the same time as when the Fourier coefficient is approximately

uniformly distributed (Figure 6.11 cj), Consequently, the global analysis plot

can describe the long-term evolution of beach cusps, and the period of rever-

sal is approximately 200 s for the reference case which is the same period as

found in Section 6.4. However, the reversible behaviour of the beach cusps is
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not found in the field, so the period of reversal is simply a number without ref-

erence to any physics. The reason of the reversible behaviour will be discussed

in Section 6.7.2.

6.6 Simulation of Initial Curved beach

So far in this study, all simulations have started from a plane sloping beach. In

these simulations see also Dodd et al. (2008), cusp evolution is initially 1D; then,

2D beach cusps and circulation patterns appear. Therefore, since we primarily

focus on beach cusps it makes sense to start from a beach from which cusps

develop immediately. Global analysis is used as a tool for determining the end

of the 1D development time, and the averaged cross-shore profile at that time

will be expanded to create the alongshore uniform curved beach profile. The

global analysis results for comparing the dtol between 0.5,1,2, and 5 mm of T =
3-8 cases are shown in Figure 6.12.

From Figure 6.12, the lib - (b) II value of dtol = 0.5, 1, and 2 mm cases have the

same cusp development, whereas the dtol = 5 mm cases are totally different.

This confirms the earlier conclusion from 1D simulations that the simulation

results have converged for dtol :5 1.0 mm, as discussed in Section 5.2.1. More-

over, the convergence in the results makes more confidence in using the present

model to simulate and investigate the beach cusp evolution.

The lagging in time of the 1D to 2D development (as discussed for analysing
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the global analysis curve in Section 6.5) for dtol = 0.5 and 1.0 mm cases can be

observed. The bigger dtol case can develop 2D behaviour faster than the smaller

one. With this configuration and the convergence in simulation results from

dtol = 0.5 and 1 mm case, we make the assumption that the break apart point

between dtol = 0.5 and 1.0 mm cases is the end of the ID development of dtol =

1.0 mm case, while dtol = 0.5 mm case continues the lD process. Therefore, the

selected time to pick up the averaged cross-shore profile in order to create a 2D

initial curved beach is assigned at the break apart point.

Finally, the time steps to create the initial curved beach are determined case by

case from the first point that differences of lib - (b) II between dtol = 0.5 and 1

mm over ho exceed ± 1 x 10-3 as shown in Figure 6.13. The reason for choosing

1x 10-3 to be the divergence/convergence decision value comes from the fact

that the bed perturbed elevation used for the initial condition is 1 mm (fp/ ho =

1x 10-3), which can disturb the global bed change. The summary of the selected

time to create the initial curved beach profile using averaged profile of the plane

slope beach results is shown in Table 6.2. Each initial curved beach profile has

to add the 1 mm Dirac delta function at (5,25) as the bed perturbation to be the

initial beach condition before starting the initial curved beach simulation.

6.6.1 Cusp Formation of Initial Curved beach

New initial curved beach profiles with bed perturbations for each incoming

wave conditions are simulated, and the results presented in Table 6.3. The cusp
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Figure 6.13:Differencesof lib - (b) II between dtol = 0.5and 1.0mm over ho of

T = 3, 4, 5, 6, 7, and 8 s cases.

Table 6.2:Summary of the creation time from the plane slope beach results to

create the initial curved beach profiles.

wave period, T [s] 3 4 5 6 7 8

time, t [s] 156 104 130 102 168 368

parameters (ACt Se, and (J) are found by the same method as used for plane slope

beach initial condition.

The beach cusp formations obtained from the two initial beach profiles are sim-
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Table 6.3: Summary of results of the morphodynamical simulations for the ini-

tial curved beach profiles

T a .xc Se
[s] [S-1 ] [m] [m]

I

3 0.038 3.8 1.5 2.5

4 0.034 6.2 2.2 2.8

5 0.021 8.3 2.7 3.1

6 0.021 10.0 3.2 3.1

7 0.021 12.5 3.2 3.9

8 (0.0062) (16.6) (3.3) (5.0)

ilar. However, the main difference between these two initial profile results can

be recognised for the shorter incoming wave period cases (T = 3-6 s). In these

cases, the swash excursions from the initial curved beach profiles are higher,

while the cusp spacings remain the same. This reduces the self-organisation

geometrical parameter, I,and makes the I values become close to the range of

those provided by Werner and Fink (1993).

The reason Se is longer in the initially curved beach cases is due to the initial

deposition of sediment in the upper swash; then, the sediment in the lower

swash tends to move offshore which is the same behaviour as the 1D case do

when there is a lot of deposition at the upper swash during the beginning of

the simulation as discussed in Chapter 5. Therefore, the position of the trough

of beach cusps is farther offshore, while the maximum runup position is not

changed, resulting in longer Se. For example, the comparison of averaged beach
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profile between the initial plane sloping beach and curved beach for T = 4 s

cases at t = 400 periods indicates that the trough of beach cusp in the initial

plane sloping beach is at x ~ 6 m, while that of initial cusp beach is at x ~ 5 m

as shown in Figure 6.14.
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Figure 6.14:Comparison of averaged beach profile between the initial plane

sloping beach and the initial curved beach for T = 4 s cases at t =

400 periods.

6.6.2 Evolution of Initial Curved beach

The investigation of long-term evolution of beach cusps for the initial curved

beach profile for T = 5 s case is shown in terms of the global analysis, and the

results compared with those of the reference case in Figure 6.15.
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Figure 6.15: The global bed change with alongshore averaged substraction in

time of initial curved beach, T = 5 sease.

From the comparison, the pattern of cusp evolution is the same as the refer-

ence case which starts from the 10 development, then a system of small cusp

is created before the system of larger cusps develops. However, the difference

of cusp development between these two cases is the usage time in each phase.

The 10 development of the initial curved beach starts before the reference case

as we expect; then, the small cusp system phase is shorter (t = 200-400 s). Af-

terwards, the cusp pattern evolve to a system of large cusps, with reversible

behaviour occurring during this evolutionary stage. The period of reversal for

the initial curved beach profile case is around 160 s which is faster than the ini-

tial plane sloping beach case. The shorter period of small cusp system with no
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big jump during the transition between small and big cusp system of the ini-

tial curved beach case, and the faster period of reversal might be a reason why

the beach profile already has deposition in the upper swash zone; thus, the de-

posited sediment can easily move alongshore to create a system of large cusps

faster than the reference case without the big change in the lib - (b) II value.

