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Abstract

Lenticular (S0) galaxies have long been thought of as evolved spirals, in which

the star formation has been suppressed, the spiral arms have faded, and the lumi-

nosity of the bulge has been built up relative to the disc. However, the sequence

of events that explains these three observations and leads to the formation of the

final S0 galaxy is still uncertain.

The progenitor spirals generally consist of bulges with old stellar populations

surrounded by young, bright discs. Therefore, in order to explain the ‘quench-

ing’ of star formation in the disc and related increase in the bulge luminosity, an

understanding of the individual star-formation histories of these two components

is vital. In this thesis, we present a new technique to spectroscopically decom-

pose the light from a galaxy into its bulge and disc components, from which the

stellar populations and chemical compositions of the individual components can

be extracted in order to determine the sequence of events leading to the transfor-

mation.

Using spectroscopic bulge–disc decomposition, the spatial light profile in a

two-dimensional galaxy spectrum can be separated wavelength-by-wavelength

into bulge and disc components. This decomposition allows the construction of

separate one-dimensional spectra representing purely the light from the bulge

and disc, enabling studies of their individual star-formation histories with mini-

mal contamination. This technique was applied to a sample of 30 S0s in the Virgo

and Fornax Clusters, and analysis of the absorption line strengths within these

spectra reveals that the bulges contain consistently younger and more metal-rich
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stellar populations than their surrounding discs. This result implies that the final

episode of star formation before the progenitor spirals were fully quenched oc-

curred in their central regions. Furthermore, the similarity in the α-element abun-

dances of the bulges and discs indicates that the final episode of star formation in

the bulge was fuelled using gas that has previously been chemically enriched in

the disc. Together, these results present a picture in which the galaxy starts out

as a typical spiral, with an old bulge surrounded by a young, star-forming disc.

At some point in its life, gas is stripped from the galaxy, suppressing the star

formation in the disc and causing the spiral arms to fade without inducing sig-

nificant amounts of new star formation or disrupting the overall morphology of

the galaxy. As the gas is removed, a fraction is also driven into the centre of the

galaxy, where it fuels a final star-formation event in the bulge. This final episode

of star formation consequently increases the luminosity of the bulge as the disc

is already fading, and produces a central young, metal-rich stellar population.

We have also shown that it is possible to spectroscopically decompose a

galaxy using the different line-of-sight velocity distributions of kinematically

distinct components. This technique was applied to NGC 4550, an unusual S0

galaxy in the Virgo Cluster with two counter-rotating stellar discs and a gaseous

disc, to separate their individual stellar populations. Analysis of these stellar

populations shows that the disc that co-rotates with the ionized gas is brighter

and has a significantly younger mean age than the other disc, which are consis-

tent with more recent star formation fuelled by the associated gaseous material.

Therefore, the most likely formation mechanism for this galaxy is via an un-

usual gas accretion or merger scenario that built up a secondary stellar disc in a

pre-existing S0 galaxy.

The results presented in this thesis shed new light on the sequence of events

that leads to the formation of S0 galaxies in cluster environments, and clearly

demonstrates the importance of understanding the star-formation histories of the

individual components within these galaxies in order to reconstruct the range of

mechanisms by which they formed.
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Chapter 1

Introduction

Our knowledge of the Universe today has been built up over thousands of years

as astronomers have looked at the sky and proposed theories to explain what

they saw. The invention of the telescope in 1608 by Hans Lippershey proved

revolutionary in our understanding of the Universe as astronomers could observe

targets in the night sky in much more detail that can be achieved by the human

eye. One of the most notable discoveries with the telescope is of course the

orbits of the Galilean moons around Jupiter by Galileo Galilei, proving for the

first time that the Earth was not at the centre of the Universe and that moons and

planets could orbit around objects other than the Sun. Another early discovery

was the presence of fuzzy nebulae by Charles Messier in the 17th Century, who

recorded their positions to avoid misclassifying them as comets. Following the

proposal by Thomas Wright (1750) that the Milky Way consisted of a flattened

disc of stars, which would explain its appearance in the sky if the Sun was located

within this disc, Immanuel Kant (1755) suggested that the fuzzy nebulae were

really ‘island universes’ similar to the Milky Way if seen from the outside. In

1845, Lord Rosse resolved the spiral arms within these objects for the first time

using a six-foot reflector, the “Leviathan of Parsonstown”, thus introducing the

idea of ‘spiral nebulae’ (Rosse, 1850). An example of one of Lord Rosse’s early

sketches of a spiral nebula is given in Fig. 1.1, alongside a recent photograph for
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Figure 1.1: Left: a sketch of a spiral nebula, now known to be M51, by Lord Rosse in 1845.
Right: a composite image of M51 taken in 2005 with the Advanced Camera for Surveys
on the HST. Image credits: sketch- ‘The Cambridge Illustrated History of Astronomy’,
(Hoskin, 1997); photograph- S. Beckwith (STScI) Hubble Heritage Team, (STScI/AURA),
ESA, NASA.

comparison.

As astronomical techniques progressed, astronomers have continuously at-

tempted to accurately measure the scale of the Universe, which would not only

tell them about the size of the Milky Way, but also the distances to these nebulae.

With this information, they would finally be able to determine whether the neb-

ulae were huge objects outside of our own galaxy, or smaller objects within it.

By 1921, this line of research had built up to the ‘Great Debate’ between Harlow

Shapley and Heber Curtis on the scale of the Universe and nature of the nebulae

(Shapley & Curtis, 1921).

Shapley argued on behalf of the traditional view that the Universe consists

of only the Milky Way, and therefore that the nebulae were simply clouds of gas

within our Galaxy. Part of his reasoning was based on the idea that if the nebulae

were galaxies similar to the Milky Way, then the distances to these objects were

just too large to accept. Shapley had already proposed a large size for the Milky

Way using distance estimates to Cepheid variables in Galactic globular clusters,
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in which he agreed with Wright (1750) that the Sun did not lie in the centre of

the Galaxy (Shapley, 1917). As a result of this work, his calculations put the

Andromeda galaxy at ∼ 300 million light years away, as opposed to 2.5 million

light years away that we measure today (Riess, Fliri & Valls-Gabaud, 2012).

To explain the observed luminosity of the Andromeda galaxy if it truly lay at

that distance required such a high value for its absolute magnitude that it was

considered unbelievable for a galaxy to emit so much energy. Furthermore, a

recent nova had been observed in the Andromeda galaxy that had temporarily

outshone the nucleus of the galaxy. Given the incredible luminosity Shapley’s

calculations had attributed to this galaxy if it truly lay outside the Milky Way, he

believed it was impossible for a nova to outshine it based on their understanding

of physics at the time.

Curtis on the other hand argued on behalf of the island universe theory, plac-

ing the Sun at the centre of the Milky Way, which is a small galaxy similar to

the spiral nebulae. Like Shapley, Curtis had made his own estimate for the size

of the Milky Way. Using a simple star-counting technique, he had found that

the Milky Way was significantly smaller than Shapley’s estimate, meaning that

the distances to the spiral nebulae, if they were galaxies like our own, would be

much smaller and appeared more reasonable. Unlike Shapley however, Curtis

placed the Sun at the centre of the galaxy. He also pointed out that more novae

had been detected in the Andromeda nebula than in any other part of the sky,

and then challenged opponents to explain the higher frequency of detections in

that small part of the sky if the whole Universe consisted of one single galaxy

with the Sun at the centre. He also assumed that the novae would have similar

peak luminosities, meaning that their apparent magnitude at the brightest point

could be used to measure their distances from the Earth. Using this technique

he found that the distances to the novae detected in the Andromeda nebula were

indeed larger than his estimate for the size of the Milky Way, and therefore that

the spiral nebulae were other external galaxies.

After the debate, opinions were still divided between the two arguments. It
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was only in 1926 that Edwin Hubble determined the true nature of the spiral

nebulae, and thus settled the debate forever. By studying the periods of Cepheid

variable stars in M33 and M31, he was able to determine the distances to these

galaxies to be > 200 kpc and thus that they lay outside of the Milky Way (Hub-

ble, 1926a, 1929). With this revelation, the field of extragalactic astronomy was

born. Interestingly, although this result provided proof that Curtis was correct

and that the Universe is made up of multiple galaxies like our own, Shapleys cal-

culations on the size of our Galaxy were much closer to what we measure today,

as was his conclusion that the Sun is not at the centre of the Milky Way.

1.1 Classification of Galaxy Morphology

1.1.1 The Hubble Sequence

Galaxies are now known to be massive structures made up of gravitationally

bound stars, gas and dust, with typical masses of ∼ 107 − 1014 M� and sizes of

∼ 1− 200 kpc (Carroll & Ostlie, 1996). Even back in the 1920s it was clear that

they had different structures, with some displaying magnificent spiral arms while

others appeared featureless. In an early attempt to understand how these different

structures were related, a classification system was proposed by Hubble (1926b,

1936) to separate galaxies into three main types, as shown in Fig. 1.2. On the left

of the diagram are the featureless ellipticals – old, red-and-dead galaxies which

have been disrupted at some point in their histories, leading to the stars following

random orbits and giving the galaxy its characteristic ellipsoidal shape. These

galaxies are typically classified as E0 to E7 based on their perceived flattening,

where the exact classification is calculated using the ratio of the length of the

minor axis to that of the major axis.

On the right of the Hubble sequence lie the spiral galaxies, split into two

forks representing barred and unbarred spirals. These galaxies contain younger

stellar populations and ongoing star formation within their discs that light up the
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Figure 1.2: Galaxy morphology classification in the form of the Hubble sequence. Image
credit: Space Telescope Science Institute

spiral arms. The spiral galaxies are further subdivided along the two forks into

the Sa, Sb and Sc classes (SBa, SBb and SBc for barred spirals), where moving

from Sc to Sa reflects an increase in the luminosity of the bulge relative to the

disc and more tightly wound spiral arms. These variations within the spiral class

can also be seen in Fig. 1.2.

The centre of the Hubble sequence, between the ellipticals and spirals, is

home to the lenticular, or S0, class of galaxies. These galaxies share many of the

observed properties of both ellipticals and spirals, such as the redder colours and

old stellar populations of ellipticals, but with the discy morphology of spirals. As

a result of these similarities, S0s were originally thought to be a transitional phase

between simple-looking ellipticals and more complex spirals. Hubble (1926b)

originally referred to ellipticals and S0s as early-type galaxies and spirals as late

types, although it has now been determined that early type galaxies are domi-

nated by late type stars while late type galaxies contain more early type stars. It

was later stressed by Hubble (1927) that this sequence from elliptical to spiral

morphologies was meant to be entirely empirical, with no implication for galaxy

evolution theories. However, although it is now known that ellipticals generally
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contain older stellar populations than spirals, and are thus at a later stage in their

evolution, the terminology coined by Hubble has stuck.

The classification sequence proposed by Hubble (1926b) may appear simplis-

tic in terms of the wealth of galaxy morphologies we have now observed, but it is

still widely used today, forming the basis of the many variations suggested over

the intervening years. Therefore, the longevity of this basic sequence suggests

that it captures some basic truth about the different morphologies of galaxies.

1.1.2 The Evolution of Galaxy Classification Systems

The first significant change to the Hubble sequence was proposed by de Vau-

couleurs (1959) to include the range of properties that had been observed in

galaxies as astronomical techniques improved. de Vaucouleurs transformed the

original tuning fork diagram into a three-dimensional model, an example of

which is given in Fig. 1.3. Through the centre of the diagram runs the galaxy

morphology from elliptical to S0 to spiral, echoing the Hubble sequence if the

two spiral forks were collapsed into one branch. Morphologies either side of

this line contain complete (r) and incomplete (s) ring structures, while above and

below the line are the barred and unbarred galaxies.

Figure 1.3: The de Vaucouleurs (1959) classification sequence on the left, with a visual-
isation of how the galaxy appearance changes in a slice through the diagram on the right.
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Figure 1.4: A visualisation of the van den Bergh (1976) classification sequence.

Unlike the original Hubble diagram, this diagram lists S0s as a continuous

sequence from S0−, which represents early-type, featureless lenticulars, to S0+,

which are later-type lenticulars with some faint structures such as dust-lanes, and

allows them to display features such as bars. Due to the three-dimensional nature

of the de Vaucouleurs sequence, the different permutations of parameters avail-

able added a new level of complexity to the classification of galaxy morphology,

greater than could be achieved with the earlier Hubble sequence.

In 1976, van den Bergh proposed a further update on the Hubble sequence

that built upon this idea that S0s formed a continuous sequence (van den Bergh,

1976). By this time it was known that S0s could display a range of properties

similar to spirals, such as the variations in the luminosity fractions of the bulge

and the presence of bars. As a result, van den Bergh combined the barred and

unbarred spirals into one fork, and introduced two new, parallel forks represent-

ing S0s and anaemic (gas-poor) spirals. As can be seen in Fig. 1.4, the spiral

and S0 branches still retain the a–c subclasses from the Hubble sequence. The

layout of the van den Bergh sequence allowed spirals to evolve both left towards

the ellipticals and upwards through the anaemic spirals to the S0s through dif-

ferent processes. An extension of this sequence has recently been suggested by

Kormendy & Bender (2012), in which spheriodal galaxies are added at the end
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Figure 1.5: Galaxy morphology classification system based on galaxy kinematics (Cappel-
lari et al., 2011).

of the S0 fork as an extension of such galaxies with very low bulge-to-total light

ratios, and irregular galaxies located at the same point on the spiral branch.

Another recently proposed classification system that has moved away from

the purely morphological Hubble classes for ellipticals and lenticulars is that of

Cappellari et al. (2011). Instead, early-type galaxies are classified according to

their rotation speed, with the spiral classes branching off perpendicularly from

the fast rotators (discy galaxies), as in Fig. 1.5. This classification system has

the benefit that it uses the kinematics of early type galaxies to determine its mor-

phology, as opposed to visual classifications which can often prove problematic,

as face-on lenticulars tend to be mainly featureless, and thus can easily be mis-

classified as ellipticals.

One key element that each of these systems have in common is the increas-

ingly complex classification of S0s as more of these galaxies have been identified

and their properties better understood. As a result, S0s are increasingly being

seen as a distinct class of galaxy, as opposed to a short-lived transitional phase

between spirals and ellipticals. In each case, though, they have remained either

beside or parallel to the spiral sequence, echoing the similarities between these
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two morphologies. This placing may represent a possible sequence of galaxy

evolution, where S0s are quenched spirals in which the gas has been stripped

out of the galaxy or used up by star formation. Since that gas is necessary to

fuel further star formation, once it is gone, the star-formation rate would drop to

an insignificant level, and the spiral arms would fade to leave a featureless disc

galaxy. However, if this theory for the transformation of spirals into S0s is true,

the exact star-formation quenching process is still uncertain. Therefore, under-

standing this transformation is thought to be a key stage in comprehending the

evolution of galaxy morphology and the significance of the Hubble sequence.

1.2 Evidence for the Transformation of Spirals to

S0s

In addition to their obvious visual similarities, plenty of more substantial evi-

dence exists to suggest an evolutionary link between spirals and S0s. One often-

cited piece of evidence is the morphology–density relation of Dressler (1980)

presented in Fig. 1.6, which showed that spirals tend to dominate the less-dense

outer regions of nearby clusters and the field, while ellipticals and S0s are more

commonly found closer to the cores of clusters. A later study by Varela et al.

(2004) found similar results, in which late-type spirals are more frequently found

among isolated galaxies, while S0s appear to prefer denser environments. These

findings suggest that the local environment plays a key role in the transformation

of spirals to S0s, where the higher frequency of interactions in groups and clus-

ters contribute significantly to the quenching of star formation in the progenitor

spirals.

This trend has been found to hold out to z ∼ 1 by Postman et al. (2005) and

Smith et al. (2005), although it does appear to change form with redshift. For

example, at higher redshifts, the fraction of early type galaxies was found to be

lower than in the more local Universe, which was assumed to be due to a deficit
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Figure 1.6: A plot from Dressler (1980) showing that towards higher density environments,
the fraction of S0s and ellipticals (green and red dots respectively) increases while that of
spirals (blue dots) decreases. It is interesting to note that the fraction of ellipticals is flatter
than that of S0s at lower densities, then increases more rapidly at higher densities.

of S0s and an excess of spirals at higher redshifts. This assumption ties in with

the morphology–redshift relation (Dressler et al., 1997; Fasano et al., 2000; De-

sai et al., 2007), an example of which is given in Fig. 1.7. It can clearly be seen

that since z ∼ 0.65, the fraction of S0s has increased, while that of spirals has de-

creased proportionally, consistent with the idea that spirals evolve into S0s over

time. Similar results have been obtained by Couch & Sharples (1987), Ellingson

et al. (2001) and Poggianti et al. (2006), and are thought to further reflect the

truncation of star formation in these galaxies over time through galaxy mergers

and interactions with other galaxies and the intracluster medium (Dressler et al.,

1994; Couch et al., 1994). The Butcher–Oemler effect (Butcher & Oemler, 1984)

finds that blue, star-forming galaxies appear to be increasingly common in clus-

ters at higher redshift, providing further evidence for this scenario.

The Tully–Fisher relation (Tully & Fisher, 1977), which is a well-defined

trend between the rotational velocity and luminosity of spiral galaxies, has also
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Figure 1.7: A plot from Desai et al. (2007) showing that since z ∼ 0.65 the fraction of S0s
has increased while that of spirals has decreased proportionately.

been shown to provide evidence of a link between spirals and S0s. If S0s are

simply quenched spirals, they should be fainter than the progenitor spiral but

with similar kinematics, and therefore would produce a similar trend to spi-

rals, but offset in luminosity at a given rotational velocity. Many studies have

claimed to find this offset, including Mathieu, Merrifield & Kuijken (2002),

Bedregal, Aragón-Salamanca & Merrifield (2006) and Rawle et al. (2013), with

typical values of ∼ 0.8 − 1.8 magnitudes fainter than spirals in the I-band, or

∼ 0.8 − 1.2 magnitudes fainter in the Ks band. Bedregal, Aragón-Salamanca

& Merrifield (2006) found evidence that the magnitude of the offset for each

galaxy correlated with the age of its stellar populations and therefore the time

since the star formation was quenched. Furthermore, they attributed the scatter

in the Tully–Fisher relation to the different periods of time since each galaxy

was quenched, showing that the galaxies did not all undergo the transformation

at a single epoch. However, not all studies found such convincing offsets: Neis-

tein et al. (1999), Hinz, Rix & Bernstein (2001); Hinz, Rieke & Caldwell (2003)
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and Williams, Bureau & Cappellari (2010) found small offsets that were deemed

insignificant compared to the scatter in the measurements. Williams, Bureau &

Cappellari (2010) attributed such contradictory findings from different studies to

mass differences between spirals and S0s also affecting the location of the S0s on

the Tully–Fisher relation. It is also possible that different quenching mechanisms

may disrupt the kinematics of the stars to different extents, thus contributing fur-

ther to the scatter in this relation (Noordermeer et al., 2008). However, even

where the S0 offset from the spiral Tully–Fisher relation was found to be small

in these studies, the trend between the intrinsic luminosity and rotational velocity

of the galaxies was still found, further emphasising their potential evolutionary

link to spirals.

If a spiral galaxy is stripped by a gentle process, such that the star formation

is quenched without significantly disrupting the stellar orbits, then the number of

globular clusters in the galaxy should remain constant as the galaxy fades to an

S0. As a result, the globular cluster specific frequency, which is the number of

globular clusters per unit luminosity of the galaxy, would be expected to increase

with time since the star-formation was quenched. This trend was found to exist

by Aragón-Salamanca, Bedregal & Merrifield (2006) and Barr et al. (2007), and

was attributed to the gas being stripped from spirals galaxies as they entered

denser environments. The photometric study of Aragón-Salamanca, Bedregal &

Merrifield (2006) found that the globular cluster specific frequency increases by a

factor of∼ 3 from spirals to S0s, which correlates well with the∼ 1.2 magnitude

offset – or a factor of three drop in luminosity – in the Tully–Fisher relation

measured by Bedregal, Aragón-Salamanca & Merrifield (2006). Similarly, they

found a strong correlation with the colour of the S0 galaxy, where the globular

cluster specific frequency increased in redder galaxies, while the spectroscopic

study of Barr et al. (2007) identified a similar trend in S0s with older stellar

populations.

A final piece of evidence is based on the stellar population differences be-

tween spirals and S0s – if S0s are truly an end-point in the evolution of spirals,
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there should be detectable galaxies currently undergoing the transition. These

galaxies would display no ongoing star formation, but would have evidence of

recent star formation activity. Such galaxies were first detected by Dressler &

Gunn (1983), and are characterized by their strong Balmer absorption features

and lack of emission lines. Consequently, such systems were named ‘k+a’ galax-

ies since their spectra comprise that of young A-class stars superimposed upon

an older stellar population. Recently, these galaxies have undergone a surge of

interest as their possibility of being transitionary objects between spirals and S0s

has been realised, and the results from these studies have helped develop this

hypothesis. For example, Poggianti et al. (2009) found that, like S0s, k+a galax-

ies preferentially exist in clusters, and are relatively rare in the field. Similarly,

in clusters, k+a galaxies tend to have discy morphologies (Caldwell, Rose &

Dendy, 1999; Tran et al., 2003), and in some cases even show evidence of faint

spiral arms, further contributing to the theories that they are recently quenched

spirals (Poggianti et al., 1999).

Additionally, recent studies have identified red spiral galaxies as a possible

transitional phase between normal spirals and k+a galaxies (Wolf et al., 2009;

Masters et al., 2010). These galaxies have been found in intermediate density

environments, and display ongoing star formation at a rate ∼ 4 times lower than

in blue spirals of similar mass (Wolf et al., 2009). Masters et al. (2010) studied a

sample of face-on red spirals from the Galaxy Zoo project (Lintott et al., 2008),

and identified that these galaxies are not simply dust-reddened spirals or domi-

nated by the light from older stellar populations in their bulges. As a result, they

concluded that red spirals are truly passive disc galaxies that are either currently

undergoing quenching, or have recently (within ∼ 1 Gyr) been quenched, and

therefore have not yet had sufficient time to fade to a k+a galaxy or an S0.

Together, all of this evidence points towards spiral galaxies transforming

into S0s by having their star formation quenched, where the quenching process

is driven by interactions with neighbouring galaxies in higher density environ-

ments. However, to confirm this hypothesis, the quenching processes and their
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effects on the star formation throughout the galaxy must first be understood.

1.3 Transformation Scenarios

Many scenarios have been proposed to explain the transformation of spirals to

S0s, most of which focus on interactions with other galaxies or the intracluster

medium (ICM) due to the prevalence of S0s in denser environments. Such inter-

actions would quench the star formation in the disc, leaving the galaxy to fade

and evolve passively into an S0. However, some interactions will prove more

efficient at stripping the gas from a galaxy, while others would induce more

disruption to the gas and trigger further starbursts within the galaxy. A system-

atic illustration of the different effects on the star-formation rate with time is

given in Fig. 1.8, all of which would eventually quench the galaxy over different

timescales and leave their own individual marks on the star-formation history of

the galaxy.

