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Abstract

A new approach to solve shallow water flow problems over highly irregular geometry

both correctly' and efficiently is presented in this thesis. Godunov-type schemes which

are widely used with the fmite volume technique cannot solve the shallow water

equations correctly unless the source terms related to the bed slope and channel width

variation are discretized properly, because Godunov-type schemes were developed on

the basis of homogeneous governing equations which is not compatible with an
inhomogeneous system.

The main concept of the new approach is to avoid a fractional step method and

transform the shallow water equations into homogeneous form equations. New

definitions for the source terms which can be incorporated into the homogeneous form

equations are also proposed in this thesis. The modification to the homogeneous form

equations combines the source terms with the flux term and solves them by the same

solution structure of the numerical scheme. As a result the source terms are

automatically discretized to achieve perfect balance with the flux terms without any

special treatment and the method does not introduce numerical errors.

Another point considered to achieve well-balanced numerical schemes is that the

channel geometry should be reconstructed in order to be compatible with the

numerical flux term which is computed with piecewise constant initial data. In this

thesis, the channel geometry has been changed to have constant state inside each cell

and, consequrently, each cell interface is considered as a discontinuity. The definition

of the new flux related to the source terms has been obtained on the basis of the
modified channel geometry.

A simple and accurate algorithm to solve the moving boundary problem in two-

dimensional modelling case has also been presented in this thesis. To solve the

moving boundary condition, the locations of all the cell interfaces between the wet

and dry cells have been detected first and the integrated numerical fluxes through the

interfaces have been controlled according to the water surface level of the wet cells.



The proposed techniques were applied to several well-known conservative schemes

including Riemann solver based and verified against benchmark tests and natural river

flow problems in the one and two dimensions. The numerical results shows good

agreement with the analytical solutions, if available, and recorded data from other

literature. The proposed approach features several advantages: 1) it can solve steady

problems as well as highly unsteady ones over irregular channel geometry, 2) the

numerical discretization of the source terms is always performed as the same way that

the flux term is treated, 3) as a result, it shows stong applicability to various

conservative numerical schemes, 4) it can solve the moving (wetting/drying)

boundary problem correctly. The authour believes that this new method can be a good

option to simulate natural river flows over highly irregular geometries.
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Chapter 1

Introd uction

Computational fluid dynamics (CFD) has become an indispensable tool for hydraulic

engineering after the development of numerical techniques in computer science.

Especially, CFD is playing an very important role in the design of flood defence

systems by predicting the dynamic behaviour of flood waves with relatively less cost

and time than physical models which need vast amount of space and resources. Most

modem flood warning systems include hydraulic modules developed on the basis of

CFD techniques as a key module and many important decisions in environmental

engineering are being made by the central or local authorities with the results obtained

from CFD-based hydraulic models. For example, the predicted arrival time of a flood

wave and its magnitude can be crucial information for local governments to decide

when to evacuate residents and the calculated inundation extents of floodplain or

urban catchments can be very useful data for developers and urban planners. Due to

the importance of CFD in hydraulic and environmental engineering, a lot of research

has been carried out in this area and, subsequently, a large number of new techniques

have been developed.

The development of CFD in river flow modelling is based on the shallow water

equations which describe the dynamic behaviour of flood waves. The shallow water

equations form a hyperbolic system of partial differetial equations and, as a result, it is

very difficult to find accurate analytical solutions except ideal problems. However, the

development of mathematical analysis and computer engineering enable one to solve

the partial differential equations by approximating the solutions with various

numerical techniques such as finite difference and finite volume methods. Until

relatively recently the most popular approach to solve the shallow water equations has

been the implicit finite difference method and many hydraulic software packages such

as HEC-RAS, MIKE 11 and ISIS developed on the basis of this approach have been
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widely used to simulate flood events. While the implicit fmite difference models have

in general demonstrated reasonable and numerically stable results, the main defect of

using this approach is its inability to solve highly transient flows such as dam-break

problems. To tackle this problem, Godunov-type finite volume schemes which were

initially proposed in aeronautics have been introduced in fluvial hydraulics. Godunov-

type schemes has become particularly popular since the introduction of approximate

Riemann solvers which shows almost similar results to exact solutions with much less

computing resources. The advantage of using Godunov-type fmite volume schemes is

its conservative property and strong shock capturing ability which can solve highly

unsteady and transcritical solutions. These significant merits have made many

researchers focus on the development of Riemann solver based numerical schemes

and, subsequently, many technical advances have been made in this area.

While lots of new Godunov-type schemes have been developed and applied to many

hydraulic engineering problems, their application to real flow problems over natural

geometry has been relatively limited due to the difficulty of dealing with irregular

geometry. The irregularity of the geometry such as the bottom slope and the variation

of channel width is incorporated into the source terms in the shallow water equations

and these source terms cause numerical errors if they are not treated properly. The

main cause of this difficulty is that most of numerical techniques used for Godunov-

type numerical schemes were initially developed on the basis of homogeneous

governing equations without source terms. As a result, very careful and accurate

treatment is needed for the numerical discretisation of the source terms in order to

obtain correct solutions of the shallow water equations. To solve this problem, many

researchers have proposed new source term discretisation techniques such as the

upwind treatment and the surface gradient method (SGM). However, these methods

are specialised for a certain category of numerical schemes and cannot be generalised

for the shallow water equations with source terms. For example, the upwind source

term treatment is an effective method for Roe's Riemann solver based schemes and

the SGM can be used for MUSCL-type TVD schemes.

The main objective of the research presented here is to develop a novel and general

method to solve the shallow water flows over highly irregular geometry and its
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application to real flow problems. To achieve this goal, a new approach in which the

original shallow water equations with source terms are modified into a homogeneous

form equations will be proposed in this thesis. By adopting this new approach, many

aspects of numerical difficulties related to the treatment of source terms can be solved

efficiently and accurately. In the one-dimensional case, new definitions of geometric

source terms will be presented in order to achieve well-balanced numerical solutions

in an arbitrary non-prismatic channel, while, in case of two-dimensional problems, a

simple and efficient wetting/drying boundary problem solver and a method to reduce

mass conservation error will be developed on the basis of the homogeneous form

shallow water equations. For the successful implementation of the research, the author

followed three steps. At first, the one-dimensional shallow water equations will be

modified into a homogeneous form and solved by using well-known conservative

numerical schemes. Secondly, the proposed methods were extended to the two-

dimensional case and a new algorithm to solve wetting/drying boundary condition

was developed. Finally, all the newly developed methods were applied to flood

modelling cases over natural geometries.

In Chapter 2, various hydraulic modelling methods are introduced and the governing

equations for this thesis, the one- and two-dimensional shallow water equations, are

derived.

Chapter 3 gives basic information about numerical methods to solve the shallow water

equations. Subsequently, recent research about numerical methods for the shallow

water equations, source term treatment techniques and the application of Godunov-

type numerical schemes to real flow problems are reviewed to analyse what has been

done so far.

In Chapter 4, the modification of the one-dimensional shallow water equations (or, the

St. Venant equations) into a homogeneous form is presented. To achieve numerically

well-balanced conservative schemes, new definitions for the geometric source terms

are proposed. The modified shallow water equations are solved by using well-known

Godunov-type conservative numerical schemes including approximate Riemann

solvers. The proposed numerical methods are applied to several steady and unsteady

-3-



benchmark test cases and the results are compared with analytical solutions to

demonstrate their robustness and accuracy.

In Chapter 5, the numerical methods developed in Chapter 4 are expanded to the two-

dimensional case. The two-dimensional shallow water equations are modified into a

homogeneous form and solved by several conservative schemes. Moreover, the

numerical algorithm to solve wetting/drying boundary condition and the flux

correction method to reduce mass conservation error ill two-dimensional modelling

are developed on the basis of the homogeneous form governing equations. The

presented numerical techniques are applied to several well-known benchmark tests to

verify their ability.

Chapter 6 focuses on the application of the numerical schemes developed in Chapter 4

and 5 to the modelling of flood events. 1996 and 1999 flood events in the Im-jin River,

Korea are used for the validation of the one-dimensional schemes. The numerical

results of the proposed schemes are compared with those obtained from HEC-RAS as

well as some observed data. The two-dimensional schemes are applied to inundation

modelling over a floodplain on the Nak-dong River, Korea and an urban area within

the city of Glasgow, U.K..

Finally, Chapter 7 contains the summary of the study and the conclusions obtained

from the results presented in the previous chapters. In addition, some ideas to expand

the proposed methods in this area are also recommended.
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Chapter 2

Hydraulic River Modelling

Hydraulic river modelling is the simulation of flow conditions based on the

formulation and solution of the mathematical relationships expressing known

hydraulic principles [28]. Hydraulic principles such as the mass conservation law lead

to mathematical equations describing water flows. The dynamic motion of unsteady

flow in river channels or floodplains can be described by the shallow water equations

while other simplified form of equations are available for different types of flows. The

hydraulic river modelling methods can be classified by the governing equations and

the properties of the flow. In this chapter, the basic information of hydraulic river

modelling methods and the shallow water equations are introduced.

2.1 Steady Flow Model

Open channel flows can be split to steady and unsteady state. A flow is steady if the

parameters describing that flow do not vary with time [21]. Strictly speaking, the flow

in a natural river is not steady but unsteady. Especially, in case of a flood wave, the

discharge and water level at one point vary rapidly as time goes by. So, the steady

state flow modelling methods are not a good tool to simulate natural river flows.

However, in some special cases, the state of the flow can be considered as steady, i.e.

flow in an artificial channel, irrigational channel and so on. Steady flow modelling

methods are generally used in designing new artificial channels or evaluating the

effects caused by some new river engineering works: e.g. calculation of the backwater

profile due to a new dam construction.

2.1.1 Uniform Flow Model

Open cahnnel flow is said to be uniform if the parameter describing that flow is the

same at every section of the channel [21]. Uniform flow can be steady or unsteady.
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However, unsteady uniform flow is practically impossible, so uniform flow generally

means steady uniform flow. In case ofunifonn flow, the discharges and the velocities

at any point in a river channel can be computed by using uniform flow equations with

the given cross-sectional properties and bottom slope. This method is the simplest

technique to model river flow. However, uniform flow is very rare in natural river so

this method is generally not used to model river flow by itself.

This model is governed by uniform flow equations such as Manning's equation. In

Manning's equation, the velocity V and the discharge Q at the point i can be written

as

where n is the Manning's roughness coefficient, R is the hydraulic radius, A is the

wetted cross-sectional area and So is the bottom slope which is same as the friction

slope Sf in uniform flows. This method is generally used for the design of new river

cross-sections or artificial channels to pass the design peak discharge, and the

calculation of the friction term in unsteady flow models.

2.1.2 Non-uniform Flow Model - Gradually varied flow equation

River flows can be considered as gradually varied flows unless there are rapid

changes of flow parameters as time goes by. This method can produce a water surface

profile at a given uniform discharge by using the gradually varied flow equation

which can be derived from the energy conservation equations.

The gradually varied flow equation for a river channel can be derived from the energy

equation. The total energy H at a cross section is

V2 V2

H=Zb+h+a-=z +a-2g s 2g
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where, Zs is the water surface level which is the sum of the bottom level (Zb) and

water depth (h), a is the energy correction factor. The change of total energy head

with respect to location along a channel is

dH = dzs +~(a V2).
dx dx dx 2g

(2.1)

The total energy loss H in a river channel is mainly due to friction losses (Sf) and

contraction-expansion losses (Se) :

dH
-=-S -Sdx f e· (2.2)

Substituting (2.1) into (2.2) results in

-S -S = dzs +~(a V2).
f e dx dx 2g (2.3)

The ordinary differential equation (2.3) can be replaced by the following difference

equation

(2.4)

where the subscripts i and i + 1 represent the upstream and downstream cross section,

respectively. The friction slope Sf can be calculated by using Manning's equation:

n2Q2 Q2 Q2(1 1)
Sf = A2R4/3 = K2 =2 KI2 + K;

where KI and K2 are the conveyances of the cross section 1 and 2, respectively. The

contraction/expansion loss term Se can be expressed for a contraction loss as

C [V? V.2] (V2 ) [V2 V.2]S =_c a _2__ a _I_ for d a- = a _2_-a _1_ > 0
e dx 2 2g 1 2g 2g 2 2g 1 2g

and for an expansion loss as

C [V2 V.2] (V2 )S =_e a _2__ a _I_ for d a- <0
e dx 2 2g 1 2g 2g

where Cc and C, are the energy loss coefficients for contraction and expansion,

respectively.
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Given the cross-sectional properties, the water level at each point of a river channel

can be calculated by the gradually varied flow equation with uniform discharge. The

general procedure to get water surface profile is as follows [66]:

1) Start at a point in the channel where the water surface is known or can be

approximated: the downstream boundary for a subcritical flow and the upstream

boundary for a supercritical flow. Computation proceeds upstream for a subcritical

flow and downstream for a supercritical flow.

2) Choose a water surface elevation z;/ at the upstream end of the reach for a

subcritical flow or Z;i+l at the downstream end of the reach for a supercritical flow.

This water surface elevation will be slightly lower or higher depending upon the type

of the water surface profile.

3) Next compute the friction loss and the expansion/contraction loss using the

assumed water surface elevation. Solve equation (2.4) for Zsi (subcritical flow) or

Zsi+l (supercritical flow).

4) Compare the calculated water surface elevation z, with the assumed water surface

elevation z; . If the calculated and assumed elevations do not agree within an

acceptable tolerance, then set Z;i = Zs/ (for subcritical flow) and Z;i+l = Zsi+l (for

supercritical flow) and repeat the pervious procedure.

This method can determine water surface profile along the river channel and generally

be used to get backwater curve caused by river works such as construction of a new

bridge, weir, dam, etc.. This technique is applied in the steady state simulation module

ofHEC-RAS model developed by the U.S. Army Corps of Engineers (USACE) [14].

However, this method cannot simulate time dependent flows like unsteady flood

waves due to the assumption of uniform discharge.

2.2 Hydrodynamic Mode/- Unsteady Flow

Hydrodynamic models can simulate unsteady flows by using the equations derived

from the principles of mass and momentum conservation. This type of model is
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widely used for hydraulic modelling of river flows because it can calculate time

dependent flow problems such as the flood wave propagation simulation. The most

widely used two flood propagation modelling methods are the Navier-Stokes model

and the Shallow Water model [3].

The Navier-Stokes model uses the Navier-Stokes equations derived on the basis of the

principles of mass and momentum conservation as the governing equations. The

Navier-Stokes equations can reasonably describe the dynamic properties of flood

propagation problems because these equations can express the flow of fluid in three

dimensions and include the effects of turbulence and various external forces. However

the Navier-Stokes modelling methods are considered to be unsuitable for the

simulation of flood propagation problems in natural river channels except for some

special cases because these are too complicated and require vast amounts of data and

computing power. Although the Reynolds-Averaged Navier-Stokes (RANS)

modelling methods have been developed to ease these problems, there are still many

difficulties in using the Navier-Stokes equations to model real flood propagation

problems.

The shallow water equations can be derived either through depth averaging of the

Navier-Stokes equations or the mass and momentum conservation principles. By

using the shallow water equations, the three-dimensional Navier-Stokes equations can

be reduced to two-dimensional or one-dimensional problems. However, the Shallow

Water model has some potential for errors due to the assumptions used in deriving the

equations: 1) neglecting vertical velocity profile 2) hydrostatic pressure 3) small

bottom slope 4) uniform horizontal velocity field in one-dimensional cases 5) friction

formulae. Despite these shortcomings, the SW modelling method is believed to be the

most reasonable method to simulate flood propagation problems at present. Especially,

in case of the macroscopic modelling of a large river basin, the Navier Stokes model

needs much larger amount of computing resources than the Shallow Water model. On

the other hand, the Navier Stokes equations are suitable for modelling the effect of the

turbulence in a small area of a river system. As a result, in this thesis, the main focus .

will be on the shallow water models.
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2.2.1 Shallow Water Model

This type of models are governed by the shallow water equations (or, the St. Venant

equations in one-dimensional case) which describes the motion of shallow water in a

channel or floodplain. The shallow water model is widely used for river flow

modelling because it generally produces reasonable solutions with limited computing

resources and has a simpler form than the Navier-Stokes equations. The shallow water

equations can be expressed by various forms according to spatial dimension and the

choice of conserved variables. The flow in a long channel can be assumed to be one-

dimensional problem which is governed by the one-dimensional shallow water

equations while flood wave propagation over floodplain can be described by the two-

dimensional shallow water equations.

The One-dimensional Shallow Water Equations

The one-dimensional shallow water equations are called the St. Venant equations due

to being based on the St. Venant hypothesis [28]. The St. Venant hypothesis is the

basic supposition for the one-dimensional unsteady flow problem and can be

expressed as the following series of assumptions:

(i) The flow is one-dimensional Le. the velocity is uniform over the cross

section and the water level across the section is horizontal.

(ii) The streamline curvature is small and vertical accelerations are negligible,

hence the pressure is hydrostatic.

(iii) The effect of boundary friction and turbulence can be accounted for by using

resistance laws analogous to those used for steady state flow.

(iv) The average channel bed slope is small so that the cosine of the angle it

makes with the horizontal may be replaced by unity.

The detailed derivation of the St. Venant equations was given by Cunge et al. [28]

At first, the equations are derived by considering conservation of mass and

momentum for a control volume for which all the St. Venant hypotheses are valid. A

control volume in the (x.r) plane between two cross sections Xl and x2 and between
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the times tl and t 2 as shown in Figure 2.1 can be considered. A and u represent the

area of the wetted cross section and the average cross-sectional velocity, respectively.

The net inflow of mass into the control volume can be defined by the time integral of

the difference between the entering and leaving mass flowrates:

and must be equal to the change of the mass stored in the control volume during the

time interval [tpt21 :

where p is water density. Consequently, the mass conservation relation for constant

density is

(2.5)

where Q = uA represents the discharge.

Momentum is the product of mass and velocity and momentum flux is the product of
the mass flow rate and velocity:

Momentum flux = puA xu = pu2 A .

The net momentum flux into the control volume over the time interval [tpt2] can be

obtained by integrating the difference between momentum fluxes entering and leaving
the control volume:

The net increase of the momentum over the time interval within the control volume is

From the St. Venant hypothesis, only the following external forces are considered:

pressure, gravity and friction resistance. The hydrostatic pressure force F;I and F;I

are applied at boundaries Xl and x2' respectively. The time integral of the net

hydrostatic pressure force, FpI =F;I - F;I , is defined as
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Figure 2.1 Definition sketch for the derivation of unsteady flow equations:

(a)Control volume, section view, (b)cross seciton and (c) plan view [28]
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The pressure force Fp2 which is the resultant force of F;2 and F;2 can be considered

as the integral of the pressure force due to the width variation and' expressed in the

following form

r pg rX

)[h(X)_17J[aU(X,17)] dndx
I ax ho

where ha is constant water depth. The time integral of the pressure force Fp2 is

or

where 12 = rX)[h(x) -17 {au] d17tax h=ho

From the St. Venant hypothesis, the bottom slope is defmed as

S =_ aZh
a ax

for very small bottom slope and tan a I:::J sin a ,while the time integral of the force Fg

due to gravity can be expressed as

The friction force FI is applied to the control volume through shear along the channel

bed. The shear force on a unit length of channel is defmed as pgAS I where SI is the

friction slope and the time integral of the friction force FI is expressed as

Finally, the conservation of momentum leads to

IlM =MI + f FP1dt + I2 Fp2dt + I2 Fgdt - r Fldt
I I I I
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and, for constant density, the integral form of the momentum equation can be given

by

r [(uA)/2 -(uA)/I}Ix = f [(U2A}xI - (U2 A}xJlt

+ f [(1.tl - (1. )X2 }it - g f 12dxdt

+ r r A(So - S/)dxdt.
I I

(2.6)

Equations (2.5) and (2.6) compose the integral form of the St. Venant equations for

modelling of unsteady one-dimensional flows in natural channels.

The one-dimensional shallow water equations can be expressed as the differential

form which is more widely used by researchers. From the assumption that the

dependent variables are continuous and differentiable function, the integral equations

can be changed to the differential equations. According to the Taylor series expansion,

aA a2A I1t2
(A) =(A)+-l1t+--+ ..·

Il II at at2 2

By neglecting second or higher order terms and assuming that Ax and I1t approach

zero, the following relation holds

lim [l [(A)I - (A)I ]dx = [2 [l aA dtdx
12 -+/1 1 1 I I I at

lim [2[(Q), _ (Q)I ]dx = [l [2aQ dtdx .
Il -+11 III I I at

As a result, the mass conservation equation (2.5) becomes

[2 [2 [aA + aQ]dtdx = O.
1 I at Ox .

In a similar way,

(2.7)
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0/ 02/ tJ.x2
(/) -(I) =_1 tJ.x+-I-+ ...

1 Xz 1 xI Ox Ox2 2

and the momentum conservation equations becomes

f.' f[~;+ a(~A) ]dtdx = - gr f [~ -I, - A(S. -SI )]dtdx. (2.8)

If the equations (2.7) and (2.8) are to hold everywhere in the (x.r) plane, they can be

expressed as the following two differential equations consisting the differential form

of the St. Venant equations

(2.9)

oQ 0 (Q2 )-+- -+/ =gA(S -S )+gl .of OxA 1 0 f 2
(2.10)

The one-dimensional shallow water equations can be written in different forms

according to the choice of dependent variables. The commonly used alternative forms

of the equations are presented in [28].

Two-Dimensional Shallow Water Equations

The two-dimensional shallow water equations describe the flow in shallow water

bodies in a two-dimensional domain and can be derived by depth averaging the three-

dimensional mass and momentum conservation equations. In a two-dimensional

domain the vertical acceleration within the fluid is negligible and pressure is assumed

. hydrostatic. The following derivation is taken from Toro [77].

At first, the three-dimensional mass and momentum conservation equations in free

surface gravity flow were considered. In the three-dimensional domain depicted in

Figure 2.2, the horizontal plane is given by the coordinates x and y, and the vertical

direction is given by z . The water in the channel is considered to be incompressible,

non-viscous, non-heat conducting. The velocity vector has three components like

V = (u,v,m).
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Figure 2.2 Flow in a channel with free surface under gravity [63]

The mass and momentum conservation equations for incompressible fluid are

expressed as

(2.11)

1
ul +uUx + vuy + (jJUz = -- Px

P

1VI +uvx +VVy +wvz =--Py
P

1
WI+uio, +VWy + oxo, = -- P, - g

p

(2.12)

(2.13)

(2.14)

where P IS density. The equations can be simplified by using the substantial

derivative

which represents the time rate of change of variable fjJ as registered by an observer

moving with the fluid velocity V = (u,v,w). Then, the equations (2.11-2.14) can be

rewritten as

Dp =p +V . grad(p) = 0
Dt I

(2.15)

Du 1- =U+V . grad(u) = -- PDt I P x
(2.16)
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Du 1
- =U+V· grad(u) = -- PDt I P y

D01 1
-=01+V·grad(01)=--P -g.Dt I P Z

To solve these equations, boundary conditions should be given: two boundary

(2.17)

(2.18)

conditions are given for the free surface

D
D/1] - z) = 0 and P = Palmr:::. 0 at z = 1](x,y,t),

and one for the bottom boundary

D
-(h+z)=O at z=-h(x,y).
Dt

(2.19)

(2.20)

The two-dimensional shallow water equations are an approximation to the full three

dimensional equations (2.11-2.14) based on the assumption that the vertical

component of the acceleration is negligible, i.e. D01/Dt r:::. O. Inserting D01/Dt = 0,

equation (2.18) gives

p= pg(l1- y)

and this represents the hydrostatic pressure. From this, the momentum equations in x

and y directions can be rewritten as

(2.21)

(2.22)

The meaningful expression for the shallow water equations can be obtained by

integrating mass conservation equations (2.11) with respect to z:

(2.23)

According to the defmition of substantial derivative, the boundary conditions (2.19)
and (2.20) can be expressed as

(1]1 + ul1x + U1]y- O1)lz='1= 0 (2.24)

(uh, +uhy +O1)lz=_h = O.

By substituting (2.24) and (2.25), equations (2.23) can be rewritten as

rhuxdz + rhUydz + 1]1+ (Ulz=,,)l1x + (ujz=,,)l1y + (UL_h)hx + (UL_h)hy = 0,

(2.25)
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and by using the partial integral,

,,+_E_[udz+_E_ I"vdz=O.
I Ox h ay !h

The velocity components u and o are independent of z and the equation (2.260)

(2.26)

becomes

(17+ h), + [u(17 + h)lx + [U(17 + h)]y = 0 (2.27)

where h, = 0 because h(x,y) is independent of t.

The momentum equations (2.21) and (2.22) can be expressed as similar form. The

addition of (2.27) multiplied by u and (2.21) multiplied by (17+ h) gives,

[U(17 + h)], + [u2(17 + h)]x + [uU(17 + h)]y = -g(17 + h)17x'

Similarly, (2.28) and (2.22) gives,

[U(17 + h)], + [uU(17 + h)]x + [U2(17 + h)]y = -g(17 + h)17y'

(2.28)

(2.29)

The right hand side terms of the equations (2.28) and (2.29) represent the surface

gradients in x and y directions, respectively, and can be decomposed as

- g(17 + h)17x = g(17 + h)hx -!g[(17 + h)2]x
2

1
- g(17 + h)17y = g(17 + h)hy -"2 g[(17 + h)2]y.

Finally, the two-dimensional shallow water equations can be given by

¢, + (t/Ju)x + (¢u)y = 0

1
(t/Ju), + (t/Ju2 + 2 ¢2)x + (t/Juu)y = gt/Sox

1
(¢U), + (t/Juu)x + (¢u2 + 2 ¢2)y = gt/Soy

where the geopotential ¢= gH with the surface elevation H = 17+h and the bottom

slope Sox = h., The effect of bottom friction can be considered using friction slope SI

and combined to bottom slope term.
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The equations can be written using variable h , hu and hv, which gives the most

well known form of the shallow water equations:

hi + (hu)x + (hv)y = 0

1
(hu)1 + (hu2 + 2 gh2)x + (huv)y = gh(Sox - Sft)

1
(hv)1 + (huv)x + (hv2 + 2gh2)y = gh(Soy - Sfy)'

(2.30)

(2.31)

(2.32)

2.2.2 Further Simplification of the Shallow Water Model

The shallow water equations (or St. Venant equations) is the hyperbolic partial

differential equation system and it needs lots of computing resources and time to solve

the full equations. To avoid this difficulties, several simplified form of hydrodynamic

modelling methods have been developed. These methods are based on the simplified

form of the shallow water equations.

