COORDINATION CHEMISTRY OF GUANIDINE DERIVATIVES

by

Charles H.M. Moore, B.Sc.

Thesis submitted to the University of Nottingham for the Degree of Doctor of Philosophy, October 1987.

ACKNOWLEDGEMENTS

The Author is indebted to his supervisor, Dr P. Hubberstey for his invaluable guidance and encouragement throughout the course of the research project, and to members of the Chemistry Department for their assistance and enlightening discussion.

Similarly, the Author thanks his wife and parents for their support and the Science and Engineering Research Council for provision of a maintenance grant.

Finally, the Author wishes to thank Miss J. Shadforth for the efficient preparation of this typescript.

To Annie.

ABSTRACT

This thesis describes an investigation of the coordination chemistry of 1-cyanoguanidine (cnge), 1-carbamoylguanidine (clge) and 1-amidino-O-ethylurea (aOeu). Various copper(II) complexes of these analogous molecules were synthesised and characterised using mainly X-ray crystallographic and spectroscopic (infrared and UV-visible) techniques.

Only bis (cnge) complexes were observed for copper(II) ions. The monodentate cnge ligands coordinated the copper(II) via their nitrile nitrogen atoms which were located in trans equatorial positions of the copper(II) ions's tetragonally distorted octahedral coordination sphere. Comparison of the infrared spectra of the complexes with that of cnge indicated that the spectra were highly diagnostic of coordination to the copper(II) ion.

Clge exhibited amphoteric properties; the neutral, anionic and cationic derivatives formed complexes with the copper(II) ion. Whereas the former pair gave bis chelate complexes, the latter derivatives acted merely as a cation and was remote from the copper(II) ion's coordination sphere. Complexation of the neutral molecule resulted in a proton transfer from a terminal amine group to a central nitrogen atom permitting chelation via an imine nitrogen atom and a carbonyl oxygen atom to give a square planar CuN₂O₂ chromophore. The structural ramifications of this tautomeric shift were near identical to those observed upon cation formation which occurred by protonation of the central nitrogen atom of the uncoordinated neutral molecule. Unequivocal structural data could not be obtained for the complex of the anionic derivative. Spectroscopic analysis indicated, however, that chelation occurred via two imine nitrogen atoms to give a square planar CuN₄ chromophore.

Ethanolysis of cnge was effected in the presence of copper(II) ions and ethanol producing complexes of aOeu with a metal:ligand ratio of 1:1 or 1:2. In both complexes the ligand(s) chelated the copper(II) ion via two imine nitrogen atoms. The former complex, a dimer, exhibited a square pyramidal CuN_2X_3 chromophore (X=Cl,Br) whilst the latter complex was a bis chelate with a square planar CuN_4 chromophore.

Monitoring the UV-visible and infrared spectra of ethanol solutions containing copper(II) chloride and cnge, indicated the presence of a plethora of reactions. However, it was concluded that initially mono and/or bis(cnge)copper(II) complexes, of low stability, were present in equilibrium with the reactants. Subsequently, ethanolysis of coordinated cnge occurred producing mono(aOeu)copper(II) complexes. Series first order kinetics approximated to those of the ethanolysis reaction. The ethanolysis process was then repeated to give the final product a bis(cnge)copper(II) complex. CONTENTS

		raye
nts		i
		iii
INTE	RODUCTION	1
1.1	General Introduction	1
1.2	Chemistry of l-Cyanoguanidine	2
1.3	Chemistry of l-Carbamoylguanidine	5
1.4	Chemistry of l-amidino-O-alkylureas	8
1.5	Chemistry of the Copper(II) Ion	10
1.6	Physical Methods of Structural Analysis	21
COPF	PER(II) COMPLEXES OF 1-CYANOGUANIDINE	30
2.1	Introduction	30
2.2	Experimental	32
2.3	The Crystal and Molecular Structure of	
	Bis(l-cyanoguanidine)di-µ-aquocopper(II)	
	Dinitrate Dihydrate	34
2.4	Thermal Behaviour of Hydrated Copper(II)-	
	(l-cyanoguanidine) Complexes	45
2.5	Anhydrous Copper(II)-(l-cyanoguanidine)	
	Derivatives	49
2.6	Vibrational Spectroscopy of Copper(II)-	
	(l-cyanoguanidine) Complexes	49
2.7	Conclusions	62
COPP	PER(II) COMPLEXES OF 1-CARBAMOYLGUANIDINE	66
3.1	Introduction	66
3.2	Experimental	70
3.3	The Crystal and Molecular Structures of	
	the l:l Ethanol Adduct of l-(Carbamoyl-	
	guanidine) and of Bis(l-carbamoyl-	
	guanidine)dinitratocopper(II)	74
3.4	Spectroscopic Properties	96
	 1.1 2 3 4 5 6 COPF 2.1 2.2 3 2.4 2.5 2.6 2.7 COPF 3.1 3.2 3.3 	<pre>INTRODUCTION 1.1 General Introduction 1.2 Chemistry of 1-Cyanoguanidine 1.3 Chemistry of 1-Carbamoylguanidine 1.4 Chemistry of 1-amidino-O-alkylureas 1.5 Chemistry of the Copper(II) Ion 1.6 Physical Methods of Structural Analysis COPPER(II) COMPLEXES OF 1-CYANOGUANIDINE 2.1 Introduction 2.2 Experimental 2.3 The Crystal and Molecular Structure of Bis(1-cyanoguanidine)di-µ-aquocopper(II) Dinitrate Dihydrate 2.4 Thermal Behaviour of Hydrated Copper(II)- (1-cyanoguanidine) Complexes 2.5 Anhydrous Copper(II)-(1-cyanoguanidine) Derivatives 2.6 Vibrational Spectroscopy of Copper(II)- (1-cyanoguanidine) Complexes 2.7 Conclusions COPPER(II) COMPLEXES OF 1-CARBAMOYLGUANIDINE 3.1 Introduction 3.2 Experimental 3.3 The Crystal and Molecular Structures of the 1:1 Ethanol Adduct of 1-(Carbamoy1- guanidine) dinitratocopper(II)</pre>

v

Dago

vi

Page

Chapter Four	SALT	S AND COPPER(II) COMPLEXES OF THE	
	1-CARBAMOYLGUANIDINIUM CATION		
	4.1	Introduction	106
	4.2	Experimental	109
	4.3	The Crystal and Molecular Structures of	
		l-Carbamoylguanidinium Perchlorate and of	
		Di(l-carbamoylguanidinium)diaquotetra-	
		chlorocuprate(II)	114
	4.4	Spectroscopic Properties	131
Chapter Five	СОРР	ER(II) COMPLEXES OF THE 1-CARBAMOYL-	
	GUAN	IDATE ANION	139
	5.1	Introduction	139
	5.2	Experimental	145
	5.3	Results and Discussion	146
Chapter Six	СОРР	ER(II) COMPLEXES OF 1-AMIDINO-O-ETHYLUREA	157
	6.1	Introduction	157
	6.2	Experimental	162
	6.3	The Crystal and Molecular Structures of	
		the Bis(l-amidino-O-ethylurea)dichlorodi-	
		μ -chlorodicopper(II) Dimer, of Bis(1-	
		amidino-O-ethylurea)copper(II) Dichloride	
		Dihydrate and of Bis(1-amidino-O-ethylurea)-	
			165
	6.4	Dihydrate and of Bis(l-amidino-O-ethylurea)-	
<u>Chapter Seven</u>		Dihydrate and of Bis(l-amidino-O-ethylurea)- copper(II) Dibromide	165
<u>Chapter Seven</u>	THE	Dihydrate and of Bis(l-amidino-O-ethylurea)- copper(II) Dibromide Spectroscopic Properties	165
<u>Chapter Seven</u>	THE	Dihydrate and of Bis(l-amidino-O-ethylurea)- copper(II) Dibromide Spectroscopic Properties COPPER(II) CHLORIDE-1-CYANOGUANIDINE-ETHANOL	165 192
<u>Chapter Seven</u>	THE SYST 7.1	Dihydrate and of Bis(l-amidino-O-ethylurea)- copper(II) Dibromide Spectroscopic Properties COPPER(II) CHLORIDE-1-CYANOGUANIDINE-ETHANOL EM: AN INFRARED SPECTROSCOPIC STUDY	165 192 200

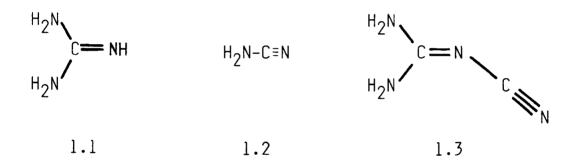
vii

Page

Chapter Eight	THE	COPPER(II) CHLORIDE-1-CYANOGUANIDINE-ETHANOL	
	SYST	EM: A UV-VISIBLE SPECTROSCOPIC STUDY	212
	8.1	General Introduction and Preliminary	
		Experiments	212
	8.2	The Initial Equilibria Present in the	
		CuCl ₂ -cnge-EtOH System: The Stoichiometry	
		of the Species in Solution	220
	8.3	The Initial Equilibria Present in the	
		CuCl ₂ -cnge-EtOH System: The Stability	
		of the Species in Solution	232
	8.4	The Kinetics and Mechanism of the	
		Ethanolysis Reactions Occurring in the	
		CuCl ₂ -cnge-EtOH System	248
	8.5	General Conclusions	261
Appendix A	NON	STRUCTURAL DATA	
Appendix D	ADAD		

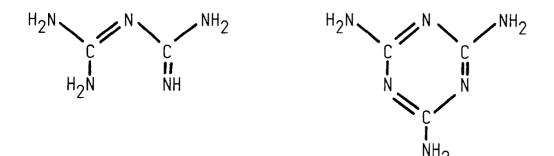
Appendix B OBSERVED AND CALCULATED STRUCTURE FACTORS

References


Publications

CHAPTER ONE

INTRODUCTION

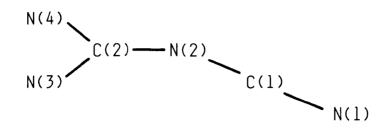

1.1 General Introduction

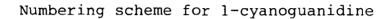
Molecules with a nitrogen to carbon ratio of 1:1 or greater, including guanidine (1.1) and its derivatives, are extensively employed in the modern chemicals industry. Typical of this type of compound are cyanamide (1.2) and 1-cyanoguanidine (1.3).

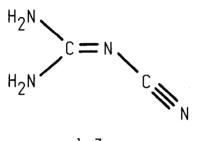
Cyanamide is mainly used as the precursor to l-cyanoguanidine but has been utilized as a fertilizer, a weedkiller and in the treatment of alcoholics.¹

1-Cyanoguanidine will form a myriad of polymers and resins, and is sometimes used to enhance their flow or fire retardent properties. Other applications are in the preparation of guanidine salts, biguanide (1.4) and a host of nitrogen heterocycles such as melamine (1.5).¹

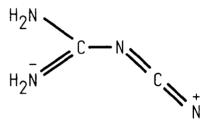
Presented in this thesis are the results of an investigation into the coordination chemistry of 1-cyanoguanidine, 1-carbamoylguanidine and 1-amidino-Oethylurea. Single crystal X-ray diffraction and spectroscopic (i.r. and UV-visible) data are reported for various copper(II) complexes containing these ligands.

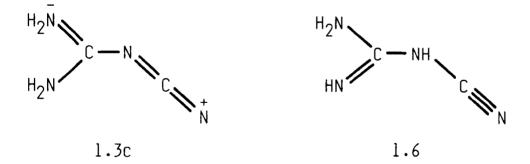

There follows a series of sections introducing each of the ligands, the properties of copper(II) complexes and the main experimental techniques.


1.2 The Chemistry of 1-Cyanoguanidine


l-Cyanoguanidine* (cnge) is the dimer of cyanamide and was first observed by Beilstein and Geuther² during the evaporation of an aqueous solution of cyanamide. It is manufactured on an industrial scale by heating an alkaline solution (pH 8-9) of cyanamide (25%) at 80°C for 2 hours.¹ The material is also formed when cyanamide is kept in a molten state at 48°C for 48 hours.³

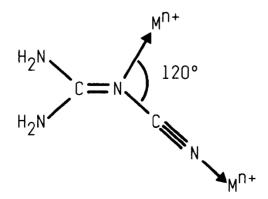
Cnge is a white solid melting at 208-211°C. It is available at 97% purity and can be readily recrystallised from water. It is moderately soluble in ethanol and sparingly soluble in acetone.


The crystal and molecular structures of cnge have been investigated by single crystal X-ray and neutron diffraction methods.^{4,5,6,7} The positions of the hydrogen atoms have been accurately determined and they show that cnge adopts a 'diamino' form (1.3a) rather than



1.3a

1.3b



The results of ab initio molecular orbital calculations also indicate that form 1.3a is the energetically most favourable.⁸

The cnge molecule, including the hydrogen atoms, is planar and bond lengths and angles reveal extensive electron delocalisation throughout the C-N skeleton. This implies that form 1.3a does not completely describe the electron distribution about the cnge molecule and that other forms such as 1.3b and 1.3c must be considered to contribute to the overall electronic structure.

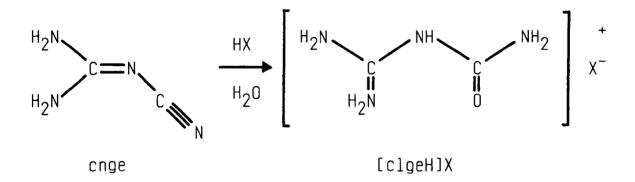
From its molecular and electronic structures it can be inferred that cnge could act as a ligand to metal ions. It could ligate via the donation of the lone pairs of electrons on the nitrile or imino nitrogens, N(1) and N(2) respectively. Bonding to metal ions is not possible through either of the amino nitrogens, N(3) or N(4), as each nitrogen is sp^2 hybridised, evidenced by the amino hydrogen atoms lying in the same plane as the C-N skeleton. Hence the lone pair of electrons on the nitrogen atom is delocalised and not available for donation.

Cnge has the potential to act as a monodentate ligand bonding to the metal ion via either N(1) or N(2) or a bidentate ligand bridging two metal ions by using both N(1) and N(2) as donors (Figure 1.1).

4

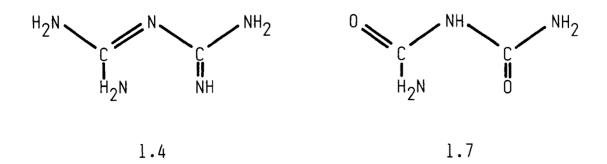
It would, however, seem unlikely that cnge could chelate a metal ion via N(1) and N(2); the geometry of the N(1)-C(1)-N(2)-C(2) fragment is such that the vectors along which the lone pairs of N(1) and N(2) lie are in the same plane at an angle of $\sim 120^{\circ}$ to each other.

A hydrogen transfer between nitrogens within the cnge molecule, as observed on coordination of other ligands (e.g. biguanide), could produce several tautomers similar to form 1.6 which might coordinate via N(1), N(3) or N(4).

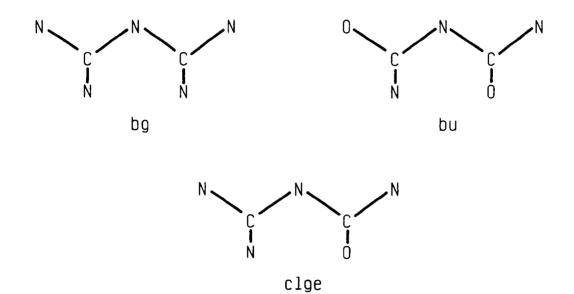

A readily accessible property of metal-cnge complexes which could distinguish between the various possible modes of cnge coordination, is their vibrational spectra. The infrared spectrum of cnge has been investigated by Jones and Orville-Thomas.⁹ They assigned many of the absorption bands to vibrations of cnge that could prove to be diagnostic of coordination to a metal ion.

In this work, single crystal X-ray diffraction methods have been used to determine the structure of a copper(II)-cnge complex and a correlation with the infrared spectrum has been attempted.

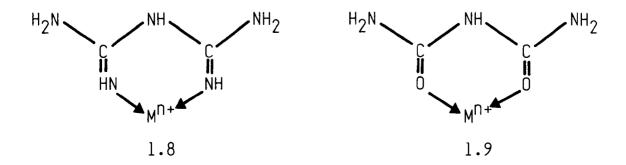
1.3 The Chemistry of 1-Carbamoylguanidine

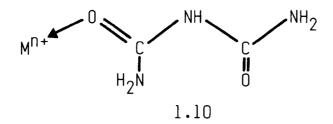

Although 1-cyanoguanidine has been deprotonated to give M⁺[cnge]⁻ type compounds,¹⁰ the protonated form [cngeH]⁺ has not been observed.

In acidic aqueous solution cnge is not protonated but is hydrolised to give the acid salt of l-carbamoylguanidine ([clgeH]X). The hydrolysis was noted as early


as 1862 by Haag,¹¹ since when, 1-carbamoylguanidine has been referred to in the literature by several pseudonyms.* It is possible to deprotonate [clgeH]⁺ to give the neutral 1-carbamoylguanidine molecule (clge) and removal of another proton produces the anionic 1-carbamoylguanidine moiety ([clge]⁻). With the possibility of several ionic forms and a wide variety of nomenclature, the literature is often difficult to follow, however, [clgeH]⁺ and [clge]⁻ are most commonly encountered with little mention made of clge.

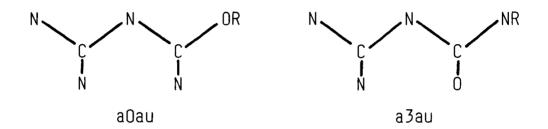
l-Carbamoylguanidine is analogous to biguanide (bg, l.4) and biuret (bu, l.7).




Biguanide is known in neutral¹² (bg), cationic^{13,14} ([bgH]⁺), dicationic¹³ ([bgH₂]²⁺), and anionic¹⁵ ([bg]⁻) forms, whilst biuret is known in neutral^{16,17} (bu), and anionic¹⁸ ([bu]²⁻) forms.

Consideration of the C-N-O skeletons of clge, bg and bu shows clge to be structurally intermediate between bg and bu.

Both bg and bu coordinate metal ions; this is the basis of the 'biuret test' which is used in the detection of peptide linkages.^{19,20} Bg chelates via two imino nitrogens²¹ (1.8), whilst bu chelates via two carbonyl oxygens²² (1.9) or acts as a monodentate ligand coordinating via one carbonyl oxygen²³ (1.10).


It must be noted that to facilitate chelation a hydrogen shift occurs for bg and a conformational change occurs for bu. Thus, just considering the coordination properties of the clge molecule only, several possibilities for both tautomers and coordination modes can be envisaged. If the other ionic forms of clge are also considered then a plethora of structures can be imagined.

By analogy to previous investigations of the chemistry of coordinated bg and bu, X-ray crystallography and vibrational spectroscopy are the two techniques which have been employed in this study to establish the coordination properties of clge compounds.

1.4 The Chemistry of 1-Amidino-O-Alkylureas

l-Cyanoguanidine is subject to solvolysis by water to produce l-carbamoylguanidine as described in Section 1.3. It is also known that solvolysis of cnge can be effected by alcohols in the presence of copper(II) salts.^{24,25,26} Although this reaction has been known for many years, the exact identity of the products is unknown. Copper(II) complexes of l-amidino-O-alkylureas (aOau) and l-amidino-3-alkylureas (a3au) have both been 8

proposed as the products of the reaction. Recent chemical evidence²⁷ favours the formation of aOau rather than aJau, but no data is available to indicate how the ligand is attached to the transition metal. Consideration of the C-N-O skeletons of aOau and aJau implies coordination modes that are comparable to bg, for aOau, and to clge, for aJau.

Despite the availability of these results in the literature, it has been recently reported, on the basis of a study of the reaction of cnge with copper(II) salts in refluxing ethanol, that solvolysis did not occur, the products being described as copper(II)-cnge complexes.²⁸

In this study X-ray diffraction methods have been used to determine the identity of the products and the mode of coordination of the ligands.

The kinetics and mechanisms of the alcoholysis of cnge in the presence of copper(II) salts have not been studied. Structural details of complexes that can be isolated from a reaction mixture are obviously of value in determining the species present in solution. Techniques which examine the solution state are, however, much more effective. Consequently, in situ infrared and UV-visible spectroscopic methods have been used to examine this reaction.

1.5 Chemistry of the Copper(II) Ion

1.5.1 Simple copper(II) compounds

Copper (Cu) (electronic configuration $(Ar)3d^{10}4s^{1}$) is known with oxidation states I, II, III and IV. Most common are oxidation states I to III with IV being known for a single hexafluoro complex.²⁹

Under normal conditions copper(II) compounds are favoured. Thus copper(I) is fairly readily oxidised to copper(II) whilst further oxidation to copper(III) is more difficult.

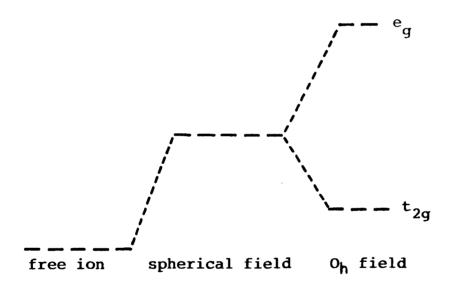
Copper(II) compounds have been exclusively studied in this thesis.

A large number of simple copper(II) salts can be formed which are predominantly water soluble and often crystallize as hydrates. The best known salt, $CuSO_4.5H_2O$ (blue vitriol), is widely used in industry for electroplating, as a fungicide for crops (Bordeaux mixture) and as an algicide for water treatment. Indeed, the latter property of copper was unknowingly utilized in ancient Persia where, by law, drinking water had to be stored in bright copper vessels.

The aqueous solutions are blue in colour due to the formation of the $[Cu(H_2O)_6]^{2+}$ ion and are prone to slight hydrolysis. Unless stabilised by small amounts of acid they will deposit basic salts.

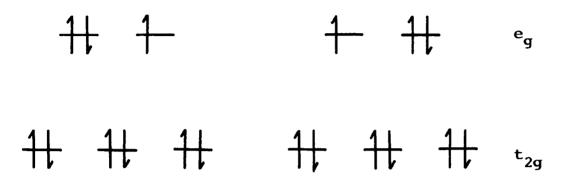
1.5.2 Copper(II) Complexes

Copper(II) will form complexes with mono and multidentate ligands, particularly those with nitrogen or oxygen ligating atoms. Coordination numbers of four, five and six predominate, but regular geometries are rare. The vast majority of complexes are coloured with colours of purple-blue-green-yellow being frequently found. Varying either the coordination number or the type of ligand results in a colour change. Copper(II) complexes also exhibit paramagnetic properties corresponding to one unpaired electron or less.


To account for the irregular geometries and interpret the spectral and magnetic properties, it is necessary to consider the ground and excited electronic states of the copper(II) ion in a variety of environments.

The copper(II) ion has a $3d^9$ outer electronic configuration. The unpaired electron present has an orbital angular momentum quantum number (1) of 2 and as there is only one unpaired electron the total orbital angular momentum (L) is 2, implying a D spectroscopic state. The total spin angular momentum (S) is $\frac{1}{2}$ and therefore the spin multiplicity, given by 2S+1, is 2. Hence, the free copper(II) has a 2D state.

To examine how the spectroscopic state is affected by coordination, it is first necessary to examine the symmetry properties of the d orbitals in crystal fields of varying symmetry. The relative energy levels of the d orbitals must then be determined and then the spectroscopic states may be evaluated by filling the orbitals with the nine d electrons of copper(II).


The principles of this analysis are easily demonstrated by firstly considering the copper(II) ion in an octahedral environment and then tetragonally elongating the octahedron to produce coordination symmetries closely related to the structures determined in this thesis.

In an octahedral (O_h) environment, the energy of the d orbitals is increased and they are split into two groups (Figure 1.2). The d_z^2 and $d_x^2 - y^2$ are increased

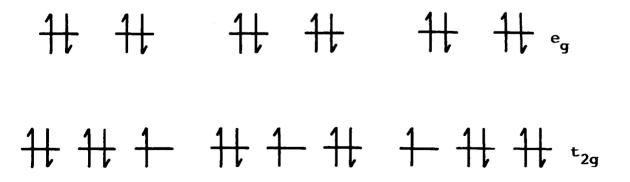


FIGURE 1.2 The splitting of the d orbitals in an O_h crystal field

in energy more than the d_{xy} , d_{xz} and d_{yz} as the former pair point directly at the ligands, whilst the latter trio point between the ligands. It can be shown that the d_z^2 and $d_x^2-y^2$ have e_g symmetry, whilst the d_{xy} , d_{xz} and d_{yz} have t_{2g}^2 symmetry. If the d orbitals are now filled with nine electrons then the ground state can be established as shown below:-

There are two possible ground state arrangements with spin multiplicity 2 and, therefore, the ground state is ${}^{2}E_{g}$. By a transition of one electron from the t_{2g} to e_{g} orbitals, the excited state can be determined as shown below:-

There are three possible excited state arrangements with spin multiplicity 2 and therefore the excited state is ${}^{2}\mathrm{T}_{2a}$.

It can now be seen that the symmetry of the state is the same as the symmetry of the orbital which contains the one unpaired electron.

The irregular geometries that are found for virtually all copper(II) complexes can be primarily ascribed to the Jahn-Teller effect.

The Jahn-Teller Theorem states that a molecule in a degenerate electronic state will be unstable and will undergo geometrical distortion that lowers its symmetry and splits the degenerate electronic state.

The copper(II) ion in a regular 0_h field has been shown to exist in a degenerate ground state 2E_g , hence this moiety is expected to be unstable and distortion from a regular geometry should occur. The nature of the distortion is most easily understood by considering complex formation from the ligands' point of view.

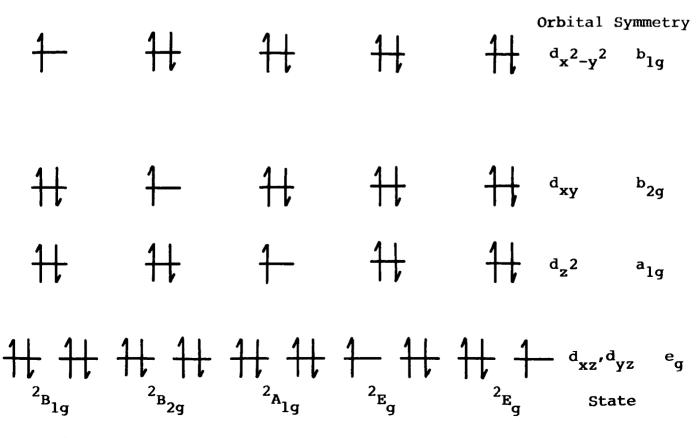
As well as the splitting of the d orbitals of the free metal ion by the ligands, there is a corresponding repulsion of the ligands by the d electrons. If the d orbitals are unsymmetrically occupied, as is the case with the d⁹ system of copper(II), then the repulsions are unsymmetrical and some of the ligands will be prevented from approaching the metal ion as closely as others, resulting in distortions from regular O_h geometry. The effect will be greatest in those orbitals which point

directly at the ligands. Hence, if the d_z^2 orbital contains one more electron than the $d_x^2-y^2$ then the resulting distortion is an elongation of the octahedron along the z-axis. However, if the $d_x^2-y^2$ has the extra electron then elongation along x and y results.

The most commonly observed geometry of the complexed copper(II) ion is that caused by elongation of the octahedron along the z-axis giving rise to the so-called tetragonally elongated octahedron.

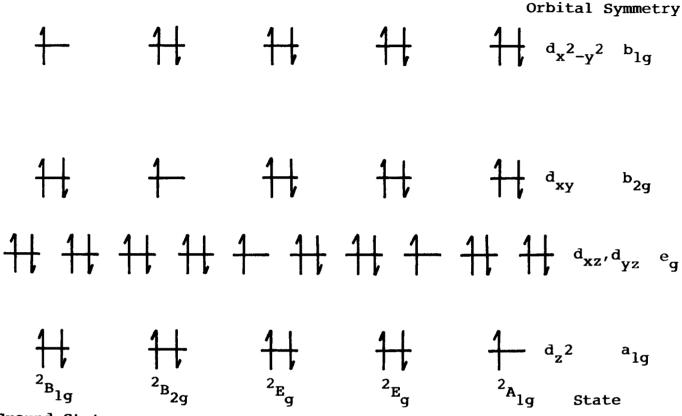
The two axial ligands of a metal ion in a tetragonally elongated O_h stereochemistry have been described as 'semi-coordinated' implying that they are only weakly bonded to the metal ion.³⁰ As a measure of the magnitude of this tetragonal distortion, the concept of the tetragonality (T) of a complex has been defined as the ratio of the short equatorial (R_S) to long axial (R_L) metal to ligand bond distances.

Hence,
$$T = \frac{R_s}{R_L}$$


If the value of T lies in the ranges $\sim 0.90 - \sim 0.75$ or $\sim 0.66 - \sim 0.56$, the geometries are considered to be tetragonally distorted O_h or square coplanar stereochemistries respectively. A value of 1.0 corresponds to a regular O_h geometry.

The concept of tetragonality is used where appropriate in the description of the copper(II) structures discussed in this work. Tetragonal distortion of the O_h environment by axial elongation with results in the symmetry point group D_{4h} , in which the d orbitals have the following symmetry:-

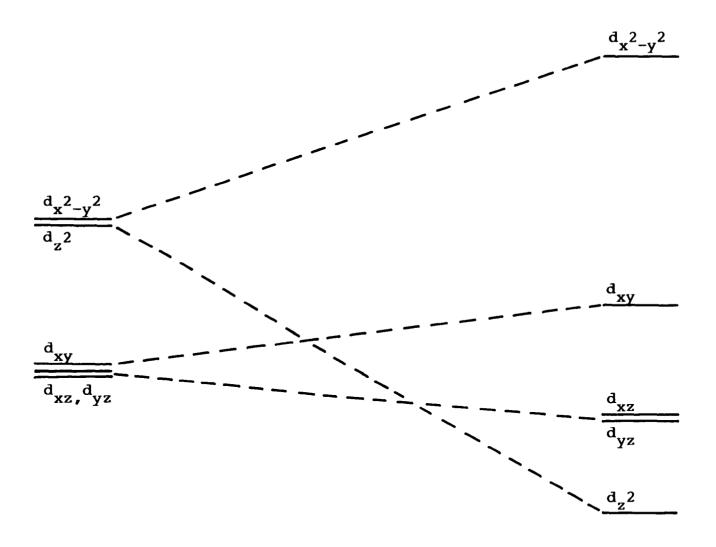
$$d_{z^{2}} := a_{1g} \qquad d_{x^{2}-y^{2}} := b_{1g}$$
$$d_{xy} := b_{2g} \qquad d_{xz,yz} := e_{g}$$


By consideration of the relative repulsions between the d orbitals and the ligands, it is found that tetragonal elongation further splits the energies of the d orbitals, the $d_x^2_{-y}^2$ and d_{xy} levels being destabilized and the d_z^2 , d_{xz} and d_{yz} levels being stabilized relative to the 0_h levels³⁰ (Figure 1.3).

For a tetragonal O_h coordination geometry, the five possible arrangements of the nine d electrons are shown below, together with the derived states.

Ground State

For square planar coordination geometry the procedure can be repeated.


Ground State

Having established the nature of the ground and excited electronic states of the copper(II) ion in a variety of environments, it is now possible to understand its spectroscopic properties.

Transitions can be envisaged between the ground and excited states of the metal ion. Thus, for a copper(II) ion in an O_h environment one transition $({}^2T_{2g} \leftarrow {}^2E_g)$ is possible and hence one absorption band should be observed. On tetragonal distortion, geometries of D_{4h} are formed. Three transitions from the ${}^2B_{1g}$ ground state are possible:

$$^{2}B_{2g} \leftarrow ^{2}B_{1g}, ^{2}E_{g} \leftarrow ^{2}B_{1g}, ^{2}A_{1g} \leftarrow ^{2}B_{1g}$$

FIGURE 1.3 Changes in the electronic energy levels of a copper(II) ion in an octahedral crystal field subjected to increasing tetragonal distortion

Tetragonal Octahedral

Octahedral

18

with the relative energy of each transition varying as the distortion changes. The d_z^2 , d_{xy}^2 , d_{xz}^2 orbitals are, however, close in energy throughout the tetragonal distortion and so it follows that the three transitions are of very similar energy. Experimental spectra for complexes with the copper(II) ion in tetragonal octahedral or square coplanar environments all show one broad absorption in the visible region which is considered to be due to the overlapping of the absorption bands due to the three transitions.

For simplicity this analysis has considered the six ligands to be equivalent. The structures determined in this work do not completely satisfy this condition. However, for each structure the ligating atoms are usually similar and at comparable distances from the copper(II) ion. Hence, deviation from this analysis are usually minor. The most common deviation results in C_{2h} symmetry which gives four possible absorptions all close in energy as before. In all cases only one broad band is observed in the visible region. The wavelength of the absorption does vary with changing ligands and coordination number, and so it is possible to qualitatively distinguish between the various complexes.

The paramagnetic properties of the copper(II) ion may now be explained by considering the ground state of the ion.

The magnetic properties of any individual ion or atom will result from some combination of the magnetic 19

moment due to the spinning of the electron on its own axis, the spin moment, and the magnetic moment induced by the electron orbiting the nucleus, the orbital moment. If ions or atoms are sufficiently close then interactions may occur between electrons on adjacent atoms, affecting the magnetic properties.

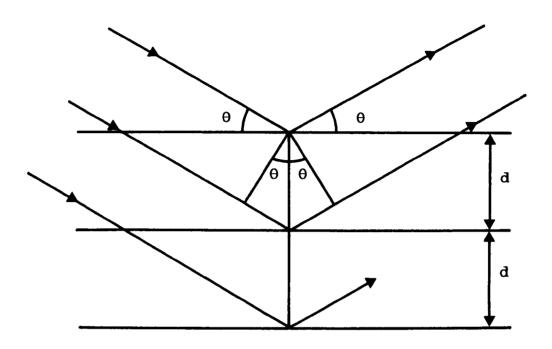
In magnetically dilute copper(II) complexes, with $O_{\rm h}$ or $D_{4{\rm h}}$ symmetries, the effective magnetic moment is given by the spin only value ($\mu_{\rm s}$) as the ground state ${}^2E_{\rm g}$ or ${}^2B_{1{\rm g}}$ does not permit any orbital contribution

$$\mu_{s} = g\sqrt{S(S+1)}$$
 S = spin = $\frac{1}{2}$
g = gyromagnetic ratio = 2.00
 μ_{s} = 1.73 Bohr magnetons

Experimental values show good agreement with the μ_s value. In non-magnetically dilute copper(II) complexes the individual copper(II) ions are relatively close {e.g. $[Cu(CH_3CO_2)_2H_2O]_2 r(Cu-Cu) = 2.64 \text{ Å}$ and spin-spin interactions can occur. These interactions give rise to a molecular spin singlet (S = 0) and triplet (S = 1). If the ground state is the singlet then the interaction is said to be antiferromagnetic, whilst if the triplet is the ground state then the interaction is said to be ferromagnetic. Since the energy gap between the states (J) is relatively small, complexes may be classified by following their magnetic susceptibilities (χ_m) as a function of temperature (T). If χ_m .T increases on cooling (corresponding to increased population of the triplet ground state) the interaction is ferromagnetic, whilst if χ_m .T decreases on cooling (corresponding to increased population of the singlet ground state) the interaction is antiferromagnetic.

Complexes in which magnetic interactions occur between copper(II) ions have been recently reviewed in detail by Kahn,³¹they are, however, beyond the scope of this thesis and have not been examined.

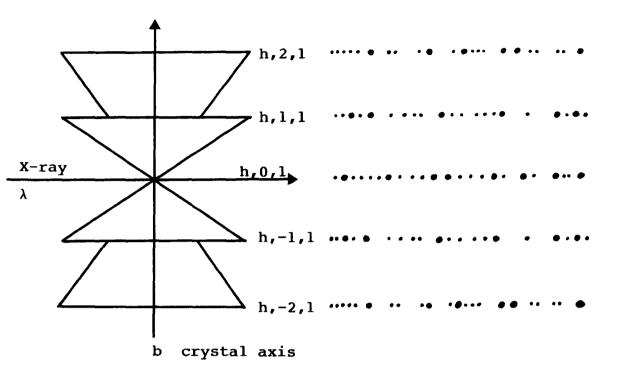
1.6 Physical Methods of Structural Analysis


1.6.1 X-ray crystallography

Of all the methods available for structural analysis, one of the most powerful techniques is X-ray crystallography. The technique is limited to the solid crystalline state, although in practice it is possible to use the results to facilitate interpretation of reaction kinetics and mechanisms occurring in other phases.

In the crystalline state, molecules are arranged in a regular three-dimensional array or lattice which may possess a variety of symmetry elements. The lattice nature of the crystal enables it to diffract electromagnetic radiation of a suitable wavelength (X-radiation), according to Bragg's Law, which is illustrated in Figure 1.4. Reinforcement of diffracted rays will occur only when the difference in path length of the rays scattered from different underlying lattice planes (2d sin0) is an integral number of wavelengths(n)).

Thus, $n\lambda = 2d \sin \Theta$.


FIGURE 1.4 Geometrical derivation of the Bragg equation for the reflection of X-rays from a crystal, considered to be an array of parallel equidistant layers of scattering material

The basic repeating unit of the crystal lattice is the unit cell, which is defined by three vectors, $\underline{a}, \underline{b}, \underline{c}$, having magnitudes a, b, c, and relative directions defined by the angles α, β, γ . A lattice plane capable of diffracting X-rays must intersect with the unit cell axes $(\underline{a}, \underline{b}, \underline{c})$ at the points \underline{a}/h , \underline{b}/k , \underline{c}/l , where h, k, l are known as the Miller indices and are necessarily integral quantities. The resulting plane is defined by the notation h, k, l and X-rays reflected from a series of these planes are indexed by the same values. On the basis of the $a, b, c, \alpha, \beta, \gamma$ values and the symmetry elements contained in the unit cell, the cell can be classified into one of seven crystal systems, fourteen Bravais lattices and two hundred and thirty space groups. Determination of the space group of a crystal involves the recognition of its symmetry elements in the diffraction pattern when irradiated by a monochromatic beam of X-rays. The main techniques used for preliminary determination of $a,b,c,\alpha,\beta,\gamma$ and space group in this work were oscillation and Weissenberg methods.

For an oscillation photograph the crystal is mounted such that a direct axis is perpendicular to the incident X-ray beam. The crystal is then oscillated by <u>ca. $\pm 10^{\circ}$ about this axis and the diffracted X-rays are</u> recorded on a cylindrical film coaxial with the oscillation axis. This photograph (Figure 1.5) is a series of parallel lines of spots, called layer lines, resulting from a series of lattice planes in which one Miller index remains constant. From the distance beween the two layer lines it is possible to determine the magnitude of the axis about which the crystal is oscillating. Also is is possible to determine whether the crystal axis is perpendicular to a mirror symmetry element in the lattice.

The next stage in the determination is to obtain photographs using the Weissenberg method. In this method a single layer line is selected by a slotted screen which stops all other diffracted beams from reaching the film. As the crystal is rotated through <u>ca</u>. 180° the film is moved past the slot and reflections which occur at different times are recorded at different points on the film. Weissenberg photographs of the zero and first

layer lines are recorded. From these photographs it is possible to measure the magnitude of the remaining axes and the angles between them and so determine the crystal class. The presence of any symmetry elements and the systematic absence of certain reflections can now help in the choice of space group.

To further narrow down this choice, a knowledge of the number of formula units per unit cell (Z) is useful. This may be calculated from the equation,

$$D = -\frac{MZ}{LU}$$

where, D = density of the material

M = relative molecular mass of the material

- Z = number of formula units per unit cell
- L = Avagadro's number
- U = volume of unit cell

U can be calculated from the unit cell dimensions and angles but D must be measured by an independent method.

The density of the crystalline material can be determined by a flotation method. The crystals are suspended in a mixture of two miscible liquids in which the material is insoluble. The proportions of the two liquids are adjusted until the crystals possess neutral bouyancy and the density of the liquid mixture is measured by weighing a known volume. This density is the same as the density of the crystalline material and hence the number of formula units per unit cell can be calculated.

Hexane-bromoform mixtures were used in all the density determinations in this thesis.

The unit cell dimensions obtained from the oscillation and Weissenberg photographs were redetermined and refined by a least squares procedure using <u>ca</u>. 20 strong reflections accurately measured on a Hilger and Watts Y290 four circle diffractometer unless otherwise stated. After refinement of the cell dimensions, one unique set of intensity data was collected on the diffractometer using graphite monochromated MoK_{α} radiation, normally in the range $0^{\circ} \le 0 \le 25^{\circ}$. Three standard reflections were monitored every hundred reflections measured and in all cases these remained constant indicating that the crystals were stable.

The intensities were corrected for Lorentz and polarisation effects but not for absorption as there were minimal numbers of heavy atoms in the compounds and crystal sizes were small. Reflections were considered to be observed if their intensities (I) were greater than three times their standard deviations (σ_I), [where σ_I = (total background count + integrated count)^{$\frac{1}{2}$}].

Due to the wavelength of X-rays, it is not physically possible to resynthesize the image of the crystal lattice. Instead, the process can be done mathematically by the Fourier transform method. This is possible because the electron density in the crystal lattice, which is in real space, is the Fourier transform of the diffraction pattern in reciprocal space. The equation that relates the electron density $[\rho(x,y,z)]$ to the intensity of the diffracted X-rays [I(h,k,1)], is of the form:

$$\rho(\mathbf{x},\mathbf{y},\mathbf{z}) = \frac{1}{U} \Sigma\Sigma\Sigma F(\mathbf{h},\mathbf{k},1) \exp\left[-2\pi i\left(\frac{\mathbf{h}\mathbf{x}}{a} + \frac{\mathbf{k}\mathbf{y}}{b} + \frac{\mathbf{l}\mathbf{z}}{c}\right)\right]$$

where, the structure factor, $F(h,k,l) \propto \sqrt{I(h,k,l)}$. The term I(h,k,l) is a vector quantity having both magnitude and phase of which only the former can be determined experimentally.

All but two of the crystal structures in this thesis contain copper atoms which are significantly heavier than other atoms in the complexes and, as such, constitute a high proportion of the total electron density. By locating the positions of the copper atoms in the structure, an approximation to the phases of the reflection data can be determined. This method of locating the heavy atoms is a modification of the Fourier transform called a Patterson synthesis.

$$P(u,v,w) = \frac{1}{U} \sum \sum |F(h,k,l)|^2 \exp[-2\pi i (\frac{hu}{a} + \frac{kv}{b} + \frac{lw}{c})]$$

The quantity $|F(h,k,1)|^2$ is phasesless and hence the distribution in Patterson space can be determined directly from the intensity data. Maxima in the quantity P(u,v,w) represent interatomic vectors and their intensities are proportional to the products of the atomic numbers of the two atoms concerned. Those between two heavy atoms, i.e. Cu...Cu, will be prominent and hence the positions of the heavy atoms in the unit cell can be determined.

After location of the heavy atoms, the lighter atoms can be located by a difference Fourier map phased on the positions of the heavy atoms. i.e.:

$$\rho_{obs} - \rho_{calc} = \frac{1}{U} \sum \sum (F_{obs} - F_{calc}) \exp[-2\pi i (\frac{hx}{a} + \frac{ky}{b} + \frac{lz}{c})]$$

In structures where no heavy atoms are present, it is necessary to use direct methods to determine the location of the atoms. Direct methods depend on the application of mathematical relationships to determine the phases of the structure factors. Any atoms not located by direct methods can be found using a difference Fourier map in a similar manner to that defined above.

In both heavy atom and direct methods refinement of the structure is effected by minimising the function:

$$\sum W(|F_{obs}| - |F_{calc}|)^2$$

where, W is a weighing factor. The criterion used for judging the agreement between the observations and the proposed structure is the so-called R value, where,

$$R = \frac{\sum ||F_{obs}| - |F_{calc}||}{\sum |F_{obs}|}$$

The MULTAN 80 series of programs³² were used for direct methods, whilst all other crystallographic calculations were performed using the CRYSTALS suite of programs.³³

Standard texts on practical X-ray crystallography which have been found to be most useful are Stout and Jensen^{33a} and Buger.^{33b}

1.6.2 Vibrational Spectroscopy

Infrared spectra (4000-400 cm⁻¹) were obtained for solid samples in nujol and halocarbon mulls and in potassium bromide discs using a Perkin Elmer 598 grating spectrometer. Spectra of solution samples contained in a cell with sodium chloride windows were obtained using a Perkin Elmer 683 grating spectrometer controlled by a 3600 data station.

Where possible, group theory has been used to examine the spectra and assignments have been made to try to elucidate structural features. Although unequivocal assignments of the bands is difficult, the infrared spectra can be used for identification of the complexes.

1.6.3 <u>Ultraviolet-Visible</u> Spectroscopy

A Perkin Elmer Lambda 5 UV-visible spectrometer with thermostatted cell holders has been used to follow the visible absorption spectrum of the reaction in alcohol solution of copper(II) salts with 1-cyanoguanidine. Characteristic absorption bands have been observed and the kinetics and mechanism of this reaction have been investigated.

Diffuse reflectance UV-visible spectra have been measured for several copper(II) complexes using the above spectrometer. Unlike the solution data, these results are used in a qualitative rather than quantitative manner.

CHAPTER TWO

COPPER(II) COMPLEXES OF 1-CYANOGUANIDINE

2.1 Introduction

Although several transition and alkali metal complexes of 1-cyanoguanidine*(cnge) have been reported, structural and spectroscopic data are limited. The most extensively investigated complexes are those of the cadmium(II) cation.³⁴

Structure determinations of cadmium(II)- cnge complexes have shown cnge to act as either a monodentate ligand, in $[Cd(cnge)_2I_2]^{35}$ or a bridging bidentate ligand, in $[Cd(cnge)Cl_2]^{36}$ and $[Cd(cnge)(H_2O)_2(SO_4)]_2^{34}$ and that there are changes in the molecular geometry and electronic structure of the ligand on coordination. These changes are manifest in the vibrational spectrum of free and coordinated cnge.

There is a paucity of data available in the literature on copper(II)-cnge complexes, possibly owing to the facile solvolysis of the nitrile group in the presence of copper(II) cations. After an early report of the synthesis of $Cu(cnge)_2SO_4.4H_2O$,³⁷ fifty years elapsed before $Cu(cnge)_2SO_4SH_2O$ was prepared as an intermediate during a study of the copper(II) catalysed addition of alcohols to cnge.²⁵ Dehydration of this latter material at 50°C under vacuum resulted in the corresponding dihydrate. Subsequently, $Cu(cnge)_2(NO_3)_2.2H_2O$ was obtained as a by-product of the attempted solvolysis of

* Chemical Abstracts Registry Number [461-58-5].

cnge by isopropanol or phenyl-2-ethanol in the presence of $Cu(NO_3)_2 \cdot 3H_2O$.³⁸ Other than chemical analytical and electronic absorption spectroscopic data, very few physicochemical characteristics have been reported for these materials.

Structural information has since been published for [Cu(cnge)₂Cl₂(H₂O)₂],³⁹ which was crystallised from aqueous solution, and for $[Cu(cnge)(aebg)]SO_{A}.H_{2}O$ (aebg = 1-(2-aminoethylbiguanide),⁴⁰ which was serendipitously obtained from the mother liquor remaining from the preparation of ethylene-bis(biguanide) copper(II) In both complexes the cnge ligand is sulphate. effectively monodentate despite the location of the N(2) atom of the cnge molecule in the latter complex in one of the axial positions above the square planar copper(II) coordination sphere. This contact is quite remote, r(Cu ...N) = 3.14 Å (cf. the van der Waals radii⁴¹ of Cu (1.43 Å) and N (1.55 Å) and cannot be considered a strong bonding interaction as in $[Cd(cnge)Cl_2]^{36}$ or $[Cd(cnge)(H_2O)_2SO_4]_2^{34}$ since the lone pair on N(2) is not directed at the copper atom but is involved in the intermolecular hydrogen bonding interactions.

Subsequently, the preparation of the anhydrous compounds, $Cu(cnge)_4 X_2$ (X = Cl, Br, ClO_4) and $Cu(cnge)_2 X_2$ (X = Cl, Br, NO₃, NCS) in ethanol has been claimed.²⁸ Analytical, conductance, magnetic susceptibility and electronic absorption spectroscopic data are quoted for these compounds. This report is surprising in view of the facile solvolysis of the nitrile group of the cnge molecule.

Most recently the electroreduction of an aqueous solution of $Cu(cnge)_2SO_4.5H_2O$ has been reported, together with the infrared spectrum of the complex.⁴²

In this work the possibility of correlating the infrared spectrum and the mode of coordination of cnge to the copper(II) ion, has been investigated. Several copper(II)-cnge complexes have been prepared and their infrared spectra recorded. Also the crystal and molecular structure of bis(l-cyanoguanidine)-di- μ -aquocopper(II) dinitrate dihydrate {[Cu(cnge)₂(H₂O)₂]-(NO₃)₂.2H₂O} has been determined.

Ideally, any attempted correlation of spectroscopic and structural properties of coordinated enge should be based on the three complexes for which structural data are now available, $[Cu(enge)_2(H_2O)_2](NO_3)_2.2H_2O$, $[Cu(enge)_2Cl_2(H_2O)_2]$ and $[Cu(enge)(aebg)]SO_4.H_2O$. Unfortunately, despite repeated attempts, it was not possible to repeat the serendipitous preparation of $[Cu(enge)(aebg)]SO_4.H_2O$; furthermore, attempts to synthesize the compound by first producing the aebg ligand proved to be unsuccessful. Consequently, for this thesis it was only possible to base the correlation on the former two complexes.

2.2 Experimental

Copper(II)-(1-cyanoguanidine) salts were prepared

by the reaction of the requisite molar ratio of cnge and the appropriate copper(II) salt. The copper(II) salt and the cnge were each dissolved in the minimum of hot deionised water. A typical synthesis used 20mmol of the copper(II) salt and 40mmol of cnge. The solutions were mixed and a trace of acid, appropriate to the copper(II) salt, added to prevent precipitation of the basic copper(II) salt. The resulting solution was cooled in ice to facilitate precipitation. The precipitate was filtered off, washed with a little ice-cold deionised water and dried over silica gel for 12 hrs.

This method produced hydrated complexes: lower hydrates and anhydrous complexes were produced by dehydration in an oven with high vacuum facilities as required (see Section 2.4).

Anhydrous copper(II)-cnge chloride and bromide complexes were also prepared by using dry acetone instead of deionised water as a solvent. However, the low solubilities of the copper(II) salts and cnge in acetone necessitated a different method of synthesis.

The anhydrous copper(II) salt (10mmol; 1.34g $CuCl_2:2.22g\ CuBr_2$) and cnge (20mmol; 1.68g) were powdered together in a mortar and pestle. The mixture was added to acetone, previously dried by distillation from a P_2O_5 /acetone mixture, and refluxed for 1 hour. The suspended solids were filtered off, washed with dry acetone and dried under a vacuum.

Deuterated hydrated complexes were obtained by repeated solution of the samples in D₂O, under a nitrogen blanket, followed by removal of the excess water under vacuum.

2.3 <u>The Crystal and Molecular Structure of Bis(1-</u> Cyanoguanidine)Diaquocopper(II)Dinitrate Dihydrate

2.3.1 Structure solution and crystal data

Needle-like crystals of the title compound were obtained by slow evaporation of an aqueous solution at room temperature. A suitable crystal (0.6 x 0.1 x 0.1 mm) was mounted at the end of a glass fibre with 'Araldite' adhesive.

Cell parameters, space group and X-ray diffraction data, were obtained as described in Section 1.6.1. Of the 1392 intensities collected, 705 were deemed to be observed.

Taking into account the molecular formula allied with the crystal symmetry, suggested that the copper atom must be situated in a special position (0,0,0) of the PI space group and that pairs of cnge molecules, nitrate anions and water molecules must be located in centrosymmetrically related positions. Consequently, following the data reduction stage, the positions of the carbon, nitrogen and oxygen atoms were determined by a difference Fourier synthesis. Full matrix least squares refinement with anisotropic temperature factors for all these atoms convered at R = 0.077. Attempts to locate

4	Experimental/Theoretical %			
Complex	C	Н	N	
[Cu(cnge) ₂ (H ₂ O) ₂] (NO ₃) ₂ 2H ₂ O	11.02/11.23	3.71/3.74	32.25/32.74	
$Cu(cnge)_2(NO_3)_22H_2O^a$	12.09/12.26	3.07/3.07	32.26/32.76	
$Cu(cnge)_2(NO_3)_2^a$	13.47/13.50	2.29/2.25	38.92/39.38	
$Cu(cnge)_2(SO_4)5H_2O$	11.35/11.50	4.21/4.31	26.48/26.83	
$Cu(cnge)_2(SO_4)2H_2O^a$	13.24/13.20	3.16/3.30	30.58/30.81	
Cu(cnge) ₂ (SO ₄) ^a	14.37/14.65	2.60/2.44	33.60/32.20	
$[Cu(cnge)_2Cl_2(H_2O)_2]$	14.04/14.18	3.71/3.55	33.39/33.09	
Cu(cnge) ₂ Cl ₂ ^a	15.59/15.87	2.60/2.64	36.78/37.02	
Cu(cnge) ₂ Cl ₂ ^b	15.91/15.87	2.61/2.64	36.90/37.02	
Cu(cnge) ₂ Br ₂ ^{2H} 2 ^O	11.39/11.23	2.72/2.81	26.51/26.20	
Cu(cnge) ₂ Br ₂ 0.5H ₂ 0 ^a	12.02/11.99	2.11/2.25	28.07/27.97	
Cu(cnge) ₂ Br ₂ ^a	12.04/12.27	2.27/2.04	28.33/28.62	
Cu(cnge) ₂ Br ₂ ^b	12.34/12.27	2.15/2.04	28.85/28.62	

a:- Products of dehydration.

b:- Products of anhydrous reaction.

the positions of the hydrogen atoms by subsequent difference Fourier syntheses were unsuccessful. The positions of the cnge hydrogen atoms were defined using a hydrogen placing routine by analogy with the structures of the free molecule $[r(C-H) = 1.00 \text{ Å}, U(ISO) = 0.05 \text{ Å}^2];$ those of the water hydrogen atoms were not determined. Further refinement of the structure with fixed hydrogen atoms converged at R = 0.075. Final positional parameters and thermal parameters are given in Tables 2.2 and 2.3 respectively. Observed and calculated structure factors are included in Appendix B.

<u>Crystal</u> Data

 $C_4H_{16}N_{10}O_{10}Cu$, M = 427.8, triclinic, space group PI, a = 3.508(2), b = 10.201(3), c = 11.927(3) Å, α = 102.45(3), β = 101.58(3), γ = 101.60(3)°, U = 394.67 Å³, D_m = 1.82 g.cm⁻³, D_c = 1.80 g.cm⁻³ for Z = 1, F(000) = 219, $\mu(MoK_{\alpha})$ = 15.18 cm⁻¹.

2.3.2 <u>Intermolecular contacts and the coordination of the</u> <u>copper(II) ion</u>

Views of the structure of the complex perpendicular to (120) and to (001) are shown in Figures 2.1 and 2.2 respectively. Figure 2.1 also gives the atom numbering scheme. It comprises a series of planes parallel to (120) which contain $[Cu(cnge)_2(H_2O)_2]^{2+}$ cationic fragments and the nitrate anions, both of which are effectively planar, together with the free water

Atom	x/a	y/b	z/c
Cu(1)	0	0	0
C(1)	146(3)	61(1)	271(1)
C(2)	343(3)	189(1)	466(1)
N(1)	129(3)	35(1)	170(1)
N(2)	140(3)	75(1)	381(1)
N(3)	546(3)	303(1)	446(1)
N(4)	343(4)	188(1)	576(1)
0(1)	476(2)	146(1)	11(1)
0(2)	578(4)	709(1)	150(1)
N(5)	941(4)	443(1)	217(1)
0(3)	761(3)	328(1)	226(1)
0(4)	1041(4)	544(1)	308(1)
0(5)	1001(4)	457(1)	123(1)
H(1)	553	306	363
H(2)	694	387	513
H(3)	491	271	642
H(4)	193	102	592

TABLE 2.2 Final Positional Parameters (x 10³)

					3
TABLE 2.3	Final	Thermal	Parameters	(x	$10^{-7}/\text{A}^{-7}$

		_				
Atom	U(11)	U(22)	U(33)	U(23)	U(13)	U(12)
Cu(1)	37(2)	20(1)	12(1)	4.0(9)	16(1)	0(1)
C(1)	34(7)	12(6)	26(6)	1(5)	2(5)	-9(5)
C(2)	14(6)	38(7)	23(6)	3(5)	-3(5)	3(5)
N(1)	41(7)	31(6)	14(5)	-2(4)	11(4)	2(5)
N(2)	37(6)	29(5)	19(5)	4(4)	8(4)	-2(4)
N(3)	41(7)	36(6)	28(5)	4(5)	10(5)	1(5)
N(4)	73(8)	27(6)	19(5)	-6(4)	17(5)	-9(5)
0(1)	32(5)	27(4)	30(4)	4(4)	6(4)	-3(4)
0(2)	109(9)	44(6)	35(5)	14(4)	23(6)	6(6)
N(5)	54(7)	26(6)	32(6)	1(5)	15(5)	-2(5)
0(3)	74(7)	32(5)	39(5)	5(4)	23(5)	-13(5)
0(4)	110(10)	47(7)	41(6)	-7(5)	15(6)	-14(7)
0(5)	101(9)	47(6)	35(5)	10(5)	22(6)	-4(6)

In the form: $[exp-2\pi^{2}(U(11)h^{2}a^{*2}+U(22)k^{2}b^{*2}+U(33)1^{2}c^{*2}+2U$

(12)hka*b*+2U(13)hla*c*+2U(23)klb*c*)]

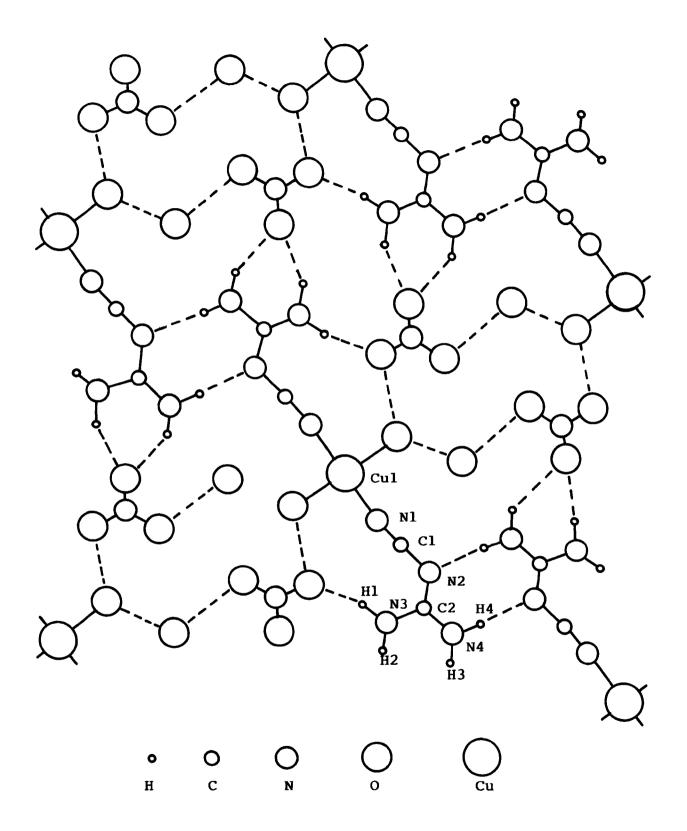
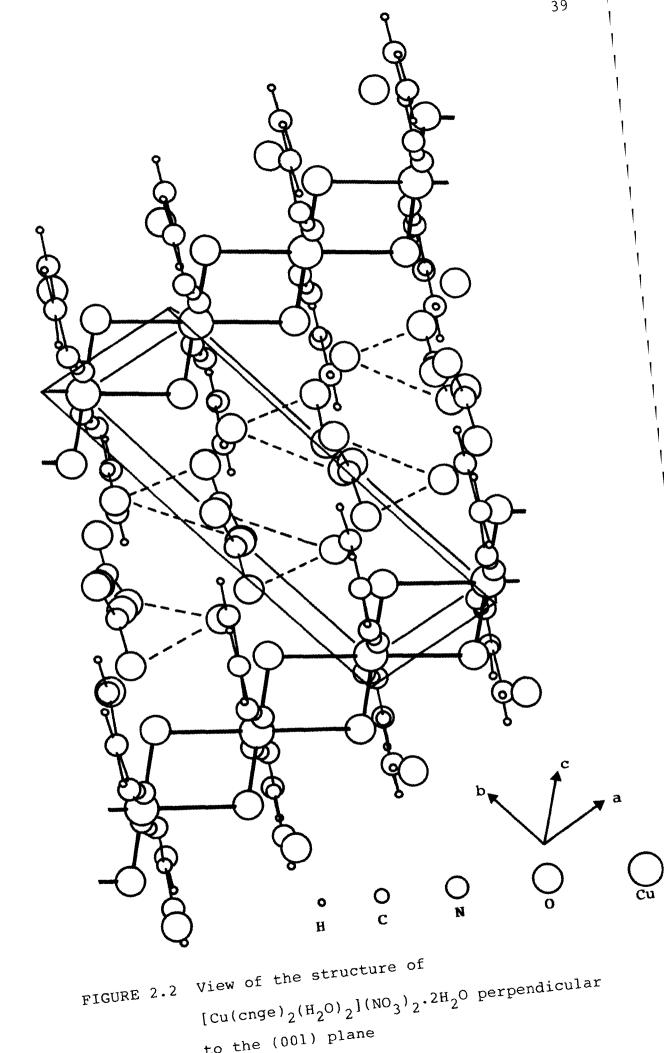



FIGURE 2.1 View of the structure of $[Cu(cnge)_2(H_2O)_2](NO_3)_2 \cdot 2H_2O$ perpendicular to the (120) plane

molecules. Within the planes, the molecular units are held together by both electrostatic and hydrogen bonding interactions (Figure 2.1). The planes are linked by Cu-O bridging contacts supported by weak hydrogen bonding between the free water molecule and a nitrate anion (Figure 2.2). Full details of all intra- and inter-planar contacts under 3.30 Å are collated in Table 2.4.

