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ABSTRACf

In this thesis, forecasting models for the UK pigmeat sector are built using various

methodologies with particular interest being paid to the relative forecasting ability of

time series models compared with the performance of biological and econometric

methodologies. The main determinant of the supply of pigmeat in the UK is the size

of the breeding herd, the quantity of meat itself being directly attributable to the

number of fat pigs slaughtered and to a lesser extent cullings of older sows and boars

from the breeding herd. These three key variables are the ones modelled in this thesis.

Prior to building forecasting models an explanation is given of the system

underpinning the pig sector, in terms of the biology of the breeding herd pig, the

mechanism of how supply responds to prices, and consideration of the well

documented 'pig cycle'. Thus, the workings of the biological and economic

mechanisms are described in the context of an equilibrium framework before the

relevant models are built.

Having built the various models, their relative forecasting performance is measured

by consideration of the size of the forecast errors and the ability of the models to

forecast the directional movements of the actual series in a specified out-of-sample

period. In the concluding chapter, suggestions are made as to how the models might

be developed further and how the various approaches might be combined into a single

forecasting model.

The availability of data has an important influence on much of the model building

methodology and forecasting analysis. Consideration is given at various points in the

thesis to circumventing these restrictions.
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CHAPfERONE

INTRODUCflON

1.1 The Background to and Objectivesof This Thesis
One of the most well known phenomenon in agriculture is the presence of the pig
cycle, which has long since been of considerable interest to academics and policy
makers alike. Academically, the cycle is of interest in that it has considerable
implications for policy, and because it is the only significant example of the
cobweb theorem. The ups and downs in the size of the pig breeding herd during
the course of the cycle in tum produce fluctuations in the supply and, therefore,
the price of pigmeat and, subsequently, in the returns to producers. As one of the
prime objectives of agricultural policy is to achieve stability, the policy of the
EEC's pigmeat regime, for example, is expliciltly counter cyclical in the way it
operates l, Consequently, knowledge of the movements, past and future, of
the cycle are of obvious relevance to bodies such as the EEC and the UK's Meat
and Livestock Commission, MLC, a statutory body whose job, inter alia, is to
monitor the UK meat sector, provide information to the sector and improving
market efficiency. Because, forecasting the future breeding herd is of such
interest, this thesis is concerned primarily with the quantitative aspects of the
cycle rather than explicitly addressing the underlying causes of it, in an attempt to
build models which, it is hoped, will be of use in forecasting the key variables of
the sector.
The prime objective of this thesis is to build forecasting models for the UK
pigmeat sector using different methodologies in order to make comparisons of
their relative forecasting performances over the short and medium/long term.
Specifically, the relative forecasting abilities of econometric, biological and
univariate and bivariate Box-Jenkins methodologies will be examined. The prime
variables to consider when modelling the pig meat sector are the size of the
domestic herd, which then determines the number of pigs able to be produced for
a relevant lead period, and the variables which directly affect the supply of pig
meat, the number of fat pig slaughterings, and to a lesser extent, sow and boar
cullings. Studies in the recent past which have aimed to model the pig meat
sectors of the UK and the USA, for example, Ness and Coleman (1976), Savin

1 See The pigmeat Regime MLCs European Handbook Vol 1.
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(1978), Burton (1987), and for the US, Westcott and Hull (1985) and Stillman
(1985) have all concentrated on modelling the breeding herd. Having determined,
from the size of the breeding herd, the production of pigs for the lead time
specified the produceable quantity of pigrneat can be inferred.2
A common method for modelling the UK pig herd in recent years was initiated
by Diane Savin in an article entitled 'Forecasting the Pig Breeding Herd - an
Examination of Differential Response to Changes in Profitability' 3. In this
article she broke from the convention of modelling the breeding herd itself
directly as a function of some profit margin, as had been the case in the cited US
studies and the UK studies prior to hers. In order to improve the success of
modelling the length and amplitude of the well known pig cycle+ she
introduced the idea of modelling the breeding herd as a system of inflows and
outflows. Inflows into the breeding herd in the form of boars and gilts-in-pig - or
pregnant gilts as they will be referred to in this thesis - which are sows that are
in-pig for the first time. Outflow from the breeding herd takes the form of
cullings of sows and boars which are no longer considered economically viable
to remain in the breeding herd. Both the inflow and the outflow variables are then
modelled as functions of a profit variable. Savin was content that she had met
with some success in meeting her stated objective to model the breeding herd and
its fluctuations over time, her model providing the basis for subsequent work by,
for example, Burton (1987) and is the basis of the breeding herd forecasting
model currently used by the MLC to provide forecast to the UK pig meat
industry and the EEC.
In this thesis, it was decided that a similar inflow/outflow approach to modelling
the breeding herd would make a useful basis on which to build a breeding herd
forecasting model for the UK. In addition to an econometric approach, however,
the decision was taken to analyse the forecasting abilities of a biologically based
forecasting model from which the use of profit as an explicit regressor is
excluded. Because econometric models of the breeding herd usually include
biological features, implicitly or explicitly, the econometric approach to

2 The interested reader can see such methods of determining the number of fat pig
and pork marketings in Savin (1978), page 109, and Westcott and Hull (1985),
page 37.
In 'Supply Response and The World Meat Situation', Procedings of a Symposium
held 13 and 14 Apri11978, MLC Economic Information Service, 1978.
Work by McClements(1970) suggests that the uk pig cycle varied in the range of
36 to 42 months. though more recent work by Ridgeon given in Green Europe.
published by AGRA EUROPE states that the cycle in recent years has increased in
length to 5 years.

3

4



Page 1.3

modelling is, in effect, a more sophisticated type of biological model. Thus, in
addition to the insight that the biological model will provide into the biological
relationships that exist within and between the breeding and the feeding herds,

•
the comparative forecasting performance of the biological and the econometric
approaches will be of obvious interest in the context of this study.
As will become clearer when the breeding herd model is explained more fully,
recursive links exist between inflow and the breeding herd and between outflow
and the breeding herd lagged for a period appropriate to each case.
Consequently, the breeding herd can be expressed as a function of past values of
itself as determined by the lags in the inflow,outflow and breeding herd
relationships. In view of this, and in view of the fact that I was unaware of the
existence of such a study in the UK, it was deemed of interest to examine the
comparative forecasting performance of univariate statistical models with those of
the biological and econometric models. In this context, Box-Jenkins
methodology as proposed by the said authors in their book 'Time Series
Analysis- forecasting and control'S will be employed to build appropriate
models. Such models are of particular interest for their short term forecasting
abilities and have the useful characteristic that a working forecasting model can
be developed with no prior knowledge of the variable they are built to forecast.
Having said this, they do exhibit the drawbacks of requiring a large amount of
homogeneous data and learning the art of model building can be a time
consuming affair. An even more sophisticated extension of the univariate Box-
Jenkins models are multivariate models. Where it is deemed appropriate, the
possibility of building bivariate models will be examined as an alternative to the
traditional econometric approach.
Before the methodological approach to modelling and forecasting in this thesis is
expounded, a resume of the pig meat sector in the UK over recent years, a period
in which the industry has undergone much change, will be discussed briefly in
order to help the reader to understand the context of the period of study.

1.2 A Recent History of the V.K. Pig Meat Sector.6

Over the last twenty years or so, the pig meat industry has undergone a
considerable number of changes, which have considerably affected methods of

5

6

Box, G.E.P., and Jenkins, G.M. Time Series Analysis- forecasting and controt ;
Holden-Day, San Francisco, 1970.

Much of the infonnation for this section comes from the a special survey
published by the MLC in their Market Survey for April 1988.
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production and marketing in the sector. These changes have important effects on
the biological and economic relationships within and between the breeding and
feeding herds and consequently, modelling of key variables of the sector to be

:

considered in this thesis is influenced.
The major effect on the industry over the last 20 years is that it has become much
more concentrated and specialised, so that whereas it was quite common 20 years
ago to have a large number of small holdings where farmers reared pigs for meat
and replenished his breeding herd with gilts from his own stock, today 71% of
pig production in England and Wales is concentrated in the hands of producers
with herd sizes larger than 100 pigs. The latter figure compares with 54% for
such herd sizes as little ago as 1978. In the UK the overall effect of the increased
concentration has been to reduce the number of pig farms to 22,000 in 1986, a
reduction of 75% of the number in 1968 and there are now fewer holdings with
pigs than at any time since the war. In tandem with the increase in concentration,
the industry has become increasingly specialised. The number of farms where
both breeding and rearing take place is relatively small compared with the late
sixties and seventies, 80% of breeding herd boars and 90% of replacement gilts
being provided by the specialised breeding companies which have become so
common in recent years. Along with increased concentration, the average herd

size has increased substantially from 26 in 1978 to 49 in 1986.
Although the number of producers has fallen over the last two decades, the
production of pigs, as indicated by the number of slaughterings of fat pigs, has
risen. The consequence of this increase in production, added to increased imports
of pigmeat and fairly static demand has been to depress the price of pig meat,
which has occurred at the same time as increased input prices, principally
accounted for by feed costs. Thus, a consequence of the increased efficiency,
which has resulted from the economies of scale experienced in the pig sector, has
been to squeeze the sector of profits which has accelerated the loss of the less
efficient, often smaller farmer.
Like all agricultural sectors, the pig meat sector is provided for under the
Common Agricultural Policy - CAP - of the EEC, specifically by the Pig Meat
Regime set up on July 1st 1967, the latter being closely linked to the cereal
regime because of the high percentage of production costs accounted for by
cereal feedstuffs." The UK production of pig meat accounted for 12% of EEC

7 For a detailed exposition of the EEC Pig Meat Regime the reader is directed to
section 5 of the MLC European Handbook, The Common Agricultural Policy,
Volume 1.
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production in 1986, the EEC being slightly more than self sufficient in pig meat
production and an established net exporter. Although the regime makes provision
for intervention buying if the market price falls below a specified 'basic' price,
direct intervention has never been used in the pig meat sector. The'EEC's main
assistance topig producers has been to prevent imports and aid exports. The
Community has also attempted to stabilise the market by providing special
storage aid schemes. The latter is preferred to intervention buying on the grounds
that it is only a temporary measure, likely to be cheaper than direct EEC
intervention, and it is felt that the private sector is better able to judge the local
market, knowing when the time is right to release the surpluses back onto the
market without depressing prices. The funding of the regime is the responsibility
of the European Agricultural Guarantee and Guidance Fund - FEOGA - although
the regime accounts for only one percent of the total guarantee fund. of which
approximately two-thirds fmances export refunds, the remaining third directed to
private storage aid. The result of this method of support used by the EEC
pigmeat regime is that the UK pig producers, along with their European
counterparts, are left susceptible to the ups and, more relevant to the period under
discussion, the downward pressures of the market. This was not the case prior to
1973 when the deficiency payments minimum price guarantee scheme was
operative in the UK. Having said this the UK government was given permission
to give a temporary cleanpig subsidy of 6.7p per kg deadweight in the first half
of 1977 to help restore confidence in the sector, characterised by the high culling
levels at the end of 1976 and the beginning of 1977.
Pigmeat production is an example of perfect competition and the individual
producers, however large they might appear to be, have no way of influencing
the price they receive for their pig meat, their prime concern in order to be able to
stand these market pressures is to reduce their costs of production. They are able
to do this through good husbandry management and technical efficiency, the
latter being an area where most has been gained in recent years. Because these
technical changes have direct and indirect implications for modelling, the trends
in key technical coefficients over the last decade or so are examined below.

1.3 Recent Trends in the Technical Features of the V.K.PigMeat Sector.

Basically, the UK pig industry can be split into the breeding sector and the

rearing sector, the aims of the producers in both being to produce breeding herds
for their reproductive capabilities and feeding herds for their meat as efficiently as
possible. The nature of the pig sector is such that the technical features associated
with the breeding, rearing and feeding performance of the industry have a
significant effect on its performance and, therefore, must be taken into
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consideration when modelling it. The reason for the importance of such technical
features compared with the pig meat sector's two principal red meat rivals is the
large number of offspring per litter and a gestation period which although similar

•
to that of sheep is considerably shorter than that of cattle, so that productivity per
annum can be affected significantly by improvements in technical factors.
The primary aim of pig farmers is to produce the maximum number of pigs per
sow per annum, a figure which is influenced by a number of technical
coefficients. The key determinants include the number of litters per sow per
annum, which the producer can influence directly by changing the length of the
weaning period. The number of litters per year is also affected by the managerial
and husbandry abilities of producers, who must aim to ensure that a sow is
successfully re-served as quickly as possible after weaning her litters. The
second key influence in determining the number of pigs reared per sow per year
is the number of piglets successfully reared per litter, a figure determined by the
number of pigs born live per sow per litter and the mortality percentage of pigs
born live. Figures 1.1 to 1.3 illustrate the trends which have taken place in these
technical coefficients for the period 1974 to 1987 as collated by the Pig Plan

Survey conducted by the Meat and Livestock Commission - M.L.C.8

Figure 1.1
Litters Per Sow Per Year and Average Weaning Age 1974-87

2.3 36

34
2.2

32 III
>.... !IS

!IS 2.1 30 Cl
ID
>. Cl...... c
it c
0 2.0 28 !IS
III ID...... ;:--J 26 >-c

El lit/sow/year

• Av Weaning Days 24

1.8 22
~ It) co " Q) 01 0 .... C\I (\') <o;t It) co ",.... " " " " " Q) Q) Q) Q) Q) Q) Q) Q)
01 01 01 01 01 01 01 01 01 01 01 01 01 01.... .... .... .... .... .... .... ....

YEAR

8 All data for figures 1.1 to 1.4 are obtained from M.L.eo's Pig Yearbooks 1984-88
and are collated by their Pig Plan Survey using a representative sample of the UK
breeding herd.
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Figure 1.1 indicates that the number of litters per sow per annum has risen
steadily from 1.9 in 1974 to 2.26 in 1987, although the rate of increase
noticeably slows in the eighties compared with that experienced in the seventies.
Unfortunately, the pig plan survey does not provide information. on average
weaning ages prior to 1979, however, the MLC Market Survey for April 88
quotes the average weaning age for 1977 as 35 days and so this figure is
incorporated into figure 1.1. The figure indicates that the slow down in the rate
of change in the two trends occurs at about the same time indicating that the
reason for the slow down in the increase in the numbers of litters per sow per
annum is largely a consequence of the deceleration in the shortening of the
weaning period. The alternative explanation for the slow down is a husbandry
one, in that the break in the litters per annum series could have occurred as a
result of a sudden slowing down in the increased ability on the part of producers
to get their sows successfully re-served after weaning. The implausibility of the
latter argument coupled with the evidence presented in figure 1.1 however,
suggest that it was a change in the rate of decrease in weaning age which was the
cause of the decelerated increase in the number of litters per year. Having said
this, the MLC Market Survey for April 1988 suggests that the gains in
productivity from reductions in weaning age are now less likely and that
producers will have to turn their attentions to husbandry and genetic
improvements.f

Figure 1.2
Live Pigs Born Per Litter and Mortality Percentage of Pigs Born Alive 1974-87
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9 MLC Market Survey April 1987, 'The Changing structure of the pig meat
marketing chain', page 3.
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Figure 1.2 shows the trends in the number of pigs born live per litter and the

mortality percentage of pigs born live, the latter being the results of losses

through disease, illnesses, or more commonly, accidental death, usually through

piglets being .crushed by the mother. The two trends augur well for the efficiency

of the industry, the number of deaths relative to the litter size steadily declining

throughout the sample period and the number of live pigs born per litter

increasing from around 12 in 1974 to around 15 in 1987. The latter implies an

increase in the productivity of the breeding sows, presumably a result of

technical and management improvements.

The consequence of the trends illustrated in figure 1.2 is that the number of pigs

reared per litter has increased over the period from just above 8.8 in 1974 to

almost 9.4 in 1987 as illustrated in figure 1.3 below.

Figure 1.3

Pigs Reared Per Litter and Numbers Reared Per Sow Per Year
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The other series presented in figure 1.3 is the key coefficient of interest, the

number of pigs reared per sow per year, whose value is a direct consequence of

the technical coefficients analysed above, though ultimately its value is dependent

on the number of litters per sow per year and the number of pigs reared per litter.

Consequently, the industry has experienced an increase in sow productivity in

every year of the sample period, the change in productivity being just over 16
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pigs reared per sow per annum in 1974 to over 21 in 1987.
The consequence of these trends in technical coefficients for the modelling of the
sector will be seen in later chapters, but the obvious comment to make is that the
number of pigs which can be produced by a given size of breeding herd has
increased consistently since 1974, or conversely, the herd size required to
produce a given number of pigs has decreased.
Moving on from the technical coefficients of the breeding herd, the main concern
of the producer given a litter of piglets is to tum them into a saleable commodity
as quickly and efficiently as possible. Given that the price of feedstuff is more or

less out of the hands of the producer, his basic concern is to make the pig grow
as quickly as possible for as little food inputs. Thus, another important technical
coefficient in the pig meat industry is the feed conversion ratio - F.C.R. -
measured by the quantity of feedstuff required, (usually expressed in Kilo-
grammes), per pig in order to achieve one kilo-gramme of liveweight gain.
Needless to say, the efficient producer aims to minimise the F.C.R. for each of
his pigs. Figure 1.4 below presents the FeR as measured in the rearing herds
selected by the MLC Pig Plan survey for the same period as used to analyse the
breeding herd above.

Figure 1.4

The Feed Conversion Ratio For the UK Feeding Herd 1974-87
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The series shows a feed conversion ratio which has consistently decreased
throughout the sample period, illustrating the improved technical efficiency of the
industry in the rearing of pigs for their meat
In both the breeding herd and the feeding herd, therefore, there are clear
indications of improved efficiency over recent years. The main consequences of
these improvements in technical efficiency is that the industry has become much
more concentrated and the increased number of pigs produced has,
paradoxically, driven many of the smaller less efficient farmers out of pig meat
production as prices have fallen. Future gains in productivity may not be quite so
great as they have been in the period of study given natural limits on factors such
as the length of the weaning period and animal welfare considerations such as the
use farrowing crates and the re-emergence of less intensive open air production.
Having described the aims and the background to the thesis, the methodology
employed in the modelling and forecasting process is outlined in the following
section.

1.4 Data, Methodology and Outline of the Thesis
Any empirical study such as the one proposed here is dependent to a large extent
upon the frequency and quality of data available to the researcher. This fact is
very relevant to this study and, as will be explained in further detail at the
appropriate points throughout the thesis, the data have a significant influence on
the type of analysis employed and the period of estimation and forecasting. The
data for the breeding herd come from the June census of agricultural holdings in
the UK and the three sample censuses taken at points throughout the year,
conducted by the relevant ministries for each member country. Prior to 1974, the
three sample censuses took place at quarterly intervals in the months of March,
September and December; the accession of the UK to the EEC in 1973 brought a
change in the timing of the spring and autumn censuses to April and August
respectively. These changes in sample census timing necessitated that the
biological and econometric analyses were made post 1973 in order that the

intervals between the censuses are equally spaced. One of the consequences of
this is that the data for the biological and econometric analyses come only from
the three sample censuses, the interval between observations being four months.
This time period is referred to as a 'trimestic' time period throughout the thesis.
The change in census times meant that Savin's work in 1978, which was
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concerned with quarterly time intervals, had to be restricted to the English and
Welsh herds, for which the March and September sample censuses continued
alongside the new April and August censuses up until 1977. Burton's 1987

•
model of the UK pig sector was conducted with a six-monthly data set, using the
information from the June and December censuses. My choice of the trimestic
time period, therefore, introduces another new dimension to modelling the
breeding herd.
I was particularly interested in the forecasting performance of time series models
in comparison with more traditional econometric approaches so that univariate
models have been built for all the key variables examined. In the case of the
trimestic breeding herd, the forecasts of univariate Box-Jenkins models are
compared with those produced by biological and econometric models: the former
being expected to perform better in the short term, the latter two in the longer
term. The univariate models can be regarded as the simplest form of model in that
only one variable is included and the models are purely statistical, no prior
knowledge of the series to be modelled being required. The biological models
can be viewed as the next most sophisticated, the models having introduced
knowledge of the breeding herd system. The econometric models are even more
sophisticated in that as well as including the economic phenomenon of prices,
biological phenomena are included implicitly and/or explicitly. For the two
monthly slaughter series, for which more observations are available, bivariate
time series models are built including profit as the second variable rather than
taking a more traditional econometric approach. The forecasting performances of
the bivariate Box-Jenkins models are then compared with those of the univariate
counter-part and a biological model.
The change in census timings will clearly affect the Box-Jenkins analysis of the
breeding herd since such methodology requires lengthy time series of equally
spaced observations in order to make analysis feasible. How the problem of the
census timings affects the Box-Jenkins analysis is dealt with at considerable
length in chapter three, in which the Box-Jenkins methodology is applied to build

univariate models for the breeding herd series and its component parts. The data
for the two slaughter categories modelled are monthly data collated by the MLC
by returns from slaughter houses and are less problematic than the census data in
that they are not subject to sampling errors and do not suffer from the timing
changes experienced by the breeding herd data.
The theory behind the univariate Box-Jenkins methodology is outlined in chapter
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two for. both non-seasonal and seasonal time series. As mentioned above, the
methodology described in chapter two is applied to some of the livepig categories
recorded by the farm censuses in chapter three, the models being built using the

<

Time Series Package, TSP, available on the mainframe computer here at
Nottingham.Ll sing the available package greatly eases the process of model
building and forecasting with the Box-Jenkins models although the package is
rather inflexible in that it can only deal with monthly, quarterly or annual data and
cannot accept the use of intercept dummies with might be useful for dealing with
outliers.

The biological models are discussed in chapter four, introduced by considering a
steady state equilibrium framework to discuss the theoretic basis around which to
build the biological model. The estimated models themselves are proportional
models estimated using Ordinary Least Squares, OLS, and Non-Linear Least
Squares, LSQ, packages available on TSP. Because the models were built in the
context of forecasting, non-biological phenomena such as autocorrelation in
residuals are modelled using a Beech-Mackinnon maximum likelihood technique
in the case of linear regressions, also available on TSP, and adapting the LSQ
models as appropriate when autocorrelation is present in the LSQ estimated
models. In order to forecast using the recursive biological model, micro
computer software was developed specifically for this purpose. The econometric
model, which is discussed in chapter five, is introduced and estimated using
similar methodologies to those used in the biological modelling procedure: in
addition, a logistic model for a limited dependent variable is also considered.
Software, is again developed in order to forecast using the chosen econometric
model.

In chapter six univariate Box-Jenkins models are developed for the two monthly
slaughter categories and monthly price and profit time series, again using TSP
for modelling and forecasting. The theory and practice of Bivariate Box-Jenkins
models is the subject of chapter seven, the bivariate models being identified and
estimated using a non-linear least squares program developed by an ex-member

of the department, a bivariate option not being available on TSP. For forecasting
purposes I again developed software for a micro computer. A summary of the
models built for each of the principle variables is given in figure 1.5 below.
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Figure 1.5
The Models Built for the Principle Variables

Methodology Trirnestic/Quarterly
Breeding herd

Monthly
Culling

Monthly
Slaughter

---------------------------------------------------------------------------------
Univariate
Bivariate
Biological
Econometric

chapter 3 chapter 6
chapter7
chapter4

chapter6
chapter7
chapter4chapter4

chapter 5
---------------------------------------------------------------------------------

In the penultimate chapter of the thesis the results of forecasting the trimestic
breeding herd, the monthly culling and the monthly fat pig slaughter series using
the models developed for each methodology considered, are presented and
compared in terms of their ability to forecast the correct level of the variable in
question. Because the direction of forecast may be as important to a forecaster as
the ability of a model to forecast the correct level, a basic directional analysis is
also considered. The short and longer term forecasting performances are
analysed by forecasting one-step and two years ahead, and as an intermediate
step one year ahead forecasts are also analysed, the latter being the length of time
the EEC requires the MLC to forecast the pig sector.
Because of the constraints imposed by the data available, the out-of sample
period used for the forecasting analysis is confined to two years, that is, 1986
and 1987. This turns out to be a significant restriction for the trimestic breeding
herd analysis, especially as one of the six observations in the out-of-sample
period is felt by myself and the MLC10 to be somewhat suspect in terms of
reliability. This particular problem is dealt with at the end of chapter three and in
the forecasting analysis chapter. The problem of the lack of good quality out-of-
sample data meant that one of my original intentions to combine the various
forecasting models to produce one set of forecasts for each of the three key
variables studied was not felt to be feasible, but, the methodology behind the idea
is discussed in the closing chapter along with other suggestions for future work.
Considering that the models are built from a supply side point of view,
forecasting for a period ahead greater than two years was thought to be unwise
given the shortness of the pigs life cycle. Forecasts for a longer period would
undoubtedly be of benefit to the industry given the cost of investment in pig
production equipment, however, forecasting in the longer term would require
demand side models to enter into the discussion. Such demand side modelling

10 This information is the result of direct consultation with the MLC.
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could become very complex, requiring consideration of factors which influence

both the price of pigmeat and the price of feed. The feed costs of pig meat

production are largely dependent on the price of cereals and would, therefore,
:

require UK production and trade in grain, to be modelled, incorporating the

effects of policy at EEC and probably global level. Modelling the price of

pigmeat could also involve a complex system of equations, although the subject

has been addressed quite succinctly by Daniels and Savin (1977) in an MLC

publication produced after a symposium on meat demand and price forecasting.

Modelling demand for pig meat would require the consideration of consumer

preferences with respect to different pigmeat and other meat products and,

amongst other things, macro variables such as the size of population and

disposable income. Were such demand side models to be built, the supply side

forecasting system built in this thesis could be closed off and long term forecasts

produced with increased confidence in the system.
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CHAPTER TWO

BOX-JENKINS UNIV ARIA TE METHODOLOGY: THE THEORY

2.1 Introduction

The main objective of this thesis is to build forecasting models of the UK pig

breeding herd and certain slaughter categories. The aim of this chapter is to give a

brief outline of univariate time series model building methodology as proposed by

Box and Jenkins (1976) which is a particularly useful approach for the building of

short term forecasting models 1. The first section of the chapter looks at the theory

behind non-seasonal time series methodology and is followed by an account of each

of the three stages of identification, estimation and diagnostic checking, which are

now accepted as the basic steps in the building of univariate time series models. The

fmal section is concerned with the way in which the model building process is

adapted to cope with seasonal influences in time series data.

2.2 Time Series Methodology

Time series methodology approaches the subject of model building from an

empirical standpoint in that the time series data themselves determine the

identification of the appropriate model. Box-Jenkins time series methodology

makes use of the fact that all stationary time series data can be represented by a

member of the set of general stochastic processes known as Autoregressive

Moving-Average, (ARMA) models. The time series variable Xt is said to exhibit

weak stationarity if the following conditions hold.

E[xtl =J..L all t,

E[xt,xt et] = 02 <00 fort = 0,

= 'Yt otherwise.
where

(2.2.1)2

t = time
E[xtl = expected value of Xt

t = magnitude of the lag.

'Yt = the autocovariance between Xt and Xt_t.

1 For a thorough generalisation of Box-Jenkins methodology see Granger and
Newbold (1977), chapter one.

2. For a more detailed discussion of weak and strong stationarity see Nelson (1973),
section 2.1.
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The result that all stationary univariate time series can be generated from ARMA

models derives from the work of Wold (1954) who proved that any univariate time

series could be represented as a realisation of the sum of a self-deterministic

component and a moving-average process, possibly of an infinite order. Thus,

letting Xt represent the deviation from the mean, Xt can be written as;

(2.2.2)

where Et is a zero-mean white-noise variable such that:-

E[Ed = J.1£ = 0,

E[£t,£t- t] = a£2 for t = 0,

=° otherwise.

By making use of the backshift operator, Btxt = Xt _ t, equation (2.2.2) can be

(2.2.3)

rewritten as,

Xt= (1 + 91Bl + ~ B2 + ) Et. (2.2.4)

The problem with representing all time series in this manner is that many series

require the estimation of a large number of parameters in order to adequately

describe the data-generating process behind the series. Box and Jenkins suggested

that this problem could be overcome by approximating the polynomial in Et

described in equation (2.2.4.) by the ratio of two lower order and finite polynomials,

that is,

1 2 q(1+91B +92B + +9 B)
x = q E
t 1 2 p t

( 1- CPlB - CP2B - - CPpB )
(2.2.5)

where the numerator is the moving-average component and the denominator is the

autoregressive component. By expressing the polynomials in the numerator and

denominator as 9(B) and CP(B)respectively. equation (2.2.5) can be rewritten as,

9(B)
x=-E
t CP(B) t

(2.2.6)
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Rearranging equation (2.2.6) results in the following expression,

(2.2.7)

where <l>(B)is said to be of order p and 9(B) order q. Thus, Box and Jenkins were
able to show that all stationary univariate time series can be approximated by the
general ARMA(p,q) model (2.2.7), which accounts for all ARMA processes

including the extreme case where p and q both equal zero, in which case equation
(2.2.7) reduces to a white noise process,

(2.2.8)

Other special cases of the general ARMA model arise when one of p or q equals
zero, in which case the resulting process is known as a pure moving-average model,
(MA(q)} or a pure autoregressive model (AR(P)} respectively.

The polynomial <l>(B)constitutes a p th order difference equation in B. If this is to
describe a stationary autoregressive series then it can be shown that the p roots of

<l>(B)must all lie outside the unit circle.3 Given the nature of Et,9(B)Et will always
be stationary provided that q is finite and, therefore, the stationarity of the ARMA
model depends solely on the autoregressive component. It is sometimes necessary
or desirable to write the ARMA model in a pure AR form and in order that the
resulting process be stationary, it can be shown that it is necessary for the q roots of

9(B) to lie outside the unit circle.J This is known as the 'invertibility condition'.
Invertibility is also of fundamental importance in respect of the facts that it enables

uniqueness of representation for the autocorrelation function of 9(B)Et, and that

non-invertible MA processes give rise to inefficient forecasts.4

3. See Granger and Newbold (1977) section 1.6, p.24
4. Consider an MA(I) model Xt = Et + 9IEt-i' Successive substitutions for lagged

values of £tgives Xt= -l: -~ Xt-j+ Et. If Xt is not to depend on some value of Xt_jin
the infmite past then 9 must take a value less than one in absolute value. i.e. for the
AR representation ofxt to be stationary 19kI must hold so that the root of (1-9B) is
outside the unit circle. The autocorrelation function is given by,

PO=I
PI = 9/(1+92)
Pt = 0 fon >1

It is possible to show that the same autocorrelation function would also be given for
the MA (1) model with an absolute parameter value of (1/9). Given that 19k1, the
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Each invertible ARMA process has a distinct pattern of autocorrelations and partial
autocorrelations which describe the correlations between values of xl at various lags

in time. The autocorrelation at lag 't, (P't), can be defined by,

'Y't
P =-
't 'Y.o

(2.2.9)

where 'Y't= E[xt,xt_ -tJ, and where 'Yo= E[xl2], which measures the variance of Xt

over all values of 1. By definition P't, which measures both the direct and the

indirect relationship between Xt and Xt_'t for all values of 't, always takes a value S;

111.For an MA(q) process it is possible to show that the theoretical set of
autocovariances will take values as given by the autocovariance function of
equation (2.2.10)

'Yo= (1 + 812 + 822 + + 8q2) (JF.2

'Yr (8't + 818't+l + + 8q_'t 8q) (JF.2 ; 't =1 to q

'Y't= 0 ; 't > q

(2.2.10)

The theoretical autocovariance function for an AR(p) process can be represented by
the p th order difference equation as given by:

'Y't= <I>t'Y't-l + + <Pp 'Y't-p for 't = 1,2 . (2.2.11)

and hence, the autocorrelation function is given by,

P't=<I>lP't-l + + <l>pP't-p for t = 1,2, . (2.2.12)

The exact pattern taken by the autocorrelations will depend upon the roots and order

of the polynomial <I>(B)and also on the magnitude of the parameters (<1». For
example, if p equals one, the autocorrelations decline in a geometric fashion;

smoothly if <I> lies between zero and plus one, and in an oscillatory manner if <I>takes
a value between negative one and zero. The autocorrelation patterns produced by a
mixed ARMA model are much more complex and require a considerable amount of

inverse of this is bound to be greater than unity thereby resulting in a non-stationary
model. By confining attention to the invertible case the problem of identifying a
stationary model is overcome.
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identification experience in order to make a successful identification of the model.

In theory, the ARMA (p,q) process results in autocorrelations which are dependent

on both AR and MA parameters for the first q autocorrela~ons after which they

follow an AR(P) process with a starting value Pq rather than Po.

The partial autocorrelation of order k, denoted by akk, measures only the direct

relationship between Xt and Xt-kfor all values of k. The partial autocorrelations can

be obtained by solving the set of k simultaneous linear equations, known as the

Yule-Walker equations, which are similar to the autocorrelation function of (2.2.12)

expressed as,

(2.2.13)

where akj = <I>.i

and akj = 0
for

for

j = 1,2, p

j>p

The key point to note here is that the partial autocorrelations from an AR(p) process

of any order greater than that of p will be equal to a value of zero and hence the

partial autocorrelation will be a crucial tool in the identification of autoregressive

processes. Because any invertible MA process can be transformed into a stationary

AR process of infinite order, it is also possible to show that the partial

autocorrelation function for an MA process will decline as the sum of a set of

geometric decay functions similar to the autocorrelation pattern of an AR process as

discussed earlier in the section. The partial autocorrelations for a mixed ARM A

model will eventually tail-off as well due to the fact that any ARMA process can be

transformed into an autoregressive process of infinite order.

2.3 Identification

Identification is the first of the three stages in the Box-Jenkins model building

process, the aim of which is to suggest one or more potential time series models to

explain the movements in the time series data. Experience appears to suggest that,

for non-seasonal time series, at least fifty to sixty data values are required for Box-

Jenkins analysis, because of the large number of degrees of freedom that are used

up in estimating the autocorrelations of higher order. The first task, having obtained

the data, is to generate the auto and partial autocorrelations for the raw data series

and for an appropriate number of differences of the data. The rationale for
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differencing the data is that Box-Jenkins methodology is dependent on the series to
be modelled being stationary. Raw economic time series data are rarely stationary in
that they are likely to contain, for example, long and short term time trends. Box-
and Jenkins recommend that such non-stationary series be made stationary by
taking an appropriate number of differences of the raw data, as explained in the next

section. The maximum likelihood estimator of Pt' for all values of 't is given by:

nL(x, - E[xt])( XVI: - E[xt])
t='t+l

r =--------------------'t nL(xt - E[xt ] )
2

t=l

(2.3.1)

Theoretically, the partial autocorrelations can be estimated from the Yule-Walker
equations by substituting the estimated autocorrelation (r't) for the theoretical one

(P't) and then solving the set of simultaneous equations in akj' that is;
k

r, = L: ~jrT-l
j=l

for 1"= 1 to k (2.3.2)

where akk is the estimated value of akk. In practice however, it is much more
convenient to use an algorithm similar to that developed by Durbin (1960), which
uses ordinary least squares to estimate the kth order partial autocorrelation for an

appropriate size of k.5

Having obtained these statistics, the analyst needs to ensure that the series he is
trying to model is stationary so that the theory in the previous section can be
applied. An indication that a series is non-stationary is given by observing that the
sample autocorrelations do not die away at higher lags. This is true even if the first

few autocorrelations are not large themselves.6 If this is not the case, so that the

P't's do not die away for a considerable number of lags, Box and Jenkins suggest

that differences of the raw data be taken until an indication that stationarity has been
achieved is observed in the autocorrelations of the differenced series. If differencing
is required then the resulting model is known as an Integrated Autoregressive

Moving-Average (ARIMA{p,d,q}) model, where d represents the number of times

the raw data have to be differenced in order to achieve stationarity. Equation (2.3.3)
represents the general ARIMA model using the backshift operator.

5. Durbin). (1960), "The Fitting of Time Series", Rev. Inst.Lnt. Stats, 28, pp 233-
244.

6. See Granger and Newbold (1977) section 3.2, pp. 74.f
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(2.3.3)

Economic time series are rarely stationary in their original form, although the need
to take anything more than first differences in order to obtain stationarity is
unlikely. Having suggested this differencing method for the treatment of non-
stationarity, Box and Jenkins warn against the possibility of inducing
autocorrelation by over-differencing the data. This problem can be illustrated by the
simple case of first differencing the white-noise process given in equation (2.2.8)
which results in an MA(l) process with xt having been first differenced. The latter
is commonly referred to as an IMA(l,l) model and is represented by:-

(I-B) Xt= (l-B) Et (2.3.4)

This transformation illustrates the fact that two unnecessary components have been
induced into the process. If it is the variance of the time series which is the cause of
non-stationarity, then a log transformation of the raw data often ensures that the
non-stationary element is removed.
Having ensured the stationarity of the series, the patterns in the auto and partial
autocorrelations should be examined in order to make an initial identification of the
generating process. Because of the influences of disturbances such as data
measurement errors, the sample statistics will not be identical to the theoretical
values that the ARIMA generating process would imply. In an MA(q) process for
example, the sample autocorrelations higher than order q will be small rather than
being equal to a value of zero. In order to distinguish whether or not the
autocorrelations are large or small, probability theory is employed. The theory
implies that an autocorrelation can be said to be significantly large if its value is
greater than two standard deviations away from zero. A statistic frequently used to
estimate the standard deviation of autocorrelations in time series analysis is one
devised by Quenouille, who showed that one standard deviation could be
approximated by the reciprocal of the square root of the sample size, that is,

I/~n.7 Hence, any auto or partial autocorrelation which is larger than 2/~n is

said to be significantly different from zero and can be regarded as large.
Conversely, a value below this is said to be small, although it should be
remembered that this 'rule of thumb' definition is not infallible, and need not be

7. Quenouille,M.H. (1949), "Approximate Tests of Correlation in Time Series." J.
Roy. Sta: Soc. B 11. pp 68-84.
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interpreted too strictly.

From the theory of the previous section, the key to the identification of an ARlMA

processes lies with the patterns present in the sample auto and partial

autocorrelations of the stationary series. If a set of data is generated by a pure

MA( q) process then one would expect the autocorrelations of the stationary series to

lie above two standard errors up to and including a lag of q, at which there should

be a cut-off point when the remaining sample autocorrelations will be small.

Beyond q, the sample partial autocorrelations should decay as k increases. The key

to the identification of an AR(p) process on the other hand, lies in the pattern of the

partial autocorrelations, due to the fact that the sample autocorrelations will show a

pattern which represents the sum of a geometric decay curve, from which it is
virtually impossible to identify p. The sample partial autocorrelations should remain

high in value for the first p lags after which there is a cut-off point, so that the

higher order partials are below the 2/...Jn mark. The identification of a mixed

process however, is considerably less clear cut. The sample partial autocorrelations

should tail-off as the value of k increases, whereas the sample autocorrelations

should take large values, with an irregular pattern, up to and including lag q, after

which they will begin to tail-off as they reflect the autocorrelations of an AR(p).

One clue therefore, to the identification of a mixed process as opposed to a pure

MA or AR process, is that both of the sample statistics should eventually tail-off,

rather than having an abrupt cut-off point.

Having gone through the identification process it is often the case that more than

one model appears to be possible. If this is the case, then all the possible models can

be taken on to the estimation stage of the model building process.8

2.4 Estimation
Having made an initial identification of one or two potential ARIMA models, the

objective of the next stage of the Box-Jenkins model building process is the

estimation of the parameters of the suggested models. If a model is a pure AR(p)

process then all p parameters can be estimated using Ordinary Least Squares

(O.L.S) regression techniques. However, as soon as an identified model has an MA

term included in it OLS is rendered inadequate and Non-Linear Least Squares

(N.L.L.S.) has to be employed instead. Taking an ARMA(1,I) as an example, the

process can be written as:

8. Three examples of model identifications using Box-Jenkins methodology can be
found in appendix 2.
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(2.4.1)

where a I and bI are the sample estimates of <1>1and 91 respectively.

The aim of N.L.L.S. is to minimise the sum of the squares of the residuals, LE~,

which can be estimated by Le~, the sum of squares of observed residuals. Having

assumed starting values for al and bI,and by assuming that el takes a value equal to

its expected value of zero and inputting this to equation (2.4.1), estimates of lagged

values of et can be derived. Squaring and summing all values of et results in the

desired statistic which then needs to be minimised. The minimisation process is

done by a search procedure over a range of values of a 1 and bI until no significant

reduction in Let2 occurs.9 Because it is possible that the residual sum of squares

contour surface will have multiple minima points, it may be important that good

starting values for a 1 and bI are given to the computer so that the search will begin

in an appropriate part of the contour surface. Starting values for the parameter

estimates can be derived from the sample auto and partial autocorrelations. For

example, in an MA(1) it can be shown that

(2.4.2)

By substituting rl for PI and rearranging equation (2.4.2), a quadratic in 91 is

obtained which can then be solved giving two solutions for 91, The starting values

of the parameter estimates are obtained by selecting the solutions that will make the

resulting model invertible.

2.5 Diagnostic checking

Having identified the model and estimated its parameters, the model should now be

checked to see if it is an adequate representation of the data to which it was fitted. If

all is well then the model can be used for whatever purpose it was built, otherwise

any inadequacies discovered at the checking stage will hopefully indicate the

changes which need to bemade in order to rectify any model misspecification.

A possible first check is to carry out a t-test on each of the included parameters in

order to check their significance. A t-statistic that is greater than or equal to an

absolute value of two suggests that the parameter concerned is significantly

different from zero, and should therefore be included. If the absolute value of t is

9. See, for example, Granger and Newbold (1977) section 3.5,pp 87-89.
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less than one then there is a positive reason for its exclusion from the model; a
change which should cause a reduction in the value of the estimated residual
variance, indicating that the revised model provides a better overall fit to the data. If
the absolute value of t lies somewhere between one and two then this suggests that
the parameter should perhaps be dropped, although its effect on the residual
variance is likely to be adverse when the t-statistic is close to a value of two. If any
t-statistics indicate that a model should be respecified, then the estimation and the
diagnostic checking procedures must be repeated for the new specification.

A second check which can be made is to test the significance of the model as a
whole, by calculating the value of the Mean Square Error (M.S.E.). Because there is
no standard of measure to compare the calculated value of the M.S.E., nothing
much is done even if it appears to be relatively high. The M.S.E value is much more
important when testing whether or not a change in its value, brought about by a
change in model specification, is significantly different from what it was under the

original specification. The test used to do this is the F-test. R2 is not usually used to
check the significance of time series models due to the fact that any model which

picks up a trend in the data will produce a high R 2 value. However, Harvey has
suggested that a statistic which he calls R6 ,given by;

(2.5.1)

provides a statistic which indicates the relative size of the residual sum of squares,

(RSS), of the estimated model. 10 The yardstick used is the residual sum of squares

(RSSo) from having fitted the pure random walk model Xt - Xt-1 = Et. A negative

R6 value indicates that the random walk model provides a better fit than the
ARIMA model, whereas a small positive value suggests that the improvement
gained by fitting the more complex ARIMA model is marginal. A corresponding
statistic for seasonal models is discussed in section 2.6.
Having checked to see that the model is not over-identified, by making use of the t-

test, it should now be checked to test whether or not there are any parameters

missing from the initial identification. This can be done by observing the individual

autocorrelations of the estimated residuals, P't(e) . As an example, consider the case

where Ip2(e)1 is significantly different from zero, (that is, greater than 2/~n). This
would suggest that the error term has the following process;

10. See Harvey, A.C., (1983), "A Unified View of Statistical forecasting Procedures" ~
appendix 2, L.S.E. Econometrics Programme discussion Paper No. A.40., L.S.E.
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(2.5.2)

where at is white-noise. If these residuals had been the product of an ARMA(l,l)

identification, then it is possible to show that the corrected model is given by;

(2.5.3)

Equation (2.5.3) represents an ARMA (1,3) process, although the parameter of B3

will be small because both b and ~ will take a value less than unity in order that the

process be invertible. If it is believed, therefore, that the true model should contain a

given parameter - in this case an MA parameter at lag 3 - whose t-statistic is not

quite significant at the 5% level, the analyst may well be justified in including the

relevant parameter. This method of correction, although useful sometimes, is often

less simple than may appear from the example given, due to the fact that the

statistics used are only estimates from a data set which itself will contain

measurement errors. A consequence of this is that any cancellation of factors may

be masked, so that the augmented model will contain redundant parameters on both

sides of the equality. One problem of testing the significance of the residual

autocorrelations is that they are small anyway because it is the job of the estimation

stage to produce residuals which are as small as possible. Indeed Durbin (1970), has

shown that the standard deviation of the residual autocorrelations can be

considerably less than 1/..Jn.11 This is particularly true of the autocorrelations at

lower orders, that is, where 't ~ 6, otherwise l/..Jn is still a good approximation to

the standard deviation of the residual autocorrelation, as long as it is remembered

that 2/..Jn will under-estimate the significance of any deviations from zero.

If a model has been correctly identified then the residuals, as a whole, should

exhibit white-noise properties. Attempts have been made to devise a statistic that

indicates whether or not the autocorrelations of the estimated residuals deviate

from white-noise. Most of the statistics which have been devised are variants of the

Box-Pierce statistic, Q, defined as;

Q=nL p~e) for 't = 1to m (2.5.4)

where m represents the m lowest order residual autocorrelations considered for the

11. Durbin, J. (1970), "Testing For Serial Correlation inLeast Squares Regression When
Some of The Regressors are Lagged Dependent Variables", Econometrica 38, pp
410-421.
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test 12Asymptotically, Q can be shown to have a Chi-Square distribution with m-
p-q degrees of freedom. If the value of Q is greater than the tabulated Chi-Square
value, then the null hypothesis, that the residuals are white-noise, is rejected and the
model should be respecified. Some computer packages, along with the Q-Statistic,
print the probability value, (P-value), associated with each of the Q-statistics.
Hence, for example, a Q-statistic with a P-value of less than 0.05 is significantly
large at the 5% level. Because the Box-Pierce statistic has a distribution that is only
asymptotically Chi-Square, there is the problem that the test is not very powerful,
and therefore, it is quite likely that a false null hypothesis will be accepted, although

Q can still indicate whether or not the residual autocorrelations are, on the whole,

too high.13 For reasons mentioned earlier, the test requires that m is larger than
six, and it is preferable that it be greater than or equal to twenty, if this is possible
considering the length of the time series. In the event of a rejection of the null
hypothesis, the model should be corrected in a manner suggested by the pattern of
the residual autocorrelations, as discussed earlier.
A final check to make use of the residuals is an observation of the plots of the
estimated residuals to check for homogeneity. Heteroskedasticity, for example,
would be indicated by observing that the spread of the residuals' scatter changes
overtime.

So far, the diagnostic checks which have been employed to test for under-estimation
of the model, have made use of the autocorrelations of the estimated residuals;
however, because of some of the problems and inadequacies of these methods, it is
often much simpler to overfit the initial identification. Although it is important to
overfit both sides of the equation, it is even more important that the overfitting be
done individually and unidirectionally so that the problem of parameter redundancy

is avoided.14 For each overfitting of the model, t-tests on each of the parameters
and F-tests on the adjusted M.S.E. statistics should be made in order to determine
whether or not any of the augmented models perform better than the original

12. Box-Pierce (1970), "Distribution of Autocorrelations in ARIMA Time Series
Models". J.Am. Stat. Assoc. 65, pp1509-1526.

13. See Davies, Triggs and Newbold, (1977), "Significance Levels of the Box-Pierce
Portmanteau Statistic in Finite Samples." Biometrika. 64, pp 517-522.
The more highly powered Box-Ljung statistic can be used in preference to the Box-
Pierce statistic.
i.e. Q = n(n + 2) I.(n- 'ttl rt2(e)
Ljung, G.M. and Box, G.E.P., (1978), "On a Measure of Lack of Fit in Time Series
Models." Biometrica. Vol. 65 No.2 pp297-303.

14. For an example of the problem of overfitting both sides of the equation see example
2 of Appendix 2.
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identification. As illustrated in example two of Appendix 2, it is very important to
look for the cancellation of factors so that the final model is parsimonious.
All of the tests used so far are in-sample tests, in that they are performed on
statistics generated from the fitting of the model to the time series data from which

the model itself was identified and estimated. Perhaps a more powerful form of
diagnostic checking is out-of-sample testing, which involves testing the forecasting
performance of the estimated model. The time series is divided into two, so that the
first series is long enough for the Box-Jenkins model building process to be
performed. The identified model is then used to make forecasts of the remaining
'out-of-sample' data. The forecasts and the actual out-of-sample data are then
compared, and the mean square forecasting errors calculated. These forecasting
error statistics are then compared for alternative model identifications, the lowest
value indicating the best forecasting model. Obviously, it is imperative that the
forecasting method employed is appropriate, considering the type of forecasts for
which the model has been developed. For example, if the model is to be used to
make one-step-ahead forecasts, then the criteria for choosing the best model must be
the lowest mean square forecasting error, resulting from one-step-ahead forecasts of
the out-of-sample series. Having obtained a satisfactory forecasting model, the
analyst may choose to re-examine the chosen model by re-estimating it from the
whole data set, and performing the in-sample diagnostic checks. If none of the
models appears to forecast well, then it is important to check, and to allow for
events such as structural changes which may have occurred during the period
covered by the time series.
Whatever method of diagnostic checking is chosen, it is imperative to check that the
final choice of model has parameters which render the process stationary and
invertible. This is done by solving the difference equations of the model and
checking that the roots lie outside the unit circle.
Having gone through the process of model building for non-seasonal time series, a
satisfactory model should have been derived. It is quite possible that two models are

almost inseparable at the diagnostic checking stage, in which case the final choice
may be made solely on the grounds of parsimony. This idea of parsimonious
parameterisation can be very important in shorter time series for releasing degrees
of freedom and reducing the chances of multicollinearity problems. Nonetheless, it
is possible that two ARIMA models which might appear to be quite different are, in
fact very similar when rewritten in a different form, and so the final choice of model
may not be too important, especially for the purposes of short term forecasting.
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2.6 Seasonal Time Series Models
So far, this chapter has dealt with the building of non-seasonal time series models.
The methodology which was employed in this model building process can be
adapted, without too much difficulty, to cope with data which contain seasonal
components. The seasonal model building process follows the same three stage
iterative cycle of identification, estimation and diagnostic checking and, although
the identification stage is a little more complex, no new concepts are required.

The most basic seasonal model is the pure seasonal ARMA model, an example of
which is the quarterly ARMA(1,1) containing 1 seasonal AR parameter and 1
seasonal MA parameter. The said example can be written as,

(2.6.1)

or by making use of the seasonal backshift operator it can be re-written as 2.6.2.

(2.6.2)

The latter model is directly comparable with the non-seasonal ARMA (1,1), except
that the 1 period lag structure is now replaced with a quarterly lag structure. Were
Xt to be non-stationary in levels, one way in which the series can be made
stationary is to seasonally difference the raw data series. Assuming the model
represented by 2.6.2. needed to be differenced once to meet the stationarity
requirements, the resultant model can be represented by equation 2.6.3.

(2.6.3)

The generalised form of the pure seasonal ARIMA(p ,D,Q) is given by

(2.6.4)

where P is the order of the seasonal autoregressive polynomial, Q is the order of the

seasonal moving-average polynomial and D represents the number of times the
process has to be seasonally differenced in order to obtain stationarity. B s is the
seasonal backshift operator where s represents the type of seasonal data, so that s =
4 for quarterly data and s = 12 for monthly data.
Although this model caters for the purely seasonal time series, a more general
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model is required which is able to model seasonal series which also contain non-

seasonal components. The simplest and least restrictive of this more general class of

model is the model in which the gaps in the seasonal process are filled. Equation

(2.6.5) provides an example of a model in which the non-seasonal IMA(l,l) has a

quarterly lag added to it.

(2.6.5)

Again, this model is similar to a non-seasonal ARIMA model, {in this case the

MA(4) } except for the fact that there is the seasonal differencing component and

there are 'holes' in the lag structure at lags two and three.

The most common alternative type of seasonal model, and the one which is

preferred by Box and Jenkins, is the multiplicative ARIMA model given by;

<l>(B)<l>s(BS) (l-B)d (l-B s)D x, = e(B) es(BS) Et,

where <Ps(BS)= (1- <PI,sBS - <P2,SB2s - - <ppBPS),

and es(BS) = (1+ 81,s BS + 82,s B2s + + 8QBQS),

(2.6.6)

the order of which is (p,P,d,D,q,Q). The multiplicative seasonal model is obtained

by replacing the seasonal white noise disturbance term Xt, in the pure seasonal

ARIMA(P ,D,Q) model,

(2.6.7)

with a non-seasonal ARIMA(p,d,q) process,

<l>(B)(l-B)d Ut= 8(B) Et (2.6.8)

so that the combination of (2.6.7) with (2.6.8) results in the multiplicative seasonal

model given by (2.6.4).This type of model is not as general as the model presented

in equation (2.6.3) in so much as some of the parameters will be restricted in the

values that they can take. Considering the multiplicative MA(l,l),

(2.6.9)

it is possible to show that Ps-I = Ps+1.The consequence of this is that the parameter

on BS+1Et is restricted and dependent upon 81 and 81,s as can been seen by

expanding the right hand side of equation (2.6.9), as follows.
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(2.6.10)

A third , but less common type of seasonal model is the additive model, whereby a
non-seasonal ARMA(p,q) is added to a seasonal ARMA(P,Q) process. The two
white noise processes which drive the two series are assumed to be independent of
one another. As an example, consider the addition of an AR(1) to a seasonal AR(1)
which results in the following»

~t Et
X= +---
t 1- e B4 1- e BI

4 1

(2.6.11)

This can be rewritten as,

(1- q>lB) (1 - q>4 B4) Xt= ~t + Et- q>1~t-1 - q>4 Et-4 (2.6.12)

where the right hand side is an MA(4) with the parameters restricted by q>1 and q>4.
Identification of the multiplicative model involves the choosing of values for
d,D,p,P,q and Q, which is done by employing the same methodology as was used
for non-seasonal models. The first step of the identification stage is to obtain a
stationary series. This is achieved by taking first and seasonal differences of the raw

data until the autocorrelations begin to die away quickly at higher lags.IS

Determining the number of differences which should be taken is more difficult for
seasonal data, especially for quarterly data where the picture is much more cloudy.
Granger and Newbold found that models that had been differenced, when
differencing was in doubt, were much better forecasters than were the equivalent

models which had been left non-differenced. 16 Having obtained a stationary series,
the sample auto and partial autocorrelations can be examined, in an attempt to
identify the order of the seasonal and non-seasonal polynomials. Again, this
methodology follows on directly from that which was used to identify p and q in the
non-seasonal models, although the presence of the seasonal component means that
the patterns in the auto and partial autocorrelations are more complex and,
therefore, more difficult to identify.

15. An alternative to seasonally differencing the data is to subtract seasonal means (Le.
using dummy variables) from the data.

16. See Granger ~d Newbold (1977) p.102.
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For a pure multiplicative MA process of order (q,Q), the autocorre1ations will obey,

Pt = 0 for q < t < s-q

and s+q < t < 2s-q..................................... .
and (Q-1)s+q< t < Qs-q
and QS+q<t .'

