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ABSTRACT

This thesis describes analytical and numerical investigations

of tapered waveguide problems, for integrated optics applications.

A plane wave spectral analysis, models the propagation

process of the tapered waveguide and introduces the concept of

an Intrinsic spectral Integral, which turns out to be in good

agreement with calculations in terms of Adiabatic modes. This

allows us to extend the Intrinsic mode concept beyond the

singularity where the Adiabatic mode concept breaks down.

In this sense, the implementation of the resulting

spectral formulation; for the case of homogeneous media, contains

all information pertinent to the modal propagation mechanism,

inside and outside the tapered waveguide; before and after the

singularity caused by cut off of the Adiabatic mode.

The thesis is mainly concerned with implementing the

Intrinsic mode theory as a numerical computational tool.

In this respect, very good agreement is demonstrated

between this model and calculations performed numerically using

the parabolic equation method. On the other hand, the new

model contains far greater physical and analytical possibilities

than previous methods.
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CHAPTER ONE

INTRODUCTION

The tapered waveguide typical of non-uniform problems,

has found application in manv areas, such as integrated optics,

underwater acoustics, tropospheric duct etc.

Exact analytical solution of the mode propagation of such a

non-separable structure is impossible. That is why we shall

establish systematically approximate solutions for mode propagation

in the tapered waveguide, in connection with inte~rated optics
applications.

1.1. Definition of the tapered waveguide

The principle of the tapered waveguide for applications to

integrated optics consists of a thin film of refractive index

(n1) that tapers down onto a medium of refractive index (n2) which

could be either infinitely open (Fig.1.1a), or confined within

a uniform thickness d (Fig.l.lb).

An incident ray in the tapered waveguide therefore, undergoes

mUltiple reflections whose angle of incidence e on the tapered

waveguide-medium (n2) boundary increases progressively as the

taper narrows down. Successive total and subsequently partial

reflections at that bottom interface of the tapered waveguide

take place, as the angle of incidence e increases with consecutive

reflections, eventually becoming larger than the critical angle

e characterising the structure. Rays which reach any observationc .

point X after many such partial reflections have very small
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amplitude in comparison to rays which undergo only total reflections

along their path to the observation point. Each successive pair

of reflections at the top and bottom interface of the tapered

waveguide increases the incidence angle e by twice the wedge

angle a. As a result, at some observation point !, the angle of

incidence e becomes higher than the critical angle e of totalc

reflection. Therefore as a consequence, energy starts refracting

from the tapered waveguide to its adjacent medium. This energy

is augmented by that of subsequent rays, so that ultimately most

of the incident energy is transformed into an outgoing beam. The

beam formed by a tapered waveguide is produced by many rays that

emerge at slightly different angles. The resulting outgoing

beam is characterised by a relatively large divergence which may

be between 1 to 20 degrees.

Because of this energy refraction from the tapered waveguide

to its adjacent medium (~), the tapered waveguide could also be

characterised as a tapered coupler in addition to its guiding

properties, provided that medium (~) is bound (Fig.1.1b). Though

there are various types of couplers of practical interest developed,

such as the prism coupler [1] and the grating coupler [2]. the

tapered coupler distinguishes itself as it is very simple and

compatible with planar device technology having nevertheless a

good efficiency.

It has been reported [3] that in order to increase the

efficiency of the prism coupler, a tapered coupler can be inserted

in the bottom gap of the prism.

Although the coupling efficiency may be higher than 70% as

reported by Tien et al [4], the high beam divergence detracts
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considerably from the attractiveness of the coupler.

Of course, the tapered coupler can also be used as an

input or output coupler; however its efficiency is usually quite

small, for it is difficult practically to align and match the

form of the incident beam to the divergent shape. In spite of

this, the tapered coupler has found applications in cases where

this divergence is nat objectionable;for example, high detectors [5],

mode splitters [6] or mode convertors [6].

The tapered coupler,on the other hand, is also practically

useful for the study of semiconductor epitaxial layers. In

particular when the refractive index of a film such as GaAs layer

is large it becomes difficult to find an aopropriate

conventional prism coupler having a high refractive index, as well

as being transparent to the radiation used to couple light into

that layer [7]. In this case, resorting to the tapered coupler

will eventually circumvent the difficulty. Another advantage of

the tapered coupler is that it avoids the abrupt termination of

the coupling that is required in uniform waveguides.

Finally, the structure of a tapered dielectric waveguide,

is used to confine and guide energy in guided wave devices and

circuits of integrated optics. The simplest fabrication

method uses the deposition of films onto another medium of

different refractive index. These films can be deposited by

evaporation [8], sputtering [9], diffusion [10], ion implantation [11]

or by epitaxial growth techniques [12]. The last method is

restricted to deposition of thin single crystalline film only.
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1.2. Formulation of the problem

The leaky wave theory that has proved to be useful for

dealing with couplers such as prisms and gratings [13,14], does

not apply to the tapered coupler. The reason is that the

incident surface wave is converted rapidly into an outgoing

radiation, for the surface wave mode reaches a cut-off condition

within the tapered waveguide. Energy is then scattered over a

wide spectrum of radiation modes, so that a leaky wave mode

can be established.

As a matter of fact, attempts to solve the tapered waveguide

by geometrical ray tracing, encounter difficulties too. They are

due to mUltiple reflections of rays near critical incidence at

the waveguide boundaries.

As the tapered waveguide has a non-uniform configuration, it

does not allow the application of separation of variables; and the

lack of symmetry does not guarantee any exact method to solve

the problem of non-separability. Inevitably, one must resort-to

approximate methods.

The most commonly used tool for studying such a case of

non-uniform waveguide, has very often been the coupled wave

theory. It has systematically been used to study time

dependant quantum mechanics. However, when this theory is applied

to non-uniform waveguides[15,16,17,18] in integrated optics, then

serious defects in connection with the singularity are encountered

in the radiated field. For instance, near and beyond a critical

region, the adiabatic mode disappears when it should continuously

convert into a radiation mode. One recalls the concept of an

adiabatic mode, which is considered to be a distribution of
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electromagnetic field which, over any given transverse cross

section, has the same transverse variation as the normal mode

in a uniform waveguide having the same cross section.

Though the adiabatic modes are not exact solutions to

Helmholtz' equation, coupling does exist between them. The coupling

is formally described by coupled mode theory [18,19,20].

There is no known resolution of the mode cut-off problem,

within the coupled mode theory. The coupling cannot be neglected

at the critical region where a bound mode converts into a

radiation mode. Nonetheless, some recent papers [20,21,22]

have successfully constructed solutions of the wave equation

describing the propagation of acoustic waves in shallow water

ocean, a problem mathematically similar to the tapered waveguide

in integrated optics, though different in nature.

Pierce[21] uses the postulative concept of the parabolic

equation; Kamel and Felsen [22] describe the propagation of modes

by establishing a numerical Green's function; and Evans [20]

analyses the structure locally by sectioning it into many steps,

and in each step he explores the coupled mode theory.

Those constructed solutions are reported to describe the

mode propagation of acoustic waves in ocean. Though they involve

a great deal of assumptions, they are still worth referring to,

as long as they constitute the only resource to compare with our

results, in connection with a non-uniform problem such as the

tapered waveguide.

Due to these disadvantages mentioned earlier, little

theoretical effort has been spent on investigating the tapered

waveguide in integrated optics applications. From this arose the
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impetus to carry out such an analysis. We shall henceforth show

how a concept of plane wave spectral analysis can be employed for

the representation of field distributions in the tapered waveguide,

where the wave equation is not separable.

To the lowest order of approximation, validated for

sufficiently weak wedge angle a, intermode coupling can be

neglected.

Though all the following chapters deal with a TE type of

polarisation, a similar treatment could be used in the case of a

TM polarisation by using the corresponding magnetic field

components.

Finally, one is aware that the concepts of ray optics

(geometrical optics), describe the propagation of fields by

defining rays as normals to the surfaces of constant phase of the

field. Light rays have intuitive appeal since a narrow beam is

a good approximation to the more abstract notion of light rays.

One need only assume that a light ray in a homogeneous optical

medium follows a straight path.

In addition, one needs to know Snell's law, which relates

the angle of incidence to the angle of refraction at a dielectric

interface, where a ray system passes through it.

Ray optics includ~the description of the phase of the field

by means of the notion of the optical path length, which is

defined by the actual length times the refractive index of the

medium, mak inz it easy to attach a phase to the light ray.
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1.3. Presentation of the work

Chapter 2 analyses the tapered waveguide using locally

the conventional electromagnetic wave theory. Thereby the

tapered structure is visualised as a series of uniform steps, ~n

which conventional wave theory for uniform guides holds.

The solution of Helmholtz' equation is accomplished by

suggesting in each medium as well as in each region, appropriate

solutions of the field which satisfy the local boundary conditions.

Chapter 3 describes an alternative method of studying the

tapered waveguide. It makes use of a concept of hybrid ray-mode

formalism, where rays and guided mode expansions have been used

as alternative methods.
A properly chosen combination of rays and modes can furnish

a field representation which to a certain approximation provides

basic insight into the propagation process. The resulting hybrid

ray-mode representation thereby clarifies the interplay between

rays and modes, and lends some basic insight into the

propagation mechanism. Criteria for the proper mix of rays and

modes are developed and explained on physical grounds in Chapter 3,

which gives a remarkably simple and physically appealing mixture

of rays and modes.

Chapter 4 expands the hybrid ray-mode spectrum formalism;

which leads to the concept of a spectral Intrinsic Integral.

Chapter 5 is also devoted to the concept of a Radiation

spectral Integral, constructed from any of the spectra elaborated

in Chapter 3. This is achieved by simply associating with each

individual spectral plane wave, incident on any boundary, a

refracted wave with appropriate transmission coefficient. Both
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Intrinsic and Radiation Integrals describe rigorously and

systematically a source-free field behaviour, not only before

and after the branch point singularity, but also inside and

outside the tapered waveguide. Analytically, these Integrals

involve contour deformation, steepest descent path (SDP)

integration, and possibly residue calculus at poles.

As we shall show, both Integrals, if performed via the

steepest descent method, would work well in the guided wave

region where the field has an adiabatic behaviour inside the

tapered waveguide and exponential outside.

The asymptotic evaluation of both Integrals near the

singularity, by the steepest descent path method, delineates the

role of saddle point and branch point. The former engenders

'the adiabatic as well as the radiated field, and the latter

engenders the lateral waves launched near the transition region.
However, in the region past the singularity, the variation

of the field is no more adiabatic inside the tapered waveguide,

and the SDP method fails; for it becomes difficult to estimate

the branch cut integral due to the branch point singularity.

Thus one is inclined to use other asymptotic methods for evaluation

of both Integrals.

Chapter 6 has in fact two purposes. On the one hand, it

summarises some computed results of the field distribution (for

the single layer structure only), by implementing the spectral

analysis method, presented in previous Chapters. On the other

hand, it compares those results with other reference papers.
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CHAPTER TWO

ANALYSIS OF PLANE PARALLEL WAVEGUIDES

2.1. Introduction

This chapter analyses the plane parallel waveguide by using

the conventional elect~omagnetic wave theory, which provides a

framework for comparison with other chapters.

We consider the structure and co-ordinate system shown in

Fig.2.1a; where a film of range dependent thickness T and uniform

index n1 is sandwiched between a film of uniform thickness d and

a uniform index nz' and an air-cover of uniform index n3(n3-1).

The whole structure rests on a substrate of uniform index nO'

Such a configuration will be called the ~ouble layer structure' •

Fig.2.1b illustrates a simpler configuration, consisting of the

double layer geometry as previously, but the film (n2)' by

removal of its lower boundary to infinity, behaves as an infinite

substrate so that substrate (nO) is absent. Such a configuration

will be called the 'single layer structure' .

As the light propagating in both structures of Figs.2.1 is

confined by total internal reflection, in order to achieve true

mode guidance, it is necessary to require that :

(2.1a)
For numerical purposes, we shall mostly fix the indices as follows.

n1 = 2

n2 - 1.76

nO = 1.50

n3 .. 1.0

(2.1b)

(2.1c)

(2.1d)

(2.1e)
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These values are not intended to be exactly typical of

integrated optics devices, but have been chosen to permit direct

comparison with the results of Jensen and Kuperman [24] in the

underwater acoustic case.

We shall assume throughout this chapter as well as in the

next chapters that the guided light is coherent and monochromatic,

and that the waveguides of Fig.2.' consist of media which are

lossless and isotropic. For a discussion of lossy and anisotropic

media, the reader should refer to [25-31].
The physical picture of light guidance is one of the light

rays tracing a multiply-reflected path in the tapered film (n,) as

shown in Fig.2.1, with total internal reflection occurring at the

top and bottom interfaces of the tapered film (n1)·.
We establish the convention that the B .. boundaries refer to

~J

the interface between media of refractive index ni and nj' As

such, zigzag rays propagate into the tapered film (n,), and each

successive pair of reflections at the boundaries B12 and B31

increase the angle of incidence e by twice the wedge angle a.

Eventually this· angle e will be higher than the critical angle

ec (ec 2Arccosn2/n1), for total reflection at B12, and some

energy begins to leak into the medium (n2)' Note that the critical

angle at B31 is higher than the critical angle at B12, as one

has appropriately chosen the indices in (2.1).

The tapered waveguide constitutes the main body of both

structures of Fig.2.1 to be analysed. In order to enable the

derivation of mode characteristics and to analyse both structures,

we could approximate the tapered film (n1) by a sequence of steps

that discretely represent the taper of Fig.2.2. Obviously, the
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result should improve as the steps are made smaller in size and

greater in number. Within each step the solutions for the modes

are simply those of a waveguide with parallel boundaries. Each

step will be characterised by its thickness T. The problem of

calculating the amplitude characteristic of the transmitted and

reflected modes at each step, for a given incident mode. is done

by matching the incident, reflected and transmitted fields

components at each step boundary [16,18,20,32].

We shall therefore analyse the structures locally as

though they were translation-invariant in configuration. Such

planar structures are illustrated in Fig.2.3a and Fig.2.3b

corresponding to the single layer problem and the double layer

problem respectively. Thereby we define the co-ordinate systems.

We use the conventional electromagnetic wave formalism to

introduce the basic concept and terminology of both structures of

Fig.2.3, including the nature of mode propagation, waveguide

cut-off and propagation constants. We assume invariance of the

geometries along the y-axis which symbolically expresses the

fact that all derivatives with respect to the y-axis are zero.

When a wave propagates inside the structure, one dimension

of the beam cross section is guided by the stratification of the

layers in Xj but in the z-direction, the wave can propagate

freely. Also fields of the guided modes must vanish at Ixl = ~.
An appropriate field pattern is required inside and outside

the film (n1) so that the desired coupling to adjacent layers

can be achieved.

The modal field for a plane parallel structure can be derived

from the one-dimensional modal equation (for TE modes)
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(2.2a)

where

S = n. kO cose.
J J

(2. Zb )

kO is the free-space wave number. The subscripts e. and n. respectively
J J

relate to the angle of modal plane wave and the index of the layer

concerned. Equation (2.2b) defines the so-called modal propagation

constant.

Mathematically, problems involving Maxwell's equation have

solutions that match the boundary conditions at interfaces.

Various modes of propagation can be discerned in these

geometric configurations of Fig.2.3. In the single layer case,

modal fields are either trapped in the film layer(n1) or are

radiation modes in the surrounding materials. In the double layer

case, two different types of trapped mode can exist: those

trapped in the film layer (n1) alone, and those distributed

between the two adjacent layers (n1) and (n2).

In each of the layers of Fig.2.3, we shall postulate plane-

wave electric fields E. As the rE mode has only three fieldy

components, Hx and Hz can be derived straight away from Ey by

means of Maxwell's equations.

The customary time dependance in complex notation can be

expressed by exp~i w t), and shall be omitted throughout the

equations still to come.

We shall use the subscript j = 3 for the quantities that

belong to free-space; j - 2,1,0 for the quantities that belong

respectively to the film (n2)' film (n1) and substrate (nO)'
see Fig.2.3.
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We shall denote the complex amplitude of the downward and
,

upward plane waves by A. and A. in each mediuM. Conventionally,
J J ,

all A. waves propagate towards the lower boundary, and the A.
J J

towards the upper boundary, see Fig.2.3.

When coupling of waves in each medium occurs, all waves

have the same propagation constant a, defined in (2.2b).

2.2. Cross section field pattern for the single layer structure

We shall consider two cases as waves propagate along the

parallel films of Fig.2.3a.

2.2.1. Guided wave region

In this region, plane waves in the film (j a t) impinge at

an incident angle e to the boundaries which renders the effective

index (defined as :) in the interval n2 <: <nt• The guided
o 0

wave modes are the transverse electromagnetic waves trapped

inside the film (j = 1) by total internal reflection between Bt2

and B31 boundaries.

Because of the total internal reflection in the film (j • 1),

the electromagnetic field is non zero in the lower-index regions

but, the amplitude of the wave decays exponentially as a function

of the cross distance x in those regions.

We define the transverse propagation constants as

2 2 k2_a2 j ,. 1 (2.3a)y. ,. nj 0J

2 82 2 k2 j 2,3 (2.3b)L. ,.
-nj 0 =

J

8 - n· kO cose. J = 1,2,3 (2.3c)
J J
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B is the longitudinal propagation constant,

y. is the real transverse propagation constant in a medium where
J

oscillating waves are present,

t. is the evanescent transverse decay constant corresponding to a
J

medium where evanescent waves are present.

The distribution of the electromagnetic field component has

the form of a standing wave in the film (j - 1), and exponential

in medium (j - 2) and (j • 3). That is
,

exp(-x IT31) (2.4a)E .. A j :II 3
Y 3

exp(-i.
,

exp(i x y,)E -A x y,)+A, j '"' 1 (2.4b)y 1

E - A2 exp(x IT21) j '"'2 (2.4c)
y

We also define the derivatives of the electromagnetic field

component as :

i w ~ H - -dE Idzx y (2.Sa)

i w ~ H .. aE IdxZ y
(2.Sb)

Where w and ~ are the pulsation of the wave and the permeability

of the concerned solid media, respectively.

The boundary conditions demand that the field E and its
y

normal derivatives be continuous across the boundaries

(2.6)

where T represents the physical local thickness of the film (j .. 1).

Normalising the modes to a unit power P, requires :

Real { ~ E H: dX}
-co y

(2.7)

where P represents the total transverse power across the structure,



15

and the asterisk denotes the complex conjugate of the Hx COMnonent

defined in (2.5).

Application of (2.4), (2.5), (2.6) and (2.7) leads to the
,

determination of the field amplitudes A. and A., and to the
J J

characteristic equation which is

Y1 T-Atan 7r q (2.8)

where the integer q is the mode number, and the transverse

propagation constants are given by equation (2.3).

Equation (2.8) is the characteristic equation for the single
layer structure in the pure guided wave region. Bearing that Atan

is the inverse tangent function.
2.2.2. Leaky wave region

In this region, the effective index is less than n2• That

is: < n2• Leaky waves occupy the medium (j = 2) which behaves as
o

an infinite substrate.

The·transverse propagation constants are defined by

j = 1,2 (2.9a)

2T ...
J

02_ 2 k2
p nj 0 j = 3 (2.9b)

The distribution of the field is a standing wave in the film (j - 1),

evanescent wave in medium (j = 3) and outward. propagating wave in
medium (j • 2). Hence

,
exp(-x "31 ) jE ..A = 3 (2.l0a)y 3

,
E ..A exp(-i x y1)+A1 exp (i x Y 1) j = 1 (2.10b)y 1

E = A exp(-i x Y2) j = 2 (2.10c)y 2



16

Combining (2.5), (2.6), (2.7), (2.9) and (2.10), one obtains

the characteristic equation in the leaky wave region, which is :

(2.11)

where q still represents the mode number and the transverse

propagation constants are given by equation (2.9).

2.3. Cross section field pattern for the double layer structure

Similarly as we did for the single layer problem, we consider

two regions as waves propagate along the parallel films of Fig.2.3b

corresponding to the double layer structure. The difference here

is that the medium (j - 2) behaves as a propagating film of thickness

d and the substrate (j • 0) is present.