One quenching scenario is ram-pressure stripping (Gunn & Gott, 1972), in

which the cold disc gas is stripped out of the galaxy as it falls through the hot

plasma in the ICM. This form of gas stripping would be very efficient, resulting

in a fast quenching of star formation as∼ 80% of the disc gas is rapidly removed

from the galaxy over a typical timescale of ∼ 107 years for rich clusters – a

small fraction of the cluster crossing time (Abadi, Moore & Bower, 1999). This

scenario is depicted by the green dot-dash line in Fig. 1.8. Direct evidence of

ram-pressure stripping occurring in spiral galaxies has been detected in the Virgo

(Cayatte et al., 1990; Veilleux et al., 1999; Vollmer, 2003; Vollmer et al., 1999,

2004a,b; Kenney, van Gorkom & Vollmer, 2004; Crowl et al., 2005) and Coma

Clusters (Bravo-Alfaro et al., 2000, 2001), and within other galaxy groups and

clusters (Kemp et al., 2005; Rasmussen, Ponman & Mulchaey, 2006; Levy et al.,

2007) using observations of HI gas. Such observations have shown evidence

of HI deficiencies within cluster spiral galaxies, and in some cases even tails

of HI gas trailing behind the galaxy as it falls through the ICM (Oosterloo &
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Figure 1.8: An illustration of the effect on the star formation rate of the disc by different
quenching scenarios. The green dot-dashed line represents a fast quenching with no further
star formation, such as ram-pressure stripping, while the red dashed line represents a slower
quenching scenario with no star formation, which could be explained by starvation. Finally,
the blue dotted line represents the more turbulent quenching processes, such as harrassment,
unequal-mass galaxy mergers and a less gentle ram-pressure stripping scenario, in which the
gas is disrupted and produces a final gasp of star formation prior to being quenched. Image
adapted from Bamford (2006).

van Gorkom, 2005; Kim et al., 2008). Sun, Donahue & Voit (2007) also found

evidence of bursts of star-formation in the tail of ESO 137-001 in the Abell 3627

cluster, showing that the disruption in the disc gas by ram-pressure stripping can

trigger star formation within the stripped gas in addition to any star formation

induced in the disc as the gas is stripped. The inclination of the galaxy as it

travels through the ICM would also affect the amount of gas lost in this way,

with studies such as Abadi, Moore & Bower (1999) finding that galaxies falling

face on into the cluster can lose up to 50% more gas than edge-on galaxies due

to the larger surface area affected by the stripping.

A variation on this stripping scenario is the strangulation or starvation model

that was proposed by Larson, Tinsley & Caldwell (1980), in which the hot, dif-

fuse gas is stripped from the halo instead. Since it is this halo gas that accretes

onto the disc to replenish the gas used up in star formation, its removal leads

to a slow truncation of the star formation as the galaxy consumes the remaining
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gas in the disc. This slow truncation is described in Fig. 1.8 by the red dashed

line. As with ram-pressure stripping, the ICM is most likely responsible for the

removal of the halo gas, but in this case typically happening over ∼ 109 years

(Bekki, Couch & Shioya, 2002).

Interactions with neighbouring galaxies can also strip the gas from galaxies

through galaxy harassment (Moore, Lake & Katz, 1998). Simulations by Moore,

Lake & Katz (1998) and Fujita (1998) have shown that a single such interaction

with another galaxy would be insufficient to strip a spiral galaxy of all of its gas.

Therefore, to completely strip all the gas from a spiral galaxy and quench its star

formation, multiple high-speed encounters would be necessary, especially for

more luminous spirals in which this gas stripping process is less efficient (Moore

et al., 1999). Additionally, the gravitational forces acting between the interacting

galaxies could trigger an increased star-formation rate within the galaxy being

stripped as the gas and stars within the disc are disturbed, as described by the

blue dotted line in Fig. 1.8. As a result of the disruption from the gravitational

forces acting on the galaxy, the velocity dispersion of the galaxy would increase,

giving the galaxy a more spheroidal morphology, and gas would be dumped into

the central regions of the galaxy, feeding further star formation there (Fujita,

1998).

Galaxies that interact under the right conditions may eventually collide through

unequal-mass galaxy mergers (Mihos & Hernquist, 1994), in which the disrup-

tion to the orbits of the gas in the accreting galaxy would induce a series of

starbursts throughout the disc that quenches all star formation. This scenario is

also portrayed by the blue dotted line in Fig. 1.8. It was determined by Bekki

(1998) that the merging galaxies being of unequal mass was important to main-

tain the disc structure of the final galaxy – to produce a gas-poor S0 by merging

two spirals a typical mass ratio of∼ 3 : 1 is necessary. As the mass ratios exceed

10 : 1, the resultant galaxy would display a small drop in the star-formation rate,

and successive minor mergers of similar scales would be necessary to eventually

use up all the gas and produce an S0.
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It is still uncertain whether any one of these processes dominate the transfor-

mation of spirals to S0s in clusters, or if the process changes with time, environ-

ment or stellar mass. Evidence that multiple processes can contribute towards the

quenching of star formation in a single galaxy has been found in recent simula-

tions by Cen (2014). This study found that ram-pressure stripping would remove

the gas from the outer disc, truncating the star formation in the disc and leav-

ing a reservoir of gas in the central regions that feeds the in-situ star formation

there. Without gas from the rest of the disc migrating inwards to fuel this resid-

ual star formation, it will then be slowly quenched by starvation as it uses up the

remaining gas that was not stripped out earlier.

Further evidence that different processes can be responsible for the forma-

tion of different S0s lies in the increasingly complicated morphologies that have

been detected in such galaxies. One interesting feature is the presence of counter-

rotating discs – around a quarter of S0s are now known to contain gaseous com-

ponents counter-rotating with respect to their stellar disc, and around 10% dis-

play counter-rotating stellar discs (Bertola, Buson & Zeilinger, 1992; Kuijken,

Fisher & Merrifield, 1996; Emsellem et al., 2011). It is therefore likely that these

S0s experienced a different formation history to the simpler bulge-plus-disc sys-

tems, and so, to truly understand the evolution of galaxy morphology, we need

to be able to explain the formation of all the galaxies we observe, both usual and

unusual.

Each of the processes outlined above would affect the star formation in dif-

ferent parts of a galaxy in different ways, from a gentle quenching of the star

formation, to the gas being disrupted and dumped into the centre of the disc

to fuel a final starburst there, to even more turbulent processes that use up all

the gas rapidly in starbursts throughout the galaxy. Therefore, studying the

star-formation history across an S0 galaxy and within its different components,

such as the bulge and disc, can provide crucial information on the processes that

formed that galaxy.
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1.4 Bulge–Disc Decomposition

The first step to analysing the stellar populations of bulges and discs is to separate

their light by bulge–disc decomposition. This technique separates the light from

a galaxy into models of the bulge and disc, which, when combined, produces the

best fit to the original galaxy image (de Vaucouleurs, 1959).

Each model component provides information on the effective size, luminos-

ity and distribution of the light within the bulge and disc, which can help deter-

mine how the galaxy formed. One example of the use of this information is to

plot the effective surface brightness of each component against its scale length to

produce the Kormendy relation (Kormendy, 1977). As can be seen in Fig. 1.9 for

elliptical and early-type disc galaxies, more luminous galaxies have larger scale

lengths and fainter effective surface brightnesses measurements, suggesting that

they are more diffuse. A later study by Hamabe & Kormendy (1987) included

measurements from the bulges of spirals, and found an extension to this trend to

Figure 1.9: The Kormendy relation, linking the effective surface brightness of a galaxy
with its scale length (Kormendy, 1977). Small symbols represent dwarf galaxies and larger
symbols imply ‘normal’ galaxies. The thick solid line is the line of best fit to the galaxies,
while the thin line represents the line of constant MB for comparison. T1, T2 and T3
represent isolated, group and cluster galaxies respectively.
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Figure 1.10: The Kormendy relation for the bulges of S0s from field (open triangles) and
cluster (filled squares) environments (Barway et al., 2009). It is clear that the bulges of field
S0s appear to follow the Kormendy relation in Fig. 1.9 while cluster S0s do not.

lower scale-lengths. By comparing the results with those in Fig. 1.9, the spiral

bulges appear to overlap with the majority of the S0 sample used in Kormendy

(1977), indicating that they may have experienced similar formation histories to

S0s (Hamabe & Kormendy, 1987).

A more recent study of the Kormendy relation for S0s by Barway et al. (2009)

found that while the bulges of field S0s also show this trend, those in cluster S0s

do not, instead forming a downward scatter where the effective surface bright-

ness drops significantly at larger scale lengths. This drop can be seen in Fig. 1.10,

and is thought to be evidence of transformations induced by environmental ef-

fects such as minor mergers, ram pressure stripping or harassment. Barway et al.

(2007) also found that in faint S0s, the bulge effective radius increases with the

disc scale length, while in brighter S0s it decreases with increasing disc scale

length. Secular evolution of spirals into lenticulars predicts the former trend

since the passive fading of the bulge and disc would conserve their relative scale

sizes, while the latter correlation would be expected from a more turbulent tran-
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sition. Therefore this variation suggests a further dependence on the local envi-

ronment of a galaxy when deriving its evolutionary history.

Other studies of the Kormendy relation have looked at differences in the re-

lation for bulges and discs of spirals and S0s. These studies have found that as

you move from S0s to late-type spirals, the effective size of the bulge decreases

while its effective surface brightness decreases, whereas discs were found to dis-

play much less variation between morphologies (de Jong, 1996; Graham, 2001;

Möllenhoff & Heidt, 2001; Trujillo et al., 2002; Aguerri et al., 2004; Laurikainen

et al., 2007; Graham & Worley, 2008; Oohama et al., 2009). As a result, it is be-

coming apparent that the increase in the bulge-to-total light ratio observed in

early-type disc galaxies, such as S0s, is driven by the evolution of the bulge.

Additional information on the formation histories of the bulges and discs

can be derived by comparing their stellar populations. The analysis of multi-

waveband photometry makes it possible to compare the bulge and disc colours

as a proxy for their stellar populations since higher metallicities and older stel-

lar populations strengthen the redder light from the galaxy. Such comparisons

have found, for example, that in both spirals and S0s, the discs are bluer than the

bulges (Bothun & Gregg, 1990; Peletier & Balcells, 1996; Hudson et al., 2010;

Head et al., 2014), which suggests that disc galaxies have more recent star forma-

tion activity at larger radii (de Jong, 1996) or higher metallicities in their nuclear

regions (Beckman et al., 1996; Pompei & Natali, 1997). Colour gradients have

also been detected within bulges and discs by this method – negative colour gra-

dients have been found within the bulges of S0s (Terndrup et al., 1994; Peletier

& Balcells, 1996; Head et al., 2014) and spirals (Möllenhoff, 2004), while discs

in these galaxies have been shown to contain both positive (Head et al., 2014)

and negative (Michard & Poulain, 2000; Kannappan, Guie & Baker, 2009) gra-

dients. Since negative colour gradients imply that redder light is more centrally

concentrated within these components than bluer light, such trends imply the

presence of increasingly older or more metal-rich stellar populations at smaller

radii within these galaxies.
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However, estimates of the stellar populations derived from colours alone are

highly degenerate, such that using only the photometric colour, an unresolved

stellar population cannot be distinguished from another that is three times older

with half the metallicity (Worthey, 1994). Additionally, galaxies can also be af-

fected by dust reddening, in which the dust present in the plane of an inclined

disc can block the blue light from the galaxy, and give it a redder colour at op-

tical wavelengths (Disney, Davies & Phillipps, 1989). To resolve these issues,

and hence better understand the star-formation histories across galaxies, spectro-

scopic studies are vital.

1.5 Spatial Studies of the Stellar Populations

Spectroscopic studies of stellar populations over galaxies have long been used to

determine their spatial star-formation histories more accurately. In most cases,

the studies have focussed on long-slit spectra aligned along the major and minor

axes of the galaxy to obtain estimates of the spatial distribution of the stellar

ages and metallicities, although the past decade has welcomed integral field unit

(IFU) spectroscopy over wider fields of view, providing more complete spatially-

resolved spectroscopic information for galaxies.

Studies by Fisher, Franx & Illingworth (1996), Bell & de Jong (2000), Bedre-

gal et al. (2011) and Prochaska Chamberlain et al. (2011) have found evidence

for negative metallicity and positive age gradients across S0s, which indicate that

the central regions of S0s contain younger and more metal rich stars. Further

signs of recent star formation in bulge regions of S0s has been detected by Pog-

gianti et al. (2001), Ferrarese et al. (2006), Sil’Chenko (2006) and Kuntschner

et al. (2006), and a study by Pracy et al. (2013) found evidence of strong positive

age gradients within the central ∼ 1 kpc of the bulges of k+a galaxies. Another

recent study of k+a galaxies by Rodrı́guez Del Pino et al. (2014) also found evi-

dence that the most recent star formation activity in these galaxies was centrally

concentrated within the disc.
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Further studies of the luminosity-weighted ages of the bulges of S0s have

shown an apparent relationship with luminosity. Kuntschner (2000), Smail et al.

(2001), Poggianti et al. (2001) and Barway et al. (2013) all found evidence that

while the bulges of S0s tended to contain younger stars than the discs, this trend

was stronger in lower-luminosity S0s which appeared to contain younger stellar

populations on average than the brighter S0s, even if they were in the same clus-

ter. These results provide even more evidence that S0s can evolve from spirals

through different quenching mechanisms and over different timescales. Brighter

S0s are more similar to ellipticals, and therefore likely to have formed through

more turbulent processes than fainter S0s, which were most likely stripped of

gas through gentler mechanisms, and then built up their young bulge population

through secular processes that created a pseudo-bulge (Barway et al., 2013).

Such studies of the star formation histories of S0 bulges and discs have revealed

colour gradients across the galaxies, which are likely indicators of age and metal-

licity gradients, and have suggested that the quenching process responsible for

the formation of each galaxy is dependent on environment and luminosity. How-

ever, such colour gradients fail to provide clear information on whether they rep-

resent a gradient within the individual components, or whether they arise simply

from the superposition of varying amounts of bulge and disc light, where each

component contains stellar populations of distinct different ages and metallici-

ties. It also leaves open the possibility that the colour gradients could result from

differing amounts of dust extinction at different radii, rather than telling us about

spatial variations in the stellar population. Similarly, spectroscopic studies across

S0 galaxies have attempted to resolve the age-metallicity degeneracy that often

affects studies of galaxy colours, but still provide no information on the propor-

tion of the light from the bulge and disc at any given location within the galaxy.

Therefore, to resolve this ambiguity, we have developed two novel techniques

to spectroscopically separate the light from bulges and discs in order to produce

two one-dimensional spectra representing purely the light from each component.
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These “clean” spectra can then be analysed for their ages and metallicities, as

well as any gradients in these quantities, to determine the sequence of events that

led to the quenching of star formation and the formation of S0 galaxies.

1.6 Outline of This Thesis

In this thesis, we set out to analyse the spectroscopic star formation histories

within bulges and discs for a sample of S0s from the Virgo and Fornax Clusters,

in order to determine the process that triggered their transformation from spirals.

These clusters were selected as the closest single systems with sufficient mem-

bers to undertake a systematic study of this transformation process. Chapter 2

introduces the sample in detail and outlines the data reduction. Chapter 3 de-

scribes a new technique to spectroscopically decompose long-slit spectra of S0

galaxies into bulge and disc components, and Chapter 4 covers the subsequent

analysis of the separate components’ stellar populations and star formation histo-

ries. Chapter 5 then looks at an unusual galaxy in the sample, NGC 4550 which

has two counter-rotating stellar discs, and outlines a different technique to sepa-

rate the star formation histories of the two discs using their different kinematics.

The implications of these results for the likely evolutionary tracks followed by

S0s are discussed in Chapter 6, followed by ideas to further develop the work

presented in this thesis.



Chapter 2

Sample and Data Reduction

The various scenarios for S0 formation discussed in Chapter 1 make different

predictions about the current properties of their bulges and discs. We might also

expect different S0s to form via different mechanisms. Clues to their formation

histories lie within the ‘archaeological record’ that can be extracted from spectral

observations. Therefore, to understand this transformation, we need to accurately

study the stellar populations within each component independently. Such a study

requires high-quality long-slit spectra along the major axis of a sample of nearby

galaxies with a high signal-to-noise ratio (S/N) out into the very outskirts of each

galaxy.

2.1 Sample Selection

Since S0s appear to favour denser environments at low redshift, this study was

carried out with a sample of 30 S0 galaxies from the Virgo and Fornax clusters,

which are two of the largest and closest galaxy clusters to the Milky Way at

distances of ∼ 16.5 Mpc and ∼ 19.3 Mpc respectively (Mei et al., 2007; Tonry

et al., 2001). These two clusters were selected as they allow for a comparison

of the different formation mechanisms between clusters, while their richness is

a useful test for the differences within clusters. Additionally, their proximity

allows us to obtain high-quality, spatially-resolved spectra with sufficiently high
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S/N to reach right out into the outskirts of each galaxy, thus providing us with

a clear picture of how the stellar populations have been affected over the full

structure of the galaxy.

A total of 30 galaxies were selected from these two clusters- 21 from the

Virgo Cluster and 9 from the Fornax Cluster. To obtain a representative view of

how the S0s in these clusters were created, the sample was selected to include

all those galaxies classified as S0 by Kuntschner (2000) in the Fornax Clus-

ter, and by the ACS Virgo Cluster Survey (Côté et al., 2004) for those in the

Virgo Cluster. As a secondary selection criterion, all galaxies with inclinations

of ≤ 40 degrees (where 90 degrees is edge-on) were eliminated in order to re-

duce contamination in the sample from misclassified ellipticals. The inclination

of each S0 in the Virgo Cluster was calculated by using their ellipticity measure-

ments from Ferrarese et al. (2006), which were determined by fitting elliptical

isotopes to g- and z-band images of each galaxy. The axis ratio, q, was derived

from these ellipticities using

ε = 1− b

a
= 1− q, (2.1)

where a and b are the lengths of the semi-major and semi-minor axes respec-

tively. The inclination, i, could then be calculated using

cos2i =
q − q2

0

1− q2
0

, (2.2)

where q0 is the minimum axes ratio for a galaxy considered to be edge on (Hub-

ble, 1926b). Since galaxies are not infinitely thin, q2
0 is generally taken to have a

value of 0.2 (Holmberg, 1958).

As a result of this selection process, a sample of galaxies was obtained span-

ning a factor of 100 in luminosity and two orders of magnitude in dynamical

mass, covering a wide range of B/T light ratios and local environments within

the cluster, which is truly representative of all the S0 systems within these two

clusters. The diversity in the final sample of galaxies can be seen in the SDSS

images of the Virgo Cluster galaxies in Fig. 2.1, and the 2MASS JHKs images of
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Figure 2.1: SDSS (DR7) images of each galaxy in the Virgo Cluster Sample, with the scale
of each image shown in the top left corner. In all cases, the images are orientated with north
towards the top and east to the left (Abazajian et al., 2009).
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Figure 2.2: 2MASS images of each galaxy in the Fornax Cluster Sample, with the scale of
each image shown in the top left corner. In all cases, the images are orientated with north
towards the top and east to the left (Skrutskie et al., 2006).

the Fornax Cluster galaxies in Fig. 2.2. The SDSS images clearly show the red

colours and featureless discs of the S0s, while the infra-red 2MASS images of

the Fornax galaxies, selected for this figure because this cluster is not within the

SDSS field of view, can see through any dust in the plane of the discs to highlight

absence of regions of recent star formation.

2.1.1 Fornax Cluster

The Fornax Cluster sample were observed using the 8.2 m Antu/VLT between

2002 October 2 and 2003 February 24 with the FORS2 instrument in long-slit

spectroscopy mode. Details of the sample and the observations are given in Ta-

ble 2.1. For each galaxy, the slit was aligned with the photometric major axis,

and was set to 0.5 arcsec wide and 6.8 arcmin in length. For all galaxies ex-

cept NGC 1316, the centre of the galaxy was placed halfway along the slit in

order to obtain information along the entire length of the major axis; NGC 1316
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Table 2.1: Sample of S0s from the Fornax Cluster.

Name RA dec BT Exp. Time Date Tel.
(h m s) (◦ ´ ´́ ) (s) (dd-mm-yyyy)

(1) (2) (3) (4) (5) (6) (7)
NGC 1316* 03 22 41 −37 12 30 9.4 3 × 1200 13-10-2002 VLT
NGC 1380 03 36 27 −34 58 34 10.9 2 × 1200 24-02-2003 VLT
NGC 1381 03 36 31 −35 17 43 12.4 2 × 1600 24-02-2003 VLT
IC 1963 03 35 30 −34 26 51 12.9 2 × 1600 31-01-2003 VLT
NGC 1375 03 35 16 −35 15 56 13.2 2 × 1800 28-12-2002 VLT
NGC 1380A 03 36 47 −34 44 23 13.3 2 × 1700 28-12-2002 VLT
ESO 358-G006 03 27 18 −34 31 35 13.9 2 × 2400 14-10-2002 VLT
ESO 358-G059 03 45 03 −35 58 22 14.0 1 × 2550 08-02-2003 VLT
ESO 359-G002 03 50 36 −35 54 34 14.2 1 × 2250 26-11-2002 VLT
Note. Column (1): Galaxy name; Column (2): RA; Column (3): Declination; Column (4):

Total apparent blue-band magnitude from de Vaucouleurs (1991); Column (5): Exposure time

in seconds; Column (6): Date of observations; Column (7): Telescope. An asterisk beside the

galaxy name indicates that the galaxy was significantly offset from the centre of the CCD.

is the largest galaxy in the sample, and it was necessary to offset it along the

slit in order to cover sufficient sky for background subtraction. The standard

resolution collimator was used in the unbinned readout mode, giving a spatial

scale of 0.125 arcsec pixel−1, and the GRIS1400V+18 grism gave a dispersion of

0.318 Å pixel−1 over a wavelength range of 4560 ≤ λ ≤ 5860 Å. By analysing

arc lines, the spectral resolution was found to be ∼ 4 pixels FWHM, which cor-

responds to a velocity resolution of∼ 73 km s−1 FWHM or a velocity dispersion

of∼ 31 km s−1. This data set was reduced and analysed in Bedregal et al. (2006),

Bedregal et al. (2008) and Bedregal et al. (2011); the initial analysis of those pa-

pers provided a useful cross-check on the more powerful technique in the current

analysis.

2.1.2 Virgo Cluster

The Virgo Cluster sample was observed using the GMOS instruments (Hook

et al., 2004) in long-slit mode on Gemini-North and Gemini-South between 2008

April 24 and 2011 June 20, details of which are given in Table 2.2. As with
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Table 2.2: Sample of S0s from the Virgo Cluster.