Thus, for example, a quarterly multiplicative MA (1,1) will have non-zero

autocorrelations only at lags 0,1,4 and 5. If the process is a pure multiplicative AR
(p,P), the autocorrelations will die out according to the difference equation,

9(B) 9s(B S) Pt = 0 for all t > 0,
and the partial autocorrelations will obey,

akk= 0 for all k > Ps+p.
If (l-B)d (l-BS)D Xt follows a multiplicative mixed ARMA process of order
(p,q)(P,Q), then the autocorrelations will obey

179(B) 9s(B S) Pt = 0 for all t> q+Qs.
Estimation of the parameters is again a matter of employing non-linear algorithms

which minimise the sum of squares of the residual term Et. When it comes to the
diagnostic checking stage, there are a far greater number of possible models for
seasonal time series and therefore, there are a far greater number of possible
alternatives to check against. Again, the two main types of check include overfitting
the model and inspection of the autocorrelations of the residuals. For the reasons
given in the last section the overfitting of the model parameters must only be done
on an individual and unidirectional basis, and the clues to how this should be
pursued can be obtained from the identification stage. Testing the t-statistic of the
additional parameters and the error variance of the augmented model should
indicate whether of not the model should be respecified. Again, Harvey has devised

a statistic, Rs 2, which indicates the relative size of the residual sum of squares from
having fitted the seasonal ARIMA model 10. The comparative yardstick in this case

is the residual sum of squares (RSSo) from having fitted a model to the first

differences of the raw data which contains seasonal dummies. Allowing for degrees

of freedom gives the following expression for Rs 2;

17. If the reader wishes to examine more generalised autocorrelation patterns belonging
to some special cases of multiplicative models. they are refered to Granger and
Newbold (1977) p. 96-98.
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RSS
2 (n- sD- d- k)

R = 1- ---=~--
s RSS

o
(2.6.13)

(n-l-s)

where k is the number of deterministic components in the ARIMA model.
Alternatively, the residual autocorrelations can be examined both individually,
using the t-statistic, and as a whole, using the Box-Pierce or Box-Ljung statistics, in
order to check whether or not they are white noise. If not then, in a similar fashion
to the non-seasonal case, they will hopefully indicate ways in which the initial
identification could be respecified, although the same reservations on this method
hold as well.
A diagnostic check which is not necessary for non-seasonal models but does apply
to the seasonal case is a check to see whether or not the multiplicative seasonal
model adequately represents the time series being modelled. Thus, for example, the
multiplicative quarterly MA given by,

(I-B) (I_B4 ) Xt = (1+91B) (1+91,4 B4 ) Et, (2.6.14)

can be rewritten as,

(2.6.15)

In order to check the assumption of multiplicity, the data which generated this
model could be fitted against the non-multiplicative model given in 2.6.16 below.

(2.6.16)

If the result of the estimation stage is to produce a parameter value for 9S which is

similar to 91914 then there is no reason to doubt that the series is multiplicative. If,
there is a significant difference then the less restrictive non-multiplicative model
should be adopted.

2.7 Conclusion

This chapter then has outlined the theory of Box-Jenkins univariate time series
methodology for both non-seasonal and seasonal data. The methodology facilitates
the construction of models for a time series using only past values of itself and the
observed error structure from having fitted the model. The obvious advantages of
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the methodology is that only one series is required to build forecasting models and
arguably a more important advantage is that no prior knowledge of the series to be

modelled, or of factors which affect it or are related to it are necessary to enable a
workable model to be built. Having described the theoretical basis for the non-
seasonal methodology the three stages of identification, estimation and diagnostic
checking, suggested as the structured process for the construction of a model, were
discussed. A brief outline as to how the theory is applied to seasonal time series was
then presented.
As in all walks of life, the application of theory to a 'real world' situation is rarely as

straightforward or problem free as the theory suggests. In the following chapter
there is a discussion as to how the theory of this chapter has been applied to
building quarterly models of the UK pig breeding herd and related census data; a
comprehensive discussion of the problems encountered with the data and the model
building process itself, and how these problems were resolved.
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CHAPTER THREE

BOX-JENKINS UNIVARIATE MODELS FOR THE UK BREEDING HERD

3.1 Introduction
In this Chapter the Box-Jenkins model building methodology described in chapter

two is employed to build multiplicative seasonal ARIMA models - hereafter
referred to as SARIMA models - for certain key categories of live pigs. The analysis
is conducted at the U.K. level of aggregation, so as to be directly comparable with
forecasts of the industry produced by the Meat and Livestock Commission - M.L.C.
The live pig categories can be broken down into the 'breeding sow herd', ('sows in
pig', 'gilts in pig' and 'barren sows'), ' 50kg to 80kg gilts not yet in pig', (unserved
gilts), and 'boars'. Census data for each of these categories is available on a
quarterly basis. The aggregate of the pregnant sow herd and the pregnant gilt herd
will be referred to as the pregnant pig herd. The prime purpose for modelling the
chosen live pig categories is to provide forecasts of the U.K. breeding herd which
are important for policy making in the sector. A priori, one would expect the
univariate models to be particularly useful for the provision of short term forecasts,

although their ability to forecasts the medium to long term will also be analysed.
To describe in detail each of the three stages of model building for all of the models
produced would be time consuming and laborious, therefore, a detailed description
of the methodology employed is given only for the total breeding sows herd model.
This is done in order to give the reader some idea as to how the quarterly models
were derived using the Box-Jenkins univariate methodology.
Much of the discussion in the chapter revolves around the way in which data
problems affected the nature of the analysis and how the problems were resolved.
The first such problem was the fact that a civil service strike in 1979 meant that no
sample farm census was taken in the first quarter of 1979. To overcome this
fundamental problem for time series methodology, initial forecasting models had to

be built for each of the breeding herd component series using the data available up
to and including the fourth quarter of 1978. A one step forecast could then be made
in order to fill in the missing data point. A second major data problem is caused by
the shift in the timings of the spring and autumn sample censuses from March and
September to April and August respectively. This change, which followed the
accession of the UK in to the EEC, had the obvious consequence that the data was
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no longer quarterly in the strict sense of the word. For this reason and because of

other influences post 1974, such as an Aujezky disease eradication campaign in

1983, and an apparent stabilising in the variability of the pig herd size, the

comparison of the forecasting performance of the models buiit using different

sample spaces was felt necessary.

The chapter is rounded off with a discussion of possible actions on the part of the

forecaster when he suspects that the sample data for a particular point in time may

be suspect in terms of reliability. The latter is included not purely for academic

reasons but because it is an actual problem for a particular sample point in the data

period set aside for the out-of-sample forecasting analysis. Appendix 3a lists the

data used in the analysis presented in this chapter.

3.2 Modelling The UK Breeding Sow Herd
The initial analysis was concerned with modelling the three breeding sow herd

categories, sows in pig, gilts in pig - referred to as pregnant sows and pregnant gilts

respectively and denoted as 'PS' and 'PG' - and barren sows for breeding not in pig,

'BS'. The two aggregate series, pregnant pigs, 'PP', and total breeding sows, 'H', are

also modelled separately. At the time of writing, census data were available from

the first quarter of 1957 (1957:1) up to and including the fourth quarter of 1987

(1987:4). Appendix 3b presents a table which outlines the changes which have

taken place in the methodology of census data collection for each of the U.K.

agricultural ministries over the relevant time period. Up to and including 1973 the

data are quarterly -March, June, September and December - and were collected by

the Ministry of Agriculture, Fisheries and Foods - M.A.F.F., the Department of

Agriculture and Fisheries for Scotland - D.A.F.S., and the Department of

Agriculture for Northern Ireland - D.A.N.I. As a result of the U.K.'s accession to the

EEC, the sample censuses for March and September from 1974 onwards were

moved to April and August respectively. Consequently, the census data beyond this

period can only be regarded as pseudo-quarterly and the implications of this will be

discussed later.

A feature of all the pig census data is that no data are available for the first quarter

of 1979 in which there was civil service strike action. In order that Box-Jenkins

analysis could be performed on the complete data set, the first task was to generate

data for the gap created by the strike. This was achieved by modelling each of the

three component categories of the breeding sow herd on the sample period 1957:1

to 1978:4, and then forecasting the figure for 1979:1. The forecast figure for the two

aggregate series were obtained by aggregating the relevant component forecasts.
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The structure of the estimated models identified for the 1957-78 sample period,
along with the resultant forecasts are given in table 3.1.
At the time the initial models were estimated, data for the breeding sow herd were
available from 1957:1-1985:4. Consequently, the models were estimated on the
sample up to'and including 1981:4 leaving the remainder of the sample available for
out-of-sample diagnostic checks. It is the building of the breeding sow herd models
for this sample period which are reported in this section. Subsequent biological and
econometric models were estimated on data up to and including 1985:4. Therefore,
to ensure comparability for the three types of models, the SARIMA models were re-
estimated on the sample period 1957:1-1985:4. Only the estimated equations
themselves will be presented for the longer sample period time series models.

Table 3.1.
Breeding Sow Herd Forecasting Models and 1979:1 Forecasts.l

SERIES NDIFF NSDIFF NAR NSAR NMA NSMA 1979:1
d D P P q Q FORECAST.*

PS 0 1 2 2 2 0 498
PG 0 1 2 0 1 1 111
BS 0 1 1 2 2 0 241
PP 609
H 850

*. All figures in thousands of pigs

Having identified and estimated Box-Jenkins models on the period 1957: 1 to
1981 :4, estimated equations were subjected to the usual diagnostic checks,
including the calculation of the mean square forecast error, (MSFE), of residuals
from having made both one-step ahead conditional forecasts and an unconditional
12-step ahead forecast of the out-of sample period 1983:1-85:4. This was done in
order to analyse both the short term and medium-long forecasting abilities of the
models. The multiplicative test was to be performed only if the resultant model
contained a sufficiently small number of lags to justify such analysis. In the final
analysis all but one of the identified univariate models for the breeding sow herd
models contained so large a number of lags that any comparison with an

unrestricted non-multiplicative model was unlikely to produce any useful and
conclusive results. Seasonal dummy models on the first difference series of each of

1. NDIFF = No. of first differences taken. NSDIFF = No. of seasonal differences taken.
NAR = No. of AR parameters. NSAR = No. of seasonal AR, (SAR), parameters.
NMA = No. of MA parameters. NSMA = No. of seasonal MA, (SMA), parameters.
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the included categories were also estimated in order that Harvey's Rs2 value could
be calculated.
The plots of the breeding sow herd series' - presented throughout this section of the
chapter - appear to suggest that each of the three component series underwent some

.'
sort of structural change around the time of the U.K.'s accession to the E.E.C. in
1973. To test this hypothesis, Chow tests were performed on each of the breeding

sow herd SARIMA models estimated on the period 1957:1-1985:4.2 Because of
the change in the timings of the Spring and Autumn sample censuses, the start of
1974 was chosen as the dividing point in the sample. The details of the tests and the
results are presented in Appendix 3c. Each of the tests proved to be significant at
the 1% level, and therefore, the results imply that there are indeed structural
changes in the breeding sow herd series, the major effect of which appears to have
been to decrease the variability of each of the series. Whether the Chow test results
are a consequence of EEC membership or the Aujezky disease eradication
campaign of 1983, or a combination of the two, cannot be inferred from the results
as given. In an attempt to resolve this question, the Chow test was repeated for the
total breeding sow model estimated on the period 1957:1 - 81:4, thereby excluding
the period affected by the Aujezky disease eradication campaign. The reason for the

choice of the total breeding sow model was that the results from the initial Chow
test showed this model to have been least affected by the post 1974 period. The
result of the repeated test which implied an even greater effect of the post 1974
period having excluded the Aujezky period for the total breeding sow model. This
was, therefore, sufficient to render further Chow tests on the remaining four
categories unnecessary. The Chow statistic, again having split the data at 1973/4,

for the breeding sow model was 8.27, which is highly significant when compared
with a value for FS,82 of 3.25 at the 1% level of significance. This result implies the
greater significance of the structural change in the post 1974 period when the
Aujezky period is removed.
The Chow test results made it apparent that the models as identified and estimated
on the period 1957:1-1985:4 may not be appropriate for one or possibly both of the

periods pre and post 1974. For forecasting purposes, it was therefore deemed
necessary to re-identify and estimate models for the post 1974 period. In order to
allow for an EEC entry adjustment period, the subsequently developed biological
and econometric models were estimated on the period starting at the first quarter of
1975 and so, for comparison purposes, the decision was taken to start the sample

2. See Gujarati pp.297, 305-306 for discussion of Chow test.
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space for the later period SARIMA models at 1975:1 also. As for the full sample
univariate models, only the estimated equations themselves for the shorter period
models are presented.

:

Having obtained all the relevant Box-Jenkins models, forecasts were produced from
the 1957:1-"1985:4 and the 1975:1-1985:4 models in order to compare their
forecasting abilities. The in-sample forecasts consisted of a 12 step ahead
unconditional forecast and 12 one step ahead forecasts for the period 1982:1-
1985:4, and an eight step ahead and eight one step ahead forecasts for the out-of
sample period, 1986:1-87:4. The MSFE statistic was calculated for each model's
forecasts, the exception being for the 12 step ahead in-sample forecasts, which were
so adversely affected by the Aujezky eradication campaign of 1983 that any
comparison of the MSFE statistics would have been almost meaningless. A table of
the mean square forecasting errors is presented in Appendix 3d along with a
discussion of the results and the implications for which sample provided the best
models for forecasting the relevant periods.
In the light of the results of the analysis of the MSFE statistics from the various
types of forecasts which imply that the forecasts from the longer period model are
better than those from the later, shorter period, the decision was taken to use the
models estimated on the longer sample period, 1957:1-85:4 as the best forecasting
models for the UK breeding herd. The implications of the analysis are interesting in
that they give a good deal of importance to the length of the time series sample and,
therefore, the long run relationships within the time series for the UK pig breeding
herd and its components. Thus, despite factors such as the apparent structural
change in each of the series after 1974, the change in the sample census timings in
and after 1974 and the influence of the Aujezky disease eradication campaign of
1983, the models estimated on the period 1975:1-85:4 are, on the whole, inferior at
forecasting both the in-sample and out-of-sample forecasting period.

3.2a A SARIMA Model For The Total Breeding Sow Herd

Because the total breeding sow herd is the primary series for forecasting purposes,

the model for this series is presented first and in full. The UK breeding sow herd
figures are derived by aggregating the three component series, 'sows in pig', 'gilts in
pig', and 'barren sows for breeding'. The forecast figure of 850,000 breeding sows
for 1979:1 was obtained by aggregating the forecasts from the previously estimated
models for the three component series on the sample period 1957:1-78:4. The plot
of the breeding sow series in figure 3.1 differs from the plots of the component
series' themselves - presented in subsequent sections - in that it has a much
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smoother appearance. Although there are signs of a cyclical element, there is less
indication of seasonality than in the component series plots. This phenomenon can
be explained by the fact that the seasonal pattern of the barren sow series is
diametrically opposed to that which is dominant in the 'pregnant' sow' series, (see
sections 3.2b and 3.2d). The aggregation of these two series' within the breeding
sow herd series has resulted, to a certain extent, in the cancelling out of the seasonal
effects, confirmed later by the size of the estimated seasonal dummy coefficients of
the Harvey model.
Perhaps the most noticeable feature of the plot is the sharp contrast in the variability

of the size of the herd pre and post 1974. Prior to 1974 the herd experiences large
variability in size and has a distinct upward trend. The MLC suggest that the sharp
decline in the breeding sow herd between 1973 and 1975 was largely the result of
lower profitability caused by an upward trend in world feed prices. From 1974

onwards the herd size appears to be far more stable. Although there were no
reasons, a priori, for taking log transformations of the data, such a transformation
was made for the breeding herd series. Because no obvious advantages accrued
from this excercise as far as easing the identification process was concerned and
because of the forecasting process is eased by not having to make transformations,
the decision was made to continue working with the data as given.
The relatively sharp fall in breeding sow herd numbers in 1983 gives the post 1974
plot the appearance of a slight downward trend. It appears that the series from about
the end of 1980 to the end of 1983 is behaving somewhat differently from the rest
of the series of the post 1974 period. The M.L.C. Market Surveys for this period
suggest that the expansion of the breeding sow herd from 1981 to 1982 was the
result of high profitability and high gilt numbers, although the continuation of the
rise early into 1983 was 'surprising in view of the fact that profits had begun to

decline,.3 The survey also suggested that farmers had started to replace sows at an
earlier age.

3 See ML.C. Market Survey 1983 No.2
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Fi~ure 3.1.
A Plot of the Quarterly Time Series Total Breedin~ Sow Herd', 1957: 1-1987:4.
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Because of the size of the breeding sow herd at this point in time and because of the

fall in profits in 1983 which resulted from weak demand and an increased supply of

other meats, a very high culling rate was experienced in 1983. This culling rate was

further exaggerated by the Aujezky disease eradication campaign of that year,

which at its peak in April and May accounted for up to 1,000 to 2,000 sows a week.

The effect of the high culling rate of 1983 was to reduce the size of the breeding

sow herd to its lowest since the early 1960's. These apparent changes in the

behaviour of the series during the latter part of the sample period are important in

that the Box-Jenkins methodology employed is highly dependent on there being no

structural changes in the time series concerned. Any forecasts made by the Box-

Jenkins models covering 1983 are certain to be adversely affected by the Aujezky

factor.

The first step in the identification process of the model on the sample 1957: 1-

1981:4 was to obtain a stationary series. Although the plot of the breeding sow herd

appears to be fairly stationary from the mid 1960's onwards, the autocorrelations of

the raw data series in table 3.2 die away only very slowly, and the autocorrelation at

lag one is so close to unity that it is evident that the series in levels is non-

stationary. Taking a first difference reduces the size of the autocorrelations,

however, there is little indication of them or the partials dying away, nor does any

clear pattern emerge. The correlograms of the seasonally differenced series die

away with acceptable speed and they also indicate the presence of cycles; a well
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known phenomenon of the pig industry. For these reasons, it was decided for this

series, and subsequently for each of the live pig series, that a seasonal difference

alone was sufficient to obtain stationary series. The correlograms of the seasonally

differenced .~eries presented in table 3.2 show autocorrelations which exhibit a

cyclical pattern and which die down by the third lag. The partials at lags 1,2,3, and

5 are the only prominent partials, all being greater than the significant 2 standard

errors away from zero. Having identified 'd' as zero and D' as 1, the first stage of

identification was completed.

The next step in the model building process is to identify the size of p, P, q and Q in

order to identify the structure of the SARlMA model as described in section 2.3 of

chapter 2. Given the cyclical pattern in the autocorrelations, two AR parameters are

included in the initial identification as illustrated in table 3.3. A seasonal

autoregressive, (SAR), parameter was included as this would then multiply out with

the AR parameter at lag 1, effectively producing a parameter at lag 5 to account for

the large partial autocorrelation at this lag. Compared with a critical value for the t-

Tab1e 3.2,
The Autocorre1ations and Partial Autocorrelations For The

Total Breeding Sow Herd Series 1957: 1-1981 :4.

SERIES4 AUTOCORRELATIONS

1 2 3 4 5 6 7 8 9 10
(1-B)0(1-B4)0 H .94 .86 .76 .67 .58 .51 .47 .43 .39 .35
(I-B)I(I-B4)0 H .29 .22 .04 .01 -.29 -.24 -.25 .00 -.03 .09
(I-B)0(1-B4)1 H .84 j7 .22 -.11 -.29 -.36 -.30 -.17 -.01 .11

SERIES h.UTOCOR RELATIONS

11 12 13 14 15 16 17 18 19 20
(I-B)0(1-B4)0 H .30 .24 .16 .09 .03 -.02 -.06 -.09 -.10 -.10
(I-B)I(I-B4)0 H .05 .22 .00 -.08 -.16 -.02 -.11 -.19 -.01 .04
(l-B)0(1-B4)1 H .15 .12 .02 -.09 -.20 -.25 -.26 -.23 -.15 -.08

SERIES fARTIAL AUTOCOR RELh. TIQNS

1 2 3 4 5 6 7 8 9 10
(1-B)0(1-B4)0 H .94 -.19 -.16 .06 -.05 -.07 .13 -.01 -.15 .01

(l-B)I(I-B4)0 H .29 .15 -.07 -.02 -.31 -.12 -.08 .18 .02 .01
(I-B)0(I-B4)1 H .84 -.44 -.38 -.13 .30 -.03 -.03 .01 .13 -.15

statistic of 2.63 for 96 degrees of freedom, each of the three included parameters

had significant coefficients at the 1% level. The RSS value is 58,981 and the roots

of the parameters indicate that the model is both stationary and invertible. The

4 The powers of 0 and 1 are included to emphasise to the reader that there is either
no differencing or only first differencing of the time series respectively.
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residual autocorre1ations indicate that the model is under-parameterised. Compared

with a Quenouille statistic of 0.204, the residual autocorrelations at lag 8 is

significant and those at lags 1,2, and 3 are large. Also, the Box-Pierce Q-statistic of

39.16 is significantly high at the 1% level as indicated by the associated P-value of

0.0017. The latter statistics indicate that the null hypothesis that the residuals for the

first 20 lags are white noise residuals can be rejected at the 1% level.

FIGURE 3.2
The CorreloW"ams of the Series Cl-B)oCl-B4)1H.1957:1-1981:4,

Mean = 3.13
S.E. = 62.4
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In an attempt to remove the low lag residual autocorrelation problem, an MA
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parameter was added to the model. The additional parameter proved to have a
highly significant coefficient and had the effect of reducing the RSS value by 7.6%
to 54,507. The Q-statistic fell slightly to 32.34 but the P-value of 0.0090 still shows
this Q-statistic to be significant at the 1% level. The addition of the MA parameter
did have the desired effect of reducing the high residual autocorrelations at lags 1
and 2, although the third is still quite high at 0.177. The remaining outstanding
problem is the significant residual autocorrelation of 0.25 at lag 8.
To remove this final obstacle, the model was overfitted with a second SAR
parameter. Once again, the additional parameter was highly significant, the RSS
being further reduced by 10.5% to 48,787. The most significant effect of the final
augmentation was to remove all significant residual autocorrelations, and thereby
reduce the Q-statistic to 19.7. The associated P-value of 0.183 indicates that the null
hypothesis of white noise residuals is only rejected at the 19% level, and hence the
white noise residual requirement appears to have been satisfied.

Table 3.3.5
The Results of Estimarion of the Series O-B)OO-B4)lH On The Sample

1957:1 - 1981:4

MODEL, fORECASTS
A2

d D p P q Q R.S.S. Q'20 P'20-k CMSFE UMSFE 1\
0 1 2 1 0 0 58981 39.2 0.2%
0 1 2 1 1 0 54507 32.3 0.9%
0 1 2 2 1 0 48787 19.7 18.3% 325.6 1001.4 .06

RESIDUAL AUTOCORRELATIONS FOR EACH STAGE OF ESTIMATION

MODEL RESIDUAL AUTOCORRELATIONS
d D P P q Q 1 2 3 4 5 6 7 8 9 10
0 1 2 1 0 0 ·.16 .14 .19 ·.08 ·.09 ·.04 .05 ·31 .10 .10
0 1 2 1 1 0 ·.08 .08 .18 •.07 •.07 .03 .08 ·.25 .13 .16
0 1 2 2 1 0 ·.04 .06 .09 .01 ·.12 .05 ·.05 ·.06 .06 .14

MQQEL RESIDUAL AUTOCQRRELA nONS
d D P P q Q 11 12 13 14 15 16 17 18 19 20
0 1 2 1 0 0 •.07 .12 ·.03 .01 ·.16 ·.04 ·.01 ·.22 .09 ·.18
0 1 2 1 1 0 ·.02 .11 ·.02 ·.03 ·.20 ·.07 ·.03 ·.21 .06 ·.15
0 1 2 2 1 0 .06 ·.16 .09 ·.01 ·.17 ·.03 .07 ·.20 .04 ·.10

RESULTS QF THE ESTIMATIQN QETHE SEASONAL DUMMY MQQEL QN FIRST DIFFERENCES.

SEASONAL DUMMY
d DpP q Q R.S.S.
1 0 0 0 0 0 53.513

DUMMY VARIABLE
1 2 3 4

·7.7 8.8 7.4 ·3.8
(-1.6) (1.9) (1.6) (·.8)

FORECASTS.
CMSFEUMSFE
409.6 1426.7

5 RSS = Residual sum of squares.
Q'20 = Box-Pierce Q·Statistic for residual autocorrelations up to lag 20.
P20.k = Probability value for Qvstatistic at lag 20 in a model containing k

parameters.
CFMSE =MSE from conditional forecasts.
UFMSE =MSE from unconditional forecasts.
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This model was accepted in view of the fact that it could not be improved
significantly by overfitting with additional parameters. The estimated equation,

along with the t-statistics of each coefficient is given in equation 3.2.1. The roots of
both the seasonal and the non-seasonal AR polynomials are imaginary, thereby
indicating amodel incorporating two cycles. The length of the cycle produced by
the non-seasonal AR polynomial measures 6 years and 10 months, whereas the
length of the cycle obtained from the seasonal AR polynomial is approximately 6
years and 6 months long.6 Both cycles are rather long compared with those

obtained by McClements and Ridgeon as referred to in the opening chapter. The
presense of two cycles is not easy to interpret though a possible explanation is that
the seasonal cycle is modulating the effects of the more dominant non-seasonal
cycle.

(1 - 1.72B + 0.78B2 ) (1 + 0.80B4 + 0.49B8 ) (1 - B4) Ht = (1 - 0.48B) et. (3.2.1.)
(-13.6) (6.7) (8.6) (5.5) (-2.7)

Because the AR polynomials multiply out to give a polynomial of degree 14, no
multiplicative test was carried out. However, in order to check the appropriateness
of the identification of D and d, models were also estimated on the raw and first
differenced series respectively. The non-stationary parameters resulting from these

models vindicated the use of the seasonally differenced series, in that they indicated
non-stationarity .
The results of fitting seasonal dummies to the first differenced data - also presented
in table 3.3 - confirms all that has been said concerning the lack of seasonality in the
total breeding sow herd series resulting from the cancelling out of the opposing
seasonal effects in the 'pregnant sows' and 'barren sows for breeding' series. Unlike
any of the other census models, none of the individual seasonal dummies is
statistically significant at the 5% level, although the summer dummy comes close
with a t-statistic of 1.9. The RSS of 53,513 from the seasonal dummy compares

with 48,787 for the Box-Jenkins ARIMA model, producing a value for R,2 of 0.06.
This figure indicates that the Box-Jenkins model provides a 6% improvement in fit

to the breeding sow herd series over that of the seasonal dummy model on first
differences.
The total breeding sow herd model was re-estimated on the longer sample period
1957:1-85:4 in order to facilitate comparisons with the forecasts of the subsequently
estimated biological and econometric models. Equation 3.2.2 presents the results of

6 The length of cycle is the inverse of the frequency given by 2n:I cos -1( 41}/2 ..J - 412)
in radians
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estimation of this model, for which the same structure was assumed. There is very
little change in the coefficients from those presented in equation 3.2.1, and each of
the coefficient's t-statistics are larger with the exception of that of the second SAR
coefficient.

(1 - 1.70B + 0.77B2 ) (1 + 0.80B4 + 0.47B8 ) (1 - B4 ) Ht = (1 - 0.48B) et. (3.2.2.)
(-14.0) (6.9) (9.0) (5.4) (-2.8)

Re-identifying and estimating the model on 1975:1-85:4 resulted in the same

structure of model as identified for the 1957:1-81:4 sample. The estimated equation
along with the t-statistics - which are to be compared with a 5% significance value
of 2.02 for 40 degrees of freedom - is given in equation 3.2.3. below.

(1 - 1.53B + 0.77B2 ) (1 + 0.81B4 + 0.51B8 ) (1 - B4) Ht = (1 - 0.53B) et. (3.2.3.)
(-7.5) (4.9) (4.9) (3.2) (1.85)

The estimated parameter coefficients of the latter regression are not too different
from those estimated in 3.2.1 and 3.2.2, the exception being the first AR parameter,
which is lower for the shorter period model. The resulting cycle lengths of the AR

and SAR polynomials are 3 years and 1 month and 6 years and 6 months
respectively, indicating the sensitivity of the measured cycle length to what is an
insignificant change in the value of the first of the AR coefficients.
Figure 3.3a illustrates the in-sample forecasts for the period 1983:1-1985:4. The fall
in the breeding sow herd, as a result of the Aujezky disease eradication of 1983, is
clearly the cause of the unconditional over-forecasting of the period. Considering
the circumstances, the conditional forecasts appear to be reasonable, although over-
forecasting of June and December in 1983 is still prevalent. The MSFE of the 1 step
forecasts is 323.7. The obvious comment to make about the out-of-sample plot in
figure 3.3b is the greater stability of the herd and the forecasts compared with the
Aujezky affected in-sample period. Both sets of forecasts miss the relatively sharp
increase in the breeding sow herd in the first quarter of 1987, although this figure

from the April census does appear somewhat dubious compared with the size of the
herd immediately before and after this census point, particularly since the overall
trend of the series over the two year period is downwards 7. The high April census
figure also accounts for the relatively large 1 step over-forecast for June of the same
year. The MSFE statistics for the 8 step and 1 step forecasts are 150.38 and 185.9

7 Communication with the MLC confirmed the doubt surrounding the reliabiity of
the said sample census data.
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respectively. Not surprisingly, these compare well with the CMSFE of the in-
sample period but the statistics are surprising in that the figure for the unconditional
forecasts is lower than that of the conditional forecasts. The main reason for this

<

phenomena is the bad 1 step forecast for June 1987 discussed above.

Figure 3.3.
a. The Conditional and Unconditional In-Sample Forecasts For The Breeding Sow

Herd Estimated On The Sample 1957:1 to 1985:4
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b. The Conditional and Unconditional Out-Of-Sample Forecasts For 1986:1-87:4
Estimated On The Sample 1957:1-85:4.
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The apparently dubious April sample census data for 1987, and the consequences of
this on the one step forecast for the following June - a phenomenon which re-occurs
throughout the breeding herd series modelled - prompted a discussion of what
actions the the time series forecasted could take faced with such a situation. This
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discussion, using the breeding herd model built in this section as an example, is
presented in section 3.5 towards the end of the chapter.

3.2b A SARIMA Model For The U.K. Sows in Pig Herd.
Having taken a seasonal difference of the series in levels using the sample period
1957:1-78:4, a SARIMA (2,2,0,1,2,0) was identified and estimated and used to
produce a forecast for 1979:1 of 498,000 pregnant sows. The plot of the pregnant
sow series for the full sample period is given in figure 3.4.

Figure 3.4.
A Plot of the Quarterly Time Series 'Sows in Pig' 1957:1-1987:4.
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The plot shows a series that is trending upwards over time with the suggestion of a
cyclical element, although the downward slope of the cycle is noticeably steeper
than that of the the upward side. This latter phenomenon can be explained by the
fact that the herd can be decreased at a faster rate, through slaughtering, than it can
be increased through breeding. Seasonal influences are much more apparent than

they were in the total breeding sow herd plot, and the post E.E.C. change in
behaviour and the Aujezky effect of 1983 are also very apparent. As was the case

with the total breeding sow herd, the pregnant sow series has a more stable mean
after 1974.
Table 3.4 presents the results of estimating the identified model for the series on the
sample 1957:1-81:4. The cyclical element is present once again in the form of2 AR
and 2 SAR parameters whose polynomials produce imaginary roots. Two MA
parameters are also included in the model.
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8Table 3.4.
The Results of Model Estimations of the Series (l-B)0(1-B4}lPS.

1957:1 - 1981:4

MODEL

d DpP q. Q
o 122 2 0

R.S.S. Q'20
20,623 17.9

P·20.k
20.9%

FORECASTS

CMSFE UMSFE
237.4 287.7

"'2R.
-.06

RESIDUAL AUTOCORRELATIONS

LAG 1 2 3 4 5 6 7 8 9 10
AUTOCORRELA TIONS .03 -.09 .06 .04 -.11 .04 .04 -.03 .09 .08

LAG 11 12 13 14 15 16 17 18 19 20
AUTOCORRELATIONS -.10 -.15 .05 .01 -.17 -.16 .03 -.12 -.05 -.09

RESULTS OF THE ESTIMATION OF THE SEASONAL DUMMY MODEL ON FIRST DIFFERENCES.

SEASON AL DUMMY
d DpP q Q R.S.S.
1 0 0 0 0 0 19,264

DUMMY VARIABLE
2 3 4

-26.8 22.4 -10.7 20.9
(-9.2) (7.9) (-3.8) (7.3)

_ FORECASTS
CMSFE UMSFE
296.6 472.2

The Q-statistic and the associated P-value for the first 20 residual autocorrelations
suggest that the autocorrelations as a whole are white noise, and the first few
residual autocorrelations give no reason to suspect that the model is under-
parameterised. Equation 3.2.4. illustrates that each of the model coefficients is
significant at the 5% level when compared with the t-statistic of 1.985 for 96
degrees of freedom. The RSS of 20,623 compares with that of 19,264 for the

seasonal dummy model on first differences and so the resultant R,2 of -.06 implies
that the dummy model gives a 6% better flt to the data than does the Box-Jenkins
model. The seasonal dummy model on first differences contains four highly
significant dummy variables, indicating that the number of pregnant sows increases
in the Summer and in Winter, while falling in the Spring and Autumn. Despite the

negative R,2 value, the MSFE statistics imply that the SARIMA model is better

than the dummy model for out-of-sample forecasting of the period 1982:1-85:4.

(1 - 1.46B + O.6IB2 ) (1 + 0.46B4 + O.26B8 ) (1 - B4 ) PSt = (1 - O.54B+ 0.43B2) et (3.2.4)
(-7.2) (3.6) (3.2) (2.5) (-2.8) (3.4)

The AR polynomial cycle has a length of approximately 4 years and 4 months,
whereas the SAR polynomial cycle measures 5 years and 8 months. Estimating the

8 See Footnote 5
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model on the extended sample, results in equation 3.2.5.. The coefficients and the t-

statistics for the non-seasonal parameters decrease while those of the seasonal

parameters increase, although each change is very small.

(1- 1.45.B +O.60B2 ) (1+ O.53B4 +O.27B8 ) (1 - B4 ) PSt = (1 - O.54B + 0.39B2) ~ (3.2.5)
(-6.8) (3.3) (3.95) (2.7) (-2.6) (3.2)

The model re-identified and estimated on 1975-85 - presented in equation 3.2.6 -
has a different structure to that of equations 3.2.4 and 3.2.5 in that it has only one
seasonal autoregressive parameter, and the first MA parameter is constrained to
zero. The imaginary roots of the SAR polynomial produce a cycle length of 5 years
and 9 months.

(1 - 0.62B ) (1 + 0.72B4 + 0.60B8 ) (1 - B4 ) PSt = (1+ 0.38B2) et. (3.2.6)
(-4.1) (4.6) (4.2) (1.97)

Figure 3.5.
a. The Conditional and Unconditional In-Sample Forecasts For The Sows In Pig

Herd Estimated On The Sample 1957:1 to 1985:4
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b. The Conditional and Unconditional Out-Of-Sample Forecasts For 1986:1-87:4
Estimated On The Sample 1957:1-85:4.
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Although affected by the Aujezky factor, the unconditional in-sample forecasts

produced by equation 3.2.5. are reasonable, in that they pick up both the seasonal

movements and the overall u-shaped trend in the actual data over the forecast

period. The conditional one step ahead forecasts for the same period are relatively

good for the period beyond the second quarter of 1984, when the effects of the

Aujezky factor are diminished. The CMSFE is calculated at 248.8. The comparative

statistics for the out-of-sample period are 150.4 for the step unconditional forecasts

and 185.9 for the conditional I step forecasts. These compare well with the Aujezky

affected in-sample period and, as the plot indicates, the forecasts are relatively

good. Once again, the magnitude of the MSFE's for the out-of-sample forecasts are

the opposite of what one might expect a priori. As with the total breeding sow

model, this is a result of the relatively large 1 step over-forecast for June of 1987.

Again, the accuracy of the April figure for 1987 might be brought into question and

therefore explain the forecast for the following June census figure.

3.2c A SARIMA Model For The U.K. Gilts In Pig Herd
The second of the three breeding sow herd components to be examined is the gilts

in pig herd. The initial forecasting model on 1957:1-1978:4, a SARIMA

(2,0,0,1,1,1) produced a forecast for 1979:1 of 111,000 gilts. The outstanding

features of the plot in figure 3.6 are the slow downward trend, the seasonal

fluctuations, and the possibility of a cycle.
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Figure 3.6.
A Plot of the Quarterly Time Series 'Gilts in Pig' 1957: 1-1987:4.
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As was the case with the sows in pig series, the plot illustrates a more stable and

less oscillatory series after 1974. The plot suggests a series behaving somewhat

differently during 1981 and 1982. This is possibly due to farmers starting to replace

sows at an earlier age, thereby increasing the number of gilts at a time when profits

in the industry were falling. There is also evidence that the herd was affected by the

1983 slaughter campaign.
9Table 3.5.

The Results of Model Estimations of the Series O-B)OO-B4)1fQ.
1957:1 - 1981:4

MODEL

dDpPqQ
o 1 2 0 1 1

R.S.S.
6,549

Q'20
17.7

FORECASTS

P'20-k
34.6%

CMSFE UMSFE
24.4 34.4

RESIDUAL AUTOCORRELATIONS

LAG 1 2 3 4 5 6 7 8 9 10
AUTOCORRELATIONS -.07 ·.02 .17 -.06 .06 -.04 .02 .01 .15 -.08

LAG 11 12 13 14 15 16 17 18 19 20
AUTOCORRELA TIONS .08 .07 -.06 .05 -.20 .06 .05 -.11 -.03 -.11

RESULTS OF THE ESTIMATION OFTHE SEASONAL DUMMY MODEL ON FIRSTDTFFERENCES.

SEASONAL DUMMY
d DpP q Q R.S.S.
1 0 0 0 0 0 9,710

DUMMY VARIABLE
1 2 3 4
5.21 6.84 -6.76-6.44
(2.5) (3.4) (-3.3) (-3.2)

FORECASTS.
CMSFE UMSFE
30.5 48.7

9 See Footnote 5
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The model identified and estimated for 1957:1-1981:4 on the seasonally differenced
data comprised 2 AR , 1 MA, and 1 SMA parameters. The imaginary roots of the
AR polynomial produced a cycle length of 3 years and 3 months which is more in
line with the length of cycle suggested by McClements (1970'). The results of
estimation and the model itself are presented in table 3.5 and equation 3.2.7.
respectively.

(1 - 1.59B + 0.80B2 ) (1 - B4 ) PGt = (1 - 0.40B ) ( 1 - 0.74B4 ) et.
(-18.0) (10.3) (-2.8) (-10.6)

(3.2.7.)

The t-statistics in equation 3.2.7. illustrate that each of the 4 parameters is highly
significant and the RSS takes a value of 6,549. The Q-statistic of 17.7 for 20 lags
has a corresponding P-value of 34.6% implying a white noise residual process.
None of the first few residual autocorrelations is significant, and although that a lag
15 comes very close to being significant, it is not at a seasonal lag and, therefore, it
was not thought appropriate to do anything about it.
Fitting the seasonal dummy model on first differences produces dummy coefficients
which are all highly significant. The seasonal pattern differs from that of the
pregnant sows in that the number of pregnant gilts rises in the Spring and Summer
as opposed to rising in Winter and Summer. This phenomenon helps to explain the
large oscillations present in figure 3.6. The RSS statistic of 9,710 for the seasonal

dummy model combines with that of the Box-Jenkins model to produce an R,2
value of 0.304. This is an encouraging statistic for the SARlMA model, in that it
gives a 30.4% better fit to the data over the more naive dummy model.
The expanded form of the model is given in equation 3.2.8. below.

( 1- 1.59B + 0.80B2 - B4 + 1.59B5 - 0.80B6) PG = (1 - OAOB- 0.74B4 + 0.30B5) et (3.2.8)

Because the number of parameters in the SARIMA model for pregnant gilts is
relatively small, the validity of the multiplicity assumption was tested by fitting an

ARMA(6,5) with the coefficients <1>:3,82 and 83 fixed at a value of zero, as presented

by equation 3.2.9. Making a comparison of equations 3.2.8 and 3.2.9, it is clear that
the multiplicative and the non-multiplicative equations are similar to one another.

The critical comparison of the 5th order MA parameters suggests that the

multiplicative model does place some restriction upon 85, although the restriction
does not appear to be great enough to invalidate the use of the multiplicative model.

( 1 - I.64B + 0.85B2 - B4 + I.64B5 - 0.85B6) PGt = (1 - 0.43B - 0.85B4 + 0.53B5) et (3.2.9)
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Estimating the model with the complete data set to 1985:4 produces the equation
presented in equation 3.2.10 in which each of the the t-statistics ,are larger than in

3.2.7, implying greater significance for each of the included parameters.

(1- 1.59B + 0.81B2 ) (1 - B4) PGt = (1- 0.39B) ( 1 - 0.72B4 ) et.
(-20.0) (11.5) (-3.0) (-10.9)

(3.2.10)

Identifying and -estimating a Box-Jenkins model on the shorter sample period,
1975:1 to 1985:4, produces a model containing more variables, that is, 2 AR, 2 MA
and 2 SAR parameters. The estimated model is reproduced in equation 3.2.11. The
length of the cycles produced by the AR and the SAR polynomials are 2 years and 3
months and 5 years and 7 months respectively.

(1- 1.52B + O.99B2)(1+ O.56B4+ O.28B8 )(1- B4 ) PGt = (1- 1.08B + O.94B2) et. (3.2.11)
(-53.2) (73.1) (3.4) (1.86) (-17.3) (22.5)

The in-sample forecasts for the period 1983:1-85:4 produced by equation 3.2.10.
and presented in figure 3.7a show unconditional forecasts which over-forecast for
most of the period beyond 1983:2, although they do pick up the seasonal
movements in the actual series. The conditional one-step forecasts for the same
period follow the actual series very closely, the sole exception being 1983:2 which
corresponds with the peak slaughtering period of the Aujezky disease eradication
campaign. The MSFE for the conditional forecasts measures 25.22.

Figure 3.7.
a. The Conditional and Unconditional In-Sample Forecasts For The Gilts In Pig

Herd Estimated On The Sample 1957:1 to 1985:4
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b. The Conditional and Unconditional Out-Of-Sample Forecasts For 1986:1-87:4
Estimated On The Sample 1957:1-85:4.
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The unconditional and the conditional MSFE's for the out-of-sample forecasts are
17.5 and 15.0 respectively. These compare well with the CMSFE for the in-sample
period. The plot in figure 3.7b illustrates both sets of out-of-sample forecasts
picking up the seasonal movements of the pregnant gilt herd, the only exception
being for the June figure of 1987 which is over-forecast by both the 1 step and the 8

step forecasts.

3.2d A SARIMA Model For The U.K. Barren Sow Herd
The final component of the breeding sow herd is the Barren sow herd, consisting of
those sows which are not in pig at the time of the census. The forecast figure of
241,000 pigs, included in the plot of the series in figure 3.8, was obtained from a
model identified as a SARIMA (1,2,0,1,2,0) on the sample 1957:1-1978:4.
The time series plot appears to be non-stationary, especially post 1974 when there is
a strong downward trend illustrating the shortening of the weaning time over this
period. The cyclical element which is present in the pre 1974 period is not as
apparent post 1974. Like the other two breeding sow herd components, the number
of barren sows falls during the Aujezky period of 1983.
The results of estimating the seasonal dummy model on the first differences of the
sample 1957:1-1981:4 - presented in table 3.6 - reveals a seasonal pattern
diametrically opposed to that of the sows in pig series. This result is to be expected
if the breeding sow herd is a reasonably constant size over time. All four of the
seasonal dummies are significant and the RSS statistic is 15,417.
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Figure 3.8.

A Plot of the Quarterly Time Series 'Barren Sows for Breeding' 1957:1-1987:4.
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10Table 3.6.
The Results of Model Estimations of the Series O-B)0(1-B4)lBS.

1957:1 - 1981:4

MODEL

d DpP q Q
o 1 1 2 2 0

R.S.S. Q'20 P·20-k
9,864 12.6 70.2%

FORECASTS
A2

CMSFE UMSFE 1\
25.7 84.6 0.34

RESIDUAL AUTOCORRELATIONS.

LAG 1 2 3 4 5 6 7 8 9 10
AUTOCORRELA TIONS -.05 -.02 .12 .00 -.09 -.07 .03 -.00 -.04 .03

LAG 11 12 13 14 15 16 17 18 19 20
AUTOCORRELA TIONS .20 -.05 -.07 -.01 -.09 -.02 -.10 -.09 -.06 .00

RESULTS OF THE ESTIMATION OF THE SEASONAL DUMMY MODELONBRST
DIFFERENCES.

SEASONAL DUMMY
d DpP q Q R.S.S.
1 0 0 0 0 0 15,417

DUMMY VARIABLE
1 2 3 4

14.0 -20.4 24.8 -18.3
(5.4) (-8.0) (9.7) (-7.2)

FORECASTS.
CMSFE UMSFE
248.3 250.2

Table 3.6 also reveals that the identified Box-Jenkins model on 1957:1-1981:4, for

the barren sow series consisted of 1 AR, 2 MA and 2 SAR parameters, the

polynomial of the latter having imaginary roots which imply a cycle length of

10 See Footnote 5
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approximately 5 years and 8 months. Again, the model was identified on the
seasonally differenced data. Because the first of the 2 MA parameters is not
significant, it was constrained to a value of zero. The other four estimated

:

parameters were all highly significant, and the RSS of 9,506 compares favourably

with that of the more naive dummy model to produce an Rs2 value of 0.34. The
only significant residual autocorrelation is at lag 11, which is not a seasonal lag.
The Box-Pierce Q-statistic at lag 20 is 12.6, which is low enough to have a P-value
of 70.2%. The latter indicates that the residual autocorrelations are consistent with a

white noise process. The MSFE statistics also show the SARIMA model to be a far
superior forecasting model over the seasonal dummy model for the period 1982:1-
1985:4. Equation 3.2.12. is the result of estimating the identified Box-Jenkins
model on the 1957:1-1981:4 sample.

(1- 1.82 B)(1+ 0.51 B4+ 0.32 B8 )(1- B4) BSt = (1 + 0.42 B2) et.
(-11.6) (4.4) (3.1) (3.6)

(3.2.12)

Once again, the model was re-estimated on the extended sample period up to and
including 1985:4, the resultant equation being presented in equation 3.2.13.

(1- 1.82 B)(I+ 0.52 B4+ 0.30 B8 )(1- B4) BSt = (1 + 0.42 B2) et. (3.2.13.)
(-12.4) (4.8) (3.2) (3.9)

The parameter coefficients of the model on the larger sample are very similar to
those of equation 3.2.12., although each of the t-statistics has increased, thereby
increasing the significance of each of the included parameters.
Re-identifying and estimating a model on 1975:1-1985:4 produces a model with
changes over the previously identified model, which is perhaps not surprising in
view of the very different appearance of the plot from 1974 onwards. Identified on
the first differenced series, the model includes 2 AR , 2 MA and 2 SAR parameters.

(1- 1.22B + 0.73B2)(1+ 0.36B8 )(1- B4) BSt = (1 - 0.42B + 0.82B2) et. (3.2.14)
(-9.01) (5.54) (2.16) (-3.42) (8.05)

The first of the MA parameters is no longer restricted to zero, but the first of the

two SAR parameters is. The results of estimation of this later period model were not

as good as those of the full sample model, both in terms of parsimony and the

residual autocorrelation checks.
The general results of in-sample and out-of-sample forecasting from the 1957:1-
85:4 SARIMA model are very similar to those of the other breeding sow category
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models. The Aujezky disease eradication campaign has resulted in unconditional
over-forecasting during and beyond 1983 and conditional over-forecasting for most
of 1983, otherwise both sets of forecasts pick up the seasonal movements quite well.
The calculated CMSFE for the in-sample period is 26.6.

Fi&ure3.9.
a. The Conditional and Unconditional In-Sample Forecasts For The Barren Sow

Herd Estimated On The Sample 1957:1 to 1985:4
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b. The Conditional and Unconditional Out-Or-Sample Forecasts For 1986:1-87:4

Estimated On The Sample 1957:1-85:4.
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Both sets of forecasts for the out-of-sample period pick up the seasonal movements
in the barren sow herd very well but once again, the UMSFE of 21.7 is smaller than
the CMSFE of 35.8. There is no obvious reason looking at the plot why this should
occur. Furthermore, when translating these statistics into mean absolute errors, the
difference between the two is 1.3 thousand pigs only, or approximately 0.7% of the

barren sow herd.
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3.2e A SARIMA Model For The Total In.Pig Herd
The 'in-pig sow' and 'in-pig gilt' herds are aggregated to produce the total in-pig -

<

pregnant pig - herd, (PP), which was then modelled in the usual manner. The series

is modelledas an aggregate series due to the importance of the total in pig numbers

in the subsequent biological model. The forecasting performance of the aggregate

series could also be compared with that of the forecasts obtained from having

aggregated the forecasts produced by the two component models. The forecasts

from the two component models estimated on the period 1957:1-78:4 were

aggregated to produce a forecasts of 609,000 pregnant pigs for the missing census

in 1979: 1. Because the in-pig sow herd is two and a half times the size of the in-pig

gilt herd, it is not surprising that the plot of the pregnant pig series in figure 3.10 is

dominated by the pattern that was present in figure 3.4, the plot of the pregnant sow

herd.

Figure 3.10.
A Plot of the Series I Total Pregnant Pigs' 1957:1-87:4
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As was the case with the three component models, a seasonal difference of the raw

data was required to satisfy the stationarity condition in the correlograms. The

model identified and estimated on the 1957:1-1981:4 sample period comprised 2

AR, 2 SAR and 1 MA parameters, which is a similar identification to that of the

pregnant sow model except that the second of the MA parameters is not included in

the pregnant pig model. The estimated equation and t-statistics are given in equation

3.2.15.
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(1 - 1.70 B + 0.78 B2 ) (1 + 0.73 B4 + 0.42 BS) (1 - B4 ) PPt = (1 - 0.57 B) et.
(-11.8) (6.1) (7.1) (4.3) (-2.9)

(3.2.15.)

The AR and SAR polynomials have imaginary roots, indicating the presence of two

superimpos~d cycles. The measured cycle length of the non-seasonal polynomial is

approximately 5 years and 9 months, which compares with 6 years and 5 months for

the seasonal cycle. The results of estimating the Box-Jenkins model and the Harvey

model are given in Table 3.7.
11Table 3.7.

The Results of Model Estimations of the Series O-B)oO-B4)lPP
Estimated on 1957:1 - 1981:4

MODEL

dDpPqQ

o 122 1 0

FORECASTS

R.S.S. Q·20 P·20-k
32.167 13.8 53.9%

A2
CMSFE UMSFE R,
293.3 526.3 -.04

RESIDUAL AUIOCORRELATIONS

LAG 2 3 4 5 6 7 8 9 10
AUTOCORRELA TIONS -.05 .07 .06 .03 -.14 -.03 -.02 -.05 .10 .02

LAG 11 12 13 14 15 16 17 18 19 20
AUTOCORRELA TIONS .10 -.15 .06 -.00 -.15 -.09 .02 -.09 -.00 -.07

RESULTS OF THE ESTIMATION OF THE SEASONAL DUMMY MODEL ON FIRST DIFFERENCES.

SEASONAL DUMMY

d DpP q Q R.S.S.

1 0 0 0 0 0 32.246

DUMMY VARIABLE

1 2 3 4
-21.6 29.2 -17.85 14.5
(-5.8) (7.9) (-4.7) (3.9)

FORECASTS.

CMSFE UMSFE

361.5 699.8

The Q-statistic of 13.8 has an associated probability value of 53.9% indicating the

general acceptability of the residuals as a whole. Estimating the parameters of the

seasonal dummy on first differences of the raw data produces results similar to

those obtained from estimating the Harvey model on the pregnant sow data. The

seasonal pattern is the same in direction, although the seasonal pattern of the

pregnant gilt series has had the effect of dampening the fluctuations in 'Winter' and

'Spring' while enhancing them in 'Summer' and 'Autumn'. Each of the seasonal

dummies is significant as measured by the t-statistic. Comparing the RSS of 32,246

for the dummy model with 32,167 for the SARIMA model results in an R,2 of-

0.04 indicating that the seasonal dummy model adds 4% improvement to the fitting

11 See Footnote 5
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A2
ability of the SARIMA model. Having said this, the R. value for the pregnant pig
model is an improvement on that obtained for the pregnant sow model. The
conclusions drawn from comparisons of the MSFE's for the SARIMA and the
seasonal du~y models are once again favourable towards the Box-Jenkins derived
model.
The model re-estimated on the longer sample period up to and including 1985:4 is
given below, and, as has been the case with all the breeding sow models, the
extension of the"estimation period to 1985:4 produces t-statistics with increased
significance.

(1 - 1.69 B + 0.77 B2 ) (1 + 0.73 B4 + 0.39 B8) (1 - B4 ) PPt = (1 - 0.57 B) et.
(-12.6) (6.5) (7.6) (4.1) (-3.7)

(3.2.16.)

The model identified and estimated on the sample period 1975:1-85:4 includes 2
AR, 2 MA and 1 SMA parameters. The model as presented in equation 3.2.17
contains an AR polynomial with unreal roots, indicating the presence of a cycle
with a measured length of 2 years and 7 months.

(1 - 1.48 B + 0.82 B2 ) (1 - B4 ) PPt = (1 - 0.67 B + 0.33 B2) (1 - 0.61 B4) tt
(-10.6) (7.1) (-3.2) (1.65) (-4.9)

(3.2.17)

The plots of the in-sample and out-of-sample forecasts produced by 3.2.16 are given
in figure 3.13. As expected, the unconditional in-sample forecasts fail to pick up the
fall in the herd size during the Aujezky period in 1983. The 1 step conditional

forecasts for the in-sample period show a very similar pattern of performance to
those of the pregnant sow model presented in section 3.2b. The CMSFE measures
287.5.

The out-of-sample forecast results are also similar to those of the pregnant sow
model. The 8 step unconditional forecasts are particularly good at the start and the
end of the period, and the UMSFE of 188.7 compares very well with the equivalent
statistic from the 1 step conditional forecasts of the in-sample period. The out-of-

sample 1 step forecasts have a CMSFE of 358.7 due once again to the relatively

large over-forecast of the June 1987 figure. Again, the responsibility for this must
lay at the hands of the rather questionable April figure in that year.
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Figure 3.11.
a. The Conditional and Unconditional In-Sample Forecasts For The Pregnant Pig

Herd Estimated On The Sample 1957:1 to 1985:4
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b. The Conditional and Unconditional Out-Of-Sample Forecasts For 1986:1-87:4
Estimated On The Sample 1957:1-85:4.
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3.3 A SARIMA Model For The U.K. Unserved Gilt Herd
Collation of the unserved gilt herd only began in 1974 as a result of the U.K.'s
accession to the E.E.C. 'Unserved gilts' is the term which is used to describe those
gilts over 50Kg which are to enter the breeding sow herd, but are not yet in pig. The
series is an important leading indicator of the number of gilts in pig, itself a leading
indicator of the size of the breeding sow herd. The data are collected along with



Page 3-29

breeding sow herd data in the four pseudo-quarterly censuses carried out by
M.A.F.F. Along with each of the other census categories, the datum for 1979:1 is
missing as a result of the civil service strike action of that quarter. As the sample
size was not considered large enough for the building of a Box-Jenkins model with
which to forecast the missing figure, a three point moving-average was used to
provide an interpolated figure of 88,000 pigs. The appropriateness of this figure was
later checked by forecasting the 1979:1 figure again using the Box-Jenkins model
subsequently built using the interpolated value of 88,000. This was done to ensure
that seasonality was taken in to consideration when interpolating the missing
observation. The subsequent forecast of 87,800 suggested that the initial

interpolated value was indeed a reasonable value for 1979: 1. The plot of the
complete series from 1974:1-1985:4, including the interpolated figure of 88,000, is
presented in figure 3.12.

Figure 3.12.
Plot of the Unserved Gilts Series 1974:1-1987:4
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The plot gives the impression of a slight downward trend over the given period.
Apart from the Aujezky period, (1983), the plot appears much more stable in the
1980's than it does in the 1970's.

For compatibility with the subsequently developed biological and economic models,
the SARlMA model was estimated on the period 1975:1 to 1985:4 inclusive, the
data for 1986:1-87:4 being reserved for out of sample diagnostic checks. At the
identification stage, it was difficult to interpret whether or not the correlograms of
the raw data series were stationary. Although a model identification on the raw
series was attempted, the estimated parameters for the resultant model implied that
the series was indeed non-stationary. The autocorrelations of the first differences
series gave no indication of stationarity and so, as with the breeding sow herd
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senes, the unserved gilt series had to be seasonally differenced to achieve

stationarity.

The identified model consisted of 1 AR, 1 SAR and 2 SMA: parameters and,

therefore, the model does not contain a cyclical element. Estimation produces an
.'

RSS value of 1,166 and, as equation 3.3.1. illustrates, each of the 4 parameter

coefficients have t-statistics which are greater than the critical value of 2.02 for 39

degrees of freedom.

(1- 0.74B )(1+ 0.99B4 )(1- B4) UGt = (1- 0.27B4 - 0.60B8) et.
(-6.3) (48.0) (-2.1) (-5.1)

(3.3.1)

None of the first 20 residual autocorrelations were as large as the Quenouille

statistic of 0.30 for 44 degrees of freedom, and the P-value of 53%, associated with

the Q-statistic of 14.92, gives no reason to suspect that the first 20 residual

autocorrelations show anything other than a white noise residual process.

