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Implementation of the Bayesian paradigm

for highly parameterised linear models

Abstract

This thesis re-examines the Bayes hierarchical linear model and the associated

issue of variance component estimation in the light of new numerical procedures,

and demonstrates that the Bayes linear model is indeed a practical proposition.

Technical issues considered include the development of analytical procedures

essential for efficient evaluation of the likelihood function, and a partial character-

isation of the difficulty of likelihood evaluation. A general non-informative prior

distribution for the hierarchical linear model is developed. Extensions to spheri-

cally symmetric error distributions are shown to be practicable and useful. The

numerical technique enables the sensitivity of the results to the prior structure,

error structure and model structure to be investigated. An extended example is

considered which illustrates these analytical and numerical techniques in a 15

dimensional problem. A second example provides a critical examination of a British

Standards Institute paper, and develops further techniques for handling alternative

spherically symmetric error distributions. Recent work on variance component

estimation is viewed from the Bayesian perspective, and areas for further work are

identified.
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Chapter 1 Introduction and review of Bayes Linear Models

1.1 Introduction

Over the last 20 years the accumulated literature on alternatives to the

classical linear model has grown steadily. Important developments in the ·literature

over this period have included the introduction of Bayesian ideas, particularly the

hierarchical model which has, loosely speaking, similar properties to the classical

random effects model. However, issues of tractability have tended to dominate and

there has been little demonstration that the hierarchical linear model is of practical

use. Associated with this, there has been little movement from the standard

assumptions (such as normality at all stages in the mode!). This may be because the

relaxation of these assumptions introduces even more numerical difficulties.

Recently, considerable progress has been made with numerical integration in the

Bayesian context to the extent that multi-parameter models can be handled

effectively within the Bayesian framework. These numerical techniques enable the

integration of a posterior distribution with upwards of 15 to 20 dimensions allowing

the production. of marginal posterior densities on individual parameters or pairs of

parameters. It is argued that a lot more information can be obtained from these

posterior densities than from a few point estimates. The posterior densities are also

good starting points for the calculation of predictive densities. This thesis re-

examines the Bayes hierarchical linear model and the associated issue of variance

component estimation in the light of these new numerical procedures, and demon-

strates that the Bayes linear model is indeed a practical proposition.

Calculating a marginal density via numerical integration requires repeated

evaluation of the likelihood and prior densities at points in some sense covering the

parameter space, or at least covering that subset of parameter space which contains

"almost all" of the non-zero probability. There are two important issues here. First

is the choice of points in parameter space at which to evaluate the likelihood and.
prior, and second is the ease with which the likelihood and prior can be evaluated

at any specified point. The progress with numerical integration has provided

techniques for choosing the evaluation points. For the hierarchical linear model, the

evaluations themselves are essentially the evaluations of a quadratic form involving

the inverse of a dispersion matrix. In numerical terms, evaluating the inverse

dominates, and thus different classes of hierarchical linear model are more or less

easy to handle numerically. This thesis shows that completely balanced factorial

models require minimum numerical effort, followed by unbalanced nested models
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and finally other unbalanced modejs, and introduces a new class of slightly

unbalanced models which can be handled efficiently. Thus, substantially freed

from the previous restrictions imposed ~y tractability, numerical integration allows

much more freedom in the choice of both error distribution and prior. Given the

ease with which these perturbations can be made to the original model, it is argued

that a sensitivity analysis should be a routine feature of Bayesian linear model

analysis, so that the robustness or otherwise of the results can be reported ..

1.2 Structure of the thesis

Chapter 2 reviews the standard prior to posterior analyses adopted for the

hierarchical linear model. It happens that for the hierarchical linear model certain

parameters can be integrated out analytically. The notion of selective margins is

introduced, whenby the dimensionality of the numerical integration can be

reduced by first 'carrying out some form of analytical integration. It is also shown

that certain margins can be viewed as weighted mixtures, where the mixing

distribution is th~ posterior density arising from a simpler model. Such mixture

densities can be handled elegantly by the BAYES4 numerical integration package

using "Special function AnalysisH (see Section 1.4). Attention is then focused on

alternative error distributions, and it is shown that the use of alternative spherically

symmetric distributions has almost no impact on the numerical complexity. It is

further observed that only a slight relaxation of the usual assumptions associated

with the error term in the linear model allows the substitution of scale mixtures of

multivariate normals for the joint error term. This prompts the advocacy of more

general error distributions for Bayes linear models especially as it is shown that such

a change has littie effect on the analytic results or on the numerical complexity.

Chapter 3 characterises the problem of evaluating the likelihood. Completely.
balanced factorial models are shown to have dispersion matrices that are easy to

invert and hence such models are algebraically and numerically easy to handle, as

naive expressions can be simplified prior to coding. Unbalanced factorial models

pose more difficulties. A new class of "slightly unbalanced factorial models" is

introduced for which the likelihood can still be evaluated without requiring

numerical inversion of a large dispersion matrix. Grossly unbalanced nested

factorial models are shown to be tractable, but grossly unbalanced crossed designs

without interaction terms are shown to be difficult. Algebraic results that simplify
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the inversion of the dispersion matrtx are produced for these cases.

Chapter 4 discusses the problem 01 deriving a reference prior distribution for

the general hierarchical linear model. The Jeffreys' prior is derived under the :.'

assumption of normality, and is shown to be unchanged when the error distribution ...

is changed to a general multivariate t distribution. Finally Bernardo reference

priors are considered and are shown to be the same as the Jeffreys' priors.'

Chapter 5 demonstrates the feasibility of the numerical approach by providing

a full worked analysis of a multi-stratum experimental design. The maximal model

is a 15 parameter model comprising 3 variance components and 12 fixed effects. The

marginal posterior density for the eigenvalues of the dispersion matrix is produced

analytically under the assumption of normality, together with a series of distribu-

tions conditional on the eigenvalues. A sub-model with only 6 fixed effects is also

considered. Two,methods of integration are used, one based on the 3 dimensional

likelihood for the variance components, and the other based on the full 15

dimensional likelihood. The analysis is repeated using multivariate t errors, and

both a non-informative prior and an informative prior are considered. The results of

these analyses are presented, and a comparison is made with the results of the

original analysts. Fin~l1y the performance of the integration routines is discussed.

The fu1115 dimerisional integral is used to show the feasibility of Bayesian analysis

of high dimensional linear models, even with t distribution errors. The development

of this example took place at a time when the possibilities of using BAYES4 beyond

10 dimensions were just being realised. The example demonstrated that numerical

techniques were applicable to higher dimensional problems than had previously

been considered. It is believed that this example is probably the first Bayesian

analysis to involve numerical integration over as many as 15 dimensions.

The one way analysis of variance model has already received considerable

attention from the Bayesian perspective by Box and Tiao (1973) and others.

However, one roUtine use of the one way random effects model is in the estimation

of inter and intra laboratory variation which is the subject of a British Standards

Institute paper number 5497. Chapter 6 provides a critical analysis of the Standard,

in the spirit of Box and Tiao, but incorporating the ideas of this thesis with respect

to error distributions. The analysis generalises the model of the Standard by

allowing t distributions instead of normal distributions for either the error distribu-

tion or the distribution of the laboratory means. The numerical techniques used in

this chapter contrast with the brute force numerical integration of Chapter 5. Since



-4-

the r distributions can be considered ,!S scale mixtures of normal distributions, the

mixing parameter can enter the likelihood as a nuisance parameter. This parameter-

isation enables an algebraic simplification of the likelihood yielding a low dimen-
_ ..

sional integral. It is concluded that a Bayesian analysis is efficient and informative

in this context, and that the procedures advocated by the BSI analysis are suspect

unless it is known for certain that both distributions are normal.

Chapter 7 presents a survey of classical variance component analysis. The

traditional ANOVA estimates are considered together with the more recent

Minimum Variance Unbiased Estimators, Minimum Norm Quadratic Estimation

(MiNQE) and Maximum Likelihood Estimates (MLE). The inter-relationships

between the estimators are shown, and comments on the estimators are made from

a Bayesian perspective.

Chapter 8 contains a concluding discussion and identifies directions for further

work.

1.3 Bayesian theory for linear models

The book by Box and Tiao provides much of the theory for Bayesian linear

model analysis and deals specifically with a variety of random effects and mixed

models. Zellner (1971) provides an introduction to linear model theory, and gives a

Bayesian analysis of time series and econometric models, including simultaneous

equation models. More recently a good survey of the work is supplied by Broemeling

(1985), and an efficient statement of the algebra is given by Berger (1985). The

hierarchical model is described by Lindley and Smith (1972) who advocated the use

of a multistage structure to describe the relationships between the model parame-

ters. The authors indicated that exchangeable prior distributions for (subsets of) the

location parameters may sometimes be appropriate. Smith (1973) examines the

Bayesian model in more detail and lists some general properties of the resulting

Bayes estimators.

Throughout the Seventies, a number of authors have suggested applications of

this model to areas including growth curve models, non-linear regression, time

series and econometric models. Fearn (1975) examines the generalised growth

models of Potthoff and Roy (1964) which have also been studied from a Bayesian
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viewpoint by Geisser (1970). Such mo!;tels are shown to be within the scope of the

general Bayesian linear models of Lindley and Smith. fearn generalises the results

and produces approximations for the posterior distribution of the means. Sweeting
.. ~

(1982) also extends the results of Smith. -;:

The book by Zellner appears to be the only one devoted to Bayesian analysis of

parametric time series models. The mid-Seventies saw a lot of interest in

econometric data. Bayesian studies of time series models have been carried out by

amongst others Newbold (1973), and Harrison and Stevens (1976). An important

reference on structural change in linear models is Poirier (1976) who reviews

statistical and econometric literature and presents new ideas on modelling struc-

tural change using spline functions. Other recent structural change papers include

Smith (1975), Holbert and Broemeling (1977), Abraham and Wei (1979), Chin Chay

and Broemeling (1980), Tsurami (1980) and Salazar, Broemeling and Chi (1981).

Bayesian methods for adaptive fittins for the Kalman filter are siven by Hawkes

(1973) and Alspach (1974).

However, throughout this period, the tractability of the posterior density was

always a problem, and many early papers advocate the use of modes as approxima-

tions to the posterior means. This leads to a discussion of the relative merits of joint

modes and marginal modes (see for example O'Hagan (1976) ).

Later in the decade, a lot of interest focused on robustness. Papers by Box

(1980), Chen and Box (1979), Bailey and Box (1980), and an early paper by Rubin

(1977) consider the robustness of results to outliers from the Bayesian perspective.

Throughout this period there were still few examples of practical data analysis.

In the years between 1979 and the start of this thesis in 1983, this work

essentially languis'hed. Over this period however, analytical approximations and

numerical procedures were developed as authors have tackled the problem of

obtaining margins rather than modes (see Skene (1983), Smith et al. (1985». Naylor

and Smith (1982) identified two aspects to numerical Bayesian analysis. first is the

problem of the numerical integration, and second is the difficulty of reconstructing

a marginal posterior density from a sparse set of evaluation points. These problems

are now tackled by two computer packages BAYES4 and GR which have been

developed under a SERC research project at the University of Nottingham during
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1983-1986. These developments allow_useful summaries to be produced for a much

broader class of models than previously possible.

At the commencement of work on this thesis, the full potential of multidimen-

sional integration using, for example, BAYES4 was only just being appreciated. It

was anticipated that numerical procedures of this general type would become

available for routine Bayesian analysis involving models with several parameters,

but the power of such techniques for highly parameterised linear models had not

been investigated. Similarly, GR was of unknown utility. The Bayesian statistics

community had had little opportunity to express the results of an analysis via a large

number of interesting marginal densities and the most useful form of such plots was

still an open question.

1.4 The BAYES4 numerical integration package

The BAYES4 package enables the production of summaries from high dimen-

sional posterior densities using numerical integration. BAYES4 is built upon four

important concepts, 1) transformations of the parameter space to make the integral

"easier", ii) initial estimates of the first and second moments of the transformed

parameters, iii) calculation of many integrals in parallel, and iv) iterative re-

estimation of the first and second moments of the parameters. Naylor and Smith

(1982) describe the basic iterative philosophy used by BAYES4, and further details

and illustrations of its use can be found in Shaw (1986).

BAYES4works by evaluating the likelihood and prior distributions at selected

points in parameter space. If the moments of the posterior distribution were known

in advance, then the points at which the likelihood was to be evaluated could be

chosen in some optimal way so as to cover the densest part of the multi-dimensional

posterior distribution, and thus achieve maximum accuracy for any statistics

computed from the set of points chosen. Having chosen a set of points using initial

estimates of the moments, it is then possible to estimate the moments of the

posterior distribution by evaluating the appropriate integrals numerically. These

moments can be used to choose a better set of ellaluation points, which in turn lead

to more reliable estimates for the moments. Thus by iteratively upgrading the

estimates for the moments, it is possible to home in on the region of high posterior

probability in parameter space, and thus efficiently compute every other integral of
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interest.

BAYES4 uses three distinct numerical integration techniques to tackle prob-

lems with different numbers of dimensions. The first of these is repeated Gauss- .'

Hermite integration over a cartesian product grid. This works by approximating the ....

posterior density by a low order polynomial times a multivariate normal distribu-

tion. With careful choice of the evaluation points and the weights attached to them,

functions of this form can be integrated exactly using only a sparse grid of points

provided that the first two moments of the normal kernel are known. For example a

n k: grid will yield exact results for the product of an order 2n-1 polynomial and an

k dimensional normal. If first and second moments are evaluated, then these are

calculated exactly for the functions that are the product of a k dimensional normal

and an order 2n-3 polynomial. Thus even a 4k grid is very powerful.

It is thus highly advantageous to use transformations of parameter space that

yield posterior surface of the form of a normal multiplied by a low order polynomial.

Considerable thought should be given to a suitable (if arbitrary) transformation ego

log, logit, pro bit. This theme is further discussed in Chapters 5, 6 and 8. Even with

integration rules of this type, the number of ,evaluations becomes prohibitive as the

number of dimensions ~ncreases. On the current generation of computer hardware,

integration with up to 6 dimensions can be undertaken using Gauss-Hermite

integration.

for higher dimensions a class of spherical integration rules are available, and

these are highly recommended for regular problems with 4 to 8 parameters (see

Stroud (1971) ). For problems with even more dimensions, Monte-Carlo integration

techniques are available which have been demonstrated in as many as 23 dimen-

sions (see Skene and Wakefield (1986) ). These techniques are discussed in Shaw

(1985a,1985b) and use a form of importance sampling (see Hammersley and

Handscomb (1964) ) based on transforming a configuration of points in the unit

k-dimensional hypercube to a corresponding configuration of points in IRk. In any

problem, the integration techniques may be mixed with (say) some Gauss-Hermite

dimensions and some Monte-Carlo dimensions. Variants of Monte-Carlo integration

again prove to be very accurate and efficient when the joint posterior density is

close to a multivariate normal in form.

for each of the integration techniques, BAYES4 iterates to yield a stable set of

first and second moments from a user supplied set. It also enables the calculation of
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univariate or bivariate marginal distriJ>utions. Finally BAYES4 has a feature called

Special Function Analysis that enables the evaluation of functions of the form

J I(e) p(ely) de, where I(e) is an arbitr~ry function of the parameters, and p(el.,) is

the posterior density for the parameters.

To use BAYES4, the user is required to provide code for evaluating the

likelihood and prior, and an initial estimate of the parameters. The likelihood

should be coded for maximum efficiency. Data translation can often help here, as

this often yields simpler expressions for the likelihood. Similarly great care must be

taken with linear models to sort out the inverse of the dispersion matrix. In ideal

cases the quadratic form can be reduced to a simple expression involving a few sums

of squares. Experience shows that the choice of initial estimates for the parameters

in linear model problems seldom poses difficulties. Any estimates that are even

vaguely sensible will usually enable rapid convergence to the correct values. A final

point is that the code for the likelihood can in fact be code for several alternative

likelihoods controlled by a- selection mechanism at run time. An appendix to this

thesis contains the code which was used for some of the analyses performed using

BAYES4. This illustrates the work which must be done to use BAYES4and gives some

practical tips.

1.5 GR - a graphical presentation and manipulation package

In addition to the first and second moments, and possibly special function

analysis, BAYES4 is usually used to produce a small number of spot heights from one

or more univariate or bivariate posterior densities. It is required to reconstruct the

univariate or bivariate posterior densities from these spot heights. Typically these

spot heights will be unevenly spaced (as the roots of a Gauss-Hermite polynomial) or

in the bivariate cases as a sheared grid of unevenly spaced points. otten the points

will not even be on the required scale as a transformation of parameter space was
,

made to enable BAYES4 to work efficiently. Thus the reconstruction of the

posterior density on the natural scale is difficult.

This task is achieved by GR which will take a sparse set of points and

reconstruct the posterior density by interpolation, with extrapolation if required,

using cubic splines applied to the log ordinate. GR includes a large range of

univariate and bivariate transformations to enable the posterior density to be
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produced on the natural scale or any other scale. GR also enables univariate

densities to be calculated from bivariates by marginalisation or conditioning. As

output GR will produce bivariate contour plots and/or univariate probability. 4_._
densities. For further details see the GR User Guide, Shaw (1986). All the marginal

densities and contour plots in this thesis were produced using GR.



Chapter 2
Multivariate Normal results and ge-neralisations to other distributions

.-
2.1 Introduction

Any Bayesian analysis involving numerical integration requires repeated

evaluations of the posterior density. Linear models may have many parameters

(counting both fixed effects and variance components) giving rise to a posterior

density with many dimensions. Numerical evaluation of posterior distributions from

hierarchical linear models must be carried out efficiently to avoid a herculean

amoun t of work.

There are two different aspects of efficient evaluation. first it may be possible

to Invert the dispersion matrix analytically, rather than tackle it numerically, or

failing that, it is usually possible to obtain the inverse of the dispersion matrix fro'm

the inverse of a matrix of smaller size, which has to be inverted numerically.

Secondly it may be possible to take the high dimensional posterior distribution and

analytically integrate out parameters that are not of direct interest to get a marginal

posterior density with fewer dimensions.

With linear models it is common to propose some linear structure to describe

the fixed effects, and to assume the errors between the data and the model come

from a multivariate normal distribution. Symbolically, the data y has expectation

Xc where c is a vector of fixed effects and X is a design matrix. Then writing V for

the dispersion matrix gives:

y - N(Xc,V)

for most of the models considered in this thesis, V is of the form V(er2)where

0-2 is a vector of dispersion parameters commonly referred to as variance com-

ponents. This model gives rise to a likelihood:

and hence from Bayes' theorem

(2.1:1)

where p(c,er2) is the prior distribution on the fixed effects and variance com-

ponents. The location parameters and scale parameters are frequently assumed to
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be 4 priori independent, hence pCt,0'2) = p(ca)p(0'2). With the assumption of

normality, the evaluation of the joint posterior density for caand 0'2 at any point is

seen to be a matter of calculating V-I a1!.dIVI. However, the joint posterior for caand

0'2 may have many dimensions, and it may be difficult to produce margins

numerically from the joint density. fortunately, this is seldom necessary for two

reasons. first the margins on the fixed effects are typically similar to each other

subject to a difference in location (and possibly scale), so it is not necessary to

consider them all at once. Second, the primary interest may be in 0'2, or in functions

that can be derived from the marginal posterior density for 0'2.

Thus lower dimensional summaries of equation 2.1:1 are desirable. In general

the distribution of a fixed effect conditional on the variance components is easy to

produce. Also, analytic integration to remove the fixed effects is possible to yield a

marginal posterior density for 0'2. Since these basic integrations can be done it

leads to the notion of selective margins whereby the dimensionality of the posterior

numerical integration can be reduced by first performing analytical integrations.

These analytical integrations depend upon the prior specification, particularly the

factorisation of the prior into a term for the fixed effects and a term for the

variance components. In the analyses in this chapter, non-informative priors are

used for parameters that are to be analytically integrated out of the posterior

density.

The first part of this chapter (Section 2.2) lists a series of posterior densities

from Normal models, after integrating out different parameters from ca and 0'2.

Specifically the following distributions are produced:

1) The marginal posterior density for the variance components 0'2.

ii) The joint posterior density for the variance components 0'2 and a single fixed

effect (eg 0'2,(1).

iii) The marginal posterior density for a single fixed effect (eg. (1) or a pair of

fixed effects (a
l
,(2).

It is shown that evaluation of these distributions requires V-I and IVI as well as

(X'V-1X)-l, IX'V-1XI. Efficient methods of evaluating these matrices and deter-

minants are developed in Chapter 3.
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The later part of this chapter exte!lds the discussion to error distributions other

than the normal distribution, as there may be little direct evidence for the

assumption of normality, except by appealing to the Central Limit theorem. When~
considering alternatives to normality it is important to ensure that the distribution

used retains the properties that enable analytic simplification of the posterior

density, and also allow efficient numerical implementation of the densities pro-

duced. It is seen that the evaluation of spherical error distributions is dominated by

the same matrices and determinants as for the normal case.

The discussion of alternative error distributions is preceded by a brief review

of the properties of the multivariate normal distribution (Section 2.3) that enable

analytic simplifications and numerical tractability. The first alternative error

distribution considered (Section 2.4) is the multivariate t distribution (see Johnson

and Kotz (1970». This distribution has the same parameters and first and second

moments as the multivariate Normal distribution, thus allowing direct comparison

of models with different error structures. The multivariate t distribution is shown to

keep all the properties of the multivariate normal that are useful for analytic and

numerical progress except for one - namely the multivariate t distribution does not

have independent errors. Thus there is no computational penalty associated with the

use of the general multivariate t distribution rather than the multivariate Normal

distribution.

A general discussion then follows in which some of the useful properties of the

multivariate normal are taken as axioms, and the space of distributions obeying

these axioms is explored. Specifically it is required that marginals and conditionals

should have the same functional form as the original density. It is shown that the

assumption of a spherical density, but without independence between the errors, is

equivalent to using the set of scale mixtures of multivariate normal distributions.

2.2 Marginal Posterior Densities assuming a Normal Error Structure

2.2.1 The Marginal Posterior Density for the Variance Components

Sometimes the variance components themselves, or functions derived from

them, are of primary interest. In other cases, a density is required that can be
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formed as a mixture of distributions ~here the mixing distribution is the posterior

density for the variance components. In these cases, the fixed effects can be

integrated out from equation 2.1:1 yiel~ing a marginal posterior density on the 0'2,

which has considerably fewer dimensions than the joint posterior density for 0 and

0'2.
..

Take the joint posterior density from equation 2.1:1, and assume a non-

informative (uniform) prior for Cl. Integrate across the fixed effects to get a

marginal posterior for the variance components:

p(a21 y) GC IYI-! J exp-!(y-Xa)' y-l(y-Xo)dCl p(a2)
Cl

GC p(a2) IYI-i exp-! y'y-Iy J exp-!(Cl'X'v-IXo - 2y'y-IXo}dCl
o

The integration is an exercise in completing the square and yields

Efficient use of this requiresX'y-IX to be invertible analytically, and IX,V-IXI to be

calculable.

2.2.2 Joint Posterior Density for a single fixed effect and the Variance

Components

Suppose that instead of wanting a marginal posterior density for the variance

components 0'2, the joint posterior density for a fixed effect and the variance

components is required. This posterior density may be of specific interest, or it may

be used to determine the posterior correlation between one of the fixed effects and

the variance components.

This posterior density can be produced simply as it factorises into the posterior

density for the variance components, multiplied by the density of the fixed effect

conditional on the variance components. The latter density is itself a univariate

normal distribution. Thus, writing 01 for the fixed effect:
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It is interesting to note that an alt.!!rnative form for peal ,a2Iy) can be produced

as follows: Partition X into X. and Xa, and 4 into 4 and 4 where 4 = (a ) and 4• a .12
is a vector of the other fixed effects. Then integrate out over the nuisance

. ~
parameters 4a:

y ... N(X4,V) ..
hence integrating out aa yields:

(2.2.2:1)

Equation 2.2.2:1 can be obtained by substituting y-X.4. for y and X
2
for X in

equation 2.2.1:1. Note that this formulation involves an unbalanced matrix X~v-IXa'

which makes equation 2.2.2:1 difficult to evaluate (see section 3.2.3 in Chapter 3).

Z.Z.3 Marginal Posterior Densities for the fixed effects

finally consider the marginal posterior distribution for the fixed effects. It is

not usually possible to integrate out 0'2 analytically to leave a marginal posterior for

41y. Instead a marginal distribution for a single fixed effects a
l
or a pair of fixed

effects a
l
,az can be obtained by numerically integrating 0'2 out of the joint density

for the fixed effect(s) and the variance components (as produced in section 2.2.2).

(2.2.3:1)

(2.2.3:2)

where p(a2Iy) is the posterior density for er2 as given by equation 2.2.1:1. Note that

p(a2Iy) can be dependent on the choice of prior distribution for 4,0'2.

Conditional on a2and y, the fixed effects are normally distributed, and hence

p(ally) and peal ,a2Iy) from equations 2.2.3:1 and 2.2.3:2 are Just mixtures of normal

distributions with the mixing distribution being the marginal posterior density for

the variance components.

In general, it is not possible to perform this integration analytically, but it is

easy to do it numerically using Special function Analysis in BAYES4. A special case
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occurs for the single variance fixed effects model, where it is possible to produce

p(4Iy) analytically:

Special Case

Consider the linear model y - N(X4, 0'21) where X is an nxk design matrix, 4 is

an unknown vector of k fixed effects and the residual variance 0'2 is unknown. A

particular case of this model is the single variance fixed effects model given by

Yij = al + €'ij' where f = 1,2 •••p, and J = 1,2 •••q. The tiJ are independent with

variance 0'2.

For this linear model it is possible to analytically integrate out 0'2 from the

marginal for 4,0'2. The usual assumption of a non-informative prior for 0'2 leads to a

marginal posterior for 0'2 of vs2X;2 with v = n-k, and S2 = (y - (X'X)-lX'y)2/V• The

distribution for 410'2 is multivariate normal, leading to a heavy tailed marginal for 4.

Let a denote (X'X)-lX'y, then:

(2.2.3:3)

which is the multivariate t distribution discovered independently by Cornish (1954)

and Dunnet & Sobel (1954). A derivation can be found in Box & Tiao (1973) section

2.7. Note that even if X'X is a diagonal matrix, the margins for the fixed effects are

not independent of each other as equation 2.2.3:3 does not factorise. Marginals from

the multivariate t distribution are derived in section 2.4.1, thus allowing p(Q{IY) to

be evaluated.

2.3 Properties of the multivariate normal distribution.

A standard exposition of normal1inear models considers a vector of data y with

expectation X4 and errors that are independent identically distributed - N(O,0'2).

The assumption of normality allows the vector of independent errors to be viewed as

a vector from a multivariate normal distribution. Difficulties arise as soon as

alternatives to normality are considered. For example, it may be considered

appropriate to use a distribution with heavier tails than a normal distribution.

However, if the errors are taken to be independent, then it is no longer possible to

view the errors as being a vector from a heavy tailed spherical multivariate
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distribution. Conversely, if a heavy Jailed spherical multivariate distribution is

assumed as an alternative to the multivariate normal distribution, then the indepen-

dence property of the errors is lost.

These properties are discused in the following sections. First it is necessary to ~

review those properties of the multivariate normal distribution which enable

analytic progress to be made with the posterior density, and allow numerical

tractability. This review permits the relative merits of other multivariate distribu-

tions to be assessed. Sections 2.4, 2.4.1, 2.4.2 and 2.4.3 derive the equivalent

properties for the multivariate t distribution.

Consider y, an n-vector from a multivariate Normal distribution with mean Xli.

and dispersion matrix V, where X is a design matrix and Cl is a vector of fixed

effects. Without loss of generality, it is assumed that V = a2ln. This simplifies the

resulting discussion, as y'V-'y becomes r'r/v", but the results hold for a general V

matrix. Then the multivariate normal has the following useful properties:

1) It is spherically symmetric (or elliptically symmetric for general dispersion

matrices).

H) There is independence between (Ym+l· •.Yn) and (Y, 'Y2 ••• Ym) conditional on

the 0"2. Thus the probability density factorises and hence:

iii) The conditional distribution for Ym+1 ••• Y" Iy, ... Ym is multivariate normal

with dispersion matrix V = 0'2 In-m.

iv) The marginal distribution for Y, ••• Ym is multivariate normal with dispersion

matrix V = (T2Im.

v) The distribution of the fixed effects Cl conditional on the data and the

variances is multivariate Normal with variance (X'V-' X)-' and mean

(X'V-' X)-IX,v-I r.

The objective is to generalise the class of possible error distributions, yet to

retain as many of the properties i) - v) as are possible. This idea is certainly not new,

egoWest (1984) considers extensions to simple normality by allowing scale mixtures

of normal distributions in order to accommodate potential outliers without giving

them too much influence on the final results. Dickey and Chen (1983) consider the
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whole class of spherically symmetric ~istributions. Property I) spherical symmetry
n

implies that r2 = :Eyr is a minimal sufficient statistic for 7. Kelker (1970) examined
i-I

the class of spherically symmetric distributions, and showed that the only spheri-

cally symmetric distribution that had the independence property was the multivari-

ate normal. Properties i) and ii) thus imply a multivariate normal distribution.

Conversely to extend the class of error distributions either property I) symmetry, or

property ii) independence, must be dropped.