6.7 Discussion

The simulations of the formation and long-term evolution of beach cusps pro-

vide an improved understanding of the development of cuspate system. The

results for beach cusp formation are very similar to those obtained by Dodd

et al. (2008). Global analysis is more efficient than Fourier analysis at evaluat-

ing the evolution of cusps, because the global method includes all of the com-

putational points in calculation domain, whereas the Fourier analysis accounts

solely for the selected section. Even so, Fourier analysis is required in order to

identify the cusp spacing, which global analysis cannot.

6.7.1 Sensitivity Test of Bed Diffusion Coefficient

The bed diffusion coefficient, C, is the parameter for including the downslope

effect in the sediment transport equations. In 2D simulations, we use C = 1.6,

corresponding to the angle of repose of sediment of 32° (see more details in

Section 3.3). Therefore, the sensitivity test of this parameter varies C between
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1.0and 2.0,and the re ults of bed changes are shown in Figure 6.16.
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Figure 6.16: Change in bed level (m) relative to a plane beach (colours) after

20, 100,200,300, and 400 periods, and velocity vectors averaged

ov r pr ce ding period for sensitivity test of bed diffusion, C =

2.0,wh n other parameters as same as reference.

Beach cu p formati n and volution are similar to the reference case (C = 1.6).

The effect f b d diffu ion co fficient can be observed at the long-shore bar and

al 0 at the upp r wa h r gion. The height of long-shore bar is higher, but its

width i narr w r when C i smaller. This behaviour is also reflected in that the

high r C m v th diment downslope and reduces the berm slope. In con-

c1usi n, th variati n f b d diffusion coefficient does not have any significant
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effect to .xc, but affects directly the long-shore bar.

6.7.2 Reversible Behaviour

The reversible behaviour of the horns and embayments in the beach cusps ev-

ery 32 wave periods (initial curved beach profile case) or 40 wave periods (ini-

tial plane slope beach case) is not observed in the field (Coco et al., 2003). It

appears that the reason for this reversible behaviour comes from the deposition

in both horns and embayments as seen in Figure 6.10. From the field observa-

tion, the deposition is found only at the horns, whereas there is no erosion or

deposition at the embayments.

The reasons why there is the deposition at the embayment are still unclear.

There could possibly be two sources. Firstly, the permeability used herein had

a constant value here. This parameter is found to have a large effect on the pro-

file and deposition at the shoreface in Chapter 5, and more investigation of the

permeability pattern in one swash period will be presented in Chapter 7.

Secondly, the simple sediment transport equation is used for this study, be-

cause the implementation of a complex sediment transport equation is limited

with the Roe approximation scheme. This simple sediment transport equation

is only a function of depth averaged velocity, and the way to approximate the

depth averaged alongshore velocity in the Roe approximation solver could cre-

ate the zero velocity at the embayment when two alongshore velocities which

have the same magnitude but the difference direction meet together; thus, it
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causes the sediment deposition at the embayment. The behaviour of the zero

velocity in the Roe approximation could be found in the model using any sed-

iment transport equations; however, the sediment transport rate formulation

used now in the model makes the result worse, because it induces the rapid

bed change when the zero velocity occurs. Therefore, the variation of the sedi-

ment transport equations will be tested and discussed in Chapter 8.

6.7.3 The Effect of Domain size

The cusp simulations use a periodic boundary condition for lateral boundaries.

This allows us to shorten the domain length for a simulation that has exactly

repeating behaviour along the domain lateral boundaries. However, with the

lateral feedback signal too short a domain length (in the longshore direction)

could affect the formation and evolution of beach cusps. Therefore, the domain

length is increased in the alongshore direction (y-direction) from 50 to 60 m

with the other parameters kept as reference.

For this simulation, the cusp parameters are: .xc = 8.6 m, Se = 2.6 m, f = 3.4,

(J = 0.026S-I, which are approximately the same as the reference case. By the

global analysis, the cusp evolution behaviour has the same three phases as the

reference case. The evolution starts from 1D development, then a small cusp

system phase can be observed before the bigger cusp system occurs. The main

difference in cusp evolution is the duration of each development phase. This

case has longer duration for the small cusp system than the reference case, while
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Figure 6.17: The global bed change with alongshore averaged substraction in

time for expansion in y-direction to 60m case when other param-

eters as same as reference.

the other behaviours are similar as shown in Figure 6.17. In conclusion, there

is no significant effect of the domain size used in this study on the beach cusp

formation and evolution.

6.7.4 Grid Convergence

The size of spatial grid, bt.x and ~y, is one of the important parameters for the

numerical model. A smaller number of the computation cells (bigger fj.,x, bt.y)

produces a bigger error; therefore, the variation of the grid size is tested in this

section for investigating the convergence of the error on fj.,x, ~y --+ O.
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In this study, the grid convergence test varies the number of computation cells

(number of cells in cross-shore direction (Nx) x number of cell in alongshore

direction (Ny)) between 120x500, 96x400, 72x300, 60x250, and 48x200, while

the domain size remains the same (12 m x 50 m). This means that the grid sizes

are varied between /:).X = /:).y = 0.1 (reference case), 0.125, 0.167, 0.2, and 0.25 m,

respectively. After t = 500 s of simulation, the root mean square error (Erms) of

all computation cells and equations in each case is computed by

Nz NIJ 4

LLLE~,j,n
i j n

Erms = (6.6)

where Ei,j,nis the computation error in each cell and equation, which is com-

puted by substituting the resulting value into central discretisation of (4.9) to

(4.12). The i and j denote the cell number in cross- and alongshore direction,

and n denotes the number of equation. Figure 6.18 shows the relationship of

Erms and the total number of computational cells. The Erms value reduces when

the number of cells increases. The best fit line has a gradient of -0.52, although

one would expect a value nearer -2.00 for a fully second order code. A smaller

cell size than that used in the reference case (/:).x = /:).y = 0.1 m) could have less

errors, however the finer cell size, such as /:).X = /:).y = 0.05 m, causes the model

crash. Therefore, the reference case has the most reasonable cell size to simulate

the beach cusps in this study.
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Figure 6.18: Grid convergence test result.

