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Abstract

Carbon dioxide dissolution into water is a ubiquitous chemical process on earth, and

having a full understanding of this process is becoming ever more important as we

seek to understand the consequences of 250 years of exponentially-increasing anthro-

pogenic C02 emissions to the atmosphere since the start of the Industrial Revolution.

We examine the dissolution of C02 into water in a number of contexts.

First, we analyse what happens to a range of chemical species dissolved in water

following an injection of additional C02. We consider the well-mixed problem, and

use the method of matched asymptotic expansions to obtain new expressions for the

changes in the species' concentrations with time, the new final chemical equilibrium,

and the time scales over which this equilibrium is reached, as functions of time, the

parameters and the initial condition. These results can be used to help predict the

changes in the pH and concentrations of dissolved carbonic species that will occur in

the oceans as a result of anthropogenic C02 emissions, and in saline aquifer formations

after pumping C02 deep underground.

Second, we consider what happens deep underground in a saline aquifer when C02

has been pumped in, spreads through the pore space, and dissolves into the resident

water, when advection, diffusion, and chemical reaction have varying levels of relative

importance. We examine the length scales over which the dissolved C02 will spread

out through an individual pore, ahead of a spreading drop of C02, and the concentra-

tions of the different chemical species within the pore, in the steady-state case.

"Finally, some experiments have been carried out to investigate the effect of an injection

of gaseous C02 on the chemical composition and pH of a saturated limestone aquifer

formation. As the C02 enters the soil, it dissolves into the water, and we model the

changes in the chemical composition of the water /limestone mixture with time.
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CHAPTER 1

Introduction

1.1 Why is carbon dioxide dissolution important?

Carbon dioxide dissolution into water, and reaction with water, is a ubiquitous natural

chemical process on earth, happening in the atmosphere, in oceans, rivers and lakes, in

the ground soils, and in processes such as photosynthesis. It also occurs in industrial

processes such as the manufacture of carbonated drinks, and deep underground in en-

hanced oil recovery schemes. Improving our understanding of this process is therefore

very important.

Understanding this process has become even more important as a result of 250years of

exponentially-increasing anthropogenic C02 emissions to the atmosphere, from power

stations, from iron, steel, glass, and cement works, from cars and aeroplanes, from

landfill sites, and from human beings. The atmospheric concentration of C02 has risen

from about 280 parts per million by volume (ppmv) before the Industrial Revolution,

to around 380 ppmv today [2], a 36% increase, and is currently increasing by 1.7ppmv

[3] (or about 30Gt [2]),per year.

When carbon dioxide dissolves into water and reacts with the water, carbonic acid

is formed from which hydrogen ions then dissociate, increasing acidity. With plenti-

ful water in the atmosphere, an increase in the atmospheric concentration of C02 can..
therefore also increase the acidity of the atmosphere and precipitation. Between one

third and one half of anthropogenic C02 emitted to the atmosphere dissolves into the

oceans, rivers and lakes [4,5], and the reaction. with sea water has already increased

ocean acidity by 0.1 pH units since pre-industrial times [2]. Around 20% of anthro-
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CHAPTER 1: INTRODUCTION

pogenic C02 emissions to the atmosphere are absorbed by the terrestrial biosphere

[6], and the reaction between the absorbed C02 and soil moisture can alter soil acid-

ity. Therefore, aside from any climate change due to an increased greenhouse effect,

anthropogenic C02 emissions to the atmosphere can also increase the acidity of land,

sea and air. Increasing acidity can critically affect different aspects of these ecosys-

tems. For example, it is believed to depress metabolic rates in jumbo squid [7],depress

immune responses of blue mussels [8], and make it harder for juvenile clownfish to

distinguish between the smells of predators and non-predators [9], or hear and recog-

nise the sounds of their predators [10], possibly because increasing acidity makes the

oceans noisier by reducing the oceans' ability to absorb noise in the auditory range

[11].Associated with the change in acidity is a redistribution of the different dissolved

carbonic species - the concentrations of dissolved carbon dioxide and bicarbonate in-

crease, while the concentration of carbonate ions decreases [5],and this also affects the

ocean ecosystems. For example, the reduction in carbonate makes it more difficult for

marine calcifying organisms (such as corals and some plankton) to form and retain

biogenic calcium carbonate [12, 13].

1.2 What are the anthropogenic sources of C02?

Emissions of C02 to the atmosphere started increasing exponentially shortly after James

Watt patented his coal-powered steam engine in 1769,which enabled energy to be effi-

ciently extracted from coal (with C02 created as a by-product). This was used to make

iron, to make ships, to heat buildings, to power locomotives and other machinery, and

to power the water pumps that enabled even more coal to be mined, and started the

Industrial Revolution. Worldwide coal production has doubled every 20-30 years ever

since [14].Today, energy-related greenhouse gas emissions are still the most important,

accounting for around 70% of all anthropogenic greenhouse gas emissions [IS], and the

main categories within this are heat supply, electricity generation and transport. Elec-

tricity generation is by far the most important.single source of C02, providing over

27% of all anthropogenic C02 emissions by 2004 [15]. This is due to the continued re-

liance on fossil fuels in power generation - coal currently provides 42% of the world's

electricity [16](including, for example, 94%of South Africa's, and 81%of China's [17]),

followed by natural gas with 21%.
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CHAPTER 1: INTRODUCTION

Coal is the biggest individual source of electricity as coal-fired plants are safe, easy to

build and run, very reliable, not dependent on the weather, and easy to dial up and

down. Also, coal is cheap, easy to transport and stockpile safely, and an abundant and

widespread resource (it is currently mined in over 50 countries [17]),with the biggest

reserves situated in the countries with the biggest and fastest-growing electricity de-

mands (USA, China and India). Coal-fired power generation capacity is therefore con-

tinuing to increase rapidly (in 2008, China had 112 GW under construction, India 51

GW and the USA 19GW [17]).

As well as electricity generation, coal is also vital in making iron, steel, glass, cement

and aluminium. Coal has therefore been one of the key drivers in raising and maintain-

ing current standards of living and lengths of life in the West, and is doing the same

for other countries which are industrialising. Continuing industrialisation and popu-

lation growth mean that the total demand for electricity is expected to increase by 77%

between 2006 and 2030 [16]. Despite the fact that large increases in the use of renew-

able and nuclear energy sources in electricity generation are being implemented (total

worldwide electricity generation from renewables is expected to double, and total gen-

eration from nuclear is expected to increase by 40% over this period [16]), this increase

in electricity demand is much larger than renewables and nuclear can provide, and

hence fossil fuels will continue to provide the majority of electricity. Coal is expected

to nearly double its output from 7.4 trillion kWh in 2006 to 13.6 trillion kWh in 2030,

actually increasing its share of world electricity supply from 42% to 43% [16].

The burning of fossil fuels is therefore with us for the foreseeable future, and so ways

must be found to reduce the resulting C02 emissions. This can be done through im-

proving power station efficiencies, choosing gas-fired power stations in preference

to coal, increasing the use of underground coal gasification, and carbon capture and

storage (discussed below). Other ways of reducing anthropogenic C02 emissions in-

clude increasing further the use of renewable and nuclear energy sources, changing

energy sources and improving energy efficiencies in transport and buildings [18], re-

forestation, carbon taxes [19], changing diets [2.()], population control, and exotic and

controversial geo-engineering schemes. These schemes either reflect sunlight back into

space (for example by using billions of small mirrors in space, by cloud whitening

(spraying seawater into the sky to evaporate and leave behind shiny salt crystals to
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CHAPTER 1: INTRODUCTION

brighten the clouds), or by spraying sulphur compounds into the stratosphere), or re-

move C02 from the atmosphere (for example by depositing iron filings in the sea to

increase plankton growth ('ocean fertilisation') [21, 22], or by using artificial trees to

chemically replicate photosynthesis). A successful reduction in global C02 emissions

will require the simultaneous implementation of many of these different measures.

1.3 Carbon capture and storage

Carbon capture and storage (CCS) is the process of capturing waste C02 from large

point sources, such as fossil fuel-burning power plants, iron, steel, glass and cement

works, and oil and gas refineries, and permanently storing it away from the atmo-

sphere. A complete CCS scheme comprises three distinct stages, which are: capturing

the C02 (and isolating it from other waste products); transporting it to the storage site;

and depositing it into its place of permanent storage. Each of these stages can be im-

plemented in a number of different ways, which gives a wide variety of potential CCS

schemes.

For example, a power plant may capture the C02 using post-combustion capture (where

C02 is extracted from flue gases) [23], pre-combustion capture (where the fossil fuel is

converted into CO and H2, and then partially oxidized to give C02 and more H2,which

is used as fuel) [24], oxy-fuel combustion (where fuel is burned in oxygen instead of air,

to produce C02 and water vapour only) [25], or chemical-looping combustion (where

metal oxide particles react with the fuel to produce solid metal particles and a mixture

of C02 and water vapour) [26]. Transport from the capture site to the storage site may

be by pipeline [27] or ship [28], or the transport stage may be eliminated altogether by

locating the source of C02 and the storage site together [29]. The C02 may be stored

deep in the oceans [30], or in geological formations such as deep saline aquifers [31],

deep-sea sediments [32], depleted oil and gas fields [33], or unmineable coal seams

[33]. Itmay be injected as part of an enhanced oil or gas recovery (EORor EGR) project

[34,35], it may be injected by itself, or together with water to reduce upward migration

[36,37]. The role of plants [38,39] and animals [40] in storing carbon, and the potential

for sequestration above ground in industrial processes [41], have also been considered.

The dominance of coal as a source of C02 means that attempting to reduce the emis-
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CHAPTER 1: INTRODUCTION

sions of C02 to the atmosphere without a serious implementation of CCS would be

futile. In fact, Nobuo Tanaka, the head of the International Energy Agency has said

that, "The deployment of CCS should be a 'litmus' test for the seriousness of environ-

mental negotiators dealing with climate challenge" [42].

The scale on which CCS must be done is enormous. According to one scenario, which

limits the atmospheric concentration of C02 to 450 ppmv, CCS is envisaged as account-

ing for 19% of the energy-related emissions reduction, which will require building or

fitting 55 fossil fuel power plants with CCS every year between 2010 and 2050 [43].

However, CCS is still a very young technology - although there are a number of pilot-

scale CCSprojects in operation (mainly at gas refineries), and many C02-EOR schemes

currently running, there is not yet a single commercial-scale CCS power plant scheme

in operation. This is due to the high costs, technological difficulties, and issues around

public perception. There is therefore an urgent need to develop improvements to CCS

technologies.

1.4 Saline aquifer storage of C02

Depleted oil and gas fields are an obvious choice for C02 sequestration, because the oil

and gas originally trapped in them demonstrably did not escape for thousands of years,

their structure and physical properties have been extensively studied already, models

have already been developed to characterize their behaviour, and the infrastructure

necessary for C02 storage is already largely in place [44]. However, depleted oil and

gas fields are unlikely to be able to hold more than 900 Gt C02 [44],which provides a

maximum of 30 years' capacity at current global anthropogenic C02 emission rates of

about 30Gt/year [2].

Deep saline aquifer formations are very large deep porous geological formations satu-

rated with water, and are often rich in different metals. They comprise grains of rock

or sand glued together by natural mineral cements. The pore spaces between the rocks

are connected, so the aquifer as a whole is permeable and porous, and fluids may flow

through. The pore spaces tend to be filled with water, of varying salinity. Pure carbon

dioxide is 'supercritical' when its temperature is greater than 31.1°C and its pressure

is greater than 72.9 atm (this is known as the 'critical point'), and a saline aquifer's
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CHAPTER1: INTRODUCTION

ambient temperature and pore pressure are normally above these points, making su-

percriticality the normal phase for injected C02. This is the ideal phase, as it gives the

C02 the density of a liquid and the freedom of movement of a gas. For example, at

35°C and 100 bar, C02 has density about 710 kg/m3, and viscosity about 0.06 mPa.s

[45] (water has density 1000kg/m3 and viscosity !'VImPa.s).

The three main species (undissolved C02, water, and water saturated with C02) have

different densities (for example, one simulation assumes densities of 710 kg/m3, 1050

kg/m3, and 1061 kg/m3 respectively [36]). The C02 source pushes the less dense

undissolved C02 against the denser resident water, which in tum is pushed back, in-

creasing pressure elsewhere in the aquifer. This is not a stable process, but small irreg-

ularities in the boundary between the water and the undissolved C02 are magnified

and grow. This produces fingering instabilities [46], with subsequent overturning by

these protruding fingers, causing rolling flows. These can help mix and stir the whole

solution, increasing dissolution. The instability of the interface between C02 and water

caused by the density difference is known as a Rayleigh-Taylor instability [47]. Also,

as the C02 is buoyant compared to the water, it will also filter upwards through the

pore spaces until it reaches an impermeable boundary. The C02 can remain above the

denser saturated water and form a spreading gravity current below the impermeable

boundary [48-51].

Saline aquifers have significantly more storage capacity than oil and gas fields, as well

as being more widespread across the globe. Estimates of global storage capacity can

vary wildly, as relatively little is known about the behaviour of C02 in saline aquifers

in comparison with oil and gas fields, but it is believed to be 'very likely' that global

storage capacity in deep saline aquifers is significantly above 1000Gt C02, while es-

timates range up to 200,OOOGtC02 [44]. If CCS is to be implemented successfully on

the scale thought necessary during the transition to a non-fossil fuel-based economy, it

will therefore inevitably include storage in saline aquifers.

There are several different ways in which C02 may become trapped in a saline aquifer:

(1) by an impermeable caprock overlying the aquifer, or by a series of thinner low-

permeability layers, which provides a physical trap ('structural' or 'stratigraphic trap-

ping'); (2) by adsorption onto rock surfaces; (3) by capillary forces in pore spaces ('hy-

drodynamic trapping'); (4) by dissolving into the resident water, rather than displac-
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CHAPTER 1: INTRODUCTION

ing it ('solubility trapping'); and (5) by reacting chemically with the water or the rocks

through which it is flowing ('geochemical' or 'mineral trapping'). This type of storage

is the slowest process, but results in the most secure form of storage [52].

The likelihood of the large-scale implementation of CCS is another reason why under-

standing the dissolution of C02 in water is extremely important, as saline aquifers and

depleted oil and gas fields normally contain water (which is displaced by the injected

C02), as C02 storage may occur in the depths of the oceans or under the oceans in the

saturated deep-sea sediments, as C02 may be deliberately pumped underground with

water to reduce its upward migration, and as the dissolution of C02 into water is an

important way of increasing storage security.

1.5 The context for mathematical modelling of CCS

As C02 is denser than air, if a cloud of C02 escapes from the ground into the atmo-

sphere, itwill remain at ground level. This can have potentially fatal consequences, as

breathing C02 at concentrations greater than 8-10%can quickly lead to fainting, vom-

iting and asphyxiation. This was demonstrated in August 1986when more than 1700

people, and all animal life within a radius of about 14km, were suffocated to death

following a volcanic eruption at Lake Nyos, Cameroon, which emitted a large cloud of

concentrated C02 [53,54]. Other potential dangers of C02 sequestration include pollut-

ing groundwater or other underground resources, and increasing the aquifer pressure,

leading to subsidence or absidence at the earth's surface, or increased seismicity (as

experienced, for example, in the region of the Rocky Mountain Arsenal well following

the injection of waste water [55]) [56].

If many millions of tons of C02 are to be pumped deep underground in CCS projects,

it is therefore most important that the health, safety and environmental risks are well

understood. It is therefore necessary to have a good understanding of what happens to

the injected C02 and the surrounding aquifer environment, of the chances of leakage,

and of the effects throughout the aquifer of the resulting increases in pressure. It is also

important to have a good understanding of practical issues, such as the capacities of

particular aquifers, the costs, and the most efficient injection methods, as these projects

are currently very costly, and the degree to which the costs can be reduced is likely to
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CHAPTER 1: INTRODUCTION

determine how many schemes are implemented.

Knowledge about what happens to injected C02, and the optimal methods of imple-

mentation, can be achieved in several different ways. One such way is the experiences

gained from Enhanced Oil Recovery projects already running. C02 has been injected

into geological formations in order to enhance oil recovery since the early 1970s, and

there are currently about 73 such operations in place in the USA alone, injecting about

30 Mt C02 per year (of which 10% is anthropogenic) [44]. For example, primary oil re-

covery at Weyburn, Canada, finished in 1964, and secondary oil recovery, via a conven-

tional water flood, in 2000. Since then, further oil has been recovered using a 'miscible

C02 flooding' scheme. In this scheme, C02 is transported to Weyburn via a pipeline

from a coal gasification plant in North Dakota, 320 km away, and then mixed with wa-

ter (to reduce its mobility and to minimise fingering), and pumped underground some

distance from the oil production well. Oil recovery at the production well is enhanced

because the injected fluids push the oil towards the well, because C02 becomes mis-

cible with oil at the correct conditions, and reduces the oil's viscosity, and because the

increased acidity of the carbon dioxide-water mixtures dissolves carbonate minerals in

the formation matrix, resulting in a permeability increase [57]. This operation is inject-

ing about 1000 t C02 per day, and it is expected that about 20 Mt C02 will eventually

be stored in this field [44], though calculations indicate that the 2 x 1012litres of water

in this aquifer may be capable of storing up to 100 Mt of dissolved C02. Monitoring

of the oilfield is extensive, and to date has revealed no evidence of any C02 leakage to

the surface.

A second source of knowledge is the handful of pilot CCS projects that are already up

and running. For example, C02 stripped from natural gas at Sleipner, North Sea, has

been re-injected into the Utsira sandstone saltwater aquifer at a rate of about 1 Mt C02

per year, since October 1996. With a cross-sectional area of over 26,000 km2 [29], this

aquifer is believed to have a very large storage capacity of 1-10 Gt C02, but only about

20 Mt C02 will be stored over the lifetime of this project. The injected C02 has been

regularly imaged using seismic time-lapse reflection surveys, and the surveys show

that the cap rock is successfully sealing the C02 inside the sandstone formation [58]. In

addition, many other pilot C02 sequestration schemes are in place or planned in many

different countries, including USA, China, UK, Canada, Australia, Japan, Germany,
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Norway, Italy, Netherlands, Poland, Turkey, and Brazil [44].

C02 - EOR and pilot CCS projects already in operation therefore provide extensive

knowledge about safety and practicality issues, and this knowledge has been thor-

oughly reviewed (e.g. [44,52]). In addition to these field experiments, valuable insight

can also be provided by laboratory experiments which simulate conditions deep under-

ground (pressure, temperature, mineralogy, pH, etc.). For example, they can be used

to examine the effects of injecting large quantities of C02 on chemical reaction rates,

chemical composition and pH [59],or to investigate which parameters are most critical

in the formation of mineral carbonates [60]. However, as it is only relatively recently

that CCS has come to be regarded as a viable option in mitigating climate change, rel-

atively few such experiments have been reported.

An equally-important source of knowledge is mathematical modelling and simulation,

which can support and enhance the other three sources. Theoretical modelling goes

hand-in-hand with experiments to provide explanations for observed phenomena and

justify derived rules. It also provides the foundations for simulations - as the aquifers

which could potentially store the vast quantities of C02 are largely inaccessible (due

to their depth), carrying out experiments can be impracticable. Using computer sim-

ulation to predict what will happen at a particular aquifer (whether the C02 is likely

to escape, how far the C02 will spread, how the pH will change, how much C02 the

aquifer will be able to hold, etc.) may therefore be the only way of finding out whether

that particular aquifer is suitable. It is therefore most important that the simulations

can be done accurately, which requires that the modelling be reliable.

1.6 The challenges of mathematically modelling CCS

Of key importance in CCS is understanding how far from the injection point the in-

jected C02 will spread out, and how much will dissolve into the resident water.

Modelling the fate of injected C02 is an extremely challenging mathematical task even
«

if dissolution and chemical reaction are ignored. These are moving boundary problems

made more difficult by a complex geometry, involving local impediments to flow (such

as local low-permeability layers), local aids to flow (such as fault lines or abandoned

wells), and a high degree of variability in the physical characteristics (such as depth,
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thickness, temperature, pressure, salinity, pH, mineralogy, density, permeability and

porosity), even within a single aquifer. Within this complex geometry there are many

different forces acting on the injected C02, including buoyancy, gravity, pressure gra-

dients, diffusion forces, capillary forces, and mean flows of groundwater through the

host rock.

As C02 is continuously pumped into an aquifer, it forms a drop in the pore space. The

drop is a mass of C02 molecules, has the density of a liquid and the viscosity of a gas,

and expands and spreads away from the injection point as more C02 is pumped in,

through the many inter-connected channels in the pore space. The C02 molecules can

move within the drop, and may leave the drop by dissolving from the edge of the drop

into the adjacent resident water. How much C02 dissolves from the drop into the water

is dependent on many factors, including: how much C02 is pumped into the aquifer;

the size and shape of the drop the C02 forms in the pore; how rapidly the C02 can

diffuse within this drop; the pH, temperature, pressure, salinity and mineralogy of the

resident water; the contact angle between the drop and the pore walls; and how well

the dissolved C02 can be transported away from the drop. This depends on the relative

importance of advection, diffusion and reaction, the existence of local impediments or

aids to flow, the pore's diameter and inclination to the horizontal, and the size of the

gap between the drop and the pore walls. Inaddition, these factors can vary temporally

as C02 dissolves into the water, and spatially across a single aquifer. For example, the

pores can be fairly tortuous, and far from a constant angle to the horizontal.

There are complex webs of chemical reactions that take place between the C02 that

dissolves into the water, the species in the resident water, and the various minerals

present in the aquifer, and these reactions should not be ignored while modelling the

fluid mechanics as they can affect the aquifer'S physical characteristics. For example,

the permeability of the host rock may be increased as the water's higher acidity dis-

solves formation minerals, or decreased as metals form and precipitate out of solution
•

into the pore spaces. Also, the fluid mechanics needs to account for the fact that as

C02 dissolves into the water, this denser water will sink compared to the water not

containing C02.

Impurities in the C02, either from the initial injection, or through chemical changes

that take place as it advances through the aquifer, mean that the fluid's critical point

10



CHAPTER1: INTRODUCTION

can change, and the C02 could end up changing phase.

Moreover, there are extremely wide ranges of scales. The C02 percolates through pore

spaces that are normally less than 1 mm wide, but encounters stratigraphic structures

that are measured in tens of metres, and ends up moving across distances that can be

tens, or even hundreds, of kilometres. Also, the chemical rates of reaction can vary

by many orders of magnitude, taking less than one second or many years to reach

equilibrium, making any numerical calculations extremely difficult. In addition, it is

often the fate of the injected CO2 over an even longer time period (>1000 yr) that is of

interest. Also, the concentrations of the different species vary by orders of magnitude

within a single aquifer, and individual species can vary similarly between different

aquifers, and over time within one location.

Another big issue is uncertainty, as the environment into which the C02 is pumped

cannot be observed directly. Knowledge of the aquifer conditions must therefore be

obtained by drawing inferences (such as estimating temperatures based on depth), re-

mote imaging, and taking samples, and there can be large uncertainties surrounding

parameter estimates. The aquifer may even contain sizeable features, such as fault

lines, that are not known about. Furthermore, assessing how well model predictions

match up to a particular injection project is also difficult, as monitoring C02 injections

must be done remotely. It can therefore be hard to judge how well a particular model

captures reality.

Section 1.7 contains an overview of the reactive chemistry. The most realistic mathe-

matical modelling of CCS couples together both fluid transport and chemical reactions,

which is known as reactive transport modelling. However, solving such systems is very

challenging, due to the complexity of the models, and because the solutions must find

ways of resolving the wide ranges of temporal and spatial scales. Therefore, one area of

focus for CCS is models that exclude all chemical reactions, and instead analyse just the

aquifer-scale (Section 1.8) or pore-scale (Section 1.9) fluid flows. Some of the methods

of obtaining solutions to reactive transport mod~ls are reviewed in Section 1.10.
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1.7 The reactive chemistry

The release of vast quantities of C02 into the atmosphere, the dissolution of C02 into

the oceans, and the injection of C02 into aquifer formations, immediately results in

chemical disequilibria, and therefore the onset of various chemical reactions.

1.7.1 The dissolution of C02 into water

The first, and main, reaction that takes place is the dissolution of the C02 into the

resident water or water solution,

(R1)

(or C02(SC) {::::::}C02(aq) if the undissolved C02 is underground and supercritical).

The amount of one substance that will dissolve into a given quantity of another sub-

stance is called the solubility. The solubility of a gas in a liquid,S (in mol/litre, or M),

increases as pressure increases and decreases as temperature increases (hence water

bubbles when boiled). This relationship is given by Henry's Law,S = kHP, where P

is the partial pressure of the gas outside the solution (atm), and kH is the Henry's law

constant (in M/ atm), which varies with solute, solvent and temperature. The solubility

of C02 in water has been investigated since the 1880's [61]. For C02 in water at 25°C,

kn = 0.034 M/ atm [62]. At 380 ppm, the atmospheric partial pressure of C02 at ground

level is 0.00038 atm, and so the solubility of C02 in an open glass of water at room

conditions is about 1.3 x 10-5 M.

In an injection scenario, suppose the injected gas is pure C02, so its partial pressure is

the full pressure (and remains at this pressure while C02 dissolves into the water), and

the aquifer temperature is 25°C. Then Henry's Law with kn = 0.034 M/ atm and 1 atm of

pressure gives a solubility of 0.034 M. One experimental study found a solubility of C02

in water at 25°C and 1 atm of pressure of 0.110 g C02 per 100 g seawater [61]. As C02

has atomic mass 44 g/mol, 0.11 g is 0.0025 mol,.and at about 1000 g/l, 100 g seawater

is 0.1 litre, and so this is a solubility of 0.025 M, so there is a small disagreement here.

At this study's upper conditions of 25°C and 45 atm, solubilities of 4.110 g C02 per 100

g distilled water (=0.9 M) and 3.090 g C02 per 100 g synthetic seawater (=0.7 M) were

found.

12



CHAPTER 1: INTRODUCTION

Aquifer temperatures and pressures can go higher than this, and can vary widely, even

within a single aquifer. For example, the temperatures in one aquifer were found to

vary between 20°C and 60°C [63], and in another study, 80°C and 27 MPa (=266.5 atm)

are taken as typical [36]. A comprehensive investigation studied solubilities between 0

and 100°C and between 25 and 700 atm [64,65]. In the least soluble of these conditions

(100°C and 25 atm), solubility was found to be 5.37 cm3 C02 at standard temperature

and pressure (S.T.P.) per 1 g of water. At S.T.P. (O°C and 1 atm), C02 has density 1.977

gil, so a volume of 5.37 cm3 is a mass of 0.0106 g. With atomic mass 44 glmol, this is

0.000241 mol. Also, 1 g water is 0.001 litre, and so this is a solubility of 0.24 M. In the

most soluble measured combination of conditions (12°C and 300 atm), solubility was

41.07 cm3 C02 at S.T.P. per 1 g of water (=1.8 M).

As an alternative approach, one empirical equation that gives the dependence on tem-

perature of an alternative version of Henry's constant for C02 in water (valid in the

range 0-80°C) is [66]

3796.46
10g10H= 69.4237 - T - 21.6694loglO T + (4.78857 X 10-4 x T), (1.7.1)

where T is Kelvin temperature, and H is Henry's constant in atm/rnol fraction. Noting

that

1f . f CO·· the concentration of C02 in the mixturemo raction 0 2 In a mixture = ..,
total concentration of the mixture

dividing through by pressure, and assuming that the total concentration of the mixture

is approximately the concentration of water, which, as water has density 1000 gil (gil

== kg/m3) and atomic mass 18.0106 glmol, is 55.5 M, gives

1 kH
H = 55.5 M' (1.7.2)

(At 25°C, equation (1.7.1) gives H = 1628.6 atm /rnol fraction, so (1.7.2) gives kn =
0.034 MI atm, which agrees with the above.) At 100°C (373K) (strictly slightly outside

its range of validity), (1.7.1) gives H = 4974.5 arm/mol fraction, i.e. kn decreases to

0.0112 MI atm. With 25 atm of pressure, this gives a solubility of 0.28 M, which agrees

with 0.24 M in the previous paragraph. As C02l!\as atomic mass 44 g/rnol, S = 0.28 M

corresponds to a density for the C02 within water saturated with C02 of 12.32 kg/m3,

which matches the widely-used density difference estimate quoted above of about 11

kg/m3 [36]. This suggests that, in aquifer conditions, solubilities are unlikely to go

significantly above about 1M.

13
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A solubility of C02 in aquifer water of 5 ~ 0.28 M is over 21,000 times greater than

room conditions - the reduction in solubility resulting from the increase in tempera-

ture is far outweighed by the increase in solubility resulting from the increase in pres-

sure.

At 11 kg/m3, taking an aquifer porosity of 15% [36], a 1 tonne (1000 kg) injection will

therefore dissolve into about 614 m3 of resident aquifer water. If the total annual human

output of 30 Gt C02 was to be pumped into an aquifer in these conditions, the C02 will

dissolve into an aquifer volume 100 m deep by about 13 km wide and long. Note this

is not the volume of space that would be required to store the undissolved C02 - if

the undissolved pure C02 finger has density 710 kg /rrr', with an aquifer porosity of

15%, this needs an aquifer volume 100 m deep by only 1.6 km wide and long. The

earth's saline aquifers therefore certainly provide a store that could hold a significant

proportion of anthropogenic CO2.

There are substantial density differences between the undissolved C02, the water, and

the water saturated with C02, and these density differences drive the vertical move-

ments of the C02. While C02 exists in its separate gaseous or supercritical phase, its

significantly lower density causes a predominantly upwards, relatively fast, migration,

compared to the water. However, when the injected C02 dissolves into the slowly

moving resident water, this changes to a slow, predominantly downwards migration.

Dissolution is therefore one of the trapping mechanisms for C02, and a desirable reac-

tion in carbon sequestration. As the groundwater containing dissolved C02 migrates

downwards and further from the injection point, the ambient temperature is likely to

increase, and the pore pressure is likely to decrease, both of which reduce the solubility

of C02 in water. The dissolved C02 may therefore be expelled out of the water back

into a free gaseous or supercritical phase.

The rate at which a geochemical reaction happens is dependent on many factors, in-

cluding temperature, pressure, pH, rate of mixing, salinity, the concentrations of the

different chemical species involved (and their distance from chemical equilibrium), the

concentrations of other species in the environment which may also react, the presence

of catalysts or pH buffers, the reactive surface area, the ionic strength of the solution,

and the size of the reaction's activation energy (the minimum energy necessary for the
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reaction to occur). Moreover, some of these influences can change as the reaction pro-

gresses.

Most of these factors are controlled to be constant in an experimental investigation,

leaving only the concentrations of the different chemical species (and their distance

from chemical equilibrium). The rate of change of a species can therefore be modelled

either as some function of all the concentrations involved, or alternatively just some of

the concentrations and a variable denoting the distance from equilibrium (e.g. [67-69]).

