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The biochemical genetics of two natural populations of
house sparrows, Passer domesticus, at sites 20km apart in
Nottinghamshire, England, were investigated. Seven
polymorphic protein loci were sampled non-destructively by
taking blood samples from over 1500 individually marked
birds. A detailed investigation of the genetics of these
loci was conducted for 124 clutChes containing 357 nestlings
where the parents were also sampled. Segregations at four
loci (6PGO, PEP02, PEP03 and lORe) agreed with a simple
Mendelian model of codominant inheritance. One locus (EST2)
contained null alleles. Two loci (PEP03 and GP1) showed
segregation distortion in all sex, site and year classes.
This distortion was not attributable to the
misinterpretation of gel patterns ~ possible causes involving
the operation of natural selection were discussed. Linkage
analyses were conducted, and no significant evidence was
obtained for linkage between any combination of loci.

Of the nestling genotypes, 12.9% were interpreted as
being genetically incompatible with those of their parents.
Exclusion probabilities were calculated as 43-51% for
nonpaternity and 59-67% for nonparentage. The applicability
of these estimated probabilities was tested by the random
reassortment and comparison of observed parental genotypes
among observed sibship genotypes. Significantly fewer
nestlings were excluded in these simulations than expected
from calculated exclusion probabilities, though the
distribution of multiple mismatches did not differ from
expectation. A deficiency of multiple mismatches was found
in the field data, implying the occurrence of er'ror s: the
possible sources of error were considered. The most
parsimonious interpretation of those mismatches that did not
appear to be due to errors was that they resulted from a
rate of nonpaternity of about 6%. No heterogeneity in the
rate of mismatches was observed within or among breeding
seasons or sites.

Genotype and allele frequencies were presented for each

vi



locus in each age, sex and sampling year class at each study
site. The samples were not found to depart from Hardy
Weinberg equilibrium, and there was no evidence for
significant inbreeding within sites. There were no
differences in allelic distributions between the sexes or
among years for adults within the populations. No
differences were found among age groups or nestling year
classes when allowance was made for sib correlations.
Heterozygosities were higher at Brackerihurst than at Sutton
Bonington for most loci, and the overall difference was
significant. There was a particularly large difference in
allele frequencies between nestlings in each population for
GPI. Digenic gametic disequilibria were investigated.

A detailed analysis of the mating types was made. No
evidence was obtained for any departure from random mating
at the protein loci. There was a significant tendency
amongst the loci and samples for the inbreeding coefficients
of the successful breeders to be negative. Significant
assortative mating was found with respect to weight and
tail-length in one population.
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rnAP1'ER 1

1.1 General Introducticn

Ecological genetics is the study of genetic processes in

natural populations of organisms. The quest is for an understanding

of the forces moulding the genetic constitution of natural

populations. Such an understanding is of obvious importance to the

study of the process of evolution. The focus of ecological genetics

is, however, on evolutionary phenomena and not necessarily on

evolutionary progression (Ford 1975).

A major feature of the genetic makeup of interbreeding

populations is the genetic variability found within those

populations. Ecological genetic studies have been aimed
particularly at understanding this variability. All genetic

variability is ultimately encoded as differences in the DNA of

individuals. vlhilst it is now feasible to identify genetic
differences among organisms within a population by the direct

-~characterisation of their DNA (evq, Kan and Dozy 1980), almost all

ecological genetic studies have been concerned with phenotypic

variation that has a genetic component.

Electrophoretically detected variants of soluble proteins are

one class of phenotypic variation, and are generally associated with

differences at individual genomic loci. This thesis is particularly

concerned with such variation in populations of the house sparrow,

Passer domesticus. Some consideration is also made of metrical

variation, believed to be under polygenic control. The genetic

variability is itself used in investigations regarding the mating

system. A detailed knowledge of mating and population structure is
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fundamental to an understanding of genetic processes in natural

populations.

1.2 Studies of Protein Po1}'IID!Ii1isms
Gel electrophoresis allows the separation of soluble protein

molecules that differ in size, shape or charge. Such proteins

migrate through a gel at different rates when an electric current is

applied; the rate of migration depends upon the voltage applied

across the gel, the concentration of the gel substrate, the pH and

the ionic concentration of the gel buffer. At the end of the

electrophoretic run the proteins are visualised as bands, either by

direct staining or, in the case of enzymes, through staining

reactions designed to produce a detectable product. Enzyme variants

are described as isozymes (or allozymes), and their banding patterns
as zymograms.

A mutation at a structural protein locus (such as one coding

for an enzyme) may result in the substitution of an amino acid which

in turn may result in a change in the shape or charge of the

protein. Thus, many variants at soluble protein loci are detectable

electrophoretically.

Paper electrophoresis techniques allowed the study of protein

variation of egg albumins and haemoglobins as early as 1938

(Landsteiner et aL 1938). It was not until the advent of starch

gel electrophoresis in the 1950s that such studies started to become

commonplace (e.g. Lush 1961, t1ueller et aL 1962). Throughout this

period all such variation was regarded by investigators as likely to

be adaptive. Consequently much of the early effort was directed

towards detecting potential economically important fitness

differences among protein phenotypes in domestic animal breeds and
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many correlations with a variety of components of fitness were

reported (e.g. Horton et aL 1965, Fowle et aL 1967).

Twoextreme views concerning the degree of genetic variation an

natural populations were current at the time. The 'classical' view

as it became known (Dobzhansky 1955), propounded particularly by

Huller (1962), argued that genetic variation would be extremely

limited. Newmutants would either be selectively disadvantageous

and be quickly eliminated, never having exceeded a low frequency

(purifying selection), or else advantageous, and quickly driven by

natural selection to fixation (directional selection). The

alternative hypothesis (a.q, Wallace 1958) predicted that almost

all loci in an individual would be heterozygous; hence there would

be immense variability with many alleles at every locus. This

became known as the 'balance' view, following Dobzhansky's

proposition that most polymorphisms were maintained by balancing

selective forces (Dobzhansky 1955). The argument became less

abstract when electrophoretic techniques were applied to the study

of a large number of enzyme loci in Drosophila pseudoobscura (Hubby

& I..ewontin1966) and in our own species (Harris 1966).

These and the many later studies demonstrated that the

estimated level of heterozygosity (the proportion of an individual's

loci in the heterozygous condition) for soluble protein loci was

typically of the order of 10%. This was an immensely greater

proportion than could be accounted for under the classical

hypothesis. The heterozygosity estimates would themselves be

considerably less than the true level of heterozygosity, as only

about 30% of amino acid substitutions are expected to be
.

electrophoretically detectable. Hhether the studied loci are truly

representative of the genomeas a whole remains unknown. Consistent
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differences among the different species studied for the

heterozygosity of different classes of solUble proteins (Gillespie

and Langley 1980, O'Brien et ale 1980) show that different .Ieve.Ls of

heterozygosity are attainable. Some workers have used O'Farrell's

(1975) two-dimensional gelling technique in order to greatly

increase the number of loci surveyed, and thereby test the

generality of extrapolations made from enzyme studies.

The interpretation of these data remains controversial:

studies in man, Drosophila, pigeons, and Mu s reported that

heterozygosity in the larger samples of loci was significantly less

(H .:::0.02 to 0.04) than in enzyme studies (Walton et al. 1979, Leigh

Brown and Langley 1979, Schenker 1979, Racine and Langley 1980).

t1cLellan et al. (1983) have, however, argued that 2-D

electrophoresis is less sensitive to the detection of substitutions

than I-D electrophoresis, and that this will account, in part at

least, for the suggested differences in heterozygosity between

enzymes and other proteins.
\Vhatever the exact level of variability, it is certainly

substantially greater than could satisfactorily be explained by the

traditional view of balancing selection due principally to

heterozygote advantage. Kimura and Crow (1964) showed that the

expected mean equilibrium level of heterozygosity (g) at loci

subject to mutation and random genetic drift, in the absence of

selection, is given by the relationship:

where ~ is the effective population size and v is the mutation rate
per locus per generation. This ultimately led to the proposal of

neutral theory (see Kimura 1983), asserting that the great majority

of evolutionary changes at the molecular level, such as those
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producing enzyme variants, were not subject to Darwinian natural

selection. Selection would still operate on deleterious or

advantageous mutants in the same manner as envisaged by the

classical theory. Hence neutralism came to be described as the

'neoclassical' hypothesis (Lewontin 1974). Kimura's suggestions

were supported by King and Jukes (1969) who sensationalized the

debate by asserting that most evolution at the molecular level was

'non-Darwinian'. As pointed out by Grant (1977), however, Darwin

did not assert that all phenotypic variability would necessarily be

subject to natural selection (Darwin 1859).

Thus the discovery of large amounts of genetic variation did

not resolve the original debate concerning the nature of selective

forces acting at the molecular level: in this sense the 'new'

debate, the neutralism-selectionism controversy, was a continuation

of the old classical-balance one. (See Lewontin 1974 and Crow 1981

for reviews).

The availability of electrophoretic techniques and their ready

applicability to population studies led to a heightening of the

debate as many more investigators collected field data. The

question of the extent to which enzyme pol,ymorphisms are maintained

by selective or else neutral stochastic forces remains unresolved.

Despite the intensity of investigation, little convincing evidence

for the imfOrtance of selection has been accunuaul.at.ed. On the other

hand, the predictions of the neutral theory are neither disproven

nor fully vindicated. For example, from Kimura and Crew's equation

(above) relating heterozygosity to effective population size and

mutation rate, a correlation is predicted between heterozygosity and

effective population size. The relative similarity of

heterozygosi ties in a wide range of organisms whose N 's must be-e
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vastly different makes such a correlation extremely unlikely.
Several mechanisms through which balancing selection might

maintain genetic polymorphisms have been proposed. These include

heterozygote advantage, as already referred to (e.g.Lewontin et al.
1978), frequency-dependent selection (e.g. Clarke and O'DonaLd 1964,

Kojima and Yarbrough 1967) forces of directional selection balanced

across sexes, age classes, space or time (e.g. Hedrick et al. 1976).

If selection is involved in the maintenance of all, or even a large

proportion, of polymorphisms, then it is clear that it cannot act

constantly and independently on all loci. Franklin and Lewontin

(1970) proposed that selection acts on coadapted gene complexes, and

predicted that widespread linkage disequilibria (gametic phase

disequilibria) would develop amongst alleles at different loci.

Almost all the data concerning linkage disequilibria in wild

populations ha~ been obtained from studies of Drosophila (e.g.

Loukas et al. 1980), and have not supported this prediction. If

selection is operating independently on such large numbers of loci,
then it must operate in a density-dependent (or threshold) fashion

-

upon many loci simultaneously (e.g.King 1967). \hlls (1978, 1980)

proposed that all variation could be maintained by a kind of

truncation selection termed 'rank-order 'selection.

Hhilst fitness differences may be observed for biochemically

detectable genotypes at a locus, it is more difficult to prove that

selection is acting directly on that locus, and not on one in

linkage disequilibrium with it (Clarke 1975). The sickle-cell

haemoglobin polymorphism (Allison 1964) is perhaps the only well

understood example of the direct selective maintenance of a

polymorphism. This polymorphism is maintained by heterozygote

advantage associated with resistance to malaria. There is strong,
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but less conclusive, evidence for the direct selective maintenance

of other polyrnorphisms, such as those others of haemoglobin and G6PD

associated with malaria resistance in humans (see wills 1980), and

the warfarin resistance polymorphism in rats, Rattus norvegicus

(Bishop, Hartley and Partridge 1977). Heterosis has also been
implicated in the maintenance of these polymorphisms.

Clarke (1975) emphasized the importance of knowing the

physiological role of allozyrnes to an understanding of the possible

selective maintenance of enzyme polymorphisms. Koehn et al. (1983)

have recently reviewed those cases where such an understanding

appears to be emerging, but consider that none can as yet be

regarded as definitive. They include studies of alcohol

dehydrogenase (ADH), (X-amylase, esterase-6, (X-glycerophosphate

dehydrogenase and glucose-6-phosphate dehydrogenase/6-

phosphogluconate dehydrogenase polymorphisms in Drosophila, the

lactate dehydrogenase polymorphism in the teleost fish Fundulus

heteroclitus, a glutamate-pyruvate transaminase polymorphism in the
intertidal copepod Tigriopus californicus, and the aminopeptidase 1.

polymorphism in r1ytilus edulis. In all these cases activity

differences (due to concentration or catalytic activity) have been

found among allozymes, together with strong laboratory evidence of

fitness differences and/or field evidence for the action of natural

selection upon genotypes. For example, the allozyme produced by the

Drosophila melanogaster ADHF/F genotype exhibits greater activity

than that of ADHS/S (Day et al. 1974, Zera et al. 1983). ADH allele

frequencies in the wild vary clinally in a similar way on different

continents, and there is strong evidence that they are maintained by

selective environmental gradients (Oakeshott et al. 1982). Hhether

the activity differences are due to differences in the concentration
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or else the kinetic properties of the allozymes remains unresolved

(Koehn et aL 1983), as does the exact physiological role (Van

Delden 1982) of ADH.

The detailed biochemical studies of these and other

polymorphisms were stimulated by the observation of patterns of

variation in nature that provided circumstantial evidence of natural

selection. It is notable that the most biochemically advanced

studies all refer to poikilotherms. The possibilities for

environmental selection, particularly with respect to temperature-

dependent activity differences of allozymes, would seem to be much

greater in poikilotherms than homeotherms. Hhilst heterozygosity is

generally higher in invertebrate animals than in vertebrates, it is

not consistently so. Further, the metabolic activity of homeotherms

is very dependent upon environmental temperature, and many species

undergo hypothermy or hyperthermy (Kendeigh et al. 1977).

Hany potential examples of selection acting on

electrophoretically detected protein polymorphisms have been

reported in vertebrates. Host of these data come from studies of

small mammals and birds. In particular, there is considerable

evidence for changes of allele frequency and heterozygosity

associated with population cycling in microtine rodents (reviewed by

Gaines 1977). These data are compatible with Chitty's (1967)

hypothesis that population density changes are due to changes in

gene frequency, but direct evidence for such a relationship is

lacking. Survival patterns at a number of loci provide indirect

support for the operation of natural selection (e.g. Birdsall 1974,

Garten 1977) but the data lack repeatability among studies with

respect to the effects upon alleles and loci among locations and

species (e.g. Tamarin and Krebs 1969).
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Several population studies of biochemical variants in birds

have also provided some evidence of the operation of natural

selection. From studies of laboratory populations, the maintenance

of the transferrin (homologous to egg conalbumin) polymorphism in

the pigeon Columba Ii via and ring-necked pheasant Phasianus

colchicus has been attributed to heterozygote advantage accruing

from greater resistance to infection of heterozygote females I eggs

(Frelinger 1971, 1972, 1973, Frelinger and Crow 1973, Lucotte and

Kaminski 1976).

Wild birds are particularly amenable to studies of behaviour

and reproductive biology and several ecological genetic projects

have therefore focussed on comparisons of behaviour and reproductive

success among biochemical genotypes. Associations with population

density have been reported for the heterozygosity of the ~ locus in

the blue grouse Dendragopus obscurus (Redfield 1973, 1974, Zwickel

et al. 1977) and an egg albumen locus in red grouse Lagopus ~

scoticus (Henderson 1976, 1977). Baker and Fox (1978) found that

dominant individuals in flocks of dark-eyed juncos Junco hyemalis

were usually heterozygous for L-Ieucylglycylglycine peptidase, and

dominance, which was associated with larger size, was an important

component of survival during food restriction. An effect of

esterase genotype upon laying date was found in swans, CygnUS alar,

together with a suggestion of higher pbductivity for esterase and

lactate dehydrogenase heterozygotes (Bacon 1979, Birkhead, Bacon and

Walter 1983). Evans (1980) reported that breeding success and

nestling survival in European starlings, Sturnus vulgaris, was

higher for an esterase homozygote genotype, although the clutch size

was lower. The results of these studies suggest that ecological

genetic studies of biochemical and polymorphisms in birds may be

9



particularly rewarding.

A few of these studies included the collection of data

concerning families. Such data is potentially the most valuable for

evaluating the role of different components of any selection that is

operating, such as gametic, fecundity or sexual selection. Further,

it allows the elucidation of other nonrandom processes of importance

to population structure, such as the mating system, inbreeding and

assortative mating. The value of family data has been argued

forcibly by Christiansen and Frydenburg (1976). Their own data

concerning the eelpout Zoarces viviparus was restricted to mother-

offspring combinations, and the need to derive paternal information

by inference required elaborate statistical models. \fuen paternal

data are also available the analysis is much simpler. It is

therefore remarkable how relatively few studies have sought family
data.

Protein polymorphisms have been used in many studies of the

genetic structure of natural populations by employing \lright IS F-

statistics (see Wright 1979). These studies have in most cases

taken the statistical models of neutral theory as their null

hypotheses. These hypotheses have not in general been falsified,

but hypotheses concerning other possible modes for the maintenance

of genetic variation have not been falsified either.

The genetic structure of bird populations, as compared with

most others, has had three extra elements of interest. Firstly, the

ability to obtain good ecological data concerning standard

population parameters, particularly through the use of ringing

studies, allows an independent test of stochastic genetic models

(see Section 1.4). Secondly, historical information concerning

colonisations and introductions provides an independent timescale

10



against which the predictions of stochastic theory can again be

tested (Parkin and Cole 1984b, Parkin 1984). Thirdly, hypotheses

can be tested concerning the genetic consequences of the role of

bird song in mate choice (e.g.Nottebohm and Selander 1972, Baker et

al. 1981, Baker 1983, Zink and Barrowclough 1984, Baker et al.

1984). Host studies have been concerned with the genetic variation

found over large geographic areas: this thesis will concentrate on

the variation found within populations.

The occurrence of particular mating systems in different taxa

as assessed by direct observation of behaviour has been well

documented (e.g. Hittenberger 1979, 1981), particularly in birds

(e.g.Oring 1982) but there has been very little quantification of

the proportion of copulations occurring between available

individuals of one sex and a particular individual of the other sex.

Obviously, even if all copulations were observed, they could not be
-

expected to result in an equal rate of fertilization.

Consequently, behavioural observations may not be very informative

concerning the more important consequence of mating behaviour Le.

the relative genetic contribution made by each individual to

subsequent generations. This kind of quantitative data will

ultimately be required to test the adaptive value of different

behaviour patterns, particularly where there are marked differences

in the behaviour of individuals within populations. Even where the

behaviour of individuals suggests that they are monogamous, the

reproductive exclusivity of the relationship has only rarely been

tested. Also, as pointed out by Halliday (1983) in a review of

11



studies of mate choice, data on paternity have been obtained only

rarely, and 'may be of great importance in providing conclusive

evidence' of mate choice'.

The occurrence of intraspecific brood parasitism (the
deposi ting of eggs or offspring into the brood of a non-parental

adult) has also been receiving more attention recently (e.q, Yom-Tov

1980b). Its detection and quantification involves similar

difficulties to those encountered with mating systems. The genetic

analysis of putative parent-offspring combinations is also

potentially informative regarding this behaviour. If any

intraspecific brood parasitism or else cuckoldry occurs then it is

desirable, as far as possible, to detect those cases to allow their

elimination from genetic analyses of families.

1.3.1 Parentage Analysis Using Genetic ~1arkers

The genetic analysis of families has been used, for example, to

exclude or ascribe parentage, to determine the mating system, to

detect intraspecific brood parasitism, and to investigate sperm

competition (as defined by Parker 1970). Any mendelian genetic

marker is potentially informative, and those used include

morphological, chromosomal, antigenic and enzyme polymorphisms.

For example, Mineau and Cooke (1979) were able to detect

intraspecific brood parasitism and extrapair fertilizations

(fertilizations occurring between a member of a monogamous pair and

a non-mate) in a wild population of Lesser Snow Geese, Anser c.

caerulescens, by the appearance of offspring in the clutches of

adults with genetically incompatible plumage phenotypes. Plumage

varieties have also been used in captive mallards (Anser

platyrhynchus) to show that forced copulations (or 'rape'by males

12



other than mates) sometimes result in successful fertilization

(Burns, Cheng and McKinney 1980), and also to successfully

investigate sperm competition (Cheng, Burns and ~1cKinney 1983). Eye

colour mutants have been used to demonstrate sperm displacement in

laboratory-kept Drosophila pseudoobscura (Pruzan-Hotchkiss, Ejianne

and Faro 1981, Levine 1982), and body colour mutants have provided

data concerning,non-random sperm usage and the number of males

successfully mating with each female in wild populations of the

fish, Xiphophorous maculatus (Borowsky and Kallman 1976). An

unusual piece of genetic evidence suggesting extrapair copulations

leading to multiple paternity was obtained when two successive

clutches produced by a pair consisting of a female tree sparrow

Passer montanus and a male house sparrow Passer domesticus each

contained both hybrid and apparently true tree sparrow offspring

(Cheke 1969).

In wild populations generally, suitable morphological

polymorphisms are rare. Consequently, chromosomal and biochemical
polymorphisms have usually been used. Chromosomal polymorphisms in

-

the offspring of wild caught inseminated Drosophila pseudoobscra

have revealed the frequent occurrence of multiple mating (Anderson

1974, Levine 1982). By using enzyme polymorphisms, mUltiple

fertilization in wild female animals has also been demonstrated in

Peromyscus maniculatus (Birdsall and Nash 1973, data reanalyzed by

Merritt and ~lu 1975), Drosophila melanogaster (Milkman and Zeitler

1974), the isopod Porcellio scaber (Sassaman 1978, cf. Hilson 1981),

the snail Cepaea nemoralis (Murray 1964, cf. Hilson 1981), Belding's

Ground Squirrel, Spermophilus beldingi (Hanken and Sherman 1981) the

polygynous bat Phyllostomus hastatus (HcCracken and Bradbury 1977)

and the social wasp Polistes metricus (Metcalf and ~fuitt 1977).

13



Evidence of multiple inseminations has similarly been obtained in

captive populations, including populations of Apis mellifera (Page

and Hetcalf 1982). In the studies on Belding's Ground Squirrel and

Porcellio scaber, sperm mixing was also demonstrated, whilst

partitioning of sperm usage occurred in Apis mellifera and sperm

competition, detected as a difference in rates of fertilization

amongst matings, appeared to occur in Polistes metricus.

Experiments on sperm competition in Drosophila melanogaster have

suggested that the marker locus used, EST6, may itself have a sperm

displacement-release effect (Gilbert, Richmond and Sheehan 1982).

Parentage analysis in captive populations has revealed that

dominant males do not sire all progeny in pigtailed monkey Macaca

nemestrina and rhesus monkey M. mulatta social groups (Simons and

Crawford 1~69, Duvall, Bernstein and Gordon 1976, Smith 1980),

whereas dominant males in Mus musculus colonies appear to sire

offspring exclusively (Singleton and Hay 1983). Similarly, the

oldfield mouse Peromyscus polionotus has been shown to have an

essentially monogamous mating system where extrapair fertilizations
account for about 10% of offspring (Foltz 1981~). Such a high

degree of monogamy is believed to be atypical amongst mammai:~pecies

(Kleiman 1977).
Many of these studies rely on methods of parentage analysis

developed for legal and forensic purposes in humans and domestic

animals. An extensive literature has grown concerning the

calculation of probabilities of parentage exclusion (e.g. Salmon and

Brocteur 1978, Gundel and Reetz 1981, Foltz 1981a), the

probabilities connected with parentage attribution (Hajumder and Nei

1983) and the reliability of the techniques used (Valentin 1980,

Chakraborty and Ryman 1981, Rothman, Neel and Hoppe 1981,
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Chakraborty and Ferrel 1982, lathrop et ale 1983).

Early paternity investigations using blood groups and enzymes

on large samples of cattle revealed frequent errors in pedigree

records in Britain (Jamieson 1965), and Poland (Ormian 1979).

Similar studies on human families have revealed genetic marker

mismatches between children and at least one parent, the rate of

families containing mismatches ranging from zero for a sample of

hundreds of Danish families (cited by Scharfetter 1978), 1.5%and

10%of children respectively representing 5.2%and 39%of families

in separate samples from Michigan, U.S.A. (Schacht and Gershowitz

1961), 2.3%of 2839 tested Hawaiian children (Ashton 1980), 1 of 21

pairs of twins tested in the U.K. (cited by Scharfetter 1978), to

13%of 38 Italian families (Hirsch and Vetta 1978) and 30%of

children in a sample of ''between 200 and 300" womenfrom Southeast

England (Phillip 1973). It must be emphasized that these figures

may err considerably from the true rate of nonparentage. They have

not necessarily been corrected for the non-detection of some cases,

which will lead to underestimation, or for a variety of potential
~

sources of error which will lead to overestimation. These factors

will be discussed further in Chapter 4.

The house sparrow, Passer domesticus, is now probably the

world's most geographically widespread terrestrial bird, occurring

endemically in North Africa, and much of Eurasia (Vaurie 1956), and

through introductions by man in North and South America,

Australasia, South East Asia, South and East Africa and most

inhabited islands (Long 1981). Indeed it continues to enlarge its

range in manyareas, and recently crossed the equator on the western

15



coast of South America, while its northward movementalong both

coasts continues rapidly (Smith 1973, 1980). It seems to be an

obligate commensal, and appears to have originated in its present

form either in the regions of early agriculture in the Nile Valley,

North Africa (Swnmers-Smith1963), or in the Near East (Johnston and

Klitz 1977). The precise taxonomicposition of the species remains

controversial, but it is currently placed with its congenerics in

the family Passeridae (Old Horld Sparrows), a connecting link

between Fringillidae (the true finches) and Ploceidae (weaverbirds)

(reviewed by Swnmers-Smith1984). TheNorthAmericansparrows, the

Emberizidae, are moredistant.

Tegetmeier (1899) and Kendeigh (in Kendeigh 1973) have each

described the house sparrow as the 'avian rat', the former because

of its pest status and the latter for its value as an experimental

animal. The pattern of successful colonisation and expansion makes

the analogy even more apposite.

The house sparrow is a granivore, and in most parts of its

range its population peaks at the time when cereal crops are

ripening. Large flocks assemble in grain fields, and are

consequently of someeconomic importance (Kalmbach1940, Dawson

1970). Damageto fruit crops has also been reported (e.g. Samuel

1949, Dawson and Bull 1970). Further, the species has been

identified as a vector of pathogens (e.g. Gustafson and Moses1953,

Sodhi and Sing 1970, Hubalek1977), including the occasionally fatal

Chagas' disease in South America (Smith 1973). For these reasons,

the species generally has official pest status.

Housesparrows have been the subject of intensive experimental

and observational study, particularly with regard to their

physiology, energetics, anatomyand ecology - perhaps more than any
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other wild bird. Someof the ecological aspects have been reviewed

in Summers-Smith (1963) and Pinowski and Kendeigh (1977). In

particular, many data have been gathered concerning the species'

breeding ecology in Britain (e.g. Summers-Smith 1963, Seel 1968~,

1968~, 1969, 1970, Dawson 1972, Schifferli 1976), North America

(e.q, \~eaver 1942, 1943, North 1968, Hill 1970, t1itchell et al. 1973,--
Sappington 1975, Hurphy 197~, 1978~, Anderson 1978, 1979, lowther

1979a) and elsewhere (e.g. Naik and Mistry 1970, Novotny 1970,

r1ackowicz et al. 1970, Simwat 1977, Pinowski and t-1yrcha1977). In

commonwith other studies of the reproductive ecology of wild birds,

these studies were in most cases aimed at understanding the

proximate and ultimate factors affecting reproduction. For the most

part these factors remain to be elucidated.

Nesting activity in temperate latitudes begins early in the

year with the occupation of suitable nesting sites (generally

cavities in buildings) by males: some sites will still be occupied

from the previous season (after being used as roosts during winter)

by pairs or individuals of either sex (Summers-Smith 1963).

Sappington (1975) reported that breeding adults surviving to a

subsequent year generally (>90%)moved to a new nest site, but this

maywell have been due to the removal of nests by farmworkers at his

study sites during each winter. Summers-Smith found that most pa.irs

were formed following the replacement of a lost mate, and concluded

that most of the suitable nesting sites in his study areas were in

continuous occupation.

Nestboxes frequently contain nesting material during the

winter, and males usually insert somematerial at the start of their

occupation. Nestbuilding proper mostly takes place in the days

prior to the first clutch. Complete nests are often built in as
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little as 3 days, and egg-laying may begin before completion of a

nest (personal observation). The date of the start of egg-laying is

negatively correlated with latitude (Dyer et al. 1977)~ and the

proximate cues seem to include daily temperature (Seel 1968b) and

photoperiod (e.g. \Hll 1970 but cf. Hurphy 1978). Clutch size is

positively correlated with latitude (Dyer et al. 1977). In Britain,

the modal clutch size is 4, and the modal number of clutches is 2.

The first clutCh is generally begun between the middle of April and

the start of May, and additional clutches are begun almost as soon

as the previous brood fledges (modal incubation period = 12 days,

modal nestling period = 18 days). Nesting activity declines

rapidly in July, and the last clutches of the year are begun at the

beginning of August.

Where buildings containing suitable nest-sites (usually
nestboxes in the studies referred to above) are isolated, the

breeding population may be considered as forming a series of

colonies. Summers-Smith (1954, 1963) reported that the

distribution of nests in his study areas (urban and suburban) was
not continuous although that of apparently suitable buildings was,

and interpreted the pattern as reflecting colonial behaviour.