6.7.5 Numerical Problems in the model

The presently implemented numerical scheme mostly reproduces the results of

Dodd et al. (2008), but it still needs some improvement in the stability of the

calculation and the special treatment of the shoreline boundary condition. The

model experiences numerical instability in certain cases, such as: the fw < 0.05,

the higher hydraulic conductivity (K = 0.04), and the finer resolution (~x = ~y

= 0.05 m) cases. All of the crashes in the model occur near the shoreface area

which has a shallow water depth. It is recommended that further research be

carried out with the aim of resolving the numerical difficulties that arise at the

shoreline due to the very small depths encountered.
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Beach Permeability

The model predictions show reversible behaviour between the cusp horns and

embayments, unlike nature where this does not occur. It is possible that the

numerical reversings are due to the treatment of infiltration in the model. Beach

permeability plays an important role in 1D cross-shore beach profile change as

discussed in Chapter 5. In the present chapter, the sensitivity of cusp formation

and evolution to infiltration is tested. The infiltration velocity, w, at each time

step and the accumulated water volume of infiltration over one swash motion

are also presented to identify the reversal mechanism. The influence of the

particular numerical implementation selected to represent the infiltration term

is also examined.
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7.1 Sensitivity Test of Hydraulic Conductivity in 2D

Simulations

Chapter 5 has presented sensitivity tests of hydraulic conductivity, K, in lD

simulations. That test varies K = 0.001, 0.01, and 0.04 m/ s corresponding to

medium sand, coarse sand and gravel beach (Packwood and Peregrine, 1980).

The same K sensitivity tests for 2D simulations, caused the model to crash for

the K = 0.04 m/ s case. Therefore, the values of K that are used in this 2D sensi-

tivity cases are 0.001, 0.005 and 0.02 m/so Figures 7.1 to 7.3 display the results in

the form of bed level change over time along with the averaged velocity vector

field over the preceding period.

To compare these results, refer to the reference case (K = 0.01 m/s), which is

shown in Figure 6.2. It can be seen that the important effect causing by large K

is deposition at the upper swash. When K is small, there are double circulation

velocity patterns at the swash and long-shore bar, and an anti-phase cusp like

pattern at the long-shore bar is observed instead of the deposition at the upper

swash as shown in Figure 7.1, and 7.2. However, this double circulation and

rhythmic pattern at the long-shore bar have not been found for the higher K

cases.

For K = 0.02 m/ s, there is more deposition at the upper swash than for the

reference case. The evolution of beach cusp starts from lD development; then

the circulation pattern is observed at the upper swash, and the flow diverges
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from hom to embayment like it does in the reference case. With more sediment

deposited at the upper swash, the horns in the K = 0.02 m/ s case have higher

bed levels than the other K cases as seen in Figure 7.3 b). Since the Roe ap-

proximation used in the model has a possibility to create a stagnation zone at

the embayment and the simple sediment transport equation used in the model

as discussed in Section 6.7.2, the diverged flow moves the deposited sediment

from 1D development along the cusps to the embayment in order to create the

new deposition zone. When these new deposition zones have enough height of

sediment, it acts like horns; thus, the small scale circulation pattern is created

corresponding to the small cusp system as seen in Figure 7.3 c) and d). After

that, the small circulation pattern is broken down, and it tries to form the bigger

circulation pattern as shown in Figure 7.3 e). As a result, the beach evolution of

K = 0.02 m/ s case is similar to the reversibility of horns and embayments in an

indirect way, because it also creates the deposition at the head of embayment

and the reversible behaviour of the circulation pattern.

7.2 Infiltration in One Swash Period

So far the overall relationship between K and the beach cusp formation is pre-

sented, but not the detail of the infiltration pattern over one swash motion. This

section describes the water loss into the beach in terms of instantaneous infil-

tration velocity, w, at each time step for the reference case (T = 5 s) during t =

503-508 s as shown in Figure 7.4.
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Figure 7.4 illu trat th in tantan u infiltration velocity corresponding to

the infiltrati n rat durin th upru h phase of the swash motion (Figure 7.4

a) and bj), whil th backwa h phase is shown in Figure 7.4 c), d), and e). In

one swa h peri d, infiltrati n ccur first at the horns at the time that the water

level is higher than th till wat r lev I (SWL)around x = 7.2m; then, the flow

diverge fr m h m t mbaym nts causing infiltration there. The infiltration

rate is high during th upru h and reduces in time with the smaller water depth

during the backwa h.

To summari e th infiltration volume over a swash period, the accumulated

volume of infiltrati n ov r one swash period along two bays of beach cusps of

the reference ea i pre nted in Figure 7.5. Although a high infiltration rate

at the start occur at the horn, water infiltration in the embayment area occurs

over a longer period. As a result, the volume of infiltrated water lost at the

embayment (y = 22.5-26m) during t = 503-508 s for the reference case is 0.24

m", whil the infiltration volume at the horn (y = 26-29.5m) is 0.21m".

x10-4
10

6
E 9 4
x 8 2

0
20 22 24 26 28 30 32 34 [m3

]
y [m]

Figure 7.5:Accumulated infiltration volume (m'') over one swash period (t =

503-508s) and average velocity vectors at t = 508 s for the reference

ea e.
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Not only is water lost, but so is momentum. These losses limit the potential of

backwash to remove the sediment causing deposition in the upper swash zone

(Stoker, 2005). From the result of the accumulated infiltration volume, the more

infiltration is found at the embayment than at the hom; thus, this results in

deposition at the embayment leading to the reversible behaviour as discussed

in Section 6.7.2.

7.3 Variation in Infiltration Calculation

In the present model, the groundwater level and exfiltration are not included.

Only a simple Darcy's law using a constant hydraulic conductivity is imple-

mented in the model (see more detail in Section 3.4); therefore, the hydraulic

conductivity is the most crucial parameter in the calculation of infiltration. Here

we examine different ways of including Darcian infiltration. The alternatives

for implementing the infiltration velocity calculation in the model are shown in

Table 7.1.

The rationale of the Alternative 3) is that most infiltration might be expected on

the uprush phase when groundwater level is lowest. The reason for the Alterna-

tive 4) is that finer particles with lower hydraulic conductivity are often found

in the lower swash, whereas coarser sediments with higher hydraulic conduc-

tivity, are found near the shoreline (Masselink et al., 1997) as shown the differ-

ence of the grain size along the beach cusps in Figure 7.6. However, the present

tests aim to investigate solely the behaviour of beach change corresponding to
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Table 7.1: The alternatives of the K implementation.

