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Abstract

This thesis looks at various problems relating to the value distribution of certain

discrete potentials.

Chapter 1 - Background material is introduced, the motivation behind this work

is explained, and existing results in the area are presented.

Chapter 2 - By using a method based on a result of Cartan, the existence of

zeros is shown for potentials in both the complex plane and real space.

Chapter 3 - Using an argument of Hayman, we expand on an established result

concerning these potentials in the complex plane. We also look at the consequences

of a spacing of the poles.

Chapter 4 - We extend the potentials in the complex plane to a generalised form,

and establish some value distribution results.

Chapter 5 - We examine the derivative of the basic potentials, and explore the

assumption that it takes the value zero only finitely often.

Chapter 6 - We look at a new potential in real space which has advantages over

the previously examined ones. These advantages are explained.

Appendix - The results of computer simulations relating to these problems are

presented here, along with the programs used.
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Chapter 1

Introduction

This chapter consists of the background mathematics which is used throughout

this thesis, and also introduces the reader to the problem which is the main focus

of this work. Work by other authors in the direction of this problem is also

highlighted. Since the majority of results in this chapter are well established,

proofs are omitted, but can be found in the cited sources.

1.1 Nevanlinna Theory

Nevanlinna Theory is primarily concerned with describing the growth of meromor-

phic functions. The results here follow [11, 17], where the proofs can be found.

The growth of meromorphic functions is more difficult to describe than that of

entire functions, as the Maximum Principle (see [24] or any elementary text on

complex analysis) does not apply.

If a function f is entire, we can consider the two real valued functions of the

positive variable r.

mo(r, f) = min
|z|=r
|f(z)|

M(r, f) = max
|z|=r
|f(z)|.

By the Maximum principle, M(r, f) gives the maximum value the function takes

on the disc {|z| ≤ r}, not just the boundary, and is hence non-decreasing.

This leads us to the following definition.
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Chapter 1: Introduction

Definition 1.1.1. Order of an Entire Function - The order ρ of an entire

function is defined as follows:

ρ(f) = lim sup
r→∞

log logM(r, f)

log r

Example 1.1.2. Consider the function fk(z) = ez
k , where k > 0 is an integer.

Simple calculation gives M(r, fk) = er
k , and hence ρ(fk) = k.

Notice that if we multiply fk by any polynomial, it does not change the order.

In [5], Conway states the following lemma regarding the order of an entire function.

Lemma 1.1.3 ([5]). Assume f is entire, and has finite order α. We write

f(z) =
∞∑
n=1

cnz
n as a power series. Then

1

α
= lim inf

n→∞

− log |cn|
n log n

.

From this formula we can see that adding a polynomial will only change finitely

many terms in the sequence cn, and hence leave the limit unchanged.

Turning our attention now to meromorphic functions, we immediately observe that

M(r, f) is no longer of use, as these functions may have poles, so the Maximum

Principle does not apply, and hence M(r, f) is not non-decreasing. Nevanlinna

Theory, amongst other things, provides an alternative functional toM(r, f) which

can be used to describe the growth of a meromorphic function, and also gives rise

to a definition of order which extends to meromorphic functions, but is equivalent

to (1.1.1) in the case of entire functions. The material here mainly follows [17],

but see also [11] for a comprehensive approach.

In order to monitor the behaviour of meromorphic functions, we need to observe

how often the poles occur. To this end, we describe the following function.

Definition 1.1.4. The Pole Counting Function n(r, f) - We define the value

of the function n(r, f) as being equal to the number of poles (counting multiplici-

ties) of the function f inside a closed disc of radius r, centred on the origin.

Clearly n(r, f) is non-decreasing, and if f has finitely many poles, then it will be

constant valued for large r. We now expand on this function and introduce the

first of the two Nevanlinna Functionals.
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Chapter 1: Introduction

Definition 1.1.5. The (integrated) Counting Function (Anzahlfunktion)

N(r, f) - We define the function N(r, f) as follows:

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r.

Clearly N(r, f) is non-decreasing, and if f has only finitely many poles then

N(r, f) ∼ M log r for large r (where M is the number of poles). In this the-

sis we shall use A ∼ B to mean A = B(1 + o(1)). N(r, f) grows according to the

number of poles, but does not take into account how fast the function is growing

apart from at the poles. To this end we introduce the following, which is the

second Nevanlinna Functional.

Definition 1.1.6. The Proximity Function (Schmiegungsfunktion) m(r, f)

- We define the function m(r, f) as follows:

m(r, f) =
1

2π

∫ 2π

0

log+
∣∣f(reiθ)

∣∣ dθ,
where log+ x = max{log x, 0}.

The Proximity Function gives us an idea of how large the function f is in an ’av-

eraged’ sense.

The particular definitions of these two Nevanlinna Functionals in fact arise out of

manipulation of the Poisson-Jensen Formula. See [11, 17] for a full explanation.

Now we define the Nevanlinna Characteristic, which is essential to understand-

ing the growth and value distribution of meromorphic functions in the complex

plane.

Definition 1.1.7. The Nevanlinna Characteristic T (r, f) - We define T (r, f)

as follows:

T (r, f) = N(r, f) +m(r, f),

with N(r, f) and m(r, f) as defined above.

Nevanlinna’s characteristic function is a remarkably powerful tool. The following

lemma describes some elementary, yet highly useful results concerning it. We will

use "meromorphic" to mean meromorphic in the plane, unless specifically stated

otherwise.

3



Chapter 1: Introduction

Lemma 1.1.8. The Nevanlinna Characteristic satisfies the following, for mero-

morphic f1 and f2:

T (r, f1f2) ≤ T (r, f1) + T (r, f2)

T (r, f1 + f2) ≤ T (r, f1) + T (r, f2) +O(1)

Furthermore,

T (r, f) = O(log r)

is satisfied for a meromorphic f if and only if f is a rational function.

These results lead us to the first of two key results in Nevanlinna Theory which

are critical to understanding the behaviour of meromorphic functions.

Theorem 1.1.9 (Nevanlinna’s First Fundamental Theorem). Let f be mero-

morphic, and a ∈ C. Then

T

(
r,

1

f − a

)
= T (r, f) +O(1).

This is an equidistribution theorem. It tells us that f does not have a special

affinity with any complex number. We can observe that since T (r, f) grows

big as r grows large (indeed for transcendental f it must be growing at more

than a logarithmic rate), so this correspondingly tells us that T
(
r,

1

f − a

)
must

also be big for large r. Splitting this into its two composite functionals, either

N

(
r,

1

f − a

)
must be big, which implies that f is taking the value a lots of

times, or m
(
r,

1

f − a

)
must be big, which means that f is very close to the value

a on at least part of the circle |z| = r.

Example 1.1.10. Let us look at the function f(z) = ez. Here f is entire and zero

free, and simple calculation gives

N (r, ez) = N

(
r,

1

ez

)
= 0

m (r, ez) = m

(
r,

1

ez

)
=
r

π
,

and hence

T (r, ez) = T

(
r,

1

ez

)
=
r

π
.

Furthermore, m
(
r,

1

f − 1

)
is small, but f(z) = 1 often (at points z = {2πik|k ∈ Z}).
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Chapter 1: Introduction

An important property of M(r, f) which leads to the definition of order for entire

functions, is that M(r, f) is non-decreasing. Here we present a result from which

we can draw the same conclusion regarding T (r, f).

Theorem 1.1.11 (Cartan [11]). Let f be a function, non-constant and meromor-

phic on |z| < R, and let r ∈ (0, R). Then

T (r, f) = log+ |f(0)|+ 1

2π

∫ 2π

0

N

(
r,

1

f − eis

)
ds,

with minor modifications if f(0) = 0.

This result clearly demonstrates that T (r, f) is non-decreasing. Now we can use

this to define the order of a meromorphic function.

Definition 1.1.12. Order of a Meromorphic Function - The order ρ of a

meromorphic function is defined as follows:

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r

Sometimes we will refer to this as the Upper Order. If we replace the lim sup

with lim inf in the definition above, we also get a definition for the Lower Order

of a meromorphic function, which we refer to as λ(f).

If a function has finite order, we can describe the growth even more precisely,

by looking at its type.

Definition 1.1.13. Order Type - Let f be a meromorphic function of finite order

ρ, and let

s = lim sup
r→∞

T (r, f)

rρ
.

Then we say f has minimal type, mean type, or maximal type if s = 0, s is finite

non-zero, or s =∞, respectively.

Looking at Example 1.1.10 above, we can clearly see that

ρ(ez) = 1

which agrees with the order obtained when using the definition of order for entire

functions (see Definition 1.1.1). Furthermore this function clearly has mean type.
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Chapter 1: Introduction

Comparing the example above with Example 1.1.2, the two different definitions of

order give the same value for an entire function. In fact this is always the case.

This fact is immediate from the next Theorem.

Theorem 1.1.14. Let f be meromorphic and non-constant in |z| ≤ R. If f has

no poles in |z| ≤ R and 0 < r < R, then

T (r, f) ≤ log+M(r, f) ≤
(
R + r

R− r

)
T (R, f).

The next result concerns the Proximity Function of the logarithmic derivative(
f ′

f

)
, and is used many times in this thesis.

Lemma 1.1.15 (Lemma of the Logarithmic Derivative). Let f be non-constant

and meromorphic in the plane. Then there are positive constants C1 and C2,

independent of f , such that we have

m

(
r,
f ′

f

)
≤ C1 log r + C2 log T (r, f),

as r tends to ∞ outside a set of finite measure.

Next comes the second of Nevanlinna’s two key results, which is more powerful

than the first. Before we can state it, we require the following notation.

n(r, f) counts the poles of f in |z| ≤ r, but ignores multiplicities, and

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r

N1(r, f) = N(r, f)−N(r, f) +N

(
r,

1

f ′

)
,

and we use S(r, f) to signify any term which can be described as O(log+(rT (r, f)))

outside a set of finite measure, and can hence be considered small compared to

T (r, f).

Using this notation, we can state the second key result as follows.

Theorem 1.1.16 (Nevanlinna’s Second Fundamental Theorem). Let f be mero-

morphic in the plane, and let bj, j = 1, ..., s be finitely many distinct values in C∗

(= C ∪∞). Then
s∑
j=1

m

(
r,

1

f − bj

)
≤ 2T (r, f)−N1(r, f) + S(r, f).
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Chapter 1: Introduction

By adding in N

(
r,

1

f − bj

)
terms to both sides, and then applying The First

Fundamental Theorem, we can reformulate this as

(s− 2)T (r, f) ≤
s∑
j=1

N

(
r,

1

f − bj

)
−N1(r, f) + S(r, f).

The usefulness of this result in Value Distribution theory is easily demonstrated

with the following definition.

Definition 1.1.17. Nevanlinna Deficiency - Given a meromorphic f , and

a ∈ C, we can define the Nevanlinna Deficiency of f at a, δ(a, f), to be

δ(a, f) = lim inf
r→∞

m
(
r, 1

f−a

)
T (r, f)

= 1− lim sup
r→∞

N
(
r, 1

f−a

)
T (r, f)

.

The deficiency takes values in [0, 1] and can be viewed as a measure of how rarely

the function f takes the value a. If a transcendental meromorphic f does not take

the value a, or only takes it finitely often, then δ(a, f) = 1. However, the converse

of this is not true.

Example 1.1.18. The function ez does not take the value 0 or ∞ anywhere in

the plane, and hence

δ(0, ez) = δ(∞, ez) = 1.

However it is possible for a function to take a value a infinitely often, and still

have δ(a, f) = 1, consider

f(z) = ez
2

tan z.

A routine calculation shows that

δ(0, f) = δ(∞, f) = 1,

but f clearly takes both 0 and ∞ infinitely often.

This example is constructed by having a higher order function with deficient val-

ues at 0 and ∞ (in this case ez2) multiplied by a lower order function without

deficient values (in this case tan z). The zeros and poles provided by tan z cannot

occur regularly enough to be significant next to the higher order ez2 and hence 0
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Chapter 1: Introduction

and ∞ remain deficient.

Using Definition 1.1.17, we can deduce an immediate corollary of Nevanlinna’s

Second Fundamental Theorem, which can be considered a much more powerful

version of classical distribution results such as Picard’s Theorem.

Corollary 1.1.19 (The Defect Relation). Let f be any non constant transcen-

dental meromorphic function. Then∑
a∈C∗

δ(a, f) ≤ 2.

1.2 Harmonic and Subharmonic Functions

The study of harmonic functions has long been integral to understanding the

behaviour of analytic functions. In the study of meromorphic functions, it is fre-

quently beneficial to extend this study to Subharmonic Functions. This class of

functions, related to harmonic functions, is described below. The results here fol-

low [11, 13, 17], where the proofs can be found.

Before we can define subharmonic functions, we need to describe some of their

properties.

Definition 1.2.1. Upper Semi-Continuous - Let X be a metric space. We

call a function u : X → [−∞,∞) upper semi-continuous if for every real t the set

{x ∈ X : u(x) < t} is open.

Definition 1.2.2. Sub-Mean-Value-Property - Let D be a domain. An upper

semi-continuous function u : D → [−∞,∞) is said to have the sub-mean-value-

property if for each point z0 ∈ D, there is an r0 > 0 such that

u(z0) ≤ 1

2π

∫ 2π

0

u(z0 + reit)dt (0 < r ≤ r0).

This is clearly a generalisation of the mean-value-property which harmonic func-

tions satisfy.

With these two properties defined, we can define subharmonic functions quite

simply.
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Chapter 1: Introduction

Definition 1.2.3. Subharmonic Function - An function u is called subhar-

monic on a domain D if u : D → [−∞,∞), and

1) u is upper semi-continuous in D,

and

2) u has the sub-mean-value-property in D.

It is worth noting that all harmonic functions are also subharmonic. Also there is

a related class of Superharmonic Functions, which can be defined as follows: u is

superharmonic, if −u is subharmonic.

Example 1.2.4. For an example of a subharmonic function, if we take any func-

tion f , analytic in a domain D, and then look at

u(z) = log |f(z)|.

Then u is subharmonic in D.

Now we look at some key properties of functions of this type.

Definition 1.2.5. A(r, u), B(r, u) - Let u be a function subharmonic on C. Then

we define A(r, u) and B(r, u) as follows.

A(r, u) = inf{u(reiθ) : θ ∈ [0, 2π)}

B(r, u) = sup{u(reiθ) : θ ∈ [0, 2π)}.

Remark - For Harmonic Functions we can replace inf and sup above with min

and max, as they are continuous.

B(r, u) can be considered as a replacement for T (r, f) for subharmonic functions,

and we use it accordingly to define the order of a subharmonic function.

Definition 1.2.6. Order of a Subharmonic Function - Given a subharmonic

function u, we define its order as

λ(u) = lim sup
r→∞

logB(r, u)

log r
.

The next two results are very important, and can be viewed as equivalents of the

Maximum Principle, and Liouville’s Theorem.

9



Chapter 1: Introduction

Theorem 1.2.7. Let D be a domain in C and define ∂∞D to be the set of all

boundary points of D in C∗. Now let u be subharmonic in D with

lim sup
z→ζ,z∈D

u(z) ≤M ∈ [−∞,∞)

for every ζ ∈ ∂∞D; then either u(z) ≡M on D, or u(z) < M for all z ∈ D.

