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Implementation of the Bayesian paradigm

for highly parameterised linear models

Abstract

This thesis re-examines the Bayes hierarchical linear model and the associated
issue of variance component estimation in the light of new numerical procedures,
and demonstrates that the Bayes linear model is indeed a practical proposition.
Technical issues considered include the development of analytical procedures
essential for efficient evaluation of the likelihood function, and a partial character-
isation of the difficulty of likelihood evaluation. A general non-informative prior
distribution for the hierarchical linear model is developed. Extensions to spheri-
cally symmetric error distributions are shown to be practicable and useful. The
numerical technique enables the sensitivity of the results to the prior structure,
error structure and model structure to be investigated. An extended example is
considered which illustrates these analytical and numerical techniques in a 15
dimensional problem. A second example provides a critical examination of a British
Standards Institute paper, and develops further techniques for handling alternative
spherically symmetric error distributions. Recent work on variance component

estimation is viewed from the Bayesian perspective, and areas for further work are

identified.
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Chapter 1 Introduction and review of Bayes Linear Models

1.1 Introduction

Over the last 20 years the accumulated literature on alternatives to the
classical linear model has grown steadily. Important developments in the literature
over this period have included the introduction of Bayesian ideas, particularly the
hierarchical model which has, loosely speaking, similar properties to the classical
random effects model. However, issues of tractability have tended to dominate and
there has been little demonstration that the hierarchical linear model is of practical
use. Associated with this, there has been little movement from th‘e standard
assumptions (such as normality at all stages in the model). This may be because the
relaxation of these assumptions introduces even more numerical difficulties.
Recently, considerable progress has been made with numerical integration in the
Bayesian context to the extent that multi-parameter models can be handled
effectively within the Bayesian framework. These numerical techniques enable the
integration of ; posterior distribution with upwards of 15 to 20 dimensions allowing
the prodtlxction_of marginal posterior densities on individual parameters or pairs of
parameters. It is argued that a lot more information can be obtained from these
posterior densi;ies than from a few point estimates. The posterior densities are also
good starting points for the calculation of predictive densities. This thesis re-
examines the Bayes hierarchical linear model and the associated issue of variance
component estimation in the light of these new numerical procedures, and demon-

strates that the Bayes linear model is indeed a practical proposition.

Calculating a marginal density via numerical integration requires repeated
evaluation of the likelihood and prior densities at points in some sense covering the
parameter space, or at least covering that subset of parameter space which contains
“almost all” of the non-zero probability. There are two important issues here. First
is the choice of points in parameter space at which to evaluate the likelihood and
prior, and seco'nd is the ease with which the likelihood and prior can be evaluated
at any specified point. The progress with numerical integration has provided
techniques for choosing the evaluation points. For the hierarchical linear model, the
evaluations themselves are essentially the evaluations of a quadratic form involving
the inverse of a dispersion matrix. In numerical terms, evaluating the inverse
dominates, and thus different classes of hierarchical linear model are more or less
easy to handle numerically. This thesis shows that completely balanced factorial

models require minimum numerical effort, followed by unbalanced nested models

P 3
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and finally other unbalanced models, and introduces a new class of slightly
unbalanced models which can be handled efficiently. Thus, substantially freed
from the previous restrictions imposgd Py tractability, numerical integration allows
much more freedom in the choice of .both error distribution and prior. Given the
ease with which these perturbations can be made to the original model, it is argued
that a sensitivity analysis should be é routine feature of Bayesian linear model

analysis, so that the robustness or otherwise of the results can be reported.

1.2 Structure of the thesis

Chapter 2 reviews the standard prior to posterior analyses adopted for the
hierarchical linear model. It happens that for the hierarchical linear model certain
parameters can be integrated out analytically. The notion of selective margins is
introduced, whereby the dimensionality of the numerical integration can be
reduced by first carrying out some form of analytical integration. It is also shown
that certain ma::gins can be viewed as weighted mixtures, where the mixing
distribution is the posterior density arising from a simpler model. Such mixture
densities can be handled elegantly by the BAYES4 numerical integration package
using “Special Fupction Analysis” (see Section 1.4). Attention is then focused on
alternative error distributions, and it is shown that the use of alternative spherically
symmetric distributions has almost no impact on the numerical complexity. It is
further observed that only a slight relaxation of the usual assumptions associated
with the error term in the linear model allows the substitution of scale mixtures of
multivariate normals for the joint error term. This prompts the advocacy of more
general error distributions for Bayes linear models especially as it is shown that such

a change has little effect on the analytic results or on the numerical complexity.

Chapter 3 characterises the problem of evaluating the likelihood. Completely
balanced factorié\l models are shown to have dispersion matrices that are easy to
invert and hence such models are algebraically and numerically easy to handle, as
naive expressions can be simplified prior to coding. Unbalanced factorial models
pose more difficulties. A new class of “slightly unbalanced factorial models” is
introduced for which the likelihood can still be evaluated without requiring
numerical inversion of a large dispersion matrix. Grossly unbalanced nested
factorial models are shown to be tractable, but grossly unbalanced crossed designs

without interaction terms are shown to be difficult. Algebraic results that simplify
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the inversion of the dispersion matrix are produced for these cases.

Chapter 4 discusses the problem of deriving a reference prior distribution for
the general hierarchical linear model. The Jeffreys' prior is derived under the
assumption of normality, and is shown to be unchanged when the error distribution
is changed to a general multivariate t distribution. Finally Bernardo reference

priors are considered and are shown to be the same as the Jeffreys’ priors.:

Chapter 5 demonstrates the feasibility of the numerical approach by providing
a full worked analysis of a multi-stratum experimental design. The maximal model ,
isa 15 parameter model comprising 3 variance components and 12 fixed effects. The
marginal posterior density for the eigenvalues of the dispersion matrix is produced
analytically under the assumption of normality, together with a series of distribu-
tions conditional on the eigenvalues. A sub-model with only 6 fixed effects is also
considered. Two_ methods of integration are used, one based on the 3 dimensional
likelihood for the variance components, and the other based on the full 15
dimensional likelihood. The analysis is repeated using multivariate t errors, and
both a non-informative prior and an informative prior are considered. The results of
these analyses are presented, and a comparison is made with the results of the
original analysis.' Fina}ly the performance of the integration routines is discussed.
The full 15 dimensional integral is used to show the feasibility of Bayesian analysis
of high dimensioﬁal linear models, even with t distribution errors. The development
of this example took place at a time when the possibilities of using BAYES4 beyond
10 dimensions were just being realised. The example demonstrated that numerical
techniques were applicable to higher dimensional problems than had previously
been considered. It is believed that this example is probably the first Bayesian

analysis to involve numerical integration over as many as 15 dimensions.

The one way analysis of variance model has already received considerable
attention from the Bayesian perspective by Box and Tiao (1973) and others.
However, one routine use of the one way random effects model is in the estimation
of inter and intra laboratory variation which is the subject of a British Standards
Institute paper number 5497. Chapter 6 provides a critical analysis of the Standard,
in the spirit of Box and Tiao, but incorporating the ideas of this thesis with respect
to error distributions. The analysis generalises the model of the Standard by
allowing t distributions instead of normal distributions for either the error distribu-
tion or the distribution of the laboratory means. The numerical techniques used in

this chapter contrast with the brute force numerical integration of Chapter 5. Since
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the t distributions can be considered as scale mixtures of normat distributions, the
mixing parameter can enter the likelihood as a nuisance parameter. This parameter-
isation enables an algebraic simplific‘asion of the likelihood yielding a low dimen-
sional integral. It is concluded that a éayesian analysis is efficient and informative
in this context, and that the procedures advocated by the BSI analysis are suspect

unless it is known for certain that both distributions are normal.

Chapter 7 presents a survey of classical variance component analysis. The
traditional ANOVA estimates are considered together with the more recent
Minimum Variance Unbiased Estimators, Minimum Norm Quadratic Estimation
(MINQE) and Maximum Likelihood Estimates (MLE). The inter-relationships
between the estimators are shown, and comments on the estimators are matie from

a Bayesian perspective.

Chapter 8 congains a concluding discussion and identifies directions for further

work.

1.3 Bayesian theory for linear models

The book by Box and Tiao provides much of the theory for Bayesian linear
model analysis and deals specifically with a variety of random effects and mixed
models. Zellner (1971) provides an introduction to linear model theory, and gives a
Bayesian analysis of time series and econometric models, including simultaneous
equation models. More recently a good survey of the work is supplied by Broemeling
(1985), and an efficient statement of the algebra is given by Berger (1985). The
hierarchical model is described by Lindley and Smith (1972) who advocated the use
of a multistage structure to describe the relationships between the model parame-
ters. The authors indicated that exchangeable prior distributions for (subsets of) the
location parameters may sometimes be appropriate. Smith (1973) examines the
Bayesian model in more detail and lists some general properties of the resulting

Bayes estimators.

Throughout the Seventies, a number of authors have suggested applications of
this model to areas including growth curve models, non-linear regression, time
series and econometric models, Fearn (1975) examines the generalised growth

models of Potthoff and Roy (1964) which have also been studied from a Bayesian
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viewpoint by Geisser (1970). Such models are shown to be within the scope of the
general Bayesian linear models of Lindley and Smith. Fearn generalises the results
and produces approximations for the pgsterior distribution of the means. Sweeting

(1982) also extends the results of Smith.

The book by Zellner appears to be the only one devoted to Bayesian analysis of
parametric time series models. The mid-Seventies saw a lot of interest in
econometric data. Bayesian studies of time series models have been carried out by
amongst others Newbold (1973), and Harrison and Stevens (1976). An important
reference on structural change in linear models is Poirier (1976) who reviews
statistical and economaetric literature and presents new ideas on modelling struc-
tural change using spline functions. Other recent structural change papers i}xclude
Smith (1975), Holbert and Broemeling (1977), Abraham and Wei (1979), Chin Chay
and Broemeling (1980), Tsurami (1980) and Salazar, Broemeling and Chi (1981).
Bayesian methods for adaptive fitting for the Kalman filter are given by Hawkes

(1973) and Alspach (1974).

However, throughout this period, the tractability of the posterior density was
always a problem, and many early papers advocate the use of modes as approxima-
tions to the posterior means. This leads to a discussion of the relative merits of joint

modes and marginal modes (see for example O’Hagan (1976) ).

Later in the decade, a lot of interest focused on rbbustness. Papers by Box
(1980), Chen and Box (1979), Bailey and Box (1980), and an early paper by Rubin

(1977) consider the robustness of results to outliers from the Bayesian perspective.

Throughout this period there were still few examples of practical data analysis.

In the years between 1979 and the start of this thesis in 1983, this work
essentially languis}xed. Over this period however, analytical approximations and
numerical procedures were developed as authors have tackled the problem of
obtaining margins rather than modes (see Skene (1983), Smith et al. (1985) ). Naylor
and Smith (1982) identified two aspects to numerical Bayesian analysis. First is the
problem of the numerical integration, and second is the difficulty of reconstructing
a marginal posterior density from a sparse set of evaluation points. These problems
are now tackled by two computer packages BAYES4 and GR which have been

developed under a SERC research project at the University of Nottingham during
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1983-1986. These developments allow_ useful summaries to be produced for a much

broader class of models than previously possible.

.-

At the commencement of work on this thesis, the full potential of multidimen-
sional integration using, for example, BAYES4 was only just being appreciated. It
was anticipated that numerical procedures of this general type would become
available for routine Bayesian analysis involving models with several parameters,
but the power of such techniques for highly parameterised linear models had not
been investigated. Similarly, GR was of unknown utility. The Bayesian statistics
community had had little opportunity to express the results of an analysis via a large

number of interesting marginal densities and the most useful form of such plots was

still an open question.

1.4 The BAYES4 numerical integration package

The BAYES4 package enables the production of summaries from high dimen-
sional posterior densities using numerical integration. BAYES4 is built upon four
important concepts, ;) transformations of the parameter space to make the integral
“easier”, ii) initial e;timates of the first and second moments of the transformed
parameters, iii) calculation of many integrals in parallel, and iv) iterative re-
estimation of the first and second moments of the parameters. Naylor and Smith
(1982) describe the basic iterative philosophy used by BAYES4, and further details

and illustrations of its use can be found in Shaw (1986).

BAYES4 works t;y evaluating the likelihood and prior distributions at selected
points in parameter space. If the moments of the posterior distribution were known
in advance, then the points at which the likelihood was to be evaluated could be
chosen in some optimal way so as to cover the densest part of the multi-dimensional
posterior distribution, and thus achieve maximum accuracy for any statistics
computed from the set of points chosen. Having chosen a set of points using initial
estimates of the moments, it is then possible to estimate the moments of the
posterior distribution by evaluating the appropriate integrals numerically. These
moments can be used to choose a better set of evaluation points, which in turn lead
to more reliable estimates for the moments. Thus by iteratively upgrading the
estimates for the moments, it is possible to home in on the region of high posterior

probability in parameter space, and thus efficiently compute every other integral of
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BAYES4 uses three distinct numerical integration techniques to tackle prob-
lems with different numbers of dimensions. The first of these is repeated Gauss-
Hermite integration over a cartesian product grid. This works by approximating the
posterior density by a low order polynomial times a multivariate normal distribu-
tion. With careful choice of the evaluation points and the weights attached to them,
functions of this form can be integrated exactly using only a sparse grid of points
provided that the first two moments of the normal kernel are known. For example a
nk grid will yield exact results for the product of an order 2n-1 polynomial and an
k dimensional normal. If first and second moments are evaluated, then these are
calculated exactly for the functions that are the product of a k dimensional norr;lal

and an order 2n-3 polynomial. Thus even a 4k grid is very powerful.

It is thus highly ac_ivantageous to use transformations of parameter space that
yield posterior surface of the form of a normal multiplied by a low order polynomial.
Considerable thought should be given to a suitable (if arbitrary) transformation eg.
log, logit, probit. This theme is further discussed in Chapters 5, 6 and 8. Even with
integration rules of this type, the number of evaluations becomes prohibitive as the
number of dimensions !ncreases. On the current generation of computer hardware,

integration with up to 6 dimensions can be undertaken using Gauss-Hermite

integration.

For higher dimensions a class of spherical integration rules are available, and
these are highly recommended for regular problems with 4 to 8 parameters (see
Stroud (1971) ). For prqblems with even more dimensions, Monte-Carlo integration
techniques are available which have been demonstrated in as many as 23 dimen-
sions (see Skene and Wakefield (1986) ). These techniques are discussed in Shaw
(1985a,1985b) and use a form of importance sampling (see Hammersley and
Handscomb (1964) ) based on transforming a configuration of points in the unit
k-dimensional hypercube to a corresponding configuration of points in le. In any
problem, the integration techniques may be mixed with (say) some Gauss-Hermite
dimensions and some Monte-Carlo dimensions. Variants of Monte-Carlo integration
again prove to be very accurate and efficient when the joint posterior density is

close to a multivariate normal in form.

For each of the integration techniques, BAYES4 iterates to yield a stable set of

first and second moments from a user supplied set. It also enables the calculation of
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univariate or bivariate marginal distributions. Finally BAYES4 has a feature called
Special Function Analysis that enables the evaluation of functions of the form
] f(8)p(8]ly)dO, where f(8) is an arbitra‘ry function of the parameters, and p(8ly) is

the posterior density for the parameters.

To use BAYES4, the user is required to provide code for evaluating the
likelihood and prior, and an initial estimate of the parameters. The likelihood
should be coded for maximum efficiency. Data translation can often help here, as
this often yields simpler expressions for the likelihood. Similarly great care must be
taken with linear models to sort out the inverse of the dispersion matrix. In ideal
cases the quadratic form can be reduced to a simple expression involving a few sums
of squares. Experience shows that the choice of initial estimates for the parameters .
in linear model problems seldom poses difficulties. Any estimates that are even
vaguely sensible will usually enable rapid convergence to the correct values. A final
point is that the code for the likelihood can in fact be code for several alternative
likelihoods controlled by a selection mechanism at run time. An appendix to this
thesis contains the code which was used for some of the analyses performed using
BAYES4. This illustrates the'work which must be done to use BAYES4 and gives some

practical tips.

1.5 GR - a graphical presentation and manipulation package

In addition to the first and second moments, and possibly special function
analysis, BAYES4 is usually used to produce a small number of spot heights from one
or more univariate or bivariate posterior densities. It is required to reconstruct the
univariate or bivariate posterior densities from these spot heights. Typically these
spot heights will be unevenly spaced (as the roots of a Gauss-Hermite polynomial) or
in the bivariate cases as a sheared grid of unevenly spaced points. Often the points
will not even be on the required scale as a transformation of parameter space was
made to enable BAYES4 'to work efficiently. Thus the reconstruction of the

posterior density on the natural scale is difficult.

This task is achieved by GR which will take a sparse set of points and
reconstruct the posterior density by interpolation, with extrapolation if required,
using cubic splines applied to the log ordinate. GR includes a large range of

univariate and bivariate transformations to enable the posterior density to be
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produced on the natural scale or any other scale. GR also enables univariate
densities to be calculated from bivariates by marginalisation or conditioning. As
output GR will produce bivariate__qoptour plots and/or univariate probability
densities. For further details see the éR User Guide, Shaw (1986). All the marginal

densities and contour plots in this thesis were produced using GR.



Chapter 2
Multivariate Normal results and generalisations to other distributions

2.1 Introduction

Any Bayesian analysis involving numerical integration requires repeated
evaluations of the posterior density. Linear models may have many parameters
(counting both fixed effects and variance components) giving rise to a posterior
density with many dimensions. Numerical evaluation of posterior distributions from

hierarchical linear models must be carried out efficiently to avoid a herculean

amount of work.

There are two different aspects of efficient evaluation. Firstit may be possible
to invert the dispersion matrix analytically, rather than tackle it numerically, or
failing that, it is usually possible to obtain the inverse of the dispersion matrix from
the inverse of a matrix of smaller size, which has to be inverted numerically.
Secondly it may be possible to take the high dimensional posterior distribution and
analytically integrate out parameters that are not of direct interest to get a marginal

posterior density with fewer dimensions.

With linear mode’ls it is common to propose some linear structure to describe
the fixed effects, and to assume the errors between the data and the model come
from a multivariate normal distribution. Symbolically, the data y has expectation

Xa where a is a vector of fixed effects and X is a design matrix. Then writing V for

the dispersion matrix gives:

y ~ N(Xa,V)

For most of the models considered in this thesis, V is of the form V(a’) where
o2 is a vector of dispersion parameters commonly referred to as variance com-

ponents. This model gives rise to a likelihood:
iyla,0?) = (2m)73"| V| Zexp-§(y - Xa)'V "' (y - Xa)
and hence from Bayes’' theorem
p(a,02ly) « |V 2 exp-4(y-Xa)' V' (y-Xe) pla,0?) (2.1:1)

where p(a,02) is the prior distribution on the fixed effects and variance com-

ponents. The location parameters and scale parameters are frequently assumed to
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be e priori independent, hence p(@,0?) = p(a)p(0?). With the assumption of
normality, the evaluation of the joint posterior density for a and o2 at any point is
seen to be a matter of calculating V'_l arld |Vi. However, the joint posterior for a and
o2 may have many dimensions, and it may be difficult to produce margins
numerically from the joint density. Fortunately, this is seldom necessary for two
reasons. First the margins on the fixed effects are typically similar to each other

subject to a difference in location (and possibly scale), so it is not necessary to

2

consider them all at once. Second, the primary interest may be in ¢%, or in functions

that can be derived from the marginal posterior density for o2,

Thus lower dimensional summaries of equation 2.1:1 are desirable. In general
the distribution of a fixed effect conditional on the variance components is easy to
produce. Also, analytic integration to remove the fixed effects is possible to yield a
marginal posterior density for o2. Since these basic integrations can be done it
leads to the notion of selective margins whereby the dimensionality of the posterior
numerical integration can be reduced by first performing analytical integrations.
These analytical integrations depend upon the prior specification, particularly the
factorisation of the prior into a term for the fixed effects and a term for the
variance components. In the analyses in this chapter, non-informative priors are

used for parameters that are to be analytically integrated out of the posterior

density.

The first part of this chapter (Section 2.2) lists a series of posterior densities
from Normal models, after integrating out different parameters from e and o2,

Specifically the following distributions are produced:
i) The marginal posterior density for the variance components o2,

ii) The joint posterior density for the variance components o2 and a single fixed

effect (eg az,al).

iif) The marginal posterior density for a single fixed effect (eg. at) or a pair of

fixed effects (al,az).

Itis shown that evaluation of these distributions requires V"' and | V| as well as

(X'vx)™!, |IX'v'iX|. Efficient methods of evaluating these matrices and deter-

minants are developed in Chapter 3.

21
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The later part of this chapter extends the discussion to error distributions other
than the normal distribution, as there may be little direct evidence for the
assumption of normality, except by_apgealing to the Central Limit theorem. When
considering alternatives to normalify it is important to ensure that the distribution
used retains the properties that enable analytic simplification of the posterior
density, and also allow efficient numérical implementation of the densities pro-
duced. Itis seen that the evaluation of spherical error distributions is dominated by

the same matrices and determinants as for the normal case.

The discussion of alternative error distributions is preceded by a brief review
of the properties of the multivariate normal distribution (Section 2.3) that enable
analytic simplifications and numerical tractability. The first alternative error
distribution considered (Section 2.4) is the multivariate t distribution (see Johnson
and Kotz (1970) ). This distribution has the same parameters and first and second
mbments as the multivariate Normal distribution, thus allowing direct comparison
of models with different error structures. The multivariate t distribution is shown to
keep all the properties of the multivariate normal that are useful for ar;alytic and
numerical progress except for one - namely the multivariate t distribution does not
have independent errors. Thus there is no computational penalty associated with the

use of the general multivariate t distribution rather than the multivariate Normal

distribution.

A general discussion then follows in which some of the useful properties of the
multivariate normal are taken as axioms, and the space of distributions obeying
these axioms is explored. Specifically it is required that marginals and conditionals
should have the same functional form as the original density. It is shown that the
assumptibn of a spherical density, but without independence between the errors, is

equivalent to using the set of scale mixtures of multivariate normal distributions.

2.2 Marginal Posterior Densities assuming a Normal Error Structure

2.2.1 The Marginal Posterior Density for the Variance Components

Sometimes the variance components themselves, or functions derived from

them, are of primary interest. In other cases, a density is required that can be

"
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formed as a mixture of distributions where the mixing distribution is the posterior

density for the variance components. In these cases, the fixed effects can be

integrated out from equation 2.1:1 yie.lging a marginal posterior density on the cz,

which has considerably fewer dimensions than the joint posterior density for a and

oz'

Take the joint posterior density from equation 2.1:1, and assume a non-
informative (uniform) prior for e. Integrate across the fixed effects to get a

marginal posterior for the variance components:

p(e?ly) « i exp-4(y - Xa)’' V''(y - Xa)da p(o?)
a

« p(o?) IVI-% exp-} ¥'V''y [ exp-4(e’X'V"'Xa - 2y'V"'Xa) da
a
The integration is an exercise in completing the square and yields
po2ly) « p(a?) IVI" 31X’V X exp-4y'V !y exp 4y’ VI X(X'V I X) ' X'V !y (2.2.1:1)

Efficient use of this requires X'V"'X to be invertible analytically, and | X'V 'X] to be

calculable.

2.2.2 Joint Posterior Density for a single fixed effect and the Variance

Components

Suppose that instead of wanting a marginal posterior density for the variance
components cz, the joint posterior density for a fixed effect and the variance
components is required. This posterior density may be of specific interest, or it may

be used to determine the posterior correlation between one of the fixed effects and

the variance components.

This posterior density can be produced simply as it factorises into the posterior
density for the variance components, multiplied by the density of the fixed effect
conditional on the variance components. The latter density is itself a univariate

normal distribution. Thus, writing a, for the fixed effect:

p(a,,0%ly) = p(a,lo?y)p(a®ly)
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Itis interesting to note that an alternative form for p(al,czly) can be produced

as follows: Partition X into Xl and Xz, and e into a, and e, where e, = (°1) and a,

1
is a vector of the other fixed effects. Then integrate out over the nuisance

parameters ¢12:

y ~ N(Xa,V) —_ y—-X.a

12 ~ N(X,a,,V)

hence integrating out a, yields:
pla,,0%ly) « |V Eexp-3(y -~ X,a,)'V (v - X,a,
- -1 : - -
X 1X, V7' X, 1 2 expi(y ~ X, 0 )X, (X, V' X,) ' X, (y - X, a,) (2.2.2:1)

Equation 2.2.2:1 can be obtained by substituting y--x‘al for y and Jtz for X in
equation 2.2.1:1. Note that this formulation involves an unbalanced matrix X;V"Xz,

which makes equation 2.2.2:1 difficult to evaluate (see section 3.2.3 in Chapter 3).

2.2.3 Marginal Posterior Densities for the fixed effects

Finally consider the marginal posterior distribution for the fixed effects. Itis .
not usually possible to integrate out o2 analytically to leave a marginal posterior for
aly. Instead a marginal distribution for a single fixed effects e, ora pair of fixed

effects a,,8, can be obtained by numerically integrating o2 out of the joint density

for the fixed effect(s) and the variance components (as produced in section 2.2.2).

pla,ly) = Jp(s lo®y)p(e?ly)do® (2.2.3:1)
o

and p(a;a,ly) = [ p(asa,lo%y)p(o?ly)do? (2.2.3:2)
o

where p(o?|y) is the posterior density for o2 as given by equation 2.2.1:1. Note that

p(o?ly) can be dependent on the choice of prior distribution for a,02.

Conditional on o2and y, the fixed effects are normally distributed, and hence
p(al ly) and p(a‘ ,azly) from equations 2.2.3:1 and 2.2.3:2 are just mixtures of normal

distributions with the mixing distribution being the marginal posterior density for

the variance components.

In general, it is not possible to perform this integration analytically, but it is

easy to do it numerically using Special Function Analysis in BAYES4. A special case
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occurs for the single variance fixed effects model, where it is possible to produce

p(ely) analytically:

Special Case

Consider the linear modely ~ N(Xae, ozl) where X is an nXk design matrix, a is
an unknown vector of k fixed effects and the residual variance o2 is unknown. A
particular case of this model is the single variance fixed effects model given by
yij = a; + € where { = 1,2...p, and § = 1,2...q. The cU are independent with

variance ¢2.

For this linear model it is possible to analytically integrate out o2 from the
marginal for a,oz. The usual assumption of a non-informative prior for o%leadstoa
marginal posterior for o2 of vsz><;2 withv = n-k,and s® = (y - (X'X)"'X'y)?/v. The
distribution for a|o? is multivariate normal, leading to a heavy tailed marginal for a.
Let & denote (X'X)"'X'y, then:

| 4 (a=8)X'X(a—2d) "B+ k)

plaly) « e (2.2.3:3)

which is the multivariate t distribution discovered independently by Cornish (1954)
and Dunnet & Sobel (1954). A derivation can be found in Box & Tiao (1973) section
2.7.Note that even if X'X is a diagonal matrix, the margins for the fixed effects are
not independent of each other as equation 2.2.3:3 does not factorise. Marginals from

the multivariate t distribution are derived in section 2.4.1, thus allowing p(ail y) to

be evaluated.

2.3 Properties of the multivariate normal distribution.

A standard exposition of normal linear models considers a vector of data y with
expectation Xa and errors that are independent identically distributed ~ N(O,o'z).
The assumption of normality allows the vector of independent errors to be viewed as
a vector from a multivariate normal distribution. Difficulties arise as soon as
alternatives to normality are considered. For example, it may be considered
appropriate to use a distribution with heavier tails than a normal distribution.
However, if the errors are taken to be independent, then it is no longer possible to

view the errors as being a vector from a heavy tailed spherical multivariate
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distribution. Conversely, if a heavy tailed spherical multivariate distribution is
assumed as an alternative to the multivariate normal distribution, then the indepen-

dence property of the errors is lost.

-

These properties are discused in the following sections. First it is necessary to
review those properties of the multivariate normal distribution which enable
analytic progress to be made with the posterior density, and allow numerical
tractability. This review permits the relative merits of other multivariate distribu-
tions to be assessed. Sections 2.4, 2.4.1, 2.4.2 and 2.4.3 derive the equivalent

properties for the multivariate t distribution.

Consider y, an n-vector from a multivariate Normal distribution with mean Xe
and dispersion matrix V, where X is a design matrix and a is a vector of fixed
effects. Without loss of generality, it is assumed that V = o-ztn. This simplifies the
resulting discussion, as y'V"y becomes y'y/az, but the results hold for a general V

matrix. Then the multivariate normal has the following useful properties:

i) It is spherically symmetric (or elliptically symmetric for general dispersion
matrices).
i) There is independence between {ym+1...yn} and {y, ,yz...ym} conditional on

the o2. Thus the probability density factorises and hence:

POy I 1Yo ys02) = POy q.eo,l0?)

iii) The conditional distribution for ym+1...yn|yl...ym is multivariate normal

with dispersion matrix V = o®I,__ .

iv) The marginal distribution for Yo ¥m is multivariate normal with dispersion

_ .2
matrixV = ¢ Im’

v) The distribution of the fixed effects a conditional on the data and the
variances is multivariate Normal with variance (X'V!X)™! and mean

X'V x'vly.

The objective is to generalise the class of possible error distributions, yet to
retain as many of the properties i) - v) as are possible. This idea is certainly not new,
eg. West (1984) considers extensions to simple normality by allowing scale mixtures
of normal distributions in order to accommodate potential outliers without giving

them too much influence on the final results. Dickey and Chen (1983) consider the
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whole class of spherically symmetric distributions. Property i) spherical symmetry

n
implies thatr? = p yf is a minimal sufficient statistic for y. Kelker (1970) examined
i=1
the class of spherically symmetric distributions, and showed that the only spheri-

cally symmetric distribution that had the independence property was the multivari-
ate normal. Properties i) and ii) thus imply a multivariate normal distribution.
Conversely to extend the class of error distributions either property i) symmetry, or

property ii) independence, must be dropped.

Generalised versions of properties iii) and iv) are that the marginals and
conditionals have the same functional form as the joint distribution, and with the
same variance structure. Similarly property v) requires that the fixed effects
conditional on the data have the same functional form as the joint distribution and

with mean (X'V'X)™'X'V"'y and dispersion matrix (X'V"'X).

2.4 Properties of the general multivariate ¢t distribution

The multivariate t distribution is an obvious choice for an alternative error
distribution to the multivariate normal distribution. It is now examined to discover
how many of the properties i) - v) it possesses. Let tv(Xa, V) denote a general
multivariate t distribution with v degrees of freedom, mean Xa and dispersion
matrix V. Note that there is not independence in the sense of property ii). The

probability of a data vector y ~ tv(Xa, V) is usually written as:

v+n
' ty~ -T2
p(yla,V) = L(%%’:—;)l(ﬂv)'i’"lvr% 1+ (Y'Xa)‘;‘(Y—Xd) (2.4:1)

Unfortunately the second moments of this are ‘—,‘—_’é-v rather than V¥, and this is
inconvenient when comparing models with different error distributions. A simple
reparameterisation overcomes this difficulty, hence whenever the general mul-

tivariate t distribution is mentioned, the distribution given in equation 2.4:2 will be

meant.
v+n
' -T2
p(yla, vy = LGN t-in, oy3dn |y 3]y 4 Q'x")z("x‘) (2.4:2)

r@iv)

This distribution has second moments of V.
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Now since this only depends on y through the quadratic form (y-Xa)'Vi(y-
Xa), it follows that this is an elliptically symmetric distribution, hence property i)
from Section 2.3 holds. Also since it is a function of (y-Xa)'V'!(y-Xa), it is

computationally no harder to evaluate than the multivariate Normal distribution.

2.4.1 Marginal Densities from a general multivariate t distribution

Consider the marginal distribution formed by integrating out Yn from the
multivariate t distribution of y (= Yn say). This yields the distribution for Yp-1°
Without loss of generality, and to simplify the algebra assume that the mean of the

t distribution is 0. As before, without loss of generality take V = czln.

v+n
viy |72
Py, V) = L r(iﬂ a3 (u-2) %"|v "3+ ﬁ'_"_’"_
3v) v-2

Now integrate out Y, to produce a marginal distribution for Ypreeor Yoy

PG, g V) = Tp(y,IV) dy,

In
v+n -J. -1
PO,y V) = 1 TEGED) noingypyin v -4
In
v+n
[ -1 2 -
Yn-1Yn-1%n-1 . 1 2
X |1+ ) + -0‘_2- v—_'z dyn
y n-1
NowletQ = 1 + n-1ln v-zl n , and substitute o2(v-2)Qtan?0 for y:.
Thus dy, = (o)} Q% (v-2)2sec
-1 - - -1
P(Yy e Ypq V) = ﬁir((_;%ﬂll 2N (p-2)" ﬁnw g(qz) 3 p-3(v+n)

X %f“ cosv+n'29 (02)% Q‘k (v-Z)é de
6=0

= r!“%((‘i‘:;‘)z ,"-%n (v_z)"é(n‘l)lv I ﬁQ-é(v-Fn l)tf cosv+n 26 de
2 =0

_ LG+n)) -in,. _,\-3(n-1) -+ ~-1(v+n-1) (ﬂv'm)i
= l‘(%v) n é (V 2) % lvn_II éQ % l"(i(v+n))
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P(Yn-1|v) = I%S);llz ‘n'%(n'l) (v-Z)'%(n-l)

_p+n-1
Yn-1%-1%nz1 2
v-2

xIVn_ll'* 1+

A marginal distribution is thus also a general multivariéte t distribution with v
degrees of freedom, and with a dispersion matrix Vn-l’ ie that formed by deleting
rows and columns outof V. If ¥ is not independent of Ypn-1 then by completing the

square the same argument holds. Property iv) thus holds.