Kinematic Wave Model

This model is based on the one-dimensional kinematic wave equations which is the

simplest form of the st. Venant equations. The kinematic wave equations has the

following form and can be obtained by neglecting the local acceleration terms,

convective acceleration term and pressure term of the momentum equation

- Mass equation:

- Momentum equation: So - Sf = 0

The friction slope Sf can be computed by using the Manning's friction coefficient, n,

and the momentum equation can be rewritten as

n2p4/3Q2
So - Alo/3 = 0

where P is the wetted perimeter of the channel. This method can be used when the

inertia terms (or the acceleration terms) are small compared to the bottom slope. This

method has been widely used in various river models because of its simple structure:

LISFLOOD-FP model [5] and HEC-l model developed by the U.S. Army Corps of

Engineers (USACE) [14] use the kinematic wave equation to simulate open channel
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flows. This model has the potential to cause errors in case of large spatial velocity

changes, because it neglects the inertia terms in the momentum equation.

Quasi Two-dimensional Model

Flow over floodplain is different from channel flow and can be simulated by two-

dimensional modelling methods. However, there are many crisscrossing structures

such as dykes and roads in real floodplains, so it is convenient to consider the

floodplain as a series of linked cells in the two-dimensional domain [28]. In this

method, river channel flow is modelled by the one-dimensional shallow water

equations where the water depth of each flood plain cell is calculated by using the

following continuity equation

dh. LQ(hi,hk)_, = _;k"-- _

dt 4
where hi and 4 is the water surface level and the corresponding surface area of the

cell under consideration, k denotes the neighbouring cells and Q(hi,hk) means

discharge between cell i and k. The discharge between two cells is only due to the

difference of water surface levels and usually calculated by hydraulic equations like

the weir equation. An example of the quasi two-dimensional model is depicted in

Figure 2.3. In Figure 2.3 (a), the floodplain is composed of several storage cells, and

the whole river system is considered as a network of the one-dimensional cells in the

river channel and storage cells in the floodplain as shown in Figure 2.3 (b) .

(a) (b)

Figure 2.3 Discretization elements in the quasi two-dimensionalmodel [4]
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Chapter 3

Literature Review

The main objective of this thesis is to demonstrate how to solve the shallow water

equations accurately and efficiently in the case of highly unsteady flows over irregular

geometries. It is almost impossible to solve the shallow water equations which is a

system of partial differential equations by analytical methods. However, lots of

numerical techniques such as the finite difference or fmite volume methods have been

developed and the solutions can be approximated by using these numerical methods.

In this chapter, basic information and knowledge which is essential for finding

numerical solutions of the shallow water equations was studied and recently

developed techniques by other researchers were reviewed.

3.1 Governing Equations

Unsteady flows are considered to be governed by the shallow water equations. As

presented in Chapter 2, the shallow water equations are a hyperbolic partial

differential equation system derived from the principles of mass and momentum

conservation. The equations have a simpler form and give more useful information

when expressed in a vector form as shown below.

In one-dimensional case, the shallow water equations (2.9) and (2.10) can be

expressed as

au +oF =8
at Ox

with u=(A), F=( Q ) and 8=( 0 ).
Q Q2/A+gI1 gA(So -Sj)+gI2

(3.1)

Similarly, the two-dimensional shallow water equations (2.30), (2.31) and (2.32) can

be rewritten as
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(3.2)

These are called "conservation form" or "conservation law" because the vector U is

considered as the vector of conserved variables and F(U) (or G(U)) is the flux vector.

As a result, it is very important to understand the properties of conservation laws to

solve the governing equation accurately and efficiently.

3.2 Hyperbolic Conservation Law

The motion of fluids such as water and gas can be described by the principles of mass

and momentum (and energy) conservation. The governing equations of fluid motion

derived from the conservation principles such as the shallow water equations have the

following form of the time dependent partial differential equation system and this

form is called "conservation law":

a a-u(x,t)+-f(u(x,t)) = 0
at ax (3.3)

u is an m dimensional vector of conserved variables and f(u) is a flux function. By

applying the chain rule to the second term of the left hand side, equations (3.3) can be

rewritten as

au + of( u) au = 0 or au +A au = 0
at au ax at ax

where A = aj / au is the Jacobian matrix. The system (3.4) is "hyperbolic", if the

(3.4)

m xm Jacobian matrix A has m real eigenvalues and the matrix is diagonalizable, Le.

there is a complete set of m linearly independent eigenvectors. However, these partial

differential equation systems have difficulties in dealing with discontinuous solution

because partial differential equations do not hold at discontinuities. In order to avoid

this problem, the integral form of "conservation law" is generally used and it has the

form

- 22-



f U(x,t2)dx =f u(x,tl)dx +f f(u(x.,t))dt - f f(u(x2,t))dt

for any rectangular control volume [xl,xJx [tl,t2].

Decomposition of Linear Systems

A linear hyperbolic conservation law system has the form

U,+AUx=O. (3.5)

The m xm Jacobian matrix A has m real eigenvalues( ~ s~ ~...s Am)' From the

assumption ofhyperbolicity,

Aek = Akek for k = 1,2"",m

where e, is the k th right eigenvector. Then, the Jacobian matrix A can be

diagonalised as

R-1AR =A and A = RAR-1

where R is the matrix whose columns are the right eigenvectors of A and A is the

diagonal matrix of eigenvalues:

A=

Hyperbolic equation systems can be decomposed by using the above properties.

Equation (3.5) can be rewritten by multiplying R-I on both sides:

R-IU R-1ARR-IU = 0,+ x"

or by setting W = R-IU :

W,+AWx =0.

Since A is a diagonal matrix, the hyperbolic system (3.5) can be changed to m

independent advection equations and the k th equation is

Ow Ow_"_k+A_k=Oat k ax for k = 1,2"",m (3.6)

where Wk is the k th component of the vector W. The solution of variable Wk can be

easily calculated by solving the decomposed equation (3.6). Finally, the solution U

can be obtained by the following relation
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U=RW,

then the solution is regarded as a combination of m "waves" propagating at the

characteristic speeds ~'~"'" A.m , respectively. These values define the characteristic

curves along which information propagates in each equation. The decomposition

technique of a linear hyperbolic equation system can be applied to non-linear

hyperbolic equation systems like the shallow water equations, which makes it easier

to find approximate solutions of the equations.

3.3 Numerical Discretization

The shallow water equations are a hyperbolic system which is composed of several

partial differential equations. By using numerical methods, continuous values of the

partial differential equation systems can be replaced with a finite set of discrete values.

To obtain discrete values, the domain of the partial differential equations has to be

discretized into a finite set of points or volumes (cells) on a grid. The solutions of the

partial differential equations can be approximated as discretized values by solving the

discretized form of the equations with data stored in the fmite set of points or volumes.

The most well known and widely used numerical methods to solve hyperbolic

conservation laws are the Finite Difference Method and the Finite Volume Method. In
the Finite Difference Method, discretized values are considered as point values at grid

points while the Finite Volume Method regards these values as averages (piecewise

constants) over finite volumes (cells).

3.3.1 Finite Difference Method

The Finite Difference Method is based on the differential form of a conservation law.

This technique has been widely used in real river flow modelling because it is

straightfoward and simple to develop new numerical scheme. In the Finite Difference

Method, values of variables are stored on grid points and the derivatives of partial

differential equations are replaced by the truncated approximations which are based

on Taylor series expansion. For example, the first derivative of the smooth function

u(x) at x can be defined as
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Ux == au = lim u(x+Ax)-u(x) .
ax ~-+O Ax

By using Taylor series expansion, u(x+Ax) , u(x-Ax) can be expressed as

(3.7)

u(x-Ax)=u(x)-(Ax)ux(x)+ (Ax)2 uxx(x)+",=u(x)+ L(-Ax)kU• (3.9)
2 k k!

The first derivative Ux can be obtained by substituting (3.8) into (3.7):

u(x+Ax)-u(x) Ax___;_-___;_-~ =u + -u + ....Ax x 2 xx

By neglecting second- and higher-order terms, Ux can be expressed as

( ) _ u(x+Ax)-u(x) (A~)
UX x - + 0 Ll.\ •

Ax

This is a first-order forward approximation of ux(x) because the leading term of the

error is of order of (Ax). If Ax is sufficiently small, this formula can be regarded as

an approximation of the first derivative ux' Similarly, the backward and central

approximations can be defined as

Backward: ux(x) = u(x)-~x-Ax) +o(Ax)

Central ux(x) = u(x +Ax~:(X- Ax) + 0(Ax)2.

The second derivative uxx(x) can be obtained by adding (3.8) and (3.9):

( ) = u(x +ax) - 2u(x) + u(x - Ax) (Ax)2
Uxx X (Ax)2 +0.

To apply this technique to the governing equation, the numerical domain should be

discretized as a uniform grid of dimensions of Ax (spacing in the x direction) by

At (time step). The discrete values of the function u(x,t) at the grid point (iAx,nAt),

where i = 1,2" .. and n = 1,2," ., can be denoted as u; . By using this notation, partial

differential equations can be changed to fmite difference equations. For example, the

linear advection equation

Ut +aux = 0 (3.10)
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with a constant speed a can be conisdered. The time derivative u, at the grid point

(i~,nAt) can be discretized by using the first-order forward approximation

U~+l-U~
U = 1 1

, At

while the spatial derivative Ux is discretized by the second-order central approximation

(3.11)

n n
U;+1 -U;_1

Ux = 2Ax

By substituting equation (3.11) and (3.12) into the partial differential equation (3.10),

(3.12)

the following finite difference equation can be obtained:
n+l n n n

U; - u; + a U;+1 - U;_1 = O.
At 2~

The ultimate purpose of numerical analysis in time dependent problems is to get the

solution U;"+1at next time level which can be updated by the following form

n+l "v ( n " )u. = u, -- U'+1 -U. 1
1 1 2 1 1-

(3.13)

where v = a At is the dimensionless quantity known as the eourant-Friedrichs-Lewy
Ax

number or eFL number which is closely related to the stability of the numerical

scheme. The eourant-Friedrichs-Lewy (eFL) number can be regarded as the ratio of

two speeds, namely the wave propagation speed a and the grid speed Ax [28].
At

Explicitllmplcit Scheme

The temporal discretization of the finite difference method can be classified into the

two following approaches: explicit and implicit. In the finite difference equation

(3.13), the spatial derivative u" is approximated in terms of values at time level nAt.

As a result, the solution U;+l at new time level (n + I)At can be easily computed with

the known values U~I' u; ,U;:1 at time level ns», This is an explicit method because

the way to find the solutions is very clear and direct. On the contrary, if the spatial

derivative u" is approximated with the values at time level (n + I)At, the fmite

difference equation (3.13) can be rewritten as
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U~+I - U~ U~+I - U~+I
I I +v 1+1 I-I = 0
At 2Ax

or un+1 + y (U~+l - U~+l) = u~ .
j 2 HI I-I I

This is an implicit method in which the solutions cannot be obtained directly. In an

implicit scheme, the solution uj
n
+
1 cannot be calculated explicitly because it is coupled

with «: and Uj"_~I. generally, implicit schemes can be solved by using special

numerical techniques like the iterative method. Both explicit and implicit methods

have merits and demerits. The explicit method is conceptually simple and easy to

program, but explicit schemes are liable to be numerically unstable if large time step

At (or CFL number larger than 1) is chosen. On the contrary, the implicit method is

more stable than the explicit method and generally not restricted by numerical

stability, Le. a large time step is allowed, while it is more complicated and difficult to

program.

The Upwind Scheme

The finite difference method can produce correct solutions with less numerical errors

when it uses certain spatial discretization techniques like the upwind method. The

numerical scheme (3.13) uses the central approximation for the spatial derivative.

Alternatively, the one-sided approximation for the spatial derivative can be used and

the advection equation (3.10) can be rewritten using the backward approximation:
n+1 n (n n)uj = uj -Y uj -uj_1 • (3.14)

If the wave propagation speed a > 0 , this scheme can produce very correct solutions

because it is discretized in the same direction that the wave, or the characteristic

information, of the problem propagates. This technique is the upwind method and

known to offer discrete solutions which are closer to the physical process than the

central approximation [61]. The upwind method is well adapted to advection

dominated problems and has first-order accuracy in space and time. Similarly, the

upwind technique can be applied to the case of a < 0 :
n+l n t.» n)

Uj = Uj -Y\Uj+1 -Uj • (3.15)

Equation (3.14) and (3.15) can be combined into one equation which can be used for

both positive and negative wave speed a by using the notations
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and

+ + Iltv =a-~'
_ _ Ilt
v =a-.

~

Then the general form of the first-order upwind scheme can be expressed as

n+l II + (" ") - ( II II )Uj = Uj -v Uj -Uj-l -v Uj+1-Uj •

This technique can be used to solve a systems of conservation law by defining

Jacobian A+and A- as

A = A+ +A-, A+ = ~ (A + IAI), A- = ~ (A -IAI),
and, thefirst-order upwind scheme for a system of conservation law can be expressed

as

Other Well-known Schemes

Conservation laws can be numerically discretized and solved by using the finite

difference method. The following numerical schemes are well-known methods which

have been widely used to solve the shallow water equations. Each scheme has

different form because it uses different temporal and spatial discretization techniques.

Explicit Schemes

Lax-Friedrichs scheme: uj" in the finite difference equation (3.13) is replaced by the

average (u::'l +Uj"-l)/ 2, first-order accurate in space and time:

Leap-Frog scheme : one of the earliest schemes used for numerical method, first-

order accurate in space and time:
11+1 11-1 (lin)Uj =Uj - V Uj+1-Ui-l •
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Lax-Wendroff scheme: second derivative U.u term is added to (3.13), second-order

accurate in space and time, shows oscillatory behaviour in the upstream areas of

discontinuities:

Warming & Beam: one-sided approximation is used in spatial derivative term,

second-order accurate in space and time, shows oscillatory behaviour after

discontinuous solutions:

n+l n 1 (3 n 4n n) 1 2 (n 2 n n)uj = uj - 2 V uj - i-l +uj_2 + 2 V uj - ui-l+uj_2 •

Implicit Schemes

Backward Euler scheme : the simplest implicit scheme, second-order accurate in

space and first-order in time:

U~+l = u~- !v( ~+l _ U~+l)
I I 2 uH1 1-1'

Box scheme: second-order accurate in space and time, used in the ISIS ,modelling

package:

The basic numerical techniques in the finite difference method have been studied in

this section. The main focus of this these is on the Finite Volume Method, however, it

is very important to understand these techniques because the numerical discretisation

procedure of the Finite Volume Methods is also performed by using the similar

numerical approximation.

3.3.2 Finite Volume Method

Numerical methods based on the differential form of a conservation law have

difficulties in dealing with discontinuities because partial differential equations do not

hold on discontinuous solution. In order to solve discontinuous problems, the integral

form of conservation law can be used. The Finite Volume Method is based on the
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integral form of conservation law. In the Finite Volume Method, the domain is

divided into finite numbers of grid cells which have a finite volume as depicted in

Figure 3.1.

r···························································1············~··········..······················~···········T·················~············..~~··········..······....·1
j F n F n i
i 1_1. I+t i
i 2 • I

i U~l I u; U:'.rl! )
I ~l2 ~l~ ,Ix
I.......... .. ~..... .. ~ _ ~ .J

cell i-I cell i cell i+I

Figure 3.1 Numerical domain of the finite volume method at time nllt

In the numerical domain, the value of the variable ul
n at a fixed time t" = nAt can be

approximated by the cell average

ujn~ _1_ f'+tu(x,tn)dx
Ax ,..1

2

and the solution U;+l at the next time step tn+l= (n + l)At can be approximated by

applying the integral form of the conservation law over the cell i :

f'+tu(x,tn+1)dx = f'+tu(x,tn)dx + r+1

f(u(xl_t't)dt - r+1

f(u(xj+t't»dt.
''1 ''1

By using cell average values, the conservation law can be expressed in the following

form

(3.16)

where the average numerical flux across the cell interface XI+! is given by
1

1 ,,+1

F+nl~ - J f(u(x. Ht»dt .
1 1 Ilt n 1+2

Then, the problem is reduced to the calculation of numerical fluxes. In other words, if

the numerical fluxes F\ and FI~ are known functions, the solution Ul
n
+
1 at the next

H2 2

time step can be calculated explicitly by equation (3.16). In Riemann solver based

finite volume schemes, the numerical fluxes are calculated by solving a series of local

Riemann problems at cell interfaces.
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Riemann Problem and Solver

The Riemann problem is a special initial value problem of a hyperbolic partial

differential equation system which has piecewise constant initial data with a single

jump discontinuity at X = Xi • The intial data of a Riemann problem is given as

(x < Xi)

(x> x;)'

and depicted in Figure3.2.

X
X=Xi

Figure 3.2 Initial data of the Riemann problem

In the fmite volume method, each cell has a piecewise constant initial data which

means that there is a discontinuity at each interface between neighbouring two cells as

depicted in Figure 3.3. This discontinuity can be regarded as a local Riemann problem

having discontinuous initial data at each cell interface. The solutions can be obtained

by solving local Riemann problems at cell interfaces and updating with the

conservation scheme (3.16). The method to solve the Riemann problem is called

Riemann solver, which is broken down two categories: exact and approximate solvers.

Computationally, the exact Riemann solver is often too expensive to compute for

nonlinear problems such as the shallow water equations because it needs lots of

iterations to find exact solutions. As a result, approximate Riemann solvers are

generally used because the solutions show almost similar accuracy with much less

computing resources.
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__+- ~ i-~t i+_~~2 ~ _.X
i-I i+l

Figure 3.3 Piecewise constant distribution of initial data

Godunov's method

A general approach to solve hyperbolic conservation laws was proposed by Godunov

[44]. Godunov's method was the first to introduce the idea of solving non-linear

systems as a series of local Riemann problems with exact solution. Although this

method was originally developed for solving the Euler equations of gas dynamics, it

could be applied to other hyperbolic conservation systems such as the shallow water

equations. The main idea of this method is the process of "reconstruct-evolve-

average" [63].

At first, the piecewise constant initial data were approximated by calculating the cell

average values by the following approximation

u; ~ _1_ ['+!U(X,t")dx
Ax ,_l

2

where X.±l are the cell boundaries and U(X,t") is initial data at time til. This leads to a
I 2

series of Riemann problems at cell interfaces. Then the exact solution u(X,t"+l) at

time level r: was obtained by solving the exact solutions of the local Riemann

problems. The time step I1.t was chosen to be short enough the two neighbouring

waves not to interact, i.e. the CFL number was chosen to be less than t. The solution

uri at next time level tn+1was approximated by taking the cell average values of the

exact solution u(x,tn+l)
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n+l 1 r/+l~( n+l)dxU. ~- zu x,t .
1 Ax_l

I Z

The exact solution u(x,tn+l) was calculated by applying the integral form of the

conservation law within a chosen cell like:

rl+l/z~( )dx ri+I/Z~( )dx 1"+1!(~ \J 11/+1!(~( )\Ju x,tn+l = u x.t; + U(Xi_1/2,t)pt- u Xi+1/2,t pt.
i-1/2 ;-1/2 n n

Using the definition of cell average, the following conservation form was obtained

Ui
n+1 = u; - !:!.t [F 1-F-l.]Ax I+Z 1 Z

(3.17)

where F 1 is the intercell flux at x. 1 which was defined as
1+'2 1+'2

with U(Xi+pt) is constant over the time interval [tn ,tn+1
] and related with u; and Ui:1•

This was computed by solving the local Riemann problem, so F;+l was redefined as
2

where u· (u; ,U;+l) represents the intermediate state between cell i and i + 1 which

propagates along the emerging waves from the cell interface i+t. As a result, the

equation (3.17) can be rewritten as

u ~ =u-c

x
x=x ..,

'+i

Figure 3.4 The solution structureof a Riemann problem
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In Figure 3.4, the solution structure of the Riemann problem in the shallow water

equations is depicted and, as shown in the figure, the intermediate value U·(U; ,U;+l)

propagates along the two eigenvalues (or waves) ~ and ~ of the Jacobian matrix A.

Godunov's Method for Linear Systems

Godunov's method can be applied to the linear system of a conservation law. For a

constant coefficient linear system Ut + Aux = 0 , the flux F; ~ can be described as
+2

The value of u· (U;n,U~l) can be calculated by solving the Riemann problem with

U;n(left state) and Ut:! (right state), that is

where ek is the k th eigenvector of A and ak is the coefficient of ek in an

eigenvector expansion of u;n- u;+!' The flux FI ~ is
+2

= Au;n +Lak"~kek = AU;:l - Lak'1'kek
-It<o -It>o

(3.18)

Similarly,

F;-~= F;-A+(u; -U;~l) = F;-l + A-(u; -U;~l)'
2

(3.19)

The conservation form of a linear system can be written as

n+l n III [A-( n n) A+( n n)]U; = u, - Ax U;+l -Ut + u; -U;_l . (3.20)

This is the upwind scheme which is presented in the previous section because the

spatial derivatives are discretized so that the information is taken from the side it

comes. Alternatively, the flux FI ~can be obtained by averaging two expression given
+2

in (3.18) and (3.19)
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By using this flux, the conservation form (3.20) can be rewritten as

n+l n llt (17 17) llt IAI( n 2 n n )uj = uj - 2Ax rj+l - rl_l + 2Ax uj+1 - u, +ui-l •

3.4 Roe's Approximate Riemann Solver

The Godunov's method requires the exact solution of the Riemann problem at every

cell interface at each time level. This process is expensive and requires iterative

procedures for nonlinear problems. So, many approximate solutions which are less

expensive and show equally good numerical results have been developed by many

researchers [32,48,69, 76]. Among them, the approximate Riemann solver proposed

by Roe [69] is the most well known and shows robust solutions. The main concept of

Roe's method is to replace the original nonlinear conservation law Ut +F, = 0 with a

constant coefficient linear system
,_

Ut +Au;x = 0

and calculate the exact solutions of this approximate problem. A = A(UL,UR) is the

approximate Jacobian matrix having constant coefficients and satisfies the following

list of properties:

(i) It constitutes a linear mapping from the vector space U to the vector space F

(ii) As UL ~ UR ~ u, A(UL,UR) = A(u), where A = of/au
,_

(iii) For any UL and UL' A(UL,UR)X(UR-UL)=FR-FL

(iv) The eigenvectors of A are linearly independent.

These properties are collectively called "Property U" since it is intended to ensure

"uniform validity" across discontinuities. According to "Property U ", the eigenvalues

of the matrix A can be considered as the wavespeeds of the Riemann problem, and

the projections of UR - UL onto its eigenvectors are the jumps which takes place

between two states (Rankine-Hugoniot Condition).

From the condition (iv), A can be diagonalized as
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A=RAR-1

where R is the matrix of right eigenvectors ek and A is the diagonal matrix of

-eigenvalues Ak • The condition (iii) can be rewritten as

A~u=AF

where ~(.) = (.) R - ( • ) L' Then, from the relation

the following form can be obtained

AF = ALakek = Lak'~~ek
where ak is the wave strength of the k th wave travelling with speed ~ .

3.4.1 The shallow water equations and Roe's Riemann Solver

Roe's method was originally developed for the Euler equations which is a hyperbolic

equation system in gas dynamics. However, it could be successfully applied to the

shallow water equations which is also a nonlinear hyperbolic equation system.

Glaister [43] applied Roe's method to the shallow water equations with the finite

difference method. In the paper, the shallow water equations for an infinitely wide and

frictionless rectangular channel was given as

WI+~ =T
with

F(w) = (¢U,¢U2 +flXJ,
/(w) = (O,gt/H(x)f,

where ¢= ¢(x,t) represents g multiplied by the total height above the channel

bottom. By using the approximate Jacobian matrix, the eigenvectors and wave

strengths were defmed as

'1 - - - (1- -)T"1=U+V/, E;= ,u+V/ ,

~ = u- VI, e2 = (1,U - VI)T ,
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-
ii = l.A"'+l.tAu1 2 'I' 2- ,

f//

-
ii = l.A"'-l.tAu2 2 'I' 2-

f//

where the intermediate values 'if , ¢ and iiJ are

- fj;uR +.[1;uL

U = fj;+.[1; ,

¢= ~ tPRtPL

iiJ = ~t(tPR + tPL) •

By using the defmed variables, the governing equation without source terms was

numerically discretized as
2

n+l n L1;iije;
Wp -Wp + i-l =0

At Ax

where notation P represents state L (left) or R (right). Then, upwind differencing

was applied for the update procedure, which means

dd d At'1--a e --Aa.el to wRAx ' , when 1; > 0

or

dd d At'1--a e --Aja;el to wLAx

The author also proposed an upwind source term treatment by using the from

when AI <0.

where the approximate vector 7 = (O,g¢(!1h/ Ax)l with ¢= ~tPLtPR . Finally, the

effects of the source terms wre upwinded by replacing the wave strength ii; in

homogeneous part of the equation with 1; = ii; +A. The proposed numerical scheme

was applied to the idealised dam-break problem with various ratios of

tPupstream/¢downstream • Second-order accurate solutions were obtained by using a flux

limiter and the scheme produced generally good agreement with the analytical

solutions even though it used the fmite difference method.
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The Riemann solver produces much better solution when combined with the finite

volume method. Garcia-Navarro and Vazquez-Cendon [40] applied Roe's solver to

the shallow water equations and presented two expressions of the explicit first-order

Roe's scheme. The first expression was the "signal model" given by

U~+l=u; - t1.t {(~-al~)'+l +(~a2e2)' 1+(~+al)l_l +(~a2e2),_l)t1.x ~ , 2 '+2 2 t 2

where

The alternative expression named "flux model" was given by

Un+1 = u:_ t1.t (Ft _ F* )
I I t1.x '+1 i-1

where the numerical flux function F;~ at cell interface i +t was obtained from the
2 .

relation

and expressed by the following form

F;:t = t(f; + f;+l)- t I ~lklakek) .
k ;+t

Burguete and Garcia-Navarro published a series of papers [15,16,17] and proposed a

new form and notations for one-dimensional conservative schemes. The authors

decomposed the difference of nodal fluxes (FT) of two neighbouring cells into two

portions along the direction of waves like

where f5 used for the space increments and the superscripts R and L represent the

direction of contribution of the flux difference. Then, the conservative scheme was

expressed as the following form

t1.u;n = t1.{Si - !(8F;:t + 8F;:t)] .
From this form, the intercell numerical flux was expressed as

Fi'1= f;T + 8F.+R1= f;~l- 8F.+L1•
+2 ' 2 ' 2
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The authors also discretized the source terms including spatial derivatives in a similar

way:

S.T+1= S'\ +S.L+1
1 % 1+% 1 %

and, finally, the conservative numerical scheme with source terms was expressed in

the following simple form

~uin = ~t( G.~ +G.R1 )
1 2 '+!

with G;+t= (s- 8F) . This was also expressed as a characteristic form like
Cit 1+1

%

where the matrices OL and OR have different forms according to the type of

numerical scheme. This new form of conservative scheme represents the same form as

the signal model proposed by Garcia-Navarro and Vazquez-Cendon [40] in case of

the first-order Roe's upwind scheme. However, it represents a more general form of

conservative scheme which can be used for any different type of numerical schemes.