Name RA dec BT Exp. Time Date Tel. Seeing Classification
(h m s) (◦ ´ ´́ ) (s) (dd-mm-yyyy) (arcsec)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
VCC 798* 12 25 24 +18 11 26 10.09 4 × 900 26-02-2009 GN 1.4 S0
VCC 1535* 12 34 03 +07 41 59 10.61 4 × 900 26-02-2009 GN 1.2 S0
VCC 2095* 12 52 56 +11 13 53 11.18 4 × 900 01-06-2010 GN 1.4 S0
VCC 1062* 12 28 04 +09 48 14 11.40 4 × 900 18-01-2010 GS 0.7 SB0
VCC 2092* 12 52 18 +11 18 50 11.51 1 × 900 21-02-2009 GN 1.4 SB0

3 × 900 26-02-2009 GN 1.3
VCC 759* 12 24 56 +11 42 15 11.80 5 × 900 02-06-2010 GN 1.0 SB0

1 × 900 08-07-2010 GN 0.6
VCC 1692* 12 36 53 +07 14 47 11.82 4 × 1000 13-02-2010 GN 1.8 S0
VCC 2000 12 44 32 +11 11 25 11.94 4 × 900 11-02-2010 GS 0.6 E3/S0
VCC 685* 12 23 58 +16 41 37 11.99 4 × 900 11-03-2010 GN 1.8 S0
VCC 1664* 12 36 27 +11 26 21 12.02 2 × 900 27-04-2009 GN 1.5 E6

2 × 900 28-04-2009 GN 1.0
VCC 944 12 26 51 +09 35 02 12.08 4 × 900 23-04-2009 GN 1.3 S0
VCC 1938 12 42 47 +11 26 33 12.11 1 × 900 29-04-2009 GN 1.3 S0

3 × 900 20-06-2009 GN 1.0
VCC 1720* 12 37 31 +09 33 19 12.29 3 × 1500 30-05-2011 GN 0.7 S0

2 × 1500 04-06-2011 GN 0.9
1 × 1500 20-06-2011 GN 0.8
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Table 2.2 – continued from previous page
Name RA dec BT Exp. Time Date Tel. Seeing Classification

(h m s) (◦ ´ ´́ ) (s) (dd-mm-yyyy) (arcsec)
(1) (2) (3) (4) (5) (6) (7) (8) (9)
VCC 1619 12 35 31 +12 13 15 12.50 2 × 900 20-06-2009 GN 1.5 E7/S0

2 × 900 13-02-2010 GS 1.8
VCC 1883* 12 41 33 +07 18 53 12.57 2 × 1500 25-05-2011 GN 0.9 RSB0

1 × 1500 27-05-2011 GN 1.0
3 × 1500 28-05-2011 GN 0.9

VCC 1242 12 29 53 +14 04 07 12.60 6 × 900 23-02-2010 GS 1.1 S0
VCC 1250 12 29 59 +12 20 55 12.91 1 × 900 19-04-2009 GN 1.4 S0

3 × 900 20-06-2009 GN 1.4
VCC 1303* 12 30 41 +09 00 56 13.10 3 × 1500 13-07-2010 GN 0.7 SB0

1 × 1500 15-07-2010 GN 0.6
VCC 1913 12 42 11 +07 40 37 13.22 4 × 900 22-02-2010 GS 0.6 E7
VCC 698 12 24 05 +11 13 06 13.60 4 × 1800 28-02-2009 GN 1.5 S0

1 × 1800 23-04-2009 GN 1.5
5 × 1800 28-04-2009 GN 1.6

VCC 1833 12 40 20 +15 56 07 14.54 2 × 900 13-02-2010 GS 1.4 S0
Note. Column (1): Galaxy name from Binggeli, Sandage & Tammann (1985); Column (2): RA; Column (3): Declination; Column (4):Total apparent
blue-band magnitude from Binggeli, Sandage & Tammann (1985); Column (5): Exposure time in seconds; Column (6): Date of observations;
Column (7): Telescope (GN- Gemini North, GS- Gemini South); Column (8): Seeing measurement at time of observations (FWHM); Column (9):
Morphological classification from Côté et al. (2004). An asterisk beside the galaxy name indicates that the galaxy was significantly offset from the
centre of the CCD, such that the sky subtraction outlined in Section 2.2.6 was carried out using background values from only one side of the galaxy.



Sample and Data Reduction 31

NGC 1316 in the Fornax Cluster sample, it was necessary to offset the centres

of the larger galaxies from the middle of the slit in order to maximize the spatial

coverage and ensure sufficient background measurements for accurate sky sub-

traction. The B1200 grating was used in combination with a 0.5 arcsec wide and

5.5 arcmin long slit, giving a wavelength range of 4300 ≤ λ ≤ 5450 Å with a

dispersion of 0.235 Å pixel−1. The spectral resolution was measured from the

FWHM of the arc lines to be ∼ 1.13 Å, which corresponds to a velocity resolu-

tion of 72 km s−1 FWHM, well matched to the Fornax data. Spatially, the CCDs

were binned by 4 to give a final scale of 0.29 arcseconds pixel−1. Details of the

data reduction for this data set are given in Section 2.2.

Together, these two data sets provide a representative sample of cluster S0s in

the local Universe, spanning a luminosity range of over five magnitudes and the

full range of local environments within their host clusters. The reduced two-

dimensional spectrum for each galaxy represents typically 1–3 hours of integra-

tion on an 8-metre class telescope, providing very high signal-to-noise ratio data

right out into the outer regions of the discs, which will allow us to decompose

the light profile of each galaxy reliably at each finely-separated wavelength.

2.2 Data Reduction

The spectra for the Virgo Cluster galaxies were reduced using the GMOS spectral

reduction packages in IRAF.1 The process was carried out manually to allow the

data to be checked after each step and ensure an accurate reduction. The Virgo

Cluster galaxies were observed using GMOS on both Gemini-North and Gemini-

South, with calibration flat fields, bias frames and CuAr arc spectra also taken

for each set of observations with the same instrumental set-up. The observations

1IRAF is distributed by the National Optical Astronomy Observatories, which are operated

by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement

with the National Science Foundation



Sample and Data Reduction 32

were made in service mode, which ensured near optimal weather conditions for

each observation. An example of the typical sequence of observations is listed

below for a galaxy observed with four exposures:

• On the night

– Target selected and acquisition images obtained to centre the target

galaxy on the detector and to align the slit.

– Calibraton flat field observed with a central wavelength of 4710 Å.

– Two science exposures observed with a central wavelength of 4710 Å.

– Two science exposures observed with a central wavelength of 4760 Å.

– Calibraton flat field observed with a central wavelength of 4760 Å.

• Following day

– Two CuAr arc images observed with central wavelengths of 4710 Å

and 4760 Å.

• Each semester

– A series of bias images are observed with the same instrumental set

up as the science exposures, and median stacked to produce a master

bias frame for all exposures observed that semester.

The GMOS detector contains three CCDs over which the spectrum is distributed,

with gaps between each CCD of around 39 unbinned pixels (∼ 9.2 Å). There-

fore, each galaxy and calibration frame was observed over an even number of

exposures with central wavelengths split equally between 4710 Å and 4760 Å in

order to ensure full wavelength coverage. The CCD images also show four un-

exposed regions parallel to the wavelength direction. Two of these regions are at

the edges of the CCD, and two lie 1/3 and 2/3 of the distance along the spatial di-

rection where bridges lie across the slit to maintain a constant width over its full

length. These bridges cover∼ 40 unbinned rows of pixels, which corresponds to
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∼ 2.9 arcsec in the radial direction in this data set, and the affected pixels were

masked out in the analyses presented in Chapters 3, 4 and 5. Since the GMOS

instruments have identical designs and are mounted on identical telescopes, the

data reduction process outlined in below could be applied equally well to data

from both instruments.

2.2.1 Bias Correction

The first step to reducing any astronomical data detected on a CCD is to correct

for the bias level, which is an arbitrary value added to each pixel. Since the

individual pixels on a CCD do not measure the incoming photons with uniform

efficiency, an image taken of a uniform light source would result in a Gaussian

distribution in the level of detections of all the pixels across the CCD. When the

CCD is read-out, the charge amplifier converts the detections from charges to

voltages for each pixel, which may result in a null detection for those pixels with

measurements in the low end of the Gaussian tail. Therefore, to prevent such

issues, especially when observing low-luminosity targets, a bias value is added to

each pixel, which is sufficiently high to minimise the number of pixels with too-

low values for the charge amplifier to detect, while simultaneously low enough

to prevent too many pixels saturating if a bright star is contained within the field

of view. For the three GMOS-North detectors the bias levels were measured to

be ∼748, 610 and 373 counts from red to blue, and for GMOS-South the bias

measurements were∼717, 670 and 655 counts. In all cases, the typical variation

was found to be around ±2 counts.

To correct for the bias level, a master bias image was provided by the Gemini

Observatory for each run of observations, having been created by median stack-

ing a series of zero second exposures to produce an image of the pixel-to-pixel

variations across the CCD, such as the one shown in Fig. 2.3. By median stack-

ing the individual images, the influence of any one-off features, such as cosmic

rays, could be eliminated, thus producing a clean master bias frame that was then
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Figure 2.3: Examples of bias (left) and flat field (right) calibration frames. The pixel-to-
pixel variations in the bias frame are typically of the order of 0.3%.

subtracted from the science and calibration frames.

2.2.2 Flat Field Correction

Although the bias level minimizes the number of null detections due to less ef-

ficient pixels, the variations in the quantum efficiency of each pixel still remain,

and can result in artefacts in the image that may be invisible to the naked eye,

but would significantly affect any measurements made from that image, partic-

ularly of low surface brightness targets. The causes of these variations in the

pixel-to-pixel responses could be small differences in their sizes (and thus detec-

tion areas), variations in the gain of each pixel, bad pixels, obscuration from dust

on the surface of the detector, and vignetting. Since few of these factors can be

fixed prior to observations, we must apply the necessary corrections during the

post-processing of the images.

The corrections are applied by a process of flat-fielding. Flat field images

were observed throughout the night before each set of science exposures and for

each wavelength set-up using the quartz halogen continuum lamp to simulate a

uniform light source. These images were prepared by trimming the overscan re-

gions, multiplying the pixel values by the CCD gain, mosaicking the three CCDs

to produce a single image covering the full spectral range, and finally normalized

by dividing through by a polynomial function in the wavelength direction, which

was calculated from the response over the full spectral range. An example of

part of a flat field image can be seen in Fig. 2.3, which clearly shows the effects
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of dirt on the surface of the detector and large scale variations in the pixel re-

sponses. In all cases, to obtain the best flat field image representing as many of

these defects as possible, the exposure times are selected to produce sufficiently

high flux measurements while at the same time avoiding saturation.

Having created the master flat field for each set of science exposures, the

bias-subtracted science frames were reduced by trimming the overscan regions,

multiplying the pixel values by the CCD gain, mosaicking the the images to cover

the full spectral range, and finally flat-field correcting by dividing by the master

flat field image for that instrumental set-up. As part of this reduction process,

an approximate wavelength solution was also applied to each frame using the

central wavelength and pixel scale listed in the headers. This solution will act

as a starting point for refining the wavelength calibration over the CCD after

masking out cosmic rays and bad pixel columns, which will become distorted

and harder to detect after correcting for the distortion in the spectrum due to the

optics.

2.2.3 Cosmic Ray Removal

With the long exposure times necessary to observe faint, extended sources such

as galaxies, the number of cosmic rays hitting the detector increases significantly,

and they must therefore be removed. An IRAF task was used to initially identify

possible cosmic ray detections in all the science and flat field frames by looking

for pixels with values unusually higher than their neighbours. Having identified

these targets, the mean value of all the pixels in a box with sides of typically

11 pixels centred on each target was calculated, after excluding the second high-

est pixel value within that box in case it is another cosmic ray detection, and the

target labelled as a cosmic ray if its value was found to exceed a certain threshold

above the mean value. Since many cosmic rays hit the detector at an angle, they

can span many pixels and artificially enhance the mean pixel value of that part of

the CCD, and so this procedure was run multiple times to ensure all the affected
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pixels were identified and accounted for in the final mask. After the cosmic rays

were removed using the mask, the image was inspected visually to ensure that

no artefacts remained, and if this was found to be the case, the procedure was re-

peated with more iterations until no evidence of the cosmic ray detections were

visible in the masked image.

2.2.4 Bad Pixel Masking

Another issue that some pixels on the CCD may have is that they do not mea-

sure the incoming flux linearly, and thus would give erroneous values compared

to their neighbours in a manner that is not fully corrected by the flat-fielding

process. Therefore, to remove the effects of such pixels, a bad pixel mask was

created and applied to the science frames to replace the values of affected pixels

by interpolation.

Normally, where flat field images have been taken on sky during twilight,

exposures of different integration times are divided to identify pixels that do not

show a linear increase between the two flux levels. However, this technique

was not possible for the GMOS data as all the flat fields were observed with

the same continuum lamp and with the same exposure time, and so a different

technique was required. It was decided to use a modified version of the cosmic

ray detection method outlined in Section 2.2.3. A reduced flat field frame was

used, and the probability of each pixel being ‘bad’ was assessed by taking the

median value of all the pixels in a box centred on that pixel, and adding the pixel

to the mask if its value fell either above or below a given threshold away from

the median. Repeating this analysis for each pixel produced a bad pixel mask

for that image, and, by repeating this technique for similar images observed over

the full semester, a reliable master bad pixel mask was constructed that could be

applied to all the science images observed during that semester. This master bad

pixel mask was then applied to the reduced science images by interpolating over

the pixels marked as bad.
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2.2.5 Wavelength Calibration

Having reduced and corrected all the science frames for defects on the CCD and

incident events from cosmic rays, the next step was to calculate a reliable wave-

length solution for each frame to allow accurate measurements of the kinematics

and line indices. The wavelength solution was calculated using arc images that

had been observed using Cu-Ar lamps as part of the daytime calibrations. The

arc spectra were reduced in the same way as the science frames, but without

bad pixel masking and the flat field correction steps, and were binned into sec-

tions of ten pixels in the spatial direction. A number of prominent arc lines,

typically ∼ 50, were identified over the full spectral range, and the mean offset

between their measured and true wavelengths was calculated by fitting a poly-

nomial of order 4. The residuals of the resulting wavelength fits were generally

∼ 0.2− 0.3 Å.

By repeating this process for each spatially binned spectrum, the offset be-

tween the initial and true wavelength solutions could be calculated over the full

CCD, thus producing an accurate map for the wavelength solution which could

be applied to the CCD to both refine the wavelength calibration of the data, and

also correct for the geometric distortions caused by the instrument optics. An

example of the effect of these distortions on a sky line can be seen in Fig. 2.4,

along with the correction after applying the accurate wavelength solution to the

science spectra.

2.2.6 Sky Subtraction

In order to measure the flux of the galaxy in the outskirts of the disc, and thus

reliably measure the kinematics and line strengths, accurate sky subtraction is

needed to remove the light from the background sky. The sky background was

measured for each image over sections of the spectrum far from the centre of the

galaxy to reduce contamination from the outer disc. In cases where the galaxies

were located close to the centre of the CCD, the level of the sky background in
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Figure 2.4: An example of the distortion imposed by the spectrograph on a prominent sky
line centred on the Mg triplet in the spectrum of VCC 1938 (left), the correction after apply-
ing the accurate wavelength solution to the spectrum (centre), and the final flux-calibrated
spectrum after sky subtraction and combining multiple exposures, which has also removed
the remaining bright pixels that were not masked out in an earlier step (right).

each science image was measured over regions typically 100–200 pixels wide lo-

cated close to both edges of the CCD, whereas for galaxies that were significantly

offset from the centre of the CCD (as marked by asterisks in Table 2.2), the sky

background was measured on only one side. Using these measurements, a first

order function was calculated for each column of pixels, and the wavelength-

calibrated spectra were then sky subtracted using these measurements.

It was important to carry this step out carefully as it was found that the

GMOS spectra contained noticeable amounts of contamination from scattered

light within the instrument, the physical distribution of which was independent

of the position of the galaxy on the CCD and varied with the pointing of the tele-

scope. This low-level scattered light prevented the light profile of the spectrum

from levelling off at larger radii from the centre of the galaxy, making it difficult

to identify where the background sky level should be measured for an accurate

subtraction. It was noted by Norris, Sharples & Kuntschner (2006) that the scat-

tered light in GMOS data appears to contribute a reasonably constant offset to

the two-dimensional spectrum, significantly affecting measurements in the low-

luminosity outer regions of galaxies but becoming more insignificant towards

the inner regions. They suggested using the flux measurements in the four unex-



Sample and Data Reduction 39

posed regions on each CCD (two at the top and bottom edges, and two at around

1/3 and 2/3 of the distance along the spatial direction where the bridges lie) to

map out the magnitude of the scattered light over the CCD, and then to subtract

that off the spectra. However, when applied to this data set, the results proved

disappointing, with no clear improvement in the flux levels in the outer parts of

the CCD, and in some cases even leading to the flux level increasing towards

the edges of the CCD. From these results, demonstrated in Fig. 2.5, it could be

seen that if the peak of the galaxy lay close to one of the bridges, the flux level

under that bridge was higher than in any other unexposed region, suggesting that

these unexposed regions are not truly unexposed and detect a low level of scat-

tered light from the galaxy in addition to the approximately flat offset described

by Norris, Sharples & Kuntschner (2006). Therefore, the sky background level

was measured carefully in each reduced science image by using the light profiles

at different wavelengths to identify the best region over which to take the back-

ground level. It was found that the bluest parts of the spectra were worst affected

by the scattered light, resulting in several cases where the background level of

counts increased towards the edge of the CCD. In such cases it was impossible

to identify the true background level under the contaminating light. This phe-

nomenon was most likely caused by the flat-field calibration lamps being very

red-luminous, and thus better modelling the contaminating effect of the scattered

light in this part of the spectrum. In order to apply a reliable background sub-

traction to the spectra, the regions selected for measuring the sky background

were chosen by studying the one-dimensional light profiles of each spectrum

over the full wavelength range. The radii over which the spectrum appears to

level off over the longest wavelength range were then used to measure the back-

ground level as these regions were considered to be least affected by scattered

light. Comparisons of the two-dimensional spectra of each galaxy showed that

generally the worst affected regions, i.e. where the background light increased

at larger radii, were blueward of 4300 Å. Since the bluest spectral feature used

in this study was the Hβ feature at 4861 Å, the excess contamination at shorter
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Figure 2.5: Top: An example of the mean light profile of a galaxy centred close to one
of the bridges, with the unexposed regions under the bridges and at the edges of the CCD
marked. Bottom: A close up view of the low-level flux, with the level of the scattered light
marked in red using the technique of Norris, Sharples & Kuntschner (2006). It can be seen
that the level of the scattered light is higher under the bridge closest to the centre of the
galaxy, suggesting that additional scattered light from the galaxy is also present, and that
if the scattered light was subtracted off, the flux level on the far side of the CCD would
increase towards the edge.

wavelengths did not appear to significantly affect the spectral range used for the

science analysis. However, as a precaution, the bluest parts of the spectra of all

the galaxies in the sample were cut, shifting the starting wavelength of the spec-

tral range from ∼ 3980 Å to ∼ 4300 Å, to remove those parts that could not be

background subtracted reliably and maintain a constant wavelength range over

the full sample. Inevitably, a low level of residual scattered light will remain in

the data, requiring us to be careful in subsequent analysis.

2.2.7 Flux Calibration

The penultimate step in reducing the science spectra is to flux calibrate the spec-

tra, where the measurements in counts are converted into an absolute flux value

with units of erg s−1cm−1Å−1. To carry out this correction, a spectrophotometric

standard star was observed for each programme of observations with the same
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Table 2.3: Spectrophotometric (S) and template (T) stars observed with the Virgo Cluster
data.

Name T/S Spectral Class
Feige66 S -
Hiltner600 S -
LTT1788 S -
HD054719 T K2 III
HD070272 T K5 III
HD072324 T G9 III
HD073593 T G8 IV
HD120136 T F6 IV
HD144872 T K3 V
HD145148 T K0 IV
HD161817 T A2 VI

instrumental set up, of which the details are given in Table 2.3. These stars

were reduced in the same way as the science spectra, and then used to produce

a sensitivity function with which to correct the science spectra. The sensitiv-

ity function lists the conversion from counts to flux at each wavelength in the

spectrum. It is created by comparing the measured counts at each wavelength in

a one-dimensional spectrum of a spectrophotoemtric flux standard star with the

flux measurements expected at those wavelengths for that star. The necessary

conversion of counts to flux can then be calculated as a function of wavelength,

producing the sensitivity function which can be applied to the science spectra for

flux calibration. The sensitivity functions assume that slit losses, transparency

and seeing conditions were similar for observations of both the standard star and

the galaxies.

Before applying the flux calibration to the science spectra, they were first

corrected for the effects of atmospheric extinction, using the airmass at the mid-

point of the integration for each exposure to apply an appropriate correction as

derived from the KPNO extinction table of Stone & Baldwin (1983). Finally,

each science frame was divided by the exposure time, and the absolute flux cali-

bration applied using the sensitivity function derived from the relevant standard

star.
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2.2.8 Template stars

In order to match the composite spectral type of the galaxy during the kinematic

analysis outlined in Sections 3.1 and 5.2, we need observations of template stars

with a range of spectral properties. Therefore, observations of eight template

stars were also requested, as listed in Table 2.3, which were reduced in the same

way as the science images, as described above. Finally, a one-dimensional spec-

trum with a high S/N was extracted for each star.

2.2.9 Combining Multiple Exposures

As can be seen in Table 2.2, each galaxy was observed multiple times with dif-

ferent wavelength set ups in order to build up the S/N of the final image while

ensuring a full spectral coverage over the gaps between the CCDs. Therefore,

the final step in the data reduction was to combine these individual science ex-

posures to produce the final spectrum for each galaxy, an example of which is

given in Fig. 2.4.

Before combining the images, the alignment on the CCD of each galaxy was

checked by comparing the measured positions of the peak of the spectrum over

the full wavelength range to align the data spatially, and measuring the centres

of prominent sky lines to ensure the best possible registration of absolute wave-

length calibration. In all cases, the maximum offset between different exposures

was found to be of the order of 0.5 pixels, and so no further corrections were nec-

essary. The individual images were then combined, rejecting the highest value

measured by each pixel in order to remove any residual cosmic rays in the im-

ages.

After reducing all the science spectra in this way, a high-quality two-dimensional

spectrum was obtained for each galaxy, each one representing typically 1–3 hours

of integration on an 8-metre telescope. The quality, resolution and data reduction

steps presented here closely match those of the Fornax Cluster sample, and, to-
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gether, these two data sets constitute a sample of long-slit spectra of 30 S0 galax-

ies extending right out into the outskirts of the discs. The resulting high quality

of the data, generally with a signal-to-noise ratio in excess of 100 over the central

2 arcseconds of each galaxy, allows us to carry out the novel analysis described

in the next chapter, whereby we decompose the light profile of each galaxy at

each finely-separated wavelength, and thus obtain independent one-dimensional

bulge and disc spectra for these S0s, from which their star-formation histories

can be studied with minimal contamination.



