SURGICAL INTERFERENCE WITH THE ANTERIOR STOMATOGASTRIC NERVOUS SYSTEM AND ITS

EFFECT UPON GROWTH AND MOULTING

IN

LOCUSTA MIGRATORIA MIGRATORIOIDES R. & F.

by

ROGER CHARLES ALLUM B.Sc.

2

Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy May, 1973.

TABLE OF CONTENTS

\$

•

		Page
Chapter I.	Introduction	1
Chapter II. N	Material and Methods	22
Chapter III. H	Results	
Section I.	Surgical interference with the anterior stomatogastric nervous system in fledgling animals: its effect upon somatic growth	37
Section II.	Surgical interference with the anterior stomatogastric nervous system in fifth instar animals: its effect upon growth and moulting	42
Section III.	The effect of frontal ganglionectomy on food passage as measured by faeces pro- duction	75
Section IV.	The morphology of the anterior stomatogastric nervous system	93
Section V.	An electron microscopical examination of the hypocerebral ganglion, ingluvial ganglion, frontal connective, recurrent nerve, and posterior pharyngeal nerve	108
Chapter IV. I	Discussion	134
Bibliography	••• ••• ••• ••• ••• •••	155
Acknowledgements	;	202
Appendix		
Table I	Raw data for Section I of Chapter III.	
Tables II-IX	""""II""".	
Tables X, XI		•

(N.B. In the text Figs. 14-16, Plates 48-53 and Tables 11-20 have been deleted.)

 $\widehat{\mathbf{v}}$

CHAPTER I

INTRODUCTION

At each instar the visible form of the insect body is defined by the cuticle. In the softer parts of the integument the cuticle can unfold and stretch, but in the more inflexible regions, such as the head and appendages, growth cannot occur unless the cuticle is shed. Thus moulting is primarily a mechanism of growth, conditioned by the properties of the cuticle, and serves to allow increase in size and change of form (WIGGLESWORTH, 1965, 1970). Growth implies the production of materials, and in particular proteins, for the formation of the animal (CLARKE, 1965), and is seen to be a continuous process during each instar with only slight discontinuities at ecdysis caused by the loss of the shed cuticle (HIGHNAM and HILL, 1969). The protein requirements for growth are met by the normal food intake and, as CLARKE points out, the link between food intake and growth is of fundamental importance since through it are initiated those physiological mechanisms which will synthesize the nutrients of the food into the specific proteins of the insect's body. The stomatogastric nervous system and the neuroendocrine system constitute this link.

The foregut in insects is innervated by the stomatogastric nervous system (ORLOV, 1924; WILLEY, 1961; CLARKE and LANGLEY, 1963, b, c; DANDO <u>et al.</u>, 1968) which is present, in some form or another, in all known insect species (review by CAZAL, 1948). As ROOME (1968) has indicated, the anatomy and function of the stomatogastric nervous system varies according to the mode of feeding of the species concerned. Thus it is generally reduced in liquid feeding insects, where foregut movement is mainly myogenic (JONES, 1960; KNIGHT, 1962), but is more in evidence in insects feeding on solid food stuffs, where movement of the foregut is both myogenic and neurogenic (GRENVILLE, 1962; ROOME, 1968; COOK et al., 1969; MOHL, 1972).

Surprisingly little research has been conducted on the nervous control of foregut movement. In Schistocerca gregaria (CLARKE and GRENVILLE, 1960; GRENVILLE, 1962) movements of the foregut cease altogether after severance of the nerves running from the ingluvial ganglia to the gut. Since the cutting of the outer oesophageal nerves has no effect upon foregut movement these authors conclude that the ingluvial ganglia are autonomous in their effects. According to CLARKE and GRENVILLE the ingluvial ganglia control the contractions of the posterior crop and gizzard, while the hypocerebral ganglion acts by influencing the rate of relaxation of the foregut musculature. The brain and suboesophageal ganglion do not appear to be implicated in the control of foregut movement. Certain regions of the gut, and in particular the oesophagus, display pronounced myogenic activity. ROOME (1968) studied the role of the

- 2 -

stomatogastric nervous system in the control of foregut movement in <u>Locusta migratoria</u> and his results parallel those of the above authors. In addition he found that foregut activity was unaffected by the removal of the frontal ganglion. In <u>Acheta domesticus</u> (MOHL, 1972) the neural mechanism co-ordinating foregut movement is located in the oesophageal nerves, with the hypocerebral and ingluvial ganglia playing merely a stabilizing role.

The involvement of the stomatogastric nervous system in the control of feeding behaviour has been little studied. The results of some ten years' research into the regulation of feeding in the blowfly, Phormia regina, are presented in two reviews (DETHIER, 1969; GELPERIN, 1971). Briefly, food intake in this insect is regulated by the interplay of varying excitatory input from external chemoreceptors and fluctuating feedback from internal mechanoreceptors (stretch receptors) located in the gut and body wall. The stretch receptors are stimulated by the filling of the foregut and their activity, upon arrival at the brain, inhibits the input from the external receptors, resulting in increased taste threshold and consequent cessation of feeding. Information from the foregut receptors is passed to the brain by way of the recurrent nerve. The cutting of this nerve anterior to the stretch receptors interrupts the inhibitory input to the brain and induces hyperphagia. Meal size and the osmotic pressure of the crop contents and blood influence the rate of crop emptying, this process being independent of nervous or endocrine elements.

- 3 -

The stomatogastric nervous system controls crop emptying in Periplaneta and exerts its effect at the level of the proventricular valve (DAVEY and TREHERNE, 1963). The osmotic pressure of the ingested meal, which influences the rate at which the crop empties (TREHERNE, 1957), is detected by a sense organ in the wall of the pharynx. From here information is passed via nerve 5 to the frontal ganglion. A motor pathway, involving the recurrent nerve, the oesophageal nerve and ganglion, and the ingluvial nerve and ganglion, controls the extent and frequency of opening of the proventricular valve. Crop emptying is inhibited when the above pathway is surgically interrupted. In another species of cockroach, Leucophaea maderae, the osmotic values of the food probably do not affect the rate of crop emptying (ENGELMANN, 1968). More important in this respect is the consistency of the food and the initial size of the meal. ENGELMANN considers that the degree of stretch of the crop by the food, and the consistency of the food, is recorded by the stomatogastric nervous system, which in turn controls opening of the proventricular valve via the ingluvial or proventricular ganglion.

The stomatogastric nervous system also controls crop emptying in various acridids, including <u>Schistocerca gregaria</u> (HIGHNAM <u>et al.</u>, 1966; HILL <u>et al.</u>, 1966); <u>Gryllus</u> <u>bimaculatus</u> (ROUSSEL, 1966); <u>Locusta migratoria</u> (ROOME, 1968); and <u>Melanoplus differentialis</u> (GILLOTT <u>et al.</u>, 1970; DOGRA and EWEN, 1971).

- 4 -

In Locusta the stomatogastric nervous system is linked to the cerebral neuroendocrine system by the frontal connectives and, as STRONG (1966) has revealed, by two pairs of fine nerve branches which run from the nervi corporis cardiaci interni to the hypocerebral ganglion.

The insect endocrine system has four major components: groups of neurosecretory cells in the brain, the corpora cardiaca, the corpora allata and the prothoracic glands. Numerous papers have been published on the anatomy and histology of these structures for a wide range of insect groups; some notable reviews are those by CAZAL (1948), WIGGLESWORTH (1964, 1965, 1970), GABE (1966), NOVAK (1966), HERMAN (1967, JOLY (1968) and HIGHNAM and HILL (1969). Particular attention is paid here to the structure of the endocrine system in Locusta.

The cerebral neurosecretory system in acridids has been reviewed by GIRARDIE (1970). In Locusta the neurosecretory cells in each half of the pars intercerebralis form two groups: a medial group (CLARKE and LANGLEY, 1963d; GIRARDIE and GIRARDIE, 1966, 1967) and a lateral group (RAABE, 1964). The medial group contains three cell types: A, B and C (CLARKE, 1966; GIRARDIE and GIRARDIE, 1966, 1967). The majority of the axons from each median neurosecretory cell group decussate within the brain and emerge as the nervus corporis cardiacum internus (NCC I) to enter the contralateral corpus cardiacum. The remaining axons cross over twice and so enter the ipsilateral corpus cardiacum (HIGHNAM, 1969; HIGHNAM and WEST, 1971). The axons

- 5 -

from each lateral neurosecretory cell group constitute the nervus corporis cardiaci externus (NCC II) and run directly to the ipsilateral corpus cardiacum. A third group of protocerebral neurosecretory cells, which are situated below the median ocellus, have recently been described in Locusta and Schistocerca (GIRARDIE, 1970) and Melanoplus (DOGRA and EWEN, 1970). Many insect species, including Locusta, contain a group of neurosecretory cells in each tritocerebral lobe (RAABE, 1963a). The axons of these cells run to the ipsilateral corpus cardiacum as the nervus corporis cardiacum III (NCC III) (RAABE, 1963b). A fourth pair of nerves, the nervi corporis cardiaci IV (NCC IV), which leave the posterior face of the deuterocerebrum and run to the corpora cardiaca, have been described in Locusta, and a number of other insect species, by BROUSSE-GAURY (1967). The cell bodies of these nerves have not been identified in Locusta, but BROUSSE-GAURY has been able to detect a few "Gomori positive" cells in the deuterocerebrum of Dytiscus marginalis which, she believes, may be the perikarya of the NCC IV.

The corpus cardiacum in <u>Locusta</u> has been variously described, both at the light (NAYAR, 1954; OZBAS, 1957b; CLARKE and LANGLEY, 1963d; CASSIER, 1965) and ultrastructural (CASSIER and FAIN-MAUREL, 1970a, b; CAZAL <u>et al.</u>, 1971) levels. It is made up of the bulbous endings of the neurosecretory axons from the brain, carried in the NCC I-IV, but also contains intrinsic glandular cells of its own.

Closely associated with the corpus cardiacum is the corpus allatum, whose structure in <u>Locusta</u> has been described at the light level by OZBAS (1957a), JOLY (1960), ANSTEE

- 6 -

(1968) and CLARKE and ANSTEE (1971), and at the ultrastructural level by JOLY <u>et al</u>. (1967, 1968, 1969). The corpus allatum contains numerous glandular cells as well as axon termini derived from the nervus corporis allatum I (NCA I), and nervus corporis allatum II (NCA II). The NCA I links the corpus allatum to the corpus cardiacum, while the NCA II links it to the sub-oesophageal ganglion (STAAL, 1961). Neurosecretory material has been detected in the NCA I (CASSIER and FAIN-MAUREL, 1970b) and NCA II (CHALAYE, 1965, 1966, 1967).

The prothoracic glands in <u>Locusta</u> are composed of a thin sheet of cells lying at the postero-lateral edge of the head capsule (STRICH-HALBWACHS, 1954). Their ultrastructure in the nymphal form has been described by FAIN-MAUREL and CASSIER (1968). CLARKE and LANGLEY (1963a) could find no trace of nerves to the prothoracic glands in <u>Locusta</u>, but according to CHALAYE (1965, 1966) the glands in this insect are innervated by nerves from the sub-oesophageal ganglion. In <u>Leucophaea</u> (SCHARRER, 1964), <u>Calliphora erythrocephala</u> (NORMANN, 1965) and <u>Tenebrio molitor</u> (ROMER, 1971) the nerves innervating the prothoracic glands contain both neurosecretory and non-neurosecretory axons.

There exist numerous examples of the control of metabolic processes, other than moulting, by the secretions of the insect neuroendocrine system (see recent reviews by JOLY and CAZAL, 1969; WIGGLESWORTH, 1970). As early as 1936, WIGGLESWORTH had clearly demonstrated that the corpora allata were essential for the normal maturation of eggs in

- 7 -

adult <u>Rhodnius prolixus</u>. Shortly afterwards PFEIFFER (1939) showed that ablation of the corpora allata in adult <u>Melano-</u> <u>plus</u> prevented egg development beyond the stage at which yolk deposition normally occurred. Since these early discoveries the relationship between corpus allatum activity and egg development has been confirmed in a number of insects (reviews by JOHANSSON, 1958; ENGELMANN, 1968).

THOMSEN (1952) was the first to show that the median neurosecretory cells of the pars intercerebralis are essential for ovarian development and normal reproduction in <u>Calliphora</u>. Many authors have since demonstrated the importance of the neurosecretory cells for the complete development of the oocytes (HIGHNAM, 1962; MORDUE, 1965; LEA, 1967; WILKENS, 1968).

The protein metabolism of the whole insect is also under neurosecretory control. In <u>Calliphora</u> (THOMSEN and MOLLER, 1959, 1963), <u>Tenebrio</u> (MORDUE, 1967) and <u>Melanoplus</u> (DOGRA and GILLOTT, 1971) the neurosecretory hormone regulates midgut protease synthesis. In <u>Schistocerca</u> the neurosecretory cells of the pars intercerebralis and corpora cardiaca exert a controlling influence over the protein content of the haemolymph and the protein synthetic activity of the fat body (HILL, 1962, 1965; OSBORNE <u>et al.</u>, 1968). A number of workers have also implicated the corpora allata in the control of protein synthesis (BODENSTEIN, 1953; L'HELIAS, 1957; ROLLER, 1962; MINKS, 1967).

Neurosecretory factors influence many other body processes including: excretion and water balance (MADDRELL, 1963, 1964; BERRIDGE, 1966; CAZAL and GIRARDIE, 1968;

- 8 -

MORDUE, 1969, 1970), cuticular hardening and darkening (FRAENKEL and HSIAO, 1965), gut contractions (review by DAVEY, 1964; CAZAL, 1969), rate of heart beat (CAMERON, 1953; DAVEY, 1961; MORDUE and GOLDSWORTHY, 1969), blood sugar level (STEELE, 1961, 1963; MORDUE and GOLDSWORTHY, 1969) and pigmentation (RAABE, 1963c; GIRARDIE, 1967).

A natural outcome of the study of insect neuroendocrine function has been the discovery of a variety of stimuli for initiating neurosecretory activity. One of the most important of these is feeding. A single blood meal stimulates the release of neurosecretion in Rhodnius, the stimulus reaching the cerebral neuroendocrine system via the central nervous system (WIGGLESWORTH, 1934; VAN DER KLOOT, 1960, 1961). When starved Schistocerca (HIGHNAM et al., 1966), Locusta (HIGHNAM and WEST, 1971) or Melanoplus (DOGRA and GILLOTT, 1971) are allowed to feed there follows a fairly rapid depletion of the accumulated stainable material from the neurosecretory system. This suggests the involvement of a direct control mechanism, perhaps via chemoreceptors situated on the posterior surface of the labrum (DAVEY, 1961, 1962a, b) or via foregut stretch receptors (CLARKE and LANGLEY, 1963c).

A variety of environmental factors affect neurosecretory activity in insects. The studies of LEES (1964) and WILLIAMS and ADKISSON (1964) strongly suggest that light has a direct effect on the medial neurosecretory cells. Further evidence for this stems from the work of CYMBOROWSKI and DUTKOWSKI (1969, 1970). COOK and MILLIGAN (1972) have shown

- 9 -

that light can affect both the 'resting' and spike potentials of the median neurosecretory cells in Periplaneta, and they suggest that this might cause changes in synthesis and/or secretory activity of these cells. The photo-neuroendocrine pathways influencing the activity of the cerebral neurosecretory centres in cockroaches have been traced by BROUSSE-GAURY (1968a, b, 1969a). Here, fibres of ocellar nerves synapse with neurosecretory perikarya of the cerebral ganglion whose axons comprise the NCC I, II and IV. The neurone cell bodies of the latter nerve also receive sensory input from the antenna (BROUSSE-GAURY, 1968c), while those of the NCC III synapse with the labral nerve (BROUSSE-GAURY, 1969b). CLARKE (1966) has shown that temperature can affect the amount of material present in the corpora cardiaca. Thus, in 6 day-old adult Locusta the amount of neurosecretory 'A' material in the anterior lobes at 15°C is less than at 30°C or 45°C. Widely fluctuating temperature regimes (e.g. $30^{\circ} \pm 15^{\circ}$ C) have a more dramatic effect upon the corpora cardiaca, leaving them completely depleted of neurosecretory material.

Other naturally occurring phenomena that bring about the rapid release of material from the neurosecretory system include copulation (HIGHNAM, 1961, 1962; HIGHNAM and LUSIS, 1962), oviposition (HIGHNAM, 1962), and flying (HIGHNAM and HASKELL, 1964). Neurosecretory release can also be induced by artificial means, as for example by electrical stimulation (HODGSON and GELDIAY, 1959; HIGHNAM, 1961, 1962; SCHARRER and KATER, 1969; NORMANN, 1969), enforced activity (HODGSON and GELDIAY, 1959; HIGHNAM, 1961, 1962) or drastic wounding (HIGHNAM, 1962).

- 10 -

It is not known for certain what causes the discharge of neurosecretory material from its intraneuronal storage sites but there are reasons to suppose that this process is correlated with action potentials conducted by neurosecretory neurones (COOKE, 1967; GOSBEE <u>et al</u>., 1968; COOK and MILLIGAN, 1972). The work of BERLIND and COOKE (1968) indicates that the release of neurosecretory material in invertebrates, like that in vertebrates, is a calcium-dependent process. NORMANN (1965) has suggested that neurosecretory granules can only be discharged when a nerve impulse depolarizes the axon membrane and makes it possible for the granule membrane to fuse with the cell membrane. Granule liberation may be achieved either by exocytosis or by intracellular fragmentation (review by SCHARRER and WEITZMAN, 1970).

The historical aspects of the endocrine control of moulting are well known to insect physiologists. KOPEC (1922) was the first to demonstrate that the brain was the source of a hormone necessary for growth and metamorphosis. Subsequent work in other Lepidoptera by HACHLOW (1931) indicated that a region in the thorax was controlling growth and metamorphosis. Nine years later FUKUDA (1940) proved that the 'prothoracic glands' in larvae and pupae of <u>Bombyx mori</u> were the immediate source of the moulting hormone.

In a series of papers WIGGLESWORTH (1934, 1939, 1940) showed that the neurosecretory cells of the pars intercerebralis produce a hormone which initiates moulting in <u>Rhodnius</u>, and that the corpora allata normally furnish a "metamorphosis

- 11 -

inhibiting hormone", the secretion of which fails in the last nymphal instar thus permitting the development of the adult characters at the final moult.

WILLIAMS (1947) proved that the prothoracic glands in <u>Hyolophora cecropia</u> were stimulated by factors from the neurosecretory cells of the brain to secrete their own hormone which brings about the termination of pupal diapause.

Some thirty years after KOPEC's initial discovery WIGGLESWORTH (1952) brought together the available evidence and showed that the "moulting hormone" he had described in 1934 was in fact a composite factor, consisting of an activation hormone from the brain and a moulting hormone from the prothoracic glands.

Since these early studies there have appeared many reviews on the regulation of growth and moulting in insects by the interaction of factors from the brain, corpora allata and prothoracic glands (WIGGLESWORTH, 1957, 1964, 1970; LEES, 1955; VAN DER KLOOT, 1960; DE WILDE, 1962; KARLSON, 1963; SCHNEIDERMAN and GILBERT, 1964; HIGHNAM, 1967; JOLY, 1968).

The manner in which the brain hormone influences the prothoracic glands has been little studied. In <u>Rhodnius</u> (WIGGLESWORTH, 1934) the prothoracic glands must be exposed to the brain hormone for a certain "critical period" in order that the moulting cycle might proceed to completion. This is also the case in <u>Calpodes ethlius</u> (LOCKE, 1970) and in the adult apterygote, <u>Thermobia domestica</u> (WATSON, 1964). Extirpation of the pars intercerebralis (GIRARDIE, 1964) or the prothoracic glands (JOLY <u>et al.</u>, 1956; STRICH-HALBWACHS,

- 12 -

1959) in Locusta nymphs before the critical period leads to a permanent arrest of moulting.

In Rhodnius the brain hormone causes the cells of the prothoracic glands to undergo a conspicuous cycle of secretory activity, with the nuclei increasing greatly in size during OBERLANDER et al. (1965) have shown the critical period. autoradiographically that within 12 hr of exposure to brain hormone the prothoracic gland cells in the pupa of Antheraea polyphemus are engaged in active nuclear RNA synthesis. This is followed by the appearance of cytoplasmic RNA and by protein synthesis, events which are taken to represent the synthesis of enzymes necessary for the production of ecdysone (SCHNEIDERMAN and GILBERT, 1964). In Periplaneta the cells of the prothoracic glands are stimulated to synthesize nuclear RNA within 8 hr of brain hormone application (GERSCH and STURZEBECHER. 1970). One of the responses that the prothoracic glands in Locusta make upon the release of the brain hormone is an increase in cell number (CLARKE and LANGLEY, 1963a); another is an increase in nuclear size by some but not all of the gland cells (CARLISLE and ELLIS, 1968).

The moulting hormone exerts its effect upon the epidermal cells by setting in motion an orderly sequence of events which occur synchronously in all parts of the body. This sequence includes apolysis (separation of the cuticle from the underlying epidermis), cell enlargement and associated protein synthesis, secretion of the new cuticle, and resorption of the old cuticle. In the integument of <u>Locusta</u> (JOLY, 1955) a wave of mitoses in the epidermal cells is an integral part of the moulting process; but in <u>Rhodnius</u> (WIGGLESWORTH, 1940, 1963) moulting may occur with almost no mitoses at all.

- 13 -

KARLSON (1956) isolated a pure, chemically defined hormone from pupae of <u>Bombyx</u> and named it ecdysone; but although this hormone initiates the changes in the epidermis normally associated with moulting, its presence in the prothoracic glands has still to be demonstrated. ELLIS <u>et al</u>. (1972) have recently shown that the prothoracic glands in <u>Schistocerca</u> contain two substances which cause apolysis and early stages of moulting to take place, but do not contain a third substance, 20-hydroxyecdysone, which is necessary for the formation of the new cuticle (MORGAN and WOODBRIDGE, 1971). It has been suggested that the prothoracic glands produce another hormone or hormones, which trigger(s) the formation of 20-hydroxyecdysone in another part of the body, possibly the oenocytes of the abdomen (WEIR, 1970; LOCKE, 1969; ROMER, 1971).

As well as being activated by the brain hormone and possibly directly influenced by nervous elements, the prothoracic glands can also be activated by ecdysone itself, a mechanism which perhaps ensures the synchronous secretion of each of the paired glands (WILLIAMS, 1952; WIGGLESWORTH, 1964). Furthermore, the prothoracic glands in certain Lepidoptera can be activated by the corpora allata (GILBERT and SCHNEIDERMAN, 1959; ICHIKAWA and NISHIITSUTSUJI-OWA, 1959; WILLIAMS, 1959; SCHNEIDERMAN and GILBERT, 1964). There is, however, a strong possibility that this effect is a pharmacological one (HERMAN, 1968).

It is clear, then, that the release of the brain hormone is the initial step in a sequence of events that lead up to a moult. But despite the importance of this step, there exist only a few examples of the stimuli responsible for initiating the release of the brain hormone, and most of these are rather specialized.

On severing the ventral nerve cord in the prothorax of a newly fed nymph of <u>Rhodnius</u>, WIGGLESWORTH (1934) found that the animal would not moult although its endocrine system was still fully intact. He concluded that the stimulus for initiating the moulting cycle was the stretching of the abdomen rather than the animal's state of nutrition, since <u>Rhodnius</u> could live for long periods if fed on small blood meals. VAN DER KLOOT (1961) has since demonstrated the existence of stretch receptors in the abdomen of this insect which, when stimulated, cause impulses to appear in the nervi corporis cardiaci, an effect also produced following stimulation of the ventral nerve cord.

KEMPER (1931) also concluded that distension of the abdomen was important in the initiation of moulting in the bed-bug, <u>Cimex</u> <u>lectularis</u>.

Since in their natural habitat these two insects only occasionally obtain a full blood meal, this method of initiating the moulting cycle must be regarded as a special adaptation.

Other known mechanisms for initiating moulting are also rather exceptional. For example, the squash fly, <u>Zeugoducus</u> <u>depressus</u>, which as a larva lives in the cavity fresh fruit, does not undergo pupation until the concentration of carbon dioxide in its environment has fallen from about 6% to 1%, usually after six months storage (TAKAOKA, 1960).

- 15 -

In insects that feed more or less continuously throughout their lives the moult-inducing mechanism has received scant attention. One notable exception is the work of CLARKE and LANGLEY (1963a, b, c, d). During an investigation into the factors which initiate growth and moulting in <u>Locusta</u>, these authors discovered a number of operations which, when performed before a certain critical period, not only prevented moulting, but also arrested growth (LANGLEY, 1962). Since the work to be described in this thesis is, in part, a direct continuation of this investigation, a resumé of the more important results and conclusions is now given.

Methylene blue preparations of the anterior region of the head revealed that, in addition to the three main nerves which leave the frontal ganglion (the two frontal connectives and the recurrent nerve), there were a number of finer nerves associated with the sensory neurones which lie close to the surface of the pharynx (LANGLEY, 1962; CLARKE and LANGLEY, 1962, 1963b, c) (Diagram I). These sensory neurones resembled those described by other workers in the Orthoptera (ZAWARZIN, 1916), Coleoptera (ORLOV, 1924), and Hymenoptera and Lepidoptera (FINLAYSON and LOWENSTEIN, 1958). It thus seemed that the frontal ganglion was well equipped to receive sensory impulses arising from distension and relaxation of the foregut (LANGLEY, 1962).

Following the removal of the frontal ganglion, the cutting of both frontal connectives, or the separation of the frontal ganglion from the surface of the foregut (which involved severance of the anterior and posterior pharyngeal nerves), there was an immediate and irreversible cessation of

- 16 -

DIAGRAM I

INNERVATION OF THE DORSAL PHARYNGEAL WALL FROM THE FRONTAL GANGLION.

(By kind permission of Dr. P. Langley.)

growth, as indicated by body weight. On the other hand, the cutting of the recurrent nerve or only one frontal connective had little or no effect on growth and moulting in the animal (CLARKE and LANGLEY, 1963b, c).

Evidence for the endocrine control of protein metabolism in insects has been indicated above, and it was thought by CLARKE and LANGLEY (1963d) that these "growth arresting operations" might be mediating their effect via the neurosecretory system of the animal on protein metabolism. To test this view they compared the neuroendocrine system of a normal animal with that of an animal subjected to a growth arresting operation (frontal ganglionectomy). The neuroendocrine system in normal animals, examined from the beginning of the third instar until the middle of the fifth instar, revealed no histological signs of a cycle of secretion which could be correlated with the progress of the growth and moulting The secretory cells of the pars intercerebralis precycle. sented a constant picture as too did the corpora cardiaca. Only on rare occasions, and in minute quantities, could neurosecretory material be detected in the NCC I. The neuroendocrine system in frontal ganglionectomised third instar nymphs resembled that in the normal insect for some time after the operation. However, by about 200 hr after the operation the axons of the NCC I had become loaded with neurosecretory material where they emerge from the brain. The corpora cardiaca at this time were abnormal, appearing shrunken and with little sign of cytological detail.

As a result of their studies CLARKE and LANGLEY (1963d) have proposed the following hypothesis of the control of

- 17 -

growth and moulting in locusts:

Throughout a single instar the insect feeds, digests, absorbs and assimilates its food and increases its body tissue content. At this time the foregut is continually being exercised with the passage of food. These distortions of the foregut stimulate the stretch receptors situated on its surface to send nervous impulses to the brain via the posterior pharyngeal nerves, frontal ganglion and frontal connectives, and to the corpora cardiaca via the recurrent nerve and hypocerebral ganglion. On arrival at the brain the nervous impulses stimulate the medial neurosecretory cells of the pars intercerebralis to synthesize, transport, and release their secretions into the blood. During the instar feeding period these secretions exert a controlling influence over food metabolism. Towards the end of the instar the insect ceases to feed prior to moulting (CLARKE, 1956). However, movements of the foregut do not cease, and may even be accentuated, firstly in the process of emptying the gut of food, and secondly in the swallowing of air, which is a necessary preliminary to the shedding of the old cuticle. Therefore, information continues to pass to the brain and more hormone is synthesised and released. Since this hormone is no longer required for the metabolism of food material, its titre in the blood is raised to a critical point at which the prothoracic glands are triggered into activity. After ecdysis, feeding is resumed and the hormone titre falls as the brain hormone becomes involved once more in the control of food metabolism. CLARKE and LANGLEY consider that this

hypothesis can be applied to all continuously feeding insects whose development is not arrested by other phenomena during the course of their life cycles.

The hypothesis is strengthened by the work of CLARKE and GILLOTT (1967a) who demonstrated a marked reduction in protein synthesis, as measured by the incorporation of 14 Cglycine into protein, after the removal of the frontal ganglion from third instar Locusta nymphs. In addition, it was shown that the injection of corpora cardiaca extract into frontal ganglionectomised locusts led to a resumption and continuation of growth, indicating that the effects of this operation are mediated through this endocrine organ. At the cellular level CLARKE and GILLOTT (1967b) found that frontal ganglionectomy adversely affected the ability of many tissues to synthesis RNA in the nucleus. They suggest that the two best known effects of the brain hormone, protein synthesis and activation of the prothoracic gland, can be explained by attributing a common function to the brain hormone, namely that of promoting the synthesis of messenger RNA within the cell.

CLARKE and ANSTEE (1971b) report an accumulation of neurosecretory material in the NCC I of frontal ganglionectomised fifth instar <u>Locusta</u> nymphs within 72 hr of the operation, over 100 hr earlier than in the operated third instar nymphs of CLARKE and LANGLEY. At the ultrastructural level, the manufacture of neurosecretory granules by the Golgi bodies appeared to be unaffected by the operation, a result strengthening the view of CLARKE and GILLOTT (1967a) that frontal ganglionectomy acts at the level of neurosecretory

- 19 -

release rather than at the level of neurosecretory synthesis. The cells of the midgut and fat body were found, when examined electron microscopically, to exhibit typical signs of reduced protein synthesis (CLARKE and ANSTEE, 1971a). This is attributed to lack of brain hormone, and possibly also lack of juvenile hormone, since the corpora allata in operated nymphs appear shrunken and histological inactive (CLARKE and ANSTEE, 1971b).

Since the publication of CLARKE and LANGLEY's original series of papers in 1963, a number of investigators have found that frontal ganglionectomy does not always block growth in every operated animal. Thus, while the majority of the frontal ganglionectomised Locusta and Schistocerca nymphs of ROOME (1968) maintained a constant weight after the operation, a few showed fairly significant weight increases and displayed well developed fat bodies at autopsy. According to ROUSSEL (1966) removal of the frontal ganglion from young and mature adults of <u>Necrophorus</u> vespillo has no adverse effect upon growth, the operated animals continuing normal. alimentation and increasing their body weight. Protein digestion and syntheis does not stop when the frontal ganglion is removed from adult female Melanoplus (DOGRA and EWEN, 1971), the operated animals laying eggs at a rate equal to about 60% of that for normal mated females. Neither is protein syntheis blocked in frontal ganglionectomised Periplaneta nymphs (PENZLIN, 1971), since these animals continue to regenerate legs in the normal manner after the operation.

- 20 -

Two operations are central to the hypothesis of CLARKE and LANGLEY: the severance of both frontal connectives, and the separation of the frontal ganglion from the surface of the foregut (involving severance of the pharyngeal nerves). Both operations were attended by an early high mortality and the growth curves presented by CLARKE and LANGLEY (1963c) are representative, in each case, of a few animals only. In view of the importance of these two operations, and taking into consideration the above mentioned discrepancies associated with the operation of frontal ganglionectomy, it was considered necessary to repeat all three operations and to check their effect on the growth and moulting cycle in Locusta migratoria migratorioides. In addition the anatomy and fine structure of certain components of the stomatogastric nervous system is investigated, and the results obtained are presented in this thesis.

- 21 -

CHAPTER II

MATERIAL AND METHODS

A. Maintenance of the stock animals

The work to be described in this thesis has been carried out on <u>Locusta migratoria migratorioides</u> R. and F., phase gregaria, stocks of which were originally supplied by the Anti-Locust Research Centre.

The locusts were reared in a centrally heated insectary at a temperature of $28 \pm 0.5^{\circ}$ C and a relative humidity of $70 \pm 5\%$. Air was circulated through the room by two large electric fans attached to the ceiling; in addition slight continuous air exchange was permitted by two small ventilators. General illumination was provided by five 80 watt fluorescent strip lights.

Populations of Locusta were housed in glass-fronted metal cages of the type recommended by the Anti-Locust Research Centre (HUNTER-JONES, 1961). The area containing the locusts measured 43 cm high x 38 cm wide x 38 cm deep. This was separated from the true base of the cage by a false floor constructed of perforated plated steel which allowed all faeces, except those of adults, to pass through to the space underneath. The space between the false floor and the true base measured 10 cm. Several circular holes, 4 cm in diameter, were cut into the false floor and into them were inserted aluminium tubes filled with a moist silver sand/peat mixture (75%/25% by volume) for the deposition of egg pods by the sexually mature females. The tubes were replaced daily thus making it possible to define to within 24 hr the age of the eggs (LANGLEY, 1962).

The sides and back of the cage were lined with muslin to increase the area over which the locusts could move. Each cage was illuminated by a single 25 watt light bulb which, together with the general illumination of the insectary, was controlled by a time-switch to give a 12 hr light/12 hr dark period each day. Air circulated freely in and out of the cage via a small perforated area in the roof and the open space between the false perforated floor and the true base. Access to the locusts was by a trapdoor in the roof of the cage. High density cultures were maintained to ensure no reversion to the solitary phase (HUNTER-JONES, 1961).

Freshly picked grass of a good quality was administered every day to the nymphal and sexually mature populations of <u>Locusta</u>. Mortality among newly emerged and maturing adults

- 23 -

was greatly reduced by supplying them with grass picked the previous day and therefore containing less moisture than the freshly picked form. Flake bran was used to augment the grass diet, offering as it does protein without associated water. In <u>Schistocerca</u> adults (HILL <u>et al.</u>, 1968) the omission of bran from the diet slows down the rate of somatic growth and delays the onset of oocyte development.

Under the rearing conditions described a pre-adult life span of about four weeks was obtained.

B. Maintenance of the experimental animals

(i) Fourth and fifth instars

Fourth and fifth instar nymphs were kept singly in 8 oz screw-cap glass jars (350 ml capacity) with perforated metal lids. The jars contained a floor and perch of filter paper which served to soak up excess moisture from the grass and faecal pellets as well as any haemolymph escaping from the operation wound. The filter papers were replaced at regular intervals during the course of an experiment.

When moulting was imminent (indicated by a drop in weight and softening of the cuticle) fifth instar experimental animals were transferred to plastic containers measuring 13.5 cm high x 10 cm wide x 10 cm deep. The lids were of gauze with a plastic rim. Each box contained a floor and perch of filter paper, the locusts moulting from either the perch or the gauze of the lid.

Fresh grass was supplied daily in amounts only just exceeding that which could be consumed in a day. Bran was not provided. The experimental nymphs were exposed to the general illumination of the insectary only and, as in the stock cages, the relative humidity of their environment was somewhat variable.

No signs of phase change were apparent in locusts kept individually (CLARKE and GILLOTT, 1967 a).

(ii) Adults

Adults were kept separately in glass jars at room temperature for two days after the operation. They were returned to the insectary on the third day and transferred to an empty stock cage where they spent the rest of the experimental period under crowded conditions. Fresh grass and bran were offered daily.

C. Sampling technique

In order to obtain a uniform population some sort of sampling technique is essential (LANGLEY, 1962). The technique employed was similar to that previously described by GILLOTT (1965), ANSTEE (1968) and ROOME (1968). Let us suppose that fifth instar locusts were required, then once the fourth ecdysis was under way all the fifth instars present in the stock cage were removed each day at 9 a.m. and 5 p.m. This continued until sufficient animals for the particular experiment were obtained at any one sample. During the present study only those nymphs moulting between 5 p.m. and 9 a.m. were used. The age range of the sampled population was there-fore 8 hr \pm 8 hr.

Since the ecdysial time range of the fifth ecdysis is the longest (LANGLEY, 1962) it was found necessary to extend the sampling period for adults to 24 hr so that sufficient numbers of locusts could be obtained at a single sample. Newly emerged adults were sampled each day at 9 a.m. thus giving the sampled population an age range of 12 hr \pm 12 hr.

Newly moulted deformed nymphs or fledglings were discarded as were excessively light or heavy locusts; acceptable weight ranges were as follows:

Fourth instar	Male	190-250 mg
	Female	210-280 mg
Fifth instar	Male	400 - 550 mg
	Female	500-650 mg
Adult	Male	900-1250 mg
	Female	1100-1500 mg

Animals sampled for an experiment were randomly divided into two, and very occasionally three, groups:

(a) <u>Operated</u> animals were subjected to various operations, involving nerve severance, performed on the anterior stomatogastric nervous system or occasionally on the central nervous system. The operations were always carried out during the first 30 hr of the instar.

(b) <u>Control</u> animals were treated in an identical manner to the operated group except that the nerves were merely touched and not cut.

(c) <u>Normal</u> or <u>unoperated control</u> animals were only occasionally used. They were sampled, weighed and then immediately returned to insectary conditions.

- 27 -

Locusts were anaesthetized in an 8 oz screw top jar containing a cotton wool plug soaked in anaesthetic ether (MacFarlan Smith Ltd.). A narrow layer of cotton wool and a few filter papers were placed on top of the ether plug to prevent the locust coming into direct contact with the liquid anaesthetic. Each animal was anaesthetised for three minutes after which time it had become completely immobile.

E. <u>Sterilization</u>

A fairly rigid sterilization procedure was adopted which, when adhered to, led to a high survival rate among the operated animals. Glass jars were sterilized for 30 min in an autoclave at 250°F (15 pounds per square inch pressure) and instruments exposed to ultra-violet light in a dust-proof cabinet for 30 min immediately before use (CLARKE and LANGLEY, 1963 b). The ringer solution (HOYLE, 1955) used during the operations was freshly made up each time, sterilized by membrane filtration and administered from sterilized 1 ml disposable syringes (Gillette Scimitar). The metal lids of the glass jars were also sterilized in ultra-violet light for a minimum period of 30 min.

F. Surgical procedure

(i) Frontal approach

For operations in the vicinity of the frontal ganglion the LANGLEY (1962) and CLARKE and LANGLEY (1963 b) method of entry into the head capsule was adopted. Thus the anaesthetized insect was placed in a perspex jig with the frons, previously wiped clean, pointing upwards. The jig was transferred to the stage of a binocular microscope and held in place by plasticine (Diagram IIa). Illumination was provided by two high intensity lamps to which were fitted polaroid heat filters. Cuts 1-3 (Diagram IIb) were made in the frons and the U-shaped flap of cuticle and hypodermis so formed turned down ventrally to reveal three large frontal air sacs. These were carefully removed to expose the frontal ganglion and its associated nerves lying on top of the pharynx (Diagram Sterile ringer solution was immediately dispensed into IL). the wound; its effect was to cause the frontal ganglion to lift slightly from the surface of the gut, thus facilitating detection of the fine pharyngeal nerves which connect the ganglion to the gut surface.

The frontal connectives, recurrent nerve and pharyngeal nerves were severed in two places and the middle portion removed to minimize the chances of the two cut ends rejoining.

d

Removal of the frontal ganglion was accomplished by carefully severing all its attendant nerves and then simply picking it up from the surrounding fluid. Upon completion of the operation the flap was replaced into position and the wound left to heal without the addition of any sealing materials.

(ii) Front-lateral approach

A fronto-lateral method of approach into the head capsule was adopted during the performance of operations involving severance of the labral nerve or that part of the frontal connective which runs alongside it. The insect was fixed into the perspex jig, transferred to the microscope stage and the fronto-lateral region of the frons brought into the field of focus by propping up one end of the jig with a piece of plasticine (Diagram IId). Cuts 1-5 (Diagram IIe) were then made, the light brown oval patch of cuticle, which marks the point of origin of various head muscles, being carefully The flap of cuticle and hypodermis was turned down avoided. ventrally and sterile ringer solution immediately added to The labral nerve and frontal connective the preparation. could then be seen running close and parallel to one another (Diagram IIf). They can be distinguished on three counts: (1) the frontal connective lies inside the labral nerve; (2) it is thinner than the labral nerve; (3) a large trachea

- 30 -

frequently runs along the length of the frontal connective but never along the labral nerve. The appropriate nerve(s) – was severed in two places, the middle portion removed and the flap of cuticle replaced.

The same cuts were made in controls as in operated animals. Sterile ringer solution was added to the preparation after the flap of cuticle had been turned back. The air sacs were removed (in the frontal approach), the appropriate nerve(s) or ganglion touched with fine forceps and the flap then replaced.

G. Post-operative treatment

Each operated animal was placed in a screw-cap glass jar (described previously) which in turn was transferred to a dust-proof cabinet at room temperature (about 21°C). This kept the animals relatively inactive until the wound had had time to heal (CLARKE and LANGLEY, 1963 b). The locusts remained unfed on the day of the operation (Day 1) but received grass the following day (Day 2). On Day 3, 48 hr after the operation, the animals were returned to the insectary and providing the procedures outlined above had been strictly adhered to it was possible to achieve 100% recovery from the operation.

- 31 -

H. Post-mortem examinations

Every insect that died or was sacrificed during the course of an experiment was subjected to a post-mortem examination. This was made to ensure that the appropriate nerves had been cut successfully (or ganglion removed) and that the cut ends had not rejoined. In cases of reconnection, or where some doubt existed, then the insect was excluded from the experimental data. Notes were made on the state of the animal at the time of death, e.g. formation of a second cuticle, gut contents, etc.

I. <u>Measurement of growth</u>

Changes in wet weight offer little indication of growth rate since they take into account neither variation in the amount of food in the gut nor variation in body water content from one individual to another. However, when information on day to day changes in the growth rate of an individual is required one has no choice but to use wet weight measurements and accept that they provide a rough guide only. Studies on the growth of insects have emphasised that during an instar their linear dimensions and hence their volume remain constant, while their wet weight approximately doubles (CLARKE, 1956). Throughout this study, therefore, a twofold increase in wet
weight has been taken to represent true growth, allowing as it does for individual variation in gut content and body water content. Two other types of growth, 'reduced growth' and 'little or no growth at all', are recognised from wet weight measurements; these are defined in Section II of Chapter III.

The locusts were weighed on a torsion balance at 24 hr intervals and immediately before feeding so as to reduce short-term fluctuations in weight caused by individual variation in gut contents.

J. Vital staining with methylene blue

Newly moulted fifth instar nymphs were starved for several days and then injected with a reduced (leuco) solution of methylene blue according to the method of STARK <u>et al</u>. (1969) (after PANTIN, 1946).

0.15 ml of the reduced dye was injected into the head capsule through the dorsal neck membrane. After 1 hr the injected insect was decapitated, the head pinned out in a wax dish and a small window cut in the frons cuticle. The preparation was flooded with cold 8% ammonium molybdate and left for 24 hr at 0°C. The required portion of the anterior stomatogastric nervous system was then dissected out, washed in distilled water, dehydrated, cleared and mounted. (A schedule of the procedure employed is presented in the Appendix.)

