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Abstract

This thesis discusses the development of the multiple-breath-helium washout (MBHW)

measurement for lung-function study.

Multiple-breath washout (MBW) has been regarded as a sensitive technique to

study the ventilation inhomogeneity in conducting or acinar airways. The tracer gas

washed out from the lungs breath by breath is monitored. By analysing the concen-

tration of the tracer gas versus the expired tidal volumes, the washout results provide

two indices Scond and Sacin which reflect the degree of ventilation inhomogeneity. Scond

is the increasing rate of the noramlised phase III slopes breath by breath while the

Sacin is the nomralised phase III slope from the first breath with the subtraction of

Scond. The higher Scond value the greater ventilation inhomogeneity in the conductive

airways while the higher Sacin value the greater ventilation inhomogeneity in the acinar

airways.

Traditionally, nitrogen is used as the tracer gas, washed out by the pure oxygen

in a multiple-breath-nitrogen washout (MBNW) measurement. It is usually chosen

because it is the gas we normally breathe and has no direct influence on physiology

unlike oxygen. In this study, 4He gas is used as the tracer gas instead. Since helium is

less dense and has higher diffusivity than nitrogen, it is believed that it will be able to

reach deeper into our lungs in a given time. Therefore, helium washout may provide

more ventilation information especially in the small airways.

In our MBHW system, a quartz tuning fork with a resonant frequency 32768Hz is

used as the gas density sensor. The resonant frequency of the tuning fork is linearly

related to the surrounding gas density. The helium concentration is given by eliminating
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all other gas components and calculating it from the tuning fork signal. Considering

other components of our expiration, the carbon dioxide is detected by the infrared

sensor, and the water is filtered out by a trap.

We have performed the washout measurements on 11 volunteers, three of them have

been diagnosed having mild lung diseases (asthma), two are smokers, and the other five

are normal healthy people. The peak expiratory flow is also measured for each subject.

The single breath MBHW curves from asthmatic people have higher normalised phase

III slopes and higher Scond or Sacin values. This shows a greater conductive or acinar

ventilation inhomogeneity in asthmatics’ lungs. The lung clearance washout curves are

fitted with a summation of two exponential curves which represent two compartments

with different ventilation rates. The compartment with higher decay rate represents the

better-ventilated compartment and the other one is the poorly-ventilated compartment.

Subjects with larger proportion of poorly-ventilated compartments have a lower peak

expiratory flow rate compared to the predicted values.

A 2.2-litre lung model has been built. A loud speaker has been used to simulate

the movement of the diaphragm. MBHW measurements have been performed on the

lung model which has a 0- to 4-generation dichromatic structure. The washout results

from the lung models is compared to the results from the real lungs.
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Chapter 1

Introduction

1.1 Human Respiratory System

The respiratory system works with the blood circulation system to deliver oxygen to

the cells and remove carbon dioxide. It consists of the airways, the lungs, and the

respiratory muscles (the diaphragm) that mediate the movement of air in and out of

the body. Figure 1.1 shows the human respiratory system.

The human respiratory system can be subdivided into the upper respiratory tract

and the lower respiratory tract. The upper tract starts with the nostrils which open into

the nasal cavity. The nasal cavity and the mouth meet at the pharynx, or the throat,

at the back of the nose and mouth. The pharynx, a part of the digestive system as

well as the respiratory system, leads to the larynx (voice box). The trachea extending

downward from the larynx leads to the thoracic cavity. The lower respiratory tract

starts with the trachea. At the bottom end of the trachea, it divides into the right

and left main bronchi which connect to the lungs. Within the lungs, the main bronchi

branch into smaller bronchi and into even smaller tubes called the bronchioles. The

bronchioles lead to the terminals of the airway, the alveolar sacs, in which most of the

gas exchange occurs [12, pp. 59].

The diaphragm is responsible for pumping the air in and out of the lungs. It is a

sheet of muscles that lies across the bottom of the chest cavity. When it descends, the
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Figure 1.1: The Human Respiratory System. (Reproduced with permission from LadyofHats

on Wikimedia, 2008)
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(a) (b)

Figure 1.2: (a) The cast of the human lungs [82]. (b) Scanning electron micrographs of end

branches of smooth walled bronchioles (B) is the entrance of the pulmonary acinus. [81]

lungs expand and air is pulled into the alveoli. When it rises, the lungs deflate and

carbon dioxide, oxygen, nitrogen and water vapour gas mixture is pumped out of the

body [12, pp. 66].

1.2 Human Lung Anatomy

The human lungs are a pair of sponge-like organs in the ribcage which are built as

dichotomous trees (Figure 1.2). The right lung is divided into the upper, middle and

lower lobes which are supplied by a division of the right main bronchus. The left lung

is divided into the upper and lower lobes; the later is supplied by the lower division of

the left upper lobe bronchus and is analog to the middle lobe of the right lung. The

lobes are divided into ten segments in the right lung and nine in the left.

The proximal subdivisions are two main bronchi which subdivide into secondary

bronchi. The right main bronchus is wider, shorter, and more vertical than the left

main bronchus. The main bronchi subdivide into two and three segmental bronchi that
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each serve the left and right lungs, respectively. The distal subdivisions are bronchioles

which differ from bronchi in having no cartilage or mucus glands.

The portion of lung distal to one terminal bronchiole is called acinus. An acinus

contains 2 to 3 orders of respiratory bronchioles each of which leads to approximately

2 to 11 alveolar ducts(alveoli). The alveolus is a hollow cavity with 5 or 6 even smaller

alveolar sacs inside, and has radii of about 0.2 mm and wall thicknesses of about 0.1

µm. Figure 1.3 shows the model of human lower airway generations of branching system

from trachea to acinar way (alveoli) modified by Weibel [82] [42, pp. 8].

Within the lungs, each broncus goes on for 18 to 30 generations, 23 generations

on average. Since the number of branches doubles with each generation, there will be

223 or about 8 million end branches, generally called alveolar sacs. The airways within

a given generation are of identical length and diameter; however, the dimensions are

different among the generations [42, pp. 10].

1.3 Human Lung Function and Gas Exchange

The lungs are an essential link in our respiratory airway for gas exchange between

blood and air. The inhaled gas transports from upper respiratory tract into the lungs,

and then mixes in the terminal respiratory units of acinus which are the basic units of

the gas exchanger in our lungs. Upon inspiration, oxygen-rich air flows into the lung

driven by the pump action of respiratory muscles, while during expiration O2-depleted

but CO2-rich air is blown out.

In the first 14 generations, the gas transports via convection and there is no gas

exchange. In the following 8 generations of acinar airways where convection diminishes

and O2 now diffuses through the alveolar membrane into blood. Conversely, carbon

dioxide is released from the blood to the alveolar gas via diffusion across the mem-

brane. The driving force for gas exchange is the partial pressure difference between the

alveoli, air and capillary blood determined by Fick’s first law of diffusion in biological

perspective [42, pp. 33]:
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Figure 1.3: Model of human airway system assigned to generations of symmetric branching

from trachea (generation 0) to acinar airways (generations 17-23), ending in alveolar sacs.

Modified after Weibel (1963) [82] [42, pp. 8].
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Figure 1.4: Lung Volumes and Capacities [12, pp. 76].

V̇ = −D
A × (Pa − Pb)

dm
(1.1)

where V̇ is the gas volume diffusing through the membrane per time, D is the diffusion

coefficient, A is the surface area of the membrane, Pa−Pb is the gas pressure difference

between the alveoli the blood, and dm is the thickness of the membrane.

1.4 Lung Capacities and Function Measurements

1.4.1 Lung Capacities and Spirometry

Lung capacities are different combinations of lung volumes related to inhalation and ex-

halation. Figure 1.4 shows the lung volumes and capacities. Traditionally, spirometers

are used for measuring lung volumes by monitoring the normal and forced expiration

and inspiration at the mouth. The spirometer is a device for measuring gas volumes

and flow rate. The tidal volumes, expiratory reserve volume, inspiratory capacity, and

vital capacity can be measured with the spirometer. Figure 1.5 shows the spirometry

trace which has the forced inspiratory and expiratory flow with the gas volumes.
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Figure 1.5: Spirometry and the measured lung capacities (Reproduced from Carnildo on

Wikimedia, 2005. http://en.wikipedia.org/wiki/Image:Flow-volume-loop.png).
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The forced vital capacity (FVC) is a useful index for assessing expiratory airways

resistance. The most sensitive part to the airways resistance is the first second of

expiration (FEV1). In a normal subject, the FEV1/FVC is greater than 0.75. A

patient with airway obstruction or restriction would be expected to have a FEV1/FVC

far below 0.75. Obstructive diseases can interfere with airflow and restrictive diseases

restrict the expansion of the lungs which results in a decrease in the maximal flow rate

that the patient can achieve [42, pp. 42].

The functional residual capacity (FRC) and the residual volume (RV) are not mea-

surable with the spirometer but can be determined by the body plethysmography, the

helium-dilution technique, and the nitrogen washout technique.

1.4.2 Body Plethysmography

The body plethysmograph consists of a body-sized chamber, a flow meter, two pressure

transducers, and an electrically-controlled shutter as shown in figure 1.6. Subjects are

asked to sit inside a closed chamber breathing through tubing connected to a flow meter

and a pressure transducer. The pressure nearby the mouth is monitored (PM ) as well

as the inner-chamber pressure (Pbox). The shutter is closed at the end of an expiration

followed by a quick inspiration against the closed airway. As a forced inspiration is

made against the closed airway, the chamber pressure (Pbox) increases because of the

lung expansion while the mouth pressure (PM ) decreases. According to Boyle’s law,

the product of the initial pressure and initial volume of a closed system is equal to the

product of the final pressure and the final volume, i.e., Pi · Vi = Pf · Vf [42, pp. 65];

Pboxi · VCi = Pboxf · (VCi − ∆V ) (1.2)

PMi · FRC = PMf · (FRC + ∆V ) (1.3)

where VCi is the chamber volume before the shutter closed and ∆V is the volume

change of the lungs. The functional residual capacity can be determined by the above

equations as [42, pp. 65]:

FRC = VCi · (
PMf

Pboxf
)
Pboxf − Pboxi

PMi − PMf
. (1.4)
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Figure 1.6: The body plethysmograph [42, pp. 64].
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(a) (b)
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Air+He
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Figure 1.7: The helium-dilution technique diagram.

1.4.3 Helium-dilution Technique

The helium-dilution technique is based on monitoring the concentration of helium in a

closed system before and after a few breaths until the concentration stops decreasing

as shown in figure 1.7. The total amount of helium molecules in the system initially is

equal to its final quantity. After starting inhaling helium at the end of the expiration,

the system volume is equal to the FRC plus the volume of helium container VHe [42,

pp. 61], i.e.,

[He]i · VHe = [He]f · (FRC + VHe) (1.5)

FRC = VHe · (
[He]i
[He]f

− 1) (1.6)

1.4.4 Multibreath-Nitrogen Washout Technique

In a multibreath-nitrogen-washout measurement, the nitrogen concentration of the ex-

piration gas is monitored while the subject inspires 100% oxygen over several breaths

until the nitrogen concentration is lower then 2%. The nitrogen concentration de-

creases breath by breath during the washed out process by oxygen gas (Figure 1.8).

The expired gas volume is also measured with a flow meter. FRC can be determined

by comparing the total amount of initial nitrogen gas in the lungs and the total expired
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Figure 1.8: The typical nitrogen washout curve. The upper graph shows the concentration of

nitrogen and the lower graph shows the respiratory tidal volumes during the washout process.

The arrow indicates the start of inspiring pure oxygen [49].
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nitrogen gas volume [86]:

∑

n

∫

[N2]ndVn = FRC · [N2]initial, (1.7)

FRC =

∑

n

∫

[N2]ndVn

[N2]initial
. (1.8)

where [N2]n and Vn are the nitrogen concentration and expired gas volume of the nth

breath respectively.

1.5 Common Lung Diseases

There are three major physiologic categories of lung diseases: obstructive, restrictive

and defect in gas exchange type. The obstructive lung diseases such as asthma, chronic

bronchitis, and emphysema are caused by the widespread airway narrowing. This

narrowing can reduce the forced expiratory flow and thus can be diagnosed on the

basis of a low forced expiratory volume together with small forced vital capacity in

one second (FEV1). The restrictive lung diseases are the result of the restriction of

lung or the chest wall expansion. These types of disease reduce the vital capacity and

total lung capacity. The restriction can also limit the forced expiratory volume and

flow rate [12, pp. 398]. Figure 1.9 shows the spirometry of the normal lungs along with

obstructed and restricted lungs.

The defective gas exchange is due to the thickening walls of the alveoli, respiratory

bronchioles, and pulmonary airfoil. The defect in gas exchange also gives rise to a

ventilatory defect which results in lung restriction. This abnormal gas exchange lowers

the rate of oxygen absorption from the alveoli to the pulmonary capillaries [12, pp. 398].

1.5.1 Asthma

Asthma is an obstructive disease due to widespread narrowing of the bronchial tube.

During the attack, the lining of the airways swell and the muscles surrounding the

bronchi contract. These can slow the air movement and this makes breathing difficult.

The clinical characteristics are wheezing, coughing, and abnormal shortness of breath.
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Figure 1.9: The spirometry of normal lungs, with obstructive diseases, and with restrictive

diseases [37].
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The narrowing increases the airway resistance and cause an uneven distribution of the

inspired gas [12, pp. 412].

1.5.2 COPD

COPD (chronic obstructive pulmonary disease) is a disease that includes both chronic

bronchitis and emphysema. Patients may have one or the other, but often a combination

of both which leads to a decrease in blood oxygen levels and shortness of breath.

In the emphysema type of COPD, the walls between the alveoli are damaged which

results to larger alveolar sacs. It reduces the surface area of the alveoli and thus lowers

the exchange of oxygen and carbon dioxide. In chronic bronchitis, the airways are

inflamed and thickened which increases the number of mucus-producing cells and thus

more mucus is produced. The clinical characteristics are coughing and difficulty in

breathing [12, pp. 414].

1.5.3 Cystic Fibrosis

Cystic fibrosis is a genetic disorder caused by mutations in a pair of genes which are

responsible for the protein production (chromosome 7). It causes abnormal electrolyte

and water movements through the epithelial cells and thus thick and sticky mucus is

accumulated in the lungs. Patients with cystic fibrosis are not only have abnormal

oxygen absorption but also at risk of getting bacterial chest infections [12, pp. 412].

1.6 Overview of thesis

This thesis introduces the multiple-breath-helium washout system for lung function

measurement with the quartz tuning fork applied as the helium gas sensor. The struc-

ture of the thesis is as follows: Chapter 2 gives an overview the washout measurement

and the related mechanism of gas mixing and distribution in the lungs. The devel-

opment of helium-washout system is introduced in Chapter 3. The MBHW system

control programmes and the anaysis programme are introduced in Chapter 4. MBHW



CHAPTER 1. Introduction 16

results from 11 volunteers and a lung model with its MBHW results are discussed in

Chapter 5. Chapter 6 introduces three methods for helium gas detection which have

been tried and found unsuitable for MBHW measurement. Chapter 7 contains a brief

summary and suggestions for future work.



Chapter 2

Multiple-Breath Washout

Measurements

This chapter is based on the theoretical study of M. Paiva and L. Engel of the res-

piratory gas mixing mechanism [22, 58] and their review of previous pioneering work.

The mechanism of how pulmonary gas exchange and gas distribution is related to

multiple-breath washout (MBW) tests will be introduced in section 2.1. The tradi-

tional single-breath washouts (SBW) and multiple-breath-nitrogen washouts (MBNW)

will be introduced in section 2.2. The multiple-breath washouts (MBW) and the related

analysis will be discussed in section 2.3.

Multiple-breath washout measurements have been regarded as a sensitive technique

for respiratory ventilation study. The concentration of tracer gas is monitored while

washed out of the lungs breath by breath. The respiratory gas volume is also measured

by monitoring the flow rate of breathing. In single-breath washout (SBW) measure-

ments, subjects expire near the whole vital capacity, while in MBW subjects take about

1 litre tidal breaths. Each breath can be regarded as a single washout curve while the

sequential emptying and filling in MBW tests can reflect the ventilation inhomogeneity

in conductive or acinar airways that is unable to be differentiated in SBW tests. As

briefly described in section 1.4, nitrogen is normally used as the tracer gas washed

out by 100% oxygen in multiple-breath-nitrogen washout measurements. Figure 2.1(a)
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shows the pneumotachograph of MBNW and figure 2.1(b) shows the washout curve

and the expired volume from a single breath.

2.1 Pulmonary Gas Exchange and Distribution

As mentioned in section 1.2, the human respiratory system can be divided into 23

generations on average due to Weibel’s dichotomous model [82]. In the first 16 gen-

erations, gas is transported by bulk flow, called the conduction zone (or conducting

airways). The following 17th to 23rd generations are the alveolar airways (or acinar

airways) where the gas exchange occurs. In this area, the bulk flow speed is nearly zero

and the gas transport is dominated by diffusion. The diffusive mechanism is driven by

the partial pressure difference of the gases and determined by the Fick’s first law of

diffusion as mentioned in section 1.3. In reality, the uneven distribution of the alveoli

and asymmetric dichotomy of bronchial structure complicate these two mechanisms.

Convective Gas Transport

In conductive airways where the gas transport is dominated by convection, there is

no gas (O2-CO2) exchange thus it is also referred to the anatomic dead space. The

mechanism of the bulk flow is determined by Fick’s second law of diffusion [22, pp. 15]:

∂c

∂t
= −∇(DA∇c) (2.1)

where c, A, D and ∇c are the gas concentration, airway cross section, gas diffusion

coefficient, and gas concentration gradient along the longitudinal airways, respectively.

This can be derived from the mass conservation and the Fick’s first law of diffusion

considering the time-dependent concentration of gas molecules.

Baker et al. [1] described how Fick’s law applied to the gas mixing along the lon-

gitudinal airway including the accumulation, bulk transport, and longitudinal mixing

terms, i.e.,
∂c

∂t
= V̇ ∇c −∇ [A(κ + D)∇c] (2.2)
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(a)

(b)

Figure 2.1: (a) Pneumotachograph of MBNW. (b) The washout curve from a single breath

[42, pp. 68].
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S

s

Figure 2.2: Schematic representation of airway cross sections based on Paiva’s two trumpet

model and Weibel’s acinar model. S and s are the total cross sections of airways inclusive and

exclusive of the alveoli. The shaded area represents the alveolar cross sections [58].

where V̇ is the volumetric flow and κ is the longitudinal dispersion or mixing coeffi-

cient [22, pp. 91]. The first term on the right-hand side corresponds to the bulk mixing

while the second term corresponds to the longitudinal mixing.

Diffusive Gas Transport

In alveolar airways, alveoli distribute unevenly along the bronchial tree. Approaching

the terminals of the lung, the bulk flow speed is nearly zero, thus gas transport is

dominated by diffusion. For oxygen and carbon dioxide, the partial pressure difference

between alveolar sacs and the capillary blood is around 40 mmHg for CO2 and 60

mmHg for O2, which drives those two gases across the alveoli membrane [42, pp. 73].

For other insoluble gases such as nitrogen or helium, the gas diffusion is caused by the
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partial pressure difference between the inspired gas and within the alveoli. Paiva [59]

has described the gas mixing in our lungs considering the second Fick’s law of diffusion

with a source term as:

∂c

∂t
= D

s

S
∇2c +

D

S
∇s∇c − ~u · ∇c + Qa (2.3)

where S and s are the airway cross section inclusive and exclusive of alveoli, ~u is the

bulk flow velocity and Qa is the source term corresponding to the gas molecule produced

or consumed in alveoli. The cross-sectional area of the airway is shown in figure 2.2.

This transport equation is based on a few assumptions including the incompressibility

of the gas mixture, constant temperature along the airways, only generation 11th to

23rd taken into account, gas exchange mechanism across the alveoli membrane can not

be described with this equation, and the volume change of alveoli is not considered.

Diffusion Coefficient D

The diffusion coefficient D mentioned above has been regarded as the binary diffu-

sion coefficient for a gas mixture with two kinds of molecules A and B. According to

Chapman-Enskog theory [9] [22, pp. 10],

D =

1.86 · 10−3T 3/2
√

1
MA

+ 1
MB

Pσ2
ABΩ

(2.4)

where T is the temperature (K), MA and MB are the molecular weights of gases A

and B, P is the ambient pressure (atm), σAB is the Lennard-Jones force constant for

the binary mixture (Å), and Ω is the dimensionless integral corresponding to molecules

collision (usually in the order of 1). For helium and air mixture, the binary diffusion

coefficient is 0.708 cm2/sec at 20oC, 1 atm [22, pp. 11].

Interaction Between Diffusion and Convection

In Paiva’s simulation work of single-breath washouts, the fractional concentration of

nitrogen gas was plotted as a function of the longitudinal depth along the airways

with different gas binaries [22, pp. 242]. He also pointed out the transition from the
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n

(a) (b)

Figure 2.3: (a) Schematic of the gas mixing in the lungs from Paiva which is based on Weibel’s

model. (b) The solutions of Eq.(2.5) with the boundary conditions of c(z = 0) = 0 and

c(z = 12) = 1. Curves 1, 2, and 3 correspond to D = 0.1 (SF6-air), 0.225 (N2-O2), 0.6 (He-air)

cm2/sec, respectively and V̇ = 500 mL/sec. Curves 4 and 5 corresponds to V̇ = 125 and 0

mL/sec with D = 0.6 cm2/sec [58] [22, pp. 242].
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convection to the diffusion mechanism was located at the 16th and 17th generations.

The solution to the Eq.(2.3) regardless of the time-dependent gas concentration, i.e.,

∂c/∂t = 0, at this transition point is where ∇c reached the maximum value while

∇2c = 0. Replacing the bulk flow velocity ~u to the bulk flow rate across the total cross

section S, i.e., ~u = V̇ /S, Eq.(2.3) can be re-written as [22, pp. 241-242]

D

S
∇s∇c − ~u · ∇c = 0 (2.5)

∇s =
V̇

D
. (2.6)

This transition point happens to be the Fowler dead space which will be introduced

in the following section. The solutions of Eq.(2.5) with the boundary conditions of

c(z = 0) = 0 and c(z = 12 mm) = 1, different diffusion coefficients and flow rates

are plotted in figure 2.3(b) [58] [22, pp. 242]. For a given bulk flow rate, the diffusion

front (or the diffusion-convection interaction front) is more peripheral for a heavier gas

(smaller D). Curve 5 corresponds to the pure diffusive transport in which the bulk flow

V̇ is zero.

2.2 Single-Breath Washouts (SBW)

Single-breath washout measurement is based on mixing the inhaled gas with the gas

remaining in the lung. Normally, oxygen is used for diluting the nitrogen in the lung. In

single-breath-nitrogen washouts, the concentration of nitrogen from a deep expiration

is monitored after a deep inhalation of pure oxygen is taken. The exhaled nitrogen

concentration is plotted versus the expired gas volume as a single washout curve in figure

2.4. It can be divided into four phases. Phase I corresponds to the pure inspiratory

gas and there is no tracer gas. Phase II, with a sharp increase of gas concentration,

is the transition between the inspiration and the gas remaining in the lung. Phase

III corresponds to the alveolar plateau with a positive slope due to the structural

asymmetry of alveoli and inequality of gas emptying. Phase IV is caused by the airway

closure at the end of expiration and the sudden change to inspiratory gas, especially

when the expiration is larger than a normal tidal volume.
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Figure 2.4: Single-breath-nitrogen washout curve. Phase I corresponds to the pure inspiratory

gas followed by phase II which is the rapid transition between the inspired and the remaining

gas in the lung. Alveolar plateau occurs in phase III with a positive slope due to uneven gas

distribution in alveoli. Phase IV is caused by the airway closure at the end of expiration and

suddenly change to inspiration. Two shadowed area in phase II are equal and the middle point

of the phase II is defined as the Fowler dead space [22, pp. 296].

Phase II and Fowler Dead Space

The method used to measure the respiratory dead space is based on the pioneering

work of Fowler [23]. According to Fowler’s definition, the dead space is the volume of

the conducting airways down to the location at which a large change in gas composition

occurs’ [22, pp. 326]. He solved Bohr’s equation of the respiratory dead space [4] [22,

pp. 326], VDB,
VDB

VT
=

cE − cA

cI − cA
(2.7)

where VT is the tidal volume, cE , cI are the mixed expired concentration of expired

and inspired gas, and cA is the mean gas concentration in alveoli. The volume of the

dead space is located near the middle point of phase II. As shown in figure 2.4, two

shaded areas in phase II are equal and the inflection point of the phase II is defined

as the Fowler dead space VDF [23]. It is a functional dead space and its volume also

reflects where the diffusion and convection boundary occurs.