The authors tried to avoid the fractional step method to solve the shallow water

equations with source terms and combined the flux term and source terms. However,

the new form of conservative scheme is not expressed as a conservation law which

leads to less applicability and, as a result, the term formed by combining the

differentiation of the flux term and the source terms can not directly used for the

evaluation of numerical flux at each cell interface. Moreover, the decomposition of

the difference of nodal fluxes is not easily performed because the matrices OL and

OR have complicated forms.

In [16], the authors modified the Lax-Friedrichs scheme into a conservative form by

using the above definition. The decomposition of the flux difference of the Lax-

Friedrichs scheme was written as
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where v = (1-a)/2 is an artificial viscosity with weighting parameter a. Moreover,

the authors proposed the Optimised Lax-Fridrichs scheme to be less dissipative by

locally defining the parameter v by the following form

IN. =(modmin(8A,(S&-bF+2U8Q)/(U2
-C
2») .

,+t 8Q
i+t

The proposed method was applied to several test cases such as dam-break simulations

and a real river flow cases and showed less dissipative results than the normal Lax-

Friedrichs scheme.

Implicit schemes were also developed by many researchers because this kind of

scheme, theoretically, allows unconditional stability and time steps as big as desired.

Garcia-Navarro et al. [39] constructed an implicit scheme which was based on Roe's

method for modelling water flows in open channels and pipes. In the paper, the

discretized implicit scheme was written as

UI"+~~Ut" + 1x [B(F·7~ - F·7~) + (1- B)(F·~ - F·~ )]= fE/'HI + (1- B)S/".

The numerical flux F;~ was computed by using the approximate Jacobian matrix
2

- - - - 1A. 1= R.+1diag(A.+1)R·-+1:
'+2 ' 2 '2' 2

where B..I =R. lA. Ji.-1 with At+1 is an diagonal vector. In the paper, flux limited'+t '+2 '+2 1+2 2

second-order TVD scheme was used and A/ 1was redefined as
+2

A. 1= diag[qJ/'\ (1- <I>/k+l)]
r+ 2 + 2 2

where qJ is the entropy correction and <I> is the flux limiter function. Then the flux

and source terms at time t = t,,+1 were approximated by applying Taylor series

expansion like

F;,,+1 = F;" +4"~U, +O(~t2)

and

stl = S;" +G;"~Ui +O(~t2)

where G is the Jacobian matrix of the source term and given by
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G= ( [s +s (1: 4 b )] - 2:A s J.
g 0 f 3 b+2h Q f

Finally, the implicit form of the conservative scheme was written as the form of a

block tridiagonal system

AA;~Ui-l +BB;~UI +CC;~U;+1 = DD;

where the coefficients are 2 x 2 matrices with the following form:

AA; = - A: [4-1 +B;-tr

BB; = I -oac; + AB [B. 1+B._l]n2 I+l I 1

The proposed implicit scheme was applied to several test cases including open

channel flows and pressurised flows in pipe networks with CFL values of 0.5, 1, 2

and 4. The numerical results showed that the proposed implicit scheme remained

stable and produces reasonable results with some amount of numerical diffusion

provided that the CFL does not become overly large.

Burguete and Garcia-Navarro [17] proposed a more general form of implicit scheme

by using the flux difference decomposition approach. The implicit form of the

conservative scheme was written as

and the following approximation was made

where K = as/au is the Iacobian matrix of the source term vector. Then, the implicit

conservative scheme was expressed as
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8 t1.t (A- t1.u)? +[1-8t1.t(K _ A+ + A- )]n t1.u~ _ 8 t1.t (A+ t1.u)n& 1+1 Ox Ox 1 Ox 1-1
i

= t1.t[(GL)~ +(GRr ]
1 2 '+t

with A± = Rn±R-. The authors introduced an artificial viscosity because the above

form was unable to deal transcritical problems. The decomposed numerical fluxes

with the artificial viscosity had the following form

F;T = F;n +8(At1.u)~

8F.IL1= (OF+)1:1 +88(A+ t1.u)~ 1- (yOur 1
+2 2 ~2 ~2

where the artificial viscosity was defmed as

n ( k)nY .. , =max y '1'+"2 k 1+2

with

(yk)~ 1= {H8(A,k)7+! - 21A,kl~+t]if (A,k)~ < 0 and(A,k)~!.
~ 2 0 otherwise

3.4.2 Spatial Second-order Schemes and High Resolution Method

It is well-known that high-order linear constant coefficient schemes produce

unphysical oscillations in the vicinity of large gradient or discontinuities [77].

According to Godunov's theorem, "It is not possible to construct a constant

coefficient scheme that is at least second-order and will not give rise to spurious

oscillations" [63]. This is the most significant disadvantage of using high-order

schemes. To solve this problem, the high-resolution method was developed. The main

idea of the high-resolution m:thod is to combine the advantages of the second-order

(or higher-order) scheme and the upwind scheme (or first-order) to secure better

accuracy in smooth solution with non-oscillatory behaviour near discontinuous

solutions.

For example, the Lax-Wendroffscheme is one of the most well-known spatial second-

order schemes and has the following form
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This equation can be rewritten as a conservative form like

U~+1 = u~_ !1t (Fn =F" )
1 1 ax I+! 1-1

with

r: 1A( n n) l!1t A2( n n)
1+1 =- Uj+1+Uj --- Ui+1-Ui•

2 2 2 ax
The numerical flux F" 1 can be expressed in terms of the Roe's method:

1+2

F·i+! = ~(11;+11;+1)-~~(akl~I~)j+! +~~akl~(l- :1~I)ek.
This scheme produces more accurate results on smooth solutions than first-order

schemes but fails near discontinuities where oscillations are generated. However, the

Lax-Wendroff scheme can be modified to not show numerical oscillations near

discontinuities while having second-order accuracy on smooth solutions. This can be

implemented by decomposing the numerical flux Fin1 into two parts: the first-order
+2

accurate part and a correction term corresponding to an anti-diffusive term which

causes numerical oscillations on discontinuous solutions. This anti-diffusive term can

be limited near discontinuities by applying a flux limiter function [77]. The flux

limited version of Lax-Wendroff scheme can be expressed as

F'<+t = ~(F, +F,.,) - ~~ (a,II,je. ),>t + ~~ cl>. (a,l1; (1- ~ 11;I)e.)
where <l> = <l>(lj) is the flux limiter function. The value of the flux limiter <l> can be

changed according to the behaviour of the solution. To satisfy two contradictory

conditions of high-resolution method, Le. second-order accuracy and absence of

unphysical oscillations, the value of <l> should be reduced to zero on the

discontinuous solutions while having a non-zero value on smooth solutions.

Many researchers have developed flux limiter functions satisfying the condition for

high-resolution scheme and the most commonly used limiters are

- Roe's Minmod : <l>(lj) =max(O,min(lj,l»)
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Figure 3.5 (a) The Sweby digram of several flux limiters and

(b) Second order TVD region
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Flux limiters must satisfy the Total Variation Diminishing(TVD) condition that means

<1>(r) ~ min(2r ,2) for (r ~ 0) and pass smoothly through the point <1>(r)= 1 to obtain

second-order accuracy. The properties of some flux limiters are shown in the Sweby

diagram in Figure 3.5. The Superbee limiter shows largest <1>(r) value while the

minmod limiter has the smallest value. As a result, the minmod limiter has the

dissipative property which diffuses shock waves. On the contrary, the Superbee
limiter shows the anti-dissipative property which sharpens the water wave.

Total Variation Diminishing (TVD) Methods

High-resolution schemes with flux limiter functions prevent numerical oscillations
and instabilities by limiting the anti-diffusive term in the flux function. In other words,

the total variation of the numerical schemes does not grow but diminishes as time

goes by. It is due to the TVD property of the numerical schemes and a numerical
scheme having this property is called TVD schemes. The total, variation of a discrete

solution at time t = t" is defined as

Then a numerical scheme is said to a TVD scheme if it satisfies the following
condition

TVn+1 = ~IU~+I-u~+11s~Iu~ -u~1= TVn
~ 1+1 , ~ 1+1 1 •
; ;

From the above condition, the TVD property can be defined as

TVn sTVn-1 s...s TVo

where the superscript 0 means time level t = O. Consequently, the total variation does

not increase and numerical oscillations are not generated around discontinuous

solutions in a TVD scheme. TVD schemes can be constructed by the following two
methods [23]:

1. Modification of first-order accurate schemes by applying the limited
correction term (e.g. Flux limited scheme)

2. Rearranging the data before application of the numerical method
(e.g. Monotone Upstream Scheme for Conservation Law(MUSCL) with
slope limiters)

and many researchers have proposed various types of TVD schemes.
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Garcia-Navarro et al. [38] proposed a TVD-MacCormack scheme by using Roe's

method. The original MacCormack scheme is a two-step predictor-corrector method.

It is composed of the following two-substeps in which the spatial derivatives are taken

in alternate directions:

The updated solution at time t = r: is given by

ut+1 = ~(ut +U,C).

It has second-order accuracy and shows oscillatory behaviour near discontinuities.

The authors modified the classical MacCormack scheme to have TVD property by

adding TVD correction terms in the final stage:

Un+1 = !(UP +Uc) + L\t (D~ _D" ).
I 2 I I L\x I+t '-t

The correction term D,.l was developed on the basis of Roe's method and given by
+2

II-A: I-Ie I( L\tl-Ie I) ( A: ~A:D..•=- a. .lA. .l I--A .• x l-<l>,.l .H'
I~ 2 Ie 1+2 1+2 /).x I~ + 2 I 2

This term was derived from the higher-order portion of the Lax-Wendroffscheme and

the function <l>is the flux limiter responsible for the smoothing of the solutions near

discontinuities.

The proposed scheme showed better results in real river flow problems as well as

dam-break simulations than the first-order schemes and the classical MacCormack

scheme while it maintained conceptual and programming simplicity. Moreover, the

authors proposed that the source terms contain spatial derivativesf S, and 12) should

be discretized in different direction at predictor and corrector steps

P d· ab bi+1 -b,re ictor step: - ~ --'-'-''----'-
·Ox L\x

Cab b,-bi-!
orrector step: Ox ~ /).x •
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Delis and Skeels [29] solved one-dimensional shallow water equations with various

TVD schemes and compared the performance of each scheme. In the paper, the

explicit conservative numerical scheme is given by

and, the numerical flux is written as

F. =t(F; +F;+l +R. ». 1)'i-! 1+2 1+2

where R. 1 is the right eigenvector matrix and D... is the scheme-dependent vector
1+2 '+'2

function which have different form for each scheme. The authors used the following

four Riemann solver based TVD schemes proposed by other researcher [91]:

1. Second-order symmetric TVD scheme : The elements of the vector D. 1 had the1+2

following form

(d.\) = -(~t I~)(i\)2 L~1 -1fI[a~1- L~1]1+2 1+2 1+2 1+2 1+2

where IfI is the entropy correction which is a function of eigenvalues ik
1 and c: is1+2 I Z

the flux limiter used to guarantee non-oscillatory behaviour near discontinuities. The

flux limiter L~. was defined as
'+'2

t: . d(k k)' d(k k) k'+1 =rnmmo a·_ua..• +rmn mo a.• ,a.1. -a.1•I z I 2 'i-! '+'2 1+z 1+2

2. Second-order upwind TVD scheme The elements of the vector D... had the
'+'2

following form

(d.:1) = 1[1fI- (~t / dx)(a:l)2](i:l)(L~+1 +L:) -V'(ik• +r': )a:1•1 2 1 Z 1 2 '+'2 '+'2 1 2

The flux limiter L~1 was defined as L: =minmod(a~. ,a~).
1+2 '+'2 1 2

3. Predictor-corrector TVD schemes(TVD-McCormack) : This method was expressed

as

The elements of the vector D... have the form
'+'2
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The flux limiter L~1 was expressed as L: =max(O,min(l,r\)):
~2 ~2

4. MUSCL scheme : In this method, the numerical fluxes were calculated by using

U~HU.L, which were modified with slope limiter rather than UI ,U;+l' Then the1+2 '+i

numerical flux was expressed as

F+1 =t[F(u.R+1)+F(UIL,)+R'+lD. 1]1 2 1 2 +i 1 2 1+2

where the elements of the vector D'l have the form o:1)= -VJ'(A~ l)a~ 1 and are
~2 1+2 ~2 1+2

evaluated with the modified values U.Rl' u:,.
~2 '+i

According to the numerical results, all the four schemes presented could solve the

open channel flow problems with hydraulic jumps accurately. However, there were

variations between them. For example, the symmetric scheme produced the most

accurate solution for dam-break problem while it was the least accurate for non-

transcritical problems. The TVD-MacCormack scheme showed oscillations in very

severe dam-break cases though it gave generally accurate predictions with low error

in other problems. This is because each scheme has different approach to avoid

spurious oscillaions near discontinous solutions. In case of the symmetric scheme, the

numerical flux at a cell interface is automatically reduced to a first-order accurate

solution which shows more diffusive behaviour than second-order solutions. On the

contrary, TVD-McCormack scheme fmds solutions by adding the solutions of the

first-order McCormack scheme with the correction term which is limited by the flux

limiter function.

Jha et al. [55] presented a high-resolution TVD scheme which has been obtained by

applying a flux limiter to the Lax-Wendroff scheme to solve the shallow water

equations. This scheme has been used on a fixed grid and an adaptive grid and the

results have been compared. The authors modified the Lax-Wendroff scheme to

prevent numerical oscillations. The high-resolution TVD scheme was obtained by

limiting the effect of the second-order term with the flux limiter function:
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where <l> is a flux limiter whose value varies according to the behaviour of the

solution. In the paper, the authors used the Van Albada limiter.

The high-resolution scheme developed for a fixed grid was modified to be applied on

a self-adjusting grid to avoid smearing of a shock. The adaptive grid was obtained by

calculating the end-points of the grids at next time level with the following equation

where Xii! = O.5(Xi +XiiI) • Other terms were calculated by

-11+1 n A IIX·±~ = X·±~ + Lltv.±~ ,
, 2 ' 2 ' 2

v.±~ = I~ (a~±!)2 Ak±! I,p'.±~,
'2 lL.J '2 '2Y'2

and

{I - <- , Xi < X· ±~ - Xi+1. X X - ,+m 2f(Xi+m±H i' i+l) - 0 therwi .
2 ,0 erwise

The main idea of the adaptive grid was to make the location of a shock always

coincides with a grid point. In shock capturing methods like Roe's approximate solver,

a shock is bound to be smeared unless it lies at the ends of the cell because the values

of the variables at the next time level should be calculated by cell averaging. To avoid

this problem, the methods using an adaptive grid were developed. The proposed

technique could calculate the propagation of a shock more accurately than the

numerical schemes on a fixed grid. However, the improvement was not so significant

according to the numerical results in the paper, which was mainly because the high

resolution TVD scheme on a fixed grid itself produced very accurate solutions and so

there was very little room for improvement. The main disadvantage of the proposed

method was that the process to calculate grid points at next time level was

complicated to implement.
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Sanders [72] presented a MUSCL-type high-resolution scheme with mass and

momentum fluxes computed using a Roe's Riemann solver. The presented MUSCL-

type scheme was a two-step method: predictor and corrector steps. At first, the

following form of the St. Venant equations was used for the predictor step

aA +VaA +Aav =0at ax ax
av ah avat +g ax +Va;=g(So-SJ)

which subsequently discretized as

A;n+t= A;n- 2~ (VM + A~V)7

v:n+t = v~-~( ~h +V~V)~ + g~t (S )~-.!.(S )~-.!.(S )~+t)
I I 2Ax g I 2 0 I 2 f I 2 f I

where the overbar means the average value which was defined as

The average values were limited by the following Superbee slope limiter function to

prevent the over- and under-shoots:

( P {
min mod(maxmod(a, p),min mod(2a,2p»

avg a, ) = 0

Once the predictor step had been completed the variables at the intermediate time

level t = tn+t were reconstructed by using the MUSCL variable extrapolation

approach. The variables h and V at the left and right face of the cell interface t+t
were calculated by

1 - 1 -
hL = hi +-(~hJ, hR= hi --(~hi+l)2 2

1 - 1 -
VL=~+2(~~)' VR=~-2(~~+1)'

The area A on the left and right side of each cell interface was computed by using the

extrapolated water depth.

AL = A(hL), AR = A(hR)

Then, in the corrector step, the mass and momentum fluxes at each cell interface were

computed by using the Roe's method and the equation for the update of the solutions

was given by
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U~+l= U~ - ilt (Fn+t _ Fn+t) + ilt(S )~+t+ ilt «S )~+ (S )~+l)
I I ax i+t l-t FI 2 SI S/

where

In the paper, a new defmition for the hydraulic force F;; exerted by the channel walls

in the stream wise direction was presented. The author defined this term as

F;; =gy'AA

where AA= A .. I (hi) - A.-.l.(hi) and y' represents the distance from the free surface to'TZ I 2

the centroid of the wetted area AA. The proposed scheme was applied to triangular

and trapezoidal channels with and without width variation and produced accurate

solutions. The defmition for the hydrostatic force F;; showed good ability to solve the

flows in a channel with width variation. However, the author did not apply the scheme

to the non-prismatic channel with bottom slope variation as well as width variation.

Burguete and Garcia-Navarro [15] presented general form of the conservative TVD

scheme. The authors used the conservative form

Then, the spatially second-order TVD conservative scheme was proposed by using the

flux limiter function \f' as

To achieve second-order accuracy without numerical oscillations, the flux limiter

function was defmed as the following vector form
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As shown in the defmition of the limiter function vector, the authors emphasised that

the effect of the source terms should be involved in the definition of the limiter

function because the flux limiter function obtained only with numerical flux term can

not ensure second-order accuracy.

The second-order in space and time TVD scheme was also presented in the sarne

paper. From the theory of Taylor series expansion

su; = (OU)n /).t+.!(02~)n /).t2+0(/).t3)
ott 201;

(
oF )n 1 0 ( of )n 2 3= S-- /).t+-- S-- /).t +O/).t

ox; 201 ox;

and

.E_(S- OF)n = as au _~(OF OU)=KOU -~[A(S- OF)]at ax j au at Ox au at at ax Ox

Then, the TVD second-order in space and time scheme was written as

+~ {[~'(1-~A' )0'L-[~'(1-~A' )erL
+[~-(1+~ £ )0-L -[~-(1+~ A-)c-L}

with the flux limiter function matrix

'P'±+1 =
, 1

where R± = (OF ± /).tAG)± .

The two proposed TVD schemes were applied to some test cases including darn-break

prolems. The both schemes produced more accurate results in highly unsteady

shallow water problems than first-order schemes while second-order in space and time
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TVD scheme showed more stable results with high CFL number. However, according

to the numerical results, the TVD schemes and first-order schemes produced identical

solutions in steady flow problems.

3.4.3 Discretization of the Source Terms

The treatment of the source terms in inhomogeneous conservation laws like the

shallow water equations has been the subject of much research. The homogeneous

conservation laws without source terms can be solved by the following simple form

ur' =U~- Ilt (F* -F* ).
1 '!lx Ht '-1

However, the existence of the source terms which are in general an algebraic function

of the variable U and other physical parameters such as the bottom gradient makes

the problem complicated because it is very difficult to solve inhomogeneous partial

differential equation (PDE) satisfactorily. The simplest approach is the fractional two

step method in which the inhomogeneous PDE is decomposed into a homogeneous

PDE and an ordinary differential equation (ODE). For example, the non-linear

conservation law

Ut +F(U)x =S(U)

can be regarded as the combination of the homogeneous advection equation system

Ut+F(U>X =0

and a system of ODEs

!!...(U) = S(U).
dt

There are many well-developed numerical methods to solve the system of ODEs. The

ODEs for the source terms can be solved by the pointwise approach in which the bed

slope and width variation terms are expressed as the following average values:

SOl ~1_{s ..1 +S .~) with· S = ZI+I-
Z
12 ~ Ol+i 01 2 Ol+t!lx

I 1 (/ /) ith / = 1_h.2 hl+1 -hi fi I h I
201 ~ 2 21+t + 21-1 Wl 21+t 2 1 !lx or rectangu ar c anne.

Unfortunately, this simple traditional method cannot solve problems satisfactorily,

especially in case of steady or nearly steady flows including geometric source terms
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such as bed level and width variation. This is mainly because it can not achieve a

perfect balance of flux gradient( F:) and source terms(S).

Nujic [67] specified this problem and proposed a special method for source term

treatment. In the paper, the author showed that very poor results are obtained when

flux-difference or flux-vector splitting methods are applied to the shallow wat~r flow

with variable bottom topography. According to the author, the numerical error was

caused by the following two reasons: numerical diffusion because of the non-smooth

solution (water depth h) and numerical incompatibility between bottom slope term

and the O.5gh2 term in the flux function. To solve this problem, two different

techniques were proposed in the paper:

a) Extract the O.5gh2 term from the flux function, differentiate and combine it with

the bottom slope term. Then, the flux function and source terms can be written as

F =(:.:). S=(gh(SfO-SJ

where SH = - oH with the water surface elevation H = h+ Zb •
Ox

b) Extract the O.5gh2 term from the flux function and discretize it so that it is

"compatible" with the bottom slope term. Then, the shallow water equations were

rewritten as

In the paper, the second approach was adopted and the numerical flux PI 1 was+2

approximated by using the average

P+1 = O.5(P;+1+P;).
I 2

By using the above method, the numerical errors could be decreased. However, this

method could not solve the problem perfectly and showed small a amount of

numerical error.
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LeVeque [62] inserted additional discontinuity at the centre of each cell to incorporate

source terms into the wave-propagation algorithm and avoid the fractional step. In the

paper, the cell averaged value VI was replaced by two values VI- and vt with a

jump at the cell centre. The definitions of VI- and U] were given by

V;- = V; -0; and vt = V; +8;
to satisfy total mass conservation. The cell average values were updated by the waves

from the Riemann problem at the cell centre as well as the incoming waves from each

cell edge and the conservative scheme with source terms was solved by the following

form

where Ilu'+! = V;:1 -U}, Then, the value of vector 01 was chosen to drop the final
, 2

term and make the above form similar to the original conservation term. In other

words, the vector 0; was chosen to satisfied the condition

The proposed method worked very well in case of steady flows with small

perturbations. However, as the author stated in the paper, this method was not

appropriate when the solution was far from steady state and there was numerical

errors in case of transcritical steady flow including shocks.

Methods based on upwinding the source terms have been considered by many

researchers as a good alternative to the traditional step method. The main idea of

upwinding the source terms is to discretize the source term in a manner similar to that

used for construction of the numerical flux function.

Garcia-Navarro and Vazquez-Cendon [40] presented upwind source term treatment

technique for prismatic and non-prismatic rectangular channels. In the paper, the

source terms were discretized by

SAx= LPk~'
k

- 55-



and divided into two parts: forward and backward portion according to the signs of

the local wave speed (eigenvalue) as depicted in Figure 3.6. To do this the source

term vector was rewritten as

Stix=RP

where

R =(~ ~) and P=(~).

! - - ~ _ - ~:- -..- ~~.y.- _ - _ ··1
; At At ;
1__ i
~ Pt+ Pt- !
I i
: I

i u" . I u" . I u", ! x
i i-I '2 i '+1 i+l! )

L...... Cell i-I 1. _ Cell i ..·········1.······.. Cell i+ I ..1

Figure 3.6 The concept of the upwind approach [80]

The diagonal matrix

A=R-'AR=(d ~)
was used to decompose the source term vector like

S = RP = RAA-1p = RA+A-1p +RA- A-1p

where

Then, the effect of the source terms at each cell interface was separated into two parts:

left-hand (backward) and right-hand (forward) portion. The contribution to the nodal

point i was regarded as the sum of incoming portions and expressed as the following

form

where
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In case of shallow water flows in prismatic rectangular channel,
AF' = AJ1.U

and the decomposition of the source terms was given by

From the above equations,

and

where A, b and Sf represent the average values at each cell interface.

In case of non-prismatic rectangular channel,
AF'= AJ1.U+V

with

v = (_ gJ2 J1.b)'
2b2

Then, the decomposition of the source terms was modified:

and

with

The proposed decomposition technique was applied to several steady and unsteady

problems and showed perfect balance of flux gradient and source terms. However,
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this method was not suitable for non-rectangular channel problems and the authors

used two different criteria for the average values.

Hubbard and Garcia-Navarro [51] used the upwind source term treatment and

extended it to the high-resolution TVD schemes. In the paper, Roe's first-order

scheme with upwind source term treatment was written as

U."+1 = U" _ At (F- _ F- ) + At (S~)
, '!lX Ht '-1 !lX '

where numerical flux F-1 is
'+2

• 1 1 -1-1--1F 1 = -(1<;+1 +1<;)--(R AR AU). I
'+2 2 2 '+Z

and numerical source integral Si- ~ JSdx is

- - -Si =S.-1 +S.~
1+2 ' 2

with

-.. 1 -.. -."1-" -..,....., 1-
S.~,= -(RCI -sign(l)R- S).+1 = (Rr R- S). 1

'+Z 2 ' 2 HZ

......, 1 -.. -."1-" -..,._ 1-
S.~ = -(R(I +sign(l)R- S)._1 = (Rr R- S)._l.
'z 2 ' Z ' 2

According to the authors, the decomposed source terms are not able to be included

within the numerical flux because the source terms can not be written as a difference.

This means that the balance which is sought between flux derivatives and sources in

the flux-based scheme can only be obtained locally by balancing non-zero fluxes

through the edges of a control volume, and not by setting each edge flux to zero.