K. Electron microscopy

Animals were killed by decapitation and the head pinned out in a wax dish. A window was cut in the frons and the preparation flooded with ice-cold 2.5% glutaraldehyde in 0.1 M phosphate buffer, pH 7.4, containing 0.17 M sucrose. The tissues were fixed for 2 hr at 0°C and then washed overnight at 0°C in 0.1 M phosphate buffer, pH 7.4, containing 0.34 M sucrose. It was at this stage that the necessary tissues were dissected out and transferred to fresh buffer. The tissues were post-fixed at 0°C in 1% 0s0₄ in 0.1 M phosphate buffer, pH 7.4, containing 0.34 M sucrose. Then followed another washing in buffer, dehydration in a graded series of ethanols, pre-staining in uranyl acetate and finally embedding in Araldite resin. (A schedule of the procedure employed is provided in the Appendix.)

Silver or gold sections were cut with a glass knife on a Servall Porter-Blum MT-2 ultramicrotome, expanded with trichloro-ethylene vapour and mounted on coated grids (200mesh). Sections were post-stained with Reynold's lead citrate (REYNOLDS, 1963) and examined under an AEI EM6B electron microscope. L. Radiography

The technique of contact radiography was first applied to ecdysis by CLARKE (1956) who used a standard clinical Watson 'Mobilix' X-ray machine and high contrast X-ray film. This same machine was used during the present study and gave good, reproducible results.

A high contrast X-ray film (Ilford Industrial G) was enclosed within a lead-backed, light-proof holder held at a distance of 75 cm from the lens. The locust to be X-rayed was laid on one side and held in position against the film holder by means of sellotape applied across its legs. Alternatively, the subject was X-rayed in a side-on position while clinging to muslin wrapped tightly round a narrow stick placed adjacent to the film holder. A standard exposure time of 0.2 sec at 43 kV and 60 mA was used throughout with the diaphragm fully open. The film was developed for 6 min in a high contrast X-ray developer (Ilford PQX-1) and fixed for 10 min in F 52 fixer.

M. Presentation and analysis of data

The raw data for the work presented in this thesis is recorded in tabular form in the Appendix. Each animal in a particular experiment is allotted a number and the numbers quoted in the text correspond to those in the Appendix. Abbreviations used in the text, in tables or in the Appendix are listed and defined at the beginning of the Appendix.

In view of the wide disparity between the initial weights of newly moulted locusts, particularly adults, body weight is expressed as a percentage of that at the time of the operation. For graphical purposes the operation weight equals 100% and for tabular purposes it equals 0%.

Statistical analysis, where applied, took the form of STUDENT's 't' test, the values of the probability 'P' being obtained from "Statistical Tables for Biological, Agricultural and Medical Research" (FISHER and YATES, 1953). The 5% level of significance (P = 0.05) was adopted.

CHAPTER III

RESULTS

SECTION I

INTERFERENCE SURGICAL WITH THE ANTERIOR STOMATOGASTRIC NERVOUS SYSTEM IN FLEDGLING Locusta: EFFECT UPON SOMATIC GROWTH ITS

After the final ecdysis the locust undergoes a period of somatic growth during which protein, lipid and carbohydrate accumulate in the fat body and proteins collect in the haemolymph. Growth of the cuticle and flight muscles is especially noticeable at this time (HILL <u>et al.</u>, 1968). The somatic growth period continues until a maximum body weight, the 'basic weight' (NORRIS, 1954) is attained. In both <u>Locusta</u> (PHIPPS, 1950; STRONG, 1966, 1968) and <u>Schistocerca</u> <u>gregaria</u> (HILL <u>et al.</u>, 1968) the basic weight is reached approximately ten days after final ecdysis. In female locusts ovarian growth only occurs when materials become available after somatic growth has finished (HILL et al., 1968).

Surgical interference with the anterior stomatogastric nervous system was first performed on newly moulted adults, the large size of the head capsule facilitating the various operations. Animals of both sexes were employed in this study. They were weighed daily up until Day 10 post-operative by which time the control males had virtually attained a basic weight. All weight changes are recorded in Table I of the Appendix.

The experimental treatments were as follows: operated controls; one frontal connective cut; anterior, median and posterior pharyngeal nerves cut; recurrent nerve cut; both frontal connectives cut; recurrent nerve plus both frontal connectives cut; frontal ganglion removed. These treatments comprised three separate experiments, and since no differences were observed between the control groups for the three experiments the results are combined. Operative technique and post-operative care followed the pattern set out in Chapter II. For identification purposes each animal was marked with cellulose dope in the region of the pronotum. Unless otherwise stated, the graphs indicate the mean daily weight changes of those animals surviving to Day 10, with the operation weight equalling 100%.

One frontal connective cut (6 m, 6 f)

It can be seen from Fig. 1 that the cutting of one frontal connective had no adverse effect upon somatic growth when compared to the controls.

Anterior, median and posterior pharyngeal nerves cut (5 m, 7 f)

The anterior and posterior pharyngeal nerves have been described in <u>Locusta</u> by CLARKE and LANGLEY (1963b). According to ROOME (1968) a pair of median pharyngeal nerves leave the frontal ganglion, between the anterior and posterior pairs, and branch to the dorsal dilator muscles of the pharynx and

Growth after severance of one frontal connective, and after severance of anterior, median and posterior pharyngeal nerves. FIG 1.

to the muscular coat of the pharynx. The morphology of these nerves is considered in Section IV.

Somatic growth was unaffected by severance of the anterior, median and posterior pharyngeal nerves, the growth curves of the operated animals being no different from those of the controls (Fig. 1).

Recurrent nerve cut (6 m, 8 f)

The cutting of the recurrent nerve led to a reduced growth rate among the operated animals when compared to the controls (Fig. 2).

In the blowfly, <u>Phormia regina</u> (DETHIER and BODENSTEIN, 1958; DETHIER and GELPERIN, 1967) and in adult male <u>Schistocerca</u> (FRASER ROWELL, 1963) the operation induces hyperphagia, which may also be its effect in adult <u>Gryllus</u> <u>bimaculatus</u> (ROUSSEL, 1966). Recurrent nerve severance inhibits crop emptying in adult <u>Melanoplus differentialis</u> (DOGRA and EWEN, 1971) and also in <u>Leucophaea maderae</u> (SCHARRER, 1945; ENGELMANN, 1968; TAYLOR, 1969).

Both frontal connectives cut (14 m, 15 f)

The 21 operated animals surviving to Day 10 can be divided into two groups: those maintaining a constant weight (14), and those showing fairly considerable weight increases (7) which, in the majority of cases, are lower than those of the controls (Fig. 3).

In young adult <u>Gryllus</u> the cutting of both frontal connectives brings about a rapid early death (ROUSSEL, 1966), while in adult female <u>Melanoplus</u> the operation inhibits crop emptying (DOGRA and EWEN, 1971).

- 39 -

Fig 2. Growth after severance of the recurrent nerve.

Recurrent nerve plus both frontal connectives cut (14 m, 15 f)

The operation was attended by an early high mortality with only 8 animals surviving to Day 10. 3 of these maintained a constant weight throughout the experimental period and the remaining 5 exhibited fairly considerable weight increases which were, however, lower than those of the controls (Fig. 4).

Removal of the frontal ganglion (22 m, 24 f)

Mortality was also high after frontal ganglionectomy, 34 operated animals dying before Day 10. The vast majority of these animals died at weights which were lower than those recorded at the time of the operation. The 12 animals surviving to Day 10 can be divided into three groups (Fig. 5): those losing weight (5 animals); those maintaining a constant weight (6 animals); and those showing fairly considerable weight increases (1 animal).

Adult Locusta (CLARKE and LANGLEY, 1963; STRONG, 1966), adult <u>Schistocerca</u> (HILL <u>et al.</u>, 1966) and adult <u>Melanoplus</u> (GILLOTT <u>et al.</u>, 1970) maintain a constant weight after frontal ganglionectomy. Immature adult <u>Gryllus</u> (ROUSSEL, 1966) either maintain a constant weight or lose weight after the operation, but survive for a limited period only. Frontal ganglionectomy in adults of the beetle <u>Necrophorus vespillo</u>, on the other hand, has no effect upon growth (ROUSSEL, 1966). The majority of workers (HIGHNAM <u>et</u> <u>al.</u>, 1966; ROUSSEL, 1966; GILLOTT <u>et al</u>., 1970; DOGRA and EWEN, 1971) conclude that the operation interferes with crop emptying, causing food to accumulate in the foregut.

FIG 4. Growth after severance of recurrent nerve plus both frontal connectives.

Days

It is clear that the separation of the frontal ganglion from the surface of the foregut is not a growth arresting operation when performed in adult animals. Neither does the severance of both frontal connectives, or the severance of the recurrent nerve plus both frontal connectives block growth in every operated animal. The results of the latter operation suggest that alternative nervous pathways to those outlined by CLARKE and LANGLEY (1963c, d) are relaying sensory information from the foregut to the brain and corpora cardiaca. One possibility is the hypocerebral ganglion \longrightarrow NCC I route of STRONG (1966).

The effect on growth of surgical interference into the anterior stomatogastric nervous system is considered further in Section II, where the majority of the above operations are performed on newly moulted fifth instar nymphs.

SECTION II

INTERFERENCE WITH THE ANTERIOR SURGICAL STOMATOGASTRIC FIFTH NERVOUS SYSTEM IN INSTAR Locusta: EFFECT UPON MOULTING ITS GROWTH AND

JOUSSET DE BELLESME (1877) was the first to implicate air in the process of ecdysis. He showed that the pronounced enlargement of freshly emerged dragon-flies was accomplished by internal air pressure built up, not in the main tracheae, but in the digestive tract. Similar observations have since been made in many insect species, including the two acridids, <u>Stauronotus maroccanus</u> (KUNKEL D'HERCULAIS, 1890) and <u>Locusta</u> migratoria (DUARTE, 1939).

Although TESTENOIRE and LEVRAT were using X-rays in the field of insect investigation as long ago as 1896, sixty years were to elapse before the technique was first applied to ecdysis. CLARKE (1956) found that the locust, with its thick body, was an ideal subject for the differential absorption of X-rays, and from radiographs obtained he was able to determine the function of the dorsal abdominal air sacs during ecdysis and subsequent instar development. The same radiographic technique is used in the present investigation to determine the effect of various surgical interruptions into the anterior stomatogastric nervous system on the processes of gut emptying and air swallowing at ecdysis. The radiographs of operated animals presented in the text depict the maximum amounts of air that could be observed in the gut during attempted ecdysis.

The effect of these surgical interruptions on growth is measured as daily change in body weight, and the weight measurements of all operated animals are recorded in Tables II to IX of the Appendix. Three types of growth are recognized:

- (i) <u>True growth</u> a twofold or more increase in the operation weight. Control animals fit into this category, and the mean maximum percentage weight increases of operated and control animals exhibiting true growth are compared for each operation.
- (ii) <u>Reduced growth</u> 50 to 100% increase in the operation weight.
- (iii) Little or no growth 0 to 50% increase in the operation weight.

Newly moulted animals of both sexes were employed in this study. The techniques of microsurgery and radiography, together with the methods of sampling experimental insects, have been described in Chapter II. Unless otherwise stated the growth curves in Figs. 6 to 13 are for those animals moulting (or attempting to moult) on the day by which 50% of the operated population have undergone ecdysis (or attempted ecdysis). In Tables 2 to 9 the operation weight equals 0%, while in Figs. 6 to 13 it equals 100%.

Experiment 1

X-ray analysis of operated control fifth instar locusts over a period covering the final moult

Four operated control fifth instar nymphs were X-rayed at regular intervals from the time feeding ceased prior to ecdysis until two days after the final moult when feeding was well under way again. A selected sequence of radiographs taken from one particular individual is presented as Plates 1-24. In a recent paper VINCENT (1971) conveys a time scale, based on casual observation, of superficial changes taking place during the final ecdysis in <u>Locusta</u>. This was found to correspond reasonably well with the scale of external changes observed in animals of the present experiment.

(Note: The X-ray machine was housed in a room whose ambient temperature was some 5° C below that of the insectary. The time sequence presented below may, therefore, represent a slight exaggeration of what happens under normal insectary conditions.)

Plates 1 and 2

The first bubble of air appears in the foregut 32 hr before ecdysis. Approximately 24 hr later the amount of air in the crop has increased but air is still absent from the hindgut. Digestion of the old endocuticle at this time makes the locust soft to touch.

PLATES 1-24. X-ray photographs of an operated control fifth instar locust during the final ecdysis

- PLATE 1. 32 hours before final escape from the old cuticle.
- PLATE 2. 9 hours before final escape from the old cuticle.
- PLATE 3. 4 hours before final escape from the old cuticle.
- PLATE 4. 3 hours before final escape from the old cuticle.

PLATES 1-4

Plates 3, 4 and 5

Air is first observed in the hindgut 4 hr before ecdysis. The amount increases during the next hour and 1 hr before moulting even more air is present in the hindgut.

Plate 6

30 min before ecdysis the locust alters its position on the perch to one where the head points downwards so that maximum use of gravity can be made during moulting. Longitudinal contractions of the abdomen at this time are very obvious as air continues to enter the hindgut.

Plates 7 and 8

The wing pads begin to separate 20 min before ecdysis and 4 min later they are fully apart. Separation of the wing pads is taken to represent the start of ecdysis (VINCENT, 1971). The foregut expands as more air is swallowed and air is visible in the midgut caeca. Flexing movements of the abdomen at this time are very intense.

Plates 9, 10, 11 and 12

The haemolymph pressure, which is already at an elevated level on account of the high blood volume of locusts at this time (LEE, 1961), is raised still further by the continued expansion of the foregut. The high blood pressure and the actively contracting body muscles together cause the old cuticle to split along predetermined ecdysial lines of weak-

- PLATE 5. 1 hour before final escape from the old cuticle.
- PLATE 6. 30 minutes before final escape from the old cuticle.
- PLATE 7. 20 minutes before final escape from the old cuticle.
- PLATE 8. 16 minutes before final escape from the old cuticle.

- PLATE 9. 14 minutes before final escape from the old cuticle.
- PLATE 10. 12 minutes before final escape from the old cuticle.
- PLATE 11. 9 minutes before final escape from the old cuticle.
- PLATE 12. 6 minutes before final escape from the old cuticle.

ness situated in the mid-dorsal region of the thorax and along the epicranial suture of the head (DUARTE, 1939).

Plates 13 and 14

As the head and thorax emerge so the shed cuticle of the mouthparts becomes visible. The wings are withdrawn from the old wing pad cuticle and the gut reaches its maximum state of distension at this time. The limbs finally escape and the locust remains suspended from the old cuticle by the tip of the abdomen, for a period of 7 min, before falling to the ground. This rest period is most probably associated with preliminary hardening of the legs (VINCENT, 1971).

Plates 15, 16, 17 and 18

The newly emerged adult quickly regains the perch using only the front and middle pairs of legs which by this time are sufficiently hard for a firm grip to be applied. The gut remains distended with air thus enabling the blood to act as a hydrostatic skeleton and this, together with continuing muscular contractions in the region of the abdomen, facilitates expansion of the new cuticle and unfolding of the hypodermis to its fullest extent. Blood is forced into the wings which respond by gradually unfolding until they are completely expanded some 40 min after the moult. It is clear that some food has remained in the midgut during the moult. The midgut is the only region of the gut where food could be retained since the linings of both the foregut and hindgut are moulted.

- PLATE 13. 4 minutes before final escape from the old cuticle.
- PLATE 14. 1 minute before final escape from the old cuticle.
- PLATE 15. 10 minutes after final escape from the old cuticle.
- PLATE 16. 20 minutes after final escape from the old cuticle.

PLATES 13-16

- PLATE 17. 25 minutes after final escape from the old cuticle.
- PLATE 18. 43 minutes after final escape from the old cuticle.
- PLATE 19. $1\frac{1}{4}$ hours after final escape from the old cuticle.

4

PLATE 20. 2 hours after final escape from the old cuticle.

Plate 19

The wings are folded up to their normal resting position once expansion is complete ($l\frac{1}{4}$ hr after ecdysis) and as they harden so they become more difficult to visualise in the ensuing radiographs.

Plates 20, 21 and 22

The foregut has begun to collapse 2 hr after ecdysis and by the time 6 hr have elapsed it has assumed more normal dimensions. 12 hr after the moult the hindgut has expelled all but the last bubble of air. The fully expanded air sacs are now clearly visible. CLARKE (1956) states that the abdominal air sacs of the locust form a system permitting changes of volume at an ecdysis when the mass and density of the tissues remain constant. The air sacs are gradually obliterated by the developing tissues so that by the end of the stadium they have become completely occluded.

Plate 23

The first meal is taken 12-24 hr after ecdysis and food can be detected along the length of the gut at 24 hr. The S-bend of the colon, mentioned by ALBRECHT (1953) and figured in drawings from radiographs by GOODHUE (1963), is clearly visible.

- PLATE 21. 6 hours after final escape from the old cuticle.
- PLATE 22. 12 hours after final escape from the old cuticle.
- PLATE 23. 24 hours after final escape from the old cuticle.
- PLATE 24. 48 hours after final escape from the old cuticle.

Plate 24

Even more food is present in the crop and midgut and the S-bend in the colon is again apparent. The adductor muscles of the mandibles are also very obvious.

Summary

Air is first detected in the foregut 32 hr before the moult. 28 hr later it appears in the hindgut. This sort of timing is to be expected since the foregut will be emptying and swallowing well before the hindgut has removed the last traces of food and begun to take in air through the anus. The gut reaches its maximum state of distension several minutes before final escape from the old cuticle is accomplished. Dilation is maintained for 1-2 hr after moulting, thus allowing unfolding of the hypodermis and expansion of the new cuticle to take place. By 12 hr after ecdysis the gut has assumed more normal dimensions and the first meal is taken 12-24 hr after the moult.

Experiment 2

The effect of cutting the recurrent nerve on growth and moulting

The experimental treatments were as follows:

(a)) Recurrent	nerve	cut	14	animal	.s
-----	-------------	-------	-----	----	--------	----

(b) Operated controls 8 animals

Results

Sectioning the recurrent nerve produced two quite distinct responses:

(i) 50% of the operated animals died before Day 10 and in every individual the foregut, midgut and most of the hindgut were packed full of undigested grass at autopsy (Table 1, Plate 25).

TABLE 1. Gut contents of response (i) operated animals at autopsy

······	Food content of gut					
Animal No.	Crop	Midgut	Hindgut			
			Ileum	Colon	Rectum	
1 .	+++++	+++++	+++++	++++	+	
3	++++ +	↓↓↓↓	+++++	+++	+	
4	+++++	+++++	++++	+++	-	
8	┥┨╛╪ ╋	+ + + + +	++++ +	++	-	
9	+++++	+++++	++++	+	-	
11	+++++	++++	+++++	+	-	
14	+++++	++++	+++++	++++	+	

+ very little food

+++++ gut distended with food

PLATE 25. Dorsal dissection of a recurrent nerve cut fifth instar locust dying before Day 10. Note the presence of vast quantities of food in the foregut, midgut and much of the hindgut.

PLATE 25

These animals did not produce any faeces and the midgut caeca were frequently shrunken in appearance and squashed against the body wall by the excessive amount of grass in the midgut.

(ii) The other 50% operated animals grew at a reduced rate compared to the controls and moulted to adults, on average one day later (Fig. 6). Table 2 shows that the mean maximum percentage weight gain of these animals was significantly lower than that of the controls.

TABLE 2.	Comparison of th	ne mean m	aximum p	ercentag	e
	weight increases	s of resp	oonse (ii) operat	ed
	animals and the	controls	-		
					1.51
Ireatment	Individuals	Mean	S.E.	t	· P·
RN cut, response (ii)	7	145	4		

175

6.00

3

0.001

Conclusions

Controls

Recurrent nerve severance frequently induces hyperphagia (DETHIER and BODENSTEIN, 1958; DETHIER and GELPERIN, 1967; GELPERIN, 1967; FRASER ROWELL, 1963). The question as to whether response (i) operated animals were hyperphagic must remain open since they were not made the subject of any quantitative food measurements. Their gut condition is identical to that of adult <u>Gryllus bimaculatus</u> (ROUSSEL, 1966) after recurrent nerve severance. In both cases death

8

- 50 -

is ultimately due to lack of metabolites entering the haemolymph, the operation having an adverse effect upon the digestive mechanisms of these insects. The remaining (response (ii)) operated animals behave in a similar manner to the third instar nymphs of CLARKE and LANGLEY (1963b), growing at a reduced rate compared to the controls and showing a slight delay in moulting.

Experiment 3

The effect of cutting one frontal connective (proximal or distal to branches) on growth and moulting

ROOME (1968) makes brief mention of fine nerves leaving each frontal connective in fourth instar Locusta. Intra-vitam injection of methylene blue and subsequent dissection confirmed the existence of these nerves in fifth instars. The fine nerves, usually three in number, leave each frontal connective in the region where this nerve passes between the retractors of the mouth angle and the posterior retractors of the labrum. Sensory cell bodies, lying on the dorsal surface of the muscular coat of the pharynx, were seen to be associated with some of the fine nerve branches; motor nerve endings to some of the nerve branches were also apparent. The neuromorphology of this region of the stomatogastric nervous system is considered in more detail in Section IV. Suffice it to say here that sensory information from the pharynx can be relayed to the brain and/or corpora cardiaca via the fine nerve branches of the frontal connectives as

well as via the anterior and posterior pharyngeal nerves (LANGLEY, 1962; CLARKE and LANGLEY, 1963b, c).

The treatments in Experiment 3 were as follows:

(a)	One frontal connective cut	
	(proximal to branches)	16 animals

(b)	One frontal connective cut	
	(distal to branches)	14 animals

(c) Operated controls 18 animals

Results

Animals of treatments (a) and (b) grew at a similar rate to the controls, with treatment (b) animals tending to moult on average one day later than those in the other two groups (Fig. 7). Table 3 shows that the mean maximum percentage weight increases of the operated and control groups were not significantly different. None of the operated animals leaked digestive fluid at any time during the experiment.

TABLE 3.	Comparison of the mean maximum percentage
	weight increases of treatments (a), (b)
	and (c) animals.

Treatment	Individuals	Mean	S.E.		t	'P'
(a) l FC cut (proximal)	14	176	4	a:b	0.71	0.5-0.4
(b) l FC cut (distal)	12	172	4	a:c	1.00	0.4-0.3
(c) Control	16	171	3	b:c	0.20	0.9-0.8

FIG 7. Growth after severance of one frontal connective (proximal), one frontal connective (distal).

Conclusions

In accordance with CLARKE and LANGLEY (1963c), the cutting of one frontal connective has no adverse effect upon the growth and moulting cycle.

Experiment 4.

The effect of cutting two frontal connectives (proximal to branches) on growth and moulting

The experimental treatments were as follows:

(a)	Both frontal connectives cut	
	(proximal to branches)	47 animals
(b)	Operated controls	20 animals

Results

The 39 operated animals surviving beyond Day 6 can be divided into five groups according to their growth and moulting responses:

(i) Growth and attempted moulting

15 animals exhibited true growth and died between Days 15 and 20 while attempting to moult to adults. The growth rate of these animals was much lower than that of the controls and the attempted moult was made on average five days after the controls had successfully moulted (Fig. 8). Table 4 shows that the mean maximum percentage weight increase of group (i) operated animals was significantly lower than that of the controls.

FIG 8. Growth after severance of two frontal connectives (proximal).

Treatment	Individuals	Mean	S.E.	t	*P*
2 FC's cut (proximal) group (i)	15	117	4	13.87	0.001
Controls	16	179			

The operated locust adopted a normal posture for moulting, with the head pointing downwards, but after several hours of endeavouring to escape from the old cuticle the exhausted animal fell to the floor and eventually died. The wing pads of some operated animals at the time of death were widely parted and the abdomen drawn up by approximately 5 mm from the tip of the old cuticle (Plate 26), while in others abdominal retraction only was manifest (Plate 27).

8 operated locusts were X-rayed during their attempted moults and a representative sequence of radiographs from one particular individual (No. 37) is presented as Plates 30-32. It is obvious that reduced amounts of air are present in the gut compared to the controls (Experiment 1). More air can be detected in the gut of animal No. 21 (Plate 33), but there was evidently still not enough for a successful moult. Air continued to enter the hindgut after the operation. Post-mortem examination of group (i) animals showed that food was usually absent from the crop, colon and rectum, but was present in the midgut and ileum.

- PLATE 26. Fifth instar nymph subjected to severance of both frontal connectives (proximal). Note the retracted abdomen and widely parted wing pads.
- PLATE 27. Fifth instar nymph subjected to severance of both frontal connectives (proximal). Note the retracted abdomen.
- PLATE 28. Operated control fifth instar nymph 1 hour before final escape from the old cuticle.
- PLATE 29. Fifth instar nymph deprived of the frontal ganglion. Note the shrunken abdomen.
 - (N.B. Operated animals in Experiments 5 and 6 at the time of attempted moulting were similar in external appearance to those animals in Plates 26 and 27.)

PLATES 26-29

26

28 .

29

PLATES 30-32. X-ray photographs, taken over a period covering the attempted moult, of a fifth instar locust subjected to severance of both frontal connectives (proximal).

- PLATE 30. $4\frac{1}{2}$ hours before the attempted moult.
- PLATE 31. At the time of attempted moulting.
- PLATE 32. 5 hours after the attempted moult.
- PLATE 33. X-ray photograph, taken at the time of attempted moulting, of both frontal connectives cut (proximal) fifth instar nymph (No. 21).

(ii) Growth and no attempted moulting

Animal No. 40 increased its operation weight by a maximum of 101% and survived for 31 days (approximately three times the normal instar length) without ever forming a new cuticle. It can be seen from Fig. 8 that very little growth occurred during the first sixteen days post-operative, but that thereafter the growth curve resembled that of group (i) animals attempting to moult on Day 17.

(iii) Reduced growth and attempted moulting

Operated animals Nos. 38 and 45 showed maximum weight increases of 82% and 76% respectively before dying on Day 17 while attempting to moult to adults.

(iv) Reduced growth and no attempted moulting

7 animals exhibited maximum weight increases that were 50-100% above their operation weights. None of them ever developed a new cuticle.

(v) Little or no growth and no attempted moulting

The remaining 14 animals maintained a fairly constant weight until death and failed to develop a new cuticle. The weight changes of one such individual (No. 46) are illustrated in Fig. 8.

All of the operated animals leaked digestive fluid to the exterior via the mouth. Leaking frequently commenced as early as Day 2, and by Day 6 over 90% of the operated animals were losing fluid. Close inspection of these animals revealed that liquid escaping from the mouth quickly passed to the ventral region of the neck membrane and then to the dorsal region. Some animals leaked more than others and in these individuals fluid could be detected along the lateral membranes of the abdomen.

Conclusions

Approximately one-third of the operated animals surviving beyond Day 6 exhibit a twofold or more increase in weight, develop a new cuticle, but fail in their attempt to moult to the adult stage. After the operation sensory impulses from the gut could still reach the brain and corpora cardiaca via the branches of the frontal connectives, and via the hypocerebral ganglion, NCC I pathway of STRONG (1966). On the motor side, the frontal connectives are obviously implicated in the processes of air intake and/or retention at ecdysis, and regurgitation.

CLARKE and LANGLEY (1963c) obtained a uniform growth response to the severance of both frontal connectives, the operated third instar nymphs maintaining a constant weight and failing to produce a new cuticle. Survival, however, was poor and this may have led to the elimination of potential growers. ROOME (1968), working with third instar <u>Locusta</u> nymphs and third and fourth instar <u>Schistocerca</u> <u>gregaria</u> nymphs, found that a few animals increased in weight and developed a new cuticle after the cutting of both frontal connectives. In <u>Periplaneta americana</u> the operation does not prevent normal crop emptying (DAVEY and TREHERNE, 1963), or growth and moulting by at least a few operated nymphs (ROOME, 1968). According to PENZLIN (1971), however, nymphal <u>Periplaneta</u> are unable to moult successfully after the operation.

Experiment 5

The effect of cutting both frontal connectives (distal to branches) on growth and moulting

The experimental treatments were as follows:

(a)	Both frontal connectives cut		
	(distal to branches)	24	animals
(b)	Operated controls	12	animals

Results

The operation was attended by an early high mortality, with 9 animals dead by Day 5. The rest survived for eleven or more days and can be divided into four groups according to their growth and moulting responses:

(i) Growth and attempted moulting

7 animals more than doubled their operation weights and died between Days 13 and 17 while trying to moult to adults. The attempted moult was made on average two days after its successful completion by the controls (Fig. 9). Table 5 shows that the mean maximum percentage weight increase of group (i) operated animals was significantly lower than that of the controls.

TABLE 5.	Comparison of the mean maximum percentage							
	weight increases of group (i) operated animals							
	and the controls							

Treatment	Individuals	Mean	S.E.	t	"P"	
2 FC's cut (distal) group (i)	7	132	10	3.50	0.01-0.001	
Control	8	174	7			

Six operated animals were X-rayed over a period which covered the attempted moult and a sequence of radiographs from one representative individual (No. 5) is presented as Plates 34-37. It can be seen that the foregut contained only reduced amounts of air compared to the control animals at this time (Experiment 1), and that air continued to enter the hindgut after the operation. At autopsy food was always found in the midgut and ileum but not in the rest of the gut.

(ii) Growth and no attempted moulting

Operated animals Nos. 1 and 2 showed maximum weight increases of 105% and 106% respectively. The growth curve of No. 2 is presented in Fig. 9 where it can be seen that a period of growth during the first nine days is followed by a second period, also of nine days, during which a constant weight is maintained until death on Day 18. Neither animal developed a second cuticle.

PLATES 34-37. X-ray photographs, taken over a period covering the attempted moult, of a fifth instar locust subjected to severance of both frontal connectives (distal).

- PLATE 34. $15\frac{1}{2}$ hours before the attempted moult.
- PLATE 35. $4\frac{1}{4}$ hours before the attempted moult.
- PLATE 36. At the time of the attempted moulting.
- PLATE 37. $8\frac{1}{4}$ hours after the attempted moult.

PLATES 34-37

(iii) Reduced growth and no attempted moulting

Group (iii) is comprised of three animals. The growth curve of No. 24, reminiscent in general shape to that of No. 2, is presented in Fig. 9. No group (iii) animal ever developed a new cuticle.

(iv) Little or no growth and no attempted moulting

Two animals maintained a fairly constant weight after the operation, and the growth curve of one of these (No. 13) is presented in Fig. 9. Neither animal developed a new cuticle.

Of the fifteen animals surviving beyond Day 6, twelve leaked digestive fluid through the mouth, the first observation being recorded on Day 3 for two animals.

Conclusions

60% of the operated animals surviving beyond Day 6 undergo true growth and this is a clear indication that sensory impulses from the foregut can reach the brain and corpora cardiaca along routes other than those involving the frontal connectives. The hypocerebral ganglion, NCC I pathway of STRONG (1966) is still open after the operation, and the possible involvement of other, as yet unidentified, nervous pathways should not be ruled out. The involvement of the frontal connectives in the processes of air intake and/or retention, and regurgitation is confirmed in this experiment.

Experiment 6

The effect of cutting the anterior, median and posterior pharyngeal nerves on growth and moulting

The experimental treatments were as follows:

- (a) APNs, MPNs, and PPNs cut 36 animals
- (b) Operated controls 15 animals

Results

4 operated animals were dead by Day 6. The rest can be divided into three groups according to their growth and moulting responses.

(i) Growth and attempted moulting

26 animals exhibited true growth and died between Days 13 and 20 while endeavouring to moult to adults. The attempted moult was made on average three days after its successful completion by the controls (Fig. 10). Table 6 shows that the mean maximum percentage weight gain of group (i) operated animals was significantly lower than that of the controls. The weight changes of two individual locusts, Nos. 11 and 36, are included in Fig. 10 to illustrate the extremes of growth encountered.

FIG 10. Growth after severance of anterior, median and posterior pharyngeal nerves.

TABLE 6.	LE 6. Comparison of the mean maximum percentage .							
	weight increases of group (i) operated							
	animals and the	control	5					
				10 17 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-		
Treatment	Individuals	Mean	S.E.	t	'P'			
APNs, MPNs a	nd							

158

176

4

3

3.60

0.001

Ten operated locusts were X-rayed over a period covering the attempted moult, and a representative sequence of radiographs from one such animal (No. 16) is presented as Plates 38-41. It can be seen that reduced amounts of air are present in the foregut compared to the controls (Experiment 1), and that air continues to enter the hindgut. Post-mortem examination of group (i) animals indicated that food was usually absent from the crop, colon and rectum, but present in the midgut and ileum.

(ii) Growth and no attempted moulting

26

12

PPNs cut

Controls

group (i)

5 animals showed maximum body weight increases of between 118% and 166%. Two animals formed a new cuticle but died before making any attempt to moult. The other three animals failed to develop a new cuticle.

(iii) <u>Reduced growth and no attempted moulting</u>

Animal No. 38 increased its operation weight by a maximum of 92% before dying on Day 18 without ever forming a new cuticle.

PLATES 38-41. X-ray photographs, taken over a period covering the attempted moult, of a fifth instar locust subjected to severance of the anterior, median and posterior pharyngeal nerves.

- PLATE 38. $11\frac{1}{4}$ hours before the attempted moult.
- PLATE 39. 10 minutes before the attempted moult.
- PLATE 40. At the time of attempted moulting.
- PLATE 41. 12 hours after the attempted moult.

PLATES 38-41

Twenty-two of the thirty-two operated animals surviving beyond Day 6 leaked digestive fluid, some individuals starting to lose fluid as early as Day 2.

Conclusions

97% of the operated animals surviving beyond Day 6 increase their operation weights by a factor of two or more. According to CLARKE and LANGLEY (1963c), severance of the pharyngeal nerves in third instar nymphs leads to an immediate cessation of growth. In <u>Periplaneta</u> the operation interferes with crop emptying (DAVEY and TREHERNE, 1963), but in <u>Leucophaea maderae</u> severance of all the nerves connected to the frontal ganglion, except the recurrent nerve, does not affect this process (ENGELMANN, 1968). The results of Experiment 6 compare favourably with those reported in Section I where it was shown that pharyngeal nerve severance in adult animals has no adverse effect upon growth during the first ten days post-operative.

After the operation sensory impulses from the foregut can still reach the brain and corpora cardiaca via the branches of the frontal connectives, and via the hypocerebral ganglion, NCC I pathway of STRONG (1966). On the motor side, the pharyngeal nerves obviously exert a controlling influence over the processes of air intake and/or retention at ecdysis, and regurgitation.

In two animals the operation was unsuccessful with, in each case, a single posterior pharyngeal nerve remaining intact. That both animals were able to moult to adults renders it likely that a full complement of pharyngeal nerves is not a necessary requisite for successful moulting. This point is taken up in the next experiment.

Experiment 7

The effect of cutting the anterior or posterior pharyngeal nerves on growth and moulting

The experimental groups were as follows:

- (a) Anterior pharyngeal nerves cut 18 animals
- (b) Posterior pharyngeal nerves cut 16 animals
- (c) Operated controls 10 animals

Results

2 treatment (a) and 5 treatment (b) animals were dead by Day 4. Those surviving beyond this time can be divided into three groups according to their growth and moulting responses.

(i) Growth and successful moulting

9 treatment (a) and 8 treatment (b) animals underwent true growth and moulted successfully to adults. Moulting in treatment (b) animals was delayed on average by two days compared to the controls (Fig. 11). Table 7 shows that the mean maximum percentage weight increases of the operated and control groups were not significantly different.

FIG 11. Growth after severance of anterior pharyngeal nerves, posterior pharyngeal nerves.

<u>TABLE 7</u>. <u>Comparison of the mean maximum percentage</u> weight increases of treatments (a) and (b) group (i) animals and the controls

Treatment	Individuals	Mean	S.E.		t	'P'
(a) APNs cut group (i)	9	179	5	(a):(b)	1.38	0.2-0.1
(b) PPNs cut group (i)	8	166	8	(a):(c)	-	
(c) Controls	9	179	3	(b):(c)	1.52	0.2-0.1

(ii) Growth and attempted moulting

6 treatment (a) and 2 treatment (b) animals underwent true growth and died between Days 12 and 16 while attempting to moult to adults. Table 8 shows that the mean maximum percentage weight increases of treatment (a) animals and the controls were not significantly different. The mean maximum percentage weight increase of the two treatment (b) animals was almost identical to that of treatment (a) animals and the controls.

TABLE 8.	Comparison of the mean maximum percentage
	weight increases of treatments (a) and (b)
	group (ii) animals and the controls

Treatment	Individuals	Mean	S.E.		t	'P'
(a) APNs cut group (ii)	6	177	5			
(b) PPNs cut group (ii)	2	178	-	(a):(c)	0.34	0.8-0.7
(c) Controls	9	179	3	• •		

(iii) Growth and no attempted moulting

Treatment (a) animal No. 3 and treatment (b) animal No. 3 exhibited maximum body weight increases of 186% and 101% respectively. Neither animal developed a second cuticle, the former dying on Day 16 and the latter on Day 10.

No treatment (a) or treatment (b) animal leaked digestive fluid at any time during the experimental period.

Conclusions

There exists a certain amount of individual variation in the moulting response to anterior or posterior pharyngeal nerve severance. The majority of animals in treatments (a) and (b) moult successfully to adults. In a few, however, both pairs of pharyngeal nerves need to be intact in order that successful moulting might take place. It is deduced that in these animals the moult fails because of a breakdown in the neural mechanism co-ordinating the intake and/ or retention of air at ecdysis.

Experiment 8

The effect of removing the frontal ganglion on growth and moulting

The experimental treatments were as follows:

(a)	Frontal ganglion removed		19	animals
(b)	Operated controls	•	8	animals

Results

The operated animals can be divided into four groups according to their growth and moulting responses.

(i) Growth and attempted moulting

Animals Nos. 3 and 15 showed maximum body weight increases of 104% and 118% respectively and died on Days 26 and 17 while attempting to moult to adults (Fig. 12). These weight increases were well below the mean maximum control increase of 175%.

Plate 42 is a radiograph of animal No. 3 taken at the time of attempted moulting. The moult failed because the insect was unable to empty its gut of food, a necessary preliminary to the swallowing of air. Despite being unable to split open the old cuticle, both group (i) operated animals made vigorous attempts to escape from it and this led to them assuming a shrunken appearance at death (Plate 29). Plates 44-47 are radiographs of four frontal ganglionectomised fourth instar nymphs (from Section III) which were taken at the time of their attempted moults. Food can again be seen to occupy most of the gut, although in three individuals air is detectable in the rectum. The above remarks concerning gut contents were confirmed on dissection.

(ii) Reduced growth and attempted moulting

Animal No. 7 increased its body weight by a maximum of 82% and died on Day 17 while attempting to moult. Plate 43 shows that this insect was unable to empty its gut of food at the time of moulting.

FIG 12. Growth after removal of the frontal ganglion.

- PLATES 42, 43. X-ray photographs, taken at the time of attempted moulting, of two frontal ganglionectomised fifth instar locusts.
- PLATES 44-47. X-ray photographs, taken at the time of attempted moulting, of four frontal ganglionectomised fourth instar locusts.

PLATES 42-47

42

(iii) Reduced growth and no attempted moulting

3 animals showed maximum body weight increases of between 56% and 82% and failed to develop a new cuticle.

(iv) Little or no growth and no attempted moulting

13 animals maintained an approximately constant weight, and the growth curve of one such individual (No. 4), which survived for twice the normal instar length without ever forming a new cuticle, is presented in Fig. 12.

All of the operated animals leaked digestive fluid through the mouth, and in some leaking commenced as early as Day 2. The fluid dried on contact with the air, causing the head and thoracic regions in particular to become caked with the substance, so producing a picture consistent with that recorded by GILLOTT (1964) and ROOME (1968).

<u>Conclusions</u>

According to CLARKE and LANGLEY (1963b, c) frontal ganglionectomy in third instar nymphs causes every operated animal to maintain a constant weight. ROOME (1968), however, obtained essentially similar results to those described here, the majority of his frontal ganglionectomised third and fourth instar Locusta nymphs maintaining a constant weight, but a few showing fairly considerable weight increases after the operation. This author found that removal of the frontal ganglion in fourth instar <u>Schistocerca</u> nymphs caused them either to maintain a constant weight or to lose weight.

For continued growth to occur after the operation sensory impulses from the foregut must be reaching the brain

and corpora cardiaca along routes other than those involving the frontal ganglion. These may include the branches of the frontal connectives, and also the hypocerebral ganglion, NCC I route of STRONG (1966).

The frontal ganglion obviously plays an important role in co-ordinating emptying of the foregut at ecdysis. The rectum of a few fourth instar individuals was devoid of food and did, in fact, contain air. This is convincing proof that air does enter the hindgut through the anus at moulting. Its entry is most probably controlled by abdominal nerves running from the last abdominal ganglion to the rectum (ALBRECHT, 1953).

The progress of the moulting cycle is arrested in the majority of the operated animals and retarded by varying degrees in the rest. Animal No. 3, in attempting to moult on Day 26, took twice as long to reach this stage as did the controls. Animals Nos. 7 and 15, on the other hand, did not show such a lengthy delay, endeavouring to moult on Day 17 in each case.

Experiment 9

The effect of cutting (a) one labral nerve, and (b) both labral nerves on growth and moulting

The labral nerves, which probably contain both motor and sensory fibres, leave the tritocerebral ganglia and innervate the labrum and some of the dorsal muscles of the pharynx (SNODGRASS, 1926, 1935). In <u>Periplaneta</u> (WILLEY, 1961) the
labrum is also innervated by branches of the frontal connectives. The labral nerve in this insect has been shown by WILLEY to be of composite origin, coming partly from cells within the tritocerebrum and sub-oesophageal ganglion, and partly from fibre tracts of the protocerebrum. In <u>Locusta</u>, as in <u>Periplaneta</u>, each labral nerve fuses with its fellow frontal connective to form a short labro-frontal nerve root which then enters the tritocerebrum. Thus, although not forming part of the stomatogastric nervous system, the labral nerves are intimately associated with one of its components. In Experiment 9 the effects upon growth and moulting produced by severing one or both labral nerves are tested.

The experimental treatments were as follows:

(a)	One labral nerve cut	10 animals
(b)	Both labral nerves cut	24 animals
(c)	Operated controls	10 animals

<u>Results</u>

The severance of one labral nerve had no adverse effect upon the growth and moulting cycle (Fig. 13, Table 9).

An early high mortality attended severance of both labral nerves and eleven of the operated animals were dead by Day 6. Those surviving beyond this time can be divided into four groups according to their growth and moulting responses.

FIG 13. Growth after severance of one labral nerve, two labral nerves.

TABLE 9.	Comparison of the mean maximum percentage
•	weight increases of treatment (a), treatment
	(b) group (i), and treatment (c) animals

Treatment	Individuals	Mean	S.E.		t	'P'
(a) l LN cut	10	181	6	(a):(b)	3.04	0.01-0.001
(b) 2 LNs cut group (i)	. 6	153	· 7	(a):(c)	0.60	0.6-0.5
(c) Controls	10	177	3	(b):(c)	3.15	0.01-0.001

(i) Growth and successful moulting

6 animals underwent true growth and moulted to adults, though an average four days later than the controls (Fig. 13). Table 9 shows that the mean maximum percentage weight increase of these animals was significantly lower than that of treatment (a) animals and the controls.