12Table 3.8.
The Results of Estimation of the Unserved Gilt Series

On the Sample 1975:1 - 1985:4

MODEL

dDpPqQ
o 1 1 1 0 2

IN·SAMpLE

R.S.S. Q'20 P·20.k
1,166 14.9 53.0%

"1
CMSFE UMSFE ~
21.9 74.2 0.327

RESIDUAL AtJrOCORRELATIONS.

LAG 2 3 4 5 6 7 8 9 10
AUTOCORRELATIONS -.06 .13 -.13 -.04 -.20 -.19 .07 .04 .17 -.OS

LAG 11 12 13 14 15 16 17 18 19 20
AUTOCORRELA TIONS .12 -.14 -.11 -.13 .06 -.02 .15 .09 .OS -.09

RESULTS OF THE ESTIMATION OF THE SEASONAL DUMMY MODEL ON FIRST DIFFERENCES.

SEASONAL QUMMY }dUMMY VARIABI,.E IN·SAMPLE.
d D p P q Q R.S.S. 1 2 3 4 CMSFE UMSFE
1 0 0 0 0 0 1.876 3.2 ·6.0 5.3 -1.3 14.4 13S.1

(1.5) (-2.9) (2.5) (-0.6)

Table 3.8 also shows the results of having estimated the seasonal dummy model on

the first differenced series for the 1974-1985 sample. The RSS value of 1,876,

which is higher than that of the SARIMA model, is a result of only the Spring and

12 See Footnote 5
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Summer dummies being significant at the 5% level. The resultant R,2 value of

0.327 indicates that the SARIMA model provides a 32.7% better fit to the sample
than does the seasonal dummy model on first differences.

:

The in-sample and out of sample forecasting periods are the same as those used for
the breeding sow herd models, and as was the case with these models, the in-sample
forecasts are characterised by over-forecasting of the herd numbers for 1983, and is
particularly true of the December forecast. Consequently, the unconditional
forecasts over-forecast for the remainder of the in-sample period although they do
pick up the seasonal movements in the series very well. Beyond the second quarter
of 1984, the conditional forecasts are never worse than a 5.2% error, three of the
forecasts being very accurate.

Figure 3.13.
a. The Conditional and Unconditional In-Sample Forecasts For The Unserved Gilt

Herd Estimated On The Sample 1975:1 to 1985:4
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b. The Conditional and Unconditional Out-Of-Sample Forecasts For 1986:1-87:4

Estimated On The Sample 1974:1-85:4.
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The MSFE statistics in table 3.8 indicate that the SARIMA model is far superior to

the seasonal dummy model at unconditionally forecasting the in-sample period,

although the equivalent statistic for the conditional forecasts. implies that the

forecasts from the dummy model are better than the SARIMA model forecasts, this

result, however, is due solely to the relatively large over-forecast for the December

figure in 1983 as referred to above. The UMSFE and the CMSFE for the out-of-

sample period are calculated at 14.1 and 12.2 respectively, which compare very well

with all of the in-sample equivalents. Both sets of forecasts pick up the seasonal

movements in the unserved gilt herd very well.

3.4 A SARIMA Model For The U.K. Boar Herd

The data for the U.K. boar herd have been collected on exactly the same basis as

that of the breeding sow herd except that the starting date for the available data is

1960:1. The forecast figure for 1979:1 was 44,000 boars, forecast using a SARIMA

(2,1,0,1,2,0). Having learned from the building of the breeding sow herd models

that the models built on the sample 1957:1-1981:4 were not going to be of explicit

use and that the models estimated on the longer time period were better at

forecasting, the model for the boar herd was estimated only for the sample period up

to and including 1985:4.

Figure 3.14.
A Plot Of The U.K. Boar Herd 1960:1-1987:4.

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88
YEARS

The plot of the series gives the impression of a series with both seasonal and

cyclical components. The herd experiences a relatively large fall in numbers in 1965

and around the time of the UK's entry into the EEC during the latter half of 1972
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and 1973. Although the herd shows signs of increasing during 1982, the growth
turns into a decline in 1983, partially a result of the eradication campaign of that
year, after which the herd size is relatively stable.

13Table 3.9.
The Results of Estimation of the Boar Series On the Sample 1960:1 - 1985:4

MODEL

dDpPqQ.
012120

R.S.S. Q'20 P'20-k
179.8 16.2 37.1%

IN-SAMPLE
"1

CMSFE UMSFE R,
1.81 3.36 0.06

RESIDUAL AUTOCORRELATIONS.

LAG 2 3 4 5 6 7 8 9 10
AtITOCORRELATIONS .02 -.01 .00 -.02 .12 -.04 -.04 -.05 .14 -.01

LAG 11 12 13 14 15 16 17 18 19 20
AtITOCORRELA TIONS -.00 -.05 .02 -.06 -.03 -.29 -.04 .03 -.10 -.03

RESULTS OF THE ESTIM ATION OF THE SEASONAL DUMMY MODEL ON FIRST DIFFERENCES.

SEASONAL DUMMY
d 0 P P q Q R.S.S.
1 0 0 0 0 0 200.0

DUMMY VARIABLE
1 2 3 4

0,48 -,42 1.0 -0.85
(1.7) (-1.5) (3.6) (-3.0)

IN-SAMPLE
CMSFE UMSFE
1.21 10.9

Table 3.9 gives the results of having estimated both a SARIMA model, and a
seasonal dummy model on first differences, for the period 1960:1-1985:4. Only the

third and the fourth seasonal dummy parameters of the Harvey model are significant
at the 5% level, and the resultant RSS statistic is 200.0.
Although attempts at model estimation were made using the non-differenced data,
the estimated coefficients implied non-stationary models and, therefore, as was the
case with each of the live pig categories studied, it was the autocorrelations of the
seasonally differenced series which indicated stationarity. The identified model
consisted of 2 AR, 1 SAR and 2 MA parameters, all of which were highly
significant and the estimated parameters of the Autoregressive terms implied a cycle

of 3 years and 4 months. With the exception of lag 16, each of the residual
autocorrelations is small, producing a Q-statistic of 16.2 for the first 20 lags,
producing an associated P-value of 0.371 implying that the residuals as a whole are
consistent with white noise. The RSS of the SARlMA model is 179.8 which, when

,,2
compared with the equivalent statistic of the seasonal dummy model gives an R,

13 See Footnote 5
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value of 0.06. Although the SARIMA model is better than the seasonal dummy

model in terms of the in-sample UMSFE, the UMSFE statistics imply a slight

superiority to the Harvey model. The estimated Box-Jenkins model, along with the

t-statistics of the estimated coefficients, is given in equation 3.4.1.

(1 - 1.55B + 0.76B2)( 1+ 0.43B4)(1- B4 ) Bt = (1 - 0.87 B + 0.6OB2) et.
(-13.6) (7.7) (3.6) (-6.9) (6.4)

(3.4.1)

The 1 step conditional and the unconditional forecasts for both the in-sample and
out-of sample periods 1983:1-85:4 and 1986:1-87:4 respectively, are presented in
figure 3.15.

Figure 3.15.
a. The Conditional and Unconditional Tn-Sample Forecasts For The Boar Herd
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Figure 3.15a illustrates a boar herd which decreases up to 1984 then recovers over
the latter half of the period. Not surprisingly, the unconditional forecasts are too
high for the period affected by the Aujezky eradication campaign, although they
forecast 19~5 relatively well. The story is a similar one for the in-sample one-step
forecasts except that the errors are much smaller as is expected. It appears to be the
case that the model is a little slow in forecasting the turning points in the actual
series over the given period. As for the out-of-sample forecasts, the UMSFE and

CMSFE measure 1.13 and 1.06 respectively which reflect the improvement in the
model's ability to forecast the out-of-sample period, the obvious exception being the
forecast for the April figure of 1987. As was the case with many of the the breeding
sow herd series, the reliability of the census figure for April 1987 looks suspect as
the plot in figure 3.15b illustrates. The high April figure is the reason for the the 1
step under-forecast of the April 87 figure, and furthermore, the one-step over-
forecast of the following June figure. There is an obvious tendency for the 8-step
unconditional forecast to under-forecast the out-of-sample period.

3.5 Overcoming the Problem of Suspect Sample Data
To round off this discussion of forecasting the breeding herd using time series
models it was thought appropriate to examine the problem of suspect sample data
which appears to be a recurrent problem in April 1987 for the breeding herd models
examined. The nature of the problem is that the sample data for the breeding sow
and boar components appear to augment the size of the individual and, therefore,
the aggregate herds. The immediate consequence of this is that the models appear to

badly under-forecast the herd sizes for the said sample census. A second, and more
important problem from the point of view of forecasting, is that the one-step
forecast for sample points following the suspect period is clearly affected, as will be
a number of forecasts into the future depending on the number of autoregressive and
moving-average terms in the identified model. These problems are true for many of
the models studied in this chapter, and no more so than in the case of the first model
concerned with forecasting the size of the total breeding sow herd.

The aim of this section is to describe a method for overcoming the problems created
by the presence of a suspect value in the forecasting period, using the example of
the total breeding sow model discussed in section 3.2a. The specific nature of the
problem in the breeding sow model is that the model, as presented in equation 3.2.2,
contains 2AR, 2SAR and 1 MA parameters, together with a seasonal difference.
Consequently, the forecasts for up to 14 periods ahead of the suspect sample data
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period are derived using the suspect datum itself through one of the AR terms. The
worst effect in the breeding sow model, as it was in the case of the other breeding
herd models, is that the forecast for June 1987 is considerablyabove the actual
census figure of 813,000. The reason for this is not only the fact that the April

"

census figure of 851,000 gives a high base value from which the June figure is
forecasted, but the large positive error of the April forecast causes a further increase
in the forecast for June through the MA term present in the identified model. The
presence of the MA terms means that all such forecasting errors will have a bearing

on all future one-step forecasts. This effect is, of course, in addition to the effect of
the suspect April figure itself through the AR terms.
Faced with such a situation, the forecaster may wish to consider the following
actions in order to forecast the period beyond the suspect value. Firstly, he could
use the one-step forecast for April 1987, and substitute this forecast value for the
actual suspect value. This action has two main consequences. The first is that the
AR effects of the suspect value on the forecasts for up to 14 steps ahead has been
revised, hopefully to a value which is itself consistent with the rest of the data, and
secondly, the April forecast error has been eliminated, therefore, removing the
effect on future one-step forecasts through the MA term. If the forecaster was
interested only in forecasting from a period prior to the suspect period, then he may
consider an n-step ahead unconditional forecast, however, the latter is obviously of
limited use. A two-step forecast for June 1987 with December 1986 as the base
point using the latter method will yield the same forecast as the more general
method of replacing the suspect datum and forecasting one-step ahead.
The general method was employed in order to revise the one-step forecasts for the

period beyond April 1987 so that these revised forecasts could be compared with
the results of the original forecasts presented in figure 3.3b. The results of the
revised forecasts are presented along with the original forecasts and the actual data
in table 3.10 below.

Table 3.1Q

The Original and Revised Forecasts for June. August and December 1987

Time
1987:2
1987:3
1987:4

Breeding Sows
813
810
822

Original
870.7
797.8
813.2

Revised
833.8
803.4
815.9

The one-step forecast for April 1987 is 820.9 thousand, which when substituted for
the actual dubious value for April yields a one-step forecast for June of 833.8
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thousand, that is, 20.8 thousand above the true census figure. This compares with

the original forecast of 870.7 thousand; an over-forecast of 57.7 thousand. The

revised forecasts for August and December also provide an improvement to the
<

original forecasted values giving further support to the action of replacing the

suspect April figure.

Although it would appear that the revision method has led to an improvement in the

three forecasts after the suspect period, the above analysis is obviously dependent

upon the forecaster's knowledge that the April figure is indeed suspect and needs to

be replaced. More than likely, this knowledge is only going to become available in

the light of future data - in this case the figure from the June census - and as such, is

very much an ex-post method. Having said this, there is nothing to stop the

forecaster using the method if the forecast error for his latest available figure is out

by an amount which he regards as unacceptable. He is then free to compare

forecasts of points beyond the latest figure and choose which he feels is likely to be

the more reliable. In the light of subsequent data he may of course reverse his

original decision.

Although the method of revision discussed above has been with reference to a

particular example of a univariate model, the reader will hopefully appreciate that

the method can easily be generalised in order to apply it to other models, univariate

or multivariate.

3.6 Conclusion

In this chapter, univariate statistical models have been built for the key components

of the breeding herd using methodology advocated by Box and Jenkins as outlined

in chapter two. Such models are of interest in that they are expected to be

particularly useful for forecasting in the short run and have the advantage over more

traditional econometric methods that they require only the data for the variable of

interest to be collected and require no prior knowledge of the variable concerned in

order to build a workable forecasting model. The disadvantages include the fact that

large quantities of uniforrnally spaced time series are required if the methodology is

to be strictly adhered to.

The data available indeed proved to be somewhat problematic and much of the

discussion in the chapter was concerned with the nature of the data problems and

how they were overcome. The missing data problem for April 1979 was overcome

by building initial forecasting models using the data available up to the end of 1978

and making a one-step forecast for April 1979. The second major problem with the

breeding herd data was the apparent stabilising of the component variables after



Page 3-38

about 1974, presumed to be a consequence of the UK's accession to the EEC, this
also being the reason for the change in the timings of the spring and autumn sample
censuses. The latter problem meant that data were no longer quarterly in the true
sense of the term after 1974, and the 'rules' of the methodology were broken to some

.'

extent as they were continued to be treated as quarterly. Chow tests were used to
confirm the notion that there were structural changes in the breeding herd
component and aggregate data post 1974, necessitating a re-identification and
estimation of the models on the post 1974 sample period. Interestingly enough,
despite the changes in the post 1974 period including the stabilisation, the census
timing changes and the obvious effects of the 1983 Aujezky disease eradication
campaign, it is the models built on the 1957 to 1985 sample space which were
deemed to be better at forecasting the in-sample and out-of-sample periods.
Whether this situation continues in the future when more data become available
which will benefit the identification and estimation of the post 1974 models,
diminishing the effects of the 1983 eradication campaign, remains to be seen. Given
that the larger sample models are the best for the period analysed, it is they which
shall be used in the forecasting analysis of chapter eight.
Although no prior knowledge of the variables to be modelled is necessary to build
Box-Jenkins models, any knowledge available can be made taken into consideration
at the identification stage. The historical knowledge of a pig cycle was made use of
by encouraging the use of second order AR terms where appropriate which might
yield cycles through having imaginary roots. All but the unserved gilt model -
which was estimated over a shorter period due to non-collation of the series prior to
1974 - contained cycles, but of variable lengths, ranging from 6 years and 10
months in the case of the total breeding sow model to 3 years and 3 months for
pregnant gilts, with evidence of sensitivity to the values of the estimated polynomial
coefficients. All the models were estimated after taking a seasonal difference of the
raw data to achieve stationarity, and all identifications included both AR and MA
terms of various orders. The fact that there were only four observations per annum
made identification quite difficult, in that it was often hard to separate seasonal and

non-seasonal effects from one another. The estimation of the seasonal dummy
models on the first differenced data as suggested by Harvey illustrated the presence

of seasonality in the component series, and although the computed Rs2 statistic
often implied that the SARIMA models were not much better, if at all, at modelling
the variables concerned over the given period, the SARIMA models were superior
when it came to forecasting.



Page 3-39

The chapter is completed with a discussion of how the Box-Jenkins models could be
used to overcome the final data problem concerned with the problem of suspect
sample data in April 1987. The analysis indicated how the suspect sample data can

:

affect the forecasting ability of the Box-Jenkins models, and how adjustment of the
data, using forecasts from the derived models, can improve the forecasts beyond the
observation in question. The full implications of the April 1987 data will be
discussed in the forecasting chapter along with the analysis concerned with
investigating the relative forecasting abilities of the total breeding sow univariate

model and the aggregate forecasts from the three breeding sow herd component
models.
In the following two chapters comparative forecasting models for the breeding herd
will be built using a biological approach and an econometric approach. In chapter
six, the methodology employed to build the univariate quarterly models of this
chapter will be applied to the monthly time series for culling and fat pig slaughter
and various price and profit series.
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CHAPTER FOUR

A BIOLOGICAL MODEL OF THE UK BREEDING HERD

4.1 INTRODUCTION
The biological model comprises a system of equations based on the biological
relationships within the breeding sow herd and factors such as the number of days
from birth to slaughter of fat pigs. The main reason for building the biological
model is to derive a forecasting model for the breeding herd and the two
slaughter categories, 'sows and boar cullings', (M), and fat pig Slaughter, (FP).
Whereas the time series models of the breeding herd presented in chapter 3 are
expected to be of greater use in the short term, it is anticipated that models based
upon the biological relationships within the UK pig herd will yield more useful
forecasts for the medium term.l The biological analysis will also help our
understanding of the system in which the producers operate and should lead to a
greater awareness of the implications of policy on the industry.
The first section of the chapter is concerned with a theoretical approach to an
overall model for the breeding herd, modelling it as a system of inflows and
outflows under conditions of an assumed steady state equilibrium, (S.S.E.).
Having shown how the steady state equilibrium model can be used to build a
recursive forecasting model, the results of estimating the relationships for the
biological model are presented in section 4.4. The equations are initially
estimated using ordinary least squares, (D.L.S.), regression techniques, other
techniques being used and modifications being made as thought necessary. The
data are four monthly - hereafter referred to as trimestic - for the live pig
categories, the source being the three sample censuses carried out by M.A.F.F. at
the beginning of April, August and December since 1974. The slaughter data, on
the other hand, are monthly. The models are estimated on the sample period
1975-1985 inclusive, in order to allow for a period of adjustment for the sector
following the entry of the U.K. into the E.E.C., and to avoid the effects on the
sector produced by the abnormal behaviour of the world's agricultural markets in
1974; a result of the sharp increases in commodity prices of that year. The
inclusion of the 1974 data had a noticeable effect on the parameter estimates of
the models due to the relative shortness of the sample period, thereby justifying
their exclusion. Indeed, the size of the first few residuals in a number of the
models justifies the need for dummy variables in order to remove any influence
on seasonal or time trend parameters.

1 These expectations of the usefulness of biological models for forecasting in the
medium term are partly a result of work comparing the ability of statistical. economic
and biological models in forecasting key variables of the English and Welsh dairy
sector discussed in:- Rayner, Al. and Young. R. J., " Information, Hierarchical Model
Structures and Forecasting." European Review of Agricultural Economics, No.7.
1980.
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4.2 The Biological System of the Pig
In order to build the biological model, it was necessary to make certain
assumptions and generalisations concerning the nature of the biological lags
within the system.

Fi~re 4.1a:- The Biological System For The Rearin~ of Pi~s.

FEMALE PIGLET BORN

4WEEKS
WEIGHT=7kg

VEANERISTORE PIG

SOURCES:- Cambridge Survey (vvio'US)
Exeter Survey (vvio'US)
Pig Improvement Company
M.A.F.F.
M.L.C.
M.L.C. Pig Year Book (Vlrio'US)

AGE 26-38 WEEKS
(In-Pjg Gilt) WEIGHT 125-145 kg

16 veek gestation

Av.~
48 weeks

42-54 week spru.d.

PORKERS CU'l'TERS BACON1:RS HEAVIES
(25K) (22K) (SOK) (3K)

P.T.O

144 Dt.ys
49kgdw
65kglw

165 Dt.ys 172 Dt.ys
62kg dw 66kg dw
83kg Iw 8Skg Iw
(75~ Kill.ing OVl)

180 Dt.ys
SOkg dv
105kg Iv
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Figure 4.1b:- The Biological system within the Sow Herd.

To Fig.., PIGLETS ;'
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Barren Sov
lWEANING I 7 weeks

ISOWS CULLED1< 21 'open day,s'
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,1/

~MATED I 7 veeks
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s
,!/ U

unsuccessful
L MATED 110 veeks c

3 veeks c 16 veek
e gestation In- Pig, period Sov

16 veek s
,1/ f

CULLED J gestation uperiod 1

"ILI FARROWS J 23 veeks

IFARROWS 26 veeks

IFARROWS J
~

46 veeks

The above implies 2 litters in 46 veeks,
Therefore implies 2.26 litters in 52 veeks,



Page 4-4

Theseassumptions and generalisations are illustrated in the flow diagrams of
figures 4.1a and 4.1b and are outlined below. Starting from the birth of a female
piglet, the piglet will be weaned at approximately 4 weeks, at which point the
store pig - those pigs recorded as weighing 0-20kg (recorded as 0 to 2 months of
age prior to 1974) - will be fattened for fat pig slaughter ready for the meat
market Fat pigs fall in to one of four categories; 'porkers', 'cutters', 'baconers' and
to a lesser extent 'heavy hogs'. Figure 4.1a illustrates the approximate percentage
of pigs going into each category along with the number of days from birth to
slaughter and the average dead weights for each category. The associated live
weights have been derived using the formula employed by the M.L.C.2 A
proportion of the young females are not fattened but are retained for entry into
the breeding herd. From the weight of 50kg, such a female is recorded as a 'gilt
for breeding not yet in pig' and will be referred to as an unserved gilt, (UG). The
approximate average weight of the gilt at first service is 125kg to 145kg at which
stage the gilt will be about 28 to 34 weeks old, (6.5 - 8 months old). Assuming
the service to be a successful one, the gilt will then remain in pig for an
approximate 16 week gestation period, so that the average gilt will farrow
between the ages of 42 and 54 weeks of age.
Having farrowed, the gilt will then be recorded as a 'barren sow for breeding' for
approximately 7 weeks. Four of these will be spent weaning the litter, followed
by an average 21 day anaestrone or 'open day' period, after which she will be
served again. The cycle is then repeated so that having farrowed once, a sow can
expect to farrow a further two litters in the space of 46 weeks. The latter implies
2.26 litters will be born per sow per annum, (52 weeks). With an average of 9.3
weaners per litter, 21.02 weaners per sow per annum can be expected. If a service
is unsuccessful, a sow can expect to be served a second time, although a further
failure is likely to result in the sow being culled.

4.3 A Steady State Equilibrium Model For The U.K. Breeding Herd
The steady state equilibrium, (S.S.E.), model expresses the breeding herd as a
system of inflows and outflows in which it is assumed that the herd is in a state of
equilibrium. The herd is thus treated as a capital flow system in which there is
investment in the form of inflow into the breeding herd and scrapping, (outflow),
in the form of culling. The steady state assumption means that the inflow and
outflow variables are treated in such a way as to prevent the herd from increasing
or decreasing consistently over time. Seasonality is temporarily ignored. The total
breeding herd in period t is defined in 4.3.1 as the aggregate of the breeding sow
herd and the boar herd.J

2
3

See MLC's Pig Year Book 1984 p.49.
Throughout the text t refers to time as represented by the model, so that it represents 4
month periods in the semestic models and 1 month periods in the monthly models.
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(4.3.1)

Considering the breeding sow herd component individually, equation 4.3.2

defrnes it as the aggregate of pregnant sows, (PS), pregnant gilts, (PO), and

barren sows for breeding, (BS).

(4.3.2)

Equation 4.3.3 represents an identity for the breeding sow herd, expressing it as a

system of inflows and outflows.

Ht == Ht-1 + IGt_t.t - MSt-1.t - LSt-1,t (4.3.3)

Thus, the breeding sow herd is defined as comprising the sow herd in the

previous time period, plus the inflow of gilts which have become pregnant
between t-l and t, (IOt-1,t), minus the number of sows culled from t-t to t,
(MSt-1,t), and less the number of sows lost through disease, injury, etc. between
t-1 and t, (LSt-l,t), which are not recorded as cullings. The problem with 4.3.3 as
it stands is that none of the variables, with the exception of breeding sows, are
recorded as distinct categories in the census and slaughter data and are, therefore,

unobserved. Having said this, it is possible to derive an estimate of the gilt inflow
between t-1 and t figure by calculating 17/16ths of the pregnant gilt figure at time

t

(4.3.4)

The reasoning for this relationship is that there are approximately 17 weeks

between census timings but only 16 weeks in the gestation period, hence, 1/17 th

of the true gilt inflow figure from t-1 to t miss being recorded as pregnant gilts at

time 1, and are recorded instead as barren sows. This occurs because an average

of 1/17 th of the pigs recorded as unserved gilts at t-1 will conceive in the week

immediately following the census at t-i and will, therefore, farrow in the week

immediately preceding the census at time t

As sow cullings and losses are not directly observed, it is more appropriate to re-

define the problem in terms of the total breeding herd, that is, the 'breeding sows'

plus 'boars for service'. The consequences for the sow herd can then be derived

utilising the relationship between the boar herd and the sow herd as expressed in

equations 4.3.5 and 4.3.6.
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Bt= aHt
and therefore,

(4.3.5)

(4.3.6)

The identity in equation 4.3.7 is an expression for the total breeding herd
equivalent to that for the sow herd given in 4.3.3, where M is the observed
'culling of sows and boars', I, the actual inflow of sows and boars, and L, the
losses of sows and boars from the breeding herd.

(4.3.7)

The problem now presented is that 'losses' and total inflow of gilts and boars are

unobserved and as a consequence, the inflow figure - estimated by It-I,t using
expression 4.3.8, which is itself obtained by rearranging 4.3.7 - captures the
unobserved losses and the unobserved inflow of boars.

(4.3.8)

Because of the variability of the estimated inflow series, and because of the fact
that it is the aggregate of three unobserved components, inflow will be proxied by
a transformation of the pregnant gilt series, based on the relationship described in
equation 4.3.4. If it is assumed that the length of breeding herd life of sows and

boars is the same, referring to 4.3.5, the unobserved inflow of boars can be

estimated by adO t- The consequence of this is that the inflow of sows and boars
can be estimated by the expression given in equation 4.3.9, and can then be
substituted into 4.3.7 in order to derive the breeding herd at time t.

It-l,t = 17/16 ( 1+ ex) POt (4.3.9)

Having defined the primary variables, and having distinguished between the
observed and the unobserved variables, a recursive forecasting model for the

breeding herd can now be built by consideration of the biological relationships
for the inflow and outflow variables. Under the steady state equilibrium -SSE -

assumption, the outflow variable at time t can be regarded as a constant

proportion, e, of the breeding herd at time t-1.

Mt-1,t = eHBt-1 (4.3.10)

From this it can be shown than-

e= IlL (4.3.11)

where L is the average lifetime of sows and boars in the breeding herd under the
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SSE assumption.
On the inflow side of the equation, the estimated inflow is expressed as a function
of the herd size lagged 12 months - three periods. The reason for this lag is that

unserved gilts are approximately 8 months old by the time they are first served.
Added to the four months spent in pig, a lag of one year can be expected from the

time of a sow being in pig to the time that one of her offspring will themselves
become in-pig gilts.

It-I,t= ~ HBt-3 (4.3.12)

Under SSE conditions, <I> is assumed to be equal to e, otherwise the herd size will
either increase or decrease consistently over time.

Using 4.3.10 and 4.3.12, forecasts of the breeding herd for any required lead time
can be made. For example, a one step ahead forecast for the total breeding herd,
HBt-1 *, is obtained by employing expression 4.3.13.

*HB t-: =(1- e) HBt+ <l>HBt-2 (4.3.13)

Alternatively, a one year - three period - ahead forecast can be generated using
expression 4.3.14.

(4.3.14)

Having shown how a recursive forecasting model can be built based on the steady
state equilibrium framework, biologically based relationships will be estimated
introducing phenomena such as seasonality in order to build trimestic and
monthly forecasting models of the breeding herd, cullings and fat pig

slaughterings. The models will also make a correction for autocorrelation in the
residuals.

4.4 The Methodology of Estimation for the Trimestic Models
The biological models developed in this chapter are built in order to forecast the
trimestic breeding herd and the monthly culling and fat pig slaughter categories,

and to explain some of the biological relationships within the breeding herd
system. In terms of the recursive breeding herd forecasting model, explained

within a steady state equilibrium framework, in the previous section, the prime
relationships to model will be those between the inflow and its proxy variable,

pregnant gilts, and between culling and the breeding herd lagged 1 period and
pregnant gilts and the breeding herd lagged 3 periods. Having said this, other
models will be built for these variables for comparison and interest purposes. For
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the two monthly slaughter categories, models based upon trimestic models for the
same variables will be developed.

The models are concerned with the breeding sow herd, (H), and its components,
the boar herd, (B), unserved gilts between 50kg and 80kg, (VG), culled sows and
boars, (M), and fat pig slaughter, (FP). The models for which the dependent
parameter is a livepig category are trimestic models based on the data collected
from the sample censuses in April, August and December. The data for the two
slaughter categories are monthly data and, therefore, aggregation to four-monthly

periods is required for use in the trimestic models. The slaughter data are based

on the weekly estimates of slaughterings by M.A.F.F., and are collected in such a

way that weekly periods are aggregated to arrive at the published monthly
figures. The weekly estimates are aggregated in such a way that the data for

January, April, July and October represent five, rather than four week periods of
accounting. Furthermore, there is the additional problem that in certain '53 week'

years December is also counted as a five week period. For the sample period
1975: 1 to 1985: 12, on which the models are built, the latter is true for the
Decembers of 1976 and 1981. All the data used in the estimation of the trimestic
models are presented in Appendix 4a.
The trimestic flow periods are defined so that 'period l' comprises December to
March inclusive, 'period 2', April to July inclusive and 'period 3', August to

November inclusive. Because of the four and five week accounting months ,
period 2 is always a 17 week period, period 3 an 18 week period and period 1
will be either a 17 or an 18 week period; depending on whether or not the
accounting year is 52 or 53 weeks long respectively. In order that all three
periods represent 17.33 weeks - the average length of time between each of the
April, August and December census dates - the trimestic totals for the culling and

the fat pig slaughter series are adjusted by multiplying by 52/51 and 52/54 for 17
and 18 week periods respectively.
Although the models presented in this chapter are called biological, the models
estimated are more sophisticated than the term biological might infer. Because
the models are built primarily in a forecasting context, the decision was made to
include in the regressions all non-economic factors which might affect the simple

biological relationships. Thus, factors such as seasonality and time trends are

modelled, as are 'shocks' to the system, such as the influence of the Aujezky

disease eradication campaign of 1983, and the possibility of outliers at the
beginning of the estimation sample period. The latter are a possible 'carry-over'

effect of the UK's accession to the EEC and the influence of commodity price
increases in 1974 upon the agricultural sector.
The models are estimated initially using OLS methodology, modelling
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seasonality, Aujezky and early outliers using intervention dummy variables.f
The presence of a time trend is modelled using a simple linear time trend
variable, T, which enters the model as a multiplicative term given that the models
are proportional and do not contain an intercept. Consequently, the model

parameters are estimated using non-linear least squares methodology - LSQ.
Where the Durbin-Watson statistic indicates the presence of residual

autocorrelation, the residuals are put through the Box-Jenkins identification

procedure to analyse the nature of the autocorrelation.f Where first order

autocorrelation is indicated, the Beech-Mackinnon Maximum likelihood
estimation procedure for first-order autocorrelation correction is employed to
estimate the model. 6 Where the initial model has been estimated using LSQ
methodology, the first order autocorrelation problem is corrected by the use of a

first order rho-transformation of the model, again estimating using LSQ. Where
the autocorrelation problem is of an order greater than one, the correction is made

using the appropriate rho-transformation, estimating using LSQ methodology. In
the case of regressions including the dependent variable lagged one period, the
DW statistic is replaced by Durbin's h-statistic, a large sample statistic
asymptotically distributed as a NCO,I) random variable under the null hypothesis

that the autocorrelation coefficient, p, equals zero.? Although the critical values
of the DW and h-statistics are calculated on the assumption that the models are

estimated using OLS they are nevertheless used as an indicator of the absence, or
otherwise, of first order residual autocorrelation.

Although it has been said that economic variables were not to be included in the
models, a common feature of many of the relationships modelled is that they are
affected by a government pigmeat subsidy of 5.5p per kg deadweight, available
from Jan 31 to June 11 of 1977. In addition, the residual plots of a few models
indicated the presence of other outlier observations for which no explanation
could be found. Being a biological model, it was deemed inappropriate to present
the results of regressions including such subsidy and outlier dummies in the main
text. But because the exclusion of these effects often has a significant effect on
the magnitude, and even the signs of seasonal and time trend parameters, the

4 Notation for the dummy variables used in the semestic models is by the letter 0 - or A
in the case of the Aujezky dummies - followed by the value for the time period in
which the dummy is used. Thus, for example, a dummy representing the first period in
1975 is labeled 075:1.
The OW statistics throughout this chapter are compared with Farebrother's tables of
significance levels presented in his paper; "The Durbin-Watson Test for Serial
Correlation When There is No Intercept in The Regression", Econometrica Vol. 48
No.6 Sept 1980 pp. 1553ff
Beech, Charles M and James G. Mackinnon, " A Maximum Likelihood Procedure for
Regression Containing Autocorrelated Errors", Econometrica 46, 1978, pp.32-61.
For reference to the Durbin H-test see Pindyck & Rubinfeld pp. 194-5

5

6

7.
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decision was taken to allow for these factors in some way. In order to do this, all
the models were initially estimated including dummies to represent the subsidy
and outlier effects, thus enabling an unbiased analysis of whether or not the

:

seasonal and time trend variables should be included in the models. The decision
as to whether or not variables should be included in the final model is made using

the t-statistics of the estimated parameters concerned or, where the analysis of t-
statistics did not produce a clear picture, the analysis of variance F-test is

employed.
The resultant trirnestic models, including the subsidy and outlier dummies are

presented in Appendix 4c8. The estimated regressions having excluded these
dummies are then presented in the text as the chosen 'biological' model for each

particular relationship. Section 4.5 gives a comprehensive discussion of how
models for each of the individual relationships were built.

4.5 The Trimestic Models Estimated
The following sub-sections discuss the modelling of the various components of
the breeding herd necessary to achieve an overall forecasting model for the
breeding herd itself. The section is concluded with a model for the slaughter of
fat pigs.

4.5a The Boar Herd and the Breeding Sow Herd

Model 4.5a is concerned with the relationship between the number of boars for
service, (B), and the breeding sow herd, (H), at time t as expressed in equation
4.5a.l in which et is a white noise error term.

(4.5al)

The use of this model was discussed in section 4.3. The initial OLS regression
model indicates that the boar herd is the equivalent of 5.15% of the breeding sow
herd. The residuals of the regression indicate a clear positive time trend which
shows no signs of having ended, suggesting that the number of boars in the
breeding herd as a percentage of the number of sows is increasing over time. The

latter phenomenon is a possible consequence of the increased productivity of
sows over the given period. In order to model this, a simple linear time trend

variable was added to the model structure and the regression estimated using
non-linear least squares, LSQ. methodology. To model potential seasonal effects,

two seasonal intercept dummies were included representing the August and
December censuses. The residuals from having estimated the latter regression

8 The equations presented in the appendices have the same number as the equivalent
equation presented in the main text except that the number is suffixed with the letter c
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suggested two sets of excluded variables. The first two residuals appeared to be
somewhat out of line with the rest, hence, the decision was taken to include two

intercept dummies for the observations for 1975:1 and 1975:2. This was done in
order to remove any potential effect of their exclusion from the estimation

procedure on the estimates of the seasonal dummy parameters, and is justified on
the grounds that the sector may not have fully recovered from the effects of an

unstable world market in 1974 and the UK's accession to the EEC. The second

set of missing variables are dummy variables to model the effects of the Aujezky

disease eradication campaign of 1983 which decreased the proportion of sows to
boars. The results of estimating the regression having modelled all apparent
effects on the boar-sow relationship are presented in equation 4.5a.2 below.

Bt = (0.0485 Ht - 0.0002 AugHt - 0.0009 DecHt)( 1+ 0.0036 T) - 2.77 D75:1 + 1.94 D75:2 -
(117.2) (-0.68) (-2.81) (9.49) (-3.8) (2.69)

0.27 A83:2 +1.45 A83:3 + 0.56 A84:1
(-0.38) (2.07) (0.80)

(4.5a.2)

Obs = 33; RSS = 10.4;
A2
R =0.87; DW=2.14

The results imply that the size of the boar herd is of the order of 5% of the

breeding sow herd, although there is a relatively large fall in the proportion of

boars in relation to breeding sows at the time of the December census. The time

trend parameter and the two outlier dummies for the first two observations are all

highly significant. Of the Aujezky dummies, only the second is significant and

indicates that the sow herd was reduced by a larger relative percentage than was

the boar herd by the eradication campaign of 1983.

The adjusted R-squared value indicates that 87% of variation in the size of the

boar herd is explained by the regression. The Durbin-Watson statistic takes a

value of2.14 which confirms that the residuals are consistent with white noise.

4.sb Inflow

Model 4.5b relates the derived inflow figure for the four months preceding the

census dates, to the number of pregnant gilts at time t, The rationale for looking

at this relationship is that pregnant gilts are often used as a proxy for inflow in

biological and econometric models of the pig breeding herd. In section 4.3 it was

noted that the derived inflow figure not only included the inflow of pregnant gilts

but also the inflow of boars for service and a negative element for losses from

disease of sows and boars not recorded as cullings. The inflow estimate, ( i ),
t -1, t
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is derived using equation 4.5b.l,

(4.5b.l)

where Mt-I,t is the adjusted culling of sows and boars figure for the period t-i to
t, so that if t represents April, Mt-I,t is an estimate of cullings for the period
between the December and the April census dates.
Initial OLS regression of inflow on pregnant gilts including none of the dummy
variables produced a residual plot with highly variable residuals pre-1978. In an
attempt to ease the modelling process, the decision was taken to model this
relationship on the post 1977 period initially, later applying the resulting model
structure to the normal 1975-85 estimation period. The result of estimation post
1977 including seasonal dummies produces residuals which gave no indication of
excluded variables. The possibility of seasonality was entertained because of the
implicit inclusion of losses and boar inflow in the estimated inflow variable.
Although neither of the estimated seasonal dummy parameters were significant,
because they were of opposite signs - August negative and December positive -
an F-test was performed to test their overall significance.
The analysis of variance F-test is a standard procedure for testing the overall
explanatory power of one or more regression variables. Using the case in
question as an example, the null hypothesis states that the regression excluding
the seasonal dummies is the best for explaining the given relationship. The
alternative states that the regression including the seasonal dummies has the
greater explanatory power. The explanatory power of the two regressions is
measured by the ratio of their unexplained variances, or to be more precise, their
sums of squares of residuals having taken account of the differing degrees of
freedom of the two regressions. Thus, the F-ratio measures whether or not the
RSS of the regression including the seasonal dummies is significantly lower than
that of the regression excluding the said dummies. If the resultant F-statistic is
significant when compared with the F-statistic tables for vI, n-v 1- k degrees of
freedom, where n is the number of observations, k is the number of estimated
parameters in the initial regression and VI is the difference in the number of
estimated parameters in the two regressions in question, then the null hypothesis
can be rejected and the additional variables remain in the regression model on the
basis that they have significant statistical explanatory power.?
The results of the F-test for model 4.5b produced an F-statistic of 2.561, which
compared with the F-tables for 2,21 degrees of freedom is not significant even at
the 10% level. Consequently, the null hypothesis of no seasonality in the

9 For a more comprehensive discussion of the F-'~st the reader is refered to Gujarati, D.,
Basic Econometrics, (1978) p 87. & p. 130.
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relationship could not be rejected and the seasonal dummies were removed from
the estimation procedure. The results of the chosen model estimated on the post
1977 period are presented in equation 4.5b.2.

i,_I.' = 1.0957 PGt
(58.7)

Obs = 24 RSS = 2199.2 R2 = 0.35 DW = 2.695

(4.5b.2)

The estimated parameter suggests that estimated inflow can be approximated by
the equivalent of approximately 110%of the pregnant gilt herd. Having said this
only 35% of the relationship is explained by the regression. Re-estimating on the
whole sample period produces the model given in equation 4.5b.3.

i,_I.' = 1.0863 PGt
(44.0)

Obs=33 RSS=7549.0 R_2 =.0581 DW=2.22

(4.5b.3)

The estimated parameter is slightly lower than that for the regression excluding
the period prior to 1978 and the explanatory power of the model has fallen to a
mere 6%, the greater variability of the relationship pre-1978 being very evident in
the residual plot.
Using the results from model 4.5a which indicates that the boar herd is
approximately 5% of the size of the breeding sow herd, equation 4.3.9 implies
that a proxy for actual inflow of sows and boars, ( It-l,t), is 1.116POt, that is,
17/16 multiplied by 1.05 POt. When compared with this expected coefficient of
1.116 the results of models 4.5b.2 and 4.5b.3 appear to support the idea of using
the pregnant gilt figure as a proxy for inflow, the deficit in the estimated
parameters being explained by the inclusion of losses in the inflow estimate. The
estimated parameter from equation 4.5b.2, the better fitting of the two models,
suggests that losses in the breeding sow herd from t-t to t can be accounted for
by a figure approximating 2% of the pregnant gilt herd at time t.

4.Sc The Breeding Sow Component Proportions
Like the models already presented in this chapter, the three models presented
under model 4.5c are proportional in that they do not contain an intercept term
and are static in that they do not concern a lagged independent variable. The
models are concerned with the breeding sow herd and how it breaks down into its
three component parts; pregnant sows, pregnant gilts and barren sows for
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breeding, that is:-

PSt= fa (Hi>
BSt= fb (Hi>
PGt= fc (Hi>

(4.5c.l)
(4.5c.2)
(4.5c.3)

The relationships are estimated for descriptive purposes and to provide estimates
of the future composition of the breeding herd. For example, having forecast the
future breeding sow herd, the estimated models for the three expressions above

could be utilised to provide an estimate of the composition of the sow herd of that
same period. Were any of these components themselves independent variables in

other models, these forecasts could then be used to forecasts other variables in the

system.
Taking each component in turn, the first to be modelled is the pregnant sow
percentage. The result of OLS estimation of the model containing only the
seasonal dummies produced a residual plot which implied a positive time trend
was missing from the model, although the plot also suggests that the trend has
slowed, if not ended, from about 1983 onwards. To allow for the time trend,
which is almost certainly a result of the shortening of weaning length over the
sample period, the simple linear time trend variable was added to the regression
which was then estimated using non-linear least squares - LSQ - regression. The

residuals of the latter included a residual at observation 1976:1 which was more
than three standard errors below the fitted line. The results of model estimation

having included a dummy to remove the effects of this unexplained outlier on the
seasonal dummy parameters is presented in appendix 4c. It was clear from re-
estimation that there was no Aujezky effect and no 1977 subsidy influence on the
relationship. The seasonal dummy parameters have associated t-ratios which are

highly significant for December and high, though not quite significant at the 5%

level, for August. The regression has an R_2 value of 0.92 and a Durbin-Watson
of 1.46. Although this DW is not significant at the 5% level when compared with
the Farebrother tables, the residuals were put through the Box-Jenkins
identification procedure. The result of the latter exercise was to produce

correlograms with no obvious pattern to them, and no autocorrelations or partials
much greater than one standard error away from zero.

The estimated equation and the diagnostics of the regression having excluded the
dummy for the possible outlier are presented in equation 4.5c.4.

PSt = (0.5666 Ht +0.0090 AugHt + 0.0191 DecHt)(1+ 0.0039T)
(131.9) (2.13) (4.54) (11.0)

Obs. = 33 RSS = 2193.5 R_2 = 0.88 DW = 1.39

(4.5c.4)
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The results show that all but the August dummy are significant at the 1% level.
The removal of the outlier dummy has resulted in the August dummy parameter
being significant at about the 5% level. Both seasonal dummies indicate an
increase in the proportion of pregnant sows in August and December compared
with the proportion in April. The linear time trend variable is positive and highly
significant, illustrating the fact that the pregnant sow proportion of the breeding
sow herd has increased over the given period, as a result of the shortening of the

weaning period. The R2 figure indicates that 88% of the variation in the
proportion is explained by equation 4.5c.4, and compares with a value of 92% for
the regression including the outlier - presented in Appendix 4c.
The second of the breeding sow proportion models is that relating the percentage
of barren sows for breeding to the breeding sow herd. As one would expect, the
results are in many ways the opposite of the those obtained for the pregnant sow
proportion. The residual plots of the initial OLS model illustrated the presence of
a negative time trend which appears to have stopped around 1982, and there is
evidence that the first observation in the sample period is rather large compared
with the rest of the sample. As with the previous model, there is no evidence of
any Aujezky or subsidy effect. To model each of the possible influences, the time
trend along with the seasonal and the 1975:1 dummy are included in the initial
non-linear least squares regression. The results of LSQ estimation are presented
in equation 4.5c.5 below.

BSt = (0.2970 Ht - 0.0102 AugHt - 0.0167 DecHt)(l- 0.0068 T) + 20.34 D75:1
(90.2) (-3.1) (-5.0) (-17.1) (3.3)

(4.5c.5)

Obs. = 33 RSS = 875.7 R2 = 0.93 DW = 1.62

It is clear that as the proportion of pregnant sows to breeding sows increases
throughout the year, the proportion of barren sows for breeding moves in the
opposite direction. The overall time trend is also in the opposite direction to that
of the pregnant sow proportion, also caused by the shortening of the weaning
period. The DW statistic lies in the region of uncertainty at both the 1% and 5%
levels of significance. Putting the residuals through the Box-Jenkins
identification procedure produced no significant autocorrelations or partial
autocorrelations.
The final proportional relationship to be estimated is the pregnant gilt to breeding
sow proportion. A priori, one expects the results for this model to be the
complement of the previous two models. OLS estimation of the regression
including the seasonal dummies produced residuals and a DW statistic which
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clearly indicated the presence of first order serial correlation. This was confirmed
having put the residuals through the Box-Jenkins identification procedure.
Because there was no time trend in the residuals, the regression could be
estimated using a Beech-Mackinnon ARI procedure. The initial estimation
including the two seasonal dummies indicated that the proportion of the sow herd
comprising pregnant gilts decreases significantly in December. The residuals
indicated that observation 1975:1 was a possible outlier and so the appropriate
intervention dummy was included in the regression along with three subsidy
dummies and Aujezky dummy A83:2. The parameters on the subsidy dummies
illustrate a significant fall in the proportion of pregnant gilts in 1977:2. This can
be explained by the fact that many of the potential gilts for that period had been
hived off into the feeding herd for slaughter at the time of the subsidy. It is
interesting to note that the fall in gilt numbers as a result of the 1977 subsidy and
the Aujezky disease eradication campaign are rectified by the next census, hence
the lack of need for Aujezky dummies A83:3 and A84:1 and hence the
insignificance of the dummy parameter for 1977:3 presented in Appendix 4c.
These results illustrate that the size of the gilt herd can be changed by production
decisions faster than the other breeding sow herd components for the reason that
it is not constrained by the same biological lags. The parameter on the 1975:1
dummy is significant and negative and the December parameter's significance is
increased by the inclusion of these other dummies. The regression presented in
equation 4.5c.6 is the result of re-estimating the latter equation having dropped
the subsidy dummies.

PGt = 0.1329 Ht +0.00003 AUGHt - 0.0059 DECHt - 13.26D75:1 - 6.82 A83:2+ Ut
(38.0) (0.01) (-2.53) (-2.05) (-1.23)

Ut = 0.6053 Ut-l
(4.21)

(4.5c.6)

Obs. = 33 RSS = 1065.2 R_2 = 0.98

The removal of the subsidy dummies has had the effect of changing the August
dummy parameter from positive to negative. A possible explanation for the fall in
the pregnant gilt percentage at the December census is the fact that more young
pigs than normal are diverted into the feeding herd as opposed to the breeding
herd prior to the Christmas period, thus depriving the December census of its
quota of in-pig gilts. The DW statistic of 1.62 is not presented because the
regression has been estimated using Beech-Mackinnon: however, there is no sign
of any autoregressive problem in the plot of residuals, nor with the statistic itself.
The exclusion of the three subsidy dummies in the above regression increases the
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value of the RSS statistic from 797.0 and the significance of the Aujezky dummy
variable is much reduced.

It should be said that the three models presented in this section were all derived
:

independently of one another which explains why, for example, the pregnant sow
model considered a dummy for an outlier for the 1976:1 observation, a dummy
not required by the other two models. Because the three models are proportional,
one would expect an extreme movement in one direction in one of the

components to be compensated by movements in the opposite direction in one or
both of the other components. Obviously in the case of 1976: 1, the compensating

movements in the pregnant gilt and barren sow components were not large
enough individually for them to appear as outliers in their respective residual

plots. Were these three models important in the context of a breeding herd
forecasting model it could be argued that it would be necessary to model the three
components in a constrained manner, thereby producing an identical structure for
each of the three models

A summary of the estimated proportions for three components of the breeding
herd is presented in Table 4.3 below, using the estimated proportions for the end

of the estimation period, at which point the time trends in the pregnant sow and
pregnant pig models appear to have finished. The estimates of the proportions for
pregnant sows and pregnant gilts have been obtained using the regressions which
appear in appendix 4c: these regressions include outlier and subsidy dummies

respectively, thereby removing these effects from the estimated seasonal
parameters.

Table 4.3.
Seasonal Proportions for Each Component of the Breedin~ Sow Herd

HERD
PS
BS
PG
TOTAL

APRIL
0.6376
0.2343
0.1331
1.0050

AUGUST
0.6383
0.2197
0.1347
0.9927

DECEMBER
0.6564
0.2139
0.1270
0.9973

4.5d Culling and the Total Breeding Herd

Model4.5d is concerned with the relationship between culled sows and boars and

the total breeding herd at the previous census. Thus, for example, the cullings

from April to July inclusive, are modelled as being dependent upon the size of the
total breeding herd in April. This is the model which is included as the
representative model for inflow in the recursive forecasting model for the
trimestic breeding herd developed in section 4.3 and given in equation 4.3.10.
Assuming a weaning period of four weeks, few, if any, of the sows recorded as
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being pregnant in the census - taken at the beginning of April - will be culled in
April itself. Consequently, a model was estimated relating the cullings in the
relevant four months to the size of the breeding herd lagged both one and two

periods. However, spurious parameters resulted, presumably the result of
multicollinearity, and therefore the less satisfactory model based solely on the
one period lag had to suffice.
An initial OLS regression including the seasonal, Aujezky and subsidy dummies

produced significant parameters on the Aujezky and subsidy dummies, both of

which indicated increases in cullings. The August dummy indicated a significant

decrease in culling percentage with respect to period one. The residuals gave no
indication of a time trend in the relationship. The outstanding problem with the
regression is that the DW statistic of 1.26 although not significant at the 5% level,
was thought low enough to justify an investigation of the residuals using the

Box-Jenkins identification procedure. The latter process produced a correlogram
in which there was evidence of first order autocorrelation.
To deal with this problem the relationship was re-estimated using the Beech-
Mackinnon first order autocorrelation methodology. Estimation including all the
usual dummies produced a regression in which the August seasonal dummy
shows a significant drop in culling proportions and all six of the Aujezky and

subsidy dummies indicate significant increases in culling. The RSS is 876.8 and
there are no obvious problems with the residual plots. The regression results
presented in equation 4.5d.l are those from having estimated the latter equation
after having dropped the subsidy dummies, the fuller model appearing in

Appendix 4c. The exclusion of the subsidy dummies has substantially increased
the value of the RSS statistic. The results indicate that approximately 13% of the
breeding herd is culled between each census and - using expressions 4.3.9 and
4.3.10 - implies that the average life of a member of the breeding herd is
approximately 2 years and 6 months.

Mt-l,t = 0.1327 HBt-l - 0.0069 AugHBt-l + 0.0006 DecHBt-l
(33.S) (-2.55) (0.24)

+ 39.07 AS3:2 + 24.55 A83:3 + 13.0SAS4:1+Ut
(5.43) (3.07) (1.S3)

Ut = 0.62 Ut-l
(4.22)

Obs. = 32 RSS = 1285.0 R2 = 0.98

(4.5d.l)

4.Se Culling and the Pregnant Sow Herd

Mode14.5e is similar to 4.5d except that culling is now estimated as a proportion
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of the number of pregnant sows at time t-I. The reason for investigating this
relationship is that one would expect very few pregnant gilts to be slaughtered
having farrowed once only, and by definition neither will barren sows for
breeding be slaughtered, leaving pregnant sows and boars as the only plausible
source of cullings in the next period. Although models including the boar herd as
a second independent regressor lagged one period were estimated, the coefficient
on boars was anomalous. Aggregating the pregnant sow and the boar herd and
using the lagged variable as the independent regressor also proved fruitless in that
the model did not perform as well as the model presented below in terms of RSS
and adjusted R-squares and hence the chosen model does not contain the boar
variable.
The regression was estimated using the Beech-Mackinnon procedure which
produced the same structure of model as that in model 4.5d. Again, the three
subsidy dummies indicated large increases in cullings in 1977, and the three
Aujezky dummies showed a similar effect for 1983/4. The difference between
this and the previous model is that the seasonal dummies were no longer
significant. Because the parameters on the seasonal dummies were of the
opposite signs, an F-test was performed before the decision was taken to remove
them. The resulting F-value of 2.42 was not significant even at the 10% level and
so the regression was re-estimated having removed the seasonal dummies. The
resulting model and the diagnostic checks are given in appendix 4c, the
regression having removed the three subsidy dummies being presented in
equation 4.5e.1.

Mt-l,t = 0.2240 PSt-l + 35.24 A83:2 + 25.42 A83:3 + 14.00 A84:1 +Ut
(31.7) (4.64) (2.98) (1.85)

Ut = 0.6373 Ut-l
(4.59)

(4.5e.l)

Obs. = 32 RSS = 1656.5 R._2 = 0.972

As expected, the removal of the subsidy dummies has increased the RSS of the
estimated regression and decreased the adjusted R-square value. The H-statistic
of -0.098 implies almost no autocorrelation in the residuals; a very different
picture from that presented by the H-statistic for the model including the four
subsidy dummy variables. The latter phenomenon illustrates the volatility of the
test statistics over the given period for a model containing a small number of
degrees of freedom.
Comparing the sums of squares of residuals and the adjusted R-square values of
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models 4.5d and 4.5e, it would appear that the model using the total breeding
herd as the independent regressor is the superior model. This is true for the
models both including and excluding the 1977 subsidy dummies, and so model
4.5d appears to be the better culling model of the two.

4.5f Outflow as a Function of Inflow
Using the results from model4.5d which imply that the breeding sows remain in
the breeding herd for approximately two and a half years, cullings in time period
t-l to t should have derived from inflow lagged 7 and 8 periods. Under steady
state assumptions, and with no deaths of sows and boars once they have entered
the breeding herd, one would expect the coefficients on the Inflow variables to
sum to unity. Using pregnant gilts as the proxy for inflow and assuming that boar
inflow is equivalent to 5% of sow inflow, it is expected that the coefficients on
the lagged pregnant gilt variables should sum to 1.116. Model 4.5f attempts to
estimate this relationship between outflow and lagged inflow.
Initial OLS regression including two seasonal dummy variables produced
residual plots and a DW statistic which clearly indicated serial correlation.
Putting the residuals through the Box-Jenkins identification procedure produced
an autocorrelation correlogram with an obvious cyclical pattern and a partial
autocorrelation correlogram in which the first two partials were significantly
different from zero implying an AR(2) process. In order to allow for this, LSQ
was used to make a second order autocorrelation correction. The residuals of the
initial regression also indicated the need for the first two of the Aujezky
dummies. The residuals at observations 1979:2-1980:2 inclusive also appeared to
be out of line with the remainder of the residuals. With a subsidy effect on inflow
at observations 1977:1-77:3, one would expect, with a lag of 7 and 8 periods that
the effect would show through on cullings in 1979:2-80:3 and, therefore, four
subsidy dummies representing the four potential outliers were also included in the
model.
Estimation of the regression produces highly significant parameters on the
autoregressive and pregnant gilt variables, and the August dummy has a
significant negative parameter. The roots of the AR polynomial suggest a cycle in
the model with a measured length of approximately 3 years and 10 months. The
first Aujezky dummy parameter is highly significant and positive followed by a
significant and negative parameter on the second Aujezky dummy implying a
greater proportion of culling at the time of the campaign, followed by a lull
presumably caused by the reduced availability of potential sow and boar culls.
The first of the subsidy dummies has a highly significant positive parameter,
whereas the parameters on the third and fourth subsidy dummies show a drop in
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cullings, though not a significant one. With inflow low in 1977:1 and high in

1977:3, the estimated coefficients on the four subsidy dummies are those that one
would expect. The coefficients on the pregnant pig variables sum to 1.110 with a

slightly higher weighting on the longer of the two lags, the difference between
this and the expected value of 1.116 being explained by losses from the breeding

herd. The only potential problem with the model is the H-statistic of -3.16, which
is highly significant. Given that there are only 11 degrees of freedom in the

model, nothing was done to rectify the situation; a decision somewhat justified by
the fact that the Hsstatistic for the model having excluded the four subsidy
dummies falls to a value of -0.098. The resulting model and diagnostic check
statistics are given in Appendix 4c and the re-estimated regression, having

dropped the four subsidy dummies is presented in equation 4.5f.1.

