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Abstract

A variety of approaches have been used to solve a variety of combinatorial
optimisation problems. Many of those approaches are tailored to the particular
problem being addressed. Recently, there has been a growing number of
studies towards providing more general search methodologies than currently
exist which are applicable to different problem domains without requiring any
algorithmic modification. Hyper-heuristics represent a class of such general
methodologies which are capable of automating the design of search process
via generating new heuristics and/or mixing existing heuristics to solve hard
computational problems. This study focuses on the design of selection hyper-
heuristics which attempt to improve an initially created solution iteratively
through heuristic selection and move acceptance processes and their
application to the real-world healthcare scheduling problems, particularly,
nurse rostering and surgery admission planning. One of the top previously
proposed general hyper-heuristic methodology was an adaptive hyper-heuristic
consisting of many parameters, although their values were either fixed or set
during the search process, with a complicated design. This approach ranked the
first at an international cross-domain heuristic search challenge among twenty
other competitors for solving instances from six different problem domains,
including maximum satisfiability, one dimensional bin packing, permutation
flow shop, personnel scheduling, travelling salesman, vehicle routing
problems. The hyper-heuristics submitted to the competition along with the
problem domain implementations can now be considered as the benchmark for
hyper-heuristics. This thesis describes two new easy-to-implement selection
hyper-heuristics and their variants based on iterated and greedy search
strategies. A crucial feature of the proposed hyper-heuristics is that they
necessitate setting ofless number of parameters when compared to many of the
existing approaches. This entails an easier and more efficient implementation,
since less time and effort is required for parameter tuning. The empirical
results show that our most efficient and effective hyper-heuristic which
contains only a single parameter outperforms the top ranking algorithm from
the challenge when evaluated across all six problem domains. Moreover,
experiments using additional nurse rostering problems which are different than
the ones used in the challenge and surgery scheduling problems show that the
results found by the proposed hyper-heuristics are very competitive, yielding
with the best known solutions in some cases.
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Chapter 1

Introduction

A variety of methods have been developed to solve a variety of real world

combinatorial problems. The state-of-the-art methods for search and

optimisation are frequently designed specific to the problem dealt with or even

problem instances being addressed. In most of the cases, those algorithms are

not applicable to the new problem domains, even if there might be many

similarities. Additionally, a "minor" modification in the problem definition,

such as a change in a constraint or inclusion of a new constraint could require

an expert intervention, for example, to modify the problem-specific algorithm.

It is both time consuming and costly to develop and maintain a solution

method for a given problem or different problems. There is a growing interest

in the development of low-cost general intelligent solution methodologies

which are capable of automatically designing the search process, and so

applicable not only to different unseen problem instances, but also to different

problem domains. This study focuses on: (i) development of a general method

to solve a range of combinatorial problems, and (ii) their application in

healthcare. To this end, extremely effective methods are developed and their

performances are investigated on six different problem domains using a

benchmark. Moreover, the proposed approaches are applied to two healthcare

real world problems: nurse rostering and surgery admission planning problems.

A new software framework is designed for the surgery admission planning

problems, while the same software framework as in the benchmark is used for

nurse rostering. A comparison with other state-of-the-art and more general

methods is done and the results show that the approaches developed

outperform the current best known solution for 12 real-world nurse rostering

and all available instances of the surgery admission planning problems as well

as 8 instances of 5 different problem domains included in the benchmark.

1



Chapter 1 Introduction 2

1.1 Hyper-heuristics

Recently, there has been a growing number of studies towards providing more

general search methodologies than the existing approaches which are

applicable to different problem domains without requiring any algorithmic

modification. For example, hyper-heuristics are capable of automating the

design of search process via generating new heuristics and/or mixing existing

heuristics to solve hard computational problems. This study will focus on

hyper-heuristic methodologies. A more detailed outline of the research goals

is defined in the following section. Over the last decade, there has been an

increase in the development of more general approaches to solve combinatorial

optimisation problems. This has been done successfully through the use of

hyper-heuristics for a diverse range of problem domains, such as personnel

scheduling and timetabling problem (Burke et al. 2003a, Cowling et al. 2000).

A hyper-heuristic is an algorithm that operates on a search space of heuristics

Burke et al (2003a). Figure 1.1 provides a general illustration of a hyper-

heuristic framework. Hyper-heuristics can be represented as the algorithmic

strategy that drives the selection or the generation of heuristics. These

heuristics are applied to the different problems being solved. The hyper-

heuristic will guide its search by the information provided by the low level

heuristics. There exists a clear barrier between the hyper-heuristic and the

problem domain implementations. There are two main types of hyper-

heuristics in the literature; hyper-heuristic methodologies that select or

generate low level heuristics (Burke et al. 2009).
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Hyper-heuristic components

For example: heuristic selection method,
move acceptance method, performance
of each low level heuristic, problem
features; such as quality of the best
known solution to the given instance,
learning mechanism, ...

_______________________________~---------jL-----------Bar---rier ~

Problem Domain

Hyper-heuristic

low-level heuristic

~------c~o~m~p~o~ne~n~t=s------~¢=l
For example: terminals, non-
terminals, move acceptance criteria
used within a heuristic, features of
low level heuristics, ...

Other problem domain
specific com onents

For example: evaluation function,
neighbourhood structures (move
operators), representation of a
solution, ,...

FIGURE 1.1: Layers and components of a hyper-heuristic framework

Hyper-heuristics have been classified in different ways. Earlier classifications

such as Soubeiga (2003) include a distinction between a learning hyper-

heuristics and a non-learning hyper-heuristic, where the learning or non-

learning relates to the heuristic selection mechanism. The on-learning

selection of heuristic uses a predetermined sequence of heuristics to apply.

Further subcategories are defined within the learning category. Bai and

Kendall (2005) and Ross and Marin-Blazquez (2005) distinguish between

constructive hyper-heuristics and local search methodologies, where the low

level heuristics applied are either constructive or local searches. Chakhlevitch

and Cowling (2008) also establish a categorisation based on the selection of

the heuristics. Burke et al. (200ge) classify hyper-heuristics in two main

categories: selection hyper-heuristic and constructive hyper-heuristics, a
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distinction is also made between an offline, online or no learning mechanism

for the selection of the low level heuristics.

In this study, the focus is on selection hyper-heuristics which aim to improve

an initial solution through heuristic selection and move acceptance processes,

iteratively. Table 1.1 provides a description of a selection hyper-heuristic

framework.

TABLE 1.1A General Selection Hyper-heuristic Framework

Hyper-heuristic framework

1 generate initial candidate solution s

2 while (termination criteria not satisfied) {

3 select a low level heuristic (or subset low level heuristics) llh

from {LLH1, ...,LLHn}

4 generate a new solution (or solutions) s' by applying llh to s

5 accept/reject s' // decide based on acceptance method

6 if (s' is accepted) then s = s' }

7 return s;

Based on the classification of Burke et al. (2009b), four novel selection hyper-

heuristics are presented produced as a result of this work. The proposed

methods are capable of mixing and managing a given set of perturbative low

level heuristics which process and return a complete solution at each step.

As mentioned previously, hyper-heuristics represent more general

methodologies to solve combinatorial optimisation problems. The motivation

for this research is to propose a more general methodology. The level of

generality of a method can be evaluated against different criteria. For this

study, the algorithms will be applied to unseen problem solving scenarios

(instances) with different characteristic within the same problem domain. The

second evaluation in regards to generality is to create a method that enables

through its structure the solving of instances from different problem domains.

Hence, the proposed hyper-heuristics are tested on different instances from

seven problem domains: nurse rostering, flow shop, bin packing, travelling
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salesman, Boolean satisfiability, vehicle routing and surgery scheduling. For

each problem domain at least 10 different problem solving scenarios are

considered and the performance of the proposed algorithms are analysed.

1.2 Personnel Scheduling

There have been many studies dedicated to the personnel scheduling problems

over the years. Those problems can be categorised in the more general class of

timetabling problems. Personnel scheduling problems arise at a variety of

locations in the real world, such as crew scheduling on airplanes, scheduling

staff for call centres, public transport, or even restaurants. Though all those

problems are different, they are all considered as personnel scheduling

problems. A general set of objectives and requirements can be attributed to the

personnel scheduling problems. The objective is to assign personnel to

different shifts or period of times in a day over a determined period of time. A

general set of requirements can be categorised under three main headings;

coverage, work regulations and employee preferences constraints. In this

research, the focus is on the nurse rostering problems.

Providing better nurse rosters has been shown to improve the welfare of the

nurses and the quality of the care provided to the patients. The western world

is currently going through a phase of increase in healthcare costs, this trend

will continue due to an ageing population. A shortage of nurses has been

identified within many western countries. It is with this in mind that work

done to improve nurse rosters and make the process efficient, i.e. automatically

through algorithmic tools, is important. It has been argued that ensuring nurses

are allowed fair schedules and accommodated in as many preferences as

possible improves satisfaction and lowers fatigue. This will be reflected in the

quality of care given to patients as well as an improvement in the nurse's life.

The nurse rostering problem consists of creating a roster for a ward in a

hospital. A roster includes the schedule of each nurse within the scheduling

period. The scheduling period is typically a month but it can also be another

predetermined period. Each nurse's schedule must respect a set of restrictions

and considerations such as contract obligations, preferred days off, preferred
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work period as well as other considerations such as training days. The hospital

will also have regulations and restrictions such as a nurse cannot work a night

shift and the next day work an early morning shift, the roster must also ensure

that the adequate number of nurses of each skill category is working when

needed. The roster must also be fair as an example ensuring week-ends off are

assigned equally between each nurse. It is easy to see that the nurse rostering

problem is complex to solve and can never be realistically solved to optimality,

hence the interest of the research done on this issue within the scientific

community over the last 45 years.

As mentioned previously, there are three main sets of constraints that include

all requirements for the nurse rostering problem. The objective is to assign a

nurse to a shift or period of time, while respecting the three general sets of

constraints. Due to the high number of constraints most models will separate

these in two categories; soft constrains and hard constraints. The constraints

included in these two categories will depend on the hospital's or the

organisation's regulations. Soft constraints are requirements that can be

violated. The respect of as many soft constraints as possible will contribute to

determining the quality of the roster. Typically the more important soft

constraints will be attributed a high cost or penalty when violated; this ensures

a better quality of rosters. Hard constraints are defined as requirements that

cannot be violated when building the roster. These two categories will not

affect the three sets of constraints that will be defined. In fact, any constraint

in any of the three sets could be considered a hard or soft constraint this will

depend on the direction of the organisation. Briefly, the required number of

nurses of each skill category needs to be scheduled at the required period of

time, this encompasses essentially the coverage constraint. The number of

required nurses is determined prior to establishing the roster and is not

included in the nurse rostering problem definition. The work and contract

regulations ensure that the number of hours worked by each nurse respects

his/her contract as well as including regulations that apply to all staff. The

third category will include all the nurse preferences. Table 1.2 will provide a

few examples for each set of constraints, these are not exhaustive.
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TABLE 1.2: Examples for each constraint type

Constraint Types Description
Coverage - Schedule the number of nurses required for each shift

- Ensure required number of nurses in each skill: head
nurse
- Ensure proper skill pairing: student nurse-senior nurse

Work and - Maximum number of hours of work
Hospital - Minimum number of hours of work

- Late shift must not be followed by early morning shift
- Maximum of three consecutive night shifts
- No solitary shifts
- Two consecutive days off after specified number of hours
worked

Preferences - Specific day of the week off
- Distribute week-ends off evenly between nurses
- Preferences for night shift work

Many approaches and models have been used to solve and reflect the nurse

rostering problem. Burke et a1.(2004a) review the research done over the last

40 years. The paper raises some interesting points; specifically weaknesses

and future direction within the research community in nurse rostering. Over

the last decade, new approaches have been developed to use on the nurse

rostering domain. As this research is concerned with providing more general

methodologies to solve healthcare issues, these methods will be highlighted.

For this thesis, 43 real world problems will be used to evaluate a more general

strategy that has been developed. The following chapter will also' provide a

more in-depth review of the problem domain and an algorithmic overview of

methods used to solve nurse rostering problems.

Meta-heuristics and heuristics comprise the vast majority of the research done

over the last decade on nurse rostering. A few examples of methods that were

successfully applied to instances of the nurse rostering problem that are

evaluated in this study include tabu search algorithms (Burke et al.,2009b),

genetic evolution algorithms (Burke et al., 2004a), a hybrid method proposed

by Valouxis and Housos (2000). Their algorithm starts by finding an initial

solution using a integer linear program and improve the solution by using two

heuristics. Case-based reasoning is also a strategy that has had success in
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solving different problems within nurse rostering instances that are explored in

this study (Beddoe et al., 2009, Beddoe and Petrovic ,2007). More general

methods such as hyper-heuristics were also applied successfully to a subset of

the nurse rostering problems evaluated in this thesis (Burke et al., 1999a).

1.3 Surgery Scheduling

Another research interest explored in the thesis is the planning of surgeries

within a hospital, this entails scheduling surgery teams and assigning patients a

day and time of surgery considering various requirements and allocating

physical resources such as equipment and operating theatre. Surgeries are the

highest cost drivers within hospitals. Therefore the importance of properly

managed surgeries at the human and physical resources level is of high

importance. Again patient quality of care is heavily involved in proper surgery

planning as patients who require emergency surgeries or quick surgeries need

to be treated within the prescribed time. Other considerations such as

eliminating surgery cancellations are also important factors that contribute to

the patient quality of care.

This research will explore the surgery admission planning problem. The

problem can be defined as assigning known surgeries a day over a determined

period of time. This is a medium to long term planning problem. Once the

day on which the surgery will be done has been determined, the second task

involves determining the time of day and assigning the operating theatre for

the surgery. This is a short to medium term planning problem. The final

schedule must ensure that surgeons are not booked for more than one surgery

at a time and that all equipment and operating theatres are available. Surgeries

also need to be assigned while respecting the delay prescribed by the specialist

i.e. each surgery is given a maximum delay by which it needs to be done, this

will reflect the urgency of the intervention.

The general set of problems that can be defined within the surgery scheduling

domain has not been as extensively studied as the nurse rostering problem. It

encompasses a wide range of problems and there is as yet no current consensus

as to the exact definition of the problem. Some models consider the
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availability of nursing and associate members of staff, bed recovery time

required, outpatients and inpatients surgeries when scheduling surgeries. The

planning horizon may also differ, from one day of surgeries in a hospital, a

week, a month or even a year. The surgery scheduling domain includes many

activities or tasks from the planning of the surgery Le. the initial schedule, the

variation in the surgery duration, the equipment required will determine the

operating theatre and the day of operation. The last stage is the recovery time

required for the patients following the operation, often with complex

interventions the time required can be greater than the duration of the surgery.

This recovery time may involve a few days spent in the hospital. For this

research, as mentioned previously, the surgery admission planning problem

will be explored. Many different sets of requirements and objectives can be

included in the surgery admission planning problem. For the purpose of this

research, three main objectives will be defined. Following Riise and Burke

(2011), the surgery admission planning model will be defined using three main

objectives. These include the maximum permitted delay between the referral

date of the patient to the scheduled surgery date, the maximum overtime of

surgeons tolerated and assigning children an early time of surgery on the

scheduled day. Table 1.3 provides a general description of the surgery

admission planning problem.

TABLE 1.3: Description of surgery admission planning problems

Constraint Description
Types/Objectives
Patient Waiting Time - Maximum delay from referral date

- Preferred window of time for operation
- Previous cancellations

Surgeon - Surgeon overtime
- Surgeon availability
- Surgeon can only perform one operation at a
time
- Surgical team availability

Time of Day - Schedule children early
- Schedule elderly/disabled patients later
- Schedule patients with health problems early
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Several studies have been done within the field of surgery scheduling. As

mentioned previously, this area of healthcare planning has not been as

extensively studied as the nurse rostering problem. There are however,

important contributions within this field. As there is currently no general

consensus within the research community on an exact definition of the

problem, each problem proposed varies considerably and the objectives

emphasised are different. Hans et al. (2008) propose to maximise the

utilisation of the operating theatre whilst minimising overtime. Denton et al.

(2007) focus on assigning a time of surgery for one day and one operating

theatre, where the focus is to account for the uncertainty of the duration of the

surgenes. Santibanez et al. (2007) create different models where different

constraints are prioritised such as operating room equipment, operating theatre

capacity, bed recovery availability, staff availability and surgery duration.

These three publications provide a glimpse of the wide array of problem

definitions and objectives included in the field of surgery scheduling.

The four hyper-heuristics developed for this research are also applied to ten

real world different problem solving scenarios of the surgery admission

planning problem.

1.4 Research Objectives

This research has two key objectives. Designing more general methods and

applying these to real world problems. Specifically, two important healthcare

scheduling problems will be investigated: the nurse rostering and the surgery

admission planning problems. A variety of instances collected across the

world are used for the experiments; 43 well-known benchmark nurse rostering

problems and 10 benchmark surgery admission planning problems. The recent

developments in nurse rostering allowed a variety of problems across the

world to be represented based on the same format. The format is so general

that problem instances with totally different characteristics can be represented

under the same description. This is the motivation to come up with a general

methodology that is successful over those instances as well as the importance

of healthcare issues.
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Designing an effective and general method applicable to different problems as

well as problems with different characteristics is a challenging task,

considering there is almost no theoretical or mathematical guidance to do so.

Consequently, a software package, HyFlex is used to analyse the behaviour of

different low level heuristics implemented for different domains in order to

come up with a viable design. The secondary objective of this research is to

assess the effectiveness of the designed approach across different problem

domains in relation to different choices of hyper-heuristic components.

1.5 Contributions

A number of original research contributions follow from this research:

• An efficient and effective general selection hyper-heuristic is designed

which outperforms the best known selection hyper-heuristic on the

CHeSC I 2011 benchmark. Another hyper-heuristic based on a different

framework combining different heuristic selection and move acceptance

components ranks at the same level as the third CHeSC 2011 competitor.

All the proposed hyper-heuristics are easy-to-implement approaches with a

few parameters to set. The parameters are a probability when selecting low

level heuristics, the number of iterations before an evaluation is done and

an improvement threshold.

• The analyses of the CHeSC 2011 low level heuristics is performed for the

first time in the literature. The analyses show that the ruin and recreate

heuristics are basically mutational heuristics and so a different strategy for

annotating heuristics is required in HyFlex.

• The hyper-heuristic methods are modified slightly and redesigned as

anytime algorithms (which runs as long as the solution at hand improves)

rather than time contract algorithms (which terminate after a given time

limit) as implemented for the CHeSC 2011 benchmark, since there is more

than ten minutes of nominal time (as imposed in the competition) for nurse

rostering and surgery scheduling. One of the proposed hyper-heuristics

produced the best results for the nurse rostering instances of, BCV1.8.1,

ICHeSC 2011: Cross-domain Heuristic Search Challenge.
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BCV.i.B.2, BCV2.46.1, ERRVH-A and QMC-A , while the other one

produced the best results for BCV1.B.3, BCV1.B.4, BCV6.13.i, CHiLD-A2,

ERMGH-A,ERMGH-B,ERRVH-B.

• A new software tool is implemented for the development of hyper-

heuristics for solving the surgery admission planning problem, including

domain specific low level heuristics. The same anytime hyper-heuristics

used for nurse rostering is applied to a set of surgery planning problem

instances. One of the selection hyper-heuristic beats the best known

solutions on the instances of WOT4, WOT5, WOT6 and WOTB while the

other also produced the best results for WOTi, WOT2, WOT3, WOT4,

WOT5, WOT6, WOT7, WOT9 and WOTlD.

1.6 Dissemination

As a result of this study, three journal papers are produced which are under

review or in writing:

• Banerjea-Brodeur Monica, Edmund K. Burke and Ender Ozcan. An

Efficient and Effective Hyper-heuristic for Cross-domain Heuristic Search.

INFORMS Journal of Computing.

• Banerjea-Brodeur Monica, Edmund K. Burke and Ender Ozcan. Hyper-

heuristics for Real World Nurse Rostering. Naval Research Logistics.

• Banerjea-Brodeur Monica, Edmund K. Burke and Ender Ozcan. Hyper-

heuristics for Real World Surgery Admission Planning Problems. Applied

Soft Computing.

1.7 Thesis Structure

Chapter 2 provides an overview of the research that has been done in the field

on nurse rostering and surgery scheduling. The papers are grouped by subject

and methodology. This chapter also presents the benchmark instances for

those healthcare problems.

Chapter 3 overviews intelligent and general search methodologies applicable to

different problems, with an emphasis on hyper-heuristics which explore the

space of heuristics in search and optimisation. The details of a software tool,
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namely HyFlex which was used at a hyper-heuristic competition is presented,

focusing on the framework and problem domain implementations. The

problem instances used in each domain and the design of low level heuristics

are all described.

Chapter 4 provides empirical analyses of the behaviour and performance of all

low level heuristics using the public problem domains of the CHeSC 2011

benchmark to form a basis for the design of effective and efficient selection

hyper-heuristics.

Chapter 5 provides the specifics of the proposed both anytime and time

contract selection hyper-heuristic methodologies build on the analyses

provided in the previous chapter.

In chapter 6, the experimental results of applying the proposed hyper-heuristics

to forty three nurse rostering benchmark instances are discussed. The average

and best-of-runs performances of the anytime hyper-heuristics are compared to

each other as well as to the previously known approaches whenever available.

Chapter 7 focuses on the application of the time contract hyper-heuristics to

the following problem domains; Boolean maximum satisfiability, one

dimensional bin packing, permutation flow shop, personnel scheduling, vehicle

routing and travelling salesman problems. The experimental design and results

are presented in detail. Firstly, performance of the proposed hyper-heuristics is

compared to the performance of hyper-heuristics that joined the mock

competition organised before CHeSC. Again, the average and best-of-runs

performances of the time contract hyper-heuristics are compared to each other

as well as to the CHeSC competitors.

Chapter 8 explains the domain specific low level heuristics created for the

surgery admission planning problem under a selection hyper-heuristic

framework. This chapter also reviews the results obtained by the anytime

hyper-heuristics on the surgery admission planning domain. The experimental

design and results obtained are discussed. The performances of the proposed

hyper-heuristics are compared on this problem domain.
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Chapter 9 summarises the results of the thesis and concludes the thesis. The

future work is outlined in this chapter.



Chapter 2

Healthcare Scheduling

The algorithms developed in this study will focus on solving real world

healthcare problems and showing that it is possible to increase the level of

generality of the solution method. Taking this into consideration, the literature

review will emphasise work done on real world healthcare problems in surgery

scheduling and nurse rostering and on more general methods developed'.

Personnel scheduling has been studied extensively through the years. Ernst et

al's (2004) survey on personnel scheduling includes up to 700 publications and

the study is not exhaustive. Of these problems, many publications are

specifically on the nurse rostering problem. As mentioned previously, the field

of surgery scheduling has not been studied as extensively as the nurse rostering

problem. This is partly due to the fact that it is a large and complex problem

that includes many sub-problems with conflicting objectives reflecting the

interest of various stakeholders and there is currently no consensus within the

research community on the definition of the problem. Surgery scheduling is of

increasing interest as surgeries are the largest cost drivers of a hospital and

operating rooms are the costliest resources in a hospital.

Nurse rostering publications are grouped by methodologies and models. Most

surgery scheduling problems researched are different i.e. they address different

phase and/or sub-problem of this domain. The publications will therefore be

categorised by the objectives the model is emphasising. The chapter will be

divided in the following sections. Section 2.1 will include a review of research

done in nurse rostering. Section 2.2 will review the algorithms proposed for

the international nurse rostering competition. Section 2.3 will focus on the

research within the surgery scheduling domain. Section 2.4 and section 2.5 will

2 A more extensive literature review on studies done on nurse rostering and
surgery scheduling are included in Appendix B.

15
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explain the benchmark instances used for the nurse rostering problem domain

and the surgery admission problem domain, respectively.

2.1 Nurse Rostering

As discussed in Chapter 1, the real world nurse rostering problem is complex

to solve. Good quality nurse rosters entail better quality of care for patients,

nurse retention and better quality of life for nurses. Nurse rostering problems

have held the interest of the scientific community for over 45 years.

Burke et al. (2004a) review the research done over the last 45 years on nurse

rostering problems. The authors analyse the feasibility of applying models and

solutions developed over the last 45 years in current hospital environments as

well as highlight some interesting models, parameters and algorithms/solutions

which could be further developed or be added in other models to provide

solutions to real nurse rostering problems. The paper also concludes on the

weaknesses of the research on nurse rostering to solve nurse rostering

problems in the current context. The authors propose means to overcome these

weaknesses in order to apply research to real life nurse rostering problems. By

reviewing and analysing the different approaches used over the last 45 years in

regards to nurse rostering the authors demonstrate the complexity of the nurse

rostering problem.

The authors conclude that very few studies can be applied to the current nurse

rostering problem and suggest the means that need to be explored to overcome

the current weaknesses, these should be used as a benchmark to evaluate future

research in the field. Specifically it is necessary to evaluate the practicality of

implementing the models and algorithm in real world environments

considering the representation of the problem, the accessibility and

implementation of the software, solution or model i.e. comprehension, user-

friendly, ease of implementation, flexibility of modelling.

The following publications have been grouped by the general methodology

Section 2.1.1 encompasses research done using single point search methods.

Section 2.1.2 reviews a few publications on multiple point search methods and
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section 2.1.3 focuses on a few select hyper-heuristic and cased-based reasoning

approaches.

2.1.1 Single Point Search Algorithms

Although published in 1976, Smith (1976) developed an interactive software

that has been used in a large St Louis hospital to create nurse schedules while

allowing the scheduler to manage the trade-off between various requirements.

The software allowed flexibility and enabled the decision maker to ensure

more important constraints were satisfied. The algorithm developed reflects

many realities encountered in nurse scheduling such as determining the

number of full time nurses to employ and vacations days. The software was

enhanced in Smith and Wiggins (1977) by storing individual preferences and

work requirements. The model considers skill categories of nurses, part-time

workers and floating nurses.

Burke et al. (1999a, 2001a, 2004b, 2004c, 2006a, 2009b) describe the problem

of nurse rostering in Belgian hospitals, the software developed to replace the

manual creation of the schedules and enhancements provided in further studies.

All the problems modelled in these publications are used in this thesis.

Although Burke et al. (200Ia, 2001b, 2004b) employ multiple point search

algorithms, these publications are included in this section because they deal

with the same nurse rostering problems. The Belgian hospital nurse rostering

problem is unique; the nurses' preferred schedules are flexible, they are not

cyclical and the work period is not divided in shifts. The level of flexibility,

work requirements and nurse preferences make the problem difficult to solve

optimally in adequate computational time. The software and subsequent

algorithms tested and/or included in the initial software include tabu search

algorithm with diversification heuristics, a steepest descent search algorithm,

greedy search algorithm with varying depth of neighbourhood searches, tabu

search with hybridisations techniques based on the respect of certain types of

constraints, memetic, scatter search and evolutionary algorithms. All these

algorithms have been successful in providing good solutions often the best

known solution for the problems in Belgian hospitals. The scatter search

algorithm obtaining the best known solution and optimal results for many of
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these instances. The software developed in these studies was implemented in

Belgian hospitals due to the flexibility of the model and approach; enabling the

scheduler to prioritise constraints and determine staffing requirement levels.

The problem proposed by Valouxis and Housos (2000) is included in the 43

real world benchmark problems used in the thesis. The authors solve the nurse

rostering problem by a combination of integer linear programming (ILP) and

heuristics. The authors model the problem as a partial ILP while considering

constraints relating to requirements for nurses on each shift, a minimum rest

period between shifts, a minimum number of Sundays of rest. An initial

solution is found by solving the ILP and this solution is improved using two

heuristics. The aim is to improve for each nurse the shift patterns of the roster.

This is done by firstly changing shifts between two nurses if the solution value

is improved and creating partial rosters by removing shifts at the end of each

day and reconstructing the roster. The methods were tested on data from a real

hospital for wards of 10 to 30 nurses. As the authors suggest greater flexibility

to add constraints and objectives would improve the benefits of the program.

Ikegami and Niwa (2003) model the nurse rostering problem in Japan. These

instances are used in the thesis. In Japan nurses have rapid shift rotations i.e.

nurses work the same shift for a short period of time. The authors define

scenarios which include 2 and 3 shifts per day. The instances are sub-divided

and one nurse schedule is solved at a time, using a tabu search for the 2 shifts

and a branch and bound algorithm for the 3 shifts per days scenarios. The

computational time required to solve these instances needs to be decreased, as

pointed out by the authors.

Burke et al. (2008a) model and solve the problems obtained by industrial

collaborator ORTEe. The methodology finds an initial feasible solution that

satisfies the coverage and work constraints. The initial solution is found by

evaluating each shift and determining the difficulty of attributing the shift to a

nurse. The more difficult shifts are assigned first in the roster. An

improvement phase is removing costly schedules from one nurse and

attributing it to another. Only improving moves are accepted. The results
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obtained are similar to those found by HARMONY, a commercial software

that uses a genetic algorithm to solve the problem. The approach developed by

Burke et al. (2008a) allows quickly to view if a feasible solution is possible.

Burke and al. (2009f) apply a combination of integer programming and a

variable neighbourhood search algorithms to solve the same problem. An

initial feasible solution is found for the relaxed version of the problem using

integer programming. A variable neighbourhood search is applied to satisfy

the remaining constraints.

Burke et al. (2009g) represent a nurse scheduling problem in a Dutch hospital

as a multi-objective model, where each objective is a soft constraint. The

authors introduce the idea of building shift patterns which are allocated to each

nurse by a squeaky wheel optimisation. The criteria of allocation is based on

the respect of coverage requirements. The algorithm adds an element of

randomness by evaluating the shift pattern's fitness against a random number

and eliminates a small number of shifts to create partial schedules randomly.

The nurses that do not have a shift pattern anymore are ordered based on

fitness and are scheduled to ensure coverage requirements and feasibility.

Li et al. (2009) focus on an two phase local search algorithm similar to

Lourenco et al. (2003) to solve a nurse rostering problem in a UK hospital.

This problem was previously studied by (Aickelin and Dowsland, 2000 and

Aickelin and White, 2004). The first step of this approach is to find a solution

i.e. a schedule pattern for each nurse. The schedules are evaluated according

to the preferences of the nurses and the restrictions of the hospital in terms of

coverage i.e. a certain number of nurses of specific qualifications are required.

Each nurse's schedule is evaluated and the ones that do not satisfy these

restrictions are eliminated, some nurses do not have an assigned schedule

anymore. Then a second elimination step is done randomly where a small

percentage of schedules are eliminated, similarly to Burke et al. (2009g). The

last phase of the heuristic is to assign the nurses to a schedule while taking into

account the coverage, qualifications requirements and the nurse's preferences.

Brucker et al. (2010) present and use real world nurse rostering data, which is

used in the thesis. The problems are decomposed into subsets which will be
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solved separately. Sequences of shifts are created for each nurse, the best

sequences will then be attributed to each nurse and each schedule combine to

create the final roster. If roster constraints are not met, the roster is modified

by swapping nurse schedules. A further evaluation is done and more changes

are made to the roster to ensure respect of constraints or obtain better solutions.

2.1.2 Multiple Point Search Algorithms

Multiple point search algorithms, such as genetic algorithms have been

explored to solve the nurse rostering problem.

Aickelin and Dowsland (2000) present results of a variant on a genetic

algorithm that was used to solve a real nurse rostering problem in a UK

hospital. The authors find an initial solution provided by a genetic algorithm.

The next step is to make swaps between schedules to improve the roster. In

Aickelin and White (2004) a genetic algorithm is used to determine the nurses

that will work, an added element which the authors call a decoder assigns

shifts to the nurses. The authors' main objective is to present a method to

compare algorithms or improvements to algorithms.

Aickelin et al. (2009) combined a memetic algorithm and an ant-miner

algorithm to solve the same nurse rostering problem. The authors transform

the mathematical model previously created by Aickelin and Dowsland (2000)

to reflect the nurse rostering problem into an acyclical graph where nodes

represent the nurse and the rule used to schedule the nurse and the edges will

be used to evaluate schedule patterns.

2.1.3 Hyper-heuristics and Case-based reasonmg: real world

problems

In Burke et al. (2003a) apply a hyper-heuristic to one nurse rostering and one

course timetabling problem. The authors propose a set of simple heuristics

and define a criterion which will be used to evaluate improvements of the

solution. Heuristic selection is based on its performance. The heuristics that

do not improve the solution are placed in a tabu list. Only improving solutions

are accepted.
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Bai et al (2010) present a simulated annealing hyper-heuristic approach to

solve a real world nurse rostering problem. This method starts with an initial

often unfeasible solution of shift patterns for each nurse. The shift patterns are

evaluated by attributing a ranking based on a probability of the pattern being

chosen above another pattern (stochastic ranking). A hyper-heuristic is

introduced that will select between a set of low level heuristics to find feasible

shift patterns. The moves made by the heuristic are evaluated against a

criterion (temperature) that is updated at each iteration. The evaluation is used

by the selection process to monitor the performance of each heuristic.

Smet et al. (2012) present a general model, 6 new real world benchmark

problems and hyper-heuristic experiments. The model includes all

requirements and objectives relating to the nurse rostering problem. The

authors evaluate different combination of hyper-heuristics components such as

heuristic selection and move acceptance. The authors found that the move

acceptance component is more important to solution quality than the heuristic

selection for the 6 data sets tested.

Cased-based reasoning methods have been applied to the QMC nurse

rostering problem that is used in this thesis. Petrovic et al. (2003), Beddoe and

Petrovic (2007), Beddoe et al. (2009) use the same methodology which

consists of creating a case-base where previous constraints violations and the

repair used by a scheduler are stored in the case. When identifying a constraint

violation in the roster creation process the cases in the case-base that resemble

the current violation are retrieved and evaluated according to their similarity to

the current violation. The repair done to the current violation will reflect the

repair stored in the case. The repair is done through swaps in the schedule and

the use of tabu lists.

2.2 Nurse Rostering Competition

The first international nurse rostering competition 2010, Haspeslagh et al.

(2010), provided various algorithms to solve benchmark instances of the nurse

rostering problem. The objective of the competition was to encourage the
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creation of new solution methods for the problem from researchers of diverse

backgrounds and to provide problems that contain more real world information

than many of the nurse rostering problems researched. Training or early

instances of the problem were provided to the competitors at the opening of the

competition and other instances were provided 2 weeks before the end date.