Theorem 1.2.8. Let u be subharmonic in the plane. Suppose

B(r, u) < M <∞,

for all r ∈ [0,∞). Then u is constant.

The final theorem in this section is a very powerful result concerning subharmonic

functions of small order, and gives a strict relationship between their lower growth

and upper growth functionals. This can also be applied to entire functions.

Theorem 1.2.9 (The cosπρ Theorem for Subharmonic Functions). Suppose

that 0 ≤ λ < α < 1. Then if u(z) is subharmonic of order λ and not constant in

the plane, we have

A(r, u) > cos(πα)B(r, u),

for a set E of r such that

Λ(E) ≥
(

1− λ

α

)
.

Here Λ(E) is the lower logarithmic density of E, defined as

Λ(E) = lim inf
r→∞

∫ r
1
χE(t)dt

t

log r
,

where χE(t) is 1 if t is in E, and 0 otherwise.

1.3 Discrete Potentials in the Complex Plane

The majority of this thesis looks at functions corresponding to the fields generated

by arrangements of point masses or evenly charged wires in two or more dimen-

sional space.

10
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Motivation

Following [6], in Rm, if at each xk we place a point mass, magnitude ak > 0,

the gravitational force at a point x is given by

P (x) =
∞∑
k=1

ak(xk − x)

|x− xk|m
. (1.3.1)

In particular for m = 3 this corresponds to the inverse square law of gravitation.

This series converges absolutely when
∞∑
k=1

ak
|xk|m−1

<∞.

Remark - Throughout this thesis, where series are referred to as converging, the

reader may take this to mean converging absolutely.

The main points of interest are the zeros of these functions, which correspond

to the equilibrium points in the gravitational field. These functions can also be

used to model point charge electrostatic distributions, but in electrostatic models,

you may require some of the ak to be negative.

The majority of the work in this thesis focuses on the 2-dimensional case. Look

at the following meromorphic function,

f(z) =
∞∑
k=1

ak
z − zk

.

We can write

−f(z) = −
∞∑
k=1

ak
z − zk

= −
∞∑
k=1

ak

(z − zk)

=
∞∑
k=1

ak(zk − z)

(z − zk)(z − zk)

=
∞∑
k=1

ak(zk − z)

|z − zk|2
.

which is in direct analogy with (1.3.1), i.e. the meromorphic function f has the

same zeros as the corresponding discrete potential P .

11
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There is a further application of these functions in two dimensional electrostatics:

If an infinite wire carrying a charge density ak is placed perpendicular to the com-

plex plane at each zk, then the resulting electrostatic field is given by the vector

2f(z) = 2(Re(f(z)),−Im(f(z))). This is calculated by working out the force on

a point z from any point on the wire, then integrating this expression over the

entire wire (see [16]). The zeros of the function f will correspond to equilibrium

points in this electrostatic field.

An important observation, which is valid in all dimensions, is that if the ak are

all positive, then the zeros will lie in their convex hull. This is obvious when we

consider the problem as a charge distribution.

This class of meromorphic functions can be extended further, by allowing the

ak to take any values in C. Although these functions no longer have an obvious

application, because a complex-valued charge is at best ill-defined, they are in-

teresting as a problem in value distribution function theory nevertheless. In this

thesis, we will refer to this larger class as Keldysh Functions, as he was one of the

primary exponents of their study (see [8]). We shall define them as follows.

Definition 1.3.1. Keldysh Functions - A Keldysh function is one which can

be written in the following way, with zk distinct:

f(z) =
∞∑
k=1

ak
z − zk

, zk, ak ∈ C \ {0}, zk →∞,
∞∑
k=1

∣∣∣∣akzk
∣∣∣∣ <∞. (1.3.2)

Since we are interested in the zeros of these functions, it is reasonable to ask if

there are any reasons why we should think they have any zeros at all. The evidence

for the existence of zeros comes from when we look at the case of replacing the

infinite sum in (1.3.2) above with a finite sum. This clearly eliminates the need

for any convergence criteria or limiting behaviour of the zk.

Example 1.3.2. Let z1, ..., zN ∈ C, distinct,

g(z) =
N∑
k=1

ak
z − zk

, ak ∈ C \ 0,
N∑
k=1

ak 6= 0.

Then g has, counting multiplicities, N − 1 zeros.

12
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Explanation

We can observe that g is in fact a rational function, as we can write it as

g(z) =

N∑
j=1

aj
∏
k 6=j

(z − zk)

N∏
k=1

(z − zk)
.

Clearly the denominator of the fraction is a polynomial of degree N . The numera-

tor is a polynomial of degree N −1, because the multiplicative products consist of

N − 1 linear terms, so each of these products gives rise to a polynomial of degree

N − 1, and when we sum all N of these, we get a polynomial of degree N − 1

with leading coefficient
∑
ak, non-zero by assumption. Using The Fundamental

Theorem of Algebra, we know that this function will have (counting multiplicities)

N − 1 zeros, as the numerator and the denominator will have no common factors.

This tells us that as the number of zk increase, so too does the number of zeros.

The obvious next question to ask is, does a Keldysh Function always have ze-

ros? The answer to this is no, there do in fact exist some which do not take the

value zero anywhere, as the following example, which is from [3], demonstrates.

Example 1.3.3. Let

f(z) =
2√

z sin 2
√
z
.

Then f can be written in the following way, i.e. as a Keldysh function with one

of the zk at zero:

f(z) =
1

z
+
∞∑
k=1

(−1)k2

z − k2π2

4

.

To write f in this way, we merely need make the following observation. We have

f(z) =
F ′(z)

F (z)

where F (z) = tan2
√
z

Routine calculation shows that F (z) is meromorphic and ρ(F ) = 1
2
< 1. Now

we use The Weierstrass Factorisation Theorem (see [5, p.170]) to write it in the

13



Chapter 1: Introduction

following manner. Here uk are the zeros of F , and vk are the poles, which are all

of order two, with the exception of the zero at the origin which has order one.

F (z) = z
∞∏
k=1

(z − uk)2

∞∏
k=1

(z − vk)−2

If we then calculate the logarithmic derivative of the function in this form, we

immediately obtain

f(z) =
1

z
+ 2

∞∑
k=1

1

(z − uk)
− 2

∞∑
k=1

1

(z − vk)
,

which is in the stated form.

Notation

Throughout this thesis, the following notation shall be used:

n(r) =
∑
|zk|≤r

|ak|;

n(r) =
∑
|zk|≤r

1, (1.3.3)

Now we prove several basic lemmas concerning n(r), all under the assumption that

|zk| ≥ 2δ > 0 for all k, and the generalised convergence criteria
∞∑
k=1

|ak|
|zk|m

<∞,

where m ∈ N.

Lemma 1.3.4. We assert that the following hold:

lim
r→∞

∫ ∞
r

n(t)

tm+1
dt = 0;

lim
r→∞

n(r)

rm
= 0.

Proof of Lemma 1.3.4

Using Riemann-Stieltjes integration by parts (see [2]) and our initial assumptions

14
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we observe the following:

M =
∞∑
k=1

|ak|
|zk|m

= lim
R→∞

∑
|zk|≤R

|ak|
|zk|m

= lim
R→∞

∫ R

δ

1

tm
dn(t)

= lim
R→∞

([
n(t)

tm

]R
δ

+

∫ R

δ

mn(t)

tm+1
dt

)

= lim
R→∞

n(R)

Rm
+

∫ ∞
δ

mn(t)

tm+1
dt.

Both terms above, being non-negative, must be bounded above by M . In partic-

ular, this tells us that ∫ ∞
δ

n(t)

tm+1
dt <

M

m
<∞,

and hence

lim
r→∞

∫ ∞
r

n(t)

tm+1
dt = 0,

as required.

For the second part, we observe the following:

n(R)

mRm
= n(R)

∫ ∞
R

1

tm+1
dt

≤
∫ ∞
R

n(t)

tm+1
dt,

and the result follows by the first part.

Next we show the following property about integrals with respect to n(t).

Lemma 1.3.5. We assert the following holds for all integers k ≥ m, where m is

from the convergence criterion:∫ ∞
δ

1

tk
dn(t) =

∫ ∞
δ

kn(t)

tk+1
dt.

The proof of this is immediate from the proof and result of Lemma 1.3.4.
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1.4 The Logarithmic Potential

Definition 1.4.1. The Logarithmic Potential - If we have a Keldysh Function

f defined as in (1.3.2), we can define The Logarithmic Potential corresponding to

f as follows,

u(z) =
∞∑
k=1

ak log

∣∣∣∣1− z

zk

∣∣∣∣ .
Remark - It is worth noting that f(z) = ∇u. Furthermore, if ak > 0 for all k,

then u(z) is subharmonic. This is because each term in the sum is subharmonic

(see Example 1.2.4), provided the corresponding ak is positive (if ak is negative,

the kth term is superharmonic), and a convergent sum of subharmonic functions

is still subharmonic.

Lemma 1.4.2. Let u(z) be the logarithmic potential relating to a Keldysh Func-

tion f as given above. Let ak > 0 and |zk| ≥ 2δ for all k.

Then B(r, u) = o(r), as r →∞.

Proof of Lemma 1.4.2

We observe the following.

u(z) =
∞∑
k=1

ak log

∣∣∣∣1− z

zk

∣∣∣∣
≤

∞∑
k=1

ak log

(
1 +

∣∣∣∣ zzk
∣∣∣∣)

=

∫ ∞
δ

log

(
1 +
|z|
t

)
dn(t),

where n(t) =
∑
|zk|<t

ak as in (1.3.3). This is using Riemann-Stieljes integration, for

an explanation see a standard text such as [2]. Next we utilise integration by parts

for Riemann-Stieljes integrals:

u(z) ≤
∫ ∞
δ

log

(
1 +
|z|
t

)
dn(t)

= lim
R→∞

([
n(t) log

(
1 +
|z|
t

)]R
δ

+

∫ R

δ

n(t)|z|
t(t+ |z|)

dt

)
.

16
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By Lemma 1.3.4, we have that lim
r→∞

n(r)

r
→ 0, which implies that the first term

above tends to zero. This leaves us with

u(z) ≤ |z|
∫ ∞
δ

n(t)

t(t+ |z|)
dt

≤ |z|
∫ |z|
δ

n(t)

t(t+ |z|)
dt+ |z|

∫ ∞
|z|

n(t)

t(t+ |z|)
dt

≤
∫ |z|
δ

n(t)

t
dt+ |z|

∫ ∞
|z|

n(t)

t2
dt,

Next we use the fact that lim
r→∞

∫ ∞
r

n(t)

t2
= o(1) from Lemma 1.3.4 to leave us with,

u(z) ≤
∫ |z|
δ

n(t)

t
dt+ |z|

∫ ∞
|z|

n(t)

t2
dt

≤
∫ |z|
δ

o(1)dt+ |z|o(1) = o(|z|),

as required. To see that
∫ |z|
δ
o(1)dt = o(|z|), we observe the following. Given ε > 0,

we have o(1) < ε for |z| > T , and o(1) < M for 0 < |z| < T . Now∫ |z|
δ

o(1)dt ≤
∫ T

δ

Mdt+

∫ |z|
T

o(1)dt

≤ MT + ε|z|

≤ ε|z|+ ε|z|,

if |z| > MT
ε
. Since ε can be chosen to be arbitrarily small, the result follows.

1.5 Discrete Potentials in Several Dimensional Real

Space

Definition 1.5.1. Potentials in Rm - For m ≥ 3 the following functions are

used to look for equilibrium points of electrostatic and gravitational fields in Rm.

u(x) =
∞∑
k=1

ak
|x− xk|m−2

, xk ∈ Rm, ak > 0, |xk| → ∞,
∞∑
k=1

∣∣∣∣ ak
xkm−2

∣∣∣∣ <∞. (1.5.1)

It is important to notice that these are not the same as the functions which de-

scribe mass distributions in Rm given in (1.3.1). However, the gradient (vector

derivative) of a function of the form (1.5.1) is equal (up to a constant) to the

17
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function given in (1.3.1). We utilise these functions because they are easier to

deal with, as they have a single real variable output (always positive), and their

critical points correspond to the zeros of functions (1.3.1), and hence the equilib-

rium points in the electrostatic or gravitational field.

An important feature to notice is that in switching from looking at functions

of the form (1.3.1) to (1.5.1), we now require a stricter convergence criterion,

which means that some cases of the original problem cannot be covered by these

functions. Chapter 6 describes a modification to overcome this problem.

When dealing with these potentials in real space, the notation given in (1.3.3)

is modified as follows:

n(r) =
∑
|xk|≤r

ak

n(r) =
∑
|xk|≤r

1. (1.5.2)

Currently the only method we have available to find critical points in Rm utilises

the following Lemma, which traces its origins back to James C. Maxwell, in his

famous book, A Treatise on Electricity and Magnetism, see [23, Section 113]. The

following notation will be used, which is an analogue of the notation used for entire

functions. We define

m0(r, u) = min
|x|=r
|u(x)|

M(r, u) = max
|x|=r
|u(x)|.

Lemma 1.5.2. Let u : Rm → (−∞,+∞], be superharmonic, and C1 apart from

at isolated poles xk, |xk| → ∞, at which u(xk) = +∞. Assume that there exists

rn →∞ such that

M(rn, u)→ µ, (1.5.3)

where

µ = inf{u(x) : x ∈ Rm}.

Then u has infinitely many critical points.
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A Sketch of the Proof of Lemma 1.5.2

For a more detailed proof see [4, 19].

Since u is superharmonic, m(r) = m0(r, u) is strictly decreasing.

In fact there does not exist x ∈ Rm with u(x) = µ by the maximum principle

applied to −u, which is subharmonic. Hence m0(r, u) > µ.

Choose r, s, and t with

r < s < t,

and

M(r, u) ≥ m0(r, u) > m0(s, u) > M(t, u) = M(t).

Choose them furthermore, so that there is at least one pole inside |x| = r, and at

least one inside the annular region r < |x| < s, as shown below. This is possible

because of (1.5.3). The two large crosses mark the location of the poles, x1, and

x2. Although these diagrams are two dimensional, the argument works exactly

the same in higher dimensional real space.

Now we look at the region where u(x) > T , for some real T . Clearly, if we choose

T > M(r), then we get the following.
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The curved lines around each pole represent part of the region in which u(x) > T .

These clearly cannot touch the sphere |x| = r, from the way in which we have

chosen r and s.

Next we look at the region u(x) > T for a T satisfying M(t) < T < m(s).

Since u(x) ≥ m(s) for |x| ≤ s, the whole closed ball B(0, s) is contained in the set

where u(x) > T .

Since for T > M(r) we get two distinct regions, and for M(t) < T < m(s)

we only get one region, clearly somewhere in between the two values m(s) and

M(r), there must be a T1 for which these two regions first coalesce, as shown in

this diagram.
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More precisely, let T1, satisfying m(s) < T1 ≤M(r) be the infimum of T for which

there is a continuous path in u(x) ≥ T from x1 to x2. Then there exists an x0,

with r < |x0| < s and u(x0) = T1, such that x0 is a critical point of u.