The simplest function of concentrations to use is the mass action law, which states that

the rate of a chemical reaction is proportional to the product of the concentrations of

the reactants. However,

'Most reactions, unfortunately, are not this simple. If reaction rates are

measured experimentally, they are found in general to depend on various

powers of the concentration, even sometimes on negative powers, and only

rarely on the first power as the statement requires. Presumably this means

that reactions take place in steps, some steps being slower than others; each

step may follow the "law", but the sum of steps going at different rates does

not.' [70]

It is therefore necessary to distinguish between elementary reactions, which actually

occur at the molecular level as written down, and overall reactions, which actually rep-

resent the net result of a series of elementary reactions [71]. The mass action law is a

good model for elementary reactions, but not necessarily for overall reactions. Gen-

erally, experimentation is necessary to determine whether a given reaction follows the

mass action law [72].

It is common practice to assume the dissolution reaction (Rl) follows the mass action

law (e.g. [73]), and so its kinetics can be modelled as follows:

- d[C02(g)] = d[C02(aq)] = k [CO ( )]- k [CO ( )]dt dt 1 2 g -1 2 aq ,

where t is time, [ ] denotes concentration, and k1 and k -: are appropriate constants

of proportionality, called respectively the forwards and reverse rate constants for this

reaction. Therefore, at any equilibrium, the ratio of rate constants equals the ratio of

equilibrium concentrations, and this ratio, denoted Kl, is called the equilibrium con-
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stant:

Kl = !l = [C02(aq)]eq
- Ll [C02(g)]eq .

The value of this equilibrium constant varies with many factors, including temperature,

pressure, pH and salinity. In well-mixed conditions at room temperature and pressure,

'C02 distributes itself approximately equally between its gas phase and aqueous phase'

[73], i.e. Kl ~ 1. At sea level, the air has density 1.2 gil, and atomic mass 29 g/rnol, i.e.

total concentration 0.041 M. If 380/106 of this is C02, this gives C02 a concentration

in air of 1.57 x 10-5 M, which is indeed close to the concentration dissolved in the

open glass of water found above (Kl = 0.83). When authors use this definition of the

equilibrium constant, it is therefore taken as being equal to, or just below, 1 (e.g. 0.9

[74]). Therefore, at room temperature and pressure, the dissolution and precipitation

rate constants are also approximately equal. Moreover, in well-mixed conditions, such

as when aquifer water and C02 are adjacent in the same pore space, this reaction is

known to be 'rapid' [44], as shown by shaking and opening a can of fizzy drink. In fact, .

in room conditions, this reaction is sometimes modelled as instantaneous (e.g. [74]).

However, aquifer temperatures and pressures are much higher than room temperature

and pressure. If the density of the C02 gas bubble is 710 kg/m3 [36], then at atomic

mass 44 glmol, it has concentration 16.1M. This compares with concentrations found

above of about 1 M for the aquifer's dissolved C02. So although C02 is a lot more

soluble in aquifer conditions than in room conditions (i.e. the aquifer water can hold

a lot more C02 per litre than the glass of water), this increase in concentration for

the dissolved phase is far out-weighed by the increase in concentration of the gaseous

phase, meaning that the actual ratio of dissolved to undissolved C02 concentrations

(Kl) decreases. It should be noted that many of the parameter values used in these

calculations (such as temperature, pressure, porosity, and density) can vary widely,

which gives a wide range of different figures.

To establish whether the dissolution still happens quickly at aquifer temperatures and

pressures, the dependence of a rate constant k, ofi temperature is normally assumed to

follow the Arrhenius equation [62, 72]

(
-Ea)kj = A exp RT·'

where A is a constant appropriate for the particular rate constant, Ea is the activation
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energy (the minimum energy necessary for the reaction to occur), R is the gas constant,

and T is temperature. Increasing temperatures therefore increases all rate constants.

Also, all else being equal, the effect on a rate constant of changing the pressure from 1

atm to P atm is given by [71,73]

kp _ (- L:,V (P - 1) )
kl - exp RT

where kl and kp are respectively the values of the rate constant associated with 1 atm

and P atm, and L:,V is the molar volume change (or 'volume of activation') of the re-

action, with all species in their standard states. Dissolution results in a reduction in

mol/litre, i.e. a slight increase in litre/mol, and so L:,V is positive. Therefore the effect

of increasing the pressure is to reduce the dissolution rate constant, and increase the

precipitation rate constant, but overall these rate constants are still high, meaning that

the dissolution of C02 can therefore happen extremely quickly in aquifer conditions

also.

However, this rapid dissolution also requires good contact and mixing between the in-

jected C02 and the resident water, but natural aquifer flows are often extremely slow.

C02 injected into an aquifer can therefore take decades or longer to dissolve. There-

fore, just like room condition models, it is common practice to model C02 dissolution

in aquifer scenarios by assuming that the mass action law applies, and that there is

instant local dissolution and equilibrium, with the overall rate of dissolution affected

only by the rate of mixing. However, the way that this is done in practice is often

questionable or confusing, with different definitions of the equilibrium constant in use.

For example, one model and simulation ofC02 storage in a deep North Sea aquifer that

includes advection, dissolution of C02 and a rate-limited precipitation reaction [75], as-

sumes that dissolution is locally instantaneous, and so simply sets local [C02(aq)]=Kl.

However, this implies either that the mass action law does not apply, or else one of the

two species is measured dimensionally and the other dimensionlessly.

An alternative approach is to consider the thermodynamic equilibrium constant, de-

fined as

K* - aC02(aq)
1 = ,

aC~(g)

where a, the (dimensionless) activity coefficient of a species, is the mole fraction of that

species in a mixture ('effective concentration' for a solute, and 'effective partial pres-
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Constant Magnitude Conditions Source

K+ 0.0372 M atm"! - [73]1

0.0338 M atm-1 25°C [77]

0.034 - [78]

0.0339 25°C [79]

0.034 25°C [80]

Table 1.1: Estimates of equilibrium constant Kt.

sure' (fugacity) for a gas). Despite the fact that activities are dimensionless quantities,

the activities are often replaced by the numerical values of the molalities, concentra-

tions, or partial pressures [72] (e.g. [76]). Substituting concentration and partial pres-

sure into this expression gives

K+ = [C02(aq)]eq
1 - (PC0

2
)eq ,

where PC02 is partial pressure of gaseous C02 (atm). Kt has units M/atm, and this also

assumes that the mass action law applies. When sources include reaction (Rl), they

rarely define which equilibrium constant is being used, or give units, but the value that

is taken often implies that it is this definition of the equilibrium constant that has been

used. Table 1.1 gives some examples of when this equilibrium constant has been used,

with units quoted as given.

Alternatively, one source [81] combines the formulas for Ki and Kt to give KfP =
,),C, where K is the equilibrium constant, I' is the gaseous C02 fugacity coefficient,

P is partial pressure, ')' is the aqueous C02 activity coefficient, and C is the aqueous

concentration (mol/kg H20).

Given an injection of gaseous C02 into a system containing water, being able to quan-

tify the amount that dissolves into the water, and the rate at which it does so, is very

important, given the ubiquity of C02 and water. However, the ways in which this have

been done can sometimes appear to be rather unsatisfactory; In Chapter 2 we will de-

velop an alternative way of describing the rate at which C02 dissolves into water, and

its concentration at equilibrium.
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1.7.2 Reactions between dissolved C02 and water compounds

Once the injected C02 has dissolved into the water, there are a number of reactions

that can happen within the water. The C02 can react with the water to form carbonic

acid (R2), which can then split up - hydrogen ions dissociate from the carbonic acid

(causing the pH to drop), and leave behind a bicarbonate ion (R3), and then a carbonate

ion (R4):

C02 (aq) +H20 ~ H2C03,

H2C03 ~ H+ +HCO;,

HCO; ~ H+ +CO~-.

(R2)

(R3)

(R4)

The forward (respectively reverse) rate constants for these three reactions are denoted

k2, k3 and k4 (resp. L2, L3 and L4). These are the central key reactions between dis-

solved C02 and water compounds in both ocean acidification and carbon sequestration

[44,60,82].

Some estimates of the rate constants for the hydration and dehydration reactions (R2),

and their ratio, that are available in the literature are given in Table 1.2, with units given

as stated in each reference. The ubiquity of carbon dioxide and water reacting together

means that reaction (R2) has been studied over a long period, with the first attempts

at kinetic data dating back to the second decade of the twentieth century [83], and

the work of Vorlander and Strube [89]. There is therefore a relative abundance of rate

information for this reaction. The agreement about rate constants k2 and L2 having

units sec"! implies that the mass action law is appropriate for reaction (R2), except that

water is abundant and so does not affect any of the rates of reaction, i.e.

- d[C02(aq)] = d[H2C03] = k [CO ( )]- k [H CO )]dt dt 2 2 aq -2 2 3·

Table 1.3 gives some estimates for the rate constants and equilibrium constant for the

third reaction. As this reaction is very fast, and significantly faster than reaction (R2), it

is rather difficult to estimate kinetic data specifically for this reaction. Therefore models

normally just assume this reaction to be instantaneous and always in equilibrium, or

else just include a combined reaction (R2&3) (as below) (e.g. [5]) and assign all rate

information to (R2) as the rate-limiting part of this process. Therefore, not much work
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Constant Magnitude Conditions Source

k2 0.03 sec"! 25°C [67]

0.002 sec"1 O°C [71]

0.03 sec"! 25° [83]

0.062 sec"! 25°C, zero ionic strength [84]

0.037 ± 0.002 sec-1 25°C [85]

0.0437 sec"! 25°C, 0.5 ionic strength [86]

0.0040 sec"! 5°C, seawater [87]

0.0352 sec"! 25°C [87]

L2 12 sec"! 25°C [67]

8.2 -15.0 18°. Overview of 9 expts. [83]

20 sec-1 25° [83]

18 ± 7 sec"! 25°C [85]

19.2 sec"! 25°C, 0.5 ionic strength [86]

exp(30.15 - (8018)T-1) sec"! Seawater, 15 - 32.5°C [88]

(=25.6 sec1 at T=298K)

K2 = k2/L2 1/600 25°C [83]

Table 1.2: Estimates of rate constants and equilibrium constant for reaction (R2).

Constant Magnitude Conditions Source

k3 1 x 107 s-l - [85]

L3 5 x 1010M-1 S-l - [85]

K3 = k3/L3 4.42 X 10-7 25°C [77]

1.72 x 10-4 M - [85]

4.6 x10-4 M 25°C, 0.5 ionic strength [86]

1.72 X 10-4 M 25°C, Zero ionic strength [86]

4.47 x 10-7 25°C, infinitely-dilute [90]

1.72 x 10-4 25°, low ionic strength [91]

3.15 x 10-4 M ().2M ionic strength [91]

101\(1.707 x 10-4) M ~ 1 M - [92]

Table 1.3: Estimates of rate constants and equilibrium constant for reaction (R3).
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Constant Magnitude Conditions Source

k4 59.44seC1 - [5]

2.5Msec1 - [94]

L4 5.0 x 1010kg mol"! sec -1 - [5]

5 x 1010M sec1 - [94]

K4 = k4/L4 4.67 X 10-11 25°C [77]

4.68 xl0-11 25°C [79]

4.688 xl0-11 25°C [80]

4.68 x 10-11 25°C, infinitely-dilute [90]

4.68 x 10-11 M 25°C [92]

4.5 x 10-11 M 25°C [94]

3.3 x 10-11 M 10°C [94]

Table 1.4: Estimates of rate constants and equilibrium constant for reaction (R4).

has been done actually estimating k3 and L3, but has instead focussed on estimating k2,

L2 and K3. If k3 and L3 have units as stated, and K3 has units M, this is all consistent

with the mass action law for this reaction (as used, for example, in [5, 77, 92, 93]), i.e.

d[H2C03] = d[H+] = d[HCOi] = k [H CO ] - k [H+][HCO-]
dt dt dt 3 2 3 -3 3 .

Table 1.4 gives some estimates of the rate constants and equilibrium constant for the

fourth reaction. The units given by [94] for the three constants are inconsistent. If k4

has units sec:". L4 has units M-1sec-1, and K4 has units M, this is consistent with the

mass action law for this reaction (as used, for example, in [4, 77]), i.e,

d[HCOi] = d[H+] = d[CO~-] = k [HCO-] _ k : [H+][C02-].
dt dt dt 4 3 4 3

Two of these reactions are often combined as follows:

(R2&3)

Similarly to Section 1.7.1, the following expressions for the equilibrium constants for

(R2&3)and (R4) can be derived by assuming they follow the mass action law (except

that water is abundant):

(1.7.3)
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The total C02 in the system comprising (R2&3) and (R4) is given by

(1.7.4)

Substituting expressions for bicarbonate and carbonate from (1.7.3) into (1.7.4) and then

re-arranging gives the following formulae for the concentrations of the different species

at equilibrium, which are functions of the equilibrium pH, the total C02 in the system,

and the equilibrium constants:

(1.7.5)

(1.7.6)

(1.7.7)

The equilibrium pH (which is affected by the initial pH, and the capacity of the system

to buffer the pH), exerts a large influence on the extent to which the reactions happen,

and which species is dominant when the system reaches equilibrium. A plot of these

equilibrium concentrations against equilibrium pH is known as a Bjerrum plot. Figure

1.1 shows the variation in the equilibrium concentrations of these species with equilib-

rium pH when Tot[C021 = 8.75 x 10-4 M, K2&3 = 6 X 10-7 M and K4 = 6 X 10-11 M.

(This scenario will be modelled in Chapter 2.) Note that K4 = k4/L4' and

K2&3 = [H+]eq[HC03]eq = [H2C03]eq [H+]eq[HC03]eq = K2K3 = k2k3 .
[C02(aq)]eq [C02(aq)]eq [H2C03]eq L2L3

Inacidic conditions (pH < 6) C02(aq) dominates, in basic conditions (pH> 10.5) CO~-

dominates, and in between HC03 dominates.

The chemical reactions between these dissolved species are therefore often modelled by

establishing the equilibrium pH and the equilibrium constants (which may be varied

with temperature and pressure), plus either the total C02 in the system or one of the

three species' concentrations, and then readingoff the equilibrium concentrations of

the other species from the appropriate Bjerrum plot. This method therefore assumes

that these reactions follow the mass action law, that they are well mixed, and that they

are fast compared to the reactions between dissolved C02 and minerals.
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Figure 1.1: Example Bjerrum plot, using (1.7.5)-(1.7.7) and total CO2 = 8.75 X 10-4 M.

6 8
Equilibrium pH

This method also neglects any reactions not covered by (R2-4), although there are other

reactions that may also happen. The solution contains water, hydrogen, and hydrox-

ide ions (kept in balance through H20 ~ H+ + OH-), and so some of the released

hydrogen ions will combine with hydroxide ions to reform as water, which is one mech-

anism by which the pH can be buffered. Or, as an alternative to the carbonic acid route,

C02(aq) can combine with OH- ions, to form HC03 directly [87], from which a hy-

drogen ion may dissociate.

1.7.3 Reactions between dissolved C02 and minerals

As there is a wide range of minerals within the seas and within different aquifers, so

there is a wide range of reactions that can take place between the C02, the dissolved

species and these minerals. For example, the carbonate ions (CO~-) may react directly

with calcium, magnesium, iron, barium, or manganese, to form calcite, magnesium

carbonate, siderite, witherite, or rhodocrosite, respectively. Carbonate may react with

23



CHAPTER 1: INTRODUCTION

more than one of these metals at the same time to form further compounds, such as

dolomite (Ca2+ + Mg2+ + 2CO~- {::::::}CaMg(C03h) [60].Or these metals may instead

react with the bicarbonate ions, for example to form calcium bicarbonate (CaHCOj)

(from which a hydrogen ion may dissociate, to leave calcite again) [81], or to release

some C02, e.g. Ca2+ + 2HC03 {::::::}CaC03 + C02 + H20 [67].

Alternatively, the carbon dioxide itself may be able to form stable mineral carbonates

by reacting with magnesium-rich metal feedstocks such as serpentine (Mg3Si20S(OH)4)

or olivine (e.g. Mg2Si04 (olivine) + 2C02 {::::::}2MgC03 + Si02) [95], calcium-rich

feldspars such as anorthite (e.g. CaAl2Si20S (anorthite) + C02 + 2H20 {::::::}CaC03

+AI2Si20s(OH)4 (kaolinite)), or potassium-rich feldspars such as orthoclase (KAISiJOs

(orthoclase) + Na+ + C02 + H20 {::::::}NaAIC03(OHh (dawsonite) + 3Si02 (quartz) +

K+) [82].

These reactions are generally much slower than the dissolution reaction and the re-

actions between dissolved C02 and water compounds [82]. However, they provide a

route for natural and synthetic long-term secure storage of C02 into environmentally-

benign and stable solids [95].

The reaction between carbonate ions and calcium, to form calcium carbonate,

(R5)

is one of the most important mineralization reactions, because calcium is one of the

more abundant metals in the sea and in saline aquifers (e.g.1[63]),because calcium car-

bonate is a useful product (and so this process may be considered in an above-ground

industrial process), and because it is this reaction that reflects the threat of ocean acid-

ification to the survival of tiny marine organisms, as a reduction in the availability of

carbonate impairs their ability to form biogenic calcium carbonate, their basic building

block.

This reaction has been found to proceed at a rate proportional to the product of the

concentrations in the forward, crystallization, direction [68], and so is also assumed to

follow the mass action law in the reverse direction, i.e.

d[Ca2+] = _ d[CO~-] = d[CaC03] = k [C 2+][C02-] - k [C CO ]
dt dt dt s a 3 -5 a 3·

The thermodynamic equilibrium constant, Ks == aCaC~ / aCa2+acds-' has been used for

this reaction [90,96], and this also implies that this reaction follows the mass action law.
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Constant Magnitude Conditions Source

ks 1.9 x 10-2 mol cm-2 S-l - [76]

Ls 6.5 x 10-11mol cm-2 S-l - [76]

Ks = ks/Ls 1590M-1 [97]

K* 1674.94 - [78]5

1659.59 25°C, infinitely-dilute [90]

10" (-1228.732 - 0.299444T + 5-80°C [73,96]

35512.75T-1 + 485.818log T)

(= 1670.27at T=298K)

Table 1.5: Kinetic parameter estimates for reaction (R5).

Some estimates for the values (and units) of the kinetic parameters for this reaction are

given in Table 1.5.

1.8 Aquifer-scale fluid mechanics of CCS

One route to understanding what happens to C02 injected into a saline aquifer is to

consider the aquifer-scale fluid mechanics only, i.e. ignore the chemical reactions and

the dissolution of C02 into the aquifer water, but treat the C02 and water as two immis-

cible fluids, and see how the C02 spreads out through the aquifer as a gravity current.

Many different scenarios have been studied within this approach, including instanta-

neous or continuous injections, point or line injection sources, horizontal or sloping

aquifer boundaries, an aquifer fluid with uniform permeability or an aquifer that con-

tains local low-permeability layers, an aquifer with or without vertical fault lines, and

injecting only C02 or injecting C02 with water.

However, aquifer-scale models of these C02 flows nearly always have a near-zero

Reynolds number. For example, the flow of a fluid that has dynamic viscosity fl =

0.04 MPa.s and density p = 1000 kg/m'', through pore spaces with diameter L = 1

mm, at a mean velocity of Uo = 1 m/day, has Reynolds number (defined as pUoL/fl)

2.9 x 10-10. Darcy's Law is therefore the normal starting place for modelling these

slow, viscous pore-space flows. In three dimensions, this is expressed as:
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Interstitial fluid,
h(r, t) density p - b.p

Input,
density p-+ r

Figure 1.2: Gravity current intruding into a less dense fluid, from [49].

-k
u = -. (\1p - pg) ,

fl
(1.8.1)

where u is the velocity vector, k is the permeability tensor, fl is the dynamic viscosity,

\1p is the pressure gradient, p is the density of the current, and g is acceleration due to

gravity. The minus sign in front of k indicates that the current flows from high to low

pressures. Faster flows are caused by a greater permeability, a smaller viscosity, or a

greater pressure gradient.

From this starting point, thorough modelling of one of the most straightforward scenar-

ios is provided in [49] - the point injection of a relatively heavy fluid of total volume

V = QtlX, where t is time and Q and IX are constants (so IX = 0 indicates a single in-

stantaneous injection, and IX = 1 indicates a continuous injection), into the bottom of

an axisymmetric, uniform, saturated, porous and permeable medium initially contain-

ing a slightly lighter fluid, immediately above a horizontal impermeable layer. (This is

equivalent to the injection of a relatively light fluid into the top of a porous medium,

immediately below a horizontal impermeable layer, which could be a typical C02 in-

jection scenario.) This scenario is illustrated in Figure 1.2.

It is assumed that the injected fluid's horizontal velocities are greater than vertical ve-

locities, and so the current is long and thin. This scenario therefore models a radial

flow driven by a radial pressure gradient that seeks to make the injected fluid com-

pletely flat, and is thus a function of the weight-of the fluid (above the weight of the

resident water) and the steepness of the face of the spreading current. If g' = gb.p / P

is the reduced gravity, where b.p is the difference between the densities of the injected

fluid and the aquifer's ambient fluid, then with reduced gravity balancing the pressure

gradient force (hydrostatic equilibrium), dp/dZ = -pg'. The radial pressure gradient

26



CHAPTER 1: INTRODUCTION

driving the flow is related to the gradient of the unknown free surface by

(1.8.2)

where p is pressure, h is the height of the gravity current, r is distance from the injection

point, and p is the density of the injected fluid. Substituting (1.8.2)into the horizontal

component of (1.8.1)(assuming k = kI, where I is the identity matrix), gives

-kap
U=--

]J. ar' (1.8.3)

where u is the horizontal component of the velocity. The local continuity condition is

ah 1 a
ifYat + rar(ruh) = 0, (1.8.4)

and substituting (1.8.2)into (1.8.3),and the result into (1.8.4)gives the following porous

medium equation (a nonlinear diffusion equation) to describe the evolution of h:

ah = 1:~ (rh ah)at r ar ar 0< r < R(t), (1.8.5)

where'}' = kpg' / ifY]J.,and has units m/s. This system is closed by giving the boundary

condition h[R(t), t] = 0 (i.e. the height of the current at the nose is zero), and the

following global continuity condition (given below in the corrected form given later by

[58])

R(t)

2iCifY J rh dr = Qtlt.
o

(1.8.6)

This system is then solved by means of the following similarity solution [98]:

(1.8.7)

where 17is a function of It only. This therefore describes how far an injected fluid will

have spread from the injection point after a given time, and its rate of propagation - an

instantaneous injection spreads like tl/4, and a continuous injection spreads like t1/2.

It also gives the appropriate scaling to define its exact shape. A series of laboratory

experiments were conducted to test this theoretical modelling, and there was found to

be good agreement between the experimental data and theoretical predictions.

In an earlier work [48], a series of solutions were developed to model a series of more

complex fluid flow scenarios, including- instantaneous and continuous injections of
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buoyant fluid into a shallow permeable layer, with fixed and variable permeabilities,

above horizontal and sloping impermeable boundaries. Again, starting from (1.8.1),

and combining this with conservation of mass \l .u = 0, local and global continuity

conditions similar to (1.8.4)and (1.8.6),and boundary conditions suitable to each spe-

cific scenario, a series of similarity solutions were developed which give the shapes of

the spread of the fluid as a function of time. A series of laboratory experiments using a

Hele-Shaw cell were also performed to verify some of the theoretical predictions.

This modelling is appropriate for any fluid intruding below a less dense fluid or above

a denser fluid. The behaviour of C02 specifically has been examined in a model of

the movement of the interface between injected C02 and the surrounding water, as

the C02 grows in volume and spreads laterally between two horizontal impermeable

boundaries [99]. Injection is horizontal into the whole height of the water, and buoy-

ancy causes the injected fluid to rise above the surrounding water. By allowing for

miscibility and mass transfer between the two fluids, and the development of a drying

front behind the main injection front, a series of similarity solutions were developed

to model a series of injection scenarios, and found to compare well with numerical

simulations of the flow dynamics of C02 injection.

The C02 currently being injected at Sleipner, North Sea, has been modelled [58] us-

ing the modelling for the axisymmetric flow of a buoyant fluid released into a porous

medium below a horizontal boundary mentioned above [49]. This modelling is ad-

justed to reflect the fact that the Sleipner field is not uniform, but as the C02 rises

buoyantly, it reaches a series of thin, low-impermeability layers, under which it pools

and spreads horizontally, before breaking through. As above, this modelling predicts

that the radii of the pools are proportional to the square root of time, and also predicts

that the thickness close to the centres of the pools is nearly invariant. Seismic imag-

ing shows that the highest layers of C02 appear to have started accumulating up to

three years after October 1996 (when injection commenced), and their C02 input has

increased with time. However, some of the lower pools appear to have shrunk in re-

.. cent years, indicating that the leakage upwards has started overtaking the rate of influx

from below.

Also based on the Sleipner injections, an attempt has been made to quantify the pro-

portion of C02 trapped below a series of horizontal low-permeability layers in a saline
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solution [100], to provide insight into whether an injected quantity of C02 would be

mainly retained below its first layer of rock (and spread only laterally), or whether it

would tend to ascend through the layers (as well as laterally). This was achieved by

combining models of capillary retention with models of upward drainage. Allowances

were made for the slope, permeability, porosity, and thickness of the horizontal layers.

Calculations based on a typical example indicate that about 10-20% of the injected C02

that reaches a low-permeability boundary will remain trapped below it, with the rest

draining vertically upwards.

Modelling the aquifer-scale fluid mechanics has been reasonably successful. For exam-

ple, seismic imaging at Sleipner [58] shows there to be good agreement on the whole

between the modelling and the imaging of the C02 pools. However, there are dis-

crepancies, for example between the measured and estimated reservoir permeabilities.

These discrepancies could be due to the limitations in the modelling that arise from

considering only the fluid mechanics. The chemical reactions affect critical aquifer pa-

rameters such as density, viscosity, pH, porosity and permeability, and so omitting the

reactive chemistry could produce inaccurate results. We now consider pore-scale mod-

els of water transport relevant to CCS.

1.9 Pore-scale water transport for CCS

If a stream of supercritical C02 is continuously injected into an aquifer, it forms a drop

(a mass of C02 molecules) in the pore space. The drop is forced to spread out through

the aquifer by further C02 being injected behind it. Rather than considering a station-

ary pore space and a moving drop, at the pore scale it can be easier to consider the

alternative frame of reference of a stationary drop with the walls moving towards the

drop dragging a stream of resident water with them. There may also be a groundwater

flow that augments the pressure gradient flow on one side of the drop, and diminishes

it the other side of the drop.

Suppose the pore is represented by a two-dime"nsional long thin straight channel of

fixed width 2a, parameterized by two independent spatial variables, length -00 <
x* < 00,and height -a ::;y* ::; a,where * denotes a dimensional variable. The front of

the drop is stationary, and the origin is defined to be the centre of this front. The pore
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Figure 1.3: COz drop in water-filled aquifer pore space,

with thin film between COz drop and wall.

Uo Uo
(a~'

CO;;). (0,0)

o 0
Figure 1.4: COz drop in water-filled aquifer pore space, without thin films,
and with (a) close to zero and (b) 90° contact angles between drop and wall.

walls move towards and past the drop at constant velocity U = (-Uo, 0).

Figure 1.3 shows the case when the water wets the pore walls preferentially to the COz,

and so there is a thin film of water of width h between the COz and the pore walls.

The COz forms a long drop in the channel, as described by Bretherton [101]. With a

circular end to the drop, the distance between the drop and pore wall decreases in the

direction of the flow, and the behaviour in the film is described by lubrication theory

[102,103]. With a large drop, the drop's length is many times the channel radius, and

the ratio hi a is a function of the capillary number (Ca == flUol/" where fl is the water's

viscosity, and /' is surface tension) [104], given by h 0< CaZ/3 as Ca -t 0 [101] (i.e. at low

speeds). In this limit, the width of the thin film increases with the velocity of the walls.

In this frame of reference (a stationary drop and travelling pore space and resident

water), water leaks through the film, giving a non-zero net flux through the pore.

In the case when the COz wets the pore walls preferentially to the water, the thin film

disappears (h = 0). With the same frame of reference, there is no water leakage down
«

the sides of the drop, and there is zero net flux of water through the pore. Figure 1.4

shows two such cases, when the contact angle between the drop and wall is (a) close to

zero and (b) 90°. In these cases, the undissolved COz is in contact with the moving pore

walls, and this boundary comprises a m<;>vingcontact-line problem [105-107], with a
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shear-stress singularity at the point of intersection.

To make progress in understanding the length scale over which dissolved C02 stretches

out in front of the drop, it is first necessary to understand the flows of the water which

carries the C02. These water flows can be taken from the literature.

Let pw be the water's density, llw be the water's dynamic viscosity, p*(x*,y*) denote

pressure, and u*(x*,y*) = (u*, v*) be the water velocity within the pore. The water

is an incompressible viscous Newtonian fluid, and characteristic parameter values are

as follows: pw = 1050 kg/rn" [36], llw = 1 X 10-3 Pa.s, u* = IllS mlday [36], and

suppose the pore width 2a is 100 llm [36, 108]. Then the Reynolds number for the water

flow (defined as pwu*2alllw) is 0.000081, the viscous term in the steady state Navier-

Stokes equations is large compared to the nonlinear inertia term, and the Navier-Stokes

equations simplify to the Stokes flow equations (with no body forces):

'V. u" = 0, (1.9.1)

known as the continuity equation, and

(1.9.2)

known as the momentum equation.

1.9.1 Flows far in front of the C02 drop

Far in front of the C02 drop, with uni-directional flow in a long thin horizontal channel,

v* = 0, and the x* and y* components of equation (1.9.2) respectively give

iJp* iJ2u* iJp*
iJx* = llw iJy*2 and iJy* = O.

Therefore p* is a function of x* only. Integrating the first of these two equations twice

with respect to y*, and imposing the boundary conditions u* = - Uo on y* = ±a, gives

-Uo + p;. (y*2 _ a2),
21lw

u" = (1.9.3)

..where p;. == dp* Idx* .

The flux through the channel is

a

Q = J u* dy* -
-a

* . [ *3 ] y'=a
-2aUo + Px' L_y*a2

21lw 3 y'=-a

2 * 3
= -2aUo _ Px·a.

31lw

31



CHAPTER 1: INTRODUCTION

1

0.8

0.6

0.4

0.2

>- 0

-0.2

-0.4

-0.6

-0.8

-1
-1

I--------------------------------------------------,---------------------- -

-0.75 -0.5 -0.25
u

0.25 0.5o

Figure 1.5: Example water flow field far in front of the C02 drop, using equation

(1.9.4),y == y* I a, U == u* IUo, and hi a = 1/30.