The copper(II) ion is coordinated by the nitrile nitrogens of two centrosymmetrically related cnge molecules, [r(Cu(1)-N(1)) = 1.92 Å] and the oxygen atoms of two centrosymmetrically related water molecules, [r(Cu(1)-O(1)) = 1.96 Å], which form a square planar CuN_2O_2 unit (Figure 2.1). Axial positions above and below this square plane are occupied by the oxygen atoms of two more remote symmetry related water molecules located in two adjacent planes, [r(Cu(1)-O(1)') = 2.60 Å](Figure 2.2). Assuming the ligating donor atoms to be equivalent then R_s is given by the average of r(Cu(1)-N(1)) and r(Cu(1)-O(1)) (1.94 Å), and R_{L} is given by r(Cu(1)-O(1)') (2.60 Å). Hence, the tetragonality (T) is 0.75 (Section 1.5.2). This value defines the coordination stereochemistry to be a tetragonally elongated octahedron.

The copper(II) ion's coordination geometry (Table 2.5) is similar to that in $[Cu(cnge)_2Cl_2(H_2O)_2]$.³⁹ The only difference is the replacement of the axial oxygen by chlorine atoms [r(Cu-Cl) = 2.87 Å, the CuN_2O_2 unit being

Interaction X-HX'	Symmetry Properties of X'	r(xx') Å	r(XH) X	r(hX') X	×HX ' °
N(1)O(3)	x,y,z	3.19	_		_
N(3)-H(1)O(3)	x,y,z	2.92	1.00	1.95	161
N(3)-H(2)O(4)	2-x,1-y,1-z	2.92	1.00	2.04	145
N(4)-H(3)O(4)	2-x,1-y,1-z	2.98	1.00	2.11	143
N(4)-H(4)N(2)	-x,-y,l-z	3.07	1.00	2.07	177
N(4)O(2)	1-x,1-y,1-z	z 3.15	-	-	-
O(1)-HO(2)*	l-x,l-y,-z	2.67	-	-	-
O(1)-HO(3)*	x,y,z	2.68	-	-	-
0(1)0(5)	x,y,z	3.17	-	-	-
0(2)0(4)	x,y,z	3.20	-	-	-
O(2)-HO(5) [#]	l+x,y,z	2.84	-	-	-
0(2)0(5)	x,y,z	3.21	-	-	-

TABLE 2.4 Intermolecular Contacts of less than 3.30 Å; Hydrogen Bond and Electrostatic Interactions

- * These contacts are designated hydrogen bond interactions not only because of the short interatomic distances, but also because of appropriate geometries for sp³ hybridised O(1) (contacts to Cu(1), Cu(1)', O(2) and O(3)) and for sp² hybridised O(3) (contacts to N(5), N(3) and O(1)).
- * The geometry around O(2) is somewhat more complex but one acceptor (contact to O(1)) and one donor interaction (contact to O(5)) can be designated assuming sp³ hybridisation.

almost identical [r(Cu-N) = 1.92 Å, r(Cu-O) = 2.00 Å].

Bond distance/A		Bond angle	e/°
Cu(1)-O(1)	1.964(8)	O(1)Cu(1)N(1)	90.7(4)
Cu(1)-N(1)	1.922(9)	O(1)Cu(1)O(1)'	99.6(3)
Cu(1)-O(1)'	2.597(8)	N(1)Cu(1)O(1)'	89.6(4)
Symmetry prop	erties of O(l)	'; -l+x,y,z	

TABLE 2.5 Coordination of the Copper(II) Ion

2.3.3 Molecular geometry of the 1-cyanoguanidine ligand

The cnge ligand is effectively planar, the maximum deviation of the skeletal carbon and nitrogen atoms from the best plane being 0.06 Å (Table 2.6).

TABLE 2.6	Planarity	of the	cnge	ligand
-----------	-----------	--------	------	--------

Atom	Deviation from Atom plane/A Atom		Deviation from plane/A
N(1)	+0.042	C(2)	-0.010
C(1)	-0.010	N(3)	-0.013
N(2)	-0.056	N(4)	+0.049

Equation of

best plane: 3.2163x - 5.6568y + 0.4515z = 0.254

The molecular geometry of the cnge ligand is almost identical to that in [Cu(cnge)₂Cl₂(H₂O)₂],³⁹ however, it differs considerably from that in [Cu(cnge)(aebg)]- $SO_4.H_2O.^{40}$ Bond distances and angles for the cnge ligand in these three complexes are collected together with those for free cnge in Table 2.7. It is clear that the C(1)N(2)C(2) bond angle is larger and the C(2)-N(2) bond distance shorter in the dinitrate and dichloro complexes than in the sulphate complex. The differing geometries may be due to the weak interaction in the latter complex between the copper atom and the axially located imino nitrogen atoms, r(Cu(1)...N(2)) = 3.14 Å. A similar situation pertains in the cadmium(II)-cnge complexes for which monodentate and bidentate coordination clearly Thus, the monodentate cnge molecule in occurs. $[Cd(cnge)_2I_2]^{35}$ has a larger C(1)N(2)C(2) bond angle (120°) and a shorter C(2)-N(2) bond distance (1.31°) than the bidentate bridging cnge molecules in $[Cd(cnge)(H_2O)_2(SO_4)]_2^{34}$ $[C(1)N(2)C(2) = 118.8^{\circ},$ r(C(2)-N(2)) = 1.34 Å] and in $[Cd(cnge)Cl_2]^{36}$ $[C(1)N(2)C(2) = 116.4^{\circ}; r(C(2)-N(2)) = 1.363 \text{ Å}].$

The molecular geometry of the nitrate anion is unremarkable, data are given in Table 2.8.

<u>TABLE 2.7</u> Molecular Geometries of 1-Cyanoguanidine in the Free Molecule and in a number of Copper(II)-(Cyanoguanidine) Complexes

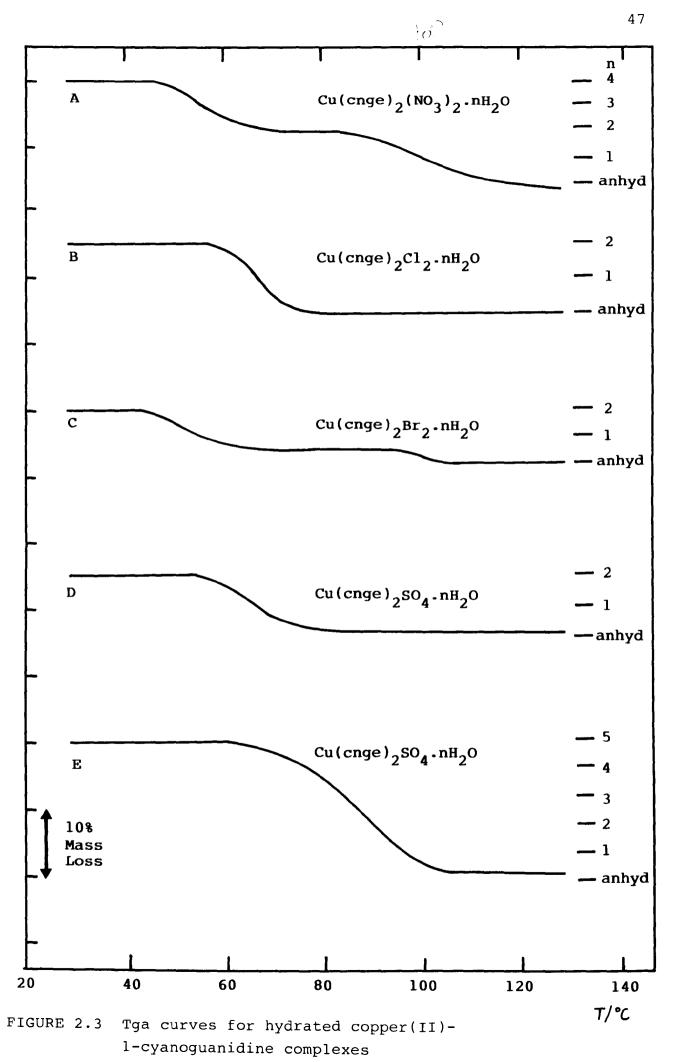
Bond Distances /A	cnge ⁷	[Cu(cnge) ₂ (H ₂ O) ₂] (NO ₃) ₂ .2H ₂ O	[Cu(cnge) ₂ Cl ₂ (H ₂ O) ₂] ³⁹	[Cu(cnge) (aebg)]SO ₄ . H ₂ O ⁴⁰
C(1)-N(1)	1.1694(3)	1.16(2)	1.16(1)	1.17(1)
C(1)-N(2)	1.3054(4)	1.29(2)	1.29(1)	1.28(1)
C(2)-N(2)	1.3414(3)	1.33(2)	1.33(1)	1.39(1)
C(2)-N(3)	1.3391(3)	1.34(2)	1.34(1)	1.33(1)
C(2)-N(4)	1.3327(3)	1.31(2)	1.32(1)	1.33(1)

Bond Angles /°	cnge ⁷	[Cu(cnge) ₂ (H ₂ O) ₂] (NO ₃) ₂ .2H ₂ O	[Cu(cnge) ₂ Cl ₂ (H ₂ O) ₂] ³⁹	[Cu(cnge) (aebg)]SO ₄ . H ₂ O ⁴⁰
N(1)C(1)N(2)	175.10(2)	173.0(1.1)	170.6(9)	172.6(6)
C(1)N(2)C(2)	118.38(2)	122.8(1.0)	123.1(7)	118.6(6)
N(2)C(2)N(3)	123.75(2)	123.3(1.1)	123.8(4)	124.4(5)
N(2)C(2)N(4)	117.50(2)	117.7(1.1)	117.4(7)	116.6(5)
N(3)C(2)N(4)	118.73(2)	118.9(1.1)	118.8(7)	118.9(6)

<u>TABLE 2.8</u> Molecular Geometry and Planarity of the Nitrate Anion

Bond Dis	Distance/A Bond Angle/		
N(5)-O(3)	1.25(2)	O(3) N(5) O(4)	117(1)
N(5)-O(4)	1.26(2)	O(4) N(5) O(5)	121(1)
N(5)-O(5)	1.22(2)	O(5) N(5) O(3)	121(1)

Deviation from Atom Plane/A		Deviation from Plane/A
+0.014	0(4)	-0.005
-0.005	0(5)	-0.005
	Plane/A +0.014	Plane/A Atom +0.014 0(4)


Equation of best plane: 3.2403x - 4.7700y + 1.5408z = 1.257

2.4 <u>Thermal behaviour of hydrated copper(II)-</u> (1-cyanoguanidine) complexes

The hydrated copper(II)-cnge complexes, $[Cu(cnge)_2Cl_2(H_2O)_2]$, $Cu(cnge)_2Br_2.2H_2O$, $Cu(cnge)_2(SO_4).5H_2O$ and $[Cu(cnge)_2(H_2O)_2](NO_3)_2.2H_2O$ crystallised from aqueous solutions containing cnge and the appropriate copper(II) salt. Varying either the reaction conditions or the molar ratios of the reactants had no effect on the identity of the product. The thermal behaviour of the hydrates was studied by both dynamic and isothermal methods. Thermogravimetric analyses (tga) were carried out using a Stanton Redcroft TG750 instrument (~10mg sample; 2°C min⁻¹ heating rate). The dehydrations were effected on ~1g samples in an isothermal oven (\pm 1°C) with high vacuum (0.1 Pa) facilities when required.

Tga curves for the four hydrates and for Cu(cnge)₂SO₄.2H₂O are shown in Figure 2.3. Those for the halides (curves B and C) and sulphates (curves D and E) show that with the exception of bromide, which appears to form a hemihydrate intermediate at 45°C, they all dehydrate directly to the anhydrous material commencing at ~60°C. All three anhydrous complexes are fairly stable, further decomposition, which commenced at 160°C (for the sulphate), 175°C (chloride) or 190°C (bromide), being complete at about 600°C. The tga curve for the nitrate (curve A, Figure 2.3) shows the formation of a dihydrate commencing at 45°C, followed by a gradual decomposiiton process at 80°C. A plateau corresponding to the anhydrous material was not observed, however, the decomposition culminating in an explosive reaction at 162°C.

Careful isothermal dehydration experiments at ambient pressures confirmed the tga results yielding samples of $Cu(cnge)_2Cl_2$, $Cu(cnge)_2Br_2$, $Cu(cnge)_2$ - $Br_2.0.5H_2O$, $Cu(cnge)_2(SO_4)$ and $Cu(cnge)_2(NO_3)_2.2H_2O$ (Table 2.9). All attempts to produce the anhydrous nitrate by this route failed. Low temperature (50°C) thermal decomposition under vacuum (0.1 Pa) led to

 $Cu(cnge)_2 X_2$ (X = Cl, Br), $Cu(cnge)_2 (NO_3)_2$ and $Cu(cnge)_2 (SO_4) 2H_2 O$ (Table 2.9)

The facile loss of two water molecules from the nitrate is consistent with the removal of the two water molecules of crystallisation, the two water molecules in the cation coordination sphere being retained. It is assumed that the similar loss of three of the five water molecules in $Cu(cnge)_2(SO_4).5H_2O$ indicates that again only two are directly coordinated to the cation.

<u>TABLE 2.9</u> Thermal Behaviour of Hydrated Copper(II)-(1-Cyanoguanidine) Complexes; Isothermal Experiments

		Experimental Weight Loss	Calculated Weight Loss	Temp.
Hydrate	Product	/ %	/ %	/°C
$[Cu(cnge)_{2}(H_{2}O)_{2}]$ $(NO_{3})_{2}^{2H_{2}O}$	Cu(cnge) ₂ (H ₂ O) ₂ (NO ₃) ₂	8.5	8.1	50
[Cu(cnge) ₂ (H ₂ O) ₂] (NO ₃) ₂ 2H ₂ O	$Cu(cnge)_2(NO_3)_2$	16.1	16.8	50*
Cu(cnge) ₂ (SO ₄) ^{5H} 2 ^O	Cu(cnge) ₂ (SO ₄) 2H ₂ O	13.8	12.9	50*
$Cu(cnge)_2Cl_2$ $^{2H}2O$	Cu(cnge) ₂ Cl ₂	11.9	10.6	105
Cu(cnge) ₂ Br ₂ 2H ₂ O	Cu(cnge) ₂ Br ₂ 0.5H ₂ O	6.4	6.4	65
Cu(cnge) ₂ Br ₂ 2H ₂ O	Cu(cnge) ₂ Br ₂	8.1	8.4	120

* Under vacuum (0.1 Pa)

2.5 Anhydrous Copper(II)-(1-Cyanoguanidine) Derivatives

The anhydrous bis(cnge) derivatives of copper(II) chloride, bromide and nitrate, prepared in this work, differ completely from the description given by Panda et al²⁸ for their products. A comparison of the data is effected in Table 2.10. Repeated attempts to prepare the anhydrous halides by refluxing the requisite molar ratio of copper(II) halide and 1-cyanoguanidine in ethanol, Panda's route, failed. Depending on the molar ratios of the reactants, either blue (or green) crystals of [Cu(aOeu)Cl₂] {or Cu(aOeu)Br₂.2H₂O} or pink crystals of $[Cu(aOeu)_2]Cl_2.2H_2O \{ or Cu(aOeu)_2Br_2 \}$ (aOeu = 1-amidino-O-ethylurea), were invariably obtained, presumably as a result of solvolysis of cnge in the presence of the copper(II) salt. These products have been characterised in single crystal X-ray diffraction, infrared and UV-visible spectroscopic studies, the results of which are reported in Chapters Six, Seven and Eight. Since these materials closely resemble, and the anhydrous copper(II)-cnge salts described herein differ from, those prepared by Panda et al, then their results must be considered with extreme caution.

2.6 <u>Vibrational Spectroscopy of Copper(II)-(1-</u> <u>Cyanoguanidine) Complexes</u>

The vibrational spectra for various anhydrous, hydrated and deuterated copper(II)-cnge complexes were recorded (4000-400 cm⁻¹), with the exception of the

		UV-visible
Product	Appearance	spectra λ /nm
		λ _{max} /nm
Present Results*		
Cu(aOeu) ₂ Cl ₂ .2H ₂ O	pink	515
Cu(aOeu)Cl ₂	blue	650
Cu(aOeu) ₂ Br ₂	pink	5 1 5
Cu(aOeu)Br ₂ .2H ₂ O	dark green	660
Panda's Results ²⁸		
Cu(cnge) ₂ Cl ₂	pink	530
Cu(cnge) ₄ Cl ₂	blue	675
Cu(cnge) ₂ Br ₂	pink	525
Cu(cnge) ₄ Br ₂	blue	665

TABLE 2.10 Products of the Reaction between cnge and

.

Copper(II) Halides in Refluxing Ethanol

Anhydrous Bis(cnge) Copper(II) Complexes Produced in this work

Product	Appearance	UV-visible spectra ^λ max ^{/nm}	vas(C≡N) cm ⁻¹	v _s (C≡N) cm ⁻¹
Cu(cnge) ₂ Cl ₂	bright green	n 870	2240 2180	1280
Cu(cnge) ₂ Br ₂	pale brown	865	2245 2200	1280
Cu(cnge) ₂ (NO ₃) ₂	bright green	n 870	2225 2185	1285

*These compounds are described in Chapters Six, Seven and Eight.

copper(II) nitrate derivatives, in both nujol and halocarbon mulls using KBr windows as well as in KBr discs. Spectra of the nitrates were recorded solely in mulls using AgCl windows owing to the susceptibility of KBr to oxidative attack. The spectra are compared with those for cnge and D_4 -cnge in Tables 2.11 and 2.12. Bands attributable to the anions have been omitted.

The vibrational spectrum of cnge (point group C_s) has been discussed by Jones and Orville-Thomas.⁹ There are 24 fundamental vibrational modes (15A' and 9A") all of which should be infrared active. Jones and Orville-Thomas assigned frequencies to five of the six (3A' and 3A") fundamental vibrations associated with each of the NH₂ fragments and to nine of the 12 (9A' and 3A") skeletal vibrational modes. These assignments are used as a basis in this work. However, it must be remembered that for a molecule of this complexity the descriptions of the vibrations can only be approximate owing to the extensive mixing of the internal coordinates.

The present spectrum of cnge is in agreement with that reported by Jones et al.⁹ However, advances in spectrophotometric accuracy have led to slight changes in the absorption frequencies.

In all the complexes studied, the spectra of coordinated cnge are similar, they do, however, differ significantly from the spectrum of free cnge.

The spectra of the two complexes for which structural data are available $[Cu(cnge)_2Cl_2(H_2O)_2]^{39}$ and

TABLE 2.11

cnge ¹⁸	cnge	Cu(cnge) ₂ Cl ₂	Cu(cnge) ₂ Br ₂	Cu(cnge) ₂ (SO ₄)
3422 3370 3324 s,br	3422 3370 3331	3420 3340]s,br	3540 mw,br 3390 3320 s,br	3340 vs,br
3175 3134 s,br	3187 3154]s,br	3210 3160]s,br	3210 3160 s,br	3200 vs,vbr
2203 s 2159 s	2208 s 2164 s	2240 2180]vs	2240 vs 2200 ms	2235 2180 vs
1657 1633 s,br	1662 1643 1635]s,br	1690 vs 1650 vs	1670 1640 s	1650 vs,vbr
	1570 s	1565 vs 1520 ms		1550 vs,vbr
1252 ms	1255 ms	1280 m	1280 m	1280 m,br
1085 w,br	1088 w,br	1110 mw	1110 w	*
928 ms	930 ms	935 m	935 w	
721 w	721 w	720 vw	720 vw	
668 m	668 m	685 m	680 vw	*
550 ms,br	560 ms,br	535 m,br	540 m,br	550 m,br
525 517 508 m	530 517 509] m	515 m		
470 ms,br	473 ms,br	460 m,br	460 m,vbr	500 m,br

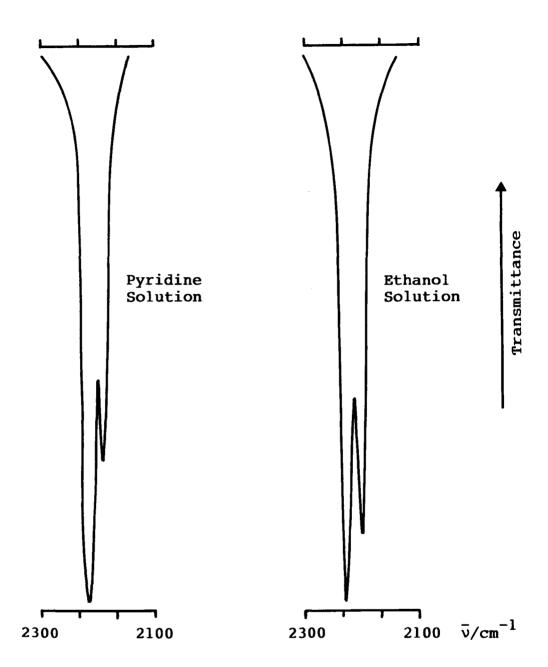
TABLE 2.11 Infrared Spectroscopic Data/cm⁻¹ for cnge and Various Copper(II) cnge Salts

$Cu(cnge)_2(NO_3)_2$	[Cu(cnge) ₂ Cl ₂ (H ₂ O) ₂]	Cu(cnge) ₂ Br ₂ .2H ₂ O	Assignment
3430 sh 3330 vs,br	3427 m 3355] s, br 3323] s, br	3540 ms,br 3400 3320 s,br	ν _a [N-H] and ν _s [N-H]
3190 vs,br 2225 2185]s	3200 s,br 2256 2205] s	3200 s,br 2240 vs 2200 ms	ν _a [N(1)C(1)N(2)]
1660 vs,vbr	1660 vs,br	1680 1650]s	б[NH ₂]
1540 s,br	1565 1537]s,br	1550 1520 s	ν _a [N(3)C(2)N(4)] ν _a [N(2)C(2)N(3)]
1295 m,br	1300 m	1275 ms	v _s [N(1)C(1)N(2)]
1100 w,br	1100 m	1110 m	δ[NH ₂]
935 w,br	921 m	935 mw	ν _s [N(2)C(2)N(3)]
*	710 mw		γ[N(3)C(2)N(4)]
665 w	665 m	690 w	δ[N(3)C(2)N(4)]
565 w,br	560 m,br	540 m,br	γ[NH ₂]
510 w,br	530 m 515 m	510 w	γ[N(1)C(1)N(2)] δ[N(3)C(1)N(4)]
480 w,br	430 w,br	450 m,br	γ[NH ₂]

_	Cu(cnge) ₂ - (NO ₃) ₂ .2H ₂ O	-	[Cu(cnge) ₂ (H ₂ O] (NO ₃) ₂ .2H ₂ O	Assignment
		<u></u>	3580 m,br	
3360 vs,vbr	3400 3350]vs,br	3400 vs,vbr	3420 3320]s,br	∨ [N-H] and ∨ _s [N-H]
3200 s,br	3240 vs,vbr	3220 vs,vbr	3220 3160 s,br	
2240 2200	2240 2200 s,br	2250 2210]s	2240 2200] s	ν _a [N(1)C(1)N(2)]
1660 vs,vbr	1650 s,br	1680 vs,br	1660 s,br	δ[NH ₂]
1560 vs,vbr	1550 s,br	1580 vs,vbr	1570 s,br	v _a [N(3)C(2)N(4)]
1530 sh	1530 sh		1530 m	v _a [N(2)C(2)N(3)]
1280 ms,br	1275 m	1300 m	1295 m	v _s [N(1)C(1)N(2)]
*	1120 w,br	*	1100 w,br	δ[NH ₂]
930 mw	950 m	930 m	925 w	ν _s [N(2)C(2)N(3)]
	*		*	$\gamma[N(3)C(2)N(4)]$
*	690 mw	*	670 mw	δ[N(3)C(2)N(4)]
550 m,br	565 m,br	550 m,br	550 w,br	γ[NH ₂]
	540 m		525 m,br	- γ[N(1)C(1)N(2)] δ[N(3)C(1)N(4)]
500 m,br	500 m,br		500 w,br	γ[NH ₂]

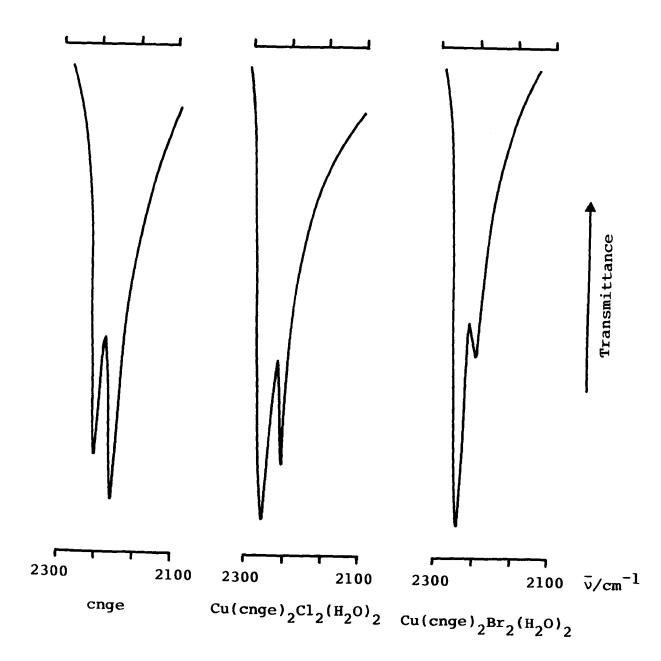
D ₄ -cnge	Cu(D ₄ -cnge) ₂ Cl ₂	Cu(D ₄ -cnge) ₂ Br ₂	Assignment
	.2D ₂ O	.2D ₂ O	_
2580	2570 s,br	2550 c br	
2540	2370 S,DI	2550 s,br 2380 s,br	$v_{1}[N-D]$ and
2415	2410 s,sh		$v_{s}^{a}[N-D]$
2345 J	2410 s,sh ,br 2380 s,br	2380 S, Dr	
2170 vs,	br 2230 vs,br	2235 vs,br	ν _a [N(1)C(1)N(2)]
1185 J	1195 1165] w	1195 1160] w	δ[ND ₂]
1155 _ "	1165 🚽 🖤	1160	2
1570 - 570 -	1595 s,br 1520	15907	ν _a [N(3)C(2)N(4)]
1540	1520	1510	a[N(3)C(2)N(4)]
1255 ms	1280 s	1280 ms	ν _s [N(1)C(1)N(2)]
835 w	845 w,br	835 vw,br	δ[ND ₂]
920 m	925 m	920 m	ν _s [N(2)C(2)N(3)]
715 s	715 m	715 m	γ[N(3)C(2)N(4)]
635 mw	660 mw	660 mw	δ[N(3)C(2)N(4)]
410 m,k	or 400 m,br	400 m,br	γ[ND ₂]
565 m	565 mw	555 mw	γ[N(1)C(1)N(2)]
480 m	485 mw	490 mw	δ[N(3)C(2)N(4)]
360 m,k	or 360 m,br	345 m,br	γ[ND ₂]

<u>TABLE 2.12</u> Infrared Spectroscopic Data for D₄-cnge and Copper(II)-(D₄-cnge) Salts


[Cu(cnge)₂(H₂O)₂](NO₃)₂.2H₂O are very similar in accord with the near identical geometries of the cnge molecules. Bands diagnostic of cnge coordination to copper(II) are apparent for these two compounds, and, indeed, for all the complexes studied; they have been attributed to the asymmetric and symmetric stretches of the nitrile group. Both bands move to higher frequency on coordination; whereas the band designated $v_{a}[N(1)C(1)N(2)]$, which appears as a sharp doublet, moves from $2208/2164 \text{ cm}^{-1}$ (for enge) to at least 2235/2180 cm⁻¹ (for Cu(enge)₂SO₄), $v_{s}[N(1)C(1)N(2)]$ moves from 1255 cm⁻¹ (for cnge) to at least 1275 cm⁻¹ (for $[Cu(cnge)_2Cl_2(H_2O)_2]$ or $Cu(cnge)_2(NO_3)_2.2H_2O)$. This increase in frequency is typical of unidentate coordinated nitrilesand has been attributed to a more effective σ -donor than π -acceptor interaction. 43

The N(1)C(1)N(2) fragment of free cnge should give rise to only two infrared active stretching vibrations – the asymmetric, v_a (NCN), and symmetric, v_s (NCN), stretches. Jones et al⁹ assigned these vibrations to the 1255 cm⁻¹ band [v_s (NCN)] and to the doublet band at 2208/2164 cm⁻¹ [v_a (NCN)]. They attributed the doublet structure of the latter band to the splitting of a fundamental vibration by the crystal field, a correlation interaction. They claimed that the infrared spectrum of a pyridine solution of cnge exhibited only a single band in the 2300-2000 cm⁻¹ region at 2182 cm⁻¹. Repeating this spectrum in this work, a doublet was observed at 2184/2150 cm⁻¹ (Figure 2.4). Indeed, an ethanol solution of cnge also gave a doublet at 2200/2157 cm⁻¹, so ruling out a correlation interaction as a possible explanation of this phenomenon.

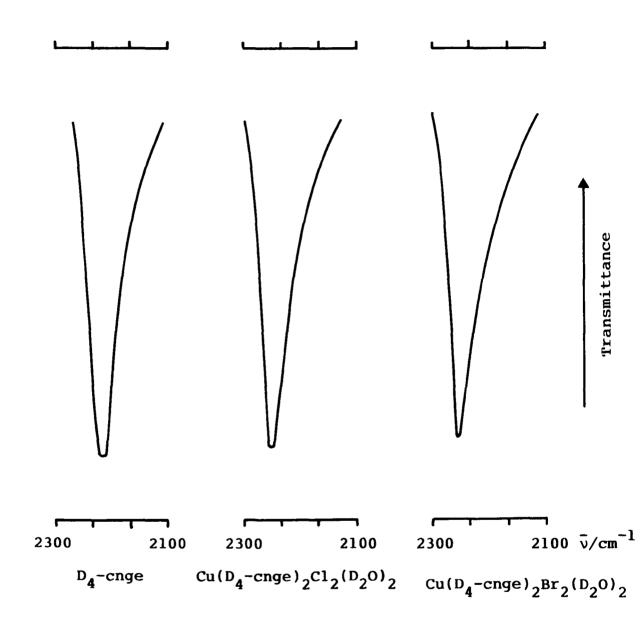
Careful examination of the infrared spectra of coordinated cnge and of deuterated free and coordinated cnge in the 2300-2000 cm⁻¹ region, does help in the explanation of the curious $'v_a$ (NCN)' doublet.


For this analysis $[Cu(cnge)_2Cl_2(H_2O)_2]$, $Cu(cnge)_2Br_2.2H_2O$ and their deuterated analogues have been chosen as typical examples since there are no consistent differences between the spectra of the anhydrous and hydrated complexes, and the spectra of the halides exhibit much better resolution than those of the oxy-salts, presumably owing to reduced hydrogen bonding. A comparison of the 2300-2000 cm⁻¹ region of the infrared spectra of cnge, $[Cu(cnge)_2Cl_2(H_2O)_2]$ and $Cu(cnge)_2Br_2.2H_2O$ is effected in Figure 2.5.

For free cnge the lower frequency band, 2164 cm⁻¹, is of slightly greater intensity than its higher frequency partner, 2208 cm⁻¹, whereas for $[Cu(cnge)_2Cl_2(H_2O)_2]$ and $Cu(cnge)_2Br_2.2H_2O$ the reverse is observed: bands at 2255 and 2240 cm⁻¹ being greater in intensity than those at 2205 and 2200 cm⁻¹ respectively. This could imply that upon coordination of cnge it is the band at 2164 cm⁻¹ which shifts to 2255 or 2240 cm⁻¹, whilst the band at 2208 cm⁻¹ shifts but marginally. Assuming this interpretation the band at 2208 cm⁻¹ of FIGURE 2.4 IR spectra of 1-cyanoguanidine in pyridine and ethanol solutions

FOOTNOTE Compared to the solid state spectrum of enge the frequencies of the doublet have been shifted and the relative intensities of the individual bands reversed. The effect of a solvent on infrared frequency and intensity has been investigated for nitriles with only limited success leaving the phenomenon relatively unexplained.⁴⁴

FIGURE 2.5 IR spectra of cnge, $[Cu(cnge)_2Cl_2(H_2O)_2]$ and $[Cu(cnge)_2Br_2(H_2O)_2]$



cnge and those at 2205 and 2200 cm^{-1} of the complexes are probably incorrectly assigned to a nitrile stretching vibration.

To try to clarify the situation, enge, $[Cu(enge)_2Cl_2(H_2O)_2] \text{ and } Cu(enge)_2Br_2.2H_2O \text{ were}$ deuterated. Bands in enge and in the two copper(II) complexes that were assigned to v(NH), $\delta(NH_2)$, and $\gamma(NH_2)$ clearly shifted to lower frequencies and with the exception of the band designated $v_a(NCN)$, there were only minor changes in the frequencies of the bands assigned to the C-N skeletal vibrations (Table 2.12). Figure 2.6 compares the 2300-2000 cm⁻¹ region of the spectra of D_4 -enge, $[Cu(D_4-enge)_2Cl_2(D_2O)_2]$ and $Cu(D_4-enge)_2Br_2.2D_2O$. For enge deuteration modifies the doublet to give a single broad band centred at 2170 cm⁻¹.

Coordinated cnge also exhibits a similar modification of the doublet on deuteration. The absorption occurs as a single broad band centred at 2230 cm^{-1} for both $[Cu(D_4-cnge)_2Cl_2(D_2O)_2]$ and $Cu(D_4-cnge)_2^ Br_2.2D_2O$. These results further indicate that it is the 2164 cm^{-1} band of cnge which shifts to higher frequency (to 2255 and 2240 cm^{-1}) whilst the 2208 cm^{-1} band only shifts marginally (to 2205 and 2200 cm^{-1}) implying that only the 2164 cm^{-1} absorption should be attributed to the asymmetric nitrile stretch of free cnge.

The loss of the 2208 cm⁻¹ band on deuteration suggests that it involves an N-H vibration and that an alternative explanation involving Fermi resonance may account for the doublet structure. FIGURE 2.6 IR spectra of D_4 -cnge, $[Cu(D_4-cnge)_2Cl_2(D_2O)_2]$ and $[Cu(D_4-cnge)Br_2(D_2O)_2]$

Fermi resonance occurs when two different vibrations (or combinations of vibrations) of the same symmetry species have nearly the same energy, that is, they are accidentally degenerate. It results in a shift of one vibration towards lower energy and the other towards higher energy.⁴⁵ Thus, the doublet may be due to the interaction of the nitrile vibration with an overtone or combination band involving an N-H vibration. For free cnge the mean of the observed doublet (2208/2164 cm⁻¹) is 2186 cm⁻¹. Possible combinations of vibrations which have frequencies close to this mean are the first overtone of the 1088 cm⁻¹ band [assigned $\delta(NH_2)$] and the combination of the 1662 cm⁻¹ [assigned $\delta(NH_2)$] and 530 cm⁻¹ (undefined assignment) bands giving values of 2176 and 2192 cm⁻¹ respectively.

2.7 Conclusions

The studies of transition metal-cnge complexes all show that infrared spectroscopy is sometimes effective in assessing the coordination of cnge.

On coordination of cnge to cadmium(II) only minor changes are noted in the infrared spectra. Differentiation between mono- and bidentate coordination is not possible since neither the absorption bands, nor the structural parameters vary consistently. Some of the absorption bands { $v_{s}[N(1)C(1)N(2)], v_{s}[N(2)C(2)N(3)],$ $\delta[N(3)C(2)N(4)]$ } do, however, tend to mirror trends in structural parameters.³⁴ The similarity of the spectra of all the copper(II) complexes studied, which exhibit significant changes relative to free cnge, implies that coordination is exclusively monodentate.

It is difficult to rationalise the differing behaviour of cnge in the presence of cadmium(II) (Cd^{2+}) and copper(II) (Cu^{2+}) cations. Hubberstey et al determined that cnge also acts as a bidentate ligand in the presence of potassium (I) ions (K^+) .⁴⁶ The similarity in the coordination properties of cnge towards Cd^{2+} and K^+ , both of which have fully occupied electronic configurations, suggests that the bonding interactions may be predominantly electrostatic in nature. In a recent structural and theoretical study of cnge⁷ the net atomic charges on N(1) and N(2) have been shown to be similar and much greater than those on the other atoms of cnge (Figure 2.7).

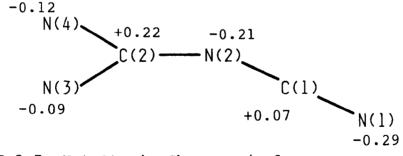


FIGURE 2.7 Net Atomic Charges /e for cnge

Electrostatic interactions would favour equally N(1) and N(2) as ligating atoms giving the possibility of both mono- and bidentate behaviour.

For Cu^{2+} , which has a d⁹ configuration and coordinates enge equatorially, the bonding may involve a more covalent interaction utilising the single occupied $d_x^2-y^2$ orbital of Cu^{2+} . Monodentate bonding via N(1) alone is probably preferred to give a strong σ -donor interaction.

Although no copper(II)-cnge complexes with bidentate cnge are known, a structure has been reported in which two copper(II) ions are bridged by two hydrocyanamido(-1) ligands⁴⁷ (Figure 2.8). These ligands are of similar geometry to the N(1) C(1) N(2) fragment of cnge.

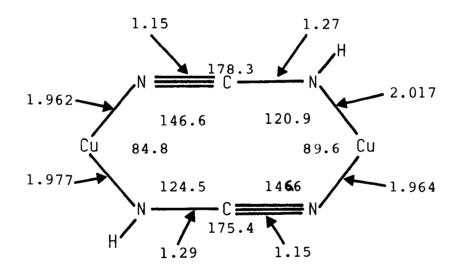
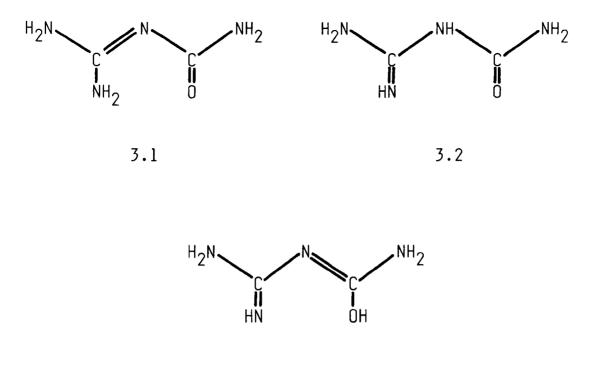


FIGURE 2.8 Geometry of bridging hydrocyanamido(-1) ligands in $[Cu(C_9H_{21}N_3)_2(\mu HNCN)_2](ClO_4)_2.H_2O$ (Bond distances/A, bond angles/°).

The nitrile nitrogen is, however, not directly end-on bonded and the ligand is anionic, the negative charge obviously influencing the coordinating properties. This structure does imply that under appropriate conditions bridging bidentate cnge ligands may be possible with copper(II) ions.

Confirmation of this interpretation of the coordinating properties of cnge is obviously dependent on the synthesis and structural characterisation of cnge complexes of a wider range of metals, with both filled and partially filled electronic configurations.

CHAPTER THREE

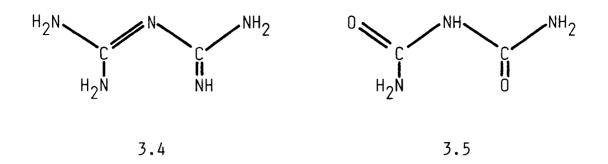

COPPER(II) COMPLEXES OF 1-CARBAMOYLGUANIDINE 3.1 Introduction

As an extension to the study of the coordination properties of 1-cyanoguanidine described in Chapter Two, a similar investigation of the chemistry of its hydrolysis product, variously referred to in the literature as 1-carbamoylguanidine, ureidoguanidine, dicyandiamidine, guanylurea, guanylcarbamate, aminoiminourea, aminoiminomethylurea*, was undertaken. (The choice of nomenclature, l-carbamoylguanidine, is based on the structure determinations described in this Chapter.) The diversity of nomenclature undoubtedly arises from the fact that three tautomeric forms (3.1-3.3) can be envisaged for this material for which no definite structural analysis has been published. A11 previous structural analyses, which tend to favour form 3.2, have been based on spectroscopic (ir, UV-visible) and chemical analytical data. 3,48,49,50

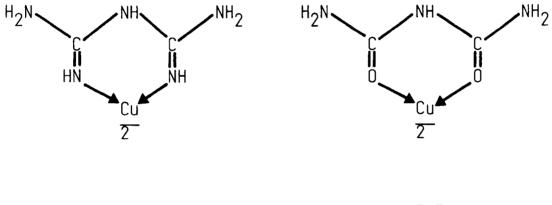
l-Carbamoylguanidine (clge) has been reported to bond to transition metals.⁴⁸ The early literature on transition metal-clge complexes is, however, extremely difficult to follow owing to the indiscriminate application of pseudonyms to neutral clge as well as its cationic, [clgeH]⁺, and anionic , [clge]⁻, derivatives.

* Chemical Abstracts Registry Number [141-83-3].

66



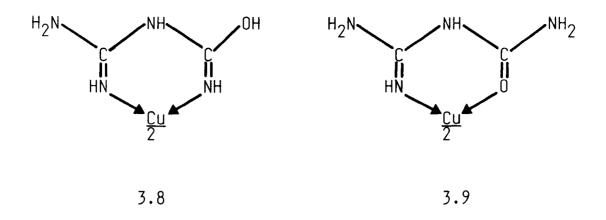
3.3


The majority of papers refer to complexes containing either $[clgeH]^+$ or $[clge]^-$ moieties and there appears to be only two original reports of the preparation of copper(II) complexes containing the neutral molecule, clge. They are both superficial; characterisation of the products being based almost exclusively on chemical analytical data; Dubsky and Strnad⁵¹ claim the preparation of Cu(clge)₂SO₄ and Cu(clge)₂(NO₃)₂, whereas Ray and Bandopadhyay⁵² claim the preparation of Cu(clge)₂SO₄, 1.5H₂O and Cu(clge)₂Cl₂.

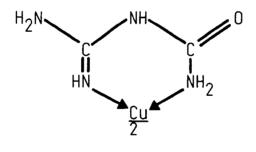
These complexes are, however, quite significant owing to their similarity to corresponding complexes of biguanide (bg; 3.4) and biuret (bu; 3.5).

Structural studies of $[Cu(bg)_2]Cl_2.2H_2O^{21}$ and of $[Cu(bu)_2Cl_2]^{22}$ have shown that bg chelates copper(II) via

two imine groups (3.6) whereas bu chelates copper(II) through its two carbonyl groups (3.7).



3.6


3.7

Since clge contains fragments of bg and bu, a number of coordination modes can be envisaged, the most probable being those involving either two imine groups (3.8) or one imine and one carbonyl group (3.9) as donor centres.

In an early attempt to ascertain how clge bonds to transition metals, Syamal⁵³ repeated Ray's work⁵² and undertook a spectroscopic (i.r. and UV-visible) study of his products which he designated on the basis of chemical analytical data, as $Cu(clge)_2SO_4.1.5H_2O$ and $Cu(clge)_2Cl_2.1H_2O$. He concluded that the carbonyl group of clge,

although retained on coordination to copper(II), is not bonded to the metal ion and that both donor atoms are nitrogen atoms. This conclusion is not consistent with either of the coordination modes (3.8, 3.9) derived by analogy with copper(II) complexes of bg and bu, but is best described by a Lewis structure (3.10) which involves coordination through an amine group.

3.10

Since no definitive evidence is available for uncoordinated clge or any transition metal-clge complexes, the crystal and molecular structures of the l:l ethanol adduct of l-carbamoylguanidine (clge.EtOH) and of bis(l-carbamoylguanidine)dinitrato copper(II) $[Cu(clge)_2(NO_3)_2]$ have been determined. Furthermore, the vibrational spectra of these compounds, their deuterated analogues and the analogous complexes $Cu(clge)_2X_2$ (X = Cl, Br) have also been recorded with a view to using them as an effective diagnostic tool in assessing the mode of coordination of the ligand.

3.2 Experimental

3.2.1 Clge.EtOH and clge

l-Carbamoylguanidine was prepared by a modified version of the capricious synthesis reported by Piskala. 54

An aqueous solution of l-carbamoylguanidinium hydrochloride (5g in 50 cm^3) (see Section 4.2 for preparation) was treated with Dowex-1 ion exchange resin (100g, previously soaked in sodium hydroxide (10M) for seven days, then washed in deionised water) by allowing the mixture to stand for two days. The resin was filtered off and washed with water. The combined filtrates were evaporated under vacuum at temperatures not exceeding 35°C and crystallised from ethanol. Colourless crystals of the adduct were stored in a stoppered bottle to prevent loss of ethanol. The unsolvated product was obtained, in powder form, by drying the adduct under vacuum over concentrated sulphuric acid and potassium hydroxide. Yield 2.1g (58%), mpt 103-104°C.

Analytical data for these and all subsequent products are collated in Table 3.1.

3.2.2 [Cu(clge) (NO3)]

Bis(l-carbamoylguanidine)dinitrato copper(II) was prepared via two routes:- (a) the hydrolysis of bis(l-cyanoguanidine)di-µ-aquocopper(II) dinitrate dihydrate and (b) the reaction of clge with copper(II) nitrate trihydrate in aqueous solution. The former route produced small amounts of a crystalline sample whilst the latter gave an almost 100% yield of the product in powder form.

Route (a)

An aqueous solution of $bis(1-cyano guanidine)di-\mu-aquocopper(II)$ dinitrate dihydrate [2.1g (5 mmol) in 10 cm³] was allowed to stand in an open conical flask (100 cm³) at room temperature. After 7 days a few dark blue crystals had grown from the solution. They were collected, washed with deionised water, and dried over silica gel. Further quantities of the product were produced on leaving the solution to stand for several more days.

Route (b)

An excess of an aqueous solution of copper(II) nitrate trihydrate [2.4g (10 mmol) in 10 cm³] was added to an aqueous solution of clge [2.04g (20 mmol) in 5 cm³]. The blue precipitate which formed immediately was collected, washed with deionised water, and dried over silica gel. Yield 3.80g (97%).

3.2.3 <u>Cu(clge)</u>₂Cl₂ and Cu(clge)₂Br₂

Attempted preparations of copper(II)-clge chloride and bromide complexes by a method analogous to Route (b) for $[Cu(clge)_2(NO_3)_2]$ were unsuccessful, due to the instability of the complexes in aqueous solutions. However, ethanol proved to be a suitable alternative to water and $Cu(clge)_2Cl_2$ and $Cu(clge)_2Br_2$ complexes were synthesised in powder form using the following method.

The addition of an ethanolic solution of $CuCl_2.2H_2o$ [0.17g (1 mmol) in 10 cm³] or $CuBr_2$ [0.22g (1 mmol) in 10 cm³] to an ethanolic solution of clge [0.20g (2 mmol) in 20 cm³] yielded blue precipitates which, after collection, washing with cold ethanol, and air drying, were analysed for $Cu(clge)_2Cl_2.H_2O$ or $Cu(clge)Br_2$. Isothermal dehydration of $Cu(clge)_2Cl_2.H_2O$ at 110°C for 2 hours gave $Cu(clge)_2Cl_2$. Yields:- 0.31g (97%) $Cu(clge)_2Cl_2$, 0.36g (84%) $Cu(clge)_2Br_2$.

3.2.4 \underline{D}_6 -clge and Cu(\underline{D}_6 -clge)₂(\underline{NO}_3)₂

Deuterated clge was obtained by repeated solution of clge in D_2O followed by removal of excess water under vacuum.

 $[Cu(clge)_2(NO_3)_2]$ could not be deuterated directly because the material was insoluble in most common deuterated solvents with labile deuterium atoms (e.g. D_2O or C_2H_5OD).

 $Cu(D_6-clge)_2(NO_3)_2$ was prepared by the addition of a D_2O solution of copper(II) nitrate trihydrate

TABLE 3.1 Analytical Data for clge and Copper(II)-clge

Complexes

	Experiment	rimental/Theoretical %			
Compound	С	Н	N		
clge.EtOH*	32.24/32.43	7.60/8.11	41.81/37.84		
clge	23.15/23.53	5.88/5.88	54.90/54.94		
$[Cu(clge)_2(NO_3)_2]^a$	12.06/12.26	3.18/3.06	36.03/35.76		
$[Cu(clge)_2(NO_3)_2]^b$	12.13/12.26	3.25/3.06	35.93/35.76		
$Cu(clge)_{2}Cl_{2}$ ·H ₂ O	13.56/13.47	3.71/3.96	31.43/31.42		
Cu(clge) ₂ Cl ₂	14.10/14.18	3.66/3.57	32.78/33.09		
Cu(clge) ₂ Br ₂	11.33/11.24	2.88/2.81	26.02/26.21		

- * The poor analytical data is undoubtendly due to ethanol loss during analytical handling.
- a Product from Route (a)
- b Product from Route (b)

(previously deuterated by the same method as clge) [0.25g (1 mmol) in 2 cm³] to a D_2O solution of D_6 -clge [0.2g (2 mmol) in 2 cm³] under a dry nitrogen blanket. The blue precipitate which formed immediately was collected, washed with D_2O and dried under vacuum. Yield .37g (92%).

3.3 <u>Crystal and Molecular Structures of the 1:1 Ethanol</u> Adduct of 1-Carbamoylguanidine and of <u>Bis(1-carbamoylguanidine)dinitratocopper(II)</u>

3.3.1 Structure solution and crystal data for clge.EtOH

The ethanol adduct was chosen for structural analysis since clge formed initially in aqueous solution could not be crystallised as the free molecule from any solvent.

A suitable colourless crystal (0.4 x 0.2 x 0.2 mm) of the adduct was obtained by allowing a warm saturated ethanol solution of clge to cool slowly to room temperature. The crystal was mounted in a sealed Lindemann tube to prevent loss of ethanol.

Cell parameters, space group and X-ray diffraction data were obtained as described in Section 1.6.1. Of the 830 intensities collected, 715 were deemed to be observed.

The carbon, nitrogen and oxygen atoms of the two molecules were located by direct methods using the 'MULTAN 80' suite of programs.³² Full matrix least squares refinement with anisotropic temperature factors for all these atoms converged at R = 0.075. The top six peaks (electron densities 0.41 to 0.34 e/R^3) of a

subsequent difference Fourier synthesis gave the positions of all the hydrogen atoms of the clge molecule. The eighth distinct peak (density 0.23 e/A^3) gave the position of the hydroxyl hydrogen atom. The thermal lability of the ethyl group prevented accurate location of its hydrogen atoms which had to be positioned using a hydrogen placing routine [r(C-H) = 0.95 Å, U(ISO) = 0.05 $8^{2}1$. Further refinement of the structure included the clge and alcoholic hydrogen atoms with isotropic thermal parameters; it converged at R = 0.046. The ethyl hydrogen atoms were included in the structure factor calculations without refinement. Final positional parameters and thermal parameters are given in Tables 3.2 and 3.3. Observed and calculated structure factors are included in Appendix B.

Crystal Data

 $C_4H_{12}N_4O_2$, M = 148.2, orthorhombic, space group P2₁2₁2₁, a = 7.509(3), b = 8.896(3), c = 11.565(3) Å, U = 772.5 Å³, D_m = 1.25, D_c = 1.27 g cm⁻³ for Z = 4, F(000) = 320, $\mu(MoK_{\alpha})$ = 1.1 cm⁻¹.

3.3.2 Structure solution and crystal data for

$[Cu(clge)_2(NO_3)_2]$

Deep blue crystals of $[Cu(clge)_2(NO_3)_2]$ were obtained by slow hydrolysis of bis(l-cyanoguanidine)di- μ -aquo-copper(II)dinitrate dihydrate as described in Section 3.2.2 a. Several crystal were mounted in

Atom	x/a	y/b	z/c
0(1)	319.1(3)	135.6(2)	388.4(2)
C(1)	173.4(4)	198.5(3)	409.1(2)
C(2)	2.2(4)	64.0(3)	275.6(3)
N(1)	165.3(4)	307.8(3)	490.9(2)
N(2)	16.3(3)	174.9(3)	354.4(2)
N(3)	-155.2(4)	51.6(4)	222.1(3)
N(4)	127.4(4)	-34.3(3)	247.8(3)
0(2)	545.9(4)	267.3(4)	224.2(3)
C(3)	455.2(8)	281.5(6)	117.3(4)
C(4)	465(1)	151.9(8)	44.8(6)
H(1)	258(7)	327(5)	533(5)
H(2)	53(9)	339(6)	521(5)
H(4)	-232(6)	127(5)	231(4)
Н(5)	157(6)	-5(5)	164(4)
Н(б)	103(6)	-105(5)	206(4)
H(7)	242(7)	-26(5)	282(4)
н(8)	476(9)	233(7)	275(5)
Н(9)	513	368	73
н(10)	328	307	131
H(11)	399	171	-30
H(12)	591	126	27
H(13)	406	65	85

<u>TABLE 3.2</u> Final Positional Parameters $(x10^3)$ for clge.EtOH

TABLE 3.3 Thermal Parameters $(x10^3)/A^2$ for clge.EtOF	TABLE 3.3	Thermal	Parameters	$(x10^{3})/A^{2}$	for	clge.EtOH
--	-----------	---------	------------	-------------------	-----	-----------

Atom	U(1)	U(22)	U(33)	U(23)	U(13)	U(12)	U(ISO)
0(1)	24(1)	45(1)	48(1)	-11(1)	-1(1)	4(1)	
C(1)	29(1)	28(1)	32(1)	2(1)	0(1)	-2(1)	
C(2)	29(1)	29(1)	36(2)	-2(1)	0(1)	1(1)	
N(1)	29(1)	41(1)	37(1)	-12(1)	-1(1)	0(1)	
N(2)	26(1)	28(1)	36(1)	-4(1)	-1(1)	2(1)	
N(3)	39(2)	45(2)	55(2)	-18(2)	-14(1)	8(1)	
N(4)	35(2)	35(1)	51(2)	15(1)	-5(1)	4(1)	
D(2)	40(1)	78(2)	51(2)	-3(1)	-2(1)	-3(1)	
C(3)	83(3)	79(2)	67(3)	-7(3)	-26(3)	19(3)	
C(4)	102(4)	117(5)	80(4)	-28(4)	-9(4)	-1(4)	
H(1)							40(10)
H(2)							60(20)
H(4)							20(10)
H(5)							20(10)
H(6)							20(10)
H(7)							20(10)
H(8)							60(20)

In the form: $[exp-2\pi^{2}(U(11)h^{2}a^{*2}+U(22)k^{2}b^{*2}+U(33)]c^{*2}+U(33)]c^{*2}$

2U(12)hka*b*+2U(13)hla*c*2U(23)klb*c*)]

Lindemann tubes for preliminary study. Oscillation and Weissenberg photographs revealed cell parameters, space group and the fact that the crystals were twinned about the (100) plane. The ratio of the two components varied from crystal to crystal. X-ray diffraction data for the refinement of cell parameters and structure determination were calculated as described in Section 1.6.1 for the major component of the crystal (0.3 x 0.2 x 0.2 mm) which was found to have the maximum component ratio; allowance was made, at a later stage, for the twinning of the crystals. Of the 1301 intensities collected 555 were deemed to be observed.

Consideration of the molecular formula within the context of the crystal symmetry indicated that the copper atom must be situated in one of the two-fold special positions (0.5, 0.5, 0.5) of the $P2_1/n$ space group and that the pairs of clge molecules and nitrate anions must be located in centrosymmetrically related positions. Consequently, subsequent to the data reduction stage, the positions of the carbon, nitrogen and oxygen atoms were determined by a difference Fourier synthesis. The identities of the skeletal atoms of the chelating ligand were confirmed by equating their atomic scattering factors to that of carbon and then determining their isotropic temperature factors. Those atoms with factors between 0.0296 and 0.0318, between 0.0105 and 0.0235, and equal to -0.0067 were designated carbon, nitrogen and oxygen, respectively. Full matrix least squares refinement with

anisotropic temperature factors for all these atoms converged at R = 0.070. A subsequent difference Fourier synthesis indicated the presence of electron density (varying from 0.50 to 0.29 e/R^3) consistent with the ligand adopting coordination mode 3.9. The positions of the corresponding hydrogen atoms were then defined $[r(N-H) = 0.95 \ R; U(ISO) = 0.03 \ R^2]$ using a hydrogen placing routine. Further refinement of the structure with fixed hydrogen atoms converged at R = 0.066. Final positional parameters and thermal parameters are given in Tables 3.4 and 3.5 respectively. Observed and calculated structure factors are included in Appendix B.

Crystal Data

 $C_4H_{12}N_{10}O_8Cu$, M = 391.8, monoclinic, space group P2₁/n, a = 9.146(3), b = 6.654(3), c = 11.183(3) Å, β = 98.56(3)°, μ = 672.9 Å³, D_m = 1.89, D_c = 1.93 g.cm⁻³ for Z = 2, F(000) = 398, $\mu(MoK_{\alpha})$ = 17.60 cm⁻¹.

3.3.3 <u>Molecular geometries of uncoordinated and</u> <u>coordinated 1-carbamoylguanidine</u>

Whereas the clge molecules are held by hydrogen bond interactions in the structure of the ethanol adduct, they act as bidentate ligands in the structure of the complex. Two centrosymmetrically related clge molecules chelate the copper(II) ion to form a $[Cu(clge)_2]^{2+}$ moiety. The molecular geometries of the clge molecule in the adduct and in the $[Cu(clge)_2]^{2+}$ moiety are shown in

Atom x/a y/b z/c Cu(1) 500 500 500 245(1) C(1) 598(1)338(2)C(2) 215(1)358(2)377(1)N(1) 686(1)171(1)293(2)N(2) 486(1)164(1)321(2)N(3) 115(1)333(2)280(1)371(1) N(4) 350(1) 420(2)N(5)298(1)339(2)11(1)0(1) 376(1) 402(1)617(1)0(2) 112(1) 369(1)348(2) 0(3) -75(1) 361(1) 295(2) 0(4) 163(1)372(2) 12(1) 767 H(1)219 306 H(2) 244 669 74 H(3) 63 284 482 H(4) 19 288 289 H(5) 140 360 203 H(6) 426 293 378

<u>TABLE 3.4</u> Final Positional Parameters $(x10^3)$ for $[Cu(clge)_2(NO_3)_2]$

<u>TABLE 3.5</u> Final Thermal Parameters $(x10^3)/x^2$ for $[Cu(clge)_2(NO_3)_2]$

Atom	U(11)	U(22)	U(33)	U(23)	U(13)	U(12)
Cu(1)	27(1)	54(2)	28(1)	-1(2)	1.0(8)	-4(2)
C(1)	29(7)	28(8)	24(6)	-10(6)	7(5)	-4(6)
C(2) N(1)	22(6) 32(6)	21(8) 63(9)	37(7) 23(5)	1(6) -6(5)	0(5) 0(4)	3(5) -14(6)
N(2)	15(5)	39(7)	29(5)	0(5)	8(4)	-9(5)
N(3)	24(6)	62(9)	31(6)	-8(6)	3(4)	-12(5)
N(4) N(5)	21(5)	41(7)	30(5)	-13(5)	6(4)	-9(4)
O(1)	29(6) 15(4)	35(8) 50(6)	38(6) 22(4)	14(6) 3(4)	14(5) 0(3)	6(5) -7(4)
0(2)	49(6)	100(10)	27(5)	-8(6)	3(4)	15(7)
0(3)	29(5)	80(9)	27(5)	0(5)	7(4)	12(5)
0(4)	19(5)	74(9)	80(7)	3(7)	18(5)	5(6)

In the form: $[exp-2\pi^{2}(U(11)h^{2}a^{*2}+U(22)k^{2}b^{*2}+U(33)]^{2}c^{*2}+$ 2U(12)hk a * b*+2U(13)h]a*c*+2U(23)k1b*c*)] Figures 3.1 and 3.2 respectively; bond lengths and angles are compared in Table 3.6.

It is clear that the geometry of coordinated clge differs from that of free clge. Uncoordinated clge adopts tautomeric form 3.1 such that an intramolecular hydrogen bond occurs between O(1) and N(4). Proton transfer from N(4) to N(2) during the coordination process results in tautomeric form 3.2, which can readily chelate the copper(II) ion giving rise to coordination form 3.9.

Both clge molecules are close to planarity, the maximum deviation of the skeletal atoms from the best planes (Table 3.7) being 0.098 Å for free clge and 0.028 Å for coordinated clge, inferring sp^2 hybridisation of the skeletal atoms and the presence of a delocalised π -system over the entire C-N-O skeleton. This inference is supported by the intermediate length C-O and C-N bonds [typical bond lengths:⁵⁵ r(C-O) = 1.43, r(C=O) = 1.22, r(C-N) = 1.47, r(C=N) = 1.27 Å] and the O-C-N, N-C-N and C-N-C bond angles which are close to 120°.