2.4.2 Conditional Densities from a general multivariate t distribution

Now consider the conditional distributions. For simplicity, again take
n m n
V=oc, andletr? = Ty}, r? = T ylandr?= 3 y? Then:
i=1 i=1 m+1
FG+n) (ne?) 37 (v-2)"81 (1 + r2/(v-2)a?) 2" *1)
T (v+m)) (no?) 3™ (v-2)"3M (1 + r2/(v-2)0%) 2V+™M)

PO pq - Ypl¥y e Hp0®) =
letQ =1+ r;"/(v-Z)cz, ana vt = v+m, then by rearranging:

PGipq-e Yty Hp0®)
) (@ + rZ/(w-2)o?y B

_ I‘(ﬂv-l»n)! 2\=-3(n-m) ., _,v-1(n-
- r‘(‘g"(v+m))(m ) : (v-2y 3 o-3(v+m)
‘ . vi4n-m
) -
_ TG+n) 2 v-4(n-m) o, _oy-hn-m) |, , 2720 2
T r(3(v+m)) (ne”0) : (v-2) : ™+ v-2

This is a general multivariate t distribution with v! = vim degrees of freedom on
n-m observations, with a variance of czg(v-Z)/(vf-Z) rather than o2, Thus property
1ii) almost holds. The factor of Q(v-2)/(v'-2) leaves the variance unchanged if the
observed ¥ values have variance o2. If however the observed Y have a greater
variance than 02, then this factor increases the variance for the remaining Yp and
conversely the factor shrinks the variance for the remaining ¥ if the observed ¥;
have a lower variance than o2, More interesting, the conditional distribution is more

nearly normal than the joint distribution, due to the increase in the number of

degrees of freedom.
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The increase in variance if the observed Yy > mo? is to be expected since a
conditional slice through the tail of a heavy tailed density will have greater variance

then a conditional slice through the_ mean of a heavy tailed density.

2.4.3 Distribution of the fixed effects conditional on the data

In this section an analogous result to property v) is produced for multivariate t
distribution. Start with an n-vector of data y, and a p-vector of fixed effects a.

Apply Bayes theorem:

p(alo?,y) = p(ylo?,e)p(a)

where p(a) is the prior distribution for a. Assuming a uniform prior on a this gives:

v+n
( N e ——
- ty—1 - 2
plalot,y) o |1+ P=Xa)V (y-Xa)
v-2
- P
v+n
[ u 1”2
o |1+ (a-B)A (a-B) + C
-2 J
.

where 4”! = X'VIX, B = (X'V'!X) X'V Yy,
and C=y'Viy-yvixXx'vix)'x'vly.

— -v-’-—n [ - Ied! - _C__ - 2"‘;'.—'1
. c 2 (a-B)'A™'(a-BY/(1 + 55
p(elo®,y) « [1 + 553 1+ —
.
t
ven [ t.o -2 *p
c1" "z L Zz (a-B)'A™ (a-B)/(1 + ;% 2
o {1 + —] 1+ %

V'z vt-z

.

where v‘r =p+n-p. Thisisamultivariate t distribution with mean B and dispersion

matrix A(1 + £ v-2

52071 5 and vt degrees of freedom. Hence substituting for A, B and
e ple2

C:

y~t,(Xa,V) — a~t T(B.A(v-z+y'V“y—y'v"xcx'v"xr‘x'v"y)/vT-z)
14

Thus property v) from Section 2.3 is partially kept. The mean of this distribution
is the same as that from a Normal distribution, but the dispersion matrix has been
scaled. However, the evaluation of this density is still dominated by the same

manipulations of V and X'Vv'1X as in the multivariate normal case. Thus it is
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computationally no more difficult than the multivariate normal.

Note that usually there will be far more data values than fixed effects so that
n >3 p. This gives vT >» v. Even if there are very few degrees of freedom for the
original t distribution on the data, the conditional distribution for the fixed effects
will usually have many degrees of freedom. As a consequence the conditional
distribution for the fixed effects will often thus look roughly normal even when the

error distribution is distinctly heavy tailed,

2.5 Multivariate distributions with independence

Now consider the class of distributions that are produced if property i)
spherical symmetry is dropped and property ii) independence is kept. These
properties can be accomplished simply by setting the multivariate distribution

equal to the product of n identical independently distributed univariate distribu-

tions. Thus:
n
p(}’l.y"");-..}'n) = ﬂ.p()’i'yi)

However if the tails of the univariate distribution are heavier than the tails for a
normal distribution, then this probability density function will have star-shaped
non-convex contours. Also in general the sufficient statistics for the observations

will be the entire y vector.

2.6 Multivariate distributions with spherical symmetry

Finally consider the class of distributions that are produced if property i)
spherical symmetry is kept, and property ii) independence is dropped. Any density
function of the form f(y'y) will satisfy this, for example the general multivariate t
distribution or the multivariate normal distribution. Any conditional distribution
from a probability density function of the form f(»'y), will also depend on y only

through y'y, but in general the conditional distribution will have a different density

function.
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n
Consider the conditional distribution for O +1o% 1Y %,). Let ré= iZiyl-z,

m n
r?= Z;yiz andr? = 3 y?. Then the conditional distribution has the form:
i= m+1 -~

POmygedplyyedn) = FC2V/5GY) = fOF + 12 /507) & f(r2 + £2)

This will have a different form to f( ) unless the density f( ) is of the form
f(an +b, r?). 1f the density function is of this form, then the conditional distribution
for (ym+1...yn|y'...ym) will be of the same form but with e, replaced by a,_,., =

-c
a, + bn rlz, and bn—m = bn' Now suppose f(x) &« x N, then without loss of generality

take o, = =1. The density function is then:

n=%-m
1+b_r?) °n
p(y .o 3p) « (14b,r%) (2.6:1)
The conditional distribution will be of the form:
2 'cn 2 -C
PGy Wpl¥yeeedy) & (+b,r%) N/ (14b,,r2) ™
2 2,"C
o« (1+bnrl +bnr2) n

< (1+b, rz)-cn'm

-m-'2
b,
where bn-m = I-:t;;—r?’ and Chom = ©p

The change fromb,_ tob,__ . shows that though the distributional form has been
preserved, the variance of the conditional distribution changes, depending on the
observed ¥; values. Thus property iii) is only partially kept. Similarly marginal

distributions will be of the same form, but with (potentially) different variances.

Now reparametrise equation 2.6:1. Assuming Cn .> in; take v = ch -n, and
0% = 1/vb,. Then equation 2.6:1 represents a general multivariate t distribution
with v degrees of freedom, and a dispersion matrix V = czln. Clearly by letting

v —> 00, equation 2.6:1 tends to a multivariate normal distribution.

-c

The significance of the assumption that f(x) = x " can now be seen. This
assumption leads to f( ) representing a general multivariate t distribution. Generally
(assuming sufficient regularity) 1/ f(x) can be expressed an even polynomial, and

hence correspond to a mixture of general multivariate t distributions.

The class of scale mixtures of general multivariate t distributions is the same as

the class of scale mixtures of multivariate Normal distributions. Clearly since the
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multivariate Normal distribution is a_limiting form of the general multivariate t
distribution, the class of scale mixtures of multivariate Normal distributions is a
subset of the class of scale mixtpref of general multivariate t distributions.
Conversely any general multivariate t distribution can be viewed as a scale mixture
of multivariate Normal distributions, so a scale mixture of t distributions must also

be a scale mixture of Normal distributions.

Dickey and Chen (1983) consider other tractable spherical distributions by

considering other forms for the radial density f( ).

Thus spherical symrhetry combined with conditionals of the same form leads to
scale mixtures of multivariate Normal distributions. In the subsequent analyses
only multivariate Normal distributions, and general multivariate t distributions are
considered rather than arbitrary scale mixtures. Allowing multivariate Normal
distributions to be replaced by general multivariate t distributions allows heavier
tailed distributions to be considered with only the loss of the independence property
of the multivariate Normal, and with only one extra parameter, the number of

degrees of freedom v - which determines the mixing weights.

Since independence does not apply, it is intriguing to note the effect of
conditioning on the first m out of n observations. What then can be deduced about
Yma1In given Yyeo-Yme Suppose that the m observed values all lie far from zero, so
that rf > mo?. Given independence the variance of the remaining y, must equal
o02. Without independence, one might reasonably expect the variance of the
remaining y; to be increased, so that Ym+1:++Y, agree better with the observed data
Yyoro¥me If rf > mo?, then bn-m is reduced compared with bn’ corresponding to an

increase in variance.



Chapter 3
Characterisation of the Likelihood Evaluation Problem

3.1 Introduction

Chapter 2 presented the standard algebraic methods for integrating out
location parameters to yield marginal distributions on just the variance com-
ponents. Within the class of models with normally distributed errors, and also in the
wider class of spherically symmetric error distributions, eg. general multivariate t

distributions, it was shown that efficient evaluation of the likelihood function

required efficient evaluation V™! and | V|, and also (X'V"'X)"! and | X'V 'X]|, where
V is the dispersion matrix, and X is the design matrix. This chapter explores
efficient methods of evaluating these quantities, and demonstrates the techniques

on a range of common models.

The first section of the chapter defines the notation used for 10 common
variance component models that are used as examples throughout the chapter.
Using the results of Searle and Henderson (1979), it is shown in section 3.2 that the
dispersion matrices from balanced factorial dispersion models are easy to invert,
and hence such models are numerically easy to handle. A simple cﬁaracterisation

of the fixed effects structure also indicates whether there is a generai analytic form

for the inverse of the X'V !X matrix which occurs in the marginal posterior density
for the variance components. A recursive method is also introduced for the
implicitly unbalanced (X;V"Xz) matrix that occurs in section 2.2.2 of Chapter 2.
Unbalanced factorial models are considered in section 3.3. A new classification of
slightly unbalanced models is introduced for models that would be balanced except
that they have an odd number of observations in one cell. An analytic technique is
developed in section 3.4 for finding the inverse and determinant of the dispersion
matrix from slightly unbalanced factorial models, enabling efficient numerical
evaluation. A variant of this technique in used in section 3.5 to give a recursive
method of handling unbalanced nested models. This produces resultvs for the same
models as considered by La Motte (1972). Illustrations of all these unbalanced
inversion techniques are given. Section 3.6 considers grossly unbalanced crossed
designs without interaction terms. For these models an analytic inverse is not found,
but techniques are developed which substantially reduce the numerical difficulty.

Finally section 3.7 examines the computational implications of each of these

methods.
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3.1.1 Notation -

Throughout this chapter the symbols In, "n’ 1n’ 0,, Cn’ la,b’ oa,b' ®, diag(,,)
and D[,,] are used extensively. In denotes an nXn identity matrix, "n is an nxXn
matrix of ones,and 1_(0_)isa column of n ones (zeroes). Similarly 1 0 ,)is

n ‘\n e,b ‘a,b
— —— [4
used for an axXb array of ones (zeroes): Thus "n = ln,n = lnln' Cn is used for a
vector of n elements the first of which is one and the remaining elements are zero.
® denotes Kronecker products. diaeg(,,) is used for a diagonal matrix with

prescribed elements. D[,, ] denotes a block diagonal matrix with prescribed blocks.

Note that D[,,] will in general not be a square matrix. For example D[l.z, 12, 12] =

13 ® 12 is a matrix of 6 rows and 3 columns.

3.1.2 The Models considered in detail

This section lists the models considered in detail. They are denoted by the letter
M followed by a digit and a letter. The digit represents the number- of variance
components in the model, and the letter serves to distinguish between different

models with the same number of variance components.

All of the models listed assume multivariate Normal errors but the same
techniques for manipulating V (and the matrices derived from V) apply to all
spherical error distribution functions. The models detailed here are not the set of

models for which the subsequent theory applies, but rather they form a set of

examples from a general class of models,

M1) One Way Fixed Effects Model
y ~ N(Xa,V) V = cr:I i.e. Yij = o+

where a is a vector of fixed effects.

<
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M2a) 1 Way Random Effects Model
y ~N1u,V) V= V(oaz,cr:) Le. yy=u+a +e;

-

E(yij] = U+ a var(yl-j) = oaz + o-: cov(yij,yik) = o:

M2b) Bayesian hierarchical model; 1 factor, levels exchangeable
Y'ei ~ N(eiv U:)

integrate

2 - .
eilu. ~ N(u,aa) out ei -~ y ~ N(1p,¥V) asin model M2a

w ~ uniform

M2¢) Randomised Block Design
y ~ N(Xu, V) Ve V(O‘g,O’:) i.e. Yijk = Wy + Bj + €k

where ﬁj is random, and u is a vector of fixed effects.

Several cases for replication equal to 1, greater than 1, or unbalanced

M2d) Arbitrary treatment structure - two level nested block stru‘_cture

y ~ N(Xu,V) V= V(op,0?)

M3a) Classical 2 level nested random effects model
y=N1uV) V= V(o:.og,o:) Le. yj = w+ao;+ B+ ey

groups/subgroups/observations.

N3
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M3b) Bayesian 2 level nested hierarchical model
Yijieluyy ~ N0l
wyylog ~ Nlogrop)
ol ~ N(u,02)
13 ~ uniform

Integrating out parameters “ij and o yields model M3a

M3c) General treatment structure on a 2 factor nested blocking structure
y ~ N(Xu,V) V= V(e2,02,02)

e.8. Yijx = aj + bk + oy + ﬁU + eijk

or with interaction:
Yifk = 9j +b, + Cik + o+ 51’} + €k

which can be reparametrised as:

Yijk = Wik % By ¥ gk

M3d) Two random effects crossed model

y = N(lu) V) Vs V(U’:,Ug,ﬁ:) i.e. yijk = WU+ otl- + ﬁj + eijk

M3e) Bayesian hierarchical model 2 crossed factors
Yijk ™ N(p + oy + ﬁj,o:)
@ ~ uniform
o; ~ N(O, cr:)
B; ~ N(0,0f)

Integrating out parameters o; and ﬁj yields model M3d.
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3.1.3 Matrix Results

In the algebra, a large number of.matrix manipulations are performed on
unbalanced dispersion matrices. The following matrix identities are frequently
used to obtain one inverse matrix in terms of another matrix inverse. Usually the

latter inverse is a smaller or simpler matrix than the original, or is already known.
(A + HWH)™! = AV A'"HH'AT'H + WY 'H'A™? (3.1.3:1)

Usually A will be a diagonal matrix, and hence evaluating A~} is trivial. Also H is
often a design matrix with only a single T in each row. This ensures that
T™! = H'A™'H is also a diagonal matrix. Even if A is not diagonal the resulting
numerical inverse is of smaller size provided that H has more rows than columns.
(This should always be the case if the model is sensible and a full rank parametrisa-

tion is used). If A and T are diagonal, then using equation 3.1.3:1 on

(H'A'H + W) = (17! + w)™! gives:
(A + HRH)™' = A™' — A'HTH'A™ + AV HI(T + W) 'TH'A™! (3.1.3:2)

This result requires only one non-trivial inverse né\mely (T + W)™}, whereas equa-
tion 3.1.3:1 requires two non-trivial inverses. Sometimes the W matrix has yet more

structure and equation 3.1.3:1 or equation 3.1.3:2 can be used on (T + W)"

(recursively).

3.2 Completely Balanced Factorial Models

Historically, balanced factorial designs have been popular since they lead to
orthogonal columns. For the Bayesian, balance is useful because it simplifies the
algebra of the model, and also reduces the computational burden of evaluating the
likelihood. Using Kronecker product notation (denoted by ®), it is possible to write
the dispersion matrix V as the weighted sum of Kronecker products of identity
matrices and square block matrices with common block sizes - see equation 3.2:1
below. Without loss of generality, all the examples presented in this chapter assume
a multivariate Normal error distribution since all spherical error distributions lead

to the same manipulations of the dispersion matrix.

In general a completely balanced factorial experiment with s-1 random (or

blocking) factors, factor levels L ATTITR 0] and replication s has a dispersion
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matrix: -
i fg
V = Z Kii i Jrl @ Jrz ®...9 Jr (3-2:1)
iliz...is 12°7"’s 11 2 . - s

where the summation is over all the binary permutations of zero and one for l‘ ‘z"'is
and J; = Ip. This is the form of dispersion matrix considered by Searle and
Henderson (1979). Note that no assumptions have been made about the fixed effect

structure.

Multiplying two matrices of the form given in equation 3.2:1 together will give
a third of the same form, and since the identity matrix is also of this form, it follows

that V! must also be of this form. Finding ¥v'! can thus be viewed as being

equivalent to solving 2% simultaneous equations.

Frequently the design matrix X can be expressed as a Kronecker product of
column vectors of ones and identity matrices. This is useful as X'V !X is then of the
same form as V, so evaluating (X'V''X)™! and |X'V"1X| is essentially the same

problem as evaluating V™! and |V].

Using the structure of equation 3.2;1 for the dispersion matrix, the eigen-values
and eigen-vectors of ¥V can be produced analytically. The eigen-values of V are
finear combinations of the Ki' with the multiplying constants being dependent on
the number of levels for each factor r,..., rs-1 @and on the number of replications r,.
This yields an analytical solution for V! and | V], hence the joint likelihood can be
evaluated efficiently. An extended description of finding the eigen-values and
eigen-vectors of such patterned dispersion matrices can be found in Searle and

Henderson (1979). Note that in a nested model with s-1 levels all the K1,i ey
preeerig

coefficients are equal to zero. This can be used effectively to halve the computa-

tional task of evaluating v'! using the analytic results.

3.2.1 Joint Posterior Density for the fixed effects and variance components

The joint posterior density for the fixed effects and variance components is a
function of V"', For completeness, in this section, the form of ¥ and V"' is presented

for all the models listed. Other models can be approached by the Searle and
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Henderson method. -

Example 1 Model M1

Consider the balanced one way fixed effects model M1, with p fixed effects
(al,az,...,ap), and q observations from each effect. Then yij = e +eU for

1=1,2,...,p, j=1,2,...,4 where € are independent identically distributed ~ N(O, c:),

that is:
: — 2 : -
y N(Xa,V) with V = ¢ Ipetq and X = Ip @lq.

Calculation of the inverse and determinant of V for this model is trivial, but it is

presented below in the form from equation 3.2:1 with n=prn=4q

Coefficients of V Coefficients of V™!

L

_ .2 - = =
Koo = % Ky =0 . Ky = %2 Ky =0
K,=0 K, =0 - K,=0 K,=0

. -1 1
giving vV ° = 0: Ip@Iq

Example 2 Model M2a

Consider the 1 way random effects model M2a, Yij = pte; + €5 Again assume

Normality so that ¢; ~ N(O,'o:), and €j are iid with &~ N(O,c:). This can be

written as:

. _ .2 2 =
y ~ NXu,V) withV = oalp@.'q +oeIpoIq and X = lpelq

hence in equation 3.2:1 5 = p,1, = ¢
Coefficients of V Coefficients of V!
2
1 —0,
K,=02 K. =o02 Koo=_2- Ko1= 2,2 2
00 € 01 Qa oe o-e (Oe +q°.a)
Ko=0 K, =0 K,=0 K,=0
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0’2

- 1 Q
ivingv! = <1 oI - —52—=1 oJ
g g a: P q a:(o':+qo-:) P q

The same result holds for Model M2b. -
Example 3 Model M2¢c

The randomised block design
y ~ N(Xu,V)
or Yijk = W + By + ey

= = 2 2
Thishas X = Ip®1q®1r and V = terp@IqQJr +0'€Ip®Iq®Ir.

hence in equation 3.2:1 n=bn=qn=r

Coefficients of V
- 2 (- - -—
Koo = % Kooy =0 Koo =0 K, =
— 2 ‘— —
o0 = 0 Kot = % Kijo=0 K, =0
Coefficients of V'!
K = _]L. K =0 K =0 K =0
000 ~ o2 001 . 010 011
. € )
Ko=90 K, =533 K, ,=0 K, =0

o
b
el _oJ

- 1
furi 1 - = J = —
giving V zlpelqor a:(o:-i-rog)"l’ a®’

%

Example 4 Model M3a

The classical 2 level nested random effects model

Yije = B toep+ By +e
ory ~ N(Xu,V)

X

1p®1q@1r

— o2 2 2
and V = aalpe.fq@!r + 0y Ip@IqQJr + o Ipotqel,.

hence in equation 3.2:1 n=pnL=aqL=r
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Coefficients of V
_ 2 - T - 2
Koo = % Kooy = % Koo =0 Ky, =0,
100 = 0 Koy =0 Kio=0 K, =0
Coefficients of V!
-l 2
1 b — 9,
K == K =-—52>s K. =0 K, = a
000 = g2 001 g2(g24rol) TO10 011 = (o2 +rof)(oZ +rol +qro?)
Kiow=020 Koy =0 Kijo=0 K, =0
giving
2 2
—c -
vl = — 2)(2“ 3 21p@.rq@.rr+—5—zc-’-’—é—1 eI, 0) + <1 0l oI
(°e+r°’b cre+rob+qraa) "e("e"'mb) P q o, P q

Example'5 Model M3c
General treatment structure on a 2 factor nested blocking structure

or i = Wik t o + By + ey

X 1p@Iq®1r|1p®1q®Ir orX = 1p®1qel,.
- 2 2 2
vV = cralp@.lqelr + oblpalq@.lr + oelpelqelr

clearly V7! is the same as in M3a
Example 6 Model M3d

The two random effects crossed model

'

ory ~ N(Xu,V)

X

lpelqalr
— 2 2 2
and V = oalpslqolr + crblpelq @Jr + o Ipolqolr

hence in equation 3.2:1 n=phnp=qL="T
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Coefficients of V

NS

- o2 = = - a2
Kooo =0 Koox =0 Ko:o =0 Kou = O
= — ol — —
100 0 Kxon =% Kno =0 ) 11 -

Coefficients of V™!

K =L K =0 K =0 - K _U:

= 2 = 3 B e———————
000 o; 001 0t0 o1t 0:((,:_,_‘1,.0:)

—cr;

K =0 K = —————

100 101 2 2

o-e(ae +prob) , .
K =0 Kk = ~0q %a
= = 27,2 2y 2
110 111 po, (cre +qroa) p(cre +prag )(o':+qro:+prog)

3.2.2 Marginal Posterior Density for the Variance Components

Recall equation 2.2.1:1 from Chapter 2:
p(oly) o VI X'V X Fexp-4y'v ly expyy VXXV X)XV y p(0?)
This requires the use of | X'V 'X| and (X'V"'x)"!.

The design matrix X can often be expressed as Hr ® Hr ®...0 Hr where Hi

1 2 s
represents either Ii or 11. Design matrices of this form always occur for factorial

models unless there are crossed fixed effects without interaction terms - see Model
M3c(i). If there are interaction terms, then after reparametrising, there can be a

single fixed effect term for each cell and hence a X matrix of the above form - see

Mode!l M3c(ii).

Given a convenient X matrix, | X'V 'X| and (X'V"'X)™! can be obtained easily
since X'V'!X has the same form as V. Thus such X matrices lead to efficient

computation of the marginal posterior density.
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- - i i i
XVX=(H_®OH.®...e H )’[zx Ies2e..et5|(H.eH ©...0 H )
n n s fly..dsn L s ( n n s

r

fzu ®..9 H JisH
LR s s s

i
=YK H . J'H_o H
itiz'“is rl rl rl rz

which is another matrix of the same form as equation 3.2:1, but with fewer levels

because some of the Hi correspond to 11. Thus this matrix can be inverted in the

same manner as V. Often the matrix X'V"'X is either a 1X1 matrix or a diagonal

matrix. In either case the evaluation of (X'V'X)™! and |X'V"'X| is trivial.

Example 1 Model M1

The balanced one way fixed effects model M1
. — 2 -
y ~ N(Xa,V) with V = o, Ipelq and X = Ipalq.
hence X'V!X = qo-:lp

which is trivially of the form given by equation 3.2:1

tar—1 -1 _ _1_1
(x'v'x) ‘ qa: b
Example 2 Model M2a The 1 way random effects model.

y NXu,V) with V Ua’pc"q"'oelp@'q and X 1p®1q

hence X'V"'X = pq®¢? + pqo?

1

XvVIX)y' = ———
( ) pa(qo? + ¢2)

Example 3 Model M2¢c The randomised block design

y ~ N(Xu,V) or Yiik = Wi + Bj + €k

V=opJ, el el + ol,el @I and X=1I,01 01
hence X'V7'X = qrzcglp + qro:Ip

2
—Ub _ 1 ’
2/, 2 2 2 p
qo, (ae + prob) p qro;

(xlv'lx)‘l =

Example 4 Model M3a The classical 2 level nested random effects model
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= o2 2 2 -
1’4 "a’p@"qe"r"'“blp@’q@"r+°e’p°’q®1r and X—lpolqclr

hence X'V'X = pq*ricl + pqrzag + pqro?

1
2 2 2
pqr(qro, + roy + o)

(xlv“|x)‘l =

Example 5 Model M3c General treatment structure on a 2 factor nested

blocking structure
e.8. Yjk = Wik ¥ o+ By + g _

V=o3l,0,0 +opl @l ) +oll @l el and X =1,8l 0]
hence X'V''X = ploglg @J. + opla ®J, + ol1, ®1,)

giving

. 2
% —0%

- 1 1
x'vix)t = =( J ®J + ——s——] @J + —I, eI}
P (o-: + rtrg)(cr‘:2 + rog + qro-:) qQ°r oez(c: + rag) q T aez q- T

Exampie 6 Model M3d The two random effects crossed model

y ~ NXw, V) or ype = H+oy+B+ey

_ .2 2 2 _
V= "a’p@"q@"r"'ob‘,pgtqe"r+°e'p®’q®'r and X = lpelqalr

hence X'V'X = pq®r’a? + p’ar®o} + pqro?

1
2 2 2
par(qro, + proy + o7)

(xlv‘lx)‘l =

A model that does not conveniently fit into this form is the 3 factor crossed
model. If there are no interaction terms, or only first order interaction terms, then
X cannot be expressed as the Kronecker product of H matrices, and the matrix
X'V™X is difficult to handle. If there are first and second order interaction terms,
then after a reparametrisation to get a single fixed effect in each cell, an X matrix

of the desired form is obtained. This issue is returned to in Chapter 8.
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3.2.3 Joint Posterior Density for a fixed effect and the Variance Com-

-

ponents

As shown in section 2.2.2 of Chapter 2, the direct way of evaluating these
posteriors is to multiply the posterior density for the variance components by the
density for the fixed effects conditionai on the variance components. This intro-
duces no new numerical problems. It is interesting to consider the alternative
formulation developed in the same section of Chapter 2. This involves the inverse of
the potentially unbalanced matrix X;V"Xz formed by the deletion of a row and a
column from X'V™'X. This unbalanced matrix makes the evaluation difficult. A
method is d.gveloped here for evalua}ing (X;V"Xz)" and lX;V-lle-_ This method
leads naturally to a method of handling more general unbalanced dispersion
matrices as developed in sections 3.4 (slightly unbalanced factorial models) and 3.5

(grossly unbalanced nested factorial models).

The method for handling X;V"Xz is illustrated by considering Model M3c(ii).
This has a row, column and interaction treatment structure on a 2 factor nested
blocking structure, and is the simplest model considered for which xX'vix is

non-diagonal, and hence the simplest mode! for which X;V"Xz is unbalanced.

Recall:

-1
Vi = atpelqo.rr+Y1polq®lr+81palqotr
g1 —
hence X'V 'X = p&Iq@Ir +PY1q®J,. +pBJq®Jr

thus X;V"Xz = p&I -

ar-1 ¥ PYDUL 42 dpn e 1+ PRIy (3.2.3:1)

In general, it can be seen that X;V".’{2 will be the sum of a diagonal matrix and
a matrix of blocks of differing sizes (caused by the deletion of a row and a column).
The second term can be expressed as HtVtH; where Vt is the balanced matrix
formed by collapsing the blocks of differing sizes to a single element, and

H

. = D[lk 1 ,...] indicates the sizes of the blocks. Thus:
1 2

X,V'X, = A, + H,V;H, (3.2.3:2)

where At is a constant times an identity matrix. The form of this decomposition is
crucial to the success of the method here, and the related methods for slightly
unbalanced models, and grossly unbalanced nested models. Note that the balanced

matrix Vt has one fewer level (in the sense of Searle and Henderson) than X;V"Xz.
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Equation 3.2.3:2 can be inverted analytically using equation 3.1.3:2 yielding:

(VX)) = A = ADH T HAL + A'HT(T, + V) ' TH A (3.2.3:3)

where T, is the diagonal matrix (H;A;‘Ht)". Note that T, + V, is also the sum of a
diagonal matrix and a balanced matrix of blocks. Thus it can be expressed as
A g t ":-1":-1”2-1' where A,_; is a diagonal matrix and V;_4 is a balanced

matrix. The procedure recurses trivially.

The calculation of IXzV"X;I proceeds as follows. Clearly X;V"Jtz has a large
number of eigenvalues of o: corresbonding to the replications. All the other

eigenvalues correspond to eigenvectors of the form v, = Hy,_4. These remaining

eigenvectors are the eigenvectors of the matrix H'(sz"po divided by the

replications. This form of determinant is calculated (recursively) in Section 3.4.1

3.3 Unbalanced Factorial Models

In this section, and the following ones, the effect of unbalance is explored. Two
different types of unbalance should be distinguished. The first type is where a
design was originally balanced, but one {or several) observations have been lost/are
missing/were discarded as outliers or a few additional observations are available, so
that the number of replications varies in one (or a few) cells. The second type of
unbalance occurs when no attempt at balance has ever been made, for example in
a two level nested model where the number of subgroups varies, and the number of
observations in each subgroup also varies. For clarity, the former designs are

referred to as being slightly unbalanced, whereas the latter designs are grossly

unbalanced.

A new class of slightly unbalanced models is introduced in section 3.4. It is
shown that all models that have only a single odd cell (too few or too many
observations in just one cell) can be tackled analytically. The inverse and deter-
minant of the dispersion matrix from such models are produced analytically. This

enables efficient numerical evaluation of these models.

Grossly unbalanced nested models are tackled in Section 3.5. An algebraic
technique is develop;zd that calculates the inverse and determinant of the disper-
sion matrix from an unbalanced nested model in terms of another dispersion matrix
with one fewer level. The technique can be applied recursively to yield an analytic

form for the inverse and determinant of the dispersion matrix. The theory from this
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section contains as special cases some of the slightly unbalanced models which were

considered in Section 3.4 - namely th; slightly unbalanced nested models.

Grossly unbalanced crossed models are considered in Section 3.6. For these
models complete analytic solutions are not available for the inverse or the deter-
minant of the dispersion matrix. However, algebraic techniques are presented that
reduce the numerical difficulties of evaluating the likelihood, by substantially

reducing the size of the matrix that must be inverted numerically.

3.4 Slightly Unbalanced Factorial Models

This section develops a new class of unbalanced models, namely those models
that would be balanced except that one cell has an odd number of observations.
These models are called “slightly unbalanced models”. Section 3.4.1 develops
procedures for evaluating the inverse and determinant of such dispersion matrices.
These are used in section 3.4.2 for the slightly unbalanced one way random effects
model. Section 3.4.3 produces the inverse and determinant of the dispersion matrix
for a slightly unbalanced 2 level nested random effects model, and section 3.4.4
does the same for the slightly unbalanced 2 random effects crossed model. These
worked examples demonstrate the technique for handling slightly unbalanced

models, though the procedure is directly applicable to any slightly unbalanced

model.

The basic technique used in the derivation of the inverse is to strip the residual
variance from the dispersion matrix leaving a block structured matrix. This is
collapsed to a balanced matrix by taking a single entry from each block. The
balanced matrix can be inverted analytically, and from it the inverse of the original

dispersion matrix can be derived.

Similarly the determinant is found by extracting all the eigenvalues
corresponding to the residual variance, then finding a simpler matrix whose

determinant is equal to the product of the remaining eigenvalues.
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3.4.1 Slightly Unbalanced Factorial Models with one odd cell

Consider a completely balanced factorial model with s-1 levels (in the sense of
equation 3.2:1) with dispersion matrix Vs, where Vs isa neXng matrix. Now suppose
that there are m observation(s) missing from the first cell. Denote the resulting
dispersion matrix by st, and the data by Y- Letr be the number of observations in
each of the n._, -cells except the first which has r-m > 0 observations. Then the

Ng_qr-mXng_sr-m dispersion matrix is:

LI !
Vs = o-eI+HVs_1H

whereH = D[1__.,1.,1,...,1.] and V-1 isthe n._, Xn._; balanced matrix formed

from taking one element from each block of st— o:I.