Generalised versions of properties iii) and iv) are that the marginals and

conditionals have the same functional form as the joint distribution, and with the

same variance structure. Similarly property v) requires that the fixed effects

conditional on the data have the same functional form as the joint distribution and

with mean (X'y-1Xr1X'V-17 and dispersion matrix (X'V-1.xrl•

2.4 Properties of the general multivariate t distribution

The multivariate t distribution is an obvious choice for an alternative error

distribution to the multivariate normal distribution. It is now examined to discover

how many of the properties 1) - v) it possesses. Let tv(Xa, V) denote a general

multivariate t distribution with v degrees of freedom, mean Xa and dispersion

matrix V. Note that there is not independence in the sense of property ii). The

probability of a data vector 7 - tv(Xa, V) is usually written as:

v+n

( la V) = r(;(v+n» (lIv)-ln Ivl-1 [1 + (7 -Xo)'V-I(y -XO)] - 2
p y 'niv) II'

(2.4:1)

vUnfortunately the second moments of this are -2 V rather than Y, and this isv-
inconvenient when comparing models with different error distributions. A simple

reparameterisation overcomes this difficulty, hence whenever the general mul-

tivariate r distribution is mentioned, the distribution given in equation 2.4:2 will be

meant.

v+n

p(yla,Vl - r(t~i;)1l..-in(V_2)-in IVI-i [1 + (y-xal':_:;(y-xa) ] - -2- (2.4:2)

This distribution has second moments of V.
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Now since this only depends on l through the quadratic form (y-Xo)'V-1(y-

Xo), it follows that this is an elliptically symmetric distribution, hence property 1)

from Section 2.3 holds. Also since it is a function of (y-Xo)'V-1(y-Xo), it is...
computationally no harder to evaluate than the multivariate Normal distribution.

2.4.1 Marginal Densities from a general multivariate t distribution

Consider the marginal distribution formed by integrating out Yn from the

.multivariate t distribution of y ( II Yn say). This yields the distribution for .rn-I'

Without loss of generality, and to simplify the algebra assume that the mean of the

t distribution is O. As before, without loss of generality take V = (T2In'

Now integrate out Ynto produce a marginal distribution for Y1""'Yn-1

p(Y, .. ·yn-11V>= 1. r(}~i:»)n-in(v-2,-in IVnri
n

[
'v:-1 2 ] - v~n

Yn-l n-1Yn-1 1 Yn
X 1+ 2 + -2 -2 dy.nv- er v-

, v::-,
Yn-l n-1Yn-l 2 2 2

Now let Q = 1 + v-2 ' and substitute (T (v-2)Qtan e for Yn•

Thus dy' = (er2)! Q! (v-2)! sec2en

( IV) = f(!(v+n»n-in(v_2,-!nlV: I-i (er2)-i a-i(v+n)
P y1 .. 'Yn-1 [(Iv) n-l

x it cosv+n-2e (er2)! a! (v-2)! de
e-o

f(i(v+n» -in ( _2,-i(n-1) IV: ri Q-i(v+n-l) f(!<v+n)-!) ni
= rei-v) n v "-1 ni(v+n»
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( IV) = r(t(v+n-l» -i(n-1) ( _2)-i(n-1)
P Yn-1 r(iv) 11 v

(

v+n-l
I v::-1 - 2

X Iv:: I-i 1 + Yn-1 n-1)'n::1)
n-1 v-2

A marginal distribution is thus also a general multivariate t distribution with v

degrees of freedom, and with a dispersion matrix Vn_1' ie that formed by deleting

rows and columns out of V. If)'n is not independent of )'n-l then by completing the

square the same argument holds. Property iv) thus holds.

2.4.2 Conditional Densities from a general multivariate t distribution

let Q = 1+ r1
2/(v-2)O'2, and vt = v+m, then by rearranging:

This is a general multivariate t distribution with v t = v+m degrees of freedom on

n-m observations, with a variance of 0-2Q(v-2)/(v t-2) rather than 0-2• Thus property

iii) almost holds. The factor of Q(v-2)/(v t-2) leaves the variance unchanged if the

observed Yi values have variance 0'2. If however the observed Yi have a greater

variance than 0-2, then this factor increases the variance for the remaining Yi' and

conversely the factor shrinks the variance for the remaining )'i if the observed )Ii

have a lower variance than 0-2• More interesting, the conditional distribution is more

nearly normal than the joint distribution, due to the increase in the number of

degrees of freedom.
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The increase in variance if the 02served y'y :> m 0'2 is to be expected since a

conditional slice through the tail of a heavy tailed density will have greater variance

then a conditional slice through the. m:an of a heavy tailed density.

2.4.3 Distribution of the fixed effects conditional on the data

In this section an analogous result to property v) is produced for multivariate t

distribution. Start with an n-vector of data y, and a p-vector of fixed effects G.

Apply Bayes theorem:

where peG) is the prior distribution for G.Assuming a uniform prior on G this gives:

v+n

[
1 + (Y-XG),y-I(y-XG)] - 2

v-z

v+n

ec (1 + (a-B)'A:_~-B) +crT
where A-I = X'y-IX, B = (X'y-IXrIX'y-Iy,

and C = y'y-Iy - y'y-1X(X'y-1X)-IX'y-ly.

v+n [ C ] - !±!!(C) - -Z- (G-B)'A-I(G-B)/(l + v:z) 2
l+-Z 1+ Zv- v-

[

. ] vt+pv+n vt-z C ---

( )

- -Z- --(G-B)'A-I(G-B)/(l + -) Z
C v-Z v-Z

oc l+-Z 1+ t
v- v -Z

where v t = v + n - p. This is a multivariate t distribution with mean B and dispersion

matrixA(l + C
Z
) vt-Z ,and vt degrees of freedom. Hence substituting for A, Band

v- v-Z
C:

G - t t(B,A(V-Z+Y'y-Iy-y'y-IX(X'y-IX)-IX'y-Iy)/vt-Z)
v

Thus property v) from Section Z.3is partially kept. The mean of this distribution

is the same as that from a Normal distribution, but the dispersion matrix has been

scaled. However, the evaluation of this density is still dominated by the same

manipulations of Y and X'y-I X as in the multivariate normal case. Thus it is
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computationally no more difficult thctn the multivariate normal.

Note that usually there will be far-more data values than fixed effects so that

n »p. This gives vt » v. Even if there are very few degrees of freedom for the

original t distribution on the data, the conditional distribution for the fixed effects

will usually have many degrees of freedom. As a consequence the conditional

distribution for the fixed effects will often thus look roughly normal even when the

error distribution is distinctly heavy tailed.

Z.S Multivariate distributions with independence

Now consider the class of distributions that are produced if property 1)

spherical symmetry is dropped and property ii) independence is kept. These

properties can be accomplished simply by setting the multivariate distribution

equal to the product of n identical independently distributed univariate distribu-

tions. Thus:

n
p(Y1-YI···Y.:n·Y.n} = n por;-y·}

i-l I I

However if the tails of the univariate distribution are heavier than the tails for a

normal distribution, then this probability density function will have star-shaped

non-convex contours. Also in general the sufficient statistics for the observations

will be the entire y vector.

Z.6 Multivariate distributions with spherical symmetry

Finally consider the class of distributions that are produced if property 1)

spherical symmetry is kept, and property ii) independence is dropped. Any density

function of the form /(y'7) will satisfy this, for example the general multivariate t

distribution or the multivariate normal distribution. Any conditional distribution

from a probability density function of the form /(y'y), will also depend on 7 only

through r'r. but in general the conditional distribution will have a different density

function.
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n
Consider the conditional distrfbutlon for (y. +1"'Y. Iy. ",Y. ), Let r2 = L v.2,

m n I m i-1"'1
m nr: = ~ y,2 and r; = L y,z, Then the conditional distribution has the form:
.-1 m+1 . _

This will have a different form to I( ) unless the density I( ) is of the form

I(an +bnr
2
). If the density function is of this form, then the conditional distribution

for (Ym+1".ynly1 .. ,ym) will be of the same form but with an replaced by an-m =
2 ~an +bnrl, and bn-m = bn. Now suppose I(x) oc x n, then without loss of generality

take an = an-m =1. The density function is then:

(2.6:1)

The conditional distribution will be of the form:

where bn-m =

The change from bn to bn-m shows that though the distributional form has been

preserved, the variance of the conditional distribution changes, depending on the

observed Yi values. Thus property iii) is only partially kept. Similarly marginal

distributions will be of the same form, but with (potentially) different variances,

Now reparametrise equation 2.6:1. Assuming cn > in, take v = 2cn - n, and

(12 = 1/vbn. Then equation 2.6:1 represents a general multivariate t distribution

with" degrees of freedom, and a dispersion matrix V = (121n' Clearly by letting

v -+ DO, equation 2.6:1 tends to a multivariate normal distribution.

-c
The significance of the assumption that lex) = x n can now be seen. This

assumption leads to I( ) representing a general multivariate t distribution. Generally

(assuming sufficient regularity) 1/ I(x) can be expressed an even polynomial, and

hence correspond to a mixture of general multivariate t distributions.

The class of scale mixtures of general multivariate t distributions is the same as

the class of scale mixtures of multivariate Normal distributions. Clearly since the
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multivariate Normal distribution is a_limiting form of the general multivariate t

distribution, the class of scale mixtures of multivariate Normal distributions is a

subset of the class of scale mixtures of general multivariate t distributions.. ...
Conversely any general multivariate t distribution can be viewed as a scale mixture

of multivariate Normal distributions, so a scale mixture of t distributions must also

be a scale mixture of Normal distributions.

,::

Dickey and Chen (1983) consider other tractable spherical distributions by

considering other forms for the radial density Ie ).

Thus spherIcal symmetry combined with conditionals of the same form leads to

scale mixtures of multivariate Normal distributions. In the subsequent analyses

only multivariate Normal distributions, and general multivariate t distributions are

considered rather than arbitrary scale mixtures. Allowing multivariate Normal

distributions to be replaced by general multivariate t distributions allows heavier

tailed distributions to be considered with only the loss of the independence property

of the multivariate Normal, and with only one extra parameter, the number of

degrees of freedom v - which determines the mixing weights.

Since independence does not apply, it is intriguing to note the effect of

conditioning on the first m out of n observations. What then can be deduced about

Ym+1 ••• Yn given Y1 ••• Ym• Suppose that the m observed values all1ie far from zero, so

that r: :» m 0-2• Given independence the variance of the remaining Yi must equal

0-2• Without independence, one might reasonably expect the variance of the

remaining Yl to be increased, so that Ym+1 ••• Yn agree better with the observed data

Y
1
••• Ym. If r

l
2 :» m 0-2, then bn-m is reduced compared with bn, corresponding to an

increase in variance.



Chapter 3
Characterisation of the Likelihood' Evaluation Problem

3.1 Introduction

Chapter 2 presented the standard algebraic methods for integrating out

location parameters to yield marginal distributions on just the variance com-

ponents. Within the class of models with normally distributed errors, and also in the

wider class of spherically symmetric error distributions, ego general multivariate t

distributions, it was shown that efficient evaluation of the likelihood function

required efficient evaluation v-1 and IVI, and also (X'V-1 Xr1 and Ix,V-1XI, where

V is the dispersion matrix, and X is the design matrix. This chapter explores

efficient methods of evaluating these quantities, and demonstrates the techniques

on a range of common models.

The first section of the chapter defines the notation used for 10 common

variance component models that are used as examples throughout the chapter.

Using the results of Searle and Henderson (1979), it is shown in section 3.2 that the

dispersion matrices from balanced factorial dispersion models are easy to invert,

and hence such models are numerically easy to handle. A simple characterisation

of the fixed effects structure also indicates whether there is a general analytic form

for the inverse of the X'V-IX matrix which occurs in the marginal posterior density

for the variance components. A recursive method is also introduced for the

implicitly unbalanced (X~ y-lXa) matrix that occurs in section 2.2.2 of Chapter 2.

Unbalanced factorial models are considered in section 3.3. A new classification of

slightly unbalanced models is introduced for models that would be balanced except

that they have an odd number of observations in one cell. An analytic technique is

developed in section 3.4 for finding the inverse and determinant of the dispersion

matrix from slightly unbalanced factorial models, enabling efficient numerical

evaluation. A variant of this technique in used in section 3.5 to give a recursive

method of handling unbalanced nested models. This produces results for the same

models as considered by La Motte (1972). Illustrations of all these unbalanced

inversion techniques are given. Section 3.6 considers grossly unbalanced crossed

designs without interaction terms. For these models an analytic inverse is not found,

but techniques are developed which substantially reduce the numerical difficulty.

Finally section 3.7 examines the computational implications of each of these

methods.
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3.1.1 NotatIon

Throughout this chapter the symbols 'n' In, In' On' Cn, la,b' 0a,b' 8, diag( , ,)

and D[,,] are used extensively. In denotes an nXn identity matrix, In is an nxn
--

matrix of ones, and In (On) is a column of n ones (zeroes). Similarly la,b (Oa,b) is

used for an axb array of ones (zeroes): Thus In = In,n = Inl~. Cn is used for a

vector of n elements the first of which is one and the remaining elements are zero.

8 denotes Kronecker products. diag(,,) is used for a diagonal matrix with

prescribed elements. D[ , ,] denotes a block diagonal matrix with prescribed blocks.

Note that D[, ,] will in general not be a square matrix. for example D[~, ~, ~] =

'38 ~ is a matrix of 6 rows and 3 columns.

..

3.1.2 The Models considered In detail

This section lists the models considered in detail. They are denoted by the letter

M followed by a digit and a letter. The digit represents the number- of variance

components in the model, and the letter serves to distinguish between different

models with the same number of variance components.

All of the models listed assume multivariate Normal errors but the same

techniques for manipulating V (and the matrices derived from V) apply to all

spherical error distribution functions. The models detailed here are not the set of

models for which the subsequent theory applies, but rather they form a set of

examples from a general class of models.

Ml) One Way Fixed Effects Model

y ,..,N(Xa, V)

where G is a vector of fixed effects.
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M2a) 1 Way Random Effects Model

y - N(l~, V) i.e. YiJ = ~ + at + t.ij

M2b) Bayesian hierarchical model; 1factor, levels exchangeable

ylat - N(ai'er;)

at I~ - N(~, er;>
~ - uniform

integrate

out et
__..,y - N(l~, V) as in model M2a

M2c) Randomised Block Design

r - N(XJJ" V)

where f3J is random, and JJ, is a vector of fixed effects.

Several cases for replication equal to 1, greater than 1, or unbalanced

M2d) Arbitrary treatment structure - two level nested block structure

r - N(XJJ" V)

M3a) Classical 2 level nested random effects model

y = N(l~, V) Le, Yijk = ~ + at + f3ij + t.ijk

groups/subgroups/observations.



- 27-

M3b) Bayesian Z level nested hierarchical model

Yijkl~iJ ... N(~ij,a:)

-
~iJloci ... N(oci'a;)

(Xil~ - N(~,a:)

~ ... untform

Integrating out parameters ~iJ and (Xi yields model M3a

M3c)General treatment structure on a Z factor nested blocking structure

r - N(XJI., V)

e.g. Yijk = o.} + bk + oci+ ~iJ + €ijk

or with interaction:

Yijk = o.J + bk + ejk + (Xi + ~iJ + €ijk

which can be reparametrised as:

M3d) Two random effects crossed model

y = N(l~, V)

M3e) Bayesian hierarchical model Z crossed factors

Yijk - N(~ + oci+ t3j' a;)

~ - untiorm

oci - N(O, er;>

f3J - N(O,er~)

Integrating out parameters ociand ~j yields model M3d.
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3.1.3 Matrix Results

In the algebra, a large number of_matrix manipulations are performed on

unbalanced dispersion matrices. The following matrix identities are frequently

used to obtain one inverse matrix in terms of another matrix inverse. Usually the

latter inverse is a smaller or simpler matrix than the original, or is already known.

(3.1.3:1)

Usually A will be a diagonal matrix, and hence evaluating A-I is trivial. Also H is

often a design matrix with only a single 1 in each row. This ensures that

r-I = H'A-IH is also a diagonal matrix. Even if A is not diagonal the resulting

numerical inverse is of smaller size provided that H has more rows than columns.

(This should always be the case if the model is sensible and a full rank parametrisa-

don is used). If A and T are diagonal, then using equation 3.1.3:1 on

(H'A-IH + .,.-1,-1 = (T-1 + .,.-1)-1 gives:

(3.1.3:2)

This result requires only one non-trivial inverse n~melY (T + 1V)-I, whereas equa-

tion 3.1.3:1 requires two non-trivial inverses. Sometimes the 1Vmatrix has yet more

structure and equation 3.1.3:1 or equation 3.1.3:2 can be used on (T + W,-I

(recursively).

3.2 Completely Balanced Factorial MOdels

Historically, balanced factorial designs have. been popular since they lead to

orthogonal columns. for the Bayesian, balance is useful because it simplifies the

algebra of the model, and also reduces the computational burden of evaluating the

likelihood. Using Kronecker product notation (denoted bye), it is possible to write

the dispersion matrix V as the weighted sum of Kronecker products of identity

matrices and square block matrices with common block sizes - see equation 3.2:1

below. Without loss of generality, all the examples presented in this chapter assume

a multivariate Normal error distribution since all spherical error distributions lead

to the same manipulations of the dispersion matrix.

In general a completely balanced factorial experiment with s-l random (or

blocking) factors, factor levels ~''2, ... ,rs-1 and replication rs has a dispersion
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matrix:

(3.2:1)

where the summation is over all the binary permutations of zero and one for '1'2 ... 'S
and ~ = 'p. This is the form of dispersion matrix considered by Searle and

Henderson (1979). Note that no assumptions have been made about the fixed effect

structure.

Multiplying two matrices of the form given in equation 3.2:1 together will give

a third of the same form, and since the identity matrix is also of this form, it follows

that V-I must also be of this form. Finding V-I can thus be viewed as being

equivalent to solving 25 simultaneous equations.

Frequently the design matrix X can be expressed as a Kronecker product of

column vectors of ones and identity matrices. This is useful as X'V-I X is then of the

same form as V, so evaluating (X'v-I X)-I and IX'V-I XI is essentially the same

problem as evaluating V-I and IVI.

Using the structure of equation 3.2:1 for the dispersion matrix, the eigen-values

and eigen-vectors of V can be produced analytically. The eigen-values of V are

linear combinations of the Kt' with the multiplying constants being dependent on

the number of levels for each factor ~, ... , rs-1 and on the number of replications rs.
This yields an analytical solution for y-I and IVI, hence the joint likelihood can be

evaluated efficiently. An extended description of finding the eigen-values and

eigen-vectors of such patterned dispersion matrices can be found in Searle and

Henderson (1979). Note that in a nested model with $-1 levels all the K1 i i, 2'···' S
coefficients are equal to zero. This can be used effectively to halve the computa-

tional task of evaluating y-I using the analytic results.

3.2.1 Joint Posterior Density for the fixed effects and variance components

The joint posterior density for the fixed effects and variance components is a

function of V-I. For completeness, in this section, the form of Vand V-I is presented

for all the models listed. Other models can be approached by the Searle and
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Henderson method.

Example 1 Model Ml

Consider the balanced one way fixed effects model M1, with p fixed effects

Cal' a2,···, ap)' and q observations from each effect. Then YiJ = af + t.i} for

f=1,2, ... ,p, }=1,2, .•• ,q where €oi} are independent identically distributed - N(O, a;),
that is:

Y _ NCXa,V) with V = ....21 1"e p q

Calculation of the inverse and determinant of V for this model is trivial, but it is

presented below in the form from equation 3.2:1 with 'i = p, '2 = q

Coefficients of V Coefficients of V-I

Koo a2 KOl 0 Koo
1

KOI 0= = = a2 =e
t.

KIO = 0 Kll = 0 KIO = 0 Kll = 0

giving V-I

Example Z Model M2a

Consider the 1 way random effects model MZa. Yi} = J.L + aj + t.ij" Again assume

Normality so that ai - NCO,a!), and t.i} are lid with t.i} - NCO,a;). This can be

written as:

hence in equation 3.2:1 'i = p, '2 = q

Coefficients of V Coefficients of y-I

1
_a2

Koo a2 KOl a2 Koo KOl
a

= = = a2
= a2(a2+ q(2)t. a

t. £ e a
KIO = 0 Kll = 0 KIO = 0 Kll = 0
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giving V-I

The same result holds for Model M2b. _

Example 3 Model M2c

The randomised block design

r - N(XIl, V)

or Yijk = Il{ + fjj + f.ijk

This has X = Jp ~ 1q ~ r, and V = er~ Jp ~ Iq ~ lr + er; Ip ~ Iq ®Ir•
hence in equation 3.2:1 ~ = p, '2 = q, '3 = r

Coefficients of V

Kooo = et2 KOOI '= 0 KOIO = 0 KOll = 0f.

KIOO = 0 KIOI ,= er2 Kilo = 0 Kill = 0b

Coefficients of V-I

Kooo
1

KOOI 0 KOtO 0 KOll 0= et2
= = =

f.
2

0 KIOI

-etb
KilO 0 Kill 0Kloo = = et2(et2 + ret2) = =

e £ b

giving V-I

Example 4 Model M3a

The classical 2 level nested random effects model

or y - N(X~, V)

X = Ip ~ 1q ®lr

~dV=~~®~~~+~~®~®~+~~~~®~

hence in equation 3.2:1 ~ = p, '2 = q, '3 = r
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<; = 0-:
Kloo = 0

Kool = o-~
KI01 = 0

= 0-2a

Coefficients of V

Coefficients of V-I

2 _0-2

KOOO =
1

Kool
-O-b

K010 0 KOIl
a

0-2
= 0-2(0-2+ r0-2) = = (0-2+ r0-2)(0-2 + r0-2 + qr0-2)e e e b e b e b a

KIOO = 0 Kiol = 0 KilO = 0 Kill = 0

giving

Example'5 Model M3c

General treatment structure on a 2 factor nested blocking structure

x = Ip®lq®lrllp®lq®lr srx = Ip®lqflJlr

V=~~0~0~+~~0~0~+~~0~0~

clearly V~l is the same as in M3a

Example 6 Model M3d

The two random effects crossed model

YtjTe = ~ + OCt + r,J + eijTe

or y - N(X~, V)

x = Ip ®lq 01r

~dV=~~0~flJ~+~~0~0~+~~flJ~0~

hence in equation 3.2:1 '. = p, '2 = q, '3 = r



- 33-

Coefficients of Y
,

Kooo = 0-2 KOOI = 0 KOIO = 0 KOII = 0-2e Cl

K100 = 0 KIOI = 0-2 KilO = 0 Kill = 0b

Coefficients ofy-I

1 _0-2

<: KOOI 0 Kolo 0 KOIl
a=

0-2
= = = 0-2(0-2+qr0-2)e & e Cl

2

KIOO = 0 KIOI

-O-b
= 0-2(0-2+pr0-2 )e & b

_0-2 0-2

KilO 0 Kill
a a= = p0-2(0-2+qr0-2) - p(0-2+pr0-2 )(0-2+qr0-2+pr0-2)e & Cl & b & a b

3.2.2 Marginal Posterior Density for the Variance Components

Recall equation 2.2.1:1 from Chapter 2:

The design matrix X can often be expressed as H ~ H ~ ... ~ Hr where Hi
'i '2 s

represents either I, or 1,. Design matrices of this form always occur for factorial

models unless there are crossed fixed effects without interaction terms - see Model

M3c(i). If there are interaction terms, then after reparametrising, there can be a

single fixed effect term for each cell and hence a X matrix of the above form - see

Model M3c(ii).

Given a convenient X matrix, IX'V-IXI and (X'V-IX)-I can be obtained easily

since X'V-1 X has the same form as V. Thus such X matrices lead to efficient

computation of the marginal posterior density.
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X'V-IX = (Hr. ® Hr. ® ••• ® Hr. )' (LK~ I I J:'I ® J:'2® ••• ®J:S) (Hr. ® Hr. ® ••• ® Hr.)
1 2 S I 2··· S 1 2 S 1 2 S

= LK, I I H' /IHr. ® H~ J~2Hr. ® ••• ® H~ J/Hr
I 2··· S 'i 'i I 2 2 2 S S S

which is another matrix of the same form as equation 3.2:1, but with fewer levels

because some of the Hf correspond to I,. Thus this matrix can be inverted in the

same manner as V. Often the matrix X'y-I X is either a 1X 1 matrix or a diagonal

matrix. In either case the evaluation of (X'v-I X)-I and Ix'v-I XI is trivial.

Example 1 Model Ml

The balanced one way fixed effects model M1

which is trivially of the form given by equation 3.2:1

= _1_1
qcr2 p

£

Example 2 Model M2a The 1 way random effects model.

y ... N(X~.V)

Example 3 Model M2c The randomised block design

r ...N(XIJ,.V) or Yijk = ~i + flj + £ijk

V= CT:Jp®lq®Jr+CT:lp®lq®lr and X = 1p®lq®lr

I -I 2 21 2,hence X V X = qr CTbp + qrCT£ p

2-CTb 1
= 2 1 - --2

'qCT:(CT: + prCTb) P qrcr£ p

Example 4 Model M3a The classical 2 level nested random effects model
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r - N(Xj.l, V) or Yijk = j.l + o'i_ + f3iJ + f.i}

V= er!lp~Jq~Jr+er~lp~lq~Jr+er:lp~lq~lr and X= lp~lq~lr

Example 5 Model M3c General treatment structure on a 2 factor nested

blocking structure

e.g. Yijk = IJjk + oci + f3iJ + f.ijk

giving

2 2
1 - er - erb 1= -( 2 2 Cl J ~J. + I ~J. + I qJI)P (a + re )(er2 + rer2 + qrer2) q r 2( 2 2) q r 2 q rf. b E b Cl erE erE + rerb erE

Example 6 Model M3d The two random effects crossed model

r - N(Xj.l, V) Yijk = j.l + oci + f3j + f.ijk

V = er!lp ~Jq ~Jr + er~Jp ~lq ®Jr + er:lp ~lq «t, and X = lp ~lq e i,

or

A model that does not conveniently fit into this form is the 3 factor crossed

model. If there are no interaction terms, or only first order interaction terms, then

X cannot be expressed as the Kronecker product of H matrices, and the matrix

X'V-I X is difficult to handle. If there are first and second order interaction terms,

then after a reparametrisation to get a single fixed effect in each cell, an X matrix

of the desired form is obtained. This issue is returned to in Chapter 8.



- 36-

3.2.3 loint Posterior Density for a fixed effect and the Variance Com-

ponents

As shown in section 2.2.2 of Chapter 2, the direct way of evaluating these

posteriors is to multiply the posterior .density for the variance components by the

density for the fixed effects conditional on the variance components. This intro-

duces no new numerical problems. I.t is interesting to consider the alternative

formulation developed in the same section of Chapter 2. This involves the inverse of

the potentially unbalanced matrix x~V-IX2 formed by the deletion of a row and a

column from X'V-I X. This unbalanced matrix makes the evaluation difficult. A

method is developed here for evaluating (X~ V-IX2)-1 and IX~ V-IX21. This method

leads naturally to a method of handling more general unbalanced dispersion

matrices as developed in sections 3.4 (slightly unbalanced factorial models) and 3.5

(grossly unbalanced nested factorial models).

The method for handling X~ V-IX
2
Is illustrated by considering Model M3c(ii).

This has a row, column and interaction treatment structure on a 2 factor nested

blocking structure, and is the simplest model considered for which X'y-I X is

non-diagonal, and hence the simplest model for which X~V-IXa is unbalanced.

Recall:

(3.2.3:1)

In general, it can be seen that X~V-IXa will be the sum of a diagonal matrix and

a matrix of blocks of differing sizes (caused by the deletion of a row and a column).

The second term can be expressed as Ht ViH; where Vt is the balanced matrix

formed by collapsing the blocks of differing sizes to a single element, and

Ht = D[llc ,lie , .•. ] indicates the sizes of the blocks. Thus:
I 2

(3.2.3:2)

where At is a constant times an identity matrix. The form of this decomposition is

crucial to the success of the method here, and the related methods for slightly

unbalanced models, and grossly unbalanced nested models. Note that the balanced

matrix Vi has one fewer level (in the sense of Searle and Henderson) than X~v-txa·
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Equation 3.2.3:2 can be inverted analytically using equation 3.1.3:2 yielding:

(3.2.3:3)

.....
where Tt is the diagonal matrix (H~A;IHtrl. Note that Tt + Vi is also the sum of a

diagonal matrix and a balanced matrix of blocks. Thus it can be expressed as

At-1 + Ht-1 "i-1H~-1' where At-1 is a diagonal matrix and Vi-1 is a balanced

matrix. The procedure recurses trivially.

The calculation of IX2V-IX~I proceeds as follows. Clearly X~ V-I X2 has a large

number of eigenvalues of er: corresponding to the replications. All the other

eigenvalues correspond to eigenvectors of the form lit = Hllt-1. T.hese remaining

eigenvectors are the eigenvectors of the matrix H'(X2 V-I X~)H divided by the

replications. This form of determinant is calculated (recursively) in Section 3.4.1

3.3 Unbalanced Factorial Models

In this section, and the following ones, the effect of unbalance is explored. Two

different types of unbalance should be distinguished. The first type is where a

design was originally balanced, but one (or several) observations have been lost/are

missing/were discarded as outliers or a few additional observations are available, so

that the number of replications varies in one (or a few) cells. The second type of

unbalance occurs when no attempt at balance has ever been made, for example in

a two level nested model where the number of subgroups varies, and the number of

observations in each subgroup also varies. For clarity, the former designs are

referred to as being slightly unbalanced, whereas the latter designs are grossly

unbalanced.

A new class of slightly unbalanced models is introduced in section 3.4. It is

shown that all models that have only a single odd cell (too few or too many

observations in just one cell) can be tackled analytically. The inverse and deter-

minant of the dispersion matrix from such models are produced analytically. This

enables efficient numerical evaluation of these models.

Grossly unbalanced nested models are tackled in Section 3.5. An algebraic

technique is developed that calculates the inverse and determinant of the disper-

sion matrix from an unbalanced nested model in terms of another dispersion matrix

with one fewer level. The technique can be applied recursively to yield an analytic

form for the inverse and determinant of the dispersion matrix. The theory from this
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section contains as special cases some of the slightly unbalanced models which were

considered in Section 3.4 - namely the slightly unbalanced nested models.

Grossly unbalanced crossed models are considered in Section 3.6. For these

models complete analytic solutions are not available for the inverse or the deter-

minant of the dispersion matrix. However, algebraic techniques are presented that

reduce the numerical difficulties of evaluating the likelihood, by substantially

reducing the size of the matrlx that must be inverted numerically.