Dawson (1972) found no evidence of a colonial pattern, but was able

to show that some locations, particularly those close to farmyards,

were preferred. Dawson also found that nesting success (the number

of fledglings produced per nest per annum) was lower at locations

further from farmyards (detectable at distances exceeding lOOm).

MitChell et al. (1973) also reported very significant differences in

breeding success between habitats. Farmyards containing livestock

provide good feeding sites for sparrows. This is due to the

spillage of animal feed, the availability of open feeding troughs
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and storage bins and also the preponderance of insects, required for

feeding young nestlings, that occur in the vicinity of livestock.

Lowther· (1979) found a positive relationship between·breeding

success and the numbers of livestock present at his study farms, and
attributed this to the availability of dung fauna.

SChifferli (1978) demonstrated experimentally, by the addition

of an extra egg to complete clutches of various sizes, that the

fledging success was highest in broods with more than the modal

number of eggs. Lack. (1947, 1968) has hypothesised that the number

of eggs should be maximised at the largest number that can be

successfully fledged. That the number laid would appear to be less

than this - an observation also made in some other species of

nidicolous passerine birds (e.g. Perrins and Moss 1975) - has been

attributed to energetic limitations upon the number of eggs that a

female can lay (Schifferli 1976), or factors reducing the survival

of larger broods after they have left the nest, suCh as limitations

in the ability of the parents to continue to feed them.
There have been some suggestions that older females lay earlier

and larger clutches (Seel 1968E, Dawson 1972), but in general the

factors affecting differences in clutch size and other components of

nesting success between and within females at a particular locality

are not well understood.

Both parents contribute to the care of the offspring, but the

females' direct contribution to inCUbation and feeding is

significantly greater. r1ales do not develop a full brood patCh, and

their role in incubation (restricted to diurnal periods) would

appear to consist of preventing heat loss during limited feeding

bouts by females. Most feeding of nestlings is, in general, made by

females, and the contribution of males varies enormously both during
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and among clutches (Seel 1970, Summers-Smith 1963, personal

observation). Lane females have been observed to successfully rear

someoffspring to fledging, but usually fewer than in nests with two

active parents (Summers-Smith 1963, personal Observation).

Sappington (1975) madean intensive study of helping behaviour

at his study site in the r1ississippi Valley, North America. He

found that both adults and juveniles helped with feeding at most

nests, even though they were apparently unrelated to the nest

occupants. The total proportion of feeding madeby helpers, across

all nests, was low (c. 8%), and helpers were not found to contribute

to nesting success. Suchbehaviour is interpreted as misdirected

parental care, as also hypothesized for similar behaviour in

Geospiza finches (Price et al. 1983). Sparrowshave been frequently

recorded as feeding the offspring of other species (e.g. Fitch 1949,

Hamilton 1952). There have been other studies of the house sparrow

roth in North Americaand Britain involving large numbersof colour-

markedbirds, and nonehave reported helping behaviour (Summer.rSmith

1963, North 1968). Further, helping behaviour should be observable

even wherebirds are not markedas two birds of the same sex should

occasionally appear at a nest simultaneously. During this study

helping behaviour was recorded on two occasions only, and in each

case was restricted to a few visits on a single day. Helping

behaviour on a significant scale would therefore appear to be

restricted to certain localities.

~1ostmortality (c. 50-55%) in Englandoccurs prior to fledging

and has been attributed principally to starvation (Summers-Smith

1963, Seel 1970, Dawson1972). Pre-fledging mortality shows a

density-dependent effect: percentage mortality increases with clutch

size (Seel 1970, Dyer et al. 1977). Thepopulation is not known to
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fluctuate markedly from year to year, and about 80%of all

fledglings do not survive to breed (Summers-Smith1963). For

adults, the period of maximummortality in Britain is the breeding

season. This is unusual amongpasserines, but has been also found

for the starling Sturnus vulgaris and blackbird 'furdus merula (lack

1968: p.300). Breeding house sparrows which have died are

occasionally found on nests during the breeding season (personal

observation) .

The relative importance of different causes of mortality in

different populations have not been determined, but predation by

raptors (e.g. Schmidt 1972, Yalden 1980) and car accidents (Hodson

and Snow 1965) would appear to be important in some areas.

In continental populations overwinter mortality mayexceed that

during the breeding season (Dyer et al. 1977). In a classic North

American study of a flock of house sparrows undergoing mortality

during a winter snowstorm, Bumpus(1898)hypothesized ~ posteriori

that the body size of house sparrows is subject to stabilizing

selection. The interpretation of the data has not been clear-cut,

and manyreanalyses have been performed (Harris 1911, Calhoun1947,

Grant 1972, Johnston et al. 1972, Q'Donald1973, Lande and Arnold

1983). Grant (1972) and Johnston et al. (1972) concluded that

stabilizing selection was operating in females, and directional

selection for larger size in males. The optimum female size was

considered to be that where the opposing advantages of large body

size for counteracting aggression, storing food reserves and

reducing the weight to surface area ratio were balanced by the

disadvantage of higher required food intake. Lande and Arnold

(1983) have argued that the compounding effects of directional

selection and of stabilising selection acting upon correlated
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characters led to serious overestimates by previous workers of the

strength of the selection. They concluded that stabilising

selection upon females was strong but 'barely significant'. The

results of experimental field studies have been in broad agreement

with Bumpus's observations (Rising 1972, LDwther 1977, Johnston and

Fleischer 1981, Fleischer and Johnston 1982). Parkin (1984) has

critically reviewed these and other evolutionary studies of house
sparrows.

Morphological variation in house sparrows has been extensively

studied both in introduced (Johnston and Selander 1964, 1971,

1972, 1973, Selander and Johnston 1967, Packard 1967, Lowther 1977,

Baker 1980) and endemic (Johnston 1969~, 1969£, 1972, Johnston and

Selander 1973) parts of the house sparrow's range. As with

parameters of reproduction, very significant correlations have been

found between measures of geographical location or climate with

components of size and colouration. In introduced populations this

variation agrees with Bergmann's, Allen's and Gloger's
ecogeographical rules (Hayr 1963). European populations have been

found to disagree with Bergmann's rule - more northerly populations

are smaller - but agree for Allen's and Gloger's rules (Johnston

1969, Johnston and Selander 1973). This may, however, be a

peculiarity of the Oceanic populations sampled, as the reverse trend

is found in more continental endemic populations (Pinowski and

Hyrcha 1977).
The interpopulational variability observed in introduced

populations has been attributed to evolutionary changes associated

with the colonisation process. Johnston (1973) showed that the

covariance among skeletal size variables among European populations

is predictable from North American ones, and took this as especially
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strong evidence for the action of natural selection upon a genetic

component of the size variation. It has not, however, been

demonstrated that the observed interpopulational variation in size

or reproductive parameters is truly genetic. In the wild bird

species studied to date, size variables generally showa high degree

of heritability (e.g. VanNoordwijk et al. 1980, Smith and Dhondt

1980, Garnett 1981, Boag1983), but these data apply only to size

variation within populations. Similarly high within population

heritabilities have been found for clutch size and laying dates

(e.g. Perrins and Jones 1974, Van Noordwijk et al. 1980, 1981,

Findlay and Cooke1982, 1983, Flux and Flux 1982). Environmental

differences between populations may well result in a shift in

population means (see James 1983), whilst developmentalconstraints

could account for the predictability of covariance among size

variables.

In an attempt to quantify genetic differentiation amonghouse

sparrowpopulations, Klitz (1972, 1973, cf. Johnston and Klitz 1977)

investigated protein variability in the species using starch gel

electrophoresis. Only four polymorphic loci were found, and the

level and variability was insufficient to allow firm inferences.

Later work by Manwelland Baker (1975) and Cole and Parkin (1981)

revealed a higher degree of biochemical variability. Subsequent

studies of endemic(Parkin and Cole 1984a)and introduced (Fleischer

1983, Parkin and Cole 1984£)populations have been able to use a

larger suite of more variable loci in studies of populational

differentiation. These studies have been recently reviewed by

Parkin (1984): in general they have found that the observed levels

of genetic differentiation are not inconsistent with those expected

from stochatic models of gene flow and randomgenetic drift. The
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degree of differentiation is, however, low and other potentially

important influences upon biochemical evolution in these populations
cannot be excluded.

Gene-flow between house sparrow populations both in Europe and

North America is likely to be relatively low for a bird species;

ringing studies have shown that movements tend to be limited to

those necessary for feeding, and modal dispersal distances prior to

first breeding are typically of the order of 1-2 km or even less

(Summers-Smith 1963, North 1968, Cheke 1972, Lowther 1979, Fleischer
19631983). Some annual migration is known to occur (e.q, Summers-Smith,

Broun 1972), but this appears to be largely restricted to

populations occupying areas with more hostile winters.

The house sparrow was considered to be a particularly suitable

subject for an ecological genetic study of biochemical polymorphisms

for the following reasons:

(L) The species is common and widespread.

(ii) An exceptionally large body of data concerning the species'
ecology, behaviour and physiology was available.

(iii) A large degree of electrophoretically detectable genetic

variability had already been found.

(Lv) Such a study would complement those, previous and in progress,

concerning larger scale geographic and temporal differentiation in

the house sparrow.

(v) The investigation of many specific aspects was a practical
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possibility. Individuals could be trapped, colour-marked and tissue

samples taken; access to nests, and hence families and different

age-classes, could be gained by providing nestboxesithe high

density of nesting allowed many nests to be sampled concurrently,

and a reasonably high level of fecundity was expected (Summers-Smith

1963: for England, modal number of fledglings per clutch = 3, modal

number of clutches per nest per year = 2). The animal was believed

to be large enough to allow tissue sampling to be carried out non-

destructively.

(vi) Ringing studies had shown that dispersal, either temporary or

permanent, was very limited in English sparrow populations. The

occurrence and detection of local genetic processes and

differentiation would therefore be facilitated.

(vii) The species has official pest status. Scientific interference

with pest species is more readily acceptable for ethical, economic
and public health reasons.

1.5 The Study Sites
The choice of study sites was subject to a number of practical

considerations. These included accessibility, the availability of

locations suitable for fixing large numbers of nestboxes, security

of those nestboxes, and the tolerance of people working and living

in the neighbourhood towards sparrows, mist-netting and

fieldworkers. Two sites were chosen: the Nottingham University

School of Agriculture Experimental Farm at Sutton Banington and the

Nottinghamshire County Council Agricultural College Home Farm at

Brackenhurst near Southwell. As the house sparrow in Britain can be

25



regarded as commensal with man, the local agriculture and human
demography will be briefly described.

The Sutton Bonington site is situated in the valley of the

River Soar approximately 15km SSH of central Nottingham (Ordnance

Survey grid reference SK508262), and at an elevation of about 50m.

The Brackerihurst site is situated in a more undulating area lSkm NE

of central Nottingham (grid reference SK698526), but despite being

in a relatively exposed location on a small hill, its elevation, at

around 60m, is only slightly more than Sutton Bonington's. The

locations of the two sites, and their environs, are shown in Figures

1.1 - 1.3.

The entire area containing the study sites is occupied by house

sparrows and nesting

habitation: i.e. towns,

takes place in all areas of human

villages, hamlets and farms. The

agricultural practices at both farms are fairly similar, and

typical of the region, involving a mixture of livestock, grass, and

winter and spring sown cereals. There were many more cows and

pigs, and a greater area of grass pasture, in the immediate vicinity
of the nestboxes at Brackerihurst, but there were a number of sheep

near to the Sutton Bonington site, an animal absent from the

vicinity of the Brackenhurst site. The nestboxes at both sites

were within a few hundred metres of housing, student accommodation

and gardens. Both were near to larger areas of human habitation.

The Sutton Bonington site is less than lkm from the village of

Sutton Bonington itself, and 2km from the small town of Kegworth.

Brackerihurst is lkm south of Southwell (population 5129), a slightly

larger town than Kegworth (population 2814) (Anon 1977).
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Figure 1.1

Map showing locations of study sites. cf. Figures 1.2 and 1.3.



Pigure 1.2

Extract; of Ordnance Survey map containing Brackenhurst (BR)HomeFarm
study site (circled). Spot-heights and contours are shown in metres.





The principal aims of the study were as follows:

(L) To investigate in detail the genetics of as many marker loci

as possible, without destructive sampling (Chapter 3).

(ii) To use the marker loci to investigate the possibility of

extrapair copulations and/or intraspecific brood parasitism

(Chapter 4).

(iii) To investigate in detail the distribution of alleles and

genotypes among age, year and sex classes and test for the

possible operation of nonrandom processes. The design was to

include reasonably sized samples from two populations in at
least two years (Chapter 5).

(Lv) To investigate the possibility of nonrandom forces acting on
the genotypic distribution of mate pairs (Chapter 6).
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ClIAPI'ER 2

ME'IHJIE

2.1 Field Hethods

2.1.1 Provisicn of Nestboxes

The requirements of a nestbox were that it should provide an

attractive, adequate and secure nesting environment, that it should

be easily and cheaply produced, and allow easy access for the

fieldworker. The internal dimensions were close to those used in

other studies (e.g. Dawson 1972). All the boxes used in this study

were of the same dimensions and design: it has been shown that the

breeding success of several species is affected by the size and

construction of nestboxes (Moeed and Dawson 1979, Karlsson and

Nilsson 1977). The exact design is shown and described in detail in

Figure 2.1. The boxes were fixed with a dowel perch, enabling

colour rings to be seen. All the boxes were treated annually with

creosote wood preservative.

Locations for nestboxes were selected with regard to
accessibility (using a ladder extending to 5.2m), availability of a

good vantage point for the observation of parent birds, reduced

exposure to weather, possibilities for mist-netting, and the

proximity of naturally occurring nests. The numbers of nestboxes

available and used for nesting in each season are summarised in

Table 2.1. The number of boxes used, and the number of clutch

starts in each increased during each year at each site. Site plans

and precise nestbox positions are given in Figures 2.2 and 2.3. A

typical farmyard view showing nestboxes is shown in Figure 2.5.

Host of the nestboxes provided during the first winter (1979-

1980) were placed in covered areas. A group of 24 in the cowshed
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Figure 2.1

Nest box design

The boxes were constructed from 6mm exterior grade
plywood; 19 could be made from one 120 x 240 cm sheet. The
component plywood panels were joined using fine panel pins,
together with a waterproof wood glue for fixing the main
part of the box to the back board. lSmm x lSmm ramin
beading was used to provide extra strength along the front
bottom join, and another piece positioned so as to provide
support for traps (Figure 2.4). The box lids were initially
hinged using carpet binding adhesive tape, but this was
replaced after two years by stapled strips of 40mm wide
elasticated seat webbing. The lids were held in position
by an elastic band stretChed between a nail or small screw
on each side. A 40mm length of 6mm dowel was attached
perpendicular to the front, 10mm below the entrance. The
internal dimensions are indicated.

/contd.
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Ground plan of buildings at Brackenhurst (BR) site showing positions of
nestboxes in 1982. The two parts of the site were designated 'G' and 'H'.



Eo
C\J

o

<l <q.:'
. ...,1.····
• _--y ••....

B...,
::l
Ul
...,
III
Cl)

H'
'M
'0......
'M
B
.....o

~1



at Sutton Bonington replaced boxes provided in a trial study by D.T.

Parkin and S.R. Cole during the previous year. Host boxes were put

out during the winter months December - r1arch, but occasionally
extra boxes were provided as late as the end of r1ay if a particular

part of a site was proving to be a preferred nesting area. Those

nestboxes provided for 1980 on exterior walls were used only to a

very limited extent, but more success was had with additional

exterior boxes provided in subsequent years. Hhere boxes were

placed near to naturally occurring nests the latter were, if

possible, removed. By persistent nest removal many birds were

persuaded to use a nestbox instead, but where the nests were

inaccessible the provision of nestboxes was not always productive.

No attempt was made to orientate boxes in any particular

direction, and there was no obvious effect of orientation upon

subsequent useage. Boxes less than 3m above an adjacent surface,

whether the ground or the roof of a lower building, were only rarely

used.
Old nests were removed from all nestboxes before the start of

each new nesting season. This was in part intended to restore the

available space inside the box, as new nests are often otherwise

built over old compressed material, and also to reduce the flea

content.

2.1.2 MaritoriDJ Nest:l:Xlxes

Regular visits to each nestbox, with the purpose of monitoring

the performance of individual adults and nestlings, began at the

start of April each year. The two sites were visited on alternate

days throughout the breeding season. The earlier visits in each

year were made to all boxes at maximum intervals of 4 days (usually
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Table 2.1

Nestbox availability and use at each site during the 3 years of the
study.

Year Site

SB BR

Available Used Total Available Used 'lbtal
clutch clutch
starts starts

1980 54 20 29 35 14 26
(37.0%) (40.0%)

1981 103 61 99 64 41 79
(59.2%) (64.1%)

1982 103 75 138 60 49 99
(72.8%) (81.7%)



every 2 days in 1980), but those showing no nesting activity were

subsequently checked at more irregular intervals. In 1981 and

1982, newly detected clutches were not reexamined for a further 4

days, and in all years complete clutches were checked for the

presence of hatchlings about 10 - 11 days after the completion of a

clutch. For this purpose the date of clutch completion was

calculated on the basis of one egg being laid per day (Summers-Smith

1963, Seel 1968a).

Each individual within a nest was marked on the first visit

after hatching by clipping a different claw. On this and

subsequent visits (usually made at approximate 48h intervals) all

nestlings were weighed to O.lg using a 50g Pesola spring balance.

The accuracy of the balances was checked regularly. Where

nestlings were particularly small at the time of marking the

appropriate claws were re-clipped on a later visit.

2.1.3 Sampling Adults am Parents

Adult birds were trapped regularly away from the nestboxes.

This was to allow the estimation of genetic and demographic

parameters, and, by marking all trapped adults with colour-rings

(see Section 2.1.4), enable their identification during subsequent

nesting attempts.

The trapping was achieved by the frequent use of mist nets

during spring and summerat both sites. Host of the birds caught

in this way were either feeding on animal feed supplied in troughs

in the open (at Brackenhurst) or on stored cereals and feed in open

grain bins inside a mill (at Sutton Bonington). About, one-quarter

of identified parents were originally caught by this means (Table

2.2) . Additionally, mist nets were occasionally deployed across
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Table 2.2

Trapping techniques
birds subsequently
(both sites).

used for the original capture and marking of
identified as parents of successful· clutches

Hethc:rlof
initial capture

Parents of successful clutches

Females Hales

Random mist-netting 27 43

~1ist-netting in front
of nestboxes 38 36

Total from mist-netting 65 79

Trapping in nestboxes 68 54



the fronts of open sheds containing nestboxes, thus ensuring the

inclusion amongst captures of a high proportion of parents of

clutches under study. This accounted for a further quarter of
identified parents (Table 2.2). Nets were not used in this way for
more than one hour in any particular position.

Parents were identified by observing their activities at

nestboxes, usually by using 10 x 50 binoculars or a tripod-mounted

20 x 60 telescope from the inside of a conveniently parked vehicle.

Reading colour-rings was often a time-consuming procedure, requiring

the observation of many nest-visits by each parent as sparrows'

tarsi are frequently obscured due to their squatting posture. \Yhere

a parent was not already marked, attempts were made to trap it

inside the nestbox by using a spring-loaded trap positioned just

behind the nestbox entrance (Figure 2.4). The trap design was based

on one kindly supplied by Dr. P.G.H. Evans (Oxford University). The

trap was more effective when the spring and door, which were painted

black, were disguised by nesting material such as feathers. Trapped

birds were removed from the nestbox using a net designed to enclose

both the box lid and the operator's wrist. To reduce the

possibility of desertion by parents trapped in this manner, and to

minimise any loss of data concerning nestlings irrespective of their

parents, these traps were only used, subsequent to a trial period at

the beginning of the 1980 season, at the time of ringing and

bleeding of pulli (see next section). In these circumstances a

trap was set whilst the nestlings were temporarily removed from the

nest. If trapping attempts are postponed in this way the nestlings

will be large and therefore have to be removed as they would

otherwise trigger the trap mechanism. Also, parents only

occasionally enter the nest when it contains large nestlings as most
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(a) (b)

Figure 2.4

Spr'LnqLoaderi nestbox trap. The trap was painted black to make i.t

less conspicuous. The hole diameter was laraer than the ncsthox

entrance (cf. Figure 2.1).

(a) Rear view of trap in closed position.

(b) Diaqram of trap set in nestbox. The spring trip was di.squ i s ert

with nest material (feathers and straw).



feeding and the collection of faecal sacs takes place from the perch

(Figure 2.6). The use of nestbox traps was about equally important

to the study as the use of mistnets. Relatively fewer male than

female parents were trapped in nestboxes (Table 2.2).

2.1.4 Processing Birds in the Field

The trapping, handling and ringing of birds used in this study

was carried out in accordance with the requirements of a Nature

Conservancy Council permit. The advice of the British Trust for

Ornithology (BTO),as outlined in its Ringer's Manual (Spencer,

1976), was closely followed. As wild birds in general, and house

sparrows in particular, are knownto transmit disease to humans

(e.g. salmonella: Macdonald and Brown 1974, Cornelius 1969;

encephalitis: Lord et al. 1974) hygenic precautions, particularly

with regard to hand-washingand the antiseptic protection of wounds,

were observed at all times.

All birds trapped, and all nestlings prior to fledging, were

measuredand tagged and had a blood sample taken. Nestlings were

processed between 10 and 13 days after hatching. The age and sex of

all birds was recorded wherever possible. Adults are very

obviously dimorphic for plumagepatterning and colouration, but the

sexes of nestlings and younger juveniles could not be distinguished.

This species is slightly unusual in that a full moult immediately

follows the breeding season in both adult and juvenile (first-year)

birds so that juveniles attain full adult plumage and cannot be

distinguished from freshly moulted, older birds (Svensson 1975,

Newton1966). The incompletely ossified skull of house sparrows of

up to about 200 days of age can be used as a distinguishing feature

(Svensson 1975, Nero 1951, Niles 1973) but the extra handling time
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Figure 2.5 View of farmyard buildings at Sutton Bonington,
illustrating typical nestbox positions. Six nestboxes
(arrowed) are in view.

Figure 2.6 Adult male feeding 16 day old pullus from the
perch at a Brackenhurst nestbox. The nestbox is in a covered
area.
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required for this was not considered worthwhile for the small amount

of extra information that would have been obtained.

Ini tially, juveniles resemble adult females but they can be

distinguished until their moult is complete by feather condition and

the shape of the outermost (10th) primary wing feather (Cheke 1967).

Although some discrimination between the sexes is possible earlier

(Cheke 1967, Harrison 1961), juveniles cannot be sexed reliably

until the onset of the post-juvenile moult. The small proportion

of adults and juveniles caught in late summer and autumn were

checked for stage of moult and consequently those fully moulted

birds that could not be aged «6% of all captures) were

distinguished from those known to be either less than, or else

greater than, one year old.

Hetrics

Adults and juveniles were measured for weight and wing, tail

and tarsus lengths, and nestlings were measured for weight and
tarsus length. Height was measured using a 50g Pesola balance,
interpolating to the nearest O.lg. Wing length was measured to the

nearest Imm by the method of maximum chord (Svensson 1975) by

pressing the underside of the folded right wing, flattened and

straightened by the thumb of the hand holding the bird, against a

stopped end wing rule. Tail length was determined to an accuracy

of Imm by sliding a thin rule between the tail feathers and under-

tail coverts until it came to a stop at the root of the tail

(Svensson 1975), whilst holding the tail feathers parallel against

the surface of the rule. Where the normally measured longest wing

or tail feathers were lost, damaged, or in moul.t.,this was noted and

the measurement was not used in any subsequent analysis. Tarsus
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length was measured to an accuracy of OvLrnm using a good quality

sliding vernier caliper with a thumb~perated lock release.

Three different tarsus measurements were used: TAR1,TAR2and

TAR3. TAR2was the distance from the notch at the back of the

intertarsal {mesotarsal or tibiotarsal} joint to the anterior distal

end of the lowest undivided scute. This is the measure most

commonlyused by other workers (e.g. Smith and Zack 1979). TARlwas

the distance from the nuchal notch to the lower end of the 5th scute

(counting up the middle toe) from the division of the two outermost

toes. In almost all cases this scale could be identified as the

first one immediately above the foot not to articulate when the

tarsus was viewed in lateral profile and the toes moved. TAR3was

the measurement from the nuchal notch to the lower end of the scute

immediately distal to that used to determine TAR!. TARIand TAR3

are illustrated in Figure 2.7. In 91%of cases TAR3= TAR2,but in

the remainder TARI = TAR2due to the occasional division of the

lower scute. TARIwas felt to be the most valuable measurement

since its measurement did not rely on either the apparent

variability of scale division that occurs between birds or the

posture of the foot, and it was used from the start of this study

(but see Section 6.3.4). TAR2 and TAR3 were also measured

commencing in August, 1981.

Ringing

All nestlings and adults were tagged using uniquely numbered

metal rings supplied by the British Trust for Ornithology (BTO).

Adults and juveniles were also individually marked using a unique

combination of three celluloid colour-rings (supplied by A.C. Hughes

Ltd.). All marked birds, except for 8 with one missing or deformed
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Figure 2.7

Tarsus measurements as taken with sliding vernier calipers (refer to
Section 2.1.4). The lower edges of the scales used for measurements
TARl and TAR3 are labelled ~ and!? respectively. Dorsal views of
these scales in three different individuals are included.



tarsus, carried two rings on each leg~ combinations requiring fewer

rings were not used to avoid the possibility of confusion due to

ring loss. Colour-rings were lost occasionally and so attempts to

minimise this were madein 1982by sealing themwith acetone applied

to the ring split by a fine brush. Eight colours were used: white,

mauve, red, black, light blue, yellow, orange and light green.

Ringcombinationswere recorded as a sequencegoing up the right leg

then downthe left. \lith 4 positions available for the BTOring

the 8 colours provided a potential 83 x 4 = 2048combinations, each

of which could be used on birds of both sexes. As there were many

more combinations available than required the colours which proved

to be most readily distinguishable - red, orange, yellow and white -

were used most often. No colour code was used at both sites, though

the probability of a bird migrating between the two sites is known

to be extremely low. \fuen observing colour combinations care was

taken against colours being misidentified due to poor light or

dirt on rings. For example, it was found that in poor light the

colours light green and light blue could be confused whenviewed

through the telescope~ the possibility of errors was avoided by

Checkingthat alternative colour codes had not been used.

Tissue Samples

As outlined in Chapter 1, there was a requirement to score each

individual, without harm, for a suite of genetic loci. Themost

satisfactory means of achieving this was found to be by taking a

blood sampleand subsequently analysing it electrophoretically for a

series of polymorphic protein loci (see Section 2.2). This

approachhas also been used in studies involving live birds by Bacon

(1979), \fuitehouse (1979) and Evans (1980). The use of muscle or
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feathers as a tissue source was also considered. Pectoral muscle

biopsy undertaken as by Baker and Fox (1978) and H.C.Baker (1981

and personal communication)was assessed using a group of birds kept

in the laboratory, but muscle in this species proved to be no more

useful a tissue than blood (see Section 3.1.4 and Table 3.1), and

its removal was felt to be more traumatic and less convenient.

Thoughvariability in feather proteins between species has been used

as a taxonomic tool, these proteins are remarkably monomorphic

within species (e.q, Brush 1976; Knox1980).

ApproximatelyO.Smlb'loodwas taken from the right jugular vein

of each bird as described by McClureand Cedeno(19SS). Birds have

asymmetric jugular veins and that on the right is the larger. It

was foundmost convenient to hold the bird in the left handwith its

neck between the first and second fingers and the right wing kept

folded by gentle pressure exerted by the thumbat the carpal joint.

Gentle pressure placed by the side of the thumbuponthe neck could

be used to restrict blood flow from the vein and thus makeit more

prominent. A small area of feathers and skin on the appropriate

part of the dorsal surface of the neck was wetted slightly with

ethanol and the sample taken using a 2ml disposable syringe fitted

with a 2SGx 5/8 disposable hypodermic needle. The less travel

required by the plunger of the 2ml syringe make it easier to use

than the longer Iml model. To prevent the sample from clotting the

syringe and needle were heparinised beforehand by expelling any

surplus air, taking in about OvLm L heparin solution (Weddel

Pharmaceuticals Ltd.: Heparin sodium, 5000 I.U./ml), then expelling

this back into the still inverted bottle. This left a small bead

of heparin (£. O.Olml) in the syringe. On removal of the

hypodermicfrom the jugular vein bleeding was prevented by quickly
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pressing a paper tissue swab on the skin surface and holding it in

position with the thumb for about 30s. The needle was removed from

the syringe, and the contents expelled into a 2ml screw-top Nunc
tube (Nunc 3-66656, 43 x 12.5mm). The tube was shaken to ensure
thorough mixing of the heparin and then placed in an insulated cold-

After being bled, birds were kept for a few minutes in a cotton

bag or holding box. No immediate mortality was observed in the

field or over several days amongst 20 birds kept in the laboratory

and bled by this procedure. Alternative methods were investigated

initially. Cardiac puncture (Whitehouse 1979) was tested using

caged sparrows but was found to be difficult to use on a small

species and occasional mortalities resulted. Brachial venipuncture

(Evans 19BO) was used at the start of the study but was much slower

than jugular bleeding and the consequent clotting often resulted in

small or partly lysed blood samples.