(ii) Growth and no moulting

Animals Nos. 1 and 23 exhibited maximum body weight increases of 126% and 121% respectively. Both formed a new cuticle but died without ever attempting to moult.

(iii) <u>Reduced growth and no moulting</u>

3 animals showed maximum body weight increases that were 50-100% above their operation weights. No animal in this group ever developed a new cuticle, although No. 13 survived for more than twice the normal instar length (Fig. 13). (iv) Little or no growth and no moulting

2 animals maintained an approximately constant weight after the operation, one for eight and the other for nine days. The weight changes of the latter animal are presented in Fig. 13. Neither animal ever developed a new cuticle.

Grass accumulated in the preoral food cavity of five treatment (b) animals (Table IX of the Appendix) forcing the labrum upwards and away from its normal resting position. Labrum displacement was a temporary phenomenon and neither growth nor moulting were prevented by it. No treatment (a) or treatment (b) animal leaked digestive fluid at any time during the experiment.

Conclusions

True growth can occur in the absence of sensory information normally carried by the labral nerves. It is assumed here that the labral nerves in <u>Locusta</u> normally carry sensory information from the A_1 , A_2 , and A_3 receptors of the clypeolabrum (THOMAS, 1966). HASKELL and MORDUE (1969) have shown that cautery of the $A_1 + A_2$ receptors, or cautery of the A_3 receptors, does not seriously affect feeding behaviour. After labral nerve severance the central nervous system can still receive phagostimulatory input from the H receptors on the hypopharynx, and from the dome receptors on the labral and maxillary palps, which regions are innervated by nerves from the sub-oesophageal ganglion (ALBRECHT, 1953). On the motor side, the cutting of both labral nerves interferes with the role of the labrum in assisting entry of food into the mouth. The accumulation of food in the preoral food cavity is, however, only a temporary phenomenon, and in the absence of the labral nerves, the branches of the frontal connectives may control movement of the labrum.

Summary and Conclusions to Section II

- 1. A summary of the results of the various operations performed in this section is presented in Table 10.
- 2. True growth (minimum twofold increase in body weight) can occur after the severance of both frontal connectives, after the severance of the anterior, median and posterior pharyngeal nerves, and after the removal of the frontal ganglion. These results should be compared with those of CLARKE and LANGLEY (1963b, c) who state that the above operations lead to a complete cessation of growth in third instar nymphs.
- 3. Sensory information from the foregut can reach the brain and corpora cardiaca along nervous pathways which do not involve the frontal ganglion. These may include the branches of the frontal connectives, the hypocerebral ganglion ----> NCC I pathway of STRONG (1966), and other as yet unidentified routes.

A summary of the results of the various operations performed in Section II

TABLE 10

-Unsuccessful Moulting Successful 6 showing cuticle formation New Animals surviving beyond Day displace-Labrum ment \mathbf{O} \circ Digestive fluid loss \circ Weight increase (%) % 50-100 0- 20 O O living beyond 7* 14. Ц No. Day operated No. 2 FCs cut (dist.) 2 FCs cut (prox.) 1 FC cut (prox.) 1 FC cut (dist.) Treatment All PNs cut FG removed 2 LNs cut **PPNs** cut 1 LN cut APNs cut RN cut Exp. No. ω σ ഗ \sim

X ANIMALS NOT EXHIBITING HYPEPPYPGIC - TYPE RESPONSE

••••

- 4. The frontal ganglion co-ordinates emptying of the foregut at ecdysis.
- 5. A motor pathway involving the frontal connectives, the frontal ganglion, and the pharyngeal nerves is implicated in the control of air intake and/or retention at ecdysis. This same pathway also controls regurgitation.
- The labral nerves are not involved in the control of growth and moulting.

THE EFFECT OF FRONTAL GANGLIONECTOMY ON FOOD PASSAGE AS MEASURED BY FAECES PRODUCTION

There is much evidence to suggest that frontal ganglionectomy interferes with the movement of food through the gut. In immature adult female <u>Schistocerca gregaria</u> removal of the frontal ganglion inhibits emptying of the foregut (HIGHNAM <u>et al.</u>, 1966); the amount of food passed through the gut of these animals, as measured by faeces production, is greatly reduced (HILL <u>et al.</u>, 1966). The operation has a similar effect on crop emptying and faeces production in immature adult female <u>Melanoplus differentialis</u> (GILLOTT <u>et al.</u>, 1970; DOGRA and EWEN, 1971) and adult male and female <u>Gryllus bimaculatus</u> (ROUSSEL, 1966).

On the other hand, CLARKE and LANGLEY (1963b) and CLARKE and GILLOTT (1965) report that food intake and defaecation proceed normally in third instar <u>Locusta</u> nymphs after removal of the frontal ganglion. Immature adult female <u>Necrophorus</u> <u>vespillo</u> were observed by ROUSSEL (1966) to feed normally and to show an increase in body weight after frontal ganglionectomy. However, with the exception of HILL <u>et al</u>. (1966), none of the above authors include any quantitative measurements of feeding activity.

ROOME (1968) has shown that frontal ganglionectomy in third and fourth instar Locusta nymphs leads to a significant drop in food consumption and faeces production in the majority of operated animals. This effect is related to an observed accumulation of food in the crop at autopsy and to an absence of any real growth. In a few operated individuals, however, positive growth is identified and is associated with an increase in faeces production.

The results of Experiment 8 (Section II) demonstrate the variable effect of frontal ganglionectomy upon the growth and moulting cycle in fifth instars. Thus while the majority of operated animals maintain a constant weight and fail to develop a new cuticle, a few grow, form a new cuticle and then die while attempting to moult to the adult stage. Casual observation of faeces production indicated that the former group of animals were passing more food through the gut than the latter group

In Section III the various growth responses to frontal ganglionectomy are related to food passage through the gut, as measured by faeces production. The frontal ganglion was removed, without the addition of any Ringer solution, from newly moulted fourth and fifth instar <u>Locusta</u> nymphs of both sexes. Operated and control animals were weighed daily and their faeces collected, dried at 100°C for 24 hr and then weighed. Operative technique and post-operative care were as described in Chapter II. ROOME (1968) has investigated faeces production in short-lived (dead before Day 10) frontal ganglionectomised <u>Locusta</u> nymphs. Therefore only those operated animals surviving for longer than ten days are considered here.

- 76 -

Fifth Instars

Fifty-four newly moulted fifth instar nymphs of both sexes were sampled from a stock cage; the frontal ganglion was removed from thirty-eight animals (16 m, 22 f) and sixteen animals (7 m, 9 f) served as controls.

The controls had an instar length of 12 to 13 days (Figs. 17 and 18), compared to the 10 days of normal unoperated animals. The delay in moulting can be attributed to the post-operative treatment of the controls. Control female locusts passed more food through the gut per day than control males and were correspondingly larger and heavier (Table 21). Faeces production in both sexes reached a peak during the middle period of the instar (Figs. 19 and 20), a result agreeing with that of DAVEY (1954) for unoperated fifth instar Schistocerca nymphs.

Eight operated animals died before Day 10 and were discarded. The rest survived for longer than ten days and are divided into four groups according to their growth and moulting responses:

(a) Growth (at least 100% increase in weight) and attempted moulting

Thirteen animals grew, though at a reduced rate when compared to the controls (Figs. 17 and 18), and developed a new cuticle underneath the old one. They all died, between Days 14 and 22, while attempting to moult to the adult stage. The condition of the gut of these animals at autopsy is

FIG 17. Growth after removal of the frontal ganglion (5th instar, of).

.

					•	
Fifth Instar	•	·				
		Male			Female	
	No. of animals in group	Mean max % body weight gain	Mean daily faeces prodn. (mg/day)	No. of animals in group	Mean max % body weight gain	Mean daily faeces prodn. (mg/day)
Controls Onerated animals.	ŝ	169	61	6	189	85
(a) Growth and AM	2	128	48	ę	119	51
(b) Growth and no AM	1	•	ł	. 2	105	38
(c) Reduced growth and no AM	4	70	31	. 4	70	32
(d) Little or no growth and no AM	2	37	17	S	27	22
Fourth Instar						
Controls	2	148	31	9	180	42
Operated animals:						ļ
(a) Growth and AM	1	130	23	-1	121	24
(b) Reduced growth and AM	1	57	15	2	71	17
(c) Reduced growth and no AM	Υ ·	62	17	ſ	64	18
(d) Little or no growth and no AM	2	29	12	4	31	13

.

FIG 19. The weight of faeces produced per animal per day following frontal ganglionectomy of fifth instar males. •— frontal ganglionectomized animals; •— control animals.

FIG 20. The weight of faeces produced per animal per day following frontal ganglionectomy of fifth instar females. o- frontal ganglionectomized animals; •-- control animals.

summarized in Table 22. It is clear that frontal ganglionectomy prevents normal emptying of the foregut prior to swallowing of air at ecdysis. Air was, however, observed in the rectum of a few individuals.

Group (a) operated animals of both sexes passed less food through the gut per day than the controls and their body weight increases were correspondingly lower (Table 21). The operated peak in faeces production was lower than the control peak and appeared later (Figs. 19 and 20). In general it was found that the longer the operated instar period, the later was the appearance of the peak in faeces production. Thus operated female No. 1 died trying to moult on Day 22 and showed a faeces peak on Day 18, while operated Male No. 13 attempted to moult on Day 14 and exhibited a faeces peak on Day 9, just one day later than the control peak (Table X of the Appendix).

(b) Growth (at least 100% increase in weight) and no attempted moulting

Two females grew, but at a reduced rate compared to the controls (Fig. 18), and died without forming a new cuticle. At autopsy the foregut, midgut and ileum of female No. 15 (survived for sixteen days) was packed full of grass, while the gut of female No. 14 (survived for twenty-two days) contained more normal amounts of food (Table 22). Despite the distended state of its gut, female No. 15 expelled a greater weight of faeces per day than female No. 14 (Table X of the Appendix). Daily faeces production and body weight increase were both reduced in comparison to group (a) operated females (Table 21, Fig. 20).

TABLE 22	Food	content	in	operated	fifth	instar	animals
	at au	itopsy					

Group (a) Growth (at least 100% increase in weight) and attempted moulting

A . • 7	Food content of gut					
Animal No.	Foregut	Midgut	Ileum	Hindgut Colon	Rectum	
1	++	++	+	+	Air	
2	++	+ 1 -		-	-	
3	++	+	-	+ (Rm)	+ (Rm)	
4	++++	+	-	-	+ (Rm)	
5	++	++	+	-	+	
6	+++	++	+	+	Air	
7	++	- +-+ -	-	-	-	
8	-}-}-	++	-	-	+ (Rm)	
9	+ +	+	-	-	+	
10	++	++	-	-	+ (Rm)	
11	++	++	+	+	-	
12	+++	++		-	-	
13	++	++	-	-	-	

Group (b)	Growth (at least 100% increase in weight) and
	no attempted moulting

14	+++	+++	+		+-+
15	+++++	+ + + + +	+++ +	-	++

TABLE 22 (continued)

Group (c)	Reduced	Reduced growth (50-100% increase in weight)			
	and no a	attempted	moulting		
16	╅┇┇╹	****	*****	. =	_
17	+++	++	•	-	++
18	+++++	++	-	-	+ (Rm)
19	+++++	+	+		++ (Rm)
20	++++	+++	+++ +	-	+ (Rm)
21	+++++	+++++	+++++	-	-
22	++++	╡┨╌┠╌┣	-	-	+++ (Rm)
23	+++	++	+	-	

<u>Group (d)</u> Little or no growth (0-50% increase in weight) and no attempted moulting

24	+ + + +	-┼-┼- ┼-	-	-	++ (Rm)
25	+++++		+++	-	+
26	┥╌┟╌┟╴╽	+	-	-	+ (Rm)
27	++++	++	-	-	+
28	++++	+	-	-	+ (Rm)
29	++++	+++	-	-	++
30	+ 	+	-	-	++ (Rm)
50		T	-	-	

Scoring of gut contents:

+, Very little food +++++, Gut distended with food;

-, Food absent; Rm, Red material.

(c) <u>Reduced growth (50-100% increase in weight) and</u> no attempted moulting

Four males and four females exhibited weight increases that were 50-100% above their operation weights (Figs. 17 and 18). None of them ever developed a new cuticle. The foregut of the majority of animals was packed full of grass at autopsy and in some cases the midgut and ileum were also distended with food (Table 22). The reduced growth rate of group (c) operated animals was associated with a drop in the daily production of faeces (Table 21, Figs. 19 and 20).

(d) <u>Little or no growth (0-50% increase in weight)</u> and no attempted moulting

Two males and five females maintained an approximately constant weight after removal of the frontal ganglion (Figs. 17 and 18) and did not develop a new cuticle. The foregut of every individual was found to be distended with undigested food at autopsy (Table 22). Group (d) operated animals maintained a constant, low level of faeces production throughout their lives (Figs. 19 and 20), and this was associated with a low weight increase (Table 21). The peak in faeces production, so obvious in control and group (a) operated animals, was completely suppressed in groups (c) and (d) operated animals. Forty-two newly moulted fourth instar nymphs of both sexes were sampled from a stock cage; thirty animals (15 m, 15 f) had the frontal ganglion removed and twelve (6 m, 6 f) served as controls.

The controls had an instar length of 9 days (Figs. 21 and 22) compared to the 7 days of normal unoperated animals. As in fifth instars the delay in moulting can be attributed to the post-operative treatment of the controls. Control females passed more food through the gut per day than control males and were correspondingly larger and heavier (Table 21). A single, mid-instar peak in faeces production is recorded for operated control fourth instar <u>Locusta</u> females (ROOME, 1968) and for unoperated fourth instar <u>Schistocerca</u> nymphs (DAVEY, 1954). Two peaks in faeces production were manifest in the control males of the present experiment and although a single peak was evident in the control females it did not appear until two days before the moult (Figs. 23 and 24).

Thirteen operated animals died before Day 10 and were discarded. The rest survived for longer than ten days and are divided into four groups according to their growth and moulting responses:

(a) Growth (at least 100% increase in weight) and attempted moulting

One male (No. 2) and one female (No. 1) exhibited weight increases in excess of 100% of their original weights,

FIG 21. Growth after removal of the frontal ganglion (4th instar, o⁷).

Fig 23. The weight of faeces produced per animal per day following frontal ganglionectomy of fourth instar males. o-frontal ganglionectomized animals; o-control animals.

Fig 24. The weight of faeces produced per animal per day following frontal ganglionectomy of fourth instar females. o-frontal ganglionectomized animals, e- control animals.

developed a new cuticle, and died while trying to moult to fifth instars on Days 12 and 17 respectively (Figs. 21 and 22). Moderate amounts of food were present in the foregut and midgut of both animals at autopsy (Table 23). Less food was present in the hindgut, and air was detected in the rectum of one animal (No. 2). Death was a result of the operated animals being unable to empty the foregut of food prior to swallowing air at ecdysis. The mean daily level of faeces production in both sexes was reduced in comparison to the controls (Table 21). Despite this the peak in faeces production of operated male No. 2 was the same height as the mean control male peaks (Fig. 23).

(b) <u>Reduced growth (50-100% increase in weight) and</u> attempted moulting

One male (No. 5) and two females (Nos. 3 and 4) showed maximum weight increases that were 50-100% above their operation weights. All three developed a new cuticle but failed in their attempts to moult to fifth instars. The growth curves of male No. 5 and female No. 5 are presented in Figs. 21 and 22 and it can be seen that they attempted to moult at weights which were only 11% and 17% respectively above their operation weights. At autopsy the foregut and midgut of group (b) operated animals contained moderate amounts of food which was otherwise absent from the rest of the gut (Table 23). Air was detected in the rectum of two animals (Nos. 3 and 4). Animals in group (b), like those in group (a), died because they were unable to empty the foregut of food at the time of the moult. Daily faeces production

TABLE 23	Food co	Food content in operated fourth instar animals			
<u>Group (a)</u>	<u>at auto</u> Growth attempt	Growth (at least 100% increase in weight) and attempted moulting			
Animal -	,	Food content of gut			
No.	Foregut	Midgut	Ileum	Hindgut Colon	Rectum
1 2	+++ +++	+++ +++	++ +	+ -	- Air
Group (b)	<u>Reduced</u>	l growth (5 ced moultin	<u>0-100% in</u> <u>8</u>	crease in w	eight) and
3 4 5	+++ +++ +++	+++ +++ +++	- - -	-	Air Air -
<u>Group (c)</u>	Reduced no atte	l growth (5 empted moul	0-100% in ting	crease in w	eight) and
6 7 8 9 10 11	++++ +++ +++ ++++ +++++ +++++ +++++	++ +++ ++ ++ ++ +++ +++	++ - ++ ++ -	- - + - -	+ (Rm) - +++ + (Rm) + +

••

TABLE	23	(continued)
-------	----	-------------

Group (d)	<u>Little o</u>	r no growt	h (0-50% i	ncrease i	n weight)			
	and no attempted moulting							
12	↓ ↓ ↓ ↓	· + ·	-	-	+ (Rm)			
13	╋┫╋╹	+ 	+	-	++			
14	++++	+++	-	-	+			
15	┥-┼╌┟╶┼	++	-	-	-			
16	+++ +	÷	+	-	+ (Rm)			
17	++++	++	-	-	-			

Scoring of gut contents:

+, Very little food +++++, Gut distended with food;

-, Food absent; Rm, Red material.

and body weight increase in both sexes were reduced in comparison to group (a) operated animals (Table 21, Figs. 23 and 24).

(c) <u>Reduced growth (50-100% increase in weight) and</u> <u>no attempted moulting</u>

Three males and three females exhibited weight increases similar to those of group (b) animals but failed to develop a new cuticle, even after 26 days (Figs. 21 and 22). At autopsy the foregut of the majority of individuals was found to be packed full of undigested grass (Table 23). Daily faeces production and body weight increase in both sexes were much the same as in group (b) animals (Table 21).

(d) <u>Little or no growth (0-50% increase in weight)</u> and no attempted moulting

Two males and four females maintained an approximately constant weight after removal of the frontal ganglion (Figs. 21 and 22), and failed to develop a new cuticle. The foregut of every individual was found to be distended with undigested food at autopsy (Table 23). A constant low level of faeces production was manifest in animals of group (d) (Figs. 23 and 24) and this was associated with their low weight increases (Table 21). The peak(s) in faeces production witnessed in control and group (a) operated animals was absent in groups (c) and (d) operated animals.

The results in Section III show that frontal ganglionectomy has a variable effect on food passage, growth and cuticle development. The amount of growth taking place after the operation is directly related to the rate at which food leaves the foregut. True growth (minimum twofold increase in body weight) occurs when food passes through the gut unhindered; accumulation of food in the foregut results in little or no growth at all. Fig. 25 illustrates the relationship between the total amount of food passed through the gut (during the instar period in control and group (a) operated animals, and up until the time of death in groups (b), (c) and (d) operated animals) and maximum body weight gain in fifth instar animals of both sexes. It can be seen that group (a) operated animals tend to pass similar quantities of food through the gut to the controls but exhibit lower maximum body weight increases. This suggests that group (a) operated animals convert the ingested food into body tissue less efficiently than the controls. Part of the body weight gain in groups (c) and (d) operated animals of both instars is of course attributable to the accumulated, undigested food present in the foregut of these animals.

Frontal ganglionectomy also has a variable effect on the pattern of faeces production. Thus in group (a) operated animals, where food passes through the gut apparently unhindered, the peak in faeces production is readily distinguishable. On the other hand in groups (c) and (d) operated animals, where food passage out of the crop is restricted, the faeces peak is abolished altogether.

- 88 -

(* produced in the instar period in control and group (a) operated animals, and up until the time of death in groups (b), (c) and (d) operated animals).

FIG 25. The relationship between faeces production and body weight increase in frontal ganglionectomized and control fifth instar animals of both sexes.

The only long-term measurements of food consumption in frontal ganglionectomised locusts are those made by ROOME (1968) in third and fifth instar <u>Locusta</u> nymphs. Food consumption in operated animals of both instars was reduced to one-third to one-quarter that in the controls. The frontal ganglionectomised animals of ROOME maintained an approximately constant weight and displayed distended foreguts at autopsy; they therefore correspond to group (d) operated animals of the present work. From short-term feeding experiments BERNAYS and CHAPMAN (personal communication) found that frontal ganglionectomised fifth instar <u>Locusta</u> males consumed approximately half as much food as the controls during the course of a single meal.

CLARKE and LANGLEY (1963b) and CLARKE and GILLOTT (1965) state that frontal ganglionectomy in third instar Locusta nymphs does not adversely affect food intake and faeces production. Lack of growth after this operation is believed to be caused by a decrease in the activity of the neurosecretory system rather than be a lack of food. However, in the present study those operated animals failing to grow exhibit a correspondingly low level of faeces production, there being no examples of high faeces production and no In contrast to the above authors HIGHNAM et al. growth. (1966) report that removal of the frontal ganglion in immature adult female Schistocerca inhibits emptying of the foregut and consequently greatly reduces faeces production (HILL et al., Such operated animals are classed as 'semi-starved', 1966). and groups (c) and (d) animals of the present study fit into this category.

- 89 -

The frontal ganglionectomised fourth instar Locusta females of ROOME (1968) are divided into two groups according to their survival and growth responses: (1) 'short-lived' animals that survive for no longer than 10 days and exhibit a rapidly declining level of faeces production, which is associated with low weight increase and a distended crop at (2) 'long-lived' animals that survive for longer autopsy; than 10 days and show a relatively steady daily level of faeces production, which is more than double that of the short-lived animals but considerably less than that of the controls. By their growth responses, the long-lived animals of ROOME fit into groups (b), (c) and (d) (fourth instars) of the present work. Frontal ganglionectomy in Melanoplus (DOGRA and EWEN, 1971) has little or no effect upon food consumption, but severely restricts food passage out of the foregut. In consequence the crop becomes greatly distended and in a few individuals it actually bursts (GILLOTT et al., 1970).

The effects of frontal ganglionectomy on weight increase, new cuticle formation, and moulting behaviour are summarized in Table 24.

CLARKE and LANGLEY (1963c) removed the frontal ganglion from third instar nymphs at 0 hr, 12 hr, 24 hr, 33 hr, 72 hr and 96 hr after ecdysis. The 96 hr operated animals exhibited a steady weight loss until death. All the other operated animals maintained a constant weight and therefore correspond to group (d) operated animals of the present work. A new cuticle was developed by all of the 72 hr and 96 hr, and by a

	showing:	Attempted moulting		43	29
eyond Day 10 s	New cuticle formation		43	29	
	viving l	e (%)	100	50	12
	% animals sur	Weight increas	50-100	27	53
			0-50	23	35
	No. surviving beyond Day 10			30	17
	No. operated			38	30
	Instar			5th	4th

91 -

few of the 33 hr operated animals. The 96 hr operated animals managed to split the old cuticle, but their attempts at moulting to the next stage proved unsuccessful. CLARKE and LANGLEY deduced that wound adhesions were responsible for this effect but a more likely explanation is failure of the operated animals first to empty the gut of food and second to swallow air.

ROOME (1968) removed the frontal ganglion from fourth instar Locusta females that were aged 8 hr \pm 8 hr at the time of the operation. Of the nine animals surviving for longer than 10 days (long-lived), six exhibited weight increases similar to those of animals in groups (b) and (c) of the present work, while three showed weight increases which fit them into group (d). It is probable that had they not been sacrificed on Day 14 several of these long-lived animals would have increased their body weights sufficiently to fit into group (a). A new cuticle was developed by two of ROOME's long-lived animals.

Growth and new cuticle development can, therefore, still occur in the absence of the frontal ganglion, but successful moulting is blocked at all times.

SECTION IV

THE MORPHOLOGY OF THE ANTERIOR STOMATOGASTRIC NERVOUS SYSTEM

The earliest mention of the stomatogastric nervous system in Locusta is by BRANDT (1831) (as quoted in DUMORTIER, 1969). ALBRECHT (1953) provides the first detailed account of its structure and relationship with the brain and gut. His work has subsequently been extended by the studies of LANGLEY (1962), GRENVILLE (1962), CLARKE and LANGLEY (1963b, c), STRONG (1966) and ROOME (1968). The most comprehensive account of any orthopteran stomatogastric nervous system is that by WILLEY (1961) for <u>Periplaneta</u>. KHATTER (1968) describes at some length this system in another orthopteran, <u>Schizodactylus monstrosus</u>, while CAZAL (1948) frequently mentions the stomatogastric nervous system in his review of the arrangement of the retrocerebral glands in a wide variety of insect orders, including the Orthoptera.

The continued growth of some animals after removal of the frontal ganglion, as reported in Sections II and III, implies that sensory impulses produced by distension of the foregut must be reaching the brain and/or corpora cardiaca along

pathways other than those involving the frontal ganglion. An alternative route is suggested by STRONG (1966) and involves fine nerves leaving the surface of the pharynx \longrightarrow hypocerebral ganglion ----> nervi corporis cardiaci interni. Further routes are sought during the present investigation into the morphology of the anterior stomatogastric nervous system in Locusta. This part of the system includes the frontal connectives, frontal ganglion, recurrent nerve, hypocerebral ganglion and the various fine nerves connected to the frontal and hypo-The structure and arrangement of the cerebral ganglia. ingluvial ganglia, inner and outer oesophageal nerves and the fine nerves attached to ingluvial ganglia has been considered in Locusta by GRENVILLE (1962) and STRONG (1966), and in Schistocerca by DANDO et al. (1968).

Newly moulted fifth instar <u>Locusta</u> nymphs were starved for several days to remove fat tissue from the vicinity of the nerves. The locusts were then subjected to intra-vitam injection of reduced methylene blue according to the method of STARK <u>et al</u>. (1969). The following account is based on the results of some thirty dissections of injected specimens.

- 94 -
Muscles innervated by nerves of the anterior stomatogastric nervous system

ALBRECHT (1953) describes in detail the arrangement of the head muscles in <u>Locusta</u> and only a few additional observations are necessary here.

Situated just below the base of each antenna and adjacent to the frontal carina are two oval patches of cuticle which differ slightly in colour and pigmentation from the rest of the frons cuticle (Fig. 26). The lower patch, light brown in colour, is the external manifestation of the points of origin of four muscles: the anterior retractor of the labrum, the posterior retractor of the labrum, the retractor of the mouth angle and the second dorsal dilator of the pharynx (Figs. 27 and 28). The upper patch, yellow in colour, overlies the antennal ampulla (UVAROV, 1966). A broad, thin transverse band of muscle runs between the two antennal ampullae. Another band of muscle fans out ventrally from each ampulla and, passing outside the second dorsal dilator muscle of the pharynx and inside a large frontal air sac, inserts into the tunica muscularis close to the point of insertion of the first lateral dilator muscle of the pharynx (Fig. 29). In several orthopteran species (PAWLOWA, 1895 a, b) the walls of the aorta fuse with the transverse and vertical muscles of the ampullae. This also appears to be the case in Locusta.

FIG. 26 Relative positions of the upper and lower patches on the frons cuticle.

FIGS. 27 and 28. Dissections to show the muscles associated with the upper cuticular patch.

FIG. 29. Dissection to show the muscle bands associated with the antennal ampullae.

٠

FIG 28

FIG 29

Frontal connectives and their branches

The frontal ganglion lies in the midline of the foregut between the second dorsal dilator muscles of the pharynx. Two frontal connectives leave its anterolateral margins and pass back on each side of the gut to the tritocerebral lobes of the brain. Just before entering the tritocerebrum each frontal connective fuses with the labral nerve on that side to form a short labrofrontal nerve root.

Fine nerves have been observed leaving the frontal connectives in <u>Gryllotalpa gryllotalpa</u>, <u>Bacteria ferula</u> and <u>Blatta orientalis</u> (BRANDT, 1835), <u>Pachytylus migratorius</u>, <u>Stenobothrus bicolor</u> and <u>Forficula auricularia</u> (PAWLOWA, 1895), <u>Dixippus morosus</u> (NYST, 1942), <u>Naucoris cimicoides</u> (CAZAL, 1948), <u>Periplaneta</u> (WILLEY, 1961), <u>Blaberus craniifer</u> (WILLEY, 1961), <u>Schizodactylus</u> (KHATTER, 1968) and <u>Blabera</u> <u>fusca</u> (BROUSSE-GAURY, 1971). As far as <u>Locusta</u> is concerned, ROOME (1968) observed fine nerves branching from the frontal connectives but did not trace them for any distance.

Usually three fine nerves are given off from each frontal connective in the region where this nerve loops back towards the tritocerebrum (Fig. 30, Plate 54). The first frontal connective nerve branch (FCN₁) runs forward to the second anterior dilator muscle of the cibarium and to the tunica

FIG. 30. Dorsal dissection of the nerve branches of the frontal connectives.

•

FIG 30

PLATE 54. Methylene blue injection showing branches of the frontal connectives. Frontal connective nerve 1 (FCN₁); Frontal connective nerve 2 (FCN₂); Frontal connective nerve 3 (FCN₃). A median nerve (MN) runs from the frontal ganglion to the FCN₁. Note also the fine nerve (FN) linking the FCN₂ to the labral nerve, and a distal branch of the frontal connective (DBFC) joining up with the FCN₂.

Whole mount. x 25.

PLATE 55. Methylene blue injection showing distribution of the posterior pharyngeal nerve (PPN).

> This nerve branches to the hypocerebral ganglion (HG), tritocerebrum (T), nervus corporis allatum II (NCA II), surface of the pharynx, and dilator muscles of the pharynx (DMP).

Note also the frontal ganglion (FG), anterior pharyngeal nerve (APN), branch of the recurrent nerve (BRN), branch of the hypocerebral ganglion (BHG), corpus allatum (CA), nervus corporis allatum I (NCA I), nervus corporis cardiacum III (NCC III), and sub-oesophageal ganglion (SOG).

Whole mount. x 20.

PLATES 54, 55

muscularis of the clypeal epipharynx and the pharynx proper. Sensory cell bodies, whose axons connect with the FCN_1 , can be detected lying on the tunica muscularis and occasionally on the dilator muscles. Motor nerve nedings of the FCN_1 branches are also evident in these muscles (Plate 56). A branch of the FCN_1 passes back under the frontal connective, branches to the first dorsal dilator muscle of the pharynx and then links up with the anterior pharyngeal nerve (Fig. 30).

The second frontal connective nerve branch (FCN_2) passes anteriorly and branches extensively to supply the following muscles: posterior retractor of the labrum, retractor of the mouth angle, anterior retractor of the labrum, first and second anterior dilators of the cibarium, compressor of the labrum and the tunica muscularis of the clypeal epipharynx (Fig. 30, Plate 54). Sensory cell bodies, whose axons connect with the FCN₂, are located on the tunica muscularis and occasionally on the dilator muscles while motor endings of the FCN₂ branches are common in both muscle regions. The main FCN₂ nerve branch may unite with its opposite number before innervating the compressor of the labrum or the two may be joined by 'link' nerves. The FCN₂ is probably homologous to the 'N₂' of WILLEY (1961).

- 97 -

PLATE 56. Sensory neurone (SN) associated with a branch of the frontal connective nerve 1 (FCN₁). Motor nerve endings (MNE); Tunica muscularis of the pharynx (TMP).

Whole mount. Methylene blue injection. x 135.

PLATE 57. Sensory neurones (SN) associated with branches of the anterior pharyngeal nerve (APN). Motor nerve endings (MNE); Tunica muscularis of the pharynx (TMP).

Whole mount. Methylene blue injection. x 135.

PLATES 56, 57

The third frontal connective nerve branch (FCN_3) divides to form an anterior branch which innervates the posterior retractor of the labrum and a posterior branch which innervates the rectractor of the mouth angle. This nerve is probably homologous to the 'N₁' of WILLEY.

While the FCN_3 and FCN_2 nearly always arise as separate branches of the frontal connective, the FCN_1 may branch from the FCN₂ instead of from the frontal connective.

Several other fine nerves were observed leaving the frontal connectives but could not be regularly identified in every dissected specimen. Thus, on one side only, a nerve occasionally leaves the frontal connective just before it fuses with the labral nerve (Fig. 30, Plate 54). The nerve branch divides into two, one half connecting with the FCN₂ and the other extending to the inner epithelium of the clypeus. WILLEY (1961) for <u>Blaberus</u> and KHATTER (1968) for <u>Schizodactylus</u> figure a nerve leaving the frontal connective just before it fuses with the labral nerve. In <u>Schizodactylus</u> the nerve branch supplies the pharyngeal muscles.

One or both frontal connectives occasionally branch just before they enter the frontal ganglion. The branch may re-enter the frontal connective or join the FCN₁ (Fig. 30).

The frontal connective and labral nerve are often connected by very fine 'link' nerves (Fig. 30).

Anterior, median and posterior pharyngeal nerves

The anterior and posterior pharyngeal nerves were first described in Locusta by CLARKE and LANGLEY (1963 b, c). A third pair of fine nerves, the median pharyngeal nerves, are given off from the frontal ganglion between the anterior and posterior pairs (ROOME, 1968). Fine nerves leaving the frontal ganglion between the frontal connectives and the recurrent nerve are also described for <u>Polyzosteria nitida</u>, <u>Gryllus</u> <u>domesticus</u>, <u>Stenobothrus</u> and <u>Forficula</u> (PAWLOWA, 1895), <u>Hierodula bioculata</u> and <u>Gryllotalpa vulgaris</u> (BORDAS, 1900), <u>Oryctes nasicornis</u> (PAWLOWA, 1895; ORLOV, 1924), <u>Carausius</u> <u>morosus</u> (DUPONT-RAABE, 1957), <u>Periplaneta</u> (WILLEY, 1961; DAVEY and TREHERNE, 1963), <u>Schizodactylus</u> (KHATTER, 1968) and Blabera (BROUSSE-GAURY, 1971).

The anterior pharyngeal nerves (APNs) emerge from the anterolateral borders of the frontal ganglion, just behind the origin of the frontal connectives. They innervate the first dorsal and lateral dilator muscles of the pharynx, the rectractor muscles of the mouth angle and the tunica muscularis of the pharynx (Fig. 30). Axons of sensory cell bodies found lying on the tunica muscularis and occasionally on the dilator muscles connect with the APNs. Motor nerve endings of the fine branches of the APNs are also apparent in these muscles (Plate 57). The median pharyngeal nerves (MPNs) either emerge separately from the frontal ganglion, just posterior to the APNs, or arise as branches of the APNs. They innervate the second dorsal dilator muscles of the pharynx (Fig. 30).

The site of origin of the posterior pharyngeal nerves (PPNs) is, in comparison to that of the APNs, unpredictable. Thus, both PPNs may arise from the frontal ganglion, both from the recurrent nerve or one from the frontal ganglion and one from the recurrent nerve. The PPNs branch profusely over the surface of the pharynx and oesophagus to innervate the second and third dorsal dilator muscles of the pharynx, the second lateral dilator muscles of the pharynx, the first, second and third ventral dilator muscles of the pharynx, the thin vertical muscle sheets associated with the antennal ampullae and the tunica muscularis of the pharynx (posterior region) and oesophagus. The PPNs also connect with branches of the APNs and MPNs, branches of the recurrent nerve, branches of the hypocerebral ganglion, the nervi corporis cardiaci III (NCC III), the corpora cardiaca, the nervi corporis allati I and II (NCA I and II) and also the aorta (Fig. 31, Plate 55). Sensory cell bodies whose axons connect with the PPNs can be detected lying on the surface of the tunica muscularis and occasionally on the dilator muscles. Motor nerve endings of the fine branches of the PPNs are also apparent in these muscles (Plate 58).

- 100 -

FIG. 31. Dorsal dissection of the posterior pharyngeal nerve.

* to tritocerebrum

PLATE 58. Multiterminal sensory neurone (MSN) associated with branches of the posterior pharyngeal nerve (PPN). Motor nerve endings (MNE); Tunica muscularis of the pharynx (TMP).

Whole mount. Methylene blue injection. x 135.

PLATE 59. Methylene blue injection showing the nervus connectivus (NC). This nerve runs from the protocerebrum (P) to the frontal ganglion (FG).

Whole mount. x 25.

PLATES 58, 59

LANGLEY (1962) and CLARKE and LANGLEY (1963b) describe a nerve leaving the NCA II and branching to the ventral dilator muscles of the pharynx, the muscles of the ventral head apodeme and the tritocerebrum. RAABE (1963b, 1964), also for Locusta, depicts a nerve branching from the NCA II to the ventral dilator muscles of the pharynx and shows the NCC III branching to the corpora allata and corpora cardiaca. She adds that in Locusta, Aeschna grandis, Carausius and Gryllus the NCC III branches to the dilator muscles of the pharynx and in the latter three insects it also connects with the recurrent From the present study it is clear that the nerve nerve. CLARKE and LANGLEY observed branching to the tritocerebrum is almost certainly the NCC III and the branch of the NCC III said by RAABE to innervate the dilator muscles of the pharynx is in fact part of the PPN. In Carausius (DUPONT-RAABE, 1957) the PPN supplies the dilator muscles of the pharynx and also joins the NCC III, the combined nerve root then entering the corpora The equivalent of the PPN in Periplaneta, 'N5' of cardiaca. WILLEY (1961), is reported by this author only to innervate the tunica muscularis of the pharynx, there being no obvious link up with the NCC III. According to DAVEY and TREHERNE (1963) the 'N ' in this insect terminates in a sensory organ which they believe to be an osmoreceptor. These authors also record a single median nerve passing posteriorly from

- 101 -

the ventral surface of the frontal ganglion to the muscular coat of the pharynx; no such nerve exists in Locusta.

Nervus connectivus

A slender median nerve, the nervus connectivus, arises from the mid-dorsal surface of the frontal ganglion. It passes back through the transverse muscle band connecting the antennal ampullae and enters the protocerebrum (Plate 59). The nervus connectivus was first named by BALDUS (1924) in the dragonfly Aeschna, although PAWLOWA (1895) had previously figured the nerve in various Orthoptera, labelling it 'n₃'. CAZAL (1948) reviews the occurrence of this nerve throughout the Insecta and finds it to be a characteristic feature of the more primitive orders. According to WILLEY (1961) the nervus connectivus is found in all orthopteroids except the Saltatoria but this nerve has not previously been described in Locusta migratoria migratorioides. In Periplaneta (WILLEY, 1961) the nervus connectivus is composed of two large axons which belong to a pair of large unipolar cell bodies situated on the median anterior face of the protocerebrum. The nervus connectivus does not branch and its function remains undetermined.

Other fine nerves leaving the frontal ganglion

In many insects a single median nerve, the frontal nerve (IMMS, 1957), emerges from the anterior margin of the frontal ganglion and runs forward over the dorsal surface of the pharynx and cibarium innervating various muscles in these regions. CLARKE and LANGLEY (1963c) provide a list of insects in which the frontal nerve has been detected. To it may be added the following species: Hyloicus ligustri (NEWPORT, 1832), Bombyx mori (BLANC, 1890), Forficula (PAWLOWA, 1895a), eight different orthopteran species (BORDAS, 1900), Grylloblatta campodiciformes (NESBITT, 1956), Dendroctonus pseudotsugae (ATKINS and CHAPMAN, 1957), Dytiscus marginalis (RAABE, 1963 a), Schizodactylus (KHATTER, 1968) and Actias selene (ROOME, 1968). A single median nerve is also observed in Locusta, though not in every dissected specimen. When present it seems to connect with the FCN_1 (Fig. 30, Plate 54) or the frontal connective. An alternative arrangement is apparent in Plates 60a, b where a multiterminal neurone is seen to be closely associated with the FCN_2 . The dedritic processes of the neurone run on and in this nerve while the axon enters the frontal ganglion midway between the points of origin of the frontal connectives. Multiterminal neurones have also been identified on major nerves in Carausius (FINLAYSON and OSBORNE, 1968). The

- PLATE 60a. A multiterminal neurone (MTN) associated with the frontal connective nerve 2 (FCN₂). The axon of this nerve cell runs to the frontal ganglion (FG). Whole mount. Methylene blue injection. x 25.
- PLATE 60b. The same at higher power. Note the dendritic processes (DP) intermingling with the FCN₂.

Whole mount. Methylene blue injection. x 400.

- PLATE 61a. Showing large number of nerves associated with the frontal ganglion. Whole mount. Methylene blue injection. x 40.
- PLATE 61b. Showing nervous continuity between the anterior pharyngeal nerve (APN), posterior pharyngeal nerve (PPN) and a branch of the recurrent nerve (BRN). Note also the median pharyngeal nerve (MPN) and sensory neurone (SN).

Whole mount. Methylene blue injection. x 60.

PLATES 60-61

muscles innervated by the frontal nerve in, for example, <u>Schizodactylus</u> are, in <u>Locusta</u>, supplied by the FCN₁ and FCN₂.

Two fine nerves leave the frontal ganglion between the frontal connectives and run forward over the surface of the gut in the Odonata (BRANDT, 1838), <u>Pachytylus</u>, <u>Polyzosteria</u> and <u>Oryctes</u> (PAWLOWA, 1895), <u>Dixippus</u> (NYST, 1942) and <u>Forficula</u> and <u>Sialis lutaria</u> (CAZAL, 1948). In <u>Gryllus</u> (PAWLOWA, 1895) and <u>Gryllotalpa</u> (BORDAS, 1900) three fine nerves arise just in front of the points of origin of the frontal connectives. In <u>Periplaneta</u> (WILLEY, 1961) the number is four ('N₃' and 'N₄') while in <u>Schizodactylus</u> (KHATTER, 1968) it is six (not including the frontal nerve).

Plate $6l_a$ shows a frontal ganglion with all its nerve connections intact. The single anteriorly directed median nerve is absent and the nervus connectivus has been cut near its base. The extremely fine nerves are probably axons of sensory cell bodies occasionally found lying on fat body tissue and against the frontal air sacs. FINLAYSON and OSBORNE (1968) describe a fat body neurone in <u>Carausius</u> whose axon enters a nerve connected to the second abdominal ganglion; its function is unknown.

Recurrent nerve and its branches

The frontal ganglion narrows posteriorly into the recurrent nerve trunk which passes back along the mid-dorsal line of the gut to the hypocerebral ganglion. Several (the number is variable) fine nerves leave the recurrent nerve and link up with the branches of the PPNs (Plate 61b). Some of these branches then innervate the tunica muscularis of the pharynx and oesophagus (Fig. 31). In Stenobothrus (PAWLOWA, 1895a), Oryctes (ORLOV, 1924), Periplaneta (WILLEY, 1961), Schizodactylus (KHATTER, 1968) and Actias (ROOME, 1968) branches of the recurrent nerve innervate the muscle coat of the pharynx and oesophagus. In Dytiscus (RAABE, 1963 b) a pair of fine nerves emerge from the recurrent nerve and supply the lateral dilator muscles of the pharynx while in Gryllus, Aeschna and Carausius (RAABE, 1963 b) branches of the recurrent nerve connect with the NCC III. A fine nerve branch, containing two bipolar neurones, arises from the ventral surface of the recurrent nerve in Phormia (GELPERIN, 1967) and connects with the anterior region of the foregut. From electrophysiological experiments it is concluded that the two neurones are stretch receptors.