-1
Calculation of Vst-l

Using equation 3.1.3:1 on Vs':

-1 1, 1 -t -
v! =31 - SHEHH + ol V) "'H'

s O €
= —12-1 - --1-2-H(0'e2 vs-ll + dieg(r-m,r,r,...,r)) " 'H' (3.4.1:1)
o %

But o2V-!, + diag(r-m,r,ry..,r) = § — dlag(m,0,...,0) = § - ——TT'
€ s-1 Ne.q

where § is the balanced matrix givenby: § = ¢2V™!, + rI (3.4.1:2)
€ s-1 ng_q

andTisanng 4 Xng 4 matrix whose first row is ones and all other entries are zeroes.

is avector of length neq with the first element

Y
ThusT = 1n @Cn where C

s-1 s-1 Ne_1

as one, and the other elements as zero. Using equation 3.1.3:1

-1
n
. _ _ _ - s-1 -
(Uez v;-‘I + dmg(r-m,rﬂ'wn")) =5 l_s 'T T's lT - m Ins-l TS |

11 n

n—
SUosTiT(s, 7. - =lp  yirisTt (3.4.1:3)
s-1 m s-1

where S0 is the top left element of st

n m
s-1 -3 m 2 11
But (s  J - —1 = - - ( ) J
( 1ne 4 m "s-l) ng.1 Ms-1 Ng_1" 1=ms K Ng 4y
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thus T(s, J ~n—‘it YIT = (=m = mP il )diag(1,0...0) = — IT

substituting this into equation 3.4.1:3 gives:

2ot _ -1 _ ot m - TT'
(cre Vo1 + diag(r-m,r,r,...,r)) " = 8§ + T=ms,, no s
1. es)1. es)
= 5! + m Ng-1 177 ey !

l—-ms ne_4

where S is the column vector formed by taking the first column of $~!. Substituting

for (c 1 + diag(r-m,r,r,...,r))”! in equation 3.4.1:1 gives:
al es)1. es)
¢! i 1 -1 m Ng-1 % Ng-1 i) ,
VS = —il - ——2-H[S + T—ms )H
O % 1 Ns-1
(1, . es)a, es)
= 41— Sustw - LMy st s-1 H  (3.4.1:4)

O O % msy, Ns-1

-1
All the terms in equation 3.4.1:4 are easy to evaluate as § is balanced. Thus st has

been produced analytically and can be evaluated without too much numerical work.

-1
y'vily = yivl oy
1! es)1. es)
_ _Lyly _ _1_yt sy o - 1l m y! Mg-g 1" Nsg 1 y
U: s$’S 0.: s-1 s-1 oez ].—rnsll s-1 ns-l s-1

where y,_4 = H'ys is the vector formed from the sum of the y observations within

each cell,
-1 1 1 1
ys'st s = ?y; _i”s-]_s Ys-1 ~ z‘_‘1 o (5{y_1)® (3.4.1:5)
€

Ass™!isknown, S|y, _4 and Ys'-r""sq can be produced without effort ~ giving the

sufficient statistics for the y.

Note - Calculation of S~}

Note that though § was defined in equation 3.4.1:2 only s”! is ever used. The

definition of § involves V -1 SO the calculation of §~* requires the inversion of two
(balanced) matrices. This is unnecessary and also assumes the existence of Vs’_‘1

Alternatively equation 3.1.3:1 can be applied to equation 3.4.1:2 yielding:
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o2

-1 _ 1 _ & 2 -1 .
St =Sy - TV g o, ) (3.4.1:6)

This is a convenient representation as it only involves one inverse of a matrix that is

balanced, and er_l + cezlns_l is always-non-singular.

Calculation of |V]|

The likelihood evaluation also needs IV'I. Clearly Vt has ns_i(r-l) - m eigen-

values of cr . The remaining Ne.1 eigenvalues correspond to eigenvectors of the form

— ’
y, = Hug_g = (k1] 0k 100k

210K, r’ ,kns_llr), where Vg = (kx’kz’ka’""kn 1). Any

s-
eigenvector

v, of V' corresponds to an eigenvector v, of V
S 11 %31 s-1 s-1
+ 0 dlag(-—‘;;,;,;,..., ;) with an eigenvalue scaled by r-m or r. Thus:

1(r—1)—m

- 1 1 n__4~1
I o= 0 V,_y + 02diog( oy 23 Dl (reomyr 57 (3.4.1:7)

There are two ways of evaluating the determinant on the right hand side of
equation 3.4.1:7. The first method is applicable whenever the model is a nested
model, and calculates the determinant recursively. The second method is applicable
to all models, and works by comparing the eigenvalues and eigenvectors of the
matrix on the right of equation 3.4.1:7 with those of the balanced matrix with no

missing observations. The second method is more efficient, but is harder to

formalise. Both techniques are presented.

Method 1
o2
Note ‘;_1 + -;e—ln 1 is the balanced matrix that appeared in equation 3.4.1:2,
s-

Since the inverse of this has already been calculated, its determinant can be

obtained trivially. The difference between this determinant, and the determinant

on the right of equation 3.4.1:7 is oz(- - ——)IV' 1" where V' -1 is the matrix
2

obtained by deleting the first row and column of Vs-l + —rgl. But Vst—l is a matrix of

exactly the same form as V: except that it has one fewer levels. Thus using this

procedure recursively, one obtains IV:I.



2
to_ .2 ne_y(r-1)-m .‘Ti . mog ne_4-1 .
VIl = (o2 AR I ——r(r_m)lvsf_ll (r-m)r 517 (3.4.1:8)

Method 2

An alternative method is now presented that is applicable to all models. For

illustration conside_r the slightly unbalanced 2 level nested random effects model.

This has:

t = (o2yPa(r-1)-m 2 geooo 1
L = (o)) V; + og dieg(—,

=

1 -
T rees %) (r-m)rP4 1

But for the '-_-_1? term, the matrix on the right of this would have p(q-1) eigenvalues
2 2

o
of -f- and p of qcr:+ —f— The r_-lr-n- term destroys one of each of these eigenvalues,

and the two new eigenvalues must have eigenvectors of the form (l'glé-l'ofp-l)q Y.

Multiplying out yields two equations in A (the eigenvalue) and g.

2
‘2 _ 2_ 2 _ %
0,(q-1)8 = A~ 0y —0p — P
2 2 cﬁz 2
{ca(q-i) + oy + - - \g = -0,

Eliminating g yields a quadratic in \.
2 2 2 o2

O, o o
A2 M(02+0F + == +(q-1)as + 0 + =)+ (62 + 0f + ——=)02(a-1) +of + =) = (g-1)(0))*)

There is no need to solve this since the two A values are of no interest in themselves

- only their product is required and this must be:

0? o?
€
(62 + 0 + 7 Ye2a-D) + 0f + £) = (a-1)(e2?
= R;}m—){(o: + (r-m)ag)(o: + rcrg + qra:) - maazcr:}

Comparison with section 3.4.3 shows that the same results are obtained.

3.4.2 The slightly unbalanced 1 Way Random Effects Model

This is an extension to model M2a - the completely balanced one way random

effects model, and illustrates the technique for manipulating slightly unbalanced
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models that was developed in Section 3.4.1.

-

qg-m i=1
yl-j=p.+oci+e.. i=1,...,p j=1,....nl. n; =

Y q i#1
t . .2 2 ¢
U = 0 m + O2DUy e dg] = 021, o+ HYH
where H = D[1,_,,1,,...11.], and ¥, = U:Ip.
' 2 o2
Then from equation 3.4.1:25 = —I_ + qI_, hence §*! = ————I . This gives
o, P p o2 +qol'P

0,2

a
$, = c—-—;—;—g, and S as a column vector of $i4 and p-1 zeroes. Finally from
%2

equation 3.4.1:4

0

O _ 1 _m
v L1 - 45 DU 71-L o)

2 q-m’ q "' q 1-ms
% e O 1

2
SZ DIy 1 0g.qr--+r

where Oq,q is a g Xq block of zeroes.

i e LAty e
2 o': o-: 1-ms "q-m’711°q" " "u’q

1 % 1 1 1
= I - )], s
o: oez D 2+(q'-m)crz q-m’ ¢ +q<r2 9’ 024 qo

The determinant can also be calculated easily from equation 3.4.1:8

-1)-
i = @@P@ ™y e 2|+

q P| " qlq- m)lvtl (g-m)qP™!

where l;f is obtained by deleting the first row and column from t;

Q

_o-:+qc o+qo

2
= o2 £ = t-. £ ¢
But ¥ = cralp, hence V| + p I, . Ip, and V 3 Ip-l

Substituting:

2+qtr: ‘' ma? o+qo

1t = (n2yP(g-1)-m % p €
I = (og) V@ g

€yP-13 (q-m)qP?

= @PE ™Mo + qo2)P (0 + (g-m)od)

-1 : -1 -1
Finally as X'V} X is a 1X1 matrix, the calculation of x'g! X7 and IX'V x|

present no difficulty.
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3.4.3 Theslightlyunbalanced 2 level nested Random Effects Model with one
odd cell

This is an extension to model M3a - the completely balanced two level nested

random effects model.

r-m i,j=1
yijk = U+ (xi + aii + eijk i= 1...p ] = 1.-.q k= 1-..nij ni] = , i’j #1
— o2 2
vl = oy qr-m * 6PV Ipresn J 1 + 2D i J e dg ]
= o?f + HVH'
% ’pqr-m 2

where H = D[1,_;,1,,...01,), and ¥, = ofI, @1, + oI, ®J,.

Using equation 3.4.1:6

1 oF
-t _ 1 - & 2 -1
57 = Flpg = TR+ oelpg)
~oZ+rop P (o +rol)o2+rof +qro?) Ib®%
= Alp elq + BIp eJq
for appropriate choices of 4 and B.
1 1,
thus s, =A-+-B,and$l = A o +B
pq-1 Op(q-1)
Then substituting into equation 3.4.1:4
-l 1 )
W= Slharm -aAD[ eI dp] = 2BD[ ar-mIqr+-Jqr] (3.4.3:1)
€
2
) - (A+B)°J _,. (A+B)B1(g_1)r,r-m o 0
T g2l -ms 2 1Yqr,qreeigrgr
% " (4+B)B1._pm (q-1)r B Jq-1)r
To obtain IVJI use equation 3.4.1:8
. o?
11 = @RIty o+ 21|+ o=t b (emyrPe
o?

where Vzt is the matrix ‘; + —:il with the first row and column deleted.
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2 2
o, o2 + ro?
t,_ € b 2

V2+ rt_ - I - § +oa1pel
2 2 2 2 2 2
o o +ro oS + roy + qro
€ € b - € b

1y, + =1 ._r__.)P(q ¢ 2 a

= (u: + mt";)p(q'l)(crtz + r_a; + qro:)p/rpq

Using equation 3.4.1:8 on sz

2 2 2 2 2 2 2.2 2 2
IVTI _ (ae +rog, )p(q-l)-l 0, +roy +qro, . 0, +roy, |0 +roy, +qro, ! (@-1) p-1
2 r ar . P|" qlg-1)r qr p-1| (la-1a
= (o +rop yp(a-1)-1 (02 +rof + qrcr:)p'1 (o2 + rog + (q-l)r(raz)/rpq'1
Substituting:
(62 +ro? )p(q-l)(%z +rof +qra2)? ma?
-1)- b -
I = (o@Patr-1)m — S+ s p (rom)rPI
= (U:)pq(r-i)-m (a: + ro; )p(q-l)-l (c: + rog + qrtraz)p'1
{(cr‘,:2 + (r-m)a{";)(cre2 + rcrg + qro:) - mo:o:) (3.4.3:2)

-l “
Finally as X is a vector of ones, Jt"gr X is a 1X1 matrix so (x'vsf X)! and

-1
1 x! P;f X| are trivial.

3.4.4 Slightly unbalanced two random effects crossed Models with one

odd cell

This is an extension to model M3d - the completely balanced two random
effects crossed model.

r-m i,j=1
yijk = ai + ﬁj + Cijk i= 1---p ] = 1...q k= 1-.-n‘-j nu = r l,j # 1

where H = D[lr_m,lr,lr], and ¥V, = 2I @J + crgJ @I

then from equation 3.4.1:6
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1 op
= =2 - £ 2 -1
L r’pq r("vz"'aetpq) -
2
=1 - -(:e-(ozl +ro’f_®J +rolJ oI )}
r pq r T e€pq ap . q b’p q

The techniques for a balanced matrix give:

2 2 2 -1
(Uelpq + rcralp eJq + r(rb.tp qu)
2 A 2
ro ro
° I

1
= =] @l - —5—5g——] @) ~ .7 ®
2 2,2 3 2,2 3
0g P q o-e(ae-i—qroa) P q cre(ore +proy) P q

ro: ra; {(t:r‘:2 + qro:) + (0': + p}'o; N

.2 Y T (o2 2 7y © 7
og (05 +qrog)(eg +proy )os +qro, +proy) P~ 4

Hence

2 2
o o
a b
———=1 _ ®J_ <+ J eI
3,2 3 T3 2. o3y
og (0 +qro,) P q og (g +proy) P 'q

s =

ro2 ol (o2 +qro2) + (o2 + prof)) ) o
a:(a': + qrcr:)(cr‘:2 + prog )(cr: + qrcr: + prog) P "q

- -1
Substituting this form of ™! into 3.4.1:4 gives V! .

Determinant of st

The determinant can be evaluated directly using the second technique from

section 3.4.1, First use equation 3.4.1:7
-1)- 1 11 1 -
Itgfl = (a:)pq(r 1)-m v, + o:diag(m,;,;,n_’;) (r-m)rP9-1

2 2 2 1 11 1ys
Thus the determinant of “a’p qu + °b"p @Iq +0g diag(—— reres r) is needed.

r-m’r'r
Pretending the r-m was an r, there would then be (p-1)(q-1) eigenvalues of cr:/r, p-1
eigenvalues of qo: + o:/r, q-1 eigenvalues of pog + oez/r and one eigenvalue of
qa:-*nﬂg + 0:/7'. Since there is an r-m and not an r it follows that there must be
(p-1)(g-1)-1 eigenvalues of o:/r, p-2 eigenvalues of qu: + a:/r and q-2 eigenvalues

of pcg + c:/r. The missing 4 eigenvalues must have eigenvectors of the form:
Cp@Cq + xcpolq + y1pocq +zlp®1q

where Cp denotes a vector of p elements, of which the first element is a one, and the

remaining p-1 elements are zero. Multiplying out yields four different equations.
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- 2
o
oaz(1+qx+ y+qz) + og(1+ x+py+pz) + ;-_-c;(l+x+y+z) = A1+x+y+2z)
2
c
c:(1+qx+y+qz) + o;(x+pz) S+ Te(x+z) = A(x+2z)
2
o
o2(y+qz) + op(l+x+py+pz) + -:—(y+z) = Ay+z)
. . %
0, (y+q2) + oy (x+pz) + —z = Az

Subtracting the second and fourth equations, and the third and fourth yields:

2 oy a2 2
x oa/l.‘ where l’x"" q9, oe/r

2 - 2 2
y % /L2 where L2 = \ - poy, - oe/r

Then the fourth gives:
z = (c:y+o;x)/l.° where L, = \ - qo: - poj - o;"/r

Finally (first plus fourth) minus (second plus third) gives:
2 o2 o2 2

0g e mo,
A= ;—r’-;(1+x+y+z) - T(x+y+z) = )(x+y+z)

- £
r-m - r(r-m
substituting for x, y and z and rearranging:

2 mo?

..f.‘_.)L LL ._.E._(
r-m°71727°3 — r(r-m)

(N — ang(La+o:)+o':L2(La+og))

This is a quartic in \, but only the constant term is needed, as only the product of the

\'s is required. Thus the awkward determinant is:

1

| 11
2 — - - -
V, + o diag(oo= 71700 =)

2 0,2

2
o o
_€ \(p-1)(q-1)-1 2, €\p-2, 2.  _€.q-2
() (qog + =) "“(poy, + =)
2 2 2 2
(o] g o o
8 (00?4 € )po? + ~S)(qo? + pol + &
(o (0, + T )poy, + 7)(q0, + POy, + )
2 ) 2 2 2 02

o ¢ (o
- r(r-:n)("g("":"' =)((@-1)0F +poj + —)+ 0z (poj + —)(qog+(p-1)op + )}
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3.5 Grossly Unbalanced Factorial Nested Models

In this section nested models that-are grossly unbalanced are examined using
the same techniques as for slightly unbalanced models. Though superficially
complex, these designs may be practically sensible as they can allow more informa-
tion to be gained about the higher levels of the design. By contrast a balanced nested
model usually supplies detailed information about the residual variance, and the
low level variances, and only scant information on the higher levels. Anderson
(1973) describes the benefits of unbalanced nested designs, or staggered designs as

they are also known.

A general method for handling unbalanced nested models is developed in
Section 3.5.1. Both the inverse and determinant of the dispersion matrix from a s-1
level model are derived in terms of the dispersion matrix from a s-2 level model.
Thus the inverse and determinant can be calculated recursively. This section
parallels the work of La Motte (1972), who used a similar recursive technique to
tackle any unbalanced nested model. The results are equivalent. It is also observed
that this technique enables unequal residual variances to be used without difficulty

for all factorial nested models.

These results are illustrated by Section 3.5.2 which details the 1 way random
effects model. A special case of this is the slightly unbalanced one way random
effects model, and it is shown that the results agree with those in Section 3.4.2.
Section 3.5.3 which details the 2 level nested random effects model. A special case

of this is the slightly unbalanced 2 level nested random effects model of section

3.4.3.

3.5.1 Grossly unbalanced s-1 level nested random effects model

The algebra in this section is a generalisation of the algebra for the balanced

[l

nested random effects models such as models M2a, M3a, M3c. Analytic expressions

are derived for the inverse and determinant of the dispersion matrix Vs from any

nested random effects model, allowing arbitrary replication at any level. Define tg

recursively.

- a2 ’ = a2
VH-I = ci+11+H‘V(Hl wherel; oll
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- —_ 2 ’
thenV = V, = ol +H, 1V, He 4

-

Note that the stretching matrix Hs-l contains all the unbalance at the bottom level

of the model by containing the number-of replications within each of the observa-
tional cells. Similarly the matan -2 contains all the information about the number

of cells at the next to bottom level of the model.

For later convenience define Yo =Y and Ts = ], then use equation 3.1.3:20on V,

v, = (02T, + H,_yV,_H; )7 ' (3.5.1:1)
1 - _ 1 1 - 1.
= ah - T He (He 55T H, ) H =T
S S S S
1 1 -
+ ST Hy y(Hy y S5 TH, )
GS S

1 - - .
((Hg_ 3 5T Hg_ )7 + v )™
S

o
H 10 y'H AT
s-1 °sz s “'s-1 s-1 °sz s

Now use the recursive definition for V. -1 °n a term from above:

v 1 -1 PTITES 3 -1 2 '
(H -1;;27s He 1) + Vo q = (Hgy sz"s Hg )7 + oo I+ Hg oV oHe o

1

Define T, , = 2 (tzr'_102 Ho ' +1 (3.5.1:2)
%-1 s
1 .- -1 = o2 .
thus (Hg_y —5T0'He )7+ Vooy = of Ty + He oV oHy 5 (3.5.1:3)
s

Note that since 1; is diagonal, so is Ts-l’ and hence recursively all the T matrices

will be diagonal. Substituting for equation 3.5.1:3 gives:

1. 1 ' g .
1 . 2 1 _ 2 l 1 ' 1
o=k (,sz’s s-1(Hg g g Hg )" He 4 T,

-1 J -l 1
Hy_ (H. TJ'H, Y
2 ! -1
(05.1Tg.y + Hg oV oH 5)

(H,_4 T 'Hy ) 'Hy 1! (3.5.1:4)

Recall fhat Ts is diagonal and so also is H 11‘ H -1° Consequently the inverses of
these two matrices are trivial to calculate. Thus the only non-trivial inverse in

equation 3.5.1:4 is the inverse of 03_11‘3_1 + H 2 ZH;-Z which is of exactly the
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same form as equation 3.5.1:1. Thus the process can be applied recursively.

It is required to calculate y 'yt y= y'V"ys effxciently

lety o = (Hg yTJ'Ho ) 'Hy (T y,

then ys'V"ys = —2ys'1's"ys
_ I SR ’ -l 1egt -1
ty:”srs Hy y(Hg (T He () He 1Ty

-1
+ Y1 Vo1

This clearly recurses. All the T matrices are diagonal. Note also that if the original
observations had unequal residual variances, then this would make T, not equal to
I, but would not complicate the algebra in any way. Thus unequal residual variances

can be handled without difficulty.

Calculation of lel

The calculation of the determinant of i; proceeds in a similar recursive

fashion, along the lines of the recursive method in section 3.4.1.
[o72v.| = I+ H v .o |
O 's! = -1;5 -17s-1

This clearly has many eigenvalues of one, the others all corresponding to eigenvec-

tors of the form vy = Hs-l"s-I' Suppose the eigenvalue associated with U is A then:

1
I+H__ -o—,t; 1Hy_4)ug = Ay
S
1 ’ _
(I+H -1;;5‘2- Hg y)Hg 1V q = MHg_qvu._4
1 ’ —
Hy (I + = Vo gHg gHe 1% 1 = Hg ghug
S

Thus the non-unity eigenvalues of I+H -1 012 Vs-l" - are the same as the eigen-
s

values of l+;13Vs_1H'_1H "
s

-2 - 1 1] "
hence Icrs Vsl = |I+ "sz V._1He 4 H -1' (3.5.1:5)

Note that the determinant on the right hand side is a matrix with one fewer level

than V. Now repeat the procedure. First replace V;_; by osz_ll +H,_ oV, _,H, o
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2
og
-2 _ 1 ’ '
log"vgl = I+ o7 Hs-1Ms-1 2Hs 2%-2Hg2Hy 1 Hg 4|
1 -1y 2
logVel = I+ ——H,_,V,_ SHL ST T S e H ) (3.5.1:6)
5-1 g .
cz )
where T, =1I+ H, as defined i tion 3.5.1:3.
-1 P 1( -1He ) n equation 3.5.1

The T matrix is diagonal, and so is the matrix in the second determinant of equation
3.5.1:6 - hence it is trivial to evaluate. The first determinant can be treated in the
same manner as the original V, determinant This procedure can be repeated
recursively. Thus:

2

- 051 1
loJ2V | = IT;_, — —H,_ H__4III + p VeoHg oTo  Ho ol (3.5.1:7)
o s-1
of1 | -2 1
- 5= ] S 1 ’ ¢ -1
= 1T g~z Hg g He 311 + —5=H 5T He 5 + —5—H 3V, 3H gH, 5T 1 He ol
s s-1 s-1
o7y 9s-2,
S~ Y] S
= 1517 HegH I+ 3_1" Ve-3He 3T a7, 5= oZ, s-2T5-1Hs 2]
02 1
! ! ’ '
=17y 2 S H,_H 1T, z z ”-27-1 s-2|“+;5—1'Hs-3vs -3Hg_3Tc
z _

-1
with 1;_2 =]+ 2 ( _z $‘1H _2)

3.5.2 Grossly unbalanced 1 way random effects model

The inverse and determinant of any arbitrarily unbalanced nested model ?zave
been constructed recursively in section 3.5.1. By way of illustration, consider the

unbalanced equivalent of model M2a - the one way random effects model:

Yy = w + oy + €y o« ~ N(O,o:) i=1,2,..,P
¢ ~ N0 j=12,..,q n= §qi

Alternativelyy ~ N(p.,Vz) where the dispersion matrix for this model is denoted by

i;, the subscript 2 serving as a reminder that there are two variance components.

Then
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- o2 2 )
=9, + UaDuq"lqz""’1qp].D[1q,’1qz""’1qp]
- ol 4
Vz - °2In +H1V1H1 -~
2 __ .2 — - a2 2 _ 2 .
where o = o, H = D[lq"lqz""'lqp]' ‘; = ole and oS = 0, (3.5.2:1)

Note that the stretching matrix Hx contains all of the information about the

unbalance in the design. Also note that H;Hl is diag(ql,...,qp). Now let T, = I:

200 _ eyt Ll pmigr -t 2
o Ty = (T, H) " + o1
2. 1 2
= ogdiag(—,... —) + 0,1
q
1 p
2 2 2 2
1 .. % *+99% 9% +495%
1" = ——2-dlag(-—q-——,..., ——q-—-—-)
% ! P
q
T! = 0, 2diag( P__y
! 2+qx a “ +4q, :

then substituting terms into equation 3.5.1:4 gives:

V' = L1 - LHHH)H, + HHH) 62T HH) ' H]

€
1 1 1 2 1 ' 1 1
= —{I-D[=/J l+o D[ -——-——-J --—-——J 1
2 2
1 % %
= —={I-D ———-J v ———J ]} (3.5.2:2)
A TR

Thus ‘;" has been obtained explicitly. The determinant of l; is equally straight

forward using equation 3.5.1:5

1 % P %
loy2l = If+ < VHH| = II + —3dieg(q,....qp)| = I+ q";f)
2 e

p
%l = @I + o)
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Special Case - the slightly unbalanced 1 way random effects model

Note that if q, =q-m and q=q feri = 2,...,p, then Vz is the same as for the

slightly unbalanced model from Section 3.4.2. Substituting for Qpreeer qp in equation

3.5.2:2 gives:
2 2 2
1 % % %%
Vv!= S({I-D J I yeeey 5—3J,
2 or:{ [c:-i»(q-m)o: 9-m’0%+qo27a""""" 02+ qo? 1)
~ ¢~2\0(g-1)-m, 2 2\p~1; 2 2
Il = (2P (02 + qo2)P™" (o2 + (q-m)o?)

The inverse and determinant are of course the same as those obtained in Section

3.4.2, but this section is far more flexible and allows far more unbalance in the

design.

3.5.3 Grossly unbalanced 2 level nested random effects model

As a second illustration of the technique, consider the unbalanced equivalent
of model M3a - the two level nested random effects model. Allow an arbitrary

number of observations (nU > 0) within each cell, and an arbitrary number of

subgroups within each group.

yijk = WU+ ai + ﬁl.j + eijk ai ~ N(O,Uaz) {= 1,2,...,P
By ~ N(O,0p) i=12,..,q
eijk ~ N(O’U:) k = 1,2,...,"{] n= Znij

then y ~ N(u,Va) where

_ .2 2 : '
V, = o2l, + o} 0[1,,“,1,,12,...,1npqp]o[1n“,1nw,...,1npqp]

2 ’
+ o D[1 1 R | D[1 1 S |
a O non ’"‘p.:I [ ny oy M "p.:I

= o2 ’
‘g = 0 'n +szsz

2 __ .2 =
where 0, = 0¢» Hz = D[ln“plnizn--r lnpqp]l
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and V

2 2
crblq. + oaD[lql,....lqp] .

2 ’
ozlq. + Hl VlH‘

= ol - 2 _ .2
where t; = oll . Hl = D[lql,....lqp] and o = o,

Note that H;Hz is diag(n“,nlz,..., npqp). Let 1; = [, then from equation 3.5.1:2

2 ' 1 -1 2
o, 1'z (I-I2 a: TQHz) + 021

1 1
Oczdiag(;l—‘,..., n

1t pqp

2
)+cbI

2 2
oZ+n, op % *Mpq %
p
diag( n geeey n
it pqp

)

Then from equation 3.5.1:4

r . 1.1 PR fyp \=17n2 -1 -1 )
v, = %21 G:H,(H,H,) H, + H(H H )" (o, T, + H,VH)"\(H;H,)"'H,  (3.5.3:1)

Now use the same argument again, or alternatively use equation 3.1.3:1

-1 _ 1 g e ~1y=1p-1 1
T, - ozrz Hx(onzrz H +V)'T, ol
2

2 7y=1
(?T,+HVH)"' = : 2

“in e

hence substituting this into equation 3.5.3:1

1 1,1 'HYH
v = %21— “3H,(H,H,)"'H,
€

. S e P
+ HyHHY T L),

rep -1 1 p-t b QRS Lol B QU e
- H,(H,H,) ;zirz H, (H, O:Tz H + V) o_zzrz (HH,))'H,

The only inverse which is not already known to be diagonal (and hence trivial) is

(Hl'--l-z-rz"nl + l‘")" which can be inverted as follows:
o,

2
n n
H;-%T;'H‘ + V! = dlag(z:—;?lj—z,l...,z—?—-EL——z-) + —l—zlp
o I % TM;i% J % tNpi% !

n. n
1 -1 -i\=1 2. 2 if 2 pJ -1
(H'—ET H + V! = oldieg(l+0’3 ———=,..., 140 ———"—3)
lo; 2 1 ! a ai°s+nlj°b ajo€+npjcb

Substituting for this gives:
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Va" = —151 - -lz-sziag(-L,...,—}—)H'
o o, n n 2
€ € 1n Pqp
1 1
2" diag(-— + o n 1 ) 1 2)”;
O¢ "1 "uob P4, % +"pqp°b
1 . 1
- H,dieg(— T ey =3 )
2 o, +n, 0y | ¢ +n °b
Hlo:r:diag(l+o-a"’2——L ,1+022——-L—) 'H'
i 1]°b J % ¥T"pj%
1 1 p
diag( 2 T e 5 z)H
+n, ot ‘o +n
11°b € qp %
Simplifying this yields
2
o
- b 1
V' = "—21"' "—' [ 2 31 ] y 2 J ]
3 ¢ oe 0, +n“ob L o +Npq 9 pa,
1 1. 1

2o((1+a=§:—¢—L)“J ,(1+o=22—n——2)' y
1 j +np]cb p

"1j°b
1
Dl——— 5Iy v —9, 1 (3.5.3:2)
o +n“ob 11 (Te+npqp0‘b pqp

The determinant of ‘Q is obtained from a direct application of equation 3.5.1:7

2
) 1
- -1
lo]2V| = IT,-SHJH,IIT + S VHT'H|
a 2
ot+n og ° +Nhq g
where T, = -—lz-dlag( £ L yooo = P )
b M pq
p
0’2 1
hence Tz;'ziH;Hz = ;qdiag(o:+n“o;,...,a:+npqpo;)
€

02 p.q;
IT,~3H;H,] = (":)-q}%(”:*"ii“g)
3 'Y b
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n
I+ SVH'T'H = diag(1+}:——1-f—“— ,1+)3__M)

02 12 T T Y 2+ 11 jo€+np]
hence -
pyq;
Iyl = ("9 ll'l C +n,joz)ll;11(1+27—;5) (3.5.3:3)

Special Case - the slightly unbalanced two level nested random effects

model

By way of example suppose that n,=r-m and all the other "i] = r. Suppose
there are always q subgroups within each group. Then ‘g is the i;T from the slightly
unbalanced model in Section 3.4.3 Substituting into equation 3.5.3:2 yields the
inverse ‘;T’

2

- o
! 1,-2%p 1 J 1 __, 1
Y cr.:2 o: [c:-l»(r-m)crg "m'o:-f» rtrb2 "'""o':+rcrg 2
1 .1 1

- D[ 2 2 1 [ 1 pees
- r-m?' 42 2 Spreey 2 2
O¢ +(r m)a o, +ro, 0g +roy,

(cr +rcrb)(a +(r-m)ob) o:+rag c:+ rog
5J J ...
(02 +(r-m)oZ NaZ+roZ+qro2) —moZoZ 4’ oZ+roZ+qro 4" oZ+raZ+qro’ q

02[

1 1 1
A +(r-m)oy, r og +roy og +rao, r

2 2
Vf" _ _l-’ 1 AD[J. L0~ 2,_ moy, - o o 1
3 - : ;-ci r-m’ r~-0' r cez (o_ez+ro;)(oe2+(r_m)o_§) r_m) r,rn-- r'r
1 Plom Ql(q-l)r,r-m
- 2P Ry VB preeesBI
% Q1 m,(q-1)r (g-D)r
o; o202
where A = ——— and B = ) —7 5 .
o: + rag (og + roy)(og +roy, +qro;)

2.2 2 2
0, (0g +roy)

here P = -
where [(o:-o»(r-m)crg )(a:+ro;+q ?'0:) - mo:Stga)(o:+(r-m)og)

2.2
%%
o2a?