3.4 Slightly Unbalanced Factorial Models

This section develops a new class of unbalanced models, namely those models

that would be balanced except that one cell has an odd number of observations.

These models are called "slightly unbalanced models". Section 3.4.1 develops

procedures for evaluating the inverse and determinant of such dispersion matrices.

These are used in section 3.4.2 for the slightly unbalanced one way random effects

model. Section 3.4.3 produces the inverse and determinant of the dispersion matrix

for a slightly unbalanced 2 level nested random effects model, and section 3.4.4

does the same for the slightly unbalanced 2 random effects crossed model. These

worked examples demonstrate the technique for handling slightly unbalanced

models, though the procedure is directly applicable to any slightly unbalanced

model.

The basic technique used in the derivation of the inverse is to strip the residual

variance from the dispersion matrix leaving a block structured matrix. This is

collapsed to a balanced matrix by taking a single entry from each block. The

balanced matrix can be inverted analytically, and from it the inverse of the original

dispersion matrix can be derived.

Similarly the determinant is found by extracting all the eigenvalues

corresponding to the residual variance, then finding a simpler matrix whose

determinant is equal to the product of the remaining eigenvalues.
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3.4.1 SUghtly Unbalanced Factorial Models with one odd cell

Consider a completely balanced factorial model with s-llevels (in the sense of

equation 3.2:1) with dispersion matrix ~. where ~ is a "sX"s matrix. Now suppose

that there are m observation(s) missing from the first cell. Denote the resulting

dispersion matrix by Vs'. and the data by Ys' Let r be the number of observations in

each of the "5-1 ·cells except the first which has r-rn > 0 observations. Then the

"s_lr-mx"s_lr-m dispersion matrix is:

where H = D[lr_m,lr.lr •...• lr] and ~-1 is the "5-1 X"s-1 balanced matrix formed

from taking one element from each block of ~, - er;l.
-I

Calculation of ~'-1

Using equation 3.1.3:1 on ~':

VS,-I = 1..1 - .!.H(H'H + er2 V-, )-IH'
er2 er2 £ s-1£ E

1 1 1H( 2 V-I d' ( »-1 ,= -'2 - -'2 ert: s-1 + lag r-m.r.r, ... ,r H
erE erE

(3.4.1:1)

But er2 V-'1 + diag(r-m,r,r, ... ,r) = S - diag(m,O, ... ,O)
E s- = S - _!!!_TT'

"s-l

where S is the balanced matrix given by: (3.4.1:2)

and T is an "s-l x "s-1 matrix whose first row is ones and aU other entries are zeroes.

Thus T = 1~ ® Cn where Cn is a vector of length "s-1 with the first element
s-I s-1 s-1

as one, and the other elements as zero. Using equation 3.1.3:1

"= S-l-S-tT(s J - ..!:!, )-lr's-t (3.4.1:3)
" ns-l m "s-1

-Iwhere s'l Is the top left element of S •

B (1 "S-11 )-1
ut s" n - n5-1 m s-1

s= _"!!!'_I _ (~)2 " 1
"s-1 "5-1 "s-1 1- ms" ns-l
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ns-1 1 slI
thus T(saaJn ... --In )- T' = (-:,m - m2 1 }diag(1,O•••O) =

s-l m s-l - mSII

-m TT'
1-mSII "s-1

substituting this into equation 3.4.1:3 gives:

( 2 V-a di ( »-1 S-a + m S-a TT's-1O't:s-l + ag r-m,r,r, ... ,r =
1-mSll "s-1

= S-a + m
1-ms

ll "s-1

where S. is the column vector formed by taking the first column of S-a. Substituting

for (a; V;~1+ diag(r-m,r,r, ... ,r»-l in equation 3.4.1:1 gives:

(1' ® S )(1' ® S )'
= ..!.I- 1:..H(S-1 + ~_m "...;;S_-.;;.1__ •__ ".:;.S...:-1=--_·_}H'0'; a; 1-mSll "s-1

(3.4.1:4)

t-IAll the terms in equation 3.4.1:4 are easy to evaluate as S is balanced. Thus Vs has

been produced analytically and can be evaluated without too much numerical work.

(1~ ®S.)(l~ ®Sl)'
1, 1, -11m , s-1 s-I

= 2 ~sY.s- 2 Y.s_1S Ys-l - 2 1 Y.s1 Ys 1a a a - ms - "s-1 -e e t: 11

where Ys-1 = H'ys is the vector formed from the sum of the y observations within

each cell.

,-a 1,
y"V Y. = 2 y.sYss s s at:

(3.4.1:5)

As S-I is known, S~Ys-l and y~_lS-1Ys_l can be produced without effort - giving the

sufficient statistics for the y.

Note - Calculation of S-a

Note that though S was defined in equation 3.4.1:2 only S-I is ever used. The

definition of S involves V;~l so the calculation of S-I requires the inversion of two

(balanced) matrices. This is unnecessary and also assumes the existence of ~~1'

Alternatively equation 3.1.3:1 can be applied to equation 3.4.1:2 yielding:
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S-1 = !,
r ns-1 (3.4.1:6)

This is a convenient representation as it only involves one inverse of a matrix that is

balanced, and r~_1 + o-;In is always'"non-singular.
s-1

Calculation of I~tl

The likelihood evaluation also needs 1~tl. Clearly ~t has ns-1(r-1) - m eigen-

values of 0-;. The remaining ns-1eigenvalues correspond to eigenvectors of the form

liS = Hl1s_1= (k11~_m ,k21~,k31~, .•• , kn 1~),where I1s-1= (k1 ,k2,k3' ••• , kn ). Any$-1 $-1
eigenvector liS of vst corresponds to an eigenvector I1s-1 of ~-1

+ o-~di08'(-L_,.!,!, ... ,!) with an eigenvalue scaled by r-m or r, Thus:~ r-m r r r

(3.4.1:7)

There are two ways of evaluating the determinant on the right hand side of

equation 3.4.1:7 •.The first method is applicable whenever the model is a nested

model, and calculates the determinant recursively. The second method is applicable

to all models, and works by comparing the eigenvalues and eigenvectors of the

matrix on the right of equation 3.4.1:7 with those of the balanced matrix with no

missing observations. The second method is more efficient, but is harder to

formalise. Both techniques are presented.

Method 1

0-2£Note Vs 1 + -In Is the balanced matrix that appeared in equation 3.4.1:2.
- r s-1 .

Since the inverse of this has already been calculated, its determinant can be

obtained trivially. The difference between this determinant, and the determinant

on the right of equation 3.4.1:7 is o-;(~ - r_1m)1~t_11,where ~t_1 is the matrix
0-2

obtained by deleting the first row and column of ~-1 + : I. But Vst_l is a matrix of

exactly the same form as ~t except that it has one fewer levels. Thus using this

procedure recursively, one obtains Ivst I.
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2 "5-1 cr-1)-m{ er:
= (a,) ~-1 + -Inr 5-1

2 }
mere t "5_1-1

+ r(r-m) 1~-11 (r-m)r (3.4.1:8)

..-
Method 2

An alternative method is now presented that is applicable to all models. For

illustration consider the slightly unbalanced 2 level nested random effects model.

This has:

Ivtl = (O'2)pQ(r-1)-mlv + er2dio.g(_1- ! ! ...!)I(r-m)rpQ-1
. 2 € 1 € r-m ' r ' r ' • r

But for the _1_ term, the matrix on the right of this would have p(q-1) eigenvaluesr-mer2 0'2e 2 € 1of - and p of qO'a + -. The -- term destroys one of each of these eigenvalues.r r r-rn
and the two new eigenvalues must have eigenvectors of the form (1Ig1~_tt0&'_1)q)'.

Multiplying out yields two equations in A (the eigenvalue) and g.

0'2

O';(q-l)g = A - 0'; - O'~ - r-~

er2
(0'2(q-l) + erb

2+ ~ - Alg = - er2a r a

Eliminating g yields a quadratic in A.

There is no need to solve this since the two A values are of no interest in themselves

- only their product is required and this must be:

Comparison with section 3.4.3 shows that the same results are obtained.

3.4.2 The slightly unbalanced 1Way Random Effects Model

This is an extension to model M2a - the completely balanced one way random

effects model, and illustrates the technique for manipulating slightly unbalanced
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models that was developed in Section 3.4.1.

1= 1,oo.,p J = 1,... , ni {
q-m i = 1

n·=
I q i:;& 1

.~

~t = (f;'pq_m + (f;O[Jq_m,Jq, ... ,JqJ = (f;'pq_m + HV.H'

where H = O[lq_m' Iq"'" Iq]' and V. = (f; '»:
(f2

Then from equation 3.4.1:2 S = ~'p+ q,P' hence S-I =
(Ta

and S. as a column vector of $11 and p-1 zeroes. Finally fromSll = (fa + q(fa'
t: a

equation 3.4.1:4

where 0q,q is a qXq block of zeroes.

The determinant can also be calculated easily from equation 3.4.1:8

where v.t is obtained by deleting the first row and column from V..
(f2

But V. = (f;'p' hence V. + ; lp =

Substi tu ting:

{

er2 + q(f2 • m(fa er2 + qer2 }= «(f2)p(q-1)-m ( £ a)p + £ (£ a )p-1 (-m) p-1
£ q q(q-m) q q q

-I t-I t-I
Finally as x'~t X is a 1x1 matrix, the calculation of (X'~ X)-I and IX'~ xl
present no difficulty.
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3.4.3 The slightly unbalanced 2level nested Random Effects Model with one

odd cell

This is an extension to model M3a - the completely balanced two level nested

random effects model.

..

\I"k = 1-1 + cc. + ~'l + £"k"IJ I I IJ
i = 1...p J = l...q {

r-m
"il = r

i,} = 1

i,J # 1

Using equation 3.4.1:6

0'2

S-I = 1, e ( .,. 2, )-1r pq - r r"2 + 0'£ pq

=

for appropriate choices of A and B.

thus s = A + B, and S.
II [ 1] [lp]= A +B .

°pq_1 0p(q_1)

Then substituting into equation 3.4.1:4

(3.4.3:1)

[ [

(A+B)2 Jr-m_ j_ m 0
0': 1 - mSII (A+B)B lr-m,(q-l)r

(A+B)B l(q-l)r,r-m] ]
2 ,Oqr,qr" .Oqr,qr

B J(q-l)r

To obtain.1 ~tl use equation 3.4.1:8

m0'2 }+ £ Iv:tl (r-m)rpq-1r(r-m) 2

0'2

where v:t is the matrix v.: + ~'with the first row and column deleted.2 2 r
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0'2
tv: + -I =

2 r

Using equation 3.4.1:8 on ~t

Substituting:

ma
2

}+ t Iv:tl (r-m)rpq-1
r(r-r») 2

(3.4.3:2)

t-Ifinally as X is a vector of ones, X'~ X is a
-I

Ix'~t XI are trivial.

-I
1x1 matrix so (X'v:t xrl and3

3.4.4 Slightly unbalanced two random effects crossed Models with one

odd cell

This is an extension to model M3d - the completely balanced two random

effects crossed model.

i = 1.•.p J = t. ..q k = i ,.."t! {
r-m

niJ = r
i,} = 1

i,} :F 1

~t = a;lpqr-m + H~H'

where H = D[1r_m, 1" 1,], and ~ = a;lp ®lq + a~lp "!«:

then from equation 3.4.1:6
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The techniques for a balanced matrix give:

(rr;lpq + rrr;lp ~ Iq + rrr;/p ti§ Iq)-t

1 r~ ro2
= -I ~1 - 1 ti§ J - b J ®1rr2 p q rr2(rr2+ qr0"2) p q rr2(rr2+ prrr2) p qe ££ Cl tt b

rrr; rrr; (err; + qrrr;) + (rr; + p;'rr~)}

Hence

Determinant of ~t

The determinant can be evaluated directly using the second technique from

section 3.4.1. first use equation 3.4.1:7

1v:'1 = (rr2)pq(r-1>-mlv: + rr2diClg(_1_ 1 1 ... 1>1 (r-m)rpq-1
3 e 2 £ r-m ' r ' r ' 'r

21 J 2 2 1 11 1).Thus the determinant of O"ap ® q + O"blp®Iq +0"£diag(;::m'r';:"'" r IS needed.

Pretending the r-m was an r, there would then be (P-1)(q-1) eigenvalues of 0-; /r, p-l

eigenvalues of qo-; + er;Ir, q-l eigenvalues of per; + er;Ir and one eigenvalue of

qer; + po-~ + 0"; Ir. Since there is an r-m and not an r it follows that there must be

(p-1)(q-1)-1 eigenvalues of er; /r, p-Z eigenvalues of qer;+ rr; Ir and q-Z eigenvalues

of per; + er;Ir. The missing 4 eigenvalues must have eigenvectors of the form:

where Cp denotes a vector of p elements, of which the first element is a one, and the

remaining p-1 elements are zero. Multiplying out yields four different equations.
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0-2

O-;(1+qX+ y+qZ) + 0-~(1+ X+py+pZ)
e

X(l+x+y+z)+ -(l+x+y+z) =r-m
0-2

o-;(l+qx+y+qZ) + o-~(X+PZ) £ Mx+z)+ -(X+Z) =r
0-2

o-:(y+qZ) + o-~(l+x+PY+PZ). £ X(y+Z)+ -(y+Z) =r
0-2

o-:(y+qZ) + O-~(X+PZ) +
£ Xz-Z =r

Subtracting the second and fourth equations, and the third and fourth yields:

Then the fourth gives:

finally (first plus fourth) minus (second plus third) gives:

0-2 0-2 0-2 m0-2e e £ £
X = --(l+x+y+z) - -(X+y+Z) = - + ( ) (X+y+Z)r-m r r-m r r-m

substituting for x, y and z and rearranging:

This is a quartic in X,but only the constant term is needed, as only the product of the

X's is required. Thus the awkward determinant is:

I . 1 1 1 1 I~ + o-;dlag(;::;;;,r,r,···, r) =

0-2 0-
2

0-2

(..!..)(p-l)(q-l)-1(q0-2+ ..!..)p-Z(p0-2 + ..!..)q-Z
r arb r

0-2 0-2 0-
2

0-2
{_£_ (q0-2 + ..!.. )(PO-b2+ ..!.. )(qo-! + PO-b2+ ..!..)r-m (1 r r... r

2 2 2 2 2
mO-e 0-£ 0-£ 0-£ 0-£

r(r-m) (o-~(qo-: +r )«q-l)o-: + po-~ + r)+ o-:(Po-~+ r )(qo-:+(P-l)o-~ + r)}
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3.5 Grossly Unbalanced Factorial Nested Models

In this section nested models that-are grossly unbalanced are examined using

the same techniques as for slightly unbalanced models. Though superficially

complex, these designs may be practically sensible as they can allow more informa-

tion to be gained about the higher levels of the design. By contrast a balanced nested

model usually supplies detailed information about the residual variance, and the

low level variances, and only scant information on the higher levels. Anderson

(1973) describes the benefits of unbalanced nested designs, or staggered designs as

they are also known.

A general method for handling unbalanced nested models is developed in

Section 3.5.1. Both the inverse and determinant of the dispersion matrix from a 5-1

level model are derived in terms of the dispersion matrix from a 5-2 level model.

Thus the inverse and determinant can be calculated recursively. This section

parallels the work of La Motte (1972), who used a similar recursive technique to

tackle any unbalanced nested model. The results are equivalent. It is also observed

that this technique enables unequal residual variances to be used without difficulty

for all factorial nested models.

These results are illustrated by Section 3.5.2 which details the 1 way random

effects model. A special case of this is the slightly unbalanced one way random

effects model, and it is shown that the results agree with those in Section 3.4.2.

Section 3.5.3 which details the 2 level nested random effects model. A special case

of this is the slightly unbalanced 2 level nested random effects model of section

3.4.3.

3.5.1 Grossly unbalanced 5-1 level nested random effects model

The algebra in this section is a generalisation of the algebra for the balanced
,

nested random effects models such as models M2a, M3a, M3c. Analytic expressions

are derived for the inverse and determinant of the dispersion matrix Vs from any

nested random effects model, allowing arbitrary replication at any level. Define ~

recursively.

where V. = CT~1
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Note that the stretching matrix Hs-1 contains all the unbalance at the bottom level

of the model by containing the number-of replications within each of the observa-

tional cells. Similarly the matrix Hs-Z contains all the information about the number

of cells at the next to bottom level of the model.

For later convenience define Ys= y and Ts = I, then use equation 3.1.3:2 on Vs

(3.5.1:1)

1 -IH (H' 1 T-1H )-1+ -zTs s-1 s-1 -z s s-1
O's O's

Now use the recursive definition for ~-1 on a term from above:

(H' 1 T-1 )-1 2 H V H'= S-12 s Hs-1 + O's-1' + s-Z s-Z s-Z
O's

Define Ts-1 (3.5.1:2)

thus (Hs'-1 i.2 Ts-
1Hs_1)-1+ Vs-1 = 0'2 T + H V H's-1 s-1 s-Z s-Z s-Z

O's
(3.5.1:3)

Note that since Tsis diagonal, so is Ts-1' and hence recursively all the T matrices

will be diagonal. Substituting for equation 3.5.1:3 gives:

-I (H' T-1H )-1+ Ts Hs-1 s-1 s s-1

(3.5.1:4)

Recall that Ts is diagonal and so also is H~_1 TsHs_1. Consequently the inverses of

these two matrices are trivial to calculate. Thus the only non-trivial inverse in

equation 3.5.1:4 is the inverse of 0':_1 Ts-1 + Hs-Z~_ZH~_Zwhich is of exactly the



- 50-

same form as equation 3.5.1:1. Thus the process can be applied recursively.

It is required to calculate y'V-1 y = y;~1 Ys efficiently

then y"v-J s.S S

+ v V-I v"s-1 s-1"s-1

This clearly recurses. All the T matrices are diagonal. Note also that if the original

observations had unequal residual variances, then this would make Ts not equal to

I,but would not complicate the algebra in any way. Thus unequal residual variances

can be handled without difficulty.

Calculation of 1VsI

The calculation of the determinant of ~ proceeds in a similar recursive

fashion, along the lines of the recursive method in section 3.4.1.

This clearly has many eigenvalues of one, the others all corresponding to eigenvec-

tors of the form lis = Hs-1"s-1' Suppose the eigenvalue associated with liS is A then:

1, ,
Thus the non-unity eigenvalues of I+Hs_1 2 ~-1Hs-1 are the same as the eigen-

Us

(3.5.1:5)

Note that the determinant on the right hand side is a matrix with one fewer level

than ~. Now repeat the procedure. first replace ~-1 by u:_11 + Hs-2~-2H;-2
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(3.5.1:6)

The T matrix is diagonal, and so is the matrix in the second determinant of equation

3.5.1:6 - hence it is trivial to evaluate; The first determinant can be treated in the

same manner as the original ~ determinant. This procedure can be repeated

recursively. Thus:

(3.5.1:7)

3.5.2 Grossly unbalanced 1 way random effects model

The inverse and determinant of any arbitrarily unbalanced nested model have.•
been constructed recursively in section 3.5.1. By way of illustration, consider the

unbalanced equivalent of model M2a - the one way random effects model:

N(O,u;> i = 1,2, ••• ,p

N(O,u;> 1= 1,2, .••, qi

Alternatively y - N(~,~>where the dispersion matrix for this model is denoted by

V:, the subscript 2 serving as a reminder that there are two variance components.
2

Then
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(3.5.2:1)

Note that the stretching matrix HI contains all of the information about the

unbalance in the design. Also note that H;HI is diag(ql ..... qp)' Now let Tz = I:

then substituting terms into equation 3.5.1:4 gives:

(3.5.2:2)

Thus ~-I has been obtained explicitly. The determinant of ~ is equally straight

forward using equation 3.5.1:5
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Special Case - the slightly unbalanced 1 way random effects model

Note that if ql = q-m and qi = q fer I = 2,. .. , p, then ~ is the same as for the

slightly unbalanced model from Section 3.4.2. Substituting for ql , ••• , qp in equation

3.5.2:2 gives:

The inverse and determinant are of course the same as those obtained in Section

3.4.2, but this section is far more flexible and allows far more unbalance in the

design.

3.5.3 Grossly unbalanced Z level nested random effects model

As a second illustration of the technique, consider the unbalanced equivalent

of model M3a - the two level nested random effects model. Allow an arbitrary

number of observations (nil> 0) within each cell, and an arbitrary number of

subgroups within each group.

YiJk. = ~ + ai + f3iJ + tijk. ai N(O,O';) f = 1,2,... ,p

f3iJ N(O.O'~) J = 1,2, ... , qi

Eijk. N(O,O':> k: = 1,2, ... t nij n = I:.nij

then 1 - N(~t~) where

where 0'2
3
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Note that H;Ha is diag("u' "12' ... ' "pq ). Let T3 = I, then from equation 3.S.1:2
p

Then from equation 3.5.1:4

(3.S.3:1)

Now use the same argument again, or alternatively use equation 3.1.3:1

hence substituting this into equation 3.5.3:1

The only inverse which is not already known to be diagonal (and hence trivial) is

(H; :2 T;IH, + v.-1rl which can be inverted as follows:
2

Substituting for this gives:
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Simplifying this yields

(3.5.3:2)

The determinant of ~ is obtained from a direct application of equation 3.5.1:7
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hence

(3.5.3:3)

Special Case - the slightly unbalanced two level nested random effects

model

By way of example suppose that "11 = r-m and all the other nil = r. Suppose

there are always q subgroups within each group. Then ~ is the v;.t from the slightly

unbalanced model in Section 3.4.3 Substituting into equation 3.5.3:2 yields the
-I

inverse ~t

1 [( Plr-m--0
er: Cl lr-m,(q-l)r

where A =
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andR
er;er:(er;+(r-m)erb)

= {(er;+(r-m)erb )(er;+rerb +qr~:) - mer;er:}(er;+ rerb)

Now evaluate Q-B and A +B and compare:
. _-

(er; + rerb)(er; + rerb+ qrcr:){(er; + rerb)(er; + rerb+qrer:) - m(crb (er;+ rerb+ qrer:) + er;er;)}

erb(er; + rerb + qrer:>+ er;er;)
A+B =

(er; + rerb)(er; + rerb+ qrer;)

m(A+B)B
thus Q-B = l-m(A+B)

Rearranging

m(A+B)Z
l-m(A+B)

Substituting for all these leaves:

• [( 2
. (A+B) Ir-m1 m D

-?1-m(A+B) (A+B)B 1e r-m,(q-1)r

(A+B)B 1(q-1)r,r-m] ]
2 ,Oqr,qr,,·Oqr,qr

B I(q-l)r

This is of course identical to equation 3.4.3:1

I~I = (er;-i'qr-m-pq (er: + rerb)pq-l (er: + (r-m)erb)

( er;+ rerb+ qrer; )p-1 {(er;+ (r-m)erb)(er; + rerb + qrer!> - mer!er;)

er; + rerb (er; + rerb)(er; + (r-m)crb)

This is of course identical to equation 3.4.3:2
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3.6 Grossly unbalanced Crossed Designs without Interaction

For these cases an analytic solution to the inverse of the dispersion matrix has

not been found. A method is presented which reduces the computational burden

substantially by replacing the numerical inversion of V by that of a series of smaller

matrices. The technique is however much worse than all the other techniques

discussed - see section 3.7 for a discussion. Consider model M3d - a two .random

effects crossed model without interaction. Thus the observation from a cell depends

on a row effect and a column effect, .and an error term, where both the row and

column effects are random. Thus:

OCi ,., N(O,O";> i = 1,2, ••• ,p

~i ,.,N(O,O"~> i = 1,2, , q

£ij ,., N(O,O":) k = 1,2, , nii

Alternatively:

where X, = O[l~ ,In '000' In ]
1. 2. p.

O[ln ,In , ... ,In ]
11 12 tq

O[ln ,In , ... ,In ]
21 22 2q

The subscript 3 on the v: serving as a reminder that this is a 3 variance component
3
2 2 , -1model. Now let ~ be 0"£ In + O"aXIX, and use equation 3.1.3:1 first on ~ to get ~

explicitly, then on ~:

",-1
Z

Thus the inverse of v: can be calculated numerically from the inverse of a q by q
3

matrix. This is a much smaller task than inverting ~
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In general consider an s level cros~ed linear model with replications r., '2' ... , rs'
and random effects Cl" 42, ... , ClS' This can be written as:

1,Z,... ,. '2 = 1,Z,... '2 is = 1,Z,... rs J = 1,Z,...n. i I
'1' z"'" S

where

then V;I = v:-I V-I X (X' V-I... 1 I )X' V-Is-1 - s-1 s s s-l,As+ 0'2 r. s s-1
r s

to evaluate this requires a rs by rs matrix to be inverted numerically as well as ~-1'

Recurse and note that ~ is analytically invertible. Thus ~ can be inverted in terms

of a series of inverses of sizes rs' rs-1' ... , r3 and rz. Note that since there is not a

matrix of size r
l
to be Inverted, then the data should be arranged so that r

l
is greater

than the other r"

3.7 Computational Considerations

The purpose of this chapter was to examine ways of efficiently evaluating the

likelihood function to enable Bayesian analysis, based on numerical integration, to

be feasible. This section provides an order of magnitude guide to the effort required

to evaluate the likelihoods for the models discussed.

In Section 3.2, and thereafter, frequent use is made of balanced dispersion

matrices. Following the methods of Searle and Henderson, the eigenvalues for a

dispersion matrix from a s-llevel model can be obtained in about s ZS-l multiplica-

tions, thus giving I~I in (s+Z) ZS-l multiplications. V;l takes Zs2s-1 + ZS = (s+l) ZS

multiplications and y;V;Iys takes (s+Z) ZSmultiplications. Both I~I and y;V-I,s can

be evaluated in (s+3) ZSmultiplications. Thus a Z level model (nested or crossed)

takes about 46 multiplications, and a 3 level takes 11Zmultiplications, regardless of

the number of observations. Since nested models have many zero coefficients in
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equation 3.2:1, an s-1level nested model only takes as many operations as a general

s-z level model.

Section 3.2.2 for marginal 0-2 uses. two balanced matrices V and X'y-l X, the

latter having fewer levels. Thus the number of multiplications for the former

dominates the number of multiplications for the latter. Similarly for Section 3.2.3

for marginal 01,0-
2• Though the matrix X~V-IX2 is unbalanced, the recursive

method for manipulating it is efficient, and the number of multiplications handling

V should dominate as V has more levels.

A slightly unbalanced model from Section 3.4.1 with s-1 levels requires an s-2

level balanced matrix to be inverted in the calculation of S-I. Method 1 for the

determinant requires a series of balanced matrices from s.:2 levels to 0 levels.

Method 2 requires the determinant of an $-2 matrix and a similar amount of work for

the extra A values. Method 2 is thus more efficient and the number of multiplica-

tions is approximately (3s+4) 2$-1. This compares with (s+1) 2$-1 for a balanced

nested s-1level model and (5+2) 2s for any balanced s-1level model. Thus the slight

unbalance increases the computational load for a model by about a half.

The grossly unbalanced nested models in Section 3.5 require the inversion of a

set of diagonal matrices (equation 3.5.1:2) and a the determinants of a series of

diagonal matrices (equation 3.5.1:7). These are dominated by the number of cells as

this is the number of operations for the biggest inverse and determinant.

The unbalanced crossed designs without interactions from Section 3.6 require

a series of inverses of sizes '2' ••• ,rs' and thus the number of operations is
3 3proportional to '2 -+ ••• -+ rs .



Chapter 4
Non-Informative Prior Distributiops

....
4.1 Introduction

One of the strengths of Bayesian analysis is the way in which it allows the data

to modify your beliefs prior to the experiment, through the Ukelihood, yielding a

posterior distribution encapsulating both the prior beliefs and the data. This

posterior distribution can subsequently be used as the prior distribution to a later

experiment and so on. There remains the question of choosing an initial prior

distribution to the first experiment, when the experimenter is in a state of

considerable ignorance about the true or likely values of the parameter(s). Hope-

fully the information supplied by the data in this experiment will vastly outweigh

the information supplied by the initial prior distribution, and then the particular

initial prior distribution that is chosen will matter little. Nevertheless, it is wise to

use a non-in/ormtltiIl8 prior disrriburion, so that the contribution to the posterior

distribution made by initial prior distribution is small.

Two alternative philosophies for selecting non-informative prior distributions

for linear models are explored. In sections 4.2, 4.3 and 4.4 the ideas of Jeffreys

(1961) are presented, and the standard Jeffreys' priors are produced. Section 4.2

outlines the principle of Jeffreys' priors, and section 4.3 deals with Jeffreys' priors

for Normal models. Section 4.4 is concerned with Jeffreys' priors for models with

general multivariate t errors. The latter priors are shown to be the same as the priors

from the equivalent Normal models. In section 4.5 the information theory approach

taken by Bernardo (1979) is given. Despite the different theoretical justifications,

both philosophies lead to the same prior distributions for the models considered.

4.2 Jeffreys· Priors

In any model, there is always a certain arbitrariness about the choice of

parameters. Suppose the observations {Yi} are known to be from a Normal distribu-

tion with unknown mean a and unit variance, thus Yi - N(a,l). Suppose however

that the quantity of interest was not a itself but some function d>(a), for example 1/a
or ft. In the model specification, this presents no difficulty, but difficulties arise

with the choice of non-informative prior distribution, as a uniform prior on e will
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not be uniform on 4>(e).

The information about e in the -data is expressed through the likelihood

function. In general, the location, scale and shape of the posterior distribution will

depend on the data 1. If however for some choice of e, or a 1-1 mapping of

e -+ 4>(e), the shape of the posterior distribution remains invariant, then the

posterior density is termed data translated. The shape of the posterior density for

4>(e) is determined a priori. The experimenter can thus express prior ignorance

about e by saying that no value of 4>(e) ,is preferable to another. That is by taking a

prior that assumes 4>(e) to be locally uniform, the resulting posterior distribution is

seen to be a function of the data alone.

