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Abstract.

The pharmaceutical industry has been criticised for a lack of innovation associated with the
drug discovery and development process, for example when compared with the computer
or music industries. In fact, bringing a new medicine to the market requires, on average, the
screening of up to 10 000 molecules, an expense in the range of $500 million-$2 billion and
roughly 10-15 years of research. Such a situation not only has a direct impact on the health
and life expectancy of every single human being on the planet, but also indicates that

alternative strategies for drug development should be investigated.

In this thesis, studies of direct formulation-membrane interactions, both in a high
throughput (HT) manner and at a nanometre scale, were initially identified as an important
approach that could offer advantages for in vitro-in vivo correlations of in-man drug
behaviours. Subsequently, supported lipid bilayers (SLBs) of physiologically-relevant lipid
compositions were indicated as experimental models of preference for pre-clinical drug
development. For that reason, the characterisation and assessment of physicochemical and
behavioural properties of the model SLBs at a nanometre scale, as well as development of
an SLB microarray for HT applications were the focus of this research. Here, the optimisation
and characterisation of model lipid films was performed using atomic force microscopy
(AFM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron
spectroscopy (XPS). Additionally, the AFM-investigated assessment of the interactions
between model SLBs and formulation components (e.g. Pluronics®, siRNA, DNA polyplexes)
enabled both the correlation of in vitro observations with literature-reported in vivo
performances of the components of interest and the development of hypotheses with
regards a number of phenomena in biology. Furthermore, the development of a SLB

microarray prototype suitable for HT applications is reported.

Directly, this research improves: the understanding of SLB behaviours and experimental
investigation at a nanometre scale of the mechanisms of interactions between membranes
and: Pluronics®, nucleic acids and their complexes, as well as the technology of SLB
microarray development. Indirectly, this research contributes towards the progress in a
number of research areas within pharmaceutical sciences, potentially resulting in new

scientific disciplines, such as immunolipidomics or nanopharmacology.
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Preface.

Dear Reader,

First of all, thank you for having a look at my thesis. Hopefully, you will manage to find
something useful.

You are about to read a thesis that summarises 3 years of laboratory-based work of a
candidate for a PhD in pharmacy.

Since pharmacy is a fairly broad science discipline, the overall aim throughout writing this
thesis was to present data, conclusions and hypotheses as clearly, and as concisely, as
possible. For that reason, special attention was divided to figures depicting discussions in
text. Also, since this PhD project underpinned many scientific disciplines, introductions and
descriptions regarding some of the theoretical background were kept to the minimum. In my
opinion, this would help to both achieve an appropriate flow of the text and prevent you
from falling asleep. | consider these as factors detrimental to the overall scientific focus that
is required for reading.

As the English language is not my mother tongue, | have also tried to express thoughts in a
logical manner, keeping the sentences short, wherever possible. However, | understand that
some expressions may sound a bit unfamiliar to a native speaker. Therefore, | encourage you
to direct all questions that you may have to me via email.

Although | spent a significant amount of time editing the text in order to avoid errors, |
anticipate that it could be further improved. Nevertheless, it is my hope that the quality of
this thesis would enable you to understand: what | was working on, how | have achieved it
and why it was important from a pharmacy point of view.

I look forward to helping you with any questions that may arise and | sincerely hope that you
will find this thesis useful.

Kind regards,

Andrzej Gallas

email: andrzej.gallas@gmail.com
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Chapter 1: Introduction and Aims.

Supported lipid bilayers as models for the pre-clinical development of
new drugs.

1.1 Abstract

The currently employed in vitro-in vivo correlation methodologies often fail to fully elucidate
the in-man toxicity and efficacy of a drug. This results in an inefficient, expensive and time
consuming drug discovery and development process, and hence the need for predictive in
vitro screening approaches to facilitate such correlations is an urgent priority. The
interactions between active pharmaceutical ingredients (APIs) and biological membranes
had repeatedly been demonstrated to be able to elucidate the mechanisms behind
toxicities, modes of action, as well as pharmacokinetic properties of drugs. Therefore, it is
anticipated that approaches enabling high throughput screening of APl-membrane
interactions may provide a useful platform for the prediction of in vivo performance of new
chemical entities (NCE) at an early development stage.

In this chapter, the importance of drug-membrane interactions and in vitro-in vivo
correlation models are briefly overviewed. The properties of various in vitro models
involving lipid-based systems are assessed for their potential to be used to screen API-
membrane interactions. Particular focus is directed toward the advantages and limitations of
supported lipid bilayers (SLBs), as emerging tools for investigations of drug-membrane
interactions. To conclude, achievable goals and directions for the future work are outlined.
Additionally, aims of this thesis are explained.

OBSERVATION METHODOLOGY

DRUG - MEMBRANE
INTERACTIONS

/ N\
»

A ﬁéj FORMULATION

TOXICITY CELLULAR INKIET PRINTING

e ‘ I i

Figure 1.1. A graphical summary of the factors involved in the development of the supported
lipid bilayer (SLB)-based model for studying formulation-membrane interactions. Since drug-
membrane interactions have been correlated with toxicity and efficacy of a drug, combining
automated liquid dispensing systems (ink-jet printing) with advanced surface analysis
techniques (AFM — atomic force microscopy) and SLBs as membrane models, may provide a
useful approach to study in vitro formulation performance both in a high throughput manner
and at a nanometre scale. Details have been reviewed in chapter 1.
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Chapter 1: Introduction and Aims.

Abbreviations:

3R- replacement, reduction, refinement; ADME — absorption, distribution, metabolism, elimination;
AFM — atomic force microscopy; APl — active pharmaceutical ingredient; CYP-450 — cytochrome P-450;
D — distribution; GFP — green fluorescent protein; HTS — high throughput screening; P — partition;
PAMPA — parallel artificial permeability assay; PKPD — pharmacokinetics and pharmacodynamics; PBS
— phosphate buffer saline; QbD — quality by design; MDR — multidrug resistance; NCE — new chemical
entity PEG — polyethylene glycol; RH — relative humidity; SLB — supported lipid bilayer; SPBs —
supported phospholipid bilayers; SUV — small unilamellar vesicle; tBLMs — tethered bilayer lipid
membranes; ToF-SIMS — time-of-flight secondary ion mass spectrometry; XPS — X-ray photoelectron
spectroscopy.

1.2 Introduction

Although correlating the clinical performance of pharmaceutical formulations with their
behaviour in vitro has been a research focus for many years, it remains a significant
challenge'. As a result, bringing a new medicine to market requires, on average, the
screening of up to 10 000 molecules?, an expense in the range of $500 million - $2 billion®
and roughly 10-15 years® of research, directly affecting the health and life expectancy of

every single human being on the planet.

Since the unpredicted toxicity and the targeted delivery of APIs have emerged as the key
obstacles for the development of new medicines®, the need for scientific model(s) enabling
in vitro-in vivo correlations for both of these issues has become an urgent priority®. Here,
studies on direct interactions between cellular membranes and pharmaceutical formulations
had been repeatedly demonstrated to provide scientific explanation for clinically observed

drug behaviours’.

In this chapter, the importance of drug-membrane interactions and the theory of scientific
model development are briefly reviewed. Subsequently, the literature-reported models for
studying drug-membrane interactions are investigated. A particular focus is directed at
supported lipid bilayers (SLBs) as emerging tools for the drug-membrane interaction studies.
Both the advantages and limitations are thoroughly examined. To conclude, the directions

for further research are considered.

The development of a screening model that enables correlation of the in vitro behaviour of
pharmaceuticals with their performance in vivo would have a direct impact on the time and
expense associated with the discovery and development of drugs, as well as on the
replacement, reduction and refinement (3Rs) of animal model use in the pharmaceutical

sciences. Additionally, an improved understanding of drug-membrane interaction
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Chapter 1: Introduction and Aims.

mechanisms would benefit the rational design of new APIs, not only impacting on quality by
design (QbD) approaches in drug development, but also increasing the efficiency of bringing

therapeutics to the market.
1.3 The importance of membrane interactions in pharmaceutical sciences.

The interaction of drugs (or formulations) with membranes is important for many aspects of
drug development as thoroughly reviewed in ref.8. Briefly, APIs interact with membranes at
all pharmacokinetic stages: absorption, distribution, metabolism and elimination (ADME).
During drug absorption e.g. from intestines into the bloodstream, APIs have to permeate
through a set of membranes associated with intestinal cells, as well as blood vessels before
they reach blood or lymph®. Once in the blood or lymph, APIs can be distributed into its
effector (e.g. organ, tissue, cell), metabolism (e.g. liver) or elimination (e.g. kidneys) sites. In
each case, before the APls: reach the molecular targets, undergo CYP-450-catalysed
metabolism or are excreted with urine, they must yet again overcome a few membrane
barriers en route, for instance: epithelial cells of the blood vessels (e.g. blood brain barrier if
targeted against the central nervous system), cytoplasmic membranes of the destination
cells in order to reach an intracellular target or intracellular CYP-450 enzymes, as well as
membranes associated with elimination processes (e.g. ultrafiltration, secretion and
reabsorption of the drug). In addition, drug release may be affected by interactions with
lipids e.g. in gastrointestinal fluid, foods or lipid-based formulations indicating the role at the
drug liberation stage. Pharmacodynamically, drug-membrane interactions are essential for a
detailed understanding of the processes triggered by the APIs at their active sites, such as
modes of action, mechanisms of multidrug resistance (MDR), drug transport into or within
the cell cytoplasm, as well as toxicity (immunogenicity) of drugs or excipients’. Figure 1.2
and table 1.1 summarise those considerations and indicate some examples of drug
membrane interactions of pharmacological importance. Without a doubt, a detailed
understanding of the drug-membrane interactions in various microenvironments is essential

in order to uncover drug behaviour in vivo.
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Cardiomyocytes e
L - (LA T

Figure 1.2. /llustration depicting the importance of interactions between drugs (or
formulations) and membranes (or lipids) in pharmaceutical sciences. The drug release into
and absorption from the gastrointestinal fluid is strongly affected by the bile-triggered fat
emulsification for lipid-based formulations (B). Small changes in chemical structure can
influence the distribution of a drug across the blood-brain barrier (C) or the elimination of a
drug with urine through the fenestrations in kidney capillaries (D). Liposome encapsulation of
doxorubicin prevents direct binding of the drug with membranes of various organs
decreasing the overall toxicity (A). Drug-membrane interactions can also elucidate modes of
action for many therapeutics, such as anti-fungal medicines (E). More details can be found in
table 1.1. Figure elements adapted from the following references: &°.
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Table 1.1 | Examples of drug-membrane interactions of clinical importance.

Name and structure

Interaction

DOXORUBICIN & MYOCET

Encapsulation of doxorubicin in liposomes not
only limits the direct interaction with membranes,
but also increases the effective size of the drug
circulating in the human body. Thus, non-specific
organ uptake and kidney elimination are lower for
Myocet than for conventional doxorubicin and
explains why the administration of Myocet results
in lower cardiotoxicity, longer biological half-life
and better targeting of leaky tumour tissue®.

CYCLOSPORIN A & NEORAL CAPSULES

Encapsulation of cyclosporin in a lipid-based
formulation provides more consistent absorption
from the intestines making it less variable across
patients and less dependent on food and bile
presence™. Orally-administered lipid-based
formulations affect drug liberation and absorption
from intestines through three mechanisms:
changes to the composition of intestinal milieu,
recruitment of lymphatic drug transport and
direct interactions with enterocyte-based drug
absorption and metabolism.®

TEMOZOLOMIDE & DACARBAZINE

N 2 N
(/ 7
N [ NH Hil |
o= N « N
N—N N—N
/ /

Temozolomide permeates well through the blood-
brain barrier, while the chemically similar
compound, dacarbazine®, does not. Thus,
temozolomide® is used as a therapeutic for brain
and dacarbazine for systemic tumours. This
example indicates how small changes in chemical
structure can affect the drug-membrane
interactions, distribution and therefore
therapeutic profile of a drug.

Aptamer-siRNA chimeras

Oﬂm.m

MONO]IH

PEGylated siRNA-aptamer chimeras are less likely
to undergo ultrafiltration through kidney
membranes than non-PEGylated ones, resulting in
a longer biological half-life (ty). In vivo studies
using mouse models revealed an increase from t,,
< 35 min to t, > 30 h for the non-PEG- and
PEGylated systems, respectively”.

AMPHOTERICIN B OH

//,'

CHOLESTEROL ERGOSTEROL

-, O OH OH OH OH O,
NN

Since amphotericin B binds ergosterol in fungal
cell membranes with higher affinity than
cholesterol in human cell membranes, the
destabilisation of fungal cell membranes is more
likely. At the same time, a lower cholesterol
binding affinity implicates the preferential
interaction of amphotericin B with fungal cells
over human cell membranes and justifies its low
toxicity profile”.
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1.4 Models for membrane interactions: development and types.

Since direct investigations of drug-membrane interactions are difficult in complex biological
environments, such as within the human body, the development of experimental models
has been an essential part of research in this field for many years7b. By definition, the
purpose of a model is the simplified representation of empirical phenomena, processes or
objects, logically and objectively, using a number of different approaches and data sets.
Unfortunately, due to the simplicity of scientific models, the inherent falsities, as well as
scientific dispute (critique) are inseparable companions of both model development and
applicability®. Figure 1.3 presents a successful model development using the Parallel

Artificial Membrane Permeability Assay (PAMPA)™ as an example case study.

OBSERVATION m METHODOLOGY » MODEL

Filter
microplate
with —
confluent
monolayer
of Caco-2
cells

Permeability \
coefficient of a drug .
° »
P = Vi 5 dy, = I
IF T ACp—Cq) dt | BIele e
wlW LW L L 1
I SOLUTION PLATE READERS JID
DISPENSING ROBOTS
Human intestinal
absorption of a drug PARALLEL ARTIFICIAL MEMBRANE

PERMEABILITY ASSAY
(PAMPA)

\ I 7/

Figure 1.3. Graphical summary of the factors involved in the development of the Parallel
Artificial Membrane Permeability Assay (PAMPA). The ability of Caco-2 cells to mimic
intestinal drug absorption (left), supported lipid bilayer science (middle), as well as methods
employed for high throughput screening approaches (middle) all contributed to the
development of PAMPA® in its current form (left). Additionally, scientific dispute (critique)
had been indicated as an important constituent influencing PAMPA development at all
stages. A figure element adapted from reference 24.

PAMPA is used as a method in pre-clinical drug development for predicting the passive
permeability of drugs through a desired physiological barrier. Due to good biomimetic
properties, reproducibility, low cost and high throughput design, PAMPA has now partially
replaced Caco-2 assays (see table 1.2). However, as a simplified model, PAMPA is limited to

predictions associated with passive drug diffusion and does not account for active or
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paracellular transport mechanisms. For this reason, further developments on PAMPA are on-
going"’.

Apart from PAMPA, pre-clinical drug development employs numerous approaches (models)
integrating computational, chemical, physical and biological data sets in order to predict the
drug behaviour in vivo. Table 1.2 lists a few examples of such models demonstrating that

establishing in vitro-in vivo relationships through modelling is possible.

With regards the modelling of drug-membrane interactions, experimental or theoretical
model development is focussed on phase separated systems, where one phase typically
consists of a polar liquid (e.g. water, buffer) and the other, amphiphilic molecules (e.g.
octanol, lipids)*®. Key examples of systems that are employed to study such interactions are
presented in table 1.3. As can be noted, the vast majority of these approaches focus on
direct interactions between drugs and lipid bilayers, since both the chemical composition
and double leaflet-type design are expected to mimic the cell membrane behaviours more
closely. Apart from mimicking the membrane behaviour, an additional advantage of lipid
bilayers as models is the potential to be enriched with other types of molecules (e.g.
proteins'®, carbohydrates®®) and thus used as tools for more complex interaction studies. In
contrast the water/octanol system is limited to only partition and permeability studies. Out
of all the lipid-based examples for drug-membrane interactions, supported lipid bilayers
hold the highest potential as tools for in vitro-in vivo correlation studies, as discussed in the

following section.

18



Chapter 1: Introduction and Aims.

Table 1.2 ‘ Examples of in silico, in vitro and in vivo models in pre-clinical drug development"’.

Model name

Brief description

Applications

In vitro —in vivo
correlation (IVIVC)

Tool enabling the correlation
between  dissolution  and
pharmacokinetic parameters
for a dosage form.

Predictions for human studies; support
for validation of dissolution methods,
formulation manufacturing and
selection of appropriate dosage form.

Physiologically Based
Biokinetic (PBBK)

Platform integrating in vitro
drug metabolism data with
physiological characteristics of

Predictions of dose- and specie-
dependent pharmacokinetics of a drug;
extrapolation of starting dose for

i various animal species and .
modelling P human studies.
S humans.
= Software enabling expression Establishment of drug dose, giving a
<  Benchmark Dose g exp & + BIVING
= of dose-response data as standard response for animal and
(BMD) software . . )
mathematical equations. human studies.
Identification of chemical structures of
Tool relating structural or the most potent activity and lowest
Quantitative physicochemical properties of toxicity, prediction of physicochemical
structure-activity a molecule to the potency of parameters of a drug (e.g. logP, pKa),
relationship (QSAR) its biological response as a quantitative analysis of various
mathematical expression. interactions (e.g. drug-active site or
between two protein domains)
Cells that are able to change
Fluorescent Cell
the levels of fluorescence
Culture models for . . .
. once exposed to SsiRNAs Assessment of siRNA formulation
protein knockdown targeted against reen efficac
studies (GFP-, Luc- g gain & v
) fluorescent protein (GFP) or
expressing cells) .
luciferase (Luc).
- Colorimetric assays measuring
Cell viability assays . . .
the amount of tetrazolium dye Assessment of cytotoxicity profiles for
o) (MTS, MTT, XTT, L .
= WsT) reduction in living cells after different molecules.
Z exposure to a xenobiotic.
Confluent cell monolayer on a
filter microplate separatin
Cell Culture Models . P P . &
. two fluid chambers in a
for drug permeability . . . .
multiple well format. Modelling of human, intestinal drug
assessments (Caco-2, Concentrations of the drug absorption
MDCK, LLC-PKL, HT- moving from the top to thi P
29, TC-7, IEC-18) & P
bottom chamber are recorded
over time.
L Extrapolation of results to humans, e.g.
. Pharmacokinetic and P . 9
Animal Models . non-human  primates for  drug
. pharmacodynamics (PKPD) . .
(rats, rabbits, dogs, . . metabolism, rabbits and rats for safety
o testing of various aspects of . .
= monkeys) . . profiles and dogs for oral absorption
S drug behaviour in vivo. .
= studies of a drug.

Cancer-affected
humans (Phase 0
clinical trials)

First-in-human testing of API
behaviours at subtherapeutic
doses.

Assessment of PKPD relationships and
establishment of drug-target effects
for future phases of clinical trials.
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Table. 1.3 ‘ Experimental and theoretical models for studying drug-membrane interactions.

Name Depiction Comments
Model mimicking water/biological membrane phase
Water- equilibrium. Used to measure partition/distribution
octanol coefficient (LogP/LogD) values of a compound distributed
system®® between equal volumes of water and octanol. Data helps to
predict the PK drug behaviour®.
2-30 nm-sized nanoparticles composed of assembled lipid
Lipid molecules with the hydrophilic head facing the solvent and
micelles®! hydrophobic tails the core. Used as delivery systems? or for
purification and studies on membrane proteins®.
. Around 50 nm-sized lipid bilayer fragments consisting
x /;;f”) 7y usually of two lipids; one forming bilayer (yellow) and the
Bicells** other micelle-like assemblies with the bilayer at the edge
I (brown). Used as delivery systems” or for studies of
membrane amphiphiles and proteins®.
AN, Around 10 nm-sized lipid bilayer fragments encapsulated in
Bilayer an amphipathic protein scaffold around the edge. Used as

Nanodiscs®’

delivery systems® or for studies of membrane protein
functions®.

Liposomes30

20nm — 1um-sized lipid bilayer(s) rolled up in a spherical
shell format; may vary in bilayer number (uni- or
multilamellar) or overall vesicle size (small, giant). Used as
delivery systems or for studies of cell membrane behaviour.

Black lipid
membranes
(BLMs)*

A short-living lipid bilayer patch attached to the pore edges
of a hydrophobic plate that is immersed in liquid, creating
two chambers. Used for electrophysiological and structural
studies of membranes and membrane proteins.

Lipid Self-
assembled
Monolayers

(SAMs)*

SARAIEFRD

Lipid monolayer spontaneously adsorbed on the surface of
a solid support into organised domains of different sizes.
Used for studies of membrane properties or cell-lipid
interactions.

Supported
lipid bilayers
(SLBs)*

NanoSLBs**

An organised double leaflet lipid film deposited on a solid
support. Used for membrane behaviour and interaction
studies.

SLBs deposited on the surface of spherical nanoparticles.
Used as delivery systems and biosensors.

Multi-scale
simulations®

Computer-based calculations of lipid behaviours on a
certain level based on information from different levels.
Used for simulating the molecular dynamics of membrane-
drug interactions. Figure adapted from ref. 44.

Tethered
Bilayer Lipid
Membranes

(t-BLMs)*®

EEEARAR)
3333333333

Models composed of lipid mono- or bilayers associated with
SAMs of thiolipids that are covalently attached to the solid
support. Used for membrane behaviour and interaction
studies.

Microfluidic
systems®’

i
|

.—f%

Models of a various design focusing on interactions of lipid
films with small and precisely controlled volumes of fluids.
Used for membrane behaviour and interaction studies in
liguid environments. Figure adapted from ref. 46.

20



Chapter 1: Introduction and Aims.

1.5 SLBs as a model for membrane interactions.

Supported lipid bilayers (SLBs) or supported phospholipid bilayers (SPBs) could be defined as
organised lipid films that are deposited on a solid support. Biophysical studies often employ
SLBs as research tools to investigate the behaviour and properties of cellular membranes,

when exposed to xenobiotics for several reasons:

Firstly, since SLBs display a number of structural and behavioural similarities when compared
with membranes in the cell, they are often considered a representative model for the in vivo
behaviour of phospholipid membranes. Table 1.4 summarises the similarities that can be
noted between cell membranes and SLBs®. Although SLBs may be criticised for loss of the
‘complexity’ present in cellular membranes, it is the point of a model to simplify and uncover
components of the interactions between the complex structures (e.g. cell membrane) and
acting agents (e.g. drugs) that are not well understood. For those reasons, SLBs indeed seem
to be a reasonable model for studying and possibly correlating the behaviour and responses

of a cell membrane in vivo after exposure to a drug.

Secondly, since research into SLBs is extensive, characterisation of SLB model composition
can be performed with a wide range of techniques. Additionally, since SLBs are surface
deposits, high resolution techniques such as ToF-SIMS*, XPS* or AFM* can be employed.
These techniques enable characterisation of SLB chemical composition and observation of its
behaviour at a nanometre scale, making investigations of membrane-drug interactions at a
molecular level possible. Table 1.5 lists key techniques that are used for SLB characterisation

studies.

Thirdly, the SLBs are easily alterable systems; both the components of the experimental
environment and SLB can be easily modified. On the one hand, the number and types of
lipids in the model composition can be simply chosen. In addition, SLBs can be functionalised
with alternative chemical structures, e.g. proteins, carbohydrates, fluorophores, polymers,
which increase the complexity of SLB model and enable measurement(s) of the desired
interaction(s). Furthermore, both the surrounding liquid environment and solid support are
also relatively easy to adjust. Providing the liquid is polar and the solid support is flat
enough, any desired environment may be introduced. These properties make SLBs very
potent candidates for high throughput applications of interest. Some examples of such

alterability are presented in table 1.6.
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Table 1.4 ‘ Comparison of cell membranes and supported lipid films.

Property Cell membrane Supported lipid film
Scheme: . l j,
. Two lipid leaflets with proteins Two lipid leaflets; attachment
Chemical __
. and carbohydrates. of other chemistries
composition: .33
possible™.
Supported by cytoskeleton Supported by a solid support
Surround (bottom); suspended in (bottom); suspended in a
environment: physiological buffers (top & polar liquid (top & bottom).
bottom).
Continuous or porous films Various® (continuous,
(membranes considered porous, patch-like film
Film quality: continuous, while lipid film a qualities).
porous bilayer with holes for
transmembrane proteins).
Usually, one bilayer ~ per Various® (bilayer or

Number of bilayers:

membrane; each cell is a multi-
bilayer environment.

multilayer topographies).

Spatial lipid
distribution:

Unclear whether distribution is
homogenous or organised in
domains (rafts)®.

Both homogenous and phase
separated morphologies
possible.”

Lipid distribution
across two leaflets:

Membrane asymmetry present
for some lipids™.

Preparation of asymmetric
structures possible.*®

Membrane dynamics:

Lateral and vertical mobility of
lipids present (fluidic mosaic
model?’ & flip-flop®
phenomenon).

Lateral mobility present®.
Flip-flop phenomenon
reported.

Behaviour when
exposed to a
xenobiotic:

Complex and difficult to measure
at nanoscale.

Simplified and possible to
measure at nanoscale™.
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Table 1.5 ‘ Key techniques employed for SLB characterisation studies.

Property

Techniques

SLB morphology & lipid

Scanning probe (NSOM>!, AFM, SICM??), electron
(TEM*, SEM>*) fluorescence (FLICM®, TIRFM®) or

behaviour:

optical (RICM*’) microscopy, neutron® & X-ray>
scattering, neutron® reflectometry, X-ray® reflectivity
& ellipsometry®?), fluorescence (SPT®®, FRET® or FCS®,

FRAP®, SPR®’), optical (DPI®, OWLS®) techniques,
QCM-D’°, computational simulations’.

SLB chemical composition:

ToF-SIMS, XPS*°, NMR"?

Electrical properties:

EIS”® and other DC and AC measurements’®

Vibrational properties:

Ultrafast spectroscopy’®, computational modelling

Mechanical properties:

AFM or other scanning probe techniques’®

Abbreviations: NSOM — near-field scanning optical microscopy; AFM — atomic force microscopy; SICM — scanning ion-
conductance microscopy; TEM — transmission electron microscopy; SEM — scanning electron microscopy, SPT — single particle
tracking; FRET — Foerster resonance energy transfer; FCS — fluorescence correlation spectroscopy; FRAP — fluorescence
recovery after photobleaching; SPR — surface plasmon resonance; FLICM — fluorescence interference contrast microscopy;
TIRFM — total interference reflection fluorescence microscopy; DPI — dual polarisation interferometry; RICM — reflection
interference contrast microscopy; OWLS — optical waveguide lightmode spectroscopy; QCM-D — quartz crystal microbalance
with dissipation; ToF-SIMS — time-of-flight secondary ion mass spectrometry; XPS — X-ray photoelectron spectroscopy; NMR —
nuclear magnetic resonance; EIS — electrochemical impedance spectroscopy; DC — direct current; AC — alternating current

Table 1.6 | Examples demonstrating alterability of SLB properties.

Variable Adjustment Result
Lipid number or Addition of 5-15% CHOL to Changes in bilayer morphology
type: DOPC/SPM-composed SLBs”’. and behaviour.
Insertion of a transmembrane . . .
. . . Studies of protein-antibody
Protein: protein phospholamban into . . .
19 interaction profiles.
SLBs™.
Insertion of glycan-lipid Studies of cell-bilayer adhesion
Carbohydrate: conjugates into SLBs at various profiles or  protein-glycan

densities®.

interactions.

Fluorophore:

Insertion of a-parinaric acid into
SLBs”.

Studies of membrane phase
transition behaviour.

Provision of air stability for

I ti f PEG-lipid
Polymer: nse‘r 'on . © 79 P! SLBs  enabling  membrane
conjugates into SLBs"". . . -
interaction studies.
Immobilisation of  protein,
_ Insertion of biotin-lipid vesicles, bilayers on the bilayer
Biotin: . . 0 . .
conjugates into SLBs™". surface via streptavidin for
further studies.
E f DMPC- d
Liquid xposure o compose Changes in frictional properties

environment:

SLBs to 0-0.1 M sodium chloride
media®.

of SLBs.

Solid support:

Exposure of SLBs to different
surfaces and surface
topologies®.

Studying behavioural changes
of bilayer lipids.

Abbreviations: sLB - supported lipid bilayer; CHOL — cholesterol; DOPC — dioleoylphosphatidyl choline; SPM -
sphingomyelin; DMPC — dimyristoylphosphatidyl choline; PEG — polyethylene oxide;
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On the other hand, SLBs enable the development of lipid films of both: different qualities (or
edge lengths), including continuous, porous and patch-like qualities, and also the number of
lipid layers (e.g. bi- or multilayers). SLBs of desired properties can be achieved through a
variety of fabrication methods that are briefly detailed in table 1.7. It is worth mentioning
that the simplicity and range of fabrication techniques available for SLBs, as well as other
aspects of alterability are the key advantages of SLBs over the other lipid-based model

systems (e.g. tethered bilayer membranes).

Finally, SLBs hold the potential to be studied in a high throughput manner. Although several
approaches for SLB microarray development have already been reported in the literature,
there is still a lack of commercial tests that enable the direct screening of direct
formulation/APl-membrane interactions in a routine high throughput manner. Apart from
PAMPA, liposomes® and a few automated lipid-based detection systems targeted mainly at
the research community (Biacore Life Sciences®”, Nanion Inc.®, Oxford NanolLabs®), the
potential of lipid bilayers for high throughput screening (HTS) remains to be discovered. The
most likely cause of this situation is due to several limitations associated with SLBs, as

discussed in the section below.
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Table 1.7 | Key techniques used to fabricate SLBs.

Technique

Principle

Comments

Vesicle deposition®’

Liposomes adsorb at the surface
(1), deform and/or fuse with
each other (2) and open
forming a bilayer (3).

Popular technique.

Quick and easy to handle.
Provides controlled fabrication of
various film qualities.

Excessive liposomes may be
problematic to remove.

Suitable for preparation of
complex compositions.

Bilayer self-
spreading®

Once immersed in a polar
environment above the transition
temperature, bulk lipids start to
self-spread on a solid support
forming a bilayer.

Quick and easy to handle.
Provides clean and continuous
lipid bi- and multilayers with
limited control.

Lipids in a mixture may not
spread evenly.

Complex bilayer compositions
may need to be fabricated
through post-functionalization of
the bilayer

Langmuir-Blodgett®
(Langmuir-Schaeffer)

™
ke

First bilayer leaflet is formed
through the adsorption of lipids
at the surface after emersion of a
solid support from a lipid
monolayer that is assembled at a
liquid surface (1).

Second leaflet is formed through
the immersion of the support in
liquid  with  another lipid
monolayer at the surface (2).

Requires advanced knowledge
and equipment to handle.
Enables controlled fabrication of
clean and continuous lipid bi- and
multilayers.

Operation in horizontal
immersion direction possible.

Complex bilayer compositions
may need to be fabricated
through bilayer post-

functionalization of the bilayer.

Contact Printing90

v

90

o 20089 L t3aee,

& $~ -O ’r
65553300 55388

Liposomes are forced to break
and form bilayers under the
mechanistic force of the stamp.

Requires advanced knowledge
and equipment to handle.
Fabrication of wvarious film
qualities with limited control.
Excessive liposomes problematic
to remove.

Spin coating91

Bilayer forms through spreading
of lipids in a high humidity
chamber after pipetting of lipid
solution in organic solvent onto a
spinning surface.