(02+(r-m)ab)(02+rub+qroz) mo_o,

Q=
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2 2, 2 2
0, 0, (ae +(r—m)ob)

and R = =
[(cr:+(r-m)a; )(0:+rcg+qro:) - mo:o:}(c: + rcg)

Now evaluate Q—B and A +B and compare:

(Q-B)/030? =

2, 2,2 2 2.2
m(crb(cre +roy +qrcra)+ oeaa)

Z XY} p) 2y((o2 2y(5? 2 2
(0g +rop)og +roy +qro, H(og +roy)(og + roy, +qrog) - m(cg (o: + rag + Qrtr:) + a:o:)}

2, .2 2 2 2.2
°b(°e +rcb+qrcra)+oeca)

A+B =
(ae2 + rcrg )(o: + rog + qro:)

m(A+B)B
thus @-B = —_——l—m(A-l»B)
Rearranging

242
mB? m(oy) m(A+B)?
R-B = ————and P-B+ =
1-m(a+B)°" B (a: + r(rg)(o: + rog + qro:) 1-m(A+B)

Substituting for all these leaves:

tt_ 1,1 S
A2 G:AD[J N S & U:BD[qu_m,qu,...,qu]
2
1 " : (A+B) "r-m (A+B)Bl(q-1)r,r-m . o
21 —m(A+B) 2 reqr,qr i Uqr,gr
ce (A+B)B lr-m,(q-l)r B J(q_l)r ! !

This is of course ldenflcal to equation 3.4.3:1

%) = GAPITTPY a2 4 ro )P (02 4 o)
ol + rog + qro? p-1 ((og + (r-m)op)(oZ +rof + qrog) = mogog)
o: + rvg (°'e2 + rcrg )(082 + (r-m)og)
51 = PTG e PV o2 rof s aro

(2 + (r-m)a )02 + ro} +qro2) —moZol)

This is of course identical to equation 3.4.3:2
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3.6 Grossly unbalanced Crossed Designs without Interaction

-

For these cases an analytic solution to the inverse of the dispersion matrix has
not been found. A method is presented which reduces the computational burden
substantially by replacing the numerical inversion of ¥ by that of a series of smaller
matrices. The technique is however much worse than all the other techniques
discussed - see section 3.7 for a discdssion. Consider model M3d - a two random
effects crossed model withoutinteraction. Thus the observation from a cell depends
on a row effect and a column effect, and an error term, where both the row and

column effects are random. Thus:

Yijk = %+ B+ o ~ N(0,62) i=1.2,..,p
Bj ~ N(Ol(’g) i=112,...,q
CU ~ N(O,U:) k = 1,2,...,n‘-j

Alternatively:

y ~ NX,a +X,a

2 z"g)

where X, = D[1. ,1 erl ]
! n’ "z.' ’ Ns.

s
'D[1n“,1nu,...,1nlq]

el ]
and X. = 21" 22" Mg
2

2 2 ’ 2 '
and Va = o, In + 0, XlX' + oy, szz
The subscript 3 on the g serving as a reminder that this is a 3 variance component
2 2 ! R . -1
model. Now let V, be o/ I, + 0, x,xl and use equation 3.1.3:1 first on V, to get Vz

explicitly, thenon V:

(]
1 1 oF

- € -1 ot

vi= =1 - SX (XX +=01)'X

2 U:In o: 1( 1% c: p) 1

-1 _ -1 1 ? o1 _1_ -1yt -}
v =Y —t;'Xz(szz X, + aglq) X,V

»

Thus the inverse of ‘:': can be calculated numerically from the inverse of a q by ¢

matrix. This is a much smaller task than inverting t;
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In general consider an s level crossed linear model with replications BTy eens T

and random effects a e, ..., ag. This can be written as:

1 s

y = (a,), +(a,). +(a ), ¢
lllz...is] £, 2%, s ls illz...ts]

j = 1,2,..."-

{ =1,2,... i =1,2,.. i, =
1 Greely 1200y g = 1200 8 S
y ~ N(X'al +X,a, + ... +xs¢s'vs)
- 2 2 ’ 2 ' 2
where Vs = I + 0, X X + ozxzxz e + osx,xs
—_ 2 '
- Vs-l + °sxsxs
— 2 2 ’ 2 ¢
where V.4 = olf, + o X, X, +0, XX, +0 Xs 1X -1
-1 ’ -l 1
then V, = V; 1X (X 1X + azt )Xs s_

to evaluate this requires a s by s matrix to be inverted numerically as well as ‘g-l'
Recurse and note that V is analytically invertible. Thus V"s can be inverted in terms

of a series of inverses of sizes r, o Ty and r,. Note that since there is not a

Ts-1
matrix of size r, to be lnverted, then the data should be arranged so that r, is greater

than the other Ty

3.7 Computational Considerations

The purpose of this chapter was to examine ways of efficiently evaluating the
likelihood function to enable Bayesian analysis, based on numerical integration, to
be feasible. This section provides an order of magnitude guide to the effort required

to evaluate the likelihoods for the models discussed.

In Section 3.2, and thereafter, frequent use is made of balanced dispersion

matrices. Following the methods of Searle and Henderson, the eigenvalues for a
dispersion matrix from a s-1 level model can be obtained in about s.’c’.s'1 multiplica-
tions, thus giving |V,| in (s+2) 25-1 multiplications. t;" takes 25251 425 = (s+1)2°%
multiplications and ys'l;"ys takes (s+2) 2° multiplications. Both |V, and y/V™'y_ can
be evaluated in (s+3)2° multiplications. Thus a 2 level model (nested or crossed)

takes about 48 multiplications, and a 3 level takes 112 multiplications, regardless of

the number of observations. Since nested models have many zero coefficients in
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equation 3.2:1, an s-1 level nested model only takes as many operations as a general

s-2 level model.

Section 3.2.2 for marginal o2 uses.two balanced matrices V and X'V"X, the
latter having fewer levels. Thus the number of multiplications for the former
dominates the number of multiplications for the latter. Similarly for Section 3.2.3
for marginal al,c’. Though the matrix X;V"X2 is unbalanced, the recursive
method for manipulating it is efficient, and the number of multiplications handling

¥V should dominate as V has more levels.

A slightly unbalanced model from S;ction 3.4.1 with s-1 levels requires an s-2
level balanced matrix to be inverted in the calculation of $”!. Method 1 for the
determinant requires a series of balanced matrices from s-2 levels to 0 levels.
Method 2 requires the determinant of an s-2 matrix and a similar amount of work for
the extra A values. Method 2 is thus more efficient and the number of multiplica-
tions is approximately (3s+4) 25-1 This compares with (s+1) 2571 £or a balanced
nestgd s-1level model and (s+2) 25 for any balanced s-1 level model. Thus the slight

unbalance increases the computational load for a model by about a half.

The grossly unbalanced nested models in Section 3.5 require the inversion of a
set of diagonal matrices (equation 3.5.1:2) and a the determinants of a series of
diagonal matrices (equatibn 3.5.1:7). These are dominated by the number of cells as

this is the number of operations for the biggest inverse and determinant.

The unbalanced crossed designs without interactions from Section 3.6 require

a series of inverses of sizes AR A and thus the number of operations is

k<]

proportional to 153 + o+



Chapter 4
Non-Informative Prior Distributions

4.1 Introduction

One of the strengths of Bayesian analysis is the way in which it allows the data
to modify your beliefs prior to the experiment, through the likelihood, yielding a
posterior distribution encapsulating both the prior beliefs and the data. This
posterior distribution can subsequentl‘y be used as the prior distribution to a later
experiment and so on. There remains the question of choosing an initial prior
distribution to the first experiment, when the experimenter is in a state of
considerable ignorance about the true or likely values of the parameter(s). Hope-
fully the information supplied by the data in this experiment will vastly outweigh
the information supplied by the initial prior distribution, and then the particular
initial prior distribution that is chosen will matter little. Nevertheless, it is wise to
use a non-informative prior distribution, so that the contribution to the posterior

distribution made by initial prior distribution is small.

Two alternative philosophies for selecting non-informative prior distributions -
for linear models are explored. In sections 4.2, 4.3 and 4.4 the ideas of Jeffreys
(1961) are presented, and the standard Jeffreys’ priors are proﬁuced. Section 4.2
outlines the principle of Jeffreys’ priors, and section 4.3 deals with Jeffreys' priors
for Normal models. Section 4.4 is concerned with Jeffreys’ priors for models with
general multivariate t errors. The latter priors are shown to be the same as the priors
from the equivalent Normal models. In section 4.5 the information theory approach
taken by Bernardo (1979) is given. Despite the different theoretical justifications,

both philosophies lead to the same prior distributions for the models considered.

4.2 Jeffreys’ Priors

In any model, there is always a certain arbitrariness about the choice of
parameters. Suppose the observations (yi} are known to be from a Normal distribu-
tion with unknown mean 0 and unit variance, thus  ~ N(0,1). Suppose however
that the quantity of interest was not 0 itself but some function ¢(8), for example 1/6
or \/5 In the model specification, this presents no difficulty, but difficulties arise

with the choice of non-informative prior distribution, as a uniform prior on 8 will
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not be uniform on ¢(0).

The information about 0 in the-data is expressed through the likelihood
function. In general, the location, scale and shape of the posterior distribution will
depend on the data y. If however for some choice of 6, or a 1-1 mapping of
6 — ¢(60), the shape of the posterior distribution remains invariant, then the
posterior density is termed data translated. The shape of the posterior density for
¢(8) is determined a priori. The experimenter can thus express prior ignorance
about 6 by saying that no value of ¢(6) is preferable to another. That is by taking a
prior that assumes ¢(0) to be locally uniform, the resulting posterior distribution is

seen to be a function of the data alone.

For a normal distribution with an unknown mean, and a known variance, this
corresponds to a uniform prior on the mean. A normal distribution with an known

mean, but unknown variance 02, gives rise to a non-informative prior of 1/02.

It is not generally possible to find a transformation that prc;duces the data
translation property, and hence it is not possible to produce exact non-informative

priors. The metric ¢(8) for which a locally uniform prior is approximately non-

informative is:
do 3
55 = (i(e)

where {(0) is the Fisher information defined by:
2 2
i(8) = ~ E [d lo 2p( ) ] = E [dlogdge(zle)]
yle d-0 ylo

This result was first given by Jeffreys (1961).

The argument generalises to multi-dimensional problems yielding
p(0) o Iin(O)Ii for a vector of n parameters. However care should be taken before
mechanistically applying this result, especially if there are different types of
parameter in 8. Sometimes it is known a priori that certain sets of parameters are
independent of each other. For example, location parameters @ and scale parame-
ters o? are frequently assumed to be independent a priori. In such cases
p(8]02) = p(8) and hence p(8,02) = p(8)p(c?). Then the non-informative prior
distributions p(0) and p(c’) should be calculated yielding:

p(8,0%) o« i@ I (o)1



-63 -

4.3 Jeffreys’ Priors for Normal Models

Consider a set of observations y from a multivariate normal distribution with

2 are unknown. Decompose V into its

s
X\.;5,. The S, matrices are the
1 vl i

mean 0 and dispersion V(02) where o
eigenvalues xi and eigenspaces Si giving V =
i-

S m
eigen-projections of the A; and have ranks m;. Hence vl = T1 A {, The likelihood
i=1
for this model is then:

s -Jz-ml s - .
IA|y) o ir:]lkl exp-i_zlki y'S;y
- t-

s s
L(\ly) = logl(\|ly) = constant — %izlmtlog)\i - 5}_:1x{'y's,y
= l-
o M, T
3%\ zZ AP
i i i
L
-oTia—{j' = 0 fori#]

To calculate i(0) the expectation of the second derivative of L is needed.. This

requires the expectation of the quadratic form y’siy. For this case, standard results

give:
E[y'Siy] = tr§;V = m);
!
a%L [ m; yS‘y s -2
El|=— - - 3| x A
hence [o2x ] = ‘]1 %xiz )\? il-11 i

S
then li@)/} « I

hence the Jeffreys’ prior is proportional to the reciprocal of the product of the

eigenvalues.
4.3.1 Jeffreys’ Priors for Normal Models with fixed effects and variance
components

This section shows that the Jeffrey'’s prior for likelihoods with both variance

components and fixed effects, is the same as the Jeffreys’ prior for a model with just
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the variance components, provided that it is assumed a priori that the location

parameters and the scale parameters are independent. Thus the prior

p(\,a) = p(A) p(a).

l(ely,V) o IVI'%exp-%(y—Xa)'V"(y—Xn)

L = logl(aly,V) = constant — }log|V| — %(y—Xa)'V"(y-—Xa)

OL _ x'v(y-

3 = X'V i(y—Xa)

2

%ﬁ = -X'V'X = constant
0“a

thus i(8) = constant — p(a) = constant

Hence p(¢2,a) = p(o?).

If the factorisation of the prior is not assumed, then the Fisher information

i(A,a) must be obtained. This requires the expectation of 9%L / 8%(\,a), that is:

oL oL
3 O\ da
oL oL
O\ da 3%a
. o2L '
Since Eax e # 0, the resulting prior is no longer the reciprocal of the product of

the eigenvalues multiplied by a constant. Thus the choice of prior is, strictly

speaking, dependent on the initial assumptions.

4.4 Jeffreys’ Priors for models with general multivariate t errors

The Jeffreys’ prior for a general multivariate t likelihood with a single variance
component is produced in Section 4.4.2. In this restricted case the Jeffreys’ prior is
the same as the Jeffreys' prior for a multivariate normal likelihood. This result is
extended in Section 4.4.3 to allow for many variance components within a diagonal
dispersion matrix V. In Section 4.4.4, the result is shown to hold even if V is not

diagonal, thus establishing the result for all dispersion matrices V.
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4.4.1 Basic Likelihood theory

Lety ~ tv(Xa,V). Thus: C -
_b+n
. _ s VI 2
p(yla,c?) = LGUIM) p-fn(, aying-ify =XV (y=Xa)
r()‘;v) v-2
where n is the number of observations in y, Bayes theorem gives:
- vtn
- e Y 2 .
o?,ely) o V"% [1 + x“)vv_z(" x")] p(o?,a) (4.4.1:1)
4.4.2 Jeffreys’ Prior for single variance problem
From equation 4.4.1:1, the log likelihood L is:
L = constant—3log|V]|—3(v+n)log [1 + (y = Xa) :’_2 (r Xa)]
In this section, it is assumed that V = ozln, and thata = 0. Then:
14
L = constant — $nlogo? = 4(v+n)log 1+——&2- (4.4.2:1)
(v-2)o
Hence:
dL n !
_— = - + {(v+n)——m—m—————
do i? : v-2 + y'y/0? (0%)°
d?L - ' ! :
S5 = in(e?)? - Hv+n)e®) 2] 2 ry - Yy
o w-2)02+y'y | (v-2)a?+y'y

2 2
2y - a°L . _4__1’- 54
i(e) = E[dzazl ;dzo_z p(rle®)dy
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ito?) = $TAEI) (no2)dn (v-2y En 0y

4 ' .
x [ Vnewenmyf2a—22 = -[ 'y ]
(

Y, Y (v-2)a? +y'y v-2)a+y'y
.

’ e SEE——
' 2
XY
X L1+ (v-2)02] dyn ...d.yl

Note that the distribution given by equation 4.4.2:1 is spherically symmetric,
and that both the likelihood and the second derivative of the log likelihood depend
on y only through y'y. Change variables to the multi-dimensional polar co-ordinate
system specified by y, =rcos6,, y, =rsin6 cos@,, ... y,_ 4 =rsin 6,...5sin6,_,
cosf, , and y, = rsin®,...sin On_zsin 8,.1- Thus replace {yl, z,...,yn} with
(r,e,,ez,..., 0,.1}where0 £ r < ®,0<86,,...,0, , <mand 0 <6, 4 <27n. TheJaco-
bian of this transformation is developed in the lemma in Section 4.4.5 and has the

At peia
value r*~* [ sin" 8;-
i=1
r +n - - -
i(e?) = i%ﬂ (no?) in (v-2) in (0?2

00 2 rz 4 rz 2
X rfoef,"'ef \"-("""){Z(V-z)o%r" - [(v-2)02+r2] }]

n-1
v+n

r 2 -T2 n-1
r n-1 n-i-1
X \1+ (v-Z)az] r il;}sin 6;d6,_ 4..d46,dr

Note that o2 is independent of all of the ei integfals. Hence

i(6?) o (02) 3(o?) "
v+n

0 r2 _ P2 2 r2 T2 n-1
xr{O [n - (v+n){2 (v-2)o%+r? [(v-.?.)tr2 + er }] [1 M (v—Z)oz] roar

Now substitute r? for (v-2)02tan?, hence dr = \/(v-2)osec?0, and simplify:

i(0?) o (02) (02 t"

xifn (n-(v+n)(2sinZo-sin*6))cos”+ Mo (v-2)8"4 (623" 1an"" 1o (v-2)E(02)Esec?0 d 0
0

in
i(02) o (02)72 % {n - (v+n)(2sin%¢ - sin*¢)}cos’ "o tan" 10 sec?o d o
0 .

Hence i(0?) o (0272, Thus the Jeffreys’ prior is proportional to 1/02 as in the

Normal case.
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4.4.3 Jeffreys’ Prior for a problem with several variance components

Generali;e the results of section 4.4.2 to allow for saveral different eigenvalues
in the dispersion matrix V. First consider a ¥V matrix with two distinct eigenvalues.

Suppose that ¥V had n, entries of olz and n, = n-n, entries of a:. Then from equation

4.4,1:1 the log likelihood L is:

2 2 sz/ °12 + Yaz/ °zz
L = constant-%nl logo, —%nzlogo'2 ~i(v+n)log|1l + —= (4.4.3:1)
n, n,
where le o= Eyiz and Yzz = 3 yi2
i=1 _ n +1

differentiating equation 4.4.3:1 gives:

2
aL n 1 Y
—_— = - + $(v+n
d0? ¥ o? Hom s Y2/ + Y2/0? (02)?
2, 2 2,.2 2
2L =3 n, _iv-i-n 2 Y /o, - Y1/°'1
8%} (c?)? (02)% | “v-2+ Y02+ Y2/02 v-2+YZ/0% + Yf/c:
and
. . 2, 22, 2
d%L v+n Yx /01 Yz/oz

a3 = 333 2,2 Z, 232
aal 602 0o, (1:-2.+Yl/cr1 +Y2/az)

2
o [3]

2
consider first E :2:'2
1

s[ﬂ] = 3022 FELED (rpyin (o2)787 (02) 72"

62012 r@v)
f ( ) , ):2/0,‘2 112/0,12 2
XJin —=(v+n - 3, 2. wi, 2 2,2 4 v2,.2
y 1 vZ-l*)’!/crl +)’2/tr2 1&-2+Yl/crl+‘i’2/cr2
] _n+t
R
x 11 dy

+
¥ (w-Z)crl2 (1.'-2)022
.

Now change variables as in section 4.4.2 to map {y‘,yz...yn) to
i

1,1771,2°°°
0 integrations drop out leaving:

{r»6, (10 ex,n‘-l) and to map [yn1+1...yn} to {5,62'1,62'2...62’%_1). Then all the
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32L oc (axz)-z (olz)'%", (022)‘%"2 -

E 302
1
[ - r¥/e? r2/02 2
1 1 1 1
X t{é n, =(v+n) zv-2+",2/012+’:/°: - v'2+"12/°12+"22/°:
L, Lo
X jv-2+ :'3 + in : rnl-1 rn2-1dr dr,
2 o 1 2 254

.

Substitute (w-z-f-r'lz/crf)tr;tanzttx2 for rzz, integrate out over d)z. Then substitute

(v-2)o? tan®¢ for rZ and integrate out over 6, to get:
3L 2.~2
9202 * (c‘)
1
In an identical manner the other terms can be calculated yielding:

2
ite?) = |E[§.£.]

i(0?) « (62)2(c?)? (4.4.3:2)

2\-2 2\=1,.2\-1
K, (o) K, ,(07) (5;) .
= some
2y=1, 2\=1 2,2 ij
K, (00) (o) K,,(0,)

Thus the Jeffreys’ prior is proportional to 1/(012022) as in the Normal case.

Generalisation

Now consider V to be a diagonal matrix with m distinct eigenvalues. The terms
in equation 4.4.3:2 demonstrate both the diagonal and off-diagonal entries in the
expectation of the second derivative log likelihood. Thus by exchanging subscripts

we can obtain the equivalent version of equation 4.4.3:2 without further work.

K“(alz)'z : Klz(alz)'l(azz)"l .. Klm(alz)-l(ar?q )
i(0?) = E[ a:_Lz] Kpa ()7 (o) ~Kzz(°zz)-2 v Ky (@) (o)™
o 4
Ky (o2 K (022! .. K, (o272

(m )7
i(0?) o« noiz
i=1

Hence the Jeffreys' prior is the reciprocal of the product of the eigenvalues, as is the

case for the Normal distribution.
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4.4.4 Jeffreys’ Prior for any general multivariate ¢t distribution

In this section, the Jeffreys' prior for any multivariate t distribution is
produced. Recall:

2 2
i(e?) = |fEELVE)) ) 1va))ay
y

8%02 3%02

2 -1l
= IM p(y'Viy)dy (4.4.4:1)
y

Since V is a symmetric real, it can be diagonalised. Thuslet ¥V = M'AM where
M is a rotation matrix (hence M™! = M'),and Aisa diagonal matrix of eigenvalues.
Definex = My,y = M"z, y’' = z'M. Change the integral in equation 4.4.4:1 from
Yy space to z space.

2 ruo—1
i(e?) = Iw—ﬁp(y'r'y)lbf'ldz
¥ 4

d%0®

Now i(0?) depends on y only through the quadratic form y'Viy, but yvly =
(z'M)(M'K'M)(M™'z) = z'K'z. Also [M| = 1 as M is a rotation matrix. Thus

2 ? a1 . 2
ie? = |fTHE4 %) Lg:ﬁ 2 p(2'K'zyaz| = |fELEA) ng,zA p(z|A)dz
z o z 00
. .
i(0?) = |/ 9—%’%& p(rlA)dy . (4.4.4:2)
y o

Comparing equations 4.4.4:1 and 4.4.4:2 it is seen that we can replace Vby A
without changing the results. Consequently section 4 shows that the Jeffreys' prior

for a general multivariate t distribution is the same as the Jeffreys' prior for a

multivariate Normal distribution.

4.4.5 Lemma - the Jacobian of the transformation to polar coordinates

This lemma determines the Jacobian necessary for transforming the y of n

observations into an n dimensional polar co-ordinate system. Thus we transform

¥y = {y¥,..0¥,) into {r8,5..08, 4}

where y = rcosel

Y, r sineicose2

Yy = T sineisinezcoses



Yn-1 =

where 0 $r<o, 06

Then
ayi
el yl-/r and
Sy) | o
Thus 0] =
oy} | _
o(r,0)

a(y)

o(r,06}

0 i<|
?_y_l'_ — —yitanei i=j
aej
¥ cotei i>j
1 -tan2%
1 1
n n-1 1
% ﬂyi ﬂcotei 1
i=1 =1
1 1
1 1
1 B n-1 n-1
F i1’ =1 i=1
=My [N ———
r o=t { j=1 €OS6;sind;

4.5 Bernardo Priors

1’--.

i=1
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n-1 iy
= rn-l ﬂsin".’"lei

rsin@, sin@,sind, ... sinam_gcose"_1

rsin® sinf, sinf,.. .sinen_zsinen_1

WOp2 < 0K6, , <2n fori=1...n-1

In contrast to the Jeffreys' approach based on invariance, Bernardo (1979)

introduces a new philosophy for priors based on the expected information to be

gained from an experiment. Bernardo shows that for simple regular cases with

asymptotic normality, these new priors correspond to the Jeffreys’ priors. Thus

Bernardo priors for t distributions are the same as the Jeffreys’ priors.

It is interesting to note that although this material has been around for a few

years, little work has been done on large multiparameter models. The problem of

whether to use a prior for the joint or conditional distribution has also received little

attention and requires further work. Similarly the question of what is a nuisance
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parameter is important as different priors are selected depending on whether the

scale or location and scale parameters are of interest (see section 4.3.1 where a

related problem arises with the Jeffrey's prior).

Y

The Bernardo philosophy is based on the expected information to be gained
from an experiment ¢ = {X,®,p(x|8)) which is one observation of the random
variable x € X, where x is distributed according to p(x|8) for some 6 € ®. ¢(n)
denotes n replications of the experiment. Take p(8) to be a prior density for 6.
Without loss of generality take p(6) > 0 V0 € ©. Then define the expected informa-

tion about 0 provided by ¢ when the prior is p(0) as:

18e,p(0)) = [ p(x) [ p(6lx)log P;(‘(’—e',’)‘—)deax

where p(x) = [p(x|6)p(6)d6 and p(6|x) = p(x|6)p(6)/p(x)

Let Ie{e(n),p(e)} denote the information to be gained from n independent
replications of ¢. By performing o replications of ¢, one would get to know 6
exactly. Thus Ie[e(oo),p(e)} is the amount of missing information about 8 when the -
prior is p(8). It is sensible to define a non-informative prior (what Bernardo calls
vague initial knowledge) as t‘he density n(8) which maximises the missing informa-

tion over the admissible class of priors.

If ® is a continuous space, then le{e(oo),p(e)) will usually be oo as an infinite
amount of information is required to determine a real number. In these cases

define the non-informative prior as the limit as n —»  of the priors which maximise

1%(e(n),p(0)).

Often a non-informative prior can be obtained more rapidly than using the

limiting process above. Sl.ippose y is the data obtained from e(k), then under

sufficient regularity:

1%(,p(8)) = [p(8)log { exp—Jp(y 'g()g"’(""” dy } 46 (4.5:1)
3]
or alternatively
1%(e.p(@) = [p(@)iog {e""f plr|e)logp(ely)dy } ae (4.5:2)

where H{.} is the entropy:

H(p(®)} = - g p(8)logp(6)d O
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A simple exercise in calculus of variations shows that given the constraint

Ja(0)d e < o, integrals of the form-Ip(e)log(a(e)/b(e)]de are maximised when

a(8) < b(8). Maximising equation 4.5:1 or 4.5:2 would appear to deliver the non-
informative prior p(6). However, this is somewhat misleading as in both equations
4.5:1 and 4.5:2 the numerator is a function of the denominator, as p(6ly) depends on

p(6). However it will still be true that:

p(8) o« exp(— [ p(y|6)H(p(Bly)}dy)

or p(8) o« exp(f p(y|6)logp(dly)dy).

Note that these definitions are cyclic, in the sense that p(0) is nee.ded to
evaluate the right hand integrals as it as a term in the posterior p(8ly). However,
under sufficient regularity conditions, asymptotically p(6|ly) is independent of p(8)

hence:
n,(0) o exp(;-fp(yle)H(r:'(ely))dy) (4.5:3)
or equivalently
n,(0) « exp (Ip'(yle)losp'(ely)dy]_

for large n, with pf(ely) as the asymptotic posterior density for 8 (which does not

depend on the prior).

4.5.1 Bernardo Prior for a single variance problem

It is interesting to note how some priors can be derived directly from the
definitions. For example, the single variance model can be tackled as follows. Take

n observations from a Normal distribution with known mean p and unknown

variance o2,

n
p(@®ly) « plylo?)p(e?) « p(o?) (a?) 2" exp4 E 0~ w)2/02

x p(o?) (625" exp-fns?/o®

n
where s2 = 121(" -u)?/n
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2
o . . N
Recall that s ~ - xf‘, and thata x: distribution has mean n and variance 2n.

2\2
Asymptotically as n — oo, the distribution of s® tends to N(o?, 2((;) ). But s? is

o2 | ¥, hence the asymptotic density of 02 | ¥y is Normal.

~-

It is well known that the entropy of a Normal distribution with variance v is
2(0,2)2}
n

1log2mev, hence the entropy of the asymptotic density of ;2] y is log{2me

which does not depend on the data.
Hp1(3%1y)) = loga? + Slog(4ne/n)
Thus from equation 4.5:3

T, (02) o exp (—log 0% - ilog(4ﬂe/n))

ﬂn(cz) < 1/02

Thus the Bernardo prior is seen to be the same as the Jeffrey's prior from Section 4.3.



Chapter 5
Bayesian Analysis of a multi-stratum experimental design

5.1 Introduction

In his 1983 thesis, Knuiman (1983) describes an agricultural field experiment in
which 72 apple trees are subject to two-treatments, namely irrigation and thinning.
The trees are arranged in a nested block structure of six blocks, three plots per
block and four trees per plot. Three iri'igation regimes are considered, assigned at
random to plots. Each of the four trees in each plot is allocated a different thinning
regime. Thus, each irrigation and thinning combination is represented exactly once
in each block. The experiment was repeated over several years. This analysis is

concerned with the weight (Kg) of apples produced per tree in the 1975 season.

The Knuiman example is used in this chapter to illustrate three different areas.

i) It demonstrates the possibilities of Bayesian ‘analysis undertaken by high
dimensional numerical integration such as the BAYES4 computer package.
The main features of BAYES4 were discussed in section 1.4 of Chapter 1.
Numerical integration is carried outin 3, 9 and_. 15 dimensions. As indicated
in Chapter 2, many of the margins of intergst can either be evaluated
numerically from the full joint distribution, or after some analytic integra~-
tion has been performed. This example thus allows several marginal distribu-
tions to be computed by different routes, so providing a useful check on the

accuracy of the suite of integration routines central to BAYES4.

ii) An extended sensitivity analysis is performed by changing the prior distribu-
tion, the error distribution, and the fixed effect structure. The effects of
each of these changes can be seen by looking at the resulting marginal
distributions for the model parameters. This example provides a powerful

argument that such sensitivity studies should be part of any routine Bayesian

analysis.

iii) The analyses performed call upon the algebra of the preceding chapters for

the analytical integrations and matrix manipulations.
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5.1.1 Details of the Agricultural Field Trial

Data is available for the apple yields from two years, namely 1975 and 1977. The
irrigation and thinning treatments were applied to the trees over a long period of

time prior to the experiment. The three irrigation regimes are:

W1 Noirrigation
W2 Three or four irrigations at monthly intervals

W3 Soil maintained at field capacity by weekly irrigation

The four thinning policies are:

T1 All fruit removed in the first seven years (1965 - 1971)

T2 Two chemical thinning sprays every two years

T3 Normal commercial thinning, ie. one spray every two years

T4 Minimal thinning - a few fruit removed to prevent limb breakage

5.1.2 The data

Two years of data are available. The analyses can be performed using the data
from either year. Alternatively, the two sets of data may be combined by using the
posterior density from one year's data as the prior distribution for the other year's
data. The analyses presented in this chapter are based principally upon the 1975
data (Table 5.1.2:1). In the later sections of the chapter a sensitivity analysis is
performed using (amongst other things) an informative prior rather than a refer-

ence prior. The 1977 data (Table 5.1.2:2); are used to get values describing a

plausible informative prior.
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Apple yields (Kg) for 1975

) Block
Irrigation Thinning 1 2 3 4 5 6
T1 139 332 342 398 193 342
w1 T2 233 299 428 406 244 351
T3 241 265 422 394 243 332
T4 268 333 412 351 297 446
T1 401 . 402 241 329 162 440
w2 T2 359 283 265 380 313 163
T3 296 487 296 407 303 388
T4 488 353 347 502 431 406
T1 560 164 312 363 379 508
w3 T2 400 360 401 469 408 455
T3 528 419 447 513 464 364
T4 586 135 426 519 488 483
Table 5.1.2:1
Apple yields {Kg) for 1977
. Block
Irrigation Thinning 1 2 3 4 5 6

T1 50 181 208 270 97 107
w1 T2 153 208 85 253 154 216
T3 156 194 270 261 154 296
T4 213 179 326 328 249 349
T1 357 256 166 120 64 299
W2 T2 329 150 65 234 176 12
T3 328 342 347 309 328 312
T4 400 204 293 300 367 359
T1 442 28 268 158 295 451
W3 T2 379 200 231 302 97 434
T3 498 310 350 407 520 346
T4 452 306 342 237 531 454

Table 5.1.2:2

&
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5.1.3 The Models

Write Yijk for the yield of tree k in plot j, block i, and assume normally

distributed errors. The maximal model may be expressed as:
y ~ N(Xr,V)

where T is a vector of 12 treatment means, X gives the allocation of treatments to
experimental units and the dispersion matrix V is a 72X 72 block diagonal matrix

with non-zero entries:
- 2 2 2
uar(yu-k) =0, +0, +0
a2 2
cou(yijk, yijl) = O'b + 0'a k # l

cov(¥ i Yiym) = op J#1

This model thus involves fifteen parameters: twelve treatment means and three
variance components. Let A = (x,,xz,xa)' be the distinct eigenvalues of V, ie.
A = 0% A, = 0%+ 40f and A, = 0¥+ 402 + 1207. V is positive definite if and only if
A >0V {. Limits for integration over the parameters of the block structure are thus

simplified if the likelihood is expressed as a function of T and A.

A standard analysis of variance for these data gives an F statistic for interac-
tion between treatments of approximately 1:0. Therefore two models are considered

one assuming main-effects only (and hence with only six treatment parameters), the

other allowing interaction.