At 0.5ml the volume of blood taken provided an easily handled

quantity and was within estimated safety limits. The blood volume
of flying birds is about 7 to 9 % of body weight (Kovach et al.

1969) i it will therefore exceed 2ml in the average house sparrow and

equal about 1.4ml in the smallest bled nestling. Kovach et al.

(1969) found that birds are much more tolerant of blood loss than

are mammals and that about 50% of the total volume can be taken.

Blood samples were separated into packed cell and plasma

fractions on the same day as their collection by centrifuging for 10

minutes at 1500 x g. Erythrocytes were washed once by mixing well

wi th 2 volumes of Ringer's solution or 0.9% saline and

recentrifuging. Both fractions were stored at -BOoc.
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Retraps

All recaptured birds were remeasured and repeat blood samples

were occasionally taken. Ringed pulli found to be still present on

a subsequent visit to the nest were remeasured.

2.2 Laboratory Methods

2.2.1 Preparatial and Storage of Bloc:rl Samples

At the end of the field season, blood samples were prepared for

subsequent electrophoretic analysis. Although for mammalian

studies the simple lysis of erythrocytes in a hypotonic solution is

adequate to provide a solution of proteins for electrophoresis, the

nucleated nature of avian cells results in their requiring a more

extensive treatment (Sibley et al. 1974, Whitehouse 1979). Avian

red cells are generally more difficult to lyse, and even following

only partial lysis (such as occurs in freezing and thawing), they

form a thick, electrophoretically useless gelatinous mess. The

most satisfactory results for house sparrow erithrocytes were

aChieved by adding one volume of 0.1% Triton X-lOO (Sigma T-6878) to

the thawed sample, followed by thorough vortexing to separate and

lyse the cells and then by high speed centrifugation at 15000 x g

for 20 minutes at 4oe. The whole of this procedure was conducted in

the same 2ml Nunc tube in which the sample was originally collected.

It was found to be unnecessary to remove the supernatant to a new

tube before refreezing at -80oe as the pellet in the base of the

tube did not noticably resuspend even if the tube was thawed and

refrozen several times. Samples were centrifuged in pairs, one

stacked above the other~ they were separated by a wad of tissue

paper and the rounded base of the centrifuge holder was also padded
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to prevent tube damage. Rejected preparative techniques included

sonication, homogenisation, and different triton concentrations and

amounts of centrifugation.
To minimise refreezing and thawing effects and for general

convenience during electrophoresis, 30pl drops of plasma and

prepared erythrocyte lysates were transferred to the individual

wells of flat-well microtiter plates (Sterilin M29A). At least 3

plates were prepared for plasma and 5 for red cells. The most

convenient method of replica plating was by using an Eppendorf

Multipippette adapted to take disposable plastic tips. Hicrotitre

plate sample positions and replicates were carefully indexed.

Plates were sealed with sellotape before storing at -BOoC. No

observable change occurred in samples kept at this temperature for

over 2.5 years.

2.2.2 Starch Gel El~is

The apparatus, buffer recipes and staining methods used were

adapted slightly from those of other workers particularly Harris and

Hopkinson(197B), Shaw and Prasad(1970) and Cole and Parkin (19Bl).

They are briefly described below. Precise details of reagents are

provided in AI;pendix 1.

Gel Preparation

All gels were made from a 12% w/v mixture of starch (Connaught)

and gel buffer (as described in each recipe below). The starch was

mixed well with the buffer in a flat-bottomed spherical flask,

heated with constant mixing until becoming transparent shortly

after coming to the boil, then degassed. As spherical flasks are

liable to implode the flask was placed inside a safety tank during
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degassing.

The hot, degassed starch solution was immediately poured into

gel moulds consisting of a perspex former placed on a glass plate.

The gel dimensions were 185 x 100 x 6mm. The starch solution is

fairly viscous at this stage and was poured so that it formed a

pronounced meniscus within the mould, slightly higher at one end.

The top glass plate was then lowered onto the surface of the gel,

starting from the higher end, taking care not to trap any air

bubbles. The top plate was then pressed down, squeezing out any

excess gel. Gels were usually prepared the day before use and left

to set at room temperature. If gels were prepared the same day as

required they were cooled to quicken setting.

SampleTreatment

In the case of samples being assayed for peptidase and esterase

isozymes, it was found to be desirable to treat them prior to the

electrophoretic run to counteract the effects of post-translational

modification (see Section 3.1.3). The treatment consisted of the

addition of 10pl of a 10mg/ml solution of dithiothreitol (DTT)to

each 3Cf11sample, mixing, and incubation at 3~C for Ih,

SampleApplication

Samples were applied to the gel using inserts cut from Whatman

No. 3MMchromatography paper. The average size of inserts was

about 4mmx 6mm,slightly less than the thickness of the gel. The

gel was prepared by removing the top plate, drying the surface with

tissue paper, running around the inside of the edge of the former

with a scalpel blade to free the gel, and cutting 36-40 insert holes

using a sharpened 3.5mmwide spatula. Inserts were blotted on
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fil ter paper to remove excess liquid before being loaded into the

gel.

Electrophoretic Apparatus

The apparatus was as illustrated in \<fuitehouse (1979). The

loaded gel was supported horizontally on a copper coolant plate in

turn supported on a glass plate spanning the buffer tanks. Current

from a Heathkit lP-17 regulated d.c. power source connected to the

tank electrodes was applied to the gel via folded J-cloth wicks.

The surface of the gel was covered with a plastic sheet, taking care

not to trap air bubbles, and a further coolant plate laid on top.

Coolant at 40cwas circulated through the coolant plates. The

whole apparatus was enclosed by a safety lid.

RunningConditions

The buffers, electrical conditions and running times for each

of the 7 loci that were found to be polymorphic in blood (Chapter 3)

are summarised in Tables 2.3 and 2.4. The voltages indicated are

those supplied by the power+packr actual voltages across the gel

will be lower. The distance across the gel between the wicks was

75nm.

Staining Procedure

At the end of the electrophoretic run the gel was removed from

the apparatus, the perspex former and inserts removed, and the gel

surface blotted. A corner of the gel was cut to ensure correct

subsequent orientation and the gel inverted onto a dry surface.

The gel was then sliced equally using nylon fishing line stretched

across spacers placed on each side, and surface moisture removed by
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Table 2.3

Buffer systems used for main survey.

Code Stock sol.uti.a1s pi Gel. diluticn Bridge diluticn Ref.

1 O. St1NaHlD 4; 7.0 1:39 1:4 (1)*
O.SM Na2HP04:titrate

2 0.24Sr·1NaHi'O 4; 7.0 1:79 1:0 (2)*
0.lSt1 citric acid;
+10t1NaOR to raise
pH.

3 O.SM TRIS; 7.4 1:99 1:4 (2)

O. SH NaOR2PO 4

4 O. St1TRIS; S.O 1:49 1:4 (3)

0.07r1 citric acid;
+6t1 RCl to reduce
pH.

S (i)0.06H LiOR; 8.6 IVol(i): (i) (4)
o . 22911 boric acid. S.4Vol(ii)
(ii)0.079M TRIS;
0.007r1 citric acid.

6 O.SM TRIS 8.0 (for staining solutions only)
+6H HCl to reduce
pH.

* Modified concentrations.

References

(1) Shaw & Prasad(1970).
(2) Harris & Ropkinson(1977).
(3) Cole & Parkin(1981).
(4) Gahne(1966) •



Table 2.4

Running conditions for polymorphic systems used.

Enzynel E.C. Buffer Insert i:

Code position
V I
Iv 1m

t
/h

ttigration
Protein

6PGD 1.1.1.44 1 N llO 100 5 Anodal

IDHC 1.1.1.42 2 N+lcm llO 75 4 Cathodal,

P~}PEPD2 3.4.ll 3 N 200 75 3.5 Anodal
or 3.4.13.*PEPD3

FST2 3.LLl 4 N 200 75 3.5 Anoda I

GPI 5 N 150 75 4 Anodal
-300

~ = normal position, 2cm from cathodal wick.



blotting. Staining of the cut surface was carried out either by

immersion in a solution of the reagents or by the application of a

layer of stain contained in molten agar. Gels run for GPl (see

Chapter 3) were stained using a filtered solution of 0.2% (w/v)

Amido Black lOB and 0.4% (w/v) Nigrosine in a fixing solution of

50:50:10 methanol:water:acetic acid. A list of stain recipes for

the other loci is provided in Table 2.5 (cf. Appendix 1).

Once the methodology for this project was finalised both gel

slices were used only for TRIS-phosphate gels, where each half was

stained for different peptidases. Gels run for 6PGD, IDH and the

peptidases were incubated at 370c until staining was sufficiently

advanced to allow scoring (up to 311). Esterases developed rapidly,

and the reaction was stopped by washing in water as soon as the

isozymes of interest were clearly visible (about 10 min). GPl was

stained overnight then the background was destained by rinsing in

water and then soaking in fixing solution for several hours,

repeating this destaining procedure at least twice.

2.3 IBta Harrlling and Statistical Analysis

The data were stored on a mainframe computer, and to minimise

the p:>ssibility of errors each bird was identified by its unique I3'ro

ring number in all data files. These identification numbers were

annotated with tissue sample tray storage positions and, where

appropriate, colour ring codes. Records were sorted according to

sample tray locations, and hence gelling sequence, prior to the

entry of electrophoretic data. The use of sorting routines to

produce data listings in order of, for example, gelling sequence,

colour ring codes or nest or clutch was found to be invaluable for

minimising the occurrence of errors, and detecting any that arose.
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Keeping errors to a minimum is of special importance in family

studies (Chapters 3 and 4). Separate data files were maintained for

details of sightings, families and nest records. Nest records for

each day were initially transferred to diskettes using a program

written in BASIC for an Apple II microcomputer. The program was

designed to minimise data preparation time. The nest data was

subsequently transferred from diskette to the mainframe system.

Programs were written in FORTRAN 77 to combine data from the

different files, and to test pedigrees.

The statistics used are described at appropriate points in

the text (see Section 5.2 for details of heterogeneity and goodness

of fit tests, and the minimum expected values required in those

tests). Hany of the tables required, including those for observed

genotype frequencies (Section 5.3.1)and estimation of disequilibria

(Section 5.3.7),were constructed using the SPSS CROSSTABS program

(Nie et al. 1975). Many statistical analyses were carried out using

programs from SPSS (Nie et al. 1975) and Bl1DP (Dixon et al. 1983).

Calculations such as exclusion probabilities (Chapter 4), Hardy

Weinberg tests (Chapter 5) and genetic identity estimates (Chapter

6) were made using programs written in BASIC for the Apple II

microcomputer. Statistical analyses involving small amounts of data

were also made on the Apple II, normally using the STATSEASE

statistical package written by Prof. B.C. Clarke (Genetics

Department, University of Nottingham).
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<H\PmR 3

'lIJE EliIZYME POLYMORPHISMS

3.1 Enzyme Systems

3.1.1 PreviaJs StOOies of Ihlse Sparrows

Starch gel electrophoresis has been used by a number of authors

to investigate protein variability in the house sparrow and a

summary of the tissue distributions of those loci found to be

polymorphic is provided in Table 3.1. In calculating the proportion

of polymorphic loci (p) most authors use Avise and Selander's (1972)

level of 0.95, but neither the value of ~ nor its interpretation are

being considered here. Consequently Harris and Hopkinson's (1972)

definition of 'polymorphic' is used, referring to those loci where

an allele exceeds a frequency of 0.99. Loci with more than one

allele where the frequency of the commonest allele is greater than

0.99 are described as variable only.

Of the 13 polymorphic systems known to resolve well in liver
tissue only 5 were present at sufficient concentration to be scored

in blood. In addition, two plasma loci were found to be

polymorphic and scorable. Details of the methods used during this

study are provided in Chapter 2.

3.1.2 Description of Pol}'IDClqiri.sms

The polymorphic enzyme loci investigated in this study will be

described below. In all cases the fastest migrating allele has been

designated ~, the next fastest B, and so on. Consequently, in the

case of 6PGD, IDHC and PEPD2 the allele designations differ from

those of Parkin and Cole (1984~ and pers. comm.), but agree for

PEPT. Figures 3.1 - 3.12 contain photographs of the gels and
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Table 3.1
Surrrnary of p::>lyrrorphicprotein loci in the house sparrow as studied
by various authors, indicating tissues used. All loci except where
indicated were assayed by starch gel electrophoresis.

Locus Study & Tissue 1

Bush2 r1anwell Klitz3 Fleischer3 Cole & Parkin
et al. & Baker (1972) (1983) (1981 & pers.ccmn.)
(1970) (1975) & this study
s E various K L L E P H

PGH-l
RJM-2
ADA
6ffiD
G6PDH
IDHA
IDHC
HE
ESTl
EST2
EST3
Ft-ESTl
PEPI'
PEPD2
PEPD3
SORDH
GPl a
ACONl9
AmylaselO

4 M:G

G4 L:G
G

G5G5
G5 G5
G

(K:G6) G
a a La
a LKSa

G

A:G

N
N
P
G*

G
G

P
G*
a
N
N

N
N
N

N

N
N

N
G*
a

N
G
G

G
a

G
G
P

P

a
G
a
a
a
G
G
G
Gf:

N
G
a

G*
G*
G*
N
N
N
N

Key
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~ Assayed by isoelectricfocusing.

1 Tissues: S=serum P=plasma E=erythrocytes K=kidney L=liver ~1=muscle
A=egg albumin.

2 cf. Bush (1964), Bush (1967).
3 cf. Klitz (1973), Johnston & Klitz (1977),

Fleischer et al. (1983).
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diagrammatic interpretations of the zymograms.

lsocitrate Dehydrogenase(Cathodal Locus) (IDHC)

Under the conditions used, the dimeric product of this locus

migrated cathodally (Figures 3.1 and 3.3). The locus has been

investigated by a numberof different authors whohave referred to

it using a variety of abbreviations: Le. IDH11., IDH2, ICDH-H,

ICDH~and IDH~ (Table 3.1, Cole and Parkin 1984a). The locus will

be referred to as 'IDHC'throughout this thesis. Activity was

generally low, particularly whencomparedwith that found in liver

tissue, and some samples required incubation for up to 3h before

achieving optimumstaining. As activity varied amongindividuals

and, to a lesser degree, amonggels, manysamples were assayed more

than once to confirm scores. Activity differences amongsamples

were more pronounced at this locus than at any of the other six

investigated in detail. It was not established whether these

differences were due to fluctuating efficiency of sample

preparation, but some variation at least amongsamples would be

expected to result from changes in erythrocyte concentration

(Banerjee and Banerjee 1970) and the likelihood of cyclical

variations in the levels of some enzymes (e.g. Brok-Simoni et aL

1976). In the more active IDH~/~ homozygote types slight sub-

banding occurred, including someat a similar position to the IDH~

allozyme, but no activity was observed in the position of the

IDH~/~ heterozygote's hybrid dimer, which was consequently regarded

as diagnostic. IDH~was the commonestallele.

Although staining was apparent, resolution at the more

anodally-migrating locus, IDHA,was generally too poor to allow

satisfactory scoring. IlEAproduced the soluble form of the enzyme
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and IDHC the mitcx::hondrialform (shown experimentally by S.R. Cole,
pers. comm.).

6-Phosphogluconate Dehydrogenase (6PGD)
BThis locus is dimeric (three-banded heterozygotes): the 6PGIJ-

allele is the commonest (Figures 3.2 and 3.4). Shaw and Prasad

(1971) recommend the addition of NADP to the gel and electrode

buffers to obtain good activity, but this was found to be

unnecessary.

Peptidases (PEPD3, PEPD2, PEPI')

The peptidases have been discussed in more detail by Cole and

Parkin (1981). The peptidases were subject to a form of post-

translational modification (see Harris and Hopkinson 1978) which

resulted in smearing, mostly anodal to the normal band position, and

poor resolution. This was found to be fully reversable by treatment

with DTT (Section 2.2.2).
PEPT is monomeric (double banded heterozygotes) and the

commonest allele was designated PEPI'.!2(Figures 3.6 and 3.8). PEPD3

is monomeric and exhibits slightly lower activity than the dimeric

PEPD2 lcx::us.PEPD2 isozymes migrate to a position just cathodal of

PEPD3 such that the PEPD2~/~ heterozygote overlaps the PEPD3Q

isozyme position (Figures 3.5 and 3.7). Consequently, only the

faster migrating PEPD3 heterozygote, PEPD~/B, could be scored with

confidence in PEPD~B types and so individuals having these PEPD2

genotypes were excluded from any further analyses concerning PEPD3.

The common alleles were PEPD~ and PEPD~ •

All the peptidase loci resolved well in plasma but activity was

much lower than in erythrocyte extractions.
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General Protein! (GPl)

On the basis of comparison with published gel patterns
depicting conalbumin bands (e.g. Sibley 1970 pp.13-15 and Figure 24:
Baker 1965), published gel patterns for serum (or plasma)

transferrin in various bird species (e.g. Montag and Dahlgren 1973),

and the knowledge that, in birds, egg-white conalbumin is controlled

by the same locus as serum transferrin (Ogden et al. 1962), the

plasma locus described here as general protein 1 (GPl) is almost

certainly transferrin. Polymorphism at this locus has been found

for about 60% of bird species examined (Sibley et al. 1974):

consequently most authors appear to rely on homologies of gel

patterns with those for other species in the identification of

transferrin.
Transferrin is an iron-binding protein and can therefore be

detected by staining with a solution of Nitroso-R. This was used

here, but was inconclusive as zones other than GPI were also

stained. Klitz (1972) presented data for a transferrin

polymorphism in the house sparrow, but unfortunately included no

details of the gel patterns or their interpretation. It is thought

that Klitz's transferrin (as also studied by other workers at the

same laboratory - refer to Table 3.1) is the same as GPI here, but

the genetic interpretations applied in each laboratory could

conceivably be different. As it has not been conclusively proven

that GP1 is transferrin the locus will be referred to throughout as

GP!.

As has commonly been reported for transferrin (e.g. Montag and

Dahlgren 1973, Ito et al. 1981), GP1 homozygotes show a 2-banded

phenotype, and heterozygotes either 3- or 4-banded phenotypes. For
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example, the faster-migrating band of the GP~~ homozygote takes

the same position as the slower band of the GP0/A homozygote (see

Figures 3.9 and 3.11). The faster-migrating component of each

allele's gene products is generally regarded as being due to post-

translational modification of the slower-migrating product, either

by the addition of extra sialic acid residues (e.g. Ferguson 1980)

or fewer Fe3+ ions (e.g. Stratil 1967). Addition of Fe3+ (Stratil

~ cit.) in an attempt to saturate transferrin Fe-binding sites had

no effect on mobility.

Of the two bands produced in the homozygote condition, the more

anodally-migrating one was always less intense. Care had to be

taken in scoring heterozygote types, therefore, as the most

anodally-migrating band was then expected to be only half as intense

as in the homozygote. In GP1~/B and GP~/~ heterozygotes the

middle band was the most intense. A phenotype that at first sight

appeared to have a more intense anodal band would generally, on

further destaining or rerunning using a fresher sample, be revealed
as such a heterozygote. This interpretation of patterns would

appear to be sound as there were no more parent-offspring

incompatibilities observed, relative to expectation, at this locus

as compared with any other (Chapter 4). This locus was
particularly sensitive to denaturation (resulting in reduced

activity) following continued freeze-thawing or exposure to high

temperatures. If any lysis of red blood cells occurred prior to

their separation from the plasma component then the resulting extra

proteins would obscure the banding patterns for GP1, preventing it

from being scored. Extreme care was therefore taken to avoid lysis

and to minimise the number of freeze-thaw events (Chapter 2).

No other interpretable variation was observed in gels stained
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for general proteins, except for one probable albumin heterozygote
among the 1500 or so individuals examined.

Esterase (EST2)

ESTl, whiCh is polymorphic in liver (Table 3.1), is not present

in plasma. The slower of the anodally-migrating esterases, the

previously incompletely resolved product of the locus designated
EST2 and suggested to be monomorphic (Cole and Parkin 1981), was

found to be polymorphic in plasma. A number of substrates were used
to investigate the plasma esterase loci. Essentially the same

relative activities of the various bands persisted,and activity was
strongest with a-naphthyl propionate. The polymorphic locus of
interest was immediately cathodal to a less rapidly staining region

which apparently consists of two monomorphic, but poorly resolved,

bands. Resolution of EST2 was improved slightly by treatment with
OTT (see Section 2.2.2).

The commonest allele at this locus was EST~ . Null, or
silent, alleles are those either producing no gene product or a

product of such low activity that it is not detectable by

electrophoretic techniques. Evidence for the presence of a null

allele (designated here as EST~) was provided by individuals which

exhibited no activity at this locus, breeding data (see below) and

an apparent pronounced deficiency of heterozygotes (excess of the

rarer homozygote types) when Hardy-\leinberg expectations were

calculated without allowance for the existence of nulls (see Section

5.3.2). Individuals of genotype EST22IO showed normal activity and

patterns for the slower staining, faster migrating, esterase locus

(or loci). They also showed apparently normal concentrations for

other proteins found in plasma, as indicated by staining intensity
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on general protein gels.

3.1.3 other Loci Investigated

The relative paucity of loci detectable in blood as compared

with other tissues has already been mentioned. All loci for which

good electrophoretic systems had already been found in other tissues

(Table 3.1) were investigated. Of the known polymorphic loci,

Esterase-l (ESTl), sorbitol dehydrogenase (SORDH)and the more

anodally-migrating aconitase locus (ACONl)showed no activity in

blood tissues, and adenosine deaminase (ADA)showedactivity in the

erythrocyte preparations of someindividuals only. Phosphogluco-

mutase (PGH) was investigated using both starch gels and

isoelectricfocussing (LKB1977). Onlyone locus was apparent in

erythrocytes (PGM3), and one variant was detected amongst 20

individual haemolysates: this is probably the same locus for which

Manwell and Baker (1975) reported two variant types in 25

individuals. Amongst additional loci, glucose-6-phosphate

dehydrogenase (G6PDH:using the same conditions as for 6PGD)

appeared to be invariant in the erythrocyte fraction for 323

individuals.

It is not knownwhythe variability reported by Hanwell and

Baker (1975) for G6PDH,with allele frequencies of 0.42/0.58, was

not detected here. The acti vity loss reported by Manwelland Baker

for stored tissue samples was not observed, even following storage

for at least one year at -800C. Interestingly, an analysis of

Manwelland Baker's data indicates that the genotypic frequencies

presented for G6PDHin their sample departed from Hardy-Weinberg

expectations, with an excess of heterozygotes (G= 4.68, £<0.05).

No similar departure has been recorded for any other locus (Cole and
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Parkin 1981).

Amylase in plasma was investigated using isoelectricfocusing

and extremely variable patterns (14-21 bands per individual) were
apparent but unfortunately could not be interpreted satisfactorily.

In addition to the 18 monomophic or slightly variable loci

detected in erythrocyte preparations and listed by Cole and Parkin

(1981) should be added glutathione reductase (GSR) and NADPH

diaphorase (DIA-NADPH). These were visualised simultaneously on

the spare slice from gels run for IDH. Both loci showed slight

variation only. During the initial consideration of the

suitability of different tissues for sampling (see Chapter 2)

femoral and pectoral muscle tissues were tested for activity of the

polymorphic loci known in other tissues. The use of

isoelectricfocussing for SORDH (Cole and Parkin 1981) revealed only

slight activity in some individuals and none in the remainder,

whilst the same individuals showed qood activity in liver samples.

As GP1 and EST2 could not be assayed in muscle preparations it was

concluded that muscle would have no net advantage over blood as a

source of suitable proteins.

3.2 Segregaticn Analyses

Before using the genotypic classes presumed to code for the

observed isozymes for any further genetic analyses it was desirable

to check that their inheritance agreed with a Mendelian model and

that the loci were independent. For this purpose the data

collected from 126 clutches (42 at Brackenhurst, 82 at Sutton

Bonington and 2 at Nottingham) where both parents and offspring were

sampled has been used.
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3.2.1 Merne1ian Ratios

The total observed allozyme types of the offspring produced by

each mating class for each locus are given in Tables 3.2 and 3.3.

Note that a few individuals have occasionally not been scored for a
particular locus because of, for example, insufficient material

being collected or, very occasionally, damage to a particular

sample. The maximum number of offspring omitted is 6 (in the case

of GPl: due to lysis of red cells), except for PEPD3 where several

clutches have been omitted because of possible interference by PEPD2

heterozygotes (see above).

The occurrence of null alleles for EST2 has been discussed
(above). Expected segregation ratios have not been estimated for

most mating types at this locus as it was not possible, given the

sample sizes within each category, to estimate the frequency of

unidentifiable null heterozygotes with a useful level of confidence.

The informative crosses concerning the allelic nature of the

uncommon EST~ are presumed to have each involved an EST2c/o parent

(see Table 3.3): this genotype is expected to be much more common
than the homozygote for ESTE •

The table includes any incompatible offspring types that were

detected. Within any mating class, with the possible exception of

the IDHcA/B category, their numbers are very small relative to the

compatible offspring. In many instances where one scored parental

genotype was in some respect incorrect the assessment of segregation

ratios, providing that alleles at the locus segregate in a Hendelian

fashion, will not be substantially affected. For the IDH~ class

the 10 such offspring were contained in just 4 clutches. In the

case of IDHcA/A x IDHCB/B matings an incorrect assessment of

parentage is more likely than usual to result in the appearance of
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Table 3.2
Summary of total progeny genotypes observed for each class of
mating at those loci where each phenotype was interpreted genotypically.
The deviations from expected ratios (shown in parentheses) among compatible
offspring are indicated.n.s. = not significant. .

Locus Mating Number Total offspring genotypes Deviation
type of clutches

6PGD AB BB

AB X BB 8 12 11 n. s,
(1 1)

BB X BB 118 1* 340
( 1 )

PEPD3::t AB BB BC BD DD

AB X BB 6 8 7 1* n.s.
(1 1)

AB X BD 1 It 1 1 n , s ,

(1 : 1 . 1 1).
BB X BB 71 207 5*

(1 )

BB X BC 2 4 2 n , s ,
( 1 1)

BB X BD 25 51 20 1* G = 14.0
( 1 1) p < 0.001

* incompatible types

.t excludes several instances where heterozygote for PEPD2 might
interfere with scoring of PEPD3.

~ excludes 1 'AZ' where PEPD2 type was AB and therefore obscured
PEPD3 position.



Table 3.2 cont'd

Locus Mating Number Total offspring genotypes .Deviation
type of clutches

PEPD2 J...J.. AB BB BD
ABXAB 1 1 n.s.

(1 2 1 )

AB X BB 21 32 22 n , s ,

(1 1)

BB X BB 103 3* 298
(1)

BB X BD 2 - 4 1 n ,s.
( 1 1)

IDHC AA AB BB AC
AAXAA 36 103 3* 1*

(1)

AAXAB 49 69 68 2* n , s ,
(1 : 1)

AA X BB 13 6* 33 4*
(1)

ABXAB 19 16 25 8 n , s ,

(1 . 2 . 1). •

AB X BB 8 1* 12 10 n.s.
(1 1)

BB X BB 1 2
(1)

* incompatible types



Table :2.2cont'd

Locus Mating Number Total offspring genotypes Deviation
type of clutches

PEPT AD BD CC CD DD DE BC

BB X DD 2 6

(1)

BD X DD 13 15 1* 22 n , s ,

(1 - : - : 1)

CD X DD 10 1* 14 9 n ,s.
(1 1)

BC X CD 1 3 n , s ,

(1 1 1 - : -: 1)

DD X DD 97 1* 3* 281
(1)

DD X DE 3 6 2 n ,s.
(1 1)

*incompatible types



Table 3.2 cont'd

Locus Mating Number Total offspring genotypes Deviation
type of clutches

GPI .AA AB AC BB BC CC
AAXAB 2 2 4 n.s.

(1 · 1)·
AA X AC 1 3 1 n.s.

(1 - : 1)

AA X BB 2 1* 6
(1)

ABXAB 9 3 12 12 n.s.
(1 · 2 · - 1)· ·

ABXBB 41 2* 51 1* 63 2* n,s.
(1 - : 1)

AB X BC 7 8 3 7 4 n.s.
(1 · 1 . 1 1)· .

AC X BB 5 10 2 G = 5.81
(1 - : - : 1) p < 0.025

BB X BB 53 4* - 140 1*
(1)

BC X BC 1 1 2 n,s.
(1 2 1)

BBXBC 5 12 3 G = 5.78
(1 1) P <:. 0.025

* incompatible types



Table 3.3
Summary of total progeny phenotypes for each class of mating at the
locus known to have null alleles (EST2). The classes A, B, C will
include both the appropriate heterozygous null and homozygous genotypes.
Expected ratios (in parentheses) could be inferred in two instances
only. n.s. = not significant.

Locus Mating
type

Number
of

clutches
Total offspring phenotypes Deviation

EST2 A AB B BC C AC 0

ABXAB 3 2 2 2 n.s.
(1 2 : 1)

AB X B 27 1 38 45

BXB 88 5* 246 1

AB X C 1 1 1 1 1

AB X o 1 2 n.s.
(1 - : 1)

AC X B 1 1 2

B X C 1 2 1 1

AXB 2 1 1

BXe 2 7

* incompatible types.



parent-offspring incompatibilities. No particular conclusion need

necessarily be drawn, then, concerning any differences in

inheritance for this mating. The proportion of incompatible

offspring, at 4.6%, is higher at IDHC than any of the other loci.
This result is also expected to be a function of genotype frequency.