Recent studies on single-breath test of CO2 tracing have shown that patients with

lung disease normally have larger Fowler dead space and smaller normalised phase II

slopes than normal persons [39, 77]. It is caused by the restriction in the airways that



CHAPTER 2. Multiple-Breath Washout Measurements 25

(a)

(b)

Phase III

Phase III

Inspiration

Inspiration

Expiration

Expiration

Flow

Flow

[N  ]
2

[N  ]
2

Expiration

Expiration

 O  
2

 O  
2

Figure 2.5: The single-breath-nitrogen washout curves from a normal subject (a) and a pul-

monary emphysematic patient (b). The upper curve is the expiratory volume flow and the

bottom one is the nitrogen concentration. A single expiration is followed by an O2 inspira-

tion (1-2). The phase III (750-1250 (mL)) slope from the patient is steeper than the normal

subject [24].

the poor ventilation in deeper lungs requires more bulk flow into diseased airways. The

normalised phase II slope (SNII) is the slope of the tangent line at the VDF (SII) as

shown in figure 2.4 divided by the mean concentration. Also, this functional dead space

for helium is smaller than for a heavier (or less diffusible) gas such as SF6 [71] which

is consistent as Paiva’s work as mentioned in the previous section. The anatomic dead

space is about 150 mL for adults while the Fowler dead space ranges from 130 mL to

200 mL depending on the tracer gases and expiratory flow rate [42, pp. 68] [23].
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Phase III and Alveolar Ventilation

Phase III represents the alveolar portion of the washout curve. The plateau normally

has a slightly positive slope which is the phase III slope, SIII . The main mechanism

of this positive slope is believed as a result of the asymmetrical structure of alveolar

airways and the uneven distribution of alveoli and thus the ventilation. The pulmonary

ventilation is defined as the bulk flow rate (V̇ ) at which gas enters or leaves the lung and

can be given by the sum of the alveolar ventilation (V̇A) and the dead space ventilation

(V̇D) [58]

V̇ = V̇A + V̇D. (2.8)

The inspired gas with lower concentration is mixed with the gas remaining in alve-

olar sacs and is distributed unevenly to different units of the lungs [24]. After an

inspiration, the gas mixture in those respiratory units with less ventilation (i.e., more

difficult for the inspired gas to diffuse into) has higher concentration of N2 and is flushed

out less easily. The gas mixture in the better-ventilated units relatively has lower con-

centration of N2 since the gas is diluted well and contributes to the early part of the

alveolar expiration. Less-ventilated regions contribute to the later part of the phase

III. It thus causes the positive phase III slopes. Patients with lung diseases normally

have steeper phase III than normal people because of the greater inhomogeneity of

their airways as well as the respiratory ventilation [24]. Other minor effects such as

body posture or inspiration and expiration flow rates can also increase the phase III

slopes [63].

Phase IV and Closing Volume

Phase IV corresponds to the closing volume in alveolar airways. The main mechanism

causing phase IV is believed as a result of even poorer ventilation in small units related

to airway closure. It can only be measured in vital capacity breathing test or sometimes

in very diseased patients as part of steep phase III [22, pp. 304] [8, 46]. In multiple-

breath washouts, phase IV can hardly be measured since the subjects are breathing
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normal tidal volumes and there is no closure. Therefore, the main analysis will be

focused on phase II and phase III.

2.3 Multiple-Breath Washouts (MBW)

In contrast to the single-breath washouts, subjects are taking about 1L normal tidal

volumes in traditional MBW technique [49, 51, 79]. The tracer gas is washed out of the

lungs breath by breath. The concentration as well as the flow rate is monitored during

the test. Each breath from MBW is almost identical to the curve from SBW test but

shorter and without phase IV, either. The sequential emptying reflects the ventilation

inhomogeneity from different units in the normalised phase III slopes and the mean

concentration from each breath which can not be measured in one single breath.

2.3.1 Lung Clearance and Two Compartment Model

For a perfect ventilated lung, the phase III is flat and SIII is near zero. For unevenly

ventilated lungs, the resulting alveolar gas concentration becomes unequal from unit to

unit and the first breath should be weighted by the better-ventilated units. The degree

of ventilated inhomogeneity arises progressively less from those better-ventilated units

and more from the poorly-ventilated units in the second and the following breaths.

This is because the alveolar gas is washed out more quickly from the better-ventilated

units than from poorly-ventilated units.

For an ideal container with a perfect ventilation (which means the inspired diluting

gas mixes perfectly well with the tracer gas remaining in it), the mean concentration of

expiration is exponentially related to the breath number in the MBW test with constant

tidal volumes. The relation can be given by as [51, 55]

cn = c0

(

FRC

FRC + VT

)n

(2.9)

where n is the breath number, cn and c0 are the tracer gas concentration from the nth

breath and from the lungs before washout starts, and FRC is the residual capacity (or
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the volume of the container before inspiration). By taking the logarithm from each

sides, the equation can be written down as

log cn = log c0 + nlog
FRC

FRC + VT
. (2.10)

The logarithm of the mean concentration is linearly related to the breath number.

However, for real lungs, the uneven distribution of inspired gas is washed out asyn-

chronously and it results in a nonlinear relation of log cn and n. The interpretation of

the washout curve from MBNW was first studied by Robertson et al. [65] [22, pp. 312].

The washout curve corresponds to the sum of two (or more) exponential functions rep-

resenting two (or more) compartments independently ventilated at different rates as

shown in figure 2.6(b).

For patients with airway diseases, the respiratory ventilation inhomogeneity reflects

in a more curved line as shown in figure 2.7 [45]. Considering the non-constant tidal

volumes, Cumming [15] described an alternative handling for these washout curves.

The logarithm of concentration was plotted as a function of the turnover, which is the

accumulative expired gas volumes (ΣVT ) divided by the residual volume (FRC). The

resulting washout curve is almost identical to the original one with breath number and

is more well-accepted in recent studies [80].

A simple related index, LCI (lung clearance index), has been introduced for studying

the efficiency of tracer gas washed out of lungs [6, 16, 17, 25]. It is defined as the

expirations (ΣVT ) required to wash out N2 down to 2-1.5% divided by lung residual

volume (FRC) during nitrogen washouts. Cutillo et al performed the washouts on

normal subjects and COPD patients [16, 17]. The LCI for normal subjects (8.5-10)

are lower than the patients (>13) [22, pp. 314] which means the diseased lungs are so

inhomogeneously ventilated that it requires more expirations to flush out the tracer gas

compared to the normal-healthy lungs.

Another useful index is the curve linearity (Curv). It is a measure of how much the

straight line is curved. Since the clearance washout curve is more straight for better-

ventilated lungs. By fitting the first and second half of the clearance washout data with

two straight lines, the Curv is the ratio of those two straight lines’ slopes. Thus for an
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(a) (b)

Figure 2.6: (a) The perfect lung model as a well-ventilated container with perfect gas mixing.

The multiple-breath nitrogen washout curve is a straight line. (b) Two (or more) compartment

model with two different ventilated rates. The nitrogen washout curve is a sum of two (or more)

exponential curves [5] [22, pp. 312].
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Figure 2.7: The washout curve from A. a normal subject, B. a cystic fibrosis patient, C.

a moderately obstructed asthmatic patient, and D. a mildly obstructed asthmatic patient.

Washout curves from patients with airway diseases are more curved than the straight line from

the normal subject [45].
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ideal ventilated unit, Curv=1; for more inhomogeneously-ventilated lungs the Curv are

less than 1 [80].

2.3.2 Washout Dead space and Phase II

As mentioned in previous section, for single-breath washout measurements, Fowler has

solved Bohr’s [4] equation for defining a functional dead space (VDB) using a mass

conservative principle, i.e.,

cEVT = cIVDB + cAVA (2.11)

which can be rearranged as
VDB

VT
=

cE − cA

cI − cA
(2.12)

where cE , cI , cA, VT , and VA are the mean expired gas concentration, inspired gas

concentration, alveolar gas concentration, expired tidal volume (in this case is the lung

vital capacity), and alveolar volume. In SBW, subjects breathe the whole vital capacity,

such that VDB approximates the real anatomic dead space. Since in multiple-breath

washouts, the tidal volume is far below the vital capacity, a washout dead space (VDW )

is defined by the equation

c̄n = c0

(

FRC

FRC + VT

)

(2.13)

and

FRC = VDW + VA, (2.14)

where c̄n is the mean tracer gas concentration from the nth expired breath and c0 is

the initial tracer gas concentration in the lungs just before the washout starts. The

magnitude of the washout dead space is progressively increasing breath by breath since

the inspired gas front is pushed more deeply into the lungs due to the diffusion and the

decreasing tracer gas concentration [22]. The effective dead space also depends on the

diffusivity of the tracer gas, the tidal volume, and the flow rate from each breath.

Figure 2.8 shows the logarithmic plot of N2 concentration at different points of the

expired breath during MBW measurements [66]. Point B represents the Fowler dead

space from each breath which is also the washout dead space. The washout curve
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(a) (b) (c)

Figure 2.8: (a) and (b) The logarithmic plot of N2 concentration at different points of expired

breath during MBW measurements with tidal volumes of 625 mL. (c) The N2 concentration at

end-expiration with 2.5-L tidal volumes in MBW [66].

drops sharply in the first few breaths and then decreases steadily which means the

dead space front is increasing more for the first few breaths and then reaches a steady

value gradually. Approaching the end-expiration (point F), the washout curves are

more straight. Figure 2.9(a) shows the washout dead space taken from the mid-point

of phase II plotted versus the breath number. In Figure 2.9(b), the phase II slope is

decreasing with the breath number in MBNW tests.

2.3.3 Gas Mixing Mechanism and Phase III Slopes

As mentioned in the SBW section, the positive phase III slopes (SIII) result from

the uneven ventilation among the parallel airway units. The units with less ventila-

tion (less bulk flow enters) contribute more in the later part of phase III while the

better-ventilated units contribute more in the early part. The degree of ventilation
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Figure 2.9: (a) The midpoints of phase II (VDW−m) from the MBNW results. The magnitudes

of these midpoints are close to the functional Fowler dead space from each breath. (b) The

phase II slopes from each breath. It decreases progressively while the dead space increases

breath by breath [14].

inhomogeneity results in the steepness of SBW phase III slope [25]. The slope also

depends on the dominant convective mechanism in the conducting airways and the

interaction between convection and diffusion near the terminals of the acinar airways.

Thus the SBW test can only reflect the overall result but is unable to differentiate

between the two mechanisms. However, the series of emptying and filling in MBW

tests, the inhomogeneities caused by diffusive-convective interaction or convention re-

sult in the first normalised phase III slope (SNIII) value and the increasing rate of

SNIII [13, 14, 54, 56, 80].

Each breath from MBW tests has an identical shape to the SBW curve. However,

the initial conditions for each breath are not all the same but depend on the previous

breath. The mean concentration of tracer gas (cn) and the phase III slopes (SIII)

decrease breath by breath. The normalised phase III slopes (SNIII), which is SIII

divided by c̄n, increase progressively. The mathematical model followed by the two-

compartment model has been developed by Paiva [55]. The nitrogen washout curve

of normalised phase III slopes from the real MBNW data and the simulated result is
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Figure 2.10: (a) The washout curve of mean normalised phase III slopes from six subjects [14].

(b) The simulated normalised phase III slopes for first eight breaths [57].

shown in figure 2.10. SNIII increases sharply for the first few breaths which is caused

by the diffusion- and convection-dependent inhomogeneity (DCDI). It then increases

progressively. This progressive increase of SNIII is caused by the convection-dependent

inhomogeneity (CDI) [13, 14].

Diffusion- and Convection-Dependent Inhomogeneity (DCDI)

Both the structural and gas distribution asymmetry cause the uneven ventilation among

the airways. Near the terminals where the diffusive mechanism dominates the gas

transport, the interaction between the bulk flow and the molecular diffusion more likely

contributes to an unequal gas concentrations in the parallel units than the diffusion

alone [13, 14]. This interaction gives rise to an alveolar slope that is especially high for

the first breath as the new dilution gas is transported and starts mixing with the alveolar

gas. After a few breaths, this interaction becomes weaker and reaches a steady state

since the gas has been mixed well in the small airways. This diffusion and convection
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interaction is reflected in a sharp increase in the first few breaths of the SNIII washout

curve and then remain the same in the rest of the breaths [54, 56, 60, 80].

Convection-Dependent Inhomogeneity (CDI)

The convection-dependent inhomogeneity exists on every single breath since the gas

transport is dominated by convection all the way down to the acinar airways. It is

caused by the uneven gas distribution and the unequal ventilation from the parallel

unit which also results in a positive alveolar plateau. As mentioned previously, the

better-ventilated units contribute more in the early part of the expiration while the

poorly-ventilated units contribute more in the later part during one single breath. It is

also revealed in the consecutive emptying and filling in a clearance MBW model based

on the two-compartment model [5] [22, pp. 312]. If this convective ventilation pattern

remains the same for all single breath in MBW, by eliminating the variable of the gas

concentration, the normalised phase III slopes should remain the same for all breaths.

However, in real washout results, there is a progressive increase in SNIII after the

first few breaths. This increasing rate can reflect the inhomogeneity of the convective

mechanism pattern especially between the better- and poorly-ventilated units [13, 14,

54, 56, 80].

Two Simple Indices: Scond and Sacin

Based on the two-compartment model, Paiva pointed out two simple indices for de-

scribing the convection-dependent and diffusion-convection-interaction dependent in-

homogeneities [55]. Since the increasing rate on the normalised phase III slopes can

reflect the degree of the CDI, an index Scond, is thus defined as the increasing rate

of SNIII as a function of turnover after the first few breaths. It is found by taking a

linear fit to the SNIII washout curve. The slope of that linear fitting curve is defined

as Scond [19, 20, 79].

The other index, Sacin, is for describing the degree of DCDI which normally takes

place in acinar airways. Since the first breath can reflect the most about how the new
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Figure 2.11: The washout curve of normalised phase III slopes versus turnover from a normal

subject and two COPD patients [79].
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dilution gas interacts with the alveolar gas by convection and diffusion, Sacin is given

by the first SNIII value eliminating the convection inhomogeneity. Thus, it is defined

as

Sacin = SNIII(1) − Scond · TO(1) (2.15)

where SNIII(1) is the normalised phase III slope of the first breath and TO(1) is the

turnover value from the first breath [79]. The turnover is defined as the ratio of the

accumulative expired tidal volumes and the lung residual volume FRC.

TO(n) =

∑n
1 VT (n)

FRC
(2.16)

The magnitudes of Scond and Sacin for patients with lung diseases are normally higher

than normal persons in MBNW tests as shown in figure 2.11 [79].

Paiva’s Mathematical Model

These two indices, Scond and Sacin, have been adapted from Paiva’s original mathemat-

ical model and the following derivation is based on his original paper [55]. The model

is based on a few assumptions summarized as follows:

1. The lung consists of two compartments (1 and 2) in parallel which have different venti-

lation rates V̇1(t) and V̇2(t).

2. The inspired gas mixes well instantly in these two compartments and thus the gas con-

centration from each breath is constant during expiration.

3. The expired flow rate is higher from the better-ventilated compartment, i.e., V̇1(t) >

V̇2(t).

4. The flow rate from the better-ventilated compartment decreases steadily during ex-

piration (V̈1(t) < 0) while from the poor-ventilated compartment increases steadily

(V̈2(t) > 0). And the overall flow rate is constant (V̈1(t) + V̈2(t) = 0)1.

As shown in figure 2.12, consider that these two compartments with gas concentra-

tions c1,n, c2,n from the nth expired breath each has an exponential form as a function

1In real cases, the flow rate is hardly constant.
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Figure 2.12: The schematic flow and concentration diagram of Paiva’s model based on two-

compartment model with different ventilation rate. The upper one c1,n is the poorly-ventilated

units. The middle one the the better-ventilated units. The bottom one is the overall ventilation.

The hashed area is the expired volume. Both of the volume changing rate and the concentration

are plotted as a function of time [55].

of breath number with the clearance coefficient k1 and k2, i.e.,

c1,n = c1,0e
−k1n, (2.17)

c2,n = c2,0e
−k2n. (2.18)

Both of the initial gas concentration in each compartment c1,0 and c2,0 are equal to

the initial alveolar concentration ca0. The instant expired gas concentration cn(t) can

be expressed as

cn(t) =
c1,nV̇1(t) + c2,nV̇2(t)

V̇1(t) + V̇2(t)

=
c1,nV̇1(t) + c2,n(t)V̇2(t)

V̇T

(2.19)
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where

V̇T = V̇1(t) + V̇2(t) (2.20)

is the overall time-dependent expiration flow rate from the lungs.

The phase III slope from the nth breath dcn/dV is the increasing rate of the gas

concentration as a function of expired gas volume (VT ) which can be given by

dcn(t)

dV
=

cn(T
2 ) − cn(0)

VT

=
[c1,nV̇1(

T
2 ) + c2,nV̇2(

T
2 )] − [c1,nV̇1(0) + c2,nV̇2(0)]

VT V̇T (t)

=
[c1,0e

−k1nV̇1(
T
2 ) + c2,0e

−k2nV̇2(
T
2 )] − [c1,0e

−k1nV̇1(0) + c2,0e
−k2nV̇2(0)]

VT V̇T (t)

=
ca0e

−k1n[V̇1(
T
2 ) − V̇1(0)] + e−k2n[V̇2(

T
2 ) − V̇2(0)]

VT V̇T (t)

=
ca0∆V̇ [e−k1n − e−k2n]

VT V̇T (t)
(2.21)

where T
2 is the expiration duration time and ∆V̇ is the flow rate change as shown in

figure 2.12. The mean concentration from the nth breath is

cn =
[c1,nV̇1(

T
2 ) + c1,nV̇1(0)]T

2 + [c2,nV̇2(
T
2 ) + c2,nV̇2(0)]T

2

2VT

=
Tca0[e

−k1nV̇1 + e−k2nV̇2]

2VT
. (2.22)

The normalised phase III slopes can thus be written as

SnIII =
dcn

dV

cn

=
ca0∆V̇ [e−k1n − e−k2n]

V̇T
T
2 [e−k1nV̇1 + e−k2nV̇2]

=
ca0∆V̇ [e−k1n − e−k2n]

VT [e−k1nV̇1 + e−k2nV̇2]
. (2.23)

In Paiva’s paper [55], two clearance coefficients k1 and k2 have been mistakenly

regarded as

k1 + k2 =
V1 + V2

FRC
=

VT

FRC
. (2.24)
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However, in practice the gas concentration from two compartments should be given

by

c1,n = ca0

(

FRC1

FRC1 + V1

)n

c2,n = ca0

(

FRC2

FRC2 + V2

)n

, (2.25)

where

FRC = FRC1 + FRC2, (2.26)

VT = V1 + V2. (2.27)

Thus k1 and k2 is more accurately given separately by

e−k1 =
FRC1

FRC1 + V1
, (2.28)

e−k2 =
FRC2

FRC2 + V2
. (2.29)

The normalised phase III slope can thus be re-written down as

SNIII =
ca0∆V̇

[(

FRC1

FRC1+V1

)n
−
(

FRC2

FRC2+V2

)n]

V̇T
T
2

[(

FRC1

FRC1+V1

)n
V̇1 +

(

FRC2

FRC2+V2

)n
V̇2

] . (2.30)

If we re-define the clearance coefficients CL1 and CL2 as

CL1 =
FRC1

FRC1 + V1
(2.31)

CL2 =
FRC2

FRC2 + V2
, (2.32)

SNIII can be re-written down as

SNIII =
ca0∆V̇ [CL1

n − CL2
n]

V̇T
T
2

[

CL1
nV̇1 + CL2

nV̇2

] . (2.33)

The changing rate of SNIII as a function of n can be given by

dSNIII

dn
=

ca0∆V̇

V̇T
T
2

·

[

CL1
n · CL2

n · lnCL1

CL2
·
(

V̇1 + V̇2

)]

[

CL1
nV̇1 + CL2

nV̇2

]2 (2.34)

=
ca0∆V̇ lnCL1

CL2

T
2

· [CL1
n · CL2

n]
[

CL1
nV̇1 + CL2

nV̇2

]2 . (2.35)
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Thus, dSNIII

dn is always positive as long as the clearance coefficient from the poorly-

ventilated compartment is higher than from the better-ventilated compartment, i.e.,

CL1 > CL2 or V1

FRC1
< V2

FRC2
. As mentioned previously, Scond is the increasing rate of

dSNIII

dn after the first few breaths, and Sacin is given in Eq. 2.15 as the SNIII from the

first breath with the subtraction of Scond. Thus, two indices can be given by

Scond =
dSNIII

dn n→∞

(2.36)

=
ca0∆V̇

T
2

· lnCL1

CL2
· CL2

n

CL1
nV̇1

2 , (2.37)

Sacin =
ca0∆V̇ [CL1 − CL2]

V̇T
T
2

[

CL1V̇1 + CL2V̇2

] − ca0∆V̇
T
2

· lnCL1

CL2
· CL2

n

CL1
nV̇1

2 . (2.38)

Figure 2.13 shows six SNIII curves as a function of n with the same residual ca-

pacity (FRC = 3.6 L), expiration duration (T
2 = 2.5 sec), initial alveolar concentration

(ca0 = 0.8) but different FRC1 and FRC2, V1 and V2, tidal volume VT , and flow rate

change ∆V̇ . The Scond and Sacin values from each curve are also displayed. Since

Paiva’s model has idealised the expiration pattern by assuming instantly well-mixed

gas and constant flow rate, it is hard to correlate the Scond value to the ventilation in-

homogeneity in the conduction airways or the Sacin value to the inhomogeneity in the

acinar airways. It can only be roughly summarised that the higher ratio of two clear-

ance coefficients (CL1/CL2) or the higher flow rate change (∆V̇ ) gives the higher values

of Scond and Sacin. It means when the flow or the expansion from the less-ventilated

compartment is badly restricted compared to the better-ventilated compartment, the

resulting Scond and Sacin values are relatively high. However, the definition of Sacin in

Paiva’s mathematical model is contradictory in physiological model. Sacin is defined as

an index to tell the degree of inhomogeneity in the acinar airways. It comes from the

first breath with the subtraction of the conductive inhomogeneity since the interaction

between oxygen and nitrogen is weighted the most for the first breath. The existence of

the interaction between two gases is contradictory to the well-mixed assumption which

Paiva’s model is based on. Therefore, the model is unable to reveal the real washout

results.
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Figure 2.13: The simulation results from the Paiva’s two-compartment mathematic model.

The normalised phase III slope SNIII as a function of breath number n with initial alveolar

concentration ca0 = 0.8, FRC = 3.6(L) and T/2 = 2.5(sec). Six different curves represent

different FRC1 and FRC2 (in L), V1 and V2 (in L), CL1 and CL2 (dimensionless),VT (in L),

and ∆V̇ (= ∆V/0.5T , in L/sec).
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The comparison of the normalised phase III slopes SNIII and the clearance washout

results has rarely been shown in recent studies of MBW measurements. Therefore, it

will be a key part in the analysis on MBHW measurements.

2.3.4 Continuous Emptying Pattern on 50-Compartment Model

Unlike the simple two-compartment model, S. Lewis has developed a more complex

model that the human lungs are consisted of 50 parallel compartments with different

ventilations [43, 44]. Each compartment i is specified by the ventilation VT · V̇ (i) and

its tidal ventilation S(i)(= VT · V̇ (i)/V0(i)), where VT is the overall tidal volume, V̇ (i)

is the fraction of the ventilation from ith compartment, and V0(i) is the volume of

the compartment at end expiration. The mean concentration of the jth breath (Cj) is

given by the summation of all compartments

Cj

C0
=

50
∑

i=1

V̇ (i) ·
(

1

1 + S(i)

)j

≡ M(j, ~V ) (2.39)

where C0 is the initial nitrogen concentration before the washout started and ~V in-

dicates the collection of V̇ (i). The washout data were analysed by minimising the

expression

∑

j

[

W (j) ·
(

Cj

C0
− M(j, ~V )

)]2

+ 0.001 ·
∑

i

[

WC(i) · V̇ (i)
]

(2.40)

where W (j) is a weighting constant (which has been set as unity), and WC(i) is the

weighting function given by 1/C1 · (1 − Cn) where C1 and Cn are concentrations in a

given compartment on the first and last breaths from the washout data, respectively.

Two assumptions have been made in this model. The tidal ventilation S(i) is fixed for

each specified compartment from each breath during the washout measurement. The

specified compartments were equally spaced on a log scale from a specific ventilation of

0.005 to 10 [44]. The washout results from 15 obstructive patients show a wide unimodal

distribution in poorly ventilated units or bimodal distribution in very poorly- and very

well-ventilated units. However, for the normal young subjects, the results show a narrow

unimodal distribution at the well-ventilated units [43] as shown in figure 2.14.
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Figure 2.14: The washout results based on the analysis of 50-compartment model. The

fractional ventilation is plotted as a function of relative tidal ventilations (tidal ventilation/lung

volume). (a) shows the results from 8 young normal people. All show a narrow unimodal

distribution located at around 0.2 relative ventilations. Occasionally another small peak appears

at better- ventilated units with the value of 1 to 2 relative ventilations. (b), (c) and (d) show

three different patterns from 15 subjects (5 for each graph) with diffuse obstructive pulmonary

syndromes (DOPS). Pattern 1 and 3 show bimodal distribution with very poorly- and well-

ventilated units. Pattern 2 shows a wide unimodal distribution lacking of very well-ventilated

units [44].
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The new model of tidal emptying pattern has been developed in a few modern

studies with the consideration of gas re-breathing from the dead space [26, 84]. The

mathematical model based on the one- and 50-compartment model are described and

compared with the results from the inert gas elimination technique. Unlike the MBW

technique, the tracer gas is inserted into the blood and the concentration of the tracer

gas is sampled by taking the blood sample. From the inert gas elimination results, the

breathing pattern is more likely tidal emptying instead of continuous which means the

gas re-breathing from the dead space is unable to be ignored.



Chapter 3

MBHW System

3.1 Overview

The multi-breath-helium-washout (MBHW) system built in Nottingham is introduced

in this chapter. Helium gas is used as the tracer gas instead of nitrogen and washed out

by room air in the MBHW measurements. First, the heliox gas (21% O2+79%4He) is

inhaled until the air is flushed out of lungs which is the helium wash-in (or the nitrogen

washout) process. The helium washout measurement is followed by the wash-in process

by switching the inhaled gas supply from the heliox to room air. All the measurements

are made at room temperature(18±2 oC) under atmosphere (100±3 kPa) in a lab with

windows open. Calibrations have been made for sensors and linear fitting curves have

been applied to some of the data. All the fittings have been done by the MatLab curve

fitting tool box (v7.0.4) and the goodness of those fittings are represented by SSE (the

sum of squares due to error), R-square (the coefficient of multiple determination which

represents how successful the fit is, a value closer to 1 indicates a better fit), and RMSE

(the root mean square error, a value closer to 0 indicates a better fit)1.