2.3.1. Guided wave region

For waves to be trapped in the film (j - 1), the effective
eindex is bound in the interval n2 < ~ < n1 •
o

We define the transverse propagation constant in each medium

to be

j .. 1 (2.12a)

2T. -
J

82 2 k2
-nj 0 j = 0,2,3 (2. 12b)

We postulate standing wave in the film (j - 1), evanescent waves in

medium (j ..2), (j ..3) and in substrate (j ..0). The field

distribution becomes then :
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I exp(-xIT31) (2.13a)E - A j = 3y 3

E - A1 exp(-i x Y1) + A' exp (L x Y 1) j == 1 (2.13b)y 1

IT21)
I exp (-x IT21) (2. 13c)E • A exp(x + A2 J = 2y 2

E - AO exp(x ITOI) j = 0 (2.13d)y

The boundary conditions require that the field and its normal

derivatives be continuous at boundaries

x - 0 • x ,.d (2.14)

where T still represents the thickness of the film (j == 1), and d is

the thickness of the film (j - 2) as depicted by Fig.2.3b.

Recalling equations (2.5), (2.7), (2.12), (2.13) and (2.14)

will establish the characteristic equation which is :

- 'II' q (Z.15)

The definition of all transverse propagation constants in (Z.15) is

given by (2.12). The integer q labels the mode to be guided.

2.3.Z. Coupled wave region

The effective index in this region ranges in the interval

no < JL < nZ' Guided waves propagate in both layers (j ,. 1) andkO
(j - 2).

The transverse propagation constants can be defined as

j = 1,2 (Z.16a)

2
T. -J

J = 0,3 (2.16b)
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The electromagnetic field distribution is such that standing

waves occur in film (j ,. 1) and film (j = 2), while exponential

waves occur in medium (j = 3) and substrate (j = 0). We have

then :
,

h31)E ,.A exp(-x j = 3 (2.17a)y 3

exp(-i x ' . Y 1) j (2.17b)E ,.A Y1)+A1 expel x =y 1
,

x y2)+A2E ..A exp(i exp (-i x YZ) J = Z (Z.17c)y Z

Ey - Aa exp(x ITOI) j 0 (2.17d)

A final recalling of (2.5), (2.7), (Z.14), (2.16) and (Z.l7)

makes the characteristic equation in the coupled wave region to be

ITOI }tan[yz d+Atan ----] ..rrqYZ
(2.18)

The integer q characterises the mode number and the transverse

propagation constants are given by (2.16).

A close look at (2.18) reveals that equation (2.11) could

have been established differently by taking the limit of equation

(2.18) as d tends to infinity. As a matter of fact, equation (2.18)

which corresponds to the characteristic equation of the double

layer structure in the coupled wave region, entails equation (Z.ll)

by combining medium (j • 2) and medium (j .. 0) into a single

infinite medium (j - 2) corresponding to the single layer structure
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2.4. Computational results and discussion

The numerical solution of all characteristic equations is

achieved by executing the Newton-Raphson algorithm.

In order to maintain the same assumptions as in the next chapters,

and also for simplicity, the boundary to the free-space medium (j • 3)

is taken as perfectly reflecting. This can be justified by the

fact that n3 • 1 and is largely inferior to nl. Such an assumption

is equivalent to determining the phase of the Fresnel reflection

coefficient at the boundary B31 as -~. Consequently, in all
h-31equations, each term like Atan ---- must be substituted by the
Yl

~number + 2' •

Also as all characteristic equations involve a branch point at

nz, it is necessary to specify a convention which decides which

branch in the computer program to choose. For this purpose we set

Imag [nz - JL]i > 0, for an exp(-i ~ t) time convention.kO

2.4.1. Single layer problem

We consider the characteristic equation (2.11), also known as

the eigenvalue equatio~governing the single layer structure of

Fig.2.3a. It determines the allowed values of the normalised

propagation constant: and describes the modes propagating not
o

only in the guided wave region, but also in the leaky wave region,

by solving equation (2.11) for complex S.
The real solutions will mathematically represent the modes

in the guided wave region, whereas the complex solutions will

represent the modes in the leaky wave region. Consider first the

real solutionsof the eigenvalue equation (2.11); their computation

for the ten lowest modes is depicted by Fig.2.4. It describes the
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LbL 1 Li d ' B, , hPOSSl e rea norma lse propagatlon constants ~ ranglng In t e
o

8interval n2 < ~ < n1.o
Such solutions represent the modes in the

guided wave region. As the normalised thicknesskO T of the film

(j = 1) narrows down, : approaches the cut-off (: = n2).o 0
By further reducing T, complex solutions of (2.11) need to be

taken into account; when cut-off occurs, no real solution of the

eigenvalue equation is oresent. 8Hence --k becomes complex with ao .
positive imaginary part. These solutions represent the modes in a

new region known as the leaky wave region. It is,however, worth

mentioning that in the case of the double layer structure (as will

be shown later on), even beyond the transition thickness, : still
o

remains real by the nature of its corresponding eigenvalue equation.

Fig.2.S shows systematically the behaviour of the trajectory

of the leaky wave solutions for the ten lowest modes of the single

layer structure in the complex plane as T changes from a maximum

value (keT = 100) to a minimum value (keT = 0). Any real solution

of Fig.2.S represents the guided wave in the interval n2 < ~ < n1,kO
whereas complex solutions that exist past the transition region

(t = n2) belong to leaky modes. For any modes illustrated in the
o

complex plane of Fig.2.S, it can be observed that the imaginary

part Of: is positive. This is crucial to the vanishing of such
o

leaky waves away from the transition region. Also, as the thickness

T is reduced, each point on the locus sees its imaginary part

getting higher in magnitude. This emphasises the fact that as the

thickness T of the film (j = 1) diminishes, the corresponding

leaky wave launched in medium (j = 2) decays more rapidly •

.Physically, the leaky waves describe the radiation which occurs

past the transition region as the incident angle e exceeds the
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n2critical angle e = Arccos - of the single layer struc ture.c n1
Fig.2.6 illustrates the computation of the incident angle e

defined bye· Arccos ( B k ) as the thickness T varies from a
n1 0

maximum to a minimum value, and for the ten lowest modes of the

single layer structure. The real solutions of e corresponding to

the guided wave region are restricted in the interval 0 < e < e ,c
whereas the complex solutions of e corresponding to the leaky wave

region are confined in the interval ec
'1T'< Real(e) < 2.

We compute expressions (2.4) and (2.10) which describe the

continuous field distribution in each medium and in each region.

It is illustrated by Fig.2.7 and Fig.2.8 that the field patterns

corresponding to a few of the lowest modes describe perfectly the

field variation assumed earlier in this chapter.

In the guided wave region, the thickness chosen in the

film (j - 1) is Tg• For kO x > kO Tg and kO x < 0, there is an

evanescent wave describing the cross section fields in medium (j • 3)

and medium (j - 2) respectively. In the interval 0 < kO x < kO Tg

we have a standin~ wave oscillating in the film (j = 1).

In the leaky wave region corresponding to a thickness TL in

the film (j • 1); we obtain an evanescent wave in medium (j = 3) only

for kO x > kO Tt. For 0 < kO x < kO TL, there is a standing wave

trapped in the film (j • 1); and for kO x < 0 there is a leaky

wave radiating away in medium (j • 2).

2.4.2. Double layer problem

As far as the double layer structure of Fig.2.3b is concerned,

we refer to the eigenvalue equation (2.18) to descr.ibe the modes
covering the guided wave region and the coupled wave
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region at the same time. Of course one could have used equation

(2.15) to analyse the modes in the guided wave region, but

computational results have proved it to be similar to equation (2.18).

So for convenience and continuity reasons, we shall essentially

solve the general eigenvalue equation (2.18) to mathematically

represent the modes in the guided wave region as well as in the

coupled wave region.

For numerical purposes, we fix the normalised thickness of the

uniform film (j "" 2),kOd, to be a certain value adequate to allow

the propagation of a desired mode.

Practically, the eigenvalue equation (2.18) turns out to

comprise real solutions which are of interest only, in the guided

region as well as in the coupled wave region. The reason for that

is essentially due to the analytical nature of equation (2.18).

Consequently, unlike the single layer problem, leaky waves which

are characterised by complex propagation constants do not exist

in these regions where solutions are real for the double layer

problem. However, the presence of the uniform film (j • 2) traps

and guides the waves in the coupled wave region. In order to obtain

information about the eigenvalue solutions, one should refer to the

plotting of Fig.2.9. It shows the computation of eigenvalue

equation (2.18) for the ten lowest modes of the double layer

structure. Thereby the two regions are clearly distinguished.

The guided wave region is described by the normalised propagation

'h' 1 S h hconstant In t e lnterva n2 < ~ < n1; w ereas t e coupled wave
o

region is described in the interval nO <; < nZ' In the transition
o

region corresponding to S "" n2' continuity is clearly seen.kO
The computer plot of Fig.2.9 describes clearly the general
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behaviour as the propagation constant 8 goes from one region to the

other, as T diminishes. The two regions are described at the same

time and continuity at the transition thickness is satisfied. When

the normalised thickness kOT is maximum, : approaches the local
. 0

index of the film (j - 1). To this degree the film (j = 1) acts

as a bulk medium and all energy is contained within the same film

(j = 1), which constitues the source where all energy emanates

from. When: varies from n1 to n2 and as T decreases continuously,
o

the field extends more outside the film (j - 1) as it approaches

h .. h i k (S )t e transltlon t lC ness ~ = n2 •
o

At this stage light exits the

guided wave region and is no more trapped. It then enters a new

region known as the coupled wave region. For: varying from n2 to nO'
o

coupled waves propagate along the film (j = 1) and the film (j = 2)

having the same propagation constant 8. At the cut-off point

(: • nO)' the coupled waves in the film (j = 1) and the film
o

(j - 2) become at least cut-off as all energy is leaked from

film (j - 2) to substrate (j = 0). In this case, solutions of

(2.18) become complex and the problem would be similar to the single

layer structure when leaky waves are present; the treatment

would be similar to subsection 2.4.1.

Finally, the computation of equations (2.13) and (2.17) which

assess the cross section field pattern distribution in each medium

and in each region is shown by Fig.2.10 and Fig.2.11 for a few

of the lowest modes.

For each mode, one distinguishes the two reglons and their

continuity at each interface as postulated beforehand in previous

section •

In the guided wave region, we choose a thickness T of theg
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film (j - 1). When the normalised cross section variable kox is

such that kOx > kOTg' the cross section field describes an evanescent

wave in medium (j • 3). For 0 < kOx < kOTg' the field represents

a standing wave within the film (j = 1). As kOx < 0, the field

extends to an evanescent wave in the film (j = 2) and substrate

(j • 0).

Ultimately, in the coupled wave region which is characterised

by a thickness Tc in the film (j = 1), kOx > kOTc gives an evanescent

wave in medium (j - 3). We get an oscillating standing wave in the

film (j • 1) for 0 < kOx < kOTc; and in the film (j = 2) for

kOd < kOx < O. For kOx <kOd, an evanescent wave describes the fip-Id
distribution in substrate (j = 0). As the modes in Fig.2.10 and

Fig.2.11 propagate along the film (j = 1) (kOx> 0), the modes

are pushed down as they get nearer and beyond the transition region;

there they finally become coupled and trapped once again by the

2.4.3. Discussion

In subsections 2.4.1. and 2.4.2., we have been able to

present interesting numerical results for the two configurations

of Fig.2.3, by investigating the mode propagation in plane parallel

waveguides, as the thickness T diminishes. Such a requirement is

accommodated by the natural geometrical configuration of the

tapered waveguide, which constitutes the main body of both

structures in Fig.2.1. In this sense, one can unquestionably apply

all numerical results of subsections 2.4.1 and 2.4.2 to the single

layer problem as well as to the double layer problem respectively.

The phenomenon observed in Fig.2.7 and Fig.2.S and which
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describes the radiation transfer from the tapered waveguide to

its adjacent medium, has found apolication not only in

integrated optics, but also in any type of longitudinal non-

uniform disturbances, such as underwater acoustics, tropospheric

ducts etc. That illustrated in Fig.2.10 and Fig.2.11,

which couples efficiently and continuously energy from the

tapered waveguide to its adjacent film, has considerable interest

mainly in integrated optics.
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,
CHAPTER THREE

ANALYSIS OF THE TAPERED WAVEGUIDE
BY PLANE WAVE TRACKING

3.1. Introduction and formulation of the model

This chapter describes a method for analysing the tapered

waveguide. which constitutes the main body of the structures given

in Figs.2.1. by tracking the plane wave spectrum as energy

propagates along the tapered waveguide. The method here. for

integrated optics applications. follows the procedure described

by Arnold and Felsen [23] in which they analyse acoustic

propagation in shallow ocean water. Such an approach is provided.
by the ray optical method, whereby the field from a source point

~ (or line source) to an observation point X. is tracked along

ray paths that obey the rules of geometrical optics.

For analysis, one should refer to Fig.3.1 where a more basic

geometry of the tapered waveguide is illustrated. The tapered

waveguide itself is characterised by a dielectric material of

refractive index (n1) and is enclosed above and below, by media

of indices (n3) and (n2) respectively.

There is assumed to be no variation of the field in the

direction parallel to the tapered waveguide apex; also, the

only component of the electric field is assumed to be along this

direction, characteristic of TE polarisation. We shall

throughout this chapter, omit the time dependence exp(-i w t ).

We locate a harmonic line source at X. Rays originating from
-0

~ propagate at different directions perpendicular to the source.
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In such an approach, a discrete number of rays reach the

observation point located at X; each such ray can be

identified by the number of times it has been reflected at the

bottom interface B12• Consequently, we must partition the rays

emanating from the source X into two categories :-<> .

'Ie Upgoing rays, which impinge at the interface B31

first.

'Ie Downgoing rays, which impinge at the interface B12

first.

These two types of ray are then tracked through multiple

reflections, and each type of ray is further split into those

undergoing an even or odd number of reflections at B12 boundary,

see Fig.3.2. In this case, any ray reaching the observation

point! belongs to one of the four species of rays mentioned

above.

3.2. Field due to rays free of reflection

We consider first the direct contribution of waves that

emanate from the source X , without any reflection at either
-0

interface of the tapered waveguide occur. The wave number k

related to the tapered film (n1) propagates at an angle ¢-¢o

from the line joining the source ~ to the observation point !,

(see Fig.3.". X and X are characterised by their polar
-<> -

co-ordinates (X ,r ) and (x,r) respectively, with respect to theo 0

wedge apex.

The geometrical path length R represents the distance

separating the source and the observation point.



Tapered
waveguide

/2m reflections (a)

2 m-l reflections

X
--0

-_ --_

medium (n2)

(b)

Tapered
waveguide

Fig.3.2 (a) shows the upgoing waves undergoing 2m or 2m-1
reflections from X to X

(b) shows similarly t~ downgoing waves
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Each plane wave in the source spectrum, contributes to the

field at X by a term given by :....exp(i k.R) = exp[i k R cos(W-W )]o (3.1a)

where the phase quantity of the term on the left of the expression..(3.1a), is the dot product between the wave vector k and the..geometrical path vector R. The moduli k and R are defined as

, .. ! R '"' ,"R!k = [k , (3.1b)

Physically, (3.1a) represents a single plane wave propagating with

a wave number k - nt ko ' where nt is the tapered waveguide's

refractive index, and k is the free-space wave number. The totalo

contribution of the field due to waves undergoing no reflection at

a given observation point! is taken as a full spectrum, as Wo
ranges over visible and invisible angles. In terms of a Green's

function, the total field obtained will be

gO(X,X) = 4i f exp[i k R cos(W-~ )] dW
-~ lfC 0 0

(3.2)

The contour (C) of integration in the complex W -plane, is depictedo

by Fig.3.3.

3.3. Field excited by the upgoing species of rays

Here, we consider the type of waves that hit the B3t boundary

first. Such rays, depicted by Fig.3.2a consist of two categories.

Those undergoing an even number (2m) of reflections at each

interface of the tapered waveguide are denoted by GU; and thosee

which follow an odd number (2m-t) of reflections are denoted by GU•o
A single plane wave, originating from the source X~

.contributes to the observation point X by the term :
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GU(S ,e ) = exp[i ~u(e ,a )+i k RU(a ,a )]emo emo emo (3.3a)

after an even number of reflections; and

GU(e ,a ) = exp[i ~u(a ,e )+i k RU(S ,e )]omo orno omo (3.3b)

after an odd number of reflections.
u uThe subscripted ~ and ~ , refer to the accumulated phasee 0

change of plane waves introduced after an even (2m) or odd (2m-l)

number of reflections respectively.
Similarly. the subscripted RU and R

U represent respectively,e 0

the geometrical path measured from X to X after an even or odd
-0

number of reflections.

The integer m ranges in the interval 1 < m < M. Where m = 1,

corresponds to the first reflected ray impinging at an incidence

angle e , and m - M corresponds to the maximum reflected ray
o

whose incident angle is eM. Consequently, one expects the incident

angle e at boundary B12, after m reflections occur, to be limited

within the interval (3.4)

The total field contribution due to the upgoing species of

waves, following an even or odd number of reflections, can be

expressed in terms of a Green's function as :

. M
gU(X,X ) = __1__J I [GU(S ,a )+GU(e ,e )] da

- -0 4 1T C m=l e m 0 0 m 0 0
(3.5)

The contour (C) of integration is shown in the complex ~ -plane on
o

Fig.3.3, after mapping the $ -plane into the e -plane through the equationo 0

$ ,. e -a-x .000

Fig.3.4a and Fig.3.4b show the geometrical constructions,

developed by the image rnetho~which facilitates the tracking of
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waves, after an even or odd number of reflections respectively.

They also give the previous geometrical expression that maps ~o
into a .o

Following the image tracking of plane waves in Figs.3.4, one

defines :

(3.6a)

~u(a ,a ) = ~u(a ,a ) - ~(a )omo emo m (3.6b)

Where ~(at) is the phase of the plane wave reflection coefficient

at bottom interface B12, corresponding to the lth reflection. Each

species of wave strikes B12 at an angle am. After each pair of

reflections, the incidence angle a is augmented by twice the wedgem
thangle~. Therefore at the m reflection, the incidence angle am

will be :

a - a + 2 c (m-l)m 0 (3.7a)

Because of the one-to-one relationship between the number of

reflections m and the incident angle at B12; one can drop the

subscript m on a and write (3.7a) as follows

a • a + 2 ~ (m+ l )o (3.7b)

Continuation of the discrete sum in (3.6) is vital to further

analysis. It is achieved by application of the Euler-MacLaurin

formulae (given by expression A.4 in Appendix A) to equations (3.6)

and (3.7); one obtains then:
a-a~u(a e ) _ (__ 0)

e ' 0 2 a
1 e

'11'+'11'+ - J ~(e ')
2 ~ e

c

a
de' - _1_ fO ~ (e ')

2 Cl. e
c

de'

1+-2 ~(a) +.!.2 ~(e ) + Erroro
(3.Ba)

~u(a,e ) - ~u(a,e ) - ~(a)o 0 e 0 (3.Bb)
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where the Error term is neglected as postulated in Appendix A.

The interface B31 is assumed perfectly reflecting, for the presence

of ~ in some quantities in (3.8a), which accounts for the phase

change accumulated after m reflections at that interface.

~(9) is the phase of the reflection coefficient at the bottom

boundary B12 of the tapered waveguide. It is given straight away

by the Fresnel equation for the single layer problem and by

Appendix D for the double layer problem.

The expressions for the path length are given by reference to

Fig.3.4a and Fig.3.4b. Theyare:

RU(S,S ) - r cos(e -a-x )-rcos(6+a-x)e 0 000 (J.9a)

iU(8,e ) = r cos(a -a-X )-rcos(6-a+x)o 0 0 0 0 (3. 9b)

3.4. Field excited by the downgoing species of rays

An exactly similar reasoning as in the previous section will

give similar expressions for the field due to the downgoing part of

the spectrum, as depicted by Fig.3.2b. In terms of a Green's

function, the total field contribution is then

(3. 10)

The contour (C) is given by Fig.3.3, after mapping ~ into a
o 0

through equation ~o - eo -a + Xo' which is geometrically found

by reference to Figs.3.S. One also defines

exp[i ~d(a ,a )+i k Rd(a ,a )]e moe m 0
(J.lla)

Gd(a ,e ) = exp[i ~dCa ,a )+i k RdCa ,a )]omo omo orno (3.llb)
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The phase functions in (3.11) are also defined in·a similar

manner as done with the upgoing type of waves, by reference to

Fig.3.Sa and 3.Sb. They are:
m

~d(e ,e ) = m n + L ~(eB)
e m 0 NR.=1

(3.12a)

~d(e ,e )o m 0
= ~d(e ,e )e m 0

- n (3.12b)

AftercombiningA.4 and (3.1) into equations (3.12), we get:

e
~(e') de' - __1__ JO~(e') de'

2 a. e
c

He )o (3.13a)

~d (e,e ) = ~d (e,e )o 0 e 0 - 1f (3.13b)

The presence of the n in (3.12b) and (3.13b), accounts for the

fact that for downgoing waves, each even ray has one more reflection

on too interface B31 than the odd ray. As the top interface is'

assumed perfectly reflecting, one expects a phase change difference

of 1f, between the two cases.