The tautomeric change on coordination, generation of a C-NH-C bridge at the expense of a C=N-C bridge, has several ramifications. The bridging C-N bonds lengthen at the expense of the terminal C-N bonds, the C-N-C bond angle increases and the molecule is flattened. Pertinent structural features of free and coordinated clge are compared in Table 3.8, together with the corresponding data for bg and bu. 80

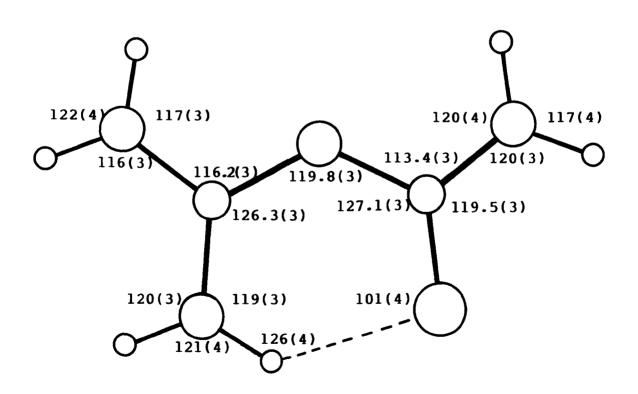


FIGURE 3.1 Molecular geometry of 1-carbamoylguanidine (bond lengths/ $^{\circ}$ and bond angles/ $^{\circ}$)

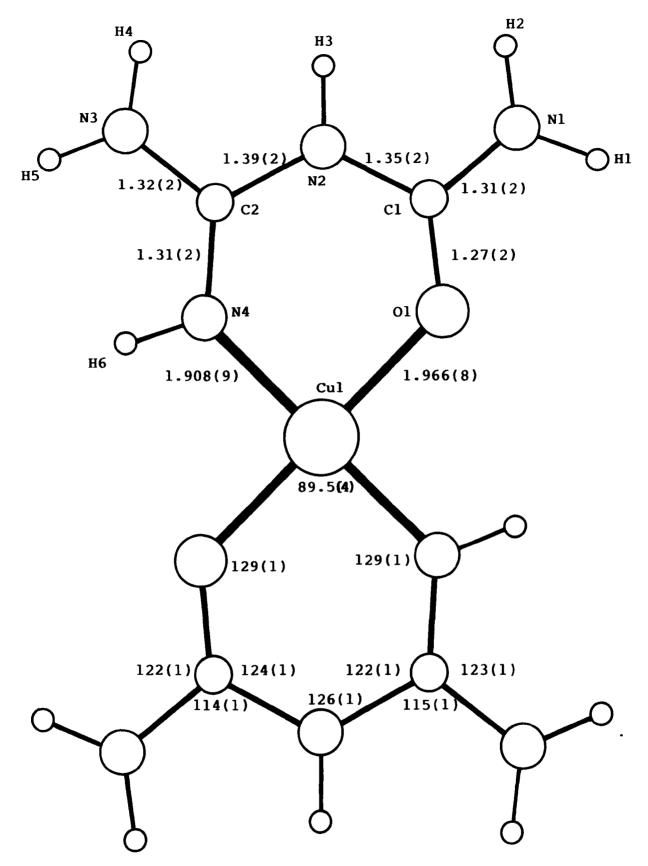


FIGURE 3.2 Molecular geometry of $[Cu(clge)_2]^{2+}$ cationic fragment (bond lengths/Å and bond angles/°)

Bond Distances/A	clge.EtOH	$[Cu(clge)_2(NO_3)_2]$
C(1)-O(1)	1.251(4)	1.27(2)
C(1)-N(1)	1.358(4)	1.31(2)
C(1)-N(2)	1.355(4)	1.35(2)
C(2)-N(2)	1.348(4)	1.39(2)
C(2)-N(3)	1.338(4)	1.32(2)
C(2)-N(4)	1.324(4)	1.31(2)

TABLE 3.6	Molecular	Geometries	of	Uncoordinated	and
	Coordinate	ed 1-Carbamo	oylo	guanidine	

Bond Angles/°	clge.EtOH	$[Cu(clge)_2(NO_3)_2]$
O(1)C(1)N(1)	119.5(3)	122(1)
O(1)C(1)N(2)	127.1(3)	124(1)
N(1)C(1)N(2)	113.4(3)	114(1)
C(1)N(2)C(2)	119.8(3)	126(1)
N(2)C(2)N(3)	116.2(3)	115(1)
N(2)C(2)N(4)	126.3(3)	122(1)
N(3)C(2)N(4)	117.4(3)	123(1)

<u>TABLE 3.7</u> Planarities of Free and of Coordinated 1-Carbamoylguanidine and of the [Cu(clge)₂]²⁺ Fragment

clge in clge.EtOH

Atom	Deviation from Plane/A	Atom	Deviation from Plane/A
0(1)	-0.098	N(2)	-0.008
C(1)	-0.001	N(3)	-0.055
C(2)	+0.006	N(4)	+0.095
N(1)	+0.062		

Equation of best plane: -1.9704x - 5.76071y + 8.27349z = 1.901

Clge in [Cu(clge)₂(NO₃)₂]

	Deviation from		Deviation from
Atom	Plane/A	Atom	Plane/A
0(1)	+0.028	N(2)	+0.003
C(1)	-0.018	N(3)	+0.020
C(2)	-0.014	N(4)	-0.016
N(1)	-0.005		

Equation of best plane: -2.8725x + 6.3119y + 0.9582z = 2.018

Atom	Deviation from Plane/A	Atom	Deviation from Plane/A
Cu(1)	+0.072	N(1)	+0.017
0(1)	-0.028	N(2)	+0.018
C(1)	-0.026	N(3)	+0.042
C(2)	-0.022	N(4)	-0.074
_			

 $[Cu(clge)_2]^{2+} in [Cu(clge)_2(NO_3)_2]$

Equation of best plane: -3.1976x + 6.2292y + 0.9938z = 1.940

The coordination mode of clge is intermediate between that of bg and that of bu; bg coordinates via two imine groups (3.6), clge via one imine and one carbonyl group (3.9), and bu via two carbonyl groups (3.7). On coordination to copper(II), clge undergoes an analogous tautomeric change to that experienced by bg, proton transfer from a terminal amine group to the central nitrogen atom generating a C-NH-C bridge at the expense of a C-N=C bridge. No tautomeric change occurs in bu on coordination, both free and coordinated bu having a C-NH-C bridge.

It is clear from the data in Table 3.8 that the effect of protonation at N(2), caused by coordination, is extremely marked and consistent within this group of molecules.

It is significant that in none of these complexes does the ligand coordinate the transition metal through an amine group, a coordination mode generally accepted by early workers in this field.^{48,52,53} Since the ligand is planar, an extensive delocalised π -system must extend over the whole molecule, resulting in sp² hybridisation of the amino groups. Consequently, the groups do not have lone pairs of electrons which can be directed towards a transition metal and hence coordination through amine residues is not possible; the only functional groups which act as coordinating centres in these ligands are imine and carbonyl fragments. 85

	Dihedral angle/°*	Average r(C-N _{bridge})/Å	Average r(C-N _{terminal})/Å	C-N-C # angle/°
clge (free)	7.5	1.352(4)	1.348(4)	119.8(3)
clge (coord)	1.7	1.370(20)	1.315(20)	126.0(1.0)
bg (free) ¹³	12.5	1.356(2)	1.358(2)	119.9(1)
bg (coord) ²¹	-	1.374(8)	1.349(8)	127.3(5)**
bu (free) ¹⁷	6.3	1.385(3)	1.325(3)	128.5(2)
bu (coord) ²²	6.4	1.371(6)	1.321(6)	126.8

<u>TABLE 3.8</u> Significant Features of the Molecular Geometries of Free and Coordinated clge, bg and bu.

- * This is the angle between the normals to the planes which best represent the two halves of the molecule.
- * This average does not include those contacts, formally defined as double bonds, between carbon and terminal imine groups.
- ** Average of two determinations.

3.3.4 Intermolecular contacts in clge.EtOH

A projection of the structure of the adduct onto the (100) plane is shown in Figure 3.3. The structure is composed of mutually perpendicular ribbons of clge molecules, running parallel to the x axis, with ethanol molecules located above and attached to the carbonyl oxygen by a fairly strong hydrogen bond, r(O(1)...O(2)) =

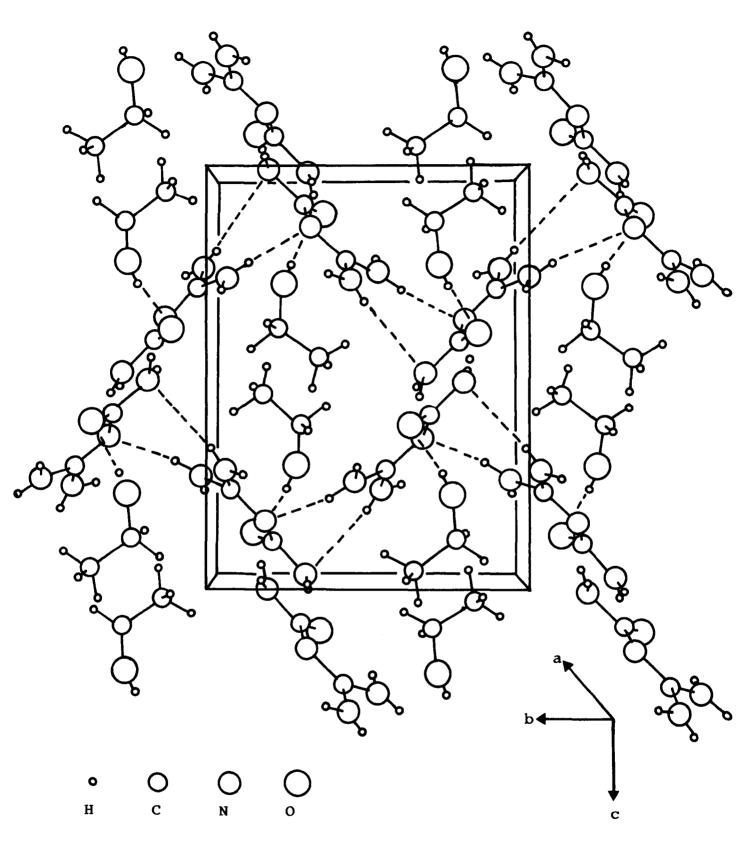


FIGURE 3.3 Projection of the structure of clge.EtOH onto the (100) plane

2.806 Å. The ribbon-like structure is more clearly seen in Figure 3.4 which shows a projection of the structure perpendicular to the plane of the clge molecule. Hydrogen bonds (Table 3.9) maintain the inter- and intra-ribbon contacts and strengthen the rigidity of the ethanol oxygen atom. The inter- and intra-ribbon hydrogen bonds are depicted in Figures 3.3 and 3.4. Details of the molecular geometry of the ethanol molecule are given in Table 3.10. With the exception of the short C-C bond distance which results from the thermal libration of the ethyl moiety, this data is unremarkable.

TABLE 3.9 Intermolecular Contacts of Less than 3.30 Å in clge.EtOH; Hydrogen Bond and Electrostatic Interactions

Interaction X-HX'	Symmetry Properties of X'	r(xx') 8	r(х-н) Х	r(HX') 8	XHX' °
N(1)-H(1)N(2)	$\frac{1}{2} + x$, $\frac{1}{2} - y$, $1\frac{1}{2} - z$	3.189	0.87	2.23	168
N(1)-H(2)O(1)	$-\frac{1}{2}+x$, $\frac{1}{2}-y$, $1\frac{1}{2}-z$	2.994	0.96	2.06	166
N(3)-H(4)O(2)	-l+x,y,z	2.953	0.89	2.08	165
N(3)-H(5)N(1)	$-x, -\frac{1}{2}+y, \frac{1}{2}-z$	3.283	0.84	2.45	174
N(4)-H(6)N(2)	$-x, -\frac{1}{2}+y, \frac{1}{2}-z$	3.042	0.82	2.26	160
N(4)-H(7)O(2)*	$1-x, -\frac{1}{2}-y, \frac{1}{2}-z$	3.039	0.95	2.44	121
O(2)-H(8)O(1)	x,y,z	2.806	0.84	1.97	175

* For this interaction the angle at H(7) is very low owing to the N(4)-H(7)...O(1) intramolecular hydrogen bond interaction, r(N(4)-H(7)) = 0.95, r(H(7)...O(1)) = 1.98, r(N(4)...O(1)) = 2.646 A and $N(4)H(7)O(1) = 126^{\circ}$.

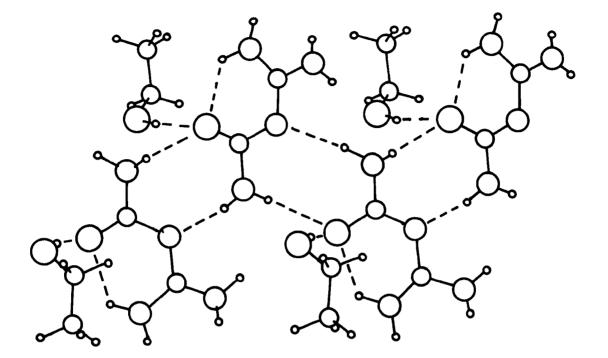


FIGURE 3.4 Projection of the structure of clge.EtOH perpendicular to the plane of the clge molecule

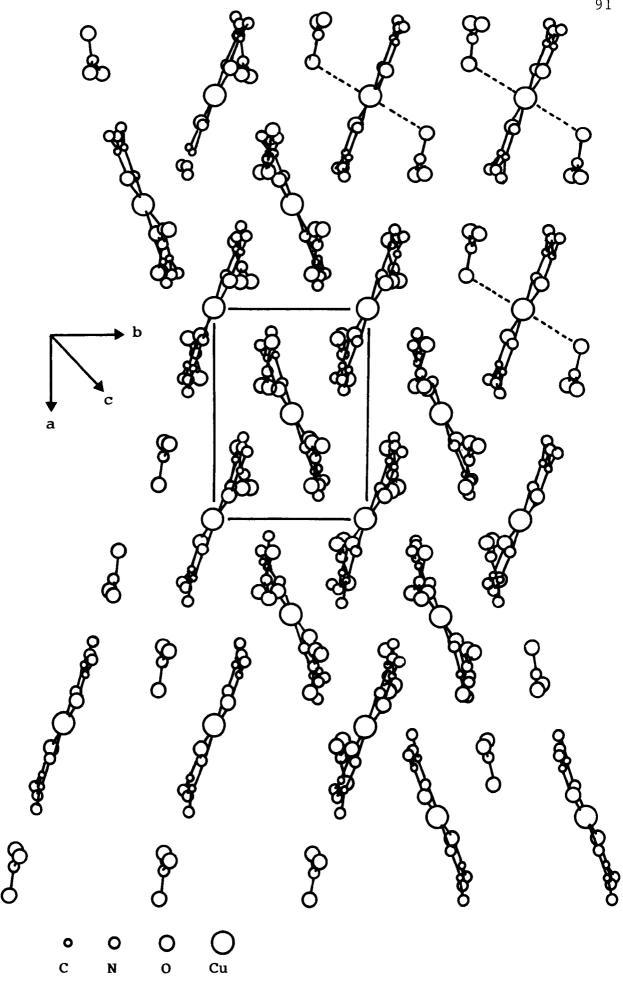
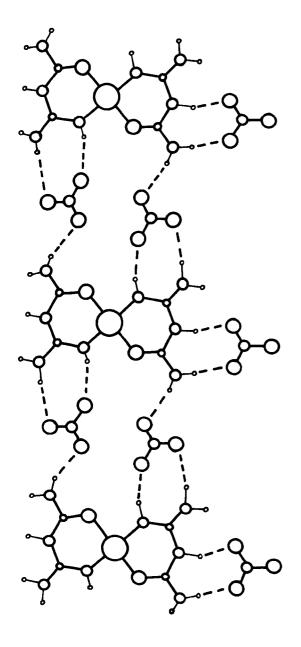

Bond Distances/A		Bond Angles/°		
C(3)-O(2)	1.417(6)	O(2)C(3)C(4)	114.5(5)	
C(3)-C(4)	1.428(8)	H(8)O(2)C(3)	110(4)	
O(2)-H(8)	0.84(6)			

Table 3.10 Geometry of the Ethanol Molecule in clge.EtOH


3.3.5 Intermolecular Contacts and the Coordination of the Copper(II) Ion in [Cu(clge)₂(NO₃)₂]

Views of the structure of the complex perpendicular to (001) and (120) are shown in Figures 3.5 and 3.6 respectively. It consists of ribbons of coplanar $[Cu(clge)_2]^{2+}$ cationic fragments and nitrate anions linked through the anions to give two sets of planes parallel to (120) and ($\overline{1}20$). The intra- and inter-ribbon contacts involve both electrostatic and hydrogen bonding interactions. All intermolecular contacts of less than 3.30 Å are summarised in Table 3.11; the principal hydrogen bonding interactions are also shown in Figure 3.6.

The copper(II) ion is coordinated by two centrosymmetrically related clge molecules which form an effectively planar $[Cu(clge)_2]^{2+}$ cationic fragment, the maximum deviation of the constituent atoms being 0.074 Å (Table 3.7). The Cu(1)-O(1) and Cu(1)-N(4) bond distances, 1.966 Å and 1.908 Å respectively, are

View of the structure of $[Cu(clge)_2(NO_3)_2]$ FIGURE 3.5 perpendicular to the (001) plane

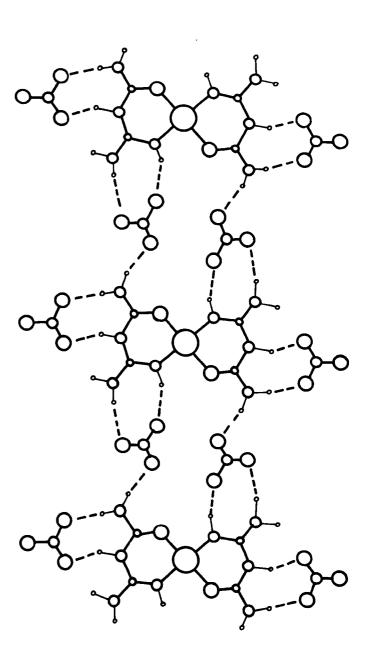


FIGURE 3.6 View of the structure of $[Cu(clge)_2(NO_3)_2]$ perpendicular to the (120) plane

<u>TABLE 3.11</u> Intermolecular Contacts of Less than 3.30 Å in $[Cu(clge)_2(NO_3)_2]$: Hydrogen Bond and Electrostatic Interactions

Interaction X-HX'	Symmetry Properties of X'	r(xx') 8	r(хн) Я	r(HX') 8	×HX ' °
N(1)-H(1)O(3)	x,y,1+z	2.96	0.95	2.03	166
N(1)-H(2)O(2)	$-\frac{1}{2}+x$, $\frac{1}{2}-y$, $\frac{1}{2}+z$	2.92	0.94	1.98	173
N(2)-H(3)O(3)	$-\frac{1}{2}+x$, $\frac{1}{2}-y$, $\frac{1}{2}+z$	2.86	0.95	1.94	163
N(3)0(1)*	$-\frac{1}{2}+x$, $\frac{1}{2}-y$, $-\frac{1}{2}+z$	3.06	-	-	-
N(3)O(3)*	$-\frac{1}{2}+x$, $\frac{1}{2}-y$, $\frac{1}{2}+z$	3.14	-	-	-
N(3)O(2)*	x,y,z	3.20	-		-
N(3)O(4)*	x,y,z	3.26	-	-	-
N(3)N(4)*	$\frac{1}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z$	3.27	-	-	-
N(4)-H(6)O(2)	x,y,z	2.97	0.95	2.08	156

* The strengths of the intermolecular contacts involving N(3) are much weaker than those involving N(1), N(2) and N(4) inferring much weaker hydrogen bonding interactions. Indeed, unequivocal designation of the hydrogen bonds about N(3) is not possible, only H(5) lying along an intermolecular contact [N(3)H(5)O(4) = $168^{\circ}]$. Although H(4) is located near the contact to O(3) $[N(3)H(4)O(3) = 146^{\circ}]$, it is difficult to consider this a true hydrogen bonding interaction, since O(1) also acts as a hydrogen bond acceptor from N(1) and N(2), the three angles at O(3) summing to exactly 360° inferring sp² hybridisation of the oxygen atom. The only other contact which H(4) is remotely near is that to O(1), $[N(3)H(4)O(1) = 118^{\circ}]$ but the angle is too small for it to be a significant hydrogen bonding contact. comparable to the Cu-O and Cu-N bond distances found for coordinated bu $[r(C-O) = 1.935 \text{ Å}]^{22}$ and coordinated bg [average $r(Cu-N) = 1.946 \text{ Å}].^{21}$

A weak bonding interaction also occurs between the copper atom and the nitrate anions in adjacent planes, theO(4) atoms of centrosymmetrically related nitrate anions being located in the axial positions of the square planar CuO_2N_2 chromophore. This contact is almost at the limit of the copper atom's sphere of influence, the Cu(1)...O(4) interatomic distance (2.98 Å) being marginally less than the sum (2.95 Å) of the van der Waal's radii of copper (1.43 Å) and oxygen (1.52 Å). 41 Assuming the copper(II) ions coordination sphere to consist of six equivalent donor atoms then the tetragonality (T) can be calculated. A value for R of 1.937 Å is obtained by averaging r(Cu(1)-O(1)) and r(Cu(1)-N(4)) and R_{I} is taken as r(Cu(1)-O(4)) = 2.890 Å. Hence T is calculated to be 0.67 which defines the copper(II) ion's stereochemistry to be at the limit of a tetragonally elongated octahedron, just outside the range for square coplanar stereochemistry (Section 1.5.2). This is in agreement with the stereochemistry predicted from the van der Waal data noted above. Full details of the copper(II) ion's coordination geometry are given in Table 3.12.

The molecular geometry of the nitrate anion (Table 3.13) is consistent with D_{3h} symmetry. The infrared spectrum of the complex, which is compared with those of

TABLE 3.12 Coordination Geometry of the Copper(II) Ion in [Cu(clge)₂(NO₃)₂]

Bond Distances/A		Bond Angles/°		
Cu(1)-O(1)	1.966(8)	O(1)Cu(1)N(4)	81.5(4)	
Cu(1)-N(4)	1.908(10)	O(1)Cu(1)O(4)	86.1(4)	
Cu(1)-O(4)	2.890(11)	N(4)Cu(1)O(4)	85.9(4)	

<u>TABLE 3.13</u> Geometry and Planarity of the Nitrate Anion in $[Cu(clge)_2(NO_3)_2]$

Bond Distances/A		Bond Angles/°		
N(5)-O(2)	1.22(2)	O(2)N(5)O(3)	119(1)	
N(5)-O(3)	1.23(2)	O(2)N(5)O(4)	119(1)	
N(5)-O(4)	1.23(2)	O(3)N(5)O(4)	120(1)	

Atom	Deviation from tom Plane/A Atom		Deviation from plane/A	
N(5)	+0.005	0(3)	-0.002	
0(2)	-0.002	0(4)	-0.002	

Equation of best plane: 1.8042x + 6.4539y - 1.9050z = 2.698

 $Cu(clge)_{2}X_{2}$ (X = Cl, Br) in Figure 3.7 (1800-600 cm⁻¹) does not, however, entirely support this conclusion. It contains bands which can be attributed to the B₂ (1390 cm⁻¹; probably superimposed on a vibrational mode of the coordinated clge ligand) and A₁ (1330 and 1050 cm⁻¹) stretching vibrations and to the A₂ (620 cm⁻¹), A₁ (760 cm⁻¹) and B₂ (720 cm⁻¹) deformation vibrations of a unidentate C_{2v} nitrate anion.⁵⁶ These observations are also consistent with a very weak copper(II)-nitrate interaction which reduces the local symmetry of the anion from D_{3b} to C_{2v}.

3.4 Spectroscopic properties

Assignment of the vibrational spectra of species as complex as clge can only be approximate owing to extensive mixing of the internal coordinates of the planar skeleton exacerbated by the delocalised m-system. Accepting this, a limited qualitative vibrational analysis has been attempted for uncoordinated clge. This assignment has then been used as a basis for interpretation of the spectrum of the coordinated ligand.

Uncoordinated clge has C_s symmetry and should have 33 (23A' and 10A") vibrational modes all of which are infrared active. The in-plane vibrations consist of six N-H [designated as three $v_s(N-H)$ and three $v_a(N-H)$] plus six skeletal [three $v(C-N_{terminal})$, two $v(C-N_{bridging})$ and one v(C-O)] stretching vibrations and six NH₂ [three scissors and three rocking] plus five skeletal [two at

FIGURE 3.7 IR spectra of $Cu(clge)_2 X_2$ (X = NO₃, Br, Cl)

C(1), one at N(2) and two at C(2)] deformation vibrations. The ten out-of-plane deformations can be split into six N-H [three wagging and three twisting] and, by difference, four skeletal deformation vibrations.

Infrared spectra for clge.EtOH, clge, D_6 -clge, $Cu(clge)_2X_2$ (X = NO₃, Cl, Br) and $Cu(D_6$ -clge)_2(NO₃)_2 were measured in nujol and halocarbon mulls and in KBr discs on a Perkin Elmer 598 spectrometer (4000-400 cm⁻¹). They are collated in Table 3.14. For uncoordinated clge the v(N-H) and $\delta(NH_2)$ vibrations were assigned by comparison of the spectra of the protonated and deuterated samples using, as a basis, the analysis proposed by Jones et al for cnge⁹ and guanidine.⁵⁷ Assignment of the skeletal vibrations is restricted to those stretches, v(C-N), v(C-O), which give bands in the limited wavenumber range 1750-1350 cm⁻¹. Also observed in this region are bands due to $\delta(NH_2)$ scissors deformation. All of these vibrations have A' symmetry and are extensively mixed.

The spectra of clge.EtOH, clge and D_6 -clge in the region (1800-1250 cm⁻¹) are compared with that of cnge in Figure 3.8. The deuteration experiments indicate that the bands due primarily to the $\delta(NH_2)$ scissors deformations occur in the 1680-1630 cm⁻¹ range; the other bands must be attributable to the skeletal stretches. The spectra of clge.EtOH and of clge are very similar and contain an isolated band at ~1410 cm⁻¹ which is absent from the spectrum of cnge. The spectra also differ from that of cnge in the complex structure in the range

TABLE 3.14

	<u></u>		
clge	clge.EtOH	$[Cu(clge)_2(NO_3)_2]$	Cu(clge) ₂ Cl ₂
3450 3430 3380 3340 s,br	3440sh 3400 3350 s,br	3480 3380]s,br	3420]s,br
3220 3150]s,br	3230 3160]s,br	3220 s,br	3190 s,br
1675 1640]s,br	1650 s,br	1710 sh 1685 s 1645 m	1700 sh 1680 s 1630 s
1600 1540]s,br	1600 1550]s,br		
1420 s,br	1405 s,br	1510 s 1385 m 1390 s 1330 m	1520 s 1380 s
1175 w	1170 w	1260 mw	1265 m 1230 m
1100 ms	1105 mw 1095 mw	1115 mw	1110 m
1040 vw	1045 m	1050 w	
920 w 805 mw	925 mw 820 mw	950 w 820 mw	950 m
710 mr	725 m	790 mw 760 m	750 m
710 mw	725 m	720 mw 670 w	670 mw
560 m,br	570 m,br	580 mw 515 w	600 m,vbr
460 m,br	450 m,br	480 mw	495 m
		410 mw	420 m,br
			-

TABLE 3.14 Infrared Spectroscopic Data/cm⁻¹ for clge,clge.EtOH,

Key

a $Cu(clge)_2 X_2$ (X = NO₃, Cl, Br) and $Cu(D_6-clge)_2(NO_3)_2$ only. b clge, clge.EtOH and D₆-clge only.

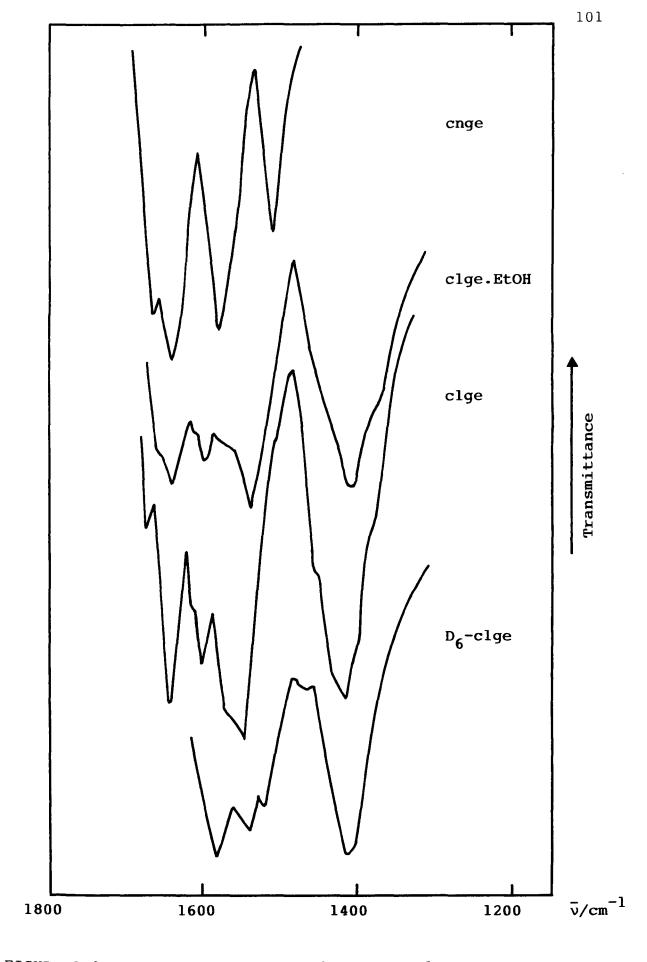
c $[Cu(clge)_2(NO_3)_2]$ and $Cu(D_6-clge)_2(NO_3)_2$ only.

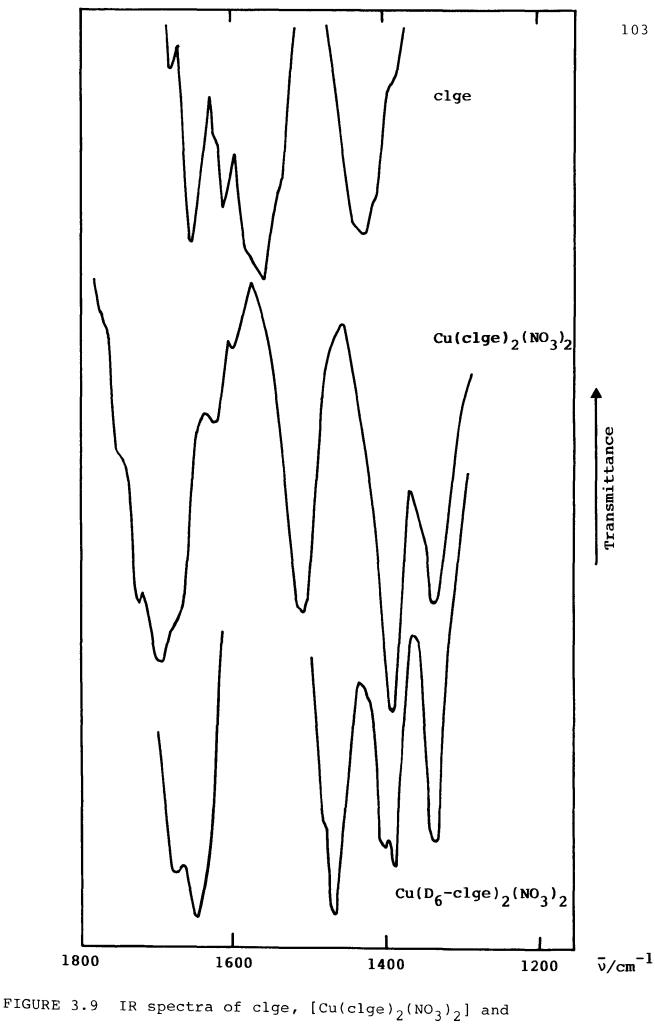
d $Cu(D_6-clge)_2(NO_3)_2$ and D_6-clge only.

s, strong; m, medium; w, weak; v, very; sh, shoulder; br, broad.

Cu(clge) ₂ Br ₂	D ₆ -clge Cu	$(D_6-clge)_2(NO_3)_2$	Assignment
3300 s,vbr	2600 2560]m,br	2600]m 2545]m	$ \begin{bmatrix} v_{a} [N-H] \\ and \\ v_{s} [N-H] \\ or \\ v_{a} [N-D]^{d} \\ and \\ v_{s} [N-D]^{d} \end{bmatrix} $
3160 s,br	2450 2290]s,br	2480]m 2430 s	$v_{s}[N-D]^{d}$
1655 s,br	1240 1215] w	1200 w 1610 s 1635 s	$\begin{bmatrix} \delta[NH_2] \text{ or } \delta[ND_2] \\ v[O(1)C(1)N(1)]^2 \end{bmatrix}$
1490 s,br 1370 m,br	$\begin{bmatrix} 1580\\ 1540\\ 1520 \end{bmatrix}$ s,br 1420 s,br	1460 s 1385 s	$\begin{bmatrix} v[O(1)C(1)N(1)]^{1} \\ v[N(3)C(2)N(4)] \\ v[N(2)C(2)N(3)] \end{bmatrix}$
1220 m	1185 w	1400 1335]s 1265m	v[N03] ^C
1110 mw	1130 m 960 m		$\delta[NH_2]$ or $\delta[ND_2$
	1055 vw	1045 mw 1015 m	v[NO ₃] ^C
950 w	890 w 815sh 795]m	945 m 820 mw	ν[NO ₃] ^C
755 m	740 mw 720 w	760 ms 720 mw	ν[NO ₃] ^C
650 m,br 570 m,br	660 w	690 w 620 w 565 w 546 w	$\gamma[NH_2]$ or $\gamma[ND_2]$
480 mw		546 w 480 m 455 mw	
400 w,br		420 mw,br	L

 $[Cu(clge)_2(NO_3)_2], Cu(clge)Cl_2, Cu(clge)_2Br_2, D_6-clge and Cu(D_6-clge)_2(NO_3)_2$




FIGURE 3.8 IR spectra of cnge, clge.EtOH, clge

and D₆-clge

1600-1500 cm⁻¹ where an extra band occurs. These two bands are additional to those assigned by Jones et al to the stretching vibrations (at 1580 and 1510 cm⁻¹) of the guanidine residue of the cnge molecule;⁹ they are attributed primarily to the carbamoyl function. The absence of bands in the spectrum of D₆-clge at wavenumbers greater than 1580 cm⁻¹ suggests that the carbonyl band is moved to lower wavenumbers not only by mixing with other skeletal stretches, but also by intramolecular hydrogen bond formation to the adjacent amine group (Figure 3.1).

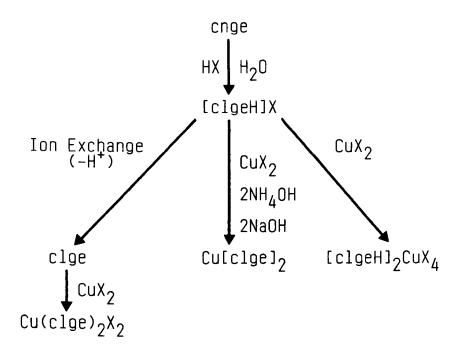
The spectra of the complexes $Cu(clge)_2 X_2$ (X = NO₃, Cl, Br) are compared in Figure 3.7 in the region 1800-600 cm⁻¹. After subtraction of the bands attributable to the vibration of the nitrate anion they are very similar suggesting the presence of the planar centrosymmetric $[Cu(clge)_2]^{2+}$ moiety in all three complexes. This is confirmed by the similarity of their diffuse reflectance UV-visible spectra which exhibit very broad absorption bands with λ_{max} values between 695 and 705 nm.

The spectra of uncoordinated and coordinated clge are compared in Figure 3.9 in the 1800-1200 cm⁻¹ region. Although different, it is clear that spectroscopic methods cannot be used on their own to determine the exact mode of coordination as evidenced by Syamals incorrect interpretation of the tautomeric form and coordination mode (3.10) adopted by the clge molecule.⁵³ Unfortunately, the extensive mixing of internal 102

 $[Cu(D_6-clge)_2(NO_3)_2]$

coordinates which occurs in molecules of this type means that changes in the vibrational frequencies do not necessarily reflect changes in one particular functional group. Indeed, in the 1800-1300 cm⁻¹ range of the spectra of $[Cu(clge)_2(NO_3)_2]$ (Figure 3.9) which should contain bands due to v(C-N), v(C-O) and $\delta(NH_2)$ vibrations, all of which have A' symmetry, we were unable to separate the $\delta(NH_2)$ vibration from the others, even following deuteration experiments. The sole observable effect of deuteration was to reduce the frequency at which the two higher energy bands absorb (Figure 3.9).

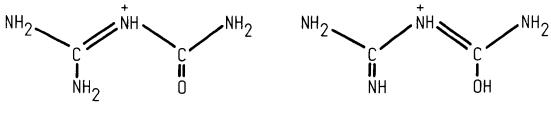
Clearly, unambiguous assignment of the vibrational spectra of clge and its derivatives is impossible without further isotopic enrichment experiments and a full normal coordinate analysis. It is probable, however, that the v(C-O) stretching vibration of the carbonyl fragment of coordinated clge is a major component of the band at 1700 cm^{-1} . Compared with the free molecule for which the maximum frequency for this band is 1600 \rm{cm}^{-1} (the bands at 1675 and 1645 cm⁻¹ have been assigned to $\delta(NH_2)$ vibrations), this absorption has moved to higher frequency (Figure 3.9). Although carbonyl stretching frequencies are generally expected to decrease on coordination through the oxygen atoms, 43 in this case the increase can be rationalised by the loss of the intramolecular hydrogen bond present in free clge. Previously, the vibrational spectroscopy of these materials has been little studied. The only spectrum in

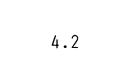

the literature is that reported by Babykutty et al⁴⁹ for 'guanylurea'. Comparison with out data indicates that their spectrum is not that of clge, as inferred by their nomenclature, but is that of a [clgeH]⁺ salt.

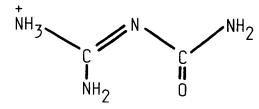
CHAPTER FOUR

SALTS AND COPPER(II) COMPLEXES OF THE 1-CARBAMOYLGUANIDINIUM CATION

4.1 Introduction

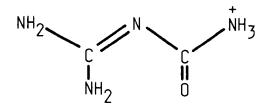

The primary precursors to all 1-carbamoylguanidine (clge) compounds, are the 1-carbamoylguanidinium salts ([clgeH]X) produced by the acid hydrolysis of 1-cyanoguanidine (cnge).

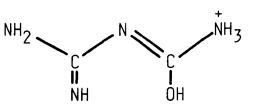

The chemistry of the cationic species [clgeH]⁺ will be discussed in this chapter. Chapter Three described the synthesis of neutral clge compounds, whilst Chapter Five will describe the production of anionic [clge]⁻ compounds.


The salts ([clgeH]X) are frequently mentioned in the literature on clge derivatives,⁴⁸ but little is known

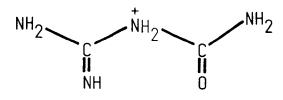
of their electronic structure which might be described by any of the numerous forms (4.1-4.8) shown below.

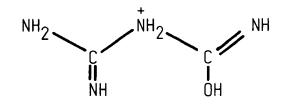
4.1




⁺NH₃ C II NH OH

4.3





4.6

4.7

4.8

Forms 4.1 and 4.2 retain a completely sp^2 hydridised skeleton, similar to that found in neutral clge, whilst forms 4.3-4.8 all contain one sp^3 hybridised skeletal atom. This would result in a less extensive delocalised π -system in the latter sextet than in the former pair of tautomers, and hence 4.1 and 4.2 are the most probable description of the electronic structure of [clgeH]⁺.

There has been little mention of complexes containing [clgeH]⁺ and transition metal ions. Evidence for the formation of such complexes containing copper(II) ions is based on the early report by Dubsky and Strnad⁵¹ which was reviewed by Ray.⁴⁸ Dubsky and Strnad⁵¹ reported that the reaction of copper(II) chloride, [clgeH]Cl and hydrochloric acid in aqueous solutions, produced products which, by elemental analysis, had a copper(II):chloride:[clgeH]⁺ ratio of 1:4:2 and were green to blue in colour. Corresponding compounds could be produced using bromide analogues of the starting materials. No data is available on the structure of these compounds, particularly as to whether [clgeH]⁺ acts as a ligand or a cation.

To investigate the nature of the [clgeH]⁺ cation, a number of salts and copper(II) complexes have been synthesised and characterised. The crystal and molecular structures of 1-carbamoylguanidinium perchlorate ([clgeH]ClO₄) and di(1-carbamoylguanidinium)diaquotetrachlorocuprate(II){[clgeH]₂[CuCl₄(H₂O)₂]} have been

108

determined and the infrared spectra of all the salts and complexes have been recorded.

4.2 Experimental

4.2.1 <u>1-Carbamoylguanidinium salts</u>

A number of [clgeH]⁺ salts were synthesised by the acid hydrolysis of cnge in aqueous solution.

(a) [clgeH]ClO

Perchloric acid (6 cm³; 70%) was slowly added to cnge (5g) dissolved in the minimum of boiling deionised water. The solution was further boiled to reduce its volume by half before cooling in ice. The fine white precipitate so formed was recrystallised from water and dried over silica gel. Yield 8.9g (74%); m.p. ca. 176°C. Analytical data for this and all subsequent products are collated in Table 4.1.

(b) [clgeH]Cl and [D₇-clgeH]Cl

As for (a) with the substitution of hydrochloric acid (10 cm³; 36%) for perchloric acid. Yield 7.1g (86%); m.p. 173-175°C. $[D_7-clgeH]Cl$ was produced by successive solvation in D_2O and then removal of the excess water under vacuum.

(c) [clgeH]NO₂

As for (a) with the substitution of nitric acid (5 cm³; 70%) for perchloric acid. Yield 8.2g (83%); m.p. ca. 220°C.

(d) $[clgeH]H_2PO_4$

As for (a) with the substitution of orthophosphoric acid (5 cm³; 85%) for perchloric acid. Yield 7.3g (61%); m.p. $184-185^{\circ}C$.

- (e) [clgeH]₂SO₄.2H₂O As for (a) with the substitution of sulphuric acid (l0 cm³; 47%) for perchloric acid. Yield 8.2g (82%); m.p. ca. 190°C.
- (f) [clgeH]HSO₄

As for (a) with the substitution of sulphuric acid (5 cm³; 95%) for perchloric acid. The product was not recrystallised but simply washed with ice-cold deionised water. Yield 4.3g (36%); m.p. 150-151 °C.

This material was also obtained by adding sulphuric acid (30 cm³, 30%) to $[clgeH]_2SO_4.2H_2O$ (5g) dissolved in the minimum of hot deionised water. After boiling for 10 minutes the solution was cooled in ice. The crystals so formed were washed with ice-cold deionised water. Yield 4.6g (78%); m.p. 150-151°C.

(g) $[clgeH]_2(C_2O_4)$

As for (a) with the substitution of oxalic acid (3.75g), dissolved in the minimum of hot deionised water, for perchloric acid. Yield 7.4g (85%); m.p. 205-206°C.

(h) [clgeH]Br

[clgeH]₂SO₄.2H₂O (4.13g) was added to barium bromide (4.12g) dissolved in the minimum of hot deionised water. The solution was boiled for 10 minutes before removal of precipitated barium sulphate by filtration. When cooled, the filtrate yielded crystals of the product which were subsequently recrystallised from hot deionised water. Yield 3.0g (78%); m.p. 178-180°C.

(i) [clgeH]I

 $[clgeH]_2SO_4.2H_2O$ (4.95g) and ammonium iodide (4.73g) were added to an aqueous solution of barium hydroxide (98.8 cm³, 0.165M). The solution was boiled until no more ammonia was given off. The precipitated barium sulphate was then filtered off and the solution cooled. The crystals so formed were recovered and dried under vacuum. Yield 0.6g (17%).

4.2.2 <u>1-Carbamoylguanidinium copper(II) complexes</u>

Two complexes were produced by two different routes (i) reaction of [clgeH]⁺ salts with copper(II) salts, (ii) reaction of copper(II)di(l-carbamoylguanidate)dihydrate(Cu[clge]₂.2H₂O) with aqueous acid.

(a) $[clgeH]_2[CuCl_4(H_2O)_2]$

Route (i): Solutions of CuCl₂.2H₂O (10mmol, 1.71g) and [clgeH]Cl (20mmol, 2.77g) in the minimum of hot deionised water, were mixed together and the resulting solution reduced under a vacuum at 45°C until the onset of precipitation. The blue-green precipitate was filtered off and washed with ice-cold deionised water and dried over silica gel. Yield 4.07g (91%).

Route (ii): Cu[clge] $2H_2O$ (see Section 5.2 for preparation) was dissolved in the minimum of dilute hydrochloric acid (2M). The solution was allowed to evaporate at room temperature and the crystals produced were filtered off, washed with ice-cold deionised water and dried over silica gel. Yield ~95%. Analytical data for this and all subsequent copper(II) products are collated in Table 4.1. Isothermal dehydration of the blue-green [clgeH]₂[CuCl₄(H₂O)₂] complex at 100°C produced the yellow [clgeH]₂[CuCl₄] complex.

(b) $[clgeH]_2[CuBr_4(H_2O)_2]$

This complex was synthesised in a similar manner to that used for (a) by either Route (i) or (ii).

For Route (i): CuBr₂ (10 mmol, 2.23g) was substituted for CuCl₂.2H₂O. Yield 5.44g (87%). For Route (ii): Dilute hydrobromic acid (2M) was substituted for dilute hydrochloric acid. Yield ~95%.

Isothermal dehydration of $[clgeH]_2[CuBr_4(H_2O)_2]$ at 100°C produced $[clgeH]_2[CuBr]_4$. No colour change was observed, both the hydrated and anhydrous complexes being dark brown-black in colour.

For both (a) and (b), Route (ii) produced better quality of crystals than Route (i) even if the reaction mixture from (i) was allowed to evaporate slowly.

	Experimental/Theoretical %				
Product	С	Н	N		
[clge]Cl0 ₄	11.58/11.86	3.47/3.49	28.23/27.66		
[clgeH]Cl	17.06/17.32	5.14/5.05	41.05/40.43		
[clgeH]Br	13.03/13.11	3.78/3.83	30.46/30.61		
[clgeH]I	9.28/10.44	3.17/3.04	22.52/24.36		
[clgeH]NO ₃	14.32/14.54	4.22/4.24	42.58/42.42		
[clgeH]H ₂ PO ₄	11.82/12.00	4.53/4.50	27.66/28.00		
[clgeH] ₂ SO ₄ .2H ₂ O	14.03/13.20	5.36/5.32	33.08/33.14		
[clgeH]HSO ₄	12.32/12.00	4.11/4.00	29.25/28.00		
[clgeH] ₂ (C ₂ O ₄)	24.36/24.54	4.82/4.81	38.39/38.13		
[clgeH] ₂ [CuCl ₄ (H ₂ O) ₂]	10.59/10.73	3.97/4.02	25.20/25.03		
[clgeH] ₂ [CuCl ₄]	11.55/11.66	3.42/3.40	27.34/27.22		
[clgeH] ₂ [CuBr ₄ (H ₂ O) ₂]	7.79/7.68	2.89/2.88	18.02/17.92		
[clgeH] ₂ [CuBr ₄]	8.05/8.15	2.40/2.38	19.20/19.01		

TABLE 4.1 Analytical Data for the Products

- 4.3 <u>Crystal and Molecular Structure of 1-Carbamoyl-</u> <u>guanidinium Perchlorate and Di(1-Carbamoyl-</u> <u>guanidinium)diaquotetrachlorocuprate(II)</u>
- 4.3.1 <u>Structure solution and crystal data for</u> 1-Carbamoylguanidinium Perchlorate

The perchlorate salt was chosen for structure determination because of the poor coordinating properties of the anion and the ease of crystallisation.

Colourless crystals were prepared by the slow evaporation of an aqueous solution of the salt. A suitable needle-like crystal (0.5x0.2x0.1mm) was mounted in a Lindemann tube. Oscillation and Weissenberg photographs revealed preliminary cell parameters and space group. X-ray diffraction data for the refinement of cell parameters and structure determination were collected using an Enraf-Nonius CAD 4 four circle diffractometer. One unique set of data was collected in the range $1 \le 0 \le 66^{\circ}$ using CuK_a radiation. Of the 1540 observable intensities collected, 1108 were deemed to be observed.

The chlorine atom was located from a Patterson function. The carbon, nitrogen and oxygen atoms were then located by difference Fourier syntheses. Full matrix least squares refinment with anisotropic temperature factors for all these atoms converged at R = 0.057. The top seven distinct peaks (densities 0.80 to 0.46 e/A^3) of a subsequent difference Fourier synthesis gave the positions of all the hydrogen atoms. No other feature with density greater than 0.25 e/A^3 was apparent. Further refinement of the structure with fixed hydrogen atoms converged at R = 0.041. Final positional parameters and thermal parameters are given in Tables 4.2 and 4.3 respectively. Observed and calculated structure factors are given in Appendix B.

Crystal Data

 $C_2H_7N_4ClO_5$, M = 202.6, monoclinic, space group P2₁/c, a = 8.020(3), b = 9.999(3), c = 9.611(3) Å, $\beta = 105.54(3)^\circ$, U = 742.6 Å³, D_m = 1.79, D_c = 1.81 g.cm⁻³ for Z = 4, F(000) = 416, $\mu(CuK_{\alpha}) = 47.8 \text{ cm}^{-1}$.

4.3.2 <u>Structure solution and crystal data for di(1-</u> <u>carbamoylguanidinium)diaquotetrachlorocuprate(II)</u>

A suitable crystal (<u>ca</u>. 0.1x0.45x0.4mm) was chosen from a crop grown by slow evaporation of a dilute aqueous hydrochloric acid solution of copper(II)bis(l-carbamoylguanidinate) and was mounted in a Lindemann tube. Cell parameters, space group and X-ray diffraction data were obtained as described in Section 1.6.1. Of the 1509 intensities collected, 1244 were deemed to be observed.

Consideration of the molecular formula within the context of the crystal's symmetry indicated that the copper atom must be situated in a special position (0,0,0) of the P2₁/c space group and that pairs of $[clgeH]^+$ cations, chlorine anions and water molecules must be located in centrosymmetrically related positions.

Atom	x/a	y/b	z/c
0(1)	-59.8(2)	277.1(2)	-86.3(2)
C(1)	-124.8(3)	286.0(3)	15.0(3)
C(2)	126.9(3)	390.4(3)	181.7(3)
N(1)	-285.4(3)	249.0(3)	8.9(3)
N(2)	-35.1(3)	337.8(3)	148.5(2)
N(3)	190.3(5)	435.2(3)	314.4(2)
N(4)	214.4(3)	398.2(3)	84.4(2)
Cl(l)	346.19(8)	54.3(7)	216.87(7)
C(2)	457.0(3)	99.7(3)	133.3(3)
D(3)	404.8(3)	-77.9(2)	272.5(3)
C(4)	172.7(2)	42.7(3)	127.1(2)
D(5)	350.8(3)	143.5(3)	332.1(3)
H(1)	-339.1	219.2	-64.5
H(2)	-330.7	264.8	78.1
H(3)	-83.2	321.9	221.8
H(4)	137.6	439.5	382.8
H(5)	291.6	466.2	337.9
H(6)	294.8	426.0	105.9
H(7)	179.7	426.0	105.9

<u>TABLE 4.2</u> Final Positional Parameters $(x10^3)$ for [clgeH]ClO₄

<u>TABLE 4.3</u> Thermal Parameters $(x10^3)/A^2$ for [clgeH]ClO₄

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Atom	U(11)	U(22)	U(33) U(23)	U(13) U(12)
	C(1) C(2) N(1) N(2) N(3) N(4) C1(1) O(2) O(3)	34(1) 31(1) 38(1) 33(1) 39(2) 32(1) 28.3(3) 53(1) 47(1)	41(2) 40(2) 72(2) 52(1) 69(2) 60(2) 43.9(4) 80(2) 51(1)	$\begin{array}{c} 29(1) & 0(1) \\ 29(1) & 2(1) \\ 46(1) & -16(1) \\ 25(1) & -1(1) \\ 29(1) & -10(1) \\ 35(1) & -4(1) \\ 28.0(3) & 2.1(3) \\ 65(2) & 14(1) \\ 63(1) & 18(1) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

In the form: $[exp-2\pi^{2}(U(11)h^{2}a^{*2}+U(22)k^{2}b^{*2}+U(33)1^{2}c^{*2}+$ 2U(12)hka*b*+2U(13)hla*c*+2U(23)klb*c*)] Consequently, subsequent to the data reduction stage, the positions of the chlorine anions, and then the oxygen atoms of the chlorine and the carbon, nitrogen and oxygen atoms of the [clgeH]⁺ cations, were determined by successive difference Fourier syntheses. Full matrix least squares refinment with anisotropic temperature factors converged at R = 0.052. A difference Fourier synthesis gave the positions of the hydrogen atoms of the [clgeH]⁺ cation and the water molecule (the electron density varied from 0.77 to 0.37 e/R^3). Further refinement of the structure including the hydrogens with isotropic temperature factors converged at R = 0.044. Final positional parameters and thermal parameters are given in Tables 4.4 and 4.5 respectively. Observed and calculated structure factors are included in Appendix B.

Crystal Data

 $C_4H_{18}N_8O_4Cl_4Cu$, M = 447.3, monoclinic, space group P2₁/c, a = 6.522(3), b = 11.218(3), c = 11.790(3) Å, β = 110.66(3)°, U = 807.1 Å³, D_m = 1.82 g.cm⁻³, D_c = 1.84 g.cm⁻³ for Z = 2, F(000) = 454, $\mu(MoK_{\alpha})$ = 20.88 cm⁻¹.

4.3.3 <u>Molecular geometries of [clgeH]⁺ in [clgeH]ClO₄ and [clgeH]₂[CuCl₄(H₂O)₂]</u>

In both the salt and the complex the $[clgeH]^+$ moiety (designated $[clgeH]_s^+$ for $[clgeH]ClO_4$ and $[clgeH_C]^+$ for $[clgeH]_2[CuCl_4(H_2O)_2]$) acts as a cation.

		2					
Atom		x/a	y/b)	z/c		
Cu(1) Cl(1) Cl(2) C(1) C(2) N(1) N(2) N(3) N(4) O(1) O(2) H(1) H(2) H(1) H(2) H(3) H(4) H(5) H(6) H(7) H(8) H(9)	20 -30 78 73 81 77 72 70 76 -19 82 83 78 73 71 68 71 -18	0 3.6(2) 3.9(1) 3.6(6) 5.4(6) 2.7(6) 5.6(5) 9.8(6) 8.0(6) 5.3(5) 0.0(4) 8(9) 5(8) 9(8) 7(8) 0(1) 2(8) 0(1) 8(9) 0(2)	-143.9 121.8 -90.9 196.9	3 (3) 9 (3) 9 (3) 9 (3) 9 (3) 9 (2) 9 (3) 9 (2)	$\begin{array}{c} 0\\ 204.38\\ 52.64\\ 346.6(\\ 375.3(\\ 267.5(\\ 313.3(\\ 326.4(\\ 478.9(\\ 443.3(\\ 26.2(\\ 290(5)\\ 200(5)\\ 243(5)\\ 255(4)\\ 368(6)\\ 516(5)\\ 511(6)\\ -4(5)\\ -6(9) \end{array}$	(8) 3) 3) 3) 3) 3) 3) 3) 2)	
TABLE		l thermal eH] ₂ [CuCl U(22)		ers (x10 ³	$\sqrt{R^2}$ for	U(12)	U(ISO)
Cu(1) Cl(1) Cl(2) C(1) C(2) N(1) N(2) N(3) N(4) O(1) O(2) H(1) H(2) H(1) H(2) H(3) H(4) H(5) H(6) H(7) H(8) H(9)	27.2(4) 29.6(6) 30.6(5) 26(2) 23(2) 57(2) 36(2) 56(2) 44(2) 58(2) 28(1)	21.1(4) 31.2(6) 24.7(5) 25(2) 24(2) 22(2) 21(2) 20(2) 26(2) 26(1) 20(1)	21.8(4) 25.0(6) 33.1(5) 31(2) 28(2) 28(2) 28(2) 28(2) 35(2) 38(2) 31(1)	$\begin{array}{c} -0.9(2) \\ 0.0(3) \\ -2.0(4) \\ -3(1) \\ 1(1) \\ -4(1) \\ -3(1) \\ -1(1) \\ 2(2) \\ -9(1) \\ 4(1) \end{array}$	2.3(3) 1.6(4) 9.7(4) 9(1) 5(1) 17(2) 12(1) 11(2) 18(2) 25(1) 7(1)	5.6(2) 2.1(3) -3.1(4) 0(1) 3(1) -4(2) 0(1) -1(1) 0(1) -5(1) 2(1)	20(10) 20(10) 10(10) 30(10) 20(10) 30(10) 10(20) 20(10) 90(40)

<u>TABLE 4.4</u> Final positional parameters $(x10^3)$ for $[clgeH]_2[CuCl_4(H_2O)_2]$

In the form: $[exp-2\pi^{2}(U(11)h^{2}a^{*2}+U(22)k^{2}b^{*2}+U(33)1^{2}c^{*2}+U(12)hka^{*}b^{*}+2U(13)h1a^{*}c^{*}+2U((23)k1b^{*}c^{*})]$

Significantly $[clgeH]_{c}^{+}$ does not ligate the copper(II) ion in the complex. Hence, the molecular geometries of $[clgeH]_{s}^{+}$ and $[clgeH]_{c}^{+}$ are very similar. The atom numbering scheme is shown in Figure 4.1, and bond distances and angles are compared in Table 4.6.

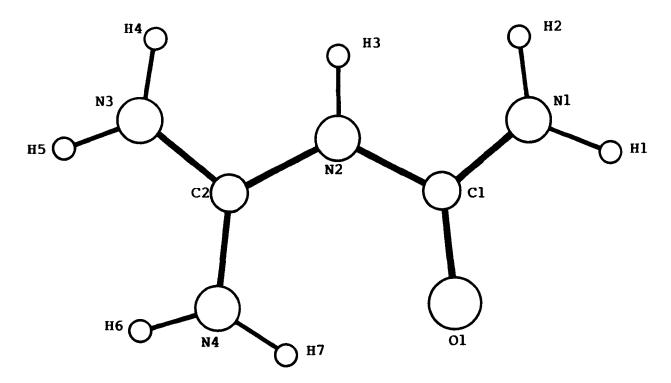
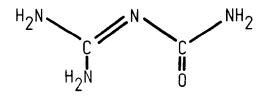



FIGURE 4.1 Numbering scheme for [clgeH]⁺

Comparison with the structure of uncoordinated clge (form 4.9; Section 3.3.3 for full details) reveals that

4.9

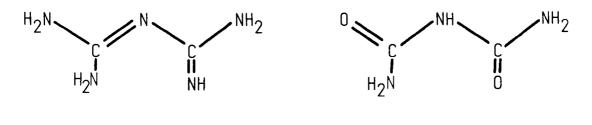
 $[clgeH]_{2}[CuCl_{4}(H_{2}O)_{2}]$ [clgeH]ClO, Bond Distances/A C(1) - O(1)1.224(3) 1.232(5)1.326(3) 1.319(5) C(1) - N(1)C(1) - N(2)1.391(5)1.392(3) C(2) - N(2)1.354(5)1.358(3) C(2) - N(3)1.319(3)1.323(5)C(2) - N(4)1.305(5)1.314(3)N(1) - H(1)0.78 0.85 N(1) - H(2)0.85 0.92 0.90 N(2) - H(3)0.90 N(3) - H(4)0.87 0.86 N(3) - H(5)0.88 0.84 N(4) - H(6)0.82 0.82 N(4) - H(7)0.89 0.68 $[clgeH]_{2}[CuCl_{4}(H_{2}O)_{2}]$ Bond Angles/° [clgeH]ClO O(1)C(1)N(1)124.6(4)124.0(3)O(1)C(1)N(2)122.4(2)120.9(4)N(1)C(1)N(2)114.5(4)113.6(2) C(1)N(2)C(2)126.0(4)125.9(2)N(2)C(2)N(3)116.5(4)117.1(2)N(2)C(2)N(4)121.0(2)122.1(4)N(3)C(2)N(4)121.8(3)121.4(4)H(1)N(1)C(1)116 115 H(2)N(1)C(1)120 122 H(1)N(1)H(2)122 124 H(3)N(2)C(1)116 120 H(3)N(2)C(2)118 114 H(4)N(3)C(2)127 117 H(5)N(3)C(2)119 117 H(4)N(3)H(5)114 126 H(6)N(4)C(2)118 122 H(7)N(4)C(2)117 122 H(6)N(4)H(7)124 116

<u>TABLE 4.6</u> Molecular geometries of the $[clgeH]^+$ cation in $[clgeH]ClO_4$ and $[clgeH]_2[CuCl_4(H_{2O})_2]$

protonation occurs at the central bridging nitrogen atom, N(2), giving tautomer 4.1. This permits retention of the intramolecular hydrogen bond and the totally sp^2 hybridised planar skeleton with the associated π -system. The cations have intermediate length C-N and C-O bonds, bond angles close to 120° and are effectively planar (the maximum deviation from the best planes being 0.053 Å for [clgeH]_s⁺, and 0.033 Å for [clgeH]_c⁺, Table 4.7).

<u>TABLE 4.7</u> Planarities of the $[clgeH]^+$ cation in $[clgeH]ClO_4$ and $[clgeH]_2[CuCl_4(H_2O)_2]$

	Deviation from the plane/ A				
Atom	[clgeH]ClO ₄ *	[clgeH] ₂ [CuCl ₄ (H ₂ O) ₂] [#]			
0(1)	0.046	0.036			
C(1)	0.012	0.004			
C(2)	0.003	-0.006			
N(1)	-0.048	-0.027			
N(2)	0.025	0.033			
N(3)	0.014	-0.002			
N(4)	-0.053	-0.018			


* Equation of best plane:

2.39358x - 9.06193y + 2.00330z = -2.873

[#] Equation of best plane:

5.72655x - 1.04191y + 1.52695z = 4.885

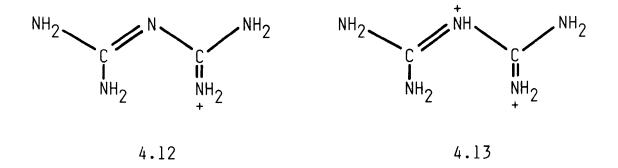
There are but minor differences between clge and $[clgeH]^+$. On cation formation the bridging C-N bonds lengthen, the terminal C-N bonds shorten, and the C(1)N(2)C(2) bond angle increases. These changes are analogous to those found upon coordination of clge and biguanide (bg; 4.10) when proton transfer occurs from a terminal amine to a bridging nitrogen. It seems apparent

4.10

4.11

that protonation of the central nitrogen decreases the m-character in the central C-N-C system, whilst increasing it in the terminal C-N bonds of coordinated clge, bg and [clgeH]⁺. As noted in Chapter Three, biuret (bu; 4.11) has a C-NH-C bridge in both free and coordinated forms. Its geometry in these two forms is similar to that of coordinated clge and bg and [clgeH]⁺ but differs from those of free clge and bg.

Significant features of $[clgeH]_{s}^{+}$, $[clgeH]_{c}^{+}$ and clge, bg and bu (free and coordinated) are compared in Table 4.8.


Also, it is instructive to compare structural data for the protonated derivatives of bg. They have been reported for both mono- and di- protonated derivatives of

<u>TABLE 4.8</u> Significant features of the molecular geometries of free and coordinated clge, bg and bu and [clgeH]⁺, [bgH]⁺ and [bgH₂]²⁺

	Dihedral angle/°*	C-N-C angle/°	Average r(C-N _{bridge}) /A	Average r(C-N _{terminal}) /A [#]
bu (free) ¹⁷	6.3	128.5(2)	1.385(3)	1.325(3)
bu (coord) ²²	6.4	126.8	1.371(6)	1.321(6)
clge (free)	7.5	119.8(3)	1.352(4)	1.340(4)
clge (coord)	1.7	126.0(1.0)	1.370(20)	1.315(20)
bg (free) ¹³	12.5	119.9(1)	1.356(2)	1.358(2)
bg (coord) ²¹	-	127.3(5)	1.374(8)	1.349(8)
[clgeH].ClO ₄	4.4	125.9(2)	1.375(3)	1.320(3)
[clgeH] ₂ [CuCl (H ₂ O) ₂] 4	3.8	126.0(4)	1.373(5)	1.321(5)
[bgH]C1 ¹⁴	39.5	122.8(4)	1.330(5)	1.338(5)
[bgH] ₂ CO ₃ ¹³	42.1	122.6(2)	1.338(4)	1.331(4)
[bgH] ₂ SO ₄ ¹³	46.6	121.2(2)	1.346(4)	1.328(4)
[bgH ₂]S0 ₄ ¹³	48.4	126.2(3)	1.378(5)	1.307(5)

- * This is the angle between the normals to the planes which best represent the two halves of the molecule.
- # This average does not include those contacts, formally defined as double bonds, between carbon and terminal imine groups.

bg, viz [bgH]⁺ and [bgH₂]²⁺, details of which are included in Table 4.8. Protonation occurs first at the imino nitrogen and then at the bridging nitrogen atom to give forms 4.12 and 4.13 respectively. Although free bg,

free clge, free bu, and $[clgeH]^+$ are effectively planar, the dihedral angles between the normals to the planes which best represent the two halves of the molecules, do not exceed 12.5°, the out of the plane distortion is extensive for $[bgH]^+$ and $[bgH_2]^{2+}$, with dihedral angles of <u>ca</u>. 40° and 48°, respectively (Table 4.8). Thus, whereas the planarity of the former species is enhanced by the formation of an intramolecular hydrogen bond between an amine donor and either an oxygen or imine acceptor, for the latter species the juxtaposition of amine groups results in steric interactions between hydrogen atoms and hence a loss of planarity.