Alternative Description

1) No infiltration K is set to zero

2) Constant K K is constant for every calculation cell

3) Only up rush phase K is applied when U> O.

4) Linear interpolation K varies linearly from zero at still water level (SWL)

to K = 0.01 m/sat bed level 0.3 m above SWL.

Note that, Alternative 1) is the same as the impermeable beach case of Dodd et al.

(2008); Alternative 2) is the reference case.

the different infiltration calculation; therefore, the maximum bed level (= 0.3 m)

for K variation in Alternative 4) is estimated from the Figure 7.6. The results of

Alternative 1),3), and 4) are shown in Figures 7.7,7.8, and 7.9, respectively. The

Alternative 2) is the reference case, so the result is illustrated in Figure 6.2.

From the alternative criteria and the results, we can reorder the alternatives

from the least to the most infiltration in volume occurring on the beach as: Al-

ternative 1) no infiltration, 3) only uprush phase, 4) linear interpolation, and

2) constant K. When comparing the results, we found two main differences

in beach shapes. For less infiltration (Alternatives 1) and 3», there is no de-

position at the upper swash, but a double circulation pattern is created from

the upper swash and the rhythmic broad long-shore bar with no reversible be-

haviour during the cusp evolution. On the other hand in Alternatives 2) and

4), the deposition at the upper swash is created from the infiltration effect, and

only one circulation pattern occurs: the shoreface rhythmic pattern; however,
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7.4 Discussion

This chapter presents the sensitivity test of K and alters the implementation

of the infiltration calculation for investigating especially the causes of the re-

versible behaviour and the effect of infiltration on cusp formation. The varia-

tion in values of K and the ways to implement K can be summarised into two

groups. The first group is low infiltration, including K = 0.001 and 0.005 rrr/s

cases and Alternatives 1) and 3); while the second group is high infiltration,

which contains K = 0.01 and 0.02 ml s cases and Alternatives 2) and 4). From

the results, the lower infiltration group has double circulation pattern, but no

deposition at the shoreface and no reversible behaviour. On the other hand for

the high infiltration group, there is only the one circulation pattern with de-

position at the shoreface, but the reversible behaviour is found in this group.

Although the K = 0.02 ml s case is not found the direct reversible behaviour,

it has the deposition at the embayment which also the the same as the reversal

pattern group has; therefore, K = 0.02mls case can be included in the reversible

behaviour group.

The occurrence of the double circulation pattern is observed only in the low

infiltration group. This might come from either small amount of the deposition

or the erosion at the upper swash area during the ID development of beach

cusps, because of the small value of K; thus, there will be more erosion at the

upper swash in time which leads to the beach moving onshore as discussed in

Section 5.3.2. For the 2D beach cusps of small K cases, there is more erosion
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and xs,max occurs further onshore at the embayment than at the horn as shown

in Figures 7.7 and 7.B. The difference of the shoreline position at the horn and

embayment relates to the difference of the cross-shore position of the long-shore

bar, leading to create the rhythmic long-shore bar and the double circulation.

Another investigation in this chapter is to identify the relationship between the

infiltration and reversible behaviour. The reversible behaviour is found only in

the high infiltration group, which has the high deposition at the embayments.

Therefore, the detail of the infiltration velocity at each time steps of Alternative

2), Alternative 4) (high infiltration group), and Alternative 3) (low infiltration

group) are used as an example for investigating the infiltration effect.

Comparing the instantaneous infiltration velocity at each time steps of the ref-

erence case (Figure 7.4), Alternative 3) case (Figure 7.10), and Alternative 4) case

(Figure 7.11), it can be seen that they have the same pattern which starts with

a high infiltration rate at the beginning, then the infiltration spreads along the

cusps by the hom divergent flow and decreases in time. However, the main

difference of Alternative 3) from the other cases is the shorter duration for the

infiltration because its criteria are limited only to the up rush phase.

The shorter duration infiltration causes the total infiltrated volume over one

swash period to be different from the other cases. From Figure 7.12, the accu-

mulated infiltration volume of Alternative 3) has more or less the same amount

of loss water along the cusps (horns (y = 29.5-32.5 m) = 0.14 m3 and embay-

ment (y = 26.5-29.5 m) = 0.13 m3); however in Alternatives 2) and 4), the total
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Figure 7.11: Instantaneous infiltration velocity, w, (m/s) and depth averaged

velocity vectors over one wave period (t = 503-508 s) for Alterna-

tive 4).
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of infiltrated wat r r n wa h period in the embayment area is more than

in the horn ar a a h wn, r pectively, in Figure 7.5 and 7.13. Alternative 2)

produced th t tal infiltrat d volume at the horn and embayment given in Sec-

tion 7.2, wh r a th t tal infiltrat d volume of Alternative 4) at the horn (y =

20.5-24m) = 0.17m3, and at th embayment (y = 24-27.5m) = 0.20m".
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Figure 7.12:Accumulated infiltration volume (m'') over one swash period (t =

503-508s) and average velocity vectors at t = 508 s for the infiltra-

tion only uprush phase case.
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Figure 7.13:Accumulated infiltration volume (m3) over one swash period (t =

503-508s) and average velocity vectors at t = 508 s for the linear

variation of J( case.

Increased infiltration directly affects the water volume and momentum of the

backwash leading to less capability of containing the sediment transport; there-

fore, the sediment will deposit at the area where has higher infiltration. The
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high infiltration group has more accumulated infiltration volume at the embay-

ment than that at the hom, so deposition occurs at the embayment leading to

reversible behaviour. On the other hand, no difference in accumulated infiltra-

tion volume along the cusps for the low infiltration group, causes no excessive

deposition in the embayment area, and so there is no reversal.