Other instances were hidden and the competing algorithms were applied to

these after the close of the competition. Three types of tracks or times were

selected i.e. sprint where the time limit is of 10 seconds, middle distance the

maximum time limit is 10 minutes and long distance where the time allocated

is 10 hours. These reflect different aspects of the problem. The algorithms

that were submitted to the competition and that made the final list will be

reviewed in this section.

Nonobe (2010) proposes to model the problem as a constraint optimisation

problem where a weight is assigned to each constraint and the goal is to

minimise the total cost. The author assigns a possible set of shifts to each

nurse and a new binary variable for which a value of 1 is given if a nurse is

working on a specific day a specific shift (from its possible set of shifts). A

tabu search type algorithm is used to solve the problems, the candidate solution

is modified by interchanging the value of a variable for another. The same

model and algorithm was applied to all three tracks. The algorithm came in

third place for the sprint, second place for the middle distance and third place

for the long distance.

Zhipeng Lu and Jin-Kao Hao (2010) provide a local search based algorithm

with multiple restarts. Two moves are considered, the first is to assign a shift

in a day to a nurse and the second is to swap two shifts between two nurses on

a specific day. The search strategies include an in-depth search, a diversifying

mechanism and an intermediate search. For the in-depth or intensive search all

moves are explored but a tabu list is kept to ensure the recently visited

solutions are not re-evaluated. The diversification mechanism ensures that the

. algorithm does not get stuck in local optimum. All moves concerning possible

swaps between two nurses are evaluated against a subdivision of the total cost

function. Only a move that can improve a sub-cost is accepted. The

intermediate search consists of using the same diversification mechanism and
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allowing the best move that has not been recently made. Further

diversification is ensured by alternating the search process between two

neighbourhoods. A fixed list of good solutions is kept and if the current search

process does not provide good results a re-start of the search procedure is done

using a good initial solution.

Burke and Curtois (2010) re-model the nurse rostering competition instances to

their previously defined rostering model problems where the problem

requirements are defined within acceptable patterns, workload, skill

requirements and pairing as well as other conditional requirements. The

authors applied a variable depth search algorithm to the instances in the sprint

category. The algorithm constructs an initial solution that is improved by

improving the nurses schedule individually, if at the end of the consecutive

moves the roster is worst a return to the pre-move roster is made. This is

proven to be very successful. A branch and price algorithm is used for the

middle distance and long distance categories, where the same variable depth

search algorithm is applied to the pricing problem.

Valouxis et al. (2012) propose a decomposition of the problem instances, these

sub-problems are solved using integer programming. The first step is to create

a workload schedule for each nurse, this implies creating a schedule where the

nurse is assigned a work day or a rest day. The first step is divided in sub-

problems to represent 7 consecutive work days. Each sub-problem is solved

using integer programming. The accumulation of these sub-problems will

cover the whole scheduling period. Once a solution is found for this first step

a heuristic with three types of moves is applied to improve the solution. The

moves include separating the complete schedule at one or two points and then

recreating the complete schedule with these pieces. The last operator consists

of evaluating potential swaps between each individual schedule to all the other

schedules, only improving moves are accepted. An integer programming

model is also used to solve the second step of the problem Le. to assign a shift

to the work days for each nurse, while ensuring required coverage for each

shift and no nurse works more than one shift per day. This method was the

winner for all three tracks in the competition.
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Bilgin et al. (2010) present a hybrid approach to solve the nurse rostering

problems defined in the competition. The algorithm uses as a first step a

hyper-heuristic approach followed by a greedy shuffle heuristic. The hyper-

heuristic is used for 80% of the available computational time; the remainder is

given to the greedy shuffle heuristic. Starting from an initial feasible solution

the hyper-heuristic selects different low-level heuristics. These evaluate swaps

between two nurses. The candidate solution is accepted based on a simulation

annealing principle, where a solution is accepted if it is better than the current

solution or due to a random number calculation. The best solution found by

the hyper-heuristic will after 80% of the total time limit be given as a starting

solution to a greedy shuffle heuristic. The greedy shuffle heuristic evaluates

swaps between partial schedules and accepts only non-worsening solutions.

After a determined number of iterations without any improvements to the

candidate solution a perturbation is made. This method obtained 6 best results

in the sprint track and five best results for the long-distance track.

Rizzato et al. (2010) define the nurse rostering problem as a multilevel

assignment problem, where the roster is divided in two parts and the

assignment of a nurse to a day is done in a first constructive phase. The

second phase consists of improving the roster through different swaps Le.

possible recombination of shifts between two days, swapping shifts between

nurses on one day and possible perturbation to the solution to find new

solutions. The heuristic algorithm based on multi-assignment problems found

good all-around results for the long distance track of the competition.

The following publications use the benchmark instances provided by the first

international nurse rostering competition. Messelis and De Causmaecker

(2011) use the instances in the middle track distance category and two

algorithms submitted to the competition to build an algorithm portfolio where

the goal is to predict the results that would be obtained by an algorithm on an

instance of a problem without having run the algorithm on this instance

beforehand. The prediction model is based on the learning achieved by using

the two algorithms on training instances and identifying the important features

within the problem instances that determine the efficiency of the algorithm.

This means eliminating the features that do not affect solution quality. The
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authors show that a good algorithm portfolio is better than the use of only one

algorithm.

Bilgin et al. (2012) evaluate different selection hyper-heuristic on instances of

patient scheduling problem and instances of the nurse rostering problem. The

instances of the nurse rostering problem are the benchmark instances provided

for the first international rostering competition within the sprint and middle

distance categories. The authors evaluate a selection mechanism and the move

acceptance criteria for both problems. The selection mechanism includes a

simple random choice, a choice function which will evaluate the performance

of each low-level heuristic individually, their combination and a dynamic

strategy that evaluates the best low level heuristics subsets during different

phases of the algorithm. The move acceptance criteria include only accepting

improving solution, accepting non-worsening solutions, accepting worsening

solutions with a probability (simulated annealing) and moves that are better

than a threshold (great deluge). The authors found that the best move

acceptance criterion is the great deluge for the patient scheduling problem,

there was no statistically significant better selection mechanism for this

problem. No selection mechanism or move acceptance is better for the nurse

rostering problem. However, the authors note that the acceptance of only

improving candidate solutions provides the poorest results for both problems.

The nurse rostering competition has provided benchmark instances of the nurse

rostering problem as well as spurring different approaches to solve these

instances.

2.3 Surgery Scheduling

As discussed in Chapter 1, the problems included in surgery scheduling are

complex and vary in different hospitals, clinic, wards and countries. As

previously mentioned, this area of healthcare has not been studied as

extensively as the nurse rostering problem, it is however an area of increasing

interest. This section is an overview of the research published within the vast

field of surgery scheduling. Most papers address a different issue within the

field and each method is different, however the models proposed often
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emphasise one or more goals. The surgery scheduling problem contains like

most combinatorial problems many conflicting requirements. A summary of

the most widely defined objectives/requirements is provided in Table 2.1.

TABLE 2.1 Examples of Objectives and/or Requirements in Surgery

Scheduling

Objectives and/or Description
Requirement
Personnel and Other - Availability of surgeons
Resources Requirements - Availability of nurses

- Availability of OR (operating rooms)
- Availability of specialist equipment
- Availability of other members of staff
- Availability of post-recovery facilities

Personnel Objectives - Minimise surgeon overtime
- Distribute surgeon workload evenly
- Respect hospital and/or ward work regulations
- Minimise post anaesthesia nurses

Resource Objectives - Maximise surgeries to OR
- Minimise wasted time in OR
- Minimise overtime usage of OR
- Maximise post-surgery facilities
- Minimise bed shortages
- Minimise duration of surgeries

Patient Objectives - Minimise patient waiting time to schedule
surgery
- Schedule children early on day of surgery
- Maximise number of patients having surgeries

As can be seen from Table 2.1 many requirements or objectives could have

been placed in a different group or are very closely related. For example,

minimising overtime usage of the operating room influences the overtime of

surgeons. Another example could be that minimising bed shortages is related

to maximising post-surgery facilities.

Cardoen et al. (2010) review publications within the field of operating room

planning and scheduling. As the problem vary in the problem that is addresses

and the approach, a few characteristics are included to divide the more recent

research done in this field. Six characteristics are proposed, these relate to the

type of patient (elective and non-elective), the type of decision, performance

measures used to identify the objectives/goals of the study, the algorithmic
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tools used to solve the problems, the uncertainty consideration, ease of

implementation of the method or model. The authors note that very few

studies integrate a realistic flow of incoming patients which include elective

and non-elective patients and other realistically stochastic problems such as

surgery durations. An integration of all resources used within scheduling of

operation rooms should also be privileged.

The research outlined will be grouped by the objectives or main requirements

emphasised in the models proposed. If there is more than one objective

defined in the model, the publication will be included in only one category.

2.3.1 Patient Objectives

Riise and Burke (2011) study a real world surgery admission planning

problem. The authors define the problem as scheduling a day for each elective

surgery over a planning period and assigning a time of day and operating

theatre. A schedule for each surgeon also needs to be maintained as the

surgeon can only perform one operation at a time. Three objectives are

addressed: minimise waiting time (between referral date and date of scheduled

surgery) and surgeon overtime and assign children at the earliest possible

moment in the day. The objective function consists of the aggregation of these

three objectives. The authors created test data that reflects the current scenario

in Norwegian hospitals. The algorithm used by Riise and Burke to solve this

issue is a combination of a steepest variable neighbourhood descent and an

iterated local search where an operator is selected and used at each iteration of

the algorithm until no improvements can be made to the candidate solution

using the operator. The candidate solution can then be considered the local

optima. The local optimum is used for the following iteration with a new

move operator. Two move operators are defined. Two lists of surgeries are

maintained one containing the surgeries that have been scheduled and the other

the surgeries that have not yet been scheduled, these are referred to as un-

served. The operators will either switch between two surgeries from either list

or move one surgery from the assigned list of surgeries to any other day and

room schedule or the un-served schedule. Using an initial solution to reflect

the reality of hospital scheduling, the un-served surgeries are scheduled as
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soon as possible. The priority is evaluated based on the referral date, the

deadline for the surgery and the surgery duration.

Santibanez et al. (2007) propose a mathematical model to schedule surgeries in

OR (operating rooms). The method proposed builds a complete mixed integer

programming model that considers constraints relating to the number of OR,

speciality equipment required by units, OR capacity, bed capacity for post-

surgery usage, staff availability and surgery duration. The planning period is

four weeks and the model aggregates information from 8 hospitals. Different

scenarios are analysed, modelled and solved. These models vary depending on

the objective function and constraints.

Guinet and Chaabane (2003) focus on assigning patients to operating rooms

(OR) over a one to two week planning period. The model aims to minimise

patient waiting time and overtime use of the OR. The model takes into

account surgery duration, surgeon work requirements and availability,

equipment needed for surgery and recovery room time. The problem is solved

by defining a graph in which a set of nodes represent surgeries that need to be

scheduled and a second set of nodes representing resources are linked to obtain

the schedule of the OR. Each surgery must be assigned to resources while

respecting the constraints.

Dinh-Nguyen and Klinkert (2008) model a surgery scheduling problem into a

job shop scheduling problem. The problem involves scheduling surgeries for

in and out patients. The objective is to minimise the total time taken for all

surgeries to be completed considering the restrictions on hospital resources and

the maximum time interval in which an operation can be scheduled. The

duration time is static. The schedule also needs to accommodate as many

surgeon's and their team's preferences. The planning horizon can vary from

one day to one week. The model proposed is adaptable it can be used to

include overtime when necessary, for hospitals and independent clinics. The

model also includes emergency cases and adding elective cases to fill the

surgery schedule on a given day. The model was solved using exact solvers,

the authors conclude this is time consuming and can only be used when

solving small problems.
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2.3.2 Personnel Objectives

Gendreau et al. (2006) propose a general model for the scheduling of

physicians in emergency rooms (ER). From information provided by six

hospitals in Montreal, Canada the authors determine a general set of

constraints that can reflect the scheduling of physicians in ER. The authors

find that the problematic is similar to the nurse scheduling problem. The

authors divide the constraints in four major categories. Constraints related to

the availability of physicians and the requirements in ER for a given period.

The second category concerns workload, they are limitations on the total of

hours physicians can work in a given period and a maximum number of types

of shifts that can be worked. The third category concerns fairness of the

schedule, the distribution of the workload has to be distributed amongst

physician considering different factors such as seniority. The last category is

concerned with the welfare of the physicians. Four solution methods are

proposed: a heuristic with partial branch and bound algorithm, a column

generation approach, a tabu search algorithm and constraint programming.

Jebali et al. (2006) present a two-step approach. The first step consists of

assigning surgeries to operating rooms (OR) for one day and the second step

concerns the sequencing of the surgeries assigned to the OR. The model

considers constraints relating to surgeons availability, work regulations, post

recovery rooms availability, specialist equipment as well as preparation and

cleaning time of OR. Both steps are solved using a mixed integer program.

Blake et al. (2002) proposes an Integer Linear Programming model to solve the

block surgery allocation problem at Mount Sinai Hospital in Toronto. The

problem consists of assigning operating room (OR) time to a block of surgeons.

The model takes into account constraints relating to specialized equipment and

personnel restrictions. The model also tries to assign to each unit the number

of hours targeted and also to maximise utilisation of the OR.
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Hsu et al. (2003) look at the problem of scheduling surgeries that have been

assigned to a day. The goal is to minimise the number of post anaesthesia care

unit nurses and to establish the optimal sequence of surgeries to ensure that the

total duration time of all combined operations is minimised. The authors

model the problem as a job shop scheduling problem where one stage is used

to minimise the total duration time of the surgeries and the second step stage

consists of minimising the number of nurses while respecting a maximum

operational duration time for the day. A greedy algorithm finds an initial

schedule and it is improved by a tabu search algorithm. The algorithm was

used to solve real data from a university hospital; the results obtained are close

to the optimal solutions.

2.3.3 Resource Objectives

Hans et al. (2008) aim assign a list of known surgeries to an operating room

while minimising overtime for one day. The model and the solution methods

were developed using data from Erasmus Medical Centre in the Netherlands.

A slack period is added to the planned duration of each surgery, this slack is

based on statistical information provided by the hospital. An initial solution is

found by assigning to each surgery the first available place or to prioritise the

surgeries by decreasing the order of duration and placing each surgery from the

list at the first available place. Another possibility is to assign in the list of

priorities a probability to each surgery this will determine the order of

allocating surgeries to the schedule. Once the initial solution is found

improvements are made based on two possibilities i.e. moving one surgery to

another operating room or swapping two surgeries between two days.

Denton et al. (2007) create a stochastic model to account for the uncertainty of

the duration of a surgery. The model is used to schedule surgeries for one day

for one operating room. The model aims to decide the sequence of the

surgeries and the scheduled start time of each surgery. Different heuristics are

applied using various sequencing logic. The authors found that contrary to

scheduling practices to schedule the longest surgeries at the beginning of a day

did not provide the best results.
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Belien and Demeulemeester (2007) present several models to create a master

surgery. The objective is to minimise the expected bed shortage. The models

consider the number of patients and the length of stay of patients (this includes

surgery duration and post-surgery recovery time) as being stochastic. Different

methodologies have been used to solve this problem. The models that have

been formulated with a linear or quadratic objective function are solved with

integer programming solvers. These models minimise the mean or the

variance of the expected bed shortages. The model that considers the

stochastic/undetermined nature of expected bed shortages is non-linear and is

solved using simulated annealing.

2.4 Real world Nurse Rostering Benchmark Data Sets

As mentioned previously, the primary goal of this research is to provide more

general methodologies to solve real world healthcare problems, more

specifically, nurse rostering and surgery scheduling problems.

The personnel scheduling data used for this research are 43 well-known real

world benchmark instances of the nurse rostering problem. The 43 different

problems provide a good basis for evaluating the robustness and efficiency of

the four hyper-heuristics developed. These will be presented in chapter 4. The

nurse rostering problems include well known benchmark instances. The

instances include problems from the UK, Canada, the US, Greece, Japan,

Belgium, Norway and the Netherlands. As defined previously, the nurse

rostering problem consists of creating a schedule for each nurse in a ward over

a pre-defined period of time. The nurse rostering data used for this research is

included in the hyper-heuristic framework HyFlex vl.O. HyFlex will be

described in depth in Chapter 3. For this subsection the focus is on the

datasets.

Each nurse rostering instance is modelled to include all constraints related to

the instance in the objective function. A cost is attributed to each constraint

reflecting the importance of the constraint. A constraint that must be satisfied

will be attributed a higher cost than a soft constraint that may be violated. The
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quality of the roster will be reflected in the cost of the solution. The goal is to

minimise the total cost of the objective function.

Each nurse rostering problem is unique and the constraints vary greatly for

each problem. However, three broad categories of constraints can be defined:

the coverage, the hospital and work regulations requirements and the nurse

preferences. Each of the constraints included in the three categories are unique

to each instance, and each problem has a set of these requirements. For

example, the work and contract regulations differ for different hospitals but

each instance has a set of these requirements. Each problem has different skill

categories, skill pairing, although these are different the requirements may all

be grouped under the general title of coverage constraints. The third general

grouping involves all the requests/preferences determined by each individual

nurse. The benchmark instances as previously mentioned have been assembled

from different countries where worklhospital regulations vary greatly,

coverage requirements are also unique to each problem. Therefore the

objectives and the number of objectives are different for each problem. The

problems have been collected from various publications, and industrial

collaborators ORTEC and SINTEF. The length of the scheduling period, the

shift types and the number of employees to schedule varies from problem to

problem. More information on the instances can be found in Curtois et al.

(2010).

The work and contract regulations constraints include restriction on the total

number of hours scheduled; the minimum and maximum number of hours of

work and also the preferred number of hours to be worked by each nurse. This

can be very complex as some wards have part time and full time nurses.

Another requirement that is placed under this category is to do with hospital

regulations; as an example a nurse scheduled to work on a late night shift

cannot be assigned to an early shift the next day. It is also preferred that nurses

work a minimum number of consecutive days before having time off. Nurses

may also have a maximum allowed number of night shifts that can be assigned

in a planning period. The coverage category ensures there is the required

number of nurses in each skill category when needed. This number will have

been established prior to determining the roster. As an example, a head nurse
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will be required at periods during the day; another example can be that student

nurses need to be paired with more experienced nurses, etc.

The third category encompasses all nurses' preferences. It is found that this

category includes the most requirements, although, these are often considered

soft constraints i.e. these can be violated, it is still important to fulfil as many

of these preferences as possible.

The 43 real world instances include small, medium and large problems. Each

group of instances will be summarised briefly (Curtois et al. 2010). The BCV

set of problems are taken from hospitals in Belgium. The BCV problems

schedule 20 to 100 nurses per ward. The planning period is between two days

to a few months. Different skill categories of personnel are considered. The

roster is modelled to consider a period of one week at a time. The coverage

constraints and ensuring nurses are assigned only one shift per day are the only

hard constraints. The soft constraints include all requirements relating to

hospital and work contract regulations and nurse preferences.

For the GPost instances there are 8 employees to schedule, 4 full time nurses

and 4 part time nurses. Two shifts must be filled, a day and a night shift. The

scheduling period is for 28 days. There is a need of 3 nurses for each day shift

and one nurse for each night shift. The hard constraints relate to work

contracts and hospital regulations. The soft constraints concern undesirable

schedules; as an example, scheduling non-consecutive days off. The SINTEF

problem creates a schedule for 24 nurses, the planning period is 3 weeks and

the schedule is built by shifts. The ORTEC problems contain 16 nurses with 4

shift types and a planning period of 31 days.

The QMC instances include 19 employees to schedule over 28 days and there

are 3 shift types. The Ikegami2d problems are the 2 shift problems, the

planning period is 30 days and there are 28 nurses to schedule. The Ikegami3d

instances are for 3 shifts for 25 nurses to schedule over a period of 30 days.

For the Ikegami problems skill categories are considered.

The Millar problem instances consist of a roster for 14 days with 2 shift types

and 8 employees, over or under coverage is not permitted. The Azaiez
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problem has 13 nurses, 2 shift types and the planning period is of 28 days,

coverage requirements include skill level. The Valouxis instance consists of

scheduling 16 nurses over 28 days with 3 shift types. For the WHPP problem,

30 nurses must be scheduled over a 2 week period for 3 shift types.

The LLR problem creates schedules for 27 nurses for a planning period of 7

days and there are 3 shift types. The Musa problem schedules 11 nurses over

14 days with one shift type and the minimum and the preferred required

number of nurses is considered. The Ozkarahan problem consists of 14 nurses

to schedule over a seven day planning period with 2 different types of shifts.

For the MER problem, 54 nurses and hospital staff must be scheduled over a

48 days planning period. There are 12 shift types, and the coverage

requirements are specified by the period of the day. The CHILD problems

schedule 41 nurses over a six week planning period and there are 5 shift types.

The coverage requirement is also specified by the period of the day. The

ERRVH problems need to schedule 51 nurses and hospital staff over a six

weeks period with 8 different shift types. For this problem the coverage

requirement are also specified by period of the day. For the ERMGH, the

coverage requirement is also specified by the period of the day, and there are

41 nurses to schedule over a six weeks period with 4 different shift types.

Table 2.2 outlines the best known solution or optimal solution (BKN) for each

instance. The optimal solution is marked in bold. The relevant sources and

methods employed which have achieved the associated BKN for each instance

is also presented when it is known.
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TABLE 2.2 Nurse Rostering Benchmark Instances

Instances BKN Method(s) and Reference(s)
BCV1.8.1 252 Scatter Search (Burke et al. 2009b), VNS (Burke et al. 2008a)
BCV1.8.2 853
BCV1.8.3 232
BCVI.8.4 291
BCV2.46.1 1572 Scatter Search (Burke et al. 2009b), VNS (Burke et al. 2008a)
BCV3.46.1 3280
BCV3.46.2 894 Scatter Search (Burke et al. 2009b)
BCV4.l3.l 10 Scatter Search (Burke et al. 2009b)
BCV4.13.2 10
BCV5.4.1 48 Memetic Algorithm (Burke et al. 2001 a), Tabu Search (Burke et al.

1999a, 1999b), Constraint Programming (Metivier et at. 2009),
Scatter Search (Burke et at. 2009b)

BCV6.13.1 768 Scatter Search (Burke et al. 2009b)
BCV6.13.2 392
BCV7.10.l 381 Scatter Search (Burke et al. 2009b), Hybrid IP and VNS (Burke et at.

2009f)
BCV.8.l3.l 148 Memetic Algorithm (Burke et al. 2001a), Scatter Search (Burke et at.

2009b), Tabu Search (Burke et al. 1999a), Decomposition and
Greedv LS (Brucker et al. 2010)

BCV8.13.2 148
BCVAI2.1 1294
BCVAI2.2 1953
ORTECOI 270 Mixed Integer Program (Glass and Knight, 2010)
ORTEC02 270 Mixed Integer Program (Glass and Knight, 2010)
GPost 5 Mixed Integer Program (Glass and Knight, 20 I0)
GPost-B 3 Mixed Integer Program (Glass and Knight, 2010)
QMC-I 14
QMC-2 29
Ikegami2dl 0 Decomposition of problem and branch and bound (lkegami and Niwa,

2003)
Ikegami3d 1 2
Ikegami3d 1.1 3
Ikegami3d 1.2 3
Millar2s1 0 Decomposition of problem and branch and bound (Ikegami and Niwa,

2003), Constraint Programming (Metivier et at. 2009), Scatter Search
(Burke et al. 2009b)

Millar2sl.1 0 Scatter Search (Burke et al. 2009b)
Valouxis 20
WHPP 5 Constraint Programming (Weil et al. 1995)
LLR 301 Scatter Search (Burke et al. 2009b)
Musa 175 Constraint Programming (Metivier et al. 2009)
Ozkarahan 0 Constraint Programming (Metivier et al. 2009)
Azaiez 0 Constraint Programming (Metivier et al. 2009), Linear Goal Program

(Azaiez and Al Sharif, 2005)
SINTEF 0
CHILD-A2 1095
ERMGH-A 795
ERMGH-B 1459
ERRVH-A 2142
ERRVH-B 3121
MER-A 9017 Hyper-heuristic (Chan et al. 2012)
QMC-A 27
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All the nurse rostering problems described are different, a formal description

of the problem can be made using an IP model. As an example the GPost

problem will be selected and to requirements illustrated.

Parameters

A= Set of nurses available = {I, 2, 3, 4,5,6, 7, 8}.

At] t e {1,2}= Subset of nurses that work part time and full time.

B= Set of available shifts= {O (no-shift), 1 (day), 2 (night)}.

B'= Set of undesirable consecutive shifts={(2,1),(O,I),(O,2)}.

J = Days is scheduling period = {I, ... ,28}.

djb= Coverage required on day j for shift b.

m, =maximum number of working days for nurse a for scheduling period.

na= minimum number of working days for nurse a for scheduling period.

hI = maximum number of consecutive day shifts.

h2= maximum number of consecutive night shifts.

Decision variables:

Xabj= 1 if nurse a is working shift b on day j, °otherwise
As all constraints are modelled within the objective function. The objective

function is the weighted sum of all n constraints:

Min O(x) = Lt::l w.o, (x)

The only constraint is to ensure a nurse only works one shift per day

LaEA xajb~l, VaEA,jE{1, ..,28}

Where 2 examples of the goals are:

Maximum number of working days.

O(x) = LaEA max{O,LJ~l LbEB Xajb- m,
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Shift cover requirements

O(x) = LJ~l LbEB ILaEA Xaib - djb I

As the coverage demand is known: 3 nurses for a day shift and one nurse for

the night shift every day. The shift cover requirements can be formulated as

O(x) = LJ~l LbEB ILaEA Xail - 3 I

O(x) = LJ~l LbEB ILaEA Xai2 - 1 I

From the brief overview of the 43 nurse rostering problems, it is clear that

although all constraints in each problem falls under three headings (coverage,

work/contract regulations and preferences) the problems are all different.

These instances will be used to evaluate the level of generality within the same

problem domain of the hyper-heuristics proposed.

2.5 Surgery Admission Planning Problem Data sets

The surgery scheduling issue is complex and varies greatly In different

hospitals, clinics, wards and countries. The domain of surgery scheduling has

not been studied as extensively as the nurse rostering problem within the

research community, part of the issue is the fact that no consensus exists on the

exact definition of the problem. Some definitions include nursing and

associate members of staff, bed recovery time required, outpatients and

inpatients surgeries. The planning horizon may also differ, where the

scheduling may be done for one day of surgeries in a hospital, a week or a

month. The field of surgery scheduling is also vast as many aspects need to be

considered such as the planning of the surgery Le. the initial schedule, the

surgery itself which will involve variation in durations depending on the

complexity of the operation, the patient's response, the equipment required

will also be affecting this stage of the surgery to determine the operating

theatre and the day of operation. The last stage is the recovery time required

for the patients following the operation, often with complex interventions the
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time required is greater than the duration of the surgery. This recovery time

may involve a few days spent in the hospital.

In this field it has often been found that the real bottleneck of surgery

scheduling i.e. delays in surgery scheduling is due to the fact that there are not

enough beds available for patient recovery, this is also coupled with the

shortage of staff such as nurses to take care of patients following the surgery.

Unfortunately very little real data has been collected in this field that includes

bed recovery time and assigning nurses to care for recovering patients.

Concurrent to the scheduling of a surgery is the scheduling of surgeons and

other team members such as anaesthetists and nurses. The surgery scheduling

problem proposed for this research does not include all this information.

The interest in optimising surgery scheduling problems has risen. Surgeries

are the primary cost and revenue service of a hospital; furthermore there is an

increase in pressure on healthcare administrations worldwide to ensure that

patients are treated in a timely manner. To ensure quality healthcare, there is

an expectation that the waiting time of a patient for a surgery should be

decreased. For example in the UK a quota exists in which a time interval is

specified for a surgery, this interval will depend on the emergency of the

intervention. The quota is based on the number of days between the surgery

and the time the patient was referred to a specialist from their general

practitioner.

In this thesis a new method is proposed to solve specifically surgery admission

planning problems. The data for the surgery admission planning problem is

provided by SINTEF and is defined by Riise and Burke (2011). The data is

based on real world surgery admission planning problems obtained from a

Norwegian hospital. The data reflects their knowledge of the actual problem

faced by a surgical department in the hospital. The surgery admission

planning problem is a two-component problem. Initially a set of surgeries are

assigned to a day in the planning period. The second step consists of

attributing a time and operating theatre to the surgeries planned for a specific

day.
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The surgeries are known. The duration, preparation, clean-up and recovery

time within the operating theatre depend on the surgery and are static. These

times are known. The surgeon is pre-assigned to the surgery. Each surgical

team is divided by speciality. In the case of this research the specialities

include general surgery, surgeries in urology and gastro surgeries. More

specifically, there is a small, medium and large surgery possible in the

gastrological ward. Only one type of operation is done in urology and there is

only a small and a large surgery possible for the general surgical ward. Each

initial surgery schedule Le. assigning surgeries to a day of surgery in the

planning period has some surgeries already booked to reflect a realistic picture

of the problem. These have been booked from the previous planning period of

14 days.

Detailed information on to the surgeon's working period Le. work days and

days off is also known. There are 7 surgeons in total with 3 surgeons in gastro,

2 surgeons in urology and 2 surgeons for general surgery. Each surgeon can

do any operation within their speciality. The planning horizon is 365 days.

There are 4 operating rooms that can be used for elective surgeries. Each data

set contains information relating to all patients awaiting surgery. For each

patient the following information is available: the referral date, the maximum

delay in operation, the patient's age, if the patient has diabetes, the number of

previous cancellations, the surgeon that will operate, the duration of the

surgery and the type of surgery. A preferred time window for the surgery is

also included for each patient. The information regarding diabetes could also

be replaced to indicate any other health condition. Preparation and post-

operative tasks are known Le. the time to clean equipment before and after

surgery is included as well as the time to remove equipment. There are 10

instances of the surgery admission problem provided by SINTEF. The size of

each instance is provided in Table 2.3, where the first column includes the

instance and the second column represents the number of surgeries that need to

be scheduled.



Chapter 2 Healthcare Scheduling 40

TABLE 2.3 Size of surgery admission planning instances

Instances Surgeries
WOTt 152
WOT2 157
WOT3 158
WOT4 160
WOT5 162
WOT6 166
WOT7 170
WOT8 177
WOT9 180
WOTtO 186

The data allows for each operating room to have a maximum of three hours

and twenty minutes overtime i.e. over the maximum amount of time of work

allowed per day for each surgeon. The operating rooms are only open when

the surgeons are working; therefore no surgery is scheduled on a surgeon's day

off. For the problems at hand the surgeons can all work the same days and the

same number of hours.

The goal is firstly to assign a day and time for each elective surgery while

keeping time for emergency surgeries. Secondly, each surgery is assigned to

an operating room and resources. The total duration of each surgery in each

operating room in a day must not exceed the opening time of the operating

rooms. Opening hours of the rooms depend on hospital regulations. At the

same time the surgery must be scheduled in a way to ensure that surgeons are

assigned to one surgery at a time.

For this research, the surgery admission planning problem is defined as a

combined objective model as proposed by Riise and Burke (2011). The

problem is modelled in the same way as Riise and Burke to facilitate a

comparison between their results and the results of the four hyper-heuristics

strategies proposed in the thesis.

More formally the problem is defined in Table 2.4. Each goal has the same

cost within the objective function.
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TABLE 2.4 Surgery Admission Planning Model

Minimise patient waiting time between referral and scheduled surgery
rIJ
Q,j.~ Minimise surgeon overtime..~
Q,j....
,.Q

Schedule children early on day of surgery0

Surgeon is available on day and time of surgery
OR is available on day and time of surgery

rIJ
Each surgery is scheduled only once.. Only one surgery is scheduled at a time in the operatin_g roome.-ea For each operating room, the sum of durations for all surgeries assignedJ....

rIJ to that OR does not exceed the operating hours of the assigned OR.ee
U

Schedule surgery within the maximum delay between referral date and
date of intervention.
Surgeon can perform only one surgery at a time

For this problem domain, the problem evaluated is the same for all ten

instances. The constraints and the model. The difference lies is the size of the

problem. These instances will be used to evaluate the level of generality of the

hyper-heuristics proposed within different problem domains.

2.6 Remarks

A variety of methods have been used to solve the nurse rostering problems. In

the last few years, the focus has been on solving real-world problems and

creating more general approaches. There has also been an increase within the

field of healthcare to address the surgery scheduling problem. A review has

been done on nurse rostering publications, these were grouped by

methodology. The complexity of this problem makes it interesting to solve

using a hyper-heuristic methodology. The datasets proposed will be used to

determine the level of generality of the four hyper-heuristics presented in this

thesis against unseen problem solving scenarios with different characteristic

within the same problem domain. There is no consensus on the definition of

the surgery scheduling problem; the models focus on different aspects or sub-

problems, the publications were therefore grouped by the objectives

emphasised. The datasets presented for this domain will be used to evaluate the

performance of the hyper-heuristics against a variety of instances within

different problem domains.
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Hyper-heuristics

Over the last decade, there has been an increase in the development of more

general approaches to solve combinatorial optimisation problems. This has

been done successfully through the use of hyper-heuristics for a diverse range

of problem domains, such as personnel scheduling and timetabling problems

(Burke et al., 2003a, Cowling et al., 2000).

A hyper-heuristic is an algorithm that operates on a search space of heuristics

(Burke et al., 2003a). There are two main types of hyper-heuristics in the

literature; hyper-heuristic methodologies that select or generate low level

heuristics (Burke et al., 2009c). In this thesis, the described four hyper-

heuristics are selection hyper-heuristics which are iterative perturbation based

approaches, Le. following the construction of an initial solution, it is improved

step by step using a set of perturbative low level heuristics which are enabled

to process and return complete solutions at any time (Burke et al., 2009c,

2009d). When designing such a selection hyper-heuristic two components

need to be considered. The first component is the strategy employed by the

hyper-heuristic to select a (subset of) low level heuristic(s) to perturb a given

candidate solution. The second component is the defined criterion that enables

the acceptance or rejection of a newly created candidate solution after

application of a chosen low level heuristic. Any learning hyper-heuristic

component gets feedback and maintains problem domain independent

information to make better choices at a given decision point during the search

process.