With the interface between the C02 drop and the water forming a boundary near x* =

0, except for thin films of width h (e.g. Figure 1.3), the total flux through the two

thin films between the C02 drop and the pore wall also equals -2Uoh. This gives

p;. = 3Uo(h - a)ftwl a3, and so the flow field equation (1.9.3)becomes

* 3Uo(h-a)( *2 2) (3 ( h) (y*2 ))U = -Uo+ y -a = -Uo 1+- 1-- --1 .(1.9.4)
2a3 2 a a2

Figure 1.5 gives an example flow field in dimensionless variables y == y* Ia and u ==
u* IUo, for hla = 1/30. The water's flow field is quadratic in y - by the sides of the

channel it flows with the channel walls towards the end boundary, and in the centre of

the channel it flows contrary to the channel walls and away from x* =O.This parabolic

distribution is a Poiseuille velocity field with a return flow, as the boundary near x* = 0..
ensures the net flux through the channel is small. Increasing hi a increases the net flux

through the channel, and reduces the strength of the reverse flow.

The case hi a > 0 in equation (1.9.4) is relevant to the non-zero flux scenario shown

in Figure 1.3, and applying the limit hi a ,-t 0 to equation (1.9.4) (giving u = - (3y2 -
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1)/2), corresponds to the zero flux scenarios shown in Figure 1.4.

1.9.2 Flows immediately in front of the C02 drop, with no thin film

The long thin channel assumption does not hold in a region immediately in front of

the drop, stretching from the front edge of the drop up to a distance in front of the

drop approximately equal to the pore width. The particular case of no thin film, and a

90° contact angle between C02 drop and pore wall (illustrated by Figure 1.4(b», with

a non-wetting boundary, is perhaps the most straightforward to consider. The flows

within a rectangular domain with no leakage have been considered by a number of au-

thors, for example the flow at the end of a 2-d channel caused by a moving piston [109],

or the flow in a channel with two stationary boundaries and two boundaries that move

in opposite directions [110].The piston problem enables a good first approximation to

be obtained for the flows immediately in front of the drop.

The variables in the Stokes flow equations ((1.9.1)and (1.9.2» are non-dimensionalised

as follows:

x* y* u* v* p*ax = -, y = -, u = -, v = -, p = --,
a a Uo Uo llwUo

and the dimensionless boundary conditions are as follows:

• Zero velocity perpendicular to, and zero stress tangential to, the surface of the

drop (i.e, u = 0 and Vx = 0 on x = 0). (A zero stress condition is legitimate as the

viscosity of supercritical C02 (rv 0.06mPa.s [45])is much less than the viscosity

of the water (rv 1mPa.s).) (1.9.5)

• In the frame of reference of a stationary drop, the walls move past at a constant

velocity (-Uo, 0), (i.e, u = -1 and v = 0 on y = ±1). (1.9.6)

• Far in front of the drop, substituting h = 0 into (1.9.4)gives u -+ (1 - 3r) /2 and

v -+ 0 as x -+ 00. (1.9.7)

The flow of the water immediately in front of th~ drop, and its transition to the down-

stream profile, is described using a stream function 1{J(x,y), defined as follows (which

ensures that conservation of mass (1.9.1)is satisfied):

o1{J
1{Jy:::: oy = u,

_ o1{J _
. 1{Jx= ox - -v.
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The momentum equation (1.9.2)gives

ap a2u a2u
ax = ax2 + ay2 = ljJyxx+ ljJyyy,

ap a2v a2v
oy - ax2 + ay2 = -ljJxxx -ljJxyy'

Differentiating (1.9.8)with respect to y and (1.9.9)with respect to x, and equating, gives

(1.9.8)

(1.9.9)

ljJxxxx+ 2ljJxxyy+ ljJyyyy= 0, which is the 2-d biharmonic equation \14ljJ= O.This equa-

tion has been investigated in the context of the bending of a clamped elastic rectangular

plate at least since Mathieu [111],often using Fourier series. An alternative approach

was initiated by Dougall [112], who deployed a generalization of eigenfunction ex-

pansions [113]. This approach was popularized 36 years later in 1940, by two papers

published independently by Papkovich [114] and Fadle [115], and used subsequently

in rectangular semi-infinite elastic strip problems (e.g. [116]), and Stokes flow fluid

mechanics problems in rectangular domains (e.g. [117]). Later authors established

existence, completeness, and convergence conditions for orthogonal Papkovich-Fadle

eigenfunctions in elastic rectangular strips [118]and Stokes flow problems [119,120].

Following Spence [117],Phillips [1211,and Katopodes, Davis and Stone [109],we sup-

pose ljJ takes the following form,

y y3 00

ljJ(x,y) = 2-2"+ E AnYn(y)exp(-mnx),
n=-oo

(1.9.10)

where Yn(y),An and mn are to be determined (Yn(Y) are the orthogonal Papkovich-

Fadle eigenfunctions, and An and m; are constants with An,Re(mn»O). Then ljJ gives

the correct downstream profile «1.9.7) is satisfied). Applying the biharmonic equation

to (1.9.10)and the boundary conditions above, to find the constants and the orthogonal

Papkovich-Fadle eigenfunctions (details are given in Appendix LA at the end of this

Chapter), gives

y y3 00 -1 (sin(mny) cos(mnY))
ljJ(x,y) = 2 - 2"+ E m tan(m) sin(m) - y cos(m) exp( -mnx),

n;fO,n=-oo n n n n
(1.9.11)

where m; are the roots of the transcendental equation 0 = cos(mn) sin(mn) - m; with

positive real part (also given in Appendix LA).

The same number of negative n's as positive n's must be taken to ensure that the com-

plex parts of (1.9.11)cancel out. For the vast majority of points in the plane, ljJ converges
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Figure 1.6: Water streamlines (1.9.11), with pore walls at y = ±1 travelling towards

the stationary C02 drop at x = O.

rapidly with increasing n. tp is plotted in Figure 1.6, showing the streamlines for the

flow in this zone as the water flows with the walls towards the end boundary, and

against the walls at the centre of the channel, with -20 ~ n ~ 20, which is sufficient.

As Figure 1.6 illustrates, water is drawn towards the drop near the channel walls, then

passes along the interface between drop and water, before flowing away from the drop.

It can therefore collect C02 that dissolves from the drop into the water, and carry this

C02 away from the drop. Understanding how far this dissolved C02 travels from the

drop is of interest in understanding CCS.

Substituting y = ±1 into (1.9.11) gives the single points where tp = 0, and these sin-

gularities mean that the solution does not converge as well near the corners. This can

be seen by the slightly under-resolved streamlines near the corners in Figure 1.6. The

flows of a viscous fluid near a sharp corner with no leakage can be much better rep-

, resented by a stream function defined in polar cd-ordinates (r, e), where e is the angle

from the horizontal, and r is the distance from an origin comprising the point of contact

between a plane (at e = 0), which is scraped at constant velocity U past another station-

ary plane positioned at angle e = IX (theTaylor scraper' [122]). Dimensional analysis
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Figure 1.7: Top corner water streamlines (tfJ = rf(8) with IX = n/2 and f(8) given by

(1.9.12)), with pore walls at y = ±1 travelling towards the stationary C02

drop at x = O.

shows that 1/J (once scaled on U) must be of the form 1/J = r/(8), where /(8) is to be

determined. The corresponding radial and tangential velocities are:

~ dtfJ = //(8) = ur d8 - ,
d1/J _
dr = /(8) = -v.

At 8 = 0, U = 1 and v = 0, and at 8 = a, U = 0 and u; = 0, and so the boundary

conditions are //(0) = 1,/(0) = O,//(iX) = 0, and /(iX) = O. Applying the bihar-

monic equation \J41/J = 0 gives (f + 2/" + /,1//)/r3 = 0 [123], and this has solution

/ (8) = Cl sin 8 + C2 cos 8 + C38 sin 8 + C48 cos 8, where Cl to C4 are constants determined

by matching to the boundary conditions. This gives:

/ (8) = iX (8 - iX) sin ~ - 8 sin (8 - iX) sin iX •

sm2 iX - iX2
(1.9.12)

. (Note that this result contains a typo in Moffatt" [124] - the fifth tc in equation (2.1)

should be a 8.) Substituting in iX = 7[/2, and using r = Jx2 + y2 and 8 = tan-1(y/x),

gives the flow field at every point (x, y), shown in Figure 1.7.
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1.10 Reactive transport modelling of CCS

Reactive transport models seek to describe how injected C02 interacts with resident

water, and spreads out through an aquifer, by combining a set of equations that de-

scribes the fluid transport with a set of equations that describes the chemical reactions.

Understanding the behaviour produced by such systems of equations is very challeng-

ing, and the emphasis in the literature is on obtaining approximate solutions to par-

ticular situations through numerical simulation. This is far from easy, and as there are

different approaches that can be taken to coupling together, approximating, and solv-

ing these two sets of equations, a variety of software packages have been constructed.

TOUGH2 (and its successor TOUGHREACT) is one of the more popular simulation

packages, and was developed by introducing reactive chemistry into an existing multi-

phase fluid and heat-flow code. TOUGH2 uses 'sequential iteration', which decouples

and solves separately the reaction equations and the transport equations during a time

step, but aims to arrive at a fully coupled solution at the end of each time step. The

fluid transport solutions are based on spatial discretization by means of integral finite

differences, and the chemical reaction solutions are obtained using a Newton-Raphson

iterative finite difference method. Non-dissolved, precipitating and dissolving species

may be modelled using either local equilibrium or kinetic laws, but aqueous chemi-

cal species must be modelling by assuming local equilibrium [81, 12S]. A number of

authors have used this package to simulate C02 injection.

For example, it has been used to form a conceptual model of the geology of the Col-

orado Plateau, Utah. The injection of Sm tonnes C02/year for 30 years was simulated,

to investigate how much of the C02 was permanently sequestered as a mineral, and

how much leaked to the surface [126].

In a second example, TOUGH2 was used to simulate what might happen should C02

leak to the atmosphere in a variety of seepage scenarios and atmospheric conditions,

by coupling together modelling of the vadose subsurface zone with modelling of the

,surface layer of the atmosphere [127]. The simulations indicate that the atmospheric

concentration of C02 is likely to be diluted down to negligible concentrations fairly

quickly, and the C02 can actually be returned to the subsurface by rainfall.

TOUGH2 was also used to simulate the injection of C02 into the Rio Vista natural gas
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(methane) reservoir, California, to analyse the benefits of using carbon sequestration to

achieve enhanced gas recovery (CSEGR) [128]. The large density and viscosity differ-

ences between C02 and CH4 mean that C02 will tend to migrate downward relative to

C~, and there will be no extensive mixing between the two gases over the timescales

of interest. Therefore, these simulations are based on relatively simple chemical reac-

tions and ratios of the different species in different phases, but relatively complex fluid

mechanics, including both advection and molecular diffusion for both the gas and liq-

uid phases. The simulations show that the repressurization within the reservoir, caused

by injecting C02, means that CSEGR allows more than five times the mass of C~ to

be recovered relative to that provided without CSEGR.

Incontrast to this, one study into the interactions at Sleipner between injected C02 and

the caprock uses complex models for the chemical reactions, but relatively straightfor-

ward models of the fluid mechanics (it is assumed that diffusion is the only mass trans-

port mechanism at work in the cap rock) [129]. This study uses the software PHREEQC

[130] to assess the amount of C02 permanently precipitated as carbonate minerals, and

the impact on the porosity (and therefore permeability) of the caprack. A range of 15

minerals is included, including predominantly quartz, illite and kaolinite, and a ki-

netic rate law for the dissolution and precipitation of each mineral is specified, which

is dependent on the reactive surface area, the temperature, the proton activity, the equi-

librium constant, and the corresponding ion activity products. The diffusion into the

cap rock is given by Fick's law for diffusion in sediments, J = - Dd \7 (C), where J is

the diffusional flux, Dd is the effective diffusion coefficient, and C is concentration. It

is concluded from the simulations that there is some initial carbonate dissolution, but

the dominant long-term reaction is feldspar alteration. Also, diffusion into the cap rock

is a slow process, and these reactions cause a slight decrease in the cap rock's porosity

(and therefore permeability).

As interest in carbon sequestration has arisen only relatively recently, codes that have

been developed for other purposes can be adapted to model CCS at the particular lo-

cation they describe. For example, FEHMN (the Finite Element Heat Mass and Nu-

clide code) was developed to describe groundwater flow and radionuclide transport

at Yucca Mountain, Nevada, in order to assess the safety of a potential radioactive

waste repository located there [131]. In contrast to the finite differencing of TOUGH2,
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FEHMN numerically solves the heat and mass transfer equations for multiphase flow

in porous and permeable media using more powerful finite element methods [132].

Discretizing the governing partial differential equations onto a three-dimensional fi-

nite element mesh yields a system of nonlinear equations, and these are solved using a

Newton-Raphson procedure.

There are many other packages that have been constructed to perform grid-based sim-

ulations of the pore-scale behaviour, in order to answer aquifer-scale questions, such as

how far through the aquifer the C02 will spread out, and how much will dissolve into

aquifer water. These include PFLOTRAN [133], CHILLER [134, 135], Hytec [136], and

Geochemist's Workbench [137]. An alternative is to take a streamline-based approach

to simulations [75]. A recent review of C02 modelling and simulation summarises 23

different simulators [138]. There are therefore many different ways that approximate

numerical solutions have been found to proposed sets of transport and reaction par-

tial differential equation models of carbon sequestration, and different methods have

different strategies for deciding what to solve and what to approximate, and the ap-

proximations can be done in different ways.

Benchmarking the results from one software package (comparing them to the results

from a different package), is therefore very difficult. The methods used by the differ-

ent software programs are often extremely complicated, and require complicated pro-

grams, which can make independent testing of the programs very difficult. This also

means that the programs effectively become black boxes where users may not under-

stand how the programs work and to what situations they strictly apply, which makes

it extremely easy to use them inappropriately, and to accept incorrect output. In addi-

tion, these problems are compounded by the fact that validating simulation results can

be extremely difficult, due to the inaccessibility of deep saline aquifers. It can therefore

be hard to assess how much trust can be placed in simulations of future events.

One part of the solution to these problems is to improve the understanding of the

fundamental underpinning reaction and transport processes, so there is a better un-..
. derstanding of what can be expected to happen before the simulation programs are

employed. One way this can be achieved is through an analytic investigation of the

pore-scale behaviour of C02 dispersal within a saline aquifer.
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1.11 Summary

There are two fundamental aspects to modelling what happens to C02 once it has dis-

solved into the oceans or been injected into a saline aquifer - the fluid mechanics and

the chemical reactions. These two aspects both heavily affect each other, and errors

in one aspect can rapidly feed back into the rest of the model. The most accurate re-

active transport models therefore reflect the complexity of both the fluid flow and the

chemical reactions. However, deriving and solving such models, either analytically or

numerically, is extremely challenging, due to the wide range of temporal and spatial

scales, the heterogeneity of the saline aquifer or ocean, and the difficulties with vali-

dating models. There is an urgent need to develop ways of making it easier to include

both complex chemical reactions and complex fluid transport within reactive transport

models.

Aquifer-scale CCS models containing detailed fluid mechanics, with either simplified

geochemical reactions, or often no chemistry at all, can sometimes be solved analyt-

ically. Significant work has been carried out in understanding aquifer-scale average

Darcy flows with no reactive chemistry. Smaller-scale (e.g. pore-scale) reactive trans-

port models, which include both fluid mechanics and reactive chemistry, often have to

be solved approximately and numerically for specific scenarios using complex simu-

lation programs, due to the complexities of these models. These models often include

either detailed geochemical fluid-rock interactions with complex mineralogies and re-

action kinetics, coupled to simplified flow, or simplified chemistry with complex flow.

Complementing the models that have been studied extensively that contain just fluid

mechanics, in Chapter 2 we investigate in detail just the main chemical reactions that

happen as a result of C02 dissolution into water. Whenever chemical reactions are in-

cluded in models, a local equilibrium is often assumed for reactions known to be 'fast',

and equations from the kinetics are written down for reactions known to be 'slow'.

However, this gives concentrations which are functions of each other and the equi-

librium constants, and it can be difficult to include more than a few 'slow' reactions.

One way of improving reactive transport modelling is therefore to find simpler ways

of describing the kinetics of the chemical reactions, by finding expressions for the con-

centrations which are functions of time and the initial conditions only.

40



CHAPTER 1: INTRODUCTION

The complexities of models that include both detailed reaction kinetics and detailed

flow mean that attempts to understand reactive transport models in ways that apply to

a wide range of CO2 injection scenarios (rather than just particular individual scenar-

ios), are rare. Therefore, in Chapter 3 we investigate what happens in a CCS scheme

at the pore scale, using models that apply to a range of sequestration scenarios, and

include both fluid mechanics and reactive chemistry. Once C02 has been injected into

a pore, it dissolves from the ends of the drop into the resident water and is carried

away, and the aim of the modelling is to establish the length scales over which the C02

that has dissolved from the drop into the water spreads out from the front of the drop,

which the pressure gradient is causing to spread out horizontally.

Carrying out laboratory experiments, and understanding the results they produce, is

also important in understanding what happens to C02 injected into a saline aquifer for-

mation. In Chapter 4 we provide modelling for experiments which have recently been

carried out at the University of Nottingham to investigate the changes in pH, and the

concentrations of carbonic species and calcium ions, that occur in limestone saturated

with water, as a result of gaseous C02 being bubbled up through the water/limestone

mix, reacting as it travels. The modelling predictions are compared to the results from

the experiments.

I.A The flow field ahead of a piston in a channel

From (1.9.10),

1 3y2 00

U = tpy=z-T+ L AnYn,y(y)exp(-mnx),
n=-oo

00

-v = tpx = L AnmnYn(Y) exp( -mnx),
n=-oo

and so tp gives the correct downstream profile «1.9.7) is satisfied). (Re(mn»O ensures

that the terms in the summation disappear as x -7 00. m; = 0 is disallowed as it

, produces just the far field solution.)

Applying the biharmonic equation '\l4tp = 0 to (1.9.10) gives

f: An (m!Yn +2m~Yn,yy + Yn,yyyy) exp( -mnx) = O.
n=-oo
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If m!Yn + 2m~Yn,yy + Yn,yyyy = 0 holds for all n, then this has solution

where Cl to C4 are constants. From (1.9.6), v = 0 on Y = ±1, i.e. (as mn ¥= 0)

o = (Cl + C3) sin(mn) + (C2+ C4) cos(mn),

and 0 = (Cl - C3) sin( -mn) + (C2 - C4) cos( -mn)

= (-Cl + C3) sin(mn) + (C2 - C4) cos(mn).

(1.11.1)

(1.11.2)

(1.11.3)

From (1.11.1), Yn,y(Y) = (C3 - C2mn - c4ymn) sin(mny) + (C4+ Clmn + c3ymn) cos(mny),

and so U = -Ion y = ±1 gives

o = (C3 - C2mn - C4mn) sin(mn) + (C4+ clmn + C3mu) cos(mn),

and 0 = (C3 - C2mn + C4mn) sin( -mn) + (C4+ Clmn - C3mn) cos( -mn)

= (-C3 + C2mn - C4mn) sin(mn) + (C4+ Clmn - C3mu) cos(mu).

Subtracting (1.11.5) from (1.11.4), and summing (1.11.2) and (1.11.3), gives

o = (C3 - C2mn) sin(mn) + C3mn cos(mn),

and 0 = C3 sin(mu) + C2 cos(mn).

Summing (1.11.4) and (1.11.5), and subtracting (1.11.3) from (1.11.2), gives

o = -C4mn sin(mn) + (C4+ clmn) cos(mn),

and 0 = Cl sin(mn) + C4 cos(mn).

(1.11.4)

(1.11.5)

(1.11.6)

(1.11.7)

(1.11.8)

(1.11.9)

There are two potential sets of solutions, one with C2 = C3 = 0 and one with Cl = C4 = O.

If sin(mn) = 0, then m; = krc (k E Z\ {O}), and hence C4 (from (1.11.9», Cl (from

(1.11.8», C2 (from (1.11.3» and C3 (from (1.11.4» all equal zero, which is the far field

solution. Alternatively, sin(mn) ¥= 0, and so from (1.11.7) and (1.11.9),

and substituting these expressions into (1.11.4) and (1.11.5) gives

o = (C2 - C4) cos(mn) sin(mn) + (C2+ c4)mn,

o = (C2+ C4) cos(mn) sin(mn) + (C2 - c4)mn.
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From (1.11.11), (C2 - C4) = -(C2 + C4) cos(mn) sin(mn)/mn (as mn =1= 0), and substitut-

ing this expression into (1.11.10) gives

O -(C2 + C4)cos2(mn) sin2(mn) ( )
= . + C2 + C4 mn•mn

As (C2+ C4) =1= 0 (otherwise (1.11.11) gives (C2 - C4) = 0 also, and all four constants

equal zero), this simplifies to the following transcendental equation for m.:

(1.11.12)

Expressing (1.11.10) as 0 = C2(cos(mn) sin(mn) + mn) - C4(cos(mn) sin(mn) - mn) and

substituting in (1.11.12) shows that C2, and hence C3, equal zero. The Papkovich-Fad Ie

eigenfunctions (1.11.1) can therefore be written

cos(mn) sin(mny) ()
= -C4 . () + C4YCOS mnysm mn

( ) (
sin(mnY) cos(mny))

= -C4 cos mn . ( ) - y ( ) ,sin mn cos mn

and by writing Bn = AnC4 cos(mn), 1/J can be written

y y3 00 (sin(mny) cos(mnY))1/J(x,y) = -2 - -2 + L -Bn . ( ) - y ( ) exp( -mnx).
n;60,n=-00 sm m; cos mn

The values of m« are the roots of transcendental equation (1.11.12). This equation has

a simple root mo = 0 (which is disallowed as Re(mn»O), and infinitely-many complex

quartets of roots mn, mn, =m« and -mn (where a bar denotes a complex conjugate).

The values of m with a negative real part (without loss of generality assumed to be

-mn and -mn) give an exponentially-growing solution (as -x is negative) and so can

be discounted. Using the rule that there is a conjugate pair of roots to (1.11.12) in each

interval (n + 1/8)rc < Re(mn) < (n + 1/4)rc [121], the first 20 solutions with a positive

complex part are found and given in Table 1.6.

Note that m-n = mn, and so the complex parts of 1/J cancel out when the same num-

ber of positive and negative values of n is used, e.g. -20 ::; n ::;20. (For example,..
.. cos(mn) + cos(m-n) = cos(an + bni) + cos(an - bni) = (cos(an)cosh(bn) - isin(an)

sinh(bn)) + (cos(an) cosh(bn) + i sin(an) sinh(bn)) = 2cos(an) cosh(bn).)

The sole remaining set of constants Bn are found by imposing an orthogonality con-

dition and matching to the remaining boundary condition (1.9.5).With a velocity and
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n mn n mn
1 3.748838139078 + 1.384339142145i 11 35.307902530665 + 2.476402678710i

2 6.949979856990 + 1.676104942428i 12 38.451800004646 + 2.518899596647i

3 10.119258854116 + 1.858383839715i 13 41.595389718923 + 2.558067732979i

4 13.277273632746 + 1.991570820170i 14 44.738731042582 + 2.594390814285i

5 16.429870502544 + 2.096625735179i 15 47.881868801013 + 2.628254233801i

6 19.579408260032 + 2.183397558835i 16 51.024837506373 + 2.659970022509i

7 22.727035732178 + 2.257320224741i 17 54.167664185163 + 2.689794363883i

8 25.873384151411 + 2.321713978526i 18 57.310370319136 + 2.717940174489i

9 29.018831029547 + 2.378757559041i 19 60.452973208984 + 2.744586329988i

10 32.163616856643 + 2.429958323949i 20 63.595486952346 + 2.769884555900i

Table 1.6: First 20 solutions to 0 = cos(mn) sin(mn) - mn.

stress specified at x = 0 (known as the 'canonical' problem in [109]), and with cos(mn)

factored out of the Papkovich-Fadle eigenfunctions into the Bn, the remaining constants

simplify to Bn = cot( mn) / m; [109], i.e.

Y y3 00 -1 (sin(mny) cos(mnY))
1/J(x,y) = "2 - "2 + L m tan(m) sin(m) - y cos(m) exp( -mnx).niO,n=-oo n n n n
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CHAPTER 2

The reactive chemistry of C02

dissolution in water

In this Chapter, the kinetics of the dissolution of C02 in water and subsequent chemical

reactions are investigated. The principal chemical reactions that take place in ocean

acidification and C02 dissolution into aquifer water in a CCS scheme are the same,

and so this analysis helps provide an improved understanding of both of these two

issues.

2.1 The chemical reactions

Suppose gaseous C02 is mixed with water, and the following reversible chemical reac-

tions occur:

C02(g) ~ CO2(aq), (Rl)

C02 (aq) +H20 ~ H2C03, (R2)

H2C03 ~ H+ +HC03, (R3)

HCO- ~ H+ +Co;- (R4)3 " 3 '

Ca2++CO~- ~ CaC03(aq), (R5)

CaC03(aq) ~ CaC03(S). (R6)
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As described in the previous Chapter, gaseous carbon dioxide dissolves into the water

(Rl), reacting to form carbonic acid (R2). Hydrogen ions dissociate from the carbonic

acid, to give bicarbonate (R3), and then a carbonate ion (R4). There are many mineral-

isation reactions that can and do occur. The formation of calcium carbonate is one of

the more straightforward ones, and is very common. This reaction is therefore taken

as a representative slower mineralisation reaction (R5). Some of this calcium carbon-

ate precipitates out of the solution (R6). No further reactions with buffers that remove

some of the hydrogen ions from the system are included; this removal will only drive

the system of reactions further forward, and so result in more hydrogen being pro-

duced. The minimum quantity of hydrogen ions that is generated will therefore be

obtained. It is assumed that the system is initially at equilibrium with all species at low

concentrations compared to water, and is then subject to an instantaneous injection of

gaseous carbon dioxide. The new equilibrium that the system reaches, the time scales

over which this equilibrium is reached, and the behaviour of the different species as

they go to their new equilibria, are investigated.

2.2 Mathematical modelling

2.2.1 Assumptions

From Section 1.7, each of the reactions (Rl-5) individually follows the mass action law

(with the additional assumption that water is abundant), and it is supposed that this

also applies when the reactions are considered together as a single system of reactions.

It is also assumed that that the components are always well-mixed, and that the tem-

perature, pressure, salinity, ionic strength, and particle surface area are constant and

uniform, and any impact upon the rates of reaction caused by varying one or more of

these factors can be captured by varying the rate constants appropriately. It is assumed

that C02(aq) remains below carbon dioxide's solubility limit (without the need to im-

pose a maximum value on its concentration), at;d that all the CaC03 that is formed in

solution remains dissolved until its concentration reaches calcium carbonate's molar

solubility limit S; thereafter it precipitates instantaneously. It is also assumed that the

reactions take place in a space that is spatially homogeneous (so any nucleation that

occurs will also be homogeneous).
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2.2.2 Full dimensional model

The kinetics of (R1-6) is therefore modelled by the following rate equations, where t
is time (in sec), [ ] denotes concentration (measured in mol/litre, or M), [CaC03] =

[CaC03(aq)] + [CaC03(S)], kl to ks and Ll to Ls are respectively the forward and re-

verse rate constants for the five reactions (R1-5),and 1t(.) is the Heaviside step function

(1t(x) = 1 if x > 0, 1t(x) = 0 if x < 0):

d[C~~(g)] = -kdC02(g)] + L1[C02(aq)], (2.2.1a)

d[CO;?q)] = kdC02(g)]- Ll[C02(aq)]- k2 [C02(aq)] +L2[H2C03], (2.2.1b)

d[H20]
dt = -k2[C02(aq)] +L2[H2C03], (2.2.1c)

d[H2C03J + _
dt = k2[C02(aq)J - L2[H2C03J - k3[H2C03] + L3[H ][HC03 J, (2.2.1d)

d[:+] = k3[H2C03]- L3[H+][HC03"] + k4[HC03"]- L4[H+][CO~-], (2.2.1e)

d[HCO-] _ _ 2-
dt 3 = k3[H2C03]- L3[H+][HC03]- k4[HC03] +L4[H+][C03], (2.2.1£)

d[C~~-] = k4[HC03"]- L4[H+][CO~-]- ks[Ca2+][C~-] +LS[CaC03(aq)],

(2.2.1g)
d[Ca2+]

dt = -ks[Ca2+][CO~-] + LS[CaC03(aq)], (2.2.1h)

d[CaC~3(aq)] = (ks[Ca2+][CO~-]- Ls [CaC03 (aq)]) n (5 - [CaC03]), (2.2.li)

d[Ca~~3(s)] = (ks[Ca2+][CO~-]- k-S[CaC03(aq)]) 'H ([CaC03]- 5). (2.2.1j)

Equations (2.2.1) can be simplified by removing the explicit distinction between dis-

solved and precipitated CaC03, and by imposing mass conservation constraints con-

sistent with the initial conditions. From (2.2.li) and (2.2.1j),

(2.2.2)

and so (2.2.1g), (2.2.1h) and (2.2.2)can alternatively be written as
"

d[C~~-] = k4[HC03"]- L4[H+][CO~-]- ks[Ca2+][CO~-]+Lsmin{5, [CaC03]},

(2.2.3a)

(2.2.3b)
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Therefore, equivalently to (2.2.1), the system comprises equations (2.2.1a)-(2.2.lf) and

(2.2.3), and whenever a more detailed split between aqueous and solid CaC03 is re-

quired, this is given by

[CaC03(aq)] =min{[CaC03],S}, [CaC03(s)] = max{O, [CaC03]- S}. (2.2.4)

The four different elements within this system (C, 0, Hand Ca) must be conserved

throughout the system's evolution (onwards from the time at which the extra C02 (g)

is injected), and so the system of nine equations has four constraints and five degrees

of freedom. Noting that (2.2.1h-j)sum to zero, it follows that

[CaH] + [CaC03] = [Ca2+]o+ [CaC03]O,

(where subscript zero indicates an initial value), denoting conservation of calcium.

Similarly, conservation of carbon, hydrogen, and oxygen are respectively given by

[C02(g)] + [C02(aq)] + [HZC03]+ [HCOi] + [CO~-]+ [CaC03]

= [C02(g)]O+ [COz(aq)]o+ [H2C03]O+ [HCOi]o + [CO~-]o+ [CaC03]o,

2[C02(g)] + 2[C02(aq)] + [H20] + 3[H2C03] + 3[HCOi] + 3[CO~-] + 3[CaC03]

= 2[C02(g)]O+ 2[COz(aq)]o+ [H20]O+ 3[H2C03]0 + 3[HCOi]o

+ 3[CO~-]o+ 3[CaC03]o.