The geometrical paths are also defined by reference to Figs.3.S

as follows

Rd(e,e ) - r cosCa -a+x ) -r eos(e+a+X)e 0 0 0 0 (3.14a)

Rd(a,e ) a r cos(e -a+x ) -r cos(9+a-x)00000 (3.14b)
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3.5. Total field contribution

The total field contribution at any observation point X whose

polar coordinates are (X, r), is due to both scattered components,

plus the incident non-reflected field. Combining then, equations

(3.2), (3.5) and (3.10), one obtains:

o u dg(X,X ) - g (X,X ) + g (X,X ) + g (X,X )-~ -~ -~ -~ (3.15)

In addition to~e field contribution in (3.15), additional

fields could be added to the total field expression in (3.15). They

are due to diffraction at the apex of the tapered waveguide, and

also to the type of waves depicted by Fig.3.6, which are rays

whose incident angle is higher than Ias they travel past the

observation point and return to it after reversal of slope. Such

rays carry very small amplitude. For the parameter of interest

(n small) in practical integrated optics applications, those

additional contributions can largely be neglected numerically.

3.6. Transformation of the plane wave snectrum by Poisson-Sum-formulae

Equations (3.5) and (3.10) may not be well suited to numerical

applications, because of the existence of too many dominant terms

with similar amplitude but largely varying phases. As the sums

in (3.5) and (3.10) are finite, we can suggest the technique of

Poisson-summation which transforms any discrete sum, like (3.5)

and (3.10), into a sum of continuous spectra. Making use of the

result A.3 of Appendix A. its application to the four species of

waves in (3.5) and (3.10) gives for the upgoing waves'

contribution :
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+co
u 1 t+G (aM'a )] + -2- L
o 0 a q=-co

eJM [Gu(e,e )+Gu(e,e )]a e 000
o

exp(-2 i 11' m q) de

(3.16a)

Similarly for the downgoing waves' contribution

M

L
m=l

+cc>
+ _1_ L2 a q--

a .
JM [Gd(a,a )+Gd(a,a )]a e 000
o

exp(-2 i 11' m q) da (3.16b)

In both equations (3.16a) and (3.16b), q is an integer

introduced as a consequence of Poison summation; it characterises

physically the mode that propagates along the tapered waveguide.

The incident angle a is the equivalent incident angle correspondingo

to the first reflection (m - 1) at B12 interface; as for the angle

aM' it is the incident angle reached when the maximum (m ,.M)

reflections occur at B12 interface. We recall that the mapping of

m into e is already given by expressions (3.7).

A further integration along the contour (C) in the a -planeo

lying from +ieo to -ieo in (3.5) and (3.10), requires an extra

integral si~n in both terms of equations (~.16a) and (3.16b).

Combination of (3.2), (3.5), (3.10) and (3.16) leads to the

final expression of the field distribution at an observation point X
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u u[g (X,X )+g (X,X )e-~ o-~

d d+ g (X,X )+g (X,X )]e-~ o-~

0 is defined by equation (3.2)• defineg (X,X ) We also-~
u ,. _i:__ J [Gu(e ,e )+Gu(e ,S )]gl (!'!o) 4 1T C e 0 0 000

u = _i_ J u u
g2 (!'!o) [G (eM,e )+G (aM'S )]4 1T C e 000

d ,. _i_ J [Gd(S ,e )+Gd(a',e )]gl (!'!o) 4 1T C e 0 0 000

d' ,. .i__ J d d
g2 (!'!o) [G (eM,e )+G (eM'e )]4 1T C e 000

(3.17a)

(3.17b)

(3.17c)

(3.17d)

(3.17e)

u u d dWhere G (a ,e ), G (e ,e ), G (e ,e ) and G (e ,e ) are defined ine moo moe moo rn 0

(3.3) and (3.11) respectively.
The other quantities in (3.l7a) are given by

au = ~ J JMexp[i k sU(e,a )]g (X,X ) de dae -~ Cl c e e 0 0
0

u 1 eM sUes,s )]g (X,X ) ,.-2- J J exp[i k de dao -~ Cl C S o 0 0
0

d 1 eM s:(e,eo)]g (X,X ) ,.-2- J J exp [i k de dee -~ Cl c e 0
0

d 1 eM dg (X,X ) = -2- J J exp[i k s (e,e )] de deo -~ Cl ceo 0 0

0

(3.18a)

(3.18b)

(3.18c)

(3.18d)
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The phase functions of the integrands in (3.18) are defined

as follows :

k SU(e,e ) = k S (e,e ) + -2'~(e)+k r cos(e -a-x)eo coo 00

- k r cos(S+a-x) (3.19a)

k sUes,s ) = k S (e,e ) - -2'~(e)+k r cos(e -a-x)
00 coo 00

-k r cos(e-a+x) (3.19b)

k sd(e,e ) = k S (e,e ) + -2'~(S)+k r coseS -a+x )eo coo 00

-k r cos (S~a+x) (3.1gc)

k Sd(s,e ) = k S (e,e ) + -21~(e)+k r cos(e -a+x )
00 coo 00

-k r cos(e+a-X) -~ (3.19d)

Setting
e s

k S (9,9 ) = 1~(9 ) - __,__ fO ~(9') d9' + ----2'f ~(S') d9'co2 0 2aS as
c c

+ ~ (1-2 q)
(9-S )
-:::-2-a_;;'o-+ 'IT ( 1- 2 q) (3.1ge)

is numerically anticipated that gO(X,X ), gU,(X,X ), gU2(X,X ),
--0 --0 --0

dg2(!t~) are very small compared to the sum in (3.17a).

Therefore, we shall neglect all those small contributions in (3.17a)
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and only contributions due to the double integrals will be considered

in (3.17a). The reason is mainly due to the fact that, when

expanding asymptotically any expression from (3.17b) to (3.17e),

they exhibit an algebraic decay which, for an observation point X

sufficiently far from the source X , becomes vanishingly small.
-0

In order to simplify the analysis, the phase functions in

(3.19) can further be expressed by expanding each phase in terms

of a.+Xo' a.-~ and a.-x when appropriate, about the point zero.

Fixing the source point at X = <X , r ), we obtain the
-0 0 0

final expressions of the phase functions corresponding to each

species of waves :

- {a.-1 Q(X,6) + ~~ (x,e)+r X k Sine} (3.20a)

u { -1k S (e,e ) ~ a. Q(x ,e )o 0 0 0

ao--'-ae
o

(x ,e )+r X k Sine}o 0 000

- {a.-1 Q(x,e) - ~~ (x,e)-r X k sine}

- '!f(2 q-O (3.20b)

ao- -'-ae o
(x ,e )-r x k sine}o 0 000

- {a.-1 Q(x,e) + ~~ (x,e)-r X k Sine} (3.20c)
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k Sd(e,e ) - {a-1 Q(X ,e ) - ~ (X e )-r X k sine}o 0 0 0 ae. 0' 0 0 0 0o

{
-1 ao }- a Q(X,e) + as (x,e)+r X k sine

- Tr(2 q+ l ) (3.20d)

Where the function Q(X,9) is defined as

Q(X,9) a a k r cos9
e

- 1. f He')
2 e

c

d9'+Tr e (q-!) (3.21)

3.7. Assessment of the local eigenvalue equation

In order to evaluate the double integral of equations (3.18),

approximate techniques such as the saddle point method must be

sought. For that, the inverse of the wedge angle a will be taken

as the large parameter.
Because of the double integral of (3.18), two saddle points

need to be taken into account. They are e which characterisesoq
the saddle point at the source point X and is itself fixed; and

-0

9 which is the saddle point at any observation point X which isq

defined by the co-ordinates (X,e).

By taking the leading terms in a-1 only, in equations (3.20),

the saddle points e and e are defined by :oq q

~ (X , e ):1 0deo 0 oq (3.22 )

2_g_ (X,e) - 0de q
(3.23)
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Where the function Q(X,a) is already defined in (3.21).

Inserting (3.21) into (3.22) and (3.23), leads to the

local characteristic equations that define e and e respectively.
~ q

They are :

2 r a k sine +~(e )-~ (2 q-1) = 0
o ~ ~

(3.24a)

2 r a k sine +~(e )-~ (2 q-1) = 0q q (3.24b)

Equations (3.24) are identified as the eigenvalue equations,

characterising locally the tapered waveguide at a width r a and rao

respectively.

The terms r a and ra are the local thicknesses of the taperedo

waveguide (r a = T, ra = T), which locally position the sourceo 0

and the observation point respectively, along the tapered waveguide.

As the thickness T (T • ra) is reduced, the saddle point e
q

Arccos n2/nl)increases until it reaches a critical angle a (a =c c

where n1, n2 are the indices of the media on either side of

interface B12• If we express Q(X,e) in (3.21) in terms of a-ac
near 9 - ac; there appears a term in (e-ac)~ which states that 9c
is a branch point for QCX,e) and hence, for all phases of equations

(3.20) (in the single layer case only).

Because of the analytical similarity between (3.24a) and

(3.24b), only equation (3.24b) will be of interest in the following

treatment. The quantity ~(e) which is the phase of the reflection

coefficient, introduced at interface B12 of the tapered waveguide;

can be derived from the Fresnel equation in the case of the single

layer structure, which is :
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i n2 sine"~(e) = 2 Atan n1 sine (3.25)

Where e and e" are respectively, the incident and refracted angle

on either side of boundary B12• n1 and n2 are the refractive

indices of their respective media.

In the case of the double layer structure, ~(a) is g~ven by

Appendix D.
Either case of ~(a), substituted into (3.24b), leads exactly

to the eigenvalue·equations (2.11) and (2.18) respectively;

already computed and discussed in section 2.4 of Chapter 2, using

a completely different treatment. In section 2.4, the eigenvalue

equations have been discussed mainly in terms of the normalised

propagation constan.t <:) versus the normalised thickness koT. We
o

recall that, according to Fig.3.1, the polar coordinate r of the

observation point X = (x,r) is related to the local thickness T

of the tapered waveguide by the approximation T = r~ as long as

the wedge angle ~ is small.

~ere, the solution of (3.24b), representing the saddle point

9q for different positiomof the observation point (for different

value of T), is taken as the inverse cosine of the computed (~)ko
in section 2.4.

In the case of the double layer structure, the saddle points

e of interest are real in the guided wave region (e < a ) as wellq q c

as in the coupled wave region (a > e ), by the nature of the
q c

characteristic equation (2.18).

In the case of the single layer structure however, the

solutions aq are real only in the guided wave region (eq < ac)'

becoming complex with negative imaginary part in the leaky wave region



41

(Real (9 ) > 9). As a matter of fact, when the saddle point 9q c q

transits from the guided wave region to the leaky wave region, it

is necessary to declare which branch in (9-9 ')! to take. In orderc

to obtain decaying waves in the leaky wave region [for an exp(-i w t)

time convention] one chooses (9-6 )! to remain in a single Riemannc
Sheet, any time the branch point 6 is crossed. This has been. c

predicted in the computation of (2.11) and plotted in Fig.2.6 in

Chapter 2. Thereby, we notice that the negative imaginary part of

solutions e implies' that the waves decay exponentially as a
q

consequence of radiation loss as they propagate along the tapered

waveguide. The waves that result are leaky.

3.8. Field analysis in different regions of the tapered waveguide

As the observation point X moves along the tapered waveguide,

there arise three cases when evaluating the asymptotic integrations

in (3.18), depending on the location of the saddle point 6 with
q

respect to the critical angleec•

3.8.1. Guided wave region

The saddle points 9 and e are chosen in the intervalq oq
9 < 6 < e. In such a region, the two saddle points do notoq q c
lie near the critical angle9. Each integral of equations (3.18)c
can be estimated using the method of saddle point.

Applying Appendix B to each species of waves described by

(3.18) and recalling (3.17a) leads to the total field approximation

in the guided wave region :
+00

g(!,!o) - i L y(x,6q) Y(Xo,90q)q=-co
(3.26 )
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where
-1Y(X,e ) - A(x,e ) siner x k sine) exp[-i a Q(x,eq)] (3.27a)q q q

(3.27b)

The coefficient A(X,e) is defined in Appendix B and is given by

A(x,e) - {k r a cose+!·~:~Et)}- (3.28)

The function Q(X,e) is defined in (3.21). A close look at

(3.26) reveals that the dominant contribution of the field in

the guided wave region is represented by a sum of products. One

factor depends on the saddle point 9 at the source X ,and theoq -0

other on the saddle point e at the observation point x.q

Equations (3.27) define the so-called adiabatic mode, a field

which is characterised by a x-dependent amplitude and an r-dependent

phase.

The adiabatic mode so defined, propagates locally and

adapts smoothly to the configuration of the tapered waveguide, in

a manner that renders coupling to other modes insignificant.

Each adiabatic mode propagates locally with a local

longitudinal propagation constant S, defined here as

S - 12 (X e )~ k case
Clr 'q q (3.29a)

where Q(X,e) is given by (3.21).

The local transverse propagation constant will be

(3.29b)
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Both propagation constants ~ and Yl' characterise the local

adiabatic mode propagation at a saddle point 9 , located by theq

polar co-ordinates (x,r). We notice that Sand Y1 in (3.29), take

the values corresponding to a uniform waveguide of width T(T ~ ra)

of the tapered waveguide at the saddle point e .
q

The smallest value of a in this range (9 < e < e ),oq q c

coincides with the critical anglewhen eq = ec; whereas the largest

value of S results in a physical conception of total internal

reflection of the guiding mechanism of the adiabatic mode. Such

a maximum value of S in this range, coincides with the saddle point
e ,. e
q oq

We recall the expressionsof Sand Y1 in (3.29), which have

already been introduced in Chapter 2 via a different approach.

The computation of the adiabatic mode at the observation point in

(3.27a), will appear in the next chapter, when it will be compared

and discussed with another type of newly constructed mode, which

is more systematic than the adiabatic mode concept.

3.8.2. Transition region

In this region, the saddle point e is approximately equal
q

to the critical angle' e·. The saddle point e is still maintained. c oq
fixed and is lower than both e and e . Mathematically, such aq c
transition region represents the region where the adiabatic mode

becomes cut-off. Applying the results of (C.7) and (C.9) of

Appendix C into equation (3.17a), the total field contribution of

each species of waves in the transition region, where e ~ e ,q c
will be :

..",

g(X,~) • i ~ y(xo,eoq) W(x,ec)q:o::-oo .
(3.30)
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where'

w(x,e ) - F(Z) siner X k sine) exp[-ic c
-1

<l Q (x, ec) ]
(3.31a)

Y(x ,e ) and Q(X,e) are given respectively by (3.27b) and (3.21).
o oq

Substitution of Q1 in (C.11a), into (C.B) in Appendix C; leads to

the expression of F(Z), given by

F(Z) - 2 (2 1f i a)-! A-2/3 L (3.31b)

where A and Z are respectively given by (C.10a) and (C.10c). As

for L, it is given in terms of Airy's function [23J by

co 2 -2/3 t3
L - f i 2 1f/3 t exp f+t Z A . ) exp(-T) dt

co e

-2/3 3 .= -2 1f exp[2 i (Z A ) /3] exp(-~ 1f/3)

• 1f 2>< [Ai'(E) + e~ 6 2 A- 3 Ai(E)] (3.31c)

With
• 1f
~ -E ,. e 3 (3.31d)

The equations (3.31) make it clear that w(X,e ) represents thec

variation of a local mode, where the saddle point e is near theq

branch point e. The function F(Z) agrees with a result found byc

Pierce [21], where he analyses by a different method the sound

wave propagation in shallow ocean water at a similar transition

region. Though the problem elaborated by Pierce may not be

exactly the same as the tapered waveguide in integrated optics,

it is mathematically similar in nature, in so far as both cases

are concerned with a non-separable problem.
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3.8.3. Radiation region

In this region, the saddle point 9 and critical angle e areq c

no longer confluent. The saddle point 9 moves around the branch
q

point 9 to become complex in the case of the single layer problem,c

but remains real in the case of the double layer problem. In such

cases, the critical angle 9 lies in the interval e < e < Real(e ).c oq c q

An additional branch cut i~tegral needs to be added to the saddle

point 9 contribution. The branch cut integral added to eachq

integral of (3.18), accounts for the lateral waves launched in a

region past the critical angle.

Inserting the result (C.12) of Appendix C into equation (3.17a),

leads to the total approximated field distribution in a region where

9 < 9 < Real(9 ), given by :oq c q

g(X,X ) - i ~ Y(X ,9 ) {yex,e )+V(X,9 )}
- ~ 0 oq q c

q-
(3.32a)

where y(X ,9 ) and Y(X,9 ) are defined in (3.27); and veX,S ) by :o oq q c

. V (x , S ) ..B (x ,e ) sin (k r X sin9 ) exp [-i a-1 Q (X,e )] (3 .32b)c c c c

The coefficient B(X,S ) and Q(X,9 ) are given by (C.14) and (3.21)c c

respectively.

The first term in (3.32a) represents the contribution of the

adiabatic mode as elaborated in subsection 3.8.1; and the second

term accounts for the lateral waves. By inspecting V(X,ec) in
5

(3.32b), we notice that it contains a term in n- 2, which assesses

the algebraic decay of the lateral waves as the observation point X

moves along the tapered guide towards the apex. Such a term 1S

also in agreement with the result of Pierce [21] in a region past

the transition region.
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CHAPTER FOUR

INTRINSIC SPECTRAL INTEGRAL

4.1. Definition of the Intrinsic Field

In Chapter 3, the wave tracking formulation allowed us to

describe analytically the mode propagation inside the tapered

waveguide only. However, owing to the non-existence of the

Adiabatic mode past the transition region, the Adiabatic

representation only holds in a limited region.

In order to describe the modal field distribution inside

the tapered waveguide in all regions with respect to the

transition layer; a systematic method is formulated in this.
chapter. For this, the concept of an 'Intrinsic mode' is

introduced, which physically represents an Intrinsic field that

satisfies local continuity of the boundary values at the top

and bottom interfaces of the tapered waveguide; and is itself a

plane wave spectrum [39,40].

Once the Intrinsic field approach is adopted, one is able

to analyse the tapered waveguide, not only in the inside, but

also outside the wedge, both before and after the transition

region.

As will be shown later, the Intrinsic field has properties

similar to the Adiabatic field defined in subsection 3.8.1, but

it is a more general concept.
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4.1.1. Construction of the Spectral Intrinsic Integral

For a suitable contour of integration (C) in the complex

a-plane, an integral I(x,a) is defined as follows:

exp[i k S(x,e)] de (4.1)

Physically, (4.1) describes a local mode, generated by

integration over an angular plane wave spectrum. Such a

source-free mode (labelled q) is defined at an observation point

X and propagates smoothly along the tapered wavep,uide, with a

wave number k. Its characteristic invariant q is maintained

during the propagation both before and after the transition

region.

In (4.1) a still remains the incident angle of plane waves

with respect to the bottom boundary of the tapered waveguide.

The phase function k S(X,a) in (4.1) could be any phase among

the four species introduced in Chapter 3; and which are given by

equations (3.19). In this case, the constructed plane wave

spectrum (4.1) maintains itself self-consistently with no effect

from the source.

The contour (C) could be any arbitrary contour in the

complex e-plane, as long as convergence of (4.1) is guaranteed.

See Fig.4.1, whereby the contour (C) can be defomed into 2

separate contours (C') and (C"). The latter is such that

o < Real(a) < Iand the former, f < Real(a) <~. As it has

been mentioned earlier in section 3.5 and as will be rigorously

proved in the next chapter, all plane waves having incident

angle a > ; (as depicted in Fig.3.6), have their direction of

propagation reversed and travel away from the apex. Such rays



r -----------.----
1
I
I
I
J
I•

----7---:
:-' J

~ I
I
I
I
I

4
I
I
I
I
I
I
I
J
1... -.- -----1'------

I
I
I
I
I

~ I

\ !____ ... _J

....

-

Q)
c~.....
Co
I
co

~.....
Coeou

-u......
N -4~ ~- :l
1= 0

.I.J
C
0
t)

>-~
~~
.I.J....
.0~
co
.....
~c....
eo....
~
0

- /-

o

eo~.....
co....
.I.J
le~
or;
Q)
.I.J
C....