Chapter 3

Spectroscopic Bulge–Disc

Decomposition

Bulge–disc decomposition has long been applied to images of galaxies in or-

der to understand how the luminosity and size of each component vary across

galaxies of different morphologies and in different environments, which can pro-

vide information on how the star formation was induced or quenched throughout

the galaxy, and thus how the galaxy formed (Kormendy, 1977; Burstein, 1979;

Kent, 1985). With multi-waveband photometry, such as Bothun & Gregg (1990)

and Peletier & Balcells (1996), colour information can be added to the anal-

ysis, where colour gradients between the bulges and discs act as indicators of

the presence of age and metallicity gradients across the galaxy, thus providing

more detailed information on the star formation history. The next logical step for

bulge–disc decomposition analysis is to apply the technique to spectra in order

to reduce the age-metallicity degeneracy in the study of the stellar populations

within each component, and obtain more detailed information about the bulge

and disc stellar populations and the processes that quenched their star formation.

Conventional photometric bulge–disc decomposition of galaxies in one di-

mension involves measuring the luminosity of the galaxy against radius along

the major axis, and then fitting this light profile with a combination of bulge and
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Figure 3.1: A demonstration of how the Sérsic profile varies with n.

disc profiles to find the best fit. Bulges are generally modelled as a Sérsic profile,

IB(R) = IBe exp
{
−bn

[
(R/Re)

1/n − 1
]}
, (3.1)

where Re is the bulge effective radius, IBe is the bulge effective surface bright-

ness, n is the Sérsic index and bn is a variable related to n in the form

bn = 1.9992n− 0.3271 (3.2)

(Sérsic, 1968). Examples of how the Sérsic profile varies with n are given in

Fig. 3.1, where the shape changes from being Gaussian at n = 0.5 to becom-

ing centrally concentrated with very extended wings as n increases. Classically,

bulges were found to have a Sérsic index of 4, which is also known as the de Vau-

couleurs profile (de Vaucouleurs, 1953), and so those bulges with n ∼ 4 are

known as classical bulges. Their similarity with elliptical galaxies, such as their

old stellar populations and Sérsic indices around 4, have led to many theories that

these bulges formed through similar mechanisms to ellipticals, i.e. through hier-

archical clustering and mergers (Toomre, 1977b; White, 1997). However, bulges
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have now been shown to have a range of Sérsic indices, where those with n ∼ 1

are known as pseudobulges. Since bulges with smaller values of n have been

shown to contain younger stellar populations and to be more rotationally sup-

ported than classical bulges, pseudobulges are thought to have formed through

secular evolutionary processes, such as the inward movement of gas through the

disc that slowly builds up a bulge, (Kormendy & Illingworth, 1982; Kormendy,

1982; Carollo et al., 1997; Gadotti & dos Anjos, 2001). When viewed edge on,

many pseudobulges have been found to display a boxy or peanut shape, which is

distinctive evidence of a bar that has formed through similar secular processes,

and thus adds weight to these formation theories (Athanassoula, 2005).

Discs are also generally modelled with n = 1, but rearranged to form the

exponential profile,

ID(R) = ID0 exp(−R/R0), (3.3)

where ID0 is the central surface brightness of the disc and R0 is the disc scale

length (Freeman, 1970).

Using these models to represent the bulge and disc, the light profile of any

disc galaxy can be decomposed into these two components, although in many

cases features such as bars, rings, thin and thick discs etc. provide additional

complications to the galaxy and need to be modelled as well to achieve a reliable

decomposition.

This technique can similarly be applied to a high-quality two-dimensional

spectrum of a galaxy, aligned with the major axis, to decompose the light pro-

file at each finely-separated wavelength into bulge and disc components. The

decomposition will provide information on the size and luminosity of each com-

ponent at each wavelength, which can be used to build up two one-dimensional

spectra representing purely the bulge and disc light. From these spectra, inde-

pendent analysis of the bulge and disc stellar populations can be determined with

minimal contamination, leading to a better understanding of how the star forma-

tion in spirals was quenched to produce the S0s we see today. In this chapter, the



Spectroscopic Bulge–Disc Decomposition 47

decomposition technique will be described in detail, using VCC 698 from the

Virgo Cluster sample throughout as an example for each step, and identifying

those issues unique to the decomposition of spectra.

3.1 Kinematics Corrections

The main complication when decomposing spectra in this way is accounting for

the velocity dispersion and radial velocity over the galaxy, where the velocity dis-

persion decreases at larger radii, while the rotational velocity red- or blue-shifts

the spectra at larger radii relative to that from the centre of the galaxy. Therefore,

before fitting the light profile at each wavelength, the two-dimensional spectrum

must be corrected such that each spectral feature has the same velocity disper-

sion and radial velocity, thus ensuring that the light profiles for each wavelength

bin measures the light from the same point on the rest-frame spectrum at all radii

and preventing any artificial distortions arising in the final bulge and disc spec-

tra. Extra care must be taken with this correction when a bar is present within

the galaxy to account for its kinematics.

The first step necessary for these corrections was to radially bin the two-

dimensional galaxy spectrum into one-dimensional spectral bins at different radii

with sufficient signal-to-noise (S/N) to allow their kinematics to be measured

accurately. The binning was applied to the galaxy spectra prior to the flux cal-

ibration step, while the spectra are in units of electrons, and the S/N for each

spectrum at each radius was calculated using the CCD equation,

S

N
=

N∗√
N∗ + npix(NS +N2

R)
, (3.4)

where N∗ is the total number of photons collected from the spectrum, npix is the

number of pixels over which the photons were collected, and NS and NR are

the total number of photons per pixel from the sky background and the readout

noise respectively. Working from the centre of the galaxy spectrum, spectra in

adjacent rows were summed together until the total S/N for the binned spectrum



Spectroscopic Bulge–Disc Decomposition 48

Figure 3.2: An example of how PPXF fits stellar templates to the centrally-binned spectrum
of VCC 698, showing the original spectrum in black, the best fit model overplotted in red,
and the residuals from subtracting the model from the original spectrum below in blue,
offset from zero by an arbitrary amount.

reached a minimum value of 70 per Å. This step was repeated radially outwards

from the centre of the galaxy until no more bins with this S/N could be created,

at which point the minimum value for the S/N was dropped to 50, and then to

30, and finally to 20 as the binned spectra moved deeper into the outskirts of the

galaxy. The binned spectra were then assigned a radius, which was taken to be

the radius at which the total number of counts within that binned spectrum is split

in half, and the kinematics measured using the Penalized Pixel Fitting method

(PPXF) of Cappellari & Emsellem (2004). Figure 3.2 demonstrates how PPXF

uses the template stellar spectra from Table 2.3 to produce best-fit models to the

centrally-binned spectrum of VCC 698 by modelling the line-of-sight velocity

distribution as a Gaussian with a series of Gauss-Hermite polynomials, from

which the line-of-sight velocity distribution can be obtained. By repeating this

analysis for all the binned spectra for a galaxy, the radial velocity and velocity

dispersion profiles can be obtained, examples of which are given in Fig. 3.3 for

VCC 698 and in Appendix A for all the Virgo Cluster galaxies. The errors in the

measurements were calculated by running a series of Monte Carlo simulations

– in each simulation, a model was created for the binned galaxy spectrum by
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Figure 3.3: Kinematics plots for VCC 698, showing the line-of-sight velocity against radius
in the top plot, with the offset from the velocity of the centre of the galaxy on the right axis,
and the velocity dispersion on the bottom.

convolving the best combination of template spectra with the appropriate line-

of-sight velocity distribution, and then degrading them to the S/N of the original

spectrum. The model was then passed through PPXF to measure the uncertainty

in the measurements of the kinematics for that spectrum. This step was repeated

1000 times for each binned spectrum to build up a true representation of the

uncertainty in the measurements for that spectrum, and the standard deviation in

the difference between the input and output measurements used as the error on

the results in Fig. 3.3 and in Appendix A.

Having created the kinematics plots for the galaxy, the radial velocity of the

centrally binned spectrum within that galaxy and the maximum velocity disper-

sion of the galaxy were identified. The velocity dispersion correction was ap-

plied by convolving the spectrum from each spatial location with the appropriate

Gaussian to bring it up to the maximum value measured within that galaxy. The

rotational velocity was then calculated by cross-correlation, where the shift in

the wavelength of the spectral features at each location was measured relative to
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those in the peak spectrum. Plotting the velocity dispersion corrected kinemat-

ics in this way acted as a good check for the initial velocity curves, such as in

Fig. 3.3, to ensure that no kinematic features such as bars had been lost through

using too large bin sizes. A rolling average was then applied to the velocity dis-

persion corrected kinematics curve by replacing the value of each spectrum with

the mean value of that spectrum and the 5 spectra either side (i.e. ±1.45 arcsec).

Finally, the results were further smoothed by converting the velocity shifts into

pixel shifts, and taking the integer values for the shifts. This technique worked

well for regions of the two-dimensional spectrum with high signal-to-noise, and

so in the outer regions, where the noise dominated the results, the final reliable

shift was applied to the remaining rows. Since many of the galaxies in the sam-

ple were only offset slightly from the centre of the CCD, enough coverage of

both semi-major axes of each galaxy was obtained, thus allowing their kinemat-

ics to be analysed separately. This duplication was useful to ensure the results

were reproducible for each galaxy, and can also provide information on spatial

asymmetries within the galaxies.

3.2 Decomposition of the Light Profiles

Once this velocity alignment has been carried out, the bulge–disc decomposi-

tion can be performed at all wavelengths. As a first approach, the galaxies were

modelled using a de Vaucouleurs profile for the bulge and an exponential profile

for the disc. However, this combination of fits was found to limit the ability to

fit galaxies if their light profiles were not well described by this model, and so,

to increase the flexibility of the fitting process, the full sample was decomposed

using a Sérsic bulge profile and an exponential disc profile. By way of demon-

stration, examples of such fits to light profiles at individual wavelengths in the

long-slit spectrum of VCC 698 are given in Fig. 3.4, showing the galaxy light

profile along the major axis, the individual fits using Sérsic bulge and exponen-

tial disc profiles, and the best fit achieved by combining these fits to produce
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Figure 3.4: The best fits to the mean light profile for VCC 698 (left), and example light
profiles taken from one column of pixels within the continuum (middle) and within the Hβ
absorption feature (right). The bulge, disc and bulge + disc profiles are represented by the
blue, red and green lines respectively.

the final model. The best fits to the mean profile of the rest of the galaxies in

the sample are given in Appendix B. An alternative visualization is given in

Fig. 3.5, showing a small section of the two-dimensional models produced for

VCC 698 for the bulge, disc and composite galaxy centred on the Mg triplet

feature, as derived by fitting the spatial profile of the two-dimensional spectrum

(also shown) wavelength by wavelength. In each profile, the central few arcsec-

onds were masked out prior to fitting in order to eliminate the effects of seeing,

so the peaks of the bulge and disc spectra at very small radii in Fig. 3.5 were not

used in the fit.

Prior to running the decomposition on the light profile at each individual

wavelength, reasonable initial estimates for each parameter were needed. To ob-

tain such values, the two-dimensional spectrum was compressed into one single,

mean light profile for that galaxy, which could then be decomposed in the same

way to find the best fit, as shown in Fig. 3.4. At this stage, the fits were checked

by eye to ensure a good fit, in which case the best fit parameters were taken

as initial estimates for the decomposition at each wavelength. In each case, the

light profile was fitted from an inner distance of 2” out towards the edge of the

CCD where the light profile levelled off. The inner distance of 2” was selected

to eliminate the effects of seeing – as can be seen in Table 2.2, the maximum

value recorded for the seeing FWHM during any of the observations was 1.8”.
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Figure 3.5: A section of the two-dimensional spectra for the bulge, disc and composite
models, and the original spectrum of VCC 698, showing how the light profile varies with
wavelength. The data have been binned such that each step in the radial direction is 14.5”,
and in the dispersion direction is 2.4Å. The models are centred on the Mg triplet, with
wavelength increasing towards the right of the diagrams.

Additionally, any other features that appeared in the slit, such as foreground stars

or background galaxies, were masked out in the light profiles to reduce contami-

nation from those sources. In such cases, the seeing measurements were used as

a guide to the size of such features, and the mask was centred at the peak of the

contaminating light. The masks were then checked by eye ensure they covered

the full size of the affected area, and broadened as necessary to cover the full

size of the contamination, particularly in cases with a background galaxy. Hav-

ing fitted the light profile for each galaxy, the fit was considered to be good if,

for example, the Sérsic and exponential profiles represented the inner and outer

parts of the light profile respectively, and the residuals plotted against radius

were minimized. In general, the residuals between the mean light profiles and

their best fits were of the order of ∼ 1− 2% for the Virgo Cluster sample for the
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regions over which they were fitted. Additionally, since many of the galaxies in

the sample were offset only slightly from the centre of the slit, it was possible to

further test the reliability of the initial parameters by carrying out an independent

decomposition of both semi-major axes to ensure that they were consistent with

each other. In all but one galaxy in which both semi-major axes could be de-

composed, the decomposition parameters were found to be consistent with each

other. This consistency can be seen in the small errors listed in Table 3.1 for such

galaxies, marked with a †, where these errors include both the uncertainties in the

individual fits for both sides of the galaxy and the difference between both sets

of measurements. For those galaxies in which only one semi-major axis could

be decomposed, the errors listed simply describe the uncertainty from the best

fit.

Having identified the best fit parameters for the mean light profile for each

galaxy, the individual light profiles at each wavelength could then be decom-

posed using these results as initial paramters for the wavelength-dependent fits.

However, it was found that if all the Sérsic bulge and exponential disc parame-

ters were left free for the full spectral fit, the results over the entire wavelength

range became very unstable. This instability was most likely due to a com-

bination of degeneracy issues from having too many free parameters for each

one-dimensional fit. Therefore, to reduce this degeneracy, the light profiles were

fitted with fixed values for Re, R0 and n, where these values were taken from the

fits to the mean light profile for that galaxy. As a result of these limitations, only

the bulge effective surface brightness and the disc central surface brightness were

allowed to vary as a function of wavelength. Figure 3.6 presents examples of the

offsets in the de Vaucouleurs and exponential profiles that can be achieved with

a fixed effective radius and scale length, and only allowing the surface brightness

to vary. However, before applying these limits to the fits over the full spectrum,

random light profiles at different wavelengths, both within the continuum re-

gions and spectral features, were checked by eye to ensure that no significant

bias was inflicted on the results by holding these parameters fixed. Examples
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Table 3.1: Results for the decomposition parameters and kinematics measurements for the decomposed bulge and disc spectra.

Name Cluster Re R0 n VLOS σ0

[arcsec] [arcsec] [km s−1] [km s−1]
(1) (2) (3) (4) (5) (6) (7)
VCC 798 Virgo 8.9 ± 0.3 61.5 ± 0.6 1.87 ± 0.14 741 ± 5 181 ± 7
VCC 1062 Virgo 8.7 ± 0.2 36.5 ± 0.6 1.30 ± 0.09 547 ± 4 199 ± 7
VCC 2092 Virgo 8.74 ± 0.15 67 ± 2 1.41 ± 0.07 1316 ± 4 194 ± 8
VCC 1692† Virgo 4.5 ± 0.4 22.4 ± 0.3 1.6 ± 0.4 1727 ± 3 217 ± 6
VCC 2000† Virgo 2.43 ± 0.05 9.7 ± 0.7 0.91 ± 0.08 1110 ± 5 267 ± 8
VCC 685 Virgo 2.87 ± 0.16 16.39 ± 0.14 0.8 ± 0.2 1209 ± 5 200 ± 8
VCC 1664† Virgo 9 ± 3 19.9 ± 0.3 3.5 ± 1.4 1148 ± 10 207 ± 17
VCC 944† Virgo 14 ± 5 31.4 ± 0.5 3.9 ± 1.1 834 ± 4 146 ± 5
VCC 1720† Virgo 7.4 ± 0.5 38.0 ± 1.7 1.9 ± 0.4 2316 ± 2 119 ± 3
VCC 1883† Virgo 2.9 ± 0.4 14.8 ± 1.9 2.3 ± 0.4 1767 ± 1.3 77 ± 2
VCC 1242† Virgo 3.2 ± 0.2 15.7 ± 0.2 0.6 ± 0.2 1586 ± 2 80 ± 3
VCC 1303 Virgo 7 ± 2 27 ± 3 3.1 ± 0.6 897 ± 4 91 ± 6
VCC 698 Virgo 8 ± 4 22.4 ± 1.4 2.4 ± 1.4 2079 ± 2 52 ± 2
NGC1316 Fornax 16.7 ± 0.9 43.5 ± 3.6 0.62 ± 0.03 1716 ± 10 304 ± 19
NGC1380† Fornax 15.7 ± 1.3 35.1 ± 2.4 1.85 ± 0.10 1790 ± 13 266 ± 22
NGC1381† Fornax 3.2 ± 0.11 18.5 ± 0.7 0.94 ± 0.11 1717 ± 13 154 ± 19
NGC1375† Fornax 4.2 ± 0.7 15.9 ± 0.9 1.9 ± 0.3 782 ± 9 116 ± 14
IC1963† Fornax – 15.3 ± 0.4 – 1634 ± 2 60 ± 3
ESO 358-G006† Fornax – 10.5 ± 0.3 – 1261 ± 6 99 ± 9
ESO 359-G002† Fornax – 7.4 ± 0.7 – 1449± 4 61 ± 5
Note. Column (1): Galaxy name; Column (2): Cluster; Column (3): Bulge effective radius; Column (4): Disc scale length; (5): Bulge Sérsic index;
Column (6): Central line-of-sight velocity; Column (7): Central velocity dispersion. The errors represent one sigma uncertainties in the measurements,
and the † symbol indicates those galaxies for which both semi-major axes could be analysed independently.
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Figure 3.6: The effect of varying the surface brightness of de Vaucouleurs (blue) and ex-
ponential (red) profiles while holding their effective radii and scale lengths constant (verti-
cal dotted lines). Lighter colours indicate increasing values for the bulge effective surface
brightness and central surface brightness of the disc.

of these fits are given in Fig. 3.4, which presents examples of the best fit to the

mean light profile for VCC 698, and the fits achieved for individual light pro-

files from the continuum and within the Hβ absorption feature. With this added

constraint, the results from the decomposition over the full spectral range, and

from both semi-major axes where applicable, became consistent with each other,

and the co-added bulge and disc spectra bore a close resemblance to the original

spectrum.

It was also hoped that by holding these parameters fixed in the fits, the effects

of any residual scattered light (see Section 2.2.6) could be mitigated. Since the

distribution of the scattered light on the CCD is different on the two sides of

the galaxy, it was expected that contrasting results would be obtained from the

decomposition of both semi-major axes if scattered light was compromising the

results. However, the results for the decomposition parameters listed in Table 3.1

and the stellar populations analysis presented in Chapter 4 were found to be
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consistent over both sides of each galaxy. Therefore, this consistency suggests

that the results presented here are not affected significantly by contamination

from scattered light.

Of the 30 galaxies in this data set, seventeen could be decomposed reliably

using this method. Of the remaining thirteen, six (NGC 1380A, ESO 358-G059,

VCC 2095, VCC 759, VCC 1913 and VCC 1938) showed more complicated

light profiles due to the presence of dust lanes, secondary discs, rings etc. that

could not be fitted by the simple bulge + disc model used here. Three more galax-

ies (IC 1963, ESO 358-G006 and ESO 359-G002) were found by Bedregal et al.

(2006) to have very compact bulges and therefore to be disc dominated from very

small radii, making it impossible to determine a reliable bulge model. For these

systems a disc spectrum was extracted by assuming that the bulge light was neg-

ligible outside of the central masked region, and just fitting a disc component.

A further two galaxies, VCC 1535 and VCC 1250 also show significant Hβ,

[OIII]λ4959 and [OIII]λ5007 emission originating from nuclear discs in their cen-

tral regions, which could not be accounted for in the light profiles with the simple

model used in this study, and the faintest galaxy in the Virgo sample, VCC 1833,

had too low a signal-to-noise ratio to fit both components reliably. The final

recalcitrant galaxy was VCC 1619, which contains two counter-rotating stellar

discs of similar mass and size, making it unsuitable for this type of decomposi-

tion. However, the opposing kinematics of the two discs in this galaxy produce

distinctive cross-shaped absorption features, which can be used to disentangle

their individual stellar populations. A description of this kinematic decomposi-

tion is outlined in Chapter 5.

Having obtained measurements for the effective surface brightness of the

bulge and the central surface brightness of the disc of each galaxy as a function

of wavelength, the total light from the bulge and disc at each wavelength can

be obtained by integration. This integration was carried out using the trapez-

ium rule between a distance of 2” from the centre, the inner limit used in the

light profile decomposition for all galaxies, and the outer limits used in the in-
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dividual fits, which depended on how far the galaxy was positioned from the

edge of the CCD. By plotting these integrated luminosities against wavelength,

one-dimensional spectra can be produced representing purely the integrated light

from the bulge and disc. Examples of the integrated, decomposed bulge and disc

spectra for each galaxy in the sample are plotted in Figures 3.7–3.10. If the

kinematics corrections carried out on the binned spectra prior to decomposition

were applied correctly, then these bulge and disc spectra would be expected to

have matched line-of-sight velocities and velocity dispersions, which would cor-

respond to the line-of-sight velocity at the centre of the galaxy and the maximum

velocity dispersion measured within the galaxy. Therefore, the kinematics of

these spectra were measured using PPXF again, and were found to be consistent.

The values determined in this way are also given in Table 3.1. It is interesting to

note that if the decomposition paramaters are reliable, the majority of galaxies

in this sample appear to contain pseudobulges, with only three galaxies show-

ing Sérsic indices of ≥ 2.5. This trend will be discussed in Section 3.3 with a

comparison to literature results.

The high signal-to-noise ratio of the decomposed spectra obtained using this

integrated light approach is immediately apparent. For example, it can be seen

that in many of the galaxies, both the Hβ line and the magnesium triplet appear

stronger in the bulge than in the disc. Since these features are used as age and

metallicity indicators respectively, this difference already hints that the bulge

contains younger stars with a higher metallicity than the disc in this galaxy. A

more quantitative assessment of this impression will be made in Chapter 4.

3.3 Comparison with Decomposition of Images

The method outlined above is restricted by the use of long-slit spectra of the ma-

jor axis only, which may introduce contamination in the stellar populations anal-

ysis due to the presence of structures such as dust lanes, bars, rings etc. that lie in

the plane of the disc. More sophisticated methods of two-dimensional bulge–disc



Spectroscopic
B

ulge–D
isc

D
ecom

position
58Figure 3.7: The decomposed bulge and disc spectra for the Virgo Cluster galaxies that could be decomposed with the Sérsic bulge + exponential disc model.

Each spectrum represents the total integrated light from the bulge (left) or disc (right) of the galaxy listed in the top left corner of the spectrum.
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59Figure 3.8: The decomposed bulge and disc spectra for the Virgo Cluster galaxies that could be decomposed with the Sérsic bulge + exponential disc model.

Each spectrum represents the total integrated light from the bulge (left) or disc (right) of the galaxy listed in the top left corner of the spectrum.
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60Figure 3.9: The decomposed bulge and disc spectra for the Virgo Cluster galaxies that could be decomposed with the Sérsic bulge + exponential disc model.

Each spectrum represents the total integrated light from the bulge (left) or disc (right) of the galaxy listed in the top left corner of the spectrum.
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model. Each spectrum represents the total integrated light from the bulge (left) or disc (right) of the galaxy listed in the top left corner of the spectrum.
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decomposition applied to images of galaxies have the advantage that they can

work around such features and thus obtain better measurements of the bulge and

disc parameters using the full structural information available. It would therefore

be interesting to see whether our simpler one-dimensional decomposition could

be compromising the extracted spectra.