Nerves connected to the hypocerebral ganglion

The hypocerebral ganglion lies on the dorsal surface of the oesophagus, just behind the brain and immediately underneath the anterior unpaired lobe of the corpora cardiaca. Its neuropile is continuous with the recurrent nerve, the inner and outer oesophageal nerves, branches of the NCC I and small nerves to the pharynx (STRONG, 1966). The small or fine nerves usually link up with branches of the PPNs before innervating the muscle coat of the oesophagus (Fig. 31, Plate 55). Fine nerves leaving the hypocerebral ganglion and passing to the surface of the oesophagus are also described for <u>Dixippus</u> (PFLUGFELDER, 1937; NYST, 1942), Periplaneta (WILLEY, 1961), Schizodactylus (KHATTER, 1968), and Oryctes, where they connect with branches of the recurrent nerve and PPNs (ORLOV, 1924). In Grylloblatta (NESBITT, 1956) fibres from the hypocerebral ganglion innervate the aorta.

The above neuromorphological study has shown that the necessary sensory and motor nerve elements are present in the pharynx and oesophagus for the co-ordinated control of muscular activity in these regions. On the basis of work carried out in other insects by ZAWARZIN (1916) and DANDO <u>et al</u>. (1968), the multipolar or multiterminal (FINLAYSON,

1968) neurones found lying on the surface of the pharynx and oesophagus in <u>Locusta</u> can be classed as Type II sensory cells. CLARKE and LANGLEY (1963c) and PLOTNIKOVA (1967) go further and suggest that these cells function as stretch receptors, although this still awaits electrophysiological confirmation.

In the light of the present investigation the account by LANGLEY (1962) and CLARKE and LANGLEY (1963c) on the distribution of the PPNs is now seen to be inaccurate. The region of the pharynx described by these authors as being innervated by the PPNs is, in fact, supplied by the APNs and FCN_1 , with the PPNs supplying that region of the foregut which lies posterior to the frontal ganglion. The PPNs branch extensively and link the stomatogastric nervous system with the neuroendocrine system at the level of the corpora cardiaca and also at the level of the NCA II.

The distribution of the fine nerves of the anterior stomatogastric nervous system is such that even after the removal of the frontal ganglion several nervous pathways are open to the insect for the conveyance of sensory information from the foregut to the neuroendocrine system. The FCN_1 , FCN_2 , APN and PPN are mixed nerves. In Section V the ultrastructure of one of these, the PPN, is investigated and its axon diameters measured.

- 107 -

SECTION V

AN ELECTRON MICROSCOPICAL EXAMINATION OF THE HYPOCEREBRAL GANGLION, INGLUVIAL GANGLION, FRONTAL CONNECTIVE, RECURRENT NERVE AND POSTERIOR PHARYNGEAL NERVE

Neurosecretory material cannot be detected in the intrinsic neurones of the stomatogastric nervous system in <u>Locusta</u> at the light level (GRENVILLE, 1962; LANGLEY, 1962; CLARKE and LANGLEY, 1963 c; STRONG, 1966). STRONG did, however, observe several neurosecretory axons from the nervi corporis cardiaci interni enter the neuropile of the hypocerebral ganglion and leave in the inner and outer oesophageal nerves. These nerves in <u>Melanoplus sanguipipes</u> also contain neurosecretory fibres from the nervi corporis cardiaci interni (DOGRA and EWEN, 1970). The only successful light microscopical demonstration of intrinsic neuroglandular cells in the stomatogastric nervous system in any insect is by VAN DER KLOOT (1960) for the frontal ganglion of <u>Bombyx mori</u>.

A quite different picture is manifest at the ultrastructural level. ANSTEE (1968) found the perikarya of the frontal ganglion in <u>Locusta</u> to be actively engaged in the elaboration of neurosecretory granules which he also detected in many of the axons within the neuropile of this ganglion. His observations were confirmed by CAZAL <u>et al</u>. (1971) who in addition discovered neurosecretory material in the hypocerebral ganglion of this insect. CHANUSSOT <u>et al</u>. (1969) provide pictorial evidence of the existence of neurosecretion in the ingluvial ganglion of <u>Blabera craniifer</u> and describe its presence in this ganglion in Schistocerca.

ANSTEE (1968) inspected a limited number of thin sections of the recurrent nerve but was unable to detect neurosecretory material in any of its axons. The recurrent nerve runs between the frontal ganglion and the hypocerebral ganglion and since both of these ganglia actively manufacture neurosecretion its non-appearance in the recurrent nerve is somewhat surprising. The recurrent nerve therefore merits further attention.

In this section the fine structure of the frontal ganglion, as described by ANSTEE (1968) and CAZAL <u>et al</u>. (1971), is compared with that of the hypocerebral and ingluvial ganglia, the account by CAZAL <u>et al</u>. of ultrastructure of the hypocerebral ganglion being of sufficient brevity to justify this further investigation. The frontal connective, recurrent nerve and posterior pharyngeal nerve, all of which were cut during various experiments described in Sections I and II, are also examined at the ultrastructural level. The required tissues in mid-fourth instar nymphs and 10-day-old adults were fixed and processed for electron microscopy according to the methods described in Chapter II. For each tissue sections were taken of six animals and the results presented below are representative, in each case, of over one hundred cell profiles. Plates 75, 77, 81, 85 and 87 are of fourth instar animals while the remaining plates in this section are of adults. Since nerve axons and neurosecretory granules are rarely perfectly circular in transverse section the figure given for 'diameter' is the mean of the two diameters (WIGGLESWORTH, 1959).

Hypocerebral Ganglion

The hypocerebral ganglion is invested with a nerve sheath comprising an outer acellular layer, the neural lamella, and an inner cellular layer, the perineurium. Concentrated mainly round the dorsal and dorso-lateral aspects of the medullary neuropile are the cortical neurone cell bodies or perikarya. The sub-perineurial glial system ensheaths the neuronal perikarya and extends as narrow processes into the neuropile.

The nerve sheath

The structure of the neural lamella resembles that of its counterpart in the metathoracic ganglion (ASHHURST and CHAPMAN, 1961). It therefore consists of a meshwork of collagen-like fibrils set in an amorphous background substance which is frequently penetrated by tracheoles. According to ASHHURST (1959) the background substance is a neutral mucopolysaccharide.

The fine structure of insect perineurial cells has been described by HESS (1958), ASHHURST and CHAPMAN (1961), TRUJILLO-CENOZ (1962), SMITH and TREHERNE (1963), MADDRELL and TREHERNE (1967) and SMITH (1967). In Locusta the distinctive features of the perineurial cells are the abundant rodshaped mitochondria and the large intercellular spaces which are produced when adjacent pairs of intercellular membranes diverge widely from one another (Plate 62). The intercellular clefts, which open directly under the neural lamella, are held together at their inner ends by septate desmosomes. Also present in the cytoplasm are scattered Golgi complexes, profiles of rough endoplasmic reticulum, free ribosomes. sparsely distributed clusters of glycogen granules and microtubules. The perineurium nucleus is sausage-shaped and contains dense clumps of chromatin material.

PLATE 62. Electron micrograph of the cortical region of the hypocerebral ganglion. At the top of the field lies the neural lamella (nl) and below this the perineurium (p). The characteristic intercellular clefts (icc) between adjacent perineurial cells periodically diverge to form large intercellular spaces (ics). Multiple closely packed sheets of glia (gl) separate the perineurium from the perikaryon (pk). The innermost of these sheets invaginates the perikaryal nucleus (pn), mitochondria (m), tracheole (tr) and gliosome (gs).

Magnification x 9,400.

PLATE 63. A section taken through the edge of the hypocerebral ganglion neuropile. Numerous stacked leaflets of glial cells (gl) separate the perikaryon (pk) from the neuropile (np). The glial cytoplasm contains a glial nucleus (gn), tracheoles (tr) and a gliosome (gs). Note the large neurosecretory axon (ns) in the neuropile.

Magnification x 9,400.

The neuroglia

The structure and function of the glial cell system in insects has been reviewed by SMITH and TREHERNE (1963), SMITH (1967), TREHERNE (1967) and TREHERNE and MORETON (1970). In the hypocerebral ganglion the attenuated cytoplasmic processes of the glial cells form concentric folds round the neurone cell bodies and the innermost of these glial sheets penetrates the peripheral cytoplasm of the perikaryon to form characteristic invaginated 'glial fingers' (Plate 62). Within the glial cytoplasm may be found profiles of rough endoplasmic reticulum, free ribosomes, scattered Golgi complexes, microtubules, glycogen granules and membranedelimited dense bodies or gliosomes. In Melanoplus differentialis the gliosomes contain acid phosphatase and are therefore equivalent to lysosomes (LANE, 1968). Mitochondria are also present in the glioplasm but are fewer in number compared to the perineurium. The glial nuclei, like those of the perineurial cells, contain dense clumps of chromatin material, particularly in the vicinity of the nuclear envelope, and a prominent nucleolus. They occasionally migrate from their more normal position beneath the perineurium and come to lie between the perikarya and the edge of the neuropile.

(Plate 63). Multiple stacks of narrow glial leaflets separate the perikaryal and neuropilar regions from one another.

Glial cytoplasm is poorly represented in the neuropile, though occasionally narrow glial elements can be detected interposed between the axon profiles (Plate 65).

The perikarya

The cortical perikarya are made conspicuous by their large, centrally positioned, ovoid or spheroid nuclei. The inner nuclear membrane is more than twice the thickness of the outer membrane (Plate 64), an observation also recorded for nuclei of the corpus cardiacum neurosecretory cells in Calliphora (NORMANN, 1965) and for perikaryal nuclei of the pars intercerebralis in Calliphora (BLOCH et al., 1966) and Locusta (ANSTEE, 1968). The nuclear sap contains a prominent nucleolus, dense clumps of chromatin material and scattered dense spheroid granules, ca. 90 nm in diameter (Plate 64). Granules of similar size, shape and electron density were observed by NORMANN (1965) in Calliphora in the perikaryal nuclei of the hypocerebral ganglion and in nuclei of the corpus cardiacum neurosecretory cells, where they occur in association with chromosomes. Mitochondria are plentiful and evenly distributed throughout the cytoplasm. The numerous randomly distributed profiles of the endoplasmic reticulum

PLATE 64. Electron micrograph of part of a neurosecretory neurone of the hypocerebral ganglion. The Golgi complex (go) is actively manufacturing electron-opaque granules of neurosecretion (ns), some of which are in the process of being pinched off from the periphery (arrows). Profiles of rough endoplasmic reticulum (rer), mitochondria (m) and free ribosomes (fr) are frequently encountered in the perikaryal cytoplasm. Note the nuclear envelope with its thick inner and thin outer walls, and nuclear particles (np) in the nuclear sap.

Magnification x 32,000.

PLATE 65. A survey field of the hypocerebral ganglion neuropile. Note the presence of four different axon types: 1 - containing mitochondria (m) and neurotubules (nt) but devoid of neurosecretory material; 2 containing synaptic vesicles; 3 - containing electron-opaque neurosecretory granules only; 4 - containing electron-opaque and electron-lucent neurosecretory granules. Glial cytoplasm (g1).

Magnification x 15,000.
PLATES 64,65

appear in the form of flattened membrane-limited cisternae of varying length and undulation to which are attached many ribosomes. Free ribosomes, which are sometimes aggregated into clusters, occur in abundance.

The Golgi apparatus is of special interest since it actively participates in the manufacture of neurosecretory granules, an observation first made by SCHARRER and BROWN (1961) in <u>Lumbricus</u>. This association between the Golgi complex and neurosecretion has since been described in many insect species (WILLEY and CHAPMAN, 1962; SCHARRER, 1963; NORMANN, 1965; BLOCH et al., 1966).

The perikaryal cytoplasm in the hypocerebral ganglion contains many Golgi complexes, a few of which are involved in the manufacture of neurosecretion. Each complex has the typical structure, consisting of stacks of flattened agranular cisternae in close association with vacuoles and vesicles of varying sizes. In favourable sections electron-dense material can be detected within the intracisternal membranes; this material becomes pinched off at the periphery of the cisternae to form membrane-bound granules. The membrane of the newly sequestered granule is usually quite obvious (Plate 64) but it later becomes obscured by the secretion product. Freshly elaborated neurosecretory granules measure 60-100 nm in diameter but electron-opaque granules ranging in diameter up to a maximum of 500 nm can often be found in close proximity to the Golgi saccules (Plate 64). Electron-opaque neurosecretory granules were the only sort encountered in the neuronal perikarya.

The neuropile

The neuropile of the insect ganglion consists of a complex association of sensory, motor and internunciary axon processes together with gliocyte extensions (SMITH and TRE-HERNE, 1963). According to the nature of their axoplasmic inclusions bodies; five different 'Axon Types' can be recognised in the neuropile of the hypocerebral ganglion (Plates 65-68):

Axon Type 1 - Axon profiles containing neurotubules, ca. 20 nm in diameter, and mitochondria but no neurosecretory granules.

Axon Type 2 - Axon profiles also devoid of neurosecretion but partially or completely filled with small empty vesicles, ca. 30 nm in diamater; these are probably synaptic vesicles (SMITH and TREHERNE, 1963).

Axon Type 3 - Axon profiles containing electron-opaque neurosecretory granules, 140-200 nm in diamater.

Axon Type 4 - Axon profiles containing a heterogeneous population of neurosecretory granules, ranging in density from PLATE 66. A section taken through the neuropile of the hypocerebral ganglion. The vast majority of the axons are charged with electronopaque neurosecretory granules, but here and there can be found scattered type 4 axons containing both electron-opaque and electron-lucent granules.

Magnification x 17,500.

PLATE 67. A high power electron micrograph of the hypocerebral ganglion neuropile. Note adjacent type 4 axon profiles, one of which contains numerous small vesicles (v).

Magnification x 30,750.

PLATE 68. A high power electron micrograph of the hypocerebral ganglion neuropile. Note axon type 3, axon type 5, and glycogen granules (gy) contained within a narrow glial process.

Magnification x 20,000.

PLATES 66-68

electron-opaque to electron-lucent, and measuring 140-200 nm in diameter.

Axon Type 5 - Axon profiles containing electron-opaque neurosecretory granules, 70-120 nm in diameter, and empty or partially filled vesicles, 50-60 nm in diameter.

Mitochondria and small vesicles, 30-45 nm in diameter, frequent Axon Types 3-5 (Plate 67) but neurotubules are less in evidence (Plate 68).

According to CAZAL <u>et al</u>. (1971) the only type of neurosecretory granule in the neuropile of the hypocerebral ganglion is the electron-opaque variety, ca. 100 nm in diameter. However, the granules in the electron micrograph presented by these authors measure nearer 150 nm in diameter, thus making them equivalent to the electron-opaque granules in Axon Type 3.

Ingluvial Ganglion

In its basic construction the ingluvial ganglion, of which there are two in <u>Locusta</u>, closely resembles the hypocerebral ganglion. Thus the medullary neuropile is almost completely surrounded by the cortical perikarya and both are invested with a nerve sheath consisting of an outer neural lamella and an inner perineurium. The glial cell bodies, the majority of which lie beneath the perineurium, give rise to narrow cytoplasmic processes which encompass the perikarya and enter, to a limited extent, the neuropile.

The nerve sheath

The nerve sheath and perineurium do not differ significantly in their ultrastructural composition from these layers in the hypocerebral ganglion. Some of their more important features are depicted in Plate 69.

The perikarya

The cytoplasmic organisation of the perikarya mirrors that of the neurone cell bodies in the hypocerebral ganglion. Attention here is focused on the numerous Golgi complexes that are scattered throughout the cell body cytoplasm (Plate 70). Each complex is composed of a stack of flattened membranelimited agranular cisternae, some of which often exhibit a beaded appearance. The majority of the Golgi bodies are involved in the manufacture of neurosecretory material which collects in a spheroid extrusion at the periphery of the cisterna and is finally separated off as a membrane-bound granule (Plate 71). Clear vesicles appear to be budded off from the ends of the cisternae in a similar manner to the granules and may also be formed by the breaking up of an PLATE 69. Electron micrograph of the cortical region of the ingluvial ganglion. The upper portion of this field is occupied by the neural lamella (nl) in whose acellular matrix can be found collagen fibrils (cf) and tracheoles (tr). Immediately beneath the neural lamella is the perineurium (p). Note the system of intercellular clefts (icc) and intercellular spaces (ics), which eventually open out at the base of the neural lamella (arrows). Also the perineurial nucleus (pn) and mitochondria (m). Membranes of the glial system (gl) indent the cytoplasm of the perikaryon (pk) to form characteristic trophospongia (t). Gliosome (gs).

Magnification x 11,000.

PLATE 70. A field illustrating some of the features of a neurosecretory neurone of the ingluvial ganglion. Note the numerous Golgi complexes (go), neurosecretory granules (ns), profiles of rough endoplasmic reticulum (rer), mitochondria (m), trophospongium (t) and perikaryal nucleus (pn). Some Golgi cisternae are breaking up to form small vesicles (vs).

Magnification x 15,700.

PLATE 71. High power electron micrograph of a Golgi complex (go) in the process of budding off a neurosecretory granule (small arrow). The large arrow indicates a freshly elaborated granule. Magnification x 27,000. PLATES 69 - 71

entire cisterna into smaller fractions which then round off to form vesicles. Freshly elaborated neurosecretory granules measure 70-100 nm in diameter, but a whole range of granule sizes up to a maximum diameter of 500-600 nm are present in the vicinity of the Golgi apparatus. The perikarya, in common with those in the hypocerebral ganglion, contain only the electron-opaque variety of neurosecretory granule.

The neuropile

As in the hypocerebral ganglion a number of different Axon Types can be recognised in each sectioned field of the ingluvial ganglion neuropile (Plates 72-74):

Axon Types 1-5 - These profiles correspond exactly to Axon Types 1-5 in the hypocerebral ganglion neuropile.

Axon Type 6 - Axon profiles containing electron-opaque neurosecretory granules, 200-300 nm in diameter.

Axon Type 7 - Axon profiles containing a heterogeneous population of neurosecretory granules which range in density from electron-opaque to electron-lucent and measure 200-300 nm in diameter. These were only very occasionally encountered.

Mitochondria and small empty vesicles, 30-50 nm in diameter, can often be found in Axon Types 3-7 but neurotubules are less obvious (Plates 73 and 74). In Plate 74 an electronopaque granule appears to be in the process of budding off a PLATE 72. A survey field of the ingluvial ganglion neuropile. Note the presence of four different axon types: 1 - containing neurotubules (nt) and mitochondria (m) but devoid of neurosecretory material; 2 - containing synaptic vesicles; 3 containing electron-opaque neurosecretory granules only; 4 - containing electronopaque and electron-lucent neurosecretory granules. Glial process (g1).

Magnification x 9,200.

PLATE 73. A field of the ingluvial ganglion neuropile including profiles of axon types 2, 4 and 5.

Magnification x 14,100.

PLATE 74. A region of the ingluvial ganglion neuropile containing axon types 5 and 6. Towards the top of the field a neurosecretory granule appears to be in the process of budding off small vesicles (v).

Magnification x 16,700.

small electron-lucent vesicle in a manner similar to that described by SCHARRER (1968) in Periplaneta.

The ingluvial ganglion neuropile in Blabera and Schistocerca (CHANUSSOT et al., 1969) contains two kinds of granule which often coexist in the same axon profile: (1) Electron-opaque granules, ca. 150 nm in diameter, but whose density and diameter show considerable variation. Such granules match those found in Axon Types 3 and 4 of the present work; (2) Vesicles with a diameter of 65 nm, the majority of which are clear with but a few containing electronopaque material. The empty vesicles may correspond to those small empty vesicles frequently found in neurosecretory axon profiles in the Locusta ingluvial ganglion neuropile, although the vesicles of CHANUSSOT et al. are slightly larger. Nonneurosecretory axons (Axon Type 1) are also apparent in CHANUSSOT et al.'s electron micrograph of the neuropile in Blabera.

Frontal Connective

The two frontal connectives are almost circular in cross-section and one or other almost invariably accommodates a trachea which runs the length of the nerve between the centrally located axons. The nerve sheath (neural lamella + perineurium) overlies the glial cells in the cytoplasm of PLATE 75. A transverse section of the frontal connective. The axon population is composed of a few large axons (lax) and numerous medium (max) and small axons (sax). One or more mesaxon turns invests each large axon, the space between the glial membranes periodically dilating to form large extracellular spaces (ecs). Neurosecretory material (ns) is located exclusively with the medium- and small-sized axon profiles. Note also the neural lamella (nl), perineurium nucleus (pn), gliocyte nucleus (gn), tracheolar cell (trc), small tubular mitochondria (sm) and large mitochondria (1m).

Magnification x 8,400.

PLATE 75

which are embedded the axon cylinders (Plate 75).

The nerve sheath

The neural lamella, which lies outside the perineurium, has the typical structure, being composed of a multidirectional meshwork of collagen-like fibrils embedded in an amorphous matrix.

Numerous tubular mitochondria occur in the cytoplasm of the perineurial cells and the sinuous lateral cell walls occasionally diverge to form intercellular spaces. Near their bases the lateral walls are held together by septate desmosomes (Plate 76). Compared to the hypocerebral and ingluvial ganglia, the system of lateral cell walls and intercellular spaces in the frontal connective is far less extensive. The nuclei of the perineurial cells are flattened and contain dense clumps of chromatin material. A few scattered Golgi complexes, consisting of several stacked saccules in close company with empty vesicles, can be found in the perineurial cytoplasm. Other cell organelles include microtubules, rough membrane-bound cisternae of the endoplasmic reticulum and free ribosomes. Vacuoles, sometimes containing membrane remnants, can also be detected in the cytoplasm (Plate 77). These probably represent the former site of dense granules

.PLATE 76. A section taken through the nerve sheath of the frontal connective showing the large numbers of mitochondria (m) located in the perineurium (p). The lateral cell walls, which are held together by septate desmosomes (sd), frequently dilate to form intercellular spaces (ics). Note also the neural lamella (nl), profiles of rough endoplasmic reticulum (rer), Golgi complexes (go), glial processes (gl), axon packed full of neurosecretion (ns), and opening of the intercellular cleft (icc) immediately beneath the neural lamella (arrow).

Magnification x 17,100.

PLATE 77. A field including a group of large axon profiles (lax) within the frontal connective. The axons are ensheathed by glial cell processes (gl) the plasma membranes of which diverge periodically to delimit extracellular lacunae that become filled with an amorphous material (*). Note also neural lamella (nl), perineurium (p), neurotubules (nt), vacuole (vc) probably representing the former site of a dense granule, and gliosomes (gs).

Magnification x 15,000.

that have been extracted during glutaraldehyde fixation. The exact nature and function of these granules is obscure (LANE, 1968).

The neuroglia

The glial system is extensive, the cell bodies forming a layer beneath the perineurium and their narrow processes extending right to the centre of the frontal connective, between the axon profiles. The gliocyte nucleus is usually located peripherally but can sometimes be detected lying in the midst of the axon population. It is often indented to conform to the contours of nearby axon cylinders (Plate 75). Mitochondria, Golgi saccules and vesicles, rough membranebound cisternae of the endoplasmic reticulum, microtubules and gliosomes can be identified within the glial cytoplasm.

In the frontal connective the large axons are surrounded by one or more mesaxon turns. The space between the closely applied glial membranes, the extracellular cleft, periodically dilates to form large extracellular spaces which are filled with an electron-dense material, thus making them easily recognisable (Plates 75 and 77). According to ASHHURST (1961) and SMITH and TREHERNE (1963) this material is an acid mucopolysaccharide. Medium and small sized axons tend not to possess an individual glial membrane wrapping, but instead lie

- 121 -

free in the glial cytoplasm. They are, therefore, still isolated from one another except where they aggregate together to form 'axon clumps'. Such axon groupings share a common glial investment (Plate 79). The axolemma of the small axons is often in direct contact with the electron-dense material contained in the extracellular spaces (Plate 78).

The axon population

The transversely sectioned field of the fourth instar frontal connective presented in Plate 75 contains ca. 1200 axon profiles. Two classes of axon are recognised:

1. Large axons - these measure 1.7-2.6 µm in diameter and number 13. Their axoplasm contains many neurotubules as well as scattered mitochondria. The neurotubules, which are aligned in arrays roughly parallel to the limiting plasma membrane, resemble morphologically the microtubules in perineurial and glial cells. Both measure ca. 20 nm in diameter and appear, in transverse section, as minute empty vesicles. The precise function of the neurotubules is unknown although it is suggested that they may play some part in cytoplasmic flow or have a skeletal function (GRAY, 1970). Two distinct sizes of mitochondria occur in the large axons. In the smaller and more numerous type of mitochondrion the cristae PLATES 78, 79. Sectioned fields of the frontal connective including groups of small axons (sax) containing neurosecretory material (ns).

> Magnifications x 11,600 x 17,600.

PLATE 80. Longitudinal section through part of the frontal connective axon population. Small axons (sax), large axons (lax), neurosecretion (ns).

Magnification x 10,500.

PLATES 78-80

appear either in the form of parallel lamellae or as concentric whorls. These types of arrangement are also adopted by cristae in the larger and rarer type of mitochondrion. A similar diversity in mitochondrial size and structure is also evident in the axons of the adult blowfly (OSBORNE, 1966).

2. Medium and small sized axons - these constitute the rest of the axon population and measure 0.06-1.3 μ m in diameter. Neurotubules and small and large mitochondria can be found in medium and small sized axons together with a third type of axonal inclusion, the neurosecretory granule (Plates 75, 78, 79 and 80). By far the most predominant type of granule is the electron-opaque variety measuring 100-200 nm in diameter. A few grey granules of similar size range occasionally occur in the same axon as the electron opaque granules.

Recurrent Nerve

The recurrent nerve, which is a good deal thicker than the frontal connective, is approximately circular in crosssection. The centrally positioned axon population is invaded by the glial system and both are encapsulated by the nerve sheath (neural lamella + perineurium). PLATE 81 A transverse section of the recurrent nerve. Note large axons (lax), small axons (sax), neurosecretion (ns), neural lamella (nl), perineurium (p), perineurium nucleus (pn) and glial process (gl).

Magnification x 4,100.

PLATE 81

The nerve sheath and neuroglia

In their ultrastructural organisation the neural lamella, perineurium and neuroglia do not differ significantly from these layers in the frontal connective. Some of their more important features are illustrated in Plates 81-84.

The axon population

At the level at which the section presented in Plate 81 is taken the fourth instar recurrent nerve contains approximately 2,200 axons in transverse profile, nearly twice the number counted in the frontal connective of the same instar (Plate 75).

Unlike the frontal connective, where a few large axons stand out from the rest of the axon population, there exists in the recurrent nerve a uniformly graded series of axon sizes, ranging from the smallest at 0.08 μ m up to the largest at 2.7 μ m in diameter. The disposition of the axons in the frontal connective and recurrent nerve is also different. Thus in the frontal connective the relatively few large axons tend to be grouped together near the edge of the axon population while in the recurrent nerve the larger axons may occupy a central position or display no organised grouping pattern whatsoever, as in Plate 81. The very small axons are PLATE 82. A longitudinal section of the recurrent nerve. Note granules of neurosecretion in the small axons (sax), large axons (lax), perineurium (p) and gliocyte nucleus (gn).

Magnification x 6,000.

PLATE 83. A sectioned field of the recurrent nerve including a group of large axon profiles (lax) located immediately underneath the perineurium (p). Note the neural lamella (nl), perineurium nucleus (pn), mitochondria (m), rough endoplasmic reticulum (rer), glial cytoplasm (gl), neurotubules (nt), extracellular spaces filled with amorphous material (*), and opening of the intercellular cleft (icc) immediately below the neural lamella (arrow).

Magnification x 14,000.

PLATES 82,83

PLATE 84. A transverse section through a group of large (lax) and small axons (sax) in the recurrent nerve. Note neurosecretion (ns) in the small axons only, amorphous material in the extracellular spaces (*) and indented margin of large axon plasmalemma (arrow).

Magnification x 9,600.

PLATE 85. A transverse section through a group of small axons (sax) containing neurosecretory material (ns). Several axon profiles contain synaptic vesicles (sv). Note also neural lamella (nl) and perineurium (p).

Magnification x 11,000.

PLATE 86. A longitudinal section through a group of small neurosecretory axons in the recurrent nerve. Note dense granules of neurosecretion (dns), grey granules of neurosecretion (gns), and amorphous material in extracellular space (*).

Magnification x 15,400.

invariably located close to the periphery of the axon population. The shape of the axons, particularly the large axons, in the recurrent nerve varies considerably, especially in transverse profile. In Plates 81, 83 and 85 the margins of the axons are frequently indented either by fellow axons or by glial cell cytoplasm, while in Plate 82 the axons are smooth in outline.

The larger axons, like those in the frontal connective, are non-neurosecretory. They contain neurotubules and small and large mitochondria whose cristae adopt a parallel lamellate or concentric whorl pattern of arrangement. Neurosecretory granules are found only in the medium and small sized axons which may also contain neurotubules and small and large mitochondria. The vast majority of granules are electron-opaque and measure 100-200 nm in diameter. Grey granules, 150-220 nm in diameter, are far less common (Plate 86). In Plate 85 several axon profiles contain a fourth type of axonal organelle, small clear vesicles 30-40 pm in diameter. These are almost certainly synaptic vesicles (SMITH, 1968).

Posterior Pharyngeal Nerve

The posterior pharyngeal nerves in fourth instar nymphs were sectioned close to where they enter the frontal ganglion. In this position they are composed of an outer neural lamella

- 125 -

PLATE 87. A transverse section of the posterior pharyngeal nerve. Profiles of rough endoplasmic reticulum (rer), free ribosomes (fr), gliocyte nucleus (gn), microtubules (mt), gliosomes (g) and numerous mitochondria (m) can be detected within the glial cytoplasm (gl). Note that the cisterna of one rough endoplasmic reticulum profile is confluent with a large vacuole (vc). The axon population is com posed of large (lax), medium (max) and small axons (sax). Each large axon is invested by one or more mesaxon turns (mst), the plasma membranes of the glial processes periodically diverging to form extracellular spaces (ecs). The amorphous material contained within these spaces may be in direct contact with the axolemma (arrow). Neural lamella (nl), septate desmosomes (sd).

Magnification x 12,900.

PLATE 87

The neural lamella and neuroglia

Tracheoles and isolated axons can be detected in the mottled background substance of the neural lamella as well as the usual collagen-like fibrils.

In the posterior pharyngeal nerve it is not possible to distinguish between perineurial cells and glial cells. This is also the case in small peripheral nerves in other insects (EDWARDS et al., 1958, HESS, 1958; WIGGLESWORTH, 1959). The cells lying between the neural lamella and the axon population in the posterior pharyngeal nerve are considered to be glial cells. The glioplasm of these cells contains profiles of rough endoplasmic reticulum, a few scattered Golgi complexes, many microtubules, free ribosomes, gliosomes, mitochondria and a large gliocyte nucleus. Vacuoles of various shapes and sizes are also present and these, one must assume, were filled with material that has been removed during One such vacuole is confluent the cellular fixation process. with the cisterna of a rough endoplasmic reticulum profile (Plate 87). Contiguous glial cell membranes are often held together by septate desmosomes.

The larger axons in the posterior pharyngeal nerve enjoy at least one mesaxon fold while the rest are partially surrounded by glial membranes or lie free in the glioplasm. The closely-applied glial membranes frequently dilate to form larger extracellular spaces which contain an electron-dense substance similar to that found in the glial system surrounding the axons in the frontal connective and recurrent nerve (Plate 87).

The axon population

The transversely sectioned field of the fourth instar posterior pharyngeal nerve presented in Plate 87 contains 32 axon profiles which range in diameter from 0.2-1.7 μ m. Their axoplasm contains neurotubules and many small and a few large mitochondria whose cristae adopt the now familiar parallel lamellate or concentric whorl pattern of arrangement.

A few sections also included fine branches of the posterior pharyngeal nerve (Plates 88 and 89). In these the perineurium is entirely absent and the scattered axons lie within the glial cytoplasm. Some of the axons contain electron-opaque neurosecretory droplets, measuring up to 220 nm in diameter, mingled with empty vesicles, 60-200 nm in diameter.

It is now clear that the nerve described by ANSTEE (1968) as being the recurrent nerve (Plates 5 and 6) is in fact the posterior pharyngeal nerve which of course runs very close and parallel to the recurrent nerve before entering the frontal ganglion. PLATE 88. Electron micrograph of a section through a branch of the posterior pharyngeal nerve. Neurosecretion (ns) is present in two axons (ax) located immediately below the neural lamella (nl). Glial system (gl), gliocyte nucleus (gn).

Magnification x 10,700.

PLATE 89. Longitudinal section of a branch of the posterior pharyngeal nerve. Once again neurosecretory material (ns) can be detected in an axon (ax) lying immediately below the neural lamella (nl). The axon contains empty vesicles (ev) and part-empty vesicles (arrows). Note also the neural lamella (nl), glial system (gl), rough endoplasmic reticulum (rer), mitochondria (m) and septate desmosomes (sd).

Magnification x 30,000.
PLATES 88-89

SMITH and TREHERNE (1963) and ASHHURST (1968) review the functions of the neural lamella in insects. Its most obvious role is a mechanical one, that of maintaining the form of the ganglion or nerve, and in this it is helped by the collagen-like fibrils contained within the mucopolysaccharide matrix. At the same time the neural lamella remains permeable to ions and molecules that are exchanged between the haemolymph and the underlying perineurial cells.

MADDRELL and TREHERNE (1967) suggest that the perineurial cells influence axonal conduction by preserving within the ganglion or nerve an extracellular ionic balance that is very different from that in the haemolymph. According to these authors the long sinuous intercellular channels are employed in an osmoregulatory capacity, maintaining within their confined spaces solutions of high concentrations whose function it is to provide an osmotic 'buffer' between the haemolymph and the tissues underlying the cells of the perineurium. WIGGLESWORTH (1960) has shown histochemically that the perineurial cells take up nutrient precursors diffusing through the neural lamella from the haemolymph and pass them on to the underlying glial cells. Ion transport and food mobilization are processes requiring much metabolic energy and this accounts for the presence of the large numbers of mitochondria characteristically resident in perineurial cells. The perineurial cells are also held to be responsible for the secretion of the neural lamella (SCHARRER, 1939; ASHHURST, 1965; LANE, 1968).

The trophic function of the neuroglia, in supplying glycogen and lipids to the neurones, has been demonstrated

- 128 -

- 129 -

by WIGGLESWORTH (1960) and TREHERNE (1960). In favourable sections glycogen granules could be detected in the glial fingers which indent the peripheral cytoplasm of the perikarya in the hypocerebral and ingluvial ganglia. Glycogen granules also occur in the glial cell bodies. in the narrow glial processes entering the neuropile, and in the glial lamellae separating the neurone cell bodies from the edge of the neuropile. Axo-somatic and axo-dendritic synapses, which are commonplace in the vertebrate nervous system do not occur in insects because of the unbroken glial invest-. ment around the perikarya (CAJAL and SANCHEZ, 1951; SMITH and TREHERNE, 1963). Synaptic contact within the neuropile is to a certain extent defined by the glial processes entering this region (SMITH and TREHERNE, 1963). The acid mucopolysaccharide present in the extracellular spaces of the glial system in peripheral nerves functions to restrict the movement of ions and molecules in these spaces and also forms a significant cation reservoir, thus maintaining a relatively high sodium environment at the axon surface (TREHERNE and MORETON, 1970).

The neurone cell bodies of the hypocerebral ganglion in 10-day-old adults contain less neurosecretion than the perikarya of either the ingluvial ganglion or the frontal ganglion (ANSTEE, 1968) in adults of a similar age. Interestingly enough NORMANN (1965) could find hardly any neurosecretory material in the perikarya of the blowfly hypocerebral ganglion.

The most conspicuous feature of the perikarya in the ingluvial ganglion, and to a lesser extent in the hypocerebral ganglion, is the presence within them of 'giant' granules of neurosecretion. Freshly elaborated neurosecretory granules measure 60-100 nm in diameter, but in close proximity to the Golgi apparatus can be found a whole range of granule sizes up to a maximum diameter of ca. 500 nm. Giant neurosecretory granules also occur in the neurone cell bodies of the frontal ganglion where they measure 350-500 nm in diameter (ANSTEE, 1968). The giant granules are presumably formed by aggregation of smaller granules and according to GIRARDIE and GIRARDIE (1967) they represent a neurosecretory storage mechanism. The perikarya of the hypocerebral and ingluvial ganglia, like those of the frontal ganglion (ANSTEE, 1968) and most other insect ganglia, contain only one class of neurosecretory granule, namely the electronopaque variety. The intrinsic secretory perikarya of the corpora cardiaca in Leucophaea (SCHARRER, 1963) and the alfalfa weevil, Hypera postica (TOMBES and SMITH, 1970), on the other hand, manufacture neurosecretory droplets of varying electron opacity. Whether or not such granules contain different hormones is at present unknown.

Neurosecretory granules differing in size and electron opacity occupy many of the axon profiles within the neuropile of the hypocerebral and ingluvial ganglia. Other axon profiles are non-neurosecretory in nature. As mentioned earlier Axon Types 1 - 5 are common to both the hypocerebral and ingluvial ganglia. The frontal ganglion neuropile (ANSTEE, 1968) contains axon profiles corresponding to Axon Types 1 - 4, while in the neuropile of the ingluvial ganglion of <u>Blabera</u> and <u>Schistocerca</u> (CHANUSSOT <u>et al</u>., 1969) can be found profiles which match Axon Types 1, 3 and

5. The single sectioned field of the <u>Carausius</u> hypocerebral ganglion neuropile presented by SMITH (1968) contains axon profiles which correspond to Axon Types 1 - 4. Adopting the neurosecretory axon classification scheme of KNOWLES (1965, 1967), SCHARRER (1968) and CHANUSSOT et al. (1969), Axon Types 3, 4, 6 and 7 are peptidergic (A-type), carrying neurosecretory products of a proteinaceous nature, and Axon Type 5 is aminergic (B-type), transporting neurosecretory products of a monoamine character.

The presence of electron-lucent granules in Axon Types -4and 7 can be interpreted in a number of different ways. They may, for example, contain neurosecretory material difference to that in the electron-opaque granules and which is dissolved out by the fixative. Alternatively, they may contain a different sort of neurosecretion which happens to be electron-lucent (SMITH and SMITH, 1966; SCHARRER, 1968). A third explanation, and one for which there exists a certain amount of ultrastructural evidence, is that advanced by SCHARRER (1963) and BLOCH et al. (1966). These authors suggest that the treatment of the tissue in preparation for electron microscopy may cause the electron-opaque granules to swell and burst their membranes. Alternatively, rupture may occur because some granules are more fragile than others. Either way, a gradual emptying of the granule content occurs which eventually leads to a complete loss of electron density. In Plate 67 a Type 4 axon contains several electron-lucent granules whose membranes appear to have been ruptured.

Axon Type 2, which may well be another region of Axon Type 1, contains vesicles whose dimensions are the same as those of synaptic vesicles. The possible mode of formation of such vesicles is discussed by DE ROBERTIS (1964), VOLLRATH (1969) and HUDDART (1971b). Small vesicles (ca. 30 nm in diameter) are frequently encountered in Axon Types 3 - 5and may be synaptic in nature too. Other vesicles occurring in Axon Type 5 measure 50-60 nm in diameter and occasionally contain dense material. Vesicles of a similar type have been detected in the ingluvial ganglion neuropile of <u>Blabera</u> and <u>Schistocerca</u> by CHANUSSOT <u>et al</u>. (1969) and are thought to contain a primary catecholamine.

The frontal connective and posterior pharyngeal nerve in fourth instar nymphs are both composed of a few large axons and many smaller axons. The large axons are invariably supplied with a private glial sheath which enables them to conduct at a faster rate than the more poorly insulated smaller axons (HUDDART, 1971a). Almost certainly the large axons are motor and the smaller ones sensory or motor (WIGGLESWORTH, 1969; HUGHES, 1965; BLANEY and CHAPMAN, 1969; HUDDART, 1971a). It is prudent, however, to heed the warning of PEARSON <u>et al</u>. (1970) who point out the dangers of using axon diameter as the sole criterion of function. Electrophysiological recordings from both large and small axons are obviously needed to supplement the ultrastructural observations presented here.

In the recurrent nerve and frontal connective neurosecretory material can be found only in the smaller axons. The neurosecretory axons in these nerves, and in the fine branches of the posterior pharyngeal nerve, contain mainly

- 132 -

the electron-opaque class of granule, grey granules being only rarely encountered. The large non-neurosecretory axons present in all three nerves presumably correspond to those found in the neuropilar region of the frontal and hypocerebral ganglia.

Giant neurosecretory granules of the sort found in the neuronal perikarya of the frontal, hypocerebral and ingluvial ganglia do not occur in the neuropiles of these ganglia or in the axons of the three peripheral nerves. One must assume, therefore, that they are broken down into granules of smaller size, probably by lysosomes (GIRARDIE et GIRARDIE, 1967), prior to transport out of the perikaryon.

CHAPTER IV

DISCUSSION

The morphology of the anterior stomatogastric nervous system in Locusta is more complex than previous studies have indicated (ALBRECHT, 1953; CLARKE and LANGLEY, 1963b, c). For example, the posterior pharyngeal nerve branches profusely and links the frontal ganglion to many structures including the musculature of the pharynx and oesophagus, the recurrent nerve, the hypocerebral ganglion, the tritocerebrum, the corpus cardiacum, the nervus corporis cardiacum III (NCC III) and the nervus corporis allatum II. Information from sensory cells on the pharynx can, therefore, reach the tritocerebrum and corpora cardiaca independently of the frontal connectives, frontal ganglion, recurrent nerve and hypocerebral ganglion. The complex nerve pattern, offering as it does many alternative routes between the foregut and the neuroendocrine system, increases the insect's chances of being able to adjust to the effects of any particular operation and of continuing the growth and moulting cycle. The ability of locusts to adjust to various surgical procedures is well illustrated by the work of HASKELL and MORDUE (1969). These authors demonstrated a recovery in feeding in hoppers after palpal removal and showed that other receptors were able to assume the role formerly discharged by the palps.

They deduced a rearrangement of the nervous integration mechanism to allow information from these other receptors (antennae and A₃ receptors of the clypeo-labrum) to be utilized instead.

The neuropilar region of the hypocerebral and ingluvial ganglia contains many A-type and relatively few B-type (KNOWLES, 1965; SCHARRER and WEITZMAN, 1970) neurosecretory fibres, as well as a certain number of non-neurosecretory fibres. It therefore resembles the ingluvial ganglion neuropile in Schistocerca gregaria and Blabera craniifer (CHANUSSOT et al., 1969; CHANUSSOT, 1972). The large intrinsic perikarya of the hypocerebral and ingluvial ganglia, like those of the frontal ganglion (ANSTEE, 1968; CAZAL et al., 1971), manufacture only the electron-opaque class of neurosecretory granule. Such granules are widely distributed and occur not only in the perikarya but also in the neuropilar region of each ganglion, in the smaller sized axons of the frontal connectives and recurrent nerve, and in axons contained in fine branches of the posterior pharyngeal nerve. At the light microscope level STRONG (1966) has detected neurosecretory material in the inner and outer oesophageal nerves in Locusta and future ultrastructural investigation will almost certainly reveal neurosecretion to be present in other nerves of the locust stomatogastric nervous system. But what is the functional significance of this neurosecretion?