Requires advanced knowledge
and equipment to handle.
Fabrication of clean and
continuous lipid bi- and
multilayers with limited control.
Disc-shaped surfaces preferred.
Complex bilayer compositions
mainly through bilayer
functionalization.
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1.6 Current limitations associated with SLBs.

Unfortunately, there are several limitations associated with SLBs as models for the in vitro

screening of API-membrane interactions.

Firstly, the two leaflet structure is only present in an aqueous (or any other polar)
environment. Shortly after SLBs are dried and exposed to air, the bilayer structure gradually
loses stability causing the SLB lipids to collapse and form alternative structures due to the
amphiphilic nature of lipid molecules (e.g. lipid aggregates, mono- or multilayers non-
specifically adsorbed on the surface)®. The lack of air stability is therefore an issue, when
the complex mechanisms between membranes and formulations are investigated limiting
such studies to liquid environments which provide the maintenance of a double leaflet
structure. For that reason, the development of air stable SLBs has been a research focus for
a while. Here, several approaches have been proposed, including: covering SLBs with
moisturising agents (trehalose and other sugars®, proteins®, hydrophilic polymers’®) or the
deposition of SLBs on specific solid supports™ (figure 1.4). Alternatively, incubation of SLBs
in high humidity environments may provide the required stability®’. From a microarray
perspective, the solid support and high humidity approaches appear to be particularly
useful, since they would enable development of an SLB platform that could be manufactured
and studied via fully automated liquid dispensing systems (e.g. piezoelectric inkjet print
head technology). Such systems are of interest, as they assure high precision and accuracy
for liquid handling-associated applications™. Here, the presence of moisturising agents in the
APl-membrane environment may interfere with the API-SLB interaction or affect the printing

process.

Secondly, SLB handling and optimisation are often not an easy task to achieve. Since the
behaviour of SLBs depends on many factors (e.g. room temperature, membrane
composition and film qualities, type of solid support and solution, bilayer mechanics, phase
behaviour or lipid crystalline structures within the mixture), various parameters need to be
monitored and/or considered in order to develop an SLB-based screening platform that is
well understood. For this reason, an advanced knowledge of lipid chemistry and biophysics,
as well as membrane research is essential for appropriate interpretation of model SLB

behaviours.
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Figure 1.4. Strategies providing air stability for SLBs. In order to assure air stability, SLBs are

coated with lipopreservatives, such as trehalose or other carbohydrates, hydrophilic proteins
and polymers or their conjugates with lipids before exposure to air (A). Alternatively,
deposition of SLBs on solid supports of advanced chemistry (e.g. FluidArray®) have been
reported to provide air stability (B). Figures were adapted from ref. 102 and 28.

Finally, the literature related to SLBs is impressive and plentiful. On the one hand, this is the
reason why SLBs are considered very attractive research tools, as indicated above. However,
on the other hand, the inconsistencies in terms of the types and number of lipids within the
SLBs, terminologies of lipid-based models, as well as SLB fabrication and characterisation
methodologies make it difficult to find and compare results and extract unambiguous
conclusions across different papers, authors or research groups. Furthermore, the vast
majority of the SLB research in the literature is performed using systems composed of only
one or two lipid molecules’”’, while the SLB models employing more complex lipid
compositions are less popular’™. Interestingly, a critique may be raised that an increase in
the amount and types of lipids could unnecessarily boost the complexity of a model SLB.
However, it had also been demonstrated that studies on SLBs of oversimplified structure
may result in misleading observations’. For that reason, investigations into more complex
lipid compositions of physiological relevance seem to be a reasonable compromise in order

to correlate the SLB interactions of APIs with their performance in vivo.
1.7 Conclusion and aims.

Clearly, the development of screening model(s) enabling correlation of the in vivo and in
vitro behaviours of a pharmaceutical formulation is not an easy task and without further

research, progress will not be made. However, since the approaches currently used in
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pharmaceutical sciences are either too basic or too complex to fully elucidate the toxicity
and targeted delivery of biopharmaceuticals in the human body, it is fair to state that a more
detailed understanding of drug behaviours in physiologically-relevant environments at a
molecular level would be beneficial. Here, analysis techniques such as AFM, ToF-SIMS or XPS
that enable the observations of in situ drug behaviours at nanometre scales hold

considerable potential.

Furthermore, since direct drug-cell membrane interactions have enabled the elucidation of
the mechanisms behind the behaviours of APIs in vivo, the studies of drug-SLB interactions
using the techniques above are a reasonable starting point for model development. Here, an
important factor to consider is the model lipid composition of an SLB, so that it reflects the
behaviour of lipids in biological membranes more closely. For this purpose, it is sensible to
investigate bilayers with lipid compositions close to the ones of cell membranes in the first
instance, e.g. lung epithelial cell, blood-brain barrier or even erythrocyte (as a more general
model) membrane lipid compositions. Investigations into the latter may be particularly
useful for assessing the general modelling potential of SLBs that are composed of several
different lipids. In terms of the APIs introduced to SLBs, the interactions of bilayers with
biopharmaceutical formulations, such as nucleic acid therapeutics, antibodies or polymer-
enhanced delivery systems remain a fairly undiscovered area. Hence, the elucidation of
mechanisms behind such interactions may be of significant interest from a pharmaceutical

point of view.

In parallel, development of an SLB microarray that enables a high throughput screening of
the SLB-formulation interactions would also be of interest. Such microarrays would facilitate
rapid assessments of interactions between a range of formulations or APIs and a range of
physiologically-relevant lipid compositions. This may provide useful insights into API
behaviours at various lipid-based barriers in biological systems and improve the general
understanding of API/formulation performance in vivo in a high throughput manner.
However, such limitations as SLB air instability or consideration of rapid readout

methodology may need to be primarily addressed.

To conclude, SLBs seem to hold a realistic potential as an in vitro screening approach to
study drug-membrane interactions. Since appropriate understanding of such interactions is
vital for predicting the API performance in vivo, thorough research into this interesting, yet

challenging field may be worth the effort.
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For this reason, this thesis aims to develop and assess SLBs of physiologically-relevant lipid
compositions, as tools for high throughput screening of pharmaceutical formulation-

membrane interactions.

In chapter 2, the methodology and experimental approaches for the investigations of SLBs at

a nanometre scale (e.g. AFM, ToF-SIMS, XPS) are briefly explained.

In chapter 3, the development and characterisation of model SLBs that are composed of five
natural lipids is performed using the methods above. Here, since such investigations, to the
author’s knowledge, have not been attempted previously, the innovative approaches
towards qualitative and quantitative data analysis are indicated. Additionally, the two SLB
fabrication techniques: vesicle deposition (VDT) and bilayer self-spreading (BSST) are

assessed with regards to the SLB microarray development.

In chapters 4 and 5, the model SLBs are used for the elucidation of interaction mechanisms
between biological membranes and pharmaceutical formulation components. Chapter 4
focuses on a recently re-discovered class of polymer excipients: Pluronics®, not only
revealing their likely performances and interaction mechanisms in vivo, but also indicating
further advantages of SLBs as experimental models for excipient-membrane interaction
studies. The focus of chapter 5 is directed towards the AFM investigations of model SLB-
biopharmaceutical formulation interactions. Studies on models for siRNA therapeutics at a
nanometre scale are correlated with the literature-reported in vivo performances and
toxicities of nucleic acid therapeutics. In addition, the performance of basic siRNA-like
polyplexes is assessed highlighting the need for the development of an SLB-based screening

approach that is suitable for commercial applications.

For this reason, the development of an SLB microarray prototype is attempted and reported
in chapter 6. The method development, as well as technological issues associated with the
optimisation processes are described in order to assure both repeatability and

reproducibility of such approach.

Finally, the research is concluded and the directions for further investigations are outlined in
chapter 7. In addition, two potential research disciplines that may emerge from this research

are identified.

Since the nature of this PhD project is fairly multidisciplinary, it is the author’s hope that this

thesis would significantly contribute towards a general progress within the pharmaceutical
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sciences. For this reason, the consideration of the discussion and hypotheses presented in

this thesis is encouraged to everybody, who is interested in pharmaceutical research.
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Chapter 2: Materials and Methods.

Abbreviations:

3D — three dimensional; A — deoxyadenylate; AFM — atomic force microscopy; AUC — area under the
curve; bp — base-pair; BSST — bilayer self-spreading technique; ; C — deoxycytidilate (with regards to
nucleic acid) or carbon; Cg, — fullerene; Ca — calcium; Calc — calculated; CHOL — cholesterol; CPS —
counts per second; DE — Germany; DLS — dynamic light scattering; DNA — deoxyribonucleic acid; DOPC
— dioleoylphosphatidyl choline; DOPE - dioleoylphosphatidyl ethanolamine; DOPS -
dioleoylphosphatidyl serine; DPPC — dipalmitoylphosphatidyl choline; EPC — egg phosphatidyl choline;
F — flakes (with regards to Pluronic®); f, — resonant frequency (with regard to AFM probe); FW —
formula weight; G — deoxyguanylate; HPLC — high-performance liquid chromatography; k — spring
constant (with regard to AFM probe); K — potassium; L — liquid or length (with regards to Pluronic® or
AFM probe, respectively); MALDI — matrix-assisted laser desorption/ionization; Mg — magnesium; MS
— Microsoft; N — nitrogen; Na — sodium; P — phosphorous; PBS — phosphate buffer saline; Pcode —
product code; PEO — polyethylene oxide; PPO — polypropylene oxide; PPP — phosphonium polymer;
QELS — quasi-elastic light scattering; RH — relative humidity; RT — room temperature; s.c. — so called;
SD - standard deviation; SLB — supported lipid bilayer; SPM — sphingomyelin; ToF-SIMS — time-of-
flight secondary ion mass spectrometry; UHV — ultrahigh vacuum; UK — United Kingdom; US — United
States of America; T — thymidylate or thickness (with regard to DNA or AFM probe, respectively); VDT
— vesicle deposition technique; W — width (with regard to AFM probe); XPS — X-ray photoelectron
spectroscopy.

2.1 Materials.

Lipids: egg phosphatidyl choline (EPC), cholesterol (CHOL) were purchased from Sigma-
Aldrich (UK), while dioleoylphosphatidyl serine (DOPS), dioleoylphosphatidyl ethanolamine
(DOPE), sphingomyelin (SPM), dipalmitoylphosphatidyl choline (DPPC), dioleoylphosphatidyl
choline (DOPC) were purchased from Avanti Polar Lipids (US). Cholesteryl chloroformate was
purchased from Fluka (UK). Polymers: Pluronics® L-62; L-64; F-68 have been obtained from
Martin Redhead (University of Nottingham); the polyphosphonium polymer (PPP) from
collaboration with Vanessa Loczenski (University of Nottingham). 19 base-pair (bp)
oligomers were purchased from biomers.net (DE). PBS was purchased from PAA The Cell
Culture Company (UK), Tris from Sigma-Aldrich and magnesium chloride from Sigma-Aldrich.
Organic solvents (pyridine, DMF, dichloromethane) were purchased from English or German
suppliers, as listed below. 14 mm mica discs, microscope slide-sized mica sheets and metal
disc specimens were purchased from Agar Scientific (UK). FluidArray®-type surfaces were
purchased from MicroSurfaces, Inc. (US). AFM probes: SCANASYST-FLUID+, RTESPA and
MCLS were purchased from Bruker Nano (UK). Chemicals and consumables were used as
received, unless otherwise stated. The structures of the key chemicals are presented in
figure 2.1. The structure of PPP has been presented in figure 5.9. Product details are listed

below:
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EPC — L-a-Phosphatidylcholine from egg yolk, Type XI-E, 100mg/mL in chloroform; (P-
2772-250MG;Pcode: 101021317; Lot# HMBB7405V).

CHOL - Cholesterol; (C8667-5G; Lot# 010M5303)

DOPS - 1,2- Dioleoyl-sn-Glycero-3-[Phospho-L-Serine] (Sodium Salt); 25mg/mL in
chloroform; (840035C; Lot# 181PS-313).

DOPE - 1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine; 25mg/mL in chloroform;
(850725C; Lot# 181PE-351).

SPM - Sphingomyelin (Egg, Chicken); 25mg/ml in chloroform; (860061C; Lot# ESM-106)
DOPC - 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine; 10mg/mL in chloroform; (850975C;
Lot# 181PC-189).

DPPC - 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine; 10mg/mL in chloroform; (850355C;
Lot# 160PC-258).

19bp oligonucleotides: 5’-gagatgtaaggccaggccg-3’ (HPLC purified, FW (Calc) = 5904
g/mol; FW (MALDI found) = 5903 g/mol; Tm = 54°C, Length: 19bp); 5'-
ctctacattccggtcegge-3’ (HPLC purified, FW (Calc) = 5717 g/mol; FW (MALDI found) = 5718
g/mol; Tm = 54°C, Length: 19bp).

PBS — Dulbecco’s Phosphate Buffer Saline (1x) without Ca™ and Mg™ (500ml; Cat No:
H15-002; Lot: H00211-2880).

Tris — Trizma® pre-set crystals pH7.4: Sigma-Aldrich (T7693-100G; Batch No: 114K5466).
Magnesium Chloride — Anhydrous; Sigma-Aldrich (M-82661KG; Lot# 100K0176).

Mica disc 14mm - Agar Scientific (10x) (F7019).

Mica sheets - 3” x 1” Mica, Agar Scientific (20x) (G250-1).

Metal disc specimen — SPM Specimen Discs 15mm, Agar Scientific (50x) (F7003).
SCANASSYST-FLUID+ - silicon Tip on Nitride Lever with coat of Ti/Au 45 nm coat at the
back side (Cantilever: T: 600 nm; f,: 120-180 kHz; k: 0.7 N/m).

RTESPA probe - 0.01-0.025 Ohm-cm Antimony (n) doped Si with 50 +/- 10 nm Al coat at
the back side (Part: MPP-11120-10; Cantilever: T: 3.5-4.5 um; f,: 347 — 393 kHz; k: 20-80
N/m; L: 115-135 pum; W: 30-40 um).

MCLT probe — silicon nitride tip 45 nm Ti/Au coat at the back side (Cantilever: T: 500-600
nm; fy: 90-160 kHz; k: 0.3-1.2 N/m; L: 80-90 um; W: 13-23 um).

Cholesteryl chloroformate — Fluka; 10g powder; =299 %; Mr = 449.12 g/mol; Pcode:
26790; Lot & Filling code: 1259298 & 11706081.

Pyridine — Riedel-de Haén; 1l; >99.5%; Pcode: 33553; M = 79.10 g/mol; Lot: 52170.

DMF — N,N-dimethyl formamide; Sigma-Aldrich; Pcode: 270547-1L; 299.9%; FW = 73.09;
Batch# STBB7278.

Dichloromethane — Sigma-Aldrich; Pcode: 270997-1L; >99.8%; MW: 84.93 g/mol; Lot#
STBD2904V.

FluidArray®-type surface — MiscroSurfaces, Inc.; COOH_02_GS, Acid Glass Slide (High
Density); Lot: 2005635; Density of COOH groups: (10™ per cm?+ 5%).
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Figure 2.1. The chemical structures of lipids (1), PEO-PPO-PEQ (Pluronic®) tri-block co-
polymers (2) and 19bp DNA strand (3). Abbreviations: CHOL — cholesterol;, SPM -
sphingomyelin; EPC — egg phosphatidyl choline; DOPS — dioleoylphosphatidy! serine; DOPE —
dioleoylphosphatidyl ethanolamine; DOPC - dioleoylphosphatidyl choline; DPPC —
dipalmitoylphosphatidyl choline; PEO — polyethylene oxide; PPO — polypropylene oxide; A —
deoxyadenylate; G — deoxyguanylate;, C — deoxycytidilate; T — thymidylate; DP — degree of
polymerisation. Curly bonds are shown to indicate break in covalent bonds (1 and 3), whilst

dashed lines are drawn to indicate the functionalities that form hydrogen bonds to other
DNA bases (3).
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2.2 Methods.

2.2.1 Preparation of supported lipid bilayers.

2.2.1.1 Calculation of lipid amounts for liposome preparation.

13 mM liposome solutions of the (%w/w): 23% CHOL (F.W. = 386.65 g/mol), 18% SPM (F.W =
703.03 g/mol), 18% DOPE (F.W. = 744.04 g/mol), 7% DOPS (F.W. = 810.03 g/mol) and 33%
EPC (F.W. = 768 g/mol) lipid mixture were used for SLB preparation®. Therefore, 1 g of lipid
mixture contains: 230 mg CHOL, 180 mg SPM, 180 mg DOPE, 70 mg DOPS and 330 mg EPC. If
expressed in moles (mass of lipid/molecular weight of lipid), the 1g mixture of: 0.5949 mmol
CHOL, 0.2560 mmol SPM, 0.2419 mmol DOPE, 0.0864 mmol DOPS and 0.4297 mmol EPC,
would contain 1.6089 mmol lipid mixture molecules. Since 13 mM (0.013 moles of all lipids
in 1000 ml solution) is required for the liposome solution, 0.0048 mmol (or 1.8586 mg)
CHOL, 0.0021 mmol (or 1.4542 mg) SPM, 0.0020 mmol DOPS (or 1.4543 mg) DOPE, 0.0007
mmol (or 0.5655 mg) DOPS and 1.6089 mmol (or 2.6665 mg) EPC should be mixed together
[as an example: 0.0048 mmol CHOL = (0.013 mmol lipids x 0.5949 mmol CHOL)/1.6089 mmol
lipid or 1.8586 mg CHOL = 0.0048 mmol CHOL x 386.65 g/mol]. Effectively, 74.3 ul 25 mg/ml
CHOL, 58.2 ul 25 mg/ml SPM, 58.2 ul 25 mg/ml DOPE, 22.6 pul 25 mg/ml DOPS and 26.7 pl 25
mg/ml EPC chloroform lipid stock solutions were mixed, evaporated and resuspended in 4
ml 0.2 um Millipore water to give 2 mg/ml liposome stock.

2.2.1.2 Bilayer self-spreading technique (BSST)>

Chloroform solutions of lipids were mixed. 10 pg lipid mixture was pipetted onto the centre
of freshly cleaved 14 mm mica discs, glued to a metal disc specimen (Agar Scientific) and
dried under a gentle stream of argon. Subsequently, the sample was pre-heated at 45°C on a
hotplate for 5 minutes and incubated for 45 minutes under saturated liquid-vapour
conditions after gentle addition of 100 ul Millipore water onto the sample surface. Finally,
the SLB-coated surface was rinsed in a gentle or vigorous manner in order to fabricate
continuous or patch-like lipid film qualities, respectively.

2.2.1.3 Vesicle deposition technique (VDT)?.

The unilamellar lipid vesicles were prepared using extrusion method. Briefly, chloroform
solutions of lipids were mixed and dried under argon to form a thin film in a round bottom
flask. Subsequently, lipids were suspended in Millipore water at 2 mg/ml and exposed to 10
freeze-thaw cycles. The suspension was extruded 21 times through 100 nm polycarbonate
membrane filters (Whatman) using hand-held system (Avanti Polar Lipids) to obtain
unilamellar mixed lipid vesicles and stored at 4°C for a maximum of 30 days unless otherwise

stated.
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14 mm mica discs were glued to metal disc specimens and left overnight to settle. Freshly
cleaved mica was pre-incubated with 10 mM magnesium chloride for 5 min at RT, rinsed
once with Millipore water, heated up to 35°C on a hot plate with metal support providing
even heat distribution and exposed to 160 pl 0.5 mg/ml suspension of liposomes for 45
minutes under saturated liquid-vapour conditions. Finally, the SLB-coated surface was gently
rinsed with PBS three times at RT in order to produce porous film qualities. For continuous
and multilayer film qualities the same protocol was followed using 60- and 100-minute
incubation at 35°C, respectively. The patch-like topographies were produced through one
vigorous and two gentle PBS rinses at the end of the protocol. The 60 minute incubation of
1.5 ml liposome solution with mica sheets glued to a glass microscope slide was used to
prepare the microscope-sized model lipid films of porous qualities. The same protocol with

the incubation at or above 45-50°C was used in order to obtain phase separated model SLBs.

2.2.2 Atomic Force Microscopy (AFM).

2.2.2.1 Background.

AFM or SFM (Scanning Force Microscopy) is a piezoelectric technique used for imaging,
manipulating and measuring matter at the nanometre scale. Prof. Gerd Binning, Prof. Calvin
Quate and Prof. Christoph Gerber invented the first AFM in 1986". Two major AFM
applications are imaging® and force measurements®. The principle behind AFM operation is
depicted and explained in figure 2.2. Nanometre resolution, ability to analyse a wide range
of materials in both air and liquid environments and little requirements for sample
preparation are often mentioned as key strengths, whilst small scan size and low speed of
imaging, image artefacts, destruction of fragile materials and difficult handling as common
weaknesses of AFM’. AFM is frequently used in many disparate scientific areas, including
biophysics®, material and surface sciences’, earth sciences'®, food sciences> ',
crystallography®® or metallurgy™. AFM can operate in a number of modes, such as contact,
tapping or PeakForce® Tapping. Tapping mode is less destructive towards the sample of

interest than contact mode. PeakForce® Tapping mode enables the use of reduced and

controlled forces without the loss of resolution whilst e.g. imaging the sample of interest™.
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Figure 2.2 The schematic of AFM operation principle. (1) The AFM probe operates in X-Y-Z
directions at or very close to the sample surface depending on the imaging mode. The X-Y
positions are controlled through raster scanning signals applied to X-Y piezos, whilst the AFM
feedback loop output signal adjusts the Z position. (2) In the resting state the laser beam is
reflected of the back side of the AFM cantilever and focused onto centre of a photosensitive
position detector. (3) In its basic mode of operation, throughout imaging interactions
between the probe and sample result in changes in the cantilever deflection, and hence the
position of the laser on the photodetector. (4) In constant-force imaging a feedback loop
contradicts these changes and moves the z-piezo up or down to maintain constant cantilever
deflection. (5) The AFM controller plus software translate the feedback signal into high
resolution images. Figure elements are not in scale for presentation purposes.
2.2.2.2 Experimental.
2.2.2.2.1 Basic SLB imaging (chapter 3 and 4).

A MultiMode scanning probe microscope with Nanoscope llla controller (Bruker) and E-
scanner (Bruker) was used in tapping mode to acquire images of 3-5 um-sized sample areas
(512 x 512 pixel resolutions) in agqueous buffer environments. Images were acquired using
‘SCANASYST-FLUID+" AFM probes (Bruker) and the following parameters: 440V Z limit, 2.5-10
kHz sweep width, 26-40 kHz drive frequency, 800-1500 mV drive amplitude, 0.5-2 mV
amplitude setpoint, 0.1-0.5 integral, proportional and look ahead gains, 1-3.05 Hz scan rate.
Sample areas with a minimum of 50% SLB coverage were chosen and monitored over time.
2.2.2.2.2 SLB interaction studies (chapter 5).

A MultiMode scanning microscope with Nanoscope V controller (Bruker) and E-scanner

(Bruker) was used in PeakForce® Tapping mode to acquire images of 3-5 um-sized areas (512
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x 512 pixel resolutions) in liquid environments. Images were acquired using ‘SCANASYST-
FLUID+ AFM probes (Bruker) and the following parameters: 2.3-3.1 uym Z limit, 4 V
deflection limit, 8-10 nm amplitude, 0.05-0.15 V setpoint, 0.3-0.5 nm noise threshold, 1 Hz
scan rate and automatically controlled feedback gains. Initially, sample areas with a
minimum of 50% SLB coverage were chosen and briefly monitored. Subsequently, the
excessive liquid on the sample was replaced with an appropriate solution of interacting
agent and the AFM probe was re-introduced as soon as possible.

2.2.2.2.3 SLB air stability studies (chapter 1 and 6).

An EnviroScope scanning microscope with Nanoscope llla controller (Bruker) and humidity
chamber (Triton Technology Ltd, UK), was used in tapping mode to acquire images of 3-5
pum-sized sample areas (512 x 512 pixel resolution) in either liquid or high humidity
environments. Images in liquid were acquired using the F tip of ‘MLCT’ AFM cantilevers
(Bruker) and the following manually-adjusted parameters: 440V Z limit, 2.5-5 kHz sweep
width, 26-40 kHz drive frequency, 800-1500 mV drive amplitude, 0.5-2 mV amplitude
setpoint, 0.1-0.5 integral, proportional and look ahead gains, 1-3.05 Hz scan rate. Images in
air were acquired using ‘RTESPA’ AFM probes (Bruker) and the auto-tuned parameters as
above apart from: 290-330 kHz drive frequency, 70-250 mV drive amplitude, 0.1-0.3 Hz
amplitude setpoint, 0.5-4 gains. Initially, sample areas with a minimum of 50% SLB coverage
were chosen and briefly monitored in liquid environments. Subsequently, the AFM probe
was replaced, and a high humidity environment introduced and the excess of liquid on the
sample removed. The AFM probe was re-introduced as soon as the remainder of the liquid
on the sample surface had been evaporated using sample stage (Bruker) at 28°C.

2.2.2.2.4 SLB microarray imaging (chapter 6).

A Dimension scanning microscope with a Nanoscope llla controller (Bruker) was used in
tapping mode to acquire images from a minimum of three 10-25 um-sized areas (512 x 512
pixel resolution) in liquid environments. Images were acquired using the F of ‘MLCT’ AFM
cantilevers (Bruker) and the following parameters: 440V Z limit, 2.5-10 kHz sweep width, 26-
40 KHz drive frequency, 500-3000 mV drive amplitude, 1-4 V amplitude setpoint, 0.1-0.8
integral, proportional and look ahead gains, 1-2 Hz scan rate.

2.2.2.2.,5 Imaging of phosphonium-DNA polyplexes (chapter 5).

Particle imaging was performed as in section 2.2.2.2.2. Appropriate area scan sizes were
chosen according to the particles size. For particle imaging mica was cleaved each time, pre-
incubated with a freshly prepared 10mM 0.2 um magnesium chloride solution, rinsed with

0.2 um PBS and inserted into the AFM cell. Assessment of mica surface was performed
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before the addition of particle solutions. Particle solutions were pipetted onto the mica
surface using a Gilson’s pipette.

2.2.2.2.6 Preparation and imaging of FluidArray®-like surfaces (chapter 6).

Acid Surface high density PEG-coated glass slides were purchased form MicroSurfaces, Inc.
(US). Slides were stored at -20°C until used. The removal of the manufacturer packing, as
well as resealing of the remaining slides was performed in a glove box saturated with argon,
as recommended by the manufacturer. A single slide was used for all experiments.

The slide was immersed in 30 mM cholesteryl chloroformate DMF/dichloromethane (1:1
volume ratio) solution in a glass Petri dish, a catalytic amount of pyridine was added and the
petri dish was incubated for 3.5 hours at RT on a rocking device. Next, the slide was rinsed
with a number of solutions on the rocking device, in order to remove the remainder of the
reagents: two 5-minute rinses with DMF/dichloromethane (1:1) and four 10-minute rinses
with 0.2 um Millipore water. Subsequently, the slide was dried under a gentle stream of
argon and stored in desiccator for 12 hours until imaged with AFM. All AFM images were
collected using a Dimension scanning microscope with a Nanoscope llla controller (Bruker).
Imaging was performed in tapping mode in either air (‘RTESPA’ AFM probes) or liquid (‘F’ tip
of ‘MCLT" probes) environments in the same manner as reported above. In each step,
several areas of the slide were imaged. Initially, the slide was imaged in air. Next, the slide
was incubated with 2 ml of fresh, 0.5 mg/ml liposome solution at 35°C for 45 minutes, in
order to coat the slide with a model SLB through the VDT protocol and imaged with AFM in a
liquid environment. Subsequently, the slide was dried and incubated in a desiccator at RT for
23 hours and imaged with AFM in air. Finally, the 0.2 um PBS solution was gently pipetted
onto the slide surface and imaged with AFM in liquid.

2.2.2.2.7 AFM data analysis.

Images were processed using NanoScope Analysis software ver. 1.20 (Bruker). Each image

st.2" order, automatic threshold) and analysed.

was flattened (1
2.2.2.2.7.1 Evaluation of SLB thickness.

‘Section Analysis’ was employed to evaluate the changes in SLB heights. Each marker line
was drawn horizontally. The marker points were set at the average height for each feature
within the marker line and vertical distance between the points was recorded. Each reported
value was an average of 10 separate readings per image and expressed as (%35 + SD)" nm. SD

was calculated using stdev.p function in MS Excel 2007. An example of such analysis was

depicted in appendix I.

X5 stand for an average of 15 measurements.
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2.2.2.2.7.2 Quantification of SLB coverage.

‘Particle Analysis’ was employed to quantify SLB coverage for each image. The average
number of particles (= pixels) within the SLB uncovered areas (including edge particles) was
recorded through threshold adjustments according to the best possible fit, subtracted from
the average total amount of particles within the image, expressed in percent and plotted
against time. Each value was an average of separate three measurements and expressed as
(Vs = Ay). Measurement errors were calculated using total differential method and the

equation below. See appendix | for a step-by-step guide for this approach.

100

a100

_ 100 q; _ 100-a;
(i = = & Ay =

a100

Aayg)

-Z&ai-+ |

2
100

y; — SLB coverage at i time point [%]
Ay; — error of SLB coverage at i time point [%]

100 — multiplication factor [%]

a; — average number of particles within the SLB covered area at i time point [-]
Q400 — average total number of particles within the recorded area [-]

Aa; — standard deviation of a; [-]

| ...| - absolute value

2.2.2.2.7.3 Evaluation of particle size.

‘Section Analysis’ was used to evaluate the changes in particle size. Each marker line was
drawn in 3 directions: horizontally, vertically and in diagonal (from left to right at 45° angle
against the horizontal). The marker points were set half-way at both sides of each peak and
the horizontal distances were recorded. Each reported value was an average of 3 separate
readings per image for all particle images obtained and expressed as (Xss £ SD) nm. SD was
calculated using stdev.p function in MS Excel 2007. An example of such analysis was

depicted in appendix I.

2.2.3 Time-of-Flight Secondary lon Mass Spectrometry (ToF-SIMS).

2.2.3.1 Background.

ToF-SIMS is an analytical technique used for studying first two nanometres of material
surfaces. Prof. Alfred Benninghoven is considered as one of the key ToF-SIMS inventors™.
ToF-SIMS allows to: establish qualitative (and rarely quantitative) composition of material
surfaces, visualise the distribution of chemical species on the surface and determine the
distribution of chemical species as a function of depth from the surface. The principle behind
ToF-SIMS operation is depicted and explained in figure 2.3. High mass resolution, high

sensitivity and capability of sub-micron scale chemical mapping are often mentioned as key
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strengths, whilst poor ability to quantify chemical species, image shift when changing
between positive and negative modes, the requirement for charge compensation of the
primary ion-beam ionized sample surface with electron flood gun and complex data analysis
as common weaknesses of ToF-SIMS. ToF-SIMS is frequently used in material and surface
sciences™, earth sciences', high throughput applications™, forensics®® and pharmacy®.
Depending on the application, various primary ion sources may be used, e.g. bismuth (1),

fullerene (Cg).
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Figure 2.3. The schematic of ToF-SIMS operation principle. (1) The ion gun generates a
primary ion beam though short pulses. (2) The energy of primary ions is dissipated within the
first 2 nm of the sample surface triggering both series of binary collisions and ejection
(sputtering) of so called secondary chemical species (e.g. ions, neutral molecules) originating
from the surface. It is approximated that 1 primary ion disrupts 10 nm? of the surface (s.c.
static limit). (3) Secondary ions are accelerated onto a mass spectrometer via high voltage
potential between the mass analyser and sample surface and travel through a time-of-flight
(ToF) detector before reaching the mass analyser. The secondary ions of different masses
arrive to the mass analyser at different times, because their velocities in ultrahigh vacuum
(UHV) are different. These arrival times are measured for each secondary ion. (4) ToF-SIMS
software generates spectra based on the time to mass conversions for all secondary ions
captured by the ToF detector. Since the primary ion-surface interaction is limited to a small
area around the ion beam, a precise control over the primary ion beam enables collecting
chemical spectra from every pixel of the targeted surface area of the sample through a raster
scanning approach. This is transferred onto a chemical image via ToF-SIMS software. Figure
elements are not in scale for presentation purposes.