These considerations, together with a discussion concerning the

possible origin of incompatibilities, will be found in detail in
Chapter 4.

Hith regard to the compatible offspring genotypes significant

deviations from expected Hendelian ratios were found for one PEPD3

mating type (E < 0.001) and two GPl mating types (E < 0.025: refer
to Table 3.2). Ideally, every possible mating type would be

examined at a locus in a large number of cases, but in practice many

mating types will be relatively rare. In order to maximise the
information obtained concerning segregation ratios the data were

further sorted according to the frequency of transmission of

segregating parental (heterozygote) genotypes to the progeny (Table

3.4). Each parental allele is expected to be transmitted at an
equal rate. Matings where neither parent is heterozygous will be

uninformative, whilst one of each pair of offspring alleles will be

informative if one parent is apparently heterozygous and both

alleles if both parents are heterozygous.

heterozygotes at the EST2 locus were ignored.

Significant deviations from a 1:1 ratio were again found for

PEPD3 and GPl only, indicating a deficiency of PEPD3Q (E < 0.001),

an excess of PEPD3~ (E < 0.001), a deficiency of GPlS: (E < 0.001)

Possible null

and an excess of GP1~ (E < 0.01). Reference to Table 3.2 reveals

that the highly significant deficiency for GP1S: is contributed

towards by all parental matings that include the allele. The
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Table 3.4

Summary of observed segregations among offspring of heterozygous
parents, for each allele considered separately. (Goodness of fit test refers
to an expected ratio of 1:1. n.s. = not significant. )

Locus Heterozygous Allele Al terna tive Goodness
parental observed observed in of fit
allele in offspring offspring

6PGD A 12 11 n , s ,

E 11 12 n.s.

PEPD3 A 9 9 n.s.
E 62 30 G = 11.4 ***
e 2 4 n ,s.
D 21 53 G = 14.3 ***

PEPD2 A 32 24 n , s ,
B 28 33 n.s.
D 1 5 n.s.

IDHe A 138 119 n.s.
B 121 97 n, s ,

PEPT B 18 22 n. s.
e 14 15 n.s.
D 40 31 n.s.
E 2 6 n. s.

GPI A 91 116 n.s.
B 145 104 G = 6.78 **
e 15 44 G = 14.89 ***

EST2 A 50 55 n,s.
B 55 47 n.s.
e 0 3 n.s.

** p < 0.01 *** p < 0.001



excess of transmitted GP~ types would appear to be associated with

a deficiency of GPI~ alleles (though not significant) as well as a

deficiency of GPI~. As discussed above, GPI is almost certainly

transferrin (Section 3.1.3). Another study of birds (ring-necked

pheasants Phasianus colchicus) has also reported a distorted

segregation ratio at the transferrin locus (Vahs and Carr 1969). A
higher mortality of individuals carrying the TfA allele was

suggested, but no possible reason for the maintenance of this allele

was given. A similar situation was found regarding an esterase

locus in starlings (Sturnus vulgaris), where the commonest allele

was transmitted significantly more often than expected in backcross

matings (Evans 1980). This was interpreted as being the result of

selection during the pre-fledging period favouring the commonest
homozygote type.

There are numerous potential explanations to account for the

results concerning house sparrows, ranging from methodological

factors to actual fitness differences. I shall first consider the
possibility that individuals having the deficient alleles were not
always detected on gels.

With regard to the allele exhibiting a deficiency at each locu~

the observed rate of transmission is in each case close to half of

expectation. If the deficiencies were due to mis-scoring of gels,

then the implication would be that, as on average only half are

detected, as many parents would have possessed these alleles as were

actually scored as having them (there was no indication that protein

concentrations/activities were any different for adults and

nestlings at these loci). On this basis one would expect some 26

PEPD~ and 20 GPl~ alleles to go undetected among the parents.

One would in turn expect as many of their offspring to be scored for
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the allele as there were alleles detected amongthe offspring of

detected parents. These would in almost all instances be

incompatible with the recorded mating type. This is patently not

the case (Table 3.2): a few incompatibilities are accounted for by

these alleles but this is not unexpectedwhenthe overall observed

incompatibility rates are considered (see Chapter 4).

Polymorphic loci which modify certain proteins in an

electrophoretically detectable way are known from studies of

Drosophila (Cochrane and Richmond1979). Providing that the

sampling of clutches (and therefore parents) is random, the

frequency of a phenotype produced by the combined effects of a

modifier locus and the visualised protein locus is expected to be

the samein both the entire parental and entire offspring groups.

This will apply regardless of whether the action of the appropriate

alleles at the modifier locus is dominantor recessive. Thus, if

the phenotype was subject to genetic modification then manymore

incompatibilities would have been expected than were observed.

Their relative absence strongly supports the conclusion that the

results are not accounted for by a polymorphic modifier locus.

Similar considerations apply also to non-genetic sources of

modification, and a similar conclusion reached.

More elaborate hypotheses to explain the departure from

expected ratios could, of course, be constructed. For example, it

might be suggested that the penetrance of the alleles increases with

age, so that all appropriate adults are detected but not all

nestlings. In the small numberof instances where nestlings or

juveniles were retrapped and retested as adults there was no

difference observed in the isozymes, but the numbersare too few to

be conclusive. There is no evidence from other studies to suggest
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that changes might occur with age, except for ontogenic ones early

in the development of nestlings where the relative expressions at

different loci coding for a particular class of protein may change

(e.g. haemoglobin: Kostelecka-t1yrcha et al. 1971~ LDH: Bush 1967).

These latter are believed to be related to the changing

physiological requirements of a bird at fledging and are not known

to occur with respect to alleles at an individual locus.

The possibility of some kind of selective difference affecting

alleles at PEPD3 and GPI must therefore be considered. There are

many distinct opportunities for the operation of selection prior to

the sampling of chicks. A simple comparison of mean fledging

success per clutch (from data in Table 3.2) between parents

heterozygous for the alleles showing deficiency and those homozygous

for the alleles with segregation excess revealed no significant
differences. Observed fledging success was very slightly higher for
parents possessing the GPI£ allele as compared with the remainder,

and there was no measurable difference between PEPD3B/D and PEPD3B/B

parents. Thus the distorted segregation ratios could not be

explained by a simple model of fitness differences among eggs or

nestlings unless this were compensated for by increased clutch size

or substitution for zygotes of low fitness prior to egg-laying.

There was no evidence for a difference in clutch-size. Eggs in

this species are each ovulated immediately following the laying of

the previous one, and each yolk is believed to take 4 days prior to

ovulation to develop (Schifferli 1976). Departures from a laying

schedule of one egg per day are very rare (Seel 1968a). It is

unlikely therefore that any deaths of zygotes prior to egg laying

are compensated for by the laying of additional eggs.

The lack of any difference in fledging success need not be
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incompatible with an hypothesis of post-zygotic selection acting in

a density-dependent fashion. ~1ortality in house sparrow clutches is

known to have a density-dependent component (see Section 1.4). The

modal number of eggs laid per clutch during this study was 4,
agreeing with observation elsewhere in England (e.g. Summer-Smith
1963). with a mean fledging number close to 3, mortality in
successful clutches approaches 25%. Thus post-zygotic selection
could explain the distorted segregation ratios if the selection were

operating in a threshold manner upon the deficient genotypes. If

this were the case, then those broods where no mortality was

observed prior to sampling would not be subject to the density-

dependent selection, and no deviant segregation ratios would be

expected in those broods. There were 35 clutches without mortality

where both parents were sampled. Segregation distortion was found
to apply to these broods to a similar extent to that already
observed in the entire sample (Table 3.5).

There was no evidence, then, for simple density-dependent
selection, but the possibility of frequency-dependent selection has

not been excluded. It might be hypothesised that selection against

genotypes including the PEP~ and GPl~ alleles was stronger in

broods containing more of those genotypes. This hypothesis would be

compatible with the observation of distorted segregation ratios in

broods not eXhibiting mortality~ these broods could simply be those

where no selection would have occurred because of the low initial

frequency of the alleles. Clearly, the distorted ratios demonstrate

that if frequency-dependent selection were operating then it was not

balanced. Further, no evidence was obtained from the nestling

period to suggest that the affected alleles were ever at a selective

advantage. If frequency-dependent selection, or some combination of
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Table 3.5

Segregation of alleles in parents with genotypes PEPD~/Q or GP1~/~
(where R refers to ~ or ~), for clutches eXhibiting no mortality.

Allele Goodnessof fit

B D

PEPD3 27 11 Gl = 6.95, P < 0.01

C R

FST2 7 26 Gl = 11.64, p < 0.001



frequency- and density-dependent selection were operating, then the
strength of this selection might be expected to depend upon

environmental conditions, and to vary both spatially and temporally.

There was, however, no heterogeneity for the segregations among the

site or year classes for either locus (Table 3.6).

Pre-zygotic, or gametic, selection can also lead to distorted

ratios. It has only occasionally been observed, and may be

particularly difficult to distinguish from other forms of selection

(see Cavalli-Sforza and Bodmer 1971). In most examples of pre-

zygotic selection, including the ! complex in Mus (see Bennett

1975), the SD locus in Drosophila melanogaster (see Hartl 1977) and

the Q factor in Aedes aegypti (Hickey and Craig 1966), segregation

distortion occurs in one sex only. There was no significant

heterogeneity between the sexes, however, for either of the loci

showing distortion in house sparrows (Table 3.6).

Whatever form of selection was operating, it was clearly

unbalanced prior to fledging in the cases of both loci under

discussion. The maintenance of these polymorphisms implies that

some other factor was at work at a later stage in the life cycle.

Some possibilities are investigated and discussed elsewhere

(Chapter 5).

3.2.2 Linkage Tests

With respect to the possibility of sex-linkage, the presence of

several heterozygote types in the heterogametic female sex at all

the loci indicated that none was sex-linked. The house sparrow is

reported as having 38 pairs of chromosomes (Castroviejo et al. 1969,

Bulatova et al. 1972) and close linkage between any of the 7 loci

under study was, therefore, not expected. The tests that were
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Table 3.6

Segregation at PEPD3 and GPI locj comparBd across sites, sexes and
years. For GPl, R refers to GP~and GPI-. Comparisons were made
using heterogeneity G tests with Williams' correction (Sokal and
Rohlf 1981).

Locus Comparison Allele
transmitted

PEPD3 B D

Sites t SB 25 13
BR 25 5

Female 27 8
Male 24 12

1980 8 3
1981 23 4
1982 20 13

G1 = 2.66
Sexes

Years

GPI C R

Sites SB 8 30
BR 7 14 G1 = 1.01

Sexes Female 10 32
Male 5 12 Gl = 0.19

Years 1980 2 1
1981 8 29
1982 5 14 G2 = 2.23

t excludes one informative clutch at Nottingham site.



carried out for the presence of linkage will be described in this

section.

There were several instances where the same pair were known to

fledge more than one clutch successfully and, therefore, in testing

for linkage between loci the data concerning successive offspring,

which would be full sibs, were combined. Clutches containing

incompatibilities (see above) were excluded from this analysis.

Even though in most instances the remainder of the offspring in the

clutch will be correct (Chapter 4) it was considered safer to omit

them as a small number of errors can be very misleading (in wrongly

excluding close linkage). The remaining clutches may have

contained undetected non-relatives or other errors at a low

frequency (Chapter 4).

As there are likely to be differences in crossover frequency

(Cavalli-Sforza and Bodmer1971, p.872) linkage should ideally be

analysed separately for each sex, but as the amount of data was

small no attempt was made to do this here. In linkage analyses

only a proportion of matings are informative. Specifically, for

codominant systems such as the enzyme loci being examined,

informati ve families will be those containing at least one parent

which is heterozygous for both of the loci being investigated and,

as the phases of the parents are unknown, have at least two

offspring. In order to determine the phase (in coupling or in

repulsion), the genotypes of a double heterozygote parent's parents

would need to be known; this information was never available in this

study. Where, as here, the family sizes are small, conclusive data

concerning even close linkage will rarely be obtained from

individual families and the probabilities of the observed

segregations in several families must be combined.
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Horton (1955) has shown that the most efficient method of

detecting linkage from a succession of family samples is by the use

of a sequential probability ratio test (Wald 1947). The procedure

for the application of the test, together with tables of the log

probability ratio (lod) scores which it uses, have been fully

described (Horton 1955, 1957; r·1aynard Smith, Penrose and Smith

1961). The tables have been constructed with respect to man where

the prior probability of randomly selected loci being linked is

taken as 0.05. The house sparrow has many more chromosomes than man

(see above), but the total includes many very small ones. The use

of the formulae derived using the prior probability for humans is

therefore regarded as reasonable for an initial analysis.

In the case of enzyme loci showing complete penetrance and no

dominance, the estimation of lad scores is particularly easy. As

all families included in a test are selected on the basis of the

genotypes of the parents ('complete selection') and there is no

dominance there will be no bias in the analysis and consequently no

corrections to the lads will be required. Even where there are

null alleles, as in the case of EST2 here, there will be no bias

provided that the selection of double heterozygotes does not include

parents known to be heterozygous for a null allele (as deduced from

the genotypes of their offspring). In this way, if a selected

family includes an intercross where the non-selected parent is

heterozygous for a null allele then scoring will automatically take

place as it would for a backcross where segregation is analysed only

in the selected parent; the situation is analagous to that for ABO

blood groups in man (Maynard Smith, Penrose and Smith, 1961, p.52).

Only matings that include one parent which is doubly

heterozygous for the loci being tested are informative. Most
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informative house sparrow matings were of the double backcross or

backcross-intercross type. Heterozygous offspring for 'two-way'

intercross matings (e.q. AB from ABxAB - refer to Table 4.3) are not

informative. At least two informative offspring per family are

required for the test. There were a few double intercross matings

(both parents double heterozygotes); both parents may provide linkage

information in such crosses (see Morton 1957: p.56). The lad score

(~) appropriate to the absolute numbers of possible 'coupling' and

'repulsion' events for the value (~) of the linkage coefficient (~)

being tested (H • e = e ) was obtained from the tables (e.g. from-1· _ -1

Horton 1955: Table 10). Lad scores for one large family (11

informative offspring), and, where required, for very small values

of Bl' were found using the formulae provided by Maynard Smith et

al. (1961).

Conventionally, if the sum of sequentially encountered lad

scores, ~(9l) ~ 3 then the null hypothesis of no linkage (!iO:~ =
0.5) is rejected. If ~(Bl) ~ -2 then the actual recombination

fraction, e , will be significantly greater than the tested value ~r

If the loci are linked, the best estimate of ~, 9' is obtained
...

where the value of Z(El)is maximised.

The lad scores obtained are given in Table 3.7. From the

observation of segregations within families, extremely close linkage

(~ z: 0) could be immediately excluded from most combinations of

loci. In the case of four pairs of loci there were no informative

matings. Only one informative mating was available concerning the

possibility of linkage between the two dipeptidase loci, PEPD2and

PEPD3,because the commonheterozygote for PEPD2interferes with

scoring at PEPD3(Section 3.1.2). For several pairs of the more

variable loci the possibility of linkage was excluded for values of
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8 of up to 0.10. As the tested value for g is increased,

disproportionately more information is required to reject the H-1
hypothesis. It was not possible to exclude the possibility of

close linkage for three pairs of loci with informative matings.

The possibility of selection, which may be gametic, affecting

certain alleles at the PEPD3 and GPI loci has been discussed above

(Section 3.2.1). The similarity of the effects upon segregation

ratios at each of these loci might be explained if the loci were in

linkage disequilibrium, posai.nly both with some other unknown locus,

and consequently indirectly subjected to the same selection.

Linkage disequilibrium is more likely to occur when loci are linked

(perhaps in a chromosomal inversion), and whether these loci are

linked is therefore of particular interest. It was concluded,

however, that these loci were not closely linked (Table 3.7:
....
~ > 0.10). The possibility of linkage disequilibria in these study

populations will be dealt with elsewhere (Chapter 5).

Techniques were established which allowed seven polymorphic

protein loci to be sampled non-destructively in two natural

populations of house sparrows. A detailed investigation of the

genetics of these loci was conducted for 126 complete families

containing 363 offspring.

There were a number of instances where offspring phenotypes

were judged to be genetically incompatible with their parents, but

there was general agreement with the model of inheritance proposed

for each locus. Segregations at four loci (6PGD, PEPD2, PEPD3 and

IDHC) agreed with a simple Mendelian model of codominant

62



inheritance. One locus (EST2) was interpreted as having three

codominant alleles and one or more recessive null alleles. Two loci

(PEPD3 and GP1) showed segregation distortion in all sex, site and

year classes. This distortion was not attributable to the

misinterpretation of gel patterns; possible causes involving the

operation of natural selection were discussed.

Linkage analyses allowed the possibility of close linkage to be

eliminated for 14 out of 21 pairs of loci, including the pair

showing distorted segregation ratios. Few informative matings were

observed for the remaining 7 locus pairs. No significant evidence

was obtained for linkage between any combination of loci.
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<H\PmR 4

'!HE BREEl)Th(; SYSTEM

4.1 Introduction

This chapter is concerned with behavioural and genetic aspects

of the breeding system of the house sparrow particularly as inferred

through the analysis of the genotypes of families by

electrophoresis. It is intended to also include an assessment of

the problems and the general applicability of the technique. In

particular, the number of parents responsible for producing a clutch

is discussed; consideration of the randomness or otherwise of mating

is made elsewhere.

A variety of studies of mating systems that have been made

using genetic markers have been reviewed in Section 1.3. In

particular, two studies of house sparrows were referred to. In one

of these (Manwell and Baker 1975), evidence was obtained to suggest

that intraspecific brood parasitism had occurred in the clutches of
two different females. The other (Cheke 1969) provided evidence for

the occurrence of successful extrabond copulation between a male

tree sparrow Passer montanus and a female tree sparrow which was

(unusually) mated to a male house sparrow. Mate guarding has been

described in many animals, particularly bird species (see Hoogland

and Sherman 1978 for examples), and the report of an apparently

successful extrabond copulation might suggest that mate surveillance

is limited in house sparrows.

Attempted extrabond copulations have been recorded in a variety

of avian species which otherwise appear to be monogamous,

particularly in the larger and more readily observable, colonial

ones (see Gladstone 1979 and \'licklerand Seibt 1983 for reviews).

64



Extrabond copulations are frequently referred to in terms of

'promiscuity' (e.g.Gladstone 1979, Stacey 1982), but 'promiscuity'

may be misleading as it more exactly refers to those mating systems

where mating occurs spontaneously and at random (Hittenberger 1979).

In a majority, at least, of these examples, attempted extrabond

copulations appear to be forced by males upon reluctant females

(e.g.Coombs 1960, Meanley 1955, Fujioka and Yamagishi 1981, Kushlan

1973, t-1acRoberts 1973, Herschkul 1982). Attempts by males to

fertilise extra females in addition to their mates are frequently

interpreted as an adaptive consequence of a lower requirement for

investment by males, as compared with females, in their individual

offspring (e.g.Beecher and Beecher 1979, Trivers 1972). It is not

known whether these attempts are successful in many species, but

they are known to achieve success in captive mallards (Burns et al.

1980). Successful extrapair copulations have also been recorded in

lesser snow geese (Mineau and Cooke 1979), and, following the

vasectomy of resident territorial males, in red-winged blackbirds

(Bray et al. 1975). This latter observation is perhaps the most

surprising as many workers have marked individual red-winged

blackbirds but never observed extrabond copulations, and only rarely

seen males enter the territories of other males. The result

illustrates the difficulties of observing such behaviour directly in

the wild, and the possibility of its unexpectedly widespread

occurrence.

In view particularly of the reports concerning house sparrows

referred to above, use was made of seven polymorphic enzyme loci to

investigate the possible occurrence of extrapair fertilisations or

intraspecific brood parasitism in a large numbers of complete

families in two study populations. Offspring phenotypes judged to
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be genetically incompatible with those of their parents are referred

to here as 'mismatches' (following Ashton 1980). The detection of

a mismatch in a family implies that one or both putative parents

have been 'excluded' from the possibility of pa rent.aqer the

detection is an 'exclusion' event. Exclusions may be made in either
of two ways:

(i) - an offspring possesses an allele absent from both

putative parents,

(ii) - an offspring lacks an allele it is expected to

possess from knowledge of the putative parents' genotypes.

Additionally, exclusions among putative siblings (usually due

to multiple paternity) may be deduced from the collective genotypes

of the sibship. \lhere dominance occurs, as for example in several

blood group systems, sibship examination might provide additional

exclusions in instances where offspring do otherwise, when

considered individually, appear to be compatible with their parent.sr

no extra exclusions will be obtained in this way when codominant

enzyme systems are used if both putative parents are tested.

Mismatches may occur as a consequence of either sample

identification or phenotype determination errors, or else as a

result of any of a number of behavioural events. For example, a

rare null allele in a parent might lead to an exclusion on the basis

of criterion (ii). It is with regard to possibilities of this sort

that European forensic experts insist on the use of criterion (i)

alone in human paternity cases (Salmon, Seger and Salmon 1980).

Behavioural events which might produce a mismatch include extrapair

copulations (or more generally 'extrabond' copulations, allowing for
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behaviourally identifiable polygamous breeding systems), inadvertent

or deliberate adoption of another's offspring, and mate changing.

The probability of detecting nonparentage, as demonstrated by a

mismatch, resulting from such behavioural events is described as the
exclusion probability.

4.1.1 Exclusi<n Prdlabilities

The probability of exclusion (~) for each marker locus depends
on the number of alleles and their frequencies at that locus. In

general, a locus is more useful the more alleles it has, and maximum

efficiency is theoretically achieved when the frequencies of each

allele at a locus are the same (Selvin 1980). The combined

exclusion probability ~ for n unlinked systems is given by the
fonnula:

i=n
PE = 1 - II(l-Pi)i=l

The exact calculation of an exclusion probability depends on

the precise nature of the events of which detection is possible.

For example, if the parentage of both parents is being tested then

the exclusion probability is calculated as the probability of

detection through mismatches of a randomly selected adult male-
female pair. If only paternity is in doubt, then only the

probability of exclusion for a randomly selected male adult is
considered. The exclusion of paternity or else of parentage are

the two probabilities of most interest~ where the gene frequencies

are similar in each sex, the probability for exclusion of a false

mother is expected to be the same as for a false father. In

general, nonpaternity and nonparentage are the possibilities
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considered as occurrence of wrong maternity but correct paternity,

in the putative pedigrees studied, is thought unlikely. The

probability of exclusion of a false parent will increase with the

number of affected offspring tested.

The calculation of an exclusion probability requires the

assumption that all genotypes are phenotypically identifiable. The
formulae in general use make the further assumption that the

populations from which families are to be tested are in Hardy-

Weinberg equilibrium. Jamieson (1965) provided a formula for the

probability of exclusion of paternity, using both exclusion criteria

described above, by systems with two or more codominant alleles.

This was extended to the general multiple offspring case by Gundel

and Reetz (1981), who made the further assumption that the entire

Li,tter would have been sired by the same male. Gundel and Reetz

also provided a formula for the probability of exclusion of

parentage in the multiple allele, single offspring case, an

extension of Nielsen's (1970) two-allele method. These formulae are

applied below in an attempt to investigate the frequency of
nonpaternity/ nonparentage in house sparrow clutches.

Foltz (198l~)has provided a maximum-likelihood method for the

estimation of nonpaternity, but this will not be applied here as the

required assumptions that all putative mothers are true mothers and

that all offspring in a clutch are sired by a single male may not be

fulfilled. Foltz also assumed that no errors were made in the

identification of individuals or in the handling and typing of

tissue samples. r10st workers recognise that such errors will

occur, and Ashton (1983) reduced his exclusion estimates

accordingly. Lathrop ~ al. (1983) recently presented a maximum-

likelihood model for the estimation of laboratory error but made the
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assumption of no 'field'error (i.e. in the attribution of offspring

to parents). As it is probably unreasonable to make such an

assumption in an ecological study of the kind described here, the

formal maximum-likelihood approach will not be applied7 a
consideration is made, however, of possible sources of error and

their consequences.

4.2 Methods

The study sites, sampling and electrophoretic methods and

enzyme polymorphisms have all been described above (Chapters 2 and

3). All complete putative families from which blood samples were

obtained were included in the analysis (see Table 4.1 for numbers
per site and year).

To avoid the possibility of investigator bias when scoring gels

all the blood samples were analysed 'blind'with respect to familial
relationships. The unique BTO ring number of a bird was used

throughout sample handling to reduce the possibility of

identification and labelling errors: blood samples were generally

processed in BTO number order (BTO rings were used sequentially and

parents were only rarely ringed at the same time as their

offspring) •

The genetic basis of different enzyme phenotypes has been

discussed in Chapter 3. Mismatches amongst progeny phenotypes were

detected as those isozyme patterns that appeared to be genetically

incompatible with the putative parents, using either of the criteria

for the detection of an exclusion as described above. Where

mismatches were detected the s~mple was retested from the original
sanple tube.

Of the seven loci for which all samples were screened during
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Table 4.1
Totals for offspring where both putative parents were sampled,
with numbers of clutches in parentheses.

Site Year Total

1980 1981 1982

Brackenhurst 4

(1)

49

(19)

62 115
(22) (42)

(36) (39)

242

(82)
Sutton Bonington 24 106 112

(8)

155
(56)

174
(63)

357

(124)

Combined 28



this study, only one, EST2, provided good evidence for the presence

of null alleles (see Chapter 3). Although exclusion probabilities

can be calculated for loci with nulls, as relatively little extra

data would be obtained EST2 was omitted from most of the

analysis. The remaining protein loci used together with adult gene

frequencies are summarised in Table 4.2. Allele frequencies at none

of the loci used in the analysis showed significant departure from

Hardy-Heinberg expectations (See Chapter 5).

To test the assumptions and validity of calculations concerning

probabilities of exclusion and expectations derived from them, a

simulation of the effects of non-paternity and non-parentage was

conducted by the random reallocation of firstly male parents, then

also female parents, to families, and counting mismatches which

would then result. This analysis was restricted to the 1981 data

for Sutton Bonington (37 families) but all families were included

for Brackenhurst (43 families). For the Brackenhurst data, where

separate years were included, parents were reallocated within year
classes only.

Any copulatory behaviour observed whilst watching

nestboxes was recorded in those instances where birds were either

known to be associated with a particular nestbox or else were

identifiable from colour rings.

4.3 Results

4.3.1 Observed Mismatdles

Mismatches were observed to occur in 29 clutches. Type (L)
exclusions occurred at all Loc i r the extra reliability of type (L)
exclusions has been referred to above. This category excludes the
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Table 4.2

Adult allele frequency estimates for protein loci used in parentage
analyses.

Allele Frequencies
Locus Site 2nA B e D E 0

6PGD SE 0.025 0.975 714
BR 0.033 0.967 486

PEPD3 SE 0.006 0.931 0.063 638
BR 0.016 0.930 0.002 0.052 442

PEPD2 SE 0.055 0.940 0.006 714
BR 0.045 0.955 486

IDEe SE 0.731 0.269 714BR 0.691 0.309 486
PEPT SE 0.003 0.029 0.027 0.937 0.004 714

BR 0.043 0.031 0.905 0.021 486
GPl SE 0.161 0.807 0.032 716BR 0.183 0.785 0.031 480

*EST2 SB 0.075 0.790 0.008 0.127 716BR 0.076 0.837 0.008 0.079 488

* Not used in most parentage analyses; frequencies calculated using
maximum - likelihood procedure (see Section 5.3.2).



possibility of being misled by the presence of null alleles, and

also guards against the results of other events such as non-

disjunction. In some mating combinations, e.g. where one or both

parents are heterozygous, an apparent type (ii) mismatch could not

resul t from a hidden parental null allele. Thus in population

studies (as opposed to the investigation of individual cases) where

the possibility of undetected null alleles is of greatest concern,

some exclusions made under criterion (Ii ) will be as reliable as

those made under criterion (i). This equally reliable kind of

exclusion, previously regarded as type (ii), is redefined here as

type (iii) and described in Table 4.3. The mismatch data obtained

here were checked for type (iii) exclusions, but none were present.

The mismatch data are presented in Table 4.4. These include

details of all clutches containing affected pulli, the loci at which

mismatches occurred, and the exclusion criteria. The frequencies

with which the different criteria were used to determine mismatches

are summarised in Table 4.5. It should be noted that as null

alleles are known to be frequent at the EST2 locus (see Chapter3),

mismatches were determined at that locus using criterion (L) only.

A comparison within each site of both the number of nestlings

mismatching and the number of clutches containing them (Table 4.6)

did not show any significant heterogeneity at any locus among years,

or else between sites for all years combined. The number of

mismatches at each locus is, however, small, but there are similarly

no significant differences in the total proportions of nestlings or

clutches mismatching when all loci are considered together.