The electronic structures of the molecules, however, do not appear to be influenced by the dihedral angle; they are dependent solely on the adopted tautomeric form. Thus, coordinated clge, bg, free and coordinated bu, [clgeH]⁺ and [bgH₂]²⁺, all of which have a bridging C-NH-C group, have longer bridging than terminal C-N bonds and a C-N-C bond angle between 125 and 129° (Table 4.8). The other three species, free bg, free clge and $[bgH]^+$, all of which have a bridging C=N-C group, exhibit near equivalence of C-N bond distances and a C-N-C bond angle between 119 and 123° (Table 4.8). Obviously, the out of plane distortion has little effect on the delocalised π -system which exists over the sp² hybridised C-N skeleton.

4.3.4 Intermolecular contacts in [clgeH]ClO₄ and

$\frac{[clgeH]_{2}[CuCl_{4}(H_{2}O)_{2}]}{[clgeH]_{2}[CuCl_{4}(H_{2}O)_{2}]}$

Views of the structures of the salt and the complex perpendicular to (100) are shown in Figures 4.2 and 4.3 respectively.

Both structures consist of an array of alternating cationic and anionic fragments. Whereas for the salt single cations ($[clgeH]^+$) and anions (Clo_4^-) alternate, in the complex pairs of cations ($[clgeH]^+$) alternate with the dinegative anions ($[CuCl_4(H_2O)_2]^{2-}$). Details of intermolecular contacts for both structures are given in Tables 4.9 and 4.10. An extensive hydrogen-bonded network enhances the electrostatic interactions. For the salt it is obvious that extensive charge delocalisation occurs in both [clgeH]⁺ and Clo_4^- because of the near equivalence of many interactions (Table 4.9) and the fact that the shortest interaction [r(N(2)-H(3)...O(1)) = 2.85 \Re], occurs between adjacent cations. For the complex

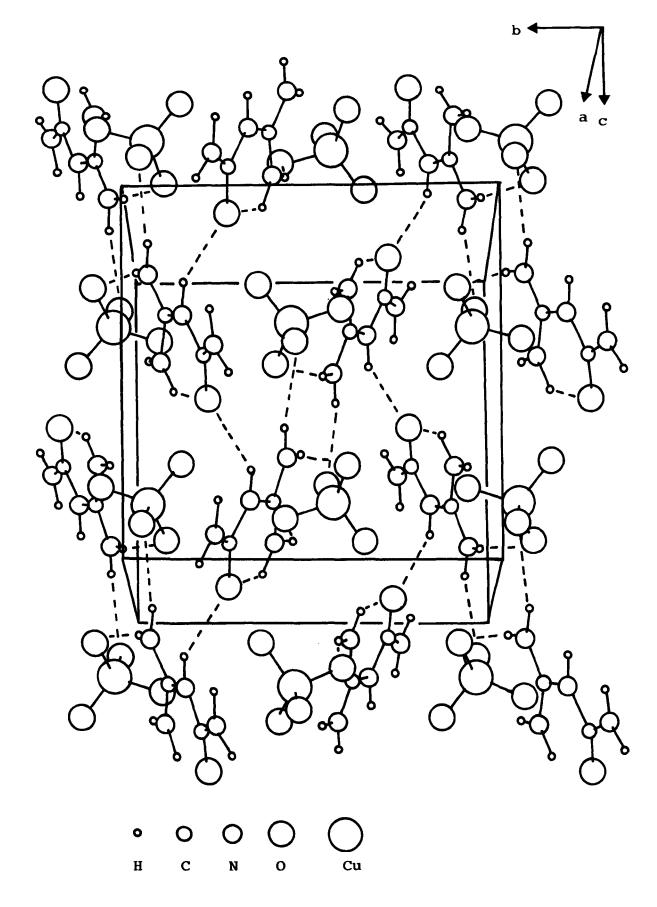


FIGURE 4.2 View of the structure of [clgeH](ClO $_4$) perpendicular to the (100) plane

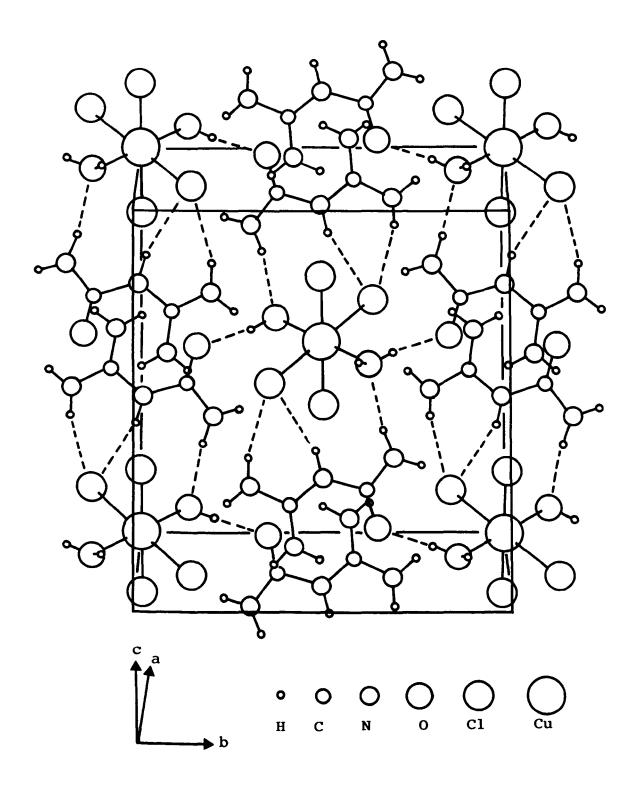


FIGURE 4.3 View of the structure of $[clgeH]_2[CuCl_4(H_2O)_2]$ perpendicular to the (100) plane

<u>TABLE 4.9</u> Intermolecular contacts of less than 3.30 Å in [clgeH]ClO₄; hydrogen bond and electrostatic interactions

Interaction	Symmetry Properties	r(XX')	r(X-H)	r(HX')	хнх'
Х-НХ'	of X'	/X	/ X	/ A	/°
N(1)-H(1)O(3)	-x,-y,-z	3.130	0.78	2.39	158
N(1)-H(2)O(3)	$-x, \frac{1}{2}+y, \frac{1}{2}-z$	3.072	0.85	2.32	147
N(1)O(2)	-1+x,y,z	3.041	_	-	-
N(1)O(5)	$-1+x, \frac{1}{2}-y, -\frac{1}{2}+z$	3.147	-	-	-
N(2)-H(3)O(1)	$x_{1}, \frac{1}{2} - y_{1}, \frac{1}{2} + z$	2.851	0.90	2.06	146
N(3)-H(4)O(4)	$x, \frac{1}{2} - y, \frac{1}{2} + z$	3.054	0.87	2.30	145
N(3)-H(5)O(2)	$1-x, \frac{1}{2}+y, \frac{1}{2}-z$	3.193	0.84	2.37	165
N(3)O(1)	$x, \frac{1}{2} - y, \frac{1}{2} + z$	3.236	-	-	-
N(3)0(2)	$x, \frac{1}{2} - y, \frac{1}{2} + z$	3.252	-	-	-
N(3)O(4)	$-x, \frac{1}{2}+y, \frac{1}{2}-z$	3.290	-	-	-
N(3)O(5)	X, Y, Z	3.175	-	-	-
$N(4) - H(6) \dots O(3)$	$1-x, \frac{1}{2}+y, \frac{1}{2}-z$	3.004	0.68	2.38	154
N(4)-H(7)O(5)* Intramolecular hyd	$x_{1}, \frac{1}{2} - y_{1}, -\frac{1}{2} + z$	2.945	0.82	2.46	119
$N(4) - H(7) \dots O(1)$	x,y,z	2.658	0.82	2.04	131

* For this interaction the angle at H(7) is very low owing to the N(4)-H(7)...O(1) hydrogen bond interactions.

<u>TABLE 4.10</u> Intermolecular contacts of less than 3.50 A^* in [clgeH]₂[CuCl₄(H₂O)₂]; hydrogen bond and electrostatic interactions

Interaction	Symmetry Properties	r(XX')	r(X-H)	r(HX')	хнх'
	-		_		
Х-НХ'	of X'	/A	/X	/A	/°
N(1)-H(1)Cl(1)	$1-x, \frac{1}{2}+y, \frac{1}{2}-z$	3.447	0.85	2.62	164
$N(1) - H(2) \dots O(2)$	1+x,y,z	2.941	0.92	2.04	165
N(2)-H(3)Cl(2)	1+x,y,z	3.360	0.90	2.54	153
$N(3) - H(4) \dots Cl(2)$	1+x,y,z	3.277	0.86	2.39	161
N(3)-H(5)Cl(2)	$1+x, -\frac{1}{2}-y, \frac{1}{2}+z$	3.214	0.88	2.46	154
$N(4) - H(6) \dots Cl(2)$	$1+x, \frac{1}{2}-y, \frac{1}{2}+z$	3.254	0.82	2.53	148
$O(2) - H(8) \dots O(1)$	$-1+x, \frac{1}{2}-y, -\frac{1}{2}+z$	z 2.638	0.84	1.81	167
O(2)-H(9)Cl(2)	-1-x,-y,-z	3.102	0.80	2.30	147
Intramolecular hyd	drogen bond				
$N(4) - H(7) \dots O(1)$	x,y,z	2.647	0.89	2.02	127

* A value of 3.50 Å was chosen owing to the larger van der Waals radius of chlorine than other previous hydrogen bond acceptor atoms.

charge delocalisation is less prevailent and there are no cation-cation interactions. The closest approach is between a water oxygen of the anion and the carbonyl oxygen of the cation [r(O(2)-H(8)...O(1)) = 2.638 Å; Table 4.10]. This hydrogen bond is the shortest that has been observed in the series of compounds discussed in this thesis.

The copper(II) ion is in a centrosymmetric distorted octahedral geometry. It is surrounded equatorially by a pair of oxygens of the water molecules [r(Cu(1)-O(2)) = 1.992 Å] and a pair of chlorine atoms [r(Cu(1)-Cl(1)) = 2.305 Å], another pair of chlorine atoms lying in the axial positions [r(Cu(1)-Cl(2)) =2.791 Å]. Further details of the $[CuCl_4(H_2O)_2]^{2-}$ fragment are given in Table 4.11.

<u>TABLE 4.11</u> Molecular geometry of the $[CuCl_4(H_2O)_2]^{2-}$ anionic fragment of $[clgeH]_2[CuCl_4(H_2O)_2]$

Bond Distances/A		Bond Angles/°		
Cu(1)-Cl(1)	2.305(1)	Cl(1)Cu(1)Cl(2)	88.07(3)	
Cu(1)-Cl(2)	2.791(1)	Cl(1)Cu(1)O(2)	89.46(8)	
Cu(1)-O(2)	1.992(3)	Cl(2)Cu(1)O(2)	81.57(8)	
O(2)-H(8)	0.841	H(8)O(2)H(9)	106(7)	
O(2)-H(9)	0.854			

Unfortunately, it was not possible to obtain $[clgeH]_2[CuCl_4]$ in a crystalline form suitable for structure determination. However, the coordination geometry of the $[CuCl_4]^{2-}$ anion may be inferred from the colour changes that occur upon dehydration of $[clgeH]_2[CuCl_4(H_2O)_2]$.

The anion of the hydrated complex has been shown to have a distorted octahedral geometry analogous to that observed for $[Cu(H_2O)_6]^{2+}$, both moieties exhibiting a similar blue-green colour (arising from the ${}^2E_g + {}^2T_{2g}$ transition). The loss of two water molecules from the $[CuCl_4(H_2O)_2]^{2-}$ moiety leads to the formation of a yellow complex. The copper chromophore is probably a flattened tetrahedral $[CuCl_4]^{2-}$ anion analogous to that in $[Me_4N]_2CuCl_4 \stackrel{58}{=}$ and $Cs_2[CuCl_4] \stackrel{59}{=}$ which are a similar yellow colour (arising from the ${}^2T_2 + {}^2E$ transition).

The molecular geometry of the perchlorate anion is unremarkable. Data are given in Table 4.12.

TABLE 4.12 Geometry of the perchlorate anion in [clgeH]ClO,

Bond	Distances/A	Bond	Angles/°
Cl(1)-O(2)	1.423(2)	O(2)Cl(1)O(3)	107.9(2)
Cl(1)-O(3)	1.448(2)	O(2)Cl(1)O(4)	109.8(2)
Cl(1)-O(4)	1.432(2)	0(2)Cl(1)O(5)	110.6(2)
Cl(1)-O(5)	1.414(2)	O(3)Cl(1)O(4)	108.4(2)
		O(3)Cl(1)O(5)	110.2(2)
		O(4)Cl(1)O(5)	109.9(2)

4.4 Spectroscopic Properties

Extensive mixing of the internal coordinates of a planar skeleton makes assignment of the vibrational spectra of species such as [clgeH]⁺ difficult. [clgeH]⁺ has C_s symmetry and should have 36 (25A' and 11A") vibrational modes, all of which are infrared active. The vibrations of [clgeH]⁺ are the same as those for clge (Section 3.3.6) but there is an extra N-H stretch as well as one extra in-plane and one extra out-of-plane deformation.

Infrared spectra for the various $[clgeH]^+$ salts, $[D_7-clgeH]Cl$ and $[clgeH]_2[CuX_4(H_2O)_2]$ (where X = Cl, Br), were recorded (4000-400 cm⁻¹) in nujol and halocarbon mulls and KBr discs. They are collated numerically in Table 4.13; bands attributable to the anion have been omitted. The spectrum of the $[clgeH]_s^+$ cation is virtually independent of anion; that of the $[clgeH]_c^+$ cation, however, differs with the copper(II)-containing anion.

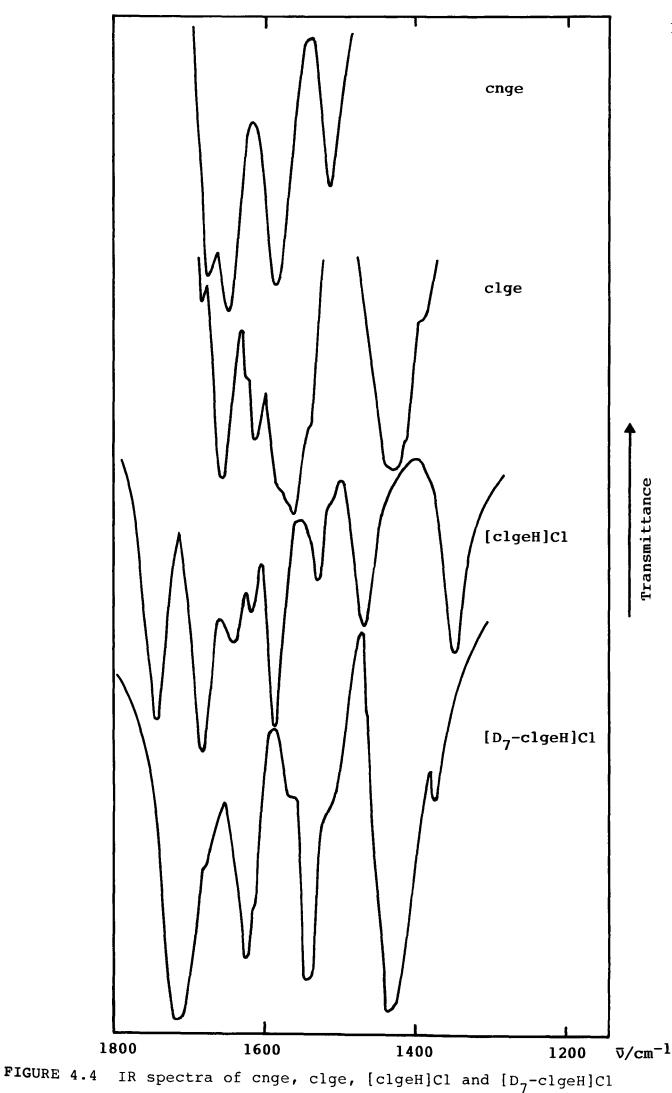
The spectra of cnge, clge, [clgeH]Cl and $[D_7-clgeH]Cl$ (1880-1280 cm⁻¹) are compared in Figure 4.4. The spectrum of the $[clgeH]_{s}^{+}$ cation in this region is markedly different from that of neutral clge. The $[clgeH]_{s}^{+}$ spectrum exhibits better resolution showing distinct peaks, whilst that of clge contains broad bands with several shoulders. By comparison with clge, the bands at 1670, 1640 and 1610 cm⁻¹ are assigned to $\delta[NH_2]$ vibrations. Four peaks (1735, 1585, 1520 and 1460 cm⁻¹)

TABLE 4.13a

[clgeH]Br	[clgeH]H ₂ PO ₄	[clgeH]NO ₃	[clgeH]HSO ₄	[clgeH]S0 ₄ .2H ₂ 0
3400sh 3360 }s,br	3410 s,br	3440sh 3370 }s	3440 3410} s 3340ms	3350 s,br
3250m 3175s,br	3300m 3185s,br	3280ms 3190s,br	3210s,br	3180s,br
1730s	1735s	1735 1725 }s	1745s	1735 1725} s
1670 1630 }s,br	1690 1635 }s,br	1685 1635 }s,br	1695 1640} s,br	1690 1630} s,br
1610m				
1580s,br 1520mw	1595s,br 1520w	1585s,br 1520w	1590s,br 1525w	1600s,br
1460s	1460s	1455m	1460m	1455ms
1380sh 1340 }s	1380sh 1350 }m	*	1380sh 1340 }ms	^{1380sh} 1350 } m,br
1115w	*	*	*	*
1055m	*	*	*	*
	930w	930vw	930vw	930vw
760mw	765w	750w	*	*
715mw	700m	705m	*	*
535w,br	550m			
450m,br	450m	450w	450w	440w

TABLE 4.13a Infrared spectroscopic data/cm⁻¹ for various [clgeH]⁺ salts

FOOTNOTE


* Masked by anion vibrations.

[clgeH]ClO ₄	[clgeH]Cl	[D ₇ -clgeH]Cl	Assignment
3475 3455 }ms,br 3405sh 3370 }s,br	3410sh 3380 }s,br	2550 2550 } s,br	$v_{a}[N-H]$ and
3250 3180 ^{}ms,br}	3250m 3160s,br	2380 2290 } s,br	ν _s [N-H]
1725	1735s	1700s	v[0(1)C(1)N(1)]
1695} 1655 [}] s,br	1670 1640 s,br	1265m,br	б[NH ₂]
	1610m	1610s	
1580s,br 1530mw	1585s 1520mw	1570s 1540 s 1510sh	{ν[N(3)C(2)N(4)] ν[N(2)C(2)N(3)]
1465ms	1460s	1430 1370 } s	v[o(1)C(1)N(1)]
1380sh 1345 ^{}ms}	1380sh 1345 }ms	1370 -	
*	1145m 1120m	945w	δ[NH ₂]
*	1060m	1090vw	
930vw			
765w	735mw	755m	
715w	720m	710vw	
560w	660w 550m,br	655w	
470w	460m,br		} γ[NH ₂]

[clgeH] ₂ [CuCl ₄ (H ₂ O) ₂]	[clgeH] ₂ [CuBr ₄ (H	20)	2] Assignment
3475 3400sh] ms,br	3540m 3405 3360] s]	v _a [N-H] and
3200ms,br	3260 3190] s		ν _s [N-H]
	1740s		v[O(1)C(1)N(1)]
1680s 1640m 1610ms	1685s 1670sh,s 1630ms		δ[NH2] ν[O(1)C(1)N(1)]*
1565ms	1580s 1520m	[v[N(3)C(2)N(4)] v[N(2)C(2)N(3)]
1455m	1455m		v[O(1)C(1)N(1)]
1350m	1335m		
1130w 1080w	1110mw 1075w 1060w		δ[NH ₂]
755w 715mw 670w 540m,br	760w 715mw 630mw,sh 580m,br 510m]	γ[NH ₂]
445m	450m	٦	

<u>TABLE 4.13b</u> Infrared spectroscopic data/cm⁻¹ for copper(II)-[clgeH]⁺ complexes

* For [clgeH] $_2$ [CuCl $_4$ (H $_2$ O) $_2$] only.

remain in this region which can be associated with skeletal vibrations. By analogy with cnge the bands at 1585 and 1520 cm⁻¹ are considered to arise primarily from the C-N skeleton, leaving the bands 1735 and 1460 cm⁻¹ due to the carbamoyl fragment. These bands occur at higher wavenumbers than in the spectrum of clge (~1550 and 1420 cm⁻¹) and are in agreement with the decreased C(1)-O(1) bond length from 1.251 Å, for clge, to 1.224 Å, for [clgeH]⁺.

The spectra of [clgeH]Cl, [clgeH] $_2$ [CuCl $_4$ (H $_2$ O) $_2$] and [clgeH] $_2$ [CuBr $_4$ (H $_2$ O) $_2$] are compared in Figure 4.5.

Although the spectrum of [clgeH]₂[CuBr₄(H₂O)₂] is nearly identical to those of the salts (Table 4.13) that of [clgeH]₂[CuCl₄(H₂O)₂] is different despite the similar geometry of the $[clgeH]_{s}^{+}$ and $[clgeH]_{c}^{+}$ cations. Most significantly in the $1800-1500 \text{ cm}^{-1}$ region, no absorption greater than 1680 cm⁻¹ is observed for [clgeH]₂[CuCl₄- $(H_2O)_2$]. The 1735 cm⁻¹ absorption observed for $[clgeH]_{s}^{+}$, assigned to a vibration of the carbamoyl fragment, must be reduced in energy. Consideration of the structural data for the two species reveals that the carbamoyl moiety of the [clgeH]⁺ cation is involved in an exceedingly strong hydrogen bond in the structure of the complex [O(1)...H(7)-O(2), r(O(1)-O(2)) = 2.638 Å] but not in that of the salt [O(1)...H(3)-N(2), r(O(1)-N(2)) =2.851 Å]. Presumably such a strong interaction leads to a weakening of the carbonyl bond and hence explains the reduction in the frequency of the v(C-0) absorption band.

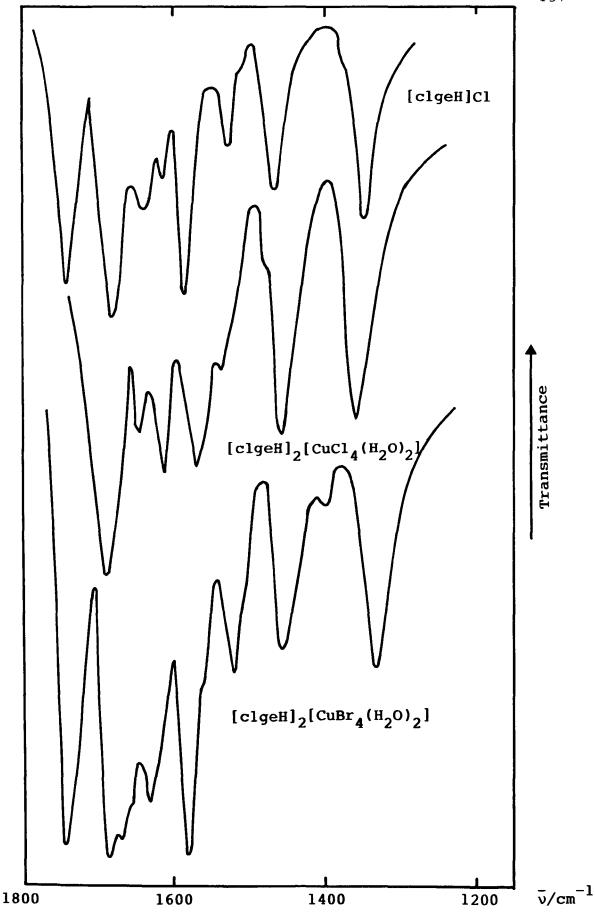
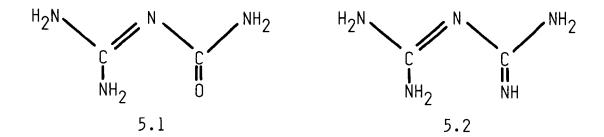


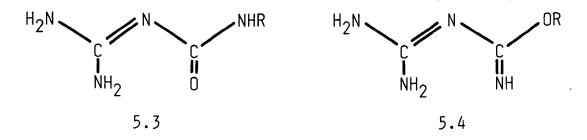
FIGURE 4.5 IR spectra of [clgeH]Cl, [clgeH]₂[CuCl₄(H₂O)₂] and [clgeH]₂[CuBr₄(H₂O)₂]

A second reason for the different spectra of the $[clgeH]^+$ cation in the salts and the chloro complexes, is the fact that hydrogen bonds from $[clgeH]_{s}^+$ are exclusively to oxygen atoms (Table 4.9), whilst those from $[clgeH]_{c}^+$ are primarily to chlorine atoms (Table 4.10). The latter bonds will be less effective than the former owing to the more diffuse charge of the chlorine atoms. Hence the bands assigned to $\delta[NH_2]$ vibrations will occur at different frequencies in the two species.

The observation that the spectrum of $[clgeH]_2^{-}$ $[CuBr_4(H_2O)_2]$ differs from that of the analogous chlorine derivative but is similar to those of the salts is difficult to understand. The presence of the 1735 cm⁻¹ absorption in the spectrum of the bromo complex implies the absence of a strong hydrogen bond to the carbonyl oxygen; while the similarities in the spectra of the bromo complex and the salts indicate similar hydrogen bonding networks. The former may be attributable to steric effects of the bromine atoms; the latter to their near non-existent hydrogen bond acceptor properties. Confirmation of these hypotheses can, however, only be achieved by a full structural analysis.

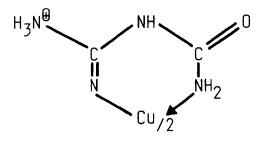

CHAPTER FIVE

COPPER(II) COMPLEXES OF THE 1-CARBAMOYLGUANIDATE ANION

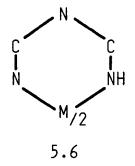

5.1 Introduction

To complete the study of the amphoteric 1-carbamoylguanidine molecule and its coordination properties towards the copper(II) ion, an investigation similar to those undertaken for neutral and cationic 1-carbamoylguanidine (clge; $C_2H_6N_4O$, Chapter Three and [clgeH]⁺; $C_2H_7N_4O^+$, Chapter Four) was attempted for the 1-carbamoylguanidate anion ([clge]⁻; $C_2H_5N_4O^-$).

In 1862 Haag¹¹ prepared a distinctive rose-red copper(II) complex from copper(II) sulphate and di(1-carbamoylguanidinium) sulphate ($[clgeH]_2SO_4$) under alkaline conditions and formulated it to be Cu $[clge]_2.2H_2O$. Eighty years later Dubsky and Strnad⁵¹ verified this formula by chemical analysis, and shortly afterwards $[clgeH]_2SO_4$ was noted as a precipitant for the gravimetric determination of copper;⁶⁰ the precipitate produced being the highly water insoluble Cu $[clge]_2.2H_2O$ complex. The complex was next noted by Ray and Bandopadhyay.⁵² Their interest stemmed from the close analogy of clge (5.1) to biguanide (bg; 5.2) a compound from which they had produced several copper(II) complexes.

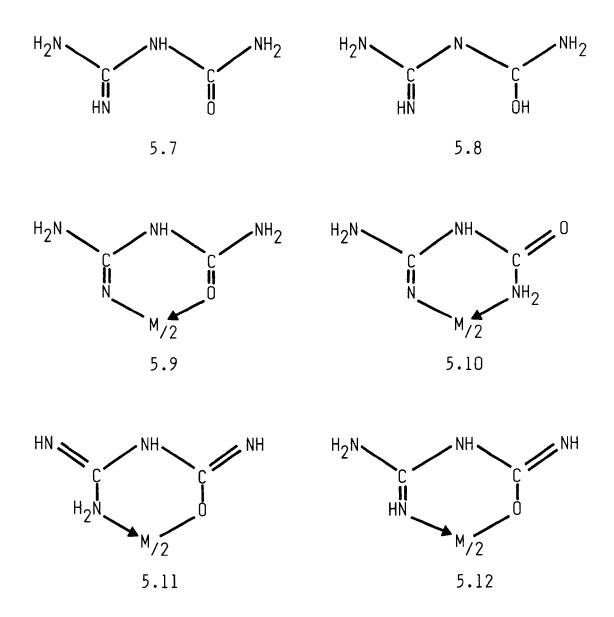


Ray's interest in the rose-red complex continued as he and fellow workers prepared a series of what were thought to be copper(II) complexes for both neutral and anionic alkyl substituted clge species.²⁴ These ligands were termed alkylguanylureas or amidino-3-alkylureas (a3au; 5.3). Since the complexes of their anions can best be represented by the general formula Cu[a3au]₂, the complex Cu[clge]₂ was considered to be the unsubstituted first member of the series. However, it was later proposed,²⁷ and has since been proven unequivocally (Chapter Six), that Ray's substituted clge species were 1-amidino-0-alkylureas (a0au; 5.4).


R = alkyl

During the course of this work, it has been found that there is often considerable confusion in the literature as to the identity of the clge species in question (i.e. anion, cation or neutral molecule). Indeed, Ray envisaged the rose-red complex to consist of clge ligands coordinated to the copper(II) cation, best described by form 5.5, with hydroxyl anions balancing the charge [i.e. $Cu(clge)_2(OH)_2$; where $clge = C_2H_6N_4O$].⁴⁸ This confusion was further compounded by Syamal⁵³ who,

5.5


following Ray's work, investigated the structure of three complexes, which he described as $Cu(clge)_2X_2$ (where $X = OH, Cl, \frac{1}{2}SO_4$) using infrared and UV-visible spectroscopy. Syamal's 'chloride and sulphate complexes' were quoted as being purple with λ_{max} values of 500 and 520nm, whilst the 'hydroxy complex' was rose-red with a λ_{max} value of 510nm. He assumed the similarity in the UV-visible spectra to suggest similar structural formulae and concluded that these complexes contained the fragment 5.6 giving rise to a CuN₄ square planar chromophore.

However, some of these results should be treated with caution as complexes of the form $Cu(clge)_2Y_2$ (where $Y = NO_3, Cl, Br$) where synthesized in the work described in Chapter Three and the structure of $[Cu(clge)_2(NO_3)_2]$ elucidated. The structure consisted of $[Cu(clge)_2]^{2+}$ moieties, containing a CuO_2N_2 chromophore, and nitrate anions. All three complexes were blue in appearance with λ_{max} values of 610nm and differed significantly in appearance from the rose-red 'hydroxy complex' which absorbed at 505nm. This difference is further supported by the conditions employed by Syamal and in the present work for the synthesis of the complexes which were (i) precipitation from aqueous solutions at neutral pH for the halides, nitrate and sulphate complexes, and (ii) precipitation from an aqueous solution at alkaline pH for the 'hydroxy complex'. These observations suggest that Syamal's 'hydroxy complex' formulation is incorrect and should be replaced by Cu[clge]₂.2H₂O and that his spectroscopic data for the chloride and sulphate are in error.

The most recent report to examine the rose-red complex, that published by Babykutty et al,⁴⁹ describes the complex by the Cu[clge]₂.2H₂O notation and investigates its structure spectroscopically. Their infrared spectra were assigned by comparison with those of what were supposed to be free clge and other structurally similar molecules, such as bg and urea. However, Babykutty et al's spectrum of free clge is in fact that of a [clgeH]⁺ salt (see Sections 3.3.6 and 4.4). They propose that free clge has structure 5.7 or 5.8 and from these derive the structures 5.9 to 5.12 as possible modes of coordination for [clge]⁻. They consider that the UV-visible data ($\lambda_{max} = 505$ nm) and infrared data are most consistent with 5.9 and that the 142

copper(II) ion is coordinated by the four donor atoms of two [clge] ligands occupying a square plane, with two remote water molecules situated in the axial positions of the coordination sphere.

By analogy with the investigations of copper(II) complexes of clge and [clgeH]⁺, a determination of the structural chemistry of a copper(II)-[clge]⁻ complex might best be effected using X-ray crystallographic techniques. This, however, necessitates the synthesis of suitable crystalline material. Williams method³ of preparation of Cu[clge]₂.2H₂O, by the deprotonation of [clgeH]⁺ in the presence of copper(II) ions dissolved in aqueous ammonium hydroxide solution, gave high yields of product, but only in the form of a microcrystalline precipitate.

$$Cu^{2+} + 2[clgeH]^+ \frac{NaOH}{(aq.NH_4OH)} Cu[clge]_2 \cdot 2H_2O_4$$

Varying the conditions for this reaction by slow addition of base, either sodium hydroxide (in solution and solid phases) or lithium hydroxide (generated in situ via hydrolysis of lithium metal) were fruitless, such reactions resulting in only a fine suspension of Cu[clge]₂2H₂O. Crystallization from solutions of Cu[clge]₂.2H₂O by slow evaporation or cooling was not possible since the complex was found to be highly insoluble in every solvent tested. Dissolution was only possible in acidic media, but such solutions only resulted in clge or [clgeH]⁺ complexes, depending on the molar ratio of acid to [clge]. Slow neutralisation of these acidic solutions over a period of several days was accomplished using the hydrolysis of urea⁶¹ but, as before, proved to be unsuccessful in producing crystalline material. Finally, to try to influence the precipitation process, attempts were made to incorporate an uncharged stereochemically bulky ligand into the copper(II) ion's coordination sphere. Triphenyl

phosphine (PPh₃) was chosen as a candidate ligand but, unfortunately could not be incorporated into a copper(II)-[clge]⁻ complex, either by direct reaction of an ethanol solution of PPh₃ with Cu[clge]₂.2H₂O, or by the basification of an ethanol solution containing copper(II) chloride, clge, and PPh₃ in the molar ratio 1:2:2.

Due to time constraints it was not possible to continue the attempts to crystallize a copper(II)-[clge]⁻ complex and, therefore, in the absence of crystallographic data, it has only been possible to base an analysis of the structure of Cu[clge]₂.2H₂O on infrared and UV-visible spectroscopic and thermogravimetric analytical results.

5.2 Experimental

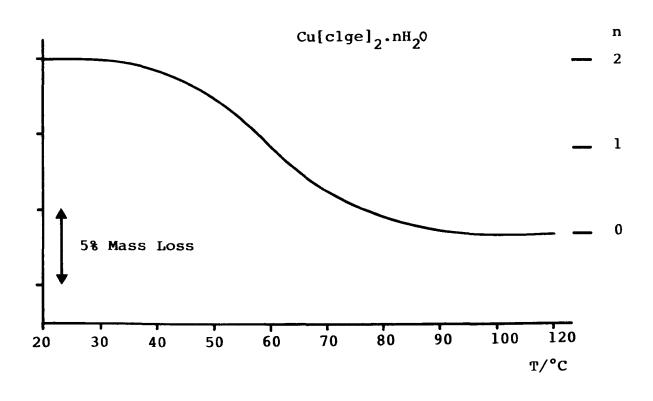
Synthesis of Cu[clge]2.2H20³ and Cu[clge]2

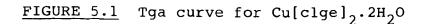
An equimolar ratio of $CuSO_4.5H_2O$ and $[clgeH]_2SO_4.2H_2O$ were dissolved in the minimum of hot dilute ammonium hydroxide solution (3M). Addition of excess dilute sodium hydroxide solution (2M) precipitated a rose-red product which, after washing with deionised water and drying over silica gel, was analysed for $Cu[clge]_2.2H_2O$. Yield 98%.

Isothermal dehydration at 100°C for 2 hours gave the anhydrous complex.

Analytical Data

	Experimental/Theoretical %				
Product	С	Н	N		
Cu[clge] ₂ .2H ₂ O	15.97/15.92	4.59/4.64	36.89/37.15		
Cu[clge] ₂	18.08/17.97	3.84/3.77	41.88/42.18		


 $[clge] = C_2 H_5 N_4 O$


Thermogravimetric analysis (tga) was effected using a Stanton Redcroft TG750 instrument (~10mg sample; 1°Cmin⁻¹ heating rate).

Infrared spectra were recorded (4000-400cm⁻¹) in KBr discs using a PE680 spectrometer. UV-visible spectra of solid samples were recorded using a PE Lambda 5 spectrometer with a diffuse reflectance facility.

5.3 <u>Results and Discussion</u>

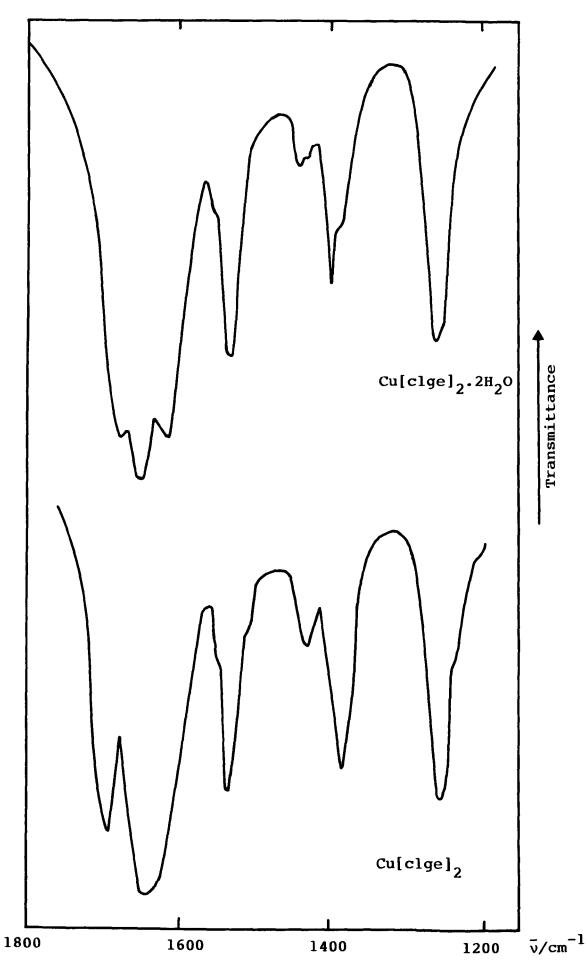
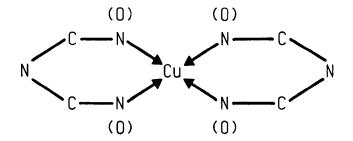
A tga curve $(0-120^{\circ}C)$ for $Cu[clge]_2.2H_2O$ is shown in Figure 5.1. Dehydration occurred in a single step in the 40-100°C region giving the anhydrous complex. Further decomposition commenced at 150°C and was complete by 600°C. Isothermal dehydration (T = 100°C) of larger samples confirmed the facile loss of two water molecules per Cu[clge]_2 unit, implying that the complex was composed of tightly bound [clge] ligands and more weakly held water molecules.

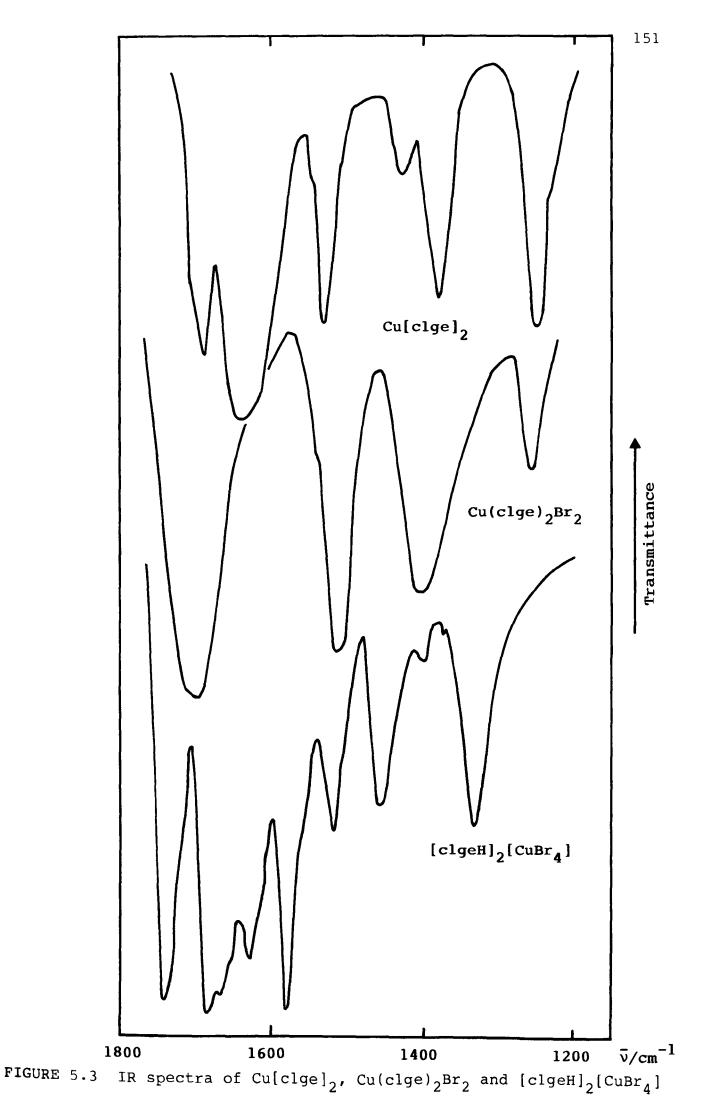
The infrared spectra of Cu[clge]₂ and Cu[clge]₂.2H₂O are collated numerically in Table 5.1 and shown in Figure 5.2 (1800-1200cm⁻¹). The spectral data for the latter complex is in agreement with those recorded by Babykutty et al.⁴⁹ There are, however, significant differences between the spectra of the former and latter complexes. These occur in the regions associated with O-H and N-H stretches. The anhydrous complex exhibits slightly better resolution and fewer bands in the 3500-3000, 1700-1600 and 850-450cm⁻¹ regions, presumably due to the loss of the O-H vibrations and a reduced level of hydrogen bonding arising from the loss of the water molecules from the crystal structure.

Cu[clge]	1 ₂	Cu[clge] ₂ .2H ₂ O	Assignment
3400ms 3360m 3200ms]br	3440 3400 3350 3270 msb	N-H stretches r O-H stretches ^a
1695ms 1630s 1540ms 1430mw 1380m 1250ms	br	1680ssh 1650s 1620ssh 1535ms 1440mw 1400m 1260ms	N-H deformation O-H deformation ^a skeletal stretches
1105w 960w		1110w 965w	
775 725 700m 630 600 525 510 490]mw]mw,br]mw	845mw 770m 705mw 530 510 495] mw	skeletal deformations N-H deformations O-H deformations ^a

TABLE 5.1 Infrared Spectroscopic Data/cm⁻¹ for Cu[clge]₂ and Cu[clge]₂.2H₂O

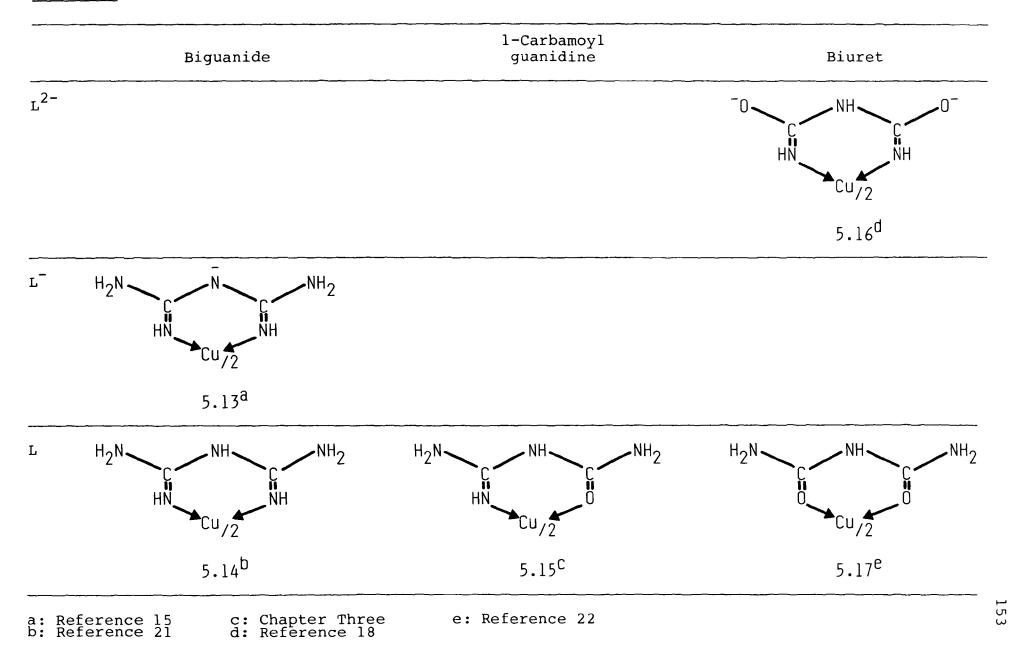
^a: for Cu[clge]₂.2H₂O only.


FIGURE 5.2 IR spectra of Cu[clge]₂.2H₂O and Cu[clge]₂

The broad assignments noted in Table 5.1 are made by comparison with the spectra of the complexes of 1-cyanoguanidine (cnge), clge and in the light of structural data given in previous chapters. The vibrational spectra are useful in distinguishing between the various ionic forms of clge and its complexes (Figure 5.3) but from these data it is not possible to establish the mode of coordination of the ligand in Cu[clge]₂ since extensive mixing of internal coordinates prevents precise assignment of the vibrational spectra. Several authors have attempted a more detailed analysis, but without a full normal coordinate analysis, the results have been inconclusive.

Throughout the course of this thesis it has been observed that the ligands found in copper(II) complexes of neutral and/or anionic clge, bg and bu exhibit extensive electron delocalisation about an essentially planar skeleton. In all the complexes the copper(II) ion lies at the centre of two planar six membered rings to give a fragment typified by form 5.13, with the ligating



5.13

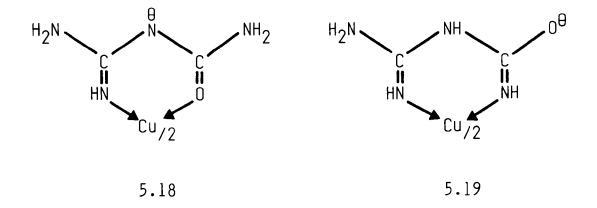

atoms of the two chelating ligands lying close to the corners of a square plane. Thus it is logical to suppose that [clge] will adopt a similar planar arrangement and by consideration of the electronic structures of structurally characterised copper(II)-clge, bg and bu complexes, it is possible to predict several probable coordination modes.

Table 5.2 shows the Lewis structures which describe the bonding of the ligands in the copper(II) complexes of clge, bg, [bg] and [bu]²⁻. Structures of cations have not been included since the cations do not coordinate the copper(II) ion (Chapter Four). Coordination via amine residues is not observed; since the ligands are planar the delocalised π -system extends over the whole of the molecule resulting in sp² hybridisation of the amine groups. Thus, these groups do not have lone pairs of electrons to direct towards the metal ion. Only imine nitrogen atoms or carbonyl oxygen atoms act as coordinating centres. Non-ligating oxygen atoms only occur as anionic oxy residues, whilst non-ligating nitrogen atoms, except the bridging nitrogen atom, are only found as amine residues. The bridging nitrogen is protonated, giving a C-NH-C bridge, in all forms but that for [bg] (5.13) in which a C=N-C bridge exists. By consideration of these observations, two tautomers for the [clge] ligand that are consistent with the structures in Table 5.2 are proposed. Form 5.18 is obtained by substitution of a carbonyl group for an imine

TABLE 5.2	Tautomeric	Forms	Observed	in	bg,	clge	and	bg	Complexes
-----------	------------	-------	----------	----	-----	------	-----	----	-----------

group in form 5.13, whilst substitution of an amine group for an oxy moiety in form 5.16 gives form 5.19.

Coordination of a copper(II) ion by a pair of $[clge]^{-}$ ligands adopting either form 5.18 or 5.19 would result in two isomeric complexes with CuO_2N_2 and CuN_4 chromophores respectively.

A possible method to distinguish between the two possible isomers is UV-visible spectroscopy, the visible spectrum of the copper(II) ion being determined by the number and nature of the ligating species. Table 5.3 shows spectroscopic data for all structurally characterised copper(II) complexes containing ligands analogous to clge. The ligating atoms which form the chromophore are those lying in the equatorial positions of the copper atoms square planar or tetragonally elongated octahedral coordination sphere. The distortion of the latter geometry is such that ligating atoms in the axial positions are so distant that they can be assumed to play no part in the chromophore. The solid state spectra of the complexes all exhibit a broad

TABLE 5.3 Structural and Spectroscopic Data for Copper(II) Complexes of bu, clge, bg, [bg]⁻, [bu]²⁻ and aOeu

Complex	Chromophore	λ _{max}
Cu(bu) ₂ Cl ₂	Cu04 ²²	760 ⁶²
[Cu(clge) ₂ (NO ₃) ₂]	CuO2N2	610
[Cu(bg) ₂]Cl ₂ .2H ₂ O	CuN ₄ ²¹	505 ⁵³
Cu[bg] ₂ .2H ₂ O	CuN ₄ ¹⁵	500 ⁶³
K ₂ Cu[bu] ₂ .4H ₂ O	CuN4 ¹⁸	485 ¹⁸
[Cu(aOeu) ₂]Cl ₂ .2H ₂ O	CuN ₄	515
[Cu(aOeu) ₂]Br ₂	CuN ₄	515

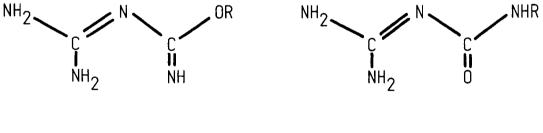
unsymmetrical absorption band in the visible region. The wavelength of maximum absorbance, λ_{max} , correlates remarkably well with the three types of chromophore. For the CuO₄ chromophore λ_{max} occurs at ~760nm. Replacing two oxygen atoms by two nitrogen atoms results in a $CuO_{2}N_{2}$ chromophore for which λ_{max} is ~610nm. Complete substitution of oxygen atoms by nitrogen atoms gives a CuN_4 chromophore for which λ_{max} is between 480 and 515nm. As noted earlier, both Cu[clge]₂ and its dihydrate have $\boldsymbol{\lambda}_{\text{max}}$ values of 505nm and hence, in line with the data in Table 5.3, it can be predicted that both Cu[clge], and its dihydrate contain a CuN₄ chromophore. This necessitates that the [clge] ligands exist in a form which is described by tautomer 5.19. Unfortunately, however, for Cu[clge]₂.2H₂O it is not possible to distinguish between a square planar coordination geometry with the water molecules merely held in the crystal lattice or a distorted octahedral coordination geometry in which the water molecules are distant from the copper(II) ion but lie axially above and below the CuN₄ square plane.

CHAPTER SIX

COPPER(II) COMPLEXES OF 1-AMIDINO-O-ETHYLUREA 6.1 Introduction

In the course of the examination of the spectroscopic and structural properties of coordinated 1-cyanoguanidine (cnge) (see Chapter Two) the preparation of the anhydrous copper(II)-cnge complexes Cu(cnge)₂Cl₂ and Cu(cnge)₄Cl₂ was attempted. A method reported by Panda et al²⁸ was followed in which the requisite molar quantities of an anhydrous copper(II) halide (chloride or bromide) and cnge were reacted in ethanol. Although the appearance, UV-visible absorption spectra and magnetic properties of the products were very similar to those reported for the anhydrous copper(II)-cnge complexes (Table 6.1) the infrared spectra of the former did not contain absorption bands characteristic of the stretching vibrations of the nitrile group of cnge coordinated to copper(II) (see Section 2.6 and Table 6.18). Furthermore, chemical analysis (see Section 6.2) indicated that the products contained cnge and ethanol in a 1:1 molar ratio. The absence of absorption bands attributable to the nitrile stretching vibration of cnge suggested that solvolysis of the nitrile group had occurred with subsequent formation of copper(II)-amidinoethylurea complexes.

These preliminary experiments yielded a mixture containing pink and blue powders, for the chloride

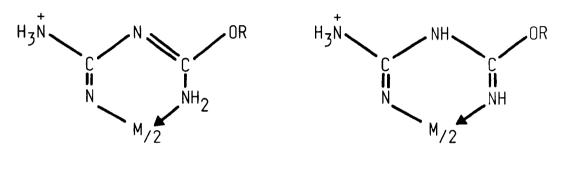

complexes, or ruby red and dark green powders for the bromide complexes. By controlling the copper(II) halide:cnge molar ratio, the order of addition of the reactants and the concentration of the reaction solution, it was possible to produce pure products. Analytical data showed them to be 1:1 and 1:2 molar adducts.

<u>TABLE 6.1</u> Products of the Reaction between cnge and Copper(II) Halides in Refluxing Ethanol

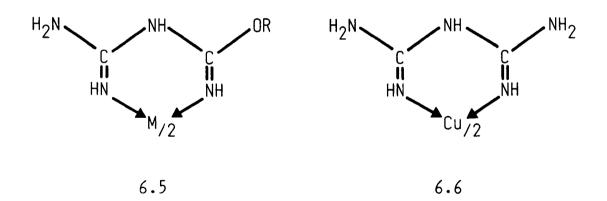
Product	Appearance	UV-visible spectra ^λ max ^{/nm}
Present Results		
$Cu(aOeu)_2Cl_2.2H_2O$	pink	515
Cu(aOeu)Cl ₂	blue	650
Cu(aOeu) ₂ Br ₂	ruby red	515
Cu(aOeu)Br ₂ .2H ₂ O	dark green	660
Cu[aOeu] ₂	pink-red	540
Panda's Results ²⁸		
Cu(cnge) ₂ Cl ₂	pink	530
Cu(cnge) ₄ Cl ₂	blue	675
Cu(cnge) ₂ Br ₂	pink	525
Cu(cnge) ₄ Br ₂	blue	665

Examination of the literature revealed that alcoholysis of cnge in the presence of a copper(II) salt

is well known; there is, however, some confusion over the molecular structure of the product amidinoalkylurea and its coordination mode to copper(II). The reaction was first reported by Dutta and Ray²⁴ who assumed reaction proceeded through l-amidino-O-alkylurea (aOau; 6.1) intermediates to the isomeric l-amidino-3-alkylurea (a3au; 6.2) products. Subsequently, Baker and Daniels²⁵ emphasised the role of the metal cation, proposing a reaction mechanism sequentially involving copper(II)cnge, copper(II)-aOau and copper(II)-aBau complexes. Meanwhile, Kawano and Odo²⁶ proposed that the reaction products were l-amidino-O-alkylureas and that the geometrical rearrangement did not occur; they also recognised the significance of copper(II)-cnge complexes as intermediates. Diana et al,²⁹ by synthesising the two isomers via alternative unambiguous routes, resolved this dichotomy showing chemically that the ligands produced in the alcoholysis reaction were 1-amidino-O-alkylureas.


6.1

R = alkyl


These tautomeric forms are assumed by analogy with biguanide, l-carbamoylguanidine and biuret; they have not been confirmed experimentally.

Although this conclusion has since been generally accepted, the coordination mode of aOau to copper(II) has not been established, numerous tautomeric forms being suggested. Initially Diana et al²⁷ and Dutta and Syamal⁶⁴ favoured structure (6.3); Wasson and Trapp³⁸ then proposed structure (6.4). Subsequently, after detailed infrared studies, Syamal and Ghanekar⁶⁵ preferred structure (6.5).

6.3

In the absence of structural verification, comparison with the more extensively studied, analogous ligand, biguanide (bg) indicates coordination probably occurs through two imine groups as in structure (6.5). The tautomeric form adopted by bg (6.6) when coordinated to copper(II) was elucidated in a recent high precision single crystal X-ray diffraction study of the structure of $[Cu(bg)_2]Cl_2.2H_2O.^{21}$

To verify the identity of the products generated by this present work and to ascertain the coordination geometry of the chelating ligand, their crystal and molecular structures have been determined. The results reported in this Chapter identified the complexes as [Cu(aOeu)Cl₂]₂ and [Cu(aOeu)₂]Cl₂.2H₂O. However, although the solution of the structure of the former complex was satisfactory, that of the latter complex was disappointing owing to the presence of several elements of twinning. Consequently, whereas detailed geometrical parameters could be quoted with confidence for the structure of [Cu(aOeu)Cl₂]₂, only gross aspects of the structure could be described for Cu(aOeu)2Cl2.2H2O. Hence a determination of the structure of the analogous complex [Cu(aOeu)]Br, was attempted. This proved to be very successful, enabling a complete analysis of the aOeu ligand.

To characterise further the aOeu molecule, the preparation of the cationic and anionic forms ([aOeuH]⁺ and [aOeu]⁻ respectively) and of neutral uncoordinated aOeu was attempted. Microcrystalline samples of [aOeuH]Cl and Cu[aOeu]₂ were obtained, however, the neutral species could not be synthesised. The methods employed to try to produce this molecule involved either neutralisation of aqueous solutions of [aOeuH]Cl with NaOH or deprotonation of [aOeuH]Cl in aqueous or ethanolic solution using an ion exchange resin in a manner similar to that used for the preparation of l-carbamoylguanidine (see Section 3.2). Unfortunately, these efforts only produced cnge and ethanol, presumably due to the decomposition of uncoordinated neutral aOeu.

The infrared spectra of the aOeu compounds produced in this work have been recorded but detailed assignment has not been possible owing to the complexity of the vibrations associated with the aceu ligand.

6.2 Experimental

The complexes and the cation were produced as follows. Analytical data for all the products are given in Table 6.2

(a) $[Cu(aOeu)Cl_2]_2$

Cnge (2.52g, 30mmol) and copper(II) chloride (4.04g, 30mmol) were dissolved in the minimum of hot ethanol. The cnge solution was added slowly to the refluxing copper(II) chloride solution and the dark blue complex precipitated after several minutes. It was filtered off, washed with ethanol and air dried. Yield 7.5g, 95%.

(b) [Cu(aOeu),]Cl, 2H,0

An ethanol solution of copper(II) chloride (4.04g,

30mmol in 150 cm^3) was added in small aliquots to a refluxing ethanol solution of cnge (5.04g, 60mmol in 250 cm^3). The solution was refluxed for 15 minutes and then reduced to one quarter of its volume. It was cooled in ice for 2 hours and the pink complex precipitated was filtered off, washed with cold ethanol and air dried. Yield 11.1g, 86%. [Cu(aOeu)₂]Cl₂ was obtained upon isothermal dehydration of [Cu(aOeu)₂]Cl₂.2H₂O at 85°C.

(c) <u>Cu(aOeu)Br₂.2H₂O</u>

As (a), but copper(II) bromide (6.70g, 30mmol) was substituted for copper(II) chloride and for blue read green. Yield 10.5g, 90%. Cu(aOeu)Br₂ was obtained upon isothermal dehydration of Cu(aOeu)Br₂.2H₂O at 90°C.

(d) <u>Cu(aOeu)</u>₂<u>Br</u>₂

As (b), but copper(II) bromide (6.70g, 30mmol) was substituted for copper(II) chloride and for pink read ruby-red. Yield 10.9g, 75%.

(e) <u>[aOeuH]Cl</u>

 H_2S gas was bubbled through an aqueous solution of $[Cu(aOeu)_2]Cl_2.2H_2O$ (4.30g, 10mmol in 500ml water) until the blue solution became colourless. Air was drawn through the solution for several minutes to remove traces of H_2S . The black precipitate of CuS

was filtered off and the filtrate evaporated under vacuum until the onset of precipitation. The precipitate was collected, washed with ice cold water and dried over silica gel under vacuum. Yield 2.99g, 90%.

(f) <u>Cu[aOeu]</u>

Dilute NaOH (2M) was added to an aqueous solution of [Cu(aOeu)₂]Cl₂.2H₂O (4.30g, 10mmol in 500ml water) until the solution became colourless. The pink-red precipitate was filtered off, washed with water and dried over silica gel. Yield 3.11g, 96%.

	Experimental/Theoretical %				
Product	C	Н	N		
[Cu(aOeu)Cl ₂] ₂	18.37/18.15	3.86/3.78	21.63/21.17		
[Cu(aOeu) ₂]Cl ₂ .2H ₂ O	22.23/22.30	5.51/5.57	26.50/26.02		
[Cu(aOeu) ₂]Cl ₂	24.45/24.33	5.28/5.07	28.36/28.39		
Cu(aOeu)Br ₂ .2H ₂ O	12.25/12.33	3.63/3.60	14.30/14.38		
Cu(aOeu)Br ₂	13.45/13.59	2.94/2.83	15.61/15.85		
Cu(aOeu) ₂ Br ₂	19.93/19.86	4.01/4.14	22.99/23.17		
[aOeuH]Cl	29.01/28.83	6.80/6.61	33.77/33.63		
Cu[aOeu] ₂	29.76/29.86	5.91/5.60	34.91/34.84		

TABLE 6.2 Analytical Data for the Products

 $aOeu = C_4 H_{10} N_4 O$ [aOeuH]⁺ = $C_4 H_{11} N_4 O$ [aOeu]⁻ = $C_4 H_9 N_4 O$

Infrared spectra (4000-400cm⁻¹) were recorded in KBr discs using a P.E.598 spectrometer. UV-visible spectra were recorded using a P.E. Lambda 5 spectrometer with a diffuse reflectance facility.

6.3 <u>Crystal and Molecular Structures of the Bis(1-amidino-0-ethylurea)dichlorodi-µ-chlorodicopper(II)</u> <u>dimer,of Bis(1-amidino-0-ethylurea)copper(II)</u> <u>Dichloride Dihydrate and of Bis(1-amidino-0-ethylurea)copper(II)</u>

6.3.1 <u>Structure solution and crystal data for</u>

 $[Cu(aOeu)Cl_2]_2$

Deep blue crystals of [Cu(aOeu)Cl₂]₂ were obtained by slow evaporation of an ethanolic solution. Microscopic examination of the crystals showed them to have the shape of an arrowhead, implying twinning. Since the crystals were too small for cleavage, an apparently twinned crystal (0.2x0.1x0.05mm) was mounted in a Lindemann tube for preliminary study. Oscillation and Weissenberg photographs revealed cell parameters, space group and twinning about the (100) plane. Moreover, as $a/c.cos \beta =$ 3.04 (~3) there was approximate overlap of the (3k1) and (6k1) reflections of the twinned crystals. Cell parameters space group and X-ray diffraction data were collected for one component of the twinned crystal as described in Section 1.6.1. Allowance was made at a later stage for the twinning of the crystal. Of the 1751 intensities collected 1075 were deemed to be observed.