Note that nothing in this argument prevents the regions from joining at more

than just a point, so it is possible that we would get a continuum of critical

points. This argument does however guarantee that there will be at least one.

This argument is then repeatedly applied at successively larger spheres to ob-

tain an infinite number of critical points.

The last result in this section is a classic result regarding mass distributions in

Rm, which is used extensively in this thesis, in particular in Chapter 2. This is

from [13, p.366].

Lemma 1.5.3 (Cartan’s Lemma). If µ is a mass distribution in Rm with finite

total mass M , and

V (x) =

∫
log |x− ζ|dµ(ζ),

then if h > 0 and A > 2e, we have

V (x) > M log h.

Furthermore provided that x lies outside a set E of balls, the sum of whose radii

is less than Ah, then

µ(C(x, t)) <
Mt

eh
,

for 0 < t <∞, where C(x, t) is a ball of radius t around x.
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1.6 Known Results and Conjectures concerning Keldysh

Functions

The main motivation for this thesis, is the following conjecture which is due to

Alexandre Eremenko, and is given in [4].

Conjecture 1.6.1. Let zk ∈ C, with limk→∞ |zk| =∞, and let

f(z) =
∞∑
k=1

ak
z − zk

, ak > 0,
∞∑
k=1

ak
|zk|

<∞.

Then f has infinitely many zeros.

A highly important result in the study of these functions is the following, which

is due to Keldysh.

Theorem 1.6.2. [8] Let f be a Keldysh Function. Then m(r, f) = o(1).

From this we can immediately notice the following corollary.

Corollary 1.6.3. For a Keldysh Function f , the Nevanlinna Characteristic is

determined by the occurrence of the poles,

T (r, f) =

∫ r

0

n(t)

t
dt+ o(1),

with n(t) as defined in (1.3.3).

This follows since all the poles of Keldysh Functions are simple.

Next follow the most significant results so far concerning the existence of zeros

of these Keldysh Functions. These are included here without proofs, so that the

reader can obtain a better idea of what is already known.

The first two results here are also attributed to Keldysh.

Theorem 1.6.4. [8] Let f be a Keldysh Function of finite lower order. Then

δ(a, f) = 0 for all a 6= 0.
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Theorem 1.6.5. [8] Let f be a Keldysh Function of finite lower order, with the

following additional criteria:

∞∑
k=1

|ak| < ∞;

∞∑
k=1

ak 6= 0.

Then δ(0, f) = 0.

The next result and its corollary are from [7] and represent the best steps currently

made towards the proof of Conjecture 1.6.1.

Theorem 1.6.6. [20] Let f be a Keldysh Function with ak > 0 for all k, and order

at most one (mean type). Then f has infinitely many zeros.

Corollary 1.6.7. [7] Suppose that f is a Keldysh Function with ak ≥ a > 0. Then

f has infinitely many zeros.

These results prove special cases of Conjecture 1.6.1, under the additional condi-

tions that the ak are either small (Theorem 1.6.5) or large (Corollary 1.6.7).
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An Application of Cartan’s Lemma

This chapter builds upon an existing result for potentials in real space which

requires a condition on upper growth, and shows an alternative result requiring

a condition on lower growth instead. The original result is then extended to

encompass functions over C. The results of this chapter have been published as a

paper [25] in the journal CMFT.

2.1 Introduction

In [19], J.K. Langley and J. Rossi prove the following result, for potentials in Rm

(m ≥ 3), see (1.5.1).

Theorem 2.1.1. [19] Let xk ∈ Rm,m ≥ 3, with limk→∞ |xk| =∞, and let

u(x) =
∞∑
k=1

ak
|x− xk|m−2

, ak > 0,
∞∑
k=1

ak
|xk|

<∞.

Suppose further that φ(t) is continuous, positive and non-decreasing on [1,∞) with

lim
t→∞

φ(t) =∞,
∫ ∞

1

1

tφ(t)
dt =∞,

and that the number n(r) of xk lying in |x| ≤ r satisfies

lim sup
r→∞

log n(r)

φ(r)
<∞ (m = 3),

lim sup
r→∞

(
n(r)

r

)m−3
1

φ(r)
<∞ (m ≥ 4).

Then u has infinitely many critical points.
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An example of the type of function φ mentioned in this theorem is φ(t) = log t.

Using a method similar to the proof of Theorem 2.1.1, we can prove the following

result, which allows us to establish several value distribution results for functions

either of the form (1.3.2) on C or (1.5.1) on Rm.

Proposition 2.1.2. Let m, q be integers with m ≥ 2 and q ≥ 1. Let yk → ∞ in

Rm, with yk 6= 0, and let bk > 0, and assume that

∞∑
k=1

bk
|yk|

<∞. (2.1.1)

For 0 < r <∞, let

n(r) =
∑
|yk|≤r

bk, n(r) =
∑
|yk|≤r

1. (2.1.2)

For x ∈ Rm, let

u(x) =
∞∑
k=1

bk
|x− yk|q

. (2.1.3)

Then the following conclusions hold.

a) If q = 1 and

lim sup
r→∞

log n(r)

φ(r)
<∞ (2.1.4)

for some continuous, positive, non-decreasing function φ(t) on [1,∞) which satis-

fies ∫ ∞
1

1

tφ(t)
dt =∞, (2.1.5)

then

lim inf
r→∞

M(r, u) = 0. (2.1.6)

b) If q = 1 and

lim inf
r→∞

log n(r)

log r
<∞ (2.1.7)
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then (2.1.6) holds.

c) If q ≥ 2 and

lim inf
r→∞

n(r)

r
<∞ (2.1.8)

then (2.1.6) holds.

In this Proposition the condition φ(t) → ∞ is a consequence of 2.1.4, since

n(r)→∞.

Proposition 2.1.2 will be used to prove the following four theorems.

Theorem 2.1.3. Let zk ∈ C with limk→∞ |zk| =∞, and let

f(z) =
∞∑
k=1

ak
z − zk

, ak ∈ C \ {0},
∞∑
k=1

|ak| <∞, λ =
∞∑
k=1

ak 6= 0. (2.1.9)

Suppose further that φ(t) is continuous, positive and non-decreasing on [1,∞) with

lim
t→∞

φ(t) =∞,
∫ ∞

1

1

tφ(t)
dt =∞,

and that the number n(r) of zk lying in |zk| ≤ r satisfies,

lim sup
r→∞

log n(r)

φ(r)
<∞. (2.1.10)

Then δ(0, f) = 0.

Here δ(0, f) denotes the Nevanlinna deficiency of the zeros of f , see Definition

1.1.17.

Remark - In the case φ(t) = log t, condition (2.1.10) is equivalent to f having

finite upper order. When φ is larger,

i.e. φ(t) = log t(log log t)

or φ(t) = log t(log log t)(log log log t), etc.

it is equivalent to f having "small" infinite order. See Chapter 1, Corollary 1.6.3

for an explanation of this.
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Theorem 2.1.4. Let zk ∈ C with limk→∞ |zk| =∞, and let f(z) be given by and

satisfy (2.1.9).

Suppose further that the number n(r) of zk lying within |z| ≤ r satisfies

lim inf
r→∞

log n(r)

log r
<∞. (2.1.11)

Then δ(0, f) = 0.

Remark - In view of Corollary 1.6.3, condition 2.1.11 is equivalent to f having

finite lower order. This theorem is therefore equivalent to Theorem 1.6.5, although

the proof uses a different method to that of Keldysh.

Theorem 2.1.5. Let xk ∈ R3 with limk→∞ |xk| =∞, and let

u(x) =
∞∑
k=1

ak
|x− xk|

, ak > 0,
∞∑
k=1

ak
|xk|

<∞.

Suppose further that the number n(r) of xk lying within |x| ≤ r satisfies

lim inf
r→∞

log n(r)

log r
<∞.

Then u has infinitely many critical points.

Theorem 2.1.6. Let xk ∈ Rm (m ≥ 4), with limk→∞ |xk| =∞, and let

u(x) =
∞∑
k=1

ak
|x− xk|m−2

, ak > 0,
∞∑
k=1

ak
|xk|

<∞.

Suppose further that the number n(r) of xk lying within |x| ≤ r satisfies

lim inf
r→∞

n(r)

r
<∞.

Then u has infinitely many critical points.

Theorems 2.1.5 and 2.1.6 can be viewed as improved versions of Theorem 2.1.1,

as the upper growth condition has been replaced with a lower growth condition.

However the lower growth condition is not an exact analogue of the replaced upper

growth condition, so they do not render Theorem 2.1.1 obsolete.
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2.2 Proof of Proposition 2.1.2

This proof covers all three cases (a), (b), and (c), however in case (b) for φ(t) read

log t, and in case (c), for φ(t) read 1. We now need the following lemma.

Lemma 2.2.1. With the hypotheses of Proposition 2.1.2, there exists a sequence

rn →∞, with

n(rn) = o

(
rn

φ(rn)

)
. (2.2.1)

Moreover, in cases (a) and (b),

log n(rn) = O(φ(rn)), (2.2.2)

while

n(rn) = O(rn) (2.2.3)

in case (c).

Proof of Lemma 2.2.1

First note that (2.1.1) and (2.1.2) give

∞ >
∞∑
k=1

bk
|yk|

=

∫ ∞
0

1

t
dn(t)

≥
∫ ∞

0

n(t)

t2
dt (2.2.4)

using the fact that n(0) = 0 (see Lemma 1.3.5 for an explanation of this).

Consider first case (a). If no sequence (rn) satisfying (2.2.1) exists, then there

exist δ, r1 > 0 with

n(r) >
δr

φ(r)
for r ≥ r1.

This can be combined with (2.1.5) to give∫ ∞
r1

n(t)

t2
dt ≥

∫ ∞
r1

δ

tφ(t)
dt =∞,

which contradicts (2.2.4).
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Hence in this case a sequence (rn) as in (2.2.1) must exist. Note that (2.2.2)

follows at once from (2.1.4).

Now consider case (b). From (2.1.7) we know there exists a sequence sn → ∞
with

log n(sn) = O(log sn) = O(φ(sn)). (2.2.5)

We assert that a sequence (rn) may be chosen with
√
sn ≤ rn ≤ sn such that

(2.2.1) holds. Assume that this is not the case. Then there exists a δ > 0 such

that, for arbitrarily large n, we have

n(t) >
δt

log t
for all t in [

√
sn, sn] . (2.2.6)

Now, (2.2.6) gives, for these n,∫ sn

√
sn

n(t)

t2
dt > δ

∫ sn

√
sn

dt

t log t

= δ log 2,

which contradicts (2.2.4) since∫ sn

√
sn

n(t)

t2
≤
∫ ∞
√
sn

n(t)

t2
→ 0 as n→∞.

Thus a sequence (rn) satisfying (2.2.1) may be chosen with
√
sn ≤ rn ≤ sn.

Moreover (2.2.5) gives

log n(rn) ≤ log n(sn)

= O(log sn)

= O(2 log rn)

= O(φ(rn))

so that (2.2.2) also holds.

Finally consider case (c). Then by (2.1.8) we may choose rn → ∞ such that

(2.2.3) holds. Now set M =
∞∑
k=1

bk
|yk|

, which is finite by (2.1.1). Then

∑
|yk|≥s

bk
|yk|

= o(1) as s→∞.

29



Chapter 2: An Application of Cartan’s Lemma

Now

n(r)

r
=

1

r

∑
|yk|≤r

bk

=
1

r

∑
|yk|≤

√
r

bk +
1

r

∑
√
r<|yk|≤r

bk

≤ 1

r

√r ∑
|yk|≤

√
r

bk
|yk|

+
∑

√
r<|yk|≤r

bk
|yk|

≤ 1√
r
M +

∑
|yk|>

√
r

bk
|yk|

= o(1).

Hence (2.2.1) is satisfied, since φ(t) = 1 in this case. This proves Lemma 2.2.1.

In order to complete the proof of Proposition 2.1.2, let the sequence (rn) be as in

Lemma 2.2.1. Let r = rn be large, and set N = n(r).

For x ∈ Rm and t > 0, set

µ(x, r, t) =
∑

|yk|≤r,|x−yk|≤t

bk.

We now apply the version of Cartan’s Lemma from [13, p.366] (see Lemma 1.5.3)

to the mass distribution µ =
∑
|yk|≤r

bkδyk with

M = n(r), h =
r

192
, A = 6.

This gives a union of balls E, with sum of radii at most

Ah =
r

32
,

such that for all x lying outside of E, then

µ(x, r, t) ≤ Mt

eh
=

192n(r)t

er
, 0 < t <∞.

Also, let F be the union of balls given by

F =
⋃
|yk|≤r

D
(
yk,

r

32N

)
, where N = n(r).
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Then the sum of the diameters of all balls in the combined set E ∪ F is at most
r
8
, so we can choose r′ ∈ [ r

2
, 3r

4
] such that the sphere |x| = r′ does not meet E ∪F .

Consider now the function u. For |x| = r′, since r′ < r, we use (2.1.1) to get,∑
|yk|>r

bk
|x− yk|q

≤
∑
|yk|>r

bk
(|yk| − |x|)q

≤
∑
|yk|>r

bk

(|yk| − 3|yk|
4

)q
(2.2.7)

≤
∑
|yk|>r

4qbk
|yk|q

= o(1) as r →∞.

Also for |x| = r′ we have, since x /∈ F and consequently µ
(
x, r, r

64N

)
= 0,

∑
|yk|≤r

bk
|x− yk|q

=

∫ 2r

r
64N

1

tq
dµ(x, r, t)

=
1

(2r)q
µ(x, r, 2r) + q

∫ 2r

r
64N

µ(x, r, t)

tq+1
dt−

(
64N

r

)q
µ
(
x, r,

r

64N

)
≤ n(r)

(2r)q
+ q

192n(r)

er

∫ 2r

r
64N

1

tq
dt. (2.2.8)

(2.2.9)

At this point two separate cases arise. In the case of (a) and (b), when q = 1, we

get the following:

n(r)

2r
+

192n(r)

er

∫ 2r

r
64N

1

t
dt =

n(r)

2r
+

192n(r)

er
log(128N)

= o(1)

by (2.2.1) and (2.2.2).

In case (c), where q > 1, we get

n(r)

(2r)q
+ q

192n(r)

er

∫ 2r

r
64N

1

tq
dt ≤ c1

n(r)

rq
+ c2

n(r)

r

(
N

r

)q−1

= o(1)

using (2.2.1) and (2.2.3), with φ(t) = 1, and the cj positive constants. In both

cases, substitution into (2.2.8) and combining (2.2.7) with (2.2.8) gives u(x) =

o(1). This proves Proposition 2.1.2.
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Using Proposition 2.1.2, we can now prove Theorems 2.1.3 through 2.1.6, where

Theorem 2.1.4 may be viewed as an alternative proof of a result of Keldysh given

in [8, p.327], which is Theorem 1.6.5 in Chapter 1.