2.2.3.2 Experimental.

2.2.3.2.1 ToF-SIMS: sample preparation.

After preparation samples were rinsed once with Millipore water, dried in air and inserted
onto the ToF-SIMS sample stage. ION-TOF IV Time-of-Flight Secondary lon Mass
Spectrometer was used to obtain spectra of dry lipid films on mica surfaces, using a Cg
primary ion sources (two 500 um x 500 um surface areas per sample) in both positive and

negative modes.
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2.2.3.2.2 ToF-SIMS: data analysis.

Surfacelab 6 (ION-TOF) software was used to analyse ToF-SIMS spectra. Initially, all spectra
were calibrated against: in a positive and ions in a negative mode. The presence of key peaks
for EPC, CHOL, DOPS, DOPE and SPM single lipid samples was confirmed through
comparisons against literature, as well as chemical structures for each lipid or their
fragments using ChemBioDraw software. Due to structural similarities of secondary ions for
single lipid samples, a list of lipid-specific peaks within the model lipid films was identified
via manual, peak-by-peak comparisons of lipid mixture spectra with the single lipid spectra
for each mode. This enabled to establish the single lipid-representative peak list (table 3.1).
Next, the peak lists was used to rebuild the images of chemical distribution of lipids within
the model lipid films. Subsequently, the images of the highest mass counts were selected for
presentation purposes. Also, the list of representative peaks was used for semi-quantitative
evaluation of lipid content within the mixture. For that purpose, the areas under the peaks
were calculated using ‘Statistics” button in IONTOF software as an absolute count value for
each peak, divided by the total count value for each spectrum and plotted as a bar chart.
Each normalised peak intensity value was an average of two data points and was expressed
as (x, £ SD). SD values were plotted using MS Excel 2007 and stdev.p function. Graph was

prepared using GraphPad software.

2.2.4 X-ray Photoelectron Spectroscopy (XPS).

2.2.4.1 Background.

XPS (or ESCA - Electron Spectroscopy for Chemical Analysis) is a quantitative analytical
technique used for studying first 10 nanometers of material surfaces. Kai M.B. Siegbahn
received Nobel Prize in 1924 for discoveries and research on XPS*™. XPS allows to: establish
the elemental composition of or element distribution within material surfaces, measure the
chemical and electronic state of surface elements, as well as calculate empirical formulas
and/or contaminations of pure materials. The principle behind XPS operation is depicted and
explained in figure 2.4. High quantitative accuracy and relatively short analysis time and
roughly 100 ppm detection limit are often mentioned as key strengths, whilst sample
degradation during analysis and changes in sample morphology due to the presence of
vacuum as common weaknesses of XPS. XPS is frequently used in material and surface
sciences?, earth sciences®, metallurgy”, forensic science” and medicine®®. It is worth
adding that X-ray photoelectron spectrometers enable setting the exact energy and time, at
which the X-rays are contacting the sample surface, therefore spectra within both the wide

and narrow regions of binding energies of the chemical bonds can be collected.
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Figure 2.4. The schematic of XPS operation principle. (1) The X-ray source generates a beam
of photons (X-rays), electrons and radiation heat. Those travel through a monochromator in
order to purify the photoelectrons that are transmitted onto the sample. (2) Once the X-rays
reach the sample, their energy is transferred onto the sample atoms resulting in the release
of photoelectrons from the sample (s.c. photoelectric effect) under the ultra-high vacuum
(UHV). Only photoelectrons from the first 5-10 nm of the sample surface (s.c. core level)
reach the photodetector. (3) Detector measures kinetic energies and number of electrons
originating from the samples surface. Here, electrons may or may not lose their kinetic
energy on the way to the photodetector, which is manifested as a background noise or
specific peak on the XPS spectrum, respectively. (4) The XPS software generates spectra as a
function of binding energy (kinetic energy) vs. number of counts for each photoelectron
originating from the sample elements. Here, since the number of count per second (CPS) for
each chemical specie on the surface is proportional to the amount of the specie in the
sample, as well as the binding energy values are specific not only for each element (e.g.
oxygen, carbon, nitrogen), but also for each functional group (e.g. amine, ammonium
groups), a quantitative information about the content of both functional groups and
chemical elements on the sample can be extracted from XPS spectra, based on both peak
fitting analysis and comparison of normalised peak intensity values (areas under the curve).
Figure elements are not in scale for presentation purposes.

2.2.4.2 Experimental.

2.2.4.2.1 XPS: sample preparation.

After preparation SLBs were rinsed once with Millipore water, dried in air, inserted onto the
XPS sample stage and analyzed using a Kratos Ultra Axis X-Ray Photoelectron Spectrometer.
High-resolution spectra in N1s region were acquired from surfaces using mono-chromated
Aluminium X-ray gun with a charge-compensating electron flood (three 300 pm x 700 um
surface areas per sample for 301 s).

2.2.4.2.2 XPS: data analysis.

XPS spectra were analysed using CasaXPS ver. 2.3.10 software (Neal Fairley). Initial

calibration of the spectra was performed using kratos.lib file (University of Nottingham). The
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background lines were established for each peak at appropriate binding energy regions.
Each peak was labelled and highlighted with a light-green band available through software.

The calculation of the SLB thickness was based on the method developed by Seale and
Spencer”’. For XPS-measured calculation of sample coverage (thickness), the K2p and C1s
peak intensities on XPS spectra of both lipid film samples in the wide region were initially
extracted from the software as CPS values. Next, the values were plotted (figure 3.7) and the
linear correlation equations were calculated. The extrapolated intercept values for these
equations were assigned to Ic” parameter, while the Cls peak intensities to Ic parameter in
the equation below. The lipid film thickness values were expressed as (X5 £ SD) nm, based on
three XPS spectra in the wide region. All calculations were performed in MS Excel 2007 using

average and stdev.p functions.

IC
dC = _Lc(Ec) -cosf -In [1 — <—>]

I

d¢ — thickness of the lipid film [nm].

Lc(Ec) — effective attenuation length at the energy of the C1s core level [nm].
Value 3.6 nm was taken from the literature®.

O — take-off angle between the normal to the surface and the plane of the

analyser [°]. Value 50° was established manually between 20-60°.

Ic — intensity of the C1s core level [CPS].

Ic” - intensity of an infinitely thick layer of the same lipid film at the same

spectrometer [CPS].

For the N1s spectra, appropriate functional group populations were identified as
components for every sample, basing on reference binding energy values for nitrogen
functional groups®®. The percentage content of each component within the peak was
established using manual fitting analysis available through software. Since three separate
spectra were obtained during the XPS analysis, each component value within the ratio was
averaged and expressed as (X3 £ SD) %. SD values were calculated using stdev.p function in
MS Excel 2007. The empirical ratios were compared with the theoretically-expected ratio
that was calculated in the following section.

For P2p spectra the procedure was similar. The peak intensity values for each spectrum were
extracted from the CasaXPS software as CPS values and further calculations were performed
in MS Excel 2007. Again, each peak intensity value was expressed as (X; + SD) CPS, since
three separate measurements were performed during XPS analysis. SD values were
calculated as above. The theoretically-expected intensity of the lipid film samples was

calculated in the section below.
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2.2.4.2.2.1 Calculation of the theoretical lipid content and ratio between: -N*(CHs),
=N"*(H,) and —NH- nitrogen groups for lipid film samples analysed with XPS in
the N1s region.

Since the peaks within XPS N1s spectra represent the total amount of electrons originating

from nitrogen-containing lipid molecules, the experimentally established ratios are
equivalent to the ratio between the contents (in per cent) of the numbers of moles of
nitrogen atoms organised in three populations: -N*(CHs), =N*(H,) and —NH-. Therefore, in
order to establish the theoretical ratio between the -N*(CH3), =N*(H,) and —NH- groups, the
number of moles of nitrogen atoms per lipid in each sample were calculated, classified in an
appropriate population and expressed as a per cent of the total number of such moles. Since
160 pl 0.5 mg/ml liposome solution was used to prepare each model SLB using VDT, 80 ug of
lipid mixture was used per each sample. 80 ug of lipid mixture was equivalent to mixing:
18.586 pg CHOL, 5.655 pg DOPS, 26.665 pg EPC, 14.543 pug DOPE and 14.452 pg SPM. The
CHOL molecule did not contain nitrogen atoms; hence it did not contribute towards the total
number of moles of nitrogen atoms in the sample. Therefore, CHOL was not considered for
further calculations. The single lipid masses, once divided by molecular weight for each lipid,
were equivalent to: 6.9815 nmol DOPS (F.W. = 810.03 g/mol), 19.5455 nmol DOPE (F.W. =
744.04 g/mol), 20.5567 nmol SPM (F.W. = 703.03 g/mol) and 34.7201 nmol EPC (F.W. = 768
g/mol) in each sample. Since the single lipids contained 1,1,2,1 moles of nitrogen atoms per
one mole of a lipid molecule, each lipid in the sample was equivalent to: 6.9815 nmol,
19.5455 nmol, 41.1134 nmol and 34.7201 nmol of nitrogen atoms for the amount of DOPS,
DOPE, SPM, EPC in the sample, respectively. Therefore, the total number of moles of
nitrogen atoms per sample was 102.3605 nmol. Since this sum was 100% of the moles of
nitrogen atoms per sample and according to the XPS all -NH-; =N*(H,)and -N*(CHs); groups
originated from: 45% SPM + 13% DOPS (0.45 x 41.1134 nmol SPM + 0.13 x 6.9815 nmol
DOPS); 100% DOPE + 87% DOPS + 8% SPM (1 x 19.5455 nmol DOPE + 0.87 x 6.9815 nmol
DOPS + 0.08 x 41.1134 nmol SPM) and 100% EPC + 47% SPM (1 x 34.7201 nmol EPC + 0.47
41.1134 nmol SPM), the molar content [%] of -NH-; =N*(H,) and -N*(CHs) in the lipid mixture
equalled: 19 %, 28 % and 53 %, respectively. Percentage content of each lipid within a peak
population was also calculated, e.g. the SPM content within the amine population is 18%, as
18% = [(0.45 x 41.1134) nmol SPM x 100 %] / 102.3605 nmol lipids. The calculations starting
from 10 pg (equivalent to the amount of lipids used for BSST) led to the same ratio, because
the molar content values are independent of the total mass of lipids that are used for the

sample preparation.
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2.2.4.2.2.2 Calculation of theoretical intensity of the P2p peak for lipid film samples
analysed with XPS in the P2p region.
Since the single phosphorous peaks on the lipid film spectra in the P2p regions correlate

guantitatively with the amounts of phosphorous within the sample, the XPS-reported
intensities for phosphorous within the single lipid samples corrected by their concentration
in the lipid mixture could have been summed, indicating the peak intensity for phosphorous
in the lipid mixture. Since 80 pg of lipids pipetted on the surface was equivalent to: 6.9815
nmol DOPS, 19.5455 nmol DOPE, 20.5567 nmol SPM and 34.7201 nmol EPC and each of the
lipids had 1 mole of phosphorous atoms per 1 mole of lipid molecule, the total amount of
moles of phosphorous per sample was 81.8038 nmol. If expressed in per cent, the molar
content of phosphorous atoms of DOPS, SPM, DOPE and EPC in the lipid mixture was: 9 %,
25 %, 24 % and 42 %, respectively. Since the mean peak intensities for single lipid P2p
spectra were: (548 + 18) CPS for DOPS, (430 + 9) CPS for SPM, (318 * 15) CPS for DOPE and
(197 + 88) CPS for EPC, the counts per second of each lipid in the lipid mixture were: (49 * 2)
CPS for DOPS, (107 * 2) CPS for SPM, (76 + 4) CPS for DOPE and (83 + 37) CPS for EPC,
respectively (e.g. for DOPS:49 = 0.09 x 548 CPS and 2 = 0.09 x 18). The sums of these

intensity and error values were (316 + 44).

2.2.5 Dynamic Light Scattering (DLS).

2.2.5.1 Background.

DLS (or QELS - quasi-elastic light scattering or photon correlation spectroscopy) is an
analytical technique used for studying the size and behaviour of molecules and particles
dispersed in liquid environments. Prof. Bruno H. Zimm’s work pioneered the development of
DLS®. DLS allows to measure particle or molecular size, as well as size distribution. The
principle behind DLS is depicted and explained in figure 2.5. Short analysis time, user-
friendliness and system automation are often mentioned as key strengths, whilst
requirements for dust-free and laser-transparent solutions as common weaknesses of DLS.

DLS is frequently used in life sciences®, particle engineering®* and many industries.
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Figure 2.5. The schematic of DLS operation principle. (1) A laser beam is scattered in all
directions once it hits a dispersion of maximally 250-nm-sized particles. (2) The Brownian
motions of the particles trigger constructive or destructive interferences of the scattered light
beams. (3) Photodetector records the intensity fluctuations of the scattered light over time.
(4) The software calculates the hydrodynamic radius of the particle, based on the Stokes-
Einstein relation. Figure elements are not in scale for presentation purposes.

2.2.5.2 Experimental.

2.2.5.2.1 DLS: sample preparation.

10 pug DNA/150ul of particle dispersion was pipetted into a clean DLS-suitable quartz cuvette
and inserted into Viscotec DLS Model 802 (Viscotec) sample stage. Measurements were
recorded at 300-1000 k counts laser intensity stabilized through the adjustments of sample
transparency at 20°C. All solutions used for sample preparation were pre-filtered through
0.2 um carbon filters.

2.2.5.2.2 DLS: data analysis.

OmniSIZE ver. 3.0.0.295 (Malvern) software was used for data analysis. A minimum of 30
readings were used to evaluate the o diameter radius of the particles, based on the number
distribution values. DLS measurements were performed directly before the AFM studies.

Particle size values were averaged and expressed as (X = SD). SD values were calculated in

MS Excel 2007 using stdev.p function.

2.2.6 Piezoelectric inkjet print head technology.

2.2.6.1 Background.

Piezoelectric inkjet print head technology is a non-contact dispensing technique used for an
automated deposition of picolitre volumes of low viscosity solutions on material surfaces. A
Japanese company Epson is considered a world-wide pioneer of this technology.

Piezoelectric inkjet print head technology allows to: coat surface materials with many
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substances using a desired amount of layers (2D and 3D printing), perform chemical
reactions at picolitre scales (in-drop reactions) or create microarrays for high throughput
screening applications. The principle behind the piezoelectric inkjet print head operation is
depicted and explained in figure 2.6. High precision and accuracy, small amounts of
materials and automation with regards to liquid handling are often mentioned as key
strengths, whilst the requirements for low viscosity and small particle size solutions,
common nozzle blockages and high cost of equipment as common weaknesses of this
technique. Piezoelectric inkjet print head technology is frequently used in material and
surface sciences™ *?, arts and graphics®®, as well as in biotechnology®* and pharmaceutical

industries™.

(1]
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Figure 2.6. The schematic of piezoelectric inkjet print head technology operation principle. (1)
The nozzle is filled with liquid in the steady state. (2) As soon as electric charge is applied the
piezoelectric material changes shape. (3) Dramatic decrease of the electric charge applied
causes the piezoelectric material to bend in opposite direction and triggers propelling a
precise volume of the liquid out of the nozzle. Figure elements are not in scale for
presentation purposes.

2.2.6.2 Experimental.

The excess of liquid on freshly prepared slide-sized model lipid films through the vesicle
deposition protocol was removed and the samples were quickly placed onto a 28-30°C
sample stage at 70 % relative humidity environment of the ink-jet printing chamber. Once

the remaining water was evaporated, the stage temperature was decreased to 2-3°C above

the theoretical dew point. Subsequently, six 195 nl spots were printed in one row 2 mm
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apart (149 V, 25 us, Z =700 um), as presented in figure 6.5B, on the lipid film using clean and
patent Delivery Piezo Dispense Capillary (ID: 8561) and the sciFlexarrayer S5 (Scienion, DE).
Finally, the solution drops were incubated for 1 hour with the film at 70 % humidity; one
slide was immersed in copious amounts of Millipore water. Next, both slides were

transferred onto the ToF-SIMS sample stage.

2.2.7 Preparation of Pluronic solutions (chapter 4 and 6).

The required amount of a polymer was weighted out using a laboratory balance and a glass
vial, exposed to a gentle stream of argon for 10 minutes and dissolved in a sterile, 0.2 um
PBS (chapter 4) or Millipore water (chapter 6) through vortexing. Once the bubbles
disappeared from the liquid surface, appropriate dilutions were prepared using the solvent

of interest. Each solution was prepared fresh before the experiment.

2.2.8 Preparation of DNA complexes (chapter 5).

The amounts of DNA and polymer were calculated, as follows. In order to obtain a polyplex
at 1:1 P:P ratio, each mole of DNA phosphate groups required 1 mole of phosphonium
groups within a polymer (or in other words 1 mole of monomer). Since 1 ug DNA has 3 nmol
of phosphate groups*®, a sample containing 10 pg DNA (30 nmol phosphate groups) required
30 nmol phosphonium groups in order to form a complex at 1:1 ratio. The amount of DNA
[ug] in the sample was found from the molecular mass of DNA (Mpna = 11625 g/mol), which
was calculated as a sum of molecular weights of oligonucleotides reported by a
manufacturer (M, = 5907.5 g/mol; Mg = 5717.5 g/mol). The amount of polymer used for
complexation was found, based on the molecular mass of the monomer used as a substrate

for polymerisation. The equation below was established to simplify the calculations:

— 2. -9. . . R .
mpolymer—3 10 CDNA VDNA MDNA R Mmonomer

Mpolymer — Mass of the polymer needed for DNA polyplex at R ratio [ug]
Cona — molar concentration of DNA aliquot solution [uM]

Vona — Volume of DNA aliquot solution [ul]

Mpna — molecular weight of DNA molecule [g/mol]

R — P:P monomer/DNA ratio for complex formation [-]

M monomer — Mmolecular weight of the monomer [g/mol]

3x10°° — multiplication factor

DNA stock solutions (100uM) was prepared following the manufacturer protocol and stored
at -20°C until used. Before use, 20 uM aliquots of the stock solution were prepared in sterile

PBS and stored at +4°C for up to a month. Polymer stock solution (2 mg/ml) was prepared
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through dissolution of an appropriate mass of polymer in sterile PBS and filtered through 20
um carbon filters.

75 ul dilutions of DNA and phosphonium polymer at appropriate concentrations were
prepared in sterile PBS. DNA was gently pipetted into the polymer solution, vortexed for 60
seconds, left on a roller for 30 minutes and used for DLS and AFM studies. Eppendorf tubes
with DNA polyplexes were stored on ice whenever possible. Particle dilutions for the AFM

kinetic studies were prepared using one particle solution and sterile 0.2 um PBS.

2.2.9 Preparation of text and figures.

The thesis was written using the Microsoft Word 2010 software. References were included
using the EndNote X-5 add-in for Microsoft Word available through the University of
Nottingham. All figures and graphs were drawn using one or more of the following computer
programs: Microsoft PowerPoint 2010, ChemBioDraw 2010 and ChemBio3DDraw 2010,
Gimp 2, Microsoft Excel 2010, OriginPro8, GraphPad Prism 6 available online either as

freeware or through the University of Nottingham.
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Advanced surface analysis techniques for the development of
a supported lipid bilayer model.

3.1 Abstract

Since biological membranes are a vital part of the human body, understanding of their
behaviour at a molecular level is important. Hence, in this chapter, atomic force microscopy
(AFM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron
spectroscopy (XPS) have been employed to study the physicochemical and behavioural
properties of supported lipid bilayer (SLB)-based models for biological membranes. As the
model SLBs were both surface deposits and compositions of five naturally occurring lipids
mixed at physiologically-relevant ratios, not only were they hypothesised to be
representative of biological membranes, but also could be studied at a nanometre scale.
Such studies allowed optimisation of the SLB fabrication protocols and provided insights into
how cellular membranes may behave in vivo. Both aspects of this work have been presented
in chapter 3 in order to set the scene for the findings presented in the following thesis
chapters.

Figure 3.1: Graphic indicating the nature of the studies discussed in chapter 3. Three
advanced surface analysis techniques: atomic force microscopy (AFM), time-of-flight
secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS)
were used not only to develop, optimise and understand the supported lipid bilayer (SLB)-
based model of interest, but also to study the phase separation behaviour, as might occur
within biological membranes, in vivo.
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Abbreviations:

3D — three dimensional; AFM — atomic force microscopy; Al — aluminium; AUC — area under the
curve; BSST — bilayer self-spreading technique; C — carbon; Cg, — fullerene; Ca — calcium; CHOL —
cholesterol; CPS — counts per second; DNA — deoxyribonucleic acid; DOPC — dioleoylphosphatidyl
choline; DOPE — dioleoylphosphatidyl ethanolamine; DOPS — dioleoylphosphatidyl serine; DPPC —
dipalmitoylphosphatidyl choline; EPC — egg phosphatidyl choline; eV — electronvolt; F — fluorine; H —
hydrogen; IUPAC — International Union of Pure and Applied Chemistry; K — potassium; Ly — liquid-
disordered; Lo — liquid-ordered; Mg — magnesium; N — nitrogen; Na — sodium; O — oxygen; P —
phosphorous; PBS — phosphate buffer saline; RH — relative humidity; RNA — ribonucleic acid; RT —
room temperature; Si — silica; SLB — supported lipid bilayer; SPM — sphingomyelin; ToF-SIMS — time-
of-flight secondary ion mass spectrometry; UHV — ultrahigh vacuum; VDT — vesicle deposition
technique; XPS — X-ray photoelectron spectroscopy.

3.2 Introduction

Despite many years of research using various lipid-based models for biological membranes,
the current understanding of biological membranes has not yet been fully elucidated®. Here,
as indicated in chapter 1, supported lipid bilayers (SLBs) of compositions close to the ones in

cellular membranes hold a considerable potential to improve this understanding®.

In chapter 3, the manufacture and characterisation of SLBs that are composed of five,
naturally-occurring lipids were investigated. Such model SLBs were both fabricated using
two techniques: vesicle deposition (VDT)®> and bilayer self-spreading (BSST)* and
characterised with three advanced surface analysis techniques: atomic force microscopy
(AFM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron
spectroscopy (XPS). Not only did such studies improve an understanding of the model SLBs,
but they also helped to establish several hypotheses regarding the behaviour of biological

membranes in vivo.

This research demonstrates the important value of advanced surface analysis techniques in
SLB research. The model SLB preparation and characterisation protocols studied throughout
this chapter can be easily applied across a wide range of alternative lipid compositions,
enabling the optimisation of any model SLB of interest to be performed more rapidly. Also,
the hypothesis with regards to the phase separation behaviour that is proposed in this
chapter may have important implications for a number of disciplines within pharmaceutical

research.

3.3 Materials and Methods — see chapter 2
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3.4 Results and Discussion

3.4.1 Studying SLB morphology and composition.

Since limited studies have been performed on SLBs of physiologically relevant lipid
compositions” and the exact mechanisms behind the formation of SLBs are still not fully
understood’, advanced surface analysis techniques such as AFM, ToF-SIMS and XPS were
employed to investigate the quality and composition of model lipid films" at a nanometre
scale.

One of the objectives of this thesis was the development of an SLB microarray. For that
reason, two SLB fabrication techniques were initially considered. The bilayer self-spreading
(BSST)* and vesicle deposition (VDT)*® were chosen as fabrication techniques of preference,
due to their user-friendly manner (see table 1.7).

A lipid composition close to the one in erythrocyte membranes was chosen as a model for
several reasons. Red blood cell membranes are commonly used as models for cellular
membranes” ° and the biophysical and chemical properties of the lipid ingredients have
been viewed as beneficial for studying lipid bilayer behaviour in situ. Briefly, the bilayer
surface was composed of both positively (SPM, DOPE) and negatively (EPC, DOPS) charged,
as well as neutral (CHOL) lipid head groups. Additionally, lipids of different phases, such as
gel (CHOL, SPM), liquid (EPC, DOPE, DOPS) lamellar (DOPS, EPC) and non-lamellar (SPM,
DOPE) phases may co-exist within the bilayer structure’. Also, the presence of CHOL
supported the bio-relevant mechanistic properties of the model SLB®. Accordingly, PBS (pH =
7.4/RT) solution was selected as a liquid environment for the AFM imaging of SLBs and mica
as an AFM-suitable solid support. For XPS and ToF-SIMS studies, PBS was replaced with

Millipore water in order to avoid potential interferences with the sample chemistries.

3.4.1.1 AFM: optimisation of model SLB fabrication protocols.

The initial optimisation of the VDT and BSST fabrication protocols for the model lipid
composition was based on AFM studies in liquid environments with either
dioleoylphosphatidyl choline (DOPC) or dipalmitoylphosphatidyl choline (DPPC)-composed
supported lipid films. Such films on mica surfaces have been used as liquid- and gel-phase

bilayer models, respectively’. These studies have been summarised in appendix Il.

* Since drying in air destabilises the SLB structure, the term ‘model lipid films’ (as opposed to ‘model
SLBs’) is used to describe both the air-dried films of model lipid composition on mica supports that
have been used for ToF-SIMS and XPS analyses, as well as model supported lipid multilayers for AFM
studies in liquid environments.
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Figure 3.2. The AFM images of BSST-fabricated model SLBs (A) and VDT-fabricated model
lipid films (B). Images (A) represent the uniform continuous (1) or porous (2) SLBs that have
been rinsed once with PBS in a gentle or vigorous manner, respectively, before AFM imaging
in liquid environments has been performed. Images B represent continuous (1) patch-like (2),
porous (3) SLBs or supported lipid multilayers (4) that have been deposited on the mica
surface throughout 60-, 30-, 45-, 90-minute incubation with 0.5 mg/ml liposome solutions at
35°C before imaging. The square features on A, B;, B, were generated with AFM probes
through a scratch test (see appendix Il) in order to both demonstrate the presence and
measure the heights (*) of the lipid films on the surface. Black and brown areas on AFM each
image correspond to lipid film-uncovered and covered surface areas, respectively. Z-scale
bars have been removed for clarity purposes (average range 0-10 nm). White arrows indicate
some of the characteristic lipid film features (see text) and the scratch test squares, whilst
green arrows common AFM image artefacts.

The preliminary AFM investigations on model lipid compositions revealed that BSST resulted
in uniform and continuous SLBs (figure 3.2A;), whilst VDT resulted in lipid films of various
qualities, such as porous, continuous bilayers and multilayers, depending on the liposome-
mica incubation times at an appropriate temperature (figure 3.2: B3, B;, B4, respectively).
Additionally, it was observed that BSST resulted in lipid excess-free SLBs, whilst additional
lipid material was present at the VDT-fabricated SLB surfaces (figure 3.2A; and By,
respectively)®. Also, it was demonstrated that BSST may result in porous or in VDT patch-
like topographies, if rinsed vigorously with PBS after the preparation procedure (figure 3.2:
A, or B,, respectively). In order to confirm presence and thickness of lipid films, an AFM-
based scratch test was developed and used as a control (appendix Il). The thickness of BSST-

and VDT-fabricated SLBs was (4.2 + 0.5) nm and (3.9 + 0.6) nm, respectively (figure 3.2*A;

and *B,), consistent with previous studies’. The parameters above were established for
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model SLBs deposited on freshly-cleaved mica discs (14 mm in diameter) that were glued to

metal disc specimens.

3.4.1.2 ToF-SIMS: qualitative and semi-quantitative evaluation of model lipid films.
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Figure 3.3. ToF-SIMS spectra for mica and both model lipid film samples in the 0 — 300 u
mass regions. The model lipid films have been prepared using vesicle deposition (VDT) and
bilayer self-spreading (BSST) techniques and dried in air before insertion into the ToF-SIMS
ultrahigh vacuum chamber. The spectra have been collected using Cey as primary ion source
in the negative mode. Black and red arrows have been added to demonstrate the intensities
of mica-associated peaks and the intensities of peaks that have been identified as single
lipid-representative peaks within the lipid mixture, respectively.

ToF-SIMS was used to study the chemical compositions of model SLBs. Since the ToF-SIMS
requires ultrahigh vacuum (UHV) conditions, studies were performed on dry model lipid
films deposited on 14 mm mica discs. Both the single lipid samples and the VDT- and BSST-
fabricated model lipid films were studied with ToF-SIMS. A Cg, primary ion source was
selected for such studies, due to the literature-indicated advantages for studying samples of
such chemistries'. The preliminary analysis of the ToF-SIMS spectra of the model supported
lipid films indicated the presence of two peak populations in terms of the intensity: high and
low in intensity. The high intensity peaks were correlated with the chemistries specific for
mica, whilst the majority of the low intensity peaks with the lipid chemistries. This was
expected, as the total amount of lipids on the surface of the solid support was likely much
less than 10 pg and 80 pg on BSST and VDT samples, respectively. Also, since the air-dried
lipid films may not have had a uniform coverage across the sample surface and the ToF-SIMS
analysis depth limit (~2 nm) is only slightly lower than the lipid matter (¥4 nm for lipid films

in liquid environments), it is likely that the mica-specific ions are present everywhere on the
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sample surfaces. The fragments of ToF-SIMS spectra for mica, VDT and BSST are presented in

figure 3.3.

The analysis of ToF-SIMS spectra for single lipids enabled the identification of the specific
peaks for each lipid within the mixture (see appendix Ill for details). Subsequently, the lipid-
specific peaks were compared with the supported lipid samples indicating that the majority
of the peaks specific for the triglyceride-type lipid chemistries within the model lipid film
spectra could not easily be correlated to a single lipid. This is likely, because the chemical
structures of triglycerides used in the lipid mixture were very similar and therefore the
interaction of such lipids with the primary ion source undergoes through similar destruction
pathways, resulting in very similar or even identical products (secondary ions) that are
recognised in the ToF detector. In the model SLB composition, 3 out of 5 lipid molecules
contain an unsaturated oleoyl group as a key component of lipid hydrophobic chains and 4
out of 5 lipids [O-(2-aminoethyl)-O-propylphosphate] group as a key component of lipid
head groups. For that reason, the interferences on ToF-SIMS lipid film spectra were likely to
occur in between the vast majority lipid peaks initially identified on single lipid ToF-SIMS
spectra. This suggested that the identification of single lipid-representative peaks within lipid
film spectra may be based on small amount of peaks of very low intensity. Also, since lipids
were mixed within the model lipid composition at a different molar ratio (EPC > CHOL >
DOPE = SPM > DOPS), the effective amounts of secondary ions that originate from each lipid
chemistry per surface area unit for the lipid film samples was expected to be different
(assuming the homogenous distribution of the lipid molecules within the lipid film).
Therefore, the contribution of the peaks originating from e.g. DOPS was thought to be
substantially different from the contribution originating from e.g. EPC. These and the overall
low intensity of lipid-specific peaks within the lipid film spectra implied that the statistical,
peak-intensity-based approaches for the identification of secondary ion peaks
representative for each lipid chemistry (e.g. principal component analysis'') may not be the
best strategy for qualitative analysis of the spectra. Since such approaches involve the initial
adjustment of a threshold level with regards to the peak intensity of interest, the low
intensities of lipid-specific peaks would most likely be identified as noise within the lipid film
spectra. Additionally, the Cg, ion source-associated broadness of peaks within the ToF-SIMS
spectra further discouraged the statistical analysis approaches. For these reasons, the
identification of the peaks that were representative for the single lipids within the lipid film
spectra, was performed manually through peak-by-peak comparisons with the ToF-SIMS

spectra of the single lipid samples. Such a comparative analysis resulted in the identification
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of a number of lipid-specific peaks and their assignments within the lipid film samples, which
are presented in table 3.1. The molecular ion assignments for the peaks in the table were
based on the comparisons between the IONTOF software-indicated options and molecular
masses of possible secondary ions that have been anticipated using BioChemDraw software.