The copper atom was located from a Patterson function. The chlorine atoms and the carbon, nitrogen and oxygen atoms were then located from successive difference Fourier syntheses. The identities of the skeletal atoms of the chelating ligand were confirmed by equating their atomic scattering factor to that of carbon and then determining their isotropic temperature factors. Those atoms with factors between 0.03906 and 0.06154, between 0.02553 and 0.02808 and equal to 0.01506 were designated carbon, nitrogen and oxygen, respectively. Full matrix least squares refinement with anisotropic temperature factors for all these atoms converged at R = 0.098. Analysis of Fobs and Fcalc values showed this disappointingly high R value to be due to poor agreement for the (0k1), (3k1) and (6k1) reflections, presumably owing to the twinning. Although (Okl) reflections could be corrected by a layer scale factor, incomplete overlap within the (3kl) and (6kl) reflections made allowance for the twinning impossible despite many attempts. The 285 reflections of the type (3k1) and (6k1) were therefore removed, leaving 790 for the calculations. Full matrix least squares refinement with anisotropic temperature factors then converged at R = 0.054. A subsequent difference Fourier synthesis indicated the presence of electron density (varying from 0.47 to 0.25 e/ ${
m A}^3$) demonstrating the approximate positions of hydrogen atoms consistent with the amidino-O-ethylurea tautomeric form. The accurate positions of the hydrogen atoms were then

defined $[r(N-H)=r(C-H) = 1.00\text{Å}, U(ISO) = 0.03\text{Å}^2]$ using a hydrogen placing routine. Further refinement of the structure with fixed hydrogen atoms converged at R = 0.047. Final positional parameters and thermal parameters are given in Tables 6.3 and 6.4. The refined layer scale factor for the (0kl) reflections was 1.46 corresponding to 47% of the minor twin component. Observed and calculated structure factors are included in Appendix B.

Crystal Data

 $C_4H_{10}N_4OCl_2Cu$, M = 264.4, monoclinic, spacegroup P2₁/c, a = 7.175(2), b = 16.773(3), c = 8.312(2), β = 106.99(3), U = 956.66 A^3 , D_m = 1.85gcm⁻³, D_c = 1.84gcm⁻³ for Z = 4, F(OOO) = 532, μ (MoK_a) = 28.80cm⁻¹.

6.3.2 Structure solution and crystal data for

[Cu(aOeu),]Cl,2H,0

Small pink crystals of $[Cu(aOeu)_2Cl_2.2H_2O$ were deposited from the mother liquor of the reaction of cnge with copper(II) chloride in ethanol (Section 6.2). A very small crystal (0.2x0.1x0.01mm) was mounted on the end of a glass fibre with 'Araldite' adhesive. Cell parameters, space group and X-ray diffraction data (in the range 1<0<20) were obtained as described in Section 1.6.1. Of the 906 intensities collected, 557 had net counts exceeding $2\sigma_T$ and were deemed to be observed.

x/a	y/b	z/c
·	• ·	
171.7(3)	437.17(7)	428.5(1)
106.0(6)	321.7(1)	546.0(3)
236.7(6)	506.6(2)	679.4(3)
193(2)	408.9(6)	84(1)
269(2)	544.2(6)	188(1)
356(2)	680.1(6)	241(1)
404(2)	749.4(7)	144(2)
	382.0(4)	222.2(9)
	363.8(5)	-49(1)
• •	486.4(5)	69.4(9)
· ·		334(1)
		128.4(8)
		223
		-48
		-153
		-42
		410
		278
		345
		214
		40
		107
	106.0(6) 236.7(6) 193(2) 269(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE 6.3 Final Positional Parameters (x10³) for [Cu(aOeu)Cl₂]₂

TABLE 6.4	Final	Thermal	Parameters	$(x10^3)/A^2$	for
	[Cu(a(Deu)Cl,].	2		

$Cu(aOeu)CI_2_2$	
------------------	--

Atom	U(11)	U(22)	U(33)	U(23)	U(13)	U(12)
Cu(1)	55(1)	32.5(6)	23.9(6)	3.0(6)	18.4(6)	3.1(9)
Cl(1)	84(3)	35(1)	37(1)	6(1)	28(2)	1(2)
Cl(2)	69(2)	43(1)	25(1)	0(1)	18(1)	-4(2)
C(1)	54(9)	45(6)	36(5)	6(5)	30(6)	10(6)
C(2)	44(8)	41(6)	26(5)	-2(4)	15(5)	-1(6)
C(3)	70(9)	36(6)	45(6)	1(5)	19(71	-14(7)
C(4)	80(9)	44(6)	67(8)	3(6)	24(9)	-11(8)
N(1)	79(9)	27(4)	32(4)	5(3)	21(6)	3(5)
N(2)	110(9)	39(5)	25(4)	-9(4)	32(6)	-9(7)
N(3)	70(8)	39(5)	26(4)	-1(4)	23(5)	-6(5)
N(4)	90(9)	34(5)	31(4)	-4(4)	32(6)	-14(6)
0(1)	80(7)	39(4)	34(4)	5(3)	29(5)	-12(5)

In the form: $[exp-2\pi^2 U(11)h^2a^{*2}+U(22)k^2b^{*2}+U(33)1^2c^{*2}]$ +2U(12)hka*b*+2U(13)hla*c*+23)klb*c*)]

Consideration of the molecular formula within the context of the crystal symmetry indicated that the copper atom must be situated in a special position (0,0,0) of the P21/c space group and that pairs of aOeu molecules, chlorine atoms and water molecules must be located in centrosymmetrically related positions. Consequently, subsequent to the data reduction stage, the positions of the chlorine atoms and then the positions of the carbon, nitrogen and oxygen atoms were determined in successive difference Fourier syntheses. Full matrix least squares refinement with anisotropic temperature factors for all the atoms converged at R = 0.148. A subsequent difference Fourier synthesis showed there was considerable residual electron density, the larger peaks (largest 0.15 e/A^3) being related to Cl(1) by twinning operations. The twinned elements, permitted by the β angle close to 90°, together with the limited intensity data owing to the small size of the crystal, were thought to contribute to the disappointingly high R value. Attempts to refine the structure with sets of coordinates for all the twinned atoms resulted in but minor improvements in R-value, presumably owing to the limited intensity data. It was then decided to discontinue refinement at R = 0.148. Final positional parameters and thermal parameters are given in Tables 6.5 and 6.6 respectively. Observed and calculated structure factors are included in Appendix B.

Atom	x/a	y/b	z/c
Cu(1)	0	0	0
C1(1)	-823(2)	212(1)	-293(1)
C(1) C(2)	-444(7) -231(6)	132(3) 89(3)	12(3) 187(3)
C(3)	-104(8)	82(3)	360(3)
C(4)	-187(9)	132(5)	461(4)
N(1)	-297(6)	87(2)	-39(3)
N(2) N(3)	-655(5) -435(5)	182(2) 137(2)	-22(2) 118(2)
N(4) O(1)	-78(7)	33(2)	150(2) 279(2)
0(2)	-295(5) -310(4)	111(2) 88(2)	-273(2)

<u>TABLE 6.5</u> Final Positional Parameters (x10³) for [Cu(aOeu)₂]Cl₂.2H₂O

<u>TABLE 6.6</u> Final Thermal Parameters $(x10^3)/A^2$ for

[Cu(aOeu)₂]Cl₂.2H₂O

		-				
Atom	U(11)	U(22)	U(33)	U(23)	U(13)	U(12)
Cu(1) Cl(1) C(1) C(2) C(3) C(4) N(1) N(2)	1.3(3) 5.6(7) 5(3) 3(2) 8(3) 6(3) 3(2) 1(1)	3.5(3) 9.2(9) 2(2) 3(2) 9(3) 21(7) 5(2) 5(2)	5.7(4) 9.5(9) 5(3) 6(3) 5(3) 10(4) 9(3) 10(3)	-0.5(4) -2.6(7) -1(2) -3(2) -1(2) -3(4) -2(2) 0(2)	-0.4(2) 0.8(6) 1(2) -1(2) -3(2) -1(3) 0(2) -2(2)	0.8(3) 1.1(6) -3(2) 1(2) 2(2) 4(4) -1(2) 3(1)
N(3) N(4) O(1) O(2)	6(2) 11(3) 5(2) 4(2)	3(2) 1(2) 8(2) 7(2)	7(3) 6(2) 6(2) 8(2)	0(2) -1(1) -2(2) -1(1)	0(2) -1(2) 0(1) 0(1)	0(2) -1(2) 1(1) -1(1)

In the form: $[exp-2\pi^2 U(11)h^2a^{*2}+U(22)k^2b^{*2}+U(33)1^2c^{*2}]$

+2U(12)hka*b*+2U(13)hla*c*+23)klb*c*)]

Crystal Data

 $C_8H_{24}N_8O_4Cl_2Cu$, M = 430.4, monoclinic, space group P2₁/c, a = 5.299(2), b = 13.739(3), c = 12.806(3)Å, β = 89.89(3)°, U = 932.31Å³, D_m = 1.55gcm⁻³, D_c = 1.53gcm⁻³ for Z = 2, F(000) = 446, μ (MoK_{α}) = 15.33cm⁻¹.

6.3.3 Structure solution and crystal data for

<u>Cu(aOeu)</u>₂Br₂

Ruby red crystals of $[Cu(aOeu)_2]Br_2$ were obtained from an ethanol solution of $Cu(cnge)_2Br_2$ $(5x10^{-2}M)$ allowed to stand for several days at room temperature. A suitable crystal (0.3x0.1x0.1mm) was mounted in a Lindemann tube for preliminary study. Cell parameters, space group and X-ray diffraction data were obtained as described in Section 1.6.1. Of the 1510 intensities collected, 1079 were deemed to be observed.

Consideration of the molecular formula within the context of the crystal symmetry indicated that the copper atom must be situated in a special positon (0,0,0) of the $P2_1/c$ space group and that pairs of aOeu molecules and bromide atoms must be located in centrosymmetrically related positions. A Patterson function confirmed the position of the copper atom and revealed the position of the bromine atoms. A subsequent difference Fourier synthesis located the carbon, nitrogen and oxygen atoms. Full matrix least squares refinement with anisotropic temperature factors converged at R = 0.041. The top nine peaks (density 0.79 to 0.48 e A^3) and the eleventh peak

(density 0.46 e/A^3) of a subsequent difference Fourier synthesis gave the positions of the hydrogen atoms of the aOeu molecule. Further refinement of the structure using isotropic temperature factors for all the atoms including the hydrogens was totally successful but for the fact that five of the hydrogen atoms [H(1),(2),(3),(5) and (6)] gave virtually zero (i.e. less than their standard deviations) U(ISO) values. Thus for the last few cycles of refinement these hydrogen atoms were refined with a fixed U(ISO) value (0.001A^2) whilst the other hydrogens had both their positions and U(ISO) values refined. This final refinement converged at R = 0.031. Final positional parameters and thermal parameters are given in Tables 6.7 and 6.8. Structure factors are included in Appendix B.

<u>Crystal Data</u>

 $C_8H_{20}N_8O_2Br_2Cu$, M = 483.3, monoclinic, space group P2₁/c, a = 5.221(2), b = 12.306(3), c = 12.703(3)Å, β = 95.94(3)°, U = 811.78Å³, D_m = 1.97gcm⁻³, D_c = 1.98gcm⁻³ for Z = 2, F(000) = 478, $\mu(MoK_{\alpha})$ = 66.33cm⁻¹.

6.3.4 <u>Coodination geometry of the copper(II) cation and</u> <u>intermolecular contacts for [Cu(aOeu)Cl₂]</u>₂, <u>[Cu(aOeu)₂Cl₂.2H₂O and [Cu(aOeu)₂]Br₂</u>

The basic unit in the structure of $[Cu(aOeu)Cl_2]_2$ is the centrosymmetric chlorine bridged $[Cu(aOeu)Cl_2]_2$ dimer (Figure 6.1). The Cu²⁺ ion is located 0.118Å above

Atom		x/a	y/b	z/c	
Cu(1)		0	0	0	
Br(1)		6.2(1)	316.29(
C(1)		0.3(9)	-5.3(4		
C(2)		59.2(9)	-184.6(4		
C(3)		97(1)	-374.4(4		
C(4)		59(1)	-398.1(5	-	
N(1)		51.1(8)	49.4(3	-	
N(2)		2.4(9)	39.8(4		
N(3)		98.2(8)	-115.9(3		
N(4))1.4(8)	-150.9(3		
0(1)		2.8(7)	-285.6(2		
H(1)		75(9)	118(4)	100(4	
H(2)		73(9)	109(4)	203(4	
Н(З)		50(10)	3(4)	238(4	
H(4)		90(1)	-143(5)	190(5	
Н(5)		30(10)	-193(4)	-2(4	
H(6)		96(9)	-360(4)	-3(4	
H(7))0(10)	-431(5)	64(5	
H(8)		20(20)	-458(7)	97(6	
H(9)		30(20)	-346(8)	104(8	
H(10)		50(10)	-401(6)	188(6)
		(The same)	Domonotorio	(x10 ³)/Å ² f	or [Cu(z)o
TABLE 6.8	- Final	Thermal	Parameters	(XIU J/A I	or [cu(dUe
Atom	U(11)	U(22)	U(33)	U(23) U(13) U(1

TABLE 6.7 Final Positional Parameters (x10³) for [Cu(aOeu)₂]Br₂

u)₂]Cl₂.2H₂O TAB

Atom	U(11)	U(22)	U(33)	U(23)	U(13)	U(12)	U(ISO)
Cu(1) Br(1) C(1) C(2) C(3) C(4) N(1) N(2) N(3) N(4) O(1) H(1) H(2) H(3) H(2) H(3) H(4) H(5) H(6) H(7) H(8) H(9) H(10)	28.2(4) 69.9(4) 33(2) 30(2) 45(3) 46(3) 35(2) 45(3) 34(2) 41(3) 39(2)	21.3(4) 31.6(3) 26(2) 24(2) 25(2) 37(3) 25(2) 28(2) 27(2) 24(2) 22(2)	29.1(4) 47.0(3) 28(2) 29(2) 36(3) 49(4) 40(2) 49(3) 34(2) 41(2) 45(2)	1.9(3) -2.4(3) 0(2) 0(2) -6(2) -1(3) 2(2) 2(2) 0(2) 1(2) -2(1)	16.6(3) 34.3(3) 12(2) 8(2) 16(2) 15(3) 19(2) 33(2) 24(2) 24(2) 24(2)	-1.5(3) 3.4(3) 0(2) -3(2) -3(2) 3(3) 2(2) 2(2) -2(2) 2(2) -2(2) 2(2) -4(1)	1 1 20(10) 1 20(20) 50(90) 90(30) 50(20)

the base of a square pyramidal coordination sphere typical of 5-coordinate copper(II).⁵⁹ The equatorial plane is composed of the two imine nitrogen atoms of the chelating bidentate aOeu ligand [r(Cu-N(1)) = 1.935R;r(Cu-N(4)) = 1.940R] and two chlorine atoms [r(Cu-Cl(1))]= 2.227R; r(Cu-Cl(2)) = 2.314R]; the axial position is occupied by a more remote chlorine atom centrosymmetrially related to Cl(2) [r(Cu-Cl(2)') = 2.957R]. Full details of the copper(II) cations coordination sphere are given in Table 6.9.

<u>TABLE 6.9</u> Coordination Sphere of the Cu²⁺ Cation and Planarity of the Ligating Atoms for [Cu(aOeu)Cl₂]₂; Bond Distances/A and Angles/°

Cu(1)-Cl(1)	2.279(3)	Cu(1)N(1)C(1)	130(1)
Cu(1)-Cl(2)	2.314(3)	Cu(1)N(4)C(2)	129(1)
Cu(1)-Cl(2)'	2.957(4)	Cl(1)Cu(1)Cl(2)	93.1(1)
Cu(l)-N(l)	1.935(8)	Cl(1)Cu(1)Cl(2)'	95.2(1)
Cu(1)-N(4)	1.940(8)	Cl(1)Cu(1)N(1)	91.0(2)
		Cl(1)Cu(1)N(4)	175.9(4)
symmetry prope		Cl(2)Cu(1)Cl(2)'	91.9(1)
Cl(2)' -x, l-y,	1-z	Cl(2)Cu(1)N(1)	170.2(4)
		Cl(2)Cu(1)N(4)	86.6(3)
		Cl(2)'Cu(l)N(l)	96.5(4)
		Cl(2)'Cu(l)N(4)	89.0(4)
		N(1)Cu(1)N(4)	88.6(4)

Ligating atom	Deviation from plane/A	
Cl(1)	0.037	Cu(1) is 0.118Å above the
Cl(2)	-0.038	Cl(1)Cl(2)N(1)N(4) plane
N(1)	-0.046	
N(4)	0.047	

Equation of best plane: -6.59858x+4.3394y-0.11507z = 0.597

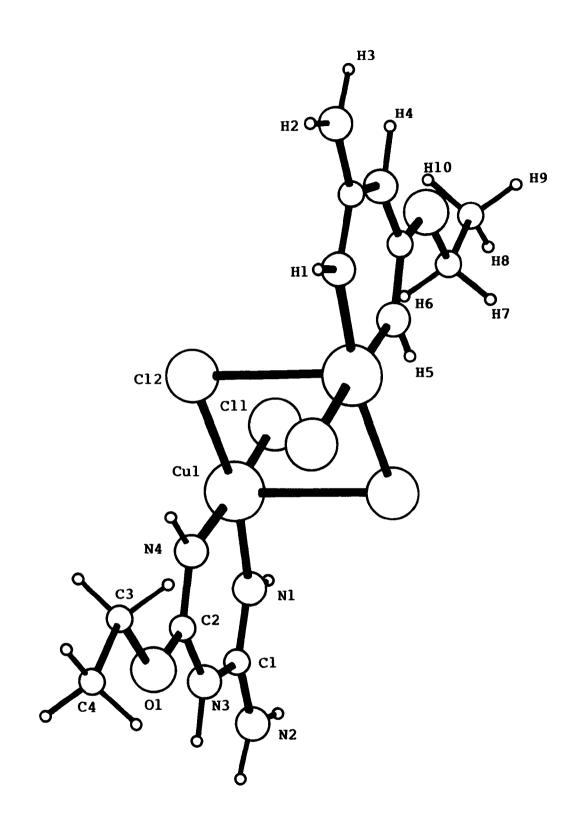


FIGURE 6.1 Molecular geometry of the [Cu(aOeu)Cl₂]₂dimer

The dimers form part of pairs of corrugated planes which run parallel to (100) (Figure 6.2). Intermolecular contacts of less than 3.30Å only occur within these planes (Table 6.10, Figure 6.3). They arise between nitrogen and chlorine atoms and can be classified into two types; those with a geometry consistent with an intermolecular hydrogen bond, N(2)-H(2)...Cl(1) and N(3)-H(4)...Cl(2), and those within the CuN_2Cl_2 square plane, N(1)...Cl(1) and N(4)...Cl(2).

<u>TABLE 6.10</u> Intermolecular Contacts of Less than 2.30^A [#] for [Cu(aOeu)Cl₂]₂: Hydrogen Bond and Electrostatic Interactions

Interaction	Symmetry properties of X'	r(XX') Å	r(н-н) 8	r(HX') 8	XHX ' °
N(1)-H(1)Cl(1)*	x,y,z	3.02	1.01	2.76	95
N(2)-H(2)Cl(1)	$x, \frac{1}{2}+y, -\frac{1}{2}-z$	3.29	1.00	2.32	161
N(3)-H(4)Cl(2)	x , y, -1+z	3.24	1.01	2.27	161
N(4)-H(5)Cl(2)*	x,y,z	2.93	1.01	2.65	96

There are two other contacts to N(2) over 3.30Å, r(N(2)...Cl(1)^a) = 3.33Å, r(N(2)-Cl(2)^a) = 3.40Å, symmetry of Cl(1)^a and Cl(2)^a x,y,-1+z. Hydrogen H(3) lies on a line bisecting the angle Cl(1)^a-Cu(1)-Cl(2)^a.
* These contacts are within the CuN₂Cl₂ square plane

giving rise to the small XHX' angle.

Both the structures of [Cu(aOeu)₂]Cl₂.2H₂O and Cu(aOeu)₂Br₂ consist of essentially planar cationic fragments (Table 6.11) and chloride or bromide anions as

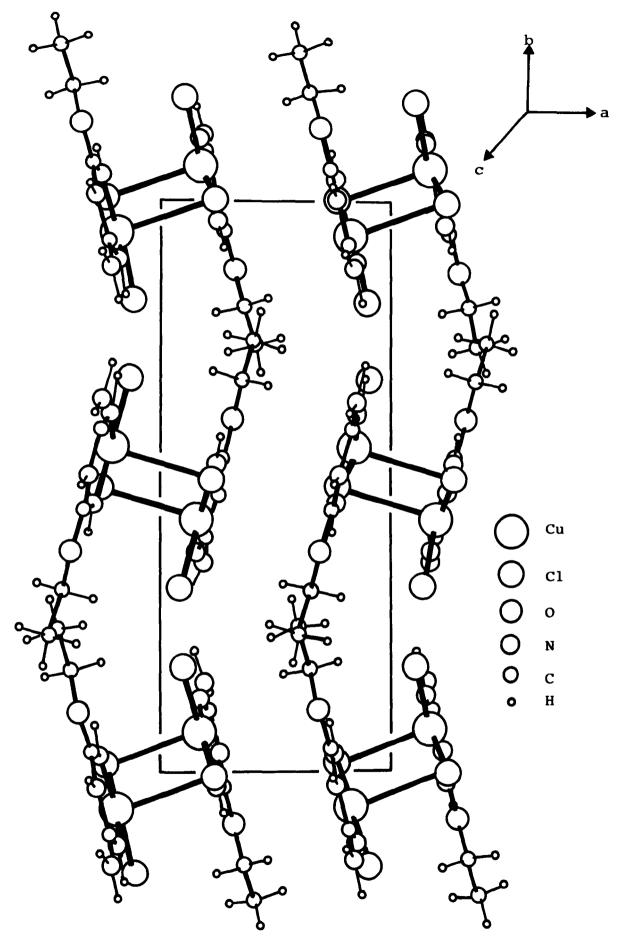


FIGURE 6.2 Projection of the structure of [Cu(aOeu)Cl₂]₂ onto the (001) plane

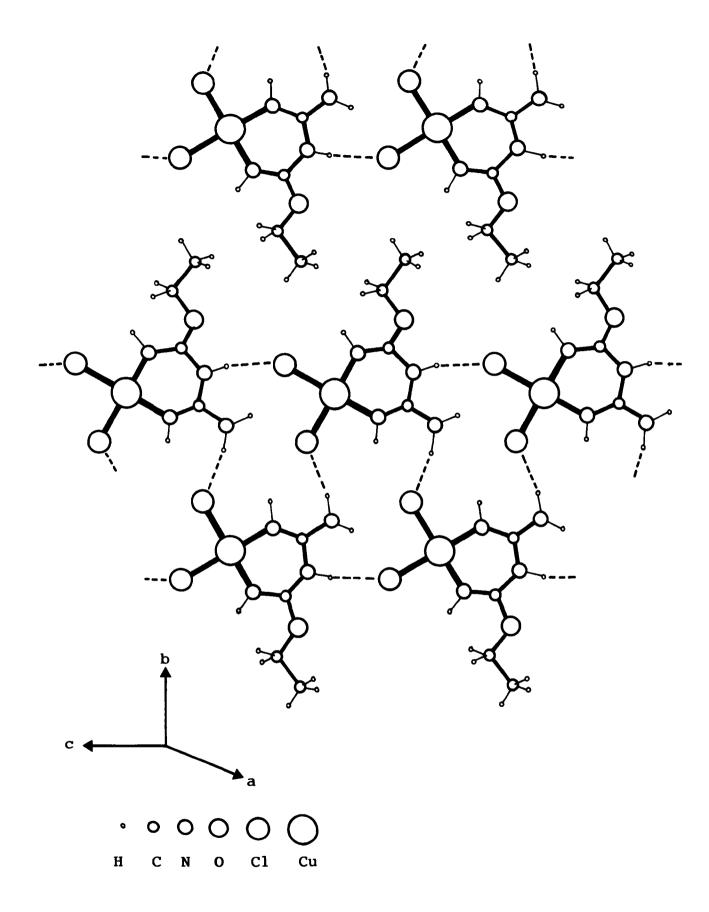
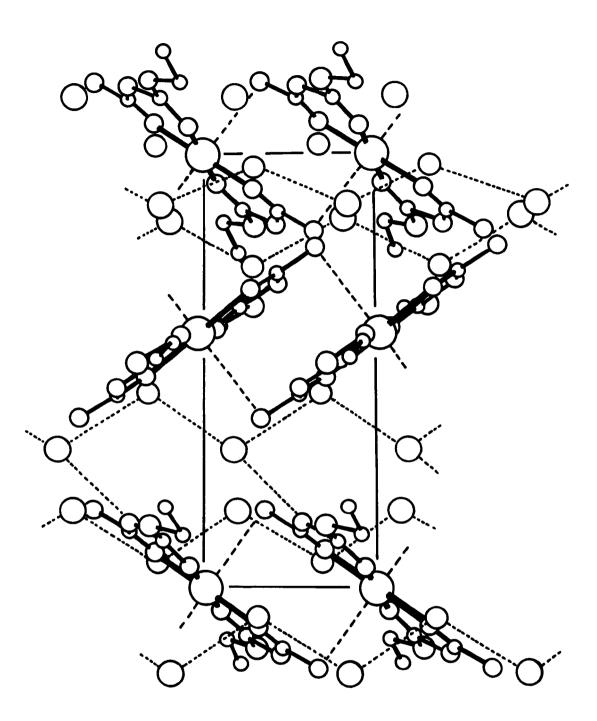
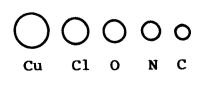


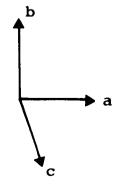
FIGURE 6.3 Projection of the structure of [Cu(aOeu) Cl₂]₂ onto the (100) plane

appropriate. The cationic fragments of the former complex are $\{[Cu(aOeu)_2]^{2+}.2H_2O\}$ units which form two sets of interlinked ribbons which lie parallel to (120) and ($\overline{1}20$) (Figure 6.4). The cationic fragments of the latter complex are $[Cu(aOeu)_2]^{2+}$ units and they form a set of planes parallel to (102) (Figure 6.6). In both fragments the copper(II) ion is coordinated by two centrosymmetric bidentate aOeu ligands with the water molecules in $\{[Cu(aOeu)_2]^{2+}.2H_2O\}$ being hydrogen bonded to pairs of ligating atoms of the two (aOeu) ligands (Figure 6.5).

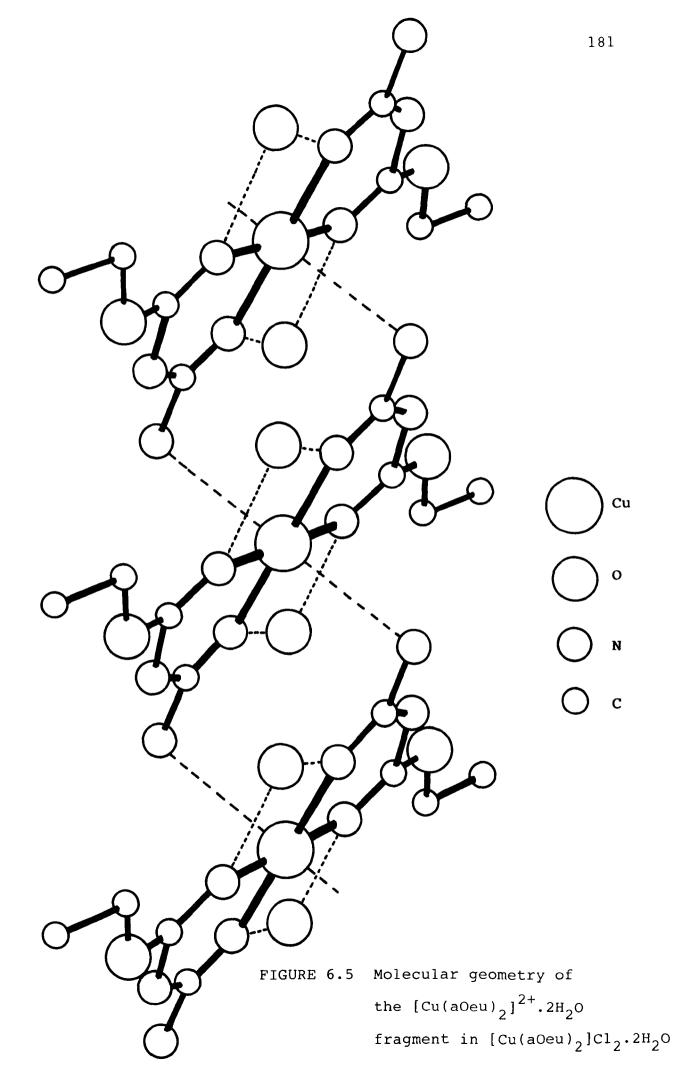
<u>TABLE 6.11</u> Planarity of the $\{[Cu(aOeu)_2]^{2+}.2H_2O\}$ fragment in $[Cu(aOeu)_2]Cl_22H_2O$ and of the $[Cu(aOeu)_2]^{2+}$ fragment in $[Cu(aOeu)_2]Br_2$


	{[Cu(aOeu) ₂] ²⁺ 2H ₂ O}	[Cu(aOeu) ₂] ²⁺
	Deviation from	Deviation from
Atom	plane/A ^b	plane/A ^C
Cu(1)	-0.084	-0.017
C(1)	-0.020	-0.011
C(2)	-0.038	-0.012
C(3)	0.060	0.018
C(4)	0.242	see footnote (a)
0(1)	-0.114	-0.005
N(1)	-0.002	0.005
N(2)	-0.087	0.043
N(3)	-0.066	-0.058
N(4)	-0.141	0.038
0(2)	0.250	


(a) C(4) lies 1.339Å below the plane.


(b) Equation of best plane: 3.10780x+11.05139y-1.20068z = 0.084

(c) Equation of best plane: -3.27956x+0.19590y-9.00324z = 0.017


FIGURE 6.4 Projection of the structure of $[Cu(aOeu)_2]Cl_2.2H_2O$ onto the (001) plane

180

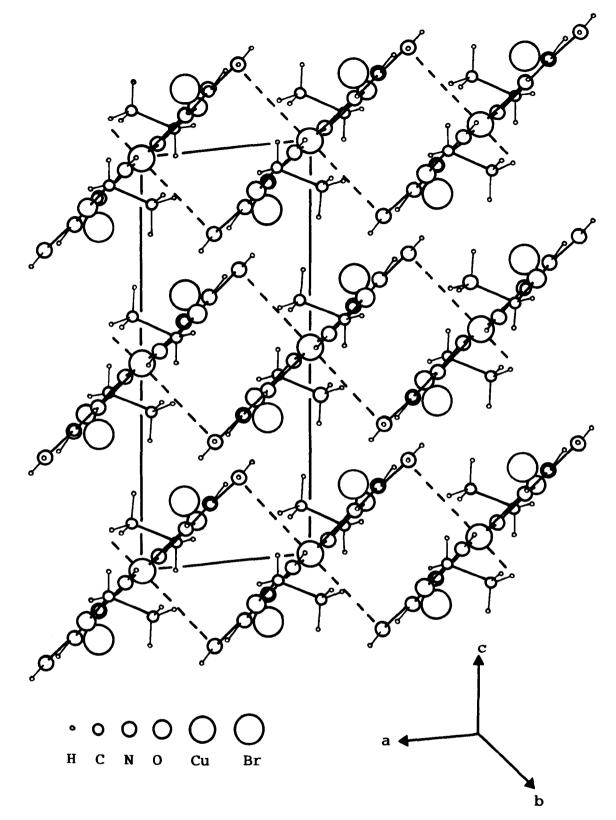


FIGURE 6.6 Projection of the structure of $[Cu(aOeu)_2Br_2 \text{ onto the (010) plane}]$

182

Whereas for [Cu(aOeu)₂]Cl₂.2H₂O there is interribbon hydrogen bonding between chlorine and either ligand nitrogen or water oxygen (Figure 6.4, Table 6.12), for [Cu(aOeu)₂]Br₂ hydrogen bonding only occurs between bromine and ligand nitrogen atoms within the planes. Full details of intermolecular bonding are given in Tables 6.12 and 6.13.

In both complexes the copper(II) ion is surrounded by four imine nitrogens, which lie at the corners of a square plane, of the two chelating aOeu ligands (Table 6.14; Figures 6.5 and 6.7).

<u>TABLE 6.14</u> Coordination sphere of the Cu²⁺ cation for [Cu(aOeu)₂]Cl₂.2H₂O and [Cu(aOeu)₂]₂Br₂; Bond distances/A and angles/°

	$[Cu(aOeu)_2]Cl_2 \cdot 2H_2O$	[Cu(aOeu) ₂] ₂ Br ₂
Cu(1)-N(1)	2.03(4)	1.926(4)
Cu(1)-N(4)	2.02(4)	1.972(4)
Cu(l)-N(2)'	3.11(3)	3.265(5)
N(l) Cu(l) N(4)	87(2)	88.8(2)
N(1) Cu(1) N(2)	88(1)	86.3(2)
N(4) Cu(1) N(2)	92(1)	100.1(2)
Cu(1) N(2)' C(1	.)' 93(1)	87.1(3)

Symmetry of N(2)' and C(1)' 1+x,y,z

By consideration of the structural data it can also be inferred that a bonding interaction, albeit weak, occurs between the copper(II) ion and two [Cu(aOeu)₂]²⁺

	$\frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} $							
Interaction XX'	Symmetry Properties of X'	r(xx') 8	Angle					
N(1)O(2)	x,y,z	3.00	C(1)-N(1)-O(2) Cu(1)-N(1)-O(2)	122 106				
N(3)Cl(1)	$x, \frac{1}{2}-y, \frac{1}{2}+z$	3.14	C(1)-N(3)-C1(1) C(2)-N(3)-C1(1)	112 122				
N(4)O(2)	-x,-y,-z	3.08	C(2)-N(4)-O(2) Cu(1)-N(4)-O(2)	126 103				
O(2)Cl(1)	x,y,z	3.22	0(2)-Cl(1)-O(2)	114				
O(2)Cl(1)	l+x,y,z	3.10	Cl(1)-O(2)-Cl(1)	114				

TABLE 6.12 Intermolecular contacts of less than 3.30Å; Hydrogen bond and electrostatic interactions for [Cu(aOeu)₂]Cl₂2H₂O

TABLE_6.13	Intermolecular contacts of less than 3.60Å;
	Hydrogen bond and electrostatic interactions
	for [Cu(aOeu) ₂]Br ₂

Interaction X-HX'	Symmetry Properties of X'	r(xx') 8	r(X-H) Å	r(нх') Х	ХНХ ' °
N(1)-H(1)Br(1)	x-1,-y,z	3.395(4)	0.86(5)	2.55(5)	167(4)
N(2)-H(3)Br(1)	$-x, -\frac{1}{2}-y, \frac{1}{2}-z$	3.445(5)	0.78(6)	2.73(5)	154(5)
N(3)-H(4)Br(1)	$-x_{,}-\frac{1}{2}-y_{,}\frac{1}{2}-z$	3.329(4)	0.84(6)	2.51(6)	166(5)
N(4)-H(5)Br(1)	l-x,y,z	3.6+	0.74(5)	3.02(5)	166(5)

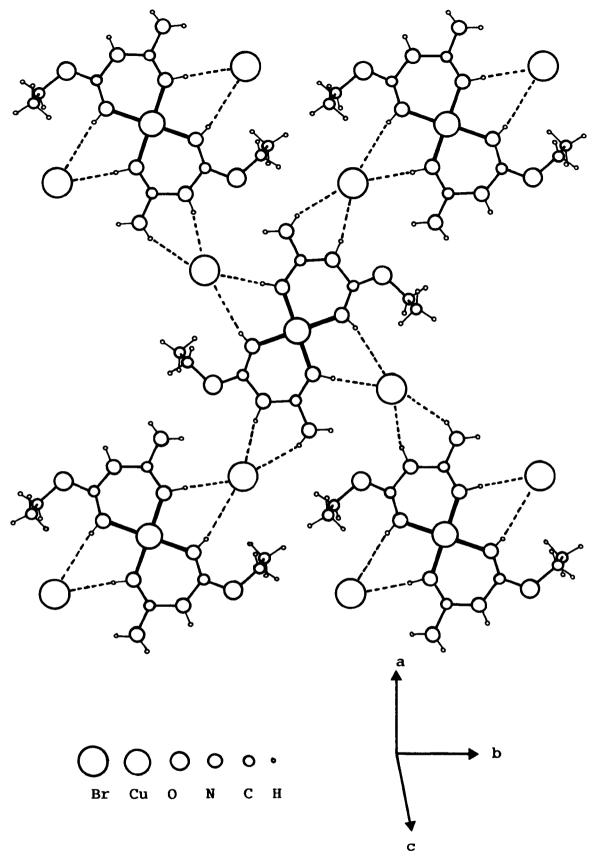


FIGURE 6.7 Projection of the structure of [Cu(aOeu)₂]Br₂ onto the (102) plane

fragments in adjacent ribbons, for[Cu(aOeu),]Cl, 2H,O, or planes, for [Cu(aOeu)]Br2. The fragments are related by translations of \pm_a such that the terminal amine nitrogens N(2)' are located in the axial positions above and below the CuN, plane close to the limit of the copper(II) ions coordination sphere (Figures 6.5 and 6.6). Whereas for the chloride complex this contact [r(Cu(1)-N(2)') =3.11A] is only marginally greater than the sum (2.98A) of Van der Waals radii for copper (1.43Å) and nitrogen (1.55\AA) that in the bromide complex [r(Cu(1)-N(2)') =3.265Å] is markedly larger. Evidence for an interaction arises from the location and electronic structure of the ligand. The amine nitrogen N(2)' can be considered to be sp² hybridised (see Section 6.3.5 for details) and lies in such a position $\{Cu(1)N(2)'C(1)' \text{ bond angle} = 93^\circ \text{ for }$ $[Cu(aOeu)_2]Cl_2.2H_2O \text{ or } 87.1^\circ \text{ for } [Cu(aOeu)_2]Br_2$ that its $2p_z$ orbital, and hence a lone pair of electrons, can be directed towards the copper(II) ion.

The coordination geometry around the copper(II) ion in both the chloride and bromide complexes could be described as either a square plane or an axially distorted octahedron, both of which are typical of d^9 systems. The tetragonal distortion parameters (0.65 and 0.58 respectively), however, lie within the range (0.66-0.56) allocated to square coplanar complexes.⁵⁹ Similar tetragonal distortion parameters (0.62; 0.64) are found for analogous complex [Cu(aebg)(cnge)]SO₄.H₂O (aebg = 1-(2-aminoethyl)biguanide)⁴⁰ in which the copper(II) ion is situated in a CuN_4 square planar chromophore derived from three nitrogen atoms of the tridentate aebg ligand [r(Cu-N) = 1.93, 1.93, 2.01Å] and the nitrile nitrogen atom of cnge [r(Cu-N) = 1.96Å]. Remotely located in the axial positions of the CuN_4 chromophore are the nitrile [r(Cu-N) = 3.06Å] and imine [r(Cu-N) =3.14Å] nitrogen atoms of cnge molecules in adjacent complexes. As in the present complexs, the ligands providing the axial ligating atoms lie parallel to the square plane of the copper(II) ions coordination sphere.

6.3.5 Molecular geometry of the aOeu ligand in [Cu(aOeu)Cl₂], [Cu(aOeu)₂]Cl₂.2H₂O and [Cu(aOeu)₂]Br₂

In all three complexes the bidentate aOeu ligand chelates the copper(II) ion adopting the di-imine tautomeric form 6.5. The C-N and C-O bond distances, which are intermediate between single and double bonds, the NCN, CNC and NCO bond angles, which are close to 120° (Table 6.15), and the planarity of the skeletal atoms C(1), C(2), N(1), N(2), N(3), N(4) and O(1) (Table 6.16) infer sp² hybridisation of, and the presence of a delocalised π -system over, the ligand excluding the ethyl moiety.

Whereas both the carbon atoms of the ethyl moiety, C(3) and C(4), are effectively coplanar with the other skeletal atoms of the ligand for the two chloro complexes the terminal ethyl carbon atom, C(4), of the ligand in the

<u>TABLE 6.15</u> Geometry of the aOeu ligand in $[Cu(aOeu)Cl_2]_2$, $[Cu(aOeu)_2]Cl_2 \cdot 2H_2O$ and $[Cu(aOeu)_2]Br_2$; bond distances/A and angles/°

	[Cu(aOeu)Cl ₂] ₂	[Cu(aOeu) ₂]Cl ₂ .2H ₂ O	[Cu(aOeu) ₂]Br ₂
C(1)-N(1)	1.30(2)	1.20(5)	1.288(6)
C(1)-N(2)	1.32(2)	1.38(5)	1.337(6)
C(1)-N(3)	1.37(2)	1.35(5)	1.362(6)
C(2)-N(3)	1.36(2)	1.54(5)	1.371(6)
C(2)-N(4)	1.28(2)	1.21(5)	1.269(6)
C(2)-O(1)	1.34(2)	1.26(5)	1.319(5)
C(3)-O(1)	1.44(2)	1.50(5)	1.458(6)
C(3)-C(4)	1.51(2)	1.53(7)	1.481(8)
N(1) C(1) N(2)	123(1)	128(4)	124.0(4)
N(1) C(1) N(3)		123(4)	122.0(4)
N(2) C(1) N(3)	115(1)	109(4)	114.1(4)
C(1) N(3) C(2)	126(1)	126(4)	127.5(4)
N(3) C(2) N(4)	124(1)	121(4)	122.9(4)
N(3) C(2) O(1)	110(1)	105(3)	108.8(4)
N(4) C(2) O(1)	126(1)	133(4)	128.4(4)
C(2) O(1) C(3)	117(1)	114(3)	119.1(4)
O(1) C(3) C(4)	107(1)	106(4)	111.0(4)

bromide complex lies 1.341Å below the plane of the other skeletal atoms (Table 6.16). This anomally in conformation about the O(1)-C(3) bond is presumably a manifestation of the location of the stereochemically bulky bromide anion and the minimization of interactions between the ethyl moiety and the anion.

TABLE 6.16 Planarities of the aOeu ligand in [Cu(aOeu)Cl₂]₂, [Cu(aOeu)₂]Cl₂.2H₂O and [Cu(aOeu)₂Br₂

C(1) C(2)	-0.003	0.053	-0.013
C(2)	-0.004		
	01004	-0.017	-0.014
C(3)	0.028	0.013	0.019
C(4)	-0.008	0.128	see footnote (a)
0(1)	-0.012	-0.148	0.000
N(1)	0.006	0.009	-0.009
N(2)	0.005	-0.029	0.049
N(3)	0.001	-0.043	-0.056
N(4)	-0.012	-0.075	0.024

(a) C(4) lies 1.341A below the plane

(b) Equation of best plane: 6.4764x-4.14202y+0.60884z = -0.392

(c) Equation of best plane: 3.19713x+10.180675y-1.66831z = 0.066

(d) Equation of best plane: -3.31213x+0.15246y-8.93169z = 0.043

As noted in Section 6.3.4 for $[Cu(aOeu)_2]Cl_2.2H_2O$ and $[Cu(aOeu)_2]Br_2$ a weak bonding interaction may occur between the amine nitrogens, N(2)', of two translationally related $[Cu(aOeu)_2]^{2+}$ fragments and the copper(II) ion. Such an interaction would be expected to result in a reduction of the electron density of the π -system over the N(2)'-C(1)' bond and hence in a lengthening of the bond. Unfortunately, the poor quality of data precludes such an analysis for $[Cu(aOeu)_2]Cl_2 \cdot 2H_2O$ and it seems that the interaction in $[Cu(aOeu)_2]Br_2$ is so weak that it has no marked effect on the N(2)-C(1) bond length in comparison with that in $[Cu(aOeu)Cl_2]_2$.

The coordination geometry of aOeu is consistent with those of coordinated biguanide $(bg)^{21}$ and ethylenediaminebiguanide (edbg), ⁶⁶ all three ligands forming Cu-NH=C(R)-NH-C(R)=NH chelate rings. The formation of bridging C-NH-C fragments, C=N-C bridges existing in the free molecules, leads to a decrease in the π character of the bridging C-N bonds and an increase in that of the terminal C-N bonds. These changes, which also occur for l-carbamoylguanidine (clge; see Chapters Three and Four for detailed discussion) are manifest in shorter terminal than bridging C-N bonds. Comparison of data for aOeu, bg, edbg and clge coordinated to copper(II) is effected in Table 6.17.

<u>TABLE 6.17</u> Significant features of the molecular geometries of aOeu, bg, edbg and clge coordinated to copper(II)

	Free Molecule		Coordinated to Copper(II)	
Ligand	Average r(C-N _{bridge}) /A	Average r(C-N _{terminal}) /A ^C	Average r(C-N _{bridge}) /A	Average r(C-N _{terminal}) /A ^c
aOeu ^a	<u> </u>	_	1.365	1.320
aOeu ^b	-	-	1.367	1.337
bg ^{13,21}	1.356	1.358	1.374	1.349
edbg ⁶⁶	-	-	1.410	1.372
clge	1.352	1.348	1.370	1.315

- (a) For [Cu(aOeu)Cl₂]₂
- (b) For [Cu(aOeu)₂]Br₂
- (c) This average does not include those contacts formally defined as double bonds between carbon and terminal imine groups.

6.4 Spectroscopic Properties

6.4.1 Vibrational spectra

As has been shown in previous chapters, extensive mixing of internal coordinates occurs in molecules with planar skeletons making assignment of the vibrational spectra difficult. However, the spectra are of value in distinguishing between the compounds examined in this chapter. Where possible approximate assignments have been made by comparison with structurally similar molecules described in earlier chapters.

The infrared spectra are collated numerically in Table 6.18. The most striking feature of the spectra which first distinguished aOeu complexes from those of cnge was the absence of absorptions in the 2300-2000cm⁻¹ region and the presence of absorptions in the 2990-2980cm⁻¹ region. The absorptions in the former region would be attributable for cnge to nitrile stretching vibrations whilst those in the second region arise from the stretching vibrations of the C-H bonds in the ethyl moiety of aOeu.

The stretching and bending vibrations of N-H bonds v[NH] and $\delta[NH]$ will give rise to absorptions in the $3500-3000 \text{ cm}^{-1}$ and $1700-1500 \text{ cm}^{-1}$ regions. All the compounds exhibit several overlapping bands in both regions (Figures 6.8 and 6.9). For $[Cu(aOeu)_2]Cl_2$, its dihydrate and [aOeuH]Cl the bands in the first region are broad and poorly defined whilst for $[Cu(aOeu)Cl_2]_2$, $[Cu(aOeu)_2]Br_2$ and $Cu[aOeu]_2$ they are more highly

TABLE 6.18

	$[Cu(aOeu)_2]Cl_2$ and $[Ou(aOeu)_2]cl_2$	
[Cu(aOeu)Cl ₂] ₂	[Cu(aOeu) ₂]Cl ₂ .2H ₂ O	[Cu(aOeu) ₂]Br ₂
3380s	3390]	3420
3350	3325	3285 ms,br
3305 ms 3260	3205 [ms,br	3190
3220 3185] m	-	3030
2980mw	2985m	2990m
1665] s 1650] s	1670s	1670s,br
1650 _ ⁵	1630m	1645s 1615ms
1550ms	1560m	1560ms
1495m	1480 1	1465 1
1460m	1465 w w	1440 m
1390 1375 mw	1390mw	1400
1340ms		1345m
	1275mw	1275ms
1230w	1210ms	1205s
1180ms	1125mw	1120m
1115mw		
1005	1015w	1080mw
1025mw	1015w	995] m
980w	980w	900
880mw	880 860sh ^{mw}	870w
790m	790 -	810m
755m	750sh-mw	760 1
730ms	735	730 _ m
695mw		700mw,br
640w,br		
560 1	570w,br	_
530 mw	525mw	525
505	505w	495 -mw
405w	475mw,br	450br

TABLE 6.18 Infrared spectroscopic data/cm⁻¹ for copper(II)

Cu[aOeu] ₂	[aOeuH]Cl	Assignment
3480] ms 3370] m 3340] m	3350 3300sh 3180 s,br	v[NH]
2980mw	2980m	ν[CH]
1625 1580 s 1520 j s	1640 1620 1575s 1520s,br	б[ин]
-s,br 1445 1380ms	1480ms 1430m 1385m	ν[NCN]
1350ms 1260s 1212mw 1125mw 1110m sh	1340ms	ν[C-N-C] ν[N-O-C]
1090s 1025m	1090ms,br	ν[C-C]
890 825 mw	935w	
800 770	845w	γ[NH ₂]
735 mw 705 680mw	740mw 595 7	γ[CH]
610mw	565 m 515	γįčnj
505mw,br 400w,br	455mw	

FIGURE 6.8 Comparison of the ir spectra (3500-2800cm⁻¹) for copper(II)-(aOeu) and copper-[aOeu] complexes and [aOeuH]Cl

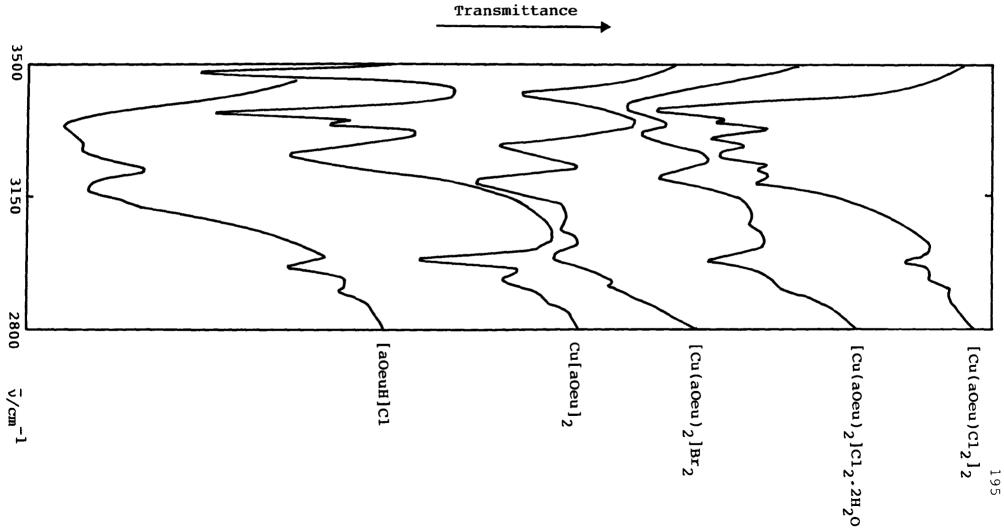
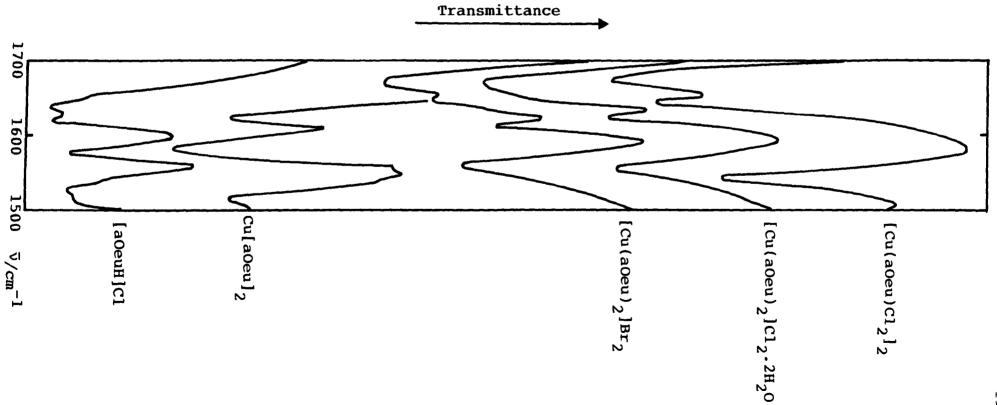
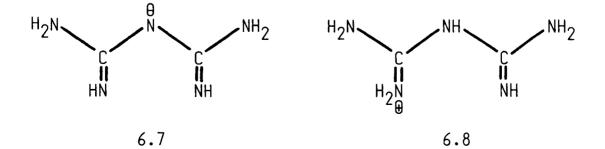



FIGURE 6.9 Comparison of the ir spectra (1700-1500cm⁻¹) for copper(II)-(aOeu) and copper(II)-[aOeu] complexes and [aOeuH]Cl

resolved. In the second region all the compounds exhibit similar resolution but only $Cu[aOeu]_2$ has one band at wavenumbers greater than $1600cm^{-1}$ whilst all the others have at least two. These difficulties are very difficult to explain in the absence of structural data for all the compounds, however, it is likely that the level of hydrogen bonding and the tautomeric form adopted by the various aOeu moieties will influence the nature of these absorptions. For example, the well resolved band in the v[NH] absorption region of the spectra of $[Cu(aOeu)Cl_2]_2$ and $[Cu(aOeu)_2]Br_2$ is consistent with the presence of localised N-H bonds (Tables 6.10 and 6.13).

The number and complexity of the absorptions occurring at lower than 1500 cm^{-1} precludes any useful analysis of the spectra in this region. These absorptions are only useful in fingerprinting each compound. It must be noted, however, that the spectra of $[Cu(aOeu)_2]Cl_2$ and its dihydrate were identical and cannot be used to distinguish between these complexes.


6.4.2 UV-Visible Spectra


All the complexes give rise to broad absorptions in the visible region which can be used to distinguish complexes with a 1:1 ratio from those with a 1:2 ratio of copper:aOeu. The former class of complexes { $[Cu(aOeu)Cl_2]_2$ and $Cu(aOeu)Br_2.2H_2O$ } give absorptions with a λ_{max} 650-660nm whilst the latter class of complexes { $[Cu(aOeu)_2]Cl_2$, its dihydrate, $[Cu(aOeu)_2]Br_2$ and $Cu[aoeu]_2$ give absorptions with $\lambda_{max} = 515-540$ nm (Table 6.1).

The similarity of the absorptions within each class of compounds suggest similar chromophores. Hence, the copper(II) ion of $Cu(aOeu)Br_2.2H_2O$ may have a square based pyramidal coordination sphere analogous to that of $[Cu(aOeu)Cl_2]$ with bromine atoms in place of chlorine atoms, the water molecules probably occurring as water of crystallization. Also the copper(II) ion of $Cu(aOeu)_2Cl_2$ and $Cu[aOeu]_2$ is likely to have a square planar or highly tetragonally distorted octahedral coordination sphere nearly identical to those found in $[Cu(aOeu)_2]Cl_2.2H_2O$ and $[Cu(aOeu)_2]Br_2$.

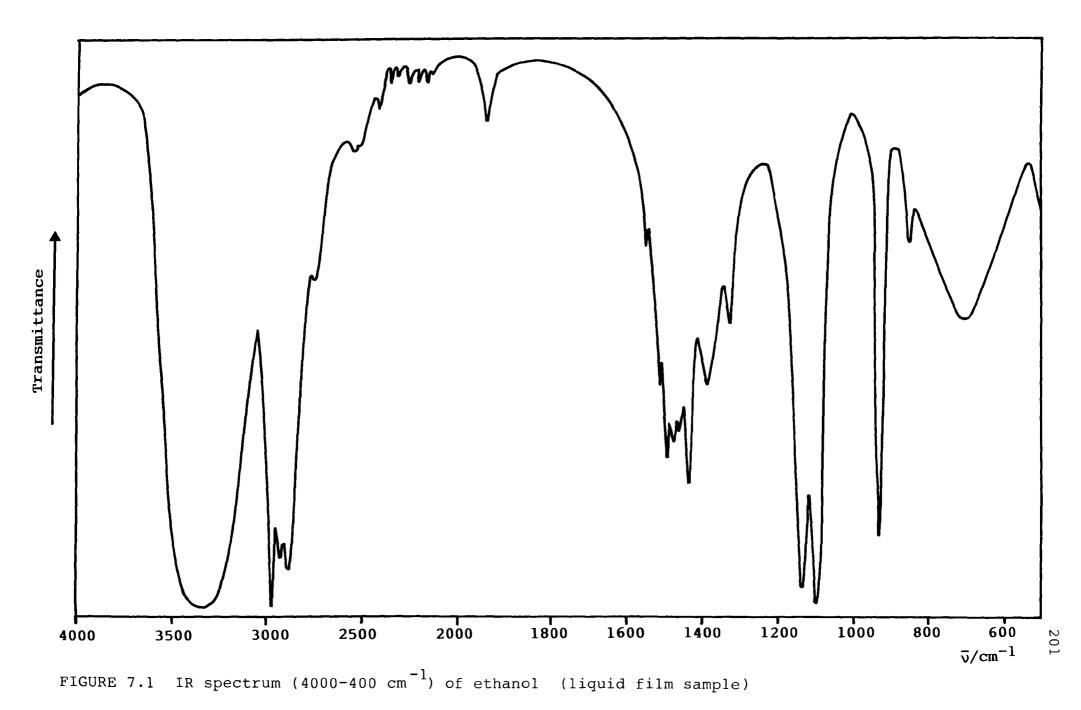
6.5 <u>The Bonding in Cu[aOeu]</u> and [aOeuH]Cl

The tautomeric form adopted by the aOeu ligand (6.5) parallels that of the biguanide ligand (6.6). Therefore, it is logical to assume that the tautomeric forms adopted by the anion [aOeu]⁻ and cation [aOeuH]⁺ will mirror those of their structurally characterised biguanide equivalents [bg]⁻ (6.7) and [bgH]⁺ (6.8). Hence the most probable tautomers for [aOeu]⁻ and [aOeuH]⁺ are forms 6.9 and 6.10 respectively.

Evidence for the former correlation may be derived from the similarity of the UV-visible spectra of $Cu[aOeu]_2$ and $Cu[bg]_2.2H_2O$. Both complexes exhibit a single broad absorption band centred at 480nm (for $Cu[aOeu]_2$) and at 500nm (for $Cu[bg]_2.2H_2O$) confirming the presence of CuN_4 chromophores (Section 5.3). This is entirely consistent with the $[aOeu]^-$ ligand adopting tautomeric form 6.9.

CHAPTER SEVEN

THE COPPER(II)CHLORIDE-1-CYANOGUANIDINE-ETHANOL SYSTEM: AN INFRARED SPECTROSCOPIC STUDY

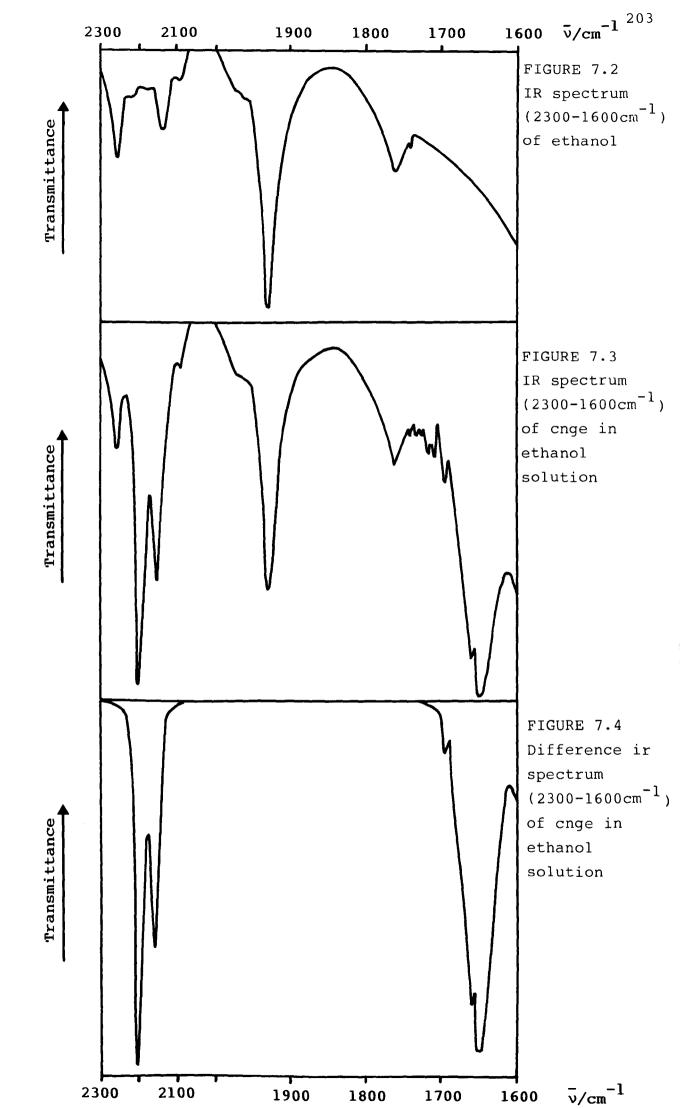

7.1 Introduction

X-ray diffraction studies of the complexes that can be isolated after various time periods and under different conditions from the copper(II)halide-cngeethanol system, have shown them to be copper(II)(aOeu) $_{n}X_{2}$ (where aOeu = 1-amidino-O-ethylurea; n = 1,2; X = Cl,Br) complexes. Copper(II)-cnge complexes were not isolated (Chapter Six). The nature of the species in solution and the reaction mechanisms for such a system have not been examined.

This Chapter describes the use of solution infrared spectroscopy in an investigation of the CuCl₂-cnge-EtOH system.

This technique was chosen by analogy to the solid state studies of copper(II)-cnge and copper(II)-aOeu complexes (Sections 2.6 and 6.4 respectively). Although the spectrum of the former complexes showed infrared to be effective in detecting coordination of cnge, those of the latter complexes gave only 'fingerprint' absorptions characteristic of each complex studied.

Unfortunately, ethanol is a poor solvent for infrared spectroscopy as it has many strong and broad absorptions in the 4000 to 400cm⁻¹ region (Figure 7.1, n.b. the spectrum is of a liquid film) which could mask 200



solute absorptions. However, the 2300 to 1600cm⁻¹ region is comparatively free of strong ethanol absorptions and offers a window in which solute absorptions may be observed. The solute bands can be enhanced by subtraction of the ethanol absorptions using computerised data handling techniques.