The whole system can be divided into two main parts, the gas volume measuring

and the gas analysing system as shown in figure 3.1. The gas volume measuring system

1More details about the meaning of those three values can be referred to the user guide of MatLab

(v7.0.4).
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uses turbine and a pressure sensor to monitor the pressure at the mouth and two flow

meters to measure the inspired and expired gas volumes. The gas analysing system

consists of a quartz-tuning-fork (QTF) gas density detector, and an infrared (IR) CO2

detector. Since the expired gas mixture from our lungs is saturated with water vapour

which interferes with the QTF and IR detector signal, a water trap has been used

to filter out the water vapour. A quartz tuning fork, with a resonant frequency (fc)

32768 Hz, is used as a gas density detector. Its resonant frequency is linearly related

to the surrounding gas density and gives a big response to helium gas (with about 4

Hz frequency shift for heliox). The concentration of carbon dioxide is monitored by

an infrared absorption detector. The temperature and the pressure are monitored by

a filament-type thermistor and a silicon-diaphragm differential pressure sensor. The

sampling gas is pumped by a Pitot-type air pump.

3.2 Gas Volume Measuring System

The system diagram is shown in Figure 3.2. The mouth-piece is connected to two

flow meters for measuring the inspired and expired gas volume. A pressure sensor

(26PCCFA1D, Honeywell, UK) connected nearby the mouth-piece is for detecting the

direction of the flow. Its signal (P1) is coupled through a break out box to the PC and

is used in LabView (DAQboth.vi) to reset the volume measurement when changing the

breathing direction.

Each flow meter consists of a one-way valve, a LED emitter (Op290A GaAlAs Plas-

tic infrared emitting diode, Optek Technology, US) and receiver (OPB917 Photologic

slotted optical switch, Optek Technology, US), and a turbine (Medical turbine, Mi-

croMedical, UK) with a light, black turbine fan inside. Each receiver is connected to

a circuit which consists of a counter, a digital-to-analog converter and an operational

amplifier. The LED emitter and receiver are fixed close to the turbine and opposite to

each other with the fan blade in between. When there is no gas flowing through, the

LED light is blocked out by the fan (figure 3.3(a)). When the gas passes through the

turbine, the fan starts rotating, the LED light is unblocked and received by the LED
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is proportional to the gas volume. The signal of two LED receivers goes into a circuit for
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Figure 3.3: Turbine and LED detecting diagram. (a) The gas flowing through

and the fan starts rotating. (b) The light is unblocked and received twice per cy-

cle. (c) No gas flowing through the fan stops rotating and light is blocked again.

(http://www.micromedical.co.uk/products/animatedturbine2.swf)

receiver twice per rotation which sends a pulsed signal to the counter (figure 3.3(b)).

During expiration, the pressure signal (P1) is higher than the non-flowing signal which

tells the computer to send a pulse, resetting the inspiration counter to zero. On the

other hand, during inspiration a pulse signal is sent to reset the expiration counter.

Since the fan is very light, the inertial force from its mass can be ignored. Therefore,

the gas volume passing through can be assumed to be proportional to the number of

rotations. The whole system is controlled by a LabView programme (DAQboth.vi)

which will be described in the following chapter.

Commercial medical pneumotac flow meters applied to spirometry are not suitable

for this experiment. They detect the pressure difference across a fine mesh which is

dependent on the gas viscosity. According to the Poiseuille law, the pressure drop (∆P )

in a laminar, incompressible, viscous fluid flowing through a long cylindrical pipe can

be given by

∆P = −8µlQ

πr4
(3.1)

where µ is the dynamic viscosity of the fluid which is different from air (188.5 mP) to

helium (209.5 mP) [29], l is the length of the pipe, Q is volumetric flow rate, and r is
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the radius of the pipe. Thus they cannot be applied to a gas mixture with an unknown

concentration of multiple constituents. The other end of the inspiration turbine is

connected to two full-way manual handle valves with 1 cm inner diameter. One of

them is open to room air and the other is connected to a 80 litre foil balloon full of

heliox gas at room temperature. During the washout measurement, the composition of

the inspired gas is controlled manually by switching on and off the manual valves.

3.3 Gas Analysing System

The system consists of a water trap, a quartz-tuning-fork (QTF) gas density detector,

an infrared (IR) absorption CO2 detector, a thermistor (T), and a pressure sensor (P2)

as shown in Figure 3.1. The sampling gas is taken from nearby the mouth and flows

through the water trap first to filter out the water vapour. The water trap is made of

a stainless steel coil dipped in an ice bath joined to a copper coil at room temperature

which is introduced in section 3.4. The QTF gas density detector system is the key

sensor for this multiple gas analyser system and is introduced in section 3.5. The

infrared CO2 detection cell is the other main sensor in this system since the exhalation

consists of about 4% carbon dioxide. To reduce the water vapour condensed on the

wall which would block the IR signal, two heaters are attached to the infrared cell with

a temperature control circuit. More details are introduced in section 3.6.

A thermistor is connected near the water trap for monitoring the temperature of

the gas entering the QTF cell. It is described in section 3.7. The other end of the QTF

cell is connected to a pressure sensor for detecting the pressure nearby the tuning fork.

It is described in section 3.8 The thermistor and pressure sensor need to be connected

together close to the QTF cell because the density of gas depends on pressure and

temperature which should be taken into account when calculating the concentrations

of the gases. The sampling gas is pumped with a Pitot-type air pump which is more

stable than other mechanical diaphragm pumps and will be described in section 3.9.

The washout measurement block diagram is shown in figure 3.4. Before the washout

measurements start, subjects are asked to do several normal breaths. This is to de-
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termine the concentration changing rate of oxygen consumption (d[O2]) versus carbon

dioxide production (d[CO2]), Qr, from each subject. The reason for this pre-washout

CO2 measurement is because of the difficulty of detecting oxygen or nitrogen. Mass

spectrometers are normally used for detecting nitrogen concentration but have slow

response for the washout measurement. Commercial oxygen sensors such as electro-

galvanic fuel cells have even slower response (more than 3 seconds) or in high price

such as phosphorenscense life time method (response time 0.1 seconds). Therefore, the

combination of QTF density and CO2 measurement can be regarded as an indirect

method of oxygen sensing by getting the Qr value for each subject which we assume it

is constant during the washout measurements.

3.4 Water Trap

The water trap (Figure 3.5) consists of a coil (inner diameter 3.5 mm) made of stainless

steel dipped in an ice bath followed by a copper coil (inner diameter 1.5 mm) at room

temperature. Water vapour is condensed on the wall of the stainless steel coil which

has slightly lager inner diameter than other tubes in case the gas is blocked by water

droplets. The temperature, pressure, and the flow rate of the sampling gas is stabilised

by the narrow copper coil.

The efficiency of the water trap cannot be quantified accurately in this work. The

main reason is that the sampling gas is always pumped under a high speed (dynamic

pressure is about 0.9 atm) through the sensors while normal commercial humidity de-

tectors have a slow response. A humidity measurement has been made with a moisture

meter (The Shaw Automatic Dewpoint Meter, Shaw, UK) which gives the same re-

sponse to room air as to the gas filtered by the water trap. Without the water trap,

water droplets can be condensed on the QTF which causes QTF signal to drift out of

the detectable range during the washout measurement (less than two minutes). This

takes more than two hours to dry up. With the water trap, the QTF signal is detectable

for longer than half an hour. According to the Goff-Gratch equation, which describes

the partial pressure of the water vapour saturated in air varying with temperature,
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Log10PH2O = −7.90298

(

373.15

T
− 1

)

+ 5.02808 × Log10

(

373.15

T

)

− 1.3816 × 10−7
(

1011.344(1− 373.15
T ) − 1

)

+ 8.1328 × 10−3
(

10−3.49149( 373.15
T

−1) − 1
)

+ Log101013.25 (3.2)

PH2O(T = 0oC) = 0.61 (3.3)

PH2O(T = 38oC) = 6.62 (3.4)

where PH2O(T ) is the saturated water vapour in kPa in the air at temperature T (in

Kelvin). We simply assume the expiration is saturated with water vapour (6.54 % at 38

oC) passes through the 0 oC water trap leaving only 0.60 % of water vapour remaining

in the gas. A more accurate saturated water vapour pressure can be determined by

measuring the temperature of the sampled gas mixture flowing through the water trap

with a quick-response thermistor.

3.5 QTF Gas Density Detecting System

To detect helium gas accurately and efficiently is always a challenge because of its small

density and high mobility. Traditionally, mass spectrometers are used as helium leak de-

tectors especially in vacuum systems. However, their slow response prevents application

to the washout measurement. Other sensors for helium leak detectors such as ultra-

sonic transducers can only detect small amount of helium because of the high acoustic

attenuation in mixtures or low signal-to-noise ratio. In helium washout measurements,

high accuracy and quick response (less than 0.01 sec) is required. Thus, instead of

the traditional methods mentioned above, a quartz tuning fork with a phase-lock-loop

frequency detector is used as the gas density detector which gives quick response to the

helium gas. The response-time measurement is described in section 3.10.4.

Piezoelectric quartz tuning forks are normally used as frequency standards in digital

watches. Because of their high stability and quality factor (10,000 in air), quartz tuning
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Figure 3.6: (a) Crystal structure of quartz SiO2. (b) Piezoelectricity of the quartz. When an

external mechanical force applied on it which causes the crystal deformation, there exists an

electric potential of the crystal.

forks have been used in various sensor applications; for example, measuring the thermal

properties of liquid helium [3], as force sensors for atomic force microscopy [28], as SF6-

gas density sensors [89], and as mass sensitive sensors in liquid [90].

3.5.1 Theory

Piezoelectricity

Quartz (SiO2) crystals have been known to have a piezoelectric property, i.e., they

generate the electric potential when an external mechanical stress is applied. The

piezoelectricity is the ability to convert the mechanical deformed potential to the electric

potential. Figure 3.6 shows the piezoelectricity of the quartz crystal. The inverse

piezoelectric effect converts the external electric potential to a mechanical deformation.

This effect explains the quartz tuning fork oscillation.

The typical tuning fork has two tines (with length L=3.98 mm in this work) and

a rectangular cross-section (of thickness h=0.40 mm and width b=0.60 mm). The

mechanical resonance of the tuning fork geometry is coupled electrically to the metal
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contacts on the surface of the quartz. The electrical metal contacts are made of sil-

ver, patterned on the surface of the tines (Figure 3.7(a)) to excite a flexural mode of

oscillation as shown in Figure 3.7(b) dashed lines.

Damping Oscillator

When a tuning fork is placed in a fluid medium, each tine can be regarded as a damped

oscillating cantilever. The equation of motion can be given by the form of harmonic

oscillator for the fundamental mode with a driving force F at angular frequency ω, i.e.,

Feiωt = me
∂2x

∂t2
+ meγ

∂x

∂t
+ kx, (3.5)

where me is the effective mass of the cantilever, x is the relevant vibrating displacement,

γ is the drag force constant caused by the viscosity of the fluid, and k is the elastic

constant of the cantilever. For a uniform cantilever beam with rectangular cross section,

k can also be expressed in terms of the Young’s modulus E [11]

k = E
h3b

4L
, (3.6)

where h, L, and b are the dimensions of the cantilever beam as shown in Figure 3.7

[11]. The related fundamental resonant frequency f can be expressed in a general form
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of

f =
ω

2π
=

1

2π

√

k

me

=
1

2π

√

Eh3b

4Lme

=
Cq

2π

√

E

ρq + ρg
, (3.7)

where Cq is the geometry factor of the cantilever, ρq and ρg are the density of the

cantilever (quartz) and the surrounding medium (gas), respectively. For small gas

density ρg compared to the density of quartz ρq, the frequency shift (∆fg), can be

expressed as

∆fg

fv
=

fv − fg

fv

= 1 −
√

ρq

ρq + ρg

∼= 1

2

(

ρg

ρq

)

, (3.8)

where the resonant frequency in vacuum (fv) and in gas (fg) are given by

fv = f(ρg = 0) =
Cq

2π

√

E

ρq
, (3.9)

fg = f(ρg > 0) =
Cq

2π

√

E

ρq + ρg
. (3.10)

The resonant frequency in heliox-air mixture (fHe) can be related to the resonant

frequency in nitrogen (fN2
) and carbon dioxide (fCO2

) as

∆fHe − ∆fN2

fv

∼= 1

2

(

ρHe − ρN2

ρq

)

, (3.11)

∆fHe − ∆fN2

∆fCO2
− ∆fN2

∼=
(

ρHe − ρN2

ρCO2
− ρN2

)

, (3.12)

where ρHe, ρN2
, ρCO2

are the densities of heliox-air mixture, nitrogen, and carbon diox-

ide, respectively.

Therefore, the net effect of the surrounding medium will cause a change in the

effective mass of the cantilever which depends on fluid density and viscosity. For a QTF
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The beam is fixed at x = 0 with length L and rectangular cross-sectional area A = b × h.

oscillator, the patterned silver contacts should also be included in the effective mass.

When exposed to air, silver will be oxidised gradually, increasing the effective mass, and

thus decreasing the resonant frequency (about 1 Hz per three month in Nottingham).

In this work, instead of measuring the frequency in vacuum (fv), the resonant frequency

in pure nitrogen fN2
and in pure carbon dioxide fCO2

are measured as the reference

frequencies before every the washout measurement to allow accurate calculation of

expiratory gas density. Since the density of helium is much lower than of nitrogen

((ρHe − ρN2
)/ρN2

= −86%) compared to the viscosity ((µHe −µN2
)/µN2

= 5.6%), only

the density effect is taken into account in the frequency shift.

Elastic Equation of a Cantilever Beam in Fluid

Another theory extended by J. E. Sader is to consider the cantilever as an elastic

beam immersed in a fluid [78]. He pointed out an unpublished experimental result

from Chu [10] which gave an expression for a flexural angular resonant frequency of a

cantilever in fluid ωf

ωf = ωv

(

1 +
πρfb

4ρqh

)

−1/2

. (3.13)

where ρf and ρq are the density of surrounding fluid and the cantilever, b and h are

the width and thickness of the cantilever, respectively. For small ρf , this formula gives

the similar form of the frequency shift to the damped oscillator theory mentioned in

the previous section.

To derive the resonant frequency from an elastic equation, first of all consider a
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cantilever beam vibrating in a flexural mode with the small deflection y(x, t) which is a

function of x and time t (Figure 3.)1. The strain ϕ, which is the displacement of y(x, t)

along x, due to the bending component is

∂y(x, t)

∂x
= ϕ(x, t). (3.14)

The kinetic energy K(t) of the whole beam and the potential energy V (t) due to

the deformation can be written as

K(t) =
1

2

∫ L

0
ρqA

[

∂y

∂t

]2

dx, (3.15)

V (t) =
1

2

∫ L

0
EIA

(

∂ϕ

∂x

)2

dx. (3.16)

where E is the elastic modulus, and IA is the area moment of inertia of the cross section

A about the neutral axis x

IA =

∫ h
2

−h
2

y2dA

=

∫ h
2

−h
2

y2dxdy

=
bh3

12
. (3.17)

The work WF (t) done by an external force per unit length F (x, t) is

WF (t) =

∫ L

0
F (x, t)y(x, t)dx. (3.18)

The Lagrangian of the cantilever beam can be given by

L =

∫ t2

t1
[K(t) + V (t) + WF (t)] dt. (3.19)

According to the Hamilton’s principle,

∂L

∂q
− d

dt

∂L

∂q̇
= 0, (3.20)

1The shear mode and rotary mode are not taken into account in this case. The further derivation

of the full modes can see the reference [30].
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by taking the second derivative of x on both sides, we can get

ρA
∂2y(x, t)

∂t2
+ EIA

∂4y(x, t)

∂x4
= F (x, t) (3.21)

which is the so-called Euler-Bernoulli beam equation [30].

Solving Eq. 3.18 by separating y(x, t) as a form of a spatial function Y (x) times a

time function ℑ(t) , i.e., y(x, t) = Y (x)ℑ(t), it leads to two differential equation [30]

d2ℑ(t)

dt2
+ ω2

vℑ(t) = 0, (3.22)

d4Y (x)

dx4
− C4Y (x) = 0, (3.23)

where C is the root of

1 + cosCcoshC = 0. (3.24)

The vacuum angular frequency ωv thus can be given by [30]

ωv =
C2

L2

√

EIA

ρqA
. (3.25)

Now consider an external load applied by the surrounding fluid. By taking the Fourier

transform of Eq. 3.18, the solution leads to the hydrodynamic load per unit length [78]

F̃ (x|ω) =
π

4
ρfω2

fb2Γ(Re)y(x|ω) (3.26)

where Γ(Re) is the normalised hydrodynamic load depending on the Reynolds number

Re which is the ratio of the inertial force to the viscous force of the fluid under a certain

circumstance. Hence the resonant angular frequency in the fluid ωg thus can be written

as

ωf = ωv

[

1 +
πρfb

4ρqh
Γ(Re)

]

−1/2

, (3.27)

where Γ(Re) is given by

Γ(Re) =

(

1 +
4iK1(−i

√
iRe)√

iReK0(−i
√

iRe)

)

[

0.91 − Ξ0(Log10Re)

1 − Ξ1(Log10Re)

]

, (3.28)

K0 and K1 are the modified Bessel functions, Ξ0 and Ξ1 are 6th-order power functions

of Re [67]. For a cantilever with small thickness h compared to its length L vibrating

in an incompressible flow, Γ → 1.
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CM R M
LM

C0

(a) (b)

Figure 3.9: (a) The electronic symbol of a crystal oscillator. (b) The equivalent circuit of a

crystal oscillator. CM , LM , and RM represent the capacitor, inductor, and resistor due to the

crystal mechanical vibration.

3.5.2 System Diagram and Working Principle

The quartz tuning forks (Watch Crystal NC26, Fox Electronics, USA) are commercially

supplied in a sealed can within a small amount of helium gas. Its dimensions have been

shown in Figure 3.7. A resonant frequency (32,768 Hz) under such flexural excitation

depends on the surface applied force. In this work, the quartz tuning fork is used as

an actuator driven by a Pierce oscillator. Its resonant frequency is measured when it

is exposed in the expired gas mixtures with the vacuum can removed.

Quartz Crystal Equivalent Circuit

When considering the quartz tuning fork as a damped harmonic oscillator, its equation

of motion mentioned in previous section can be given by

me
∂2x

∂t2
+ meγ

∂x

∂t
+ kx = Feiωt. (3.29)

The analog is a series-RLC circuit paralleled with a capacitor C0 as shown in Figure

3.9. CM , RM and LM represent the intrinsic property of the crystal. C0 represents

the coupled effect from the crystal leads and the circuit board. This operation can be

expressed as

LM
d2Q

dt2
+ RM

dQ

dt
+

Q

C
= Vqe

iωt (3.30)

where Q is the charge and Vq is the driving electric potential at angular frequency ω.

The RLC circuit is characterized by a large inductance LM (hundreds of Henrys) the
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analog to the effective mass, a very small capacitance CM (less than a milli pF) the

analog to the elasticity, and a very small resistance RM represents the damping factor.

Capacitor C0 represents the electrostatic capacitance and normally is as high as a few

pF (C0 >> CM ). The impedance of this circuit (Zq) is [70]

Zq = (ZCM
+ ZLM

+ ZRM
) //ZC0

=

(

1

jωCM
+ jωLM + RM

)

//

(

1

jωC0

)

=
s2 + sRM

LM
+ ω2

s

s
[

s2 + sRM

LM
+ ω2

a

] (3.31)

where j =
√
−1, s = jω, ωs and ωa are the series- and anti-resonant angular frequency,

respectively. When the crystal is excited at the series-resonance, it looks resistive in

the circuit. At this point, |ZLM
| = |ZCM

|, and ωs solely depends on series capacitor

CM and LM , i.e.,

ωs =

√

1

LM · CM
. (3.32)

When it is operating at anti-resonance mode, the LM ·CM looks inductive and resonates

with C0, i.e.,

ωa =

√

LM · CM + C0

CM · C0
= ωs

(
√

1 +
C0

CM

)

. (3.33)

For a crystal with high Q factor (Q = ωLM/RM
∼= 5000 for a QTF in air) , the damping

factor (RM ) is very small and normally can be neglected. Thus the impedance can be

written as [70]

Z(jω) = −j
1

ωC0

(

ω2 − ω2
s

ω2 − ω2
a

)

. (3.34)

The crystal reactance characteristic curve versus frequency is plotted in Figure 3.10.

The reactance is the imaginary part of the impedance. Since the impedance of a

capacitor (1/jωCM ) or inductor (jωLM ) is purely imaginary, they can also be regarded

as the reactance. The series-resonant frequency fs and anti-resonant frequency fa are

also marked.
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Figure 3.10: The frequency characteristic curve of a crystal reactance. Two special frequencies,

series-resonant frequency fs = ωs/2π and anti-resonant frequency fa = ωa/2π are marked

above. Xc and XL are the reactance of the capacitor CM and the inductor LM , respectively.

Modified from http://www.fairchildsemi.com/an/AN/AN-340.pdf.
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Figure 3.11: Pierce oscillator circuit diagram.

Modified from http://www.fairchildsemi.com/an/AN/AN-340.pdf.
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Pierce Oscillator

A Pierce oscillator is one of the most common crystal oscillators. The circuit diagram

is shown in Figure 3.11. The crystal (QTF in this work) works as an inductor since

it is operating in its parallel mode. The inverting amplifier (inverter and a feedback

resistor RF ) is phase shifted 180o (negative feedback). In conjunction with Ca and Cb,

it forms a π-network band-pass filter which generates another 180o phase and results

in 360o closed loop phase (positive feedback). A second resistor R2 is to reduce the

output of the inverter such that the crystal is not over driven. It also provides extra

phase to cancel out the inherent delay shift from the inverter. The load capacitance

CL is the capacitance other than crystal itself, i.e., CL = C1//C2 +Cstray where Cstray

is from the leads and circuit board. CL is chosen such that their series impedance is

equal to 0. The values of RF , R2, C1 and C2 are given in Figure 3.11 for this work

with an output signal through another inverter which gives the square wave of around

32757 Hz in air.

System Diagram

The QTF gas density detecting system diagram is shown in Figure 3.12. Two QTFs

are mounted in a plastic cell where gas passes through, one is exposed to the gas and

the other one is left with its vacuum can in place. The one within its vacuum can is

for compensating any change due to the temperature variation. Since the temperature

variation is very small during the washout measurement (less than 1oC), in practice the

temperature effect is simply ignored and the QTF exposed to the gas is the only that is

used. Two Pierce oscillator circuits have been built for each QTF and fixed on a circuit

board attached to the QTF cell and sealed with two rubber o-rings. A commercial

frequency detector (easyPLL plus 3.0 Detector, NanoSurf, Switzerland) with an inner

phase lock loop (PLL) is for detecting the frequency shift from the QTF. Its block

diagram is shown in Figure 3.13.
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Figure 3.12: QTF gas density detecting diagram

easyPLL Detector Working Principle

The easyPLL Detector working with a easyPLL Controller is normally applied to the

AFM (atomic force microscopy) [32, 40, 62, 68, 74]. The excitation signal from the

Controller drives a piezo actuator to oscillate with a tip attached on it. The vibra-

tion detected by the Detector depends on the surface geometry of the sample. In this

project, the Controller is replaced by a Pierce oscillator (excitation signal) for driving

the QTF (piezo actuator). Figure 3.14 shows the block diagram of the easyPLL Detec-

tor modified from the diagram in its operation manual with all the parameters used in

washout measurements. It consists of an input amplifier, a phase lock loop (PLL), an

output filter and amplifier, and a parallel port connected to a PC. The driver has been

installed and the front panel of the control software is shown in Figure 3.14. The PLL

consists of three main parts put in a negative feedback loop: a phase detector which

is a multiplier combined with a low-pass filter, a voltage controlled digital oscillator

(VCDO), and a PI (proportional-integral) controller.

The VCDO produces a reference signal Vref with the reference frequency fref and

an internal signal which has a digitally set phase shift (δ = 192.3o) with respect to the

reference signal Vref+δ. The internal signal goes into the multiplier combined with the

amplified input signal Vinput from the QTF oscillator which has a frequency finput. Its
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Figure 3.13: The easyPLL Detector block diagram modified from its operating manual
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Figure 3.14: The easyPLL Detector driver front panel

operation can be represented as

Vinput ⊗ Vref = a1sin (2πfinputt + φinput) · b1cos (2πfref t + δ)

=
a1b1

2
sin (2π(finput − fref )t + φinput − δ)

+
a1b1

2
sin (2π(finput + fref )t + φinput + δ) (3.35)

where φinput is the input phase relative to the reference signal, a1 and b1 are the

amplification factors. The resulting signal contains sinusoidal waves with the sum and

difference of finput and fref . The low-pass filter filters out the sum, and the resulting

signal Vd is

Vd =
a1b1

2
sin (2π(finput − fref )t + φinput − δ) . (3.36)

A PI controller is a PID controller without the derivative part. It is a feedback

control loop for stabilising a variable until it reaches the set point. The block diagram

is given in Figure 3.15. It takes the summation of a proportional (P), integral (I)

and derivative (D) of an error function (e(t)) which is the difference of the process

variable (PV ) and the set point (SP). In the easyPLL detector, the error function

e(t) = sin(2π(finput − fref )t + φinput − δ). When the error function is small, the



CHAPTER 3. MBHW System 69

Figure 3.15: The block diagram of the PID (proportional-integral-derivative) con-

troller. The differential part is not inclusive in a PI controller. Reproduced from

http://en.wikipedia.org/wiki/PID controller with the permission from Silverstar.

summation of the proportional and integral terms can be expressed as

P ⊕ I = Kpe(t) + Ki

∫ t

0
e(τ)dτ

= Kpsin(2π(finput − fref )t + φinput − δ)

+ Ki

∫ t

0
sin(2π(finput − fref )τ + φinput − δ)dτ

∼= KP (2π(finput − fref )t + φinput − δ)

+ KI(π(finput − fref )t2 + φinput − δ)t (3.37)

where Kp and Ki are the proportional and integral gain, respectively. The negative

feedback signal from the PI controller tells the VCDO to change the reference frequency

fref until the error function approaches zero, i.e., the reference signal and the input

signal have the same frequency and 0o phase shift. In this case, the loop is ”locked”.