There is increasing evidence to support the view that biogenic amines are involved in the control of foregut muscular activity (FREEMAN, 1966; COOK et al., 1969). In this context it is interesting to note that CHANUSSOT et al. (1969) have localised a biogenic amine (probably dopamine or noradrenaline) in the ingluvial ganglion neuropile and in one of the ganglionic nerves in both Schistocerca and Blabera. Further, these authors believe that the primary catecholamine, whatever its true identity may be, is associated with the B-type neurosecretory fibres, that is those axons containing granules and vesicles ca. 65 nm in diameter. A similar kind of relationship between biogenic amines and B-type neurosecretory fibres has been deduced in the beta lobes of Periplaneta americana (MANCINI and FRONTALI, 1970) and in various vertebrate nervous tissues (HOKFELT, 1968; TAXI, 1968). The corpora cardiaca in Leucophaea maderae contain a few B-fibres, and SCHARRER (1963, 1968) suggests that these fibres may regulate the release of neurohormone from adjacent peptidergic A-fibres.

The abundance of neurosecretion in the ingluvial ganglion neuropile has led CHANUSSOT and his colleagues to suppose that this ganglion functions as a neurohaemal organ, storing neurosecretory material in the neuropilar axons and releasing it into the interaxonal glial cell extensions. The hypocerebral and ingluvial ganglia neuropiles in <u>Locusta</u> are likewise charged with copious amounts of neurosecretion, but whereas in the ingluvial ganglion much of this material is elaborated in the intrinsic perikarya, in the hypocerebral ganglion the neurone cell bodies appear to contribute very little neurosecretion to the neuropilar store. As a general rule the glial cell elements were found to be poorly represented in the hypocerebral and ingluvial ganglia neuropiles and "axone-cellule gliale" contacts of the sort described by CHANUSSOT <u>et al</u>. (1969) and CHANUSSOT (1972) were not readily apparent in the sections of Locusta material examined.

Neurohaemal release sites, such as occur on the medial nerve in Schistocerca (BRADY and MADDRELL, 1967) and on the nervi corporis allati II in Acheta domesticus (WEBER and GAUDE, 1971), were not encountered in any section of the frontal connective or recurrent nerve. Some of the fine branches of the posterior pharyngeal nerve did, however, contain neurosecretory axons which were located immediately below the neural lamella. Release of neurosecretion into the haemolymph might be taking place since characteristic empty vesicles (SCHARRER, 1968) were present in the axon together with undischarged neurosecretory granules. The source of ... this neurosecretory material remains open to question but it could not have been derived from the main posterior pharyngeal nerve trunk since this was found to be devoid of neuro-The material may have come from the NCC III. secretion. According to RAABE (1963a, 1964) this nerve is made up of axons of the tritocerebral neurosecretory cells and it has been shown during the course of the present study that the posterior pharyngeal nerve is linked to the NCC III.

Nerves containing neurosecretion run to a variety of tissues in insects (for references see OSBORNE <u>et al.</u>, 1971) and it has been demonstrated by GOSBEE <u>et al</u>. (1968), WILKINS and MOTE (1970), and COOK and MILLIGAN (1972) that insect neurosecretory cells can conduct action potentials. By implicating the sensory cell bodies located on the surface

of the foregut one can speculate on the existence of reflex arcs in the stomatogastric nervous system. A nerve such as the inner oesophageal nerve, which is known to contain neurosecretion (STRONG, 1966), may have separate "neurosecretory" and "ordinary" motor nerve endings like, for example, the motor nerve of the ventral intersegmental muscles in Schistocerca (OSBORNE et al., 1971). The release of neurohormone and neurohumor at the nerve-muscle junction will be stimulated by the passage of spikes along the axons and the spike frequency will be determined, at least in part, by sensory imput reaching the neuronal perikarya from the surface of the foregut. BERN (1966) and SCHARRER (1969) believe that the function of neurosecretory innervation of tissues is to provide a more sustained stimulation than the classical neurohumoral type of activation which elicits responses of very short duration. The neurosecretory products may also have a trophic function, i.e. be involved in the growth and maintenance of the muscle tissue (OSBORNE et al., 1971).

ANSTEE (1968) has suggested that nervous impulses from the foregut sensory neurones may stimulate the release of neurosecretory material from the frontal ganglion perikarya. This material, travelling along the frontal connectives, then causes the release of neurosecretion from the medial neurosecretory cells and corpora cardiaca into the blood. The frontal connective neurosecretion may also stimulate the release of neurosecretion from the lateral neurosecretory cells of the pars intercerebralis. However, the rapid release of neurosecretory material from the neuroendocrine system, induced by feeding previously starved animals

(HIGHNAM et al., 1966; DOGRA and GILLOTT, 1971; HIGHNAM and WEST, 1971), can only be explained in terms of direct nervous stimulation. Therefore, the frontal connective neurosecretion, if it does play a stimulatory role, will be of importance over the long-term rather than the short-term The identification of synaptoid configurations period. (KNOWLES, 1967; SCHARRER, 1968), between frontal connective elements on the one hand and median or lateral neurosecretory elements on the other, would strengthen the above supposition that frontal connective neurosecretion does act as a neurochemical mediator. Some of the neurosecretory material carried in the frontal connectives may, in fact, find its way into the protocerebral neuropilar reservoir of HIGHNAM and WEST (1971). The assumption that neurosecretion in the frontal connective travels in the frontal ganglion \longrightarrow tritocerebrum direction is supported by the results of preliminary ligature experiments, where a build up of neurosecretory material on the frontal ganglion side of the ligature has been demonstrated.

The remainder of Chapter V is devoted to a discussion on the effects of various surgical interruptions with the anterior stomatogastric nervous system on the processes of growth, new cuticle development and moulting.

The severance of the recurrent nerve either induces a hyperphagic-type response or has no adverse effect upon the insect apart from slightly lowering its growth rate. This latter response is the only one reported by CLARKE and LANGLEY (1963b) for the operation in third instar animals,

while the former response has previously been described in Phormia regina (see review by GELPERIN, 1971) and adult male Schistocerca (FRASER ROWELL, 1963). The induction of hyperphagia in Phormia depends on precisely where along its length the recurrent nerve is cut relative to a pair of stretch receptors contained in a link nerve running to the foregut surface (GELPERIN, 1967, 1971). Whether or not Locusta nymphs become hyperphagic may also be associated with the site of severance, and the posterior pharyngeal nerves appear to be in some way implicated in the determination of this response. Thus. fifth instar nymphs with both posterior pharyngeal nerves cut consume more food during the course of a single meal than control animals (BERNAYS and CHAPMAN, personal communication). These authors have also recently shown that the cutting of the recurrent nerve on its own has no effect upon the normal increase in resistance across the tips of the maxillary palps after the foregut has become filled with food, but that the cutting of the recurrent nerve plus the posterior pharyngeal nerves prevents this normal increase (BERNAYS and CHAPMAN, in press). A corollary of the latter observation is that the operated animals continue to respond to the presence of food and so become hyperphagic. In Phormia, Schistocerca and Locusta, then, hyperphagia is a response to surgical interference with a negative feedback pathway involved in inhibiting further feeding after filling of the foregut has been accomplished.

- 140 -

The cutting of the recurrent nerve, or its posterior extension beyond the hypocerebral ganglion, the oesophageal nerve (WILLEY, 1961), inhibits crop emptying over the short-

term period (i.e. during the first 24 hr post-operative) in <u>Periplaneta</u> (DAVEY and TREHERNE, 1963) and <u>Leucophaea</u> (ENGEL-MANN, 1968), and over the long-term period in <u>Leucophaea</u> (SCHARRER, 1945; TAYLOR, 1969) and <u>Melanoplus differentialis</u> (DOGRA and EWEN, 1971). The short-term effects of the operation on crop emptying in <u>Locusta</u> were not investigated, but over the long-term period this process is not adversely affected. In those animals exhibiting a hyperphagic-type response almost the entire length of the gut become distended with food; this also happens in hyperphagic <u>Phormia</u> (EVANS and BARTON-BROWNE, 1960; GREEN, 1964; DETHIER, 1969).

In addition to its effects upon food consumption and food passage, severance of the recurrent nerve also induces the formation of tumour-like lesions in the foregut of many insect species (for literature review see TAYLOR, 1969), including <u>Locusta</u> (MATZ, 1961, 1963). TAYLOR considers that the invasive tumours in <u>Leucophaea</u> are an injury response to the overfull foregut but does not completely rule out the possibility of their being formed as a result of loss of neural innervation. HARKER (1963) suggests that the lesions are induced by humoral changes. Frontal ganglionectomy, an operation entailing severance of the recurrent nerve, also leads to the formation of tumours in the foregut of <u>Locusta</u> (ANSTEE, 1968; ROOME, 1968). Here the histological evidence suggests that, as in <u>Leucophaea</u>, they are caused by an overfull gut. In accordance with CLARKE and LANGLEY (1963c) the cutting of one frontal connective has no effect upon the growth cycle in nymphal <u>Locusta</u>. On the other hand, the cutting of both frontal connectives (proximal to branches) does not, as these authors supposed, cause every operated animal to maintain a constant weight. The operation is a fairly straightforward one, yet when performed on animals of approximately the same age it yields a wide range of growth responses. Thus at one end of the growth spectrum lie those animals maintaining a constant weight and at the other those that more than double their operation weights. How, then, can this diverse effect upon growth be explained?

The site of connective severance was the same in every insect and care was taken not to damage other nerves during the operation. Surgical technique can, therefore, be ruled out as a cause of the variable growth response. There is evidence to indicate that the operation interferes with the process of crop emptying in acridids, and this in turn would influence growth. Thus ROOME (1968) reports that the cutting of both frontal connectives in third instar Locusta nymphs results in the majority of operated animals maintaining a constant weight, with but a few showing significant weight increases; the 'non-growers' invariably exhibiting distended crops at autopsy. The operation also adversely affects food passage out of the crop in adult Melanoplus (DOGRA and EWEN, 1971). By comparison, crop emptying in cockroaches is unaffected by the severance of both frontal connectives, at least over the short-term period (DAVEY and TREHERNE, 1963; ENGELMANN. 1968). The timing of the operation with regard to

prior feeding activity may, as ENGELMANN found following recurrent nerve severance in <u>Leucophaea</u>, be an important factor in determining the rate at which the crop empties. This implies that an insect with a full foregut at the time of the operation adjusts less well than one with an empty foregut. Such an idea is easy enough to test experimentally.

According to CLARKE and LANGLEY (1963c) and ANSTEE (1968) the frontal connectives play a role in stimulating the release of neurosecretion from the neuroendocrine system. The continued growth of some animals after the cutting of both frontal connectives distal to their branches provides clear evidence of the involvement of other nervous pathways in the control of neurosecretory release.

Severance of the anterior, median and posterior pharyngeal nerves has the opposite effect upon the growth cycle to that reported by CLARKE and LANGLEY (1963c) for third instars. Operated fifth instar nymphs exhibit twofold or more increases in weight and display an overall growth rate that is only slightly lower than that of the controls. There are two possible explanations for the discrepancy. The first of these assumes that the stomatogastric nervous system in third instar locusts is less extensive than in fifth instars, implying that the former group are neuromorphologically less well equipped to adjust to the effects of the operation than the latter group. The second possibility is that CLARKE and LANGLEY inflicted more damage upon the anterior stomatogastric nervous system than mere pharyngeal nerve severance. The operation obviously needs to be repeated on a large sample of newly moulted third instar nymphs and its effect

upon growth tested against that reported here for fifth instar nymphs.

Thus far, then, none of the operations involving severance of the nerves associated with the frontal ganglion have been shown to completely inhibit the growth cycle in each and every operated animal. Neither does the operation involving severance of both frontal connectives plus the recurrent nerve completely block growth in every operated adult locust. It is clear that after any of the above operations suitable alternative nervous pathways are open to the insect by which sensory information from the foregut can reach the neuroendocrine system. Over the long-term period the frontal connectives may play a more important role in the control of crop emptying than the recurrent nerve; the neural control of this process is certainly worthy of further investigation. It remains to be discovered whether in those operated animals exhibiting true growth the lower maximum weights attained compared to the controls are due to a drop in food consumption or to less efficient utilization of ingested food, or both.

CLARKE and LANGLEY (1963b, c) found that frontal ganglionectomy in third instar Locusta nymphs led to an immediate cessation of growth in every operated animal. They concluded that the operation acts by blocking the synthesis and/or release of neurosecretory material from the neuroendocrine system (CLARKE and LANGLEY, 1963d) but is without effect upon the feeding behaviour ("the intake of food, the amount in the gut, and defaecation proceed normally", CLARKE and LANGLEY, 1963b). The effects of frontal ganglionectomy on protein metabolism and RNA synthesis in Locusta nymphs,

as reported by CLARKE and GILLOTT (1965, 1967a, b), are held to be the result of a lack of neurosecretory material in the haemolymph rather than a lack of food material in the midgut ("the operated locusts were observed to eat frequently and to defaecate often; no obvious differences between these and normal locusts were observed in this matter", CLARKE and GILLOTT, 1965). In the present study, however, normal feeding behaviour could not be correlated with the maintenance of a constant body weight in any frontal ganglionectomised fourth or fifth instar locust. Food accumulated in the foregut of those operated animals maintaining a constant weight and passed through the gut unhindered in those exhibiting true growth (twofold or more weight increase). The vast majority of the frontal ganglionectomised locusts of ROOME (1968) maintained a constant weight after the operation and displayed a distended foregut at autopsy. Frontal ganglionectomy has an adverse effect on food movement in other acridids (ROUSSEL, 1966; HIGHNAM et al., 1966; HILL et al., 1966; GILLOTT et al., 1970; DOGRA and EWEN, 1971), but in the coleopteran <u>Necrophorus</u> <u>vespillo</u> normal alimentation and body weight increase occur after the operation (ROUSSEL, 1966).

Foregut muscular activity in <u>Locusta</u> is unaffected by the removal of the frontal ganglion (ROOME, 1968), while in <u>Schistocerca</u> its normal pattern of contraction and relaxation is changed following the removal of the hypocerebral ganglion (CLARKE and GRENVILLE, 1960). In both species movements of the foregut cease altogether in the absence of the ingluvial ganglia. Of the three stomatogastric ganglia, then, the frontal ganglion seems to play the least important role in the control of foregut muscular activity. In its absence the pharynx and oesophagus presumably come under the influence of the hypocerebral ganglion and the fine nerve network that links it to these regions of the foregut. The oesophagus anyway displays a certain amount of myogenic activity, as does also the anterior region of the crop (ROOME, 1968). Thus, rather than influencing the normal peristaltic activity of the foregut musculature as HIGHNAM <u>et al</u>. (1966) suggest, the operation of frontal ganglionectomy appears to be exerting its effect at the level of the crop/midgut junction.

The neural control of crop emptying is complex and is fully understood in a limited number of insects only (see reviews by DAVEY, 1964; GELPERIN, 1971). In <u>Leucophaea</u> ENGELMANN (1968) concludes that "the opening of the proventricular valve appears to be controlled by either the ingluvial or the proventricular ganglion but that superimposed on these may be a certain amount of control by the frontal ganglion". It is clear that in <u>Locusta</u> frontal ganglionectomy has a variable effect upon crop emptying, and in this respect it resembles the operation of both frontal connective severance.

Frontal ganglionectomy can also affect food intake and food utilization. ROOME (1968) provides quantitative measurements to show that food consumption in operated <u>Locusta</u> nymphs is reduced in comparison to the controls. This, however, is presumed not to be the case in operated adult <u>Melanoplus</u> who, though they display greatly distended foreguts at autopsy and produce much less faeces than the controls, feed at an apparently normal rate (GILLOTT <u>et al.</u>, 1970). The foreguts of a fair proportion of the frontal ganglionectomised animals in the present investigation contained only moderate amounts of food at autopsy. In a few such animals the daily level of faeces production was the same as that in the controls but the body weight increases were much lower. Here the operation has interfered with the mechanisms of food utilization, presumably at the level of neurosecretory release (LANGLEY, 1962; GILLOTT, 1965).

In the normally growing locust neurosecretory material released from the corpora cardiaca regulates both the protein content of the haemolymph and the protein synthetic activity of the fat body (HILL, 1962, 1965; OSBORNE et al., 1968). In third instar (CLARKE and LANGLEY, 1963d) and fourth and fifth instar (ANSTEE, 1968; CLARKE and ANSTEE, 1971b) Locusta nymphs neurosecretory material accumulates in the nervi corporis cardiaci interni (NCC I) following removal of the frontal ganglion. CLARKE and LANGLEY consider that the operation has no effect upon food passage. The operated animals of ANSTEE maintained a constant weight and although this author makes no direct comment on the subject of food passage, the development of invasive tumours in the foregut of some of his operated animals, concluded by him on histological grounds to be caused by an overfull foregut, strongly suggests that crop emptying in these particular animals was inhibited by the operation. The few frontal ganglionectomised animals of ROOME (1968) that exhibited appreciable weight increases contained NCC I which, like those of the control animals, were devoid of stainable material. Unfortunately, this author did not investigate the NCC I in those operated animals maintaining a constant weight and displaying distended foreguts at autopsy.

In frontal ganglionectomised adult female <u>Schistocerca</u> (HIGHNAM <u>et al.</u>, 1966) neurosecretory material piles up in the NCC I within two days of the operation, its accumulation coinciding with that of undigested food in the foregut. HIGHNAM and his collaborators consider that the operation increases the rate of synthesis and transport of neurosecretory material but has no adverse affects upon its release.

Frontal ganglionectomy in adult female <u>Melanoplus</u> (GILLOTT <u>et al.</u>, 1970) has the same effect on crop emptying and hence body weight increase as in adult female <u>Schisto-</u> <u>cerca</u>, but an opposite effect upon the type A neurosecretory cells whose synthetic abilities are reduced after the operation. As GILLOTT <u>et al</u>. point out, the operation may lead directly to reduced activity in the cerebral neurosecretory cells (CLARKE and LANGLEY, 1963b, c, d) or it may affect these cells indirectly, via semi-starvation (HIGHNAM <u>et al</u>., 1966; HILL <u>et al</u>., 1966).

Brief mention should be made here of the effects of frontal ganglionectomy on the activity of the corpora allata in the above three acridids. These glands in Locusta nymphs (CLARKE and ANSTEE, 1971b) and adults (STRONG, 1966) maintaining a constant weight after the operation show a marked reduction in size and, according to CLARKE and ANSTEE, appear histologically inactive. On the other hand the few Locusta nymphs of ROOME (1968) that increase in weight after frontal ganglionectomy contain corpora allata which are of similar dimensions to those of control animals. The corpora allata in operated adult female <u>Schistocerca</u> (HIGHNAM <u>et al.</u>, 1966) are smaller than in the controls. However, it has been show. (see review by MORDUE <u>et al.</u>, 1970) that the volume of the corpus allatum is not necessarily a true indication of its synthetic ability and ideally other parameters should be measured. In this context GILLOTT <u>et al.</u> (1970) found that both the volume and the synthetic ability (measured autoradiographically) of the corpora allata in adult female <u>Melanoplus</u> are unaffected by the removal of the frontal ganglion. DOGRA and EWEN (1971) have implicated the corpora allata of <u>Melanoplus</u> in the control of general protein synthesis, while in adult female <u>Locusta MINKS</u> (1967) considers that these glands induce the formation of specific vitellogenic proteins in the fat body.

From the available evidence it appears that the effects on growth of various surgical interferences with the anterior stomatogastric nervous system are mediated primarily at the level of the crop/midgut junction. The operation may also reduce the endocrine potential of the insect in such a way that although normal or near-normal amounts of food are passed through the gut they are not fully utilized and converted into body tissue. There is plenty of scope for future work here. An obvious priority is a histological and autoradiographical examination of the neuroendocrine systems in growing and nongrowing operated animals coupled with quantitative measurements of food intake and faecal production.

The development of a new cuticle is unaffected by the operations of one frontal connective severance or anterior, median and posterior pharyngeal nerve severance. On the other hand, the cutting of both frontal connectives or the removal of the frontal ganglion have a variable effect upon the moulting cycle, some animals developing a new cuticle, others not (see also CLARKE and LANGLEY, 1963c; ROOME, 1968; PENZLIN, 1971).

The release of neurosecretion from the corpora cardiaca is a vital step in the moulting cycle, the neurosecretory material stimulating the prothoracic glands to secrete a hormone that activates the epidermal cells which in turn secrete a new cuticle (see reviews by WIGGLESWORTH, 1964, 1970). In Locusta, as in Rhodnius (WIGGLESWORTH, 1934, 1964), the prothoracic glands need to be exposed to the brain hormone for a certain 'critical' period in order that the moulting STRICHcycle might proceed to completion (JOLY et al., 1956; HALBWACHS, 1959; GIRARDIE, 1964). CLARKE and LANGLEY (1963d), CLARKE and GILLOTT (1967a) and CLARKE and ANSTEE (1971b) provide histological and physiological evidence that frontal ganglionectomy interferes with the release of neurosecretion from the corpora cardiaca in Locusta nymphs. The operation has no effect on new cuticle development when performed after the critical period (CLARKE and LANGLEY, 1963c). If, however, the operation is carried out during the critical period two factors will determine whether or not the moulting cycle proceeds to completion. First, the extent to which the prothoracic glands have been activated by neurosecretion at the time of the operation (CLARKE and LANGLEY, 1963a, d). Second, the rate at which neurosecretory material is released into the haemolymph after the operation. Individual variation is also likely to exist in the degree of

sensitivity of each prothoracic gland to neurosecretion, and in the ability of each insect to adjust to the effects of the operation and to utilise remaining intact nervous pathways for the release of neurosecretion.

Towards the end of the stadium the locust sets in motion a sequence of events which culminate in the process of ecdysis, during which the insect sheds the old cuticle and expands the underlying newly developed one to its full size. The cessation of feeding, the emptying of the gut of food, and the swallowing of air constitute the aforesaid sequence.

The cue for cessation of feeding is not known in any insect, but its effect must be to elevate the taste threshold to a level which causes the insect to become unresponsive to the presence of food. The mechanism involved in maintaining an elevated taste threshold level over the moulting period may be similar to that deduced by BERNAYS and CHAPMAN (in press) following a single feed. These authors conclude that the filling of the foregut stimulates, by way of nerves of the anterior stomatogastric nervous system, the release of a hormone from the storage lobes of the corpora cardiaca. This hormone acts on the terminal sensilla of the palps, causing them to close and so increase their resistance levels. Thus, immediately after the consumption of the last instar meal the palp tips will exhibit a high taste threshold level. At this time the insect has already decided to completely empty its gut of food and, as the X-ray studies revealed, the moment food starts to leave the foregut air begins to enter through the mouth.

- 152 -

In this way some degree of stretch in the foregut is maintained and this, according to the hypothesis of CLARKE and LANGLEY (1963d), stimulates the continued release of hormone from the corpora cardiaca, which reaches a high titre in the absence of any food absorption. The circulating hormone, in addition to stimulating the prothoracic glands as CLARKE and LANGLEY suggest, may also serve to maintain the palp tip resistance at a high level. After ecdysis the movements of the foregut become less strenuous, the amount of hormone released diminishes, and eventually the palp tip resistance level falls to a value low enough to permit resumption of feeding. HILL and GOLDSWORTHY (1968) have shown that in fourth and fifth instar Locusta nymphs the development of the new cuticle takes place during the last 24 hr or so of the stadium, when feeding activity has ceased. It is possible that one and same cue halts feeding and stimulates old cuticle resorption and new cuticle deposition.

Food can continue to move through the gut unhindered in some frontal ganglionectomised animals during the feeding period but these same operated animals are unable to empty the gut of food at the end of the stadium. This paradox can perhaps be best explained by assuming that the brain plays no major part in the control of food passage during the feeding period, but does play a significant role in initiating, and perhaps even controlling, the process of gut emptying prior to air swallowing. The cerebral influence is mediated primarily at the level of the frontal ganglion (via the frontal connectives), but possibly also at the level of the hypocerebral ganglion (via the NCC I, STRONG, 1966), which in turn influences the ingluvial ganglia (via the outer oesophageal nerves). The cutting of both frontal connectives does not prevent normal emptying of the foregut in the vast majority of those animals attempting to moult to the adult stage. Presumably after this operation the frontal ganglion receives cerebral information via the NCC I, hypocerebral ganglion, recurrent nerve pathway. Neither is emptying of the foregut hampered by the lack of a direct nervous connection between the frontal ganglion and the pharynx, following severance of the pharyngeal nerves. Clearly other nerve pathways, such as the branches of the frontal connectives and the branches of the recurrent nerve, are relaying the motor information to the pharyngeal musculature.

Air swallowing at ecdysis is also under cerebral control. The operations of both frontal connective severance or anterior, median and posterior pharyngeal nerve severance interfere with the process of air swallowing and in all cases prevent a successful moult to the next stage. The moult fails because the operated animals are unable to swallow and/or retain sufficient air in the foregut to facilitate successful splitting of the old cuticle. Presumably the same nervous pathways as those mentioned above, in the context of food removal, carry motor information from the brain to the pharynx, thus permitting at least some air to enter the foregut following frontal connective or pharyngeal nerve severance. In addition some air will probably enter the foregut by passive diffusion. - 154 -

LANGLEY (1962) found that operations involving the removal of the frontal ganglion, the cutting of both frontal connectives or the separation of the frontal ganglion from the surface of the pharynx caused the operated animals to lose water through the intersegmental membranes. This loss was thought to be due to the non-replacement of the proteinaceous components of the cuticle worn away as a result of the friction created by the intersegmental membranes rubbing against each other. CLARKE and GILLOTT (1967a) suggested that the low level of amino acids and proteins in the haemolymph of frontal ganglionectomised animals was the root cause for this water loss, the decrease in the concentration of these substances leading to a breakdown in water balance. Observations made during the present study, however, support the contention of ROOME (1968) that the 'water' is, in fact, regurgitated digestive fluid and grass juices which leak to the exterior from the mouth.

In accordance with LANGLEY the only operations causing 'leaking' are frontal ganglionectomy, both frontal connective severance, and pharyngeal nerve severance. The regurgitated fluid can be detected in the region of the mouth-parts and neck membrane as early as 2 days after the operation, timing that coincides with the provision of the first post-operative meal. ROOME suggests cerebral control of digestive fluid retention and this is the view taken here, the motor nerve pathways involved being the same as those controlling air intake and/or retention at ecdysis.

BIBLIOGRAPHY

ALBRECHT, F.O. (1953). The Anatomy of the Migratory Locust. University of London, Athlone Press.

ANSTEE, J.H. (1968). The effect of frontal ganglionectomy on cell structure and function in <u>Locusta</u> <u>migratoria</u> <u>migratorioides</u> R. and F.

Ph.D. Thesis, University of Nottingham.

- ASHHURST, D.E. (1959). The connective tissue sheath of the locust nervous system: a histochemical study. Q. Jl. microsc. Sci. <u>100</u>, 401-412.
- ASHHURST, D.E. (1961). A histochemical study of the connective-tissue sheath of the nervous system of <u>Periplaneta americana</u>.

Q. Jl. microsc. Sci. <u>102</u>, 455-461.

- ASHHURST, D.E. (1965). The connective tissue sheath of the locust nervous system: its development in the embryo. Q. Jl. microsc. Sci. 106, 61-73.
- ASHHURST, D.E. (1968). The connective tissues of insects. A. Rev. Ent. <u>13</u>, 45-74.

- ASHHURST, D.E. and CHAPMAN, J.A. (1961). The connectivetissue sheath of the nervous system of <u>Locusta</u> <u>migratoria</u>: an electron microscope study. Q. Jl. Microsc. Sci. <u>102</u>, 463-467.
- ATKINS, M.D. and CHAPMAN, J.A. (1957). Studies on nervous system anatomy of the Douglas Fir Beetle, <u>Dendroctonus</u> <u>pseudotsugae</u> Hopk. (Scolytidae). Canad. Entom. <u>89</u>, 80-86.
- BALDUS, K. (1924). Untersuchungen über Bau und Funktion des
 Gehirns der Larve und Imago von Libellen.
 Z. Wiss. Zool. <u>121</u>, 557-620.
- BERGH, F., FUNDER, J.B. and NIELSEN, E.T. (1943). X-ray investigations on insects. Vidensk. medd. fra. Dansk. Naturh. Foren., Bd. <u>106</u>, 407-413.
- BERLIND, A. and COOKE, I.M. (1968). Effect of calcium omission on neurosecretion and electrical activity of crab pericardial organs. Gen. comp. Endocr. 11, 458-463.
- BERN, H.A. (1966). On the production of hormones by neurones and the role of neurosecretion in neuroendocrine mechanisms.

Symp. Soc. exp. Biol. 20, 325-344.

- BERRIDGE, M.J. (1966). The physiology of excretion in the cotton stainer, <u>Dysdercus fasciatus</u> Signoret. IV. Hormonal control of excretion. J. exp. Biol. <u>44</u>, 533-566.
- BLANC, L. (1890). La tete du <u>Bombyx mori</u> à l'état larvaire. Anatomie et physiologie. Trav. Labor. Etude de la Soie, pp.1-180 (in DUMORTIER, B., 1969).
- BLANEY, W.M. and CHAPMAN, R.F. (1969). The anatomy and histology of the maxillary palp of <u>Schistocerca</u> <u>gregaria</u> (Orthoptera, Acrididae). J. Zool. <u>157</u>, 509-535.
- BLOCH, B., THOMSEN, E. and THOMSEN, M. (1966). The neurosecretory system of the adult <u>Calliphora erythrocephala</u>. III. Electron microscopy of the medial neurosecretory cells of the brain and some adjacent cells. Z. Zellforsch. 70, 185-208.
- BODENSTEIN, D. (1953). Studies on the humoral mechanisms in growth and metamorphosis of the cockroach, <u>Periplaneta</u> <u>americana</u>. III. Humoral effects on metabolism. J. exp. Zool. <u>124</u>, 105-115.
- BORDAS, L. (1900). Contribution à l'étude du système nerveux sympathique sus-intestinal ou stomatogastrique des Orthoptères. Bull. scient. Fr. Belg. <u>33</u>, 458-482.

BRADY, J. and MADDRELL, S.H.P. (1967). Neurohaemal organs in the medial nervous system of insects. Z. Zellforsch. <u>76</u>, 389-404.

BRANDT, J.F. (1831). Beobachtungen über die systeme der Eingeweidenerven der Insekten. Isis van Oken <u>8-10</u> 1103-1105 (cited from DUMORTIER, B., 1969).

BRANDT, J.F. (1835). Bemerkungen über die Mundmagen-oder Eingeweidenerven (nervus sympathicus seu nervi reproductorii) der Evertebraten. Mém. Acad. Imp. Sci. St. Petersbourg, 6th sér., 2nd part, Sci. Nat. <u>3</u>, 561-611.

BRANDT, J.F. (1938). In: Studies on the initiation of growth and moulting in <u>Locusta migratoria migratorioides</u> R. and F. (K.U. CLARKE and P.A. LANGLEY, 1963), J. Insect Physiol. <u>9</u>, 411-421.

BROUSSE-GAURY, P. (1967). Généralisation, à divers Insectes,
de l'innervation deutocérébrale des corpora cardiaca, et
role neurosécrétoire des Nervi corporis cardiaci IV.
C.R. Acad. Sc., Paris (D) <u>265</u>, 2043-2046.

BROUSSE-GAURY, P. (1968a). Chez les Dictyoptères Mantidae, description d'arcs réflexes neuro-endocriniens depuis les ocelles.

C. R. Acad. Sc., Paris (D) <u>267</u>, 1468-1470.

- BROUSSE-GAURY, P. (1968b). Modification de la neurosécrétion au niveau de la pars intercerebralis de <u>Periplaneta</u> <u>americana</u> L. en l'absence de stimuli ocellaires. Bull. biol. Fr. Belg. 102, 481-490.
- BROUSSE-GAURY, P. (1968c). Origine antennaire de réflexes neuro-endocriniens chez les Dictyoptères Blaberidae et Blattidae.

C. R. Acad. Sc., Paris (D) <u>267</u>, 1312-1314.

BROUSSE-GAURY, P. (1969a). Des stimulus photiques transmis par des nerfs tégumentaires controlent des cellules neurosecrétrices chez les Dictyoptères Blaberidae et Blattidae.

C. R. Acad. Sc., Paris (D) 268, 383-386.

BROUSSE-GAURY, P. (1969b). Arcs réflexes neuro-endocriniens depuis le labre, chez les Dictyoptères Blaberidae et Blattidae.

C. R. Acad. Sc., Paris (D) <u>269</u>, 2004-2006.

- BROUSSE-GAURY, P. (1971). Influence de stimuli externes sur le comportement neuro-endocrinien de Blattes. Thèse de doctorat d'état es Sciences Naturelles, présentée à la Faculté des Sciences de Paris.
- CAJAL, S.R.y. and SANCHEZ, D.S. (1915). Contribucion al conocimiento de los centros nerviosos de los insectos. Parte I. Retina y centros opticos. Trab. Lab. Invest. biol. Univ. Madr. <u>13</u>, 1-164.

- CAMERON, M.L. (1953). Secretion of an orthodiphenol in the corpus cardiacum of the insect. Nature, Lond. 172, 349-350.
- CARLISLE, D.B. and ELLIS, P.E. (1968). Hormonal inhibition of the prothoracic gland by the brain in locusts. Nature, Lond. 220, 706-707.
- CASSIER, P. (1965). Contribution à l'étude du comportement phototropique du Criquet migrateur <u>Locusta migratoria</u> <u>migratorioides</u> (R. et F.). Bases sensorielles et endocrines.

Annls. Sci. nat. (Zool.) 7, 213-358.

- CASSIER, P. et FAIN-MAUREL, M.A. (1970a). Contribution à l'étude infrastructurale du système neurosécréteur rétrocérébral chez <u>Locusta migratoria migratorioides</u> (R. et F.). I. Les corpora cardiaca. Z. Zellforsch. <u>111</u>, 471-482.
- CASSIER, P. et FAIN-MAUREL, M.A. (1970b). Contribution à l'étude infrastructurale du système neurosécréteur rétrocérébrale chez Locusta migratoria migratorioides (R. et F.). II. Le transit des neurosécrétions.
 Z. Zellforsch. <u>111</u>, 483-492.
- CAZAL, M. (1969). Actions d'extraits de corpora cardiaca sur le péristaltisme intestinal de <u>Locusta migratoria</u>. Archs. Zool. exp. gén. <u>110</u>, 83-89.

- CAZAL, M., HOLY, L. et PORTE, A. (1971). Étude ultrastructurale des corpora cardiaca et de quelques formations annexes chez <u>Locusta migratoria</u> L. Z. Zellforsch. <u>114</u>, 61-72.
- CAZAL, P. (1948). Les glandes endocrines rétrocérébrales des insectes (étude morphologique). Bull. biol. Fr. Belg. (Suppl.) 32, 1-227.
- CHALAYE, D. (1965). Recherches histochimiques et histophysiologiques sur la neurosécrétion dans la chaine nerveuse ventrale du Criquet migrateur, <u>Locusta</u> <u>migratoria</u>.

C. R. Acad. Sc., Paris (D) <u>260</u>, 7010-7013.

- CHALAYE, D. (1966). Recherches sur la destination des produits de neurosécrétion de la chaine nerveuse ventrale du Criquet migrateur, <u>Locusta migratoria</u>.
 C. R. Acad. Sc., Paris (D) <u>262</u>, 161-164.
- CHALAYE, D. (1967). Neurosécrétion au niveau de la chaine nerveuse ventrale de <u>Locusta migratoria migratorioides</u> R. et F. (Orthoptère: Acridien). Bull. Soc. zool. Fr. <u>92</u>, 87-108.

- CHANUSSOT, B., DANDO, J., MOULINS, M. et LAVERACK, M.S. (1969). Mise en évidence d'une amine biogène dans le système nerveux stomatogastrique des Insectes: étude histochimique et ultrastructurale. C. R. Acad. Sc., Paris (D) 268, 2101-2104.
- CHANUSSOT, B. (1972). Étude histologique et ultrastructurale du ganglion ingluvial de <u>Blabera craniifer</u> Burm. (Insecte, Dictyoptère).

Tissue and Cell <u>4</u>, 85-97.

- CLARKE, K.U. (1956). Studies on the relationship between changes in the volume of the tracheal system and growth in <u>Locusta migratoria</u> L. Proc. 10th Int. Cong. Ent. 2, 205-211.
- CLARKE, K.U. (1965). The control of growth in <u>Locusta</u> <u>migratoria</u>. J. Zool. <u>147</u>, 137-146.
- CLARKE, K.U. (1966). Histological changes in the endocrine system of <u>Locusta migratoria</u> L. associated with the growth of the adult under different temperature regimes. J. Insect Physiol. <u>12</u>, 163-170.
- CLARKE, K.U. and ANSTEE, J.H. (1971a). Effects of the removal of the frontal ganglion on the mechanisms of energy production in <u>Locusta</u>.

J. Insect Physiol. 17, 717-732.
- CLARKE, K.U. and ANSTEE, J.H. (1971b). Effect of the removal of the frontal ganglion on cellular structure in <u>Locusta</u>. J. Insect Physiol. <u>17</u>, 929-943.
- CLARKE, K.U. and GILLOTT, C. (1965). Relationship between the removal of the frontal ganglion and protein starvation in <u>Locusta migratoria</u> L. Nature, Lond. <u>208</u>, 808-809.
- CLARKE, K.U. and GILLOTT, C. (1967a). Studies on the effects of the removal of the frontal ganglion in <u>Locusta</u> <u>migratoria</u> L. I. The effect on protein metabolism. J. exp. Biol. <u>46</u>, 13-25.
- CLARKE, K.U. and GILLOTT, C. (1967b). Studies on the effects of the removal of the frontal ganglion in <u>Locusta</u> <u>migratoria</u> L. II. Ribonucleic acid synthesis. J. exp. Biol. <u>46</u>, 27-34.
- CLARKE, K.U. and GRENVILLE, H. (1960). Nervous control of movements in the foregut of <u>Schistocerca</u> gregaria Forsk. Nature, Lond. 186, 98-99.
- CLARKE, K.U. and LANGLEY, P.A. (1962). Factors concerned in the initiation of growth and moulting in <u>Locusta migratoria</u> L. Nature, Lond. <u>194</u>, 160-162.
- CLARKE, K.U. and LANGLEY, P.A. (1963). Effect of the removal of the frontal ganglion on the development of the gonads in Locusta migratoria L.

Nature, Lond. 198, 811-812.

CLARKE, K.U. and LANGLEY, P.A. (1963a). Studies on the initiation of growth and moulting in <u>Locusta migratoria</u> <u>migratorioides</u> R. and F. I. The time and nature of the initiating stimulus.

J. Insect Physiol. <u>9</u>, 287-292.

CLARKE, K.U. and LANGLEY, P.A. (1963b). Studies on the initiation of growth and moulting in <u>Locusta migratoria</u> <u>migratorioides</u> R. and F. II. The role of the stomatogastric nervous system.

J. Insect Physiol. <u>9</u>, 363-373.

CLARKE, K.U. and LANGLEY, P.A. (1963c). Studies on the initiation of growth and moulting in <u>Locusta migratoria</u> <u>migratorioides</u> R. and F. III. The role of the frontal ganglion.

J. Insect Physiol. <u>9</u>, 411-421.

- CLARKE, K.U. and LANGLEY, P.A. (1963d). Studies on the initiation of growth and moulting in <u>Locusta migratoria</u> <u>migratorioides</u> R. and F. IV. The relationship between the stomatogastric nervous system and neurosecretion. J. Insect Physiol. <u>9</u>, 423-430.
- COOK, B.J., ERAKER, J. and ANDERSON, G.R. (1969). The effect of various biogenic animines on the activity of the foregut of the cockroach <u>Blaberus</u> <u>giganteus</u>. J. Insect Physiol. <u>15</u>, 445-455.

- COOK, D.J. and MILLIGAN, J.V. (1972). Electrophysiology and histology of the medial neurosecretory cells in adult male cockroaches, <u>Periplaneta americana</u>. J. Insect Physiol. 18, 1197-1214.
- COOKE, I.M. (1967). Correlation of propagated action potentials and release of neurosecretory material in a neurohaemal organ. In: Invertebrate Nervous Systems, ed.: C.A.G. Wiersma, pp.125-130. Chicago and London: Chicago Univ. Press.
- CYMBOROWSKI, B. and DUTKOWSKI, A. (1969). Circadian changes in the neurosecretory cells of the brain and suboesophageal ganglion of the house cricket. J. Insect Physiol. 15, 1187-1197.
- CYMBOROWSKI, B. and DUTKOWSKI, A. (1970). Circadian changes in protein synthesis in the neurosecretory cells of the central nervous system of <u>Acheta domesticus</u>. J. Insect Physiol. <u>16</u>, 341-348.
- DANDO, J., CHANUSSOT, B. et DANDO, M.R. (1968). Le système nerveux stomodéal post-cephalique de <u>Schistocerca</u> <u>gregaria</u> Forsk. (Orthoptère) et <u>Blabera craniifer</u> Burm. (Dictyoptère).

C. R. Acad. Sc., Paris (D) <u>267</u>, 1852-1855.

DAVEY, K.G. (1961a). The mode of action of the heart accelerating factor from the corpus cardiacum of insects. Gen. comp. Endocr. <u>1</u>, 24-29.

- DAVEY, K.G. (1961b). Substances controlling the rate of beating of the heart of <u>Periplaneta</u>. Nature, Lond. <u>192</u>, 284.
- DAVEY, K.G. (1962a). The mode of action of the corpus cardiacum on the hind-gut in <u>Periplaneta</u> <u>americana</u>. J. exp. Biol. <u>39</u>, 319-324.
- DAVEY, K.G. (1962b). The nervous pathway involved in the release by feeding of a pharmacologically active factor from the corpus cardiacum of <u>Periplaneta</u>.

J. Insect Physiol. <u>8</u>, 579-583.

DAVEY, K.G. (1963). The release by enforced activity of the cardiac accelerator from the corpus cardiacum of <u>Periplaneta americana</u>.

J. Insect Physiol. <u>9</u>, 375-381.

DAVEY, K.G. (1964). The control of visceral muscles in insects.

Adv. Insect Physiol. 2, 219-245.

- DAVEY, K.G. and TREHERNE, J.E. (1963). Studies on crop function in the cockroach (Periplaneta americana L.). II. The nervous control of crop-emptying. J. exp. Biol. 40, 775-780.
- DAVEY, P.M. (1954). Quantities of food eaten by the desert locust, <u>Schistocerca gregaria</u> (Forsk.) in relation to growth. Bull. ent. Res. <u>45</u>, 539-551.

DETHIER, V.G. and BODENSTEIN, D. (1958). Hunger in the blowfly.