For a normal distribution with an unknown mean, and a known variance, this

corresponds to a uniform prior on the mean. A normal distribution with an known

mean, but unknown variance et2, gives rise to a non-informative prior of 1/0'2.

It is not generally possible to find a transformation that produces the data

translation property, and hence it is not possible to produce exact non-Informative

priors. The metric 4>(e) for which a locally uniform prior is approximately non-

informative is:

where lee) is the Fisher information defined by:

ice) = - E [d
2
1oS;>(1Ie>] = E [dlogp(1Ie)]2

lie de,le de
This result was first given by Jeffreys (1961).

The argument generalises to multi-dimensional problems yielding

p(8) oc: It (8)11for a vector of n parameters. However care should be taken beforen
mechanistically applying this result, especially if there are different types of

parameter in 8. Sometimes it is known a priori that certain sets of parameters are

independent of each other. For example, location parameters 8 and scale parame-

ters 0'1 are frequently assumed to be independent a priori. In such cases

p(8Ial) = pee) and hence p(e,al) = pee) peetZ). Then the non-informative prior

distributions pee) and p(al) should be calculated yielding:
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....3 Jeffreys' Priors for Normal Models

Consider a set of observations y from a multivariate normal distribution with

mean 0 and dispersion V(et2) where et2 are unknown. Decompose V into its
s

eigenvalues ", and eigenspaces Si giving V = L ''is,. The Si matrices are the'-1 S m
eigen-projections of the ", and have ranks mi' Hence I VI ... nki '. The likelihood

i-l
for this model is then:

L(~ Iy)
s s

= log r(~ Iy) = constant - 11:mtlog "i - 1~ "ily'S,y
t-l ,-1

aL
OA,

02L

0
2
"1

02L
aA,ak}

mi y'SIY
= -1~ +1>1

m, y'SiY
...1"i2- k3

i i

= 0 for I ~ }

To calculate ice) the expectation of the second derivative of L is needed. This

requires the expectation of the quadratic form y'SIY' for this case, standard results

give:

E[y'S,y] = trS,V = mi"i

hence E [I::~I] = ,~ [(I-y~y) ee
SIlx -2
t-l '

hence the Jeffreys' prior is proportional to the reciprocal of the product of the

eigenvalues.

4.3.1 Jeffreys' Priors for Normal Models with fixed effects and variance

components

This section shows that the Jeffrey's prior for likelihoods with both variance

components and fixed effects, is the same as the Jeffreys' prior for a model with just
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the variance components, provideJ that it is assumed a priori that the location-parameters and the scale parameters are independent. Thus the prior

p(A,a) = peA)pea).

L = log l(aly, V) = constant - !logl VI - iCy - Xa)/V-1 (y - Xa)

~: = X'v-I(y -XA)

a2L
02a = -X'V-IX = constant

thus 1(8) = constant -+ pea) = constant

Hence p(a2,a) = p(aa).

If the factorisation of the prior is not assumed, then the Fisher information

l(A,a) must be obtained. This requires the expectation of a2L / a2(~,a), that is:

a2L a2L
02A aA Oa

E
02L 02L
o~aa 02a

02L
Since E a~Oa ':I- 0, the resulting prior is no longer the reciprocal of the product of

the eigenvalues multiplied by a constant. Thus the choice of prior is, strictly

speaking, dependent on the initIal assumptions.

4.4 Jeffreys' Priors for models with general multivariate terrors

The Jeffreys' prior for a general multivariate t likelihood with a single variance

component is produced in Section 4.4.2. In this restricted case the Jeffreys' prior is

the same as the Jeffreys' prior for a multivariate normal likelihood. This result is

extended in Section 4.4.3 to allow for many variance components within a diagonal

dispersion matrix V. In Section 4.4.4, the result is shown to hold even if V is not

diagonal, thus establishing the result for all dispersion matrices V.
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4.4.1 Basic Likelihood theory

Let r - tv(Xa, V). Thus:

where n is the number of observations in y. Bayes .theorem gives:

(4.4.1:1)

4.4.2 Jeffreys' Prior for single variance problem

from equation 4.4.1:1, the log likelihood L is:

L = oon.'.n' - 110g1VI - !(.+n) log (1 + (y - XG)'::-; (y - XG) )

In this section, it is assumed that V = er2In' and that a = O. Then:

L = constant - in log er2- i(v+n) log [1+ y'y 2] (4.4.2:1)
(v-Z)er

Hence:

dL
d0'2

n 1.LL
= -i':2er+ i(v+n) Z 'I 2 (er2)2v- +y y 0'



- 66-

[ { , [ , ] 2}]x ] ••• 1 n-(v+n) 2 y , ... _ , 1'I 'n (V-2)0'2 + ,', (v-2)0'2 + 1',

Note that the distribution given by equation 4.4.2:1 is spherically symmetric,

and that both the likelihood and the second derivative of the log likelihood depend

on, only through 1',. Change variables to the multi-dimensional polar co-ordinate

system specified by '1 = rcos el' '2 = rsin e1COS e2, ••• 'n-l = rsin e1••• sin en-2
cos en-1 and 'n = rsin e•... sin 8n_2sin en-1• Thus replace {'I "2"""n} with

(r,e.,e2, ••. ,en_1}where 0 =s;; r < 00,0 =s;; 8., •••,8n_2 < 1Tand 0 =s;; 6n-1 < 21T. The Jaco-

bian of this transformation is developed in the lemma in Section 4.4.5 and has the
n-l

value rn-1 n sinn-i-16 .
i-I i

i(0'2) = i r(t(ci!») (1Ta2)-in (v-2)-in (0'2)-2

X i J... J (n-(v+n){2 ( 2)r
2
2 2 - ( 2)r

2
2 2) 2})

r-O 6 8 v- a + r v- 0' + r
• n-l

v+n---
X (1 + (V_;~0'2 ) 2

n-1n-l n n-l-1 6r sin 6i d 6n-1 •.• d • d r
i-l

Note that 0'2 is independent of all of the et integrals. Hence

1(0'2) oc (a2)-2(a2)-in

v+n

xZJn-(v+n)hV_2)~2+r2 - CV-2)~2~r2 )"}) (1+ (v~a2) -"""2 rn-Idr

Now substitute r2 for (V-2)0'2 tan2C11,hence d r = j (V-2)0'2sec2C11,and simplify:

1(0'2) oc (0'2,-2(0'2,-1-n

xij {n-(v+n)(2sin2C11-sin"CII)}cosv+nCII(v-2)i~-i (a2)in-I tann-1C11(v-2)I(a2)Isec241 d 41
o

1.1T
1(0'2) OC (a2r221 {'1- (v+n)(2sin2C11- sin"CII)}cosv+nCIItann-1C11sec2C11d CII

o
Hence f(a2) OC (0'2)-2. Thus the Jeffreys' prior is proportional to 1/0'2 as in the

Normal case.
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4.4.3 Jeffreys' Prior for a problem with several variance components

Generalise the results of section 4.4.2 to allow for several different eigenvalues

in the dispersion matrix V. First consider a Vmatrix with two distinct eigenvalues.

Suppose that V had nl entries of 0"12and n2 = n-n, entries of 0";. Then from equation

4.4.1:1 the log likelihood Lis:

and

consider first E [ a2
2
L2]e 0"1

[
{j2L ]

E {j20",2

Now change variables as in section 4.4.2 to map {Y, ,y2 ... yn} to
1

er. ,6 ,6 ... 6 -l} and to map (Yn +l"'Yn) to ('2,62 1,622 ... 62 n -l)' Then all the
, 1,1 1,2 l,n, , ' , , 2

6 integrations drop out leaving:
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x !.!.[n,- (.+n+ .-2H,;:::~/~..- (.-2+r,;~::~/~..n]
(

2 2] _!.:!!!'i r2 2 n -1 n-1
X v-2 + a

1
2 + aa2 'i' ra 2 d ra d 'i

Substitute (v-2 + r12/(12) a; tan2412 for r2
2, integrate out over 4Ia• Then substitute

(v-2) a1
2tan2411for r1

2 and integrate out over 41,to get:

E [ 02L] oc (0:2r2
02a2 1,

In an identical manner the other terms can be calculated yielding:

(4.4.3:2)

Thus the Jeffreys' prior is proportional to 1/(aI
2a;) as in the Normal case.

Generalisation

Now consider V to be a diagonal matrix with m distinct eigenvalues. The terms

in equation 4.4.3:2 demonstrate both the diagonal and off-diagonal entries in the

expectation of the second derivative log likelihood. Thus by exchanging subscripts

we can obtain the equivalent version of equation 4.4.3:2 without further work.

( 2 -2
K22 a2)

Hence the Jeffreys' prior is the reciprocal of the product of the eigenvalues, as is the

case for the Normal distribution.
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4.4.4 Jeffreys' Prior for any general multivariate t distribution

In this section, the Jeffreys'. prior for any multivariate t distribution is

produced. Recall:

= (4.4.4:1)

Since V is a symmetric real, it can be diagonalised. Thus let V = M'AM where

M is a rotation matrix (hence M-I = M'), and A is a diagonal matrix of eigenvalues.

Define % = My, y = M-I%, r' = %'M. Change the integral in equation 4.4.4:1 from

y space to % space.

Now i(0-2) depends on y only through the quadratic form y'V-1y, but y'V-1y =

(%'M)(M'A1M)(M-·%) == %'A1%. Also'iMI == 1 as M is a rotation matrix. Thus

2 ( '-I )
f a L % A % (' ...-1 ) d22 pz.n.Z %
% a 0-

(4.4.4:2)

Comparing equations 4.4.4:1 and 4.4.4:2 it is seen that we can replace V by A

without changing the results. Consequently section 4 shows that the Jeffreys' prior

for a general multivariate t distribution is the same as the Jeffreys' prior for a

multivariate Normal distribution.

4.4.5 Lemma - the Jacobian of the transformation to polar coordinates

This lemma determines the Jacobian necessary for transforming the y of n

observations into an n dimensional polar co-ordinate system. Thus we transform

r = {YI'Y2""'Yn} into {r,e., ... ,en_1}·

where Y. = r cOSet
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where 0 ~ r < 00, 0 ~ e1, ... ,en-2 < n O~~ en_1 < 2n for 1= 1•••n-l

Then

0 I<J
aYt

y/r and
aYt - Yitanei I=J= =Or aeJ

Yicotei i > j

1 - tan2e1 0 0 0

1 1 -tan2e2 0 0

Thus Io~!~J}I 1 n n-l 1 1 1 -tan2e3 .. 0= - n Y,.n cote.
r i-l ' i-1 '

1 1 1 1 - tan2en_1
1 1 1 1 1I a(y} I 1 n n-1 n-l

O(r,e} = ;: nYi n cotei n (1+ tan2ei)i-1 i-1 i-1
1 n n-1 1

= - nY, n .
r i-1 i i-1coseisinei

I~I n-1 .
n-1 n i n-i-le

O{r,e} = r s n. i
i-1

.....5 Bernardo Priors

In contrast to the Jeffreys' approach based on invariance, Bernardo (1979)

introduces a new philosophy for priors based on the expected information to be

gained from an experiment. Bernardo shows that for simple regular cases with

asymptotic normality, these new priors correspond to the Jeffreys' priors. Thus

Bernardo priors for t distributions are the same as the Jeffreys' priors.

It is interesting to note that although this material has been around for a few

years, little work has been done on large multiparameter models. The problem of

whether to use a prior for the joint or conditional distribution has also received little

attention and requires further work. Similarly the question of what is a nuisance
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parameter is important as different priors are selected depending on whether the-scale or location and scale parameters are of interest (see section 4.3.1 where a

related problem arises with the Jeffrey's prior).

The Bernardo philosophy is based on the expected information to be gained

from an experiment e = (X,8,p(xlan which is one observation of the random

variable x E X, where x is distributed according to p(xla) for some a E 8. ten)

denotes n replications of the experiment. Take pea) to be a prior density for e.

Without loss of generality take pea) > 0,"" a e 6. Then define the expected in/orma-

tion about a provided by e when the prior is pea) as:

18(t,p(8)} = / p(x) / p(alx) log p~~!;) d a dx

where p(x) = / p(xla) pee) d a and p(alx) = p(xla) p(e)/p(x)

Let 18(t(n),p(8)} denote the information to be gained from n independent

replications of e, By perfQrming 00 replications of e, one would get to know e

exactly. Thus 18(t(00),p(8)} is the amount of missing information about e when the .

prior is p(e). It is sensible to define a non-informative prior (what Bernardo calls

uagu« initial knowledge) as the density fl(a) which maximises the missing informa-

tion over the admissible class of priors.

If Et is a continuous space, then 18{t(oo),p(8)} will usually be 00as an infinite

amount of information is required to determine a real number. In these cases

define the non-informative prior as the limit as n -+ 00 of the priors which maximise

18(t(n),p(8)}.

Often a non-informative prior can be obtained more rapidly than using the

limiting process above. Suppose Y is the data obtained from t(k), then under

sufficient regularity:

18(e,p(8)} = /p(e)IOg{eXP-fP(Yla)H{p(aIY)}dY}da
a pea)

(4.5:1)

or alternatively

18(t,p(8)} = ~pea) log { eXP/p(y,a~~~f p(ely) d Y } de (4.5:2)

where H(.} is the entropy:

H(p(a)} = - / pee) log pea) d e
a
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A simple exercise in calculus of variations shows that given the constraint

Ia(e)d e < 00, integrals of the form - Ip(a)log{a(a)/b(e»d a are maximised when

ace) oc bee). Maximising equation 4.5:1 or 4.5:2 would appear to deliver the non-
. -

informative prior pee). However, this is somewhat misleading as in both equations

4.5:1 and 4.5:2 the numerator is a function of the denominator, as p(ely) depends on

pee). However it will still be true that:

p(a) oc exp( - I p(yla)H(p(ely)}dy)

or pee) oc exp(1 p(yle) log p(ely) dy) .

Note that these definitions are cyclic, in the sense that pee) is needed to

evaluate the right hand integrals as it as a term in the posterior p(aly). However,

under sufficient regularity conditions, asymptotically p(aly) is independent of pee)

hence:

11n(e) oc exp (:.. Ip(yle)H(p t(aly» dY) (4.5:3)

or equivalently

1tn(6) oc exp (/p·(Yle)IOgpt(eIY)dY).

for large n, with pt(eIY) as the asymptotic posterior density for a (which does not

depend on the prior).

4.5.1 Bernardo Prior for a single variance problem

It is interesting to note how some priors can be derived directly from the

definitions. For example, the single variance model can be tackled as follows. Take

n observations from a Normal distribution with known mean ~ and unknown

variance 0-2•

n
where 52 = L (Yi - ~)2/n

i-I
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2
Recall that $2 - ~x~, and that a x~ distribution has mean n and variance 2n.

n - 2 2
Asymptotically as n -+ 00, the distribution of $2 tends to N(er2, 2(er ) ). But $2 isn
er"2l y, hence the asymptotic density of er"2l y is Normal.

It is well known that the entropy of a Normal distribution with variance II is
~ 2(0'2)2i10g2n811,hence the entropy of the asymptotic density of 0' Iy is ilog{2nB )n

which does not depend on the data.

Thus from equation 4.5:3

Thus the Bernardo prior is seen to be the same as the Jeffrey's prior from Section 4.3.



Chapter 5
Bayesian Analysis of a multi-stratl1m experimental design

5.1 Introduction

In his 1983 thesis, Knuiman (1983) describes an agricultural field experiment in

which 72 apple trees are subject to two treatments, namely irrigation and thinning.

The trees are arranged in a nested block structure of six blocks, three plots per

block and four trees per plot. Three irrigation regimes are considered, assigned at

random to plots. Each of the four trees in each plot is allocated a different thinning

regime. Thus, each irrigation and thinning combination is represented exactly once

in each block. The experiment was repeated over several years. This analysis is

concerned with the weight (Kg) of apples produced per tree in the 1975 season.

The Knuiman example is used in this chapter to illustrate three different areas.

1) It demonstrates the possibilities of Bayesian ·analysis undertaken by high

dimensional numerical integration such as the BAYES4 computer package.

The main features of BAYES4 were discussed in section 1.4 of Chapter 1.

Numerical integration is carried out in 3, 9 and 15 dimensions. As indicated

in Chapter 2, many of the margins of interest can either be evaluated

numerically from the full joint distribution, or after some analytic integra-

tion has been performed. This example thus allows several marginal distribu-

tions to be computed by different routes, so providing a useful check on the

accuracy of the suite of integration routines central to BAYES4.

H) An extended sensitivity analysis is performed by changing the prior distribu-

tion, the error distribution, and the fixed effect structure. The effects of

each of these changes can be seen by looking at the resulting marginal

distributions for the model parameters. This example provides a powerful

argument that such sensitivity studies should be part of any routine Bayesian

analysis.

iii) The analyses performed call upon the algebra of the preceding chapters for

the analytical integrations and matrix manipulations.
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5.1.1 Details of the Agricultural Field Trial

Data is available for the apple yields from two years, namely 1975 and 1977. The

irrigation and thinning treatments were applied to the trees over a long period of

time prior to the experiment. The three irrigation regimes are:

W1 No irrigation

W2 Three or four irrigations at monthly intervals

W3 Soil maintained at field capacity. by weekly irrigation

The four thinning policies are:

T1 All fruit removed in the first seven years (1965 - 1971)

T2 Two chemical thinning sprays every two years

T3 Normal commercial thinning, ie. one spray every two years

T4 Minimal thinning - a few fruit removed to prevent limb breakage

5.1.2 The data

Two years of data are available. The analyses can be performed using the data

from either year. Alternatively, the two sets of data may be combined by using the

posterior density from one year's data as the prior distribution for the other year's

data. The analyses presented in this chapter are based principally upon the 1975

data (Table 5.1.2:1). In the later sections of the chapter a sensitivity analysis is

performed using (amongst other things) an informative prior rather than a refer-

ence prior. The 1977 data (Table 5.1.2:2) are used to get values describing a

plausible informative prior.
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Apple yields (Kg) for 1975

- Block

Irrigation Thinning 1 2 3 4 5 6

Tl 139 332 342 398 193 342
T2 233 299 428 406 244 351

WI
T3 241 265 422 394 243 332
T4 268 333 412 351 297 446

Tl 401 402 241 329 162 440.
T2 359 283 265 380 313 163

W2
T3 296 487 296 407 303 388
T4 488 353 347 502 431 406

Tl 560 164 312 363 379 508
T2 400 360 401 469 498 455

W3 T3 528 419 447 513 464 364
T4 586 135 426 519 488 483

Table 5.1.2:1

Apple y.ields (Kg) for 1977

Block

Irrigation Thinning 1 2 3 4 5 6

T1 50 181 208 270 97 107
T2 153 208 85 253 154 216

WI T3 156 194 270 261 154 296
T4 213 179 326 328 249 349

Tl 357 256 166 120 64 299
T2 329 150 65 234 176 12

W2 T3 328 342 347 309 329 312
T4 400 204 293 300 367 359

Tl 442 28 268 158 295 451
T2 379 200 231 302 97 434

W3 T3 498 310 350 407 520 346
T4 452 306 342 237 531 454

Table 5.1.2:2
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5.1.3 The Models

Write Yiik for the yield of tree k: in plot i, block t, and assume normally

distributed errors. The maximal model may be expressed as:

y ....N(X-r,V)

where", is a vector of 12 treatment means, X gives the allocation of treatments to

experimental units and the dispersion matrix V is a 72x72 block diagonal matrix

with non-zero entries:

COU(Yjjk' Yijl) = (1~ + (1;

cou(Yiik'Yilm) = (1~

k~l

J ~ I

This model thus involves fifteen parameters: twelve treatment means and three

variance components. Lei: l. = ("".'''"2'''"3)' be the distinct eigenvalues of V, ie.

Aa = (12, Aa = (12+ 4(1; and A3 = (12+ 4(1; + 12(1~. V is positive definite if and only if

Ai > 0 V t, Limits for integration over the parameters of the block structure are thus

simplified if the likelihood -is expressed as a function of -r and A..

A standard analysis of variance for these data gives an F statistic for interac-

tion between treatments of approximately 1'0.Therefore two models are considered

one assuming main-effects only (and hence with only six treatment parameters), the

other allowing interaction.

5.1.4 The use of the BAYES4numerical integration package

As outlined in Chapter 1, the BAYES4 package enables numerical integration to

be performed on high dimensional likelihoods, to yield moments for all the

parameters, and marginal distributions for selected parameters or pairs of parame-

ters. BAYES4 also allows the calculation of user defined integrals over parameter

space using special functton analysis. Thus if the parameters in the likelihood were

a set of variances 0'2, special function analysis would enable the calculation of

integrals of the form J f(0'2) p(0'2Iy) d0'2 for an arbitrary function f(0'2).
0'2
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Consider the 15 dimensional maximal model. This comprises 3 variance com--ponents and 12 fixed effects. As shown in Chapter 2, the 12 fixed effects can be

analytically integrated out to yield a 3 dimensional marginal posterior distribution

on the variance components, or equIvalently a 3 dimensional posterior distribution

on the eigenvalues. However, it is not possible to integrate out analytically the 3

variance components. These results lead to two possible ways of performing the

analyses.

I) Use the fu1l1S dimensional joint posterior density and let BAYES4 integrate

out the 13 or 14 parameters that are not of interest. This technique would

allow the calculation of univariate or bivariate marginal distributions for

either variance components or fixed effects or combinations with equal ease,

together with all the first and second moments of the joint density.

ii) An alternative and much faster technique is to use the 3 dimensional

marginal posterior density for the eigenvalues in conjunction with either a 1

dimensional distribution for a fixed effect or a 2 dimensional distribution for

a pair of fixed effects conditional on the eigenvalues, the latter being viewed

as speciel functions. Assuming a normal error structure, the algebraic form

of the 3 dimensional marginal density for the eigenvalues was produced in

Chapter 2 equation 2.2.1:1. For the maximal model thIs density has a simple

analytic form (see Section 5.2.2). Assuming t errors the corresponding

density is produced in Section 5.5.1.

Methods 1) and ii) have led to the development of two computer programs

APPLES and MAPPLES. The APPLES program tackles the maximal model via the 3

dimensional marginal distribution for the eigenvalues as used in method ii). The

MAPPLES program directly implements the full 15 dimensional likelihood as in

method O. An option allows for the main-effects only model, and then maps the 6

fixed effects into the 12 cell effects. With MAPPLES univariate or bivariate

distributions can be obtained using a Gauss-Hermite grid over one or two dimen-'

sions, and Monte-Carlo integration over the other 14, 13, 8 or 7 dimensions as

appropriate.

Recall that BAYES4 requires initial estimates of the first and second moments

of the parameters. These estimates are then iteratively updated until they have

stabilised. For a 15 parameter model, the provision of good estimates is important,

because otherwise a highly improbable region of parameter space may be examined.

Frequently BAYES4 can recover from a poor set of initial estimates, but this may

take many iterations and waste computer time. In this particular example, the
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moments for the three eigenvalue components, can be obtained using the moments-calculated by the 3 dimensional APPLES program. Second moments for the 12 fixed

effects can also be obtained from the APPLES program again using special/unction

analysis.

Clearly the computational load is substantially heavier using the method 1)

rather than with method Il), However, the efficiency of the spherical ,Monte-Carlo

integration rules within BAYES4 makes the numerical integration method practical

even with 15 dimensions. During the development of this example, marginal

densities were frequently computed using the Monte-Carlo technique on the joint 15

dimensional density I(T,~17) and compared with results obtained via the alternative

route which used analytic integration. The exercise proved to be a very useful check

on the accuracy of the high dimensional numerical integration procedures, and was

in itself a good reason for implementing the fu111S dimensional problem.

A final' point concerns the parametrisation used with the APPLES and MAP-

PLES programs, The BAYES4 package works best on likelihoods that are well

approximated by a low degree polynomial times a normal distribution. Transforma-

tions of the parameter space that yield a likelihood surface that is nearer to this

form, help BAYES4 to converge and stabilise. Marginal distributions for variance

components' (or more precisely, for eigenvalues of dispersion matrices) typically

have a marked right skew, and are also constrained to be positive. Incorporating this

type of constraint into BAYES4may destroy stability since successive iterations may

drop points either side of the constraint. A way of avoiding the positivity constraint

and making the likelihood more nearly Normal, is to reparametrise in terms of the

logs of the eigenvalues rather than the eigenvalues. This is done in both the APPLES

and the MAPPLES programs, and good results are obtained (see Sections 5.7 and

5.9). A consequence of this is that BAYES4 does not produce marginal distributions

for the eigenvalues, but rather marginal distributions for the log eigenvalues are

produced. The graphical presentation and manipulation program GR is used to

transform these marginals back to marginals on the eigenvalues and hence the

variance components, and also to calculate first and second moments on this scale

rather than on the log scale.
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5.1.5 Use of Special Function Analysis

Note that the effective posterior.. densities considered in method H) from

section 5.1.4, and implemented in the APPLES program, are 4-or 5 dimensional. In

practice it is better to implement these distributions as a 3 dimensional Hkelihood

with 1 or 2 dimensions (for the fixed effect, or pair of fixed effects) implemented

using special function analysis. There are three reasons for this choice.

I) By coding the problem this way, it is possible to iterate on the 3 eigenvalue

dimensions until they have stabilised, whilst leaving the special function

analysis switched off. This enables very rapid and accurate calculation of the

marginal distribution on the eigenvalues.

ii) Given the analytic form for the marginal distribution on the eigenvalues, the

only purpose of extending the dimensionality of the problem by incorporat-

ing 1 or 2 fixed effects is to enable calculation of the marginal distribution(s)

for the fixed effect(s). Depending on the error structure, the univariate and

bivariate marginals for the Ifjk'S unconditional on the eigenvalues can be

obtained as a weighted mixtures of either normal distributions (see Section

5.3) or t distributions (see Section 5.5.2). These marginals may be computed

more efficiently using special function analysis than using the standard

BAYES4-integration routines, as is demonstrated in Section 5.1.6 below.

iii) Conditional on the eigenvalues, the univariate distribution for a fixed effect

is symmetric, and the bivariate distribution of a pair of fixed effects is

rotationally symmetric of order two. These observations enable the number

of points needed in If space to be halved - thus substantially reducing the

execution time.

5.1.6 Gauss-Hermite integration v Special Function Analysis

The standard method of producing univariate or bivariate marginal distribu-

tions using BAYES4-is to make BAYES4-integrate over those dimensions using a

Gauss-Hermite grid of points. BAYES4-can then produce a lattice of spot heights

over the requested Gauss-Hermite dimensions. However, the Gauss-Hermite

integration rule scatters points fairly widely, and some of the points wi11lie outside

regions of appreciable probability for well behaved marginals. Thus from the

perspective of statistical analysis (though not from the perspective of numerical
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integration) the evaluation of the likelihood at some of these points is a waste of-time and effort. Conversely, if the range of statistically plausible values were known

in advance, then all the points could be constrained to be within this region. The

extent of this problem is illustrated below.

Consider a one dimensional numerical integration performed using a Gauss-

Hermite integration rule. The points. at which the Hkelihood is evaluated are

determined by the current estimates for the mean and variance, and also by the

number of points n used by the rule. rhe number of standard deviations of these

points from the mean is shown in Table 5.1.6:1 below for values of n from 2 to 12.

(Note that since the Gauss-Hermite rule is symmetric, only the positive half of the

values need be shown.)

Points at which a Gauss-Hermite integration rule is evaluated

n number of standard deviations from mean at which to evaluate the likelihood

2 1'000

3 0 2'680

4 0'742 2'334

5 0 1'356 2·857

6 0·617 1·889 3'324

7 0 1'154 2·367 3·750

8 0'539 1·637 2'802 4'145

9 0 1'023 2·077 3'205 4'513

10 0'485 1'466 2'484 3·582 4·850

11 0 0·929 1'876 2·865 3·936 5'188

12 0'444 1'340 2'260 3'224 4'272 5·501

Table 5.1.6:1

, In practice it is found that points further than 3 or 3' 5 standard deviations from

the mean are useless for statistical inference in the Knuiman example, as the

probability of being so far in the tails of the likelihood is very low. To get accurate

precise numerically calculated marginals requires there to be many effective points

at which the marginal density has been evaluated. (In this context effective points

are those within 3 or 2·5 standard deviations of the mean). As can be seen in Table

5.1.6:2 below, simply increasing n is not an efficient way of increasing the number

of effective points once n exceeds 6.
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Number of effective points using a Gauss-Hermite integration rule

total number of points n 2 3 4 5 6 7 8 9 10 11 12
-

number of points < 3'50" 2 3 4 5 6 5 6 7 6 7 8
number of points < 30" 2 3 4 5 4 S 6 5 6 7 6

To-bie 5.1.6:2

Thus when using a 12 point Gauss-Hermite grid, only 50% of the points

calculated fall within :I: 30" of the mean. from the statistical point of view this is

most inefficient. (It must be remembered that as a method of integrating the

posterior density the Gauss-Hermite rule is efficient. Evaluating points that are far

into the tails of the density allows the integration method to recover more quickly

from poor initial estimates for the first and second moments of the density.)

5.1.7 Implementation of the main-effects only model

The Joint posterior density for the main-effects only model has 9 dimensions.

Once again, interest will usually be in the marginal distribution for a particular Tik'
or a bivariate pair of Tik's. The direct solution for these marginals would require 8

or 9 dimensions to be integrated out analytically and this is not feasible. The

marginal density for the eigenvalues can be written down algebraically, but this

does not have a simple analytic form. However the main-effects only model can be

viewed as a sub model of the maximal model and analysed using the Monte-Carlo

.method that was feasible on the 15 dimensional problem. Since there are only 9

dimensions, the computational load is substantially lower than with the maximal

model.