From this evidence, it can be concluded that high infiltration directly causes

deposition in the embayments, creating reversible behaviour between horns

and embayments. However the results of low infiltration cases do not look like

beach cusps, because there is no deposition at the upper swash, and they have a

double circulation pattern; but they do not exhibit reversible behaviour, which

is realistic.
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CHAPTERS

Testing Sediment Transport

Equations

Chapter 7 showed the details of the infiltration effect that could be one of the

reasons causing the reversible behaviour in the simulation results. Another

source that might be the cause of this strange behaviour is the simple form of

sediment transport equation used in the model. This chapter starts with the in-

vestigation of sediment movement over one swash period calculated from 2D

morphodynamical simulation results (the same as shown in Chapter 6); then,

the variation of sediment transport equations is tested to investigate the rela-

tionship between the sediment transport equation and reversible behaviour in

the simulation using the idealisation of beach cusp topography adapted from

the Dean and Maurmeyer (1980)equation.
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S.l Sediment Transport in One Swash Period

The sediment transport equation used here is a simple formulation (3.9) of that

of Grass (1981), where m = 3, as discussed in Section 3.2. The behaviour of sed-

iment over one swash period governed by (3.9) is investigated by recomputing

the rate of bed change tB, = aB/at) in the central discretisation form of sed i-

ment conservation equation (3.4) at each time step, while the bed diffusion term

is neglected as:

(8.1)

where quo . and qv· . are cross- and alongshore sediment transport rate in a com-
t.,) "',3

putational cell (i,j), i and j are cell numbers in cross- and alongshore direction,

respectively, and { = 1/ (1- p) where p is the porosity of the bed. The recom-

puted result of the reference case from t = 503-508 s is illustrated in Figure 8.1.

Although the central difference method has less stability than the upwind dis-

cretisation, it provides the acceptable results with less computation for inves-

tigating the sediment movement over one swash period. Because this section

aims to investigate the pattern of erosion/ deposition, not the magnitude of the

bed change rate, all the plotted data are expressed as normalised value of rate

of bed change, Bt,norm = BtlIBt,maxl, where IBt,max I is the maximum absolute

value of rate of bed change in the upper swash area (x = 7-10 m) over the con-

sidered wave period.

Figure 8.1 shows two bays of beach cusps (y = 18-34 m), focusing on the upper
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Figure 8.1:Normalised rate of bed change computed from q = AUjUj2 over

one swash motion during t = 503-508s and depth averaged velocity

vectors for the reference case result.
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swash area, to inve tigate the bed change at horns and embayments over one

swash period. Ther i a ediment bore corning with the wave front during the

up rush pha e, which i the same behaviour that found in the coupled model

of Kelly (2009), wh r a the other area tends to erosion as shown in Figure 8.1

a). The height f thi diment bore decreases when the wave reach the upper

swash region. During the backwash, almost all areas are erosive except the area

near the shoreline of the embayments which has deposition.

I
x

o

-5
20 22 24 26

v lml
28 30 32 34

Figure 8.2: Accumulated volume of the normalised value of B; over one swash

period (t = 503-508 s) computed from q = AUIUl2 of the reference

case result.

The summary of the bed change over one swash period in terms of accumulated

volume is shown in Figure 8.2. At the upper swash (x = 8.5-9.5 m), there is

erosion at the horns (y = 20-22 and 27-29 m), whereas the deposition is found

around the embayments (y = 24-26 and 30.5-32.5 m). On the other hand, there

is more deposition at the horn than at the embayment in the lower swash (x =

7-8 m).

As part of an investigation into different generic sediment transport formula-

tions, Pritchard and Hogg (2005) introduced the coupled depth and velocity
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sediment transport rate q as:

-+ -+ I-+I(m-l)q(d, U) = AdU U (8.2)

where A is the dimensional sediment transport coefficient, and m is a constant.

For comparison, we use the result of the depth averaged velocity from the ref-

erence case to calculate the sediment transport rate and rate of bed change by

using (8.2) when m = 3 for each time step. The rate of bed change is illustrated

in Figure 8.3.

The B, pattern computed from (8.2) and the reference sediment transport equa-

tion (3.9) are different. The reference equation produces the erosion next to the

sediment bore moving onshore during uprush phase, whereas no erosion is ob-

served from the result computed by (8.2). During the backwash phase, (8.2)

produces the approximate zero of B, at the embayments in the upper swash

as shown in Figure 8.3. As a result, there is no deposition at the head of the

embayments in the plot of bed change accumulation in volume over one swash

period; most of the sedimentation is found at the horns in the lower swash area

as shown in Figure 8.4.

From the comparison of these two difference sediment transport equations, it

may be observed that the choice of the simple sediment transport formula is

a factor influencing the reversible behaviour in the simulation; however, the

variables (d, U and V) that are used to compute the sediment transport rates

and bed change in this investigation could be biased because they come from a

simulation that exhibits reversible behaviour.
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Figure 8.3: Normalised rate of bed change computed from q = AdUIUl2 over

one swash motion during t = 503-508s and depth averaged velocity

vectors for the reference case result.
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Figure 8.4: Accumulated volume of the normalised value of B; over one swash

period (t = 503-508 s) computed from q = AdUIUl2 of the reference

ca e re ult.

8.2 Dean and MaurmeyerBeach Cusps

For an unbia ed comparison, the sediment transport rate and theoretical bed

change require to calculate from hydrodynamic data for an equilibrium beach

cusp profile (where by definition there is no beach change). Dean and Mau-

rmeyer (1980) introduced the formulation to create the idealisation of beach

cusp topography which requires the cusp spacing ('xc), the average beach slope

(M), and cross-shore beach profiles at horn and embayment. As the beach pro-

file data is taken from the simulation, the Dean and Maurmeyer (1980) formu-

lation is adapted to be compatible with the previous results as:

B (x, y) =M (x) [1+ Ec sin (~: (Y + ~c ) ) 1 (8.3)

where B (x, y) is the elevation of bed level above a datum, x and y represent the

horizontal distances in the cross-shore and alongshore direction, respectively,

180



CHAPTER 8: TESTING SEDIMENT TRANSPORT EQUATIONS

(c is a small parameter which can be:

(8.4)

and Af(x) is the averaged cross-shore profile between horn and embayment. It

is assigned by:

(8.5)

where BH(X) and BB{X) are the cross-shore profile of the hom and embayment,

respectively, from the simulation result. We apply the result of the reference

case to (8.3) for creating the idealised beach cusp topography as shown in Fig-

ure 8.5.
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Figure 8.5: The idealised beach cusp topography created from the result of ref-

erence case.

After we got the idealised beach cusps profile, the OTT-2d model of Hubbard

and Dodd (2002) is altered to include the infiltration effect by using the Pack-
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wood (1983) equations (3.13) and (3.14); then, it is used to simulate 2D hydro-

dynamic behaviour on the idealised beach cusp profile of Figure 8.5 without

sediment movement, in order to provide the hydrodynamic variables (d, U, and

V) for testing the variation of sediment transport equations in the next section.