Mt-l,t = 1.1738 ~-2,t-l - 0.6093 ~-3,t-2 + REGt(0.5306, 0.5512, -0.0481, -0.(097) -
(7.5) (-5.0) (3.88) (4.33) (-2.47) (-0.52)

1.1738 REGt_1(0.5306, 0.5512, -0.0481, -0.0097) -
0.6093 REGt_2(0.5306,0.5512, -0.0481, -0.0097) +
43.68 A83:2 - 23.05 A2
(5.1) (-2.02)

(4.5f.l)

Where REGt(a1,a2,b1,b2) = (a1 PGt-7 + a2 PGt-8)(1 +b1 AUGt+ b2DECt),
and REGt_1(al,a2,bl,b2) = (al PGt-8 + a2 PGt-9)(1 +b1 AUGt_1+ b2DEG_1)'
and REGt_2(al ,a2,b1,b2) = (a1PGt-9 + a2 PGt-10)(1 + b1AUGt_2+b2DES_2),

Obs. = 23 RSS = 872.1
...2
R = 0.72 H = -0.098

The exclusion of the subsidy dummies has caused a significant increase in the
size of the RSS and slightly reduced the size of the coefficients on the pregnant

gilt variables. The roots of the AR polynomial now produce a shoner cycle length
of approximately 2 years and 11 months. The difference in length of the cycles
produced by the regressions including and excluding the subsidy dummies
illustrates the volatility of the parameter estimates over the short sample period
on which the model is estimated. The removal of the subsidy dummies has still

produced similar parameters on the two lagged pregnant gilt variables which one

would expect with an average life of 30 months in the breeding herd indicated by

the results from model 4.5d.
Comparing the mean square errors - MSE - of models 4.5d and 4.5f, that is, 40.16
and 37.91 respectively, it would appear that the latter model provides the better

fit to the cull data over the estimation period. However, as was seen in model
4.5b, due to effects such as the 1977 subsidy and world market effects at the start
of the estimation sample period, the data are noticeably more volatile in the first
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half of the sample period. Because model 4.5f includes much longer lags on the
right hand side, it was estimated over the shorter more stable period than model

4.5d, which contains only a one period lag. Consequently, it was deemed
necessary to re-calculate the residual sums of squares for model 4.5d using the
same estimation period as that for model4.5f, in order to make a fair comparison.
Doing the latter produces a RSS of 652.1 for the latest 23 observations, which
compares with a figure of 872.1 for model 4.Sf and converts to a MSE of 28.4.
Over a comparable estimation period, therefore, the estimated regressions suggest

that the best trimestic culling model is that containing the total breeding herd

lagged one period as the independent variable.

4.5g Pregnant Gilts and the Total Breeding Herd
This equation attempts to model the pregnant gilt herd - the inflow proxy - as a
function of the total breeding herd lagged 12 months - three census periods and is

the inflow side of the recursive breeding herd forecasting model discussed in
section 4.3 and expressed in equation 4.3.12. The reasoning for this lag is that we
expect gilts entering the breeding herd to have come from pregnant pigs which
were in pig three periods earlier. Initial estimation including seasonal and

Aujezky dummies produced a residual plot with large residuals for the first two
observations and indicated a subsidy effect in 1977. The outlier and subsidy

effects were modelled by use of the appropriate dummy variables. OLS
estimation including the usual set of dummies implied no seasonal effect and so

the seasonal dummies were removed from the estimation procedure. The
resulting re-estimation was satisfactory as far as the t-statistics were concerned

but the DW of 1.07 was low enough to render it advisable to run the residuals
through the Box-Jenkins identification process. The resultant correlograms

clearly indicated first order serial correlation, thereby making estimation by
Beech- Mackinnon appropriate.
Once again, the seasonal dummy parameters were not significant at the 5% level
and were, therefore, dropped. The resulting re-estimation produced significant

negative parameters on the Aujezky dummies and on the second and third of the

subsidy dummies. The RSS value was 1028.4, the R2 value 0.99 and there was

no apparent problem with the plot of the residuals. This model was accepted as

the best and the results of estimation are reproduced in Appendix 4c; the results
of re-estimation without the subsidy dummies are presented in equation 4.5g.1.
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PG = 0.1222 HB 3 - 11.77A83:2 - 18.36A83:3 - 13.66A84:1 + 28.99 D76:1 + 23.82 D76:2 + Ut
t t-

(36.9) (-1.41) (-2.02) (-1.63) (3.1) (2.84)

Ut = 0.4625 Ut_1
(2.65)

(4.5g.1)

Obs. = 30 RSS = 1634.5 R_2 = 0.982

The removal of the subsidy dummies has had little effect on the estimates of the
included parameters though the value of the RSS had increased significantly.

4.5h Pregnant Gilts and the Pregnant Pig Herd
This model is similar to the previous model except that it considers pregnant gilts
as a proportion of the pregnant pig herd, rather than the total breeding herd,
lagged three periods. The process of estimation and the results of diagnostic
checking are virtually identical to those of the previous model and, therefore,
only the results of the estimation of the final regression, which has an identical
structure to that of the previous model, are discussed. The results of the
regression including the subsidy dummies are presented in Appendix 4c. There is
no obvious problem with the residuals plots of either estimation.

PG = 0.1728 pp 3- 12.47A83:2 - 20.45 A83:3- 14.78A84:1 + 37.53 D76: 1+ 27.04 D76:2 +Utt t-
(20.4) (-1.40) (-2.18) (-1.66) (4.0) (3.1)

Ut =0.3251 Ut-1
(1.71)

(4.5h.l)

Obs. = 30 RSS = 1828.3 R_2 = 0.987

As was the case with model 4.5g the removal of the subsidy dummies affects
only the RSS statistic although the increase is highly significant. Once again, it is
the model which includes the total breeding herd as the independent parameter
which is the better model if comparing the RSS statistics, and it is for this reason
that model 4.5g is preferred to modeI4.5h.

4.Si Pregnant Gilts and the Unserved Gilt Herd

ModeI4.5i. relates pregnant gilts to the number of unserved gilts in the previous
time period. Initial OLS estimation excluding all dummies indicated the presence

of a positive time trend in the relationship and the first three residuals were
positive and somewhat larger than the other residuals. The positive time trend
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could be explained by the fact that management techniques had improved over
the given time period, thereby increasing the proponion of unserved gilts
conceiving.To allow for these factors and to model the possibility of seasonality
and an Aujezky effect LSQ was employed for estimation. The results of
estimation indicated no Aujezky effect and so the three Aujezky dummies were
removed from the estimation procedure. Re-estimation minus the Aujezky
dummies produced a satisfactory model. The results as given in Appendix 4c
imply that a figure the equivalent of 112.6% of pigs recorded as unserved gilts
are recorded as pregnant gilts at the next census. The reason for this is that
unserved gilts are only recorded as such between the weights of 50kg and 80kg.
The unserved gilts will be a weight within this range for a period substantially
less than four months and hence the figure greater than 100%. The estimated
percentage would of course be slightly higher were the gestation period not one
week short of the interval between censuses. The positive time trend is significant
and the subsidy dummies illustrate that the number of pregnant gilts fell
significantly in the August of 1977, presumably because of unserved gilts being
divened into the feeding herd at the time of the subsidy. In the December of
1977, however, the pregnant gilt herd was significantly increased, presumably
because producers were attempting to replenish the breeding herd stock. All three
of the dummies representing the observations for 1975:2 to 1976:1 have
significantly positive parameters. There is nothing obviously wrong with the
residual plots and the DW of 2.60 is not significant at either the 5% or 1% levels.
The adjusted R-squared value is 0.75 and the RSS value 529.4. Re-estimating the
regression minus the subsidy dummies produces the results presented in equation
4.5i.l

PGt = 1.1280UGt_l - 0.0342 AugUGt_l - 0.0589 DecUGt_l)(1+ 0.0045 T) +
(34.4) (-1.25) (-2.13) (3.23)
30.60 D75:2 + 19.53D75:3 + 16.40D76:1
(4.9) (3.05) (2.51)

Obs. = 32 RSS = 835.4 R_2 = 0.65 DW = 2.67

(4.5i.1)

The removal of the subsidy dummies has an influence on the seasonal dummy
parameter estimates and significantly worsens the values of the RSS and adjusted
R-squared statistics.

4.5j Unserved Gilts and the Total Breeding Herd
This model relates the number of unserved gilts to the breeding herd lagged two
periods. The OLS model with no intercept dummies produced a residual plot
which indicated the possibility of a negative time trend, a possibility because of
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the increased productivity of sows over time having the consequence that fewer
unserved gilts are required to produce the same number of piglets over time. A
linear time trend variable was included as were seasonal dummies, the first three
Aujezky dummies and four dummies to model the effects of the 1977 subsidy.
Having estimated the latter regression by LSQ, it was apparent from inspection of
the residuals and the DW statistic that there was a first order autocorrelation
problem. To model this, a first order rho-transformation of the model was
estimated using LSQ. The residuals of the latter regression indicated a couple of
outliers at observations 76:1 and 79:2. These were corrected for by the addition
of intervention dummies to remove their effects on the estimated parameters of
other variables. Although the time trend parameter was no longer significant, it
remains in the model as it was felt biologically justifiable. Because the seasonal
dummy parameters were not significant they were dropped from the regression
and the resulting model accepted as the best for this relationship. Appendix 3c
gives the results of estimating the full model.
The Aujezky dummies indicate that the eradication campaign significantly
reduced the number of unserved gilts at the time of the campaign. The effect of
the 1977 subsidy is similar to that of the Aujezky effect in that the number of
maiden gilts is significantly reduced at the time of the subsidy, almost certainly
due to the fact that potential gilts were diverted into the feeding herd, although
numbers increase significantly as a proportion of the breeding herd in the second
quarter of 1978, presumably a result of producers trying to replenish the depleted
breeding herd.
The diagnostics of the model give a RSS value of 316.91 and an adjusted R-
squared of 0.73, and the plot of the residuals show no sign of an autocorrelation
problem confirmed by an H-statistic of -0.94. The results of estimating the
regression minus the subsidy dummies and the outlier for 1979:2 is presented in
equation 4.5j.l below.

UGt = 0.3662 UGt_1 +REGt(0.1023, 0.0003) - 0.3662 REGt_1 (0.1023,0.0003) -
(2.23) (17.5) (0.11)

11.61 A83:2 - 15.42 A83:3 - 2.99 A84: 1+ 18.53 076: 1
(-1.56) (-2.00) (-0.37) (2.39)

(4.5j.l)

Where REGt(a;y) = a HBt_2(1 +yT),

and REGt_1(<X,y)= a HBt_3(1 +y (T-l})

Obs. = 30 RSS = 1161.2 R_2 = 0.24 H = 1.70

The removal of the subsidy and 1979:2 outlier dummies has a significant effect
on the results of the diagnostic statistics. The RSS statistic and the adjusted R-
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square values have both been adversely affected and the h-statistic of 1.70 is
significant at the 5% level. The estimated time trend parameter has actually
changed sign from negative to positive.

4.Sk Unserved Gilts and the Pregnant Pig Herd
This model is similar to the latter except that the independent variable is replaced
by pregnant pigs, they being the direct source of the unserved gilts two periods
later. The process of estimation followed that of the previous model, and the

structure of the final regressions are identical. The time trend is significantly

negative and the effects of the subsidy and the eradication campaign are almost
identical to what they were in the model using the total breeding herd as the
regressor. The results of estimation, both including and excluding the subsidy

dummies are presented in Appendix 3c and equation 4.5k.l respectively.

UOt = 0.3339 UOt_1+ REOt(0.1517.-0.0023) - 0.3339 REOt_1(0.1517, -0.0023) -
(1.97) (16.7) (-0.82)

12.40A83:2 - 15.19A83:3 - 3.58 A84:1 + 17.23D76:1
(-1.60) (-1.88) (-0.43) (2.09)
Where REOt(a.;y)= a. PPt-2(1 + yn.
and REOt_1(a.,y)=a.PPt_3(1 +y(T-l))

(4.5k.l)

Obs. = 30 RSS = 1264.7 R2 = 0.17 H = 1.84

As with the previous model, the h-staristic for the model having removed the

subsidy and the outlier dummies is significant at the 5% level, but the value of -
0.86 for h in the regression including the said dummies implies that there is no
serial correlation in the residuals. The RSS and the adjusted R-square statistics
are again much worse having removed the subsidy and outlier dummies. The time
trend variable is still negative in sign but is no longer significant at the 5% level.

Comparing the RSS and adjusted R-Square statistics of models 4.5j and 4.5k, it
would appear that model 4.5j provides a better fit to the data when the subsidy
and the outlier dummies are excluded; the situation is, however, the reverse when
the subsidy and 1979:2 outlier dummies are included. If a choice between the two

were to be made, it could be argued that 4.5j is the better of the two for three
main reasons. In no particular order these are; firstly for convenience, that is, it is

easier to forecast the total breeding herd - the independent variable in 4.5j - than
it is to forecast the pregnant pig herd, which first requires a forecast of the
breeding sow herd any way before 4.5c.4 and 4.5c.6 can be used to forecast the
two components of the pregnant pig herd. A second reason for using 4.5j is for
consistency. that is, all comparisons of the other biological relationships have
produced the result that the model including the total breeding herd as the
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independent regressor provides the better fit. A third and final reason for
choosing 4.5j in preference to 4.5k is that it is almost certainly the greater
significance of the time trend variable in model4.5k which has contributed to the
equality, if not superiority of fit of this model compared with that of 4.5j. Given

that the residuals of model 4.5cA and 4.5c.5 indicate that these time trends -
which were the consequence of producers reducing the weaning period during the
late seventies and early eighties - have ended, it suggests that using 4.5k, with its
significant time trend to forecasts the future unserved gilt herd may not be wise.

One these grounds then, 4.5k should be rejected in favour of 4.5j for modelling

the unserved gilt herd.

4.51 Fat pigs and the Total Breeding Herd
This model is concerned with the relationship between fat pigs and the total
breeding herd lagged 2 and 3 periods, the lags expected when the age of fat pig

slaughter is considered. Modelling using OLS methodology produces a residual
plot in which there is an obvious positive time trend, which one would expect if
sows and gilts become more productive over time. To model this, a non-linear
least squares regression was estimated incorporating 2 seasonal dummies and the
simple linear time trend variable T. The residual plot illustrated the possibility of
outliers for the first two observations in the estimation period, a subsidy effect

from 1977:2 -1978:1 inclusive, and the need for the Aujezky dummies A83:3 and
A84: 1. Dummies to represent these effects were subsequently added to the
regression and their parameters estimated.
The parameters on the two lagged breeding herd variables were both significant
at the 5% level and had a weight on the shorter of the two lags which was twice
the magnitude of that on the variable lagged three periods. The coefficients on the

seasonal dummies are highly significant indicating that slaughterings as a
percentage of the breeding herd decreases in August and increases in December.
As expected, the coefficient on the time trend variable is highly significant.
Although A83:3 and A84: 1 are not significant at the 5% level, the residuals of the

previous regression illustrated the obvious effect of the eradication campaign on
slaughtering numbers at the turn of 1983, and so the dummies were kept in the

regression. The coefficients on the dummies for the first two observations are

both large and negative. The coefficients on the subsidy dummies indicate that

slaughterings significantly decrease in the period from April to July inclusive,
after which they show signs of recovery in the following two periods. A possible
explanation for the decrease in the number of slaughterings in the second period
of 1977 is that slaughterings had been relatively high at the end of 1976 and the
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start of 1977, due primarily to a pessimism on the part of producers for expected
profits in 1977 and the introduction of the subsidy at the end of Ianuary 1977.
The former factor had encouraged producers to start reducing the size of their
breeding herds, hence the shortage of fat pigs towards the middle of 1977, while
the subsidy may have encouraged producers to slaughter slightly earlier than they
had planned anticipating that the subsidy would not last. Alternatively, and
possibly a more plausible explanation in the light of other models, is that the
subsidy may have encouraged producers to start increasing the size of the
depleted breeding herd in the second period of 1977, hence the increase in the
number of unserved gilts towards the end of 1977. The latter increase in unserved
gilts would have reduced the number of fat pigs available for slaughter in the
second period of 1977.
As there are no residual or OW problems with the regression, confirmed by the
use of Box-Ienkins identification, the latter regression was accepted as the best
for this relationship - the results of which are presented in Appendix 3c - and so
the re-estimated equation minus the subsidy dummies is presented in equation
4.51.1below.

FPt-1,t = (3.4702 HBt-2 + 1.5354HBt_3) (1 - 0.0371 AUG + 0.0235 DEC) (1 + 0.0062n -
(5.72) (2.52) (-4.96) (3.02) (13.7)

194.04 076:1 - 213.66076:2 + 66.89 A83:2 - 120.26 A83:3 - 174.13A84:1
(-2.42) (-2.60) (0.84) (-1.52) (-1.95)

(4.51.1)

Obs. = 30 RSS = 104779 R2 = 0.94 OW = 1.61

The overall effect of having removed the three subsidy dummies is to adversely

effect the RSS and the R2 statistic.

4.5m Fat pigs and the Pregnant Pig Herd
This model is identical to the previous one except that the breeding herd is
replaced by pregnant pigs as the independent regressor. The estimation procedure
followed that of the previous model and the coefficients of the included variables
were of similar magnitude and significance, although it is noticeable that the time
trend is smaller due to the fact that barren sows have accounted for an decreasing
percentage of the breeding sow herd over the given period as illustrated in model
4.5c. This effect is not present on the right hand side of the current model, hence
the smaller parameter on the time trend variable. The only potential problem with
the diagnostics is the OW statistic of 1.07. This value lies within the range of
uncertainty at the 1% level when compared with the Farebrother tables, but
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although a model incorporating a rho-transformation was estimated, the first
order autoregressive parameter proved to be insignificant at the 5% level. Putting

the residuals of the initial regression through the Box-Jenkins procedure
illustrated the fact that there was no other possible order for any potential serial

correlation and so the structure of the models remains identical to that of model
4.51. The results of estimation with and without the subsidy dummies are given in
Appendix 4c and equation 4.5m.l respectively.

FPt-l.t = (4.5972 PPt-2 + 2.8332 PPt-3) (1 - 0.0463 AUG + 0.0222 DEC) (1 + 0.0031 1')-
(5.42) (3.28) (-5.29) (2.05) (6.36)

165.68076:1 - 260.48 076:2 + 64.53 A83:2 - 139.22 A83:3 - 201.04 A84:1
(-1.73) (-2.71) (0.70) (-1.50) (-1.92)

(4.5m.l)

Obs. = 30 RSS = 143,190 R2 = 0.92 OW = 1.24

The diagnostic results of the latter two models in terms of RSS and adjusted R-

squared value indicate that the first of the two models, which has the total
breeding herd as the independent regressor, is the better of the two. This is true
for the models both including and excluding the subsidy dummies and so model
4.51 would be used in preference to 4.5m as the best trimestic model for fat pig

slaughter.

4.6 Monthly Models For Cullings and Slaughterlngs

Sow and Boar Culling models similar to 4.5d and 4.5e, and fat pig slaughter
models similar to 4.51 and 4.5m are developed here with the dependent variables
measured inmonthly rather than trimestic terms. As with the trimestic biological
models, the regressions are estimated on the sample period 1975-85 inclusive.

Both the said monthly series are adjusted so that each of the months represents a .
four week period in order to allow for the fact that the data for some of the
months are aggregated using five rather than four week accounting periods. The
monthly culling and fat pig slaughter data are listed in Appendix 3b. Seasonality

is accounted for by 11 seasonal dummies which measure deviations from the base
month of January. Once again, the simple linear time trend is used to model

trending relationships, and the appropriate Aujezky, subsidy and outlier dummies
are included where necessary to remove any effects they might otherwise have on
the estimated seasonal and time trend coefficients. As was the case with the
trimestic models, the results of estimation having included the subsidy and outlier

dummies are presented in an appendix - Appendix 4d - rather than in the main
text. Serial correlation is remedied using the appropriate order autocorrelation
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correction.

4.6a CuIling and the Total Breeding Herd
The first model relates the culling of sows and boars to the total breeding herd.
The monthly culling series is regressed as a proportion of the breeding herd at the
previous census provided that the census does not take place in the same month

as the culling. Allowing for an average weaning period of three to four weeks, it

is not expected that many of the sows classed as pregnant in the census - taken at

the beginning of the month - will be culled in that same census month.
Consequently, the cullings in April, August and December are regressed on the
breeding herd as measured at the previous December, April and August censuses
respectively. In order to model the above specification using TSP the census data
are arranged so that the first four observations for each year are the observation

from the April census; the second four, the August census observation and the

last four, the December observation. Consequently, the specifications of the two
monthly culling models presented in this chapter are such that cullings in any
single month are regressed on the breeding herd with an apparent lag of four
months.
Initial OLS estimation including the 11 seasonal dummies resulted in a regression
in which it was clear that there was serial correlation. The residuals were put

through the Box-Jenkins identification procedure, the resulting correlograms
clearly illustrating IITst order serial correlation. As there was no evidence of a

time trend in the residuals, the Beech-Mackinnon maximum likelihood procedure
could be employed to estimate the model. It was also evident from the residuals
of the initial regression that there was a potential outlier observation in December
of 1975 and that culling visibly increased in the March to June of 1983 - a period
corresponding to the Aujezky disease eradication campaign of that year. To
model these effects five individual intervention dummies were included in the
regression even though no reason could be found for the discrepancy in
December 1975. Finally, any effect of the 1977 subsidy dummy is removed by
the inclusion of five individual dummies for the months of February to June of

the said year - the months when the subsidy was operative. The results of

estimation including all the said dummies is presented in Appendix 4d along with

the results of estimating similar regressions for the other monthly models
discussed in this chapter.

The RSS has a value of 225.1 and the regression has an adjusted R-squared value
of 0.91. The parameter on lagged breeding herd variable implies that an average
of 3% of the breeding herd at any single census is culled in each of the following
four months. The seasonal dummies indicate significant decreases in cullings
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with respect to the January figure in the months of April, July, August and
December and significant increases in February and November. The most
significant parameters are those on the November and December dummies,
illustrating the increase in cullings in November in order to meet the additional
Christmas demand. This is followed in December by a large fall in cullings,

presumably the result of the November increase depleting the number of sows

and boars available for culling in December. The outlier dummy has a highly

significant positive parameter and the four Aujezky dummies are all highly
significant. None of the 5 estimated subsidy dummy parameters is anywhere near

the accepted significance levels and there is no sign of any serial correlation
problem in the plot of the residuals, confirmed by the Box-Jenkins identification

correlograms of the residuals.
Dropping the subsidy and the outlier dummy produces the regression presented in
equation 4.6.1 below. The estimated coefficients and t-starisrlcs appear in table
4.6a.1.

M 1 = a HB -4 + b2 febHB -4 + b3 marHB A + b4 aprHBt-4 + b5 mayHBt-4 + b6 jW1HBt-4 +t- ,t t t t-.

b7 julHBt-4 + b8 augHBt-4 + b9 sepHBt-4 + b10 octHBt-4 + bl1 novHBt4 + b12 decHBt-4 +

01 A83:3 + 02 A83:4 + 03 A83:5 + D4 A83:6 + Ut

(4.6a.l)

Obs. = 128 RSS = 313.54 R2 = 0.93

Table 4.6a.1.
The Results of Estimating the Monthly Culling of Sows and Boars as a

Proportion of the Total Breeding Herd.

VARIABLE COEFFICIENT ESTIMATE t-RATIO
Ut-l RI 0.7819 13.6
HBt-4 a 0.0306 31.4
febHB b2 0.0016 2.62
marHB b3 0.0011 1.25
aprHB b4 -0.0023 -2.39
mayHB b5 -O.OOOS -O.SI
junHB b6 -0.0005 -0.43
julHB b7 -0.0019 -1.83
augHB b8 -0.0021 -1.99
sepHB b9 0.0010 1.00
octHB b10 0.0009 0.99
novHB bll 0.0026 3.17
decHB b12 -0.0023 -3.71
A83:3 01 3.36 1.96
A83:4 02 8.10 3.92

. A83:5 03 7.08 3.44
AS3:6 D4 5.85 3.42
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Compared with the model which includes the subsidy and the outlier dummies,
...2

the regression presented in equation 4.6a.l has a higher R value, presumably the

result of having dropped the insignificant subsidy dummies, but ,a higher RSS
value from having dropped the significant outlier dummy for 1975:12.

4.6b Culling and the Pregnant Sow Herd
The second monthly biological model is the same as model 4.6a except that the
total breeding herd is replaced by the pregnant sow herd as was done for the

trimestic culling model presented in section 4.5e. Initial OLS estimation of the

model including the seasonal dummies produced residuals and test statistics very

similar to those for the monthly culling model with the total breeding herd as the
independent regressor. Consequently, a model with a specification equivalent to

that of model 4.6a was estimated by Beech-Mackinnon. The resultant model

appeared totally satisfactory in terms of the diagnostics and is therefore accepted

as the best model for the relationship between culling and lagged pregnant sow
herd.

The structure of the regression and the results of estimation are presented in
equation 4.6.2 and table 4.6b.l respectively. The equivalent model including the
subsidy and outlier dummies appears in Appendix 4d.

M 1 = al PS -4 + b2 febPS 4+ b3 marPS -4+ b4 aprPSt-4 + b5 mayPSt-4 + b6 junPSt-4 +t- ,t t t- t

b7 julPSt-4 + bS augPSt-4 + b9 sepPSt_4 + blO octPSt_4 + bl l novPSt-4 + bl2 decPSt-4 +

DI AS3:3 + D2 AS3:4 + D3 A83:5 + D4 AS3:6 + Ut

(4.6b.l)

Obs.=128 RSS=318.18 R2 =0.92
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Table 4.6b.1.
The Results of Estimating the Monthly Culling of Sows and Boars as a

Proportion of Pre&nantSows.

VARIABL~ COEFFICIENT ESTIMATE t-RATIO

Ut-l RI 0.7979 14.3
PSt-4 a 0.0514 29.7

febPS b2 0.0028 2.65
marPS b3 0.0019 1.32
aprPS b4 -0.0038 -2.28
mayPS b5 0.0004 0.24
junPS b6 0.0009 0.47
julPS b7 -0.0017 -0.93
augPS b8 -0.0019 -1.05
sepPS b9 0.0028 1.66
octPS bl0 0.0027 1.73
novPS bll 0.0056 4.01
deePS b12 -0.0031 -2.88
A83:3 Dl 3.25 1.88
A83:4 D2 8.01 3.85
A83:5 03 6.66 3.20
A83:6 D4 5.66 3.27

The coefficients on the pregnant sow variables indicate that the equivalent of
approximately 5% of the herd are culled in each month following the censuses,
and again November has the highest culling ratio. The results of comparing the
diagnostics of the models including and excluding the subsidy and outlier
dummies are similar to those of model 4.6b.

Comparing the R_2 and the RSS values of the two monthly models for culling
presented in sections 4.6a and 4.6b, indicates that little or nothing is gained by
changing the independent regressor from lagged total breeding herd to lagged
pregnant sow herd. As a consequence modeI4.6a.1 is accepted as the better of the
two monthly sow and boar culling models.

4.6c Fat pigs and the Total Breeding Herd
ModeI4.6c is concerned with the relationship between the monthly slaughterings
of fat pigs as a proportion of the total breeding herd lagged two and/or three census
periods. The information on the number of days from birth to slaughter - given in
figure 4. la - for the various types of fat pigs indicates that the range is
approximately 144 days for porkers to over 200 days for heavy hogs. In terms of
months, these figures approximate four and a half to six and a half months.
Working on this basis, slaughterings in any given month can be expected to have
come from sows and gilts recorded as being in pig 6 to 8 months earlier. For the
majority of fat pigs, therefore, this implies a lag of two census periods, however,
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for slaughterings in January, May and September some fat pigs, born shortly

before the census 2 periods earlier will require a lag of three census periods.
Consequently, the initial specification for the model is that presented in equation
4.6c.l which does not allow for seasonality or any other potential factor.

FP 1 = al HB 8 - a2 DurnX • HBt-8 + a2 DumX • HBt-l2 + ett- ,1 t-
where DwnX = 1 for January, May and September, that is:-

(4.6c.l)

FPt-l,t (al - a2) HBt-8 + a2 HBt-l2 + et

and DwnX = 0 otherwise, that is:-

(4.6c.2)

FP 1 = al HB 8 + ~1- ,1 t-
(4.6c.3)

Equation 4.6c.3 has been specified so that parameters al and a2 are constrained in
such a way that the sum of parameters on the total breeding herd lagged both 8 and

12 months for January, May and September fat pigs is constrained to a value equal
to that taken by the parameter on HB lagged 8 months in the other 9 months of the
year. Estimation of 4.6c.3 having included 11 seasonal dummies produced residual
plots in which there was an obvious positive time trend, illustrating the increased
productivity of sows over the sample period. The simple linear time trend was

included in the regression to model the trend. The plot of residuals from having

estimated the latter regression and a low DW statistic indicated the possibility of
first order autocorrelation. This was supported having put the residuals through the

Box-Jenkins identification procedure and observing the resulting correlograms. To
model the first order autocorrelation, a rho-transformation of the equation was

estimated. An obvious problem indicated by the plot of residuals of the rho-
transformed model was the possibility of an Aujezky eradication campaign
influence effective from April of 1983 through to the April of the following year.
The effect was to substantially increase slaughterings in April 1983 and thereafter
to increasingly reduce slaughterings over the following 12 months. Because the
inclusion and estimation of 13 separate dummies seemed somewhat cumbersome
and extravagant in terms of usage of degrees of freedom, the decision was taken to
model the Aujezky effect by a single dummy covering the whole of the relevant

period. The estimated Aujezky dummy parameter therefore, measures an average

effect of the eradication campaign over the given period: though not ideal, it does

diminish the effect of the campaign on the magnitude and direction of the seasonal
dummy parameter estimates.

The sole remaining alteration required was to add the five individual dummies fur ..
. 1 '.

the subsidy months of February to June of 1977. The structure of the regression I

and the results of estimation are presented in appendix 4b. The subsidy effect is .•
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similar to the Aujezky effect in that the immediate effect is for slaughterings to be
larger than expected after which they fall. Having said this, the results of

estimation - presented in Appendix 4d - show only the June 1977 dummy to be
significant at the 5% level.

Removing the subsidy dummies produces an equation with a structure represented
by equation 4.6c.4 and estimated coefficients given in table 4.6c.1.

FPt-I,t = RI FPt-2,t-I + REGt - RI REGt_l + DI DUMA + ct (4.6c.4)

Where REGt = (a1 HB
t
_
8
- a2 DumXHBt_8 + a2 DumXHBt_1V (1 + eT) (1 + b2 Feb +

b3 Mar+ b4 Apr+ b5 May + b6 Jun + b7 JuI + b8 Aug + b9 Sep + bl0 Oct + bll Nov + b12 Dec)
and REGt_I = (al HB

t
_
9

- a2 DumXHBt_9 + a2 DurnXHBt-13) (1+ c (1'-1)) (1+ b2 Feb(-l) +
b3 Mar(-I) + b4 Apr(-I) + b5 May(-I) + b6 Junt-I) + b7 Jult-I) + b8 Aug(-I) + b9 Sep(-l) +
biO Oct(-I) + bll Nov(-I) + bI2 Dec(-I»

Obs. = 119 RSS = 62325.5
..2
R = 0.88 H = -1.78

Table 4.6c.1.
The Results of Estimating the Monthly Slaughterings of Fat pigs as a Proportion

of the Total Breeding Herd.

VARIABLE COEFFICIENT ESTIMATE t-RATIO

FPt-l RI 0.5095 6.00
HBt_8 al 1.0517 58.1

HBt_12 a2 0.6620 4.36

T(ime) c 0.0018 10.1
Feb b2 0.0345 4.02
Mar b3 0.0331 3.13
Apr b4 -0.0036 -0.32
May b5 -0.0010 -0.09
Jun b6 -0.0055 -0.47
Jul b7 -0.0270 -2.32
Aug b8 -0.0169 -1.45
Sep b9 0.0537 4.48
Oct bl0 0.0601 5.18
Nov bll 0.0997 9.07
Dec bl2 0.0298 3.41
ADUM DI -16.28 -2.05

The parameters on the lagged dependent variable, the lagged breeding herd
variables and the time trend variable are all highly significant. The estimated

parameters on the lagged breeding herd variables indicate an average slaughter
figure at the start of the estimation period equivalent to 105% of the breeding herd
2 censuses earlier. Because of the presence of the time trend, the latter figure

obviously increases over time. The parameter estimates also indicate a higher
weighting on the longer of the two lags for January, May and September. The
seasonal dummy parameters clearly indicate increased slaughter - above the
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January figure - from September through to March inclusive and reduced slaughter
for the months of April to August. Differences in the parameters to those estimated

having included the 1977 subsidy dummies are that the February dummy
parameter has become slightly larger and the June parameter has become negative.

The Aujezky dummy parameter indicates an average drop in slaughterings of
15,740 in each of the months from April 1983 to April 1984.
The RSS of 62,325 compares with that of 55,681 for the regression including the
subsidy dummies, while the respective adjusted R-squared values are 0.88 and

0.89. The Durbin H-statistic from the regressions both including and excluding the
subsidy dummies take values of -1.42 and -1.78 respectively and provide little or

no evidence of residual autocorrelation.

4.6d Fat pigs and the Pregnant Pig Herd
The last of the monthly models is a fat pig slaughter model, built using identical

methodology to the previous regression discussed under model 4.6c, except that
the regressor is now the pregnant pig herd rather than the total breeding herd as
was done for the equivalent trimestic model in section 4.5m. The results of
estimation of equation 4.6d.1 are presented in table 4.6d.l below, and those for the
model including the subsidy dummies of 1977 are presented in Appendix 4d.

FPt_I,t=R1 FPt-2,t-I +REGt -RI REG1_1 +Dl DUMA+~ (4.6d.l)

Where REGt = (al PPt-8 - a2 DumXPPl_8 + a2 DumXPPt_12) (1 + c T) (1 + b2 Feb +

b3 Mar + b4 Apr + b5 May + b6 Jun + b7 Jul + b8 Aug + b9 Sep + bIO Oct + bll Nov + bl2 Dec)

and REGt_1 = (a1 PPt-9
- a2 DumXPPl_9 + a2 DumXPPl_13) (1 + c (Tvl) (1 + b2 Feb(-I) +

b3 MarC-I) + b4 Apr(-l) + b5 MayC-I) + b6 Junt-I) + b7 JuJC-l) + b8 Augf-l) + b9 Sep(-l) +

bIO Oct(-I) + bII Nov( -1) + bI2 Dec(-l»

Obs. = 119 RSS = 68401.4
..2
R =0.87 H=-1.16
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Table 4.6d.1.
The Results of Estimating the Monthly Slaughterings of Fat pigs as a Proportion

of the Pregnant Pig Herd.

VARIABLE COEFFICIENT ESTIMATE I-RATIO

FPt-1 RI 0.5598 6.80
PPt-8 a1 1.6058 52.8

PPt-12 a2 0.9596 4.96

T(ime) c 0.0010 5.31
Feb b2 0.0249 2.76
Mar b3 0.0247 2.21
Apr b4 -0.0110 -0.92
May b5 -0.0119 -0.97
Jun b6 -0.0217 -l.74
Jul b7 -0.0422 -3.39
Aug b8 -0.0315 -2.54
Sep b9 0.0464 3.40
Oct bID 0.0645 5.17
Nov b11 0.1051 8.94
Dec b12 0.0355 3.83
ADUM D1 -15.71 -1.88

The results of estimation of equation 4.6d.l and the same model including the
subsidy dummies are very similar to those for the equivalent regressions presented
under modeI4.6c. The estimated value for al indicates that the equivalent of about

161% of the pregnant pig herd two censuses previous were slaughtered at the start
of the estimation period, and again the weighting on the longer lag is larger than

that on the shorter lag in the expressions for slaughterings in January, May and
September. The estimated time trend trend coefficient and its t-statistic are

approximately half the value they take in model 4.6c. The latter is the result of the
absence of the negatively trending barren sow series from the lagged independent
variable. The H-statistic of the models including and excluding the subsidy
dummies are not significant at the 5% level measured at -1.30 and -1.16
respectively.
The RSS and the adjusted R-square statistics for the regressions presented in
modeI4.6d are not as good as the equivalent statistics for the regressions in model
4.6c and for this reason the monthly fat pig model using the total breeding herd as

the independent regressor is chosen as the better model for the adjusted monthly

fat pig slaughterings.

4.7 Forecasting With the Biological Modets
As was stated in the introduction to this chapter, the main reason for estimating the
biological models was to build forecasting models for the breeding herd and the
monthly culling and fat pig slaughter series, which could then be compared with
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the forecasting performance of the equivalent time series and economic models. In

this section it is proposed to outline the method by which forecasts for the
trimestic breeding herd and the monthly cull and fat pig slaughter series can be

made using the trimestic and the monthly culling models built in this' chapter.
The expression from which the trimestic forecasts of the total breeding herd will
be produced is derived from that presented in equation 4.7.1, which is the equality
4.3.7 presented earlier in section 4.3 during the discussion of the steady state
equilibrium model.

HBt == HBt-1 + It-1.1 - Mt-1.1 - Lt-l,t (4.7.1)

Because losses of sows and boars are not observed, 4.7.1 reduces to 4.7.2 in

which it-I, t is the derived estimated inflow variable which measures actual inflow

It-1,t minus sow and boar losses, Lt-l ,to

(4.7.2)

Because estimated inflow is a derived variable, it has been suggested that it be

replaced by the more readily available proxy variable, pregnant gilts at time 1, PGt.
Using the results of the regression estimated in model 4.5b, the total breeding herd

generating function is given by equation 4.7.3 below.

HBt == HBt-1 + 1.0863 PGt - Mt-l.t (4.7.2)

In order to produce forecasts for the breeding herd, therefore, it is necessary to
forecast pregnant gilts and culling.
The pregnant gilt forecasts are derived using model 4.5g which relates pregnant

gilts to the total breeding herd lagged three periods. An alternative route would
have been to use a two step procedure employing models 4.5i, which relates
pregnant gilts to the unserved gilt herd at the previous census, and 4.5j, relating the

number of unserved gilts to the total breeding herd lagged two censuses. Because
the latter route is more cumbersome, and because 4.5i and 4.5j contain time trends

which may not continue in the future, this route is not considered as a viable

alternative to using 4.5g. On the culling side of the equation model 4.5d, which

models culling as a function of the total breeding herd lagged one period is the
chosen forecasting model. For all biological forecasting models, whether trimestic
or monthly, the models including the subsidy and other outlier dummies as
presented in appendices 4c and 4d are used, in the expectation that better estimates
of the seasonal and other affected parameters are obtained.
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Having made the choice of best forecasting models for the inflow and outflow
variables, the two models can be combined, using the recursive model given in
4.7.3, to produce one-step conditional forecasts and n-step unconditional forecasts
of culling, pregnant gilts and the key variable, the breeding herd.

For the two monthly series analysed, the models developed in sections 4.6a and
4.6c, relating culling and fat pig slaughter to the breeding herd lagged an

appropriate number of months respectively, will be used to make monthly
forecasts of the two slaughter series. The unconditional forecasts beyond four

months ahead will require forecasts of the breeding herd to be made and so the

trimestic model described above will be employed for this purpose, giving further

importance to the trimestic breeding herd model. A 24-month ahead forecast of the
monthly culling figure, for example, would require a 6-trimester step forecast of
the breeding herd to be made.

4.8 Conclusion

In this chapter, trimestic and monthly models have been built illustrating the
biological relationships which exist within and between the breeding and feeding
herds. A theoretical framework was used to explain how some of the models built
could be used to derive a recursive forecasting model of the breeding herd; the key
variable under examination. Because the models were built primarily for the

purpose of forecasting, the methodology used was somewhat more sophisticated
than a purely biological approach, Beech-Mackinnon maximum likelihood and
non-linear least squares being employed to model phenomena such as
autocorrelation and time trends. Potential outliers primerily the result of the

commodity price rises of 1973, the 1977 pigmeat subsidy and the Aujezky
eradication campaign of 1983, were all modelled by using the relevant intercept

dummies to remove their effects on seasonal and time trend parameters. Technical
features of the sector and seasonal influences such as increased demand for meat at
Christmas meant that variables representing these two features are frequently
included through having significant estimated parameters.

It is an interesting feature of the estimated models, that where two models are
directly comparable, the model including the total breeding herd as a regressor,

rather than one or more components of it, is always the better model of the two. It
is also an interesting feature of the trimestic models that the only variables which

had an autocorrelation problem after least squares estimation were all variables
which could be regarded as decision variables for the producer, that is, sow and
boar cullings, pregnant gilts and the unserved gilt herd. The presence of
autocorrelation in these variables may imply that producers are unable to
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implement decisions to increase or decrease these variables in the space of one
trimestic period, possibly due to the effect of adjustment cost in the system. It is

possible that such effects may be picked up when the economic model is estimated
in the following chapter.
Having estimated and presented all the models section 4.7 indicated how the key
models could be used to produce forecasts for any specified period of time ahead
for both the trimestic and monthly variables of concern. In chapter eight, the

results of forecasting in the short and medium to long term using the biologically
based models will be discussed and compared with similar forecasts using Box-

Jenkins and econometric models.



Page 5.1

CHAPTER FIVE

AN ECONOMETRIC MODEL FOR THE BREEDING HERD

5.1 Introduction

InChapters three and four models for the breeding herd have been developed on a

statistical and a biological basis respectively. In this chapter a model is built

introducing, as an explicit explanatory variable the hitherto absent economic

phenomenon of profit. It is hoped that the model will be of use for forecasting the

medium term, and that some of the unexplained variations in the biological model

can be accounted for by economic phenomena. Because response times of

production effects from given price changes are often dependent on the biological

lags in the system, the econometric model implicitly includes a biological

element.

The economic variable employed is an indicator of the profitability of production

defined as the ratio of the Average All Pig Price, AAPP, to an index of feed costs.

Two feed cost indices are considered: the first is simply the index of compound

feed, CF, and the .second is the arithmetic mean of the latter and the index of

barley feed, BF; these are the two profit ratios employed by Savin and the M.L.C.

in their respective models.! The AAPP is usually quoted in pence per kg

deadweight - p/'kg dw - and is derived from representative deadweight and

liveweight quotations for fat pigs in the U.K. Because the AAPP in its present

form has only been available since June 1975, figures for the first five months of

1975 were derived using the series which predated the AAPP using the following

methodology. This earlier series, which indicated the returns to pig producers,

was quoted for the remainder of 1975 alongside the AAPP. Using the arithmetic

means of the AAPP and the original series for June to December of 1975, the data

for the original series for January to May could be converted into a comparable

AAPP. The completed series from January 1975 to 1987 was then converted into

an index of prices. At the time of writing, all indices quoted by M.A.F.F. and

M.L.C. had a base year of 1980, and as the prime purpose of modelling is to

forecast, the decision was taken to base the AAPP and all other price indices on

1980. It should be noted that the AAPP series for February to June of 1977

inclusive includes a subsidy of 5.5p per kg dw paid to farmers from 31 January to

11 June. The pig compound feed price index has been obtained from M.A.F.F.

1 See Savin (1978). The MLC kindly gave private access to their model but
requested that it was not published in detail.
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through the M.L.C. already in index form. The barley feed price usually quoted in

pounds sterling per tonne was also converted into an index with a base year of

1980. All price data are collated on a weekly basis and are aggregated and

converted into monthly averages. The census data, being the same as that used in
.'

the biological model of the previous chapter, are presented in appendix 4c. The

average monthly price indices used in this chapter are presented in appendix 6.

In the following section the breeding herd is viewed as a capital flow system

involving investment - inflow into the herd - and scrapping in the form of culling

- outflow from the herd - in the context of an equilibrium framework. This is done

in order to give the reader an insight into how the pig sector is expected to

respond - in an equilibrium context - to economic phenomena such as profits and

interest rate. Discussion is centered on the number of breeding sows, as they far

outnumber the size of the breeding boar herd, and much of the discussion applies

equally well to boars as to sows anyway. Having expounded the capital theory,

the models for investment and scrapping are presented, examining a variety of

econometric approaches.

5.2 The Breeding Herd As A Capital Flow System.
In the biological model of chapter four, the breeding herd was viewed as a system

of inflows and outflows expressed by equation 5.2.1 in which t-I,t is an estimate

of the true inflow figure minus losses from the system through disease, accidents

etc. As was the case with the biological model, the time subscripts represent the

trimesters measured between the three sample censuses of April, August and

December.

(5.2.1)

For the reasons discussed in chapter four, the derived inflow variable is to be

proxied by the pregnant gilt herd variable. In section 4.5b of chapter four, the best

estimate of t-I,t from the biological model was deemed to be 1.0863 PGt so that

the function used to generate forecasts of the breeding herd is given by 5.2.2

below.

HBt =HBt-1 + 1.0863 PGt - Mt-l,t (5.2.2)

The expression given by 5.2.2 will also be used to generate the econometric

model forecasts of the breeding herd and so the task, as it was for the biological
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model, is to model the inflow of pregnant gilts and the culling of sows and boars.

The difference from the biological model is that rather than viewing the system

from a biological point of view, the inflow of gilts is now seen as an investment
:

decision, the life of the capital being represented by the lifetime of sows and boars

in the breeding herd. At some point in the future, it is deemed more profitable to

scrap - cull - the pig rather than maintain it in the breeding herd for its productive

capacity. The objective in this section is to describe the conditions for maintaining

an equilibrium level of investment and scrapping, the implications of this for

culling age and the age distribution of the herd and also to examine the

comparative statics of the steady state equilibrium, Finally, reference is made to

the role of adjustment costs of investing and scrapping.

We start with the equilibrium conditions to obtain the optimal level of investment

and scrapping and, therefore, the optimal culling age. A gilt is added to the

breeding herd as an alternative to placing it into the feeding herd for fattening.

The young pig will go into the breeding herd rather than the feeding herd as long

as the expected present value of future net revenues from the sale of the capital

item's production and its scrapping value is greater than the expected revenue

from having sold the pig as a consumer good itself. In other words, if the expected

future net revenues from selling the progeny of the young gilt over its expected

optimal lifetime, plus its own expected cull value are greater than the current fat

pig slaughter value net of fattening costs, investment in the young pig will take

place. On the scrapping side of the equation, a sow will not be culled if delaying

the culling age by one parity - one farrowing period - gives rise to expected

discounted future net revenues which exceed the current value of culled sows and

boars.

Under conditions of a steady state equilibrium, which are expressed by equation

5.2.3 below, net revenues are such that investment in the breeding herd, that is

inflow, is matched by culling from it, so that the breeding herd has no long term

tendency to increase or decrease over time.

I = M = e HB = IlL HB (5.2.3)2

The consequences of this are that there will be an optimal age for the retention of

pigs in the breeding herd, hence, an optimal culling age and a uniform age

distribution throughout the breeding herd. The parameter' e', the proportion of

the breeding herd accounted for by culling, is the reciprocal of the optimal culling

age, L.

2 The steady state assumption negates the need for time subscripts.
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Given a situation of steady state equilibrium so that the breeding herd is at its
optimal size with an optimal lifetime for the capital, the comparative static effects
of changes in a given number of exogenous shocks to the system can be
examined. Firstly, consider a permanent rise in the margin of fat pig' receipts over
costs of maintaining the capital good, cetertis paribus, primarily in the form of
feed costs.J This provides an inducement for producers to increase the optimal
size of the breeding herd. They respond in the short run by increasing inflow into,
and decreasing outflow out of the breeding herd. Over the longer term inflow
increases at a diminishing rate but the culling rate will also gradually increase as
the size of the breeding herd increases. Eventually, a new equilibrium will be
reached with a larger herd size and a higher level of matched inflow and outflow
than under the old equilibrium. If we also abstract from any induced rise in
culling price, then there would be a permanent rise in the optimal life of the
breeding sow.
Now consider a permanent rise in the scrapping value on the other hand, that is,
an increase in the cull price of breeding sows and boars ceteris paribus. This will
also have the effect of increasing the long run optimal size of the breeding herd
through increased inflow. This occurs because pig production is now more
profitable, breeding sows and boars now having greater worth as an end product
in themselves. In the short term the herd is likely to undergo a temporary
reduction in size as barren sows which were about to be served for a final time are
now more profitable as culls. The increase in the cull value will shorten the
optimal lifetime of the breeding herd because net returns at the margin of culling
are now increased. Moreover, because it is almost certain that an increase in fat
pig prices is the prime cause of an increase in the price of culls, the position
regarding the overall effect of an increase in fat pig price on optimal lifetime is
not clear. The certain effect is that the optimal size for the breeding herd will
increase.
Investment decisions are invariably tied up with the real rate of interest, so let us
consider the case of an exogenous increase in real interest rates. Such a rise
reduces the net present value of pig production. The likely consequence of this is
to reduce the optimal life of a breeding sow, L, thereby increasing the value of
theta due to the fact that the breeding sow is now less profitable as productive
capital relative to her scrap value as a culled sow.
As discussed in chapter one, one of the most striking features of the pig sector in
the last 20 years or so has been the sharp increase in sow productivity, mainly a
result of shortened average weaning periods. An increase in the productivity of

3 We abstract from any feedback effects that changing the herd size might have on
profits via changes in the future avaiiabIility of fat pigs.
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sows due to improved technology in the industry reduces costs per pig reared and,
therefore, increases profitability in the industry. As discussed above with
increased profitability, the optimal herd size will increase, the position with
respect to optimal life of the breeding herd being uncertain.
It is the opinion of some in the industry that future productivity gains are to come
from gains in genetic engineering and better husbandry.f Such gains are likely
to come through increasing the productivity of gilts, which are considerably less
productive in terms of litter size and length of time taken after weaning to be
returned to first service.> If there are such increases in the productivity of gilts
relative to older sows, a tendency to reduce L because of the improved efficiency
of replacement of the less productive sows by the more productive gilts is likely.
Finally, in this theoretical assessment of the breeding herd as a capital flow, the
role of adjustment cost is considered. On the inflow side, a farmer wishing to
increase the size of his breeding herd quickly will need to hold a large number of
young gilts. These gilts will compete with the feeding herd and the rest of the
breeding herd for the production unit's resources. These adjustment costs will
increase with the speed of increase required and can be associated with the
number of in-pig gilts present in the breeding herd. At the scrapping end of the
system, there are no obvious adjustment costs associated with the act of culling;
except that as culling is reduced, again competition for resources can be
considered. A disincentive and, therefore, a barrier to excessively high culling
rates is rising productivity of sows at the culling margin with each farrowing -
parity - up to about the optimal fifth parity, after which productivity levels off and
starts to fall again. Gilts are the least productive members of the breeding herd.
The consequences of such adjustment cost for modelling are that decisions to
expand or contract the breeding herd are likely to be seen over more than one
census period, introducing the possibility of autocorrelation. This possibility is
discussed in the modelling sections of the chapter.
Having considered the breeding herd as a capital flow system, and having briefly
examined some of the characteristics of the system under equilibrium, the
following two sections are concerned with the results of building forecasting
models for the proxy variable for investment, pregnant gilts, and the scrapping
variable, sow and boar culls.

5.3 The Methodology of Modelling
The pregnant gilt - inflowv - model and the culling models are built using a base

4
5

See MLC market survey April 1988, page 3£.
See pages 56 to 58 of MLC pig yearbook April 1988.
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methodology in which it is intended to incorporate the models developed by
Savin and the MLC derivative of the Savin model, both of which are discussed
within the chapter. As was the case with the biological models, the sampling
period for estimation is 1975 to 1985 inclusive, 1986 and 1987 being made
available for out-of-sample forecasting tests. Initially, the inflow and outflow
models are built within a dynamic framework incorporating a profit variable and
the dependent variable lagged a number of periods. The lags extend in order that
they cover a full calendar year, systematically removing from the model
specification the longer lagged variables which prove to be insignificant. The
possibility of augmenting the models by the inclusion of explicit biological
variables is also examined.
In the process of modelling, a number of problems need to be resolved. The first,
which has already been referred to, is determining the number of lagged
dependent and independent variables which are to be included in the model
specification. The usual t-tests for testing the specific significance of estimated
coefficients and F-tests on the overall significance of included variables will be
employed for this purpose. For each of the inflow and outflow variables, the
appropriate profit variable needs to be obtained. Biological knowledge and the
lags included in the profit variables in the existing Savin and MLC models are
both used to determine the chosen lag. A similar though perhaps less important
question regarding the nature of the profit variable is to decide upon the
appropriate ratio to use. Two alternatives are considered. The first is what I refer
to as the simple profit ratio employed by Savin, and is simply the ratio of the
Average All Pig Price, AAPP, and the compound feed price for pigs for any given
month. The ratio which will be referred to as the complex profit ratio, is the same
as the latter except that the denominator is the arithmetic mean of the compound
feed price and the barley feed price, as employed in the MLC model. All prices
are in index form, having 1980 as a base year.
As was the case with the biological models, various intervention dummies will be
employed as necessary in each case to model any possible outliers, the exclusion
of which may have significant effects on the size and sign of seasonal dummy
parameter estimates included to model seasonal influences. These intervention
dummies primarily explain the Aujezky disease eradication campaign of 1983, the
temporary subsidy on pig meat in the first half of 1977 and possible effects on
observations at the very start of the sample period resulting from the influences on
the industry of the 1974commodity price increases and the UK's accession to the

6 Because pregnant gilts are being used as a proxy for inflow, the two terms will be
used interchangeably.
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EEC.

Having obtained satisfactory solutions to the above questions and having obtained
a satisfactory model, the specification of the model is investigated with particular
interest paid to the possibility of autocorrelation in the given model which may
arise through the effects of adjustment costs as discussed towards the end of
section 5.2. The derived models and the methodology employed are compared
with those of Savin and the MLC.

5.4 The Inflow Model Estimated.
As previously explained and as was the case with the biological model, inflow is
to be proxied by the pregnant gilt herd. The model for the pregnant gilt herd is
estimated on the sample period 1975 to 1985 inclusive and, like the biological
model is a four-monthly - trimestic - model. The initial specification is dynamic
in that it includes lagged dependent variables, lagged values of the profit regressor
also being included. The lags for the two said variables initially extends to cover
one calendar year so that the initial model therefore takes the form of the
expression given in equation 5.4.1,

where Pt is the appropriate profit variable associated with the pregnant gilt herd at

time t and ~ is a zero-mean white-noise error term. Seasonality has temporarily
been ignored.
Putting aside for the moment the question of which of the simple or the more
complex profit ratio should be used, it is necessary to obtain an appropriate profit
variable before estimation of the model can commence. Specifically. biological
knowledge can be used in order to determine the appropriate lag between the level
of profit and its subsequent effect on the pregnant gilt herd.
Consider a pregnant gilt at the December census. These gilts will have been put in
pig from the middle of August to the middle of November. Assuming a 30 week
average age for the gilt to be put in pig, the oldest of the December pregnant gilts
would have been born in the middle of January. Assuming that the average age
for slaughter of the fat pigs is six months, the decision to put the young pig into
the breeding herd must be made before the middle of July. As the decision is
unlikely to be made at either extreme, the decision was taken to use the midpoint,
that is, three months of age. On this basis, the decision for the gilt put in pig in
August is deemed to have taken place in April. Assuming a uniform distribution
for the time at which the December gilts were put into pig, the decision period
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would span April through to July. This happens to be a lag of 5 to 8 months, the

same lag derived by Savin using empirical methods, observing the correlation
between the pregnant gilt and the profit ratio time series data.

To allow for the fact that gilts can be put in pig from the age of 5 to 8 months,
however, a..weighted average for the profit ratio lagged 3 to 9 months was

derived assuming a uniform distribution for the age at which the gilts are served.
The expression for the chosen lag structure is given by 5.4.2 below in which the

subscript i is time measured in months.