The IONTOF-indicated deviation for the molecular ion assignments was not higher than 1000

ppm.
Table 3.1. Thfe si.ngle lipid-representative peaks within the ToF-SIMS Cg, spectra of model
lipid films.
Lipid Molecular Molt.ecular ion Molecular Mass Molt_ecular ion
Mass [Da] assighment [Da] assignment
EPC 253.2 Ci6H3:NO 256.2 CisH3oNO,
145.1 CyiHas" 275.3 CyoHss"
146.1 CyiHaa" 367.4 Cy7Has"
CHOL 159.1 CyoHas" 369.4 Cy7H450"
160.1 CioHag" 384.3 Cy7H4sO
161.2 CoHqy" 386.3 Cy7H460"
DOPE 124.0 C2H7N03P+_ 339.3 CxHa30,"
214.1 CsH13NOgP
206.0 C3HsNOgPNa 269.8 CyiHag"
DOPS 246.0 CeH1oNOgPNa™ 288.8 CyoH1305"
255.1 Cy6H1505"
104.1 CsH1,NO* 254.0 C16H3,NO
167.9 CyoH:sNO* 404.2 C,oH3sNOsP”
168.0 CoH1,05 598.3 C34HgsNOsP”
SPM 186.1 CsHi;NO,P* 600.5 C34Hs;NOsP”
198.1 CsH,0,Na’ 616.5 C34HsyNOGP"
224.1 CgH1,POs" 642.4 CagHesNOGP”
225.1 CgH15POs"

Abbreviations: EPC — egg phosphatidyl choline , CHOL — cholesterol, DOPE — dioleoylphosphatidyl ethanolamine,
DOPS — dioleoylphosphatidyl serine, SPM — sphingomyelin.

Next, the list of single lipid-representative peaks was used for the assessment of the spatial
distributions of single lipids within the BSST and VDT model lipid films. The examples of ToF-
SIMS chemical images presenting the spatial distributions of the single lipids within both
lipid film samples are presented in figure 3.4. The peak distributions of the highest intensity
within the sample area have been presented. In addition, the semi-quantitative evaluation

of the key peak intensities has been performed and presented in figure 3.5.
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Figure 3.4. The ToF-SIMS chemical images presenting the spatial distributions of single lipid-
representative peaks within the model lipid film samples. The model lipid films have been
prepared using the vesicle deposition technique (VDT) and bilayer self-spreading technique
(BSST) protocols and dried in air. Cso has been used as a primary ion source for ToF-SIMS
imaging. Molecular ion assignments have been assigned to a specific lipid through IONTOF
and ChemBioDraw software-based comparisons, as it has been described in the text.

Analyses of ToF-SIMS images and single lipid-representative peaks within VDT- and BSST-
fabricated model lipid films have indicated an overall low intensity of DOPE and DOPS-
specific secondary ions. Such low intensities of DOPE and DOPS-specific secondary ion peaks
within the lipid film spectra may be misleading and therefore the ToF-SIMS-based evaluation
of the DOPE and DOPS distributions within the model lipid films was not conclusive. The low
intensity of DOPS and DOPE peaks is likely to be triggered by several factors. Firstly, DOPS
and DOPE lipids have very similar chemical structures; hence, due to the peak interferences,
the identification of lipid-representative peaks within the mixture was based on the low
intensity peaks. Secondly, the theoretical DOPS content within the mixture is around 7 %;
hence the low amounts of this lipid within the scan areas have been expected. Thirdly, DOPE
as a lipid forming non-lamellar conformations may not be fully incorporated into bilayer

structure throughout the bilayer fabrication process for both protocols™. Since this has not
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been clear, the quantitative assessment of supported lipid films for both protocols has been

performed using XPS, as it has been discussed in the following section.
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Figure 3.5. Graphs presenting the semi-quantitative evaluation of single lipid-representative
peak intensities within the ToF-SIMS spectra of the model lipid films in both positive and
negative modes. The mean normalised areas under the curves (AUCs) for each single lipid-
representative peak have been calculated and plotted for the ToF-SIMS spectra of both:
vesicle deposition technique (VDT)- and bilayer self-spreading technique (BSST)-fabricated
model lipid films. ToF-SIMS spectra were collected using Cs as a primary ion source from two
separate sample areas.

The analysis of the spatial distributions of SPM, EPC and CHOL-specific peaks within the lipid
film spectra suggested that the distribution of these lipids within the supported lipid films is
uniform. However, for SPM and CHOL a degree of organisation was observed within the VDT
samples. This may be associated with the AFM-observed presence of lipid excess attached to
the model SLBs in liquid environments. Since the ToF-SIMS images were of lipid film samples
that have been dried in air, the formation of alternative, non-bilayer structures on the mica
surface is likely to have occurred (figure 3.2B;). For the BSST samples, which exert lipid
excess-free SLB morphologies in liquid environments, the formation of such structures is
likely to occur in a similar manner in all areas of the sample surface, resulting in a uniform
lipid distribution on ToF-SIMS chemical images. However, for VDT samples, the lipid excess
at the bilayer surfaces in liquid environments is likely to be organised in small lipid bulk
populations across the sample surface, once the samples are dried. This results in a non-
homogenous distribution of single lipids within the ToF-SIMS chemical images of lipid film
samples. Such a degree of organisation has not been observed for EPC, which may suggest
the presence of SPM/CHOL aggregates in the VDT samples, as it has been hypothesized later

in the chapter.

61



Chapter 3: Fabrication and Characterisation of Model SLBs.

In addition to the qualitative analysis, ToF-SIMS enables to compare the content of the
material across different samples in a quantitative manner. The semi-quantitative evaluation
of lipid-specific peak intensities has suggested that BSST-fabricated supported lipid films
contain more SPM, CHOL and EPC lipids per surface unit than the VDT films. This has
indicated that the lipids within the BSST films are packed more densely than the lipids within
the VDT films. Such a conclusion has correlated with the AFM-reported morphologies of the
model SLBs in liquid environments after 45-minute incubation in liquid at an elevated
temperature. According to AFM data, not only were bilayer film qualities continuous for
BSST samples and porous for VDT samples, but also the SLB thicknesses were slightly higher

(by roughly 0.5 nm) for BSST samples than for VDT bilayers.

3.4.1.3 XPS: quantitative evaluation of model lipid films.
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Figure 3.6. Wide-scan XPS spectra indicating the elemental compositions of the solid support
(MICA) and two model lipid film (BSST, VDT) samples. Both films have been prepared using
bilayer self-spreading (BSST) and vesicle deposition (VDT) techniques and were dried in air
before insertion into the XPS ultrahigh vacuum chamber. The peaks correlating to oxygen
(O1s), sodium (NaKLL), nitrogen (N1s), potassium (K2p), carbon (C1s), phosphorous (P2p),
silica (Si2p) and aluminium (Al2p) have been labelled and highlighted with light-green band
available through CasaXPS software package.

XPS has been used to study the elemental compositions of the model supported lipid films.

Due to similar sample preparation requirements for XPS and ToF-SIMS, XPS analysis has
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been performed on dry model lipid films that had been prepared similarly to the ToF-SIMS-
analysed films, facilitating therefore the comparisons between both experimental
techniques.

Initial analysis has revolved around the comparison of the wide-scan XPS spectra for mica,
VDT and BSST samples. As presented in figure 3.6, mica-specific elements (e.g. aluminium
(Al) as Al2p at ~70 eV, silica (Si) as Si2p at ~100 eV, potassium (K) as K2p at 290 eV) were
noticed with XPS on the control (mica) and the supported lipid film samples alike. This is
likely, because lipid films were 3-5 nm thick and XPS spectra were collected from the first 10
nm of the surface in depth. Interestingly, this phenomenon was used for establishing the
surface coverage of the sample, based on the comparison between the peak intensities that
are characteristic for the solid support and the surface lipid coating on the supported lipid
film samples. This was successfully attempted for K2p and Cls peak intensities within VDT
and BSST samples and has indicated that the areas of the sample surfaces analysed with XPS
have been fully covered with the lipid film, because the calculated thicknesses of the lipid
film layers have been established at (3.1 + 0.1) nm and (5.2 + 0.1) nm for BSST and VDT
samples, respectively (figure 3.7). Although this observation did not initially seem to
correspond with both ToF-SIMS and AFM results, the overall conclusion that the BSST
resulted in more densely packed lipid films than the VDT was the same for all techniques, as
it has been explained below. This contradiction for XPS-reported lipid film thicknesses is
likely associated with the lipid excess present on the VDT samples. Since XPS has a five times
higher depth analysis limit than ToF-SIMS, the XPS-reported sample coverage seems to
account for lipids forming both the bilayer and the lipid excess in the VDT samples when
studied in liquid environments with AFM. Here, as the XPS samples were dried in air and
therefore the lipid excess had collapsed on the surface above the original bilayer, the XPS
would account for more lipids within the first 10 nanometres of the surface than e.g. ToF-
SIMS that enables the study of only the first 2 nanometres of a material surface. This
however was not entirely clear, because the XPS-thickness measurements were based on
Cl1s peak intensities and may have been caused by sample contamination throughout the
VDT fabrication protocol, which involves more steps than BSST protocol (e.g. liposome

extrusion).
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Figure 3.7. The graph and equation depicting the calculations of the lipid film coverage for
both model lipid film samples prepared using vesicle deposition (VDT) and bilayer self-
spreading (BSST) techniques. Intensities (1) of K2p and C1s peaks within the XPS spectra in the
wide regions were calculated and plotted for three different areas within the samples
collected using increasing number of scans per spectrum. The linear correlation equations
and the trendline were calculated using Microsoft Excel 2007. The intercept values have been
assigned to the I~ parameter, whilst the Ic;; values as Ic parameter in the equation.
Effectively, the mean lipid film thickness values (d.) for Lo(Ec) = 3.6 nm and O = 50° have been
calculated for three separate areas of each lipid film sample. The error values have been
calculated as a standard deviation using stdev.p function in Excel. The symbols within the
equation have been explained in chapter 2.

Additionally, since all lipid molecules are composed of C, O, P, Na and N elements, the
qualitative assessment of their presence within the wide XPS spectra for all samples was
performed. The wide XPS spectra for mica samples indicated that significant amounts of C
(C1s at ~280 eV) and O (O1s at ~530 eV) atoms were present on the pure solid support. The
presence of C elements on mica surface was most likely due to the contamination from air
(dust) throughout sample handling. The presence of oxygen on mica may have originated
from both dust and the support itself, as the chemical structure of mica is: X,Y,
6Z30,0(0OH,F)4, where most commonly X is K, Na or Ca, Y is Al, Si or magnesium (Mg), while Z
was Al or Si, all depending on the mineral source the mica discs had been obtained from (H
and F stand for hydrogen and fluorine, respectively). Therefore, since the overall amount of
both O and C elements on lipid samples was affected by the interferences from the solid
support, the Cls and O1s regions were not suitable candidates for the high resolution XPS

analysis. Similarly, Na (NaKLL at ~500 eV) regions were not indicative, as the presence of Na

within the wide XPS spectra for pure mica control was observed.

However, mica support does not contain any N or P elements (N1s at ~ 400 eV or P2p at
~130 eV, respectively). This implies that the XPS narrow scan analysis in the P2p and N1s
regions should not be affected by the interferences either from the solid support or aerial

contamination and might be used to assess the quantitative relationships between the lipids
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within the supported lipid films. This was studied further. Here, it is worth adding that the
extraction of further quantitative information about the model lipid films, based on the
narrow XPS scans of the Cls and O1s regions may be possible, especially if mica was
replaced as the solid support. Due to the overall nature of this work aiming to develop and
assess SLBs as tools for in vitro screening of the drug-membrane interactions in high
throughput, the further characterisation of the model supported lipid films with XPS was not

however, pursued.

As presented in figure 3.8, XPS spectra in the N1s region for EPC and DOPE have indicated
the presence of single peaks at (402.7 + 0.1) eV and 401.5 eV, respectively. According to the
values available in the literature, these have corresponded to the nitrogen atoms in the
trimethylammonium (-N*(CHs);) and ammonium (-NHs*) within EPC and DOPE structures®.
Interestingly, for SPM and DOPS samples, the presence of several peak populations per
spectrum has been observed at 401.5 eV and (399.4 £ 0.1) eV for DOPS or at 402.7 eV, 401.4
eV and 399.8 eV for SPM. On the one hand, DOPS contains the a-amino acid; serine in its
structure and therefore nitrogen may exist in both protonated ammonium (-NH;") and non-
protonated amino (-NH,) forms™. This correlates with the atom assignments for XPS spectra
in the N1s region, suggesting that the content ratio between those groups within DOPS
molecules was (87 £ 2) %: (13 + 2) %, respectively. On the other hand, the presence of two
dominant, almost symmetrical peaks on the SPM spectra are equivalent to the nitrogen
atoms in trimethylammonium (-N*(CHs);) at 402.7 eV and amine (-NH-) at 399.8 eV groups
within the structure of this lipid*®. The small peak at 401.4 eV is likely associated with the
ionic mesomer of the amide group (-HN'=C(O)-), not only because this correlates with the
literature-indicated values™, but also the XPS-measured content ratio between the groups:
(47 +1) % : (45 +1) % : (8 £1) % for (-N(CHs)s) : (-NH-) : (-HN*=C(O’)-) has suggested so
(compare SPM structures in figure 3.13). The presence of N for mica and CHOL samples has
been assumed as non-existent, because the peak intensities for those samples are

considerably low.
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Figure 3.8. XPS spectra in the N1s region indicating the peaks associated with the presence of
nitrogen on the solid support (MICA), egg-phosphatidyl choline (EPC), sphingomyelin (SPM),
cholesterol (CHOL), dioleoylphosphatidyl ethanolamine (DOPE), dioleoylphosphatidy! serine
(DOPS) and two model lipid film (BSST, VDT) samples. The films were prepared using bilayer
self-spreading (BSST) and vesicle deposition (VDT) techniques and were dried in air before
insertion into the XPS ultrahigh vacuum (UHV) chamber. Single lipid samples were prepared
through deposition of lipid bulks on mica surfaces. The peaks correlating with nitrogen (N1s)
were labelled and highlighted with a light-green band available through CasaXPS software
package. The group populations and their contents within each peak corresponding to
appropriate nitrogen atoms for each lipid molecule were also indicated for the relevant
spectra. Labels on X and Y axes of single lipid spectra are written in small font for

presentation purposes and correspond to Binding Energy (eV) and Intensity, respectively.

Since amide bonds (or amino acids) bonds are known to exist in ionised forms not only in a
solution™, but also in a solid state®, the ultrahigh vacuum conditions for XPS seem to
provide appropriate conditions for such observations'®. Additionally, the possibility of
establishing the quantitative relationships between such conformers implies that XPS studies
in the N1s region may be a useful approach for an empirical establishment of N group
conformations within lipids and possibly other molecules. The reason behind this

phenomenon is associated with the small differences in binding energies for N atoms in
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different group conformations that, as it has been demonstrated above, can be

distinguished through XPS narrow scan measurements.

XPS spectra of model lipids
in the N1s region
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Figure 3.9. Graph indicating the XPS spectra in the N1s region for mica, single lipid and
model lipid film samples. For clarity purposes the spectra from figure 3.8. have been
presented as a single graph. The functional group populations at ~402 eV, ~401 eV and ~399
eV Binding Energy have also been indicated. Since the background level for each spectrum
has been similar, for the purpose of presentation, the intensity values for each sample have
been multiplied (x) or divided (/) by a factor indicated on the graph.

As indicated in figure 3.9, once the single lipids were compared with the XPS spectra in the
N1s region for supported lipid film samples, it became apparent that all N-containing
functional groups in the lipid mixture may be grouped into 3 populations at ~402 eV, ~401
eV and ~399 eV corresponding to nitrogen atoms in: trimethylammonium (-N*(CHs)s3),
ammonium (-N*(H,)-) and amine (-NH-) groups, respectively. Here, the trimethylammonium
population within the SLB has originated from all EPC and 47% SPM, the ammonium
population from 87% DOPS, 8% SPM and 100% DOPE, whilst the amine population from 45%
SPM and 13% DOPS nitrogen atoms, based on the theoretical calculations. Since the overall
content of single lipids within the model SLB varied (23% CHOL, 18% SPM, 18% DOPE, 7%
DOPS and 33% EPC), it was helpful to assume that the vast majority of ammonium groups

originated from DOPE, whereas the vast majority of amine groups were from SPM within the
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model lipid composition. With regards to the trimethylammonium population, all EPC and a
bit less than half of the SPM nitrogen atoms contributed towards the N1s peak intensities.
This also explains why the ~402 eV population has a significantly larger area than the ~401
eV and ~399 eV populations. Based on the peak fitting analysis of the XPS spectra of the
model supported lipid film samples in the N1s regions, the quantitative ratios between the
peak populations were found and compared with a theoretically expected ratio (table 3.2).
As the establishment of such theoretical ratio may cause difficulties, the author’s calculation

approach is explained in detail in chapter 2.

Table 3.2: ‘ The XPS-measured lipid content ratios within the model lipids films.

Binding Energy [eV]: ~402 ~401 ~399
Peak population: [(-N*(CHs)s)] 3 [(=N*(H))] - [(-NH-)]
Theoretical ratio: 53% : 28 % : 19%
(34% EPC + 19% SPM)  (19% DOPE + 6% DOPS + 3% SPM)  (18% SPM + 1% DOPS)
Ratio in VDT film: (55+1)% : (22+1)% : (23+1)%
Ratio in BSST film: (56 +1) % : (18+1)% : (26 £1) %

Abbreviations: VDT — vesicle deposition technique; BSST — bilayer self-spreading technique; EPC — egg phosphatidyl
choline; SPM — sphingomyelin; DOPE — dioleoylphosphatidyl ethanolamine; DOPS — dioleoylphosphatidyl serine.

As indicated in table 3.2, both the VDT and BSST empirical ratios were similar to the
theoretical ratio suggesting that the molar contents of DOPE, SPM, DOPS and EPC lipids in
the studied model lipid film were close to the theoretical expectations. However, a slightly
decreased content of ammonium groups for the empirical ratios, as well as slightly elevated
values for the other two group populations suggested that a loss of DOPE is likely to occur
for both VDT- and BSST-fabricated model lipid films. The loss of DOPE for BSST was slightly
higher than the loss for the VDT films. This is likely, as DOPE crystallises in the H,
polymorphic phase (inverted cone shape; non-lamellar)*2. Hence, its behaviour is different
than the behaviour of other model lipids and has not incorporated effectively into a bilayer
structure for both VDT and BSST samples. Such behaviour has been observed previously for

different application'>*’

. This phenomenon additionally explains the low intensity of DOPE
peak signals within the ToF-SIMS spectra, despite the fact that the theoretical content of

DOPE was expected at the same level as SPM (both 18 %).
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Figure 3.10. XPS spectra in the P2p region indicating the peaks associated with the presence
of phosphorous on the solid support (MICA), egg-phosphatidyl choline (EPC), sphingomyelin
(SPM), cholesterol (CHOL), dioleoylphosphatidyl ethanolamine (DOPE), dioleoylphosphatidyl
serine (DOPS) and two model lipid film (BSST, VDT) samples. Both films were prepared using
bilayer self-spreading (BSST) and vesicle deposition (VDT) techniques and were dried in air
before insertion into the XPS vacuum chamber. Single lipid samples were prepared through
deposition of a lipid bulk on a mica surface. The peaks correlating with phosphorous (P2p)
were labelled and highlighted with light green band available through CasaXPS software
package. Peak intensities were also indicated for each sample. Labels on X and Y axes of
single lipid spectra are written in small font for presentation purposes and correspond to
Binding Energy (eV) and Intensity, respectively.

As indicated in figure 3.10, the XPS spectra of EPC, DOPE, SPM and DOPS single lipid samples
in the P2p region have indicated the presence of a single peak at 132-136 eV Binding Energy
which agrees with that expected for phosphorous in lipid phosphate groups®™. This has not
been observed for mica and CHOL spectra confirming the expected lack of phosphorous in
these samples. The model lipid film spectra indicated the presence of single peaks at the
same binding energy values suggesting that all phosphorous atoms within the lipid mixture
originated from phosphate groups. Unfortunately, due to the same shape of the peaks for all

phosphorous-containing samples, the quantification of lipids based on peak fitting analysis

was not successful. Since all phosphorous atoms within the head groups of model lipids have
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the same chemistries, the differences in kinetic energies for such bonds were very small and
did not seem to be distinguishable via XPS measurements. However, the comparison of peak
intensities between VDT and BSST spectra suggested that the overall amount of
phosphorous on the VDT samples was roughly 3.5 times lower than the phosphorous
amount on BSST samples. Interestingly, according to the sample coverage calculations above
(figure 3.7.), VDT films were slightly thicker than BSST lipid films. Also, the overall mass of
lipids used for SLB preparation is 8 times higher for VDT than for BSST (see chapter 2).
Therefore, the significantly lower amounts of phosphorous within the VDT films have been
related to the lipid film density. As established with AFM, a 45-minute incubation of
liposomes on mica surfaces resulted in liposome-attached porous SLBs, whilst a similar
incubation for BSST resulted in liposome-free continuous film qualities. The ToF-SIMS semi-
guantitative analysis indicated that the content of SPM, CHOL and EPC per surface area unit
of the model lipid films was higher for BSST than for VDT. For that reason, the overall
amount of phosphorous per surface area on the samples would likely be higher for BSST and
lower for VDT samples, if solely based on ToF-SIMS and AFM data. This has correlated with
the XPS observations, with regards the overall amount of phosphorus per area unit of the
surface for both BSST and VDT samples, indicating that the lipids within the BSST films were
packed more densely. This was an interesting observation, because it has demonstrated that
XPS measurements may help to establish the quality of lipid films deposited on the surface,
in addition to the quantitative information of the lipid content, as demonstrated for the N1s

regions earlier.

It is also worth mentioning that the theoretical intensity of the phosphorous peak within the
lipid film has been calculated from the mean peak intensities of the single lipid samples.
Details on author’s calculation approach are summarised in chapter 2. Such a theoretical
value of the phosphorous peak within the model lipid film was calculated at (316 + 44) CPS
and was in the same range as the value found for BSST samples: (364 + 9) CPS and above the
value for VDT samples: (105 + 3) CPS. The slightly higher values for BSST films are attributed
to the higher lipid (phosphate group) content per unit area of the lipid film surface, whilst
the lower values for VDT to lower density of lipids (phosphorous) per surface unit. This is
interesting, because the single lipid samples that have been used for the calculation of the
theoretically expected intensity, were lipid bulks deposited on the mica surface. Since the
mathematical calculations assumed the homogenous mixing of lipids, the fact that BSST
values were close to the theoretical values suggested homogenous distribution of phosphate

groups within the XPS-studied surface areas (at the scale of observation). It also suggests
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that XPS studies on lipids deposited on the surface as a bulk may serve for the predictions of
lipids deposited on a surface in a form of a thin lipid film. However, further studies would

need to be performed in order to confirm this hypothesis.

To summarise, the analysis of XPS spectra has suggested that the VDT protocol resulted in
films of a more accurate composition of model lipids (table 3.2). Also, XPS analysis indicated
that the BSST protocol resulted in films of higher density of lipid molecules per square metre
of the lipid film surface. Both observations were consistent with the previous AFM and ToF-
SIMS studies. It is worth mentioning that the innovative analysis approach of the XPS spectra

in the N1s region can be applied across various lipid compositions of supported lipid films.

3.4.2 AFM: studying SLB behaviour.

In addition to the optimisation of fabrication methodologies, the AFM enabled studies of the
behaviours of the model lipid films in situ, at a nanometre scale. Since the following chapters
also focused on such studies, the aim of this section is to introduce the reader to the

hypotheses associated with the phase separation behaviours within the model SLBs.

Since the model lipid composition consisted of five lipids of various transition temperatures,
the ability of the model SLB system to produce phase separated film morphologies was

investigated by AFM. The summary of such investigations is presented in figure 3.11.

The AFM investigations enabled visualising that phase separation within the model SLBs
occured in three instances: (i), when the model lipid bilayers were heated above 45°C using
the VDT fabrication protocol; (ii), when the model SLBs were fabricated using liposomes of
different ages and (iii), once the model SLBs were dried and incubated in high humidity

environments over time.
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Figure 3.11. AFM images presenting the instances of phase separation occurrence within the
model SLBs. A; presents the morphology of the model SLB prepared after incubation at 35°C,
while A, the morphology after incubation above 45°C using vesicle deposition protocol. B;
presents the morphology of model SLBs imaged in liquid environments, while B, the
morphology after 52-minute incubation of dry, model SLBs at 70 % relative humidity and
28°C sample stage temperature. C; and C, indicate the morphologies of model SLBs prepared
using standard vesicle deposition protocol at 35°C and liposomes 9 days and 71 days
following preparation. Liquid-ordered domains (Ly) on images with phase separated
morphologies (2) have been indicated with arrows. The mean thickness of the L, domains in
each instance has also been indicated. Z-scale bars were removed for clarity purposes
(average range 0-10 nm).

Currently, the exact mechanism of phase separation (or liquid-ordered (Lo)* domain
formation) within complex lipid bilayer models is not clear'®. Therefore, the interpretation of
the AFM results has been based on consideration of lipid and bilayer physicochemical
properties, as well as the experimental observations that are discussed later in the thesis.
However, it is well established that phase separation is associated with two phenomena; an
increase of the Lo domain thickness™ and changes to spatial distribution of SPM and CHOL
lipids within the bilayer (assembly)®. These lipids have been identified as the two main
components of the Lo, domains®®. Therefore, in order to explain the temperature-triggered
phase separation mechanism the chemical structures of CHOL and SPM were initially

studied.

* The terms: liquid-ordered (Lo) and liquid disordered (Lp) domains are synonymous to liquid-
condensed (L¢) and liquid-expanded (L¢) domains, respectively.
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Analysis of the chemical structure of CHOL in a three dimensional (3D) format indicated that

the most stable conformation of this molecule resembles a boomerang morphology, as it is

presented in figure 3.12.

Figure 3.12. The chemical structure of cholesterol (CHOL). Top structures indicate the
conformation of the molecule according to IUPAC. 3D images of the most stable cholesterol
conformation are presented in all planes: coronal (F- front; B - back), sagittal (R — right; L-
left) and transverse (T-top; Bm-bottom). Images were generated automatically using
ChemBio3D Ultra 12.0 software. Double bond and oxygen atom have been coloured in yellow
and red, respectively. Bottom right cartoon indicates the boomerang-like morphology of
CHOL with hydrophilic (yellow) and hydrophobic (black) regions. Hydrogen atoms have been
hidden for clarity reasons.

With regards to SPM, since an amide group is present in its structure, two critical resonance
structures; ionic and non-ionic mesomers were considered. Similar analysis for both SPM
mesomers suggested that the two most stable SPM 3D conformations are significantly
different. This has implied that a dramatic change in the molecule geometry is associated
with the transition from non-ionic into ionic mesomers, as depicted in figure 3.13. Here,
since various studies have suggested different shapes for SPM without a clear scientific
proof’®, software enabling the visualisation of the organic chemistries in various

hybridisation states (e.g. sp', sp’, sp’) was applied in order to assess the most stable

conformations for both lipids.
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Figure 3.13. The chemical structures of ionic and non-ionic mesomers of sphingomyelin
(SPM). Top structures indicate the chemical structures of both SPM mesomers. 3D images of
the most stable conformations for both SPM mesomers are presented in all planes: coronal
(F- front; B — back), sagittal (R — right; L-left) and transverse (T-top;, Bm-bottom). Images
were generated automatically using ChemBio3D Ultra 12.0 software. Double bond, nitrogen
and oxygen atoms are coloured in yellow, blue and red, respectively. The bottom cartoon
indicates the change in morphology associated with the transition between mesomer
structures for SPM; hydrophilic head group (yellow) and hydrophobic alkenyl! (black) and acy!
(red) chains are indicated. Hydrogen atoms are hidden for clarity reasons.

Currently, neither the exact structure of a SPM/CHOL aggregate, nor the aggregation
mechanism have been clarified. However, the fact that both molecules associate has been
well established™. Literature has indicated that the most likely stoichiometric molar ratios
have been either 1:1*" or 2:1* CHOL:SPM, which is stabilised via several bond types. In
addition, the aggregation of both molecules is associated with an increase in the thickness of
the Ly domains during phase separation of the membrane, suggesting the involvement of

the ionic mesomer in the Ly - and non-ionic mesomer in the L, — domain (L, — liquid

disordered domain).

Taking the above into consideration, the author has proposed a hypothesis to explain both
the most likely mechanism of the SPM-CHOL interaction and the possible structure of the
SPM/CHOL aggregates. An ‘SPM trap’ is suggested as the name for hypothesis that is

depicted and explained in figure 3.14.
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Figure 3.14. lllustration of the ‘sphingomyelin (SPM) trap’ hypothesis. Within a non-phase
separated lipid bilayer, the non-ionised SPM mesomers are associated with two cholesterol
(CHOL) molecules through hydrogen bonds, hydrophobic interaction and possibly m-bonds,
which stabilise SPM mesomer conformation and assure the uniform morphology of the
bilayer. Once the bilayer is heated reaching the phase transition temperature, one of the
CHOL molecules inserts into the gap between both hydrocarbon chains within the SPM
molecule and stabilizes the ionic mesomer through hydrogen (or even electrostatic) bonds
with the amide group, hydrophobic interactions and m-bonds, causing an increase in the
overall lipid height. The second CHOL is released from the initial hydrogen bonds and most
likely acts as a gluing agent, attracting other SPM/CHOL aggregates through hydrophobic
interactions and possibly rt-stacking. The change in mesomer structure explains the increase
in height, whilst the release of CHOL from a hydrogen bond and subsequent assembly of
SPM/CHOL aggregates; the changes in spatial distribution of the lipids in a phase separated
bilayer.