The hydrodynamic result of the idealised beach cusps is illustrated in Figure

8.6.
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Figure 8.6:The circulation pattern (vectors) averaged over preceeding wave

period on the idealised beach cusp topography and the bed level

(m) relative to the plane sloping beach (colours).

8.3 Variation in Sediment Transport Equations

The investigation of sediment movement prediction over one swash period

computed by the various sediment transport equations is observed and pre-

sented in this section. The sediment transport rate and rate of bed change,

as predicted by the different formulas, are computed using the same hydro-

dynamic data as calculated by the model of Hubbard and Dodd (2002), but

including an infiltration term identical to (3.13), solved on the idealisation of
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beach cusp topography as shown in Figure S.S. The sediment transport equa-

tions that are used in this test come or are adapted from Pritchard and Hogg

(2005); they can be divided into 3 groups:

--+• Velocity-only group: q = q( U) only. This originates from the Grass (19S1)

equation. The m value in (3.9) is varied between 3 and 4 in this test as:

q(U) _ AU luI2
q(U) _ AU luI3

(S.6)

(S.7)

where A is sediment transport coefficient.

--+• Coupled depth and velocity group: q = q (d, U), as in (S.2). In this test,

q(d, U) _ AdU luI2
q(d, U) _ AdU luI3

(S.S)

(S.9)

--+
where q( d, U) is the sediment transport rate, d is water depth.

• Threshold group is a group of sediment transport equations that contain a

critical velocity corresponding to a critical bed shear stress as the criterion

for sediment movement. In this test, we use

q(U) = AU (lu12 - U;) when luI2 > U; (S.10)

q(d, U) = AdU (lu12 - U;) when Iur > U; (S.l1)

1
--+ 12 --+ --+If U ::; U;, q( U) and q(d, U) in (S.10) and (S.l1), respectively, are zero,

where Ucr is the critical velocity, which is set to 1mls in this test (0.25-2

mls is recommended in Pritchard and Hogg (2005».
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The comparison of various sediment transport equations is presented in the

form of accumulated bed change volume over one swash period, as shown in

Figure 8.7. Since this test aims to investigate only the bed change pattern that

results from the various equations, the magnitude of bed change is not consid-

ered important; therefore, the values in the plot are the accumulated volume of

the normalised value of B, over one swash period and the sediment transport

coefficient, A, in these equations could be not the same dimensions.

From Figure 8.7, we can arrange groups of sediment transport equations into

two main groups, velocity-only and coupled depth and velocity groups, while

those in the threshold group are divided between the two main groups: (8.10)

is merged into the velocity-only group, and (8.11) with the coupled depth and

velocity group.

When we start to investigate the results at the lower swash (x = 7-8 m), there is

erosion at the horns (y = 21-23 and 29-31 m) and deposition at the embayments

(y = 18-19, 25-27, and 33-34 m) for both two main groups; however, the coupled

depth and velocity group has more relative deposition than the velocity-only

group. At the upper swash (x = 8-10 m), there is some erosion near the horns

and depositions at the embayment centre for the velocity-only group, as shown

in Figure 8.7 a), b), and e). Moreover the flow at the upper swash diverges from

horns to embayments, as shown in Figure 8.5. This flow and bed change be-

haviour could imply that the velocity-only groups of sediment transport equa-

tions induce the sediment to move from horns and to deposit at the embayment

184



CHAPTER 8: TESTING SEDIMENT TRANSPORT EQUATIONS

2

~
x 0

-2
20 22 24 26 28 30 32 34

~
9

x 0

-1
20 22 24 26 28 30 32 34

o

-1

~
x o

-5

o

-1

[
x o

-1
20 22 24 26

y[m]
28 30 32 34

Figure 8.7:Accumulated volume of the normalised value of B; over one

swash period computed from a) q = AUIUI2, b) q = AUIUI3, c)

q = AdUIUI2, d) q = AdUIUI3, e) q = AU(IUI2 - U;r), and f)

q = AdU(IUI2 - U;r)·
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head (Le. centre of embayment) and thereby to create the reversible behaviour

in the simulation.

For more investigation in detail of the net beach change in one cusp, we inte-

grate the accumulated volume of the normalised value of B, over one swash

period by dividing one beach cusp into four subareas: at the upper (x = 8-10 m)

and lower (x = 7-8 m) swash of the hom (y = 28.2-32.3 m) and the embayment (y

= 24.1-28.2 m), as shown in the summary of these calculations from the different

sediment transport formulations in Table 8.1.

It can be seen in Table 8.1 that there is some erosion at the horn, and deposi-

tions at the embayment in the upper swash area for the velocity-only group,

confirming that the sediment moves from the hom to the embayment to create

the deposition resulting in the reversible behaviour. On the other hand, the cou-

pled depth and velocity group creates deposition at both hom and embayment.

Although the net volume of the deposition at embayment is more than at the

horn for this group of sediment transport equations, it is found that the deposi-

tion at embayment head is one spot of high deposition. This spot of deposition

could occur for other reasons, which will be discussed in Section 8.4.

8.4 Discussion

The testing of different sediment transport equations in Sections 8.1 and 8.3

shows that the sediment transport equations that are functions solely of depth
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Table 8.1: Summary of the accumulated volume of the normalised value of B,

over one swash period in different area of beach cusps for the differ-

ent sediment transport formulations.

Velocity-only Coupled depth and velocity

m=3 m=4 Threshold m=3 m=4 Threshold

(8.6) (8.7) (8.10) (8.8) (8.9) (8.11)

US -0.0042 -0.0030 -0.0038 0.0196 0.0040 0.0089

Hom IS 0.0016 0.0009 0.0018 0.0561 0.0217 0.0436

Total -0.0026 -0.0021 -0.0020 0.0757 0.0257 0.0525

US 0.0118 0.0058 0.0100 0.0425 0.0154 0.0283
Embay-

IS 0.0034 0.0020 0.0047 0.0559 0.0263 0.0599
ment

Total 0.0152 0.0078 0.0147 0.0984 0.0417 0.0882

US 0.0076 0.0028 0.0062 0.0621 0.0194 0.0372
Beach

LS 0.0050 0.0029 0.0065 0.1120 0.0480 0.1035
Cusp

Total 0.0126 0.0057 0.0127 0.1741 0.0674 0.1407

Note that: US means the upper swash area (x = 8-10 m); LS means the lower swash area

(x = 7-8 m); the horn is accumulated between section y = 28.2-32.3 m; the embayments

is accumulated between section y = 24.1-28.2 m

averaged velocity moves the sediment from horns to deposit at the embayment

head. This causes the reversible behaviour in the simulation because the sedi-

ment at the embayments is deposited, whereas it is eroded at the horns until the

sediment height at the embayment is higher than that at the horns. Therefore,
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the flow will start to reverse back from the old embayments to the horns, and

the old embayment will become the new hom. The reversal between horns and

embayments occurs here.