The upwind source term treatment was extended to TVD schemes. In case of flux-

limited schemes the numerical flux has the following form

- 1 1 -1-1 --1F 1 =-(1<;+1 +1<;)--(RALR AU)·1
'+2 22Hz

where L = diag(l- <l>(rk )(l-Ivk I) with vk = X At/ !lX and <I> is the flux limiter

function. To maintain the balance between the flux gradient and the source terms, a

corresponding high-order correction was made to the source terms approximation.

The flux limited numerical source was obtained by using the same flux limiter

function and given by
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~ 1 ~ ~ .,._ ~ ~ 1~
S.~ = -(R(l +sign(l)LR- S)._l = (Rr R- si.:

'2 2 ' 2 ' 2

In case of slope limited schemes like MUSCL, variables in each cell should be

reconstructed and the average values of Roe's solver are evaluated from the

reconstructed data. The slope-limited version of numerical flux can be written as

• 1 R L 1 -1-1- 1F, =-(F i+12+F i+!)--(RAR- !1U).,
'"'2 2 2 '"'2

where the superscripts R and L represent evaluation on the right and left hand side

of cell interface, respectively. Similarly, the slope-limited version of numerical source

was written as

The fmal term on the right hand side represents the source term integral approximated

over the mesh cell.

The proposed method was applied to one- and two-dimensional shallow water flows

including still water simulation and could achieve perfect balance of flux gradient and

source terms except slope limited second-order scheme. According to the authors, a

more sophisticated approximation was needed for the source terms in slope-limited

schemes. The proposed method could not be applied to a non-rectangular channel

though it showed good results even in TVD schemes for rectangular channels.

Goutal and Maurel [46] redefined source terms in the one-dimensioanl shallow water

equations for natural river flow modelling. In the paper, the source terms were divided

into two components:

1. Source terms linked to the geometry including the bed slope and variation of

the river width which was expressed as

(aI1(X, A») =(all(X,A)) + all (x, A) (aA) .
Ox z,=cle. Ox A=cle. aA Ox z,=Cle.

2. The friction term given as - gAS f .

The newly defmed source terms was expressed as the sum of the following three

terms:
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(1) SI = (O/I(X,A))
OX A=Cle.

(2) S2 = O/I(X,A)(OA)
oA Ox Z,=Cle.

and discretized by using two different discretization techniques: term (1) was

approximated by a pointwise discretization while terms (2) and (3) were upwinded.

The proposed method was applied to several one-dimensional flow problems

including steady flows and a dam-break simulation and, according to the numerical

results, the scheme showed that, in case of steady state, the equilibrium was correctly

approximated, and the scheme was suitable for propagation over dry areas.

Burguete and Garcia-Navarro [15,16] proposed an optimal form of the one- .

dimensional shallow water equations for arbitrary channel geometry. In the papers,

the one-dimensional hyperbolic system with source terms was given as

oU(x,t) + dF(x,U) = S(x U)
ot dX '

with

The authors used the total derivative dF / dx instead of the partial derivative in order

to represent the increments due to the pure spatial variations in x and those due to the

variations of the conserved variables U . From the relation between the total and

partial derivatives

dF(x,U) = of(x,U) + of(x,U) OU = of(x,U) +A(x U)oU
dx Ox oU Ox Ox 'Ox '

the non-conservative form was written as

oU(x,t) +A(x,U) oU(x,t) = S'(x,U)
ot Ox

where the modified source term S' was given by

S'(x,U) ~ S(x,U) of(x,U).
Ox

In case of the shallow water equations, the following relations hold:
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dh oh 1aA-=-+--
dx Ox b Dx

dII = all + all aA = I +A oh + A aA = I +A dh
dx Ox aAOx 2 Ox b Bx 2 dx '

and the new source terms of the non-conservative form was defined as

S'(x,U) =(gA[S -S ~dh+!dA]).
o f dx bdx

Then, Roe's method and the upwind source term treatment were applied to the non-

conservative form of numerical scheme. The proposed new source term discretisation

produced good results in steady and unsteady problems. Especially, in case of steady

flow problems including 'water at rest' test, the scheme achieved perfect balance of

flux gradient and source terms and produced no numerical error. This method could

be applied any type of geometry including real river channel. However, the only

problem of the method was how to define the intercell average values c , A and b .
The definition of the average values should be chosen in consideration of the balance

of numerical flux and source terms. In the papers, the authors used the following

definitions for average values

c,+! =
I 2

Zhou et al. [85] proposed the surface gradient method (SGM) for the treatment of

source terms in MUSCL-type schemes. In MUSCL-type numerical schemes, the

initial data at each time step are reconstructed by the gradient of the geopotential

¢= gh which can be expressed as

where G is the slope limiter function.. The reconstructed values on the left and right

of the cell interface i - t can be given by

¢;~!= tA-I + ~Axi-l0tA_l , ¢;~!= tA - ~ Ax; 0tA
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where Ill; = X. 1 - X._l. In the paper, the authors named this approach the depth
1+2 1 2

gradient method (DGM) which is suitable for homogeneous form of the equations and

suggested that SGM should be used for the accurate source term treatment because

DGM fails to reproduce the real variation of the water depth. In SGM, the water

surface level at the left and right of the cell interface i - t were given as

where 0'1; represents the gradient of water surface level '1. From the relation

'1= h + Zb' the reconstructed values of (J = gh at the left and right of the cell interface

i - t were calculated as

The main advantage of the SGM was that no special treatment was needed for the

discretisation of the source terms because the gradient of the water surface elevation

included the effect of bottom slope as well as water depth variation. The proposed

SGM was applied to various steady and unsteady flow problems with bed slope

variation and reproduced accurate solutions. However, this method is considered to be

used only for MUSCL-type schemes.

Capart et al. [20] proposed a modified momentum conservation equation in the St.

Venant equations to treat irregular channel geometry. The momentum balance of the

control volume between two cross sections Xl and x2 yields the following equation:

where p is mass density of water, p is pressure, r represents the control surface

which is consists of rigid bottom boundary ro and left and right vertical faces ri' r2
of the control volume, and nx is the X component of the outward normal to r. The

third term on the left hand side which represents the overall pressure thrust acting on

control surface r can be decomposed into three parts

Jpnxdf' = 1pnxdf' +.J
2
pnxdf' + I pnxdf' = [pg!l ];: +1pnxdf' .
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The last part of the pressure thrust which is exerted along the bottom boundary ro has

very complicated form and it is very difficult to calculate accurately. To solve this

problem, the authors proposed an approximation for this term. At first, the average

water surface elevation Zs = 1/2(zsl + zs2) was considered. From the equilibrium

condition of static forces, the hydraulic pressure forces exerted on the new control

surface r which is made by the horizontal water surface elevation "is is equal to zero.

Itmeans that for arbitrary shape of channel geometry,

r pnxdr =[pgfll_ ]~2+ r pnxdf' = 0t z, 1 to

where fllz. = r:("is -Zb -1])b(x,1])d1]. Assuming that the slope of water surface is

mild and the streamwise components of the sidewall inclination is small, the

following relation was considered

Ipnxdr ~ 1pnxdr
and the pressure force for control surface r was rewritten as

r pnxdr l::: [pgfl - pgfll_ ]~2.~ z, I

By using this approximation, the integral form of the momentum conservation

equation was expressed as

and the corresponding differential equation was given by

aQ a [Q
2

]-+- -+gl-gfl_ =-gAS.at Ox All z. f

The mass conservation and modified momentum conservation equations were

numerically discretised as

where
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L~right = (Q2 +gI _ gI I )*
'-t ' All Zsl

i-t

*
~*Ieft _ (Q2

I I I )
~.,1 - -+g l-g 1 •

I~ A ~
i+t

In the paper, the numerical fluxes Q~.l and r.~/t were calculated by using the
1+2 l+2

characteristic-based flux predictor method. The proposed method was applied to dam-

break problem and hydraulic jump in channel expansion problem, and showed better

results than pointwise source term treatment. Moreover, the scheme was used for

modelling of the Tanhui River flood in Taiwan and produced results showing good

agreement with the observed data.

3.4.4 Two-dimensional Modelling

Anastasiou and Chan [1] applied the finite volume method for inviscid and viscid

flows on unstructured triangular grids. In the paper, the numerical flux function was

given by

Frn = FI _Fv = (fl -ifV)nx +(gl _lgv)ny,

with

where the subscripts I and V represent the inviscid and viscid fluxes, respectively,

Ux' "» and vx' Vy are the derivatives of the velocity components in the x and y

direction respectively. The inviscid flux F; was obtained by using Roe's flux

function like

Second-order accuracy was obtained by piecewise linear reconstruction of the

solution data before solving the local Riemann problem. For example, the

reconstruction of the cell variables was performed by the following form

U(x,y) =UA +VUA·r
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where r is the vector from cell centre A to any point (x,y) within the cell, UA is the

cell centre value and VUA is the gradient of the cell. The viscous flux F: was

evaluated by extrapolating the gradient of the velocity at each cell edge and combined

with the inviscid flux. The numerical scheme was applied to several test cases

including two-dimensional partial dam-break problem and oblique hydraulic jump

simulation and produced accurate solutions.

Brufau and Garcia-Navarro [11] presented a two-dimensional finite volume scheme

with Roe's solver. The two-dimensional shallow water equations were expressed as

au )-+V.(F,G =sat

[
hu J2 h2

F= hu +g"2 '
huu

hv

G= huu
h2

hu2+g-
2

where, U is the vector of conserved variables, F and G are the fluxes in x and y

direction and S is the source terms. This equation was discritized by applying the

finite volume method:

dll, Ne •
OJ-' +L(F,G)k -n.dl, =SOj

dt k=l

where, OJ is the area of the chosen cell, Ne is the total number of edges in the cell,

(F,GX .n, is the normal flux at each cell edge and dl, is the length of each edge as

shown in Figure 3.7.
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Figure 3.7 Details of the two-dimensional cells [llJ

The numerical flux at each cell edge was obtained by expanding one-dimensional

Roe's upwind numerical flux and expressed as

(F,G)*.n = ~ [(F,G)R 'n+(F,Gt ·n]- ~ IARLI(UR-UJ

=l.[(F,G)R 'n+(F,Gt .n]-l. LaklAklek2 2 k

where ARL is the approximate Jacobian matrix of the normal flux, R and L denote

the right and left state of the cell interface, respectively. Then, the numerical

discretization of the two-dimensional shallow water equations was given by

U,.. l =U;- ~~[(F.G); ·nAl: =S,M

Second-order accuracy in space was obtained by pre-processing, or reconstructing, the

initial data at each time step with the following forms

UL ~ UL + rLRDL and UR ~ UR + rRLDR

where rLR is the vector from the centroid of the cell L to the edge LR and D is the

gradient operator which contains information relative to the neighbouring cells. The

new left and right values of the variables were two interpolated values reconstructed

from the initial cell average values. Second-order accuracy in time was obtained by

updating variables in two steps. In the first step, variables were computed at time level

t = t
n
+! = t" + fl.t12 from the extrapolated variables at time t = tn • With these
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intermediate values, the variables were updated to time level 1 = 1"+1 at the second

step.

The proposed numerical schemes (first- and second-order approximations) were

applied to the two experimental tests from the Working Group on Dam Break Flow

Modelling: dam break simulation in 45° bend channel and channel with constriction.

The numerical results were compared with the experimental data. According to the

comparison, there was no significant superiority of the second-order scheme and both

schemes failed to reproduce the arrival times of the reflected wave in 45° bend
channel problem.

Hubbard and Garcia-Navarro [51] extended the upwind source term treatment to two-

dimensional cases. The two-dimensional conservative scheme has two flux

components F = F(U) and G =G(U) and can be written as

U"+1 U" At ~ s: (D* G*) - At S*
I = I --~uil ru, iI ·nil+- i

OJ 1=1 OJ

where OJ is the area of the chosen control volume, Ne is the number of cell edges,

nil is the outward pointing unit normal at the cell edge between cell i and I (I

represents a generic neighbouring cell) and Oil is the length of the cell edge.

The first-order accurate numerical flux in two-dimensional scheme was given by

and, similarly, source integral was written as

where

~- 1 - . ,...-1 - - - -"'-1 -
Sit = -(R(l-Slgn(I)R S)iI = (RI R S)u'

2

The source term discretization for higher-order schemes was given by a similar form

to one-dimensional case. For the flux limited second-order scheme, the source term
was discretized by the following form

- 67-



and the slope limited version of source term was written as
Ns; = !(S;i-S(Uj/,uJ).
1=1

Jha et al. [54] split the two-dimensional shallow water equations into two one-

dimensional problems in x and y directions, respectively. In the paper, the two-

dimensional shallow water equations were broken down to a couple of one-

dimensional equations which were given by:

au of
-+-+Slx +S2x =0at ax

and

au ea
-+-+Sly +S2Y =0at ay

where SI and S2 are the bottom slope and the friction source term vectors,

respectively. Then, the update was performed by the following two step approach: at

first, the solutions were updated by solving two equations

U;+I =Uj:J - .1{0:+ Six + S2x )

U;'I =U':l - a{c::: +SlY+S,y)
and the fmal solution was obtained by

U~+I= (Un+1 + Un+I) _ U" •
I.J x y I.J

The numerical flux for each equation was calculated by using Roe's method. Second-

order accuracy was obtained by using the Lax-Wendroffnumerical flux and the Van

Albada flux limiter was used to secure TVD property. Source term treatment was

performed by using two different approaches: the pointwise approach for the friction

term and the upwind approach for the bottom slope term. The upwind treatment for

the bottom slope source term SI was expressed as
---SI = (RAP)/ L\x

with
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- [ lI(u +c) Jp=ghl1zb 0 .
2c 1--)-1 (u-c

Consequently, the following term was added to the numerical flux function

1 -,-,- 1 ---s. 1.= --(R AP)·+l) +-(RAP). I}'
1+2,} 2 1 2' 2 1+2,

The proposed schemes (first- and second-order accurate) were applied to the

simulation of the flood wave due to partial dam-break and the numerical results were

compared with experimental data. According to the numerical results, the both

schemes predicted water depth and velocities in reservoir and floodplain with

reasonable accuracy. However, there were no significant difference between the
results of the two schemes.

Bradford and Sanders [10] developed a two-dimensional finite volume model

featuring predictor-corrector time stepping and MUSCL data reconstruction technique.

In the predictor step, the solution at time level t = tn+t was obtained by solving the

following primitive form of the shallow water equations

n+t n At - - - - I 2 2 n
Vj,k = Vj,k -T[u,A,v + uI1A'1v+ g(qyA,q + 17yAl1q+CDV'VU + V / h)]},k

where q is the free surface level and q and 17are the directions of contiguous j and

k indices, respectively. The symbol A denotes cell average gradients of the variables

which were computed by the Superbee slope limiter in order to preserve the

monotonicity of the solution near discontinuities. Predicted values were linearly

reconstructed by the MUSCL technique to obtain second-order accuracy. The

corrector step was performed by the numerically discretized scheme

Un
+
1 o: 1

},k - },k + --[(Fn+ts). _or'»
At n .l }+t,k .l }-t,k

},k
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where Fl. is the numerical flux at each cell interface, n is the area of the cell and S

is the length of the cell edge. The numerical flux Fl. was calculated using Roe's

method and the pointwise approach with cell average values was used for the source

term treatment. The proposed scheme was successfully applied to the dry bed dam-

break problem and long wave runup in one- and two-dimensions.

Caleffi et al. [19] proposed a MUSCL-type scheme with HLL Riemann solver. In the

paper, the numerical flux at each cell interface was calculated by the HLL

approximate solver and a second-order accuracy was obtained by using the predictor-

corrector and MUSCL technique respectively. Moreover, a new approach to treat

source terms was proposed.

The numerical flux was calculated by the Hl.L Riemann solver:

tr .« = (sRFL·n-sLFR ·n+sRsL(UR -UL»/(SR -SL)

where subscript R and L represent the right and the left side of the cell interface,

respectively. The wave speeds SR and SLwere calculated by the following equations:

SL=min(qL .n-.fih;,u· -~gh') and SR=min(qR·n-..[ih;,u· +..fih')

where u' =t(qL +qR)·n+.fih; -~ghR , ..fih' =t(~ghL +..[ih;)+·HqL +qR).n

with q = (u,u). To obtain second-order accuracy,. the authors applied a predictor-

corrector and MUSCL technique. The "minmod" slope limiter was used in the paper.

The authors used a structured quadrilateral grid. As a result, there was a problem

treating bottom slope source term because the four vertices of each cell bottom did not

lie on the same plane. So, the authors proposed the following four step method to

solve this problem: 1) determine the planimetric position of the centroid of the four

vertices 2) then, the single quadrangular cell can be splitted into four triangular cells

whose common vertex coincides with a centroid 3) bottom slope along x and y

directions of each triangular cell can be determined because the three vertices of the

cell bottom lie on a same plane (4) the effect of the bottom slope can be calculated by

adding the effect of each triangular cell. The friction slope term was discretized by

using the semi-implicit method to reduce the numerical instability :

Sf =(l-P)Si1+fJSj =Sil+p(Sf/aU)~U.

Finally, the two-dimensional shallow water equations was expressed as :
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The proposed scheme was verified against some well-known test cases such as two-

dimensional oblique hydraulic jump and partial dam-break problems. Then the

comparison between numerical results of the flood event simulation on the valley of

the Toce River in Italy and available experimental data was performed. Accoring to

the comparison, a good agreement between recorded and simulated water levels was
shown.

Valiani and Begnudelli [79] presented a new formulation of the bottom slope source

term for the two-dimensional shallow water equations. The authors used the similar

approach used by Capart et al. [20]. In the paper, the bottom slope source term was

approximated by assuming horizontal free surface level over a cell and expressed as

S =o

o

Ozb 0(1 2)-gh-=- -gh
Ox Ox 2 ,,=r/
OZh 0(1 2)-gh-=- -gh
ay ay 2 "=,,.

where ". is the constant value of free surface level n . The authors named this new

form of bottom slope term as the divergence form for bed slope source term (DFB).

The numerically discretized form of two-dimensional shallow water equations on a
structured quadrilateral grid was given by

At~. AtrAU=--L..J(F, 'nr)Alr+-.b(So+S,)dO.n r=) n
where Ir is the length of cell edge and n, is the outward pointing unit vector normal

to the cell edge. The homogeneous part of the equations was calculated by using the

MUSCL technique and HLL Riemann solver. The divergence form of the bottom
slope term was discretized as
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o

where n ; and nyr are Cartesian components of outward pointing normal unit vector.

" • was chosen as the average free surface level and h, was computed as the

difference between ". and the average bed elevation of the r th cell edge. The

proposed scheme was applied to some classical test cases and showed good agreement

between numerical and exact solution even in the case of water at rest over an

irregular bed topography. However, this method was developed only for structured

quadrilateral grid and further study is needed in case of unstructured or non-
quadrilateral grid.

Rogers et al. [70] reformulated the two-dimensional shallow water equations to

eradicate numerical imbalance of flux gradient and source terms. The two-

dimensional shallow water equations can be obtained by depth-averaging the
Reynolds equations and expressed as

ah + a(uh) + a(uh) = 0
at Ox ay

a(uh) a(u
2
h) a(uuh) (a(hUJ a(hUy)) Twx - Thx h aq h.

1i--+ + -& + = -g -+ ~uat Ox ay Ox ay p Ox

a(oo) + a(uuh) + a(u
2
h) _&(a(huJ + a(hUy))= Twy -Thy _ghaq -hfu

at Ox ay Ox ay p ay
where q is the free surface elevation above the still water level h., h = q +h, is the

total water depth, Twx and Twy are surface stresses, Tbx and Thy are bed friction

stresses, e is the kinematic eddy viscosity coefficient and f is the Coriolis parameter.

To rewrite the above equations as a hyperbolic equation system, the ghaq/fJx term

should be decomposed as

gh~ = !Ggh')+ghSQ,
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and it means the surface gradient term is split into flux gradient and bottom slope

terms. However, this method cannot simulate still water problem because of the

imbalance of flux gradient and source term. In the paper, the authors proposed

balancing the flux gradients and source terms by a mathematical manipulation of the
surface gradient term:

gh aq = sts + hJ~(_!_ g(q2 + 291s)) + gqSOJC.ax ax 2

This mathematical manipulation eradicated the numerical imbalance in Roe's

approximate solver, and, in case of still water simulation, the water remained

quiescent throughout the domain at all times during the simulation. The two-

dimensional shallow water equations were rewritten as the following integral form

!Ivan +1(0:' + ~' ~ = if'aIl
with

tr=[~], F' =["'h+tg(<;", +~,)- EhfJuliJx],
oh uvh - dzao / ax

The numerical flux at each cell interface was calculated by Roe's method and second-

order accuracy was obtained by using the MUSCL technique with slope limiter

function. The proposed method was applied to the shallow water flows and worked

successfully for still water and wind-induced circulation in a dish-like circular basin.

3.4.5 Wetting/Drying Boundary Condition

Source term treatment in the two-dimensional shallow water equations is considered

easier than the one-dimensional case because it does not include the width variation

term 12• However, wetting/drying boundaries can cause numerical imbalance of flux

gradient and bottom slope term. In this section, the techniques developed for the

solution ofwettingldrying boundary condition are reviewed.
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In two-dimensional shallow water flows such as tidal floods and wave propagation

over floodplain, water usually flows over dry bed in floodplain or the edge of river

channel and the boundaries between wet and dry area exist where the water depth

approaches to zero. These boundaries are different from other physical boundaries

because they are moving according to the state of the wave propagation. So, the

wetting front advance over a dry bed is a moving boundary problem and it can not be

solved by the Riemann solver itself because the shallow water equations loses its

properties when the water depth approaches to zero. The numerical difficulties in

wetting/drying boundary problem can be split into two categories: numerical

imbalance of flux gradient and bottom slope term and numerical instability in almost

dry cells. The former leads to negative water depth, artificial mass and velocity, while

the latter produces unphysical high velocity because the velocity components u and

v are computed by dividing the volume fluxes hu and hv by the small water depth
h.

To solve correctly moving boundary problems, at first, the location of the boundary

should be detected accurately and, then, a suitable numerical modification based on

the physical condition of the boundary should be applied to the boundary cells.

Zhao et al. [86] modelled two-dimensional river flows with the Osher scheme and

suggested a new approach for the moving boundary problem. The authors classified

the elements near the moving boundary into three types (entirely dry, partially dry and

wet elements) and treated with different approaches. When the water depth of an

element is less than the prespecified tolerance HTOLI (usually very small value), and

if there is no flow across all sides of the element, then the particular element was

treated as entirely dry cell and neglected in the computations for that time step. When

the water depth of an element is greater than HTOL 1 but less than HTOL2 (>HTOL 1)

or when the water depth of an element is less than HTOL I and there are flows across

one or more sides, then the element was treated as a partially dry element. In case of

partially dry element, the momentum flux was neglected and only the mass

conservation equation was used to update solution. Finally, a wet element having
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water depth greater than HTOL2 was treated as a normal cell and the solution was

updated by normal numerical methods.

Hubbard and Dodd [52] used a similar but more detailed technique for wave run-up

and overtopping problems. In the paper, the distinction between wet cells and dry

cells having the water depth less than a specified tolerance hlol was made and the

interfaces between wet and dry cells were considered as moving boundaries. At the

beginning of the solution update at each time step, dry cells having bottom level lower

than the water surface level of any neighbouring wet cells was wetted by setting

h = hlo/ and u = u = 0 to prevent numerical instability. Then, the numerical fluxes

through three different types of moving boundaries were computed as follows:

- wet/wet: Roe's scheme was used as normal,

- dry/dry : completely ignored,

- wet/dry: no update was made to the both cells, Le. the solid wall boundary

condition was applied to this boundary.

After the completion of the update at each time step, the cells having the water depth

lower than hlol were treated as dry cells and their water depth were set to zero.

Moreover, cells having very small water depth (less than the second tolerance

hrOL >hlol) were treated as 'almost dry' cells and their momentum components hu

and hu were set to zero to secure numerical efficiency while the water depth was not

altered.

Bradford and Sanders [10] presented a wetting/drying boundary solver for their

MUSCL-type scheme. In the paper, cells having a water depth greater than a tolerance

e = O.OOOIm were treated as 'fully wet' cells. The solution was updated normally in a

fully wet cell, however, in case of 'partially wet' cell, the solution was computed by

extrapolation. The MUSCL reconstruction of free surface elevation Ilq was modified

near a wetting/drying boundary to prevent artificial leakage into adjacent cells. Ilq in

a wet cell bounded by a partially wet or dry cell is extrapolated from the neighbouring

wet cell like Ilql,J = Ilql,J-l and the free surface elevation q of a partially wet cell was

extrapolated from the fully wet cell. At cell interfaces where both sides are dry, the
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numerical fluxes were set to zero. Finally, the momentum equations were not solved

in partially wet cells and the velocity components were extrapolated from the

neighbouring cell with largest water depth. The extrapolation of the velocity was

performed by the two forms:

Un+1 = un + 2( n _ n+l)
.1f .1... C... Cf

or

Un+1 - Un+1
.1f - .1...

where f denotes front or partially wet cell and w denotes the wettest neighbour.

Brufau et al. [12] modified the bottom slope between the two cells neighbouring

moving boundary to secure the mass balance. To solve the wet/dry cell boundary

problem, the free surface level H = h + Zb of the neighbouring wet and dry cells were

compared and the following two situations were considered:

- HL < HR : considered as stopping condition and the bottom slope was modified,

- H L ~ HR : treated as normal condition and Riemann solver provided

satisfactory solution.

The subscripts L and R represent wet and dry cells, respectively. In case of still

water problem, the condition HL < HR causes numerical imbalance of flux gradient

and the bottom slope term. To solve this, the bottom level of the dry cell was modified

to satisfy the following equilibrium condition

MlLR =HL -HR =0.

From the above equilibrium condition, the modified bottom level of the dry cell was

defined as

Z;R = ZbL - (hR -hL)·

In unsteady cases, the same procedure was used, but the velocity components u and

v of the wet cell were reduced to zero to prevent leakage of the mass. The proposed

method was applied to some test cases and showed generally good results. However,

this method produced mass error in case of unsteady flows and this problem was

solved in the authors' next paper [13].
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In [13], the authors proposed a similar but more detailed method which could solve

unsteady flow problems without mass error. To secure mass conservation, the authors

considered the mass conservation equation near the wetting/drying boundary. The

numerically discretized mass conservation equations was given by
h,,+l_h" 1 Ne
i,} i,} =__ ~(E*.n -S-)ds .
Ilt of:: k k k k

The mass flux through the interface between wet and dry cells was calculated by
using Roe's method:

(E* . n )LR = ~ [FRnx +GRny + FLnx +GLny - all~l~- a21~1e;- a31~1e;]
and the source term contribution was computed by the upwind treatment:

-SLR- = Pl- +P3-
where L and R denote the wet and the dry cells, respectively. In case of subcritical
flows,

and the numerical flux and source term contribution were given by

(E* . n )LR = hL [uLnx + uLny + c]
2

S-- 1_( )LR ='2c ZbR-ZbL .