Many publications have been made on hyper-heuristics, the review of the

research done within this more general methodology is not exhaustive but

rather an overview to place in context the contribution of the research proposed

42
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for this thesis3• Section 3.1 will focus on outlining selection hyper-heuristics.

Section 3.2 highlights one example of generation hyper-heuristic. Section 3.3

will describe HyFlex v1.0, a hyper-heuristic framework that is used to evaluate

the four proposed hyper-heuristics and a review of algorithms submitted to the

Cross-domain Search Heuristic Competition 2011 will be made. Section 3.4

overviews related work and remarks are found in section 3.5

3.1 Selection Hyper-heuristics

Burke et al. (2009c and 2009d) reviewed the hyper-heuristic methods and

problems solved by them. The paper also defines the principles of the

methodology, classifies the hyper-heuristics that have been developed and

provides a classification framework for future work on hyper-heuristics. A

hyper-heuristic approach is a method that does not use problem specific

information to solve a problem. The hyper-heuristic which can be different

heuristics such as tabu search, simulated annealing or others will choose or

generate heuristics. The heuristics chosen or generated will solve the

problems. So a hyper-heuristic method is a general method that can be used to

solve similar problems. Hyper-heuristics can be divided in two main

categories, hyper-heuristics that choose heuristics to solve problems or hyper-

heuristics that generate heuristics to solve problems. Subcategories of each

main category are constructive or perturbative; this evaluates the method of

building the solution by the heuristics. A constructive hyper-heuristic

approach will start to build at each iteration a solution using the low level

heuristics. A perturbative hyper-heuristic approach starts with an initial

solution and improves it using the low level heuristics. Further classification is

also done based on the move acceptance criteria where it can be a deterministic

or non-deterministic. A deterministic criterion takes the same decision any

time during the search process. A non-deterministic criterion involves taking a

decision that can vary during the search process even while considering the

same candidate solution.

3A more extensive review of work done on hyper-heuristics can be found in
Appendix B.
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This paper is innovative as it defines the hyper-heuristic methodology, reviews

all hyper-heuristic approaches developed and provides a framework to

understand the method and classify future hyper-heuristic work.

The publications outlined in this chapter will be grouped by the classification

provided by Burke et al. (2009c). The papers highlighted are selection hyper-

heuristics.

3.1.1 Online Learning Selection Hyper-heuristics Deterministic

Move Acceptance

Burke et al. (2007a) present and evaluate a hyper-heuristic method to solve an

exam timetabling problem and a course timetabling problem. The hyper-

heuristic proposed determines the value of the heuristics and the order in which

to apply the heuristics to provide a good solution i.e. a solution that is feasible

and has the lowest cost. The hyper-heuristic constructs an initial solution by

creating heuristic combinations, choosing the best and applying these to obtain

the solution. Evaluated combinations are placed in a tabu list.

Qu and Burke (2009) compare heuristics to be used as a hyper-heuristic to

solve a course and exam timetabling problem. The hyper-heuristics evaluated

are the Steepest Descent Method, the Iterated Local Search (lLS) method, the

Tabu Search method and the Variable neighbourhood Search method. The ILS

method outperforms the other heuristics.

Ochoa et al. (2009a) analyse the search space of a hyper-heuristic in order to

build the best sequences of low level heuristics. This is done on an educational

timetabling problem. The authors found that the best solution to an instance of

the problem are concentrated in a small area of the search space and that the

first scheduled events are more important to solution quality than events

scheduled at a later stage. In Ochoa and al. (2009b) the flow shop scheduling

problem is used to evaluate the search space. The analysis reveals similar

conclusions.

Cowling et al. (2000) present and compare the performance of a set of simple

and mostly non-learning heuristic selection methods within a selection hyper-
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heuristic framework on a scheduling problem. Simple random chooses a

random low level heuristic. Random gradient heuristic selection employs

simple random for choosing a heuristic, but the same heuristic gets invoked

repeatedly as long as there is improvement. Random permutation heuristic

selection uses all the low level heuristics and creates a random permutation

with them, and then each heuristic is invoked successively. Random

permutation gradient is based on random permutation heuristic selection with

the difference that the same chosen heuristic is invoked repeatedly until there

is no improvement. The greedy strategy applies all low level heuristics and

chooses the one which generates the best improvement (or least worsening). A

more elaborate online learning mechanism referred to as choice function

performed the best among these heuristic selection methods. Choice function

maintains a utility value for each low level heuristic. A heuristic with the

maximum score is selected at each step. This score is a weighted average of

three performance indicators. The first component relates to the previous

improvement made by a low level heuristic. The second one considers the

interdependencies between two low level heuristics and the third one looks

into the last time when a given low level heuristic was used.

A widely used learning heuristic selection method within hyper-heuristics is

based on reinforcement learning Di Gaspero and Urli (2012), Ozcan et al. (2008),

Nareyek (2003). Nareyek (2003) assigns a utility score for each low level

heuristic. The proposed hyper-heuristic increases the score of the chosen and

applied heuristic if there is improvement and decreases it, otherwise, at a

certain rate. Different mechanisms, such as, max or roulette wheel can be used

to select a low level heuristic based on their utility scores. Simple move

acceptance methods include accepting all moves, only improving moves and

improving and equal moves.

3.1.2 Online Learning Selection Hyper-heuristics Non-

Deterministic Move Acceptance

Bai et al. (2007) evaluate the impact on the solution quality of the memory

length of online heuristics. Online hyper-heuristics are hyper-heuristics that

select low level heuristics (LLH) at each stage of the problem resolution based
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on the past performance of the LLH. The authors note that the performance of

all the LLH is always better at the beginning of the resolution and gets worse

during the middle and late stages of the resolution. The authors wish to find

the impact of different memory length on the quality of the solution. The

method studied,a simulated annealing hyper-heuristic. Tto find better solutions

it is better to dynamically increase the learning rates during the resolution

process.

Different threshold move acceptance have also been used in selection hyper-

heuristics, such as great deluge and simulated annealing Burke et al. (2012),

Kalender et al. (2012).

3.2 Generation Hyper-heuristic

Although the focus of the overview of hyper-heuristics is on selection hyper-

heuristics it is worth outlining the following hyper-heuristic that generates low-

level heuristics.

Burke et al. (200ge) explore the uses made of Genetic Programming (GP) as a

Hyper-heuristic. The authors also define the framework for using GP as a

hyper-heuristic method i.e. the steps that need to be taken in order to use GP to

build low level heuristics that will find solutions to a given problem. The first

step to build a hyper-heuristic with GP is to analyse the existing heuristics used

to solve a set of problems i.e. to know the weaknesses and strengths of the

heuristics. The second step involves evaluating the way in which each

heuristic is used to solve problems. The third step is to determine how to

evaluate the problem at different stages of the resolution. The last steps are to

identify the settings of the parameters and the links that will be created

between the variables. The paper illustrates the methodology using two sets of

problems the Boolean satisfiability problem and the bin packing problem.
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3.3 Cross-Domain Search Heuristic Competition

HyFlex vl.O was recently used in the Cross-domain Heuristics Search

Challenge 2011 (CHeSC) competition.

HyFlex (Burke et al., 2009a, Ochoa et al., 2012) is an interface which is

implemented in Java as v1.0 for rapid development and research on hyper-

heuristics. HyFlex vl.O contains the implementation of six problem domains:

one dimensional bin packing, personnel scheduling, permutation flow shop,

boolean satisfiability, traveling salesman and vehicle routing problems. For

each problem domain, a set of low level heuristics and instances were

provided. HyFlex v1.0 was recently used in the Cross-domain Heuristics

Search Challenge 2011 (CHeSC)4 competition. Before the competition, four

problem domain implementations (one dimensional bin packing, personnel

scheduling, permutation flow shop, boolean satisfiability) with ten instances

for each domain were made public. CHeSC used three public instances and

two hidden instances for each domain during the competition. The

implementations and instances for the traveling salesman and vehicle routing

problem domains were hidden. The authors Burke et al. (2009a, 2010a)

compare the CHeSC competition to a decathlon challenge in which the athletes

or in this case the competing algorithms need to achieve good results in a

timely manner across all problem domains. For each problem domain, a set of

low level heuristics and instances were provided. The objective of the

competition was to spur on the research in the development of more general

purpose algorithms i.e. heuristics that do not take any problem specific

information into account. Consequently, new general hyper-heuristic methods

have been introduced. These methods along with the six problem domain

implementations can be considered as a benchmark to evaluate the level of

generality of new hyper-heuristics. The competition sought a general method

that frequently provides the best median solutions to the problem instances

across all HyFlex problem domains. The success of the four hyper-heuristics

in regards to their level of generality will be evaluated by applying them to the

4 CHeSC website: http://www.asap.cs.nott.ac.uk/external/chesc2011/defaulthh.html

http://www.asap.cs.nott.ac.uk/external/chesc2011/defaulthh.html
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competition instances and companng them to the algorithms submitted to

CHeSC Ochoa et al. (2012).

3.3.1 HyFlex

HyFlex is a Java software library that is an interface between the problem

domain layer and high level methodologies to be implemented for solving a

problem using a hyper-heuristic methodology (Burke et al., 2009a, 201Oa,

Ochoa et al., 2012). The purpose of this hyper-heuristic framework is to

facilitate the development of a general algorithm that can solve problems

within different domains. The hyper-heuristic framework enables the user to

concentrate only on the implementation and the evaluation of a hyper-heuristic

for one or more problem domains included in the software. For each domain,

the software includes implementation of a set of different types of low-level

heuristics, various instances, an algorithm to create an initial solution and

more. The software allows users to maintain a list of previous solutions. In

this thesis, four hyper-heuristics are implemented as an extension to HyFlex in

order to be able to evaluate their level of generality and see how they perform

as compared to the previously proposed algorithms. Although each category

of low level heuristic is the same for each domain, the number of low level

heuristics and the way they operate vary according to each problem domain.

For each problem domain, four types of low level heuristics are included:

cross-over heuristics, mutation heuristics, local search heuristics and ruin

recreate heuristics. All four of these heuristic types are perturbative heuristics

i.e. they start with an initial feasible solution and modify it. The cross-over

heuristics combine two solutions to produce a new solution. The mutation

heuristics randomly mutate elements of a solution to produce a different

solution. The local search heuristics will from a given solution try to find

solutions that improve the objective function. The ruin and recreate heuristics

remove a section of the solution and recreate a new solution.

HyFlex provides six problem domains: personnel scheduling, one dimension

bin packing, flow shop scheduling, Boolean satisfiability, vehicle routing and

the travelling salesman problem. The personnel scheduling problems are nurse

rostering problems. The nurse rostering problem consists of creating schedules
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for each nurse in a ward over a pre-defined period of time. The schedules must

respect constraints relating to hospital and work regulations, coverage

requirements as well as nurse preferences Curtois et al. (2010). The one

dimensional bin packing problem consists of packing a determined number of

pieces in as few bins as possible while respecting the total weight capacity of

each bin (Hyde et al. 20l0a). The permutation flow shop problem consists of

ordering the jobs to be processed on consecutive machines while ensuring that

no machines stay idle when a job is ready to be processed and each machine

can process only one job at a time. Once the order of the processing of each

job is determined it cannot be changed Vazquez-Rodnguez et al. (2010). The

Boolean satisfiability problem consists of assigning a value to variables that

will enable a formula to be true. Each variable can only have a true or false

value. In HyFlex, it is the maximum satisfiability problem that is defined i.e.

the objective is to maximise the number of clauses that are satisfied (Hyde et

al. 20l0b). The general vehicle routing problem (VRP) consists of creating

delivery routes for a fleet of vehicles ensuring deliveries in a timely manner as

well as respecting vehicle capacity. The goal is to use the smallest fleet of

vehicles. The problem domain implemented in HyFlex is the VRP with time

windows, which means that a customer's delivery must be done within a

timeframe Walker et al. (2012). The vehicles leave from one depot and the

objective is to minimise the cost of the deliveries. The problem of the

travelling salesman consists of designing an itinerary in which all the cities that

need to be visited are visited only once. The goal is to minimise the distance

travelled.

3.3.2 Problem domain implementations in HyFlex

For the personnel scheduling problem Curtois et al. (2010) each low level

heuristic category contains meta-heuristics that have been previously

successfully used to solve specific nurse rostering problems Brucker et al.

(2010), Burke et al. (2008a, 2009b), Curtois et al. (2010). The mutational

heuristic category includes three mutational heuristics. Each mutational

heuristic will be doing a swap between shifts in the candidate solution. Either

a swap of a shift or block of shifts between two nurses' schedules or a swap
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between a shift or a block of shifts with another day's shift or block of shifts in

one nurse's schedule. The last possible mutation is to add or delete a shift or a

block of shifts to one schedule. This last heuristic is also used to initialise the

solution.

The local search heuristics set contains five local search heuristics of which

three are hill climbers that use the operators described above to improve the

objective function. The swaps are tested on one shift to blocks of a maximum

of five shifts. The other two local search heuristics are variable depth search

heuristics Burke et al. (2008a). The variable depth search heuristics will try to

improve one nurse's schedule at a time in a roster. By choosing to improve

one schedule this will worsen another nurse's schedule, this last schedule is

then improved by the algorithm, the schedules will all be evaluated and an

attempt to improve them will be done. If no improvements occur, the

algorithm returns to the original roster and chooses a different initial schedule

to improve. In order to obtain improvements, swaps are done in the shift or

block of shifts between days and nurses.

The crossover heuristic set contains three crossover algorithms. The first

crossover heuristic Burke et al. (200Ia) finds the best assignments in the two

nurses' schedules being evaluated and chooses these to place in the new

schedule. To evaluate the best assignments each shift is temporarily removed

from the roster and the impact on the objective function is calculated, the best

assignments are the ones for which the removal has the largest impact on the

objective function. The second crossover Burke et al. (2009b) selects the shifts

that are common to both parent rosters to place in the new roster, the next step

is to take shifts from each parent solution until the new roster is complete. The

last crossover creates a new roster by choosing only shifts that are common to

both rosters being evaluated.

The last set of heuristics consists of the ruin and recreate heuristics Burke et al.

(2008a). The heuristics in this category randomly un-assign shifts in one or

more nurses' schedules. The schedules are rebuilt by trying to satisfy the

preferences of these nurses to work specific days or shifts and the second
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consideration will be to try to satisfy preferences relating to week-ends. Each

heuristic un-assigns a different number of shifts.

For the one dimensional bin packing Hyde et al. (2010a) the solution is

initialised by randomly ordering the pieces to be placed in the bins and then

placing them in the first bin in which they fit. Two local search heuristics are

included in the one dimensional bin packing problem domains. The first local

search heuristic randomly swaps two pieces if there is space and the objective

function is improved. The second local search heuristic takes from the lowest

filled bin the largest piece and swaps it with a randomly selected smaller piece

from another bin, if this is not possible the heuristic chooses two pieces that

have a total smaller size and swaps these with the large piece. The mutational

heuristics include three low level heuristics. The first mutational heuristic

swaps two pieces from different bins, if one piece does not fit the heuristic

places it in a new bin. The second heuristic in this category randomly selects a

bin that has more pieces than average and splits the contents into two new bins.

The last mutational heuristic selects the lowest filled bin, removes its content

and packs it in other bins where possible. The ruin recreate heuristics include

two low level heuristics. The first heuristic removes the content of the highest

filled bins and refits them using a best-fit heuristic. The number of bins

affected depends on the intensity of mutation parameter in HyFlex. The

second heuristic does the same thing as the first except that it unpacks the

lowest filled bins. The only crossover heuristic included for this domain is the

Exon Shuffling Crossover heuristic Rohlfshagen and Bullinaria (2007). This

algorithm segregates the total number of items that need to be packed into

subsets ensuring that the union of all these subsets will include all items and

each item only once. First the solution is initialised; all items are placed in the

bins without allowing overflowing i.e. a random permutation of items is done

and each item is placed in the first available bin. Then two subsets of the total

items to be packed are chosen and merged, mutually exclusive bins are added

first, remaining items are then added and the items that are duplicated are

eliminated based on the costs.

For the permutation flow shop problem, the domain includes five low level

mutational heuristics, two ruin and recreate heuristics, four local search
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heuristics and four crossover heuristics Vazquez-Rodnguez et al. (2010). To

find an initial solution, a random permutation is created. The second step

consists of creating a new schedule; this is done based on the algorithm

proposed by Nawaz et al. (1983). The total process time for each job is

calculated and the two jobs with the largest total processing time are selected.

Two partial schedules are created based on the possible sequence of these two

jobs. The sequence with the lowest total process time is selected; this will

determine the position of these two jobs in relation to each other. The job with

the third largest total processing time is then selected. Its three possible

positions are evaluated within a partial schedule. The sequence selected will

be the one with the lowest total process time. The other jobs are then selected

in the same way to complete the schedule.

The first mutational heuristic randomly selects a job and reinserts it at a

different position. The second randomly swaps two jobs. The third heuristic

swaps the entire permutation Le. order of the jobs. The fourth heuristic creates

a new permutation with the same heuristic used to initialise the solution. The

last heuristic in this category swaps randomly a fixed number of jobs; this is

determined by the intensity of mutation parameter in HyFlex. The first ruin

and recreate heuristic randomly deletes a number of jobs from the permutation

and reinserts these using the same algorithm to initialise the solution. The

second algorithm in this category randomly deletes a number of jobs of the

permutation and reinserts these using the same algorithm to initialise the

solution in such a way that at each iteration the best sequence of jobs are

reinserted. The local search low level heuristics include a steepest descent

algorithm where at each iteration each job is removed from its current location

and reinserted in all positions, the best improvement is accepted. The second

local search algorithm removes each job and replaces it into the first available

position that creates an improvement. This process is done for each job. The

third low level heuristic randomly selects a number of jobs to remove from the

permutation; these are then tested in all positions and placed in the position

that provides the most improvement. The last local search heuristic also

randomly removes a number of jobs from the permutation but replaces them at

the first place that creates an improvement in the solution. The crossover low
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level heuristics types include a precedence preservative crossover in which two

solutions are taken and which will form a third solution. The child solution is

originally empty, a vector is randomly filled. This vector will determine the

order from which each job is taken from each parent. If a job is taken from

one of the initial solution it is then deleted from the second initial solution until

both initial solutions are empty. The partially mapped crossover algorithm is

also included. A section of the sequence of jobs from both parents is selected

and placed into each parent solution and the remaining jobs of each parent are

then exchanged to complete the solution. Also included is a one point

crossover in the parent solutions, one point is selected, it is the same for each

parent and the jobs after this point are exchanged from both parents to form

two new solutions. For the order crossover a portion of the sequence of one

parent is combined to a portion of the second parent and the remaining jobs are

added to the child in order to preserve the new sequence produced by the

combination of both solutions.

For the maximum satisfiability problem nine low level heuristics are included

in HyFlex Hyde et al. (20 lOb). The local search low level heuristics include

two algorithms. The first local search heuristic consists of flipping randomly a

variable and accepting the change if the solution is improved. The second

local search heuristic selects randomly a variable from a broken clause and

flips it. Again the change is accepted only if the solution is improved. The

mutational heuristics use the same operators as the local search i.e. one

mutational heuristic flips randomly a variable, the change is automatically

accepted. The second mutational heuristic flips a variable from a broken

clause and accepts the change in the variable. The third mutational heuristic

flips the variable that most improves the solution. In the case where two

variables provide the same improvement, the tie is broken randomly. Another

mutational heuristic uses the same logic except when they are ties; the variable

that has been flipped the most times is selected to be changed. From a broken

clause this mutational heuristic will flip a variable that does not have any

impact on the solution. If no variables fulfil this characteristic a random

variable will be changed with a probability of 0.5, if a variable is not chosen,

the variable that when flipped has the least negative impact will be changed.
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The last mutational heuristic will seek from a random broken clause the

variable that when changed will improve the most the solution and change it.

The ruin recreate low level heuristic used will randomly change a set of

variables. The crossover heuristics either change one variable or two variables

within the formula.

For the vehicle routing problem twelve low level heuristics are included in

Hyflex Walker et al. (2012). The mutational operators for the four mutational

heuristics do swaps between either two customers on a single route, two

adjacent customers in a single route, place one customer from one route to

another route and lastly, swap two clients from different routes. Two ruin and

recreate heuristics are included. Both heuristics remove customers based on

time or location. The route is rebuilt and only feasible solutions are created.

The local search heuristics explore the following moves to improve the

objective function value. The possible moves are a change of route for one

customer, a swap between two customers on different routes, a swap between

the end of two routes and a customer is taken from one route and placed into

another route between the two customers closest in proximity to it. For the

cross-over heuristics a random number of routes are considered from one

solution and are combined with routes that do not create a conflict from the

second solution, the customers left are inserted in the new solution. The second

cross-over heuristic combined two solutions by placing the longest routes from

both solutions to create the new solution, feasibility is kept. The customers

that are left are inserted in the new solution.

3.3.4 CHeSC

The algorithms submitted to the competition were evaluated using the Formula

1 (F1) scoring system in which points are attributed to the first 8 top

competitors. The best ranking algorithm is given a score of 10, the second best

ranking 8 followed by 5, 4, 3, 2 and 1. The algorithms that are not in the top 8

competitors are not allocated any points. Each hyper-heuristic is ranked using

the median objective function value from 31 runs for each instance. The

maximum score for each algorithm for each problem domain is 50, since there
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are five instances for each domain. All twenty hyper-heuristics competed

across six problem domains. The results are provided in Table 3.1.

Table 3.1 The rank, name and F1 score of each hyper-heuristic which joined
CHeSC

Rank Hyper- Score Source Rank Hyper- Score Source
heuristic heuristic

1
AdapHH 181.00

Misir et al. 11 ACO-HH 39.00
Nunez and

(2012) Ceballos (2011)

2 VNS-TW 134.00
Hsiao et al. 12 GenHive 36.50

Cichowicz et al.
(2012) (2012)

3 ML 131.50
Larose (2011) 13 DynILS 27.00

Johnston et al.
(2011 )

4 PHUNTER 93.25
Chan et al. 14 SA-ILS 24.25 -
(2012)

5 EPH 89.75
Meignan 15 XCJ 22.50 -
(2011 )

6 HAHA 75.75
Lehrbaum and 16 AVEG-Nep 21.00

Di Gaspero and
Musliu (2012) Urli (2012)

7 NAHH 75.00
Mascia and 17 GISS 16.75

Acuna et al.
Stutzle (2012) (2011 )

8 ISEA 71.00 Kubalik (2012) 18 SelfSearch 7.00 Elomari (2011)

9 KSATS-HH 66.50
Sim (2011) 19 MCHH-S 4.75

McClymont and
Keedwell (201l)

10 HAEA 53.50 Gomez (2011) 20 Ant-Q 0.00 Khamassi (2011 )

Misir et al. (2012) joined CHeSC with a learning hyper-heuristic (AdapHH)

which became the winner of the hyper-heuristic competition. The method is a

multi-phase approach which adaptively decides on the subset of low level

heuristics to use at each phase and its duration. The heuristic selection

computes a quality index for each heuristic based on a weighted average of a

performance measure. This measure uses the number of new best solutions

found, the total number of improvement and worsening until a given time, and

during a single phase, overall remaining time, time spent by a heuristic until

that moment and also during a phase. A heuristic gets excluded with a value

below the average at a given stage or if it is relatively slow. A probability

vector based on number of new best solutions found, remaining time, overall

time and time spent is maintained to choose an active low level heuristic at

each step. This elaborate hyper-heuristic also follows the performance of

successive applications of heuristics in pairs. The choice for this relay

hybridisation is probabilistic and these values are maintained via a learning

automaton. The parameters of heuristics are also controlled via a reinforcement

learning mechanism. The move acceptance component of the hyper-heuristic

accepts improvements. A worsening solution is accepted if a new best solution
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cannot be found after a certain number of iterations (which is adapted during

the search process) with consecutive worsening solutions. More on the hyper-

heuristic components and their analyses can be found in Misir et al. (2012).

Although the approach is the winner of CHeSC, it is important to note that this

hyper-heuristic is a complicated method embedding many parameters which

are tuned and fixed before execution.

The hyper-heuristic developed by Hsiao et al. (2012) for the CHeSC

competition was based on an iterated local search framework. The overall time

is split into two. During the first phase, the hyper-heuristic starts by applying a

mutational or ruin and recreate type low level heuristic to a population of

initial solutions. Then all local search heuristics are applied until there is no

further improvement. During the next phase, the best solution found so far as a

single solution is used. Mutational heuristics are put into a circular priority

queue based on their capability of severity of change. A perturbation is

followed by a local search. This hyper-heuristic ranked the first in the

Personnel Scheduling problem domain and second in the overall.

The hyper-heuristic created by Larose (2011) also relied on intensification and

diversification components explicitly during the search process. An initially

generated solution passes through a diversification stage via application of a

mutational or ruin-recreate heuristic. Then this solution is improved using a

local search heuristic until no further improvements can be achieved. A new

solution is accepted only if there is improvement or the solution has not

improved over the last 120 iterations.

Chan et al. (2012) developed a hyper-heuristic which relies on combining

intensification and diversification components properly during the search

process. From a set of candidate solutions an intensification process is made

using the local search algorithms available in HyFlex. When there are no

possible further improvements a diversification is made using another type of

low level heuristic. Combinations of sequences of low level heuristics are

evaluated.

Meignan (2011) proposed a hyper-heuristic based on a co-evolutionary

algorithm and joined the CHeSC competition. Two set of populations are
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used. One of them contains a set of solutions, while an individual in the other

population represents a sequence of heuristics. A set of sequence of heuristics

is co-evolved with a set of candidate solutions to improve 0 the solutions using

the best sequence of heuristics during the search process.

Lehrbaum and Musliu (2012) proposed another hyper-heuristic based on an

iterated local search framework. A roulette wheel strategy is used to choose a

mutational low level heuristic based on the relative performance of heuristics

during the diversification phase. Each low level heuristic is applied in

descending order of previous performance and non-worsening solutions are

accepted during the intensification phase. Poor performing low-level heuristics

are temporarily placed on a tabu list with a given probability at each step of the

search process. This hyper-heuristic performed particularly well on instances

of MAX-SAT and personnel scheduling.

Mascia and Stutzle (2012) developed a hyper-heuristic based on an iterated

local search framework which allowed restarts with a fixed probability. A

randomly selected local search heuristic is applied successively for a number

of times after the successive application of randomly selected ruin-create

heuristic for a number of times. A worsening solution is accepted with a given

probability at those stages. After the application of local search, a random

mutational heuristic is employed with a given probability. Mascia and Stutzle

show that the performance of the algorithm could be improved even further

using different heuristic templates and parameter tuning. The original hyper-

heuristic performed well on bin packing and permutation flow shop instances.

Kubalik (2012) presented two hyper-heuristics including the evolutionary

based approach, ISEA which was used in CHeSC. Both hyper-heuristics

randomly choose between ruin recreate, mutational and local search low level

heuristics in a certain order. ISEA evolves sequences of low level heuristics,

where each sequence is a permutation of low level heuristics using a local

search heuristic as the first and last entries. All moves are accepted during the

search process. This method performed well on the one dimensional bin

packing instances. In Kubalik (2012), an improved variant of the hyper-

heuristic is described as well.
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Sim (2011) provided a hyper-heuristic which ignored the crossover heuristics.

Each low level heuristic is selected based on its rank which depends on the

improvement by the heuristic. The worst performing low level heuristic is

placed in a tabu list. The tournament mechanism with a tour of size 2 is used

to select a low level heuristic based on their ranks. Simulated annealing is used

as the move acceptance component.

The hyper-heuristic proposed by Gomez (2011) made use of the evolutionary

process based on a reinforcement learning scheme. The method maintains a set

of all low level heuristics and another subset containing local search heuristics

only. At each step, the proposed hyper-heuristic selects a local search heuristic

and then another heuristic to apply to a candidate solution. Each low level

heuristic is associated with a selection probability. If the chosen low level

heuristic generates an improvement, then the selection probability of that

heuristic is increased. If the selected low level heuristics generate a worsening

solution, both of their selection probabilities are decreased. The author

described a way adaptively deciding the depth of search and intensity of

mutation parameters.

Nunez and Ceballos (2011) presented an Ant Colony Optimization inspired

hyper-heuristic which aimed at improving a solution through a sequence of

low level heuristics at each step. Each link between a pair of heuristics in the

sequence is strengthened depending on the change in the objective function

value after their applications to the solution at hand.

Cichowicz et al. (2012) provided a hyper-heuristic inspired from the behaviour

of bees. A set of sequence of low level heuristics and initial solutions are

created. A subset of sequences is selected and is randomly applied to the

initial solutions. If the solutions are improved by a sequence, the sequence is

allowed to continue searching for potential solutions. If the sequence is not

satisfactory, a new sequence replaces it.

Johnston et al. (2011) joined CHeSC with a hyper-heuristic based on iterated

local search. The diversification and intensification processes are explicitly

enforced. The diversification process uses ruin-recreate or mutational

heuristics. Each low level heuristic in these categories is associated with a
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weight which determines its selection probability. The weights are updated

during the search process based on the performance of the low level heuristics.

After each operation using a selected mutation heuristic, a local search

heuristic is applied to the solution at hand.

Di Gaspero and Urli (2012) provided a reinforcement learning based hyper-

heuristic. Each heuristic is associated with a rank based on the improvements

made by a low level heuristic in a specific solution phase as well as the time

taken to find a candidate solution and a pairing between low level heuristics.

A tabu list is also maintained to keep track of poorly performing low level

heuristics with a low ranking. The performances of different reinforcement

learning mechanisms are compared.

Acuna et al. (2011) proposed a hyper-heuristic improving an initial solution via

applications of randomly selected low level heuristics. A temperature

parameter is used to decide whether the selected low level heuristic continues

the search process or another low level heuristic should be selected. This

hyper-heuristic supports restarts when the search process stagnates.

Elomari (2011) described a hyper-heuristic performing a population based

search. A low level heuristic is randomly chosen based on a distribution and

applied to each solution. The best new solutions are accepted and included in

the population. A selection probability is attributed to each low level heuristic

depending on its capacity to diversify and intensify a solution.

McClymont and Keedwell (2011) wish to determine the best sequence of low

level heuristics to use for each problem. The algorithm developed is named

single objective Markov chain hyper-heuristic (MCHH-S), where each low

level heuristic is considered a state and a probability is attributed to each

possible sequence i.e. each low level heuristic is graphically represented as a

vertex and en edge links each vertex including an edge that links the vertex to

itself. Each vertex is given a probability that represents the possibility of using

the next low level heuristics in the solution process. An initial population of

solutions is determined, a random heuristic is applied to a random solution in

the population, if the candidate solution is improved the child solution is

returned to the population and the probability of using the low level heuristic is
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increased. The next low level heuristic to use is selected randomly and it is

applied to the next current solution in the population.

Khamassi (2011) introduced an ant-based hyper-heuristic. A directed graph

representation for the successive selection of low level heuristics is utilised.

Each vertex in the graph represents a low level heuristic and the heuristics are

selected based on the choice made by travelling ants. Each tour of the graph is

evaluated and the best ones are kept. The pheromone placed on each edge is

updated according to the results obtained, i.e.; the best sequence of heuristics

will have a higher pheromone rate.

3.4 Other Studies

Burke et a1. (2010a) compared the performance of seven different hyper-

heuristics using HyFlex on three domains; personnel scheduling, one

dimensional bin packing and permutation flow shop. The first hyper-heuristic

was an iterative local search algorithm which used hill climbing heuristics in

each problem domain. The hyper-heuristic improved a solution at each

iteration until no further improvements could be made. The other six hyper-

heuristics combined two heuristic selection methods with three move

acceptance methods. The first heuristic selection method used was simple

random. The second method used a dynamic tabu list and assigned a score

(rank) to each low level heuristic. The heuristic with the highest score that is

not in the tabu list is selected and applied to the problem. If the solution is

improved, then the rank of this low level heuristic is increased, if not, this low

level heuristic's score is decreased. The first proposed acceptance criterion

accepts all improvements and deteriorations with a 5% probability. The

second approach also accepts improvements and no deterioration, initially.

However, after 0.1 second, if there is no improvement, deteriorations are

accepted at the rate of 5%, if after a further 0.1 second, still no improvement is

obtained, the deterioration rate accepted is increased to 10%. The third

acceptance criterion is based on a threshold acceptance method known as great

deluge. The best overall performance was obtained using the iterative local

search hyper-heuristic across all domains.
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Burke et a1. (2011a) implemented two hyper-heuristics in HyFlex and tested

them on five instances from the following problem domains: personnel

scheduling, permutation flow shop, one dimensional bin packing problem and

maximum satisfiability problem. Two hyper-heuristics based on the same

iterative local search framework as in (2010a) embedding two different

heuristic selection methods are investigated. The first one is choice function

and the second one is a reinforcement learning mechanism which rewards

operators proportional to the change in the objective function. A high

improvement assigns a high reward to the move operator. Each reward for

each operator is accumulated and the probability of an operator being selected

increases with the reward. The second technique provided better results.

Ozcan and Kheiri (2011) described a hyper-heuristic method applied to the

Hyflex training instances provided prior to the CHeSC competition. A smaller

subset of useful low level heuristics is determined and put into a list of active

heuristics using a greedy strategy and dominance which considers the trade-off

between the improvement achieved by a heuristic and the time required for that

achievement. For example, an extremely quick and effective heuristic which

improves a solution reasonably is considered to be the same as a slow and

extremely effective heuristic. Using the active list, a low level heuristic is

selected using random gradient Cowling et a1. (2000). When this second stage

stagnates, the algorithm goes back to the greedy approach to reprocess all low

level heuristics and decide which ones will be used in the next stage. This

hyper-heuristic performed better than eight previously proposed hyper-

heuristics which were put into a mock competition prior to CHeSC by the

organisers.

Drake et a1. (2012) presented a variant of choice function which proposed a

different scheme for adjusting the weightings of choice function performance

indicators. This variant outperformed the generic choice function Cowling et

a1. (2000) on the CHeSC benchmark.