In the case of sediment transport equations that couple water depth and depth

averaged velocity, the bed change at the upper swash is less than at the lower

swash; whereas the bed changes at the upper and lower swash are more or less

the same for the velocity-only group as shown in Table 8.1. Although there is

a spot of deposition at the embayment head for the coupled depth and veloc-

ity group as shown in Section 8.3, it might be caused from the channel at the

embayment found from the close up contour plot of the idealisation of beach

cusp topography as shown in Figure 8.8. This channel results from the selected

result profiles, and these hom and embayment cross-shore profiles are the best

from the big beach cusp system result of the reference case that we can find.

The channel is found between two small berms at horn locations (y = 20-24

and 28.5-32.5 m). When the wave runs up, the flow can breach through this

channel and move to the back of the berms as shown in Figure 8.9, during the

transition period between uprush and backwash phase. This inundated flow

causes the deposition spot in the channel at the embayments as shown in the

results. From the results of using (8.8) on the reference beach case as shown

in Figure 8.4, there is no channel at the embayment; thus, there is no flooding

and no deposition spot at that location. This implies that the deposition spot is

caused by breaching at the channel. Therefore, the coupled depth and velocity
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Figure 8.8:Shoreface area topography of idealisation of beach cusp topogra-

phy from data adaption equation.

group of sediment transport equations might not create the deposition at the

embayment that causes the reversible behaviour in the simulation, if there is no

channel on the beach.

The deposition caused by breaching at the channel is also found in the re-

suits calculated by the velocity-only group. However, the percentage of the

deposition at the upper swash of the embayment for the velocity-only group

(68.0-77.6%) is higher than that for the coupled depth and velocity group (32.1-

43.2%). Thus, ifwe assume that all deposition at the upper swash of the embay-

ment for the coupled depth and velocity group is caused by the channel effect,

and then, exclude this deposition by the same percentage from the velocity-

only group, there still remains deposition occurring at the embayment head for

the velocity-only group.
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In conclusion, the velocity-only group of sediment transport equations is one of

the reasons that the reversible behaviour is created in the simulation. However,

we cannot confirm that the usage of the coupled depth and velocity group in

the model will produce the non-reversible behaviour in the simulation.
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Figure 8.9: Normalised rate of bed change computed from q = AdUIUl2 over

one swash motion and depth averaged velocity vectors for the hy-

drodynamic on the idealised beach cusps.
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CHAPTER 9

Conclusions and Recommendations

9.1 Review and Conclusions

The work presented in this thesis aims to improve understanding of the for-

mation and long-term evolution of beach cusps by numerical simulation us-

ing a 20 process-based morphodynamic model including infiltration. In order

to achieve this, an improved numerical scheme is implemented for improving

computational accuracy of a 20 process-based morphodynamic model. The

improved model is used to simulate the long-term development of beach cusps

under different incoming wave conditions, initial beach profiles, and sediment

properties, for investigating the evolution behaviour and the physical effects

leading to sedimentation and erosion in the swash, in particular, to beach cusp

formation.

A successful20 process-based morphodynamic model for simulating the beach
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cusps is presented by Dodd et al. (2008). The governing equations of that

model, which includes the NLSW equations, sediment conservation equation,

bed diffusion effect, and infiltration term, are described in Chapter 3. More-

over, the numerical scheme, the Roe's method, used for capturing the shock

behaviour in the computation of Dodd et al. (2008) model is also explained

there.

Although the Dodd et al. (2008) model is successful in simulating the occur-

rence of beach cusps, it still needs to improve the stability and the accuracy

of the computation in very shallow water. Therefore, the new implementa-

tion including the entropy fixes, the Castro Diaz et al. (2008) numerical scheme,

the time operator splitting scheme, and the special numerical treatment of the

shoreline boundary condition are illustrated in Chapter 4. These new imple-

mentations are tested with the dambreak problem, the Shen and Meyer (1963)

problem, and the Hibberd and Peregrine (1979) problem to compare the model

results in terms of stability between each numerical scheme. From the com-

parison, the most suitable numerical scheme is the Roe-averaged scheme of

Castro Diaz et al. (2008) with Minmod flux-limiter using the Harten and Hy-

man (1983) entropy fix method and the Hubbard and Dodd (2002) approach for

the shoreline boundary condition. In terms of accuracy, this selected numerical

scheme produces overall acceptable results, compared with the analytical and

numerical solutions from previous works for both rigid and mobile bed cases.

Although this successful numerical scheme has been proved that it makes the

present model more stable than Dodd et al. (2008) model, it still has the signifi-
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cant problem in the calculation of the tip position and speed, corresponding to

the shoreline boundary condition.

In Chapter 5, the selected numerical scheme is tested for 10 long-term beach

change. It also provides model sensitivity test for variations in minimum depth

dtol, bed friction coefficient lw, hydraulic conductivity K, and sediment trans-

port coefficient A. In addition, simulations of two types of incoming waves,

the sine wave and the sawtooth wave, are used to investigate their effect on the

10 long-term beach profile. In all cases, the long-term beach profile is similar,

consisting of a long-shore bar, a trough (erosion at the lower swash area), and a

swash berm (deposition at the upper swash area) in accordance with the estab-

lished profile (Masselink and Li, 2001). For the parameter sensitivity test, the

convergence of the results is found when dtol :::;1mm. The relationship between

the bed profile and both numerical and physical parameters of beach cusps is

that a greater maximum tip position xs,max is achieved, and more erosion in the

tip region occurs, when du«, lw, and K are smaller. The bigger K, such as K =

0.04 mIs, can initiate the deposition at the upper swash during the beginning

of the simulation, and the deposition can continuously occur until it reaches

an equilibrium state. On the other hand, the effect of scaling A is to scale the

rate of change of the bed level, which is the same conclusion as Stoker (2005);

therefore, the size of A appears not to lead to qualitative differences. However,

very high A, such as A = 0.04 s2/m, can create the unexpected numerical bed

shock in the model, which can lead to a model crash. Regarding the different

types of incoming wave, the sine wave produces a beach profile having the
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three components identified by Masselink and Li (2001), whereas the sawtooth

wave creates a wider equivalent region, with the wave simply breaking farther

offshore.