To this end, images of each Virgo Cluster galaxy were obtained from the

SDSS DR7 (Abazajian et al., 2009), and mosaicked together with the MONTAGE

software1 to produce a large field of view for a two-dimensional photometric

decomposition. The SDSS g-band images were selected because the central

wavelength of this band, 4770 Å, lies closest to the central wavelength of the

spectra, and the corrected (fpC) frames were used as they had already undergone

bias subtraction and flat fielding as part of the frames pipeline (Stoughton et al.,

2002).

The decomposition was carried out using the GALFIT image analysis soft-

ware (Peng et al., 2010, v3.0.4), which is a two-dimensional parametric galaxy

fitting algorithm. In order to compare directly to the spectral decompositions, the

SDSS images were fitted with a Sérsic bulge and exponential disc profile. Each

fit was also convolved with a PSF created for each galaxy by median stacking

images of stars within the mosaicked image. The best fit model of each image

and the residuals produced by GALFIT were checked by eye, and the software

re-run with new initial parameters if the provisional fit was found to be poor.

An example of the decomposition of VCC 698 with GALFIT can be seen in

Fig. 3.11. Figure 3.12 presents the results for the bulge and disc sizes and bulge

Sérsic index as measured from the SDSS images compared with those from the

spectral decomposition, and show a good correlation between the two methods

with some scatter which could be attributable to features within the plane of the

disc as outlined above.

As a further test of the decomposition parameters, the results obtained from

the long-slit spectra were compared with those from the literature. These results

1http://montage.ipac.caltech.edu/
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Figure 3.11: Example of the decomposition of VCC 698 with GALFIT. Along the top,
from left to right are the original g-band SDSS image of the galaxy, the best-fit model
from GALFIT, and the residuals after subtracting the best fit from the original image. In
the residual image, a small dust disc can be seen in the bulge region. The bottom images
represent the individual components that build up the best fit – the PSF (left), Sérsic bulge
(middle) and exponential disc (right).

are plotted in Figure 3.13. To ensure full coverage of the sample of galaxies,

bulge and disc paramteres for the Virgo Cluster galaxies were taken from Kor-

mendy & Bender (2012) and McDonald et al. (2011), both of which used SDSS

g-band images of the galaxies. A comparison was also carried out with Bedre-

gal et al. (2011) for the Fornax Cluster galaxies, in which the decomposition

was carried out using 2MASS KS-band images of the galaxies. It is important

to note that the results from Kormendy & Bender (2012) and McDonald et al.

(2011) give the disc sizes as the disc effective radii, and so the disc scale lengths

obtained from the long-slit spectra used here were converted into effective radii

using Re = 1.678R0.

Comparison of Figs. 3.12 and 3.13 show similar levels of scatter. This scatter

is partly due to the differences in the decomposition techniques used in each
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study. For example, Bedregal et al. (2011) used Ks band images from the

2MASS survey which would be less affected by dust in the plane of the disc

than the spectroscopic data, but would also be less sensitive to bluer light than

the g-band images. Additionally, Kormendy & Bender (2012) applied their de-

composition using double Sérsic profiles which, in four of the five overlapping

galaxies (VCC 698, VCC 944, VCC 1062 and VCC 1720), resulted in very non-

exponential profiles for the disc which might have affected the fit to the bulge as

well.

Another likely contribution to the scatter would be dust in the plane of the

discs, which may affect the decomposition of the spectroscopic light profiles

more than the photometric data. There have been many studies looking at the ef-

fects of dust on the decomposition parameters of bulges and discs. For example,

Gadotti, Baes & Falony (2010) found that the presence of dust can lead to over-

estimations of the disc scale length and underestimations of the bulge effective

radius and Sérsic index. Möllenhoff, Popescu & Tuffs (2006) proposed that the

disc scale length measurements can be off by as much as 50% due to dust. A

more recent study by Pastrav et al. (2013) agreed with Gadotti, Baes & Falony

(2010) that dust causes overestimations in the disc scale length, and identified

that while the effect is strongest in young stellar discs, old stellar discs are still

affected, especially when fitted with exponential profiles. Similarly, they found

that the bulge Sérsic index is also generally underestimated, especially at higher

inclinations. However, Pastrav et al. (2013) also identified that the bulge effec-

tive radii tend to be slightly overestimated in the presence of dust, contradicting

Gadotti, Baes & Falony (2010), and that this effect is stronger for de Vaucouleurs

(classical) bulges than for exponential (pseudo-) bulges. Consequently, since the

spectroscopic data consists of observations along the major axes of galaxies with

inclinations of greater than 40°, it is likely that the parameters obtained from

this data set are more affected by dust than the photometric data from the liter-

ature. Indeed, it can be seen in Figs. 3.12 and 3.13 that the bulge Sérsic indices

and scale lengths do appear to be underestimated in general in the spectroscopic
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Figure 3.12: Comparison of the decomposition parameters as measured from the spectral
decomposition method outlined above (x-axis) with those obtained from decomposing
SDSS images of the same galaxies with GALFIT (y-axis). The top row of plots give the
direct comparisons between the spectroscopic and photometric results, and the diagonal
represents the one-to-one correlation. The bottom row plots the difference between the
spectroscopic and photometric results against the spectroscopic results.

Figure 3.13: As for Fig. 3.12, but comparing the spectroscopic results with those from
the literature. Blue points represent comparison of the Fornax Cluster galaxies with the re-
sults of Bedregal et al. (2011), while green and red points reflect the work of McDonald
et al. (2011) and Kormendy & Bender (2012) respectively for the Virgo Cluster galax-
ies. Note that the right hand plots are for the disc effective radius, where the conversion
Re = 1.678R0 was used for the spectral results.
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results, as predicted by Gadotti, Baes & Falony (2010).

It is interesting to note at this point that Table 3.1 showed only three galax-

ies that would be considered to have classical bulges, i.e. with Sérsic indices of

greater than 2.5. The middle plots of Fig. 3.12 however suggest that the Sérsic

indices derived through spectral decomposition is underestimated compared to

those obtained through photometric decompositions at similar wavelengths. Fig-

ure 3.13 also shows a similar scatter among results from the literature – accord-

ing to Bedregal et al. (2011), McDonald et al. (2011) and Kormendy & Bender

(2012), only 56% (9 out of 16 overlapping measurements) of the total sample of

galaxies used in this study are considered to be pseudobulges. Interestingly, two

of the Virgo cluster galaxies, VCC 698 and VCC 1720, overlapped with both

the McDonald et al. (2011) and the Kormendy & Bender (2012) studies, and

in both cases were classified differently by each. Kormendy & Bender (2012)

classed both galaxies as having classical bulges, with Sérsic indices of 3.7 and

3.13 for VCC 698 and VCC 1720 respectively, while McDonald et al. (2011)

derived Sérsic indices of 1.2 and 2.2 respectively, suggesting that they both con-

tain pseudobulges. As a result, it is unlikely that spectroscopic decomposition

can distinguish between classical and pseudobulges with better accuracy than

the more traditional photometric decomposition using purely long-slit spectra

from the major axis of a galaxy. Consequently, this phenomenon may simply be

the result of dust attenuation leading to underestimated Sérsic indices in these

galaxies.

As a test of the impact of such systematic distortions, the spectra were de-

composed again using fixed values for Re, R0 and n from the decomposition of

the SDSS images and allowing only the amplitudes of the components to vary.

As Fig. 3.14 shows, this test revealed little difference between the bulge and

disc ages and metallicities from the original spectroscopic decomposition results

(see Chapter 4) and those decomposed using the SDSS values, thus confirming

that the spectral decomposition is fairly robust against such potential systematic

errors in the bulge and disc parameters.
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Figure 3.14: Comparison of the calculated ages and metallicities for the bulges and discs
after decomposition using the spectral parameters (x-axis) and those measured from the
SDSS image decompositions (y-axis). Note that the disc age plot does not include those
galaxies where the Hβ line strengths lay below the SSP models in both analyses, and that
both semi-major axes of the spectra were decomposed separately with the spectral and SDSS
parameters.

3.4 Analysis of the Systematic Errors due to Kine-

matics

Another potential issue with the decomposition method is that the kinematic cor-

rections applied before the decomposition could result in losing information on

the bulge and disc star formation histories. For example, by broadening the

spectrum to match the maximum velocity dispersion, information on the line

strengths in the outer regions may be lost, resulting in less reliable measurements

of the line indices, and thus compromising the stellar populations analysis. Sim-

ilarly, the radial velocity corrections were carried out by measuring the overall

offset in the spectrum from the centre of the galaxy, which does not take into
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account the different rotational velocities that the bulge and disc will have.

In order to test the significance of these effects when decomposing the cor-

rected two-dimensional spectrum, a series of simulated two-dimensional spectra

were created and decomposed in the same way as the galaxy spectra. The model

spectra were formed by co-adding spectra of known different stellar populations

and velocity dispersions to represent the bulge and disc, where these co-added

spectra were composite spectra obtained from the Vazdekis et al. (2010) sin-

gle stellar population (SSP) models using the MILES stellar library (Sánchez-

Blázquez et al., 2006). The proportion of bulge and disc light to add at each ra-

dius was determined by creating a model light profile based on typical measure-

ments from the decomposition of the Virgo Cluster S0s, and the disc spectrum

offset in the wavelength direction in order to simulate the rotational velocity of

that component relative to a non-rotating model. As a final step, noise was added

to the model spectra to simulate the uncertainties in the real measurements.

The simulated spectra were then decomposed in the same way as the galaxy

spectra, and the stellar populations of the bulges and discs compared to the input

values. As can be seen in Fig. 3.15 for one such test, the results were found to

be consistent with the original stellar populations that went into the spectrum,

thus indicating that the kinematic corrections described in Section 3.1 are suffi-

cient to blur the individual kinematics of the bulge and disc to allow successful

decomposition, while minimizing the information lost about the strengths of any

features in the data.

3.5 Summary

A new method is presented for analysing S0 galaxy spectra by decomposing their

major-axis light into bulge and disc components on a wavelength-by-wavelength

basis, in order to construct clean, high-quality spectra for each individual com-

ponent. Application of this technique to the full sample of galaxies described in

Tables 2.1 and 2.2 has resulted in the successful decomposition of more than half
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Figure 3.15: A comparison of the stellar populations of the template spectra used to create
a simulated two-dimensional spectrum (red symbols) with the results obtained from decom-
posing this spectrum into bulge and disc components (black symbols, filled and open sym-
bols represent measurements from both semi-major axes). The consisistency in the input
and output results indicate that the kinematics corrections applied before the decomposition
is carried out does not significantly affect the line indices of the decomposed spectra.

of the total sample, producing high-quality spectra representing purely the bulge

and disc light from each galaxy and revealing the kind of data required to imple-

ment this analysis successfully. It has been ascertained that in systems where the

galaxies are well-described by this two component model, where both compo-

nents are sufficiently resolved to allow a reliable structural fit, and where there is

little indication of complicating issues like strong dust lanes or extra components

such as bars, it is quite possible to spectroscopically decompose galaxies in this

way. Fortunately, comparison between the original two-dimensional spectrum

and the model offers a useful a posteriori check on the impact of such additional

factors.

In addition to this technique, a separate decomposition was also developed
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and successfully applied to VCC 1619, the Virgo Cluster galaxy with two counter-

rotating stellar discs, in which the different kinematics of the two discs were used

to separate their stellar populations, as described in Chapter 5.

With such unprecedented high-quality uncontaminated spectra of individual

bulge and disc components of S0s, we are now in a position to use their individual

star-formation histories to determine how the star formation in the progenitor

spirals was quenched, and thus how S0s in nearby clusters formed.



Chapter 4

The Star Formation Histories of

Bulges and Discs

Having established how to decompose a long-slit spectrum of a galaxy into clean

bulge and disc spectra, we can now move onto analysing these spectra to learn

about their individual star-formation histories. The analysis presented in this

chapter uses the Lick/IDS indices measured from the decomposed spectra to

study the stellar populations, both globally over the bulge and disc and any gra-

dients within these structures. The resulting ages and metallicities will address

the questions we have about S0 formation.

4.1 Ages and Metallicities

In the integrated light spectrum of a galaxy, the strength of the various absorption

lines provides information on the underlying stellar population, with hydrogen

lines primarily associated with its age, while magnesium and iron lines constrain

its metallicity. The strengths of these absorption features were measured with

the INDEXF software (Cardiel, 2010), which uses the Lick/IDS index definitions

to calculate a pseudo-continuum over each absorption feature based on the level

of the spectrum in bands on either side, and measures the strength of the feature
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Figure 4.1: An example of the measurement of the Hβ line strength in the decomposed
bulge spectrum of VCC 698. The blue and red boxes represent the two bands within which
the pseudocontinuum is calculated, and the green band gives the wavelength region over
which the strength of the feature is measured relative to the pseudocontinuum (magenta
line)

relative to the pseudo-continuum (Worthey et al., 1994; Worthey & Ottaviani,

1997). By way of illustration, Fig. 4.1 demonstrates the measurement of the

Hβ feature in the decomposed bulge spectrum of VCC 698, where the red and

blue boxes mark the regions over which the pseudo-continuum (magenta line)

is calculated, and the green box marks the area over which the line strength is

calculated.

In order to obtain quantitative estimates of age and metallicity, these line in-

dices are compared to those predicted by single stellar population (SSP) models

that have been created using stellar libraries of the same spectral resolution as

the data. The first step in creating an SSP model is to identify stars in the stel-

lar library with similar ages and metallicities, and to obtain a mean estimate of

their line indices. By repeating this process for stars of different ages and metal-

licities, pairs of derived line indices can be plotted to build up the SSP model.

The model appears as a grid of age and metallicity estimates, with which the
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Figure 4.2: Example of the VCC 698 SSP model, with the line index measurements from
the bulge and disc spectra over-plotted. The blue circle represents the bulge while the red
ellipse corresponds to the disc value. The error bars represent the statistical uncertainties.

measured line indices from the decomposed bulge and disc spectra can be com-

pared, as illustrated in Fig. 4.2. The light from galaxies however is not that of

a single stellar population, instead consisting of multiple populations with dif-

ferent chemical compositions superimposed upon one another. If a recent star

formation event has occurred within a galaxy, the light from the newly-created

stars will temporarily outshine all other stars in that galaxy. As a result, they will

dominate the light until the hottest, brightest stars die off, typically after a few

billion years. Therefore, the age and metallicity of that galaxy as derived from

an SSP model will be luminosity-weighted, and can provide information on how

long ago the most recent star-formation event occurred, and the origin of the gas

that fuelled it.

In this study, the Vazdekis et al. (2010) SSP models were chosen, which use

the MILES stellar library (Sánchez-Blázquez et al., 2006). These models were

preferred over more traditional models, such as Worthey & Ottaviani (1997) and
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Bruzual & Charlot (2003), because the library spectra have a high resolution of

∼ 58.4 km s−1, meaning that the models can be matched to the spectral resolution

of the data, as opposed to degrading the galaxy spectra to the lower resolution

of the models. As a result, this process minimizes the loss of information that

normally occurs when degrading the data to match lower-resolution models. To

obtain the tuned SSP models for each decomposed spectrum, the stellar spectra

were convolved with a Gaussian of the appropriate dispersion via a web-based

tool1 to match the resolution and redshift of the target. In the case of VCC 698,

the velocity dispersion of the galaxy was lower than that of the library spectra,

and so the decomposed spectra of this galaxy were instead broadened to 58.4 km

s−1.

To model the age and metallicity, the Hβ index and combined metallicity

index,

[MgFe]′ =
√

Mgb · (0.72× Fe5270 + 0.28× Fe5335), (4.1)

were selected, where the latter was chosen due to its negligible dependence on

the α-element abundance (González, 1993; Thomas, Maraston & Bender, 2003).

As a further slight complication, if any traces of emission are present in the Hβ

feature, they would reduce the absorption-line strength of this feature and skew

the results to older ages. González (1993) identified that the ratio between the

equivalent widths of the [OIII]λ5007 and Hβ emission features is around 0.7 in

the brightest ellipticals, while a later study by Trager et al. (2000) found the ratio

to vary between 0.33 to 1.25 with a mean value of 0.6. Therefore, to correct for

this contamination, the mean value from Trager et al. (2000) was used here to

estimate the level of emission correction necessary for the Hβ index, using

∆(Hβ) = 0.6× EW[OIII]λ5007, (4.2)

where the flux of the [OIII]λ5007 feature was measured from the residual spectrum

obtained by subtracting the best combinations of stellar templates produced by

PPXF from the original bulge and disc spectra (see for example Fig. 3.2), and
1http://miles.iac.es/
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divided by the level of the continuum in the bulge or disc spectrum at that wave-

length. For this sample, the majority of the corrections were only of the order of

5 per cent of the Hβ index, so any residuals from the approximate nature of this

correction are unlikely to compromise the results significantly.

Having measured and corrected the line strengths, they could then be over-

plotted onto the tuned SSP models for each galaxy. The global, luminosity-

weighted ages and metallicities of the bulge and disc were calculated by inter-

polating across the SSP model grid, and the errors shown reflect the statistical

uncertainties in the line index measurements as estimated from the propagation

of random errors and the effect of uncertainties in the line-of-sight velocities.

Clearly in the example in Fig. 4.2, the bulge appears to contain a younger and

more metal-rich stellar population than the disc.

This analysis was applied to all galaxies that were decomposed with the sim-

ple bulge-plus-disc model outlined in Chapter 3, with each semi-major axis com-

pared independently where possible as a test of the reproducibility of the results.

In general it was found that the line index measurements for the bulge and disc

were consistent when compared for both halves of each galaxy. Hence, a sin-

gle measurement for the properties of the bulge and disc stellar populations was

derived for each such galaxy by taking the mean value of the line indices from

each semi-major axis. The results for the ages and metallicities of the Fornax and

Virgo galaxies are presented in Figs. 4.3 and 4.4, where the bulge results are rep-

resented by circles, the disc results by ellipses, and the lines link bulge and disc

results from the same galaxy. The three isolated disc points in Fig. 4.3 are the

three galaxies in the Fornax Cluster sample that contain very compact bulges and

were thus fitted with an exponential disc model only, as described in Section 3.5.

Where the line index measurements lay off the SSP grid, the corresponding stel-

lar populations were estimated by extrapolation, except where the Hβ line index

fell below the SSP model, in which case that component was assigned a nominal

age of 18 billion years. It is important to note that currently different SSP models

give different absolute results due to the remaining uncertainties in stellar astro-
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Figure 4.3: Estimates of the relative ages and metallicities of the bulges (circles) and discs
(ellipses) of the Fornax Cluster S0s. The solid lines link bulge and disc stellar populations
from the same galaxy, and the horizontal dotted line links the lower edge of the SSP models
used. The stellar populations measured from the three galaxies modelled as pure discs are
also shown. The typical errors for stellar populations of 3 Gyrs and 12 Gyrs are shown
on the right of the plot. The larger uncertainy for the 12 Gyr stellar population reflects the
increased difficulty of constraining the age of older stellar populations compared to younger
ones using the Hβ index.

physics, and therefore the results shown in Figs. 4.3 and 4.4 should be considered

as constraints on the relative, global, light-weighted ages and metallicities of the

different stellar populations rather than their absolute values. The mean errors

for stellar populations of 3 Gyrs and 12 Gyrs are also given, having been de-

rived from a combination of the difference between the stellar populations from

both semi-major axes, the statistical uncertainties seen in Fig. 4.2, and interpola-

tion errors when interpreting the SSP models. These two ages were selected as

the large differences in their age uncertainies clearly demonstrates the increased

difficulty in constraining the age of older stellar populations.

Despite the limitations imposed due to the small number of Fornax Cluster

galaxies that could be decomposed into individual bulge and disc components,

Figs. 4.3 and 4.4 clearly show that the bulges contain systematically younger and
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Figure 4.4: Estimates of the relative ages and metallicities of the bulges (circles) and discs
(ellipses) of the Virgo Cluster S0s. The solid lines link bulge and disc stellar populations
from the same galaxy, and the horizontal dotted line links the lower edge of the SSP models
used. The typical errors for stellar populations of 3 Gyrs and 12 Gyrs are shown on the right
of the plot. The larger uncertainty for the 12 Gyr stellar population reflects the increased
difficulty of constraining the age of older stellar populations compared to younger ones
using the Hβ index.

more metal rich stellar populations than their associated discs in both clusters,

implying that they hosted more recent formationactivity than the discs. Such

recent central star formationactivity after the disc was quenched would explain

why S0s have been found to host positive age and negative metallicity gradients

throughout their entire structure, while the precursor spirals show old bulges

surrounded by a young, star-forming disc (Fisher, Franx & Illingworth, 1996;

Bell & de Jong, 2000; Prochaska Chamberlain et al., 2011; Bedregal et al., 2011).

It would similarly explain the enhanced luminosity of the bulges of S0s after their

transformation from spirals (Christlein & Zabludoff, 2004).

It is interesting to note that the ages of the discs in the Fornax Cluster ap-

pear to be younger than those in the Virgo Cluster. This trend may simply be

an effect due the smaller sample of galaxies from the Fornax Cluster, but could
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also reflect the different evolutionary histories of these two clusters. Virgo is

a larger and richer cluster while Fornax is more compact and denser (Abell,

Corwin & Olowin, 1989; Girardi et al., 1995; Ferguson, 1989; Jerjen, 2003).

Similarly, Virgo clearly shows two substructures within the cluster and displays

non-virialized motions (Huchra, 1985; Binggeli, Tammann & Sandage, 1987;

Binggeli, Popescu & Tammann, 1993), while Fornax is virialized (Blakeslee

et al., 2009). Clearly these two clusters have undergone different evolutionary

processes, and so it is unsurprising that this is reflected in the star-formation

histories of their galaxies. The differences in ages of the discs could simply rep-

resent different gas stripping timescales within the two clusters. Since Virgo is

less dense, it is possible that the gas in the spiral discs in this cluster was stripped

out over a longer timescale than in the Fornax Cluster. As a result, the disc stel-

lar popualtions in the Virgo galaxies would consist of a composite of stars over a

larger age range than Fornax, skewing the global age to older values. Similarly,

in the denser environment of the Fornax Cluster, it is possible that the gas strip-

ping mechanism wasn’t so gentle, and triggered a small amount of star formation

within the disc. The addition of a small amount of younger stars, or ‘frosting’,

to an underlying old stellar population would contribute to a younger overall age

(Trager et al., 2000).

4.2 Colour Gradients

As well as estimating the global ages and metallicities of the bulges and discs,

this spectral decomposition method also provides an approximate measure of

any gradients in these properties within the bulges and discs. Specifically, if

there were a colour gradient in a component, such that, say, red light was more

centrally concentrated than blue light, then the characteristic size-scale of the

component would be smaller in red light than in blue light.