5.1.8 Notation

A number of symbols are heavily used throughout this chapter. 14 and J4 refer

to a 4x4 identity matrix, and a 4X4 block of ones. 16 denotes a column of 6 ones,

and ® is used for Kronecker products. finally 0"2 refers to the residual variance,

and 0'2 to the vector of variance components (cr2,cr:,0"~). Using this notation, the
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dispersion matrix for the Knuiman problem can be expressed:

(5.1.8:1)

5.2 The marginal posterior density for the eigenvalues

In terms of its eigenvalues AI' A2 and A3, the dispersion matrix given in equation

5.1.8:1 can be expressed as:

(5.2:1)

Thus the maximal model can be expressed as:

Now apply Bayes' theorem:

p(A.,,.ly) QC p(ylA.,,.) p(A.,,.) - NCX,.,V) p(A.,,.)

where p(A.,,.) is the prior distribution for A. and,.. Throughout the following

discussion, the prior distribution on A. and,. is assumed to factorise into a A. part and

a ,. part. Thus p(A.,,.) = p(A.)p(,.). Two alternative forms for pCA.) are considered,

and an improper non-informative prior is taken for,.. Hence p(,.) = 1.

Integrating out ovar e gives the marginal posterior density for the eigenvalues

A., or equivalently for the variance components 0'2. This posterior density was

derived in equation 2.2.1:1 of chapter 2 and is given below in equation 5.2:2. This is

the three dimensional HkeHhood coded in the LOGLIK subroutine in the APPLES

program (see Appendix).

p(A.ly) = /1(,.,A.ly)d,.,.
(5.2:2)
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5.2.1 Efficient evaluation of the marginal density for the eigenvalues

To evaluate equation 5.2:2 efficiet'itly, algebraic expressions are required for

lVI, y'y-Iy, IX'V-'XI, and y'V-IX(X'V-IX)-IX'V-1y. These four quantities are

evaluated in this section. Start with equation 5.2:1

As V has been written in terms of its eigenvalues, its inverse and determinant

can be written down directly. An alternative method t is provided by Searle and

He~derson (1979). Using either method on the dispersion matrix V gives:

(5.2.1:1)

(5.2.1:2)

Recall that X = 1ft® '3® '4which gives that:

Then using either of the matrix inversion techniques

(X'V-IX)-I = i{n(A3-A2)/3®14 + i(A2-A'I)/3®/4 + AI/3®/4}

t Searle and Henderson produce the inverse and determinant of any balanced
dispersion matrix. Applying their technique to the matrix A where A is given by:

A = p 1ft® 13 ® 14 + q 1ft ® '3® 14 + r 1ft® '3® ' ..:~:d~:e{inver:e ma:ix: -I}:I ® 13® I", + i{-4 1 _ !}Ift ® '3 ® 14 + 1,~® '3 ® I..
. 12p+4q+r 4q+r ft ~ q+r r r ..

lA I = r6• 3. (4-1) (r+4q)6. (3-1) (r+4q+12P)6
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Multiplying out yields:

(x'y-1xrlx'y-1 = il~®13®14

v-IZ(X'y-IXrIX'y-1 = iI6®(aI3®1 .. + YI3®1 .. + flI
3
®1 ..)

(5.2.1:4)

Combining equations 5.2.1:1 and 5.2.1:3 gives

IVIIZ'V-' xI = 6X(6-1).3. (4-1) X(6-1). (3-1) X6-1
123 (5.2.1:5)

log IYIIX'y-' XI = constant + 4510g XI +.10 log Xa+ 5log X3

recall equation 5.2:2

Substituting from equations 5.2.1:2, 5.2.1:4 and 5.2.1:5

(5.2.1:6)

5.2.2 Data Translation to simplify the log likelihood

Since the location parameters v have been integrated out of equation 5.2.1:6,

this likelihood is invariant under translations y -+ y - Xa, as these. translations

merely send r -+ ,.+ a. The log likelihood is substantially simplified by translating

by an amount a = <Y.u' .•. 'Y.304)'( = t say). Writing y. for y-xt, this yields:

log I(XI y.) = constant - i{45 log XI+ 10 log Xa+ Slog X3}

- !{a1:Yi·a + Y1:Yi·Ja + 6 1: YI··}·2k}
i" u : itltk

where a = n(X;I- X;I), y = :i(X;1- X~I) and s = X~I.

(5.2.2:1)

An alternative formulation is:
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log 1(A.ly·) = constant - !(45IogAi+l010gA2+S10g).,3)

_ J.().,-ly2 + ).,-ly2 + ).,-ly2)
23322 II (5.2.2:2)

2 ...1...~.2 v2 J.(~.2 J.~ .2) 2 ~.2 J.~.2where Y3 = 12 L,.Yi '''2- =" L,.Y,·j - 3 L,.Y,· and YI = L,. "ij'k - "L,.Y,·jt •• t.i :" i >: i,},k t.t :"
...

Equation 5.2.2:2 provides th~ mos~ efficient way of evaluating the likelihood

for the eigenvalues, as the maximum amount of work is done once only (in the

calculation of r,_2,~2 and ~2), and the m.inimum amount of work is done at each point

in A. space. This form of the likelihood is implemented in the APPLES program.

Note that after the data translation:

(5.2.2:3)

5.3 Distributions conditional on the Variance Components

Special function analysis allows integrals of the form U(a2) p(a2Iy) da2 to be

calculated. Integrals of this form allow the calculation of marginal densities and

moments for the fixed effects given suitable choices for the function f(a2). For

example, the marginal density for TUis obtained when f(a2) is p(Tula2,y). These

marginal distributions are developed in this section.

First, conditional on the variances, any fixed effect (location parameter) Tjk is

normally distributed:

Similarly TJk ,TImla2,y is distributed as a bivariate normal with common variance

t(a2 + a; + 0';) and a covariance of t(a; + cr~) if } = lor a covariance of to'; if } ~ I.

The second moments for the T are simply:

var( » Iet2) = J.(a2 + cr2 + 0;2), a b

0'2 + 0;2

corr(Tjk ,Tim 10'2)
a b J = I=

0'2 + 0'2 + 0:2a b
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Thus the following marginal densities and moments are calculated:

P(Tjk1y) = f
2
Ncy.jk,!(0"2+0":+O"b» p(0-2Iy) d0-2

0-
(5.3:1)

::

(5.3:2)

where 1: has diagonal entries of 1(0"2 + 0": + O"b>and off-diagonal entries of 1(0"; + O"b)
or 10"b for I = l and I ,:;.l respectively.

(5.3:3)

c = k~m (5.3:4)

J':;'l (5.3:5)

Equations 5.3:1 and 5.3:2 are coded in the APPLES program using the special

function analysis routines of the BAYES4 integration package. A single special

function may be used to give a single spot height for either p(Tjkly) or P(Tjk,Tzmly)

using equation 5.3:1 or 5.3:2. A lattice of spot height thus calculated can give these

two marginal distributions. Similarly the variance of and correlations between the 'T

can be computed as integrals over 0-2 using equations 5.3:3, 5.3:4 and 5.3:5.

5.4 Joint Posterior Density for the variance components and a fixed effect

The previous formulation produced summaries of A. or 0-2 using the marginal

posterior density, and summaries of 'T using special function analysis. Preceding

sections have produced univariate and bivariate distributions for both A. (or 0-2) and

'T. However, the previous formulation does not allow the calculation of the joint

posterior density of 0-2 and a fixed effect. If it is required to investigate 0-2 and a

fixed effect jointly, then a joint likelihood for 0-2and the fixed effect must be coded

in the program. This is achieved most easily by writing this posterior density as a

product and recalling that, conditional on the variance components, TU is normally
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distributed with variance 1(0'2+ 0'; + 0';).

Substitute from equation 5.2.2:2 for p(A.IY)to yield:

L . _- L
P(A.'''I Iy) oc: (A.:sA.!Ok:,-2(0'2 + 0'; + 0':r2

X exp-!{X;' Y; + k;' Y,_2.+ k;' ~2 + 6T,~/(0'2+ 0'; + et;)} (5.4:1) ...

This Joint distribution was straight forward to obtain because of the simple form of

the distribution of Tu IX,y.

5.5 AlternatlvE!s to a Normal error structure

It is argued in Chapter 2 that the general multivariate t distribution is an

alternative to the multivariate normal error distribution. In this example, a dis-

tinctly heavy-tailed alternative to normality was sought and thus the degrees of

freedom, u,was chosen equal to 5. The parameterisation of equation 2.4:2 is used so

that V has the same interpretation under both error distributions. It is noted that

adopting this distribution implies that the 'ilk'S are no longer assumed to be

independent given T. (Recall the discussion in Chapter 2 section 2.4). For a further

discussion of alternatives to normality see section 6.4 in Chapter 6.

5.5.1 Marginal Posterior Density for the Variance Components with terrors

Equation 2.4:2 gives the Joint posterior distribution for" and 0'2. To obtain a

marginal posterior density for 0'2, the" must be integrated out.

Denote X'V-IX by A 2, and X'V-, y by AB, where B is a vector. Also let 1't = 1'A,

then:

where C = y'V-1 Y - B'B
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Proceed with the integration to remove-r - recall equation 2.4:2

p(a21 y) = J p(a2,Tly) p(a2) d-r,.
v+n

ee Pccr2)'V'-!dH C·t_.~r+Cr2 d.

change from T space to ,. t and remember that dT = lA rl dT t.

(

v+n
(T t -8)2/(1 + V:2)] - 2

X / 1+ 2 dTtt v-
'I'

The integrand on the right looks like a multivariate t distribution with dispersion

matrix (1+ c2) I and mean B. Hence:v-

v+n-12
l'y-IT -lIV-IX(XIV-IX>-IXIV-ly] - 2

v-2

Using the data translation of Section 5.2.2 and substituting from equations 5.2.1:5

and 5.2.2:3 yields:

v+n-12
>.-ly2 + >.-ly2 + >.-ly2) - 2
3 3 2 2 1 I

v-2 (5.5.1:1)

Thus equation 5.5.1:1 gives the marginal density for a2 as required. As v -+ 00,

then the (1 + C/v_2)-i(v+n-12) term tends to exp-!C, and the marginal posterior

density converges to:

p(a2Iy) cc p(a2) (k:s >.!Ok:)-iexp(-!C)

oc p(a2)(k <45k10k5)-iexp-.1(k -I y2 + >.-1 y2 + k-I y2)
123 ~33 22 II

As expected, this is exactly the same as the posterior obtained from a Normal

distribution in equation 5.2.2:2.
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5.5.2 Marginal Posterior Density for a fixed effect and the variance com--ponents with general multivariate r errors

In order to calculate a marginal distribution on a single fixed effect (for

example 'ru)' it is necessary to derive .an expression for p('rula
2,y). As derived in

Chapter 2, the distribution the the fixed effects 'r conditional on the variance

components a2 and the data y is multivariate t with:

Mean (X'V-l X)-lX'V-l Y

Dispersion matrix (X'rl X)-I (v-2 +y'V-1r - y'y-I X(X'y-1Xrl X'y-ly)/(v+n-12 - 2)

Degrees of freedom v+n-12

Now integrate out 11 of the 'rile. to leave p('rula
2,y). As shown by in section 2.4.3

of Chapter Z, this yields a t distribution, with the same number of degrees of

freedom, and with a mean (and variance) formed by deleting 11 rows (and columns)

from the 12 dimensional values. Also doing the data translation of Section 5.2.2,

y -+ y. = y «x» takes the mean to zero, and simplifies the variance to

iCa2 + a; +a~) (v-2 +y.'y-ly·)/(v+n-12 - 2). Hence:

(5.5.2:1)

5.5.3 MargInal Posterior Density for 'rik, 'r,m, a2 with general multivariate t

errors

Instead of integrating out 11 of the 'rile. as done in the calculation of equation

5.5.2:1, only 10 of the 'fjle. are integrated out. This leaves the joint posterior for two

fixed effects conditional on the eigenvalues. Denote the fixed effects by 'file. and• • •'f1m• Let II be the variance of the 'fjk and c be the correlation between 'fjle. and 'f,m•

Thus II is 1(172 + a; + a~), and e is i(cr: + ab) if i = l or c is ia~ if i ~ l :
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(
(.2 .2 .. 2 2] __v_+~n~-.;;;.1_0
IITjk. + IIT'7rl - 2CTjk. Tim )/(11 - C ) 2

1+ I

v-2+". ,.-1" • (5.5.3:1),

..-
Equation 5.5.3:1 is again implemented in the special function analysis code of the

APPLES program.

5.6 The analyses performed, and their sensitivity to the assumptions

One of the strengths of the Bayesian philosophy is the ease with which different

assumptions can be accommodated into the model. Full analyses can then be

performed under a set of differing assumptions, enabling the effects of the

assumptions to be seen. For the sake of illustration, assume that in this example

there are three summaries of interest:

i) The marginal posterior density P(Tjk. 11'), as a basis for inference about the

mean yield, TJk.' of a particular combination of irrigation J and thinning

treatment k; Also the bivariate marginal p(Tjk.,T,m 11') may be of interest

whenever Tjk. and Tim are not independent.

ii) The predictive distribution

for a future observation z from the combination of irrigation i and thinning

treatment J.

iii) The joint posterior density p(Aly), which may be useful in the analysis of

some future experiment involving identical experimental material but possi-

bly different treatments.

The sensitivity of each of these summaries is investigated with respect to the

choice of linear structure (maximal vs main effects) for the treatment effects, the

choice of error distribution and the choice of prior distribution on A.

The predictive distribution in ii) can easily be implemented in BAYES4 using

special function analysis, as it is an integral across parameter space.
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5.6.1 Prior Distributions

The accepted non-informative refel'ence prior for A. under both the normal and

the multivariate t formulation is nkil (see Chapter 4). As an example of a possible

alternative consider the informative prior:

(5.6.1:1)

where vI ... 43, ml ... 6933, va =- 8, mz ... 22016, v3 = 3 and m3 = 27696. The

functio~al form is a product of inverse "xz distributions, and the values are based on

the data given by Knulrnan for the year 1977 (see Table 5.1.2:2).

Using the Monte-Carlo integration technique, there is no need for analytic

integration, and a proper prior could be assigned to '1'. Alternatively 'I' and A need

not be assumed independent.

5.7 Results

It should be remembered that there is far more information provided by the

data for kl than for kz, and more information for).z than for k3• This is because AI has

4S degrees of freedom, Aa has 10 degrees of freedom and A3 has only 5 degrees of

freedom. The presentation of the results is split into three sections, the first dealing

with the fixed effects, the second with the eigenvalues and the final section dealing

with the variance components. All the bivariate plots show contours at 1%, 5%, 10%,

30%, 50%, 70% and 90% of the height of the mode.

5.7.1 Tbe flsed effects

The mean values for the estimates of the fixed effects clearly do not depend on

the particular choice of error distribution or prior. (For the maximal model they are

simply Y.lk). The fixed effect means for the maximal and main effects only models

are given in Tables 5.7.1:1 and 5.7.1:2.
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291'0

329'2

381'0

326'8-

293'8

430'5

316'2

362'8

455'9

351'2

421'2

439'5

Cell means for the 12 fixed effects

Table 5.7.1:1

288'4

318'8

393'8

305'1

335'5

410'5

333'0

363'4

438'4

358'7

389'1

464'1

Cell means for the main effects model

Table 5.7.1:2

The global mean of the data values is 366'6. The decomposition of the 12 fixed

effect into row, column and interaction effects in given in Table 5.7.1:3

Classical Parameterisation for the fixed effects

Row Effects -45'3 -14'9 60·1

Column Effects -32'9 -16,2 11'7 37'4

Interaction Effects 2·6 21·7 -16·8 -7'5

10'4 -41'7 -0·6 32'1

-12'8 20'0 17'5 -24'6

Table 5.7.1:3

figure 5.7.1:1 displays 1(1"12Iy) for various choices of model, error distribution

and prior distribution. Most noticeable is the dependence of the location of the

margin on the inclusion or exclusion of interaction terms in the model. The

magnitude of this displacement varies, of course, with the choice of 'fjk. The
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maximum displacement observed is 41'7 with '1'.... , the minimum 0'6 with 'I' • For 'I'
...... 23 12

the displacement is 21'7. The decision-to display the margin for 'I' rather than for
12

any other treatment parameter reflects a desire to demonstrate the effect of choice

of linear structure without selecting all extreme instance. It can be seen that the

displacement for 'I'll is only 2·6. Clearly, if 'I'll is the only location parameter of

interest then sensitivity to choice of linear structure would not be an issue. As might

be expected, the choice of error distribution has little effect. The informative prior

for 0'2 does have the effect of tightening the margin slightly when the main-effects

model is adopted.

Figure 5.7.1:2 shows the distribution of a future observation from cell (1,1) for

three choices of error distribution and prior distribution. The effect of choice of

linear structure is not displayed but is identical to that demonstrated in figure

5.7.1:1. Here one might anticipate rather more sensitivity to the choice of normal or

r errors. However, the practical consequences are slight unless one is interested in

probabilities obtained from the extreme tails of this distribution.

Figures 5.7.1:3 and 5.7.1:4 shows two bivariate plots under the three sets of

conditions considered. The two plots are for 'l'u against 'f'12 and 'f'u against '1'21' All

bivariate l' plots that use elements of l' with the same irrigation regime are, subject

to a translation, identical. Similarly, all1' plots with different irrigation regimes are,

subject to a translation, identical. Thus the 'f'u against 'f'12 and 'f'u against 'f'Zl plots are

representative of all bivariate l' plots. It is noted that the change of error

distribution makes almost no effect, and the informative prior merely tightens the

distributions a little. The results are summarised in table 5.7.1:4 below:

Moments of the Fixed Effects

Error Prior variance correlation

Distribution Distribution 'l'jle ('f'jle,'f'jm) ('f'jle,'f'lm)

Normal Jeffrey Sf 1830 0'490 -0'027

Normal Inverse XZ 1520 . 0·354 -0'036

e, v·S Jeffrey s' 1824 0'490 -0'027

Table 5.7.1:4
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5.7.2 The eigenvalues

The first and second moments f.or the eigenvalues are tabulated below.

following these are 3 bivariate contour plots showing (~I' A.2), (A." A.3) and (A.2, A.3) and

three univariate marginal distributions for the three combinations of prior and error

distribution. Tables 5.7.2:1, 5.7.2:2 and 5.7.2:3 below give the posterior moments of

1(1.ly) for the three combinations with the maximal model. These have been

calculated by GR rather than BAYES4, as BAYES4 calculates moments for the

parameters, which in this case are th~ log eigenvalues. Table 5.7.2:4 gives these

moments for logl(1.ly) with Normal errors and a Jeffrey s' prior. These have come

directly from BAYES4. figures 5.7.2:1, 5.7.2:2 and 5.7.2:3 give the bivariate plots.

The ranges of these plots are: A., 0 to 25000, ~2 0 to 150000 and A.3 0 to 130000.

..

Moments of 1(1.17)

Normal errors leffrey .; prior

correlation

mean lIariance A.3 ~2 ~,
A.3 26500 8·85e8 0'000 0'000

~2 28900 2·71e8 0·000 0·000

A., 5230 1'33e6 0'000 0·000

Table 5.7.2:1

It is to be expected that the correlations in Table 5.7.2:1 are all zero since equation

5.2.2:2 for the likelihood on the 1.factorises, and the uniform prior on the log 1.also

factorises. Thus under these assumptions the A., are mutually independent.
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Normal errors x? prior

- correlation

mean variance ~3 ka ~I

k3 16300 6'5ge7 0·000 0·000

~2 20400 4'62e7 0'000 0'000

~I 5810 7'68e5 0'000 0'000

Table 5.7.2:2

Again, it is to be expected that the correlations in Table 5.7.2:2 are all zero since the

likelihood on the k factorises, and the informative prior given in equation 5.6:1 also

factorises. Thus under these assumptions the ki are mutually independent.

terrors, v·5 Jeffrey s prior
correlation

mean variance ~3 ~2 ~I

~3 44500 4'95e8 0'272 0'371

~2 48400 2'03e9 0'272 0'627

~I 8730 3·5187 0'371 0·627

Table 5.7.2:3

These correlations in Table 5.7.2:3 are not surprising as the spread of plausible

values for the variances 0-2 and 0-; are increased dramatically with the t errors. As

the eigenvalues are linear combinations of 0-2, 0-; and C1~, a large spread in the

estimation of the variances will induce correlation between the eigenvalues.
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Moments of the log l(lol.1)

Normal errors 1effrey ~ prior-
correlation

mean variance log "3 log "2 log ",

log "3 9'89 0'698 0'000 0'000
log ).2 10'15 0'470 0'000 0'000

log ". 8'54 0'213 0'000 0'000

Table 5.7.2:4

The moments in Table 5.7.2:4 are the moments which BAYES4produces, that is

the moments for the parameters. Because of the log transform, they are of little use

in this particular example. However, these moments feature in a discussion of the

stability of the first and second moments, deferred to section 5.9 (see Table 5.9.1:1),

but are displayed here for completeness.

Now consider the effect of the informative inverse Chi-squared prior for A.. As

this prior is based on as much information as is contained in the likelihood through

the data, it predictably tightens the joint density considerably. This is seen by the

reduction in the variances for the A.. The variance for ).. reduces by 42%, the

variance for "2 by 83%, and the variance of "3 by 92%. from figures 5.7.2:2 and

5.7.2:3, it can be seen that the reason for the variance of "I not shrinking as much

as the variances for "2 and "3 is due to the differing locations for the mode of ". in

the prior and the likelihood.

The sensitivity of the correlation structure to changes in the error distribution

is dramatic. The means of "1' "2 and "3 increase by 50%, 67% and 68%, yet figures

5.7.2:1, 5.7.2:2 and 5.7.2:3 show that all the modes shrink. At the same time the

variances increase by factors of 26'4, 7'5 and 5'6, indicating considerably

increased uncertainty about the values for A.. This is because outlying data values

can be explained either by having high variances and hence high A., or alternatively,

outlying data values can be explained by the heavy tails implicit in the t distribu-

tion. The large correlations are to be expected because the variance of "I = 0'2 has

increased so much, and this term appears as a constituent of "2 and ).,3'
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It should be noted that all three analyses give a lower mean value for A. than for_ 2

A.3• Classically this would give rise to a negative estimate for O"~, and suggests that

there is a significant probability that O"~ is zero, or that negative correlations exist

between observations. However with· only 5 degrees of freedom for A.3 it was not

possible to investigate whether 0"; was really zero. :.

5.7.3 The Variance Components

The 0'2 and a; variance components can be reconstructed from the eigenvalues

by taking the bivariate plot of A.I against A.2 and shearing it. From this bivariate plot,

the two univariate distributions can be obtained together with the first and second

moments. These moments are given below in Table 5.7.3:1 for the three combina-

tions of error distribution and prior considered. Figure 5.7.3:1 gives the

corresponding bivariate and univariate plots.

As is to be expected from the eigenvalues, the effect of the informative inverse

chi-squared prior is to tighten the distribution for the 0"; and 0'2. The mean for 0'2

rises because the prior has a substantially larger mode than the likelihood, and the

mean for 0"; falls because the right tail of the distribution collapses. Both second

moments shrink in line with the tighter posterior distribution. Curiously the

correlation becomes -0·128.

The multivariate r distribution with 5 degrees of freedom has a dramatic effect

on the correlation, the mean and the variance of the posterior. From being

essentially uncorrelated, the correlation between 0"; and 0'2 becomes O·536, and the

means increase by 83% and 67%. The variances also increase by factors of 6·3 and

26.

In all three cases the modal values change relatively little compared with the

means.
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Momenu of Variance Components

Error Prior - mean lJariance correlation

Distribution Distribution 0-2 0-
2

0-2 0-2Cl a

Normal Jeffrey s' 5390 5230 1·72e7 1·34e6 -0·070

Normal Inverse Chi-Squared 3640 5810 2·93e6 7·6885 -0·128

t, v·5 Jeffrey s~ 9900 8730 1·08e6 3·57e7 0·536

Table 5.7.3:1

5.8 Comparison of results with those of Knuiman

Knuiman provides an analysis of the both the 1975 and 1977 dat~ sets assuming

Normal errors and a non-informative prior distribution. These can be compared

with the Bayesian results obtained with Normal errors and a non-informative prior.

The estimates for the 12 fixed effects are identical. This is to be expected as

the mean estimates correspond to the maximum likelihood (modal) estimates.

The estimates for the eigenvalues differ substantially. Knuiman estimates ~1'

Aaand Aoas 4997, 23138 and 15997 which compare with the Bayesian estimates of

5230, 28900 and 26500. The Bayesian estimates are significantly larger since they

represent mean rather rather modal estimates and the univariate marginal distribu-

tions on the eigenvalues have a marked right skew (see Figure 5.7.2:8).

Knuiman was principally concerned with approximate updating of modal

estimates from a sequence of identical experiments. No attempt is made here to

Judge the validity of these approximations. Rather, it is wished to emphasise the

worth to the experImenter of a marginal distribution rather than a point estimate.
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5.9 Performance of the integration routines

This section looks critically at the results obtained from running APPLES and

MAPPLES using BAYES4 with a view to learning about the behaviour of the

integration techniques rather than learning about growing apples in Australia.

5.9.1 Performance of the Gauss-Hermite integration rule in the APPLES

program

In this section the reliability of the moments of the log eigenvalues is

considered for different sizes of Gauss-Hermite grid, along with the cpu times for

those grids. The results presented below are for Normal errors, and a Jeffrey's prior

distribution. Since these conditions give independence between the A., only the

means and variances for the log A. need be presented. lFor each size of grid,

sufficient iterations were performed for the moments to stabilise,. and the results

are given in Table 5.9.1:1 below. Identical behaviour was observed when Normal

errors and an informative prior were used. Also t distribution errors stabilised in

the same manner, but the correlations between the A. were non zero (see Table

5.7.2:3). To cater for this a linear transformation was introduced to orthogonalise

the log A..
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-
Moments of log eigenvalues for different grid sizes

size of cpu log eigenvalues

grid seconds ~l ka k3
8'52404 10'0833 9·74967 mean

2x2x2 0'09
0·21470 0'45351 0·65054 variance

8'53897 10'1523 9'89267 mean
3x3x3 0'09

0'21200 0'45871 0'66592 lIariance

8'53887 10'1503 9'88434 mean
4x4x4 0'16

0'21160 0'45481 0'65440 vartanee

8'53880 10-1494 9'88350 mean
5x5x5 0'22

0'21320 0'47114 0'70238 lIariance

8·53899 10'1530 9'89572 mean
6x6x6 0·28

0'21312 0'46809 0'68830. uariance

8'53898 10'1520 9'88915 . mean
7x7x7 0'44

0'21315 0'46955 0'69747 uartance

8'53898 10'1524 9'89318· mean
8x8x8 0'57

0'21318 0·47035 0'69873 lIariance

Table 5.9.1:1

Note that because the roots or zeroes of an n rh order Gauss-Hermite polynomial

interleave the roots of an n+l rh order Gauss-Hermite polynomial, changing from a

grid of n points to a grid with n+l points is a good test for· convergence of the

moments. Such a change in grid guarantees that substantially different points are

used in the two grids. If this has only a slight effect on the moments, then the

moments are robust.

Note also 6 significant figures are quoted for the means, and 5 for the

variances. It is not intended to suggest that the values have been obtained that

precisely, but quoting all the figures does enable the degree of convergence to be

seen. It can be seen that a precision of 3 figures for the mean of ~l and 4 figures for

the mean of ka can be obtained from only a 3x3x3 grid, but that it takes a 7x7x7

grid to achieve the same precision for A3• This is largely because the skewness of A3

is greater than the other two skewnesses, and A3 also requires a larger grid to
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stabilise. This is to be expected as >"3 ha~ far fewer degrees of freedom than >"2 or >"1 •

5.9.2 Execution times for the APPLES program

Ultimately the applicability or non-applicability of numerical methods depend

on the amount of computer time used. There are several important Q.uantities for

the APPLES program.

i) The number of iterations required to gain stability for the moments of the log

eigenvalues.

Il) The time taken to perform a single iteration of the 3 dimensional likelihood

for the log >...

iii) Once the moments for the eigenvalues have converged, a single further

iteration is required with special function analysis switched on. The special

function analysis code calculates the three condlttcnat distributions for the

fixed effects conditional on the eigenvalues, and the time that this code

takes is important.

Clearly the times in ii) and iii) are functions of the number of points used for

the integration rules, and the number of iterations in I) depends inversely on the

number of points in il) and also on how good the initial estimates of the moments

were. In practice it is found that although iii) is only done once, the time taken in

iii) substantially dominates the other times. This is because the special function

analysis code evaluates two 2 dimensional grids of points and a 1 dimensional vector

of points at every point in the 3 dimensional log eigenvalue grid of points.

It is thus sensible to iterate on a fairly large grid for ii) until stability is reached,

then do iii). Working on a final grid of 8x8x8 points takes less than 0·6 seconds per

iteration on a Vax Un8S computer. Convergence is fairly rapid and even very poor

estimates for the moments converge in 6-10 iterations (most of which are on a

smaller grid than 8 X 8 X 8). Obtaining an 8 X 8 array of spot heights for the bivariate

marginal distributions for the fixed effects and 8 points on the univariate distribu-

tion takes about4'6 seconds (of which 0·6 is the time taken for the likelihood on the

variance components).
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5.9.3 The Monte-Carlo integration rule in the MAPPLES program

Using the Monte-Carlo rule there is-no distinction between fixed effects and log

eigenvalues - there are simply 15 dimensions with a complicated dispersion matrix.

Itmust be remembered that each iteration of BAYES4 updates the first and second

moments of the parameters, and it is usual to continue iterating until these moments

have stabilised. With MAPPLES there are 15 means, 15 variances and 105 correla-

tions, thus giving 135 values that have to stabilise. For a Monte-Carlo procedure to

estimate 13S values in a stable fashion clearly requires a large number of points, and

also an efficient importance sampling algorithm for placing those points. Clearly

stability can always be gained by taking enough points, but this may take a

prohibitive amount of time.

Once all 135 moments have stabilised, the integration must be broken up into

1 or 2 dimensions for a Gauss-Hermite grid, and 14 or 13 dimensions for Monte-Carlo

integration. Marginal distributions can be obtained for the 1 or 2 dimensions

tackled via Gauss-Hermite.