The above hypothesis is supported by several facts. It has been well established that the
presence of amide groups within a molecular structure is associated with a significant
increase of the boiling point. Since the transition temperature (T;) of ceramides (e.g. SPM) is
generally higher the T, for the other phospholipids, it is likely that amide groups significantly
influence the properties of this class of molecules in addition to the presence of the long
fatty acid chains in their structure®. The presence of hydrogen bonding donor (=N*H-, -NH-, -
OH) and acceptor (-C=0, -C-O) groups is thought to be the reason behind the higher boiling
point of amides. Such groups enable forming hydrogen bonds with the external
environment, which results in higher energy requirements for amides in order to reach
melting point. In the lipid bilayer environment below the T,, such hydrogen bonds might

originate both from water molecules above the bilayer, and the polar head groups of the
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ceramide molecule or other neighbouring lipids within. For that reason, the SPM resonance
structures are likely to be dominant within a non-phase separated lipid bilayer and be
involved in the interactions with the surrounding environment. Here, the XPS spectra in the
N1s region of SPM lipid bulk support this claim, as according to the XPS spectrum on the
pure SPM sample (lipid bulk pipetted on the surface) the vast majority of amide groups has
been in the -NH- (non-ionic) rather than =N'(H)- (ionic) conformation (figure 3.8).
Interestingly, since the morphologies of the non-phase separated SLBs were uniform, the
equilibrium between the resonant structures appears to be shifted towards the non-ionised
structure. For that reason, hydrogen bonding-based stabilisation of non-ionised SPM
mesomer through CHOL at 1:2 (SPM:CHOL) ratio is proposed for the non-phase separated

bilayer environment.

Once the temperature has been elevated, increasing the thermodynamic free energy of the
bilayer system, the molecular movements are accelerated, hydrogen bonds begin to break
and SPM molecules seek the most thermodynamically stable conformations. Here, both SPM
resonant structures have been allowed, as it has been well established that amide groups

are likely to change the structure with temperature.

According to the hypothesis, once the system has reached the phase transition temperature,
the CHOL molecule that has been initially associated with the unsaturated SPM chain, forms
bonds with the positively charged nitrogen in amide group. This event would effectively
stabilise the ionized SPM structure through either hydrogen bonding or electrostatic
interactions between CHOL hydroxyl and SPM amide groups, m-stacking between
unsaturated CHOL and SPM groups, as well as hydrophobic interactions between the CHOL
and SPM hydrocarbyl chains. Such a conformation would provide the best conformational fit
between two molecules after careful consideration of the 3D thermodynamically stable
conformations of both molecules, independently. This SPM/CHOL ‘trap’ would stabilize the
SPM conformation associated with the ionised mesomer, bringing SPM hydrophobic chains
as close as possible to each other, which would explain both the increase in thickness of the
Lo domains and high level of lipid packing within the L, domain structure reported in the
literature®™. Also, since effectively a new bond is formed between two lipids, the boiling
point would significantly increase, explaining why the Lo domains would ‘crystallise’ within
the bilayer structure at a room temperature. The lateral self-assembly of SPM/CHOL
aggregate would occur most likely through the released CHOL molecules from the initial

aggregate however, the mechanism has not been clarified®. If this hypothesis is true, the
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confusion in terms of literature-reported stoichiometric ratios for CHOL-SPM aggregates

would also be elucidated.

The assumed, elliptical cone conformation of the aggregate would fit the conclusions drawn
from the AFM-observed phenomenon of spontaneous particle formation during the
interaction of DNA with the phase separated model SLBs (chapter 5). The elliptical cone

shape of SPM/CHOL aggregates may also fit well into the gaps associated with the grooves

within the deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) structures? (figure 3.15).
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Figure 3.15. The chemical and three-dimensional structures of DNA - deoxyribonucleic acid
(left) and RNA - ribonucleic acid (right) molecules. Each DNA and RNA molecule is composed
of two strands associated and stabilised through hydrogen bonds forming A- or B-form
helical structures, respectively. Major and minor grooves are present in both structures. Each
strand is composed of phosphate-pentose-base units called nucleotides. Phosphate groups
(PO,) are responsible for negative charge of the nucleic acids in a solution. Deoxyribose and
ribose are the pentose structures within DNA and RNA, respectively. Their conformations are
the molecular reason behind the differences in morphology between both nucleic acids.
Adenine (blue), guanine (green), cytosine (purple) are bases that DNA and RNA have in
common. Thymine (red) is present only in DNA, whilst uracil (red) only in RNA. The bond
types present in both nucleic acids are also presented. Three dimensional structures of DNA
and RNA have been adapted from ref. 39.

It is thought that the electrostatic DNA-SPM interactions and the hydrogen bonds between
lipid head groups and DNA core, as well as hydrophobic inter-lipid interactions may be
involved in the stabilisation of DNA/SPM/CHOL lipoplex. Also, the proposed hypothesis
would correlate with the observations regarding kinetic changes to the model SLB
throughout the AFM studies. Since the conformations of SPM/CHOL aggregates have been

different in a non- and phase-separated bilayer, lipids would provide a different
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stereochemical fit for DNA strands; the better being the elliptical cone shape in phase
separated bilayers. For that reason, the changes of SLB behaviour would happen gradually
for uniform SLBs and quite suddenly, directly above the L, domains (see figures 5.2 and 5.3

later in this thesis).

This ‘SPM trap’ hypothesis would also help to explain the liposome age-related phase
separation observed throughout the model SLB development. As indicated in figure 3.11, the
older the liposomes are, the more likely the SLB fabrication using VDT results in phase
separated SLB morphologies, at temperatures lower than 45-50°C, forming Lo domains of
higher heights and overall lower surface areas within the image. This implied that the
formation and self-assembly of SPM/CHOL aggregates into more tightly packed domains
occurred gradually over time within a bilayer structure. If this conclusion was true, the age-
related phase separation of a lipid membrane would be a phenomenon playing an important
role in membrane, liposome and cell aging mechanisms. It is well established that the
stability of liposomes decreases with time?®. Since liposomes are spherical structures with a
high bilayer curvature, the gradual formation of tightly-packed and rigid L, domains within a
liposomal membrane would significantly affect lipid fluidity effectively making the liposomes
more prone to break. Also, the formation of 1-3 nanometre-thick edges within the liposome
surface would contribute, if not trigger, the fusion of liposomes in a solution due to the edge
effect (see chapter 4). In a native biological membrane, where the formation of SPM/CHOL
aggregates is likely to be decelerated via protein and/or carbohydrate components of the
membranes, the formation of Lo domains may occur even slower possibly indicating the
reason for unclear existence of lipid rafts in biological membranes. However, if the Lg
domains formed within a biological membrane of a certain age, the cellular environments
would most likely change, directing cells with such membranes onto necrosis or apoptosis
pathways. Since SPM lipids are identified as key determinants involved in cell death?, as
well as the presence of lipid rafts has been associated with cellular senescence-related
signalling®®, such a hypothesis is possible. Interestingly, aging of an erythrocyte (eryptosis) is

also associated with changes related to the plasma membranes®.

Finally, the ‘SPM trap’ hypothesis would also be in agreement with the phase separation
mechanism observed throughout the incubation of dry SLBs in a high humidity chamber
(chapter 6). This phenomenon is most likely associated with the gradual structural
reorganisation of bilayer lipids. Once the amount of water-lipid head group hydrogen bonds

was decreased, the forces involved in inter-lipid interactions would start playing the
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dominant role as factors providing the most energetically stable organisation of lipid
molecules. For that reason, the formation of SPM/CHOL aggregates and their self-assembly
would occur initially within the model bilayer, until the SLB lipids start forming bulk and
micelle-like structures, resulting eventually in the delamination of the bilayer®. Both
phenomena have been manifested as the gradual appearance of Lo domains, as well as the
appearance of particular structures directly above the model SLBs, over time, as presented
in figures 3.11. and 6.3. Such a mechanism is unlikely to be observed in vivo, due to the
presence of membrane-stabilizing proteins and carbohydrates in a biological membrane
however, it has indicated that the incubation of SLBs in high humidity environments could
increase the overall stability of the model SLBs when exposed to air. This was identified as

being beneficial in terms of SLB microarray development, as discussed in chapter 6.

3.5 Conclusion

In conclusion, the advanced surface analysis techniques, such as ToF-SIMS, XPS and AFM
have been confirmed as very important techniques for SLB-related research. ToF-SIMS and
XPS investigations allowed the qualitative and quantitative characterisation of the lipid
compositions of the model SLBs, improving the general understanding of such membrane
models at a molecular level. AFM studies enabled not only the development and
optimisation of model SLB fabrication protocols, but also the comparison of the SLB
behavioural properties at a nanometre scale, with the behaviours of cellular membranes in
vivo demonstrating again that SLBs are valid models for membrane studies. Here, a new
hypothesis regarding the aggregation of SPM and CHOL within model SLBs has been
proposed. Since these lipids are associated with both lipid rafts and the Ly, domains of lipid
bilayers, it is anticipated that subsequent research verifying the considerations may
significantly impact the currently unclear role, existence and formation mechanisms
associated with phase separation of lipid bilayers, lipid rafts and the protein ingredients

within.

Finally, the development of an SLB model was successfully performed, hence, further
assessment with regards both formulation-SLB interaction performance, as well as the
throughput SLB-based applications has been studied and presented in the following

chapters.
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Supported lipid bilayers to aid understanding of pharmaceutical
excipient performances in vitro.

4.1 Abstract

Since pharmaceutical excipients are an inseparable part of a medicine, proper understanding
of their bioactivities is very important. In this chapter, the mechanisms of interactions
between cell membrane models and polymer excipients: PEO-PPO-PEO tri-block co-polymer
surfactants are investigated. Atomic force microscopy (AFM) is successfully used to assess
the changes within model supported lipid bilayers (SLBs) after exposure to Pluronics® L-62,
L-64 and F-68. The possible mechanisms underlying such interactions are proposed.
Additionally, unique properties of model SLBs as scientific tools for exploring the
mechanisms of such interactions are identified.
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Figure 4.1. Graphical abstract indicating the experimental focus of chapter 4. The
interactions between model supported lipid bilayers (SLBs) and three Pluronics® of the same
polypropylene oxide (PPO) and different polyethylene oxide (PEO) block lengths: L-62, L-64,
and F-68 are studied with atomic force microscopy (AFM).
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Abbreviations:

AFM — atomic force microscopy; APl — active pharmaceutical ingredient; CHOL — cholesterol; CMC —
critical micellar concentration; DP — degree of polymerisation; F — flakes (with regards to Pluronic®);
HLB — hydrophilic/lipophilic balance; L — liquid (with regards to Pluronic®); L, — liquid disordered; Lo —
liguid-ordered; MDR - multi-drug resistance; MTS — 3-(4,5-dimethlthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sufophenyl)-2H-tetrazolium); PBS — phosphate buffer saline; PEO —
polyethylene oxide; PPO — polypropylene oxide; SLB — supported lipid bilayer; SPM — sphingomyelin;
w/v — weight/volume.

4.2 Introduction

Pharmaceutical excipients are an inseparable part of a formulation and not infrequently, the
key reason for an active pharmaceutical ingredient (API) turning into a medication®. In spite
of a common definition of an excipient as an inactive substance, a number of studies have
shown that pharmaceutical excipients are not biologically inert and may trigger either
beneficial or detrimental bioresponses depending on the dose and application®. For
instance, PEO-PPO-PEO tri-block co-polymer surfactants (Pluronics®, Synpertonics®,
poloxamers) are common excipients in healthcare products® and were reported to affect
gene expression and function of membrane proteins that are involved in multi-drug
resistance (MDR) phenomena®. Therefore, PEO-PPO-PEO tri-block co-polymers have gained a
renewed interest as promising adjuvants for various drug delivery applications and an

accurate understanding of their bioactivity profile has become an urgent priority”.

In this chapter, the mechanisms of interactions between Pluronics® and cell membrane
models were investigated with atomic force microscopy (AFM). AFM studies on supported
lipid bilayers (SLBs) of biorelevant lipid compositions were employed as an experimental
approach to model behaviours of cellular membranes at a nanometre scale®. Experiments
were performed using Pluronics® L-62, L-64 and F-68, as these were initially identified as

representatives of the class of PEO-PPO-PEO tri-block co-polymers (figure 4.1).

This research has provided useful insights into structure-activity relationships for Pluronics®,
as a class of polymers and has indicated the likely mechanism of their interactions with a
cellular membrane. In addition, the impact of SLBs on exploring excipient-triggered changes
of cell membrane behaviours has been demonstrated, revealing the importance of SLBs as

scientific tools for formulation-membrane interaction studies.

4.3 Materials and Methods — see chapter 2
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4.4 Results and Discussion

Initially, Pluronics® L-62, L-64, F-68 were identified as polymers representative of the class of
PEO-PPO-PEO tri-block co-polymer surfactants. The three polymers were identified as
Pluronics® of both similar structure (%PEO content as the only changing variable; figure 2.1)
and significant differences in cytotoxicity profiles (table 4.1). Additionally, hydrophobicity
profiles were taken into consideration: hydrophobic L-62 (DPppo>DPpro), amphiphilic L-64
(DPppo = DPpgo) and hydrophilic F-68 (DPppo<DPpo). Therefore, it was hypothesized that
interactions of these three chemistries with models for cell membranes at a molecular level
may provide useful insights into the mechanisms of poloxamer-membrane interactions.
Since concentrations of Pluronics® at or above critical micellar concentrations (CMC) caused
experimental challenges (e.g. bubble formation whilst AFM imaging or pipetting) and
previous in vitro studies reported no impact of CMC on cellular toxicity®, the AFM
experiments were performed at concentrations below the CMC values, i.e. 0.001 % - 0.0001
% (%w/v). Relevant cell viability and physicochemical parameters for the representative

poloxamers, which had been extracted from the literature, were summarised in table 4.1.

Table 4.1. | The physicochemical and cell viability parameters for the representative Pluronics®.

Pluronic EW. M MP°  %,WPE0  CMC M IMtegrated
name Drro DPro ipal [kpa]  [kDa] [] [%w/i] [ MTS score
(Caco-2)
L-62 31  13+3 25 18  0.6:0.1  24+4 0001 1-7 -0.04603
L-64 31  26t1 29 1.8  12¢0.1 39+l 01 12-18  0.020236
F-68 31 157+7 84 1.8  7.0t03 79+l 7 29 0.86001

*Since the theoretical and manufacturer-reported molecular weights of the co-polymers (F.W.) are inconsistent, the degree of

polymerisation for PEO block (DPygo), PEO block content (%,,,,PEO) and molecular weight of PEO block (MHPEO) were averaged

and expressed as (G, SD); CMC (critical micellar concentration) of aqueous solutions at 40 °C were measured using DPH
spectroscopy method’ (CMC for L-62 were extrapolated, based on CMC values reported for F-68, P-65, L-64); hydrophilic-
lipophilic balance (HLB) values were indicated by manufacturer (Sigma-Aldrich and BASF); Integrated MTS scores, based on
cell viability studies were taken from ref. 12.

The composition of model SLB was selected for the reasons discussed in chapter 3. The AFM
interaction studies between the Pluronics® and model SLBs were performed using three
different bilayer qualities: continuous, patch-like and porous. The summary of AFM

investigations for each polymer was depicted in figures 4.2., 4.3. and 4.4.
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Figure 4.2. AFM images presenting steps of the interactions between model SLBs of different
bilayer qualities and Pluronic® L-62 monitored over time. A;; and B indicate gradual
desorption of model SLB patches after exposure to 0.001 % (w/v) and 0.0001 % (w/v)
polymer solutions, respectively. C;.; indicate gradual closure of SLB pores after prolonged
exposure to 0.0001% (w/v) polymer solution. D;.; present gradual solubilisation of continuous
model SLB incubated with 0.001% (w/v) polymer solution. Arrows were added to indicate
important observations explained throughout the text. Z-scale bars were removed for clarity
purposes (average range 0-10 nm). Images are recorded in liquid environments.
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Figure 4.3. AFM images presenting steps of interactions between model SLBs of different
bilayer qualities and Pluronic® L-64 monitored over time. A;; and By indicate gradual
desorption of model SLB patches after exposure to 0.001 % (w/v) and 0.0001 % (w/v)
polymer solutions, respectively. C,; indicate gradual closure of SLB pores and changes to
liquid-ordered domains after exposure to 0.0001% (w/v) polymer solution. D;; present
gradual solubilisation of a continuous model SLB incubated with 0.001% (w/v) polymer
solution. Arrows were added to indicate important observations explained throughout the
text. Z-scale bars were removed for clarity purposes (average range 0-10 nm). Images are
recorded in liquid environments.
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Figure 4.4. AFM images presenting steps of interactions between model SLBs of different
bilayer qualities and Pluronic® F-68 monitored over time. A;; indicate gradual desorption
and changes to liquid-ordered domains within model SLB patches after exposure to 0.001 %
(w/v) polymer solution. B;; indicate both pore closure/extension and changes to L, domains
within a porous model SLB patch, after exposure to 0.001 % (w/v) polymer solution. C;.3
indicate gradual pore extension within a model SLB of non-phase separated morphology
after exposure to 0.0001% (w/v) polymer solution. Images D;.s present lack of apparent
changes in the morphology of continuous model SLB exposed to 0.001% (w/v) polymer
solution. Arrows were added to indicate important observations explained throughout the
text. Z-scale bars were removed for clarity purposes (average range 0-10 nm). Images are
recorded in liquid environments.

Although the morphology of continuous model SLBs with a uniform gel phase distribution
was thought to be most relevant to the morphology of cellular membranes, the incubation
of such SLBs with Pluronic® representatives provided limited information (figures 4.2-4.4D),
suggesting that this would not be an informative model for exploring the mechanisms of

membrane-poloxamer interactions. Therefore, alternative SLB morphologies were

employed.

Throughout the AFM experimentation with patch-like and porous model SLB film qualities, it
was observed that the addition of L-62 solution triggered changes in the environment, which
critically affected imaging performance. Directly after the exposure of SLBs to L-62 solutions,

the AFM probe was retracted from the surface and its rapprochement to the initial scan area
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caused difficulties. For this reason, images obtained for the L-62 interaction studies were
often significantly delayed. Such critical changes were not observed after gentle injections of

the L-64 and F-68 solutions into the AFM environments.

Such critical changes in the imaging environment were most likely triggered by the
hydrophobicity of L-62, which seemed to trigger immediate solubilisation of the model SLB
and therefore disturbances in AFM imaging. Interestingly, such an effect was not observed
for the continuous SLBs (figure 4.2D). This suggested that the presence of a bilayer edge in
the model SLB was critical for such interaction studies and most likely the Pluronic® L-62

molecules were interacting with SLB edges in the first instance.

This hypothesis corresponded well with in vitro cellular toxicity studies and the theories
within the lipid bilayer mechanics, according to which lipid molecules at bilayer edges are
packed in a different manner than the lipids within the bilayer leaflet®. Since the
hydrophobic lipid tails of the edge lipid (or line tension) were more likely to be exposed to
polar, aqueous environments, the energy of edge lipids was increased (figure 4.5).
Therefore, Pluronics®, as tension-lowering agents, may be attracted to the bilayer edge

more easily.

Figure 4.5. Schematic illustration of two basic
pore types in a lipid bilayer: hydrophilic (top)
and hydrophobic (bottom). According to this
theory both pore types co-exist at the pore
edges®, which may trigger the preferential
attraction of such hydrophobic agents as PPO
blocks to the bilayer edge, rather than lipid
_ \ film. Also, the lipids at the pore edge are
L Q050080008000 (i1 suggested to translocate and/or flip-flop more
: . easily’, which additionally may expose
' hydrophobic lipid tails to Pluronic® molecules.

Accordingly, the higher the edge energy of a lipid bilayer was, the more likely it desorbed
from the surface, once exposed to a surfactant solution. In order to test the applicability of
such hypothesis for the model SLBs, the bilayers of a patch-like topography were exposed to
the surfactant solutions of interest and SLB desorption was monitored over time (figure 4.6).
As presented on the graph, F-68 triggered much slower SLB desorption than L-62 and L-64,
which indicated its weak performance as a surfactant. L-62 and L-64 solubilised patch-like
SLBs at a similar rate, before the plateau was reached. However, L-62 reached the plateau

faster than L-64 for both concentrations. Since these observations corresponded with the
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lipophilicity profiles based on HLB values for the three polymers, patch-like SLB designs are

proposed to serve as models predictive of Pluronic® surfactant performances.
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Figure 4.6. Graph presenting the changes of the coverage for patch-like, model SLBs over
time, after exposure to 0.001% (w/v) Pluronics®: L-62 (blue), L-64 (purple) and F-68 (red) in
PBS. The exposure of patch-like, model SLBs to L-62, L-64 and F-68 solutions results in
decrease of SLB coverage over time, which is manifested as dissolution of the bilayer patches
on AFM images (compare figures 4.2.A, 4.3A and 4.4.A). However, the kinetics of such
interactions are different for each polymer: L-62 and L-64 trigger dramatic decrease in the
SLB coverage over time, while F-68 acts as a mild surfactant decreasing the SLB coverage
more slowly. Each value of SLB coverage is divided (normalised) by the SLB coverage value at
the first time point of the interaction in order to highlight the differences between three
Pluronics®. This is performed, because the SLB coverage values at the first recorded time
point are different for each interaction causing difficulties for comparison of polymer
performances. See appendix Il for control studies.

Similar conclusions were drawn from the observations of the behaviour of the phase-
separated, model SLBs after exposure to the three surfactants. The
cholesterol/sphingomyelin (CHOL/SPM)-rich liquid-ordered (L) domains in model SLBs were
disappearing independently of the liquid-ordered (Lp) domains, after the patch-like films of
model SLBs were exposed to L-64 and F-68 (figures 4.3A and 4.4A, respectively). This implied
that polymer surfactants were attracted to the Ly edges and triggered interactions at the
phase borders. Initially present Lo domains were not identified in any of the samples after

the exposure to L-62 solutions (see appendix Il for the AFM image of model SLB before
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addition of the Pluronics® L-62). Although this observation was strongly affected by the
delay in imaging, it was reasonable to hypothesize that L-62 molecules were initially
attracted to the phase separation border, as well. Also, since phase separation was not
present for continuous SLBs, apparent changes in continuous SLB morphologies were less

noticeable with AFM (figure 4.2D).

Intriguingly, the changes in phase separation for porous SLBs were less critical. As indicated
in figures 4.3C,_3, lipid phases disappeared gradually over time. Since Ly were slightly thicker
than the Ly domains, it was reasonable to hypothesize that the lipids at the Lo-Lp border
were of similar conformation to the lipids at the pore edge and the hydrophilic/hydrophobic
pore model applied. Here, the gradual disappearance confirmed again the critical role of
edge lipids for SLB-Pluronic® interactions and suggested that the phase separation borders
may act as specific insertion points for the PPO polymer blocks. AFM imaging of porous SLBs
exposed to L-62 was again delayed and limited data was obtained. The changes in phase

separation were also noticed for Pluronic® F-68 and discussed below.

Surprisingly, the mica-bordering pores were observed to gradually decrease in size for the L-
64-exposed porous SLBs (figures 4.3C and 4.7). A similar effect occurred even more rapidly
for L-62 samples after prolonged incubation with fairly disrupted SLB patches (figures 4.2C).

A quantitative evaluation of SLB desorption kinetics is presented in figure 4.7.

Since L-62 and L-64 acted as more efficient surfactants than F-68 on patch-like SLBs, the
observations on porous SLBs were primarily unexpected. After careful consideration, the
phenomenon of pore closure was hypothesized to be due to the poloxamer-triggered
increase in the fluidity of model SLBs. Here, as the incubation with the polymer was causing
gradual L, domain disappearance (figure 4.3C), it was likely that the amphiphilic L-64
polymer molecules, after initial attraction and insertion across the bilayer at the Lo domain
edges, were washing away the gel phase lipids from the SLBs, effecting in an improved
overall lateral mobility of lipids within the bilayer leaflets. As an implication, the fluidity of
the bilayer films increased, which was manifested as a gradual pore closure that was
recorded with AFM (figure 4.3C). The pore closure for L-62-exposed SLBs suggested that the
lipophilic polymer was able to exert increase of bilayer fluidity as well (figure 4.2C).
However, this effect was noticed after prolonged exposure of porous SLBs to L-62 and
multiple attempts to find an SLB-covered area for AFM imaging. For this reason, it was
anticipated that this effect was recorded for SLB fragments most adhesive to the mica

surface that were not solubilised with L-62 in the first instance™. If that was the case, the
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uneven SLB adherence across the surface of a solid support could be viewed as another

useful property of SLBs to obtain a fuller picture of the interactions at a cellular membrane.
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Figure 4.7. Graph presenting changes of the coverage of porous model SLBs over time after
exposure to 0.0001% (w/v) Pluronics®: L-62 (blue), L-64 (green) and F-68 (red) in PBS. The
exposure of porous, model SLBs to L-62 and L-64 solutions results in an increase of SLB
coverage over time, which is manifested as a gradual pore closure on AFM images (compare
figures 4.2.C and 4.3.C). The exposure of a porous, model SLB to an F-68 solution results in
gradual decrease of SLB coverage, which is manifested as a gradual extension of the pores
(compare figures 4.4.B and C). Each value of SLB coverage is divided (normalised) by the SLB
coverage value at the first time point of the interaction in order to highlight the differences
between three Pluronics®. This is performed, because the SLB coverage values at the first
recorded time point are different for each interaction causing difficulties for comparison of
polymer performances. See appendix lll for control studies.

As initially hypothesized, the use of AFM imaging enabled the observations that were
consistent with both cytotoxicity studies, and molecular modelling for L-64 and L-62
polymers®. On the one hand, continuous SLBs (most relevant to cell membrane
environment) indicated faster dissolution of the bilayer for L-62 than L-64 which agreed with
integrated MTS scores (table 4.1). On the other hand, the L-62- and L-64-triggered increase
in bilayer fluidities indicated the involvement of transmembrane insertion mechanism

proposed by Nawaz et al.”” for both polymers.
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Interestingly, Pluronic® F-68 was demonstrated to trigger both pore enlargement and
closure for porous SLBs (figure 4.4B). This suggested that the bilayer interaction profile for F-
68 was affected by factors additional to the edge effect. Pluronic® F-68, as a large molecule
with long hydrophilic PEO chains, once attracted to the pore or Lo domain edges, was likely
not to insert the PPO block into the bilayer structure as easily as L-62 and L-64. Instead, F-68
adhered to the SLB surface and, as a mild surfactant, was gradually pulling out the Lo domain
lipids (figure 4.4B). This in turn, increased the local bilayer fluidity of lipids within the L;
phase and resulted in local pore closure within porous lipid film. In parallel, at the SLB edges
greatly exposed to mica support, F-68 triggered partial, slow bilayer dissolution, probably
because F-68 molecules adhered to the mica support in a non-specific manner resulting in a
higher local concentration of PPO blocks around the pore edges. This implied that the bilayer
solubilisation was likely to be affected by a non-specific adsorption of F-68 to the mica
support, as well as distribution of Ly phases across the bilayer. In order to test this
hypothesis, additional experiments with porous model SLBs of non-phase separated
morphologies were performed. Such morphologies were expected to provide the attraction
of F-68 molecules to the pore edges, without the interferences triggered by the presence of
Lo domains. As indicated in figure 4.4C, exposure of such SLBs to F-68 polymer solution
resulted in a gradual pore expansion. This indicated that F-68 did not act as a sealant once
exposed to non-phase separated SLB morphologies. This was expected, because the only
process occurring at the bilayer edges of such morphologies was adsorption of the polymer
molecule and gradual dissolution of the bilayer film. The local increase in bilayer fluidity
(that was observed for the phase separated morphologies) was not present in this case.
Therefore, the experiments above suggested that Pluronic® F-68 can act both as a sealant
and as a mild surfactant depending on its accessibility to edge lipids, adsorption to solid

supports and the Lo domain distribution within the bilayer.

It is worth adding that the AFM-based interaction studies between F-68 and continuous
SLBs, as the most in vitro-relevant systems indicated no, or very slow, bilayer desorption
(figure 4.4D). This correlated with F-68 cytotoxicity profile and inability to haemolyse
erythrocytes™. Sealant properties for F-68 were previously reported for studies employing

liposome-based systems™.

To summarise, a hypothesis underlying a possible mechanism of model SLB-poloxamer

interactions was drawn, based on the AFM studies, as presented in figure 4.8.
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Figure 4.8. Schematic illustration of possible interaction mechanism between phase
separated SLBs and Pluronics® of different polyethylene oxide block content (%PEO). (A)
indicates free polymer molecules floating in liquid (white) above the edge of model supported

lipid bilayers (SLBs) of phase separated morphologies (orange, brown for liquid and gel phase
lipids, respectively). (B) indicates the attraction and insertion of a PPO blocks (red) into the
edge lipids of a liquid-disordered or liquid-ordered phases. (C) indicates poloxamers with low
%PEO that primarily trigger solubilisation of SLBs through desorption of lipids from the
support. Such poloxamers may additionally insert across the bilayer causing increase in the
fluidity of SLB fragments that strongly adhere to the solid support (black) surface (not
shown). (D) indicates poloxamers with a moderate content of PEO (blue) which primarily
insert across the membrane and increase SLB fluidity through a gradual desorption of lipids
from the bilayer. (E) indicates poloxamers with high %PEO which adsorb to the bilayer and
solid support surfaces through non-specific interactions with long PEO chains and trigger
slow reorganisation of lipid distribution within the SLB structure. This may result in both
increase of the local bilayer fluidity and lipid desorption from the surface. The monolayer of
liquid environment in between the surface of solid support and bilayer film was presented in
light-blue colour. The relative scales between the size of polymer molecules (~10-20nm) and
bilayer thickness (~5 nm), as well as the likely conformation of polymer (as a globule) are
omitted on the cartoon for the presentation purposes.
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4.5 Conclusion

Model SLBs were employed to study the interactions between representatives of PEO-PPO-
PEO tri-block co-polymer surfactants and models for biological membranes. This enabled
hypothesizing the possible structure-activity relationship for Pluronic®, which agrees with

available literature.

In addition, SLBs were demonstrated to have several advantages over the cell culture-based
models, as scientific tools to investigate such interactions. For instance, SLBs can be easily
studied with high resolution imaging techniques, such as AFM. In addition, the simplicity of
SLB structures significantly improves the ability to study and interpret bilayer behaviour
after exposure to the excipients of interest. Furthermore, since SLB morphologies can be
altered (e.g. lipid film quality or distribution of gel phase lipids), more detailed information
regarding the interaction mechanisms can be obtained. Also, uneven adherence of SLBs to
solid supports may offer additional advantages for such studies. For those reasons, AFM-
based excipient-SLB interaction studies may be a useful approach to study and optimise the

excipient performance in vitro.

Interestingly, oversimplified structure, the presence of phase separation or porosity within
SLBs may be criticised for their irrelevance to biological environments. As this study
indicates, these properties are advantageous, providing the behaviour of model SLBs

employed is well understood.
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Supported lipid bilayers: stop-change in nucleic acid pharmacology.

5.1 Abstract

Although siRNA therapeutics hold significant potential as next-generation medicines, a lack
of a detailed understanding of their behaviour in vivo currently decelerates the achievement
of a commercial product. Studies of siRNA-membrane interactions at a nanometer scale are
expected to provide useful insights into siRNA pharmacology. In this chapter, a spontaneous
formation of nucleic acid-sphingomyelin-cholesterol lipoplexes is observed via AFM studies
of the interactions between the models for lipid membranes and siRNAs. The in vivo
implications of this phenomenon is discussed uncovering novel research directions for
nucleic acid pharmacology. In addition, the mode of action and performance of
polyphosphonium siRNA-type polyplexes are assessed and highlight an important role of
supported lipid bilayers (SLBs) in the pharmaceutical sciences.