Z. Tierpsychol. 15, 129-140.

- DETHIER, V.G. and GELPERIN, A. (1967). Hyperphagia in the blowfly. J. exp. Biol. <u>47</u>, 191-200.
- DOGRA, G.S. and EWEN, A.B. (1970). Histology of the neurosecretory system and the retrocerebral endocrine glands of the adult migratory grasshopper, <u>Melanoplus</u> <u>sanguinipes</u> (Fab.) (Orthoptera: Acrididae). J. Morph. <u>130</u>, 451-466.
- DOGRA, G.S. and EWEN, A.B. (1971). Effects of severance of stomatogastric nerves on egg-laying, feeding, and the neuroendocrine system in <u>Melanoplus sanguinipes</u>. J. Insect Physiol. <u>17</u>, 483-489.
- DOGRA, G.S. and GILLOTT, C. (1971). Neurosecretory activity and protease synthesis in relation to feeding in <u>Melanoplus sanguinipes</u>.

J. exp. Zool. <u>177</u>, 41-50.

DUARTE, A.J. (1939). On ecdysis in the African Migratory Locust.

Agron. lusit. 1, 22-40.

- DUMORTIER, B. (1969). Swammerdam, précurseur au XVII^e siècle de la découverte des glandes rétrocérébrales de l'insecte. Essai historique sur les premières descriptions des Corpora cardiaca et allata. Annls. Soc. ent. Fr. <u>5</u>, 927-950.
- DUPONTE-RAABE, M. (1957). Les méchanismes de l'adaptation chromatique chez les insectes. Archs. Zool. exp. gén. <u>94</u>, 61-294.
- EDWARDS, G.A., RUSKA, H. and DE HARVEN, E. (1958a). Electron microscopy of peripheral nerves and neuromuscular functions in the wasp leg. J. biophys. biochem. Cytol. <u>4</u>, 107-114.
- EDWARDS, G.A., RUSKA, H. and DE HARVEN, E. (1958b). Neuromuscular functions in flight and tymbal muscles of the cicada.

J. biophys. biochem. Cytol. 4, 251-256.

ELLIS, P.E., MORGAN, E.D. and WOODBRIDGE, A.P. (1972). Moult-inducing hormones of the prothoracic gland of insects.

Nature, Lond. 238, 274-276.

ENGELMANN, F. (1968a). Endocrine control of reproduction in insects.

A. Rev. Ent. 13, 1-44.

ENGELMANN, F. (1968b). Feeding and crop emptying in the cockroach <u>Leucophaea</u> <u>maderae</u>.

J. Insect Physiol. <u>14</u>, 1525-1531.

- EVANS, D.R. and BARTON-BROWNE, L. (1960). The physiology of hunger in the blowfly. Am. Midl. Nat. <u>64</u>, 282-299.
- FAIN-MAUREL, M.A. et CASSIER, P. (1968). Etude infrastructurale des glandes de mue de <u>Locusta migratoria</u> <u>migratorioides</u> (R. et F.). I. Evolution cyclique au cours des stades larvaires. Archs. Zool. exp. gén. 109, 445-476.
- FINLAYSON, L.H. and LOWENSTEIN, O. (1958). The structure and function of abdominal stretch receptors in insects. Proc. R. Soc. (B) 148, 433-449.
- FINLAYSON, L.H. and OSBORNE, M.P. (1968). Peripheral neurosecretory cells in the stick insect (<u>Carausius</u> <u>morosus</u>) and the blowfly larva (<u>Phormia terrae-novae</u>). J. Insect Physiol. <u>14</u>, 1793-1801.
- FISHER, R.A. and YATES, F. (1953). Statistical tables for biological, agricultural and medical research. Oliver and Boyd, London.

FRAENKEL, G. and HSIAO, C. (1965). Bursicon, a hormone which mediates tanning of the cuticle in the adult fly and other insects.

J. Insect Physiol. 11, 513-556.

- FRASER ROWELL, C.H. (1963). A method for chronically implanting stimulating electrodes into the brains of locusts, and some results of stimulation. J. exp. Biol. 40, 271-284.
- FREEMAN, M.A. (1966). The effect of drugs on the alimentary canal of the African migratory locust <u>Locusta migratoria</u>. Comp. Biochem. Physiol. 17, 755-764.
- FUKUDA, S. (1940). 1. Induction of pupation in the silkworm by transplanting the prothoracic gland. 2. Hormonal control of moulting and pupation in the silkworm. Proc. imp. Acad. Tokyo <u>16</u>, 414-420.
- GABE, M. (1966). Neurosecretion. Pergamon Press, Oxford.
- GELPERIN, A. (1967). Stretch receptors in the foregut of the blowfly. Science, N.Y. 157, 208-210.
- GELPERIN, A. (1971). Regulation of feeding.
 A. Rev. Ent. <u>16</u>, 365-378.

GERSCH, M. und STÜRZEBECHER, J. (1970). Experimentelle Stimulierung der zellulären Aktivität der Prothoracaldrüsen von <u>Periplaneta americana</u> durch den Aktivationsfaktor.

J. Insect Physiol. 16, 1813-1826.

GILBERT, L.I. and SCHNEIDERMAN, H.A. (1959). Prothoracic gland stimulation by juvenile hormone extracts of insects.

Nature, Lond. <u>184</u>, 171-173.

GILLOTT, C. (1964). The role of the frontal ganglion in the control of protein metabolism in <u>Locusta</u> <u>migratoria</u>.

Helgoländer wiss. Meersunters. 9, 141-149.

GILLOTT, C. (1965). The role of the frontal ganglion in the control of protein synthesis in <u>Locusta</u> <u>migratoria migratorioides</u> R. and F. Ph.D. Thesis, University of Nottingham.

- GILLOTT, C., DOGRA, G.S. and EWEN, A.B. (1970). An autoradiographic study of endocrine activity following frontal ganglionectomy in virgin females of <u>Melanoplus</u> <u>sanguinipes</u> (Orthoptera: Acrididae). Can. Ent. 102, 1083-1088.
- GIRARDIE, A. (1964). Action de la pars intercerebralis sur le développement de <u>Locusta migratoria</u> L. J. Insect Physiol. <u>10</u>, 599-609.
- GIRARDIE, A. (1967). Controle neuro-hormonal de la métamorphose et de la pigmentation chez <u>Locusta migratoria</u> <u>cinerascens</u> (Orthoptère). Bull. biol. Fr. Belg. <u>101</u>, 79-114.
- GIRARDIE, A. (1970). Neurosécrétions cérébrales chez les acridiens.

Bull. Soc. zool. Fr. <u>95</u>, 793-802.

- GIRARDIE, A. et GIRARDIE, J. (1966). Mise en évidence d'une activité neurosécrétrice dans les cellules C de la pars intercerebralis de <u>Locusta migratoria</u> L. par étude comparative histologique et ultrastructurale. C. R. Acad. Sc., Paris (D) <u>263</u>, 1119-1122.
- GIRARDIE, A. et GIRARDIE, J. (1967). Etude histologique, histochimique et ultrastructurale de la pars intercerebralis chez <u>Locusta migratoria</u> L. (Orthoptère). Z. Zellforsch. 78, 54-75.

GOODHUE, D. (1963). Some differences in the passage of food through the intestines of the desert and migratory locusts.

Nature, Lond. 200, 288-289.

- GOSBEE, J.L., MILLIGAN, J.V. and SMALLMAN, B.N. (1968). Neural properties of the protocerebral neurosecretory cells of the adult cockroach <u>Periplaneta americana</u>. J. Insect Physiol. <u>14</u>, 1785-1792.
- GRAY, E.G. (1970). The fine structure of nerve. Comp. Biochem. Physiol. <u>36</u>, 419-448.
- GREEN, G.W. (1964). The control of spontaneous locomotor activity in <u>Phormia</u> <u>regina</u> Meigen. II. Experiments to determine the mechanism involved.

J. Insect Physiol. <u>10</u>, 727-752.

GRENVILLE, H. (1962). Anatomical and physiological studies on the innervation of the alimentary canal in <u>Locusta</u> <u>migratoria migratorioides</u> R. and F. and <u>Schistocerca</u> <u>gregaria</u> Forsk.

M.Sc. Thesis, University of Nottingham.

HACHLOW, V. (1931). Zur Entwicklungsmechanik der Schmetterlinge.

Roux Arch. EntwMech. Organ. 125, 26-49.

- HARKER, J.E. (1963). Tumors. In: Insect pathology. An Advanced Treatise, Vol. I, pp.191-213, ed. E.A. Steinhaus. New York: Academic Press.
- HASKELL, P.T. and MORDUE, A.J. (1969). The role of mouthpart receptors in the feeding behaviour of <u>Schistocerca</u> <u>gregaria</u>.

Entomologia exp. appl. <u>12</u>, 591-610.

- HERMAN, W.S. (1967). The ecdysial glands of arthropods. Int. Rev. Cytol. <u>22</u>, 269-347.
- HERMAN, W.S. (1968). Control of hormone production in insects. In: Metamorphosis, a problem in developmental biology, eds.: W. Etkin and L.I. Gilbert, pp.107-141. Amsterdam, North-Holland Publ. Co.
- HESS, A. (1958). The fine structure of nerve cells and fibers, neuroglia, and sheaths of the ganglion chain in the cockroach (<u>Periplaneta americana</u>). J. biophys. biochem. Cytol. 4, 731-742.
- HIGHNAM, K.C. (1961). Induced changes in the amounts of material in the neurosecretory system of the desert locust.

Nature, Lond. <u>191</u>, 199-200.

HIGHNAM, K.C. (1962). Neurosecretory control of ovarian development in <u>Schistocerca gregaria</u>. Q. Jl. microsc. Sci. <u>103</u>, 57-72.

HIGHNAM, K.C. (1967). Insect hormones. J. Endocr. <u>39</u>, 123-150.

- HIGHNAM, K.C. (1969). Neurosecretion in insects. Proc. 3rd. Int. Congr. Endocr., Mexico (in Progress in Endocrinology), pp.351-355.
- HIGHNAM, K.C. and HASKELL, P.T. (1964). The endocrine system of isolated <u>Locusta</u> and <u>Schistocerca</u> in relation to oocyte growth, and the effects of flying upon maturation.

J. Insect Physiol. 10, 849-864.

- HIGHNAM, K.C. and HILL, L. (1969). The Comparative Endocrinology of the Invertebrates. Edward Arnold Ltd., London.
- HIGHNAM, K.C., HILL, L. and MORDUE, W. (1966). The endocrine system and öocyte growth in <u>Schistocerca</u> in relation to starvation and frontal ganglionectomy. J. Insect Physiol. <u>12</u>, 977-994.
- HIGHNAM, K.C. and LUSIS, O. (1962). The influence of mature males on the neurosecretory control of ovarian development in the desert locust.

Q. Jl. microsc. Sci. <u>103</u>, 73-83.

HIGHNAM, K.C. and WEST, M.W. (1971). The neuropilar neurosecretory reservoir of <u>Locusta migratoria migratorioides</u> R. and F. Gen. comp. Endocr. 16, 574-585.

HILL, L. (1962). Neurosecretory control of haemolymph protein concentration during ovarian development in the desert locust.

J. Insect Physiol. 8, 609-619.

HILL, L. (1965). The incorporation of C¹⁴-glycine into the proteins of the fat body of the desert locust during ovarian development.

J. Insect Physiol. 11, 1605-1615.

HILL, L., LUNTZ, A.J. and STEELE, P.A. (1968). The relationships between somatic growth, ovarian growth, and feeding activity in the adult desert locust. J. Insect Physiol. 14, 1-20.

HILL, L., MORDUE, W. and HIGHNAM, K.C. (1966). The endocrine system, frontal ganglion, and feeding during maturation in the female desert locust.

J. Insect Physiol. <u>12</u>, 1197-1208.

HODGSON, E.S. and GELDIAY, S. (1959). Experimentally induced release of neurosecretory materials from roach corpora cardiaca. Biol. Bull., Woods Hole <u>117</u>, 275-283.

- HÖKFELT, T. (1968). In vitro studies on central and peripheral monoamine neurons at the ultrastructural level. Z. Zellforsch. 91, 1-74.
- HOYLE, G. (1955). The effects of some common cations on neuromuscular transmission in insects.

J. Physiol., Lond. <u>127</u>, 90-103.

- HUDDART, H. (1971a). Ultrastructure of a peripheral nerve of <u>Locusta migratoria migratorioides</u> R. and F. (Orthoptera: Locustidae). Int. J. Insect Morphol. and Embryol. 1, 29-41.
- HUDDART, H. (1971b). Ultrastructure of the prothoracic ganglion and connectives of the stick insect in relation to function.

J. Insect Physiol. 17, 1451-1469.

HUGHES, G.M. (1965). Neuronal pathways in the insect central nervous system. In: The Physiology of the Insect Central Nervous System (J.E. Treherne and J.W.L. Beament, eds.), pp.79-112.

Academic Press, London and New York.

HUNTER-JONES, P. (1961). Rearing and Breeding Locusts in the Laboratory.

London, Anti-Locust Research Centre. 12 pp., 8 figs.

ICHIKAWA, M. and NISHIITSUTSUJI-OWO, J. (1959). Studies on the role of the corpus allatum in the eri silkworm, <u>Philosamia cynthia ricini</u>. Biol. Bull, Woods Hole 116, 88-94.

- IMMS, A.D. (1957). A General Textbook of Entomology, London, Methuen and Co. Ltd.
- JOHANSSON, A.S. (1958). Relation of nutrition to endocrinereproductive functions in the milkweed bug, <u>Oncopeltus</u> <u>fasciatus</u> (Dallas) (Heteroptera: Lygaeidae). Nytt. Mag. Zool. <u>7</u>, 5-132.
- JOHNSON, B. (1966a). Fine structure of the lateral cardiac nerves of the cockroach, <u>Periplaneta americana</u> L. J. Insect Physiol. <u>12</u>, 645-653.
- JOLY, L. (1960). Fonctions des corpora allata chez <u>Locusta</u> <u>migratoria</u> (L.). Thèse, Strasbourg, 103 pp.
- JOLY, L., PORTE, A. et GIRARDIE, A. (1967). Caractères ultrastructuraux des corpora allata actifs et inactifs chez <u>Locusta migratoria</u>.
 C. R. Acad. Sc. Paris (D) <u>265</u>, 1633-1635.
- JOLY, L., JOLY, P., PORTE, A. et GIRARDIE, A. (1968). Étude physiologique et ultrastructurale des corpora allata de <u>Locusta migratoria</u> L. (Orthoptère) en phase grégaire. Archs. Zool. exp. gén. <u>109</u>, 703-728.

- JOLY, L., JOLY, P., PORTE, A. et GIRARDIE, A. (1969). Analyse ultrastructurale de l'activité des corpora allata de <u>Locusta migratoria</u> L. et ses conséquences sur la structure que l'on doit attribuer au mécanisme humoral controlant la métamorphose. Archs. Zool. exp. gén. <u>110</u>, 617-628.
- JOLY, P. (1955). Chronologie de la mitose chez <u>Locusta</u> <u>migratoria</u> (L.). Arch. Anat., Strasbourg 37, 87-96.
- JOLY, P. (1968). Endocrinologie des Insectes. Masson and Cie, Paris.
- JOLY, P. et CAZAL, M. (1969). Données récentes sur les corpora cardiaca. Bull. Soc. zool. Fr. 94, 181-194.
- JOLY, P., JOLY, L. et HALBWACHS, M. (1956). Controle humoral du développement chez <u>Locusta migratoria</u>. Annls. Sci. nat. (Zool.) <u>18</u>, 256-261.
- JONES, J.C. (1960). The anatomy and rhythmic activities of the alimentary canal of <u>Anopheles</u> larvae. Ann. ent. Soc. Am. <u>53</u>, 459-474.
- JOUSSET DE BELLESME (1877). Phénomènes qui accompagnet la metamorphose chez la Libellule deprimée.

C. R. Acad. Sc., Paris (D) 85, 448-450.

- KARLSON, P. (1956). Biochemical studies on insect hormones. Vitamins and hormones 14, 227-266.
- KARLSON, P. (1963). Chemistry and biochemistry of insect hormones.

Angew. Chem. 2, 175-182.

- KEMPER, H. (1931). Beiträge zur Biologie der Bettwanze
 (<u>Cimex lectularius</u> L.) über die Häutung.
 Z. Morph. Oekol. Tiere, <u>22</u>, 53-109.
- KHATTER, N. (1968). The stomodaeal nervous system of <u>Schizodactylus monstrosus</u> (Drury) (Orthoptera). J. Nat. Hist. <u>2</u>, 221-230.
- KNIGHT, M.R. (1962). Rhythmic activities of the alimentary canal of the black blowfly, <u>Phormia regina</u> Meig. Ann. ent. Soc. Am. <u>55</u>, 380-382.
- KNOWLES, F. (1965). Neuroendocrine correlations at the level of ultrastructure. Arch. Anat. microscop. Morph. exp. <u>54</u>, 343-357.
- KNOWLES, F. (1967). Neuronal properties of neurosecretory cells. In: Proceedings of the 4th International Symposium on Neurosecretion (F. Stutinsky, editor). Springer-Verlag, Berlin, pp. 8-19.

KOPEC, S. (1922). Studies on the necessity of the brain for the inception of insect metamorphosis. Biol. Bull. Woods Hole 42, 322-342.

- KUNKEL D'HERCULAIS (1890). Du role de l'air dans le mécanisme physiologique de l'éclosion, des mues et de la métamorphose chez les Insectes Orthoptères de la famille des Acridides. C. R. Acad. Sc., Paris (D) <u>110</u>, 807-809.
- L'HELIAS, C. (1957). Identification de facteurs hormonaux dans le cerveau et le complexe retrocérébral du phasme <u>Carausius</u> <u>morosus</u>.

Ann. Sci. nat. (Zool.) <u>18</u>, 275-281.

LANE, N.J. (1968). The thoracic ganglia of the grasshopper, <u>Melanoplus differentialis</u>: fine structure of the perineurium and neuroglia with special reference to the intracellular distribution of phosphatases.

Z. Zellforsch. <u>86</u>, 293-312...

LANGLEY, P.A. (1962). Factors concerned in the initiation of growth and moulting in <u>Locusta migratoria migratorioides</u> R. and F.

Ph.D. Thesis, University of Nottingham.

- LEA, A.O. (1967). The median neurosecretory cells and egg maturation in mosquitoes. J. Insect Physiol. <u>13</u>, 419-429.
- LEE, R.M. (1961). The variation of blood volume with age in the desert locust (<u>Schistocerca gregaria</u> Forsk.).
 J. Insect Physiol. 6, 36-51.

LEES, A.D. (1955). The Physiology of Diapause in Arthropods. 151 pp.

Cambridge University Press.

LEES, A.D. (1964). The location of the photoperiod receptors in the aphid <u>Megoura</u> <u>viciae</u> Buckton.

J. exp. Biol. <u>41</u>, 119-133.

- LOCKE, M.L. (1969). The ultrastructure of the oenocytes in the molt/intermolt cycle of an insect. Tissue and Cell <u>1</u>, 103-154.
- LOCKE, M.L. (1970). The molt/intermolt cycle in the epidermis and other tissues of an insect <u>Calpodes ethlius</u> (Lepidoptera, Hesperiidae). Tissue and Cell <u>2</u>, 197-224.
- MADDRELL, S.H.P. (1963). Excretion in the blood-sucking bug, <u>Rhodnius prolixus</u> Stål. I. The control of diuresis. J. exp. Biol. <u>40</u>, 247-256.
- MADDRELL, S.H.P. (1964). Excretion in the blood-sucking bug, Rhodnius prolixus Stål. III. The control of the release of the diuretic hormone. J. exp. Biol. 41, 459-472.
- MADDRELL, S.H.P. and TREHERNE, J.E. (1967). The ultrastructure of the perineurium in two insect species, <u>Carausius</u> <u>morosus</u> and <u>Periplaneta</u> <u>americana</u>.

J. Cell Sci. 1, 119-128.

- MANCINI, G. and FRONTALI, N. (1970). On the ultrastructural localization of catecholamines in the beta lobes (Corpora pedunculata) of <u>Periplaneta americana</u>. Z. Zellforsch. <u>103</u>, 341-350.
- MATZ, G. (1961). Tumeurs expérimentales chez <u>Leucophaea</u> <u>maderae</u> F. et <u>Locusta migratoria</u> L. J. Insect Physiol. 6, 309-313.
- MATZ, G. (1963). Réactions inflammatoires, cicatrisation et cancérigenèse chez les insectes. Bull. Soc. zool. Fr. <u>88</u>, 650-662.
- MINKS, A.K. (1967). Biochemical aspects of juvenile hormone action in the adult <u>Locusta migratoria</u>. Archs. néerl. Zool. 17, 175-258.
- MÖHL, B. (1972). The control of foregut movements by the stomatogastric nervous system in the European house cricket <u>Acheta domesticus</u> L. J. comp. Physiol. <u>80</u>, 1-28.
- MORDUE, W. (1965a). Studies on oocyte production and associated histological changes in the neuroendocrine system in <u>Tenebrio</u> <u>molitor</u> L. J. Insect Physiol. 11, 493-503.
- MORDUE, W. (1965b). The neuroendocrine control of oocyte production in <u>Tenebrio</u> molitor L.

J. Insect Physiol. <u>11</u>, 505-511.

MORDUE, W. (1965c). Neuroendocrine factors in the control of oocyte production in <u>Tenebrio</u> molitor L.

J. Insect Physiol. 11, 617-629.

MORDUE, W. (1967). The influence of feeding upon the activity of the neuroendocrine system during oocyte growth in <u>Tenebrio molitor</u>. Gen. comp. Endocr. 9, 406-415.

MORDUE, W. (1969). Hormonal control of Malpighian tube and rectal function in the desert locust, <u>Schistocerca</u> <u>gregaria</u>.

J. Insect Physiol. 15, 273-285.

- MORDUE, W. (1970). Evidence for the existence of diuretic and anti-diuretic hormones in locusts.
 - J. Endocr. <u>46</u>, 119-120.
- MORDUE, W. and GOLDSWORTHY, G.J. (1969). The physiological effects of corpus cardiacum extracts in locusts. Gen. comp. Endocr. <u>12</u>, 360-369.
- MORDUE, W., HIGHNAM, K.C., HILL, L. and LUNTZ, A.J. (1970). Environmental effects upon endocrine-mediated processes in locusts.

Mem. Soc. Endocr. 18, 111-136.

MORGAN, E.D. and WOODBRIDGE, A.P. (1971). Insect moulting hormones (ecdysones). Identification as derivatives by gas chromatography.

Chem. Comm. 1971, 475-476.

NAYAR, K.K. (1954). The structure of the corpus cardiacum of Locusta migratoria.

Q. Jl. microsc. Sci. <u>95</u>, 245-250.

NESBITT, H.H.J. (1956). Contributions to the anatomy of <u>Grylloblatta campodeiformis</u> Walker. 6. The nervous system.

Proc. 10th Int. Congr. Entom. 1, 525-529.

- NEWPORT, G. (1832). On the nervous system of the <u>Sphinx</u> <u>ligustri</u> and on the changes which it undergoes during a part of the metamorphosis of the insect. Phil. Trans. R. Soc. Lond. 122, 383-398.
- NORMANN, T.C. (1965). The neurosecretory system of the adult <u>Calliphora erythrocephala</u>. I. The fine structure of the corpus cardiacum with some observations on adjacent organs.

Z. Zellforsch. <u>67</u>, 461-501.

NORMANN, T.C. (1969). Experimentally induced exocytosis of neurosecretory granules. Expl. Cell. Res. 55, 285-287.

- NOVAK, V.J.A. (1966). Insect Hormones. London, Methuen.
- NYST, R.H. (1942). Structure et rapports du système nerveux, du vaisseau dorsal et des annexes cardiaques chez <u>Dixippus morosus</u> Br.
 - Annls. Soc. r. zool. Belg. <u>73</u>, 150-164.
- OBERLANDER, H., BERRY, S.J., KRISHNAKUMARAN, A. and SCHNEIDERMAN, H.A. (1965). RNA and DNA synthesis during activation and secretion of the prothoracic glands of Saturnid moths.

J. exp. Zool. <u>159</u>, 15-32.

ORLOV, J. (1924). Die Innervation des Darmes der Insecten (Larven von Lamelilcorniern).

Z. wiss. Zool. <u>122</u>, 425-502.

- OSBORNE, M.P. (1966). Ultrastructural observations on adult and larval nerves of the blowfly. J. Insect Physiol. <u>12</u>, 501-507.
- OSBORNE, D.J., CARLISLE, D.B. and ELLIS, P.E. (1968). Protein synthesis in the fat body of the female desert locust, <u>Schistocerca gregaria</u> Forsk., in relation to maturation.

Gen. comp. Endocr. 11, 347-354.

- OSBORNE, M.P., FINLAYSON, L.H. and RICE, M.J. (1971). Neurosecretory endings associated with striated muscles in three insects (<u>Schistocerca</u>, <u>Carausius</u>, and <u>Phormia</u>) and a frog (<u>Rana</u>). Z. Zellforsch. <u>116</u>, 391-404.
- OZBAS, S. (1957a). Morphological and histological studies on the corpora allata and cardiaca in Orthoptera. Commun. Fac. Sci. Ankara (C) <u>8</u>, 19-44.
- OZBAS, S. (1957b). Two kinds of secretions in corpora cardiaca of <u>Locusta migratoria</u> (L.) ph. solitaria (Orthoptera: Acrididae). Commun. Fac. Sci. Ankara (C) <u>8</u>, 45-57.
- PANTIN, C.F.A. (1946). Notes on Microscopical Techniques For Zoologists. Cambridge University Press.
- PAWLOWA, M. (1895a). On the structure of the blood vessels and sympathetic nervous system of insects, especially Orthoptera. Raboty Lab. Zool. Varshavsk. Univ. (1895), pp. 1-96 (in Russian).
- PAWLOWA, M.I. (1895b). Über ampullenartige Blutcirculationsorgane im Kopfe verschiedener Orthopteren. Zool. Anz. <u>18</u>, 7-13.

- PEARSON, K.G., STEIN, R.B. and MALHOTRA, S.K. (1970). Properties of action potentials from insect motor nerve fibres. J. exp. Biol. <u>53</u>, 299-316.
- PENZLIN, H. (1971). Zur Rolle des Frontalganglions bei Larven der Schabe <u>Periplaneta</u> <u>americana</u>. J. Insect Physiol. <u>17</u>, 559-573.
- PFEIFFER, I.W. (1939). Experimental study of the function of the corpora allata in the grasshopper, <u>Melanoplus</u> <u>differentialis</u>.

J. exp. Zool. <u>99</u>, 183-233.

- PFLUGFELDER, O. (1937). Bau, Entwicklung, und Funktion der Corpora allata und cardiaca von <u>Dixippus</u> morosus Br. Z. wiss. Zool.<u>149</u>, 477-512.
- PLOTNIKOVA, S.I. (1967). Innervation of the gut of the migratory locust, <u>Locusta migratoria</u> L. (Orthoptera, Acrididae). Ent. Rev. Wash. <u>46</u>, 69-71.
- RAABE, M. (1963a). Mise en évidence, chez les insectes d'ordres variés, d'éléments neurosécréteurs tritocérébraux.
 C. R. Acad. Sc. Paris (D) <u>257</u>, 1171-1173.
- RAABE, M. (1963b). Existence chez divers insectes d'une innervation tritocérébrale des corpora cardiaca.
 C. R. Acad. Sc. Paris (D) <u>257</u>, 1552-1555.

RAABE, M. (1963c). Recherches experimentales sur la localisation intra-cérébrale du facteur chromactif des Insectes.

C. R. Acad. Sc., Paris (D) 257, 1804-1806.

- RAABE, M. (1964). Nouvelles recherches sur la neurosécrétion chez les insectes. Annls. Endocr. <u>25</u>, 107-112.
- REYNOLDS, E.S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell. Biol. <u>17</u>, 208-212.
- ROBERTIS, E. DE (1964). Histophysiology of Synapses and Neurosecretion. New York, Macmillan.
- RÖLLER, H. (1962). Über den Einfluss der Corpora allata auf den Stoffwechsel der Wachsmotte. Naturwissenschaften <u>49</u>, 524.
- ROMER, F. (1971a). Hautungshormone in den Oenocyten des Mehlkäfers.

Naturwissenschaften 58, 324-325.

ROMER, F. (1971b). Die Prothorakaldrüsen der Larve von <u>Tenebrio molitor</u> L. (Tenebrionidae, Coleoptera) und ihre Veranderungen während eines Hautungszyklus. Z. Zellforsch. 122, 425-455.

- ROOME, R.E. (1968). The function of the stomatogastric nervous system as a link between feeding, endocrine secretion and growth in insects. Ph.D. Thesis, University of Nottingham.
- ROUSSEL, J.P. (1966). Contribution a l'étude du role du ganglion frontal chez les insectes. Bull. Soc. zool. Fr. <u>91</u>, 379-391.
- SCHARRER, B. (1945). Experimental tumours after nerve section in an insect. Proc. Soc. exp. Biol. Med. <u>60</u>, 184-189.
- SCHARRER, B. (1963). Neurosecretion XIII. The ultrastructure of the corpus cardiacum of the insect <u>Leucophaea maderae</u>.

Z. Zellforsch. 60, 761-796.

- SCHARRER, B. (1964). The fine structure of blattarian
 prothoracic glands.
 Z. Zellforsch. 64, 301-326.
- SCHARRER, B. (1968). Neurosecretion XIV. Ultrastructural study of sites of release of neurosecretory material in Blattarian insects.

Z. Zellforsch. <u>89</u>, 1-16.

SCHARRER, B. (1969). Current concepts in the field of neurochemical mediation.

MCV Quart. <u>5</u>, 27-31.

- SCHARRER, E. and BROWN, S. (1961). Neurosecretion. XII. The formation of neurosecretory granules in the earthworm, <u>Lumbricus terrestris</u>. Z. Zellforsch. 54, 530-540.
- SCHARRER, B. and KATER, S.B. (1969). Neurosecretion. XV. An electron microscopic study of the corpora cardiaca of <u>Periplaneta americana</u> after experimentally induced hormones release.

Z. Zellforsch. <u>95</u>, 177-186.

SCHARRER, B. and WEITZMAN, M. (1970). Current problems in invertebrate neurosecretion. In: Aspects of Neuroendocrinology (W. Bargmann and B. Scharrer, eds.), pp.1-23.

Springer-Verlag, Berlin.

- SCHARRER, B.C.J. (1939). The differentiation between neuroglia and connective tissue sheath in the cockroach (<u>Periplaneta americana</u>). J. comp. Neurol. <u>70</u>, 77-88.
- SCHNEIDERMAN, H.A. and GILBERT, L.I. (1964). Control of growth and development in insects. Science, N.Y. 143, 325-333.
- SMITH, D.S. (1967). The trophic role of glial cells in insect ganglia. In: Insects and Physiology (J.W.L. Beament and J.E. Treherne, eds.), pp.189-198. Oliver and Boyd, Edinburgh and London.

SMITH, D.S. (1968). Insect Cells, their structure and function.

Oliver and Boyd, Edinburgh and London.

- SMITH, D.S. and TREHERNE, J.E. (1963). Functional aspects of the organization of the insect nervous system. Advanc. Ins. Physiol. <u>1</u>, 401-484.
- SMITH, U. and SMITH, D.S. (1966). Observations on the secretory processes in the corpora cardiaca of the stick insect, <u>Carausius morosus</u>. J. Cell. Sci. <u>1</u>, 59-66.
- SNODGRASS, R.E. (1926). The morphology of insect sense
 organs and the sensory nervous system.
 Smithsonian Misc. Coll. 77: No. 8, 80 pp.
- SNODGRASS, R.E. (1935). Principles of Insect Morphology. New York.
- STAAL, G.B. (1961). Studies on the physiology of phase induction in Locusta migratoria migratorioides R. and F. 125 pp. Thesis, Wageningen, Veenman and Zonen.
- STARK, M.J., SMALLEY, K.N. and ROWE, E.C. (1969). Methylene blue staining of axons in the ventral nerve cord of insects.

Stain Technol. 44, 97-102.

STEELE, J.E. (1961). Occurrence of a hyperglycaemic factor in the corpus cardiacum of an insect. Nature, Lond. <u>192</u>, 680-681.

- STEELE, J.E. (1963). The site of action of insect hyperglycaemic hormone. Gen. comp. Endocr. 3, 46-52.
- STRICH-HALBWACHS, M.C. (1954). Étude de la glande ventrale chez Locusta migratoria. Ann. Sci. nat. (Zool.) (11) <u>16</u>, 399-410.

STRICH-HALBWACHS, M.C. (1959). Controle de la mue chez Locusta migratoria.

Ann. Sci. nat., (Zool.) (12) 1, 483-570.

- STRONG, L. (1966a). On the occurrence of neuroglandular axons within the sympathetic nervous system of a locust, <u>Locusta migratoria migratorioides</u>. Jl. R. microsc. Soc. <u>86</u>, 141-149.
- STRONG, L. (1966b). Effect of removal of the frontal ganglion on corpus allatum function in <u>Locusta migratoria</u> <u>migratorioides</u> R. and F. Nature, Lond. <u>210</u>, 330-331.
- STUMM-ZOLLINGER, E. (1957). Histological study of regenerative processes after transection of the nervi corporis cardiaci in transplanted brains of the cecropia silkworm

(<u>Platysamia cecropia</u> L.). J. exp. Zool. <u>134</u>, 315-326.

- TAKAOKA, M. (1960). Studies of the metamorphosis in insects. V. Factors controlling the larval period of the squash fly <u>Zengodugus</u> <u>depressus</u> Shiraki. Embryologia <u>5</u>, 259-269.
- TAXI, J. (1968). Identification des fibres nerveuses adrenergiques dans quelques muscles lisses de mammifères par la méthod auto-radiographique utilisée en microscopie électronique.

Bull. Ass. Anat. 139, 1132-1139.

- TAYLOR, R.L. (1969). Formation of tumorlike lesions in the cockroach <u>Leucophaea maderae</u> after nerve severance. J. Invertebrate Pathol. <u>11</u>, 214-218.
- TESTENOIRE, J. et LEVRAT, D. (1896). Application des rayons X à la determination du sexe des chrysalides à travers les cocons. Lab. d'études de la soie, Lyon 8. 140a (cited from Bergh <u>et al.</u>, 1943).
- THOMAS, J.G. (1966). The sense organs of the mouthparts of the desert locust.
 - J. Zool. <u>148</u>, 420-448.

THOMSEN, E. (1952). Functional significance of the neurosecretory brain cells and the corpus cardiacum in the female blowfly, <u>Calliphora erythrocephala</u> Meig. J. exp. Biol. <u>29</u>, 137-172.

THOMSEN, E. and MOLLER, I. (1959). Neurosecretion and intestinal protease activity in an insect, <u>Calliphora</u> <u>erythrocephala</u> Meig. Nature, Lond. <u>183</u>, 1401-1402.

- THOMSEN, E. and MOLLER, I. (1963). Influence of neurosecretory cells and of corpus allatum on intestinal protease activity in the adult <u>Calliphora erythrocephala</u> Meig.
 - J. exp. Biol. <u>40</u>, 301-321.
- TOMBES, A.S. and SMITH, D.S. (1970). Ultrastructural studies on the corpora cardiaca-allata complex of the adult alfalfa weevil, <u>Hypera postica</u>. J. Morph. <u>132</u>, 137-148.
- TREHERNE, J.E. (1957). Glucose absorption in the cockroach. J. exp. Biol. <u>35</u>, 862-870.
- TREHERNE, J.E. (1960). The nutrition of the central nervous system in the cockroach, <u>Periplaneta americana</u> L. The exchange and metabolism of sugars. J. exp. Biol. <u>37</u>, 513-533.

TREHERNE, J.E. (1967). Axonal function and ionic regulation in insect central nervous tissues. In: Insects and Physiology (J.W.L. Beament and J.E. Treherne, eds.) pp.175-188.

Oliver and Boyd, Edinburgh and London.

- TREHERNE, J.E. and MORETON, R.B. (1970). The environment and functions of invertebrate nerve cells. Int. Rev. Cytol. <u>28</u>, 45-88.
- TRUJILLO-CENÓZ, O. (1962). Some aspects of the structural organization of the arthropod ganglia. Z. Zellforsch. 56, 649-682.
- UVAROV, B. (1966). Grasshoppers and Locusts, vol. 1. Cambridge University Press.
- VAN DER KLOOT, W.G. (1960). Neurosecretion in insects. A. Rev. Ent. <u>5</u>, 35-52.
- VAN DER KLOOT, W.G. (1961). Insect metamorphosis and its
 endocrine control.
 Am. Zool. <u>1</u>, 3-9.
- VINCENT, J.F.V. (1971). Effects of bursicon on cuticular properties in Locusta migratoria migratorioides. J. Insect Physiol. 17, 625-636.

VOLLRATH, L. (1969). Uber die Herkunft 'synaptischer' Blaschen in neurosekretorischen Axonen. Z. Zellforsch. 99, 146-152.

WATSON, J.A.L. (1964). Moulting and reproduction in the adult firebrat, <u>Thermobia domestica</u> (Packard) (Thysanura, Lepismatidae). I. The moulting cycle and its control.

J. Insect Physiol. <u>10</u>, 305-317.

WEBER, W. and GAUDE, H. (1971). Ultrastruktur des Neurohaemalorgans in Nervus corporis allati II van <u>Acheta</u> <u>domesticus</u>.

Z. Zellforsch. <u>121</u>, 561-572.

- WEIR, S.B. (1970). Control of moulting in an insect. Nature, Lond. <u>228</u>, 580-581.
- WIGGLESWORTH, V.B. (1945). The physiology of ecdysis in <u>Rhodnius prolixus</u> (Hemiptera). II. Factors controlling moulting and metamorphosis. Q. Jl. microsc. Sci. <u>77</u>, 191-222.

WIGGLESWORTH, V.B. (1936). The function of the corpus allatum in the growth and reproduction of <u>Rhodnius</u> prolixus Stål (Hemiptera). Q. Jl. microsc. Sci. 79, 91-121. WIGGLESWORTH, V.B. (1939). Source of the moulting hormone in <u>Rhodnius prolixus</u>. Nature, Lond. <u>144</u>, 753.

- WIGGLESWORTH, V.B. (1940). The determination of characters at metamorphosis in <u>Rhodnius</u> prolixus (Hemiptera). J. exp. Biol. <u>17</u>, 201-222.
- WIGGLESWORTH, V.B. (1952). The thoracic gland in <u>Rhodnius</u> <u>prolixus</u> (Hemiptera) and its role in moulting. J. exp. Biol. <u>29</u>, 561-570.
- WIGGLESWORTH, V.B. (1957). The action of growth hormones in insects. Symp. Soc. exp. Biol. 11, 204-227.
- WIGGLESWORTH, V.B. (1959). The histology of the nervous system of an insect. <u>Rhodnius prolixus</u> (Hemiptera). I. The peripheral nervous system. Q. Jl. microsc. Sci. <u>100</u>, 285-298.
- WIGGLESWORTH, V.B. (1960). The nutrition of the central nervous system in the cockroach, <u>Periplaneta americana</u> L. The role of perineurium and glial cells in the mobilization of reserves. J. exp. Biol. 37, 500-512.
- WIGGLESWORTH, V.B. (1963). The action of moulting hormone and juvenile hormone at the cellular level in <u>Rhodnius</u> prolixus.
 - J. exp. Biol. <u>40</u>, 231-245.
- WIGGLESWORTH, V.B. (1964). The hormonal regulation of growth and reproduction in insects. Adv. Ins. Physiol. <u>2</u>, 247-236.
- WIGGLESWORTH, V.B. (1965). The Principles of Insect Physiology. 741 pp. Methuen and Co. Ltd., London.
- WIGGLESWORTH, V.B. (1970). Insect Hormones. Oliver and Boyd, Edinburgh.
- WILDE, J. DE (1962). Photoperiodism in insects and mites. A. Rev. Ent. <u>7</u>, 1-26.
- WILKENS, J.L. (1968). The endocrine and nutritional control of egg maturation in the fleshfly <u>Sarcophaga</u> <u>bullata</u>. J. Insect Physiol. <u>14</u>, 927-945.
- WILKENS, J.L. and MOTE, M.I. (1970). Neuronal properties of the neurosecretory cells in the fly <u>Sarcophaga</u> <u>bullata</u>. Experientia <u>26</u>, 275-276.
- WILLEY, R.B. (1961). The morphology of the stomodeal nervous system in <u>Periplaneta</u> <u>americana</u> (L.) and other Blattaria. J. Morph. <u>108</u>, 219-261.

WILLEY, R.B. and CHAPMAN, G.B. (1962). Fine structure of neurons within the pars intercerebralis of the cockroach, <u>Blaberus craniifer</u>.

Gen. comp. Endocr. 2, 31-43.

WILLIAMS, C.M. (1947). Physiology of insect diapause. ii. Interaction between the pupal brain and prothoracic glands in the metamorphosis of the giant silkworm, <u>Platysamia cecropia</u>.

Biol. Bull., Woods Hole <u>93</u>, 89-98.

- WILLIAMS, C.M. (1952). Physiology of insect diapause. iv. The brain and prothoracic glands as an endocrine system in the cecropia silkworm. Biol. Bull, Woods Hole 103, 120-138.
- WILLIAMS, C.M. (1959). The juvenile hormone. I. Endocrine activity of the corpora allata of the adult cecropia silkworm. Biol. Bull., Woods Hole <u>116</u>, 323-338.
- WILLIAMS, C.M. and ADKISSON, P.L. (1964). Physiology of insect diapause. XIV. An endocrine mechanism for the photoperiod control of pupal diapause in the oak silkworm, <u>Antheraea pernyi</u>.

Biol. Bull., Woods Hole <u>127</u>, 511-525.

- ZAWARZIN, A. (1912). Histologische Studien über Insekten.
 II. Des sensible Nervensystem der Aeschnalarven.
 Z. wiss. Zool. <u>100</u>, 245-286.
- ZAWARZIN, A. (1916). Quelques données sur la structure du système nerveux intestinal des insectes. Rev. zool. Russe <u>1</u>, 176-180.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude for the guidance and encouragement of Dr. K.U. Clarke, who supervised this work.

He would also like to thank Professor E.J.W. Barrington for making available the facilities of the Zoology Department, without which this investigation would not have been possible; Mr. R. Searcy for his help with the photography, Mr. R. Gilder and his staff for providing readily available stocks of locusts, and Mrs. R.B. Richardson who typed this thesis.

Finally the author is indebted to Dr. R.F. Chapman for the use of library facilities at the Centre for Overseas Pest Research, London.

APPENDIX

The figures and summary tables presented in Chapter III were compiled from the raw data given on the ensuing pages.

All weights are expressed in milligrams; ages and times are given in days unless otherwise stated.

The following abbreviations have been used:

B.R. = before ringer.

A.R. = after ringer.

D = dead animal.

976 = weight of newly moulted animal.

- 901 = weight of animal at time of attempted moult.
- * = displacement of labrum, caused by food accumulating in the preoral food cavity.
- S.E. = standard error.

n.s. = values not significantly different (see 't' tests).

M, m. = male animal.

F, f. = female animal.

Schedule for Intra-vitam Methylene Blue Staining

of Insect Nerves

(After STARK et al., 1969)

A. Solutions

1. Methylene blue stock solution

Dissolve 0.5 g methylene blue chloride in 100 ml distilled water. Heat the solution and stir until the solid is dissolved. Filter, cool and store.