Assume at first fref
∼= finput and the time interval t is very small, thus two terms of

2π(finput − fref )t can be simply ignored. The feedback signal, which is proportional to

(φinput−δ), becomes negative and the controller tells the VCDO to change the reference

frequency until Vref and Vinput are in phase.
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The signal from the PLL goes through another low-pass filter with the bandwidth

120 Hz to filter out unwanted frequencies outside this range. The filtered signal mixed

with an external offset voltage is then amplified with the output gain of 1.831 Hz/V

which gives the output signal to the PC, i.e.,

Voutput = (finput − Center freq.+ Offset freq.+ OffsetVoltage) × 1.831. (3.38)

Another output signal from the dF-BNC cable is the amplified signal without the

external offset voltage and with the gain of 18.31 Hz/V. Both output gains are displayed

in the control software panel. The operating mode ”Constant Excitation” is chosen

because the QTF is driven by an oscillator other than the eaPLL Controller. The other

two modes, ”Self Exciting Oscillation” and ”Constant Amplitude”, are useful when the

amplitude dissipation or the amplitude of the oscillation needs to be measured with

the easyPLL Controller. In this work only the Detector is used to detect the frequency

shift. The TipGuard is turned off since the QTF is used as an actuator without any

tip on it. The Polarity Switch controls the positive/negative sign of the output gain.

3.6 Infrared CO2 Absorption Detector

The absorption of infrared (IR) radiation by carbon dioxide gas has been observed

at several near IR bands inclusive of 2.7, 4.3, and 14.7 µm [47, 52]. The infrared

absorption spectra of water and carbon dioxide is shown in Figure 3.16. Since the

expired gas from our breath contains around 4% of CO2, a lead selenide (PbSe) pho-

toconductor (P9696 series, Hamamatsu, Japan) sensitive to 4.2-µm IR has been used

for detecting the concentration of carbon dioxide [85, 88]. This is not sensitive to the

abosrption from water vapour. The infrared absorption by carbon dioxide follows the

Beer-Lambert law which is exponentially related to the concentration of carbon dioxide.

The photoconductive PbSe film converts the optical energy into the electrical current.
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Figure 3.16: Infrared absorption spectra for water vapour (top) and carbon dioxide (bottom).

Mdified from http://www.bom.gov.au/info/climate/change/gallery/4.shtml

3.6.1 Theory

Beer-Lambert’s Law of Light Absorption

The Beer-Lambert’s law in optics describes that the absorption of light by a material

and is dependent on the concentration and the thickness of the material, i.e. [52],

Iout = I0e
−κl (3.39)

where I0 and Iout are the initial and output light intensity, κ is the absorption coefficient

of the material, and l is the thickness of the material travelled by the light. For multiple

materials, the absorption coefficient κ is a linear combination of all compositions, i.e.

κ = c1ǫ1 + c2ǫ2 + c3ǫ3 + · · · =
∑

i

ciǫi (3.40)

where ci and ǫi are the concentrations and extinction coefficients of the materials,

respectively. The diagram is shown in Figure 3.17. The derivation of the Beer-Lambert

law can be simplified by considering a material composed of small particles with ab-

sorbing cross-section σ. Suppose the particle number of density is N and the beam
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dI

IfI(x)−dI

Figure 3.17: Beer-Lambert law of light absorption. A light with initial intensity I0 passes

through a material with thickness l. The output intensity can be expressed as If = I0e
−kl

where k is the absorption coefficient of the material.

light with cross-section A is traveling along x direction. Considering a thin slab of the

material at x with the thickness dx, the light intensity is absorbed by a fraction of

σ · N · Adx, i.e.,

dI(x)

I(x)
=

−σ · N · Adx

A
(3.41)

∫

dI(x)I(x) =

∫ l

0
−σ · N · dx (3.42)

Iout = I0e
−σ·N ·l (3.43)

where σ · N is the concentration of the absorbing particles.

Photoconductivity of PbSe Semiconductor

Photoconductivity is a physical property existing in some materials that their con-

ductance increases due to the absorption of the photons with certain wavelength such

as visible light, infrared, and ultra violet. It is produced by the interaction between

photons and imperfect crystals. For semiconductors, there are additional energy levels

in the forbidden gap associated with the defects which disturb the periodicity of the

crystalline structure for a perfect crystal. Therefore, it is possible for electrons to take

on those energy levels between the conduction and valence band. The electrons thus

can be excited by absorbing the photon energy from valence band or from those ad-

ditional energy levels to the conduction band, or from the conduction band to those
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Figure 3.18: The electron excitation diagram. They can be freed (a) from valence band to the

conduction band, or (b) from the energy level in the forbidden gap to the conduction band, or

(c) from the valence band to those extra energy levels [7].

energy levels, as shown in figure 3.18 [7].

Following the excitation, the recombination of electron-hole pairs takes place which

is the reverse of the excitation process. The lifetime τ of the carriers is defined as the

time period between the generation and recombination. The conductance will increase

as long as those photon-generated carriers remain free and contribute to the electrical

current. Therefore, the longer carrier lifetime will cause the higher photoconductiv-

ity [87]. The lifetime of electrons τn (or holes τp) can thus be defined by τngp = δn (or

τpgp = δp), where gp is the photo-generated rate of carriers, δn (or δp) is the densities of

additional free electrons (or holes) maintained by the radiation in the steady state. And

the associated extra conductivity δσ can be expressed as δσ = δneµe + δpeµp, where

µe and µp are the mobility of electrons and holes, and e is the electron charge [61, 87].

Considering the recombination process other than the main transition (conduction

band to valence band), electron-hole pairs can recombine at those energy levels in

the forbidden gap which are so called the recombination centres. However, if the

cross-section of some recombination centres for capturing the majority carriers is much

smaller than for capturing the minority carriers, there will be an extended period for the

majority carriers to be freed before the recombination takes place. Those centres are

called trapping centres (or traps) in which the trapped carriers may also be thermally

excited back to the conduction band. The existence of trapping centres increases the
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lifetime of carriers and thus the photoconductivity [61, 87].

Photoconductivity of PbSe films was first observed at liquid nitrogen temperature.

However, at room temperature no photoconductivity was observed. The highest re-

sponse was made by baking in the presence of oxygen gas [34–36]. The PbSe films ini-

tially have low n-type resistivity and poor photoconductivity. The existence of oxygen

converts these films into p-type semiconductor, and the maximum photoconductance

relative to the dark conductance is obtained at slightly p-type region. The same treat-

ment with sulphur, selenium or halogens can only produce photoconductivity below

-195oC. All those agents (O2, S, Se, halogens) act as acceptors converting lead selenide

films from n-type into p-type. However, only oxygen sensitises the photoconductivity

of PbSe films at room temperature.

In the impurity sensitization model developed by Humphrey [35], oxygen introduces

minority carrier(electron) traps, (PbO)++, which increases the majority carrier(hole)

lifetime and thus enhances the photoconductivity. An (PbO)++ ion could trap an

electron and become (PbO)+ which repels holes, thus reduces the probability of re-

combination. Sulphur introduces shallow electron traps which can only increase the

majority lifetime effectively at low temperature. The energy levels of shallow traps are

very close to the conduction band such that electrons can be thermally re-excited back

to the conduction band and the effect is negligible under thermal equilibrium [31]. Oxy-

gen has much higher electronegativity (3.44) than sulphur (2.58) such that electrons

can be trapped more easily by oxygen. The trap energy levels with the existence of

oxygen lie much below the conduction band thus the thermal re-excitation will not eas-

ily take place. For halogens such as fluorine with even higher electronegativity (3.98),

after trapping an electron the (PbF)+ ion becomes (PbF) which can not repel holes

efficiently.

3.6.2 System Diagram and Working Principle

The system (Figure 3.19) consists of an optical cell, an On-Off temperature control

circuit, a low-pass filter, a function generator and a lock-in amplifier. The optical cell
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Figure 3.19: (a) The infrared CO2 detecting system. It consists of an optical cell, a function

generator, a balancing circuit, a lock-in amplifier, and a temperature-control circuit. (b) The

dimensions of the optical cell. (c) The On-off temperature control circuit modified from

http : //www.electronics − lab.com/projects/motorlight/011/.
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consists of a 4.2 µm infrared LED (LED42SC, Scitec,UK) and a PbSe photoconductive

detector (P9696 series, Hamamatsu, Japan) mounted in a metal box which is wrapped

by 1.5 cm-thickness of polystyrene sheets. The function generator (DS335, Stanford

Research Systems, US) gives 111.0 Hz2, 4.0 Vpp sinusoidal signal to the LED. The

PbSe photonconductive sensor contains a PbSe film and an optical chopper with 600

Hz chopping frequency. It is connected to a balancing circuit with a 9-VDC battery

for filtering out the DC signal and supplying the chopper. The output signal from the

filter is amplified by the lock-in amplifier (SR510, Stanford Research Systems, US).

Two heater resistors (2.2 Ω, 8.2 Ω) are put in the box connected to the temperature-

control circuit for warming up the cell and reducing the water vapour condensed on the

cell wall. A thermometer is attached to the cell for monitoring the inner temperature

of the box.

Optical Cell Operation Setting

The output frequency from the function generator to the infrared LED should be higher

than the main-power frequency 50 Hz. However, the signal to noise ratio will decrease

with the increase of the frequency. In this work, 111.0 Hz with 4.0 Vpp sine wave is

chosen with the parameters of the lock-in amplifier shown in the following table, it

gives 8.0 mV noise which is relative to 0.1% of CO2.

Figure 3.20(a) shows the output amplitude signal from the lock-in amplifier of which

0% and 100% carbon dioxide flowing through. Figure 3.20(b) shows the CO2 concen-

traion versus the output voltage with a dual-exponential curve. The concentration of

carbon dioxide is calibrated with the QTF system which will be described in a later

section.

2Frequency lower than 600 Hz chopping frequency can be chosen due to the Nyquist-Shannon

sampling theorem. 111 Hz input LED signal has been chosen to avoid the noise from the main power

50 Hz. The lock-in amplifier is to filter out the noise and give higher response. DC input LED signal

can ideally be used while the output signal from the PbSe receiver will be small and noisy. Frequencies

higher than 111 Hz can also be chosen but the signal-to-noise ratio will be relatively reduced.
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Lock-In Amplifier Parameters : Optical Cell

SIGNAL FILTERS OUT (all) EXPAND × 1

SIGNAL INPUT A REL OFF

SENSITIVITY 2 mV TIME CONSTANT PRE 100 ms

DYN RES Low TIME CONSTANT POST 0.1 s

DISPLAY X REFERENCE f , SINE

Table 3.1: Lock-in Amplifier Parameters - Optical Cell

On-Off Temperature Control Circuit

This circuit (Figure 3.21(a)) controls two heater resistors (10.4 Ω in total, ceramic)

based on comparing a set-point of the temperature. A silicon diode (1N4007GP) is

used as the temperature sensor since its forward voltage drop (Vf ) has linear negative

dependence of temperature [50]. It is caused by the reduction of the band gap across

the p-n junction where the electrons are thermally excited. An op-amp (LM258N) is

working as a comparator in the open-loop mode. The simplification of the comparator

diagram is shown in Figure 3.21(b) which gives the output voltage VOUT as

VOUT = VREF +
R12

R11
(VREF − VIN ) (3.44)

as shown in Figure 3.21(c). Its inverting input is connected to a reference voltage

adjusted by a 50Ω variable resistor. The paralleled zener diode gives a precise voltage

limit of -2.4 volts, i.e., −2.4 ≤ VREF ≤ 0. Its non-inverting input is connected to

the temperature-sensing diode. Since the forward voltage drop of the sensing diode

has linear-negative-temperature dependence, the correspondence voltage VIN can be

written as VIN (T ) = VIN (0) − αT where α is a positive constant. The output voltage

of the comparator can be rewritten as

VOUT = − |VREF | +
R12

R11
(− |VREF | − V (0) + αT ). (3.45)

When the temperature is higher than a set-point, the forward voltage drop of the sensing

diode cancels out the reference voltage, and the output voltage of the comparator is
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Figure 3.20: (a) The output signal from the lock-in amplifier of which are 0% and 100% of

CO2. (b) The concentration of carbon dioxide versus the output signal.

turning off the transistor thus the heaters. The the voltage across the heater is thus

zero and the LED is off. In this work, the temperature set-point is about 51±2 oC

measured by the thermometer. The voltage across the heaters is -6.63 volts when it is

on which gives 4.22 Watt power.

3.7 Glass-Encapsulated Thermistor

The thermistor (G540, 10 kΩ, Glass-Encapsulated Sensor, EPCOS, Germany) is made

of a tiny fuse encapsulated in a small glass bead. It has about 10-kΩ resistance at room

temperature and 3-sec thermal cooling time constant in air. It is fixed within a plastic

tube and connected to a circuit with a 8.7V battery-supplied voltage and a 1.005 MΩ

resistor in series (Figure 3.22). Two output voltages (Vtherm and Vbatte) are connected

to a second BNC box. The serial resistor is chosen higher than 1 MΩ to reduce the

current and the self-heating effect. A battery is chosen as the power supply since it has

low noise and steady DC voltage. To monitor two output voltages is necessary because
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the battery is running out gradually. The resistance of the thermistor RT (kΩ) can be

given by

RT =
Vtherm × 1005

Vbatte − Vtherm
(3.46)

Figure 3.23 shows its characteristic curve of resistance versus temperature from its

data sheet and a fitting curve fitted by MatLab (v7.0.4) curve fitting tool. Its resistance

as a function of temperature from the fitting curve can be written as

RT = 1.974 × 104e−0.0523T + 8163 × e−0.0225T (3.47)

while the inverse relation is

T = 748.5 ∗ R−0.1806
T − 117. (3.48)

Thus, the resulting resistance can be converted into the corresponding temperature.

The temperature from the thermistor is highly consistent with the temperature mea-

sured by a commercial thermometer (less than 0.1 oC error) in a non-flowing gas.
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However, in this work, the gas is flowing and the concentration of gas mixture is

varying which changes the thermal conductivity. The equation of energy dissipation

due to heat transfer in an incompressible fluid is given by [2]

∂T

∂t
+ ~v · ∇T = χ∇2T (3.49)

χ =
κ

ρgCp
(3.50)

where T is the temperature, ~v is the flow velocity, χ is the thermometric conductivity

related to the thermal conductivity κ, the density ρg, and the specific heat Cp of the

fluid. For higher concentration of flowing helium gas, it will conduct more heat to or

away from the thermistor. As helium gas passes through the water trap, it may thus

cause a temperature drop compared to the air at the same flowing speed. Therefore,

this thermistor is for monitoring the temperature stability of the gas passing through

the tuning fork to ensure it is isothermal. This is important because the gas density is

temperature dependent and thus the resonant frequency may be modified.

3.8 Pressure Sensor

3.8.1 Theory

Piezoresistivity

This type of pressure sensor is an application of the silicon piezoresistive effect. When

a mechanical stress is applied to a silicon crystal, the electrical resistance of the silicon

crystal changes. C. Smith (1954) had done a series of experiments on piezoresistance

of silicon and germanium [73]. He cited J. Herring’s [33] theory for explaining the

piezoresistive effect of semiconductors that the constant energy surfaces of electrons can

be presented as three ellipsoids in the momentum space which is related to the inner

polarization. In the strained state, the deformation potential increases polarization in

certain direction because of the distance reduction between carrier pairs, which causes

more electrons with high mobility and fewer electrons with low mobility in the field
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Figure 3.24: (a) The differential silicon-diaphragm pressure sensor. (b) The circuit of the

Wheatstone Bridge.

direction. Considering a single crystal of cubic silicon rod, its resistance Rρ varies with

the applied stress which can be expressed as

∆Rρ

Rρ0

= πlσl + πtσt (3.51)

where Rρ0
is its unstrained resistance, πl and πt are the longitudinal and transverse

piezoresistance coefficients, σl and σt are the longitudinal and transverse stress [76].

Dynamic Pressure

The gas mixture flowing through the pressure sensor produces the dynamic pressure

Pd which is defined as

Pd =
1

2
ρgv

2 (3.52)

where ρg and v are the fluid density and speed. The dynamic pressure of the fluid

is related to the kinetic energy of a fluid particle and has the same unit as the static

pressure. It is one of the terms of the Bernoulli’s equation which will be described in

the next section.
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3.8.2 Working Principle

This differential-type pressure sensor (26PCC type, Honeywell, Canada) is made of two

silicon diaphragm wafers attached together as shown in Figure 3.24(a). Each diaphragm

is open to a pressure inlet cavity and incorporates two piezoresistors in it. When the

diaphragm is deformed caused by the pressure, two piezoresistors (R11, R12) subjected

to the tangential and radial stress change. Two output voltages (V1, V2) from those

resistors are then connected to a Wheatstone bridge (Figure 3.24(b)). The amplified

output signal VOUT,P can thus be expressed as

VOUT,P

VCC
= GA

∆Rρ

Rρ0

(3.53)

where GA is the gain of the amplifier. The calibration of the output signal (VOUT,P in

volts) as a function of static pressure difference (P1-P2 in kPa) has been made at 18.5

oC under 100.4 kPa in the room air as shown in Figure 3.25. A linear curve is fitted

with MatLab (v7.0.4) curve fitting toolbox and the relation can be expressed as

P1 − P2 = 4.147 × VOUT,P − 0.01499 ± 0.10. (3.54)
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3.9 Pitot-Type Air Pump

3.9.1 Theory : Bernoulli’s Equation

The Pitot tube was named after the inventor Henri Pitót (1732). It consists of two

coaxial tubes as shown in figure 3.26(a). The interior is open to a steady flow with a

higher pressure Pt while the exterior one with an opening paralleled to the streamlines

registers the static pressure Pstatic. The pressure difference between the interior and

exterior tube is the dynamic pressure of the flow. According to Bernoulli’s equation

under the gravitational circumstances, the kinetic energy of the flow caused by the

dynamic pressure is converted to the potential energy, i.e.,

1

2
v2
f +

Pd

ρf
+ ghf = constant, (3.55)

where vf , Pd, ρf , and hf are the speed, dynamic pressure, density, and the height of

the flow, respectively. Considering an incompressible fluid flowing at a steady speed

along the streamlines, the Bernoulli’s equation can be modified as

1

2
v2
static +

Pstatic

ρf
=

1

2
v2
t +

Pt

ρf
(3.56)

where vstatic and Pstatic, vt and Pt are the fluid velocity and fluid pressure in the exterior

tube, the fluid velocity and fluid pressure in the interior tube, respectively. At vt = 0,

the interior pressure has the highest value where is called the stagnation point. The

fluid velocity in the exterior tube can thus be given by

vstatic =

√

2(Pt − Pstatic)

ρf
=
√

2ghf . (3.57)

Therefore, by applying a high-pressure air flow to the exterior tube, it produces a

pressure difference thus pumps the gas into the interior tube.

3.9.2 Pump Diagram

The Pitot-type air pump (ZU07L, Vacuum Ejector Series, SMC, Japan) is a modified

Pitot tube as shown in Figure 3.26(b). One end is connected to a air compressor which
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Figure 3.26: (a) The Pitot tube. (b) The Pitot-type air pump diagram.

can produce up to 15 kPa air pressure. The other end is connected to the sampling

loop. Two identical copper tubes with outer diameter 6 mm are connected to the ends

of the pump. The sampling gas pumping pressure is fixed at 8.95 kPa (-0.454 displaying

on the pressure gauge).
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3.10 Calibration for QTF in Gases

3.10.1 QTF in Non-flowing Gases

Considering the relation between the resonant frequency shift and the density of sur-

rounding gas as described in Eq. 3.9, i.e.,

∆fg − ∆fN2

∆fCO2
− ∆fN2

∼=
(

ρg − ρN2

ρCO2
− ρN2

)

(3.58)

where fg,N2,CO2
and fv are the resonant frequencies in different gases (gas mixture,

nitrogen, carbon dioxide) and in vacuum, and ρg, ρN2
, ρCO2

are the densities of gas

mixture, nitrogen, and carbon dioxide, respectively. The density of the gas mixture ρg

can be given by

ρg
∼= ρN2

+ (ρCO2
− ρN2

) · ∆fg − ∆fN2

∆fCO2
− ∆fN2

(3.59)

∼= ρN2
+

∆fg − ∆fN2

ζ
(3.60)

where

ζ =
∆fCO2

− ∆fN2

ρCO2
− ρN2

. (3.61)

Therefore, ρg can be given by measuring ∆fN2
and ∆fCO2

. The density of nitrogen ρN2

and carbon dioxide ρCO2
gas can be calculated according to the ideal gas law and the

ratio of frequency shift to density shift ζ can also be obtained. The sensing QTF has

been put in non-flowing pure dry nitrogen and carbon dioxide gas at room temperature

under atmospheric pressure (Figure 3.27(b)). The pressure and temperature signals

were also monitored (figure 3.27(a) and (d)). The infrared absorption signals from

100% and 0% of carbon dioxide (which is 100% nitrogen) were detected and the signal

difference is -0.2560 V (figure 3.27(d)). The signal noise from those detectors are also

marked in figure 3.27. The density of nitrogen is 1.1560 kg/m3 (22.1 oC, 101.4152 kPa)

and carbon dioxide gas is 1.8145 kg/m3 (22.2 oC, 101.4576 kPa). The ratio ζ has been

calculated as -4.5450 which can be regarded as a reference value for the flowing gas

measurement.
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3.10.2 QTF in Flowing Gases and Infrared CO2 Detector Calibration

During the helium washout measurements, the flowing gas mixture passes through the

cold water trap, the QTF cell, the thermistor and pressure sensor, and finally the

optical cell. To get the density of the gas mixture in the flowing gas, a calibration has

been performed by putting the flowing nitrogen and carbon dioxide gas through the

gas analysing system before every washout measurement. Thus, the resonant frequency

shifts ∆fN2
, ∆fCO2

, and ∆fg can be found, and the related temperature, pressure and

signal from the carbon dioxide detector were also monitored. The pure nitrogen and

carbon dioxide gas have been put in two foil balloons separately. Each balloon has

been connected to a one-way Luer valve (Polycarbonate Luer Stopcocks, WZ-30600-06,

Cole-Parmer, UK) for controlling the flow rate. Two valves from each gas are connected

with a tee tube and then to the gas analysing system.

Figure 3.28 shows the results from those sensors with 100% N2 and CO2 gas flowing

through including a value of the corresponding noise. Figure 3.28(e) and (f) display the

output signal difference from the carbon dioxide detector, ∆VCO2
, versus the concen-

tration of the carbon dioxide. Figure 3.28(e) is fitted with a double-exponential curve

from 0-100% CO2. However, it gives a big error for lower concentration of CO2 displyed

in (f). It may result from the lower thermal conductivity of carbon dioxide compared

to nitrogen such that the optical cell is warmed up when CO2 flows through. Since

the CO2 detector is sensitive to temperature, when switching from the carbon dioxide

to the nitrogen gas, the temperature effect can not be ignored for lower concenration

of carbon dioxide signal. Therefore, a 5.6% of carbon dioxide mixed with nitrogen has

been used instead, to calibrate the relationship between [CO2] and the CO2 detector

output signal as shown in figure 3.29. For lower concentration of CO2, the output signal

shows linear relation to [CO2] and it has been fitted with a linear polynomial curve.
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Figure 3.28: The four sub-graphs (a)-(d) display the results from the sense QTF, CO2 detector,
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noise has also been marked in each graphs. Two sub-graphs (e) and (f) on the right-hand side
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Figure 3.30: Dynamic pressure measurement for QTF resonant frequency shift in four different

gases (air, pure nitrogen, heliox, pure carbon dioxide). A linear curve has been fitted for each

data set. The ratio of the resonant frequency shift ∆fc and pressure difference is also displayed

on each graph.

3.10.3 QTF under Different Pressure

The QTF sensor has been put in four different flowing gases (air, pure nitrogen, heliox,

pure carbon dioxide) under 1 to 0.65 atm at room temperature. Each gas has been

put in a 4L plastic bag pumping through the QTF cell with a one-way Luer valve

(Polycarbonate Luer Stopcocks, WZ-30600-06, Cole-Parmer, UK) for controlling the

flow and thus the pressure. The dynamic pressure is measured with a commercial

pressure gauge (PDCR 4010, S/N 1635531, Druck, UK). Figure 3.30 shows the results

of the resonant frequency fc (in Hz) versus pressure (in atm) from four different gases.
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A linear curve has been fitted for each data set and the ratio of frequency shift and

pressure difference is also displayed on each graph.

The ratio of frequency shift versus the pressure change ( ∆f
∆P in different gases under

this calibrating method is not necessarily related to the gas density. The ratio is higher

in nitrogen than in air. It may be caused by the gas viscosity since nitrogen has smaller

viscosity (20.7430 µPa · s, at 300 K, 1 atm) compared to air (21.3241 µPa · s, at 300K,

1 atm) [41].