..... Cl,)o c
co~"""":l Q..o I

.l.JCO
Co >0:
t) Q).....
Q) ~
,.c e
.I.J 0

t)
1.1-1o Q)

,.c
C .I.Jo ..... c
.I.J ....
t)
:l ~
~ :l
.I.J 0
CIl.I.J
C Co 0U t)



48

are safely neglected since they carry very small amplitude due

to the loss of power incurred in mUltiple reflection. For this

reason, the contour (e") can be ignored too; and the contour (C')

as depicted in Fig.4.1 maintains its dominant contribution to

the integral (4.1). In this sense, any integration of (4.1) along

(C) will be reduced to an integration along (C').

An asymptotic evaluation of (4.1) by the saddle point

method leads to an integration once again along another deformed

contour, along a steepest descent path (SDP), related to the

phase S(X,e) and which will be computationally investigated later

on. In addition, the presence of any singularity in the

integrand of (4.1) may have to be taken into consideration.

The integral in (4.1) may be evaluated by Cauchy's theorem

[36], as follows:

J
Cl • JSDP + J

BRANCH CUT
+ POLES CONTRIBUTION (4. 2a)

As long as there is no pole involved (at least, as far as the

single layer problem is concerned) one is left with

J
Cl - JSDP

+ J
BRANCH CUT

(4. 2b)

The branch cut integral exhibited in here, contributes to the

..asymptotic solution only if the singularity e is crossed duringc
the deformation of the contour (C') into the steepest descent
path (SDP).

The deformation of (C') into the SDP is performed as

desired on a single Riemann sheet. The tracking of the saddle

point around the singularity Sc is accomplished in compatibility



49

with the above requirement only if proper account of all branches

is taken in the computer program.

4.1.2. Identification of the lateral waves

When the saddle point S (which makes the dominant contributionq

to the integral I(X,S» lies near the branch point of the phase

function (which'is to be defined later), it identifies departure

directions of laterally shifted rays. These transitions give

rise in physical space to excitation of lateral waves, a phenomenon

well explored for a single bottom reflection, at a single interface

between 2 half-spaces [34].

However, the problem here is much more complicated, because

at the transition region the lateral wave itself undergoes

multiple reflection between two non-parallel boundaries.

Consequently, when the saddle point e moves beyond e , a branch
q c

cut integral must be added to the analytically continued saddle

point approximation, as stated in (4.2b). The saddle point

contribution retains its interpretation as a local mode, which is

now leaky; and the branch cut contribution is interpreted as a

lateral wave (by analogy to the lateral wave introduced in

subsection 3.8.3), excited at the critical transition region.

Physically, the lateral wave corresponds to a shift, which

manifests itself in a reflected ray which is laterally shifted;

such a shift indicates that the light penetrates to a depth into

the bottom adjacent medium, before it is reflected. This

phenomenon, called the Goos-Hanschen shift [37] and occurring near

the transition region, has turned out to be an important element

in integrated optics, in the understanding of the flow of energy.
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4.1.3. Elaboration of the phase function for the Intrinsic Integral

Among the four species of waves elaborated in Chapter 3. we

consider only two spectra so that each plane wave ln one species.

reflects into the corresponding plane wave in th~ other, with the

appropriate Fresnel reflection coefficient at the bottom

boundary of the tapered waveguide. In this case, those two

spectra are undoubtedly self-consistent.

Applying (4.1) to those two categories of waves,

after deforming the contour (c') into a steepest descent path

(SDP) contour, gives :

(4.3a)

(4.3b)

The assumption that the plane wave spectrum (4.1) is source-free.

is equivalent to removing source-dependent terms in the phase

expression SUeS,S ) and Su(S.S ), depending on the polare 0 0 0

co-ordinates (r , X • e ). as given by (3.19a) and (3.19b) foro 0 0

the two species of waves specified above. Combining the

contribution of those two types of waves. the corresponding

Intrinsic integral I consists of summing up the two expressions

in (4.3), which gives

u u(r(X.e) - I (X.e) + I X,S)e 0
(4.3c)

By making use of (3.19) and (4.3), the total Intrinsic field at

an observation point! ~ill,be after omitting the source terms

I(X,S) - (2 u)-! f
SDP

2 cos[k r sins sin(x-~) - ~]
2

exp[-i ~-1 Q(x,e)] de (4.4)
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(4.4) describes then the field inside the tapered waveguide,

characterised by its wave number k. The coefficient Q(X,a) is

defined in expression (3.21); and X,r are the polar co-ordinates

of any observation point! with respect to the wedge angle a, as

shown in Fig.3.1.

Further analysis and computation of the Intrinsic Integral

(4.4), is accomplished by appropriately substituting ,the right

expression of the phase change ~(a), introduced at the bottom

interface of the tapered waveguide. ~(9) is involved directly in

the integrand of (4.4) and also through Q(X,9). We recall that

for the single layer problem, ~(a) is derived straightaway from

the Fresnel's equation which states:

i no;~(a) • 2 Atan (----n,
s Ins "
. a)

Sl.n
(4.5)

Where n
"

n2 are the refractive indices of the tapered waveguide

and the adjacent bottom media (n2) respectively. a" is the

refracted angle in medium (n2). The incident angle a is related to

9" via Snell's law which is :

n, sinS • n2 sIne " (4.6)

For the double layer problem, ~(e) is calculated in Appendix D.

The same process holds for the Adiabatic field, defined in

subsection 3.8.1 by equation (3.27), which depends on the

appropriate substitution of ~(a) via Q(x,a).
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4.2. Application of the Intrinsic Integral to the Single Layer Structure

After extracting the expression for the phase change ~(e)

from the Fresnel's equation (4.5) and inserting it into (4.4),

the Intrinsic Integral describing the mode propagation for the

single layer problem is complete. Depending on the location of

the observation point X (or saddle point a ), two regions can be
q

analysed. The guided wave region is defined by all

observation points X such that e < ec; in the leaky wave region,
- q

e is located such that· Real(e ) > S •
q q c

4.2.1. Definition of branch point ec
n2We recall, that the existence of singularity B ( = Arccos --)

c c n '1
is essentially due to the branch point in ~(e) at the bottom interface of

the tapered waveguide, for critical incidence (when the wedge

thickness T is near the critical region). This is accommodated by

the fact that when one expands ~(a) in a about a there is ac
term like (a-sc)! appearing. This clearly implies that Bc is a

branch point for ~(a), and hence for the phase function of (4.4)

via Q(X,e) as well. Consequently, crossing the branch point e
c

in the complex a-plane must then be carefully monitored. For

that, a branch cut convention needs to be defined so as to keep

the expression (a-Se)! constantly in a single Riemann sheet, and

to guarantee the convergence of integral (4.4). We also require

lmag(e-ac)i ~ 0, in order to obtain decaying wave amplitude, as

6q moves along the tapered waveguide towards the apex in

accordance with our time convention exp(-i w t).

It is worth mentioning at this point, that in the case of

the double layer structure, ~(e) is defined in Appendix D. The
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critical angle e , which is defined earlier above, is not ac

branch point to ~(e),because of the mathematical nature of ~(e).

4.2.2. Location determination of the

(a) Definition of SDP

Asymptotic evaluation of (4.4), by the steepest descent

method, requires the exact location of the saddle point e at an
q

arbitrary local thickness T along the tapered waveguide, as well

as the locus of the steepest descent path contour.

To investigate the saddle points of (4.4) it is necessary

to find the zeros of the derivative of the phase of the integrand,

;~ (X,e), in (4.4). Because the function Q(X,e) is simply the

s- dependent part of the phase in (4.4), the equation obtained

is identical to the characteristic equation (2.11), already

introduced and computed in subsection 2.4.1.
Once the saddle point e has been located, the burden ofq

this integration lies in finding the steepest descent path (SDP)
of the phase of the integrand function in (4.4). For a specified

observation point, as well as for a given mode number. the

steepest descent path (SDP) can be constructed via the following

equations :

Imag [i S(X,e)] a Imag [i S(X,S )]q (4.6a)

or

Real [SeX,S)] • Real [S(X,e )]q (4.6b)

where S(X,e) is any phase of the integrand function of equation (4.4).
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Along the steepest descent path, the major contribution in

the integral (4.4) is dominated by the angles in the vicinity of

the saddle point a •
q

The computer program which has been developed to implement

the steepest descent path, consists mainly in determining first

the saddle point a at each observation point (at local thickness
q

T and X) then, using the Newton-Raphson method, having equations

(4.6) satisfied.

Appendix E gives a brief flow chart of the computer

program 'Saddle point - SDP', implemented to compute the SDP.

In addition, one has to declare clearly in the computer

program. the principal branch corresponding to different Riemann

Sheets of all complex square roots involved in expression (4.6),

because of the mUltiple valued function ~(e) indirectly involved

in (4.6).

(b) Definition of branch cut contour

As we have introduced the SDP above, we can define

similarly the branch cut contour, which is defined as follows

Real [S(X,e)] = Real [S(X,e )]c (4.7)

where e is the branch point corresponding to the transitionc

region of the single layer structure. The computation of the

branch cut is achieved in an exactly similar manner as done for

the SDP, with the only difference that equation (4.6) which

defines the SDP should be substituted by equation (4.7) which

defines the branch cut contour.

Since the need for a branch cut integral arises only when
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e lies past the branch point e , it will not be used in the
q c

integration of (4.4).

(c) Computational result

Fig.4.2 depicts the computation of the steepest descent

path and the branch cut contour, for three different cases

related to the position of the saddle point e with respect to
q

the branch point singularity e .c
The branch point is located at a local normalised critical

thickness k T· 1.75, for the first lowest mode.o
Fig.4.2a corresponds to theSDP contour in the guided

wave region. The saddle point e is located at a local thicknessq

k T - 10. One notices that the SDP contour crosses the realo
axis at an angle i, which ag~ees with the theory of functions of

complex variable in a region free of singularity. In such a

region, the real saddle point 9 denoted by the x sign in the
q

figure is such that e < e .q c In this case, the contribution of

integral (4.4) is dominated by the portion of the SDP near the

saddle point.

The branch cut contour starting from the branch point ec ,
denoted by the V sign in figure, does not contribute to the

integration of (4.4), for in this region the SDP does not cross

the branch point yet.

Fig.4.2b represents the SDP contour near the transition

region at k T - 1.8. The contour tends to surround the brancho

point 9. In this case, saddle point and branch point arec

confluent and further reduction of T will make the SDP cross e .
c

We then enter a new region known as the leaky wave region.
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Fig.4.2c corresponds to the SDP contour in the leaky

wave region; which locates a saddle point e beyond the branch
q

point e •c
The saddle point e 1S complex in this region, with aq

negative imaginary part. The local normalised thickness is

k T = 1.65. It is noticed from Fig.4.2c that the SDPo

crosses the line Real(e) = e ; and it is continuous.c
Besides, the branch cut contour is asymptotic to the lower

part of the SDP. These are also standard properties of functions

of complex variables, in a region beyond the singularity. In

such a region, where Real(e ) > e , the integration of (4.4) isq c
theoretically supposed to be accomplished by the SDP method as

well as the branch cut contribution. However, in practice it

is difficult to separate the two contributions, and numerical

problems arise. This is a major limitation of the saddle point

method in the region beyond the singularity. In addition, in

such a region it is computationally very difficult to pick up

the SDP. For, in the vicinity of saddle point e , the steepest
q

descent path (SDP) and the steepest ascent path (SAP) are

difficult to distinguish. The above complications may render

the asymptotic evaluation of integral (4.4) impractical.

Consequently, one may require direct numerical evaluation of (4.4).

Those restrictions will be overcome by suggesting another simpler

contour of integration for (4.4) which, as will be shown later,

will be valid not only In the guided wave region, but also

beyond any singularity.

For any observation point ~, specified by the polar
Tco-ordinates (x,r) (where r = ~), inside the tapered
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waveguide, one expects the polar variable X to be in the

interval 0 < X < a, where a is the wedge angle. The computer

plots of Fig.4.2 have all been carried out for X = 0 rds only,

which corresponds to an observation point situated on the top

interface B3l of the tapered waveguide, for the first mode q = 1.

For other X,as well as for higher modes, the contours obtained

(though not represented) are qualitatively si~ilar to the plotting

of Fig.4.2, but different quantitatively. For as the mode number

q increases, the critical thickness increases, as one can see from

the plotting of eigenvalue equation (2.ll) in Fig.2.6.

4.2.3. Intrinsic field in the guided wave region

As the Intrinsic field is analysed asymptotically in terms

of the saddle point method, we recall that each observation point

X = (x,r) is characterised by the polar variable X and the range

r. To each thickness T (T a ra) corresponds one and only one

incidence angle ( saddle point S ); we shall then represent eachq

observation point X either, by its co-ordinate X = (X,S) or by
- q

X = (x,r). In this sense, these two notations represent exactly

the same point X. We also recall that the saddle point e ,
q

contributes dominantly to the integration of (4.4) when evaluated

by the SDP method.

Thus, one analyses the intrinsic field of equation (4.4), as

the observation point X moves along the wedge towards the branch

point Sc (i.e. as the local thickness T diminishes).

In moving e from one side of the branch point e to theq c

other, difficulties with branch cuts might be anticipated. These

difficulties do not arise when S is bound by the intervalq
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e < e < e , corresponding to the Adiabatic mode in theoq q c
guided wave region as defined by equation (3.27); for the steepest

descent path contours do not capture the branch point according

to our convention for choosing branches.

The integral signs which are mathematically used to compute

the SDP contour appear not only in the main integration (4.4);

but also in the expression of the coefficient Q(X,e), present in

the integrand of (4.4) and which is given by equation (3.21). This

double appearance of the inte~ral sign complicates numerically

the computation of (4.4). In order to systematically evaluate

(4.4), a computer program is also developed in this chapter and

consists of computing (4.4) simultaneously with the steepest

descent path in (4.6). The integrals involved directly or

indirectly in (4.4) and (4.6) are carried out by use of the

Simpson-numerical method.

Appendix F gives a flow chart of the computer program

'Integration', developed to implement (4.4).

Figs.4.3 compare both the Intrinsic modes as introduced

by equation (4.4) and the Adiabatic modes as defined analytically

by (3.27), for the four lowest modes of the single layer structure.

For a given local normalised thickness k T; Figs.4.3o

represent the variation of the cross angle X (in radians) of

the mode across the tapered waveguide, versus the normalised

modulus of the Adiabatic and Intrinsic modes. For simplicitv

and convenience, each mode has been normalised with respect to

a constant. However, there is no representation of the phase of

each mode, for there l5 no absolute reference for the phases.

As the purpose of this chapter is to describe the field
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inside the tapered waveguide; the polar angle variation X must

be confined to the interval 0 ~ X ~ ~, where ~ is the wedge angle

of the tapered waveguide.

Three different locations of saddle point e are depictedq

in each diagram of Figs.4.3, in relation to e .c
Dealing first with the lowest mode, fig.4.3a considers

three distinct locations of the saddle point corresponding to three

different thicknesses as illustrated in each diagram.

(i) kaT = 10, locates the saddle point eq much smaller than

the branch point e (located at a normalised critical thicknessc
k T = 1.75). One notices the good agreement between both Intrinsico

and Adiabatic fields.

(ii) kaT. 5, positions the saddle point fairly distant from ec;
yet still a good agreement is obtained between both fields.

(iii) k T = 1.8, locates the saddle point e near the transitiono q

region. The confluence of e and e restricts the comparison of
q c

both fields within 107.. This error margin is a serious

discrepancy as compared to the wedge angle ~.

One notices in Fig.4.3a that as the thickness T approaches

the critical region, the amplitude of the waves increases.

The mode is bound inside the tapered waveguide, undergoing

multiple reflection at each interface. Energy is confined within

the inner structure of the tapered waveguide. Thus, there is no

loss, for the saddle points are real in such a region. It is
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only in a region close to the transition region, that the

amplitude of waves begin to diminish, because that is when the

wave starts leaking out of the tapered waveguide. Energy is then

lost by radiation as the saddle point e becomes complex.q

A similar reasoning holds for higher order modes as

illustrated by Figs.4.3b, 4.3c and 4.3d.

The computation of the Intrinsic and Adiabatic fields for

many modes of the single layer structure shows clearly that the

Intrinsic field agrees to a good approximation with the

Adiabatic field, when the latter is strongly guided. This

identification motivates the important conclusion

that the Intrinsic Integral calculated by the saddle point method,

yields the Adiabatic mode approximation. However, as the saddle

point e approaches the branch point e , the local mode indexed
q c

by q approaches its corresponding cut off and the Adiabatic mode

theory breaks down. This failure of the Adiabatic mode near the

branch point (critical thickness) is associated with the failure

of the steepest descent method used in subsection 3.8.1. to

define the Adiabatic mode. But the Intrinsic Integral (4.4)

itself, from which each Intrinsic mode is constructed, remains

well defined. Although the saddle point method can no longer

be used to approximate it, because of the confluence of e and
q

ec' it can be evaluated by other numerical methods to provide a

canonical transition function, valid through and beyond the

transition. Hence, one can evaluate the Intrinsic Integral

I(X,S) by attempting to deform the original contour of

integration (C ) of equation (4.1) onto another contour, when

proper account of any singularity of the phase in (4.1) is taken
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according to the theory of functions of complex va~iable.

The identification of Intrinsic and Adiabatic fields in

the guided wave region however, permits us to push the saddle

point e further (that is by reducing further T) across and
q

beyond the branch point 9c in order to describe the field

behaviour in the leaky wave region, by analytic continuation.

Before moving onto the next section, which analyses the

Intrinsic field in the leaky wave region. we must be aware that

the Adiabatic field no longer exists in that region. As far as

the Intrinsic field is concerned, it cannot easily be carried

out along the SDP because of reasons stated earlier. In

order to be able to systematically evaluate the field in the

leaky wave region. the method suggested is to deform the contour

(C') of Fig.4.1 to lie along the real axis, instead of deforming

it into the SDP, as long as the convergence of the integration

is maintained. The justification of integrating (4.4) along the

real axis will be fully explained and accounted for on physical

grounds in the next chapter.

Although the Intrinsic fields of Figs.4.3 have all been

carried out along the SDP, they are the same as if they had

to be carried out along the real axis. This important

identification, which follows from Cauchy's theorem [36] allows

us to really analyse the field distribution beyond the branch

point 9 by integrating (4.4) along the real axis. In thisc

case, any restriction due to branch points or poles (if any)

will be automatically taken care of.
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4.2.4. Intrinsic field in the leakv wave reg~on

The observation point X can be allowed to move through and

beyond the critical range • The saddle point e , as defined byq

the eigenvalue equation (2.11) becomes complex with a negative

imaginary part, which accommodates the loss due to the leaky

wave when Real(e ) > e for a time convention exp(-i w t).
q c

The transition around the branch point e is mathematicallyc

described by the term (e-e )!. According to earlier convention,c
one chooses the branch which lies in a single Riemann sheet, so

as to ensure vanishing waves along the tapered waveguide, when

the motion of e is towards the apex.q

In the leaky wave region, the Adiabatic field no longer

holds. Bearing in mind now that the contour of integration is

the real axis, Figs.4.4 show the computational result of the

Intrinsic field only, versus the cross angle X, for the four

lowest modes of the single layer structure, as the observation

point! moves down the tapered waveguide towards the apex.

Referring first to mode 1 of Fig.4.4a, the normalised

thickness k T is reduced further from the normalised critical
o

thickness in each diagram. The Intrinsic field still remains

well determined and propagates along the tapered waveguide. The

saddle point e becomes more and more strongly complex,
q

characterised by an increasing imaginary component.

As the mode is pushed down onto the bottom interface of

the tapered waveguide (X a a), the amplitude of the wave decays

along the taper. All energy which initially was bound inside

the tapered waveguide, radiates into the bottom adjacent

medium (n2). It is the positive imaginary part of S = n1 ko cos6q
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that is responsible for the amplitude decay, as the observation

point! moves towards the apex (as T diminishes), for a time

convention exp(-i w t). This is clearly seen in the computation

of eigenvalue equations (2.11), whose plotting is illustrated by

Fig.2.S and Fig.2.6 as dealt with in Chapter 2.
Similar treatment holds for hi~her order modes as illustrated-

bv Figs.4.4b; 4~4c and 4.4d.

As this chapter is meant to deal with the field inside the

tapered waveguide only, the radiation mechanism in medium (nz)

will be treated in the next chapter concerning the propagation

outside the tapered waveguide for the single layer problem.