5.1.4 The use of the BAYES4 numerical integration package

As outlined in Chapter 1, the BAYES4 package enables numerical integration to
be performed on high dfmensional likelihoods, to yield moments for all the
parameters, and marginal distributions for selected parameters or pairs of parame-
ters. BAYES4 also allows the calculation of user defined integrals over parameter
space using special function enalysis. Thus if the parameters in the likelihood were
a set of variances cz, special function analysis would enable the calculation of

integrals of the form fzf(o'z)p(czly) do? for an arbitrary function f(o2).
o
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Consider the 15 dimensional maximal model. This comprises 3 variance com-
ponents and 12 fixed effects. As sho;vn in Chapter 2, the 12 fixed effects can be
analytically integrated out to yield a 3 dimensional marginal posterior distribution
on the variance components, or equivalently a 3 dimensional posterior distribution
on the eigenvalues. However, it is not possible to integrate out analytically the 3

variance components. These results lead to two possible ways of performing the

analyses.

i) Use the full 15 dimensional joint posterior density and let BAYES4 integrata
out the 13 or 14 parameters that are not of interest. This technique would
allow the calculation of univariate or bivariate marginal distributions for
either variance components or fixed effects or combinations with equal ease,

together with all the first and second moments of the joint density.

ii) An alternative and much faster technique is to use the 3 dimensional
marginal posterior density for the eigenvalues in conjunction with eithera 1
dimensional distribution for a fixed effect or a 2 dimensional distribution for
a pair of fixed effects conditional on the eigenvalues, the latter being viewed
as special functions. Assuming a normal error structure, the algebraic form
of the 3 dimensional marginal density for the eigenvalues was produced in
Chapter 2 equation 2.2.1:1, For the maximal model this density has a simple

analytic form (see Section 5.2.2). Assuming t errors the corresponding

density is produced in Section 5.5.1.

Methods i) and ii) have led to the development of two computer programs
APPLES and MAPPLES. The APPLES program tackles the maximal model via the 3
dimensional marginal distribution for the eigenvalues as used in method ii). The
MAPPLES program directly implements the full 15 dimensional likelihood as in
method i). An optioﬁ allows for the main-effects only model, and then maps the 6
fixed offects into the 12 cell effects. With MAPPLES univariate or bivariate
distributions can be obtained using a Gauss-Hermite grid over one or two dimen-

sions, and Monte-Carlo integration over the other 14, 13, 8 or 7 dimensions as

appropriate.

Recall that BAYES4 requires initial estimates of the first and second moments
of the parameters. These estimates are then iteratively updated until they have
stabilised. For a 15 parameter model, the provision of good estimates is important,
because otherwise a highly improbable region of parameter space may be examined.
Frequently BAYES4 can recover from a poor set of initial estimates, but this may

take many iterations and waste computer time. In this particular example, the
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moments for the three eigenvalue . components, can be obtained using the moments
calculated by the 3 dimensional APPLES program. Second moments for the 12 fixed
effects can also be obtained from the APPLES program again using special function

-~

analysis,

Clearly the computational load is substantially heavier using the method i)
rather than with method ii). However, the efficiency of the spherical Monte-Carlo
integration rules within BAYES4 makes the numerical integration method practical
even with 15 dimensions. During the development of this example, marginal
densities were frequently computed using the Monte-Carlo technique on the joint 15
dimensional density l(7,A]y) and compared with results obtained via the alternative
route which used analytic integration. The exercise proved to be a very useful check
on the accuracy of the high dimensional numerical integration procedures, and was

in itself a good reason for implementing the full 15 dimensional problem.

A final point concerns the parametrisation used with the APPLES and MAP-
PLES programs. The BAYES4 package works best on likelihoods that are well
approximated by a low degree polynomial times a normal distribution. Transforma-
tions of the parameter space that yield a likelihood surface that is nearer to this
form, help BAYES4 to converge and stabilise. Marginal distributions for variance
components (or more precisely, for eigenvalues of dispersion matrices) typically
have amarked right skew, and are also constrained to be positive. Incorporating this
type of constraintinto BAYES4 may destroy stability since successive iterations may
drop points either side of the constraint. A way of avoiding the positivity constraint
and making the likelihood more nearly Normal, is to reparametrise in terms of the
logs of the eigenvalues rather than the eigenvalues. This is done in both the APPLES
and the MAPPLES programs, and good results are obtained (see Sections 5.7 and
5.9). A consequence of this is that BAYES4 does not produce marginal distributions
for the eigenvalues, but rather marginal distributions for the log eigenvalues are
produced. The graphical presentation and manipulation program GR is used to
transform these marginals back to marginals on the eigenvalues and hence the

variance components, and also to calculate first and second moments on this scale

rather than on the log scale.
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5.1.5 Use of Special Function Analysis

-

Note that the effective posterior densities considered in method ii) from
section 5.1.4, and implemented in the APPLES program, are 4 or 5 dimensional. In
practice it is better to implement these distributions as a 3 dimensional likelihood
with 1 or 2 dimensions (for the fixed effect, or pair of fixed effects) implemented

using special function analysis. There.are three reasons for this choice.

i) By coding the problem this way, it is possible to iterate on the 3 eigenvalue
dimensions until they have stabilised, whilst leaving the special function
analysis switched off. This enables very rapid and accurate calculation of the

marginal distribution on the eigenvalues.

ii) Given the analytic form for the marginal distribution on the eigenvalues, the
only purpose of extending the dimensionality of the problem by incorporat-
ing 1 or 2 fixed effects is to enable calculation of the marginal distribution(s)
for the fixed‘effect(s). Depending on the error structure, the univariate and
bivariate marginals for the 'l}.k’s unconditional on the eigenvalues can be
obtained as a weighted mixtures of either normal distributions (see Section
5.3) or t distributions (see Section 5.5.2). These marginals may be computed
more efficiently using special function analysis than using the standard

BAYES4 integration routines, as is demonstrated in Section 5.1.6 below.

iii) Conditional on the eigenvalues, the univariate distribution for a fixed effect
is symmetric, and the bivariate distribution of a pair of fixed effects is
rotationally symmetric of order two. These observations enable the number

of points needed in v space to be halved - thus substantially reducing the

execution time.

5.1.6 Gauss-Hermite integration v Special Function Analysis

The standard method of producing univariate or bivariate marginal distribu-~
tions using BAYES4 is to make BAYES4 integrate over those dimensions using a
Gauss-Hermite grid of points. BAYES4 can then produce a lattice of spot heights
over the requested Gauss-Hermite dimensions. However, the Gauss-Hermite
integration rule scatters points fairly widely, and some of the points will lie outside
regions of appreciable probability for well behaved marginals. Thus from the

perspective of statistical analysis (though not from the perspective of numerical
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integration) the evaluation of the likelihood at some of these points is a waste of
time and effort. Conversely, if the range of statistically plausible values were known
in advance, then all the points could be constrained to be within this region. The

extent of this problem is illustrated below.

Consider a one dimensional numerical integration performed using a Gauss-
Hermite integration rule. The points at which the likelihood is evaluated are
determined by the current estimates for the mean and variance, and also by the
number of points n used by the rule. The number of standard deviations of these
points from the mean is shown in Table 5.1.6:1 below for values of n from 2 to 12,
(Note that since the Gauss-Hermite rule is symmetric, only the positive half of the

values need be shown.)

Points at which a Gauss-Hermite integration rule is evaluated

n | number of standard deviations from mean at which to evaluate the likelihood
2 1-000
3o 2-680
441 0742 2-334
510 1-356 : 2-857
6 0-617 1-889 3:324
710 1-154 2-367 3-750
8 0-539 1:637 2:802 4:145
910 1-023 2:077 3:205 4-513
10 0-485 1:466 2:484 3-582 4-850
110 0-929 1-876 2-865 3-936 ~ 5.188
12 0:444 1:340 2:260 3-224 4:272 5-501

Toble 5.1.6:1

. Inpractice itis found that points further than 3 or 3-5 standard deviations from
the mean are useless for statistical inference in the Knuiman example, as the
probability of being so far in the tails of the likelihood is very low. To get accurate
precise numerically calculated marginals requires there to be many effective points
at which the marginal density has been evaluated. (In this context effective points
are those within 3 or 2-5 standard deviations of the mean). As can be seen in Table

5.1.6:2 below, simply increasing n is not an efficient way of increasing the number

of effective points once n exceeds 6.
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Number of effective points using a Gauss-Hermite integration rule

total number of points n 2 3 4 5 6 7 8 9 10 11 12

6

D
wn
)]
[+)]

number of points < 3:5¢
number of points < 3¢ 2 3 4 5 4 5 6 5 6 7

Table 5.1.6:2

Thus when using a 12 point Gaﬁss-Hermite grid, only 50% of ‘the points
calculated fall within + 30 of the mean. From the statistical point of view this is
most inefficient. (It must be remembered that as a method of integrating the
posterior density the Gauss-Hermite rule is efficient. Evaluating points that are far
into the tails of the density allows the integration method to recover more quickly

from poor initial estimates for the first and second moments of the density.)

5.1.7 Implementation of the main-effects only model

The joint posterior density for the main-effects only model has 9 dimensions.
Once again, interest will usually be in the marginal distribution for a particular ‘rjk’
or a bivariate pair of fjk’s. The direct solution for these marginals would require 8
or 9 dimensions to be integrated out analytically and this is not feasible. The
marginal density for the eigenvalues can be written down algebraically, but this
does not have a simple analytic form. However the main-effects only model can be
viewed as a submodel of the maximal model and analysed using the Monte-Carlo
"method. that was feasible on the 15 dimensional problem. Since there are only 9

dimensions, the computational load is substantially lower than with the maximal

model.

5.1.8 Notation

A number of symbols are heavily used throughout this chapter. I‘ and J‘ refer
to a 4 X 4 identity matrix, and a 4 X4 block of ones. 1‘ denotes a column of 6 ones,
and @ is used for Kronecker products. Finally ¢ refers to the residual variance,

and o2 to the vector of variance components (¢2,02,072). Using this notation, the
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dispersion matrix for the Knuiman problem can be expressed:

Vie?) = opl el @) +oll @l @) + o’ ol oI (5.1.8:1)

-

5.2 The marginal posterior density for the eigenvalues

In terms of its eigenvalues A»A,and A,y the dispersion matrix given in equation

5.1.8:1 can be expressed as:

V= 1‘5()‘3 - )\2)1‘ @Is 014 + }(xz- x,)l‘ @ Ia @J‘ + xtl‘ @Ia ® 14 (5.2:1)
Thus the maximal model can be expressed as:

y ~ N(Xr, -‘lz(xa—xz)t‘wa@.r‘ + {-()Lz-)\l)lsala OJ‘ + xx’s“'a“'a)

where T = ('r",'ru,...,'ru) and X = 16613614.

Now apply Bayes' theorem:
p(\Tly) o« p(yIh,7) p(A\,7) ~ N(X7,V)p(A,T1)

where p(A,7) is the prior distribution for A and T. Throughout the following
discussion, the prior distribution on X\ and t is assumed to factorise into a A part and
a 7 part. Thus p(A\,7) = p(A)p(r). Two alternative forms for p(A) are considered,

and an improper non-informative prior is taken for v. Hence p(71) = 1.

Integrating out over T gives the marginal posterior density for the eigenvalues
A\, or equivalently for the variance components o2. This posterior density was
derived in equation 2.2.1:1 of chapter 2 and is given below in equation 5.2:2. This is
the three dimensional likelihood coded in the LOGLIK subroutine in the APPLES

program (see Appendix).
p(Aly) = JI(z,A]ly)dr
T

o p(x)lVl'%IX'V"XI'texp-ﬁy'V"y expiy'VIX(X'VIX)T'X'Vly  (5.2:2)



-84 -

5.2.1 Efficient evaluation of the marginal density for the eigenvalues

To evaluate equation 5.2:2 efficiently, algebraic expressions are required for
(vl, ¥V'y, |IX'V'X|, and y'V!X(X'V'X)'X'V'y. These four quantities are

evaluated in this section. Start witb equation 5.2:1

= - i -
V = B0, -\ el,el + (A, ’jn”s“’a@ﬂ + I el el

As V has been written in terms of'its eigenvalues, its inverse and determinant
can be written down directly. An alternative method t is provided by Searle and

Het}derson (1979). Using either method on the dispersion matrix V gives:

vio= &0 - e e, + 10 - DI e e, + )T el e,

and |v] = A5-3.(4-1))6.(3-1),6 _ \s4)12,¢ (5.2.1:1)
NowletB = (At =A"), v = $ (' =A"), and § = X[, then:

-1
V' = ﬁl‘ala@l‘+‘yl‘81:'@.f‘+GI‘@IGQI‘

(5.2.1:2)

and y'v'ly ﬁ?y{i + inyé. + 5{ Ek)',-zjk
» W

Recall that X = 1‘ @la ® l‘ which gives that:

-1
V'X 160[513@J4+713®J4+613@I4)

xX'vix 6(sl,@J, + YI,J, + 81, ®1)

Then using either of the matrix inversion techniques
x'vixt = é{'i’z()*;. -\ e, + 10, =) e + NI, @ 14}

1x'vx] = 65304 (54av)C D (s4ay+128) = en]FHV\GV\ 1 (52.1:9)

+ Searle and Henderson produce the inverse and determinant of any balanced
dispersion matrix. Applying their technique to the matrix A where A is given by:

A= pI‘@Jao.I4 + qI‘@Ia@J‘-i-rI‘@Ia@I‘

yields the inverse matrix A™':

-1 _ 1 -1 11 1 1

A 5115{12p+4q+r 4q+r}I‘@13@J4+‘{4q+r - 169130144-’1‘@!3@5

la} = r8-3:(4-1) (144916 - 3-1) (r1aq+12p)°

ir
o
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Multiplying out yields:

ter—1 “lety-1l __ ’
x'vIX)'xv! = f1,el eI,

1 =t v\~ yty~t " T o
V' xXx'v'x)y'xv %J‘o(ﬁ.rael‘ +yl,®J + 8I,81)
YVIXXVIX)IXVly = 18yt + %Y?y'z, + gsjz 2y (5.2.1:4)
: ..
?

Combining equations 5.2.1:1 and 5.2.1:3 gives

I vl lxlv-lxl - 6)\‘(6-1) .3, (4'1) x2(6-1) . (3-1) )‘36-1 (5.2.1:5)

log|VIIX'VX| constant + 451og ) + 10logh, + Slogh,

-

recall equation 5.2:2

-4 - - - - - - -
I\ ly) o V131X’V X]| Fexp-3y'V ly expy VIX(X'V X)XV y
Substituting from equations 5.2.1:2, 5.2.1:4 and 5.2.1:5

log I(\ly) = constant -} {451og A +10log), +51log )\3} (5.2.1:6)

HETIE ~ 1872 +YErR ~3vTrA 48 Tyl ~18 T v%0)
3 LY., 134 i’j}'u_ %’ij_j, l',j,ky”k é],ky",k

5.2.2 Data Translation to simplify the log likelihood

Since the location parameters T have been integrated out of equation 5.2.1:6,
this likelihood is invariant under translations y — y — Xa, as these translations
merely send T — 1T+ a. The log likelihood is substantially simplified by translating

by an amount e = (;'.“, ,37.3‘)' ( = # say). Writing y* for y— X%, this yields:
log I(\|ly*) = constant — {45108 A +10logh,+ 5logh,}
- %{ﬁ?yi?+'yizy‘}f+ 8 T yii) (5.2.2:1)
J i)k

where 8 = f,(x;‘-x;‘),y = }(A;'-k;') and § = ',

An alternative formulation is:
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log I(A|y*) = constant — $(4510g)\; +10log ), + 51og\,)
_ -142 -1y2 -1y2 .
3051 + T AT (5.2.2:2)

where 1’;2 = 1’5?)’.2. Y: = %(if.]‘y,}z - H‘L‘y,‘f) and ’;2 Z -Vuk %2y,j

Equation 5.2.2:2 provides the most efficient way of evaluating the likelihood
for the eigenvalues, as the maximum amount of work is done once only (in the
calculation of 1;’, );2 and 7;2), and the minimum amount of work is done at each point

in A space. This form of the likelihood is implemented in the APPLES program.

Note that after the data translation:
yt'v-lyt = )\;1};2 + 7‘;‘};2 + )“-1);2

and y*'VIX(X'VIX)X'Vly* = 0 (5.2.2:3)

5.3 Distributions conditional on the Variance Components

Special function enalysis allows integrals of the form [f(e2)p(0?|y) do? to be
calculated. Integrals of this form allow the calculation of marginal densities and
moments for the fixed effects given suitable choices for the function f(oc2). For
example, the marginal density for 7, is obtained when f(o?) is p(7, |62,y). These

marginal distributions are developed in this section.

First, conditional on the variances, any fixed effect (location parameter) 1:ik is
normally distributed:

jklo W o~ N(y]kvs(a +0 +°b))
Similarly Tik ,‘rlmlcrz,y is distributed as a bivariate normal with common variance
§(02+o:+ og) and a covariance of é(uaz+cg) if j = 1 or a covariance of %ag ifFjs#£l

The second moments for the 1T are simply:

uar(1:,.k le?) = 16_(02 + oaz + o;)
2, .2
O'a + Ob

corr(Tymlo 0?) = m i=1
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2
%

orlenmle’) = Frarer -1#!
a

Thus the following marginal densities and moments are calculated:

-

P(Tyly) = J,N(;'.jk'i("z"‘“:*“;)) p(o?ly) do? (5.3:1)
;'jk 2 2
P(Tjkv‘rlml.Y) = f.zN( - &) p(o€ly) do (5.3:2)
o Yim

where ¥ has diagonal entries of -&(a2 + aaz + c;) and off-diagonal entries of %(o: + og)

or %o'; for i =1and i # |l respectively.

var(ty) v = .j‘z-}(oz+c:+og) p(o?ly) do? (5.3:3)
o
o +op . .
corr(‘rjk,ij) c = Jz W pl(o®ly) do k#m (5.3:4)
o2

corr(‘rjk 'Tlm) d = fz m,z p(azly) do? i#1 (5.3:5)

Equations 5.3:1 and 5.3:2 are coded in the APPLES program using the special
function anal;}sis routines of the BAYES4 integration package. A single special
function may be used to give a single spot height for either p('rjkly) or p('l:,-k,'rlmly)
using equation 5.3:1 or 5.3:2. A lattice of spot height thus calculated can give these
two marginal distributions. Similarly the variance of and correlations between the v

can be computed as integrals over a? using equations 5.3:3, 5.3:4 and 5.3:5.

5.4 Joint Posterior Density for the variance components and a fixed effect

The previous formulation produced summaries of A\ or o? using the marginal
posterior density, and summaries of T using special function analysis. Preceding
sections have produced univariate and bivariate distributions for both A (or ¢2) and
1. However, the previous formulation does not allow the calculation of the joint
posterior density of 02 and a fixed effect. If it is required to investigate o2 and a
fixed effect jointly, then a joint likelihood for o2 and the fixed effect must be coded
in the program. This is achieved most easily by writing this posterior density as a

product and recalling that, conditional on the variance components, T is normally
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distributed with variance (o2 + oaz + crbz).

Substitute from equation 5.2.2:2 for p(A|y) to yield:
-4 . -~ gl
pOLT, 1Y) o (W FNOAD2(0% +0f +0f) 72
x exp-3{A;'Y2 + 1Y 4+ 0NV 4 612 /(02 + 02+ o)) (5.4:1)

This joint distribution was straight forward to obtain because of the simple form of

the distribution of ‘rul).,y.

5.5 Alternatives to a Normal error structure

It is argued in Chapter 2 that the general multivariate t distribution is an
alternative to the multivariate normal error distribution. In this example, a dis-
tinctly heavy-tailed alternative to normality was sought and thus the degrees of
freedom, v, was chosen equal to 5. The parameterisation of equation 2.4:2 is used so
that ¥V has the same interpretation under both error distributions. It is noted that
adopting this distribution implies that the yijk’s are no longer assumed to be
independent given r. (Recall the discussion in Chapter 2 section 2.4). For a further

discussion of alternatives to normality see section 6.4 in Chapter 6.

5.5.1 Marginal Posterior Density for the Variance Components with t errors

Equation 2.4:2 gives the joint posterior distribution for T and o2. To obtain a

marginal posterior density for a’, the T must be integrated out.
now (y=X1)Vvi(y-X1) = v'X'V'Xr - 2¢'X'Vy + y'V'ly
Denote X'V !X by 42, and X'V''y by AB, where B is a vector. Also let «t =14,
then:
(y-Xn)'Viy-X1) = Vet 2¢VB 4+ y'vly

(«t-B2+cC

where C = y'Vv'!y - B'B

= y'Vly - y'ViXX'vIX)'X'v'y
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Proceed with the integration to remove v - recéll equation 2.4:2

p(o?|y) = [p(e?7ly)p(e®)dr
T

-~

v+n

T2
« p(e?)|VI"E] [1 + B C] dr
T . \

change from T space to tt and remember that dr = Al drt.

v+n

T2
oc p(w’)lVI'ilx’V"xr% jt [@ + (17_—"2_2&19 art
T

- v+n
. 2
« p(a®) |V 31XV x| 2 [1 + v—(:"i]
v+n
(-2 + ;% Tz
x [ |1+ df"
? v-2

T

The integrand on the right looks like a multivariate t distribution with dispersion

matrix (1 + v—?é-)t and mean B. Hence:

p(e?ly) « pe®) | VI3 lx'v X121 + ;(_:'i)-é(wnqz)

_v+n-12
L L I I =1yl =1 2
v-2

Using the data translation of Section 5.2.2 and substituting from equations 5.2.1:5

and 5.2.2:3 yields:

12 142 ty2) v_-.-niz'
ATVYZ 4Tty Tty 2
p(a?ly) « p(e?)(\S\10S) 2 [1 R ] (5.5.1:1)

Thus equation 5.5.1:1 gives the marginal density for o2 as required. As v — oo,

then the (1 + C/v-Z)'%(”'m'lz) term tends to exp-}C, and the marginal posterior

density converges to:
p(o?ly) = p(o?) (\*$A1°2A8) Fexp(-4C)
o p(e2) (MSAIONS Texp-§0] 2 + 012 + A1 YD)

As expected, this is exactly the same as the posterior obtained from a Normal

distribution in equation 5.2.2:2.
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5.5.2 Marginal Posterior Density for a fixed effect and the variance com-~

ponents with general multivariate.t errors

In order to calculate a marginal distribution on a single fixed effect (for
example 1'"), it is necessary to derive an expression for p('rulorz,y). As derived in
Chapter 2, the distribution the the fixed effects t conditional on the variance

components o2 and the data y is multivariate t with:

Mean

X'vixylx'vly

Dispersion matrix

XV -2+ 'V ly -y VXXV X)XV y)/(v4n-12 - 2)

Degrees o} freedom

v+n-12

Now integrate out 11 of the Tjk to leave p(‘r“ Iaz,y). As shown by in section 2.4.3
of Chapter 2, this yields a t distribution, with the same number of degrees of
freedom, and with a mean (and variance) formed by deleting 11 rows (and columns)
from the 12 dimensional values. Also doing the data translation of Section 5.2.2,

y—»y':y-x? takes the mean to zero, and simplifies the variance to

t(cr2 + o-: + cg) (v-2+ y"V"y')/(v+n—12 —2). Hence:

v+n-12+1
. 2 » ( 61'1:2(v+n-12-2)/(02+o:+og)(V-2+y"V"y‘) 2
p(rile%y’) « |1+ -
.
r _ v+n-11
61"";2/(0z + oaz + og) 2

oc |1+ O (5.5.2:1)

\ v-2+y V'y

5.5.3 Marginal Posterior Density for Tjk""lm'cz with general multivariate ¢

errors

Instead of integrating out 11 of the Tik as done in the calculation of equation
5.5.2:1, only 10 of the "jk. are integrated out. This leaves the joint posterior for two
fixed effects conditional on the eigenvalues. Denote the fixed effects by Tik and
Tm- Let v be the variance of the 1';;( and ¢ be the correlation between 1:”;‘ and Tl:n'
Thus v is é(oz+oaz+a;), and ¢ is é(a:-!-o;) ifi=lorecis %og HEERE
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v+n-10
(v'rj"k2 + v'rl;: - 2c1:i",'( Tl:n ¥/ (V2 —c?) 2

v-2+y* vy

p(-rj'k,'rl:nlcz,y‘) o« |14 (5.5.3:1)
Equation 5.5.3:1 is again implemented in the special function analysis code of the

APPLES program.

5.6 The analyses performed, and their sensitivity to the assumptions

One of the strengths of the Bayesian philosophy is the ease with which different
as.sumptions can be accommodated into the model. Full analyses can then be
performed under a set of differing assumptions, enabling the effects of the
assumptions to be seen. For the sake of illustration, assume that in this example

there are three summaries of interest:

i) The marginal posterior density p(fjkly), as a basis for inference about the
mean yield, fjk' of a particular combination of irrigation j and thinning
treatment k. Also the bivariate marginal p(fjk,'rlmly) may be of interest

whenever Tjk and Tim 8re not independent,

ii) The predictive distribution

p(zly) = [p(z|7j M) p(Tjkly) d1yp dA

for a future observation z from the combination of irrigation { and thinning

treatment J.

iii) The joint posterior density p(Aly), which may be useful in the analysis of

some future experiment involving identical experimental material but possi-

bly different treatments.

The sensitivity of each of these summaries is investigated with respect to the
choice of linear structure (maximal vs main effects) for the treatment effects, the

choice of error distribution and the choice of prior distribution on X.

The predictive distribution in ii) can easily be implemented in BAYES4 using

special function analysis, as it is an integral across parameter space.
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5.6.1 Prior Distributions

The accepted non-informative reference prior for A under both the normal and
the multivariate t formulation is ﬂk" ! (see Chapter 4). As an example of a possible
alternative consider the informative prior:

3 '%(vi"‘Z) '%v‘mi/xi
e

() o i[}ki (5.6.1:1)

where v = 43, m = 6933, v, = 8, m, = 22016, v, = 3 and m, = 27696. The

g
functional form is a product of inverse x2 distributions, and the values are based on

the data given by Knuiman for the year 1977 (see Table 5.1.2:2).

Using the Monte-Carlo integration technique, there is no need for analytic
integration, and a proper prior could be assigned to r. Alternatively T and X\ need

not be assumed independent.

5.7 Results

It should be remembered that there is far more information provided by the
data for A  than for ), and more information for xz than for A,. This is because A, has
45 degrees of freedom, Az has 10 degrees of freedom and )\3 has only 5 degrees of
freedom. The presentation of the results is split into three sections, the first dealing
with the fixed effects, the second with the eigenvalues and the final section dealing

with the variance components. All the bivarjate plots show contours at 1%, 5%, 10%,

30%, 50%, 70% and 90% of fhe height of the moda.

5.7.1 The fixed effects

The mean values for the estimates of the fixed effects clearly do not depend on
the particular choice of error distribution or prior. (For the maximal model they are

simply ;jk)' The fixed effect means for the maximal and main effects only models

are given in Tables 5.7.1:1 and 5.7.1:2.
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Cell means for the 12 fixed effects

291-0 326-8~ 316-2 351-2
329-2 293-8 362-8 421-2
381-0 430-5 455-9 439-5

Table 5.7.1:1

Cell means for the main effects model

288-4 305-1 333-0 358-7
318-8 335-5 363-4 389-1
393-8 410-5 438-4 464-1

Table 5.7.1:2

The global mean of the data values is 366'6. The decomposition of the 12 fixed

effect into row, column and interaction effects in given in Table 5.7.1:3

Classical Parameterisation for the fixed effects

Row Effects -45-3 -14-9 60-1
Column Effects -32-9 -16-2 11-7 37-4
Interaction Effects 26 217 -16-8 -~7-5
10-4 —-41-7 -0:6 32-1
-12-8 20-0 17-5 -24-6

Table 5.7.1:3

Figure 5.7.1:1 displays l(fnly) for various choices of model, error distribution
and prior distribution. Most noticeable is the dependence of the location of the
margin on the inclusion or exclusion of interaction terms in the model. The

magnitude of this displacement varies, of course, with the choice of Tjk' The
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maximum displacement observed is 417 with T, the minimum 0-6 with Toq For T2

the displacementis 21-7. The decision to display the margin for T, rather than for
any other treatment parameter reflects a desire to demonstrate the effect of choice
of linear structure without selecting ah extreme instance. It can be seen that the
displacement for T, is only 2-6. Clearly, if T is the only location parameter of
interest then sensitivity to choice of linear structure would not be an issue. As might
be expected, the choice of error distribution has little effect. The informative prior
for 02 does have the effect of tightening the margin slightly when the main-effects

model is adopted.

Figure 5.7.1:2 shows the distribution of a future observation from cell (1,1) for
three choices of error distribution and prior distribution. The effect of choice of
linear structure is not displayed but is identical to that demonstrated in figure
5.7.1:1. Here one might anticipate rather more sensitivity to the choice of normal or
t errors. However, the practical consequences are slight unless one is interested in

probabilities obtained from the extreme tails of this distribution.

Figures 5.7.1:3 and 5.7.1:4 shows two bivariate plots under the three sets of
conditions considered. The two plots are for T, against T, and T, against Ty All
bivariate T plots that use elements of T with the same irrigation regime are, subject
to a translation, identical. Similarly, all T plots with different irrigation regimes are,
subject to a translation, identical. Thus the T against T2 and T, against 7, plots are
representative of all bivariate T plots. It is noted that the change of error
distribution makes almost no effect, and the informative prior merely tightens the

distributions a little. The resulté are summarised in table 5.7.1:4 below:

Moments of the Fixed Effects
Error Prior variance correlation
Distribution Distribution Tik ("jk”jm) ("}'k"rlm)
Normal Jeffrey s' 1830 0-490 -0-027
Normal Inverse x° 1520 " 0-354 -0-036
t, v=5 Jeffrey s’ 1824 0:-490 -0-027

Table 5.7.1:4
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5.7.2 The eigenvalues

The first and second moments . for the eigenvalues are tabulated below.
Following these are 3 bivariate contour plots showing (xl, xz), (xl, xa) and (xz, xa) and
three univariate marginal distributions for the three combinations of prior and error
distribution. Tables 5.7.2:1, 5.7.2:2 and 5.7.2:3 below give the posterior moments of
I(\A]ly) for the three combinations with the maximal model. These have been
calculated by GR rather than BAYES4, as BAYES4 calculates moments for the
parameters, which in this case are the log eigenvalues. Table 5.7.2:4 gives these
moments for log!(A|y) with Normal errors and a Jeffrey s'prior. These have come
directly from BAYES4. Figures 5.7.2:1, 5.7.2:2 and 5.7.2:3 give the bivariate plots.
The ranges of these plots are: x1 0 to 25000, )\2 0 to 150000 and )\3 0 to 130000.

Moments of I(A]y)

Normal errors Jeffrey ¢ prior
correlation
mean variance A, A, A
A, 26500 8-85e8 - 0-000 0000
2 28900 2:71e8 0-000 0-000
L 5230 1-33e6 0-000 0-000

Table 5.7.2:1

It is to be expected that the correlations in Table 5.7.2:1 are all zero since equation
5.2.2:2 for the likelihood on the X\ factorises, and the uniform prior on the log X also

factorises. Thus under these assumptions the )‘i are mutually independent.
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Normal errors X2 prior

- correlation
mean varicnce ka xz )‘1
A, | 16300  6-597 0:000  0-000
A, 20400 4:62e7 | 0-000 0-000
x, 5810 7:-68e5 0-000 0-000

Taoble 5.7.2:2

Again, itis to be expected that the correlations in Table 5.7.2:2 are all zero since the
fikelihood on the A factorises, and the informative prior given in equation 5.6:1 also

factorises. Thus under these assumptions the )Li are mutually independent.

t errors, v=5 Jeffrey s prior

correlation

mean variance )\s xz )\‘
7\3 44500 4-95e8 0-272 0-371
2 48400 2:03e9 0:272 0:627

8730 3-51e7 0-371 0:627

Table 5.7.2:3

These correlations in Table 5.7.2:3 are not surprising as the spread of plausible

values for the variances ¢“ and a: are increased dramatically with the t errors. As

the eigenvalues are linear combinations of ¢Z, ¢ and o5y a large spread in the

estimation of the variances will induce correlation between the eigenvalues.
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Moments of the log I(\]y)

Normal errors Jeffrey ¢ prior

correlation

mean variance log xa log )Lz log )tl

log A, 9:89 0-698 0-000 0-000
log A, | 1015 0-470 0-000 0-000
log A, 8-54 0-213 0-000 0-000

Taeble 5.7.2:4

The momentsin Table 5.7.2:4 are the moments which BAYES4 produces, that is
the moments for the parameters. Because of the log transform, they are of little use
in this particular example. However, these moments feature in a discussion of the
stability of the first and second moments, deferred to section 5.9 (see Table 5.9.1:1),

but are displayed here for completeness.

Now consider the effect of the informative inverse Chi-squared prior for A. As
this prior is based on as much information as is contained in the likelihood through
the data, it predictably tightens the joint density considerably. This is seen by the
reduction in the variances for the A. The variance for )tl reduces by 42%, the
variance for xz by 83%, and the variance of xs by 92%. From figures 5.7.2:2 and
5.7.2:3, it can be seen that the reason for the variance of x‘ not shrinking as much

as the variances for xz and Xa is due to the differing locations for the mode of >‘x in

the prior and the likelihood.