2. Reduced (leuco) methylene blue solution

To 30 ml methylene blue stock solution add 6 drops concentrated HCl and 6 ml of 12% (w/v) Rongalit (Gurr Ltd.) solution. Stir and warm the mixture gently until it begins to turn a deep, dirty green colour, then remove from the heat and stir until colourless. Filter, after cooling, and store in the refrigerator in a tightly stoppered 40 ml bottle.

3. Fixative

8% (w/v) ammonium molybdate solution. Keep refrigerated and use cold.

B. Sequence

- Inject 0.15 ml reduced methylene blue solution into the locust as described in Chapter II J and leave for 1 hr.
- Open the insect under cold 8% ammonium molybdate (as previously described) and leave for 24 hr at 0°C.
- Dissect out the appropriate portion of the nervous system and wash it thoroughly in several changes of distilled water.
- 4. Transfer to a drop of dilute glycerin albumen (Gurr Ltd.) solution on a coverslip. Remove excess fluid, orientate as desired and let partially dry in the air until the preparation is firmly attached to the coverslip. Keep the coverslip in a horizontal position for the remaining steps.

- Dehydrate in two changes of tertiary butyl alcohol (1-2 hr each).
- 6. Clear in two changes of xylene (15 min each).
- Apply the coverslip to a slide with synthetic resin (DPX).

Schedule for Preparation of Material for Examination Under the Electron Microscope (After SMITH and SMITH, 1966; ANSTEE, 1968)

A. Preparation of Buffer and Fixatives

- <u>Note</u>: Double distilled water and 'Analar' grade chemicals employed throughout. All solutions kept refrigerated at 0°C.
 - 1. 0.1 M phosphate buffer, pH 7.4

Dissolve 15.6 g NaH₂PO₄.2H₂O in 1 litre of distilled water (Solution A).

Dissolve 35.8 g $Na_2HPO_4.12H_2O$ in l litre of distilled water (Solution B).

To 190 ml Solution A add 810 ml Solution B to give 1 litre 0.1 M phosphate buffer, pH 7.4.

2. Addition of sucrose

To make 0.17 M sucrose solution in 0.1 M phosphate buffer, pH 7.4, dissolve 58.14 g sucrose in 1 litre of buffer. To make 0.34 M sucrose solution in 0.1 M phosphate buffer, pH 7.4, dissolve 116.28 g sucrose in 1 litre of buffer.

3. 2.5% glutaraldehyde solution

A specially purified and stabilized 25% solution of glutaraldehyde for use in electron microscopy was obtained from TAAB laboratories. The 2.5% solution of glutaraldehyde used for fixation was prepared by adding 1 part of stock solution to 9 parts of 0.1 M phosphate buffer, pH 7.4, containing 0.17 M sucrose.

4. 1% OsO₄ solution

0.1 g OsO₄ was dissolved in 10 ml 0.1 M phosphate buffer, pH 7.4, containing 0.34 M sucrose. When not in use this solution was kept frozen.

B. Preparation of Araldite Monomer

CIBA Araldite epoxy resin CY212(M) 10 ml Araldite CIBA Araldite hardener HY964 10 ml BDH Dibutyl phthalate (plasticiser) 0.8 ml

To set monomer add:

CIBA Araldite accelerator DY064 0.45-0.50 ml

C. Fixation

- Fix tissues for 2 hr at 0°C in ice-cold 2.5% glutaraldehyde in 0.1 M phosphate buffer, pH 7.4, containing 0.17 M sucrose.
- Replace fixative with 0.1 M phosphate buffer, pH
 7.4, containing 0.34 M sucrose and wash overnight.
 Dissect out the required tissue at this stage.
- 3. Wash again in fresh buffer solution.
- Post-fix for l hr at 0°C in 1% 0s0₄ in 0.1 M phosphate buffer, pH 7.4, containing 0.34 M sucrose.
- Wash in two changes of buffer at 0°C (15 min each change).

D. Dehydration

- 6. Dehydrate at 0°C in 50%, 70% and 90% ethanol (30 min each change). Tissues may be left overnight in 70% ethanol.
- 7. Transfer to cold spectroscopically pure absolute ethanol containing 1% uranyl acetate, freshly prepared and Millipore filtered before use. Leave for 1 hr at room temperature.
- 8. Wash in fresh spectroscopically pure absolute ethanol for a further 1 hr at room temperature.

E. Embedding

- Place in 25% Araldite monomer (made up in spectroscopically pure 100% ethanol) for 1 hr at room temperature.
- Transfer to 50% and 75% ethanolic monomer solutions l hr in each at room temperature.
- 11. Embed in 100% Araldite monomer for 1 day at 48°C.
- 12. Transfer tissues to Araldite monomer + accelerator for 1 day at room temperature.

- 13. Move into Araldite monomer + accelerator for a further 1 day at room temperature.
- 14. Transfer the material into dry, clean BEEM capsules which immediately prior to this have been filled with fresh Araldite monomer + accelerator. Polymerise in an oven at 90°C for 2 days. At the end of this time the blocks are ready for sectioning.
- Note: Tissues requiring special orientation, e.g. nerves, were embedded in the lids of BEEM capsules.

TABLE I

Daily body weight changes of adult male and female Locusta used in Section I of Chapter III.

	10	1630	1600	1455	1440	1380	1305	2380	2500	2030	2090	2615	2570
	6	1630	1565	1440	1495	1315	1255	2400	2300	1995	1925	2590	2310
	8	1530	1490	1365	1390	1380	1305	2080	1965	1790	1790	2295	2120
	y: 7	1515	1520	1360	1395	1245	1245	1940	1820	1710	1680	2070	1910
	on Day 6	1360	1405	1125	1220	1160	1095	1700	1595	1455	1470	1660	1625
	in mg) 5	1315	1330	1210	1170	1070	995	1650	1460	1410	1310	1640	1485
	ight (4	1190	1165	1180	1070	1090	875	1575	1270	1390	1315	1460	1385
	ody we: 3	1170	1245	1250	1240	1135	960	1610	1435	1360	1405	1500	1605
	- Ř 	1105	1035	1040	1040	066	925	1360	1265	1180	1170	1240	1330
	1 (A.R.)	1190	1090	1090	1100	1030	955	1410	1310	1235	1220	1310	1415
•	(B.R.)	1145	1035	1040	1070	1000	920	1375	1265	1170	1170	1255	1380
	Sex	W	М	M	М	М	М	ĹЧ	Ĩ	[고	۲.	ы	ы
	No.	-	2	ო	4	Ŋ	9	7	8	6	10	11	12

(a) <u>Operated controls</u>

TABLE I

(b) <u>1 Frontal connective cut</u> TABLE I

			•	B	ody we	ight (in mg)	on Da	y:			
No.	Sex	(B.R.)	1 (A.R.)	5	ო	4	.	9	2	ω	6	10
	Σ	1000	1085	1040	920	830	1040	1010	1190	1135	1255	1355
2	M	1140	1230	1170	1315	1160	1235	1240	1365	1360	1450	1480
ς.	М	006	950	800	950	920	1080	1160	1280	1320	1330	1395
4	М	1240	1300	1240	1365	1350	1570	1555	1580	1630	1685	1655
ŝ	М	965	1030	066	1085	980	1100	1195	1210	1260	1330	1345
9	Ψ	945	995	945	1045	960	1150	1325	1360	1390	1365	1410
7	ц	1370	1450	1220	1390	985	1260	1440	1575	1660	1950	2200
∞	ы	1210	1320	1260	1340	1130	1230	1330	1515	1655	1890	2075
6	٤ų	1425	1460	1380	1445	1410	D					
10	ц	1230	1300	1210	1500	1415	1545	1770	1980	2010	2380	2560
11	Гц	1250	1270	1185	1340	1310	1370	1575	1760	1905	2205	2380
12	ы	1235	1305	1200	1395	1340	1450	1555	1735	2005	2300	2395

TABLE I (c) All the pharyngeal nerves cut

•

;	c			Ē v	ody we:	ight (in mg)	on Da	ч Т	c	c	(,
• ON	хех х	(B.R.)	L (A.R.)	. 7	n .	4	, O	0	`	α	ת	0 T
				•								
Ч	М	1050	1185	1070	1165	1030	1185	1110	1300	1260	1370	1420
2	М	1050	1190	1085	1240	1075	1285	1345	1440	1410	1570	1500
ო	М	1040	1140	1055	1100	985	D					
4	Μ	985	1095	1005	1155	1040	1120	1245	1350	1340	1415	1380
Ŝ	M	1110	1225	1110	1255	1155	1300	1325	1435	1555	1540	1530
9	Γщ	1360	1490	1325	1605	1420	1465	1630	1820	2050	2100	2590
7	ഥ	1160	1270	1195	1385	1260	1305	1530	1615	1840	1830	2170
∞	۲IJ	1280	1420	1350	1400	1395	1350	1630	1630	1835	1975	2205
6	ſ.,	1335	1420	1370	1330	1265	1190	D				
10	Ľ.	1240	1345	1260	1530	1340	1495	1815	1960	2230	2270	2695
11	۲.	1475	1630	1520	1650	1580	1665	1850	2010	2200	2380	2870
12	ы	1240	1350	1270	1410	1260	1315	1635	1660	1855	1950	2110

•

ð

TABLE I (d) Recurrent nerve cut

•			·	ğ	ody wei	ight (:	in mg)	on Da	۲: ۲	c	c	
Sex (B	(B	.R.)	L (A.R.)	N	n	4	n	0	,	ά	ת	TO
Σ	. 1-1	1090	1145	1075	1180	1070	1120	1260	1220	1430	1365	1430
M		1030	1110	1050	1120	1100	1150	1270	1305	D		
М		1135	1255	1180	1225	1180	1190	1460	1470	D		
М		1080	1160	1100	1190	1030	1140	1235	1250	1335	1435	1400
Я		965	1050	950	1055	980	1125	1040	1080	1260	1265	1165
М		1020	1140	1090	1170	1110	1140	1215	1185	1340	1260	1250
ſ.,		1405	1530	1470	1600	1490	1420	1590	1630	1770	1920	1955
۲		1335	1400	1345	1410	1515	1615	1690	1745	2010	2045	2115
ы		1120	1165	1130	1320	1260	1300	1290	1455	1490	1625	1710
ы		1310	1415	1340	1310	1290	D					•
ц		1260	1360	1265	1325	1280	1390	1370	1475	1450	1610	1735
۲щ		1250	1305	1250	1425	1360	1450	1490	1455	1650	1640	1610
ſщ		1275	1360	1310	1450	1430	1520	1430	1355	1430	1550	1610
Ľ4		1140	1220	1150	1295	1180	1180	1390	D			

TABLE I (e) 2 Frontal connectives cut (male)

•

•

		ž	•									
Response to Treatment	No.	(B.R.)	1 (A.R.)	B(2	ody wei 3	ight (: 4	in mg) 5	on Daj 6	y: 7	ω	6	10
Weight gain	321	1060 1020 1060	1100 1045 1130	1025 960 1060	1130 1130 1240	1165 1020 1090	1190 1240 1120	1215 1160 1250	1300 1330 1280	1270 1415 1395	1330 1380 1350	1385 1365 1360
Weight constant	4 5 6 8 8 11 11 12	1190 1020 1100 1110 1110 1025 970 970 960	1275 1110 1150 1085 1155 1085 1085 1085 1060 990	$1175 \\1060 \\1070 \\970 \\985 \\945 \\970 \\955 \\955 \\955 \\$	1235 975 975 1365 1070 1130 1170 1170 1175 1175	1160 920 920 980 980 995 1000 1050 975	1110 835 835 1085 1030 1080 1080 1090 1035	$1175 \\ 915 \\ 915 \\ 1100 \\ 1030 \\ 1215 \\ 1040 \\ 1055 \\ 1050 \\ 1145 \\ 11$	1175 990 1030 1040 1340 1100 1060 1150 1150	1125 1035 1140 1150 1210 1210 1145 1145 1140 1140	1140 1105 1220 1170 1330 1170 1170 1120 1120	1190 1075 1240 1240 1380 1380 1170 1170 1160
Dead before Day 10	13 14	1150 970	1220 1030	1140 970	1255 1000	1185 D	1225	1500	Q			

Ŷ

TABLE I (e) 2 Frontal connectives cut (female)

		7 1 1 11100										
Response to Treatment	No.	(B.R.)	1 (A.R.)	Bc 2	ody we. 3	ight (4	in mg) 5	on Da 6	y: 7	œ	6	10
Weight gain	4 2 2 1	1280 1275 1185 1260	1340 1295 1235 1335	1280 1200 1180 1235	1490 1300 1410 1470	1310 1310 1200 1320	1490 1385 1300 1305	1640 1475 1370 1330	1735 1680 1445 1430	1700 1760 1590 1560	1855 1835 1800 1660	2010 1920 1835 1685
Weight constant	20180	1340 1140 1130 1310 1380	1395 1185 1180 1390 1445	1290 1060 1085 1240 1320	1340 1365 1170 1230 1365	1255 1095 1150 1150 1295	1215 1120 1170 1180 1340	1305 1230 1230 1230 1230 1235	1340 1235 1135 1280 1340	1260 1315 1180 1185 1485	1375 1320 1210 1180 1380	1400 1285 1310 1185 1360
Dead before Day 10	10 11 12 13 14 15	1260 1350 1270 1200 1115 1305	1340 1425 1320 1230 1190 1415	1210 1350 1265 1190 1105 1280	1415 1235 1235 1500 1205 1205 1170	1225 1045 1260 1190 D	1335 D D D	D.				

(f) <u>Recurrent nerve + 2 Frontal connectives cut</u> TABLE I

	10	1325 2065 1925 1705 1860 1860 1250 1250 1360
	6	1395 1930 1685 1510 1580 1580 1240 1240 1335
	ω	1195 1775 1560 1560 1305 1575 1125 1270 1325
	y: 7	1025 1460 1500 1500 1500 1220 1220 1220
	on Da	1160 1430 1375 1360 1380 1380 1330 1330 1315
	in mg) 5	1110 1290 1605 1240 1220 1220 1270 1270 1270
	ight (4	1080 1335 1420 1300 1340 1345 1345 1345
	ody we 3	1230 1360 1535 1470 1390 1390 1450 1450
	B 2	1070 1310 1385 1255 1255 1270 1270 1270 1270 1270 1325 1310
	1 (A.R.)	1115 1375 1460 1300 1320 1320 1375 1345
	(B.R.)	1040 1240 1405 1265 1265 1265 1285 1285 1285
	Sex	XFFFF XFF
	No.	8 7 0 2 7 3 5 1
-	Response to Treatment	Weight gain Weight constant

Ŷ

1	. [
	10	
	σ	950 1325
	ω	1060 D D
	: 7	1170 850 900 00 00 00
	on Day 6	1000 965 970 730 730 730 730 785 730 785 730 785 785 785 785 785 785 785 785
cut	in mg) 5	930 1315 10150 955 875 875 875 875 875 875 875 875 1005 1005 1005 0 D
tives	lght (j 4	1055 1260 1260 1260 925 925 925 925 925 925 925 925 925 1240 1130 1320 1320 D
connec	dy wei 3	1165 1420 1315 1070 1110 1025 1270 1270 1270 1270 1270 1270 1270 1270
contal	Bc 2	1090 1270 1270 1030 1050 1025 1250 1250 1250 1250 1250 125
ve + 2 F1	1 (A.R.)	1190 1460 1340 1095 1095 1070 1230 1230 1230 1230 1230 1290 1290 1290 1290 1290 1290 1290 129
rent ner	(B.R.)	1110 1370 1160 1010 1010 1010 1170 1235 1235 1235 1235 1225 1225 1225 1225
Recur	Sex	XHXXXXHHXXHXXHH HXH
(f)]	No.	22 22 22 22 22 22 22 22 22 22 22 22 22
TABLE I	Response to Treatment	Dead before Day 10

TABLE I (g) Removal of the frontal ganglion

						ى							
Response to Treatment	No.	Sex	(B.R.)	1 (A.R.)	Bc 2	ody we: 3	ight (: 4	in mg) 5	on Day 6		ω	6	10
Weight gain	-4	μ	1300	1315	1155	1410	1265	1150	1420	1530	1415	1685	1735
Weight constant	102430	$\Sigma \Sigma \Sigma E E E$	1010 1030 1105 1245 1245 1250	1030 1060 1210 1360 1305	980 985 1060 1180 1120 1150	1080 1205 1110 1500 1440 1380	970 1150 1090 1310 1285 1225	950 1130 995 1245 1270 1210	1005 1160 1010 1220 1420 1110	1030 1170 950 1215 1480 1240	970 1105 1040 1360 1225	935 1065 1030 1375 1400 1260	950 1075 1065 1450 1520 1320
Weight loss	8 9 11 12	X X X F F	1030 930 1120 1255 1275	1105 975 1165 1310 1295	1010 855 1000 1160 1185	990 920 1090 1315 1510	950 940 1020 1115 1290	840 825 1040 1060 1085	785 760 900 1030 930	675 785 880 980 1010	670 820 835 1040 950	710 740 860 1000 945	660 680 760 895

Ç

i

TABLE I (g) Removal of the frontal ganglion

10 670 965 920 D D D δ 780 990 890 890 8890 8830 990 990 990 990 ω Body weight (in mg) on Day: 3 4 5 6 875 810 960 960 800 800 800 800 940 940 940 710 730 730 730 730 730 730 1025 1040 945 1115 1255 1255 990 990 1430 1430 1435 1435 1435 1435 1435 1435 1435 1110 990 990 990 980 1110 1240 11200 11290 11200 1200 930 1185 1185 1180 940 940 940 940 990 970 970 970 970 970 91110 2 (B.R.) (A.R.) [000 1360 1270 1270 1000 1000 1230 1250 1215 1215 970 1325 1325 1115 975 975 985 985 985 985 985 11500 1060 1060 1060 1060 11275 11225 1160 Sex **MAREX** Σ No. $\begin{array}{c} 116 \\ 117 \\ 118 \\ 119 \\ 119 \\ 119 \\ 120 \\$ Treatment Dead before Day 10 Response to

TABLE I	(g)	Remov	al of the	e frontal	gang	lion	·				-	
Response to	No.	Sex			B(ody we: 3	ight (i 4	n mg) 5	on Day: 6.7	ω	6	10
Treatment			(B.R.)	(A.R.)								
	30	Ψ	1010	1040	890	1000	865	770	D			
	31	М	1085	1160	1090	1180	1080	880	D			
	32	Ж	1065	1100	1040	1035	1050	940	D			
	33	ſщ	1340	1380	1290	1 550	1465	1320	D			
	34	ц	1240	1365	1185	1050	935	930	D			
	35	ł۳	1330	1430	1310	1375	1120	950	D			
- 4	36	Įيم	1350	1440	1120	1210	1250	1050	D			
Dead	37	М	1090	1140	995	1015	865	D				
Derore	38	М	1030	1075	995	1010	810	D				
Day IU	39	М	1000	1080	950	1080	066	D				
(cont. d.)	40	ы	1235	1280	1125	1335	1220	D				
•	41	ы	1470	1545	1345	1455	1030	D				
	42	ы	1430	1510	1415	1315	1180	D				
	43	۲щ	1230	1285	1175	1395	1280	D				
	44	۲щ	1200	1280	1150	1260	D	. .				
	45	ſщ	1345	1400	1285	1530	Q					
	46	ł۳	1245	1270	1115	1320	D					

R .

TABLES II - IX

Daily body weight changes of fifth instar <u>Locusta</u> nymphs used in Experiments 2-9 of Section II (Chapter III).

হ

	16	1325
	15	1424
	14	<u>1466</u> <u>976</u> 1455
	13	1570 1063 1046 1014 1437 978 978 954
	12	1620 1620 1168 1130 1101 1324 1119
	11	1491 953 1173 1134 1165 1165 1147
		D 1560 901 1153 1153 1155 1189
	n Day 9	1185 1458 1458 838 838 1093 1070 1114 1114 1116 D
	ng) o 8	1221 1199 D 740 995 998 998 940 891 1011 935
	(in 7	1265 1117 1021 968 937 937 929 975 975 943 938
	eight 6	1201 1060 930 930 940 845 941 744 898 898 850
	5 M	820 815 844 681 681 681 681 681 681 681 626 801 925 744 802 802 802 751
ut.	4	800 849 800 800 839 621 717 717 716 808 808 808 807 807 843 843 843 696 699
rve c	ς	803 902 912 912 868 747 747 747 747 678 746 746 748 884 895 884 648 648 648
nt ne	2	620 675 665 665 665 6637 495 614 580 637 637 637 637 637 637 637 637 637 637
Recurre	(A.R.)	651 706 695 695 657 516 516 641 663 663 663 663 663 663 663 663
p (a)	[] [] [] [] [] [] [] [] [] [] [] [] [] [567 567 644 640 640 640 460 531 453 578 578 578 578 600 621 461 461 584
Grou	No.	1130 1130 1130 1130 1130 1130 1130 1130
	-	

TABLE II Experiment 2.

÷.		Operat	2 2	ntro. 3	.s. Weig	ıt (i 5	n mg)	on D 7	ay: 8	6	10	11	12	13
87654325	414 494 619 619 432 624 536 451 594	464 532 665 474 682 585 585 585 585 509 646	436 493 625 440 660 545 465 616	562 677 677 605 838 642 583 809	668 668 787 854 715 853 853 853 853 925	784 842 842 760 991 912 795 1069	835 982 982 890 890 1088 1023 864 1129	892 1094 1344 951 1211 1211 1268 1259 1259	981 1216 1216 1485 1485 1096 1363 1363 983 983 1399	1031 1276 1615 11615 1168 1432 1432 1432 1432 1432 1535	1130 1385 1715 1715 1237 1496 1237 1505 1213 1615	1122 1353 1670 1615 1615 1615 1615 1615 1615 1171 1575	1030 1650 1650 1650 1650 1446 1654 1459	1486 1447 1319

.

		13											1052				1066	
		12		1313	<u>1346</u>			1231			1112	1095	1147		1068	1192	1169	1121
		11	1343	1420	1467	1326		1346	1403	1278	1204	1215	1171		1154	1286	1199	1229
		10	1443	1444	1485	1416		1365	1504	1375	1212	1224	1195		1169	1297	1234	1238
		6	1470	1466	1438	1455		1403	1545	1395	1201	1161	1173		1175	1315	1176	1177
		۲ <u>۷</u> : 8	1422	1342	1331	1440		1266	1438	1324	1153	1062	1116		1108	1190	1085	1001
	cut (proximal).	on Da	1292	1198	1154	1339	D	1160	1311	1204	1002	942	993		972	1095	953	956
		1 mg) 6	1094	1065	1111	1173	804	1014	1152	1010	919	924	904		889	959	883	867
		lt (in 5	989	, 857	953	992	823	911	926	943	818	777	765	D	805	873	788	747
	tive	Weigh 4	861	859	845	892	781	790	894	794	759	650	663	548	729	697	732	670
m.	onnec	e c	825	730	755	843	682	668	772	687	628	533	620	557	665	662	620	602
ment	tal c	2	549	500	489	520	476	499	519	474	428	450	448	395	454	445	432	460
E III Experin	1 Front	(A.R.)	583	530	531	558	532	532	545	513	460	475	470	430	478	477	450	499
	<u>ир (а)</u>	1 (B.R.)	565	500	507	543	505	510	531	501	436	453	455	420	465	447	439	462
TABL	Grou	No.	1	5	რ	4	ц.	9	7	8	6	10	11	12	13	14	15	16

ৃ

					I								∞I					
			15			138						1	10					
			14			1505		1263		L389	978		1239					
			13		1347	1535	1419	1357	/ 1	1505	1071	•	1263		1101		1047	1160
			12		1438	1565	1540	1379		1515	1080	955	1311		1175		1114	1236
			11		1479	1384	1560	1420		1520	1106	1022	1249		1190	1203	1131	1255
			10		1467	1315	1488	1334		1494	1105	1034	1165		1169	1295	1162	1246
		• 110	ау. 9		1341	1246	1363	1193		1326	1136	1023	1138		1072	1290	1043	1142
			1 00		1103	1046	1156	1039		982	606	874	1050		983	1139	937	1009
			11 mg/		1094	959	1118	951		1002	889	782	875		845	889	833	835
	dista		11 9		943	868	997	917		904	792	710	806		712	855	749	784
	cut (Lot of	2 2 Met		817	711	829	755		766	715	680	799		645	750	669	718
	tive (4		752	673	766	846	D	729	650	591	715	D	536	703	622	632
	onnec		т		710	616	698	739	561	681	616	524	650	551	528	660	586	581
•	tal c		2		586	519	573	537	583	520	448	4744	556	560	449	566	441	470
cont'd	1 Front			(A.R.)	662	593	683	585	621	561	484	492	579	583	470	614	480	529
E III	<u>p (b)</u>		1	(B.R.)	553	529	591	525	525	510	449	415	477	496	426	499	429	451
TABL	Grou		No.		1	2	ო	4	S	9	2	ω	6	10	11	12	13	14
		-																

1		ļ																		
	14					1381								1444						
	13					1.505	1104				1391			1545		1451	1064			
	12		1033	1161	1151	1 530	1209		1150	1311	1505	1123		1585	1281	1570	1146		1472	
	11		1110	1256	1242	1565	1235	1066	1213	1429	1 525	1195	1251	1565	1379	1610	1177		1570	
	10		1116	1280	1287	1480	1171	1135	1225	1468	1510	1235	1375	1362	1395	1595	1165		1585	
	y: 9		1099	1223	1244	1334	1070	1190	1181	<u>1</u> 422	1442	1211	1422	1287	1344	1510	1087		1570	
	on Da 8		950	1094	1103	1175	928	1034	1079	1355	1284	1067	1289	1163	1183	1342	986		1399	
	mg). 7.		802	943	1040	1086	818	901	1016	1167	1093	911	1141	1108	1107	1167	858		1235	
	t (in 6		746	868	989	981	730	846	983	941	1064	794	1043	1004	1067	1018	789		1224	
	Weigh 5		672	771	863	879	631	760	851	920	965	709	864	933	942	858	606	D	1029	
NI ·	4		590	693	757	758	546	667	745	806	849	633	823	938	809	772	602	631	871	D
ntrol	۳ س		540	631	610	642	536	615	698	744	801	561	757	766	741	742	574	616	723	504
ed col	2		409	478	456	541	435	456	484	523	589	423	520	551	522	583	425	538	595	474
Operat		(A.R.)	467	514	519	576	468	500	518	572	619	474	557	602	553	620	472	580	626	507
6 (c)	1	(B.R.)	424	485	473	526	436	463	494	543	584	439	521	544	522	577	429	555	609	466
Grou	No.			2	ς	4	Ŝ	9	7	8	6	10	11	12	13	14	15	16	17	18

cont'd. TABLE III

· · ·	16	09tt		1316	
	15	1227	106	1367 1138	
	14	1253	D 923	1396 1157	
	13	1295	797 972	1433 1191	Q
	12	1251	788 945	1364 1204	499 D
	11	1040	689 971	1368 1168 D	537 812
	:	1047	D 740 904	D. 1106 1044 882	523 813
	n Day 9	D 1111	582 738 866	D 1070 1158 1003 688	546 826
TABLE IVExperiment 4.Group (a)2 Frontal connectives cut (proximal).	т <u></u> в) о 8	589 1010 776	567 793 820	684 974 1303 949 713	588 874
<u>ximal</u>	(in) 7	513 1034 671	570 576 788	677 890 1016 843 678	638 822
(pro	eight 6	502 952 667	569 734 700	671 895 958 806 680	539 D 775
s cut	5 W	531 902 508	558 726 D	582 772 879 715 645	479 608 817
ctive	4	565 616 573	515 575 503 613	602 673 788 635 591	475 D 587 836
4.	m	563 683 603	469 622 522 522	634 661 719 646 586	473 600 531 713
iment ntal e	5	464 582 562	472 510 466 469	534 587 652 523 596	489 620 553 622
Experi	(A.R.)	498 628	532 532 501 508	572 631 680 550 636	528 653 575 644
E IV p (a)	1 (B.R.)	470 584 550	470 518 484 489	519 584 650 511 588	474 589 557 601
TABL Grou	No.	л о л П о л	54500	8 9 11 12	13 14 15 16

?

	1	1														
	16												ב			
	15				1	931	- - - -					556	5			D
	14			770	, , ,	779	••••		1081	•)•)•	601	188)))		7	670
	13			793	706	1074			1103)) {	609	620	2	553)))	656
	12			804	768	1041	- - -		1137	• • •	627	614	-	585) }	670
	TI			852	748	938	, , ,		1178	• • • •	677	634	-	627	 	616
	10			840	751	867	•		1141	•	629	679	•	663	1	559
	n Day 9			832	650	809	1	D	1183	D	733	630		697		547
	mg) o 8			781	683	820	i i	742	1149	735	660	668		738		516
	(in 7	<u>р</u>		701	645	737		675	1030	731	679	629		674		498
	eight 6	655		662	638	715		752	973	746	671	652	D	626		542
	5 W	619		652	629	600		750	915	837	645	690	535	630		610
	4.	604		612	660	588	D	624	798	614	643	680	500	584		582
	m	624	Q	523	622	597	561	652	700	626	581	712	525	535	D	539
	2	564	496	486	465	466	533	585	560	554	501	615	479	463	496	501
COIIC	(A.R.)	639	557	513	512	507	557	615	592	584	523	646	518	482	513	525
<u>P \al</u>	1 (B.R.)	609	534	485	475	496	516	580	549	544	493	578	480	466	486	483
010	No.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

TABLE IVcont'd.Grøup (a)cont'd.

· .	1	1
	16	907 960 1113 1007 762 1080 1080 702 845 1167 845 1167 845 845 869 883 883
	15	940 1002 1158 1158 1079 1169 1093 1169 880 1165 625 681 681 907
	14	989 989 1027 1195 1162 653 982 982 1011 726 1280 882 882 1057 677 677 633 976
	13	1049 1068 1245 1245 1115 721 967 965 712 1298 861 1298 861 717 952 673 865
	12	990 939 939 939 939 975 975 975 9806 945 945 917 727 917 708 855
	11	871 871 91065 897 897 875 950 848 848 658 658 1209 830 643 770 830 830 830 830 834 834
	: 10	899 842 842 993 854 854 803 803 803 803 803 803 814 831 831 831 831 831 831 714 701 732
	n Day 9	914 914 9892 988 988 903 903 903 903 903 903 783 783 783 783 783 707
	ng) o 8	740 958 958 858 858 912 912 912 912 912 912 929 929 929 929
	(in 1 7	605 919 840 865 956 809 816 816 816 816 816 818 819 819
	eight 6	624 848 778 778 673 562 888 881 729 881 754 738 738 738 723
	5 W	562 772 763 665 690 657 690 657 693 643
	4.	587 587 6666 599 588 588 588 701 701 701 726 530 613 613 613
	e co	523 523 639 562 563 563 563 555 537 553 537 553 537 553 537 553 537 553
	5	455 516 5516 5517 5517 5517 5517 5517 551
cont ¹ d.	(A.R.)	504 562 562 565 565 563 563 573 563 573 563 612 612 612 514
E IV P (a)	1 (B.R.)	483 553 553 553 553 554 574 574 574 574 574 574 574 574
TABL	No.	45 45 45 45 45 45 45 45 45 45 45 45 45 4
	-	

	1	1
	32	
	31	860
	30	630
	29	926
	28	952
	27	995
	Day: 26	1006
	g) on 25	D D
	(in m .24	D 1057 606
	ight 23	738 1011 642
	We 22	771 966
	21	780 973 655
	20	773 993 904 646
nt d. nt d.	19	793 1041 890 654
31 31	18	885 770 770 869 0 1011 0 0 669
<u> </u>	17	871 910 952 952 952 722 722 722 1055 857 857 820 1124 1124 856 856 820 823 823
TABLI	No.	33 33 34 35 35 33 35 33 35 33 35 44 42 42 42 33 35 33 35 35 35 44 42 33 35 35 35 35 35 32 32 32 32 32 32 32 32 32 32 32 32 32

.

	14																		
• •	13	$ \begin{array}{r} 1490 \\ 1376 \\ 1471 \\ 1471 \\ 1570 \\ 1570 \\ 1570 \\ 1570 \\ 1570 \\ 1590 \\ 1690 \\ \end{array} $																	
	12	$\begin{array}{c} 1625\\ 1526\\ 1520\\ 1520\\ 1245\\ 1265\\ 1265\\ 1265\\ 1265\\ 1265\\ 1265\\ 1265\\ 1265\\ 1265\\ 1265\\ 1265\\ 1265\\ 1265\\ 1265\\ 1265\\ 1265\\ 1265\\ 1265\\ 1168\\ 1108\\ 1008\\$																	
	11	1665 1665 1560 1560 1341 1341 1363 1363 1363 1363 1363 1363																	
	10	1770 1590 1590 1590 1590 1590 1630 1630 1405 1275 1275 1275 1275 1275 1275 1275 127																	
	Day: . 9	1685 1585 1585 1585 1585 1585 1585 1585																	
·	on (8	1484 D D 1335 1443 1443 1261 1265 1565 1565 1175 1175 1175 1175 1175 11																	
	in mg 7	1078 11078 1192 1192 1192 11091 1087 1087 1087 1087 1087 1087 1089 1087 1089 1087 1088 1088 1087 1088 10887 10887 10887 1087 10																	
	sht (j 6	1255 1076 1106 1198 1044 887 994 955 954 955 955 955 1179 956 977 956 977 1261 1001 1058 1135 10058 1066 933 956 956 957 958 957 958 957 958 957 958 957 958 957 955 957 955 955 955 955 955 955 955																	
	Wei 5	1090 1067 970 970 919 919 876 915 915 915 876 876 876 829 855 855 855 855 855 855 855 855 855 85																	
S	4	984 932 932 932 970 970 909 909 909 801 770 770 770 1019 1019 801 770 801 810 810 810 810 810 810 810 810 81																	
ntro]	3	692 752 733 842 714 768 679 679 679 651 651 653 845 672 672 653 845 672 653 845 653 653 653 653 653 653																	
l. ced co	2	609 561 589 606 606 631 606 631 606 631 606 631 608 631 608 614 614 614 614 614 614 614 614 614 614																	
cont ¹ c Operat	(A.R.)	650 631 631 631 633 633 633 533 633 643 643 643 643 643 643 643 643 6																	
E IV p (b)	1 (B.R.)	607 564 595 605 595 611 611 622 622 622 622 622 622 622 622	•																
TABL Grou	No.	209876543210987654321 219876543210987654321																	
			1																
---	-------	--------------	-------------	-------	--------------	------	-------	--------	------------	-----	-----	-----	------	-----	-----	-----	-----	------	-----
			16		1029								913	•		D			
			15	6	019		1228	1334	•				984	812	•	495		1256	
			14	r 90	0.55		1377	1496			886	•	1034	850		526		1368	
			13		016 1		411	L535 .		D	935		1053	895		539		1400	
			12	U F O	CT600	 	410]	510]		865	982		1209	926		524		1401	D
				L 7 0	1 166 1 1		405 1	505]		930	981		1000	945		478		1316	568
			10	L.10	002 002		267]	332]		860	953		969	878		463		1208	582
·			Day: 9	603	871 1		142 1	233]		894	924		871	832		492		1090	599
			5) on 8	778	881		031 1	085]		891	757		979	756		461		970	624
		<u>al)</u> .	in mg	700	794		1 610	958]		846	761		1001	686		518		882	606
		(dist	-ght (6	75.8	759		926 1	945		732	706		749	648		477		834	634
		cut	5 5	697	684 684		802	961		701	607	D	811	573		486	D	747	663
		tives	4	265	631 631	D	776	768	D	633	587	511	760	575	D	471	556	714	646
		onnec	£	692	575	567	684	708	505	860	531	510	609	559	464	453	571	694	570
	ment	tal c	5	501	530	545	620	616	525	566	495	507	651	546	499	444	589	575	575
	xperi	Fron	(.)		80 80	20	64	47	6 3	515	527	538	587	584	556	506	623	621	627
	Ш	~ .	(A.F		οŭ	9	9	9	ц С	9		.,	J				Ŭ	Ŭ	Ť
		(a)] 3.R.)	44.7	513	534	542	581	442	501	445	429	555	479	444	438	535	564	553
	ABLE	roup	lo. (I	-	- 7	ň	4	ഹ	9	7	ω	6	10	11	12	13	14	15	16
	E-	GI	Ä																

, · · · · ·

	9	75	93	.75				
	Б	8	5 9	1 7				
	15	8	06	78				
	14	760	928	740				
	13	755 1127	773	759				
	12	779 1180	062	806	ĸ			
	11	808 1239	840	799				
	. 10	837 1267	835	760				
•	n Day 9	804 1240	666	758				
	ng) o 8	718 1097	652	696				
	(in 7	707 891	709	657				
	eight 6	693 857	605	637				
	5 W	713 791	D 660	605				
	4	641 742 D	472 D 696	D 589	I	1		
	ε	595 695 456	483 557 680	471 578		20		D.
d.	5	516 591 471	502 528 610	485 528		19	D	893
cont	(A.R.)	552 639 502	531 574 646	508 574		18	1005	933 D
(a)	(B.R.) (500 588 424	423 469 511	420 496		17	1017	862 950 794
TABLE	No.	17 18 19	20 21 22	23 24		No.	2	17 22 24
	-				-			

	13 14	$5 \frac{1477}{1525}$ $5 \frac{1525}{1005}$ $1605 \frac{1505}{1505}$
-	12	5 165 1111 1111 1111 1111 1111 1111 1111
	11	D 1635 1695 1153 1482 1482 1482 1482 1153 1482 1159
	10	1650 1174 1685 1170 1170 1505 1192 1192 1192
	Jay: 9	1515 1116 1515 15156 11565 1525 1525 1565 1191
	0 0 1 0 8 8	1336 1074 1074 1033 1033 1033 1033 1338 1338 1121 1211
	n mg) 7	1138 960 D 1233 865 902 1196 1196 1093
	ht (i 6	1130 874 668 1069 852 797 1087 1177 831 831 1007
	Weig 5	911 D D 722 970 970 686 858 858 858 858 858 858 858 858 858
ارە	4	880 640 619 619 621 654 797 797 827 827 827 816
ntrol	e M	801 569 569 569 613 582 582 582 582 582 583 833 833 736
ed co	5	552 474 429 429 420 420 420 531 533 533 582 582 582
cont'd Operat	L (A.R.)	587 499 521 456 627 627 627 627 642 642 650 612
E V p (b)] (B.R.)	552 497 423 423 472 474 531 572 627 474 591
TAB1 Grou	No.	1210987654221 1210987654

TABLE VIExperiment 6.Group (a)Pharyngeal nerves cut. Experiment 6.

÷																	
(B.	1 R.)	(A.R.)	2	S	4	Ŋ	Weigh 6	t (in 7	1 mg) 8	on De 9	1y: 10	11	12	13	14	15	16
	546	636	570	680	595	805	839	970	1019	1192	1321	1435	1428	1387	1355		
•	542	619	538	589	626	761	778	925	1098	1222	1178	1395	1426	1485	1429	1385	
	558	675	603	746	911	972	1092	1178	1372	1459	1555	1446	1366	1324		•	
	481	533	491	617	609	778	817	872	1004	1068	1134	1189	1262	1282	1241	1217	1192
	562	606	556	658	617	810	782	992	1055	1141	1299	1382	1450	1437	1357	1318	1243
	511	553	503	526	518	D											, , ,
	489	596	545	619	655	696	714	758	958	1008	1108	1202	1233	1193	1162		
	479	540	496	584	620	660	710	800	929	006	1007	1153	1152	1112	1083		
	547	615	582	557	707	826	904	1028	1037	1195	1368	1436	1500	1461	1411	1370	
	457	. 523	471	515	482	619	642	742	917	950	1100	1138	1188	1219	1190	1911	
	594	637	606	600	651	739	780	884	998	1120	1184	1202	1162	<u>Sttt</u>			
	536	594	548	612	570	739	808	948	1035	1131	1228	1401	1479	1525	1476	1436	268t
	577	642	593	561	566	D											•
	611	692	627	607	606	683	677	936	1006	1054	1229	1308	1432	1456	1386	1342	
	584	635	587	695	678	783	852	934	1076	1104	1162	1407	1500	1555	1515	024t	
	473	547	490	576	635	721	754	855	944	1066	1151	1238	1218	1177	9ttt	•	
	539	630	576	685	673	800	913	1015	988	1103	1078	1015	1084	1228	1164	1104	1069
	416	506	462	442	D												
	461	536	480	595	603	640	765	862	975	1007	1122	1147	1118	1065	9tôt		

cont'd. cont'd. TABLE VI Group (a)

16		1500		1374	1064		1298			1027	1205	1488	1017		1345	1447		960
15		1074)) 	1338	1109		1384			988	1244	1535	992	260t	1304	1500		915
14	8711	1555 1555	1435	1232	1141		1441		974	1020	1169	1392	1007	1136	1186	1535	1201	896
13	1177	1110	1555	1252	1233	829	1449		1110	1000	1229	1432	1085	1185	1239	1438	1228	925
12	1224	1094	1595	1251	1235	886	1375		1139	1070	1162	1431	1126	1129	1245	1365	1256	914
1. 1	1193	1360	1590	1140	1221	928	1258		1158	1017	1074	1325	1161	982	1200	1265	1206	888
10	1087	066	1489	1033	1093	985	1187		1133	992	1065	1240	1220	849	1147	1188	1146	891
n Day 9	948	937 1105	1391	1030	1007	1101	1061		1000	893	1053	1185	1153	811	1128	1088	1063	868
mg) c 8	939	875 1067	1099	1039	939	1064	968		973	810	1001	1048	1145	777	1039	980	1020	805
(in 7	848	746 107.8	1071	846	850	939	943		- 787	797	817	919	1084	749	933	948	881	749
leight 6	771	692 068	979	764	799	738	914	D	693	760	670	868	1013	590	873	846	822	691
5 N	703	625	952	613	718	777	780	582	677	694	678	866	897	608	792	762	820	633
4	542	485	761	532	669	635	727	571	518	624	503	656	844	470	584	671	650	574
с	556	524	695 695	548	613	573	668	542	587	509	596	769	761	449	626	643	595	501
2	524	-488 613	709	529	511	508	575	559	531	505	572	634	602	441	582	555	480	467
(A.R.)	583	537 605	663 663	566	544	546	610	582	476	539	649	685	666	484	636	603	507	538
1 (B.R.)	498	453 560	599 599	512	464	489	524	514	410	488	555	596	559	432	539	535	457	500
No.	20	21	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38

TABLE VI cont'd. Group (a) cont'd.	Wt. (in mg) on Day: No. 17 18 19 20	21 988 D 24 1396 1355 1328 1 271 25 D 27 1 242 30 1044 D 31 1181	32 1461 1409 32 1461 1409 35 1351 1294 1232 D 36 1352 38 957 D	

•

.

\$

. . .