The total contribution of the LR edge to mass conservation was set to zero

(E*'n -S-)LR =.!..[hL(un+c)-c(ZbR -ZbL)]=O
2

to prevent mass transfer through this boundary. From the above condition, the bottom
slope was redefined as

(ZbR- ZbL) = hL (1+ un/c).

In case of supercritical flows,

and nothing had been done for bottom slope term because there was no contribution

of bottom slope source term: SLR - =O.
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Moreover, the method to correct mass conservation error due to the existence of

negative water depth was proposed by the following algorithm: first, the cells with

negative water depth after one time step were identified and their water depth and

velocity components were set to zero, then, in order to preserve mass conservation,

the same volume of water was subtracted from the neighbouring cells. For example, in

case of two cells L with a negative water depth and R neighbouring and having more
water:

- hL < 0 was redefined as hL = 0 which added a volume of water hLAL

- hR was redefmed as hR + hLAL / AR to deduct the added mass to the system.

The proposed method was applied to some test cases including the Malpasset dam

failure simulation and produced good results. Especially, the negative depth control

technique gave almost zero mass conservation error.

3.5 Application of Riemann Solver Based Scheme to
Natural River Flows

In this section, some recently published literature on the application of Riemann

solver to natural river flow problems has been reviewed. The powerful shock

capturing ability of Riemann solver based methods induced many hydraulic

researchers to apply this technique to dam-break simulations. While idealised dam

break simulations such as instantaneous one-dimensional dam-break problem and

two-dimensional partial dam-break problem have been the basic test examples of

newly developed hydraulic models, many researchers applied newly developed

numerical model to the real dam-beak events. Among these, the Malpasset dam-beak

event was numerically reproduced by many researchers. The Malpasset dam was

constructed in 1952 on the River Reyran, France and collapsed in 1959 due to the

leakage caused by the rapid increase of water level. Hervouet and Petitjean [78]

numerically simulated the Malpasset dam-break event with TELEMAC-2D program

which was developed on the basis of fmite difference method. After then, many

researchers used Rieamnn solver based hydraulic model to this real dam-break event.

Valiani et al. [65] developed a two-dimensional fmite volume model with HLL

(Harten, Lax, and van Leer) approximate Riemann solver. Second-order accuracy was
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obtained by reconstructing data with slope limiter function. The Malpasset dam-break

event was numerically simulated with this model on an unstructured quadrilateral grid.

Yoon and Kang [84] also used HLL approximate Riemann solver to simulate the

Malpasset dam-break event on an unstructured triangular grid. To obtain second-order

accuracy a multidimensional slope-limiting technique was used. Results of both

models such as maximum water levels and wave propagation times showed good

agreement with the field data recorded at the time of dam break.

Zoppou and Roberts [87] developed a Riemann solver based two-dimensional

hydraulic model and used this model to simulate the sudden collapse of a water

reservoir which is in the upstream area of residential areas. In the paper, a first-order

accurate approximate Riemann solver was used to compute numerical fluxes. The

model was used to predict the arrival time of flood wave and inundation extent caused

by a sudden collapse of Lower Hackett reservoir in the surburb of Canberra, Australia.

The bed elevation data of this simulation was obtained from topographic maps and the

inundation area was presented at every five seconds.

Riemann solver based hydraulic modelling technique has been used in various

hydraulic engineering areas recently. Leon et al. [60] developed a Riemann solver

based one-dimensional hydraulic model for simulation of unsteady flows in sewers.

Guinot type and HLL type approximate solvers were used to calculate numerical flux

and second-order accuracy was obtained by using the minmod slope limiter function

to reconstruct data. The source terms have been discretized using a second-order

Runge-Kutta method. The developed model was applied to several extreme flow

conditions in sewers such as hydraulic bores and roll waves. The results showed that

the Riemann solver based numerical model could solve transient flows in sewers

which generally have circular cross sections more accurately and efficiently than the

method of characteristics which was traditionally used in the area.

Jaffe and Sanders [53] simulated the depression wave caused by engineered breeches

of embankments with two-dimensional finite volume model. In the paper, the
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numerical fluxes were computed by using Roe's approximate solver and second-order

accuracy was obtained by reconstructing data with slope limiter function. The main

topic of the paper was to study the feasibility of engineered breaches of embankments

to mitigate peak flood discharges in downstream areas and the effect of various

factors like breach length, breach timing and floodplain area. According to the

numerical results, engineered breaches approach is more efficient for relatively short

and dynamic flood wave and the breaching action caused regressive and progressive

depression waves in the upstream and the downstream channels of breach,

respectively, which reduced water levels both upstream and downstream. Model

results showed that floodplain area and breach timing were more important factors

than others. This study showed the applicability of Riemann solver based hydraulic

models to complicated river engineering projects.

A Riemann solver based hydraulic model has been coupled with ground water

equation. Erduran et al. [34] developed a hybrid numerical sheme to integrate shallow

water flow and ground water flow. The two-dimensional shallow water equations and

the two-dimensional ground water equation were numerically discretized by applying

the finite volume method and linked by introducing new source and sink terms in each

equation. The numerical fluxes of surface water were computed with Roe's solver and

the upwind approach was applied to the bottom slope term. The numerical fluxes of

ground water were calculated by using the Darcy's law. Then, various infiltration

conditions were considered to integrate shallow water flows and ground water flows.

The ultimate aim of developing new hydraulic model is the application of the model

to the simulation of real river flows. Riemann solver based hydraulic models have

been successfully applied to the real river flow problems like prediction of flood wave
propagation.

Wan et al. [82] used the finite volume method to model flood inundation of the lower

Yellow River in China. The authors solved the Riemann problem at each cell interface

to compute the normal flux which is essential for solving the finite volume scheme. In

the paper, an irregular unstructured computational mesh was applied, because it could

easily discretize the complicated natural topography of the Yellow River. Dykes and
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roads in the floodplain that could influence flow were discretized as a cell interface of

the mesh. Two-dimensional models are considered more appropriate for flood

modelling of the big rivers like lower Yellow River which is very wide and has a vast

amount of floodplain because it could provide more detailed and correct information

about the flow over the floodplain.

Sanders et al. [71] solved coupled one-dimensional shallow water equations and

pollutant transport equation by using the finite volume method. In the paper, coupled

equations were numerically discretized by using the finite volume method and the

numerical fluxes of water mass, momentum and pollutant mass were computed with

Roe's approximate solver. The authors used one-dimensional and two-dimensional

hybrid method to solve junction flows. In the proposed method, three channels linked

to two two-dimensional junction cells which represent junction area as shown in

Figure 3.8. The numerical flux between one-dimensional channel cell and two-

dimensional junction cell was computed by solving the local Riemann problem.

2D junction cell # l

iD reach cell

ID reach cell

2D junction cell

Figure 3.8 ID-2D hybrid discretization of channel junction [71}

The developed model was applied for the simulation of the urban runoff in the Talbert

Channel System in Southern California, U.S .. The numerical results showed that the

Riemann solver based hydraulic model could be effectively used for modelling of

transport of pollutant and the model reproduced sharp pollutant pulses of urban runoff

as well as water flow propagation of the channel system very correctly.

Beffa and Connell [6,7] developed a two-dimensional finite volume model, Hydrozde,

to simulate floodplain flows. In the papers, Roe's solver was used and data at each
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cell interface was reconstructed with slope limiters to secure second-order accuracy.

The treatment of variable bed topography, friction losses including vegetation, and the

boundaries between wet and dry cells were considered. The model was applied to

simulate floods on the Waihao River floodplain inNew Zealand. The digital terrain

models (DTMs) of the floodplain having Sm and 20m resolution were obtained by

aerial photogrammetric survey. The results were compared with those of MIKE11

featuring one-dimensional finite difference scheme and, according to the authors,

Hydro2de model produced better results than MIKE11.

Many researchers have tried to integrate one- and two-dimensional Riemann solver

based models in order to save computing resources in river modeling and solve

complicated river flows more efficiently. In this approach, flows in confmed or

straight channels can be modelled with a one-dimensional method while complex

flow conditions over floodplain or near sharp bends are solved with a two-

dimensional method.

Villanueva and Wright [81] developed a hybrid model, TRENT, which links one-

dimensional and two-dimensional Riemann solver based models. Both dimensional

models used Roe's solver to obtain the solutions of the local Riemann problem at each

cell interface. Flows in the main river channel were modelled with one-dimensional

approach while the two-dimensional model represented floodplain flows. The two

models were spatially linked each other with the weir-type equations which transfered

mass from one-dimensional channel cells to two-dimensional floodplain cells and the

coupling of the evolution time steps of both models was considered. The model was

applied to 16km reach of the lower River Severn in west central England. Digital

terrain models of the domain having four different resolutions (9m, 18m, 27m, S4m)

were obtained from the light detection and ranging (LIDAR) data. The results of the

model were compared with those of storage cell model which neglects momentum

conservation equations in two-dimensional floodplain flows. According to the results,

the storage cell model predicted slightly lower peak and later wave propagation on

floodplains. This result was considered mainly caused by the neglection of

momentum effects in the storage cell model.
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A different approach of one- and two-dimensional hybrid model has been presented

by Frazao and Zech [36]. The authors proposed a hybrid approach of one- and two-

dimensional fmite volume methods to simulate a dam-break problem in an initially

dry channel with 90° bend. In the paper, a one-dimensional approach was used for the

straight reaches while a two-dimensional approach applied to the bend zone. The

numerical fluxes of one-dimensional and two-dimensional models were computed by

using Roe's approximate Riemann solver. The results of the hybrid model were

compared with those of the full one- and two-dimensional models. The pure one-

dimensional model took much less computational time than other approaches.

However, it could not reproduce the bore caused by the reflection process at the bend

and, as a result, expected lower water depths in the upstream channel of the bend.

The full two-dimensional approach showed good agreement with the experimental

data while it took much more computation time than other approaches. The hybrid

model could produce the two-dimensional properties including the reflection process

with much less computing time than the full two-dimensional approach. The paper

showed the possibility of application of hybrid approach of one- and two-dimensional

models to complicated hydraulic simulations.

3.6 Conclusion

Basic information about numerical methods in hydraulic engineering has been studied

and recently developed fmite volume techniques published in other literature have

been reviewed in this chapter. The conclusion of this chapter can be summarized that

the main focus of the research in numerical river modelling has recently been on the

fmite volume approach and the Riemann solver based method has gained popularity

due to the rigorous efforts made by other researchers. However, there is still ample

room for improvement when it comes to the treatment of the source terms. While

several researchers presented new techniques through rigorous research,. those

methods show limitations. The main limitations of the recently developed methods are

their complexity and lack of universality because these follow the fractional step

method. To tackle these limitations, a new approach which has a simple form and

shows strong applicability to various numerical schemes will be proposed in this

thesis. The main concept of the new approach is to transform the shallow water
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equations into a homogeneous form and evaluate the effect of the source terms with

the same method used for flux terms. The detailed techniques will be presented in the

next chapter.
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Chapter4

Homogeneous Form of the Shallow Water

Equations

A simple and efficient method to solve the one-dimensional shallow water equtions

with source terms is presented in this chapter. To avoid a fractional step method for

the discretization of the source terms, the shallow water equations are transformed

into a homogeneous form and well-known numerical schemes are used to solve the

new form of the equations. The modification to the homogeneous equations combines

the source terms with the flux term and solves them by the same solution structure of

the numerical scheme. As a result, the source terms are automatically discretized to

achieve balance with flux terms without any special treatment and it does not

introduce numerical errors.

4. 1 Introduction

The one-dimensional shallow water equations that describe the flow in an open

channel can be written in the following vector form as:

(4.1)

with

where A is the wetted cross-sectional area, Q is the discharge, So is the bed slope

and Sf is the friction slope. The hydrostatic pressure terms I. and 12 are defmed as

I. = r (h -1])ad1] and 12 = r(h -1])~; dn

where h is the water depth and a = a(x,1]) is the channel width at distance 1]above

the channel bottom.
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The shallow water equations (4.1) form an inhomogeneous hyperbolic equation

system due to the existence of the source terms S. The inclusion of the source terms

makes it difficult to find the correct solutions to open channel flow over irregular

geometry. The causes of the difficulties can be summarized in the following two

categories: complicated definition of the geometric source terms and incompatibility

with the numerical methods based on homogeneous equations. First, the hydraulic

pressure terms, II and 12 have complicated forms, especially the 12 term that

includes the integral of a derivative, which is very difficult to evaluate for non-

rectangular channels. Consequently, the most efficient way to calculate geometric

source terms is to replace the 12 term by other terms having simpler definition.

Second, most numerical methods are developed on the basis of homogeneous

governing equations without source terms. As a result, the numerical techniques

cannot solve the inhomogeneous equations with source terms such as the shallow

water equations directly. This problem leads to a fractional step method that consists

of two steps: calculation of the homogeneous part with the numerical methods based

on homogeneous governing equations and subsequent addition of the source term

effects. However, it is very difficult to achieve the balance of numerical flux and

source terms, especially when the source terms are treated by a pointwise approach.

This is because numerical balance is achieved when the following two conditions are

satisfied: first, the update of the source terms should be performed with the same data

used for the calculation of numerical flux and second, the discretization of the source

terms should be performed in the same way as for the flux term. The simplest way to

avoid this difficulty is to modify the source terms into the form of a flux, i.e.

differential form, and combine it with flux term F. This modification leads to the

homogeneous form of the shallow water equations.

An analogous method has been developed for nozzle flow problem by Gascon and

Corberan [42]. They proposed a new flux formed by adding the primitive of the

source terms to the flux terms, which was used to modify the governing equations for

a compressible gas. The new flux can be written as

G (x, U) = F (U) - Is(y )cry

where F(U) is the flux vector and S(y) is the source vector.
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Then, the inhomogeneous governing equations for a compressible gas can be written

as the following homogeneous form

au + oG(U} = 0·.
at Ox

The problem is how to find the value of the primitive of the source terms and, in the

paper, the authors replaced the integral by the average values. However, difficulties

arise when this method is applied to the shallow water equations because it is difficult

to defme appropriate values for the integral of the source terms, especially in case of a

nonprismatic channel. Moreover, their method needs complicated algebraic

manipulation to obtain higher-order schemes.

An alternative method is developed here for the shallow water equations. This differs

from Gascon and Coberan [42] in that the modification is performed by changing the

source terms into a differential form similar to the flux term, which leads to a simpler

and more efficient form of numerical scheme. Moreover, to secure exact numerical

balance, new expressions for the source flux terms and corresponding channel

geometry are presented. Consequently, the source terms are treated as a flux term and

combined with the original numerical flux to form an integrated numerical flux

representing real flow conditions. The integrated intercell numerical flux function

including source term effects is obtained by modifying the well-known conservative

numerical schemes.

In the next section, the shallow water equations are modified to a homogeneous form

and a new defmition for the source flux term will be presented.

4.2 Homogeneous Form of the Shallow Water Equations

The shallow water equations (4.1) can be modified to the following homogeneous

form

au +oF _oR=o
at Ox Ox

or

au oH .-+-=0 WIth H={F-R}.at ox (4.2)
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where R = (0,Rl represents the flux vector related to the source terms, which can

drive or impede the flow of water. By modification to the homogeneous form, the

source terms can be regarded as a flux and solved by the same solution structure used

for the flux vector F .

The modified shallow water equations (4.2) can be numerically discretized

conservatively by using a fmite volume method

Un+1=U"_ llt (H~ - H~ )
I I llx '+1 '-1 (4.3)

with H~+! = F.*! - R~! , where F.*, and R~! are the intercell numerical fluxes1 2 1+2 1+2 I+] 1+2

corresponding to momentum flux F and source flux R, respectively. The integrated

numerical flux H~, represents the net flow of mass and momentum through the cell
I+]

interface including the effect of the source terms. The integrated numerical flux H~ !1+2

can be calculated by modifying the numerical flux functions developed for

homogeneous governing equations because the equation system (4.2) and (4.3) have

similar form to the homogeneous conservation law

au +oF =0
at Ox '

and its discretized form

Un+1 = U? - llt (F.* I - F* I) .
I 1 llx 1+2 1-2

(4.4)

Definition of source flux vector R

While formulating the equations in homogenous form is relatively straightforward,

establishing the components of R correctly requires more careful consideration. In

fact, it is the latter that is the crucial aspect of the method proposed here. To obtain the

correct expression of R , which is a component of the source flux vector R, first of

all, the channel geometry should be reconstructed to be compatible with the

homogeneous form equations. The transformation of the equations into homogeneous

form effectively removes the external forces on the control volume and instead

represents these through the flux term: this implies that there is no additional source
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of mass or momentum inside a control volume (or, cell) and only the flux terms can

contribute to the update of the conserved variables, U . To satisfy this condition, a

piecewise constant channel geometry as shown in Figure 4.1 is considered. In the

figure, all the factors of the channel geometry, Le. bed level, width, shape, etc., have

constant values in a cell and the interface between two neighbouring cells is

considered as a discontinuity because any variation of the channel geometry in a cell

causes the addition of momentum, which is contradictory to the assumption of the

homogeneous form equations. The flux term R can be defmed based on the piecewise

constant channel geometry by using the following two steps: defining M at cell

interface and decomposing it properly into two nodal forces.

z

(.)

y

,
cej j ·1+' i cell I .J I cell j +1

oz' II

~r-t' H;"'_ ;F~-1\-, u.. ~

I. l.l+1 IZ6-

- iI
x ,»

tr,

Figure 4.1 Reconstruction of geometry: (a) section view and (b) plan view
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First, the definition of force M can be obtained by comparing Equation (4.1) and

(4.2):

(4.5)

To avoid complicated calculation of 12 term, it should be modified by using the

Leibnitz theorem for differentiation of an integral [28] :

I = all -A oh
2 Ox Ox

Consequently, Equation (4.5) can be rewritten as

oR= jaIl _ A Oz. _ AS )
Ox °lOx Ox f

(4.6)

(4.7)

where oz. IOx is the slope of free surface elevation z. = Zb + h. M at cell interface

i+t can be obtained by integrating Equation (4.7):

fI+1(aR)dx = ['+1g(aII _ A oz. - AS f)dx.
1 ax 1 ax ax

The integration is performed over the piecewise constant geometry between two

nodes Xi and Xi+l' and M . .1 can be approximated as
1+2

with

nfi+t = O.5Ax(AiS fi +Ai+ISfi+l)

where gilo and gil f represent the momentum flux due to the water level difference

and friction force between two cell centres Xi and Xi+l' respectively. The above

equations are based on the assumption of a uniform mesh, but it is possible to extend

the method to non-uniform meshes by integrating Equation (4.7) over the relevant

cells. Similarly, Mi_.l at cell interface between two cells i-I and i can be expressed
2

as
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The next step is to decompose M. 1and M .._l terms into the three ideal forces Ri+1,I+Z 1 Z

R, and RH , which are essential to update the conserved variable U I • The

decomposition can be performed by the following algebraic manipulations.

From the definitions of M .. I and M .._l,
'+t 1 z

(4.8)

(4.9)

To decide the values of each force, RI+1, RI and RH can be considered as follows:

(4.10)

(4.11)

(4.12)

where, a, b, c, d and e represent the coefficients of each term. By substituting

(4.10-12) into (4.8) and (4.9),

Ci+1 - ci = 0, ci - CH = -1,

e.-e. 1 =-1.1 1-

By considering the conditions of the numerical domain, the values of several

coefficients can be decided. In other words, Ri+1 can not be influenced by gIli-1 and

g(Oo +0/)1_1 terms, while RH has no relationship with gI1i+1 and g(11o +11/)i_1
2 2

terms. This is because the characteristic informations of the cell i-I can not be

transferred to cell i + 1 at each time step, and vice versa. As a result,

and
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Then,

and, it is reasonable to consider the gl, tenn and a force related to the shape of the

cross section of each cell.while g(!lo +!l f) term is about the bottom slope and

friction. As a result, the coefficient bi+l, b, and b.; can be decided as

Finally, Ri+1, R, and RH can be defined as

In case of prismatic rectangular channel with width b and depth h, RI+I, RI and RH

is expressed as

R. = g bh~, 2 '

The g(no +!l f) term representing the momentum flux due to the water level

difference and friction force is not included in R, term because it should be

considered as a pressure force exerted by the neighbouring cells Ri+l and RI_I' As a

result, the momentum flux R does not have an absolute value but a relative value. For

example, to update the variable Ui+l, the values of the three ideal forces Ri' Ri+l and

R;+2 are needed and these can be calculated by decomposing two terms M. 1 and
1+2
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M. 1 and the value of the term RI will be changed to R; = gIli +g(!lo + !l/).+1 .
1+2 1 2

Similarly, to update the variable U/-l' the three terms Ut-2, Ui-1 and U, are needed

and the value of the term R, will be changed to R; = gIll - g(!lo +!l / );_1'
2

4.3 Conservative Schemes

In the previous section, a homogeneous form of the shallow water equations and the

defmition of the source flux have been presented. This section is devoted to the

solution of the homogeneous form equations and it can be performed through simple

modification of the well-known numerical schemes developed on the basis of the

shallow water equations without source terms. The modification can be performed by

replacing the flux term F and the variable difference ~u with the integrated flux H

and the modified difference L\U'. L\U' represents the net difference of the conserved

variables L\U including the effect of the channel geometry and can be obtained from

the relation between MI and L\F. To verify the applicability of the proposed method

to various numerical schemes, approximate Riemann solver-based schemes (Roe and

lILL) and classical schemes (Lax-Friedrichs, Lax-Wendroff and MacCormack) are

presented. In order to demonstrate the modification process, the original numerical

scheme is introduced first and, then, changed to the homogeneous form,

To show the property of each scheme, the numerical results of the one-dimensional

ideal dam-break problem in 100m long prismatic rectangular channel are also

presented. The initial conditions of the dam-break problem are two water depths,

h. = 20m upstream (x < 50m) and h2 = 1m downstream (x ~ 50m) and the numerical

results at time t = 2s are compared with analytical solution [23].

4.3.1 Roe's Approximate Riemann solver

Original Roe's Solver

The details of Roe's solver have been presented in Section 3.4.1. Roe [69] constructed

an approximate Jacobian J which satisfies the relation L\F= JL\U and is
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diagonalizable with real eigenvalues. The main idea of Roe's method is to split the

flux difference at each cell interface by using the approximate Jacobian matrix and

which can be expressed as

. dF=JdU=J+dU +J-dU

where J± represents the positive or negative portion of the Jacobian matrix. J± can

be obtained by using the diagonal matrix of the eigenvalues

J± =RA±R-1

where R is the matrix of right eigenvectors and A± represents the matrix having only

the positive or negative eigenvalues on the diagonal. R and A± satisfy the following

relations:

By using these relations, the numerical flux at the cell interface i+t between two

cells i and i + 1, F.'~, can be written as
1+2

(4.13)

(4.14)

or by averaging (4.13) and (4.14)

. 1 11- 1F. I = -(F;+l +FJ - - J. 1dU '+1.'+t 2 2 1+2 1 2
(4.15)

By projecting onto the right eigenvectors, the variable differences dU and dF can be

rewritten as

(4.16)

and the numerical flux function (4.15) can be rewritten as the following characteristic

form as:

The approximate Jacobian matrix has eigenvalues and eigenvectors of the form

~.2 =u±c,
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- - Te1,2 = (1, ~,2 ) .

where the average values u and 'if can be obtained from the condition L\F= JL\U:

(4.17)

{

1'+1-1, if A -A *0-c 2 _ g A,+I-A, i+l I
i+! - • •
1 gh if A;+1-A; =0

Note that Equation (4.17) can be used only for a prismatic channel case because, in

case of a non-prismatic channel, ~:::=~,and Cl:! can have a negative value.

Alternatively, several expressions for 'if are found in available literature and the one

presented by Garcia-Navarro and Vazquez-Cendon [40] is used in this paper:

-2 g(A; Ai+1)c. 1 = - -+--
1+2 2 R; s.;

The wavestrengths a1,2 can be computed from Equation (4.16):

_ ('if -u)M+L\Q
al = 2'if '

Roe's solver, under certain circumstances, can lead to entropy violating solutions with

spurious oscillation near a transcritical point. To rectify this problem, the 'entropy fix'

proposed by Harten and Hyman [47] is used

where e is given by

e=max(O,X 1-2;,2;+I-X 1).
1+2 1+2

The water depth profile of the dam-break simulation with Roe's solver are presented

in Figure 4.2. As shown in the figure, Roe's solver reproduces the shock wave well.

However the results show diffusive solutions for the rarefraction waves and it
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demonstrates that Roe's solver is first-order accurate. The entropy correction removes

the unphysical solutions near transcritical point.

Homogeneous form of Roe's Solver

The integrated intercell numerical flux H~1can be easily obtained by modifying F':l
1+1 1 1

where the flux term F is replaced by H and IJILlUterm related to the splitting of the

flux difference LlF is replaced by IJILlU' corresponding to the splitting of LlD. The

definition of the term LlU'll = (M', LlQ'). / can be obtained by considering the
+1 1+1

relation

(4.18)

because the effect of the source flux R propagates along the eigenvalues 1;,2 of

Jacobian J. The term LlU' represents the spatial difference of the conserved variables

due to the source flux LlR as well as the momentum flux LlF while LlU is only

related to LlF . From Equation (4.18),

(A(o;);gM,L-(gM,-g~.+nf)L =(-;t~ ~~~l.J~L·
and

LlQ~+l= LlQ.+l ,
1 1 1 1

(fI) - -LlA·+! +g(Oo +0,) .., -(.-\+~)Lln..,
A A' _ 1 1 '''1 l::;"1
~i+!- ~.~ .

Finally, the integrated flux H· can be expressed as the following characteristic form:

H~+l=t(Hi+1+HJ-t "(ix;I~lek)' 11 1 L..J 1+2
k

where the modified wave strengths a:.2 are obtained from LlU' =L(a;ek) and given
k

by
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~, (e - u),M' +~Q ~, (e +u),M' - ~Qa= a=....:...._-_:._---=-
1 2e '2 2e .