3.10.4 Response Time of QTF and Optical System

The response time of QTF system has been done by changing the dynamic pressure

of flowing air at room temperature. A lower dynamic pressure was made manually by

squeezing the sampling tube at the entrance of the QTF system. The sudden rise and

drop of the QTF signal represents the tube being squeezed and loosed. The response

time of the QTF system (<0.01 sec) has been taken as the time period of the pressure

drop from low to high pressure (pressure difference is 0.88 atm) as shown in figure

3.31(a).

The real response time of the optical system is hard to be measured since it only has

high response to the carbon dioxide gas and the time of gas diffusion and transportation

needs to be considered [38, pp. 59]. Since the chopping frequency of the photoconductor

is 600 Hz with the lock-in signal 110 Hz, the electronic response time is less than 0.01

sec. The response time of the optical system is not measured directly but the output

signal has been compared to the QTF signal from a normal breathing measurement.

Figure 3.31(b) shows the QTF signal and the modified optical signal3 from a normal

subject doing tidal breathing. Two sensors have identical response to the expirations

although the QTF has higher digital noise. Optical signal has a lag in inspiration signal

which is caused by the water vapour.

3It is modified by multiplying a constant to the original signal since at lower concentrations, the

output optical signal has linear variation with the concentration of carbon dioxide.



CHAPTER 3. MBHW System 93

9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time (sec)

∆ 
f (

H
z)

10.4 10.42 10.44 10.46

−0.1

0

0.1

0.2

0.3

0.4

0.5

70 75 80 85 90 95 100

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

time (sec)

M
od

ifi
ed

 Q
T

F
 a

nd
 O

pt
 s

ig
na

l (
V

)

QTF

Opt

low pressure

low pressure

high pressure

high pressure

0.88 atm

air

expiration

inspiration

(a)

(b)

Figure 3.31: (a)The response time of QTF system (<0.01 sec) is taken as the sudden drop

of the QTF signal from low to high pressure (pressure difference is 0.88 atm). (b)Modified

output signal from the QTF and optical system during normal-tidal breathing measurement.

Two sensors have identical response to the expirations, however, the optical signal has a lag

in inspirations which is caused by the water vapour. The base line (dash) represents the air

signal.
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3.10.5 Temperature Effect on CO2 Detector Output

Since the infrared photoconductor is very sensitive to the temperature, a measurement

of the output voltage from the CO2 detector has been done at various temperatures and

CO2 concentrations4. 100% nitrogen, 4.35% carbon dioxide, and 100% carbon dioxide

gases have been put through the optical cell during the cooling from 36 oC to 15 and 8

oC. Each dataset has been fitted with a 4th-order polynomial curve as shown in Figure

3.32(a). Figure 3.32(b) shows inverse curves of (a) fitted with the Gaussian functions.

The fitted polynomial and Gaussian functions are displayed in table 3.2 and table 3.3.

The temperature of gas flowing through the optical cell is normally at 36±2oC where

the difference of output optical signal between 100%, 5%, and 0% CO2 are constants.

Thus the linear realtion of [CO2] versus output optical signal in figure 3.29 is used for

the calibration.

4-th order polynomial fitting VCO2
= p1 · T 4 + p2 · T 3 + p3 · T 2 + p4 · T + p5

Gases p1 p2 p3 p4 p5 SSE/R-Square

100 % N2 5.052·10−6 -3.026·10−4 0.01109 -0.542 11.95 6.71/0.9998

4.35% CO2 in N2 -2.377·10−6 4.322·10−4 -0.01609 -0.06681 8.22 4.412/0.9989

100 % CO2 -1.38·10−7 1.249·10−4 -2.174·10−3 -0.2944 8.679 1.507/0.9994

Table 3.2: Temperature versus Optical System Output Voltages Curve Fitting Param-

eters

4The temperature-dependence measurements of the PbSe photoconductive films from other groups

can be found in [88]
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Figure 3.32: (a) Output voltage from the CO2 detector when pure nitrogen, 4.35% carbon

dioxide and pure carbon dioxide flowing through the optical cell under various temperature

during cooling process. (b) Inverse curves of (a).
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Gaussian fitting T =
∑5

i=1 ai · e−(
VCO2

−bi

ci
)2

Parameters 100 % N2 4.35 % CO2 100 % CO2

a1 1.33752·1012 7.086 1.584·108

b1 -16.03 0.8648 -0.7325

c1 3.372 0.9934 0.3739

a2 -1.837 15.67 2.349·1013

b2 4.208 1.325 -19.23

c2 1.916 8.262 3.686

a3 29.92 1.279·1012 666.2

b3 -0.1525 -2.263 -29.86

c3 7.255 0.6635 17.49

a4 0.102

b4 2.537

c4 0.06872

a5 9.632

b5 1.366

c5 2.899

SSE/R-square 248.8/0.9995 180.4/0.9983 75.798/0.9992

Table 3.3: Optical System Output Voltages versus Temperature



Chapter 4

MBHW System Control, and

Analysis Programme

This chapter is the user manual for the MBHW system. The MBHW system is described

in section 4.1. The system-control Labview programme is described in section 4.2. The

MBHW analysing programme is described in section 4.3. The systematic error and the

error from the analysis is discussed in section 4.4.

4.1 MBHW Experiment Setup

4.1.1 Experiment Preparation

Before each washout measurement, the MBHW system needs to be prepared, which is

described as follows:

Optical system warming up

To warm up the optical system to a steady temperature (47-50 oC) may take up to 2

hours from room temperature. Thus turning on a dc power supply to the heaters of the

optical cell is the first thing to setup the system. In the mean time, the other detectors

are powered up, and three LabView programmes DAQmx01.vi, DAQmx02 both.vi and
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DAQmx RESET.vi are loaded.

System Cooling down

When the temperature of the optical cell is nearly 47oC, the MBHW system is ready

to be connected to the ice water trap. Since in this project, an ice bath is used as the

water trap, it will take about 5-10 minutes cooling down the whole system to a constant

temperature (around 12oC depending on the room temperature) by a flowing gas. To

prepare for this step, an 80 litre balloon is filled with pure dry nitrogen gas. With the

ice bath filled with ice, connecting the ice water trap to the system and to the nitrogen

balloon, the dry nitrogen gas is flowing through the system. Nitrogen gas instead of

room air is used in this step to avoid water droplets from the air condensing to the TF

or other sensors or tubes joined between each sensors which will block the sampling

loop. During this stage, signals from the TF detector, pressure sensor, thermistor, and

the optical sensor need to be monitored (by the LabView Programme DAQmx01.vi)

until they stop changing.

Flow Meter Calibration

Since the room temperature, inner room pressure, the room-air humidity, and the high

pressure air supply can change from day by day, it is necessary to calibrate the output

of the flow meter versus the real inspired and expired flow rate. Sometimes the turbine

inside the expiration flow meter can stick due to the wet expired gas or it gets dirty.

This can also cause the one-way valve to leak. Thus this step is also to check that the

two flow meters work well.

3 litres of room air is put in a bag and connected to the inspired air inlet. A bung

is put at the mouth piece to stop the air flowing. The other end of the expired turbine

is connected to the air pump. The pressure (P1), inspired flow and expired flow signals

are monitored at the same time. The pressure signal P1 indicates when the pumping

starts and when it is ended. The calibrated inspired flow signal is 2.9947±0.0425 V/L

(volts-per-litre) and the expired flow signal is 3.9596±0.0215 V/L at 24oC, 103.0 kPa.
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Sensor Checking

This step can be done while the optical cell is warming up or while the system is cooling

down. The check list is as follows:

• Flow Meters: To make sure the resetting signals are input properly to the flow

meter circuit, a LabView programme DAQmx RESET.vi is loaded which will be

introduced in the next section. This LabView programme sends a 5.0 V, 1.0 Hz

pulse signal to reset the counter in the flow meter circuit. The two flow counters

should go down to zero after resetting. Other checking, such as if the turbine

is clean or if the valve is leaking should be done before doing the flow signal

calibration. Sometimes the reset signal cannot be generated properly which may

be caused by the bad connection of the DAQ card (on the main board and the

external usb one) or the computer can not call the LabView programme properly.

• Tuning Fork: The supplied voltage of battery to the crystal oscillator should be

remained at between 4.25V to 4.65V (figure 3.11). Voltages less than 4.25V will

result in a smaller amplitude of square waves and an incorrect pulse trigger voltage

and thus an incorrect frequency shift. The offset value of easyPLL control panel

is normally set between 32756 Hz to 32759 Hz and the gain factor is normally set

at 1.831 V/Hz for a best signal-to-noise ratio (better than 7.324 V/Hz). When

nitrogen gas or air flows through, the frequency change is usually less than a

hertz. If the frequency suddenly changes a lot or even shifts out of the detecting

range, there could be a water droplet or dirt on the tuning fork. If this happens,

the tuning fork should be dismounted and cleaned with ethanol or acetone liquid.

The resonance frequency decreases while the temperature is increasing. To avoid

the temperature change of the circuit board, a piece of polystyrene covers on the

top of the tuning fork cell.

• Thermistor: The temperature is given by two signals- one is the voltage drop

across the thermistor, the other one is the battery voltage. The voltage drop

across the thermistor is normally around 0.2 V and the battery voltage is about
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8.7 V which gives the resistance of the thermistor as about 13.1 kΩ at 18 oC.

• Optical Sensor: Optical sensor and infrared LED have been fixed in the optical

cell. The setting of the lock-in amplifier and the function generator are the same

as the table 3.1 in section 3.6.2. The sensitivity and the amplitude of the output

signal depends on the setting. Also a calibration of the output signal versus the

concentration of the carbon dioxide has been done at the same setting. A new

calibration needs to be made if the setting is changed. The output signal of the

lock-in amplifier goes down to around 1.8 V when the optical cell is warming up

to 47 oC and changes from 0 to -0.15 V when the concentration of the carbon

dioxide increases from 0 to 6 %.

• Pressure Sensors: Pressure P2 is recorded during the washout measurements.

Its display value is normally adjusted at -0.477 (by controlling the air pump flow)

which gives the output signal (P2 =2.4 V) corresponding to a 10 kPa relative

pressure to the atmosphere. A higher pressure (lower sampling flow rate) will

cause a delay or slower response from the sensors while a lower pressure (higher

sampling flow rate) will result in sucking the gas from our lungs involuntarily and

affect the breathing.

Tuning Fork in Pure Nitrogen and Carbon Dioxide Gases

This measurement is required to get the ratio of resonance frequency shift and density

change
∆fCO2

−∆fN2

ρCO2
−ρN2

. Signals from the pressure sensor (P2), two from thermistor cross

voltages (T1 and T2), tuning fork detecting system, and optical detector are monitored

while a pure nitrogen and pure carbon dioxide gas flows through the system separately.

Each gas is put in a 80 litre balloon left at room temperature and controlled by a Luer

valve. This calibration is necessary before each washout measurement because the tun-

ing fork signal is sensitive to the surrounding air temperature. The ratio,
∆fCO2

−∆fN2

ρCO2
−ρN2

,

will change slightly (< 2%) depending on the room temperature variance. It may

be caused by the heat conducted through the electrical board to the contact silver
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patterned on the surface of the tuning fork and thus modifies the tuning fork vibration.

4.1.2 LabView Control Programmes

The main washout control programme is a LabView programme DAQmx02 both.vi

which will be described in this section. A general analog data-acquisition programme

DAQmx01.vi is used for calibration measurements. It monitors the output signals

connected to the 8-channel BNC box and input board with the continuous analog DAQ

control vi. The sampling rate can be set up to 106 Hz (depending on the type of the

DAQ card) but normally set as 100 to 1000 Hz. The flow meter reset programme

DAQmx RESET.vi is designed to give a 5 V, 1 Hz pulse signal to the counter of each

flow circuit. The counter in the flow meter circuit should be set to zero after reset (all

LED lights off).

DAQmx02 both.vi

This control programme is designed specially for MBHW measurements. Two DAQ

cards along with two separate 8-channel BNC interfaces are used. One of them monitors

the output signals from two flow meters (channel 0 and channel 1), pressure gauge P2

(channel 2), tuning fork detector (channel 3), voltage drop across the thermistor T1

(channel 4), optical detector (channel 5), and the battery voltage from the thermistor

circuit T2 (channel 7). Channel 6 is also monitored because it used to be connected

to the mass spectrometer which is not used any more in the washout measurements

and will be described in next chapter. The eight analog signals are monitored at the

sampling rate of 1000 Hz. The second DAQ card monitors the analog pressure signal P1

which indicates the breathing flow direction and thus the inspirations or the expirations.

Two analog output channels are connected to the reset inputs of the flow meters.

Before a washout measurement, there are three settings on the front panel of the

programme to key in as shown in figure 4.1.

• Pressure Threshold: The static pressure signal from pressure gauge P1 may

change day by day. Thus the background value needs to be recorded as the
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thresholds of the breathing pressure change. By simply running this programme

before washout measurements, the maximum (max P) and minimum (min P) of

the static pressure signal P1 will be displayed. These two values tell the computer

when to send a reset pulse to the flow meter counter.

• Tunning Fork Setting: The output signal from the easyPLL detector is the

frequency shift divided by a gain factor. The central frequency (normally 32757

Hz) and the gain factor (normally 1.831 V/Hz) are set for the easyPLL control

programme.

• Tidal Volumes Setting: Vt is the tidal volume setting for the measurement.

Normally it is set at 0.99 litre. It can range from 0.7 to 1.6 litres depending on

lung capacities. From the flow meter calibration measurement, the ratio of the

output signal to the real gas volume flowing through and the background signal

of the flow signal is found. When the tidal volume of gas is inspired or expired, a

’ding’ sound from the speaker reminds the subject when to reverse the breathing.

In this work, subjects are normally asked to breathe as normal and steady as

possible. If the breathing is even, the speaker sometimes is turned off to make

subjects as comfortable as possible.

After entering the settings, the subject is ready to prepare for the test as follows:

• Sitting Posture: In this work, MBHW tests are taken in the sitting posture.

Subjects are asked to sit on an adjustable chair with their mouth and the mouth

piece of the system at the same height.

• Nose Clip: In oder to avoid breathing through the nose, subjects are asked to

put a nose clip on while doing the measurements.

• Normal Breath: In this work, subjects are asked to breathe as normally and

steadily as possible. Instead of following the 1-litre tidal-volume in nitrogen-

washout tests by other groups [79], subjects breathe their own tidal volumes.

This takes into account that the FRC (residual lung capacity) is different from
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Figure 4.1: Control programme DAQmxboth.vi : parameter settings before helium washout

measurement.
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person to person. Generally, the tidal volume is about one third of a subject’s

FRC.

When the subject and system are all ready, it is time to run the control programme

and start doing the measurements:

• Fill The Helium Balloon: This step is left until just before the measurement

starts in oder to avoid the helium gas leaks. The balloon is emptied before re-

filling it to avoid air remaining in the balloon.

• Run The Programme: There are four graphs which display the resonance

frequency of the tuning fork, the optical sensor signal, the pressure signal P2,

and the temperature from two thermistor signals. A bar chart is to display

the tidal volume change which helps the subject breathe evenly while doing the

measurement.

• Pre-washout Normal Breathing: To get the Qr ratio (= ∆[O2]
∆[CO2]), four to five

breaths are taken before the washout measurements.

• Helium Wash-in Measurement: After the pre-washout measurement, helium

gas is ready to be washed into lungs. By switching on the full-way handle valve

connected to the helium balloon and switching off the other one connected to the

air manually, helium gas starts to be breathed in.

• Helium Washout Measurement: When the tuning fork signal at each end of

the expiration reaches a constant value (it is sometimes hard to tell, but normally

after 25 breaths), the full-way valve is opened to the air and the helium supply

is closed. The helium gas is ready to be washed out by room air.

• Measurement Complete: When the tuning fork signal at each end of the

expiration reaches a constant value, the measurement is completed. The washout

data will be saved in the text file as [date Vin Vout P2 Fc T1 Opt T2].

• Cleaning: After the measurement each time, the gas analysing system and the

flow turbine are dried by flowing air or nitrogen gas. The mouth piece and the
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nose clip are cleaned by immersing in the medical usage cleaning liquid overnight.

Other tubing and pluming is cleaned by liquid ethanol.

4.2 Analysis Programme

The analysis programme is a LabView programme MBHW Analysis 02.vi containing

the MatLab scripts. It can be described in three parts. The first part is to separate

each breath from the washout data because there is a time delay between the flow

signals and the sensors. And the time delay is slightly different breath by breath. It is

because the concentration of helium varies, as well as the density and viscosity of the

gas mixture, breath by breath. The second part is to calculate the respiratory ratio

Qr from one of the pre-washout normal breaths. This ratio can be given by plotting

the [CO2] versus [O2] graph and fitting with two linear curves. We have simply made

an assumption that the Qr is fairly constant during the washout measurement since

the end-expiration concentration of carbon dioxide from each breath remains fairly

constant. The [O2]-[CO2] curve is separated into two parts considering the respiratory

dead space which is about 0.15 to 0.2 litres. The slope of the second fitting curve is

the Qr. The third part of the programme is the main part which gives the normalised

phase II and phase III slopes, the mean concentrations and the dead space of four gases

(He, N2, O2, CO2). The washout curve from each single breath can also be calculated.

The analysis programme diagram is shown in figure 4.2.

4.2.1 Breath Separation

Each breath is separated by examining the flow rates. At the end of each inspiration

or expiration, signals from the inspiratory or expiratory flow meter are reset and go

down to zero instantaneously. This gives an array of peaks which are the end point

of each breath for both inspired and expired tidal volumes. The front panel of this

part is shown in figure 4.3. The signals of pressure, temperature, resonance frequency

shift from the tuning fork, optical output, and expired tidal volume are displayed in
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the frequency shift to gas density change ratio (
∆fg
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) calculating, breath separation, respiratory

quotient calculating, and phase II phase III slope fitting.
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the top panel by choosing a MBHW data text file. Three control icons at the bottom

of this panel are for adjusting the time delay (Opt-TF delay icon) between the optical

signal and the QTF signal which will not change the original data while doing the real

analysis. The time delay is slightly different during the wash-in and washout process

because the diffusion coefficient of helium is higher than air. Normally, this delay time

is about 0.3 sec in air, and 0.25 sec in heliox/air mixture. The movement and factor

icons are to adjust the offset and the signal size of the optical output signal.

The middle panel of figure 4.3 displays the data from a calibration with pure ni-

trogen and carbon dioxide gas before each MBHW measurement in order to get the

ratio of resonance frequency shift (∆fg) versus density change ∆ρg. The density

of the gas mixture will be automatically calculated for the next part of the anal-

ysis. The concentration of carbon dioxide is calculated by using a linear relation

[CO2] = −32.959 ∗∆VOpt − 0.1857 + 0.4 from a calibration results with 5.6% of carbon

dioxide, where ∆VOpt is the optical output signal with the subtraction of the offset of

the signal with room air only. The bottom panel of figure 4.3 displays the inspired

and expired tidal volumes with two separated arrays of end points and total number

of breaths. The end of the inspirations and expirationsare determined by the pressure

signal P1.

4.2.2 Gas Exchange Ratio Qr

The second part of this analysis programme calculates Qr which is the consumption

of the oxygen (∆[O2]) versus the production of the carbon dioxide (∆[CO2]). It is

taken from one of the normal breaths before the subject starts breathing heliox. The

concentration of the oxygen is plotted against the concentration of carbon dioxide

(figure 4.4). The [CO2]− [O2] curve is separated into two parts by entering a separating

carbon dioxide value ([CO2] fitting), normally is between 1.5 and 2) and each part is

fitted with a linear curve. The first part ([CO2]=0.4:1.5) of the curve represents the

system and anatomical dead space. The second part of the curve ([CO2]=1.5:end) is

where gas exchange occurs and the slope is the respiratory ratio Qr. This part of the
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Figure 4.3: Analysis programme : breath separation part. The top panel displays the signals

of pressure, temperature, resonance frequency shift from the tuning fork, optical output, and

expired tidal volume. The middle panel shows the calibration data from the pure nitrogen

and carbon dioxide to get the frequency shift to density ratio. The bottom panel displays the

inspired and expired tidal volumes with two separated arrays of end points and total number

of breaths.
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Figure 4.4: Analysis programme : respiratory ratio Qr. Four panels display the resonance

frequency shift, the carbon dioxide concentration, the calculated oxygen concentration, and the

oxygen concentration plotted against carbon dioxide concentration from a normal expiration.

TF delay time Opt delay time

programme is shown in figure 4.4.

4.2.3 Single Breaths Analysis

The main part of the analysis is to get the normalised phase II and phase III slopes,

the mean concentrations of gases and the dead space from each single breath. The

breath number can be selected by entering the breath number in the programme. The

TF delay time and CO2 delay time can also be entered. The washin/washout LED

controller needs to be selected for determining wash-in or washout process which is for

determining the initial concentration of oxygen at the start of each expiration. The
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oxygen concentration is slightly different from the heliox gas to the air. At first, the

filled new heliox cylinder contained 79% of He and 21% of O2. However, initially with

a cylinder, there was actually a higher concnetration of helium gas coming out because

of the high diffusivity so a lower concentration of oxygen. After using aroud a few

hundred litres, there was less helium remaining in the cylinder. Therefore, the oxygen

concentration in heliox is increasing gradually as it is used which can then be higher

than 21%. Each single breath data (containing expired volume, He, CO2, N2, and O2

concentrations) is saved.

Five panels display the resonance frequency shift (Hz), He, CO2, N2, and O2 con-

centrations against the expired tidal volume from each single breath (figure 4.5). On

the right hand side of each panel, there are six control icons for setting the range of

phase II and phase III, and adjusting the phase III slope. Phase II left and Phase

II right are the start and end volume values of phase II. Phase III left and Phase

III right are the start and end volume values of phase III. Bottom two control icons

Phase III slope error and Phase III intercept are for adjusting the value and

offset of the phase III linear fitting curve. The mean concentrations are taken as the

integral of gas concentration with expired volume. The dead space is simply taken

as the middle point of phase II in this programme. The output data containing the

normalised phase II and phase III slopes, the dead space, the mean concentration of

each breath are saved.

4.3 Error Estimation

Since the biological data is very sensitive to the systematic errors, errors from the

systems such as the digital noise or from the analysis are discussed in this section. In

this work, two main systematic errors causing the variance in the washout results are

estimated. One is the signal noise from the QTF and optical sensor, the other one is

from the alignment of the flow signal and signals from QTF and optical sensor which

will affect the expired mean concentration of gases.
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Phase III
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choose the 
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Figure 4.5: Analysis programme : single breath analysis. Five panels display the resonance

frequency shift, the carbon dioxide concentration, the calculated helium, nitrogen, and oxygen

concentrations. TF delay time and Opt delay time are adjusted manually breath by breath.

The alignment error will is discussed in the next section.



CHAPTER 4. MBHW System Control, and Analysis Programme 112

−0.15 −0.1 −0.05 0
0

1

2

3

4

5

6

∆ V
CO

2

 (V)

[C
O

2] (
%

)

Opt output

1st−order

1 2 3 4 5
14

15

16

17

18

19

20

21

22

23

[CO
2
] (%)

[O
2] (

%
) ±0.7 %

±0.3 %

[CO
2
] = p1*∆V

CO
2

 + p2

p1 = −32.93 ± 0.78
p2 = −0.1282 ± 0.08548

  SSE: 4.335
  R−square: 0.989
  RMSE: 0.2342

[CO
2
] from 1.5 to 5 %

[O
2
]=p

1
*[CO

2
]+p

2
p

1
=−1.752±0.097

p
2
=23.95±0.43

                 SSE:135.7
                R−square:0.8159
                RMSE:0.6864

[CO
2
] from 0.4 to 1.5%

[O
2
]=p

3
*[CO

2
]+p

4
p

3
=−0.981±0.019

p
4
=22.29±1.12

SSE:8.208
R−square:0.1364
RMSE:0.6252

(a) (b)

Figure 4.6: Systematic error caused by the sensor signal noise from two main calibrations. (a)

is the concentration of carbon dioxide calibrated with the QTF with 0.3% [CO2] error. (b) is

the oxygen concentration calibrated with both QTF and optical sensors with 0.7% [O2] error.

4.3.1 Signal Noise

In this work, QTF has been used to calibrate the relationship between the optical

signal and CO2 concentration. The highest digital noise from two sensors results in

0.3% [CO2] of error as shown in figure 4.6(a). The oxygen concentration is given by

calibrating the normal breath signal with optical sensor and QTF. The highest signal

noise from two sensors results in 0.7% [O2] error as shown in figure 4.6(b). As described

in section 3.5.1, the relationship between the frequency shifts of QTF and gas densities

can be given by
∆fg − ∆fN2

∆fCO2
− ∆fN2

∼=
(

ρg − ρN2

ρCO2
− ρN2

)

, (4.1)

where ∆fg is the frequency shift in different gases (∆fg in gas mixture, ∆fN2
in pure

nitrogen, ∆fCO2
in pure carbon dioxide), and ρ are gas densities (ρg is the gas mixture
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density, ρN2
is the nitrogen gas density, ρCO2

is the carbon dioxide gas density). The

density of gas mixture ρg can be given by

ρg
∼= ρN2

+ (ρCO2
− ρN2

) · ∆fg − ∆fN2

∆fCO2
− ∆fN2

(4.2)

∼= ρN2
+

∆fg − ∆fN2

ζ
, (4.3)

ρg = ρHe[He] + ρN2
[N2] + ρO2

[O2] + ρCO2
[CO2] + ρH2O[H2O], (4.4)

where ρHe is the helium gas density, ρH2O is the water vapour density, and

ζ =
∆fCO2

− ∆fN2

ρCO2
− ρN2

(4.5)

is given by measuring the frequency shifts in pure nitrogen (∆fN2
) and pure carbon

dioxide (∆fCO2
) as described in section 3.10.1 with the QTF digital noise 0.01 Hz.