Loudni (2012) created a modified iterative local search approach that

addressed the trade-off between intensification and diversification processes

for graph colouring. The approach determines the size of a perturbation step
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and allows local search algorithms to run for a predetermined number of

iterations. Each time the solution is improved, a large perturbation is

employed and the number of iterations during local search is diminished.

When the candidate solution does not improve for a certain number of

iterations, a small perturbation is made. The algorithm is applied to a

benchmark of graph colouring problem instances. The proposed approach

delivers a comparable performance to the best known algorithms.

Kheiri and Ozcan (2013 under review) proposed another hyper-heuristic based

on a round-robin strategy for neighbourhood selection, namely; Robinhood

hyper-heuristic. The authors used all low level heuristics provided in HyFlex.

The low level heuristics are ordered by category as in mutational, crossover

and hill climbing. The ruin and recreate heuristics are considered as

mutational heuristics. Then low level heuristics are chosen randomly from

each category and applied to the candidate solution successively until there is

no further improvement. The heuristic selection component allocates equal

execution time from the overall time for each low level heuristic, while the

move acceptance component enables partial restarts via an automatically

adjusted acceptance probability rate, when the search process stagnates. The

Robinhood hyper-heuristic would have ranked the fourth in the competition.

3.5 Remarks

As can be ascertained, many hyper-heuristic methodologies have emerged over

the last few years. The CHeSC competition has encouraged the exploration of

this method to successfully solve six different problem domain and unseen

instances in each domain. A review of selected work done on selection hyper-

heuristics and specifically within the CHeSC competition was made in order

to place in context the four hyper-heuristics proposed in this thesis. The four

hyper-heuristics presented can be categorised in two more general strategies.

All four hyper-heuristics can be classified as selection hyper-heuristics with

deterministic move acceptance criteria. The four easy-to-implement selection

hyper-heuristics are based on iterated and greedy search strategies. These

hyper-heuristics are easy to implement. They necessitate setting of less

number of parameters when compared to many of the existing approaches. The
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empirical results on the benchmark problems included in CHeSC will be

presented in Chapter 7.



Chapter 4

Analyses of Problem Domain

Implementation in HyFlex

This chapter provides a background on the design of the hyper-heuristic

strategies proposed to solve seven problem domains. As mentioned previously

for six problem domains the hyper-heuristics are developed using the HyFlex

framework. To establish strategies, it is important to understand the way in

which each low level heuristic works. This implies an evaluation of the

performance of each low level heuristic as well as evaluating the impact of

specific ordering and combinations of low level heuristics. Subsection 4.1

presents the initial experiments done on four problem domains included in

HyFlex Le. the Boolean maximum satisfiability, the permutation flow shop, the

one dimensional bin packing and the nurse rostering problems. The subsection

4.2 looks briefly at performance of the low level heuristics designed for the

surgery admission planning problem. These are not included in the HyFlex

framework, they have been developed specifically for the thesis. Remarks are

included in section 4.3.

4.1 Initial experiments on the HyFlex low level heuristics

Prior to developing the hyper-heuristic strategies presented in this thesis, other

approaches were used as inspiration. As previous studies have shown local

search approaches can be very powerful tools. The iterated local search hyper-

heuristic used by Burke et al. (2010a) established this method as being the

winner when compared to other more complex methods. Burke et al. (2010a)

applied their hyper-heuristics to instances of different problem domains

included in HyFlex. Following the results of Burke et al. (2010a) and after

having tested different types of low level heuristics included in HyFlex two

main hyper-heuristic strategies are developed. From these two strategies four

unique and novel hyper-heuristics are created. This chapter will focus on

64
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explaining the approaches by providing details of the underlying experiments

done and the results obtained prior to creating the four hyper-heuristics.

In order to develop the two main hyper-heuristic approaches, all low level

heuristics from each problem domain were tested. The initial experiments and

the hyper-heuristic strategies were tested and developed for healthcare issues,

more specifically, the nurse rostering problem. The tests were therefore,

conducted using the 43 real world benchmark nurse rostering problems

available in an extended library of HyFlex. As mentioned previously, the

nurse rostering problem has been researched over the last 45 years in the area

of operational research. The 43 real world benchmark problems were chosen

to conduct the initial tests as opposed to using surgery scheduling problems

because there is no current general definition of the surgery scheduling

problem. No consensus exists on the definition of the surgery scheduling

problem and the data sets that can be accessed do not constitute a wide array of

different problems from different hospitals and countries as is the case for the

nurse rostering problem.

Once these preliminary experiments were completed, public instances for other

problem domains were obtained from the CHeSC competition website. When

completed, the tests enabled the evaluation of potential approaches and their

level of generality. The goal was to evaluate and understand the low level

heuristics behaviour during different stages of the search (or solving) process.

The same methodology was used for all experiments described in this chapter.

The experiments were repeated 31 times for all instances of the forty three

nurse rostering problems. The same experiments were also done using 10

public instances included in the CHeSC competition with the goal of

understanding their behaviour during different stages of the search process,

these were repeated 31 times. The primary goal was to evaluate each low

level heuristic individually and to find which low level heuristics performed

better than the others. Each time, a low level heuristic was successfully

invoked for 1000 iterations to observe how they perform at the start of the

search process.
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For the first set of experiments, starting from a random initial solution, each

individual low level heuristic was applied individually iteratively. The

improvement is calculated between the current candidate solution and the

previous candidate solution. Table 4.1 to Table 4.4 provides, as an example,

the improvement between the initial solution and the final result for one

instance of four problem domain evaluated Le. the one dimensional bin

packing, nurse rostering, the Max-SAT and the permutation flow shop problem

domains. The problem instances used as examples are selected based on their

level of complexity and the overall size of the problem. Each column

represents the total improvement achieved by applying the low level heuristic

analysed iteratively over each run between the initial candidate solution and

the final solution in terms of objective function value. The first cell represents

the improvement between the initial random solution and the final solution

after 31 runs Le. 1000 iterations/run. The following notation is used for the

remainder of this chapter, LS denotes a local search algorithm, MU represents

a mutational algorithm, RR denotes a ruin and recreate algorithm and CO

indicates a crossover heuristic, the indices defined in HyFlex to identify each

heuristic are added. If a negative value is encountered it means the current

solution is worse than the previous solution. The objective function values

obtained between each run by low level heuristic for each problem domain can

be found in Appendix A.

TABLE 4.1 Improvement between initial solution and final solution over 31
runs of 1000 iterations for each low level heuristic for one instance, of the one
dimensional bin packing domain.

LS4 LS6 MUO MU3 MUS RRI RR2 C07
3.8% 4.0% 3.8% 3.9% 2.3% 3.6% 3.0% 1.8%

TABLE 4.2 Improvement between initial solution and final solution over 31
runs of 1000 iterations for each low level heuristic for one instance of the nurse
rostering problem.

LSD LSI LS2 LS3 LS4 COS C09 COlO MUll RR5 RR6 RR7

18.0% 19.0% 22.0% 24.0% 17.0% 7.0% S.O% 9.3% 2.9% 4.2% 3.2% 3.9%
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TABLE 4.3 Improvement between initial solution and final solution over 31
runs of 1000 iterations for each low level heuristic for one instance of the Max-
SAT problem.

LS7 LS8 MUO MUI MU2 MU3 MU4 MU5 RR6 C09 COlO

13.0% 12.0% 4.9% 3.6% 2.1% 2.9% 3.1% 0.3% 0.2% 2.8% 2.1%

TABLE 4.4 Improvement between initial solution and final solution over 31
runs of 1000 iterations for each low level heuristic for one instance of the
permutation flow shop problem.

LS7 LS8 LS9 LSI COl COl COl COl MU MU MU MU MU RR RR
0 1 2 3 4 0 1 2 3 4 5 6

11.0 9.9 6.9 6.7 3.1 2.6 1.8 0.9 3.7 2.9 1.9 2.0 1.0 4.0 2.9
% % % % % % % % % % % % % % %

A few conclusions can be drawn from these sets of experiments. The first

observation is that the local search heuristics from all domains are more

powerful and enabled the best overall improvement on the initial solution

when compared to any other type of heuristics. Following these results, the

hyper-heuristics created will start with an iterated local search. This will

enable the candidate solution to be used in the rest of the algorithms to already

be a better solution than can be achieved consistently with any other low level

heuristic.

HyFlex does not provide in depth information on the category of all low level

heuristics. A heuristic in the crossover or ruin and recreate categories could be

a local search (hill climbing) or a mutational heuristic. Looking at the

behaviour of heuristics enabled the identification of the category of all low

level heuristics as local search or mutational heuristics. When only

improvements are made to the candidate solution, the low level heuristic is

defined as a hill climber. If a worsening candidate solution is allowed, the low

level heuristic is considered a mutational heuristic. The first and second sets of

experiments showed that all ruin and recreate heuristics are mutational except

one ruin and recreate heuristic included in the permutation flow shop domain.

This heuristic has behaved from our experiments as a local search heuristic,

always finding a non-worsening candidate solution. Table 4.5 provides the

category of each ruin and recreate and cross-over low level heuristics.
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TABLE 4.5 Category of cross-over and ruin and recreate type heuristics for
each domain

Mutational Local Search

Pers. Sched.

RRI, RR2

RR5, COlI

RR6, C09, COlO

RR5,RR6,RR7

C07

RR6, COI2, C013, COl4

ID Bin packing

Perm. Flow Shop

Max-SAT

COS, C09, COlO

A second set of experiments is conducted, where a time limit of 30 seconds is

set as a termination criterion to obtain a good quality solution for a given

instance. At each step, a heuristic is applied to a solution at hand and an

improving solution is accepted. The reason for these tests was to ascertain how

quickly a good solution can be achieved by each low level heuristic in each

domain. Tables 4.6 to 4.9 illustrate the total improvements between the initial

solution and the candidate solution found after 30 seconds. The same instance

for each problem domain is illustrated in this experiment as was in the first set

of experiments. Detailed tables containing the improvement at each step is

included in Appendix A.

TABLE 4.6 Results obtained after 30 seconds for each low level heuristic for
the one dimensional bin packing problem, one instance.

LSI LS2 MUI MU2 MU3 RRI RR2 COl
2.7% 3.1% 2.7% 1.4% 1.3% 1.2% 1.4% 0.5%

TABLE 4.7 Results obtained after 30 seconds for each low level heuristic for
the nurse rostering problem, one instance.

LSO LSI LS2 LS3 LS4 C08 C09 COl MUI RR5 RR6 RR7
0 1

14.0 16.0% IS.0 16.0 4.8% 5.2% 5.4% 6.1% 1.2% 2.1% 1.6% 1.3%

% % %

TABLE 4.S Results obtained after 30 seconds for each low level heuristic for
the Max-SAT, one instance.

LS7 LSS MUO MUI MU2 MU3 MU4 MU5 RR6 C09 COlO

8.6% 7.9% 2.6% 2.1% 1.9% 1.8% 2.2% 0.0% 0.0% 0.6% 0.1%
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TABLE 4.9 Results obtained after 30 seconds for each low level heuristic for
the permutation flow shop, one instance.

LS LS LS LSI CO CO co CO MU MU MU MU MU RR RR
7 8 9 0 It t2 13 14 0 I 2 3 4 5 6

9.7 6.5 5.4 3.4 0.7 0.8 0.0 0.0 1.0 1.3 1.3 0.2 0.0 l.l 0.9
% % % % % % % % % % % % % % %

As is seen from the results, the improvements using the local search algorithms

on an initial random solution are found quickly, within 30 seconds often the

search stagnates or does not find big improvements, the bigger improvements

to the candidate solution can be found at the beginning of the search process.

This has been true for all domains. The only exceptions are the large instances

of the nurse rostering problems. As an example, the benchmark nurse

rostering instance, MER-A is a larger and more complex problem than most of

the benchmark instances, the schedule for this ward is determined over a 48

days period, 12 shift types are defined and 54 members of personnel of

different skill categories must be scheduled. The schedule for each person

needs to reflect their work contract, the hospital's regulations, the personnel's

preferences and the coverage requirements. In this case, the iterated search

process was found to find a local optimum solution in 14 minutes on average;

this is using all 5 local search heuristics available for the nurse rostering

domain.

The third set of experiments consists of starting the search process with the

best candidate solution found from the second experiment instead of a random

initial solution. Then each heuristic is tested to observe how a heuristic

behaves starting from a locally optimum solution. A summary of the average

percentage of improvement for each low level heuristic for the four problem

domains is provided in Table 4.10. In each column the average improvement

in percentage starting from a random initial solution is included; it is followed

by the average improvement percentage when starting from a better initial

solution (found through the second set of experiments). Appendix A includes

a detailed table of the improvement between the initial solution and the current

candidate solution between each run.
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TABLE 4.10 Average percentage improvement for each low level heuristic.

lDBin Perm. Flow Max- Pers.
Packing Shop SAT Sched.

MUD 4,4 MUD 4,4 MUD 5,5 MUll 3,3
MU3 2,3 MUl 3,3 MUl 3,3 RR5 4,4
MU5 2,2 MU2 2,2 MU2 2,3 RR6 3,4
RRI 3,3 MU3 2,3 MU3 2,2 RR7 4,4
RR2 2,2 MU4 1,2 MU4 3,4 LSO 15,15
LS4 5,6 MU5 2,3 MU5 3,3 LSI 16,16
LS6 4,5 RR5 5,5 RR6 3,3 LS2 15,16
C07 2,3 RR6 3,4 LS7 11,12 LS3 16,17

LS7 10,12 LS8 11,11 LS4 18,18
LS8 10,11 C09 3,4 C08 8,8
LS9 8,9 COlO 2,2 C09 8,9
LSIO 7,7 COlO 9,10
COIl 3,3
C012 2,2
COl3 2,3
C014 1,2

Starting with a better initial solution did not necessarily improve the search

process. The same conclusions from the first set of experiments can be made

for these third sets of experiments. The local search heuristics enabled the best

overall improvement on the initial solution. However, it can also be

ascertained that on certain domains from one random or better initial solution,

the local search heuristics have not provided as much improvement on the

solution as in other domains, as an example this is more prevalent when

solving a one dimensional bin packing problem. The local search heuristics

for this domain are not as powerful as for other domains, such as the nurse

rostering domain.

Another idea explored is to start the search process with multiple initial

solutions. A few initial tests were done to measure the impact on the search

process when more than one initial solution is used. The goal is to find if

when using multiple solutions followed by the application of an iterative local

search process, one of the final solutions obtained is better than the other.

To establish the optimal number of initial solutions that should be used,

extensive experiments were done on 43 personnel scheduling benchmark
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instances. It is found that using two initial random solutions followed by an

iterative local search step provided an average improvement of 20% in the

objective function value between both final solutions. The experiments were

done 31 times on all 43 benchmark instances. The total computational time

required increased on average by 20% when working with two candidate

solutions instead of one.

More experiments were done using 3, 4 and 5 initial solutions. Using 3 initial

solutions provided marginally better results than using two solutions. The

average improvement between the initial and the final objective function value

is only of 20.3%. The time taken to obtain three final solutions using 3

random initial solutions is increased by an average of 40% when compared to

using only one initial solution. This is not a good trade-off between solution

quality and computational time.

Starting the process with 4 or 5 initial solutions is too long. The time required

increments on average by 20% to obtain the best final solution for each new

initial solution generated and no significant and sustained improvements are

found using more than 3 initial solutions. It is noted that an improvement is

found when using 2 initial solutions for the other problem domains. However,

the average improvements are not the same for every domain, these depend on

the local search heuristics available and the heuristic that creates the initial

solution. For example, for the bin packing problem, the increase in

improvement is around 15% on average, it is 12% for the Max-SAT problem

domain and 16% for the permutation flow shop problems. For the VRP and

TSP, the average improvement achieved, when using 2 initial solutions, are

respectively 15 and 13%. Using multiple random initial solutions enables the

search process to explore different solution neighbourhoods and potentially

obtain a better local optimum. Following these results, the hyper-heuristics

developed start the search process with two initial random solutions. next

chapter.

For the personnel scheduling instances the cross-over heuristics provided the

second best improvements. This is the reasoning behind the creation of one

hyper-heuristic approach that will be defined in the next subsection (HH1



Chapter 4 Analyses of Problem Domain Implementation in HyFlex 72

approach), which will make use of the cross-over heuristics. All other low

level heuristics applied iteratively, provide some degree of improvement on the

candidate solution. With these results in mind and to evaluate the importance

of the acceptance criterion on the solution quality, a second hyper-heuristic

approach is created, which will be explained in the next subsection (HH2

approach), which will use all low level heuristics available.

To further illustrate the improvements achieved by the low level heuristics, a

graphic is depicted for the personnel scheduling and the flow shop domains. It

depicts the instances used as examples in the previous tests. The graphic helps

show the improvements of each low level heuristic. As there are 12 low level

heuristics for the personnel scheduling problem and 15 low level heuristics for

the permutation flow shop problem, to view the behaviour of the low level

heuristics, they are divided into three graphics for each domain. Figure 4.1 is

for the nurse rostering instance and Figure 4.2 is for the permutation flow shop

domain.

Objective Function Value
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-lS2
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Time
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FIGURE 4.1 Low level heuristics for Nurse Rostering instance
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FIGURE 4.2 Low level heuristics for Permutation Flow Shop instance

As can be seen in figures 4.1 and 4.2, the local search heuristics outperform

other types of heuristics. It can be noted that each low level heuristic in each

category behaves similarly and the improvements follow a similar distribution.

Once the behaviour of each low level heuristic is understood, the next step is to

evaluate the different combination of heuristics. The experiments consist of

randomly combining two low level heuristic from different categories. The

same methodology is used as for the previous experiments. Table 4.11 to 4.14

present the average percentage improvement achieved. This represents an

overview of the various experiments done. An exhaustive description of all

experiments on all possible combination is omitted due to space limitation.

Table 4.11 Improvement between initial solution and final solution over 31
runs of 1000 iterations for each combination of two different types of low level
heuristic for one instance, of the one dimensional bin packing domain.

LS+MU MU+LS MU+RR RR+MU CO+MU MU+CO

1.8% 2.2% 1.7% 1.2% 1.9% 2.0%

LS+RR RR+LS LS+CO CO+LS RR+CO CO+RR

2.0% 2.9% 4.2% 4.1% 1.7% 1.7%
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Table 4.12 Improvement between initial solution and final solution over 31
runs of 1000 iterations for each combination of two different types of low level
heuristic for one instance, of the nurse rostering domain.

LS+MU MU+LS MU+RR RR+MU CO+MU MU+CO

15.0% 16.0% 10.0% 9.8% 8.4% 9.5%
LS+RR RR+LS LS+CO CO+LS RR+CO CO+RR

4.3% 5.1% 10.1% 11.6% 9.7% 9.2%

Table 4.13 Improvement between initial solution and final solution over 31
runs of 1000 iterations for each combination of two different types of low level
heuristic for one instance, of the Max-SAT domain.

LS+MU MU+LS MU+RR RR+MU CO+MU MU+CO

12.0% 13.6% 1.8% 1.4% 1.2% 2.1%
LS+RR RR+LS LS+CO CO+LS RR+CO CO+RR

10.0% 12.1% 10.0% 12.3% 3.1% 2.9%

Table 4.14 Improvement between initial solution and final solution over 31
runs of 1000 iterations for each combination of two different types of low level
heuristic for one instance, of the permutation flow shop problem.

LS+MU MU+LS MU+RR RR+MU CO+MU MU+CO

7.1% 7.5% 3.8% 4.2% 2.0% 2.2%
LS+RR RR+LS LS+CO CO+LS RR+CO CO+RR

7.0% 7.6% 7.2% 7.9% 3.2% 3.1%

The last set of experiments conducted consists of running iteratively all non-

local search heuristics for 31 runs over 1000 iterations for every domain. A

randomly selected local search algorithm is then applied to the candidate

solution found after the 31 runs. A combination of two or more local search

was also applied. These experiments demonstrated that using one local search

algorithm after using any other local search heuristics will improve the
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candidate solution. A combination of more than one local search heuristic

provides a larger improvement than using one local search heuristic.

4.2 Initial experiments on the low level heuristics developed for the

surgery admission planning problem

The same three experiments were done using the low level heuristics

developed for the surgery admission planning problem. All low level

heuristics were applied iteratively to the 10 instances of the surgery admission

planning problem described in the previous chapter. Table 4.15 provides the

average percentage of improvement for each low level heuristic starting from

an initial random solution and with a better candidate solution.

TABLE 4.15 Average percentage improvement for each low level heuristic.

Surgery

MU9 1,1

MUIO 1,2

MUll 1,2

RR4 1,2

RR5 1,2

RR6 2,3

LSO 15,16

LSI 17,IS

LS2 15,15

LS3 15,16

C07 5,6

COS 5,5

As an example, the improvement achieved by each low level heuristic at each

iteration is illustrated in Figure 4.3 for one instance of the problem. Due to the

large number of low level heuristics (12), the illustrations will be separated

into three graphics (Figure 4.3).



Chapter 4 Analyses of Problem Domain Implementation in HyFlex 77

Objective Function Value

120 ~~------------------------------------------

100 ~~~----------------------------------------
-LSO

-LS1

-LS2

-LS3

80 +---~~~~----------------------------------
60 +-----~--~~-----------------------------
40

20 +---------~~--~~~._~-----------------
o ~~~~~~~~~~~~~~~~~~

Time

Objective Function Value

140

120

100
-MUg

80 -MU10

60 -MUll
-RR4

40

20

0

Time



Chapter 4 Analyses of Problem Domain Implementation in HyFlex 78

Objective Function Value

140 ~-------------------------------------------

120 +.~~~-------------------------------------

60 +-------------~~~~~~~--------------
40 +---------------------~~~--~~-----------

-RRS

-RR6

-C07

-COB

Time

Figure 4.3 Illustration of the improvement achieved by each low level

heuristic.

As can be seen, the results obtained are similar to those found for the other

problem domains. It can be concluded that the local search heuristics

outperform other types of heuristics. Every low level heuristic applied

iteratively provides some degree of improvement. For the surgery admission

planning problem, the cross-over heuristics provide the second largest

improvement. This is unsurprising, as the cross-over heuristics for this

domain, were inspired by the nurse rostering problem. Experiments were also

conducted to review if starting the search process with multiple random

solutions is worthwhile for the surgery admission planning problems. Using

two random initial solutions instead of one over 31 runs of 1000 iterations

provides an average improvement of 18%. The total computational time is

increased by 22% on average. Starting with more than two initial random

solutions provides marginally better results but increases the computational

time of 22% on average for every new initial random solution used. Starting

the algorithm with 3, 4 or 5 random initial solutions provides 19.6%

improvement. This trade-off between computational time and improvement is

not worthwhile.
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A summary of the improvements achieved by combining two low level

heuristics from different categories is given, as an example, for one instance of

the surgery admission planning problem in Table 4.16. These experiments

were run for all instances of the surgery admission planning problem and the

same methodology as for the previous experiments was used. Applying a

cross-over heuristic followed by a local search heuristic provides the best

combination with an improvement of 8% between the initial solution and the

final solution.

Table 4.16 Improvement between initial solution and final solution over 31

runs of 1000 iterations for each combination of two different types of low level

heuristic for one instance, of the surgery admission planning problem.

LS+MU MU+LS MU+RR RR+MU CO+MU MU+CO

5.0% 5.0% 1.0% 1.2% 3.0% 5.0%

LS+RR RR+LS LS+CO CO+LS RR+CO CO+RR

3.0% 4.0% 4.0% 8.0% 1.2% 3.4%

As has been done for the other problem domain included in this study,

following each set of experiments, the behaviour of each low level heuristic

included in the surgery admission planning problem domain will be defined.

The ruin and recreate cross-over type heuristics are found to behave either as a

mutational heuristic or as a hill-climbing heuristic as was the case for the other

problem domain. Table 4.17 provides the category of the behaviour of each

cross-over and ruin recreate type heuristics.

TABLE 4.17 Category of cross-over and ruin and recreate type heuristics for
surgery admission planning problem

Mutational Local Search

Surgery Admission Planning RR4, RR5, RR6 C07, C08



Chapter 4 Analyses of Problem Domain Implementation in HyFlex 80

4.3 Remarks

The next chapter will present the hyper-heuristic strategies developed for the

thesis. These approaches are inspired by the results obtained when running

iteratively each low level heuristic and the improvements provided when

combining low level heuristics. A few conclusions can be drawn. It is found

that starting from a better initial solution does not provide better final results

than starting from a random initial solution; this is the case for all seven

problem domains. The local search heuristics for all domains provide the

largest improvement on any candidate solution.



Chapter 5

Selection Hyper-heuristics

Four easy-to-implement selection hyper-heuristics are introduced in this

chapter, these are based on iterated and greedy search strategies. A crucial

feature of the hyper-heuristics developed is that they necessitate less number of

parameters when compared to many of the existing approaches. This entails an

easier and more efficient implementation, since less time and effort is required

for parameter tuning. The empirical results presented in the following chapters

show that the most efficient and effective hyper-heuristic which contains only

a single parameter outperforms the top ranking algorithms. Section 5.1

introduces the four hyper-heuristics and remarks are included in section 5.2.

5.1 Hyper-heuristic Methodologies

All proposed hyper-heuristics carry different characteristics, although they are

two-stage algorithms sharing the same initial stage. They utilise a random

perturbation iterative local search, inspired from the Greedy hyper-heuristic

which was initially tested by Cowling et al. (2000). This strategy applies all

low level search heuristics on a given solution simultaneously and chooses the

one which produces the largest improvement. In all approaches, the iterative

local search uses only the local search heuristics and ignores the rest of the low

level heuristics. The first approach acts similarly to the iterated local search

algorithm (Lourenco et al., 2003) and memetic algorithms (Moscato and

Norman, 1992) combining multiple perturbation, local search and ruin and

recreate operators in this fixed ordering under an iterative search framework.

This hyper-heuristic uses random (or headless chicken) crossover (Jones 1995)

heuristics as a perturbation operator. The second one uses a Greedy based

approach but allows acceptance of worsening solutions. Two main approaches

are presented. One strategy consists of evaluating the success of using a pre-

selection of low level heuristics. The second approach evaluates the impact of

the acceptance criterion on the final solution. For each approach, two hyper-
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heuristics are described. These are introduced in an attempt to raise the level

of generality of the approaches even further by enabling them to deal with less

execution time across a variety of problem domains. The empirical results

show that one of the proposed hyper-heuristics outperforms most of the

existing hyper-heuristics including the state-of-the-art when evaluated across

seven problem domains. The results will be provided in chapter 6, 7 and 8.

As has been previously defined, one of the goals of the thesis is to develop a

more general method to solve a variety of problem instances in different

domains while having no access to problem specific information. Although for

a part of the research included in the thesis, the HyFlex framework is used, the

objective was to establish a guideline on the highest performing strategy in any

hyper-heuristic environment, where the types, number and efficiency of the

various low level heuristics are not known. The strategy developed and

applied to the six problem domains included in HyFlex will also be used on the

surgery admission planning problem, to further evaluate the strategies

developed for this research.

The previous success of local search based hyper-heuristics inspired the design

of the hyper-heuristic approaches presented. Intensification, i.e. using local

search alone may get the search process stuck at a local optimum. The use of

local search low-level heuristics at the beginning of the search process

provides high quality initial solutions, so all four hyper-heuristics start with

pure hill climbing. Moreover, multiple starting points are sampled in the search

space during this process with the assumption that there will still be sufficient

remaining time for further improvement on the solution at hand. The previous

experiments confirmed this assumption. In both approaches, after the

generation of high quality initial solutions, intensification and diversification

processes are either explicitly enforced or they are supported implicitly

through an extremely flexible move acceptance method. In this section, four

hyper-heuristics are presented. The predetermined sequence non-worsening

hyper-heuristics (HHI and HHladap) and the greedy absolute largest change

hyper-heuristics (HH2 and HH2adap) are created to solve problems across

different domains.
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1. s ~ Si; terminate ~ false;
2. REPEAT DO
3. Apply all Local-Search-LLH
4. II Local-Search-LLH is the index set of all low level local

search heuristics
5. FOR ('tfh E Local-Search-LLH) DO
6. s' ~ Local-Search-Ll.H, ( s ); II Apply the local search

heuristic to s
7.
8.
9.

IF (f(s').isBetterThan[f(s)] ) THEN
s ~ Si;

ELSE
10. terminate ~ true;
11. END IF
12. END FOR
13. UNTIL (terminate );
14. Return s;

FIGURE 5.1 Pseudo-code of Greedy-LS(si)

Both original hyper-heuristics start with a common structure (Figures 5.2 and

5.3, lines 1-3) and create two solutions using initialisation algorithm of a

given domain at the start. Then this step is followed by the application of an

iterative local search as illustrated in Figure 5.1 on each initial solution. The

hyper-heuristics employ a Greedy strategy, Cowling et al. (2000), (Figure 5.1,

lines 3-8) and apply all low level local search heuristics on the initial solution

successively. Consequently, the heuristic yielding the best improvement over

the given candidate solution is selected and the corresponding new solution is

used in the next iteration. This process is repeated under an iterated local

search framework until no further improvements can be achieved. Having

explored the neighbourhood of the initial solutions, diversification is needed.

Using the best improved solution from the local search stage, the first hyper-

heuristic then applies a randomly selected cross-over from the available cross-

over low level heuristics (Figure 5.2, line 6), the new solution is compared to

the previous solution and only a non-worsening solution is accepted. As the

cross-over heuristics combine two solutions to create a new solution, it is

important to note that the best initial solution from the previous step is taken

and the second solution is randomly created as an initial solution. As

mentioned previously, each problem domain has a different way of creating an
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initial solution. For example, in nurse rostering, this initialisation algorithm

keeps a solution always feasible and so any solution out of this algorithm is

already an improved solution rather than a totally random solution. A

randomly selected local search heuristic from the set of low level local

searchers is applied to the resulting solution (Figure 5.2, line 7). The new

solution is accepted only if a non-worsening solution has been found. In 30%

of the cases a ruin recreate heuristic is called (Figure 5.2, lines 13 and 14).

This step is applied as an attempt to ensure exploration of a larger search space

and avoid getting stuck at a local optimum. Again the new solution is accepted

only if it is non-worsening after having applied a randomly selected local

search algorithm from our low level heuristic set (line 14). Until a pre-set time

limit is reached the steps are repeated from the selection of the crossover

heuristic to the application of the last local search. This hyper-heuristic is

named a predetermined sequence non-worsening hyper-heuristic and labelled

as HHI. The pseudo-code of the HHI algorithm is provided in Figure 5.2.

The hyper-heuristics were first tested on the nurse rostering domain. The

extended benchmark includes the low level heuristics, 43 real-world problems

and the best known solution for each problem. HHI when applied to the nurse

rostering domain, applies a ruin and recreate type heuristic when the candidate

solution is 50% worse than the best known solution.
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1. S'I ~ Greedy-Lsts.);
2. S'2~ Greedy-Lsfs-);
3. s' ~ bestOf(s'h S'2);II Select the solution with the best quality
4. WHILE remaining time limit is not reached DO
5. Create solution s;
6. Apply randomly selected cross-over to sand Sf: output s'';
7. Apply randomly selected local search to s";
8. IF (f(s").isBetterThan[f(s') ] ) THEN
9. s' ~ s";
10. END IF
11. Create a copy of s' called Scopy;
12. Apply randomly selected ruin and recreate heuristic

with probability of 0.3 on Scopy;
13. Apply randomly selected local search to Scopy;
14. IF (f(scopy).isBetterThan[f(s') ] ) THEN
15. s' ~ Scopy;
16. END IF
17. END WHILE

FIGURE 5.2 Pseudo-code of the predetermined sequence non-worsening
hyper-heuristic (HHI) operating on a problem domain using an objective
function j{.)

The second hyper-heuristic also initially creates two solutions. Then similar to

HHl, the iterative local search process is applied on both initial solutions. The

second hyper-heuristic also uses the best improved initial solution and applies

all the low level heuristics to the candidate solution in the next stage. HH2

keeps all new solutions produced by each low level heuristic at each iteration.

The low level heuristic generating the largest absolute change in the quality of

a solution (objective value) is selected implying that a worsening solution is

allowed. This last step continues until a pre-set time limit is reached. This

hyper-heuristic is named as greedy absolute largest change hyper-heuristic and

labelled as HH2. The pseudo code is shown in Figure 5.3.

HH 1 and HH2 were successful in providing good results for the nurse rostering

and the surgery admission planning problems. However, when these were

tested on instances in the other five problem domains, with a time limit of 10

minutes, the results were not found to be as good as the best algorithms

submitted to the CHeSC competition. This is mainly due to the fact that using

local search heuristics at the first stage of the algorithm is time consuming.
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The local search heuristics could be more efficient during the first stage of the

hyper-heuristics. For a given problem and approach, if the basins of attraction

are close to each other, which seems to be the case in nurse rostering, a large

perturbation is not necessary at the beginning of the search process, but if the

basins of attraction are far from each other or the search landscape contains a

lot of plateaus, a larger perturbation is necessary to improve the search process

and ensure that the algorithm does not get stuck at a local optimum. It is

therefore proposed to modify the first stage of both hyper-heuristics creating

HHladap and HH2adap from HHI and HH2, respectively. The modified

versions of the hyper-heuristics terminate in the first or second stage if the time

limit is exceeded. A learning process is introduced in the modified hyper-

heuristics to manage the trade-off between diversification and intensification.

After a small number of initial iterations, denoted as procIter, the current

candidate solution is compared to the previous solution. This check is done

right at the start of the stage to make a decision regarding how to proceed. If

the improvement of the current solution in the objective value over the

previous solution is worse than an expected value, which is a 8 factor of the

previous solution, a large perturbation using a randomly chosen mutational

heuristic is made and the number of iterations for which the iterative local

search continues is reduced. Otherwise, the iterative local search proceeds

without any interference. A similar method has been applied to graph

colouring problems by Loudni (2012).
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1. S'I ~ Greedy-Lstsj);
2. S'2 ~ Greedy-Lfiis-);
3. s' ~ bestOf(s'l, S'2); II Select the best solution with respect to the

objective values
4. WHILE remaining time limit is not reached DO
5. Initialise max-heuristic-index pointing to the first heuristic,

Max-diff ~ -1;
6. FOR (Vh E LLH) DO II LLH is the index set of all low level

heuristics
7. Apply low level heuristic h to s and save the resultant

solution in s'[h]
8. difflh] ~ If{s'[h]) - f{s) I;
9. IF (diff(h) > Max-diff) THEN
10. Max-diff ~ difflh];
11. max-heuristic-index ~ h;
12. END IF
13. END FOR
14. s ~ s'[max-heuristic-index]; II Accept heuristic h creating the largest

diff
15. END WHILE

FIGURE 5.3 Pseudo-code of the greedy absolute largest improvement hyper-
heuristic (HH2) operating on a problem domain using an objective functionf{.)