In most clutches where mismatches were observed only the

combination of parental genotypes could be classified as

incompatible, but in a minority of cases a specific putative
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Table 4.3

Illustration of different mismatch categories for genotypes inferred
from phenotypes by making the assumption of codcminance , The
definitions assume the involvement of a single gene and no polymorphism
for gene number.

rti..ninun no.
alleles to
allcw type
(L) misnatdles

rtininum nurriJer
of alleles in
pqxllaticn

r1ating Exanple
type

Exanples of
mismatch type*

(i) (Lt ) (iii)

2 incross AAxAA AB 2

2 2-way AAxBB AC AA 3
outcross

2 backcross AAxAB AC BB 3

2 2-way ABxAB AC 3
intercross

3 3-way ABxCC AD AA AB,CC 4
outcross

3 3-way ABxBC AD M,AB, 4
intercross BC,CC

4 4-way ABxCD AE M,AB,BB 5
intercross CC,CD,DD

* Definitions:

Type (i) - Neither parent has allele.
(ii) - Expected parental allele lacking (null allele possible).

(iii) - Special case of (ii): not explicable by unseen null.
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Table 4.5
Summary of observed exclusion types (refer to Table 4.3). Only one
type was observed at any locus within a clutch.

(a) Each locus (clutches)

Site Exclusion Locus Total
type 6ffiD PEPD3 PEPD2 IDHC PEPr GPJ. EST2

BR (i)
(ii)

1 1 o o 1 2 8

2 3

3

3 9o o 1

SE (i)

(ii)

o 4 3 4 4 4 3 22

o o o 10 o 1 9

(b) Totals (clutches)

Site Exclusion criterion

(i) only (ii) only ~i) & (ii) total (i)
same clutch)

BR 6 5 1 7

SB 13 5 0 13

Total 10 20



Table 4.6
Numbers of mismatches observed at each locus, for each year and site.
The numbers of clutches containing the mismatches are shown ill parentheses.

Site Year *Locus Total Sample
6ron PEPD3 PEPD2 IDHC PE.PT GPI EST2 mismatches size

BR 1980 0 0 0 0 0 0 0 0 4
(1)

1981 0 2 0 1 0 5 2 8 44
(2) (4) (1) (5) (19)

1982 1 1 0 2 2 1 0 7 67
(1) (1) (1) (2) (1) (6) (22)

Total 1 3 0 3 2 6 2 15 115
(1) (3) (0) (2) (2) (5) (1) (11) (42 )

SE 1980 0 0 0 3 0 0 0 3 24
(1) (1) (7)

1981 0 0 0 6 1 3 0 10 108
(2) (1) (2) (5) (36)

1982 0 4 3 5 3 2 3 18 110
(3) (2) (4) (3) (2) (1) (12) (39)

Total 0 4
(0) (3)

3
(2)

14 4 5 3(7) (4) (4) (1) 31
(18)

242
(82)

* not necessarily a row total as some individuals will mismatch at
more than one locus.



parental genotype could be identified as such. Of course, if a

mismatch is due to non-parentage, the assigning of one parent as

incompatible does not confirm or rebut parentage by the other

parent. This information is also provided in Table 4.4, and

summarised below.

Table 4.7
Numbers of clutches and nestlings observed to mismatch with parents

of each sex.

------------------------------------------------------
Incx>mpatible parent

Male Female

Clutches containing mismatches

Nestlings mismatching

7

14

4

6

\'Jhilstthe number of clutches with incompatible male parents is

only marginally greater than the number for incompatible females,

the difference is more marked when the total number of mismatching

nestlings are considered, but still non-significant

(0.10 > £ > 0.05).

4.3.2 Exclusicn probabilities
The gene frequencies in the two study populations differed

significantly (see Chapter 5; adult gene frequencies are shown in
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Table 4.2). Consequently, calculations had to be conducted

separately for data concerning each study site. Exclusion

probabilities for parentage and for paternity in the single

offspring case were calculated using the formulae of Gundel and
Reetz (1981), which assume that the population is randomly mating.

Additionally, the probability of exclusion for paternity of clutches

was calculated for each of the fledging numbers encountered among

the families sampled here; these probabilities assume that all

fledglings were sired by the same father. The exclusion

probabili ties for each locus, together with cumulative

probabilities, are shown in Table 4.8.

Although there is no strong evidence for deviation from the

Hardy-Weinberg equilibrium, deviations of true probabilities of

exclusion from those calculated may occur if there are any instances

of mating between relatives (Salrronand Brocteur 1975).

4.3.3 Simulat.:iat Results

The simulation of non-parentage by the random allocation of

parents allows the testing of calculated exclusion probabilities.

Indeed, such an approach might be used to generate the

probabilities. This has the advantage of basing the probabilities

an the actual distribution of multiple locus genotypes of observed

putative parents and sibships; the assumptions concerning random

mating and the equality of gene frequencies between the sexes are

not then necessary. The disadvantages are primarily those of

sampling effects, the increased computation required and, with

respect to calculations concerning entire clutches, 'thepossibility

of inaccuracies due to putative sibships including non-sibs.

Putative sibships were kept together here. Any mUltiple
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Table 4.8

Calculated exclusion probabilities based on allele frequencies for
entire adult samples.

(a) Probability of excluding incorrectly ascribed pair.

(b) Probability of excluding an incorrect parent assuming one parent is
a true parent, for different numbers of offspring (s).

Probability Site
for: s PGD

LOCUS
PEPD3 PEPD2 IDHC PEPI' GPl Combined

(a)

(b)

BR 1 0.0562 0.1213 0.0801 0.2580 0.1610 0.3038 0.6694
S:B 1 0.0425 0.0966 0.1023 0.2432 0.1024 0.2302 0.5939

:BR 1 0.0304 0.0666 0.0453 0.2051 0.0888 0.2161 0.5094
2 0.0438 0.0937 0.0640 0.2494 0.1248 0.2751 0.6137
3 0.0506 0.1076 0.0736 0.2756 0.1430 0.3077 0.6627
4 0.0542 0.1149 0.0787 0.2940 0.1526 0.3277 0.6898
5 0.0561 0.1188 0.0815 0.3067 0.1576 0.3404 0.7057

S:B 1 0.0266 0.0545 0.0588 0.1881 0.0538 0.1492 0.4315
2 0.0329 0.0768 0.0821 0.2312 0.0770 0.1963 0.5326
3 0.0381 0.0882 0.0942 0.2563 0.0888 0.2215 0.5809
4 0.0408 0.0943 0.1008 0.2735 0.0948 0.2362 0.6076
5 0.0422 0.0977 0.1044 0.2851 0.0980 0.2450 0.6232



paternity/maternity among sibs might consequently bias estimates of

non-parentage per clutch. No evidence of this was obtained from the

genotypic combinations in sibships, and results concerning parent-

offspring trio comparisons should not be affected.
The genotypic frequencies of the subsets of adults being

considered were checked for agreement between the sexes and for

agreement with the remainder of the adults. There were no

significant differences between the sexes within a site and a

general agreement with the other adult data in each case. There

was no significant difference in heterozygosity between the groups.

Exclusion probabilities were recalculated for the subsets (Table

4.9) and found to be close to those previously estimated on the

basis of all sampled adults (Table 4.7).

The mismatches resulting from the simulation of non-paternity

and non-parentage are shown in Tables 4.10 and 4.11 together with

the expectations based upon exclusion probabilities calculated from

the entire adult samples. Expectations are not indicated for the

different clutCh sizes in the non-parentage case as the appropriate

formulae have not been devised. In the case of non-paternity it can

be seen that the number of simulated clutches containing mismatches

was just below the expectation for each data set. The number of

trio mismatches was much lower, and appeared to be significantly

different from expectation in each case. Trios are inevitably

grouped within sibships and it is not known what effect this lack of

independence will have upon the probabilities calculated when the

data are treated as independent. The combined probability,

however, would appear to be very small (Q = 11.48, E < 0.005), and

when the maximum-likelihood distribution resulting when only one

offspring per clutch is selected was compared with the expectations
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(a very inefficient test) the result for the combined data remained
significant (~ = 4.57, E < 0.05). (The maximum likelihood values

for single independent offspring were found by taking the mean

number of mismatches per individual within each clutch.) A similar

deficiency of mismatching trios occurred in the simulation of non-

parentage (Table 4.11). Consequently, the assumptions concerning

exclusion probabilities and their application here would be seen to

be in some respect inadequate.

The results obtained could be explained if the randomly

reallocated parental genotypes (considering all loci together) bore

a closer relationship to the actual parent than random expectation.

There is only slight evidence for any gametic phase disequilibria ,

however, and no analyses of higher order disequilibria (Heir 1979)

have been carried out. Whilst the reallocation of parents to

families might occasionally result in an incorrect putative parent

being replaced by the true parent, this will on average be very

improbable. The observed deficiency of mismatches might, however,

result if the samples contain groups of closely related individuals.

If this were the source of discrepancy from expectation then the

best estimate of an exclusion probability would depend very much on

the spatial distribution and behaviour of related birds.

4..3.4Multiple-locus Mismatdring

In an attempt to gain a further insight into the determination

of exclusions the distribution of mismatches among the 6 loci used

was investigated in both the actual and simulation data.

The probability of detecting an incorrect offspring that

exhibits a total of ~ mismatches out of ~ loci tested may be

determined as the sum for all combinations of loci of:
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{probability of observing no mismatches at (!:! - !_!) loci combined} x

{probability of observing mismatches at all remaining M loci

ccrnbi.ned ] •

Hence, the discrete probability distribution for the number of

loci at which an individual incorrect offspring is expected to

mismatch is given by the terms of the series:

i=N
II(1-Pi) ,

i=1

j=N i=N
L«I1(1-Pi»Pj) ,
j=1 i=1

i;l!j

k=N j=N i=N
L L«I1(1-Pi»PjPk) ,
k=1 j=1 i=1

jek i;l!j
itk

l=N k=N j=N i=N
L L L« I1(1-Pi»PlkP1) ,
1=1 k=1 j=1 i=1

k-L jek i;l!j
i;l!k
i;l!l

m=N l=N k=N j=N i=N
L L L L(CIIC1-Pi»PjPkP1Pm)'
m=1 1=1 k=1 j=1 i=1

locm k=L jock itj
i;l!k
i;l!l
i;l!m

n=N m=N l=N k=N j=N i=N i=N
L L L L L(CI1(1-Pi»PjPkP1PmPn) , ••••• ,II Pi
n=1 m=1 1=1 k=1 j=1 i=1 i=1

men L-m koc1 jock i;l!j
i;l!k
ii1
iim
iin

where N is the total number of loci and ~i is the probability of
exclusion at the ith locus. Appropriate terms for the case where
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N = 6, as in this analysis, are shown in full.

TIleexpected proport.ions of each mismatch class were calculated

for exclusion probabilities based on the simulation subset. From

Figure 4.1, it can be seen that the observed and expected
distributions are rather different, with a large excess of non-

excluded offspring in 30f 4 cases. (Note that the comparisons

involving low expecteds were excluded from the goodness of fit G

tests - refer to Section 5.2.) The allowance which should be made

for non-independence within clutches, as referred to above, when

interpreting goodness of fit ~-statistics is again unknown. TIleraw

values for ~ are, however, very large and are in each case accounted

for principally by the excess of non-exclusions. If, as previously,

allowance for non-independence is made by taking maximum-likelihood

values for the distribution that would result by randomly selecting

one offspring per clutch, then the non-exclusions are found to

persist in every case, but only significantly in two of four (Table

4.12). However, when only those nestlings which contain mismatches

are considered and expected distributions calculated (Figure 4.2),

it can be seen that there is no consistent deviation from

expectation. Without allowance for non-independence, 2 of the 4 G

values are large, but each is due to opposite deviations from

expectation. Hhen, as before, the rather inefficient maximum-

likelihood estimates for independent cases are considered (Table

4.13), none of the observed distributions deviates significantly

from expectation.

Hence the number of mismatches occurring in an individual

excluded case is, on average, close to expectation. Thus it appears

that the deficiency of exclusions in the simulation results is due

to an excess of totally non-excluded cases, rather than to a general
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Figure 4.1
Comparison of observed and expected mismatches per individual (for 6 loci)
in simulations of (a) nonpaternity and (b) nonparentage, for all nestlings
in subsamples: (i) SB 1981, (i.i ) BR 1980-82. 0 = observed, 0~expected.
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Fiqure 4.2
Comparison of observed and expected mismatches per individual (for 6 loci)
in simulations of (n) nonpaternity and (b) nonparentage, for nestlings with
at Least,one mismntch: (i).sB 1981 subsarnp te, (ii) BR 1980-82 subsample.

t2d = observed, D= expected.
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deficiency of mismatches spread uniformly amongst cases. This

result could again be explained by the occurrence of related birds

within the randomly reallocated families.

4.3.5 DistrihItiCllS of Actual UismatChes.

In the simulation described above the probability of

reallocated parents being true parents was extremely low. Hence

the simulated putative families were known to be incorrect and the

numbers of the different categories of non-exclusion and exclusion

could all be compared with expectation. with regard to the data

collected for actual putative families the absolute number of

incorrect families is, of course, not known directly and the various

expected distributions can be estimated only from the observed

mismatches.

(a) Distribution Amongst Loci.

The frequency of mismatches observed using a particular marker
locus is expected to equal the exclusion probability for that locus.

Which of the calculated probabilities will be more appropriate

depends upon the nature of the exclusion events (see above). The

possible inadequacies of calculated exclusion probabilities and the

assumptions underlying them have been referred to already.

Whatever might be the exact values for the probabilities, their

relative values should reflect those calculated. If I is the

proportion of actually incorrect putative offspring in a tested

sample then the proportion of mismatches expected to be observed at

locus i is given by ~i = IPi, where ~i is the probability of

exclusion at locus i. Thus a regression of ~i against ~i should
provide a measure of the agreement among loci of estimates of I (I)

78



and, from the gradient, an overall value for I according to the

assumptions on which the particular exclusion probabilities used

were based.
Regressions were therefore performed for the data from each

site using exclusion probabilities based separately on hypotheses of

non-parentage and non-paternity. Regressions were also performed

for data from both sites combined, an analysis relying on the

assumption that! will have a similar value at both sites. The

results are given in Table 4.14, where it can be seen that the

gradients are significant in every case and especially so

(p = 0.001) for the combined data (Figures 4.3 and 4.4). The

intercepts are always extremely close to zero and non-significant,

agreeing with the expectation of a regression of the form ~ = bX (or

t-\ = IPi). Thus there is good agreement among the marker loci
concerning the value of I with the estimate ! depending on

assumptions concerning the origin of exclusions.

\Jithout correction for any errors (see Section 4.4) the 95%
A

confidence estimates for !, based on the combined samples, would

appear to lie between 9.9-24.1% if incorrect attribution of both

parents is the source of exclusions and between 12.1-29.7% if it is

the incorrect attribution of a single parent. Again, there is some

lack of independence amongst the data (on average for each locus

considered separately, the mean number of mismatches contributed to

the analysis by a clutch containing mismatches was 1.36).

Allowance for this would extend the confidence limits for I.
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(b) Distribution of Exclusions Among Clutch Sizes.

It is desirable to know whether only a proportion of a clutch

is incorrect or whether the entire clutch is affected. For

example, if mismatches are a consequence of egg-dumping then only a

proportion of the clutch is expected to be affected, whilst if

mismatches result from extrapair copUlations then an entire clutch
might be affected.

The proportion of a clutch that is expected to be excluded in

clutches containing at least one exclusion depends on the clutch

si.zer these expected values are known for the case of exclusions

resulting from non-paternity, providing that it is assumed that all

offspring are sired by the same male (Table 4.10). It was found

that the number of exclusions within clutches was in all comparisons

lower than expected, and significantly so (E < 0.05) for clutch

sizes of 3 or more at Sutton Bonington and 4 at Brackenhurst (Table
4.15) .

The mean values for different clutch sizes at fledging
indicate that the proportion of incorrect offspring types decreases

with clutch size and the ratio of observed to expected also

decreases (Table 4.16). In the simulations described above, where

all offspring per clutch would be incorrect with respect to

paternity, it was found that a lower than expected overall detection

rate did not result in a decreased number of exclusions within those

clutches actually excluded. Thus the results here suggest that for

Clutches actually observed to contain mismatches only a proportion

of the offspring within a putative sibship will, on average, be

incorrect, and that this proportion is usually smaller in larger

Clutches. Indeed, there is only a slight increase in the mean

number of observed mismatches with clutch size (actually none at
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Table 4.16

The proportion of mismatching offspring per clutch containing mismatches,
relative to the number expected if one putative parent were incorrect
for the entire clutch, for clutches of different size.

Site Clutch size *
2 3 4

BR
0.93 0.75 0.63

0.80 0.58 0.45

* at fledging



Brackenhurst) and for all clutches of 3 or 4 (most of those

affected) there is a mode of 1 excluded offspring.

The· expected distribution for the number of exclusions within

excluded clutches of a particular size is unknown - it is certainly
not a simple binomial - but the expected means calculated from

exclusion probabilities for paternity on the assumption that the

entire clutch is affected would require a mode of at least 2
exclusions in all cases, even where only two offspring are

incorrect. (If both parents were incorrect then an even higher

mode would be expected.) Reference to Table 4.4, however, reveals

that the number of exclusions per excluded clutch varies widely,

with several instances where the entire clutch is affected.

Therefore, there would appear to be many instances where exclusions

are the result of single incorrect offspring within clutches (as

indicated by a mode of one mismatch), but others where several or

all of the clutch are affected (as evidenced by individual cases and

means of value exceeding 1).

4.3.6 Field ObservatialS

Any data concerning the direct observation of copulations

and/or egg laying are obviously of relevance to this analysis. Few

copulations were actually observed where both individuals could be

positively identified. As clutches were usually examined at 2 or 4

day intervals, only a proportion of any eggs that were 'dumped'

would be detectable. Fluctuations from a presumed laying schedule

of one egg per day were only occasionally observed and explicable by

dumping. These observations will be discussed further belON.
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4.4 Discussicn

4.4.1 Are Mismatdles Error-based or Behaviour-based?

Ashton (1981) distinguished between 'error-based' and

'behaviour-based' mismatches, Le. those resulting from errors in

sample recording, handling and gel scoring, and those resulting

directly from the behaviour of the tested individual. Sudherrors

will, of course, increase estimates of non-parentage. That errors

will occur in studies of this kind has been widely acknowledged.

For example, the requirementof someforensic investigators in human

paternity cases of demonstrating particular classes of exclusion

and/or at least two exclusions per case has already been referred

to. For population studies in humansat least two studies have

attempted to estimate the rate of error-based mismatches (Ashton

1980, Lathrop et al. 1983),whilst the others referred to abovehave

not. None of the studies of animal populations using

electrophoretic markers for parentage analyses (see above) appear to

have allowed for the possibility or effects of errors.

Testing for Error-basedMismatches

Errors fall into two principal categories: field and

laboratory. Field errors are those which involve the mis-

identification of individuals and mislabelling of tissue samples~

they may effect both single and double parent comparisons.

Dependingon the assumptionsmadeconcerningpossible parentage the

occurrence of field errors maynot be quantifiable as any resulting

mismatches will mimic possible behavioural events. Laboratory

errors, however, are expected to result in mismatchesat individual

tested loci only, as marker loci are generally scored and recorded
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independently. The predicted unique probability distribution for

the number of loci expected to mismatch for incorrect parent-

offspring comparisons has been elucidated here (see above), and may

be used to estimate laboratory errors by comparison with the

observed distribution. A similar approach has been used by Ashton
(1981), but using a Poisson expected distribution (which fitted

reasonably well with the observed distribution for his control

sample, but using many more loci than here). Intuitively, if

laboratory errors occur then only one locus is likely to be affected

for any particular individual. Hence Foltz (1981), in his

assessment of extrapair copulations in Peromyscus polionotus was

reassured by the occurrence of cases having two loci incompatible,

but unfortunately presents insufficient data to allow a check with

the expected occurrence of multiple exclusions, and otherwise

assumes no laboratory error to have occurred.

In the present study the 46 observed incompatible trios

included only 4 instances of double mismatches. Expected

distributions (see Fig. 4.2) are shown for comparison in Table 4.17.

For expectations based upon single parent incompatibilities, the

deficiency of multiple mismatches within sites was not significant,

but this probably reflected the small sample sizes as combining the

data produced a very significant result (~ = 8.1, £ < 0.005). The

deficiency with respect to expecteds based upon double parent

incompatibilities was inevitably larger, and significant even within

sites.

Thus it must be concluded that laboratory errors have occurred

here. This would appear to have happened despite stringent

handling and checking procedures. As described above (Section 4.2)

the genotypes of individuals within trios which mismatched were
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Table 4.17

Nuniber of mismatches per excluded trio, rn, canpared with the
distribution expected for (i) non-paternity and (ii) non-parentage.
Goodness of fit has been estimated by pooling the classes of two or
nore mismatches.

Site m Goodness of fit

1 2 3 4

SB Observed 26 2 0 0

Expected (i) 22.6 4.8 0.5 0.0 n.s.
Expected (ii) 19.5 7.2 1.3 0.1 G1 = 9.13, p < 0.05

BR Observed 12 1 0 0

Expected (i) 9.9 2.7 0.4 0.0 n.s.
Expected (ii) 8.3 3.8 0.8 0.1 G 5.75, P < 0.011



rechecked from the original sample tube in which blood samples were

first collected. If these samples were misidentified at the time

of collection then no deficiency of multiple exclusions would result

as all loci should be affected. Thus the genetic interpretation of

actual, repeatable gel patterns for particular loci in some

individual samples would appear to be questionable. In addition to

the distinctive and frequently reversible kinds of modification
already discussed, the possibility of unnoticed modifications

resulting from the actions of the gene products of other, possibly

variable, loci cannot be ruled out. In conclusion, whilst it must

be accepted that laboratory errors have occurred, the source of

these errors remains unknown, but post-translational modification is

suggested as the least unlikely. Potential sources of laboratory

error and the reliability of field techniques used are discussed

further below.

4.4.2 Scxlrces of I.ahara.tory Error

A fuller account of the enzyme systems and interpretation of

gel patterns is given elsewhere (Chapter 3). Events whose

incorrect genetic interpretation could result in mismatches include

unidentified null alleles, mutation, unusual recombination events,

unidentified gene number polymorphisms and post-translational

modifications to the visualised proteins.

Studies of Drosophila (Voelker et ~l. 1980, Langley et al.

1981) and the conveniently haploid, meiotically derived

megametophytes of Pinus spp. (Allendorf, Knudsen and Blake 1982)

suggest that many, if not most, electrophoretic loci will have some

null alleles (with mean frequency of the order of 0.003). It has

been shown that unidentified null alleles could not have been the
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cause of most exclusions (Section 4.3.1 and Table 4.5). During

this study direct evidence for the presence of null alleles was

obtained only at the EST2 locus which was for that reason largely

omitted. from the mismatch analyses described.. No null homozygotes
no

were observed at any of the other loci and 1>ignificant deviation

from Hardy Weinberg expectations made on the assumption of no null

alleles was found (Chapter 5).

The possibility that null alleles may nevertheless account for

a significant proportion of mismatches must, however, be considered.

The theoretical maximum frequency (with 95% confidence) of a null

allele that might remain undetected through the non-appearance of

null homozygotes, assuming no selection, can be estimated and in the

samples taken here might in an extreme case approach 7-8% for a

single locus. Smith (1970) has shown that null alleles will in

general cause significant deviation from Hardy-Weinberg expectation

only when they are frequent enough for null homozygotes to occur

(assuming there is no selection against them). At such a high
frequency the resulting excess of incorrectly classified homozygotes

would, however, be suspiciously large even if not statistically

significant. Null alleles are particularly characteristic of

esterase loci. There is no reason to expect the overall frequency

of nulls to be substantially different from that observed in other

organisms. A generalised formula for the frequency of exclusions

(~x)expected to result from the presence of hidden null alleles has
been derived (Table 4.18) as follows:
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n n

i=l
j=l
i;fj

k=l
k;fi

k;fj

where p is the frequency of the null allele and p. is the
"'""0 -1

frequency at the ith of n detectable alleles. For any particular

value of N, P is maximised when the known alleles are at equal-X
frequency. The value of P has therefore been estimated for the-X
most intermediate allele frequencies observed here. Taking p

"'""0
=

0.005 as a conservative high estimate for the mean null frequency,

the maximumvalue for P obtained was 0.16% (for both IDHCand GPI-x
frequencies at Brackenhurst). p may of course exceed 0.005 for

"'""0

any individual locus, but even if EO is increased to 0.01 the value

of ~x (0.31%) remains small.

loci was 2-5% of tested trios (Figure 4.3). Therefore it may be

The rate of exclusions at the same

concluded that unidentified null alleles were not a significant

cause of error-based mismatches in this study.

Of the other possible causes of error-based mismatches,

mutation and rare chromosomal rearrangements are even less likely

than concealed nulls. Nei (1975) estimates the frequency of

mutations that will result in electrophoretically distinguishable
to be -6 -7

gene productslbetween 10 and 10 per locus per year, while

chromosomal events which might do the same are believed to occur at

-5a frequency of about 10 per locus per year. Gene number

polymorphisms have been documented for the haemoglobin alpha chain

locus in humans (Rucknagel and Hinter 1974) and an amylase locus in

the bank vole, Clethrionomys glareola (Nielsen 1977). It would
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Table 4.18
Derivation of the probability of the non-detection of a null allele
class leading to the wrongful exclusion of a parent-offspring trio.

Hating
type

Generalised
exanples*

Expected Accidentally
frequency* excluded

offspring
genotypes

Pro{x>rtion Resulting
excluded prcbability

of exclusicn

n
3-way A.A x A.A. 2p Lp~P. A.A
intercross 1 0 1 J 0i=l ~ J J 0

j=l

n
A.A x A.A 2p~{;tiPj A.A ,
1 0 J 0 A:Ao

j=l J 0

n
3-way A.A x A.A. 2p Lp.P. A.A
outcross 1 0 J J 0i=l 1 J J 0

j=l

n
4-way A.A x A.~ 2p2Lp.p. A.A ,
outcross 1 0 J 0i=l 1 J ~A~j=l

k=l

1/4
n

(p Lp~P. )/20i=l 1 J
j=l

1/2
n

P~~PiPJ'1=1
j=l

1/2
n

po?:PiP2J.1=1
j=l

n

1/2 Po?: PiPJ'!\~=l
j=l
k=l

'IUI'AL

n n

p Lp.P.(3P./2+P +LPk)0i=l ~ J 1 0 k=l
j=l k#i
i#j k#j

For the special case of 2 alleles (excluding nUlls), this reduces
to:

[pqs (3 + s)} /2

where s is the frequency of the null allele class.

* A = null allele: p = null allele frequency: n = number of
o 0

alleles (excluding nulls) for the locus: i#j#k.



appear unlikely that such a mechanism could explain mismatches at
even one of the loci used, and there was certainly no direct

evidence (in the form of individuals with three or more allozymes

from a single locus) for this type of polymorphism. The same

arguments would apply to the possibility of variable duplicated
loci.

There remains the possibility of post-translational
modification of isozymes, and this would seem to be the most likely

explanation of the mismatches. Observed modifications, and the

methods used in some instances to rectify them, have been previously

discussed with respect to the loci investigated in this study

(Chapter 3).

Some reversible post-translational modification of enzymes was

identified at the peptidase and esterase loci and samples were

treated appropriately (Chapters 2 and 3). The possibility that some

unidentified forms of modification affected individual samples

cannot be excluded, however, and would seem the most likely

explanation for the excess mismatches. No breeding data could,

unfortunately, be obtained from isolated pairs: pairs kept in cages

in the laboratory could not be induced to breed. House sparrows

will breed in captivity if kept in large aviaries (Washington 1973,

Mitchell and Hayes 1973) but this was not possible during this

study. The deviations from expected Hendelian inheritance that

might result from modification of allozymes or the presence of null

alleles that would be required to produce the observed levels of

mismatches would in any case be low; very large breeding colonies

would therefore be required to ensure their detection.
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4.4.3 Reliability of Field Techniques

The effects of errors made in the field will generally,

unfortunately, be indistinguishable from those of the sampled
individuals' behaviour. Procedures used in the field were designed
to minimise the opportunities for mistakes to be made and are

described elsewhere (Chapter 2). It is important to check, as far

as possible, that no field errors have occurred. The main sources

of errors will be the mislabelling of samples and the

misidentification of putative parents. Considering the former,

rings were used sequentially and tubes labelled with the ring

numbers. It is to be expected, therefore, that mismatches occurring

due to mislabelling would be clumped within time periods and/or

sites, but there was no evidence of this (Section 4.3.1).

The procedures used to identify parents, and if necessary trap

them, have been described (Chapter 2). As a check that the

potentially less reliable procedures for ascertaining the identity

of putative parents will not have been a source of mismatches and
hence exclusions, a comparison of the methods has been made between

clutches that contained mismatches and those that did not. The

numbers of parents identified by the different methods are shown in

Table 4.19, where it can be clearly seen that there was no

difference between the two groups. As it was not possible to

determine specifically which mismatches were not due to laboratory

error (with the exception perhaps of the few clutches with

mismatches at more than one locus), it was unfortunately not

possible to restrict this comparison of the reliability of the

method of identification to the group for which the possibility of

field errors was of most significance.
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Table 4.19

A oomparison of the reliability of the identification of the parents
of a clutch between clutches with and without mismatches.

Three categories are used for the reliability of parental
identification:
(i) High. ~ parents were positively identified on two or more
feeding visits to the clutch or, if only recorded on one visit, were
also identified at an earlier or later clutch at the same nest.
(ii) Intermediate. Identification was made either on the basis of:

(a) one feeding visit,
or (b) other activity at the nest as well as at a later or earlier

clutch at the same nest.
(iii) Low. Identification was due to activities at the nest other
than feeding, or by trapping inside the nestoox.