BAYES4 provides two different measures of stability when 'using Monte-Carlo

integration. First, internal to BAYES4, several Monte-Carlo integrations are per-

formed and the results merged, rather than doing a single integration. This

technique achieves greater stability as problems with ridges in the likelihood are

reduced, and also provides an Estimated Error based on the difference between the

internal estimates. The second measure compares the moments from this iteration

with the moments from the previous iteration. Changes in the means are reported as

the percentage change in standard deviations, changes in variance are reported as

percentage fractional changes, and changes in correlation are reported as absolute

changes. These 135 changes are combined to give a single Normalised Error.

5.9.4 Execution times for the MAPPLES program

A summary of the execution times and stabilities for given numbers of points

are listed below. These are all for the 15 dimensional Monte-Carlo integration. It

has been found that when calculating marginal distributions for some parameters,

the number of points needed for the Monte-Carlo integration may be reduced by a

large factor (say 10) without affecting the marginal (though poor estimates will be
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made of the other moments).

Performance of the. M~nte-Carlo Integration rule

Number cpu time Estimated Normalised
of points (seconds) Error" Error %

5000 35'3 0'95 0'10
20000 13S'0 0'55 0'15

Table 5.9.4:1

Running on 5000 points, the following level of stability is observed for the

moments of the 15 parameters:

i) The 12 fixed effect means change on average by 0'02 on each iteration, or

about *% of a standard deviation. Similarly the means of the log eigenvalues

change by about 0·0002 or (~gain) io% of a standard deviation.

H) The standard deviations of the fixed effects change by about 0·012 on each

iteration or 0'3 % of a standard deviation, and the standard deviations of the

log eigenvalues also vary by 0·3 %.

iii) finally the correlations typically change by about 0'05 %.

It can be seen that from the point of view of Monte-Carlo integration within

BAYES4, there is no difference between the 12 fixed effects and the 3 log

eigenvalues. They are simply 15 parameters, and are all estimated with the same

level of precision.

finally compare the two measures of stability given in Table 5.9.4:1. It can be

seen that changing from 5000 points to 20000 effectively halves the estimated error.

This is the within iteration estimate of error, and it is to be expected that

quadrupling the number of points will halve it. Rather surprisingly the normalised

error (between iteration error) is higher using 20000 points than with 5000. This is

probably an illusion caused by doing the iterations on 20000 points before the

iterations on 5000 points. It is to be expected that given more iterations at 20000

points, its normaUsed error would become less than that for 5000 points.
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Chapter 6
A Bayesian analysis of inter and intra laboratory variation

6.1 Introduction

The British Standards Institute has defined a standard for expressing the

precision of a test method in the document BS5497. This standard addresses itself

to determining the precision of a standard test method and isolates two different

sources of variation called repeatability r, and reproducibility R. Repeatability

measures the variation between observations made in as far as possible identical

conditions (same laboratory, same operator and machine, same day), whereas

reproducibility R is the variation between observations from different points in time

and space. By way of example, in a nested design, repeatability is based on the

residual variance, and reproducibility is based on the sum of the variances from all

the levels.

The standard lays down a statistical method for producing point estimates of r
and R from an initial calibration experiment, but does not consider the variances of

these estimates. The precise definitions for rand R are closely related to the

critical diller.nces at the 95% probability level for two single results obtained

under the conditions of repeatability and reproducibility. For example, in an

experiment involving a number of laboratories each providing replicate measure-

ments of the same test material, point estimates are produced for the residual error

0'2and the inter laboratory variance 0'1. Assuming normality, the critical difference

at the 95" probability level for the difference of two observations made under

identical conditions, would be 1.96.ji;2. The standard defines r to be 2/20' which

is 2.830'. SimIlarly, the critical difference at the 95" probability level for the

difference of two observations made at different laboratories, would be

1.96/2(12+20'1. The standard defines R as 2.83/0'2+0'1.

This chapter provides an alternative statistical analysis using Bayes theorem to

produce the marginal distributions for rand R conditional on the data, and also the

predictive densities for the difference of two observations under the conditions of

repeatability and reproducibility. Marginal distributions on variance components

tend to have considerably heavier right tails than normal distributions with the same

first two moments, and thus critical differences based on point estimates will tend

to be biased towards zero. It is argued that the predictive distribution for the

difference of two future observations under repeatability or reproducibility may be
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a more appropriate summary.

_-
6.2 A Bayesian approach

The simplest calibration experiment considered by the standard involves J

laboratories each taking K measurements of a common test material. More compli-

cated structures can be collapsed to ~his as only the inter and intra laboratory

variances are considered. (This will often imply more structure than the simple

exchangeability that is assumed below, but the model considered can be modified to

handle this.) The data can be specified as Yjk where J is the number of the laboratory

and k distinguishes replicate observations of the sample made at that laboratory.

Observations are assumed to be independent of each other and have mean ~i and
variance 0"2. All the laboratories are taken to have the same precision. The

laboratory means, in the language of the standard, are considered to be random

effects, and are taken to have mean ~ and variance O"l.

Assuming normal distributions at both the error and laboratory level this gives:

Yjk - N(~J,0"2)

~J - N(~,O"l)

independent of all the other y

independent of all the other ~i

Thus ylJ',0"2 is multivariate normal and pl~,O"l is also multivariate normal.

Integrating out the laboratory means, the two multivariate normal distributions

yield:

where V is a block diagonal matrix with 0"2+ O"l on the diagonal and O"l in the off

diagonal elements of the blocks.

This standard model is discussed in some detail by Box and Tiao (1973). The
, , ( 2 2) (2 2) 1 N 1accepted non-informative prror p ~,O"'O"L = P 0" 'O"L = 2( 2 K 2)' ote a so

- 0" 0" + O"L
that rand R do not depend on the global mean ~, which can be integrated out

analytically leaving the two dimensional marginal posterior density:

y2 y2
p(0"2,O"

L
2Iy) GC (0"2)-F(K-1)(0"2+KO"V-FexP-i,.exP-i 2 2 2

0" 0" +KO"L
0"2,O"l > 0 (6.2:1)

IK -2 2/--2
where y2 = L L (Y'k-YJ') and yz = L (YJ -Y ) •

I i-a-1 J. j-1 ' ..
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Conditional on the within laboratory variance 0-2, the predictive density for the-difference between two observations from the same laboratory is N(O, 20-2). Simi-

larly, conditional on the cr2 and crt, the predictive density for the difference

between two observations from the 'diflerent laboratories is NCO,2a2+20-t). Denote

these two differences by d1 and d2•

(6.2:2)

(6.2:3)

Predictive densities are simply:

p(d1Iy) oc /2P(dlI0-2)p(0-2,atIY)da2dat
cr ,aL

(6.2:4)

(6.2:5)

From equations 6.2:2 and 6.2:3 it can be seen that the integrals in equatlons

6.2:4 and 6.2:5 depend on the variance components only through 0-2, 0-2+Ko-t and

0-2 + o-t. Since the joint posterior density for a2,at (given in equation 6.2:1)

factorises into a term involving cr2 and a term involving cr2 +Kat, the form of th~

posterior density for 0-2 is known. This simplifies the integration in equation 6.2:4

to a 1 dimensional integral which can be done analytically, yielding a t dlstribution

with mean ° and variance 2~2/Cv-2) with v = J(K-l)-l degrees of freedom. Neither

the marginal posterior for 0-2 + at, nor the integration in equation 6.2:5 can be

calculated analytically. Numerical integration is straight forward.

It is also of interest to see the marginal densities for rand R conditional on the

data. These can be obtained as simple transformations of univariate margins

calculated equation 6.2:1.

6.3 Two examples

Two examples are presented based on the first two numerical examples from as
549? The first example, called Table 1 in as 5497, presents data from ?laboratories

with 2 observations from each laboratory. The standard analysis of variance is given

in Table 6.3:1 below:
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-
Analysis of Variance from BS 5497 Table 1

Sum of Squares d.o.f. .Mean Square Expected Mean Square

y'z =r 0'290 I(K-1) = 7 0'04143 0-2I

y:2 = 0'984 1-1 = 6 0'1641 0-2+20'22 L

Table 6.3:1

Thus 0-"2 = 0·04143 and 0'£ = 0'06132. from these estimates of the variances,

values of 0'58 and 0'91 are calculated Ior r and R. It can be seen from figure 6.3:1

that the BSvalue for R lies just below the modal value for the marginal density for

R. Examination of the predictive density for the difference of two observations from

different laboratories, it can be seen that the range ± 0'91 covers about 93 %of the

density, rather than the claimed 95%. Similarly the range ± 0'58 covers about 92i"

of the predictive density for the difference of two observations from the' same

laboratory.

Though not correct, the coverage probabilities do not look too badly wrong.

However, in some cases a manufacturer whose product was within specification

might experience difficulty if 7 % of his product was rejected, when he had only

expected 5 % to be rejected. Similarly, too many laboratories that are in reality up

to precision will be rejected.

The second example, called Table 2 in BS 5497, presents data from 9 labora-

tories with 3 observations from each laboratory. The analysis of variance is given in

Table 6.3:2 below:
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-
Analysis of Variance from BS 5497 Table 2

Sum of Squares d.o.f. -Mean Square Expected Mean Square

y2 = 44·8062 I(K-l) = 18 2·4892 0-2I

y2 = 445.037 1-1 = 8 55·630 0-2+30-22 L

Table 6.3:2

Thus 0-"2=: 2·4892 and ai = 17·727. Using these estimates of the variances,

values of 4·46 and 12·72 are calculated for rand R. It can be seen from Figure 6.3:2

that the BSvalue for RUes just above the modal value for the marginal density for

R. From the predictive density for the difference of two observations from different

laboratories, It can be seen that the range ::t: 12·72 covers about 93«?Oof the density,

rather than the claimed 9S«?O.Similarly the range ::t: 4·46 covers about 93i«?Oof the

predictive density for the difference of two observations from the same laboratory.

An interesting property of the non-informative prior used in this a~alysis is that

It actually tightens the predictive densities when compared with a uniform prior on

all the parameters. This is because the non-informative prior causes the estimates

for a2 and 0-2+Kal to shrink towards zero, and lower estimates yield tighter

predictive densities. Had uniform priors been used, greater discrepancy between

nominal and actual coverage probabilities would have been observed.

6.4 Extending the model to Include t distributions.

In Section 5.5 of Chapter S, a multivariate normal error distribution was

replaced by a multivariate t distribution and the effect observed. Again, in this

section, the effects of changing to t distributions are investigated.

In reality there is often little reason for the assumption of normal distributions

at the laboratory mean and residual error levels. as 5497 acknowledges this

possibility but argues that the final values for rand R will be fairly stable to changes

in these distributions, provided that the distributions remain unimodal.
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In classical terms, a test to check the normality of the residuals will not have-much power unless there is plenty of replicate data. This is unlikely to occur for two

reasons:

i) All the measurements in a laboratory must be done by the same operator as

this is one of the conditions of. repeatability. It is hard to imagine that the

operator will make many independent measurements on the same test

material.

ii) If there is sufficient money available to enable many replicate measure-

ments at all the laboratories, then the model is usually made more complex

by introducing more variables ego several different test materials may be

used.

It is thus difficult to test the assumption of normality for the residual errors,

and even harder to believe It without first considering possible alternatives.

Similarly it is easy to justify the assumption that the laboratory means are

exchangeable from some distribution, but the form of that distribution is not clear.

Two exploratory analyses were made to test the sensitivity of the assumptions

of normalIty at the two levels. First, the normal distribution ~or the laboratory

means was replaced by a , distribution with a small number of degrees of freedom,

and the analysis repeated. Second, the normal distribution for the residuals was

replaced by • C distribution, again with a small number of degrees of freedom.

Specifically the choice of • t distribution is appropriate when it is believed that

there may be more observations in the tails of the distribution than would be

expected with a normal distribution.

6.4.1 Laboratory Means distributed as a t distribution

Consider first the case of a multivariate, distribution on the laboratory means,

and a normal distribution on the residuals:

Yj1c. - N(~J ,(
2
)

" - rv(~,CTll)

independent of all the other y
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Note that it is no longer possible to analytically integrate out the" from these

distributions to produce 11~,0-2,o-l in the manner of Section 6.2. Instead YI~,~,0-2,o-l
is produced. Only ~ can be integrated out of the joint density leaving a marginal on

",0-2,o-l. This is a high (J+2) dimensional likelihood. While it can be integrated

numerically (for reasonable values of J), an alternative approach is possible.

It is well known that a tv distribution with variance 0-2 can be expressed as a

scale mixture of normal densities with the mixing density given by (12 (v-2) X~2.

Similarly a multivariate r distribution .can be represented as a scale mixture of a

multivariate normal densities. Thus the model can be expressed:

YJk - N(~J,a2)

" - N(~,U)

independent of all the other r

and collapsing the normals:

There are two distinct ways of viewing this. First it can be considered as a 3

dimensional posterior density with each posterior evaluation requiring a one

dimensional integral. Second it can be viewed as a 4 dimensional posterior with X

acting as a nuisance parameter. Both methods are equivalent, but the second is

more convenient for the numerical integration package. Regarding the mixing

parameter as an extra dimension in the posterior is advocated by Berger (1985) as a

method of replacing the J dimensions of the original integral by a single dimension.

~ can b. integrated out analytically from the 4 dimensional posterior for

~,a2,al,X yielding:

yZ yZ
p(a2'O'LI ,~IY) GC (o-lriJ(K-l) (O'Z+K).)-iJ exp-i~ exp-i 2 20- a +K)'

( ]

-i(v+2) (V-2)0-2
(v-~)O'l exp-i). L p(a

Z ,o-l) .

As this is only a three parameter problem it poses no difficulty to BAYES4.

Although BAYES4 could be used on the 2 dimensional posterior density for a2,o-l
with the integration over ). carried out within the likelihood evaluation, it is

substantially more efficient to use BAYES4 on the 3 dimensional posterior density

for two reasons:
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J) BAYES4 will choose better placed ordinates for A. than any straight forward

integration technique.

ii) BAYES4 can use the correlations between A. and 0'2 & al~.

6 .....2 Some technical points

As mentioned in chapters 1 and 5, efficient evaluation of the numerical

integrals requins estimates of the first and second moments of the parameters. It is

clear that A. and at will be highly correlated. The correlation would pose no problem

to the BAYES4 integration package provided that a reasonable estimate of it was

available. Unfortunately no such estimate is available. However, Cl priori one would

expect less correlation between Val and al than between A. and al. Consequently,

it is better to parameterise the posterior in terms of a2,at ,)./at.

Again, transformations to improve the sphericity of the posterior are neces-

sary, and thus the final parameterisation was in terms of l.oget2, log al and 10g(Vett).

Hence the integration was over the space of positive variance components rather

than the space of positive eigenvalues. Initial estimates for the mean and variance

of 10g(Vat), and it s correlation with log 0'2 and log crt were needed. Rough

estimates calculated from the unbiased estimates of cr2 and crl together with

assumption of zero off diagonal elements proved satisfactory, and BAYES4 con-

verged rapidly. A high negative correlation between 10g(Vcrl> and log at was

established, (-0'5 and -0,68 in the two examples), but this was numerically much

less than the correlation between log). and log -l whic~ was of the order of 0'95.

Correlations as high as these will give acute problems in the evaluation of such

triple integrals unless considerable care is taken. BAYES4 can handle this without

difficulty, but as the example illustrates, even llnear models can lead to densities

where the naive parameterisation is not appropriate.
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6.4.3 Predictive densities for differences in observations

Finally it is required to produce the predictive densities for two observations

with laboratory means , distributed under the conditions of repeatability and

reproducibility. It is clear that d" the difference between two observations from

the same laboratory, is distributed as N(0,2a2) as in equation 6.2:2. The predictive

density for d2, the difference between observations from different laboratories is

more complicated. This is composed of two parts, a '1I(0,2a£>from the difference in

laboratory means, and N(0,2a2) from the difference of two residuals. Writing the

univariate t as a scale mixture of univariate normal distributions, and collapsing

yields:

and d2la2,al - I N(0,2kt+2a2)p(kt)dkt
~t

Thus an extra nuisance parameter ~t is introduced in the evaluation of p(d2). A

marginal density for d2 is thus effectively the r~sult of a 5 dimensional integral

(d2'~t ,a2 -t ,~).

6.4.4 Residuals distributed as a t distribution

Now consider the case of a t distribution for the residuals and a normal

distribution on the laboratory means:

(6.4.4:1)

As in section 6.4.1, it is no longer possible to analytically integrate out the J1

from these distributions to produce yllJ.,a2,al. However, the t distribution can be

written as a scale mixture of normal distributions.

J1 - N(IJ.,all)

Then collapsing the normals:
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Direct application of Bayes' theorem then yields a 3 dimensional likelihood for.-
,-"a2,al based on an integral over A.. '-' can be integrated out analytically, and A. can

be viewed as a nuisance parameter in ~he 3 dimensional1ikelihood for a2,al,A.. The

same technical points apply as described in section 6.4.2.

6 .....5 Other Technic.llssues

The formulation of the model in equation 6.4.4:1 specifies that the residuals

across all the laboratories are jointly distributed as a multivariate r distribution.

This induces correlation between residuals, even between residuals from different

laboratories. It could be argued that the residuals in different laboratories should

be independent of each other, but equally it could be argued that each laboratory

should have its own precision, rather than all the laboratories having a common

residual error a2• If correlation between residuals from different laboratories is to

be avoided, then a separate multivariate.r distribution should be applied to each

laboratory.

All J multivariate t distributions can be written as a product of a Inverse Chi

squared distribution and a multivariate normal distribution. The 1+1 normal

distributions can be collapsed into a single normal distribution (thereby loosing the

I laboratory means Vol)' and the global mean Vo can be integrated out. However the

likelihood is still specified in terms of 2 variance components and 1 nuisance

parameters. At first sight this yields a 1+2 dimensional likelihood. Fortunately it is

not as bad as that, as the likelihood can be considered as being '2. dimensional but

involving lone dimensional integrals. This technique for handling high dimensional

likelihoods that are the product of many low dimensional integrals is discussed in

Skene and Wakefield (1986).

6.4.6 PredictiYe densities for dUferences in observations

following the procedure of section 6.4.3, it is clear that d., the difference

between two observations from the same laboratory, is distributed as tv(O,'2.a2) as in
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equation 6.2:2. The predictive densi~ for d2, the difference between observations

from different laboratories is composed of two parts, aN(O,2eri) from the difference

in laboratory means, and tv(O,2er
2) from the difference of two residuals. Writing the

univariate as a scale mixture of univariate normal distributions, and collapsing

yields:

and daler2,erl - 1N(O,2eri +2Xt) p(At) dAt
).t

with At - (v-2)er2x~2. Again d2 is effectively the result of a 5 dimensional problem.

6.5 Examples revisitecl

The two alternative models using t distributions were applied to the same two

data sets from as 5497. As can b~ seen these mildly different assumptions have a

profound effect. The spread of the estimates for the inter laboratory variance eri
increases by a factor of 4, and the .spread of the estimates for the within laboratory

variance er2 Increases by a factor of about 3. These yield larger values for Rand r

as appropriate.

It can also be seen from Figures 6.5:1 and 6.5:2 that there is a substantial

amount of Independence between the two stages of the model, in the sense that the

r distribution on the laboratory means has little effect on the residuals, and vice

versa. Consequently, the marginals for r are little changed under the assumption of

a r distribution on the laboratory means, and hence the predictive density for the

difference of two observations from the same laboratory is hardly changed. They

are of course substantially changed with a t distribution on the residuals.

R and the predictive density for the difference of two observations from

different laboratories both change under both sets of assumptions. In both

examples, ai > er2, so the distributions are more sensitive to changes in the

laboratory error structure, than the residual error structure.

The coverage probabilities are summarised in Table 6.5:1 below:
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-
Coverage Probabilities

fible 1 Table 2

d1" d2 d, d2
""

normal 92·5% 92·9% 93·3% 92·9%

r on laboratories 92·8% 72·7% 93·3% 80·2%

r on residuals 77·S% 87·3% 83·2% 91·7%

Table 6.S:1

This table indicates that the procedure given in the Standard has severe

limitations as the results depend critically on the assumption of normality at both

stages in the model.

6.6 Discussion

A natural extension of the work is to consider r distributions for both the

laboratory means and the residuals. More interestingly:

The choice of the number of degrees of freedom v has been somewhat

arbitrary. Several possibilities suggest themselves. Simplest of all, the analysis

could be repeated with several different values for v (say 4,6,8 and 10) and the

sensitivity to the choice investigated. Alternatively prior probabilities could be

assigned to these values, and posterior probabilities produced. Along these lines, v

could be viewed as a Index to distributions ranging from Cauchy (v-2) to normal

(v.oo). Viewing" as a continuous parameter, it could then be considered as another

nuisance parameter In the mo~el, giving a 4 dimensional1ikelihood for a2,crl,~,v.
Naylor (1982) chapter S views" in this manner in a discussion about elaborated

models. The extra nuisance parameter v would pose no numerical problems for

integration using the BAYES4 package.
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Chapter 7
Classical Variance Component Analysis vs Bayesian Procedures

7.1 Introduction

The preceding chapters have developed, amongst other ideas, algebraic and

numerical techniques that allow Bayesian estimation of variance components via

marginal posterior densities in a range of practical situations. Such machinery has

only recently become available with the advent of powerful computers and good

numerical algorithms. Variance component estimation has been discussed for much

longer than this, and in the last 20 years many different point estimators of variance

components have been suggested in addition to the traditional ANOVA estimates.

This chapter summarises this recent work and concludes with a discussion of

estimates comparing classical methods with the previously described numerical

Bayes procedures. The two m~in classes of new point estimators are those based on

minimum variance or minimum norm (see sections 7.3, 7.4 and 7.5), and those based

on maximising some sort of liKelihood (see section 7.6). An extended survey can be

found in either Rao (1979) or Rao and Kleffe (1980).

Throughout the chapter the mixed linear model is considered:

y = X-r + c E(c) = 0

(7.1:1)

-r is an unknown vector, and X is a known design matrix. The main interest is in the

variance components 8.

7.2 ANOVA methods

A traditional method of estimating variance components is to equate the

observed and expected mean squares in an ANOVA table and solve the resulting

equations for the estimators. These estimators are usually called the ANOVA esti-

mators and for balanced designs they are unbiased, are easy to calculate and have

minimum variance amongst unbiased quadratic estimators. ANOVA estimates yield

translation invariant, quadratic, unbiased estimators. Under normality they are

minimum variance amongst all unbiased estimators (see for example Searle



- 130-

(1971a,1971b». Henderson (19S3) extended the techniques to unbalanced data,-but these estimators have few desirable properties. For balanced data they

correspond to the MMLestimators (see later) unless non-negativity constraints corne

into play. _....

7.3 MInimum VarIance Unbiased Estimators

A Minimum Variance Unbiased Estimator is sought for 0 (or a linear combina-

tion of the 8t' ie./'O), placing no restrictions upon the class of estimators. A Locally

Minimum Variance Unbiased Estimator LMVUEof /'0, y say, can be derrvedat any

chosen point (To' 00), where (To' 00) is a prior estimate of (1', 0). If the estimator

is not a function of To or 00 then the estimator is Uniformly Minimum Variance

Unbiased Estimator UMVUE, but these only occur in simple cases. Rao and Kleffe

(1960) suggest the ,use of LMVUE at a point (TO' 80) which is based on previous

considerations, or alternatively they advocate iterative use of LMVUEto produce an

IMVUE (Iterated Minimum Variance Unbiased Estimator). The IMVUE is not neces-

sarily unbiased, and is discussed further in Section 7.5.

An estimator y", is defined to be the LMVUE of y at (1'0,80) iff ECY.) = y and

V(Y.ll"o' 0
0
)"; V(yll"o' 0

0
) for all y that are unbiased. The LMVUE for /'0 given an

G priori estimate (1'0,00) for (1',0) Is:

(7.3:1)

where l. 15 any solution of KO l. = t,
, 0

KO = (rrA,o'l)

A,O .. vel(y, - Po v.PO>VOI

and Pe .. X(X'Velxrlx'Vel

The result in equation 7.3:1 can be established by showing that

cov/~CY),yIT ,0 ) = 0 for all g(y) such that E[g(y)IT,8] = 0 for all 1',6 and using a
~ 0 0

theorem due to Rao (1973) p317 on minimum variance estimation (see for example

Rao (1979) ).
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LMVUEswere obtained by La Motte (1973) in the class of quadratic functions

under normality constraints, and by Rao (1971a,1971b) in the class of all functions

under normality constraints. Rao denoted the LMVUEby MiVQUE (Minimum Vari-

ance Quadratic Unbiased Estimates).-Papers by Kleffe and Pincus (1974a,1974b)

and Kleffe (1977a,1977b) extended the theory to include quadratic forms in

(y - XI') and they proved that under normality MiVQUE is LMVUEin the whole class

of unbiased estimators.

7.3.1 LMVIUE

Locally Minimum Variance Invariant Unbiased Estimators (LMVIUE) can be

developed in a similar way. It is clearly a desirable property that the variance

estimators should be invariant to translations of the data. The LMVIUE class of

estimators is restricted to those g(y) such that E(g(y)l T ,8] = f'e and g(y +XT)=g(y)

for all T. The LMVIUestimator is similar to the LMVUEbut there is a different set of

linear equations to solve.

Let P be the orthogonal projection onto the column space of X, ie.

P = X(X'X) - X M = I - P

HU/(e) = (tr[(MVeM) + l'i(MVeM) + '1]) = (tr(V01(I-Pe)l'i(I-Pe)VelVj) (7.3.1:1)

h,(y,e) = [Y'(MVeM)+~(MV8M)+y, •.• ,y'(MVeM)+Vp(MVeM)+y)'

= [y'Val(I-Pe)V.(1-Pe)'Vely, ... ,y'Val(I-Pe)Vp(I-Pe)'Vely]' (7.3.1:2)

where ( ) + denotes the Moore Penrose inverse (see Rao and Mitra (1972». The

LMVIUEof f'e at eo is y = k' h,(y, 80) where k is any solution to [HU/(eo)]k = f. (see
for example Rao (1979) ).

7.4 Minimum Norm Quadratic Estimation (MiNQE)

In section 7.3 on LMVUEs,no restriction except unbiasedness was placed on the

estimating functions, yet the estimating functions always turned out to be a qua-

dratic. It is thus intuitive to explore the field of quadratic estimators more fully. In

this section only quadratic estimators are considered, and the assumptions of
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unbiasedness and/or normality are dropped. This leads to the MiNQE family of

estimators as proposed by Rao in a series of papers (1970,1971a,1971b,1972,1973).

Suppose that c = Uttl +...+ Up_1tp_1+ tp where Ui are ("X"i) matrices, and

., are Independent observable variables with mean zero and variance al- Then

V, = U,U;, and ncturcl estimctes 6i of et are t;./", yielding an estimator of y of the

form y... 1161+...+ Ip a;,. For later con~enience suppose that ex. is a prior estimate of

fl ' (i, it')' d N ..., ,e, de ne '1 = oci tl ,...,(Xp P ,an such that y. = '1N'l. Note that TINTI does

not depend on (Xi.

In the general model, the error structure is less. defined. Let Vex =
!oc

i
V. + + ocp Vp' and let '1 .. Vexc. Then a ncturcl estimctor is:

Y '1'(1)., v! Viv!)T) = 'l'N'l (7.4:1)

where l Is chosen to make E(T)'N,,) = t'e, which implies that (HI(ex)]A. = I where
H1(u) .. (tr~1 ViV~I ,). It should be stressed that this ncturcl estimctor cannot be

catculated as the fixed effects T are unknown, hence c (and thus T) are unobserv-

able .

. Now consider a general quadratic estimator. Assume (To,K) as a prior mean and

dispersion matrix for or, and let" = K-!(T - TO'.

(
l.! i .1]~A Vex V(XAXK2 TI

Y .. (y - XTo)'A(y - XTo) = (TI',,,') ~ ~.1 ~ ()
K~X'AV2 K2X'AXK2 "ex

(7.4:2)

The difference between the two estimators given in equations 7.4:1 and 7.4:2 is:

The MiNQE is y'Ay where A is chosen to minimise the norm II IIof the matrix above,

that is A is chosen to minimise:

= (say)

for some suitably chosen norm, for example a Euclidean Norm

(7.4:3)
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Different types of MiNQEs can be obtained by imposing restrictions on the set of

matrices A.

i) MiNQE(U) - Unbiased

H) MiNQE(1) - Invariant with respect to translation of y by or

iii) MiNQE(NND) - Non Negative Definite

or any combination.

The properties of the estimators depend on which of the restrictions is applied.

and on the norm used. Note that "'0 does not appear in the final MiNQE. It should

however be remembered that MiNQEs do require a prtor estimate for e and K. Many

papers do not consider the prior dispersion matrix for", and simply set K to an

identity matrix. If a prior estimate is not available for e then MiNQEs can be

iterated to produce IMiNOE. starting with all the ocl equal to 1.

7.4.1 M1NQE(U)

An estimator y'Ay can be shown to be unbiased for y = f'e if X'AX = 0 and

tr A Vi -It for '·1.2, ....p. See Rao (1970,1971a,1971b). The square of the Euclidean

norm In equation 7.4:3 becomes:

(7.4.1:1)

which reduces to:

To obtain the MiNOE(U) the trace is minimised by:

(7.4.1:2)

where). is any solution to [HuCoc)]). = f where HU<oc) is the matrix err A i~)

focke and Dewess (1972) consider an alternative to the Euclidean Norm giving

different weights to the two terms in equation 7.4.1:1, yielding the r-MiNQE(U)

which Is the same as equation 7.4.1:2 but with T replaced by (Voc + r2XX').
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7.4.2 MINQE(U.I)

Consider the class of Unbiased Invarlant quadratic estimators, that is estima-

tors of the form y'Ay where A satisfies AX = 0 and tr A Vi = /i (i·1,2,...p).
Define:

T = Vex+ XKX' > 0, Vex= a.V. + ... + <),Vp where exis an a priori value for e.