The wavestrengths ii;,2 represent the real state of the flow including the effect of the

source terms. For example, in the case of the still water problem, ,M' = 0, ~Q' = 0

and, consequently, a;,2 = 0, which means that there is no flow through the cell

interface.
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Figure 4.2 Ideal dam-break problem with Roe's solver

4.3.2 HLL Approximate Riemann solver

Original HLL Solver

The IDL solver was proposed by Harten et al. [48] and has been widely used because

it has a simple structure and does not need complicated characteristic decomposition

of the flux difference. The solution of the HLL solver consists of three constant states

separated by two characteristics Amin and Amax as shown in Figure 4.3. The numerical
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flux in the intermediate region F(U·) can be obtained by considering the following

two Rankine-Hugoniot conditions

F(U·) -F(U;) = Amin(U· - U;)

F(U;+l) - F(U·) = Amax(U;+l - U·)

and by eliminating the U· term

F(U") = AmJ(u;) - Ami)'(U;+l) AmaxAmin(U;+l- UI)
Amax- Amin Amax- Amin

t

x

Figure 4.3 The structure of HLL Riemann solver

The intercell numerical flux F.~. has different values according to the sign of the'TZ
wave speeds and is given by

{

F(U;) if Amin~ 0
F.· ! = F(U1+1) if AmaxSO
'+2

F(U·) otherwise

The two wave speeds Amm and Amax should be chosen carefully so as not to cause

entropy violation and, in this thesis, those suggested by Einfeldt [31] which use Roe's

average values 'ii and 'if are used

Amin =min(u; -c;,'ii .• -c..),
'+a" 'Tt
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where u and c represent velocity and wave speed, respectively.

The HLL solver produces results very similar to Roe's solver and it is also first-order

accurate. The HLL solver does not need entropy correction.
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.I::.
0.. 10
~
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00

HLL
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10 20 30 40 50 60
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70 80 90 100

Figure 4.4 Ideal dam-break problem with HLL solver

Homogeneous form of HLL Solver

The integrated numerical flux H;+.lcan be easily obtained by modifying the solution
2

for the numerical flux F.· 1
1+2:
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if Amin ~ 0
if Amax s0
otherwise

with

where .1u~1. = (M',.1Q'). / can be defined by using a technique similar to that used. ~2 ~2

for Roe's solver. In other words, .1u~1. satisfy the following relation:
1+2

(4.19)

In this case, the new Jacobian matrix Jhll is used instead of Roe's approximate

Jacobian J because the HLL solver has a different solution structure from Roe's

solver. The Jacobian matrix for HLL solver, Jhll , is considered as having two

eigenvalues Amin and A.nax and can be expressed as

By solving Equation (4.19),

.1Q~1. = .1Q. 1.,
1+2 1+2

4.3.3 Lax-Friedrichs Scheme

Original Lax-Friedrichs scheme

The Lax-Friedrichs scheme is a classical first-order accurate scheme presented by Lax

[58] and can be derived by using the following first-order accurate approximation of

derivatives

u7" -[au; +T(W" - U;_,l]
-I::i

at .1t
au

(O~a<l) (4.20)
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of F;:1 - F;:1-ax ::::::~2-Llx~'

By substituting (4.20) and (4.21) into Equations (4.4), the Lax-Friedrichs scheme can

(4.21)

be expressed as

Un+1 u: 1- a (un un) 1 I:1t (Fn Fn); = a ; +-2- ;+1+ ;-1 - 2Llx ;+1 - i-l

or

The value of a is related to the numerical diffusion of the solutions and the stability

of the scheme. a = 1 makes the scheme unconditionally unstable while the higher a

value leads to more diffusive solutions. Usually, a = 0.1 is used for open channel flow

problems [38].

The conservative form of the Lax-Friedrichs scheme can be obtained through simple

algebraic manipulations and expressed as

Un+1=U~- I:1t (F,· -F,· )
; 'Llx Ht '-t

with intercell numerical flux

• 1 l-al:1t
F'+l=-(F; +F;+I)-----I:1U;l'
'2 2 2 Llx +2

which has similar form to the numerical flux of Roe's scheme, Le. the IJI term in

Roe's flux is replaced by a constant value (1- a)(l:1t/ Llx). Consequently, the Lax-

Friedrichs scheme cannot split the flux difference I:1Faccording to the eigenvalues of

the Jacobian matrix and shows diffusive solutions.

The numerical results for the dam-break problem with the Lax-Friedrichs

scheme are shown in Figure 4.5. As shown in the figure, the Lax- Friedrichs scheme

shows more diffusive results than the two Riemann solver based schemes (Roe and

HLL which are shown in Figure 4.2 and 4.3 respectively) and the large value of the

coefficient a makes the scheme unstable near discontinuities while it produces less

diffusive results.
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Homogeneous form of Lax-Friedrichs scheme

The homogeneous form of the Lax-Friedrichs scheme can be constructed by replacing

the flux term F with the integrated flux H. Moreover, the AU term should be

changed to AU' which can be calculated by the relation AU' = J-IH. In this case, the

approximate Jacobian matrix used for Roe's scheme can be adopted.

For non-conservative form of Lax-Friedrichs scheme, it can be expressed as

U~+I=~~+I-a(AU~ -AU~ )_!At(H~ -H~)
1 1 2 I+t I-} 2 ~ 1+1 I-I

The conservative form of the Lax-Friedrichs scheme can be written as

with integrated intercell numerical flux

• I I-aM,
H. 1=-(H; +H;+I)-----AU.,.

1+1 2 2 ~ '+t

This scheme shows good results for smooth solutions, however, it can not solve

transcritical flow correctly because the 1- a At AA' term has a singular value at the2 ~
trans critical point. The sign of AA' term is changed at transcritical point and Lax-

Friedrichs scheme cannot capture this because it does not use eigenvalues but constant

term (1- a)(At/~) for flux splitting. This problem can be solved by smoothing

solutions near the transcritical point. In this thesis, the method used by Burguete and

Garcia-Navarro [16] to construct 'Optimised Lax-Friedrichs scheme' is adopted and it

can be expressed by

M' =mOdmin(M,
A(~)+g(no +n:!~t-(~+~)AQ;+! J

~~

with the definition

mod min(a,b)= {:
if ab s 0

if lal< Ibl and ab > 0 .
if lal ~ Ibl and ab > 0
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Figure 4.5 Ideal dam-break problem with Lax-Friedrichs (LF) scheme

4.3.4 Lax-Wendroff Scheme

Original Lax-Wendroff scheme

The Lax- Wendroff scheme is second-order accurate and was initially presented by

Lax and Wendroff [59]. The scheme can be derived based on the Taylor series

expansion:

U~+I=U~+(aU)~t +(a2
U) (~t)2 +O(~t)3.

I I at at2 2

In case of a conservation law without source terms

au aF
-=--
at ax

and

By substituting (4.23) and (4.24) into (4.22),

U;'l =u:-( :}1t +!(J:y~)'+O(M)'.
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Finally, by using a central difference approximation for the spatial derivatives and

neglecting higher-order terms, the Lax- Wendroff scheme can be expressed as

1 (M)2Un+l-un _1. At (F. -F. )+- - (J. 1.[F.+1-F;]-J/J[F; -Fj_ID·
I - / 2 Ax .+1 .-1 2 Ax '+2' 2

This can be rewritten as a conservative form and given by

un+1=U? - At (F~ -F.* )
I t Ax .+! '-1

with intercell numerical flux

* 1 1At
F. 1.=-(F. +F·+I)---(JAF).+1.'
'+2 2 • • 2 Ax • 2

(4.25)

Equation (4.20) can be rewritten as

F,:t =~ (F, +F"l)- ~(JW),'1+ ~(IJI[l-:IJI}U L,
2

(4.26)

which can be considered as a first-order accurate scheme with a second-order

correction term. The main defect of using Lax-Wendroff scheme is that it produces

spurious oscillations near discontinuous solutions. This problem can be solved by

limiting the second-order correction term in Equation (4.26), which causes numerical

oscillations near discontinuities. By using the characteristic decomposition technique

used for Roe's scheme, the numerical flux function for TVD Lax-Wendroff scheme

can be written as [51, 55]

* 1( 1~ -1-1_ 1~ -- I-I At,-,Fi+!= 2 Fj+Fi+I)- 2 ~(ak Ak ek)i+! + 2 ~(ak<I>k Adl- Ax A,tlek)i+!

where <I>k= <I>(rk) is a nonlinear flux limiter function and the argument rk represents

the behaviour of the solution. The value of rk is calculated from the ratio of wave

strength ak such as

aupwind
r _.......::.._k_
k - -localat

The numerical results for the dam-break: problem with the Lax-Wendroff and TVD

Lax-Wendroffschemes are shown in Figure 4.6 and 4.7. As shown in Figure 4.6, the

entropy correction removes unphysical solutions near transcritical point, however, it

still shows oscillatory behaviour near shock wave front. This oscillation is removed
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by using TVD Lax-Wendroff scheme as shown in Figure 4.7 and the results show

good agreement with the exact solutions.

Homogeneous form of Lax-Wendroff scheme

The homogeneous form of Lax-Wendroff scheme can be constructed by replacing the

flux term F with the integrated flux term H. The modification is simpler than first-

order schemes because it does not include the dU term. The conservative form of

Lax- Wendroff scheme can be rewritten as

with integrated intercell numerical flux

• 1 1 dt
H. 1=-(H; +H;+l)---(JL\H)· l'

1+2 2 2 J1x 1+2

Similarly, the TVD version of the Lax-Wendroffnumerical flux can be expressed as

H~1= '!'(H; +Hi+1) -.!. ~ (ii;I~I~). 1+.!.~ (a;<I>kl~I[l-dt 1~1]~)'.+1'
I+z 2 2 ~ 1+2 2 ~ J1x 2

where a; is the same modified wavestrength used for homogeneous form of

Roe's scheme in Section 4.3.1. The flux limiter function <l>k = <I>(rk) should also be

modified to deliver the effect of the source terms into the TVD correction term and

the argument rk is calculated by using the ratio of modified wave strength a; like

It is important to use a;, instead of ak , to calculate the value of rk because a~
represents the real behaviour of the solutions including the effects of channel

geometry and the using of ak does not guarantee oscillation-free second-order

solutions. A similar expression was mentioned by Burguete and Garcia-Navarro [15].
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Figure 4.6 Ideal dam-break problem with Lax-Wendroff (LW) scheme
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Figure 4. 7 Ideal dam-break problem with TVD Lax- Wendroff (TVD-LW) scheme
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4.3.5 MacCormack Scheme

Original MacCormack scheme

An alternative way to achieve second-order accuracy is using a two-step predictor-

corrector technique. MacCormack [64] presented a second-order two-step method that

does not require the computation of the Jacobian matrix and its eigenvalues. The

scheme has been widely used [38, 39, 41] because of its efficiency and simple

structure.

MacCormack scheme consists of two substeps: Le. predictor and corrector steps, in

which one-sided differencing is used in alternate directions:

P d· . UP - un At (Fn Fn)re ictor step. I - I -- 1+1 - I
Ax

C . tr - UP At (FP FP)orrector step. 1 - I - Ax i - i-l •

Finally, the updated solution is given by

Uti = .!.(U7 +U~)2 .

However, the problem with the MacCormack scheme is that it shows oscillatory

behaviour near discontinuities like other classical second-order schemes. To rectify

this. problem, the TVD-MC scheme was presented by Garcia-Navarro et al. [22]. In

the TVD version of MacCormack scheme, the TVD correction term is added to the

fmal update step to eliminate oscillations

Un+1= .!.(Un +UC) + At (D~ . - D~ )
i 2 i i Ax '+t '-1

where D" is the TVD correction term. The form of the D term was obtained by using

the similar technique used for TVD-L W scheme and expressed as

n;'l = ~~( ii'I1:(I- ~11:IJ[I-<I>,]e,L
l

where the variables aI;, ~ and el; are calculated by using Roe's method and <l>1; is a

flux limiter function.
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The numerical results of the dam-break problem with MacCormack and TVD

MacCormack schemes are presented in Figure 4.8. As shown in the figure, the

oscillatory solutions of MacCormack scheme is romoved by using TVD MacCormack

scheme and shows almost similar results to the TVD Lax-Wendroff scheme.
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Figure 4.8 Ideal dam-break problem with MacCormack and TVD MacCormack scheme

Homogeneous form of MacCormack scheme

The homogeneous form of the MacCormack scheme can be easily obtained by

replacing the flux term F with the integrated flux term H in each step:

Predictor step: U {' = U7 - ~ (H7+1 - H")

C . U" - UP Ilt (HP HP)orrector step. i - ; - I1x i - i-I·

Then, the updated solution is given by

U?+I = l(Un +UC) .
I 2 I I

By using the integrated flux term H, the contribution of the source terms is

automatically evaluated in a different direction at each step and no special treatment is
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needed. In the case of the TVD-MC scheme, the TVD correction term should be

modified to calculate the effect of the source terms correctly. This can be done by

using the same expressions of ii' and <I>A; used for TVD-LW scheme and the TVD

correction term is expressed as

4.4 Numerical Tests and Results

The best way to verify the ability of numerical schemes is to simulate benchmark tests

having analytical solutions and compare the numerical results with the exact solutions.

It is very difficult to fmd the analytical solutions to hyperbolic partial differential

equation systems like the shallow water equations, however, in some simplified cases

like steady flow problem, analytical solutions can be found through mathematical

manipulations.

In this section, the proposed homogeneous form of conservative numerical schemes is

applied to several benchmark tests that are taken from the available literature. All the

test problems are simulated with a rectangular or trapezoidal channel as shown in

Figure 4.9. The side slope of the trapezoidal channel is defined as 1:m and, in case of

rectangular channel, m is set to zero. To ensure numerical stability CFL = 0.9 is used

and the minmod flux limiter function that is given by <I>(r) =max[O,min(l, r)] is used

for TVD schemes. The convergence criterion for steady problems is defined as

R < 1xl 0-6, where is the relative error defmed by

- 109-



B

Figure 4.9 Cross section used for test problems

The boundary conditions are described by using a ghost-cell approach in which the

conditions are implemented by creating dummy cells at the end of the reach. For

example, the values for the dummy cells to describe transmissive downstream

boundary are defmed as

and
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4.4.1 Test Problems

Problem 1(Quiescent flow)

This problem is chosen to illustrate the benefit of the homogeneous form of the

equations, which can achieve perfect balance of the two flux terms F and R •Many

numerical schemes fail to maintain quiescent flow without special treatment of the

source terms. This problem was presented by Goutal and Maurel [46] and consists of

stationary flow with uniform water surface level z, = 12m and a rectangular channel

with variable bed slope and width. The channel geometry for this problem is depicted

in Figure 4.10. The length of the channel is 1,500m and 600 uniform cells

(ax = 2.5m) are used.

Problem 2 (Tidal wave flow over an irregular bed)

To verify the ability to solve flow over an irregular bed, the proposed schemes are

applied to a test case initially presented by Goutal and Maurel [46]. The same

geometry (bed level and base width) as in Problem 1 is used. The initial conditions

are the same as the previous problem

Q(x,O) =Om3
/ s ,

h(x,O) + Zb = 12m

and the boundary conditions are

h(O,t) = h(O,O)+¢(t) ,

Q(L,t) = Om3
/ s

where ¢(t) is the time-dependent tidal flow entering the boundary x =0 and given by

¢(t) = 4 +4 sin(tr( 4t +!)J
86400 2

which represents a slow wave with long period T = 43,200s. The friction term is

included by setting Manning's roughness coefficient n = 0.1. The analytical solutions

were presented by Bermudez and Vazquez [9] and are obtained by the first-order

approximation of the mass conservation equation:
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h(x, t) = h(x,O) + tjJ(t) ,

Q(x,t) = tjJ'(t)t (B(s) + 2mh)ds .

The numerical simulations were performed with both a rectangular (m = 0) and a

trapezoidal channel (m = 1) using 200 uniform cells with ~ = 7.5m . It should be

noted that the analytical solutions are only asymptotically exact as the speed of flow

tends to zero.

Problem 3 (Steady flow over an irregular bed with friction)

MacDonald [65] presented an analytical solutions for steady open channel flow

problems including a friction force term by calculating the bed slope So

corresponding to a hypothetical water depth j,. In [65], the bed slope function So(x)

was obtained from the steady flow equation and given by

(
Q2T) A, Q2n2p4/3

So = 1---3 h (x)+ 10/3
gA A

where T = B + 2mh(x) is the top width of the wetted cross section,

P = B + 2h(x).Jl +m2 is the wetted perimeter and Q represents constant discharge. A

set of test cases that consist of steady flows over rectangular or trapezoidal rough

channel were presented in [65] and, among them, two problems with prismatic

channels were chosen to verify the ability of the proposed numerical schemes. In

Problem 3-1, a subcritical and smooth water depth profile is used in a rectangular

channel, while a transcritical flow consisting of four hydraulic jumps is simulated in

Problem 3-2. The bed and free surface profiles for both problems are depicted in

Figure 4.11 and 4.12.

Problem 4 (Steady flow over a hump in a non-prismatic channel)

A steady flow in a 3m-long rectangular non-prismatic channel with a hump is

simulated with the proposed schemes. This test case was presented by Hubbard and

Garcia-Navarro [51] and the channel geometry is given by
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()_{O.lCOS
2(Jr(X-1.S)) 1.0~x~2.0

Zb x -
0.0 otherwise

b(x) = {1.0- O.lcos2(Jr(x -1.5)) 1.0s x s 2.0
1.0 otherwise

and shown in Figure 4.13. A uniform 150 cell grid with L\x=0.02m is used for the

two flows, each defmed by a local Froude No. Fr : subcritical (Fr = 0.5) flow and

transcritical (Fr = 0.6) flow. The downstream boundary condition is hdn = 1m .

Problem 5 (Wave propagation)

The test problem presented by LeVeque [62] is chosen to demonstrate the ability of

the proposed schemes to solve wave propagation problems over variable geometry. A

1m-longrectangular channel with variable bed elevation, which is given by

( ) _ {0.2SCOS(Jr(X-0.S)/O.l+1.0) 0.4 s x s0.6
Zb x -

0.0 otherwise

is used and the initial condition is stationary flow (Q = 0)with the following water

surface profile:

Z.(X)=r-~.~&
O.l~x~0.2
otherwise

where e is a small perturbation. According to [62], the reduced gravitational

acceleration g = 1m2 / s and perturbation depth e = 0.01 are used. The initial

perturbation of water depth causes two waves, right- and left-going, which propagates

at the speed ±.fih , respectively. The right-going wave propagates over the hump

located at the middle area of the channel, whereas the left-going wave leaves the

domain through the boundary X = O. The numerical results are obtained at t = 0.7son

a uniform grid with 500 cells.
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4.4.2 Results and Discussion

Numerical solutions to Problem 1 are presented in Figure 4.14. To show the benefit

of using homogeneous form schemes, the numerical results at t = 10,000s are

compared with the solutions calculated by the original schemes with pointwise source

term treatment as well as the exact solutions. As shown in the figure, all the proposed

schemes reproduce quiescent flow correctly without any numerical errors, while the

pointwise method fails to maintain a stationary state. In this case, the integrated

numerical flux H' is zero at each cell interface because the modified variable

differences AA' = flQ' = 0 throughout the whole domain. This shows that there is no

transfer of mass and momentum through each cell interface and, consequently, the

homogeneous form of numerical schemes can ensure a stationary state.

To study how the homogeneous form conservative schemes work for steady state flow

problems, the comparison with the original scheme with pointwise source term

treatment is considered. In case of steady problem, the original shallow water

equations can be reduced to

of =S
Ox

and the solution of this equation can be approximated with pointwise discretization of

the source term as

However, normal conservative numerical schemes can not satisfy this relation because

the pointwise source term Si is calculated only with the information of cell i while

the numerical flux F':l uses the information from cell i and i +1. For example, the
I 2 .

mass flux F"+l for Roe's scheme can be express as
I 2

and, in case of still water problem, it can be reduced to
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which has non-zero value except for the case 4+1 = 4 while the source term for mass

equations is zero. This discrepancy leads to numerical errors and makes it difficult to

find correct solutions to steady state problems. However, in case of the homogeneous

form shallow water equations, the solution of steady state problem can be given as

oH=O
Ox

and

H~+l - H~_l = 0,
1 2 1 2

which represents that the influx and the outflux of the mass and momentum are the

same, i.e. the net increase (or, decrease) of the mass and momentum stored in a

control volume is zero. The source terms are included in the integrated numerical flux

HO and evaluated by the same information used for the calculation of flux terms. For

example, the mass flux H~ 1 for the homogeneous form of Roe's scheme can be
1+2

express as

° 1 11-1 'H·+l =-(Q; +Q;+I)--J M
1 2 2 2

and, in case of still water problem

H~+l = 0 with M' = 0 .
1 2

This means that there is no transfer of mass through each cell interface and it perfectly

represents the real physical condition of stationary flow.

Numerical solutions to Pproblem 2 are presented in Figure 4.15 (rectangular channel)

and 4.16 (trapezoidal channel). The velocity profiles at t = 10,800s corresponding to

a half-risen tide with maximum positive velocity are compared with exact solutions.

As shown in the figures, all the proposed schemes calculate the effect of the extreme

irregularity of the channel geometry correctly and show good agreement with the

analytical solutions for both rectangular and trapezoidal channels. Especially, the

TVD second-order schemes do not show numerical errors due to the imbalance of

high-order numerical flux and source terms. This is because the high-order correction

terms using the modified wave strength ii' can deliver the effect of geometry and

friction force to the high-order term and also because the numerical schemes
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automatically calculate the high-order source flux that is well balanced with the flux

term F.

The numerical solutions to Problem 3 are presented in Figure 4.17-18. The numerical

water depth and discharge profiles are compared with the hypothetical depth j, and

steady discharge Q. The numerical solutions to Problems 3-1 are presented in Figure

4.17. As shown in the figures, all the proposed schemes produce very accurate

solutions to this subcritical flow problem. The numerical solutions to Problems 3-2

are presented in Figure 4.18. This problem is a very severe test case including

multiple hydraulic jumps and transcritical points. While the Lax-Friedrichs scheme

produces diffusive results near the hydraulic jumps correctly, all other schemes

predicted the position and magnitude of the hydraulic jumps, except small

discrepancies at the discharge profiles at the shock positions(which is a common

numerical behaviour for most conservative schemes). The convergence histories for

both cases are shown in Figure 4.19 and 4.20 and it shows that the TVD-MC scheme

that is two-step predictor-corrector method converges to steady state faster than the

other schemes. Generally, the two-step approach shows faster convergence than

normal methods, while the former has a more complicated structure. It is clear that

there is a tradeoff between accuracy and complexity.

The numerical results for Problem 4 are presented in Figure 4.21-22. Similar to the

results of previous problems, all the proposed schemes predicted the water depth and

discharge profiles correctly in the subcritical flow case. In case of transcritical flow

problem, the proposed schemes reproduce the position and strength of the hydraulic

jump very correctly. The convergence histories for this problems are shown in Figure

4.23 and 4.24. Similar to Problems 3-1 and 3-2, the TVD-MC scheme converges to

steady state faster than other schemes.

The numerical solutions for Problem 5 are presented in Figure 4.25. Owing to the

absence of analytical solutions, the computed solutions are compared with the

reference solution obtained with TVD-LWscheme on a finer grid (2500 cell). As

shown in the figure, the proposed schemes reproduce wave propagation of very small
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pertubation without any noticeable distortions or oscillations and the two TVD

second-order schemes show more accurate solutions than the first-order schemes. In

this case, a series of runs has been carried out to indicate the accuracy of the presented

schemes. The 12 errors are plotted against the corresponding cell numbers and shown

in Figure 4.26. According to the numerical results, the second-order accurate schemes

produce more accurate solutions and show higher sensitivity to the variation of the

grid size. To show the ability and accuracy of the proposed method, The root mean

square errors of water surface levels in Problem 2 are calculated and summarized in

Table 4.1. As presented in the table, the proposed method, i.e. homogeneous form

scheme, produes accurate solutions while the pointwise method shows much bigger

numerical errors. Similar analysis has been performed on the Problem 3-1 and 5

which are a steady flow problem and a flood wave propagation problem respectively.

The root mean square errors are presented in Table 4,2. According to the table, the

two second-order accurate schemes produce smaller numerical errors than the other

schemes for the transient problem(Problem 5), while no significant difference is

presented for the steady folw problem(Problem 3-1).

Homogeneous Pointwise

Roe 4.840 x 10-4 8.327 X 10-1

HLL 4.740 x 10-4 5.241 xl0-1

LF 4.250 x 10-4 8.294 »io'

TVD-LW 4.990 x 10-4 8.313 xl0-1

TVD-MC 5.210 x 10-4 7.141 xl0-1

Table 4.1 The root mean square errors of water surface level at t = 10,800s with

rectangular channel in Problem 2

- 119 -



Problem 3-1 Problem 5

Roe 2.131 xl0-2 5.505 xl0""

HLL 2.172 xl0-2 5.505 xl0""

LF 1.957 x 10-2 7.621 X 10""

TVD-LW 2.131 xl0-2 1.743 x 10""

TVD-MC 2.128 x 10-2 1.732 xl0""

Table 4.2 The root mean square errors of water surface level in Problem 3-1 and 5

4.5 Conclusion

A simple and accurate method to solve open channel flow over irregular geometry has

been presented. The modification of the shallow water equations to the homogeneous

form enables one to use numerical methods developed for homogeneous

conservations laws and avoid a cumbersome fractional step method for source term

treatment. An integrated numerical flux, which includes the representation of the

source terms, has been obtained by straightforward modification of the governing

equations. The well-known conservative numerical schemes have then been amended

to solve these newly proposed equations. The numerical results show that the

proposed schemes are highly conservative and accurate while having simple forms.

The proposed schemes produce excellent agreement with the analytical solutions.

The proposed method has several advantages. First, it can solve steady flows over

highly nonprismatic channels without numerical errors, thus demonstrating that the

proposed schemes achieve perfect numerical balance of the two flux terms F and R.

Second, it can compute the numerical flux corresponding to the real state of water
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flow and give straightforward results. For example, in the still water simulation

problem, the integrated numerical flux HO is equal to zero at every cell interface,

which represents no transfer of mass and momentum. Third, high-order accuracy can

be obtained easily and no special treatment is needed to maintain a numerical balance,

because it is performed automatically in the integrated numerical flux function.