Figures 7.2, 7.3 and 7.4 illustrate the use of this technique for the enhancement of the absorptions due to cnge dissolved in ethanol. Figures 7.2 and 7.3 show the spectra (2300 to 1600 cm^{-1}) of ethanol and a solution of cnge in ethanol respectively. Differencing these two spectra the absorptions due to cnge alone are obtained (Figure 7.4).

The ethanol absorptions are much more intense in Figures 7.2 and 7.3 than in Figure 7.1 due to the use of an infrared solution cell. This ensured a sufficient amount of the solute in the spectrometer beam to be detected (the samples had relatively low solubilities) but gave a longer path length through the ethanol than for the liquid film (Figure 7.1).

The difference spectra of $[Cu(cnge)_2Cl_2(H_2O)_2]$ and $[Cu(aOeu)_2]Cl_2.2H_2O$ in ethanol solution have also been recorded (2300-1600cm⁻¹) and the changes in the difference spectrum of a 1:1 molar ratio of copper(II) chloride and cnge in ethanol have been monitored as a function of time.

7.2 Experimental

7.2.1 Infrared solution spectra

All infrared solution spectra $(2300-1600 \text{ cm}^{-1})$ were recorded using a Perkin Elmer PE680 grating instrument controlled by a PE3600 data station with PE 680 software.

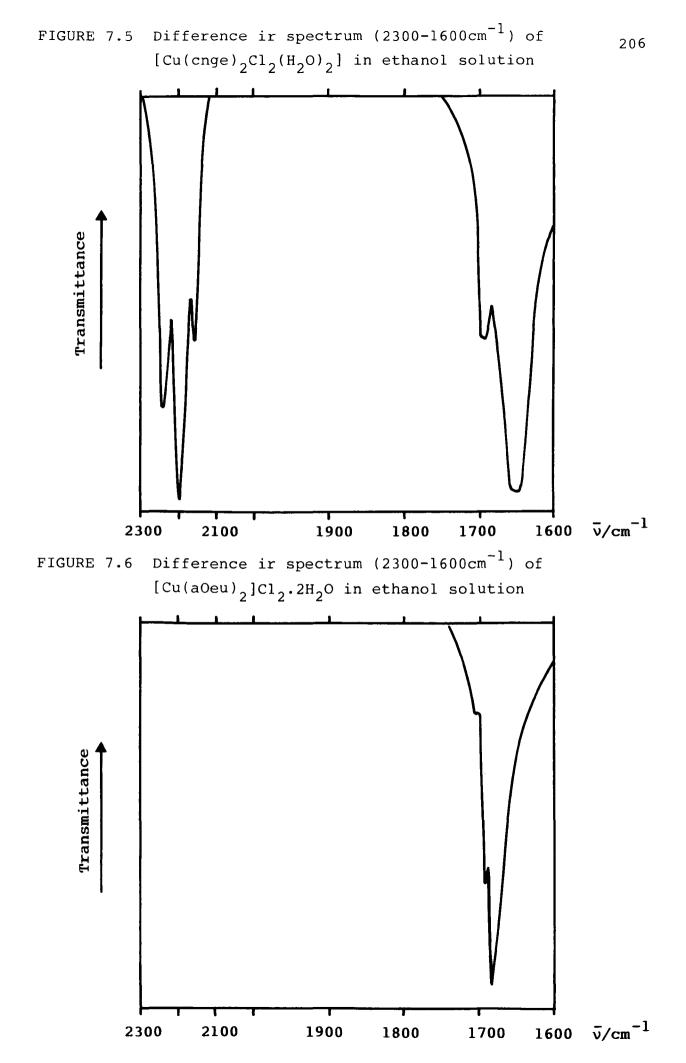
An infrared solution cell (NaCl windows, 0.1mm path length) was filled with samples of ethanol and ethanol solutions of cnge (100mM), $[Cu(cnge)_2Cl_2(H_2O)_2]$ (10mM; freshly prepared) and $[Cu(aOeu)_2]Cl_2.2H_2O$ (5mM) and their spectra recorded. Between samples the cell was flushed with ethanol and dried with a flow of nitrogen gas. Bands due to ethanol were subtracted from the spectra of cnge and the two complexes.

7.2.2 <u>Sequential infrared solution spectra</u>

Aliquots (2cm³) of ethanol solutions of copper(II) chloride (100mM) and cnge (100mM) were mixed and a sample of the resulting solution used to fill the infrared solution cell. Using an 'OBEY' programme (Appendix A) spectra were recorded at 2 hour intervals for 8 hours. The spectrum of ethanol was subtracted from each of these spectra. The experiment was carried out in duplicate.

7.3 Results and Discussion

7.3.1 Infrared solution spectra of cnge, [Cu(cnge)2-


$\underline{Cl}_2(\underline{H}_2\underline{O})_2$] and $[Cu(aOeu)_2]Cl_2.2\underline{H}_2O$ in ethanol

By analogy with solid state spectra, for cnge and its complexes, the bands expected to occur in the 2300-1600cm⁻¹ window are a doublet in the 2300-2000cm⁻¹ region and a single broad band in the 1700-1600cm⁻¹ region. The doublet has been attributed to a Fermi interaction between the asymmetric nitrile stretch $v_a[N(1)C(1)N(2)]$ and a combination containing, or an overtone of, an N-H vibration. For brevity this doublet will be defined as $v_a(NCN)^*$. The doublet is particularly sensitive to coordination to copper(II), coordination resulting in a hypsochromic shift of $v_a(NCN)^*$ (Section 2.6). The broad band has been assigned to the $\delta[NH_2]$ vibration and as such is less sensitive to coordination.

For copper(II)-aOeu complexes the solid state spectrum has not been rigorously assigned, however, absorptions characteristic of this ligand do occur in the 1700-1600cm⁻¹ region (Section 6.4).

Examination of the $2300-2000 \text{ cm}^{-1}$ region of the difference spectra of cnge, $[Cu(cnge)_2Cl_2(H_2O)_2]$ and $[Cu(aOeu)_2]Cl_2.2H_2O$ in ethanol solution (Figures 7.4, 7.5 and 7.6 respectively) shows that cnge exhibits two absorptions at 2200 and 2157 cm^{-1} whilst the cnge complex exhibits three bands at 2237, 2196 and 2155 cm^{-1} . The aOeu complex shows no strong absorptions in this region.

The three absorptions in the solution spectrum of the copper(II)-cnge complex can be assigned to the overlapping of the two v_a (NCN)* doublets of free and coordinated cnge. The lowest wavenumber absorption (2155cm⁻¹) and a proportion of the middle absorption (2196cm⁻¹) arise from free cnge v_a (NCN)* absorptions

(found at 2157 and 2200cm⁻¹) whilst the highest wavenumber absorptions (2236cm⁻¹) and a proportion of the middle absorption (2196cm⁻¹) arise from the v_a (NCN)* absorption of coordinated cnge.

These data necessarily imply that some form of dissociation of the copper(II) complex has occurred in ethanol to give an equilibrium between free and coordinated cnge. Some possible equilibria are shown below (ligands other than cnge are omitted for clarity).

 $Cu(cnge)_2^{2+}$ $\underbrace{EtOH}_{Cu(cnge)^{2+}}$ + cnge

 $Cu(cnge)^{2+}$ Cu^{2+} Cu^{2+} + cnge

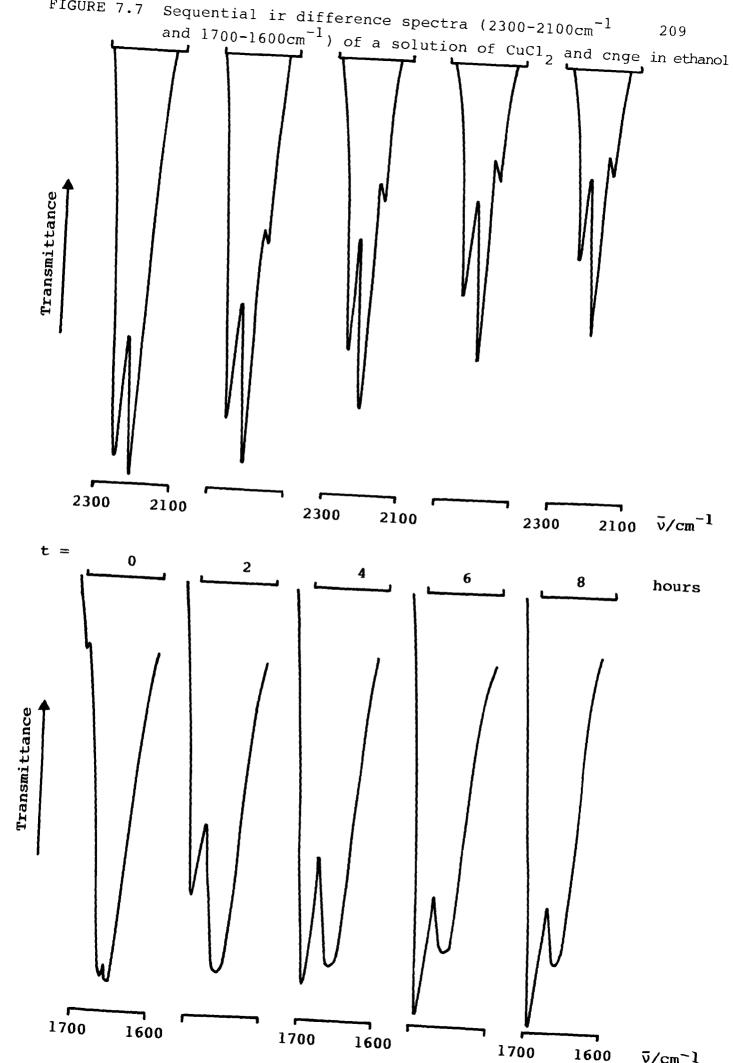
 $2Cu(cnge)^{2+} \qquad \underbrace{EtOH}_{Cu(cnge)^{2+} + Cu^{2+} + 3cnge}$

Although from these data it is not possible to distinguish between the various equilibria, it is clear that the dissociation is quite significant from the similar intensities of the 2236 and 2155cm⁻¹ absorptions. Unfortunately, quantitative analysis of the spectra cannot be affected as it is not possible to obtain an ethanol solution spectrum of coordinated cnge alone owing to the existence of the equilibria.

There are significant differences in the solution spectra of cnge, [Cu(cnge)₂Cl₂(H₂O)₂] and [Cu(aOeu)₂]Cl₂.2H₂O

in the 1700 to 1600 cm^{-1} region (Figures 7.4, 7.5 and 7.6 respectively).

Both cnge and its copper(II) complex exhibit bands at 1650cm⁻¹. That in the spectrum of the complex, however, is broader, an assumed manifestation of coordination to copper(II).


The spectrum of $[Cu(aOeu)_2]Cl_2.2H_2O$ exhibits only one band at 1683cm^{-1} . It is much sharper than those of cnge and its complex in this region and hence it would be possible to observe the formation of copper(II)-aOeu complexes from an ethanol solution containing copper(II) chloride and cnge.

7.3.2 <u>Sequential infrared solution spectra monitoring the</u> <u>copper(II) chloride-l-cyanoguanimidine-ethanol system</u>

Both the 2300 to 2500cm⁻¹ and the 1750 to 1600cm⁻¹ regions proved to be useful in monitoring changes in this system. The first region showed loss of the starting material whilst the second region showed the formation of the product.

Figure 7.7 shows the changes in the difference spectrum (2300 to 1600cm⁻¹) of a 1:1 molar ratio of copper(II) chloride and cnge in ethanol over an 8 hour period. Monitoring for longer periods was not possible owing to leakage of the reaction solution from the cell and precipitation of products.

Initially in the 2300 to 2000cm^{-1} region two strong absorptions (2238 and 2196 cm⁻¹) and a lower

intensity shoulder (~2155cm⁻¹) were observed. By comparison with the spectrum of $[Cu(cnge)_2Cl_2(H_2O)_2]$ in ethanol, it can be inferred that both free and coordinated cnge are present initially in the reaction mixture. Since there is not complete formation of coordinated cnge then free and coordinated cnge must be in equilibrium. The relative intensities of the 2238 and $2155cm^{-1}$ bands implies that coordinated cnge forms a significant proportion of the equilibrium mixture.

Over the period the reaction was monitored, all three of the absorptions in the 2300-2000cm⁻¹ region diminish in intensity inferring loss of both free and coordinated cnge. The lowest wavenumber absorption appears (within the experimental limits) to diminish at a slower rate than the other two absorptions, the shoulder eventually being resolved into a peak at 2155cm⁻¹.

The change in the relative intensities of the absorptions is also consistent with the presence of an equilibrium since loss of cnge from the system will result in an increase in the $[cnge]/[Cu(cnge)^{2+}]$ ratio $([X] \equiv concentration of X)$ according to either of the following equilibria.

$$Cu^{2+} + cnge \longrightarrow Cu(cnge)^{2+} \beta_1 = \frac{[Cu(cnge)^{2+}]}{[Cu^{2+}][cnge]}$$

$$Cu(cnge)^{2+} + cnge \longrightarrow Cu(cnge)_2^{2+} \beta_2 = \frac{[Cu(cnge)_2^{2+}]}{[Cu^{2+}][cnge]^2}$$

The increase in the [cnge]/[Cu(cnge)] ratio also precludes the copper(II) species acting solely as a catalyst; it must form part of the product. If this were not the case, increase in [Cu²⁺] would occur which must be countered by a decrease in the [cnge]/[Cu(cnge)²⁺] ratio.

Examination of the 1700 to 1600cm^{-1} region is also of value. Initially a broad absorption at 1650cm^{-1} is observed. As the reaction proceeds a relatively sharp band at 1690cm^{-1} grows, whilst the 1650cm^{-1} band decreases in intensity inferring formation of aOeu at the expense of cnge.

7.4 <u>Conclusions</u>

These results go someway to identify the species in a solution of copper(II) chloride and cnge in ethanol over a period of time. Initially free cnge and a copper(II)-cnge complex $\{Cu(cnge)^{2+} \text{ or } Cu(cnge)_2^{2+}\}$ are present. With time, ethanolysis occurs and copper(II) aOeu complexes are produced. Loss of both free and coordinated cnge is observed, although the differing rates of loss imply the presence of an equilibrium between free and coordinated cnge.

These results give a qualitative insight into the reaction of cnge with copper(II) chloride in ethanol. A more detailed quantitative analysis of the reaction based on the use of UV-visible spectroscopy has been attempted and this is presented in the next chapter.

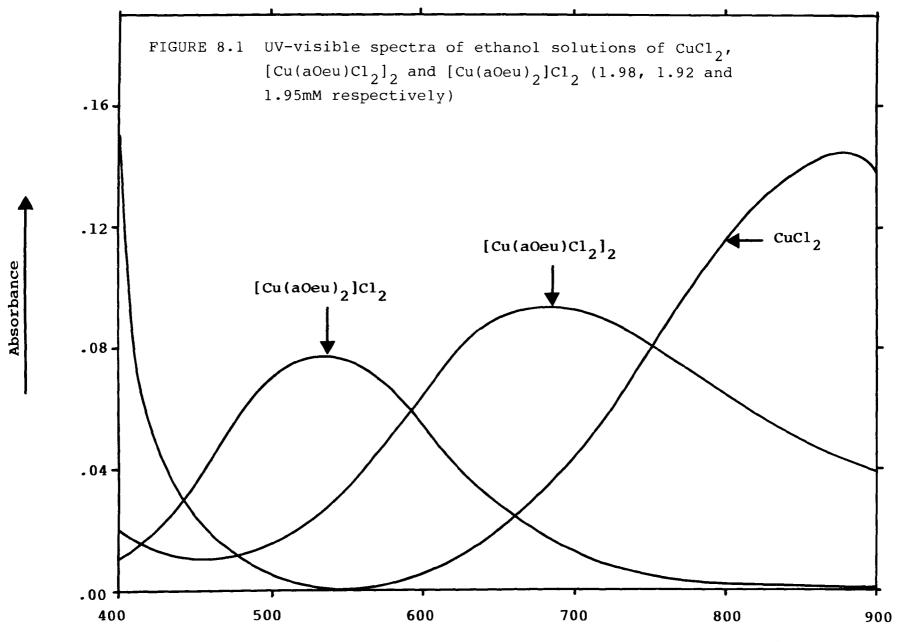
CHAPTER EIGHT

THE COPPER(II)CHLORIDE-1-CYANOGUANIDINE-ETHANOL SYSTEM: A UV-VISIBLE SPECTROSCOPIC STUDY

8.1 Introduction and Preliminary Experiments

The work described in the two previous chapters has given some understanding of the CuCl2-cnge-EtOH system. That in Chapter Six unequivocally identified the ligand produced by the ethanolysis of cnge as 1-amidino-Oethylurea (aOeu) and characterised the crystalline products as [Cu(aOeu)Cl₂]₂ and [Cu(aOeu)₂]Cl₂. The work described in Chapter Seven investigated the nature of the species in solution using infrared spectroscopy and demonstrated the formation of one or more copper(II)-cnge species initially and then their decay with subsequent formation of copper(II)-aOeu species. The infrared spectra (2300-1600cm⁻¹) were only sensitive to absorptions arising from ligand vibrations and could not be used to examine the coordination geometry of the copper(II) ion. Also, due to its qualitative nature, it was not possible to determine the stoichiometry of the complexes in solution nor the kinetics of their formation and decay.

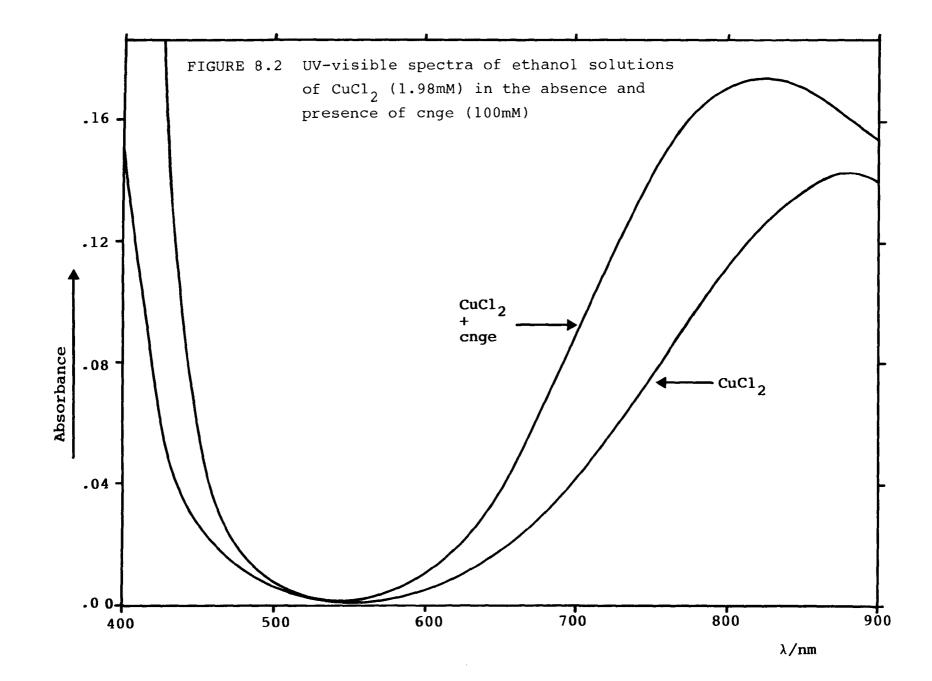
It was apparent that a more quantitative technique complementary to vibrational spectroscopy was required to study the CuCl₂-cnge-EtOH system in greater detail.


As noted in Chapter Six, the crystalline products that were isolated could be distinguished by their

distinctive colours, blue, for $[Cu(aOeu)Cl_2]_2$, and pink, for $[Cu(aOeu)_2]Cl_2$. The solid state visible spectra (400-900nm) of the complexes gave the wavelengths of their maximum absorption (λ_{max}) as 515 and 650nm respectively and illustrated that visible spectroscopy could be used to distinguish between the complexes.

The visible spectra of ethanol solutions of CuCl₂, $[Cu(aOeu)Cl_2]_2$ and $[Cu(aOeu)_2]Cl_2$, all at 2.0mM, are shown in Figure 8.1. Spectra at low concentrations are illustrated since $[Cu(aOeu)Cl_2]_2$ was not particularly soluble. All three spectra exhibit a single broad absorption but with decreasing λ_{max} and ε_{max} ($\varepsilon_{max} =$ molar absorptivity at λ_{max}) values (Table 8.1).

Although all three absorptions overlap to varying extents, it is possible to distinguish between the complexes via their spectra.


An ethanol solution of cnge gives no absorption in the visible region. However, addition of cnge in ethanol to CuCl_2 or $[\operatorname{Cu}(a\operatorname{Oeu})\operatorname{Cl}_2]_2$ in ethanol immediately shifted the λ_{\max} value from 890nm to 820nm or 680nm to 650nm respectively (Table 8.1). The minimum values of λ_{\max} were only obtained when the cnge was in great excess. Addition of cnge in ethanol to $[\operatorname{Cu}(a\operatorname{Oeu})_2]\operatorname{Cl}_2$ in ethanol gave no visible change (Table 8.1). Figures 8.2 and 8.3 show the two extremes of the spectra for the addition of cnge to CuCl_2 and $[\operatorname{Cu}(a\operatorname{Oeu})\operatorname{Cl}_2]_2$ respectively. These observations indicate the presence of equilibria in solution in which cnge forms complexes with both CuCl_2

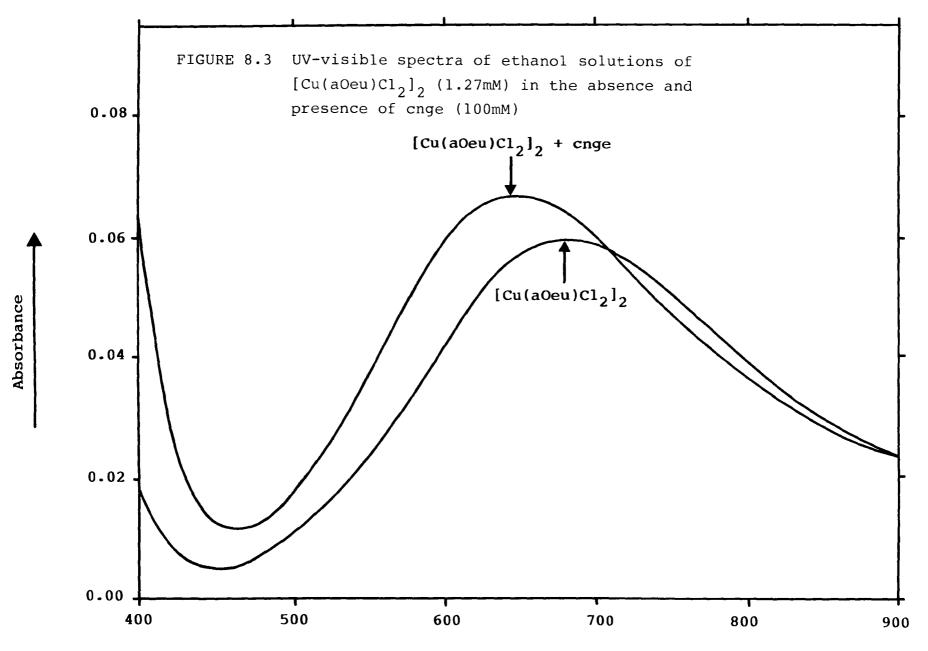
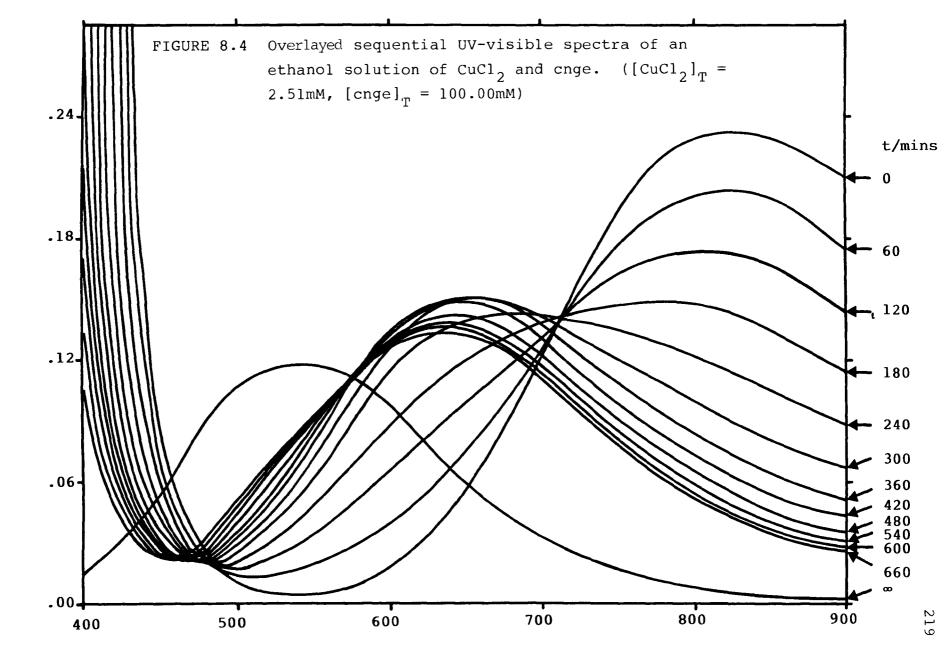


TABLE 8.1	Spectroscopic	Data	for	CuCl ₂ ,	[Cu(aOeu)Cl ₂] ₂	and	$[Cu(aOeu)_2]Cl_2$
-----------	---------------	------	-----	---------------------	---	-----	--------------------

	Solid Phase	Ethanc	Ethanol Solution Containing Excess cnge λ _{max} /nm ε _{max} /lmol ⁻¹ cm ⁻¹		
	λ_{max}/nm	^max/IIII	$\epsilon_{max}/lmol^{-1}cm^{-1}$	λ _{max} /nm	
CuCl ₂	>900	880	71.5	820	90.0
$[Cu(aOeu)Cl_2]_2$	650	680	47.0	650	54.5
[Cu(aOeu) ₂]Cl ₂	515	540	40.0	540	40.0



and [Cu(aOeu)Cl₂]₂ but not [Cu(aOeu)₂]Cl₂. The equilibrium involving CuCl₂ and cnge is consistent with the results of the infrared study described in Chapter Seven.

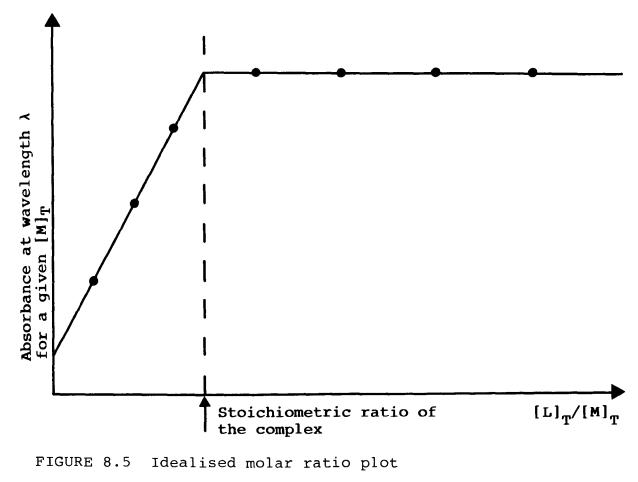
The spectrum of ${\rm CuCl}_2$ and enge in ethanol only remained constant for time periods which varied with the concentrations of the two solutes. For all the concentrations studied, the absorbance and $\lambda_{\rm max}$ gradually decreased in value from 820nm to give a meta stable $\lambda_{\rm max}$ at 650nm which eventually decreased to a final value of 540nm. Figure 8.4 illustrates this behaviour and shows the overlayed sequential UV-visible spectra of an ethanol solution initially containing copper(II) chloride (2.5mM) and enge (100mM). Spectra were recorded at 1 hour intervals for 16 hours. Further monitoring of the spectrum resulted in the lines becoming too close together to be resolved and these lines are not shown for clarity. Eventually, however, a peak at 540nm was observed and no further changes in the spectrum occurred.

The similarity of the intermediate and final spectra to those of ethanol solutions of [Cu(aOeu)Cl₂]₂ and [Cu(aOeu)₂]Cl₂ containing cnge, suggested that a sequence of reactions was being observed in which ethanolysis of cnge occurred in the presence of CuCl₂ giving first mono- and then bis-aOeu-copper(II) complexes in ethanol solution.

Hence, after the success of these preliminary experiments it was decided to attempt to quantify the

λ/nm

Absorbance


equilibria and reactions observed using visible spectroscopy. The study has been divided into three sections. The first two sections describe the investigation of the initial equilibrium on addition of cnge to CuCl₂ in ethanol, whilst the third section examines the kinetics and mechanism of the subsequent ethanolysis reactions.

8.2 <u>The Initial Equilibria Present in the CuCl₂-cnge-</u> <u>EtOH System: The Stoichiometry of the Solution</u> <u>Species</u>

8.2.1 The molar ratio method⁶⁷

The simplest approach to examine the nature of the species using UV-visible spectroscopy is the Molar Ratio Method. The absorbance (A), at a suitable wavelength, of a series of solutions of constant metal concentration $([M]_T)$ containing varying concentrations of ligand $([L]_T)$ is measured and a plot of A against $[L]_T/[M]_T$ constructed. Ideally, two intersecting straight lines should be obtained with the point of intersection on interpolation to the $[L]_T/[M]_T$ axis giving the stoichiometric ratio of ligand to metal occurring in the complex (Figure 8.5). However, this method is valid only if the metal and ligand form only one complex and the stability constant for this complex is sufficiently large so as to produce a ckar-cut point of intersection.

Figure 8.6 shows the molar ratio plot obtained for various ethanol solutions of CuCl₂ and cnge. The

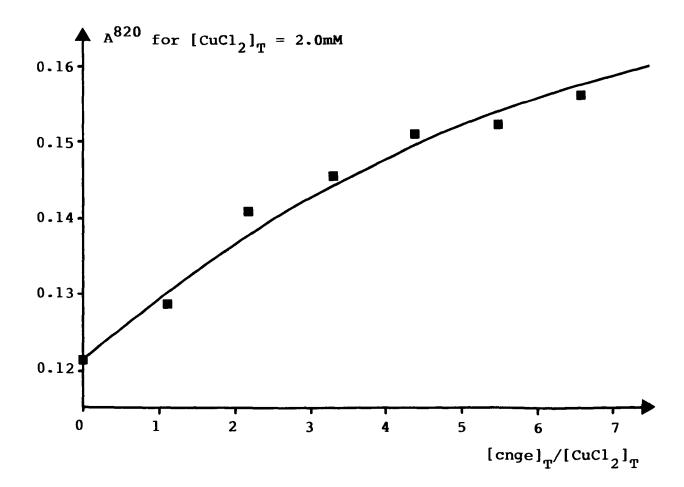


FIGURE 8.6 Molar ratio plot for the CuCl₂-cnge-EtOH system

absorbance values at 820nm are taken from experiment 8.5 (see Section 8.3). A curve is obtained for the plot rather than two intersecting lines, which suggests that the conditions for the molar ratio method are not satisfied by this system. Hence the results imply the formation of one or more complexes with low values for their stability constants. This work verifies the observations in the preliminary experiments that only large values of $[cnge]_T/[CuCl_2]_T$ gave the lowest λ_{max} value (820nm) and the greatest increase in absorbance for a particular $[CuCl_2]_T$.

Although the molar ratio method has been shown to be unsuitable for this system, it has been possible to demonstrate that only one or more weak complexes formed in solution. Further investigation of the initial equilibrium has been accomplished using a more suitable technique, the Method of Continuous Variation more commonly known as Job's Method.

8.2.2 Job's Method⁶⁷

Consider the formation of complex ML_n from metal M and n moles of ligand L with overall stability constant β_n

$$M + nL \xrightarrow{\beta_n} ML_n$$

A series of solutions can be prepared such that the sum of total metal and total ligand concentrations $([M]_T$ and $[L]_T$ respectively) is constant (C). Hence

$$[M]_{T} + [L_{T}] = C \qquad (1)$$

Three mass balance equations may now be written.

$$[M] = C(1-x) - [ML_n]$$
(2)

$$[L] = C_{x} - n[ML_{n}]$$

$$(3)$$

$$[ML_n] = \beta_n[M][L]^n \tag{4}$$

where x is the mole fraction of the ligand.

Taking first differentials of equations 3 and 4, followed by elimination of [M] [L] and $[ML_n]$, yields a value for x, x_{max} , which is dependent only on n

i.e.
$$n = \frac{x_{max}}{1 - x_{max}}$$
(5)

Now at a given wavelength λ for the reaction

$$A_{obs} = \epsilon_{M}[M] + \epsilon_{L}[L] + \epsilon_{ML_{n}}[ML_{n}]$$
(6)

where A_{obs} is the observed absorbance per unit path length $\epsilon_{M'} \epsilon_{L'} \epsilon_{ML_n}$ are the molar absorptivities of the metal, ligand and complex respectively.

The theoretical absorbance due to the ligand and metal alone if there were no reaction between them can be written as A_{theo} and therefore,

$$A_{\text{theo}} = \epsilon_{M}[M] + \epsilon_{L}[L]$$
(7)

Using equations 2 and 3 the following is obtained

$$A_{obs} = \epsilon_{M}C(1-x) - \epsilon_{M}C[ML_{n}] + \epsilon_{L}Cx - \epsilon_{L}n[ML_{n}] + \epsilon_{ML_{n}}[ML_{n}]$$
(8)

$$A_{\text{theo}} = \varepsilon_{M} C(1-x) + \varepsilon_{L} Cx$$
(9)

Hence, a corrected absorbance function Y_{calc} , can be defined as the difference between A_{obs} and A_{theo} . Subtracting equation 9 from equation 8

$$Y_{calc} = A_{obs} - A_{theo} = \varepsilon_{ML} [ML_n] - \varepsilon_M [ML_n] - n\varepsilon_L [ML_n]$$
(10)

Thus, Y_{calc} is independent of C and a function of $[ML_n]$ only.

If the ligand does not absorb in the region of interest, as has been found for cnge, equation 10 becomes

$$Y_{calc} = \varepsilon_{ML}[ML_n] - \varepsilon_{M}[ML_n]$$
(11)

Hence, if $\epsilon_{ML} > \epsilon_{M}$ then when $[ML_n]$ is a maximum Y_{calc} will be at a maximum.

Thus, if the Y_{calc} values of a set of solutions with $[M_T]+[L_T]=C$ at a given wavelength are plotted against mole fraction of ligand, x, a plot such as Figure 8.7 will result. Interpolation of the maximum Y_{calc} value onto the x-axis will give a value x_{max} . If x_{max} was 0.5 or 0.67 or 0.75 then, from equation 5, these values would correspond to values of n of 1 or 2 or 3 respectively and hence complex stoichiometries of 1:1, 1:2 or 1:3 respectively.

Experimentally A_{obs} is measured and A_{theo} obtained from $A_{theo} = \epsilon_M C(1-x)$ (from equation 9 for non-absorbing L) where $\epsilon_M C$ is readily available since when x = 0

$$A_{obs} = \epsilon_M C$$

and hence $A_{\text{theo}} = A_{\text{obs}}^{x=0}(1-x)$

However, there are a number of inherent assumptions made in Job's Method. These are that:

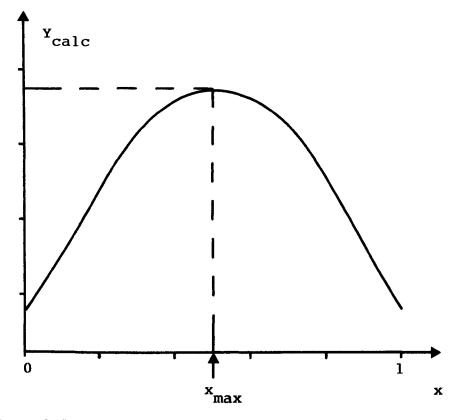


FIGURE 8.7 Idealised Job's plot

- (a) The reactants do not participate in other equilibria in addition to the reaction specified.
- (b) The activity coefficients are effectively constant.
- (c) There is only one complex formed.

For the system studied, the first two conditions are assumed to be satisfied, but it seems unlikely that the latter is obeyed in the light of the molar ratio plot. However, if data are obtained at several wavelengths and a Job's plot constructed at each wavelength, then x_{max} may be found to be wavelength

dependent. If so, then these x_{max} values would give the stoichiometries of the different complexes in solution.

8.2.3 Experimental

(i) Chemicals and Apparatus

Analar grade ethanol and copper(II) chloride (predried overnight at 110°C) and twice recrystallised cnge were used. Stock solutions of CuCl, and cnge were prepared several days prior to the experiments to allow for complete dissolution. This was particularly necessary for the cnge solutions. During solution make up and prior to an experiment all solutions were thermostatted to 20°C ±0.1°C. Aliquots of solutions were measured using grade A burettes (10ml volume, accuracy 0.02ml). All spectrophotometric measurements were made in stoppered quartz solution cells (10mm path length) using a Perkin Elmer Lambda 5 spectrometer fitted with a custom made sample and reference cell holder that was thermostatted to 20°C +0.1°C. The cell holder (Figure 8.8) was manufactured from a copper block, milled to allow accurate location of, and the passage of the light beams through, the solution cells. The block was drilled to allow for internal circulation of the coolant (water/antifreeze 1:1) throughout the holder. This system ensured identical constant temperatures for both sample and reference cells.

(ii) <u>Procedure</u>

Sample and reference cells were filled with ethanol and placed in the thermostatted cell holder of the spectrometer. The cells were allowed to equilibrate to

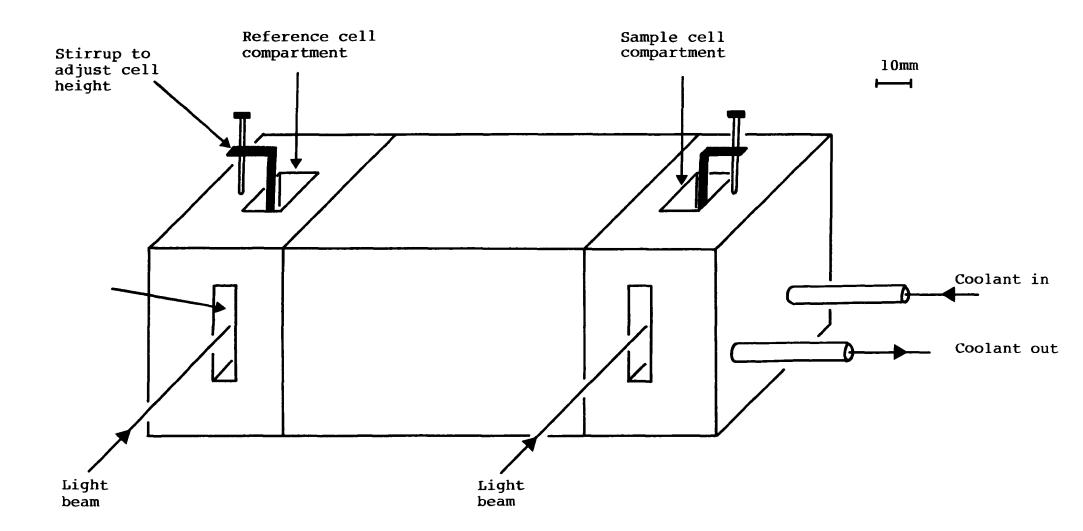


FIGURE 8.8 The thermostatted sample and reference cell holder

constant temperature and then the spectrometer was background corrected in the range 800-900nm. The sample cell was emptied and dried in a stream of nitrogen gas. Aliquots of equimolar CuCl₂ and cnge ethanol solutions (A and Bml respectively) were mixed and the resulting solution transferred to the sample cell in the spectrometer. Spectra were recorded every two minutes in the range 800-900nm until a constant spectrum was obtained. The sample cell was then rinsed with ethanol and dried with nitrogen as before. The procedure was then repeated using values of A and B until the range mole fraction cnge (x cnge) 0.0 to 1.0 was completed. The complete experiment was performed four times. Experiments 8.1 and 8.2 used stock solutions with $[CuCl_2]_{\pi} = [cnge]_{\pi} =$ 12.05mM. Experiments 8.3 and 8.4 used stock solutions with $[CuCl_2]_{\pi} = [cnge]_{\pi} = 12.05 \text{mM}$ and 25.00 mM respectively, however, values of A and B in these experiments were concentrated on the region x cnge 0.5-0.75. Values of A and B for all the experiments are given in Appendix A. For each experiment, tables of data were collated from the spectra to give absorbance values at 800, 820, 840, 860 and 880nm which correlated with x cnge values. Values of Y calc were then calculated and plotted against x cnge values.

8.2.4 <u>Results and Discussion</u>

Absorbance data and the corresponding Y_{calc} values at all wavelengths and x_{cnge} studied are collated for all experiments in Appendix A. The Job plots at all the wavelengths studied in Experiment 8.1 are shown in Figure 8.9. The plots for Experiment 8.2 are shown in part in Figure 8.10a.

The curves for Experiments 8.1 and 8.2 all follow the same pattern with the maximum value of Y calc at a particular x decreasing with increasing wavelength. This is in line with Figure 8.2 since the greatest difference in absorbance between the spectra of ethanol solutions of CuCl₂ and CuCl₂ with excess cnge occurs close to 800nm. All the curves pass through their maximum value of Y calc at values of x cnge between 0.5 and 0.7 and hence x_{max} lies in this range. This implies the formation of complexes with a 1:1 or 1:2 Cu:cnge ratio. However, it is not possible to distinguish between these two stoichiometries at different wavelengths. To try to resolve this problem experiments 8.3 and 8.4 were performed, concentrating on the x_{cnge} region 0.5 to 0.7. The Job plots at the maximum and minimum wavelengths studied for these experiments are shown in Figures 8.10b and c. The other plots are omitted for clarity. Although there is slight scatter in the data, all the curves follow the same pattern as before and maximise Y_{calc} at between 0.5 and 0.7 cnge.

Unfortunately, it has not been possible to observe different x_{max} values at different wavelengths and hence determine unequivocally the number and stoichiometry of the complexes in solution. This is presumably a consequence of very small stability constant(s) for the

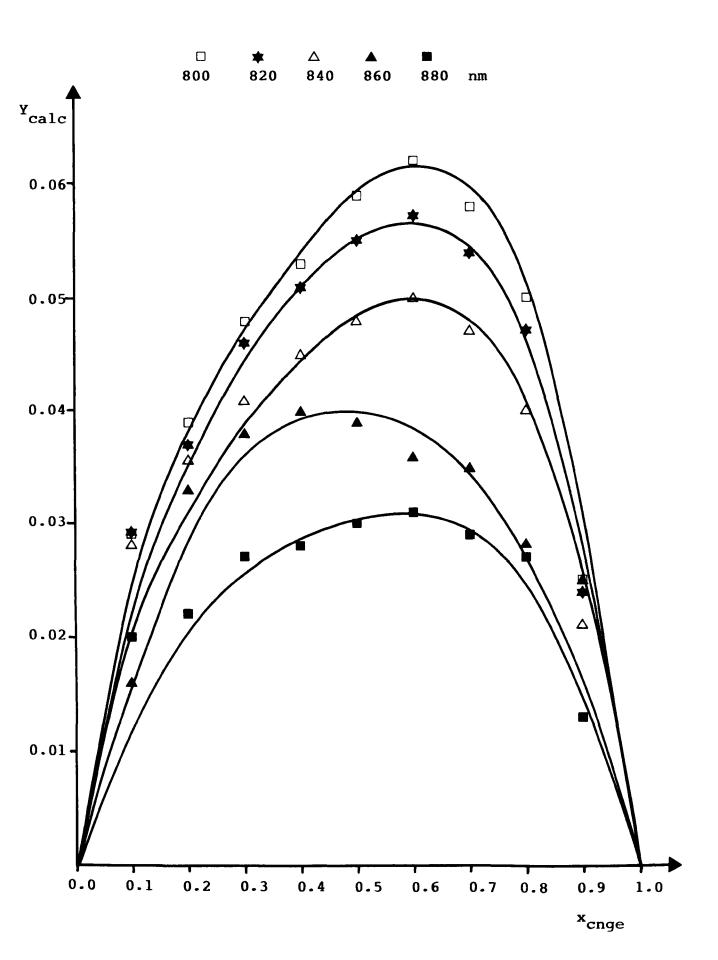
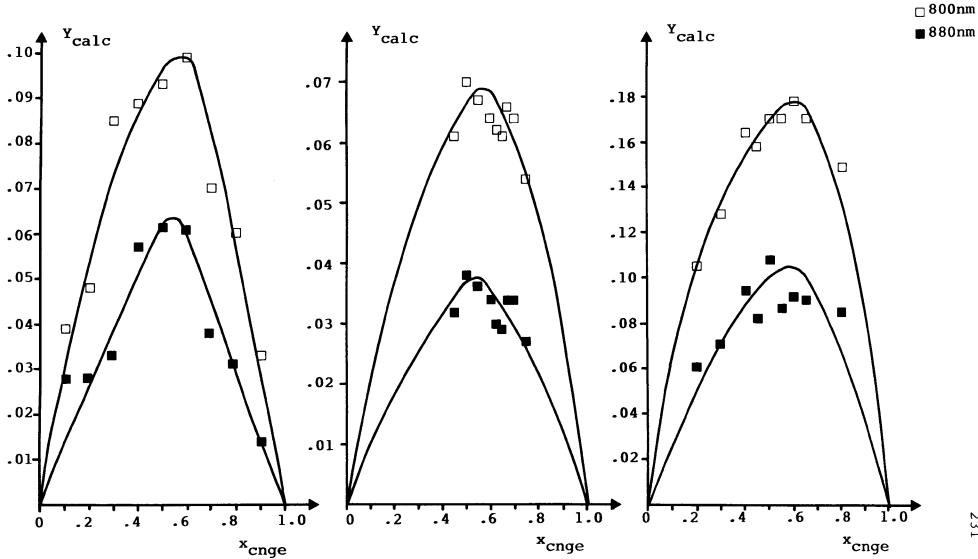



FIGURE 8.10c Jobs plots FIGURE 8.10b Jobs plots FIGURE 8.10a Jobs plots for Experiment 8.4 for Experiment 8.3 for Experiment 8.2

complex(es) and the broad overlapping bands for both the metal and the complex(es) in solution. Both will give rise to only relatively small differences between the spectra of the metal and the complex(es) in solution over a limited range of wavelengths even at x_{max} when the difference should be greatest. However, this work has demonstrated the presence of either one or both of the complexes with Cu:cnge ratios of 1:1 or 1:2. The presence of a 1:2 type complex is also consistent with the copper(II)-cnge complexes that have been studied structurally (Chapter Two). Apart from one complex in which the copper(II) atom was coordinated by I-(2-amino cthyl)

biguanide and cnge, all the complexes have shown two trans coordinated cnge ligands. However, it must be noted that none of these complexes were isolated from ethanol solutions.

Having demonstrated the presence of a mono- and/or bis-cnge-copper(II) complex in solution, it was then attempted to further quantify the equilibria by assuming the stepwise formation of these complexes and then calculating their stability constants.

8.3 <u>The Initial Equilibria Present in the CuCl₂-cnge-</u> <u>EtOH System: the Stability of the Species in</u> <u>Solution</u>

8.3.1 Introduction

In this work the stability constants have been evaluated using the Method of Corresponding Solutions.⁶⁷

This method relies upon the relationship between the stability constants and a secondary concentration variable the complex formation function (\bar{n} ; defined below). In the following sub-sections, firstly \bar{n} is related to the stability constants, then it is shown how \bar{n} can be calculated from spectrophotometric data and finally the experimental data is given.

8.3.2 The Relationship Between the Stability Constants and the Complex Formation Function

Consider the metal ion M and the ligand L interacting in solution. The equilibria present are

$$M + L \xrightarrow{K_1} ML$$

$$ML + L \xrightarrow{K_2} ML_2$$

$$ML_{n-1} + L \xrightarrow{K_n} ML_n$$

and where

$$K_{n} = \frac{[ML_{n}]}{[ML_{n-1}][L]}$$
(12)

and

$$\beta_{n} = \frac{[ML_{n}]}{[M][L]^{n}}$$
(13)

The maximum value of n (N) will be a function of both the maximum coordination number of the metal ion and the multidentism of the ligand. Writing mass balance

equations for the total metal and ligand concentrations ([M]_T and [L]_T respectively):-

$$[M]_{T} = [M] + [ML] + [ML_{2}] + \dots [ML_{n}]$$
(14)

$$[L]_{T} = [L] + [ML] + 2[ML_{2}] + \dots n[ML_{n}]$$
(15)

A function, \overline{n} , defined as the average number of ligands, L, attached to the metal M may be written

$$\bar{n} = \frac{\text{total bound ligand}}{\text{total metal}} = \frac{[L]_{T} - [L]}{[M]_{T}}$$
(16)

Substituting equations 14 and 15 in 16 gives

$$\bar{n} = \frac{[ML] + 2[ML_2] + \cdots n[ML_n]}{[M] + [ML] + [ML_2] + \cdots [ML_n]}$$
(17)

Now substituting equation 12 in 17 gives

$$\bar{n} = \frac{K_1[M][L] + 2K_1K_2[M][L]^2 + \dots + nK_1K_2 \dots K_n[M][L]^n}{[M] + K_1[M][L] + K_1K_2[M][L]^2 + \dots + K_1K_2 \dots K_n[M][L]^n}$$
(18)

Dividing through by [M] gives

$$\bar{n} = \frac{K_1[L] + 2K_1K_2[L]^2 + \dots + nK_1K_2 \dots K_n[L]^n}{1 + K_1[L] + K_1K_2[L]^2 + \dots + K_1K_2 \dots K_n[L]^n}$$
(19)

Returning to equation 16 and rearranging gives

$$[L_{\mathfrak{m}}] = \overline{\mathfrak{n}}[M]_{\mathfrak{m}} + [L] \tag{20}$$

so that if a series of solutions could be prepared in which \bar{n} and [L] were constant although unknown, a plot of $[L_T]$ against [M]_T would be a staight line of slope \bar{n} and

intercept [L]. Such a series of solutions are known as 'Corresponding Solutions'. Since \bar{n} is shown in equation 19 to be a function of [L] only it is apparent that if it could be established that [L] was constant, albeit unknown, for a set of solutions \bar{n} would also necessarily be constant. Thus, if a series of solutions of different [M]_T and [L]_T were prepared, a parameter measured (e.g. absorbance of a suitable wavelength) then the total metal and total ligand concentrations of strictly corresponding solutions could be determined by interpolation and plots of [L]_T against [M]_T would give \bar{n} and [L] values. These values could be used to determine stability constants when N=1 or 2 by rearranging equation19.

Consider the case when N=1 then equation 19 becomes

$$\bar{n} = \frac{K_1[L]}{1+K_1[L]}$$
(21)

which can be rearranged to give

$$\frac{\overline{n}}{(1-\overline{n})} = K_{1}[L]$$
(22)

Thus, a plot of $\overline{n}/(1-\overline{n})$ with [L] will give a linear plot of gradient K_1 .

Now, if N=2 then equation 19 can be rearranged to give

$$\bar{n} = (1-\bar{n})[L]K_1 + (2-\bar{n})[L]K_1K_2$$
(23)

which, on division by \overline{n} and further rearrangement, gives

$$\frac{(1-\bar{n})}{(2-\bar{n})[L]} = \frac{\bar{n}}{(2-\bar{n})[L]^2} \qquad \frac{1}{K_1} - K_2$$
(24)

Thus, if the left hand side of equation 24 was plotted against $\bar{n}/(2-\bar{n})[L]^2$ then a straight line of gradient $1/K_1$ and ordinate intercept $-K_2$ is obtained. Hence, the relationship between \bar{n} , [L] and the stability constants is clearly demonstrated.

8.2.3 <u>The Calculation of n using the Method of</u> <u>Corresponding Solutions</u>

For the general equilibria defined earlier $\epsilon_{\mbox{obs}}$ can be defined such that

$$\varepsilon_{\rm obs} = \frac{A_{\rm obs} - \varepsilon_{\rm L} [L]_{\rm T}}{[M]_{\rm T}}$$
(25)

The absorbance at a specific wavelength A_{obs} is given by

$$A_{obs} = \epsilon_{M}[M] + \left\{ \sum_{i=1}^{i=n} (\epsilon_{i}[ML_{i}]) \right\} + \epsilon_{L}[L]$$
(26)

where ϵ_i is the molar absorptivity of ML_i at a specific wavelength. Substituting equation 26 in 25 gives

$$\varepsilon_{\text{obs}} = \frac{\varepsilon_{M}[M] + \left\{ \sum_{i=1}^{i=n} (\varepsilon_{i}[ML_{i}]) \right\} - \varepsilon_{L}([L]_{T} - [L])}{[M]_{T}}$$
(27)

and hence from equation 15

$$\varepsilon_{\text{obs}} = \frac{\varepsilon_{M}[M] + \sum_{i=1}^{i=n} (\varepsilon_{i}[ML_{i}]) - \sum_{i=1}^{i=n} (\varepsilon_{L}i([ML_{i}]^{i}))}{[M]_{T}}$$
(28)

Expanding using equation 13 and combining terms

$$\varepsilon_{obs} = \frac{\varepsilon_{M}[M] + \sum_{i=1}^{i=n} (\varepsilon_{i}\beta_{i}[M][L]^{i} - \varepsilon_{L}\beta_{i}[M][L]^{i})}{[M]_{T}}$$
(29)

Dividing through by [M] gives

$$\varepsilon_{\text{obs}} = \frac{\left[\sum_{M=1}^{i=n} (\varepsilon_{i} - \varepsilon_{L}) \beta_{i} \right]^{i}}{\left[M \right]_{T} / \left[M \right]}$$
(30)

and from equations 14 and 13 this finally becomes

$$\varepsilon_{obs} = \frac{ \sum_{M=i=1}^{i=n} (\varepsilon_{i} - \varepsilon_{L}) \beta_{i} [L]^{i}}{\sum_{\substack{i=1\\i=1}}^{i=n} (31)}$$

Hence $\varepsilon_{\rm obs}$ is a function of [L] only, an analogous situation to \bar{n} described earlier. If $\varepsilon_{\rm obs}$ is calculated from the absorbance of solutions of different [L]_T and [M]_T values using equation 25, it follows that solutions having the same $\varepsilon_{\rm obs}$ value must have the same [L] and \bar{n} values. Thus, the solutions are said to be 'Corresponding Solutions'.

Thus, in practice A_{obs} is measured for a series of solutions of constant $[M]_T$ and increasing $[L]_T \cdot \epsilon_{obs}$ is calculated. The experiment is then repeated at different $[M]_T$ values. A series of graphs of ϵ_{obs} against $[L]_T$ are plotted as illustrated in Figure 8.11. Sets of values of

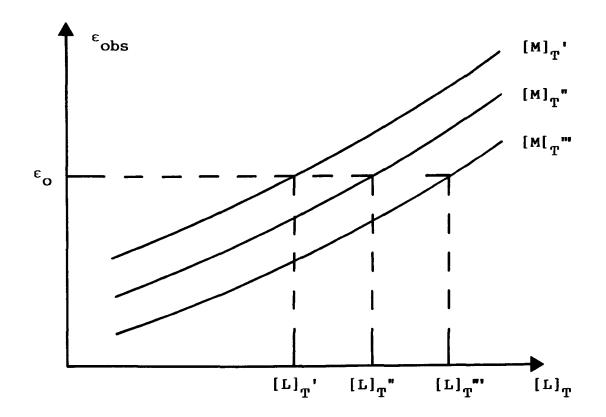


FIGURE 8.12 Corresponding solutions: Plot of [L]_T against [M]_T a series of solutions having the same value of ϵ_{obs} (ϵ_{o} from Figure 8.11)

 $[M]_{T}$ and the corresponding $[L]_{T}$ are then determined for a series of ε_{obs} values. Linear plots at each ε_{obs} using equation 20, illustrated in Figure 8.12, then gives a series of \bar{n} and [L] values from which stability constants can be calculated from a linear plot using equation 22 or 24 as appropriate.

8.3.4 Experimental

(i) <u>Chemicals and Apparatus</u>

These are described in Section 8.2.3(i).

(ii) <u>Procedure</u>

This is similar to that described in Section 8.2.3(ii), however, for this experiment (experiment 8.5) it was necessary to prepare solutions at several concentrations of $CuCl_2$ ($[CuCl_2]_T$) containing a range of cnge concentrations ($[cnge]_T$) for each $[CuCl_2]_T$. Thus it was necessary to mix aliquots of $CuCl_2$ and cnge solutions (A and Bml respectively) with one of ethanol (Cml) to obtain a sufficiently large range of concentrations. (Values of A, B and C are given in Appendix A.) The concentrations of the stock solutions of $CuCl_2$ and cnge were 36.03mM and 39.64mM respectively.

In practice solutions with a fixed $[cnge]_T$ containing various $[CuCl_2]_T$ were prepared and their absorbance at 820nm measured. The value of $[cnge]_T$ was then changed and the set of measurements repeated. For each set of measurements the spectrum of a solution of CuCl₂ alone (9.01mM) was measured to act as internal standard. The range of concentrations studied was $[cnge]_{T}$ at 0.00, 2.20, 4.40, 6.61, 8.81, 11.01 and 13.21mM with $[CuCl_{2}]_{T}$ at 2.00, 4.00, 6.01, 9.01, 12.01 and 16.01mM for each $[cnge]_{T}$.

A further experiment (experiment 8.6) was also performed in which the stock $CuCl_2$ solution was diluted with ethanol to give several solutions of varying $[CuCl_2]_T$ in the range 2 to 20mM and their absorbancies at 820 and 880nm measured using the procedure described earlier.

8.3.5 <u>Results and Discussion</u>

The raw absorbance data at 820nm are collated together with the calculated ϵ_{obs} values in Appendix A. The data shows marginal scatter but are self consistent within sets of measurement at each [cnge]_T. The scatter is most pronounced for the data at [cnge]_T = 2.20 and 6.61mM.

Over the concentration range employed the CuCl₂ solutions were shown to obey the Beer Lambert law

i.e. $A = cl\epsilon$

where c = concentration

l = path length

A and $\boldsymbol{\varepsilon}$ as defined earlier.

This is illustrated in Figure 8.13 (data from experiment 8.6; collated in Appendix A). Hence the data at $[cnge]_T$ = 2.20 and 6.61mM have been normalised to the data for the other $[cnge]_T$ values.

FIGURE 8.13 Graphs of the absorbance at 880 and 820nm against the concentration of $CuCl_2$ in ethanol solution ($[CuCl_2]_T$)

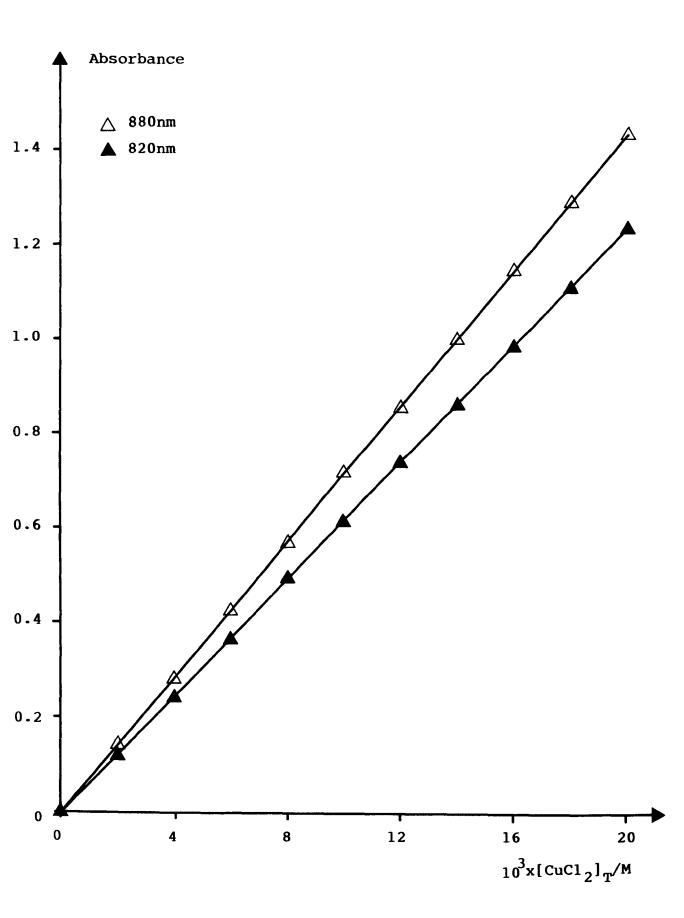


Figure 8.14 illustrates the plot of ε_{obs} at 820nm against $[cnge]_{T}$ for various $[CuCl_{2}]_{T}$. Curves have been visually fitted to the data. Sets of values of $[CuCl_{2}]_{T}$ and $[cnge]_{T}$ have been determined for ε_{obs} at the values 66, 67, 68, 69 and 70 $\mathrm{lmol}^{-1}\mathrm{cm}^{-1}$ (data in Appendix A). The plots of $[cnge]_{T}$ against $[CuCl_{2}]_{T}$ are illustrated in Figure 8.15. In agreement with equation 20 they are linear (corr.coeff's in the range 0.996 to 0.999), the intercepts on the $[cnge]_{T}$ axis and the gradients of the lines giving values of \overline{n} and [cnge] (data in Appendix A).

Using these values of \bar{n} and [cnge] the stability constants for the two cases when N=1 and N=2 have been determined; in Figure 8.16 $\bar{n}(1-n)^{-1}$ is plotted against [cnge], whilst in Figure 8.17 $(1-\bar{n})(2-\bar{n})^{-1}$ [cnge]⁻¹ is plotted against $\bar{n}(2-\bar{n})^{-1}$ [cnge]⁻².