(5.4.2)

In other words, the appropriate profit variable for the pregnant gilt herd at time t

is a weighted average of the average profit ratio three to nine months earlier
inclusive. For example, the gilts recorded as being in-pig in the December census
are deemed to be a consequence of level of profit in the previous March through
to the previous September inclusive. This lag structure incorporates the lags used
by Savin and the MLC in their models for pregnant gilts both of which were
arithmetic means of profit in the months i-5 to i-S and i-3 to i-6 respectively.
Equation 5.4.1 was estimated with the addition of the two seasonal dummy
variables, using the lag structure for the profit variable described by the
expression in 5.4.2: the resulting residual plot indicated the presence of possible
outliers. In order to remove the effect of such outliers on the estimated parameters
of the seasonal dummies, the decision was taken to include appropriate dummy
variables with which to model the various effects. The dummies concerned are the
first three Aujezky disease eradication campaign dummies A83:2, A83:3 and
A84:1 and a dummy for August 1977. The residuals at the time of the eradication
campaign clearly indicate a fall in the numbers of pregnant gilts which is also the
case in August 1977. The reason for the former needs no explanation, and the
latter is the result of the temporary subsidy on pig meat from the end of January to
the beginning of June, which appears to have resulted in potential gilts having
been transferred instead into the feeding herd in order for producers to take full
advantage of the temporary subsidy. The addition of these 'outlier' dummies to the
regression produced the results presented in equation 5.4.3 below, in which the t-
ratios are presented in parentheses.

PGt = 27.34 + 0.651 Pt + 0.643 PGt-1 - 0.702 Pt-l + 0.314 PGt-2 - 0.513 Pt-2 - 0.003 PGt-3 + 0.335 Pt-3
(0.94) (2.09) (3.20) (-1.77) (1.41) (-1.4l) (-0.0l) (1.43)

+ 5.11 AUG + 0.99 DEC - 18.50A83:2 - 10.60A83:3 - 6.88 A84:l - 25.13 077:2 (5.4.3)

(1.28) (0.28) (-2.71) (-1.63) (-1.08) (-3.56)

Nobs. = 28 RSS = 319.66
,,2
R = 0.586 DT7 = 0.78
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The coefficient on the profit ratio variable Pt is significant and has the correct
positive sign indicating that an increase in profit produces a lagged increase in
inflow into the breeding herd which the producers are aiming to expand. The
Durbin T-statistic for regressions including lagged dependent variables indicates
no autocorrelation problems with the residuals. The residual plot illustrated that
there are no other outstanding outliers missing from the model specification.
The outstanding problem with the estimated regression 5.4.3 is the insignificance
of the t-statistics of the estimated parameters for the profit variable and the
pregnant gilt variable lagged 2 and 3 trimesters. To test their overall significance,
the variables for pregnant gilts and profit lagged three trimesters were dropped
from regression 5.4.3 and an F-test on the residual sum of squares was performed.
The resulting F-statistic of 1.875 is not significant even at the 10% level when
compared with the critical value from the table of F-statistics for 2,14 degrees of
freedom. Consequently, the alternative hypothesis of significance for the said
lagged variables could be rejected and PGt-3 and Pt-3 removed from the model.
The estimated model excluding pregnant gilts and profit lagged three trimesters
also produced t-statistics for the estimated parameters of PGt-2 and Pt-2 which
were not significant at accepted levels. Consequently, the process for testing the
significance of the said variables lagged three periods was repeated for the
variables lagged two periods. The resultant F-statistic of 0.73 is clearly not
significant, once again leading to a rejection of the null-hypothesis and an
acceptance of the model minus the pregnant gilt and profit variables lagged two
trimesters. The residual for the first observation available for estimation in the
latter regression, that is, 1976:1, was greater than two standard errors above zero.
Because this observation is at an extreme of the estimation period and, therefore,
has the potential to be misleading in terms of whether or not the residual plot
contains a time trend, as well as the possible effects on the estimated seasonal
parameters, the decision to include the intervention dummy D76: 1, in order to
model its effect, was made. The estimated regression for the latter model is given
in equation 5.4.4 below.

7 The Durbin t-statistic, see Durbin(1970), is given by TSP output for OLS
regressions including a lagged dependent variable, and is a large sample statistic
similar, though more general statistic, to that of the Durbin H-statistic employed
in chapter 3. A significant Durbin t-statistic indicates the presence of first order
autocorrelation
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PGt = 38.95 + 0.532 Pt + 0.672 PGt-l - 0.564 Pt-l + 3.88 AUG - 2.08 OEC-
(2.93) (2.69) (4.30) (-3.03) (1.54) (-.79)

13.64 A83:2 - 4.48 A83:3 - 4.15 A84:1 - 19.56077:2 +16.19 076:1
(-2.20) (-.82) (-.76) (-3.75) (2.55)

(5.4.4)

Nobs. = 30 RSS = 440.2 R_2 = 0.752 DT = 0.44

The estimated parameters for the included pregnant gilt and profit variables are all

significant in terms of their t-statistics and have the correct signs. Although the

RSS statistic is higher than it is in 5.4.3 it is primarily the result of the regression

being estimated over a longer time period, and moreover, the adjusted R-squared

value of 0.752 is considerably larger than that obtained in the initial regression,

implying that 75%, as opposed to 59% of the variation in the pregnant gilt herd is

explained by the model presented in 5.4.4. The Durbin t-statistic for regressions

incorporating lagged dependent variables indicates no autocorrelation problem in

the residuals.

The structure of the dynamic model presented in equation 5.4.4 can be viewed as

an unrestricted form of autoregressive model. Again ignoring seasonality and

other dummy variables, the basic form of equation 5.4.4, for example, can be

written in the following way.

(5.4.5)

Now assume that the static model given by equation 5.4.6 is ARl in the error Vt.

PGt=c+ aPt+ vt

In other words,

(5.4.6)

(5.4.7)

in which p is the ARI parameter and £t is the white-noise error term. The

expression given in equation 5.4.7 is a restricted form of equation 5.4.5.

If the model estimated in 5.4.4 does indeed have an autocorrelation structure, we

would expect the product of the coefficients on Pt and PG t-l to be the negative of

the value of the coefficient on Pt-I. In 5.4.4, therefore, 0.532 multiplied by 0.67,

which equals 0.357, and compares with 0.564. Given that the standard error on

the two profit variables are approximately 0.19, the product and the coefficient on

lagged profit differ by slightly more than one standard error indicating the

possibility of equality. As a further check on the possibility of a first order

autocorrelation structure, 5.4.4 was re-estimated using non-linear least squares,

LSQ, methodology constraining the coefficients of the profit and lagged pregnant
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gilt variables to take the first order autocorrelation structure. In other words, the
coeffIcients concerned will be forced to take values such that the product of the
estimated coefficients on Pt and PGt-I will be the negative of the value of the
estimated coefficient on Pt-I' Having estimated the LSQ model: an F-test, in
which the null-hypothesis that the constrained and the unconstrained regressions
are the same will be refuted if the resultant F-statistic, which compares the RSS
statistics of the two models, is larger than the critical value for F. The RSS of
535.12 for the constrained regression is naturally larger than the equivalent
statistic for the unconstrained regression, but the resultant F-statistic of 4.05 is not
significant at the 5% level compared with the critical value for 1,19 degrees of
freedom. The test, therefore, supports the use of the constrained regression and,
moreover, the presence of a first order autocorrelation model structure.
This conclusion is similar to the model derived by Savin which was estimated
employing the Durbin 2-stage procedure. However, she made the methodological
error of excluding seasonal dummies which she appeared to think would fallout
of the model as the first order autocorrelation structure was imposed. In addition,
Savin made a methodological error in removing from her OLS models, any
seasonal dummies which did not have significant t-statistics. This is erroneous
because the significance of estimated seasonal dummy parameters is dependent
on the season chosen as the base from which to measure the deviation by all other
seasons. It is therefore argued that all or none of the seasonal dummies should be
included. Rather than using the Durbin 2-stage procedure, which is similar in
methodology to that of the aforementioned LSQ model, for estimation of a model
imposing the first order autocorrelation structure the Beech-Mackinnon maximum
likelihood procedure can be employed instead. The latter offers the advantage of
using less degrees of freedom in estimating the regression because no lagged
variables are estimated. This gives the dual advantage of releasing an extra
observation as well as reducing the number of coefficients to estimate. With the
relatively short sample period available for estimation of the trimestic models,
increasing the number of degrees of freedom available is considered to be an
important factor, and hence the choice of the Beech-Mackinnon estimation
procedure over the Durbin two-stage method. The model as estimated using
Beech-Mackinnon maximum likelihood is given in equation 5.4.8 and represents
the most restrictive form of the general model, where the coefficients of all the
variables including the dummies are restricted by the AR term.
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PGt = 38.46 + 0.691 Pt + 3.42 AUG - 0.48 OEC-
(2.60) (4.98) (2.32) (-.32)

11.29 A83:2 - 7.32 A83:3 - 4.82 A84:1 - 17.67 077:2 + 3.58 076: 1 + Ut :
(-2.64) (-1.51) (-1.14) (-4.89) (0.76)

Ut = 0.794 Ut-'i
(6.9)

(5.4.8)

Nobs. = 30 RSS =388.38 R2 = 0.89

Again, the key variables have significant coefficients and the correct signs and the

estimated coefficient on the August dummy is significantly greater than zero. The

RSS statistic is smaller than that reported for the previous OLS regression

including lagged dependent and profit variables, and although the DW statistic is

not presented in the table of diagnostic statistics because the model was not

estimated using OLS, the value of 1.85 and the plot of the residuals give no cause

for concern about autocorrelated residuals. As a confirmatory test of the ARI

nature of the model structure, the latter regression was re-estimated using OLS

and the residuals put through the Box-Jenkins identification procedure. The

resulting correlograms suggested that the autocorrelation in the model was

nothing other than first order AR.

One final restriction examined in the general form of the model 5.4.5 was to force

<Xl to equal the negative of aO so that the two profit level variables are replaced
by a single profit change variable. Because one less parameter is estimated, this

form of restriction also releases one degree of freedom which is good on

parsimony grounds. The results of estimating this model are given in equation

5.4.9.

POt = 37.90 + 0.652 PGt-l + 0.550 (Pt - pt-! ) + 3.84 AUG - 1.98OEC-
(3.25) (4.30) (3.03) (1.57) (-.79)

13.03A83:2 - 4.14 A83:3 - 3.85 A84:1 - 19.41077:2 +15.57076:1
(-2.56) (-.83) (-.76) (-3.87) (2.97)

(5.4.9)

Nobs. = 30 RSS = 441.0
..2
R = 0.76 DT = 0.54

Again, comparing these results with those of the unrestricted form, the restrictions

appear to be plausible. The estimated coefficients and the RSS statistic have

changed little so that the adjusted R-squared value has increased marginally to

0.76, and the Durbin t-statistic indicates no problem with residual

autocorrelations.
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A fundamental difference of the latter model compared with the previous models

examined is that it is short term rather than long term in respect of the reaction of

gilt numbers to a change in the level of profits. The previous models are all

specified in terms of the profit level so, for example, an increase in the profit level

would produce a permanent increase in the level of gilts. In 5.4.9 however, an

increase in the profit level at time t has a partial effect on gilt numbers at time t,

but were profits to remain at their new level, because there is no change in the

level of profits, they would have no direct effect on the size of the gilt herd. In

terms of what we would expect in terms of our initial equilibrium framework, and

given that we expect the econometric model to perform better in the medium to

longer term rather than the short term, this latter model is not as appealing as the

others examined.

The model as represented in 5.4.8 was accepted as the best model for the inflow

proxy, the pregnant gilt herd, from having followed the given methodology.

Having allowed for the fact that Savin's original model was built at the time when

pure quarterly data were available, my model incorporates that developed by

Savin. The fundamental differences include a wider range of model specifications

having been considered here, eliminating other possible autocorrelation

structures. Also, Savin's methodological errors have been eliminated and, having

determined that the autocorrelation in the model is of the first order, the model

has been estimated using the Beech-Mackinnon rather than the Durbin two-stage

procedure which is more cumbersome to estimate and slightly less efficient in

terms of use of degrees of freedom.

The trimestic model developed by the MLC, supposedly based upon the Savin

model is, however, different in a number of ways: three main differences can be

identified. Firstly, the lag structure of the profit variable is shorter by two months,

although there is no indication of how the given lag structure was derived, and the

profit variable, is the same as the simple profit ratio used by myself, but replacing

the compound feed price index denominator by the arithmetic mean of the

compound feed price index and the index of barley feed. Secondly, the model

does not account for seasonality. The final and most fundamental difference in the

model structure is that it attempts to model the autocorrelation in a less general

manner than the Savin-derived approach, simply including a lagged dependent

variable as a regressor, implying that the autocorrelation is the result of stickiness

in adjusting the size of the pregnant gilt herd. If my model is correct then it

implies that the MLC model is misspecified in terms of its dealing with

autocorrelation. Estimating the MLC model adding the seasonal and other

intervention dummies included in 5.4.4 produces a DT statistic of 2.50, which is
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significant at the 5% level giving strong indication of the presence of first order

residual autocorrelation. This result backs up the argument that the MLC model is

indeed misspecified. ,
Many of the above regressions were re-estimated exchanging the simple and the

MLC profit ratios, with results which indicated little or no improvement in using

the more complex of the two ratios. Consequently, and in view of the fact that the

simpler profit ratios are easier to calculate and require less data, use of the MLC

ratio will no longer be considered in this thesis. Exchanging my profit variable lag

structure for those chosen by Savin and the MLC, showed my lag structure to be

superior in terms of residual sums of squares.

Having arrived at a satisfactory but fundamentally short run model, itwas decided

to investigate the possibility of explicitly including a long run element by adding

the breeding herd variable lagged three periods to the unrestricted model 5.4.4.

This is the lag derived in the biological model for pregnant gilts discussed in

section 4.5g. The effect of adding this variable to the estimated model was to

eliminate the significance of the intercept term. Hence, as an alternative to the

model specification represented by 5.4.5, a proportional model in which the

intercept term is replaced by the lagged breeding herd variable was deemed

appropriate, so that the general form of the unrestricted model is that given in

5.4.10.

(5.4.10)

The re-estimated model is presented in equation 5.4.11 below in which the

seasonal dummies are now tied to the lagged breeding herd term as they were in

the biological proportional models presented in chapter four.

POt = 0.042 HBt-3 + 0.595 Pt + 0.736 PGt-1 - 0.672 Pt-1 + O.OOS AugHBt_3 - 0.002 DecHBt_3 -
(3.37) (3.39) (S.lS) (-3.84) (1.80) (-.81)

16.26 A83:2 - 6.55 A83:3 - 6.75 A84:1 - 22.13 D77:2 +17.66 D76:1
(-2.69) (-1.22) (-1.24) (-4.31) (2.88)

(5.4.11)

Nobs. = 30 RSS = 399.0
A2
R = 0.776 DT = -0.075

The estimated unrestricted regression presented in 5.4.11 is directly comparable

with that of 5.4.4. The estimated coefficients of the two models are quite similar

for the variables included in both, although the t-statistics in 5.4.5 are all larger

than the those presented in 5.4.4. The diagnostic test statistics of 5.4.5 are all
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better than those of 5.4.4, the adjusted R-squared value indicating that 77.6%

rather than 75.2% of the variability in the pregnant gilt series is explained by the

latter regression. In view of this, the proportional model was, re-estimated

imposing the same three restrictions to check for autocorrelation as were imposed
.»

on the unrestricted intercept modeI4.5.4. The results of estimation were similar to

the results obtained for the intercept model in that the restrictions appeared to be

valid, none of the estimated coefficients changing by significant amounts. The

RSS statistics for the restricted and unrestricted models estimated using the

intercept and the proportional approaches are presented in table 5.1 below in

which the definitions of the restrictions refer to the parameters of the unrestricted

general equations presented in equations 5.4.5 and 5.4.10 above.

Table 5.1
The RSS Statistics From the Estimated Restricted and Unrestricted FOTInSof

Intercept and Proportional Econometric Models for Pregnant Gilt.

RESTRICTIONS
MODEL SPECIFICATION

INTERCEPT PROPORTIONAL

Unrestricted
AR1 (Beech-Mac)

al = - «(lo PI)

al = - ao

440.20
388.38
535.12

440.96

398.97
407.53
521.92

403.37

As discussed above in reference to the results of modelling using the intercept

approach, there is little to choose between the models in terms of estimated

coefficients and all the models show no problems of residual autocorrelation. It

therefore seems reasonable to analyse the models in terms of the RSS statistics

presented in the table above. The obvious thing to notice is the superiority of the

proportional models relative to their intercept equivalents, the exception being the

Beech-Mackinnon AR1 model, where the RSS for the intercept model rather

curiously is actually lower than for the unrestricted model. This could only be put

down to the way inwhich TSP calculates the RSS for AR1 models. Given that the

proportional approach is accepted as the better of the two, the choice of best

model lies between the Beech-Mackinnon pure ARl model and the profit

difference model. On the grounds that the latter is less desirable from a theoretical

stance, the Beech-Mackinnon proportional model is chosen as the best

econometric forecasting model for the pregnant gilt herd, the estimated equation

being presented in 5.4.12 below.
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POt = 0.031 HBt-3 + 0.798 Pt + 0.0039 AugHBt_3 - 0.0004 DecHBt-3 -
(2.25) (7.11) (2.22) (-.25)

11.43 A83:2 -7.80 A83:3 - 5.98 A84:1 - 18.15077:2+ 3.03 076:1 +Ut
(-2.62) (-1.56) (-1.35) (-4.88) (0.63)

Ut = 0.8105 Ui~1
(7.4)

(5.4.12)

Nobs. = 30 RSS = 407.5 R2 = 0.89

5.5 The Outflow Model Estimated

Similar methodology to that employed above is now applied to build an

equivalent outflow model. Because the methodology for investigating the

pregnant gilt model was discussed at considerable length in the previous section,

the methodological discussion here will be considerably briefer. As referred to in

the previous section, use of the more complex of the two profit ratios considered

has been rejected. Also, because of the apparent superiority of the proportional

models over the intercept approach, and the appeal they have by explicitly

incorporating biological as well as economic phenomena, only the proportional

approach will be considered.

The first consideration when attempting to model culling is to derive an

appropriate lag for the profit variable. It seems reasonable to assume that the

producer will make the decision to cull shortly after a sow has farrowed. If the

sow is to be culled, she can be fattened ready for culling during the 3 to 4 week

weaning period, the act of culling following shortly after weaning has taken place.

In view of this, a lag of one month between the decision to cull based on a given

level of profits and the act of culling is chosen so that culling in February, for

example, is deemed to be a results of profit levels in January. This lag compares

with a zero lag used by the MLC, and a lag of two months which Savin derived

purely on statistical grounds. To allow for variability in the decision process and

weaning period, and to incorporate the lags used by the MLC and Savin, the

decision was taken to use a weighted average profit ratio similar to that used for

the profit ratio variable in the pregnant gilt models presented earlier. The

weighted average which is constructed giving equal weight to MLC's zero lag, my

one month lag and Savin's two month empirical lag produced the following profit

ratio variable,

TIt= 1/12 (Pi +2 Pi-l +3 Pi-2 +3 Pi-3 +2 Pi-4 +P i-5)' (5.5.1)
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where i is time measured in months, t is time measured in trimesters and Pi is the

profit ratio in a given month. For example, therefore, cullings in December

through to March, are deemed to be a function of profits in October to March

inclusive.

Temporarilyignoring seasonality and 'outliers', the initial model including lags on

the appropriate variables to cover one calendar year, is that given in equation

5.5.2 in which the appropriate breeding herd variable lagged one trimester is

included as the biological variable.

The latter model was estimated including seasonal dummy variables and an

appropriate number of intercept dummies were added to the model, determined by

the observations with large residuals in the residual plot. The intervention

dummies included were four Aujezky dummies A83:2 to A84:2 and a dummy for

the Apri11977. Having estimated the regression, the longer lagged variables were

systematically dropped from the regression, F-tests being performed as they had

been in the pregnant gilt model, to ascertain the overall significance of the

variables removed. As occurred in the case of pregnant gilts, the variables lagged

two and three periods were deemed to be insignificant and were, therefore,

removed from the model. The resulting estimated regression is presented in

equation 5.5.3.

Mt-l,t = 0.0694HBt_l- 0.827 n, + 0.677 Mt-2,t-1 +0.613 ilt-l- 0.013 AugHBt_l+ 0.004 DecHBt_1 +
(3.50) (-4.7) (6.56) (3.17) (- 4.1) (1.79)

31.78 A83:2 - 11.07 A83:3 - 11.97A84:1 - 7.66 A84:2 + 10.61 D77:1
(6.19) (-1.63) (-2.1) (-1.53) (2.13)

(5.5.3)

Nobs. = 31 RSS = 394.0
A2
R = 0.90 DT = -0.01

The results of estimation appear to be satisfactory in term of the parameters

estimated and the overall diagnostics of the model. The sign on the profit variable

is negative as expected, indicating that farmers respond to an increase in profits in

the short run by decreasing culling and increasing the size of the breeding herd in

order to increase future production of fat pigs. The August seasonal dummy

parameter is significantly negative and that for the December positive and almost

significant at the 5% level. The Aujezky dummies illustrate how culling increased

at the time of the eradication campaign but was low in the following months,

presumably as farmers were concerned with replenishing the breeding herd. The
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subsidy dummy measuring the effect of the 1977 temporary subsidy on pig meat

indicates that the level of culling was still abnormally high at the time of the

subsidy. The temporary subsidy was used to give relief to a depressed pig sector

typified by ahigh culling level. The adjusted R-squared statistic indicates that the

regression explains 90% of the variation in cullings over the estimation period

and the Durbin t-statistic is almost zero indicating no residual autocorrelation

problem.

Again, the regression presented in 5.5.3 can be regarded as an unrestricted

autoregressive specification and so the restricted forms of autocorrelation

analysed in the pregnant gilt model are imposed on 5.5.3 to investigate the form

of any autocorrelation which might be present. The results of estimating the

various restricted models are summarised by the RSS statistics as presented in

table 5.2 below.

Table 5.2
The RSS Statistics From the Estimated Restricted and Unrestricted Fonns of

Proportional Econometric Models for Culling.

RESTRICTIONS 8
Unrestricted
AR1 (Beech-Mac)
al = - ( ao bi )
a1 = - ao

RSS
394.0
687.9
400.7

500.7

The results contrast with those of the pregnant gilt models in that the Beech-

Mackinnon AR1 specification, in which all the included variables are subject to

the autoregressive constraint, appears to be too great a restriction, the RSS

increasing from 394.0 to 687.9. The clear choice of restriction in this case lies

with the non-linear estimation presented in 5.5.4.

Mt-l.t =0.071 HBt-l- O.SIS Ilt+ 0.696 Mt-2.t-l+ 0.SIS*0.696 1'\-1- 0.013 AugHBt_l + 0.005 DecHBt_l +
(3.67) (- 4.7) (7.24) (-4.0S) (1.90)

30.S6 AS3:2 -12.79 AS3:3 - 13.12AS4:1 - S.50AS4:2 + 10.21D77:1
(6.41) (-2.12) (-2.45) (-1.81) (2.10)

(5.5.4)

Nobs. = 31 RSS = 394.0
A2
R = 0.91 DT = 0.20

S The parameters used to define the restrictions corne from the following model in
which seasonality and other dummy variables are ignored.

Mt-1.t=iHBt-l + aoIlt + bl Mt-2.t-l + at Ilt-l + ~
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The estimated parameters are very similar to those of the unrestricted regression

and the small increase in the RSS brought about by the restriction is more than

offset by the small increase in degrees of freedom through having to estimate one

less parameter, so that the adjusted R-squared statistic increases: to 91%. The

Durbin t-statistic indicates that all is well in terms of autocorrelation in the

residuals.

The MLC model which is not presented for confidentiality reasons, but which

again models autocorrelation by using a lagged dependent regressor, was

estimated adding seasonal dummies and the relevant outlier dummies. The results

of estimation were satisfactory in terms of autocorrelation, the residuals

producing a Durbin t-statistic of 0.87, so unlike the MLC's pregnant gilt model,

their culling model is not misspecified, but the RSS of 965.9 and the adjusted R-

squared statistic of 0.764 are not as good as those obtained by the proportional

models discussed above.

Savin modelled culling as a percentage of the breeding herd at the previous

census. This approach, which implicitly includes the biological element

incorporated into my proportional model was chosen because, as was explained in

the biological model for culling, the vast majority of sows culled between census

dates will have been classed as sows in-pig at the previous census. In the light of

this approach, the decision was taken to estimate the unrestricted and the

restricted forms analysed for actual cullings, using the specification given in

5.5.5, in which seasonality and other intercept dummies are temporarily ignored.

MHBt-l,t =Cl + AOTIt+ Bl MHBt-2,t-l + Al TIt-l + Et ' (5.5.5)

where MHBt-l,t = Mt-l,t I HBt-l .

Estimation of the unrestricted form given in 5.5.5, including the intercept
dummies and two seasonal dummies produces the regression presented in
5.5.6.9

MHBt-l.t = 0.0435 - 0.0011I\+ 0.867MHBt-2.t-l +0.0009 nt-l - 0.013AUG + 0.0054DEC +
(1.84) (-5.1) (6.51) (3.96) (- 3.9) (2.01)

0.031 A83:2 - 0.014 A83:3 - 0.015 A84:1 - 0.011 A84:2 + 0.01077:1
(5.27) (-1.75) (-2.15) (-1.75) (1.68)

(5.5.6)

Nobs. = 31
...2

RSS = 0.000545 R = 0.86 DT = -0.45

9 Because of the presence of the intercept. the seasonal dummies are now the usual
intercept seasonal dummies. unlike the proportional models where the seasonal
dummy is multiplied by the breeding herd lagged the relevant period.
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The estimated coefficients of all the prime variables take the correct signs and are

significant as measures by their t-statistics. The Durbin t-statistic indicates that all

is well in terms of the residuals and the lack of autocorrelation, though the

adjusted R-square value of 0.86 is not as high as the equivalent 0.90 from the

model for actual culling presented in equation 5.5.3. The three restricted forms of

modellooked at in this chapter were estimated for the cull percentage variable

and the fitted values converted into equivalent actual culling numbers. These

fitted actual cullings were then compared with the true culling figures and an RSS

statistic calculated as presented in table 5.3 below. These RSS statistics are

directly comparable with the RSS statistics presented for the actual cull models as

given in table 5.2 above.

Table 5.3
The RSS Statistics For Actual Culling Derived From the Estimated Restricted and

Unrestricted Forms of Econometric Models For the Cull percentage Variable.

RESTRICTIONS 10 RS.S
Unrestricted 417.4
ARI (Beech-Mac) 583.9
Al = - ( Aa * BI ) 427.6

Al = - AO 525.1

Comparing the RSS statistics of tables 5.2 and 5.3, the results are similar in that it

is the Al = - ( Ao * B I )restriction which is the most valid and the pure ARI

specification which is the least valid as measured by the increase in the RSS from

that of the unrestricted model. Three of the four comparisons with the equivalent

statistics in table 5.2 indicate that the fitted values from the actual culling models

are a better fit to actual cullings than the converted fitted values from the cull

percentage models. The exception to this is the Beech-Mackinnon ARI

specification, for which the RSS statistic of 583.9 is 15% lower for the fitted

values from the cull percentage models than those produced by the AR 1 model

for actual culling. This ARI model is the equivalent of the model derived by

Savin, except that it does not contain her methodological errors and the model has

been estimated using Beech-Mackinnon rather than the two-stage Durbin-Watson

procedure. The results of the analysis imply that Savin may well have been able to

improve her model had she not restricted her model fully by use of the two-stage

procedure.

10. The parameters used to define the restrictions come from equation 5.5.5
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Because the culling percentage dependent variable takes values between zero and
unity by definition, the decision was taken to estimate the unrestricted model
expressed in its general form in equation 5.5.5, using a logistic transformation of

<

the dependent variable. The theory of the logistic model and the estimation of the
model is outlined in the following section.

5.6 A Logit Model For Cull Percentage
5.6a The Theory of Logit Modelling

Savin's approach was to model culling as a percentage of the breeding herd at the
previous census. Because the dependent variable is a percentage it can only take
values within the unit range and this creates some problems for OLS estimation as
discussed below. Thus it was decided that it would be appropriate to attempt a
Logit approach to model the cull percentage. 11 This technique allows explicitly
for a dependent variable which is defmed only on the unit interval. Let F represent
the vector of n sample proportions fi, that is, the number culled divided by the
total number in the one period lagged breeding herd. The model to be estimated is
given as follows.

fi =Xi'~ + ui

= <I>i + ui , say

for i = 1,2,.....,n;

(5.5.7)

where xi is a (kx 1) vector of explanatory variables, ~ being a (kx 1) vector of
unknown parameters and ui is a disturbance term. Ordinary least squares

estimation of the above expression yields the linear probability estimator of ~,
denoted, b. The problem with using OLS estimation is twofold: firstly, although it
is appropriate to assume that the disturbances have zero mean, the variance of u,

E[u2] = W= cl> ( 1- cl> )/n, dropping observational subscripts, and thus the model is

heteroskedastic resulting in inefficient OLS estimates of ~. The heteroskedasticity
problem is overcome by use of feasible generalised least squares (GLS)
estimation, where each of the dependent and independent variables are weighted,
that is, multiplied by the reciprocal of the square root of w, where unknown
parameters in ware replaced by b. OLS can then be performed on the

transformed variables producing asymptotically efficient estimates of ~.
Secondly, there is no guarantee that OLS, or indeed GLS estimation will produce

11. For a discussion of the reasoning and theory of logit models see Judge et al.
(1982).
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fitted values which lie within the unit interval. Not only is this unfortunate, but

GLS may not even be operational since there is no reason why OLS estimation

should not produce negative estimates of the variance of u.

The way that the logit model imposes the required constraint on the estimated

values of cl>IS to equate cl>with the following expression.

cl>i= 1/ {I + exp ( - x i' ~ )} (5.5.8)

Because exp( -z) is always greater than zero, the denominator in the above

expression is always greater than unity and, therefore, cl>ialways lies within the

unit interval.

An estimate of f can be obtained by employing non-linear least squares on the

original regression, however, it is easily shown that the logistic transformation

Log {cl>/(1-cl»} is equal to Xi' ~ and hence, OLS regression of the logistic

transformation can be used. Letting y = Log {f / (I-f)},

Yi= Log{ <1>./(1-<1>.)} + e. =
III

x·' R+e··1 jJ 1 , (5.5.9)

which is valid as long as f * 0 or 1.

Zellner and Lee (1965) show that Var(e) is given by l/n ( <1>(1-<1>», - denoted by

uv -and so the steps to modelling a limited dependent variable can be described

as follows:-

i, Generate values for the logistically transformed variable Yi using the

observed sample proportions fi.

ii. fit equation 5.5.9 by OLS.

iii. generate V by firstly generating <1>using the fitted values obtained from the

OLS regression in step 2.

iv. do weighted, (generalised), least squares regression using the square root of

V as weights.

S.6b The Logit Cull percentage Model Estimated
The procedure outlined above was applied to the cull percentage variable using

the unrestricted model specification generalised in equation 5.5.5. The model was

estimated for the logistically transformed variable Ytdefined as;

(5.5.10)

The model fitted has an adjusted R-square value equal to 0.85 and a Durbin-
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Watson statistic of 2.16, and all the estimated parameters were significant or

almost significant at the 5% level. The fitted values were transformed, firstly into

fitted values for the cull percentage variable MHBt and then into fi!ted values for

actual cullings. The latter were compared with the actual recorded culling
--

numbers and an RSS statistic of 405.5 resulted. This statistic compares directly

with the 417.4 for the RSS derived from the fitted values of the non-logistic

MHBt model as presented in table 5.3, and indicates, therefore, that the logistic

transformation model gives a slight improvement to the explanatory power of the

unconstrained model. On the basis that the actual culling models are on the whole

better at modelling culling than the equivalent cull percentage models, and given

that the logistic approach would appear not to improve the explanatory power of

the cull percentage approach sufficiently enough to improve on the performance

of the model for actual culling, the latter are deemed to represent the best class of

forecast models for the trimestic culling data and the decision not to pursue the

logistic approach further was taken. In addition to the above reasons, the actual

culling models are less cumbersome to use as forecasting models in that they do

not require transformations of variables in order to model and derive the required

forecasts. Of the models for actual culling, the best restricted form of model is the

non-linear least squares model as given in equation 5.5.4, in which the parameter

on the profit variable lagged one period is restricted to equal the negative of the

product of the parameters on the lagged dependent variable and profit at time t.

This model is therefore chosen as the best econometric model for forecasting

trimestic culling.

5.7 Conclusions

In this chapter, having taken a theoretical look at an economic system for the

breeding herd in an equilibrium framework, a recursive forecasting model of the

breeding herd has been developed by modelling investment - inflow - in the form

of the pregnant gilt herd and outflow - scrapping - in the form of culling. Various

approaches to modelling the two key variables have been considered and

compared with the approaches taken by the MLC and Savin, on whose model the

MLC model is based. For both the derived pregnant gilt and culling models, the

chosen specification was viewed as an unconstrained form of autoregressive

model, and as such, various autocorrelation restrictions were imposed on the

models to ascertain the validity of the restrictions. Not only did such restrictions

help to identify the nature of the autocorrelation in the models but the parameter

restriction released degrees of freedom, which could be helpful, given that the
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number of observations is not large.
The various approaches and restrictions were compared in terms of the estimated
models' RSS statistics, which were directly comparable given that the estimation
period and included dummy variables were the same for all compared models.
Both the culling and the pregnant gilt models explicitly included a biological
element in the form of the breeding herd lagged an appropriate period. The model
chosen for the pregnant gilt herd is the most restrictive ARI model estimated
using the Beech-Mackinnon maximum likelihood technique. On the other hand,
this appears to be the least satisfactory restriction for the cull model. The best
model for the latter variable is the one in which only the parameter on the lagged
profit variable is constrained, as estimated by non-linear least squares. A logistic
modelling approach for limited dependent variables proved to give little or no
improvement and was therefore rejected in favour of the existing models. Before
proceeding to forecasting, a brief summary is given of some of the economic
implications of these gilt and culling models. In particular, ignoring seasonality
and assuming the system to be in equilibrium with a profit ratio of 100, a one
percent sustained one unit increase in the profit ratio implies a short run increase
in gilts of 0.798 and a decrease in culling of 0.818. These two effects cause a 1.65
increase in the breeding herd which implies a short run supply elasticity of 0.2.
This figure, though not directly comparable, is in line with equivalent short run
elasticities produced by other studies, for example, Westcott (1985), and
McClements (1971). The long run elasticity is constrained to take a value of unity
because of the proportional specification of the model. There is convergence to a
new equilibrium, half the change being made within one year of the initial change
in profit. The new eqilibrium position is obtained through both the short term
effects of profits increasing inflow and decreasing culling resectively, followed by
the longer term effect of the increase in the breeding herd increasing both inflow
and culling. The net effect on culling becomes positive at a point between the fifth
and sixth period after the initial change in profit. Of course I have abstracted here
from the fact that increase in the breeding herd will eventually increase the
number of clean pigs available which will then produce a fedback effect on
profits. Long run elasticities calculated by Jones (1958) and McClements (1971)
measure between 2 and 2.5.
The two chosen models can now be used in combination with the expression for
the breeding herd, given in equation 5.2.2, to produce trimestic forecasts of the
breeding herd which can then be compared with those of the univariate statistical
models developed in chapter three and the biological model of chapter four.
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CHAPTER SIX

MONTHLY UNIVARIATE BOX-JENKINS MODELS FOR CULLING,

FAT PIG SLAUGHTER AND PRICES

6.1 Introduction
In this chapter, the Box-Jenkins univariate time series methodology outlined in

Chapter Two and used in Chapter Three to build models for the quarterly breeding
herd data is applied again to build monthly models. Seasonality is now a monthly

phenomenon so that a seasonal difference, for example, is achieved by taking a

twelfth and not a fourth difference. Five monthly series are modelled; the two

slaughter categories, sow and boar cullings and fat pig slaughter; the two price

indices, real average all pig price, AAPP, and the real compound pig feed price,

which are used to derive a profit ratio for the industry throughout the thesis, and

the final series is the profit ratio itself.

Because of the need to look at real rather than nominal AAPP and Compound feed
prices, a deflator was required. The first deflator considered was an index of

agricultural input prices, 'prices of the means of agricultural production - goods

and services currently consumed'. Although the data were obtained and models

built using this deflator, the results of model building provided no obvious

improvements over similar models built using the RPI deflator. Since forecasts of

the RPI are readily available from external sources, the decision was made giving

preference to the use of the RPI deflator, thereby reducing the number of variables

to be forecast by one. Thus, whenever real prices are referred to, the deflator is
always the RP! with a base year of 1980.

The rationale for building the slaughter models is to derive forecasting models, the
results of which can be compared with the equivalent biological models built in

chapter four, and bivariate Box-Jenkins models including profit as the explanatory

variable to be built in the following chapter. For the time series models it is their

short term forecasting abilities which are expected to be particularly useful. The

price index and profit models are of interest because they will provide a simple

technique for forecasting the said series, the forecasts then being available to

provide data which can be used by the models including profit as an explanatory

variable to produce longer term forecasts of inflow and outflow to and from the
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breeding herd. The penultimate section in the chapter compares the forecasting

ability of the profit model compared with the forecasts of the profit ratio derived
by forecasting the AAPP and the compound feed price and dividing the former by

the latter.

The univariate slaughter models and the profit model will play an integral part in
the identification and estimation of the bivariate models for the two slaughter

categories discussed inchapter seven.

The models are presented in a similar fashion to the quarterly univariate models of

chapter three. Only the first of the models, that for culling, is described in detail in

order to give the reader an insight into how the Box-Jenkins methodology is

applied to monthly rather than quarterly data. The models are built on the sample

period 1975-1985 in order to make them compatible with the biological and

econometric models. The data for 1985 are used as an in-sample forecast period for

diagnostic checks and the following two years provide an out-of-sample period. A
list of all the data used in the analysis in this chapter is presented in appendix 6.

6.2 A SARIMA Model For The Culling Of Sows and Boars

The series 'cullings' refers to the culling of sows and boars from the breeding

herd. In the previously developed biological model, this series is an important

factor in determining the future size of the breeding herd in that it is a measure of

outflow from it. The culling data are collected on a monthly basis by M.A.F.F.,

and are available from 1968:1 to 1987:12.

In order to compare the results of the chosen Box-Jenkins SARIMA model with
those of the biological model, the model is to be identified and estimated on the

sample 1975:1-1985:12. Because of the way the data are collated, some of the

figures represent cullings from a 5 rather than a 4 week month, giving the
impression of a larger number of cullings in certain months. To remove any

problems that this might cause, the data are adjusted by taking 4/5 of the culling

figure for a 5 week month so that all months represent 4 week periods. Since the

data are monthly there are no degrees of freedom problems and the data for 1986-

87 provide a comparison period for the out-of-sample forecasts.

The SARIMA model is built using the same methodology as that used to build the
quarterly models, except that autocorrelations up to lag 40 are examined, and the

Q-statistic represents the first 25, as opposed to the first 20, residual

autocorrelations in order to catch any omitted seasonal effect likely to show itself
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at and around lag 24.
Figure 6.1

A Plot Of The Monthly U.K. Sows and Boar Culling Series 1975:1-1987:12
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The plot of the sows and boars culling series from 1975:1-1987:12 looks

reasonably stationary, although there is evidence of a slow downward trend,

halted only by a relatively large increase in cullings peaking in May/June of 1983.

This period corresponds closely with the peak culling period of the Aujezky

disease eradication campaign. This heavy culling period is followed by a

pronounced fall in cullings, the figures falling to their lowest point in December

of 1984 when only 20,000 sows and boars were culled. The cullings in 1985 and

1986 show a much more stable series. It is difficult to tell from the plot whether

or not seasonality is present in sow and boar culling.The autocorrelations

resulting from the Box-jenkins identification procedure are reproduced in table

3.10.
The autocorrelations of the series in levels indicate non-stationarity in that they

die away very slowly, most of the autocorrelations up to and including lag 26

being significantly large. Those of the first differenced series indicate stationarity

at the non-seasonal lags, however, the autocorrelations at the seasonal lags 12,24

36 etc. die away only slowly, implying seasonal non-stationarity. To remove this

problem a seasonal difference was taken in addition to the first difference already

used.
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Table 6.1
Autocorrelarions For The Sows and Boars Cullin~ Series.

SERIES AUIQCQRRELA TIQ~S
2 3 4 5 6 7 8 9 10

(1-B)0(1-BI2)0 M .74 .62 .53 .48 .36 .23 .19 .17 .02 -.08

(I-B)I(I-BI2)0 M -.24 -.10 -.04 .12 .01 -.15 -.06 .27 -.11 -.14

(1-B)I(I-BI2)1 M -.12 .11 .14 -.20 .17 .01 -.08 .19 -.10 -.05

SERIES AUTOCORRELATIONS
11 12 13 14 15 16 17 18 19 20

(I-B)0(1-BI2)0 M -.10 -.05 -.23 -.30 -.32 -.29 -.35 -.38 -.33 -.26

(1-B)I(I-BI2)0 M -.17 .44 -.18 -.11 -.11 .21 -.07 -.16 -.05 .20

(1-8)1(I-BI2)1 M .03 -.53 .04 -.07 -.04 .01 -.08 -.06 -.02 -.07

~ AUTQ!:;ORRELATIQ~S
21 22 23 24 25 26 27 28 29 30

(1-8)0(1-BI2)0 M -.28 -.28 -.21 -.06 -.18 -.20 -.16 -.06 -.10 -.12

(1-8)1(1-BI2)0 M -.04 -.14 -.13 .51 -.19 -.09 -.11 .25 -.02 -.10

(1-8)1(1-BI2)1 M -.03 .05 .00 .07 .04 -.02 .01 .08 .02 .03

SERIES A!.1IQ!:;ORREL.A TIQt-1S
31 32 33 34 35 36 37 38 39 40

(1-8)0(1-BI2)0 M -.07 -.03 -.08 -.11 -.06 .05 -.08 -.07 -.06 .00

(1-8)1(1-812)0 M .02 .15 -.02 -.18 -.14 .44 -.22 -.03 -.09 .16

(1-B)I(1-BI2)1 M .01 .00 .10 -.09 -.09 .09 -.12 .06 -.01 -.11

The correlograms of the differenced series illustrate the need for seasonal

parameters, although there are also relatively large auto and partial

autocorrelations at lags which are multiples of 4. As the autocorrelation at lag 12

is so dominant, and the partials at lags 12 and 24 are also large, the initial

identification was that of an SMA model of order one.Although the parameter

coefficient was highly significant, the Q-statistic at lag 25 indicated that the

residuals were not from a white noise process, and consequently the model

required augmentation. The residual autocorrelations at lags 4 and 12 were

significantly large when compared with a Quenouille statistic of 0.183. This

residual autocorrelation pattern, and the correlograms of figure 6.2 suggested that

the appropriate overfit was an SAR parameter.

Estimation of the augmented model shows the additional parameter to be

significant and its inclusion has the desired effect of removing all significant

residual autocorrelations at seasonal lags.
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FIGURE6.2
The Correlograms of the Series (l-B)1(l-B1211M_.
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The sole remaining problem was the residual autocorrelation at lag 4 which
verges on significance. Although not a seasonal lag, the fact that four months is
the approximate length of the gestation period in pigs justified the decision to
further overfit the model with an AR parameter at lag 4. The laner augmentation
proved to be the final adjustment to the model.
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Table 6.21
The Results of Model Estimation of The Cullin~ Series.

MODEL lli-~AMfL~
"'1

d D p P q Q R.S.S. Q'25 P'25-k CMSFE UMSFE Ra
1 1 4 1 0 1 386.1 12.95 93.5% 0.25 0.42 -0.00

RESIDUAL AUlPCORRELATIONS.

lAG 1 2 3 4 5 6 7 8 9 10
AUTOCORRElATIONS -.02 .09 .02 .03 .08 -.10 .06 -.01 -.08 -.01

lAG 11 12 13 14 15 16 17 18 19 20
AUTOCORRElA TIONS .01 .08 -.03 -.06 -.06 .05 -.07 -.11 .02 -.10

lAG 21 22 23 24 25 26 27 28 29 30
AUTOCORRELATIONS -.02 -.05 -.01 -.02 -.10 -.02 -.01 .06 .01 -.02

RESULTS OF THE ESTIMATION OF THE SEASONAL DUMMY MODEL ON FIRST DIFFERENCES.

DUMMY VARIABLE
COEFFICIENT
T-STA TISTICS

2 3 4 5 6 7 8 9 10 11 12
2.2 1.64 -.45 -2.64 .73 .18 -1.82 -.09 2.73 -.09 1.45 -4.27
3.8 3.0 -.83 -4.8 1.3 0.3 -3.31 -.17 4.96 -.17 2.65 -7.8

RSS = 395.8 IN-SAMPLE FORECAST RESULTS
CMSFE = 0.73
UMSFE = 8.07

The estimated model in equation 3.5.1. illustrates the significance of each of the
included parameters at the 5% level, ( tl20·975 = ±1.98, tl20·995 = ±2.62 ). The
residual sums of squares of the estimated model is 386.1 and none of the residual
autocorrelations is significant. The Q-statistic at lag 25 has an associated P-value
of 93.5% providing a good indication that the residuals as a whole are white
noise.

( 1+ 0.22 B4)( 1+ 0.36 BI2 )( 1-B )(1 - B12) Mt = ( 1 - 0.85 B12) et.
(2.5) (4.5) (-22.3)

(6.2.1)

Table 6.2 also gives the results of having fitted Harvey's seasonal dummy model
on the first differences of the culling series. Harvey's model has an RSS of 395.8,
which is slightly higher than that of the SARIMA model and the comparison of

the two yields a Harvey 'Rs2 value of -0.0007. The latter statistic is negative
because the SARIMA model uses more degrees of freedom. Seven of the twelve
seasonal dummies are significant at the 1% level, (t119·995= ±2.62). Although
1 RSS = Residual sums of squares.

Q.25 = BOlt-Pierce Q-Statistic for residual auto-correlations up to lag 25.
P20-k = Probability value for Q-statistic at lag 20 in a model containing k parameters.
CMSFE =mean square error of conditional forecasts.
UMSFE = mean square error of unconditional forecasts.



Page 6-7

the Rs2 statistic shows that the SARIMA model is marginally worse at fitting the
data than the seasonal dummy model, the MSFE statistics for the 12 in-sample
forecasts for 1985 suggest that the SARIMA model is better at forecasting the in-
sample period. The latter comparison of the in-sample forecasting abilities is of
interest because forecasting evaluation is the primary concern of this thesis.

Figure 6.3
a. The Conditional and Unconditional In-Sample Culling Forecasts For 1985 From

The SARIMA Model Estimated On 1975:1 to 1985:12
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b. The Conditional and Unconditional Out-of-Sample Culling Forecasts For 1986-

87 From The SARIMA Model Estimated on 1975:1-85:12.
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Figure 6.3a illustrates good conditional and unconditional forecasts for the in-
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sample period produced by the Box-Jenkins model. The superiority of the

SARIMA model's in-sample forecasting over that of the seasonal dummy model,

however, is not repeated in the out-of-sample forecasts for 1986n. The

unconditional forecasts have a MSE of 10.1 which compares with 8.07 for the

seasonal dummy model. Both models unconditionally under-forecast culling in

1986n, a fact which is almost certainly a result of the depressed state of the market

in the latter part of the sample space. Having said this, the figure shows that the

SARIMA model forecasts the underlying seasonality very well. There is little

difference in the MSE statistics for the conditional forecasts from the SARIMA

model and the Harvey model for the out-of-sample period, having respective

values of 3.01 and 2.79.

6.3 A SARIMA Model For Fat Pig Slaughter
Data for the slaughter of fat pigs are also collated on a monthly basis, and again the

data have been adjusted to iron out the effects of 5 week months. Although data

are available from 1968 onwards, the model is again estimated on the sample

1975:1-1985:12. The plot of the series shows an upward trend over the given

period, with obvious seasonal influences, such as the increase in slaughterings in

the month of November, presumably to meet the increase in demand for pig meat

over the Christmas period.
Figure 6.4

A Plot Of The U.K. Monthly Series: 'Fat Pig Slaughter'. 1975:1-1987:12
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As with the Culling series, both a first and a seasonal difference had to be taken in
order to arrive at correlograrns which indicated stationarity. The identified model



Page 6-9

consisted of an MA and an SMA parameter, both of which were significant at the
1% level, producing an RSS value of 95,205.

Table ~.32
The Results of Model Estimation of The Fat Pig Series:- 1975:1 - 1985:12,

MODEL lli-SAMfLe
Al

d D P P q Q R.S.S. Q'25 P'25-k CMSFE UMSFE R,
1 1 0 0 1 1 95,205 19.2 68.8% 245.1 557.3 -.05

RESIDUAL AUTOCORRELATIONS.

LAG 1 2 3 4 5 6 7 8 9 10
AUTOCORRELATIONS -.04 -.06 .06 .01 .06 -.02 .08 -.07 .09 -.15

LAG 11 12 13 14 15 16 17 18 19 20
AUTOCORRELATIONS .03 -.05 -.07 -.10 -.06 -.08 -.05 .04 -.16 .03

LAG 21 22 23 24 25 26 27 28 29 30
AUTOCORRELATIONS -.09 -.02 .13 -.05 -.05 .05 .05 .04 .09 .00

RESULTS OF THE ESTIMATION OF IHE SEASONAL DUMMY MODEL ON FIRSI DIFFERENCES.

DUMMY VARIABLE 1 2 3 4 5 6 7 8 9 10 11 12
COEFFICIENT -30.8 38.0 1.0 -41.0 2.4 -.9 -19.6 8.8 78.9 2.8 41.5 -68.8
I-STATISTICS -3.5 4.5 0.1 -4.9 0.3 -0.2 -2.3 1.1 9.4 0.3 4.9 -8.2

RSS =91.980 IN-SAMPLE FORECAST RESULTS
CMSFE = 181.7
UMSFE = 357.9

Of the first 12 residual autocorrelations, only that at lag 10 is greater than 1
standard error away from zero as measured by the Quenouille statistic. The Box-
Pierce Q-statistic at lag 25 is 19.22 which, having a P-value of 68.8%, gives a
good indication of white noise residuals. Although models containing AR and
SAR parameters were estimated, they provided no improvement to the model
presented in equation 3.6.1, either in terms of parsimony or forecasting ability,

( 1- B)(1 - B12) FPt = (1- 0.295 B)( 1 - 0.87 B12) et.
(-3.33) (-28.0)

(6.3,1)

The seasonal dummy model on first differences provided a model with an RSS of

91,980 which is lower than that of the SARIM:Amodel, resulting in an R,,2 value
of -0,05. Seven of the twelve seasonal dummies are significant at the 5% level,
the December dummy indicating a fall in slaughterings of 68,818 from the high

2 See footnote 1
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level of November. Unlike the Culling model, the SARIMA model for fat pig

slaughterings was not as good as the seasonal dummy model when comparing the
MSE statistics from the in-sample forecasts.

Figure 6.5.
a The Conditional and Unconditional In-Sample Forecasts of Slaughterings For
1985 From The SARIMA Model Estimated Qn The Sample 1975:1 to 1985:12
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b. The Conditional and Unconditional Qut-or-Sample Forecasts of Slaughterings
For 1986-7 From The SARIMA Model Estimated on 1975:1-1985:12.
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Figure 6.5a illustrates that both the conditional and the unconditional forecasts pick

up the seasonal trends in the slaughtering series for 1985 very well. The plot in

figure b shows a very similar seasonal pattern in slaughterings in 1986 and 1987 to

that seen in 1985. Again, the model forecasts the seasonality in the slaughtering
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reasonably well for the out-of-sample period, the conditional and the unconditional
forecast MSE statistics being 573.9 and 767.4 respectively. The equivalent
statistics for the seasonal dummy model on first differences are 806.6 and 799.2
respectively, so that the Unconditional forecasts have an MSE statistic which is
slightly lower than that of the conditional forecasts. These figures imply that the
SARIMA model is the better forecasting model for the out-of-sample period, the
reverse of what was the case in the in-sample period of analysis.

6.4 A SARIMA Model for the Real AAPP Index Deflated by the RPI
The publication of the AAPP began in June 1975. Figures for the first five months
of 1975 are derived using the original series 'Monthly Average Returns For All
Pigs' - (£ per score dw), as described earlier. Having said this, it could be argued
that the first 10observations in both the feed price and the AAPP series' appear to
be somewhat out of line with the subsequent data. On the grounds that the market
was still being affected by the world commodity price increases of 1974, the
decision was made to identify and estimate the three univariate price models on the
sample space 1976:1 to 1985:12 inclusive. Consequently, the Harvey seasonal
dummy model is also estimated on the shortened sample period.

FIGURE6.6
Plot of the Real AAPP Index 1975:1-1987:12
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The plot of the index shows that the real AAPP has been declining steadily since
1975. There is a relatively large fall in 1976 which is almost certainly one of the
contributing factors for the imposition of the 5.5p per kg dw subsidy on pig meat
in the first half of 1977. Although there were signs of a recovery in the index in
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1983 and 1984, there was another minor slump at the turn of 1984 and 1985, after

which the index continues to decline. Although it is difficult to see any recurring

general seasonal pattern in the plot, there are signs that the AAPP falls at the turn

of most years .

..The identification stage of the Box-Jenkins procedure indicated that both a

seasonal and a first difference were required to satisfy the conditions of stationarity

in the correlograms. The model identified and estimated was one containing 1 AR

and 1 SMA parameter. The results of estimation are presented in equation 4.2.5.

( 1 - 0.2856 B) ( 1- B) ( 1- B12) AAPPt = (1- 0.8559 B12) et.
(3.06) (22.0)

(6.4.1)

The size of the residual autocorrelations are not as satisfactory as they might be,

in particular the value of -0.21 at lag 13 which is significant when measured

against the Quenouille statistic. Much searching and overfitting failed to provide a

model which performed better in terms of the diagnostic checks. The Box-Pierce

Q-statistic of 22.87 at lag 25 has an associated P-value of 46.8 so that the null

hypothesis of white noise residuals cannot be rejected until the 47% level, thereby

implying residuals consistent with white-noise. The Harvey model confirms the

notion that prices fall in December, and fall significantly in January and February,

April June, July and August. Significant increases in prices occur in September

and October. A comparison of the RSS of the SARIMA and the Harvey dummy

models produces an R.2 value of -0.075, implying a 7.5% better fit for the Harvey

model,

The in-sample forecasting results, as expressed by the conditional and

unconditional MSFE are slightly better for the Harvey model than they are for the

SARIMA model.
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Table 6.43

The Results of Model Estimation For The Real AAPP Index

Estimated on 1976:1 - 1985:12.

MODEL

d DpP q Q R.S.S. Q'25

1 1 1 0 0 1 484.5 22.87

IN-SAMPLE

P.25-k CMSFE UMSFE

46.8 2.95 61.19

"':1
R.
-.075

RESIDUAL AUTOCORRELATIONS.

LAG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AUTOCORRELATIONS -.01 -.00 -.02 -.14 -.00 .09 -.04 .06 .06 -.06 -.08 -.01 -.21 -.07 .05

LAG 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

AUTOCORRELATIONS -.12 .02 .10.06 -.01 -.13 -.19 .03 .01 -.02 .08 .11 .09 -.05 -.02

RESULTS OF THE ESTIMATION OF THE SEASONAL DUMMY MODEL ON FIRST

DIFFERENCES.

DUMMY VARIABLE 1 2 3 4 5 6 7 8 9

COEFFICIENT -3.42 -1.58 -.65 -1.53 .27 -151 -2.2 -1.33 2.03

T-STATISTICS -5.0 -2.41 -.99 -2.34.41 -2.3 -3.36 -2.03 3.10

10 11 12

3.29 0.97 -56

5.02 1.48 -.85

RSS =459.2 IN-SAMPLE FORECAST RESULTS

CMSFE = 259

UMSFE = 33.5

The unconditional SARIMA forecasts over-forecast the actual figures although
they pick up the seasonal movements in the actual series very well. As one would
expect, the conditional MSFE is smaller than the equivalent unconditional statistic
for both the Harvey and the SARIMA models, although the conditional SARIMA

forecasts also over-forecast in the first quarter.