These four equations are re-arranged so that [C02(g)], [H+], [CaC03] (denoted X, Y

and Z respectively) and [H20] are expressed as functions of the remaining five species

and the initial concentrations. The system (2.2.1a)-(2.2.lf) and (2.2.3) therefore simpli-

fies to the following system of five coupled ordinary differential equations,

d[CO;?q)] = klX - LI[C02(aq)]- k2[C02(aq)] + L2[H2C03],

d[H~C03] = k2[C02(aq)]- L2[H2C03] - k3[H2C03] + L3Y[HCOi],
t ..

d[HCO-] _ _ 2-
dt 3 = k3[H2C03]- L3Y[HC03]- k4[HC03] + L4Y[C03 ],

d[C~~-] = k4[HCOi] - L4Y[CO~-]- ks[CO~-][Caz+]+Lsmin{S, Z},t _

d[~H] = -k5[CO~-][CaH]+L5min{S,Z},

(2.2.5a)

(2.2.5b)

(2.2.5c)

(2.2.5d)

(2.2.5e)
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where

x == [C02(g)]O - [C02(aq)] + [C02(aq)]o - [H2C03] + [H2C03]O

- [HC03] + [HC03]o - [CO~-] + [CO~-]o + [Ca2+] - [Ca2+]o, (2.2.6a)

Y == [H+]o + [HC03] - [HC03]o + 2[CO~-]- 2[CO~-]o - 2[Ca2+] + 2[Ca2+]o,

(2.2.6b)

(2.2.6c)

This simplification reduces the number of parameters from 19 (the ten rate constants

and nine initial concentrations) to 18.

2.2.3 Parameterestimates and initial conditions

Estimates of the rate constants for these reactions at standard temperature and pressure

(25°C and 1 atm) are given in Table 2.1, based on the estimates in Chapter 1. The rate

constants vary by at least nine orders of magnitude. Constants kl and k-l are estimated

based on Kl = 1, and reaction (R1) being fast in a well-mixed scenario [139], and similar

in speed to reaction (R3). Also, ks and Ls are estimated based on reaction (RS) being

relatively slow, and Ks ~ 2000 M-1 at 25°C. As CaC03 dissociates to one molecule of

Ca2+ and one molecule of CO~-, 5 (in M) is given by the square root of the solubility

product constant, which for CaC03 in pure water at 25°C is 4.96 x 10-9 [62].

The Botucatu aquifer in Brazil has been well-characterised [63], and some of its shal-

lower wells (e.g. Wells 56, 89 and 149), have conditions similar to standard temper-

ature and pressure. Typical concentrations for this aquifer are [Ca2+]o = 10 mgll =
2.50 x 10-4 M (as calcium has atomic mass 40.078 g/mol), [HC03]o = 20 mgll =

3.28 x 10-4 M (as bicarbonate has atomic mass 61.01 g/mol), and pH=6, i.e. [H+]o

= 10-6 M, and so the behaviour of the system will be illustrated with these initial con-

centrations. From these three initial concentrations, the remaining species' initial con-

centrations are calculated using the fact that a reaction's equilibrium constant equals

both its ratio of rate constants and its ratio of equilibrium concentrations. For example,

for reaction (R4),

K4 = k4 = [H+]o[C~~-]o,
L4 . [HC03]o

and so [CO~-]o = 1.97 x 10-8 M. Similar calculations for the other four reactions give

(2.2.7)
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Parameter Magnitude Source

k1 1 x 1010s-l [73]

L1 1 x 1010 S-l [73]

k2 6 x 10-2 S-l [84]

L2 2 x 101S-l [85]

k3 1 x 107 S-l [85]

L3 5 x 1010M-1 s-l [85]

k4 3 x 100s-l [94]

L4 5 x 1010M-1 S-l [94]

ks 2 x 100M-1 s-l [90]

Ls 1 x 10-3 S-l [90]

5 7 x lO-sM [62]

Table 2.1: Parameter estimates at 25°Cand 1atm.

the remaining initial equilibrium concentrations (Table2.2).Water's concentration does

not deviate from its large pure value of 55.5M (i.e, assume water has density 1000gil,

and atomic mass 18.0106g/mol). Note that [C02(aq)]+[HCO;]+[CO~-]=8.75 x 10-4

M, and the same values for K2, K3 and K4 are being used as was used for the Bjerrum

plot in Figure 1.1, and so that Bjerrum plot applies to this initial equilibrium scenario.

The equilibrium concentrations required by the Bjerrum plot for a pH of 6 agree with

the magnitudes given in Table 2.2.

The system is then perturbed by an instantaneous injection of C02(g) that increases

[C02(g)] to 0.065M, which will be sufficient to increase [C02(aq)] to its solubility limit

at 25°C and 1 atm, found in Section 1.7.1 to be about 0.034 M. (Any more injected

C02(g) will therefore remain undissolved, and will not affect any of the other species.)

The time at which this injection happens is set to be t = 0, the conservation of mass

constraints now apply, and we seek the evolution of the system to a new equilibrium.

Aquifer temperatures and pressures can be far ~above25°C and 1 atm, and the initial

concentrations can be rather different from the ones chosen here, but the results ob-

tained here are extendable to a wider range of scenarios, as explained in Section 2.3.9

below.
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Species Initial equilibrium

concentration

[C02 (g)J 5.47 x 10-4 M

[C02{aq)] 5.47 x 10-4 M

[H2C03J 1.64 x 10-6 M

[H+J 1.00 X 10-6 M

Species Initial equilibrium

concentration

[HC03"J 3.28 x 10-4 M

[CO~-] 1.97 X 10-8 M

[CaH] 2.50 x 10-4 M

[CaC03J 9.84 x 10-9 M

Table 2.2: Initial concentrations (before injection of extra C02 (g».

CO2(g) A C02(aq) ~ H2C03 S H+ CaH
Rt.! ~3 h4 ~s

H20 HC03" ~ CO~- ~ CaC03

Figure 2.1: Reactive interactions between the different chemical species.

2.2.4 Predicted impact of C02(g) injection

Figure 2.1 shows the relationships between the different chemical species that occur as

a result of the reactions listed in Section 2.1. If this were a simple chain of reactions,

then all the species' concentrations would increase. However, the loop in the middle

means that this will not be the case, and the overall effects of increasing C02 (g) are not

immediately obvious.

The ratio of a reaction's concentrations is constant for any equilibrium, so from (R1),

Kl = ..!5l_ = [C02(aq)]0 = [C02(aq)Joo,
Ll [C02(g)JO [C02(g)Joo

where a 0 subscript indicates an initial equilibrium value, and a 00 subscript indicates a

final equilibrium value. Therefore an increase in [C02(g)] (from [C02(g)]0 to [C02(g)]oo)

must be balanced by an increase in [C02(aq)]. The expression for K2 similarly indicates

that there must be an increase in [H2C03]' For reaction (R4),

K4 = !!_ = [H+Jo[CO~-]o = [H+]oo[C~-Joo
L4 [HC03 [o ~ [HC03"Joo

[H+] is known to increase as a result of these reactions, and so [CO~-] must decrease,

and [HC03"] must increase. From reaction (R5),

Ks = ks = ~a~03]~
Ls rCa +]olC03 -Jo
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Therefore, a drop in [CO~-] must be balanced by an increase in [Ca2+],and a decrease

in [CaC03]' Therefore, rather counter-intuitively, an increase in the amount of C02 (g)

results in a decrease in the amount of CaC03i some of the CaC03 already in the sys-

tem breaks up, producing Ca2+. This agrees with the experience at Weyburn, Canada

(Section 1.5), where injecting C02 with water dissolved calcium carbonate from the

formation matrix, and increased the pore permeability. Therefore C02 cannot be se-

questered as CaC03 through these reactions alone. Chapter 4 contains experimental

evidence that agrees with this.

2.2.5 Dimensionless model

Six dimensionless variables are defined in Table 2.3 - B, D, F, G and H represent

deviations of concentrations from initial values, and each is a function of a rescaled

time variable f. Table 2.4 defines 18 dimensionless parameters, denoted with Greek

symbols, with the concentration of water (=55.5M) and the rate constant kz chosen

to be the arbitrary reference inverse concentration and time scale respectively. These

parameters are evaluated using data in Tables 2.1 and 2.2 and [C02(g)]o=O.065M, and

the resulting values, spanning 23 orders of magnitude, are given in Table 2.4. The

parameters are expressed as the product of a corresponding 0(1) parameter (indicated

by a hat) and a power of the parameter a. This is a precursor to taking the distinguished

asymptotic limit a -r+ 00, with all hatted parameters remaining 0(1) in the limit.

Since the initial conditions (prior to C02 injection) have been chosen to satisfy the equi-

librium equations (as in (2.2.7», reactions (R2-5)yield the following identities:

(T = ~ w = tp6 til = XfJT A and e = pIC
- 6' - fJ fI ' 'f' - flPIC - TA . (2.2.8a-d)

Substituting the dimensionless variables, parameters and identities (2.2.8) into (2.2.5)

yields the following dimensionless system of five equations, containing 14independent

parameters. The five variables all equal zero at l = O.

dB f3D
dl = a - 'Y(B +D +F +G - H) - v(B + f3) - B +T'
dD f3D tp6ill= B - T - tp(D + 6) + ~fJfI(F + fJ)(fI + F +2G - 2H),

(2.2.9a)

(2.2.9b)
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Variable Definition

B ([C02(aq)] - [C02(aq)]0)/[H20]0

D ([H2C03]- [H2C03]0)/[H20]0

F ([HCOi]- [HCOi]0)/[H20]0

G ([CO~-] - [CO~-]0)/[H20]0

H ([Ca2+] - [Ca2+]0)/[H20]0

f k2t

Table 2.3: Dimensionless variables.

Parameter Definition Value at 25°C, 1 atm Scaling

tt [C02(g)]okd[H20]k2 1.95 X 108

f3 [C02(aq)]0/ [H2O] 9.85 x 10-6 tt-3/4~

0 [H2C03]0/ [H2O] 2.95 x 10-8 tt-1J

~ [H+]0/[H20] 1.80 X 10-8 tt-1p
11 [HCOi]0/[H20] 5.91 x 10-6 tt-3/4q
e [CO~-]0/[H20] 3.55 x 10-10

A [Ca2+]0/ [H2O] 4.50 x 10-6 tt-3/4_\

K [CaC03Jo/[H20] 1.77 x 10-10 tt-S/4f(

I kdk2 1.67 X 1011 tt3/21
v Lt/k2 1.67 X 1011 tt3/2f)

(J' L2/k2 3.33 X 102

tp k3/k2 1.67 X 108 ttt[;
W L3[H20]!k2 4.17 X 1013

X k4/k2 5.00 X 101 tt1/4X

4' L4[H20]/k2 4.17 X 1013

T ks[H20]!k2 1.67 X 103 tt1/2t

P Ls/k2 1.67 X 10-2 tt-1/4{J

:E S/[H20] 1.27 x 10-6 tt-3/4t
Table 2.4: Dimensionless parameters.
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~~= t/J(D+o) + (~~O(F+1J)+~1J (;~G+1)) (7J+F+2G-2H)-X(F+1J),
(2.2.9c)

~~ =X(F+1J) - ~1J (;~G+1) (7J+F+2G-2H) -r(G+ ~~) (H+A)

+p min{:E,K - H}, (2.2.9d)

~~ = -r(G+ ~~) (H+A)+pmin{I:,K-H}. (2.2.ge)

2.2.6 The evolution of the system to equilibrium

Numerical integration of (2.2.5), using one of Matlab's inbuilt programs for initial value

ordinary differential equation problems (ode15s), and the parameter values given in

Tables 2.1 and 2.2 (with [C02(g)]0 = 0.065 M), yields results shown in Figure 2.2(a).

(The evolution of calcium is given as the increase from its initial value.) The solutions

produced agree with the predictions from Section 2.2.4 and [5, 12], that the injection

of C02(g) leads to increases in [C02(aq)], [H2C03], [H+], [HCOi], and [CaH], and

decreases in [CO~-] and [CaC03]' The curve for the decrease in [CaC03] coincides

exactly with the curve for the increase in [Ca2+] (as these are the only two species in

the system containing the element calcium).

The new equilibrium concentrations are estimated to be [C02(aq)]oo R! 3.305 x 10-2M,

[HCOi]oo R! 3.794 x 10-4 M, and [CO~-]oo R! 4.429 X 10-10M, which gives Tot[C02]

R! 3.342 x 10-2 M. Therefore, the Bjerrum plot in Figure 1.1 does not apply to this

new equilibrium. A new Bjerrum is constructed for this new Tot[C02] using equations

(1.7.5)-(1.7.7) and the same values for K2&3 and K4 (Figure 2.3). Also, [H+]oo R! 5.1 X

10-5 M (i.e. the pH has dropped from 6 to 4.3), and this is shown with a vertical line in

Figure 2.3. These equilibrium concentrations of C02(aq), HCOi and CO~- do indeed

match the concentrations required by this Bjerrum plot for this equilibrium pH, which

gives confidence that this modelling is accurate.

In Figure 2.2(b), the evolution of the system is plotted using dimensionless variables
~

(2.2.9) with continuous lines, along with asymptotic approximations (dashed lines) that

will be derived below. There is very close agreement between the simulations and the

approximations. For each species J (J=B, D, F, G, H), the exponent

'f == d log I~I
J . d log t (2.2.10)
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Figure 2.2: (a) Simulation results expressed in dimensional variables, satisfying (2.2.5);

(b) Simulation of the dimensionless system (2.2.9) (continuous lines), with
"

leading-order approximations derived below (dashed lines, where visible);

(c) The time exponent 'f J of each species' evolution, in simulation of (2.2.9).

In each graph, the vertical lines tl-t6 indicate the six timescales: t1=tt-3/2,

t2=tt-1, t3=tt-3/4, t4=tt-112; tS=tt-1/4, t6=tt1/4.
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Figure 2.3: Bjerrum plot, using (1.7.5)-(1.7.7) and total C02 = 3.342 X 10-2 M.
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provides a useful measure of the rate of change of each variable (as J exF'fJ when 'fJ is

constant). Figure 2.2(c) shows how the 'fJ exhibit stepwise changes with time.

The plateaux in Figure 2.2(c) separate six different timescales in this system, indicated

by ti to ts in Figure 2.2, and discussed in more detail in Section 2.3: (1) C02(aq) (B)

evolves linearly in time ('f B ~ I), and then rapidly reaches equilibrium ('f B = 0),

the remaining species initially evolving with successively higher powers of time; (2)

H2C03 (D) and HC03 (F) reach an approximately linear evolution in time ('f 0 and

'fF approach I), with CO~- (G) varying quadratically, and Ca2+ (H) cubically in time,

although the changes are all still negligible compared to the initial concentrations; (3,4)

the rate of change of CO~- declines rapidly ('f G falls to zero); (5) H2C03, HC03 and

CO~- (D, F and G) reach equilibrium while Ca2+ evolves linearly in time ('f H ~ 1); (6)

Ca2+ reaches equilibrium.
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2.3 Asymptotic analysis

Asymptotic approximations of the solutions of (2.2.9) are sought in each of the six

timescales identified above, and are matched to each other where the timescales over-

lap. Ineach timescale, the five variables are expressed as the product of a correspond-

ing 0(1) variable, which is indicted by a hat, and an appropriate scaling factor, given as

a power of the parameter a. This parameter is chosen as it is a measure of the quantity

of injected C02 (g), and a different initial condition will produce different final results.

The hatted variables and parameters (from Table 2.4) and all their corresponding scal-

ing factors of ex. are then substituted into (2.2.9), and the terms in successive powers

of ex.-1/4 are balanced, giving the leading-order behaviour of the system in the distin-

guished limit ex. -t 00 (hatted parameters in Table 2.4 remaining 0(1)). The asymptotic

approximations are validated by comparison with numerical simulations for a large,

but finite, value of ex. (Figure 2.2(b)).

The different leading-order approximations for each species are summarised in Section

2.3.7, and are combined into a single plot as the dashed lines overlying the continuous

lines in Figure 2.2(b). There is uniformly close agreement between the simulations

and these approximations. Wherever possible, they are constructed by summing the

different timescales' approximations, and subtracting the intervening large-time limits,

to give composite formulae.

2.3.1 Timescale1: t = O(ex.-3/2)

Writing B = ex.-1/2B, D = ex.-20, F = ex.-5/2F, G = ex.-7/2C, H = ex.-21/4fi and f = ex.-3/2t
gives the following leading-order behaviour of (2.2.9)on this timescale as ex. -t 00:

dB A dO dF A dC - X/I dfi A

dt = 1- (t+v)B, dt = 13, dt = 1jJO, dt = -p-F, cit = -tCA, (2.3.1a-e)

with 13= 0 = F = C = fi = 0 at t = O. 13equilibrates rapidly, with changes in the

remaining variables slaved sequentially to this ...Equations (2.3.1)have the solutions

13= ~ (1 - exp( -1it)) ,

0- _!_ (A' exp( -1it) -1)-1i t+ 1i '

(2.3.2a)

(2.3.2b)
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F = if; (p. _!_ _ exp( -Of) -1)
020 02 '

C = -x~if; (P _ £_ _!_ exp( -Of) -1)
Op 6 20 + 02 + 03 '

Ii= tAx~if; (f4 _!_ P. _ _!_ _ exp( -Of) -1)
Op 24 60 + 202 03 04 '

(2.3.2c)

(2.3.2d)

(2.3.2e)

where 0 == 1+ '0. The species evolve in successively higher powers of time, as ex-

pected from Figure 2.2(c). Examination of the neglected terms in (2.3.1) reveals that

these approximations are valid until f reaches 0(al/2), i.e, t = O(a-l), at which time

13 = 0(1), D = 0(al/2), F = O{a), C = 0(a3/2), and Ii= 0(a2). The leading-order

large-time limits of these variables, valid for a-312 « t«a-I (i.e. between timescales

tl and t2), form the initial conditions for the next timescale. These limits are, in dimen-

sionless unsealed variables,

2.3.2 Timescale2: I = O(a-1)

(2.3.3a-e)

0(1) variables are now defined using B = a-l/2B, D = a-3/2D, F = a-312F, G = a-2C,
H= a-13/4 Iiand t = a-If, to yield the following leading-order reduction of (2.2.9):

dD A if;8 dF A if;8
0= 1- (1+ '0)13, df = 13 - tpD + pF, dt = tpD - pF,

~~ = -:~ F, ~~ = -tCA.

(2.3.4a-c)

(2.3.4d,e)

Therefore 13 = 11(1 + '0). Also, d(D + F)I dt = 13, implying that D = 13f - F (the constant

of integration is zero, from matching to (2.3.3». Substituting this expression for D into

(2.3.4c) gives

which has solution

where Cl is a constant of integration and A == if;+ if;8Ip. The Taylor series expansion

of exp( -Af) about the point f = 0 is 1 - M + A2p. /2 + ....Therefore, as t -t 0, by
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matching with (2.3.3c),this equation becomes

This means that C1 = 1j;13/:i2, and so

.p. = Af'; (i exp (-:if) -1) A _ f';A _ Af'; ( f exp (-:if) -1)
r tpo A + A2 ' U - Bi tpo A + A2 •

~ ~ ~ ~

(For f -t 0,substituting the three-term Taylor series expansion of exp( -:if) into this

expression for D gives D ~ 13f -1j;13f2 /2 ~ 13f, which matches (2.3.3b». Likewise,

substituting this expression for F into (2.3.4d), integrating, finding the constant of in-

tegration by replacing exp( -:if) with a four-term Taylor series expansion and setting

equal to (2.3.3d), and then repeating for Pi, gives

C = -xfj1j;13 ( f~ _ !_exp( -AM) -1)
P. 2~ ~2 ~3 '

Pi _ fAxfj1j;13 (f3 _ f2 _!_ exp( -:if) -1)
- P. 6:i 2:i2 + :i3 + M .

Again, looking at the largest neglected terms in (2.3.4), these approximations are valid

until f reaches 0(a:1/4), at which time 13 = 0(1), D = 0(a:1/4), F = 0(a:1/4), C =

0(a:1/2), and Pi = 0(a:3/4). The leading-order large-time limits of these variables, valid

for a:-I « l « a:-3/4 (i.e. between timescales t2 and t3), form the initial conditions for

the next timescale. These limits are (2.3.3a)plus

(2.3.5a-d)

broadly consistent with the exponents 'fB ~ 0, 'fD ~ 1, 'fF ~ 1, 'fG ~ 2, and 'fH ~ 3

for t2« l« t3 in Figure 2.2(c).

2.3.3 Timescale3: l = O(a:-3/4)

On this timescale, 0(1) variables are defined using B = a:-1/213, D = a:-s/4(Do +
'"a:-1/4D1 + ...),F = a:-s/4(Fo + a:-1/4FI + ...),G = a:-3/2C, H = a:-S/2Pi and I = a:-3/4f,

to yield the following reduction of (2.2.9):
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dt> ~J ~J
dtO = 13-tP (a1/4t>0+ o.) + ~ Po+ ~ (a1/4Po+P1 +2C) +0 (a-1/4) ,

(2.3.6a)

dIt° = tP (a1/4t>0 + t>l) - ~JPo - ~J (a1/4Po + PI + 2C) + 0 (a-1/4) , (2.3.6b)

dC = -X~TAG~ _ X~~ + 0 (a-1/4)dt {JIC fl 0, (2.3.6c)

~1= -TCA + 0 (a-I) , (2.3.6d)

with 13 = 1/(1 + 1/) as in (2.3.4a). As the left hand sides of (2.3.6a,b) are 0(1), the

0(a1/4) terms on the right hand sides must sum to zero, i.e.

~A tPJ A
-1jJuo + -;::-1:"0 = O.

fl
(2.3.7)

In the limit a -+ 00, the leading-order behaviour of (2.3.6)on this timescale is given by

(2.3.6c,d)plus

(2.3.8a)

(2.3.8b)

Therefore d(t>o+ Po)/dt = 13, implying t>o = 13t - Po (matching to (2.3.5a,b». Substi-

tuting this into (2.3.7)gives the following leading order behaviour for D and F on this

timescale:
13Mt>o = --~,
fl+o

(2.3.9a,b)

Substituting (2.3.9b) into (2.3.6c),and solving for C gives

C = ~~ (1 - exp ( -~~t)) - Aft,
where r == 131(fl + J) and A == {JIC 1TA. Ii is given by

~A2t (~A (-xfJJ)) ~~ f2 TAA3tIi = -TA x~ t + x~exp -p:- + TAAt'2 + X2~2 .

The constants of integration for C and Ii are deduced from matching to (2.3.5c,d). (Sub-

stituting the three-term Taylor series expansion of exp( -x~fl A) about the point f = 0

into these expressions forC and Ii gives (2.3.5c,d).)
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The neglected terms in (2.3.6) indicate that these approximations are valid until t reaches
0(1X1/4), at which point B is 0(1), D, F and G are 0(1X1/4), and PI is 0(1X1/2). The

leading-order large-time limits of these variables, valid for 1X-3/4 « f « 1X-1/2 (i.e.

between timescales t3 and t4), are given by (2.3.3a), (2.3.5a,b) and

-pKBf pKBf2
G ~ rA(tt + 0)' H ~ 2(tt + 0)' (2.3.10a,b)

consistent with 1fG ~ 1, 1fH ~ 2 in Figure 2.2(c) (although these exponents do not

exhibit clear plateaux for t3 « E « t4)'

2.3.4 Timescale4: f = 0(£\:-1/2)

On the next timescale, 0(1) variables are defined using B = 1X-1/2B, with B = II (1' +
0), D = IX-I (Do + 1X-1/4Dl + 1X-1/2D2 + ...), F = lX-l(Fo + 1X-1/4Fl + 1X-1/2F2 + ...),
G = IX-S/4(Go + 1X-1/4Gl + ...),H= 1X-2PI, and f = 1X-1/2t. Similarly to timescale 3, the

resulting 0(£\:1/2) terms in the ODEs for D and Fmust sum to zero, which gives (2.3.7),

as must the 0(1X1/4) terms in the ODEs for D, F and G, which give

(2.3.11a)

(2.3.11b)

Then, in the limit IX -+ 00, the leading-order behaviour is given by

d~O = B - {lD2 + :: (2FoPl + 2PoGo + P1P +~(P2 + 2Gl)),

~o = {lD2 - :: (2FoF1 + 2FoGo + F1P +~ (F2 +2(1)),

dGo A x~ (fAA ) f>, A x~fAA f>,cit = XFo - p pre vo + 1 (r1 + 2Go) - {lpi( v1({l + ro),

dPI A A

dt = -fvoA.

Therefore d(Do + Fo)/dt = B, and so Do = Bt - Fo. This, together with (2.3.7), gives..
(2.3.9). Substituting (2.3.9b) into (2.3.11b), and simplifying, gives

(2.3.12a)

(2.3.12b)

(2.3.12c)

(2.3.12d)

(2.3.13a)
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To check that this solution for G matches the small-time limit (2.3.10a), note that this

expression differentiates to

dGo -pKB(f1 + J)
df = fA(f1+ J + Bf)2'

and so the two-term Taylor series expansion of (2.3.13a)about the point f = 0 is

-PKB ( f)
Go = fA 0 + (f1 + J) ,

which correctly matches (2.3.lOa).

Substituting (2.3.13a)into (2.3.12d)gives

dIi pKBf
df = f1+ J + Bf'

and this has solution

where C1 is a constant of integration. Noting that In(f1+ J+M) differentiates to B/ (f1+
J+Bf), and then to - B2/ (f1+ J+ Bf)2,substituting the three-term Taylor series expan-

sion of In(f1+ J + -st) about f = 0 into this expression, and matching to (2.3.10b),gives

pKBf2 ,," PK(f1 + J) ( " Bf B2f2 )( ")+ ...= pKt - B In(f1+ 6) + -" - ( ")2+ ... + C1,2f1+6 f1+6 2f1+6
where the terms at the next order of the large-time limit (2.3.10b),and the terms at the

next order of the Taylor series expansion of In(f1+ J +Bf), are omitted. Therefore

C1 = PK(f1
B
+ J) In(f1+ J),

and

(2.3.13b)

These approximations are valid until f reaches 0(a:1/4), at which point B and G are

0(1), and D, P and Ii are 0(a:1/4). Noting that (2.3.13a)can be written

( ")-1" -PK f1+ 6
Go = fA 1+ IH ' (2.3.14)

00

and that the sum of the infinite geometric series L(_a)n = (1+ a)-l if lal < 1, then
n=O

" -PK ( f1+ J ) "Go ~ fA 1-: M + ... for t» 0(1). (2.3.15)

62



CHAPTER 2: THE REACTIVE CHEMISTRY OF COZ DISSOLUTION IN WATER

Therefore, the large-time limits of these variables, valid for tt-l/Z « f « tt-I/4 (i.e.

between timescales t4 and ts), and consistent with 'YG ~ 0, 'YH ~ 1, are given by

(2.3.3a), (2.3.5a,b),plus

(2.3.16a,b)

2.3.5 Timescale 5: l = O(tt-1/4)

On this timescale, 0(1) variables are defined using B = tt-l/zB, with B = 1/(1 +
11), D = tt-3/4(Do + tt-1/4DI + tt-1/zth + tt-3/4D3 + ...), F = tt-3/4(Fo + tt-1/4F1 +
tt-1/zFz + tt-3/4~ + ...), G = tt-S/4(CO + tt-1/4CI + tt-I/ZCZ + tt-3/4C3 + ...), H =

tt-7/4H, and l = tt-I/4f. The 0(tt3/4) terms in the ODEs for D, F and G give

- $Do + :: (Po+ ~)Po = 0,

- ~~ (;; Co+ 1) to = 0,
(2.3.17a)

(2.3.17b)

the 0(tt1/Z) terms give

(2.3.18a)

(2.3.18b)

and the 0(ttl/4) terms give

- $Dz + :: ((Fo+ ~)(Pz + 2Co) + F1(P + PI) +PzPo) = 0,

A x~ (tA) x~tAXPI-p pRCo+1 (Pz+2Co)- ppR (CI(P+P1)+CZPO) =0.

(2.3.19a)

(2.3.19b)

Then, the leading-order behaviour on this timescale is given by

d~O = B - ~Do - $D3 + :: ((Po + ~)(P3 + 2CI) + PI(PZ + 2Co) + Pz(P + PI) + ~Po),

~ = $D3 - :: ((Po +~)(~+ 2CI) + PI(PZ -+ 2Co) + Pz(P + i\) + ~Po),

dCo x~ (tA) x~tAdf =xPZ-p pRCo+1 (P3+2CI)- ppiC (C1(Pz+2Co) +CZ(P+PI) + CsPo),

dH C A

df = -t 0'\' (2.3.20a-d)
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From (2.3.17a),

(2.3.21)

and differentiating with respect to f gives

(2.3.22)

From (2.3.20a,b),

(2.3.23)

and substituting (2.3.21) and (2.3.22) into this expression, and re-arranging, gives

dto ~~(i - $tJ - $~to
df = 28to+ 8~+ (i~ ,

(2.3.24)

and so to has the implicit solution

where ~ == J~+ ,. From (2.3.17b), (2.3.18b) and (2.3.20d) respectively, the evolu-

tion of 6 and PI is given by

A _ -PK A _ (iPK(to+~) -I'r _ Af>tA

uo - tA' u1 - ~tAto ' n - pI\. . (2.3.26a-c)

As to -t 0 as f -t 0, the small-time limits of (2.3.24), (2.3.21) and (2.3.26b) are

dto ~(i A 8to A (ipK pK((i+ 8)
dt ~ 8+ (i' LlO ~ P' U1 ~ tAto ~ tA~t ' (2.3.27 a-c)

ensuring matching to (2.3.5a,b) and (2.3.16a). (The expression for 61 uses the result

to ~ ~(it/ ((i + 8) from (2.3.27a).)

From (2.3.24), t rapidly equilibrates for t » I, and therefore also do V and 6, and PI
evolves linearly in time, consistent with Figure 2.2(c). The approximations above are

valid until t reaches 0(lt1/2), at which point ~,"'V,t and 6 are 0(1), and PI is 0(lt1/2).

The large-time limits for D and F, valid for It-1/4 ~ t ~ lt1/4 (i.e. between timescales

ts and t6), are found by setting dVo/dt = 0 anddto/dt = 0 in (2.3.23), to give

s
D ~ ~B, (2.3.28a)
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and substituting this expression into (2.3.21) and solving the quadratic in Fo, to give

(2.3.28b)

The corresponding large-time limits of G and Hare

G ~ -PK + llPK(F + 1]), H ~ PKt,TA 1]TAF

(with F satisfying (2.3.28,b», consistent with IfB = IfD = IfF = IfG = 0 and IfH ~ 1.