Reliability cat:e<pry
of least certain
parent of a clutch

1
NtuDer of clutches per category

Misnatches observed No misnatches

m > 1 m=l m=O

High reliability
Intermediate reliability
Low reliability

2
2
1

9
10
10

33
27
34

~ = maxim urnnumber, for a clutch, of mismatches per excluded trio.



4.4.4 Behavian--based Mismatches: Estimaticn of Incorrect Parentage

The first approach that may be used to quantify those

mismatches due to laboratory error is to find that value of actual
mismatches (Le. not due to laboratory error) that would be expected

to result in the observed number of multiple mismatches. This
approach was used by Ashton (1980) where a value of maximum

likelihood was found as that producing the minimum X2 in a goodness-
of-fi t test. In this study only 4 cases of exclusion at more than
one locus were observed. In a further clutch two sibs were

excluded at different loci, but the assumption that all offspring

are attributable to a single mating is not being made here, even

though there was no direct evidence for multiple mating (through,

for example, the detection of three or more maternal alleles). One

of the 4 cases included an exclusion at the EST2 locus, which was

not included in the calculation of mismatches, and was therefore

excluded from the analysis here. Reference to Table 4.17 shows that

multiple mismatches totalled only about 25% to 35% of expectation,

depending an whether the actual mismatches would be due to single

parent or double parent inconsistencies. These give estimates for

the proportion of incorrectly excluded individuals among the

observed exclusions of 34% and 26% respectively. As these estimates

are based an extrapolation from only 3 multiple mismatches they must

have a very low degree of reliability. Further, they depend upon

expected distributions which, though appearing appropriate on

average, showed some deviation from those observed in the simulation

study ( Section 4.3.4 and Fig. 4.2).

If these estimates were correct, they would lead to estimates

for the rate of behaviour-based mismatches of about 5.8% and 5.4%,

depending an whether one or both parents are incorrect.
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4.4.5 Intraspecific Brood Parasitism

If both parents were incorrect, then the implication would be

that a non-parental egg had been 'dumped' in the nest. On the

basis of studies involving daily checks of nestboxes, Summers-Smith

(1963) and Seel (1968a) concluded that house sparrows lay their

eggs on consecutive days, early in the morning. Other workers

(e.g. Dawson 1972, Sappington 1975) have not disagreed with this.

It was therefore not considered necessary to check boxes daily

during egg~laying in this study (see Chapter 2). It is possible
IV'\

that birds my study populations behaved differently from those
1\

studied elsewhere, but the frequency of checking was high enough to

make the non-detection of the appearance of more than one egg per

day on at least a proport.Lon of those occasions highly unlikely. In

fact, on two occasions three eggs were recorded as appearing in two

days, but both referred to the start of clutches and these events

were interpreted as being due to the non-det.ect.ion of the first egg

laid. The first egg is frequently laid before completion of the

nest and may be easily concealed by loose nesting materiaL

Complete families were not obtained in either of these nests.

There are, of course, ways in which egg-dumping might not be

accompanied by the appearance of extra eggs. For example, some

avian species are known to be indeterminate layers, such that they

lay eggs until the clutdh attains a particular total size regardless

of any losses or additions which occur during the laying period.

Others are referred to as determinate layers, since they lay a

number of eggs determined by the number of follicles that start to

develop in advance of egg laying (see Klomp 1970 for review). If

the house sparrow were an indeterminate layer, then some dumpedeggs

would go unnoticed as the female would lay fewer eggs as a
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consequence. Evidence concerning whether house sparrows are

determinate or indeterminate layers is conflicting. ~litschi (1935)

reported egg removal in this species leading to the laying of up to

50 eggs. Schifferli (1976) cited Kreymborg(1911) and Puhlmann

(1914) whodescribed deliberate egg removal to induce continuous

laying as a methodused to kill sparrows, but was himself unable to

induce continuous laying in this way, and suggested that the earlier

results were more likely to be due to the laying of repeat clutches.

Of more interest here is the effect of egg addition~ for 10 nests in

which Schifferli added 4 eggs to the first laid there was no

apparent reduction in the meantotal numberlaid, though someclutch

sizes were small. Interestingly, no desertions resulted, which I

take to imply that females do not discriminate their owneggs, but

irregular laying (extremely unusual in this species) occurred in two

instances.

Alternatively, a parasitic female might removean egg at the

time of Layi.nqr this is a well-documentedbehaviour in interspecific

parasites (e.g. the Europeancuckoo, Cuculus canorus, Wyllie 1981)

and has been shownto occur frequently (by markingeggs: Evans1980)

during intraspecific parasitism by starlings. Brokeneggs were

occasionally found on the ground near to sparrow nests during the

egg laying period, even though nonewere knownto have disappeared

fromnearby nests. Removedeggs might in any case be expected to be

carried well away from the nest, either by the parasite or else by

an appropriate scavenger (such as the starling, commonlynesting

close to sparrows). Whenclutches were deserted, for whatever

reason, eggs frequently disappeared without trace. Schifferli

(1976)specifically mentions that "no trace of broken eggs could be

found in or under the nest-boxes" following desertion due to the
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deliberate removal of breeding males.

The size, shape, patterning and colouration of eggs varies

markedly, roth within and between females (Dawson1972and personal

observation). The variations observed within clutches are an

occasional pronounced shape difference of the first egg of the

season (longer and narrower), or pronounced pattern differences,

manifested as a paler background colour and larger, less densely

distributed spotting, frequently of the last egg of the clutch.

This latter phenomenonhas been referred to previously (Seel 1968a),

and has been frequently recorded in a range of other species (see

Yom-Tov1980). Thus despite differences between females, a

sUbjective assessment of egg differences wouldhave been inadequate

to quantify any dumping and only a small sample of clutches was

examinedclosely.

If egg dumping associated with egg removal were to occur

commonly(Le. at a frequency affecting up to 5%of eggs) then it is

surprising that this behaviour has not been reported, to my

knowledge, by any of the many people who have worked on this

species. Theonly published claims concerning dumpingin the house

sparrow were made by r1anwell and Baker (1975) who recorded two

instances of clutches containing eggs which, on the basis of their

interpretation of the inheritance of egg albumin proteins, could not

have been laid by a single female. Their observation was not,

unfortunately, accompanied by ecological data and it remains

possible that two females were sharing a nest in each case r such

polygynous behaviour within a nest has been reported previously

although it is generally rare (Lowther1979£). On balance, it would

appear unlikely that the suggested level of behaviour-based

mismatchescould be accounted for by intraspecific brood parasitism.
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4.4.6 Noopaternity

If behavioural events resulting in nonpaternity are the sole

source of these mismatches, then those mismatches attributable to

incorrect female parentage (see Section 4.3.1) will be due to

laboratory error. When a particular parent was incorrect, it was

more often the male, though the difference did not achieve

statistical significance (Section 4.3.1). This suggestion of a

difference might be taken as evidence that behaviour-based

mismatches result more often from behavioural events involving non-

parental males than females. For each laboratory error that

excludes a female parent, one excluding a male parent is also

expected to occur. Thus for the data presented here (Table 4.7), 8

of 11 cases where attribution of nonpaternity/nonmaternity was made

might be expected to be due to laboratory error, suggesting a rate

of laboratory error of 73%. This estimate, even if the assumptions

on which it is based are accepted, will of course be extremely

unreliable because of the small number of available exclusions
involving a specific parent. It is, however, close to the estimate

of 66% derived from the frequency of multiple mismatches (see

above). Thus a frequency of behaviour-based mismatches of about

5%, in this case involving non-parental males only, is again
suggested.

Two kinds of event might produce this result: extrapair

copulations and unrecognized mate change between egg-laying and the

time when parentage was recorded. Such mate Change is thought to

be unlikely to account for the results for two reasons. First, with

regard to the response of a new male taking over a nest already

containing a clutch, there is no evidence to suggest that incumbent

males are ever ousted, and so their replacement is more likely to be
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due to their death (Summers-Smith 1963). In a male removal

experiment involving 8 nests, Schifferli (1976) found that most

nests failed, but hatching occurred at one where a new male was

observed. Second, combining data from both sites, the proportion

of males knownto remain from previous clutches of the sameyear as

compared with those known to be different was much the same for

excluded and non-excluded clutches:

Table 4.20

The number of clutches in which the male parent was knownto have

remained from a previous clutch at the same nest comparedwith the

nurrber in which it was known to have changed.

Male same as in

previocs clutdl

Male different from

previous clutdl

Clutches with mismatches

Clutches without mismatches

6

22

3

6

Weare left, then, with a suggestion of the occurrence of

extra-bond copulations. As pointed out above (Section 4.3.6) few

observed copulations in this study took place between positively

identified birds. The one instance of copulation of a knownmale

with an (unmarked) non-mate could conceivably have been a

polygynous, rather than an extra-bond, copulation. Polygyny has

been observed occasionally in this species and is believed to result
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from temporary shortages of males and/or nest sites (Summers-Smith

1958, 1963, Lowther 1979c). Of the studies involving markedhouse

sparrows (e.g. North 1968, Sappington 1975, Summers-Smith 1963),

only Summers-Smith mentions observing copulations: no ext.ra=bond

copulations were seen. Summers-Smith's study was carried out in a

suburban area, where the densities of sparrows and their nests

during the breeding season was far lower than here. Onemight

predict that the occurrence of extrapair copulations will be

density-dependent (either with respect to density of nests or of

adult males); a difference between populations would not in that

case be unexpected.

It would be difficult to estimate the effect of density from

the data presented here; all nest-boxes within each site were

probably within the foraging range of all birds at each site. Nest

density is difficult to assess as nests other than those in

nestboxes wouldhave to be included and as boxes tend to be clumped

(aroundparticular buildings) density becomesdifficult to quantify.

Further, where nestboxes had lower occupancyrates and nest density

was obviously lower the numbersof successful nests are too small to

allow comparison. There will be temporal as well as spatial

density differences however, and at times when nest activity is

reduced (and hence active nest density is reduced), the density of

adult males not directly involved in nesting will, conversely,

increase. The first clutch of the season is well known as the time

of the greatest nesting activity in the population and concludes

with fledging in June. No difference in the occurrence of

mismatcheswas foundbetweenany of the monthsin which fledging was

observed.

A consideration of other ecological aspects was also madein an
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attempt to gain some insight into the occurrence of mismatches,
whatever their origin might be. For example, it has been shown

that male Barbary doves, Streptopelia risoria, can discriminate

between those females that have and those that have not been exposed

to a different male (Erickson and Zenone 1976, 1978; Zenone, Sims

and Erickson 1979; Rissman 1983). This is apparently enabled by

behavioural changes in the female following the induction of ovarian
steroid secretions by previous exposure to a displaying male. The

discriminating ability of males is interpreted as a method of

avoiding being cuckolded, but little is known at present of the

ability of males to detect infidelity on the part of mated females.

An experiment involving the separation of mated pairs of ~ risoria

for various time periods failed to detect any differences in the

behaviour of the male towards his mate whether or not the female had

spent the intervening time period with a different male (Rissman

1983). Rissman suggested that the temporarily separated males were

more 'cautious' towards their mates following separation, but it is
unclear what adaptive value 'caution' might have. If a male's

potential paternity is in doubt then one might predict that he

should behave in a manner to maximise his personal chances of

paternity, either by copulating with the returning mate or else by

abandoning the initiated clutch. If house sparrow males have any

cuckold detecting ability then their parental care behaviour might

well change as a consequence, leading to reduced breeding success.

Of course, their behaviour in such instances might be to desert or

drive away the female, in which case, even though a female may raise

a brood alone, they will not form part of the sample considered

here. A oomparison of breeding success between clutches having and

not having mismatches is confounded by the effect increased breeding
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success will have upon increasing the probability of discovering a

mislTB.tch.

4.5 Ca1clusions

Although many mismatches were observed, a careful examination

of the data has revealed a number of problems which confound their

interpretation. The most parsimonious interpretation is that

nonpaternity occurred amongst nestlings at the two study sites at a

rate of about 6%. This may not be an excessive rate for a

monogamous species: a higher rate in a mammal species regarded as

monogamous has been described as surprisingly low (Foltz 1981~).

The finding that calculated multiple-locus exclusion probabilities

over-estimated the rate of exclusion in simulations of nonparentage,

which used the genotypes of sibships that were actually observed,

was one of the unexpected problems. The actual probability of

exclusion depends upon the distribution of multiple locus genotypes,
which appeared to be nonrandom in the two study populations, though

there was very little evidence for digenic disequilibria in these

populations (Chapter 5). The use of simulations of the type

introduced here to test the applicability of estimated exclusion

probabilities would appear to be a desirable feature of this kind of

study. The testing of the distribution of the number of mismatches

per individual with expectation would appear to be essential: in the

few studies, including this one, where this has been done this has

led to the discovery of errors. If the possibility of errors is

ignored then estimates of nonparentage are liable to be seriously

flawed.
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357 nestlings were sampled for 7 polymorphic protein loci in

124 clutches where both putative parents were also sampled. 12.9%

of the nestling genotypes were interpreted as being genetically
incompatible with those of their parents. Exclusion probabilities

were calculated as 43-51% for nonpaternity and 59-67% for

nonparentage. The applicability of these estimated probabilities

was tested by the random reassortment and comparison of observed

parental genotypes among observed sibship genotypes. Significantly

fewer nestlings were excluded in these simulations than expected

from calculated exclusion probabilities, though the distribution of

multiple mismatches among the detected simulated cases of

nonpaternity and nonparentage did not differ from expectation. The

distribution of multiple mismatches did differ from expectation,

however, in the actual mismatch data, implying the occurrence of

errors in the attribution of mismatches. Possible sources of error,

which must have included some form of laboratory error, were

considered and discussed. The most parsimonious interpretation of

those mismatches that did not appear to be due to errors was that

they resulted from a rate of nonpaternity of about 6%. No

heterogenei ty in the rate of mismatches was observed wi thin or among

breeding seasons or sites.
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<E\PI'ER 5

5.1 Introduction

The advent of electrophoretic techniques has allowed the
quantification, in a variety of species, of the genetic

relationships within and among populations (see Heir and Cockerham
1984 for a list of examples). It has been argued that the observed

levels of variability and differentiation are not at variance with

the predictions of neutral theory (Kimura 1983). Three studies of

the genetic structure of house sparrow populations have reached a

similar conclusion. Each of these studies involved the comparison

of electrophoretically-determined estimates of genetic

differentiation with estimates predicted by neutral theory from

available ecological and historical data concerning the species

(Fleischer 1983, Parkin and Cole 1984a, 1984b; refer to Sections 1.2- -
and 1.4). Although it was not found to be necessary to invoke the
operation of factors other than gene-flow, random genetic drift and

randomness of mating to explain the genetic differentiation observed

among house sparrow populations, the possible importance of other

factors was not excluded. Other potentially important forces

include natural selection, and interactions among loci.

Natural selection has been implicated in the maintenance of

several protein polymorphisms (see Section 1.2). Some of this

evidence has been obtained by comparing allele frequencies in

different populations relative to components of the environment, and

finding that allele frequencies in an independent set of populations

may be partly predicted from similar environmental data. In other

cases evidence for selection has been obtained by the detailed
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ecological genetic study of individuals within populations. Studies

of this kind have for practical reasons largely concentrated on

populations of small mammals and birds (Section 1.2), and the house

sparrow was believed to be a particularly suitable species for this
kind of investigation (see Section lA).

The methods for the non-destructive sampling of 7 protein loci
have been described (Chapter 2), and the inheritance of these loci
investigated (Chapter 3). Distorted segregation ratios among

fledglings suggested the operation of selection against the rarer

alleles at the PEPD3 and GPI loci. This selection could be either

gametic or zygotic~ in either instance its effects upon allele

frequency prior to fledging would be directional rather than

balanced. The maintenance of these polymorphisms implies either

the operation of some other form of selection or else differential

gene-flow at a later stage in the life cycle. A comparison of genic

distributions among different age and sex classes potentially allows

the detection of these nonrandom effects.

Selection may also vary temporally (see Ford 1975 for

examples). Fecundity in the house sparrow is likely to vary in

response to differing environmental conditions. For example,

Anderson (1977) found that fledging success in a North American

population of house sparrows increased during a period of food

superabundance in an emergence year of periodical cicadas. The

strength and nature of selective forces might be expected to

similarly vary from year to year, and consequently changes in genic

distributions might result. Temporal variation in allele

frequencies at enzyme loci has been reported in at least one avian

species: the eared dove, Zenaida auriculata, in South America (de

earninos et al. 1981).
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It has been argued that comparisons of genic distributions

should be made among genotypes rather than alleles as most forms of

selection are expected to act upon genotypes (De Benedictus 1978).

lVhere selection or gene-flow operates with respect to more than one
genotype, however, statistical tests may be more likely to detect

their effects if allelic distributions are considered. Both

genotypes and alleles were examined, where possible, in the data for
the two populations of house sparrows presented here; in general,

results are presented for comparisons of phenotypes (electromorphs)

only, but are also presented for alleles if any differences were

found between the comparisons made in each way. Hith the exception

of some phenotypic classes for EST2, the phenotypes were

interpretable as genotypes (Chapter 3).

5.2 l1ethods

Detailed descriptions of the field and laboratory methods

(Chapter 2) and of the seven protein polymorphisms (Chapter 3) have

been provided above. The principal statistical methods used were

those of goodness of fit tests and tests of homogeneity. Gcx:xlness

of fit tests were carried out using the log likelihood ratio (G)

test (Sokal and Rohlf 1981). The values obtained for S:i are
distributed approximately as the X2d distribution for the
appropriate degrees of freedom, d. In tests of correspondence of

genotypic proportions with Hardy lveinberg expectations, the degrees

of freedom were found as the number of possible genotypes less the

number of observed alleles (Cavalli-Sforza and Bodmer 1971), L.e,

d = (~2 - a)/2 where a is the number of alleles at the tested locus.

Tests of homogeneity were carried out using the familiar X2 test.

The sample statistic obtained, is again distributed
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approximately as the appropriate )(2d distribution (Sokal and Rohlf

1981).

Tests of homogeneity and goodness of fit are both subject to

distortion when the expected values are low. Numerical simulations

of Gand )(2 tests by Conahan (1970, cited by Sokal and Rohlf 1981)

suggest that ideally no expected frequency in a goodness of fit test

should be less than 10, but for practical purposes a minimumof 5 is

adequate. A minimum expected value of 3 was sufficient where the

number of tested classes was 5 or more; in these circumstances the G

test performed better than the )(2 test. Sokal and Rohlf (1981) do

not even discuss minimum values for expecteds in G tests of

homogeneity, but a minimumvalue of 1 is believed to be conservative

in )(2 tests (Everitt 1977 p.40). Thus the magnitude of expected

values that will produce serious distortion would appear to be

greater in goodness of fit than heterogeneity tests, an effect not

emphasised in popular statistical texts. These recommendations of

minimum expecteds for goodness of fit and homogeneity tests were

therefore followed throughout this study.

Most contingency tables were constructed using the CROSSTABS

program (SPSS: Nie et al. 1975) This program was also used to

obtain initial estimates of )(2 in tests of homogeneity. \fuere

values of ~2 were low (X2 < 3.84), there could be no significant

heterogeneity regardless of the magnitude of expected values. \lhere

larger values of ~2 were obtained (X2 > 3.84) and some expected

values were below 1, if the difference (~2 - 3.84) was more than

could be accounted for by the cells containing low expecteds, then

X2 was recalculated omitting rows containing those cells.

Similarly, if the value for Q was low (G < 3.84) in goodness of fit

tests, then no pooling or other procedures were followed even if
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some expecteds were small.

The statistical analysis of allozyme data included a

series of )(2 contingency tests for homogeneity among the samples.

These were conducted initially without any correction for sib
effects as although non-independence is expected to result in

increased heterogeneity, it was also expected that in many such

instances the values obtained for X2 would remain small. In this

way the initial computation was minimised. There was no ~ priori

expectation with respect to possible interaction among the variables

and they were therefore analysed separately.

5.3 Results

5.3.1 The Data

The electrophoretic data are presented for each locus with

respect to site, year, age and sex categories (Appendix 2).

The group totals in some instances differ slightly among loci due to

the occasional depletion of smaller tissue samples. The substantial

reduction in numbers for PEPD3 results from an inability to score

all PEPD3 alleles unambiguously in PEPD~ individuals, and these

PEPD2 heterozygotes have therefore been excluded from the data for

PEPD3 (see Section 3.1.3). The sexes of nestlings were not known.

Those of juveniles were known only occasionally and then more often

for males as the plumage characteristics of adult males represent an

easily recognisable change from the juvenile plumage type (see

Section 2.1.4). No attempt has, therefore, been made to analyse the

sexes separately in nestlings or juveniles.

The nestlings were almost always part of a completely-sampled

sibship, and the electromorph frequencies shown do not therefore
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represent entirely independent data. Non-independence due to

familial relationships will be discussed further at appropriate

parts of the analysis. Many of the parents of these siblings are
included in the adult samples. Retrapped (or re-observed)
individuals were not included in the analysis: thus none of the

juveniles were known to be related to any of the adults, but on very

rare occasions, were known to be part of the breeding sample in a
subsequent year and have offspring included in the appropriate

pullus groups (3 instances).

To summarise, the adult and juvenile groups are believed to

represent essentially random samples, the nestlings are those

fledging from nests in the study nestboxes and include many known

(and probably many unknown) sibs, the juveniles are only rarely

known to be related to the nestlings, and the adults often are.

5.3.2 Allele Frequencies

Allele frequencies were initially estimated for all loci by
simple gene counting, on the hypothesis that alleles were oodominant

and each electromorph was interpretable as a single genotype. At

the EST2 locus there was an apparent, extremely significant

deviation from Hardy Weinberg ratios in the larger of the two adult

samples (SB: ~ = 351, Q3 = 21.22, E < 0.001), and this was
attributable to an excess of homozygotes (Ql = 10.26, E. < 0.005).
This pointed to the presence of a concealed null allele (see Section

3.1.3). Further evidence for null alleles at EST2 was obtained from

family studies (Section 3.2.1). Allele frequencies have therefore

been estimated for EST2 by an iterative maximum-likelihood method

(Li 1955) using a computer program written by Dr. J. Rostron (North

East London Polytechnic). The method estimates directly the
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frequencies £,~,r of the non-null types EST~, BEST_,
C

EST-

respectively, together with their standard errors. The frequency ~

of the null allele EST~ is found by subtraction as l-E"""S.-E.

The allele frequencies for each locus are also presented with

the electromorph data (Appendix 2). The standard errors for the

EST2non-null allele frequencies were found as -.j {l - (1 - pi)2}/ 4~

where pi was the allele frequency and N was the sample size (Elandt-

Johnson 1971 p.397). The standard errors for the null allele

frequencies may be found easily as -.j(l - ~2)/4N (Elandt-Johnson Ope

ci t.), and those for all alleles at the other loci as

-.j£1 (1 - £1)/2N (Falconer 1981). All the standard errors calculated

using these formulae will be underestimates in the case of nestling

samples due to the intuitively obvious correlation among sibs (see

below). Though confidence limits will be affected by relatedness,

the estimated allele frequencies for sibs should represent maximum-

likelihood values provided that the sampled sibships are a random

sample of all the sibships in the populations (Cotterman 1954).

The maximum-likelihood estimates for the EST2allele frequencies

were tested for agreement with HardyHeinberg expectations (Appendix

2). One test produced a significant ~ statistic (SBadult males:

G3 = 9.16, £ < 0.05), but this cannot be regarded as truly

significant as it was due to the occurrence of some low expected

values.

Family data concerning the other six loci was in agreement with

the codominant model applied here (Section 3.2.1). In general,

there was also close agreement with Hardy Heinberg ratios for these

loci (Appendix 2). Only four G values exceeded the 5%significance

level for the appropriate degrees of freedom, and two of these were

attributable to very low expected frequencies « 1). It is
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interesting that both the remaining two deviations applied to IDHC

for 1982 nestlings, and both reflected an apparent deficiency of

heterozygotes. The magnitude of the departure will, however, be at

least partly due to non-independence of sampling among nestlings,

particularly marked at this locus (see below).

5.3.3 Adults: Sex am Year Classes

The sexes were distinguishable only in adults and were

therefore analysed first. Only one out of 42 comparisons of

electromorph frequencies between the sexes was significant at the 5%

probability level (Table 5.1). It was concluded that there was no

heterogeneity between sexes sampled within year and site classes at

any locus.
The ages of the adult house sparrows could not be precisely

determined (see Section 2.1.4). With respect to adults, the

biological significance of year classes as used here (the year of

first capture) is expected to be limited. More adults when first
captured are expected to have originated in the previous year than

in any other year, but most are likely to be aged two years or older

(from data in Summers-Smith 1963). As the study progressed some

adults were known to have survived into at least their third or

fourth year, but as few birds sampled in their first year were

reencountered during the limited number of subsequent breeding

seasons available, very few adults were of known age and a

comparison among adult age classes was not considered to be

worthwhile. The sample years were, however, tested for

heterogeneity within sites.
Among the 14 tests one was significant at the 1% level (Table

5.2). This was the result of an anomalous excess of GP1~ alleles at
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Brackenhurst in 1981. The numbers (Table 5.3) were, however, rather

small in this instance and a general conclusion of homogeneity was

reached. Adults were therefore pooled across years prior to further

analyses, and the pooled genotypes, for the 6 codominant loci, were

tested for agreement with Hardy Heinberg expectations (Table 5.4).

The observed phenotype frequencies for the single locus exhibiting

dominance, EST2, did not depart significantly from those expected

from the maximum-likelihood allele frequencies (SB: Q3 = 4.07, n.a.r

BR: G3 = 0.019, rr.a.}, Curiously, the only deviation (E < 0.05) was

C
again associated with those genotypes including the GPl- allele, but

in this case at Sutton Bonington. An evaluation of this result is

compoundedby the low expected frequencies of these genotypes.

The lack of departure from Hardy \veinberg equilibrium does not

necessarily exclude the possibility of a significant degree of

inbreeding. The inbreeding coefficient F for a locus may be

estimated as

where ~ is the observed number of heterozygotes and HE is the

expected number (Crow and Kimura 1970). Positive values for F

result from a deficit of heterozygotes, and negative values from an

excess. H is determined as (1 - ~ D, 2)N where p, is the frequency-E ~Ll - Ll

of the !th allele at a locus and ~ is the sample size. A less

biased estimator of H , H', has been employed here and was found as
~ -E

~' = ~{~(~ - I}} (Levene 1949, Crow and Kimura 1970).
A

The values for F for adults are presented in Table 5.5. Hhere

the value for Q for the Hardy Heinberg test was low (Le. Q < 3.84),
A

it was known that the estimate! would not be significant. Observed

and expected heterozygosities were compared in the one instance

where a significant departure from Hardy Heinberg was observed - GPI
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Table 5.3
Comparison of GPl genotype and allele frequencies among years for
Brackenhurst adults.

Year Genotypes Alleles

AA AB AC BB BC CC A B C

1980 6 25 0 10 2 0 35 165 2
1981 4 15 1 39 8 1 24 101 11
1982 2 25 0 42 2 0 29 111 2

Hetero- 2 * 2geneity X 6 = 13.5 p = 0.036 X 4 = 16.1 p< 0
test .005

* test excludes AC and CC classes
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Table 5.5

Observed (HO) and expected (~) numbers of heterozygotes and estimates of
inbreeding coefficients in each study population for 6 codominant loci.

Site
Locus SB BR

"..
F

I

~
"..
F

6PGD 16 17.6 0.0922 16 15.56 -0.0301
PEPD3 38 40.9 0.0724 31 28.87 -0.0740
PEPD2 41 40.7 -0.0060 22 21.04 -0.0452
IDHC 131 139.6 0.0629 102 103.91 0.0184
PEPT 44 43.2 -0.0171 41 43.19 0.0507
GPI 105 115.1 0.0865 76 83.87 0.0939

Mean 0.0485 0.0023



at Sutton Bonington - but no significant inbreeding was found (S =
1.33). Thus the single departure from Hardy Weinberg expectation

was an effect associated with the GP~ allele directly and not due

to any inbreeding or other factor affecting heterozygosity.

Evidence for possible selection at GPl has been provided earlier
(Section 3.2.1) and this will be discussed further below.

5.3.4 First-year Birds: Year Classes

A comparison of year classes for nestlings and juveniles is

potentially more valuable than the same analysis (as just conducted)

for adults. As already stated, many of the nestlings will be

members of sibships, and tests for heterogeneity between groups of

nestlings ideally should allow for this wherever possible. The

effect of any relatedness will be to increase the variance beyond
that expected if sampling were independent. However, it is

extremely unlikely that true heterogeneity among groups will be

counteracted by the effects of non-allowance for non-independence.
Tb minimise computation, therefore, comparisons involving nestlings

were first made by treating nestlings as though they were

independent.
The results for heterogeneity )(2 tests among year classes and

within sites for the electromorphs of nestlings and juveniles

separately are presented in Table 5.6. In several instances where

the loci are less heterozygous, the number of juveniles sampled

wi thin a year was too small to allow the test. Significant

heterogeneity (E < 0.01) was suggested for IDHC nestlings at both

sites, and slight heterogeneity (£ < 0.025) for EST2 in Sutton

Bonington nestlings. A comparison of allele frequencies produced

similarly significant results for IDHC (SB nestlings: ~22 = 10.36, E
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= 0.006; BR nestlings: ~2 2 = 8.73, E. = 0.013). The largest degree
of heterogeneity among juvenile allele frequencies was for IDHC at

Brackenhurst (~22 = 5.25, E. = 0.073), but the differences among
years did not parallel those for nestlings at the same site. When
Brackenhurst nestling and juvenile IDHC alleles were pooled within

years (as all known birds of the year) the heterogeneity was not

significant (~22 = 5.04, E = 0.080). Heterogeneity of nestling
allele frequencies among years at Sutton Bonington was also

( 2 2suggested for 6PGD ~ 2 = 6.01, E. = 0.050) and GPl (~ 4 = 9.06, E. =
0.060). The IDHC results are of most potential interest as they

produce the largest ~2 values at each site. The suggested

fluctuations in allele frequency (Appendix 1) are not, however,

consistent between the sites. These results will be investigated

more rigorously below.