3 See footnote 1
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Figure 6.7
a The Conditional and Unconditional In-Sample Forecasts Of The Real AAPP

For 1985 From The SARIMA Model Estimated On 1976:1 to 1985:12
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b. The Conditional and Unconditional Out-of-Sample Forecasts of The AAPP For

1986-87 From The SARIMA Model Estimated on 1976:1-1985:12
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The relative forecasting performances of the Harvey and the SARIMA models are
reversed when it comes to the more stringent test of forecasting the out-of-sample

period. The UMSFE of9.53 for the SARIMA model compares very well, not only

with the equivalent statistic for the in-sample period, but also with the out-of

sample equivalent for the Harvey dummy model which takes a value of 14.31.
Having said this, there is a tendency for the unconditional forecasts to under-
forecast much of 1987. Apart from the odd hiccup, the one-step conditional
forecasts from the SARIMA model forecast very favourably in the out-of sample
period. The CMSFE of 2.945 is as good, if not slightly better than the same
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statistic for the in-sample period, but even more significantly, it is an
improvement on the equivalent statistic of 3.51 produced by the Harvey mode1.

6.5 A SARIMA Model for the Real Compound Feed Price Index Deflated by RPI

The plot of the series shows a real price which has fallen steadily over the period

of estimation with no obvious seasonal pattern observed. There is a sharp drop in

real prices at the very start of the sample period in 1975 and another sharp fall

starting in the July of 1977, which is the period immediately following the end of

the 1977 subsidy on fat pig prices. The real price of feed increases during the

Aujezky disease eradication campaign. One other noticeable decline in the index

is experienced in the latter half of 1984, after which the index continues to decline

but at a decreased rate.
Figure 6.8

A Plot of the Compound Feed Price Index:- 1975-87 (1980=100)
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The index was put through the Box-Jenkins identification procedure, the
autocorrelations of the raw series showing obvious signs of non-stationarity. The
autocorrelations died away only very slowly, and the partial autocorrelation at lag

one was virtually equal to unity. Taking first differences of the raw series
produced correlograms which indicated that stationarity had been obtained

without the need for a seasonal difference. The resultant model, identified on the

first differenced series, was one containing an AR and a second order SAR

parameter - the SAR parameter at lag one being constrained to a value of zero.

( 1- B) (1 - 0.5082 B) (1- 0.3635 B24) CFt = et.
(6.38) (4.38)

(6.5.1)
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Both the included estimated parameters are highly significant as measured by the
t-statistics; the regression having a RSS statistic of 262.3. The Q-statistic of 21.71
for the first 25 residual autocorrelations has an associated P-value of 53.8 giving
almost conclusive evidence for accepting the null hypothesis of white noise
residuals. The results of the diagnostic checks are presented in the table below
along with the results of having estimated the Harvey seasonal dummy model.

Table 6.54
The Results of Model Estimation of The Index for Compound Feed Prices

Estimated on the Sample Period 1976:1 - 1985:12.

MQDEL IN-SAMPLE
CMSFE UMSFE

"1
d D P P q Q R.S.S. Q'25 P'25-k 1\
1 0 1 2 0 0 262.3 21.71 53.8% 2.78 34.8 0.22

REsm!.!AL AUTQCQRRELATIQNS.

LAG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
AUTOCORRELATIONS .02 -.04 -.04 -.01 -.06 -.10 .05 -.04 .01 .10 .12 -.03 -.01 -.12 -.15

LAG 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
AUTOCORRELATIONS -.15 -.07 -.02 .07 .04 .09 -.06 .07 -.14 -.09 .01 -.06.00 .05 .20

RESm.. TS QF THE ESTIMATIQN QF THE SEASQNAL D!.!MMX MQDEL QN FIRST
DIFFERENCES.

DUMMYVARIABLE 1 2 3 4 5 6 7 8 9 10 11 12
COEFFICIENT -0.16 0.40 0.13 -.77 0.67 0.36 -0.36 -1.62 -1.5 -0.49 0.42 0.59
T -STATISTICS -.28 .75 .24 -1.44 1.25 0.67 -0.67 -3.02 -2.80 -.91 .78 1.12

RSS =307.0 IN-SAMPLE FORECAST RESULTS
CMSFE = 2.07
UMSFE = 7.04

The SARIMA model compares very well with the Harvey seasonal dummy

model, producing an Rs2 value of 0.22. This indicates that the SARIMA model
gives a 22% improvement in fit to the sample data over that of the Harvey model.
The negative coefficients for August and September are the only significant
coefficients in the Harvey model, suggesting that the only significant seasonal
effect on the compound feed price for pigs is the fall in price around harvest time
when the cost of inputs fall.

4 See footnote 1



Page 6-17

Fi~ure 6.9
a. The Conditional and Unconditional In-Sample Forecasts for Compound Feed
Prices For 1985 From The Model Estimated On The Period 1976:1 to 1985:12
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b. The Conditional and Unconditional Out-of-Sample Forecasts for Compound
Feed Prices for 1986-7 From The Model Estimated on 1976:1-1985:12.
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The conditional and in particular the unconditional in-sample MSFE's of the

Harvey model compare favourably with those of the SARIMA model. The
unconditional SARIMA forecasts continually over-forecast the actual1985 figures,

although the forecasts do pick up the seasonal movements in the index in the latter

half of the year quite well. It is low index figures for the first three months of

1985, the result of the relatively sharp drop in the actual index for January which is
the feature not picked up by either of the SARIMA model forecasts in the in-
sample period.
As was the case with the AAPP model forecasts the MSFE's suggest that the
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SARIMA model forecasts considerably better in the out-of-sample period than it
does in the in-sample period, and also out-performs the Harvey dummy model. The

unconditional 24-step forecast from the SARIMA model is very good at picking up
both the general and the seasonal trends in the index, although they show signs of

over-forecasting in the last five months of 1987. The ability to forecast the out-of-
sample period well is reflected in the UMSFE of 1.29, an average absolute error of

slightly more than one percent of the average for the index for the given forecast
period. The latter figure compares favourably with the equivalent 1.85 of the

Harvey model. As one would expect, the conditional one-step forecasts are an

improvement over the unconditional forecasts, the CMSFE of the SARIMA model

forecasts taking a value of 0.94. This figure is matched by the same statistic for

the Harvey model forecasts.

6.6 A SARIMA Model For The Ratio of AAPP and Pig Compound Feed Price

The plot of the profit ratio - 'PR' - index illustrates that the series exhibits a general

downward trend from 1975 onwards and no obvious seasonal pattern is

discernible. The ratio is very volatile during the first 18 months of the sample

period and specifically so during the first five months of the sample space, a time

period which includes derived figures for AAPP. In order to remove the possibility

of the derived data affecting the size of the estimated coefficients, the decision was

taken to identify and estimate the model for the profit ratio on the period 1976:1-

85:12 as was the case with the AAPP and compound feed price index models.

Fi~ure 6.10
Plot of the Ratio of AAPP to the Compound feed price 1975:1-87:12
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The raw data required both a first and a seasonal difference before the
correlograms indicated stationarity. The identified model contained one AR
parameter and and one SMA parameter, the results of estimation being given
below.

( 1- B) ( 1- B12 )(1- 0.1854 B) PRt= (1- 0.8600 B12) et.
(1.93) (21.9)

(6.6.1)

The AR coefficient is on the verge of significance at the 5% level and the SMA
coefficient is very highly significant. None of the residual autocorrelations is close
to being significant, and the Q-value of 17.4 at lag 25, which has an associated p-
value of 79.0, provides positive evidence that the residuals are nothing other than
white-noise. The RSS of 1132.7 does not compare very favourably with the

Harvey seasonal dummy on first differences model, the R,2 value implying a 13%
superior fit for the Harvey model. The negative January and February coefficients
and the positive September and October coefficients are the only significant
seasonal dummy coefficients in the Harvey model.

Table 6.65
The Results of Model Estimation For The Ratio of AAPP and Pig Compound Feed

Price Estimated On The Sample 1976:1 - 1985:12.

MODEL IN-SAMPLE
d D P Q R.S.S. Q·25 CMSFE UMSFE

"1
P q P'25-k 1\

1 1 1 0 0 1 1132.7 17.4 79.0 8.9 54.9 -0.13

RESIDUAL AlITQCQRRE!.AIIQNS.

LAG 1 2 3 4 5 6 7 8 9 10 -II 12 13 14 15
AUTOCORRELATIONS -.11 .06 -.00 -.07 -.12 .12.00 .03 .02 -.09 .04 -.07 -.09 -.15 -.05

LAG 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
AUTOCORRELATIONS -.13 .03 -.05 .11 .05 -.05 .01 -.01 -.06 -.05 .08 .08 .07 -.01 .02

RESULTS QF TIIE ESTIMATIQN QF THE SEASQNAL DUMMY MODE!. QN FIR.ST
DIFFERENCES.

DUMMY VARIABLE
COEFFICIENT
T-STATISTICS

RSS = 1018.5

1 2 3 4 5 6 7 8 9 10 11 12
-3.13 -2.02 .34 -1.78 -.44 -1.59 -1.77 0.09 3.36 3.81 .60 -1.13
-3.0 -2.1 .35 -1.82 -.45 -1.63 -1.81 .09 3.4 3.9 .61 -1.16

IN-SAMPLE FORECAST RESULTS
CMSFE = 6.32
UMSFE = 28.1

The in-sample conditional and unconditional MSFE statistics from the Harvey
model are smaller than the equivalent statistics from the SARIMA model. The

S See footnote 1
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unconditional SARIMA forecasts over-forecast the actual figures for all except
the January index. The conditional forecasts are relatively good although the

model fails to forecast the sharp fall in profits in February and March.

Figure 6.11
a. The Conditional and Unconditional In-Sample Forecasts Of The Profit Ratio For

1985 From The SARIMA Model Estimated On 1976:1 to 1985:12
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For 1986-7 From The SARIMA Model Estimated Qn 1976:1-1985:12.
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The out-of-sample SARIMA model forecasts for 1986 and 87 are better than the
in-sample forecasts when comparing the MSFEs. The unconditional forecasts pick
up the general movements in profits quite well though the forecasts are
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characterised by over-forecasting from around the end of the 1986. The MSFE
statistics for the unconditional and the conditional forecasts are 13.26 and 4.46
respectively. The equivalent statistics for the Harvey seasonal dummy model are
16.13 and 5.50, indicating the superiority of the Box-Jenkins model over the
seasonal dummy model in the stricter test of out-of sample forecasting
performance.

6.7 Derived Versus Actual Profit Forecasts.
To round off this chapter, the forecasts of the model built in the previous section
are compared with those derived by taking the forecasts of the real AAPP and the
real compound feed price, produced by the models developed in sections 6.4 and
6.5 respectively, and deriving profit ratio forecasts. The analysis is done by
comparing the short term forecasting abilities of the models by analysing the
conditional one-step forecasts in the out-of-sample period. The forecasts, along
with the actual profit ratio index are presented in figure 6.12 below.

Figure 6.12
The Conditional One-Step Forecasts of the Derived Profit Ratio for the Out-Of-

Sample Period 1986-7
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The forecasts in figure 6.12 can be compared directly with those of figure 6.11.
What is immediately obvious from a visual comparison of the two sets of plots is
that they are very similar. The only general observation which can be made is that
is does appear that the derived forecast errors look slightly larger than they are for
the forecasts made from having modelled the actual profit ratio. In order to
quantify the difference in the forecasting abilities of the actual and derived
forecasts, the MSFE of the conditional forecasts was calculated so that it could be

1986 1987 DEC

compared with the value of 4.46. The latter statistic is the CMSFE from having
forecast using the actual profit ratio model discussed in the previous section. The



Page 6-22

calculated value of 5.87 suggests that the direct forecasts are slightly superior to
the derived forecasts for the short term forecasts. This result, coupled with the fact
that it is obviously easier to forecast profits directly using modeI6.6.1, suggest that
the direct route to forecast the profit ratio should be preferred to the ,derived route.

6.8 Conclusions
In this chapter univariate statistical models have been built using the Box-Jenkins
methodology outlined in chapter two. The slaughter and price data which have
been modelled were in monthly form, which made identification of the models
considerably easier than was experience when building the quarterly breeding herd
models of chapter three. The models were estimated over a comparable period to
the biological and econometric trimestic models of chapters three and four,
although the frequency of the data means a much larger number of observations
are available. The price data for 1975 is not included in the identification and
estimation procedures due to its turbulent behaviour, caused by the sharp increase
in world commodity prices at that time. Also, the AAPP was not available at the
start of the sample period although provision was made to deal with this situation.
All five models estimated were both first and seasonally differenced in order to
achieve stationarity, and features common to most of the identified models were
non-seasonal autoregressive and seasonal moving average components. In contrast
to the quarterly breeding herd models, none of the monthly models had cyclical
structures. Most of the series exhibited seasonality, picking up features such as the
increased slaughter in the pre-Christmas period. The presence of seasonality is

almost certainly a reason for the negative Harvey Rs2 statistics in four out of the
five models, the exception being the compound feed model in which seasonality is
least prevalent. Comparing the in-sample and out-of-sample forecasting
performances of the five SARIMA models with those of the Harvey seasonal
dummy models, the latter were on the whole the better in-sample but in the stricter
test of out-of-sample forecasting the SARIMA models came out on top.
At the end of the chapter a brief analysis of the relative forecasting performances
of the profit ratio model and the forecasts derived by forecasting the two
components of the ratio, favoured the use of the ratio model itself both in terms of
forecasting ability and convenience. This univariate model for the profit ratio is,
therefore, used as the sole model for forecasting profits in the thesis, and will be
used every time models including profit as an explanatory variable are used for
unconditional forecasting. In the following chapter, the models developed for the
two slaughter categories and the profit ratio model will be combined to produce
bivariate models using the Box-Jenkins methodology.
The short and longer term forecasting performance of the univariate SARIMA
models compared with equivalent biological and bivariate Box-Jenkins models for
culling and fat pig slaughter will be analysed in chapter eight, the forecasting
chapter.
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CHAPfERSEVEN

BIVARIATE BOX-JENKINS MODELS FOR SOW AND BOAR CULLING

AND FAT PIG SLAUGlITER

7.1 Introduction,

A natural extension of the Box-Jenkins univariate model building methodology

outlined in chapter two is the multivariate Box-Jenkins analysis which utilises the

univariate models built using the same methodology in order to derive models

relating two or more variables. More specifically, a variable Xu is related to past

values of itself through AR terms, past and present values of a second variable X2,t

and past and present values of a moving-average error term e 1t, such as that

illustrated in the transfer function 7.1.1.

ill (B) XI,t = il2 (B) X2,t + il3 (B) ~l.t· (7.1.1)

where B is the usual backshift operator and ~l,t is a white noise error term. It was

deemed appropriate and of interest to consider building such models for relevant

key variables modelled in the thesis, introducing profits as an explanatory variable,

so that the bivariate Box-Jenkins models can be regarded as alternatives to more

traditional econometric approaches. The analysis presented in this chapter, is

confined to bivariate models only, for which the theory underlying the building of

such models is outlined in section 7.2 and discussed more fully in Granger and

Newbold (1977).

Like the univariate analysis, multivariate model building methodology requires

suitably long and consistent time series data in order that a serious attempt at

modelling can be undertaken. Given that the profit ratio and the monthly culling and

fat pig slaughter series have been modelled from 1975 onwards, the bivariate

analysis is confined to this period. Given these two constraints it was not

considered sensible to attempt model identification for the pseudo-quarterly census

data, especially given the possibility of potentially long lags on the profit variables.

The bivariate Box-Jenkins analysis is thus confined to the series for which there are

monthly data, namely, sow and boar cullings and fat pig slaughter.

The models to be built will be of interest in that their long and short term

forecasting abilities can be compared with the other monthly models for the two

slaughter categories built in previous chapters. Ex ante, one would expect the

models to perform as well as, if not better than, the univariate models in the short
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tenn because of the inclusion of the additional profit variable. The medium/long

term forecasting should also be superior to the univariate models for the same

reason, however, forecasts greater than one month ahead require forecasts of the

explanatory profit variable to be made first and as such, the longer term

performanceof the models will depend upon the longer term forecasting ability of

the univariate model for the profit ratio developed in chapter six.

In addition to an interest in the forecasting models themselves, the Box-Jenkins

bivariate model building process has a secondary use in that it helps to identify the

nature of the lags in the relationships between the two variables modelled. Thus, if
the relationships between culling and profits and fat pig slaughter and profits are

unknown a priori, the analysis would be useful in indicating the possible length of

the lags involved in the action of culling/ slaughtering the pigs following a given

change in the level of profits. In the following section, the theory of bivariate Box-

Jenkins modelling is outlined.

7.2 Bivariate Box-Jenkins Modelling:- The Theory.

Much of the theory underpinning bivariate Box-Jenkins methodology is obviously

related to that used in the univariate modelling procedure and as such, the

discussion of the theory of bivariate modelling requires less detailed discussion

than that which was devoted to the univariate methodology of Chapter two. The

terminology and notation used in this chapter follows that used in chapter two.

As is the case in univariate modelling, bivariate/multivariate modelling involves the

three stages of model identification, estimation and diagnostic checking. At the

identification stage of the model building process, univariate models for the

included variables are built and the error terms cross correlated in order to infer

relationships between the variables concerned. Having identified a relationship, the

bivariate model can be estimated using a relevant non-linear estimation package.

The appropriateness of the estimated model can then be checked in a similar fashion

to that for the univariate models by consideration of factors such as the significance

of the estimated parameters and the randomness or otherwise of the estimated

residuals.

A common way of examining the possibility of relationships between two variables

is to examine the degree of linear correlation between them, and so this would seem

an appropriate way to help identify a bivariate Box-Jenkins model. Unfortunately, a

common feature of economic time series is that they are subject to the influences of

time trends, and as such a high correlation coefficient between two variables is very

possibly spurious in that it is largely a result of the two variables trending together
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over time, whether or not they are related to each other. The consequence of this is

that observation of the correlation between Xl,t and X2,t is likely to lead to

mistaken inference, especially where economic data are concemed, A suggested

way to get around this problem is to conduct a transformation of the data referred to

as 'pre-whitening'. Having built a univariate ARMA model of the form,

<I>(B) Xu = O(B) El,t· (7.2.1)

the estimated residuals from estimating the model should, assuming the model has

been identified correctly, exhibit white-noise properties. The significance of this

discussion is that the estimated residual is random and is not, therefore, subject to

influences such as trending, so that the possibility of spurious correlation being

inferred is removed. Given this property, the residual term makes a useful proxy

for the variable Xl,t. This process of transforming a variable into its residual error

term is the aforementioned pre-whitening process, and in the case of the general

ARM A model represented by equation 7.2.1 is achieved by dividing both sides of

the equation by the moving-average polynomial term term O(B) as indicated below.

E = <I>(B) X
It O(B) It

The estimated residuals from any univariate model can thus be used to identify

(7.2.2)

relationships between two variables that one wishes to model. Given a second

univariate model,

<l>(B)X2,t = 9(B) E2,t. (7.2.3)

the two pre-whitened series E1,t and E2,tcan be cross-correlated for an appropriate

number of lags, where the latter is determined by the frequency of the time series

data. More specifically, a monthly model, for example, requires examination of

cross correlations for a larger number of lags than would a model concerned with

annual time series data. In general the values of the cross correlations CORR(EI t ',
E2,t-i) are calculated for both positive and negative values of i in order to observe

the possibility of feedback in the model. As with the univariate models, a general

rule of thumb for measuring the significance of the cross correlations is to count the

Quenouille statistic, that is, (2+ vn) as the accepted critical value for the level of

significance. If, for example the cross-correlation between E1,t and E2,t-j were

larger than the Quenouille statistic, this would suggest that E2,t has a causal effect

on E1,t with a lag of j time periods, and furthermore, this suggests that X2,t has a
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causal effect on X l,t with the same time lag. Thus the central importance of the

cross correlation statistics in the identification of a bivariate Box-Jenkins model has

been illustrated. There is nothing to stop more than one cross correlation being

significant and, moreover, it is possible for correlations to be significant for

positive values of i.Were the latter true, this implies that the causal relationship

runs in the opposite direction to that described in the example above. Where there is

significant cross correlation for both positive and negative values of i, a situation of

feedback is said to exist where the causal relationships run in both directions. If the

cross correlation at lag zero is significant simultaneity is present in the relationship

and the picture is much less clear as far as the implications for the direction of

causality are concerned and, as yet, no theory exists which enables interpretation in

such an event

When feedback is present in a bivariate relationship, the whole process of

identifying and estimating the model, which is likely to contain a large number of

parameters, is made much more complicated. Where feedback does not exist, or

where it is assumed away, the whole process of model building is greatly

simplified, one of the transfer functions reducing to a univariate ARIMA model.

Because I am not concerned with modelling the profit variable itself, the possibility

of feedback will be assumed away, and as such, the remainder of this section

dealing with the theory behind the Box-Jenkins methodology will only consider

uni-directional causality models.

Having observed the cross correlations between ~\t and £2,t-i for positive values of

i, therefore, a general uni-directional causality model between the two pre-whitened

variables can be identified taking the form given in 7.2.4,

(7.2.4)

where ;1 t is the white noise error term and rolCB)is a finite polynomial. The order,

of the polynomials ro2(B) and ro3(B) is inferred by the cross-correlation

identification stage of modelling described above. Having identified the above

transfer function for the pre-whitened variables, the model can be translated into a

model in terms of Xl,t and X2,t in the following way. Substituting for £l,t and

£2,t in 7.2.4 using transformations of 7.2.2 and 7.2.3, the following transfer

function results.

(7.2.5)
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Multiplying through both sides of the equation by 8(B) / ~(B) gives:-

8(B) 0>2(B)<t>(B) 8(B) 0>3(B)
X1•t = ~(B) ffi

1
(B) 8(B) X2.t + ~(B) O>l(B)~l.t (7.2.6)

which is the. final transformation required, the transfer function in 7.2.6 expressing

the dependent variable Xl,t in terms of past and present values of X2,t and the

white noise error term ~1,t. Although the modelling process was simplified by

excluding the possibility of feedback in the model, the transfer function in 7.2.6

still looks rather complicated, consisting of 7 polynomials, the order of which

could take any value. In practice the order of the polynomials is unlikely to be

greater than two and it is possible that the function could be simplified by the

cancellation of common roots. A common way of simplifying the whole process

further is to bypass much of the transforming of transfer functions and to use the

cross-correlation function identification of the pre-whitened series to infer a

relationship between the two X variables, estimate the latter relationship and allow

the model to be adapted at the diagnostic checking stage of the model building

process.

Box and Jenkins note that this method of pre-whitening both the input and the

output series is somewhat indirect and, where a large number of coefficients exist,

the above method can cause over-parameterisation. The latter problem initiates more

work at the diagnostic checking stage of the model building procedure. A more

direct method not pursued in this thesis but advocated by Box and Jenkins to

reduce the diagnostic work, for modelling when feedback does not exist in the

relationship is outlined in Granger and Newbold.! Briefly, the method involves

pre-whitening only the input variable X2,t, and using the estimated coefficients

from the univariate model for this series to transform the output variable X l,t in

order to define a new variable Zt. Rewriting 7.2.6. as:-

* *X1•t = VI (B) X2.t + 'P1 (B) ~l.t

then Zt is defined as:-

(7.2.7)

z = <t>(B)X
t 9(B) l.t

where <I>(B)and 8(B) are as defined in 7.2.3. It can be shown, using simple

(7.2.8)

1 Granger and Newbold (1977). pp. 243f
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algebra, than-

[ ]

0.5
• VAR (Zt)

V 1.i= CORR ( Zt' £2,t-i) VAR (£ )
2,t

.'
Thus, each V* l,i is simply a constant multiple of the cross correlation between 21

(7.2.9)

and £2,t-i' The cross correlations between 21 and e2,t-i where the latter are the

estimated residuals from having estimated 7.2.3, are then calculated so that the

estimates of V* l,i can be derived. The latter are then used to identify the form of

V* 1(B) in 7.2.7, which is then estimated assuming £1.t to be white noise. The

residual autocorrelation function is then allowed to suggest the appropriate form of

the error structure. The coefficients of 7.2.7 can then be estimated in the usual

fashion.

Having estimated the identified transfer function for Xl,t reached by whatever route

is thought most appropriate, the model is estimated using a non-linear regression

package. The model is then checked for inadequacies in much the same way as are

the univariate models, and the appropriate modifications made. Any estimated

parameters with insignificant t-statistics can be removed from the initial

identification if it is thought appropriate. The residual autocorrelations should be

observed for large correlations at an appropriate number of lags determined by the

frequency of the time series data, again using the Quenouille statistic as a yardstick.

A portmanteau statistic such as the Box-Ljung statistic should also be calculated to

examine the white noise properties of the residuals as a whole. Given significantly

large residual autocorrelation statistics the initial model should be augmented in the

usual manner by the addition of AR or MA terms as deemed appropriate by the

modeller, the usual rules of augmenting one side of the equation only applying as

they did in the univariate modelling procedure.

As is true of univariate Box-Jenkins modelling, the model building procedure is

unlikely to be as clear cut as the theory suggests and the results of model

identification and diagnostic checking are often a matter for the modeller to decide

what he feels to be the most appropriate action to take. Consequently, different

modellers will often produce different models given identical sets of data, which

may be thought to be an advantage or a disadvantage of the Box-Jenkins approach

to other time series methodologies. Having said this, it is also true that the results

of forecasting with the differently structured models is more than likely to produce

similar forecasts. The theory outlined above is now applied to build bivariate

models for the culling and fat pig slaughter time series using the profit ratio as the
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causal variable.

7.3 A Bivariate Box-Jenkins Model For The Culling Of Sows and Boars.
:

The first task in the Identification process is to pre-whiten the culling and the profit

series. This is achieved by obtaining the residuals from the univariate models for

the two series concerned. From chapter six it is known that the identified and

estimated univariate models are given as follows:-

(7.3.1)

where Met is the white noise error term for the culling model, and

(1 - 0.1854 B)( 1- B) ( 1- Bt2) PRt = (1- 0.8600 Bt2) PRet. (7.3.2)

where PRet is the white noise error term for the profit model.

The Observed errors Met and the PRet were obtained from the estimated univariate

models by simple transformations of7.3.1 and 7.3.2. Thus,

Met=(1+O.22B4)(1+O.36B12)(1-B)(1-B12)Mt+ 0.85 Met-t2 (7.3.3)

and

PRet = (1- 0.1854 B)( 1- B)( 1- B12) PRt + 0.8600 PRet-12. (7.3.4)

Having obtained the observed residuals, Met and PRet, the two were cross

correlated producing the following cross correlation correlogram in which only the

lags for positive values of i are observed, our interest being in the relationship in

which profit is the causal variable.
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Figure 7.1
The Results Of Cross Correlating The Observed Culling Residuals

With The Observed Profit Residuals: 1976:2-1985:12.
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The figure illustrates the fact that the errors from the univariate culling and profit

models are uncorrelated at lag zero, the value of the calculated coefficient of

correlation being 0.004, which compared with a Quenouille statistic of 0.193 is

nowhere near significant. This result is good in that it expels any possibility of

contemporaneous correlation in the model which does not invalidate our

assumption of uni-directional causality. Comparing the cross-correlations with the

two horizontal lines - representing the Quenouille levels of significance for positive

and negative cross correlations - none of the individual correlations is significant.

If, however, one observes the cross correlations as a group rather than individually

a couple of interesting points arise. The first observation is that the first five cross

correlations are negative and, those at lags 2,4 and 5 are all greater than one

standard error below zero. This phenomenon is compatible with the lag used in the

econometric model of chapter 5 in that culling was related to a weighted average of

profits in the previous five months. The correlation is negative because an increase

in profits, for example, reduces the subsequent number of cullings as producers

build up the breeding herd. The second outstanding feature of the right hand side of

the diagram is that the cross correlations for lag 14 to 18, with the exception of that

at lag 17, are all positive and relatively large. For the given example of an increase

in profits, although producers curb culling initially, the resultant increase in the

breeding herd and the number of fat pigs eventually produces an increase in

cullings. It is conceivable that this positive relationship occurs 14 to 18 months
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after the initial change in profit although there is no reason, a priori, for expecting

the relationship to occur at this time, nor would one expect it to occur over such a

concentrated time span. Having said this, the Box-Jenkins approach is an empirical
•

one and so the first attempt at estimation took the following form:-

Met = (11 ( 0.2 PRet-l,t-5 ) + (12 ( 0.2 PRet-14,t-18 ) + Et (7.3.5)

where Et is a white noise error term,

and where PRet-l,t-5 = PRet_1+ PRet-2 + PR~-3 +PRet-4 + PRet-5

and correspondingly for PRet-14,t-18.

In other words, the simple assumption of equal weights on each of the profit

variables lagged 1 to 5 months and 14 to 18 months is made. The results of

estimation of the above are presented in the expression below.

Met = -0.292 ( 0.2 PRet-l,t-5 ) + 0.158 ( 0.2 PRet-14,t-18 ) + et
(-1.70) (0.98)

(7.3.6)

The t-statistics in the parentheses indicate that the estimated parameter on the longer

lagged profit residual variable is not even as large as one standard error above zero.

Consequently, the longer lagged profit residual variable was dropped from the

estimation procedure. The results of regressing the culling residuals on profit

residuals lagged only 1 to 5 months is given below.

Met = -0.295 ( 0.2 PR~-1,t-5) + et
(-2.44)

(7.3.7)

The t-statistic indicates the significance at the 2% level of the estimated parameter

which is, of course, of the correct sign. None of the residual auto correlations - the

first 20 of which are presented in the figure below - is significant as measured by

the Quenouille statistic and the Box-Ljung Q-statistic2 of 14.64 indicates that the

null hypothesis of white noise residuals cannot be rejected even at the 50% level of

significance when comparing Q with the Chi-Squares tables for 19 degrees of

freedom.

2 See footnote on page 2.12 for explanation of Box-Ljung statistic.
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Fi~ure 7.2

Plot Of Residual Autocorrelations From The Estimated Equation 7.3.7
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Having obtained a satisfactory relationship between the error series for culling and

profit, the next task is to identify and estimate a model for 'actual' culling and

profit. In order to do this, use is made of the two univariate models 7.3.1 and 7.3.2

and the bivariate model for the errors of these two models, 7.3.7. Replacing the

estimated coefficients for these models by variables al to ~, and defining (l-B)(l-

B l2)Mt in 7.3.1 and (l-B)(1-Bl2)PRt in 7.3.2 as M*t and PR*t respectively,

7.3.1 ,7.3.2 and 7.3.7 can be re-written as 7.3.8, 7.3.9 and 7.3.10 respectively.

(7.3.8)

(7.3.9)

Met = ~ ( 0.2 PRet-l,t-5) + et

Substituting 7.3.10 into 7.3.8 gives:-

(7.3.10)

The appropriate transformation of 7.3.9 can then be substituted into 7.3.11 giving:-

4 12· 12 (l-a4B)
(1 - a1 B ) ( 1- a2 B ) Mt = (1-~ B )( a60.2 PR"'t_l t-5+ et) (7.3.12)

(1-a
5
B 12) ,

At this stage, the relationship looks quite complicated on the right hand side of the

equality, however, referring back to the results of parameter estimation, a3 and as -
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the parameters for the moving-average terms in the univariate culling and profit

models respectively - are different only by .Ol. By making the not unreasonable

assumption that these two parameters are equal 7.3.12 can be rewritten as 7.3.13.

(7.3.13)

It is possible to develop the model further by expanding the differenced variables

M*t and PR*t-l,t-5, and dividing through by (1-B)(1-BI2) so that the latter equation

expresses actual cullings in terms of an average of lagged actual profits as given in

the following expression.

4 12 (1 - a5B 11(1 - al B ) ( 1 - a2 B ) Mt = 0.2 a6 ( 1 - a4 B) PRt_l t-5+ £t
, (1 - B)(l _ B12)

(7.3.14)

The major drawback with the above equation is the complex polynomial expressing

the structure of the moving-average error term. Although many varied attempts

were made at trying to estimate (7.3.14), none were successful in that no model

was found in which all the estimated parameters were significant or took feasible

values. In many cases the signs on the parameters were different from what one

would expect from the initial estimates in equations 7.3.8, 7.3.9 and 7.3.10. Also,

no model could be found in which the error structure could confidently be

described as white noise.

In the end, therefore, it was necessary to return to equation 7.3.13 in order to

attempt an estimation. Representing 7.3.13 without the backshift operator is given

in equation 7.3.15 below.

'" '" '" '"M t-alM t-4-a2M t-12+ala2M t-16=

'" '"0·2a6 (PR t-l,t-5 - '4PR t-2,t-6)+ Et - a5Et-12 (7.3.15)

Estimating the restricted expression (7.3.13) in order to reduce the number of

parameters to be estimated produces the following regression.

(1 + 0.268B4)(1+ 0.361B11M\ =
(-2.65) (-3.62)

'" 12-- 0.414 (1 - 0.269 B) 0.2PR t-l,t-5 + (1 - 0.581 B -) et
(-2.04) (0.70) (5.38)

(7.3.16)

where et is the observed residual at time t As the t-statistics in parentheses indicate,



Page 7.12

all but the ~ parameter is significant at the 5% level. The residual autocorrelations -

the plot of which is given below - are all below significance levels as determined by

the Quenouille statistics. As the plot clearly indicates, the only potential problem is

for the residual autocorrelation at lag 1, which although not significant, is

considerably' higher than the those at higher lags. The regression has a M.S.E. of

2.832.
Figure 7.3

Plot of The First Twenty Residual Autocorrelations Resulting From Regression
7.3.16.
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In order to allow for the autocorrelation at lag 1, a first order moving-average term

was added to the latter regression, the results of which are presented below.

(1+ 0.270 B4)(1+ 0.351BI2)M\=

(2.76) (3.56)

• 12- 0.330(1 - 0.035B)0.2PR t-l.t-5+ (1 - 0.141 B - 0.629 B )et
(-1.67) (-0.06) (-1.70) (-6.08)

Although the additional parameter is only significant at the 10% level, it is

(7.3.17)

considered high enough to remain in the model, for which the M.S.E. is now

2.796. The addition of the first order moving-average term in the model has

reduced the significance of the lower lagged profit variable, but, the outstanding

problem with the estimated regression is the insignificant parameter on the longer

lagged profit variable. Consequently the parameter was dropped from the model, a

change which proved to be the final adjustment required. The results of this final

estimation are presented in equation 7.3.18 below.
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(1 + 0.271 B4)(1 + 0.349 B12) M'\ =
(2.85) (3.60)

- 0.320 (O.2PR·t-l,t-5) + (1 - 0.142 B - 0.632 B1~ et
(-4.70) (-1.76) (-6.34)

The M.S.E. for this final model is the lowest of all three estimated models taking a

(7.3.18)

value of 2.768 and all of the t-statistics of the individual parameters has increased

from that of the preceding estimation. The profit variable is now significant at the

1% level. There 'is no apparent problem with the residuals as indicated by the

residual autocorrelation plot below and the fact that the first 20 residual

autocorrelations have a Box-Ljung Q-statistic of 8.28 which is nowhere near

significance at the 10% level when measures against the Chi-Square distribution for

15 degrees of freedom.

Figure 7.4

Plot of The First Twenty Residual Autocorrelatjons Resulting From Regression 7.3.18
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Having built the model it can then be used for forecasting. Having said this, the

long-run equilibrium coefficient on the profit ratio is -0.037, which indicates that

the long run effect of profits on culling is small but negative. This result is not

consistent with a finite life of breeding sow and, therefore, the model is essentially

a short run model as far as forecasting is concerned. Because the forecasting ability

of the model in the in-sample period was not of prime concern as a criterion for

choosing the best model, only the 24 one-step conditional forecasts of the out-of-

sample period and a 24-step unconditional forecast for the December of 1987 are

illustrated in figure 7.5 below. The forecasts were derived from a computer

program developed especially for the task. Firstly, univariate forecasts of profit are
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derived from the univariate Box-Jenkins model built in chapter six; these forecasts

are then fed in to the bivariate model in order to obtain the culling forecasts.

Figure 7.S
Conditional and Unconditional Forecasts for the out-of-sample period 1986-87

40

30

The figure illustrates that the one-step conditional forecasts appear to forecast the

out-of-sample period rather well, picking up the general fluctuations in cullings,

though exhibiting a somewhat smoother appearance than the actual data. The MSFE

for the conditional forecasts is 2.958 which implies an approximate 7% mean

absolute error. Turning to the unconditional forecast for the out-of-sample period,

these forecasts also pick up the general trend of cullings for the given period very

well although the expected under-forecasting is realised. A look at the equivalent

univariate model forecasts of cullings presented in chapter six, reveals that the

univariate model forecasts are also prone to under-forecasting in this period though

to a smaller extent. The exaggerated effect in the bivariate model is almost certainly.

therefore, a result of the inclusion in the bivariate model of the additional profit

variable. The unconditional out-of-sample univariate forecasts for the profit ratio,

presented in figure 6.12 of chapter six illustrate the fact that they have a tendency to

over-forecast profit from towards the end of 1986 onwards. Because of the

negative coefficient on the profit ratio in the bivariate model, the exaggerated

downward effect on the cull forecasts is explained by the univariate model's over-

forecasting of profit for the out-of-sample period. The latter phenomenon illustrates

the potential drawback of the bivariate model whose forecasting ability is dependent

not only on the forecasting ability of itself but of the univariate model for the

explanatory variable as well. This problem is discussed further in chapter eight.
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7.4 A Bivariate Box-Jenkins Model For Fat Pig Slaughter.

Having built a model for the culling of sows and boars, the same methodology is
•

employed to construct an equivalent model for the adjusted monthly fat pig

slaughter figures. As the methodology employed in this model has been fully

explained in the previous section, the discussion of the identification and estimation

stages will be much briefer.

Once again, the second variable will be the profit ratio, as used in the culling

model, which means that the univariate model 7.3.2 is again applicable. The

equivalent univariate model for fat pigs is that identified and estimated in chapter 6,

that is, equation 6.3.1, reproduced below as equation 7.4.1.

(1- B) (1- B12) FPt= (1- 0.295 B) (1- 0.87 B12) FPet.
(-3.33) (-28.0)

(7.4.1)

where FPet is the white noise error term from the univariate fat pig model. Having

used the univariate models to obtain the two pre-whitened series, the first step of

identifying a relationship between the observed error terms FPet and PRet could

commence by cross correlating them. The correlation at lag zero was nowhere near

accepted levels of significance, indicating the desirable result of no simultaneity

relationship between the two variables. The resultant cross-correlations for the

observed fat pig and profit error variables, Corr(FPet , PRet-i ), suggested the

possibility of both a short term and a long term effect of profits on fat pig slaughter.

As was the case in the bivariate culling model, the first 5 cross correlations were

negative and relatively large, although none was individually significant compared

with the Quenouille statistic for 107 observations. These correlations imply that an

increase in profits, for example, will, in the short term, decrease the number of fat

pigs slaughtered presumably because of transfers into the breeding herd in order to

build it up as quickly as possible. To model this relationship, a variable which is an

average of profits lagged 1 to 5 months has to be included on the right hand side of

the model. The second pattern emerging from the cross correlations was a string of

positive cross correlations from lags 11 to 18 inclusive, the exception being a small

negative correlation at lag 13. Once again, none of these correlations was

individually significant Given that a sow's gestation period is approximately four

months and given that fat pigs can be slaughtered from about the age of five months

onwards, it is quite conceivable that a sharp increase in profits in month t could

produce an increase in fat pig numbers some 11 months plus later. As with the
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short run effect, a simple average of profits from lag 11 to 18 inclusive will be

included as a variable on the right hand side of the model. The identified model

which was subsequently estimated, therefore, took the following form.

FPet =Yl ( 0.2 PRet-l,t-5 ) +Y2( 0.125 PRet-ll,t-18 ) + £t (7.4.2)

where £t is a white noise error term, and where PRet-l,t-5 and PRet-ll,t-18, are the

sums of the profit ratio index lagged 1 to 5 months and 11 to 18 months

respecti vely.

The results of estimation are presented in equation 7.4.3 below.

FPet = -4.142 ( 0.2 PRet-l,t-5 ) + 4.629 ( 0.125 PRet-ll,t-18 ) + et
(-1.80) (1.62)

(7.4.3.)

Although neither parameter is significant at the 5% level, both were considered high

enough to justify their inclusion in the model. The residual autocorrelations at lags

10 and 19 are significantly below zero, but, since there are no reasons, a priori, for

including such variables in the regression, nothing was done about the potential

problem. In addition, the Box-Ljung Q-statistic of 23.48 is not significant at the

10% level of significance, implying that the residuals as a whole would appear to

be a white noise process.

Having obtained a bivariate relationship between the error structures of the fat pig

and profit variables, the task remained to convert the relationship into one between

actual fat pig slaughter and profits. Following the problems experienced at the

equivalent stage when modelling the bivariate culling model, the decision was taken

to achieve this by modelling the first and seasonally differenced series, defined as

FP* and PR *. Re-defining the two relevant univariate models in terms of the

differenced variables, and replacing the estimated coefficients with symbols results

in equations 7.4.4 and 7.4.5 presented below.

FP* t = (1 - ~l B ) ( 1- ~2 B12) FPet· (7.4.4)

(7.4.5)

Following a similar procedure to that carried out when deriving a model for M*t,
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equation 7.4.5 is substituted into 7.4.2, the resulting expression being substituted

into equation 7.4.4. The end result of the two substitutions is equation 7.4.6.

As was the case with the culling model the fortunate result occurs that the estimated

parameters of ~2 (0.874) and of ~4 (0.860) are close enough to be assumed equal,

thus allowing the cancellation of the terms (1-~2B12) and (1-~4B12) on the right

hand side of equation 7.4.6. The expression resulting from this cancellation of

terms is reproduced in equation 7.4.7.

FP\ = (1- 131B )( (1- 133B)(110.2PR·t_1,t_5+ 12 0.125PR·t_ll,t_1S)
+ (1-132B12)et) (7.4.7)

Having obtained the latter expression, constrained estimation of the five included

parameters could take place. The results of estimation are given in equation 7.4.8 .

•FP t = (1- 0.40B)( (1- 0.38B)(-7.1O.0.2PR·t_l,t_S+ 7.84.0.125PR·t_ll,t_18) +
(-4.13) (-1.46) (-1.75) (2.29)

(1- 0.29B12)ct }
(2.69)

(7.4.8)

There is no reason to believe that the residual autocorrelation structure of 7.4.8 is

other than white noise, and the regression has a MSE of 877.22. The estimated

parameters are all of the expected sign and all but ~3 and 11 are significant at least at

the 5% level. Because the t-statistic for the estimated coefficient of ~3 is below

accepted levels of significance, the decision was taken to remove the coefficient

form the regression. The results of re-estimation minus the said coefficient are

presented in equation 7.4.9.

Fp·t = (1- 0.498 B ){(-3.85*0.2PR*t_l,t_5 + 5.587*0.t25PR*t_l1,t_18 ) +
(-5.53) (-2.06) (2.04)

(1- 0.466 B12) et)
(-5.t8)

(7.4.9)
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The significance of each of the included parameters has increased from the previous

model so that all except the estimated coefficient of 11 and 12 - which are significant

at 5% - is significant at the 1% level. The MSE of the estimated regression is also
:

lower than the previous regression at 834.62. Only one of the residual

autocorrelations is significantly above zero compared with the Quenouille statistic

for 100 observations and this is at lag 9. Because there is no apparent reason for

including this lag in the model, the decision was taken not to adjust the model in

any way. The Box-Ljung statistic of 14.40 gives no reason to suspect that the

residuals are not a white-noise process when checked against the chi-square tables

for 16 degrees of freedom. The estimated long run coefficient measures -0.036

indicating a small negative long run effect of profits on fat pig slaughter which is

not consistent with our a priori expectations. Consequently, and as was the case

with the bivariate culling model, the model is essentially a short run model, and the

longer term forecasts are liable to under-forecast The 24 one-step forecasts and the

24 step forecast for December 1987 are presented in figure 7.6 below.

Figure 7.6
Conditional and Unconditional Forecasts for the out-of-sample period 1986-87
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The MSFE for the conditional one-step forecasts measures 552.5 which implies a

mean absolute forecasting error of 23.5 which is approximately 2% of the average

four week fat pig slaughter figures. The 24 one-step forecasts appear to forecast the

two year period very well, picking up nearly all of the seasonal fluctuations in

slaughterings. The 24 -step forecast for December 1987 illustrates that the

unconditional forecasts also follow the seasonal slaughter fluctuations very closely,
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although it is apparent that in this case the two year forecast generally under-

forecasts. Compared with the equivalent forecasts from the univariate fat pig model

of chapter six, which are not prone to such under-forecasting it would appear that.
the problem is again a result of the influence in the model of the univariate profit

ratio forecasts and the long run negative profit coefficient. The 24-step over-

forecast of the profit ratio already discussed in the culling model has had the effect

of reducing the slaughter forecast through the negative coefficient on the shorter

lagged profit variable which has not been compensated by the positive coefficient of

the profit variable lagged 11 to 18 months. Had the univariate profit model

consistently over-forecast for 1986 as well as 1987, the net effect would have been

to reduce the under-forecasting of fat pigs by the bivariate model. This discussion

further highlights the importance for the forecasting abilities of the bi-variate

models of the reliability of the longer term forecasting abilities of the univariate

profit model.

7.5 Conclusion
In this chapter, the theory underlying the methodology for bivariate Box-Jenkins

model building has been outlined, concentrating on the case of uni-directional

causality. The theory was then applied to build monthly models for the culling and

fat pig slaughter time series in order to derive alternative forecasting models to the

univariate and biological models built in previous chapters. The exercise was of

interest in that the methodology provides a framework for modelling two variables

in which the direction of causality, and the lags involved in the causal relationships,

need not be known prior to modelling, in order for a workable model to be built. In

this chapter, however, the direction of causality was assumed known and the

process of identification was undertaken bearing in mind prior knowledge of the

biological lags existing in the breeding herd system. The derived models were used

to generate one-step conditional forecasts and an unconditional forecast for the out-

of-sample period. All the forecasts are quite satisfactory, except that there is

indication that the models might struggle to forecast the correct level of

slaughterings in the longer term due to the nature of the univariate forecasts of

profits from the model built for that purpose in chapter six and the long run

negative profit coefficient. The one-step, 12-step and 24-step forecasting ability of

the bivariate Box-Jenkins culling fat pig models will be compared with the

equivalent forecasts of the other monthly models in chapter eight.
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CHAPTER EIGHT

FORECASTING ANALYSIS: TRIMESTIC AND MONTIn. Y MODELS

8.1 Introduction

In this chapter of the thesis, the relative forecasting abilities of the various models are

compared in respect of their relative abilities to forecast the variable concerned, both

in terms of level and, to a lesser extent, the predicted seasonal movements. The

forecasting performance with respect to levels will be measured using the mean

square forecasting error, MSFE, and the percentage root mean square forecasting

error, RMSFE, of the average level of the variable concerned in the out-of-sample

forecasting period. Mode Is are derived for the trimestic breeding herd and the

monthly sow and boar culling and fat pig slaughtering using the models built in the

preceding five chapters.

The analysis is concerned with the forecasting performance of the models in the short

to medium term and so it is proposed to look at three types of forecast. The short term

forecasting abilities are assessed by conditional one trimester ahead forecasts for the

breeding herd and one month ahead forecasts for the culling and fat pig series. For

the more medium to long term forecasts, one year ahead and two year ahead forecasts

will be analysed. The period which is to be forecast is the out-of-sample period of

1986-87 inclusive, which was left out of the estimation process specifically for this

purpose. The breeding herd, culling and fat pig models are discussed separately,

starting with the breeding herd forecasts.

8.2 Forecasting The BreedingHerd
Three types of breeding herd forecasting model have been built, namely, the

univariate Box-Jenkins models of chapter three, the biological model of chapter four

and the econometric model of chapter five. Because the latter two approaches have

been estimated using the equally spaced trimestic time intervals between the April,

August and December sample censuses, the forecasting analysis will take place on

that basis, despite the fact that the univariate models are pseudo-quarterly, having

been estimated including the June census. The consequence of this for the univariate

model forecasts is that the one-step forecast for August is a forecast from June and

not April and the one year and two years ahead unconditional forecasts are four-step

and eight-step forecasts respectively.

The breeding herd forecasts from the biological and the econometric models are
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derived using the following identity as discussed in chapters four and five,

(8.2.1)

The breeding herd forecasts, therefore require a forecasting model for the inflow and

outflow variables, that is, pregnant gilts and culling respectively. The pregnant gilt

biological forecasting model is that discussed in section 4.5g of chapter four and the

equivalent econometric model is that presented in section 5.4 of chapter five. The

biological and econometric culling models are those discussed in sections 4.5d and

5.5 respectively. The only unresolved question for forecasting the breeding herd

concerns the univariate Box-Jenkins models. The question is to decide whether to use

the aggregate univariate model for breeding sows or whether to aggregate the

forecasts from the three component models, the chosen forecasts being added to the

forecasts of the boar herd in order to derive the required breeding herd forecasts. This

question is resolved in the following section, after which the comparative

performances of the three approaches are analysed.

8.2a The Box-Jenkins Forecasts and the April1987 Census Data
In this section analysis is conducted to find out whether the breeding sow herd is best

forecast using the univariate Box-Jenkins model built for this series in chapter three,

or whether it is better to aggregate the forecasts from the univariate models built for

the three components of the breeding sow herd, also presented in chapter three.

Discussion is also given to the question of whether or not the suspect figure for April

1987 should be replaced by a more acceptable figure and, if so, what that figure

should be.

The data are pseudo-quarterly in that the June census is included as a data point as

well as the three sample censuses utilised in the biological and econometric models.

With two years of out-of-sample data to forecast, eight sample points are available for

comparison. Because univariate models are primarily useful for their short term
forecasting abilities it is the one- step forecasting performances of the two approaches

for forecasting the breeding sows which will be used to determine the 'best'

method.! All forecasts from the univariate Box-Jenkins models are produced as

required by the TSP package.

1 Although the aggregate versus the disaggregate comparisons could have been
analysed for the pregnant pig herd also, the fact that the pregnant pig herd was
found not to be of direct interest, after having built the biological models, the
decision was taken to confine the analysis to the key variable, the breeding sow
herd.
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The mean square forecasting error, MSFE, of the one-step forecasts from the

breeding sow model presented in section 3.2a produced a value of 714.92, which

compares with an equivalent statistic of 413.26 from the aggregate forecasts produced

by the component models. The error statistics clearly favour aggregation from the

component forecasts: both sets of forecasts, however, are dominated by large positive

errors in April and June of 19872• The square of the residual error for the June

1987 forecast contributes 58.3% of the overall sums of squares of forecasting errors

from the pregnant sow model and 42% in the case of the aggregate forecasts. Both

errors arise as a result of the highly suspect sample census figures produced by the

April sample census of that year, as discussed in section 3.5 of chapter three.

Inspection of the three component models indicates that the problem appears to lie

with the data as recorded for the pregnant sow and the barren sow series, which

together account for over 85% of the breeding sow herd total. Because of the analysis

presented in section 3.5, the decision was taken to analyse the forecasting

performance of the two approaches, replacing the April 1987 sample census figures

by the relevant one-step forecasts produced by the breeding sow, pregnant sow and

barren sow models. The pregnant gilt figure does not appear to be affected and,

therefore, no adjustment to Apri11987 is made to the pregnant gilt data.

The MSFE's of the one-step forecasts are compared after having made the April

adjustment and ignoring the error for the April 1987 which would otherwise bias the

analysis in favour of the aggregation approach. Having done this, the results still

favour the aggregation approach since the MSFE statistics for the breeding sow

model forecasts and the aggregate forecasts respectively are 252.45 and 196.46,

illustrating the relative superiority of the aggregate forecasts. Both sets of 1987

forecasts are considerably better than those produced not having made the adjustment

for April 1987, as indicated by comparing the appropriate MSFE statistics presented

above. Although the results of the analysis are not presented, comparing the forecasts

from the pregnant pig herd model and the aggregate of the forecasts from the pregnant

sow and pregnant gilt herd models tells an almost identical story to that presented for

the breeding sow forecast analysis. It should be noted that the four-step and eight-

step forecasts for the chosen out-of-sample period 1986-7, will not be affected by the

suspect April figure for 1987, this observation appearing only three periods before

the end of the out-of-sample forecasting period. On the basis of the above analysis it

would appear that it is the aggregation of the forecasts from the component models

which forecast the better in the short term. These forecasts, when added to the

forecasts from the univariate boar model will therefore be used to represent the Box-

2 Error = actual minus forecast
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Jenkins univariate model forecasts of the UK breeding herd. The recorded boar figure

for April 1987 is also substituted by the one-step forecast for that period from the

univariate boar model. No consideration of the abilities of the two approaches to
:

model the directional movements of the breeding herd is necessary because the

movements forecast were identical.

In the light of the analysis presented above and in section 5.3, for any sensible

discussion of the relative forecasting abilities of the various models for the breeding

herd to take place, it seems advisable to replace the April 1987 sample census figure

for the breeding herd by a forecasted figure. The need for adjustment is also justified

when the implications of non-adjustment for comparing the relative forecasting

performances of the various modelling approaches are analysed. Considering non-

adjustment, the high April census figure produces a large over-forecast one-step

ahead. For the univariate models this means an over-forecast for June 1987, and

because the trimestic models are not concerned with June, it is the forecast for August

which is affected in the biological and econometric models. It should be said that,

though the June error from the univariate model will feed through via the moving

average error term to lower the one-step univariate forecast for August, the forecast

will be based principally upon the more reliable June census figure. Because the

Biological and Econometric models are estimated on trimestic time periods, the

analysis of forecasting comparisons has to be made on a trimestic basis. Although the

pseudo-quarterly data will be used for estimating and forecasting the breeding herd in

the univariate model, the June forecast will not enter into the forecasting comparison

analysis. The consequence of this is that the analysis would be biased in favour of the

Box-Jenkins methodology if no adjustment were made for the suspect April figures.

On the grounds that Box-Jenkins univariate models are expected to perform best in

the short run, it is the one-step aggregate forecast of 828.25 from the univariate

breeding sow component models and the one-step forecast of 45.29 for the boar herd

which will be aggregated and substituted for the suspect sample census observations

for these two series in April 1987. Thus, all subsequent analysis which involves

forecasting using the breeding herd figure for April 1987 as an independent variable

will have used the two forecast figures given above, and not the figure as recorded

from the sample census. The implications of this, if any, for the comparison of the

Box-Jenkins and the biological and econometric model forecasts are discussed at the

end of section 8.3.

8.3a The One-Step Conditional Forecasting Results
Having determined that the April census figure for the breeding herd is to be replaced
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by the one-step conditional forecasts for that period produced by the Box-Jenkins

models for the four components of the breeding herd, the one trimester step

conditional forecasts for the breeding herd from the univariate, trimestic biological

and the trimestic econometric model can be produced and compared: To produce the

biological and econometric forecasts, software for a micro-computer had to be

developed. Although the forecasts for one trimester ahead have been labeled as

conditional forecasts this is not strictly true for the econometric model. Making the

assumption that the census results are known immediately after the census is taken, a

one-trimester ahead forecast of the breeding herd using the econometric model

requires a four month ahead unconditional forecast of the profit ratio using the

univariate Box-Jenkins model derived for the profit ratio in chapter Six. Having

forecast the profit ratio, the forecast figures are incorporated into the relevant profit

ratio variables as required by the trimestic culling and pregnant gilt econometric

models.
Fi!!ure R.I

The One-Step 'Conditional' Forecasts For The Breeding Herd By the Univariate.
Biological and Econometric Models

Figure 8.1 - which includes the univariate forecasts for April 1987 rather than the

actual recorded figure from that sample census - illustrates that the breeding herd over

the given out-of-sample period experiences a general downward trend and has a mean

value of 870.76 thousand pigs. There are three downward movements and three

upward movements and there are four census to census changes of direction. The

'pseudo one-step conditional' forecasts using the Box-Jenkins univariate models
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correctly predicts three of the directional movements and two of the four turning

points. The MSFE measures 143.3 thousand which converts to a RMSFE percentage

of 1.4% of the breeding herd in the out-of sample period. The latter figures have been

calculated excluding the result for April 1987 for which the error has been fixed at

zero for the univariate models and is therefore, biased in favour of the Box-Jenkins

models if included.

The one-step forecasts from the biological and the econometric models are very

similar which is not surprising given that the econometric model includes biological

terms as well as the profit variables. Also as expected, the forecasting performance of

the biological and econometric models is not as good in the short term as that of the

univariate Box-Jenkins models. The biological and econometric models correctly

predict the direction of movement three times and once respectively, the biological

model correctly predicting one of the turning points whereas the econometric model

fails to forecast any. The MSFE statistics for the two sets of forecasts are 311.3 and

406.2 respectively, and these imply 2.1% and 2.3% absolute mean forecast errors

using the root value of the MSFE as the relevant statistic. Of the two non-univariate

models, therefore, it is the less sophisticated biological model which is marginally the

better of the two, although they are both out-performed by the univariate model.