(2.3.28c,d)

2.3.6 Timescale6: f = O(a1/4)

On this final timescale, 0(1) variables are defined as B = «-1/28, with 8 = 1/ (1' +
P), D = a-3/4(Oo + a-l/401 + «-1/202 + «-3/403 + ...), F = «-3/4(Fo + «-1/4Fl +
«-1/2F2 + «-3/4F3 + ...), G = «-5/4(CO + «-1/4Cl + «-1/2C2 + «-3/4C3 + ...), H =

«-5/4 H, and t = «1/4f. Substituting these expansions into (2.2.9) gives identities (2.3.17),

(2.3.18) and (2.3.19). Also, 0(1) balances for (2.2.9b-d) are given by

0= 8 - ~Oo - 1/;03 + :: ((Fo + fJ)(F3 + 2Cl) + Fl (F2 + 2Co) + F2(P + Fl) + F3FO) r

0= 1/;03 - :: ((Fo+ fJ)(F3 + 2Cl) + Fl (P2 + 2Co) + F2(P + Fl) + F3FO)'

o ~ it - ;ep~G~Co + 1) (f:. + 2(;,) - ;e::RA ((;,(t+ 2Co) + C,(P + f,) + C,fo).

Therefore, the solutions to D, F, and G on this timescale are given by (2.3.28a-c). Also,

(2.2.ge) becomes

(2.3.29)

and the solution to (2.3.29) that includes the first correction term for G and matches to

(2.3.28d), is

H= (R - PR(F~ + fJ)) (1 - exp( -pf)) .
fJ 0 ..

Thus for t» «1/4, the large-time limits are (2.3.3a), (2.3.28a-c), and

(2.3.30)

(2.3.31)

(with F satisfying (2.3.28b).
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2.3.7 Plotted expressions

Each species' six evolution expressions, one from each of the six timescales, are matched

together (or patched together where this is necessary to provide a good visual fit to the

full simulations), and these combined expressions for the five species, given below, are

plotted in Figure 2.2(b) with dashed lines. There is excellent agreement between these

approximations and the simulations.

B = ~ (1- exp( -Of)) , (2.3.32a)

where n == ')' + v,

D=
Bi6
ji+O

.!!. (l+ eXP(-Of)-l) _ 1"B (1+ exp(-M)-l)n h 'r (j, (j,2 if l < {)(,-7/8,

if {)(,-2/8 < i,

(2.3.32b)

F=

~ (P _1. _ exp(-on-1) _ tp~P+ 1"B (1 + eXp(-M)-l) if r < -7/8n "2 0 02 'r (j, (j,2 1 ~ ()(, I

F(l)

if {)(,-2/8 < l,

(2.3.32c)

where F(l) is given implicitly by
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G=

H=

-IXXlJtf! (E _ r + l + eXP(-nFl-l) + X'ltfiBf3=rs: 6 20 O! 03 6/J_~ (r _ l _ eXP(-6fl-l) +~
/J U ty: 63 2(/J+o)
02B ( (=x!li)) OBl+XI1(/J+O) 1 - exp ----e - (/J+o)

-OBI
/J+HBi

-e + x(~t'll

iff < IX-SIB,

if IX-3/B < i,

pKf - ~ (In(lJ +6+Bf) -In(lJ +6) )

2.3.8 Equilibrium concentrations

if IX-liS < t,

(2.3.32d)

(2.3.32e)

The large-time limits of the leading-order approximations, given by (2.3.3a), (2.3.28a-

c) and (2.3.31), give estimates of the concentrations at the new equilibrium, which in

dimensional terms are:
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[C02(aq)Joo~ [C02(aq)Jo + [C(~l(~loKl,

[H CO] '"" [H CO] + [C02(g)]oKIK2
2 3 00,....., 2 3 0 Kl + 1 'r--------------------

[HC03
-]00~ [HCO;]o + [HCO;]ij [C02 (g)]oK1K2K3

2 4 + Kl + 1 '

[ 2-] K4[HCO;]00
C03 00~ [HCO;]oo - [HCO;]o'

[Ca2+]oo~ [Ca2+]o+ [CaC03]O- Ks[Ca2+]o[CO~-]oo.

(2.3.33a)

(2.3.33b)

(2.3.33c)

(2.3.33d)

(2.3.33e)

These nontrivial algebraic relationships emerge from the systematic asymptotic analy-

sis; their simplicity reflects the wide numerical range of dimensionless rate constants in

Table 2.4. Equation (2.3.33a) shows that the proportion of injected C02(g) ([C02(g)JO)

that dissolves into the water is controlled only by carbon dioxide's dissolution constant

Kl - the further process of dissolved C02 being removed by reacting with water is less

important. Furthermore, the ratio of dissolved:undissolved injected C02(g) is the ratio

of the forwards and reverse rate constants for this reaction (R1). For example, if the

rate constants are equal, then Kl = 1, and half of the injected C02 (g) will dissolve into

the water.

From equation (2.3.33b), the proportion of injected and dissolved C02 that then re-

acts with the water to form carbonic acid is also simply the ratio of this reaction's rate

constants, and from (2.3.33c),the proportion of extra carbonic acid that ends up as bi-

carbonate is governed by the carbonic acid dissociation constant. From (2.3.33d), the

final quantity of carbonate ions is simply the product of the dissociation constant for

bicarbonate and the ratio of the final bicarbonate concentration to the change in the

bicarbonate concentration.

The concentrations of all the remaining species can be calculated using (2.3.33)and the

conservation of mass constraints. From (2.3.33e)and (2.2.6c),

[C02-]
[CaC03]00~ Ks[Ca2+]o[CO~-]00= [CaC03]o [ ~_]oo,

.. C03 0

as Ks[Ca2+]o= [CaC03]o/[CO~-]o. Therefore a decrease in [CO~-] (from [C~-]o to

[CO~-]oo)must be accompanied by a decrease in [CaC03]' Therefore, the amount of

C02 bound to calcium decreases as aresult of these reactions. In this example, the

concentration of calcium carbonate decreases to 2.2 x 10-10 M.
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Also, substituting (2.3.32d,e)into (2.2.6b),and assuming K4, K4Ks[Ca2+]o, [CO~-]o,and

[CaC03]o are all negligible compared to [HC03"]o(which is true for these parameter

values with error 0(a-1/4)),

which equals 5.1 x lO-s M. Therefore, with no buffers (additional chemical reactions

that absorb some of the extra hydrogen ions, limiting the drop in the pH), the pH has

dropped from 6 to 4.3.

2.3.9 The six timescales

So far, the six timescales used to construct the asymptotic approximations have been

defined as powers of a. Greater insight comes from examining the rate constants that

appear in the solutions, such as the timescale f = 0(1/ (1' + 1/)) implicit in (2.3.2a).The

six timescales, expressed in terms of the original dimensional quantities, are given in

Table 2.5, together with the corresponding values at 25°C and 1 atm.

In this well-mixed scenario, C02(aq) reaches equilibrium within 0(10-11s), H2C03,

HC03" and CO~- reach equilibrium within 0(10-2s), and Ca2+ reaches equilibrium in

0(103s). Therefore, in practice, the rates of the first four reactions will be determined

by the neglected transport and mixing processes, and may be assumed to be in local

equilibrium as described by (2.3.32a-d). The reaction with calcium takes longer, and in

practice will therefore be determined by the transport, mixing and reaction processes.

Indimensional terms, its evolution in the well-mixed scenario is given by (2.3.30):

The results obtained above remain valid while the six timescales remain distinct, i.e.

1 [H+]o [CaC03]O-::-----:,--« «-_""::'___'::';:";:'_...,---
kl +Ll k3([H+]o + [H2C03]O) k4KS[HC03"]o[Ca2+]o

[H2C03]O+ [H+]o [H2C03]O 1
« k2([C02(aq)]oo - [C02(acp]o) « k2[C02(aq)]o « Ls'

The validity of the model can therefore be assessed under different initial concentra-

tions, and under different conditions (temperature, pressure, salinity, surface area, etc),

via the impact on the rate constants, and will be valid provided this ordering is pre-

served.
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Timescale Dimensional expression Value at 25°C & 1 atm (sec)

1 1 5.0 X 10-11

kl + i.;
2 [H+]o 3.8 X 10-8

k3 ([H+]o+ [H2C03]O)

3 [CaC03]0 2.0 x 1O-s

k4KS [HCO;]o [Ca2+]o

4 [H2C03]O+ [H+]o 1.4 X 10-3

k2([C02(aq)]oo- [C02(aq)]o)

5 [H2C03]0 5.0 x 10-2

k2[C02(aq)]O

6 1 1.0 X 103-
Ls

Table 2.5: Summary of the six timescales

2.4 Summary

To investigate what happens to the chemical species dissolved in water following the

injection of new C02, we have formulated a single model to describe the time depen-

dence of all the concentrations by applying the mass action law to the complete set

of principal reactions. This model includes no dependence of the concentrations on

position, but assumes the solution is always well-mixed.

The solutions to this model were found numerically for a particular initial condition

and set of parameter values, and these solutions match those required by the relevant

Bjerrum plot. The method of matched asymptotic expansions was used to obtain ex-

pressions for the leading-order behaviours of the different species as they go to their

new equilibrium over six different timescales, as functions of the initial condition of

the system, the parameters, and time. These leading-order expressions all showed ex-

cellent agreement with the numerical solutions to the full model, due to the fact that

the rate constants and initial concentrations vary over many orders of magnitude.

This model can be used to predict the impact on the chemical compositions of the

oceans for a given quantity of new C02 dissolving in from the atmosphere. The pH
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and the concentration of carbonate ions in the oceans have both been observed to de-

crease as a result of the additional C02, and this model agrees with those observations.

This model predicts that the injection of extra CO2 into the water causes some of the cal-

cium carbonate already dissolved in the water to split up into its constituent elements,

increasing the amount of dissolved calcium.

These results can also be used within reactive transport models of carbon sequestration.

Such models would be able to include all these reactions by identifying the time scales

over which the transport processes occur, and then, for the reactions faster than this, to

specify the local equilibrium using the equilibrium expressions obtained by this asymp-

totic analysis, and for the reactions slower than this, by using the time-dependent evo-

lution expressions obtained by this asymptotic analysis.

In the next Chapter we examine what happens within the pore-space of a saline aquifer,

by inserting terms for advection and diffusion into these reaction equations. Rather

than the temporal dependence of the concentrations that was examined in this Chap-

ter, we consider the steady-state spatial dependence of the concentrations ahead of a

spreading drop of C02'
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Saline aquifer pore space

distributions

When gaseous or supercritical C02 is injected into a saline aquifer, being lighter than

the resident water, the mass of C02 molecules forms a drop in the pore space, and

migrates upwards through the pore spaces until it reaches an impermeable layer, and

then spreads out laterally underneath this overlying caprock. C02 dissolves from the

ends of the drop into the water and is carried away from the drop, enabling more C02

to dissolve. The aim of this Chapter is to analyse what happens to this dissolved C02

using pore-scale models that include both fluid mechanics and reactive chemistry. The

length scales ahead of an advancing C02 drop, over which the dissolved C02 and other

species are affected, are investigated depending on the relative strengths of advection,

diffusion and reaction, along with the concentrations of these different species over

these length scales.

3.1 Model formulation

We suppose the pore is represented by a two-dimensional long thin straight channel

of fixed width 2a, parameterized by two independent spatial variables, length -00 <
"x* < 00,and height -a ::;y* ::; a,where * denotes a dimensional variable. Wework in a

frame of reference in which the injected C02 is stationary, and the centre of the front of

the drop is the origin. In this frame of reference, the walls move towards the drop with

velocity (-Uo,O), dragging water with them. As illustrated in Figure 1.3, the water
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wets the pore walls preferentially to the C02, and so either side of the C02 drop is a

thin film of water between the drop and the pore wall of width h, h «a. As discussed

in Section 1.9, the ratio hi a is a function of the capillary number (Ca :::::flUoI" where

fl is the water's viscosity, and, is surface tension) [104], and hence Uo, by h 0< Ca2/3 as

Ca -+ 0 [101] (i.e. at low speeds). The end of the drop is semicircular.

Suppose that the water's concentration of dissolved C02 immediately next to the C02

drop is permanently in equilibrium with the concentration of gaseous (or supercritical)

C02 in the drop, so that any dissolved C02 that is carried away by the water is then

immediately replaced by C02 from the edge of the drop, which maintains its position

in the channel. This equilibrium is specified by Henry's Law (see Section 1.7.1), where

the Henry's Law constant depends on the aquifer conditions, such as temperature,

pressure, and pH. From Chapter 1, the concentration of dissolved C02 is estimated to

be at most ~ 1 M.

If calcium is the aquifer's dominant metal, we suppose the following chemical reactions

occur in the water, labelled (R2-S) (consistent with Chapters 1 and 2).

C02 (aq) +H20 ~ H2C03, (R2)

H2C03 ~ H+ +HCOi,

HCOi ~ H+ +CO~-,

Ca2+ +CO~- ~ CaC03(aq).

(R3)

(R4)

(RS)

The water is an incompressible fluid, with velocity u" = (u*(x*,y*,t*),v*(x*,y*,t*))

in the channel, where i" is time. Suppose the diffusion of the different chemical species

in the water is governed by a single diffusion constant Dw, the mass action law applies

to (R2-S), except that water is abundant relative to the dissolved species (and so it has

constant concentration), and these reactions have forward and reverse rate constants k2

to ks and L2 to Ls, respectively. Then the distributions of the chemical species in the

pore's water are given by the following time-dependent advection-diffusion-reaction

equations:
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d[C~:;aq)] + (u" . V'*)[C02(aq)] = »:V'*2[C02(aq)]- k2[C02(aq)] +L2[H2C03],

d[H2C03] (u" . V'*) [H CO ] = DwV'*2[H2C03] + k2[C02(aq)] - L2[H2C03]a~ + u 2 3

-k3[H2C03] +L3[H+][HC03"],

d~:] + (u" . V'*)[H+] = »;V'*2[H+] + k3[H2C03]- L3[H+][HC03"]

+k4[HC03"]- L4[H+][CO~-],

a [HC03"] (* . V'*) [HCO-] = o;V'*2[HC03"] + k3[H2C03]- L3[H+][HC03"]dt* + u 3

-k4[HC03"] +L4[H+][CO~-],

d[~~~-] + (u*. V'*)[CO~-] = o;V'*2[CO~-] + k4[HC03"]- L4[H+] [CO~-]

-ks [Ca2+] [CO~-] +Ls [CaC03],

d[~::+] + (u*. V'*)[Ca2+] = DwV'*2[Ca2+]_ ks[Ca2+] [CO~-] +LS[CaC03],

d[C;;03] + (u*. V'*)[CaC03] = DwV'*2[CaC03] + ks[Ca2+] [C~-]- LS[CaC03],

h * '("7* * ;) *;) ,\7*2 ;)2 +;)2 d [ ] d . (were u . v = U ('jX* + v "dy*' v = ax*! ay;r' an enotes concentration mea-

sured in mol/litre, or M). The boundary conditions are as follows.

On y* = ±a, each species has zero transverse flux, i.e.

d[C02(aq)] = d[H2C03] = d[H+] = a[HC03"] = a[CO~-] = d[Ca2+] = d[CaC03] = 0
dy* dy* dy* dy* dy* dy* dy* .

(i.e. We suppose that no chemical species precipitates out of the water and into the

channel wall, and that no CaC03 dissolves from the walls into the water.)

On the surface of the drop, the concentration of C02 is given by Henry's Law, and all

other species have zero flux into the drop, i.e.

[C02(aq)] = kHPb = kHRT[C02(g)], (n- V'*)[H2C03] = 0, (n- V'*)[H+] = 0,

(n- V'*)[HC03"] = 0, (n V'*)[CO~-] = 0, (n- V'*)[Ca2+] = 0, (n- V'*)[CaC03] = 0,

by using the ideal gas law Pb = nRT IV, wherej'b is the pressure of the C02 in the drop,

n is number of mol, R is the gas constant, T is temperature, V is the drop's volume,

[C02(g)] = nlV is concentration in the drop, kn is the Henry's Law constant for these

conditions, and n is a unit normal vector from the surface into the C02 drop.

Far in front of the drop, we assume the concentrations are the same as they were in the
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Boundary Magnitude Boundary Magnitude

concentration concentration

[C02 (aq)]L* 5.47 x 10-4 M [HC03]L* 3.28 X 10-4 M

[H20]L* 5.55 X 101 M [CO~-]L* 1.97 X 10-8 M

[H2C03]L* 1.64 X 10-6 M [Ca2+]L* 2.50 x 10-4 M

[H+]L* 1.00 X 10-6 M [CaC03]L* 9.84 x 10-9 M

Table 3.1: Boundary concentrations far in front of the drop.

whole of the pore space before the C02 was injected, denoted as:

[C02(aq)] = [C02(aq)]L*, [H2C03] = [H2C03]L" [H+] = [H+]L*, [HC03] = [HC03]L*,
[CO~-] = [CO~-]L*' [CaH] = [Ca2+]L*' [CaC03] = [CaC03]L*,

at x* = L*,where L* is a large finite maximum value for x". At this boundary, we sup-

pose conditions are the same as the initial condition in the temporal problem analysed

in Chapter 2, i.e. [CaH]L* = 10 mg/l = 2.50 x 10-4 M, [HC03]L*= 20 mg/l = 3.28 x 10-4

M, and pH=6, i.e. [H+]L* = 10-6 M. From these three initial concentrations, the remain-

ing species' initial concentrations are calculated by substituting no advection, no diffu-

sion and no time variation into the distribution equations above, and using the values

of the rate constants given in Table 2.1. The resulting far boundary concentrations are

given inTable 3.1, and (except for water) vary over four orders of magnitude.

3.2 Nondimensionalisation

Dimensionless variables are defined as follows:

"and dimensionless parameters are defined as follows:
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Parameter Magnitude

(T 3.33 x 102

tp 1.67 X 108

w 4.63 X 1013

X 5.00 X 101

ep 4.63 X 1013

r 1.85 x 103

P 1.67 X 10-2

Species Magnitude

BL 9.84 x 10-6

DL 2.95 X 10-8

EL 1.80 X 10-8

FL 5.91 X 10-6

GL 3.55 X 10-10

HL 4.50 X 10-6

KL 1.77 X 10-10

Table 3.2: Dimensionless parameters and far boundary concentrations.

where Pe is the Peclet number (the ratio of advection to diffusion) and Da is a Damkohler

number (the ratio of reaction to advection). Note that the product PeDa = k2a2 / Dw

gives the ratio of reaction to diffusion, and is independent of Uo. Using [H20] = 55.5

M and the rate constants as given in Table 2.1, the resulting dimensionless parame-

ter values are given in Table 3.2. These ratios of rate constants vary over 15 orders of

magnitude. Substituting these expressions into the distribution equations given above

gives the following:

oB '12B + PeDa( -B + (TD), (3.2.1)PeDaaT +Pe(u· '1)B =
aD

'12D + PeDa(B - (TD - tpD + wEF), (3.2.2)PeDaat + Pe(u· '1)D =
oE

'12E + PeDa(tpD - wEF + XF - epEG), (3.2.3)PeDaaT + Pe(u· '1)E =
of '12F + PeDa(tpD - wEF - XF + epEG), (3.2.4)PeDaaT + Pe(u· '1)F =
oG

'12G + PeDa(xF - epEG- rGH + pK), (3.2.5)PeDaTt + Pe(u· '1)G =
oH

'12H + PeDa( -rGH + pK), (3.2.6)PeDaat + Pe(u· '1)H =
oK '12K + PeDa(rGH - pK), (3.2.7)PeDaTt + Pe(u· '1)K =

where U· V' = ufx + v~, '12 = ~ + ~,and with boundary conditions as follows:
..

Ony = ±1,

oB _ aD _ oE _ of _ oG _ oH _ oK _ 0
oy - oy - oy - oy - oy - oy - oy - . (3.2.8)
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On the surface of the drop,

B = kHRTA, (n- V)D = 0, (n- V)E = 0, (n- V)F = 0,

(n. V)G = 0, (n- V)H = 0, (n- V)K = 0, (3.2.9)

where n is a unit normal vector from the surface into the C02 drop.

The far-field boundary condition is:

(3.2.10)

at x = L, where L == L* Ia » 1. The boundary concentrations given in Table 3.1 are

scaled on [H20] to give the dimensionless boundary concentrations given in Table 3.2.

3.3 Steady-state far-field model simplification

In the section of channel immediately in front of the drop, the "inner region", the water

flow can be either parallel or perpendicular to the pore walls (or anything in between),

whether or not there is a thin film between the C02 drop and the pore walls, and what-

ever the shape of the C02 drop. In Figure 1.6 for example, this inner region comprises

the channel space up to about x = 1 (x* = a).

In an outer far-field region beyond this space, the flow perpendicular to the walls is

negligible compared to the flow parallel to the walls, and the flow field in the steady-

state case is given by equation (1.9.4). If e == hi a, this can be written in dimensionless

variables as

(3.3.1)

The steady-state distributions of the dissolved chemical species in this far-field sec-

tion of the pore are therefore given by the following steady-state advection-diffusion-

reaction equations:
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- Pe (1 + ~(1- e)(yZ -1)) Bx = e.; + Byy + PeDa( -B + 0"0), (3.3.2)

-Pe (1 + ~(1- e)(y2 -1)) o, = Dxx + Dyy+ PeDa(B - 0"0 - tpD+ wEF), (3.3.3)

-Pe (1 + ~(1-e)(y2 -1)) Ex = Exx + Eyy + PeDa(tpD - wEF + XF - epEG), (3.3.4)

-Pe (1 + ~(1 - e)(y2 -1)) r, = Fxx + Fyy + PeDa(tpD - wEF - XF + epEG), (3.3.5)

-Pe (1 + ~(1- e)(y2 -1)) Gx = Gxx + Gyy + PeDa(xF - epEG - rGH + pK), (3.3.6)

-Pe (1 + ~(1- e)(y2 -1)) n. = n.; + Hyy + PeDa( -rGH + pK), (3.3.7)

-Pe (1 + ~(1 - e)(y2 -1)) r; = Kxx + Kyy + PeDa(rGH - pK), (3.3.8)

where B; and Bxx denote the first and second partial derivatives of Bwith respect to x.

The boundary conditions on the pore walls are given by (3.2.8),and at x = Lby (3.2.10).

The concentration field at the outer limit of the inner region remains to be found, and

this will provide a matching (inner) boundary condition for the outer region.

We now consider two simplifications to this model. In Section 3.4we remove the reac-

tive coupling between the species, and examine the steady-state far-field distribution

(whatever the shape of the end of the drop) of a single dissolved chemical species with

a model that includes a sink term proportional to the species' concentration, but no

source terms from any other species, and accounting for the return flow (3.3.1). This

simplified model comprises a single second order partial differential equation for the

distribution of that species, and is relatively straightforward to examine analytically. It

provides insight into the impact of advection on the distribution length scales, and in-

dicates appropriate length scales to use in a more complex second simplification to the

model that excludes advection but includes full reactive coupling between the different

chemical species (Section 3.5).
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3.4 Far-field distribution for a solute ahead of a moving drop

in a pore

Let C be the far-field (dimensionless) concentration of a chemical species in a long

thin channel, described by the following steady-state axial advection-diffusion-uptake

equation:

-pe(1+~(1-e)(y2-1))Cx = Cxx+Cyy-kPeDaC,

where k is an 0(1) positive constant (if C is C02(aq) then k = I, as in (3.3.2», with

(3.4.1)

boundary conditions Cy = 0 at y = ±1, C = CL at x = L (i.e. C is known at a point a

large finite distance ahead of the drop), and C -r+ CII,oo(Y) as x ---+ 0, for some CII,oo(the

concentration field at the outer limit of the inner region).

There is a strong stirring flow field, causing Taylor dispersion, and rather than a no-flux

boundary condition, this model also includes a weak net flux through the channel; it is

less than the velocity field by a factor of O(e), where e = hi a, the ratio of film width to

channel radius.

One distinguished limit we may consider is Pe = 0(1) and Da = O( e2) (so Da == Da/ e2

is 0(1). This point in parameter space is chosen as it is the point from which the

behaviour of the system at many other points of parameter space can be deduced. A

long-wave approximation is then taken by supposing that lengths in the x direction

vary over a long length scale lie (so C = C(X,y) where X == xe is 0(1). Then (3.4.1)

becomes

-pee(1+~(1-e)(y2-1))CX = e2Cxx+Cyy-e2kPeDaC, (3.4.2)

with the same boundary conditions as (3.4.1), and L» lie.

C can be expanded in powers of e as follows: C = Co + eCl + e2C2+ .... Therefore,

(3.4.2) implies that the leading-order component of transverse diffusion CO,yy= 0, and

as Cy = 0 on y = ±1, then CO,y= 0 for all"y, and Co is a function of X only. Co

therefore gives the cross-sectional average at position x, and a condition is imposed

such that deviations from this average (given by the smaller correction terms Cl, C2, ...)
all integrate to zero across y.
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The leading-order balance, at O(e), is

-pe(1+~(y2_1))Co,x = C1,yy.

Integrating with respect to y gives

(y3 y)
-Pe 2 - 2" Co,x = C1,y+ C1,

where C1is a constant of integration. The boundary conditions C1,y = 0 at y = ±1 give

C1= O. Integrating again gives

(
y4 y2)-Pe "8 - 4 Co,x = C1+C2·

1
The constant C2is the value which gives J C1dy = 0, so this becomes

-1

C1(X,y) = -Pe (y4 _ y2 + _2_) Cox8 4 120 ,. (3.4.3)

At 0(e2), equation (3.4.2) is

-Pe ( (1+~(i-1)) C1,X - ~(y2 -l)Co,x) = Co,xx+ C2,yy - k Pe Da Co.

Substituting in (3.4.3) gives

Pe2 (6 4 •.2) 3 (2 )240 45y -105y + Sly -7 Co,xx + Pe:2 y -1 Co,x = Co,XX+ C2,yy - k Pe Da Co.

Integrating with respect to y between y = -1 and y = I, and noting that C2,y = 0 at

y = -1and y = I, gives

o = (1+A:Pe2)Co,xx+ Pe Co,x- k Pe Da Co, (3.4.4)

where A:= 2/105. Thus, by employing a long-wave approximation and cross-sectionally

averaging the concentrations transversally across the pore, the two-dimensional partial

differential equation for the behaviour of the species, with terms for axial advection,

axial and transverse diffusion, and uptake (equation (3.4.1)), has been turned into a

one-dimensional ordinary differential equation for the leading-order behaviour of the

species, where the four terms in this equation respectively denote axial diffusion, 'Iay-

lor dispersion, advection, and uptake.

The general solution to (3.4.4) is Co(X) = C3exp(A+X) +C4exp(A_X), where C3and C4

are constants, and
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Figure 3.2: Example concentration field for C = Co+eCl.

As 4(1 + A:Pe2)kPeDa is positive, A+ > 0 and A_ < 0, and so, to ensure the solutions

are bounded in the far field, we set C3 = O.The leading-order solution is written as:

Pe + Vpe2 + 4(1 + A:Pe2)kPeDa
A = (2) . (3.4.5)

2 1 +A:Pe
Co(X) ~ C4 exp( -AX),

(As the concentration field at the outer limit of the inner region, denoted CII,oo, is likely

to be equal to a constant plus smaller-order correction terms that are functions of y, it

should be expanded in powers of e, and the leading-order constant term matched to

C4')

Thus in this model, the length scale over which the species spreads out from the drop is

a function of the relative strengths of four effects, captured with the two dimensionless

parameters Pe and Da through the parameter A.

Figure 3.2 shows the impact of the flow on the concentration field in the channel. The

lines give contours of equal concentrations given by C = Co + eCI, where Co is given

by (3.4.5) and C1 by (3.4.3), when Pe=0.03, Da=2.59, k=I, e = 1/30, and C4=1. Without

the first correction term, these contours would be straight lines; the shape of the lines

(the strength of their deviation away from straight lines) depends on Pe, Da, e, and X.

Equation (3.4.5) for A can be simplified in particular subsets of parameter space as

follows. Equation (3.4.4) can be expressed as

o = (;e + A:pe) ~2
- A - kDa. (3.4.6)

The terms on the right hand side are labelled "Diff", "TD", "A", and "U" respectively,

denoting diffusion, Taylor dispersion, advection, and uptake. At the distinguished

limit in parameter space (Pe = 0(1), Da = 0(e2), e ~ 0), there is a balance between all

four of these terms. Away from this point, there are balances between different subsets
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of these terms. Figure 3.3 gives these dominant behaviours in different asymptotic

parameter regimes, as derived below. (The region shaded grey (derived below) is not

considered in this analysis as it gives the region where the long-wave approximation

breaks down).

There are four regions in (Pe.Daj-space where there are two-way balances, and four

boundary regions where there are three-way balances. The boundary regions are de-

noted with dashed lines in Figure 3.3. As expected, as Da gives the ratio of uptake

to advection, uptake is important when Da is relatively large, and advection is impor-

tant when Da is relatively small (with both important on the boundaries). Also, as Pe

gives the ratio of Taylor dispersion to diffusion, TO is important when Pe is relatively

large, and diffusion is important when Pe is relatively small (with both important on

the boundaries).

When Pe is 0(1) and Da « 1 (i.e. Da-s; e2), from (3.4.5),

A~ Pe
1+ IXPe2'

and substituting this into (3.4.6) indicates a three-way balance between Oiff, TO and A.

For Pe » 1, A ~ 1/ lXPe, and there is a balance between TO and A. For Pe « 1, A ~ Pe,

and there is a balance between Diff and A.

When Pe and Da are both « 1, and of comparable size, then

A '" Pe + VPe2 + 4kPe&
'" 2 '

and there is a three-way balance between Oiff, A and U. For Da » Pe, A ~ VkPeDa,

and there is a balance between Diff and U. For Da «Pe, A ~ Pe, and there is a balance

between Diff and A.

When Pe is 0(1) and 1 « Da« 1/e2,

J (1+ lXPe2)kPeDa kPeDa
A ~ 1+ lXPe2 = 1+ lXPe2'

and there is a three-way balance between Diff, U and TO. For Pe » 1, A ~ Vk&/ lXPe,

and there is a balance between TO and U. Por Pe « 1, A ~ VkPeDa, and there is a

balance between Diff and U.

When Pe» 1, and Da ~ l/Pe,
,.---,:----...."...,,=:::-

A '" Pe + VPe2 + 4lXkPe3Da _ 1+ V 1+ 4lXkPe&
'" 2lXPe2. - 2lXPe '
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Da

Pe

Diff rv U

A ~ JkP:Da

and there is a three-way balance between A, TD and U. For PeDa « 1, A ~ 1/ ttPe,

and there is a balance between TD and A. For PeDa » 1, A ~ v' 4ttkPeDa/2ttPe =
v'kDa/ ttPe, and there is a balance between TO and U.

Figure 3.3 illustrates how these limits provide complete coverage of parameter space

around the organising centre Pe = O(~), Da = 0(1). Table 3.3 gives the expression for

A in each region in the original dimensional parameters.