The sensitivity of the correlation structure to changes in the error distribution
is dramatic. The means of x,, xz and xa increasea by 50%, 67% and 68%, yet figures
5.7.2:1, 5.7.2:2 and 5.7.2:3 show that all the modes shrink. At the same time the
variances increase by factors of 26-4, 7-5 and 5-6, indicating considerably
increased uncertainty about the values for A. This is because outlying data values
can be explained either by having high variances and hence high A, or alternatively,
outlying data values can be explained by the heavy tails implicit in the t distribu-
tion. The large correlations are to be expected because the variance of xl = 02 has

increased so much, and this term appears as a constituent of )‘z and xa.
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It should be noted that all three at:alyses give a lower mean value for Xz than for
xa. Classically this would give rise to a negative estimate for crg, and suggests that
there is a significant probability that crbz is zero, or that negative correlations exist
between observations. However with’ Bnly 5 degrees of freedom for )\3 it was not

possible to investigate whether og was really zero.

5.7.3 The Variance Components

The 02 and oaz variance components can be reconstructed from the eigenvalues
by taking the bivariate plot of xl against )‘z and shearing it. From this bivariate plot,
the two univariate distributions can be obtained together with the first and second
moments. These moments are given below in Table 5.7.3:1 for the three combina-
tions of error distribution and prior considered. Figure 5.7.3:1 gives the

corresponding bivariate and univariate plots.

"~ Asis tobe expected from the eigenvalues, the effect of the informative inverse
chi-squared prior is to tighten the distribution for the o and ¢?. The mean for o?
rises because the prior has a substantially larger mode than the likelihood, and the
mean for o: falls because the right tail of the distribution collapses. Both second

moments shrink in line with the tighter posterior distribution. Curiously the

correlation becomes —0-128.

The multivariate t distribution with 5§ degrees of freedom has a dramatic effect
on the correlation, the mean and the variance of the posterior. From being
essentially uncorrelated, the correlation between oaz and o? becomes 0-536, and the

means increase by 83% and 67%. The variances also increase by factors of 6-3 and

26.

In all three cases the modal values change relatively little compared with the

means.
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Moments of Variance Components

Error Prior ~ mean variance correlation
Distribution Distribution c: o? cr: o?

Normal Jeffrey s’ 5390 5230 1-72e7 1:-34e6 -0-070
Normal Inverse Chi-Squared 3640 5810 2°93e6 7-68e5 -0-128

t, v=5 Jeffrey s’ 9900 8730 | 1-08e8  3-57e7 0:536

Table 5.7.3:1

5.8 Comparison of results with those of Knuiman

Knuiman provides an analysis of the both the 1975 and 1977 data sets assuming
Normal errors and a non-informative prior distribution. These can be compared

with the Bayesian results obtained with Normal errors and a non-informative prior.

The estimates for the 12 fixed effects are identical. This is to be expected as

the mean estimates correspond to the maximum likelihood (modal) estimates.

The estimates for the eigenvalues differ substantially. Knuiman estimates )‘x'
)‘z and ka as 4997, 23138 and 15997 which compare with the Bayesian estimates of
5230, 28900 and 26500. The Bayesian estimates are significantly larger since they
represent mean rather rather modal estimates and the univariate marginal distribu-

tions on the eigenvalues have a marked right skew (see Figure 5.7.2:8).

Knuiman was principally concerned with approximate updating of modal
estimates from a sequence of identical experiments. No attempt is made here to
judge the validity of these approximations. Rather, it is wished to emphasise the

worth to the experimenter of a marginal distribution rather than a point estimate.

]
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5.9 Performance of the integration routines

This section looks critically at the results obtained from running APPLES and
MAPPLES using BAYES4 with a view to learning about the behaviour of the

integration techniques rather than learning about growing apples in Australia.

5.9.1 Performance of the Gauss-Hermite integration rule in the APPLES

program

In this section the reliability of the moments of the log eigenvalues is
considered for different sizes of Gauss-Hermite grid, along with the cpu times for
those grids. The results presented below are for Normal errors, and a Jeffrey's prior
distribution. Since these conditions give independence between the A, only the
means and variances for the log A need be presented. For each size of grid,
sufficient iterations were performed for the moments to stabilise, and the results
are given in Table 5.9.1:1 below. Identical behaviour was observed when Normal
errors and an informative prior were used. Also t distribution errors stabilised in
the same manner, but the correlations between the A were non zero (see Table

5.7.2:3). To cater for this a linear transformation was introduced to orthogonalise

the log A.
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Moments of log eigenvalues for different grid sizes
size of cpu log eigenvalues
grid seconds )*x )‘3 "s
8-52404  10-0833  9-74967 | mean
2X2X2 0:09
0-21470 0-45351 0:65054 variance
8:53897 10-1523 9-89267 mean
Ix3Ix3 0-09
0:21200  0-45871 0-66592 variance
8:53887 10-1503 9-88434 mean
4X4%x4 0-16
0-21160 0-45481 0:65440 variance
8:53880 10-1494 9-88350 mean
5X5%S5 0-22
0-21320 0-47114 0-70238 variance
8:53899 10-1530 9-89572 mean
6X6X6 0-28
0-21312 0-46809 0-68830 ., variance
8:53898 10-1520 9-88915 .| mean
TXTXT 0-44
0-21315 0-46955 0-69747 variance
8:53898  10-1524  9-89318 | mean
8x8x8 0-57
0-21318 0-47035 0:69873 | variance

Table 5.9.1:1

Note that because the roots or zeroes of an ntP? order Gauss-Hermite polynomial
interieave the roots of an n+1th order Gauss-Hermite polynomial, changing from a
grid of n points to a grid with n+1 points is a good test for‘convergence of the
moments. Such a change in grid guarantees that substantially different points are

used in the two grids. If this has only a slight effect on the moments, then the

moments are robust.

Note also 6 significant figures are quoted for the means, and 5 for the
variances. It is not intended to suggest that the values have beeﬁ obtained that
precisely, but quoting all the figures does enable the degree of convergence to be
seen. It can be seen that a precision of 3 figures for the mean of )\1 and 4 figures for
the mean of A, can be obtained from only a 3X3X3 grid, but that it takes a 7xX7x7
grid to achieve the same precision for A,. This is largely because the skewness of A,

is greater than the other two skewnesses, and xa also requires a larger grid to
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stabilise. Thisis to be expected as )‘a has far fewer degrees of freedom than kz or xl .

.~

5.9.2 Execution times for the APPLES program

Ultimately the applicability or non-épplicability of numerical methods depend

on the amount of computer time used. There are several important quantities for

the APPLES program.

i) The number of iterations required to gain stability for the moments of the log
eigenvalues,
ii) The time taken to perform a single iteration of the 3 dimensional likelihood

for the log A.

iii) Once the moments for the eigenvalues have converged, a single further
iteration is required with special function analysis switched on. The special
function analysis code calculates the three conditional distributions for the

fixed effects conditional on the eigenvalues, and the time that this code

takes is important.

Clearly the times in ii) and iii) are functions of the number of points used for
the integration rules, and the number of iterations in i) depends inversely on the
number of points in ii) and also on how good the initial estimates of the moments
were. In practice it is found that although iii) is only done once, the time taken in
iil) substantially dominates the other times, This is because the special function
analysis code evaluates two 2 dimensional grids of points and a 1 dimensional vector

of points at every point in the 3 dimensional log eigenvalue grid of points.

Itis thus sensible to iterate on a fairly large grid for ii) until stability is reached,
then do iil). Working on a final grid of 8 X8 X8 points takes less than 0-6 seconds per
iteration on a Vax 11/785 computer. Convergence is fairly rapid and even very poor
astimates for the moments converge in 6-10 iterations (most of which are on a
smaller grid than 8 X8 x8). Obtaining an 8 X8 array of spot heights for the bivariate
marginal distributions for the fixed effects and 8 points on the univariate distribu-

tion takes about 4-6 seconds (of which 06 is the time taken for the likelihood on the

variance components).
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5.9.3 The Monte-Carlo integration rule in the MAPPLES program

Using the Monte-Carlo rule there is-no distinction between fixed effects and log
eigenvalues - there are simply 15 dimensions with a complicated dispersion matrix.
It must be remembered that each iteration of BAYES4 updates the first and second
moments of the parameters, and it is usual to continue iterating until these moments
have stabilised. With MAPPLES there are 15 means, 15 variances and 105 correla-
tions, thus giving 135 values that have to stabilise. For a Monte-Carlo procedure to
estimate 135 valuesin a stable fashion clearly requires a large number of points, and
also an efficient importance sampling algorithm for placing those points. Clearly

stability can always be gained by taking enough points, but this may take a

prohibitive amount of time.

Once all 135 moments have stabilised, the integration must be broken up into
1 or 2 dimensions for a Gauss-Hermite grid, and 14 or 13 dimensions for Monte-Carlo
integration. Marginal distributions can be obtained for the 1 or 2 dimensions

tackled via Gauss-Hermite.

BAYES4 provides two different measures of stability when using Monte-Carlo
integration. First, internal to BAYES4, several Monte-Carlo integrations are per-
formed and the results merged, rather than doing a single integration. This
technique achieves greater stability as problems with ridges in the likelihood are
reduced, and also provides an Estimated Error based on the difference between the
internal estimates. The second measure compares the moments from this iteration
with the moments from the previous iteration. Changes in the means are reported as
the percentage change in standard deviations, changes in variance are reported as
percentage fractional changes, and changeﬁ in correlation are reported as absolute

changes. These 135 changes are combined to give a single Normalised Error.

5.9.4 Execution times for the MAPPLES program

A summary of the execution times and stabilities for given numbers of points
are listed below. These are all for the 15 dimensional Monte-Carlo integration. It
has been found that when calculating marginal distributions for some parameters,
the number of points needed for the Monte-Carlo integration may be reduced by a

large factor (say 10) without affecting the marginal (though poor estimates will be
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made of the other moments).

Performance of the Monte-Carlo Integration rule
Number cpu time Estimated Normalised
of points | (seconds) Error % Error %
5000 35-3 0-95 0-10
20000 138-0 0-55 0-15
Table 5.9.4:1

Running on 5000 points, the following level of stability is observed for the

moments of the 15 parameters:

i) The 12 fixed effect means change on average by 0:02 on each iteration, or
about 2’5% of a standard deviation. Similarly the means of the log eigenvalues

change by about 0-0002 or (again) ;%% of a standard deviation.

ii) The standard deviations of the fixed effects change by about 0-012 on each

iterationor0-3 % of a standa;‘d deviation, and the standard deviations of the

log eigenvalues also vary byv0-3 %.
iii) Finally the correlations typically change by about 0:05 %.

It can be seen that from the point of view of Monte-Carlo integration within
BAYES4, there is no difference between the 12 fixed effects and the 3 log

eigenvalues. They are simply 15 parameters, and are all estimated with the same

level of precision.

Finally compare the two measures of stability given in Table 5.9.4:1. It can be
seen ihat changing from 5000 points to 20000 effectively halves the estimated error.
This is the within iteration estimate of error, and it is to be expected that
quadrupling the number of points v;rill halve it. Rather surprisingly the normalised
error (befween iteration error) is higher using 20000 points than with 5000. This is
probably an illusion caused by doing the iterations on 20000 points before the
iterations on 5000 points. It is to be expected that given more iterations at 20000

points, its normalised error would become less than that for 5000 points.
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Chapter 6
A Bayesian analysis of inter and intra laboratory variation

6.1 Introduction

The British Standards Institute has defined a standard for expressing the
precision of a test method in the document BS5497. This standard addresses itself
to determining the precision of a standard test method and isolates two different
'sources of variation called repeatabiiity r, and reproducibility R. Repeatability
measures the variation between observations made in as far as possible identical
conditions (same laboratory, same operator and machine, same day), whereas
reproducibility R is the variation between observations from different points in time
s.md space. By way of example, in a nested design, repeatability is based on the

residual variance, and reproducibility is based on the sum of the variances from all

the levels.

The standard lays down a statistical method for producing point estimates of r
and R from an initial calibration experiment, but does not consider the variances of
these estimates. The precise definitions for r and R are closely related to the
critical differences at the 95% probability level for two single results obtained
under the conditions of repeatability and reproducibility. For example, in an
experiment involving 2 number of laboratories each providing replicate measure-
ments of the same test material, point estimates are produced for the residual error
o? and the inter laboratory variance of. Assuming normality, the critical difference
at the 95% probability level for the difference of two observations made under
identical conditions, would be 1.96 202, The standard definesr to be 2\/50 which
is 2.830. Similarly, the critical difference at the 95% probability level for the

difference of two observations made at different laboratories, would be

1.96 /2024—203. The standard defines R as 2.83 /oz+c£.

This chapter provides an alternative statistical analysis using Bayes theorem to
produce the marginal distributions for r and R conditional on the data, and also the
predictive densities for the difference of two observations under the conditions of
repeatability and reproducibility. Marginal distributions on variance components
tend to have considerably heavier right tails than normal distributions with the same
first two moments, and thus critical differences based on point estimates will tend

to be biased towards zero. It is argued that the predictive distribution for the

difference of two future observations under repeatability or reproducibility may be
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a more appropriate summary.

6.2 A Bayesian approach

The simplest calibration experimént considered by the standard involves J
laboratories each taking K measurements of a common test material. More compli-
cated structures can be collapsed to this as only the inter and intra laboratory
variances are considered. (This will often imply more structure than the simple
exchangeability that is assumed below, but the model considered can be modified to
handle this.) The data can be specified as Yik where j is the number of the laboratory
and k distinguishes replicate observations of the sample made at that laboratory.
Observations are assumed to be independent of each other and have mean p.! and
variance 02, All the laboratories are taken to have the same precision. The
laboratory means, in the language of the standard, are considered to be random

effects, and are taken to have mean i and variance of.

Assuming normal distributions at both the error and laboratory lavel this gives:
Yik ~ N(uj,cz) independent of all the other y

Wy ~ N(p.,crz) independent of all the other y,;

Thus _vlp..tr2 is multivariate normal and ulu,of is also multivariate normal.

Integrating out the laboratory means, the two multivariate normal distributions

yield:
ylurozoaf ~ N(u,V(Uz,GLz))

where V is a block diagonal matrix with 02+af on the diagonal and crf in the off

diagonal elements of the blocks.

This standard model is discussed in some detail by Box and Tiao (1973). The

. ; 1
accepteq non-informative prior p(u’oz’af) = p(az,of) == (02+ch . Note also
that r and R do not depend on the global mean u, which can be integrated out

analytically leaving the two dimensional marginal posterior density:

y? Y2
po®0lly) o (az)’%J(K'l)(02+K0£)"k"exp-{;:'2- exp-%;-é—fKTE o®0f > 0(6.2:1)

2 é g ;)% and Y )‘5(— y )?
where Y* = (y;,,-y; )* an = y; -y )%
' feikey ik L =l
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Conditional on the within laboratory variance oz, the predictive density for the
difference between two observations from the same laboratory is N(O,Zuz). Simi-
larly, conditional on the o? and cf, the predictive density for the difference

between two observations from the different laboratories is N(0,202+20i‘:). Denote

these two differences by dx and dz'

Thus dllaz ~ N(0,20%) (6.2:2)

and d,lo%0f ~ N(0,20%+20}) (6.2:3)

Predictive densities are simply:

pld,ly) « [ p(dlo®)p(o?,ofly)do?daf (6.2:4)
o%0p

pldly) = [ p(d,lo*0f)p(o? 0] Iy)do® dof (6.2:5)
o%0p

From equations 6.2:2 and 6.2:3 it can be seen that the integrals in equations
6.2:4 and 6.2:5 depend on the variance components only through ¢2, 0'2+Ka£ and
0'2+trf. Since the joint posterior density for oz,of (given in equation 6.2:1)
factorises into a term involving o® and a term involving ¢®+ Ko, the form of the
posterior density for o? is known. This simplifies the integration in equation 6.2:‘;
to a 1 dimensional integral which can be done analytically, yielding a t distribution
with mean 0 and variance 2)’12/(1’-2) with v = J(K-1)-1 degrees of freedom, Neither
the marginal posterior for 02+0L2. nor the integration in equation 6.2:5 can be

calculated analytically. Numerical integration is straight forward.

It is also of interest to see the marginal densities for r and R conditional on the

data. These can be obtained as simple transformations of univariate margins

calculated equation 6.2:1.

6.3 Two examples

Two examples are presented based on the first two numerical examples from BS
5497. The first example, called Table 1 in BS 5497, presents data from 7 laboratories

with 2 observations from each laboratory. The standard analysis of variance is given

in Table 6.3:1 below:
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Analysis of Variance from BS 5497 Table 1
Sum of Squares d.o.f. -Mean Square Expected Mean Square
Y? = 0-290 J(K-1) = 7 | 0-04143 o?
Y? = 0-984 J-1 =6 | 0-1641 o?+20f
Table 6.3:1

Thus (;3 = 0-04143 and a?‘ = 0-06132. From these estimates of the variances,
values of 0-58 and 0-91 are calculated for r and R. It can be seen from Figure 6.3:1
that the BS value for R lies just below the modal value for the marginal density for
R.Examination of the predictive density for the difference of two observations from
different laboratories, it can be seen that the range + 0:91 covers about 93 % of the
density, rather than the claimed 95%. Similarly the range + 0-58 covers about 92%%

of the predictive density for the difference of two observations from the same

laboratory.

Though not correct, the coverage probabilities do not look too badly wrong.
However, in some cases a manufacturer whose product was within specifig:ation
might experience difficulty if 7 % of his product was rejected, when he had only

expected 5 % to be rejected. Similarly, too many laboratories that are in reality up

to precision will be rejected.

The second example, called Table 2 in BS 5497, presents data from 9 labora-

tories with 3 observations from each laboratory. The analysis of variance is given in

Table 6.3:2 below:
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Analysis of Variance from BS 5497 Table 2
Sum of Squares d.o.f. * 1 “Mean Square Expected Mean Square
Y?= 44-8062 | J(K-1) = 18 2-4892 o?
Y? = 445-037 J-1 =8 | 55630 o?+307
Table 6.3:2

Thus o2 = 2:4892 and o;‘: = 17-727. Using these estimates of the variances,
valuesof 4-46 and 12-72 are calculated for r and R. It can be seen from Figure 6.3:2
that the BS value for R lies just above the modal value for the marginal density for
R.From the predictive density for the difference of two observations from different
laboratories, it can be seen that the range +12:72 covers about 93% of the density,
rather than the claimed 95%. Similarly the range +4°:46 covers about 9312-% of the

predictive density for the difference of two observations from the same laboratory.

Aninteresting property of the non-informative prior used in this analysis is that
itactually tightens the predictive densities when compared with a uniform prior on
all the parameters. This is because the non-informative prior causes the estimates
for ¢® and oz+Koz to shrink towards zero, and lower estimates yield tighter
predictive densities. Had uniform priors been used, greater discrepancy between

nominal and actual coverage probabilities would have been observed.

6.4 Extending the model to include t distributions.

In Section 5.5 of Chapter 5, a multivariate normal error distribution was
replaced by a multivariate t distribution and the effect observed. Again, in this

section, the effects of changing to t distributions are investigated.

In reality there is often little reason for the assumption of normal distributions
at the laboratory mean and residual error levels. BS 5497 acknowledges this
possibility but argues that the final values for r and R will be fairly stable to changes

in these distributions, provided that the distributions remain unimodal.
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In classical terms, a test to check the normality of the residuals will not have

much power unless there is plenty of r;plicate data. This is unlikely to occur for two

reasons:

i) All the measurements in a laboratory must be done by the same operator as
this is one of the conditions of repeatability. It is hard to imagine that the
operator will make many independent measurements on the same test

material.

i1) If there is sufficient money available to enable many replicate measure-
ments at all the laboratories, th.en the model is usually made more complex

by introducing more variables eg. several different test materials may be

used.

It is thus difficult to test the assumption of normality for the residual errors,
and even harder to believe it without first considering possible alternatives.
Similarly it is easy to justify the assumption that the laboratory means are

exchangeable from some distribution, but the form of that distribution is not clear.

Two exploratory analyses were made to test the sensitivity of the assumptions
of normality at the two levels. First, the normal distribution for the laboratory
means was replaced by a t distribution with a small number of degrees of freedom,
and the analysis repeated. Second, the normal distribution for the residuals was
replaced by a t distribution, again with a small number of degrees of freedom.
Specifically the choice of a t distribution is appropriate when it is believed that

there may be more observations in the tails of the distribution than would be

expected with a normal distribution.

6.4.1 Laboratory Means distributed as a ¢t distribution

t

Consider first the case of a multivariate t distribution on the laboratory means,

and a normal distribution on the residuals:
yjk ~ N(uj,az) independent of all the other y

oo~ (oD
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Note that it is no longer possible to analytically integrate out the u from these
distributions to produce ﬂu,oz,of in the manner of Section 6.2. Instead ylu,u,a’,az
is produced. Only u can be integrated out of the joint density leaving a marginal on
u,oz,cz. This is a high (J+2) dimensional likelihood. While it can be integrated

numerically (for reasonable values of J), an alternative approach is possible.

2 can be expressed as a

It is well known thatat, distribution with variance ¢
scale mixture of normal densities with the mixing density given by oz(v-Z)x;z.
Similarly a multivariate t distribution can be represented as a scale mixture of a

multivariate normal densities. Thus the model can be expressed:
Yik ~ N(uj.oz) independent of all the other y
u ~ NI with A ~ GE (v-.’?.)x",2
and collapsing the normals:

p(u,0%,0f ly) o {N(u.V(o’.k))p(A)dkp(u.o’.o[f)

There are two distinct ways of viewing this. First it c'an be considered as a 3
dimensional posterior density with each posterior evaluation requiring a one
dimensional integral. Second it can be viewed as a 4 dimensional posterior with A
acting as a nuisance parameter. Both methods are equivalent, but the second is
more convenient for the numerical integration package. Regarding the mixing
parameter as an extra dimension in the posterior is advocated by Berger (1985) as a

method of replacing the J dimensions of the original integral by a single dimension.

i can be integrated out analytically from the 4 dimensional posterior for

u,cr’,oz,x yielding:

r? Y2
p(a?iof Mly) o (0’)"“"("'1)(°’+K’~)-"w°""‘5;‘tf exp-} ey
--&(V'FZ) (V‘Z)Oz

Y R 2 .2
Gawg| AT D)

As this is only a three parameter problem it poses no difficulty to BAYES4.
Although BAYES4 could be used on the 2 dimensional posterior density for oz,af
with the integration over \ carried out within the likelihood evaluation, it is

substantially more efficient to use BAYES4 on the 3 dimensional posterior density

for two reasons:
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i) BAYES4 will choose better placed ordinates for A than any straight forward

integration technique.

ii) BAYES4 can use the correlations between \ and 02 & of.u

6.4.2 Some technical points

As mentioned in chapters 1 and S, efficient evaluation of the numerical
integrals requires estimates of the first and second moments of the parameters. It is
clear that A and oz will be highly correlated. The correlation would pose no problem
to the BAYES4 integration package provided that a reasonable estimate of it was
available. Unfortunately no such estimate is available. However, a priori one would
expect less correlation between )\/aL’ and al": than between A and af. Consequently,

it is better to parameterise the posterior in terms of oz,oz,X/of.

Again, transformations to improve the sphericity o.f the posterior are neces-
sary, and thus the final parameterisation was in terms of log 02, log oLz and log(x/af).
Hence the integration was over the space of positive variance components rather
than the space of positive eigenvalues. Initial estimates for the mean and variance
of !og(k/of), and its correlation with log 02 and log cz were needed. Rough
estimates calculated from the unbiased estimates of o and of together with
assumption of zero off diagonal elements proved satisfactory, and BAYES4 con-
verged rapidly. A high negative correlation between log(k/aL’) and logof was
established, (~0:5 and —0-68 in the two examples), but this was numerically much

less than the correlation between log) and log of which was of the order of 0-95.

Correlations as high as these will give acute problems in the evaluation of such
triple integrals unless considerable care is taken. BAYES4 can handle this without
difficulty, but as the example illustrates, even linear models can lead to densities

where the naive parameterisation is not appropriate.
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6.4.3 Predictive densities for differences in observations

-

Finally it is required to produce the predictive densities for two observations
with laboratory means t distributed under the conditions of repeatability and
reproducibility. It is clear that dx' the difference between two observations from
the same laboratory, is distributed as N(O,Zaz) as in equation 6.2:2. The predictive
density for dz’ the difference between observations from different laboratories is
more complicated. Thisis composed of two parts, a tv(O,Zof) from the difference in
laboratory means, and N(0,202) from the difference of two residuals. Writing the

univariate ¢t as a scale mixture of univariate normal distributions, and collapsing

yields:
d‘loz ~ N(0,202)

and d,lo%0f ~ [ N©,2aT+202)p( At with At ~ (v-2)07 ;2
\4

Thus an extra nuisance parameter ).t is introduced in the evaluation of p(dz). A

marginal density for d2 is thus effectively the result of a 5 dimensional integral

(dz’)\fvcz’oz A,

6.4.4 Residuals distributed as a t distribution

Now consider the case of a t distribution for the residuals and a normal

distribution on the laboratory means:

y ~ t,(n,0%) (6.4.4:1)

2
o~ Noy I

As in section 6.4.1, it is no longer possible to analytically integrate out the p
from these distributions to produce ylu,o’,oi‘:. However, the t distribution can be

written as a scale mixture of normal distributions.
y ~ N(s\) with A ~ o%(v-2)x;?
u ~ NGu,ofI)

Then collapsing the normals:
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Iylu,0%0f) { N(u.V(ol’,.l))p(k)fx with A ~ (v-2)ox;?

Direct application of Bayes' theorem then yields a 3 dimensional likelihood for
u,az,oz based on an integral over A\. W can be integrated out analytically, and A can
be viewed as a nuisance parameter in _t_he 3 dimensional likelihood for c’,aﬁ.x. The

same technical points apply as described in section 6.4.2.

6.4.5 Other Technical Issues

The formulation of the model in equation 6.4.4:1 specifies that the residuals
across all the laboratories are jointly distributed as a multivariate t distribution.
This induces correlation between residuals, even between residuals from different
laboratories. It could be argued that the residuals in different laboratories should
be independent of each other, but equally it could be argued that each laboratory
should have its own precision, rather thfm all the laboratories having a common
residual error 02, If correlation between residuals from different laboratories is to

be avoided, then a separate multivariate t distribution should be applied to each

'

laboratory.

All J multivariate t distributions can be written as a product of a Inverse Chi
squared distribution and a multivariate normal distribution. The J+1 normal
distributions can be collapsed into a single normal distribution (thereby loosing the
J laboratory means p,j), and the global mean u can be integrated out, However the
likelihood is still specified in terms of 2 variance components and J nuisance
parameters. At first sight this yields a J+2 dimensional likelihood. Fortunately it is
not as bad as that, as the likelihood can be considered as being 2 dimensional but
involving J one dimensional integrals. This technique for handling high dimensional

likelihoods that are the product of many low dimensional integrals is discussed in

Skene and Wakefield (1986).

6.4.6 Predictive densities for differences in observations

Following the procedure of section 6.4.3, it is clear that d,, the difference

between two observations from the same laboratory, is distributed as tv(0,202) as in
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equation 6.2:2. The predictive density for dz, the difference between observations
from different laboratories is composed of two parts, aN(O,Zcrz) from the difference
in laboratory means, and tv(O,Zaz) from the difference of two residuals. Writing the

univariate t as a scale mixture of univariate normal distributions, and collapsing

yields:

Thus d,lc:2 ~ tv(O,Zaz)

and d,loo} ~ jN(o,Zo,f+zx?)p(x'f)&xf
t
A

with Al - (v-Z)azx;z. Again d2 is effectively the result of a 5 dimensional problem.

6.5 Examples revisited

The two alternative models using t distributions were applied to the same two
data sets from BS 5497. As can be seen these mildly different assumptions have a
profound effect. The spread of the estimates for the inter laboratory variance of
increases by a factor of 4, and the spread of the estimates for the within laboratory

variance o2 increases by a factor of about 3. These yield larger values for R and r

as appropriate.

It can also be seen from Figures 6.5:1 and 6.5:2 that there is a substantial
amount of Independence between the two stages of the model, in the sense that the
t distribution on the laboratory means has little effect on the residuals, and vice
versa, Consequently, the marginals for r are little changed under the assumption of
a t distribution on the laboratory means, and hence the predictive density for the
difference of two observations from the same laboratory is hardly changed. They

are of course substantially changed with a t distribution on the residuals.

R and the predictive density for the difference of two observations from
different laboratories both change under both sets of assumptions. In both

examples, of > 03, so the distributions are more sensitive to changes in the

laboratory error structure, than the residual error structure.

The coverage probabilities are summarised in Table 6.5:1 below:
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Coverage Probabilities
* Table 1 Table 2
d: - dz dx dz
normal 92-5% 92:9% 93-3% 92-9%
t on laboratories | 92:-8% 72:-7% 93-3% 80:2%
t on residuals 77-5% | 87-3% | 83-2% | 91-7%
Table 6.5:1

This table indicates that the procedure given in the Standard has severe

limitations as the results depend critically on the assumption of normality at both

stages in the model.

6.6 Discussion

A natural extension of the work is to consider t distributions for both the

laboratory means and the residuals. More interestingly:

The choice of the number of degrees of freedom v has been somewhat
arbitrary. Several possibilities suggest themselves. Simplest of all, the analysis
could be repeated with several different values for v (say 4,6,8 and 10) and the
sensitivity to the choice investigated. Alternatively prior probabilities could be
assigned to these values, and posterior probabilities produced. Along these lines, v
could be viewed as a index to distributions ranging from Cauchy (v=2) to normal
(vew). Viewing v as a continuous parameter, it could then be considered as another
nuisance parameter in the model, giving a 4 dimensional likelihood for oa,af,k,v.
Naylor (1982) chapter 5 views v in this manner in a discussion about elaborated

models. The extra nuisance parameter v would pose no numerical problems for

integration using the BAYES4 package.
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Chapter 7
Classical Variance Component Analysis vs Bayesian Procedures

7.1 Introduction

The preceding chapters have deiieloped, amongst other ideas, algebraic and
numerical techniques that allow Bayesian estimation of variance components via
marginal posterior densities in a range of practical situations. Such machinery has
only recently become available with the advent of powerful computers and good
numerical algorithms. Variance component estimation has been discussed for much
longer than this, and in the last 20 years many different point estimators of variance

components have been suggested in addition to the traditional ANOVA estimates.

This chapter summarises this recent work and concludes with a discussion of
estimates comparing classical methods with the previously described numerical
Bayes procedures. The two m:a_.in classes of new point estimators are those based on
minimum variance or minimum norm (see sections 7.3, 7.4 and 7.5), and those based
on maximising some sort of likelihood (see section 7.6). An extended survey can be

found in either Rao (1979) or Rao and Kleffe (1980).

Throughout the chapter the mixed linear model! is considered:

y =Xr+e E(e) =0

8V, + ...+ OpV = Vg (7.1:1)

D(e) o>

T is an unknown vector, and X is a known design matrix. The main interestis in the

variance components 6.

7.2 ANOVA methods

A traditional method of estimating variance components is to equate the
observed and expected mean squares in an ANOVA table and solve the resulting
equations for the estimators. These estimators are usually called the ANOVA esti-
mators and for balanced designs they are unbiased, are easy to calculate and have
minimum variance amongst unbiased quadratic estimators. ANOVA estimates yield
translation invariant, quadratic, unbiased estimators. Under normality they are

minimum variance amongst all unbiased estimators (see for example Searle
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(1971a,1971b) ). Henderson (1953) extended the techniques to unbalanced data,
but these estimators have few desirable properties. For balanced data they

correspond to the MML estimators (see later) unless non-negativity constraints come

into play.

7.3 Minimum Variance Unbiased Estimators

A Minimum Variance Unbiased Estimator is sought for 6 (or a linear combina-
tion of the Oi, ie. £'0), placing no restrictions upon the class of estimators. A Locally
Minimum Variance Unbiased Estimator LMVUE of f'0, vy say, can be derived’at any
chosen point (7,, 60). where (7,, 60) is a prior estimate of (1, 6). If the estimator
is not a function of T, OF e° then the estimator is Uniformly Minimum Variance
Unbiased Estimator UMVUE, but these only occur in simple cases. Rao and Kleffe
(1980) suggest the'use of LMVUE at a point (To, eo) which is based on previous
considerations, or alternatively they advocate iterative use of LMVUE to produce an
IMVUE (Iterated Minimum Variance Unbiased Estimator). The IMVUE is not neces-

sarily unbiased, and is discussed further in Section 7.5.