2.3 Proof of Theorem 2.1.3

Following [8, p.333] construct a new function g(z) = zf(z). Note that

zf(z) = g(z) =
∞∑
k=1

zak
z − zk

=
∞∑
k=1

ak +
∞∑
k=1

akzk
z − zk

= λ+
∑
zk 6=0

akzk
z − zk

= λ+ h(z). (2.3.1)

Now applying Proposition 2.1.2(a), with bk = |ak||zk|, and yk = zk, gives us a

sequence of circles |z| = Rj →∞ on which |h(z)| = o(1).

On the circles |z| = Rj, we have h(z) = o(1). This means that for all j ≥ j1,

say, we have |h(z)| < |λ|
2

on |z| = Rj, which gives m
(
Rj,

1
h+λ

)
= O(1). Since the

Rj tend to infinity, T (Rj, h)→∞ as j →∞ and

δ(0, f) = δ(−λ, h) ≤ lim inf
j→∞

m
(
Rj,

1
h+λ

)
T (Rj, h)

= 0.

This completes the proof of Theorem 2.1.3.

This idea comes from Keldysh’s proof that δ(a, f) = 0 for all a ∈ C \ 0 and

for Keldysh Functions f , which is Theorem 1.6.4 in Chapter 1, and can be found

in [9].
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2.4 Proof of Theorems 2.1.4, 2.1.5 and 2.1.6

Proof of Theorem 2.1.4

The proof of Theorem 2.1.4 starts by constructing new functions g(z) and h(z),

as in (2.3.1).

Now we can apply Proposition 2.1.2(b), with bk = |ak||zk|, and yk = zk, to give us

a sequence of circles on which |h(z)| = o(1).

Now the same reasoning as in the proof of Theorem 2.1.3 completes the result.

Proof of Theorem 2.1.5

Applying Proposition 2.1.2(b) to u, with bk = ak, and yk = xk, gives us a se-

quence of spheres |x| = rn →∞ on which |u(x)| = o(1). Now using the argument

of Lemma 1.5.2 (see also [4, 19]), it follows that u has infinitely many critical

points.

Proof of Theorem 2.1.6

Following the same reasoning as in the proof of Theorem 2.1.5, we apply Proposi-

tion 2.1.2(c) with bk = ak, yk = xk, and q = m− 2. Combining this with Lemma

1.5.2 completes the result.
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Chapter 3

On the Frequency of the Zeros

This chapter primarily contains the proof of a result regarding the frequency,

not just existence of zeros of some Keldysh Functions. Following this is a result

concerning the effect that the spacing of the zk has on the zeros of these functions.

These results, along with those from Chapter 4, have been published as a paper

[26] in the CMFT journal.

3.1 Introduction

The first result in this chapter is an expansion of the following result, which was

first proved by J.K. Langley and J. Rossi. The notation used is from [11].

Theorem 3.1.1. [20] Let f be given as in (1.3.2), with ak > 0. Assume that f

has finite order, and that
∞∑
k=1

ak =∞, lim inf
r→∞

T (r, f)

r
<∞.

Let S(z) be a rational function. Then f(z)− S(z) has infinitely many zeros.

Although this result ensures the occurrence of the zeros, it tells us nothing of

their frequency. With the aim of describing their frequency, the following result

is proved.

Theorem 3.1.2. Let f(z) be as in (1.3.2), with ak > 0, and let n(r) = O(rd), as

r →∞, for some real d > 0. Furthermore, let f satisfy

lim inf
r→∞

T (r, f)

r
<∞. (3.1.1)
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Chapter 3: On the Frequency of the Zeros

Then f must satisfy

lim inf
r→∞

(
T (r, f)− 2H log r − r

1
2

2

∫ ∞
r

t−
3
2N

(
t,

1

f

)
dt

)
<∞, (3.1.2)

where H is any integer with H ≥ (5 + d)/2.

Remark - Under the hypotheses of Theorem 3.1.2, N(t, 1
f
) cannot grow too slowly

because otherwise the term in parentheses in (3.1.2) would tend to +∞.

Notice that this result does not require the condition that
∞∑
k=1

ak =∞, as in The-

orem 3.1.1. However, for positive ak with
∞∑
k=1

ak <∞, Theorem 1.6.5, which is

originally from [8, p.327], may be applied to give δ(0, f) = 0.

The other result in this chapter uses the residue theorem combined with a re-

sult of Anderson and Clunie [1], to show what effect a separation condition on the

zk has on these functions.

Theorem 3.1.3. Let f be given by (1.3.2). Further, suppose that there exists an

η > 0 such that

|zk − zm| > η|zm|, (3.1.3)

for all distinct k and m.

Then as k →∞ we have

|ak| < e−[δ(0,f)−o(1)]T (|zk|,f), (3.1.4)

and furthermore, if we assume δ(0, f) > 0, we get

∞∑
k=1

|ak| < ∞

and
∞∑
k=1

ak = 0.
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Chapter 3: On the Frequency of the Zeros

3.2 Proof of Theorem 3.1.2

The proof of this result is based on a method used by Hinchliffe in [15, Theorem

2.1.3] and Langley and Shea in [21, Theorem 2]. It utilises several established

results, the first of which was proved by Langley and Shea in [21], and is stated

below. An alternative proof is given in [19].

Lemma 3.2.1. [21] Let h be transcendental and meromorphic in the plane, and

suppose that d ≥ 1 is such that T (r, h) = O(rd) for all large r. Denote by L(r, R, h)

the total length of the level curves |h(z)| = R lying in the region |z| < r. Then

there exist arbitrarily large positive R such that h(z) has no critical values on the

circle S(0, R) = {w : |w| = R} and

L(r, R, h) = O(rd1)

as r →∞, where d1 = (3 + d)/2.

To prove Theorem 3.1.2, assume that f , d and H are as in the hypotheses, but

that (3.1.2) fails. In particular, the integral in (3.1.2) must then converge, and

this tells us that

N

(
t,

1

f

)
+ n

(
t,

1

f

)
= o

(
t

1
2

)
as t→∞. (3.2.1)

This uses the fact that

n

(
r,

1

f

)
log 2 = n

(
r,

1

f

)∫ 2r

r

dt

t

≤
∫ 2r

r

n
(
t, 1
f

)
t

dt

≤ N

(
2r,

1

f

)
,

while the fact that ∫ ∞
r

t−
3
2N

(
t,

1

f

)
dt = o(1),

leads to

r
1
2

2

∫ ∞
r

t−
3
2N

(
t,

1

f

)
dt = o(r

1
2 ),
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Chapter 3: On the Frequency of the Zeros

and then to

r
1
2

2

∫ ∞
r

t−
3
2N

(
t,

1

f

)
dt ≥ N

(
r,

1

f

)
r

1
2

2

∫ ∞
r

t−
3
2dt

= N

(
r,

1

f

)
.

Thus (3.2.1) holds. Let

f1(z) = zHf(z),

h(z) =
1

f1(z)
,

u(z) =
∞∑
k=1

ak log

∣∣∣∣1− z

zk

∣∣∣∣ . (3.2.2)

Notice that u is the Logarithmic Potential relating to f (see Definition 1.4.1) and

hence f(z) = ∇u. Also, using Keldysh’s result from [8], (Theorem 1.6.2 in this

thesis) we get that

N(r, f) + o(1) = T (r, f) = T
(
r, hzH

)
+O(1)

≤ T (r, h) + T
(
r, zH

)
+O(1)

= T (r, h) +H log r +O(1).

Estimating T (r, h) similarly we get

|T (r, h)− T (r, f)| ≤ H log r +O(1). (3.2.3)

Since T (r, f) = O(rd), it follows that T (r, h) = O(rd) as r → ∞. Thus we may

apply Lemma 3.2.1 to h.

Let R > 0 be such that the level curves of |h(z)| = R in |z| < r have total

length ≤ O(rd1) as r → ∞, where d1 is as in Lemma 3.2.1, and also such that

h(z) has no critical points with |h(z)| = R. This ensures that each level curve

|h(z)| = R is either a simple closed curve, or a simple curve going to infinity in

both directions, since any points at which the curves intersected would be critical

points of h(z). A choice of such R exist by Lemma 3.2.1.

Assume that h(z) satisfies Hayman’s condition from [12];

lim
r→∞

(
m(r, h)− r

1
2

∫ ∞
r

n(t, h)

t
3
2

dt

)
=∞. (3.2.4)

Next we need the following result, which is a consequence of a theorem of Hayman

[12, Theorem 8]. Langley and Shea highlight this consequence explicitly in [21].
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Theorem 3.2.2. [12, 21] Suppose h is transcendental and meromorphic in the

plane, such that (3.2.4) is satisfied. Suppose further that there exists a path Γ

tending to infinity, on which |h(z)| ≤M <∞.

Then there exists a function vh which is non-constant, non-negative and subhar-

monic in the plane, such that

vh(z) ≤ log+ |h(z)|+O(1) (3.2.5)

for all z.

Furthermore, property (3.2.4) suffices to ensure that ∞ is an asymptotic value

of h.

Theorem 3.2.2 ensures that ∞ is an asymptotic value of h. Therefore the set

{z : |h(z)| > R} must have at least one unbounded component U , where R is as

in Lemma 3.2.1. Now we need the following lemma.

Lemma 3.2.3. Let V be an unbounded component of the set {z : |h(z)| > S},
where S satisfies the conclusions of Lemma 3.2.1. Then u(z) is bounded on V.

Proof of Lemma 3.2.3

Partition the boundary ∂V into its intersections with the disc D(0, 1) and the

annuli Am = {z : 2m−1 ≤ |z| < 2m} m = 1, 2, ....

On ∂V , we have |h(z)| = S, so on Am ∩ ∂V , we have |h(z)|−1 = 1
S
, and 2−mH

S
≤

|f(z)| ≤ 2−(m−1)H

S
by (3.2.2)

Now, using cn to denote real positive constants, but not necessarily the same

constant each time they are used,∫
Am∩∂V

|f(z)||dz| ≤ c1L(2m, S, h)
1

S2(m−1)H

≤ c1(2m)d12−(m−1)H

≤ c12d1m−(m−1)H

= c12m(d1−H)+H
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We sum this over all values of m, to get∫
∂V

|f(z)||dz| ≤ c1 + c2

∞∑
m=1

2m(d1−H)+H

= c1 + c22H
∞∑
m=1

2m(d1−H)

≤ c1 + c22H
∞∑
m=1

2−m <∞, (3.2.6)

since d1 −H ≤ −1. Fix a point z0 in V . Any point ζ in the closure V of V can

be joined to z0 by a path µζ in V consisting of part of the circle |z| = |z0|, part of
the ray arg z = arg ζ, and part of ∂V . Split µζ into its intersections µ1 with the

ray, µ2 with the circle, and µ3 with ∂V . Now,∫
µ1

|f(z)||dz| ≤ c1

∫ ∞
|z0|

s−H

S
ds ≤ c1 (3.2.7)∫

µ2

|f(z)||dz| ≤ 2π
|z0|1−H

S
≤ c1 (3.2.8)∫

µ3

|f(z)||dz| ≤ c1, (3.2.9)

by (3.2.6). Now if we split f into its real and imaginary parts, using f(z) = ∇u,
and dz = dx+ idy, we get∫

γ

f(z)dz =

∫
γ

(ux − iuy)(dx+ idy)

=

∫
γ

(uxdx+ uydy) + i

∫
γ

(uxdy − uydx)

=

∫
γ

∇u · dr + imaginary part.

Where dr = (dx, dy). We then use these facts to tell us that:

|u(ζ)− u(z0)| ≤
∣∣∣∣∫
γ

∇u · dr
∣∣∣∣ =

∣∣∣∣Re(∫
γ

f(z)dz

)∣∣∣∣ ≤ ∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ ≤ ∫
γ

|f(z)||dz|

We combine this with (3.2.7), (3.2.8), and (3.2.9), to tell us that |u(z)| is bounded
on V . This proves the lemma.

Returning to the proof of Theorem 3.1.2, we apply Lemma 3.2.3 to U , which

gives us that u(z) is bounded on U , say u(z) ≤ m1.
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From this we deduce that the boundary ∂U of U , which consists of countably

many pairwise disjoint level curves |h(z)| = R, cannot be such that every compo-

nent of ∂U is bounded.

To see this, let C1 be a bounded component of ∂U . Then C1 is a simple closed

curve (by Lemma 3.2.1) and the maximum principle gives u(z) ≤ m1 inside C1. If

all components Ci of ∂U are bounded, then u(z) ≤ m1 in all of C. We could then

apply Liouville’s theorem for subharmonic functions giving us that u is constant.

This cannot be the case, since u(zk) = −∞.

This tells us that there has to be a path γU which tends to infinity and is contained

in ∂U . Note that on this path |h(z)| ≤ R, which means we can now apply (3.2.4)

and Hayman’s result (Theorem 3.2.2), to give us a non-negative, non-constant,

subharmonic function vh, satisfying (3.2.5) throughout C.

Note that vh is subharmonic, hence unbounded, and further that if vh(z) is large,

then h(z) is also large. Since vh is bounded on γU , it follows from the cos πρ

theorem for subharmonic functions (see Theorem 1.2.9) that,

B(r, vh)

log r
→∞ as r →∞, (3.2.10)

where B(r, vh) = sup{vh(reiθ) : θ ∈ [0, 2π)} (see Definition 1.2.5).

Now we combine (3.2.10) and the following result of Lewis, Rossi and Weitsman

from [22].

Theorem 3.2.4 ([22]). Let u be subharmonic in the plane, and assume that

lim
r→∞

B(r, u)

log r
=∞.

Then there exists a path Γ tending to infinity with∫
Γ

e−λu|dz| <∞,

for each λ > 0, and

u(z)

log |z|
→ ∞, (3.2.11)

as z →∞, z ∈ Γ. Note that Γ is independent of λ.
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We apply this to vh to give a path Γ with all the conditions specified above.

Now, we can combine (3.2.11) with (3.2.5) to give us

log |h(z)|
log |z|

→ +∞ on Γ.

This tells us that there must be an unbounded component U1 of {z : |h(z)| > T1}
such that T1 satisfies the conclusions of Lemma 3.2.1 and Γ \ U1 is bounded.

Applying Lemma 3.2.3 to U1, we get that u is bounded above on U1, by M say,

but we also get that vh is unbounded on U1, as Γ ∩ U1 is unbounded. However

vh ≤ log T1 +O(1) ≤M1

say, on ∂U1.

On U1 we have u(z) ≤ M , and now we take an unbounded component U2 of

the set on which u is also unbounded. {z : u(z) > M + 1}. Clearly U1 and U2

must be disjoint.

Now we need the following from [21, Lemma 5].

Lemma 3.2.5 ([21]). Let v1, v2 be non-constant subharmonic functions in the

plane, let s1, s2 be real constants, and let U1, U2 be disjoint, unbounded domains

such that vj ≤ sj on ∂Uj and vj(zj) > sj for at least one point zj in Uj. Then

logB(r, v1) + logB(r, v2) ≥ 2 log r −O(1),

for all large r.