A set of initial parameter tuning experiments are performed to decide from one

of the values for proclter = {4, 5, 6, 7} and £5 factor = {0.01, 0.02, 0.03}. The

results show that 4 and 0.01 are good choices for proclter and 8, respectively

for the instances of the problem domains explored in this study. So, if after 4

iterations the candidate solution cannot be improved by at least 0.01 of the

previous solution, a large perturbation is made. The proposed modification in

both hyper-heuristics improves the efficiency of the local search stage. This

has brought an improvement on the results for all problem domains; these will

be reviewed in the next chapters.

5.2 Remarks

In this chapter two hyper-heuristic approaches are defined. The first approach

privileges a pre-selection of low level heuristics that performed well in

preliminary tests (HH 1 and HH 1adap). The second approach uses a more

greedy strategy by applying all available low level heuristics (HH2 and

HH2adap). In order to establish the best approach, the results will be
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presented and analysed for each problem domain in the following chapters.

Chapter 6 includes the results for all 43 instances of the nurse rostering

problem. Chapter 7 provides the results for the Max-SAT, the permutation

flow shop, the one dimensional bin packing, the travelling salesman and the

vehicle routing problems. Chapter 8 includes the results found for the surgery

admission planning problem.



Chapter 6

Selection Hyper-heuristics for Nurse

Rostering

In this chapter, the results of the four hyper-heuristics that have been

developed and presented in Chapter 5 are applied to 43 real world benchmark

instances of the nurse rostering problem. All four hyper-heuristics will be

compared and evaluated. The hyper-heuristics will also be evaluated against

other algorithms; hyper-heuristics, exact methods or heuristics. The results

will be discussed. As mentioned previously both hyper-heuristic approaches

are different. Each strategy will be reviewed to see which approach is the best

in the overall and/or in which cases an approach is better than the other one

depending on the problem structure.

It is important to note that the method proposed does not require any fine

tuning or adapting to the different problems being solved. When compared

with other algorithms the results obtained by both hyper-heuristics are very

competitive and in some cases the best known results are obtained.

6.1 Design Variation of Proposed Hyper-heuristics for Nurse
Rostering

All four hyper-heuristic approaches are defined in Chapter 5. These

approaches are used consistently to evaluate all seven problem domains

investigated in this research. However, further explanations are required on

the design process of the hyper-heuristics. As mentioned previously, the main

objective of this research is to develop a more general algorithm to solve

healthcare problems, specifically nurse rostering. When designing the first

hyper-heuristic approach for nurse rostering i.e. HHI and HHladap, applying a

ruin and recreate heuristic is only done when the current candidate solution

evaluated is 50% worse than the best known solution (Figure 5.2 line 12 in

chapter 5), this will be referred to as the comparison factor. A series of

experiments were conducted on all 43 instances of the nurse rostering problem

using different comparison factors ranging from 0.1 to 0.9. The experiments
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were performed 31 times on all instances. The comparison factor that provides

the best final objective function value is 0.5. Tables 6.1 and 6.2 provide the

average and the best objective function values found for 5 nurse rostering

problems. Figure 6.1 illustrates the average objective function value for one

instance of the nurse rostering problem for the factors ranging from 0.1 to 0.9

(0.1,0.11,0.12, .... ,0.99).

TABLE 6.1 Average objective function value found for each companson

factor for 5 nurse rostering instances. The best known solution is provided in

the column headed BKN.

Factors
Instances 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 BKN
BCV5.4.1 66 66 66 66 48 48 52 52 52 48
ORTECOI 520 480 480 480 380 390 390 390 410 270
QMC-I 44 38 36 24 20 24 24 25 25 14
SINTEF 38 38 28 24 10 18 18 18 22 0
ERRVH-B 3952 3840 3678 3542 3428 3548 3670 3780 3780 3121

TABLE 6.2 Best objective function value found for each comparison factor for

5 nurse rostering instances. The best known solution is provided in the column

headed BKN.

Factors
Instances 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 BKN
BCV5.4.1 66 62 60 60 48 48 52 52 52 48
ORTECOI 500 470 470 470 380 390 390 390 410 270
QMC-l 42 37 36 24 20 24 24 24 25 14
SINTEF 36 36 24 18 8 12 12 16 20 0
ERRVH-B 3882 3640 3578 3502 3402 3458 3570 3570 3600 3121
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Figure 6.1 Average objective function value for each comparison factor for the

SINTEF nurse rostering instance.

6.2 Evaluation Method and Experimental Methodology

The goal of this research is to provide a more general method to solve different

nurse rostering problems without modifying the algorithms when solving each

instance. The question of the method of the evaluation of the hyper-heuristics

arises. The aim is to obtain a good solution to each instance without adapting

the hyper-heuristics. It is important to note that the goal is not to compete with

algorithms designed specifically for the problem at hand, therefore the

objective is not to obtain the best known or optimal solution. The objective is

to obtain a good solution to the problems in an acceptable computational time.

Other hyper-heuristics or other meta-heuristics have been used to solve some

of these benchmark instances but not one has been applied to all instances. It

is for this reason that the results are compared with the best known or optimal

solution for each instance.



Chapter 6 Selection Hyper-heuristics 92

Firstly, HHI and HH2 were used to solve the forty three benchmark instances

of the nurse rostering problem. Secondly, the modified versions of these

hyper-heuristic approaches HH1adap and HH2adap are also applied to the

forty three benchmark instances of the nurse rostering problem. All four

hyper-heuristics, HH1, HH2, HH1adap and HH2adap were run on each

problem 31 times. The experiments were performed on Intel(R)

Core(TM)2Duo CPU E8500 @3.l6GHz. The results shown are the average

objective function and the average time taken for each instance over thirty one

runs. As mentioned previously, the first part of both algorithms uses a

common structure, the initial solution is found when no further shifts can be

assigned or swapped in the roster without increasing solution quality. The

same methodology was adopted to run the modified versions of both hyper-

heuristic approaches. A validator which is included in the extended

benchmark library for the nurse rostering domain has been used when running

the hyper-heuristics on the 43 problem instances.

6.3 Average performance comparison of hyper-heuritics

The experimental results for HH1 and HH2 along with their adaptive versions

are summarised in Tables 6.3 and 6.4, respectively. The average objective

function value ("avr.") and time ("avr. t.") over 31 runs is provided for each

hyper-heuristic for a given instance. The column labelled as "st. dev." is the

standard deviation from the average objective value. All times are reported in

seconds unless otherwise m is used to denote minutes. As a statistical test, a

student's t-test is performed between a pair of hyper-heuristics assessed based

on the results from the 31 runs for each benchmark instance. The following

notation is used under the column of "vs." in Tables 6.3 and 6.4: A > B

indicates that the algorithm A performs better than the algorithm B and this is

statistically significant at a 95% confidence level while < denotes vice versa.

A ~ (~ or -) B indicates that the algorithm A performs slightly better (worse or

no different) than the algorithm B.

Tables 6.3 and 6.4 show that each any-time hyper-heuristic terminates in less

than 371 seconds on average, excluding the MER-A instance. The average

overall duration used during the search process by an adaptive hyper-heuristic
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is always either the same or less than its non-adaptive version for a given

instance, yet the adaptive hyper-heuristics perform better than their non-

adaptive variants on average in the overall. For example, the adaptive versions

of the hyper-heuristics perform well on MER-A terminating after 10 minutes

on average, while HH1 generates the worst average running time of 33 minutes

for this instance and the average solution quality is still not as good as

HH1adap and HH2adap achieves.

From Table 6.3, it has been observed that HHladap is statistically significantly

better than HH1 for 7 instances out of the 43 benchmark problems:

BCV6.13.1, ORTECOl, ORTEC02, QMC-2, GPost-B, WHPP, and QMC-A.

There is no instance for vice versa. HH1adap provides slightly better results on

IS instances, while HH1 performs slightly better in only 5 cases. Both HH1

and HHladap obtain the optimal solutions in all runs on the 7 benchmark

instances ofBCV5.4.I, BCV.S.l3.I, BCVS.l3.2, Millar2sI, Millar2sI.l, Musa

and Ozkarahan. There is no average performance difference between both

algorithms for the remaining 5 instances. In the overall, HH1adap is better

than HHI.
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TABLE 6.3 Average performance comparison of BB 1 and BH 1adap, where a
bold entry indicates that an algorithm obtained the optimal result in all runs on
the relevant instance

HHl vs. HHladap

Instance avr, st.dev. avr.t. avr. st. dey. avr. t.
BCV1.8.1 256.2 3.7 32 ~ 258.0 3.2 32

BCV1.8.2 866.4 6.9 35 s 864.7 7.3 35

BCVl.8.3 235.5 4.9 34 .... 235.5 3.2 34

BCVl.8.4 249.0 7.8 32 ~ 249.0 5.2 32

BCV2.46.1 1542.8 58.0 38 .... 1542.8 39.0 38

BCV3.46.1 3302.0 101.8 54 s 3298.3 91.4 54

BCV3.46.2 895.8 1.5 55 s 895.6 1.1 55

BCV4.13.1 10.3 0.5 27 .... 10.3 0.5 27

BCV4.13.2 10.3 0.4 27 s 10.2 0.3 27

BCV5.4.1 48.0 0.0 20 .... 48.0 0.0 20
BCV6.13.1 790.1 9.9 55 < 770.1 6.4 55

BCV6.13.2 392.0 0.0 20 .... 392.0 6.3 20

BCV7.10.1 387.3 9.3 24 ~ 389.0 9.6 24

BCV.8.13.1 148.0 0.0 23 .... 148.0 0.0 23
BCV8.13.2 148.0 0.0 34 .... 148.0 0.0 34
BCVAI2.1 2047.7 385.9 1m57 S 1897.7 402.3 1m57
BCVAI2.2 2529.9 214.0 47 S 2519.9 204.0 47

ORTEC01 429.2 32.0 44 < 390.0 16.0 44

ORTEC02 484.2 51.0 55 < 434.0 47.0 55

GPost 20.3 54.7 26 s 18.0 48.6 26

GPost-B 12.2 3.6 29 < 10.0 4.2 29

QMC-l 27.1 3.1 60 s 26.0 4.3 60

QMC-2 32.4 1.5 38 < 31.7 1.2 38

Ikegami2dl 6.6 2.2 1m12 S 6.6 2.2 Im12

Ikegami3dl 29.5 4.1 1m3 S 29.3 4.0 1m3

Ikegami3d 1.1 33.3 4.2 60 s 33.3 3.8 60

Ikegami3d 1.2 34.5 5.8 Im27 S 33.2 5.2 Im27
Millar2s1 0.0 0.0 7 .... 0.0 0.0 7

Millar2s1.1 0.0 0.0 5 .... 0.0 0.0 5
Valouxis 150.6 33.0 27 s 140.9 36.0 27

WHPP 2070.9 62.7 38 < 2000.0 60.0 38

LLR 301.4 0.6 22 s 301.2 0.5 22

Musa 175.0 0.0 22 .... 175.0 0.0 22
Ozkarahan 0.0 0.0 6 .... 0.0 0.0 6

Azaiez 0.9 0.8 27 s 0.9 0.7 27

SINTEF 8.5 2.6 32 s 8.2 2.4 32

CHILD-A2 1360.0 101.8 2m42 ~ 1364.0 98.0 2rn42

ERMGH-A 797.4 1.8 52 ~ 798.0 1.7 52

ERMGH-B 1398.0 21.3 60 .... 1398.0 23.5 60

ERRVH-A 2219.0 64.0 5rn .... 2219.0 66.0 5rn

ERRVH-B 3424.3 95.0 4m S 3404.5 93.0 4rn

MER-A 9839.4 129.0 33m S 9836.0 118.0 10m

QMC-A 27.8 1.3 27 < 27.1 1.4 27
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Table 6.4 shows that there are 13 instances on which HH2adap performs

statistically significantly better than HH2: BCV1.8.2, BCV1.8.3, BCV3.46.2,

ORTEC02, QMC-l, Ikegami3dl.l, Ikegami3d1.2, Valouxis, WHPP, LLR,

SINTEF, CHILD-A2, and QMC-A. Additionally, HH2adap performs slightly

better than HH2 on 13 instances, while vice versa is observed on GPost-B

only. Both HH2 and HH2adap obtain the optimal solutions in all runs on 8

benchmark instances, one of them being Ikegami3d 1 and the rest of the being

the same instances that HHI and HHladap was successful in obtaining the

optimal solutions. On the 8 instances, both HH2 and HH2adap perform

similarly. In the overall, HH2adap is better than HH2.
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TABLE 6.4 Average performance comparison of HH2 and HH2adap and
HH 1adap, where a bold entry indicates that an algorithm obtained the optimal
result in all runs on the relevant instance

HH2adap
HH2 vs. HH2adap vs.

Instance avr. st.dev. avr. t. avr. st. dey. avr. t. HHladap

BCVl.8.1 254.8 2.8 30 s 252.0 3.4 30 >
BCVl.8.2 867.5 7.0 30 < 853.0 7.0 30 >
BCV1.8.3 234.8 3.5 57 < 232.0 3.5 57 ~

BCV1.8.4 248.6 7.3 40 s 248.0 7.5 40 ~

BCV2.46.1 1592.0 19.2 44 ~ 1592.0 19.2 44 <
BCV3.46.1 3385.0 25.0 44 s 3380.0 23.0 44 <
BCV3.46.2 896.4 2.0 60 < 894.0 2.0 60 >
BCV4.13.1 10.2 0.4 35 ~ 10.2 0.5 35 ~

BCV4.13.2 10.2 0.5 30 ~ 10.2 0.7 30 ~

BCV5.4.1 48.0 0.0 20 ... 48.0 0.0 20 N

BCV6.l3.1 784.3 4.6 46 N 784.3 8.6 46 <
BCV6.13.2 392.0 0.0 46 N 392.0 5.0 46 N

BCV7.10.1 386.8 7.0 31 s 386.0 8.0 31 ~
BCV.8.13.1 148.0 0.0 33 N 148.0 0.0 33 N

BCV8.l3.2 148.0 0.0 32 N 148.0 0.0 32 N

BCVAI2.1 2062.0 279.0 55 s 1975.0 269.0 55 s
BCVAI2.2 2615.3 255.7 Im55 :S 2529.0 246.4 Im55 s
ORTECOI 407.7 34.7 42 :S 397.0 24.7 42 :S

ORTEC02 472.6 54.9 67 < 442.0 56.8 67 :S

GPost 12.0 2.0 30 ~ 12.0 7.6 30 ~

GPost-B 12.6 2.3 34 ~ 13.0 3.2 34 <
QMC-l 26.1 3.5 50 < 24.0 3.0 50 >
QMC-2 32.4 1.5 43 s 32.0 1.4 43 s
Ikegami2dl 2.0 0.0 Im4 N 2.0 0.0 Im4 >
Ikegami3dl 2.0 0.0 55 ~ 2.0 0.0 55 >
Ikegami3d 1.1 34.1 3.9 Im29 < 30.0 10.1 Im29 ~

Ikegami3d 1.2 34.6 4.4 Im12 < 31.6 7.2 Iml2 ~

MilIar2s1 0.0 0.0 8 ~ 0.0 0.0 8 N

MiIlar2s 1.1 0.0 0.0 4 N 0.0 0.0 4 N

Valouxis 197.1 39.2 34 < 177.0 28.3 34 <

WHPP 2002.0 1.4 37 < 1990.0 14.2 37 ~

LLR 301.3 0.6 35 < 301.0 0.6 35 ~

Musa 175.0 0.0 25 ~ 175.0 0.0 25 N

Ozkarahan 0.0 0.0 3 N 0.0 0.0 3 N

Azaiez 0.8 0.8 29 :S 0.6 0.2 29 >
SINTEF 1.9 0.7 47 < 1.2 0.7 47 >
CHILD-A2 1184.0 161.0 3ml6 < 1100.0 156.0 3m16 >
ERMGH-A 724.8 74.0 Im25 s 714.1 73.6 Im25 >
ERMGH-B 1354.1 24.0 43 s 1354.1 34.6 43 >
ERRVH-A 2196.6 67.6 5m47 s 2196.0 67.6 5m47 ~

ERRVH-B 3347.4 80.9 6mll s 3317.0 78.2 6mll >
MER-A 9643.0 126.7 30m ... 9643.0 106.7 10m >
QMC-A 28.0 1.1 34 < 27.0 1.1 34 ~
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Both hyper-heuristic strategies HH1adap and HH2adap provide good results.

In some cases, the HH1adap approach is better than the HH2adap version and

vice versa. Based on the results in the last column of Table 6.4, it is observed

that HH2adap is statistically significantly better than HH1adap on 13

instances: BCV1.8.1, BCV1.8.2, BCV3.46.2, QMC-1, Ikegami2d1,

Ikegami3d1, Azaeiz, SINTEF, CHILD-A2, ERMGH-A, ERMGH-B, ERRVH-

B, MER-A. HHladap is statistically significantly better than HH2adap on 5

instances: BCV2.46.1, BCV3.46.1, BCV6.13.1, GPost-B, Valouxis. HH2adap

provide slightly better results than HH Iadap for 11 instances. HHIadap

delivers a slightly better performance when compared to HH2adap on 6

instances. For 8 instances, there is no average performance difference between

both methods. The times taken to obtain the results are also quite similar. It

appears that HH2adap is better all-around to solve the nurse rostering

problems. HH2adap is successful in solving highly constrained problems such

as the Ikegami instances and MER-A and delivers a better performance than

HHladap. However, considering the overall performance of HH1adap, it has

been observed that it still provides good results which are comparable to the

solutions obtained by problem specific algorithms.

The proposed hyper-heuristics have two successive stages: local search

(Greedy-LS: lines 1-3 of the pseudo-codes for HH1 and HH2) and the rest.

Each stage operates as an independent yet successive any-time algorithm.

Another factor that can be looked into is the average percentage improvement

in the quality of solutions after each stage for each hyper-heuristic along with

the time spent during a stage as provided in Table 6.5. The results show that

the second stage of a hyper-heuristic is more time consuming than the first

stage for all problems.

The second stage of the algorithm takes between 61% to 64% of the overall

execution time on average across all instances. Although the second stage

takes more time, the percentage of improvement obtained at the end of the

second stage is in all cases smaller when compared to the percentage

improvement obtained at the end of the first stage. The first stage of the

algorithms improves the initial solution from 41 to 43%, whereas the second

stage yields an improvement of 23, 31 and 32%. These percentage of
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improvements and time spend by stage do not enable to establish which

approach is best on nurse rostering problems.

TABLE 6.5 Average percentage of improvement at each stage of the hyper-
heuristics and average percentage of time taken at each stage by the hyper-
heuristics across each problem domain.

%-improv %-time
Greedy-LS Rest Greedy-LS Rest

HHI 41% 31% 39% 61%
HHladap 43% 32% 37% 63%

HH2 41% 23% 39% 61%
HH2adap 42% 23% 36% 64%

For all instances, both hyper-heuristics provide good results, either the optimal

or best known result, better than the best known result or close to these. It is

important to note that for instance, WHPP, both hyper-heuristics provide

acceptable results as the modelling of this instance includes weights of 1000 or

1 for each constraint.

6.4 Best performance comparison of hyper-heuristics

In this section, a comparison of the best of run results from the algorithms to

the best known solutions is done for each benchmark instance and a discussion

for each instance is provided. The results are summarised in Table 6.6. The

adaptive and non-adaptive versions of each hyper-heuristic strategy provide

generally the same results. A few exceptions are noted for 12 instances, where

better objective function values are obtained by both HHladap and HH2adap.

HHladap outperforms HHI on 3 instances. HHI delivers a better solution than

HHladap for one instance. When compared to the previous best known

solution, BKN, HHladap finds the best solution for 11 instances and HH2adap

finds the best solution for 13 instances. HH 1adap obtains the new best known

solution or the optimal solution 20 times over all instances. HH2adap provides

the new best known solution or the optimal solutions 27 times.
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TABLE 6.6 Comparison of hyper-heuristics to the previously proposed
approaches based on best performance. The entries marked in bold are the
optimal results obtained by the associated algorithm. The italic entries are the
results which are better than best known solution (BKN), where an underline
indicates the new best for the given instance obtained by the associated
algorithm. The success count (s.c.) denoting the number of instances for which
the associated algorithm improved on BKN or obtained the optimal result and
the count of new best (c.n.b.) results obtained by an algorithm are also
provided as a summary.

Instance HHt HH2 HHtadap HH2adap BKN
BCVl.8.l 220 210 220 210 252
BCVI.8.2 830 820 830 820 853
BCVI.8.3 200 220 200 220 232
BCVI.8.4 230 236 230 236 291
BCV2.46.1 1526 1560 1526 1560 1572
BCV3.46.1 3290 3355 3290 3355 3280
BCV3.46.2 894 894 894 894 894
BCV4.13.1 10 10 10 10 10
BCV4.l3.2 10 10 10 10 10
BCV5.4.1 48 48 48 48 48
BCV6.l3.1 760 750 760 750 768
BCV6.l3.2 382 382 382 382 392
BCV7.10.l 381 381 381 381 381
BCV.8.l3.l 148 148 148 148 148
BCV8.l3.2 148 148 148 148 148
BCVAI2.I 1997 1965 1497 1965 1294
BCVAI2.2 1953 1975 1853 1953 1953
ORTECOI 380 380 380 380 270
ORTEC02 390 400 390 400 270
GPost 12 12 12 12 5
GPost-B 8 8 8 8 3
QMC-I 20 18 18 18 14
QMC-2 29 29 29 29 29
Ikegami2dI 4 2 4 0 0
Ikegami3dI 25 2 25 2 2
Ikegami3d 1.1 27 13 24 II 3
IkegamBd 1.2 22 12 22 10 3
Millar2sI 0 0 0 0 0
Millar2sl.I 0 0 0 0 0
Valouxis 120 160 100 160 20
WHPP 1900 1870 1800 1870 5
LLR 301 301 301 301 301
Musa 175 175 175 175 175
Ozkarahan 0 0 0 0 0
Azaiez 0 0 0 0 0
SINTEF 5 0 5 0 0
CHILD-A2 1110 990 1116 990 1095
ERMGH-A 745 700 745 700 795
ERMGH-B 1300 1249 1300 12.J9 1459
ERRVH-A 2179 2146 2069 2116 2142
ERRVH-B 3325 3325 3225 3117 3121
MER-A 9760 9560 9760 9017 9017
QMC-A 24 25 24 25 27
s.c.lc.n.b 24/5 2717 26/6 30/9
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The following observations can be made: all four hyper-heuristics obtain a new

best objective value for all instances of the BCV problems, ERMGH-A,

ERMGH-B, QMC-A except for instances BCV3.46.1 and BCVAI2.1,

however HHladap finds the new best solution for BCVA12.2. The optimal

results are found by all four hyper-heuristics for 14 instances. HH2adap finds

the optimal solution for the highly constrained Ikegami2d 1 and Ikegami3d 1

problems. HH2adap obtains the best new solution for BCV1.8.1, BCV1.8.2,

BCV6.13.l, BCV6.l3.2, CHILD-A2, ERMGH-A, ERMGH-B, ERRVH-A,

ERRVH-B. HHladap also provides the new best solution for BCV1.8.3,

BCV1.8.4, BCV2.46.1, BCV6.13.2 and QMC-A.

The comparisons made between the average results and the best results of the

adaptive and non-adaptive versions of the hyper-heuristics and presented in

Tables 6.3, 6.4 and 6.6 respectively establish that the adaptive versions of the

hyper-heuristics outperform the non-adaptive version of the problem.

Furthermore, HH2adap obtains best known solutions and delivers a better

average performance on more instances than HH1adap.

Figure 6.2 provides an illustration of how the quality of the candidate solution

in hand changes in time during the execution of the first and second stages of

HHladap and HH2adap for a given sample instance based on a sample run

when an algorithm obtains the best solution. The Ikegami 2 shifts

(Ikegami2dl), Ikegami 3 shifts (lkegami3d 1) and the MER-A instances are

chosen as examples for which both algorithms deliver a better performance

than previously known algorithms. The first stage of the algorithm is the same

for HHladap and HH2adap. HH2adap outperforms HHladap in the second

stage of the algorithm.
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FIGURE 6.2 The propagation of the objective value of the current solution

with respect to time for Ikegami2dl during the (a) first and (b) second stages,

Ikegami3dl Cc) first and (d) second stages and MER-A (e) first and (f) second

stages.
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Figure 6.2(a) shows that both methods start the search process with an initial

random solution of similar quality, in this case, 1786 for HH1adap and 1772

for HH2adap for the Ikegami2dl instance. The final candidate solutions from

the two initial solutions are similar, for HH1adap, these values are 9 and 9, for

HH2adap, they are 9 and 6. The first stage is the stage that provides the most

improvement. Illustrated in Figure 6.2(b) HH2adap starts with a better initial

solution in the example provided (i.e. 6) and by accepting worse solutions

allows an exploration of a wider search space of potential solutions, the best

candidate solution, 0, for this example, is obtained very quickly but as the
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stopping criterion is not met, HH2adap continues to explore different possible

solutions.

When solving the Ikegami3d1 instance, Figures 6.2(c) illustrates a similar

behaviour in the first stage of the algorithms to the first stage of the

Ikegami2dl problem (Figure 6.2a). In the second stage (Figure 6.2d), for

HH1adap, a large jump in solution space is noticeable, at the beginning of the

second stage of the search process. HH2adap obtains improving results more

quickly than HHladap but only obtains the best candidate solution two thirds

into the search process.

For the MER-A example, as is shown in Figure 6.2(e), both HHladap and

HH2adap exhibit a similar behaviour in the first stage of the algorithms. For

the second stage, Figure 6.2(f), HHladap starts with a better solution (9770)

and converges more rapidly than HH2adap towards the final solution. This is

because H1adap is unable to find an improving solution. HH2adap jumps from

one candidate solution to another solution, enabling a larger exploration of the

search space of candidate solutions. Ultimately, this allows a better final

solution.

6.5 Remarks

Four extremely effective hyper-heuristics are presented to solve real world

nurse rostering problems. HH2adap is the best selection hyper-heuristic variant

amongst all proposed hyper-heuristics, given the fact that HH2adap allows

partial restarts through the use of an acceptance method which allows

worsening solutions to be accepted. On the other hand, HHI and HHladap,

which is strengthened by the use of a hyper-heuristic performing pure hill

climbing with multiple solutions at the first stage, act as local search

algorithms in the overall during the second stage, increasing the chances that

they get stuck at a local optimum. Yet, the experimental results indicate the

success of the HHl, HH2, HHladap and HH2adap hyper-heuristics which

obtained new best and optimal solutions in the overall on 19, 23, 20 and 26

benchmark instances, respectively. Two key properties of the proposed hyper-

heuristics is that they have less number of parameters than the previously
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proposed approaches for nurse rostering making them easy to implement and

the generality level that they achieved. They do not require any modification

given an unseen instance as long as the problem is defined in a standard

format. Using multiple solutions at the start of the search process and

employing a pure hill climbing stage turned out to be an effective technique as

a part of the overall approach for nurse rostering.

The results for the nurse rostering domain show that selection hyper-heuristics

are sufficiently general approaches that can automatically produce high quality

nurse rosters, even if the characteristics of the problem instances vary

extremely. Furthermore, although not expected, the proposed hyper-heuristics

generated high quality nurse rosters which are comparable to and in some

cases, even better than the rosters obtained from a method, specifically tailored

to the relevant problems.

In the next chapter, the four proposed hyper-heuristics will be applied to

problems in different domains.



Chapter 7

Selection Hyper-heuristics for Cross-

domain Heuristic Search

As mentioned previously, this research's main goal is to establish a more

general method to solve different healthcare problems. Two hyper-heuristic

approaches are developed and applied to 43 different real world nurse rostering

problems, the results are provided in chapter 6. In order to further evaluate the

level of generality of these approaches and review the methodologies. the four

hyper-heuristics developed are also applied to a variety of different problems

in different domains. This chapter will focus on the problem domains

included in the CHeSC competition.

In this chapter, a first comparison is made between both hyper-heuristic

approaches developed and the 8 hyper-heuristics provided as examples for the

CHeSC competition. Secondly, a set of initial experiments are performed to

compare both variants of two hyper-heuristics on five instances from each

CHeSC problem domain. The top two hyper-heuristics are kept and evaluated

against the algorithms submitted to the CHeSC competition. As mentioned

previously both hyper-heuristic approaches are different. Each strategy will be

reviewed to see which approach is the best in the overall and/or in which cases

an approach is better than the other one depending on the problem structure.

Section 7.1 evaluates the performance of the four hyper-heuristics proposed in

this thesis against the 8 hyper-heuristics provided as examples by the CHeSC

organisers. In section 7.2 the experimental methodology is defined. Section

7.3 compares the performance of the original hyper-heuristics BBI and BH2

with their adaptive versions BHladap and HH2adap. Section 7.4 evaluates

the hyper-heuristics against the best algorithms submitted to the CHeSC

competition. In section 7.5 the results will be discussed and section 7.6

include concluding remarks.

106
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7.1 Comparison of New Hyper-heuristics to Eight Examples of
Hyper-heuristics for the Mock Competition and Parameter tuning

7.1.1 Experimental Methodology

Prior to evaluating the four hyper-heuristics against the instances included in

the CHeSC competition. Both hyper-heuristics HH1 and HH2 are evaluated

against 8 examples of hyper-heuristics provided by the CHeSC competition.

Both HH1 and HH2 were run on each instance of each problem domain 30

times. The experiments were performed on Intel(R) Core(TM)2Duo CPU

E8S00 @3.16GHz. The 8 hyper-heuristic examples are run for 10 minutes.

HH1 and HH2 are not run for as long, the first stage of the algorithms

terminates when no further improvement can be made to the candidate solution

through local search heuristics. The second stage of the algorithm stops after a

pre-set time limit.

The comparison is based on the average objective function values over 30 runs

on all instances used by the 8 examples of hyper-heuristics.

7.1.2 Performance Comparison of HH 1 and HH2 with 8 Hyper-
heuristics

In this section, the results obtained after having applied both original hyper-

heuristics (HH1 and HH2) to 10 public instances, across three problem

domains are reviewed. The public instances were used to evaluate the 8 hyper-

heuristics provided as examples by CHeSC 2011.

Table 7.1 to 7.3 summarise the results for each problem domain. The first

column contains the benchmark instances; the second to the ninth columns

represent the average results found over thirty runs for the benchmark hyper-

heuristics, the tenth column shows the average time taken over the thirty runs

for HH1. The eleventh and the thirteenth columns present the average time

taken in seconds over the thirty runs to obtain results with HH1. The twelfth

column includes the average result found for the thirty runs for HH2. Table

7.1 provides the results for the maximum satisfiability problem. Table 7.2

includes results for the permutation flow shop problem and Table 7.3 shows

the results obtained for the one dimensional bin packing problem. The times

are all in seconds unless stated otherwise.
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TABLE 7.1 Max-SAT Problems Results

HI H2 H3 H4 H5 H6 H7 H8 HHI Time HH2 Time

IO 47 35 23 38 125 14 51 46 136 23 136 22
It 35 31 38 51 109 30 37 57 105 48 105 39
12 32 24 26 44 115 27 29 54 102 35 102 25
13 19 13 31 15 54 17 18 25 24 4 24 5
14 11 8 39 32 56 33 10 42 46 17 46 17
15 25 17 56 46 110 50 23 54 45 17 45 18
16 7 6 12 12 16 10 6 18 64 13 64 13

17 6 6 11 12 16 11 7 15 73 13 73 13

18 9 8 13 17 26 14 10 21 57 15 57 16
19 213 211 216 235 263 219 215 233 65 14 65 15

The results obtained by HHI and HH2 are quite close for the Max-SAT, for

the first four instances HHI and HH2 obtain results close to example hyper-

heuristic HS, which is the worst performing hyper-heuristic. For the next three

instances 13, 14 and 15, the average results are middle-ranking. For 16, 17 and

18,HHI and HH2 are the worst performing algorithms. For instance 19,BBI

and HH2 provide by far the best average results, this is due to the first stage of

the algorithm.

TABLE 7.2 Permutation Flow Shop Problem Results

HI H2 H3 H4 H5 H6 H7 H8 HHI T IlH2 T

10 6381 6383 6368 6326 6387 6312 6391 6315 6412 3 6437 2
II 6329 6336 6339 6263 6315 6271 6334 6265 6367 4 6367 2
12 6404 6404 6398 6362 6407 6344 6404 6351 6435 4 6481 2
I3 6390 6389 6369 6366 6392 6350 6385 6366 6418 4 6481 2
14 6481 6468 6439 6407 6468 6398 6480 6419 6509 4 6604 2
15 10547 10549 10544 10503 10549 10500 10542 10522 10581 3 10636 2
16 10965 10965 10965 10923 10965 10922 10968 10957 11034 3 11047 2
17 26440 26440 26487 26382 26476 26424 26450 26406 26536 13 26536 13
18 26984 26958 26998 26864 26974 26896 26928 26939 27031 10 27001 21
19 26779 26754 26818 26721 26756 26764 26767 26726 26778 16 26748 14

The results for HHI and HH2 are comparable to all results obtained by the 8

examples of hyper-heuristics, though, in significantly less computational time.