An estimator v, is defined to be the LMVUE of v at (ro,eo) iff E(y,) = v and
V(Y'.lro, eo) 4 V(?Ifo. Oo) for all § that are unbiased. The LMVUE for 0 given an

a priorl estimate (ro,eo) for (1,0) is:
p [4
¥= ‘gx,(y-Xf,)A,eo(y—Xfo) (7.3:1)
where A is any solution of Ko A=,
f ]
t 4 L}
Ajg = Vo'(V;—PgV,Fg)Vg
and Py = X(X'Vg'X)"' X'V

The result in equation 7.3:1 can be established by showing that
cou(g(y),?lro,oo) = 0 for all g(y) such that E{g(y)|r,0] = O for all 7,0 and using a

theorem due to Rao (1973) p317 on minimum variance estimation (see for example

Rao (1979) ).
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LMVUEs were obtained by La Motte (1973) in the class of quadratic functions
under normality constraints, and by Rao (1971a,1971b) in the class of all functions
under normality constraints. Rao denoted the LMVUE by MiVQUE (Minimum Vari-
ance Quadratic Unbiased Estimates). Papers by Kleffe and Pincus (1974a,1974b)
and Kleffe (1977a,1977b) extended the theory to include quadratic forms in
(y — XB) and they proved that under n'érmality MiVQUE is LMVUE in the whole class

of unbiased estimators.

7.3.1 LMVIUE

Locally Minimum Variance Invariant Unbiased Estimators (LMVIUE) can be
developed in a similar way. It is clearly a desirable property that the variance
estimators should be invariant to translations of the data. The LMVIUE class of
estimators is restricted to those g(¥) such that E[g(y)|T,0] = £'0 and g(y + X1)=g(y)
forallr. 'I:he LMVIU estimator is similar to the LMVUE but there is a different set of

linear equations to solve.

Let P be the orthogonal projection onto the column space of X, ie.

P=XXX)"X M=1I-P

Hy;;(8) = A(tr[(MVeM)"'Vi(MVOM)""}]) = (tr{Vg' (I - P)V;I - Py)Vg'¥;]) (7.3.1:1)

hy(y,8) = [y'(MVM)* G(MVoM) Y y, ...y (MVeM) ¥ v (MVM) * y)!

[y'Vo'(I~Pg)V,(1=Pg)'Vg'y, ..., y'Vg' 1= Pg)V, I~ Pg)'Vg'y1' (7.3.1:2)
where ( )+ denotes the Moore Penrose inverse (see Rao and Mitra (1972) ). The
LMVIUE of f'0 at 0, is ¥ = X'hl(y, 60) where A is any solution to [HUI(OO)]x = f. (see
for example Rao (1979) ).

7.4 Minimum Norm Quadratic Estimation (MiNQE)

In section 7.3 on LMVUEsS, no restriction except unbiasedness was placed on the
estimating functions, yet the estimating functions always turned out to be a qua-
dratic. Itis thusintuitive to explore the field of quadratic estimators more fully. In

this section only quadratic estimators are considered, and the assumptions of
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unbiasedness and/or normality are dropped. This leads to the MINQE family of
estimators as proposed by Raoin a series of papers (1970,1971a,1971b,1972,1973).

-

Suppose thate = ":‘x +...+ Up—l°p-1 + op where U‘- are (anl-) matrices, and
é; are independent observable variables with mean zero and variance oiz. Then
v = U U;, and natural estimates 61' of §; are oi"i/"i ylelding an estimator of y of the

formy, = f 61 +ot !pd;,. For later convenience suppose that « is a prior estimate of

0, define n’ = (a?o; ....,ago;,)', and N such that v, = n'Nn. Note that 'Nn does

not depend on .

In the general model, the error structure is less. defined. Let Va =

ole‘ +..+ orp Vp. and letn = Véc. Then a natural estimator is:

Yo = n'(Ex,VzV,Vé)n = n'Nn (7.4:1)
where A is chosen to make E(n'Nn) = £'0, which implies that (H(e)I\ = £ where

H’(ix) == (tﬂ;'V‘V‘;'VJ). It should be stressed that this natural estimator cannot be

calculated as the fixed effects T are unknown, hence ¢ (and thus m) are unobserv-

able.

.Now consider a general quadratic estimator, Assume ('ro,K) as a prior mean and

dispersion matrix for v, and let v = K'i’(f—fo).

1
ViAvé rra%‘.unr(2 [n
] (7.4:2)

’ [ !
V= -XryAg-xry = (W) 00
K*X AV& K2X'AXK
The difference between the two estimators given in equations 7.4:1 and 7.4:2 is:

V&A Vs -N vhxx*

, a’'a o n
() bt cbrant )
K:x'Av: K:Xx'AXK

The MiNQE is y’Ay where A is chosen to minimise the norm || || of the matrix above,

thai is A is chosen to minimise:

b axxt
viavi-N  viaxx D, D, -
= say
xixavi xixaxxt D,y Dy

for some suitably chosen norm, for example a Euclidean Norm
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Different types of MiNQEs can be obtained by imposing restrictions on the set of

matrices A.
i) MiNQE(U) - Unbiased ~
ii) MiNQE(I) - Invariant with respect to translation of y by v

iii) MiNQE(NND) - Non Negative Definite

or any combination.

The properties of the estimators depend on which of the restrictions is applied,
and on the norm used. Note that T does not appear in the final MINQE. It should
however be remembered that MiNQEs do require a prior estimate for 6 and K. Many
papers do not consider the prior dispersion matrix for T and simply set K to an
identity matrix. If a prior estimate is not available for 6 then MINQEs can be

iterated to produce IMINQE, starting with all the &« equal to 1.

7.4.1 MINQE(U)

An estimator y'Ay can be shown to be unbiased for vy = £'0 if X’AX =0 and
tr AV, = !‘ for i=1,2,...,p. See Rao (1970,1971a,1971b). The square of the Euclidean

norm in equation 7.4:3 becomes:
|v34 Vz-—NI’ + zlvzmxn’ where T = V_ + XKX' (7.4.1:1)
which reduces to:
tr AV AV, +2tr AV AXX' = tr ATAT
To obtain the MiNQE(U) the trace is minimised by:
§ = }‘:xiy'A,y, A; = TH(V =PV, POT! (7.4.1:2)

where \ is any solution to [Hy{(x)]\ = f where Hu(a) is the matrix (tr Aivj)
Focke and Dewess (1972) consider an alternative to the Euclidean Norm giving

different weights to the two terms in equation 7.4.1:1, yielding the r-MiNQE(U)
which is the same as equation 7.4.1:2 but with T replaced by (Vo: + r’xx".
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7.4.2 MINQE(U,I)

Consider the class of Unbiased Invariant quadratic estimators, that is estima-
tors of the form y’Ay where A satisfies AX = 0 and tr AV, = fi (i=1,2,...p).

Define: -
T=V_+ XKx' > o, Vo =V, + ...+ «,V, where « is an a priori value for 8.
Pr = XXT'X)"X'T, Mg = (U-Pg)

Under these conditions the square of the Euclidean Norm given in equation 7.4:3

simplifies considerably (see for example Rao (1979) ) and becomes:
IIVO%A Vé - le = tr(VaA VaA) - 2trA VzNVé + trNN,

Note that due to the choice of N, the second term is independent of 4, Also the third

term does not involve A, so only the first term must be minimised. This yields the

MiNQE(U,I) of £'0 as:
§ = ?x‘y'Aly. for A; = T"'MLVMyT™ (7.4.2:1)

where A is any solution to [Hw(o:)]x = f with HUI(a) as the matrix (tr Aivj)’ The

solution to equation 7.4.2:1 can be written in the form f'8 where 8 is a solution to:

[HUI(‘!)]O = h,(’v o).
where the i'P element of hl(y, «) is defined to be:
(hyly, @) )y = y'Ayy = y'T"'MgVMIT 'y

Note that unlike the MiNQE(U), the MiNQE(U,I) does not depend on the prior esti-

mate K of the dispersion matrix for the T.

7.5 lterated MVIUE and Iterated MiNQE(U,I)

Two different classical approaches both finding considerable favour have been
discussed. Both techniques rely on prior information, and this frequently poses
difficulties. Two solutions are discussed in the literature. First take for a a vector of
ones, and second iterate starting from any initial estimate until converge occurs.

The iterated MiNQE(U,I1) known as the IMIiNQE(U,I) satisfies

[HUI(G)]O = h,(]o 0)
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where hl(y, 0) is the same asin equation 7.3.1:2. The IMINQE(U,I) is the same as the
IMVIUE and the MML estimator (se; section 7.6.1), and may be biased. The
equivalence between both iterated estimators and the MML estimator is interesting
since the iterated estimators do not explicitly require normality but the MML esti-
mator does. This equivalence is probably to be expected due to the close liaison

between normality and quadratic functions.

7.6 Maximum Likelihood Estimates

Seek an MLE for 8 under the assumption that:

y ~ N(X7, V) (7.6:1)

log likelihood I(r, 0, y) = —ilog IVOI —%(’—XT)'V&‘(’—XT) (7.6:2)
Partial differentiation with respect to ¥ and e, produces

dl -
I X'V' Xt =X'Voly (7.6:3)

! - 1y y- ;
296; tr Vo' V; = (y=X0)'Vg'V;Vg'(y-X7) i=1,...,p (7.6:4)

re-arranging equation 7.6:3 yields:
Xt = Pgy Py = X(X'Vg'X)"'X'Vy!
substitute this into equation 7.6:4 to yield:

[H’(O)]Q = hl(’n e) (7.6:5)
where the HI(O) matrix = (tr Vé“?Vé‘Vj) and the ith element of hl(y,e) =
y'( -Pe)'Va’ V‘Ve"(I—Pe)y. Note that the same equations can be obtained from an
Iterated MiNQE(I).

The MLE provides an estimator of (£,8). An iterative method must be employed
to obtain a solution to equation 7.6:5. If a solution is found then it is the MLE. There
are several problems however. If the supremum of equation 7.6:2 occurs at a boun-

dary rather than in the interior of the permissible space, then there may be no

solution to equation 7.6:5.
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Under the normality assumptions in equation 7.6:1 the MLE of T is of course
Lfnbiased. However, the solution to eq.uation 7.6:5 is biased as it does not take into

account the loss of degrees of freedom in estimating r.

-

le. E(hy(y, ©)] # [HI(O)].6

The MLE is asymptotically unbiased for large samples, however the amount of bias
may be large if p is large and n is of moderate size. For this reason, Patterson and

Thompson (1975) proposed the Marginal Maximum Likelihood estimator.

7.6.1 Marginal Maximum Likelihood estimation MML

Instead of solving equation 7.6:5, the following equation is solved to yield a

MML estimator for 8.

h,(’p 0) = E[",(Yv 0)] = [HU’(O)]O

That is, MML estimators can be obtained by maximising the likelihood of 6
based on error contrasts. Error contrasts are any u'y such that E(u’y) = 0 and
u'X = 0 where u does not depend on 8 or 7. The maximum number of linearly
independent error contrasts is n —pf, where pT is the number of linearly indepen-
dent columns of the X matrix. Define xttove any p?t linearly independent columns
of X. A particularsetofn —p'linearly independent error contrasts is Ty, a (n -ph
by n matrix, where T Is any n-pt linearly independent columns from
I-x(x'x)"Xx'.

1(8, Ty) = -§10g|T'VT| ~ 4y’ T(T'VyT)'T'y | (7.6.1:1)

MML maximises l‘ rather than l in equation 7.6:2, Differentiating with respect to ei

gives:

dl
-l ot — [ ' L ant? ’ =1t in .
Ell tr ((T'VT)'T'V) = y'T(T'VT) ' T'VTI(T'VyI)' T’y i=1,2,...,p0 (7.6.1:2)

using the identity T(T'VT)™'T’ = Vg'(I - Py) due to Rao, equation 7.6.1:1 becomes:
tr (V' (1= Pg)V}) = y'Vg'(I~Pg)V;(I~Pg)Vg'y  i=1,2,...,p (7.6.1:3)

Note that this expression is independent of T which had been chosen arbitrarily. It
can be written in the form [HU,(O)]O = h,(y,O) which establishes that the MML
estimates are equivalent to the IMINQE(U,I) and IMiVIUE estimators,
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If the supremum of equation 7.6.1:1 occurs at a boundary rather than in the
interior of the permissible (positive) s;:ace, then there may be no solution to equa-
tion 7.6.1:2. As with the ML estimates, the MML estimator is invariant with respect
to translations of the data by Xt for all r. The bias in the MML estimates may not

be as large as in the ML estimates, particularly when p is large compared with n.

Asnoted in section 7.2, the MML estimates correspond to the ANOVA estimates
if the data are balanced, and the non-negativity constraints are not required. Note
also that in the review paper by Harville (1977) these estimators were called REML

(REstricted Maximum Likelihood).

7.7 Equivalence of MML and Bayes Marginal modes

The relationship between MML estimators and Bayesian estimators can be seen
by considering the marginal posterior density function for 6. Assuming the prior on
0,7 factorises into & term in © and a term in T, the posterior density on 0 can be
written as the prior on 8 multiplied by the Marginal Likelihood. Thus the MML

estimate is sean to be the joint posterior mode for 6 assuming a uniform prior on 0

(see Harville (1974) ).

This equivalence suggests that the MML estimate (and thus the IMVIUE and
IMiNQE(U,I) as well) have to be viewed with caution compared with the information

obtainable from a posterior margin. In particular:

i) Uniform Priors: In Bayesian terminology, the MML takes a uniform prior on

0 as a "non-informative” prior. This expands the estimates considerably

compared with the accepted reference prior.

i1) Joint vs Marginal Modes: The MML estimate for 0 corresponds to the Joint
mode for the 0. This is somewhat inconsistent. The T have been regarded as
nuisance parameters in the estimation of 8 and have been integrated out, yet
all the 8 have been considered at once. It would be more consistent to
consider integrating out all but one of the 6,- to enable estimation of the el.

individually, that is use marginal modes for Ot rather than the joint mode for

0.
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iii) Modes vs Means: Marginals on variance components tend to have marked
positive skew, and hence modes provide unrealistically low estimates com-
pared with the means. Note that this shrinks the estimates and i) explodes

them, so these two factors may to some extent cancel each other out.

iv) IMVIUE and IMINQE(U,I) are “independent” of the error distribution as this
was not specified for their derivation. By implication, it is to be expected
that these gstimators are equally applicable across a range of error distribu-
tions, yet it is observed from Chapters 5 and 6 that changes in the error

structure radically affect the var_iances.

v) Standard errors of estimates from the MML algorithm are based on local

curvature at the mode. This is a poor procedure for distributions that may be

very skewed.

vi) As discussed later, there are similarities in the amount of numerical effort
required to produce Bayes or MML estimators. Convergence with the MML
algorithm {Is best for surfaces that are approximately quadratic, hence
transformations of parameter space may be useful (eg. work with the square
root of the ratios of the variances to the residual error). Quadratic conver-
gence typically happens in six to ten iterations, thus requiring rather fewer
function evaluations than efficient Gauss-Hermite integration, but the

difference is not marked unless the dimension of 0 is massive.

7.8 Computational Methods

The ML and MML estimators require the inverse of the dispersion matrix ¥ to be
calculated once per iteration, and the Bayesian approach requires v !ateach point
of a multi-dimensional lattice. As written, the MiNQEs also require the inverse of
a matrix of size n X n where n is the number of observations. Clearly for large data
sets this becomes computationally very time consuming. Algebraic tricks that

reduce the computational load are thus highly desired.

Various authors have discussed ways of reducing the numerical effort involved
in evaluating MiNQE, MIVQUE, and MML estimators. Much of this work offered a
basis for the work of Chapter 3. For example, if the data are balanced, then ¥V can
be inverted analytically using the results of Searle and Henderson (1979). Wansbeek

(1982) provides an analytical way of calculating more general V™! using the inverse
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of a much smaller matrix than V, thereby considerably reducing the computational
burden. Giesbrecht and Burrows (f979) consider efficient ways of computing
MiINQE(U,I) and MML estimates for hierarchical classifications. Kaplan (1983) pro-
vides a method of evaluating MiNQEs e¥ficiently, and in their consideration of the
calculation of MML estimates, Corbeil and Searle (1976) show how to reduce the n by

n inversion to the inversion of a q by‘q matrix where q is the number of random

levels in the structure.

7.9 Further work

There is scope for much further work characterising the way in which prior
information can is used in the classical estimates. ]t would be intriguing to know
whether these estimates handle prior information consistently as viewed from the
Bayesian perspective. Also consider the case of strong prior information. Do the
one-step methods such as MiNQE(U,I) have utility in providing estimates for the
prior mode, such as may be used as a starting point for BAYES4? The type of prior

information used by the classical estimates is also interesting as point estimates are

provided for 0, but higher moments are not considered.

There is only a small amount of literature on confidence intervals producing
approximate intervals for specific variances or ratios of variances in a few specific
models, for example: Artega, Jeyartnam and Graybill (1982), Bross (1950), Bulmer
(1957), Burdick and Sielken (1978), Graybill (1976), Graybill and Wang (1979), Wang
and Graybill 0181), Green (1954), Howe (1974), Jeyartnam and Graybill (1980), Khuri
(1981), Moriguti (1954), Tukey (1951) and Williams (1962). Some of these approxi-

mate methods can now be compared with the highest posterior density intervals that

can be produced using BAYES4.



Chapter 8 Conclusion

8.1 Applicability of the numerical Bayesian approach

The algebra of the early chapters, and the extended examples in Chapters 5 and
6 have demonstrated that the numerical ‘Bayesian approach employing hierarcbical
linear models offers a practical means of data analysis, demonstrating something of
the potential of the Bayes paradigm in highly parameterised linear models. These
chapters have shown that the hierarchical linear model is practical and can be used
efficiently given the appropriate computer software such as that developed at the
University of Nottingham. In turn, BAYES4 has been shown to work well for the
hierarchical linear model using the normal times polynomial approximation to the
posterior density, given a restriction to spherical error distributions. It has been
shown that for hierarchical linear models, the log eigenvalue transformation is
sufficient to produce a posterior density that has nearly spherical contours. The
success of the log el.genvalue transformation can be seen in section 5.9.4 of chapter
5. Not only is the marginal posterior density for the log eigenvalues spherical, but
also the joint posterior distribution for the variance components and the fixed
effects is spherical. This leads to BAYES4 evaluating the fixed effects and the log
eigenvalues with the same precision, and all the correlations have the same
precision. As far as ‘the integration routines are concerned there are simply a set of

parameters with a spherical joint posterior density. Thus the joint posterior density

fits well with BAYES4.

The viability of the numerical Bayesian approach to hierarchical linear models
is seen to be a function of three things. First there is the need for algebraic
manipulation of likc‘llhood function to enable its speedy evaluation. Second, there is
the requirement for efficient numerical integration and surface reconstruction
routines. Finally there is also the choice of which margins to produce analytically,
and which to do numerically. In many cases it is worth doing as much work
analytically as is possible since this reduces the dimensionality of the numerical
integration., However, this is not always the case, as sometimes an analytical
integration yields a lower dimensional posterior which is much harder to evaluate,
In some situations, the increased difficulty in evaluating the posterior, more than
counterbalances the saving caused by having a lower dimensional numerical

integral. Both cases can be seen by considering the Knuiman example from Chapter

5.
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The maximal model has 15 dimensions comprising 12 fixed effects and 3
variance components in a balanced factorial design. Accordingly the poste-
rior density is easy to evaluate."l‘he 12 fixed effects can be integrated out
analytically yieldinga 3 d.imensi'onal posterior that is also easy to evaluate. If
margins are required for the fixed effects, then these can be calculated by
Special Function Analysis. The broduction of univariate and bivariate mar-
gins using the analytical method thus requires a grid of points to be
calculated where each point relies upon a 3 dimensional numerical integral.
By contrast, for the numerical method each point in the margin requires a 13

or 14 dimensional numerical intégral. It is clear that the analytic technique

is more efficient,

By contrast consider the main effects only model. The posterior &enslty has
6 fixed effects and 3 variance components, and is easy to evaluate. It is
possible to integrate out the 6 fixed effects leaving only a three dimensional
integral, but the posterior density thus produced requires the numerical
inversion of a 6 X 6 matrix at each evaluation point. Thus using the analytic
route, margins for the fixed effects could be produced using Special
Functiorlx Analysis on a grid of points, where each point is based on a
numerical integral of a 3 dimensional integral involving a difficult posterior.
This must be compared with the numerical technique which requires an 8 or’
9 dimension numaerical integral of an easy function. The efficiency of the

Monte-Carlo routines may make the latter technique more efficient than the

analytic approach.

With balanced factorial models, it is worth considering the use of eigenvalues

as parameters rather than variance components. This naturally raises the question:

Should the numerical integral be calculated over the space of all positive definite

dispersion matrices, or over the space of strictly positive variance components?

The variance components are the more natural parameterisation, but experience

has shown that eigenvalues are frequently more convenient. There are two main

reasons, for this:

1)

i1)

One or more variance, but not usually the residual variance, may be close to
zero. This may lead to convergence difficulties if the variance components
are parameters. These problems will not arise with the eigenvalue

parameterisation as none of the eigenvalues are close to zero.

The posterior correlation structure is often much simpler on the eigenvalues

than on the variance components.
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It should be noted that working in the space of strictly positive eigenvalues
does not conflict with ones prior opinions. This can be seen by considering the one
way analysis of variance. The same dispersion matrix is compatible with two models,
one in which all the observations are independent, and one in which all observations
within a group are equally correlated. These models lead to the same likelihood, but
with different parameters, and the natural parameter spaces for the two models
different: namely the space of positive variance components and the space of
positive eigenvalues. With BAYES4 it is convenient to work. in terms of the
eigenvalues since the log eigenvalues give a posterior with approximately spherical
contours. Note that this implies a slightly wider class of models than is usually
considered where the variance components are positive. However, provided that
the data are suggesting that the variance components are positive, it is possible
within BAYES4 to work with log variance components as param;ters. In Chapter 6

this was done, as it is consistent with the model of the Standard.

8.2 Comments on the use of BAYES4

The philosophy underlying BAYES4 can be found in Naylor and Smith (1982)
and a general strategy for its use can be found in the BAYES4 User Guide (Naylor

and Sh.nw 1985). In addition to these techniques, the following algorithms are useful.

Inlow( € 6) dimensional problems, BAYES4 can use Gauss-Hermite integration
rules, and from any Gauss-Hermite dimension(s) BAYES4 can calculate univariate
(or bivariate) margins. However, in practice itis usually necessary to apply a linear
transformation to the parameters to make the integration easier. This implies that
univariate and bivariate densities can only be calculated from the first two

dimensions. If other margins are required, then the order of the parameters must

be shuffled, and this can be done within BAYES4.

In higher dimensional problems, using spherical or Monte-Carlo rules, it is no
jonger possible to produce margins, though the methods give good convergence and
perform the calculation of the first and second moments of all the parameters. This

leads to the following algorithm for production of margins from a high dimensional
density.

i) Use the spherical integration or the Monte-Carlo integration as appropriate

on all the parameters.
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i) Repeat {) until first and second moments have converged. In the case of
Monte-Carlo integration, now increase the number of evaluation points to see

if the estimates remain stable.

-

{il) To produce margins, reorder the paramaeters if required, and set the first one
or two dimensions to be done by Gauss-Hermite integration. The number of
points chosen for the Gauss-Hermite integration becomes the number of
points from which the posterior density will be reconstructed using GR. Use
a spherical or Monte-Carlo integration on the remaining dimensions. If a
Monte-Carlo integration is being used, then the number of Monte-Carlo
evaluation points can typically be reduced by a factor of 5 or 10 without
affecting the accuracy of the margin of interest: (Such a reduction will of
course lead to very poor re-estimates of the moments of the Monte-Carlo
parameters, but these estimates should be discarded). Perform one final

fteration with this configuration to produce the margins.

. This is another illustration of a general principle that applies to BAYES4.
Iterate to gain convergence on something that is as simple as possible, then extend
‘the problem to evaluate the margins/predictive densities of real interest. This
minimises the computer time necessary. Exactly the same principle applies to

'Special Function Analysis - converge first, then switch on the extra analysis.

The production of predictive densities using Special Function Analysis has
frequently been discussed in this thesis. The production of such densities is not an
‘automatlc procedure with BAYES4 and the user is required to write a substantial
amount of code (often considerably more code than was needed for the likelihood).
This is because Special Function Analysis was designed to evaluate the integral of a
prescribed function £(0) across parameter space 0, rather than evaluate a density
‘ that has been written as a distribution conditional on the posterior. A particular

choice of £(0) enables the calculation of a function such as amoment of 0 or a single
point corresponding to a single evaluation from a predictive density. Thus to
produce a predictive density, an array of different functions fi(e) must be
" evaluated, with each f‘(O) corresponding to a different evaluation point. Bivariate
predictive densities require a lattice of evaluation points. GR can then be used to
reconstruct the surface from the set of evaluation points in the same manner as for

densities produced directly from BAYES4. More work could be done with BAYES4 to

simplify this procedure.
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Finally, consider the coding aspects of the main effects only model from
Chapter 5. A particularly simple and effective method of analysing this model is the
method taken by the MAPPLES prograrr:. Originally MAPPLES was coded to handle
the 15 dimensional full model. Having done this a separate program could have been
written to analyse the sub-model, butinstead a single extra subroutine was added to
MAPPLES that would take the 9 parafﬁeters of the sub-model and map them back
into the 15 parameters of the full model. This vector of 15 parameters is then passed
to the full 15 dimensional likelihood as if it were the full model being analysed. This
saves the user from a considerable amount of work as only the one new subroutine

must be written. This method of codiné generalises to all cases whére submodels of

a maximal model are considered.

Asnoted before, and as {llustrated In the Appendix, the code for the likelihood

can in fact be code for several alternative likelihoods controlled by a selection

mechanism at run time.

8.3 Alternative error distributions and heavy tails

The algebra of Chapter 2 (distributions) and Chapter 4 (priors) combines with
the worked examples of Chapters 5§ and 6 to show that the multivariate t error
distribution Is a viable and useful alternative to normality in the analysis of
hierarchical linear models. The method of handling the t distribution in Chapter 6
using scale mixtures together with the early algebra illustrates that any scale
mixture of normals can be used as an alternative error distribution without
incurring much of an increase in numerical difficulty. Although the theory of this
has been discussed by West (1984), Berger (1985) and others, this thesis provides a

first practical demonstration of the value of such an analysis.

This raises the question of routine sensitivity analysis, and it is clear that some
of the margins produced are robust with respect to the choice of error distribution

(eg the fixed effects in Chapter 5), and others are not.

I1tis argued that care should still be taken, as heavy tailed distributions plus the
notion of exchangeability are not a panacea for all situations. An analysis of a
scatter plot may lead to a belief in a heavy tailed distribution such as a t. Equally,

however, it may suggest that one or two laboratories are different from the others,
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or that there are some wildly discordant data. In the first case, it may be better to
use a mixture model, and in the second case it may be better to discard the outliers
and use an unbalanced design respe_ctively, otherwise a “model” may be developed

that is consistent with the data, but in no way models the underlying process of

interest.

8.4 Conclusion

Considerable progress has been made in the field of Bayesian estimation of
variance components for arange of linear m.odels. The algebra allows the possibility
of some unbalance, but a full characterisation of the difficulty of a model has yet to
be achieved. This difficulty is shown to be a function of both the structure of the
dispersion matrix V and the design matrix X. A level of generality in the algebra for
unbalanced cases has been established, but as yet these have not been utilised. The
algebra exists for others to make use of, and also serves to prove that a lot of
headway can be made. This raises the question of whether a general computer

package could be written that used these balanced and unbalanced results to

automatically write a likelihood for use in BAYES4.

Using BAYES4, the numerical Bayesian approach has been demonstrated to be
practical for arange of highly parameterised linear models. This methodology yields
marginal posterior distributions on the parameter(s) of interest, rather than a few
point estimates. It has been shown that a routine sensitivity analysis can and should
be carried out, producing marginal distributions under a range of possible assdmp-

tions. It is argued that no matter what approximations are used, there is no

substitute for the real thing.
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Appendix

This appendix contains the APPLES and MAPPLES program that were used for
the analyses in Chapter 5. A brief functional description of these programs is
included to help the reader to write similar programs that use the BAYES4 package.
Simple programs for BAYES4 need only supply the following subroutines PROBLD,
LOGLIK, PRIOR. The PROBLD routine must define the number of parameters and
give them names, LOGLIK must evaluate the log likelihood at a point in parameter

space, and PRIOR must evaluate the prior distribution at a point in parameter

space.

The APPLES and MAPPLES programs both have large PROBLD subroutines.
There are several reasons for this. First the programs read in the raw apple yields as
data and calculate from these the sufficient statistics that enable efficient likeli-
hood evaluation. Second both programs ask the user whether a normal or at error
structure is required, and the variable nu is set to -1 or the number of degrees of
freedom as appropriate. This variable is passed through a COMMON block to the
LOGLIK subroutine where the appropriate likelihood is evaluated. Thirdly the
PROBLD routines ask the user to choose a particular prior. The code for the selected
prior is stored in the nprior variable and is passed to PRIOR thfough a COMMON
block. Finally the PROBLD subroutines calculate the cell means and do the

necessary data translation to simplify the resulting likelihood.

Both APPLES and MAPPLES use special function analysis to produce densities.
MAPPLES produces a predictive density for a future observation from cell (1,1)
whilst APPLES produces a univariate distribution for taull, a bivariate distribution
for taull,taul2, a bivariate distribution for taull,tau2l, and a"predictive density
for a future observation from cell (1,1). It is easier to see what is happening by
reference to MAPPLES. Three subroutines are necessary for special function
analysis, namely BXINIT, BXFUN and BXOUT. BXINIT performs any necessary
initialisation for the special function analysis, and must indicate the number of
special functions that are being used. Typically, all that is done here is to define
evaluation points for the special functions themselves. The BXFUN subroutine is
responsible for evaluating all of the special functions, conditional on the current
parameter vector. The BXFUN subroutine in MAPPLES merely evaluates a normal
(or t) distribution at a series of ordinates as defined by BXINIT. The values returned
by BXFUN are weighted according to the posterior density and summed to produce
the vector of special functions. This vector is passed to BXOUT which is responsible
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for its output. The BXOUT subroutine in MAPPLES simply writes this vector to an
output file in the format used by aR, so that the predictive density can be
reconstructed using GR. In APPLES, the subroutines are more complicated, as there
are more densities to consider. BXFUN calls a subroutine CALBIV twice to evaluate
the two bivariate densities. Similarly BXOUT is more complicated and calls DRWBIV
twice for outputing the bivariate densities. BXOUT sends the densities both to

output files for later use with GR, and also to the terminal.

Another subroutine used in MAPPLES is BTFTRN. This is used to map the
parameter vector as used by BAYES4 into the parameter vector wanted by LOGLIK.
This may be used to implement a transformation of parameter space, but in
MAPPLES it is used to map the 6 fixed effects from the main effects only model to
the 12 cell means used in the maximal model. A question in PROBLD asks which

model is required for a particular run.

The APPLES program
program APPLES
Program to analyse one year's data from the Knuimaq apples data set

t distributions are used that have the same variances as the Normal

distribution

This program deals with the full model (12 fixed effects and 3
variance components). All 12 fixed effects have been integrated

out, and the data vector y is translated to take each of the plot

0o 06 6 o0 6 0 0 0 6 06 O

means to zero, as this considerably simplifies the algebra (and

the FORTRAN!)

(o]

Two different error distributions are supported:
1) Multivariate Normal errors

2) Multivariate t errors

This program produces:
1) The posterior distribution for the three variance components,

based on y data translated to have to give a zero total in each

of the 12 plots.
2) The marginal distribution for a fixed effect (they are all identical)

o 060 60 0 o 6 6 0 0 o



o 6 0 060 0 60 06 0 6 060 6 6 0 0 o

[¢]

o 0o 06 6 o

-153 -

and for both of the different pairs of fixed effects

eg. Taull v Taul2 or Taull v Tau21

3) A predictive density for any observation (eg y111). All other
predictive densities are identical

4) The variance of and correlations between the Tau are calculated

Three different forms of the Prior distribution are supported
1) Uniform Prior on the log eigenvalues.
This is the Jeffreys prior, ie minimum information.

2) Independent inverse Chi-squared priors on the eigenvalues Eps.
The ICs are chosen to have the appropriate number of degrees
of freedom, and have a mode matching the estimates made for
the eigenvalues from the other years data.