8.3b The One Year Ahead Forecasts of the Breeding Herd
The required one year ahead unconditional forecasts were generated using the TSP

package for the univariate models and the software developed for the econometric and

the biological models, the econometric forecasts requiring a 12-month ahead forecast

of the profit ratio using the univariate model for this series. The results of the various

forecasting procedures are illustrated in figure 8.2 below.

In terms of the models' abilities to forecast seasonal movements, the univariate model

correctly forecasts four of the six seasonal movements and two of the four turning

points. The MSFE of 134.8 the root of which implies a 1.3% average absolute

forecast error, marginally better than the one-step forecast result although the MSFE

statistic has been calculated having included all six of the out-of-sample observations

which was not so in the one-step case. The obvious comment to make about the

biological model's ability to forecast one year ahead is that all the forecasts over-

forecast the actual figure to varying degrees. Having said this, the MSFE of 361.5 is

not much higher than the 311.3 from the one-step forecasts, and implies an average

2.2% absolute forecasting error. The biological model correctly forecasts four of the

seasonal movements and two of the changes of direction as did the one year ahead
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univariate forecasts.
Figure 8.2

The One-Year Ahead Unconditional Forecasts For The Breedin~ Herd By
the Univariate.Biolo~ical and Econometric Models
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Turning to the econometric model forecasts, they are now more dependent on the

forecasting ability of the univariate profit ratio model. The MSFE is lower than for the

biological model, but not as good as the univariate model, taking a value of 257.5

which converts to a root mean square error equivalent to 1.8% of the breeding herd.

The forecasts are not as good as those of the univariate and biological models in term

of ability to forecast the seasonal movements.

The conclusion for the one year ahead forecasts then, is that on grounds of both the

MSFE statistic and the directional analysis, the univariate model is again the best of

the three models for the given period. This is somewhat surprising in view of the fact

that we are dealing with a one year period for which we might expect the biological

and the econometric model to perform the better.

8.3c The Two Years Ahead Forecasts of the Breeding Herd

The two-year ahead unconditional forecasts of the breeding herd from the three types

of models were generated in a similar fashion to the one year ahead forecasts, the

univariate forecasts being generated using an eight-step unconditional forecast and the

econometric forecasts having made the relevant 24-month ahead univariate model

forecasts of the profit ratio. The resulting forecasts from the three sets of models are

presented in figure 8.3.
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Figure 8.3
The Two-Years Ahead Unconditional Forecasts For The Breeding Herd

From the Univariate. Biological and Econometric Models
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The univariate model has an MSFE statistic of 360.7 which is more than twice the

equivalent values for the univariate model forecasts, one trimester and one year

ahead, so that the univariate model is significantly worse at forecasting two years

ahead than one year ahead. This is supported to some extent by the fact that the

univariate forecasts correctly forecast only one of the four actual changes in direction

and gets the actual seasonal movement correct on three occasions. The six-step

forecasts from the biological model produce a MSFE of 881.6 which is also greater

than twice its value when forecasting one year ahead and suggests an absolute

forecasts error of 3.4%. This again is larger than the equivalent statistic from the

univariate model forecasts, mainly due to over-forecasting by the biological model in

1987. Having said this, the biological forecasts are as good as the univariate forecasts

in predicting the seasonal movements of the breeding herd and better in terms of

directional changes in that the biological forecasts correctly predict two of the four

direction changes. The two years ahead forecasts using the econometric model have a

very large relative MSFE of 1609.2, the root of which accounts for 4.6% of the

breeding herd for the out-of-sample period. This large error variance is due mainly to

the large over-forecasts of the herd in August and especially in the December of 1986,

over-forecasts which are the result of the 24-step over-forecasts produced by the

univariate profit ratio model. In addition to the large error variance, the forecasts from
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the econometric model fail to pick up any of the seasonal movements in the breeding

herd in the given two year period.

A notable feature of the two-year forecasts from all three models is the relative
:

closeness of all three forecasts of the April 1986 breeding herd, all of which under-

forecast the actual recorded figure and wrongly predict the fact that the recorded

figure is an increase on the previous December. Overall, the two years ahead

forecasts are worse in respect of the size of errors than is the case for one-step and

one year ahead forecasts. The result is to be expected but the fact that the error

variance of the univariate Box-Jenkins model forecasts is lower than that of the

biological model is rather surprising. Of course, these results are only applicable to

the specific time period available for out-of-sample testing, although there is little

doubt about the relative superiority of the univariate model over both the biological

and the econometric forecasts for both the short and the medium/long term.

Because it was felt that the forecasting ability of the econometric model was

handicapped to some extent by the ability of the univariate profit model to forecast the

profit ratio, and particularly in the longer term, it was thought to be of interest to look

at the econometric forecasts using the actual profit ratio, rather than the unconditional

univariate forecasts. Figure 8.4 illustrates the results of these forecasts.

Figure 8.4

The Forecasts For 1986-7 From the Econometric Model Using Actual Profits
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The one trimester ahead forecasts of the breeding herd using the actual profit ratio

rather than the four month ahead unconditional profit ratio forecasts produces very
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similar forecasts, although the MSFE of 427.5 is surprisingly larger than that having

used the forecasts of the profit ratio.The one year ahead forecasts have an MSFE of

328.7, the root of which accounts for 2.1% of the breeding herd. This is superior to

the one-step equivalent figure and is lower than the three-step forecast errors from the

biological model. Having said this, the somewhat surprising result is that the MSFE

is actually better than that of the econometric three-step forecasts, when the profit

forecasts and not the actual profit were used. On the other hand the three-step

forecasts using actual profit are superior to the 'true' three-step econometric forecasts

in terms of forecasting seasonality in the breeding herd, four of the six seasonal

movements and two of the four changes in direction being forecast correctly.

Looking at the six-step econometric forecasts using actual rather than predicted

profit, the effect of the profit forecasts on the forecasting ability of the econometric

model becomes more apparent. The forecasts for 1986 are considerably better than

the large over-forecasts produced when forecasting profits although there is a

tendency for the model to under-forecast 1987. The MSFE of 735.0 is less than half

of what it was when profits were forecast and the seasonal movements are forecast

correctly on three occasions, and one of the four changes in direction is picked up as

opposed to none being correct when profits were forecast. The MSFE which converts

to a root mean absolute error of 3.1% is now lower than the equivalent statistic for the

biological model, although it is still slightly more than double the MSFE of the

univariate two-year forecast errors. The MSFE and the RMSFE percentage from each

of the various short and longer term forecasts are summarised in table 8.1 below.

Table R.t3
The Error Statistics from the Trimestic Breeding Herd Forecasts

STEP
I-STEP
I-YEAR
2-YEAR

MSFE's AND RMSFE PERCENTAGES
UNIVARIATE BIOLOGICAL ECONOMETRIC 1
143.3 (1.4%) 311.3 (2.1%) 406.2 (2.3%)
134.8 (1.3%) 361.5 (2.2%) 257.5 (1.8%)
360.7 (2.2%) 881.6 (3.4%) 1609.2 (4.6%)

ECONOMETRIC 2
427.5 (2.4%)
328.7 (2.1%)
735.0 (3.1%)

In conclusion, therefore, the univariate model appears the best for all types of

forecasts studied up to two-years ahead when comparing the MSFE statistics. This

result was not expected for the one-year ahead and especially for the two-year ahead

3 All figures in thousands of pigs
Figures in bold indicate the fact that the April 1987 forecasts error has been
removed from the analysis to remove the bias in favour the univariate forecasts.
RMSFE = The Root Mean Square Forecast Error.
ECONOMETRIC 1 = profits arc forecast.
ECONOMETRIC 2 = actual profits used.
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unconditional forecasts. The unconditional forecasting ability of the econometric

model is clearly affected by the ability of the univariate profit ratio model to forecast

profits two years ahead although the picture is less clear one year ahead where the
:

results of comparing the MSFEs and the ability of the models to predict seasonal

movements in the breeding herd conflict. Removing the effects of forecasting by

using the recorded profit ratio rather than the forecast figure the econometric model

performs better than the biological model three-step and six-step ahead. Having said

this, the forecaster will not know the future profit ratio figure and so as a working

model, he may prefer the biological to the econometric model, unless a better model

for forecasting profits in the longer term can be found, or alternatively, rather than

modelling profits at all, the modeller may prefer to use expertise in the field to give a

prediction of profits based on his knowledge of the market. All these conclusions

refer to the results of the analysis on the given out-of-sample period of 1986-7 and

further analysis as more data become available would enhance the robustness of these

conclusions.

To end this discussion of the trimestic breeding herd forecasting performance it

should be stressed that any bias towards the Box-Jenkins 'one-step' forecasts from

having chosen the forecasts from the univariate component models to represent April

1987 is relative only. Of the three one-step forecasts for April 1987, the univariate

and the biological model forecasts are very similar although the univariate is

marginally the larger of the two. Had there been no adjustment to the recorded figure

for April 1987, therefore, the univariate forecast would have been the closest anyhow

and moreover the large over-forecasts by the biological and the econometric model for

the following August would have been even larger. The ex-post knowledge that the

univariate model is the best forecaster for all lead periods also helps to justify the

univariate forecast for April 1987 as the correct choice.

8.4 Forecasting Monthly Sow and Boar Culling

Attention is now turned to analysing the relative forecasting performance of the three

types of model which have been built for the monthly cull series. Three sets of

forecasts will be compared: the one-step, that is, one month ahead conditional

forecasts to analyse the short term forecasting ability, and for the medium to long

term, 12-month and 24-month unconditional forecasts are made. The three types of

model include the univariate Box-Jenkins model discussed in Section 6.3 of chapter

Six, the forecasts from which are produced automatically by the TSP package. The

extension of the univariate Box-Jenkins model for culling is the bivariate Box-Jenkins

model using profit as the independent variable built in section 7.3 of the previous
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chapter. Because both the one-step conditional and the unconditional forecasts using

the bivariate model require forecasts of the profit ratio using the univariate profit ratio

model, software for a microcomputer was again built in order to feed into the model

the required profit forecasts. The reason for the need for a one-step profit forecast

when forecasting culling one month ahead is that the profit regressor includes the

value of the profit ratio at lag zero, therefore the forecast is only pseudo-conditional.

The remaining cull forecasting model is the biological model discussed in section 4.6a

of chapter six, the actual model being presented in equation 4.6a.ld of Appendix 4.6.

In order to make unconditional forecasts using the monthly biological model for

culling, unconditional forecasts of the UK breeding herd - the independent regressor -

are required. The decision was taken to use the unconditional forecasts of the

breeding herd as produced by the trimestic biological model, thereby keeping the

forecasts wholly biological in nature.

Where the April 1987 breeding herd figure is required to generate forecasts, the

forecasts from the univariate models is used instead of the suspect recorded figure

from that sample census as is the case throughout this chapter. Software was again

developed so that the required forecasts could be fed into the monthly cull forecast

generating function. Having built the relevant software for the bivariate and the

biological models, the conditional and the unconditional forecasts were made, the

results of which are discussed below.

8.43 The One-Month Ahead Conditional Forecasts For Culling

The 24 one month ahead forecasts were generated as described above for each of the

three types of approaches to modelling, the results being presented in graphical form

in figure 8.5. The actual recorded culling figures, all of which represent four week

culling periods and are rounded to the nearest thousand, show a series which is

clearly affected by seasonality. The series experiences 11 month to month increases,

10 decreases and 3 none movements in direction, and there are 15 recorded month to

month changes of direction.

Figure 8.5 illustrates one-step forecasts from the three types of model which appear

to be quite similar to one another. A couple of observations stand out, namely April

1986 and February 1987, when the conditional forecasts have relatively large and

very similar errors. Because these errors are not repeated for the same months in the

other out-of-sample period, it may suggest that the recorded figures are possibly

suspect or that something unusual is going on in those particular months. Because the

culling data are collated by the slaughter houses, sampling errors are much less likely

than in the farm sample censuses although there is always a possibility of a recording
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error. Because 24 observations are available for the analysis it was thought

unnecessary to correct for these possible outliers.

Fifnlre 8.5
The One-Month Ahead Conditional Forecasts For Cullini From the Univariate.

Bio}oiical and Bivariate Box-Jenkins Models
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The univariate Box-Jenkins one-step forecasts have a MSFE of 3.05, the root of

which converts to 6.7 percent of the average monthly cull figures for the out-of-

sample period. The forecasts correctly predict 16 of the 21 seasonal movements. The

pseudo-conditional forecasts of the bivariate Box-Jenkins model give an MSFE of

2.96, which implies an absolute error of 6.6%, an improvement on the performance

of the univariate equivalent and they correctly predict the same number of seasonal

movements. Turning to the alternative biological model, it is somewhat surprising

that this model performs better than the two Box-Jenkins models at forecasting one-

step ahead, though having said this, the lags in the biological model are short The

MSFE measures 2.45, the root of which implies a 6.0% average absolute forecast

error and is lower than the equivalent statistics for the two Box-Jenkins model

forecasts. The biological model one-step forecasts are also better at predicting the

month to month movements in the recorded series correctly predicting 18 of the 21

movements. In conclusion, therefore, although the three sets of conditional forecasts

are very similar in terms of actual forecasts and their ability to forecast the month to

month movements, the biological model would appear to be the better of the three
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over the given out-of-sample period.

8.4b The One-Year Ahead Unconditional Forecasts For Culling
The one year ahead unconditional forecasts involve twenty-four 12-step forecasts

using each of the three types of model, the results of which are given in figure 8.6

below.
Fi~ure 8,6

The One-Year Ahead Unconditional foreCasts For Cullin~ from the Univariate.
BiolofPcal and Bivariate Box-Jenkins Models
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The univariate Box-Jenkins forecasts have a MSFE of 6,23 which implies an average

absolute error of 9,6%. Although this is worse than the one-step conditional

forecasts' equivalent, the forecasts are good at predicting the seasonal changes of

direction, getting 10 of the 15 correct. As figure 8,6 illustrates these forecasting

results are explained by the fact that the univariate model is under-forecasting actual

cullings for much of the latter half of 1986 and the fist half of 1987, but picking up

the seasonal movements in the series rather well.

Unlike the results of the one-step forecasting procedure, the 12-step unconditional

forecasts of the bivariate Box-Jenkins model are not as good as the univariate model

both in terms of size of error and the ability of the model to pick up the month to
month fluctuations.The MSFE of 9,03 converts to a RMSFE of 11.5% and only six
of the 15 seasonal changes of direction are forecast correctly. Apart from the first five
months of 1986, when the bivariate forecasts are somewhat higher than those of the
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univariate model. the forecast levels from the bivariate model are not that different

from the levels forecast by the univariate model. On these grounds it would appear

that the univariate profit forecasts are not having that great an influence on the forecast

of culling levels, but the effect on directional change forecasting is somewhat greater
and an adverse influence rather than good.
Analysing the biological 12-step forecasts, figure 8.6 clearly illustrates the expected
superiority of the biological model over the Box-Jenkins models in forecasting the
level of cullings. This is supported statistically by the MSFE of 2.72 which is less
than half that of the next best univariate model at 6.23. The RMSFE is 6.3% of the
average culling figure over the out-of-sample period and the forecasts correctly
predict 9 of the 15 directional changes, one less than that of the univariate model. In
conclusion, there is little doubt that the biological model is the best at forecasting one
year ahead when the MSFE and the ability of the models to forecasts directional
changes are considered together. For all three models' forecasts, the errors are larger
than they had been when conditionally forecasting one month ahead as one would
expect

40

30

8.4c The Two-Year Ahead Unconditional Forecasts For Culling
The two years ahead unconditional forecasts, consist of twenty-four 24-step forecasts
from the univariate and bivariate Box-Jenkins models and the biological model, the
resulting forecasts appearing in figure 8.7.

Fi~ure 8.7
The Two-Year Ahead Unconditional Forecasts For Cullin~ From the Univariate.

Biological and Bivariate Box-Jenkins Models
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Apart from some relatively large over-forecasts for the first three months of the out-

of-sample period, the univariate forecasts are not that much worse than the 12-step

unconditional forecasts discussed above. The MSFE of 8.08 implies an average

absolute error of 10.9% which is only 1.3% larger than in the 12-step case. The

forecasts appear to pick up the seasonal movements in the series quite well, and 7 of

the 15 changes of direction are forecast correctly. The 24-step forecasts from the

bivariate model are the worst set of forecasts in terms of ability to forecast the correct

level with notable over-forecasting at the start of 1986 and under-forecasting at the

end of both 1986 and 1987. The MSFE measures 25.98, the RMSFE being the

equivalent of 19.6% of the average monthly culling period. Having said this, and

bearing in mind that the bivariate forecasts also require a 24-step univariate forecast of

the profit ratio to be fed into the forecasting procedure, the forecasts still predict many

of the month to month movements quite well. Once again it is the biological model

which turns out to be the best forecasting model for the culling series. The MSFE of

3.02 is less than half that of the univariate model 24-step forecasts and implies an

average absolute forecast error of 6.7%. The biological model is also the best at

forecasting the seasonal movements. correctly forecasting 10 of the 15 seasonal

changes of direction, which is as good as any other set of forecasts. and better than

the biological model's own performance when forecasting one-step and 12-steps

ahead

Table 8.24
The Error Statistics from the Monthly Culling Forecasts

STEP
I-STEP
I-YEAR
2-YEAR

MSFE's AND RMSFE PERCENTAGES
UNIVARIATE BIVARIATE BIOLOGICAL
3.05 (6.7%) 2.96 (6.6%) 2.45 (6.0%)
6.23 (9.6%) 9.03 (11.5%) 2.72 (6.3%)
8.08 (10.9%) 26.0 (19.6%) 3.02 (6.7%)

In conclusion. in terms of both the MSFE statistics, which are summarised in table

8.2 above, and in terms of the models' abilities to forecast month to month changes in

direction, the biological model clearly comes out on top when forecasting both short

and medium/long term. This result is expected in the longer and medium term, but

was not the result expected for the one month ahead forecasts, where the Box-Jenkins

models were expected to perform the best. Comparing the relative performance of the

two Box-Jenkins models, the bivariate model, has a lower MSFE for the one-step

ahead forecasts indicating that the inclusion of the profit variable has added some

explanatory power to the univariate model. For the two unconditional forecasts,

4 All figures in thousands of pigs
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however, the story is reversed, and indicates that the combination of having to

forecast profits and the culling series also, has a detrimental effect on the relative

forecasting ability of the bivariate model. Compared with the trimestic breeding herd

models, the monthly culling models show an improved ability to forecast the step by

step changes of direction, although the absolute error percentages are, on the whole

more than double the equivalent percentage in the breeding herd models. This is

almost certainly a result of the fact that the monthly cull figures are smaller in

magnitude than the breeding herd figures and both are rounded to the nearest whole

figure, so that the proportion of the forecast error accountable to any rounding error

will be greater in the culling forecasts.

8.5 Forecasting Monthly Fat Pig Slaughter
The conditional and unconditional forecasts for the fat pig slaughter series are

obtained using the same three approaches used to produce forecasts of monthly

cullings. The univariate Box-Jenkins model is that built in section 6.3 of chapter six

and the corresponding bivariate model is that discussed in section 7.4 of chapter 7.

Again, all the forecasts using the bivariate model require forecasts of the profit ratio

using the univariate model developed for that series in chapter six. The biological fat

pig model is that developed in section 4.6c of chapter four, the model itself being

presented in equation 4.6c.4d of appendix A4d. The reader may remember that the

biological model contains within it a positive time trend which models the fact that the

breeding herd has become more productive in terms of fat pigs reared per litter per

annum over the estimation period. The forecasts of the independent breeding herd

variable required to unconditionally forecast the fat pigs with the biological model are

once again the unconditional forecasts from the trirnestic biological breeding herd

model. As was the case when forecasting monthly culling, forecasting fat pigs with

the biological and the bivariate Box-Jenkins models required micro computer

programs to be developed. Having achieved this, the forecasts for one month, 12

months and 24 months ahead were made, the results of which are discussed in tum

below. The fat pig slaughter numbers represent four week accounting periods and are

rounded to the nearest thousand, and as the forecast diagrams will show, the

slaughter figures for the out-of-sample period are clearly subject to seasonal

fluctuations, the number of slaughterings clearly rising in September, October and

November. The month to month movements in the slaughter series can be

summarised by saying there are 11 decreases, 13 increases and 14 changes of

direction.



Page 8-18

5.5a The One-Month Ahead Conditional forecasts for Fat Pig Slaughter.

The term conditional is again used to denote the fact that the forecasts are produced

for one-month ahead of the latest observed value, although the inclusion of a zero

lagged profit variable in the bivariate Box-Jenkins model means that the bivariate

forecast does depend on a one-step forecast of the profit ratio by the previously

mentioned univariate model for this series. The one-step forecasts are reproduced in

graphical form in figure 8.8 below.
Figure 8.8

The One-Month Ahead Conditional Forecasts For Fat Pigs From the Univariate.
BiololPcal and Bivariate Box-Jenkins Models
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The figure indicates that all three sets of forecasts appear to pick up the general and

seasonal trends in the fat pig series although there is evidence that the biological

forecasts are, on the whole, over-forecasting the actual level of slaughterings. The

univariate forecasts have a MSFE of 573.5 the root of which accounts for 2.0% of

the average slaughter figure for 1986 and 1987 combined, and the model correctly

predicts 9 of the 14 turning points. Comparing these results with those of the

bivariate Box-Jenkins model, the bivariate forecasts are very similar to univariate

forecasts as one would expect one-step ahead: however, the evidence, as was so with

the culling model equivalents, favours the more sophisticated bivariate model. The

latter model'S MSFE of 522.5 is an approximate 9% improvement on that of the

univariate model, and MSFE implies a 1.9% average absolute error. The bivariate

forecasts are also slightly better in terms of their ability to forecast the seasonal
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movements of the actual series, 10 of the 14 direction changes being correctly

predicted.
As one would expect ex-ante, the biological forecasts are the least good at forecasting

one-step ahead, the error and turning point criterion confirming the picture presented

in figure 8.8. The MSFE measures 1298.7, which is over twice as large as the

equivalent statistic from the Box-Jenkins model forecasts. The MSFE converts to a

RMSFE equivalent to 3.1% of fat pig slaughterings for that period and only 7 of the

turning points are picked up by the one-step biological forecasts. In conclusion, the

results of conditionally forecasting fat pig slaughter in the out-of-sample period

specified are very much as one would expect, the two statistical models coming out

on top and the more sophisticated bivariate model being somewhat superior to the

univariate equivalent. The biological forecasts show a tendency to over-forecast

which may well imply that the positive time trend variable is having too great an

effect, and indicating that the rate of breeding herd productivity experienced during

the estimation period may have slowed.

5.5b The One-Year Ahead Unconditional forecasts for Fat Pig Slaughter.
The one year, 12-step fat pig forecasts are obtained using the relevant models in a

similar fashion to the 12-step culling forecasts, the resulting three sets of forecasts

being presented in figure 8.9.
Figure 8.9

The One-Year Ahead Unconditional Forecasts For Fat Pigs From the Univariate.
Biological and Bivariate Box-Jenkins Models

1350 --0-- FP
BJstep12

a BIOstep12
• BVstep12

r.f:l 1250
~
<r.f:l
;:J
0::::
E-o 1150

1050~----------------r---------------~---------------~~---------------T--
DEC 1986 DEC

TIME
1987 DEC



Page 8-20

The figure above gives an even clearer indication of the fact that the biological model

is over-forecasting the out-of-sample period, every one of the forecasts errors being

negative, although the model still forecasts the seasonal movements very well. It
•

would appear that the univariate model is now superior to the bivariate model in

forecasting the level of cullings, a phenomenon born out by the statistics. The MSFE
of the univariate model has increased by a relatively low 12.5% to 645.4 which

implies an average absolute error of 2.2% and the forecasts correctly predict 11 of the

14 turning points, 21 of the 24 directional movements being forecast correctly.

Whereas the abilities of the univariate model appear to have improved relative to its

performance one-step ahead, the opposite is true of the bivariate Box-Jenkins

forecasts. The MSFE of the bivariate forecasts more than triples to a value of 1820.4,

and converts to a RMSFE equivalent to 3.6% of fat pig slaughter. The ability of the

bivariate model to forecast month to month directional changes decreases from 10 in
the one-step case to 8 in the 12-step case. The deterioration in the ability of the

bivariate model to forecast the medium term must be largely the result of the forecasts

of profit by the univariate profit ratio model. As figure 8.8 illustrates, the biological

model forecasts are in fact the worst of the three, for forecasting one year ahead. The

MSFE of 4548.7 is over 7 times larger than the univariate model's equivalent when

forecasting 12-step ahead, and suggests an average absolute error of 5.7%. The latter

statistic is more than double the univariate forecast equivalent and masks the fact that

all the biological forecast errors are negative. The biological model forecasts still

forecast the directional movements of the series well, getting 10 of the 14 turning

points correct.

In conclusion, the univariate model is clearly the best at forecasting 12-step ahead, the

deterioration of the bivariate forecasts being largely a result of the effect of the implicit

univariate forecasts of profit. The forecasting results of the biological model confirm

the idea gained from the conditional forecasts that the positive time trend is clearly

causing the biological model to over-forecast the out-of-sample period, the effect

being exaggerated by the tendency of the trimestic biological model to over-forecast

the breeding herd also. The directional forecasting of the univariate and the biological

models are very good.

5.5c The Two- Year Ahead Unconditional forecasts for Fat Pig Slaughter.
And so to the final set of forecasts to be analysed; the two year ahead, that is, the 24-

step unconditional forecasts of fat pig slaughter, the results of which might be

expected to re-iterate those obtained when unconditionally forecasting 12-steps ahead.

The forecasts, which are presented in figure 8.10 illustrate that the results for the



Page 8-21

biological model are as expected, in that they appear to further over-forecast the

recorded figures, though it should be noted that four of the earlier forecasts in 1986

are under rather than over-forecasts. The picture concerning the univariate and the

bivariate model is less clear, however; the bivariate model appearing to forecast better

than the univariate model in 1986 and the reverse occurring in 1987. Computing and

comparing the relevant statistics helps to clear the picture somewhat

Figure 8.10
The Two- Years Ahead Unconditional Forecasts For Fat Pigs From the Univariate.

Biological and Bivariate Box-Jenkins Models.
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The MSFE of 4760.9 for the biological forecasts is worse than was the case when

forecasting 12-steps ahead, although the deterioration is not that great relative to the

deterioration from one-step to 12-step. The biological model correctly forecasts 9 of

the 14 seasonal changes of direction. Turning to the univariate model forecasts, the

MSFE of 1975.3 is a considerable deterioration for the equivalent statistic of 645.4

when forecasting 12-steps ahead, although it is still less than half the 24-step MSFE

statistic for the biological forecasts. The univariate forecasts correctly predict 11 of

the 14 turning point. The most surprising results are those for the bivariate model,

which while only getting half of the turning points correct it has a MSFE statistic of

1600.7, the lowest value for the three sets of 24-step forecasts. This then is a

complete contrast to the longer term forecast results obtained for the bivariate Box-

Jenkins longer term forecasts for monthly cullings and the 12-step forecasts for fat'

"
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pigs, all of which implied a deterioration in performance relative to the univariate

model. Furthermore, the 24-step MSFE, which converts to an average absolute error

of 3.4% is an improvement on the bivariate model's forecasting performance 12-steps

ahead. Although these results are in contrast to the longer term .performance of

previous bivariate forecasts, the longer lagged profit variable does include the

monthly profit ratio lagged 11 to 18 months so that the forecasting performance of the

bivariate model might be expected to improve relative to the univariate and biological

forecasts, nevertheless, this does not explain the improved performance of the

bivariate model 24-steps ahead relative to its performance 12-steps ahead.

Summarising the result of the 24-step forecasts, in terms of forecasting the correct

level of fat pig slaughter, the bivariate model is clearly the best, although figure 8.10

indicates that the univariate forecasts are the better of the two in 1987. In terms of

forecasting turning points, the bivariate Box-Jenkins model is not as good as the

other two, the univariate model performing very well, and despite the continued over-

forecasting, the biological model forecasts seasonal movements quite well also.

Looking at the fat pig models' forecasting performance as a whole, the out-of-sample

period chosen has thrown up some interesting results. The forecast error statistics,

which are summarised in table 8.3 below, are good in terms of percentage error

compared with the equivalent results of the monthly culling models, though the larger

percentage error in the culling case may largely be attributed to rounding errors as

mentioned in section 8.4c above.

Table R.35
The Error Statistics from the Monthly Fat Pi~ Forecasts

STEP
I-STEP
I-YEAR
2-YEAR

MSFE's AND RMSFE PERCENTAGES
UNIVARIATE BIVARIATE BIOLOGICAL
573.5 (2.0%) 522.5 (1.9%) 1298.7 (3.1%)
645.4 (2.2%) 1820.4 (3.6%) 4548.7 (5.7%)
1975.3 (3.8%) 1600.7 (3.4%) 4760.9 (5.9%)

In terms of the one-step forecasts, the results were very much as one would expect

ex-ante. One of the main interests from the two-year analysis lies in the results of the

unconditional forecasting performance of the biological and the bivariate models and

what these might suggest. The biological model, clearly over-forecasts persistently

and yet it performs relatively well when the ability to forecast directional change is

observed. On the other hand, the bivariate model when forecasting 24-steps ahead

performs better with respect to the level of fat pigs than the univariate and biological

models and yet it is the worst at forecasting seasonal movements. Given the above

arguments, and given the evidence from the performances of the trimestic

5 All figures in thousands of pigs
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econometric and the bivariate monthly culling models, together with the fact that the

24-step MSFE is lower than the 12-step MSFE for the bivariate fat pig forecasts, all

of which suggest that the longer term forecasting ability of the profit ratio model

appears to be suspect, it might well be inferred that the relative forecasting

performance of the three types of fat pig models 24-steps ahead might not be the

norm. Having said this, time alone will tell whether or not the number of fat pigs

produced by a given size of breeding herd will be subject to the positive time trend

which is apparentover the estimation period or whether the apparent halt in increased

sow productivity is a temporary phenomenon. If the former is true then the biological

forecasting model, were it to be used as a working model, may well have to have the

time trend re-estimated or even removed from it.

8.6 Conclusion

The analysis presented in this chapter has been concerned with assessing the relative

forecasting performances of the models built in this thesis, from the point of view of

their ability to forecast the correct levels of the variables concerned, although note of

their ability to forecast seasonal movements has been taken as this is often of interest

to forecasters.

The forecasting analysis of the models for the breeding herd census data was rather

interesting in its outcome. The analysis of the Box-Jenkins univariate models for the

breeding sow herd supported the use of the component models as opposed to the the

model developed for the breeding sow herd itself, the relevant forecasts from the

component models being used as a replacement for the suspect sample data of April

1987. The results of the one trimester step forecasts were as expected in that is was

the Box-Jenkins model forecasts which were clearly the best. One year and two-years

ahead, it was rather surprising that it was again the univariate forecasts which were

better at forecasting the correct level of the breeding herd, the biological model

showing a tendency to over-forecast and the two years ahead forecasts of the

econometric model clearly being affected by the unconditional univariate profit

forecasts. An attempt to overcome this handicap by replacing the profit forecast by the

actual profit data surprisingly lead to the econometric forecasts being worse in terms

of MSFE for the one trimester and three trimesters ahead forecasts. The advantage of

using the actual profits showed through clearly in the comparison of the two years

ahead forecasts in terms of level and seasonal movements: though not as good as the

univariate model, the econometric model using actual profits improved on the

performance of the biological model for the two sets of unconditional forecasts.
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For the forecasts of the sow and boar culling series over the given out-of-sample

period it appears to be the biological model which is the best forecasting model. The

error statistics, which are larger in percentage terms than those of the trimestic

breeding herd forecasts, due largely to rounding errors, favour the biological model

for all three sets of forecasts undertaken. The bivariate model out-performs the

univariate Box-Jenkins equivalent when forecasting one-month ahead, but the effect

of having to unconditionally forecast profit using the specified univariate model

clearly hampers the forecasting performance of the bivariate model over the two

longer periods. All three models forecast seasonal movements in the culling data

reasonably well.

In terms of the monthly fat pig model forecasts, things were very much as expected

for the one month ahead forecasts: however, the longer term forecasts presented a

few problems. The biological model shows a clear tendency to over-forecast,

probably due to the effect of the positive time trend included in the biological model,

although the trimestic breeding herd forecasts which feed into the biological model

also tend to over-forecast. Having said this, the same breeding herd forecasts are

used in the biological model for culling, the best model for this series. Suggestions

for future work which might improve the biological fat pig model are discussed in the

final chapter of the thesis. The performance of the bivariate Box-Jenkins model

forecasts are curious in that they have a lower MSFE for the two years ahead

forecasts than do the forecasts one year ahead. This, together with the fact that it is

the worst model in terms of predicting seasonal movements, which are generally very

good for the other two types of model, suggests that this result may be untypical.

Further analysis as more data become available is required to provide an answer to

this question.

The comments above all refer to the forecasting results for the out-of-sample period

from 1986 to 1987 inclusive, and although the number of observations available is

reasonable as far as the monthly models are concerned, a larger number of years

would have been preferred for the trimestic breeding herd analysis. The analysis is

also subject to the peculiarities of the out-of-sample period chosen, and again it is the

trimestic analysis which suffered due to the apparently suspect sample data for April

1987. All the conclusions draw are done so in the light of these latter comments. In

the final chapter, suggestions for further work will be accompanied by a discussion

of how forecasts from different models might be combined in the hope of
incorporating useful information contained by each method.
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CHAPfER NINE

SUMMARY AND SUGGESTED FURTHER WORK

The aim of this research has been to build and compare the relative short term and

longer term forecasting abilities of statistical time series models - univariate and

bivariate - with more traditional modelling approaches in the context of the UK pig

meat sector. The analysis has concentrated to a large extent on building forecasting

models for the UK breeding herd, which is universally accepted as the key variable

in the sector, in that it determines potential future supplies of pigmeat and also

indicates the likely size of the future breeding herd.

In chapters three, four and five, semestic models for the breeding herd were built

using univariate Box-Jenkins time series, biologically based and econometric

methodologies respectively, the latter two both treating the breeding herd as an

inflow-outflow system. In terms of knowledge of the sector and the number of

variables required to build the models, the three approaches became progressively

more sophisticated. The univariate models which were built purely on statistical

grounds used the least amount of information, followed by the biological model, built

on assumptions concerning the nature of the biological lags in the breeding herd, and

finally the econometric model which introduced the economic phenomenon of profit

and implicitly and explicitly incorporated biological information. Seasonality was a

common feature of all of the approaches, modelled in the time series approach both

by seasonal differencing and the appropriate seasonal autoregressive and moving-

average components, and modelled in the biological and econometric approaches

using seasonal dummies.

The period on which most of the model building analysis was conducted was the post

1973 era, a period in which the pig sector and the key variables modelled were clearly

affected by internal and external influences. Externally, the UK joined the EEC which

caused the shift in timing of the March and September farm censuses to April and

August respectively, directly affecting the frequency of observations with which to

work. Time series plots of the breeding herd and its components indicated structural

changes in the form of a stabilisation of the mean and variance of the various series

post EEC entry, later confirmed by Chow test analysis on the time series models.

Another external influence on the sector, following shortly after the UK's EEC entry,

was the sharp increase in feed prices partly exacerbated by an increase in world

commodity prices in 1973, which appears to have affected some of the key variables
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in the industry well into 1974 and beyond. The latter influence meant that the start of

the estimation period was pushed back to 1975 and even then it was thought

advisable to apply intervention dummies in the biological and econometric models to

some of the earliest observations in the estimation period. Internally, the estimation

period is a period of great change in the industry in terms of its increasingly

concentrated structure and changes in key technical coefficients. The major

consequence of the latter has been to increase the productivity of the breeding sows,

an effect which required the introduction of time trend variables into the relevant

biological models. Other disruptive influences in the estimation period were the

Aujezky eradication campaign of 1983 and the introduction of a temporary

government subsidy on pig meat in the first half of 1977, both of which were

modelled in the biological and econometric models by intervention dummies.

The frequency and quality of the data used in the model building analyses had a

considerable influence on the types of analyses conducted and much time was

devoted to discussing these data problems and how they might be resolved. Perhaps

the most fundamental data influence was the 1974 sample census timing change. The

change meant that the biological and econometric models had to be built using the

four-monthly - trlmestic - data from the April, August and December sample

censuses. Because of software availability, the time series analysis had to be

conducted on a pseudo-quarterly basis post 1973 including the recorded data from the

June census, thereby breaking the rules of time series analysis by not having equally

spaced intervals between observations. Analysis was done which implied that Box-

Jenkins models identified and estimated using data going back to 1957 were better at

forecasting an out-of-sample period than equivalent models built solely on the post

1973 data. This result was very interesting in that it implied that the statistical

information used to build the models gained from the longer period of data was more

useful for forecasting the out-of-sample period chosen, despite the apparent structural

change on the series post 1973. It would appear likely that the influences of the

eradication campaign and the 1977 subsidy had a detrimental effect on the forecasting

performance of the forecasting models estimated on the shorter period. The relative

forecasting performances of the longer and shorter period univariate models for future

periods, when more data become available on which to estimate the latter period

models, will make interesting future research. Another interesting result of out-of-

sample forecasting analysis using the univariate Box-Jenkins models, was the

apparent superiority of the breeding sow component models over that of the Box-

Jenkins model built for the breeding sow total itself. This is possibly a result of the

fact that the diametrically opposed technical and seasonal features of the pregnant sow
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and barren sow herds become masked when aggregated and begs the question as to

whether or not future modelling of the pig sector, by whatever method, should not

switch attention away from the breeding herd total towards its component parts.

The biological and econometric models for the breeding herd both required

autocorrelation corrections of various kinds for the key inflow and outflow variables,

pregnant gilts and culling and imply that decisions to increase or decrease these

variables take longer than one trimestic period to implement. A possible reason for

this, is the presence of adjustment costs as discussed briefly in chapter five. As well

as producing a recursive forecasting model, the other biological relationships

examined in chapter four illustrated the nature of the biological system in and between

the breeding and feeding herds. Significant time trend variable parameters illustrated

changing technical features such as the shortening of the weaning period and the

resultant increase in sow productivity. The econometric models produced structures

with lags and estimated parameters very much as expected. In view of the

methodological imperfections of Savin's work in 1977 and the apparent

misspecification of the MLC econometric models, I am satisfied that my models,

which explicitly include a biological element, provide an improvement on existing

forecasting models. Although a logit approach to modelling limited dependent

variables was researched, the method was found to provide little or no improvement

on the models eventually used.

Before out-of-sample forecast comparisons could be made, it was deemed advisable

to replace the April 1987 sample census data, which appeared to give consistently

high values for nearly all the breeding herd data, by a one-step forecast value from the

univariate model. Given the three one-step forecasts for 1987 from the different types

of model, the choice of the univariate forecast to replace the figure for April 87, did

not appear to bias unduly the analysis in favour of the Box-Jenkins models. For the

one step conditional forecasts and the one year and two years ahead unconditional

forecasts, the univariate models were the best as measured by the Mean Square

Forecast Error statistic. This was the result expected for the short term forecasts but

was very much unexpected in the longer term. Whether this is a result of the fact that

the univariate models have been estimated and forecast produced using information

from the June full census is a matter of conjecture. The biological model showed a

tendency to over-forecast one year and two years ahead and the long term forecasting

ability of the econometric model was clearly hampered by its reliance on univariate

unconditional forecasts of the profit ratio. Having said this, the replacement of the

profit forecasts by actual profits, although a clear help when forecasting two years

ahead, was an apparent handicap when forecasting one year ahead. When using
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actual rather than profit forecasts, the econometric model outperformed the biological

model when forecasting one and two years ahead.

The other series for which forecasting models were built comprised the two monthly

slaughter series, sow and boar cullings and fat pig slaughter. Models were built for

these two categories using the univariate Box-Jenkins and biological methodologies

and, as an alternative to, an econometric model, bivariate Box-Jenkins models were

also constructed. Univariate time series models were also built in chapter six for the

AAPP and the compound feed indices, and the profit ratio created by the ratio of the

two said price indices. The one-step forecasting analysis implied the superiority of

using the ratio model itself for forecasting profits rather than forecasting the

individual price indices and making the appropriate transformation of the resulting

forecasts. This result contrasts somewhat with the aforementioned aggregate versus

dissaggregate forecasting analysis of the univariate models for the pseudo-quarterly

breeding sow herd series. This univariate profit ratio model was the only model used

in the thesis to forecast profits and was used to provide forecasts for the semestic

econometric model and the bivariate monthly models. The five univariate monthly

models built for the two slaughter categories and the price and profit variables were

considerably easier to identify than the univariate semestic models had been, due to

the nature of the seasonality involved. All five models were first and seasonally

differenced in order to obtain stationary series, and none of the models were cyclical,

in contrast to the pseudo-quarterly breeding herd models.

The biological models built in chapter four along with the semestic biological models

are basically the same in structure as the equivalent semestic models, but applied to a

monthly data set. Both models were estimated on the assumption that the breeding

herd at any particular census also represented the size of the breeding herd in the

previous three months. Future work on a monthly biological model could investigate

the validity of this assumption by testing the forecasting ability of models based on

different assumptions, for example, interpolating the size of the breeding herd so that

the breeding herd is deemed to change smoothly over time between the census dates.

Rather sophisticated, though still simplified bivariate Box-Jenkins methodology was

employed, using the previously estimated univariate models for culling, fat pigs and

the profit ratio, to build forecasting models for the two slaughter series, using profit

as the explanatory variable. These models made an interesting alternative approach

modelling the monthly culling series on the grounds that they help to identify, using

empirical statistical techniques, the nature of the lags involved between culling,

slaughtering and profit. Having gained such knowledge from the bivariate analysis,
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future work on econometric modelling of these monthly series could take on board

the lag structures identified in the bivariate analysis. Indeed it would have been

desirable to apply the bivariate time series analysis to the trimestic breeding herd

models, but the lack of sufficient data rendered identification infeasibie.

Each of the three different types of model was used to forecast one month, one year,

and two years ahead, again using the data for 1986-7 as the out-of-sample period, to

investigate their respective short and longer term forecasting abilities. For all sets of

forecasts of culling it was the biological model which was the best in terms of

forecast error statistics and the ability to forecast seasonality. Although the superiority

of the biological model over the univariate model was expected in the longer term, the

one month conditional superiority was rather unexpected, though it should be said

that the lags in the biological model were short, possibly helping to explain the

relatively good short term forecasting results. The bivariate forecasts were similar,

though slightly superior to those of the univariate model, suggesting that the addition

of the profit variable was a useful one in term of explanatory and forecasting ability.

For the longer term forecasts, however, the performance of the bivariate model is

clearly affected for the worse by the univariate profit forecasts, and especially so

when forecasting two years ahead. Although the bivariate model forecasts the month

to month seasonal changes reasonably well, the usefulness of the bivariate model as a

longer term forecasting model is clearly dependent on a better profit forecasting model

being found.

In terms of the fat pig forecasting analysis, the results were very much as expected.

In the short term, the bivariate Box-Jenkins forecasts were the best, closely followed

by similar univariate forecasts: the biological model, with its longer lags, trailed in

third place. The apparent reason for the poor MSFE statistic of the biological

forecasts was the fact that the model appeared to be over-forecasting. This over-

forecasting is even more evident in the longer term unconditional biological forecasts,

and can be explained in part by the fact that the forecasts from the trimestic breeding

herd biological model, which feed into the unconditional monthly biological

forecasting function are, on the whole, over-forecasts themselves. However, the

latter cannot be cited as the cause of the one-step ahead conditional over-forecasting

of the monthly biological model which must, therefore, be explained by the presence

of the positive time trend in the biological model which takes account of the increase

in sow productivity over the estimation period. In an attempt to rectify this problem,

the one-step conditional forecasts from the biological model were re-made stopping

the time trend at the end of the estimation period, December 1985. Although the

MSFE of the adjusted biological forecasts was reduced considerably to 865.8
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compared with the equivalent unadjusted forecast figure of 1298.7, it was evident that

the tendency to over-forecast still persisted. The conclusion from this simple analysis

was that the problem caused by the size of the coefficient on the positive time trend

originated further back into the estimation period, even though this was not apparent

at the end of the plot of residuals produced having estimated the model. A clue to the

likely period of change in the productivity time trend in the biological model can be

found in chapter one where it was evident that the reduction in the improvement in the

weaning period has slowed down the rate of increase in sow productivity. The

consequence of the forecasting analysis for the fat pig biological model is that it

would appear to be wise for future work on such a model to allow for a break in the

increase in sow productivity around the start of the 1980's by allowing the time trend

parameter to be lowered, possibly by the inclusion of a dummy variable to represent

the weaning period. In the meantime the biological model as presented in this thesis

could be used, adjusting the biological forecasts downward by an appropriate

percentage calculated by the mean percentage error of the appropriate forecasts in the

out-of-sample period. Another curious result from the fat pig forecasting analysis was

the superiority of the bivariate Box-Jenkins model in terms of the MSFE statistic

when forecasting two years ahead. The two year ahead forecasts were better than

those of the univariate model, which could be explained by the relatively long lags on

the profit variables, although the latter argument falls somewhat when one takes into

consideration the fact that the two-year ahead forecasts for the profit ratio adversely

affected the two year ahead forecasting performance of the trimestic econometric and

the bivariate monthly culling model. Also, the MSFE for the two year ahead bivariate

fat pig forecasts is actually lower than that of the equivalent one year ahead forecasts.

These results imply that the relative superiority of the bivariate fat pig model when

forecasting two years ahead may be atypical, though this hypothesis can only be

tested as more data become available in the future. Indeed all the results of the

forecasting analysis of chapter eight must be seen in the context of the out-of-sample

period chosen, and given that the census information from the April 1987 period has

been treated with considerable suspicion, some of the conclusions drawn from the

analysis are made tentatively. Further analysis as more data become available will be

informative and should help to make the conclusions more robust.

As well as the comments already made concerning the direction of useful future

research, the work carried out in the course of researching this thesis points to further

areas of development. Because of the data problems encountered the trimestic models

have not been compared on equal terms, in the sense that the univariate models were

built and forecast using pseudo-quarterly rather than trimestic data. Despite this, the
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univariate model has been seen to perform relatively well, although it has had the

advantage of including information from the full June census, which should be more

reliable than the sample census data in that the data are not subject to sampling errors.

A true comparison of the univariate and biological and econometric models requires a

semestic univariate model to be built: however, given that the Box-Jenkins

methodology requires a long time series before any meaningful analysis can be

undertaken, a few more years of good quality data are still required.

Both the biological and the econometric semestic breeding herd models were

introduced using steady state equilibrium as a theoretical framework in which to

explain the models. Given that the UK breeding herd is unlikely to err from such an

equilibrium relationship in the long run, there is good reason for estimating the

biological and econometric model parameters within such an equilibrium framework.

Yet again, however, it was the quantity and quality of semestic data available which

deterred such an exercise but provide yet more fodder for future analysis.

The research has been concerned with the relative forecasting abilities of the various

models built: were a forecaster interested in obtaining a 'best' forecast for the

variable with which he is concerned, work by Bates and Granger (1969) on the

combining of forecasts, suggests that the forecaster should not necessarily concern

himself with finding and using a single 'best' model, thereby ignoring information

provided by other models produced. Instead, by combining the forecasts from some

or all the models using appropriate weights, which mayor may not change over time,

it is possible to produce forecasts with an error variance lower than that of the best

individual set of forecasts. Although it was one of the original aims of the thesis to

analyse such combining methods in depth, the relative shortness of the out-of-sample

forecasting period, chosen largely as a result of the constraints placed on the analysis

by the data available for estimation, and the suspect quality of the data towards the

end of the sample period, namely the April 1987 census data and the presence of the

effects of the 1983 Aujezky eradication campaign, rendered the usefulness of such

analysis questionable. Even so, the methodology and an application to the one-step

forecasts for fat pigs is presented briefly in appendix 9 in order to give the reader an

appreciation of what could be done in the future as more, hopefully problem free,

data become available.

Following on from the combination idea, and in an attempt to find 'the best' forecasts

for a given variable, it would be possible to build a recursive model so that the

forecasts deemed to be the best for a given variable, whether produced by a single

model or a combined weighting system, could be fed into a given model in which the
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given variable is an independent variable, in order to produce forecasts of a second

variable. For example, consider forecasting the breeding herd using a recursive model

such as the biological or the econometric model having derived a relevant weighting

system. The one-step forecast for the breeding herd requires a one-step forecast of

culling. The relevant forecasts of culling can be produced by the biological and

econometric semestic models and indeed by the various monthly models for culling,

the latter being aggregated up to the relevant scale and the weightings then applied in

order to derive a best one semester step cull forecast. This forecast could then be fed

into the semestic biological and the econometric models, and assuming the one

semester step forecast for gilts is given, the models could produce their respective

forecasts of the breeding herd for the next semester, and so on. The latter process

would, of course, require complex software to be developed.

In conclusion then, this empirical exercise has succeeded to a certain extent in

building and comparing the shon and medium-long term forecasting abilities of

models built using methodologies requiring various levels of prior information and

sophistication. A major flaw for the models requiring forecasts of profit was the lack

of a good model for long term profit forecasting, casting serious doubt on the

wisdom of using models including profit as an explanatory variable to forecast in the

longer term unless, of course, a superior long term profit forecast model can be

developed. The conclusions of the analyses were varied in terms of actual and

expected results, and some analyses were inconclusive. Problems were caused by the

fact that the models were estimated in a period when the sector was volatile and

undergoing much technical and structural change. Together with the problem of

suspect sample data in the out-of-sample forecasting period, the conclusions from the

analysis can only be tentative and repeated analysis in a few years time would make

interesting reading.
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APPENDIX2

EXAMPLES OF MODEL BUILDING USING BOX-JENKINS METHODOLOGY

This appendix aims to illustrate how three non-seasonal time series models were

identified and estimated using Box-Jenkins methodology. A colleague randomly

generated the data for all three examples on a computer from time series models which

were, of course, known to him. I then attempted to identify the correct models using the

procedures outlined in Chapter two. All models are eventually identified correctly.

EXAMPLE O~TE EXAMPLE TWO EXAMPLE THREE
K

A A

rk akk rk akk rk akk
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.4969 0.4969 -0.2211 -0.2211 0.6731 0.6731
2 0.0937 -0.2034 0.1391 0.0948 0.3680 -0.1554
3 -0.0425 0.0034 0.0031 0.0551 0.2732 0.1717
4 -0.1669 -0.1716 0.0250 0.0246 0.1984 -0.0591
5 -0.2296 -0.0921 0.1355 0.1463 0.0816 -0.0724
6 -0.1857 -0.0432 -0.0547 -0.0043 -0.0635 -0.1503
7 -0.0053 0.1227 -0.2072 -0.2763 -0.1774 -0.1056
8 0.0749 -0.0224 0.1112 0.0141 -0.2348 -0.0765
9 -0.0214 -0.1354 -0.0983 -0.0188 -0.2362 -0.0090
10 -0.1258 -0.1308 0.0411 -0.0053 -0.1984· 0.0275
11 -0.1487 -0.0593 -0.0706 -0.0176 -0.1542 0.0204
12 -0.2616 -0.2276 -0.0615 0.0203 -0.1767 -0.1181
13 -0.2848 -0.0908 -0.0415 -0.1055 -0.1285 0.0805
14 -0.2188 -0.1602 0.0216 -0.0268 -0.0251 0.0232
15 -0.1381 -0.1467 0.0529 0.1210 -0.0426 -0.1544
16 -0.0263 -0.0860 0.0366 0.0754 -0.1190 -0.1102
17 0.1135 0.0249 0.0800 0.1270 -0.1624 -0.1033
18 0.1561 -0.0916 0.0246 0.0467 -0.1353 0.0005
19 0.1419 -0.0324 0.1300 0.0862 -0.0723 0.0462
20 0.1197 -0.0272 0.0471 0.0215 -0.0424 0.0173

Having generated the data the identification package was employed to generate the

sample auto and partial autocorrelation statistics, up to and including the twentieth lag,

as shown above. With a sample size of 80 observations, two standard deviations from

zero, as measured by the Quenouille statistic is 0.2236. Observing the sample

autocorrelations for the first ten lags reveals that all three series appear to be stationary

so that they do not need to be differenced. An initial identification can now be made of

the three series, starting with example one.
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EXAMPLE 01\1:

The sample autocorrelarions for example one reveal that all the autocorrelations are small

with the exception of that at lag one which has a value of 0.4969, after which there is an

immediate and sustained reduction in the value of the sample autocorrelations of higher

order. Given this information and given that the partial autocorrelations tail-off more

slowly, it would appear that an MA(1) is the best choice for an initial identification. An

initial estimate of bi is obtained by solving rI= bi/ (1+bI2), which is then input to a

parameter estimation program producing the following results.

PARA\1ETER ESTIMATE
STANDARD ERROR
MEAN SQUARE ERROR
MEAN OF RESIDUALS
VARIANCE OF RESIDUALS

bi
= 0.6067
= 0.0937
= 0.8253
= -0.1928
= 0.7877

AlITOCORRELATIONS OF RESIDUALS
r rt (e)

o 1.0000
1 0.0287
2 0.0968
3 -0.0549
4 -0.1176
5 -0.1055
6 -0.1464
7 0.0340
8 0.0689
9 0.0180
10 -0.1444

The standard error of the parameter estimate indicates that the parameter bi is highly

significant with a t-staristic of 6.475. The mean value of residuals is not significantly

different from zero given the low residual variance of 0.7877. Finally, analysis of the

autocorrelations of the residuals indicates that the model identification is acceptable as

there is no evidence of serial correlation, none of the residual autocorrelations being

significantly different from zero. Hence, the estimated model is;

Xt = (1 + 0.6067B ) et.

EXAMPLE TWO

At first sight this example appears to be white-noise, because none of the sample

statistics lies further than two standard deviations away from zero. However, because TI
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and all are very close to being significant the model was overfitted by an AR(1) and by

an MA(l} to see what results would occur. Although the results are not shown here, the

conclusion from the diagnostic checking stage was to reject both overfitted models

because neither of the additional parameters was significantly different from zero. In

order to give an actual example of the problem of overfitting on both sides of the

equality an ARMA(1,l} was estimated and diagnostically checked, producing the

following results.
al

PARAMETER ESTIMATES = -0.8379
STANDARD ERRORS = 0.0894
MEAN SQUARE ERROR = 0.7935
MEAN OF RESIDUALS = -0.0290
VARIANCE OF RESIDUALS = 0.7926

bI
0.8091
0.1219

AlITOCORRELATIONS OF RESIDUALS
t r t (e)
0 1.0000
1 -0.0928
2 0.0538
3 0.1117
4 - 0.0718
5 0.2046
6 -0.1099
7 -0.2058
8 0.0900
9 -0.0965
10 0.0259

The estimation program shows results which might well suggest that the model is indeed

an ARMA(1,l) model with an AR parameter of -0.8379 and an MA parameter of

0.8091. Both these parameters are significantly different from zero, the mean value of

the errors is low and the autocorrelations of the residuals appear to be white noise. This

example illustrates the point that two-sided overfitting may well lead to the inducement

of unnecessary parameters, which is not good for reasons of parsimony. Having said

this, writing the estimated ARMA(I,I) with the parameters expressed to one decimal

place gives the following equation:-

(1 + O.8B) Xt = (1 + 0.8B) et .

. Dividing through by (1 + 0.8B) results in the true white noise generating series

indicating that the two-sided overfitting of the model is not always as harmful as it might

initially appear .

..
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EXAMPLE THREE.

At first sight an AR(I) appears to be the best identification for example three, due mainly

to the fact that the sample autocorrelations fall at a steady rate rather than experiencing a

sudden drop. The partials on the other hand, all lie below two standard deviations from

zero except for that at lag one (all ), although it is also true that the partials at lags two

and three are not too low. Fitting an AR( 1) with a starting parameter of 0.6731 gives the

following results.