•

ed controls	2 3 4 5 6 7 8 9 10 11 12 13 14	631 828 865 972 1061 1223 1479 1545 1655 1630 1615 1430 522 654 833 860 935 987 D 509 648 734 856 956 1111 1193 1345 1402 1398 1366 1251	618 814 875 975 1126 1266 1454 1655 1596 1440 516 565 702 797 825 889 1000 1036 1044 1142 1128 1093 D 485 619 680 796 903 1105 1239 1342 1461 1445 1418 1309 501 626 670 774 852 1020 1164 1216 1360 1403 1309 1362 1248 433 568 641 688 890 1019 1103 1171 1206 1180 1086 471 566 D	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
ntrols	3 4	828 865 654 833 648 734	814 875 565 702 619 680 626 670 568 641 566 D	570 615 597 620 554 556 486 558 574 645 542 596
cont d. Operated co	2 A.R.)	652 631 567 522 542 509	664 618 554 516 540 485 542 501 485 433 492 471	494 448 474 432 470 418 452 420 471 430 443 400
ABLE VI Froup (b)	lo. (B.R.) (1 627 2 539 3 511	4 629 5 528 6 501 8 441 9 460	10 438 11 428 12 430 13 427 14 440 15 405

(¥

1		
	16	Q
	15	1483
	14	1505 1505 1690
	13	1387 1505 1427 1540 1715 1175 1175 1175
	12	1483 1535 1433 1570 1570 11570 1158 1158 1158 11206 1229 1106 1216 1216 1216 1216
	11	1540 1565 1357 1565 1470 1470 1535 1645 1147 1172 1148 1148 1148
		1560 1605 1284 1525 1545 1545 1535 1412 1412 11412 11362 11362 11362 11362 11362 11362 11362 11362 11362 11362 11362 11362
	n Day 9	1535 1615 1211 1445 1445 1510 1590 1590 1465 1217 1251 1217 1397 1397
	10 (gu 8	1360 1469 1019 1173 1369 1457 1489 1457 1489 1457 1445 1249 1249 1249 1249 1249 1208 1110 974 1378
	(in r 7	$\begin{array}{c} 1194 \\ 1311 \\ 994 \\ 1257 \\ 1257 \\ 1257 \\ 1257 \\ 1257 \\ 912 \\ 974 \\ 974 \\ 924 \\ 1268 \\ 1268 \end{array}$
es cut	eight 6	1005 947 947 157 155 157 923 923 923 923 923 923 923 923 971 847 796 1106 1106
nerve	5 Wé	1022 1022 1022 1022 1015 1016 1010 1010 1010 1025 1023 1023 1023 1023 1023 1023 1023 1023
ıgeal	4	743] 743] 680 680 788 893 893 893 755 755 755 755 755 755 755 866 870 866
. 7. oharyr	3	714 714 671 799 795 795 666 666 657 657 657 657 811 811
iment	7	546 546 568 568 569 605 583 604 605 533 668 697 668 651 651
Exper Anter	A.R.)	599 634 634 634 635 633 640 642 543 543 543 543 543 543 543 543 543 543
VII (a)	, l B.R.) (542 567 567 553 553 553 553 553 444 558 444 568 444 568 444 564 564
TABLE Group	No.	18765432110987654321 18767432110987654321
	-	-

•

.

nt'd. Osterior pharyngeal nerves cut.	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	548 718 783 845 955 1020 1141 1267 1455 1488 1470 1432 1326 560 711 791 839 935 1048 1160 1277 1407 1360 1335 1227 611 740 842 914 940 985 1109 1132 D 1356 1335 1227 551 610 737 796 800 867 991 1115 1133 1270 1358 1357 1329 1280 1246 426 456 578 665 658 737 851 916 1001 1040 1101 1199 1202 1159 492 526 596 619 677 773 862 920 1038 1164 1168 1107 1004 581 574 D 513 997 1041 1122 1285 1368 1447 1439 1415 1290 512 503 D 511 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
cont	L (A.R.)	610 597 531 556 531 555 5351 555 5351 555 5351	648 648 628
TABLE VII Group (b)	No. (B.R.)	1 2 522 5525 5 5 6 454 6 454 6 454 8 533 9 514 11 424 11 424 11 424 11 424 11 424 11	14 439 15 559 16 521

TABLE VII cont'd. Group (c) Operated No. 1 2 No. 1 4 1 410 448 2 584 609 595 3 428 453 416 4 472 507 471 5 4444 475 446 6 450 481 446 7 614 651 597 9 546 588 558	l controls.	3 4 5 6 7 8 9 10 11 12 13 14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
TABLEVIIcont'd.Group(c)OperatedGroup(c)OperatedNo.1 2 No.1 2 (B.R.)(A.R.) 2 3 428 453 410 448 410 4 472 507 472 507 471 6 450 481 446 651 595 6 666 613 7 614 651 558 558 766	ntrols.	3 4 We	97 545 23 629 34 646 51 695 55 622 13 695 98 919 1 72 870 1
TABLE VII cont Group (c) Open Group (c) Open No. 1 (a.R.) No. 1 (a.R.) No. 1 (a.R.) No. 1 (b.R.) No. 1 (a.R.) No. 1 (b.R.) No. 1 (a.R.) No. 1 (b.R.) No. 1 (a.R.) No. 1 (a.R.) No. 1 (a.R.) No. 1 (a.R.) 1 410 448 2 584 609 3 428 453 4 472 507 5 4444 475 6 450 481 7 614 651 8 603 646 9 546 588	cid. cated con	5	410 553 553 777 553 777 553 553 777 553 553
TABLE VII Group (c) No. (B.R.) No. (B.R.) 1 410 2 584 3 428 4 472 5 4444 6 450 7 614 8 603 9 546	cont Oper	l (A.R.)	448 609 651 651 651 651 651 651 651 651
TAB Gro Gro 0 No 1 0 0 0	LE VII up (c)	(B.R.)	410 584 444 614 603 546 603
	TAB Grou	No.	H 0 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

																		•	
	16	683	896	772	803	587	889	884						D	853	D			
	15	713	840	780	765	641	927	924					D	598	907	605			
	14	702	856	793	783	726	874	1016					550	621	987	616			
	13	760	888	731	823	713	911	878					556	667	855	703			
	12	740	825	757	781	720	863	782					615	691	876	765	Q	D	
• .	11	802	929	783	840	779	903	866	D			D	664	710	842	773	443	414	D
	10	763	805	782	755	747	816	823	430	D		486	690	696	799	689	481	469	528
	n Day: 9	789	815	740	788	740	870	841	468	426		539	679	667	762	679	505	460	543
	ng) or 8	823 D	627	767	653	607	789	756	459	458	D	533	603	526	737	673	534	462	570
	(in r 7	806	632	835	689	592	885	762	503	474	417	557	592	564	689	624	560	451	564
	eight 6	776 555	576	708	626	507	667	636	464	440	481	489	589	505	632	652	588	453	549
noved	5 We	724 502	576	637	638	564	666	708	476	450	540	464	552	491	528	615	565	470	592
n ren	4	702	603	652	671	615	726	695	545	483	573	497	597	553	525	613	574	456	599
e 8. englic	°. C	741 551	582	710	629	642	606	685	557	503	527	488	595	511	586	704	551	487	636
ciment tal ga	. 2	589	538 538	639	590	557	514	576	438	446	480	459	440	417	462	580	461	422	577
Exper	A.R.)	616 57.1	566	666	620	577	544	599	464	468	499	490	476	456	486	612	494	459	601
(a)	1 (B.R.) (586 500	540	630	594	531	510	559	438	436	471	445	441	430	453	592	464	435	556
TABLE Group	No. (ч с	1 0	4	'n	9	7	8	6	10	11	12	13	14	15	16	17	18	19

1			•
	26	762	
	25	839	
	24	903	
	n Day 23	950 D	
	ng) o1 22	986 738	
	(in 1 21	979 794	
	eight 20	972 761 D	
ont d	19 19	1029 783 733	
	18	1102 819 782	
VI.I (a)	17	D 943 775 804 D 0 692 692	
TABLF Group	No.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	

	15	1310
	14	1419
	13	1444 14449 1174 1112
	12	$\frac{1316}{1470}$ $\frac{1470}{1465}$ $\frac{1465}{1268}$ $\frac{1268}{1362}$ $\frac{1362}{1101}$
	11	1438 1550 1421 1421 1384 1281 1281 1281 1235 1477 1477
	10	1500 1615 1265 1265 1218 1218 1190 1177 1177 1510 1228
· ·	ay: 9	1416 1645 1147 1147 1082 1163 1163 1163 1163 1146 1499 1207
	on D 8	1328 1464 1063 1063 963 963 1294 1294
	n mg) 7	1110 1323 948 974 974 974 974 9150
	ht (i 6	1073 1164 855 867 867 867 1076 871
	Weig 5	812 939 784 784 784 784 7850 737 737 737 737 708
rols.	4	773 8466 713 693 693 686 686 686 686 686 686 686 686 686 68
cont	ε	658 674 658 674 564 782 782 782 782 782
t'd. rated	2	514 545 545 474 474 491 451
con Ope	(A.R.)	546 524 580 580 614 614 513 466 536 488
E VIII p (b)	(B.R.)	527 596 539 539 582 473 473 473 439 510
TABL Grou	No.	8 くのらかをです

,

	1		
·	15	1333	
	14	1447 <u>1395</u>	
	13	<u>1453</u> <u>1358</u> 1474 1505	
	12	$\begin{array}{c} 1605\\ 1499\\ 1391\\ 1505\\ 1161\\ 1048\\ 1127\\ 1127\\ 1134\\ 1134\end{array}$	
	11	1625 1515 1485 1440 1635 1183 1183 1183 1183 1183 1183 1158	
	10	1660 1500 1510 1437 1505 11223 1187 1187 1187 1192	
	; 6	1560 1419 1454 1266 1353 1128 1128 1128 1128 1128	
	on Da 8	1381 1261 1261 1325 1194 1030 1016 1016 1016 1016 10153	
	ng) 7	1241 1056 1136 984 937 994 890 890	Ŷ
	t (in 6	1058 1026 952 965 805 801 850 850 773	
	Weigh 5	944 819 907 927 758 701 784 723	
lt.	4	916 751 865 868 640 640 640 640 640 640	
	Э	828 692 519 587 587 587 587 587 587 522	
nent 9 al ne	5	646 551 555 456 456 456 469 469	
Experit 1 Labr	(A.R.)	680 655 624 579 495 545 545 501 501	
IX (a)	1 В.R.) (597 520 528 558 512 419 427 427 427	
TABLE Group	No. (1	1008707801	

1																			
	16	1151							961	1024	1082			829					1237
	1.5	1219						903	1052	1131	1129			723	D				1360
	14	1300						977	1085	1152	1170			*663	1012				1488
	13	1259						1018	1133	1191	1107			*643	1023				1340
	12	1175						1036	1159	1208	1067			632	1014				1284
	11	1170						1016	1094	1165	984			*702	1031				1125
	y: 10	1064	D					*907	*957	992	888			711	992				1041
	on Da 9	1001	443					795	*841	858	792			764	973				912
	mg) e 8	982	476					722	*853	835	810			677	903				824
	t (in 7	006	485					690	*742	786	800			653	844				762
	Weigh 6	794	499				D	606	715	740	682			604	786				693
	5	806	505		D		549	548	648	608	669			501	789			D	571
cut.	4	734	526	D	571	D	557	483	663	511	558	D	D	477	734	D	D	592	576
rves	3	660	546	615	577	623	574	437	539	492	506	482	525	479	655	570	533	619	585
al ne	2	600	593	641	601	655	619	424	526	499	559	521	563	529	590	588	546	641	568
2 Labr	(A.R.)	660	654	676	634	687	683	477	585	519	604	543	591	559	643	665	583	709	606
(p)	1 (B.R.)	575	509	553	520	559	590	436	480	457	500	438	453	447	537	560	524	603	549
Grou	No.	1	2	ო	4	S	9	7	ω	6	10	11	12	13	14	15	16	17	18

cont'd. TABLE IX

TABL. Grou	E IX	cont'd cont'd	<u></u>														
No.	(B.R.)	1 (A.R.)	2	e M	4	5 W	eight 6	(in 7	mg) o. 8	n Day 9	:	11	12	13	14	15	16
19 20	570 517	659 644 222	587 558	564 544	D 535	510	491	474	551	668	658	741	796	793	810	772	747
21 22 24	450 448 516 481	533 553 544	502 497 514 487	486 500 584 469	475 568 699 455	457 674 732 445	453 760 822 D	502 *824 *875	4/2 831 850	488 955 956	476 1030 1065	D 1125 1072	1168 1137	1202 1142	1183 1102	1136 1058	0960 D
.ov	17	Weigh 18 19	tt (in) 20	mg) 21	on Da 22	y: 23	24										
1 10 13	1108 996 787	D 851 85	57 84	6 81	7 78	2 *74	7 D										

		14	148.
		13	1625 1141 1520 1520
		12	$\frac{1111}{1237}$ $\frac{1237}{1635}$ $\frac{1662}{1332}$ $\frac{1470}{1332}$ $\frac{1470}{1660}$
		11	1189 1332 1590 1590 1281 1491 1491 1415 1415 1415 1415
		10	1220 1364 1459 1459 1295 1208 1322 1133 1625 1438 1605
		6	1203 1269 1269 1228 1186 1171 1169 11570 1570 1525
		Day: 8	$\begin{array}{c} 1116\\ 11172\\ 11223\\ 11223\\ 1130\\ 1033\\ 1033\\ 1296\\ 1296\\ 1296\\ 1397\end{array}$
		g) on 7	995 1100 1116 991 942 1278 1144 1226
		(in m 6	873 961 992 844 899 821 1096 944 1186
		ight 5	769 839 937 937 826 828 828 769 981 875 1114
	ارە	We 4	621 756 888 699 677 677 677 839 850 850 711 711 992
	ntro1	ß	584 584 658 764 591 619 619 537 737 737 737 787 787 787 787
•	ed co	5	427 429 576 576 463 453 453 414 514 533 514 614
cont'd	<u> Operat</u>	(A.R.)	460 535 616 497 487 487 487 487 487 592 564 564
E IX	p (c)	1 (B.R.)	428 490 588 449 449 417 515 512 612 612
TABL	Grou	No.	10087654321

TABLES X, XI

Daily body weight changes and faeces production in fourth and fifth instar <u>Locusta</u> nymphs used in Section III (Chapter III).

?

TABL	EX	FT	ontal	gang	lione	ctomy	and	faece	ss pro	ducti	on.			
		Da	ily w	eight	chan,	ges i	n fif	th ir	Istars	•				
Oper	ated	contro	S											
No.	Sex				Â.	ody w	reight	; (in	mg) o	n Day				
		1	2	m	4	2	. و	_	ω	6	10		12	13
щ	μ	582	537	755	846	854	1034	1202	1310	1472	1575	1595	1555	1437
2	Ħ	525	488	678	733	811	1020	1093	1239	1383	1472	1512	1474	1360
m	Г	. 598	569	763	876	955	1105	1130	1470	1665	1735	1670	1555	
4	Ĺщ	534	512	655	665	772	892	1000	1145	1315	1442	1515	1479	1349
Ŋ	H	561	540	722	814	943	1063	1138	1296	1458	1675	1685	1655	1535
9	í.	595	578	777	846	942	1175	1245	1493	1635	1715	1685	1655	1520
7	ы	552	530	801	880	911	1130	1138	1336	1515	1650	1635	1605	1477
8	Ħ	587	556	806	852	970	1069	1233	1440	1515	1685	1695	1655	1525
δ	ĹŦ.	531	511	680	797	858	1087	1196	1358	1515	1505	1482	1.369	
10	M	459	431	624	685	731	830	935	1034	1137	1180	1168	1073	
11	М	437	409	562	620	695	811	907	1023	1153	1250	1244	1219	1061
12	Д	498	472	607	668	731	878	910	1028	1127	1224	1241	1214	1122
13	Д	447	425	635	689	782	903	958	1101	1183	1250	1222	1125	
14	М	495	477	725	786	- 804	966	1000	1125	1270	1335	1313	1197	
15	Я	430	403	546	614	732	829	907	941	924	D			
16	Σ	446	420	505	516	506	D							

TABLI	X	Fr	ontal	gang	lione	ctomy	and	faece	s pro(ducti	U								
		Da	ily w	eight	chan	ges i	n fif	th in	stars	•			•						
Opera	ated a	mimal.	:0	a) Gr	owth	(over	100%	incr	ease	in we	ight)	and	attem	pted	moul.t	ing			
. No	Sex	1	2	3	4	- 2	9	Body 7	weigh 8	t (in 9	mg) 10	on Da 11	y: 12	13	14	15	16	17	18
1		541	468	634	670	633	637	706	750	804	823	890	877	860	871	1000	1075	1159	1249
2	ы	628	581	787	765	752	744	754	880	1031	1001	1072	1117	1116	1131	1315	1400	1315	1248
რ	ſщ	574	531	606	673	648	592	797	875	965	914	1116	1154	1037	1100	1133	1089	1029	8°0 80 80
4	ĹŢ	510	478	568	658	774	756	789	889	939	916	1002	1125	1041	1026	1062	1144	1081	1032
J.	Į۲	565	517	662	734	760	748	823	874	967	1009	1191	1236	1207	1170	1183	1147	1066	
9	М	498	470	593	661	763	773	828	687	757	933	1049	1050	1097	1136	1116	1049	0 2 8 9 2 8	
7	М	433	409	516	586	620	606	624	692	774	771	918	991	922	1000	1118	1061	088	
8	М	491	466	568	698	750	618	706	805	859	779	912	1116	1064	1060	1108	1051	978	
6	M	496	468	591	640	727	714	700	827	874	910	1102	1177	1092	1022	924	844		
10	М	467	434	502	568	675	675	670	773	823	869	1017	1063	1055	1006	930	832		
11	X	459	425	473	537	613	676	608	715	806	870	923	972	912	853	780	734		
12	Ľ4	557	481	723	666	779	801	907	938	1055	1040	1198	1143	1113	1031	897	•		
13	М	471	406	407	561	589	622	677	669	830	886	968	964	915	844	•			
						1													
No.	Sex	Wt. 19	(in m	g) on	Day:														ک ک
		`	2	5	1														

ganglionectomy and facces production. eight changes in fifth instars.	b) Growth (over 100% increase in weight) and no attempted moulting.	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	677 636 731 742 826 874 912 1036 1078 990 1050 1119 1148 1094 1096 985 697 723 698 729 852 896 1041 1031 1109 1204 1197 1148 1198 1232 D	(in mg) on Day: 21 22 23	944 950 D
onectomy hanges i	rth (over	4 5	36 731 23 698	on Day: 22 23)50 D
l gangli veight c	(b) <u>Grov</u>	Υ	677 (697 7	(in mg) 21 2	5 776
ontal ily v	 	7	530 562	.wt. 20	987
Fr	animal	j j	568 594	Body 19	950
X	ated	Sex		Sex	Гц
TABL	Oper	No.	14 15	No.	14

	19.		
	18	1026 820 609	
с. П	17	1010 809 D D D D D	
oulti	16	1031 821 770 864 864 987 643	
ted m	15	998 796 826 835 835 835 689 689 D	
ttemp	14	890 708 839 940 990 724 770	
по а	y: 13	925 736 831 842 842 882 977 746 806	
) and	on Da 12	976 778 868 881 931 931 719 842	
eight	mg) 11	975 779 852 838 892 970 719 970 970	
·uc · ui w	t (in 10	861 685 814 746 906 816 888 888	
lucti rease	weigh 9	820 652 827 787 787 940 850 850 837	
s proo	Body 8	788 631 696 833 805 688 688	
faeces th ins)-1005	ر ۲	733 585 813 653 689 689 666	
and f n fift th (50	9	734 583 583 603 668 616 689	
Ses in growt	5	721 574 515 562 667 640 678 678	
lionec chang Juced	4	629 503 559 559 580 640 640 675	
gang] ight) Rec	e	640 509 640 529 627 532 627 623	
ontal Lly wo	2	526 395 504 451 503 531 439 475	
Frc Dai	ы Г	581 464 566 475 537 537 589 483 499	
x ited an	Sex	FMFMFFNM	
TABLE Opera	No.	16 17 18 18 19 20 23 23 23	

Frontal ganglionectomy and faeces production. TABLE X

Daily weight changes in fifth instars.

Operated animals: (d) Little or no growth (0-50% increase in weight) and no attempted moulting.

18	
17	569 683 D
16	577 738 551
15	594 799 536 D
14	563 758 577 577 500 D D
13	580 694 633 585 588 561 D
/: 12	668 672 546 707 586 436
n Day 11	571 571 644 552 588 472
mg) o 10	562 562 638 546 579 503
i (in 9	577 577 691 529 685 611 543
veight 8	556 556 625 533 533 645 641 530
ody w	527 715 585 585 572 644 600 486
9 9	523 619 615 601 608 647 518
Ŝ	512 605 617 642 674 615 470
4	513 566 566 536 682 669 545 445
ε	499 637 590 691 581 581 597 464
2	430 506 470 572 513 484 389
Ъ	469 555 518 622 570 570 435
Sex	ZHFFFFZ
No.	24 25 26 27 28 29 30

		For control and operated groups. operation body weight = 0%.
ġ	Mean daily faeces production (mg/day)	81 77 76 83 83 83 83 83 85 83 85 85 85 61 61
coductio	Total weight faeces (mg)	730 689 809 682 682 729 768 803 892 761 761 761 571 571 571 571 571 571 571 571 571 57
eces pr fth ins	Max. body weight gain (%)	174 188 190 184 200 185 189 189 189 189 189 189 180 180 180 180 168
in fi	n Day: 11	3 41 2 52 5 52 5 57 5 15 6 15 7 15 8 25 9 16 9 18 9 18 9 18 10 16 11 16 13 17
tomy <i>e</i> ction	mg) or 9 10	80 78 85 62 85 62 86 53 91 73 91 73 91 73 92 993 93 993 93 993 91 73 91 73 93 963 93 993 91 73 91 73 93 963 93 963 93 963 94 93 95 74 95 55 55 56 55 56
Frontal ganglionec Daily faeces produ controls.	Dry wt. of faeces (in 3 4 5 6 7 8	43 38 62 86 152 150 33 42 42 80 145 148 39 66 79 118 172 168 1 36 41 50 79 135 117 36 41 50 79 135 116 46 39 60 116 125 116 42 60 57 113 155 183 54 57 57 103 179 155 51 48 60 139 180 158 36 56 70 102 145 154 1 42 60 51 93 180 158 155 36 56 70 102 145 154 1 42 50 60 104 154 150 1 32 43 41 80 101 97 33 33 45 46 93 110 96
TABLE X Operated	No. Sex	1 2 4 5 6 7 8 8 7 7 6 8 7 7 6 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Frontal ganglionectomy and facces production.

TABLE X

Daily facces production in fifth instars.

	Oper	rate	d an	i.ms			a)	Gro	wth	<u>v</u> 0)	er l	· %00	incr	ease	in	wei	ght) ar	ld a	tten	up te.	1 mou.lt	ing.		
	No.	Sex	e C	4	2	9	~	Dry 8	wei 9	ght 10	of 11	faec 12	es (13	in r 14	13) c 15	n D 16	ay: 17	18	19	20 2	21 2.	Max bod weig gai	·hy t t	fotal weight faeces (mg)	Mean daily faeces production (mg/day)
1	7	н	26	21	37	19	33	43	54	31	36	72	32	60	63	88	75	118	29 .	32	0	- 13	2	877	97
	2	ſ۳	48	58	24	21	39	99	94	73	93	156	131	159	120	66	33	ı				12	3	1181	79
	ς	أتترا	10	29	15	I 3	51	59	107	62	85	79	36	29	22	4	0	1				10	1	601	40
	4	۲щ	24	34	39	26	60	67	62	35	54	59	32	19	31	31	11	ı				12	4	584	39
	Mear	ר ד	27	40	26	20	50	64	88	57	77	98	66	69	58	34	15	I				11	<u>.</u> 9	789	53
	5	ليتر	33	31	51	33	55	60	74	75	94	87	40	31	41	4	ı					11	6	709	51
	9	М	38	49	61	39	73	15	27	65	102	106	72	37	52	2	1					12	8	738	53
	2	М	28	30	29	20	54	49	72	43	66	76	41	40	81	15	I						23	679	48
	∞	М	33	70	59	21	45	71	109	32	43	06	50	37	55	ω	I					12	27	723	52
	Mear	μι	33	50	50	27	57	45	69	47	81	91	54	38	63	∞	I					13	38	713	51
	6	М	31	43	48	17	34	57	76	40	84	73	22	7	0	1						13	37	543	42
	10	М	32	40	42	30	38	69	71	79	95	63	33	12	7	1					÷	1,	28	611	47
	11	М	10	32	32	40	39	55	65	82	86	26	27	9	0	I						.]	12	500	38
0	Meaı	n M	24	42	41	29	37	60	71	67	88	54	27	ω	2	I						L.	26	551	42
	12	۶	59	39	45	53	50	54	62	53	134	56	22	15	I							 1	15	642	54
	13	М	13	55	47	56	84	81	115	65	68	45	4	I								1(06	633	58

Frontal ganglionectomy and faeces production.

TABLE X

Daily faeces production in fifth instars.

Operated animals: (b) Growth (over 100% increase in weight) and no attempted moulting.

n daily aeces duction g/day)	35 42 39
ht faithean () (mg	ဝ ဗိ ည
Tota weig faec (mg	70 58 64
Max. body weight gain (%)	102 103 103
23	D D
22	0 0
21	5 24 5 24
9 20	6 16 6 16
ay: 8 19	0 4 0
n D 7 1	50 3 50 3
g) c 16 1	31 : 34 : 33 :
n m 15	70 65 68
5 (i 14	44 34 39
13	41 44 43
112 Fa	3 38 51 51 51
t of 0 1]	6 63 8 54
18h 9 10	12 m
/ we 8	36 4 53 7 45 5
Dr) 7	51 51 37 4
Q	19 23 21
Ω.	40 9 25
4	16 34 25
m	36 23 30
Sex	- -
No.	14 15 Mear

Frontal ganglionectomy and faeces production. TABLE X

Daily facces production in fifth instars.

Operated animals: (c) Reduced growth (50-100% increase in weight) and no attempted moulting.

														.						
	ŝ	4	5 Dr	ک و سِ	cig 7	ht 8	of 9	fae 10	Ces 11	(i1 12	13 18	g) (3)	on D 15 1)ay: 16]	7 1	8 16		fax. body ight gain (%)	Total weight faeces (mg)	Mean daily facces production (mg/day)
1																				Ţ
f	46	29	42	33	30	39	50	38	46	35	24	22	33	ω	و	0	~	11	491	31
5	51	59	57	27	19	25	32	24	43	49	36	23	32	ъ	ო	п 0	~	59	485	30
[3.5	27	36	30	34	30	38	33	35	33 /	42	32	58 2	21.3	2	5	~	53	522	33
5	24	31	29	20	30	38	57	25	44	43	5	20	29	9	D			85	393	28
. (r.	30	21	42	38	49	20	55	30	22	34	24	46	30	ω	D	·		75	677	32
. Cr.	34	26	25	35	39	39	51	29	30	45	34	24	36	6	D			73	456	33
ح	37	65	15	23	29	13	27	49	26	38	29	43	26	ო	D			54	459	33
: 2	31	52	46	40	47	38	52	42	25	С	0	S	D					81	381	32
Я	36	52	46	28	31	29	42	35	35	33	19	23	29	S	с	0		70	430	31
لت	36	26	37	34	38	32	49	33	33	37	31	31	39	14	61	с		70	480	32

Frontal ganglionectomy and faeces production. TABLE X

Daily facces production in fifth instars

Operated animals: (d) Little or no growth (0-50% increase in weight) and no attempted moulting.

<pre>1 Mean daily ht faeces es production () (mg/day)</pre>	2 17	8 28	4 24	2 14	2 20	7 22	8 17	.0 17	יך 22
• Tota y weig ht faec n (mg	25	41	33	17	22	23	16	21	27
Max bod weigl gai:	42	44	33	11	30	16	25	34	27
18	D	D	-					-	
17	0	28	D					0	28
ay: 16	10	14	10	_				. 10	12
n D 15	24	37	22	D	_	_		24	30
) 0 14	18	28	18	16	Д	D	_	18	21
пд 13	20	26	14	14	0	14	D	20	14
(in 12	39	25	29	11	0	11		20	. 15
es 11	19	39	34	14	14	21	Ц	15	24
aec 10	12	25	20	15	22		14	13	19
Е 4 9	25	36	33	12	37	15	23	1 24	1 27
80 11	1	25	27	13	28	27	22	+ 19	9 24
igh 7	30	36	ET -	0	29	19	11	0 24	19
we 6	26	27	23		19	526	32	29	20
Dry 5	0	25	30	2	23	35	15	8	23
4	9	11	12	34	33	15	13	10	21
ι m	8	36	49	34	17	43	20	14	36
Sex	X	ſщ	۲	<u>المر</u>	ĥ	ست	М	W	Ĩ
No.	24	25	26	27	28	29	30	Mean	Mean

	, ,	
uction	6	603 595 566 566 565 566 467 467 467 467
prod stars	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	655 610 647 669 669 551 551 521 511 461
aeces ch in:	n Day 7	637 637 606 608 594 517 517 517 517 517
and fa fourt	10 (gu	538 513 523 523 542 471 471 471 471 471 471 471 471 471 471
comy a	(in 1 5	437 445 445 477 4477 4477 4477 4477 4477
Lonect	eight 4	379 369 361 361 355 345 345 345 345 345 345 348 310 310 378
<u>sangli</u> Lght e	ody W	331 324 325 322 335 341 254 254 270 270 270 272 272
ly wei Ly wei Ls.	2 B(221 204 195 206 217 217 193 172 172 213 213
Fron Dai	Ч	235 220 213 226 226 219 219 219 219 219 219 219 2205 240
ted Co	Sex	了了了了,不可不可不可以为时间
TABLE Opera	No.	12110987654321

•

production.	
faeces	
and	
ganglionectomy	
Frontal	
XI	
TABLE	

Daily weight changes in fourth instars.

Operated animals: (a) Growth (over 100% increase in weight) and attempted moulting.

17.	350
16	395
15	436
14	484
13	445
12	420 362
11 11	344 394
1g) on 10	346 439
(in m 9	340 465
ight 8	281 438
dy we 7	259 387
Bo 6	273 340
Ŀ	292 292
4	299 265
e	263 241
2	197 182
1	219 202
X	
Se	ЦΣ
No.	1
	No. Sex 1 2 3 4 5 6 Pody weight (in mg) on Day: 13 14 15 16 17.

হ

•	17	348 369		
ting	16	362 370		
nom	15	352 396		
mpted	14	340 423		
atte	13	324 407 2 39		
) and	12	327 396 258		
eight	Day: 11	306 410 278		
n. in w	lg) on 10	339 380 280		
rease	(in m 9	296 339 294		
prod stars % inc	ight 8	296 343 320	1	
aeces th in 0-100	dy we	316 361 332	24	338
and f four vth (5	Bo 6	296 317 339	n Day: 23	379
tomy ces ir I grow	5	265 304 270	ng) or 22	422
i onec chang duced	4	276 280 249	(in 1 21	415
gangl ight b) Re	ε	275 279 249	eight 20	407
lt we	2	204 240 183	dy wo 19	390
Froi Dai	-	228 272 216	18 18	376
XI zed ar	Sex	ннΣ	Scx	L1
ABLE	10.	0 4 v	No.	۳ س
HI O				

Q

376 317

fra fra

4 N

Frontal ganglionectomy and faeces production. TABLE XI

Daily weight changes in fourth instars.

Operated animals: (c) Reduced growth (50-100% increase in weight) and no attempted moulting.

	17	383	322	252	D	·	
	16	357	333	273	231		
	15	336	379	308	248		
A STATE OF A	14	333	344	320	282		
	13	321	380	328	287		
	12	321	355	327	268	D	
	n Day: 11	371	313	265	280	260	D
	пд) ол 10	400	301	268	267	285	319
	(in r 9	398	293	240	274	302	340
	sight 8	352	288	325	293	302	370
	dy w∈ 7	376	272	324	303	278	330
	Bc 6	342	287	312	311	315	315
	ъ	298	286	275	307	295	263
	4	318	270	277	256	255	271
	ŝ	295	215	216	263	226	259
	2	218	209	179	178	188	172
	H	260	232	210	206	209	200
	Sex	Ē	ы	ы	М	М	М
	No.	6	7	∞	6	10	11
		ł					

No.	Sex	18	19	Body 20	weig 21	ht (i 22	n mg) 23	on D 24	ay: 25	26	27
9	۲щ	393	335	364	368	359	331	321	288	256	D
۲ .	ы	, 290	271	D							÷
∞	۲IJ	240	D								

Frontal ganglionectomy and faeces production. TABLE XI

Daily weight changes in fourth instars.

Operated animals: (d) Little or no growth (0-50% increase in weight) and no attempted moulting.

16	D D	
15	291 310	
14	299 300 D	
13	310 269 236 D	
12	315 266 269 249	ם ב
ay: 11	326 279 260 269	207
on D 10	299 275 288 288	205
n mg) 9	301 302 248 275	219
ıt (in 8	311 293 274 274	207
weigh 7	339 317 247 256	226 226
Body 6	317 297 274 281	227
. 5	307 277 245 318	204 208
4	299 306 306 306	213 213
3	307 282 250 261	236 236
5	218 213 180 198	214
Г	253 247 198 237	197 197
Sex	L L Z L I	ΞΣ
No.	12 13 14 15	16 17

୍କ

Daily faeces production in fourthOperated controls.Operated controls.Operated controls.Dry wt. of faeces body weight faeces production in fourthNo. Sex3 4 5 6 7 8 veight faeces production (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg)	TABL			ЦЦ	ont	al	gan	glion	nectomy	and fac	eces productio
Operated controls.Dry wt. of faecesMax.Dry wt. of faecesbodyweightfaecesfin mg)on DayNo. Sex3(in mg)on Dayweightfaecesfaecesbodyweightfaecesfaecesbodyweightfaecesfaecesbody(in mg)on DayNo. Sex3455F7K8174F206617477K817678186177K8186177K8187K8187128128129121011				Da	ily	fa	ece	s pro	oduction	n in fou	urth instars.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Oper	ated	00	ntr	ols	•					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									-		
1 F 19 47 48 73 26 179 260 2 F 17 47 52 50 72 21 177 260 3 F 17 47 52 50 72 21 177 260 3 F 17 46 65 45 70 30 196 273 4 F 20 40 47 36 65 44 186 252 5 F 20 50 63 36 53 5 155 227 6 F 17 40 46 41 57 24 187 225 Mean F 18 45 53 43 65 25 180 250 7 M 8 33 45 7 187 225 8 M 18 40 45 33 45 7 120 186 9 M 12 34 35	No.	Sex	з (Dr	v i 4	rt. mg) 5	of on 6	fae I Da 7	y 8	Max, body weight gain (%)	Total weight faeces (mg)	Mean daily faeces production (mg/day)
1 F 19 47 48 73 26 179 260 2 F 17 47 52 50 72 21 177 260 3 F 17 46 65 45 70 30 196 273 4 F 20 40 47 36 65 44 186 252 5 F 20 50 63 36 53 5 155 227 6 F 17 40 46 41 57 24 187 225 Mean F 18 45 53 43 65 25 180 250 7 M 8 33 43 65 25 180 250 8 M 18 40 43 33 45 7 120 186 9 M 12 36 52 31 35 45 260 10 M 12 33 45											
2 F 17 47 52 50 72 21 177 260 3 F 17 46 65 45 70 30 196 273 4 F 20 40 47 36 65 44 186 252 5 F 20 50 63 36 53 5 155 227 6 F 17 40 46 41 57 24 187 225 Mean F 18 45 53 43 65 25 180 250 7 M 8 33 43 65 25 180 250 8 M 18 40 43 33 45 7 120 186 9 M 12 36 52 31 35 45 26 10 M 12 36 52 31 35 45 168 170 9 M 12 33 <	Ч	[19	47	47	48	73	26	179	260	43
3 F 17 46 65 45 70 30 196 273 4 F 20 40 47 36 65 44 186 252 5 F 20 50 63 36 53 5 155 227 6 F 17 40 46 41 57 24 187 225 Mean F 18 45 53 43 65 25 180 250 7 M 8 33 43 65 25 180 250 8 M 18 40 43 37 58 34 156 213 9 M 12 36 52 31 35 45 7 120 186 9 M 12 36 52 31 35 45 168 170 9 M 12 36 57 1 168 170 10 M 12 33	2	ſщ	17	47	52	50	72	21	177	260	43
4 F 20 40 47 36 65 44 186 252 5 F 20 50 63 36 53 5 155 227 6 F 17 40 46 41 57 24 187 225 Mean F 18 45 53 43 65 25 180 250 7 M 8 33 43 65 25 180 250 8 M 18 40 43 33 45 7 120 186 9 M 12 36 52 31 35 4 168 170 9 M 12 36 52 31 35 45 161 196 10 M 12 36 57 21 150 186 170 9 M 12 36 37 45 25 161 196	e	Ē	17	46	65	45	70	30	196	273	46
5 F 20 50 63 56 53 5 155 227 6 F 17 40 46 41 57 24 187 225 Mean F 18 45 53 43 65 25 180 250 7 M 8 33 43 65 25 180 250 8 M 18 40 43 33 45 7 120 186 9 M 12 36 52 31 35 4 168 170 10 M 12 39 38 37 45 25 161 196	4	۲щ	20	40	47	36	65	474	186	252	42
6 F 17 40 46 41 57 24 187 225 Mean F 18 45 53 43 65 25 180 250 7 M 8 33 43 37 58 34 156 213 8 M 18 40 43 33 45 7 120 186 9 M 12 36 52 31 35 4 168 170 10 M 12 39 38 37 45 25 161 196	Ś	استرا	20	50	63	36	53	S	155	227	38
Mean F 18 45 53 43 65 25 180 250 7 M 8 33 43 37 58 34 156 213 8 M 18 40 43 33 45 7 120 186 9 M 12 36 52 31 35 4 168 170 10 M 12 39 38 37 45 25 161 196	9	ſтı	17	40	46	41	57	24	187	225	38
7 M 8 33 43 37 58 34 156 213 8 M 18 40 43 33 45 7 120 186 9 M 12 36 52 31 35 4 168 170 10 M 12 39 38 37 45 25 161 196	Mean	F-4	18	45	53	43	65	25	180	250	42
8 M 18 40 43 33 45 7 120 186 9 M 12 36 52 31 35 4 168 170 10 M 12 38 37 45 25 161 196	, r	Σ	α	33	43	37	5 20	176	156	213	36
9 M 12 36 52 31 35 4 168 170 10 M 12 39 38 37 45 25 161 196	- ∞	Ξ	18	40	43	33.	45	1	120	186	31
10 M 12 39 38 37 45 25 161 196	6	Σ	12	36	52	31	35	4	168	170	28
	10	М	12	39	38	37	45	25	161	196	33
0/T /CT 0 CC 045 74 CC 71 W II	11	М	12	35	42	46	35	9	137	176	29
Mean M 12 37 44 37 44 15 148 188	Mean	M	12	37	44	37	44	15	148	188	31

and faeres production.

For control and operated groups, operation body weight = 0%. Frontal ganglionectomy and faeces production TABLE XI

Daily faces production in fourth instars

Operated animals: (a) Growth (over 100% increase in weight) and attempted moulting

Mean daily faeces	production (mg/day)	24 23
Total weight	faeces (mg)	332 206
Max. body	weight gain (%)	121 130
	17	1
	16	10
	15	20
Day:	14	35
on 1	13	29
mg)	12	46
(in	11	18 4
eces	10	24 25
f fa	6	36 28
ht o	8	22 43
weigl	7	14 38
Dry	9	17 23
	2.	18 19
	4	26 17
	ŝ	17 9
	Sex	Ш
	No.	- 5

production	
facces	
and	
Frontal ganglionectomy	
XI	
TABLE	

Daily faces production in fourth instars

Operated animals: (b) Reduced growth (50-100% increase in weight) and attempted moulting

Dry weight of faeces (in mg) on Day:Max.6789101112131415161718192021222324gain1614161823151115201717201515111314148516141618231511152017172015151113141485182630192216191595-8521152011984-855621152011984-56	Total Mean daily weight facces faeces production (mg) (mg/day)	317 15 270 18 154 15
Dry weight of faeces (in mg) on Day: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 16 14 16 18 23 15 11 15 20 17 17 20 15 11 13 14 14 - 16 14 16 18 23 15 11 15 20 17 17 20 15 11 13 14 14 - 18 26 18 20 30 19 22 16 19 15 9 5 - 14 14 - 21 15 20 11 9 8 4 - - 5 - 5 - 14 14 -	Max. body weight gain (%)	85 56 57
0. Sex 3 4 5 3 F 14 13 16 4 F 16 13 24 5 M 19 25 22	lo. Sex 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	3 F 14 13 16 16 14 16 18 23 15 11 15 20 17 17 20 15 15 11 13 14 14 - 4 F 16 13 24 18 26 18 20 30 19 22 16 19 15 9 5 - 5 M 19 25 22 21 15 20 11 9 8 4 -
Frontal ganglionectomy and facces production TABLE XI

Daily faces production in fourth instars

Operated animals: (c) Reduced growth (50-100% increase in weight) and no attempted moulting

	n daily aeces luction g/day)	18 17 15 14 22 17	18
	tal Mean ight fi eces proo mg) (m	434 282 286 213 174 174 171	334
	Max. To body we eight fa gain ((%)	54 64 51 85 85	64
	3 24 25 26 27	5 10 6 10 D	5 10 6 10
	on Day: 20 21 22 23	19 20 17 1 8 D	4 19 20 17 1
	eces (in mg) 16 17 18 19	24 16 24 19 15 18 10 8 12 7 4 1 2 D	17 14 13 1
	eight of fa 12 13 14 15	10 22 14 13 29 17 16 22 17 19 16 17 14 14 12 10 D 14 14 12 10	19 19 15 17
	Dry w ⁶ 3 9 10 11	25 21 11 5 15 21 19 8 22 28 24 7 15 16 18 0 13 6 3 1 25 10 D 8 18 11 11	3 21 23 18
1	5 6 7 8	17 20 28 21 20 17 12 10 19 20 26 18 19 19 18 20 19 28 19 3 19 28 19 3	19 19 22 1
	эх 3 4	F 17 35 1 F 13 14 2 F 12 30 1 M 15 13 1 M 15 13 1 M 14 21 1	F 14 26]
	No. St	6 7 8 9 10 11 11 Mean 1	Mean 1

TABLE XI Frontal ganglionectomy and faeces production

7,

Daily faeces production in fourth instars

Operated animals: (d) Little or no growth (0-50% increase in weight) and no attempted moulting

·,		
Mean daily faeces production (mg/day)	15 13 12 12 12 12	13
Total weight faeces (mg)	199 175 131 121 95 109 120	148
Max. body weight gain (%)	34 38 38 38 28 29 29	31
16	AA	
15	4 50	5
7: 14	11 10 D	11
ı Day 13	11 20 12 12 12 12	16
;) or 12	11 11 9 0 0 9 9	10
n mg 11	18 9 6 6 7 7	ω
i) ii	15 9 10 10 10 10	6
aece 9	19 13 8 8 8 11 13 11 11	13
of 1 8	17 16 10 19 19 17 17	18
lght 7	15 26 13 8 17 16 16	17
r wei	16 11 12 10 10 11 11 12	11
Dr.) 5	21 12 12 12 12 13 13	17
4	14 23 19 19 14	20
. m	222 10 11 11 11 14 17	14
Sex	HHXHHX X	۔ تبا
No.	12 13 14 15 16 17 Mean	Mean