We use this lemma to give

logB(r, vh) + logB(r, u) ≥ 2 log r −O(1). (3.2.12)

Note that B(r, u) = o(r), by Lemma 1.4.2, so substituting into (3.2.12) and expo-

nentiating gives

cr2 ≤ B(r, vh)o(r)

for some c > 0, so this tells us that

lim inf
r→∞

B(r, vh)

r
=∞. (3.2.13)
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Using Poisson’s formula and (3.2.5), we get that

B(r, vh) ≤
3

2π

∫ 2π

0

vh(2re
iφ)dφ

≤ 3m(2r, h) +O(1)

≤ 3T (2r, h) +O(1).

We can combine this with (3.2.13) to give

lim inf
r→∞

T (r, h)

r
=∞,

and using (3.2.3) we get

lim inf
r→∞

T (r, f)

r
=∞.

This clearly contradicts our initial assumption (3.1.1), thus telling us that our

assumption (3.2.4) cannot hold. Therefore

lim inf
r→∞

(
m(r, h)− r

1
2

∫ ∞
r

n(t, h)

t
3
2

dt

)
<∞. (3.2.14)

Now integration by parts using (3.2.1) and (3.2.2) gives us

m(r, h)− r
1
2

∫ ∞
r

n(t, h)

t
3
2

dt = m(r, h)− r
1
2

[
t−

1
2N(t, h)

]∞
r
− r

1
2

2

∫ ∞
r

t−
3
2N(t, h)dt

= m(r, h) +N(r, h)− r
1
2

2

∫ ∞
r

t−
3
2N(t, h)dt

≥ T (r, h)− r
1
2

2

∫ ∞
r

t−
3
2 (N

(
t,

1

f

)
+H log t)dt)

= T (r, h)− r
1
2

2

∫ ∞
r

t−
3
2N

(
t,

1

f

)
dt− r

1
2

2

(
4H

r
1
2

+
2H log r

r
1
2

)
= T (r, h)−H log r − 2H − r

1
2

2

∫ ∞
r

t−
3
2N

(
t,

1

f

)
dt.

Combining (3.2.14) with (3.2.3) and taking the limit infinum gives

lim inf
r→∞

(
T (r, f)−H log r −O(1)−H log r − 2H − r

1
2

2

∫ ∞
r

t−
3
2N

(
t,

1

f

)
dt

)
<∞

and so

lim inf
r→∞

(
T (r, f)− 2H log r − r

1
2

2

∫ ∞
r

t−
3
2N

(
t,

1

f

)
dt

)
<∞

as required.
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3.3 Proof of Theorem 3.1.3

Before proving this theorem, we examine further what implication condition (3.1.3)

has. With this aim, we prove the following lemma.

Lemma 3.3.1. Let f be as in the hypotheses of Theorem 3.1.3. Then T (r, f) =

O(log r)2, and in particular this gives ρ(f) = 0.

Proof of Lemma 3.3.1

We shall show that there exists an upper bound, M, independent of r, for the

number of distinct zk in the annulus 2r < |z| ≤ 4r. It then follows that in the

annulus r < |z| ≤ 2r there is the same upper bound for the number of zk as in the

annulus 2r < |z| ≤ 4r. So if we let c1 = n(r), then we deduce that,

n(2nr) ≤ nM + c1.

To calculate such an upper bound M , let r1 be large and fixed and notice that

the annulus r1
2
< |z| ≤ 3r1 has area π(9r1

2 − r12

4
) = 35

4
πr1

2. Surround each zk in

r1 < |z| ≤ 2r1 by a disc of radius r1η
2
. Then these discs are disjoint, by (3.1.3),

and each lies wholly within the annulus r1
2
< |z| ≤ 3r1, since we may assume that

η is less than 1. Since each disc has area πr12η2

4
, this gives us that

M ≤
35
4
πr1

2

1
4
πr1

2η2

=
35

η2
.

This then gives us,

n(2nr1) ≤ 35n

η2
+ c1.

If r ∈ (2nr1, 2
n+1r1], then

n(r) ≤ 35(n+ 1)

η2
+ c1.

Since r ≥ 2nr1, we get that n ≤ log r−log r1
log 2

. This tells us that

n(r) ≤ 35 log r

η2 log 2
+ c2 = O(log r),

as r → ∞. From this we can estimate N(r, f) in the usual way, see Corollary

1.6.3, which gives us N(r, f) ≤ O((log r)2). Combining this with Theorem 1.6.2,
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given in Chapter 1, gives us that T (r, f) = O((log r)2), which completes the proof

of the lemma.

Returning to Theorem 3.1.3, we need the following definition from Hayman [10].

Definition 3.3.2. ε-set - We call any countable set of discs not containing the

origin and subtending angles at the origin whose sum s is finite an ε-set.

This proof will utilise the following result of Anderson and Clunie, which says,

roughly speaking, that a deficient value of a meromorphic function of slow growth

is an asymptotic value in a very strong sense.

Theorem 3.3.3. [1] Let f(z) be meromorphic, and satisfy T (r, f) = O(log r)2.

Suppose that δ(a, f) > 0 for some a ∈ C. Then

log |f(z)− a| < −[δ(a, f)− o(1)]T (|z|, f), (3.3.1)

as z →∞ outside of an ε-set of discs whose centres tend to infinity.

In order to prove Theorem 3.1.3, we let f be as in the hypotheses, and for the

time being we assume δ(0, f) > 0, and denote by

E =
∞⋃
n=1

B(An, rn), |An| → ∞,
∞∑
n=1

rn
|An|

<∞,

the ε-set described in Theorem 3.3.3. If we take r large, then the discs of E which

meet the annulus r
2
< |z| < 2r have sum of radii o(r). This is shown in [10].

We choose a small, positive constant ε less than η
2
. Then for large m there exists

an s = sm with

ε|zm| < s < 2ε|zm|

such that the circle |z − zm| = s does not meet the discs of E, and such that zm
is the only member of the set {zk} lying inside the circle.

Now consider ∫
|z−zm|=s

|f(z)||dz|.
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From (3.3.1) we get that

|f(z)| < e−[δ(0,f)−o(1)]T (|z|,f)

for |z − zm| = s.

Now using the following integration estimate∫
|z−zm|=s

|f(z)||dz| ≤ max{|f(z)| : |z − zm| = s} · (length of the curve),

and the fact that T (r, f) is strictly increasing, we get that∫
|z−zm|=s

|f(z)||dz| ≤ 2πse−(δ(0,f)−o(1))T (|zm|−s,f)

≤ 4πε|zm|e−(δ(0,f)−o(1))T ((1−2ε)|zm|,f)

By the residue theorem, and the fact that for functions of the type f , the residue

at each pole zk is equal to ak, we get that

2π|am| =
∣∣∣∣∫
|z−zm|=s

f(z)dz

∣∣∣∣ ≤ ∫
|z−zm|=s

|f(z)||dz|.

When we combine these results we get that

|am| ≤ 2ε|zm|e−(δ(0,f)−o(1))T ((1−2ε)|zm|,f).

Note that for 0 < κ < 1, we have

T (r, f)− T (κr, f) = O(log r). (3.3.2)

To see this note that, by [11, p.9],

φ(r) = r
d

dr
T (r, f)

=
1

2π

∫ 2π

0

n(r, eiθ, f)dθ

is non-decreasing. Hence

φ(r) log r =

∫ r2

r

φ(r)
dt

t

≤
∫ r2

r

φ(t)
dt

t

= T (r2, f)− T (r, f)

= O((log r)2)
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Chapter 3: On the Frequency of the Zeros

and so φ(r) = O(log r), from which (3.3.2) follows by integration.

This tells us that

|am| ≤ 2ε|zm|e−[δ(0,f)−o(1)](T (|zm|,f)−O(log |zm|))

= 2ε|zm|e−[δ(0,f)−o(1)](T (|zm|,f))

= e−[δ(0,f)−o(1)](T (|zm|,f))

as required.

We continue for now to assume that δ(0, f) > 0. For large k we have

|ak| < e−δ
′T (|zk|,f), (3.3.3)

for some δ′ > 0.

Now we use the fact that f is transcendental, and hence

lim
k→∞

T (|zk|, f)

log |zk|
=∞.

By combining this with (3.3.3), we obtain the following inequality.

|ak| < |zk|−L, (3.3.4)

for any L > 0. However, standard results (see [11, p.26]) give
∞∑
k=1

|zk|−1 <∞, (3.3.5)

for any function of order 0, with poles zk.

We now combine (3.3.4) and (3.3.5) to give,
∞∑
k=1

|ak| <∞.

Now we can apply Theorem 1.6.5 or Theorem 2.1.4 to give us that
∞∑
k=1

ak = 0,

as required.

Remark - This method only works when δ(0, f) > 0, however the result (3.1.4)

still holds even when δ(0, f) = 0, since the convergence criteria (1.3.2) gives

ak = o(|zk|) ≤ eo(T (|zk|,f)).
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3.4 An Interesting Observation

In an attempt to find an improved version of Theorem 1.6.6 without the condi-

tion ak > 0, the author has made an observation, which arises instantly from an

application of the following result.

Lemma 3.4.1 ([5]). Let f be a non-constant entire function of order λ with

f(0) 6= 0, and let {z1, z2, ....} be the zeros of f counted according to multiplicity

and arranged so that |z1| ≤ |z2| ≤ .... If an integer p satisfies p > λ− 1 then

dp

dzp

[
f ′(z)

f(z)

]
= −p!

∞∑
n=1

1

(zn − z)p+1

for z 6= z1, z2, ....

If we let f be a Keldysh Function, and assume that ρ(f) < 1 and that f has no

zeros, we can then apply Lemma 3.4.1 to
1

f
to give

−f
′(z)

f(z)
= −

∞∑
n=1

1

(zn − z)

for z 6= zk.

The interesting fact about this is that it means that the derivative of f and the

Keldysh Function with the same zk but with all ak set to 1 must have the exact

same zero sets. However, f ′ is dependent on ak, whereas the other function is not.

Since we can apply Corollary 1.6.7 to the right hand side, these zero sets must

contain infinitely many points. Furthermore, all the zeros of the right hand side

must lie in the convex hull of the zk, so the same must also be true of f ′. Also

f ′ must have infinitely many zeros to match those on the right hand side. If the

derivative does not satisfy these properties, then we can conclude that f must

have at least one zero. Furthermore, if ρ(f) < 1, f has no zeros, and we change

exactly one ak, then the new function must have at least one zero, as its derivative

will no longer have the same zero set.

The author has so far been unable to use this observation to prove any new results,

however it is included here, as it may be of interest to anyone studying this area.
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Chapter 4

A Generalisation to Mittag-Leffler

Sums

This chapter looks at a generalisation of Keldysh Functions to Mittag-Leffler type

functions. By examining two distinct cases, the existence of zeros of these new

functions is shown. These results, along with those from Chapter 3, have been

published as a paper in the CMFT journal ([26]).

4.1 Introduction

The two results in this chapter concentrate on a problem which generalises the

standard functions to Mittag-Leffler-type functions as follows. Let

F (z) =
∞∑
n=1

zknan
znkn(z − zn)

, an 6= 0, 0 ≤ kn ∈ Z,
∞∑
n=1

∣∣∣∣ an
znkn+1

∣∣∣∣ <∞. (4.1.1)

This extension was suggested by Rod Halburd of Loughborough University, and

allows for a weakened convergence criterion. Clearly the original functions f can

be viewed as functions of this type with all the kn set equal to zero.

These functions come from viewing the original functions f as linear combina-

tions of logarithmic derivatives of simple Weierstrass primary factors. These are

defined as follows in [11, p.21],

E(z, q) = (1− z)ez+
z2

2
+...+( z

q

q
) (q ≥ 1)

E(z, 0) = 1− z.
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Chapter 4: A Generalisation to Mittag-Leffler Sums

The logarithmic derivatives are as follows: if pn(z) = E
(
z
zn
, kn

)
, then

p′n(z)

pn(z)
=

zkn

znkn(z − zn)
.

In this way, the extended functions F (z) are linear combinations of logarithmic

derivatives of higher order primary factors.

The first result describes the case where there is an upper bound for the kn,

and adapts the method used in Chapter 2 to these extended functions.

Theorem 4.1.1. Let F (z) be as in (4.1.1), with zn ∈ C\{0} and limn→∞ |zn| =∞.

Suppose kn ≤M <∞ for all n, and
∞∑
n=1

∣∣∣∣ anznkn
∣∣∣∣ <∞, ∑

n:kn=M

an
znkn

6= 0. (4.1.2)

Suppose further that either

a) φ(t) is continuous, positive and non-decreasing on [1,∞) with∫ ∞
1

1

tφ(t)
dt =∞

and

lim sup
r→∞

log n(r)

φ(r)
<∞,

or b)

lim inf
r→∞

log n(r)

log r
<∞.

Then δ(0, F ) = 0.

Next we prove another result for such Mittag-Leffler-type functions, but in the case

where the kn are allowed to be unbounded. The proof uses the cos πρ theorem

combined with the residue theorem.

Theorem 4.1.2. Let F (z) be as in (4.1.1), with zn ∈ C \ {0} and lim
n→∞

|zn| =∞.

Suppose further that ρ(F ) = ρ < 1
2
, and that

lim inf
r→∞

∣∣∣∣∣∣
∑
|zn|<r

an

∣∣∣∣∣∣ > 0. (4.1.3)

Then δ(0, F ) ≤ 1− cosπρ.

We observe that (4.1.3) is satisfied if Re(an) > 0 for all n. We remark that a

sufficient condition for ρ(F ) < 1
2
is given in §4.4.
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4.2 Proof of Theorem 4.1.1

Let F be as in the hypotheses of Theorem 4.1.1. We adapt a method from [7,

p.333], by writing

zF (z) =
∞∑
n=1

an
znkn

zkn +
∞∑
n=1

an
znkn−1(z − zn)

zkn .

= H(z) + G(z). (4.2.1)

Both series converge, by (4.1.2). Here H(z) is entire and non-constant, and in

fact is a polynomial of degree M , by (4.1.2). This tells us that |H(z)| ≈ c|z|M as

z →∞ for some c > 0.

If zF (z) is to be small then |H(z)| ≈ |G(z)|, and so we seek an upper bound

for |G(z)|.

We construct a new function defined as follows: Let

J(z) =
∞∑
n=1

∣∣∣∣ an
zkn−1
n (z − zn)

∣∣∣∣ (4.2.2)

We apply Proposition 2.1.2 from Chapter 2 to J , noting that in this case we have

bn =
∣∣∣ an
znkn−1

∣∣∣, yn = zn.

This gives us circles |z| = Rj →∞ on which |J(z)| ≤ o(1).

However, for |z| = Rj (4.2.1) gives

|G(z)| ≤
∞∑
n=1

∣∣∣∣ an
zkn−1
n (z − zn)

∣∣∣∣ |z|kn
≤

∞∑
n=1

∣∣∣∣ an
zkn−1
n (z − zn)

∣∣∣∣ |z|M
≤ J(z)|z|M

= o(1)|z|M

= o(|H(z)|).