4.3. Application of Intrinsic Integral to the Double Layer Structure

Inserting the expression of phase change ~(e) given by

Appendix D into (4.4), yields the Intrinsic Integral describing

the mode propagation for the double layer problem. A close look

at (4.4) will then prove that it has poles involved in its

integrand. This complicates much more the analysis of (4.4),

when evaluated by meam of the saddle point method. However, this

complication does not arise as long as (4.4) is carried out along

the real axis and not along the SDP. Consequently, in the guided

wave region as well as in the coupled wave region, all singularities

(poles and branch point) will be taken care of.

4.3.1. Location of saddle point and determination of SDP contour

Despite the fact that this subsection is not necessary for

the evaluation of the Intrinsic field (4.4) for the double layer

structure, we shall after all introduce it as a supplement,
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similar to the single layer problem. Here too, we require the

exact location of the saddle point a in order to evaluate theq

steepest descent path contour related to the phase integrand

of (4.4).

The saddle points e are roots of the derivative of theq

phase function Q(X,a) Ln (4.4), which happens to yield the

eigenvalue equation similar to the characteristic equation (2.t8)

already treated and computed in subsection 2.4.2.

The saddle points turn out to be real after the transition

as well as before.

As will be explained in the next subsection, the double
,

layer structure has two critical angles, e and a , hence twoc c

critical thicknesses for each mode. In addition to branch

conventions already chosen for e , the same convention holds forc

a so as to keep all a's in a single Riemann sheet and toc
guarantee convergence of integral (4.4) in the case of the double

layer problem. This constitutes the main differences between the

single layer structure discussed in ~he previous section and the

double layer structure.

Once the saddle point a is known, one could depict theq

SDP contour of the phase function in (4.4), corresponding to

the double layer problem.

Appendix E gives the flow chart of the computer program

'Saddle point - SDP' elaborated for this purpose.

For a specified a at a given local thickness T, as well as
q

a given mode number and a given transverse coordinate X (we choose

x • 0 to place an observation point at the top boundary B3t of

the tapered waveguide) the SDP can be obtained in a similar
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manner to that elaborated in subsection 4.2.1 for the single

layer structure. In addition, one must specify the normalised

thickness of the uniform film (n2), k d. For numerical purposeso

one chooses k d so as to permit a sufficient number of modes too
be propagated in the tapered waveguide as well as in the

uniform film (n2).

Fig.4.5 illustrates the SDP for three different positions

of the saddle point and for the first mode of the double layer

structure. The first normalised critical thickness is at

k T = 2.15 (related to 9 ) and the second normalised criticalo c ,
thickness at k T - 0.63 (related to e ).o c

Fig.4.5a corresponds to the SDP contour in the guided

wave region, located at a local normalised thickness k T = 10.o

One obtains a i line crossing the real axis. The real saddle

point e denoted by the x sign in the figure, satisfies
q ,e < e < e. The critical angle e is denoted by the ~ signq c cc.

in the figure.

Fig.4.5b represents the SDP near the first criticai

thickness (k T = 2.15); At this location, the saddle point eo q

.tends to encompass the critical angle e. It is at this stage,c

when e and e coalesce, that the modes exit the guided waveq c .

region and enter a new region known as the coupled wave region.

Fig.4.5c locates e beyond the critical angle e (k T ~ 1.3)
q c 0, ,

with e < e < e (the branch point e is not represented in thisc q c c

figure). The saddle point 9 still remains real for the doubleq

layer struc ture. Continuity of the SDP across e is ensured.c,
It is only past the branch point e that the saddle point e willc q
become complex. This will not be treated here, for it wouid be
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exactly similar to the single layer case, elaborated when S was
q

located in the leaky wave region.

4.3.2. Intrinsic field in the guided wave region

Here, the saddle point S is also bound in the interval
q

o < S < S. A similar treatment as done for the single layer
q c

problem in subsection 4.2.2 leads to the computational plotting

of Figs.4.6, concerning the double layer problem. There, the

four lowest modes of both Adiabatic and Intrinsic fields are

respectively compared. The former is deduced from (3.27) and

the latter is given by (4.4), after substitution of the appropriate

expression for $(S) from Appendix D.

One notices from Figs.4.6, that due to the presence of

the uniform film (n2)' all critical thicknesses are shifted

with respect to their counterpart in the single layer problem.

This is physically due to the d-dependence of the characteristic

equation (2.18) governing the double layer structure.

Dealing first with mode 1, Fig.4.6a evaluates three

distinct locations of e related to three different thicknessesq

as mentioned in each diagram.

(i) k T • 10, locates a saddle point S much smaller than botho q,
critical angles Sc and Sc (corresponding to the first and second

critical thickness respectively). Notice the good agreement

between Adiabatic and Intrinsic fields.

(ii) k T = 5 positions S not too far from, but still smaller0' q

than Sc. Yet again a good agreement is obtained between both

fields.
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(iii) k T = 2.15, places e very near the critical angle e .o q c
Unexpectedly, unlike the single layer problem, there is once

again a good agreement between Adiabatic and Intrinsic fields.

One notices from Fig.4.6a that the amplitude of the wave

increases as the local thickness T approaches the first critical

thickness; this is due to the fact that, in such a guided wave

region, energy is still bound inside the tapered waveguide

following total reflection; and no wave is radiated or coupled out

of the tapered waveguide yet. Hence, no loss is manifested, for

all saddle points in the guided wave region are real.

A similar reasoning holds for higher order modes as depicted

by Figs.4.6b, 4.6c and 4.6d. The good agreement between

Adiabatic and Intrinsic fields for all modes of the double

layer structure permits us once again to identify both fields in

the guided wave region. The Adiabatic field however, does not

break down at the first transition region (critical thickness),

for the saddle points e remain real without branching. Suchq

important conclusions allow us to push the saddle point e
q

further beyond e in order to investigate the mode propagation in
c

the coupled wave region.

,
4.3.3. Definition of branch point Sc

Before moving onto the next subsection, we reconsider the

Adiabatic field for the double layer structure as an addendum.

By inspection of eigenvalue equation (2.18), elaborated earlier

in subsection 2.4.2, we recall that the saddle points are real

even beyond the first transition region corresponding to the first
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n
critical angle e = Arccos (~). As the existence of real saddle

c n1
points in the coupled wave region motivates the necessary condition

for the existence of Adiabatic modes; there is hence a discrete

set of Adiabatic modes, bound and propagating locally not only

between top and bottom interfaces of the tapered waveguide, but

also between top and bottom interfaces of the uniform film (n2).

Unlike the single layer problem, the Adiabatic modes in the

double layer problem, still persist beyond the critical angle 9 •c
According to the computation of (2.18) in subsection 2.4.2, there

is another transition region corresponding to another critical
n

angle e • Arccos (~). This second transition region manifestsc n1
itself physically in the cut-off region for the double layer

structure, corresponding to the interface B20; see Fig.2.1a. This

proves that the double layer problem has, so to speak, two critical
,

angles 9c and ec' We recall that e is not a branch point for ~(e),c,
whereas 9 is. It is only past the second transition regionc ,
(related to 9c) that solutions of eigenvalue equation (2.18)

become complex; at this stage only, the Adiabatic field breaks

down. Then, for a more systematic analysis of the double layer

problem, one ought to push the saddle point e further beyondq

9 (9 > 9 ) in order to analytically continue the Intrinsic mode.c c c

We shall restrict ourselves to the first critical angle 9 because,c,
beyond the second critical angle e , one will obtain leaky modec

propagation and the problem reduces to the one already tackled

for the single layer structure in the leaky wave region.
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4.3.4. Intrinsic field in the coupled wave region

During the transition from guided wave to coupled wave

region the saddle point e crosses the critical angle e but
q c

remains real, because of the mathematical nature of the eigenvalue

equation governing the double layer structure. Consequently, the

Adiabatic field is still valid in this region, as the saddle

point is confined in the region a < e < e. In such a regionc q c

beyond the first transition e , one expects some difficulties toc

arise. These difficulties are essentially due to the more

complicated field in the layer, as well as the presence of poles

in the expression of ~(a) given by Appendix D. Such restrictions

are easily overcome as Integral (4.4) is carried out along the

real axis. In this case, all singularities are safely taken care of.

Figs.4.7 compare the normalised cross section variation of

the Adiabatic and Intrinsic fields versus the variation of the

cross angle X, as the saddle point moves along the tapered

waveguide in a region where a is beyond the critical angle a •
q c

Four of the lowest modes of the double layer structure are

considered.

Let us deal first with the lowest mode of Fig.4.7a, which

illustrates the distinct location of a relating to three
q

different local normalised thicknesses as shown in each diagram.

(i) kaT - 2.1, places a saddle point aq slightly higher than ac•
A good agreement between Adiabatic and Intrinsic fields is

obtained.

,
(ii) k T • 1.5, places a halfway in the interval a < a < a •o q c q c
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The branch point a is located at the second critical thickness.c

Still a good identification of both fields is observed.

(iii) k T • 0.63, positions a very near to Sc. In this case,o q

the confluence of a and S restricts the comparison of both fields.
q c

The discrepancy is due to the fact that the saddle point e starts
q

becoming complex and the Adiabatic field begins to break down.

A further increase of e beyond a (or diminishing further T
q c

beyond the second critical thickness), will cause leaky wave

propagation in the waveguide, and the problem will be similar to

the case already treated for the single layer structure in the

leaky wave region.

A quite similar treatment holds for higher order modes of

FigS4.7b, 4.7c and 4.7d.

In each diagram of Figs.4.7, one can see that the modes are

pushed down onto the bottom interface of the tapered waveguide

(x - a), and the amplitude of the waves increases, then decays

abruptly as the saddle point a moves along the tapered waveguide
q

(as T diminishes).

Unlike the single layer structure, when modes are pushed down

towards the uniform film (n2); they are not radiated away but are

rather coupled to that adjacent bottom uniform film (n2). Such

phenomena, characterises the coupling mechanism, hence the name

of this region. Energy in the tapered waveguide couples to a

mode in the uniform film (nZ); whereby, waves are once again

trapped, undergoing total internal reflection.



71

The analysis of such coupled waves in the uniform film (n2)

shall be dealt with in the next chapter, which treats the propagation

process outside the tapered waveguide for the double layer problem.
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CHAPTER FIVE

RADIATION SPECTRAL INTEGRALS

5.1. Introduction

5.1.1. Definition of the Radiation Integral

In order to analyse the field distribution outside the tapered

waveguide, it is necessary to track the motion of the observation

point !, not only along the tapered waveguide itself, but also

across the cross section of its adjacent bottom medium too.

Physically, the rays of the spectrum undergo bottom

reflections at the vicinity of the critical angle 8 , when totalc

internal reflections prevail. But, for observation points X

located beyond the critical transition range, rays reaching!

begin to radiate through the interface which adjoins the wedge.

This could either be, the open medium (n2) in the case of the

single layer structure, or the uniform film (n2) in the case of

the double layer structure.

It is the purpose of this chapter to investigate the mode

propagation in the adjacent bottom medium. To achieve this, it

will be necessary to introduce a Radiation Integral which governs

fields in the medium adjoining the wedge angle, and which will

describe the radiation mechanism taking place in the structures.

Of course, the following treatment could also apply to the top

adjacent medium (free-space), see Fig.2.1. But we restrict

ourselves to the radiation process occurring at the bottom

medium only.
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The Radiation Integral in an open region can be defined by a

spectral integral representation ReX,e). This is accomplished

by extending the preceding plane wave spectral analysis, developed

m Chapter 4.

One defines

J exp [i k SeX,S)]
c'

dS (5.1)

where (C') is still the integration contour given by Fig.4.1.

The phase SeX,S) will explicitly be defined later. The wavenumber

k in here refers to the bottom medium (k ~ n2ko). Equation (5.1)

must satisfy the boundary conditions at B31 (if it represents the

radiation at B31 interface) or at B12 (if it represents

the radiation at B'2 interface). That is at X = 0 or X = Cl,

respectively (see Fig.2.1).

In this respect, one constructs the Radiation Integral

R(x,e), by tracking the spectrum of a particular and appropriate

species of wave. that radiates by refraction into the corresponding

boundary. and which satisfies that boundary condition.

5.1.2. Radiation Integral at bottom interface B'2

To present the Radiation Integral referred to the bottom

boundary B'2 we consider only one type of wave out of the four,

introduced in Chapter 3; which is characterised by the phase

S~(x,e) gi~en by equation (3.19b). This choice is justified by

the fact that exp[i k SUCX,e)] is a wave which is destined too

be refracted at the bottom medium.

MUltiplying the downward propagating plane waves in the

Intrinsic mode in (5.1), by the transmission coefficient at Bt2
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interface, which is l+exp[i ~(e)];one obtains the Radiation Integral

governing the field in the adjacent bottom medium

R(x,e) = (2 a)-! f {1+exp[i ~(e)]} expIi [-n2 k r cos(e"-a+x)
c' 0

1- - He)2
1 e

+ - f He') de'
2 a a

c

'11' e+--2 a (5.2)

In (5.2), we have omitted terms due to the source point

- (X ,r ) in (3.19b), as was done in the previous Intrinsic modeo 0

construction. We also recall that the incidence angle e becomes

en corresponding to the direction of propagation of the refracted

wave in the adjacent bottom medium. These angles are both inter-

related by Snell's law, Which stipulates that:

(5.3)

The phase change ~(e) at the bott~m boundary B12 is straightaway

given by the Fresnel equation in the case of the single layer

structure, through equation (3.25)t or by Appendix D in the case

of the double layer structure.

Combining (5.2) and (5.3), after expanding the cosine term

in the integrand of (5.2). we obtain after neglecting terms which

vanish as a + 0 :

2 cos ~
2 exp[i k SeX,S)] de (5.4)

with

1.--2 a
~(e') de' '11' e- 2a (2 q-l)

2 2 2 i- sin (x-a) (n2 -n1 cos e) ] (5.5)
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One also recalls that e is the critical angle and is defined asc

(5.6)

5.2. Parametric eigenvalue equation of the Radiation Integral (5.4)

To evaluate (5.4) asymptotically by means of the saddle point

method one ought to reconsider the new eigenvalue equation; by

finding zeroes of the derivative of the phase function in (5.5),

one sets :

as ( S) - 0ae x' q (5.7)

Combining (5.5) and (5.7), yields the new characteristic equation,

which is :

2 r Cl k sin(x-a)
n. sinS cosa
I q q = o (5.8)

One notices the dissimilarity between (5.8) and the original

eigenvalue equation (3.24b) treated in section 3.7 of Chapter 3.

The additional terms are due to the x-dependent quantity in (5.8),

which mathematically accounts for the dependence on depth in the

adjacent bottom medium; and which appears here to behave as a

parameter.

At interface B12, say at X - a, equations (5.8) and (3.24b)

are identical. Hence, they engender the same saddle points. For

at X - a, matching boundary values are necessarily required

between, the construction of the Radiation Integral R(X,S), whose
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eigenvalue equation is given by (5.8); and that of the Intrinsic

Integral I(X,a) whose eigenvalue equation is given by equation

(3.24b). One recalls that I(X,e) describes the field inside the

tapered waveguide, and it is analytically expressed in section 4.t.

A proper substitution of ~(a) in (5.8), by the phase of the

Fresnel's coefficient in the case of the single layer problem, or

by its counterpart expression given by Appendix D in the case of

the double layer problem, leads to their corresponding eigenvalue

equations which respectively engender the saddle points a • Bothq

eigenvalue equations obtained are similar analytically; that is

why, in what follows in this subsection, we shall restrict

attention to that characterising the single layer structure only.

The treatment of that of the double layer structure would be

analogous.

The saddle points eq are then located for each observation

point! defined by the polar coordinates! = (x,r).

In the case of the single layer structure, the parametrically

computed eigenvalue equation (5.8) is depicted in Fig.5.l for

3 successive values of the transverse variable x(x~a) and for the

first mode only. In other words, Fig.S.t shows the physical

effect on the eigenvalue equation (5.8), of moving the observation

point! outside the tapered waveguide and away from the bottom

boundary B12•

Fig.S.la illustrates a plot corresponding to the parameter

x - a (one wedge angle), where the observation point is located

on the bottom interface B12• One notes that such a parametrical

case has already been treated via the eigenvalue equation (3.24b),

whose numerical plotting is illustrated by Fig.2.S in Chapter 2.
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Locating an observation point! at X - 2a or at X = 3a, as

illustrated by Fig.S.lb or Fig.S.lc respectively, has the effect

of shifting up the solutions (saddle points e ) of (5.8),q

particularly those lying beyond the transition region, to a

region near the branch point 9 , which is denoted by the ~ sign inc

figures. For those solutions, which are situated in the guided

wave region. they exhibit a slight positive imaginary component.

In this case (X - 2a or X = 3a), all solutions which are supposed

to lie in the leaky wave region seem to be coinciding with the

branch point a. In other words, choosing a thickness T beyondc
the transition region, will have the effect of bringing all

complex saddle points to coale~ewith e. Such an effect,c
exhibited by Fig.S.lb and Fig.S.lc, can geometrically be explained

by reference to Figs.S.2.

In the guided wave region, as depicted by Fig.S.2a, the

saddle points 9q are within the interval 0 < 9q < sc' Consequently,

all rays inside the tapered waveguide undergo total multiple

reflections at B12 and B31 interfaces. For any observation point !,

located outside the tapered waveguide and within the guided wave

region. there are evanescent waves accommodated by the complex S •
q

propagation constant

B12 interface (as X increases), the transverse
2 2 2 !(n2 -01 cos 9q) , of that evanescent wave

As ! moves away from

becomes more complex and entails a strongly decaying evanescent

field. Hence, one expects the imaginary part of the saddle point

to increase.

In the leaky wave region in contrast, Fig.5.2b shows how

the rays are refracted into medium (n2)' once the branch point 9c
is exceeded bye. In this case, any observation point X outside

q
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the tapered waveguide receives the contribution of 2 distinct

rays impinging at B12 interface, from 2 angles of incidence, 9q1
and eq2• Therefore, 2 saddle points (eq1 and eq2) are required at

a given thickness T and at a given transverse variable x(x>a). Because

one of these is at an incident angle near to e , the correspondingc

ray refracts from the tapered waveguide to the open medium (n2),

with a near grazing refraction angle. As the saddle point is

condensed near the singularity e it is very difficult (if notc

impossible) to numerically assess absolutely the branch cut

contribution. Such an effect, which manifests itself strongly

when the observation point! is located outside the tapered

waveguide (x>a) and beyond the transition region, complicates the

evaluation of the Integral (5.4) by the saddle point method.

5.3. Integrand variation of the Radiation Integral (5.4) along

the real axis

To circumvent those above difficulties, and to achieve

integration of (5.4) systematically. we suggest another method,

already used in the previous chapter, which is to keep the

undeformed original contour (C') and to abandon the saddle point

integration method.

The original contour (C') is given by Fig.4.1 and has a

path coinciding with the real axis. We omit however the two

lower tails because computational results have shown that their

evanescent contributions are negligible compared to the real axis

integration.

We shall in the next subsections, for both single and double

layer structures, show how the real axis integration can further be
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limited to an integration over a restricted interval, namely

'0 < S < I.

5.3.1. Single layer structure

Let us plot the variation of the phase sex,S) of the integrand

in Integral (5.4) along the real axis at a given observation point

x situated on the bottom boundary B12 (X = a). Only the first

lowest mode of the single layer structure is considered. We

recall that for such a structure, ~(e) in (5.4) is given through

equation (3.25).

(a) 9q in the guided wave region

Fig.S.3a illustrates the complex variation of S(X,S)-S(X,6 ),q.
versus the incidence angle e varying on the real axis. The real

saddle point e is located in the guided wave region at k T = 5.q 0

Real {S(X,a)-S(X,a )} has an extremum at the chosen saddle point
q

e , which is denoted by the x S1gn in figures. Its imaginary
q

part is zero for all Real S's lying in the region a < S , where Sc c

is the branch point for the phase SeX,S), and is denoted by the

v sign in figures. This means that Imag {SeX,S)} is constant in

the guided wave region. However when e > S , the imaginary partc
increases in magnitude, then leakage occurs; it is that very

imaginary part of SeX,S) that accounts for the amplitude decay

of the field in the leaky wave region. In contrast, Real {S (X,e)}
decreases towards the constant Real {S(x,Sq)} as 9 tends to Sq'

and increases as S tends to a and beyond.c

Fig.5.3 continued, shows the complex variation of the

integrand of (5.4), when the incidence angle e varies on the real
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axis. Both components exhibit extrema at the location of the

saddle point. They oscillate initially, then decay exponentially
'ITas the incidence angle e approaches 2. This signifies that for

'ITe > 2' the Radiation Integral (5.4) engenders a vanishing field.