SOLID SUPPORT

Figure 5.1. Graphical abstract depicting the spontaneous formation  of
DNA/sphingomyelin/cholesterol (DNA/SPM/CHOL) lipoplexes. AFM-observed phenomenon of
spontaneous lipoplex formation has been correlated and discussed with the in vivo
performance of siRNA therapeutics not only indicating the likely mechanisms involved in
SiRNA toxicity and cellular uptake, but also confirming the significant role of model SLBs at
an early stage of drug discovery and development.
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Abbreviations:

AFM — atomic force microscopy; bp — base-pair; CHOL — cholesterol; DNA — deoxyribonucleic acid;
DP — degree of polymerisation; ECM — extracellular matrix; GeRPs — 3-(1,3)-d-glucan-encapsulated
siRNA particles; ICM — intercellular matrix; Lo — liquid-ordered; PBS — phosphate buffer saline; PPP —
polyphosphonium polymer; PEG — polyethylene glycol; PEI — polyethyleneimine; RH — relative
humidity; RISC — RNA-induced silencing complex; siRNA — short (small) interfering ribonucleic acid;
SLB — supported lipid bilayer; SNALPs — stable nucleic acid lipid particles; SPM — sphingomyelin; TRL —
Toll-like receptor.

5.2 Introduction

The formulation strategies, delivery routes and barriers for targeted delivery of short
interfering ribonucleic acid (siRNA) therapeutics have been studied for many years, as
thoroughly reviewed in reference 1' (attached as appendix IV). Unfortunately, progress has
been slow with very few medicines reaching the market, which is partially due to a lack of
detailed understanding of the behaviour of nucleic acid therapeutics both in vitro and in
vivo. In particular, toxicity and low transfection efficacy seem to be the significant barriers
that have not been addressed to date. For this reason, investigations of direct membrane
interactions at a molecular level may uncover important?, but hitherto uncharacterised

phenomena with significant implications for drug delivery.

In chapter 5, the interactions between scientific models for siRNA therapeutics and
biological membranes were investigated with atomic force microscopy (AFM). Since AFM
enables studying processes at a nanometre scale, it was hypothesized that the observation
of direct interactions between the siRNA formulation components and supported lipid
bilayers (SLBs) of a biorelevant lipid composition® may improve the understanding of
mechanisms behind gene transfection and toxicity in vivo. To the author’s knowledge, such
studies were not performed previously; hence the interactions of both nucleic acid
formulation and its components were investigated independently. In addition, such
investigations were expected to enable further assessment of SLBs as models for the in vitro

optimisation of pharmaceutical formulation performance.

The unexpected phenomena observed during these studies have potentially important
implications for the pharmacology of nucleic acid-based therapeutics. Directly, this work
highlights the potential of SLBs in pharmaceutical sciences, demonstrates a novel analysis
approach for the assessment of formulation-bilayer interactions studied with AFM and
indicates possible phenomena underlying formulation performance of nucleic acids in vivo.

Indirectly, the focus for future research across a number of areas within life sciences is
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outlined, hopefully leading to the new effective therapeutics, innovation in the drug

development process and discoveries relating to how materials function in the human body.
5.3 Materials and Methods — see chapter 2.

5.4 Results and Discussion

5.4.1 Nucleic acid-SLB interactions

The interactions between the model SLBs and siRNA models were studied with AFM using
porous bilayers and an unbound 19 base pair (bp), double-stranded DNA at a wide range of
concentrations, in order to reflect the concentrations used for in vitro studies®. AFM
PeakForce® Tapping mode was chosen as an imaging technique for liquid environments in
order to both study the interactions at scales of several nanometres and minimise AFM
probe-triggered damage of the sample®. The model SLBs and imaging in liquid environments
were chosen for the reasons discussed in chapters 1 and 3. The controls for liquid injection-
associated SLB disruption within the AFM system were also based on previous data
(appendix I1). The 19bp DNA was chosen as a model for siRNA, as it was expected to exhibit
close physicochemical and behavioural similarities with siRNA molecules without the
associated high cost and chemical stability issues. Although DNA and RNA structures are
stereochemically different, negative charges along the strand backbones, hydrogen bonds in
the core of both helices, as well as major and minor grooves within the double strands are
present for both chemistries (see figure 3.15)°. For that reason, it was fair to anticipate that
the dynamics behind the interactions between either DNA or RNA strands and significantly
smaller, lipid molecules would be similar and the extrapolation of DNA-lipid interactions
onto RNA-lipid interactions does not involve significant errors’. The model DNA sequence
was designed in order to prevent self-complexation of DNA strands throughout the

experimentation.

Initial imaging of the model SLBs exposed to DNA resulted in two clear phenomena. Firstly,
DNA-exposure triggered an increase in the SLB fluidity when compared against non-exposed
samples. This was manifested as gradual pore closure within the model SLBs that were
exposed to DNA. The quantitative analysis of changes in SLB coverage over time indicated

that the increase may be considered linear (figure 5.2).
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Figure 5.2. AFM images and graphs presenting the qualitative and quantitative changes to
the uniform, model SLBs: before (A) and after (B) exposure to a 2.5 ug/ml DNA solution.
Control experiments (A) indicate lack of PBS or AFM probe-associated pore closure. The
fluctuations of SLB coverage over time (*A) are due to image drift. Gradual pore closure is
observed for DNA-exposed SLBs (B) with the linear increase in SLB coverage over time (*B).
Arrows are added on (B) to demonstrate the gradual pore closure within model SLBs after
exposure to DNA. Z-scale bars are removed from the images for clarity purposes Z-scale bars
have been removed for clarity purposes (average range 0-10 nm). See appendix Il for control
studies.

Secondly, exposure of phase-separated, model SLBs to DNA resulted in significant
morphological changes of the liquid-ordered (Lo) domains over time. Details regarding Lo
domain formation within the model SLBs were explained in chapter 3. As presented in figure
5.3, shortly after introduction of the DNA to the experimental environment, a spontaneous
formation of the non-spherical particles [mean diameter: (117 + 7) nm] directly above the Lo
domains was observed, leading eventually to bilayers of an altered morphology.
Quantitative analysis of the changes to the Lo domain height throughout the interaction
suggested that the process could be divided into three phases: lifting Lo domain lipids,
particle formation and bilayer remodelling. In the bilayer remodelling phase, two types of
isle-like domains may be distinguished: one (0.6 + 0.1) nm and the second (2.3 £ 0.3) nm
thick. The latter domain was associated with non-spherical particles of (45 £ 4) nm mean

diameter. The particles formed both during particle formation and remodelling phases had

similar three-dimensional structures as demonstrated by their size consistency when
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measured over time of interaction vertically: (84 £ 5) nm and (28.8 + 0.4) nm, respectively;
horizontally: (140 £ 19) nm and (67 + 11) nm, respectively; and in a diagonal direction: (108 =
11) nm and (39 = 11) nm, respectively. See appendix | for an example image presenting the

cross section analysis on a particle during the particle formation phase.
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Figure 5.3. The AFM images (top) and the analysis of L, domain thickness (bottom)
throughout the interaction of the model SLB and 5 pg/ml DNA, indicating three phases.
Within the first 70 minutes after the injection of DNA into an AFM cell a gradual increase in
Lo domain height can be observed (green). Subsequently, the spontaneous formation of
particles [(117 + 7) nm] occurs decreasing the L, domain height (red). After 170 min L,
domains of two heights can be observed: (0.6 + 0.1) (Jl)) nm and (2.3 + 0.3) (@) nm (orange).
The thicker domains are mainly associated with particles (45 *+ 4)-nm in size. Yellow arrows
on AFM images indicate morphological changes to L, domains, whilst the white arrows
indicate changes associated directly with the formation of the particles. Colours on the graph
are added to highlight the changes throughout the interaction.
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In addition, it was anticipated that exposure of non-phase separated, model SLBs (without
noticeable phase separation) to a wide range of DNA concentrations would further help to
establish the quantitative relationship between DNA concentrations and the SLB behaviour.
For that reason, AFM studies on model SLBs exposed to 5; 10; 62 [ug/ml] DNA solutions
were performed. The summary of these studies as well as changes of the SLB coverage over
time was depicted in figure 5.4. Subsequently, in order to compare the SLB behaviour after
exposure to four DNA concentrations (2.5-62 pg/ml), the slope values of the trendlines on
graphs presented in figures 5.2 and 5.4 were plotted against corresponding DNA
concentrations and depicted in figure 5.5. The analysis of the slope values indicated that the
tendency of the model SLB coverage to increase in parallel with the increase of DNA
concentration was positively proportional within the 5 - 62 [ug/ml] range. Also, the linearity

of this relationship was likely (R* = 0.9516).

The AFM-observed increase in the SLB fluidity as well as both the lifting of Lo domains and
the particle formation phases suggest that the Ly domain lipid components play a dominant
role in the interaction between the bilayer and nucleic acid. The spontaneous formation of
the particles associated with the Lo domains implies two hypotheses. Firstly, the small time
period between introduction of DNA molecules to the experimental environment and
formation of the particular structures suggests the involvement of fast forming bonds, such
as electrostatic interactions between positively and negatively charged molecules (e.g.
sphingomyelin (SPM) and DNA). Here, the non-spherical shapes of the particles, based on
the cross section analysis of AFM images at the particle formation stage, suggest that the
non-spherical DNA molecule is indeed involved in this process. Secondly, the fact that the
formation of particles occurs preferentially to alternative phenomena (e.g. the adhesion of
DNA molecules to the bilayer) implies that the particle formation consisting of DNA and
appropriate membrane lipid(s) is a process assuring the lowest thermodynamic free energy
(Gibbs energy). Additionally, the presence of cholesterol (CHOL) within the bilayer had been
associated with both a linear increase in lipid bilayer rigidity® and the formation of
aggregates with SPM°. The increase in fluidity of the model SLBs suggests an overall loss of

CHOL within the model bilayer structure after exposure to DNA.
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Figure 5.4. The AFM images and graphs presenting the qualitative and quantitative changes
to the non-phase separated, model SLBs over time after exposure to: 5 (A), 10 (B), 62 (C)
[ug/ml] DNA solutions. Both particle formation and gradual pore closure are observed for all
DNA-exposed SLBs with a linear increase in SLB coverage over time (*). See appendix Il for

control studies. Z-scale bars have been removed for clarity purposes (average range 0-10 nm)
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Figure 5.5. Graphs illustrating the quantitative relationship: DNA concentration vs. the
increases of SLB coverage over time. (A) indicates the relationship between four DNA
concentrations and slopes calculated from SLB coverage vs. time evaluations (compare
figures: 5.2 and 5.4). (B) illustrates the linear correlation paramers:R? slope, intercept and
their errors (SD,, SDg, respectively) within the 5-62 ug/ml DNA concentration range.
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For the reasons above, it is the author’s interpretation that DNA associates with the bilayer
lipids forming stable particle-like complexes composed of DNA, SPM and CHOL
(DNA/SPM/CHOL lipoplex). The interaction is most likely triggered by the electrostatic
attraction between the negatively-charged phosphate groups of DNA molecules and the
positively-charged trimethylammonium residues within SPM hydrophilic head groups facing
the liquid environment in the upper leaflet of the bilayer. For phase separated SLBs, the
bilayer edge effect (see chapter 4) may also play a secondary role’. After association with
the SPM/CHOL-rich regions, the DNA macromolecule cannot be inserted into the bilayer
structure due to its large size and hydrophilic nature’. Instead, it gradually lifts SPM/CHOL
aggregates from the bilayer causing both the formation of the particles and remodelling of
the Lo domains within the model SLBs. The exact composition of the Lo domains after
prolonged exposure to DNA could not be fully elucidated by AFM imaging. However, based
on the co-existence of two separate isle-like domain types at the remodelling stage, the
occurrence of two processes is implied. The first one, associated with the (0.6 + 0.1)-nm
thick domains, results in the release of the excessive CHOL accumulated in the native Lo
domains that is responsible for ‘gluing’ the SPM/CHOL aggregates (compare chapter 1). The
morphology and the larger surface area of these domains within the remodelled SLBs agree
with this explanation. The second process, related to the (2.3 £ 0.3)-nm thick domains, is the
fusion of DNA/SPM/CHOL lipoplexes with the remodelled SLBs. The presence of the particles
that are smaller, yet similar in shape to the DNA/SPM/CHOL lipoplexes and associated with
these domains, would imply such behaviour. Here, both adsorption to the surface and
hydrophobic interactions between the lipoplex and SLB lipid components may be involved in
this process. A possible mechanism of the DNA-model SLB interaction is depicted in figure

5.6.
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Figure 5.6. The illustration of the key steps of the interaction between DNA and a model SLB.
After introduction of the DNA molecule to the SLB system (A) a gradual lifting of the L,
domain can be observed (B). Due to both: the strong electrostatic interactions and structural
fit between DNA molecule and sphingomyelin-cholesterol aggregates, spontaneous
formation of lipoplexes occurs (C), causing changes to the L, domain composition and
morphology (D). Finally, the lipoplex fuses with the bilayer, triggering the formation of
particle-associated thick domains within the remodelled SLBs. Perpendicular orientation of
DNA towards the SLB surface is suggested based on the cross section analysis of AFM-
reported particle sizes.

Although the exact structure of the DNA/SPM/CHOL lipoplexes could not have been
elucidated based on AFM studies alone, the particle formation phenomenon occurring
spontaneously over time implied that the conformations of both lipids and DNA molecules
should be energetically favourable in order to facilitate this process. Unfortunately, the
exact structures of DNA lipoplexes in general, as well as SPM/CHOL aggregates remain
unclear to date. Based on the SPM trap hypothesis (chapter 3), the most likely structure of
the DNA/SPM/CHOL complexes is likely to resemble DNA complexes with lipid polymorphs in

hexagonal H, phase, as presented on figures 5.1. and 5.6.
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If the spontaneous formation of DNA/SPM/CHOL lipoplexes was considered in a biological
system, the phenomenon may be affected significantly by the presence of proteins, glycans
and other macromolecules that both stabilize the cellular membrane and introduce steric
barriers for spontaneous DNA-lipid interactions. Nevertheless, since SLBs (or direct drug-lipid
interactions) have been previously utilised within drug toxicity and mode of action studies?,
the in vivo implications of the spontaneous particle formation may be important for several

aspects related to the pharmacology of nucleic acids, as discussed below.

Since both SPM and CHOL are present in the vast majority of the human cell membranes and
play significant structural and functional roles in the human body, the impact of the
spontaneous particle formation phenomenon may be important in understanding the
limitations of nucleic acid delivery science. At a cellular level, the high affinity of DNA to
lipids present in the outer leaflets of biological membranes may be one reason why DNA and
siRNA therapeutics are less effective in vivo, where there are many more lipid layers to
cross, than in monolayer cell culture experiment. If such a spontaneous interaction occurs at
a cell surface, the invagination of the cellular membrane would also be easier due to a local
increase of the membrane fluidity. Also, the transcellular delivery of the macromolecule
should be improved by the increase in overall lipophilicity of the macromolecule. However,
even if the macromolecule reaches the cytosol (either through endocytosis or alternative
pathways), the spontaneous complexation of the nucleic acid will reduce the effective
concentration of unbound siRNA available for RISC processing. Such a hypothesis is in
correlation with Langer et al., who reported that ~95% of siRNA lipoplexes enters the cytosol
through inhibition-resistant endocytosis pathways and remain in an endosome for a
prolonged period of time, based on in vitro studies™. Furthermore, for the vesicle-type
delivery systems that pre-shield siRNAs from a direct interaction with the cellular membrane
(e.g. GeRPs™), the spontaneous binding between nucleic acid and SPM/CHOL aggregates
may occur in an endosome where excipient-free siRNA molecules are released. Effectively, if
an siRNA/SPM/CHOL lipoplex was spontaneously formed in vivo and reached the cytosol of a
desired cell, it is likely that the high stability of such complex significantly decreases binding
with RISC, potentially explaining the low efficacy of siRNA therapeutics. Instead, the complex
would either accumulate in the intercellular matrix (ICM) through interactions with lipophilic
environments of a membrane or be destroyed most likely via the SPM-dependant pathways.
Since SPM lipids (ceramides) play an important role in cell death mechanisms®, the latter
may also be involved in the siRNA-related induction of apoptosis. Figure 5.7 depicts the

considerations above.
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Figure 5.7. The illustration of the siRNA-cell interaction mechanism based on the AFM-
observed 19bp DNA-model SLB interaction. When a chemically stable siRNA reaches the
cytoplasmic membrane (A), it spontaneously forms complexes with sphingomyelin-

cholesterol aggregates and fuses with the membrane (B), the subsequent local increase in
the membrane fluidity triggers the membrane invagination (C). If subsequently siRNA was
released to the cytosol (D), the complexation of siRNA with sphingomyelin not only interferes
with the RISC processing, but also may trigger cell death or complex destruction through e.g.
sphingomyelin-dependent pathways. Although a micelle-like endosomal structure is
suggested at the membrane invagination stage (C), alternative lipid organisations are also
possible.

The preferential binding of SPM/CHOL aggregates by DNA may also play an important role in
the elucidation of the molecular mechanisms behind nucleic acid-triggered toxicity. On the
one hand, an increase in the overall size of a free nucleic acid directly after i.v.
administration is expected to trigger a response of the immune system. On the other hand,
an overall increase in lipophilicity and reduction of negative charge on a nucleic acid
introduced to the blood may result in an increase of likelihood of non-specific interaction
occurrence with e.g. plasma or cellular membrane components. This may explain the
difficulties in targeting of a specific tissue, the accumulation of nucleic acids in SPM-rich
tissues, as well as various toxicity events. This hypothesis is supported by several facts
associated with siRNA therapeutics and SPM research. CHOL-siRNA conjugates accumulate
in liver, lung, heart, kidneys and adipose tissues™®, which are all SPM-rich organs®™. Also,

naked siRNA accumulates in kidneys, while siRNA lipoplexes have been found in heart,
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spleen, lung and liver endothelia, rather than organ matrices, only 20 minutes after tail vein
injection in mice'. Toll-like receptors (TLRs) are associated both with siRNA-triggered
immunogenicity® and SPM-rich regions (lipid rafts) in cellular membranes®’. siRNA molecules
encapsulated in stable nucleic acid-lipid particles (SNALPs) provide higher delivery efficacy in
vitro than siRNA lipoplexes'®, as SNALPs may be more efficient at shielding nucleic acids from
aggregation with SPM throughout the formulation-cell interaction. In addition, DNA and
siRNA complexes have been reported to trigger erythrocyte aggregation that can be reduced
through PEG-based functionalization of a particle®, both in vitro and in vivo. Since
erythrocytes contain large amounts of SPM/CHOL associates in the outer leaflets of
erythrocyte membranes, the formation of DNA/SPM/CHOL lipoplexes may explain the
mechanism involved in the erythrocyte aggregation. As the existence of lipid rafts is still
uncertain and therefore the presence of SPM/CHOL aggregates in a native biological
membrane may still be unconfirmed, the proposed model of the lipoplex formation in vivo is
still likely, as the changes in membrane fluidity recorded in the AFM experiments were also

observed for SLBs without a noticeable phase separation.

It is also worth mentioning that the spontaneous interaction between SPM and nucleic acids
may play a role in characterising the role of SPM in the signal transduction and apoptosis or
even transduction of genetic material from the host to the cell, e.g. during the cell-
virus/bacteriophage interactions. Furthermore, since ceramides have been identified as key
factors influencing cell death®®, ceramide-enriched siRNA therapeutics may revolutionise the
siRNA-based pharmacotherapy in a number of applications involving: oncology, viral, fungal
and bacterial infections, metabolic, neurodegenerative or cardiovascular diseases and many

more®’. The summary of the considerations above is depicted in figure 5.8.
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Figure 5.8. An illustration indicating the directions for future research as an implication of
the spontaneous DNA-sphingomyelin-cholesterol (DNA/SPM/CHOL) lipoplex formation
phenomenon. The particle formation may improve the understanding of targeted delivery of
SiRNA (and other nucleic acid-based) therapeutics in vivo, as explained in the text (blue). It
may also provide useful insights into nucleic-acid related toxicity, e.g. associated with Toll-
like receptor (TRLs) and non-specific interactions with cells and organs such as: erythrocytes,
endothelium or components of the immune system (yellow). Since SPM lipids play important
role in cell death mechanisms (such as apoptosis), their delivery into the cytosol with a
nucleic acid molecule suggests a new biological role for this lipid in defence mechanisms
(green). Additionally, since DNA/SPM/CHOL lipoplex is stable with a possible biological
activity, a ceramide-enriched delivery system may be a new formulation approach for
efficient nucleic acid-based therapy (red).

5.4.2 DNA polyplex—SLB interactions

As a logical extension of the observations above, the role of excipients in the nucleic acid
formulation could be viewed as agents that prevent the formation of DNA/SPM/CHOL
lipoplexes, when in contact with the cellular membranes. In order to assess this hypothesis,
the interaction of DNA polyphosphonium polyplexes and model SLBs was investigated using

AFM.

Polyphosphonium-based polymers (PPP) were chosen for AFM studies, as these were
available through a collaboration with Vanessa Loczenski (a PhD student in the group,
chapter 2). In addition, PPPs represent a novel class of polymers similar in structure to

polyethyleneimine (PEl) — popular class of polymeric excipients for siRNA/DNA formulations,
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but without some problems noted for PEl. PPP-siRNA polyplexes have been reported to
provide better transfection efficacy and lower toxicity in vitro than the siRNA complexes
with PEI*, therefore a mode of the mechanism of PPP-mediated gene transfection was of
interest. Although PEI-SLB interactions using a 5 lipid system had not been previously
investigated to the author’s knowledge, the mechanisms underlying PEI transfection have
been extensively investigated'. Thus, PPPs were excipients of preference for the AFM-based
DNA polyplex-model SLB interaction studies. Additionally, due to the brush-like structure
providing numerous links for both electrostatic and hydrogen bonding and a high charge
density per polymer backbone (Figure 5.9), PPPs seemed to not only represent a good
stereochemical fit for DNA helices (compare figure 3.15), but also introduce a significant

competition against the SPM/CHOL aggregates.

| -| Figure 5.9. The illustration of a
I polyphosphonium polyplex with 19-
=0| bp DNA (right) and the chemical

| structure of PPP - phosphonium

{ ‘ polymer  (P,P,P-triethyl-P-[2-O-(2-
O polymethacryloil)]-tris-(2-oxyethyl)-
phosphonium chloride). The degree
o} of polymerisation (DP) was
| / &€ established through NMR
P (collaboration with Vanessa
Loczenski). This enabled the
calculation of the amounts of DNA
and PPP that were required for the
formation of a polyplex at an
appropriate  polycation:polyanion
charge ratio (P:P ratio).

Concentrations of DNA of 5, 10, 50 ug/ml DNA were chosen to reflect both the assumed
linearity of the DNA calibration curve (figure 5.5.) and concentrations in vitro’. A 1:1
PPP/DNA charge ratio for the polyplex was chosen for the AFM interaction studies to assure
the presence of unbound and bound DNA in the sample. This has been established via the
collaboration, based on gel retardation assay studies on PPP-DNA polyplexes at different
charge ratios. For the summary of particle characterisation data see appendix Il. Polymer
solutions of 90 pg/ml were chosen for the interaction studies as a control to reflect the

highest concentration of the polymer used for polyplex-model SLB interaction studies.

A summary of the AFM data investigating interactions between free PPP and PPP polyplexes

with the model SLBs is presented in figure 5.10.
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Figure 5.10. AFM images presenting the changes in the behaviour of the non-phase
separated, model SLBs after exposure to: 5 (A), 10 (B), 50 (C) [ugDNA/ml] polyphosphonium
polyplexes with 19-bp DNA and 90 ug/ml phosphonium polymer solutions (D). After exposure
of SLBs to polyplexes both increase in SLB fluidity and association of the particles at the SLB
pore edges can be observed over time (A-C). After introduction of the polymer solution to the
AFM cell, a gradual dissolution of the model SLB is observed over time. White arrows indicate
changes to the SLB pore size over time, whilst the yellow arrows show association of the
particles with the bilayer edges. Z-scale bars have been removed for clarity purposes
(average range 0-10 nm).

The interaction of PPP with the model SLB resulted in a gradual dissolution of the bilayer
manifested as an increase in the SLB-free surface area. However, the interaction of PPP
polyplexes resulted in a gradual increase of the bilayer fluidity, which is demonstrated as
pore closure. Additionally, the appearance of additional particles at the bilayer edges was
observed. The graphs presenting the changes of SLB coverage throughout the imaging of

polyplex-SLB interactions are presented in figure 5.11.
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Figure 5.11. The graphs illustrating the quantitative relationship: DNA concentration vs. the
increases of SLB coverage over time for the model SLB-polyphosphonium DNA polyplex
interactions. (A) indicates the increase of SLB coverage over time after exposure of the model
SLB to 5 (red), 10 (blue), 50 (green) [ug/ml] DNA concentrations with the linear correlation
parameters from SLB coverage vs. time evaluations (compare figures: 5.2 and 5.4). (B)
illustrates the relationship between the slopes from (A) and DNA concentrations with linear
correlation parameters.

The AFM observations suggest that the free polymer molecules are attracted to the bilayer
edges, most likely due to the edge effects (see chapter 4)°. Alternatively, adsorption
triggered by electrostatic polymer-mica and polymer-lipid head group interactions may also
play a role. Regardless of the forces involved in triggering the attraction of the polymer to
the bilayer, PPP associates subsequently with the edge lipids initiating their gradual
desorption from the surface. It is thought that the PPP-lipid interaction is based mainly on
electrostatic interaction, as the SLB dissolution is not directly observed during the SLB-
polyplex interaction, when the dynamic movements of the positively charged phosphonium
groups are limited through DNA binding and are not freely available to edge lipids. If this
assumption is correct, it also implies that the brush-like design of the polymer component
seems to be a good fit for DNA grooves. The most likely lipids interacting with the polymer

are DOPS, DOPE, EPC and SPM due to the presence of negative charges within the lipid head

groups.

Once PPP is bound in a DNA complex and exposed to model SLBs, the bilayer fluidity
increases triggering the gradual SLB pore closure. When linear fit equations for both pure
DNA (y = 2.53 - 10 + 9.4 - 10®) and PPP-DNA polyplex (y = 2.15 - 10> x + 4.13 - 10°®) were
compared, two observations can be made. The intercept values for both equations are
within the same range indicating the similarities in kinetic behaviour for both interactions.

This is likely, since the amount of polymer used was not sufficient to bind all DNA molecules;
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hence the binding of SPM by free DNA molecules is the dominant component influencing the
kinetics of this interaction. On the other hand, the significant increase (8.5-fold) in the slope
value for the SLBs exposed to the polyplexes over the DNA-exposed SLBs could be noticed.
This means that the complexation of DNA with the PPP at 1:1 ratio results in the increase of
the SLB coverage changes per unit of time by 8.5 times (or 8.5 times faster SLB spreading)
than the increase in SLB coverage changes observed for uncomplexed DNA samples. For this
reason, the author proposes that both the presence of free DNA that increases the bilayer
fluidity through SPM/CHOL aggregate binding and PPP-triggered dissolution of the
membrane are likely to be responsible for the overall increase of the bilayer fluidity after
exposure to the polyplex solutions. This also suggest that the complexation of the DNA
molecule with PPP at 1:1 charge ratio does not provide effective protection from or
competition against binding SPM/CHOL aggregates, as the polymer-unbound DNA molecules
in the sample are involved in the increase of SLB fluidity. Such mechanism is likely to affect

the delivery of 1:1 polyplex in vivo.

Taking all of the above into account, it is likely that in vitro mechanisms for PPP polyplex
delivery into the cytosol should be as follows. Firstly, particles once in contact with the cell
trigger the invagination of the cytoplasmic membrane forming an endosome. This process
may be facilitated by the local increase in membrane fluidity due to nucleic acid-related
gradual loss of SPM/CHOL aggregates. Subsequently, due to a dramatic increase in
membrane curvature when in an endosome, as well as the competition between polymer
and membrane lipids over the binding with DNA, phosphonium groups of the polymer
interact with the negatively-charged head groups of the membrane lipids causing changes to
the membrane integrity and eventually its breakage. Here, it is also likely that such
phenomena as the proton sponge effect and the complex changes in the endosomal
environment exert an influence, explaining the partial release of free nucleic acid for further
processing in the cytosol. The illustration of this possible mechanism is presented in figure

5.12.

110



Chapter 5: Model SLB-Nucleic Acid Formulation Interaction Studies.

e —

e

Icm

(e
L0

. ——— e

Figure 5.12. The illustration of the anticipated cell transfection mechanism for
polyphosphonium-DNA polyplexes. Once the polyplex is introduced to the cell environment
(A), the particles trigger invagination of the membrane through direct association with the
membrane lipids (B). In an endosome both polymer and DNA bind lipids affecting endosomal
membrane integrity (C). It is also possible that alternative phenomena (e.g. proton sponge
effect) contribute towards endosomal escape mechanism (not shown). Once released form
the endosomes, polyplexes undergo further changes in the cytosol (D). Extra- and
intercellular matrices (ECM and ICM, respectively) are presented in blue and yellow, whilst
DNA strands, phosphonium polymers and membrane lipids in red, green and orange,
respectively.

5.5 Conclusion

In this chapter the assessment of the SLB as a model for studying the membrane-
biopharmaceutical formulation interactions has been presented. Based on both the
qualitative and quantitative analyses of such interactions, some potential mechanisms
underlying cellular uptake and toxicity have elucidated, indicating a possible role for SLB
models in pharmaceutical formulation development. In addition, this chapter outlines an
innovative approach towards qualitative and quantitative assessment of such interactions,
which could be used for the analysis of interactions with formulations of different
chemistries.

In terms of drug development, three general conclusions may be drawn. Firstly, the findings

and hypotheses outlined above specify the role of excipients in the nucleic acid formulation
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as agents providing protection from nucleic acid-lipid interaction. The current role of the
biopharmaceutical excipients is viewed as agents improving both tissue targeting and
cellular uptake of e.g. siRNA. As outlined in the text above, this will not be achieved without
a careful consideration of direct interaction with membrane lipids. Secondly, the
spontaneous formation of particles between SPM/CHOL aggregates and nucleic acid
molecules, whilst in contact with a physiological membrane, significantly impacts the current
understanding of the in vivo behaviour of nucleic acid molecules, in cases where nucleic
acids are liberated from their delivery systems in proximity to phospholipid membranes. As
indicated above, these findings not only support the research behind mechanisms involved
in siRNA targeted delivery and toxicity events, but also set new directions for siRNA research
focus. It is hoped that these findings will soon be verified by other research groups and
trigger significant improvements towards developments of effective and safe siRNA
therapeutics. Thirdly, this research confirms that there is a need in drug discovery and
development for testing the molecular interactions of drug candidates with biologically
relevant membrane environments.

The data presented in this chapter significantly expands the current understanding of
membrane behaviour in response to pharmaceutical agents. On the one hand, a possible
role of SPM (or ceramides) as lipids involved in defence mechanisms within a biological
organism was indicated. Since SPM lipids may trigger apoptosis and therefore result in
immunogenic reactions, links between SPM and immune system are implied. This not only
would correlate with the roles that ceramides play in apoptosis, signal transduction and lipid
membranes, but also may explain the significant amounts of such lipids in the nervous
system, as the most physiologically important one in the human body.