PT = X(X'T-·X)-X'T-·, AlT = (I-PT)

Under these conditions the square of the Euclidean Norm given in equation 7.4:3
simplifies considerably (see for example Rao (1979) ) and becomes:

Note that due to the choice of N, the second term is independent of A, Also the third

term does not involve A, so only the first term must be minimised. This yields the

MiNQE(U,1) of /'e as:

(7.4.2:1)

where). is any solution to [HU/(a)]). = / with HU/(a) as the matrix (tr Ai lj)' The

solution to equation 7.4.2:1 can be written in the form /'6 where 6 is a solution to:

where the ,rh element of h1(y, ex) is defined to be:

Note that unlike the MiNQE(U), the MiNQE(U,I) does not depend on the prior esti-

mate K of the dispersion matrix for the T.

7.5 Iterated MVIUE and Iterated MiNQE(U,1)

Two different classical approaches both finding considerable favour have been

discussed. Both techniques rely on prior in/ormation, and this frequently poses

difficulties. Two solutions are discussed in the literature. First take for exa vector of

ones, and second iterate starting from any initial estimate until converge occurs.

The iterated MiNQE(U,I) known as the IMiNQE(U,I) satisfies
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where h,(y, 8) is the same as in equation 7.3.1:2. The IMiNQE(U,I) is the same as the-IMVIUE and the MML estimator (see section 7.6.1), and may be biased. The

equivalence between both iterated estimators and the MMLestimator is interesting

since the iterated estimators do not explicitly require normality but the MMLesti-

mator does. This equivalence is probably to be expected due to the close liaison

between normality and quadratic functions.

7.6 Maximum Likelihood Estimates

Seek an MLE for 8 under the assumption that:

(7.6:1)

(7.6:2)

Partial differentiation with respect to orand et produces

dl
dor

(7.6:3)

i-1, .•. ,p (7.6:4)

re-arranging equation 7.6:3 yields:

substitute this into equation 7.6:4 to yield:

(7.6:5)

where the H/(8) matrix = (rr Vel Vivel~) and the i,h element of h,(y,8) =
y'(l-Pe)'veIViVel(l-Pe)Y' Note that the same equations can be obtained from an

Iterated MiNQE(I).

The MLEprovides an estimator of (',6). An iterative method must be employed

to obtain a solution to equation 7.6:5. If a solution is found then it is the MLE. There

are several problems however. If the supremum of equation 7.6:2 occurs at a boun-

dary rather than in the interior of the permissible space, then there may be no

solution to equation 7.6:5.
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Under the normality assumptions in equation 7.6:1 the MLE of T is of course
. -

unbiased. However, the solution to equation 7.6:5 is biased as it does not take into

account the loss of degrees of freedom in estimating T.

-~

The MLE is asymptotically unbiased for large samples, however the amount of bias

may be large if p is large and n is of moderate size. For this reason, Patterson and

Thompson (1975) proposed the Marginal Maximum Likelihood estimator.

7.6.1 Marginal Maximum Likelihood f'stlmatlon MML

Instead of solving equation 7.6:5, the following equation is solved to yield a

MML estimator for &.

That is, MML estimators can be obtained by maximising the likelihood of e
based on error contrasts. Error contrasts are any u'y such that E(u'y) = 0 and

u'X == 0 where u does not depend on e or 're The maximum number of linearly

independent error contrasts is n - p t, where pt is the number of linearly indepen-

dent columns of the X matrix. Define xt to be any pt linearly independent columns

of X. A particular set of n - pt linearly independent error contrasts is Ty, a (n - pt)

by n matrix, where T is any n - pt linearly independent columns from

1- X(X'X) - X'.

(7.6.1:1)

MMLmaximises 'I rather than' in equation 7.6:2. Differentiating with respect to et

gives:

d'i tr (T(T'VeT)-IT'V,> = 7'TCT'VeT)-IT'VjTCT'VeT)-IT'y i-1,Z, ... ,p (7.6.1:2)de,

using the identity T(T'Ve T)-IT' = VOl (I- Pe>due to Rao, equation 7.6.1:1 becomes:

-I ' -I > ( ')-1er (Ve (I-Pe>v,> == 7 Ve (I-Pe Vi I-Pe Ve r i·1,Z, ... ,p (7.6.1:3)

Note that this expression is independent of T which had been chosen arbitrarily. It

can be written in the form [Hur(8)]e = h,Cy,8) which establishes that the MML

estimates are equivalent to the IMiNQE(U,I) and IMiVIUE estimators.
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If the supremum of equation 7.6.1:1 occurs at a boundary rather than in the

interior of the permissible (positive) space, then there may be no solution to equa-

tion 7.6.1:2. As with the MLestimates, the MMLestimator is invariant with respect

to translations of the data by XT for aIf T. The bias in the MMLestimates may not

be as large as in the MLestimates, particularly when p is large compared with n.

As noted in section 7.2, the MMLestimates correspond to the ANOVA estimates

if the data are balanced, and the non-negativity constraints are not required. Note

also that in the review paper by Harville (1977) these estimators were called REML

(REstricted Maximum Likelihood).

7.7 Equivalence of MML and Bayes Marginal modes

The relationship between MMLestimators and Bayesian estimators can be seen

by considering the marginal posterior density function for a. Assuming the prior on

a,T factorises into a term in a and a term in T, the posterior density on a can be

written as the prior on e multiplied by the Marginal Likelihood. Thus the MML

estimate Is seen to be the joint posterior mode for e assuming a uniform prior on e
(see Harville (1974) ).

This equivalence suggests that the MML estimate (and thus the IMVIUE and

IMINQE(U,I) as well) have to be viewed with caution compared with the information

obtainable from a posterior margin. In particular:

i) Uniform Priors: In Bayesian terminology, the MMLtakes a uniform prior on

e as a "non-informative" prior. This expands the estimates considerably

compared with the accepted reference prior.

iJ) Joint vs Marginal Modes: The MMLestimate for e corresponds to the Joint

mode for the e. This is somewhat inconsistent. The T have been regarded as

nuisance parameters in the estimation of e and have been integrated out, yet

all the e have been considered at once. It would be more consistent to

consider integrating out all but one of the ei to enable estimation of the ei
individually, that is use marginal modes for eCrather than the joint mode for

a.
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iii) Modes vs Means: Marginals on variance components tend to have marked

positive skew, and hence modes-provide unrealistically low estimates com-

pared with the means. Note that this shrinks the estimates and I) explodes

them, so these two factors may tO'some extent cancel each other out.

iv) IMVIUE and IMiNQE(U,1) are "Independent" of the error distribution as this

was not specified for their derivation. By implication, it is to be expected

that these .estimators are equally applicable across a range of error distribu-

tions, yet it is observed from Chapters 5 and 6 that changes in the error

structure radically affect the variances.

v) Standard errors of estimates from the MML algorithm are based on local

curvature at the mode. This is a poor procedure for distributions that may be

very skewed.

vi) As discussed later, there are similarities in the amount of numerical effort

required to produce Bayes or MML estimators. Convergence with the MML

algorithm is best for surfaces that are approximately quadratic, hence

transformations of parameter space may be useful (eg. work with the square

root of the ratios of the variances to the residual error). Quadratic conver-

gence typically happens in six to ten iterations, thus requiring rather fewer

function evaluations than efficient Gauss-Hermite integration, but the

dilference is not marked unless the dimension of e is massive.

7.8 Computational Methods

The MLand MMLestimators require the inverse of the dispersion matrix V to be

calculated once per iteration, and the Bayesian approach requires V-I at each point

of a multi-dimensional lattice. As written, the MiNQEs also require the inverse of

a matrix of size" X " where" is the number of observations. Clearly for large data

lets this becomes computationally very time consuming. Algebraic tricks that

reduce the computational load are thus highly desired.

Various authors have discussed ways of reducing the numerical effort involved

in evaluating MiNQE, MIVQUE, and MMLestimators. Much of this work offered a

basis for the work of Chapter 3. For example, if the data are balanced, then V can

be inverted analytically using the results of Searle and Henderson (1979). Wansbeek

(1982) provides an analytical way of calculating more general V-I using the inverse
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of a much smaller matrix than Vt thereby considerably reducing the computational

burden. Giesbrecht and Burrows (i979) consider efficient ways of computing

MiNQE(U,I) and MMLestimates for hierarchical classifications. Kaplan (1983) pro-

vides a method of evaluating MiNQEs e"tficiently, and in their consideration of the -

calculation of MMLestlrnates, Corbeil and Searle (1976) show how to reduce the n by

n inversion to the inversion of a q by q matrix where q is the number of random

levels in the structure.

7.9 Further work

There Is scope for much further work characterising the way in which prior
tnformattor: can Is used in the classical estimates. It would be intriguing to know

whether these estimates handle prior information consistently as viewed from the

Bayesian perspective. Also consider the case of strong prior information. Do the

one-step methods such as MiNQE(U,1) have utility in providing estimates for the

prior mode, such as may be used as a starting point for BAYES4? The type of prior

information used by the classical estimates is also interesting as point estimates are

provided for 8, but higher moments are not considered.

There is only a small amount of literature on confidence intervals producing

approximate intervals for specific variances or ratios of variances in a few specific

models, lor example: Artega, Jeyartnam and Graybill (1982), Bross (1950), Bulmer

(1957), Burdick and Si.lken (1978), Graybill (1976), Graybill and Wang (1979), Wang

and Graybill (t'S!), Green (1954), Howe (1974), Jeyartnam and Graybill (1980), Khuri

(1981), Moriguti (1954), Tukey (1951) and Williams (1962). Some of these approxi-

mate methods can now be compared with the highest posterior density intervals that

can be produced using BAYES4.



Chapter 8 Conclusion

8.1 Applicability of the numerical Bayesian approach

The algebra of the early chapters, and the extended examples in Chapters 5 and

6 have demonstrated that the numerical Bayesian approach employing hierarc~ical

linear models offers a practical means of data analysis, demonstrating something of

the potential of the Bayes paradigm in ~ighly parameterised linear models. These

chapters have shown that the hierarchical linear model is practical and can be used

efficiently given the appropriate computer software such as that developed at the

University of Nottingham. In turn, BAYES4 has been shown to work well fbr the

hierarchical linear model using the normal times polynomial approximation to the

posterior density, given a restriction to spherical error distributions. It has been

shown that for hierarchical linear models, the log eigenvalue transformation is

sufficient to produce a posterior density that has nearly spherical contours. The.
success of the log eigenvalue transformation can be seen in section 5.9.4 of chapter

5. Not only is the marginal posterior density for the log eigenvalues spherical, but

also the joint posterior dIstribution for the variance components and the fixed

effects is spherical:This leads to BAYES4 evaluating the fixed effects and the log

eigenvalues with the same precision, and all the correlations have the same

precision. As far as the integration routines are concerned there are simply a set of

parameters with a spherical Joint posterior density. Thus the joint posterior density

fits well with BAYES4.

The viability of the numerical Bayesian approach to hierarchical linear models

is seen to be a function of three things. First there is the need for algebraic

manipulation of likelihood function to enable its speedy evaluation. Second, there is

the requirement for efficient numerical integration and surface reconstruction

routines. Finally there is also the choice of which margins to produce analytically,

and which to do numerically. In many cases it is worth doing as much work

analytically as is possible since this reduces the dimensionality of the numerical

integration. However, this is not always the case, as sometimes an analytical

integration yields a lower dimensional posterior which is much harder to evaluate.

In some situations, the increased difficulty in evaluating the posterior, more than

counterbalances the saving caused by having a lower dimensional numerical

integral. Both cases can be seen by considering the Knuiman example from Chapter

s.
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1) The maximal model has 15 diQ'lensions comprising 12 fixed effects and 3

variance components in a balanced factorial design. Accordingly the poste-

rior density is easy to evaluate. The 12 fixed effects can be integrated out....
analytically yielding a 3 dimensional posterior that is also easy to evaluate. If

margins are required for the fixed effects, then these can be calculated by

Special Function Analysis. The production of univariate and bivariate mar-

gins using the analytical method thus requires a grid of points to be

calculated where each point relies upon a 3 dimensional numericai integral.

By contrast, for the numerical method each point in the margin requires a 13

or 14 dimensional numerical integral. It is clear that the analytic technique

is more efficient.

U) By contrast consider the main effects only model. The posterior density has

6 fixed eflects and 3 variance components, and is easy to evaluate. It is

possible to integrate out the 6fixed effects leaving only a three dimensional

integral, but the posterior density thus produced requires the numerical

inversion of a 6 X 6 matrix at each evaluation point. Thus using the analytic

route, margins for the fixed effects could be produced using Special

Function Analysis on a grid 01 points, where each point is based on a

numertcal Integral of a 3 dimensional integral involving a difficult posterior.

This must be compared with the numerical technique which requires an 8 or

9 dimension numerical integral of an easy function. The efficiency of the

Monte-Carlo routines may make the latter technique more efficient than the

analytic approach.

With balanced factorial models, it is worth considering the use of eigenvalues

as parameters rather than variance components. This naturally raises the question:

Should the numerical Integral be calculo.ted over the space 01 o.ll postttv« deflnit«

dispersion matrices, or 01l8r the space 01 strictly postttu« vartonc« components?

The variance components are the more natural parameterisation, but experience

has shown that eigenvalues are frequently more convenient. There are two main

reasons, for this:

f) One or more variance, but not usually the residual variance, may be close to

zero. This may lead to convergence difficulties if the variance components

are parameters. These problems will not arise with the eigenvalue

parameterisation as none of the eigenvalues are close to zero.

11) The posterior correlation structure is often much simpler on the eigenvalues

than on the variance components.



- 142-

It should be noted that working in the space of strictly positive eigenvalues

does not conflict with ones prior opinions. This can be seen by considering the one

way analysis of variance. The same dispersion matrix is compatible with two models,

one in which all the observations are Independent, and one in which all observations

within a group are equally correlated. These models lead to the same likelihood, but

with different parameters, and the natural parameter spaces for the two models

different: namely the space of positive variance components and the space of

positive eigenvalues. With BAYES4 it is convenient to work. in terms of the

eigenvalues since the log eigenvalues give a posterior with approximately spherical

contours. Note that this implies a slightly wider class of models than is usually

considered where the variance components are positive. However, provided that

the data are suggesting that the variance components are positive, it is possible.
within BAYES4 to work with log variance components as parameters. In Chapter 6

this was clone, as it is consistent with the model of the Standard.

s.z Comments on the use of BAYES..

The philosophy underlying BAYES4 can be found in Naylor and Smith (1982)

and a generaJ strategy for its use can be found in the BAYES4 User Guide (Naylor

and Shaw 1985). In addition to these techniques, the following algorithms are useful.

In 1091 ( < 6) dimensional problems, BAYES4can use Gauss-Hermite integration

rules, and from any Gauss-Hermite dimension(s) BAYES4 can calculate univariate

(or bivariate) margins. However, in practice it is usually necessary to apply a linear

transformation to the parameters to make the integration easier. This implies that

univariate and bivariate densities can only be calculated from the first two

dimensions. If other margins are required, then the order of the parameters must

be shuffled, and this can be done within BAYES4.

In higher dimensional problems, using spherical or Monte-Carlo rules, it is no

longer possible to produce margins, though the methods give good convergence and

perform the calculation of the first and second moments of all the parameters. This

leads to the following algorithm for production of margins from a high dimensional

density.

l) Use the spherical integration or the Monte-Carlo integration as appropriate

on aU the parameters.
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H) Repeat I) until first and seco'ld moments have converged. In the case of

Monte-Carlo integration, now increase the number of evaluation points to see

ff the estimates remain stable.

fiJ) To produce margins, reorder the parameters if required, and set the first one

or two dimensions to be done by Gauss-Hermite integration. The number of

points chosen for the Gauss-Hermite integration becomes the number of

points from which the posterior density will be reconstructed using GR. Use

a spherical or Monte-Carlo integration on the remaining dimensions. If a

Monte-Carlo integration is being used, then the number of Monte-Carlo

evaluation points can typically be reduced by a factor of S or 10 without

affectinl the accuracy of the margin of interest. (Such a reduction will of

course lead to very poor re-estimates of the moments of the Monte-Carlo

parameters, but these estimates should be discarded). Perform one final

Iteration with this configuration to produce the margins.

:r

This is another lllustration of a general principle that applies to BAYES4.

Iterate to lain convergence on something that is as simple as possible, then extend

. the problem to evaluate the margins/predictive densities of real interest. This

minimises the computer time necessary. Exactly the same principle applies to

.Special function Analysis - converge first, then switch on the extra analysis.

The productIon of predictive densities using Special Function Analysis has

frequently been discussed In this thesis. The production of such densities is not an

automatIc procedure with BAYES4 and the user is required to write a substantial

amount of code (often considerably more code than was needed for the likelihood).

This is because Special function Analysis was designed to evaluate the integral of a

prescribed function /(8) across parameter space 8, rather than evaluate a density

that has been written as a distribution conditional on the posterior. A particular

choIce of 1(8) enables the calculation of a function such as a moment of 8 or a single

point corresponding to a single evaluation from a predictive density. Thus to

produce a predictive density, an array of different functions li(8) must be

. evaluated, with each I,(e) corresponding to a different evaluation point. Bivariate

predictive densities require a lattice of evaluation points. GR can then be used to

reconstruct the surface from the set of evaluation points in the same manner as for

densities produced directly from BAYES4. More work could be done with BAYES4 to

simplify this procedure.
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Finally, consider the coding aSl!_ects of the main effects only model from

Chapter 5. A particularly simple and effective method of analysing this model is the

method taken by the MAPPLES program. Originally MAPPLES was coded to handle..
the 15 dimensional full model. Having done this a separate program could have been

written to analyse the sub-model, but instead a single extra subroutine was added to

MAPPLES that would take the 9 parameters of the sub-model and map them back

into the 15 parameters of the full model. This vector of 15 parameters is then passed

to the fu1115 dimensional likelihood as if itwere the full model being analysed. This

saves the user from a considerable amount of work as only the one new subroutine
. .

must be written. This method of coding generalises to all cases where submodels of

a maximal model are considered.

As noted before, and as lllustrated in the Appendix, the code for the likelihood

can in fact b. code for several alternative likelihoods controlled by a selection

mechanism at run time.

S.3 AlternaU ..e error cllstrlbutlons and heavy tails

The alae bra of Chapter 2 (distributions) and Chapter 4 (priors) combines with

the worked .xamples of Chapters 5 and 6 to show that the multivariate terror

distribution Is a viable and useful alternative to normality in the analysis of

hierarchicaillnear models. The method of handling the f distribution in Chapter 6

usina seal. mixtures together with the early algebra illustrates that any scale

mlxtur. of normals can be used as an alternative error distribution without

Incurring much 01 an incr.ase in numerical difficulty. Although the theory of this

has been discussed by West (1984), Berger (1985) and others, this thesis provides a

first practical demonstration of the value of such an analysis.

This raises the question of routine sensitivity analysis, and it is clear that some

of the margins produced are robust with respect to the choice of error distribution

(e, the fixed effects in Chapter 5), and others are not.

It Is argued that car. should still be taken, as heavy tailed distributions plus the

notion of .xchangeability are not a panacea for all situations. An analysis of a

scatter plot may lead to a beU.f in a heavy tailed distribution such as a t, Equally,

ho .... ver, itmay suggest that one or two laboratories are different from the others,
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or that there are some wildly discordant data. In the first case, it may be better to

use a mixture model, and in the second case It may be better to discard the outliers

and use an unbalanced design respe~ti!elY, otherwise a "modal" may be developed

that is consistent with the data, but in no way models the underlying process of

Interest.

8.4 Conclusion

Considerable progress has been made in the field of Bayesian estimation of

variance components for a range of linear models. The algebra allows the possibility

of some unbalance, but a full characterisation of the difficulty of a model has yet to

be achieved. This difficulty is shown to be a function of both the structure of the

dispersion matrix V and the design matrix X. A level of generality in the algebra for

unbalanced cases has been estabUshed, but as yet these have not been utilised. The

algebra exists for others to make use of, and also serves to prove that a lot of

headway can be made. This raises the question of whether a general computer

package could be written that used these balanced and unbalanced results to

automatically write a likelihood for use in BAYES4.

Using BAYES4, the numerical Bayesian approach has been demonstrated to be

practical for a range of highly parameterised linear models. This methodology yields

marginal posterior distributions on the parameter(s) of interest, rather than a few

point estimates. It has been shown that a routine sensitivity analysis can and should

be carried out, producing marginal distributions under a range of possible assump-

tions. It is argued that no matter what approximations are used, there is no

substitute for the real thing.
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Appendix

This appendix contains the APPLES and MAPPLES program that were used for

the analyses in Chapter 5. A brief functional description of these programs is

included to help the reader to write similar programs that use the BAYES4 package.

Simple programs for BAYES4 need only supply the following subroutines PROBLO,

LOGLIK, PRIOR. The PROBLO routine must define the number of parameters and

give them names, LOGLIK must evaluate the log likelihood at a point in parameter

space, and PRIOR must evaluate the, prior distribution at a point in parameter

space.

...

The APPLES and MAPPLES programs both have large PROBLO subroutines.

There are several reasons for this. First the programs read in the raw apple yields as

data and calculate from these the sufficient statistics that enable efficient likeli-

hood evaluation. Second both programs ask the user whether a normal or a terror

structure is required, and the variable nu is set to -lor the number of degrees of

freedom as appropriate. This variable is passed through a COMMON block to the

LOGLIK subroutine where the appropriate likelihood is evaluated. Thirdly the

PROBLO routines ask the user to choose a particular prior. The code for the selected

prior is stored in the nprior variable and is passed to PRIOR through a COMMON

block. finally the PROBLO subroutines calculate the cell means and do the

necessary data translation to simplify the resulting likelihood.

Both APPLES and MAPPLES use special function analysis to produce densities.

MAPPLES produces a predictive density for a future observation from cell (1,1)

whilst APPLES produces a univariate distribution for tcull, a bivariate distribution

for tcull,tcu12, a bivariate distribution for tcull,tcu21, and apredlcttve density

for a future observation from cell (1,1). It is easier to see what is happening by

reference to MAPPLES. Three subroutines are necessary for special function

analysis, namely BXINIT, BXrUN and BXOUT. BXINIT performs any necessary

initialisation for the special function analysis, and must indicate the number of

special functions that are being used. Typically, all that is done here is to define

evaluation points for the special functions themselves. The BXrUN subroutine is

responsible for evaluating all of the special functions, conditional on the current

parameter vector. The BXFUN subroutine in MAPPLES merely evaluates a normal

(or r) distribution at a series of ordinates as defined by BXINIT. The values returned

by BXrUN are weighted according to the posterior density and summed to produce

the vector of special functions. This vector is passed to BXOUTwhich is responsible
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for its output. The BXOUT subroutine in MAPPLES simply writes this vector to an-output file in the format used by GR, so that the predictive density can be

reconstructed using GR. In APPLES, the subroutines are more complicated, as there

are more densities to consider. BXfUN calls a subroutine CALBIV twice to evaluate

the two bivariate densities. Similarly BXOUT is more complicated and calls DRWBIV

twice for outputing the bivariate densities. BXOUT sends the densities both to

output files for later use with GR, and also to the terminal.

...

Another subroutine used in MAP.PLES is BTfTRN. This is used to map the

parameter vector as used by BAYES4 into the parameter vector wanted by LOGLIIC.

This may be used to implement a transformation of parameter space, but in

MAPPLES it is used to map the 6 fixed effects from the main effects only model to

the 12 cell means used in the maximal model. A question in PROBLD asks which

model is required for a particular run.

The APPLES program

e program APPLES

c
c Program to analyse one year's data from the Knuiman apples data set

c
C t distributions are used that have the same variances as the Normal

c distribution

e
c This program deals with the full model (12 fixed effects and 3

c variance components). All 12 fixed effects have been integrated

c out, and the data vector y is translated to take each of the plot

c means to zero, as this considerably simplifies the algebra (and

c the fORTRANI)

c

c Two different error distributions are supported:

c 1) Multivariate Normal errors

c 2) Multivariate terrors

c
c This program produces:

c 1) The posterior distribution for the three variance components,

c based on y data translated to have to give a zero total in each

c of the 12 plots.

c 2) The marginal distribution for a fixed effect (they are all identical)
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c and for both of the different pairs of fixed effects-c ego Taull v Tau12 or Taull v Tau21

c 3) A predictive density for any observation (eg yll1). All other

_ c predictive densities are identical

c 4) The variance of and correlations between the Tau are calculated

c
c Three different forms of the Prior distribution are supported

c 1) Uniform Prior on the log eigenvalues.

c This is the Jeffreys prior, ie minimum information.

c 2) Independent inverse Chi-squared priors on the eigenvalues Eps.

c The ICs are chosen to have the appropriate number of degrees

c of freedom, and have a mode matching the estimates made for

c the eigenvalues from the other years data.

c 3) Log Normal Prior on the eigenvalues

c
print ·,'APPLES (3 dimensional)'

Call BAYLD

Call BAYES

Call BAYEND

stop

end

c

c
subroutine PROBLD(vnam,ndim)

c
c subroutine to read the data file, determine the type of problem

c calculate sufficient statistics (various sums of y), and perform

c other housekeeping to enable fast execution of Log_Lik

c

implicit none

common /problm/Y12, Y22,Y32

common /problm2/normal, nu2,nunlO,nun11,nun12

common /probpr/nprior,priorm,priorv

common /probDrl/TauO,kpin

common /probDr2/ksout,type,type2

common /probsf2/npoint

e
real y(72), yijk2,yijd2,yidd2, Y12,Y22,Y32, TauO(12)

real priorm(3),priorv(3)

integer ndata, nu.nprtorkptn.ksout
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logical normal

c

real nu2,nunl0,nunll,nun12

integer i,j,ndim, npolnt

real sum,ymean,row(3),column( 4),intr(3,4), t

character·S vnam(3)

character·4 ty

character·3 ty2

charaeter=? type,type2

character.40 string

e

e Get 10 channel numbers

call bfgpio(kpin,ksout)

read (kpin,·) string

e

write (ksout,1) string

1 format(/I' <APPLES in ChS> Analysis of. ',a40/)

e

c 6 blocks of 3 plots of 4 trees

e 6 blocks of 3 irrigations of 4 thinnings

c

ndata == 6 • 3 • 4

c
e set number of dimensions for integration routine

ndim == 3

c

c set names for each dimension

vnam(l) = 'llambdl'

vnam(2) = 'llambd2'

vnam(3) = 'llambd3'

c
e get all the raw data y values

read (kpin,·) (y(i),i=l,ndata)

c

write (·,2)

2 format(/' Choose between a multivariate Normal error distribution'

+ I' and a multivariate t error distribution.'

+ I' Type 0 for a Normal, or the number of degrees of'

+ ' freedom for at')

read (.,.) nu



- 1S5 -

if (nu.lt.1) then

write (.,3)

write (ksout,3)

3 . formate' Errors have a Normal dIstribution')

normal = .TRUE.
ty = 'NorI'
ty2 = 'Nor'

else

write (·,4) nu

write (ksout,4) nu

4 formate' Errors have a t distribution with',i4o,' d.o.f.')

normal = .FALSE.

ty = 'tOS/,

ty2 = 'tOS'

endif

nu2 = nu - 2

nun10 = nu + ndata ,- 10

nunll = nu + ndata - 11

nun12 = nu + ndata - 12

e

Sprint ·,'Please indicate the type of Prior required'

print ·,'Type 1 for a Jeffreys prior (uniform on log Eigenvalues)'

print .,' 2 for a Inverse Chi-squared prior on the "

'eigenvalues'

print .,' or 3 for a log-normal prior on the Eigenvalues'

read (.,.) nprior

c
if (nprtor.aq.I) then

write (ksout;") , Prior is Jeffrey"s prior'

type = ty II 'Jef'

type2 = ty2 II 'Jef'
else if (nprior .eQ.2) then

write (ksout,") , Prior is Inverse C~i on the Eigenvalues'

type = ty II 'IC '

type2 = tyZ II 'IC'
else if (nprior .eQ.3) then

write (ksout,·)' Prior is log-normal on the Eigenvalues'

write (ksout,·)' Prior Means and variances:'

print .,'Type the prior mean, and variance for each "

+ 'Eigenvalue in turn'
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do 6 1=l,ndim -read (.,.) priorm(1), priorv(i)

6 write (ksout,«) priorm(i), priorv(i)

type = ty II 'Nor'
type2 = ty2 II 'Nor'

else

print ·,'Reply not understood - Please retype'

go to 5

endif

c

print ·,'Type the number of points required on the'

print ·,'Special Function Analysis grids for the fixed effects'

print ·,'(an even value is suggested)'

read (.,.) npoint

c

c calculate yd11, yd12, ... yd34, then subtract ydll/6 from yi11 etc

c this maps Tau ---> Tau + TauO, where TauO is (ydll/6, ... yd34/6)

c
do 12 i=l,12

sum = 0.0

do 10 j=1,6

10 sum == sum + y«j-l)·12+i)

TauO(i) = sum I 6.0
do 11 J=1,6

11 y«j-l)·12+i) = y«j-l)·12+i) - TauO(i)

12 continue

c
write (ksout,13) (TauO(i),i=1,12)

13 format(/' These are the MLE for the 12 fixed effects',

3(14f7.1,' '»
c
c Produce a Classical table of interaction effects

c
do 14 i=1,3

14 row(i) = ( TauO«i-1)·4+1)+TauO«(i-l)·4+2)

+ TauO«i-1)·4+3)+TauO(i·4) ) / 4.0

c
ymean = (row(l) + row(2) + row(3» / 3.0

write (ksout,") , The Mean of the data values is " ymean

c
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do 15 j=1,4

15 columnfj) = eTauO(J)+TauO(j+4)+TauOej+8) ) / 3.0 - ymean

do 161=1,3

do 16 j=1,4 ....