For both analyses the points generated for ε_{obs} equal to 66 and 69 $\text{lmol}^{-1}\text{cm}^{-1}$ appear to fall on straight lines but those for $\varepsilon_{obs} = 70 \text{ lmol}^{-1}\text{cm}^{-1}$ show considerable deviation from these lines implying that the data may not be linearly related. The validity of the points at $\varepsilon_{obs} = 70 \text{ lmol}^{-1}\text{cm}^{-1}$ could not be established since there was insufficient experimental data to extend the analysis to ε_{obs} greater than 70 $\text{lmol}^{-1}\text{cm}^{-1}$. Ignoring the points for ε_{obs} equal to 70 $\text{lmol}^{-1}\text{cm}^{-1}$, the plots of $\overline{n}(1-n)^{-1}$ against [cnge] gives a best straight line of gradient 795 (corr.coeff. 0.995) which, according to equation 22, is equal to K₁ (units lmol^{-1}). Similarly, the plot of $(1-\overline{n})(2-\overline{n})^{-1}[\text{cnge}]^{-1}$ against

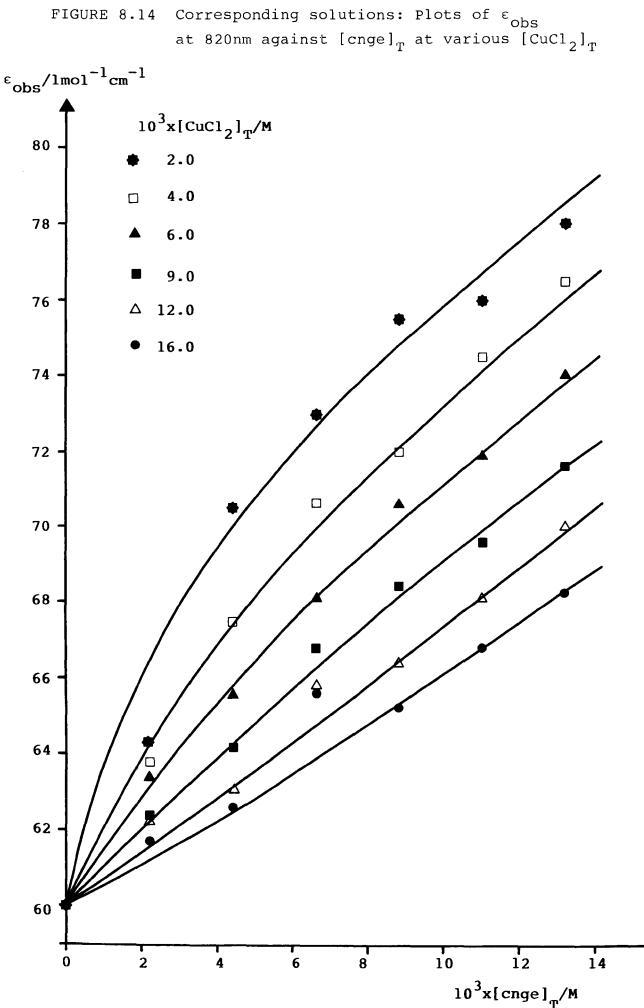


FIGURE 8.14

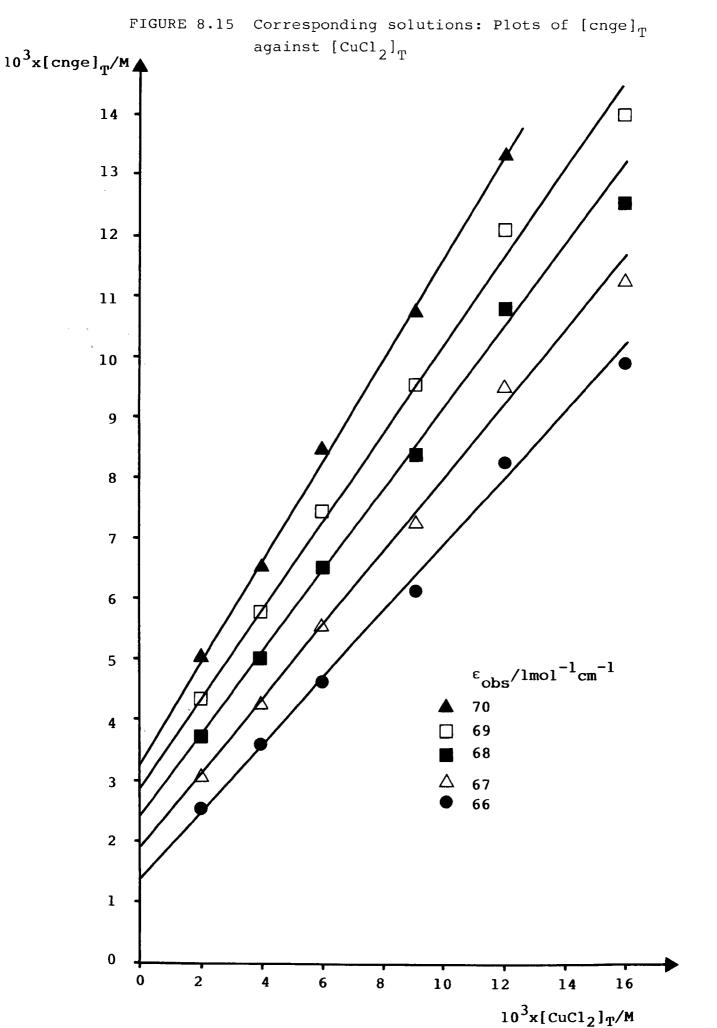
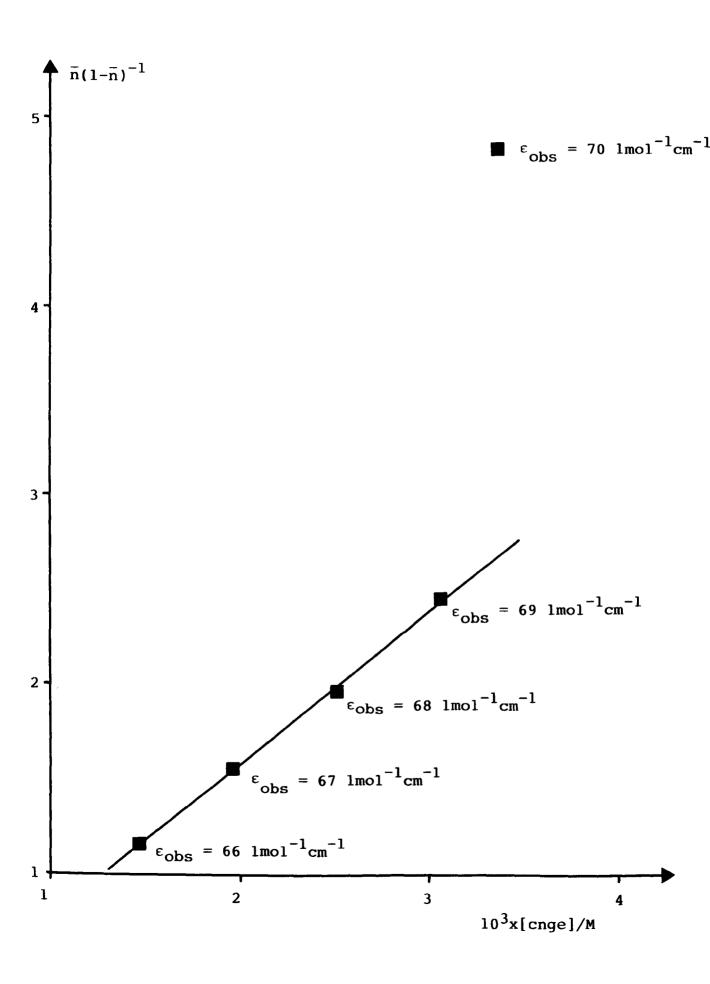
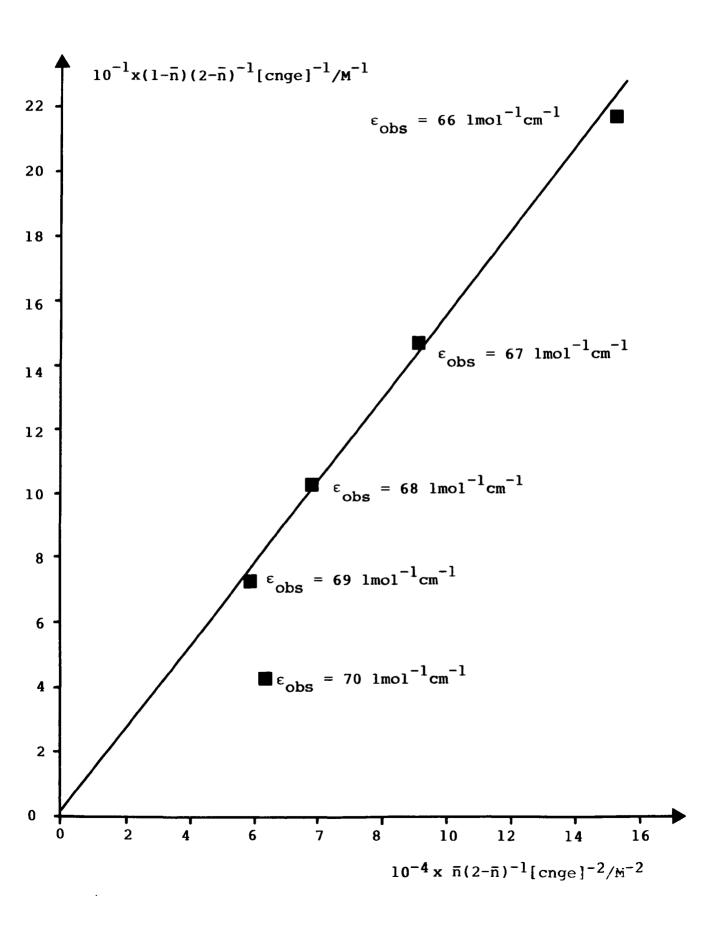




FIGURE 8.16 Corresponding solutions: plot of $\overline{n}(1-\overline{n})^{-1}$ against [cnge]

245

FIGURE 8.17 Corresponding solutions: plot of
$$(1-\bar{n})(2-\bar{n})^{-1}[cnge]^{-1}$$
 against $\bar{n}(2-\bar{n})^{-1}[cnge]^{-2}$

 $\bar{n}(2-\bar{n})^{-1}[cnge]^{-2}$ (Figure 8.17) gives a best staight line (corr.coeff. 0.998) of gradient 1.24×10^{-3} and of ordinate intercept 4.7. Using equation 24 K₁ and K₂ are calculated to be 806 and -4.7 lmol⁻¹ respectively.

The similar values of K_1 obtained from the two analyses and the small magnitude of K_2 suggest the sole formation of a mono cnge-copper(II) complex. However, if the data for ε_{obs} equal to 70 lmol⁻¹cm⁻¹ are included in the analysis, the plot of $(1-\bar{n})(2-\bar{n})^{-1}[cnge]^{-1}$ against $\bar{n}(2-\bar{n})^{-1}[cnge]^{-2}$ would give an increased gradient and a negative ordinate intercept which in turn imply a smaller K_1 value and a positive K_2 value. Hence, both mono and bis cnge-copper(II) complexes may be present in solution. The fact that the data for ε_{obs} equal to 70 lmol⁻¹cm⁻¹ differ considerably from the plot of $\bar{n}(1-\bar{n})^{-1}$ against [cnge] may provide additional evidence for the presence of the bis complex.

The inconclusive nature of the results may be attributable to the difficulties associated with the accurate measurement of the small absorbance changes which occur in these systems. Consideration of Figure 8.14 shows that the ε_{obs} values differ by no more than 10 $1mol^{-1}cm^{-1}$ at a given $[cnge]_{T}$ and by no more than 20 $1mol^{-1}cn^{-1}$ at a given $[CuCl_2]_{T}$. It is possible that the concentration ranges studed $([cnge]_{T} \text{ from 2.21 to 13.21mM},$ $[CuCl_2]_{T}$ from 2.00 to 16.01mM and $[cnge]_{T}/[CuCl_2]_{T}$ from 0.14 to 6.6) are too restricted and more consistent data might be obtained from an extended study. Unfortunately time constraints did not permit such an extension.

During the course of the study of the CuCl2-cnge-EtOH system, an investigation of the equilibrium constants for the formation of mono and bis(aOeu)copper(II) complexes was envisaged using the techniques applied to the cnge-copper(II) system. The literature revealed that a similar study had been attempted by Dutta⁶⁸ in aqueous solutions. (In this reference the ligands are incorrectly termed alkylquanylureas.) Dutta's work demonstrated spectrophotometrically the formation of mono and bis aOeu copper(II) complexes by varying the pH of aqueous solutions containing CuCl₂ and [aOeuH]Cl. Formation of the blue mono aOeu complex was complete at pH 4.0, whilst formation of the red-violet bis aOeu complex was complete when the pH was increased to pH 6.8. Since the conditions employed in this investigation do not reflect those encountered in the system considered in this chapter, the study of the interaction of uncoordinated aOeu with copper(II) ions in ethanol was contemplated. Unfortunately, uncoordinated aOeu could not be synthesised (as noted in Chapter Six) and hence the study could not be pursued.

8.4 <u>The Kinetics and Mechanism of the Ethanolysis</u> <u>Reactions Occurring in the CuCl₂-cnge-EtOH System</u>

8.4.1 Introduction

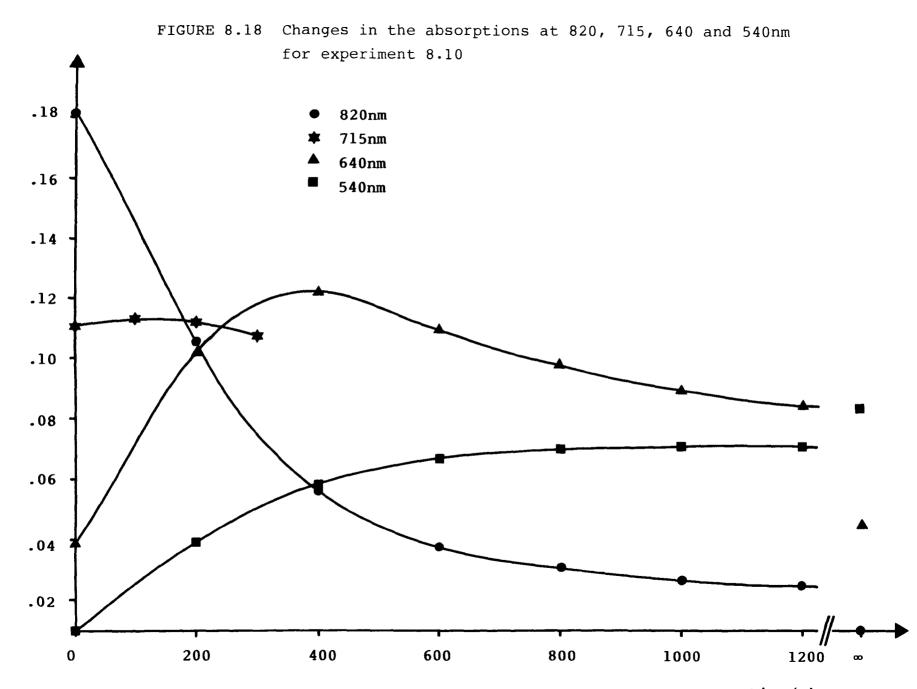
The preliminary experiments revealed that by monitoring the UV-visible spectrum of an ethanol solution containing CuCl₂ and cnge, it was possible to follow the reactions occurring in solution (as illustrated in Figure 8.4). Extraction of viable kinetic data from the experimental data available did, however, prove to be more difficult than first envisaged.

The concurrence of the three λ_{max} values observed in Figure 8.4 with those found for CuCl₂, [Cu(aOeu)Cl₂]₂ and [Cu(aOeu)₂]Cl₂ in the presence of cnge (Table 8.1) implied the consecutive formation of these complexes. By monitoring, as a function of time, the changes in absorbance at these λ_{max} values, it was thought possible to evaluate the rate of decay or formation of the species giving rise to the absorptions and hence to evaluate reaction rates.

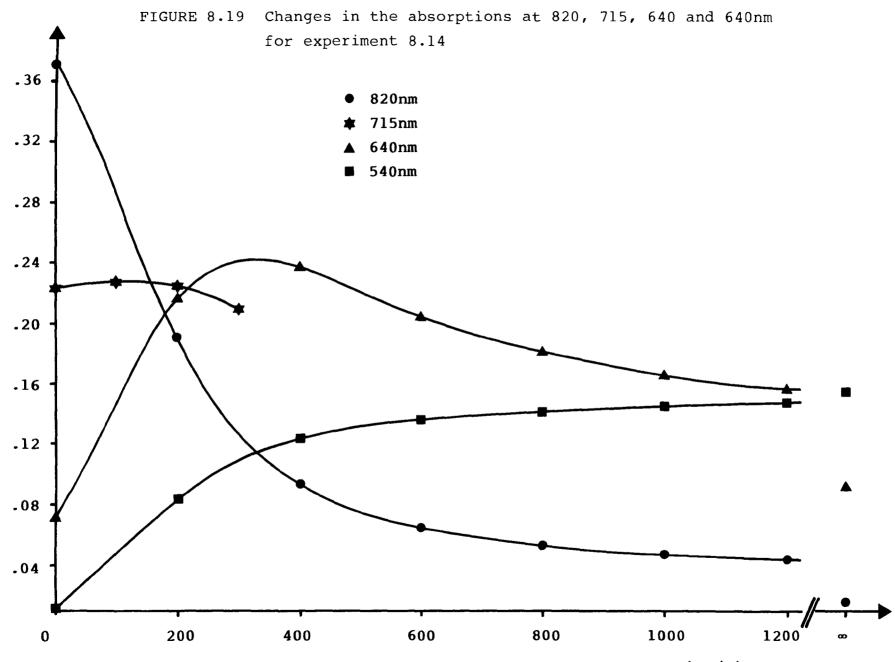
8.4.2 Experimental

(i) <u>Chemicals and Apparatus</u>

Stock ethanol solutions of CuCl₂ (29.98 and 60.57mM) and cnge (119.86 and 119.98mM) were prepared; the experimental apparatus was as described in Section 8.2.3(i).


(ii) <u>Procedure</u>

A background correction was performed (Section 8.2.3.(ii)) in the range 900-400nm. Aliquots of a CuCl₂ solution, a cnge solution and ethanol (Aml, Bml and Cml respectively) were mixed and the resulting solution transferred to the sample cell in the spectrometer. Absorbance measurements were made at 820, 715, 640 and 540nm every 10 minutes for at least 400 mins. The interval between measurements was then increased to 60 minutes and the measurements continued for at least a further 720 minutes. The contents of the sample cell were then transferred to a stoppered bottle and maintained at 20°C for several days. The absorbancies of this solution were then measured at the four specified wavelengths. The sample cell was washed and dried. The whole experiment was repeated several times using different aliquots of the reagents to obtain measurements for the range of $[CuCl_2]_{\pi}$: $[cnge]_{\pi}$ values shown below:


Experiment	[CuCl ₂] _T /mM:[cnge] _T /mM	Experiment	[CuCl ₂] _T /mM:[cnge] _T /mM
8.7	2:40	8.11	4:40
8.8	2:60	8.12	4:60
8.9	2:80	8.13	4:80
8.10	2:100	8.14	4:100

8.4.3 <u>Results and Discussion</u>

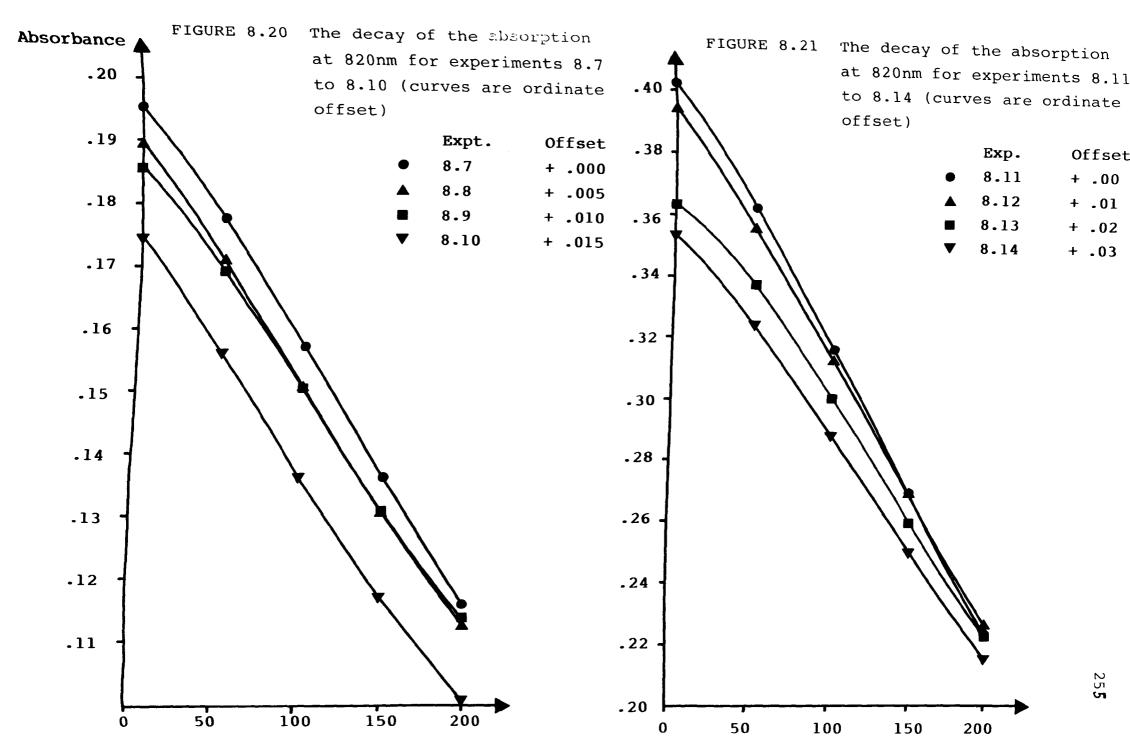
Changes in the absorptions at 820, 715, 640 and 540nm for experiments 8.10 and 8.14 are shown in Figures 8.18 and 8.19 respectively. The other six experiments exhibited near identical behaviour. All absorbance data are given in Appendix A. The Figures show the decay of the absorption at 820nm, the growth and then decay of the absorption at 640nm and the growth of the absorption at 540nm. The absorption at 715nm remains relatively constant until ~200 mins. when it starts to decrease.

time/mins

time/mins

Examination of the data at 820nm for all the experiments indicates that the times taken for the absorbancies to reach 50% of their initial values (defined as the half life) were very similar (Table 8.2) and gave an average of 234 minutes.

Experiment	[CuCl ₂] _T /mM: [cnge] _T /mM	Initial Absorbance	50% of Initial Absorbance	Half Life /mins
8.7	2:40	0.174	0.087	245
8.8	2:60	0.184	0.092	250
8.9	2:80	0.180	0.090	235
8.10	2:100	0.182	0.091	235
8.11	4:40	0.353	0.177	225
8.12	4:60	0.354	0.177	250
8.13	4:80	0.374	0.187	225
8.14	4:100	0.371	0.186	210


TABLE 8.2 Half lives of the absorption at 820nm

Thus, at each $[CuCl_2]_T$ the half life and hence the reaction rate, is independent of $[cnge]_T$. The similarity in the half lives for the two sets of experiments at $[CuCl_2]_T = 2.0$ and 4.0mM indicates that the rate is proportional to $[CuCl_2]_T$. It may be surmised that the reacting species is a copper(II)-cnge complex since under the conditions of the experiments (a vast excess of cnge) the concentration of such a complex will be virtually independent of $[cnge]_T$.

For a quantitative kinetic analysis, the adsorption data must be converted into concentration data. For this system the existence of two equilibria involving coordination of CuCl₂ and [Cu(aOeu)Cl₂] by cnge as well as the formation of the intermediate and final products of the ethanolysis, complicates the situation such that a rigorous analysis cannot readily be undertaken. Consequently, simplification of the analysis was considered. Figure 8.4 clearly shows the presence of isosbestic points at 715 and 555nm. Since the presence of an isosbestic point generally indicates that the presence in solution of only two species with differing absorptions, it was assumed that the point at 715nm exists whilst the starting material and intermediate predominates (i.e. the concentration of the final product could be assumed to be negligible) and the point at 555nm exists whilst the intermediate and final product predominates (i.e. the concentration of the starting material could be assumed to be negligible).

Figures 8.18 and 8.19 illustrate that the isosbestic point at 715nm is maintained for ~200 mins. Thus for this section of the reaction the absorptions arising from the [Cu(aOeu)₂]Cl₂ in solution can be ignored and only the reaction of the copper(II)-cnge complex to form the mono-(aOeu)-copper(II) complex considered.

Figures 8.20 and 8.21 show the decay of the absorption at 820nm for all experiments up to 200

minutes. Surprisingly the decay is seen first to accelerate and then to slow down. This behaviour is not typical of a simple reaction (i.e. either first, second or third order) but it has been observed for series first order reactions exemplified by certain hydrolysis.⁶⁹

Initially it was thought the two reactions may arise from the formation and decay of the copper(II) mono-(aOeu) intermediate complex and that the existence of the isosbestic point at 715nm was accidental. An attempted analysis of the data in Figures 8.20 and 8.21 on this basis (i.e. the three absorbing species have ε values close to those for ethanol solutions of CuCl₂, [Cu(aOeu)Cl₂]₂ and [Cu(aOeu)₂Cl₂] in the presence of cnge) was, however, guite unsuccessful. They could only be rationalised by assuming two of the absorbing species to have ε values close to that of ethanol solutions of $CuCl_2$ + cnge and the third to have an ε value close to that of ethanol solutions of [Cu(aOeu)Cl₂]₂ + cnge. This implies that the formation of the copper(II) mono-(aOeu) complex from the copper(II)-cnge complex proceeds via an intermediate which has the same absorption properties as the initial copper(II)-cnge complex, thus generating the isosbestic point. It follows that the initial reaction must occur at a site remote from the copper(II) chromophore.

A curve fitting exercise was performed on the decay at 820nm for experiment 8.10 assuming series first order kinetics in an attempt to quantify the rate 256

constants. This experiment was chosen for analysis since it has the greatest $[CuCl_2]_T:[cnge]_T$ ratio (i.e. 2:100). It is for this experiment the assumptions that $[cnge]_T$ remains constant and that the formation of the copper(II)cnge complex is favourable, are most valid.

Time dependent values of absorbance for different rate constants were computed as follows. Concentrations of the copper(II)-cnge complex, the intermediate complex and the copper(II)-mono-aOeu complex {[Cu(cnge)], [I] and [Cu(aOeu)] respectively} were calculated (see below) and then the absorbance values for the complexes, derived using their ε values at 820nm, summed at regular time intervals.

The relationship used to calculate the concentrations of the different complexes are derived thus:

Consider the case

$$A \xrightarrow{k_1} B$$
$$B \xrightarrow{k_2} C$$

The differential equations are

$$\frac{d[A]}{dt} = -k_1[A]$$
(32)

$$\frac{d[B]}{dt} = k_1[A] - k_2[B]$$
(33)

$$\frac{d[C]}{dt} = k_2[B] \tag{34}$$

Equation 32 integrates to give

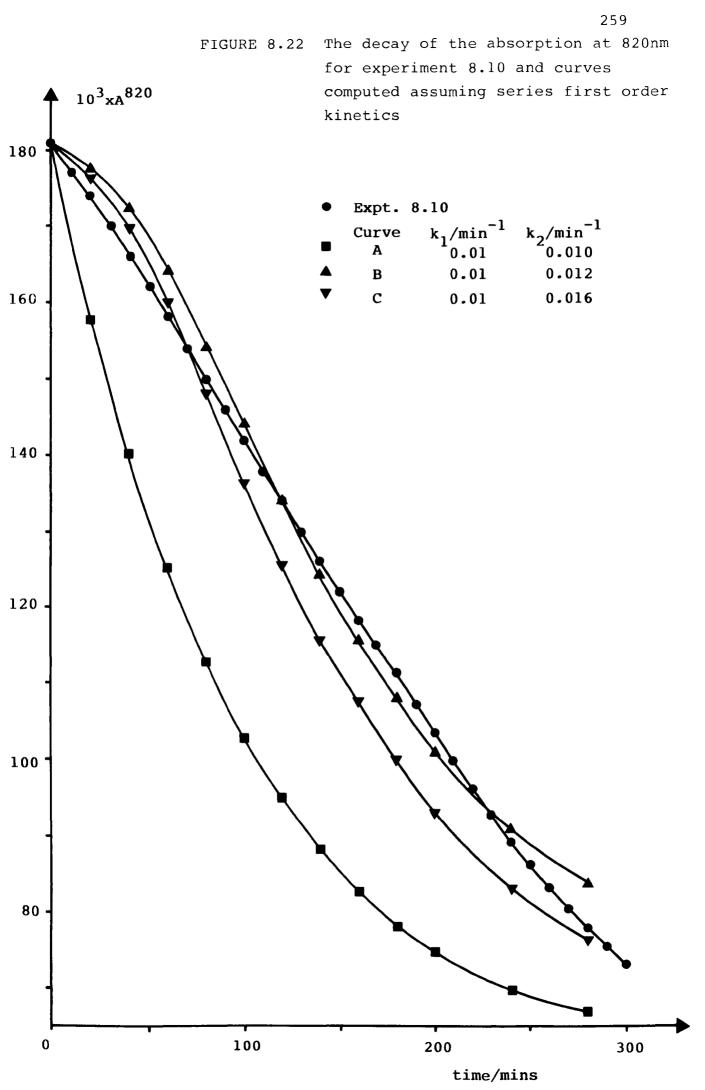
$$[A] = [A]_{o} e^{-k} l^{t}$$
(35)

Substituting equation 35 into 33 gives

$$\frac{d[B]}{dt} = k_1[A]_0 e^{-k_1 t} - k_2[B]$$
(36)

Equation 36 intergrates to give

$$[B] = \frac{[A]_{0} k_{1} (e^{-k_{1}t} - e^{-k_{2}t})}{k_{2}^{-k_{1}}}$$
(37)


Also

$$[A] + [B] + [C] = [A]_{O}$$
(38)

Rearranging $[C] = [A]_{O} - [A] - [B]$ (39)

thus, [A],[B],[C] can be calculated for various k_1 and k_2 values at various t values provided that $[A]_{O}$ (the initial concentration of A) is known. In the system under study [A] = [Cu(cnge)], [B]=[I] and [C]=[Cu(aOeu)].

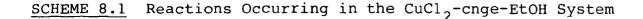
Figure 8.22 shows the decay of the 820nm absorption for experiment 8.10 and several computed curves (A,B and C) in the 0 to 300 minute period. Values of k_1 and k_2 close to 0.01 min⁻¹ gave curves which were most similar to the experimental data. For completeness the curve for $k_1 = k_2 = 0.01$ (A) is given. As expected, it is exponential in form and shows considerable deviation from the experimental data. The best overall fit to the experimental data was found for $k_1 = 0.01$ and $k_2 = 0.012$ min^{-1} (curve B). A better fit in the 0-100 minute period

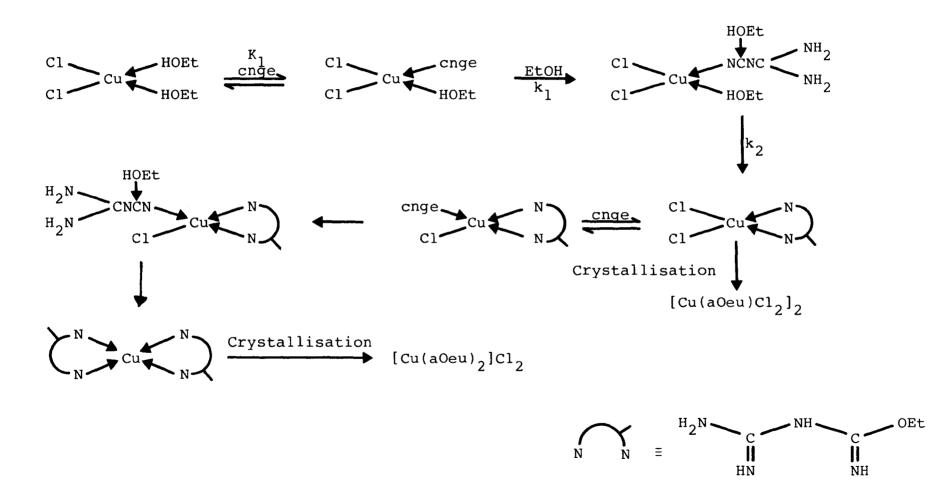
was achieved using $k_1 = 0.01$ and $k_2 = 0.016 \text{ min}^{-1}$ (curve C), however, this curve then deviated from the experimental data in the 100-200 minute region.

Both curves B and C after 200 minutes tend to absorbance values greater than the experimental data. This is in line with the formation of the bis(aOeu)-copper(II) complex at the expense of the mono-(aOeu)-copper(II) complex since the molar absorptivity of the bis complex is considerably lower than that of the mono complex at 820nm.

Clearly an ideal fit to the experimental data was not possible, implying that unambiguous values for the rate constant cannot be readily obtained. Nonetheless, the analysis is of value as it indicates that the ethanolysis reaction proceeds by series first order kinetics with values of k_1 and k_2 close to 0.01 min⁻¹. This conclusion introduces a further complication to the CuCl₂-cnge-EtOH system by increasing the number of species involved in the formation of the mono(aOeu) complex. Furthermore, it is not unreasonable to expect that the conversion of the mono(aOeu) complex to the bis(aOeu) follows a similar mechanism.

Unfortunately, this could not be confirmed as careful inspection of the spectral data associated with the isosbestic point at 555nm (Figure 8.4) indicated that detailed analysis was not possible as the rate of change of the absorption was too slow to be accurately monitored using the equipment available.


8.5 <u>The CuCl_-cnge-EtOH System: General Conclusions</u>


The structural and infrared studies described in Chapters Six and Seven allied with the UV-visible studies discussed in the present chapter, have gone some way to unravelling the processes that occur in ethanol solutions containing copper(II) chloride and cnge.

A mechanism consistent with the available data is presented in Scheme 8.1. The dissolution of anhydrous copper(II) chloride in ethanol results in the formation of a solvated copper(II) species. Chloride anions may be ligands (as shown) or may themselves be solvated. Addition of cnge to the solution displaces a solvent molecule and gives a mono(cnge)-copper(II) species. This process may be repeated to give a bis(cnge)-copper(II) species (not shown), however, the thermodynamic study (Section 8.3) implies that the mono(cnge) species will predominate. Ethanolysis then occurs in a two step process: nucleophilic attack by the ethanol on the nitrile carbon followed by proton transfer and rearrangement to produce a mono(aOeu)-copper(II) species.

Crystallisation from solution at this stage affords [Cu(aOeu)Cl₂]₂.

The ethanolysis process is then repeated by the addition of ethanol to cnge coordinated to a mono-(aOeu)-copper(II) species followed by rearrangement to give the bis(aOeu)-copper(II) complex. Cnge does not coordinate the bis complex since only axial sites on the copper(II) ion are available and hence the reaction

ceases when all the copper(II) ions are converted to bis(aOeu) complexes.

Crystallisation at this stage affords [Cu(aOeu)₂]Cl₂.

2

The preliminary studies have simply revealed the complexity of the ethanolysis process; they seem to have revealed more questions than they have answered. Clearly, many more studies must be effected if true understanding and quantitative interpretation of the reaction are to be achieved.

APPENDIX A

NON-STRUCTURAL DATA

'OBEY' Computer Program for use with PE680

Software as described in Chapter Seven

SET FILID SP001 &L2 SET WAIT OFF SCAN X,2300,1500,1.0 SAVE X,* DIFF X Y SAVE X,* DO PAUSE,3000 DO PAUSE,600 &GOTO L2

Aliquot Data for Experiments 8.1, 8.2, 8.3 and 8.4

Experiments 8.1 and 8.2

CuCl ₂ A/ml	10	9.0	8.0	7.0	6.0	5.0	4.0	3.0	2.0	1.0	0.0
cnge B/ml	0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
× cnge	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0

Experiment 8.3

CuCl ₂ A/ml	10.0	5.5	5.0	4.5	4.0	3.7	3.5	3.3	3.0	2.5
cnge B/ml	0.0	4.5	5.0	5.5	6.0	6.3	6.5	6.7	7.0	7.5
x cnge	0.0	0.45	0.50	0.55	0.60	0.63	0.65	0.67	0.70	0.75

Experiment 8.4

CuCl ₂ A/ml	10.0	8.0	7.0	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.0
cnge B/ml	0.0	2.0	3.0	4.0	4.5	5.0	5.5	6.0	6.5	7.0	8.0
x cnge	0.0	0.20	0.30	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.80

Absorbance and Corrected Absorbance Data

		λ/r	ım		
800	820	840	860	880	×cnge
0.608	0.676	0.730	0.773	0.798	0.0
0.575	0.638	0.685	0.720	0.738	0.1
0.525	0.578	0.618	0.646	0.660	0.2
0.474	0.519	0.552	0.575	0.585	0.3
0.418	0.456	0.483	0.499	0.507	0.4
0.363	0.393	0.413	0.425	0.429	0.5
0.305	0.328	0.342	0.349	0.350	0.6
0.240	0.257	0.266	0.270	0.269	0.7
0.172	0.182	0.186	0.188	0.186	0.8
0.086	0.092	0.094	0.094	0.093	0.9
0	0	0	0	0	1.0
0	0	0	0	0	0.0
0.028	0.029	0.028	0.016	0.020	0.1
0.039	0.037	0.034	0.033	0.022	0.2
0.048	0.046	0.041	0.038	0.027	0.3
0.053	0.051	0.045	0.040	0.028	0.4
0.059	0.055	0.048	0.039	0.030	0.5
0.062	0.057	0.050	0.036	0.031	0.6
0.058	0.054	0.047	0.035	0.029	0.7
0.050	0.047	0.040	0.028	0.027	0.8
0.025	0.024	0.021	0.025	0.013	0.9
0	0	0	0	0	1.0

for Experiment 8.1

A

 $^{\rm Y}$ calc

Absorbance and Corrected Absorbance Data

for	Expe	riment	8.2

		λ,	/nm		
800	820	840	860	880	xcnge
0.650	0.723	0.778	0.813	0.847	0.0
0.624	0.688	0.734	0.771	0.790	0.1
0.568	0.622	0.663	0.692	0.706	0.2
0.540	0.585	0.616	0.640	0.650	0.3
0.479	0.517	0.542	0.559	0.565	0.4
0.418	0.449	0.468	0.480	0.484	0.5
0.359	0.382	0.393	0.401	0.400	0.6
0.265	0.281	0.289	0.293	0.292	0.7
0.090	0.199	0.203	0.203	0.200	0.8
0.098	0.101	0.103	0.101	0.099	0.9
0	0	0	0	0	1.0
0	0	0	0	0	0.0
0.039	0.037	0.034	0.039	0.028	0.1
0.048	0.041	0.042	0.028	0.028	0.2
0.085	0.079	0.071	0.071	0.033	0.3
0.089	0.083	0.075	0.071	0.057	0.4
0.093	0.088	0.079	0.074	0.061	0.5
0.099	0.093	0.082	0.076	0.061	0.6
0.070	0.064	0.056	0.049	0.038	0.7
0.060	0.054	0.047	0.040	0.031	0.8
0.033	0.029	0.025	0.020	0.014	0.9
0	0	0	0	0	1.0

А

Absorbance and Corrected Absorbance Data

		λ,	'nm		
800	820	840	860	880	×cnge
0.626	0.695	0.748	0.790	0.814	0.00
0.405	0.439	0.461	0.475	0.480	0.45
0.388	0.412	0.431	0.442	0.445	0.50
0.349	0.375	0.391	0.400	0.402	0.55
0.314	0.336	0.350	0.357	0.357	0.60
0.294	0.314	0.325	0.332	0.331	0.63
0.280	0.299	0.310	0.315	0.314	0.65
0.273	0.290	0.300	0.304	0.303	0.67
0.252	0.267	0.276	0.279	0.278	0.70
0.210	0.223	0.229	0.231	0.230	0.75
0	0	0	0	0	1.00
0	0	0	0	0	0.00
0.061	0.057	0.050	0.041	0.032	0.45
0.070	0.065	0.057	0.041	0.038	0.50
0.067	0.062	0.054	0.045	0.036	0.55
0.064	0.058	0.051	0.041	0.034	0.60
0.062	0.057	0.048	0.040	0.030	0.63
0.061	0.056	0.048	0.039	0.029	0.65
0.066	0.061	0.053	0.043	0.034	0.67
0.064	0.059	0.052	0.042	0.034	0.70
0.054	0.049	0.042	0.034	0.027	0.75
0	0	0	0	0	1.00

for Experiment 8.3

^Ycalc

Absorbance and Corrected Absorbance Data

		λ,	/nm		
800	820	840	860	880	×cnge
1.342	1.488	1.608	1.708	1.764	0.00
1.178	1.296	1.382	1.442	1.472	0.20
1.068	1.168	1.238	1.286	1.306	0.30
0.969	1.050	1.104	1.138	1.151	0.40
0.897	0.970	1.016	1.045	1.052	0.45
0.841	0.904	0.944	0.966	1.070	0.50
0.775	0.830	0.864	0.880	0.881	0.55
0.715	0.782	0.790	0.801	0.798	0.60
0.641	0.681	0.703	0.711	0.707	0.65
0.616	0.652	0.672	0.679	0.673	0.70
0.417	0.438	0.446	0.445	0.438	0.80
0	0	0	0	0	1.00
0	0	0	0	0	0.00
0.104	0.106	0.096	0.076	0.061	0.20
0.129	0.126	0.112	0.090	0.071	0.30
0.164	0.157	0.139	0.113	0.093	0.40
0.159	0.152	0.132	0.106	0.082	0.45
0.170	0.160	0.140	0.112	0.108	0.50
0.171	0.160	0.140	0.111	0.087	0.55
0.178	0.187	0.147	0.118	0.092	0.60
0.171	0.160	0.140	0.113	0.090	0.65
0.213	0.206	0.190	0.167	0.144	0.70
1.149	0.140	0.124	0.103	0.085	0.80
0	0	0	0	0	1.00

for Experiment 8.4

Ycalc

Aliquot Data for Experiment 8.5

Concentrations of stock solution of $CuCl_2 = 36.06$ mM and of cnge = 39.64mM

A/ml	C/ml	[CuCl ₂] _T /mM	A/ml	C/ml	[CuCl ₂] _T /mM
B/ml=	0.0, [cng	ge] _T /mM=0.00	B/ml=	1.0, [cr	nge] _T /mM=2.21
1.0	17.0	2.00	1.0	16.0	2.00
2.0	16.0	4.00	2.0	15.0	4.00
3.0	15.0	6.01	3.0	14.0	6.01
2.0	6.0	9.01	4.5	12.5	9.01
3.0	6.0	12.01	6.0	11.0	12.01
4.0	5.0	16.01	8.0	9.0	16.01
B/ml=	2.0, [cng	ge] _T /mM=4.41	B/ml=	3.0, [cr	nge] _T /mM=6.61
1.0	15.0	2.00	1.0	14.0	2.00
2.0	14.0	4.00	2.0	13.0	4.00
3.0	13.0	6.01	3.0	12.0	6.01
4.5	11.5	9.01	4.5	10.5	9.01
6.0	10.0	12.01	6.0	9.0	12.01
8.0	8.0	16.01	8.0	7.0	16.01
B/ml=	4.0, [cng	ge] _T /mM=8.81	B/ml=	5.0, [cr	nge] _T /mM=11.01
1.0	13.0	2.00	1.0	12.0	2.00
2.0	12.0	4.00	2.0	11.0	4.00
3.0	11.0	6.01	3.0	10.0	6.01
4.5	9.5	9.01	4.5	8.5	9.01
6.0	8.0	12.01	6.0	7.0	12.01
8.0	6.0	16.01	8.0	5.0	16.01
B/ml=	6.0, [cng	ge] _T /mM=13.21			
1.0	11.0	2.00			
2.0	10.0	4.00			
3.0	9.0	6.01			
4.5	7.5	9.01			
6.0	6.0	12.01			
0.0					

Absorbance Data for Experiment 8.5

[CuCl ₂] _T /mM	2.00	4.00	6.01	9.01	12.01	16.01	9.01 std
$\frac{[cnge]}{A^{820}} T^{/mM=0.00}$ $\epsilon_{obs}^{820}/lmol^{-1}cm^{-1}$	0.122	0.237 59.0	0.360	0.551	0.726	0.961 60.0	0.549 60.9
<u>cnge]</u> /mM=2.20 A ⁸²⁰ e ⁸²⁰ /lmol ⁻¹ cm ⁻¹	0.119 59.5	0.236 59.0	0.352 58.7	0.521 57.8	0.693 57.7	0.915 57.1	0.500 55.5
<u>cnge]</u> r/mM=4.40 A ⁸²⁰ ε ⁸²⁰ /lmol ⁻¹ cm ⁻¹	0.141 70.5	0.270 67.5	0.394 65.6	0.578 64.2	0.758 63.1	1.002 62.6	0.543 60.2
<u>cnge]</u> T/mM=6.61 A ⁸²⁰ e ⁸²⁰ /lmol ⁻¹ cm ⁻¹	0.135 67.5	0.262 65.5	0.379 63.1	0.558 61.9	0.733 61.0	0.972 60.7	0.505 56.0
<u>cnge]</u> T/mM=8.81 A ⁸²⁰ e ⁸²⁰ /lmol ⁻¹ cm ⁻¹	0.151 75.5	0.288 72.0	0.425 70.7	0.616 68.4	0.797 66.4	1.044 65.2	0.535 59.4
$\frac{\text{cnge}}{A^{820}}T^{/\text{mM}=11.01}$ $\frac{820}{\epsilon_{\text{obs}}^{820}/\text{lmol}^{-1}\text{cm}^{-1}}$	0.152 76.0	0.298 74.5	0.432 71.9	0.627 69.6	0.818 68.1	1.089 66.8	0.540 59.9
$\frac{cnge]}{A^{820}}r^{/mM=13.21}$ $\epsilon_{obs}^{820}/lmol^{-1}cm^{-1}$			0.445	0.645 71.6			

Corresponding $[CuCl_2]_T$ and $[cnge]_T$ Values for Experiment 8.5

	ε_{obs}^{820} =66 lmol ⁻¹ cm ⁻¹	ε_{obs}^{820} =67 lmol ⁻¹ cm ⁻¹	$\varepsilon_{obs}^{820} = 68 \text{ lmol}^{-1} \text{cm}^{-1}$	$\varepsilon_{\rm obs}^{820} = 69 \ \rm lmol^{-1} cm^{-1}$	ε_{obs}^{820} =70 lmol ⁻¹ cm ⁻¹
[CuCl ₂] _{'T} /mM	[cnge] _T /mM	[cnge] _{.T} /mM	[cnge] _T /mM	[cnge] _{.T} /mM	[cnge] _{'[} /mM
2.00	2.55	3.10	3.70	4.35	5.05
4.00	3.60	4.30	5.00	5.75	6.55
6.01	4.65	5.55	6.50	7.45	8.50
9.01	6.10	7.25	8.40	9.55	10.75
12.01	8.25	9.50	10.80	12.10	13.35
16.01	9.90	11.25	12.60	14.00	-

Corresponding [cnge] and n Values for Experiment 8.5

			_
ε ⁸²⁰ obs	[cnge]	'n	
66	1.46	0.537	
67	1.96	0.596	
68	2.50	0.653	
69	3.07	0.710	
70	3.35	0.831	

A/ml	C/ml	[CuCl ₂] _T	A ^{880nm}	A ^{820nm}
1.0	17.0	2.01	0.144	0.123
2.0	16.0	4.01	0.286	0.246
3.0	15.0	6.01	0.429	0.370
2.0	7.0	8.01	0.572	0.494
2.5	6.5	10.02	0.716	0.617
3.0	6.0	12.02	0.858	0.740
3.5	5.5	14.02	1.001	0.862
4.0	5.0	16.02	1.145	0.985
4.5	4.5	18.02	1.288	1.109
5.0	4.0	20.03	1.432	1.233

Concentration of stock solution of $CuCL_2 = 36.06$ mM

Ζ-					
Experimen Number	t A	В	С	[CuCl ₂] _T /mM	[cnge] _T /mM
8.7	1.3	6.7	12.0	1.95	40.15
8.8	1.3	10.0	8.7	1.95	59.93
8.9	1.3	13.3	5.0	1.95	79.71
8.10	1.3	16.7	2.0	1.95	100.08

[CuCl₂] stock soln. = 29.98mM, [cnge] stock soln. = 119.86mM

[CuC1 ₂]	stock	soln.	~	60.57mM,	[cnge]	stock	soln.	=	119.98mM
----------------------	-------	-------	---	----------	--------	-------	-------	---	----------

Experimen Number	t A	В	С	[CuCl ₂] _T /mM	[cnge] _T /mM
8.11	1.3	6.7	12.0	3.93	40.19
8.12	1.3	10.0	8.7	3.93	59.99
8.13	1.3	13.3	5.4	3.93	79.78
8.14	1.3	16.7	2.0	3.93	100.20

Absorbance	Data	For	Experiment	8.7	$[CuCl_2]_T : [cnge]_T$	2:40mM

			•	•	
Time/mins	020	Absort		715	
	820nm	640nm	540nm	715nm	
0	.174	.033	.011	.101	
10	.171	.037	.013	.102	
20	.168	.041	.014	.102	
30	.164	.045	.016	.103	
40	.160	.048	.018	.104	
50	.156	.052	.019	.105	
60	.152	.056	.021	.106	
70	.149	.060	.023	.106	
80	.145	.064	.024	.107	
90	.141	.067	.026	.107	
100	.137	.071	.027	.108	
110	.133	.074	.029	.108	
120	.129	.078	.031	.109	
130	.125	.081	.032	.110	
140	.122	.085	.034	.110	
150	.118	.088	.035	.111	
160	.114	.091	.037	.111	
170	.111	.094	.038	.111	
180	.107	.097	.040	.112	
190	.104	.100	.041	.112	
200	.100	.103	.043	.112	
210	.097	.105	.044	.112	
220	.094	.108	.045	.112	
230	.091	.110	.047	.112	
240	.088	.112	.048	.112	
250	.085	.114	.049	.112	
260	.082	.115	.050	.112	
270	.080	.117	.051	.111	
280	.077	.118	.052	.111	
290	.075	.119	.053	.110	
300	.073	.120	.055	.110	
310	.071	.120	.055	.109	
320	.069	.121	.056	.108	
330	.067	.121	.057	.108	
340	.065	.121	.058	.107	
350	.063	.121	.059	.106	
360	.062	.121	.059	.105	
370	.060	.121	.060	.104	
380	.059	.121	.061	.103	
390	.058	.120	.062	.102	
450	.051	.117	.065	.096	
510	.047	.113	.067	.091	
570	.043	.109	.069	.086	
630	.040	.105	.071	.082	
690	.038	.102	.072	.078	
750	.036	.099	.072	.075	
810	.034	.096	.073	.072	
870	.033	.094	.074	.069	
930	.032	.091	.074	.067	
990	.031	.090	.075	.065	
1050	.030	.088	.075	.063	
1110	.029	.086	.076	.062	
1170	.028	.085	.076	.060	
Final	.009	.047	.081	.023	

Absorbance	Data	For	Experiment	8.8	[CuC1 ₂] _T :	[cnge]	2:60mM
------------	------	-----	------------	-----	-------------------------------------	--------	--------

			- 1 1	
Time/mins		Absorban	ce	
	820nm	640nm	540nm	715nm
0	.182	.037	.013	.108
10	.179	.040	.015	.109
20	.175	.044	.017	.109
30	.171	.047	.018	.110
40	.168	.051	.020	.110
50	.164	.054	.021	.111
60	.160	.058	.023	.111
70	.157	.061	.024	.112
80	.153	.065	.026	.112
90	.149	.068	.027	.113
100	.145	.072	.029	.113
110	.141	.075	.030	.113
120	.137	.079	.032	.114
130	.133	.082	.033	.114
140	.130	.085	.035	.114
150	.126	.088	.036	.115
160	.122	.092	.038	.115
170	.118	.095	.039	.115
180	.115	.098	.041	.115
190	.111	.100	.042	.115
200	.108	.103	.044	.115
210	.104	.106	.045	.115
220	.101	.108	.046	.115
230	.098	.111	.048	.115
240	.095	.113	.049	.115
250	.092	.115	.050	.115
260	.089	.117	.051	.115
270	.086	.118	.053	.114
280	.083	.120	.054	.114
290	.080	.121	.055	.114
300	.078	.122	.056	.113
310	.076	.123	.057	.112
320	.074	.124	.058	.112
330	.071	.125	.059	.111
340	.070	.125	.060	.110
350	.068	.125	.061	.109
360	.066	.126	.061	.109
370	.064	.125	.062	.108
380	.063	.125	.063	.107
390	.061	.125	.064	.106
400	.060	.125	.064	.105
460	.053	.122	.067	.099
796	.036	.102	.076	.076
856	.035	.100	.077	.073
916	.033	.097	.078	.071
976	.032	.095	.078	.069
1036	.031	.093	.079	.067
1096	.030	.092	.079	.065
1156	.030	.090	.080	.064
1216	.029	.089	.080	.062
Final	.007	.043	.081	.020

Absorbance	Data	For	Experiment	8.9	$[CuCl_2]_{\tau}:[cnge]_{\tau}$	2:80mM

Time/mins		Absorban		
TIME/ MINJ	820nm	640nm	540nm	715nm
0	.180	.036	.010	.109
10	.177	.040	.012	.109
20	.173	.043	.013	.110
30	.169	.047	.015	.110
40	.165	.050	.016	.110
50	.161	.054	.018	.110 .111
60 70	.157	.057	.019 .021	.111
80	.153 .149	.061 .064	.022	.111
90	.145	.068	.024	.111
100	.141	.071	.025	.112
110	.137	.075	.027	.112
120	.133	.078	.029	.112
130	.129	.082	.030	.112
140	.125	.085	.032	.112
150	.121	.088	.033	.112
160	.117	.091	.035	.113
170	.113	.094	.036	.113
180	.109	.097	.038	.113
190	.105	.100	.039	.113
200	.102	.103	.040	.112
210	.098	.105	.042	.112
220	.095	.107	.043	.112
230	.091	.110	.044	.112
240	.088	.112	.046	.112
250	.085	.114	.047	.111
260	.082	.115	.048	.111
270	.079	.117	.049	.110
280	.077	.118	.050	.110
29 0	.074	.119	.052	.109
300	.072	.120	.052	.108
310	.070	.121	.053	.108
320	.068	.121	.054	.107
330	.066	.122	.055	.106
340	.063	.122	.056	.105
350	.062	.122	.057	.104
360	.060	.122	.057	.103
370	.058	.122	.058	.102
380	.057	.122	.059	.101
390	.056	.121	.059	.100
400	.054	.121	.060	.099
460	.048	.117	.063	.093
520	.043	.113	.065	.088
580	.040	.109	.067	.083
640	.037	.106	.068	.079
700	.035	.102	.069	.075
760	.033	.099	.070	.072
820	.031	.097	.071	.070
880	.030	.094	.072	.067
940	.029	.092	.072	.065
1000	.028	.090	.073	.063
1060	.027	.088	.073	.061
1120	.026	.086	.074	.059
1180 Binal	.025	.085	.074	.058
Final	.008	.047	.084	.023

Absorbance	Data	For	Experiment	8.10	[CuCl ₂];[cnge],2:100mM

Time/mins		Absor	hance	
TIME/ MINS	820nm	640nm	540nm	715nm
0	.181	.038	.010	.111
10	.177	.041	.011	.111
20	.174	.044	.013	.111
30	.170	.047	.014	.112
40	.166	.050	.016	.112
50	.162	.054	.017	.112
6 0	.158	.057	.019	.112
70	.154	.060	.020	.112
80	.150	.064	.021	.112 .112
90	.146	.067	.023	.112
100	.142	.070	.025 .026	.113
110	.138	.074	.028	.113
120 130	.134	.077 .080	.028	.113
140	.130	.083	.031	.113
150	.126 .122	.083	.032	.113
160	.122	.090	.034	.113
170	.115	.093	.035	.113
180	.111	.096	.036	.113
190	.107	.098	.038	.112
200	.103	.101	.039	.112
210	.100	.104	.041	.112
220	.096	.106	.042	.112
230	.093	.108	.043	.112
240	.090	.110	.045	.111
250	.087	.112	.046	.111
260	.084	.114	.047	.110
270	.081	.116	.048	.110
280	.078	.117	.049	.109
290	.076	.118	.050	.109
300	.073	.119	.051	.108
310	.071	.120	.052	.107
320	.069	.121	.053	.107
330	.067	.121	.054	.106
340	.065	.122	.055	.105 .104
350	.063	.122	.055	.104
360 370	.061	.122	.056 .057	.103
380	.059 .058	.122 .122	.057	.101
390	.058	.122	.058	.100
450	.049	.119	.061	.094
510	.049	.115	.064	.089
570	.041	.111	.066	.084
630	.038	.108	.067	.080
690	.035	.104	.069	.077
750	.033	.101	.070	.073
810	.032	.098	.070	.070
870	.030	.095	.070	.067
930	.028	.093	.070	.065
99 0	.027	.090	.071	.063
1050	.026	.088	.071	.061
1110	.025	.087	.071	.061
1170	.025	.085	.072	.059
Final	.008	.047	.084	.023

Absorbance Data For Experiment 8.11 $[CuCl_2]_{T}$: $[cnge]_{T}$ 4:40mM	Absorbanc	e Data	For	Experiment	8.11	[CuCl ₂] ₇ :[cnge] ₇ 4:40	mM
--	-----------	--------	-----	------------	------	---	----

	Absorbance							
Time/mins	820nm	Absorr 640nm	540nm	715nm				
	8201mi	6401m	540111	/ 1 51111				
0	.353	.060	.012	.198				
10	.349	.064	.014	.198				
20	.344	.070	.016	.199				
30	.338	.076	.019	.202				
40	.332	.081	.022	.202				
50	.325	.087	.024	.203				
60	.319	.094	.026	.204				
70	.312	.100	.029	.205				
80	.305	.107	.032	.207				
90	.298	.113	.035	.208				
100	.290	.120	.038	.209				
110	.283	.127	.040	.210				
120	.275	.134	.043	.212				
130	.268	.141	.046	.212				
140	.260	.147	.049	.214				
150	.253	.154	.052	.215				
160	.245	.161	.055	.216				
170	.237	.167	.058	.216				
180	.230	.174	.061	.218				
190	.223	.179	.064	.218				
200	.215	.186	.067	.219				
210	.208	.191	.070	.219				
220	.201	.196	.072	.220				
230	.194	.202	.075	.220				
240	.187	.206	.078	.220				
250	.181	.211	.080	.220				
260	.174	.215	.083	.220				
270	.168	.218	.085	.219				
280	.163	.222	.088	.219				
290	.157	.225	.090	.217				
300	.152	.227	.092	.217				
310	.147	.229	.094	.215				
320	.142	.230	.097	.214				
330	.137	.231	.098	.213				
340	.133	.234	.100	.211				
350	.129	.233	.103	.209				
360	.125	.233	.104	.207				
370	.121	.232	.106	.205				
380	.118	.232	.108	.203				
390	.115	.231	.109	.200				
400	.112	.230	.110	.198				
445	.101	.225	.115	.188				
505	.089	.216	.121	.175				
565	.081	.206	.126	.164				
625	.074	.198	.129	.154				
685	.069	.190	.132	.146				
745	.064	.184	.134	.138				
805	.061	.178	.136	.132				
865	.058	.174	.138	.127				
925	.055	.168	.139	.122				
985	.052	.165	.141	.117				
1045	.050	.160	.142	.113				
1105	.049	.157	.143	.110				
1165	.047	.154	.144	.107				
Final	.016	.094	.153	.047				

Absorbance	Data	For	Experiment	8.12	[CuCl ₂] _T :[cnge] _T	4:60mM

Time/mins		Absorban	ce	
	820nm	640nm	540nm	715nm
0	.354	.059	.007	.201
10	.351	.063	.009	.203
20	.346	.067	.010	.204
30	.340	.072	.012	.204
40	.335	.078	.015	.205
50	.328	.084	.017	.206
60	.321	.090	.020	.207
70	.314	.096	.023	.207
80	.307	.103	.025	.208
90	.299	.109	.028	.209
100	.292	.116	.031	.210
110	.284	.123	.034	.211
120	.276	.129	.037	.211
130	.268	.136	.040	.212
140	.260	.143	.043	.213
150	.252	.149	.046	.213
160	.244	.156	.049	.214
170	.236	.163	.052	.214
180	.228	.169	.055	.215
190	.220	.175	.058	.215
200	.213	.181	.061	.215
210	.205	.187	.063	.215
220	.198	.192	.066	.215
230	.191	.197	.069	.215
240	.183	.202	.072	.215
250	.177	.207	.075	.215
260	.170	.211	.077	.214
270	.164	.215	.080	.213
280	.158	.218	.082	.212
290	.152	.221	.085	.211
300	.146	.223	.087	.210
310	.141	.225	.089	.209
320	.136	.226	.091	.207
330	.131	.227	.093	.205
340	.127	.228	.095	.204
350	.123	.228	.097	.202
360	.119	.229	.098	.200
370	.115	.228	.100	.197
380	.112	.228	.101	.195
390	.109	.227	.103	.193
400		.226	.104	.191
460	.106	.218	.111	.177
520	.091		.116	.165
	.081	.209		.154
580	.073	.200	.120	.145
640 700	.067	.192	.123	
700 760	.062	.185	.126	.137
760 820	.058	.178	.128	.131
820	.055	.172	.130	.124
880	.052	.167	.131	.119
940	.049	.163	.132	.115
1000	.047	.158	.133	.110
1060 Rimel	.045	.155	.134	.106
Final	.014	.088	.161	.041

Absorbance	Data	For	Experiment	8.13	$[CuCl_2]_{T}:[cnge]_{T}$	4:80mM

Mine (mine		Shear		
Time/mins	820nm	Absorl 640nm	540nm	715nm
	02014	0401111	5 2014	
0	.374	.070	.015	.219
10	.366	.076	.018	.221
20	.360	.081	.021	.221
30	.353	.088	.024	.222
40	.345	.094	.026	.222
50	.337	.101	.030	.223
60	.328	.109	.032	.223
70	.320	.116	.036	.224
80	.311	.124	.039	.225
90	.302	.131	.043	.225
100	.293	.139	.046	.226
110	.285	.147	.049	.226
120	.275	.154	.053	.227
130	.266	.162	.056	.227
140	.257	.169	.060	.228
150	.248	.177	.063	.228
160	.238	.184	.067	.228
170	.230	.191	.070	.228
180	.221	.197	.074	.228
190	.213	.204	.077	.228
200	.204	.209	.080	.228
210	.196	.215	.083	.227
220	.188	.220	.087	.227
230	.181	.225	.089	.226
240	.173	.229	.092	.225
250	.166	.232	.095	.224
260	.160	.235	.097	.222
270	.154	.237	.100	.221
280 290	.148	.240	.102	.219 .217
300	.142	.241 .242	.104 .106	.217
310	.137 .132	.242	.108	.213
320	.128	.243	.110	.213
330	.123	.243	.112	.208
340	.120	.242	.113	.206
350	.116	.242	.115	.203
360	.113	.240	.116	.201
370	.109	.240	.117	.198
380	.105	.238	.119	.196
390	.104	.236	.120	.193
400	.101	.235	.121	.190
450	.090	.226	.126	.178
510	.081	.216	.130	.166
570	.074	.206	.133	.155
630	.068	.198	.136	.147
690	.064	.191	.138	.139
750	.060	.185	.140	.133
810	.057	.179	.141	.127
870	.054	.174	.143	.122
930	.052	.169	.144	.117
990	.050	.165	.145	.113
1050	.048	.162	.146	.110
1110	.046	.158	.146	.107
1170	.045	.155	.147	.104
Final	.012	.087	.156	.039