To conclude, further research in this area is necessary and urgent. The need for a
commercial test enabling studies of such interactions in a high throughput format is obvious,

which is the objective of the following chapter.
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Development of supported lipid bilayer microarray for high
throughput screening applications at nanoscale.

6.1 Abstract

As identified earlier, studying supported lipid bilayers (SLBs) both in a high throughput
manner and to the nanometre scale may be a useful strategy for the assessment of
formulation-membrane interaction performances. Therefore, a hypothesis that the
combination of atomic force microscopy (AFM), time-of-flight secondary ion mass
spectrometry (ToF-SIMS) and inkjet print head technology may offer an advantage towards
SLB microarray development was investigated in this chapter. This led to the development of
an SLB microarray prototype which is reported therein. The microarray design, experimental
methodology, as well as the author’s considerations are thoroughly described in order to
both assure repeatability and reproducibility of the data and also to facilitate further
development of this approach. Additionally, a research focus for the future directions of this
research is proposed.
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Figure 6.1 Graphical abstract indicating the supported lipid bilayer (SLB) microarray
approach that was investigated. (1) Initially, liposome solutions are dispensed on a
microscope slide-sized mica surface in a fully automated manner. Liposomes form an SLB
layer through vesicle deposition. (2) Subsequently, SLB surfaces are dried, incubated in high
humidity environments and exposed to a number of liquid spots, each containing the
chemical species of interest. (3) Finally, the SLB-formulation interaction behaviours are
visualised using the ToF-SIMS chemical imaging technique.
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Abbreviations:

AFM — atomic force microscopy; BSST — bilayer self-spreading technique; CHOL — cholesterol; nano-
HTS — nanometre-scale, high throughput screening; PBS — phosphate buffer saline; PEG —
polyethylene glycol; RH — relative humidity; RT — room temperature; SLB — supported lipid bilayer;
tBLMs — tethered bilayer lipid membranes; ToF-SIMS — time-of-flight secondary ion mass
spectrometry; UHV — ultrahigh vacuum; VDT — vesicle deposition technique.

6.2 Introduction

Although the successful development of supported lipid bilayer (SLB) microarray approaches
has been reported independently by a number of research groups’, a commercial SLB test
for studying the in vitro drug-membrane interactions is still lacking. Advanced surface
analysis techniques, such as atomic force microscopy (AFM) and time-of-flight secondary ion
mass spectrometry (ToF-SIMS), have been demonstrated as useful methods for the
nanometre-scale-characterised development of high throughput screening (nano-HTS)
approaches within the pharmaceutical sciences’. Additionally, inkjet print head technologies,
as fully automated liquid dispensing systems, provide high precision and accuracy for the

liquid handling-associated microarray applications®>.

Within this chapter, the development of an SLB microarray prototype was attempted, based
on the AFM, ToF-SIMS and inkjet printing investigations. A thorough description of the
developed methodology from a practical, laboratory-based perspective is presented in order
to provide assurances of both the repeatability and reproducibility of this method. The
directions for further strategies towards the development of such SLB microarray approach

are also discussed.

The development of an SLB microarray may ultimately lead to an SLB-based, commercially-
applicable screening approach for in vitro studies of the interactions between membranes
and pharmaceutical formulations in a high throughput manner. Such an approach could help
address the issue within the pharmaceutical sciences which is associated with the lack of a
predictive in vitro methodology for the in vivo behaviour of medicines, and therefore,
innovate the drug discovery and development process. The discussion provided in this
chapter highlights also that through careful consideration of the experimental environments
SLB-related research can further contribute towards a general understanding of lipid bilayer

behaviour from a material scientist’s perspective.

6.3 Materials and Methods — see chapter 2.
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6.4 Results and Discussion

It was anticipated that the combined application of the inkjet print head technology, AFM
and ToF-SIMS chemical imaging would provide a useful strategy towards the development of
an SLB microarray. On the one hand, both the accuracy and precision associated with
automated dispensing systems, such as inkjet printers, would assure repeatability and
reproducibility for the liquid environment-based interaction studies between an SLB-coated
surface and the chemical species of interest. On the other hand, the high sensitivity of the
ToF-SIMS chemical imaging would enable studies of chemical behaviours at a molecular
level®. Since the SLB research is associated with both liquid handling and surface-based
measurements, the development of an SLB microarray involving the methodologies above
would enable coating the solid support surface with an SLB layer in a fully automated
manner. Also, such an approach would provide experimental strategy for SLB interaction

studies both in high throughput and at a nanometre scale.

However, in order to build such a system, several SLB-associated issues from a technological
perspective have first to be addressed. Firstly, the fabrication of an SLB on a microscope
slide-sized surface has to be optimised. Secondly, since the inkjet printing technology
requires clean and dry surfaces and the SLBs are not stable once exposed to air, it was
thought that automated liquid dispensing in high humidity environments using dried SLB-
coated mica sheets may provide a window of opportunity in terms of SLB microarray
development. Therefore, the behaviour of dry SLBs needed to be studied at a nanometre
scale (e.g. with AFM). Thirdly, both the inkjet printing and ToF-SIMS chemical imaging
techniques needed to be optimised in order to provide data to illustrate the repeatability
and reproducibility of the approach. Below, optimisation of such SLB microarray is discussed

from a laboratory-based perspective.

6.4.1 Optimisation of SLB fabrication method on microscope slide-sized mica sheets.

Since ToF-SIMS was selected as the SLB imaging technique, an SLB fabrication approach that
resulted in an even distribution of the lipid film across the entire surface of the slide was
preferred over the SLB spot-type approaches reported previously®. It was anticipated that
such approach would provide a control sample for the SLB-unaffected areas in between the
spots of liquid (containing various chemical species) on the microarray surface, once inkjet

printed on the slide and imaged with ToF-SIMS (see figure 6.7).
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For this reason, initial experiments with microscope slide surfaces and Millipore water
enabled us to establish that a total volume of 1.5-3 ml pipetted along the centre axis of the
surface and heated up to 35°C under the saturated vapour conditions provided both the
optimal coverage of the surface with liquid, and minimal loss of liquid throughout the
heating process. Since mica surfaces are considered more hydrophilic and flat’ than glass
surfaces, a 1.5 ml total liquid volume was applied for the vesicle deposition (VDT)® and
bilayer self-spreading (BSST)? techniques optimised previously using smaller mica surfaces
(chapter 3). A temperature of up to 40°C was preferred, as the sample stage of the inkjet
printer system used in the laboratory has a limited temperature maximum of 50°C. This was
an important factor, which was previously considered during the optimisation of SLB
fabrication protocol on 14-mm mica discs (chapter 3), in case future manufacturing

protocols involves the inkjet print head technology.

Initially, mica sheets were glued to 4 metal disc specimens in order to provide heat
conductance between a hotplate and the mica surface during the SLB formation. However,
AFM observed distributions of the lipid films indicated that such approach did not provide a
uniform bilayer distribution for both BSST and VDT, as presented in figure 6.2. For this
reason, mica sheets were glued to glass microscope slides to provide continuous solid
supports for the optimisation of the VDT protocol. The BSST was not studied further, as it
was anticipated that the lack of lipid self-spreading was likely to occur for glass slide-
supported mica sheets, based on the previous AFM observations. Eventually, the incubation
of 1.5ml 0.5 mg/ml liposome suspension at 35°C for 1 hour was established to provide
uniform model SLBs of porous lipid film qualities, as presented in figure 6.2. It is worth
adding that the need to glue mica surfaces to the solid support arose, as the alternative
approaches (e.g. non-supported mica or attachment of mica to solid supports through
double-sided tape or sticky carbon discs) resulted both in leakages of the liquid throughout
the liposome incubation process at an elevated temperature and in the movements of the

surface during AFM studies.
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Disc speumen g
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Figure 6.2. The graphics (1, Il) and AFM images (A-C) presenting the engineering approaches
for the optimisation of mica sheet preparation before the exposure to lipid material, and lipid
film morphologies recorded for both approaches, respectively. Approach | was identified as
not suitable, while approach Il as suitable for SLB microarray development. Cartoon |
corresponds to A and B, while cartoon Il to C. When the model SLBs were fabricated using the
bilayer self-spreading (A) or the vesicle deposition (B) protocols on a mica sheet that was
glued to metal disc specimens underneath (1), the AFM-reported spatial distribution of the
bilayers across the surface of the mica sheet was not uniform. A;., and B;., were collected
from single samples prepared using the bilayer self-spreading and vesicle deposition
techniques, respectively. Here, images 1 and 2 correspond to the areas of mica directly above
and in between the disc specimens that are glued underneath, respectively. A; and B,
indicate the presence of SLB morphologies that look similar to the ones manufactured using
14 mm mica discs (compare fig 3.2.A; and B;). A, indicates the presence of a lipid bulk
deposited on the mica surface that has not been removed throughout the bilayer self-
spreading process. B, indicates the presence of lipid deposits of an unfamiliar morphology.
Ci., indicate SLB morphologies from two separate areas of the mica sheet glued to the
microscope slide (ll) after adapting the vesicle deposition protocol. Again, SLB morphologies
presented in C are similar to the ones manufactured on 14 mm mica discs. All samples were
imaged in liquid environments. The adapted protocols have been described in chapter 2. Dark
features on A;., were generated with an AFM probe through scratch test (see appendix Il) in
order to confirm the presence of a lipid film on the surface. Z-scale bars were removed for
presentation purposes (average range 0-10 nm).
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6.4.2 AFM studies of dry, model SLBs in high humidity environments.

It was hypothesised that the incubation of SLBs in high humidity environments may extend
their stability in air'®. For that reason, AFM studies were performed on the model SLBs
exposed to air at 3 different relative humidity (RH) values: ~25%, ~50% and ~70%,
corresponding respectively to the RH values once dried at the room temperature, the
maximum humidity that enabled AFM imaging without changing the sample temperature
and the humidity maximum determined via EnviroScope AFM system in the laboratory. The
RH values were established empirically, as discussed below. The AFM studies were
performed using the model SLBs deposited on 14 mm-diameter mica discs. Although the air
stability of SLBs was demonstrated in the literature to depend on the overall SLB diameter™?,
it was assumed that the behaviour of the model SLB composition would be similar if
deposited on either 14 mm mica discs or 25 mm x 75 mm mica sheets. It is also worth
mentioning that PBS was replaced with Millipore water as a liquid environment throughout

the AFM imaging, in order to avoid salt crystallisation-associated difficulties.

The AFM studies on the dried model SLBs at room temperature and humidity indicated that
the first signs of phase separation were observed after 30-40 minutes imaging of the dry SLB
surface (figure 6.3.A). Prior to imaging liquid excess was removed through wicking into tissue
paper leaving small amounts of the liquid remaining on the surface, which enabled AFM
studies of the SLB destabilisation process. The removal of the remaining liquid through the
exposure of such SLBs to either heat, prolonged incubation in a desiccator or the stream of
argon was not attempted, as it was anticipated that bilayer destruction would occur before
AFM imaging, due to either the natural destabilisation process or the detrimental influence
of the factor(s) introduced. The short evaporation time (~15min) of the liquid in air directly
before the AFM tip was introduced to the surface area of interest was therefore utilised.
Should the AFM tip be approached to a wet surface prior to this, the laser alignment in the
AFM system was lost disabling AFM imaging in air'2. For this reason, the AFM studies were
performed on sample areas that could be imaged after the first successful attempt to
approach the SLB surface, with an AFM tip that was suitable for imaging in air (e.g. RTESPA).
Therefore, since the AFM-studied SLB surface was not dry in all areas of the sample, it was
likely that the AFM-observed 30-40 min stability of the SLBs after removal of the liquid
excess was strongly affected by the presence of the remaining liquid. In reality it is likely that

the destabilisation of SLB structure occurs more quickly.
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Incubations at ~50% and ~70% RH suggested that high humidity environments decreased
the speed of the destabilisation process for the model SLBs. AFM imaging in the ~50% RH
environment allowed observation and recording of the SLB destabilisation process for liquid
excess-free model SLBs (figure 6.3.B). The first signs of phase separation were noticed after
20- and 60-minutes AFM imaging in the high humidity chamber, which was followed by a
delamination process after 60- and 100-minute exposure to the ~50% and ~70% RH
environments, respectively. These indicated that the incomplete removal of water at ~25%
RH affected the air stability of the model SLBs and the reported (30-40)-minute time period
was not reflective of the true situation. The technique of water removal and AFM imaging
for the samples studied in the high humidity was similar to the one above. Hence, any
evaporation of remaining liquid before the AFM tip was introduced to the surface took place
over a longer period (30-50 min) at the ~50% RH. For the ~70% environment (figure 6.3.C),
the effective evaporation time (20-40 min) was determined by the sample stage
temperature. Since the water vapour in high humidity environments had reached the dew
point and started collecting on the surface at a room temperature, the sample stage
temperature had to be elevated up to (28-30°C) (see figure 6.4.). Here, a temperature of up
to 30°C would have been preferred in order to avoid the temperature-triggered phase
separation of the model SLBs that could interfere with the air stability-related observations
(figure 3.11.). The removal of condensed vapour was assessed visually using the optical
microscope associated with AFM, and the tip was introduced to the liquid excess-free
surface as soon as the liquid layer had disappeared from the area of interest. Since the
approach of the AFM probe to the surface at that point failed during the initial attempts,
most likely due to the small amounts of remaining water, the evaporation times that are
reported for ~70% AFM environment, are the times between the visually-assessed,
temperature-triggered removal of water excess and the time point, at which the first AFM
image was set to record. It is worth adding that the evaporation times for these experiments
were reported as time periods, since the variability for such studies between the samples
was high. Also, the presence of vapour and water, as well as the elevated temperature of the
sample stage introduced technical difficulties that decreased the AFM imaging performance.
It is the author’s recommendation that the evaporation time values should be regarded as a

guideline, rather than the exact time periods.

The RH values that are reported for the AFM environments are also associated with some
error. The system used in the laboratory enabled not only the introduction of a vapour

stream in order to achieve the required RH values, but also the detection of the RH value in
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the experimental environment and the automatic reintroduction of the vapour stream once
the RH value in the environment dropped. If the targeted RH value of interest went above
the dew point of vapour, the water droplets collected on the RH detector and interfered
with the RH readings. Once the overall humidity of the environment dropped and such
water droplets evaporated, the humidity controller then recognised the decrease of the RH
in the environment and automatically reintroduced the vapour stream. This process
manifested as a sudden drop in RH values (e.g. from ~70% to ~40%) and automatic
reintroduction of the vapour stream to the imaging environment. Since the reintroduction of
the vapour stream was detrimental to the AFM imaging performance and the use of an
independent humidity detector was not possible due to the small size of the AFM
environmental chamber, the RH values were therefore controlled manually throughout the
experiments (chapter 2). Effectively, the vapour stream needed to be switched off during
AFM image acquisition and although the RH values were constant throughout the time of
the experiment, they may have been affected by the collection of the vapour droplets on the
detector. Th reported RH values should therefore be considered as best estimates, with

further optimisation of RH conditions in an inkjet printing chamber possibly needed.

To summarise, the initial hypothesis of extended SLB stability in air at a high RH was
confirmed and as identified by AFM imaging the incubation of dried, model SLBs at ~70% RH
over an hour was the optimal strategy for further SLB microarray development in this

project.
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Figure 6.3. AFM images indicating the behaviour of model SLBs once the liquid excess had
been removed from the surface at three different relative humidity (RH) values: ~25 % (A),
~50 % (B) and ~70 % (C). 1-3 correspond to appropriate time points after the model SLB had
been dried and the AFM tip for imaging in air had been introduced. O correspond to the
model SLB morphologies of the appropriate sample (*A-*C) in the liquid environment, before
the liquid excess has been removed. *A, presents a high-resolution image of the initial phase
separation occurring after 45-minute incubation of the model SLBs in air at ~25% RH. White
arrows indicate the phase separated areas within the SLBs, whilst the green arrows the
delamination process. Before the sample in *B, was dried, an additional rinsing step with
water was introduced in order to the remove lipid excess. Details on imaging techniques in
the text. Z-scale bars were removed (average range 0-10 nm) and some labels in C and B,
were coloured in blue for presentation purposes.

6.4.3 Optimisation of the piezoelectric inkjet printing methodology for SLB microarray
development.

Optimisation of the inkjet printing methodology needed to involve two steps, if the fully

automated SLB microarray system was considered. One was the extrapolation of the VDT

protocol from the human-operated pipette systems in order to fabricate SLBs to robot-

operated systems, while the second was the optimisation of the dispensing of the liquid

spots on the SLBs for formulation-membrane interaction studies. Step one was however not

attempted for the purpose of this work. Since additional problems associated with
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dispensing higher viscosity liposomal solutions required for the VDT protocol, may have
affected the inkjet printing performance, the experimental focus was directed at the step
two. The additional advantage of such a focus was the possibility of observing the behaviour
of spots on mica-type surfaces, which would be helpful for the optimisation of step one, if
mica-deposited SLBs were the systems of interest for both inkjet printing and ToF-SIMS
imaging in the future. Here, as step one was previously demonstrated to be achievable®,

step two appeared as a greater challenge.

Due to author’s previous experience with handling PEO-PPO-PEO tri-block co-polymer
solutions (chapter 4), 0.001-0.0001 % (w/v) L-62, L-64 and F-68 Pluronic® solutions in
Millipore water were initially selected for these studies. Again, PBS was replaced with
Millipore water as a solvent in order to decrease the possibility of both salt crystallisation

and potential interferences between the secondary ions on ToF-SIMS chemical images.

The initial experiments aimed to optimise the parameters for dispensing the polymer
dilutions on mica sheets in high humidity environments. Low surfactant concentrations were
selected in order to both avoid bubble formation and a low solution viscosity throughout the
inkjet printing process. Based on the experience with AFM imaging of dry SLBs in high
humidity environments, 70% RH and 28°C-30°C sample stage temperature were selected as

optimal conditions preventing the collection of vapour on dry mica surfaces (figure 6.4).

Mica surface

Figure 6.4. The optical image of an
AFM probe approaching the liquid-
excess-free, SLB-coated mica surface
incubated in a ~70% relative humidity
environment at RT. Adsorption of
water at the sample surface indicates
the need for increasing the
temperature of the sample surface
above the theoretical dew point in
order to enable the AFM imaging in
air. The white line has been added to
highlight the presence of the AFM

Cantilever probe (cantilever).

Water

Since the printing chamber was significantly larger than the high humidity chamber of the
AFM system, RH values were monitored via two independent hygroscopes: one associated

with the inkjet printer and another directly inserted into the printing chamber. Both the RH
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and stage temperature were expected to provide not only a homogenous surface quality of
the surface, but also a minimal possibility of the liquid spots merging, once deposited on the
surface. Since achieving such an environment within the printing chamber took, on average,
more than 40 minutes, it was also established that the best practice was to dry the SLB slide
and insert it just directly before the printing process, and also after the humidity and stage
temperature were adjusted and printing nozzles tested for patency with surfactant solutions
and Millipore water. The then required readjustment of the RH and evaporation of liquid
remaining on the SLB surface in the printer environment was found to be more time efficient
than achieving the required parameters on a dry slide inserted into the printer chamber at
RT and ~25% RH conditions. Such a strategy was applied in order to decrease the time of SLB
exposure to air to the minimum; hence providing the SLB of the closest similarity to the one
in liquid environments. It is also worth mentioning that thorough and gentle drying of the
slide directly before inserting into the printing chamber was an important step. For that
reason, not only the excess of the liquid on the slide before insertion was carefully poured
onto a tissue paper, but also larger droplets of the remaining liquid, non-specifically
adsorbed at the SLB surface, were gently wicked away with tissue paper, making sure that
the tissue did not come in a direct contact with the surface. Assessment of the degree of
surface ‘dryness’ before insertion into the chamber was performed visually, due to the time
constraints associated with limited air stability of the SLBs. The techniques of insertion and
drying of the slide were described for reproducibility purposes however, it is worth
highlighting that they may not be necessary, if step one (the automated dispensing of

liposome solutions on mica sheet) was optimised.

Since evaporation of the liquids dispensed via inkjet printing may significantly affect the
interaction between SLBs and polymer surfactants, parameters such as the total volume of
the solution deposited on the surface, as well as the distances between spots on the
microscope slide-sized mica sheets needed to be optimised. The trial printing experiments
using mica sheets glued to a microscope slide and 0.0001 % Pluronic® L-64 surfactant
solution indicated that deposition of a 142nl total liquid volume resulted in spots (2.0 + 0.1)
mm in diameter that remained on the surface for at least 60 minutes (figure 6.5.). The spots
of lower volumes evaporated within 60 minutes, while the spots of volumes higher than 1.42
pl had the tendency to merge on the surface (data not recorded). It was also noted that
some liquid spots ‘travelled’ on the mica surface after deposition, increasing the possibility
of spot merging. Hence, the optimal total volume of liquid for experiments with SLBs was

established within the 142 nl — 284 nl range. The droplet traveling was most likely associated
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with the physicochemical properties of mica that have affected the behaviour of liquids on
the surface. The fact that water-based solutions have had the tendency to move across the
mica surface due to its high hydrophilicity (and possibly negative charge and flatness) was a
general observation, based on the experience with handling mica as a solid support. Each
drop for this experiment was printed at 3.5 mm apart fitting 6 spots in a row parallel to the
shorter edge of the mica sheet. Lack of spot merging indicated that the distances between
spot centres could be further still decreased, even up to 2 mm apart, as presented in figure

6.5.

T
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Figure 6.5. Optical images presenting inkjet printed spots on mica sheets surfaces incubated
at 70% relative humidity and 28°C the sample stage temperature. Different volumes of
0.0001 % (w/v) Pluronic ® L-64 solution in Millipore water were printed on the slide in image
A, while 198 nl/spot of 0.001-0.0001 % Pluronic® L-62, L-64 and F-68 solutions were printed
on the slide in image B. Distances between the spots are indicated in image A; and B. A,
indicates volumes of the liquid printed on the slide in A; and associated times, at which the
solvent was observed to disappear. The images were taken after 15-minute incubation in
~70% relative humidity, once the printing process was completed.

As a consequence of lowering the distances between spots, the distances between the spots
and slide edges increased. Due to technical difficulties with the AFM imaging at the edges of
the SLB microarray, as well as handling the slide with tweezers at all times, the presence of a
representative SLB coverage around the slide edges was not clear. For the same reason,

printing of all spots as close as possible to the centre of the slide was preferred. It is also
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worth mentioning that the surface-nozzle distance was increased, when compared with
values used for other applications (Z = 700 um; standard values have been around ~400 um),
because the deposition of relatively large volumes of liquid was observed to interfere with

the printing process.

6.4.4 Optimisation of the ToF-SIMS chemical imaging of SLB microarrays.

Throughout the ToF-SIMS imaging experiments three core technical issues were identified as

critical factors affecting the data collection process.

Firstly, since surface topography may affect ToF-SIMS imaging, provision of flat and non-
tilted supports was required. As indicated in figure 6.6., some potential data was lost when
the images were collected from a 14 mm x 8 mm surface with a tilted solid support. For this
reason, the processes of both gluing mica to the microscope slide and cleaving it before
exposure to liquid solutions throughout the SLB preparation was optimised. In order to
achieve the even distribution of glue layer underneath the mica, the glue was dispensed
drop-wise along the centre axis of the glass slide, parallel to the longer edge. Subsequently,
the mica sheet has been pressed thoroughly, yet gently towards the slide and the glue layer
was distributed through circular motions of the mica sheet, trying to remove the air bubbles
that may be formed throughout the process. The amount of glue dispensed on the glass
slide was not quantified as the slight excess was easily removable whilst cleaving mica.
However, a large glue excess was avoided, as the ToF-SIMS imaging performance may have
been affected, especially when mica had been cleaved several times; such a phenomenon
was observed for other microarray applications in the laboratory. A sticky tape that was as
wide as the mica sheet was used for cleaving. The process of attaching the tape to the mica
was performed in a single movement and required practice beforehand. The attachment of
the tape was followed by a thorough and firm pressing in all areas of the slide. The tape was
then removed in a careful, yet paced single motion at a low angle making sure that a
continuous mica layer was detached. Here, it is worth adding that mica sheet itself ought not

to be bent in advance.
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Figure 6.6. An illustration presenting ToF-SIMS chemical images collected from glass slide-
attached mica sheets with tilted surface topography. Various volumes of 0.0001% (w/v)
Pluronic ® L-64 solution were printed on the mica sheet in high humidity environments
(compare figure 6.5.A;) before the ToF-SIMS images were collected using bismuth (1)
primary ion source. The image analysis suggested that ToF-SIMS imaging performance was
affected by either uneven distribution of the glue underneath or possible cracks in the mica,
since all spots printed on the slide were not imaged (black areas on the ToF-SIMS chemical
images) after the introduction of the primary ion source. The presence of polymer-
representative ions (C,HsO" and CH;0") on the slides in the shape of a spot (circular, light
features on the appropriate ToF-SIMS images) demonstrates that printing of the polymer
spots on the surface was successful. The presence of the sodium ions within such spots
indicated that the polymer solutions were contaminated with this ion. The cartoon above the
image has been added in order to communicate the requirement for a uniform surface
topography determined via ToF-SIMS imaging technique (compare figure 2.2.).

Secondly, knowledge of the precise position of the spots on the slide was an important piece
of information in order to identify the areas within the slide for ToF-SIMS analysis. Since the
visual assessment of the presence of SLBs on the slide was not possible and the polymer

excess in each spot was rinsed off the surface, the position of the material on the slide

sometimes could not be easily identified with the optical camera of the mass spectrometer.
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Therefore, the first indication whether the areas of SLBs exposed to the solutions of interest
had been imaged with ToF-SIMS could only be performed after the primary ion beam had
been introduced. Here, since the inkjet printed spots of liquids had the tendency to move in
a random direction on the mica surface, and some ‘escaped’ from the theoretically-expected
scan areas, it was a good practice that the scan size areas for ToF-SIMS images were slightly
larger than the calculated array dimensions. It was also common sense that the position of
the spots was known to the person handling the slide, while it was transferred from the

printing chamber onto the ToF-SIMS sample stage in order to avoid errors.
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Figure 6.7. ToF-SIMS images of an SLB-Pluronic® interaction in a microarray format. The
circular areas within the chemical images correspond to the spots of liquid printed on the
slide. The left image represents the sample that was incubated in the printing chamber at 70
% relative humidity for 1 hour after printing spots and then rinsed through a gentle
immersion in water, while the right image is a similar sample that was left to dry in air after
the 1-hour incubation process. Effectively, SLB within each spot area has been exposed to a
different surfactant concentration: 0.001 — 0.0001 % Pluronic L-62, L-64, F-68. Spot
travelling, as well as excessive material ‘escaping’ from the surface after rinsing can be
observed on the images and have been indicated with white arrows. This suggests that the
rinsing step could be further optimised. ToF-SIMS images were obtained using Cs primary ion
source.

Thirdly, optimisation of the rinsing step at the end of the SLB-surfactant interaction was
required to prevent possible interferences originating from the distribution of secondary
ions within the image. For the sample presented in figure 6.7. on the left hand side, a single,
gentle immersion of the whole slide in copious amounts of Millipore water plus gentle
shaking of the flask with the slide through circular motions over 1 minute was performed.
The presence of chemical species that appear to be ‘coming off’ the surface on the ToF-SIMS
image suggested that the incubation time could have been extended in order to obtain

images of higher quality. An alternative to use two or more separate immersions was initially
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considered however, this was avoided, as it could substantially decrease the overall amount

of lipid material on the surface.

From a commercial point of view, the use of mica as a solid support is questionable.
Although mica has offered several important advantages as a solid support for lipid bilayers,
such as flatness, cleanness, a degree of reusability and low cost, some disadvantages with
regards to SLB microarray development have been identified, e.g. the travelling of spots
deposited on the surface, bendability, the need to glue the mica sheets to glass slides that
may affect the data collection process or overall short stability of model SLBs exposed to air
on this support. For that reason, the preliminary assessment of a surface similar to the
FluidArray® (chapter 1) that may be more suitable for commercial applications, was

performed using AFM.

FluidArray® surfaces have been reported to provide not only minimal non-specific lipid
adsorption at the surface, but also air stable supported lipid bilayers, based on the
fluorescent microscopy studies'®. AFM studies on similar supports performed by a different
research group have confirmed that such surfaces may be of use with regards to SLB
microarray applications'. Preliminary AFM studies on CHOL-functionalised PEG-brush
surfaces indicated that high quality bilayers have been fabricated using the VDT protocol
(Figure 6.8.).

Interestingly, 23-hour exposure to air and subsequent rehydration of dry SLBs resulted in
surfaces that were covered with both lipid bulks and bilayer morphologies when imaged
with AFM. This suggested that FluidArray®-like surfaces indeed provided a degree of air
stability for the model SLBs, when studied at a nanometre scale. It was therefore anticipated
that the incubation of model SLBs deposited on such surfaces in high humidity environments
would offer further improvements towards SLB microarray development. However, the high
cost and high degree of surface chemistry associated with the FluidArray® surfaces were
viewed as drawbacks in terms of the commercial employability of such systems. In fact,
FluidArray®-deposited lipid bilayers should be classified as tethered bilayer lipid membranes
(tBLMs) rather than SLBs (see chapter 1). Therefore, development of alternative, more user-
friendly strategies for surface functionalization with both polymer and lipid molecules

should be investigated in the future.
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Figure 6.8. AFM images and illustration depicting the FluidArray® surface-based preliminary
studies. The cartoon depicts the key components of FluidArray®-type surfaces (elements have
not been drawn in scale for clarity purposes). Image A represents AFM-observed
morphologies of the FluidArray®-type surface in air. Image B represents the AFM- observed
morphology of the surface in liquid, after coating with the model supported lipid bilayer (SLB)
through the vesicle deposition protocol. Image C depicts the AFM-observed morphology of
the surface in B that was dried and left in a desiccator for 23 hours (image collected in air).
Image D represents the morphology of the surface in C after a careful addition of PBS
solution (image collected in liquid). The —H,0 and +H,0 symbols represent the processes of
drying and rehydration of the SLB-coated FluidArray®-type surface, respectively. The PEG
(blue) stands for carboxyl-group functionalised polyethylene glycol chains attached the glass
slide (grey). Cholesterol (red) is attached to PEG through an ester group.

In addition to the optimisation of the solid support, a detection methodology that enables
data collection in high throughput has to be considered, in order to develop commercially
successful SLB microarrays. Since membranes are highly alterable systems and their
interactions with xenobiotics can run pharmacodynamically through a number of different
mechanisms, the selection of an appropriate detection method should be well thought
through. For this application, ToF-SIMS was selected, as it not only was suitable for high
throughput screening, but also enabled tracking the behaviour of the material on the surface
chemically; hence it gave an indication of the interaction performances at a molecular level.
For this reason, ToF-SIMS imaging may be employed as a technique supplementing e.g.

AFM-based investigations on SLBs, in order to explain the mechanisms of the interactions

between membrane lipids and the molecules of interest. Unfortunately, ToF-SIMS is not
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user-friendly or cheap as a scientific technique in its current form. Therefore, it is likely that
commercially viable SLB-based tests for the assessment of surfactant performances would
evolve around other approaches, e.g. fluorescence® or impedance®®-based measurements.
High sensitivity, as well as suitability for the high throughput screening for such
measurements may additionally support this claim. Nevertheless, the ability to capture
chemical images of such interactions makes ToF-SIMS an important technique in the SLB

research.