Considering the 0.3% [CO2] error from the [CO2] calibration (figure 4.6(a)) and the

0.7% [O2] error from the [O2]-[CO2] calibration (figure 4.6(b)), the gas concentrations

can be related to the gas densities as

ρHe[He]+ρN2
[N2]+ρO2

([O2]±0.7)+ρCO2
([CO2]±0.3)+ρH2O[H2O]−ρN2

=
∆fg − ∆fN2

ζ
(4.6)

[He] + [N2] + [O2] + [CO2] + [H2O] = 100%. (4.7)

The helium gas concentration can thus be given by solving the above equations with

the assumption of saturated water vapour concentration [H2O]=0.61,

[N2] = 100 − [He] − [O2] − [CO2] − [H2O] (4.8)

[He] =
(ρO2

− ρN2
)([O2] ± 0.7) + (ρCO2

− ρN2
)([CO2] ± 0.3) + (ρH2O − ρN2

)[H2O]

ρN2
− ρHe

·
(

∆fg − ∆fN2

ζ

)

. (4.9)

The signal noise from two calibrations thus results in ±0.29% of error in helium con-

centration and ±1.29% in nitrogen concentration.
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4.3.2 Alignment Error

As described in section 3.10.4, the optical signal and QTF signal have almost identical

response to the expirations. The delay time between two signals can be determined

from the washout data and is fixed during the the wash-in or washout measurement

(normally 0.3 sec for washout, 0.25 sec for wash-in) since two sensors are joined in series.

However, the time delay between the flow rate signal and QTF (or optical) signal varies

breath by breath because of gas diffusion since helium gas has high diffusion coefficient

compared to the air. In this work, the alignment of the flow rate and QTF (or optical)

signal has been adjusted manually breath by breath. The end of expiration of the QTF

signal has been determined as the value reaches the maximum (or minimum) value in

each breath. Considering the gas re-breathing from the system dead space 10.405 mL,

there is at most ±5.20 mL in the flow rate and QTF alignment which corresponds to

less than 0.05 sec time delay error. The mean concentration of helium [He] from each

breath can be given by

[He] =

∫ 0
VT

[He]dVT ± 0.00502 ∗ [He]max

VT ± 0.00502
(4.10)

with the corresponding error ±0.00502*[He]max/VT , where VT is the expired tidal

volume and [He]max is the maximum helium concentration of the breath. The error

varies breath by breath but the highest value can be estimated from the first breath

since its [He]max value is higher than the rest of the breaths. A typical [He]max from the

first breath is around 55% with the typical tidal volume 1 L, the corresponding error

caused by the alighment can thus be calculated as ±0.29% of helium concentraion which

decreases exponentially breath by breath.

The highest error caused by the signal noise and the alignment thus results in

±0.58% of helium concentration and ±1.58% of nitrogen concentration.
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MBHW Results

The MBHW results from six normal volunteers (two females, four males), two smokers

(one female, one male), and two mild asthmatics (one female, one male) of similar age

are described in this chapter. In the first section, the analysis of MBHW is simply de-

scribed. In the following two sections, the comparison of the results from two asthmatic

and two healthy subjects are discussed. In section 5.4, the Fowler dead space is briefly

described. In section 5.6, MBHW results from 12 volunteers (seven normal volunteers,

three asthmatics, and two smokers) are summarised. MBHW results from a 2.2 litre

lung model and the comparison to the results from a real lung are described in section

5.7. Exponential or linear fitting curves have been applied to some of the data. All the

fittings have been done by the MatLab curve fitting tool box (v7.0.4) and the goodness

of those fittings are represented by SSE (the sum of squares due to error), R-square

(the coefficient of multiple determination which represents how successful the fit is, a

value closer to 1 indicates a better fit), and RMSE (the root mean square error, a value

closer to 0 indicates a better fit)1.

1More details about the meaning of those three values can be referred to the user guide of MatLab

(v7.0.4).



CHAPTER 5. MBHW Results 116

5.1 A Brief Summary of Analysis

In this section, a brief summary of analysis of the MBHW data is discussed. There

has not been any well-defined theories for gas transport in human lungs because of the

structural complexity. In this work, all the MBHW curves can be separated into the

helium wash-in (nitrogen washout) and helium wash-out (nitrogen wash-in) process.

The results will be discussed in three parts derived from both wash-in and washout

results. The first part is the lung clearance curves fitted to a sum of two exponential

curves based on the two-compartment model [5, 22]. The second part focuses on phase

III and the two indices Scond and Sacin. The third part focuses on phase II and the

Fowler dead space.

5.1.1 Lung Clearance

FRC Calculation

The washout lung clearance curve is taken by plotting the mean concentration of gases

(helium or nitrogen) as a function of turnover TO. The mean concentration of gases (cn

from nth breath) have been taken as the expired amount of gas (
∫ VT

0 cndV ) divided by

the expired tidal volume (VT ) from each breath. The turnover TO is the accumulative

expired tidal volume (
∑

VT ) divided by the functional residual capacity (FRC). In the

helium or nitrogen washouts, FRC has been simply derived from

c1 =
FRC · c0

FRC + VT,1
, (5.1)

c2 =
FRC · c1

FRC + VT,2
, (5.2)

... (5.3)

cn =
FRC · cn−1

FRC + VT,n
, (5.4)

FRC =

∑n
i=1 ci · VT,i

c0 − cn
, (5.5)

where cn=0,1,2,···n−1 and VT,n(n=0,1,2,···n−1) are the mean concentration of gas and tidal

volumes from the initial gas in the lungs, the first, second, and (n − 1)th expiration,
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respectively. This equation is based on the assumption of well-mixed gases in the

lungs. Since the FRC has been defined as the lung volume at the end of expiration, it is

dependent on the expired tidal volumes and is slightly different breath by breath. In this

work, the gas concentrations below 0.1% have been ignored and only gas concentrations

above 0.1% have been taken into acount for the FRC calculation. According to the

MBHW results from those volunteers, the calculated FRCs from nitrogen washout

processes are higher than from the helium washout process since the FRC formula is

based on the assumption of well-mixed gas in the lungs but in fact, helium gas mixes

faster than nitrogen.

Lung Clearance and Two-Compartment Model

On the basis of the two-compartment model, human lungs can be regarded as two

parallel compartments with different ventilations as mentioned in section 2.3.1 [5, 22].

In this section, the washout results from the helium washout process will be discussed.

The mean concentration of helium from each breath is plotted as a dual-exponential

function (the summation of two exponential functions) of turnover (cumulative expired

tidal volumes divided by FRC). It can be expressed as

FRC = FRC1 + FRC2, (5.6)

TOn =

∑n
1 VT

FRC
, (5.7)

VT = V1 + V2, (5.8)

c(1 + 2, n) =
FRC1

FRC1 + FRC2
c1,n +

FRC2

FRC1 + FRC2
c2,n, (5.9)

c1,n = ca0

(

FRC1

FRC1 + V1

)TO

, (5.10)

c2,n = ca0

(

FRC2

FRC2 + V2

)TO

, (5.11)

where FRC1 and FRC2 are the residual capacities of two compartments 1 and 2, c1,n

and c2,n are the mean helium concentration from the nth breath, V1 and V2 are the

expired tidal volumes of two compartments. If compartment 1 represents the better-

ventilated compartment compared to the compartment 2, then 1 has a higher washout
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rate, e.g., FRC1

FRC1+V1
> FRC1

FRC1+V1
. The ratio of FRC1

FRC represents the proportion of the

better-ventilated part of the lung.

In this work, breaths from the first expiration to the end (> 0.1%) of helium gas con-

centration during helium washout have been taken into account for this two-exponential

curve fittings. The intial gas concentraion ca0 is thus the mean gas concentration from

the first breath. If the initial gas concentration was taken as the gas concentration

in the lungs before the washout measurement, the lung clearance washout curve was

unable to be fitted well with a sum of two exponential curves. This is likely to result

from the imperfect gas mixing such that the mean concentration of the expired gas is

smaller than the mean concentration of gas from the whole lungs. FRC1, FRC2 are

given by Eq. 5.9 and V1, V2 are given by Eq. 5.10 and 5.11. The calculated sum of

V1 and V2 appears to be slightly bigger than the tidal volume VT which is likely to

result from the assumptions of well-mixied gas in the lungs, ignoring the dead space

and ignoring gas exchange.

Error Estimation for Lung-Clearance Results

As mentioned in section 4.3, the highest systematic error caused by the signal noise

or the analysis alignment results in a variance of 0.58% of helium concentration from

a typical case. The error caused by the analysis alignment varies breath by breath

since it depends on the highest concentration of each breath. Figure 5.1 shows the

lung clearance results from one mild asthmatic and normal subject with the estimated

error for each breath. The systematic error is relatively small which has little effect

on the curve-fitting of two exponential curves. The error results in the variance of

nitrogen concentration is about 2.7 times of helium concentration which can not be

ignored in lung-clearance results. Therefore, only the helium washout will be discussed

in lung-clearance results.
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Figure 5.1: (a) Lung clearance result from a mild asthmatic male with estimated systematic

errors. (b) Lung clearance result from a normal subject with estimated systematic errors.

5.1.2 Phase III

Phase III from each single breath is fitted by a linear curve with a slightly positive slope.

The normalised phase III (SNIII) slope is the slope of the alveolar plateau divided by the

mean concentration of gas for each expiration. The range of phase III has been chosen

manually and is different breath by breath since phase III appears to be a plateau in a

single breath washout curve without any well-defined range [42]. Scond values are given

by the increasing rate of SNIII against TO curve from TO=2 to TO=6. The Sacin

values have been given by the SNIII value from the first breath after subtracting the

first TO value multiplied by Scond, i.e., Sacin = SNIII(1)−TO(1)·Scond. The higher the

Scond values, the higher the ventilation inhomogeneity in the conducting airways. The

higher the absolute value of Sacin value, the higher the ventilation inhomogeneity in the

acinar airways. In this work, SNIII -TO washout curves have been plotted from not only

washout but also wash-in data. Since there is no well-defined fitting range, the fitting

range from TO = 2 to 6 has been chosen for consistent comparison from person to

person. Also, from our MBHW results, the increasing rate of SNIII generally becomes

smaller when TO ≥ 2 compared to a sharp change from TO = 0 to TO = 2. In some



CHAPTER 5. MBHW Results 120

0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S N
III

 −
 [H

e]
 w

as
ho

ut

S
NIII

 − He washout, normal

TO

0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S N
III

 −
 [H

e]
 w

as
ho

ut

S
NIII

 − He washout, asthmatic

TO

(a) (b)

S
cond

=0.07098±0.02581
S

acin
=0.1316±0.077

normal

S
cond

=0.09591±0.05212
S

acin
=0.1350±0.0098

asthmatic

Figure 5.2: (a) Helium washout result from a mild asthmatic with estimated error of normalised

phase III slopes. (b) Helium washout result from a normal subject with estimated error of

normalised phase III slopes. The systematic error is relatively small compared to the fitting

error which results in high variance of Scond and Sacin values.

nitrogen washout studies, TO = 1.5 to TO = 6 has been chosen instead [20, 49, 80].

Error Estimation for Phase III

The normalised phase III slope SNIII is given by the phase III slope divided by the

mean concentration of helium gas from each breath. The systematic error will result

in the variance of normalised phase III slopes which can be given by

∆SNIII =
SNIII ∗ ([He] ± 0.00502 ∗ [He]max)

[He] ± 0.00502 ∗ [He]max
− SNIII

∼= SNIII ·
±0.00502 ∗ [He]max

[He]
. (5.12)

Figure 5.2 shows the helium washout results from a mild asthmatic and normal
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subject with the estimated error of normalised phase III slopes. The systematic error

is relatively small compared to the fitting errors which results in high variance of Scond

and Sacin values.

5.1.3 Phase II

Normalised Phase II Slope

The normalised phase II slopes (SNII) slopes have been given by a linear fit to the

transition phase which exhibits a sharp increase of gas concentration from a single

breath curve. The range of phase II has been chosen manually and is different breath

by breath which also depends on the diffusion coefficients of gas mixture since there is

no well-defined range [22, 58] for phase II, either.

Fowler Dead Space

As introduced in section 2.2, the Fowler dead space is given from Bohr’s equation [4, 22]

for anatomic dead space in the respiration system: VDB,

VDB

VT
=

cE − cA

cI − cA
(5.13)

where VT is the tidal volume, cE , cI are the mean concentration of expired and inspired

gas, and cA is the mean gas concentration in the alveoli. The Fowler dead space has

been defined at the point near the middle point of phase II where two shadowed area

are equal as shown in figure 2.4. The Fowler dead space does not seem to be related

to lung disease judging from our limited study of MBHW results but depends on the

lung capacities and the gas densities. It is briefly described in section 5.4 from six

volunteers. The systematic error will cause 5.20 mL variance maximum in Fowler dead

space considering the gas re-breathing from the system dead space.

5.2 Asthmatics

Asthma is an obstructive lung disease caused by bronchial tube narrowing. The nar-

rowed bronchial structure results in uneven ventilations from different lung units and
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Figure 5.3: (a) Lung clearance result from a mild asthmatic male and two exponential curves

(solid lines). The lung is occupied by 49 % of a better-ventilated compartment (FRC1, thin

curve) and 51 % of poorly-ventilated part (FRC2, thick curve). (b) Lung clearance result from

a normal healthy male and two exponential curves. The lung is occupied by 93 % of a better-

ventilated compartment (FRC1, thin curve) and 7 % of poorly-ventilated part (FRC2, thick

curve).

a steeper phase III slope. From the single breath curves, both asthmatic subjects have

a steeper phase III compared to normal. From the lung clearance washout curves,

both asthmatic results show a larger proportion of poorly-ventilated regions within the

lungs. MBHW results from a asthmatic male (29 yrs, 60.2 kg, 165.5 cm, peak flow 450

L/min)) and an asthmatic female (24 yrs, 54.0 kg, 150.0 cm, peak flow 475 L/min)

compared to a normal male (25 yrs, 173.0 cm, 100.3 kg, peak flow 575 L/min) and a

normal female (26 yrs, 50.0 kg, 166.5 cm, peak flow 420 L/min).

5.2.1 Lung Clearance

Lung Clearance Results from an Asthmatic and Healthy Male

Figure 5.3 shows the lung clearance results from a mild asthmatic male and a normal

healthy male of similar age. The mean concentration of helium from each breath is
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Figure 5.4: (a) Lung clearance result from a mild asthmatic female and two exponential curves.

The lung is occupied by 67% of a better-ventilated compartment (FRC1, thin curve) and 33 %

of poorly-ventilated part (FRC2, thick curve). (b) Lung clearance result from a normal healthy

male and two exponential curves. The lung is occupied by only one compartment (FRC1, thin

curve).

plotted against the turnover and fitted to a summation of two exponential curves.

The better-ventilated curve decays faster than the poorly-ventilated one. For the

asthmatic male (figure 5.3(a)), the poorly-ventilated part (FRC2 = 51%FRC) oc-

cupies nearly half of the whole lungs. The better-ventilated part occupies other half

(FRC1 = 49%FRC) and the helium gas is washed out very quickly in the first two tur-

overs. For the normal healthy male (figure 5.3(b)),the better-ventilated part dominates

the whole lung (FRC1 = 93%FRC). The poorly-ventilated part (FRC2 = 7%FRC)

occupies less than ten percent of the lung. Figure 5.4 shows the lung clearance results

from a mild asthmatic female and a normal female at the similar age. For the asth-

matic female (figure 5.4(a)), the poorly-ventilated part (FRC2 = 33%FRC) occupies

one third of the whole lungs. The better-ventilated part occupies other two thirds

(FRC1 = 67%FRC) and the helium gas is washed out very quickly in the first two

turovers. For the normal healthy female (figure 5.4(b)), the whole lung is like a perfect
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Figure 5.5: (a) A single helium wash-in curve from a mild asthmatic and a normal healthy

subject. (b) A single helium washout curve from a mild asthmatic and a normal healthy subject.

compartment. The helium gas is washed out steadily and the clearance data falls on

only one exponential curve.

The results from both asthmatics show a bigger proportion of the poorly-ventilated

part compared to normal subjects.

5.2.2 Phase III Slopes and Two Indices Scond, Sacin

The narrowing bronchial tube for asthmatics normally results in a steeper phase III as

shown in figure 5.5.

Washin

Figure 5.6 shows the normalised phase III slopes of helium (a) and nitrogen (b) during

helium wash-in and washout process, respectively. The results from the mild asthmatic

male shows higher Scond values (0.00739±0.00191, 0.01468±0.00018) than the normal

healthy one (0.0020864±0.0017, 0.0032408±0.00068) from both wash-in curves. The

higher Scond values from the mild asthmatics reflect the higher inhomogeneity in the

conducting airways compared to the normal ones.
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Figure 5.6: (a) The normalised phase III slopes of helium during helium wash-in process from

a mild asthmatic male and a normal male. (b) The normalised phase III slopes of nitrogen

during helium washout process from a mild asthmatic male and a normal male.
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Figure 5.7: (a) The normalised phase III slopes of helium during helium wash-in process from

a mild asthmatic female and a normal female. (b) The normalised phase III slopes of nitrogen

during nitrogen wash-in process from a mild asthmatic female and a normal female.

The Sacin values of the helium wash-in shows asthmatic person has steeper SNIII

(Sacin=-0.1964±0.0006) than the normal one (Sacin=-0.15453±0.0007) with the sub-

traction of Scond from the first breath. The Sacin values of nitrogen wash-in shows both

asthmatic and normal person have similar SNIII . The results show that the ventila-

tion in the acinar airways of the mild asthmatics is slightly inhomogeneous than of the

normal healthy person and the degree of inhomogeneity can only be revealed in the

helium wash-in process.

Figure 5.7 shows the normalised phase III slopes of helium (a) and nitrogen (b)

from two females during helium and nitrogen wash-in processes, respectively. The
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results from the mild asthmatic female shows higher Scond values (0.01648±0.0040,

0.01194±0.0032) compared to the normal healthy one (0.005495±0.001538, 0.001953±0.0006)

from both wash-in curves. It shows the ventilation in the conducting airways of the

mild asthmatics is more inhomogeneous than of the normal healthy person.

The Sacin values from both helium wash-in and nitrogen wash-in show that asth-

matic person has steeper SNIII (Sacin=-0.4016±0.0006, -0.1738±0.0009) than the nor-

mal one (Sacin=-0.1201±0.0003, -0.0396±0.0003) with the subtraction of Scond from

the first breaths. The higher abolute values of Sacin reflect that the ventilation in the

acinar airways of the mild asthmatic female is more inhomogeneous than that of the

normal healthy person. It implies the asthmatic female may not only have obstructive

disease in conducting airways (asthma) but also in the acinar airways (other restrictive

diseases such as COPD).

From the wash-in results, both mild asthmatic subjects have higher Scond values

than both normal ones. Generally, the normalised phase III slopes are steeper from the

nitrogen wash-in (or helium washout) data compared to the helium wash-in data but

there is less difference in Scond values from both two groups (asthmatic and normal).

Washout

Figure 5.8 shows the normalised phase III slopes of helium (a) and nitrogen (b) during

the helium and nitrogen washout processes, respectively. The results from the mild

asthmatic male shows slightly higher Scond values (0.09591±0.05211, 0.09374±0.06434)

than the normal healthy one (0.07098±0.0278, 0.03678±0.04993) from both wash-in

curves. However, the error of the fitting curve results in a high variance of Scond values

which are unable to reflect the ventilation inhomogeneity compared to the wash-in

results. The Sacin values shows that the asthmatic subject has a similar SNIII (Sacin=-

0.1350±0.0098, 0.0942±0.0206) compared to the normal one (Sacin=0.1316±0.0107,

0.1300±0.0165) with the subtraction of Scond from the first breath.

Figure 5.9 shows the normalised phase III slopes of helium (a) and nitrogen (b) from

two females during the helium and nitrogen washout processes, respectively. The high
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Figure 5.8: (a) The normalised phase III slopes of helium during helium washout process from

a mild asthmatic male and a normal male. (b) The normalised phase III slopes of nitrogen

during nitrogen washout process from a mild asthmatic male and a normal male.
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Figure 5.9: (a) The normalised phase III slopes of helium during helium washout process from

a mild asthmatic and a normal female. (b) The normalised phase III slopes of nitrogen during

nitrogen washout process from a mild asthmatic and a normal female.
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variance of Scond and Sacin values from both subjects causes the difficulty on reflecting

the ventilation inhomogeneity.

Generally, the normalised phase III slopes are steeper from two asthmatics from

both wash-in and washout results. However, the high variance of Scond and Cacin values

from washout results causes the difficulty on reflecting the ventilation inhomogeneity

compared to the wash-in results.

5.2.3 Phase II

Figure 5.10 shows the normalised phase II slopes of helium ((a) and (c)) and nitrogen

((b) and (d)) during helium wash-in and nitrogen wash-in processes from males (asth-

matic and normal) and females (asthmatic and normal). For both males and females,

the results from the asthmatics are almost identical to the normal ones.

Figure 5.11 shows the normalised phase II slopes of helium ((a) and (c)) and nitrogen

((b) and (d)) during the helium washout and nitrogen washout processes from males

(asthmatic and normal) and females (asthmatic and normal). For males, the result

from the asthmatic subject shows slightly steeper phase II than the normal healthy

subject. For females, two normalised phase II curves are identical for both asthmatic

and normal subjects. The normalised phase II slopes are decreasing breath by breath

during the washout process. The decreasing rate of SNII is identical for both asthmatic

and normal males as well as females.
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Figure 5.10: (a) The normalised phase II slopes of helium during the helium wash-in process

from a mild asthmatic and a normal male. (b) The normalised phase II slopes of helium during

nitrogen wash-in process from a mild asthmatic and a normal male. (c) The normalised phase

II slopes of nitrogen during helium wash-in process from a mild asthmatic and a normal female.

(d) The normalised phase II slopes of nitrogen during nitrogen wash-in process from a mild

asthmatic and a normal female.
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Figure 5.11: (a) The normalised phase II slopes of helium during the helium wash-out process

from a mild asthmatic and a normal male. (b) The normalised phase II slopes of helium during

nitrogen washout process from a mild asthmatic and a normal male. (c) The normalised phase

II slopes of nitrogen during helium washout process from a mild asthmatic and a normal female.

(d) The normalised phase II slopes of nitrogen during nitrogen washout process from a mild

asthmatic and a normal female.
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5.2.4 Carbon Dioxide

During the washout measurement, the concentration of carbon dioxide is almost iden-

tical for each single expiration. Figure 5.12 simply displays the normalised phase III

slopes of carbon dioxide from both helium wash-in and washout process. Figure 5.12(a)

and (b) show the results from two male, one asthmatic and one normal. The bottom

two figures (c) and (d) show the results from an asthmatic and a normal female. Two

asthmatic subjects have higher normalised phase III slopes than the healthy subjects

from both wash-in and washout processes but this difference is more apparent in the

helium washout process.

Figure 5.13 shows the normalised phase II slopes of carbon dioxide from both the

helium wash-in and washout processes. The above two (figure 5.13(a) and (b)) shows

the results from two male, one asthmatic and one normal healthy. The bottom two (fig-

ure 5.13(c) and (d)) shows the results from an asthmatic and a normal healthy female.

The results show that the normalised phase II slopes of carbon dioxide are identical

for the asthmatic and normal males as well as females. It is unable to distinguish the

ventilation inhomogeneity from subjects at the same age from the phase II results.
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Figure 5.12: (a) The normalised phase III slopes of carbon dioxide during the helium wash-in

process from a mild asthmatic and a normal male. (b) The normalised phase III slopes of

carbon dioxide during the nitrogen wash-in process from a mild asthmatic and a normal male.

(c) The normalised phase III slopes of carbon dioxide during the helium wash-in process from

a mild asthmatic and a normal female. (d) The normalised phase III slopes of carbon dioxide

during the nitrogen wash-in process from a mild asthmatic and a normal female.
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Figure 5.13: (a) The normalised phase II slopes of carbon dioxide during the helium wash-in

process from a mild asthmatic and a normal male. (b) The normalised phase II slopes of carbon

dioxide during the nitrogen wash-in process from a mild asthmatic and a normal male. (c) The

normalised phase II slopes of carbon dioxide during the helium wash-in process from a mild

asthmatic and a normal female. (d) The normalised phase II slopes of carbon dioxide during

the nitrogen wash-in process from a mild asthmatic and a normal female.
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5.3 Smokers

Smoking has well-known negative effects on human health especially leading to lung

and heart disease such as emphysema, COPD, stroke, and lung cancer. Helium washout

measurements have been performed on a male (5 years smoking history for 0.5 pack/week)

and a female (10 years smoking history for 0.75 pack/week, quit for 1.5 years) smoker.

Both volunteer smokers have not been diagnosed with any lung disease. Their results

are compared to a normal healthy male and a normal healthy female. The MBHW

results from both smokers show that they have longer phase II on each single breath

curve or there is a feature between phase II and phase III. Also, SNIII of nitrogen from

both smokers decreases breath by breath in the helium wash-in process compared to

the increasing slopes of the results from normal and asthmatic subjects. However, the

number of volunteers in this study is very small.