Hence zF (z) cannot be small on |z| = Rj, and so for large j, and |z| = Rj

|H +G| ≥ |H| − |G| ≥ c

2
|z|M .
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Hence,

log+

(
1

|H +G|

)
≤ log+

(
2

cRM
j

)
= O(1),

since Rj →∞. Thus

δ(0, zF ) = δ(0, H +G)

= lim inf
r→∞

m
(
r, 1

(H+G)

)
T (r,H +G)

≤ lim inf
j→∞

m
(
Rj,

1
(H+G)

)
T (Rj, H +G)

= 0,

since m
(
Rj,

1

(H +G)

)
= O(1), and T (Rj, H +G)→∞ as Rj →∞. This gives

δ(0, F ) = 0.

A Remark on Theorem 4.1.1

Note that for functions F as in (4.1.1), where kn ≤ M for all n, we can make

the following observation. We have

F = F0 + F1 + . . .+ FM ,

and

|Fj(z)| =

∣∣∣∣∣∑
kn=j

anz
j

znj(z − zn)

∣∣∣∣∣
= |z|j

∣∣∣∣∣∑
kn=j

an
znj(z − zn)

∣∣∣∣∣ .
Using this, we can estimate m(r, Fj) for large r as follows. We have

m(r, Fj) =
1

2π

∫ 2π

0

log+ |Fj(reiθ)|dθ

≤ 1

2π

∫ 2π

0

log+ |reiθ|jdθ +
1

2π

∫ 2π

0

log+ |h(reiθ)|dθ

≤ 1

2π

∫ 2π

0

j log r dθ +m(r, h)

where

h(z) =
∑
kn=j

an
znj(z − zn)

.
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Now we combine this with Theorem 1.6.2 to obtain,

m(r, Fj) ≤ j log r + o(1),

and hence,

m(r, F ) ≤
M∑
j=0

j log r + o(1) + logM

= O(log r).

Therefore the criteria a) and b) in Theorem 4.1.1 determine the order of the

function F , and are equivalent to F having finite lower order, or finite or "small

infinite" upper order.

4.3 Proof of Theorem 4.1.2

For functions F of the form (4.1.1), we obtain,∫
|z|=r

F (z)dz = 2πi
∑
|zn|<r

an, (4.3.1)

by the residue theorem, provided no zn lie on |z| = r.

Now we shall estimate the integral using the cos πρ theorem. The following is

an immediate consequence of the cosπρ theorem for meromorphic functions [9]

(for the version applying to entire or subharmonic functions see Theorem 1.2.9 in

Chapter 1).

Theorem 4.3.1 ([9]). Let f be a transcendental meromorphic function, such that

ρ = ρ(f) < 1
2
. If δ(0, f) > 1− cos πρ, then there exist rj →∞ for which

logM(rj, f)

log rj
→ −∞.

In particular, ∫
|z|=rj

f(z)dz = o(1).

Now if we apply this theorem to F , we clearly get a contradiction with our value

(4.3.1) for the integral calculated using the residue theorem. This proves Theorem

4.1.2.
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4.4 Remarks on Theorem 4.1.2: The Condition

ρ(F ) < 1
2.

In this section we consider a sufficient condition to ensure that ρ(F ) < 1
2
in (4.1.1).

To this end, the following lemma will be proved.

Lemma 4.4.1. Let F be given by (4.1.1). Assume that F satisfies the following,

for some ε > 0:

lim sup
j→∞

j(2+ε)j
∑
kn=j

∣∣∣∣ anznkn
∣∣∣∣ ≤ 1, lim sup

r→∞

log n(r)

log r
<

1

2
. (4.4.1)

Then ρ(F ) < 1
2
.

Proof of Lemma 4.4.1

For |z| = r, notice that

|F (z)| ≤
∞∑
n=1

∣∣∣∣ anznkn zkn
∣∣∣∣ · ∞∑

n=1

1

|z − zn|
= G(z) · H(z).

If we look at G and H separately, we can write

g(z) =
∞∑
n=1

∣∣∣∣ anznkn
∣∣∣∣ zkn

where G(z) = g(|z|).

Using (4.4.1) and the formula for the order of an entire function [5, p.286] (see

also Chapter 1, Lemma 1.1.3), we can deduce that ρ(g) < 1
2
, and hence G(z) ≤

exp(|z| 12−ε) as |z| → ∞.

Now we look at H. Let E be the union of discs D(zn, 1). Then the discs of

E which meet D(0, 4r) have sum of diameters

≤
∑

|zn|≤4r+1

2 = 2n(4r + 1)

= o(r),
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by (4.4.1). We now pick r′ with r ≤ r′ ≤ 2r such that the circle |z| = r′ meets

none of the discs of E. Then for |z| = r′, we have∑
|zn|>4r

1

|z − zn|
≤

∑
|zn|>4r

1

||z| − |zn||

<
∑
|zn|>4r

4

3|zn|
= o(1),

as r →∞, using the second condition of (4.4.1), and∑
|zn|≤4r

1

|z − zn|
≤

∑
|zn|≤4r

1

= n(4r)

= o(r),

using (4.4.1) again.

Adding together our estimates for G and H, we get that

|F (z)| ≤ e(r′)
1
2−ε + o(r).

for |z| = r′. This gives

m(r′, F ) ≤ (r′)
1
2
−ε +O(log r)

and we know that

N(r′, F ) ≤ (r′)
1
2
−ε

by (4.4.1). Since

T (r, F ) ≤ T (r′, F ) ≤ 3(r′)
1
2
−ε

= O(r
1
2
−ε),

the result follows.
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Chapter 5

Behaviour of the Derivative

This chapter examines the family of functions which correspond to the derivatives

of Keldysh Functions. In particular we examine the constraints that follow from

the assumption that these functions have only finitely many zeros.

5.1 Introduction

Let us look at the functions of the following type,

g(z) =
∞∑
k=1

ak
(z − zk)2

, ak ∈ C \ {0}, |zk| → ∞. (5.1.1)

Without loss of generality we assume that zk 6= 0. These require the following

convergence criterion:

∞∑
k=1

|ak|
|zk|2

<∞. (5.1.2)

Bearing this in mind, we can view these functions g as the derivatives of functions

F , given as follows,

F (z) =
∞∑
k=1

(
ak

z − zk
+
ak
zk

)
(5.1.3)

= z
∞∑
k=1

ak
zk(z − zk)

,

where ak and zk are as before, providing that (5.1.2) is satisfied.
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If however the stronger condition
∞∑
k=1

|ak|
|zk|

<∞ is satisfied, then we can view g

as the derivative of a Keldysh Function f , i.e.

f(z) =
∞∑
k=1

ak
z − zk

,

again with ak and zk as before.

This next theorem demonstrates the tight restrictions upon ak and zk required

for a function of this type to have finitely many zeros.

Theorem 5.1.1. Let g and F be given as above, so that g = F ′. Assume that F

has finite order ρ and that g has only finitely many zeros.

Then we have the following asymptotic behaviour for F , and hence also for g.

1. The order ρ of F satisfies 2 ≤ 2ρ ∈ N.

2. There are N = 2ρ critical rays arg z = θi, going from the origin out to in-

finity, separated by angles of opening 2π
N
.

3. If k is large, then arg zk = θi + o(1) for some i.

4. Let ε > 0. Then in a sectorial region,

Sp = {z ∈ C : |z| > R, θp −
2π

N
+ ε < arg z < θp +

2π

N
− ε}, (5.1.4)

F can be written in the form F = u1

u2
where the uj are analytic in Sp and are

linearly independent solutions of

u′′ +
S(z)

2
u = 0, (5.1.5)

where S(z) is the Schwarzian derivative of F (see (5.2.1) below), and is a rational

function.

5. For each p there exists a constant cp 6= 0 such that if zk ∈ Sp is large, then

ak ∼
cp

zkρ(F )−1
.
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5.2 Proof of Theorem 5.1.1

Looking at the Schwarzian derivative of F , which is defined in [10] as follows,

S(z) =
F ′′′

F ′
− 3

2

(
F ′′

F ′

)2

, (5.2.1)

we immediately notice that S has only finitely many poles, as it gets its poles

from the zeros of F ′, finitely many by assumption, and the multiple poles of F , of

which there are none.

In this proof we will require the following basic facts about the Schwarzian deriva-

tive, which can be found in texts such as [14].

Lemma 5.2.1. Let f be a meromorphic function, let T be any Möbius transfor-

mation, and let S(f) be the Schwarzian derivative of f . The Schwarzian derivative

has the following properties.

S(T (f)) = S(f),

and furthermore, if we have

S(f) ≡ 0,

then f is a Möbius Transformation.

In this case S has finitely many poles, and this implies that S is a rational function,

as clearly N(r, S) = O(log r), and also

m(r, S) =
1

2π

∫ 2π

0

log+ |S(reiφ)|dφ

≤ m

(
r,
F ′′′

F ′

)
+ 2m

(
r,
F ′′

F ′

)
+O(1)

= O(log r),

by the lemma of the logarithmic derivative (see Lemma 1.1.15), and the fact that

F has finite order (by assumption). Using this fact, we can write, as z →∞,

S(z) = czm(1 + o(1)), (5.2.2)

where c ∈ C is a constant and m ∈ Z.
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Since S is the Schwarzian derivative of F , it follows from standard results [14, 17]

that if Ω is any simply connected domain on which S is analytic, then we may

write,

F =
u1

u2

in Ω, where u1, u2 are linearly independent solutions of (5.1.5) on Ω. This proves

part four of the theorem.

To prove the rest of the result, we will utilise Lemma 5.2.1 from above.

We start by assuming that either c = 0 or m ≤ −2. Clearly if c = 0, then

by Lemma 5.2.1 F is Möbius, a contradiction. If m ≤ −2, following the method in

[14, Chapter 7], we choose a sectorial region S = {z : |z| > R, 0 < arg(z) < 2π}
with R large, and we can write F = u1

u2
, where the ui are linearly independent and

satisfy (5.1.5). Returning to F ′ = g, we can write this as F ′ = d
u2

2 , where d is a

constant.

Looking at the proximity function of 1
F ′
, because u2 is analytic in S we have

m

(
r,

1

F ′

)
=

1

π

∫ 2π

0

log+ |u2|dθ +O(1). (5.2.3)

We now utilise the following, which is Lemma 4 from [18].

Lemma 5.2.2 ([18]). Suppose k ≥ 2, and that a0, . . . , ak−1 are analytic in |z| ≥ R

such that for some λ ≥ 0,

aj(z) = O
(
|z|(λ−1)(k−j)) as z →∞.

Let f(z) be a solution of

L(y) = y(k) + ak−1y
(k−1) + · · ·+ a0y = 0,

in a sectorial region

S = {z : |z| > R,α < arg z < α + 2π},

where α is real. Then as z →∞ in S,

log+ |f(z)| = O
(
|z|λ + log |z|

)
.
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Chapter 5: Behaviour of the Derivative

We take k = 2, and λ = 0. Since S(z) is analytic in |z| > R, we set a0(z) = 1
2
S(z),

and let a1(z) = 0. Note that a0(z) = O (|z|−2) so the conditions of Lemma 5.2.2

are satisfied.

This gives us

log+ |u2(z)| = O(log |z|),

from which we get, using (5.2.3),

m

(
r,

1

F ′

)
= O(log r).

Combining this with the fact that F ′ only has finitely many zeros, and hence

N

(
r,

1

F ′

)
= O(log r), we deduce

T

(
r,

1

F ′

)
= O(log r),

i.e.
1

F ′
is a rational function (and hence so are F and g), a contradiction.

Next we need more information about the asymptotics when m ≥ −1. Following

[14], since we know that c 6= 0 and m ≥ −1, the critical rays for equation (5.1.5)

are defined to be the rays arg z = θp, for which

arg c+ (m+ 2)θp = 0 (mod 2π).

If m = −1 there is only one ray. Take a small positive ε > 0, and R large and

positive, and define the sectorial region Sp by (5.1.4), where N = m+ 2. Then on

the region Sp, the equation (5.1.5) has principal solutions v1, v2 satisfying

vj = T (z)−
1
4 e(−1)jiZ ,

where

T (z) =
S(z)

2
,

and

Z =

∫ z

Reiθp
T (t)

1
2dt

' 2
√
cz

m+2
2

m+ 2
(1 + o(1)),
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as z →∞ in Sp. Moreover, F can be written as F =
u1

u2

, where the ui are linearly

independent solutions of (5.1.5).

With this notation we can write, in Sp,

u1 = A1v1 −B1v2

u2 = A2v1 −B2v2,

and

F (z) =
A1v1 −B1v2

A2v1 −B2v2

,

where the Ai and Bi are constants.

Since

W (u1, u2) = W (A1v1 −B1v2, A2v1 −B2v2)

= (A2B1 − A1B2)W (v1, v2),

and since F = u1

u2
we are free to multiply u1 and u2 by the same constant, and so

may assume that

A1B2 − A2B1 = 1, (5.2.4)

as A1B2 − A2B1 6= 0 by the linear independence of the ui.

We next show that m ≥ 0, and so begin by assuming m = −1, and work for

a contradiction. With only one critical ray, we can view the principal solutions v1

and v2 as functions on the Riemann surface of log z, as they are defined on

|z| > R, | arg z − θp| < 2π − ε.

On one side of this domain, say the subsector given by,

ε < arg z − θp < 2π − ε,

one of the vi is dominant, so either
v1

v2

→ 0 or
v2

v1

→ 0.

In the other subsector,

−2π + ε < arg z − θp < −ε,
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the other of the vi is dominant.

Now we use the fact that F is a meromorphic function, and hence single val-

ued in all of C to reach a contradiction.

We consider the ray L1, which is defined by

arg z = θp + π,

which is clearly the same ray as

arg z = θp − π.

In one subsector, we get that
v1

v2

→ 0, which implies that F ∼ B1

B2

.

Repeating the argument for the other subsector, we get F ∼ A1

A2

. Since both

expressions are valid on the ray L1, we conclude that

A1

A2

∼ B1

B2

.

Since this expression is valid for the entirity of the ray, we conclude that A1B2 −
A2B1 = 0, which clearly contradicts the linear independence of u1 and u2. This

combined with our previous argument gives us that m > −1, and proves our as-

sertion.

To prove part five of Theorem 5.1.1, we assume that m ≥ 0 and start by writing

S(z) as in (5.2.2).

Using part four of Theorem 5.1.1, assume that the sector Sp contains infinitely

many poles of F . Then A2B2 6= 0 and these poles zk of F must be both zeros of

u2 and solutions of,

A2

B2

=
v2

v1

' e2iZ .

Hence arg zk ∼ θp for k large, and the number of roots in Sp∩B(0, r) is c1(1 + o(1))r
(m+2)

2

as r →∞, where c1 6= 0, (see [17] for details). Applying this for each such Sp we

see that N(r, F ) has order (m+2)
2

and so has T (r, f), since m(r, f) = O(log r) by

(5.1.3).
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It remains only to prove the asymptotic formula in part 5 of Theorem 5.1.1 for ak
when zk ∈ Sp is large.

Logarithmic differentiation of vj gives

v′j(z)

vj(z)
= − T

′(z)

4T (z)
+ (−1)ji

dZ

dz

∼ (−1)jiT (z)
1
2 ,

and so

v′j(z) ∼ (−1)jiT (z)
1
4 e(−1)jiZ .