One way of increasing independence would be to randomly select

a single individual from each sibship, but this would be very

wasteful of information. Cotterman (1947, 1954) has discussed the

estimation of frequencies and their variances for codominant allele

data obtained from families. In principle, the alleles observed

amongst a cohort of full sibs may not represent more than a

theoretical maximum of four independent sampling events (the 4

original parental alleles). The number of independent events that a

sibship represents increases asymptotically with the size of the

sibship. Thus a weighting can be applied to each observed allele

in a sibship, and the larger sibships will not then have an undue

effect upon the allele frequency estimates. The estimates for gene

frequencies are not expected to be affected by the weighting

procedure if sibships are sampled randomly. Variance estimates

will, however, increase with an increase in mean sibship size for a
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constant sample size. Similarly, weighted totals will decrease with

an increase in sibship size.

Cotterman (1947) derived the weighting, w for each sib allele
-0

in a sibship of size ~ as 2/(~ + 1). The total weight ~o

appropriate to a sibship of size ~ may be found as the sum of the

weights for each allele, or as 2sw· When frequencies and their_0

precision estimates for the entire population are required,

different weightings become applicable when only one parent is

known, and offspring are ignored if both parents are known. For

clutches sampled here one or both parents are frequently known, and

clutches within and among years are often known to have the same

parent. For the analysis of nestlings amongyears only the nestling

allele frequencies are of immediate interest, however, and the

weightings appropriate to the case of no known parents will be

applied. Most clutches at the same nest within a breeding season

are expected to be the progeny of the same pair (Summers-Smith1963;

personal observation). Nestlings at the same nest within a year

were therefore treated as full sibs unless a different pair was

known to have taken the nest over. Such complete replacement of

pairs only occurred three times. Relationships among sibships in

successive years do not affect this analysis.

The analysis for IDHCat each site and for each year is set out

in Table 5.7. The weighted totals were tested for heterogeneity of

allele frequencies amongyears within each site and none was found

(SB: ~22 = 0.65, E = 0.72; BR: ~22 = 4.15, P = 0.126). Thus no

heterogeneity actually existed, and that estimated when lack of

independence was ignored (even achieving significance at the 1%

level) was due to that lack of independence.

The total weightings were close to 40%of the original allele
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totals (from Appendix 2). If the unweighted frequency estimates

within the samples are taken as correct, and if all cells in the

contingency table are weighted equally, the X2 estimate (X2) will

be reduced by about 60%. In these circumstances values for X2 for

unweighted data will need to be significant at, or near to, the 0.1%

level for the result to remain significant when the data are

correctly weighted. The requirement that all cells be equally

affected is thought to be conservative: a greater reduction in ~2
2might in fact be expected as those cells producing the biggest ~

are likely to be those where lack of independence is most

distorting. It is therefore felt to be unnecessary to carry out the

weighted analysis for the other loci where heterogeneity among years

was initially suggested. It may be safely concluded that there was

no significant heterogeneity among years for any age class at any
locus.

5.3.5 CanparisaJs AnK:DJ Age Classes

It has just been shown that on the basis of three year's data

there is no evidence for changes in gene frequency from year to

year. The possibility of consistent changes within generations has

still to be considered.

As before, the data were initially analysed without allowance

for non-independence. The analysis was conducted twice, both with

and without the inclusion of the juvenile class, as the totals for

juveniles were often small. The results relating to electromorphs

are presented in Table 5.8. It can be seen that the strongest

suggestion of a difference was for GPl, and that this applied to the

samples at both sites. The differences in GPI allele frequency

between adults and nestlings were, however, opposite in nature at
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the two sites. Weightings for alleles within years have been

estimated for GPl in nestlings, and when the weighted values for

each year were compared in turn with the overall adult estimates for

each site there were no significant frequency differences between

adults and nestlings (Table 5.9). Similarly, no difference was

found when the nestling weightings were summed across years

(SB: X2 = 3.72, n = 0.168; BR: X2 = 0.60, n = 0.741). This is-2 L -2 L

believed to be a conservative test as many parents will have bred in

successive years and some lack of independence will therefore not

have been allowed for. It was concluded that there was no

heterogeneity of gene frequencies among age classes.

5.3.6 Site Caopari.soos

It has been shown (above) that there was no significant

heterogeneity among year or age classes within either site. There

was, however, known to be a high degree of adult-nestling

correlation in the samples. The data have therefore been combined
across years, and adults and juveniles have been combined but will

be analysed independently of nestlings. This initial analysis, as

before, treated nestlings as independent. The results for

electromorph comparisons are presented in Table 5.10 and for

oamparisons of observed heterozygosity in Table 5.11.

A significant difference between genotype frequencies in the

adult samples was found for PEPT. This difference was also apparent

when alleles were considered (X2 = 9.22, n = 0.027), and moreso-3 L

when adults and juveniles were combined (~24 = 15.58, E. = 0.004).
This was paralleled by a significant difference in heterozygosity

for PEPT in the combined adult/juvenile samples (~21 = 4.08, E =
0.043). PEPD2 genotype frequencies differed significantly in
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Table 5.9 .

Adult allele frequencies for GPI at each site (all years combined),
compared with weighted scores for nestling frequencies in each year
(refer to text and Table 5.7 for details). N = nestlings

Site Class Year Alleles

A B C p

BR Adults All 88 377 15
N 1980 4.27 11.83 1.30 5.79 0.055
N 1981 25.89 68.06 5.50 0.53 0.767
N 1982 34.84 96.51 2.85 2.68 0.262

SB Adults All 115 578 23
N 1980 2.61 33.58 2.18 1.26 0.532
N 1981 19.66 117.87 1.70 1.96 0.375
N 1982 20.26 146.19 4.25 0.19 0.909
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juveniles (Table 5.10) and the differences approached significance

for the combined adult/juvenile samples for PEPD2 (~22 = 5.34,

P = 0.069) and GPl (X2 = 10.28, n = 0.068). These results agreed- -5 J:.

with those for comparisons of allele frequencies (PEPD2:~22 = 5.77,

GPl: X2 = 5.34, n = 0.069) but only with those for- 2 L
E = 0.056~

comparisons of heterozygosity in the case of PEPD2(~21 = 3.23, E =

0.072). There was no suggestion of a difference in heterozygosity

for GPI (X
2
1= 0.56, P = 0.454) although heterozygosity was expected

to be higher at Brackenhurst~ this reflected a larger, but non-

significant, deficiency of heterozygotes at Brackenhurst than at

Sutton Bonington (Section 5.3.3: Tables 5.4 and 5.5).

Though the difference in heterozygosity per locus achieved

statistical significance for PEPTalone, five of the six estimates

were higher for the Brackenhurst sample. (The seventh locus, EST2,

has not been included here as many null heterozygotes were not

directly observable. Frequencies of the detectable EST2

heterozygotes were approximately equal: X2 = 0.00, n > 0.95.)-1 J:.

Combining probabilities (Fisher's method: Sakal and Rohlf 1981)

suggests an overall difference in heterozygosity between the

popul.at.ions (E < 0.05). The combined probabilities for differences

between allele frequencies for 6 loci and between electromorph

frequencies for 7 loci (including EST2) were both significant

(E. < 0.005 and £ < 0.025 respectively).

Further evidence for heterozygosity differences was obtained

from a consideration of all age classes together by examining the

number of cases, for each age class, in which heterozygosity per

locus was higher at each site (from Table 5.11). Observed

heterozygosity at Brackenhurst was higher in 14 of 18 comparisons

(2-tailed binomial probability = 0.031). Expected (or 'calculated')
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heterozygosities were similarly higher at Brackenhurst for 14 cases

out of 18, though not agreeing with the comparisons of observed

heterozygosity in every instance. That the comparisons using

observed and expected heterozygosities should be in overall
agreement was to be expected from the general lack of departure from

Hardy Weinberg equilibrium in these samples.

The juveniles and adult male and female classes taken in each
year were essentially independent. \fhen heterozygosities were

compared within each year for these age and sex classes the

significance of the difference in heterozygosity was seen to

increase, particularly if cases where either sample was small « 20)

were excluded (Table 5.12).

Table 5.12

Canparison between sites of heterozygosities at each locus, within

adult male, adult female and juvenile classes in each year.

Heterozygosity higher at G-test

SB BR

All~

For N ~ 20 only

18

9

34

28

G 5.00, P < 0.05

G = 10.24, P < 0.005

------~-------------------------------------------------------------

excludes 2 instances Where equal at each site

The preliminary statistics for differences between the nestling
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samples (Table S.lO) suggest electromorph frequency differences for

lORe, PEPT, GPI and EST2. If the nestlings were independent, the

differences would be significant below the 1%level for lORe, PEPT

and GPI (rnac. ~21 = 8.38, £ = 0.004; PEPT: ~23 = 12.06, £ = 0.007;

GPl: ~22 = 53.73, £ < 0.0001) and close to this level for EST2 (9. =

2.56, 0.02 > £ > 0.01). The GPl differences alone would appear to

be accompanied by a large difference in heterozygosity, though

heterozygosity estimates are again higher at Brackenhurst for 5 of

the 6 comparisons (Table 5.11). In view of the effects of non-

independence amongnestlings (see above), only those loci suggesting

large allele frequency differences have been investigated further.

A better estimate for heterogeneity between sites for nestling

allele frequencies has been obtained by summing the wi thin-year

estimates weighted for relationships as presented above for IORCand

GPl (Tables 5.7 and 5.9) and here for PEPT (Table 5.13). Summing

the weighted within-year totals does not allow for non-independence

among years, which will occur due to some parents contributing to

the offspring samples in more than one year. Since many parents

were not identified, it would in any case be impossible to allow

totally for non-independence. To treat all nestlings sampled at the

same nest among years as full sibs, as was done for weightings

within years, would be unduly conservative and wasteful of

information.

The summedscores are given in Table 5.14, where the totals for

each site are compared. No significant differences were found for

lORCand PEPT, but the result for GPl remained highly significant.

The degree of heterogeneity for GPI was higher than might reasonably

be accounted for by any lack of independence. The difference was

due to a much higher frequency of GPIA and GPle at Brackenhurst.
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Table 5.13

Weighted PEPT allele scores for nestlings within years at each site.
Refer to Table 5.7 and text for explanation.

Alleles

Site A c D EYear B

BR 1980 0.00 0.000.00

1981

1982

3.70
4.00

2.57
4.91

0.00

0.00

SB 1980 0.00 0.89

1.40

3.46

loll

1981

1982

0.00 4.00

1.921.18

17.40

92.44

122.38

0.00

0.75
2.81

36.38
133.83

163.64

0.00

0.00

0.50



Table 5.14

Comparison between sites of nestling allele frequencies for IDHC,
PEPT and GPI. The allele scores were obtained by weighting within
years (Tables 5.7, 5.9 and 5.13) and summing across years.

Locus Site Alleles

B C EA D Comparison

PEPT BR 0.00 7.70 7.48 232.22 3.56 2 6.34X 4 =
SB 1.18 7.03 5.75 333.85 0.50 p == 0.175

IDHC BR 172.46 78.38 X2 = 3.181
SB 263.12 86.13 p = 0.075

65.00 176.40 9.65 2GPI BR X 2 = 20.28
SB 42.53 297.64 8.13 p < 0.0001



The frequencies of these alleles were also higher at Brackenhurst

for adults and juveniles, though less significantly (E < 0.07: see
above) •

In conclusion, then, there were pronounced differences in
allele and genotype frequencies at the two study sites. These

differences were statistically significant when all testable loci

were considered together, and individually for PEPT. Heterozygosity

per locus was, overall, significantly higher for the adult/juvenile

class at Brackenhurst, and again for PEPT alone in locus by locus

tests. Comparisons between nestlings were less powerful, and a very

significant difference in allele frequency was found only for GPl.

Hhether or not statistically significant, the differences between

sites for allele frequencies and heterozygosity per locus were

generally consistent for the adult/juvenile and nestling age

classes.

5.3.7 Linkage Disequilibria

It was important to check for the nonrandom association of

alleles between loci. Only two locus digenic components, generally

referred to as linkage or gametic phase disequilibria, were

investigated. It has been shown above that samples among years and
age classes within sites were generally homogeneous. Pooled samples

were therefore analysed initially, though the parent-offspring and

sib correlations might contribute to spurious significance for the

statistical tests of disequilibria. This lack of independence is

not likely to counteract results concerning genuine associations,

and so providing that independence is ultimately considered the

initial computations are minimised.

Electrophoretic data do not allow the complete identification
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of genotypes as the two kinds of heterozygote (AB/ab and Ab/aB)
cannot be distinguished. Hill (1974) has provided an iterative

maximum-likelihood method for the estimation of disequilibrium in

such cases. Cockerham and Weir (1977) pointed out that the usual

measure of disequilibrium, D consists of within and between

individual components (~ and ~ respectively) such that:

D = Dw + 2~

Hill's met.hod assumes ~ = 0 (Heir & Cockerham 1979). Provided that
the sampled populations are randomly mating, the between individual

component should equal zero. There was little evidence for

departure from Hardy Weinberg expectations (see above), so that

Hill's method could be applied (Weir & Cockerham 1979).

The commonest allele at each locus was at a high frequency

(always above 70% for loci with 3 or more alleles). As with similar

studies (e.g.Langley, Tobari and Kojima 1974), alleles other than

the conunonest were pooled to form a single class, and thus only one

3x3 table of genotypes was examined for each test. It was not

possible to distinguish alleles in coupling from those in repulsion.

Conventionally, the commonest allele at each locus is regarded as

being in coupling and the alternative class as in repulsion (Langley

and Crow 1974). Positive values of D refer to an excess over

binomial expectation of coupling gametes and negative values refer

to a deficiency.
...

The values for D obtained are shown in Table 5.15. (EST2 was

excluded because of the problems with null alleles - see Section

5.3.2 - although there was no evidence of disequilibria when EST2

phenotypes were analysed as though they were genotypes.) The
...

estimates of D were tested for significance using both the log

likelihood test of Hill (1974) and the chi-square test of Weir
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Table 5.15
1\Coefficient of linkage disequilibrium CD) for pairs of loci in each

study population. Refer to text CSecti-;;n5.3.7) for details.

Site
Loci

SB BR

6PGD - PEPD3 -0.0012 -0.0012
6PGD - PEPD2 *+0.0004 +0.0030
6PGD - IDHC -0.0025 +0.0057
6PGD - PEPT -0.0012 +0.0044 -!!-

6PGD - GPI -0.0011 +0.0020
PEPD_3- PEPD2 +0.0002 t _t

PEPD3 - IDHe +0.0005 +0.0012
**PEPD3 - PEPT +0.0009 +0.0089

PEPD3 - GPI +0.0058 +0.0049
PEPD2 - IDHC +0.0052 +0.0027
PEPD2 - PEPT +0.0009 -0.0010

*PEPD2 - GPI -0.0004 -0.0089
IDHC - PEPT -0.0032 -0.0005
IDHC - GPI -0.0082 -0.0067
PEPT - GPI -0.0000 +0.0033

* p <.0.05 ** p 4( 0.01

r all cases involving PEPD2~ alleles omitted (see Section 3.1.3),
leaving only 7 informative heterozygotes in SB sample and none in
BR sample.



(1979). Heir's method has the potential advantage of not requiring

the assumption of Hardy Heinberg equilibrium at the tested loci. In

view of the absence of significant departure from Hardy Heinberg

ratios it was not surprising that both tests were found to be
consistent. Four pairs of loci in the Brackenhurst sample were

found to produce statistically significant estimates for D. These

four pairs were reexamined in the combined Brackenhurst
adult/juvenile class only. Only one remained significant, and one

other approached significance (PEPD2-GPl: IS = -0.0101, X2 = 3.86;
- - 1

PEPD3-PEPI': Q = +0.0085, ~\ = 3.73). No attempt is being made here
to correct the nestling samples for parent-offspring and sib-sib

correlations. There are, however, known to be several sampled

nestlings from different clutches where the parents were not sampled

which, if included, would increase the absolute value of estimates
of D •

5.4 Discussial

Disequilibria are potentially valuable indicators of nonrandom

genetic processes. Two kinds of disequilibria have been

investigated here: those among alleles at single loci (Hardy

Weinberg disequilibria) and those for pairs of alleles between pairs

of loci (linkage disequilibria).

5.4.1 Single locus disequilibria

Hardy Weinberg disequilibria may result from a variety of

demographic and selective processes. Some of these are expected to

result specifically in increased homozygosity relative to Hardy

\Veinberg expectations and are tested for using the inbreeding model
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(Hright 1922, 1951). Statistical tests for the significance of F

are of very low power, so much so that Ward and Sing (1970) were led

from theoretical considerations to conclude that the level of

inbreeding required to produce a significant deviation from random

expectation is so great that it "would be illogical to attribute"
significant deviations to inbreeding. Haber (1980) criticised Ward

and Sing's reasoning, but came to the same conclusion.

Consequently, the lack of any significant deviation at any

individual locus is neither surprising nor particularly informative.

However, the estimates for the inbreeding coefficient, F, obtained

from the genotypic distributions at different loci are essentially

independent, and some of the shortcomings of tests made at

individual loci may be potentially overcome if there is agreement

among the different ~ values. Inspection of the values obtained

(Table 5.5) clearly indicates a lack of any concordance among the

independent estimates, which appear to fluctuate about a mean not

significantly different from zero in both study populations.

5.4.2 Linkage Disequilibria

Two pairs of loci (PEPI'-PEPD3and GPl-PEPD2) showed significant

linkage disequilibrium at one site (see above). Breeding data

relevant to these pairs of loci was obtained for PEPT/PEPD3 only.

One family of 3 offspring showed at least one 'recombination' event

and the two loci are not therefore likely to be closely linked.

Such genetic disequilibrium between apparently unlinked loci is

perhaps surprising. In view of the number of tests conducted (29),

two results each with the observed significance must be of dubious

value. The power of the tests is, however, a function of the sample
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size and allele frequencies at each locus and in 19 of the 29 tests

will be lower than in the one producing the most significant value
...

for D •. Following Heir (l979), if E. and 9. are the frequencies of
alleles at the two loci such that

(l-p) ~ (l-q) ~ q ~ p
then

Dmin = -(l-p}(l-q) ~ D ~ p(l-q} = Dmax

Thus for PEPD2-GPI in the adult/juvenile class at Brackerihurst,
...
D was found to equal ~in. This is consistent with a total absence
of coupling gametes of the rarer class in Brackenhurst adults and

juveniles. For each two locus gametotype there are three genotypic

classes which allow their unambiguous detection. For the rarer

coupling class, the number expected to be observed is given by

4n(1-p}{l-q} {p(l-q} + q(l-p} + (l-p}(l-q}}

where n is the number of sampled individuals. For PEPD2-GPl, this

random expectation was 4.7 for Brackenhurst adults (none was

observed), and 7.1 for Brackenhurst pulli (2 were observed). In

contrast, 8 were observed at Sutton Bonington (including 6 adults)

against an expectation of S.6. Thus if the observed disequilibrium

at Brackenhurst is a true reflection of nonrandom processes in the

population, then those processes will be operating differently at

the two sites. Such differences are not unexpected by population

genetic theory (e.g. Hedrick et ale 1976), particularly as there is

a large difference in allele frequency at GPl (see above). A
...

comparison of Q (= 0.008S) with ~ax (= 0.0909) for PEPD3-PEPT
reveals that the disequilibrium for this pair of loci, in this case

due to an excess of coupling gametes, is far less extreme.
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The nonrandom processes producing the estimates of

disequilibrium could include selection or population subdivision.

Genetic or other effects leading to modification of the gene

products at two or more loci may lead to apparent disequilibria (as
observed in studies of Drosophila, G.B. Johnson, per's, comm.), Such

modification would, however, have been detected in the analysis of

broods (see Section 3.2.1) and none was. Further, this effect might

have been expected to apply to samples from ooth sites.

Lewontin (1974) has shown from a theoretical standpoint that

fitness differences among genotypes may lead to disequilibria even

between unlinked loci. For one locus (PEPD3 or GP1) in each pair

showing disequilibria gametic selection has been suggested as a

possible explanation for significant deficiencies in the

transmission of the rarer alleles (Chapter 3). There was, however,

no evidence for gametic selection at either PEPT or PEPD2, and no

informative matings were available to test for any effect of PEPD2

genotype upon GPl transmission, and insufficient to test for any
effect of PEPT upon PEPD3. Thus there was no corrooorating evidence

for selection as a cause of disequilibria here.

Although there was no significant deviation from Hardy Weinberg

ratios, there was some evidence for the nonrandom distribution of

genotypes amongst loci in those families examined for genetic

incompatibilities (Section 4.3.3). This might point to the existence

of multiple locus disequilibria, which have not been tested for,

possibly resulting from a degree of subdivision or non-random mating

within the samples. The extent of the differences in genic

distribution between the two study populations demonstrates that

significant differentiation is possible, but a comparison of samples

taken within the two separate parts of the Brackenhurst site ('G'
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and 'H' in Figure 2.2) did not provide any evidence of detectable

spatial differences in gene frequency at individual loci.

From an expectation that epistatic interactions among loci will

be extensive, a theoretical prediction has been made that

disequilibria among both linked and unlinked loci should be

widespread (Franklin and Lewontin 1970, Lewontin 1974). Evidence

has been obtained against most of the loci studied here being linked

(Chapter 3). The number of loci was small, but the results were not

at variance with studies of natural populations of Drosophila, where

no convincing evidence of disequilibria amongunlinked loci has been

found (Loukas, Krimbas and Horgan 1980). Indeed, such empirical

studies of Drosophila suggest disequilibria among allozyme loci

occur at detectable strengths only between very closely linked loci

or loci associated with inversions (reviewed in Loukas, Krimbas and

Vergini 1979).

The PEPD2-GPl locus pair was one of the few for which no

relevant breeding data were available; in view of the disequilibrium

result obtained, whether these loci are linked will ultimately be of

particular interest. In studies of Drosophila a conclusion that

epistatic fitness effects are the cause of those disequilibria

observed among loci (excluding those in inversions) relies largely

on the finding of the same disequilibria in several populations

(Loukas, Krimbas and Horgan 1980). As there was no evidence for

disequilibria at Sutton Bonington, the disequilibrium for PEPT-

PEPD3at Brackenhurst is thought to be most probably due to sampling

or demographic effects. Disequilibria might be expected to be

generated more frequently by these processes in vertebrate

populations. Natural vertebrate populations will be far more

structured than those of DrOSophila. No data concerning both PEPD2
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and GPl or both PEPD3 and PEPT is available for large samples from

populations other than those studied here.

5.4.3 Carpari9a'lS of Genic Distr:ib.rt:.iCI'lS

Of the comparisons made among various classes, substantial

differences in genic distributions were found only for comparisons

between the two study populations. It must be pointed out that
these particular tests would have had the highest statistical power

of those carried out at any particular locus as the maximum number

of sampled individuals was included in these tests. Nevertheless,

no other trends were suggested except for the tendency of Sutton

Bonington adults to have a lower frequency of the commonest allele

at each locus than did nestlings (7/7 comparisons, E = 0.0156,

2-tailed binomial). This was not the case at Brackenhurst, however,

and the expectation that the frequency difference at Sutton

Bonington would reflect increasing heterozygosity in adults was not

supported by the data.
There were substantial differences in heterozygosity between

the two sites. From stochastic theory, heterozygosity is expected

to be maintained at a higher level in larger populations (Kimura and

Crow 1964; cf. Section 1.2). Thus it might be predicted that the
size of the sampled population at Brackenhurst will exceed that at

Sutton Bonington. Many of the birds sampled at each site were

retrapped on at least one occasion. Though far fewer adults were

marked at Brackenhurst than at Sutton Bonington (BR: 239; SB: 453),

the overall retrap rate at Brackenhurst was much higher than at

Sutton Bonington (Table 5.16). It is difficult to assess the

relative randomness of retrapping at each site, but it is extremely

unlikely that methodological differences could account for the

123



observed difference in recapture rate, and in view of the smaller

numbers of birds marked at Brackenhurst the sampled population at

that site would appear to be much smaller than at Sutton Bonington.

Thus the differences in heterozygosity would not appear to be

attributable to sampled population size differences. The size of

the sampled study populations may not, however, be a useful guide to

Table 5.16

Details of ringing totals and retraps for adults marked at each

study site.

Site Year

SB 1980

1981
1982

BR 1980

1981

1982

Nl.miJer

narked

% Retra{:ped per Site per Year

1980 19821981

116

238
99

15.5 1.7

6.7

10.1

28.4

8.0

129

46

64

10.1

17.4
3.1

39.1

25.0

13.2

the effective population size. It is conceivable that the

arbitrarily defined sampled populations are actually part of much

larger, reasonably panmictic groupings and that the pattern of

movements differs at the two sites. For example, if the area used
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for sampling at Sutton Bonington was more attractive to birds from

the population as a whole for feeding than the equivalent area at

Brackerihurst, then the rate of recapture at Sutton Bonington might

be lower than at Brackerihurst even if the effective population size
at Brackenhurst was higher. It is quite possible that the main
trapping area at Sutton Bonington, a mill building containing

permanently accessible grain, attracted sparrows from greater

distances than did the trapping areas at Brackerihurst.

In view of the observation of distorted segregation ratios for

GPl and PEPD3, the comparison of allele frequencies among age

classes for these loci was of particular potential interest. As

shown above (Section 5.3.5), there was no evidence of a change in

gene frequency among age classes for these loci. Thus no mechanism

to balance the effects of the distorted segregations has been

discovered (cf. Chapter 3).

5.5 CalclusialS

The separate populations studied were not found to disagree

with the null hypothesis that they each represented an essentially

random breeding unit. In view of the power of tests for

disequilibria at single loci, any other result would have been

surprising. A consideration of several essentially independent

estimates of inbreeding as found for different loci was potentially

more powerful, but no suggestion of significant inbreeding (or

outbreeding) resulted although the average value in each study

population was positive. There was some evidence for disequilibria

between pairs of loci at Brackenhurst, particularly for PEPD3-PEPT,

but this was thought most likely to be due to sampling error. It
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was unfortunate that informative breeding data regarding linkage was

not available for all pairs of loci, particularly in the case of

PEPD2-GP1, where possible disequilibrium was found. Considerations

of digenic disequilibria in both populations and a comparison of

genotypic distributions between the separate parts of one study site

did not provide any evidence for structuring within populations. No

conclusions concerning the possible existence of mul tigenic
disequilibria can be made here, but in view of the suggestion of

mUltigenic effects found in a study of exclusion probabilities

(Chapter 4), the analysis should in the future be extended to a

consideration of such disequilibria.

In the comparisons of genic distributions involving nestlings

the confounding effects of sib correlations and the importance of

making allowance for them was emphasised. Comparisons of the

distributions of genotypes and alleles among sex, age and year

classes did not provide any evidence for selection~ the factors

presumed to balance the effects of distorted segregation ratios
found for GP land PEPD3 remain unknown. There were large,

unexpected, differences in allele and genotype frequencies between

the two study populations, with one population having a

significantly higher level of heterozygosity than the other. The

available ecological and mark-recapture data were inadequate to allow

a comparison of effective population sizes at the study sites, but

in view of the observed differences in heterozygosity a more

intensive study of this aspect could be worthwhile.
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Genotype and allele frequencies were presented for 7

polymorphic protein loci in each age, sex and sampling year class at

eaCh of two study sites. The samples were not found to depart from

Hardy Weinberg equilibrium, and there was no evidence for

significant inbreeding within sites. There were no differences in

allelic distributions between the sexes or among years for adults

within the populations. No differences were found among age groups

or nestling year classes when allowance was made for sib

correlations. Heterozygosities were higher at Brackerihurst than at

Sutton Bonington for most loci, and the overall difference was

significant. There was a particularly large difference in allele

frequencies between nestlings in the separate populations for GP1.

There was evidence for digenic gametic disequilibrium at

Brackenhurst for some combinations of loci, but this was thought to

be most likely due to sampling effects. No evidence was obtained
for population substructuring within the populations, or for

selection at any locus.
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6.1. Introductic::n

Most of theoretical population genetics assumes that

populations are randomly mating. It is, however, predicted that the

ability to choose a mate of high quality will be adaptive. If this

chosen quality is heritable, then mate choice will lead to nonrandom

mating at those loci, and any marker loci linked to them,

contributing to those phenotypic characteristics used in the

assessment of quality. If mates are chosen with respect to their

level of relatedness, then nonrandom mating will occur at all

genomic loci. If mates are chosen with respect to physiological,

morphological or behavioural characteristics, then only those loci

(or loci tightly bound to them) contributing directly to the

phenotype are expected to be affected.