In other words, there is no contribution of rays whose incidence
'ITangle is higher than 2. This important statement, justifies and

accounts for the neglect of all types of'subsequent rays in

section 3.5.

(b) e in the leaky wave regionq
Fig.S.3b shows the same phenomena for a saddle point e locatedq

in the leaky wave region atkoT-t.2. We notice that

s(x,e)-s(x,eq), accommodates a shift due to the fact that the

saddle point e· is complex in this leaky wave region. Therefore,q

any variation of e on the real axis, will never coincide with e •
q

Henceforth, s(x,e)-s(x,Sq)' will never fall to zero. This

explains why s(x,e)-s(x,eq) exhibits a shift in its real part.

This shift is more accentuated as e becomes strongly complex ,
q

that is to say~as the observation point X tends towards the apex

(or as T diminishes).

As for the variation of the integrand of (5.4), Fig.5.3b

continued shows that initially it exhibits more rapid

oscillation and then decays exponentially and faster than in

Fig.S.3a continued. Here too, the field engendered by the

Radiation Integral (5.4), vanishes as e tends towards ;.
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5.3.2. Double layer structure

In this case, ~(e) in (5.4) is given by Appendix D. Here

too we position an observation point X on the bottom boundary

In fact, in order to be more rigorous, the Radiation

Integral (5.4) does not apply to the double layer problem, for

reasons which will be explained later on in this chapter. But

as we have voluntarily chosen an observation point X at the

interface B12, it happens that (5.4) and the exact Radiation

Integral of the double layer structure, are identical in form

but with differing Fresnel phase ~(e). In this case, and at

this stage, one can safely use (5.4), provided it is understood

that X • Q.

A similar treatment as in subsection 5.3.1, leads to

the results presented in Figs.5.4, concerning only mode 1 of

the double layer structure.

(a) e in the guided wave region
q

In Fig.S.4a, the saddle point e lies in the guided wave
q

region at k T • 5. The results here are qualitatively similaro

to those in Fig.S.3a. The only difference in this subsection is

that the branch point e' (characterised by the second criticalc

thickness and which is defined in subsection 4.3.3 in Chapter 4)

dominates,and not e (characterised by the first critical thickness).c
The branch point e' is denoted by the 0 sign in figures.c

Real {s(x,e)-S(x,eq)} behaves similarly as in Fig.5.3a. It

falls to zero in here too, at the saddle point e , which byq

definition is real. However unlike in Fig.5.3a. Fig.5.4a shows
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that lmag {s(x,e)-s(x,eq)} remains equal to zero even for e beyond

e. It is only when e exceeds e', that the imaginary part startsc c

to increase. This is due to the fact that the eigenvalue equation

for the double layer structure accommodates real solutions of eq
even beyond e. The solutions e become complex only in the regionc q

beyond e'.c
The integrand variation of (5.4) is illustrated by Fig.S.4a

continued. Both its components exhibit more rapid oscillations

at one side of their respective extremum. They are qualitatively

similar in variation to their counterpart in Fig.S.3a continued.

But here, the decaying envelopes for both components seem to

be faster. Hence, we can deduce that in the guided wave region,

the single layer structure and the double layer structure behave

in a quite similar manner for an observation point placed at B12

and for the same refractive indices of their respective medium.

Consequently, as e tends towards 7 and beyond, the field

magnitude vanishes.

(b) 9q in the coupled wave region

In contrast, in Fig.5.4b, the saddle point eq is located in

the coupled wave region at k T = 1.2.o Hence, even though e is
q

This is duebeyond the critical angle e , it still remains real.c

to the nature of eigenvalue equation governing the double layer

structure. That is why Real {S(X,e)-S(X,e )} falls to zero at e .q q
It is also noticed that both components of {S(X,e)-S(X,e )}

q

increase for e past the branch point e'. Such an increase of thec

imaginary part, represents the leakage taking place between the

uniform film (n2) and the substrate (nO)'
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Finally, Fig.5.4b continued schematises how the integrand

of (5.4) behaves, as e varies along the real axis. Initially,

real and imaginary parts manifest more rapid oscillations than in

the case of the single layer problem, as reported by Fig.5.3b

continued. ~There, as e increases towards 2' they are

characterised by an exponentially vanishing envelope. Consequently,

we have shown that, even for the double layer problem; the field

exhibited for 9 beyond 7 is vanishingly small. Hence, we neglect

all spectral plane waves exhibiting an incident angle higher
~than 2.

5.3.3. Definition of integration contour along the real axis

For both structures we have shown in the previous

subsections that for any location of the saddle point 9 with
q

respect to e it is safe to neglect the field contributionc
~outside the range 0 < e < 2.

Returning to the Radiation Integral (5.4), we shall then

perform it along the real axis and in the interval 0 < e < ~.

In this case, the presence of any branch point or pole (as may

be the case for the double layer problem), will automatically be

taken care of. The convergence of (5.4) is, however, guaranteed

by taking an integration step length much smaller than the

oscillating periods of Figs.5.3. and Figs.5.4. It is also

necessary to maintain the same branch conventions for (9-9 )!
c

and (e-e~)!,defined earlier in the previous chapter.

In as far as we are not using the saddle point method to

calculate (5.4), knowledge of the saddle point e is not necessary.
q

In spite of this, we still represent each observation point
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X = (x,r) by its equivalent notation X = (x,e ).- q

Note that Figs.5.3 and Figs.5.4 have been numerically

carried out for an observation point X at X - a and for the first

mode q = 1 only. Similar qualitative results could have been

obtained for any other parameter.

5.4. Application of the Radiation Integral to the single layer structure

5.4.1. Radiation field in the guided wave region

Let us now concentrate first on Fig.5.5a. It illustrates

the variation of the normalised field modulus in medium (n2),

versus the variable X, for mode 1 of the single layer structure.

Three locations of the observation point! are considered, in

the guided wave region, 6q < 6c' They correspond to the three

distinct normalised thickness in (i), (ii) and (iii) of Fig.5.5a.

Thereby, it is clear that, as 6 approaches 6 (that is to say,q c

as k T'approaches the critical thickness of the corresponding
o

mode), the evanescent field decays less rapidly in the substrate (n2)·

The decay is more strongly evanescent, when! is located far

from 6 , as in (i), than when it is near, as in (iii). This isc

mainly because,in such a region, the waves inside the tapered

waveguide are totally guided. When 6q approaches ec' as is the

case in (iii), energy starts leaking out from the inside of

the tapered waveguide to the medium (n2). As a matter of fact,

this leakage near the transition region, makes the amplitude

of the cross section field inside the tapered waveguide decrease

in the guided wave region.

Of course, the above remarks hold for any higher mode,
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characterised by its own corresponding critical thickness, as

illustrated by Figs.S.5b, S.Sc and S.Sd, corresponding

respectively to mode 2, 3 and 4.

5.4.2. Radiation field in the leaky wave region

In this case, all observation points X are located in the

leaky wave region, such as e > e . In this region, energy is
q c

leaked out from the tapered waveguide to the medium (n2)' Such

a leakage characterises the radiation process taking place at

the bottom interface B12• The light rays then are no longer

totally reflected back into the tapered waveguide, but are

partially transmitted into medium (n2) as refracted waves.

Figs.S.6 show the variation of the normalised modulus of

the radiated field, versus the angular variable X, for the'

four lowest mode of the single layer structure. There too, we

consider three positions of the observation point !, for each

mode, but each one is located in the leaky wave region.

Dealing first with mode 1, as illustrated "by Fig.S.6a, it

is seen in each plotting that the field oscillates to a maximum,

then decays exponentially because of the continuous refraction

taking place in medium (n2). Also, in each diagram, the locus

engendered by each maximum of the radiated field describes a

caustic whose gradient with respect to the bottom interface B12'

corresponding to X = a, represents the directionality of the

beam of the radiation pattern. It is the existence of this

caustic that causes the field (in each diagram of Fig.S.6a)

to oscillate in one part of the cross section pattern, and decay

exponentially in the other. We also notice that the amplitude
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of the field maximum becomes smaller as the thickness k To
diminishes from one diagram of Fig.5.6a to another. This

emphasises the fact that as e moves in the leaky wave region,
q

away from ec and towards I' the field tends to vanish. The same

remarks apply to any higher mode as presented by Figs .5.6b, 5.6c

and 5.6d, respectively illustrating mode 2, 3 and 4.

However, spurious numerical discrepancies appear on some

diagrams such as in Fig.5.6d, for koT = 9. There, the field

should be continuous for X very near to a = 0.027 rds. It is

believed that these are small numerical errors due to the neglect

of terms having the same order of magnitude as the wedge angle

a in the analysis.

, The computer program elaborated for implementing (5.4) is

given by Appendix F.

5.5. Radiation Integral for the double layer structure

As far as the double layer structure is concerned, this

section deals with the field distribution in the uniform film (n2)

only, which is confined by the constant thickness d (see Fig.5.8).

It is actually the existence of that limited thickness d which

causes some limitations in the model presented earlier for the

construction of the Radiation Integral R(X,e).
For observation point X located in the highly guided wave

region, where e < e , we can permit equation (5.4) to be usedq c

in order to describe the radiation mechanism taking place in the

uniform film (n2)' In this case, all rays inside the tapered

waveguide are totally reflected at interface B12, In this

sense only, the expected evanescent field in the uniform film (n2)
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would not react back from the boundary B20 into the boundary B12,

at least as long as a < a (see Fig.5.8). But, as the observationq c

point goes beyond the transition region (as T diminishes beyond

the critical thickness corresponding to each mode) the Radiation

Integral (5.4) can no longer be used to describe the radiation

process taking place in the coupled wave region. The reason for

this is that when coupling from the tapered waveguide to the

uniform film (n2) begins to manifest itself, the rays in the

latter are reflected from B20• These rays couple back from the

uniform film (n2) to the tapered waveguide and interfere with

the already existing rays inside the tapered waveguide. One is

then required to construct another model, in order to describe

the coupling mechanism occurring in the uniform film (n2)' for

an observation point located in the coupled wave region,

which accounts for the above phenomenon.

5.5.1. Radiation field in the guided wave region

Locating an observation point such as 0 < 9q < ac' one can

safely use equation (5.4) to predict the field in the uniform

film (n2). We substitute in (5.4), the expression of ~(9) given

by Appendix D. We also bear in mind that the integration in

(5.4) is along the real axis, 0 < e < I. In this case, the

existence of any pole through ~(9), will automatically be taken

care of. To this purpose, Appendix F givesabrief presentation

of the computer program used for such an implementation. Figs.5.7

represent the variation of the normalised field modulus, as given

by (5.4), versus the cross variable X, for a few of the lowest

mode of the double layer structure. Thereby, in each figure, we
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consider 3 distinct normalised thicknesses k T, corresponding too

3 saddle points a , situated in the guided wave region, such asq

o < aq < ac'
Let us consider Fig.5.7a first. It describes the normalised

cross section field behaviour of mode 1, versus the cross variable

x, in the un if o'rm film (n2). In each diagram, the field exhibits an

evanescent distribution, whose decay rate becomes smaller as k To
approaches the first critical thickness (that is to say, from (i)

to (iii) in the ·figure). For an observation point near the first

critical thickness, as is the case in (iii), the slowest evanescent

field is a consequence of the coupling beginning to take place,

between the tapered waveguide and the uniform film (n2).

A similar reasoning applies to higher modes, as illustrated

by Figs.5.7b, 5.7c and 5.7d, respectively for mode 2, 3 and 4.

5.5.2. Radiation Integral in the coupled wave region

(a) Definition

For an observation point located in the coupled wave region,

a > a , one cannot use equation (5.4) to simulate the radiationq c

mechanism in the uniform film (n2)' for reasons stated earlier in

this section. To circumvent this, one must find another model to

comply with the requirement. Fig.5.8 illustrates the mechanism,

when a downgoing wave inside the tapered waveguide, is refracted

into a wave AZ' inside the uniform film (n2)' The other upgoing
,

wave A2 results from the wave A2, after being reflected at

interface B20 and also after travelling twice the optical path

(2d), inside the film (n 2).

Continuity of fields at interface B12, stipulates that
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~ + A2 ..1 + exp [i He)] (S.9a)

where ~(9) is the phase of the reflection coefficient introduced
at that interface; and which is given by Appendix D. Expression
(S.9a) represents the composite transmitted wave in the uniform
film (nZ·)' One can also deduce geometrically that :

,A ..A2 exp [i y ( a ") ]
2

(5. 9b)

where

y(a") - ~20(e") + 2 ko d nz sine" (5.9c)

One recalls Snell's law

(5.9d)

$ (a") is the phase of the Fresnell reflection coefficient20
introduced at interface B20, which is given by :

~ (a") =20
2 2 2 ~

2 Atan {i (nO-n2 cos e") }
z 2 2 ~(n -n cos e ")2 2

(5.ge)

Combining expressions (5.9) gives

, 1+ex:e[i $(a)]A2 ..l+exp[i y(6) ] exp [i y (9)] (5.10a)

and

A :II
1+ex:e[i He) ]

(5. lOb)2 1+exp[i y (6)]

bearing in mind that
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{
i (n 2-0 2 cos2e)!} 2 2 2!yea) - 2 Atan 0 1 + 2 k d (n2 -01 cos e)

2 2 2! 0
(n2-n1 cos e) (S.10c)

For simplicity, we shall assume that the substrate (nO) is a

perfectly reflecting medium, because of the relatively large

index difference between n2 and nO. That is to say, ~20(a) = -~
In this case, equation (S.10c) becomes

(S.10d)

We can finally construct the Radiation Integral, which

accounts for the contributions of the upgoing ~ and for that of

the downgoing wave A2, in the film (n2), in the same manner as

done in section 5.1. The result is

, u 'f A2 exp[i k Se (x,e)] de +
e'

(2 a)-~ f A2 exp [i k SU (x,e)] de
e' 0

(S.lla)

The contour (e') in (S.11a) is g1ven by Fig.4.1. But, as we have

proved in earlier sections, this contour can safely be taken as

the real axis and confined in the interval 0 < e < I' The phase

S~(x,e) in (S.11a) is given by equation (S.19b), with the amendment

that the incident angle e becomes e"; the wave number

k = n2 ko' refers·to the film (n2)' u'As for the phase S (X,e) ine
(5.11a) , it characterises the upgoing wave A;

which suffers reflection less than the wave
in the film (n2),

exp[i k SU(X,e)] ate

interface B12• In this case, one defines:

(S.llb)

where, S~(x,e) is given by equation (3.19a) with the same
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uabove remarks as those concerning So(X,e).
Bearing in mind the above remarks, recalling (3.19a) and

(3.19b), with the omission of the source term, and inserting (5.10)
into (5.11), one achieves the Radiation Integral which describes
the coupling taking place in the uniform film (n2) and which is :

2 2 2! -o»~ He) r= r sin(ex-x) (n2 -n1 co sa) +--rl}
R( x. e) • (2 ex)- f 2 cos -2 - "--___::.__-----.(,_.;;..)-....;.._----~-

c ' cos[~]2

x exp{ i (-ko n2 r cosS cos (x-<x) + 21. !
c

He') de' +!_! (1-2 q)l}2 ex

(5.12)

We recall that y(e) and ~(e) are respectively stated in equation
(s.10d) and Appendix D.

An important remark ought to be made at this point, which is
that (5.12) matches perfectly the Intrinsic Integral (4.4)
corresponding to the double layer structure at boundary B12
(at X a ex). This is to satisfy the boundary condition between the
field inside the tapered waveguide and that in the uniform film
(nz)at interface B12, for the structure. In addition, another
important observation is that, for an observation point X
situated on interface Bt2 (X - ex) one can easily check that (5.12)
yields the original Radiation Integral (5.4). Hence, this
justifies the use of (5.4) earlier in subsection 5.3.2.

(b) Change from polar to Cartesian coordinates
Up until now, the cross section variable X (in radians),
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represents one of the polar coordinates of any observation point

! = (x.r) with respect to interface B31• In order to be consistent

with the physical geometry of the double layer geometry, particularly

in the coupled wave region, we shall introduce a slight change of

variable as shown in Fig.5.9. Thereby, the polar coordinate X
(referred to from top interface B31). becomes a Cartesian

coordinate x (referred to from bottom interface B12). Consequently,

in order to describe the field inside the film (n2), the cross

variable x (which also represents a depth) must be confined in

the interval :

o < x < d (5.13a)

In terms of normalised variable, equation (5.13a) becomes

o < k x < k do 0
(5. 13b)

From Fig.5.9. one can deduce the following change of variables:

k xo..--k ro
(5.14a)

k T
cos (a-x) ..:-"k-_o--r tanao

(5.14b)

where the normalised range k r is given byo

(5.14c)

Inserting (5.14) into (5.12). one obtains the final Radiation

Integral describing the radiation mechanism for the double layer

problem in the coupled wave region. which is :
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. 2 2 2!_! ~(a) {Sln[(d-X) ko (n2 -n1 cos a) 1}
R(Xta) '"'(2 a) ! cos-y- 2 2 2 ~c ' sin[ko d.(n2 -n1 cos e) ]

{ n1 cosa k T e e (1-2 g)]} de0 +_!_!Ha') de' + 1fexp i [ tanCl 2 a a 2 Cl
c

(5.15)

The integral (5.15) exhibits poles located at

2 2 2!ko d (n2 -n1 cos e) ..1f, 21ft ••• (5.16)

As long as (5.15) is performed on the real axis in the range

o < e < It the contribution of all poles including those due to

~(e) which is given by AppendixD, will automatically be taken

into account. However, during the integration process in the

computer program (whose flow chart is presented in Appendix F),
1fe is scanned from zero to 2. Hence, one expects e to coincide with

the critical angle ac' at which the ratio of sines in (5.15) is

undeterminate. This will cause (5.15) to tend to infinity as a
approaches a. Such a computational difficulty is alleviated byc
adding an extra routine to the main program which consists of

setting the limit of the ratio

{Sin[(d-X> ~o (n22-n12 cos
2s>I]}

sin[kc d (n2
2-n12 cos2e)!]

d-x..-
d

(5.17)

by using L'~opital's theorem.

(c) Radiation field in the coupled wave region

In this region, all observation points! are chosen so

that e > e. Consequently, the normalised thickness k T must be
q c 0

smaller than the first critical thickness corresponding to each mode.
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Unlike in the guided wave region, the choice of d here is

crucial, for it allows the selection of the modes which are to be

coupled and guided along the uniform film (n2)' The selection of

d and that of the mode q to couple into the uniform film (n2)

are inter-related via the characteristic equation appropriate to

the film (n2" which is approximately

2 ko d n2 sine" + ~21(e") + ~20(e") - 2 11' q ..0 (5.18)

where
i n1 sine

~ (e") = 2 Atan sine"21 n2

and
i nO sine'

~ (eIf) ...2 Atan20 n2 sine"

(S.19a)

(5.19b)

Snell's law states

n2 case" ..n1 cose ..no case' (S.19c)

The configuration of each angle in (5.19) is given by Fig.5.8.

By virtue of (5.15), Figs.S.l0 represent the cross variation

of the normalised field modulus, versus the normalised depth k xo
for a few modes of the double layer structure and for their

corresponding value of d.

Let us concentrate first on mode 1, as illustrated by

Fig.S.l0a. In each diagram, the saddle point eq is restricted in

the range Sq > Sc corresponding to different normalised thickness

kaT in (i), (ii), and (iii). The diagrams of Fig.5.10a clearly

show how the mode propagates and how it is trapped from (i) to (iii).

The field behaviour is Adiabatic and adapts smoothly to the presence
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of the uniform film (n2); which is confined within the range

o < k x < k d. The amplitude of the mode remains nearly constanto 0

as it is bound along the film (nZ)' emphasising the guiding

mechanism.

Note also that at the boundary B20, that is to say at

k x • k d, the field vanishes to zero. This is of no surprise,o 0

for we have assumed earlier that the substrate (nO) is perfectly

reflecting.

Some numerical errors however, like those exhibited in

Fig.S.10a arise. There, the field should increase continuously

at the top interface (k x • 0). These small errors are due too
the neglect of all terms of the same magnitude as the wedge

angle a in the analysis.

Similar conclusions hold for other higher modes as presented

by Figs.S.10b and S.lOc, corresponding respectively to mode 2 and 3.