In Chapter 6, the 2D formation and long-term evolution of beach cusps under

the different incoming wave conditions (vary wave period T), and initial beach

profiles (a plane 8° sloping beach and initial curved beach) are discussed. The

bed perturbation with the Dirac delta function is used instead of the wave per-

turbation in the simulation to make sure that the cusp results from the model

are not coming from the perturbation. Beach cusp parameters are defined in

terms of cusp spacing and swash excursion, and linear growth rate. We also use

the Fourier analysis and the global analysis, introduced by Garnier et al. (2006),

for analysing the bed pattern data and investigating the evolution of beach

cusps. The 2D beach cusp formation results from both initial beach profiles,

simulated by the new model, are approximately the same as those of Dodd et al.

(2008); however, the geometrical parameters (f) from the self-organisation the-

ory are still high (f = 2.7-3.7) when compared with the previous works (Werner

and Fink (1993) (f = 1-3), Masselink (1999) (f = 1.57), and Coco et al. (2000) (f

= 1.63». The evolution of the beach cusp is investigated by both Fourier and

global analysis, from which it can be concluded that there are three steps of

the evolution. It starts with development a ID cross-shore profile including a

long-shore bar, a trough, a the swash berm. Then, 2D circulation commences

in the upper swash region in order to create the cusp-like pattern with a small

cusp spacing. Finally, the cusps reconstruct themselves by the coalescing of
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two small bays and subsequent rearrangement to an equal spacing to form the

bigger cusp system. More surprising is the reversing behaviour between horn

and embayment during the cusp evolution, which is caused by the deposition

in the embayment head. The reason of the deposition occurring in the em-

bayment head could possibly be come from either the infiltration effect or the

simple sediment transport equation used in the model.

The occurrence of deposition at the embayment head could perhaps be due to

infiltration or the use of the simple sediment transport equation in the model.

The detail of the infiltration and the pattern of sediment movement over one

swash period are discussed in Chapters 7 and 8, respectively. In Chapter 7,

the sensitivity of K in 2D simulations is tested, and the variation of the K im-

plementation, i.e. no infiltration, constant K, applied K only uprush phase,

and linear interpolation of K, is applied to the model. Moreover, the detail of

the infiltration rate and the loss of volume of water into the beach over one

swash period are observed. As a result, we can conclude that the high infil-

tration directly causes the deposition at the embayment head; whereas, the low

infiltration cases produce the normal cusp evolution without non-reversible be-

haviour. However, the beach topography results from the low infiltration cases

do not look like beach cusps, because there is no deposition at the upper swash,

and the double circulation pattern is found in these beaches.

In Chapter 8, the sediment movement prediction over one swash cycle is ob-

served by using the water depth and depth averaged velocity results from the
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simulation to recompute the sediment transport rate and rate of beach change

for the reference case beach profile and the idealised beach cusp topography,

created by the adapted topography equation of Dean and Maurmeyer (1980).

The sediment transport rate formulations in this observation can be divided

into two main groups: the "velocity-on{y" group and the "coupled depth and ue-

loeity" group. The sediment transport equation used in the recent model is in
•

the velocity-only group. In conclusion, the result of this investigation shows

that the velocity-only group of sediment transport equations is one of the rea-

sons to create the deposition at the embayment head, leading to the reversible

behaviour. However, the usage of the couples depth and velocity group in the

model cannot confirm that it will produce the non-reversible behaviour in the

simulation.

9.2 Recommendations for future research

There is a considerable amount of future work that is required for improving

this process-based morphodynamic model and for better understanding of the

formation and long-term evolution of beach cusps. Here, we can divide the

recommendations into numerical and physical issues.

Although this model can simulate the occurrence of beach cusps with the nu-

merical improvements from Dodd et al. (2008), some numerical issues remain

that could be improved:
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• Entropy fix: although the Harten and Hyman (1983) entropy fix is a suit-

able method for computing the transonic situation, there is still a kink

that can be observed in the result. While the Hubbard and Dodd (2002)

entropy fix method is a better method to deal with the transonic rarefrac-

tion, it is not suitable for the normal backwash condition. Therefore, the

best way forward is to alter the usage of the Hubbard and Dodd (2002)

entropy fix method in the model by providing special criteria for apply-

ing this entropy fix method only for the transonic rarefraction fan, which

requires the determination of the morpho dynamic Riemann structure.

• Shoreline boundary condition: from the comparison of the model result with

the analytical and numerical solutions from the previous works in the

dambreak and the Shen and Meyer (1963) test cases, it can be seen that

there is a significant error in the computation of the tip position and speed.

To improve the calculation in the tip region, it requires the special treat-

ment of the shoreline boundary condition .

• Numerical scheme: this is a continuous issue from the shoreline bound-

ary condition. Since the Roe's method has a difficulty to solve the real

wetl dry boundary condition, a new shock capturing scheme, such as the

HLLC method and the WAF method, which can be implemented with

the real wetl dry boundary, would be a better alternative to improve the

accuracy and stability of the model.

With regard to the physical issues, a crucial next step would be the implemen-
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tation of the other types of sediment transport equation instead of the velocity-

only group, which cause the deposition at the embayment head, leading to the

reversible behaviour between hom and embayment. The coupled depth and

velocity type of sediment transport formulation is a good alternative for the

new implementation. Additionally, the groundwater modelling for increasing

the accuracy of the computation of the infiltration term, and the exfiltration

effect should be included into the model. Moreover, the physical property of

sediment, such as the sediment lagging and the water-sediment mixture, are

also interesting effects to include in the model, along with investigating the re-

lationship between these effects and the beach cusp formation and evolution.

So far, the recommendations above mostly discuss the improvement of the

model used in this study. Future research also needs to examine other issues:

the effect of introduction of a small amount of wave obliquity and randomness

into the incoming waves on the formation and evolution of beach cusps; the

application to natural beaches, by using field observation data; and the connec-

tion between the present model (swash zone model) and the surf zone by using

results from a surf zone model to drive the present model. This latter topic will

be particularly important for inputting sediment from the surf zone.
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