Due to the combination of the residual scattered light retained in the Virgo

Cluster data (see Section 2.2.6) and the degeneracy experienced when the fits
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Figure 4.5: Model bulge effective radius and disc scale length plotted against wavelength
for NGC1375. A strong negative gradient can be seen in the disc scale-length, correspond-
ing to a negative colour gradient across the disc, while the gradient in the bulge is much
weaker.

contained too many free parameters, the decomposition using the Sérsic bulge

and exponential disc model was carried out with fixed values for Re, R0 and

n. However, the pilot study for this technique fitted the Fornax Cluster galaxies

with a de Vaucouleurs bulge and an exponential disc, with free parameters forRe

and R0, thus making it possible to study colour gradients within the decomposed

spectra of these galaxies. Two galaxies, NGC 1381 and NGC 1375, were suc-

cessfully decomposed into bulge and disc components with this model, while a

further three galaxies with compact bulges were fitted with exponential profiles

to extract their disc spectra. An example of how the scale-lengths of each com-

ponent vary as a function of wavelength in NGC 1375 are given in Fig. 4.5. Both

cases show a clear negative gradient, indicating that the centre of each compo-

nent is redder than its outer parts, although the effect is clearly stronger in the

disc than the bulge.

In order to quantify this effect in terms of more conventional colour gradi-

ents, the bulge effective radius and the disc scale length can be calculated at the
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the central wavelengths of the B and V band filters from the Johnson-Cousins

system [4450 Å and 5510 Å respectively (Bessell, 1990)]. For the bulge, the

ratio of light in the B-band to that in the V -band is given by
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B − V = const− 2.5 log10

(
IeB

IeV

)
+ 19.18

(
1

R
1/4
eB

− 1

R
1/4
eV

)
R1/4 log10 e. (4.4)

Differentiating with respect to R1/4, we find
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R
1/4
eB

− 1

R
1/4
eV

)
. (4.5)

This equation can then be integrated out from the centre to any radius, to obtain

a change in colour,

(B − V )R − (B − V )0 = 8.3

(
1

R
1/4
eB

− 1

R
1/4
eV

)
R1/4. (4.6)

As a characteristic radius, we set R = ReV in Equation (4.6), and then divide by

logReV to create an appropriate gradient quantity.

A set of analogous equations can be used in order to define a gradient in the

disc:
IB

IV

=

(
I0B

I0V

)
exp

[
−
(

1

R0B

− 1

R0V

)
R

]
; (4.7)

B − V = const− 2.5 log10

(
I0B

I0V

)
+ 2.5

(
1

R0B

− 1

R0V

)
R log10 e; (4.8)

d(B − V )

d(R)
= 1.09

(
1

R0B

− 1

R0V

)
; (4.9)
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Figure 4.6: The colour gradients in the bulges (circles) and discs (rectangles) of each galaxy
against the galaxy’s absolute B-band magnitude.

(B − V )R − (B − V )0 = 1.09

(
1

R0B

− 1

R0V

)
R. (4.10)

The colour gradients obtained from these formulae using the observed vari-

ation in scale-length with wavelength for each component of each galaxy are

shown in Fig. 4.6. The uncertainties in these measurements reflect the full

range of gradients that could be measured from the scale length plots, such as

in Fig. 4.5. The gradients were measured again twice, the first time taking the

B-band value as the value from the best fit line plus the 1σ uncertainty due to

the scatter, and the V -band value as the value from the best fit line minus the

same uncertainty. The second measurement simply reversed where the uncer-

tainties were added and subtracted. The final uncertainties for the gradients plot-

ted in Fig. 4.6 consequenctly reflect the range of gradients obtained through this

method.

In all cases, the colour gradients for the discs are negative, indicating that

the centres are redder than the outskirts. The multiplication factor of 8.3 for the

bulges in Equation 4.6 compared to 1.09 for the discs in Equation 4.10 appears at

first to give the bulges steeper gradients. However, the large scatter in the bulge
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plots relative to their slope loses all information on whether the bulges contain

positive or negative gradients, which is reflected in in the large errors on the

bulge points in Fig. 4.6. There also appears to be a trend that the gradients are

stronger in fainter galaxies. The range of values obtained are directly compa-

rable to those found in previous studies of early-type galaxies, with La Barbera

& de Carvalho (2009) reporting a typical gradient of ∆g−r
∆ logR

∼ −0.071± 0.003,

Roche, Bernardi & Hyde (2010) finding a range of −0.8 < ∆g−r
∆ logR

< 0.0, and

Suh et al. (2010) reporting values of−0.4 < ∆g−r
∆ logR

< 0.0. den Brok et al. (2011)

similarly detected gradients within the range −0.2 < ∆g−i
∆ logR

< 0.0 for a sample

of early-type galaxies, but found that S0s show weaker gradients than ellipticals,

suggesting that the underlying mechanisms may differ.

Attempts have also been made to ascertain the causes of such gradients. For

example, La Barbera & de Carvalho (2009) concluded that the main contributors

to the colour gradients were the radial variations in metallicity over the galaxies,

and that, while a small positive age gradient was also present, its contribution to

the colour gradient was negligible in comparison. The spectral decomposition

method presented here provides us with a new mechanism for seeing directly in

the individual components whether these gradients are associated with changes

in age or metallicity, and the next section will describe how this information can

be exploited.

4.3 Line Index Gradients

If there were a gradient in the strength of a particular absorption line within a sin-

gle component, the luminosity of the galaxy at that wavelength would drop with

radius at a faster or slower rate than the light from other parts of the spectrum. As

a result, one would expect that the scale-length as determined within the absorp-

tion feature would differ from that of the surrounding continuum, which, in turn,

would show up in the two-dimensional spectrum of that component generated

from the best-fit model, like those shown in Fig. 3.5. Therefore, these model
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Figure 4.7: The line gradients for the bulge and disc in each galaxy, calculated using
∆Index∗/∆ log10(R).

spectra were analysed by calculating the Lick indices from them as a function

of radius. It is important to note at this point that normally when comparing di-

rect measurements of line indices measured at different radii within a galaxy, the

spectra must be broadened to the same resolution. However, since the velocity

dispersion was equalised throughout the galaxy before the decomposition pro-

cess, the decomposed spectra for each galaxy used here should all have the same

spectral resolution already, and so no correction is necessary.

Having measured the Lick indices throughout each galaxy, a logarithmic gra-

dient was then generated for each index by calculating the magnitude version of

the indices,

Index∗ = −2.5 log10

(
1− Index

∆λ

)
, (4.11)

and measuring its variation with ∆ log10(R). The resulting gradients for the

bulge and disc of each galaxy are presented in Fig. 4.7.

Any signal in this plot would arise from a variation in the component’s scale-
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Figure 4.8: The decomposed disc spectrum for ESO 359-G002 (top) and a plot of its disc
scale length against wavelength (bottom). A feature is present at the wavelength of the Hβ
line on the scale-length plot, implying that there is a negative gradient in its line strength
with radius from the centre of the galaxy. The three bands used for measuring the Lick index
strength over this feature have also been plotted, where the colours correspond to those in
Fig. 4.1.

length at the wavelength of the index. For example, if a positive absorption

line index gradient was present over the disc of a galaxy, the strength of that

feature would increase with radius and the light profile would appear steeper at

the centre of that feature than in the continuum. As a result, the scale length of

the disc at that wavelength would be shorter than in other parts of the spectrum,

and so a dip would appear in the scale length plots, such as those in Fig. 4.5.

Conversely, a negative gradient in an absorption feature would result in a peak

at that wavelength in the scale-length plot. Therefore, the strength of any such

features can be used to test the significance of any line index gradients measured

over the bulge and disc.

To calculate the errors on the line index gradients shown in Fig. 4.7, the

strength of the features present at that wavelength on the corresponding scale

length plots were measured by treating those plots as spectra and extracting the

Lick indices, as shown in Fig. 4.8 for the Hβ feature: if there were a signal,

then the value of scale-length in the central band should differ significantly from
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Figure 4.9: The Hβ feature in the reconstructed spectra of the disc of ESO 359-G002 at the
radii of the inner seeing limit (black), and the disc scale length (red).

the value in the pseudo-continuum, leading to a non-zero index. To calculate

the significance of any such measurement, and hence the appropriate size of the

error bars in Fig. 4.7, this procedure was repeated at random wavelengths over

the same scale length plot to obtain a measure of the noise over the continuum

regions, and the strength of the feature at the true wavelength was divided by

this noise. These results were found to be consistent with those of Bedregal

et al. (2011), in which the line strength gradients were measured over the whole

galaxy.

As can be seen from Fig. 4.7, the Hβ index of ESO 359-G002 shows a neg-

ative gradient detected with a > 4σ significance, which would suggest the pres-

ence of an age variation across its disc. The origins of this detection can be seen

in Fig. 4.8, where the scale length measured at the wavelength of Hβ differs

from that in the surrounding continuum, just as described above. The effect of

this variation on the reconstructed spectra is illustrated in Fig. 4.9, which shows

that the derived Hβ feature at a radius of 2 arcsec (the inner seeing limit of the

galaxy) is deeper than at 8 arcsec (the disc scale length). The SSP model for this

galaxy was used to translate the Hβ line index gradient into an approximate age
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gradient of ∆ log10(age)/∆ log10(R) ∼ 1.1 ± 0.2. This corresponds to ages of

1.86 ± 0.14 Gyrs and 8.77 ± 0.16 Gyrs at the respective inner and outer radii

shown in Fig. 4.9. Note, however, that such an age gradient is in the wrong sense

to explain the negative colour gradient seen in this system.

In trying to explain the observed colour gradients, the situation is no more

helpful in all the other galaxies. As is evident from Fig. 4.7, none of the other

components in any of these systems display significant gradients in any of their

indices. These limits can be translated into limits on the variation in the prop-

erties of the stellar population between the centre and each component’s charac-

teristic radius (Re for bulges and R0 for discs) as above. Typically, this analysis

yields an upper limit of a ∼ 30% change in age and metallicity between these

locations. This corresponds to a colour gradient of
∣∣∆(B−V )

∆ logR

∣∣ ≈ 0.02 using the

models of Bruzual & Charlot (2003), which cannot explain the sizeable colour

gradients found in Section 4.2. It would therefore appear that some other factor,

most likely dust reddening that varies with radius, must be the underlying cause

of the colour gradients in these galaxies.

4.4 α-enhancement

A further constraint on the stellar populations of the bulges and discs is provided

by the measurement of any enhancement in their α-element abundances rela-

tive to iron, as this quantity provides information about the timescales for star

formation in the separate components. Nucleosynthesis models predict that a

significant proportion of α-elements, such as oxygen and magnesium, present in

the ISM are ejected from Type II supernovae (SNe), whereas Type Ia SNe tend

to enrich the ISM with Fe (Thomas, Maraston & Bender, 2003). Since Type II

SNe start to occur shortly after star formation has begun while Type Ia SNe need

longer for their progenitor stars to evolve, the α-element abundance tells us about

the timescale over which star formation occurred in a stellar population.

The ratio of the Lick Mgb index to the mean of the Lick Fe5270 and Fe5335



The Star Formation Histories of Bulges and Discs 87

indices, Mgb/〈Fe〉, was selected as a robust proxy of the α-element abundance

(Bedregal et al., 2008). Short star-formation events are characterized by larger-

values of Mgb/〈Fe〉, with the ratio decreasing for star formation timescales of

longer than ∼ 1 Gyr due to the increasing Fe enrichment on such timescales.

Due to the small number of Fornax Cluster galaxies that could be success-

fully decomposed into bulge and disc components, it was decided to analyse the

α-enhancement of the Virgo Cluster galaxies only in order to build up statisti-

cally representative results for one cluster without the added confusion of results

from a second cluster with a potentially different evolutionary history and data

systematics.

Since this analysis directly compares measurements of the line indices for

all galaxies, the first step was to broaden all the decomposed bulge and disc

spectra to match the resolution of VCC 2000, the galaxy with the highest velocity

dispersion in this sample. Note that this step is not necessary when studying

the stellar populations of each galaxy independently, as in Section 4.1, as the

ages and metallicities for each galaxy were obtained directly from SSP models

tuned to the resolution of the data. Figure 4.10 presents the Mgb/〈Fe〉 ratio for

each decomposed spectrum plotted against the age of the component. It can

be seen that the bulge spectra show increasing Mgb/〈Fe〉 ratios with increasing

ages; a Spearman rank test on these data shows a correlation coefficient of 0.64,

with a less than 2% chance that this correlation could happen by chance. This

enhanced Fe enrichment in the younger bulges suggests that the enriched gas that

fed the most recent star-formation events in these bulges had been contaminated

by exposure to a longer period of star formation than in the older bulges. The disc

spectra, on the other hand, show no obvious correlations between their Mgb/〈Fe〉

ratios and their ages. A Spearman rank test carried out on this data resulted in

a correlation coefficient of 0.25 and a probability of 50% that such a correlation

could be produced randomly. Since many of the discs were found to be old

(see Fig. 4.4), their light is not dominated by the latest star-formation event, but

instead represents the sum of all the stellar populations within the entire disc, so
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Figure 4.10: The bulge (top) and disc (bottom) Mgb/〈Fe〉 ratios plotted against their ages.
Note that in the bottom plot, galaxies with disc ages greater than the upper limit of the SSP
models have been omitted.

any similar correlation might be expected to be completely washed out.

Interestingly, a comparison of the bulge and disc Mgb/〈Fe〉 ratios, shown in

Fig. 4.11, does reveal a correlation, with a correlation coefficient of 0.69 and a

greater than 99 percent significance. This correlation suggests that the bulge and

disc star formation histories are connected, but the offset from the line of equality

shows that bulges are in general more Fe enriched than the discs of the same

galaxy. This result is consistent with a scenario where the gas that produced the

final star-formation event in the bulge was pre-enriched by earlier star formation

within the disc. Further evidence for this scenario appears in Fig. 4.12, which

clearly links the age of the bulges, and thus the time since the final star formation

event there, to the Mgb/〈Fe〉 ratios of their surrounding discs, such that galaxies

with older bulges had the star formation in their discs truncated longer ago and

after a shorter timescale.
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Figure 4.11: The Mgb/〈Fe〉 ratios for the bulge and disc of each galaxy. The size of
the symbol represents the luminosity of the galaxy in the K-band, where larger symbols
indicate brighter galaxies. The mean error for the data points is given in the bottom right.
The diagonal line represents the line of equality for the bulge and disc measurements for
comparison.

Figure 4.12: The relationship between the disc Mgb/〈Fe〉 relative abundances and the age
of the corresponding bulges, which acts as an indicator of when the final episode of star
formation occurred in that galaxy.
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4.5 Conclusion

By decomposing Virgo and Fornax Cluster S0 galaxies into clean disc and bulge

spectra, we have been able to uncover a number of new facts about these indi-

vidual components as well as the connections between them. From these data, a

coherent quantitative picture of each S0’s star-formation history is beginning to

emerge, which is summarized in cartoon form in Fig. 4.13. The galaxy starts out

as a normal spiral, with an old bulge surrounded by young, star-forming disc.

As the spiral galaxy evolves, the star formation rate of the disc typically de-

creases slowly over time (Hopkins, 2004, 2007; Thomas et al., 2005; Lee et al.,

2007), leading to an accumulation of multiple stellar populations within this

structure. At some traumatic point in the galaxy’s life, the gas in the disc is

stripped, thus quenching the star formation there, and in the process some of the

gas gets dumped in the centre of the galaxy leading to a final burst of star for-

mation in the bulge. This central star-formation activity after significant quench-

ing of the disc would increase the bulge-to-total light ratio of the galaxy, and

hence explain the enhancement of the bulge luminosity during the transforma-

tion from spirals to S0s described in Christlein & Zabludoff (2004). The galaxy

then fades to the S0 that we see today with a predominantly younger and more

metal-rich bulge surrounded by an older and more metal poor disc, as so clearly

found in Figs. 4.3 and 4.4. Although strong indications of this phenomenon

have been found previously through radial variations in age and metallicity in S0

galaxies by studies such as Bedregal et al. (2011), Fisher, Franx & Illingworth

(1996), Bell & de Jong (2000), Kuntschner (2000), MacArthur et al. (2004) and

Prochaska Chamberlain et al. (2011), this study confirms that the phenomenon

can be traced to the superposition of distinct bulge and disc components rather

than more general gradients within those components. Furthermore, the analysis

of the Fornax Cluster galaxies found that while negative colour gradients existed

within each component, no significant line index gradients were found that could

explain the colour gradient in terms of radial variations in the age or metallicity.
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Figure 4.13: A simplified star formation history for the bulge and disc of an S0 galaxy,
showing the relationship between the age of the bulge stellar populations, tbulge, and the star
formation timescale of the disc, τSF(disc). The disc (dot-dash line) experiences continuous
star formation, the rate of which declines gradually with time, until the quenching process
begins, which finishes soon after when a central star-formation event uses up the remaining
disc gas to produce the predominantly-young bulge of the final S0 (solid line).

It therefore seems likely that the red centres of all components must be attributed

to centrally-concentrated dust in these systems.

A subtler probe of the star formation histories of bulges and discs is provided

by their α-element abundances. As we saw in Fig. 4.10, there is a significant

correlation between Mgb/〈Fe〉 and age in the bulges of these galaxies, but not

in their discs, which can both be understood in the context of Fig. 4.13. The

emission from the bulge is dominated by the younger stars from the final burst of

star formation, so the value of Mgb/〈Fe〉 here is largely dictated by the gas from

which this burst formed, which in this picture originated in the disc and was

dumped into the bulge when the galaxy transformed. Thus, it reflects the proper-

ties of the gas in the disc at the end of its star-forming life. In general, the longer

ago this transformation occurred (and hence the older the age inferred for the

bulge), the shorter the star-forming lifetime of the disc because τSF(disc) + tbulge

in Fig. 4.13 reflect the total age of the galaxy. If τSF(disc) is relatively short (so
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tbulge is relatively long), the gas left at the end of the disc’s star-forming lifetime

will not be so polluted by Fe from type Ia SNe, so Mgb/〈Fe〉 will be relatively

large, explaining the correlation seen. In the disc, on the other hand, the observed

value of Mgb/〈Fe〉 reflects the more extended and potentially complicated com-

plete star-formation history of this component, as its light will not be dominated

by a single star-formation event, and the derived luminosity-weighted age will

be similarly complex, so the absence of any correlation in this component is not

a surprise.

This connection between the polluted gas from the disc and the visible last

burst of star formation in the bulge is underlined by Fig, 4.11, which shows the

general trend that the Mgb/〈Fe〉 in the two components are correlated, but that

the disc is less Fe-enriched than the bulge. This difference arises because the

disc’s value for Mgb/〈Fe〉 reflects its entire star-formation history, some of which

will have occurred at early times before the Type Ia SNe started producing large

quantities of Fe, whereas the bulge luminosity is dominated by stars produced

from the most polluted disc gas, which will be significantly more Fe enriched.

There is also an interesting hint in this figure that the most massive galaxies seem

to show the least difference between Mgb/〈Fe〉 for discs and bulges, which would

suggest an earlier transformation leading to less difference in the degree of Fe

enrichment, as perhaps a new example of the “downsizing” phenomenon.

As a final illustration of the physics that underlies Fig. 4.13, Fig. 4.12 shows

the clear correlation between Mgb/〈Fe〉 for the disc component and the age of

the bulge. Again, this fits with the finite time available for galaxy evolution,

such that if the transformation occurs later then the disc will have had time to be-

come strongly polluted by Fe, reducing Mgb/〈Fe〉, and the bulge will have under-

gone its final burst of star formation relatively recently, decreasing its luminosity-

weighted measured age.

The scenario presented in Fig. 4.13 suggests that the age differences between

the bulges and discs should only be around a few billion years. While this differ-

ence can be seen in the Fornax Cluster S0s in Fig. 4.3, the Virgo Cluster shows
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larger age differences for many of the galaxies. Since the age of the disc is related

to the time since the galaxy was accreted into the cluster, the older discs in the

Virgo Cluster compared to the Fornax Cluster could simply reflect the different

evolutionary histories of the two clusters. As discussed in Section 4.1, Fornax

is a dense, compact and virialized cluster while Virgo is larger and looser and

displays two substructures. As a result, it is likely that galaxies falling into these

two clusters would have experienced slightly different gas stripping scenarios.

Additionally, the number of galaxies in the sample from each cluster is very dif-

ferent. It can be seen in Figs. 4.3 and 4.4 that some of the Virgo galaxies do

show similar age differences between their bulges and discs as those seen in the

Fornax Cluster. Consequently, it is possible that there are galaxies in the Fornax

Cluster that show similar trends to those in the Virgo Cluster that have simply not

been included in this study. However, it is important to remember that the results

presented here have been derived from only two galaxy clusters. Therefore, to

better understand the transformation scenario between spirals and S0s, we need

to study a larger sample of galaxies from a wider range of clusters.

As this discussion indicates, there is now a wealth of information that can be

gleaned by decomposing spectra of S0 galaxies into their bulge and disc contri-

butions, and studying the detailed stellar population properties of these individual

components. We are at the point of being able not only to put together the general

picture of the quenching of disc star formation accompanied by a final episode of

bulge star formation shown in Fig. 4.13, but also looking at the variations from

galaxy to galaxy to tie down the different histories that different galaxies have

witnessed.



Chapter 5

Disentangling the Stellar

Populations of NGC 4550

5.1 Introduction

The presence of counter-rotating populations of stars in S0 galaxies is a well-

known phenomenon, although reasonably uncommon: while almost a quarter

of S0 galaxies contain gaseous components that counter-rotate relative to their

stars, less than 10% were found to contain distinct counter-rotating stellar disc

components (Bertola, Buson & Zeilinger, 1992; Kuijken, Fisher & Merrifield,

1996; Emsellem et al., 2011). However, such systems do exist, and so any theory

of S0 formation must provide a channel for their creation.

Of these counter-rotating systems, the one that presents the greatest challenge

to models of galaxy formation is VCC 1619, or NGC 4550 as it is better known.

Rubin, Graham & Kenney (1992) obtained long-slit spectra along the major axis

of this normal-looking S0 galaxy (see Fig. 2.1), and found that the absorption-

lines split neatly into two, indicating two extended counter-rotating discs. Sub-

sequent analysis has confirmed that these discs are very similar, with comparable

sizes, masses, kinematics and line strengths (Rix et al., 1992). Integral-field ob-

servations, in combination with dynamical models, confirmed the picture, but
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revealed some breaking of the symmetry, with one disc being thicker than the

other (Cappellari et al., 2007) and also containing an emission-line component

(Sarzi et al., 2006).

The reason that it is difficult to come up with a scenario for constructing

such a system is that the obvious solution of merging two normal discs with op-

posite angular momenta does not generally work. In particular, it has long been

known that most mergers between two roughly equally-massive discs are likely

to be very destructive, heating the system enormously and not resulting in the re-

quired disc-like final morphology (Toomre, 1977a). However, this problem may

not be insurmountable: Puerari & Pfenniger (2001) show that a major merger

between disc galaxies of comparable mass could produce the kinematics seen

in NGC 4550, as long as the initial conditions are just right, with the precursor

systems co-planar on a carefully-chosen parabolic orbit. A similar result was

found by Crocker et al. (2009), who also tried to reproduce the gas kinematics

of the galaxy. Clearly, such an arrangement is rather contrived, but not impossi-

ble if systems like NGC 4550 are truly rare. The ATLAS3D survey (Cappellari

et al., 2011) obtained integral field stellar kinematics for a volume-limited sam-

ple of 260 early-type galaxies. Out of these they found 11 cases (see fig. C5

of Krajnović et al. 2011) showing evidence for major counter-rotating stellar

discs. However in only about half of these (about 2% of the sample) do the two

counter-rotating discs seem to have comparable mass, as in NGC 4550.