The time allocated to running the hyper-heuristics examples provided was 10

minutes.
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TABLE 7.3 One Dimensional Bin Packing Problem Results

H1 H2 H3 H4 H5 H6 H7 H8 HH1 T HH2 T

10 0.0170 0.0170 0.0060 0.0117 0.0510 0.0157 0.0219 0.0717 0.0850 3 0.0906 1

11 0.0164 0.0170 0.0070 0.0117 0.0500 0.0118 0.0211 0.0679 0.0080 3 0.0080 1

12 0.0234 0.0235 0.0240 0.0230 0.0280 0.0230 0.0240 0.0310 0.1120 3 0.1090 1

13 0.0248 0.0246 0.0260 0.0246 0.0320 0.0240 0.0260 0.0330 0.0863 3 0.0880 1

14 0.0060 0.0070 0.0003 0.0045 0.0151 0.0068 0.0069 0.0220 0.0422 3 0.0435 1

15 .00428 0.0085 0.0034 0.0037 0.0179 0.0084 0.0090 0.0024 0.0399 2 0.0441 1

16 0.1148 0.0990 0.0110 0.0221 0.1720 0.0484 0.1388 0.1850 0.1750 3 0.1834 1

17 0.1360 0.1360 0.0190 0.0640 0.1820 0.0840 0.1510 0.1841 0.1814 2 0.1897 1

18 0.0550 0.0544 0.0580 0.0920 0.0930 0.0610 0.0560 0.1260 0.1620 2 0.1622 2

19 0.0124 0.0113 0.0160 0.0267 0.0350 0.0170 0.0150 0.0429 0.0560 2 0.0560 2

The same observations can be made for the one dimensional bin packing

problems as for the permutation flow shop problems.

7.1.3 Parameter Tuning

For HHI and HHladap, a ruin and recreate low level heuristic is applied with a

probability p of 0.3. Different values were evaluated for p. Experiments were

run on each instance included in this chapter. The experiments were done on

probabilities ranging from 0.1 to 0.9. The results obtained indicated that 0.3

was the best choice for p. Table 7.4 provides the average objective function

value for probability values of 0.1, 0.3, 0.5, 0.7 and 0.9 for one instance in

each four problem domains.

Table 7.4 Average objective function value for each probability for one

instance in each problem domain included in CHeSC 2011, where BKN

includes the best known solution for the instance evaluated. The best average

objective function values are in bold.

Probability
Instances 0.1 0.3 0.5 0.7 0.9 BKN
Max-SAT 35 29 29 37 34 1
FS 6800 6800 7230 7280 7650 6214
BP 0.1390 0.1390 0.1370 0.1380 0.1384 0.1083
PS 410 380 410 420 430 280

7.2 Experimental Set-up

This sub-section provides the experimental set-up for all tests conducted in this

chapter. All four hyper-heuristics were run on each instance of each problem

domain 31 times. The experiments were performed on Intel(R) Core(TM)2Duo
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CPU E8S00 @3.l6GHz. The proposed hyper-heuristics were tested on the

CHeSC 2011 benchmark. As mentioned previously, the first part of both

algorithms uses a common structure. There is no time limit on the iterative

local search, the search ceases when no further improvements to the candidate

solution are found. The second part for both algorithms has a pre-set time

limit. Each algorithm was run for 10 nominal minutes which was adjusted

based on the benchmarking tool provided on the CHeSC website. The same

methodology was adopted to run the modified versions of both hyper-heuristic

approaches.

First, HHI is compared with HHladap. The comparison is performed based

on the average objective function values over 31 runs on all competition

instances. The same comparison is done between HH2 and HH2adap. The

results are provided in section 7.3. In section 7.4, the top two hyper-heuristics

from the previous set of experiments are evaluated against the algorithms

submitted for the competition. The proposed hyper-heuristics are evaluated

against the competition algorithms based on the F1 scoring system.

7.3 Performance Comparison of the Proposed Hyper-heuristics

In this section, the results obtained after having applied both original hyper-

heuristics (HHI and HH2) and their modified versions (HHladap and

HH2adap) to all competition instances across six problem domains are

reviewed. Table 7.5 summarises the results for each problem domain. The

student's Hest is performed between the original and modified hyper-

heuristics using the results from 31 runs for each problem instance. The

following notation is used: A > B indicates that the algorithm A performs

better than the algorithm B and this is statistically significant within 95%

confidence while < denotes vice versa. A ~ (~ or :::::)B indicates that the

algorithm A performs slightly better (worse or no different) than the algorithm

B. The average objective function value over 31 runs is provided for each

hyper-heuristic for a given instance. The best values are identified in bold.
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TABLE 7.5 Average objective values achieved by the proposed hyper-

heuristics for CHeSC instances

HHladap vs HHI HH2adap vs HH2
instO 9 > II 3 > 8
instl 12 > 19 2 > 13

Max-SAT inst2 15 > 25 2 > 17

inst3 6 > 9 4 > 8
inst4 9 > 32 2 > 24

instO 6228 > 6329 6217 > 6369
instl 26931 < 26730 26262 > 26851

FS inst2 6341 > 6375 6439 > 6463
inst3 11477 < 11468 11552 > 11557
inst4 26830 > 26901 26654 > 27061

instO 0.0179 > 0.0883 0.0186 > 0.0948
instl 0.0079 > 0.0519 0.0086 > 0.0551

BP inst2 0.0063 > 0.0763 0.0055 > 0.0848
inst3 0.1188 > 0.1729 0.1298 > 0.1875
inst4 0.0085 > 0.1258 0.0097 > 0.1277

instO 19 > 25 17 > 22
instl 9676 > 9963 9563 > 9949

PS inst2 3242 > 3335 3210 > 3306
inst3 1565 > 1678 1555 > 1925
inst4 293 > 323 325 > 425
instO 48104.9 > 49043.7 45883.1 > 56124.2
instl 21143872.5 > 21143873.0 21356911.0 ~ 21356911.0

TSP inst2 6821.7 > 7000.7 6898.0 > 7077.7
inst3 66838.0 > 68740.0 67131.0 > 69860.2
inst4 54058.8 > 54068.9 52943.2 > 56124.2

instO 74960.1 > 134940.1 72438.2 > 131834.2
instl 13375.8 > 18276.8 12396.9 > 16787.8

VRP inst2 158717.7 > 271587.2 146896.6 > 253391.3
inst3 23158.1 > 25155.9 20668.1 > 22728.4
inst4 160264.7 > 201279.7 146372.3 > 200987.7

The t-test between HHI versus HHladap and HH2 versus HH2adap shows that

the differences in the average performance of the original and modified

versions of the hyper-heuristics are statistically significant for almost all

instances. For instl and inst3 of the permutation flow shop problem domain,

HHI performs slightly better than HHladap. The average performances of the

modified hyper-heuristics are in general better than their original versions'

almost across all problem domains. HH1adap performs significantly better

than HHI on 20 out of30 instances, while HH2adap is significantly better than

HH2 on 25 out of 30 instances. HH2adap delivers the best performance over

all problem instances for the Maximum Satisfiability and the VRP domains. In

the personnel scheduling and permutation flow shop problem domains,
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HH2adap performs better than HH1adap in 4 out of 5 instances based on

average objective values, while the situation is reversed in the one dimensional

bin packing problem domain.

7.4 Performance Comparison of the Proposed Modified Hyper-
heuristics to the CHeSC Competitors

In this section, the median and best performance of the top two hyper-

heuristics; namely, HHladap and HH2adap are compared to that of the best

performing hyper-heuristic for each instance from the CHeSC 2011

benchmark. Table 7.6 includes the median and best objective values across 31

runs for a given competition instance.

TABLE 7.6 Comparison of the best performing hyper-heuristic among CHeSC
competitiors denoted as Best-HH and proposed hyper-heuristics on all problem
domains using objective function values from 31 runs for each instance.

Median of runs Best of runs
Best-HH HHladap HH2adap Best-BB HB l adap HH2adao

instO 3 12 2 0 4 0

instl 3 10 2 I 5 0

Max- inst2 2 16 2 0 6 0

SAT
inst3 3 6 4 I 4 I
inst4 7 8 2 7 6 I
instO 6240 6230 6228 6214 6218 6214

instl 26800 26901 26202 26722 26898 26198

FS inst2 6323 6325 6339 6290 6323 6298

inst3 11359 11468 11539 11318 11368 11310

inst4 26602 26730 26666 26535 26598 26535

instO 0.0161 0.0179 0.0185 0.0131 0.0172 0.0183

instl 0.0032 0.0076 0.0088 0.0028 0.0028 0.0083

BP inst2 0.0036 0.0054 0.0055 0.0004 0.0051 0.0051

inst3 0.1083 0.0054 0.1278 0.1083 0.1149 0.1277

inst4 0.0035 0.0088 0.0099 0.0031 0.0083 0.0094

instO 18 18 17 II II 9

instl 9625 9615 9565 9325 9605 9400

PS inst2 3223 3213 3206 3124 3204 3110

inst3 1558 1545 1525 1350 1530 1300

inst4 315 295 305 280 280 270

instO 48194.9 48194.9 45879.1 48194.9 48032.2 45473.6

instl 20822145.7 21143872.5 21356711.0 20747367.7 21076843.1 21330170.0

TSP inst2 6810.5 6811.7 6816.0 6796.0 6756.2 6316.6

inst3 66756.2 66840.0 67127.0 65958.6 66058.5 66860.0

inst4 52925.3 54068.8 52938.2 52053.4 53444.1 52126.5

instO 60608.2 74940.1 72418.2 58052.1 66411.1 64089.0

instl 12290.0 13276.8 12394.9 11163.0 12276.3 12278.0

VRP inst2 145333.5 158727.2 146696.6 142517.0 157649.7 145433.4

inst3 20650.8 23155.9 20568.1 20650.8 21884.6 19865.2

inst4 147124.6 160279.7 146227.3 144269.4 158279.8 14J527.7
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The results show that HH2adap outperforms HH1adap achieving 5 draws and

12 wins out of 30 considering the best performance of the best hyper-heuristic

from CHeSC for each instance. HH1adap generates only a single draw

considering the best performance of the CHeSC competitors. Based on the

median performances of these hyper-heuristics, HH2adap again beats

Hll l adap with 13wins and one draw out of30, while HHladap has no wins.

Hll ladap and HH2adap are put into competition with all CHeSC 2011 hyper-

heuristics and their performance is evaluated based on the F1 scoring system.

HH2adap is an efficient and effective hyper-heuristic which outperforms the

best ranking algorithm in the competition; namely AdapHH, Misir et al. (2012)

with an overall score of 203 points. HH1adap, although being inferior to

HH2adap, ranked the third generating an overall score of 134 points. Figure

7.1 illustrates the performance of HHladap, HH2adap and top three ranking

hyper-heuristics from the competition for each problem domain based on FI

scores. HH2adap is the best hyper-heuristic in the maximum satisfiability and

the vehicle routing problem domains based on the FI scores. HHladap and

HH2adap have an identical total FI score and rank first for the personnel

scheduling domain. For the one dimensional bin packing problem, the score of

HHladap is slightly better than HH2adap. HHladap and HH2adap rank the 5th

and 6th, respectively among all other CHeSC 2011 hyper-heuristics which

joined the competition for this domain. For the permutation flow shop

problem, HH2adap scores slightly higher than HHladap ranking 4t
\ while

HHladap ranks 6th among all competing hyper-heuristics. For the travelling

salesman problem, both hyper-heuristics have an identical total F1 score

ranking in 3rd position in the competition.
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FIGURE 7_1Overall and domain based score of the proposed and the top 3 hyper-
heuristics from CHeSC.

To provide another comparison method of the algorithms, Figure 7.2 includes

a normalised version Di Gaspero and Urli (2012) of the median objectives

values of HH2adap (omitting HH1adap) and the algorithms submitted to

CHeSC 2011. A normalised value is a mapping of a median objective value to

a value between 0 and 1. Figure 7.2 illustrates the results for the bin packing

domain, the personnel scheduling domain and the overall results. These

domains are chosen because with the FI scoring system HH2adap obtains its

worst results on the bin packing domain and its best results on the personnel

scheduling problems. With this other evaluation method, HH2adap is still the

best hyper-heuristic overall, performing better than the other competing

algorithms on all personnel scheduling instances included in CHeSC 2011.

HH2adap's performance is worse on the bin packing domain, ranking sixth

amongst all algorithms.
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FIGURE 7.2 Comparison of HH2adap to the other CHeSC hyper-heuristics
based on normalised objective values across all instances on bin packing,
personnel scheduling and all domains.

7.5 Discussions

The success of HH2adap indicates that for problems with many constraints and

conflicting requirements, such as, instances from the personnel scheduling

problems, the move acceptance strategy is more important than the selection of

the low level heuristics. Using two samples from the search space at the start

and applying pure hill climbing based on local search low level heuristics

enabled our hyper-heuristics to obtain better quality solutions across all

problem domains. The initial experiments, which were reported in chapter 4,

show that by using two initial solutions, the improvements in the results are

between 12 and 20% better than using one initial solution for the six problem

domains. When starting the search process using more than two initial

solutions only marginally better results were obtained, for example, for the

nurse rostering domain the improvement on the fmal solution between using 2

and 3 solutions is of 0.3%. This is not a worthwhile trade-off between

computational time and results and so two initial solutions are used during the

first stage. Given the time restriction, it makes sense to perform hill climbing

as long as possible and relying on the internal diversification mechanisms

within the local search heuristics if there is any. When the search process
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stagnates and the algorithm gets stuck, and therefore it is essential to make a

jump to another point in the search space to explore other potential

neighbourhoods where better solutions might lie. The first type of hyper-

heuristic achieve this by utilising crossover and ruin and recreate heuristics,

since these heuristics act as mutational heuristics in almost all problem

domains. A resultant move may create a small or a large variation in the new

solution. Local search is applied immediately after a crossover or ruin and

recreate heuristic is employed. This way, diversification and intensification

processes are explicitly enforced. This process is a generalised version of

iterated local search using multiple operators. The second type of hyper-

heuristic again starts with a good initial solution i.e. a local optimum in the

search space. Applying one heuristic from each category and keeping the

resulting solution helps to explore a different part of the search space.

Diversification and intensification is achieved via not only application of

mutational and local search heuristics, but also accepting a move which

produces the greater change in the quality of a solution.
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TABLE 7.7 Average percentage of improvement at each stage of the hyper-
heuristics and average percentage of time taken at each stage by the hyper-
heuristics across each problem domain.

%-improv %-time
RP-LS rest RP-LS rest

HHI 31 31 37 63
HHladap 42 32 38 62

Max-SAT HH2 32 23 39 61
HH2adap 41 23 37 63

HH1 31 31 37 63
HHladap 42 32 38 62

FS HH2 32 23 39 61
HH2adap 23 23 37 63

HHI 33 24 35 65
HHladap 43 24 35 65

BP HH2 35 25 37 64
HH2adap 43 27 28 72

HHI 41 31 39 61
HHladap 43 32 37 63

PS HH2 41 23 39 61
HH2adap 42 23 36 64

HH1 35 24 35 65
HHladap 44 25 35 65

TSP HH2 29 25 35 65
HH2adap 41 26 36 64

HHI 32 23 42 58
HHladap 44 25 38 62

VRP HH2 29 24 41 59
HH2adap 41 26 40 60

The proposed hyper-heuristics have two successive stages: local search (RP-

LS: lines 1-3 of the pseudo-codes for HHI and HH2) and the rest. We looked

into the average percentage improvement in the quality of solutions after each

stage for each hyper-heuristic along with the time spent during a stage as

provided in Table 7.7. The second stage of a hyper-heuristic is more time

consuming than the first stage for all problem domains. The second stage of

the algorithm takes 63% of the overall execution time on average across all

instances. Although the second stage takes more time, the percentage

improvement obtained at the end of the second stage is in all cases smaller

when compared to the percentage improvement obtained at the end of the first

stage. The first stage of the algorithms improves the initial solution from 30-

40%, whereas the second stage yields an improvement of 20-30%.

The proposed modification in both hyper-heuristics improves the efficiency of

the local search stage. At first glance, considering their average performances,
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it looks like as if both hyper-heuristics perform similarly. For the maximum

satisfiability problem and the vehicle routing problems it is found that

HH2adap provided noticeably better results than HHladap. For both problem

domains, the results using HH2adap were the best or the second best on five

instances with the exception is the VRP instO instance where the score is O.

The total F 1 score for HH2adap for both these problem domains is the highest

when compared to the other CHeSC hyper-heuristics. HH2adap algorithm

produced better results on highly constrained personnel scheduling problems.

The maximum satisfiability problem is also generally highly constrained, once

the local search stage is completed, allowing worsening solutions introduces

the diversity required and yields good results eventually.

In order to further analyse our approaches, a final set of experiments has been

conducted across all instances. Each hyper-heuristic is run for 10 minutes on a

problem instance and the objective function value of the current solution is

recorded every 600 milliseconds until the time limit is reached. Figure 7.3

illustrates a sample run on inst-t from the maximum satisfiability domain. The

first stage of the modified versions of the hyper-heuristics can find better

solutions in less time when compared to the regular versions. The modified

hyper-heuristics spend more time in the second stage attempting to improve a

solution in hand further through diversification and intensification steps. A

similar behaviour is observed for the rest of the Max-Sat instances along with

most of the other instances from the other domains. A good solution is found

before the time limit ends for most of the problems. There are as can be seen

from Table 7.6 a few exceptions. Both approaches do not yield as good results

for the bin packing problem except for inst 1 where the first approach obtains

the best result amongst all CHeSC competitors. For the vehicle routing

problem domain, the second approach provides the best results for inst3 and

inst4 but does not yield very good results for the other three instances.
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FIGURE 7.3 Objective function value of the current solution versus time plot
from a sample run using each proposed hyper-heuristic on inst4 from the Max-
SAT domain.

For the personnel scheduling problems the best score on all instances are found

by both hyper-heuristics, HHladap and HH2adap. This is mainly due to the

first improvement stage of the algorithms which make use of all local search

algorithms. The local search algorithms included in HyFlex for this domain

are very powerful. The improvements are made by identifying the key

violations that the scheduler should remove; for example, if there is a night

shift followed by an early shift as an unsatisfactory workload, the local search

heuristic will identify this violation and attempt to rectify it by swapping

between the same schedule or another person's schedule. As the operators are

efficient for this domain, it is observed that a highly improved candidate
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solution is obtained even before entering into the second stage of the hyper-

heuristics as illustrated in Table 7.7.

The same phenomenon is observed as In Burke et al. (2010a) that by

employing an iterated local search type of strategy based on multiple

heuristics, better results are obtained as compared to simply using all low level

heuristics. The performance of hyper-heuristics is even improved further by the

hill climbing process on two initial solutions using local search heuristics in

the first stage. Ochoa et al. (2009a) analyse the search space of a hyper-

heuristic using constructive heuristics in order to build the best hyper-heuristic

framework. The authors have found that the best solutions to an instance of

the problem are concentrated in a small area of the search space on an

educational timetabling problem. Ochoa et al. (2009b) studied the search

space of flow shop scheduling problem using different representations and

sampling techniques. The analysis reveals similar conclusions. Based on the

improvement achieved by the first stage of the hyper-heuristics, it can be seen

that the best solution are also found in a small area of the search space for the

problem domains evaluated included in CHeSC.

It is observed that selecting randomly a low level heuristic from a specific

category of low level heuristic provides similar results to preselecting and

fixing a specific low level heuristic within a category. As the goal is to have a

general framework and a heuristic from a category is expected to behave

similarly, a random choice is preferred and proved to be successful at the end.

7.6 Remarks

In this study, four selection hyper-heuristics are described which are

implemented as extensions to HyFlex. The best examples from previous work

are used and analyses on the HyFlex problem domain implementations using

the public instances as a guidance to design the proposed hyper-heuristics. The

previous studies indicate the importance of local search as an intensification

component and mutation as a diversification component Burke et al. (2009a,

2010a, 2009c, 2009d), Cowling et al. (2002). The balance between

intensification and diversification IS extremely important for a search

methodology. Especially, if there is lack of guidance due to unfamiliar search
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landscape, a managed trade-off between the intensification and the

diversification of the search process considering the time restriction proves to

be indispensable Ozcan et al. (2006). That is the reason why two types of

hyper-heuristics were designed, one of which explicitly enforces

diversification and intensification under an iterated search like framework and

another one automatically does that via a move acceptance method which

enables large moves in the search space. Online learning mechanisms are

certainly valuable for guiding the search process Burke et al. (2009d). In the

thesis, the use of frameworks which are successful with strong empirical

evidence In search and optimisation were preferred, emphasizing

diversification and intensification either explicitly or implicitly within heuristic

selection or move acceptance Ozcan et al. (2006), Burke et al. (2009d). Given

that a general time contract selection hyper-heuristics design is the goal and the

problem domains provide effective local search operators, diversification is

delayed and the search process is started with intensification only. It has been

also observed that starting with the intensification process using two initial

solutions instead of a single one, improves the quality of final solutions

between 12 to 20%. The empirical results on the CHeSC 2011 benchmark

show that the proposed hyper-heuristics are effective and efficient general

search methodologies. Particularly, HH2adap outperformed the best hyper-

heuristics from the CHeSC 2011 competition and to the best of the author's

knowledge, there is no hyper-heuristic performing better than HH2adap in the

literature, currently. After the intensification stage, the greedy hyper-heuristic

component of HH2adap allows acceptance of a non-improving solution i.e.

solution generating the largest worsening, enables a quick escape from one

neighbourhood to another region of the search space that could potentially

contain better solutions. HH 1adap ranks third on the CHeSC 2011

benchmark.



Chapter 8

Surgery Admission Planning Using

Selection Hyper-heuristics

The main goal of this part of the study is to design a framework to solve

another healthcare problem for surgery scheduling. Considering the success of

the proposed hyper-heuristics across a range of problem domains, including

nurse rostering, and more importantly, observing that the selection hyper-

heuristics do achieve a certain level of generality, a hyper-heuristic framework

is designed and implemented for solving the surgery admission planning

problem. This allows the testing of the four successful hyper-heuristics on this

domain as well as comparison of their performance to a previously proposed

approach. As mentioned previously, there is currently no consensus on the

definition of surgery scheduling within the research community. This is

mainly due to the fact that the surgery scheduling problem has not been studied

extensively, for example as the nurse rostering problem.

The surgery admission planning problem can informally be defined as

assigning known surgeries a day and relevant resources within the planning

horizon subject to constraints. The surgeries can be scheduled within a

prescribed delay from the patient's referral date. The surgeon must also be

available and can only perform one surgery at a time. Once a surgery has been

scheduled for a specific day, it is necessary to assign the time of the day for the

surgery and the operating theatre. The model and datasets used have been

defined in Chapter 2 and are real-world problems.

Section 8.1 describes the new hyper-heuristic software framework designed.

Section 8.2 provides the experimental methodology and evaluation method.

Section 8.3 focuses on the results obtained by the four hyper-heuristics.

Section 8.4 evaluates the benefits of using multiple initial solutions. Section

8.5 provides concluding remarks.

123
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8.1 A Hyper-heuristic Software Framework for Surgery Admission

Planning

The software framework used for this study has previously been defined in

Chapter 2. This subsection will describe the low level heuristics developed to

address the surgery admission planning problems. The four hyper-heuristic

strategies used for this problem domain are the same as the ones described in

Chapter 5. In order to keep the same hyper-heuristic strategy for this domain

the same types of low-level heuristics as in the benchmark software needed to

be created.

The first step consists of assigning the surgeries that need to be scheduled to a

specific day in the scheduling period. To solve the surgery admission planning

problems, like Riise and Burke (2011), the initial schedules created include the

surgeries that have been referred over the last 14 days and any older

outstanding surgeries. The algorithm that creates the initial solution is detailed

below.

The first surgeries assigned are the ones that have been referred for the longest

period i.e. the surgeries are ordered by referral dates and waiting time, the

algorithm will assign a day to a surgery by looking at the referral date. In cases

where the referral dates are the same the urgency of the operations are

considered. As an example if patient A and patient B have the same referral

date, the deadline for the patient's operation is the element that decides which

operation will be placed in the schedule first. The surgery with the longest

referral date is placed in the first slot of the schedule for the planning period,

the second in the second available slot and so on. It is important to note that

when creating the initial schedule the duration time of the surgery is also

considered as well the surgeon's availability. So the initial solution is a

feasible solution. The schedule will include only days in which the maximum

number of hours are permitted for the operating theatre. All surgeries

included in the referrals are scheduled as long as the operating theatre is

available which means the algorithm permits overtime for each surgeon of up

to 3hours and 20 minutes. This amount of overtime is allocated for each

operating theatre. Only surgeries that cannot fit in the schedule without
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breaking the overtime of the operating rooms are left out. The surgeries that

are left out are kept in a list of unassigned surgeries. Although the initial

surgery schedule is feasible it may have a very costly objection function value

as the overtime of surgeons is allowed.

Four types of low level heuristics: mutational, local search, crossover and ruin

and create heuristics. These heuristics are used as low level heuristics under

the control of the selection hyper-heuristics.

The software framework for the surgery admission planning problem includes

three mutational, four local search, two crossover and three ruin and create

heuristics.

Mutational Heuristics

The first mutational heuristic performs a swap between two days of surgery for

one surgeon, the surgeries are selected randomly. The second swap is done

between the longest and the shortest days for a selected surgeon. The third

mutational heuristic consists of assigning and/or deleting surgeries from a

schedule.

Local Search Heuristics

Three types of swaps between surgenes are proposed as move operators

forming the basis for three local search heuristics. A move is then are accepted

only when the overall quality of a schedule is improved.

The first algorithm sums each surgeon's total surgery time for each day of the

planning period. The surgery time always includes the preparation time and

recovery and cleaning time. The algorithm then selects the surgeon with the

total longest duration time out of all days of the planning period and swaps

surgeries between days to view if an improvement in the objective function can

be made. More specifically, when the longest total duration time for all days is

selected the algorithm then takes the longest surgery for that day for that

surgeon and sees with which surgery it can be swapped in another day. Each

possible swap is evaluated based on total duration of surgery for the surgeon

for that day and the patient's deadline. The best swap is accepted and a new
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candidate solution is obtained Le. a new surgery schedule. Then the total

surgery time per day per surgeon is calculated again and the swaps are done in

the same way until no further improvements can be made to the schedule. This

is an algorithm that swaps surgeries for the same surgeon over two days but

looks at all possible swaps for each surgeon.

The second local search algorithm will calculate the longest days for each

surgeon and the surgeon with the total longest day is selected. The swaps are

done with the unassigned surgeries that are pre-assigned to the surgeon. The

best swaps i.e. that provide the most improvement to the objective function are

accepted.

The third local search heuristic operates on a similar principle although it

enables a quicker solution time. Again for each day and each surgeon the total

duration time of surgery is summed. The longest day for any surgeon is

identified. For this same surgeon the shortest day of the planning period is

also identified. Swaps are made between both days to provide the best

duration. The best total duration is the one that provides a total day that

enables an even distribution between both days. As an example surgeon A has

2 days of surgery identified, the longest and the shortest. One day one the

surgeon has two surgeries one of 6 hours and one of 3 hours. On the other day

the surgeon has a surgery of 3.5 and a surgery of 1.5 hours only. The best

possible swap to respect the surgeon's overtime assuming that all swaps are

possible between surgeries i.e. patient deadlines will still be met is to swap the

6 hour surgery with the 3.5 hours surgery, these will mean one day of 6.5 hours

and the other day of 4.5 hours. The 4.5 hours day can then be possibly be

assigned a surgery that is currently unassigned in the planning period.

The fourth local search heuristic selects randomly a day within the planning

period and evaluates possible swaps between the selected day and the next

work day for each surgeon. Only improving swaps are accepted.

Crossover Heuristics

Cross-over heuristics take two initial solutions and combine them. The first

cross-over heuristic finds the best surgeries in each schedule. The best
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surgeries are the one for which when the surgery is removed from the schedule

it causes the largest increase in the objective function value. It is the patient

waiting time or the overtime of the surgeon that has been increased. The best

surgeries/day from each schedule will be combined to create the new schedule.

Of course this means that the algorithm looks at the total surgery time per day

and the patient's waiting time. The surgeries that remain will be assigned to

fill the available periods, until the best combination is found. The best

combination is found by evaluating the total waiting time of the patient and the

duration time of the surgery.

The second cross-over heuristic will take the surgeries that are common to both

initial solutions. The other surgeries are un-assigned and are used to create the

complete schedule by the algorithm that builds a solution i.e. adding each

surgery to a spot that creates the less increase in the objective function.

Ruin and recreate Heuristics

The heuristics randomly remove 3 surgeries from one, two or three surgeons'

schedule and then rebuilds the schedule considering the patient's waiting time

and the preferred window of operations.

The low level heuristics described above are used by the four hyper-heuristics

that will be presented in chapter 5. The 4 hyper-heuristics developed for the

surgery admission planning problem remain the same as the ones created for

the other problem domains included in this research. The hyper-heuristics

initially find a schedule in which the surgeries have been assigned i.e. each

surgery is assigned to a day in the planning period, this is done while ensuring

that no surgeon is allocated to one surgery at a time. However, as the surgery

admission planning problem is in fact a two stage problem, the first stage

solution is fulfilled by the hyper-heuristic by using the low level heuristics

defined previously. The second stage of the problem which consists of

assigning a time slot and an operating theatre for the scheduled surgeries for

that day will be addressed by the following heuristics.

The algorithms developed for the assignment problem use the same logic as

the heuristics used at the planning stage i.e. when assigning the surgeries to
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each day. The algorithm starts with an initial solution in which surgeries

assigned for that day are ordered by decreasing duration time. This means the

longest surgery will be first on the list and the shortest will be last. The first

'n' surgeries i.e. the longest 'n' surgeries will be scheduled each in a different

operating room. For the test data the number of operating rooms is 4 therefore

the four longest surgeries are each assigned to one operating room. The next

four surgeries are scheduled, this continues until all surgeries that are planned

for that day have been scheduled. The second step of the algorithm consists of

removing surgeries that would not respect the constraint relating to surgeon's

being able to perform one surgery at a time. Various new positions are tried

randomly for each of the surgeries that have been removed and the first slot

tried that respects the constraint is accepted.

Once the initial solution is found, the total surgery time of each operating

theatre is calculated and the surgeries in the operating theatre that has the

longest hours for the day will be evaluated. First these surgeries will be

ordered by decreasing order. The longest duration in the list will have the first

position; this surgery will be swapped with another surgery in another

operating theatre. The other operating theatre selected is the one with the

shortest total duration. A swap is tried between the longest surgery and the

shortest surgery from both operating rooms. A swap is only accepted if it does

not increase the total objective function and the surgeon's schedule does not

clash with this change.

8.2 Experimental Methodology and Evaluation Method

This sub-section provides the experimental set-up for all tests conducted in this

chapter and defines the evaluation method. All four hyper-heuristics were run

on each instance of each problem domain 31 times. The experiments were

performed on Intel(R) Core(TM)2Duo CPU E8500 @3.16GHz. The proposed

hyper-heuristics were tested on the surgery admission planning benchmark

problems provided by SINTEF. As mentioned previously, the first part of both

algorithms uses a common structure. There is no time limit on the iterative

local search, the search ceases when no further improvements to the candidate

solution are found. The second part for both algorithms has a pre-set time
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limit. For the third stage of the algorithm which was created uniquely for the

surgery admission planning problem, the algorithm stops when no further

improvements can be made to the candidate solution.

As outlined previously, the hyper-heuristics need to provide good results in an

acceptable computational time. The surgery admission problem datasets

studied in this thesis, were generated and solved by Riise and Burke (2011); no

other researchers have yet provided results using this data. Their results

provide a benchmark to evaluate both algorithmic approaches provided in the

thesis.

8.3 Performance Comparison of the Proposed Hyper-heuristics

In this section, the results obtained after having applied both original hyper-

heuristics (HH1 and HH2) and their modified versions (HH1adap and

HH2adap) to all surgery admission planning are reviewed. Table 8.1 and table

8.2 summarise the results for HHI and HH2 respectively. Tables 8.3 and 8.4

provide the results obtained using HHladap and HH2adap.

The first column includes the dataset, the second column represents the

average objective value, calculated over the 31 runs and the third column

contains the average time taken over the 31 runs to obtain the final objective

value. The fourth column shows the best objective value obtained over the 31

runs. Column five includes the number of times the best solution is obtained by

the hyper-heuristic evaluated over the 31 runs. The new best known solutions

are highlighted in bold. The standard deviation is given in column six and the

best known solution is provided in column seven.
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TABLE 8.1 Results Predetermined sequence non-worsening hyper-heuristic

(HHl)

Instances HHI TimeHHl Best Frequency stddev BKN

WOTI 0.5340 49 0.5320 18 0.020 0.5315
WOT2 0.5040 42 0.5030 15 0.011 0.5276

WOT3 0.3200 41 0.3140 26 0.003 0.3149

WOT4 0.2450 32 0.2450 17 0.600 0.2489

WOT5 0.3433 36 0.3431 8 0.002 0.3433
WOT6 0.4200 43 0.4010 11 0.016 0.4002

WOT7 0.4540 42 0.4530 23 0.121 0.4681
WOT8 0.4417 47 0.4400 25 0.111 0.4407

WOT9 0.4350 46 0.4281 19 0.120 0.4290
WOT10 0.2950 52 0.2948 26 0.003 0.2947

As can be seen from Table 8.1, the results obtained are close or better than the

best known results. For seven instances, HH1 provides the new best known

solution. For the other 3 instances Le. WOT1, WOT6 and WOTI0, HHI

obtains results close to the best known solution.

TABLE 8.2 Results Greedy absolute largest change hyper-heuristic (HH2)

Instances HH2 TimeHH2 Best Frequency stddev BKN

WOTI 0.5320 47 0.5320 21 0.003 0.5315

WOT2 0.5100 42 0.5030 17 0.026 0.5276

WOT3 0.3320 52 0.3130 28 0.014 0.3149

WOT4 0.2450 47 0.2440 27 0.118 0.2489

WOT5 0.3433 39 0.3432 24 0.159 0.3433

WOT6 0.4190 51 0.4110 18 0.083 0.4002

WOT7 0.4620 44 0.4530 19 0.012 0.4681

WOT8 0.4427 56 0.4410 21 0.224 0.4407

WOT9 0.4630 46 0.4281 20 0.017 0.4290

WOTI0 0.2975 52 0.2948 17 0.246 0.2947

HH2 provides on average results close or better in some cases than the best

known solution. HH2 provides the new best known solution for 6 instances

out of the ten. The results for the other instances are close to the best known

solution.
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TABLE 8.3 Results Adaptive Predetermined sequence non-worsening hyper-
heuristic (HH 1adap)

Instances HH1adap TimeHH1adap Best Frequency std dev BKN

WOT1 0.5310 47 0.5300 19 0.020 0.5315

WOT2 0.5030 42 0.5030 15 0.010 0.5276

WOT3 0.3100 42 0.3110 28 0.001 0.3149

WOT4 0.2200 47 0.2180 22 0.014 0.2489

WOT5 0.3330 39 0.3320 18 0.120 0.3433

WOT6 0.4000 51 0.3900 19 0.014 0.4002

WOT7 0.4400 44 0.4300 27 0.124 0.4681

WOT8 0.4407 56 0.4400 26 0.006 0.4407

WOT9 0.4299 46 0.4281 21 0.024 0.4290

WOT10 0.2747 52 0.2678 26 0.002 0.2947

HH1adap provides the best known results for all10 instances. On average the

results obtain are better or close to the best known solution.