5.3.1 Lung Clearance

The lung clearance result from the male smoker is shown in figure 5.14 compared to a

normal subject. The smoker’s lung is occupied by 98.85% of the better-ventilated part

which is even higher than the normal subject. While the result from the female smoker

as shown in figure 5.15, the smoking lung is occupied by 15.99% of poorly-ventilated

portion which is slightly higher than the normal subject. For the male smoker, the lung

clearance washout result is no difference from the normal one. For the female smoker

with 10-year smoking history, the lung clearance result shows the percentage of the

portion occupied by the poorly-ventilated compartment is slightly higher than normal

subjects.
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Figure 5.14: (a) Lung clearance result from a male smoker and two exponential curves. The

lung is occupied by 98.85 % of a better-ventilated compartment (FRC1, thin curve) and 1.15 %

of poorly-ventilated part (FRC2, thick curve). (b) Lung clearance result from a normal healthy

male and two exponential curves. The lung is occupied by 92.92 % of a better-ventilated

compartment (FRC1, thin curve) and 7.08 % of poorly-ventilated part (FRC2, thick curve).
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Figure 5.15: (a) Lung clearance result from a female smoker and two exponential curves. The

lung is occupied by 84.01% of a better-ventilated compartment (FRC1, thin curve) and 15.99 %

of poorly-ventilated part (FRC2, thick curve). (b) Lung clearance result from a normal healthy

male and two exponential curves. The lung is occupied by only one compartment (FRC1, thin

curve).
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5.3.2 Phase II

As mentioned previously, the single breath curves from both smokers reveal a longer

phase II or a transition phase between phase II and phase III as shown in figure 5.16

and 5.17. If this transition phase is regarded as a later part of phase II, it shows that

the gas concentration goes up more slowly for the smokers and results in a shorter

phase III, the alveolar plateau. Also, the existence of this transition feature results in

a difficulty in determining the boundary between phase II and phase III. The whole

single breath curve looks more ’round’ from the results of both smokers compared to

the curve from the normal subjects. It reveals more small lung units with different

ventilation existing along the smokers’ airways. The transition feature may result from

the tar coating on the wall of airways which roughens the surface of airways. If we

regard the transition phase as a single independent phase not inclusive in phase II or

phase III, the resulting alveolar plateaus from the smokers are even flatter while the

phase II are still as sharp as the results from the normal subjects.

The two graphs in figure 5.16 shows there is a transition phase between phase II

and phase III in a single breath curve from the smokers. This transition phase occupies

about 0.15 L volume from the helium wash-in and helium washout results. Figure 5.17

shows the single breath curves of nitrogen carbon dioxide washout. This transition

phase is observed in the helium or nitrogen washout but it is not apparent in carbon

dioxide single breath curve.

Figure 5.18 shows the normalised phase II slopes of helium and nitrogen in the

helium and nitrogen wash-in process. The transition phase between phase II and phase

III has not been taken into account in the phase II slopes. The results from the smokers

are identical to the normal healthy subjects. Figure 5.19 shows the normalised phase

II slopes of helium and nitrogen in helium and nitrogen washout process. Ignoring the

long transition phase, the results from the male smoker look identical to the normal

healthy one while the results from the female smoker show that normalised phase II

slopes decrease more quickly compared to the results from the normal female.
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Figure 5.16: (a) A single helium wash-in curve from a male smoker and a normal healthy

subject.(b) A single helium washout curve from a male smoker and a normal healthy subject.

The phase II from both of the smoking results is longer than from the normal one. There is an

transition phase between phase II and phase III.
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Figure 5.17: (a) A single nitrogen wash-in curve from a male smoker and a normal healthy

subject. (b) A single carbon dioxide breath curve from a male smoker and a normal healthy

subject.
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Figure 5.18: (a) The normalised phase II slopes of helium during the helium wash-in process

from a male smoker and normal male. (b) The normalised phase II slopes of helium during the

nitrogen wash-in process from a male smoker and a normal male. (c) The normalised phase

II slopes of nitrogen during the helium wash-in process from a female smoker and a normal

female. (d) The normalised phase II slopes of nitrogen during the nitrogen wash-in process

from a female smoker and a normal female.
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Figure 5.19: (a) The normalised phase II slopes of helium during the helium washout process

from a male smoker and a normal male. (b) The normalised phase II slopes of helium during

the nitrogen washout process from a male smoker and a normal male. (c) The normalised phase

II slopes of nitrogen during the helium washout process from a female smoker and a normal

female. (d) The normalised phase II slopes of nitrogen during the nitrogen washout process

from a female smoker and a normal female.
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5.3.3 Phase III

Wash-in

Figure 5.20 shows the normalised phase III slopes of helium and nitrogen from a smoker

and a normal male subject during helium and nitrogen wash-in processes. Figure 5.21

shows the results from a female smoker and a normal female subject. The results

from both smokers are similar to the results from normal subjects. The Scond values

from both groups are similar while the absolute values of Sacin are higher from the

smokers than from the normal ones. It indicates that the acinar ventilation is more

inhomogeneous in the smokers’ lungs compared to the normal lungs.

Washout

Figure 5.22 shows the normalised phase III slopes of helium and nitrogen from a male

smoker and a normal male subject during helium and nitrogen washout processes.

Figure 5.23 shows the results from a female smoker and a normal female subject. In

the nitrogen washout results, both smokers have negative Scond values compared to the

normal positive values. However, the high variance of SNIII values results in the big

error of Scond and Sacin values which is unable to distinguish the results of smokers

from the normal ones.

The negative decreasing rates of normalised phase III slopes have rarely been studied

or observed previously since washout studies on ’healthy’ smoking subjects are rare.

The cause of this negative or small Scond may be due to the shorter but flatter phase

III in the single breaths from smokers. If the later half part of the long transition phase

is considered as an early part of phase III, the phase III will not be a plateau but an

exponentially increasing curve and the phase III slopes will be much higher.
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Figure 5.20: (a) The normalised phase III slopes of helium during the helium wash-in process

from a male smoker and a normal male. (b) The normalised phase III slopes of nitrogen during

the nitrogen wash-in process from a male smoker and a normal male.
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Figure 5.21: (a) The normalised phase III slopes of helium during the helium wash-in process

from a female smoker and a normal female. (b) The normalised phase III slopes of nitrogen

during the helium washout process from a female smoker and a normal female.
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Figure 5.22: (a) The normalised phase III slopes of helium during helium washout process

from a male smoker and a normal male. (b) The normalised phase III slopes of nitrogen during

nitrogen washout process from a male smoker and a normal male.
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Figure 5.23: (a) The normalised phase III slopes of helium during helium washout process

from a female smoker and a normal female. (b) The normalised phase III slopes of nitrogen

during nitrogen washout process from a female smoker and a normal female.
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5.3.4 Carbon Dioxide

Figure 5.24 shows the normalised phase II slopes of carbon dioxide from the male and

female smokers and normal subjects during the helium wash-in and washout processes.

The mean concentration of carbon dioxide remains unchanged for all subjects during

MBHW measurements. The normalised phase II slopes increases breath by breath

for the normal subjects while decreases or remains unchanged for the smokers. This

decreasing rate from the female smoker with a ten-year smoking history is higher than

the male smoker with a five-year smoking history.

Figure 5.25 shows the normalised phase III slopes of carbon dioxide from the male

and female smokers and normal subjects for helium wash-in and washout processes.

The normalised phase III slopes increases breath by breath or remains unchanged for

the normal subjects while decreases for the smokers. The decreasing rate of SNII from

the female smoker is higher compared to the male smoker.

Since there are few washout studies on ’healthy’ smokers, the causes of the decreas-

ing rate of normalised phase II and phase III slopes and the extra transition phase

between phase II and III will be left for the future work with more volunteer smokers.
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Figure 5.24: (a) The normalised phase II slopes of carbon dioxide during helium wash-in pro-

cess from a male smoker and a normal male. (b) The normalised phase II slopes of carbon

dioxide during helium washout process from a male smoker and a normal male. (c) The nor-

malised phase II slopes of carbon dioxide during helium wash-in process from a female smoker

and a normal female. (d) The normalised phase II slopes of carbon dioxide during helium

washout process from a female smoker and a normal female.
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Figure 5.25: (a) The normalised phase III slopes of carbon dioxide during helium wash-in

process from a male smoker and a normal male. (b) The normalised phase II slopes of carbon

dioxide during nitrogen wash-in process from a male smoker and a normal male. (c) The

normalised phase III slopes of carbon dioxide during helium wash-in process from a female

smoker and a normal female. (d) The normalised phase III slopes of carbon dioxide during

nitrogen wash-in process from a female smoker and a normal female.
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5.3.5 Gas Exchange Rate

Since the tar coating on the wall of airways interferes the gas exchange, the gas ex-

change rate (Qr=∆[O2]/∆[CO2]) of the smokers are compared to the normal healthy

subjects. Figure 5.26 shows the oxygen concentration versus the carbon dioxide con-

centration from two smokers and two normal subjects. A linear curve has been fitted

from [CO2]=1.5 to 6.5% for each dataset. The male smoker has slightly lower Qr value

(1.52±0.06) compared to the normal male (1.65±0.06). The female smoker also has

lower Qr value (1.60±0.07) compared to the normal female (1.90±0.11). Generally,

females have higher Qr values than males and this will be discussed in section 5.5.
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Figure 5.26: Oxygen concentration versus carbon dioxide concentration of a normal breath

from (a) a male smoker, (b) a normal male, (c) a female smoker, and (d) a normal female.
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5.4 Fowler Dead Space and Gas Density

The Fowler dead space (VDF ) from a single breath is located near the middle point of

the phase II. In this section, the Fowler dead spaces from two smokers, two asthmatics,

and two normal subjects are given for four different gases (He, N2, O2, CO2) during

the helium wash-in process as shown in figure 5.27.

For both smokers (5.27(a) and (b)), VDF is smaller for a lighter gas. VDF for

helium decreases breath by breath and tends to zero in the helium wash-in process as

the helium concentration increases. For the female smoker, VDF is 0.105 L for CO2,

0.09 L for O2, 0.06 L for N2, and 0.02 for He. The ratios of VDF from CO2, O2, and

N2 are roughly proportional to the square root of the molecular mass (6.63, 5.66, 5.25,

and 2) or the self-diffusion coefficient according to Chapman-Engskon theory [9, 22] as

described in section 2.1:

D =

1.86 · 10−3T 3/2
√

1
MA

Pσ2
AΩ

(5.14)

where T , MA, P , σA, and Ω are the temperature (K), molecular weights of gases A,

ambient pressure (atm), Lennard-Jones force constant for the binary mixture (Å), and

the dimensionless integral corresponding to molecular collisions (usually of the order of

1), respectively. The relation is consistent with the results from the male with larger

FRC where VDS is 0.165 L for CO2, 0.14 L for O2, 0.11 L for N2, and 0.045 for He.

Comparing female to male, the overall VDF is roughly proportional to the FRC.

For asthmatics or normal subjects, VDF for oxygen is the highest even higher than

VDF for carbon dioxide. Also, VDF is not necessarily related to the FRC. Generally

for non-smokers, VDF for N2 and He are far below VDF for O2 and CO2. The cause of

the high VDF for oxygen is unknown and left for the future work with more subjects.

The system dead space 10.4 mL will cause 5.2 mL error for the Fowler dead space

calculation which can thus only be roughly estimated in this section.
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Figure 5.27: Fowler dead space (VDF versus breath number of four different expired gases

He (dot), N2 (circle), O2 (square), and CO2 (triangle) from (a) a male smoker, (b) a male

asthmatic, (c) a normal male, (d) a female smoker, (e) a female asthmatic, and (f) a normal

female. All results are from the helium wash-in measurements.
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5.5 MBHW Results from all Volunteers

This section gives a summary of the MBHW results from all volunteers. The peak

expiratory flow (PEF) has been measured by a Wright metre (Mini-Wright, Standard

Range, EN13826, Clement Clarke International, UK) on all volunteers with the pre-

dicted values from the metre data sheet2. The PEF measurement has been regarded

as a sensitive technique for identifying airflow obstruction [53]. According to the lung

clearance MBHW results from male volunteers, subjects with a larger proportion of

poorly-ventilated part (FRC2) have lower PEF values compared to the predicted value

as shown in table 5.1.

The lower PEF values are not necessarily related to the lung obstruction. For

the female volunteers, PEF values do not simply relate to the lung clearance results.

Two normal healthy males with lower PEF also have low gas exchange rate (Qr). For

both male and female smokers, Qr values are slightly smaller than most of the normal

subjects while the high error causes the difficulty to predict the accurate values.

2This can be found on the website http://www.peakflow.com/top nav/normal values/index.html
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MBHW results from all volunteers

Gender, Height Weight PEFp PEFm Qr FRC VT
FRC1

FRC
FRC2

FRC

Age(yrs) (cm) (kg) (L/min) (L/min) (L) (L)

M, 25 173 100 608 485 1.50±0.13 4.16 1.02 0.41 0.59

M, 24 178 66 605 575 1.65±0.06 2.76 0.91 0.93 0.07

M, 25 195 75 637 425 1.30±0.11 5.77 2.09 0.24 0.75

Mah, 27 175 65 618 660 1.64±0.09 3.61 0.92 1 -

Mch, 29 185 78 659 605 2.03±0.08 3.58 1.49 0.84 0.16

Ma, 29 165 59 595 450 1.97±0.11 2.64 0.56 0.49 0.51

Ma, 47 175 76 625 570 1.74±0.09 3.71 1.52 0.68 0.32

Ms, 27 175 74 620 >800 1.52±0.07 3.40 0.88 0.99 0.01

F, 26 166 50 441 420 2.33±0.08 3.01 0.89 1 -

F, 26 155 57 428 425 1.90±0.11 1.87 0.69 0.98 0.02

Fa, 24 155 54 420 450 2.39±0.08 2.03 0.49 0.33 0.67

Fs, 35 163 53 445 440 1.60±0.07 1.86 0.73 0.84 0.16

Table 5.1: Lung Clearance Results from four male (one with asthma history Mah) and two

female normal healthy volunteers, two male (Ma) and a female (Fa) asthmatics, and a female

(Fs) and male (Ms) smoker. The measured PEF values (PEFm) are compared to the predicted

values (PEFp).
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MBHW results from all volunteers

Gender, Height Weight S
He,in

cond S
N2,in

cond S
He,out

cond S
N2,out

cond

Age(yrs) (cm) (kg) (L−1) (L−1) (L−1) (L−1)

M, 25 173 100 0.0022±0.0017 0.0038±0.0006 0.071±0.028 0.031±0.050

M, 24 178 66 0.0057±0.0010 0.0028±0.0056 0.056±0.015 0.032±0.0007

M, 25 195 75 0.0066±0.0033 0.0005±0.0002 0.023±0.0016 0.007±0.007

Mah, 27 175 75 0.0097±0.0119 0.0033±0.0010 -0.0405±0.0418 0.059±0.129

Mch, 29 193 78 0.0028±0.0008 0.0061±0.0014 0.0162±0.005 0.0164±0.008

Ma, 29 165 59 0.0074±0.0019 0.0147±0.0018 0.096±0.052 0.094±0.064

Ma, 47 175 76 0.0059±0.0020 0.0078±0.0018 0.027±0.006 0.026±0.013

Ms, 27 175 74 0.0039±0.0015 0.0027±0.0007 0.046±0.026 -0.002±0.0140

F, 26 166 50 0.0055±0.0015 0.0019±0.0006 0.074±0.054 0.009±0.002

F, 26 155 57 0.0036±0.0011 0.0007±0.0005 0.076±0.045 0.018±0.016

Fa, 24 155 54 0.0164±0.0041 0.0119±0.0032 0.109±0.087 0.0612±0.0853

Fs, 35 163 53 0.014±0.004 0.0027±0.0011 0.017±0.004 -0.031±0.043

Table 5.2: linespread1.2MBHW Results from all volunteers. Scond values during helium and

nitrogen wash-in and washout.

The Scond and Sacin values from the all the volunteers have been listed in table 5.2

and 5.3. The results from four groups (normal, normal with asthma and COPD history,

smoker, mild asthmatic) are compared and plotted in figure 5.28 and 5.29. The high

fitting error results in high variance of both Scond and Sacin values. Generally, the mild

asthmatic group shows slightly higher Scond and Sacin values in wash-in but not much

difference in washout measurements compared to the rest of the groups. The Scond

and Sacin values from nitrogen washout results are similar to the MBNW studies from

other group (Scond = 0.033 for normal subjects and 0.032-0.104 for COPD patients,

Sacin = 0.075 for normal subject and 0.225-0.607 for COPD patients) [79].
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MBHW results from all volunteers

Gender, Height Weight S
He,in
acin S

N2,in
acin S

He,out
acin S

N2,out
acin

Age(yrs) (cm) (kg) (L−1) (L−1) (L−1) (L−1)

M, 25 173 100 -0.154±0.0007 -0.143±0.0015 0.131±0.011 0.130±0.0165

M, 24 178 66 -0.195±0.0002 -0.057±0.0015 0.046±0.004 0.056±0.0001

M, 25 195 75 -0.217±0.0006 -0.054±0.000 0.034±0.007 0.083±0.0015

Mah, 27 175 75 -0.278±0.002 -0.119±0.033 0.139±0.011 0.130±0.021

Mch, 29 193 78 -0.115±0.0002 -0.070±0.0007 0.0823±0.0025 0.0801±0.0024

Ma, 29 175 75 -0.196±0.0006 -0.143±0.0004 0.135±0.0098 0.094±0.021

Ma, 47 165 59 -0.241±0.0005 -0.223±0.0006 0.239±0.002 0.140±0.0036

Ms, 27 175 76 -0.242±0.0002 -0.171±0.0002 0.181±0.005 0.141±0.002

F, 26 166 50 -0.120±0.0003 -0.040±0.0002 0.0245±0.0021 0.060±0.001

F, 26 155 57 -0.119±0.001 -0.026±0.0004 0.128±0.036 0.160±0.074

Fa, 24 155 54 -0.401±0.0008 -0.174±0.001 0.228±0.025 0.208±0.016

Fs, 35 163 53 -0.377±0.001 -0.197±0.0003 0.376±0.0123 0.216±0.008

Table 5.3: linespread1.2MBHW Results from all volunteers. Scond values during helium and

nitrogen wash-in and washout.
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Figure 5.28: MBHW results of Scond values from all volunteers. (a) From the helium and

nitrogen wash-in results with systematic errors. (b) From the helium and nitrogen washout
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Figure 5.29: MBHW results of Sacin values from all volunteers. (a) From the helium and

nitrogen wash-in results with systematic errors. (b) From the helium and nitrogen washout

results with systematic errors.
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Figure 5.30: A 2.2 litre lung model made of a plastic funnel with 21 +22 +23 +24 small funnels

made of transparencies. A loud speaker powered by a function generator and a dc amplifier is

connected to the lung model with a 3.5 Vpp triangle wave input to simulate the movement of

the diaphragm.

5.6 Lung Model

This section focuses on the MBHW measurements performed on a lung model made of

a 2.2 litre funnel with small cones made of plastic foil inside the funnel. MBHW results

from the lung model are discussed in the last part of this section.

5.6.1 System Diagram

A 2.2 litre lung model (2.11 litre funnel + 0.12 litre loud speaker) made of a plastic

funnel has been built as shown in figure 5.26. 30 small cones with different sizes made

of plastic foil have been put inside of the funnel to make a four-generation asymmetric

dichotomous structure. A loud speaker (XLS series, Peecless, Denmark) is connected

to the funnel and powered by a function generator and a dc amplifier. A 0.25 Hz, 3.5

Vpp triangle wave has been input to the amplifier to simulate the movement of the

diaphragm. The corresponding tidal volume is about 0.5 litre. MBHW measurements

have been performed on this lung model with 0 to 4 generations, i.e., 1, 1+2, 1+2+4,

1+2+4+8, and 1+2+4+8+16 small compartments.
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5.6.2 LCI

Figure 5.31 shows the lung clearance graph from five MBHW measurements on the

lung model with 0 to 4 generations. The zero-generation one has been fitted with an

exponential curve while others have been fitted with a sum of two exponential curves.

Within the two-compartment model [5, 22], the fitted exponential curve with higher

decreasing rate represents the better-ventilated compartment while the one with lower

decreasing rate is the poorly-ventilated compartment. The proportion of the better-

ventilated part or poorly-ventilated part is not necessarily related to the number of

generations as displayed in table 5.3. The asymmetric structure and the non-well sep-

arated terminals may be the main reason for this result.

Lung Clearance Results from 0- to 4-generation Lung Model

Generation FRC (L) VT (L) FRC1

FRC
FRC2

FRC
V1

FRC1

V2

FRC2

20 2.3255 0.5158 1 - 0.2218 -

21 1.9624 0.4973 0.3634 0.6366 0.4870 0.1326

22 2.0586 0.5101 0.7861 0.2139 0.2459 0.1083

23 1.9973 0.5060 0.4807 0.5193 0.3314 0.1174

24 2.0559 0.5110 0.3567 0.6433 0.0924 0.1493

Table 5.4: Lung Clearance Results from 0- to 4-generation Lung Model

5.6.3 Phase III

Figure 5.30 shows the normalised phase III slopes (SNIII) from MBHW data on 0-

to 4-generation lung model. From the SNIII washout curves, the normalised phase

III slopes do not always increase with increasing turnover. The results from the zero-

generation lung model show that the SNIII decreases breath by breath in the first 3

turnovers during the helium washout measurement and then increases again. Also, the

phase III slopes are not always positive for the zero-generation lung. The results from

the zero-generation lung model simply prove that for a trumpet-shape container, the
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Figure 5.31: Lung clearance washout curves from five MBHW measurements performed on 0-

to 4-generation lung model. (a) is from the zero-generation which is the funnel without any

small trumpets inside. The result is fitted with an exponential curve. (b), (c), and (d) are from

1-, 2-, and 3-generation lung model and each is fitted with a sum of two exponential curves.
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phase III slopes are not always zero or slightly positive but actually negative for most

of the breaths. The reason causes the negative phase III slopes may result from the lack

of gas exchange from the lung model, the non-instant gas mixing, and the existence of

some turbulence.

Compared to the helium washout and nitrogen washout results, the SNIII curves

are not consistent with each other from these five lung models. The only particular

coincidence is the washout results from 4-generation lung model are similar to the

washout results from the asthmatic female as shown in figure 5.31.
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Figure 5.32: Normalised phase III slopes (SNIII) from the MBHW data on 0- to 4-generation

(20 to 24) lung models. (a) is the results from helium during helium washout process. (b)

is from nitrogen during nitrogen washout process. (c) is from helium during helium wash-in

process. (d) is from nitrogen during nitrogen wash-in process.
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Figure 5.33: Normalised phase III slopes (SNIII) from the MBHW data on 4-generation lung

model and a asthmatic female. (a) is the results from helium during helium washout process.

(b) is from nitrogen during nitrogen washout process. (c) is from helium during helium wash-in

process. (d) is from nitrogen during nitrogen wash-in process.
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5.6.4 Phase II

Figure 5.32 shows the normalised phase II slopes (SNII) from MBHW data on the 0-

to 4-generation lung model. From the SNII washout curves, the normalised phase II

slopes decrease breath by breath during helium washout process but increase during

nitrogen washout. Also, during helium washouts, SNII values are absolutely higher

for the lower generation lung model. However, there is no relation between SNII and

number of generations from the helium wash-in results.
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Figure 5.34: Normalised phase II slopes (SNII) from the MBHW data on 0- to 4-generation

(20 to 24) lung models. (a) is the results from helium during helium washout process. (b)

is from nitrogen during nitrogen washout process. (c) is from helium during helium wash-in

process. (d) is from nitrogen during nitrogen wash-in process.
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5.6.5 Discussion

The MBHW results from the lung model with different generations cannot be com-

pared to the MBHW results from real lungs. The reason may result from the lack of

gas exchange, the poorly separated compartments at the terminals, irregular sizes of

branches, and the very low generation structure. A real lung is a tree-like dichotomous

structure which has 23 generations and well-separated tiny aveoli at the terminals.

However, the MBHW results from the lung model simply proves that real lungs are

unable to be simplified as a two-compartment or four-compartment model.

The following three graphs display the single breaths from the lung models (figure

5.31) and the comparison of the lung model and real lungs (figure 5.34 and 5.35).

Figure 5.33 shows the first five single breaths during helium wash-in and helium

washout processes from 0- to 4-generation lung models. Figure 5.33(a) and (f) shows

the phase III slopes are not always absolutely positive for the zero-generation lung

model. Phase II slopes are smaller for higher generation of lung models.
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Figure 5.35: The first five breaths of MBHW data during helium wash-in ((a) to (e)) and

helium washout ((f) to (j)) processes from 0- to 4-generation lung models.
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Figure 5.36: The first five breaths of MBHW data during helium wash-in processes from (a)

3-generation lung model and a normal male.



CHAPTER 5. MBHW Results 172

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

[He] washout, Normal male

[H
e]

 (
%

)

V
T
 (L)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

35

40
[He] washout, SM − 23

V
T
 (L)

[H
e]

 (
%

)

(a) (b)

Figure 5.37: The first five breaths of MBHW data during helium washout processes from (a)

4-generation lung model and (b) a male.
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5.7 Summary

MBHW measurements have been performed on seven male (four normal, two asthmatic,

one smoker) and four female (two normal, one asthmatic, one smoker) volunteers. Peak

expiratory flow rates are not necessarily related to the lung obstruction. Subjects with

lower PEF values compared to the predicted values have larger proportion of poorly-

ventilated part. For asthmatics, their MBHW results show slightly higher Scond values

or higher Sacin values compared to the normal subjects. For smokers, their respiratory

quotient are smaller than normal ones. Generally, female have higher Qr values than

males.

A lung model made of a plastic funnel with 0 to 4 generations has been built. The

MBHW results from the lung model cannot simply be compared to the results from real

lungs. The phase III slopes from lung model washout results are not always positive

especially for the one with less generations. The reason may result from the lack of

gas exchange, the unwell separated compartments at the terminals, irregular sizes of

branches, and the very low generation structure.