Among diploid species, suCh nonrandom mating may result in the

detection of deviations of genotypic proportions from those that

would be expected if gametes were associating randomly. However,

such deviations from Hardy \Jeinberg equilibrium are not necessarily

attributable to active mate choice as they may also result from

gene-flow, selection or undetected population substructure.

Electrophoretic studies routinely include the testing of genotypic

ratios for agreement with Hardy Heinberg expectations. In general,

repeatably demonstrable deviations have been observed only rarely.

In particular, no such deviations have been observed in house

sparrow populations.

The Hardy Heinberg test is, in any case, not a powerful one
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(see Section 5.4.1). The analysis of mate pairs' genotypes is

potentially much more informative as to whether mating is random.

Firstly, mate pair data contains much more information, ln the
statistical sense, than population data. Tests for inbreeding are
three times more powerful when mate pair data are used than for

population data (Yasuda 1969, Cockerham 1973). Such data are,

however, generally more difficult to collect than data from random
individuals. Secondly, there are fewer confounding effects such as

natural and sexual selection and migration which might apply

differentially between the successful breeders and the remainder of

the population. Analyses based solely on population data could be

highly misleading. For example, it is theoretically possible for

mating to be absolutely assortative without any deviation from Hardy

Heinberg ratios resulting.

In this chapter I examine the electrophoretic data for mate

pairs in a number of ways. Firstly, mate pair frequencies are

compared with random expectation. Secondly, using analysis of

variance arguments (Cockerham 1973) the correlations of genes within

and between mates are estimated. These estimates are analogous to

inbreeding coefficients (Wright 1965). 'Thirdly, the results of an

analysis using coefficients of genetic similarity (Rogers 1972) are

compared with those from the genetic correlation analysis. Metric

data for mate pairs are also examined to test for the possibility

of nonrandan mating.

6.2. Methods

The field and laboratory methods (Chapter 2) and protein

polymorphisms (Chapter 3) have been described previously. t1ate
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pairs were selected only from complete families where the offspring

were also sampled. \fuere both adults remained together for more

than one clutch only the first mating was included. ~1atings where

one parent was replaced were included. Where measurements were

made on separate occasions these were averaged. The two study

populations were analysed separately. Sample sizes are shown below

together with the number of individuals involved.

Table 6.1

Nt.miberof mate pairs included in mating analyses, with the m.nnberof

different individuals comprising the mate pairs.

Site

BR SB

Different Matings

Different males

Different females

33

29

31

66

51

55

All 6 codominant loci were included in the analysis for each

mate pair except where PEPD2was heterozygous in which case PEPD3

was excluded (Chapter 3).
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6.3 Results

6.3.1 Mating Frequencies

The observed mating type frequencies are shown in Table 6.2.

To simplify the analysis, the sexes have been ignored and all

alleles other than the commonest at a locus have been pooled (as R).

This provides six mating types per locus.

Also shown in Table 6.2 are the binomial expectations (see

Table 6.3) for each mating class in each population for each of the

three models:

El - random mating among family subsample.

E2 - random mating among family subsample, allele frequencies

equal in each sex.

E3 - random mating among all sampled adults, allele frequencies

equal in each sex.

The expectations based on the different models were not found

to differ significantly. The assumption of equal allele frequencies
in the sexes in model (ii) can be seen to have had minimal effect

upon expectations: only IDHC at Sutton Bonington showed absolute

differences exceeding 0.1. The same assumption in model (iii) was

found to make even less difference when compared with expectation

based upon separate allele frequencies for each sex (not shown: all

changes < 0.1).

The observed mating type frequencies did not, at any locus or

population, differ significantly from expectation.

6.3.2. Genic Carrelaticns

Cockerham (1973) described the components of total genic

variance (q-2) for genes within individuals (a2), genes between-w
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Table 6.2

Observed and expected mating type frequences for each locus at each

site. The models on which expectations were based are:

El random mating among males and females comprising

mate pair samples.

E2 as for El, but assuming allele frequencies equal

in each sex.

E3 random mating among males and females in entire

adult samples.

R = all alleles other than the commonest combined.



Table 6.2

Locus Mating
Sample

E3
SBBR

Obs El E2 Cbs El E2 E3

6PGD BB x BB 29 29.2 29.2 21.3 63 63.0 63.1 59.8
BB x BR 4 3.6 3.6 5.3 3 2.9 2.9 6.0
BB x BR 0 0.0 0.0 0.1 0 0.0 0.0 0.1
BR x BR 0 0.1 0.1 0.2 0 0.0 0.0 0.1
BR x RR 0 0.0 0.0 0.0 0 0.0 0.0 0.0
RRxRR 0 0.0 0.0 0.0 0 0.0 0.0 0.0

PEPD3 BB x BB 11 IB.5 IB.5 21.0 42 42.1 42.1 40.6
BB x BR 11 B.l B.l 6.2 11 10.B 10.8 12.0
BB x RR 0 0.4 0.4 0.2 0 0.3 0.3 0.4
BR x BR 0 0.9 0.9 0.5 1 0.1 0.1 0.9
BR x RR 0 0.1 0.1 0.0 0 0.0 0.0 0.1
RRxBR 0 0.0 0.0 0.0 0 o 0 0.0 o 0

PEPD2 BB x BB 28 21.4 21.4 21.3 51 52.2 52.2 50 0
BB x BR 4 5·2 5.2 5.3 15 12.6 12.6 14.4
BB x RR 0 0.1 0.1 0.1 0 0.4 0.4 0.5
BR x BR 1 0.2 0.2 0.2 0 0.1 O.B 10
BR x RR 0 0.0 0.0 0.0 0 0.0 0.0 0.1
RRxRR 0 0.0 0.0 0.0 0 0.0, 0.0 0.0

IDHC !Ax!A B 1.4 1.5 1.1 19 1B.4 18.9 1B.6
!AxAB 13 13.5 13.4 13.5 2B 2B.3 21.1 21.B
AA x BB 2 3.1 3.0 3.0 10 6.3 5.1 5.3
ABxAB 6 6.0 6.1 5.9 4 9.2 10.2 10.2
AB x BB 4 2.1 2.7 2.6 5 3.5 3.B 3.B
BB x BB 0 0.3 0.3 0.3 0 0.3 0.3 0.3



Table 6.2 contd.

Locus Mating Sample

BR SB
Obs El E2 E3 Obs El E2 E3

PEPT DD x DD 23 24·1 24.1 22.0 48 48.9 48.9 51.1
DD x DR 10 7.9 7.9 9·4 17 15.3 15.3 13.5
DD x RR 0 0.3 0.3 0.5 0 0.6 0.6 0.5
DR x DR 0 0.6 0.6 1.0 1 1.1 1.1 0.9
DR x RR 0 0.1 0.1 0.1 0 1.1 1.1 0.1
RRxRR 0 0.0 0.0 0.0 0 0.0 0.0 0.0

GPI BB x BB 10 12.7 12.7 12.4 31 28.4 28.4 28.2
BB x BR 18 13.7 13.7 13.8 22 26.8 26.8 26.7
BB x RR 1 1.9 1.9 1.9 5 3.3 3·3 3.2
BR x BR 4 3.7 3.7 3.8 7 6.1 6.1 6.3
BR x RR 0 1.0 1.0 1.0 0 1.4 1.4 1.5
RRxRR 0 0.1 0.1 0.1 1 0.1 0.1 0.1



Table 6.3
Expressions for expected proportions of mating types.

Mating Type * **Expected Proportion

AAxAA

ARxRR

2 22Pm(1-Pm)Pf +2Pf(I-Pf)Pm
2 2 2 2(I-Pm) Pf +(l-Pf) Pm

4PmPf(1-Pm) (l-Pf)

2Pf(1-Pf) (1-Pm)2+2Pm(1-Pm) (1-Pf)2

(1-Pm)2(I-Pf)2

AAxAR

AAxRR

ARxAR

RRxRR

* A = commonest allele, R = rest combined

** P = frequency of A in malesm
Pf = frequency of A in females



mates ((J2) and between mate pa.irs ((J2). From these components the
-v =m

correlations of genes wi thin individuals (F) and of genes between

mates (8) are estimated as:

Cockerham (1973) provides X2 tests for the following

hypotheses:

Hl F = 0

H2 8 = 0

H3 8=F=0

H4 F=8

(Note that Cockerham's (1973) equation (14) is misprinted - refer to

equation (11).)

If .!:!4 is accepted then a pooled estimator, g, maybe obtained

as

... ...
a= (F + 28)/3

Thus !!3 is the test of a = 0, and is conditional upon

acceptance of H-4·
of Wright (1969).

Cockerham's F is equivalent to the fixation index

If ~ =~, the population is at equilibrium, and

if inbreeding is the only factor operating, then 8 will be the best

estimate of the inbreeding coefficient.
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The estimates F, 9 anda. as obtained following the procedure

of Cockerham (1973), are given in Table 6.4. All four hypotheses

outlined above were tested for each set of estimates. population

averages for the estimates E:_, 9 andgwere obtained by summingthe

variance componentestimates obtained separately for each of the six

loci. This is the procedure as recommended for 9 by B.S. Weir

(pers. comm.)and Weir and Cockerham(1984).

Thus for n loci:

n n

9 = I:a~.I I:a~
i=l 1 i=l 1

n 2 2 n 2
F = I:(am, +av, )/ I:a ,

i=l 1 1 i=l 1

- ~ a2 (J2 ~ (J2,ex = L (3 m, + v)/ L
'1 1 i'll1= 1=

Numerical estimates of the variances of these combined loci

estimators were found by the jackknife procedure, jackknifing over

loci by omitting each in turn (Reynolds, Weir and Cockerham1983:

Weir and Cockerham1984). Noneof the combinedestimators was found

to differ significantly from 0 (Table 6.4).

Amongst the tests at individual loci, significant departures

were observed for IDHCmatings at Sutton Bonington for H : F = 0
2 2-1

(X = 6.62, n < 0.01) and H : F = 9 (X , = 5.33, n <0.01). The-1 L 4 - - -1 L

power of the tests in this particular instance will be one of the

highest for the data set presented, as they applied to the larger

sample and one of the more heteroz't;ous loci. In an assessment of

whether they are spurious or meaningful, they should not therefore
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be regarded as simply representing 2 tests out of a total 36. As,

however, a significant positive value was not obtained for~, the

observed departures cannot be attributed to inbreeding. Further,

the data for the other loci do not support any hypothesis regarding

inbreeding or any other form of nonrandom mating. In particular,

there was no concordance between the results for IDHCin the two

separate populations. A closer examination of the mate pair data

for IDHCat Sutton Bonington revealed a significant difference in

the genotypic distributions for the two sexes:

Table 6.5

IDHCgenotypes of mate pairs at SB

Sex

AA. AB BB

Hales 44

32
19

22

3

12Females

G2 = 7.90

0.025>p>0.OlO

Cockerham's formulae assume that the allele frequencies in the

two sexes are the same: the anomalous result for IDHCat Sutton

Bonington resulted from this condition not being met. The apparent

difference between the sexes in the mate pair subsample was itself

an effect of sampling. The 12 IDHCB/Bfemale genotypes in different

mate pairs are actually contributed by only 7 different females. 2
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Table 6.4
Estimates of correlations between genes in mate pairs. Combined
estimates are shown ± lSE.

/\ .A /\Locus Site F e d,

6PGD BR -0.0503 -0.0503 -0.0503
SB -0.0066 -0.0062 -0.0063

PEPD3 BR -0.1021 -0.1021 -0.1021
SB -0.0589 0.0229 -0.0044

PEPD2 BR -0.0382 0.1352 0.0774
SB -0.0567 -0.0567 -0.0567

IDHC BR -0.0867 0.0526 0.0062
SB 0.2132* -0.0939* (0.0085)*

PEPT BR -0.0756 -0.0756 -0.0756
SB -0.0738 -0.0172 -0.0361

GPl BR -0.2409 -0.1455 -0.1773
SB 0.1157 0.0421 0.0667

Combined BR -0.0982 -0.0358 -0.0498
±0.0673 + +-0.0875 -0.0735

SB 0.0897
+-0.0972

-0.0277
+-0.0420

0.0114
+-0.0354

*significant departures from null hypotheses -
refer to text.



each mated with 2 different males and 1 other was observed to mate

with a total of 4 different males during the course of the study (a

unique example).

6.3.3 Similarity Coefficients

The use of coefficients of genetic identity allows an

alternative approach to an assessment of the genetic similarity of

mates. The most frequently used indices for population comparisons

are Rogers' ~ (Rogers 1972) and Nei's.! (Nei, 1972). Schwartz and

Armitage (1983) applied both coefficients to electrophoretic data

for individuals from colonies of the yellow-bellied marmot, t1armota

flaviventris. They assessed the usefulness of the coefficients for

inferring relatedness by comparing the values obtained for each pair

(not just mates) of individuals in each colony whose pedigrees were

known, with the coefficient of relatedness for each pair as

determined by path analysis (Falconer 1981).

Roger~ S for a pair of individuals is found as:

m
S = l-{(" [p. - P. J2)/2}0.S

'L_, loX l.y
i=l

where P. is the frequency of the ith allele in individual x and m~.x
is the number of alleles. As, for an individual, m = 2 it follows

that _§. = 1.0, 0.5 or 0.0 depending on whether the pair have 2, 1 or

o alleles respectively in common. Nei's index for a pair of

individuals is of the form:

135



m
I = ~p I?

~ Lx l..y
i=l

For a pair's genotypes the values of ! are the same as for ~
except in the case of the pairing of a heterozygote with a

homozygote having one allele in common. Nei's index effectively
treats such a pairing (~=~) as being more similar than one

consisting of two heterozygotes having one allele in common (_~..=
0.5). All possible types of pairs, using mating terminology, are

shown with appropriate Sand! values in Table 6.5. Schwartz and

Armitage (1983) found that! was less correlated with relatedness

than S. They concluded that whilst S could not usefully be applied

quantitatively to predict relatedness, it had on average a

significantly larger value for related as compared with unrelated

pairs. Whilst Schwartz and Armitage were particularly concerned

with measures of intracolony relatedness, their conclusions should
apply equally to mate pairs.

As Rogers' S is easily estimated and, unlike the more rigorous
. as itmeasures of genic correlations of mate pairs (see above Lv can be

found for mate pairs considered individually, it is of interest to

know if estimates of ~ are empirically related to estimates of those

correlations. The values that ~ may take are ultimately constrained

by the allele frequencies at a locus. As the allele frequencies

vary among loci, raw individual estimates of S from different loci

cannot be analysed together. Differences among loci would reflect

differences in allele frequency more than any differences in

estimates for genic correlations. A relative measure of deviation,

3" of mean observed values for mate pairs, S, from that expected
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under a hypotheai.s of random mating, 8 , is therefore proposed:
-e

d = (8 S )/(1
e

8 )
e

~ = 1 when all mates are identical and ~ = 0 when mating conforms

with the assumptions made in the estimation of 8 .
~

Values of d were found for each locus and study population

(Table 6.6). 8 was calculated from the observed allele frequencies
+e

in the mate pair samples, treating the mate pairs as independent and

assuming that the allele frequencies were equal in each sex. The

same conditions applied in the estimation of genic correlations

(Section 6.3.2). No allelic classes were combined when calculating

8 or S. Oorrelation coefficients were calculated between these 12
-e

values for d and the appropriate estimates of the genic correlation

coefficients, 9, F, and a (from Table 6.4). A significant

correlation was obtained between d and 9 only (r = 0.661, E =
0.019) •

Thus in the samples studied here, there appears to be a strong

relationship between a measure of the deviation of estimates of the

coefficient of genetic similarity ~ from random expectation and

estimates of the correlation 9 of genes between mates.

6.3.4 Assartati ve Mating

The analyses of protein polymorphisms just described provided

no evidence for assortative mating. Assortative mating with respect

to such polymorphisms is in any case particularly unexpected as none

of the loci is known to be associated with appropriate potential

morphological or physiological mating cues. Horphological

characters are in general potential mating cues. One aspect of
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Table 6.6
,..

Mean values for Rogers' coefficient of genetic similarity, S,
for mate pairs as determined at each locus in each study population.
S = value expected from random mat~ among alleles in mate pair
s~ples. d = relative deviation of S from ~ (refer to text).

Site Locus '"S "d

BR 6PGD 0.939 0.943 -0.070
PEPD3 0.833 0.831 0.010
PEPD2 0.955 0.917 0.457
IDHC 0.652 0.663 0.034
PEPT 0.833 0.879 -0.381
GP1 0.712 0.708 -0.015

SB 6PGD 0.977 0.978 -0.045
PEPD3 0.886 0.892 -0.055
PEPD2 0.819 0.899 -0.191
IDEC 0.583 0.684 -0·320
PEPT 0.811 0.870 -0.009
GPI 0.705 0.721 -0.057



these metrical variables was therefore investigated.

Before proceeding, the relationships among different metrics

and their distribution between populations were investigated. The

house sparrow is dimorphic with respect to size (see Table 6.7)and

the sexes were therefore treated separately. One-way analyses of
variance revealed small but significant size differences between the

male samples (Table 6.7). Males at Brackenhurst were heavier than

at Sutton Bonington (E = 0.024) and had shorter wings (E = 0.012).

The weight difference may have been due in part to the trapping time

of males at Brackenhurst being on average 1.17h later than at Sutton

Bonington (~ = 11.24h, X _ 10 07h F = 7.88, n = 0.01).-BR -SB - • , _ 1,305 L

It was concluded that there may be size differences between the

populations, and the two samples were therefore not pooled.

Correlations among the different metrics were investigated

(Table 6.8). All 3 tarsus measurements (Chapter 2) were included in

the analysis. It was found that where sample sizes were reasonable

(>50), TAR2 was the tarsus measurement most correlated with other
metrics. The measurement that correlates most is likely to be the

most biologically meaningful; hence TAR2 would appear to be the most

valuable of the 3 measurements taken in spite of anticipated

difficulties with respect to its measurement (see Chapter 2).

Unfortunately the measuring of TAR2 commenced at a later stage in

the study. Significant values for the product-moment correlation

coefficient E, ranging from 0.17-0.55, were observed for almost all

combinations of weight and wing, tail and tarsus lengths (taking

TAR2 as the best measurement in larger samples), for all four

sUbsamples. The only pair of variables not found to correlate were

tail and tarsus, and this again was the case for all four

sUbsamples. Wing and tail lengths were the most correlated in each
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Table 6.7
Means:- 1 standard error for size characteristic's of adult males
and females at each study site, with results (F) for comparisons
between sites within sex classes. Sample sizes are shown in
parentheses. p = probability ns = not significant.

Sex Sample
Class Variable

SB BR F p

Females Wing (mm) + 75.45:-0.1675.78-0.14 2.38 ns(169) (133)
Weight (g) 26.94:-0.17 +27.44-0.19 3.82 ns(168) (134)
Tail (mm) 55.76:-0.18 +55.35-0.22 2.06 ns(168) (130)
TARI (mm) 17.62:!:0.07 +17.44-0.08 2.79 ns(135) (85)
TAR2 (mm) + +18.41-0.12 18.41-0.13 0.00(51) (54) ns

TAR3 (mm) + +18.59-0.10 18.44-0.13 0.85 ns(56) (54)

Males Wing + +78.57-0.12 77.98-0.18 7.63 0.012(201) (102)
Weight + 27.68:-0.1627.19-0.11 6.41 0.024(197) (101)

+ +Tail 57.93-0.17 57.62-0.20 1.32(197) (100) ns

TARI 17.55±0.06 17.64±0.09 0.53 ne(157) (63)
TAR2 + 18.61±0.1518.52-0.11 0.25 ne,(55) (28)
TAR3 + 18.64=0.8018.57-0.09 0.16 ne(60) (31)



Table 6.8
Product-moment correlation coefficients (r) for adult metrics.
N = sample size, p = probability.

~
SB

Male

WEIGHT TAIL TARSI TARS2 TARS3
WING r 0.257 0.554 0.105 0.346 0.324

N 196 197 155 56 61

WEIGHT r
N
p

TAIL r

N

p

TARSI r
N

p

TARS2 r
N

p

contd.

p **** **** 0.09 ** **

Female

WEIGHT TAIL TARSI TARS2 TARS3
0.173 0.339 0.196 0.307 0.213
167 167 135 51 56
* **** * * 0.06

0.231 0.224 0.315 0.213
166 134 49 54
** ** * 0.06

0.252 0.245 0.323 0.422
192 154 55 60
*** ** ** ***

0.066 0.205 0.192
154 55 60

0.21 0.07 0.07

0.032 0.175 0.128
135 51 56

0.35 0.11 0.17

0.766 0.802
57 56

**** ****

0.897
51

****

0.669 0.661
54 54

**** ****

0.946
54

****

* p <:: 0.05
** p-e Os O'l
*** pc:0.001
****p c:0.0001



Table 6. 8 contd.

~
BR

Male Female

WEIGHT TAIL TAR.slTARS2 TARS3 WEIGHT TAIL TARSI TARS2 TARS3

**** ** 0.33 0.13

0.201 0.443 0.064 0.231 0.196
132 128 85 54 54

WING rO.213 0.450 0.301 0.089 0.212
N 97 98 62 27 30
p * * **** 0.28 * 0.08

WEIGHT r 0.182 0.252-0.054 0.016 0.183 0.371 0.321 0.335
N 97 62 28 31 127 85 54 54
p * * 0.39 0.47 * *** ** **

TAIL r 0.099 0.306 0.338 0.092 0.101 0.086
N 62 27 30 83 52 52
p 0.22 0.06 * 0.20 0.24 0.27

TARSI r 0.758 0.826 0.797 0.781
N 28 31 54 54
p **** **** **** ****

TARS2 r 0.923 0.975
N 28 54
p **** ****

* pc::0.05
** pc::0.01
*'** peO.001**** pc::0.0001



of the four qr'oups r tarsus length with weight or wing-length were

the second and third most correlated in every group. Thus all four

measurements would appear to some degree to reflect the overall size
of the individual.

The correlation coefficients for the metrics of mate pairs in

each study population were determined (Table 6.9.) As the sample

sizes for TAR2 were small, TARl has been taken as the tarsus

measurement. Significant correlations were found at Sutton

Bonington (the larger sample) for weight and tail-length (£<0.04),

and that for tarsus-length approached significance (p<0.07). None

of the correlations was significant for the Brackenhurst samples,

and none of the correlations for a variable differed significantly

between sites.

6.4 Discussion

6.4.1 Genic Correlation am S:i.rnilarity

The individual locus by locus estimates for the correlation of

genes between mates ~, the correlation of genes within individuals

(Le. of uniting gametes) F, and the pooled estimator g, as

determined following Cockerham (1973), have been discussed above.

Only one previous stUdy of a natural population (of Peromyscus

polionotus) has to my knowledge used mate pair data to find

inbreeding coefficients by Cockerham's method (Foltz 1981). In

a large randomly mating population these genic correlations are

expected to approximate to zero. The jackknifed within sample

estimators were not significantly different from 0 (Table 6.4), nor

were ~ and ~ significantly different from one another. It is,

however, noteworthy that when the twelve independent estimates for F
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Table 6.9

Product-moment correlation coefficients (£) for the metrics of
mates at each study site.

N = sample size, p = probability

Mate pair sample
Metric

r N p

BR
r N p

Tail length

0.104

0.230

0.232

0.261

66

63

65

49

0.035

0.031

0.068

-0.080

Wing-length 0.200 0.102 0.290

-0.008

32

32

31

23

0.331

0.335
0.207

Weight

TAR 1 -0.179



were considered together (2 samples x 6 loci), there were

significantly more negative than pos.i.t.ivevalues (10:2, E = 0.0386).

There was no significant tendency, however, for 9 to be

negative. Thus the tendency for ~ to be negative was not
attributable to any tendency towards outbreeding. other causes are

therefore more likely; for example, negative values for ~ would be

expected if there were an excess of heterozygotes due to selective

differences. The values for F obtained here were based on a small

subsample of adults, and their contributions were partly correlated

with the number of successful clutches with which they were

associated (as parents which changed mates were re-included in the

analysis). The values obtained for F from the entire adult samples

(Section 5.3.3 and Table 5.5) showed no significant tendency to

deviate from zero, and it might then be fX)stulated that successful

breeders tend to be more heterozygous than other adults.

The finding that a proposed measure of deviation from genetic

similarity, ~, was correlated with 9 is potentially useful as
the calculation of ~ is relatively convenient, particularly if

some combined measure of similarity of mates across several loci is

required. The statistical properties of d have not, however, been

investigated and testing the significance of results must rely on

the use of nonparametric tests for trends in values obtained

independently.

6.4.2 Assortati ve Mating

The suggestion of assortative mating at Sutton Bonington for

some size variables, particularly tail-length, is of particular

interest. There are several examples of assortative or

disassortative mating for plumage characteristics in birds. For
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example, lesser snow geese, Anser c. caerulescens, mate

assortatively with respect to body plumage colour (Cooke et al.

1976) and white-throated sparrows, Zonotrichia albicollis, mate

disassortatively with respect to crown stripe colour (Lowther'1961,

cf. Thorneycroft 1976). Metric data concerning mate pairs in birds

has only occasionally been presented in the literature. Boag and

Grant (1978, cf. Boag 1983) obtained data for the medium ground

finch, Geospiza fortis, which suggested that assortative mating for

size characters, particularly bill size and tarsus length, occurs in

some years.

Correlations of size variables have more often been observed in

groups other than birds, and have been particularly well documented

in humans (Roberts 1977). Most components of size in humans are

found to correlate. If size per se was the characteristic with

respect to which sparrows were mating assortatively then, on the

basis of the strengths of the correlations amongdifferent variables

(Section 6.3.4 and Table 6.8), wing-length might have been expected

to show the largest effect. That tail-length showed the largest

effect might point to the possibility that tail-length is itself

closely correlated with a particular mating cue. If there is an

active assessment of size between potential mates, then tail size

might itself have an influence, particularly as males hold their

tails in a raised position during solicitation displays. There

would not, however, appear to be much advantage in mating

attributable to size itself, as there is only slight sexual

dimorphism for size in house sparrows. The mechanisms by which

assortative mating occurs are in general little understood.
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6.5 Ccnclusicns

There has been considerable recent speculation about whether

animals in natural populations mate with individuals having some

optimum level of identical genes in common ('optimal outbreeding':

see Bateson 1978, Shields 1982, 1983). Experimental evidence has

been obtained that Japanese quail prefer to associate with

individuals having an intermediate level of relatedness (Bateson

1978, 1982, 1983), implying that birds may use morphological cues to

select a partner of the optimum type. Some evidence has been

obtained here that house sparrows mate assortatively for size,

though the result must be treated with caution as it was only found

to be the case at one of the two study sites. This may imply that

active mate choice occurs in house sparrows. It might be

hypothesised that suCh choice allows the mating of birds with some

optimum level of relatedness, but no evidence for any departure from

random mating was Obtained from the biochemical genetic analysis of

mate pairs.

Six biochemical polymorphisms were used in a detailed analysis

of the mating types of house sparrows in two breeding populations.

No evidence was obtained for any departure from random mating

amongst these polymorphisms. There was a significant tendency

amongst the loci and samples for the inbreeding coefficients of the

successful breeders to be negative.

Correlations between the sizes of mates were investigated, and

significant assortative mating was found with respect to weight and
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tail-length in the larger (Sutton Bonington)sample.
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APPENDICES

Appendix 1

List of principal chemicals used, with details of suppliers.

Reagent

Adenosine
Agar (Bacteriological No 1)
Amido Black lOB (Naphthol Blue Black)

L-Amino acid oxidase
3-Amino-9-ethyl carbazole

Boric acid
Citric acid

DL-Dithiothreitol (OTT)

Fast Blue RR salt
~-~lucose-l-phosphate

~luODse-6-phosphate
~lucose 6-phosphate dehydrogenase

Heparin 5000 I.U ./m!
DL-Isocitric acid (Na3 salt)
L-Leucyl glycyl glycine
L-Leucyl-L-tyrosine

LioR
MI"I'

oc.,-Naphthylpropionate
Nicotinamide-adenine dinucleotide

phosphate (NADP)

Nigrosin
Nitroso R salt
Nucleoside phosphorylase
Peroxidase

6-Phosphogluconate (Na3 salt)
Phenazine methosu lphat.e (Pr15)

NaH2P04
Na2HP04
Starch
Triton

Supplier Order No.

Sigma A 9251
Oxoid
Sigma N 3005
Sigma A 5147
Sigma A 5754
BDH 27410
BOO 10081
Sigma D 0632
Sigma F 0500
Sigma G 1259
Sigma P 8391
Sigma G 7878
Wedde1 Pharm. Ltd
Sigma I 1252
Sigma L 9750
Sigma L 0501
BOO 29073
Sigma r1 2128
Sigma N 0376

BOO 42051
Sigma N 4754
Hopkin & Hilliams 630400
Sigma N 3003
Sigma P 8250
Sigma P 7877
Sigma P 9625
BDH 10245
BOO 10249
Connaught Labs. Ltd
Sigma T 6878

xanthine oxidase
Tris (hydroxymethyl )aminanethane (TRIS) Sigma

Sigma
T 1378
X 1875
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Appendix 2

Electromorph and allele frequencies for age and sex classes in each
year at each study site for each locus.

~l = goodness of fit G-test for agreement with Hardy-Weinberg ratios.
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