In this sense, we have been able to obtain (at least for the

few lowest modes) an assessment of the mode coupling occurring

within the coupled wave region, for the double layer case. For

higher order modes, one ought to increase d; undoubtedly, mode

conversion will manifest itself again.
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CHAPTER SIX

COMPARISON OF SOME RESULTS WITH OTHER PAPERS

6.1. Introduction

In order to assess and guarantee the accuracy of the method

based on the spectral analysis we must compare some of our

computed results with other independent calculations performed via

different techniques.

To our knowledge , in connection with integrated optics

applications there are almost no reported theoretical results

on either of the structures dealt with in this thesis; except

Bassi et al [18], who also use the coupled mode theory, just like

Evans [20], to analyse a monomode taper. Besides, for the single

layer structure in connection with underwater acoustic

propagation in shallow ocean water some interesting papers were

published by Kamel and Felsen [22], who make use of a numerical

Green's function; and by Pierce [21] and Jensen and Kuperman [24],

who explore the concept of the parabolic approximation. They

analyse the propagation of waves in shallow ocean water, on a

physical model similar to that of the single layer structure. The

wedge angle a (equal to 0.027 rds) in their problem, is taken

the sam~ as in ours. Therefore, their problems and ours are

mathematically similar.

The analytical model applied to the single layer structure

in the previous chapters, and which is compatible with integrated

optics, will be applied to the same structure, but for under-

water acoustic application, in this chapter. To this purpose,
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we must then scale our mathematical model with respect to the

free-space wave number k , so as to be able to use the sameo

parameters, the same geometrical dimensions, under the same

reference system as other papers.

6.2. Coordinate system appropriate to underwater acoustic applications

We shall in this section define the coordinate system

appropriate to underwater acoustic applications. To achieve this,

we introduce a change of coordinates which is illustrated in

Fig.6.l. Thereby, each observation point! = (x,r) is instead

denoted by its Cartesian coordinates (€,~); where € is the

range in metres, referred to a coordinate axis passing by an

arbitrary source X ,and~, also in metres, characterises the depth
-0

with respect to the bottom interface B12•

We obtain from Fig.6.l the change of coordinates given by

the following equations :

2 2 200 2 2r .. ~ + (-- - c) - Ttana (6.1a)

sin(x-a) ..!:!.
·r

(6.1b)

(6.1c)

The arbitrary source X , corresponding to e: = 0, is located at a
-0

thickness equal to 200 m in the tapered waveguide, according to the

papers referred to in section 6.1.

We also need to normalise the refractive indices in our

model in accordance with the papers as follows

k n... 2 'IT
o J

f j=1,2,3 (6.2)v·J
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where nj are the refractive indices of each medium (nj); Vj is

the velocity of the acoustic waves in the same medium (n.), and
J

f represents the excitation frequency of waves.

For numerical applications to underwater acoustic, f = 25 Hz,

v1 • 1500 mis, v2 • 1701.4 m/s and v3 = 330 mis, as in [21], [22]

and [24].

According to the normalisation of the refractive indices

in equation (6.2), the geometrical variables such as T, r, e and ~

may be scaled in metres. That ·is why such a change of reference

system makes the model compatible with underwater acoustic

applications.

Besides this change of variables introduced in the computer

program (whose flow chart is presented in Appendix F) one needs

to incorporate propagation loss in medium (n2) as in the

references. Such a loss can be simulated in our model, by adding

a small negative imaginary part to the refractive index (n2)

which is given by the following attenuation :

20 log[~ Imag(ko n2)] = 0.5 dB/wavelength (6.3)

where ~ is the wavelength of the wave in the relevant medium (n2)·

For j • 2 only, equation (6.3) gives the imaginary part of (n2).

Its real part is already given by equation (6.2).

6.3. Co-ordinate system appropriate to integrated optics applications

As far as integrated optics applications are concerned, the

reference system used so far consists of normalising with respect

to ko all geometrical variables such as T, rand x.

In this case, the refractive indices remain unnormalised.

We shall remain with the same refractive indices as in previous



99

chapters, that is to
n

that the ratios (~)n2

say, n1 = 2, n2 • 1.76 and n3 = 1. Notice
v

and (_l) have been chosen the same.v '1
The fact of normalising all geometrical variables with

respect to k makes the model universally applicable to anyo

frequency in integrated optics. We recall that the reference

system appropriate to integrated optics applications could be

taken as the one illustrated by Fig.5.9 whereby each observation

point! = (x,r) is characterised by its normalised thickness k T,o

and by the cross variable X (in rds). The latter polar co-ordinate

X can further be replaced by a normalised depth k x, as one recallso

from Fig.5.9 :
k T

(k r)2 _ (k x)2 + (_0_)2
o 0 t.ano (6.4a)

sin (x-a)
k xoa:_
k ro

(6.4b)

k Tocos (x-a) - ~k---r--ta-n-~-
o

(6.4c)

6.4. Total field behaviour inside and outside the tapered waveguide

In this section, we shall endeavour to present some computed

results for the single layer structure which describe the field

variation inside and outside the tapered waveguide at the same

time.

To this end, we consider Figs.6.2, 6.3 and 6.4, which

illustrate for modes 1, 2 and 3 respectively the behaviour of the

normalised field modulus versus the normalised depth k x (or
o

versus the depth ~ in metres) as the observation point! moves

along the, tapered waveguide. In each of the figures, the upper
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horizontal scaling of the normalised depth kox is appropriate to

integrated optics applications, whereas the lower horizontal

scaling of the depth ~ (in metres) is appropriate to underwater

acoustic applications.

Also, in each figure, the observation point X is located by

the normalised thickness k T for integrated optics applications,o

whereas for underwater acoustics it is referred to by the

range E (in metres).

The variables kaT and E are inter-related by a simple

expression which can be found by reference to Fig.6.1. There,

knowing the position E, one can geometrically work out the value

of T; then (after normalising it with respect to k) one obtainso

the equation which relates kaT to E, which is

k T - 55 (O.2-a E)o (6.5)

Of course, equation (6.5) is only valid for a point source !A'
situated at E - 0 as such is Fig.6.1. This is according to the

{21,22,24]
referenced papersv. Also, to use (6.5) one must express E in km

and a in radians.

The transition region of each mode is characte~ised in

each plot by a critical thickness in integrated optics;

in underwater acoustics it is featured by a cut-off range.

As far as the field moduli are concerned, they all have

been normalised with respect to a constant. This constant

depends on each mode and it is selected in such a manner as to

have a largest field modulus equal to unity for each plotting

of Figs.6.2a, 6.3a and 6.4a, corresponding to mode 1, 2 and 3

respectively.
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Fig.6.2a locates an observation point X at k T = 2.83o

(€ • 5500 m) with respect to the normalised critical thickness

t.75 (cut-off = 6224 m) of mode t. That is to say, ! belongs to

a guided wave region. For negative depth, the field magnitude

exhibited corresponds to the inside of the tapered waveguide.

It oscillates sinusoidally and has an Adiabatic behaviour. For

positive depth, the field magnitude describes the behaviour of the

mode outside the tapered waveguide, which is the open medium (n2).

It has an exponentially decaying distribution, for the observation

point! is located in the guided wave region. There is no

leakage occurring yet. One notices the perfect continuity of the

field and its derivative at the interface Bt3 (zero depth).

Fig.6.2b corresponds to an observation point situated near

the transition region at k T • 2.09 (t • 6000 m). For negativeo
depth, the field still behaves Adiabatically, as it is pushed

towards the interface B12 (zero depth). For positive depth, the

field remains evanescent in nature, but decays less rapidly than

in Fig.6.2a. It is at this stage that leakage will begin to occur.

A further move of the observation point X beyond the

transition region, exhibits a field distribution given by Fig.6.2c ,
where X is located in the leaky wave region at k T • 1.34o

(t • 6500 m). For negative depth, we notice that the amplitude

of the field diminishes as it is pushed towards the interface B12

(zero depth). Thus, such a field inside the tapered waveguide is

no more Adiabatic in behaviour. because of the leakage taking

place from the tapered waveguide to its adjacent bottom medium (n2).

In contrast, for positive depth, the field oscillates to a maximum

then decays exponentially due to the existence of a caustic in
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Observation point at k T = 4.31 (s = 4500 m). Mode 2.
o

1.0 ~------------------------------------------------------~

.1

0
-12 -6 0 6 12 18 24 30 36 42

Normalised depth (k x)
0

-216 -108 0 108 216 324 432 540 648 756
Depth in meters (u )

.9

.S3

.7

.6
en
:::l.....

.5 ::l
'"0
0
5
'"0.....

.4 Q).....
~

.3

.2

Ji'ig.6.3c



Observation point at k T = 3.57 (E = 5000 m). Mode 2.o
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Observation point at k T = 9.51 (E = 1000 m). Mode 3.
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medium (n2). This distribution obtained in medium (n2),

characterises the radiation mechanism of the structure.

Fig.6.2d locates an observation point! also in the leaky

wave region. but further down towards the apex at k T • 0.6o

(£ • 7000 m). For negative depth, the field is nearly

vanishing. For positive depth, the radiated field pattern behaves

as in Fig.6.2c but with 'a smaller magnitude. Also, the maximum

of the cross section field is shifted away from the boundary B12

(zero depth). This is a consequence of the existence of the

caustic in medium (n2). One expects,then, the radiation pattern

to vanish as X moves towards the apex.

Similar reasoning holds for mode 2 and mode 3, represented

by Figs.6.3 and 6.4 respectively.

However, one may notice in Figs.6.2c, 6.2d, 6.3c, 6.3d, 6.4c and

6.4d, that the field at kox • -koT (Top interface B31) is not

zero, as it should be because we have assumed B31 interface

perfectly reflecting. This is due to the fact that terms

having the same order of magnitude as the wedge angle a are

neglected in the analysis.

6.5. Contours of constant amplitude patterns

In this section, we use the same results as in section 6.4.

but we shall reconsider, for each mode, and for each figure

presented earlier in section 6.4; the field variation which

corresponds only to positive depth. In addition to those

already computed results, one can represent the cross section

variation of the normalised field modulus (this time in dB) as

a contour plot of constant amplitude, as shown in Figs.6.S, 6.6
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and 6.7for mode 1, 2 and 3 respectively.

Here too we use an upper horizontal scaling and a left

vertical scaling, appropriate to integrated optics applications,

whereas the lower horizontal scaling and the right vertical

scaling are appropriate to underwater acoustic applications.

By way of emphasising the main features in Figs.6.S, 6.6

and 6.7 we have displayed contour levels between -2.7 and

-4.9 dB for mode 1; between -3.4 and -7.4 dB for mode 2; and

between +1.3 and -5.7 dB for mode 3. Thus, the region inside

the tapered waveguide,which is uncontoured, represents a field

magnitude higher than -2.7 dB for mode 1, higher than -3.4 dB

for mode 2, and higher than +1.3 dB for mode 3. As for the

uncontoured region in medium (n2), it indicates a field magnitude

lower than -4.9 dB for mode 1, lower than -7.4 dB for mode 2

and lower than -5.7 dB for mode 3.

In references [21], [22] and [24], unlike in our theory,

their fields have been constructed with reference to a source X ;
-0

whereas our fields are constructed from source-free Intrinsic

and Radiation spectral Integrals. Therefore, the field magnitudes

of each pattern in Figs.6.S, 6.6 and 6.7, do not contain reference

to the source. In order to account for that, a constant (in dB)

could be added to all contours illustrated by Figs.6.S 6.6 and 6.7.

Comparing the results of Figs.6.5, 6.6 and 6.7 (with their

appropriate scaling) to Kamel and Fe1sen's [22] and Jensen and

Kuperman's [24] good agreement is obtained. The prediction of

directionality for the 3 modes (though one could obtain it for

any higher mode) is in accord with the referenced papers. It is

believed that the most prominent feature which enables us to
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compare quantitatively our results of Figs.6.S, 6.6 and 6.7, with the

earlier papers is the beam directionality~defined as the 'average'

gradient of the direction of the beam. The word 'average' here is

to emphasise the fact that all 3 modes show a beam directionality

bending away from the tapered waveguide for observation points

approaching the apex, in accordance with [24]. With guidance from

reference [24], one derives a beam direction. of 16 degrees for

each mode. This value agrees well with the prediction from.

Figs.6.S, 6.6 and 6.7.

6.6. Discussion

The numerical values of the refractive indices n1 and n2,

may not be exactly suitable to Integrated optics devices, but

choice is mainly justified in order to obtain a similar
n
1

v2between -- and --, and to permit direct comparison of ourn2 v1
model for underwater acoustics. That is why it is necessary to

their

ratio

report [38] similar results to those illustrated in section 6.4

corresponding to the single layer case but for a structure

more intended to be typical of Integrated optics devices. Such

reported results [38] we hope will constitute a basic standard

for further research to develop on the single layer problem in

Integrated optics.
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CHAPTER SEVEN

CONCLUSION

7.1. Summary of results

The object of this thesis was to develop reliable methods of

evaluating, describing and analysing the tapered waveguide. which

is considered as the main body for both structures in connection

with integrated optics applications.

Five chapters were devoted to this end. In chapter 2, a

conventional method was used. It mainly postulates the field

distributions in each region of each type of structure.

By demanding appropriate boundary conditions at each

interface, characteristic eigenvalue equations have been deduced.

They provide eigenvalue solutions 1n terms of incident angles

(saddle point a ), or in terms of normalised propagation constants
q

All solutions correspond to different arbitrary thickness of

the tapered waveguide. In the case of the single layer problem,

solutions are real only in the guided wave region; in the

leaky wave region, they manifest an imaginary part which accounts

for the radiation loss. In the double layer case,

solutions are real in the coupled wave region as well as in the

guided wave region.

Chapter 3, describes an alternative method for obtaining

the field distribution in terms of a Green's function, inside

the tapered waveguide only. For that purpose, a hybrid ray-mode

concept was formulated, subject to asymptotic considerations
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Which have been employed to clarify the mechanism of Adiabatic

mode propagation, from its trapped to its radiating regime.

Ignoring coupling between different Adiabatic modes, the

field spectrum obtained contains all the spectral information

(continuous and discrete) for propagation along the tapered

waveguide from an arbitrary source point X to an observation
-0

point X. The assumption just cited is accommodated by the fact

that mode coupling is unimportant for sufficiently weak wedge

angle a, which is the case here. In regions where the Adiabatic

mode propagates, one obtains agreement with the Adiabatic mode

theory. The characteristic eigenvalue equations established by

the spectral hybrid ray-mode analysis agree with those found by

the conventional method of Chapter 2.

Chapter 4 was devoted to a concept of Intrinsic field;

which satisfies the boundary conditions and describes systematically

the field distribution inside the tapered waveguide, before and

after the transition region. Such an Intrinsic formalism is

defined via a plane wave spectral Integral, independent of any

source configuration exciting it.

The field obtained has a local mode behaviour and it was

achieved from an initial ray formulation by constructing a

uniformally valid Integral representation for the field excited

along and inside the tapered,waveguide. Identification for any

mode in the guided wave region, between the Intrinsic and

Adiabatic field which was introduced in Chapter 3, permits us

to extend the Intrinsic field concept beyond the transition

region, when the Adiabatic mode theory fails. In that case, we

have been able to explore the characteristics of local modes
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even in regions where the conventional Adiabatic mode theory is

not valid. Thus, the Intrinsic Integral concept is simply a

uniformisation of the Adiabatic concept. For that, only suitable

contours of integrations need be computationally sought. It turns

out that in regions immune from any singularity, the Integral can

be approximated asymptotically by the saddle point method. In

this case, one need only deform the original contour of integration

into a contour of steepest descent. Consequently, numerical

evaluation of the Integral requires the exact knowledge of the

computed steepest descent path.

However, in regions beyond the singularity, difficulties due to

branch cut contribution are anticipated. For both structures, we

have been able to circumvent those difficulties. The trick was to

keep the original undeformed contour of integration and accomplish

calculation of all spectral Integrals through integration along

the real axis, more precisely between 6 - 0 and 6 = ;. The spectral

Integrals, once formulated and calculated, describe perfectly

the field behaviour for any mode of both structures and in both

regions with respect to the singularity.

As a result, the Intrinsic Integral,which itself is a plane

wave representation of the modes, can be obtained for any general

range-dependent environment other than the simple tapered waveguide,

just by appropriate choice of reference system.

In this way, the singularity of the Adiabatic mode theory

can be alleviated uniformly and systematically for any type of

non-separable problem.

Chapter 5 also describes a Radiation Lntegral, which satisfies

the boundary conditions and matches the Intrinsic Integral at the
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bottom interface (B12) of the tapered waveguide. Such a mathematical

model was mainly introduced in order to analyse the field

behaviour outside the tapered waveguide for observation points

located before and after the transition region as well as across

the structures.

In this sense, one has been able to present for any mode

in integrated optics the field behaviour in medium (n2) and in

the uniform film (n2). The former describes the leakage mechanism;

whereas the latter describes the coupling transfer, respectively,

for the single layer structure and the double layer structure.

Chapter 6, was mainly devoted to two purposes. On the one

hand, it sums-up some computational results in connection with the

single layer problem only, under two different scalings. One

scaling is appropriate to integrated optics, the other is

appropriate to underwater acoustic applications.

On the other hand, it compares these results appropriate to

underwater acoustics with other referenced papers in order to

lend confidence in the validity of the spectral analysis developed

for small wedge angle a. This is achieved by numerical evaluation

of the radiated field in medium (n2>' corresponding to positive

depth only. The comparison of its cross section depth with the

results obtained independently by the Parabolic equation method

[21,24] and by the Green's function concept [22] have confirmed its

validity in the guided wave region as well as in the leaky wave

region for the same characteristic parameters.

This study clearly demonstrates the power of the spectral

analysis method in handling propagaticn, not only restricted to

the tapered waveguide in integrated optics but also to any type
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of range dependent environment, such as underwater acoustic

propagation, tropospheric ducts etc.

In this sense, the accuracy of the method

increases wi~h decreasing wedge engle o.

Finally, we have been able to fully predict the mode

inherently

behaviour of tapered structures.'particularly in the integrated

optics domain, by implementing the numerical simulation of the

model based on the spectral analysis.

To this purpose. Appendix F elaborates a brief flow chart

of the computer program developed for the implementation of such

spectral analysis.

We thus hope that these predictions will form basic

material in terms of a standard model, for further work to be

carried out, in connection with any range-dependent environment.

As for the choice of the refractive indices, in

connection with the single layer structure, they can be

arbitrary as long as they are subject to the practicality of the

structure and they satisfy the inequality given by (2.1).

In connection with the double layer structure, its choice

is very relevant particularly when investigating the field

behaviour outside the tapered waveguide and in the coupled wave

region. Typical index differences should be in the range between

0.01 and 0.10, provided that (2.1) is met.

7.2.Suggestions and Further Work

The work presented in this thesis provides an initial

investigation into the tapered waveguide also known as the tapered

coupler. More work needs to be done to establish its full
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significance as well as the limitation of the generalised spectral

analysis.

One of the most important limitations of the model is due to

the fact that the range variable should not extend past the apex

of the tapered waveguide. In this sense, the location of any

observation point across each structure is perfectly determined~

whereas for observation points beyond the apex, it is physically

impossible to envisage because of the analysis in the model.

Also as T approaches zero, diffraction phenomena might be anticipated.

Such an effect could be simulated by investigating a diffraction

integral, which could be appended to the model in order to

account for the diffraction occurring at the apex. However, this

effect can safely be neglected for weak wedge angle and for

ob-se rva tLon points quite distant from the apex.

In addition one should explore to what extent the spectral

Integral accommodates the propagation when the source is located

beyond the cut-off region for any desired mode. Furthermore, if

the source location is in a mode cut-off region, a different

asymptotic analysis is required, where in here it is assumed that

the source point and the transition region are far distant.

One could expand the work and investigate the propagation for

curved bottom interfaces of the tapered waveguide. Such a complication

might lead to a three-dimensional problem.

Also, propagation in inhomogeneous media should be tackled, a

more .complicated problem which involves mode coupling phenomena.

Besides, particularly in the double layer case, one ought to

investigate more thoroughly the coupling mechanism in regions

beyond the singularity e •c
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APPENDIX A

1. Poisson-sum-formulae

Consider a function G(t), continuous and bounded in the

interval 0 < t < 1. Then, the theory of Fourier series [33]

gives :
+co 1

G(O) + G(1) = 2 L f G(t) exp[-i 2 ~ q t] dt
q=-co 0

(A. t)

The series in (A.1) is convergent; summing over the integer value of

m, one gets the Poisson-sum-formulae :

M ~ M
2 L G(m)" G(l) + G(M) + 2 L f G(m) exp[-i 2 'Il"q m] dm (A.2)

m=t q=-co 1

Using equation (3.7) which gives the mapping between m and the

incident angle 9, (A.2) becomes :

M
I
m""1

G(m) 1... -2
+co

[G(eo)+G(eM)] + L
q=-co

9
fM G(e)
eo

deexp[-i 2 ~ q m] ~

(A.3)

eo and eM correspond to the first (m = 1) and the maximum (m = M)

reflections respectively.