It is the author’s opinion that further research in this field should focus either on a thorough
characterisation of FluidArray®-type surfaces or enrichment of the model SLB composition
with a moisturising agent, in order to achieve more air-stable lipid coating. The preparation
of FluidArray® supports was based on the original research paper however, the exact
chemistry and properties of the surfaces are not currently clear; the manufacturer of PEG-
brush coated glass slides only provided limited information about the product hence the
spatial distribution of the polymer on the surface was not known. Perhaps, using tin oxide™®
substrates coated with lipid-PEG conjugates through the temperature-induced ultradense
grafting technique'’ may offer several advantages in terms of further SLB microarray
development. On the other hand, the cholesterol functionalization process may need to be
characterised more thoroughly. Chemically, the reaction at the surface holds the potential to
provide clean PEG-CHOL esters through a simple, mild esterification®. It would be
interesting to see how other lipid chemistries and their distributions on the surface would
affect stability of the model SLBs in high humidity environments. However, as indicated
earlier, optimisation of such surfaces would be associated with higher manufacturing costs
for the ultimate SLB microarray. Therefore, the optimisation of printing methodology on
protein®®- or polymer®®-enriched model SLBs may be an alternative strategy to investigate.
On the one hand, since addition of such lipopreservatives to the model composition would
most likely improve the air-stability of the model SLBs, the fabrication process, as well as the
high humidity requirement would be simplified. On the other hand, however, such a
modification would likely increase both the overall hydrophilicity of the microarray surface
and complexity of the SLB chemistry interfering with the inkjet printing or ToF-SIMS imaging

processes.

6.5 Conclusions

In conclusion, the development of an SLB microarray prototype was achieved,

demonstrating that such approach could in the future be employed to study excipient-
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membrane interactions not only in a higher throughput, but also at a nanometre scale.

Although this setup could, without a doubt, be further improved, the results and discussion

presented above substantially contribute towards the development of an SLB-based

screening methodology that holds considerable potential to study the formulation-

membrane interactions using nano-HTS approaches.
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Concluding remarks and future prospects.

Abbreviations:

3R- replacement, reduction, refinement; AFM — atomic force microscopy; APl — active pharmaceutical
ingredient; CHOL — cholesterol; DNA — deoxyribonucleic acid; HTS — high throughput screening; nano-
HTS — nanometre-scale high throughput screening; nano-PKPD — nanometre-scale pharmacokinetics
and pharmacodynamics; PBS — phosphate buffer saline; QbD — quality by design; siRNA — short
interfering ribonucleic acid; SLB — supported lipid bilayer; SPM — sphingomyelin; ToF-SIMS — time-of-
flight secondary ion mass spectrometry; XPS — X-ray photoelectron spectroscopy.

Throughout this thesis supported lipid bilayers (SLBs) have been assessed and analysed as

possible tools for the in vitro screening of pharmaceutical formulation performance.

In chapter 1, SLBs were compared with the literature-reported, lipid-based membrane
models indicating the significant potential that SLBs hold as systems for high throughput
screening (HTS) applications. A unique classification of the SLB advantages and limitations
was proposed and the need for elucidation of the behaviour of complex, physiologically-

relevant lipid compositions, at the nanometre scale, was identified.

In chapter 2, experimental, as well as data analysis approaches were described in detail. This
not only will enable the reproducibility of the experiments, but also help the processing of

experimental data for similar studies.

In chapter 3, the development of a model SLB composed of five natural lipids was reported.
Not only user-friendly fabrication approaches were optimised for this model, but also an
innovative characterisation of lipid bilayer systems at a nanometre scale was performed. In
addition, a novel hypothesis regarding the phase separation behaviour of SLBs was proposed
and compared with membrane behaviours in vivo, based on both experimental observations

and consideration of the literature.

In chapter 4 and 5, the interactions between model SLBs and formulation components were
studied and novel interaction mechanisms between membranes and excipients (e.g.
Pluronic®, phosphonium polymer), active pharmaceutical ingredients (e.g. siRNA) and
formulations (e.g. DNA polyplex) were identified. On the one hand, the both results and
experimental approaches from this thesis have improved the general understanding of the

formulation-membrane interaction studies. On the other hand, the in vitro-studied
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behaviours of model SLBs have been correlated with the literature-reported drug

behaviours in vivo.

In chapter 6, a model SLB microarray prototype that suitable for HTS approaches, was
engineered. An optimisation process was detailed that will allow further development of this

approach.

Due to a multidisciplinary nature of this thesis, the findings significantly contribute to a

number of disciplines within the pharmaceutical sciences.

Firstly, the new insights into sphingomyelin/cholesterol (SPM/CHOL) behaviours provide
progress within lipid chemistry and lipid bilayer research. Based on the findings in this thesis,
the focus of future research should be directed at physicochemical and biological properties
of ceramide-cholesterol aggregates and their behaviours as both: independent chemical
species and co-participants of lipid bilayers that strongly influence overall membrane
properties. Also, the focus on bilayers of physiologically-relevant lipid compositions has been
highlighted and shown valuable throughout the thesis not only for SLB-, but also for

liposome-type models.

Secondly, since the new biological role of SPM as a lipid linking apoptosis and
immunogenicity has been suggested, the focus of biochemistry and molecular biology of
lipids (lipidomics) may therefore shift towards the interaction of lipids and immune system
giving an early start to a new scientific discipline, immunolipidomics. Also, cell senescence-
associated phenomena have been correlated with the in vitro behaviours of membrane

models, possibly elucidating some aging-related mechanisms in biology.

Thirdly, the mechanisms related to the toxicity and poor delivery efficacy of nucleic acid
therapeutics have been indicated, changing the view on the role of an excipient in such
formulations. From a drug delivery perspective, research into the ability of an excipient to
protect nucleic acid from the spontaneous binding of SPM/CHOL aggregates is likely to
emerge. Also, further studies of the interaction between nucleic acids and ceramides may
result in new biopharmaceutical formulations that hold the potential to further improve the

nucleic acid delivery.

Fourthly, the need for early screening of direct drug-lipid (drug-membrane) interactions has
been highlighted and demonstrated throughout this thesis, suggesting future research
directions within the biophysical and material sciences. Without a doubt, further

investigations into development of high throughput screening approaches, as well as
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methods for the engineering of air-stable SLBs are necessary. Advances with regards to the
development and characterisation of model SLB microarray discussed in this thesis improve
the understanding of lipid bilayers as tools in the material sciences. Hopefully, this will allow

the engineering of a test or a device of relevance to drug discovery and development.

Fifthly, a model for testing drug-membrane interactions in low throughput has essentially
been developed, characterised and demonstrated to be useful throughout this thesis. Drug
development researchers could therefore use it in its current shape to further elucidate
AFM-based interactions of both small and big molecule drug candidates of various
chemistries, e.g. protein-, nucleic acid-, polymer- or carbohydrate-based biopharmaceutics.
Such an approach is encouraged, as the innovation is a pressing and still an unaddressed

issue for the research and development of new medicines.

Finally, this thesis is a significant contribution in the field of pharmacology. Not only the
development of a SLB-based testing approach has a significant impact of the 3Rs of animal
model use in pharmaceutical sciences, but also indicates the urgent need for testing the
biopharmaceutical performance at a nanometre scale. Regardless, the shift from a
traditional pharmacology towards nanopharmacology can be gradually observed implying
that investigations of drug behaviour at a molecular level are the future direction for this
field. Although the term nanopharmacology is loosely associated with homeopathy?, there
are clear indications in the literature that this emerging science field will evolve in the near
future®. Here, AFM in PeakForce® Tapping mode plays an important role®. In this thesis, SLBs
were proposed to be tools for nano-PKPD studies, hopefully establishing their deserved
place in nano-PKPD field and setting the scene for future advancements. The methodology
developed throughout this research links the potential of AFM with both the approaches
and observations in pharmacology. Additionally, the possibility of using other techniques
(ToF-SIMS, XPS) for the elucidation of lipid behaviours at a nanometre scale has been
successfully attempted. In the times when animal and human health is legally and ethically
valued more than ever, and nature and its components have been largely characterised, the
focus on nanopharmacology is appropriate and necessary, as it may uncover phenomena

that have not been elucidated through traditional approaches.

To conclude, it is the author’s hope that progress demonstrated above would make this
research both attractive and worthy of further investigations. Obviously, the topic has not
been saturated with discoveries and still many questions remain unanswered. However, the

scientific advancements presented in this thesis, based on 3 years of laboratory-based work
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of a person not previously familiar with the topic, indicate that the further success in this

area is achievable and the outlook for subsequent discoveries should remain optimistic.
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Evaluation of SLB thickness.
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The image above indicates an example for the evaluation of SLB coverage using NanoScope
Analysis software. Arrows indicate ‘Section Analysis’ (black on the top), marker points (black

and yellow in the middle) and SLB thickness (black at the bottom). See section 2.2.2.2.7.1.
for more details.

Evaluation of particle size.
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The image above indicates an example for the evaluation of particle size using NanoScope
Analysis software. Arrows indicate ‘Section Analysis’ (black on the top), marker lines that
were drawn horizontally (blue), vertically (red) and in diagonal (green), as well as particle

size values that are used for further calculations (black at the bottom). See section
2.2.2.2.7.3. for more details.
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Quantification of SLB coverage (step-by-step approach).

1. Open Excel software, name the interaction of interest and copy AFM image numbers
with associated time in a format presented on the figure below. Naming the interactions
and copying the image numbers is not essential, however it woul be helpful during the
retrospective analysis, if the need for finding the original AFM image associated with
particular data point on the graph arose. The first time point is the time at which the
interaction in AFM setup started and is not the time when the first image of the area of
interest was collected.
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2. Express the time point values in an interaction time format. The first time point equals O,

while the second time point is the difference between the hours at the second and first

time point plus the time point above the cell of interests. For instance, for the cell C5 on

the image the function is ‘=(B5-B4)+C4’, whilst for the cell C10 ‘=(B10-B9)+C9’.
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Appendix I: Analysis of AFM Images.

Change the display of the interaction time from HH:MM:SS format into minute values.
This can be achieved through multiplying each cell by 1440 and formatting cell, so that
the value is displayed as number rather than time (e.g. for D5 the function looks
‘=D5*24*60" & right click). This step is not essential however, display of the time in such
a format looks better on the final graph. At this point, the first time point may be
abandoned, as the values for the corresponding surface areas extracted from AFM data
are non-existent.
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4, Open the first AFM image of interest in NanoScope Analysis software, establish the best

flattening approach that ideally will be applied for all other images of the interaction
(Image A), click onto Particle Analysis mode (Image B), choose: YES for Boundary
Particles and Non-representative Particles (Image C), BELOW for Feature Direction and
ABSOLUTE for X-Axis, adjust the threshold in order to mark the SLB-uncovered area to
the best possible fit (Image B) and export the data into a .txt file which can be named
after the number of the AFM image of interest (Image C). Since finding the best possible
fit of the uncovered area is subjective, the minimum of 3 data sets corresponding to 3
neighbouring threshold values are saved for each image.
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Appendix I: Analysis of AFM Images.

Open the .txt file of interest as an Excel file, multiply values from column A by the
corresponding values from column B (e.g. C5 is ‘=A5*B5’ in image A), sum up all the
values in column C using ‘=sum(C[number of top row]:C[number of bottom row])’ as
presented in image B. This is the SLB-uncovered surface area value that should be copied
into the Excel file with the interaction time data points. Use ‘copy values’ option in Excel
to avoid errors (image C).
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Repeat steps 4 and 5 for each data set exported from the NanoScope software. This
should result in sets of 3 SLB-uncovered surface area values for each time point as
presented on the image below. The data exported from the NanoScope software may
not be reported in the same units at all times. Therefore, in some cases the SLB-
uncovered surface area values may need to be divided or multiplied by 1000 in order to
assure the consistency within the same and across different time points of the

interaction.
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Appendix I: Analysis of AFM Images.

7. Choose 3 random images for the interaction of interest in the Nanoscope software and
repeat steps 4-6 with minor modifications in step 4. In step 4 export the data for areas
marked for both above and below the same threshold value. This can be achieved
through choosing above/below options in the tab. Here, the software may automatically
change the initial threshold value when the above/below options are changed for the
first time. Therefore, a trial selection of both options should be performed prior to
exporting the data into the .txt files. These files will be used for the calculation of the
total surface area per image, therefore the names ‘100 _[image_number]A.txt’ and
100_[image_number]B.txt’ are recommended for the data above and below the same
threshold value, respectively. In the main Excel file sum up the total surface area values
above and below the threshold for each image, e.g. for J4 it is ‘=SUM(H4:14)’
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8. Calculate both the average SLB-uncovered surface area values (e.g. for K5 it is
‘=AVERAGE(E5:G5)’ or for J7 ‘=AVERAGE(J4:16)’) and the standard deviation from these
averages (e.g. for L9 it is ‘=STDEV.P(E9:G9)’ and for J8 ‘=STDEV.P(J4:J6)’) not only for
each time point of the interaction (left), but also for the total surface area values (right).
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Appendix I: Analysis of AFM Images.

9. Express the average surface area value for each time point as a per cent (%) of the

average total surface area. For M5 it is ‘=(K5*100)/$J$7’.
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10. Subtract the % values from 100 (e.g. for N5 it is ‘=100-M5’). These values stand for SLB
coverage of the surface [%] and are used for plotting the SLB coverage vs. time

relationship in a graph format (column D [X axis] vs. column N [Y axis], respectively).
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Appendix I: Analysis of AFM Images.

11. Calculate the error using the equation from chapter 2, e.g. for 05 it is
‘=ABS((100/SJS7)*L5)+ABS(((100*K5)/($J$7)22)*S)S8)’. The final values of error bars
were expressed using one or two significant figures.
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Appendix II: Supporting Information on AFM Studies.
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Appendix II: Supporting Information on AFM Studies.

Development of scratch test.

Since the atomic force microscopy (AFM)-reported morphologies of pure mica surfaces and
continuous supported lipid films were similar, the presence of continuous lipid films needed
to be confirmed each time with AFM. As AFM imaging involves a direct, software-controlled
contact of the AFM probe with the sample surface and supported lipid films are a soft
matter, it was anticipated that the presence of lipid coating above the surface can be
verified through application of high force of AFM tip in the tapping mode that is detrimental
to the integrity of the area lipid layer of interest and, at the same time, is not detrimental to
the integrity of the solid support. If such a force was applied to a particular surface area of
the lipid film-coated sample, the lipid layer within the such area would be swept away, not
only uncovering the surface of the solid support, but also enabling both the confirmation of
the presence of lipid film on the sample surface and the subsequent assessment of the lipid
film thickness through cross section analysis. This experimental approach is referred in the
thesis as a scratch test.

Since preliminary AFM experiments with pure mica surfaces indicated that application of
high forces of the AFM tip affected mica integrity, the initial optimisation of the force of the
AFM tip in the tapping mode, which was suitable for the scratch test, was performed. The

summary of the optimisation process was depicted in figure below.

Figure S-1l.1. AFM images (A-D) and corresponding cross section analyses (*) of pure mica
scratched with AFM probe at different setpoint values: 0.000005 mV (A); 0.00005 mV (B);
0.0005mV (C); 0.005 mV (D). The setpoint is a software-controlled parameter that enables
modifying the force of AFM tip applied to the sample surface. As indicated in the figure
above, application of different forces to the mica support does (A-C) or does not (D) affect
the integrity of the mica surface. Lack of surface integrity (A-C) is manifested as a dark,
square-shaped ‘hole’ in the centre of the image. (D) indicates that the integrity of mica
surface is not affected after ‘scratching’ the surface at 0.005 mV setpoint value. AFM images
were collected in liquid environments using MultiMode2 AFM setup, as described in chapter
2. Z-scale bars were removed for presentation purposes.
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Eventually, it was established that the scratch test protocol was consisted of the following
steps:

(1) Capture 5 um x 5 um continuous SLB image using the appropriate imaging parameters
(chapter 2).

(2) Zoom-in in the image centre at 100 nm x 100 nm — 500 nm x 500 nm scan size.
(3) Minimize image resolution.

(4) Maximize tip velocity.

(5) Decrease the amplitude setpoint value to 0.001 mV for 10 seconds.

(6) Increase the amplitude setpoint value to the value in step (1).

(7) Increase image resolution to the resolution in step (1).

(8) Decrease the tip velocity to the velocity in step (1).

(9) Increase the scan size to 5 um x 5 um.

(10) Zero the X and Y offset values.

(11) Capture image as in (1).

Optimisation of BSST and VDT protocols for fabrication of model SLBs.

Single lipid dioleoylphosphatidyl choline (DOPC) and dipalmitoylphosphatidyl choline (DPPC)
liposomes were used as liquid and gel phase-representative lipids to optimise the protocols
for model SLB fabrication using both bilayer self-spreading (BSST) and vesicle deposition
(VDT) techniques.

Initially, it was noticed that DOPC formed only a single lipid bilayers using BSST approach,
while DPPC could form bi- or multilayers depending on the manufacturing parameters, e.g.
temperature, incubation time, amount of lipid material pipetted on the solid support,
number of rinses and solution type used for rinsing. Also, BSST resulted in a fast formation of
continuous SLBs for both lipids, while VDT-fabricated lipid film morphologies were strongly
dependant on the manufacturing parameters. The summary of atomic force microscopy
(AFM)-recorded morphologies for DOPC and DPPC supported lipid bilayers (SLBs), when
fabricated using BSST, was depicted in the figure below. Since model lipid mixture was
expected to behave in a similar way to 1:1 DPPC:DOPC-composed lipid mixture, 10 ug and
45-minute incubation at 45°C in Millipore water were chosen as conditions of preference for
model SLB fabrication using BSST.
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AFM images indicating BSST-fabricated DPPC (A) and DOPC (B) supported lipid films. A 60-
minute incubation of mica-deposited 10 ug DPPC lipid in Millipore water at 45°C followed by
3 gentle PBS rinses results in a 4.5 nm-thick (*A,), continuous SLBs with a small excess of SLB-
attached lipid material (A;.;). When 90-minute incubation or 100 ug DPPC are used, the BSST
results in DPPC multilayer lipid films (A; or A,, respectively). A 45-minute incubation of mica-
deposited 10 ug DOPC in Millipore water at 35°C followed by 3 gentle PBS rinses results in a
4.0 nm-thick (*B,), continuous SLBs with a small excess of SLB-attached lipid material (B;.,).
The white arrows indicate excessive lipid material on the SLB surface, while the green arrows
indicate areas scratched with the AFM probe in order to confirm the presence of SLBs. AFM
images were collected in liquid environments using MultiMode2 AFM setup, as described in
chapter 2. Z-scale bars were removed for presentation purposes.

VDT resulted in a slow formation of lipid excess-attached SLBs for DOPC and lipid films of
various morphologies for DPPC. Here, incubation temperature and time, ionic strength of
the incubation buffer, liposome concentration and rinsing technique were identified as
critical factors determining the morphologies of DPPC lipid films. The summaries of AFM-
recorded morphologies for DPPC and DOPC-composed supported lipid films, when
fabricated using VDT, were depicted in the appropriate figures below. Since model
liposomes were expected to behave in a similar way to 1:1 DPPC:DOPC-composed
liposomes, a 5-minute pre-incubation of freshly-cleaved mica with 10mM magnesium
chloride and subsequent rinse with Millipore water plus 45-minute incubation of 0.5 mg/ml
liposome suspension in Millipore water at 35°C were chosen as conditions of preference for
model SLB fabrication using VDT.
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AFM images indicating morphologies of DPPC-composed supported lipid films prepared using
vesicle deposition technique (VDT). A;, A, Az and A, indicate lipid film morphologies after 2-
hour incubation of 0.1, 0.2, 0.4 and 0.5 mg/ml DPPC liposomes in 10mM Tris at room
temperature, followed by 2 gentle rinses with 0.2 um Millipore water of room temperature,
respectively. B; and B, indicate lipid film morphologies after 60-minute incubation of 0.5
mg/ml DPPC liposomes in 10 mM Tris at 45°C, followed by 2 gentle rinses with 0.2 um
Millipore water of room and 45°C temperature, respectively. C; and C, indicate lipid film
morphologies after 60-minute incubation of 10mM magnesium chloride-pre-coated, freshly-
cleaved mica surfaces with 0.5 mg/ml DPPC liposomes in 0.2 um Millipore water at 45°C,
followed by 2 vigorous and gentle rinses with 0.2 um Millipore water of 45°C temperature,
respectively. D, and D, indicate lipid film morphologies and associated cross section analyses
(*) after 60-minute incubation of 10mM magnesium chloride-pre-coated, freshly-cleaved
mica surfaces with 0.5 mg/ml DPPC liposomes in 0.2 um 10mM Tris and Millipore water at
45°C, followed by 2 gentle rinses with 0.2 um PBS of room temperature, respectively. The
white arrows indicate excessive lipid material on the SLB surfaces, the green arrows indicate
areas scratched with the AFM probe in order to confirm the presence of SLBs, while the red
arrows indicate the presence of additional bilayers that are deposited above the mica-
neighbouring DPPC bilayer. AFM images were collected in liquid environments using
MultiMode2 AFM setup, as described in chapter 2. Z-scale bars were removed for
presentation purposes.
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dyg = (4.8%0.6) nm

AFM images indicating morphologies of DOPC-composed supported lipid films prepared
using vesicle deposition technique (VDT). A,;, A, As and A, indicate lipid film morphologies
after 2-hour incubation of 0.1, 0.3, 0.4 and 0.5 mg/ml DOPC liposomes in 10mM Tris at room
temperature, followed by 2 gentle rinses with 0.2 um Millipore water of room temperature,
respectively. B; and B, indicate morphologies after 60-minute incubation of 0.5 mg/ml DOPC
liposomes in 10 mM Tris at 35°C, followed by 2 gentle rinses with 0.2 um Millipore water of
room and 35°C temperature, respectively. C; and C, indicate lipid film morphologies after 60-
minute incubation of 10mM magnesium chloride-pre-coated, freshly-cleaved mica surfaces
with 0.5 mg/ml DOPC liposomes in 0.2 um Millipore water at 35°C, followed by 2 vigorous
and gentle rinses with 0.2 um Millipore water of room temperature, respectively. D; and D,
indicate lipid film morphologies and associated cross section analyses (*) after 60-minute
incubation of 10mM magnesium chloride-pre-coated, freshly-cleaved mica surfaces with 0.5
mg/ml DOPC liposomes in 0.2 um 10mM Tris and Millipore water at 35°C, followed by 2
gentle rinses with 0.2 um PBS of room temperature, respectively. The white arrows indicate
excessive lipid material on the SLB surfaces, the green arrows indicate areas scratched with
the AFM probe in order to confirm the presence of SLBs, while the red arrows indicate the
presence of additional bilayers that are deposited above the mica-neighbouring DOPC
bilayer. AFM images were collected in liquid environments using MultiMode2 AFM setup, as
described in chapter 2. Z-scale bars were removed for presentation purposes.
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Summary of control experiments on model SLBs after injection of PBS
into AFM cell.

AFM studies on patch-like and porous, model SLBs were performed in order to establish the
behaviour of lipid film of different qualities after injection of PBS solution into the imaging
environment. The technique of PBS injection was similar to the one reported for Pluronics®,
DNA and DNA polyplex solutions: 50 pl liquid were gently pipetted onto the sample and
imaged. Subsequently, AFM images were recorded over time and SLB coverage was
quantified in the same manner as described in chapter 2. As indicated in figure below, SLB
coverage for porous lipid films is constant within 5 um x 5 um scan area monitored over 200
minutes in liquid environments using AFM in PeakForce® Taping mode. The minor
fluctuations on graph A (red) are most likely due to the drift associated with AFM imaging.
The SLB coverage for patch-like films over time also remains statistically constant after 200
minutes imaging of 5 um x 5 um SLB areas (graph A, black). However, the fluctuations of
coverage values are not as minor, most likely due to both image drift and secondary
adsorption of the excessive lipid material from the liquid environment surrounding the
patch-like bilayers on mica (compare images on the left hand side). This was likely, as the
patch-like SLBs were produced via vigorous rinsing of porous films and the presence of
excessive material in the surrounding environment was expected. Such noise is ‘decreased’
once the SLB coverage values are normalised (compare B and figures 4.6. and 4.7.). The
control studies were not added on the graphs in figures 4.6., 4.7. or 5.5. for clarity purposes.
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Summary of control experiments for model SLB-excipient interaction

studies.

AFM images indicating morphologies of
pure mica and Pluronics®: L-62, L-64 and F-
68 after injection of 0.001 % (w/v) solutions
in PBS into the AFM environment. Images
are collected in liquid environments using
MultiMode2 AFM setap in tapping mode as
described in chapter 2. Z-scale bars were
removed for presentation purposes.

AFM image indicating the morphology of
porous, model SLB before addition of
0.0001% (w/v) Pluronic® L-62 to the AFM
environment. White and red arrows are
added to indicate the presence of
excessive lipid material and liquid-ordered
domains, respectively. The image was
recorded in liquid environment using
MultiMode2 setup as explained in chapter
2.
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Summary of control experiments for model SLB-nucleic acid

formulation interaction studies.

AFM images indicating morphologies of
the mica, DNA and polyphosphonium
polymer (PPP). Presence of particles on
pure mica surfaces was assessed each
time before injection of liquid for particle
imaging. After injection of 50 ug/ml DNA
two particle populations were observed:
(9£5) and (50+10) [nm] in size. After
injection of 90 ug/ml (1) and 30 ug/ml (2)
PPP solutions populations of (45+5) and
(10+5) nm-sized particles were observed,
respectively. The presence of particles of
sizes larger than theoretically predicted
the presence of particle self-aggregation
at high concentrations of both DNA and
polymer. AFM images were collected in
liquid environments using PeakForce®
Tapping mode.
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The summary of 1:1 Polyphosphonium-DNA polyplex characterisation data. Dynamic light
scattering (DLS) based on 25 measurements indicates a hydrodynamic radius of (11 + 1) nm,
whilst cross section analysis of AFM-imaged particles of diameters of (15+3) nm, based
measurements of 10 particles. The inconsistencies in the DNA- and AFM-reported particle
sizes are most likely due to the presence of polymer-bound and unbound DNA in the sample,
as established through the collaboration with Vanessa Loczenski, based on gel retardation
assays (data not shown). AFM images were collected in liquid environments using
PeakForce® Tapping mode.
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Appendix III: Molecular Ion Assignments for ToF-SIMS Spectra of Single Lipids.

The peaks and ions identified within the ToF-SIMS Cg, spectra of DOPE.

Lipid Molecular Molt?cular ion Molecular Mass Molt_ecular ion
Mass [Da] assighment [Da] assignment

41.0 CsHs 214.0 CsH1sNOgP”
57.0 C3HsO 281.2 CigH3305
73.0 CsHs0y 339.3 CoHa30,°
89.1 C3HsO5 433.2 C,1H350,P°
124.0 C,H,NO;P* 434.2 C,1H3507P"
139.1 CyH,50" 462.3 C,3H4sNOGP”

DOPE 140.1 CoH160* 478.3 C,3HgsNO,P”
167.0 C3HsO6P" 479.3 Cy3HgsNO,P
168.9 C3HeOgP” 619.5 C39H7,05
181.1 CsH1,NO4P 620.5 C39H7,05
197.0 CsH1,NOsP 698.5 C39H7,05P"
198.0 CsH13NOsP” 699.5 CoH7,05P"
213.0 CsH1,NOGP

Abbreviations: DOPE - dioleoylphosphatidyl ethanolamine
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Appendix III: Molecular Ion Assignments for ToF-SIMS Spectra of Single Lipids.

The peaks and ions identified within the ToF-SIMS Cg, spectra of EPC.

Lipid Molecular Molt.ecular ion Molecular Mass Molt_ecular ion
Mass [Da] assighment [Da] assignment
193.0 CsH1sNO4P 253.2 CisH3iNO
223.1 CgH1sNO4P 255.1 CgH1sNOgP”
224.1 CisH1NO* 256.2 CisH3oNO,
EPC 225.0 CsH13NOgP” 383.3 Cy3HasNO,"
226.1 CgH,1NO,P 394.2 Cy7H33sNO, P
227.1 CgH,,NO,P 397.2 Cy7H3NO,P”
228.0 CeH1sNOGP 480.4 Ca3Hs,NO,*
239.1 CgH1sNOsP 759.6 C4HgoNOgP”

Abbreviations: EPC — egg phosphatidyl choline
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Appendix III: Molecular Ion Assignments for ToF-SIMS Spectra of Single Lipids.

The peaks and ions identified within the ToF-SIMS Cg, spectra of SPM.

Lipid Molecular Molt.ecular ion Molecular Mass Molt_ecular ion
Mass [Da] assighment [Da] assignment
104.1 CsH.,NO* 254.0 CisH3oNO
167.9 CyoH1sNO* 375.3 CigH3:.0g"
168.0 CoH1,05 404.2 CyoH39gNOsP”
M 185.1 CoH14NO5* 413.3 Cy6H3,04"
186.1 CsH;,NO,P* 598.3 C34HgsNOsP”
198.1 CsH,0,Na’ 600.5 C34Hs;NOsP”
224.1 CgH1,POs" 616.5 C34Hs;NOGP"
225.1 CgH1sPOs" 642.4 C36HgsNOgP”

Abbreviations: SPM - sphingomyelin
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Appendix III: Molecular Ion Assignments for ToF-SIMS Spectra of Single Lipids.

The peaks and ions identified within the ToF-SIMS Cg, spectra of CHOL.

Lipid Molecular Molt.ecular ion Molecular Mass Molt_ecular ion
Mass [Da] assighment [Da] assignment

145.1 CiHys' 185.1 Cy3H30°
146.1 CiHi' 275.3 CooHss
147.1 CyoH;, 0" 290.0 CosHy'
150.1 C1oH140" 367.4 CyHas"

CHOL 159.1 CioHis' 369.4 Cy7H4s0"
160.1 CiHyig" 384.3 Cy7H440
161.2 Cy,Hy" 385.4 Cy7H450"
166.1 CosHy' 386.3 Cy7H460"
182.1 Cy3H10"

Abbreviations: CHOL - cholesterol

161



Appendix III: Molecular Ion Assignments for ToF-SIMS Spectra of Single Lipids.

S ---:: e g
a8 - w
: Positive mode
4
z
6.0
o4
20
: I 2‘0 w 60 100 1o N 160 180 wass 0)
_ane ° ‘e ° ‘e
» -
$ Negative mode
.g
go.n-
6.0 4
“o
20
PP L ab e e S
50 100 150 200 :"':0 3(':0 -3!:0 uass @)

162




Appendix III: Molecular Ion Assignments for ToF-SIMS Spectra of Single Lipids.

The peaks and ions identified within the ToF-SIMS Cg, spectra of DOPS.

Lipid Molecular Molt.ecular ion Molecular Mass Molt_ecular ion
Mass [Da] assighment [Da] assignment

89.0 CsH/NO, 255.1 CiH1505"
105.0 CsH;NO3 269.8 CoHis
125.1 CgHysN* 281.2 CigH3305
167.1 CoH1,05" 288.8 CyoH1305"

DOPS 206.0 C3HgNOgPNa" 319.1 Cy5H006Na*
224.2 C14H2,0," 343.1 C16H2406P*
240.0 CgH11NO,P” 379.3 CyeH350,"
246.0 CsH1oNOgPNa” 521.3 Cy4H4404P"

619.5 C39H7105°

Abbreviations: DOPS — dioleoylphosphatidyl serine
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