An alternative scenario that avoids the destructive force of a major merger

is the possibility that counter-rotating gas could be accreted rather slowly by a

normal disc galaxy, and subsequently form stars in a new counter-rotating disc.

This possibility was explored through simulations by Thakar & Ryden (1996,

1998), who found that the counter-rotating stellar disc formed in this way tended

to be rather small. They did find that a series of mergers with gas-rich dwarf

galaxies could produce a counter-rotating disc of comparable mass and size to

the original, but once again the initial conditions needed to be very carefully

tuned to produce such matched discs.
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The similarity of the two discs in NGC 4550 led Evans & Collett (1994)

to suggest a third possibility that could much more naturally produce identical

counter-rotating discs. In this “separatrix-crossing” scenario, a single initially-

triaxial elliptical galaxy evolves slowly with time into an axisymmetric mor-

phology. At that point, the family of box orbits that existed in the triaxial system

would disappear, and stars would switch onto tube orbits instead. Since the ini-

tial box orbit had no preferred sense of rotation, stars would end up randomly

on tube orbits rotating in either sense around the centre of the now-axisymmetric

system, thus automatically generating a pair of identical counter-rotating stellar

populations.

To date, it has not been clear which, if any, of these scenarios might be re-

sponsible for the formation of NGC 4550. However, they do predict some dis-

tinct differences in the resulting counter-rotating discs, particularly in the prop-

erties of their stellar populations, which we might be able to use to distinguish

between them. While the separatrix-crossing scenario will produce truly iden-

tical discs, a counter-rotating stellar disc formed by gas accretion must have a

younger population than the pre-existing disc, while the counter-rotating discs in

a system formed by a merger will reflect the stellar populations of the progeni-

tor galaxies. In this chapter, I will present a novel technique using the different

kinematics of the two discs to separate their stellar populations, and thus deter-

mine whether this bizarre galaxy formed through internal processes or through

interactions with another galaxy.

5.2 Kinematic Decomposition

In order to study the stellar populations of the two component counter-rotating

discs, the first step is to separate their spectra. Fortunately, outside the central

few arcseconds, the line-of-sight velocities of the two components are different

enough to split the corresponding absorption lines quite cleanly (see Fig. 5.1 for

an example of the characteristic cross-shaped profile for the absorption features)
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Figure 5.1: A section of the two-dimensional spectrum of NGC 4550, centred on the
Mg triplet (left), and a closer look at the effect on the shape of the spectral features due
to the counter-rotating discs, taken from the outer parts of the disc where the kinematics are
well separated (right).

– indeed, it was this splitting that enabled Rubin, Graham & Kenney (1992) to

identify the counter-rotating discs in the first place. Therefore, we can fit a two-

component spectral model to the spectra in this region, where each component

has a different mean velocity and velocity dispersion, reasonably unambiguously.

At the same time, we also have to allow for the unknown stellar population prop-

erties of the two components. In order to fit all these factors simultaneously,

the PPXF code was modified in a similar way to Coccato et al. (2011), such that

instead of combining a series of template stars to produce a single model spec-

trum to fit the galaxy, it derives two model spectra representing the two stellar

population components, which, when added together, would best fit the galaxy

spectrum. To achieve the best fit, the component spectra were multiplied by low-

order Legendre polynomials to model out any mismatch in the flux calibration

of the continuum, and convolved with line-of-sight velocity distributions of dif-

ferent shapes, mean velocities and dispersions, to best represent the kinematics

of each component.

One further complication that is clear from the raw spectra is that there is a
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third, gaseous, component rotating in one direction, as is evident from the strong

[OIII]λ5007 emission line. We can deal with this contaminant by simply masking

it from the spectral range used in the fitting. However, there is presumably also

emission from hydrogen gas, which usually accompanies the [OIII]λ5007 line in

galaxies. Such emission could prove disastrous for the analysis of this galaxy

as it would partially fill in the hydrogen absorption lines of one of the stellar

components, completely altering the derived line strengths of these important

lines, and thus the inferred properties of the stellar population. The idea of kine-

matic decomposition of the stellar populations is not yet lost completely, as it

was also found that the observations for this galaxy, unlike some others in the

sample (see Section 2.2), were minimally affected by contamination from scat-

tered light. As a result, a wider spectral range of 4250 < λ < 5400 Å could

be used for the spectral fitting, which encompasses the wavelength of the Hγ

absorption feature. Therefore, a third component was fitted, consisting simply of

two Gaussians representing emission lines at the wavelengths of the Hβ and Hγ

features, with a FWHM equal to the spectral resolution of the galaxy spectrum

and the ratio of their intensities given by the Balmer decrement from Reynolds

et al. (1997). By convolving this component with its own velocity distribution

in the fit process, one can also obtain the kinematics of the gas component. For-

tunately, due to the long wavelength range over which the spectra are fit, and

because the ratio of hydrogen emission line strengths in the gaseous component

is different from the ratio of the corresponding absorption lines in the underlying

stellar component, there is no degeneracy in the resulting fit, so both components

can be independently extracted. In principle, differential reddening could intro-

duce a degeneracy problem, but because this galaxy is an S0 with little evidence

for large amounts of dust, the effect is not thought to be significant.

A typical result of this fitting process is illustrated in Figure 5.2. As well as

confirming the generally very good job that this fitting process does in reproduc-

ing the full spectrum with the three components, this figure also underlines the

importance of including the gas component: from the raw spectrum, one might
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Figure 5.2: The spectrum of one side of the outer disc of NGC 4550, showing both the full
spectral range and a zoom in on the Hβ line. The data are shown in black, and the green
line shows the best-fit model. The individual components that comprise this model and the
residuals of the fit are also shown.

conclude that the Hβ absorption line is somewhat stronger in the redshifted (pri-

mary disc) component, but the full fitting process reveals that this conclusion is

driven by the filling in of the absorption feature in the blueshifted component by

the emission line, and actually it is this secondary-disc component that has the

stronger absorption line.

This fitting process was repeated using the spectral data from all along the

major axis, co-added spatially to maintain a signal-to-noise ratio of at least 20

per pixel as described in Section 3.1. Only the central ∼ 5 arcsec could not be

decomposed in this way, due to a combination of the overlapping kinematics of

the two discs and the increasing contribution to the light from the bulge. The

mean velocities and velocity dispersions derived for the three components over
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Figure 5.3: Measurements of the radial velocity and velocity dispersion for each kinematic
component fitted to the spectra of NGC 4550 as a function of radial position along the
major axis (with north and south directions annotated). Typical characteristic error bars are
shown on the right of each plot. The horizontal lines show the results of fitting to spectra
co-added over the entire flat part of the rotation curve (marked by vertical dotted lines).
The kinematics of the [OIII]λ5007 line, derived by direct fitting to the spectral line, are also
shown.

the galaxy are shown in Fig. 5.3. Errors on each point were estimated by Monte

Carlo simulations of model galaxies constructed using the same components as

in the fit; for clarity, we do not plot all points with error bars, but show the

mean resulting error on the right of the plot. We also tested the sensitivity of the

kinematic results to the spectral templates adopted by repeating the analysis us-

ing a sub-sample of the ELODIE spectral templates (Prugniel & Soubiran, 2001)

that covered the full range of spectral classes with a spectral resolution of 0.5 Å

(FWHM), but found no significant systematic differences.

By co-adding the data from the flat part of the rotation curve, as marked in

Fig. 5.3, we found a primary disc with a rotation velocity of 143 ± 7 km s−1

and a velocity dispersion of 36 ± 7 km s−1, and a secondary disc with a lower

rotation velocity of −118 ± 8 km s−1 and a higher velocity dispersion of 68 ±

10 km s−1. These results are consistent with the early findings of Rix et al.
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(1992). Additionally, subsequent to this study, Coccato et al. (2013) decomposed

the kinematics of NGC 4550 in a similar way using full two-dimensional IFU

data. Their results show excellent agreement with those presented in Fig. 5.3.

They found that the primary disc rotates with a velocity of∼ 140 km s−1 outside

of 25” with a velocity dispersion of between 60− 80 km s−1 in the inner regions

which drops to ∼ 30 km s−1 at a radius of 14”. Similarly, they measured the

velocity of the secondary stellar disc to be slower than the primary disc, with a

value of ∼ 110 km s−1, and with a velocity dispersion of 40 − 80 km s−1. The

ionized gas was also found to corotate with the secondary disc with the same

velocity, and with a velocity dispersion of ∼ 50 km s−1.

There is clearly something a little strange about the kinematics derived for the

emission-line gas disc. Because the gas shows a lower velocity dispersion than

the secondary stellar disc that co-rotates with it, one would expect it to display

a smaller amount of asymmetric drift, and hence rotate more quickly, whereas it

actually rotates slower than the accompanying stars. This strange property does

not seem to be the result of any failing in extracting the gas kinematics correctly:

we can obtain some confidence that the fitting process is picking up the correct

properties for the hydrogen emission lines by comparing the results obtained to

those measured directly from the excluded [OIII]λ5007 line, also shown in Fig-

ure 5.3, which are clearly very similar. The most likely explanation is therefore

that the gas does not form a simple equilibrium axisymmetric disc, and hence

would not obey the usual asymmetric drift equation. Indeed, some indication of

an asymmetry in the [OIII] gas velocity with respect to the projected major axis

is visible in Sarzi et al. (2006).

Since the spectra of the two discs in this galaxy were disentangled by full

spectral fitting over a wide wavelength range from galaxy spectra that had been

spatially binned to build up the S/N to a minimum of 20, the resultant best fit for

each disc should contain reliable representations of the star formation histories

contained within that component. Therefore, a careful analysis of the stellar

populations should determine how this galaxy, and thus others like it, formed.
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5.3 Stellar Populations

Having kinematically decomposed the spectra into the two stellar disc compo-

nents at each radius, we can now study the stellar populations of each individual

component, as derived from the strengths of its absorption lines. In order to ren-

der the line strengths at different radii comparable, all component spectra were

broadened with Gaussians to match their dispersions to the largest values found

at the centre of the galaxy. Estimates for the ages and metallicities of each disc

as a function of radius were then derived using the SSP models of Vazdekis et al.

(2010), as described in Section 4.1.

Figure 5.4 shows the resulting values of the Hβ index in the stellar discs, as

an indicator of stellar population age, plotted against the combined metallicity

index, [MgFe]′, as an indicator of metallicity, for each component as a function

of radius. The average results obtained by combining all the outer disc data from

the flat part of the rotation curve, as delineated in Figure 5.3, is also shown.

Since this galaxy was centred on the CCD, we have observations covering the

whole of both sides of the galaxy. As a result, the counter-rotating components

will be Doppler shifted in opposite directions on opposite sides, which allows

for two independent measurements of these quantities with potentially different

systematic biases as different spectral features in the two components will end

up superimposed in the composite spectra from each side. An illustration of this

effect is the Mg-triplet presented in Fig. 5.1, in which the simplified diagram

clearly shows the distortion in the spectral features due to the superposition of

light from the two discs. Although not so clear in this diagram, the different line-

of-sight velocities of the two discs would result in different distortions on both

sides of the galaxy, even in the outer regions where the kinematics have flattened

out. The good agreement between the two rows of plots shown in Fig. 5.4 again

provides some confidence that the results are not significantly compromised by

this effect.

What is most striking about these plots is the systematic difference between
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Figure 5.4: The line indices derived from the model components compared to the predic-
tions of SSP models, measured out to a radius of∼ 30 arcsec, or∼ 2.25 kpc, where the S/N
drops below 30 per Angstrom. The primary and secondary discs are in the left and right
columns, while the north and south side of the galaxy are in the upper and lower rows. The
radius of each measurement is color-coded; the open black points show the average value
for the outer part of each disc. For clarity, points are plotted without errors; a typical error
bar is shown in the top right of each plot.
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the Hβ indices between the two components: the primary disc is old, with an

age inferred here of ∼ 11 Gyr, while the secondary disc is much younger at

∼ 2.5 Gyr, with its innermost parts even more youthful. Interestingly, the young

component was also found to co-rotate with the molecular gas (Crocker et al.,

2009) and the ionized gas, which are generally associated with recent star for-

mation episodes. Similar trends were also found in the subsequent analysis of

Coccato et al. (2013), such that the primary disc was found to be older than the

secondary disc.

5.4 The Demise of the Separatrix-Crossing Model

By carefully disentangling the spectral components of NGC 4550, we have been

able to learn a great deal about their individual properties, determining quanti-

ties that have significant implications for how this peculiar system might have

formed. In particular, the strong differences in the stellar populations of the two

discs seem to rule out the separatrix-crossing model in which they were formed

from a single parent stellar population. It is interesting that one of the things that

motivated Evans & Collett (1994) to consider this model in the first place was the

apparent similarity of line strengths between components; as we have now seen,

this similarity in apparent Hβ line strengths arises from an unfortunate cancella-

tion between the stronger absorption lines of a younger population superimposed

on the emission lines from the gas that rotates in the same direction.

However, the very presence of this gas suggests that all may not be lost for the

separatrix-crossing model. Perhaps this scenario did indeed occur, creating two

initially-identical stellar discs. Subsequent accretion then created a gas disc ro-

tating in the direction of one of the stellar discs, and this gas then formed further

generations of stars, creating a composite population in the disc co-rotating with

the gas whose mean age would appear younger, as observed. Indeed, one could

always invoke sufficient recent star formation to shift the inferred age from∼ 11

Gyr to∼ 2.5 Gyr. Since the line-index ages are effectively luminosity-weighted,
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a relatively modest amount of star formation, creating a bright young population,

might explain the observed age differential. An example of such a scenario was

presented for NGC 628 by Sánchez-Blázquez et al. (2014), in which they studied

the total integrated light of the galaxy to determine the mass- and luminosity-

weighted fractions that were created thoughout the lifetime of the galaxy. They

found that the galaxy contains an underlying old stellar population created be-

tween 8 and 17 Gyrs ago which contributes towards 95% of the total mass of the

galaxy. The younger stellar population has an age of about 1 Gyr, as calculated

from the MILES stellar population models, and dominates the total luminosity fo

the galaxy despite consisting of only 5% of the total mass of the galaxy.

Fortunately, we have one further constraint from this analysis that we can use

to assess the viability of this modified scenario. Specifically, the decomposition

of the spectra into the two stellar discs also tells us how much total light should be

attributed to each component. Clearly, if one of the two initially-identical discs

has had significant new stars forming in it, this component will have a greater

luminosity. Encouragingly, this is what we find: the decomposition of the whole

outer disc spectra (the open symbols in Figure 5.4) reveals that the secondary

component, which co-rotates with the gas, has a continuum level at 4400 Å (the

centre of the B-band) that is 20% higher than the gas-free primary component.

So now we have an extra constraint which means that the amount of late star

formation we can add is fixed by this additional 20% of B-band luminosity. We

do not know the exact star formation history of any such late addition, but we can

try out different possibilities. In order to narrow down the range of different and

complicated star formation histories that could produce the observations outlined

above, two extreme scenarios were tested – a single starburst at ∼ 11 Gyr fol-

lowed by either continuous star formation to the present day, or a second starburst

in more recent times. These star-formation histories are illustrated schematically

in Fig. 5.5.

To obtain stellar spectra for such star-formation histories, the requisite com-
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Figure 5.5: Illustrations of possible star-formation histories that could explain the observed
stellar populations in terms of the separatrix-crossing model. Assuming both discs formed
at the same time, ∼ 11 Gyr ago, the younger stellar populations detected in the secondary
disc could have been created through continuous, low-level star formation since the initial
starburst (top), or through a single, more recent starburst (bottom).

posite stellar spectra were constructed from the MILES stellar library.1 The spec-

tra were weighted according to the mass fractions created in the initial starburst

and in the later star-formation events: typically the mass fraction of the initial

starburst was ∼ 0.85− 0.99 of the total mass created through the example star-

formation histories. The luminosity of the resulting spectrum in the B-band was

then compared to that of a stellar population with an age of 11 Gyr and a metal-

licity of −0.25, which represents the stellar population of the primary disc, to

identify which simulated spectrum resulted in a secondary disc 20% brighter

than the primary disc. In order to build up a better picture of how these different

scenarios would affect the underlying stellar populations from the original disc,

this procedure was repeated with a range of metallicities and, in the case of the

second starburst scenario, ages for the later star formation.

Having identified the spectra created for each set of parameters that give the

1http://miles.iac.es/
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Figure 5.6: Model line indices derived for different star formation histories following sep-
aratrix crossing. The black line shows the effect on the line indices of the primary disc if
the initial population had continuous steady star formation of differing metallicities until
the present day, while the grey grid shows the effect of a single burst of star formation at the
times and metallicities indicated. The open circles are the results for the two sides of the
primary and secondary discs from Fig. 5.4.

correct increase in luminosity, the line strengths were measured and compared to

the measurements from the primary and secondary discs, as shown in Fig. 5.6.

The points at the bottom right show the line indices measured for the primary

disc, which form the presumed starting point of the stellar population of both

discs at the moment of separatrix crossing. The points at the top left show the

higher indices that we are trying to reach by adding subsequent star formation.

The line of crosses show what happens if we invoke continuous steady star for-

mation of different metallicities ever since the old stellar population formed: the

level of this star formation is then uniquely fixed by the requirement that its ad-

dition results in an enhancement of the disc’s total B-band luminosity by 20%.

Similarly, the grid of points shows the change in line indices caused by the ad-

dition of a single burst of star formation of varying ages and metallicities, again
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with the amplitude of the burst tuned to match the enhanced total luminosity of

the disc. Since these two extreme possibilities of star formation history move the

disc to the same region of the plot, it is not surprising that other more complicated

possibilities also all end up in the same area. Clearly, although this additional

later star formation moves the line indices in the right direction, it is nowhere

near sufficient to reproduce the observed values for the younger disc.

5.5 Discussion and Conclusions

With regret, we are forced to abandon the elegance of the separatrix-crossing

model entirely, and conclude that NGC 4550 formed through one of the other

scenarios. The ages inferred in Section 5.3 then tell us something about the pro-

cess. If formed through a carefully-controlled merger of fully-formed galaxies,

these ages just reflect the ages of the progenitors. In the gas-rich accretion sce-

nario, which now seems more natural, the ∼ 2.5 Gyr age of the secondary disc

tells us how long ago this gas was accreted, with the residue of this accreted

gaseous material still rotating along with this component, albeit in a somewhat

non-circular manner. The higher velocity dispersion of this younger disc then

presumably reflects the more turbulent nature of such secondary gas accretion

when compared to the more conventional formation of the older primary stellar

disc. We even begin to obtain some insight into the spatial distribution of this

star formation, with the age gradient in the secondary component implying that

the star formation has become ever more centrally concentrated as the gas has

been depleted. If this scenario is correct, the only unexplained phenomenon is

why the two counter-rotating disc components have such similar spatial extents,

which at this point we must simply attribute to coincidence.



Chapter 6

Conclusions and Future Work

Our understanding of the evolution of galaxy morphology and the significance

of the Hubble Sequence has grown greatly over the last 30 years. For example,

there is now considerable evidence that S0s tend to be found more frequently

in higher density environments and towards lower redshifts, while spirals show

the opposite trend. As a result, S0s are often thought of as quenched spirals, in

which the star formation has been suppressed, the spiral arms have faded, and the

luminosity of the bulge has been built up relative to the disc. Although the exact

quenching process is still unclear, it is likely to be triggered by interactions with

neighbouring galaxies or the intracluster medium in which the galaxy’s gas is ei-

ther used up in a final star formation event, or stripped out altogether. The stellar

populations of the bulges and discs hold the answers to their individual star-

formation histories, and thus the processes that created the galaxy. Therefore,

to better understand the transformation, this thesis outlines two novel techniques

to spectroscopically decompose a galaxy into its different components, and their

application to a sample of 30 S0 galaxies from the Virgo and Fornax Clusters

to study their individual stellar populations, and thus the sequence of events that

led to the quenching of star formation and the formation of S0 galaxies.
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6.1 Conclusions

6.1.1 Decomposition of Bulge and Disc Spectra

In Chapter 3, we presented a new technique to apply bulge–disc decomposition

to long-slit spectra. The idea behind the decomposition is fairly similar to the

traditional radial decomposition of light profiles obtained from photometric data.

After correcting for the line-of-sight velocity distribution of the galaxy, the light

profile at each finely-separated wavelength is decomposed by finding the best

fit from a bulge-plus-disc model, and the individual bulge and disc spectra are

created by integrating the decomposition parameters at each wavelength. The

resulting high-quality spectra allow the study of the stellar populations contained

within each component independently with minimal cross-contamination.

The technique has proven successful, with over half of the total sample be-

ing reliably decomposed into their bulge and disc components. As described in

Chapter 3, the remaining galaxies could not be decomposed due to the presence

of emission features in their central regions, additional components or structures

within the galaxy that complicated their light profiles, and insufficient signal-to-

noise ratios for a reliable fit. It is worth remembering at this point that the sample

of galaxies used in this study consists of all the S0s in the Virgo and Fornax Clus-

ters with inclinations of≥ 40 degrees and brighter than MB = −17.3. Therefore,

since it is a representative sample of cluster S0s, no selection bias was applied

by only observing those galaxies with obvious two-component structures, and so

it is only to be expected that the decomposition will be unsuccessful for galax-

ies with more complicated morphologies. In fact, with such a sample, we have

been able to ascertain that this technique works best for galaxies that are well

described by a simple bulge-plus-disc model, where both components are suf-

ficiently resolved to allow for a reliable structural fit, and where there is little

indication of complicating issues, such as strong dust lanes or bars.

The technique has also been shown to be robust against modest uncertainties
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in the decomposition parameters, and to retain information on the stellar pop-

ulations within the bulge and disc after the kinematics corrections. Therefore,

the decomposed spectra do provide a reliable representation of the luminosity-

weighted stellar populations within each component, and the analysis of such

spectra should help determine how the star formation in the progenitor spirals

was quenched.

6.1.2 The Quenching of Star Formation in Spirals

Chapter 4 outlines the analysis of the decomposed bulge and disc spectra, in

which the most prominent result is that the bulges contain systematically younger

and more metal-rich stellar populations than the discs. This result contrasts with

the traditional view of the progenitor spiral galaxies, in which the bulge is often

considered to be old and dead while the disc hosts ongoing star formation that

lights up the spiral arms. Therefore, we must deduce that at some point during

the quenching process, a final star-formation event must have occurred in the

bulge region while the disc is already beginning to grow old and fade.

Earlier indications of such central star formation prior to the transformation

from spiral to S0 have been found through radial studies of the stellar popula-

tions within similar galaxies. For example, positive age and negative metallicity

gradients along the major axes of S0s have been detected by Fisher, Franx &

Illingworth (1996), Bell & de Jong (2000), Kuntschner (2000), MacArthur et al.