,,,,,,,,,,,~----------~~---'e3
Diff rv A rv U

ArvTDrvU
A rv l+y1+4akPeDa/£2
rv 2aPe

,,,,,,, Diff rv A
A~PePe = Da/e2

PeDa = e2

Diff rv A rv TD
A""'" Pe
,...."l+aPe2

Figure 3.3: Asymptotic parameter regimes, showing dominant balances.
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Region A

Diff "" A 1¥;
Diff""A""TD aUoDw

D~+«a2ug

Diff"" U 18'w

Diff "" A "" U !!:!2.+ (~r+ kk2a;2Dw 2 w Dwh

A""TD D
«atlo

A""TDrvU Dw+ o; ,11+4«kk2a4 / Dwh2
2«aUo

UrvTD Jkk2aZDW
«Ur;h2

Diff"" U rv TD J kk2a4Dw
h2(D~+"a2U6)

Table 3.3: Each region's expression for Ain dimensional parameters.

One condition of this analysis is that the second term in the expansion of C is much

smaller than the first, i.e. eC1 « Co. But eC1 ~ ePeCo,x (from (3.4.3)) ~ ePeACo,

and so this analysis holds while ePeA « I, and breaks down when ePeA ~ 1, i.e.

A ~ II ePe. In the U "" TD region, A ~ vkDal e2aPe, and so this modelling becomes

inappropriate when Da ~ a/kPe ~ 1/Pe. Similarly, in the Diff "" U region, the mod-

elling for A (A ~ vkDaPel e2) breaks down when Da ~ 1IkPe ~ 1/Pe. In the Diff "" A

region, A ~ Pe, and so A ~ 1I ePe is met only when Pe ~ e-1/2• In the A "" TD region,

A ~ l/aPe, and so the condition A ~ 11ePe is met when a = e. However, neither

of these last two events ever happen within their corresponding regions of parameter

space, and so there are no further boundaries to the Diff "" A and A "" TD regions.

Figure 3.4 shows how A, the parameter controlling the length scale to equilibrium,

varies with the parameters, and the accuracies of the simplified expressions for A. Two

slices are taken through Figure 3.3: a horizontal slice at Da = e4, for Figure 3.4(a), and a

diagonal slice at PeDa = e4, for Figure 3.4(b). The full expression for A (equation (3.4.5»

is plotted, along with the simplified expressions for A in each region of parameter space

(supposing that k = 1 and e = 1/30). (The simplified expressions are terminated just

outside the regions to which they correspond.) The simplified expressions provide

excellent agreement with the full expression through the majority of their regions, and

where the agreement is not quite as excellent, the simplified expressions for A in the

three-way boundary regions (not plotted) do provide excellent agreement.
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_3~--L-------~~----~-------L------~--~--~--~
-4 -2 0 2 4 6

I0910Pe

Figure 3.4: Full expression for A (3,4.5), and its different approximations in different

regions of parameter space, when e = 1/30, and (a) Da = e4; (b) PeDa = €4,
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From equation (3.4.5),the length scale X over which Co varies is approximately 0(1 IA),
or x* = Xa Ie ~ aIeA. Let l\. be a measure of the characteristic length scale over which

C varies, defined as the ratio of channel length to width, and so

x*
l\. == a

1~ -
eA'

The shortest length scale of variation l\. occurs with the largest A. The expression for A

in the DiffrvArvTD region (A ~ Pe/(1+aPe2» shows that the maximum A occurs when

Pe = ~ ~ 7. (This is the maximum for A while Da < e2.)

Taking the limit Uo -t 00 corresponds to increasing the speed of the pore walls, or the

spread of the drop through the pore space. In this case, Pe -e+ 00, Da -t 0, and PeDa

= k2a2 IDw is constant. From Figure 3.4(b), this scenario minimises A, and maximises

the length scale of variation A Taking this limit corresponds to travelling diagonally

down and to the right in Figure 3.3, and, depending on the size of PeDa, the dominant

processes will be either Taylor dispersion and uptake, or Taylor dispersion and advec-

tion. The Taylor dispersion produces an increased shearing of the advection flow, and

increased overturning and mixing of the C02 in the water.

In the limit Uo -e+ 0, then Pe -v+ 0, Da -t 00, and PeDa is constant. Therefore diffusion

balances chemical uptake. Taking this limit corresponds to travelling diagonally up

and to the left in Figure 3.3. If capillary number Ca = fiUo/'}', then e exCa2/3 at low

speeds (when Ca « 1), and so e is no longer constant, but varies with Uo. Therefore

Figure 3.4 does not apply.

Typical parameter values for a carbon sequestration scheme could be a = 50 ut», Uo =

0.1 m/day, and Dw = 1.85 X 10-9 m2/s [129,140], in which case Pe = aUo/Dw = 0.031.

As Pe « 1, the limit Pe -t 0 is a sensible one to consider. In Section 3.5 we apply this

limit to the fully coupled model (3.3.2)-(3.3.8).There is no advection in this limit, and

.the speed of the walls (or speed of the spreading drop through the pore space), can

indeed be made arbitrarily small by taking a distance further and further from the point
.,

of injection (if the C02 is free to spread in any direction). Taking this limit gives the

region of parameter space where axial diffusion balances reaction (or 'uptake' in Figure

3.3). Figure 3.3 provides a guide to the behaviour of the full system of seven coupled

second order partial differential equations, and in this case, it predicts l\. ~ 11v'PeDa.
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3.5 Coupled chemical distributions when axial diffusion bal-

ances reaction

To gain further insight into the complete steady-state far field model (3.3.2)-(3.3.8), and

the comparative distributions of the different species in front of the drop, we now con-

sider the region of parameter space where axial diffusion balances reaction, and there is

no advection, determined by taking the idealised limit Pe ~ O.In this region, Figure 3.3

indicates that lengths in the x direction vary over a length scale of approximate magni-

tude 1/ y'PeDa (which is a ratio of diffusion to reaction), so X == xy'PeDa is 0(1). The

equations describing the steady-state behaviour of the seven species dissolved in the

water are therefore, from (3.3.2)-(3.3.8)

0 = Bxx - B+ 0-0,

0 = Dxx + B - oD -1fJD + wEF,

0 = Exx + 1fJD- wEF + XF - <pEG,

0 = Fxx + 1fJD- wEF - XF + <pEG,

0 = Gxx +XF - <pEG - rGH + pK,

0 = Hxx - rGH + pK,

0 = Kxx + rGH - pK,

with boundary conditions

(as given in Table 3.2), where L is the large finite maximum value for X. As Pe,Uo ~

0, then Ca, e and h ~ 0 also. For simplicity, supposing there is a 90° contact angle

between drop and pore wall (Figure 1.4(b) rather than 1.4(a», then the inner boundary

conditions can therefore simply be applied at X = 0, i.e. (3.2.9) becomes

B = kHRTA, Dx = Ex = Fx = Gx = Hx = Kx = 0 at X = O. (3.5.2)

The value of B at X = 0 indicates how much C02 has dissolved, and will be specified

(== Bo). If the walls are actually moving very slowly (0 < Pe, h« 1), or contact angle i=
90°, the solution must be found in this outer region by matching to the concentration

field at the outer limit of an inner region. When this is done, applying the limit Pe ~ 0
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to this solution, or taking the leading-order solution when Pe is very small, will give

the solutions to be found below with the X = 0 boundary condition.

A new set of variables, which give the perturbations in the species' concentrations from

the far field equilibrium, are defined as:

b = B - BL, d = D - DL, e = E - EL, I = F - FL,

g = G - GL, h = H - HL, k = K - KL.

Substituting these expressions into the equations above, and omitting the far field

equilibrium combinations of terms that sum to zero (i.e. BL = ODL, tpDL = wELft,
xft = CPELGL,pKL = TGLHd, gives:

o = bxx - b+ ad, (3.5.3)

o = dx» + b - (u + tp)d + w(EL/ + eFL + ef), (3.5.4)

o = exx + tpd - W(ELI + eft + el) + xl - CP(ELg+ eGL + eg), (3.5.5)

o = Ixx + tpd - W(ELI + eFL+ el) - xl + CP(ELg+ eGL + eg), (3.5.6)

o = gxx + xl - cp(GLe+ gEL + ge) - T(GLh + gHL + gh) + pk, (3.5.7)

o = bx« - T(GLh + gHL + gh) + pk, (3.5.8)

o = kxx + T(GLh + gHL + gh) - pk, (3.5.9)

with b = Bo - BL and dx = ex = [x = gx = hx = kx = 0 at X = 0, and b = d = e =
I = g = h = k = 0 at X = L. These two sets of boundary conditions can be re-written

equivalently as:

b = Bo - BL, dx = ex = Ix = (e - 1- 2g + 2h)x = (h + k)x = kx = 0 at X = 0,

(3.5.10a-g)

b+ d +1+g - h = d = e = I = e - I - 2g + 2h = h + k = k = 0 at X = L. (3.5.11a-g)

From summing (3.5.8) and (3.5.9), (h + k) xx = O. Integrating once, and using boundary

condition (3.5.10f) to give the constant of integration, gives (h + k)x = O. Integrating

again and using (3.5.11£) gives h + k = O. Similarly, (3.5.5)-(3.5.6)-2(3.5.7)+2(3.5.8), with

(3.5.10e) and (3.5.11e), gives e - I - 2g + 2h = O. Also, (3.5.3)+(3.5.4)+(3.5.6)+(3.5.7)-

(3.5.8) gives (b + d + I + g - h)xx = O. Integrating once gives (b + d +1+g - h)x =

bxo, where bxo is an unknown constant. Integrating again and applying (3.5.11a) gives

b+ d + I + g - h = bxo(X - L). Therefore k = -h, e = bxo(X - L) - b - d + g - hand
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I = bxo(X - L) - b - d - g + h, and the 14th-order system of seven coupled second-

order equations (3.5.3)-(3.5.9)thus simplifies to the following Bth-order system of four

coupled second-order nonlinear equations.

o = bxx - b+ ad,

o = dx» + b - (cr+ tp)d +WEL(bxo(X - L) - b - d - g + h) + wh(bxo(X - L) - b

-d + g - h) + w(bxo{X - L) - b - d + g - h)(bxo{X - L) - b - d - g + h),

o = gxx+X(bxo(X-L) -b-d-g+h) -4'(GL+g)(bxo{X-L) -b-d+g-h)

-4'ELg - r(GLh + gHL + gh) - ph,

o = iixx - r(GLh + gHL + gh) - ph.

The unused boundary conditions containing e,I or k terms are adapted by substituting

in the expressions for e,I and k. Substituting k = -h into (3.5.10g)gives nx = O. Dif-

ferentiating the expressions for e and I, substituting them into (3.5.10c,d), and noting

that dx = hx = 0, gives gx = 0 and ox = bxo. Similarly, at X = L, h = d = 0, and

(3.5.11c,d) give b = g = O. This 8th-order system that also contains the unknown bxo

therefore has the following nine boundary conditions:

b = Bo - BL, ox = bxo, dx = sx = hx = 0 at X = 0,

and b = d = g = h = 0 at X = L.

The system of equations is thus nonautonomous. The solution depends on the domain

size L, and as this can be chosen to be anything up to 00, there is no limit to how far

from the injection point the concentrations of the chemical species are affected, given

infinite time. This is the case with this idealised limit Pe --t O. In the previous Section it

was found that taking the limit Pe --t 00, with fixed PeDa, also gives an infinite length

scale of variation.

To gain insight into this complete model, for reasons of mathematical convenience,

we consider the case bxo = 0, and discard the boundary condition on ox at X = O.

This has the advantage of making the system ot equations autonomous, and eliminates

the dependence on domain size L. We investigate the distributions of the chemical

species in the water ahead of the drop in this case. To reflect the fact that it is 8th-order,
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nonlinear, and contains the full set of reaction terms, this model is labelled "8NF":

Model

8NF

o = bxx - b+ CTd,
o = dxx + b - (CT+tp)d +wEL(-b - d - g+ h) +wFL(-b - d + g - h)

+w((b + d)2 - (g - h)2),

0= gxx+X(-b-d-g+h)-cp(GL+g)(-b-d+g-h)-cpgEL
-T(GLh +gHL +gh) - ph,

o = bx» - T(GLh + gHL + gh) - ph,

with boundary conditions

b = Bo - BL, dx = gx = hx = 0 at X = 0, b = d = g = h = 0 at X = L. (3.5.12)

The amount of injected C02 can be chosen to be sufficiently small (i.e. 0 < Bo - BL ~

Bd that the quadratic perturbation terms (e.g. gh) are negligible compared to the linear

perturbation terms. In this case, the system can be approximated by removing the

quadratic perturbation terms, and hence all the nonlinearity in the system, giving the

following linear 8th-order system of four coupled second-order equations:

Model

8LF

o = bx» - b+CTd,
o = dxX+b-(CT+tp)d-wEL(b+d+g-h)-wh(b+d-g+h),
o = gxx - X(b+ d + g - h) + cpGL(b+ d - g+h) - CPgEL

-T(GLh + gHd - ph,
o = hxx - T(GLh +gHd - ph,

with boundary conditions (3.5.12).

Model 8NF is a challenging system of equations that we were unable to solve numer-

ically using Matlab's inbuilt solver for boundary value ordinary differential equation

problems (bvp4c). Two Newton-Raphson programs were therefore constructed to find

numerically the solution to 8NF for a given Bo: one that uses central differences to esti-

mate the second derivatives; and one that uses Chebyshev polynomials. The details of

these two methods are given in Appendix 3.A at the end of this Chapter. In what fol-..
lows, the solution to 8LF is found analytically and asymptotically (Section 3.5.1), and

then this is used to verify that the Newton-Raphson methods are working correctly

(Section 3.5.2). The solutions for larger amplitudes are then found (Sections 3.5.3 and

3.5.4), which require the nonlinear version of this model.
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3.5.1 Small amplitude approximation: Model 8LF

Model 8LF can be expressed as the product of a linear operator and a vector of pertur-

bations:

d~-1 CT 0 0

{1- WEL {d~ - (CT + 0/)
W(-EL+h) W(EL - FL)

b

-wFd -W(EL +h)} d
=0.

-X + qyGL -X + qyGL
{d~ - X - qyGL {X + qyGL g
-qyEL - THd -TGL - p} h

0 0 -THL d~ -TGL-P

(3.5.13)

There is one solution to this system of four coupled second order equations that matches

boundary conditions (3.5.12), and this solution is a linear combination of eight expo-

nentials. It takes the form

b Zp,b

d 8 Zp,d
= LCp exp( -ApX),

g p==l Zp,g

h Zp,h

(3.5.14)

where cp are constants determined by the boundary conditions, and Ap are constants

which control the length scales over which the perturbations grow or decay. These

expressions are substituted into (3.5.13),which only holds true if the terms for each p

separately sum to zero. This gives the eigenvalue problem

1 -CT 0 0

{-I+wEL {CT + 0/+
W(EL - h) W(-EL+h)

+wFd W(EL +h)}
Zp = A~Zp,

{X + qyGL+ {-X - qyGL
X - qyGL X -qyGL

qyEL+ THd +TGL +p}

0 0 THL TGL+P

where Zp = (Zp,b, Zp,d, Zp,g, Zp,h), for p = 1, ..., 8. The four eigenvalues A~and corre-

sponding eigenvectors Zp are found numerically, using the parameter values given in

Table 3.2. It is found that A~ > 0 for all p. The four negative square roots of A~are
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P 1 2 3 4

A2 4.4069 X lOs 8.3966 X 105 2.0675 X 102 1.6670 X 10-2p

Zp,b 7.5639 x 10-7 2.0903 X 10-4 8.5093 X 10-1 -7.0317 X 10-1

Zp,d -1.0000 X 100 -5.2654 X 10-1 -5.2524 X 10-1 -2.0743 X 10-3

Zp,g 3.7152 X 10-5 -8.5015 X 10-1 6.2646 X 10-3 1.9481 X 10-4

Zp,h 7.0116 X 10-16 -8.4211 X 10-9 2.5203 X 10-7 7.1102 X 10-1

cp -2.9911 X 10-13 9.5133 X 10-14 8.2534 X 10-10 -3.2573 X 10-14

Table 3.4: Solution to 8LFwhen bo = 7 X 10-10.

allocated to A5 to As. These produce an exponentially growing solution in (3.5.14) (tak-

ing the limit L --t 00), and so Cs to Cs must equal zero. The positive square roots (AI to

A4) and ZI to Z4 are used to find the constants Cl to C4 as follows. From (3.5.14), on the

boundary X = 0,

b ZI,b Z2,b Z3,b Z4,b Cl

dx -AIZ1,d -A2Z2,d -A3Z3,d -A4Z4,d C2
=

gx -AIZl,g -A2Z2,g -A3Z3,g -A4Z4,g C3

hx -AIZ1,h -A2Z2,h -A3Z3,h -A4Z4,h C4

Now, BL= 9.844298 X 10-6, and so Bo= 9.845 X 10-6 is chosen as this results in a

small, but positive, value of b at X = 0 (= bo = 7.0 X 10-10). Substituting in this value

for b, the remaining bubble tip boundary conditions from (3.5.12) (dx = gx = hx = 0),

and pre-multiplying both sides of this equation by the inverse of the matrix on the right

hand side, gives the four constants. The solution for this bo is given in Table 3.4, and

these solutions are plotted in Figure 3.5.

In Figure 3.5(a), the log of the absolute values b, d, g and h are plotted against log X.

b remains positive, and h remains negative, over the whole of X, but d and g change

sign round about X = 1, leading to singularities in these log plots. These two species

overshoot their target of zero very slightly, but smoothly, as shown in a linear plot

in Figure 3.5(b). There are four length scales ill the problem, of 0(1/ Ap), which range

over five orders of magnitude for X, and these length scales are also indicated in Figure

3.5(a).

The two length scales 0(1/ AI) and 0(1/ A2) provide extremely short boundary layers

within which there are actually no noticeable changes in the sizes of the perturbations
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Parameter Scaling

BL 1510J3L
DL t514DL
EL t514EL
h t510FL
GL t518CL
HL t510th
100 1518[00

Parameter Scaling

(J" t5-4{t

1/J 15-14$
W t5-24w
X t5-2X
<P 15-24$
T t5-6t
p t54p

Table 3.5: Scalings for boundary concentrations and parameters.

in this small amplitude case. The majority of the variation for species b, d and g, the

three carbonic species, occurs over length scale X = 0(1/ i\3)' As a ratio of the channel

height, this is approximately A == x* / a = x = X/ y'PeDa ~ 1/i\3y'PeDa = 0.24. (If

a = 50llm, k2 = 0.06 S-l, and Dw = 1.85 X 10-9 m2/s, then y'PeDa = 0.285). Note that

PeDa is the ratio of reaction to diffusion; it is independent of advection. Similarly, h, the

metal, varies over a longer length scale X = 0(1/ i\4), i.e. A ~ 1/ i\4y'PeDa = 27.20.

Asymptotic expressions for the four length scales in Model 8LF

We now seek an asymptotic approximation of the length scales shown in Table 3.4 and

Figure 3.5. Let 15 == y'PeDa. The boundary concentrations and parameters (given in

Table 3.2) can then be scaled on 15 (assumed small) as given in Table 3.5, where hatted

parameters are 0(1). These scalings are substituted into Mode18LF, to give:

d~-l t5-4{t 0 0

{d2 15-4 A

{1- t5-1OwEL
x - (J"-

{ -t5-1OwEL {t5-1OwEL
15-14$ - t5-1OwEL

-t5-14wFd +t5-14wFd -t5-14wFd b
-t5-14wFd

d
{d~ - t5-2X- {t5-2X - t54p =0.

{ -t5-2X { -t5-2X
~ t5-6$CL- +t5-6$CL

g

+t5-6$Cd +t5-6$Cd h
t5-lO$EL - o4tHd -o12tCd

0 0 -o4tHL {d~ - 04p
-o12tCd
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Taking the limit 0 -t 0, and assuming all hatted quantities remain 0(1), gives, to lead-

ing order,

d~-l

-0-14WPL
0-6$GL

o

0-4U

d~ - 0-14( tP+ wPL)
0-6$GL

o

o
0-14WPL

d~ - O-lO$£L
-04tfh

o
-0-14WPL
0-6$GL

d~ - 04p

b

d

g
h

= 0,

or, substituting in (3.5.14),

;\~-1

-O-14wPL
0-6$GL

o

0-4U
;\~ - 0-14(tP+wPL)

0-6$GL

o

o
0-14WPL

;\~ - 0-1O$£L
-04tftL

o
-0-14Wh

0-6$GL

;\~ - 04p

Zp,b

Zp,d

Zp,g

Zp,h

=0.

This is the eigenvalue problem

1 -0-4U 0 0

0-14wPL 0-14( tP+ wPL) 0-14 A P 0-14WPL- W L
Zp = ;\~Zp. (3.5.15)

-0-6$GL -0-6$GL o-lO$EL -0-6$GL

0 0 04tftL 04p

The eigenvalues ;\~ are the roots of the characteristic equation det(A - ;\~14)=O,where

A is the matrix on the left hand side of (3.5.15), and 14is the 4 x 4 identity matrix, i.e.

o = ;\~+;\~ ( - 0-14( tP+ wPL) - 0-10$EL - 1- 04p)

+;\~ (0-24$£L{tP + wh) - 0-20$GwPL + 0-18uwh + o-14(tP + wPL)

+O-lOp( tP+ wPL) + o-lO$EL + 0-6$£LP + 0-2tftL$GL + 04p)

+;\~ ( - o-28uwPL$EL + 0-24uwPL$GL - 0-24$EL{ tP+ wPL) + 0-20$GLwPL

-o-20$£LP(tP + wPL) + 0-16$GLWPL(J- 0-16$GL tftLtP

-O-14UWPLP- O-lOp(tP+ wPL) - ~-6$£LP - 0-2tftL$GL)

+O-24uwPL$ELP - 0-20UWPL$GLP+ 0-20$EL(tP+wPL)p - 0-16$GLwPLP

+o-16$GL tftLtP

~ ;\~ - ;\~0-14(tP + wPd + ;\~0-44$EL{tP+ wPL) - ;\~0-28uwPL$EL

(3.5.16)
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Eigenvalue
Asymptotic Asymptotic

formula value

,\2 t/J+wft 4.3985 x 1081
,\2 CPEL 8.3333 X 1052

A§ (J"wFLI(t/J + wFd 2.0703 x 102

A2 P 1.6667 X 10-24
Table 3.6: Asymptotic values of A~.

taking the leading-order coefficient of each term.

There are only four values of A~ which give a leading-order balance between at least

two terms on the right hand side of this equation. The first of these eigenvalues is Ai ~
,,-14(-$ +wFd, which gives a dominant balance between the first and second terms in

(3.5.16). The second is A~ ~ ,,-10$£L, which gives a dominant balance between the

second and third terms; the third is A§ ~ ,,-4fTwftl (-$+wFd, which gives a dominant

balance between the third and fourth terms; the fourth eigenvalue is Ai ~ ,,4p, which

gives a dominant balance between the fourth and fifth terms in (3.5.16). These formulae

are given in Table 3.6, along with the evaluation of these formulas. Comparison with

the exact values found numerically (Table 3.4) shows excellent agreement.

Far field simplification for Model 8LF

We now seek an asymptotic approximation of the species' far field behaviour. In the

far field, Figure 3.5(a) indicates that the three carbonic species b, d and g are slaved to

h, and are prevented from continuing their rapid decreases by the slower decline of

h. The graph indicates that band hare 0(10-14), dis 0(10-16), g is 0(10-18), and X

is 0(101) in this region, and so these variables can be scaled on" (assumed small) as

b = ,,25b,d = ,,29d~ g = ,,33g, h = ,,25h,and X = ,,-2X, where hatted variables are 0(1).

Substituting these scalings, and the parameter scalings given in Table 3.5, into Model

8LF gives:

0
'" A 4 ..... (3.5.17)= -b + trd +" b:g:g,

0 = -wFdb +h) - ,,4( -$a+w£db - h) +WFLJ)+ 0(,,8), (3.5.18)

0 = $Gt(b +h) + ,,4(X( -b + h) + $GLa - $£Lg) + 0(,,8), (3.5.19)

0 = h:g:g - ph - ,,8t(GLh + Phg). (3.5.20)
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The four variables can be expanded in powers of 64, e.g. b = bo+ 64b1 + ...In the

asymptotic limit 6 --t 0, the leading order terms on the right hand sides must sum to

zero, and so bo = 0'£10, Vo= -ho, and hot'R'R= pho. At the next order, equations (3.5.18)

and (3.5.19)give

o = -wFL(b1 + hI) - tPdo - w£L(bo - ho) - WPLdO,

and 0 = $GL(VI + hI) +X( -bo + ho) + $GLdo - $£do.

(3.5.21)

(3.5.22)

Multiplying (3.5.21)by $GL, (3.5.22)by wPL, and summing, gives:

o = -$GL(tPdo + w£L(bo - ho)) + wPL( -X(bo - ho) .,..$£LgO)

= $GL(tPhO/U + 2W£LhO) + wFL(2Xho - $£LgO).

This expression is simplified by replacing XFL with $£LGL, WPL£L with tPth, solving

for g, and replacing uth with BL.This gives the expression for g in this system:

b = -h,

d = =hf tr,

g = (1/BL + 4/ Ft}GLh,

h = hA3 exp( -.;pX),

(3.5.23)

(3.5.24)

(3.5.25)

(3.5.26)

where hA3 is the value of h at the outer limit of the A3length scale. When (3.5.23)-(3.5.26)

are plotted (taking hA3 = ho, the value of h at X = 0) against the solutions given in Table

3.4 and plotted in Figure 3.5, the plots for (3.5.23) and (3.5.26)coincide with the lines

for band h from the point at which these two species meet, and the plots for (3.5.24)

and (3.5.25)coincide with the lines for d and g onwards from the points at which they

change sign.

3.5.2 Model 8NF

Two Newton-Raphson programs are constructed to solve Mode18NF, the model ap-

propriate for larger amplitude perturbations (see Appendix 3.A). One uses central dif-

ferences to estimate the second derivatives, and one uses Chebyshev polynomials. To

verify that the two Newton-Raphsonmethods work correctly, the solutions they find

to Model 8LF (with the same parameter values and value for bo as in Section 3.5.1) are
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compared to the known solution found in Section 3.5.1 (details are given in Appendix

3.A.4). The solutions they produce are generally within 1% of the known solution. For

each species, the Chebyshev errors are mostly lower than the central difference errors,

and the Chebyshev method needs only an all-zeros initial guess, while the central dif-

ferences method requires a reasonably accurate initial guess.

As the Chebyshev method is found to be more robust than the central differences

method, it is used to solve SNF at this small amplitude. The Chebyshev solutions to

SLFand SNF are indistinguishable, which indicates that bo = 7.0 X 10-10 is indeed suf-

ficiently small for the linear model to be a good approximation to the nonlinear model.

The value of bo is slightly increased, to S.Ox 10-10, and the solution to SNF found for

this new bo by continuation (using the converged solution to the first bo to provide

the initial guess for the value of each species at each collocation point). This process

is repeated, continuing along bo, with the increment by which bo increases growing

bigger or smaller depending on how easily the previous solution was found. As bo

changes, the distributions of the four species across X also change. Figures 3.6-9 show

the converged solutions predicted by the Chebyshev method. The Chebyshev method

can only find solutions to Model SNF when bo is less than 4.4 x 10-8 (or B is 0.44%

above the pre-injection level). These are the continuous lines in Figures 3.6-9. Above

this level, the Chebyshev method predicts solutions that do not satisfy the boundary

condition gx = 0 at X = O.These 'solutions' are shown with dashed lines in Figures

3.6-9. As d = D - DL, the most negative that d can be is -DL (= -2.95 X 10-8), other-

wise this gives a negative D, and the solutions that fail to satisfy g's no flux boundary

condition also give values for which D is negative. There are two likely reasons why

the method is unable to find solutions that satisfy g's boundary condition: first, be-

cause of a lack of resolution (the Chebyshev method dictates the locations of the X-axis

discretisation points, and these are forced to be very sparse at this end of a logarithmic

scale, even though 5000collocation points were taken in total); and second, because of

the assumption bxo = 0, which may lead to unphysical results.

"The solutions to SNFwhich do satisfy g's boundary condition all show uniform values

for b, d, g and h when X < 10-3, and the length scales over which equilibrium is

reached remain the same. An alternative model is now sought for which solutions can

be found for higher amplitudes, while continuing to assume bxo = O.
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3.5.3 Model 4NF

The asymptotic analysis carried out on Model 8LF identified the terms that are impor-

tant in producing the four length scales. An approximation to this model can therefore

be obtained by eliminating some of the other remaining (reaction) terms (called Model

8LR, 'R' for Reduced). The details of this model are given in Appendix 3.B, where its

solutions are found, and compared to the small amplitude solutions to 8LF (Appendix

3.B.2). Model8LR shows some incorrect behaviour in the far field: the slaving of b, d

and g to h is lost, as 8LR fails to pick up the three carbonic species' second plateaux

in the far field. This is because all the h terms have been dropped from the dxx and

gs:x equations in 8LR, and so b, d and g have completely decoupled from h and are free

to continue their steep declines. The reduced model also fails to pick up the changes

of sign for d and g. These differences indicate that to retain an accurate picture of the

species' far field behaviour, the models need to contain the full set of reaction terms.

As the four species all show uniform behaviour over the first two length scales (X =

0(10-4.3) and 0(10-3.0», eliminating the d and g derivatives makes no difference to

the distributions in this region. Applying this approximation to 8LR gives Model4LR,

and the plotted expressions for 4LR completely coincide with 8LR (see Appendix 3.B.3).

The best alternative model to 8NF is therefore the one that retains the full set of reaction

terms, and drops the d and g derivatives. This is called Model 4NF, and is identical to

8NF and 8LF at small amplitude.

Model

4NF

o = bxx - b+CTd,
o = b - (CT+1/J)d+wEL(-b - d - g+h) +wh(-b - d + g - h)

+w((b + d)2 - (g - h)2),

o = X(-b-d-g+h) -CP(GL+g)(-b-d+g-h) -CPgEL
-r(GLh + gHL + gh) - ph,

o = bxx - r(GLh + gHL + gh) - ph,

with b = Bo - BL and hx = 0 at X = 0, and b = h = 0 at X = L.

3.5.4 Increasing the amplitude: Model 4NF

Using the Chebyshev method to solve Model4NF, by starting again at bo = 7 x 10-10

and then continuing along bo as before, gives the distributions given in Figures 3.10-
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13. Solutions are given up to the point at which the Chebyshev solution to d develops a

discontinuity (caused by dropping dxx) just as d begins to deviate from its plateau; this

takes place when bo ~ 1 X 10-5 (i.e. B at the bubble tip is about twice its pre-injection

level). From Section 1.7.1, the maximum solubility for C02 is likely to be about 1 M,

and so a maximum value for B at the bubble tip is ~ 1 M / 55.5 M = 0.018. Therefore

the original target maximum size for bo was bo = B - BL ~ 0.018 - 9.84 x 10-6 ~ 0.018,

a substantially greater value.