In particular,

v′2(z)

v′1(z)
∼ −v2(z)

v1(z)
.

At the pole zk, we have

u2 = A2v1 −B2v2 = 0,

i.e.

v2(zk)

v1(zk)
=
A2

B2

,

and

ak =
u1(zk)

u′2(zk)
=
A1v1(zk)−B1v2(zk)

A2v′1(zk)−B2v′2(zk)

=
v1(zk)

v′1(zk)
·
A1 −B1

v2(zk)
v1(zk)

A2 −B2
v′2(zk)

v′1(zk)

∼ i

T (zk)
1
2

·
A1 −B1

A2

B2

A2 +B2
A2

B2(1+o(1))

=
i

T (zk)
1
2

· A1B2 −B1A2

2A2B2 + o(1)

as required.
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5.3 Example of Functions Satisfying the Hypothe-

ses of Theorem 5.1.1

Example 5.3.1. Let

Gn(z) =
1

eizn + 1
− 1

2
.

Then each Gn is an example of a function satisfying the conditions of the above

theorem, with order n, and has a representation of the form (5.1.3).

Calculating the derivative of Gn, we obtain

G′n(z) =
−inzn−1eiz

n

(eizn + 1)2
,

which has one zero of order n− 1 at 0, and hence the conditions of Theorem 5.1.1

are satisfied.

As a check, we can calculate the Schwarzian derivative of Gn, giving

Sn(z) =
n2z2n − n2 + 1

2z2
,

which is clearly a rational function, of leading order 2n − 2 as z → ∞. This is

easily calculated using the fact that Gn(z) = T (eiz
n
) where T is a Möbius trans-

formation (see Lemma 5.2.1).

Now we show that we can write Gn(z) in the form (5.1.3). First we must lo-

cate the poles.

The poles ofGn lie along the 2n critical rays, which have arguments θj, j ∈ {0, 1, . . . , 2n− 1},
where θj = πj

n
, and they appear on all rays at points with modulus n

√
(2k + 1)π

(k ∈ N).

We label these zj,k, with j ∈ {0, 1, . . . , 2n− 1} and k ∈ N.

Next we calculate the residues of the poles. The residue at zj,k is equal to

aj,k =
i

nzk,jn−1
(5.3.1)
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Now let us check the convergence of
∑
j,k

∣∣∣∣ aj,kzj,km

∣∣∣∣. We have

∑
j,k

∣∣∣∣ aj,kzj,km

∣∣∣∣ = 2
∑
k

1

( n
√

(2k + 1)π)n+m−1

= c
∑
k

1

(2k + 1) · (2k + 1)
m−1
n

,

where c is a constant. This clearly converges for m ≥ 2.

Proposition 5.3.2. We have

Gn(z) =
1

eizn + 1
− 1

2

=
i

n

∑
j,k

(
1

zj,kn−1(z − zj,k)
− 1

zj,kn

)
=

iz

n

∑
j,k

1

zj,kn(z − zj,k)
,

with the zj,k defined as above.

Proof: We start by writing Gn(z) in the following manner.

Gn(z) =
1

eizn + 1
− 1

2
=

e−iz
n

1 + e−izn
− 1

2

=
inzn−1

inzn−1

e−iz
n

1 + e−izn
− 1

2

=
i

nzn−1

h′n(z)

hn(z)
− 1

2

= R(z)
h′n(z)

hn(z)
− 1

2
,

where hn(z) = 1 + e−iz
n , which is entire of order n, mean type, and R(z) is a

rational function.

If we now calculate m(r,Gn) we get

m(r,Gn) = m

(
r, R

h′

h
− 1

2

)
≤ m(r, R) +m

(
r,
h′

h

)
+O(1)

= O(log r), (5.3.2)

by the lemma of the logarithmic derivative (Lemma 1.1.15). Since we know that

N(r,Gn) = O(rn), we get T (r,Gn) = O(rn).
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Now we look at the function Fn(z), given as follows, using (5.3.1):

Fn(z) =
iz

n

∑
j,k

1

zj,kn(z − zj,k)

= z
∑
j,k

aj,k
zj,k(z − zj,k)

.

Using Keldysh’s upper bound for m(r, f) when f is a Keldysh Function (Theorem

1.6.2), we can calculate m(r, Fn) as follows. We write

m(r, Fn) ≤ m(r, z) +m

(
r,
Fn
z

)
+O(1),

and since Fn
z
is a Keldysh Function (with ak in the standard definition here replaced

by
aj,k
zj,kn

), we get that

m(r, Fn) ≤ log r + o(1) +O(1) = O(log r). (5.3.3)

If we now compare Fn and Gn, we observe that they have the same poles with the

same multiplicities and residues, so we can define an entire function Hn as follows.

We set

Hn = Fn −Gn.

Since Hn is entire, N(r,Hn) = 0, and from our calculations (5.3.2) and (5.3.3), we

get that m(r,Hn) = O(log r) and hence T (r,Hn) = O(log r). This tells us that

Hn is a polynomial. Next we show that this polynomial is in fact a constant.

We look at the ray given by

Γn = {z : arg z = − π

2n
}

As we move away from the origin along Γn, we clearly have |izn| → ∞, but we

also have arg(izn) = 0. This tells us that eizn = e|z|
n on Γn. Hence on Γn, Gn(z)

tends to −1
2
rapidly.

Let z be large, and lying on Γn. Since Γn lies in between two of the critical

rays of Gn, separated from them by an angle of π
2n
, we can calculate an lower

bound for |z − zj,k| as follows. We have

|z − zj,k| ≥ |zj,k|2 sin
( π

2n

)
= c1|zj,k|, (5.3.4)
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where c1 is a positive constant. The above inequality is obtained using basic

trigonometry, as the minimal case arises when z has equal modulus to one of the

|zj,k| and thus we can draw an isosceles triangle between z, zj,k and the origin.

For z as chosen before, we now consider the following decomposition of Fn. Write

Fn(z) =
N∑
k=1

zaj,k
zj,k(z − zj,k)

+
∞∑

k=N+1

zaj,k
zj,k(z − zj,k)

(5.3.5)

Take ε > 0. Looking at the second term in (5.3.5), and using (5.3.4), we can

choose N large enough so that∣∣∣∣∣
∞∑

k=N+1

zaj,k
zj,k(z − zj,k)

∣∣∣∣∣ ≤ |z|
c1

∞∑
k=N+1

|aj,k|
|zj,k|2

≤ ε|z|.

On the other hand, the first term in (5.3.5) is clearly a rational function, and the

polynomials in the numerator and denominator have the same order, hence it is

finite valued at infinity.

Choosing large N and also large z lying on Γn, we get

|Hn(z)| ≤ |F (z)|+ |G(z)| ≤ 2ε|z|.

However, we can choose ε to be arbitrarily small, which implies that Hn must in

fact be constant.

To calculate the value of this constant, we need merely compare the values of

Fn and Gn at any point which is not a pole. Looking at their values at 0, we get

Fn(0) = Gn(0) = 0,

and hence Hn(z) ≡ 0 and the functions are equal. These are therefore examples

of functions of the form (5.1.3) which satisfy the conditions of Theorem 5.1.1.
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Chapter 6

Further results in R3

This chapter returns to looking at potentials in real space, and by providing a cor-

recting term, shows results concerning the existence of critical points of potentials

with a weakened convergence criterion. The importance of this weakened criterion

is explained.

6.1 Introduction

This chapter focuses on potentials in R3 of the following form. Let

u(x) =
∞∑
k=1

ak

(
1

|x− xk|
− 1

|xk|

)
, (6.1.1)

where ak > 0, |xk| → ∞, |xk| ≤ |xk+1|, and

∞∑
k=1

ak
|xk|2

<∞. (6.1.2)

Lemma 6.1.1. The convergence criteria (6.1.2) is enough to ensure that (6.1.1)

also converges absolutely (with the exception of the points where x = xk).

Proof of Lemma 6.1.1

Looking at u(x) as defined in (6.1.1), we combine the fractions, and write it as

u(x) =
∞∑
k=1

ak(|xk| − |x− xk|)
|xk||x− xk|

. (6.1.3)
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Since |xk| − |x− xk| ≤ |x|,
∞∑
k=1

∣∣∣∣ak ( 1

|x− xk|
− 1

|xk|

)∣∣∣∣ ≤ ∞∑
k=1

ak|x|
|xk||x− xk|

.

Now we split this sum as follows, with R = |x|,
∞∑
k=1

∣∣∣∣ak ( 1

|x− xk|
− 1

|xk|

)∣∣∣∣ ≤ ∑
|xk|<2R

ak|x|
|xk||x− xk|

+
∑
|xk|≥2R

ak|x|
|xk||x− xk|

≤
∑
|xk|<2R

ak|x|
|xk||x− xk|

+ 2
∑
|xk|≥2R

ak|x|
|xk|2

,

and hence (6.1.2) is clearly enough to make (6.1.1) converge absolutely.

Notice that these potentials are not always positive, and have a weaker conver-

gence criterion (6.1.2) than the ones described in Chapter 1 (Definition 1.5.1) and

dealt with in [4, 19] and Chapter 2. We continue to use the same notation (n(r),

n(r)) as defined in Chapter 1, (1.5.2).

With the aim of showing the existence of critical points, the following theorems

have been proved. The first result considers the case where

lim sup
k→∞

|xk+1|
|xk|

> 1.

This represents a spacing of the xk.

Theorem 6.1.2. Let u(x) be given by (6.1.1), with |xk| ≥ 2δ > 0 and
∞∑
k=1

ak
|xk|

=∞.

Assume that there exist ε > 0 and a sequence rn →∞ such that

a) No xk lie in

rn < |x| < (1 + ε)rn; (6.1.4)

b)

lim sup
n→∞

rn
2

n(rn)

[∫ ∞
rn

1

t2
dn(t)

]
< ∞, (6.1.5)

and lim
n→∞

rn
n(rn)

[∫ rn

δ

1

t
dn(t)

]
= ∞. (6.1.6)

Then u(x) has infinitely many critical points.
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Remark - Using similar arguments to those in Chapter 1, Lemma 1.3.5 and in the

proof of Lemma 1.3.4, we can use condition (6.1.2) to rewrite conditions (6.1.5)

and (6.1.6) as follows:

lim sup
n→∞

rn
2

n(rn)

[∫ ∞
rn

n(t)

t3
dt

]
< ∞,

and lim
n→∞

rn
n(rn)

[∫ rn

δ

n(t)

t2
dt

]
= ∞.

Theorem 6.1.3. Let u(x) be given by (6.1.1), with |x1| = 2δ > 0, and
∞∑
k=1

ak
|xk|

=∞.

Suppose that there exists rn →∞ for which

n(2rn)

rn
log n(2rn) + rn

∫ ∞
2rn

1

t2
dn(t) = o

(∫ 2rn

δ

1

t
dn(t)

)
. (6.1.7)

Then u(x) has infinitely many critical points.

Remark - Both Theorems 6.1.2 and 6.1.3 require the condition that
∞∑
k=1

ak
|xk|

=∞.

However if
∞∑
k=1

ak
|xk|

<∞, we need not examine functions of the form (6.1.1), and

can instead look at functions as described by Definition 1.5.1 in Chapter 1, and

then apply results such as those in [4, 19] and Chapter 2.

6.2 Proof of Theorem 6.1.2

During this proof C will be used to designate a positive constant, but not neces-

sarily the same constant each time it appears.

Proposition 6.2.1. Let u(x) satisfy the hypotheses of Theorem 6.1.2. Then

lim inf
r→∞

M(r, u) = −∞.
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Proof of Proposition 6.2.1

Start by splitting the function u(x) into three parts as follows.

u(x) =
∑
|xk|>rn

ak

(
1

|x− xk|
− 1

|xk|

)
(6.2.1)

+
∑
|xk|≤rn

ak
|x− xk|

(6.2.2)

−
∑
|xk|≤rn

ak
|xk|

(6.2.3)

Define r′n = (
√

1 + ε)rn. Now notice that for |x| = r′n, and for all k,

|x− xk| ≥ C max{|x|, |xk|}. (6.2.4)

This holds by (6.1.4).

Now we look at the three parts of the decomposition separately. First look at

the term in (6.2.1).

Using the fact that |a+ b| ≥ ||a| − |b||, with a = xk, and b = x− xk, we get∑
|xk|>rn

ak

∣∣∣∣( 1

|x− xk|
− 1

|xk|

)∣∣∣∣ =
∑
|xk|>rn

ak

∣∣∣∣( |xk| − |x− xk||xk||x− xk|

)∣∣∣∣
≤

∑
|xk|>rn

ak
|x|

|x− xk||xk|

≤ C
∑
|xk|>rn

ak
|x|
|xk|2

= Crn
∑
|xk|>rn

ak
|xk|2

= Crn

∫ ∞
rn

1

t2
dn(t)

≤ C
n(rn)

rn
, (6.2.5)

using (6.1.5) and (6.2.4). Next we look at (6.2.2). Here∑
|xk|≤rn

ak
|x− xk|

≤ C

|x|
∑
|xk|≤rn

ak

= C
n(rn)

rn
, (6.2.6)
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using (6.2.4). Finally we look at (6.2.3). This time we write∑
|xk|≤rn

ak
|xk|

=

∫ rn

δ

1

t
dn(t). (6.2.7)

We combine (6.2.5), (6.2.6), and (6.2.7), to get that

u(x) ≤ C
n(rn)

rn
−
∫ rn

δ

1

t
dn(t)

Using (6.1.6), we obtain

M(r′n, u)→ −∞,

which proves Proposition 6.2.1.

Returning to the proof of Theorem 6.1.2, we can now apply Lemma 1.5.2 from

Chapter 1, to get that u(x) has infinitely many critical points, since u is evidently

harmonic apart from at the poles xk.

6.3 Proof of Theorem 6.1.3

Let rn be a sequence satisfying (6.1.7). As in the proof of Proposition 2.1.2 in

Chapter 2, we apply the method of Cartan’s Lemma [13, p.366] (see also Lemma

1.5.3 from Chapter 1) to the mass distribution
∑

akδxk on the spheres |x| = 2rn,

this time with

M = n(2rn), h =
rn
96
, and A = 6.

This gives us a union E1 of balls, having sum of radii at most rn
16
, such that for all

x outside of E1, we have

µ(x, 2rn, t) =
∑

|xk|≤2rn,|x−xk|≤t

ak

≤ Mt

eh
=

96n(2rn)t

ern
,

for 0 < t <∞.

We also write N = n(2rn), and take E2 to be the union of balls

E2 =
⋃

|xk|≤2rn

B
(
xk,

rn
16N

)
.
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Thus the balls of E = E1 ∪ E2 have sum of diameters at most
rn
4

and we may

choose an s ∈ [rn,
3rn
2

] such that the sphere |x| = s meets none of the balls of E.