TABLE 8.4 Results Adaptive Greedy absolute largest change hyper-heuristic
(HH2adap)

Instances HH2adap rimeHH2adap Best Frequency std dey BKN

won 0.5300 53 0.5200 23 0.021 0.5315

worz 0.4890 41 0.4820 19 0.011 0.5276

wors 0.3300 51 0.3100 28 0.002 0.3149

wor-t 0.2386 49 0.2180 27 0.011 0.2489

wors 0.3563 42 0.3320 25 0.002 0.3433

wors 0.4003 56 0.3900 23 0.020 0.4002

wOr7 0.4235 47 0.4214 22 0.011 0.4681

WOr8 0.4417 56 0.4410 21 0.115 0.4407

WOT9 0.4156 49 0.4152 21 0.164 0.4290

wono 0.2478 58 0.2472 18 0.002 0.2947

HH2adap obtains the best known result for 9 instances, the instance WOT8 is

close to the best known solution.

Both hyper-heuristic approaches provide generally good results. As it has been

done for the other problem domains studied, a comparison is done between the

four hyper-heuristics. The student's t test is performed between HHI and

HH 1adap and another test is done between HH2 and HH2adap, using the

results from the 31 runs for each benchmark instance. Table 35 outlines the

results. The following notation is used: A > B indicates that the algorithm A
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performs better than the algorithm B and this is statistically significant within

95% confidence while < denotes vice versa. A ~ (~ or -) B indicates that the

algorithm A performs slightly better (worse or no different) than the algorithm

B. The average objective function value over 31 runs is provided for each

hyper-heuristic for a given instance. Table 8.6 provides a comparison between

HH Iadap and HH2adap using the same test and notation.

TABLE 8.5 Comparison between algorithmic approaches i.e. between HHI
and HH 1adap and HH2 and HH2adap

Instances HHI vs HHladap HH2 vs HH2adap
WOTI 0.5340 < 0.5310 0.5320 < 0.5300
WOT2 0.5040 < 0.5030 0.5100 < 0.4890
WOT3 0.3200 < 0.3100 0.3320 < 0.3300
WOT4 0.2450 < 0.2200 0.2450 < 0.2386
WOT5 0.3433 < 0.3330 0.3433 > 0.3563
WOT6 0.4200 < 0.4000 0.4190 < 0.4003
WOT7 0.4540 < 0.4400 0.4620 < 0.4235
WOT8 0.4417 < 0.4407 0.4427 < 0.4417
WOT9 0.4350 < 0.4299 0.4630 < 0.4156
WOTIO 0.2950 < 0.2747 0.2975 < 0.2478

The companson indicates only 3 instances where HH I is statistically

significantly better than HHladap and 2 instances where HH2adap is

statistically significantly better than HH2. From these results alone, it is not

possible to conclude that the adaptive version of the algorithm is better than

the non-adaptive version. However, the adaptive version either provides the

new best known solution or obtains it more frequently over the 31 runs. The

best results between HHI and HHladap are found by HHladap for 8 instances.

For the other 2 instances (WOT2 and WOT9) the best results are the same and

the average objective values for both instances are better for HH 1adap.

HH2adap finds better best results for 9 instances out of 10 when compared to

HH2, for the other instance (WOT8) HH2adap provides a better average

objective value. These results demonstrate that the added intensification and

diversification step of the algorithms provides better results.
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As per the previous chapters, a comparison will be made between the HHladap

and the HH2adap approaches. One method of comparison is again the

student's t test. The results will be included in Table 8.6, where the same

methodology and notation is used as for the previous comparisons done in

Table 8.5.

TABLE 8.6 Comparison between algorithmic approaches i.e. between
HH1adap and HH2adap

Instances HHladap vs HH2adap
won 0.5310 < 0.5300
won 0.5030 < 0.4890
WOT3 0.3100 > 0.3300
WOT4 0.2200 > 0.2386
WOTS 0.3330 > 0.3563
WOT6 0.4000 > 0.4003
won 0.4400 < 0.4235
WOT8 0.4407 > 0.4417
WOT9 0.4299 < 0.4156
wono 0.2747 < 0.2478

For four instances it can be established that there is method that is statistically

significantly better within 95% confidence. For instances wor3 and WOr4,

HHladap is better, and for wor2 and worlO HH2adap, is better. HHladap

and HH2adap are both slightly better on 3 instances each. With these results, it

is necessary to look at other indicators of performance. HH2adap obtains the

best known solution for 6 instances of the surgery admission problem Le.

instances wort. WOr2, WOT3, WOr7, WOT9 and WOTlO, whereas

HHladap provides the best known results for one instance of the problem i.e.

WOr8. For the other instances, both methods obtain the same result, which is

the best known solution. When the best solution is found both by HHIadap

and HH2adap, HH2adap finds the best value more often over the 31 runs than

HHladap. This is the case for instances WOT4, WOT5 and WOr6. Though, it

takes HH2adap more time to achieve these results for these four instances.

Table 8.7 contains the average time in percentage taken at the first two stage of

each algorithm to obtain the final solution and the average percentage of

improvement in the quality of the solution after each stage for each hyper-

heuristic. Note the third stage of the algorithm is not provided as this stage is
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common to all four hyper-heuristics. This is compiled over 1000 iterations of

31 runs. The second stage for all four hyper-heuristics is more time

consuming than the first stage. The second stage of the algorithm takes

62.75% of the overall execution time on average across all instances.

Although the second stage takes more time, the percentage improvement

obtained at the end of the second stage is in all cases smaller when compared

to the percentage improvement obtained at the end of the first stage. The first

stage of the algorithms improves the initial solution from 45-65%, whereas the

second stage yields an improvement of 22-37%. From table 8.7, it can be

observed that the added step of intensification and diversification, in the first

stage of the algorithms, provides a larger improvement on solution quality in

less time than the local search without this step. This is another indicator that

the adaptive versions are better than the non-adaptive versions of the

algorithms. The results are similar to the ones obtained for the other domains

included in this study. It is worth noting that the first stage of HH1adap and

HH2adap provides a larger percentage of improvement on the candidate

solution than for any other problem domains.
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TABLE 8.7 Average percentage of improvement and time taken at stages 1
and 2 of the four hyper-heuristics for the surgery admission planning domain
(SAP). The percentage of improvement and time taken for each stage for the
domains included in CHeSC 2011 are also included for comparison purposes.

%-improv %-time
RP-LS rest RP-LS rest

HHI 45 36 44 66
HHladap 65 22 33 67

SAP HH2 45 37 47 53
HH2adap 64 31 35 65

HHI 31 31 37 63
HHladap 42 32 38 62

Max-SAT HH2 32 23 39 61
HH2adap 41 23 37 63

HHI 31 31 37 63
HHladap 42 32 38 62

FS HH2 32 23 39 61
HH2adap 23 23 37 63

HHI 33 24 35 65
HHladap 43 24 35 65

BP HH2 35 25 37 64
HH2adap 43 27 28 72

HHI 41 31 39 61
HHladap 43 32 37 63

PS HH2 41 23 39 61
HH2adap 42 23 36 64

HHI 35 24 35 65
HHladap 44 25 35 65

TSP HH2 29 25 35 65
HH2adap 41 26 36 64

HHI 32 23 42 58
HHladap 44 25 38 62

VRP HH2 29 24 41 59
HH2adap 41 26 40 60

In order to further analyse the hyper-heuristic approaches, an additional set of

experiments across all ten instances, is done. Each hyper-heuristic runs for 10

minutes on a problem instance and the objective function value of the current

solution is recorded every 600 milliseconds until the time limit is reached. The

stopping criteria of the second stage of the algorithms are relaxed to enable

further improvements. As mentioned previously, the first stage of the

algorithms stops when no further improvements can be made to either of the

two random initial solutions, the stopping criteria remains the same. Figure 10

illustrates as an example a sample run on WOTl, WOT6 and WOTlD. These

instances are chosen because of their size, WOTI is a smaller instance with 152

surgeries, WOT6 can be considered a medium size instance with 166 surgeries
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to schedule and the highest size is WOTl 0 with 186 surgeries. The first stage

of the modified versions of the hyper-heuristics can find better solutions in less

time when compared to the regular versions. The modified hyper-heuristics

spend more time in the second stage attempting to improve a solution in hand

further through diversification and intensification steps. A similar behaviour is

observed for the rest of the surgery admission planning instances. A good

solution is found before the time limit ends for all the problems.
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FIGURE 8.1 Objective function value of the current solution versus time graphic from
a sample run using each proposed hyper-heuristic on WOTl, WOT6 and WOTl.

For all instances of the surgery admission planning problem, the first stage of

the algorithm provides the most improvement to the random initial solutions.

This is illustrated by the examples in figure 8.1, for all four hyper-heuristics

the Random-permutation Local search stage provides the best improvement.

When starting the second stage for all four hyper-heuristics, the improvement

to the candidate solution is minimal. This is due to the efficiency of the local

search algorithms for this domain. The improvements are made by identifying

the key violations that the scheduler should remove; for example, if there is a

day which requires overtime for a surgeon, making an unsatisfactory workload,
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the local search heuristic will identify this violation and attempt to rectify it by

swapping between days in the schedule or un-assigned surgeries. As the

operators are efficient for this domain, it is observed that a highly improved

candidate solution is obtained even before entering into the second stage of the

hyper-heuristics as illustrated in Table 8.7. To find the best known solution,

HH2adap outperforms HHladap, by obtaining the best known solution for 6

instances of the surgery admission planning problem.

8.4 Evaluation of Initialisation

This subsection evaluates the efficiency of using multiple random initial

solutions for the surgery admission planning problem.

The results of applying the first stage of all four hyper-heuristics on 2 initial

solutions instead of only one are similar for this domain to the previous

domain studied. After having run each hyper-heuristic on the 10 problem

instances for 31 runs. Each run includes 1000 iterations. A comparison is

done between using one initial solution and applying the first stage of the

algorithm versus using two initial solutions followed by the first stage. The

improvement between the initial solution and the candidate solution after the

first stage are calculated and compared to the improvement provided by the

worst of the two initial solutions and the candidate solution at the end of the

first stage. Table 8.8 presents the average improvement across all ten

instances. These were found to be of 18%. The total increase in

computational time when using two initial solutions on which the step RP-LS

is applied to each of these is of 19%. Conducting the same experiments when

using 3 random initial solutions provides only an improvement of 20% on the

candidate solution but the computational time was increased by 40%. As can

be seen from the results in Table 8.8, using more than two initial solutions only

provides marginally better results but increases the computational time

consumed. This is not a worthwhile trade-off between computational time and

results and so it was preferable to start with two initial solutions during the first

stage. These results are similar to the ones obtained for the previous problem

domain studied.
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TABLE 8.8 Percentage of improvement and percentage of time used.

%-improv %-time
Two I Three Two I Three

I RP-LS 18 l 19 20 I 40

8.5 Remarks

The success of HH2adap for the surgery admission planning problem indicates

that for highly constrained problems, the move acceptance strategy is more

important than the selection of the low level heuristics. Using two samples

from the search space at the start and applying pure hill climbing based on

local search low level heuristics enabled the hyper-heuristics to obtain better

quality solutions across all instances. Using two initial solutions, the

improvements in the results are on average 18% better than using one initial

solution for the surgery admission planning domain. These same conclusions

were made for the previous problem domain included in the thesis.

Performing hill climbing as long as possible and relying on the internal

diversification mechanisms within the local search heuristics is efficient. Both

HHladap and HH2adap provide good results. However, HH2adap's strategy

of diversification and intensification through not only the application of

mutational and local search heuristics, but also by accepting a move which

produces the greater change in the quality of a solution proves to be a better

approach for the surgery admission planning problem.



Chapter 9

Conclusion and Future Work

In this study, four selection hyper-heuristics are developed to solve problems

in seven different problem domains. All hyper-heuristics are designed as time

contract algorithms which terminate when the given time limit is exceeded, as

well as anytime algorithms which run until there is no improvement in the

solution quality. Each hyper-heuristic is designed based on one of the two

algorithmic approaches. One approach uses a predetermined template

grouping each type of low level heuristics together. A heuristic is randomly

selected and applied from a group at each stage of the search process in which

the order of stages, hence groups is prefixed, enforcing diversification and

intensification explicitly. The other approach employs a greedy strategy

combined with a novel acceptance criterion. The second approach was

established as the best strategy in the overall. Specifically, HH2adap proves to

be a more effective method in finding high quality solutions across all seven

problem domains by allowing acceptance of worsening solutions.

The balance between intensification and diversification is extremely important

for a search methodology. Especially, if there is lack of guidance due to

unfamiliar search landscape, a managed trade-off between the intensification

and the diversification of the search process considering the time restriction

proves to be indispensable. That is the reason behind the design of two types

of hyper-heuristics, one of which explicitly enforces diversification and

intensification under an iterated search like framework and another one

automatically does that via a move acceptance method which enables large

moves in the search space. It has been also observed that starting with the

intensification process using two initial solutions instead of a single one,

improves the quality of final solutions between 12 to 20%, depending on the

problem domain.

141
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The empirical results on the CHeSC 2011 benchmark show that the proposed

hyper-heuristics are effective and efficient general search methodologies.

Particularly, HH2adap outperformed the best hyper-heuristics from the CHeSC

2011 competition and there is currently no hyper-heuristic performing better

than HH2adap in the literature. After the intensification stage, the greedy

hyper-heuristic component of HH2adap allows acceptance of a non-improving

solution i.e. solution generating the largest worsening, enables a quick escape

from one neighbourhood to another region of the search space that could

potentially contain better solutions.

The results on the nurse rostering problems also indicate that HH2adap is a

powerful hyper-heuristic that obtained results close to the best known solutions

for the 43 nurse rostering benchmark instances and in some cases provided the

new best known results for 13 benchmark instances. The same phenomenon

was observed for the surgery admission planning problem for 9 instances.

There was a need to develop heuristics to apply specifically to the surgery

admission planning problem. Although this domain has some similarities with

the nurse rostering problem it also has many differences.

The surgery planning problem can be represented as two sub-problems. The

first sub-problem is to assign a surgery to a day within the planning horizon.

The second sub-problem is to schedule a time and assign an operating theatre

to the surgery for the specific day. There are many similarities between nurse

rostering and surgery planning considering the first sub-problem. An

appropriate day is sought for a given surgery and the surgeon has already been

assigned who will perform the surgery. The hospital/work contracts and

coverage constraints are similar in both nurse rostering and surgery planning

problems. For example, nurses cannot work more than a determined number of

hours or shifts in one day, and similarly, there is a limitation on the number of

hours a surgeon may work during a day. For the surgery admission planning

problem, the Norwegian hospitals typically wish to minimise overtime work

done by the surgeons to minimise the cost and ensure a certain patient quality

of care. The assignment of surgeries to the planning period also needs to
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consider that a surgeon can only perform one surgery at a time just like the

nurse can only be assigned one shift at a time.

However, the second sub-problem of assigning a surgery to each day a time

and operating theatre is different to the nurse rostering problem. In fact, the

problem of assigning the surgeries of each day to the operating room resembles

that of assigning a job to a machine. For the permutation flow shop problem

the goal is to minimise the total makespan time i.e. the total duration of

processing all jobs on all machines. Precisely, this is done by finding the order

that would considering a known duration time to process all jobs minimise the

time it takes to process all jobs. For the surgery admission planning problem

the problem consists of minimising the total duration time of surgeries this will

ensure that we are minimising surgeon's overtime. The wish is to create the

best sequence of operations for each operating room to fulfil all surgery

commitments i.e. ensure all surgeries scheduled for that day are done while

minimising the surgeon's time.

To the research question implied in section 1.2: Is it possible to develop a more

general method to solve different instances of a problem and to solve a variety

of different problems within different problem domains using the same general

strategy? The four hyper-heuristics developed and particularly the HH2adap

algorithm demonstrates that a more general method can be successfully applied

to a variety of problem domains. The four hyper-heuristics were evaluated

against problem solving scenarios over seven problem domains, even on some

unseen instances for each domain.

9.1 Future Work

As future work, it would be of interest to explore the search landscape of

different problem domains with the goal of understanding the proposed hyper-

heuristics better. Moreover, these studies can enable us to form a hyper-

heuristic portfolio indicating which type of hyper-heuristic is better suited to

which type of problem.

All four hyper-heuristics developed for this thesis use the same low level

heuristics from 4 categories i.e. ruin and recreate, local search, mutational and
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cross-over heuristics. The surgery admission software planning domain is also

built to include heuristics from these four heuristic types. In chapter 4, it was

shown that the heuristics within all these categories behaved either as hill-

climbing or mutational heuristics. It would be of interest to evaluate the hyper-

heuristics in a different environment where such categories do not exist. This

would have implication on their level of generality and this level would need

to be evaluated in this new context.

In this study, only perturbative low-level heuristics were used. Another

curiosity would be designing a selection hyper-heuristic which can control a

mix of constructive and perturbative low level heuristics. Could the structure

of the hyper-heuristics proposed manage such a mix? The proposed hyper-

heuristics cannot handle such systems. Then what type of modification or

minimal change in the design is necessary? These possibilities tend to bring us

towards another level of generalisation; is it possible to generalise the

performance of a hyper-heuristic even under different type of hyper-heuristic

frameworks?

The four hyper-heuristics developed use parameters that remain static during

the search phase. Would the value attributed to the parameters provide good

results if applied to other problem domains? To increase the level of generality

of the approaches, it would be useful to apply a learning approach to parameter

tuning during the search process. An online learning method should also be

added to the hyper-heuristic strategies developed for the selection of the low

level heuristics.

The hyper-heuristic HH2adap proved to be efficient, this is due to the

acceptance criteria. Currently some hyper-heuristics use a non-deterministic

move acceptance criteria. These are based on the comparison with a

parameter. Looking into the possibility of modifying the move acceptance

criteria during the search process based on the results i.e. making it adaptive to

the search space explored would be interesting and could enable the hyper-

heuristics to solve problems from other domains, that have not been explored

in this study, without adjustments to the hyper-heuristics.
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For this study, four hyper-heuristics are applied separately to each problem

instance. Could the level of generality be increased even more by providing a

set of hyper-heuristic strategies that could be called in different circumstances

depending on the structure of the problem?

The surgery admission planning problem modelled for this research included

three objectives; minimising the surgeons overtime, minimising the patients

waiting time and scheduling children early on the day of the surgery. The

problem evaluated contained a static duration for the operation. This

information was provided by the hospitals and depended on the surgery. When

planning surgeries many difficulties arise, one major difficulty is the real

duration of the surgery. In order to reflect the real-world problem more

accurately, it is essential to add a stochastic element to the model. As a future

work, the same problem will be addressed but it will include real surgery

duration, that is variable. Two options are being explored, obtaining

information on surgery duration from large Canadian hospitals and analysing

how the hospital schedules change during the course of the day when surgeries

have overrun.

For both the surgery admission planning and the nurse rostering problems, it

would of interest to add components to the model studied for this research.

For the surgery admission planning problem the integration of the nursing and

other staff members would be of interest as would including the recovery stage

to the model. The nurse rostering model, the idea of including float nurses

might be useful to generalise the problem even further.



Appendix A

Analyses of Heuristics

In chapter 4, three sets of experiments where done on each low-level heuristic

included in four problem domains in HyFlex. The first set of experiments

consisted of applying iteratively each low level heuristic on an initial random

solution over 31 runs. This was done for the one dimensional bin packing,

nurse rostering, Max-SAT and permutation flow shop problems. Tables A.I to

AA present the results by domain for the first set of experiments. The value of

each cell is the improvement between the current candidate solution and the

previous candidate solution.

The second set of experiments consisted of applying iteratively each low level

heuristic on an initial random solution for 30 seconds. This was done for the

one dimensional bin packing, nurse rostering, Max-SAT and permutation flow

shop problems. Tables A.S to A.8 present the results by domain for the second

set of experiments. The value of each cell is the improvement between the

current candidate solution and the previous candidate solution.

The third set of experiments consisted of applying iteratively each low level

heuristic on an improved initial solution over 31 runs. The improved initial

solution is the solution of the previous experiment i.e. the final candidate

solution after 30 seconds. This was done for the one dimensional bin packing,

nurse rostering, Max-SAT and permutation flow shop problems. Tables A.9 to

A.12 present the results by domain for the third set of experiments. The value

of each cell is the improvement between the current candidate solution and the

previous candidate solution.

146
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TABLE A.I Results over 31 runs of 1000 iterations for each low level
heuristic for one instance, of the one dimensional bin packing domain.

LS4 LS6 MUO MU3 MUS RR1 RR2 C07

0.1 0.12 0.02 004 0.47 -0.11 0.09 0.01

0.1 004 0.03 0.08 0.66 0.88 0041 0.02

0.02 0.62 0.16 0.9 0.34 0.2 0.11 0.3

0.3 0.26 0.2 004 0046 0.01 0.16 0.1

0.4 0.33 0.21 0.6 0.25 0.23 0.6 0.05

0.011 0.24 004 0.056 0.78 -0.1 0.5 0.16

0.1 0048 0.08 0.23 0041 0.23 004 0.2

0.12 0.11 0.9 0.3 0.11 0.24 0.23 0.2

0.23 0.21 004 004 0.29 0.14 0041 0.2

0.23 0.14 0.6 004 0.31 0.26 0.55 0.2

0.23 0.76 0.056 0.28 0046 0.3 0.6 0.2

0.23 0.1 0.23 0.28 0042 0.14 0.1 0.2

0.23 0.1 0.3 0.28 0042 0.17 0.2 0.2

0.23 0.02 0.4 0.28 0.74 0.7 0.01 0.2

0.23 0.3 004 0.28 0041 0041 0.23 0.2

0.23 004 0.28 0.28 0043 0.31 -0.1 0.2

0.23 0.011 0.28 0.28 0.44 0046 0.23 0.2

0.23 0.1 0.28 0.7 0.76 0.25 0.24 0.2

0.23 0.12 0.28 0.66 0.89 0.78 0.14 0.2

0.36 0.23 0.28 0.34 0.22 0041 0.26 0.2

0.36 0.23 0.28 0046 0.74 0.11 0.3 0.2

0.36 0.23 0.28 0.25 0.86 0.29 0.14 0.2

0.36 0.23 0.28 0.78 0.9 0.31 0.17 0.16

0.36 0.36 0.28 0041 0.86 0046 0.7 0.34

004 0042 0.28 0.11 0.86 0.32 0041 0.31

0.28 0.57 0.32 0.29 0.86 0.31 0.31 0.09

0.63 0.89 0.33 0.31 0.86 0.11 0.86 0.17

0.76 0.94 0045 0046 0.86 0.21 0.31 0.26

0.12 0.22 0.36 0042 0.73 0.22 0.29 0.24

0.32 0.76 0042 0.42 0.73 0.24 0.21 0.27

0.12 0.48 0.4 0.28 0.7 0.14 0.29 0.17
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TABLE A.2 Results over 31 runs of 1000 iterations for each low level
heuristic for one instance of the nurse rostering problem.

LSO LSI LS2 LS3 LS4 C08 C09 COlO MUll RR5 RR6 RR7
21373 18030 4540 4270 21307 20 96 12 300 140 140 1600
20700 3347 16807 20961 21307 40 40 88 140 120 120 1200
20700 3347 16807 20961 21307 14 12 76 12 0 0 0
20700 3347 16807 20961 21307 14 4 0 10 -120 -120 180
20700 3347 16807 20961 21307 220 210 140 0 -60 -60 -60
20700 3347 16807 20961 21307 220 450 450 0 180 180 -120
20700 3347 16807 20961 21307 220 380 12 0 450 450 560
20700 18030 16807 20961 21307 220 120 100 120 -320 3200 6400
20700 3776 16807 20961 21307 220 120 120 0 780 780 -700
21300 3776 16807 20961 21307 220 120 160 36 0 0 0
21300 3776 16807 20961 21307 220 120 180 0 0 0 100
21300 3776 16807 20961 21307 220 120 190 40 -360 -360 -360
21300 3776 16807 20961 21307 220 120 110 260 0 0 0
21300 3776 16807 20961 21307 220 120 120 0 -600 -600 -1600
21300 3776 17450 20961 21307 220 120 420 0 -1220 1600 1800
21300 3776 16450 20961 21307 220 120 460 0 0 0 100
21300 3776 14520 20312 21307 220 120 120 0 160 160 460
21300 3776 14520 20312 20790 260 120 114 0 2400 1800 1200
21300 3776 14520 20312 16540 324 120 380 0 0 0 120
21300 18030 14520 20312 14756 480 120 380 0 -220 -220 160
21300 18030 14520 20312 18942 410 120 380 0 -240 -240 160
21300 18030 14520 20312 18942 200 120 380 0 -620 200 -300
21300 18030 14520 20312 18942 210 120 380 0 1200 1200 -1100
21300 18030 14520 20312 18942 220 120 460 120 1400 1400 1680
21300 18030 14520 20312 18942 224 120 390 180 -1600 100 200
3800 18030 14520 20312 18942 220 lIO 410 240 -160 120 60
3700 18030 14520 20312 18942 220 80 140 10 -20 -20 -20
3600 18030 14520 20312 18942 220 170 180 80 0 120 220
18000 18030 14520 20312 18942 220 180 320 0 10 100 -80
18882 17376 14526 18960 16540 180 240 310 120 120 160 116
10750 12220 16080 1480 600 240 220 ISO 80 120 76 20
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TABLE A.3 Results over 31 runs of 1000 iterations for each low level
heuristic for one instance of the Max-SAT problem.

LS7 LS8 MUO MUI MU2 MU3 MU4 MU5 RR6 C09 COlO
322 125 -100 -225 -100 -100 100 7 9 10 0
120 121 100 -120 100 100 70 -21 19 0 1
324 126 -200 240 -200 -200 -99 17 -9 0 0
120 122 99 99 99 99 120 14 -19 0 0
122 325 100 101 100 100 110 12 39 0 0
126 225 70 76 70 70 331 -45 46 30 0
126 300 -99 131 -99 -99 334 11 -110 -10 0
122 124 120 -Ill 120 120 113 -16 -110 10 128
122 122 110 110 110 110 114 144 -110 200 333
120 422 331 331 331 331 -116 126 -110 200 254
110 125 334 336 334 334 114 334 -110 100 226
327 125 113 113 113 113 56 122 -78 0 10
125 624 114 114 118 118 66 -ut 19 0 0
424 125 -116 -116 11 11 17 -121 36 0 0
122 125 -99 -99 119 76 -22 100 72 0 0
124 125 113 -77 -133 131 -48 70 -189 0 0
122 125 114 114 6 -Ill -100 -99 -128 0 30
426 625 177 -28 6 110 100 120 19 0 -10
122 125 7 7 6 331 -200 110 188 0 10
422 125 231 231 232 336 99 331 -142 0 200
122 125 -19 -19 -71 113 100 334 -76 256 200
122 125 7 7 88 114 70 -65 -72 457 -458
422 126 -21 -21 -26 -116 -99 -110 -19 -520 -120
122 122 17 17 117 -99 120 125 -9 -600 220
122 522 14 14 114 -77 110 -422 -26 320 -320
426 224 12 12 120 7 331 226 19 420 -160
122 226 5 -45 8 3 334 12 -50 -623 -122
522 525 1 11 1 79 113 6 9 -120 0
122 125 -18 -16 14 III 118 -8 45 110 0
426 224 113 99 133 113 331 144 126 100 128
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TABLE AA Results over 31 runs of 1000 iterations for each low level
heuristic for one instance of the permutation flow shop problem.

LS7 LS8 LS9 LSI COl COl COl COl MU MU MU MU MU RRS RR6
0 1 2 3 4 0 1 2 3 4

132 430 88 120 170 125 110 224 -20 140 280 250 386 - 550
350

245 20 430 420 170 288 288 224 220 88 280 386 386 - 420
350

222 65 220 320 -25 270 170 120 160 176 280 386 386 - 380
350

222 24 430 222 170 170 170 170 180 114 280 386 386 - 570
350

222 430 220 280 200 310 71 76 200 142 280 386 386 - 480
350

222 270 430 280 200 31 152 44 220 147 280 386 386 - 290
350

222 270 290 288 140 220 420 71 240 136 280 386 386 342 170
222 270 270 288 288 188 120 74 260 -12 154 386 386 342 290
222 270 270 128 -70 188 145 79 140 135 156 386 386 342 480
222 270 270 280 390 188 160 165 -80 187 157 386 164 342 380
222 270 488 420 - 188 170 142 226 210 164 386 162 342 342

132
222 270 488 88 135 188 220 130 189 113 162 386 163 163 165
222 270 488 45 134 188 176 152 220 93 163 386 280 189 250
222 270 280 45 -45 188 125 74 189 280 280 386 289 280 280
222 270 280 45 300 188 125 120 226 280 289 250 299 280 244
222 270 620 45 253 267 288 147 220 280 299 250 321 280 127
222 88 320 45 - 244 270 420 160 280 321 140 280 280 410

194
222 164 640 488 208 274 170 120 240 280 342 270 280 280 380
222 145 640 140 220 146 310 145 189 280 314 470 280 280 228
222 222 640 280 -15 124 31 160 189 280 245 425 290 280 162
222 280 280 lOO 120 227 220 170 -85 290 245 469 290 280 470
222 280 428 242 324 410 188 220 240 290 135 386 480 280 580
222 288 210 288 267 382 188 176 189 480 187 - 260 280 120

124
222 288 lOO 421 276 374 188 125 189 -52 210 -12 240 410 390
222 128 200 136 233 374 220 125 260 480 II3 389 220 440 270
222 280 210 270 178 362 220 288 240 480 93 386 - 460 222

112
222 120 122 270 135 342 220 270 220 136 187 386 - 380 430

362
450 100 120 270 220 310 220 170 189 147 178 386 117 420 440
240 lOO 120 480 228 170 220 224 220 136 139 389 387 560 220
240 120 110 320 228 170 220 224 220 147 342 469 386 280 162
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TABLE A.5 Results obtained after 30 seconds for each low level heuristic for
the one dimensional bin packing problem, one instance.

LSI LS2 Ml M2 M3 RI R2 COl

0.1 0.12 0.02 0.12 0.47 -0.11 0.09 0.01

0.02 0.4 0.03 0.08 0.66 -0.15 0.09 0.02

0.01 0041 0.16 0.1 0.34 0.01 0.11 0.3

0.03 0.03 0.2 0.3 0046 0.01 0.16 0.1

0.12 0.33 0.21 0.14 0.25 0.1 0.2 0.05

0.11 0.24 0.4 0.06 0.78 -0.1 0.03 0.16

0.1 0.48 0.08 0.23 0.41 0.13 0.2 0.16

0.12 0.05 0.02 0.17 0.11 0.04 0.23 0.16

0.12 0.11 0.01 0.01 0.29 0.06 0.29 0.16

0.12 0.14 OJ 0.2 0.31 0.01 0.15 0.16

0.12 0.25 0.06 0.28 0046 0.01 0.16 0.02

0.12 0.1 0.23 0.28 0042 0.14 0.1 0.03

0.12 0.1 0.1 0.01 0042 0.14 0.2 0.03

0.12 0.2 004 0.28 0.06 0.01 0.01 0.03

0.12 0.3 0.3 0.28 0041 0.02 0.23 0.03

0.12 004 0.28 0.28 0.43 0.01 -0.1 0.03

0.04 0.011 0.28 0.28 0.44 0.06 0.23 0.03

0.03 0.1 0.01 0.1 0.7 0.05 0.24 0.03

0.02 0.11 0.28 0.07 0.11 0.08 0.14 0.03

0.06 0.23 0.2 0.14 0.22 0.1 0.26 0.03

0.07 0.23 0.09 0.01 0.06 0.11 0.3 0.03

0.1 0.23 0.3 0.25 0.16 0.09 0.14 0.03

0.1 0.23 0.28 0.28 0.12 0.03 0.17 0.16

0.1 0.036 0.28 0.22 0.14 0.06 0.7 0.14

0.12 0.42 0.28 0.11 0.16 0.1 0.11 0.11

0.12 0.4 OJ2 0.17 0.3 0.1 0.11 0.09

0.12 0.1 0.33 0.05 OJ 0.01 0.16 0.14

0.12 0.16 0.01 0.16 004 0.02 0.13 0.06

0.1 0.48 0.02 0.11 0.04 0.02 0.29 0.04

0.1 0.03 0.32 0.12 0.13 0.03 0.21 0.07
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TABLE A.6 Results obtained after 30 seconds for each low level heuristic for
the nurse rostering problem, one instance.