Finally, the proposed approach has strong applicability to various conservative

numerical schemes as shown in the numerical results. Moreover, it can be easily

expanded for higher-dimensional problems. In the next chapter, the application of this

approach to two-dimensional cases is presented.
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Figure 4.21 Water depth and discharge profile in Problem 4 with subcriticalflow:

(a) Roe, (b) HLL, (c) LF, (d) TVD-L W and (e) TVD-MC
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Figure 4.22 Water depth and discharge profile in Problem 4 with trans critical flow:

(a) Roe, (b)HLL, (c) LF, (d) TVD-LWand (e) TVD-MC
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Chapter 5

Extension of the Homogeneous Approach

to Two-dimensions and Wetting/Drying

Problem

In this chapter, the homogeneous form of the shallow water equations which has been

introduced in the previous chapter is extended to two-dimensional cases. The

difficulties in solving two-dimensional shallow water flow problems can be classified

into the following two categories: the numerical imbalance of the flux and the source

terms and the solution of the moving boundary problem. These can be solved

correctly and efficiently by adopting the homogeneous approach presented in the

previous chapter. It is straightforward to solve the numerical balance problem in two-

dimensions extending the homogeneous form equations as shown in the previous

chapter. Moreover, the concept of the integrated numerical flux provides a useful

methodology to solve the moving boundary problem. In this chapter, the two-

dimensional shallow water equations are modified to a homogeneous form and solved

by using well-known conservative numerical schemes. The proposed numerical

schemes are verified against several benchmark test cases taken from the available

literature.

5. 1 The Two-dimensional Shallow Water Equations

The two-dimensional behaviour of shallow water can be described by the two-

dimensional shallow water equations which can be written in the following vector

form

(5.1)
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where h is the water depth, u and v are the velocity components in the x and y

directions respectively. The variation of the bottom elevation is represented by the x -

and y - components of the bed slopes, Sox, Say which is given by

S = - aZb S = _ aZh
ox ax' ay ay'

and the components of the friction slopes, Sft, S.fy are defined with the Manning's

roughness coefficients n :

The two-dimensional equations have a more complicated form than the one-

dimensional ones because they have two flux terms and consist of three equations.

However, it is conceptually easier to evaluate the effects of the source terms in the

two-dimensional equations because they do not include the 12 term related to the

channel width variation.

5.2 Homogeneous Form of the Shallow Water Equations

The homogeneous form of the two-dimensional shallow water equations can be

obtained by using the same approach used for the one-dimensional ones and given by

(5.2)

with H =F - Ri' K =G - R2, where R,= (O,Ri,O)T and R2 = (O,O,~)T are the

flux terms corresponding to the source terms in the x and y directions respectively.

The shallow water equations (5.2) can be rewritten in the following conservative form

by using the divergence operator:

au
-+V·E=Oat (5.3)

- 141 -



with E = (H, K) = (F - RI' G - R2). To apply the finite volume technique, Equation

(5.3) should be written as the following integral form over a control volume V,

r~~dV + r (V .E)dV = 0 . (5.4)

The application of the Gauss's divergence theorem to Equations (5.4) leads to the

following conservation equation with surface integral:

r au dV + J (E .n)ds = 0
j; at lw

where av represents the boundary of control volume V and n is the outward-

(5.5)

pointing normal vector to the boundary av .

5.2.1 Numerical Discretization

In case of two-dimensional modelling of shallow water flows, a two-dimensional

domain can be disceretized into a finite number of grid cells as shown inFigure 5.1.

Each discretized cell (control volume) has a finite volume encompassed by the

boundaries (control surface), and the cell L represents the control volume considered

while the cell R denotes neighbouring cells.

y

C~ll L

Figure 5.1 Finite volume grid in two-dimensional domain
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By using the discretized two-dimensional grid, the surface integral in equation (5.5)

can be approximated by the following form:
N

iv (E·D)ds ~ L (E; .D,. ·1,.) (5.6)
r

where E; = E;(U L' U R) is the vector of the intercell numerical flux through boundary

r, D,. is the outward-pointing unit vector normal to the boundary, N is the total

number of the boundaries and Iris the length of the boundary. Consequently,

E; .Dr ·11' represents the total outgoing numerical flux normal to the cell boundary r.

The components of the vector Dr can be defined in terms of the angle Or:

Dr = (cos Or, sin Or) ,

and the intercell numerical flux normal to the cell boundary r can be written as

E;(U t»U R) ·Dr = cosOrH;(U L' U R)+sin0rK;(U L' U R)·

Finally, Equation (5.5) can be rewritten as the following discretized form by applying

explicit time evolution technique:

Un+1 u: tJ.t ~ ( 0H· . 0 ·)1
I = I - -.LJ cos I' I' + sm rK I' I'

Ai I'

(5.7)

where 4 is the area of the considered control volume. The discretized conservation

law (5.7) means that the time evolution of the conserved variable UI depends only on

the intercell numerical fluxes through the boundaries which can be calculated by

producting numerical fluxes in Cartesian coordinates with the unit vector normal to

each boundary. However, the solution of Equation (5.7) needs calculation of the two

numerical fluxes H" and K· in the x and y directions respectively. The alternative

and more efficient way to construct the intercell numerical flux is to use the rotation

matrix [77] which is given by

(

1 0
T(O) = 0 cosO

o -sinO
Si~OJ .
cosO

By introducing the rotation matrix, the following relation can be obtained:
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E:(U L' UR}'D, = H·(U L' U R}COS{}, +K·(U L' UR}sin{},

=T,-I.H·(T,. UL,T,· UR} (5.8)

where T, = T({},} is the rotation matrix for the boundary r. Note that T,U represents

the vector of the transformed variables corresponding to the normal and tangential

directions to the boundary r and H· (T, .U L' T, . UR) is the intercell numerical flux

normal to the boundary and evaluated with the transformed variables T,· ULand

T, . U R' Finally, by substituting (5.8) into Equations (5.7), the conservative scheme is

rewritten as

(5.9)

As a result, the solution of the conservative scheme (5.9) can be obtained by

calculating the intercell numerical flux at each boundary with the transformed

variables and re-transforming it to the Cartesian coordinate. The integrated numerical

flux H· can be calculated by using the same conservative numerical schemes used for

one-dimensional problems in the previous chapter.

5.2.2 Definition of Source Flux Vector

To solve Equation (5.2), the definitions of M2 as well as MI are needed. However,

by using the discretized form (5.9) with the rotation matrix, the defmition of M2 and

R2 are not needed because Equation (5.9) only needs the numerical flux normal to the

cell interface. The defmition of the source flux term RI which is essential to calculate

numerical flux H· can be obtained by using the similar method to the one-

dimensional case. By comparing Equation (5.1) and (5.2):

0:1= gh(Sox - Sft}. (5.10)

To obtain a similar form to the one-dimensional problem, the bed slope Sox should be

rewritten as

S = - OZb =~(h-z)
ox Ox Ox s
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where z, =Zb +h IS the free surface elevation. Then, Equations (5.10) can be

expressed as

oR, = gh( oh _ 8zs _ S ).
Ox Ox Ox ft

(5.11)

The difference of the source flux, M" at the boundary between the cell L and R can

be obtained by integrating Equation (5.11) over the domain of the two-cell system:

1 oR, dV =1 gh(Oh - oZs -sft)dV
LR ax LR ax ax

where VLRrepresents the domain consisting of the two cells L and R. Then M, is

given by

M'LR =!::.(g h2) -g(no+n')LR
2 LR

where gOo and g!l, are the momentum flux due to the water level difference and

the friction force between the two cells respectively and expressed as

".0 = !::.z hLAL + hRAR
0··..·0 gSA A '

L + R

(5.12)

where AL, AR and hL' hR represent the areas and water depths of the cell L and R

respectively.

Note that Equation (5.12) is effective on unstructured grids as well as structured ones

because it is derived by averaging over the domain of the two-cell system. In case of

, structured grid, (5.12) is reduced to

".0 = !::.z hL + hR
o,,"c.o g S 2 '

Then, the nodal flux term R, in each cell is calculated by splitting the flux difference
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The momentum terms, g(no +nf)' due to the water surface difference and the

friction are allocated to the outside cell because it should be considered as a force

exerted by the neighbouring cells.

5.3 Conservative Schemes

The homogeneous form of the conservation law system (5.9) can be solved by using

the well-known conservative numerical schemes as shown in the previous chapter.

Several numerical schemes including Roe and HLL approximate solvers, Lax-

Friedrichs scheme and TVD Lax-Wendroff scheme are modified to solve the

homogeneous form equations. As all the schemes are already introduced in the

previous chapter, only the homogeneous form schemes are presented here. To show

the numerical properties of each scheme, the numerical solutions to the two-

dimensional circular dam-break problem are presented at the end of this section.

Roe's Solver

The approximate Jacobian matrix of the two-dimensional shallow water equations is

given by

J (-2 0 _2 1 ~]2u= c -u
-uv u

which have the following eigenvalues and eigenvectors:

'1--'1-'1--
"1=U+C, "'2=U, "3=U-C,

- (1 - - -)T - (0 0 -)T - (1 - - -)Tel= ,U +C,U ,el= "C ,e3= ,U -C,U •

The average values u , v and c are calculated from the condition M = J,:\U :

u - uR/F; +uL/Jh;
LR - F;+.Jh: '
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The integrated numerical flux H:R at the boundary between two cells L and R is

expressed as

or, in a characteristic form:

H:R = .!.(HR +HL) -.!.L(ti;I~lek)LR2 2 k

where the modified wavestrength ti' is obtained from the relation L\HLR = JLRL\U~R:

1
~+~

and

(S.l2a)

L\(hU)~R = L\(hU)LR'

L\(hV)~R = L\(hV)LR - UL\(h)LR + uL\(h)~R'

(S.12b)

(S.l2c)

The modified wavestrength ti:.2•3 can be obtained by using the modified variable

difference (S.12a-c):

_, (C' -u)L\(h)' +L\(hu)a =_;___::..........;;._:__....:....._..:_
1 2C' ' (S.13a)

_, A(hv)' -L\(h)'ua
2
= _ ,

e
(S.13b)

_, (C' + u)L\(h)' - L\(hu)a3 = _ .
2e (S.13c)

- 147-



HLL Solver

The integrated intercell numerical flux H· has the same form as the one-dimensional

scheme:

where the two wave speeds A.run and Amax is given by

The numerical flux in the intermediate state is expressed as

where L\U~+l= (M',L\Q'). / calculated from the condition L\HLR = J1~L\U~R'The
, 2 1+2

Jacobian matrix for Hl.L solver, s", is constructed by using the two wavespeeds

Amin and Amax:

and the modified variable differences can be expressed as

L\(hU)~R = L\(hU)LR'

Lax-Friedrichs scheme (LF)

The integrated numerical flux for the two-dimensional Lax-Friedrichs scheme can be

obtained by modifying the one-dimensional scheme
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• 1 l-aL\t,HLR=-(HR +HL)-----L\ULR2 N !lx

where N is the number of the boundaries of each computing cell, i.e. N = 4 for a

quadrilateral grid cell. The same variable difference L\U~Rused for Roe's scheme

which is given as (5.12a-c) is used for the Lax-Friedrichs scheme.

TVD Lax-Wendroff scheme (TVD-L W)

The integrated numerical flux for the TVD version of Lax-Wendroff scheme is

expressed as

H~R= .!.(HL +HR) -.!. L(ll;I~I~)LR +.!.L(il;<t>AI~I[I- L\t I~I]~)LR
2 2A; 2A; !lx

where a' is the modified wavestrength as defined in (5.13a-c) and <t> is the flux

limiter function.

Each conservative scheme is applied to the hypothetical circular dam-break problem

to demonstrate the properties of each scheme. The initial conditions of this problem

are two regions of stationary water separated by a thin circular dam with radius 11m.

The water depths inside and outside of the dam are 10m and 1m respectively. The

problem domain is 50m x 50m square frictionless flat bottom which is discretized by

a rectangular grid with !lx = L\y= O.5m. The numerical results at t =O.69s after the

collapse of the circular dam are obtained and presented in Figure 5.2 and 5.3. As

shown in the figures, TVD-LW scheme presents a sharper advancing wave front than

Roe's and HLL schemes while the LF scheme shows a diffusive solution with a

smooth water depth profile.
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o OJ to q- N......

Figure 5.2 Water surface profiles at t = O.69s after the breaking of a circular dam:

(a)Roe, (b)HLL, (c)LF and (d)TVD-LW
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Figure 5.3 Comparison of depth profiles at t = O.69s for the circular dam-break

5.4 The Wetting/Drying Problem

Source term treatment in the two-dimensional shallow water equations is conceptually

simpler than the one-dimensional problem because it does not include the width

variation term 12• However, two-dimensional flows often cause a different kind of

numerical problem, namely, the wetting/drying problem which is also called "moving

boundary problem" because the boundary between wet and dry areas moves as time

goes by. Normal numerical methods can not solve this moving boundary problem and

cause numerical errors without the adoption of special methods. This is mainly

because the shallow water equations lose their properties when the water depth
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approaches to zero and the numerical schemes cannot automatically detect moving

boundaries correctly without special treatment.

To solve the wetting/drying problem correctly, at first, the location of the moving

boundary should be detected accurately and, then, suitable numerical techniques

based on the physical condition of the boundary should be applied to the boundary

cells. In this section, a simple and straightforward method to solve the wetting/drying

problem which utilises the proposed integrated numerical flux function is presented.

One of the advantages of using the homogeneous form of the shallow water equations

is that it produces an integrated numerical flux which is convenient to solve the

moving boundary problem. The first step to solve the moving boundary problem is to

discriminate wet and dry cells in order to find the exact location of the boundaries

between the wet and the dry cells. This process is necessary to prevent numerical

instability and computing inefficiency which are caused by cells that are almost dry

Le. having very small water depth. If the water depth of a cell is very small, then the

velocity components (u, u ) of the cell can have very high value because the values of

u and v are obtained by dividing hu and h v by the water depth h. The extremely

high values of the velocity components can cause numerical instability and the

numerical scheme would need very small update time step which subsequently leads

to longer computing time. To prevent numerical inefficiency, cells having smaller

water depth than a specified tolerance h,ol should be detected and given zero velocity

components, i.e. u = u = 0 . These cells are considered as cells on the moving

boundary. The tolerance h,ol = io' is used throughout this thesis. Then, the numerical

flux between a wet and a dry cell can be obtained by considering the following two

cases:

1. The water surface level of a wet cell is higher than the bottom level of the

adjacent dry cell as shown in Figure 5.4(a): hwel + zbwel ~ zbdry . In this case, no

special treatment is needed, in other words, the numerical flux H· can be

calculated by the same method used in normal wet cells.

2. The water surface level of a wet cell is lower than the bottom level of the

adjacent dry cell as shown in Figure 5.4(b): hwel + zhwel < Zbdry' In this case,
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there is no physical contact between two cells, so the numerical flux H·

should be set to zero to prevent leakage or inflow of mass and momentum

through the cell interface.

I~

I~

hwet hwet

'v \I

wet dry wet dry

a. (b)

Figure 5.4 Two categories of wetting/drying boundary

Flux correction method for mass conservation

Having completed an update at each time step, the water depth of some cells near

receding waves can have negative values as shown in Figure 5.5. This is unphysical

and can violate global mass conservation because the value of the water depth is given

as zero for the update at next time step and this causes an increase of the mass. The

unphysical negative water depth is caused by the fact that the numerical fluxes have

constant values during the time step At even after the water depth of the cell gone

below 0, and this leads to the addition of artificial mass and momentum to the

neighbouring cells and the increase of total mass volume. To remove this artificial

mass and momentum, the numerical fluxes should be set to zero after the water

surface level goes down below the bottom level. This process can be performed by

calculating the modified flux H'· which has been reduced from the flux H· by

multiplying the ratio of the time that the cell remained wet, tr, Le.
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where

h~tr = I

h~_h~+l
I I

For example, if the cell (i,j) in a quadrilateral grid as shown in Figure 5.6 has water

depth hi:;l < 0 at time t = tn+1 , it means that some amount of artificial mass and

momentum has been added to the neighbouring cells. To remove this artificial mass

and momentum, the cell (i, j) should be treated as a dry cell at time t = tn+l, i.e.

hi:t =0 and U~;l=V~;l=O. Then the variables in the neighbouring 4 cells, (i + I,j),

(i-I,j), (i,j+I), and (i,j-I), should be recalculated with the reduced numerical

flux H'·.

hn+1 < 0R

1[\

I~ ,It

hn+1
L

'II

L R

Figure 5.5 Decrease of water depth after a time step At
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• 2

......
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Figure 5.6 Recalculation of numerical fluxes on a quadrilateral grid

5.5 Numerical Tests and Results

In this section, the proposed numerical schemes are applied to several well-known test

problems taken from the literature. The test cases presented here are chosen to

demonstrate the ability of the schemes to achieve numerical balance and solve the

wetting/drying problem. To secure numerical stability, eFL = 0.9 is used and the

problem domains are discretized by using rectangular structured grids.

Problem 1(Wave propagation)

Leveque [62] presented this test problem to demonstrate wave propagation caused by

a small perturbation of a steady-state solution over variable topography. The

frictionless variable bed elevation is defmed by

Zb(X,y) = 0.5exp(-50«x-0.1i +(y -0.1)2»
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for rectangular domain 0 < x, y < 1. The initial conditions are stationary water with

u = v = 0 and a perturbed free surface profile given by

Zs = {1.01 (0.1< x < 0.2) .
1.0 (otherwise)

At the beginning of the simulation, the perturbation leads to two waves propagating

with characterstic speeds ± fih and the left:moving wave leaves the domain while

the right moving one propagates over the two-dimensional hump. All the boundaries

are regarded as transmissive open boundaries and the gravitational acceleration is set

to g = 1m2
/ s according to Leveque [62]. The water surface level profiles at t = 0.69s

are obtained on a uniform 100x 100 square grid.

Figure 5.7 Geometry and initial condition for Problem 1.

The numerical solutions to Problem 1 are presented in Figure 5.8 and 5.9. As shown

in the figures, all the proposed schemes show well-balanced water surface profiles and

contours without any numerical noise. The two approximate Riemann solver based

schemes show similar results and TVD-LW scheme reproduces the sharpest

advancing wave while LF scheme presents the smoothest water surface profile. To

show the property of each scheme, the water surface level at y = 0.5m and x = 0.8m

are compared in Figure 5.10 and 5.11. The numerical results show good agreement

with those presented in other literature [51, 70].
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Figure 5.8 Water surface profilesfor Problem 1: (a)Roe, (b)HLL, (c)LF and (d)TVD-LW
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Problem 2 (Flow around parabolic basin)

Few analytical solutions to the two-dimensional shallow water equations, especially

with moving boundary problem, are available due to the complexity of the governing

equations. Thacker [74] presented several analytical solutions to time-dependent

periodic oscillations in parabolic basins. Among them, the most difficult one

consisting of a planar water surface profile circulating inside a parabola of revolution

is chosen here. This problem is a severe test case for the verification of a moving

boundary problem solver because it involves wetting and drying procedure of a non-

radially symmetric flow. The flow takes place inside a parabola of revolution given by

x2 +y2
Zb(X,y) = -ha L2 (-2 s X,Y s 2)

,/

where ha is the water depth at the centre of the basin and L is the distance from the

centre to the shoreline with zero elevation. The exact periodic solution can be

expressed as the following water surface and velocity profiles:

zs(x,y,t) = TJ~o(2xcoslUt+2ysinlUt-TJ),
L

U = -TJaJsinlUt,

U = -TJaJ cos0Jt

where to = ~2gho / L is the frequency and the three parameters are chosen as ha = 0.1 ,

L = 1 and TJ= 0.5 respectively. The solution evaluated at t = 0 is provided as an

initial condition as depicted in Figure 5.12. The given exact solutions describe the

moving shoreline as a circle in the (x,y) plane which orbits the centre point of the

basin, while the surface profile remains planar without changing shape. Consequently,

the solution is periodic and reproduce the initial condition after any integer number of

the period.

The numerical results to Problem 2 are presented inFigure 5.13-15. In this test case,

numerical results are compared with the analytical solutions. The numerical water

surface profiles after one period (1T) are presented in Figure 5.11. As shown in the

figure, the proposed numerical schemes show good agreement with the analytical

solutions except LF schemes which produces diffusive solutions. The numerical
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velocity components and water depth contours are shown in Figure 5.14 and 5.15 and

show similar trends. The second-order scheme (TVD-L W) produces very accurate

solutions while LF scheme shows distorted results. It is because the second-order

accurate scheme produces less diffusive solution than first-order accurate schemes

while LF scheme shows bigger diffusion than Riemann solver based schemes. The

diffusive property has similar effect to the introduction of artifitial viscosity for the

domain and, as a result, the body of water moves slowly.

Problem 3 (Tidal wave over an variable adverse slope)

This test was presented by Heniche et al. [49] and Brufau et al. [12]. Heniche et al.

simulated this problem with a [mite element model while Brufau et al. used a

Riemann solver based finite volume model. In this test, the wave run-up and run-

down process driven by a tidal wave in a rectangular channel with a variable slope is

reproduced and the performance of the wetting/drying problem solver is tested. The

500m long and 25m wide rectangular channel has the following variable bed slope:

So = -0.001 (x <= 100m)

So = -0.01 (lOOm < x <= 200m)

So = -0.001 (200m < x <= 500m).
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Figure 5.15 Water depth contours at t = IT for Problem 2: (a)Roe, (b)HLL, (c)LF
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The initial condition is a still water with free surface H = 1.75m as shown in

Figure 5.16. and a tidal wave enters the inlet boundary located at x = 500m. The

following tidal wave is given as an inlet boundary condition:

h(500,t) =l.O+17CO{ 21t ~ )

where, 17= 0.75m is the amplitude and T = 60min is the period of the wave,

respectively. Other boundaries have been treated as solid walls. A rectangular grid

with Ax = L\y = Sm is used and the Manning's roughness coefficient is n = 0.03.

Figure 5.17 presents the water surface profiles obtained at t = 12, 24, 36 and 48min.

As shown in the figure, all the proposed schemes reproduce the wetting/drying fronts

without any noticeable disturbance.
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Figure 5.16 Geometry and initial condition/or Problem 3.
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To demonstrate the benefit of using the flux correction method for negative water

depth, mass conservation errors are computed by using the following:

v'+Q -VMass error (%) = I net I x 100
V;

where, V; is the initial total mass volume, VI is the sum of the mass volume

remaining in the domain and Qnet is the net inflow of mass through the boundaries.

The time history of mass conservation error of this problem is depicted in Figure 5.18.

According to the figure, the mass conservation error due to the negative water depth is

removed by using the flux correction method proposed in this chapter.
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Figure 5.18 Mass conservation error histories/or Problem 3: (a)Roe, (b)HLL, (e) LF

and (d)TVD-LW
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Problem 4 (Dam-break over a channel with three mounds)

This test was proposed by Kawahara and Umetsu [56] and used by Brufau et al. [12]

and Begnudelli and Sanders [8]. In this problem, the propagation of the flood wave

caused by a sudden collapse of a dam over a complicated channel geometry consisting

of three mounds is simulated. The channel geometry used in [8] is chosen here

because the detailed geometry is not specified in other literature. The channel is 75m-

long and 30m -wide and includes three mounds, two small and one big, which are

located at (x,y) = (30,6), (30,24), and (47.5,15)m, as shown in Figure 5.19. The

bottom radius and side slope of each mound is 8, 8, and 10m and 118,118,and 3/10,

respectively. The dam is located at x = 11m and the initial upstream water depth is set

h = 1.875m. The downstream area is considered as a dry bed and the Manning's

roughness coefficient is n = 0.018. A rectangular grid with L.\x = ~y = 0.5m is used

and numerical simulation is performed during the time t = 0 - 30sec.

Figure 5.20 and 5.21 present the numerical water surface profiles and contours

for this problem. To show the property of each scheme, the water surface level at

y = 15m and y = 5m are compared in Figure 5.22 and 5.23. The time history of mass

conservation error of this problem is depicted in Figure 5.24 and show similar results

to Problem 3, which means that most of the mass conservation error is removed by

using the flux correction method developed in this thesis.

2

1

o

Figure 5.19 Channel geometry and initial water depth/or Problem 4

- 168-



o
(Y") o

(Y")

(Y") N .- 00

o

(Y") N .- 00

o
(Y")

o

(Y") N .- 00(Y") N .- 00

Figure 5.20 Water surface projilesfor Problem 4: (a)Roe, (b)HLL, (c)LF and
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Figure 5.24 Mass conservation error histories for Problem 4: (a)Roe, (b)HLL, (c)LF

and (d)TVD-LW

5.6 Conclusion

The two-dimesional extension of the homogeneous form of the shallow water

equations is presented in this chapter. After being modified to a homogeneous form

the two-dimensional shallow water equations have been solved by using well-known

conservative numerical schemes.
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The homogeneous form numerical schemes have been applied to several bench-mark

test cases and produced numerically well-balanced results to, the flow over an

irregular channel geometry. Moreover, the proposed wetting/drying problem

condition solver which uses the integrated numerical flux shows good results and

almost zero mass conservation errors. Through Chapter 4 and 5, the homogeneous

form of the shallow water equations and its solutions in both one- and two-dimension

are presented. As shown in the numerical results, the proposed method solves

numerical problems caused by the existence of the geometric source terms very

accurately. It is straightforward for the proposed technique to be implemented as a

useful methodology to model natural river flow problems which consist of severe

variation of channel geometry and rapidly varying flow conditions. In the next chapter,

the application of this approach to the natural river flow problems is presented.
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Chapter 6

Application: flood modelling over natural geometry

In the previous chapters, the homogeneous form shallow water equations which can

solve one- and two-dimensional open channel flows over irregular geometry have

been proposed. The proposed numerical schemes based on the homogeneous form

shallow water equations were applied to several benchmark problems and produced

very accurate results. The ultimate goal of developing a new numerical method is to

model real flood events in which maximum water depth or inundation extent can be

obtained. In this chapter, the conservative finite volume schemes presented in the

previous chapters are applied to several flood events including one- and two-

dimensional cases. The 1996 and 1999 floods in the Im-jin River, Korea which has

highly irregular channel geometry is chosen for one-dimensional flood modelling

whilst a hypothetical flood caused by a sudden breach of the embankment in the

Sung-seo district of Korea near the Nak-dong river is modeled by the two-

dimensional numerical scheme. Finally, an urban flood event in a small catchment

within the city of Glasgow, U.K. is modelled with the proposed numerical schemes.