Behaviour close to the C02 drop

Figure 3.11 shows that d quickly reduces to its minimum as bo increases. (g has a min-

imum ee -GL = -3.55 X 10-10, but g is only negative when X > 1.) When d hits its

minimum, g is forced to be approximately equal to b in this region (and so experiences

a rapid jump up to b), for the following reason: Suppose X is 0(10-2) in this region,

b is 0(10-6), dis 0(10-8), and g ~ h. Then leading-order balances to 4NF can only

be obtained if g is also 0(10-6). Suppose also that his 0(10-8), so these variables can

be scaled on 6 as b = 610b, d = 614d, g = 610g, h = 614ft, and X = 64X, where hat-

ted variables are 0(1). Substituting these scalings, and the scalings for the boundary

concentrations and parameters given in Table 3.5, into Model4NF gives:

A 8 A 1\o = b~~ + 6 (-b + o-d), (3.5.27)

o = wftL( -b +g) +w(b2 - g2) +64( -tpd - wtL(b +g) - wftL(d + ft)

+2w(bd + gft)) + 0(68), (3.5.28)

o = tjJg(b - g) - 64tjJg(tL - d - ft) + 0(66), (3.5.29)

(3.5.30)

The four variables can be expanded in powers of 64 as before, and in the asymptotic

limit 6 -r+ 0, the leading-order terms on the right hand sides of (3.5.28) and (3.5.29)

must sum to zero, i.e. 0 = wftL( -bo +go) +wbij - wgij = w(bo - go)( -t: + bo+ go),
and 0 = tjJgo(bo- go). The second equation has solution bo= go, and this also satisfies

the first equation.
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Figure 3.10: Model4NF: Distributions of b as the value of b at X = 0 is increased.
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The 0(J4) terms on the right hand sides of (3.5.28)and (3.5.29)give:

o = -wFdbl - gl) + 2w(bobl - gOgl) - tjJd'O- WEL(bo + go) - wFdJo + ho)

+2w(boJo + goho),

= -wFdbl - gl) + 2wbo(bl - gl) - tjJJo - 2wELbo - wFdd'O + ho)

+2wbo(d'O + ho) as bo = go,

and 0 = $(gob1 + glbO - 2g0g1) - $gO(EL - d'O- ho)

= (bl - gl) - (EL - Jo - ho) as bo = go.

(3.5.31)

(3.5.32)

Substituting an expression for (bl - gl) from (3.5.32)into (3.5.31)gives

o = (-WFL + 2wbo)(EL - Jo - ho) - tjJJo - 2wELbO - WFL(d'O+ ho) + 2wbo(Jo + ho)

= -WELFL - tjJJo.

Therefore, the leading-order behaviour in the region close to the drop is: b = g = bo,

the value of b specified at X = 0 (as (3.5.27) gives bx» = 0 to leading order); d ==

-WELh/1/J = -DL, i.e. D = 0; and h = ho, the value of h at X = 0 (as (3.5.30)gives

hx» = 0 to leading order). This agrees with Figures 3.10-13.

When X « 1, Ibxxl » b, and so the first equation in Model4NF simplifies to 0 =

bxx + ad. As shown in Appendix 3.A.2, cxx is positive for all X (whatever the size of

bo, the initial condition, or the rate constants), and so d must be negative when X« 1.

Therefore, extra dissolved C02 produces a reduction in the concentration of H2C03 in

this region. Tomaintain the correct equilibrium for (R3),this reduces the concentrations

of H+ and HCO;, and C~- is forced to increase by the same amount as C02' This

extra CO~- results in some of the supply of Ca2+ being drawn upon to make extra

CaC03, and so the concentration of Ca2+ reduces and CaC03 increases. These results

can be seen in Figure 3.14, which shows how the actual concentrations (in mol/litre)

vary with X as the amplitude is increased. In each plot, the line closest to a straight line

is the smallest amplitude case. (The plot for calcium is a similar shape to the plot for

HCO; , and decreases from a straight line at about 2.495 x 10-4 M, to a minimum just

below 2.390 x 10-4 M.) The reductions in all the species containing hydrogen indicates

that the concentration of water must actually be slightly increasing.

InFigure 3.14, the concentrations of H1-and HCO; go slightly negative, and the dashed

lines on all six plots correspond to these cases. These are the two species (e and f) that
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to a straight line is the smallest amplitude case.

were eliminated from the 14th-order problem (3.5.3)-(3.5.9) by replacing them with ex-

pressions involving ox«. These numerical results therefore show that bx» = 0 is an

inappropriate simplification to this model for these magnitudes. C02 will continu-
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ously travel away from the front edge of the spreading drop, and will be continuously

replaced by C02 dissolving from the drop into the water, such that the solution must

depend on domain size L. However, we anticipate that many of the structural features

of the solutions presented in Figures 3.5-14 will be preserved in this more complex

problem.

3.6 Other influences on concentration distributions

The models in this Chapter do not describe how far the C02 drop itself spreads from

the injection point, and including extra physics or chemistry in these models could

change their results again. Some suggestions for further effects that could be included

are now given.

3.6.1 Advection

Advection was included in Section 3.4, but excluded from the reaction-axial diffusion

model in Section 3.5. When advection is added into the reaction -axial diffusion model,

the equation for B is -Pe(u.'V)B = Bxx + PeDa( -B + oD), or +Pe uBx/ VPeDa =

Bxx - B+ trD, When the amount of advection is zero or small, 0 ~ Pe « 1, then B

can expanded as B = Bo+PeBl +Pe2B2+ ..., and D similarly. As Pe features in the

advection term in the equation for B, the case when Pe=O,examined in detail above,

is the same as the leading-order solution when there is a small, but non-zero, amount

of advection. As Pe becomes non-zero, the downstream concentration profiles will

become slightly distorted. As Pe becomes larger and larger, these effects will become

more and more pronounced, Pe « 1will cease to be true, and the analysis above will

no longer be appropriate.

In the analysis above, the carbonic species all fall towards their far field equilibrium

concentrations within a short distance from the drop. In this region, advection in the

y direction will be no less important than in the x direction, and so if advection were

to be included in the model, this would need to take the form of the two-dimensional

flow discussed in Section 1.9.2, rather than the simpler one-dimensional Poiseuille flow

of Section 1.9.1.
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3.6.2 Density-driven convection

The differences in densities between the undissolved C02 and the resident water are

sufficient to produce a spreading horizontal gravity current if the lighter C02 remains

above the heavier water without mixing into it [50, 51]. Alternatively, if the lighter C02

is pushed into the heavier water, the density differences may produce Rayleigh-Taylor

fingering instabilities, as discussed in Section 1.4. When these become sufficiently large

to overcome inertia, the heavier of the two fluids migrates downwards and sideways,

leading to the formation of fingering with overturning and rolling flows. Overturning

can also occur in the water when C02 dissolves into the water adjacent to it, increasing

its density compared to the water without dissolved C02, or if C02 is injected below

water, and starts rising above it.

This density-driven convection flow in a carbon sequestration scenario is analogous

to temperature-driven Rayleigh-Benard convection [141]. The strength of conduction

to convection in a temperature-driven flow is given by the Rayleigh number, and in-

stability arises and so turbulent mixing occurs when the Rayleigh number is greater

than some critical value. Density-driven convection is known to be likely and play

an important role in a carbon sequestration scenario, as small density differences are

sufficient to create density-driven convection. (For example, the driving force from a

density difference of 1 kg/m3 relative to a reference density of 1000 kg/m3 is equiva-

lent to the driving force from a hydraulic gradient caused by just a l m decrease in the

hydraulic head over a lateral distance of 1 km [142].) This is supported by experimental

[143, 144], analytical [141, 145], and numerical simulation [146] evidence.

3.6.3 Alternative pore space structure

The pore spaces within an aquifer are not straight horizontal separate 2-d channels, but

curved and tortuous 3-d tubes, with many connections between the different pores.

Advection and density-driven convection are likely to be increased if the pore turns

downwards, or reduced if it turns upwards. "
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3.6.4· Variable thin film width

The size of the gap between the drop of C02 and the pore walls may not be the same

all the way round the drop, and as C02 is lighter than the aquifer water, the size of this

gap between the bottom of the drop and the lower pore wall may well be fairly large,

increasing the advective flow. This can lead to increased dissolution and mixing.

3.6.5 Additional chemical reactions

There are more chemical reactions that could be included in the model. Including ex-

tra species for the dissolved C02 to react with, for example, can lead to more C02

being predicted to dissolve into the water. If the C02 or other dissolved species form

compounds by reacting with the resident minerals, these may precipitate out of the

solution, depositing solids on to the pore walls, reducing the permeability of the pore

space, and making it harder for the C02 to travel away from the injection point.

3.6.6 Alternative parameter values or initial conditions

The steady state distributions may well be different when the initial chemical compo-

sition of the water is different, or changes in the temperature, pressure, pH, salinity,

or other conditions mean that the rate constants are different. The robustness of the

species' distributions to changes in the input parameters can be assessed using Monte

Carlo simulation. Different values for the rate constants and the initial composition

of the system would first be drawn at random from appropriate distributions. (Ap-

propriate log-normal distributions are the ideal distributions from which to sample,

as this gives a wide range of possible positive values.) These values would then be

used to find the dimensionless parameters, the far-field equilibrium concentrations,

and the steady state solutions to the small amplitude linear approximation, and then

the Newton-Raphson techniques can be applied as above. Critical measures of the out-

come, such as distance to equilibrium, can th~.nbe found.
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3.6.7 Ionic charge

Hydrogen, bicarbonate, carbonate and calcium are charged particles, and so will all be

attracted to or repelled away from each other. The size of the electrical force exerted by

one ion on another is given by Coulomb's law F = Qlq2/4nex*2 [72],where Q1and Q2

are the sizes of the two ions' charges, x* is the distance between the ions, and e is the

permittivity of the medium. This can be estimated by e = eoer, where eo is permittivity

in a vacuum (8.85 x 10-12C2r1m-1) and e, is the relative permittivity of the medium

(or 'dielectric constant'), e- = 78 for water at 25°C and 55 for water at 100°C.The size of

the charge on an ion is the number of electrons it has lost or gained (one for hydrogen

and bicarbonate and two for carbonate and calcium) multiplied by the charge carried

by a single electron ~ -1.602 x 10-19 C.

If a packet of aquifer water of volume (10 flm)3 is saturated with dissolved C02, and

thus is 10 kg/m3 denser than the surrounding water, then its extra weight above the

surrounding water is 9.81 x 10-14 N. From Coulomb's law, the charge force between

a hydrogen cation and a carbonate anion, for example, is this size when the distance

between the two ions is x* ~ 7.8 X 10-9 m, and 1% of this size when x* ~ 7.8 X 10-8

m. Charge forces are important over very short length scales, but less important at the

longer length scales over which conduction and convection effects occur.

3.7 Conclusions

Injected C02 forms a spreading drop in an aquifer's pore space, dissolves from the tip

of the drop into the resident water and spreads away from the tip of the drop, causing

changes in the chemical composition of the water in front of the drop as it reacts with

the other species in the water.

In Section 3.4 we analysed a model for the steady state far field distribution of any sin-

gle species dissolving from a spreading drop into a long thin channel filled with water,

accounting for advection, Taylor dispersion, diffusion, and a chemical sink. The model

included a weak net flux through the channel, less than the flow by a factor of O(e),

where e is the ratio of film width (between drop and pore walls) to channel radius.

For fixed e, the length scale over which the dissolved species spreads out is minimised

if the Peclet number is 0(1) (i.e. advection and diffusion are equally important), and

110



CHAPTER 3: SALINE AQUIFERPORESPACEDISTRIBUTIONS

increases as the Peclet number increases, due to Taylor dispersion.

If minimising the distance through an aquifer pore over which C02 spreads out is de-

sirable, this model therefore suggests that the C02 should be injected in such a way as

to make the speed of spread of the C02 drop through the pore space as close as possible

to the speed at which the C02 that dissolves from the drop into the water in the pore

space will diffuse through the water, and to err on the side of a slower spread of C02

through the pore space. The speed at which the C02 drop spreads through a given pore

space can be controlled, for example, by changing the speed and pressure at which it

is injected, whether it is injected together with water, and whether the C02 is free to

spread in all directions.

InSection 3.5 we examined the case when the speed of the spread of the drop through

the pore space (measured by the Peclet number) is small, as this is one of the more

straightforward cases to consider when coupling between the different chemical species

is included. This gives a model that includes axial diffusion and full chemical reaction.

This model indicates that the length scale over which the dissolved species spreads out

increases as the Peclet number decreases. To examine the effects on the concentrations

of the different dissolved species in the vicinity of the drop, we considered a number

of simplified versions of the model, including one which produces a finite maximum

distance that the dissolved C02 will spread out in front of the spreading drop. When

solutions could be found to this model, they indicate that the concentrations of the

dissolved carbonic species largely revert to their far field equilibrium concentrations

within a distance in front of the drop approximately equal to the channel radius. The

effect on the metal's concentration is much smaller, and occurs over a longer distance in

front of the drop, and this causes a few small changes in the carbonic species' concentra-

tions over this longer length scale. Carbonic acid, hydrogen and calcium all experience

drops in their concentrations in the region next to the C02 drop, with the carbonic acid

dropping to virtually zero.

The simplifications that were included in the model included setting the flux of C02
'"

from the tip of the drop into the water ("bxo") equal to zero, supposing there is no thin

film between C02 drop and pore wall, that there is a 90° contact angle between drop

and wall (so no "inner region" in the }J0re space), and that the interface between drop

and water is flat. The concentration fields should be examined in models that do not
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make these simplifications, and we anticipate that many of the features that were found

inour solutions will be preserved when these complexities are included. There are also

other features that could be included in the modelling to improve its realism, including

a non-zero speed for the spreading of the drop, density-driven convection, alternative

pore space structures, additional chemical reactions, and alternative parameter values

and initial conditions in the aquifer (due to different temperature, pressure, mineralogy,

and pH).

3.A Two Newton-Raphson schemes for Models 8NF and 4NF

3.A.l Introduction

Two Newton-Raphson schemes are constructed to solve Models 8NF and 4NF.Model

8NF is as follows. (4NF is the same, except that the d and g derivatives and boundary

conditions are removed.)

Model

8NF

o = bxx - b+ ad,

o = dxx+b-(cr+l/J)d+wEL(-b-d-g+h)+wFL(-b-d+g-h)
+w((b + d)2 - (g - h)2),

o = gxx+X(-b-d-g+h) -cp(GL+g)(-b-d+g-h) -CPgEL
-T(GLh + gHL + gh) - ph,

o = hxx - T(GLh+ gHL + gh) - ph,

with b = Bo - BL and dx = gx = hx = 0 at X = 0, and b = d = g = h = 0 at X = L.

As described below, the X-axis is discretised into N + 1 collocation points, labelled x«,

n = 0, ..., N, and the values of the four species at X = Xn are labelled bn, dn, gn, and hn.

Two Newton-Raphson methods are used to seek solutions to the following system of

4(N - 1) equations, to give the values of the four species at the N - 1 internal nodes,

providing solutions that satisfy 8NF at each n9de:
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o = bxx» - bn + ad., (3.7.1)

+w( -bn - dn + gn - hn)( =b; - dn - gn + hn),

o = gxx» + X( -bn - a« - gn + hn) - cpGL(-bn - dn + gn - hn) - cpELgn

-cpg( -bn - dn + gn - hn) - r(GLhn + gnHL + gnhn) - phn,

o = hxx» - r(GLhn + gnHL + gnhn) - phn,

(3.7.2)

(3.7.3)

(3.7.4)

for n = 1, ..., N - 1, with boundary conditions bo = Bo - BL (specified), do = d1, go =

gl, ho = hI and bN = dN = gN = hN = O.

The differences between the two Newton-Raphson methods lie in the ways the X-axis

is discretised, and the ways the second derivatives in (3.7.1)-(3.7.4) are estimated.

3.A.2 Scheme 1: Central differences

The eigenmode analysis of Model 8LF shows that the species vary between X = 10-5

and X = 102, and so this is the chosen domain. The N + 1 nodes within this domain

are chosen to be uniform in log X, and an initial guess for the value of each species at

each node that will satisfy equations (3.7.1)-(3.7.4) is taken from the algebraic solutions

to either Model8LR or 4LR (see Appendix 3.B), and labelled bn,l, dn,l, gn,l and hn,l'

Given three nonlinearly-separated adjacent values of X (Xn-l, Xn and Xn+l), and corre-

sponding known estimates of b (bn-l, b« and bn+1), the central difference estimate of

bxx at Xn can be found as follows. Let Ll = Xn - Xn-l and L2 = Xn+1 - x«, such that

o < Ll < L2 « 1. Then bn-1 can be written as b(x - Ll), and bn+l can be written as

b( x + L2). Since b and all its derivatives are single-valued, finite and continuous across

X, by Taylor's theorem
L2 L3

= b(x) - L1bx(x) + 21 bxx(x) - 61bxxx(x) + ...,
L2 L3

= b(x) + L2bX(X) + -tbxx(x) + : bxxx(x) + ...,

and so
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Since LI, L2 « 1, the third order powers of LI and L2 are negligible compared to the

second and lower order powers, and so dropping all the terms greater than second

order in LI or L2 gives two equations for bx(x) and bxx(x) in terms of b(x - LI), b(x),

b(x + L2), LI and L2. Solving gives the following central difference estimate for the

second derivative, which is accurate within O(q).

b _ (LI + L2)(bn-1 - 2bn + bn+1) - (LI - L2)(bn-1 - bn+l)
XX,n - {(LI + L2)(Li + LD - (LI - L2)(Li - q)}/2

(3.7.5)

The numerator can be re-written (LI + L2){ (bn-I - bn) - (bn - bn+l)} - (LI - L2)(bn-1 -

bn+bn - bn+l) = 2L2(bn-1 - bn) - 2LI(bn - bn+I). As b decreases monotonically across

X, both halves of this expression are positive. As L2 > LI, and the difference between

LI and L2 is more than the difference between the two differences of successive values

of b, the numerator is positive. Also, as (LI + L2)(Li + L~) > (LI - L2)(Li - LD > 0,

the denominator is also always positive, and so bxx is positive for all X.

Expression (3.7.5), similar expressions for dxx», gxx» and hxx», the initial guesses

bn,l, dn,l, gn,1 and hn,l, and the boundary conditions, are used to estimate the second

derivatives at each point xn. This enables the right hand sides of equations (3.7.1)-

(3.7.4),written y = (Exln,l, Ex2n,l,Ex3n,l,Ex4n,l) to be evaluated at each node Xn, n =

1,...,N -1.

A second set of estimates for the solution (labelled bn,2, dn,2, gn,2 and hn,2) is then found

by adjusting the initial estimates towards the actual solution at the N - 1 internal X-

axis points using the Newton-Raphson formula

bn,2 bn,1

dn,2 dn,1 - rl(y).y,=
gn,2 gn,1

hn,2 »;.

(3.7.6)

for n = 1, ..., N - 1. J is the Jacobian of (3.7.1)-(3.7.4),containing the derivative of each

expression with respect to each unknown, constructed as:
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aEx11 aEx11 aEX11 aEx11 aExl I aExl I aExl I aExl I
db] 1 dif.l 1 dgll dfil 1 ~1 diTi:H 1 dgN-l 1 ~1
aEx21 aEx21 aEX21 aEx21 aEx21 aEx21 aEx2 I aEX21
d611 dif.l 1 dgll d1ill 'd'5';i:i 1 diTi:H 1 dgN-l 1 ~1
aEx31 aEX31 aEX31 aEX31 aEx3 I aEx3 I aEx3 I aEx3 I
db] 1 dif.l 1 dgll d1ill 'd'5';i:i 1 diTi:H 1 dgN-l 1 ~1
aEX41 aEX41 aEX41 aEx41 aEX41 aEx4 I aEx4 I aEx41
d611 dif.l 1 dgll dfil 1 ~1 diTi:H 1 dgN-l 1 ~1

J(y) =

aExl I aExl I aExl I aExl I aExl I aExl I aExl I aExl I
db] N-l dif.l N-l dgl N-l d1il N-1 ~ N-l diTi:H N-l dgN-l N-l ~ N-1

aEX21 aEx21 aEX21 aEx21 aEx2 I aEx2 I aEx2 I aEx2 Id6l N-1 dif.l N-l dgl N-l d1il N-l ... ~ N-1 diTi:H N-1 dgN-l N-1 dhN-l N-1

aEx31 aEx31 aEx31 aEX31 aEx3 I aEx3 I aEx3 I aEx3 I
db] N-l dif.l N-l dgl N-l dfil N-l 'd'5';i:i N-l diTi:H N-l dgN-l N-l ~ N-l

aEx41 aEx41 aEX41 aEX41 aEx4 I aEx4 I aEx4 I aEx4 Id6l N-l dif.l N-l dgl N-l d1il N-l 'd'5';i:i N-l diTi:H N-1 dgN-l N-1 ~ N-1

For example, the top left entry in this matrix is found by substituting n = 1 into Exl,

and then differentiating with respect to b-, to give - 2( L1+ L2) / { (Ll + L2) (Li + LD -

(Ll - L2)(Li - L~)} -1. All the elements in J are zero except for the elements in the

main diagonal of 4 x 4 blocks, and the first 4 x 4 blocks above and below this main

diagonal.

A third set of estimates is obtained by repeating the process to adjust the second set

of estimates, and this process is continued until the iterations converge on the correct

solution to (3.7.1)-(3.7.4)for this Bo. The iterations are said to have converged when the

maximum of all the 4(N -1) increments is smaller than a specified value.

3.A.3 Scheme 2: Chebyshev polynomials

With the Chebyshev spectral method, the X-axis is discretised into N + 1 Chebyshev

collocation points, defined as x~ = cos(nn/N), n = O,...,N. These points are the

projections onto the x-axis of equally-spaced points on a unit semicircle [147]. Thus

they range -1~x~ ~ I, and have the characteristic that there are many points near the

two boundaries, and fewer points nearer the middle of the domain. They are converted

to the actual X-axis range 0 ~ Xn ~ L using Xn = (1+ x~)L/2, where L is the finite

maximum value for X. With L = 100, it is n@cessaryto take N = 5000 in order to be

able to obtain solutions down to X = 10-5, as (1+ cos(4999n/5000)) 100/2 ~ 10-5.

As an initial guess, each species is estimated to be zero at each x~ (except at the bubble

tip boundary, where bo = Bo - Bt). The second derivative of each species at each point

x~ is then estimated using the (N + 1) x (N + 1)Chebyshev differentiation matrix DN,
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whose (i,j)th entry is defined as follows [147]

(2N2+1)/6

-(2N2 + 1)/6

-xf /2(1 - (xf)2)

i = j = 0,

i = j = N,

i= j = 1, ..., N - 1,

{
2 i=OorN

i=/=ji i,j=O, ....N; Cj=
1 otherwise.

For each of the N + 1 collocation points, this matrix assigns a (non-zero) weight to all

the N + 1 points. Multiplying D~ by the 4(N + 1) vector of estimates of the species at

the N + 1 collocation points gives a 4( N + 1)-vector of estimates of the second deriva-

tives of the four species at the (N + 1) collocation points.

The Newton-Raphson formula (3.7.6) is then used to find a second set of estimates of

the values of the species at the collocation points, and this process is repeated. Once the

solution has converged, and the value of each species at the N + 1 points is known, the

unique polynomial in X of degree S; N that satisfies these points is found, to facilitate

easy interpolation at any point on the X-axis.

3.A.4 Validation of the two Newton-Raphson methods

To check that the two Newton-Raphson methods work correctly, the solutions to Model

8LF are found using these two numerical methods, and compared to the known (sum

of exponentials) solution described in Section 3.5.1. The solution is first found to 8LF

using the Chebyshev method with Bo = 9.845 X 10-6, an initial guess of zero at each

point for each species each time, and N = 20. The absolute difference between the

converged Chebyshev estimate of the perturbation and the known exact value is found

for each of the four species at a random sample of 1000 points across X (this is possi-

ble despite N = 20 as the Chebyshev method produces a polynomial solution), and

the maximum of these 4000 values found. This error is called the "infinity norm"

error, i.e. Infinity norm = max over 4000 points across X of JChebyshev estimate -
"

known valueJ. This is then repeated (with initial guesses of zero each time), with N in-

creasing from 20 to 120, and Figure 3.15 shows how the size of the infinity norm varies

with N. As expected, there is an approximately linear decrease in log(Infinity norm)

with N, i.e. exponential decrease of the infinity norm with N, up to about N = 100,
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after which the error is constant. This is the level of spectral accuracy, and is the size of

the computer's rounding error. The central difference method cannot find the correct

solution without a fairly accurate initial guess, which is provided by the solution to

Model4LR or 8LR (see Appendix 3.B).

Both schemes successfully converge on the known solution (each time in one step as

this is a linear problem). Figure 3.16 shows the percentage errors across X in these two

solutions, defined as

Error = I
Newton-Raphson value - Eigenanalysis value I

Eigenanalysis value . (3.7.7)

For each species, the Chebyshev errors are generally lower than the central difference

errors, and all the errors are generally below 1%, except for at the overshoots and in

the far field, where the perturbations are all very small. Both the central difference

and Chebyshev methods have converged on the solution correctly, but the Chebyshev

method is more robust - it requires a less accurate initial guess, and has a more accu-

rate solution.

3.B Other pore space models

3.D.1 Model8LR

The first term on the right hand side of equation (3.5.16) corresponds to the four d~

terms in the matrix in (3.5.13), and the second term in (3.5.16) corresponds to the d~

terms in the first, third and fourth rows of (3.5.13), and the - (tp +wFt) terms in the

R2C2(second row, second column) term. The third term corresponds to the d~ terms in

the first and fourth rows of (3.5.13), the - (tp + wFL) terms in R2C2, and the -<pE term

in R3C3. The fourth term corresponds to (T in R1C2, -wh in R2C1, -<pEL in R3C3, and

d~ in R4C4. The fifth term in (3.5.16)corresponds to (T in R1C2, -WFL in R2C1, -<pEL

in R3C3, and -p in R4C4.

Model 8LFcan therefore be simplified as follows. The terms corresponding to the four

eigenvalues, as outlined in the paragraph above, are retained. The equation for gxx
additionally requires term(s) that provide a link to band d in order to match to a no

flux boundary condition on X = O.From (3.5.13),the options are -Xb, <pGLb, -Xd, and

<pGLd. Each of the two <PGLterms is significantly larger than the corresponding X term,
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Figure 3.16: Pointwise errors in solutions to 8LF, defined by (3.7.7), using Chebyshev
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method (continuous lines) and central difference method (dashed lines).
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and as d will be found to have about A~/ CT= 62% of the magnitude of b, both q>GLb and

q>GLd need to be included. Similarly, also included in the hsx equation is the only term

which provides a source or sink to b, d or g. This gives the following reduced system.

0 = bxx + CTd,

Model 0 = dx« - (tp + wFdd - wFrb,

8LR 0 = gxx -q>ELg + q>Gr(b + d),

0 = iixx - ph - THLg,

with b = Bo - BLand dx = gx = hx = 0 at X = 0, and b = d = g = h = 0 at X = L.

From the oxx equation, d = -bxX/CT, and substituting this into the dxx equation gives

o = bxxxx - (tp + wFr)bxx + CTwFLb,

or, 0 = bxxxx - Aibxx +AiA~b,

where the formulae for Ai are given in Table 3.6.

The solution to this equation which matches the far field boundary condition is

( (
Ai + JAi - 4AiA~) 1/2 ) ( (Ai - JAi - 4AiA~) 1/2 )

b = Clexp - 2 X + C2exp - 2 X ,

00

where Cl and C2are constants. Using the binomial series expansion (1+ x)n = L: nCkxk
k=O

for any nEe if Ixl < I,

Ai±JAi-4AiA~ = Ai±Ai(I-4~~r/2

2 2( A~ )~ Al ± Al 1- 2Ai + ...

= Ai (1± (1 - 2~~ + ...) ) ,

and so Ai + JAi - 4AiA~= Ai(2 - 2A~/ Ai + ...) ~ 2Ai, and Ai - JAi - 4AiA~~ 2A~.

Therefore b ~ Clexp (-AIX) +C2exp (-A3X), and the boundary condition b = Bo- BL

at X = 0 gives Bo - BL = Cl +C2. Also, d = -bXX/CT = -cIAiexp(-AIX)/CT-

c2A~exp( -A3X) / CT,and the boundary condition dx = 0 at X = 0 gives 0 = cIAf +c2A~.

Solving these two equations for Cl and C2gives

Bo - BL ( 3 3b = A3 A3 A3exp( -AIX)- Al exp( -A3X)),
3 - 1

-(Bo - BdAiA~
d = CT(A~ _ Af) (A3exp( -AIX) - Al exp( -A3X)).
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The distributions of these two species are governed by two length scales. There is

a very thin boundary layer over a length scale of magnitude 0(1/ AI), and then the

second longer length scale, of magnitude 0(1/ A3), controls the distance over which

equilibrium is reached. The solution to g that matches the boundary conditions is then:

h =

g = 1JGL(Bo - BL)(A~(I- AIIcr) x (-A X) _ AI(I- AVcr) x (-A X)
A3-A3 A2_A2 e p 1 A2_A2 e p 3
3 1 2 1 2 3

_ [AIA~(I-AIIcr) _ A3AI(1-AVcr)] eXP(-A2X))
~-~ ~-~ ~.

The distribution of g is thus controlled by three length scales - there are two bound-

ary layers, of magnitudes 0(1/ AI) and 0(1/ A2), and equilibrium is reached over the

longest of these three length scales, which, as for band d, is 0(1/ A3)' The solution to h

that matches the boundary conditions is then:

THL1JGL(BO - BL)( A~(1- AUcr) (-A X) _ AI(1- AVcr) (-A X)
A3-A3 (A2_A2)(A2_A2)exp 1 (A2_A2)(A2_A2)exp 331 2114 2334

_ [AIA~(I- Ai/cr) _ A3AI(I- AVcr)] exp( -A2X) _ [ AIA~(I- AUcr)
A~- Ai A~- A~ A2(A~- AD (A~- Ai) (Ai - AD

_ A3AI(1-A§lcr) _ AIA~(l-AIIcr) A3AI(I-A§lcr) ]eXP(-A4X))
(A~- AD(A~- A~) (A~- AD(A~- AD + (A~- A~)(A~- A~) A4 .

Species h has three boundary layers, of magnitude 0(1/ AI), 0(1/ A2) and 0(1/ A3),

and equilibrium is reached over a length scale 0(1/ A4). This set of approximations is

tested in Appendix 3.B.2.