Neglecting the end points of the integral (A.3) is valid,

for as long as M tends to infinity.

2. Euler Mac-Laurin formulae

Recalling (A.1), the Euler Mac-Laurin formula, which transforms

a discrete sum into a continuous integral is derived as :
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M 1 M

L G(m) ==- [G(1)+Gpn] + J G(m) dm+Error
m==l 2 1

Where
+co M

Error = 2 r f G (m)cos (2:rr.q ,m)dm
q==-<XI1

(A.4)

(A.5)

As for the case one is concerned with, G = ~(e) is the phase

change introduced at the bottom interface B12 of the tapered

waveguide. The Error term in (A.4), which is usually [35] expressed

in terms of the derivative of G, is neglected as (l is small, in

comparison with other dominant terms [23].

Another justification of the neglect of the Error term in

(A.5), could be explained by using the Riemann-Lebesgue theorem [33].

The factor 211'qm,which depends on (l according to equation (3.7),

becomes infinite as (l is small. This, in addition to- the fact that

M tends to infinity, states the conditions which require that the

integral in (A.5) vanishes.
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APPENDIX B

This appendix works out the double integrals of equations (3.18)

in a region where the two saddle points Sand S defined by (3.22)oq q

and (3.23) respectively, are far from the singularity S. In otherc
words, this analysis is limited to an observation point! located

in the guided wave region. Therefore, evaluation of (3.18) is

amenable to the application of the saddle point method [36].
We concentrate first on the double integral (3.18a); its

corresponding phase function is given by (3.20a).

The two saddle points are given by recalling (3.22) and (3.23)
as

aso
(a,a ),. 0oq (B. 1)

as
(a .e )= 0

q 0 (B.2)

By expanding the phase SU(a,S ) to_ e 0
second order in a and a, abouto

Sand S respectively, and also using (B.l) and (B.2), equationoq q

(3.18a) becomes, after neglecting its end-points as M tends to

infinity :

gU(X,x ) - w exp[i k sU(e ,e)] A(x,e ) A(x,e )
e - -0 e oq q q 0 oq (B.3)

A similar treatment of other species of waves in equations (3.18)
gives :

gU(X,X ) - w exp[i k sUes ,a] A(X,S ) A(x,a )o - -0 0 oq q q 0 oq (B.4)
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gd(X,X ) = rr exp[i k sd(a ,a)] A(x,a ) A(x,a )e - ~ e oq q q 0 oq (B.S)

gd(X,X) = rr exp[i k sdo(a ,9)] A(x,a ) A(x,9 )o - -0 oq q q 0 oq (B.6)

Where the coefficients A(X,9 ) and A(X ,9 ) are defined as followsq 0 oq

A(X,9 ) - {r Q k cos9
q q

1+-
2

-!
!t (9 )}ae q

(B.7a)

1A(X,9 ) = {r .Q k'cos9 +-2o oq 0 oq !t (9 )}-!
ae oqo

(B. 7b)
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APPENDIX C

This appendix evaluates the double integrals of equations (3.18),

in a region near and beyond the singularity e •c
We shall here too, concentrate only on the double integrals

(3.18a), whose phase function is also defined in (3.20a). This

phase function is characterised by the general behaviour of the
-1 -1dominant term a Q(X,9) and a Q(X ,9). The function Q(X,e)o 0

defined in (3.21) has a saddle point e and a branch point e ofq c

1 . h Lane vi h 1 horder 2. Therefore, mapplng t e e-p ane lnto t e s-p ane, were

s = (e-ec)~' takes the singularity 9c into a new saddle point s = 0,

because :

ae ~ ~ (X,e) 2 s 0as ae = (c.l)

which proves that a • a and s = 0 are saddle points to Q(X,e), inq

the a-plane and s-plane respectively.

As a
q

is near (or beyond) the branch point ac' evaluation of

the a-integration in (3.18a) cannot be performed by the saddle

point method, although the a -integration can be performed byo
the saddle point method, because a is always maintained distant. oq
from any singularity. Therefore, another method must be sought

to work out the a-integration in (3.18a) in such a region. For

that, we ought to map the function Q(X,e) into a cubic polynomial

by a suitable change of variable s into t, using the method of

Chester-Friedman-Ursell [33]. (The variable t here is not to be

confused with the time variable).

One can then, write Q(X,a) in (3.20a) as [23]
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where

The remaining term in the phase expression of (3.20a) has the form

C 2 ~~ (X,e) + r X k sine

Consequently :

exp [i Cl - Bl t

and after some intermediate calculations, it is established that the

general form of the leading coefficient is :

and

-1
D(X) = Q

1
(X) {a

Finally, evaluation of (3.l8a) by the saddle point method for the

eo-integration and by the Chester-Friedman-Ursall method for the

e- integration leads to the result [23] :

uge(!'-oX) - N exp[i r X k sine ] exp[-i r X k sine]o 0 oq c

where

N • 2 ~! (2 a)-! e-J Z A(x,e ) D(x) exp[i a-1 Q(x,e )]o oq 0 oq

(C.2)

(C.3)

(C.4)

(C.Sa)

(C.Sb)

(C.6a)

(C.6b)

(C.7)

(C.S)
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A similar reasoning leads to the result of the other species

of waves in (3.18) :

gU(X,X ) • -N exp[i ro X k sine ] exp[i r X k sine ]
0--0 0 oq C

(C.9a)

dg (X,X ) = N exp[-i r X k sine ] exp[i r X k sine]e - -0 0 0 oq c (C. 9b)

gd(X,X ) - -N exp[-i r X k sine ] exp[-i r X k sine]o - -0 0 0 oq c (C.9c)

where the coefficient N, D(X), Ql(X), A(X ,e ) and Q(X ,e ) areo oq 0 oq

respectively given by (C.S), (C.6b), (C.4), (B.7b) and (3.21).

The coefficients D(X) and Ql(X)' can be further approximated.

For this purpose, one must bear in mind that S lies near e 5as is
q c

the case just past the transition region. One can define

-1 !6 - 2 Cl (2 co ega ) (C. lOa)c

~~r -r (C.lOb)c

Z • k ~ sinS (C.10c)c

Where r is the critical range corresponding to the critical thicknessc

(T - r Cl)· which gives an incident angle e = e. It is at thiscc' c

stage, when r • r that the Adiabatic mode defined in subsectionc
3.8.1 becomes cut-off. The critical range is defined by :

k Cl r sine = w (q-!)c c (C.l0d)

Using (C.3), (C.4), (C.6) and (C.l0) it is shown in [23] that one

can approximate the expression Ql(X) by

Ql(X) ~ 2 Z 6-2/3 (C.lla)
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Consequently :

D(X)
-2/3.. A

and

-1
.. a ~ 2 eX,9 ) = 2 Z

as c

rc.r n»

(C.llc)

Beyond the critical region, where the saddle point 9 becomes
q

distant from the branch point 9 , we require a distinct expressionc
for the branch point contribution.

This arises in the t-plane, for the saddle point t = 0;

it is easily found by standard asymptotic techniques. Equations (C.7)

and (C.9) become , after using rc.r r: :

u ..H exp [i X k sine J exp[-i r X k sine 1g (x,x ) re -~ 0 o oq c

u
= -H exp[i x k sinS 1 exp[i r X k sine]g (X,X ) ro -~ 0 o oq c

d ..H exp[-i X k.sinS ] exp[i r X k sine 1g (X,x ) re -~ 0 o oq c

d = -H exp[i X k sIns ] exp[-i r X k sin9clg ex,X ) ro -~ 0 o oq

where
-1H ..~ A(X ,e ) B(x,e ) exp[i a Q(xo,eOq)]o oq c

exp[i a-1Q(x,9 )]c

and

B( a) (k . a ) - 5/2 ( ) !x, c ..a n s~n cotgac c

(C.12a)

(C. 12b)

(C. 12c)

(C.12d)

(C.13)

(C.14)
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The coefficients A(X,a ) and Q(X,e) are glven by (B.7b)o oq
and (3.21) respectively.

At this stage of this Appendix, it is worth mentioning

that equations (C.12), (C.13) and (C.14) describe exclusively

the field behaviour (within the approximation of (C.ll» in a

region not far from, but past the transition region. Such

expressions are of use in subsection 3.8.3. As for equations

(C.7), (C.8) and (C.9); they describe the field at the transition

region, and they are of use in subsection 3.8.2.
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APPENDIX D

In the case of the double layer problem, the insertion of

the film (n2) having a uniform thickness d as shown in Fig.D.l,

does not allow the use of Fresnel's equation for the calculation

of the reflection coefficient at the bottom interface (B12) of

the tapered waveguide. For the dimension of the medium (n2) is

no more supposed infinite, as was the case for the single layer

structure. Consequently, the presence of the film (n2) of finite

thickness d makes the evanescent wave A2 launched in it, undergo

multiple reflections. These waves are coupled back into the

tapered waveguide and interfere with the originally incident waves

in the tapered waveguide. One is then inclined to work out the

phase change ~(e) introduced at the bottom interface B12 by

suggesting a method using the concept of the modified reflection

coefficient rCa), which represents the composite reflection

coefficient at interface B12, due only to one incident wave Al

as it is schematised by Fig.D.l. This Appendix aims to calculate

the total accumulated phase change ~(e) for the double layer

structure, introduced at interface B12 as the light propagates

along the tapered waveguide undergoing m reflections.

Each plane wave is individually tracked through successive

reflections at the top (B31) and bottom (B12) interfaces using

the appropriate Fresnel's coefficient at each reflection. See

Fig.D.l •

One uses the conventional notation r .. for the Fresnel
lJ.

reflection coefficients between medium (n.) and medium (n.) and
l J

are directly given by the Fresnel's equations for a TE type of
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polarisation. They are:

{
in. sine. }

r.. • exp i [2 Atan ( J . eJ)]lJ n. Sln .
1 1

CD. 1a)

where 9. and 9. are the incidence angle in medium (n.) and (n.)
1 J 1 1

respectively. They are related via the Snell's law by

n. cose. • n. cosS.
1 1 J J

(D. 1b)

We also define the T.. which are the corresponding transmission
1J

coefficients. Assuming that there is no absorption in any medium.

one recalls the equation :

T •• - r .. • 1lJ lJ

It can easily be demonstrated that after M reflections occur at
.

812 ' after a laborious calculation to sum up a geometric

progression, there results

(D.2)

as M tends to infinite and as

(o.2) becomes

{
T12(S) T21<S') }

l-r20(s') r21<s') exp(2 i y)

(D.3 )

where 2 2 2!
y • ko d (n2 -0, cos e) (D.4)
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At the mth reflection at B12 interface, the incidence angle is e;
then the total reflection coefficient is given by :

eM
II rea)
e -a1. 0

where a is the wedge angle and a1 is defined by (3.7) and recalled

here to be

e - e + 2 a (1-t)1. 0 (D. Sb)

eo and eM are the incident angles corresponding to the first and

maximum reflection at Bt2 respectively.

Using (D.t), (D.2) and (0.5) the accumulated phase change ~(e)

at B12 interface, after m reflections have taken place, is finally
given by :

~(e) • Argt [r(e)] + Argt [r3t(a+a)] (D .6)

where Argt denotes the argument.

As we assume for simplicity that medium (n3) is perfectly
reflecting, (0.6) becomes :

* In the guided wave region : n2 <: < n1
o

~(a) - -2 Atan (0.7)

with (D.8)

* In the coupled wave region
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(D.9)

with (D. 10)

In both cases, d is negative in order to be consistent with the

same choice of d as in Chapter 2. We also define

8 - k n 1 case
0

2 (.!...) 2 2
T • - nO0 k

0

2 (.!...) 2 2
T - - n33 k

0

2 2 (.!...) 2Yt - n t k
0

(D.lla)

(D. l1b)

(D. 11c)

(D. 11d)

The general expression of ~(e) can either be characterised by

(D.7) or (D.9). However, declaring either equations to be complex

in the computer program leads to the same result of ~(e), as B moves

from the guided wave region to the coupled wave region.



APPENDIX E

This Appendix gives the flow chart, of the developed computer

program 'Saddle point - SDP', to compute the steepest descent

path (SDP) of any phase function S(X,e) of integral (4.4).

The procedure locates first the saddle point 9 for aq

fixed local thickness T (observation point X) by means of the

Newton-Raphson numerical algorithm. e could be real or imaginary,q

depending on which region with respect to the critical angle ec
one is dealing with. and also depending on which of the

waveguiding structures one is concerned with.

The computation of the SDP is via equation (4.6). It

implements the 'False position' algorithm on each complex variable

e defined with respect to the origin (0,0) (see Fig.E.l).

Initially, one fixes Q. positive so as to depict the upperlnc
part of the (SDP) contour, and chooses 2 arbitrary points e01 and,
e02 as initial guesses, whose values are very close to 9qS.

Iterating 901 and e02 so as to have :

Real [s(X,e)] • Real [S(X,9 )] (E.l)q

satisfied to a certain approximation (~10-8) leads to a root of

equation (E.l) (see Figs.E.l and E.2).

Incrementing Qinc and starting again from 901 and e02
close to e (previous root), we repeat the procedure until the

upper part of the SDP is completed. That is to say, when the

total number of points e is equal to N, where N is the arbitrary

specified number of points in each part of the SDP.

For computation of the lower part of the SDP, we repeat the

same procedure, bearing in mind that Q. is negative. Of course,mc
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/ START /•
Compute e by Newton-Raphson algorithm

q ,
Confirm 6a belongs to SOP,

Fix a. > 0, N~nc
_1"""-'I

r Choose initial guess 901,902

t
.. Implement false method on modulus of e,..

such as : Er a Real [S(e)]-Real[S(e )]q

~Y
. .. Preserve 9N ..~,

+ f.

--- 602 .. 601 .Upper part of Lower part of
e01' • e SDP completed? SDP computed?

Ny
N Y Y

~ Increment 0. .- H-me - Decrement Ct..-- - me

..
< ° ...... a . -lnc••

STOP

Fig.E.2 Flow chart of program 'Saddle point - SDP'
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the running time will automatically depend on the number of

points N making up each part of the SDP. By taking a. within~nc
-2the wedge angle ~(~. • ~.10 ) and a quite small number of~nc

points N (20 points), one can get away very efficiently with

a good approximation of Integral (4.4). In this case, the

running time to implement 'Saddle point - SDP' is 5 seconds on an

ICL-2900 computer.

As a matter of fact, only a few points near the saddle point

e t contribute significantly to the asymptotic evaluation of any
q

integral by the saddle point method.

The drawback of this progra~however, is that it works

perfectly well in a region where e < e (guided wave region). butq c
beyond any singularity where Real (9 ) > e it becomes veryq c

difficult to compute the SDP. For, past the transition region,

the SDP tends to surround the singularity e. Consequently, thec

computer program predicts points on the steepest ascent path instead

of points on the steepest descent path. For this reason, one must

find another method of evaluation of the integrals in a region

past the singularity. This is dealt with in Chapters 4 and 5.
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APPENDIX F

This Appendix aims to present a brief flow chart of the

main computer program, used to implement the mathematical model

which describes the field behaviour f(X,S) defined as follows:

f(X,S) - I(x,S) o < x < a (depth < 0) (F.la)

x > a (depth> 0) (F. lb )

For both structures, I(X,a) is given by equation (4.4), whereas

R(X,a) is given by (5.4) for the single layer structure and by

(5.15) for the double layer structure. I(X,S) and R(X,S) are

recalled to represent the field distribution inside and outside

the tapered waveguide respectively.

One should refer to Fig.F.l, whereby we start by supplying

the data, which consists of locating an observation point! at a

thickness T, for a specific mode number. We also give the

appropriate expression of ~(S), whether dealing with the single

layer structure or the double layer structure.

We fix the maximum of the cross variable X (or depth). In

the double layer case, this maximum is restricted by the thickness

d of the uniform film (n2).

In Fig.F.l, one can perform the contour integrals in f(X,S)

either by following the sequence in 'path 1', which consists of

integrations along the real axis and in the interval 0 < S < I;
or by following the sequence in 'path 2', which makes use of

the program 'Saddle point - SDP' presented in Appendix E, and then

performing integrations on the steepest descent path (SDP).



I START
I Supply data ,....-...

'path 2'

"

Compute saddle point 9 and steepestq

descent path using program 'Saddle

point - SDP'

,Ir

Perform integration of
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) J + 1

I STOP /

"------'

F· F 1 '.Flow chart of program 'Integration'19. .
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J..
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•-- 9j • 0; 9j+1• step

, (9 9 ) - fo(9J,,9)'+1) - (O"O.)1. " '+1o J J ..
Compute i(9.,e'+1) ~

~ ~J~~J~ ~~.,
..
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J J

Compute
£(9,,9'+1) - R

J J
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e. 1 • 9. + stepJ+ J
e. - e, ;
J J +1

Y N
'If

~ Iteration loop"- Next depth (or X)..
Next mode

Next observation point X

I STOP 1
~
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Returning to 'path " in Fig.F." it is necessary to supply

the integration step S. ,-S., which must be smaller than theJ+ J

oscillations periods of t~e phases in f(X,S). According to

section 5.3, such oscillation -2periods are on the order of '0

radians.

We fix the cross variable X (or depth) as well as two

arbitrary initial points, S. , and e., such as e. ,-e. = step.J+ J J+ J
These two points belong to the interval 0 < 9 < Iand they both

depart from zero.

We set the initial complex quantities as

f (9.,9.+,) - i (a.,9.+,) - (0,0)o J J 0 J J
(F.2)

We compute in the interval (aj,ej+,), the integral

9. ,
f J+ q,(e) dee.

J

Equation (F.3) is carried out by means of Simpson's numerical rule.

. -i1(9.,9.+,) - (2 a)
J J

(F.3)

We update i(9j,9j+,), by adding to it io(9j,9j+1), which

initially is zero, in order to accumulate the contributions of

all i(9j,9j+,) from 9j - 0 to 9j+,. It is also necessary to refresh

the quan tity i (e.,e. ,) by storing once again i(9.,9.+,) into it.o J J+ J J

This quantity will be used in the next iteration, so as to reduce

the computing time, and also for the integral in (F.3) to cover

the whole range from zero to aj+1• We test ,whether a > X > 0 or

X > a (depth negative or positive respectively). In the former

case f(9.,a.+,) - I(X,a), which describes the field inside the
J J

tapered waveguide; in the latter case, f(a.,e. 1) = R(X,a), which
J J +

describes the field in the bottom adjacent medium. In either

case, the integration of f(a.,a. 1) is also performed by the
J J+



128

Simpson's rule in the interval (ej,ej+1) and at the same time as

i(e.,e.+1) in (F.3).
J J

We need to add to f(ej,ej+1) the previous value fo(9j,9j+1),
which corresponds to the preceding iterations and which initially is

zero. We then increment e. and 9. 1 by a step length and repeat
J J+

rrthe same process until ej+1 reaches 2. The same integration routines
are repeated over, for the next cross variable x(depth). the

next mode and the next observation point !.
Of course, the computer running time depends on the number of

x(depth), integration step, number of modes as well as the number of
-2points !. However, for a fixed integration step of 10 rds and for

50 values of X (depth), at each range of each contributing mode, it

requires approximately 60 s of CPU running time or an ICL-2900

computer.

For underwater acoustic applications, the program still holds,

but it is necessary to introduce the appropriate change of variable

as given in section 6.2.

As far as the sequencies in 'path 2' of Fig.F.1 are concerned,

the e. are represented by the discrete values of points making up
J

the SDP, each of them stored in an array from program 'saddle

point - SDP' presented in Appendix E. Thus, to perform the

integrations along the SDP, one could follow the same procedure as

in 'path 1', but the incrementation and the selection of the e. 's
J

are restricted to those constituting the SDP. The integration

along the SDP works perfectly well in the guided wave region, and

achieves the same results as if integrating along the real axis

and in a shorter time. Unfortunately, in regions past the

singularity, difficulties due to branch cut contributions arise.
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For this reason, we drop the integration along the SDP and

concentrate only on the integration along the real axis; this

works adequately in both regions with respect to the singularity.
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