6. 1 One-dimensional modelling of the Im-jin river Flood

6.1.1 Introduction

The floods events in 1996 and 1999 in the Im-jin river basin are modelled with the

proposed homogeneous form numerical schemes. The Im-jin River is located in the

middle of the Korean peninsula and has its origin in the mountainous area of North

Korea. The river receives inflows from the mountainous catchment areas upstream

and its main tributary, the Han-tan River, which has very steep bed slope and highly

irregular channel geometry. The river basin has repeatedly suffered severe floods

mainly due to the rapidly rising flood waves caused by heavy rainfalls and steep

mountainous upstream catchment area. Moreover, the main channel and tributaries
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have few floodplains and very confined channel geometry, which makes the flood

wave propagate very fast. The recent severe flood events occurred in 1996 and 1999

and were caused by the sudden torrential rainfall all over the basin. The recorded

rainfalls and losses are summarized in Table 6.1.

1996 1999
Date July 26 ~ 28

Average rainfall (mm) 600

Loss ( £ ) 162million

Inundated area (ha.) 10,799

Casualties (person) 18

July 31 ~ August 3

700

177million

40,978

9
Table 6.1 The recorded rain/ails and losses in 1996 and 1999flood events

(a)

(b)

Figure 6.1 1999flood event: (a) Downstream area a/the Im-jin River,
(b) An inundated village near the Im-jin River
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6.1.2 Overview of the Study Site and Input Data

The length of the main channel considered in this simulation is 79.5 Ian which is a

third of the total length of the Im-jin River. Two big tributaries, the Han-tan and Han

Rivers, join the main channel at 13.5 and 67.3 Ian from the upstream boundary,

respectively. The downstream boundary is the Yellow Sea. Inflows from four small

tributaries, the Cha-tan, Sa-mi, Sa and Gok-reung Creeks, are also considered. The

plan view and the simplified view of the Im-jin River system are shown in Figure 6.2.

The data needed for modelling open channel flows can be classified into the following

two categories: topographic and hydraulic [28]. The topographic data describes

physical properties of the modelled river system while the hydraulic data provides

water levels, discharges and velocities which can be used for boundary conditions. All

the topographic and hydraulic data are taken from the Ministry of the Construction

and Transportation [88] who carried out a a ground survey across the basin in 2001.

The most important topographic data for one-dimensional modelling of open channel

flows is the channel geometry including the transverse profiles across river channels

and friction coefficients. The transverse profiles are obtained at an uniform distance

100m apart for the main channel and two big tributaries. The Manning's friction

coefficients which vary from 0.020 to 0.038 are given by [88] in which the friction

coefficients were evaluated by the ground surveying and calibrated through the flood

modelling performed by the Ministry of Construction and Transportation. The

samples of channel geometry for the main channel (the Im-jin River) are shown in

Figure 6.3. As shown in the figures, the upstream part of the Im-jin River has very

confmed and narrow channels while the lower part of the river has relatively wide and

flat channel geometry.

Boundary conditions are given at the three upstream boundaries and one downstream

boundary. Water level and discharge hydrographs which were recorded hourly in each

flood event are used for upstream boundary conditions. The water level histories

recorded at the Gun-nam and Jeon-gok gauging stations are used for the upstream
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boundary conditions of the Im-jin and Han-tan Rivers respectively while the discharge

history is used as the upstream boundary condition of the Han River.

l

Im-jin River

~
Han River -I

_wen ....

(a)

Upstream Boundary
<1>
: Im-jin river

Tributary <2>
: Sa-mi Creek

Tributary <1>
: Cha-tan Creek

Upstream
Boundary <2>
: Han-tan river

Tributary <3>
: Sa Creek

Downstream
Boundary

Tributary <4>
: Gok-reung Creek

Upstream Boundary
<3>
: Han river

(b)

Figure 6.2 Diagram of the Im-jin River network: (a) planview and (b) simplified view
of the river network [88]
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The downstream boundary condition is imposed as the water level hydrograph at the

river mouth of the Im-jin River which was driven by the tidal movement of the

Yellow Sea. The upstream and downstream boundary conditions for each flood event

are shown in Figure 6.4 and 6.5. As presented in the figures, the upstream boundary

conditions show rapidly increasing flood waves caused by torrential heavy rains while

the downstream boundary conditions show sinusoidal behaviour due to the effect of

the tidal movement.

The effects of the four small tributaries are considered as lateral inflows which were

taken from [89]. The discharge hydrographs for the tributaries in each flood event are

shown in Figure 6.6 and 6.7. The lateral inflows from the small tributaries are

considered by adding the same amount of mass to the computing cells which are

closest to the points where the tributaries join.

6.1.3. Numerical Results

Numerical modelling of the Im-jin River floods is performed by using the four

explicit finite volume schemes (Roe, HLL, LF and TVD-L W) proposed in Chapter 4.

The main objectives of this simulation is to verify the performance of the proposed

homogeneous form numerical schemes and compare the results obtained from various

numerical techniques. To achieve these goals, the numerical results (water level and

discharge) are compared with the results obtained by using the HEC-RAS software

package as well as the observed water level data at the two gauging stations (Juk-

seong and Tong-it bridge). HEC-RAS package is an open channel flow analysis

software developed by the U.S. Army Corps of Engineers [14]. HEC-RAS was

originally developed as a steady state flow analysis software and the unsteady state

flow analysis module featuring an implicit finite difference scheme was added later.

In this simulation, the unsteady state flow module of the HEC-RAS version 3.1.3

which was initially presented in 2005 is used. To secure numerical stability of the
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proposed explicit schemes 0.9 is used as eFL number and the computing time step of

the HEC-RAS package is set to 30s.

The numerical results for 1996 flood event are presented in Figure 6.8 and 6.9. In

Figure 6.8, the water level and discharge histories at the Juk-seong station are

compared with those obtained by using HEC-RAS as well as the observed water level

data. As presented in the figures, all the proposed fmite volume schemes produce

similar results and show good agreement with the observed data. According to the

numerical results there is no significant difference between the results of each fmite

volume scheme. However, HEC-RAS package produces unstable results with

oscillatory behaviour. The numerical results at Tong-il bridge station are presented in

Figure 6.9 and show similar tendency to the previous figure. In this case, the observed

water level data are not available.

The numerical results for 1999 flood event are shown in Figure 6.10 and 6.11. As

shown in the figures, the proposed finite volume schemes produce almost similar

results and HEC-RAS shows slightly lower water levels and discharges than the

proposed schemes at both stations. In case of 1999 flood, most of the observed data

are not available due to the malfunctioning of the gauging stations and only a part of

the water level history at the Tong-il bridge station is available. The proposed fmite

volume schemes and HEC-RAS produces lower water levels than the observed data.
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Figure 6.3 Cross-sectional-profiles at different locations: (a) 3.2km, (b) 4.8km,

(c) 5.9km, (d) 26.2km, (e) 35.8km and (f) 53.8kmfrom the upstream boundary
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Figure 6.4 Boundary conditions for 1996flood event
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Figure 6.5 Boundary conditionsfor 1999flood event
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(a) Tributary inflow <1> (b) Tributary inflow <2>
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Figure 6.6 Tributary inflow data/or 1996flood event
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Figure 6.7 Boundary conditions for 1999flood event
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Figure 6.8 Numerical results/or 1996jlood event: (a) water level and
(bJ discharge history at the Juk-seong station
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Figure 6.9 Numerical results for 1996flood event: (a) water level and
(b) discharge history at the Tong-il bridge station
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Figure 6.10 Numerical results/or 1999flood event: (a) water level and
(b) discharge history at the Juk-seong station
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Figure 6.11 Numerical results/or 1999flood event: (a) water level and
(b) discharge history at the Tong-il bridge station
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6.2 Two-dimensional Modelling of Floodplain Inundation

6.2.1 Introduction

One of the advantages of using two-dimensional modelling techniques is that they can

predict the extent of inundation in flood events. It is very important to estimate the

arrival time of the flood wave and maximum extent of inundation in order to mitigate

flood damage. In this section, the two-dimensional numerical scheme and

wetting/drying boundary solver which were presented in Chapter 5 are applied to a

hypothetical flood event in the Sung-seo district on the Nak-dong River, Korea. The

Sung-seo district comprises a village, roads and farmlands and is encompassed by

embankments which were constructed in the 1970's. The construction of the

embankment changed the natural floodplain into farmlands. However, the flood risk

to this district has been increased as time goes by due to the deterioration of the

embankment, and the prediction of the inundation extent has been a major concern of

the local authority and community. Numerical simulation of inundation caused by a

hypothetical breach in the embankment is presented in this section and the numerical

results provide useful information for the local authority.

The numerical simulation is performed with the homogeneous form numerical

schemes - Roe, HLL, LF and TVD-L W - which were presented in Chapter 5 and the

domain is presented in Figure 6.12. As shown in the figure, the Sung-seo district is

located in the west of the Nak-dong River and the size of the domain is 8.5km x 9.0km.

The hypothetical breach is located in the south embankment and the width and height

of the hypothetical breach are 20m and 2m respectively. The water surface level of

the Nak-dong River is maintained 1m higher than the bottom of the breach. The

geometry of the domain is provided as a DEM (Digital Elevation Model) which was

obtained by LiDAR (Light Detection and Ranging) survey. The resolution of the

DEM is 10m x 10m and, as a result, the domain consists of 850 x 900 square cells.

The friction effect is considered by setting the Manning's friction coefficients of the

farmland and roads as 0.035 and 0.015 respectively. The propagation of the flood
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wave after the instantaneous breach of the emanbankment is calculated and the

numerical simulation is performed up to 5 hours after the breach.

Figure 6.12 Planview of the Sung-seo district and the Nak-dong River
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6.2.2 Numerical Results

The inundation extents predicted by using the four different numerical schemes are

presented in Figure 6.13-16. The numerical results are taken at T = Shours after the

introduction of the breach. As shown in the figures, all the proposed numerical

schemes produce similar and reasonable results without any unphysical errors. The

Roe scheme produces larger inundation extent than the HLL and TVD-LW schemes.

The LF scheme shows smallest extent and this means that the diffusive property of the

LF scheme produced slightly slower wave propagation speed.

To compare the property of each scheme, the time variations of the inundated areas

are presented in Table 6.2. As shown in the table, the two Riemann solver based

schemes show similar inundated areas as time goes by, while the flood wave modelled

by the second-order accurate scheme(TVD-LW) moves faster than other schemes.

Similar to other numerical results in the previous sections, the LF scheme also shows

highly diffusive resukts and the smallest inundation area.

Time 0.2T O.4T 0.6T 0.8T IT

Roe 0.997 km2 1.2271 km2 1.3976km2 1.6004km2 1.9154km2

HLL 0.9451 km2 1.1869km2 1.3690km2 1.5750km2 1.8239km2

LF 0.8249km2 1.1614km2 1.3164km2 1.5390km2 1.7376km2

TVD-LW 1.1078 km2 1.2969km2 1.5396km2 1.8253km2 2.2271 km2

Table 6.2 The variation of the inundated area during theflood

simulation/T = Shours )
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Figure 6.13 Inundation extent predicted by Roe's scheme at 5 hours into the event

Figure 6.14 Inundation extent predicted by HLL scheme at 5 hours into the event
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Figure 6.15 Inundation extent predicted by LF scheme at 5 hours into the event

Figure 6.16 Inundation extent predicted by TVD-LW scheme at 5 hours into the event
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6.3 Numerical Modelling of Urban Flooding

6.3.1 Introduction

The numerical schemes presented in the previous chapters are applied to an urban

flooding event in this section. The modelling of urban flood is considered as a typical

two-dimensional problem because it includes two-dimensional flow factors over the

complicated urban topography which consists of roads, buildings, parks and etc.

The flood wave propagation problem in an urban catchment within the city of

Glasgow, U.K. is modelled with the homogeneous form numerical schemes presented

in the previous chapters. The Roe and TVD-LW scheme are used to simulate the

urban flooding event and the results are compared. The urban flooding event

considered here has been studied by Hunter et al. [89] and Liang et al. [90]. The

numerical modelling in this chaper is performed with the same topographic and

hydraulic data used in [89] and [90].

6.3.2 Overview of the Study Site and Input Data

The problem domain consists of vegetated areas and buildings located along the

streets within the 968m x 404m rectangle site as presented in Figure 6.17. As shown

in the figure, the main road runs through the middle area of the domain and most of

the buildings are located at the south of the main road where the ground level is lower

than other areas. The flood event in this urban area took place on 30 July 2002 and

was caused by the blockage of a culvert in a small stream which enters the domain

near the north-east corner. The overflowed water from the stream spilled over the

nearby street and the flood wave propagated through the road network which played

the role of an open channel. As the flood wave propagated over the domain, the urban

area with lots of buildings were inundated and water was accumulated in the southern

area with a low ground level.
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Figure 6.17 Map of the study site and some relevant locations

The geometry of this site is described by using the DEM with 2m resolution. The

DEM was initially obtained from the LiDAR survey which produced the base ground

elevation and modified to include the information about the buildings by using the

Ordnance Survey Mastermap. The land cover information was also extracted from the

Ordnance Survey Mastermap and specified as the two Manning's roughness

coefficient: 0.015 for the roads and streets and 0.05 for the rest of the domain,

respectively. The domain is discretized into 484 x 202 rectangular grid cells and each

cell has a single value of ground elevation and roughness coefficient.

The flood event occurred on 30 July 2002 is described by the simplified hydrograph

and total water volume history shown in Figure 6.18. The inflow is imposed as a

point source and introduced at point Qo as specified in Figure 6.17. All the outer

boundaries of the domain are considered as solid walls. [89][90] The numerical

simulation is performed for 120 minutes and the histories of the water depths at the

four designated gauging points denoted G1, G2, G3 and G4 in Figure 6.17 are

computed.
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Figure 6.18 (a) Inflow hydrograph and (b) total mass volume introduced to the

domain

6.3.3 Numerical Results

The water depth histories at the four gauge points G I-G4 predicted with Roe and

TVD-L W schemes are shown inFigure 6.19. The water depth at G1 increases rapidly

to the peak value after the arrival of the flood wave and then converges to a constant

value. The depth history at G2 shows a typical shape of a flood hydrograph in an open

channel because it represents the wave propagation over the road which can be

considered as an open channel. The water depth at G3 rapidly increases after the

arrival of the wave front and converges to a constant value without showing a peak

value. (as seen at G 1) The depth history at G4 represents flood wave propagates

through the road network and then water ponds in the low ground near point G3. The

Roe and TVD- LW schemes show similar results to each other at all the four points

and there is no noticeable difference between them. The predicted depth histories look

reasonable when they are compared with the results taken from other literature [89].

The numerical results of [89] were obtained with the six different numerical schemes:

TUFLOW, DIVAST, DIVAST-TVD, TRENT, JFLOW andLISFLOOD-FP.
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The inundation extents predicted at t = 15min, 30min, 45min and 60min with the Roe

and TVD-LW schemes are presented in Figure 6.20-23. As shown in the figures, the

Roe scheme based on the homogeneous form of the shallow water equations and the

wetting/drying boundary solver reproduce the evolution of the urban flood very

successfully.

(a) (b)
0.5

--Roe
0.8 --NO-LW 0.4

~ 0.6 ~ 0.3
g g
.x: .c:
Q. Q.
Q) Q)

o 0.4 o 0.2

0.2 0.1

0 00 20 40 60 80 100 120 0 20 40 60 80 100 120
Time (min) Time (min)

(c) (d)
0.5

0.8 0.4

~ 0.6 ~ 0.3g g
s: .s:
Q. Q.
Q) Q)

(\o 0.4 o 0.2

0.2 0.1

0 00 20 40 60 80 100 120 0 20 40 60 80 100 120
Time (min) Time (min)

Figure 6.19 Water depth histories at the gauge points:

(a) Gl, (b) G2, (e) G3 and (d) G4
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(a)

(b)

Figure 6.20 Predicted inundation extents at t = 15min: (a) Roe and (b) TVD-LW
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(a)

(b)

Figure 6.21 Predicted inundation extents at t = 30min: (a) Roe and (b) TVD-LW
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(a)

(b)

Figure 6.22 Predicted inundation extents at t = 45min: (a) Roe and (b) TVD-LW
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(a)

(b)

Figure 6.23 Predicted inundation extents at t = 60min: (a) Roe and (b) TVD-LW
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6.4 Summary

The numerical techniques proposed in the previous chapters which incorporate the

homogeneous form finite volume schemes and wetting/drying boundary condition

solver have been applied to several one- and two-dimensional flood modelling cases.

According to the numerical results, all the proposed numerical schemes solved the

open channel flow problems over complicated natural geometries without any

noticeable numerical oscillations and produced reasonable results. The one-

dimensional numerical schemes based on the homogeneous form shallow water

equations successfully modelled the severe flood events in 1996 and 1999 in the Im-

jin River while HEC-RAS which is a implicit finite difference scheme showed

unstable results. The two-dimensional fmite volume schemes and wetting/drying

boundary conditions are applied to the inundation modelling of a floodplain and an

urban area and produced well-balanced solutions. All the proposed fmite volume

schemes produced similar results for each case while the second-order accurate

scheme needs much more run times than other first-order schemes. In other words, it

is concluded that there is no significant advantage of using second-order accurate

schemes in real river flow problems because the accuracy of the model is dominated

by other factors such as the friction term, the uncertainty of hydraulic and other data.

rather than the accuracy of the numerical schemes.
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Chapter 7

Conclusions

7.1 Summary

The objective of this thesis was to investigate ways to solve highly unsteady shallow

water flow problems such as flood wave propagation over highly irregular geometry

both correctly and efficiently. To achieve this goal, Godunov-type finite volume

schemes were chosen as basic tools to solve the one- and two-dimensional shallow

water equations because of their accuracy and shock capturing ability. However,

Godunov-type schemes cannot solve the shallow water equations correctly unless the

source terms related to the bed slope and channel width variation are discretized

properly. This is because the Godunov-type schemes were developed on the basis of

homogeneous governing equations and cannot be compatible with an inhomogeneous

system. To tackle this problem, a novel approach in which the inhomogeneous

governing equation is modified into an homogeneous system was presented in this

thesis. To eliminate the inhomogeneous terms, a new flux term which is compatible

with the source terms is proposed. The elimination of the source terms enables one to

apply the numerical methods developed for the homogeneous governing equation

directly to the shallow water equations. The newly proposed source flux term can be

combined with original flux term to form an integrated numerical flux term which

represents the real flow condition through each cell interface.

Another point considered to achieve well-balanced numerical schemes is that the

channel geometry should be reconstructed in order to be compatible with the

numerical flux term which is computed with piecewise constant initial data. In this

thesis, the channel geometry has been changed to have constant state inside each cell

and, consequrently, each cell interface is considered as a discontinuity. The defmition

of the new flux related to the source terms has been obtained on the basis of the
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modified channel geometry. Then, the homogeneous form shallow water equations

has been solved by using well-known conservative numerical schemes including

approximate Riemann solvers. The numerical methods presented in this thesis have

been applied to the one- and two-dimensional shallow water equations to solve open

channel flows over highly irregular geometries.

A simple and accurate algorithm to solve the moving boundary problem in two-

dimensional modelling case has also been presented in this thesis. To solve the

moving boundary condition, the locations of all the cell interfaces between the wet

and dry cells have been detected first and the integrated numerical fluxes through the

interfaces have been controlled according to the water surface level of the wet cells.

Moreover, the flux correction method has been proposed to reduce mass conservation

errors which is caused by the negative water depth near moving boundaries.

The final part of the research is the application of the presented numerical methods to

flood modelling over natural geometry. For one-dimensional modelling, the 1996 and

1999 flood events in the Im-jin River in Korea having highly irregular channel

geometry have been simulated with the conservative schemes based on the

homogeneous shallow water equations. In case of two-dimensional modelling, the

inundation over a floodplain and an urban area are simulated. A floodplain area near

the Nak-dong River in Korea has been considered and a hypothetical flood over the

area caused by a sudden breach of the embankment has been simulated while a flood

event occuring in 2002 over an urban catchment within the city of Glasgow, U.K. has

been modelled with the proposed numerical methods. All the flood cases were

modelled with the conservative numerical schemes proposed in this thesis and the

results were compared each other to show the properties of the schemes.

7.2 Conclusions
The main conclusion of this thesis is that using the proposed homogeneous form of

the shallow water equations and moving boundary solver is successful for both

benchmark tests and flood events over natural geometries. Especially in case of

benchmark tests, the proposed conservative numerical schemes produce accurate
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solutions showing good agreement with analytical solutions, which shows the

robustness and consistency of the proposed numerical methods. It is clear that the

numerical schemes produce reasonable results without any noticeable errors in case of

flood modelling over natural geometries.

The detailed findings and results can be summarised as follows:

The one-dimensional shallow water equations
The homogeneous form shallow water equations with the newly defined source flux

term is considered as a good platform to solve open channel flow problems according

to the numerical results of the benchmark tests. Various type of conservative

numerical schemes including approximate Riemann solvers and TVD second-order

accurate schemes have been applied to the homogeneous form equations and solved

unsteady and steady flow problems in non-prismatic channels very accurately. The

integrated numerical flux which is formed by combining the source flux with the

original flux represnts the real flow condition at each cell interface. For example, in

the still water simulation problem, the integrated numerical flux at each interface is

calculated as exactly zero which represents no movement of water and the numerical

schemes maintain the quiescent state permanently. While all the presented

conservative numerical schemes solve the steady and unsteady benchmark test cases

correctly, some schemes show particular behaviour. For example, the Lax-Friedrichs

scheme produces diffusive results when it is applied to transcritical flows with shocks.

The TVD MacCormack scheme which is second-order accurate with a predictor-

corrector step method converges to steady state faster than other schemes in case of

steady state benchmark test cases.

The two-dimensional shallow water equations and swetting/drying

boundary condition
The numerical method used for the one-dimensional equations is readily extended to

the two-dimensional case. The definition of the source flux term in the homogeneous

form two-dimensional shallow water equations has been obtained by using a similar

approach to the one-dimensional case. The new source flux term in the two-
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dimensional case has simpler form than the one-dimensional case because there is no

term related to the variation of channel width in the two-dimensional equations.

Another important point considered in this thesis is the solution of wetting/drying

boundary condition. A new moving boundary condition solver which uses the

integrated numerical flux has been presented and applied to several benchmark test

cases. The presented numerical. results show that the wetting/drying boundary

condition solver can solve the moving boundary problem accurately even though it

has a very simple solution structure.

The flux correction method in which the integrated numerical fluxes of the cell having

negative water depth are recalculated according to the ratio of the time that the cell

stays wet has been proposed in this thesis and applied to the test cases together with

the moving boundary condition solver. The main advantage of using the flux

correction method is that it can reduce most of mass conservation error by removing

negative water depth which cause the increase of the total mass volume. According to

the numerical results of the test cases, the flux correction method reduced the mass

error to almost zero.

Summing up all the results of two-dimensional study, it is concluded that the

integrated numerical flux is a very useful concept in numerical modelling with the

finite volume method because it represents the real state of the flow through each cell

interface and, consequently, can be used for various boundary condition problems.

Application to the flows over natural geometry

The numerical methods proposed and validated in this thesis have been applied to

flood modelling cases over natural geometries. In the case of one-dimensional

modelling of the Im-jin River flood events, the proposed conservative numerical

schemes produce almost identical results which are similar to the available observed

water level data. The same flood events have been simulated with HEC-RAS which

features an implicit finite difference scheme and HEC-RAS showed unstable results
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for 1996 flood event while producing stable but slightly different results from the

finite volume schemes for 1999 flood.

In two-dimensional modelling, the flood inundation simulation over an urban

floodplain has been performed with the numerical schemes presented in this thesis.

According to the numerical results, all the numerical schemes showed almost identical

inundation extents with no significant numerical errors. There are no analytical

solutions for the two-dimensional flood modelling case. However, the numerical

results of the urban flooding case have been compared with those taken from other

literature and show similarity.

The run times of each model were measured. The measured run times show that the

second-order TVD Lax-Wendroff scheme needs much larger computing time than

first-order schemes. From the comparison of the numerical results and run times, it

can be concluded that there is no significant advantage of using higher-order schemes

in open channel flows over natural geometry because the effect of source terms like

friction force and bed slope is bigger than the improved accuracy of higher-order

numerical schemes.

7.3 Recommended Future Work
The results and fmdings of the current research has convinced the author of the

robustness and applicability of the proposed numerical techniques. It is

straightforward to extend the numerical methods presented in this thesis to more

complicated cases and to apply this to various situations. A number of possibilities for

future work have been identified and are presented here.

• Application of the concept to other numerical schemes
The homogeneous form shallow water equations can be solved with other

conservative numerical schemes which are not presented in this thesis. The available

numerical schemes are Osher's approximate Riemann solver, the Flux Vector

Splitting method, ENO (essentially non-oscillatory) scheme and others.
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• Extension to AfUSCL-type second-order accurate numerical schemes
The source term treatment for MOSeL-type second-order accurate schemes is more

complicated than flux limited schemes because the former consist of two evolution

steps (predictor and corrector) and requires a data reconstruction process before the

computation of flux terms. Especially, the reconstruction strategy for the data used for

the calculation of the source terms should be considered carefully to secure numerical

balance.

• Application to the unstructured mesh grid
All the two-dimensional modelling cases in the current research are performed on

structured square grid cells. However, the numerical methods presented can also be

used on unstructured grids and adaptive meshes. Especially, the total number of

computational cells can be reduced by using an unstructured triangular grid and total

computing time could be minimised by adopting an adaptive mesh refinement

technique.

• Sensitivity analysis
The numerical results of the proposed methods can be changed by using different

conditions like the calculation of the boundary conditions, the choice of friction

coefficients, the shape of the mesh grid and so on. Especially, the evaluation of the

effect of each tenn in the source flux, Le. II' bottom slope and friction term, is one of

the important factor of the proposed methods. The boundary conditions used in this

thesis is taken from [18] and a new approach to solve boundary conditions which is

optimised for the solution of the shallow water equations with bottom slope and wall

friction.

• Extension to other hyperbolic conservation laws
The ideas presented in this thesis can be applied to other conservation laws which

describe the motion of fluids because they are hyperbolic systems of partial

differential equations and have similar properties to the shallow water equations.

Possible other hyperbolic conservation laws are the Euler equations and others.
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