PARAMEfER ESTIMATE =
STANDARD ERRORS =
MEAN SQUARE ERROR =
MEAN OF RESIDUALS =
VARIANCE OF RESIDUALS =

al
0.6878
0.0739
0.9135
-0.0429
0.9117

AlITQCORRELA TIONS OF RESIDUALS
t rt (e)
0 l.0000
1 0.0999
2 -0.2429
3 0.0235
4 0.0946
5 0.0091
6 -0.0267
7 -0.2424
8 -0.1380
9 0.0299
10 -0.0301

The results of diagnostic checking appear to be favourable in that the AR(I) parameter is

significantly different from zero and the error variance and residual mean are low. The

only indication of any problem is that the residual autocorrelations at lags two and seven

are significantly different from zero. The high autocorrelation at lag two may well

suggest that an MA parameter should be added to the model. The results of fitting an

ARMA(I,I) are given below.

al bI
PARAMETER ESTIMATES = 0.5583 0.3341
STANDARD ERRORS = 0.1096 0.1351
MEAN SQUARE ERROR = 0.8903
MEAN OF RESIDUALS = -0.0569
VARIANCE OF RESIDUALS = 0.8870
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AtITOCORRELATIONS OF RESIDUALS
t r't(e)
o 1.0000
1 -0.0496
2 -0.1279
3 0.0821
4 0.0867
S -0.0345
6 0.0350
7 -0.2285
8 -0.1176
9 0.0229
10 -0.0523

Analysis of the results shows both the MA and the AR parameters to be significant and

the error variance and the variance of the residuals to be lower than what they were

under the AR( 1) identification. The mean of the residuals has increased slightly although

the increase and the actual value are so small that there is no need for concern. In order

to check whether or not the ARMA(1,l) specification can be improved at all, the model

was overfitted with both an extra MA and then an extra AR parameter. Although the

results are not shown, both the overfitted models were rejected because the additional

parameters did not prove to be significantly different from zero, and the mean square

errors and variance of residuals increased in value. Therefore, the correct model appears

to be an ARMA(l.l) with an MA parameter of 0.3341 and an AR parameter of 0.5583,
that is;

(1- 0.5583B) Xt = (1 + 0.3341B) et
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APPEl't1>IX 3a.

The Breeding Herd Data Used in the Building of the Box-Jenkins SARIMA

Models.

U,K. Pi~ Breedin~ SQw H~rd Census Data (l2S1;1-1287;Al*
TIME PS PG BS PP H B UG
1957:1 362 142 208 504 712
1957:2 383 153 208 536 744
1957:3 361 151 246 512 758
1957:4 424 152 237 576 813
1958:1 408 159 256 567 823
1958:2 414 132 230 546 776
1958:3 420 104 264 524 788
1958:4 420 98 230 518 748
1959:1 382 105 227 487 714
1959:2 388 112 205 500 705
1959:3 360 100 234 460 694
1959:4 369 113 206 482 688
1960:1 344 126 223 470 693 40
1960:2 375 142 208 517 725 40
1960:3 363 133 244 496 740 42
1960:4 385 126 228 511 739 41
1961:1 376 133 242 509 751 44
1961:2 401 148 224 549 773 43
1961:3 396 140 271 536 807 45
1961:4 430 137 251 567 818 45
1962:1 423 145 272 568 840 45
1962:2 456 147 255 603 858 46
1962:3 454 134 297 588 885 48
1962:4 478 125 274 603 877 47
1963:1 445 125 297 570 867 48
1963:2 481 142 253 623 876 47
1963:3 453 130 301 583 884 48
1963:4 480 122 265 602 867 47
1964:1 441 150 281 591 872 49
1964:2 466 174 263 640 903 47
1964:3 468 168 306 636 942 50
1964:4 512 152 280 664 944 49
1965:1 493 156 310 649 959 51
1965:2 517 147 281 664 945 49
1965:3 510 119 328 629 957 50
1965:4 513 100 287 613 900 49
1966:1 460 100 288 560 848 44
1966:2 463 110 249 573 822 41
1966:3 436 109 266 545 811 44

.1966:4 450 111 247 561 808 44
·1967:1 429 125 256 554 810 44
1967:2 445 136 243 581 824 44

Cont.
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TIME PS PG BS pp H B UG
1967:3 437 135 268 572 840 45
1967:4 466 122 263 588 851 44
1968:1 454 130 277 584 861 45
1968:2 482 151 254 633 887 44
1968:3 477 142 295 619 914 45
1968:4 517 129 271 646 917 44
1969:1 489 133 293 622 915 44
1969:2 507 141 267 648 915 45
1969:3 501 132 302 633 935 47
1969:4 518 130 274 648 922 46
1970:1 490 138 282 628 910 47
1970:2 524 159 270 683 953 46
1970:3 521 155 313 676 989 47
1970:4 548 142 296 690 986 44
1971:1 554 128 314 682 996 45
1971:2 570 121 292 691 983 45
1971:3 556 111 305 667 972 48
1971:4 566 106 285 672 957 46
1972:1 548 118 298 666 964 48
1972:2 557 128 276 685 961 48
1972:3 545 138 304 683 987 51
1972:4 571 138 277 709 986 46
1973:1 552 148 300 700 1000 43
1973:2 577 156 282 733 1015 44
1973:3 565 157 310 722 1032 42
1973:4 579 136 287 715 1002 40
1974:1 503 109 287 612 899 37 96
1974:2 521 107 262 628 890 40 80
1974:3 504 92 269 596 865 42 81
1974:4 498 84 234 582 816 41 73
1975:1 453 97 259 550 809 41 75
1975:2 485 104 225 589 814 43 87
1975:3 475 113 228 588 816 43 95
1975:4 496 122 226 618 844 43 102
1976:1 458 133 250 591 841 42 112
1976:2 512 137 235 649 884 41 101
1976:3 511 138 236 649 885 40 106
1976:4 537 111 238 648 886 41 90
1977:1 483 105 239 588 827 42 89
1977:2 503 103 222 606 828 41 76
1977:3 479 89 222 568 790 44 81
1977:4 502 102 218 604 822 42 91
1978:1 486 110 235 596 831 44 105
1978:2 510 118 214 628 842 43 90
1978:3 497 120 225 617 842 42 100
1978:4 534 109 222 643 865 42 90
1979:1 (498) (111) (241) (609) (850) (43) (88)
1979:2 528 109 215 637 852 42 82
1979:3 517 102 218 619 837 43 77
1979:4 520 92 208 612 820 42 91
1980:1 497 99 213 596 809 43 88

Cont.
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mIE PS PG BS pp H B UG
1980:2 517 109 204 626 830 43 84
1980:3 510 110 204 620 824 43 94
1980:4 514 101 203 615 818 43 89
1981:1 517 102 202 619 821 44 91
1981:2 522 112 203 634 837 45 87
1981:3 520 107 205 627 832 45 87
1981:4 532 108 197 640 837 46 90
1982:1 533 109 204 642 846 47 97
1982:2 543 122 200 665 865 45 89
1982:3 536 118 203 654 857 45 96
1982:4 5S8 114 204 672 876 43 92
1983:1 547 119 210 666 876 42 89
1983:2 542 110 204 652 856 42 82
1983:3 532 103 197 635 832 43 82
1983:4 510 96 184 606 790 43 75
1984:1 487 99 184 586 770 44 80
1984:2 518 105 178 623 801 44 77
1984:3 504 lOS 186 609 795 44 89
1984:4 526 107 181 633 814 45 84
1985:1 523 111 192 634 826 46 87
1985:2 530 112 187 642 829 44 80
1985:3 521 105 195 626 821 45 86
1985:4 537 102 187 639 826 45 85
1986:1 531 108 199 639 838 46 92
1986:2 534 108 182 642 824 44 79
1986:3 540 105 188 645 833 45 87
1986:4 533 106 183 639 822 45 86
1987:1 544 110 197 654 851 47 87
1987:2 528 lOS 180 633 813 44 80
1987:3 522 102 186 624 810 45 85
1987:4 536 104 182 640 822 45 79

• AllFiguresinthousandsofpigs.
Numbers inparenthesesindicateforecastvalue.

SQurce: M.A.F.F..obtainedfrom M.L.C. Economics Departtnent.
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APPENDIX3b

Methodoloc orData Collection

This appendix outlines the methodology of data collection employed by each

member country of the U.K. as defined by Ministerial boundaries. Prior to 1974

the data were collected on a quarterly basis, the censuses being carried out at the

beginning of each of the months of March, June, September and December. Since

1974 however, the one third sample censuses previously performed in March and

September have been carried out at the beginning of April and August respectively,

in order to fall in line with the rest of the E.E.C. M.A.F.F. continued to perform

the March and September censuses in addition to the April and August ones, up to

and including 1977. Because of industrial action carried out by the Civil Service,

no census was performed in April 1979. The details of the methodologies of data

collection for each of the three ministerial bodies are presented on the following

page.

Sources:-

Agricultural Statistics U.K .. (various years)

Agricultural Statistics England and Wales. (various years)

Statistical Review of Nonhern Ireland Agriculture. (various years)

Economic Report on Scottish Agriculture. (various years)

Notes,

S.M.D.= Standard Man Day. (Eight hours work performed buy one unit of labour)

E.S.U. = European Size Unit.

(The equivalent of 1000 E.U.A. of standard gross margins at average 1972-74 values)



TIME

Pre-
1969

1969

1970

1973

1980

1981

1983

The JUDe ceDSUS records all
livestock on holdings larger than
one acre in size unless the holding
is deemed to be statistically
insignificant as (ar as economic
activity is concerned. Estimates of
livestock numbers on these minor
holdings are made and added to the
census records. Estimated numbers
for March, September and
December are raised (rom one third
sample surveys and are subject to
sampling errors.

The definition of small holdings
changed to those holdings with:-
&. < 10 acres of crops/grass.
b. a labour requirement of <26
S.M.D.'s and
c. No ful! time worker.
The changes increased the number
of minor holdings by 34,000.
13,<XXI holdings no longer operated
as (arms.

Minor bolding SMD labour
requirements increased to <40
S~ID's per annum.

New higher threshold (or definition
of minor holdings.
&. ToW area o( < 6H
b. No full time worker.
c. <lOO s~m's
d. < I00 sqm. glasshouse area
e. Occupier (arm no other holding.

NOR1HERN IRELAND

Livestock returns collected from
all holdings whatever size and
complete censuses are
performed in both June and
December.

Minor holdings now defined as
in England and Wales. Resulted
in a net loss of S,sOO holdings
from census.

As for England and Wales. Loss
of a further 6,000 holdings to
minor sector.
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SCOTLAND

As for England and
Wales, except that
complete censuses are
performed in both June
and December, and no
estimate of livestock
numbers on minor
holdings are added to
the the census returns.

The definition of a
minor holding was
given as a holding
requiring less than 26
SMD's per annum.
The result was a loss
of 16,000 holdings
from the main
censuses.

Minor bolding
definition is changed
to include all holdings
with a labour
requirement of <40
SMD's. Negligible
effect on figures,

December census dropped in
favour of sample survey. Minor
holdings now include:-
a. Total area of < 6H.
b. No full time worker.
c. Farm business size of < 1
ESU Sample surveys replace

December census
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Appendix3c

Chow Tests On TIle SARI:\l.\-Models For The Breeding Sow Herd Series Estimated
On 1957:1- 1985:4

Having estimated the five breeding sow herd SARIMA models for the 1957:1-1985:4
period. the decision was taken to investigate the significance of the influence, if any, of
the U.K:s membership of the EEC which resulted, amongst other things, in a change
in the timings of the Spring and Autumn sample censuses. A look at the 1957-85 plots
for the breeding sow herd series' reveals that all the series show changes in behaviour
post 1973/-t. Sows in-pig numbers fall dramatically during 1973/4 due to falls in
profitability and adjacent reductions in in-pig gilt numbers. The series beyond 1974
appears to be much more stable than it had been before 1974. The number of in-pig
gilts is also a series which oscillates less about a lower mean level post 1974, whereas
the barren sow series experiences a dramatic and sustained fall. The effect of all these
changes upon the aggregated series, "total breeding sow herd', is that from 1974
onwards, the series look much more stable and stationary than they had been
previously.
The models. as estimated on the sample 1957:1-1985:4 were re-estimated on the data
from 1957:1-1973:-t and from 1974:1-1985:4, 1974 being the first year of the new
census timings. The appropriate statistics were calculated using the RSS values from
each of the three estimations and the Chow statistics were then measured against critical
values from the appropriate F-distribution. The results of the tests are presented in the
table below, showing the Chow test to be highly significant for all four models.

Results of Chow Tests Performed on the Breeding Sow Herd
St\RIMA-MQdeJs <1957:1-1985:4)

Series ChoW' ~.995
Valut' k,W' *

PS 5.20 3.08

PG 6.31 3.54

55 4.59 3.54

PP 6.63 3.23

H 4.59 3.23

* k = No. of est imeted parameters.
W = Degrees of freedom for the eggregete model derived

from the eddition of the two component models.
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APPENDIX 3d
An analysis oflhe In-Sample and Out-Of-Sample MSFE Statistics From The Univariate

Box-Jenkins ~lodels For TIle Breeding Herd and its Components

In-Sample (1983:1-85:4)

Forecasts
1Step Ahead

Sample 57:1-85A 75:1-85:4

Out-of-Sample (1986:1-87:4) Forecasts
8 Step Ahead 1 Step Ahead

57:1-85:4 75:1-85:4 57:1-85:475:1-85:4

------------------------------------------------------------------------------------------------
PS 248.75 187.34 150.38 312.66 185.90 203.51

PG 25.22 28.02 17.49 21.15 14.96 20.67

PP 287.42 231.91 188.74 236.27 358.69 245.45
BS 26.55 23.22 21.77 51.26 35.83 37.47
II 323.73 252.26 338.66 281.93 741.19 592.55

The MSFE's are generally smaller in the in-sample period for the 1975-85 model,
although this was not so in the case of the pregnant gilt model. Furthermore, for the
four 1975-85 models in \\ hich the in-sample MSFE was the smaller, the removal of the
worst forecast from both the shorter and longer period models produced MSFE
statistics for the 57-85 model forecasts which were equally as good, if not better, than
those of the shorter period model. These latter results indicate that the longer period
model is therefore equally as good, if not better, at forecasting the in-sample period if it
were not for one relatively bad forecast. Analysing the forecast errors more closely it is
apparent that this bad forecast occurs in the third quarter of 1983, the quarter inwhich
the consequences of the Aujezky disease eradication campaign are felt most heavily in
the breeding herd. All five models estimated on the longer sample over-forecast the
said quarter - though this is only just the case in the pregnant gilt model - and by an
amount which adversely affects the MSFE significantly more than is the case for the
shorter sample models. It would appear, therefore, that despite the fact that the Aujezky
period has a greater influence on the identification and the parameter estimates of the
shorter sample model, apart from the aforementioned quarter, the longer sample
models are equally as good or better than the shorter sample models at forecasting the
period 1983:1-1985:4. Almost certainly, the reason for the lesser effect of the
eradication campaign on the pregnant gilt herd, is that they can be replaced by, for
example, transfers from the feeding herd with very little time lag. This is not true of
pregnant sows and barren sows and consequently these two herds were reduced by the
eradication campaign and could not recover anywhere nearly as fast as was the case for
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the gilt herd. This latter phenomenon plays some part in explaining the superiority of

the longer period model over the shorter period model in forecasting the pregnant gilt

herd over the in-sample period.

Turning to the forecast results of the out-of-sample period, the 8 step ahead

unconditional forecast results show heavily in favour of the longer period model. All

the MSFE's. except for that of the total breeding herd model, are lower for the 1957-85

model. Furthermore, the higher MSFE of the breeding herd model is the result of one

bad under forecast of the figure for the first quarter of 1987, a figure which both the

shorter and the longer sample models under forecast. Removing the forecast for this

period for both models produces an ~1SFE statistic for the longer period model which

is lower than that of the 1975-85 model. The majority of in-sample MSFE statistics,

therefore. favour the longer period models and even in the case where the opposite is

true. the reason would appear to be the result of one large under-forecast.

The story for the one step ahead conditional out-of-sample forecasts is similar to that of

the eight step unconditional forecasts except that it is only the three component models

estimated on the longer period which out-forecast the shorter period models. The

MSFE statistics for the two aggregate series models are lower for the 75-85 model.

However. once again the reason for the better statistic of the shorter period model is the

appearance of one - or in the case of the total breeding herd model two - bad forecast at

the stan of 1987. Removing these forecasts produces a superior MSFE for the longer

period model.
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6PPENDIX 4a

The Data Used to Estimate the Trimestic Biolo~cal Models·

TIME·· PS PG PP BS H UG B HB I M FP
1974:1 503 109 612 287 899 96 43 942 178.43 5034.8
1974:2 5~ 92 596 269 865 81 42 907 123.26 156.96 4982.4
1974:3 498 84 582 234 816 73 40 856 88.70 140.71 4868.6
1975:1 453 97 550 259 809 75 37 846 119.29 129.49 4463.9
1975:2 475 113 588 228 816 95 42 858 114.59 103.04 4003.0
1975:3 496 1"" 618 226 844 102 41 885 130.51 102.98 4075.4--
1976:1 458 133 591 250 841 112 41 882 105.02 108.08 4109.0
1976:2 511 130 ~1 236 877 106 43 920 136.74 100.15 4064.7
1976:3 537 111 tH8 238 886 90 43 929 136.63 127.45 4633.1
1977:1 483 105 588 239 827 89 42 869 84.74 142.52 4674.2
1977:2 479 89 568 .,")") 790 81 40 830 90.50 128.07 4463.3..._-
1977:3 502 102 6{M 218 822 91 41 863 159.06 125.41 4653.5
1978:1 486 110 596 235 831 105 42 873 126.43 116.24 4460.8
1978:2 497 120 617 225 842 100 44 886 123.26 110.74 4346.8
1978:3 534 109 tH3 .,").., 865 90 42 907 138.67 117.26 4665.7..._-
1979:1 (498)(111)(609)(241)(850)(88) (44) (894) 99.92 113.18 4626.0
1979:2 517 102 619 218 837 77 42 879 106.89 121.33 4760.9
1979:3 520 92 612 208 820 91 42 862 111.14 128.47 4961.4
1980:1 497 99 596 213 809 88 43 852 108.08 118.28 4765.7
1980:2 510 110 620 2~ 824 94 43 867 117.48 103.04 4611.6
1980:3 514 101 615 203 818 89 42 860 99.92 107.06 4890.1
1981: 1 517 102 619 202 821 91 43 864 118.27 114.20 4808.5
1981:2 520 107 627 205 832 87 43 875 111.70 101.11 4613.5
1981:3 532 108 MO 197 837 90 43 880 117.26 112.16 4875.8
1982: 1 533 109 M2 2~ 846 97 44 890 121.33 111.70 4805.2
1982:2 536 118 654 203 857 96 45 902 120.37 108.81 4683.8
1982:3 558 114 672 204 876 92 46 922 146.82 126.43 5159.2
1983:1 5"'7 119 666 210 876 89 47 923 133.57 132.55 5113.3
1983:2 532 103 635 197 832 82 44 876 115.56 160.81 5114.3
1983:3 510 96 606 184 790 75 43 833 99.92 143.77 5314.2
1984:1 487 99 586 184 770 80 42 812 101.96 123.37 4977.7
1984:2 5~ 105 609 186 795 89 43 838 124.22 99.19 4694.4
1984:3 526 107 633 181 814 84 43 857 123.37 104.00 4989.0
1985:1 523 111 634 192 826 87 44 870 118.27 105.02 4903.3
1985:2 521 105 626 195 821 86 44 865 104.00 108.81 4874.5
1985:3 537 102 639 187 826 85 45 871 116.24 110.12 5165.3
1986:1 531 108 639 199 838 92 46 884 122.35 109.10 4977.7
1986:2 540 105 645 188 833 87 45 878 108.81 114.60 4974.7
1986:3 533 106 639 183 822 86 45 867 107.06 118.30 5293.8
1987:1 544 110 654 197 851 87 47 898 140.71 109.10 5086.8
1987:2 522 102 624 186 810 85 45 855 70.30 111.70 4929.4
1987:3 536 104 640 182 822 79 45 867 121.33 109.10 5232.6

• All Figures in thousands of pigs.Numbers in parentheses indicate a forecast
value .

•• 1.2.3 refer to April, August. December or periods 1,2 and 3
Source: M.A.F.F .• obtained from M.L.e. Economics Department.
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APPE~rx 4b:- The Data Used to Estimate the Monthly Biological Models*

TI~{E M FP TIME M FP
1975: 1 29 1021 1978:12 24 1048
1975:2 33 1034 1979:1 26 1044
1975:3 30 1037 1979:2 27 1077
1975:4 26 975 1979:3 28 1107
1975:5 24 925 1979:4 26 1062
1975:6 23 899 1979:5 28 1077
1975:7 .,,, 892 1979:6 30 1131--
1975:8 21 858 1979:7 28 1126
1975:9 26 972 1979:8 27 1096
1975:10 23 961 1979:9 28 1158
1975:11 25 974 1979:10 30 1146
1975:12 27 952 1979:11 33 1180
1976: 1 23 917 1979:12 25 1091
1976:2 25 947 1980:1 28 1082
1976:3 25 972 1980:2 29 1115
1976:4 23 948 1980:3 27 1115
1976:5 25 967 1980:4 24 1061
1976:6 23 924 1980:5 24 1043
1976:7 22 916 1980:6 24 1088
1976:8 25 998 1980:7 23 1066
1976:9 28 1043 1980:8 22 1054
1976:10 30 1097 1980:9 25 1143
1976:11 34 1132 1980:10 25 1136
1976:12 30 1057 1980:11 27 1179
1977: 1 33 1040 1980:12 25 1130
1977:2 35 1118 1981:1 26 1068
1977:3 34 1115 1981:2 27 1114
1977:4 29 1052 1981:3 27 1137
1977:5 31 1073 1981:4 22 1067
1977:6 30 1000 1981:5 25 1075
1977:7 29 998 1981:6 25 1093
1977:8 27 1022 1981:7 22 1031
1977:9 30 1110 1981:8 24 1059
1977:10 29 1070 1981:9 25 1095
1977:11 30 1094 1981:10 26 1147
1977:12 26 1071 1981:11 28 1194
1978: 1 27 1019 1981:12 22 1103

1978:2 28 1032 1982:1 28 1091

1978:3 26 999 1982:2 27 1121

1978:4 26 1022 1982:3 27 1126

1978:5 24 984 1982:4 24 1050

1978:6 27 997
1982:5 25 1100

1978:7 25 1005
1982:6 26 1098
1982:7 26 1083

1978:8 25 1007 1982:8 26 1104
1978:9 28 1088 1982:9 30 1196
1978:10 27 1090 1982:10 30 1196
1978:11 28 1119

Cont
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TI~1E M FP TIME M FP
198:!: 11 31 1:!65 1986:9 27 1224
198:!: 12 2S 1167 1986:10 28 1226
1983: 1 29 1139 1986:11 28 1280
1983:2 33 1218 1986:12 23 1214
1983:3 36 1206 1987:1 25 1131
1983:-' 38 1:!14 1987:2 30 1181
1983:5 39 l:!10 1987:3 29 1180
1983:6 39 1195 1987:4 26 1130
1983:7 33 1110 1987:5 26 1121
1983:8 31 1142 1987:6 27 1162
1983:9 35 1249 1987:7 24 1138
1983:10 34 1:!:!6 1987:8 22 1170
1983: 11 33 l:!89 1987:9 26 1182
1983: 12 :!7 1179 1987:10 25 1213
1984: 1 :!9 1136 1987:11 28 1264
1984:2 30 1166 1987:12 21 1152
1984:3 :!8 1117
198-':4 23 1068
198-':5 24 1095 All figures in thousands of pigs.
1984:6 23 1094 All months represent 4 week periods.
1984:7 ..,'" 1081
198-':8 24 1065 Source:- M.L.C. Economics Dept.
198-':9 24 1152
1984: 10 24 1168
1984:11 24 1216
1984:12 20 1149
1985: 1 24 1093
1985:2 26 1136
1985:3 27 1158
1985:4 2S 1119
1985:5 2S 1115
1985:6 26 1135
1985:7 24 1130
1985:8 23 1130
1985:9 26 1197
1985: 10 26 1197
1985: 11 27 1248
1985:12 ..,'" 1186--
1986: 1 26 1110
1986:2 27 1155
1986:3 2S 1153
1986:4 26 1155
1986:5 2S 1126
1986:6 27 1165
1986:7 27 1145
1986:8 26 1155
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Appendix4c

The Results 0( Regro.~ng The Chosen Trimestic Biological Models Including
The ReIe\"3Ilt Subsidy and Outlier Dummies

TIle regressions presented in this appendix are the results of the trirnestic regression

models presented in the main text of chapter 4 including all relevant subsidy and

outlier dummies. The equation numbers are the same as those of the equivalent

expressions presented in the main text followed by the additional letter c.

PSt • (O.5nO Ht + 0.0056 AugHt + 0.0164 DecHt)(1+ 0.0037 T) - 30.11 D76:1
(151.3) (1.74) (4.7) (12.2) (-3.9)

(4.5c.4c)

Obs. = 33 RSS = iuo.s R2 =0.92 DW= 1.46

PGt• 0.1331 lIt + 0.0016 Al'GlIt ·0.0061 OECHt -12.69075:1 - 8.16 A83:2-
(37.6) (O.M) (-2.71) (-2.14) (·1.63)

4.03 077: 1 • 16.62 077:2 • 1.77 077:3 + Ut
(-0.70) (-2.60) (-0.31)

Ut • 0.6472 Ut.l
(4.5)

(4.5c.6c)

Obs. = 33 RSS = 797.0 R2 = 0.98

Mt-1.t· 0.1308 BBt_1 ·0.0071 AugHBt_1 + 0.0011 OecHBt_l +
(4S.9) (-2.55) (0.38)

41.41 A83:2 + 26.18 A83:3 + 14.11 A84:1 + 18.03 077:1 + 18.74 077:2 + 14.02 D77:3 + Ut
(6.38) (3.78) (2.19) (2.77) (2.70) (2.19)

Ut • 0.4458 Ut-l
(2.46)

Obs. = 32 RSS = 876.8 R2 = 0.992

(4.5d.lc)
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Mt-1.t. 0.~11 PSt.l + 36.-45Ag3:~ + ~6.01 A83:3 + 13.68 A84:1 +
(-'8.4) (5.(\1) (3.30) (1.88)

17.13 077:1 + 17.6-' 077:1 + 16.~",077:3 + Ut
(2.35) (1_15) (2.24)

l't • 0.4376 Ut-I
(2.49)

Obs. - 32 RSS = 1~5.6 R_2 = 0.989

(4.5e.lc)

Mt-l•t • 1.~7", ~\-1.t-l - 0.5755 Mt-3,t-2 + REGt(0.5386, 0.5709, -0.0544, -0.0188) -
(8.1) (-4.9) (3.2) (3.8) (-2.9) (-1.03)

1.2974 REGt_l(0.53S6, 0.5709. -0.0544, -0.0188)-
0.5755 REGt_2(O.53S6.0.5709. -0.0544. -0.0188) +
41.781 AS3:2 - 31.58 A83:) + ~.01 079:2 + 0.35079:3 - 12.26080:1 - 11.29 D80:2(4.5f.l
c)
(6.2) (-3.0) (3.0) (0.04) (-1.29) (-1.39)

Where REGt(al.32,bl'~). (at POt-7 + .12 POt-8)(1 + bl AUGt + b2 DECt).
and REGt_l(.1t.31.bl'~):: (.11PGt-S + 32 PGt-9)(l + bt AUGt_1+ b2 DES_I)'
and REGt_2(at.3~.bt.b2) = (at PGt-9 + 2 PGt-l0)(1 + bl AUGt_2+ b2 DECt_2),

Obs. = 23 RSS = 361.0
-2R = 0.84 H = -3.16

PG .0.12-'3 BB 3- 12.70 AS3:2- 19.54 A83:) - 14.59 A84:1 + 27.63 076:1 + 22.89 076:2-
t t-

(42.3) (-1.80) (-2.53) (-2.06) (3.47) (3.22)

5.25 077:1 ·25.97 077:2 - 14.-'7077:3 + Ut
(-0.74) (-3.36) (-2.04)

Ut· 0.4708 Ut-I
(2.53)

Obs. = 30 RSS = 1028.4 112 = 0.99

(4.5g.1c)

PGt• 0.1752 PPt-3- 13.86 AS3:2 - 21.78 AS3:3 - 15.53 AS4:1 + 36.20 076:1 + 25.88 076:2-
(43.4) (-1.81) (-2.64) (-2.02) (4.35) (3.38)

0.0220077:1 ·24.84 077:2 - 14.48077:3 + Ut
HH)03) (-3.02) (-1.89)

Ut • 0.4034 Ut-1
(2.04)

(4.5h.lc)

Obs. = 30 RSS = 1191.4 R2 = 0.99
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PGt• 1.1~tJO CGt-l • O.O~17AugCGt_l - 0.0696 DecUGt_l)(l+ 0.0045 1') + 29.80 075:2 +
(3~ .8) (.0.89) (-2.82) (3_50) (5.6)

20.73 07S:3 + 16.38076:1 + 0.90 077:1 - 12.40 077:2 + 13.33077:3
(3.74) (1.91) (0.17) (-2.35) (2.55)

(4.Si.lc)

Obs. = 32 RSS = S~9A R2 = 0.75 OW = 2.60

CGt• 0.2614 CG
t
_1 + REGt(0.1069. -0.0014)·0.2614 REGt_1(0.1069, -0.0014)-

(2.12) (~6.4) (-0.77)
12.12 A83:2 - 16.7S AS3:3 - 4.94 AS4:1 + 17.48076:1 -
(·2.76) (-3.62) (-LOO) (3.74)
7.68 077:1 - IS.21 On:2 + 3.58 077:3 + 17.53078:1 - 16.95079:2
(-1.59) (-3.05) (0.67) (3.9) (-3.7)

(4.Sj.lc)

\\'here REG,(a.Y' • a HB,_:(1 + y T).

and REGt_t (a, Y' • a HBt_3(l + y (T-I»

_"
Obs. = 30 RSS = 316.91 R" = 0.73 H = -0.94

VGt• 0.1916 VG
t
•t + REGl(O.I609. -0.0043) - 0.1916 REGt_1(0.1609. -0.0043)-

(1.73) (31.8) (-3.32)

13.14 AS3:2· t7.08 AS3:3 - 6.14 AS4:1 + 16.22076:1 -
(-3.29) (-4.0-') (-1.37) (3.78)
lO.S2 077:1 - 17.56077:2 + 3.82077:3 + 17.52078:1 - 19.15079:2
(.2.44) (-3.8) (0.78) (4.34) (-4.7)

(4.Sk.lc)

Where REG,(a, y) • a PPt-2(1 + y T).

and REGt_l (a, ~ - a PPt-3(1 + y rr-u:

Obs. = 30 RSS = 160.51 R2 = 0.78 H = -0_53

FPt-l.l" (3.4644 HBt_: + 1.5622 HBl_3) (1·0.0308 AUG + 0.0271 DEC) (l + 0.0058 T) •

(4.84) (2.13) (-4.18) (3.62) (12.9)

210.15 076: 1 • 236.01 076: 2 + 53.59 A83:2 • 116.64 A83:3 - 152.30 A84: 1 •
(-2.88) (-3.42) (0.74) (-1.65) (-1.77)

180.87077:2 - 89.61077:3 + 54.83 078:1
(·2.49) (-1.04) (0.67)

(4.S1.1c)

Obs.:: 30 RSS:: 70376.8 R_2 = 0.95 DW = 1.52
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FPt-U• (4.~(Xl9PPt-2 + 2.%Q5 PPt.3) (1 - 0.0381 AUG + 0.0260 DEC) (1 + 0.0027 1')-

(H16) (3.21) (-4.70) (2.56) (5.91)

179.79076: 1 - 310.99 076:2 + .£6.99 AS3:2 - 133.79 A83:3 - 177.61 A84:1 -
(·2.21) (.3.i5) (0.60) (-1.71) (-1.91)

23Z.09 on:z· 108.86 On:3 + 80.26 078:1
(-2.8S) (-1.18) (0.93)

(4.5m.lc)

Obs. =- 30 RSS =: 86061.9 R2 = 0.94 OW = 1.07
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Appmdtt4d

1lw ResuJt~0( R~ 1lw ~Ionthly Biological Models Including The Relevant
Subsidy and Oudier Dummies

The regressions presented in this appendix are the results of the monthly regression
models presented in the main text of chapter 4 including all relevant subsidy and
outlier dummies. The equation numbers are the same as those of the equivalent
expressions presented in the main text with the addition of the letter d.

EQuation 4.63.1 d

M • a HB • + b1 (ebBB • + b3 marHB • + b4 aprHB A + b5 mayHB 4 + b6 junHB +
I- 1.1 1 • I-~ I·~ 1-. 1- t-4

b7 julHB + bS augHB + b9 scpHB + biO octHB -4 + bll novHB A + b12 decHB +
1·4 1"& 1-4 1 t... 1-4

01 AS);) + 01 A83:4 + 03 A8);S + [).l A83:6 + El 077:2 + E2 077:3 + E3 077:4 +

E4 077:S + [j 077:6 + Ft 07S:11 + Ut

(4.6a.ld)

Obs. = 118 RSS = 225.1

Table 4.00, Id,
The Results Qf pUm4!jol me ~1Qmhly C"!liol QCSows and BOltS as a Proportion of the Total

BrttdlDg HCd "!udin, Subsjdy and Outlier Dummies

\,-"RI.~8LE COEEflCIENT ESOMATE t-RATIO
Ut-I RI 0.8496 17.3
HBt4 a 0.0306 28.4

fehHB b2 0.0015 2.68
maiiB b3 0.0010 1.28
aprt·m b4 -0.0021 -2.40
mayBB b5 -0.0010 -1.06
junHB b6 -0.0005 -0.49
julHB b7 -0.0020 -2.17
qHB b8 -0.0021 -2.36
scpHB b9 0.0009 1.07
oc"t.H.B biO 0.0009 1.06
~HB btl 0.0025 3.60
~m bt2 -0.0031 -5.67
AS3:3 01 3.08 2.08
AS):" 02 7.42 4.13
A8):S 03 6.73 3.76
A836 D4 5.49 3.73
077:2 El 0.94 0.63
077:3 El 0.65 0.35
077:4 El -1.35 -0.68
077:5 E4 1.40 0.75
077:6 ES -0.14 -0.10
07S:12 Fl 7.13 6.12
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~lJ;uion " fib 1d

M •• PS • + b1 (coPS • + b3 marPS • + b4 aprPSt-4 + b5 mayPSt-4 + b6 junPSt-4 +
l'U ,... 1- t....

01 AS3:) + 01 AS34 + 03 A83:~+ D4 A83:6 + El 077:2 + E2 077:3 + E3 077:4 +

E4 077:5 + E5 on:6 + Fl 075:1: + Ut

(4.6b.ld)

Obs. = l~ RSS = ~33.0

Table 4.6b,Id.
The Rc~u! ..s QCESilmjl!!"'It th: \1onL~!YCuUina of Sows and Boars as a Pr<Wortjon of the

rrrltNDt Sow Herd Indudina Subsjdy and Outlier Dummies.

\'·:\&ljM~LE COEffiCIENT ESTIMAJE t-RATIO
UI·I RI 0,8515 17.4

PS,." a 0.0513 27.6

(coPS b2 0.0026 2.69
m;.uP$ b3 0.0018 1.34
aprPS b4 ~.0034 -2.28
ma~PS b5 0.0001 0.07
junPS b6 0.0008 0.48
julPS b7 ~.0018 -1.13
augPS b8 ~.0020 -1.27
scpP$ b9 0.0027 1.81
octPS blO 0.0026 1.90
no"'PS bll 0.0055 4.53
deePS b12 ~.0043 -4.54
AS3:3 01 3.06 2.03
A83:4 02 7.47 4.08
A83:~ 03 6.47 3.54
A83:6 D4 5.40 3.60

077:2 El 0.99 0.65

077:3 E2 0.67 0.35
077:4 E3 -1.43 -0.71
077:5 E4 1.45 0.77
077:6 E5 -0.007 -0.005
075:12 Fl 6.87 5.83
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EQuation 4.6c.4d

FPt-l•t = RI FPt-2•t-1 + REGt - RI REGt_1 + DI DUMA +

El 077:1 + E2 077:3 + E3 D77:4 +E4 D77:5 + E5 D77:6 + ct (4.6c.4d)

WhereREGt = (al HBt_8 - a2 DurnXHBt_8 + a2 DurnXHBt_12) (1 + c T) (1 + b2 Feb +

b3 Mar + b4 Apr + b5 May + b6 Jun + b7 Jul + b8 Aug + b9 Sep + biO Oct + bl l Nov + bI2 Dec)

and REGt-1 = (al HBt_9 - a2 DurnXHBt_9 + a2 OumXHBt_13) (1 + c (T-I» (1 + b2 Feb(-I) +

b3 Mar(-l) + b4 Apr(-I) + b5 May(-I) + b6 Jun(-I) + b7 Jul(-l) + b8 Aug(-I) + b9 Sep(-I) +
bID Oct(-l) + bll Nov(-l) + bl2 Dec(-l»

Obs. = 119 RSS = 55681.4
A2
R = 0.89 H = -1.42

Table 4.6c.ld.
The Results of Estimating the Monthly Siaughterings of Fatpigs as a PrQp9nion of the TQtai

Breeding Herd Including The Relevant Subsidy Dummies.

VARIABLE COEFFICIENT ESTIMATE I-RATIO
FPt-2.t-1 RI 0.5165 6.19
HBt_8 al 1.0556 57.5
HBt_12 a2 0.6568 4.40
T(ime) c 0.0018 9.75
Feb b2 0.0325 3.79
Mar b3 0.0311 2.96
Apr b4 -0.0031 -0.27
May b5 -0.0019 -0.16
Jun b6 0.0013 0.11
Jul b7 -0.0236 -2.06
Aug b8 -0.0151 -1.33
Sep b9 0.0546 4.69
Oct bID 0.0605 5.38
Nov bll 0.0999 9.38
Dex: bl2 0.0300 3.54
ADUM DI -16.24 -2.10
077:2 El 20.37 0.79
077:3 E2 9.42 0.37
077:4 E3 -17.39 -0.69
077:5 E4 11.44 0.45
D77:6 E5 -80.47 -3.18
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Equation 4.6d. Id

FPt-1,t = RI FPt-2,t-1 + REGt - RI REGt_1 + 01 OUMA +
El 077:1 + E2 077:3 + E3 077:4 + E4 077:5 + ES 077:6 + €1. (4.6d.1d)

WhereREGt = (al PPt-8 - a2 OurnXPPt_8+ a2 DurnXPPt-IV (1 + c T) (1 + b2 Feb +
b3 Mar + b4 Apr + b5 May + b6 Jun + b7 Jul + b8 Aug + b9 Sep + bIO Oct + bll Nov + bl2 Dec)

and REGt_! = (al PPt-9 - a2 OurnXPPt_9+ a2 OurnXPPt_13) (1+ c (Tvl) (1 + b2 Feb(-I) +
b3 Mar(-l) + b4 Apr(-l) + b5 May(-I) + b6 Jun(-l) + b7 Julf-I) + b8 Augf-l) + b9 Sep(-l) +
bl0 Oct(-I) + bll Nov(-I) +b12 Oec(-I»

Obs. = 119 RSS = 62127.9
A2
R = 0.88 H = -1.30

Table 4.6d.1d.
The Results of Estimatjng the Monthly Slaughterings of Fawigs as a PrOportjODof the Pregnant

Pig Herd Including The Relevant Subsidy Dummies

VARIABLE COEFFICIENT ESTIMATE t-RATIO
FPt-2•t-1 RI 0.5613 6.94
PPt-8 al 1.6160 52.4
PPt-12 a2 0.9469 4.88
T(ime) c 0.0009 4.93
Feb b2 0.0244 2.70
Mar b3 0.0242 2.16
Apr b4 -0.0090 -0.75
May b5 -0.0119 -0.97
Jun b6 -0.0146 -1.16
Jul b7 -0.0382 -3.12
Aug b8 -0.0293 -2.41
Sep b9 0.0479 3.59
Oct blO 0.0654 5.35
Nov bll 0.1057 9.19
Dec b12 0.0360 3.96
ADUM 01 -15.74 -1.93
077:2 El 4.73 0.17
077:3 E2 0.33 0.01
077:4 E3 -25.51 -0.95
077:5 E4 8.55 0.32
077:6 E5 -79.62 -2.98
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APPENDIX6

The Monthly Data Used In The Analysis Included In Chapters 5 and 6

TIME M* FP* AAPP** CF** PR**
1975:1 29 1021 61.4 60.1 102.2
1975:2 33 1034 60.8 59.3 102.5
1975:3 30 1037 63.8 56.3 113.3
1975:4 26 975 67.9 53.4 127.2
1975:5 24 925 71.0 52.5 135.2
1975:6 23 899 71.4 52.5 136.0
1975:7 22 892 69.2 52.6 131.6
1975:8 21 858 67.9 52.7 128.8
1975:9 26 972 71.6 54.6 131.1
1975:10 23 954 77.2 58.9 131.1
1975:11 25 974 80.4 60.3 133.3
75:12 27 952 80.9 61.4 131.8
1976:1 23 927 79.9 61.8 129.3
1976:2 25 947 79.6 62.1 128.2
1976:3 25 972 79.0 62.5 126.4
1976:4 23 948 78.8 65.0 121.2
1976:5 25 967 77.8 68.6 113.4
1976:6 23 924 75.8 70.0 108.3
1976:7 22 916 71.0 71.9 98.7
1976:8 25 998 72.4 73.5 98.5
1976:9 28 1043 74.5 74.8 99.6
1976:10 30 1097 78.5 78.6 99.9
1976:11 34 1132 80.2 81.5 98.4
1976:12 30 1057 80.7 83.1 97.1
1977:1 33 1040 79.9 83.6 95.6
1977:2 35 1118 82.2 85.1 96.6
1977:3 34 1115 80.4 87.0 92.4
1977:4 29 1052 81.9 87.7 93.4
1977:5 31 1073 84.6 88.0 96.1
1977:6 30 1000 81.6 89.6 91.1
1977:7 29 998 81.6 88.9 91.8
1977:8 27 1022 81.1 86.1 94.2
1977:9 30 1110 84.0 83.7 100.4
1977:10 29 1070 87.0 81.0 107.4
1977:11 30 1094 87.2 79.2 110.1
1977:12 26 1071 87.4 77.9 112.2
1978:1 27 1019 87.0 77.9 111.7
1978:2 28 1032 88.1 77.9 113.1
1978:3 26 999 89.4 78.0 114.6
1978:4 26 1022 90.9 78.5 115.8
1978:5 24 984 92.7 80.7 114.9
1978:6 27 997 91.0 83.2 109.4
1978:7 25 1005 92.2 85.3 108.1
1978:8 25 1007 92.0 85.0 108.2
1978:9 28 1088 93.7 84.1 111.4
1978:10 27 1090 95.2 83.8 113.6

Cont.
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TIME M* FP* AAPP** CF** PR"''''
1978:11 28 1119 95.2 83.9 113.5
1978:12 24 1048 94.3 85.2 110.7
1979:1 26 1044 93.6 86.8 107.8
1979:2 27 1077 92.3 89.0 103.7
1979:3 28 1107 91.1 89.9 101.3
1979:4 26 1062 89.8 92.7 96.9
1979:5 28 1077 88.8 93.9 94.6
1979:6 30 1131 87.9 95.2 92.3
1979:7 28 1126 88.6 95.2 93.1
1979:8 27 1096 89.7 94.5 94.9
1979:9 28 1158 93.1 93.1 100.0
1979:10 30 1146 99.7 93.1 107.1
1979:11 33 1180 104.4 94.7 110.2
1979:12 25 1091 104.3 96.3 108.3
1980:1 28 1082 100.9 99.5 101.4
1980:2 29 1115 98.9 100.5 98.4
1980:3 27 1115 98.2 100.8 97.4
1980:4 24 1061 99.3 99.5 99.8
1980:5 24 1043 101.0 98.6 102.4
1980:6 24 1088 100.8 98.5 102.3
1980:7 23 1066 100.4 98.9 101.5
1980:8 22 1054 98.2 99.0 99.2
1980:9 25 1143 97.8 98.9 98.9
1980:10 25 1136 99.9 100.1 99.8
1980:11 27 1179 102.4 102.1 100.3
1980:12 25 1130 102.4 103.9 98.6
1981:1 26 1068 101.0 106.5 94.8
1981:2 27 1114 99.8 108.1 92.3
1981:3 27 1137 102.0 108.1 94.4
1981:4 22 1067 105.3 108.9 96.7
1981:5 25 1075 108.9 109.4 99.5
1981:6 25 1093 111.9 110.0 101.7
1981:7 22 1031 108.8 110.3 98.6
1981:8 24 1059 103.1 110.4 93.4
1981:9 25 1095 104.3 110.1 94.7
1981:10 26 1147 113.2 110.8 102.2
1981:11 28 1194 118.1 111.6 105.8
1981:12 22 1103 119.3 112.8 105.8
1982:1 28 1091 117.8 113.3 104
1982:2 27 1121 116.3 114.2 101.8
1982:3 27 1126 116.1 114.9 101.0
1982:4 24 1050 113.1 115.3 98.1
1982:5 25 1100 111.3 117.1 95.0
1982:6 26 1098 109.4 117.8 92.9
1982:7 26 1083 108.8 118.0 92.2
1982:8 26 1104 106.3 117.0 90.9
1982:9 30 1196 107.8 114.7 94.0
1982:10 30 1196 110.4 114.1 96.8
1982:11 31 1265 110.8 114.4 96.9
1982:12 25 1167 109.9 115.9 94.8
1983:1 29 1139 104.3 117.0 89.1

Cont.
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TIME M* FP* AAPP** CF** PR**
1983:2 33 1218 99.9 118.9 84.0
1983:3 36 1206 101.1 120.7 83.8
1983:4 38 1214 100.1 123.7 80.9
1983:5 39 1210 103.4 126.0 82.1
1983:6 39 1195 105.3 127.4 82.7
1983:7 33 1110 103.3 127.1 81.3
1983:8 31 1142 102.3 124.9 81.9
1983:9 35 1249 109.7 124.1 88.4
1983:10 34 1226 114.3 126.2 90.6
1983:11 33 1289 114.4 129.7 88.2
1983:12 27 1179 115.0 131.1 87.7
1984:1 29 1136 111.5 133.8 83.3
1984:2 30 1166 115.1 134.2 85.8
1984:3 28 1117 120.7 134.2 89.9
1984:4 23 1068 124.3 134.2 92.6
1984:5 24 1095 125.0 133.9 93.4
1984:6 23 1094 126.1 133.9 94.2
1984:7 22 1081 121.5 132.9 91.4
1984:8 24 1065 122.8 128.1 95.9
1984:9 24 1152 126.7 124.3 101.9
1984:10 24 1168 131.7 120.5 109.3
1984:11 24 1216 131.7 122.8 107.2
1984:12 20 1149 131.0 124.4 105.3
1985:1 24 1093 125.1 119.6 104.6
1985:2 26 1136 118.2 121.3 97.4
1985:3 27 1158 117.0 125.0 93.6
1985:4 25 1119 117.2 127.9 91.6
1985:5 25 1115 117.0 128.3 91.2
1985:6 26 1135 117.1 127.5 91.8
1985:7 24 1130 115.7 125.4 92.3
1985:8 23 1130 114.4 123.3 92.8
1985:9 26 1197 116.6 123.7 94.3
1985:10 26 1197 117.8 124.1 94.9
1985:11 27 1248 120.6 124.4 96.9

-1985:12 22 1186 120.1 125.3 95.8
1986:1 26 1110 113.5 125.6 90.4
1986:2 27 1155 110.3 125.4 88.0
1986:3 25 1153 113.6 127.4 89.2
1986:4 26 1155 111.9 127.5 87.8
1986:5 25 1126 113.9 126.7 89.9
1986:6 27 1165 116.2 125.9 92.3
1986:7 27 1145 111.3 125.7 88.5
1986:8 26 1155 112.5 123.4 91.2
1986:9 27 1224 115.4 121.6 94.9
1986:10 28 1226 115.0 123.3 93.3
1986:11 28 1280 114.5 124.1 92.3
1986:12 23 1214 112.9 124.5 90.7
1987:1 25 1131 109.5 125.7 87.1
1987:2 30 1181 110.0 126.3 87.1
1987:3 29 1180 113.9 127.4 89.4
1987:4 26 1130 114.7 127.2 90.2

Cont.



TIME
1987:5
1987:6
1987:7
1987:8
1987:9
1987:10
1987:11
1987:12

M*
26
27
24
22
26
25
28
21

FP*
1121
1162
1138
1170
1182
1213
1264
1152

AAPP**
113.8
117.4
113.8
110.6
110.2
112.1
110.3
108.0

CF**
127.2
126.9
126.9
124.5
123.7
123.0
124.1
124.8

Page A6a-4

PR**
89.5
92.5
89.7
88.8
89.1
91.1
88.9
86.5

**

Data in thousands of pigs and representative of four week months .

Index with a base year of 1980=100 and deflated by the RP! where necessary

...

Source:- MAFF through MLC economics Department.
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APPENDIX9

COMBINA nON OF FORECASTS

In this appendix, an illustration of forecast combining is presented using the one-step

forecasts for fat pigs as an example, based upon the work of Bates and Granger

(1969). The method is illustrated on a monthly series because of the lack of

observations and the presence of suspect sample data in the trimestic breeding herd

data: fat pigs were chosen rather than culling because it was thought that it might be
of interest to some readers to see how adjustments could be made for biased

forecasts.

When forecasts for a given variable have been derived using various models, as has

been done in this thesis, the first reaction of the forecaster might well be to choose the

model which appears to be best to use as a working model, discarding the other

models. Bates and Granger set out to illustrate that under certain circumstances, using

the information from two or more forecasting models by combining their respective

forecasts, the resulting combined forecasts could well produce an error variance

smaller than that of the forecasts from the best individual model. An important

condition which should prevail before combining of forecasts can be considered is

that all the individual sets of forecasts are unbiased because the combining of biased

with unbiased forecasts is certain to result in biased forecasts. Only the combination

of the bivariate and the biological one-step forecasts are considered because of the

independence of these two methods, the univariate method being excluded because of

its similarity to the bivariate modelling method. The biological model forecasts for fat

pig slaughterings are clearly over-forecasting for reasons discussed in chapters eight

and nine, and, therefore, a correction for the over-forecasting bias of the biological

model is required before combining can be considered. The average percentage error

from the biological model forecasts was computed at 2.31 %. All the forecasts from

the biological model were, therefore, reduced by 2.31% and the resulting adjusted

forecasts were computed as having a sum of squares of forecasting error of 13040.2,

that is, a MSFE of 543.3, slightly larger than that from the bivariate Box-Jenkins

model forecasts of the out-of-sample period 1986-7.

Before a 'best' method for combining the two sets of forecasts is considered, a

simple illustration of combining is presented, in which equal weight is given to the

biological and the bivariate forecasts. Combining the forecasts in such a way and

calculating the MSFE of the 24 forecasts of 505.9, an error variance which is lower

than that for either of the two individual sets of forecasts, calculated as 522.5 for the
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bivariate forecasts and 543.3 for the adjusted biological forecasts. So, by taking no

account of the fact that the bivariate forecasts are the better of the two sets in terms of

the MSFE statistics, a lower forecasting error variance has been produced, thereby

indicating the usefulness of including the information provided by the biological

model.

Having shown for illustrative purposes how a the simplest of all combinations can

improve the error variance of even the best individual set of forecasts, use of the

individual forecasts' error variance can be made in order to give greater weight to the

set of forecasts with the lowest MSFE statistic. Denoting the forecast error variance

of the two models by MSFEbio and MSFEbv, a combined forecast is obtained by a

linear combination of the two sets of forecasts multiplying the biological forecasts by

the weight Wbio, and the bivariate forecasts by the weight 1 - Wbio. The error

variance of the combined forecasts can easily be calculated and by differentiating with

respect to Wbio and setting equal to zero, an error variance minimising expression for

Wbio can be obtained as given in equation A9.1 below;

(J2 - P(J (J
W - bv 6to bv

bio - 2 2
(Jbio + (Jbv - 2p(JbioO'bv

(A9.1)

where p is the correlation coefficient between the two individual sets of forecast

errors. It can be shown using equation A9.1 that calculating Wbio in this way

produces an error variance for the combined forecasts which is no greater than the

smallest error variance of the individual sets of forecasts. Assuming p to be zero,

weights for the two sets of forecasts can be apportioned in the following way; Wbio

=MSFEbv / (MSFEbio +MSFEbv ), and likewise for Wbv, ( 1 - Wbio ), the weight
for the bivariate forecasts, also obtained by replacing the numerator in the previous

expression by MSFEbio.

Calculating the weights assuming p to be zero, using the latter expressions, 0.509 is

the weight given to the slightly superior bivariate forecasts and, therefore, the

equivalent weight for the adjusted biological forecasts is given as 0.491. The weights

are very similar, reflecting the similarity of the MSFE statistics of the two sets of

individual forecasts. Combining the forecasts by applying the weights discussed

above produced forecasts with a MSFE statistic of 505.7, very marginally lower than

that obtained when giving equal weights to the two sets of forecasts.

Having justified and explained a basis for combining forecasts, Bates and Granger

went on to show how different methods could be applied which allowed the weights
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applied to the various forecasting methods to change over time as information became

available and as the relative forecasting abilities of the various approaches changed

over time. Thus, the combined forecast for time period t could be written as;

(A9.2)

where Fi,t is the forecast for time t using forecasting method i.
Granger and Bates illustrated five examples of methods for updating the weights,

some of which assumed p to be zero and others which did not, and two of the five

methods allowed changing relative forecasting abilities of the two sets of forecasts to

have a greater influence on the calculated weights by basing the values of the weight

only on the most recent of forecasting errors rather than incorporating the errors from

all past forecasts. For illustrative purposes I decided to apply three such methods to

the fat pig forecasts discussed in this appendix.! These were:-

1. and 2.

E
W = bv

bio,t E. + F
bio DV

(A9.3)

where Ej_ is the sum of the square forecast errors from individual forecasts i, summed

over the period T-v to T-l, time T being the latest time period to forecasts. Method 1

sums over all past forecast errors so that v = 23, whereas in method 2, v = 6, so that

only the 6 most recent forecasting errors are taken into consideration. For both

methods 1 and 2 equal weighting is given to the forecasts for time period t= 1.

The MSFE for the combined forecast using method 1 was calculated at 500.7, a

further reduction on the values obtained using the individual and crude combination

methods examined to date. The weight on the bivariate forecasts was 0.36 in period

2, and remained less than 0.5 until about period 18 when it became larger than 0.5,

ending up at 0.51 in period 24. These results imply that the bivariate forecasts, while

having the lowest overall MSFE of the two sets of individual forecasts, only became

superior towards the end of the out-of-sample period. The second method produced a

MSFE value of 503.2, slightly greater than method 1, implying that the information

gathered over all past forecast errors was more useful than the information gathered

from observation of the last 6 errors only.

1 The reader who is interested in seeing all the methods employed by Bates and Granger

should consult their paper, or alternatively see Granger and Newbold (1977).
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Equation A9.4 denotes the third and final method examined,

3.
ebv,t-l

Wbo t=( l-x)Wbo tl+x--"",;",--
10, 10,- e + e

bio,t-l bv,t-l

(A9.4)

where ei,t is the absolute forecast error at time t using forecasting method i, and

where x is a constant taking values between 0 and 1. This method was applied,

allowing the value of x to vary from 0.25 up to 1, the latter putting all the weight on

to the most recent of errors. As x increased in value from 0.25 to 1 the MSFE of the

resulting combined forecast fell consistently from 492.5 to 471.1, implying that

method 3 was the best method of the three updating methods examined and that the

optimal value of x for the forecasting period analysed was a value of one, so that Wt
is based solely on the forecast errors from the two individual methods at time t-I, and

takes no account of W t-t- This value of one implies that the weights used are very

volatile, and do not converge on a single optimal value over time.

These results are somewhat contradictory in that the comparison of the various

combining methods indicate that the best method is method three, for all values of x,

although the best MSFE statistic is achieved when x=l , that is, the weight for

forecasts at time t is determined solely by the forecasts errors at time t-l, the most

recent errors. This result conflicts somewhat with a comparison of the MSFEs from

methods 1 and 2, which favour the use of all past information, not only the most

recent of information.

This appendix has served its purpose of illustrating some simple and more

sophisticated methods of combining unbiased forecasts derived from different

models, and indicating how such combined forecasts can improve on the forecasting

abilities of individual models, by making use of other less successful, but nonetheless
useful models.
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