16 Intr(i,J) = TauO«I-1)+4+J) - row(i) - columnfj)
C

write (ksout,17)

17 format(/' Classical Parameterisation:'

I' Interaction effects Column effects')

write (ksout,18)

in tr(1,1 ),intr(1,2),intr(1,3),intr(1,4 ),row(1)-ymean

write (ksout,18)

in tr(2, 1),in tr(2,2) ,in tr(2,3) ,in tr(2,4) ,row(2)-yme an

write (ksout,18)

intr(3,1),intr(3,2),intr(3,3),intr(3,4),row(3)-ymean

write (ksout,») , -------------------------1-------'
write (ksout,19) column(1),column(2),column(3),column(4),ymean

18 format(, ',4f6.1,' 1 ',f6.1)
19 formate' Row effects',4f6.1,' I ',f6.1,' = Global Mean')

c
c Produce a GLIM table of interaction effects

c
t = TauO«1-1)+4+1)

do 20 j=2,4

20 column(j) = TauO(e1-1)+4+j) - t

do 21 1=2,3

21 rowel) = TauO«i-1)·4+1) - t

do 22 i=2,3

do 22 j=3,4

22 intr(i,j) = TauO«i-1)·4+j) - t - column(J) - rowel)

c
write (ksout,23) t, column(2), column(3), column(4),

row(2), intr(2,2), intr(2,3), intr(2,4),

row(3), intr(3,2), intr(3,3), intr(3,4)

23 format(/' GLIM Parametrisation'

!I' t ',f6.1,' 1 c2',f6.1,' c3',f6.1,' c4',f6.1

r I' ----------+------------------------------------'
r I' r2',f6.1,' 1 12,2',f6.1,' i2,3',f6.1,' i2,4',f6.1

t I' r3',f6.1,' I 13,2',f6.1,' 13,3',f6.1,' 13,4',f6.1//)

c
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e calculate the sums of squares of y

e
yijk2 = 0.0

do 25 1=1,72

25 yijk2 = yijk2 + y(i) • y(i)

..-

c
yijd2 = 0.0

do 27 i=1,18

sum = 0.0

do 26 j=1,4

26 sum = sum + y«i-1)·4+j)

27 yijd2 = yijd2 + sum • sum

c
yidd2 = 0.0

do 29 i=1,6

sum = 0.0

do 28 j=1,12

28 sum = sum + y«i-1)·12+j)

29 yidd2 = yidd2 + sum • sum

c
Y32 = yidd2 112

Y22 = (yijd2 - yidd2/3) 14
Y12 = yijk2 - yijdZ I 4

c
return

end

c
c

real function PRIOR(Lambda,ndim)

implicit none

common Iprobpr/nprior,priorm,priorv

real Lambda(3), lambd1,lambdZ,lambd3

integer ndim

c

integer nprior

real priorm(3), priorv(3)

e
integer i

real sum

c
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c Prior uniform on log Eigenvalues

if (nprior.eq.l) then

prior = 1.0

e

c Inverse Chi-squared Prior .
:.~

C 11

else if (nprior.eq.2) then

lambdl = exp(Lambda(l»

lambd2 = exp(Lambda(2»

lambd3 = exp(Lambda(3»

prior""' exp(-22.S • Lambda(l) -22.5. 6625/ lambdl

+ -5.0 • Lambda(2) - 5.0 • 17613 / lambd2

+
-2.5 • Lambda(3) - 2.5 • 16618/ lambd3 + 330)

/ (lambdl • lambd2 • lambd3)

, +

e

c Log-normal prior

c
else if (nprior.eq.3) then

sum ,,",0.0

do 2 i=l,ndim

2 sum = sum + (Lambda(i) - priorm(i» •• 2/ priorv(!)

prior = exp( -0.5 • sum)

endif

c
return

end

c

c
subroutine LOGLIK(Lambda,ndim,result,ok)

e
c subroutine to calculate the log-likelihood.

c
implicit none.

common /problm/Yl~, Y22,Y32

common /problm1/resul,yVy,lDetV

common /problm2/normal, nu2,nunl0,nunll,nun12

c
real Lambda(3), result, Y12,Y22,Y32

integer ndim

real nu2,nunl0,nunll,nun12
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logical ok, normal

real yVy,resul,IDetV

c

c

c
c

Calculate the log of the Determinant of V and X' Vinv X

= log IVIIX' Vinv xt

lDetV = 45 • Lambda(1) + 10 • Lambda(2) + 5 • Lambda(S)

c

yVy = exp( -Lambda(1» • Y12

I + exp( -Lambda(2» • Y22

+ exp( -Lambda(3» • Y32

c

if (normal) then

result = -0.5 • (lDetV + yVy)

else

result = -0.5 • (lDetV + log(1.0 + yVy / nu2) • nun12)

endif

resul = result

c
ok = .true.

c
return

end

c

c
c This subroutine does the initialiation for Special Functions

c
subroutine bxinit(nofun)

common /probsf/x,y,predx

common /probsf2/npoint

integer i,nofun

real x(12), y(12), predx(12)

c
c Specify Number of functions

c
c

c
c

npoint for a Univariate Marginal on Tauij

npoint by npoint for a Bi-variate Marginal on Tauij,Tauik

npoint by npoint for a Bi-variate Marginal on Tauij,Taulm

npoint for a Predicitive Density for yll1

c 3 for Expectations of the Variance Components

c

j <> k

i <> 1
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nofun = npoint + npoint·npoint + npointsnpoint + npoint + 3

c

do 1 i=l,npoint

xCI) .,. (i-O.S·Cnpoint+l» • 300.0 /'(npoint-l)

y(l) - (i-O.S·(npoint+l» • 300.0/ (npoint-l)

print ·,x(i)

1 predx(i).,. (i-O.S·(npoint+l» • 800.0/ (npoint-1)

,

c

return

end

c

c
c This subroutine defines the Special Functions

c

c
c

It returns:

npoint spot heights on the Tau11 distribution,

c. npoint by npoint spot heights on the (Tau11,Tau12) distribution

c npoint by npoint spot heights on the (Tau11,Tau21) distribution

c npolnt spot heights for the predictive y111 density

c and the 3 variances and covariances for the fixed effects

c
subroutine bxfun(Lambda,ndim,funs,nofun)

Implicit none

common /probsf/x,y,predx

common /probsf2/npoint

common /problm1!result,yVy,lDetV

common /problm2/normal, nu2,nunl0,nunll,nun12

integer ndim,nofun, npoint

real Lambda(3), funs(nofun)

real x(12),y(12), predx(12)

real nu2,nunl0,nun11,nun12

logical normal

real result,yVy,IOetV, C

c
real lambdl,Jambd2,lambd3, sig2,siga2,sigb2

real sqOec, var, cov

inteaer index, I

c

c

lambdl - exp(Lambda(l»
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lambd2 .. exp(Lambda(Z»

lambd3 - exp(Lambda(3»

c

sigZ - lambdl

sigaZ D (lambdZ-lambdl)/4

sigbZ D (lambd3-lambdZ)/lZ

c

c Calculate the univariate Tau11 distribution

e
vat - (sigZ + sigaZ + sigbZ) / 6.0 ~

sqDet - sqrt(var)

c
if (normal) then

do 1 '-l,npolnt

1 funs(f) - exp(-O.S • x(i)"Z/ var) / sqDet

else

do Z 1-1,npolnr

C - yVy + x(I)"Z / var

'uns(!) - exp(-O.S·(lDetV + log(1.0+C/nuZ)·nun11) - result)

I /lqDet

Z continue

endlf

c

c Calculate Bivariate Marginal (Taulj, Taulk) J <> k
c

cov - (sigaZ + slgbZ) / 6.0

index - 0

c

call CalBlv(var,cov, index,funs,nofun)

e

e Calculate Bivariate Marginal (TauiJ, Taulm) 1 <> m

c

cov - IlgbZ/ 6.0

Index - npoint • npoint

e
call CalBiv(var,cov, index,funs,nofun)

e
c Calculate Predictive Density for observation from cell 11

e
if (normal) then
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do 3 1-1,npoint

3 funs(Z·npoint·npoinHnpoinH1)

- exp(-O.5 • pred.x(l)··Z/ var) / sqOet

else

do 4 1=1,npoint

funs(Z·npoint·npoinHnpoinHi)

- (1.0+predx(i)"2/nu2/var) •• (-0.S·(nuZ+3» 1sqOet
endif

e

funs(nofun-Z) - var

funs(nofun-1) - (slgaZ + sigb2) / (sig2 + siga2 + sigb2)

funs(nofun) - slgbZ / (slg2 + slgaZ + sigbZ)

e

return

end

c

e Subroutine to calculate Bivariate Marginals

e

Subroutine CalBiv(var,cov, index,funs,nofun)

implicit none

common Iprobsf/x,y,pred.x

common Iprobsf2/npoint

common Iproblm1!result,yVy,IOetV

common Iproblm2/normal, nuZ,nun10,nunll,nun12

Integer npolnt,np2. index,lndx,lndexi,lndxi, nofun

nal var,cov. funs(nofun). yVy, result,lDetV, f

real x(12),y(lZ),predx(lZ)

r •• l nu2,nunl0,nunll,nun12. val

logical normal

e

Integer I,J

real Oet,sqOet, xf,yJ, C

e

sqOet .. sqrt(Oet)

e

np2 - (npoint + 1) IZ
indx - Index + (npoint+l)·(npoint+1)

if (normal) then

f - -0.51 Oet
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do 1 i=1,np2

xi = xCi)

indexi = index + npolnt=I

indxi = indx - npoint·i

do 1 j=l,npoint
yj = y(j)

val = exp(f • (var·(xi··2+yj··2) - 2·cov·xi·yj» / sqOet

funs(indexi+J) = val

1 funsCindxl -j) = val

else

do 2 i=1,np2

xi = xO)

indexi = index + npcint=I

indxi = indx - npoint·i

do 2 j=l,npoint

yj = y(j)

C = yVy + (var • (xi··2+yj··2) - 2.0·cov • xi·yj) / Oet

val = exp(-O.S·(lDetV + 10g(1.0+C/nu2)·nunl0) - result)

/ sqOet

funs(lndexl+j) = val

·2 funs(indxi -j) = val

endif

c
return

end

c
c Subroutine to display graphically the marginal distribution

c
subroutine bxout(nofun)

implicit none

common /probsf/x,y,predx

common /probsf2/npoint

common /probOrl/TauO,kpin

common /probOr2/ksout, type, type2

real x(12),y(12),predx(12)

real TauO(12), bxval

integer nofun,i, kpin,ksout, npoint,index

character+? type,type2

character+L? filnam

character.40 title
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c
c Draw Univariate Marginal for Taul1

c

filnam = 'MT1Z,'//typeZ

call DrwUni(TauO(Z),filnam)

e
e Draw Bivariate Marginal for Taul1 v Tau1Z

c

filnam = 'MTllT1Z,'//type2

index = npoint

call DrwBiv(index, TauO(l), TauO(2), 'Tau12' ,filnam)

c

c Draw Bivariate Marginal for Taul! v Tau21

e
filnam = 'MTll TZl,'//type2

index = npoint + npointsnpolnt

eaU DrwBiv(index, TauO(l), TauO(5),'Tau21' ,filnam)

c

fllnam = 'Predyll1,'//type2

open (unit=42,status='UNKNOWN' ,name=filnam)

title = ' Predictive yll1 '//type

write (42,1) title,npoint,(predx(i)+TauO(1),i=1,npoint)

1 format(a40/,' 1'1' ylll'/i3/12f7,lj)
e

index = npoint + Z'npoint'npoint

do 2 i=l,npoint

2 write (4Z,3) bxval(index+i)

3 format (1h ,e16.6)

close(42)

c
write (·,4) bxval(nofun-2), bxval(nofun-1), bxval(nofun)

write (ksout,4) bxval(nofun-2), bxval(nofun-l), bxval(nofun)

4 formate' var(Tauij)',f8.3,

corr(Tauij, Tauik)' ,f7.4,

corr(Tauij, Taulm)' ,f7,4)

c

return

end

c
c Subroutine to Draw Univariate Marginal
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c
Subroutine DrwUni(Taul,fname)

implicit none

common /probsf/x,y,predx

common /probsf2/npoint

common /probDrl/TauO,kpin ,..

common /probDr2/ksout,type,type2

real x(12),y(12),predx(12)

real TauO(12)

character+L? fname

character.S type, type2

character·40 title

integer npoint,i,j,nstars, kpin,ksout

real area,bxval,fract, max, Tau1,Taull

character·l star(100)

c

write (ksout,l)

1 format(/I' Univariate Marginal'//)

area = O.S·(bxval(l)-bxval(npolnt»

max = bxval(l)

do 2 i=2,npoint

if (bxval(i).gt.max) max=bxval(i)

2 area = area + bxval(l)

c

do 3 j=1,79

3 star(j) = '.'
do 4 i=l,npoint

Taull = (i-6) • 30.0

nstars = bxval(l) • 79 / max

fract = bxval(i) / area • 100

4 write (ksout,5) Taull,fract,(star(j),j=1,nstars)

5 format(f7.1,' ',f7.2,' ',100a1)

c
open (unit=42,status='UNKNOWN',name=fname)

title = ' Marginal Tau12 '//type

write (42,6) title,npoint,(x(i)+Tau1,i=1,npoint)

6 format(a401' 1'/' Tau12'/i3/11f7.1/)

do 7 i=1,npoint

7 write (42,S) bxval(i)

S format (1h ,e16.6)
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close (42)

c
return

end ..-
c
c Subroutine to Draw Bivariate Marginal ..
c

Subroutine DrwBiv(istart, Taut, Tau2,name,fname)

implicit none

common /probsf/x,y,predx

common /probsf2/npoint

common /probDr2/ksout,type,type2

real bxval,Taut,Tau2

integer npoint, istart,ifinish, ksout

character·S name

character·7 type, type2

character·40 title

character·17 fname

real x(12),y(12),predx(12)

real max,temp(121)

integer i,j,index

c
open (unit=42,status='UNKNOWN',name=fname)

title = ' Marginal Tau11,'//name/1' '//type

write (42,1) title,name,npoint,npoint

1 format(a40/,' 2'/' Taull '/lh ,a5/i3/i3)

write (42,2) (x(i)+Taul,i=l,npoint)

write (42,2) (y(i)+Tau2,i=1,npoint)

2 format(12f7.1)

do 3 i=l,npoint

do 3 j=l,npoint

index = istart+(i-1)·npoint+j

3 write (42,4) bxval(index)

4 format(lh ,e16.6)

close (42)

c
write (ksout,5) name

5 format(/' Bivariate Marginal for Taull v',a51)

max = 0.0

ifinish = istart + npoirrt+npolrrt
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do 6 i=istart+l,ifinish

6 if (bxval(l).gt.max) max = bxvalrl)

c

ifinish = npolnt·npoint

do 7 i=1,ifinish

7 ternpfl) = bxval(istart+i) / max ..

c

do 8 i=npoint,1,-1

8 write (ksout,9) y(i),(temp«i-1)·npoint+ j),j=l ,npoint)

9 format(1h ,f7.l,' 1',lZf6.3)

write (ksout,10) (x(i),i=1,npoint)

10 formate' +',66('-')/, ',12f6.01)

write (ksout,l1) fname,Tau1,Tau2

11 format (' nb all (x,y) values in',a12,' have been translated by ('

f7.1,',' ,f7.1 ,').'/1)

c

return

end

The MAPPLES program

c program MAPPLES

c
c Program to analyse the Knuiman apples data set.

c

c This program considers the 12 fixed effects as being of one of 2 forms:

c 1) 12 fixed effects - equivalent to row effects + column effects

c + interaction effects (+ 3 variance cornps)

c 2) 4 row effects plus 3 column effects but without interaction.

c Thus there are 1+(4-1)+(3-1)=6 dimensions + 3 variance components.

c BTFTRN is called to convert the 12, 6 vector into a 12 vector

c
c The Prior may be one of two types:

c 1) Uniform Prior on Fixed effects and log eigenvalues

c ie. Jeffreys prior

c 2) Uniform Prior on the Fixed effects and an Inverse Chi-squared

c prior on the eigenvalues.

c
c The error distribution may be:
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c 1) Normal

e 2) terrors

e

e Finally special function analysis can be done to get a predective

c density on any observation (eg y1U) which typifies all the others.

e
print ·,'MAPPLES (15 or 9 dimensions)'

call bayld

call bayes

call bayend

stop

end

c
c

Subroutine PROBLD(vnam,ndim)

c

c Subroutine to read the data file, determine the type of problem

c calculate sufficient statistics (various sums of y), and perform

c other housekeeping to enable fast execution of Log_Lik

c

IMPLICIT NONE

COMMON/problm/ydjd,ydjk,yidd2,yijd2,yijk2

COMMON/probl2/nu

COMMON/probpr/nprior

c
REAL y(72), ydjd(3), ydjk(12), yidd2, yijd2, yijk2

INTEGER ndata, index, i,j,k,nfe,ndim

REAL sum,ymean

INTEGER kpin,ksout, nu, nprior

CHARACTER*S vnam(lS)

CHARACTER*40 string

c
c Get I/O Channel numbers

call bfgpio(kpin,ksout)

c

1 write (·,2)

2 format(/' Please indicate which model you wish to use'

+ I' The full model with 12 fixed effects'

+ ' (row, column and interaction terms),'

+ I' or a model with row effects and column effects'



-170-

+ ' but no interaction (6 f.e.),'

+ I!' Type 12 or 6 ')

read (·,'06)') nfe

e

read (kpin,·) string

e
if (nfe.eq.12) then

write (ksout,3) string

else if (nfe.eq.6) then

write (ksout,4) string

else

print ., ' Error - please type 12 or 6'

loto 1

endif

3 format(/!' <M12APPLES> Analysis of ',a401)

4 format(/!' <M6APPLES> Analysis of ',a401)

c
write (·,6)

6 format(/' Choose between a multivariate Normal error distribution'

+ !' and a multivariate t error distribution.'

+ I' Type 0 for a Normal, or the number of degrees of'

+ ' freedom for at')

read (.,.) nu

if (nu.lt.1) then

write C·,7)

write (ksout,7)

7 formatC' Errors have a Normal distribution')

nu. -1

else

write C·,8) nu

write Cksout,S) nu

8 formate' Errors have a t distribution with',i4,' d.o.f.')

endif

e
9 write C·,10)

10 format(/' Choose between a Jeffreys Prior and an Inverse Chi'

+ ' Prior on the vc'

+ I' Type 1 for the Jeffreys Prior'

+ I' or 2 for the Inverse Chi squared Prior')

read (.,.) nprior
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if (nprior.ne.1.and.nprior.ne.2) goto 9

c
if (nprior.eq.1) then

write (·,11)

write (ksout,l1)

11 formate' Jeffreys Prior')

else

write (·,12)

write (ksout,lZ)

12 formate' Inverse Chi-squared Prior on the variance components')

end!f

c
c 6 blocks 01 3 plots 014 trees

c 6 blocks of 3 irrigations of 4 thinnings

c

ndata • 6 • 3 • 4

c
c set number 01 dimensions for integration routine

ndlm. nfe + 3

c

C set names for each dimension

If (nfe.eq.6) then

vnam(1) • 't'

vnam(2) - 'c2'

vnam(3) - 'c3'
vnam(4) _ 'c4'

vnam(5) - 'rZ'
vnam(6) _ 'r3'

else

vnam(l) - 'Taul1'

vnam(2) - 'TaulZ'

vnam(3) - 'Tau13'

vnam(4) _ 'Tau14'

vnam(S) - 'Tau21'

vnam(6) - 'Tau22'

vnam(7) - 'Tau23'

vnam(S) - 'Tau24'

vnam(9) _ 'Taul1'

vnam(10). 'Tau3Z'

vnam(l1)- 'Tau33'
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vnam(12)- 'Tau34'

endif

vnam(nfe+l) - 'l.eps3'

vnam(nfe+2) - 'l.eps2'

vnam(nf.+3) - 'l.epd'

c
c get all the raw data y values

read (kpin,·) (y(f),i=l,ndata)

c

c calculate ymean and subtract it from all the data

e the mean Is supposed to be a function of the year

C and we are Interested in the effects of the treatments

c after the year effect has been discarded.

c

sum - 0.0

do 13 I-l,ndata

13 sum - sum + y(l)

ymean - sum I ndata
do 14 i-l,ndata

14 y(1) - y(1) - ymean

c
write (ksout,·) , The Mean of the data values is " ymean

c
c calculate the sums of squares of y

c

ylJk2 - 0.0

do 15,1-1,72
15 yljkZ - yljkZ + y(O·Y(f)

c

yfJd2 - 0.0

do 17, 1-1,lS

sum - 0.0

do 16, J-l,4
16 sum - sum + y(i-l)·4+j)

17 yiJd2 - yfJd2 + sum • sum

c

yldd2 - 0.0

do 19,1-1,6

sum - 0.0

do IS, J-l,12
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18 sum - sum + y«i-1).12+j)

19 yfdd2 - yidd2 + sum • sum

e

do 23 J-l.3

ydjd(J) - 0.0

do 23 1-1.6

do 23 It-l.4

23 ydjd(J) - ydjd(J) + y«(i-l)·12+(J-l).4+k)

....

e

do 24 J-l.3

do 24 k-I.4

Index - (J-l)·4 + k

ydjk(jndex) - 0.0

do 24 1-1.6

24 ydJk(index) - ydJk(index) + y«I-l)·12 + index)

e

return

end

c

e
$ubrou tlne BTfTRN( the ta.ndim.rcon)

COMMON /probth/ne",theta

INTEGER I, ndim

REAL theta(ndim).rcon, ne"'theta(IS)

e
C This Subroutine converts the 9 dimensional problem back

e up to the orlalnal 15 dimensional vector of parameters

e

c theta( ) Is t ea c3 04 r2 r3 tl t2 t3

e tau( ) Is t t +c2 t +c3 t +c4

e t+r2 t+r2+c2 t+r2+c3 t+r2+c4

c t+r3t+r3+c2t+r3+c3t+r3+04

c ne ....theta( ) Is tau( ) 11 t2 t3

e
If (ndim.eq.9) then

newtheta(l) - theta(l)

ne ....thet.Cl) - theta(l) + theta(2)

ne ....theta(3) - theta(l) + theta(3)

ne.-theta(") - theta(l) + theta(4)

newtheta(S) - theta(1) + theta(S)
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newtheta(6) - theta(l) + theta(S) + theta(2)

ne...theta(7) - theta(1) + theta~) + theta(3)

newth.ta(8) - theta(l) + theta(S) + theta(.)

n.wtheta(9) - th.ta(l) + theta(6)

n.wtheta(IO)- theta(l) + theta(6) + theta(2)

newth.ta(l1)- theta(l) + theta(6) + theta(3)

newtheta(12)- th.ta(l) + theta(6) + theta(.).ls.
..

do 11-1,12

1 n.... th.ta(l) - th.tael)

endif

e
e Copy Loa f.!aenvalues

n th.t.(13) - th.ta(ndim-Z)

n th.ta(14) - th.ta(ndim-l)

n th.t.(15) - th.ta(ndim)

e
rcon-I.O

r.turn

.nd

e
e

REAL function PRIOR(junk,ndim)

IMPLICITNONE

COMMON/probpr/nprior

COMMON/probth/th.t.

REAL th.t.OS), junk(lS), spst, apsp, epsb

INTECERndim, nprior

e
prior" 1.0
if (th.t.(13).lt.-40.0.or.theta(13).gt.40.0 .or.

+ th.t.(14).lt.-40.0.or.th.taeI4).gtAO.O .or.

+ thet.(lS).lt.-40.0.or.theta(lS).gt.40.0) then

prior - 0.0

goto 1

endif

if (nprlor.eq.l) then

prior - 1.0

else

epsb - exp(thet.(13»
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+

epsp = exp(theta(14»

epst = exp(theta(15»

prior = exp( -2.S·theta(13) - 2.S.16618/epsb

-S.0·theta(14) - S.0.11"613/epsp

-22.S·theta(lS) -22.5· 662S/epst + 330)

/ (epsb • epsp • epst)

~.+
+
end!f

c

1 return

end

c
c

Subroutine LOGLlK(junk,ndim,result,ok)

c

c Subroutine to calculate the log-likelihood.

c

cLog P(ylsigma,tau) = -O.S • 10giVI

c -0.5 • (y - X tau)' Vinv (y - X tau)

c

c the first 12 entries in the theta Vector correspond to .the tau s

c and the last 3 entries correspond to the sigma s

c theta(13) -= log eps b theta(14) = log eps p theta(lS) = log eps t- - -
c

c now (y - X tau)' Vinv (y - X tau)

c = y' Vinv y - 2 y' Vinv X tau + tau' X' Vinv X tau

c

c y' Vinv y' - beta sum_! yi..2

c + gamma sum_Ij yiJ.2

c + delta sum_iJk yijk2

c y' Vinv X tau = beta tau .• y...

c + gamma sum_1 taui. y.l.

c + delta sum_Ij tauij y.ij

c tau' X' Vinv X tau = 6 ( beta tau ..2

c + gamma sum_i taui.2

c + delta sum_IJ tauij2 )

c

IMPLICIT NONE

COMMON/problm/ydld,yd2d,yd3d,

+
+

ydll,yd12,yd13,yd14,

yd21,yd22,yd23,yd24,
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+
+

yd31 ,yd32,yd33 ,yd34,

yidd2, yijd2, yijk2

COMMON/probl2/nu

c

COMMON/probth/theta

c

REAL junk(15),theta(15), result

INTEGER ndim

LOGICAL ok

REAL epsbl,epsp1,epst1, beta, gamma, delta

REAL yd1d,yd2d,yd3d, yidd2,yijd2,yijk2

REAL ydl1 ,yd12,yd13,yd14,yd21 ,yd22,yd23,yd24,yd31 ,yd32,yd33,yd34

REAL IDetV, tauld, tau2d, tau3d, taudd, tauid2, tauij2

REAL yVy,yVXt,tXVXt, quadf

INTEGER r, nu
c

epsb1 = exp(-theta(13»

epsp1 = exp(-theta(14»

epstl = exp(-theta(15»

c

beta = (epsb1 - epsp1) / 12.0

gamma = (epsp1 - epstl) / 4.0

delta = epstl

c

c Calculate the log of the Determinant of V

c 6.3.(4-1) 6.(3-1) 6

c IVI= eps_t • eps_p . eps_b

c
IDetV le 54 + theta(15) + 12 +theta(14) + 6 + theta(13)

c
yVy = beta +yidd2 + gamma +yijd2 + delta +yijk2

c
tau1d = theta(1) + theta(2) + theta(3) + theta(4) .

tau2d = theta(S) + theta(6) + theta(7) + theta(S)

tau3d = theta(9) + theta(10)+ theta(l1)+ theta(12)

c
taudd = tau1d + tau2d + tau3d

tauid2 = tau1d++Z + tau2d++2 + tau3d+.2

c

tauij2 = 0.0
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do 1 1=1,12

1 tauij2 = tauij2 + theta(i) ··2

c
yVXt ... gamma· (tau1d~d1d +'tau2d.yd2d + tau3d.yd3d)

+ + delta • ( theta(1)·ydll + theta(2).yd12

+ + theta(3)·yd13 + theta(4)·yd14 ~

+ + theta(S)·yd21 + theta(6)·yd22

+ + theta(7)·yd23 + theta(8)·yd24

+ + theta(9)·yd31 + theta(10)~d32

+ + theta(1l)·yd33+ theta(12)·yd34)

c

tXVXt = 6 • (beta·taudd··2 + gamma·tauid2 + delta·tauij2)

quadf = yVy - 2.0 • yVXt + tXVXt

e
if (nu.eq.-l) then

c Normal distribution

result = -O.S • IDetV - O.S • quadf

else

c t distribution

result = -0.5 • lDetV - 0.5·(nu+72) • 1<?g(1.0+ quadf/(nu-2»

endif

c

ok = .true.

c
return

end

c

e
c This subroutine does the initialiation for Special Functions

c
Subroutine bxinit(nofun)

COMMON/probsf/predx

INTEGERi.nofun

REAL predx(l1)

c
c Specify Number of functions

c 11 for Predicitive Density for yU1

c

nofun = 11

c
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do 1 i=1,11

1 predx(i) = 0-6) • 90.0 - 7S.0

c
return ..-
end

c
c

c This subroutine defines the Special Functions

c

c Returns 11 spot heights for the predictive y111 density

c
Subroutine bxfun(junk,ndim,funs,nofun)

IMPLICIT none

COMMON/probl2/nu

COMMON/probth/theta

COMMON/probsf/predx

INTEGER ndim,nofun, nu

REAL Junk(1S), theta(15), funs(nofun)

REAL pred.x(l1), nul

c
REAL epsb,epsp,epst, sig2,siga2,sigb2

REAL Klnv,sqKinv,KZ

INTEGER i

c
epsb = exp(theta(l3»

epsp = exp(theta(14»

epst = exp(theta(15»

c
sig2 = epst

siga2 = (epsp-epst)/4

sigbZ = (epsb-epsp)/lZ

Kinv = 1/ (sigZ + sigaZ + sigbZ)

sqKinv = sqrt(Klnv)

KZ= Kinv / (nu-Z)

nul = -0.5 • (nu + 1.0)

if (nu.eq.-1.0) then

do 4 1=1,11

4 funs(i) = sqKinv • exp(-O.S • Kinv • (predx(i)-theta(l»··Z)

else

do 5 1=1,11
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5 funs(!) = sqKinv • (1.0 + K2 • (predx(!)-theta(1»"2) •• nul
endif

e
return

end -..
c

c Subroutine to display graphically the marginal distribution

c
Subroutine bxout(nofun)

IMPLICIT none

COMMON/probsf/predx

INTEGER nofun,i

REAL predx(l1), bxval

c
e Predective Marginal for y111

e
open (unit=42,status='UNKNOWN' ,name='PREDY111.DAT')

write (42,1) (predx(I),i=1,11),(bxval(i),i=1,11)

1 formate' Predictive Density'/,

+ ' 1'/' pred. y111'/'.11'/

+ 11f7. l/(l1(e 13.61))

close(42)

c
return

end