3) Log Normal Prior on the eigenvalues

print *,APPLES (3 dimensional)’
Call BAYLD

Call BAYES

Call BAYEND

stop

end

subroutine PROBLD(vnam,ndim)

subroutine to read the data file, determine the type of problem
calculate sufficient statistics (various sums of y), and perform

other housekeeping to enable fast execution of Log_Lik

implicit none

common /problm/Y12,Y22,Y32

common /problm2/normal, nu2,nun10,nunll,nunl2
common /probpr/nprior,priorm,priorv ,
common /probDrl/Taul,kpin

common /probDr2/ksout,type,type2

common /probsf2/npoint

real y(72), yijk2,yijd2,yidd2, Y12,Y22,Y32, Tau0(12)
real priorm(3),priorv(3)

integer ndata, nu,nprior,kpin,ksout
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logical normal

real nuZ,nun10,nunil,nun12
integer i,j,ndim, npoint =

real sum,ymean,row(3),column(4),intr(3,4),t
character*8 vnam(3)

character*4 ty

character*3 ty2

character*7 type,type2

character*40 string -

Get 10 channel numbers
call bfgpio(kpin,ksout)
read (kpin,*) string

write (ksout,1) string
1 format(//" <APPLES in Ch5> Analysis of.’,a40/)

6 blocks of 3 plots of 4 trees
6 blocks of 3 irrigations of 4 thinnings

ndata=6*3 *4

set number of dimensions for integration routine

ndim =3

set names for each dimension
vnam(1) = 'llambdl’
vnam(2) = 'llambd2’
vnam(3) = "llambd3’

get all the raw data y values

read (kpin,*) (y(i),i=1,ndata)

write (*,2)

2 format(/’ Choose between a multivariate Normal error distribution’

+ /' and a multivariate t error distribution.’

+ /" Type O for a Normal, or the number of degrees of’
+ ' freedom for a t')

read (*,*) nu
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if (nu.lt.1) then
write (*,3)
write (ksout,3)
3 _format(’ Errors have a Normal distribution’)
normal = ,TRUE.

ty = 'Nor/
ty2 = 'Nor’
else

write (*,4) nu
write (ksout,4) nu

4 format(’ Errors have a t distribution with',i4,’ d.o.f.")

normal = .FALSE.
ty ='t05/
ty2 = 't05°’
endif
nu2 = nu -2
nunl0 = nu + ndata - 10
nunll = nu + ndata - 11
nunl2 = nu + ndata - 12
¢ .

5 print *,’'Please indicate the type of Prior required’
print *,'Type 1 for a Jeffreys prior (uniform on log Eigenvalues)’
print*,' 2 for a Inverse Chi-squar.ed prior on the ’,

! 'eigenvalues’
print *,’ or 3 for a log-normal prior on the Eigenvalues’

read (*,*) nprior

if (nprior.eq.1) then
write (ksout,*) ' Prior is Jeffrey"s '.prior’
type =ty //'Jef’
type2 = ty2 // 'Jef’
else if (nprior.eq.2) then
write (ksout,*) ’ Prior is Inverse Chi on the Eigenvalues’
type =ty //’'IC’
type2 = ty2 // 'I1C’
else if (nprior.eq.3) then
write (ksout,*)’ Prior is log-normal on the Eigenvalues’
write (ksout,?)’ Prior Means and variances:'

print *,’Type the prior mean, and variance for each?’,

+ 'Eigenvalue in turn’
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do 6 i=1,ndim
read (*,*) priorm(i), priorv(l)-
6 write (ksout,*) priorm(i), priorv(i)
type =ty //’'Nor’ T
type2 = ty2 // 'Nor'
else 4
print *,’Reply not understood - Please retype’
gotos
endif
c -
print *,’Type the number of points required on the’
print *,'Special Function Analysis grids for the fixed effects’
print *,’(an even value is suggested)’

read (*,*) npoint

calculate yd11, yd12, ... yd34, then subtract yd11/6 from yill etc
this maps Tau ~--> Tau + Tau0, where Tau0 is (yd11/6, ... yd34/6)

0 0O 0 o

do 12 i=1,12
sum = 0.0
do 10 j=1,6
10 sum = sum + y((j-1)*12+i)
Tau0(i) = sum / 6.0 |
do 11 j=1,6
11 y((j-1)*12+1) = y((j-1)*12+i) - Tauo(i)

12 continue
write (ksout,13) (Tau0(i),i=1,12)
13 format(/’ These are the MLE for the 12 fixed effects’,

! 3(/417.1,' "))

c Produce a Classical table of interaction effects

c
do 14 i=1,3
14 row(i) = ( TauO((i-1)*4+1)+Tau0((i-1)*4+2)
! + Tau0((i-1)*4+3)+Tau0(i*4) ) / 4.0
C

ymean = (row(1) + row(2) + row(3)) / 3.0

write (ksout,*) ’ The Mean of the data values is ’, ymean
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do 15 j=1,4
15 column(j) = (TauO(j)+Tau0(j+7t)+'l‘au0(j+8) )Y/ 3.0 - ymean
do 16 i=1,3
do 16 j=1,4
16 intr(1,j) = Tau0((i-1)*4+j) - row(i) - column(j)

L~

write (ksout,17)

17 format(/’ Classical Parameterisation:’
! /! Interaction effects Column effects’)
write (ksout,18) .
! intr(1,1),intr(1,2),intr(1,3),intr(1,4),row(1)-ymean
write (ksout,18)
1 intr(2,1),intr(2,2),intr(2,3),intr(2,4),row(2)-ymean
write (ksout,18)
! intr(3,1),intr(3,2),intr(3,3),intr(3,4),row(3)-ymean

write (ksout,*)’ i !

write (ksout,19) column(l),column(2),column(3),column(4),ymean

18 format(’ '4£6.1, | ',§6.1)
19 format(’ Row effects’,4f6.i,’ I1'f6.1,” = Global Mean’)
c .
c Produce a GLIM table of interaction effects
c
t = Tau0((1-1)*4+1)
do 20 j=2,4
20 column(j) = TauO((1-1)*4+j) - t
do 21 i=2,3
21  row(i) = TauO((i-1)*4+1) - ¢t
do 22 i=2,3
do 22 j=3,4
22 intr(1,j) = TauO0((i-1)*4+j) - t - column(j) - row(i)

write (ksout,23) t, column(2), column(3), column(4),
! row(2), intr(2,2), intr(2,3), intr(2,4),
1 row(3), intr(3,2), intr(3,3), intr(3,4)
23 format(/’ GLIM Parametrisation’
1t/ t',£6.1,"| c2',f6.1," ¢3,16.1, c4'.f6.1
v/ +
t/ r2'.£6.1,"} i2,2'f6.1, i2,3'.f6.1,” i2,4',f6.1
1t/ r3',f6.1,' ] i3,2'.f6.1, i3,3',£6.1," i3,4',f6.1//)

2
n?



-158 -

c calculate the sums of squares of y
c -
yijk2 = 0.0
do 25 i=1,72
25 yijk2 = yijk2 + y(i) * y(i)
c
yijd2 = 0.0
do 27 i=1,18
sum = 0.0
do 26 j=1,4
26 sum = sum + y((i-1)*4+j)
27 yijd2 = yijd2 + sum * sum

yidd2 = 0.0
do 29 i=1,6
sum = 0.0
do 28 j=1,12
28 sum = sum + y((i-1)*12+j)
29 yidd2 = yidd2 + s;.lm * sum

Y32 = yidd2 /12
Y22 = (yijd2 - yidd2/3) / 4
Y12 = yijk2 -yijd2 / 4

return

end

real function PR!OR(Lambda,ndim)

implicit none

common /probpr/nprior,priorm,priorv
real Lambda(3), lambdl,lambd2,lambd3

integer ndim

integer nprior

real priorm(3), priorv(3)

integer i

real sum
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c Prior uniform on log Eigenvalues

if (nprior.eq.1) then
prior = 1.0

c Inverse Chi-squared Prior

else if (nprior.eq.2) then
lambdl = exp(Lambda(l))
lambd2 = exp(Lambda(2))
lambd3 = exp(Lambda(3))
prior = exp(-22.5 * Lambda(l) -22.5 * 6625 / lambd1
+ -5.0 * Lambda(2) - 5.0 * 17613 / lambd2
.+ -2.5 * Lambda(3) - 2.5 * 16618 / lambd3 + 330)
+ / (lambdl * lambd2 * lambd3)

c Log-normal prior

c
else if (nprior.eq.3) then
sum = 0.0
do 2 l=1,ndi_m
2 sum = sum + (Lambda(i) - priorm(i)) ** 2 / priorv(i)
prior = exp( ~0.5 * sum)
endif |
c
return
end
c
c
subroutine LOCLIK(Lambda,ndim,result,ok)
c

¢ subroutine to calculate the log-likelihood.

c
implicit none
common /problm/Y12,Y22,Y32
common /problm1l/resul,yVy,1DetV
common /problm2/normal, nu2,nunl0,nunil,nuni2
c

real Lambda(3), result, Y12,Y22,Y32

integer ndim

real nu2,nun1O,nunil,nunl2
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logical ok, normal

real yVy,resul,!DetV

Calculate the log of the Determinant of V and X’ Vinv X
= log |V] |X' Vinv X]

1DetV = 45 * Lambda(l) + 10 * Lambda(2) + 5 * Lambda(3)

yVy = exp(-Lambda(l)) * Y12
! + exp(-Lambda(2)) * Y22
! + exp(-Lambda(3)) * Y32

if (normal) then

result = -0.5 * (1DetV + yVy)
else

result = -0.5 * (1DetV + log(1.0 + yVy / nu2) * nunl2)
endif

resul = result
ok = .true.

return

end

This subroutine does the initialiation for Special Functions

subroutine bxinit(nofun)
comrhon /probsf/x,y,predx
common /probsf2/npoint
integer i,nofun

real x(12), y(12), predx(12)

Specify Number of functions

npoint for a Univariate Marginal on Tauij

npoint by npoint for a Bi-variate Marginal on Tauij,Tauik
npoint by npoint for a Bi-variate Marginal on Tauij,Taulm
npoint for a Predicitive Density for y111

3 for Expectations of the Variance Components

j<>k
i<>1
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nofun = npoint + npoint*npoint + npoint*npoint + npoint + 3

do 1 i=1,npoint
x(i) = (i-0.5*(npoint+1)) * 300.0 /(npoint-1)
y(i) = (1-0.5*(npoint+1)) * 300.0 / (npoint-1)
print *,x(i) =
1 predx(i) = (i-0.5*(npoint+1)) * 800.0 / (npoint-1)

return

end

This subroutine defines the Special Functions

It returns:
npoint spot heights on the Taull distribution,

npoint by npoint spot heights on the (Taul1l,Taul2) distribution
npoint by npoint spot heights on the (Taull,Tau2l) distribution
npoint spot heights for the predictive y111 density

and the 3 variances and covariances for the fixed effects

subroutine bxfun(Lambda,ndim,funs,nofun)
implicit none

common /probsf/x,y,predx

common /probsf2/npoint

common /probimi/result,yVy,IDetV

common /problm2/normal, nu2,nun10,nun1l,nuni2
integer ndim,nofun, npoint

real Lambda(3), funs(nofun)

real x(12),y(12), predx(12)
real nu2,nun10,nunii,nun12

logical normal

real result,yVy,!DetV, C

real lambdi,lambd2,lambd3, sig2,siga2,sigh2
real sqDet, var, cov

integer index, i

jambdl = exp(Lambda(l))
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lambd2 = exp(Lambda(2))
lambd3 = exp(Lambda(3))

sig2 = lambdl
sigaZ2 = (lambd2-lambdl)/4
sigh2 = (lambd3-lambd2)/12

Calculate the univariate Taull distribution

var = (sig2 + siga2 + sigh2)/ 6.0 -

sqDet = sqrt(var)

if (normal) then
do 1 i=1,npoint
1 funs(i) = exp(-0.5 * x(i)**2 / var) / sqDet
else
do 2 i=]1,npoint
C = yVy + x(i)**2 / var
funs(l) = exp(-0.5*(1DetV + 10g(1.0+C/nu2)*nunil) - result)

! / sqDet
2 continue -
endif

Calculate Bivariate Marginal (Tauij, Tauik) j<>k

cov = (siga2 + sigh2)/ 6.0

index = 0
call CalBiv(var,cov, index,funs,nofun)

Calculate Bivariate Marginal (Tauij, Taulm) 1<>m

cov = gigh2 / 6.0

index = npoint * npoint
call CalBiv(var,cov, index,funs,nofun)

Calculate Predictive Density for observation from cell 11

it (normal) then
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do 3 i=1,npoint
3  funs(2*npoint®npoint+npoint+i)
= exp(-0.5 * predx(i)**2 / var) / sqDet

-

else
do 4 i=1,npoint
4 funs(2*npoint*npoint+npoint+i)
1 = (1.0+predx(i)**2/nu2/var) ** (-0.5*(nu2+3)) / sqDet

endif

funs(nofun-2) = var
funs(nofun-1) = (siga2 + sigh2) / (sig2 + siga2 + sigh2)
funs(nofun) = sigb2 / (sig2 + siga2 + sigh2)

return

end

Subroutine to calculate Bivariate Marginals

Subroutine CalBiv(var,cov, index,funs,nofun)
implicit none

common /probsf/x,y,predx

common /probsf2/npoint

common /problmi/result,yVy,lIDetV

common /problm2/normal, nu2,nunl10,nunll,nuni2
integer npoint,np2, index,indx,indexi,indxi, nofun
real var,cov, funs(nofun), yVy, result,1DetV,

real x(12),y(12),predx(12)

real nu2,nuni10,nun1l,nunl2, val

logical normal

integer 1,]
real Det,sqDet, xi,yj, C

Det = var®var - cov®cov

sqDet = sqrt(Det)

np2 = (npoint + 1)/ 2
indx = index + (npoint+1)*(npoint+1)
if (normal) then

f = -0.5/ Det
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do 1 i=1,np2
xi = x(i)
indexi = index 4 npoint*i
indxi = indx - npoint*i
do 1 j=1,npoint
yi=y(j) ,
val = exp(f * (var*(xi**2+yj**2) - 2*cov*xi*yj)) / sqDet

funs(indexi+j) = val

-

funs(indxi -j) = val
else
do 2 i=1,np2
xi = x(i)
indexi = index + npoint*i
indxi = indx - npoint*i
do 2 j=1,npoint
yi=y(@)
C = yVy + (var * (xi**2+yj**2) - 2.0*cov * xi*yj) / Det
val = exp(-0.5*(1DetV + log(1.04+C/nu2)*nuniQ) - result)
/ sqDet
funs(indexi+j) = val
funs(indxi -j) = val
endif

return

end

Subroutine to display graphically the marginal distribution

subroutine bxout(nofun)

implicit none

common /probsf/x,y,predx

common /probsf2/npoint

common /probDr1/Taul,kpin
common /probDr2/ksout,type,type2
real x(12),y(12),predx(12)

real Tau0(12), bxval

integer nofun,i, kpin,ksout, npoint,index
character*7 type,type2
character*17 filnam

character*40 title
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Draw Univariate Marginal for Taull

filnam = 'MT12."//type2
call DrwUni(Tau0(2),filnam)

Draw Bivariate Marginal for Taull v Taul2

filnam = '"MT11T12."//type2
index = npoint -
call DrwBiv(index,Tau0(1),Tau0(2),'Tau12',filnam)

Draw Bivariate Margina;l for Taull v Tau2l

filnam = '"MT11T21."//type2
index = npoint + npoint*npoint
call DrwBiv(index,Tau0(1),Tau0(5),'Tau21’,filnam)

filnam = 'Predy111.”//type2

open (unit=42,status="UNKNOWN',name=filnam)

title = ' Predictive y111 '//type

write (42,1) title,npoint,(predx(i)+Tau0(1),i=1,npoint)
1 format(a40/,’ 1'/" y111'/i3/12£7.1/)

index = npoint + 2*npoint*npoint
do 2 i=1,npoint

2 write (42,3) bxval(index+i)

3 format (1h ,e16.6)
close(42)

write (*,4) bxval(nofun-2), bxval(nofun-1), bxval(nofun)

write (ksout,4) bxval(nofun-2), bxval(nofun-1), bxval(nofun)

4 format(’ var(Tauij)',£8.3,

t ' corr(Tauij,Tauik)',f7.4,
! '  corr(Tauij,Taulm)’,£7.4)

return

end

Subroutine to Draw Univariate Marginal
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Subroutine DrwUni(Taul,fname) -
implicit none

common /probsf/x,y,predx =
common /probsf2/npoint
common /probDr1/Tau0,kpin -
common /probDr2/ksout,type,type2
real x(12),y(12),predx(12)

real Tau0(12)

character*17 fname

character*8 type,type2

character*40 title

integer npoin;,i,j,nstars, kpin,ksout
real area,bxval,fract, max, Taul,Taull

character*l star(100)

write (ksout,1)

1 format(//’ Univariate Marginal'//)
area = 0.5*(bxval(l)-bxval(npoint))
max = bxval(l)
do 2 i=2,npoint

if (bxvai(i).gt.max) max=bxval(i)

2 area = area + bxval(i)

do 3 j=1,79
3 star(j)='""
do 4 i=1,npoint
Taull = (i-6) * 30.0
nstars = bxval(i) * 79 / max
fract = bxval(i) / area * 100
4 write (ksout,5) Taull,fract,(star(j),j=1,nstars)
5 format(f7.1," ',£7.2,’ ',100al)

open (unit=42,status="UNKNOWN’,name=fname)
title = ’ Marginal Taul2 '//type
write (42,6) title,npoint,(x(i)+Taul,i=1,npoint)
6 format(a40/" 1'/" Taul12'/i3/11£7.1/)
do 7 i=1,npoint
7 write (42,8) bxval(i)
8 format (1h ,e16.6)
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close (42)

return

end
Subroutine to Draw Bivariate Maz;ginal

Subroutine DrwBiv(istart,Taul,Tau2,name,fname)
implicit none

common /probsf/x,y,predx -
common /probsf2/npoint

common /probDr2/ksout,type,type2
real bxval,Taul,Tau2

integer npoint, istart,ifinish, ksout
character*5 name

character*7 type,type2
character*40 title

character*17 fname

real x(12),y(12),predx(12)

real max,temp(121)

integer i,j,index

open (unit=42,status="UNKNOWN’,name=fname)
title = * Marginal Taull,'//name// '//type
write (42,1) title,name,npoint,npoint
1 format(a40/,’ 2'/’ Taull'/1h ,a5/13/i3)
write (42,2) (x(1)+Taul,i=1,npoint)
write (42,2) (y(i)+Tau2,i=1,npoint)
2 format(12£7.1)
do 3 i=1,npoint
do 3 j=1,npoint
index = istart+(i-1)*npoint+j
3  write (42,4) bxval(index)
4 format(lh ,e16.6)
close (42)

write (ksout,5) name

5 format(/" Bivariate Marginal for Taull v ’,a5/)
max = 0.0
ifinish = istart + npoint*npoint
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do 6 i=istart+1,ifinish

6 if (bxval(i).gt.max) max = bxval(i)

c
ifinish = npoint*npoint - .
do 7 i=1,ifinish

7 temp(i) = bxval(istart+i) / max ‘-

c

do 8 i=npoint,1,-1
8 write (ksout,9) y(i),(temp((i-1)*npoint+j),j=1,npoint)
9 format(ih ,£7.1,’ |’,126.3) -
write (ksout,10) (x(i),i=1,npoint)
10 format(’ +',66(’-")/" ,12£6.0/)
write (ksout,11) fname,Taul,Tau2
11 format (" nb all (x,y) values in’,a12,’ have been translated by (’
! £7.1,',,£7.1,")."//7)

return

end

The MAPPLES program
program MAPPLES
Program to analyse the Knuiman apples data set.

This program considers the 12 fixed effects as being of one of 2 forms:
1) 12 fixed effects - equivalent to row effects + column effects

+ interaction effects (+ 3 variance comps)
2) 4 row effects plus 3 column effects but without interaction.

Thus there are 1+(4-1)+(3-1)=6 dimensions + 3 variance components.

BTFTRN is called to convert the 12, 6 vector into a 12 vector

o 0 6 6 060 0 06 0o 6 0 0 o

The Prior may be one of two types:

1) Uniform Prior on Fixed effects and log eigenvalues

0

ie. Jeffreys prior
2) Uniform Prior on the Fixed effects and an Inverse Chi-squared

[¢]

prior on the eigenvalues.

0 0 o0 o

The error distribution may be:
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1) Normal

2) terrors

Finally special function analysis can be done to get a predective

density on any observation (eg y111) which typifies all the others.

print *,’MAPPLES (15 or 9 dimensions)’
call bayld

call bayes

call bayend

stop

end

Subroutine PROBLD(vnam,ndim)

Subroutine to read the data file, determine the type of problem
calculate sufficient statistics (various sums of y), and perform

other housekeeping to enable fast execution of Log_Lik

IMPLICIT NONE

COMMON /problm/ydjd,ydik,yidd2,yijd2,yijk2
COMMON /probl2/nu

COMMON /probpr/nprior

REAL y(72), ydid(3), ydjk(12), yidd2, yijd2, yijk2
INTEGER ndata, index, i,j,k,nfe,ndim

REAL sum,ymean

INTEGER kpin,ksout, nu, nprior

CHARACTER*8 vnam(15)

CHARACTER®*40 string

Get 170 Channel numbers
call bfgpio(kpin,ksout)

1 write (‘,2)

2 format(/’ Please indicate which model you wish to use’
+ /" The full model with 12 fixed effects’

+ * (row, column and interaction terms),’

+ /! or a model with row effects and column effects’
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+ ’ but no interaction (6 f.e.),’
+ //Typel2or6") b
read (*,’(i6)') nfe

read (kpin,®) string

if (nfe.eq.12) then
write (ksout,3) string
else if (nfe.eq.6) then
write (ksout,4) string
else
print ¢, * Error - please type 12 or 6’
goto 1

endif
3 format(//' <M12ZAPPLES> Analysis of ',a40/)

4 format(//' <M6APPLES> Analysis of ’,a40/)

write (*,6)
6 format(/' Choose between a multivariate Normal error distribution’
+ /' and a multivariate t error distribution.’
+ /"’ Type O for a Normal, or the number of degrees of’
+ 'freedom forat')
read (*,*) nu
if (nu.1t.1) then
write (*,7)
write (ksout,7)
7 format(’ Errors have a Normal distribution’)
nu = -1
else
write (*,8) nu
write (ksout,8) nu
8 format(’ Errors have a t distribution with’,i4,’ d.o.f.")

endif

9 write (*,10)
10 format(/* Choose between a Jeffreys Prior and an Inverse Chi’

+ ' Prior on the vc'
+ /' Type 1 for the Jeffreys Prior'
+ /" or 2 for the Inverse Chi squared Prior’)

read (*,°*) nprior



o 060 6 o

[+

-171 -

if (nprior.ne.1.and.nprior.ne.2) goto 9
if (nprior.eq.1) then
write (*,11)
write (ksout,11)
11  format(’ Jeffreys Prior’)
else
write (*,12)
write (ksout,12)

12 format(’ Inverse Chi-squared Prior on the variance components’)

endif

6 dblocks of 3 plots of 4 trees
6 blocks of 3 irrigations of 4 thinnings

ndata= 6°*3°*°4

sat number of dimensions for integration routine

ndim = nfe + 3

set names for each dimension

if (nfe.0q.6) then
vnam(l) = 't’
vnam(2) = 'c2’
vnam(3) = *c3’
vnam(4) = 'c4’
vnam(5) = 'r2’
vnam(6) = 'r3’

else
vnam(1) = 'Taull’
vnam(2) = 'Taul2’
vnam(3) = 'Tauld’
vnam(4) = 'Taul4’
vnam(5) = 'Tau2l’
vnam(6) = 'Tau22’
vnam(7) = 'Tau23’
vnam(8) = 'Tau24’
vnam(9) = 'Taull’
vnam(10)= '"Taul2’

vnam(11)= "Tauldd’
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vnam(12)= "Tau34’
endif
vnam(nfe+1) = ’'l.eps3’
vnam(nfe+2) = ’] eps2’

vnam(nfe+3) = "l epsl’

c
c get all the raw data y values

read (kpin,®) (y(i),i=1,ndata)
c
c calculate ymean and subtract it from all the data
c the mean is supposed to be a function of the year
¢ and we are interested in the effects of the treatments
¢ after the year effect has been discarded.
c

sum = 0.0

do 13 i=1,ndata

13  sum = sum + y(i)
ymean = sum / ndata
do 14 |=]1,ndata
14  y(i) = y(i) - ymean

c

write (ksout,®) ' The Mean of the data values is ’, ymean
c
c calculate the sums of squaresof y
c

yijk2 = 0.0
do 15, i=1,72
15  yijk2 = yijk2 + y(i)*y(i)

yijd2 = 0.0
do 17, i=1,18
sum = 0.0
do 16, j=1,4
16 sum = sum + y((i-1)*4+j)
17 yijd2 = yijd2 + sum * sum

yidd2 = 0.0

do 19, i{=1,6
sum = 0.0
do 18, j=1,12
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18 sum = sum + y((i~1)*12+j)
19 yidd2 = yidd2 + sum * sum

c
do 23 j=1,3 =
ydjd(j) = 0.0
do 23 i=1,6
do 23 k=1,4
23 ydjd(j) = ydjd(j) + y((i-1)*12+(j-1)*4+k)
¢
do 24 j=1,3 -
do 24 k=1,4
index = (j-1)*4 + k
ydjk(index) = 0.0
do 24 {=1,6
24 ydjk(index) = ydjk(index) + y((i-1)*12 + index)
c
return
end
c
c
Subroutine BTFTRN(theta,ndim,rcon)
COMMON /probth/newtheta
INTEGER |, ndim
REAL theta(ndim),rcon, newtheta(15)
c
¢  This Subroutine converts the 9 dimensional problem back
¢ up to the original 15 dimensional vector of parameters
. .
¢ theta()istc2c3c4r2r3tl 21l
c tau()ist t +c2t +cIt +c4
c t4r2 t4r2+c2 t+r2+4c3 t+r2+c4
c t4r3 t4r34+c2 t4+r3+cI t4+r34c4
c newtheta( ) is tau( ) t1 t2 t3
c

it (ndim.eq.9) then
newtheta(l) = theta(l)

newtheta(2) = theta(l) + theta(2)
newtheta(3) = theta(l) + theta(3)
newtheta(4) = theta(l) + theta(4)

newtheta(5) = theta(l) + theta(s)
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newtheta(6) = theta(l) + theta(5) + theta(2)
newtheta(7) = theta(l) + theta(3) + theta(3)
newtheta(8) = theta(l) + theta(5) + theta(4)
newtheta(9) = theta(l) + theta(6)
newtheta(10)= theta(l) + theta(6) + theta(2)
newtheta(11)= theta(l) + theta(6) + theta(3)
newtheta(12)= theta(l) + theta(6) + theta(4)

else
do 1 i=1,12

1 newtheta(i) = theta(i)
endif

Copy Log Eigenvalues
newtheta(13) = theta(ndim-2)
newtheta(l4) = theta(ndim-1)
newtheta(15) = theta(ndim)

rcon=l1.0
return

end

REAL function PRIOR(junk,ndim)
IMPLICIT NONE

COMMON /probpr/nprior

COMMON /probth/theta

REAL theta(15), junk(15), epst, epsp, epsb
INTEGER ndim, nprior

prior = 1.0
if (theta(13).1t.-40.0.0r.theta(13).81.40.0 .or.
+ theta(14).1t.-40.0.0r.theta(14).8t.40.0 .or.
+ theta(15).1t.-40.0.or.theta(15).8t.40.0) then
prior = 0.0
goto 1
endif
if (nprior.eq.1) then
prior = 1.0
else
epsb = exp(theta(13))
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epsp = exp(theta(14))
epst = exp(theta(15))
prior = exp( -2.5%*theta(13) - 2.5*16618/epsb

+ -5.0*theta(14) - 5.0*17613/epsp
+ -22.5*theta(15) -22.5* 6625/epst + 330)
+ / (epsb * epsp * epst) :
endif
1 return
end N

Subroutine LOGLIK(junk,ndim,result,ok)
Subroutine to calculate the log-likelihood.

Log P(y|sigma,tau) = -0.5 * log|V|
-0.5 * (y - X tau)’ Vinv (y - X tau)

the first 12 entries in the theta Vector correspond to the tau s

and the last 3 entries correspond to the sigma s
theta(13) = log eps_b theta(14) = log eps p theta(15) = log eps_t

now (y - X tau)’ Vinv (y - X tau)
=y Vinvy -2y Vinv X tau + tau’ X’ Vinv X tau

y' Vinv y' = beta sum _iyi..2
+ gamma sum_ij yij.2
+ delta sum _ijk yijk2
y' Vinv X tau = beta tau.. y...
+ gamma sum _{ taui. y.i.
+ delta sum_ij tauij y.ij

tau’' X’ Vinv X tau = 6 ( beta tau..2 .
+ gamma sum_{ taui.2

+ delta sum_ij tauij2 )

IMPLICIT NONE

COMMON /probim/yd1d,yd2d,yd3d,
+ yd1l,yd12,yd13,yd14,

+ yd21,yd22,yd23,yd24,
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+ yd31,yd32,yd33,yd34,
+ yidd2, yijd2, yijk2
COMMON /probli2/nu

COMMON /probth/theta

REAL junk(15),theta(15), result

INTEGER ndim

LOGICAL ok

REAL epsbl,epspl,epstl, beta, gamma, delta

REAL ydld,yd2d,yd3d, yidd2,yijd2,yijk2

REAL ydl11,yd12,yd13,yd14,yd21,yd22,yd23,yd24,yd31,yd32,yd33,yd34
REAL IDetV, tauld,tau2d,tau3d, taudd, tauid2, tauij2

REAL yVy,yVXt,tXVXt, quadf

INTEGER i, nu

epsbl = exp(-theta(13))
epspl = exp(-theta(14))
epstl = exp(-theta(15))

. beta = (epsbl - epspl)/ 12.0

gamma = (epspl - epstl) / 4.0
delta = epstl

Calculate the log of the Determinantof V

6.3.(4-1) 6.(3-1) 6
IVl = eps_t . eps_p .eps_b
1DetV = 54 * theta(15) + 12 * theta(14) + 6 * theta(13)
yVy = beta * yidd2 4+ gamma * yijd2 + delta * yijk2
tauld = theta(l) + theta(2) + theta(3) + theta(4)

tau2d = theta(5) + theta(6) + theta(7) + theta(8)
tau3d = theta(2) + theta(10)+ theta(11)+ theta(12)

taudd = tauld + tau2d + tau3d
tauid2 = tauld**2 4+ tau2d**2 + tau3d**2

tauij2 = 0.0
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do 1 i=1,12
1  tauij2 = tauij2 + theta(i) **2

yVXt = gamma * (tauld*ydid + tau2d*yd2d + tau3d*yd3d)
+ + delta * ( theta(l)*yd11l + theta(2)*yd12

+ + theta(3)*yd13 + theta(4)*yd14
+ + theta(5)*yd21 + theta(6)*yd22
+ + theta(7)*yd23 + theta(8)*yd24

+ + theta(9)*yd31 + theta(10)*yd32
+ + theta(11)*yd33+ theta(12)*yd34)

tXVXt = 6 * (beta*taudd**2 + gamma*tauid2 + delta*tauij2)
quadf = yVy - 2.0 * yVXt + tXVXt

if (nu.eq.~1) then
Normal distribution
result = -0.5 * |DetV - 0.5 * quadf
else
t distribution
result = -0.5 * IDetV - 0.5%(nu+72) * log(1.0 + quadf/(nu-2))

endif
ok = .true.

return

end

This subroutine does the initialiation for Special Functions

Subroutine bxinit(nofun)
COMMON /probsf/predx
INTEGER i,nofun

REAL predx(11)

Specify Number of functions
11 for Predicitive Density for y111

nofun = 11
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do 1 i=1,11
1 predx(i) = (i-6) * 90.0 - 75.0

return

end

This subroutine defines the Special Functions
Returns 11 spot heights for the predictive y111 density

Subroutine bxfun(junk,ndim,funs,nofun)
IMPLICIT none

COMMON /probl2/nu

COMMON /probth/theta

COMMON /probsf/predx

INTEGER ndim,nofun, nu

REAL junk(15), theta(15), funs(nofun)
REAL predx(11), nul '

REAL epsb,epsp,epst, sig2,siga2,sigh2
REAL Kinv,sqKinv,K2
INTEGER i

epsb = exp(theta(13))
epsp = exp(theta(14))
epst = exp(theta(15))

sig2 = epst
siga2 = (epsp-epst)/4
sigh2 = (epsb-epsp)/12
Kinv = 1/ (sig2 + siga2 + sigbh2)
sqKinv = sqrt(Kinv)
K2 = Kinv / (nu-2)
nul = -0.5 * (nu + 1.0)
if (nu.eq.-1.0) then
do 4 i=1,11
4 funs(i) = sqKinv * exp(-0.5 * Kinv * (predx(i)-theta(1))**2)
else
do 5§ i=1,11
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5 funs(i) = sqKinv * (1.0 + K2 * (predx(i)-theta(1))**2)** nul
endif =

return

end

Subroutine to display graphically the marginal distribution

Subroutine bxout(nofun)

IMPLICIT none -
COMMON /probsf/predx

INTEGER nofun,i

REAL predx(11), bxval

Predective Marginal for y111l

open (unit=42,status="UNKNOWN’,name="PREDY111.DAT’)
write (42,1) (predx(i),i=1,11),(bxval(i),i=1,11)

1 format(’ Predictive Der;sity’/,

+ '1'/ pred. y111'/' 117/

+ 11£7.1/(11(e13.6/)))
close(42)

return

end