Chapter 6

Other Methods of Helium Gas

Concentration Detection

Three trial methods for detecting the helium gas concentration are introduced in this

chapter. These methods each have significant drawbacks and thus were found not

suitable for MBHW measurements. First method to be considered is the ultrasonic gas

density detection. The gas density is given by measuring the group velocity of sound

in the gas mixture. However, there is a limitation because for higher concentration

of helium gas, the acoustic attenuation is very high which results in an undetectable

signal. The ultrasonic method works when the helium concentration is below 52%. It

can be used for detecting gases with lower acoustic attenuation.

The second method relies on detecting the thermal conductivity of the gas mix-

ture with two tungsten filament-type thermistors. Two filaments are connected in a

Wheatstone Bridge circuit. One is exposed in the air as a reference thermistor, and the

other one is put in the sampled gas. The thermal conductivity of the gas mixture is

given by comparing those two signals. This thermal-type detector works well for high

concentration of helium with a quick response. However, the high signal noise caused

by the gas flow reduces the signal to noise ratio (less than 32). The small signal to

noise ratio for the lower concentration of helium restricts the detecting limit such that

these thermistors are not suitable for the helium washout measurements. Also, those



CHAPTER 6. Other Methods of Helium Gas Concentration Detection 175

tungsten filaments exposed in the gases are easily be oxidized and normally lasts no

more than three days and then needs to be replaced which is also a disadvantage.

The third method is to use a mass spectrometer which is traditionally used in nitro-

gen washout tests for detecting nitrogen gas [49, 64, 80]. Commercial mass spectrometer

systems normally can be used in a helium leak detection scheme [72]. However, the high

mobility of helium gas causes a slow response when the mass spectrometer is pumped

by a turbo pump. The diffusion pump can pump the helium gas more efficiently and

gives a faster response. However, the diffusion oil can pollute the mass spectrometer

system and thus shorten its working life. Also, since the mass spectrometer can only

operate under a high vacuum environment, the size of the entrance for the sampling

gas flowing in is hard to adjust, and the wet gas from our breath can block the orifice

easily even after passing through a water trap or heating the system up. Technically,

mass spectrometers are not recommended as a method for detecting any wet gas.

6.1 Ultrasonic Gas Density Detector

This detecting method is based on measuring the time of flight of acoustic pulse signals

in the gas mixture [27, 75, 83]. The pulse signals are generated by a crystal oscillator

through a logic circuit to the 40 kHz ultrasonic transmitter. The ultrasonic receiver

signal is then transformed by a second circuit and passed to the input of a lock-in

amplifier which gives the a voltage proportional to the time of flight difference between

the air and the gas mixture.

6.1.1 Theory

A series of pulse signals are transmitted from an ultrasonic transducer to a receiver

through the flowing gas mixture sample. The time of flight of one pulse changes with

the gas density since the sound velocity (vs) is related the gas density (ρg) by [27]

vs =

√

γRT

ρg
(6.1)
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where γ is the adiabatic constant (or the isentropic expansion factor), R(=8.3145

J·mol−1·K−1) is the molar gas constant and T is the gas temperature. The time of

flight difference (∆t) between in the air (tair) and in the gas mixture (tg) is

∆t =
L

vair
− L

vg
(6.2)

where vair is the sound velocity in air and L is the traveling distance of pulses (or

the distance between the ultrasonic transmitter and the receiver in a non-flowing gas).

Suppose the flow speed is constant for different gas mixtures, and thus the Doppler

effect can be simply ignored. Thus the time of flight difference can be modified as

∆t =
L√
γRT

(
√

ρair −
√

ρg). (6.3)

which is proportional to the change of square root of gas density.

6.1.2 Working Principle

A commercial-supplied circuit (Parking radar K3502, Vellemen Kit, Vellemen Com-

ponents NV, Belgium) has been modified for this project as shown in figure 6.1. A

crystal oscillator with 5.0688 MHz resonance frequency generates a sine wave signal

to a 14-stage ripple binary counter (CD4060). The output signal from the sixth stage

of the counter has been modified as a series of pulses with frequency 79.2 kHz which

goes into another counter (CD4020). The signals from fourth to ninth stages go into a

NAND gate (CD4068) which gives a series of 0.156 kHz pulses containing four cycles

at 40 kHz. These pulses are converted into mechanical vibrations by a 40 kHz ultra-

sonic transducer (400PT160, Ultrasonic Transmitter, Prowave, Taiwan) transmitting

through a gas mixture and then received by another receiving transducer (400SR160,

Ultrasonic Receiver, Prowave, Taiwan). The receiver signal is then amplified and trans-

formed by NAND gates into pulses whose length is dependent on the time of flight.

These modified pulses are then integrated so that the amplitude depends on the time

of flight. The integrated signal then goes into a lock-in amplifier. The signals from the

transmitter, reference, receiver, modified receiver, and integrated receiving signal are
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Figure 6.1: The modified ultrasonic circuit from a commercial package.
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Figure 6.2: The signals from the circuit including transmitting signal, reference signal, receiver

signal, transformed receiver signal, and the output signal to the lock-in amplifier.
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Figure 6.3: The ultrasonic system diagram.

plotted in figure 6.2. Two pulses with different lengths represent different gas mixtures

(air and heliox-air mixture) flowing through the acoustic cell as shown in figure 6.3.

6.1.3 System Diagram

Figure 6.3 shows the ultrasonic gas detecting system diagram. Both ultrasonic trans-

ducers with a diameter of 16.0 mm are fixed in a acrylic cell with 1.0 cm separation.

Two small pieces of sponge are put between two transducers to reduce the reflective

pulse signals and other noise. The output signal from the circuit goes into a lock-in am-

plifier. The output voltage from the lock-in amplifier gives the time of flight difference

between in the air and in the gas mixture.

6.1.4 Detection Limitation

The detection limitation comes from the high acoustic attenuation in a helium/air gas

mixture which causes the difficulty of identifying the length of the receiving wavelets

and thus the length of the modified pulse. Figure 6.4(a) shows the helium concentration

in air versus the output voltage from the lock-in amplifier compared to the air signal
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Figure 6.6: (a) The concentric filament with surface temperature T1 in a tube with temperature

T2. (b) The Wheatstone Bridge circuit diagram of two filament thermistors with resistance Rg

and Ra and connected to two paralleled resistors R1.

∆ Vultra. The concentrations above 52% fall below the predicted value (line) which

makes the ∆Vultra is a non-linear function of [He]. In (b), the output signal of air and

the 64% helium-air mixture. The signal goes up first but decreases very quickly which

is caused by the acoustic attenuation.

6.2 Thermal Conductivity Detector

This type of helium gas sensor is based on detecting the thermal conductivity difference

between air and the helium gas mixture [48]. Since helium gas is a better heat conductor

than air, when the helium gas flows through the filament, it takes more heat from

the filament and thus reduces the filament temperature and the filament resistance

compared to the air. By connecting those filaments in a Wheatstone Bridge circuit,

the helium concentration can be calculated from the output signal [69].

6.2.1 Working Principle

Heat conduction occurs when there is a temperature gradient in a media. Consider a

concentric cylinder made of a homogeneous material with thermal conductivity κh and

inner and outer diameter ri and ro as shown in figure 6.6(a). The inner surface is held

at a constant temperature T1 which is higher than the outer surface temperature T2.

When the length of the cylinder is much longer compared to its radius, the heat flow
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Q̇h from T1 to T2 can be given by [48, 69]

Q̇h =
2πlκh(T1 − T2)

ln ro

ri

(6.4)

where l is the length of the cylinder.

Adapted from the concentric cylinder, a filament-type thermistor consists of a hot

tungsten filament in a metal tube. The temperature of the filament T1 is maintained

by an electrical supply VDD while the surface temperature of the metal tube is ex-

posed at room temperature. The heat is conducted by a flowing gas with the thermal

conductivity κg. The heat flow can be given by

Q̇h =
VDD

2

JRg
(6.5)

where J is the Joule constant (=4.183 W/cal·s). In a certain range of temperature, the

filament resistance linearly varies with the temperature, i.e.,

Rg(T1 + ∆T ) = Rg(T1)(1 + αf∆T ) (6.6)

or

∆Rg(T1) = αfRg(T1)∆T (6.7)

where αf is the temperature coefficient and ∆T is the temperature change. Suppose

the heat is supplied by a constant electric power, then

∆Q̇h =
∂Q̇h

∂T
∆T +

∂Q̇h

∂κh
∆κ = 0, (6.8)

∆T

T1
+

∆κh

κh
= 0. (6.9)

Since

∆T =
∆Rg(T1)

αfRg(T1)
, (6.10)

the thermal conductivity change can be given by monitoring the change of the resis-

tance, i.e.,

∆Rg(T1) = −Rg(T1)αfT1∆κh

κh
. (6.11)
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Figure 6.7: (a) The tungsten filament-type thermistor is fixed in open copper tube. (b) The

thermal conductivity detector system diagram.

Two filaments are connected in a Wheatstone Bridge circuit to reduce the noise

from the flow and increase the sensitivity as shown in figure 6.6 (b). The output signal

∆V is given by

∆V = VDD

(

R1

R1 + R2
− Ra

Rg + Ra

)

(6.12)

= VDD





1

2
− 1

1 +
Rg

Ra



 . (6.13)

The filament resistance in the gas mixture can be given by

Rg = Ra −
RaαfT1∆κgas

h

κair
h

(6.14)

and thus the output signal

∆VDD = VDD







1

2
− 1

2 − αf T1∆κgas

h

κair
h






, (6.15)

≈ −VDD

αf T1∆κgas

h

κair
h

4
. (6.16)
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Figure 6.8: The helium washout data measured by the thermal conductivity detecting system.

6.2.2 System Diagram

Two commercial tungsten filament-type thermistors (12V T1 3mm submin wire-ended

filament lamp, RoHS, UK) are supplied within their glass bulb. One of them is exposed

to the sampled gas and the other one is exposed to the flowing air with their bulb glass

removed. Each filament is fixed in a copper tube as shown in figure 6.7(a).

6.2.3 Detection Limitation

The low signal to noise ratio caused by the flow is the main reason that restricts the use

of thermistors for the detection. Figure 6.8 shows the helium washout data measured

by the thermal conductivity detecting system. After the first few breaths, the helium

concentration becomes smaller and smaller while the noise is still high such that the

signal-to-noise ratio becomes smaller. The phase III slopes are hard to determine

because of the high noise.
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Figure 6.9: The mass spectrometer system diagram. The sampled gas passes through a waster

trap and then to the mass spectrometer. An oil-diffusion pump with a mechanical rotary pump

is connected to the mass spectrometer for maintaining the high vacuum background (< 10−4

mb).

6.3 Mass Spectrometer Gas Analyser

The mass spectrometer tried in this work is a quadrupole-type mass analyser (Anavac-2,

VG Gas Analysis Limited, UK). The quadrupole mass analysers are normally consid-

ered to be low resolution devices while their sensing parts have smaller size which give

faster response than the traditional sector type. Since mass spectrometers need to op-

erate under a high vacuum environment, an oil-diffusion pump (Vapour Pump EO2,

Edwards, UK) along with a rotary mechanical pump (High Vacuum Pump E2M5, Ed-

wards, UK) is used in this work. The oil diffusion pump is chosen because it can pump

out helium gas more efficiently than a turbo pump. However, its diffusion oil can not

be pumped out very efficiently by the mechanical pump and thus pollutes the mass

spectrometer system. The pollutant oil renders it unsuitable in the long term for the

helium washout measurements. The system diagram is shown in figure 6.9.
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Figure 6.10: The quadrupole mass spectrometer diagram. Ions are ejected by a 70-eV hot tung-

sten wire through a filter and four parallel electrodes. The applied potential on those electrodes

has both dc and rf voltages. On resonance ions which have stable trajectory will be transmitted

through the rods and detected by the Faraday cup. Off resonance ions which have unstable

trajectory will hit the rods or the walls before being detected. The quadrupole analyser diagram

is modified with permission from http://en.wikipedia.org/wiki/Quadrupole mass analyzer.

6.3.1 Working Principle

Quadrupole Mass Spectrometer

A quadrupole mass spectrometer consists of four parallel electrodes as shown in figure

6.10. Ions are ejected from a 70-eV hot tungsten wire. A dc and rf voltage are applied on

those electrodes. On resonance ions which have stable trajectory will be transmitted

through the rods and detected by the Faraday cup. Off resonance ions which have

unstable trajectory will hit the rods or the wall before being detected. The charge to

the mass ratio e/m is determined by the combination of the dc voltage U and rf voltage

V cosωt. A Faraday cup is used as an ion receiver with a volt meter which gives the

amount of received charges and thus the partial pressure of the detected gas [18, 21].

Quadrupole Operation

A quadrupole mass analyser consists of four parallel hyperbolic electrodes (two pairs)

and a profile of the produced electrical field is shown in figure 6.11. The electrical
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Figure 6.11: The profile of the electrical filed produced by four parallel (two pairs) hyperbolic

electrodes. φ0 is the electrical potential applied on an electrode [21].

potential within the rods Φ(x, y) is given by [21]

Φ(x, y) =
x2 − y2

r2
0

φ0 (6.17)

where x and y are the displacements from the centre line, r0 is the distance from the

centre line, and φ0 is the electrical potential applied to an electrode.

Ion motion is determined by Newton’s law, ~F = m∇2r0 (m = ion mass, ~F =

electrical force), where the electrical force ~F is related to the electrical field ~E as

~F = e ~E (e = charge on ion). Since the electric field is related to the potential by

~E = −∇Φ(x, y), the equations of ion motion can be given by [21]

~F = −e∇Φ(x, y) = −e
2x

r2
0

φ0î + e
2y

r2
0

φ0ĵ, (6.18)

m
d2x

dt2
= −e

2x

r2
0

φ0, (6.19)

m
d2y

dt2
= e

2y

r2
0

φ0. (6.20)
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The applied electrical potential has both a dc voltage U and a radio-frequency (rf)

voltage V cosωt, i.e., [21]

φ0 = U − V cosωt. (6.21)

The equations of ion motion thus can be given by

m
d2x

dt2
= −e

2x

r2
0

(U − V cosωt), (6.22)

m
d2y

dt2
= e

2y

r2
0

(U − V cosωt). (6.23)

Since the ion motion along the x and y are similar but independent, we consider

the differential equation along the x direction and rewrite it as [21]

d2x

dξ2
+ (ax − 2qxcos2ξ)x = 0 (6.24)

where ξ = ωt/2. This is the Mathieu’s equation with two Mathieu parameters ax and

qx for the x-direction motion

ax =
8eU

mω2r2
0

, (6.25)

qx =
4eV

mω2r2
0

. (6.26)

For the y-direction motion, the Mathieu parameters have the opposite sign of x-

direction, i.e., ay = −ax and qy = −qx.

The solutions to the Mathieu’s equation can be classified as stable and unstable [21].

An ion trajectory is stable if its oscillation amplitude is always smaller than r0 that the

ion can be transmitted through the rods and be detected. An unstable trajectory occurs

when the ion’s oscillation amplitude is increasing until the ion hits the rod when the

amplitude is larger than r0 before it is detected. For a given combination of Mathieu’s

parameters ax and qx (or equivalently for a given e/m, dc voltage U , rf voltage V and

frequency ω) there are an infinite number of stable solutions. The first three stability

regions for both x and y directions (I, II, and III) are shown in figure 6.12(a).

The first stability region is shown in figure 6.12(b) with an operating line which is

the mass scanning path. Ions with mass m2 located at the stability region will pass
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through the quadrupole rods. Heavier ions m3 with smaller ax and qx values or lighter

ions m1 with bigger ax and qx values are located outside of the stability region and

will not be transmitted through. Along an operating line which has a fixed ax/qx

value or equivalently 2U/V value, only the ions with the selected e/m value (or located

inside the stability region) will be transmitted. By changing the dc and rf voltages

together, the selected ions are located near the tip of the stability region to increase

the resolution. Therefore, for given stable ax and qx values, increasing dc or rf voltage

will transmit ions with less e/m values (or heavier ions) [21]. When dc voltage is turned

off (U = 0), the mases having a e/m ≤ 1
9 are transmitted to the collector thus giving a

measure of the total pressure of the system1.

6.3.2 Detection Limitation

The low efficiency of pumping out helium causes the detection limitation of the mass

spectrometer. It results in a unstable background signal as shown in figure 6.13. The

output signal from the mass spectrometer gives the partial pressure of helium in the

scale of 10−6 mb. During the wash-in measurement, the helium failed to come up to

the original background value. At the end of the washout, there is a sudden drop of

the background signal which may be caused by the accumulation of the water vapour

in the mass spectrometer or at the orifice.

1The working principle is summarised from its user manual.
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(a) (b)

Figure 6.12: (a) The first three stability regions (I, II, and III) of the solutions to the Mathieu’s

equation for both x and y directions. (b) The first stability region with an operating line which

is the scanning trajectory. Ions with mass m2 located at the stability region will pass through

the quadrupole rods. Heavier ions m3 or lighter ions m1 located outside of the stability region

will not be transmitted [21].
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Figure 6.13: MBHW data detected by the mass spectrometer. The output signal is the helium

partial pressure in the scale of 10−6 mb. The background signal is unstable especially during

the helium wash-in measurement.

6.4 Summary

Three methods of measuring helium gas concentration have been described in this

chapter. The high acoustic attenuation in helium gas results in a non-linear relation

between the helium gas concentration and the time of flight. The ultrasonic detection

method only works when the helium concentration is less than 52% which is unsuitable

for analysing a higher concnetration of helium gas in MBHW measurements.

The low signal-to-noise ratio of the signal from the thermistor Wheatstone Bridge

in a flowing gas restricts the detecting limit especially for low concentration of helium

gas. Also, the frequent replacement for the oxidised filament-type thermistor is a

disadvantage.

The unstable background caused by low-efficiency on helium gas pumping renders

the mass spectrometer unsuitable as a helium gas analyser. Also, the diffusion oil from

the diffusion pump pollutes the mass spectrometer system which limits a long term

usage. Furthermore, it is difficult to make a small orifice for reducing the inlet pressure
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that has constant flow and which does not block.



Chapter 7

Conclusions and suggestions for

future work

This thesis has discussed the development of a MBHW system for lung function studies.

MBHW measurements were performed on 11 volunteers and a lung model. This chapter

includes a brief summary of the main areas of the project and some suggestions for

future work.

7.1 Summary

7.1.1 Experimental setup

A MBHW system consisting of the gas volume measuring system and gas analysing

system has been built. Two flow meters have been used to measure the inspired and

expired gas volumes with a pressure sensor to monitor the pressure at the mouth in

the gas volume measuring system.

The gas analysing system consists of two gas analysers, the QTF gas density detec-

tor and the infrared (IR) CO2 detector, a pressure sensor, and a temperature sensor.

A water trap with an ice bath has been used to filter out the water vapour from the

expiration. A pressure sensor and a thermistor have been used to monitor the pressure

and temperature signal of the sampled gas. The QTF gas density detector has been
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used to detect the respiratory gas density. A quartz tuning fork (32768 Hz) with a

Pierce crystal oscillator has been built and is placed in the sampled gas. A commer-

cial phase-lock-loop (easyPLL) detector detects the resonance frequency shift which

is proportional to the gas density change [89]. The gas density can thus be given by

calibrating against the resonance frequency in pure nitrogen and pure carbon dioxide

gas.

An infrared CO2 detector has been used to analyse the concentration of carbon

dioxide from the expiratory gas. A temperature-controlled circuit has been built up

for keeping the CO2 detecting system at a constant temperature (about 50 oC) and

reducing the water vapour condensed in the cell. Infrared absoprtion by carbon dioxide

at 4.2 µm is governed by Beer-Lambert’s law. A 4.2 µm LED with a PbSe photocon-

ductor have been used as the IR emitter and receiver. A signal balance circuit with

a lock-in amplifier was connected to the PbSe photoconductor to amplify the received

signal. The output signal from the lock-in amplifier is linearly related to the carbon

dioxide concentration (< 6 %).

7.1.2 MBHW measurements on Volunteers

MBHW measurements have been performed on 12 volunteers including six normal sub-

jects, three asthmatics, and two smokers. The peak expiratory flow has also been

measured and compared with the predicted values. The lung clearance results from

the helium washout data have been fitted with a sum of two exponential curves which

represented a better-ventilated and a poorly-ventilated compartment based on the as-

sumption of the two-compartment model [5, 22]. Subjects with larger proportion of

poorly-ventilated part have shown a lower PEF compared to their predicted values.

The proportion of better- or poorer-ventilated compartment is not necessarily related

to lung disease.

The normalised phase III slopes (SNIII) from each breath have been plotted against

turnover. Two indices, Scond and Sacin have been derived from each MBHW data set.

Scond is the increasing rate of SNIII after the first few breaths and a higher Scond value
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reflects the higher ventilation inhomogeneity in the conducting airways. Sacin is the

SNIII value from the first breath with the subtraction of Scond. The higher Sacin reflects

a higher ventilation inhomogeneity in the acinar airways. Results from the asthmatic

subjects have shown higher Scond values, or higher Sacin values, or both compared to

the normal subjects.

The gas exchange rate (Qr), which is the ratio of oxygen consumption versus carbon

dioxide production, has been calculated from the single breaths before each washout

measurement. Two smokers have shown slightly lower Qr values compared to most of

the normal subjects.

7.1.3 MBHW Measurements on Lung Model

A lung model made of a 2.2 litre plastic funnel with a loud speaker as a diaphragm

has been built. A 0.25 Hz triangular signal was amplified by a dc amplifier and input

to the loud speaker to simulate the movement of the diaphragm. A 0- to 4-generation

dichotomous structure has been made by putting small cones with different sizes made

of plastic foil in the funnel. MBHW measurements have been performed on the lung

model. The washout results from the lung model are not easily related to the results

from real lungs. The phase III slopes from the lung model washout results were not

always positive especially for 0- and 1-generation structure. The reason may result

from the lack of gas exchange, the unwell separated compartments at the terminals,

irregular sizes of branches, and the very low generation structure.

7.1.4 Other Methods of Helium Gas Concentration Detection

Three methods of detecting helium gas concentration (ultrasonic gas density detector,

thermal conductivity detector, and mass spectrometer detection) have been used but

they were found to be unsuitable for MBHW measurement.

The ultrasonic gas density detector measures the difference of acoustic group veloc-

ity in various concentration of helium gas media compared to air. The high acoustic

attenuation in helium gas results in a non-linear relation of the helium gas concentration
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and the time of flight. This ultrasonic detection method only works when the helium

concentration is less than 52% which is unsuitable for analysing a higher concnetration

of helium gas in MBHW measurements where up to 78 % of helium gas is used.

The thermal conductivity gas detector with a thermistor Wheatstone Bridge senses

the thermal conductivity of the flowing gas. The low signal-to-noise ratio in a flowing

gas restricts the detection limitation especially for low concentration of helium gas.

Also, the frequent replacement of the oxidised filament-type thermistor is a disadvan-

tage.

The quadrupole mass spectrometer requires a high vacuum working background.

The unstable background caused by low-efficiency of helium gas pumping renders the

mass spectrometer unsuitable for helium gas analyser. Also, the diffusion oil from the

diffusion pump pollutes the mass spectrometer system which restricts it for a long term

usage.

7.2 Suggestions for future work

Some suggestions for improvements to the MBHW system and the measurements that

could be made are outlined in this section.

7.2.1 MBHW System

• The gas exchange Qr has been assumed to be fixed during the washout measure-

ment. The expiratory concentration of oxygen from each single washout breath

is thus given by the carbon concentration multiplied by Qr. To get a more accu-

rate oxygen concentration would require a fast oxygen sensor such as the oxygen

optode.

• A commercial phase-lock-loop (easyPLL detector) has been used for detecting the

resonance frequency shift of the QTF. The signal-to-noise ratio is lower for lower

concentration of sampled gases compared to air. To get a higher signal-to-noise

ratio would require a QTF with higher resonance frequency (such as a few MHz)
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and a suitable PLL detector.

• A variety of rubber and copper tubes have been used to join the sensors to the gas

flow and each other. To make a stronger and more stable system would require

an improved gas handling system securely fixed in place.

• The MBHW system has been built up for development purposes rather than

clinical usage. A better testing environment and an improved construction would

be required if applying the MBHW system to clinical studies.

7.2.2 Measurements

• The MBHW has only been performed on 11 volunteers from the department.

To get more reliable conclusions, such as the relation between the proportion of

poorly-ventilated compartment and PEF values, requires more washout measure-

ments on volunteers with lung diseases.

• The MBHW results have not been compared with the clinical lung function results

such as the spirometry results. A more complete study with a clinical reference for

subjects that have been diagnosed with lung diseases would require the spirometry

results from all volunteers.

• The limited number of smokers in this work have been found to have a lower

respiratory quotient values. To get a more reliable conclusion would require more

volunteers.

• For non-smokers, the Fowler dead space (VDF ) for oxygen gas has been found

higher than other gases (CO2, N2, He). Also, VDF is not necessarily related to

FRC in non-smokers. However, for those two smokers, VDF for different gases

is proportional to the self-diffusion coefficient as well as to the FRC. To get a

reliable conclusion about how VDF relates to smoking disease would require more

volunteer smokers and further studies.
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• This study has been focused on young adults, to study the relation between the

age and the respiratory ventilation would require various ages of subjects.

7.2.3 Lung Model

• The results from the lung model made of one 2.2 litre funnel cannot be compared

directly to the real lungs due to the poorly separated compartments at the termi-

nals. To separate compartments, a better method would be to construct a model

made of two funnels with different sizes and tidal volumes. To more closely ap-

proach real lungs, a tree-like structure made of different sizes of tubes with small

balloons at the end is required.

• A longer phase II (or a transition feature) has been found in some single breath

washout curves from smokers’ MBHW data. It may result from a higher resistance

of the airway caused by the tar coating. To simply prove the relation between

the airway resistance and the single breath washout curve, a lung model with

different surface resistance needs to be constructed.
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