3.B.2 Comparison of 8LF and 8LR

Figure 3.17 shows the solutions to 8LF (from Section 3.5.1) and 8LR (from Appendix

3.B.l). As before, Bo = 9.845 X 10-6 is chosen. The two lines for each species are com-

pletely coincident near the bubble tip (to visible accuracy), and each species' reduced

model has the correct equilibrium length scales. However, 8LR has failed to pick up

the three carbonic species' second plateaux i~ the far field, continuing straight down

instead. This is because all the h terms have been dropped from the dxx and gxx

equations in 8LR, and so b, d and g have completely decoupled from h and are free to

continue their steep declines. Correcting this discrepancy by restoring the h terms back

into these equations would also restore the difficulty in solving the systems without
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Figure 3.17: Linear perturbation models: 8LF (continuous lines) and 8LR (dashed

lines).

resorting to an eigenanalysis as was used for 8LF. The reduced model has also failed

to pick up the overshoots for d and g that are in the full model. These differences indi-

cate that to retain an accurate picture of the species' far field behaviour, the full set of

reaction terms should be retained.

3.B.3 Mode14LR

The two length scales 0(1/ AI) and 0(1/ A2) provide extremely short boundary layers

within which there is actually no noticeable change in the sizes of the perturbations in

this small amplitude case. If knowing the fine detail of the behaviour of the four species

near the bubble-tip is less important, the Sth-order model may therefore be reduced

to a 4th-order model by eliminating the derivatives that result in terms in the model

involving Al and A2· As h has its own lengthscale and oxx must be kept (otherwise

this leaves 0 = adi, the derivatives axx and gxx are therefore removed. Removing

these two terms will therefore give approximations which are slightly less accurate
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near X = 0 (and do not quite match the original no-flux boundary conditions), but

do not have significantly different equilibrium length scales. This gives the following

4th-order system of reduced linear equations:

0 = bxx +ad,

Model 0 = -(tp +wh)d - whb,
4LR 0 = -CPELg + cpGt{b +d),

0 = hxx - ph - THLg,

with four boundary conditions b = Bo - BL and hx = 0 at X = 0, and b = h = 0 at

x = L. These give the following (much-simplified) approximate behaviour:

b = (Bo - Bt) exp( -;\3X),
-;\~d = -b,

(J'

g = CPGL (1 - ;\~) b
;\~ (J"

h = THLCPGL (1 _ ;\~) (;\3(Bo - Bd (._1 X) - b)
;\~(;\~ _ ;\~) (J' ;\4 exp 1~4 •

When these expressions are plotted, they coincide completely with the expressions for

Model 8LR.Therefore, using Model 4NF in Section 3.5.3 is justified. (Also, despite the

far field failings, 4LR and 8LRprovide sufficiently good initial guesses for the central

differences Newton-Raphson method of solving 8NF and 4NF.)
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C02 rising through saturated

limestone

The aim of this Chapter is to provide modelling for some experiments which have re-

cently been carried out at the University of Nottingham. These experiments involve

injecting gaseous carbon dioxide into different media, and measuring its speed of as-

cent, rate of dissolution, and the changes in the chemical composition of the water and

limestone through which it flows. They simulate what could happen within a saline

aquifer after injection of C02.

Miss YangWei, of the School of Geography, University of Nottingham, has performed

some experiments in order to investigate the changes in pH, the concentrations of car-

bonic species and calcium ions, and electrical conductivity, that occur in limestone sat-

urated with water, as a result of C02 (g) being bubbled up through the water /limestone

mixture, reacting as it travels.

After describing the experiments and the initial condition of the system, some mathe-

matical modelling is performed to predict the chemical changes in the limestone, and

these modelling predictions are compared to the results from the experiments.

4.1 Experimental set-up

Figure 4.1 illustrates the experimental apparatus. A column of ground limestone (at

least 99% CaC03, 96% of the particles of diameter 300-850 us», density 1480 kg/m3)

0.7m high was placed in a cylindrical tube of diameter 0.2m. To saturate the limestone,
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and SOmm length
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N- Non-return valve
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Figure 4.1: Experimental set-up (courtesy of Yang Wei, University of Nottingham).
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Time Flow rate

(min) (ml/min)

0 301.02

1 225.53

2 187.84

3 165.24

4 150.19

4 301.02

6 270.80

7 259.48

8 248.16

Time Flow rate

(min) (mllmin)

9 244.38

11 233.07

13 225.53

15 221.75

18 214.21

21 206.68

27 195.37

35 187.84

Time Flow rate

(min) (ml/min)

42 184.07

48 180.30

57 172.77

57 301.02

58 278.35

61 270.80

68 263.25

81 255.70

Time Flow rate

(min) (mllmin)

86 248.16

91 251.93

1437 233.07

1694 229.30

2637 244.38

2752 240.61

3177 244.38

4158 236.84

tap water was poured into this column until it just reached the top of the limestone,

and allowed to settle overnight. Below this column was a mixing chamber, initially

containing air, and between the limestone and the mixing chamber was a perforated

septum, containing circular apertures of radius 3 mm. Above the limestone was a

region initially containing air, with a gauge to measure the percentage of C02 in this

space, and the top of the column was sealed.

5amples of the water/limestone mixture were taken from probes 51, 53 and 55 (at

heights 5 em, 15 em, and 25 cm above the mesh), for later analysis to determine the

initial chemical composition of the water/limestone mix using inductively coupled

plasma mass spectrometry (ICPM5).This later analysis gave the initial bicarbonate con-

centration in the column as 174mg/l, the initial calcium concentration as 75.9mg/l at

53 and 127.4mg/l at 55 (the difference suggests a lack of well-mixing), and the initial

pH was 7.57, 7.68, and 7.60 at 51, 53 and 55 (respectively).

Table 4.1: C02 flow rate into mixing chamber with time.

The experiment was run as follows: pure gaseous C02 was continuously pumped into

the bottom mixing chamber, and the extra pressure caused the gas to penetrate the

mesh and rise up through the water /limestone mixture to the top chamber. The exper-

iment was run for about 96 hours, and the pH, the flow rate of C02 into the bottom

mixing chamber, and the percentage of C02 in the top chamber, were measured at

various time intervals. 5amples of the.water /limestone mixture were also collected at

125



CHAPTER4: C02 RISINGTHROUGHSATURATEDLIMESTONE

320

300

280

_260
c
'EE 240-Q)....
~ 220
~u:: 200

180

160

14~.5 2 2.5 5.5

particular times. The room temperature was 17.9 °C, and the pressure from the gas

cylinder to push C02 (g) into the mixing chamber was about 2.0 bar.

Table 4.1 and Figure 4.2 give the C02 flow rate into the bottom mixing chamber against

time. The flow rate reduced as the pressure difference between the C02 cylinder and

the mixing chamber reduced, and when the flow rate reduced to about 150 ml/min,

the gauge was opened wider to increase the flow rate up to about 300 ml/min. This

happened on 4 and 57 minutes (hence the jumps in flow rate at these two times).

3 3.5 4
10910Time (sec)

4.5 5

Figure 4.2: C02 flow rate into mixing chamber with time.

4.2 Experimental data

Table 4.2 gives the measured gas composition of the top chamber with time, percent-

agewise. Some of the rows sum to more or less than 100% due to equipment error and

the failure to measure argon (0.9%of air). Table 4.3gives the observed pH with time,

at 51, 53 and 55, and Table 4.4 gives the concentration of dissolved Ca2+ in the water
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Time CO2 02 N2

(min) (%) (%) (%)
0 0.0 20.2 79.5

4 0.1 20.2 79.5

8 0.3 20.2 79.4

10 0.5 20.1 79.2

12 1.0 20.1 78.8

15 4.5 18.9 74.2

23 5.6 19.3 74.9

25 7.4 18.8 73.6

27 7.4 18.9 73.6

32 15.5 17.0 68.2

Time CO2 02 N2
(min) (%) (%) (%)
35 27.0 15.0 58.0

41 48.0 11.4 40.7

45 54.1 9.9 35.8

51 59.7 8.5 31.6

58 69.3 6.8 23.9

66 78.7 5.1 16.4

74 84.6 3.9 11.6

84 89.2 2.4 8.3

93 91.1 1.9 7.2

103 94.1 1.2 4.5

Time CO2 02 N2
(min) (%) (%) (%)
113 95.3 1.0 3.6

122 96.5 0.8 2.6

139 97.8 0.6 1.4

162 97.4 0.5 2.1

180 98.9 0.5 0.3

213 98.6 0.3 0.9

255 99.6 0.4 0.0

1181 99.4 0.6 0.0

1475 99.9 0.8 0.0

2885 97.6 0.8 1.1

Table 4.2: Gas composition in top chamber with time.

with time (these concentrations exclude solid calcium). The results in this Table come

from the samples of the limestone taken at various times, and later analysed using in-

ductively coupled plasma mass spectrometry. The values in these Tables are plotted in

Figures 4.3-5 below along with the modelling predictions that will be derived below.

During the course of the experiment, bubbles could not be seen in the water/limestone

mixture; it was completely still, with no bubbling or churning at the interface with the

gas in the top chamber. This suggests that the C02 bubbles dissolved into the water

extremely quickly. Even though the experiment was run (i.e. C02 was pumped in) for

over 96 hours, the vast majority of the changes appear to have come within the first 3

hours, with the pH and Ca then reaching a plateau despite the additional C02.

After the experiment ended, a few channels could be seen in the limestone adjacent to

the edge of the container, which were believed to have been formed by the rising C02.

They measured just a few mm in diameter, and were tilted slightly away from vertical.

4.3 Mathematical modelling

In the water /limestone mix, suppose that following the dissolution of C02 from the

bubbles into the water (R1), the dissolved C02 can react with the water (R2) and the
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Time pH

(min) 51 53 55
0 7.57 7.68 7.60

6 7.28 7.38 7.25

11 6.30 7.38 7.40

16 6.29 7.41 7.12

21 6.42 7.38 7.15

26 6.69 7.32 7.10

31 6.49 6.85 7.05

36 6.55 6.72 6.75

Time [Ca2+] (mg/l)

(min) 53 55
0 75.90 127.40

10 83.05 144.80

45 81.67 158.70

70 89.67 192.60

100 94.30 291.40

Time pH

(min) 51 53 55
41 6.56 6.72 6.86

46 6.63 6.78 6.97

51 6.63 6.82 7.12

56 6.70 6.84 6.88

61 6.60 6.75 6.63

100 6.71 6.40 6.52

177 6.20 6.25 6.51

186 6.20 6.45 6.33

Table 4.3: Observed pH with time.

Time [CaH] (mg/l)

(min) 53 55
1440 281.90 289.80

1720 285.20 294.10

2770 294.30 270.80

3190 299.80 362.40

4170 303.50 317.20

Time pH

(min) 51 53 55
206 6.13 6.43 6.25

236 6.28 6.39 6.30

241 6.08 6.38 6.24

271 6.03 6.43 6.10

331 6.16 6.57 6.24

1236 6.19 6.24 6.27

1531 6.18 6.36 6.16

2961 6.16 6.18 6.12

Time [Ca2+] (mgll)

(min) 53 55
4390 299.10 381.80

5545 - 505.40

5550 303.40 -
5770 305.30 -

Table 4.4: Calcium concentration with time.

different compounds in the water, including carbonic acid, hydrogen, bicarbonate, car-

bonate, calcium, and calcium carbonate (R2-5),and the calcium carbonate can precipi-

tate out of the solution back onto the solid medium (R6). As the C02 (g) in the mixture

dissolves into the water extremely quickly, suppose also that none of the mixture's

C02 (g) can interact with the top chamber, but only its dissolved C02 (R7), i.e.

C02(g)mix {=}C02(aq),

CO2(aq) +H20 {=}H2C03,

H2C03 {=}H+ + HC03,

HC03 {=}H+ +CO~-,

CaH +CO~- {=}CaC03(aq),
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CaC03(aq) *"* CaC03(S),

C02(aq) *"* C02(ghc'

(R6)

(R7)

where TC stands for 'top chamber'. Assume that C02(aq) remains below carbon diox-

ide's solubility limit, and that all the CaC03 that is formed in solution remains dis-

solved until its concentration reaches calcium carbonate's molar solubility limit 5; there-

after it precipitates instantaneously (R6). Suppose that the water/limestone mixture is

well-mixed, with negligible advection and diffusion compared to reaction, so the other

reactions (R1-S)and (R7) each individually follows the mass action law, with forward

and reverse rate constants kl' k2, k3, k4' ks, k7 and LI, L2, k:«, k-4' k-s, k-7 respectively,

with the additional assumption that water is abundant (compared to the species dis-

solved in the water). Suppose that the temperature, pressure, salinity, ionic strength,

and particle surface area are constant and uniform.

As we suppose that the water /limestone mixture is well-mixed, and so the concentra-

tions may vary temporally but not spatially, we consider the changes in the species'

concentrations in the whole mixture with time. If there is a continuous injection of

C02 (g) from time 0 to time tl, the rate equations for this system are therefore:

d[CO~~g)mix]= Q'H (ti - t) - k1[C02(g)mix]+LI[C02(aq)], (4.3.1a)

d[C02(aq}]
dt = kl[C02(g)mix] - LI[C02(aq)] - k2[C02(aq)] +L2[H2C03]

- k7[C02(aq)] + L7[C02(ghcl, (4.3.1b)

d[~:O] = -k2[C02(aq)] +L2[H2C03], (4.3.1c)

d[H2C03]
dt = k2[C02(aq)] - L2[H2C03]- k3[H2C03] +L3[H+][HC03"], (4.3.1d)

d[:+] = k3[H2C03]- L3[H+][HC03"] + k4[HC03"] - L4[H+][CO~-], (4.3.1e)

d[H~t°3"l = k3[H2C03]- L3[H+][HC03"] - k4[HC03"] +L4[H+][C~-], (4.3.1f)

d[CZ~-] = k4[HC03"] - L4[H+][CO~-] - ks[Ca2+][CO~-]+LS[CaC03(aq)],

(4.3.1g)

d[~2+] = -ks[Ca2+][CO~-] +LS[CaC03(aq)],

d[C~~03] = ks[Ca2+][CO~-] - LS[CaC03(aq)],

d [C02(ghcl [ (dt = k7 C02 aq)]- L7[C02(ghcl·

(4.3.1h)

(4.3.1i)

(4.3.1j)
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where t is time (in sec), [] denotes concentration (in M), Q is C02 (g) inflow rate inMis,

11.(.) is the Heaviside step function (11.(x) = 1 if x > O,11.(x) = 0 if x < 0), and the

expression for CaC03 is combined from the expressions for CaC03(aq) and CaC03(s)

as in (2.2.li), (2.2.1j) and (2.2.2).

Multiplying (4.3.1j)by VTC and (4.3.lb) by Vmix, the volumes of the top chamber and

water Ilimestone mixture respectively, and summing, gives

v d[C02(ghcl + v. . d[C02(aq)] = (V - V. . )(k [CO (aq)]- k [CO (g) ])
TC dt mix dt TC mIX 7 2 -7 2 TC

+Vmix (kl [C02(g)mix]- Ll [C02(aq)] - k2[C02(aq)] +L2[H2C03])' (4.3.2)

Suppose that [C02(aq)] is permanently in equilibrium with [C02(ghc1 (i.e. reaction

(R7) is much faster than any other reaction). According to Henry's Law (see Section

1.7.1), the equilibrium between C02(aq) and C02(ghc is given by S = kHP, where S

is the solubility of the gas in the liquid (i.e. [C02(aq)]), P is the partial pressure of the

gas in the top chamber (atm), and kn is the Henry's law constant (inMI atm). P can be

replaced with nRT IV, from the ideal gas law, where n is number of mol, R is the gas

constant, T is temperature, and V is volume. Noting that nlV is [C02(ghc], (4.3.1j)

and Henry's Law give

= (4.3.3)

Substituting expressions for [C02(ghc1 and [C02(aq)] from (4.3.3) into (4.3.2),and di-

viding through by Vrnix, gives the following replacements for (4.3.1b)and (4.3.1j):

( VTC _1_ + 1) d[C02(aq)] = (VTC + kHRT) d[C02(ghcl
Vmix kHRT dt Vrnix dt
= k1[C02(g)mix]- L1[C02(aq)]- k2[C02(aq)] +L2[H2C03]. (4.3.4)

The rate of change of C02(aq) does depend on the relative volumes of the water Ilimestone

mixture and the top chamber, as this affects how many C02 molecules are available to

react in the water, and this model reflects that fact. kn = 0.04155MI atm for C02 in

water at T = 291 K (from equations (1.7.1) and (1.7.2», and R = 0.082 atm K-1M-1,

and so kHRT = 0.991 (hence 'C02 distributes itself approximately equally between its

gas phase and aqueous phase' [73] (see Section 1.7.1». Therefore, when the two vol-

umes are equal, the C02 molecules are split approximately equally between the water
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Species Concentration

[C02(g)] 1.19 x 10-4 M

[C02(aq)] 1.19 x 10-4 M

[H2C03] 3.58 x 10-7 M

[H+] 2.51 x 10-8 M

Species Concentration

[HC03] 2.85 x 10-3 M

[CO~-] 6.81 X 10-6 M

[CaH] 3.17 x 10-3 M

[CaC03] 4.33 x 10-5 M

Table 4.5: Initial equilibrium condition at 55.

and the top chamber, and under this model, the rate of change of C02(aq) would cor-

rectly be half of what it would be if VTC = O. Also, if the top chamber were the whole

atmosphere, this model would give the rate of change of C02(aq) as effectively zero.

The portion of the water Ilimestone mixture that is available to hold dissolved C02 is

the portion that is water, and large beds of randomly-packed uniform spheres have

an average void fraction of about 39% [148]. Therefore, from Figure 4.1, as the two

cylindrical volumes have equal cross-sectional area, the volume ratio can be estimated

as

VTC

Vmix
= = 0.55.0.70 x 0.39

0.15

The initial condition at S5was pH=7.6, [HC03]=174 mg/l, and [CaH]=127mg/I. Not-

ing that calcium has atomic mass 40.078 g/mol, bicarbonate has atomic mass 61.01

g/mol, and using the rate constants given in Table 2.1 and equilibrium expressions

such as (2.2.7), gives the initial equilibrium condition given in Table 4.5. Water has

constant concentration of about 55.5M.

Suppose the rate of flow of C02 (g) into the mixing chamber is a constant 240 ml/min

= 4 x 10-6 m3 Isec (roughly the mean flux in Figure 4.2). From the ideal gas law, with a

pressure of 2.0bar and temperature of 291K, this volume is 3.3 x 10-4 mol/sec. Using

a void fraction of 39%, the water in the whole water Ilimestone mixture has a volume

of 8.6 litre, and so Q ~ 3.8 X 10-5 M/sec.
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4.4 Comparison of mathematical modelling with experimental

data

Using the initial condition given in Table 4.5, tl = 250,000 sec (the time for which

C02 was injected, according to Table 4.1), Q = 3.8 X 10-5 M/sec, the values of the
rate constants given in Table 2.1, VTclVmix = 0.55, and kHRT = 0.991, the results

from the model comprising equations (4.3.la,c-i) and (4.3.4) are found using numerical

integration.

Figure 4.3 gives the change in hydrogen concentration as predicted by the model, and

the measured values given in Table 4.3 (except for the observed values at Time=O).

The observed rate of pH fall is broadly in line with the model prediction. However,

the model predicts that the pH decreases all the time that gaseous C02 is pumped in,

and then stops changing, but the observations indicate that a plateau is reached much

before h. This suggests that either there is a buffer within the water Ilimestone mix that

is preventing the pH from decreasing further, which needs to be included in the model,

or perhaps later observations of pH would indeed have shown further decreases (for

example, the line for S3looks far from flat). An attempt was made to limit the model's

increase in [H+] by introducing a pH buffer: including the reaction CaC03 + H+ *=*
CaHCOt, adjusting the rate formulas for CaC03 and H+, and including a new one for

CaHCOt· However, this made no noticeable difference to the plots in Figure 4.3.

With density 1.2 gil and atomic mass 29 g/mol, air has total concentration 0.041mol/L

With a volume of 4.7121, the top chamber therefore contained 0.195 mol of air at the

start of the experiment. This 0.195mol of 02 and N2 comprised only about 2.4%of the

air in the top chamber at the end, according to Table 4.2, so the top chamber contained

8.1 mol at the end in total, of which 7.9 mol is C02 (or [C02(ghc] = 1.68M). Similar

calculations give [C02(ghc] at each time point, and these are plotted along with the

model predictions in Figure 4.4. The observed changes happen at a faster rate than

the model predicts. This is despite the model assuming the water /Iimestone mix is a
~

permanently well-mixed chamber, but the mixture was observed to be completely still

during the experiment! The rate constants for reactions (R2) and (R3)may need to be

adjusted.

The concentrations of dissolved calcium given in Table 4.4 are turned from mg/l to
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Figure 4.3: Hydrogen concentration with time: Table 4.3 data and model prediction.
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mol/I by dividing by calcium's atomic mass of 40,078 mg/mol. Figure 4.5 shows the

observed concentrations of dissolved calcium and the model predictions (with 55's ini-

tial condition), against time. The experiments confirm the counter-intuitive modelling

prediction, discussed in Section 2.2.4, that the injection of C02 results in an increase in

the concentration of calcium, but there is a clear difference between the very slight in-

crease predicted by the model, and the much larger observed increases. This suggests

that the modelling for calcium may need significant improvement.

4.5 Summary

We have provided some mathematical modelling for experiments recently carried out

at the University of Nottingham. The experiments featured gaseous C02 entering a

water/limestone mixture, dissolving very quickly into this mixture, rising up through

the mixture while reacting with the water and species dissolved in the water, before

entering a top chamber. Our model gives the temporal changes of the concentrations
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of the different dissolved chemical species and the C02 in the top chamber, as func-

tions of the chemical reactions, but not as functions of the rates of diffusion or rate of

transport through the medium (i.e. position in the water/limestone mixture). There is

no significant time lag between the observed and predicted change in pH, and so this

assumption of the mixture being well-mixed does not appear to be a problem.

The experimental results confirm the counter-intuitive model prediction, discussed in

Section 2.2.4, that the injection of C02 results in a reduction in the mixture's concentra-

tion of CaC03, and an increase in the concentration of calcium. However, the model

does not predict these changes to be anywhere near as large as they are observed to be.

The model also predicts that the pH will continue to decrease all the time that gaseous

C02 is being pumped in, but the observations appear to indicate that a plateau is

reached fairly quickly. This suggests that there is a buffer within the water/limestone

mix that is preventing the pH from decreasing further, which should be included in the

model.
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Conclusions

The dissolution of C02 in water, and reaction with water, is a very important natural

and industrial process. There are many challenges to successfully modelling C02 dis-

solution in water, including the large number of reaction and transport processes that

can occur, and the extremely wide range of temporal, spatial, and concentration scales.

Also, saline aquifers are extremely heterogeneous environments, and model validation

is difficult. One part of the solution to these problems is to improve the understand-

ing of the fundamental underpinning reaction and transport processes, so that there is

a better understanding of what can be expected to happen. This requires the formu-

lation of a series of smaller sub-problems, with careful rationalisations, which can be

understood and analysed in detail. We consider a series of such sub-problems.

InChapter 2 we formulated a single model for the time dependence of what happens

to the concentrations of the key chemical species dissolved in water, following the in-

jection of extra gaseous C02. This model includes no dependence of the concentrations

on position, but assumes everything is always well-mixed. The results from this model

can be used to help predict the long-term impact on the atmosphere and oceans of the

additional C02, once everything is well-mixed and equilibrium is reached. In the liter-

ature the mass action law is taken as being an accurate way of describing each of the

individual principal chemical reactions that occur as a result of C02 dissolving into wa-
"ter, and the model is formulated by applying this law to the complete set of principal

reactions.

The solutions to this model (the distributions of the different dissolved species with

time) can be found numerically for any initial condition and set of parameter values.
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The method of matched asymptotic expansions was used to obtain expressions for the

leading-order behaviour of the different species as they go to their new equilibria over

six different timescales, following the injection of extra gaseous C02, as functions of

the initial condition of the system, the parameters, and time. Leading-order expres-

sions which give the new equilibrium of the system as functions of the initial condition

and the parameters were also obtained. These leading-order expressions all show ex-

cellent agreement with the numerical solutions to the model, which is because the rate

constants and initial concentrations vary over many orders of magnitude. Due to the

ubiquity of C02 reacting with water, what happens when this reaction takes place has

been studied for over a century, but, to the best of our knowledge, this asymptotic

approach has not been seen in the literature, and it is also unusual to see so many re-

actions handled at once in an analytic approach. This analysis therefore produces new

evolution and equilibrium expressions that should be of practical utility, and which

complement computational models that are used widely in geophysics and geochem-

istry.

Up to half of all the anthropogenic C02 emissions to the atmosphere end up dissolving

into the oceans, rivers and lakes, and this model predicts the impact on the chemi-

cal compositions of these ecosystems (including the change in pH and availability of

carbonate ions), for a given quantity of new C02' The model predicts that hydrogen in-

creases and carbonate ions decrease (which matches what has been observed), and the

new equilibrium concentrations it predicts agree with the Bjerrum plot corresponding

to the new equilibrium. Rather counterintuitively, this model also predicts that there is

a decrease in the concentration of dissolved calcium carbonate as a result of the addi-

tional C02; some of the calcium carbonate already dissolved in the water is caused to

split up into its constituent elements by the injection of extra C02. This increases the

amount of dissolved calcium.

These results can also be used within models of carbon sequestration. Reactive trans-

port models of CO2 dissolution and convection that include both complex modelling

of the chemical reactions and complex modelling of the chemical transport are cur-

rently rare. Such models would be able to include all these reactions by identifying

the time scales over which the transport processes occur, and then, for the reactions

faster than this, to specify the local equilibrium using the equilibrium expressions ob-
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tained by this asymptotic analysis, and for the reactions slower than this, by using the

time-dependent evolution expressions obtained by this asymptotic analysis.

In Chapter 3 we considered the pore-scale behaviour of C02 injected into a saline

aquifer. Injected C02 forms a spreading drop in an aquifer's pore space. Being lighter

than the resident water, the C02 migrates upwards through the pore spaces until it

reaches an impermeable layer, and then spreads out laterally underneath this overly-

ing caprock. C02 dissolves from the ends of the drop into the water and is transported

away from the drop, enabling more C02 to dissolve, and causing changes in the chem-

ical composition of the water in front of the drop as it reacts with the other species

in the water. The whole of this problem includes many complex interactions, and we

investigated two particular subsets in detail.

First of all we analysed a two-dimensional partial differential equation model for the far

field steady-state distribution of any single species released from a spreading drop into

a long thin pore filled with water, accounting for advection, Taylor dispersion, diffu-

sion, and a chemical sink. The model included a weak net flux through the channel, less

than the flow by a factor of O(e), where e is the ratio of film width to channel radius. A

long-wave approximation was employed, and the concentrations were averaged across

the channel cross-section, and this turned the model into a one-dimensional ordinary

differential equation model for the leading-order behaviour of the species. This pro-

vided the length scale over which the species reaches equilibrium, and the distribution

of the species to that equilibrium. The equilibrium length scale is dependent on the rel-

ative strengths of advection, diffusion and reaction, measured through the dimension-

less Peclet and Damkohler numbers (the ratios of advection to diffusion and reaction

to advection, respectively), valid when Da < 1/Pe. There were found to be different

dominant balances between different subsets of the four effects in different regions of

Pe-Da parameter space, enabling the expression for the length scale to be simplified in

these different cases.

For a fixed ratio of film width (between drop and pore walls) to channel radius, the

length scale over which the dissolved species spreads out is minimised if the Peeler

number is 0(1) (i.e, advection and diffusion are equally important), and increases

as the Peclet number increases, due to Taylor dispersion. If minimising the distance

through an aquifer pore over which C02 spreads out is desirable, this model therefore
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suggests that the C02 should be injected in such a way as to make the speed of spread

of the C02 drop through the pore space as close as possible to the speed at which the

C02 that dissolves from the drop into the water in the pore space will diffuse through

the water. The speed at which the C02 drop spreads through a given pore space can

be controlled, for example, by changing the speed and pressure at which it is injected,

whether it is injected together with water, and whether the C02 is free to spread in all

directions.

The second pore-scale model we examined comprised one of these cases with full re-

active coupling between the different chemical species. We considered the case when

the speed of the spread of the drop through the pore space (measured by the Peclet

number) is small, as this is one of the more straightforward cases to consider when

reactive coupling is included. This gave a model that includes axial diffusion and fully

coupled chemical reaction. To examine the effects on the concentrations of the differ-

ent dissolved species in the vicinity of the drop, we considered a number of simplified

versions of the model, including one which produces a finite maximum distance for

the dissolved CO2 to spread out in front of the spreading drop. The solutions indi-

cated that the dissolved carbonic species largely revert to their far field equilibrium

concentrations within a distance in front of the drop approximately equal to the chan-

nel radius. The effect on the calcium's concentration is much smaller, and occurs over

a longer distance in front of the drop. Carbonic acid, hydrogen and calcium all experi-

ence drops in their concentrations in the region next to the C02 drop, with the carbonic

acid dropping to virtually zero.

The simplifications that were included in the model included setting the flux of C02

from the tip of the drop into the water equal to zero, and the interface between drop and

water to be flat. The next steps with these submodels would be to examine whether the

predictions outlined in the paragraph above still hold true for models that do not make

some of these simplifications. We anticipate that many of the features that were found

in our solutions will be preserved when these ~omplexities are included. Other features

such as density-driven convection, alternative pore space structures, additional chem-

ical reactions, and alternative parameter values and initial conditions in the aquifer,

could also be included in these submodels ofCCS. The dependence of the concentra-

tion distributions on time could also be examined.
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Finally, we adapted the model formulated in Chapter 2 that describes the temporal be-

haviour of species dissolved in water, following an injection of extra C02, to make it

applicable to experiments recently carried out at the University of Nottingham. The ex-

periments featured gaseous C02 entering a water/limestone mixture, dissolving very

quickly into this mixture, rising up through the mixture, while reacting with the water

and species dissolved in the water, before entering a top chamber. The model included

no dependence of concentrations on position in the water /limestone mixture (so this

solution was always well-mixed), and was adapted to model this situation by includ-

ing an expression for the behaviour of the C02 in the top chamber, and by making the

behaviour of dissolved C02 dependant on the volumes of the water /limestone mixture

and the top chamber. The rate of change of dissolved C02 will depend on these relative

volumes, as this affects how many C02 molecules are available to react in the water.

Similarly to the original temporal model, this model predicts that the injection of C02

results in a reduction in the mixture's concentration of CaC03, and an increase in the

concentration of calcium, and the experimental results confirm these model predic-

tions. However, the observed changes are much bigger than the model predicts. The

model also predicts that the pH will continue to decrease throughout the 96 hours that

gaseous C02 was pumped in, but the observations indicate that a plateau was reached

after just a few hours. There is therefore probably a buffer within the water/limestone

mix that is preventing the pH from decreasing further. There is therefore clear room

for improvement in this modelling.
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