LSI LS2 LS3 LS4 LS5 COl CO2 C03 MI RRI RR2 RR3
4200 1222 4540 1480 600 20 96 12 80 14 14 14

0
lOSS 3347 1208 1420 240 40 40 88 17 120 76 16

0
1055 3347 1608 1I20 29 14 12 76 11 0 0 0

0
1055 3347 4440 1000 32 14 4 0 2 -120 74 12
1055 3347 3800 380 32 220 210 140 0 -60 -60 -I
1055 3347 3700 290 32 220 65 150 0 18 18 2
lOSS 3347 2400 29 32 220 38 12 0 45 45 3
1055 3660 2200 32 32 220 120 lOO 3 -87 -87 20
lOSS 3776 2200 32 32 220 120 120 0 78 62 12
1055 3776 2200 32 32 220 120 150 6 0 0 0
1055 3776 2200 32 4 220 120 150 0 0 0 0
1055 3776 2200 32 12 220 100 90 1 46 64 I
1055 3776 2200 32 320 220 120 10 4 0 0 0
1055 3776 2200 32 240 220 90 20 0 60 60 1
1055 3776 2200 4 260 220 120 42 0 28 28 8
245 3776 600 8 180 220 120 46 0 0 0 0
620 3776 380 1200 160 220 120 12 0 -16 -16 6
620 3776 380 1200 120 140 120 12 0 2 2 2
620 3776 380 1200 100 240 120 38 0 0 0 0
620 1004 380 1200 80 220 120 66 0 -10 -10 -4

0
3600 4200 380 600 120 80 120 75 0 -11 -11 -II
2400 4200 380 120 170 200 120 74 0 -22 -22 14
3600 4200 380 240 340 210 120 76 0 12 12 12
9988 4200 380 32 420 220 120 88 12 14 14 14
1075 4200 380 18 560 224 120 39 11 -II -II -II
0
3800 4200 220 22 480 220 110 43 24 -13 -13 -13
3700 4200 120 124 320 220 80 110 80 -20 -20 -20
3600 4200 420 120 180 220 220 120 -12 0 0 0
3600 4200 540 360 18 220 18 146 13 10 10 10
3600 4200 540 360 26 180 24 34 11 20 20 20
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TABLE A.7 Results obtained after 30 seconds for each low level heuristic for
the Max-SAT, one instance.

LSI LS2 Ml M2 M3 M4 M5 M6 RI COl CO2

2 2 2 2 2 1 1 1 1 2 0

4 4 4 4 2 1 1 1 1 0 1

3 3 3 3 2 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 2 1 0 0

1 1 1 1 1 1 1 2 1 3 0

61 16 11 7 1 1 0 2 1 -1 0

20 20 2 -2 -2 1 1 2 1 6 3

16 16 11 -4 -4 1 1 2 1 0 -1

2 2 2 2 2 1 -2 2 1 2 -1

13 13 12 -1 -1 1 1 2 1 3 0

78 14 12 1 1 1 1 2 1 0 0

62 33 12 1 1 1 -2 2 1 0 0

14 14 12 1 1 1 1 2 1 0 0

22 22 12 1 1 1 1 2 -10 0 0

22 22 12 0 0 1 1 2 1 0 2

22 26 12 -1 -1 -4 -4 2 1 0 0

22 22 1 1 1 -3 -3 2 -3 0 0

22 22 4 -7 1 0 0 2 1 0 0

22 22 5 -1 -1 1 1 2 1 0 0

13 13 3 -19 2 1 1 2 -2 1 0

11 11 11 7 1 1 1 1 1 4 0

21 21 11 -2 -2 -1 -1 -1 1 5 0

14 14 9 8 0 -6 -6 -6 1 2 0

18 18 8 4 0 1 1 1 1 2 0

32 32 2 2 2 1 1 1 2 3 0

66 42 6 5 1 1 0 0 1 4 0

1 1 1 1 1 1 1 1 2 5 0

1 1 1 1 1 1 0 0 2 6 3

2 2 2 2 2 1 1 1 -4 6 3
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TABLE A.8 Results obtained after 30 seconds for each low level heuristic for
the permutation flow shop, one instance.

LS LS LS LS CO CO co CO MI M2 M3 M4 M5 RI R2
1 2 3 4 1 2 3 4
122 100 88 120 170 125 110 15 -20 -20 14 1 1 1 100
120 20 30 120 170 140 120 25 15 15 11 1 1 1 90
10 65 100 120 -25 27 27 32 12 12 12 1 1 1 80
12 24 27 120 170 17 27 40 14 14 14 1 1 1 55
28 30 26 120 180 31 31 76 26 26 6 1 1 1 48
43 100 26 120 180 31 31 44 44 44 4 1 1 6 29
27 27 26 120 140 46 46 71 11 11 11 1 1 1 17
12 26 26 120 10 88 88 74 14 14 14 3 I I 29
10 26 26 118 -70 88 88 79 19 19 9 3 I 4 48
10 26 26 28 39 88 48 90 9 9 9 3 I I 48
10 26 26 42 -13 88 88 12 12 12 12 3 I 1 48
10 26 26 88 13 88 32 14 14 14 14 3 1 1 48
10 26 26 45 134 88 88 15 15 15 5 4 I 1 48
120 26 88 45 -45 88 88 7 7 7 7 5 1 7 48
27 26 16 45 30 88 88 12 12 12 12 8 I 1 48
110 26 14 45 24 47 47 14 -4 -4 2 10 1 1 48
111 88 22 45 - 47 47 42 -6 -6 1 1 I 1 48

194
122 16 28 85 20 74 74 12 -1 -I 3 3 5 5 48
lOO 14 32 75 170 12 12 14 I I I 3 3 3 48
90 22 32 36 -15 12 12 16 I I 11 2 -4 -4 48
88 28 32 100 120 12 64 17 I I I 2 2 2 48
77 32 32 112 124 12 12 22 1 I 10 -4 4 4 II

I 32 32 28 67 12 12 6 I I I 2 3 3 12
17 32 32 42 74 12 12 6 1 1 1 2 5 5 39
22 32 224 116 33 12 36 6 1 1 I 2 -1 -1 6

120 32 110 27 18 12 12 6 1 1 1 2 -I -1 3
14 32 80 24 12 8 8 6 1 1 1 2 -1 -I I

16 32 110 22 110 7 7 6 1 1 1 2 -1 -1 1
122 100 120 48 120 6 6 56 -2 -2 12 2 1 1 1
122 90 110 32 80 2 2 64 -3 -3 13 2 1 1 1
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TABLE A.9 Results over 31 runs of 1000 iterations for each low level
heuristic for one instance of the one dimensional bin packing problem, using a
better initial solution.

LSI LS2 MI M2 M3 RI R2 COl

0.1 0.12 0.02 004 0.47 -0.11 0.09 0.01

0.1 0.4 0.03 0.08 0.66 0.88 0.41 0.02

0.02 0.62 0.16 0.9 0.34 0.2 0.11 0.3

0.3 0.26 0.2 004 0046 0.01 0.16 0.1

004 0.33 0.21 0.6 0.25 0.23 0.6 0.05

0.011 0.24 004 0.056 0.78 -0.1 0.5 0.16

0.1 0048 0.08 0.23 0041 0.23 0.4 0.2

0.12 0.11 0.9 OJ 0.11 0.24 0.23 0.2

0.23 0.21 0.4 004 0.29 0.14 0041 0.2

0.23 0.14 0.6 0.4 0.31 0.26 0.55 0.2

0.23 0.76 0.056 0.28 0.46 0.3 0.6 0.2

0.23 0.1 0.23 0.28 0.42 0.14 0.1 0.2

0.23 0.1 OJ 0.28 0.42 0.17 0.2 0.2

0.23 0.02 0.4 0.28 0.74 0.7 0.01 0.2

0.23 0.3 0.4 0.28 0.41 0041 0.23 0.2

0.23 0.4 0.28 0.28 0.43 0.31 -0.1 0.2

0.23 0.011 0.28 0.28 0044 0046 0.23 0.2

0.23 0.1 0.28 0.7 0.76 0.25 0.24 0.2

0.23 0.12 0.28 0.66 0.89 0.78 0.14 0.2

0.36 0.23 0.28 0.34 0.22 0041 0.26 0.2

0.36 0.23 0.28 0.46 0.74 0.11 0.3 0.2

0.36 0.23 0.28 0.25 0.86 0.29 0.14 0.2

0.36 0.23 0.28 0.78 0.9 0.31 0.17 0.16

0.36 0.36 0.28 0.41 0.86 0.46 0.7 0.34

004 0.42 0.28 0.11 0.86 0.32 0041 0.31

0.28 0.57 OJ2 0.29 0.86 0.31 0.31 0.09

0.63 0.89 0.33 0.31 0.86 0.11 0.86 0.17

0.76 0.94 0045 0046 0.86 0.21 0.31 0.26

0.12 0.22 OJ6 0.42 0.73 0.22 0.29 0.24

OJ2 0.76 0042 0042 0.73 0.24 0.21 0.27
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TABLE A.IO Results over 31 runs of 1000 iterations for each low level
heuristic for one instance of the nurse rostering problem, using a better initial
solution.

LSI LS2 LS3 LS4 LS5 COl CO2 cm MI RRI RR2 RR3
7000 10036 13250 12060 11307 20 96 12 170 140 145 21
6500 10036 12890 13450 10037 40 40 88 40 120 76 20
7060 10036 13240 1100 10090 144 12 76 12 0 0 0
7060 10036 13220 1000 9970 41 4 41 10 -120 -20 74
7060 10036 12880 2200 9970 220 6 140 0 -60 -60 40
7060 10036 12740 2200 9970 170 450 450 0 180 90 12
7060 10036 12980 2200 9970 220 180 12 0 150 50 -56
7060 10036 12989 9961 9970 190 120 70 12 120 -lOO 64
7060 10012 12456 10961 9970 220 90 120 0 90 110 -70
7060 9990 12450 10961 9970 190 90 60 36 50 0 0
7060 9890 11800 10961 10020 220 90 80 0 0 0 80
7060 9896 11800 10961 10060 220 90 90 40 -160 110 -52
7060 10036 11800 10961 9450 120 90 80 41 0 0 0
7060 11025 11800 10961 6100 80 90 70 0 -76 120 -16
7060 10041 11800 10961 7000 llO 90 120 0 -120 -80 80
7060 10740 11800 10961 2200 220 90 160 0 0 0 lOO
7060 9987 11800 10961 2200 80 90 120 0 140 140 460
7060 9874 ll800 10960 9960 260 90 114 0 120 120 1200
7060 9654 11800 11000 9961 324 90 180 0 0 0 120
7060 9541 11800 9160 10961 180 90 180 0 -120 -120 50
7060 9756 12520 9160 10961 210 90 220 0 80 -60 -100
7060 9890 12540 9160 10961 60 90 220 0 0 180 110
6400 9897 12570 9160 10942 210 120 220 0 120 150 0
6200 9889 13010 9160 10942 70 60 220 14 110 120 0
6700 10032 13020 9160 10942 224 120 190 45 120 90 110
6700 10034 12740 9160 10942 220 70 110 17 90 50 0
6800 10022 12880 10312 10942 120 80 140 12 20 0 84
6800 9752 12520 9980 9960 80 170 180 65 0 -160 -80
6800 9890 12570 9970 9980 90 180 120 0 10 90 0
6800 9940 11940 9980 9970 180 140 90 23 110 70 140
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TABLE A.II Results over 31 runs of 1000 iterations for each low level
heuristic for one instance of the Max-SAT problem, using a better initial
solution.

LSI LS2 Ml M2 M3 M4 M5 M6 RI COl CO2
78 42 12 8 2 1 1 2 1 2 0
120 42 12 8 1 -3 4 1 2 4 1
84 42 12 8 2 1 5 -1 5 3 0
80 42 12 8 1 1 3 3 4 4 3
86 42 12 8 -4 -2 10 4 -2 3 3
30 42 12 8 -4 1 -13 1 -3 2 3
26 42 12 8 -3 1 -14 -3 -5 2 3
72 42 -10 8 2 0 11 -4 1 -1 1
62 42 -10 8 0 0 10 -2 I -3 2
86 42 8 8 0 0 1 -1 I 2 I

30 42 5 8 1 0 2 1 I 3 I

26 42 7 8 2 0 -I 1 I 0 0

72 42 8 8 2 0 -5 1 I 0 1
62 42 2 8 2 0 -4 1 I 6 2
62 42 1 8 2 0 0 -2 1 0 2
62 42 1 8 2 0 -2 1 1 0 2
62 42 1 6 2 0 3 -2 1 3 2
62 42 1 2 2 0 1 -2 1 0 -1
62 42 1 -1 2 0 1 1 1 0 2
22 42 1 -1 2 1 1 -2 1 2 3
74 42 1 -2 2 1 1 -2 1 6 3
26 42 1 3 2 1 3 -2 1 5 3
32 26 5 4 2 1 1 -2 1 3 2
46 28 3 6 2 1 1 1 1 6 3
50 34 2 2 2 1 1 1 -2 -1 3
42 36 2 -2 2 1 1 -2 -3 2 2
38 38 1 -4 2 1 1 -2 -4 4 3
36 42 1 2 2 -3 1 -3 2 3 2
32 42 -1 1 2 -2 1 -8 3 2 1
32 42 -2 6 2 1 1 144 2 1 3
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TABLE A.12 Results over 31 runs of 1000 iterations for each low level
heuristic for one instance of the permutation flow shop problem, using a better
initial solution.

LS LS LS LS co co co co Ml M2 M3 M4 M5 RI R2
1 2 3 4 1 2 3 4
122 100 88 80 110 110 110 88 -20 23 14 10 5 -9 55
112 100 224 75 110 110 liD 84 16 21 14 10 4 -16 -20
116 100 220 112 120 120 120 82 12 17 14 10 6 -20 38
118 100 120 112 120 120 120 88 10 11 14 10 3 -35 57
120 100 130 80 120 120 120 76 11 14 14 10 2 -36 48
108 100 90 66 180 140 104 44 19 17 14 10 1 -80 29
90 100 110 77 160 140 109 71 240 16 14 10 1 5 17
114 100 100 74 176 96 96 74 -8 13 11 10 1 5 9
113 100 210 73 -90 80 80 79 14 15 9 10 I 5 8
110 100 142 72 170 170 110 75 5 18 II 10 I 5 20
110 65 143 57 110 110 110 34 17 21 6 7 1 5 II

106 42 188 67 135 125 95 30 20 23 2 10 I 5 12
122 88 82 66 134 124 92 52 21 23 I 10 I 5 14
84 74 94 63 -45 75 75 74 II 17 8 10 1 5 28
76 66 75 78 140 140 87 88 13 4 9 10 1 4 24
64 66 110 74 133 III 46 90 9 3 8 10 I 4 100
62 88 114 25 92 92 67 90 10 18 6 10 1 6 41
56 100 113 45 74 73 68 39 22 6 9 10 5 4 14
122 90 124 26 88 89 39 47 25 10 8 8 6 4 28
122 98 220 28 25 25 39 76 19 12 5 6 3 7 12
122 78 216 22 -14 12 25 79 15 15 11 6 4 3 16
70 45 218 110 -23 32 12 82 24 19 9 8 2 5 12
88 60 224 1I6 67 76 76 82 19 21 13 6 2 3 10
90 80 222 120 76 68 68 84 26 23 14 -12 2 3 39
92 88 223 90 49 49 49 71 21 22 5 3 2 3 27
58 90 210 90 85 85 85 82 20 18 12 4 2 3 12
48 100 180 74 57 79 79 82 20 15 13 6 1 2 9

86 100 110 38 46 81 81 82 18 17 14 -4 -8 7 5
88 100 80 48 180 120 120 90 19 18 9 10 2 8 14
122 90 70 1I0 156 106 106 29 26 18 10 8 1 7 62



Appendix B

Healthcare Scheduling and Methodologies

Appendix B includes a more extensive review of work done on healthcare

scheduling i.e. nurse rostering and surgery scheduling problems. Also

included is a review of general methodologies. Some publications mentioned

in chapter 2 or 3 are also included in Appendix B as more detailed information

is provided.

It is worthwhile mentioning in this research the problem of tour scheduling.

Tour scheduling is a personnel scheduling problem in which each day is

broken into small time units and each unit is assigned a task, these tasks will

eventually be allocated to an individual. The time units include productive

tasks and rest tasks. This publication is relevant as hospitals often do not

actually work in a shift based system but need more flexibility to allow for

nurses to start and end their day at different times.

Alfares (2004) presents briefly the main models used to express tour

scheduling problems and methods used to solve the problem. The tour

scheduling problem consists of assigning a schedule or tour for a given period

to an employee. The tour consists of the starting time of work, includes off

periods, off days until ending time of work for the planning period. Tour

scheduling differs from shifts as the timeframe is for the planning period and

the start and end times of work may vary from person to person and day to

day. Generally the mathematical models aim to minimise cost of the

workforce or to minimise the workforce while ensuring personnel

requirements are met. The author classifies the papers based on the

methodology used to solve the problem.

This paper is interesting as it provides a brief overview of the studies done on

tour scheduling and classifies these according to the methodology used to

159
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solve the problem; comparisons are also made between the different methods

used

The following publications have been grouped by the general methodology or

representation used to solve the nurse rostering problem. Section B.l.1

encompasses research done using single point search methods. Section B.l.2

contains publication that decompose the complex problem into subcomponents

and section B.l.3 includes models that define the problem differently. Section

B.1.4 includes general methods used on non-healthcare scheduling problems.

B.I.I Single Point Search Algorithms

Berrada et al. (1996) represent the nurse rostering as a multi-objective model

where each constraint is an objective/goal to be minimised. The authors

propose three different solution methods, these affect the model representation.

The sequential technique which solves all constraints, the weights technique

which focuses on a linear objective function and a tabu search which will be

included only on two hard constraints and the other constraints will be

presented as non-linear objective functions. All three methods are tested using

real data for three wards of a large hospital. The computational time are also

compared. All three solution methods/models yield a feasible solution and

respect soft constraints. The computational time is less for the weights and

sequential techniques than the tabu search.

This research tests the models/techniques on real data; the multi-objective

model is flexible as it enables adding, removing and changing soft constraints

to reflect time period or requirements of different wards/hospitals. The model

is also easily understandable for a head nurse. The initial model is limited as it

only uses three shifts per day and each nurse is scheduled to work the same

shift throughout the planning period. A model that would allow flexibility

with shift starting time and length of shift as well as allowing different shifts

for each nurse through the period would represent the problem even more

realistically.

Schaerf and Meisels (1999) review a general employee scheduling model. The

problem considered is to assign an employee to a task in a shift. Shifts can
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start and end at any time in the day. The model considers work requirements,

personnel availability, qualifications, workload restrictions i.e. a minimum and

maximum number of tasks an employee can perform. The objective is to

minimise the violation of constraints. The model covers a week period. An

initial solution is found by inserting employees in a schedule that minimises

constraint violations. The initial solution respects work requirements. A hill

climbing algorithm is used to improve the solution. The moves considered are

moves that improve or have no impact on the objective function. The moves

chosen are to replace, insert or delete employees in a schedule. The

methodology permits the creation of partial assignments. The method was

tested on two theoretical employee scheduling problems: a nurse rostering

problem and a scheduling on a production line in a factory.

The model used permits flexible start and end times for shifts. The hill

climbing method explores a large solution space by' allowing moves that

provide a better solution or sideway moves. The method also allows partial

schedules which can be useful in real world scheduling problems. However

the method was not tested on real data; it would be interesting to apply the

model and methodology to a real world problem. The method requires

adjustment for each problem studied.

Li and Aickelin (2004) propose a different way of representing and solving the

nurse scheduling problem. The idea is to build the nurses' schedules based on

four rules that are used by human schedulers, the rules introduce randomness,

consider only cost, consider coverage and grade requirements in the scheduling

process. The authors present the model used in previous work in a graph

where each node represents a nurse and the rule that is used to schedule the

nurse. Each nurse has one node for each rule. Initially the edges represent the

number of times a path is used randomly to construct a schedule in a number

of runs. The probability of using each specific path is calculated and new

paths are selected according to their fitness and added to the set of possible

paths for the scheduling. The authors also apply a second algorithm, an

adapted classifier system, to solve the same instances of the nurse scheduling

problem. This algorithm uses the same modelling of the problem. Initially
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each node is assigned randomly a score, which the authors call strength. New

schedules are built according to these strengths i.e. the nodes chosen have the

highest scores. The new schedules are evaluated and if they are better than the

previous schedules they are rewarded, if they are not they are penalized. The

reward/penalty is attributed evenly between the nodes of the solution. At each

iteration the solution is kept.

This paper is relevant, it presents the nurse rostering problem differently and

the algorithms used are tested on real data.

Bard and Pumomo (2005) model the nurse rostering problem as an integer

programming problem and present an algorithm to solve the issue using

various size problems i.e. variable number of nurses and planning period. The

model takes into account floating nurses and the cost of the extra resources.

The method proposed also enables the planner to apply a degree of severity for

not respecting soft constraints which will be taken in account when solving the

problem. From an initial solution over coverage and under coverage periods

are found for each nurse and swapping is done from shifts that are over

covered to under covered to create new schedules. The heuristic checks for

feasibility of the schedules, ensures that there is no duplicity of schedule and

calculates cost.

This paper provides a more complete model of the nurse rostering problem

considering different skill sets, previous schedules, attributing penalties/cost

evenly between nurses and including floating personnel in the model. The

results are also analysed to demonstrate which parameters render the problem

difficult for example when the planning horizon is increased.

Aickelin and Li (2007) reflect and solve the nurse scheduling problem in a new

way. The idea is to build the nurses' schedules based on four rules that are

used by human schedulers, the rules introduce randomness, consider only cost,

consider coverage and grade requirements in the scheduling process. The

authors present the model used in previous work Aickelin and Dowsland

(2000) in a graph where each node represents a nurse and the rule that is used

to schedule the nurse. Each nurse has one node for each rule. Initially the

edges represent the number of times a path is used randomly to construct a
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schedule in a number of runs. The probability of using each specific path is

calculated and new paths are selected according to their fitness and added to

the set of possible paths for the scheduling.

An important contribution of this paper is to reflect the nurse scheduling

problem in a directed graph which permits the incorporation of rules used by

human scheduler to construct a schedule. This methodology is flexible as it is

possible to add rules to create schedules. This also was tested on real data.

B.l.2 Problem Decomposition

As the nurse rostering problem is complex, some publications decompose the

problem into more manageable sub-problems. A category for this type of

research is made to highlight this modelling possibility.

Azaiez and Al Sharif (2005) propose a goal programming model to reflect the

nurse rostering problem. The authors have conducted a study of nurses'

preferences by a survey and have incorporated hospital/ward requirements in

the goal programming model. The model is first expressed in hard and soft

constraints and is then converted so that each goal represents a constraint;

weights are added according to the importance of the goal. To solve the

problem, the authors divided the nurses in subgroups and developed a program

to obtain optimal schedules. The study found that overtime cost was reduced

and a second survey showed that nurses' satisfaction was good.

This paper is helpful; the study of a real hospital environment was done and

the model takes into consideration nurses' preferences. The program is also

being used on a trial basis by the hospital. The program is user friendly and

enables head nurses to do some modifications to the system to respect some

preferences, it allows flexibility. The method proposed could have been

presented in more details.

Aickelin et al. (2009) present an algorithm to solve 2 scheduling problems.

The algorithm used is a Squeaky Wheel Optimisation method with added

elements. The proposed algorithm Evolutionary Squeaky Wheel Optimisation

uses an initial solution that it divides into components. These components are
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then analysed i.e. evaluation of each component and attribution of a fitness

(score) based on parameters of the problem at hand (such as coverage). Based

on their fitness score components are then compared to a random number to

evaluate if they will remain in the solution or be discarded. From the

remaining components a further random small number will also be discarded.

The discarded shifts (components) are evaluated (based on the previous

analysis) and ordered. The hardest shift to schedule is the first in the ordered

list. The last step consists of assigning the discarded shifts to cover all

personnel requirements. The method was defined and tested on a driver

scheduling problem and a nurse rostering problem. In both cases the new

method provides results comparable or better to previously used algorithms.

This paper is interesting because by dividing the initial solution into subsets

(components), evaluating these and setting priorities, the problematic shifts are

highlighted and can be dealt with at the beginning of solution construction.

The method is applied to two different problems. The method is general

although it does not have the level of generality of hyper-heuristics because the

parameters are taken into account and dealt with directly but nonetheless the

method was adapted easily to each problem.

Burke and al. (2009f) use a combination of integer programming and a variable

neighbourhood search algorithms to solve a nurse rostering problem. The

authors define a model to solve nurse rostering as an integer programming

problem and divide the problem into sub problems. The first sub problem is

used to model the hard constraints and the important soft constraints. This sub

problem is solved by an Integer Programming algorithm but not to optimality.

The other sub problem contains the soft constraints not dealt with in the first

sub problem. The variable neighbourhood search is employed to solve this sub

problem. The results are comparable or better than other meta-heuristics used

to solve the same problem.

This paper is relevant; it decomposes the complex problem of nurse rostering

and models it in all its complexities. The integer programming algorithm is

used intelligently i.e. not to find optimality as it is too time consuming but in

obtaining a feasible solution. The combination of heuristic and exact
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algorithm is an important contribution and represents a new way of defining

and solving the complex nurse rostering problem.

Brucker et al. (2010) decompose a nurse rostering problem into subsets which

will be solved separately. The second objective of the paper is to present and

use new real data on nurse rostering. The subsets are a shift sequence problem,

a schedule problem and a roster problem. Constraints are attributed to each

subset. The shift sequencing consists of defining for each nurse of each

qualification a set of all possible sequence of shifts that respect the hard

constraints and have the lowest penalties in regards to soft constraints. These

shift sequences are kept and ordered for each nurse. The second problem

consists of assigning a schedule to each nurse using the best shift sequences

previously defined. The nurses that have the most schedule restrictions will

have their schedule created first. The third step consists of gathering the

schedules to create a roster; the roster is evaluated to ensure respects of

requirements. If roster constraints are not met, the roster is modified by

swapping nurse schedules. A further evaluation is done and more changes are

made to the roster to ensure respect of constraints or obtain better solutions.

An important contribution of this research is the presentation and use of new

data sets. These can be used to evaluate other solution methods for the nurse

rostering problem. The other important contribution is the problem

formulation into 3 subsets each with their own constraints. Most research is

concerned with the solution method, the different representation of the problem

is as important to gain a better solution. Although the methods used to solve

the problems are not hyper-heuristics, the methods are general.

B.l.3 Unique Modelling Approaches

This section groups publications that define the nurse rostering problem

differently such as including float nurses in the model or address an issue that

is part of the reality of nurse scheduling in hospitals such re-rostering due

absenteeism.

Trivedi and Warner (1976) represent the problematic of assigning float nurses

on a daily basis to units in a hospital. The assignments must be made based on
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information of the day such as current available staff for each unit, the

patients' requirements in all units considered and available float nurses. The

authors use the knowledge of the head nurses of each unit to evaluate at the

beginning of each shift the requirements to have float nurses assigned, the

authors call this a "severity index". The authors build a model whose objective

is to minimise the severity index i.e. to assign available float nurses to each

unit in such a way as to reduce inconveniences during the shift. The model

considers interdependence between available nurse's skill sets and the severity

index. The model is solved using a branch and bound algorithm while

ensuring equitable assignments of float nurses between units. The results were

compared with the assignments of float nurses made by the hospital decision

maker. The comparison was made for a four week period. The authors find

that the model assigns float nurses similarly to the assignments made by the

decision maker.

This methodology is flexible; the problem is a short term planning issue that

varies from shift to shift. In order to evaluate the situation human knowledge

is required; this is provided by the model using a severity index. As the model

and method was tested on real data this could be used in a hospital to help for

short term planning. The methodology could be further developed to generate

the severity index based on history of assignments. The problematic has not

been studied much although this is an important issue that arises in a hospital

environment.

Brusco and Jacobs (1995) present and solve two models for personnel

scheduling in a 24 hour seven days a week environment. The authors present a

model where no shifts may overlap over a 24 hour period and a model that

permits overlapping enabling shifts to start at different times of the day. The

authors show the first model decreases the number of possible shift patterns yet

the labour costs are higher. The authors also include in the model the

possibility of using part time and full time workers. The resolution method

proposed to obtain an acceptable computational time is a local search heuristic.
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An initial feasible solution is found randomly, a set of employee schedules is

taken away and rescheduled to improve solution.

This paper demonstrates that although the complexity of a schedule that does

not permit overlapping over a 24 hour period is reduced as they are less

possible patterns the cost of labour is higher. The second model that permits

overlap provides more flexibility and the use of part time and full time

workforce reflects better organizational demands.

Meyer auf'm Hofe (1997) defines the nurse rostering problem more

completely i.e. where the constraints are defined and evaluated in terms of

importance. The author defines every soft constraint and allocates to each an

importance. The constraints are then placed in a hierarchy. The hard constraint

is placed at the top of the hierarchy as it must be satisfied. This is done to

ensure that the solution takes into account the importance of the constraints

and satisfies the important constraints. This cannot be done by attributing

weights only to the requirements. The model is further defined by attributing

in each constraint a weight to each variable. The objective of the weight is to

measure the penalty (cost) of not respecting this soft constraint for each nurse.

The algorithm used to solve the model is a modified branch and bound

algorithm. An initial solution is found. The schedules for each nurse are

evaluated and the ones that do not respect most important constraints are

further modified to find a better feasible solution.

The important contribution of the paper is the model that takes into account the

importance of each requirement and builds a hierarchy based on this

importance. This implies that a solution will not only satisfy requirements that

are less important but rather first the most important constraints will be

respected. This represents better the reality of a nurse rostering problem.

When evaluating the schedules, the modifications made are logical and are

easy steps. In the example provided 2 nurses are scheduled for one shift and

another shift is empty. The algorithm simply assigns one shift to one of these

nurses.

Meyer auf'm Hofe (2001) explains how the nurse rostering problem can be

defined as a constraint optimization problem. The problematic consists of
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assigning shifts to nurses while respecting several constraints. To define the

problem the authors have created different hierarchal constraint levels i.e. all

constraints in a level will reflect the importance of these constraints where zero

is the most important level. As in each hierarchal level of constraints some

constraints may be more important than others, each constraint within the level

is assigned a weight, the higher the weight the more important the constraint.

The methodology allows partial satisfaction of some constraints; this will

depend on the requirements of the hospital. The model also keeps a tab on the

nurses' past shift assignments to allow for future compensation i.e. extra days

off or other shifts in future. The software described uses a branch and bound

algorithm coupled with an iterative search algorithm to find good rosters. The

software enables the scheduler to attribute weights and change the level of

hierarchy of constraints to allow more flexibility in building schedule to permit

consideration of nurses' preferences.

As this paper was published in 2001 it is interesting as it is the first to allow

partial constraint satisfaction and reflects the reality of hard and soft

constraints using hierarchy level of constraints and weight attribution for each

constraint within each level. The software also enables the scheduler to define

modifications to a good roster, to identify modifications that need to be made

because some constraints are violated or to change priority level of constraints.

These features provide flexibility for future requirements in nurse scheduling.

Moz and Pato (2004) study the re-rostering nurse problem. The problem arises

when the roster has been established for a given period and one or more nurses

must be absent during a period in which they were scheduled to work in the

roster. The authors present two models to reflect the problem. The goal is to

minimise the dissimilarities between the existing roster and the new roster.

The first model presented is an acycIical network graph where each level

represents the number days in the period and each node represents a shift

assigned to a nurse for each day; morning, evening, night and fictitious shift

(to represent days off). The path between nodes at each level represents the

roster for the nurses. To minimise dissimilarity between the current schedule

and the new schedule a cost is assigned to each possible pair of nodes i.e.

nurses shift on day "d" to shift on day "d+ 1". The cost is attributed to satisfy
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hard constraints where cost is high for coupling that cannot be done due hard

constraints. The model does not take into account overstaffing. To reflect the

reality of overstaffing an aggregated model is presented. The model

aggregates node of the same level for each shift i.e. for each level 8 nodes are

defined and represent the 4 shifts and a "shadow" shift of each shift. The link

between a node and its shadow will ensure that staffing requirements are met

for each shift of the day. This model has less variables, it is therefore less

complex. A cost for linking nodes is also assigned to respect hard constraints.

The authors find that the computational time is less for the aggregated model

and the results are better.

This paper tackles the re-rostering problem which has not been studied much

but represents a challenge in hospital staffing. The models were tested using

real data of various sizes i.e. one ward of 19 nurses and one of 32 nurses.

However as the authors point out only hard constraints are considered. The

model would be of more interest and could be implemented in hospitals by

integrating soft constraints to the re-rostering problem.

B.1.4 General Methods

Ouelhadj and Petrovic (2008) present a new hyper-heuristic methodology that

is tested on flow shop problems. The authors define a hyper-heuristic that will

coordinate the use of low level heuristics agents. The hyper-heuristic which

the authors name hyper-heuristic agent (HHA) will select and keep the best or

not worsening solutions and the low level heuristic agents that have given

these results. The role of the low level heuristic agent (LLHA) is to use

different low level heuristic on a starting solution to find a better solution.

Each low level heuristic agents use the same low level heuristics to explore the

search area of the current solution. The HHA selects which LLHA will search

the solution space; the selected LLHA searches the solution space and gives

the best found solution back to the HHA. The HHA decides to keep this

solution or not. The HHA also decides which LLHA to use for the next

iteration based on stored results. The HHA chosen were a greedy algorithm

and a tabu search algorithm. The results show that the tabu search as an HHA

performs better.
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The research done on hyper-heuristic increases the level of generality of a

solution method to resolve problems; the hyper-heuristic framework is not

using any problem related data. This method however needs to be tested

further on larger problems and other scheduling problems as pointed out by the

authors.

Qu et al. (2009) present a new hyper-heuristic methodology. This consists of

evaluating low level heuristic sequences and creating a hyper heuristic that

mimics the creation of the best sequences i.e. the algorithm is adaptive. In

other publications hyper heuristics are clearly defined Le. tabu search or

genetic algorithm, in this case the authors choose to create a hyper heuristic

based on the evaluation of the sequence of low-level heuristics that gave the

best results on the exam timetabling problem and the graph colouring problem.

It is evaluated that the LWD (largest weighted degree) heuristic and the SD

(saturation degree) give the best results as low level heuristics for both

problems. It is also proven that the LWD is used and modified at the

beginning of the creation of the solution. Using this information the authors

develop an algorithm that adapts the LWD in the sequence of heuristics to

construct the solution. Sequences are evaluated and if the solution needs to be

improved the LWD heuristic is given a parameter to permit further

hybridisation. The goal is to observe and analyse results obtained randomly

using graph heuristics to create sequences of these heuristics to find feasible

solutions. Once the analysis is done the authors developed an algorithm to

mimic the choosing of the sequence of the heuristics and their modifications

(hybridisations).

The interesting contribution of this research is the development of a method to

choose a sequence of heuristics and adapt these automatically that reflects

previous analysis of random sequences.
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