This then gives, for |x| = s,

∑
|xk|≤2rn

ak
|x− xk|

≤
∫ 4rn

rn
64N

1

t
dµ(x, 2rn, t)

=
1

(4rn)
µ(x, 2rn, 4rn) +

∫ 4rn

rn
64N

µ(x, 2rn, t)

t2
dt

−
(

64N

rn

)
µ
(
x, rn,

rn
64N

)
≤ C

(
n(2rn)

rn
+
n(2rn)

rn

∫ 4rn

rn
64N

1

t
dt

)

≤ C

(
n(2rn)

rn
+
n(2rn)

rn
log n(2rn)

)
≤ o

(∫ 2rn

δ

1

t
dn(t)

)
(6.3.1)

using (6.1.7). Now we write

u(x) =
∑
|xk|>2rn

ak

(
1

|x− xk|
− 1

|xk|

)
+

∑
|xk|≤2rn

ak
|x− xk|

−
∑
|xk|≤2rn

ak
|xk|

,

and note that, for |x| = s,∑
|xk|>2rn

ak

∣∣∣∣ 1

|x− xk|
− 1

|xk|

∣∣∣∣ =
∑
|xk|>2rn

ak

∣∣∣∣ |xk| − |x− xk||xk||x− xk|

∣∣∣∣
≤

∑
|xk|>2rn

ak
|x|

|x− xk||xk|
.

But since |x| = s ∈ [rn,
3rn
2

], we have

|x− xk| ≥ |xk| − |x| ≥
|xk|
4

72



Chapter 6: Further results in R3

for |xk| > 2rn, which gives∑
|xk|>2rn

ak
|x|

|x− xk||xk|
< C

∑
|xk|>2rn

ak
|x|
|xk|2

≤ Cs
∑
|xk|>2rn

ak
|xk|2

≤ Cs

∫ ∞
2rn

1

t2
dn(t)

≤ Crn

∫ ∞
2rn

1

t2
dn(t)

≤ o

(∫ 2rn

δ

1

t
dn(t)

)
, (6.3.2)

using (6.1.7). On the other hand,

∑
|xk|≤2rn

ak
|xk|

=

∫ 2rn

δ

1

t
dn(t). (6.3.3)

Now we combine (6.3.1), (6.3.2) and (6.3.3), to get for |x| = s,

u(x) ≤ o

(∫ 2rn

δ

1

t
dn(t)

)
+ o

(∫ 2rn

δ

1

t
dn(t)

)
−
∫ 2rn

δ

1

t
dn(t)

= (−1 + o(1))

∫ 2rn

δ

1

t
dn(t)

= (−1 + o(1))
∑
|xk|≤2rn

ak
|xk|

.

Since
∑ ak
|xk|

is divergent the last term tends to −∞ as n→∞, so that

lim inf
r→∞

M(r, u) = −∞.

Hence we can once again apply Lemma 1.5.2 from Chapter 1 to get that u(x) has

infinitely many critical points.
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6.4 Examples Satisfying the Hypotheses of Theo-

rems 6.1.2 and 6.1.3

Conditions (6.1.5) and (6.1.6) are satisfied by functions with the property

C1r(log r)d ≤ n(r) ≤ C2r(log r)d, (6.4.1)

where d is a positive integer, and 0 < C1 ≤ C2.

To prove this we require the following two integrals.∫ b

a

(log t)d

t2
dt =

[
−1

t

d∑
i=0

d!(log t)d−i

(d− i)!

]b
a∫ b

a

(log t)d

t
dt =

[
1

d+ 1
(log t)d+1

]b
a

Using these and the alternative forms of conditions (6.1.5) and (6.1.6) provided

immediately after the statement of the theorem, we can see that for a function

satisfying (6.4.1) we get

rn
2

n(rn)

[∫ ∞
rn

n(t)

t3
dt

]
≤ rn

C1(log rn)d

[∫ ∞
rn

C2(log t)d

t2
dt

]
≤ C2rn

C1(log rn)d
1

rn

d∑
i=0

d!(log rn)d−i

(d− i)!
<∞,

and
rn

n(rn)

[∫ rn

δ

n(t)

t2
dt

]
≥ 1

C2(log rn)d

[∫ rn

δ

C1(log t)d

t
dt

]
≥ C1

C2(log rn)d

(
1

d+ 1
(log rn)d+1 +O(1)

)
∼ C3 log rn →∞,

with C3 > 0, and hence both criteria are satisfied.

Notice that if n(r) = rq, with q > 1, condition (6.1.6) is not satisfied, although if

q ≥ 2 then the convergence criterion (6.1.2) will also not be satisfied.

We give an explicit construction which satisfies the hypotheses of Theorems 6.1.2

and 6.1.3. Let λ > 1, and 0 < C1 < C2, and choose xk, ak with

C1λ
k ≤ |xk| ≤ C2λ

k

C1λ
k ≤ ak ≤ C2λ

k.
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for all k ∈ N. Then it is evident that there are constants C4 > C3 > 0 such that

C3r ≤ n(r) ≤ C4r

C3 log r ≤ n(r) ≤ C4 log r

for all large r.

Moreover, with Cj representing positive constants, we have∫ ∞
r

1

t2
dn(t) =

∑
|xk|>r

ak
|xk|2

≤ C5

∑
|xk|>r

1

|xk|

≤ C6

r

and, with δ small, ∫ r

δ

1

t
dn(t) =

∑
|xk|≤r

ak
|xk|

≥
∑
|xk|≤r

C7 = C7n(r).

Then the integral conditions in Theorems 6.1.2 and 6.1.3 are clearly satisfied, and

since |xk| ≥ C1λ
k it is clear that (6.1.4) is satisfied for arbitrarily large rn, provided

ε is chosen small enough.
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Appendix A

Appendix

In order to try and gain evidence as to whether Conjecture 1.6.1 is true or not,

some computer simulations were run in MATLAB. This Appendix explains the

way the simulations were run, contains the results of these simulations, and the

programs used.

A.1 Problems with and Reasons for Computer Sim-

ulation

The main problem with running computer simulations of Keldysh Functions is

that Keldysh Functions consist primarily of an infinite number of summed ele-

ments, and clearly a computer cannot handle a function given in such a form.

However, a computer can cope with a finite number of these elements, so it was

such functions that were simulated in MATLAB.

The other main problem with computer simulation is that it is highly unlikely

that a computer will be able to find an actual zero of the function. All it can do

is find places where the function is very small, and we have to just hope that this

indicates that there is a zero nearby.

The Basic Idea

We already know that in the case where we have only N poles or point charges,

the function will have N −1 zeros (see Example 1.3.2), but we do not know where
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these will lie. The idea behind running these simulations was to observe where

the zeros lie as we increase the value of N .

If as the number of poles N increases, the zeros move further away from the

origin, then it is possible that in the limiting case they may no longer exist. How-

ever, if instead they cluster close to the origin, then, although speculative, it seems

likely that they will still be there in the infinite case.

To this end, the following program randomly generates a user specified number of

poles (zk), with their corresponding (positive) charges (ak), and finds points where

the function is very small. We will however, for brevity, refer to these as zeros.

The program then draws a graph of where the poles are, and where the zeros lie.

It then calculates as a percentage of the total number of zeros, the number of them

which lie close to the origin, and also the number that lie far away. It also has

a repeat option so that you can get it to run repeatedly, storing the results each

time, and then perform basic statistical analysis. We note from Chapter 1 that

all the actual zeros of such a function will lie in the convex hull of the zk, and so

we will limit our search to that region.

To this end, the program was run 1000 times with 100 zk, and also 1000 times

with 1000 zk. The results of these runs are given below. It is worth noting that

the second of these runs required 9 days computing time to complete.

Please note that this program is not entirely written by the author. A simpler

version of this program was gratefully received from Lee Johnson from Virginia

Tech University, which required the user to manually input the locations and

charges of three points into the code, and the program then found and graphed

the points where the function was very small. The modified program presented

here represents the author’s adaptation of Lee Johnson’s program.

A.2 The Results

All the zk were placed randomly inside the square with corners {(−10+10i), (10+

10i), (10 − 10i), (−10 − 10i)}. To each zk an ak was also randomly generated
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taking values in the interval [0, 10]. When a zero is referred to as being ’close’ to

the origin, we actually mean within a disk of radius 2. When a zero is referred to

as being ’far away’ from the origin, we mean outside a disk of radius 7. Here is a

table of the results of the simulations.

100 charges 1000 charges

Averaged % zeros Far Away 3.64 1.19

Averaged % zeros Close 29.45 36.49

Standard Deviation of Far Away %s 4.55 0.78

Standard Deviation of Close %s 16.45 5.63

As evidenced by the results, as the number of charges increases, not only does

the number of them packed close to the origin rise, but the number close to the

extremes also drops significantly. On top of this, the standard deviation drops

significantly, which implies that the models are getting more consistent, although

this could be merely because with the larger number of generated points, the

distribution is more uniform. Based upon the argument explained above, this

provides evidence that the Conjecture 1.6.1 is probably true.

Here is an example of the output graph for a run with 100 zk. The crosses represent

the location of the zk, and the circles are where zeros have been found.
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A.3 The Program Used

Here is a copy of the program printed verbatim, with the line numbers included.

The program was split into six parts, with testcase.m being the main body of the

program, and the other five parts being additional functions.

testcase.m

1. Fardistance=[];

2. Closedistance=[];

3. for k=1:1000

4. %For multiple tests, change above to the number required,

5. %also cancel lines 33 and 34 below, as well as lines 13 and 14

6. %in f program.

7. sizefactor=10;

8. %Note to make it a random size up to maximum M, replace the 10

9. %above with rand*M (choose M)

10. rmin=1.e-03;

11. ftol=1.e-08;

12. itmax=500;

13. maxnorm=2*sizefactor;

14. wxy=[0 0];

15. reals = [];

16. imags = [];

17. consts=[];

18. crosses =[];

19. stopgen=[0];

20. counter=[];

21. bigcounter=[];

22. for i=1:1000

23. y=-(0.5*sizefactor)+i*(0.001*sizefactor);

24. x=0.1;

25. ws=[x;y];

26. [wend,fnorm,ierr,stopgen, reals,imags, consts,crosses]=

qn(ws,rmin,ftol,itmax, stopgen, reals,imags, consts,crosses, sizefactor);

27. if norm(wend) < maxnorm

28. wxy=[wxy;wend’];
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29. end

30. end

31. npoints=length(wxy);

32. hold all

33. plot(wxy(2:npoints,1),wxy(2:npoints,2),’o’)

34. plot(crosses(1:100),’r+’)

35. for i=2:npoints

36. if norm(wxy(i,:)) < (0.2*sizefactor)

37. counter=[1,counter];

38. end

39. end

40. small = length(counter);

41. Close = small/npoints;

42. for i=2:npoints

43. if norm(wxy(i,:)) > (0.7*sizefactor)

44. bigcounter=[1,bigcounter];

45. end

46. end

47. big = length(bigcounter);

48. Far = big/npoints;

49. Fardistance=[Far,Fardistance];

50. Closedistance=[Close, Closedistance];

51. end

52. AverageFar=(sum(Fardistance)/length(Fardistance))

53. AverageClose=(sum(Closedistance)/length(Closedistance))
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qn.m

1. function [wend,fnorm,ierr, stopgen, reals,imags, consts, crosses]=

qn(ws,rmin,ftol,itmax, stopgen, reals,imags, consts, crosses, sizefactor)

2. %

3. % assume ws and fws are column vectors

4. %

5. sz=size(ws);

6. n=sz(1)*sz(2);

7. ierr=1;

8. itctr=0;

9. [fws, stopgen, reals,imags, consts, crosses]=

f(ws, stopgen, reals,imags, consts, crosses, sizefactor);

10. %

11. % main loop

12. %

13. while ierr > 0

14. if itctr > itmax

15. ierr=-1;

16. wend=ws;

17. fnorm=(fws’*fws)/2;

18. return

19. else

20. itctr=itctr+1;

21. [a, stopgen, reals,imags, consts, crosses]=

jacob(ws,fws,n, stopgen, reals,imags, consts, crosses, sizefactor);

22. [dir, stopgen, reals,imags, consts, crosses]=

direction(fws,a, stopgen, reals,imags, consts, crosses, sizefactor);

23. [wnew,fnew,ierr, stopgen, reals,imags, consts, crosses]=

linesearch(ws,fws,dir,rmin, stopgen, reals,imags, consts, crosses, sizefactor);

24. if ierr < 0

25. wend=ws;

26. fnorm=(fws’*fws)/2;

27. return

28. end

29. ws=wnew;

30. fws=fnew;
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31. fnorm=(fws’*fws)/2;

32. if fnorm < ftol

33. wend=ws;

34. return

35. end

36. end

37. end
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f.m

1. function [y, stopgen, reals,imags, consts, crosses]=

f(x, stopgen,reals,imags, consts, crosses, sizefactor)

2. while length(stopgen) <= 1

3. crosses = [];

4. for j=1:1000

5. real_part = 2*sizefactor*(rand-0.5);

6. im_part = 2*sizefactor*(rand-0.5);

7. const_part = sizefactor*rand;

8. reals=[reals,real_part];

9. imags=[imags, im_part];

10. consts=[consts,const_part];

11. compole = complex(real_part, im_part);

12. v=[compole];

13. constvals = sprintf(’const_part = %4.2f,

real_part = %4.2f, im_part = %4.2f’, const_part, real_part, im_part);

14. disp(constvals);

15. crosses = [crosses;v];

16. stopgen = [stopgen;1];

17. end

18. end

19. functs=[];

20. for j=1:1000

21. par1 = consts(j) *

(x(1)-reals(j))/((x(1)-reals(j))^2 + (x(2)-imags(j))^2)^1.5;

22. par2 = consts(j) *

(x(2)-imags(j))/((x(1)-reals(j))^2 + (x(2)-imags(j))^2)^1.5;

23. u=[par1, par2];

24. functs = [functs;u];

25. end

26. summedfunct = sum(functs);

27. yx = summedfunct(1);

28. yy = summedfunct(2);

29. y = -[yx; yy];
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linesearch.m

1. function [wnew,fnew,ierr, stopgen, reals,imags, consts, crosses]=

linesearch(ws,fws,dir,rmin, stopgen, reals,imags, consts, crosses, sizefactor)

2. ierr=1;

3. fnormold=fws’*fws;

4. r=2;

5. for i=1:20

6. r=r/2;

7. if r < rmin

8. ierr=-2;

9. return

10. end

11. wnew=ws+r*dir;

12. [fnew, stopgen, reals,imags, consts, crosses]=

f(wnew, stopgen, reals,imags, consts, crosses, sizefactor);

13. fnormnew=fnew’*fnew;

14. if fnormnew < fnormold

15. return

16. end

17. end
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jacob.m

1. function [a, stopgen, reals,imags, consts, crosses]=

jacob(ws,fws,n, stopgen, reals,imags, consts, crosses, sizefactor)

2. for i=1:n

3. wpert=ws;

4. h=1e-01*(1+abs(ws(i)));

5. wpert(i)=wpert(i)+h;

6. [fpert, stopgen, reals,imags, consts, crosses]=

f(wpert, stopgen, reals,imags, consts, crosses, sizefactor);

7. a(:,i)=(fpert-fws)/h;

8. end

direction.m

1. function [dir, stopgen, reals,imags, consts, crosses]=

direction(fws,a, stopgen, reals,imags, consts, crosses, sizefactor)

2. dir=-(a\fws);
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