(2004), Bedregal et al. (2011) and Prochaska Chamberlain et al. (2011). How-

ever, these studies cannot ascertain whether these gradients represent a smooth

gradient over the galaxy, or whether they simply arise through the superposition

of different amounts of bulge and disc light at each radius, where each compo-

nent contains different stellar populations. Therefore, the strength of the spectro-

scopic bulge–disc decomposition method presented in this thesis becomes clear

because we can now see for the first time that the bulges and discs of S0s in

clusters do contain very different stellar populations. The smooth gradient sce-
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nario is further eliminated in the Fornax Cluster galaxies by the lack of line index

gradients detected within their bulges and discs, which suggests that any colour

gradients observed are simply the result of dust reddening.

The further analysis of the bulge and disc spectra have strengthened these

results by showing that both components also experienced very different star

formation histories. The lack of correlation between the α-enrichment of the

discs and their ages suggests that they underwent continuous star formation at

a slowly declining rate during the lifetime of the progenitor spiral galaxy. As a

result, the light from the disc we see today is not dominated by a single stellar

population, instead consisting of multiple older stellar populations with differ-

ent ages. Furthermore, the often large differences between the bulge and disc

ages suggest that the quenching process must have been fairly gentle, such that

it removed the gas from the disc without causing sufficient disruption to trigger

significant new star formation in that part of the galaxy, even after it had com-

menced in the bulge. Such a scenario would also explain the enhancement of the

bulge luminosity and apparent fading of the disc during the transformation, as

was found photometrically by Christlein & Zabludoff (2004).

The bulges on the other hand do show a strong correlation between their ages

and α-enrichments, such that the more recent star formation in younger bulges

was fuelled by gas that was more polluted with iron. Since the progenitor spi-

rals contained old, red-and-dead bulges, this correlation suggests that during the

quenching scenario, the bulges accreted gas from somewhere until a final star-

formation event there used it up and quenched the galaxy. The most likely origin

of this accreted gas is the surrounding disc, which is backed up by the clear cor-

relation between the bulge and disc Mgb/〈Fe〉 ratios in Fig. 4.11, implying that

the bulge knows about the chemical history of the surrounding disc. Further-

more, the offset from equality in this correlation further emphasises the different

star-formation histories of the two components. The bulges show a higher Fe-

enrichment than the surrounding discs as their light is dominated by the younger

stellar population created in the most recent star-formation event. On the other
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hand, the lower Fe-enrichment of the discs represents that of the multiple older

stellar populations that built up during the continuous star formation activity over

the lifetime of the progenitor spiral.

Together, these results have helped build up a clear picture of the quench-

ing process that transforms spirals into S0s. The progenitor spiral consists of

an old bulge surrounded by a young disc that is undergoing star formation at a

slowly declining rate. At some point in the life of the spiral, an interaction with

a neighbouring galaxy or the intracluster medium strips the disc of its gas, thus

quenching the star formation in the spiral arms. Given the lack of significant star

formation induced in the disc during the quenching, it is likely that the mecha-

nism was a gentler process, such as ram-pressure stripping or starvation. Such

gentle processes acting on the galaxy are also apparent from the discy morpholo-

gies of S0s, showing that the stellar orbits were minimally disrupted as the gas

was stripped out. Similar conclusions have also been reached for the quenching

processes in cluster environments by Maltby et al. (2012) and Jaffé et al. (2011).

However, during the quenching, some gas from the disc is driven into the central

regions of the galaxy, where it triggers a final star-formation event in the bulge

that terminates the quenching process. The galaxy then fades to an S0 with a

young, metal-rich bulge and an enhanced bulge-to-total light ratio.

6.1.3 Decomposition of Counter-Rotating Discs

Any theory for galaxy evolution must be able to explain the origins of the more

unusual galaxies we observe in order to be considered complete. One such

galaxy is NGC 4550 in the Virgo Cluster, which has two counter-rotating stellar

discs of similar mass and size, and a gaseous disc, all orbiting in the same plane.

The three most commonly proposed theories for the formation of this galaxy are:

• the merging of two galaxies under exactly perfect conditions to produce

such a system without disrupting the circular motions of either stellar disc

(Crocker et al., 2009; Puerari & Pfenniger, 2001)
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• the accretion of gas into a counter-rotating disc followed by star formation

that produces the second stellar disc (Thakar & Ryden, 1996, 1998)

• the natural collapse of the stellar orbits into the two discs through the

separatrix-crossing model of Evans & Collett (1994).

To determine which of these scenarios best explain the origin of this unusual

galaxy, Chapter 5 describes a decomposition method utilising the very different

kinematics of the two discs, and the subsequent analysis of their separate stellar

populations.

The stellar populations of the two discs were found to be of very different

ages, where the primary disc appears to be ∼ 11 Gyr old with no significant age

gradient, while the secondary disc shows a mean age of ∼ 2.5 Gyr with the cen-

tral regions being even younger. Although such a large difference in age appears

to favour the merger and gas accretion scenarios outlined above, it may still be

explicable if the discs were initially formed at the same time and then only one

experienced later star formation activity. Therefore, to test this theory, predic-

tions of line indices were obtained for two extreme star-formation histories – both

starting with a disc created in an initial star-formation event ∼ 11 Gyr ago, with

one scenario assuming continuous star formation since then, and the other as-

suming a single starburst more recently. In these tests, the mass fraction created

in the more recent star-formation activity was restricted by the observed 20% dif-

ference in luminosity between the two discs. However, the resulting differences

in the line index predictions for both scenarios were insufficient to explain the

age difference detected between the two discs. Therefore, we can rule out the

elegant separatrix-crossing process to explain the formation of NGC 4550, and

conclude that this galaxy formed through either the accretion of gas or of another

galaxy.

Interestingly, this result contrasts with the gentler gas stripping scenario that

appears to trigger the formation of simple bulge-plus-disc systems in the Virgo

and Fornax Clusters. Therefore, it is apparent that S0s are produced through a va-
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riety of mechanisms that leave different signatures in the structure of the galaxy.

These findings again emphasise the strength of such decomposition techniques

in determining the star-formation histories of galaxies of different morphologies.

6.2 Future Work

The work described in this thesis has outlined two different techniques to de-

compose a galaxy into its individual components using its light profile and its

kinematics. The natural progression for this work is to further develop these

techniques in order to apply them to different galaxies with more complicated

morphologies.

6.2.1 Two-Dimensional Spectroscopic Bulge–Disc Decompo-

sition

The next natural step for the spectroscopic bulge–disc decomposition technique

outlined in Chapter 3 is to remove the limitations on the complexity of the mod-

els that can be used. One way to reduce such limitations would be to increase the

information we have about the spatial structure of the galaxy using wide-field in-

tegral field unit (IFU) spectroscopic data. Since IFU datacubes of a galaxy effec-

tively produce images of that galaxy at each individual wavelength, it is possible

to apply bulge–disc decomposition to each of these images with software such as

GALFIT (Peng et al., 2002, 2010) or GALFITM, which was created by the MEG-

AMORPH team (Measurement of Galaxy Morphology, Häußler et al., 2013; Vika

et al., 2013). An initial test of such a decomposition is presented in Fig. 6.1. As

with the long-slit spectroscopic decomposition, this technique will provide in-

formation on the proportion of the light that originates from the bulge and disc at

each wavelength and how their parameters vary with wavelength. However, the

added strength of decomposing IFU spectra is that it provides structural infor-

mation from over the whole galaxy, thus allowing for more complicated models
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Figure 6.1: Example of bulge–disc decomposition being applied to an image of cgcg 073-
090 at ∼ 4919 Å from the MaNGA test data sample. From left to right are the SDSS image
(DR7) of the galaxy for comparison, the original image from the MaNGA data cube, the
best fit model using a sersic plus exponential profile, and the residual image after subtracting
the model from the original.

to be utilized in the fits.

Development of this technique is still in the early stages, but it has already

produced some promising results as a proof-of-concept, which can be seen in

Fig. 6.2. The galaxy decomposed here is cgcg 073-090, and was observed as part

of the initial test data for the Mapping Nearby Galaxies at APO (MaNGA, Bundy

et al, Submitted to ApJ) survey.1 The galaxy itself is classified as a red edge-on

disc galaxy with no obvious spiral arms at a redshift of z ∼ 0.02, which is

small enough that the majority of the galaxy can be detected within the MaNGA

field of view (22.5 × 22.5 arcsec; see Fig. 6.1), while being large enough that

its bulge and disc structure can be seen. After correcting for the kinematics in

a similar way to that described in Section 3.1, images of the galaxy over the

selected wavelength range were decomposed simultaneously with the GALFITM

software to obtain bulge and disc parameters at each wavelength. GALFITM uses

an adapted version of GALFIT to perform automated bulge–disc decomposition

on multi-waveband images while constraining variations in the free parameters

to physically meaningful values. The constrained parameters included the po-

sition angle, ellipticity, bulge effective radius, bulge Sérsic index and disc scale

length, where the values for these quantities were obtained from decomposing

a stacked image from the IFU spectrum over the same wavelength range. The

main advantage of this software over GALFIT alone is that by simultaneously

1http://www.sdss3.org/future/manga.php
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Figure 6.2: Examples of the decomposed bulge and disc spectra for cgcg 073-090 (first
and second from the top respectively), using a sersic profile with Sérsic index of 2.94 for
the bulge and an exponential profile for the disc. The third row gives the original integrated
spectrum of the galaxy in black with the integrated bulge + disc + PSF spectrum from the
best fit at each wavelength overplotted in red, and the residuals at the bottom for comparison.
The vertical dotted lines mark the redshifted wavelengths of significant spectral features
within this wavelength range.

decomposing multiple images at different wavelengths and constraining certain

parameters, the overall signal can be improved for the individual fits, leading

to more reliable and consistent results over the full wavelength range, which is

especially useful for IFU images which have lower S/N per image than photo-

metric data. The resultant bulge and disc spectra are shown in Fig. 6.2, along

with the original integrated spectrum and the residuals for comparison.

This adaption of the spectroscopic bulge–disc decomposition technique de-

scribed in Chapter 3 appears promising, and with the added structural informa-

tion, it should prove possible to decompose galaxies with more complicated

morphologies than has already been achieved. With the many wide-field IFU

surveys, such as MaNGA and CALIFA (Sánchez et al., 2012), and instruments,

like MUSE on the VLT (Bacon et al., 2006), now becoming available, we are

entering an exciting time to probe the internal star formation histories of galax-



Conclusions and Future Work 118

ies with the spectral decomposition techniques outlined here. Furthermore, with

the much larger wavelength ranges offered by such data, particularly from the

MaNGA survey, the stellar populations can be analysed using full spectral fitting

techniques to obtain more robust estimates of ages and metallicities than can be

achieved with the Lick indices alone.

6.2.2 Decomposition of the Bulge and Disc Kinematics

Another interesting step would be to combine the luminosity and kinematic de-

composition techniques outlined in Chapters 3 and 5 in order to obtain informa-

tion on the individual kinematics of the bulge and disc. Such information could

shed further light on the role of mergers in galaxy formation. For example, if a

galaxy experienced any mergers in its past, the interaction would lead to a dis-

ruption of the stellar orbits within the disc, leaving it less rotationally supported

than if the star formation was simply quenched through gas stripping. Therefore,

by separating the kinematics of the bulge and disc, we can better study the line-

of-sight velocity distribution of the disc and look for evidence of minor mergers

without any contamination from the hotter bulge kinematics.

By decomposing the light of a galaxy, either from a long-slit or IFU spectrum,

two one-dimensional spectra representing the bulge and disc stellar populations

can be derived. These spectra can be fitted with stellar template spectra using the

PPXF software to obtain the combination of templates that best fits each spec-

trum, along with their relative weightings. By combining these template spectra

with the correct weights, template bulge and disc spectra can be created at the

resolution of the stellar library, thus removing the effects of broadening of the

spectral features due to the kinematic corrections applied to the original galaxy

spectrum.

Using these templates, the spatially-binned galaxy spectra can be decom-

posed using the modified PPXF code from Chapter 5 to fit the bulge and disc

templates with independent line-of-sight velocity distributions. To further im-
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prove the reliability of the decomposition, the relative weights of the bulge and

disc template spectra can be restricted to lie within reasonable limits using the

bulge-to-disc light ratio at that location, as predicted from the previous decom-

position, as a guide. As a result, the combination of these two techniques should

provide both stellar populations and kinematics information independently for

the bulge and disc for the first time, allowing us to determine the significance

of mergers in the transformation of spirals to S0s. In addition, such ideas are

not restricted to S0 galaxies, but can equally be applied to galaxies with more

complex morphologies and containing more components. For example, it would

be possible to isolate the spectrum of a bar in this way using its own distinct

kinematics.

6.2.3 The Effects of Environment of Galaxy Evolution

The analysis presented in this thesis has focussed entirely on the formation of S0

galaxies in local cluster environments with simple bulge-plus-disc morphologies.

To build up a more representative understanding of the transformation of spirals

into S0s, we really need to consider galaxies in different environments and with

more complicated structures. The techniques described throughout this thesis

can easily be extended to such a broad sample, thus allowing a direct comparison

between the star-formation histories of a broad range of S0s to truly understand

their evolution. To build up an initial sample of galaxies for such a study, a

proposal has been submitted for time to observe a sample of 10 S0s in isolated

and cluster environments with MUSE, the new wide-field IFU spectrograph on

the VLT. The selected galaxies lie at a mean redshift of z ∼ 0.03 to maximise

the 1 arcmin by 1 arcmin field of view of MUSE, and will allow us to compare

quenching mechanisms in different environments.

There is still much work to be done, but this thesis represents the first steps in

spectroscopically decomposing the different components within galaxies to un-

derstand their individual star-formation histories, and thus the sequence of events
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that created these galaxies. The near future should therefore prove interesting in

terms of building up a full and complete understanding of the evolution of galaxy

morphology through such decomposition techniques.
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Appendix A

Kinematics Plots

This appendix gives plots for the major-axis kinematics for 19 of the 21 Virgo
Cluster Galaxies. VCC 1619 (NGC 4550) has been omitted as the separated
kinematics of the two counter-rotating components are given in Fig. 5.3, and
VCC 1833 is not included as the spectrum had insufficient signal-to-noise to
obtain any reliable spatial kinematics information. In each case, the line-of-sight
velocity (VLOS), velocity dispersion (σ), and the shape parameters, h3 and h4, are
plotted as functions of radius. The centre of each galaxy, as defined by the peak
in the spectral luminosity, is marked by the vertical dashed line.

For comparison, kinematics from the SAURON (Emsellem et al., 2004) and
ATLAS3D (Cappellari et al., 2011) surveys have been overplotted in red for all
the galaxies that overlapped with these surveys – only VCC 2092 and VCC 698
are excluded. Since these literature results are derived from IFU data, the radius
of each binned spectrum was taken as the distance from the centre of the galaxy.
Positive and negative radii were then assigned using the kinematic position an-
gles for each galaxy from Krajnović et al. (2011) to identify which side of the
galaxy the binned spectrum was located. Both surveys used the Sauron instru-
ment on the WHT in La Palma, which has a field of view of 33 × 41 arcsec,
and so comparisons with the long-slit kinematics can only be carried out over
the inner regions of these galaxies.

In general, the long-slit kinematics agree with the IFU kinematics from the
literature. Since the IFU kinematics are derived from binned spectra over the
two-dimensional structure of the galaxy, those results show a larger scatter than
the long-slit kinematics due to the wider range in velocities measured above and
below the plane of the disc. Consequently, it is reassuring to see that the long-slit
kinematics tend to follow the higher-velocity edge of the scatter in the line-of-
sight velocity plots and the lower edge of the scatter in the velocity dispersion
plots, as would be expected for data from along the major-axis of each galaxy.
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Figure A.1: The kinematics along the major-axis of VCC 798.

The line-of-sight velocity appears to abruptly change direction at radii of ∼
±1 arcsec, which may indicate the presence of a nuclear counter-rotating com-
ponent, such as a kinematically-decoupled core (Franx, Illingworth & Heckman,
1989; Emsellem et al., 2004). Since the decomposition was carried out on the
light profiles from a radius of 2.5 arcsec, it is unlikely that the presence of such
a component would have affected the fits, and so the galaxy was successfully
decomposed into bulge and disc spectra.
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Figure A.2: The kinematics along the major-axis of VCC 1535.

The line-of-sight velocity of this galaxy gives an indication of the presence of a strong bar viewed
edge-on, which is further reflected in the h3 signature (Bureau & Athanassoula, 2005). This
galaxy is listed as barred in Third Reference Catalogue of Bright Galaxies (hereafter RC3, de
Vaucouleurs et al., 1991), but as an unbarred S0 in Côté et al. (2004). It was also found by
Emsellem et al. (2004) and Ferrarese et al. (2006) to contain a dust disc extending to 15.6 arcsec
either side of the centre of the galaxy, and the spectra showed strong Hβ and [OIII] emission in
the inner parts of the galaxy. As a result, the light profile of this galaxy in Fig. B.4 clearly shows
some disruption at the edge of the dust disc, and a subtle bulging at smaller radii, and as a result
could not be fitted with the simple bulge-plus-disc model used in this study.
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Figure A.3: The kinematics along the major-axis of VCC 2095.

This galaxy is listed as barred in RC3, and the bar signature can also be seen in
the line-of-sight velocity plot. The image in Fig. 2.1 also shows the galaxy to be
very edge-on, with both a thin and thick disc, and Fig. B.4 shows the effect of the
multiple discs on the light profile. As a result of these factors, the light profile of
the galaxy proved too complex for a simple bulge-plus-disc fit.
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Figure A.4: The kinematics along the major-axis of VCC 1062.

This galaxy also shows evidence of a weak bar in the line-of-sight velocity and
h3 plots, and is classified as barred in RC3 and Côté et al. (2004). However, no
obvious evidence of the bar was visible in the light profile, and so this galaxy
was successfully decomposed.
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Figure A.5: The kinematics along the major-axis of VCC 2092.

A weak bar is apparent in the kinematics, and was listed in RC3 and Côté et al.
(2004). This galaxy was successfully decomposed into bulge and disc compo-
nents.
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Figure A.6: The kinematics along the major-axis of VCC 759.

The kinematics for this galaxy clearly show that something strange is happening,
which becomes clear when the image in Fig. 2.1 is considered. This galaxy
contains a ring and a bar, and according to Ferrarese et al. (2006) there is a second
nuclear ring as well. The light profile in Fig. B.4 also shows some disruption due
to these additional structures. As a result, this galaxy was too complicated to be
decomposed reliably with a simple bulge-plus-disc model.
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Figure A.7: The kinematics along the major-axis of VCC 1692.

This galaxy is known to have multiple components, such as a weak bar and
outer and nuclear discs (van den Bosch & Emsellem, 1998). However, the light
profile is not significantly affected by these structures, and so the galaxy was
successfully decomposed.
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Figure A.8: The kinematics along the major-axis of VCC 2000.

The kinematics show the superposition of two rapidly rotating discs, one inside
of a radius of 5 arcsec and the other outside of 7 arcsec, as described by Bender,
Saglia & Gerhard (1994) and Emsellem et al. (2004). However, these features
were not strong enough to significantly affect the light profile, and so the galaxy
was successfully decomposed.
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Figure A.9: The kinematics along the major-axis of VCC 685.

The kinematics reflect the rapidly rotating gas disc in the central regions of the
galaxy that is decoupled from the stellar component, as described by Fisher
(1997). The galaxy was successfully decomposed with a bulge-plus-disc model.
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Figure A.10: The kinematics along the major-axis of VCC 1664.

This galaxy was successfully decomposed into bulge and disc components.
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Figure A.11: The kinematics along the major-axis of VCC 944.

This galaxy shows possible indications of a weak bar, as listed in RC3, but it
was not strong enough to affect the light profile. Therefore, the galaxy was
successfully decomposed with a bulge-plus-disc model.
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Figure A.12: The kinematics along the major-axis of VCC 1938.

The light profile for this galaxy in Fig. B.4 proved too complicated to decompose
due to structures such as a thin disc embedded within a thicker disc, and dusty
spiral arms within the inner disc (Ferrarese et al., 2006).
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Figure A.13: The kinematics along the major-axis of VCC 1720.

This galaxy was successfully decomposed into bulge and disc components.
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Figure A.14: The kinematics along the major-axis of VCC 1883.

This galaxy shows evidence of a weak bar, which was identified in RC3 and Côté
et al. (2004), but the light profile appeared unaffected, and so the galaxy could
be successfully decomposed with a bulge-plus-disc model.
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Figure A.15: The kinematics along the major-axis of VCC 1242.

This galaxy was successfully decomposed into bulge and disc components.
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Figure A.16: The kinematics along the major-axis of VCC 1250.

This galaxy contains an inner, clumpy dust disc with spiral features (Ferrarese
et al., 2006), which may explain the odd behaviour in the kinematics. Addi-
tionally, the spectra showed strong Hβ and [OIII] emission features in the inner
regions of this galaxy, and the light profile in Fig. B.4 shows a subtle bulging
at smaller radii. As a result, the galaxy could not be modelled as a bulge plus a
disc.
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Figure A.17: The kinematics along the major-axis of VCC 1303.

This galaxy is listed as barred in RC3 and Côté et al. (2004), and evidence of a
weak bar is visible in the kinematics. This galaxy was successfully decomposed
into bulge and disc components.
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Figure A.18: The kinematics along the major-axis of VCC 1913.

The light profile of this galaxy displayed a small but sharp break in the light
profile of the galaxy along both semi-major axes at a radius of around 7 arcsec,
which suggests that the bulge may be truncated, as in Fig. B.4. This feature was
also noted in Ferrarese et al. (2006), where the galaxy was referred to as having
a ‘structure-within-a-structure morphology’. Therefore, the galaxy could not be
decomposed.
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Figure A.19: The kinematics along the major-axis of VCC 698.

This galaxy was successfully decomposed into bulge and disc components.



Appendix B

Light Profile Fits

This appendix presents the best fits to the mean light profile of each galaxy that
could be decomposed, with the bulge fit overplotted in blue, the disc fit in red,
and the combined fit in green. In each case, the parts of the light profile that
fell on the unexposed region on the CCD under the bridges were masked out, as
were any stars that fell onto the slit (see for example VCC 798 and VCC 1303).
The light profiles of the galaxies that couldn’t be decomposed are also plotted
for comparison. The galaxies were decomposed using linear flux units, whereas
here they are plotted with logarithmic flux units to better illustrate the fits where
applicable, or the complexities in the light profiles that may have prevented a
reliable decomposition. Note that VCC 1619 (NGC 4550) has been omitted as it
was decomposed using the kinematics of the two discs instead.
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Figure B.1: Mean light profile fits to Virgo Cluster galaxies, along with the best fit models.
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Figure B.2: Mean light profile fits to Virgo Cluster galaxies, along with the best fit models.
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Figure B.3: Mean light profile fits to Virgo and Fornax Cluster galaxies, along with the best
fit models.
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Figure B.4: Mean light profile fits to Virgo Cluster galaxies that couldn’t be decomposed.



Light Profile Fits 148

Figure B.5: Mean light profile fits to Virgo and Fornax Cluster galaxies that couldn’t be
decomposed.
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