Absorbance Da	ta for Experi	ment 8.14 L		T
Time/mins		Absort	oance	
	820nm	640nm	540nm	715nm
0	.371	.070	.013	.222
10	.365	.076	.016	.223
20	.358	.083	.019	.224
30	.350	.089	.022	.224
40	.341	.097	.025	.224
50	.333	.104	.028	.225
60	.324	.111	.032	.225
70	.315	.119	.035	.226
80	.305	.127	.039	.226
90	.296	.135	.042	.226
100	.286	.144	.046	.227
110	.276	.151	.050	.227
120	.266	.159	.053	.227
130	.257	.167	.057	.227
140	.247	.175	.061	.228
150	.238	.182	.064	.227 .227
160 170	.228	.190	.068 .072	.227
180	.219	.196	.075	.227
190	.210	.203 .209	.078	.226
200	.201	.209	.082	.226
210	.193	.215	.085	.225
220	.185 .177	.225	.088	.224
230	.169	.229	.000	.223
240	.162	.233	.094	.223
250	.155	.235	.096	.220
260	.149	.238	.099	.218
270	.143	.240	.101	.216
280	.137	.242	.104	.214
290	.132	.243	.106	.212
300	.127	.243	.108	.210
310	.123	.243	.110	.207
320	.119	.243	.112	.205
330	.115	.243	.113	.202
340	.111	.242	.115	.200
350	.108	.240	.116	.197
360	.105	.239	.118	.195
370	.102	.238	.119	.192
380	.099	.236	.120	.189
390	.097	.235	.121	.187
400	.094	.233	.122	.184
440	.086	.226	.126	.175
500	.077	.216	.130	.163
560	.070	.206	.134	.153
620	.065	.198	.136	.144
680	.061	.191	.138	.137
740	.057	.185	.140	.130
800	.054	.179	.142	.125
860	.052	.174	.143	.120
920	.050	.170	.145	.116
980	.048	.166	.146	.112
1040	.046	.162	.146	.109
1100	.045	.159	.147	.106
1160 Bizal	.043	.156	.148	.103
Final	.014	.092	.155	.043

Absorbance	Data	For	Experiment	8.14	[CuCl ₂];[cnge]_4:100mM
ADJOI DAIICE	Data	LOL	Public Turgue	0.1#	

t/mins	0	20	40	60	80	100	120	140	160	180	200	240	280
$\frac{k_1 = k_2}{k_1 = k_2} = 0.01 \text{ min}$	-1												
[Cu(cnge)]/mM	2.0	1.64	1.34	1.10	0.90	0.74	0.60	0.49	0.40	0.33	0.27	0.18	0.15
[I]/mM	0	0	0	0	0	0	0	0	0	0	0	0	0
[Cu(aOeu)]/mM	0	0.34	0.66	0.90	1.10	1.26	1.40	1.51	1.60	1.67	1.73	1.82	1.85
10 ³ xA ⁸²⁰	181	158	141	126	113	104	95	88	83	78	75	69	67
$k_1 = 0.01, k_2 = 0$.012	······									· · · · · · · · · · · · · · · · · · ·		
[Cu(cnge)]/mM	2.0	1.64	1.34	1.10	0.40	0.74	0.60	0.49	0.40	0.33	0.27	0.18	0.15
[I]/mM	0	0.32	0.51	0.62	0.66	0.67	0.64	0.61	0.55	0.50	0.44	0.35	0.27
[Cu(aOeu)]/mM	0	0.04	0.15	0.28	0.44	0.59	0.76	0.90	1.05	1.17	1.29	1.47	1.58
10 ³ xA ⁸²⁰	181	178	172	164	154	144	134	125	116	108	101	91	84
$\frac{k_1 = 0.01, k_2 0.01}{1000000000000000000000000000000000$	016								····				
[Cu(cnge)]/mM	2.0	1.64	1.34	1.10	0.90	0.74	0.60	0.49	0.40	0.33	0.27	0.18	0.12
[I]/mM	0	0.31	0.48	0.55	0.57	0.55	0.51	0.47	0.42	0.36	0.31	0.23	0.17
[Cu(aOeu)]/mM	0	0.05	0.18	0.35	0.53	0.71	0.89	1.04	1.18	1.31	1.42	1.59	1.71
$10^3 x A^{820}$	181	178	170	160	148	137	126	117	108	100	94	83	76

Computed Values for the Decay of the 820nm Absorption

 A^{820} values calculated using ϵ^{820} for Cu(cnge) and I = 90.5 lmol⁻¹cm⁻¹ and for Cu(aOeu) = 29.0 lmol⁻¹cm⁻¹

APPENDIX B

OBSERVED AND CALCULATED STRUCTURE FACTORS

Observed and calculated structure factors for $[Cu(cnge)_2(H_2O)_2](NO_3)_2.2H_2O$

H /FO/	/FC/ PHI	H /FO/	/FC/ PHI	H /FO/	/FC/ PHI
** K= 0	L= 0 **	** K= 7	L= 0 **	** K= -6	L= 1 **
4	207 0	2 405			450 0
1 274 2 303	297 0 277 0	-2 188	-	-1 136	152 0
2 303	211 0	-1 75 0 183	80 0 210 D	0 243	256 0 203 0
** K= 1	L= 0 **	2 210	210 D 189 D	1 198 2 211	203 0 199 0
		2 210	107 U	2 211	199 0
-1 160	204 0	** K= 8	L= 0 **	** K= -5	L= 1 **
0 245	241 D				
2 144	119 0	-2 99	97 0	-2 139	145 0
		-1 135	119 D	-1 362	341 0
** K= 2	L= 0 **	0 115	110 180	0 248	245 0
				1 322	349 0
-2 199	238 0	** K= 9	L= 0 **	2 194	202 0
-1 1218	1228 0				
0 321	337 0	-2 109	96 D	** K= -4	L= 1 **
1 514	420 0	-1 139	131 0		
2 159	143 0	1 179	169 D	-2 151	132 0
				-1 332	308 0
** K= 3	L= () **	** K= 11	L= 0 **	0 400	396 0
				1 441	420 0
-2 157	169 D	-1 94	99 D	2 114	116 180
-1 238	234 0				
0 192	187 0	** K=-11	L= 1 **	** K= -3	L= 1 **
1 127	113 0				
		2 100	90 O	-3 140	137 0
** K= 4	L= 0 **			-2 134	132 0
		** K=-10	L= 1 **	0 555	560 0
-3 133	133 0			1 372	394 0
-2 336	363 D	1 150	160 0		
-1 334	316 0			** K= -2	L= 1 **
0 282	283 0	** K= -9	L= 1 **		
1 300	272 0			-3 119	107 0
		0 99	119 D	-2 196	183 0
** K= 5	L= 0 **	1 219	209 0	0 469	450 0
7 4 4 5 5		2 107	11 8 0	1 136	136 180
-3 123	123 0	_		2 136	1 59 0
-2 158	15 3 0	** K = -8	L= 1 **		
-1 304	305 0	-		** K= -1	L= 1 **
1 89	98 0	0 158	181 D		
3 159	126 0	1 131	112 0	-2 322	2 79 0
		2 143	127 0	-1 633	546 0
** K= 6	L= () **			0 352	351 0
		** K= -7	L= 1 **	_	
-3 107	115 0	* • • • •		** K= 0	L= 1 **
-2 163	172 0	-1 124	121 D		
	134 0	0 351	370 0	-2 486	395 0
0 236	247 0	1 200	189 0	-1 224	284 0
1 105	107 180	2 175	177 0	0 252	168 0
				1 264	299 0
			· ·		

,

H /FO/	/FC/ PHI	H /FO/	/FC/ PHI	H /FO/ /FC/ PHI
** K= 1 -3 119	L= 1 ** 137 0	1 117 2 112	121 D 105 D	-2 252 252 0 0 261 262 0
-2 333 -1 102	353 0 108 0	** K= 8	L= 1 **	** K= -5 L= 2 **
1 142 2 139	132 180 116 0	0 209	229 D	-3 128 122 0 -2 150 126 0
** K= 2	L= 1 **	** K= 9	L= 1 **	-1 498 466 0 0 382 364 0
-3 149 -2 219	165 D 242 D	-1 136 0 109	129 D 119 D	1 95 102 0 2 87 89 0 3 113 107 0
-1 358 0 391	282 0 413 0	** K= 10	L= 1 **	** K= -4 L= 2 **
1 97 3 1 38	88 0 125 0	-1 135 1 91	128 0 103 D	-3 186 170 0
** K= 3	L= 1 **	** K=-12	L= 2 **	-1 350 312 0 0 313 275 180
-3 171 -1 106	188 0 108 0	1 127	119 0	** K= -3 L= 2 **
1 205 3 147	181 0 136 0	** K=-11	L= 2 **	-3 138 117 0 -2 394 340 0
** K= 4	L= 1 **	1 139	118 0	-1 417 371 0 0 163 180 0
-3 160 -2 111	170 0 111 0	** K=-10 -1 113	L= 2 ** 128 0	1 315 329 0 2 170 204 0 3 95 95 0
-1 393 1 111	366 D 109 D	0 158 1 137	189 D 149 D	** K= -2 L= 2 **
2 206 3 139	193 0 110 0	** K= -9	L= 2 **	-2 217 201 0
** K= 5	L= 1 **	-1 138 0 138	138 0 143 0	0 179 173 180 1 81 94 180
-2 85 -1 173	92 0 157 0	** K= -8	L= 2 **	** K= -1 L= 2 **
2 154	143 0	-2 114	120 0	-3 202 164 0 -2 232 226 0
** K= 6 -2 208	L= 1 ** 207 0	-1 254 1 128	255 O 130 O	-1 274 276 0 0 501 466 0
0 106	207 0 122 0 261 0	** K= -7	L= 2 **	1 357 431 0 2 118 124 0
2 94	81 D	-2 178 -1 113	167 0 125 0	** K= 0 L= 2 **
** K= 7	L= 1 **	0 279 1 211	301 0 205 0	-2 172 182 0 -1 274 308 180
-2 125 0 154	133 0 156 0	** K= -6	L= 2 **	0 165 138 0 1 139 124 180

H /FO/	/FC/ PHI	H /FO/	/FC/ PHI	H /F0/	/FC/ PHI
2 196	221 0	-2 98	117 D	** K= -4	L= 3 **
** K= 1	L= 2 **	** K= 8	·L= 2 **	-3 108	119 0
-4 119	97 0	2 454	477 0	-2 131	115 0
-2 174	83 0 227 0	-2 154		-1 79	75 0
-1 274	227 0 298 0	-1 166 0 181	148 D 199 D	1 242	269 0
0 595	537 0	1 165		** K= -3	L= 3 **
2 217	226 0	1 105	102 0	** K3	
	220 0	** K= 10	L= 2 **	-3 109	100 0
** K= 2	L= 2 **	K- IU		-2 115	110 0
-		-1 125	115 0	-1 422	344 0
-3 116	113 0	0 106		1 284	330 0
-2 93	84 180	0.00		3 168	162 Ŭ
-1 434	355 0	** K=-11	L= 3 **	5 .00	
1 381	367 0			** K= -2	L= 3 **
2 182	176 0	0 85	91 0		
				-3 115	117 0
** K= 3	L= 2 **	** K=-10	L= 3 **	-1 155	148 0
				0 439	393 0
-3 128	119 0	1 117	122 D	2 95	108 0
-2 182	164 0				
-1 274	242 0	** K= -9	L= 3 **	** K= -1	L= 3 **
0 210	193 18 D				
1 332	316 0	-1 146		-2 218	226 0
	-	-1 146 0 95		0 369	330 0
	316 0 L= 2 **	0 95	108 0	0 369 1 120	330 0 153 0
** K= 4	L= 2 **			0 369	330 0
** K= 4 -2 255	L= 2 ** 222 0	0 95 ★★ K= -8	108 0 L= 3 **	0 369 1 120 2 265	330 0 153 0 290 0
** K= 4 -2 255 -1 150	L= 2 ** 222 0 150 0	0 95 ** K= -8 0 180	108 0 L= 3 ** 192 0	0 369 1 120	330 0 153 0
** K= 4 -2 255 -1 150 0 394	L= 2 ** 222 0 150 0 392 0	0 95 ★★ K= -8	108 0 L= 3 ** 192 0	0 369 1 120 2 265 ** K= 0	330 0 153 0 290 0 L= 3 **
** K= 4 -2 255 -1 150 0 394 1 283	L= 2 ** 222 0 150 0 392 0 271 0	0 95 ** K= -8 0 180 2 108	108 0 L= 3 ** 192 0 87 0	0 369 1 120 2 265 ** K= 0 -2 236	330 0 153 0 290 0 L= 3 ** 273 0
** K= 4 -2 255 -1 150 0 394 1 283 2 98	L= 2 ** 222 0 150 0 392 0 271 0 86 0	0 95 ** K= -8 0 180	108 0 L= 3 ** 192 0 87 0	0 369 1 120 2 265 ** K= 0 -2 236 -1 230	330 0 153 0 290 0 L= 3 273 0 272 0
** K= 4 -2 255 -1 150 0 394 1 283	L= 2 ** 222 0 150 0 392 0 271 0	0 95 ** K= -8 0 180 2 108 ** K= -7	108 0 L= 3 ** 192 0 87 0 L= 3 **	0 369 1 120 2 265 ** K= 0 -2 236 -1 230 1 174	330 0 153 0 290 0 L= 3 273 0 272 0 173 0
** K= 4 -2 255 -1 150 0 394 1 283 2 98	L= 2 ** 222 0 150 0 392 0 271 0 86 0	0 95 ** K= -8 0 180 2 108 ** K= -7 -2 180	108 0 L= 3 ** 192 0 87 0 L= 3 ** 175 0	0 369 1 120 2 265 ** K= 0 -2 236 -1 230	330 0 153 0 290 0 L= 3 273 0 272 0
** K= 4 -2 255 -1 150 0 394 1 283 2 98 3 122	L= 2 ** 222 0 150 0 392 0 271 0 86 0 111 0	0 95 ** K= -8 0 180 2 108 ** K= -7	108 0 L= 3 ** 192 0 87 0 L= 3 ** 175 0	0 369 1 120 2 265 ** K= 0 -2 236 -1 230 1 174	330 0 153 0 290 0 L= 3 273 0 272 0 173 0
** K= 4 -2 255 -1 150 0 394 1 283 2 98 3 122 ** K= 5 -3 101	L= 2 ** 222 0 150 0 392 0 271 0 86 0 111 0	0 95 ** K= -8 0 180 2 108 ** K= -7 -2 180	108 0 L= 3 ** 192 0 87 0 L= 3 ** 175 0	0 369 1 120 2 265 ** K= 0 -2 236 -1 230 1 174 2 107	330 0 153 0 290 0 L= 3 273 0 272 0 173 0 114 0
** K= 4 -2 255 -1 150 0 394 1 283 2 98 3 122 ** K= 5	L= 2 ** 222 0 150 0 392 0 271 0 86 0 111 0 L= 2 **	0 95 ** K= -8 0 180 2 108 ** K= -7 -2 180 2 117	108 0 L= 3 ** 192 0 87 0 L= 3 ** 175 0 108 0	0 369 1 120 2 265 ** K= 0 -2 236 -1 230 1 174 2 107	330 0 153 0 290 0 L= 3 273 0 272 0 173 0 114 0
** K= 4 -2 255 -1 150 0 394 1 283 2 98 3 122 ** K= 5 -3 101 0 186	L= 2 ** 222 0 150 0 392 0 271 0 86 0 111 0 L= 2 ** 104 0	0 95 ** K= -8 0 180 2 108 ** K= -7 -2 180 2 117	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 369 1 120 2 265 ** K= 0 -2 236 -1 230 1 174 2 107 ** K= 1	330 0 153 0 290 0 L= 3 ** 273 0 272 0 173 0 114 0 L= 3 **
** K= 4 -2 255 -1 150 0 394 1 283 2 98 3 122 ** K= 5 -3 101	L= 2 ** 222 0 150 0 392 0 271 0 86 0 111 0 L= 2 ** 104 0	0 95 ** K= -8 0 180 2 108 ** K= -7 -2 180 2 117 ** K= -6	108 0 L= 3 ** 192 0 87 0 L= 3 ** 175 0 108 0 L= 3 ** 130 0	0 369 1 120 2 265 ** K= 0 -2 236 -1 230 1 174 2 107 ** K= 1 -2 119	330 0 153 0 290 0 L= 3 273 0 272 0 173 0 114 0 L= 3 ** 157 0
** K= 4 -2 255 -1 150 0 394 1 283 2 98 3 122 ** K= 5 -3 101 0 186 ** K= 6	L= 2 ** 222 0 150 0 392 0 271 0 86 0 111 0 L= 2 ** 104 0 183 0 L= 2 **	0 95 ** K= -8 0 180 2 108 ** K= -7 -2 180 2 117 ** K= -6 -2 142	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 369 1 120 2 265 ** K= 0 -2 236 -1 230 1 174 2 107 ** K= 1 -2 119 -1 105 0 488 1 212	330 0 153 0 290 0 L= 3 273 0 272 0 173 0 114 0 L= 3 157 0 119 0 448 0 224 0
** $K = 4$ -2 255 -1 150 0 394 1 283 2 98 3 122 ** $K = 5$ -3 101 0 186 ** $K = 6$ -3 105	L= 2 ** 222 0 150 0 392 0 271 0 86 0 111 0 L= 2 ** 104 0 183 0 L= 2 ** 101 0	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 369 1 120 2 265 ** K= 0 -2 236 -1 230 1 174 2 107 ** K= 1 -2 119 -1 105 0 488	330 0 153 0 290 0 L= 3 273 0 272 0 173 0 114 0 L= 3 ** 157 0 119 0 448 0
** $K = 4$ -2 255 -1 150 0 394 1 283 2 98 3 122 ** $K = 5$ -3 101 0 186 ** $K = 6$ -3 105 -2 158	L= 2 ** 222 0 150 0 392 0 271 0 86 0 111 0 L= 2 ** 104 0 183 0 L= 2 ** 101 0 128 0	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	330 0 153 0 290 0 L= 3 273 0 272 0 173 0 114 0 L= 3 157 0 119 0 448 0 224 0 84 0
** $K = 4$ -2 255 -1 150 0 394 1 283 2 98 3 122 ** $K = 5$ -3 101 0 186 ** $K = 6$ -3 105 -2 158 -1 281	L= 2 ** 222 0 150 0 392 0 271 0 86 0 111 0 L= 2 ** 104 0 183 0 L= 2 ** 101 0 128 0 259 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 369 1 120 2 265 ** K= 0 -2 236 -1 230 1 174 2 107 ** K= 1 -2 119 -1 105 0 488 1 212	330 0 153 0 290 0 L= 3 273 0 272 0 173 0 114 0 L= 3 157 0 119 0 448 0 224 0
** K= 4 -2 255 -1 150 0 394 1 283 2 98 3 122 ** K= 5 -3 101 0 186 ** K= 6 -3 105 -2 158 -1 281 0 237	L= 2 ** 222 0 150 0 392 0 271 0 86 0 111 0 L= 2 ** 104 0 183 0 L= 2 ** 101 0 128 0 259 0 240 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 369 1 120 2 265 ** K= 0 -2 236 -1 230 1 174 2 107 ** K= 1 -2 119 -1 105 0 488 1 212 2 88 ** K= 2	330 0 153 0 290 0 L= 3 273 0 272 0 173 0 114 0 L= 3 157 0 119 0 448 0 224 0 84 0 L= 3 **
** $K = 4$ -2 255 -1 150 0 394 1 283 2 98 3 122 ** $K = 5$ -3 101 0 186 ** $K = 6$ -3 105 -2 158 -1 281 0 237 1 186	L= 2 ** 222 0 150 0 392 0 271 0 86 0 111 0 L= 2 ** 104 0 183 0 L= 2 ** 101 0 128 0 259 0 240 0 170 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 369 1 120 2 265 ** K= 0 -2 236 -1 230 1 174 2 107 ** K= 1 -2 119 -1 105 0 488 1 212 2 88 ** K= 2 -3 138	330 0 153 0 290 0 L= 3 273 0 272 0 173 0 114 0 L= 3 157 0 119 0 448 0 224 0 84 0 L= 3 159 0
** K= 4 -2 255 -1 150 0 394 1 283 2 98 3 122 ** K= 5 -3 101 0 186 ** K= 6 -3 105 -2 158 -1 281 0 237	L= 2 ** 222 0 150 0 392 0 271 0 86 0 111 0 L= 2 ** 104 0 183 0 L= 2 ** 101 0 128 0 259 0 240 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	330 0 153 0 290 0 L= 3 273 0 272 0 173 0 114 0 L= 3 157 0 119 0 448 0 224 0 84 0 L= 3 159 0 154 0
** $K = 4$ -2 255 -1 150 0 394 1 283 2 98 3 122 ** $K = 5$ -3 101 0 186 ** $K = 6$ -3 105 -2 158 -1 281 0 237 1 186	L= 2 ** 222 0 150 0 392 0 271 0 86 0 111 0 L= 2 ** 104 0 183 0 L= 2 ** 101 0 128 0 259 0 240 0 170 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 369 1 120 2 265 ** K= 0 -2 236 -1 230 1 174 2 107 ** K= 1 -2 119 -1 105 0 488 1 212 2 88 ** K= 2 -3 138	330 0 153 0 290 0 L= 3 273 0 272 0 173 0 114 0 L= 3 157 0 119 0 448 0 224 0 84 0 L= 3 159 0

H /F0/	/FC/ PHI	H /FO/	/FC/ PHI	H /FO/	/FC/ PHI
2 123	123 0	** K= -8	L= 4 **	2 151	168 0
** K= 3	L= 3 **	0 144	-	** K= 0	L= 4 **
-3 158	131 0	1 143 2 133	133 D 120 D	-2 89	101 D
-1 470	406 0			-1 244	250 0
1 126	125 0	** K= -7	L= 4 **	0 271	260 0
3 100	110 0	-2 119	111 0	2 125	129 0
** K= 4	L= 3 **	-1 114	120 0	** K= 1	L= 4 **
		2 111	109 0		
-3 125	110 0		-	-2 136	161 0
-1 369 0 92	313 0	** K= -6	L= 4 **	0 321	306 0
1 238	85 0 229 0	-2 111	101 0	1 277 2 218	287 0 206 0
. 250		0 321	323 D	2 210	200 0
** K= 5	L= 3 **	1 135	144 D	** K= 2	L= 4 **
-3 97	76 0	** K= -5	L= 4 **	-2 126	125 0
-2 191	165 0		L - 4	-1 142	130 0
1 117	104 0	-3 120	109 0	1 116	109 0
2 118	11 9 0	-2 116	104 D	2 95	87 0
		0 135	138 0	-	
** K= 6	L= 3 **	1 118	120 0	** K= 3	L= 4 **
-2 181	181 0	** K= -4	L= 4 **	-3 108	102 0
-1 81	90 0			0 255	262 0
0 172 1 97	171 0 91 0	-3 130	131 0	1 327	322 0
2 126	91 0 114 0	-1 491 1 223	446 0 249 0	2 136	130 0
		2 127	124 0	** K= 4	L= 4 **
** K = 7	L= 3 **	3 91	97 0		
0 124	126 0	** K= -3	1 - / ++	1 178	166 O
0 124	120 0	** K= -3	L= 4 **	** K= 5	1= 4 **
** K= 8	L= 3 **	-1 295	261 D		
		1 147		-2 239	196 0
0 152				-1 196	175 0
** K= 9		** K= -2	L= 4 ★★	0 271	279 0
	L - J **	-2 258	283 D	1 196 2 119	206 0 112 0
-1 89	91 0	0 367	338 Q	2 117	
		1 229	256 0	** K= 6	L= 4 **
** K= 10	L= 3 **	2 91	92 0		
-1 132	145 0	** K= -1	1 = / ++	-1 107 0 132	
				0 132	147 0
** K= -9 (L= 4 **			** K= 7	L= 4 **
0 107	112 0	-2 167	194 0	~ ~	
	112 0	0 206	171 0	-2 134	121 0

ę

H /FO/	/FC/ PHI	H /FO/	/FC/ PHI	H /FO/	/FC/ PHI
-1 144 0 199	146 D 215 D	** K= -4	L= 5 **	-2 150 -1 279	138 O 256 O
1 130	130 0	-1 146	-	0 320	312 0
	-	0 206	199 0	1 198	207 0
** K= 8	L= 4 **	2 125	126 0		.
-2 105	107 0	** K= -3	L= 5 **	** K= 4	L= 5 **
A A K = 0				-3 125	124 0
** K= 9	L= 4 **	-3 114	114 0	-1 268	258 0
4 457	A / F 0	-1 331	292 0	1 207	199 0
-1 153	145 0	0 134	134 0	.	. .
0 99	112 0	1 357	402 0	** K= 5	L= 5 **
** K= 10	L= 4 **	** K= -2	L= 5 **	-2 158	156 0
-1 04				-1 242	206 0
-1 91	82 0	-2 96 -1 80	105 0 91 0	0 157	185 0
** K=-10	L= 5 **	1 270	290 D	** K= 6	L= 5 **
		2 115	109 0		
-1 124	140 0	3 117	95 0	-2 174	165 0
		5		0 234	255 0
** K= -9	L= 5 **	** K= -1	L= 5 **	• •••	
				** K= 7	L= 5 **
1 158	147 0	-2 246	263 0		
		-1 119	129 0	-2 117	117 0
** K= -8	L= 5 **	0 745	659 0		
		2 155	182 D	** K= 8	L= 5 **
-2 141	156 C				
0 124	140 0	** K= 0	L= 5 **	-1 162	155 0
2 115	94 D	• • • • •			
	• - • · · ·	0 433	391 0	** K= 9	L= 5 **
** K= -7	L= 5 **	1 135	135 0		
-2 126	444 0	2 150	155 O	0 103	107 0
0 217		11 V- 1	1 m E ++	** K=-10	1 - 4 4 4
2 98	117 0	** K- I	L-) **	** K=-10	L- 0 **
2 70	117 0	-3 96	108 D	1 11/	116 0
** K= -6	1 = 5 ++	-2 143	158 D	1 114	110 U
	L-)	0 203	186 0	** K= -9	1 - 4 + +
-1 109	102 D	1 300	299 0	AA K= -9	
1 192	183 0	2 134	126 D	1 127	103 0
		2 134	120 0	1 125	105 0
** K= -5	L= 5 **	** K= 2	L= 5 **	** K= -8	L= 6 **
-3 122	114 0	-1 295	261 0	-2 110	120 0
-2 127	123 0	0 224		-1 90	92 0
-1 166	153 0	1 96	99 0	0 168	180 0
1 168	174 0				
2 135	140 0	** K= 3	L= 5 **	** K= -7	L= 6 **

ŧ

H /F0/	/FC/ PHI	H /FO/	/FC/ PHI	H /F0/	/FC/ PHI
0 226		** K= 0	L= 6 **	-2 109	99 C
1 125				-1 88	82 D
2 135	129 0	-2 195	216 0	0 139	156 0
		0 242	246 0		
** K = -6	L= 6 **	1 163	148 D	** K= 8	L= 6 **
		2 157	145 0		
-2 97	109 0			-2 94	87 O
-1 157	153 D	** K= 1	L= 6 **	-1 142	139 0
0 118	123 0			0 148	154 0
1 146	146 D	-2 240	250 0		
2 107		-1 254	248 0	** K= 9	L= 6 **
		0 159	152 0		
** K= -5	L= 6 **			-1 129	122 0
		** K= 2	L= 6 **		
-2 169	147 0			** K=-11	L= 7 **
-1 257		-3 111	113 0		
0 155		-1 227		0 93	107 0
1 219				0 73	107 0
1 213	251 0		244 D	1 × M = 40	1
** K= -4	1	1 224	226 D	** K=-10	L= 7 **
** K4	L= 6 **			0 404	400 0
-7 407	407 0	** K= 3	L= 6 **	0 124	122 0
-3 127	-				.
-1 197		-3 164	166 D	** K= -9	L= 7 **
0 267		-1 173	162 D		
1 245		0 75	74 0	-1 169	165 0
396	0 80 0	1 128	129 0		_
				** K= -8	L= 7 **
** K= -3	L= 6 **	** K= 4	L= 6 **		_
				-2 111	132 0
-3 126		-2 104	1 20 D	-1 158	1 68 0
-2 129		-1 310	282 D	0 168	177 0
-1 282		0 141	159 D	1 159	150 0
0 299		1 106	111 0		
1 151	••••	2 124	113 0	** K= -7	L= 7 **
2 113	111 0				
		** K= 5	L= 6 **	-2 166	
** K= -2	L= 6 **			0 200	193 0
		-2 123	124 D		
-2 145	176 0	0 98	116 0	** K= -6	L= 7 **
-1 347		1 115		·· •	
0 226				-2 179	188 0
2 111		** K= 6	L= 6 **	-1 249	245 0
	··- •			0 245	259 0
** K= -1	L= 6 **	-2 173	173 0	1 93	
-		-1 100	93 0	2 91	93 0
-2 229	251 0	0 147		2 71	U C
-1 273		1 140		** K= -5	L= 7 **
0 345		T T T T T T T T T T T T T T T T T T T	ט כדי	** K= - J	L- / XX
1 119		AA K- 7	L= 6 **	7 447	40/ 0
• • • • • • •	176 0	** K= 7	L= 0 **	-3 113	
				-1 256	239 0

** K = -4 L = 7 ** ** K = -5 L = 8 ** -3 156 146 0 -3 92 81 0 0 86 103 0 -1 316 276 0 0 153 174 0 ** K = -4 L = 8 ** 1 205 218 0 -1 170 146 0 -3 128 128 0 ** K = -3 L = 7 ** -5 L = 7 ** -3 128 128 0 ** K = -3 L = 7 ** K = 5 L = 7 ** K = -3 L = 8 ** -2 162 132 0 -1 151 137 0 -1 256 252 0 1 256 252 0 1 188 0 1 256 252 0 -1 107 103 0 255 236 0 -1 148 145 0 -2 154 162 0 0 <td< th=""><th>H /FO/ /</th><th>FC/ PHI</th><th>н /</th><th>F0/</th><th>/FC/ f</th><th>PHI</th><th>. Н.,</th><th>/F0/</th><th>/FC/ F</th><th>PHI</th></td<>	H /FO/ /	FC/ PHI	н /	F0/	/FC/ f	PHI	. Н.,	/F0/	/FC/ F	PHI
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	** K = -4 L:	= 7 **	** K=	4	L= 7	**	** K=	-5	L= 8	**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3 156	146 D	-3	92 ·	81	D	0	86	103	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							•		107	Ŭ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•		•••	•	** K=	-4	1= 8	**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			** K=	5	1 = 7	**	No. Ko	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_		,	L 1		- 3	128	128	n
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		// 0	_7	172	140	n				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	** *= -3 1:	- 7 ++				-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- /								
1 96 113 0 ** K = 6 L = 7 ** ** K = -3 L = 8 ** ** K = -2 L = 7 ** -2 176 175 0 -1 107 103 0 0 255 236 0 -1 331 321 0 -1 107 103 0 0 255 236 0 -1 354 238 0 ** K = 7 L = 7 ** ** K = -2 L = 8 ** 1 227 230 0 ** K = 7 L = 7 ** ** K = -2 L = 8 ** -1 148 168 0 -3 103 102 0 ** K = 0 L = 7 ** 1 138 106 0 2 99 110 0 *** K = 0 L = 7 ** 1 138 106 0 -1 246 228 0 0 1142 1410 0 ** K = -1 L = 8 <t< td=""><td>-2 162</td><td>149 0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-2 162	149 0								
*** K= 6 L= 7 ** ** K= -3 L= 8 ** -2 176 175 0 -1 107 103 0 0 255 236 0 -1 331 321 0 -1 107 103 0 0 255 236 0 0 254 238 0 ** K= 7 L= 7 ** ** K= -2 L= 8 ** 1 227 230 0 ** K= 7 L= 7 ** ** K= -2 L= 8 ** 0 287 252 0 -1 148 145 0 -2 154 162 0 0 128 124 0 ** K= 1 138 106 0 -2 206 220 0 0 -1 242 268 0 -1 142 141 0 ** K= -2			U	107	100	U	ſ	200	252	U
** $K = -2$ $L = 7$ ** -2 176 175 0 -1 107 103 0 -1 182 182 0 -1 331 321 0 0 254 238 0 ** $K = 7$ $L = 7$ ** $K = -2$ $L = 8$ ** 1 227 230 0 -2 186 168 0 -3 103 102 0 ** $K = -1$ $L = 7$ ** -2 186 168 0 -3 103 102 0 ** $K = -1$ $L = 7$ ** -1 148 145 0 -2 154 162 0 0 102 107 0 -1 294 268 C 0 287 252 0 1 1 128 124 0 ** $K = -11$ $L = 8$ ** -2 220 245 0 ** $K = -11$ $L = 8$ ** -1 145 121 0 0 156 149 0 -1 246 228 0 2 99 110 0 ** $K = 0$ $L = 7$ ** 1 138 106 0 ** $K = -1$ $L = 8$ ** -1 145 121 0 0 156 149 0 -1 246 228 0 1 142 141 0 ** $K = 1$ $L = 7$ ** -1 387 354 0 2 90 88 0 -2 303 296 0 0 137 142 0 -1 246 228 0 1 114 125 0 ** $K = -7$ $L = 8$ ** ** $K = 0$ $L = 8$ ** ** $K = 2$ $L = 7$ ** -2 206 220 0 0 137 142 0 -1 246 228 0 1 142 141 0 ** $K = -1$ $L = 8$ ** ** $K = 0$ $L = 8$ ** ** $K = 1$ $L = 7$ ** -2 303 296 0 -1 271 254 0 1 108 94 0 ** $K = 3$ $L = 7$ ** -2 119 118 0 2 91 88 0 ** $K = -1$ $L = 8$ ** ** $K = 3$ $L = 7$ ** -2 101 113 0 -1 288 90 0 -1 275 265 0 1 208 219 0 ** $K = -6$ $L = 8$ ** -3 124 146 0 -1 88 90 0 -1 89 103 0 ** $K = 3$ $L = 7$ ** -2 101 113 0 -1 88 90 0 -1 222 210 0 1 113 10 0 ** $K = 2$ $L = 8$ **	90	115 0		4	7		M-	7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_ 7	** K=	0	L= /	**	** K=	- 3	L= 6	**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	** K= =2 L	= (**	•		450	~				~
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 47/									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	-1 '	107	103	D	0	255	236	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				_	_			_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			** K=	7	L= 7	**	** K=	-2	L= 8	**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 227 2	230 0								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-2	186	168	D	-3	103	102	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	** K= -1 L:	= 7 **			145	0	-2	154	162	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	102	107	D	- 1	294	268	C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		252 0					0	373	336	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 128	124 0	** K=-	11	L= 8	**	1	83	82	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							2	99		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	** K= 0 L=	= 7 **	1 '	138	106	0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-	** K=	-1	L= 8	**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2 220 2	245 0	** K= -	-9	L= 8	**				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 145	121 0					-2	206	220	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		365 0	0	156	149	0	-1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 147		-		• • •	-				
** K = 1 L = 7 ** -1 $387 354 0 2 90 88 0 -2 303 296 0$ 0 $221 211 0 -1 271 254 0$ 1 $114 125 0 ** K = -7 L = 8 ** 0 198 193 0$ 1 $108 94 0$ ** K = 2 L = 7 ** -2 119 118 0 2 $91 88 0 ** K = 1 L = 8 **$ -1 $275 265 0$ 1 $208 219 0 ** K = -6 L = 8 ** -3 124 146 0$ -2 $187 191 0$ ** K = 3 L = 7 ** -2 101 113 0 -1 88 90 0 -1 191 186 0 0 313 302 0 -1 222 210 0 1 113 110 0 ** K = 2 L = 8 **			** K= -	-8	L= 8	**	•		• • • •	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	** K= 1 L:	= 7 **		-	- •		** K=	0	L= 8	**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	137	142	0		•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 387 3	354 0					-2	303	296	n
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-			U				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			** K= -	-7	1 = 8	**				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				•	L - 0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	** K= 2 1:	= 7 **	-2	1 1 0	118	0	1	100	74	U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- ,					TT N m	4	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 275 3	265 0	Ľ	71	00	U	** K-	I	L- 0	**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							7	4.7/		0
** K = 3 L = 7 ** -2 101 113 0 -1 88 90 0 -1 191 186 0 0 313 302 0 -2 271 266 0 172 182 0 0 313 302 0 -1 222 210 0 1 113 110 0 ** K= 2 L= 8 ** 0 173 172 0 2 95 107 0		217 U	** K	-0	L- 0	**				
-1 191 186 0 0 313 302 0 -2 271 266 0 0 172 182 0 -1 222 210 0 1 113 110 0 ** K= 2 L= 8 ** 0 173 172 0 2 95 107 0	++ - 7 1.	- 7	2			~				
-2 271 266 0 0 172 182 0 -1 222 210 0 1 113 110 0 ** K= 2 L= 8 ** 0 173 172 0 2 95 107 0	J L	- / **								
-1 222 210 0 1 113 110 0 ** K= 2 L= 8 ** 0 173 172 0 2 95 107 0	_2 274 4	244					0	313	302	0
0 173 172 0 2 95 107 0										
							** K=	2	L= 8	**
1 100 173 0 -3 170 186 0			2	95	107	0				
	I 156 1	175 0					-3	170	186	0

H /F0/	/FC/ PHI	H /F0/	/FC/ PHI	H /FO/	/FC/ PHI
-2 163 -1 211	166 D 196 D	-3 143 -2 127	154 0 118 0	** K= 3	L= 9 **
** K= 3	L= 8 **	-1 364 0 127	· 329 D 131 D	1 107	120 0
		1 104	89 0	** K= 4	L= 9 **
-3 126 -2 114	147 0 115 0	** K= -4	L= 9 **	-2 104	127 0
-1 376	335 0	** K4		0 150	123 0 154 0
	_	-2 127	113 0	1 135	146 0
** K = 4	L= 8 **	-1 351	337 0	** K= 6	L= 9 **
-3 117	112 0	** K= -3	L= 9 **	K - 0	L- ,
-2 122	111 0			-1 104	113 0
-1 93	88 0	-2 283 -1 153	266 0 148 0	0 133	136 0
** K= 5	L= 8 **	0 117	119 0	** K= -9	L= 10 **
		1 96	100 D		
-3 119	94 0 225 0	++ K- 0		-1 92	95 0
-2 240	225 0	** K= -2	L= 9 **	0 156	150 0
** K= 6	L= 8 **	-3 135	149 0	** K= -8	L= 10 **
- 2 107	102 0	-2 268	275 0		4.0.4 0
-2 107	102 0	0 155 1 86	144 0 94 0	0 109	101 0
** K = 7	L= 8 **	1 00	/4 0	** K= -7	L= 10 **
0 100		** K= -1	L= 9 **		
0 109	108 0	-3 149	163 0	-2 147 -1 223	143 0 218 0
** K= -9	L= 9 **	-2 146	149 0	0 96	88 0
-4 435		-1 142	120 0	.	
-1 125 0 160	113 0 154 0	1 89	85 180	** K= -5	L= 10 **
1 110	127 0	** K= 0	L= 9 **	-2 219	224 0
				-1 100	
** K= -8	L= 9 **	-3 130 -2 146	151 0 176 0	0 97	102 0
1 91	97 0	-1 147	1 46 0	** K= -4	L= 10 **
.		0 214	212 0		
** K= -7	L= 9 **	2 97	114 0	-3 119	135 0
-2 196	177 0	** K= 1	L= 9 **	** K= -3	L= 10 **
-1 174	164 D			-	
0 262	251 0 98 0	0 79 2 100	84 180	-3 161	185 0
* ***	70 U	2 100	89 0	-1 112 1 101	121 0 107 0
** K= -6	L= 9 **	** K= 2	L= 9 **		
0 235	227 0	•	470 0	** K= -2	L= 10 **
0 235	227 0	-2 134 -1 249	130 D 237 O	2 154	152 0
** K= -5	L= 9 **		154 0	6 134	IJZ U

** K= -1	L= 10 **	1	133	127	0		25 114 0 16 120 0
-2 98 0 104	107 0 100 0	** K=	-4 '	L= 11	**	** K= 5	5 L= 11 **
2 112	113 0	-1	105	95	0		
_		1	126	130	0	-1 9	97 97 0
** K = 0	L= 10 **		_				
0 10/	44/ 0	** K=	-3	L= 11	**	** K= -8	3 L= 12 **
0 124 1 232	114 O 238 O	-2	148	148	0	0 1	73 161 0
1 252		-1	152	143	5	U I	5 101 0
** K= 1	L= 10 **	O	159	144	ŏ	** K= -(5 L= 12 **
		1	195	203	Õ		· _ ·
0 112	122 0						36 181 0
1 94	97 D	** K=	-2	L= 11	**	-)4 85 0
		-		• •	_	1 13	36 1 18 O
** K= 2	L= 10 **	-2	108	96	0	· • K - 1	
-1 185	168 0	0	174	160	0	** K= -:	5 L= 12 **
0 280	290 0	** K=	-1	L= 11	**	-1 1	1 116 0
1 100	111 0	K-	•				58 157 0
		-1	148	156	0		SO 122 O
** K= 3	L= 10 **	0	336	309	0		
		1	118	117	0	** K= -4	+ L= 12 **
-1 162	152 0		_				
1 127	121 0	** K=	0	L= 11	**		26 122 0
** K= 4	L= 10 **	-1	121	135	0		0 99 0 0 138 0
-		-1	142	117	0	0 1	10 136 0
-2 112	131 0	Ŭ			U	** K= -3	5 L= 12 **
-1 263	237 0	** K=	1	L= 11	**		
0 88	93 0			•			74 260 0
		-2	161	162	0	0 12	24 125 0
** K= 5	L= 10 **	-1	295	267	0		
-2 130	117 0	0	147 102	146 108	0 0	** K= -2	2 L= 12 **
D 121	140 D	•	102	100	U	-2 1	1 4 98 0
		** K=	2	L= 11	**	-1 17	
** K= 6	L= 10 **		-	-			
		-2	88	91	D	** K= -	1 L= 12 **
-2 158	138 0	-1	100	118	• D		
++ K - 7		1	116	119	0		38 241 0
** K= -7	L= 11 **		-			0 18	39 177 0
0 108	91 0	** K=	S	L= 11	**	++ V- () L= 12 **
5 100	71 U	-2	153	149	0	** K= (
** K= -5	L= 11 **	-1	139	138	Ö	-2 1 ⁴	16 121 0
_		Ö	116	109	Õ	- ·	
-1 150	144 0				-	** K= '	L= 12 **
0 98	111 0	** K=	4	L= 11	**		

.

	н	/F0/	/FC/	PHI	I	4 /FO	/ /FC/	PHI	н	/F0/	/FC/	PHI
	-1	180	186	0	-'	1 12	6 136	0				
	D	136	138	Ď			•	J				
**	к=	: 3	L= 12	**								
	-2	127	120	0								
	-1	174	173	C								
**	K =	: 4	L= 12	**								
	-1	134	121	0		,						
**	K =	-6	L= 13	\$ **								
	-1	138	137	0								
	0	139	129	0								
**	К =	: -5	L= 13	\$ **								
	-1	101	115	0								
**	K =	= -4	L= 13	5 **								
	-1	184	159	0								
**	K =	-2	L= 13	\$ * *								
	-2	133	141	0								
	-1	110	108	0								
	0	120	123	0								
**	K =	- 1	L= 13	5 **								
	-2	129	124	0								
**	К =	• 0	L= 13	5 **								
		99	116	0								
		130	134	0								
	0	144	143	0								
**	K =	: 2	L= 13	5 **								
	-1	146	141	0								
**	K =	= -4	L= 14	**								
		115		0								
**	К =	- 2	L= 14	**								

Observed and calculated structure factors for elge. EtOH

.

	н	FOI	/FC/ PHI		H	/F0/	/FC/	PHI		Н	/FO/	/ F C /	PHI
**	к =		L= 0 **		1 2	84	85	270		78	179 71	179 72	90 270
	2	397	424 0		3			90		-	1	1.22	112
	4 6	20	20 0 345 0		5 6	30 92	55 87	90	**	K=	1	L= .	**
	0 00	23	23 180		0	76	01	100		0	309	311	270
	4		25 100	**	K =	6	L= 0	**		1	113	108	237
* *	K =	1	L= 6 **							2	357	383	84
	-	49	31 89		0	110	106	0		3	256	245	157
	1		155 90		1	186	132	90		4	163 61	148	152 69
	23	45	45 180		23		65 27	130		5 6	174		
	4	53	49 180		5	129				7		55	266
	5	37	34 90		6	59	63	0		8	44	42	64
	6	63	64 180									3.8.6	207
	S	72	73 180	**	K =	7	L= 0) **	**	K=	2	L= '	**
* *	к=	2	L= 0 **		1		77			0	464		180
	-				2	18	14	0		1	544	597	79
	0	469 90	463 180 84 90		4 5		43	270		23	221	218	200
	2	267	256 180		6		45	180		4	130	113	207
	3	361	352 90		0	50	34	100		5	38	40	203
	4	182	174 180	**	к =	8	L= 0) **		6	164		168
	5	63	70 90		15 -		1- 3			7	64		37
	6	38	36 180		0					8	45	45	87
	7 8	63	61 90 101 0		1 2	66 46	62 45	180	**	K=	3	L=461	**
		78	76 295		3		41			K	44	48	329
* 77	K =	3	L= 0 **		3					0	30	37	
				**	K =	9	L= () **		1	166	172	
	1 2	116 474	104 270 462 0		1	28	27	90		23	92		227
	4	137	132 180		2	120	119			4	64		284
	7	123	123 270		4	85	84			5	131	128	263
	8	74	70 0							6	41		46
			54 234	**	K =	10	L= () **		7	42	40	285
3° %	K =	4	L= 0 **		0	27	26	180		8	24	26	15
	0	79	70 0		0	23		270	**	K=	4	L= 1	**
	1	63	65 270		2	28	33	180				-	
		93	91 0							ŋ	24	28	180
	234	128	128 270	**	К =	0	L= 1	**		1	67	68	293
	4 5	67	64 180		1	1.07	200	0.0		234	134	136	236
	5	39	37 90 41 180		1 2	193 324	209	90 270		2	270 138	255	271
	7	35	35 90		3	192	201	270		5	32	36	160
					4	25	29	270		6	26	23	223
te it	K=	5	L= 0 **		5	29	30	90		7	41	39	124
					6	20	20	270					

	н /	F0/	/FC/ PHI		н	/F0/	/FC/	PHI		н	/F0/	/FC/ PHI
**	K=	5	L= 1 **		2	78	79	327		0	294	the second se
	0		162 90	باد باد	K =	0	L= 2			1 2	132	133 143 98 172
	1	244	235 89	**	~-	ų	L- 4			3	65	53 294
	2	111	108 208		0	403	422	180		4	31	27 319
	3		94 90			399				5	64	61 295
	4	50	52 347		2		294	180		6		37 261
	5	68	70 239		3	70	72			7	41	43 205
	6	49	51 89		4	34		180			2.0	
	7	52	53 85		5			180	**	K=	5	L= 2 **
	v -		L= 1 **		7	137	137 35	120		0	165	164 270
* *	K =	C			0	00	65	100		1	129	
	0	46	47 0	大大	к =	1	L= 2	**		2	158	
	1	84	87 128				170	324		3		88 207
	2	49	44 254		0	274	267	270		4	79	80 329
	3	51	52 57		1	491	537	357			69	72 334
	4	36	37 182		2	140	134	189		7	38	39 217
	5	36	38 356		3	296	295	345			31	19 010
	6	54	55 201			289		339		K =	6	
* :	v -	7	L= 1 **			68 129		353 324		0	166	167 0
~ .	N-	-				54	53			0	82	84 310
	0	110	102 270		'	1-	22	50		2	115	117 60
	1	56	57 109	**	K=	2	L= 2	**			31	31 278
	2	22	20 312							4	109	105 282
	3	68	59 177		0			180			52	60 267
	4	36	38 139		1			261			40	46 29
	5	78	76 290		2	232	225	353		7		48 329
	6	49	51 293			43		284		к=		L= 2 **
* *	K =	8	L= 1 **		4 5	239		278	**	K-	'	L- 2 **
		0			6					1	75	73 3
	C	40	37 180									154 158
	1	137	142 271		8		50			3	20	18 56
	2	109									65	61 19
		86	84 234	**	K =	3	L= 2	**		5	79	
	5	67	71 263		~			~~		6	27	24 340
	×-	0	1 - 1		0			90		×-	o	1 - 2 ++
**	K-	9	L= 1 **		1 2	189	174	167 177	**	K=	0	L= 2 **
	0	52	53 90		3	138	125	354		0	25	19 0
	1	55	54 43		4	103		161		1	26	26 118
	3	51	50 36			59	60	193		2	60	58 339
	4	33	31 343		6	129		86		3.	24	25 199
					7	53		82		4	62	57 56
**	К=		L= 1 **		8	32	34	242		5	28	26 278
	-		20 0								50	48 130
	0	81	20 05	**	K =	4	L= 1	* **	**	K =	9	L= 2 **
	1	36	33 313									

	H /	FO/	/FC/	PHI		Н	/F0/	/FC/	PHI		Н	/F0/	/FC/ P	HI
	1	57	49	107		5	17/	139	1.7.2		0	39	38 1	0.0
	2		41					29			1	21		80 20
	3	37	41					73			2	35		12
	4		42					23			3	72		
	-	72	46	120		C	23	23	270		5	23		
**	к =	10	1 = 2	2 **	**	K =	4	L=593	3 **		,	23	107 1	50
		299	286	8.1			28	28	278		к=	9	L= 3	**
	0	81	8-	C		0	257	237	0					
	1	39	44	85		1	166	162	38		0	26	22	90
	2	23	24	258				63	43		1	60	60 2	25
						3	21	21	20		2	37	44 2	62
**	K =	С	L= 3	3 **				97	328		3	55	55 2	00
						5	77		91		4	39	40 2	37
	1	354	377						1					
			140			7	71	70	329	**	K =	10	L= 3	
	3	203	191								37	125	110 4	
			92		**	K =	5	L= 3	3 **			54	51 1	
			73			-					1	51	51	
		97		233				191			2			
¥ ×	K =	1	L= :			1		76		19.00				
	0	20	7.7			2	93		212	**	K =	0	L= 4	**
	0		32				129		235				313	0
	2	467		268		4 5		51	340		0	310	75	0
	3	243	226			6					3	144		80
	4		119				01	79 44	201			117		80
		41	41	351		'	40	44	40		5	133		80
	6	42		126	**	K=		L= 3				58	61	
		143		279		~	Ŭ		00		0	50	94	1 Ĭ
		41	39			0		34	0	**	K =	1	L= 4	**
						1	52	53	151				L#	
**	K =	2	L= 3	3 **		2	53	53	279		0	18	15 2	70
						3	31	31	138		1	170	163 2	55
	0	3 0 5	290	180		4	75	13	49		2	290		34
	1	501	530	234		5		50	49		3	190		45
	2	182		65		6	51	50	34		4 .	140		83
	3	128		114		7	38	37	120		5	57		97
	4	91	87	302			121	114			6	66		92
	5	71	69	315	**	K =		L= 3			7	91		76
	6	35	32	196				149	~ ~		8	38		31
	7	113	113	221		0	21	25	90					
	8	53	58	27		1	81	33	257	**	K =	2	L= 4	**
**	к=	7	L= :	7		2	146	150	42		0	274	27/	-
~ ~	K -	3	L	2 **		34	55	49	333		0	271		0
	C	209	220	90		4 5	75	84	127		1	161		29
	1	172	143	245		6	81 28	78	110		23	80		84
	2	86	97	59		0	20	21			4	50		30
	3	65	69	53	**	K =	8	L= 3	3 **		5	132		18
	4	102	93	22	~~	~ -	0	366			6	71		57
			10								0	11	16 3	51

•

	H /	FO/	/FC/ PHI		Н	/ FO/	/FC/	PHI		Н	/FO/	/FC/	PHI	
	7	26	27 270		5	48	48	271		2	97	94	267	
	8	5 C	56 339		6	20	11	27		3	99	95	72	
	2		31, 193			2	1.1	312		4	69	66	254	
35.25	K =	3	L= 4 **	र्भर और	K =	8	L= /	4 30 \$		5	55	56	32	
	0	47	69 270		0	55	59	100		67	61	54	295 147	
	1	62	286 80		1	28	28	180 278		8	103	108	280	
	2	215	209 323		2	40	42	335		0	64	25	200	
	3	27	28 319			57	57	281	**	к=	3	L= 5	5 **	
	4	86	81 350		34	47	44	45						
	5	129	127 245		5	22	22	93		0	45	46	90	
	7	63	63 102			00				1	96	93	104	
	8	31	33 323	**	K =	9	L= 4	* **		2	174	169	241	
st ste	× -	,	1 - /		0	35	77	770		34	51	47	258 220	
N X	K =	4	L= 4 **		0	28	37 28	270 297		5	137 122	128	261	
	0	264	241 0		3	61	56	18		6	22	26	122	
	1	238	247 101		-	0.		1.5		7	23	26	226	
	2	67	65 242	**	к=	10	L= 4	* **			639	223	141	
	23	32	34 118						**	К=	4	L= 3	5 **	
	4	75	74 114		0	40	36	180					702	
	5	143	148 93		1	36	`35	15		0	135	122	180	
	67	74	69 20 74 105		× -	0	1 - 5	5 **		1 2	228	241	14	
	"	(4	74 103	**	K =	0	L= 5	5 **		3	51	143 52	355	
* 11	к=	5	L= 4 **		1	52	46	270		4	103	99	191	
	10	-	- 20, 186		2	111	108	270		5	82	83	192	
	1	42	43 210		3	357	372	270		6	101	102	149	
	2	138	132 14		4	234	234	90		7	93	94	19	
	3 4	92	95 157		5	24	25	270		-	163	. 161	243	
	5	161 48	160 173 50 99		6	52	49	90	**	К=	5	L= !	5 **	
	6	68	67 190		78	40 20	42	90 270		0	36	41	270	
	7	36	37 285		0	20	18	2.0		1	122	114	39	
			13 505	**	K =	1	L= 5	5 **		3	141	139	148	
* 12	K =	6	L= 4 **							4	66	64	307	
					0	153	142	90		5	78	79	339	
	0	116	108 180		1	111	110	91		6	55	59	323	
	1	84	89 300		2	74	75	232		7	28	27	335	
	234	92 144	87 179 137 84		3,	148	149 27	138		×-	,	1 - 44	5 **	
	2	95	137 84 92 213		4 5	22 96	91	338 130	**	K =	6	L= 3	5 **	
	5	45	39 217		6	64	62	24		1	62	62	252	
	6	53	53 179		7	39	41	67		2	35	42	325	
					8	51	52	297		3	107	108	255	
**	K =	7	L= 4 **							4	20	21	220	
	-			**	K =	2	L= 5	5 **		5	43	42	248	
	2	95	99 340		-					6	38	37	215	
	234	83	77 189 33 295		0	47	37	127			7		5	
	4	24	33 295		1	357	346	127	**	K =	7	L= 25	5 **	

	ни	F0/	/FC/	PHI		H.	/ F C /	/ F C /	PHI		н	/F0/	/ F C /	PHI
	0 1	21		270 123		1 2	129 123	126 131	71		4	40	40	259
	2 17 57	32 133	31	190 11		3 4	74 69	67 71	312 285	**	к=	9	L= 6	**
	3 57	28		221		5	90	91	309		1	36	27	323
**	K =	8	L= 5	**		67	75 67	77 68	267		2	35	38	174
~~	~-			**		1	01	00	04	**	к=	0	L= 7	**
	0	54		G 314	**	К=	4	L=	6 **		2	42	42	270
	4	27		112		0	73	76	180		2 4			270
	-	- 1				1	99	104	13		5	46		90
* *	K =	9	L= 5	**			76	74	144		6	56		270
						23	173	168	286		7			270
	0	36	36	90		4	62	59	283					
	1	47	53	73		5	44	46	322	मं जे	K =	1	L= 7	**
	3	32	29	19		6	24	24	269		2	25	55	156
-	X=	-	1= 7			7	57	56	357		0	239		270
* #	K =	0	L= 6	**		10=	-	La			1		78	87
	0	7 1 7			**	K =	5	L=	6 **		2	99		291
	0	313	298	180		~	43	55	90		34	50 52		307
	3	103	100	0		0		95	277		5	49		309
	4	48		Û		2	49	55	116		6	61		227
	5	39	34	0		3	162	156	358		7			99
	6	38		180		4	30	31	49					
				22.2		5	71		79	**	K =	2	L= 7	**
* *	К=	1	L= 6	**		6	66	64	34					
			44	183		100	4	1.0	2 210		0		83	
	0	217	210	90	**	K =	6	L=	6 **		1	163		245
	1	157 111	157 103	294		0	75	0.0	0		2	168 30		137
	23	57		228		0	75 80	80	226		34	63		349
	4	95	93			2			359		5	. 88		
	5	65		64		3	81	82	125		6	85	83	27
	6	54	54			4	73		43		7		25	
			50'			5	85		258					
* *	K =	2	L= 6	**		6	31	30	339			3	L= 7	**
	0	156	142		**	K =	7	L=	6 **		0		44	
	1	28		331		-	109	115	204		1	31		333
	2	115		84		0	68		90		2	107		76
	5	92		151		1	48		148		3	209		354
	2345	64		324		24	68		151			78		94
	6	76 46		200		4 5	47 23	24	109 214		0	21	26 26	
	0	40	21	125			25	24			0	22	20	145
* *	к=	3	L= 6	**	**	K =	8	L=	6 **	**	к=	4	L= 7	**
	0	229	229	271		1	66	71	127		0	31	25	180

	н	F0/	/FC/ PH	I	Н	/ FO/	/FC/	PHI		н	/FO/	/FC/ PHI	
	12345	17 116 150 101	12 35 115 33 15C 11 102 34	6 0 0	1234	47 24 41 60	46 25 41 56	113 86 148 107		2345	85 49 64 30	88 256 49 48 68 104 31 80	
	6	52 26	56 20 26 23		5 6 7	29 29 24	30 27 22	298 86 331	**	К=	7	L= 3 **	
**	K =	5	L= 7 ×	·* · * *	к=	2		8 **		0	43 54	47 270 60 47	
	0127	41 92 108	41 9 94 24 1C7 3 136 18	7	0	57 23 50		130		234	50 30 30	47 289 28 351 33 276	
	345	141 101 43	90 12	7	234	150 51	149 49	233 80 137	**	к=	8	L= 8 **	
	6	36	38 8		56	30 35	26 32	360 118		0 2	32 25	27 180 22 156	
**	K=	6	L= 7 *	**	к=	3	L= 8	3 **	**	к =	С	L= 9 **	
	0125	42 69 19 79	47 18 75 18 22 24 80 1	9	0123	103 64 110	109 63 100	270 33 56		1 2 3	51 18 22	54 90 14 270 23 90	
te z	к=	7	L= 7 *	*	345	108 97 20	99 93 23	153 123 274		4	60 43	60 90 48 90	
	0 1	51 52	53 27 57 23	3	6	40		259	**	К=	1	L= 9 **	
	234	38 23 45	44 18 23 25 41	2	K= 0 2	4 45 50	L= 41 46	8 ** 0 10		0123	29 45 112 103	28 270 46 15 115 107 105 195	
भे 37	к=	8	L= 7 *		34	74 48	75 46	243 239		4 5	53 28	55 125 30 283	
	1 2 3	30 20 29	34 60 20.26 29 24	3	5	48 26	45 20	125 173	**	6 K=	58 2	65 292 L= 9 **	
				**	K =	5	L= 3	3 **					
**	K =	0	L= 8 *		0	25	26	90		1 2	85 76	81 29 79 184	
	014567	326 154 27 25	3C9 147 18 27 18 24	0 C	1 2 3 4	109 52 87 47	115 50 85 44	204 308 173 309		2345	60 91 31	64 262 90 210 29 211	
	67	81 53	86 51 18	0	5	66	68	157	**	к=	3	.L= 9 **	
* *	к=	1	L= 8 *	**	K =	6		3 **		0 1	87 102	83 270 99 173	
•	C	58	56 9	0	G 1	45 22	48 24	0 343		23	133 26	132 240 30 137	

	ни	FO/	/FC/ PHI		н	/F0/	/FC/	PHI		н	/F0/	/FC/ PHI
	4	104	102 304		3	105	104	333		1	56	57 310
	5	54	57 175		4	7.5		303		2	70	72 35
	6	32	28 350	**	к=	2	L= 10	1 4.4		3 4	71 56	70 7 56 119
**	к =	4	L= 9 **		K -	2	L- 10	,		5	40	40 42
	0	27	24 5		0	73	71	180			-	
	0	23 36	26 0 37 349		1 2	20 56	20	307 329	**	K =	2	L= 11 **
	2	79	79 333		4	72	70	35		0	20	18 180
	34	32 58	31 306 59 67		5	45	46	243		1 2	26 70	27 98 74 60
	5	33	32 224	**	K =	3	L= 10) **		3	57	54 95
		-						~ ~		4	50	48 303
* 72	K =	5	L= 9 **		0	30 50	27 48	90 221		5	22	21 76
	0	87	85 90		2	30		13	**	K=	3	L= 11 **
	1	68	74 30		3	33	34	19		-		
	234	48 47	50 309		4 5	49 43	50 43	186		0	63 39	64 90 35 201
		78	74 219		-					2	45	44 114
	5	20	18 316	**	K =	4	L= 10) **		4	36	41 33
**	К =	6	L= 9 **		1	57		119	**	к=	4	L= 11 **
	0	57	61 0		2 4	72 73	74	58 300		0	74	75 180
	1	47	46 120		5	23	24	2		1	26	25 217
	2 4	27	26 156			-				2	38	40 228
	4	44	44 185	**	K =	5	L= 10) **	**	к=	5	L= 11 **
🛪 चंद	К =	7	L= 9 **		0	35		90				
	1	23	22 51		1 2	38 34	38 40	333 221		1 3	32	26 131 26 309
			22 31		3	44		341		5	~ ~ ~	20 507
* >	K =	8	L= 9 **		4	23	20	306	**	K =	6	L= 11 **
	0	24	23 180	**	к =	6	L= 10) **		1	25	26 239
**	К=	0	L= 10 **		2	41	43		**	к=	0	L= 12 **
	C	32	33 0		3	43	42	250		1	29	31 0
	1	65	70 0	**	к =	0	L= 11	* *		2	55	52 180
	2 4	108	105 180			17		27.2		3	35	34 180
	4	42 39	43 180 .42 D		1 2	67 32		270		4	42	43 180
					4	35	31	90	**	K=	1	L= 12 **
**	K =	1	L= 10 **		5	22	21	270		1	49	49 165
	0	18	19 270	**	к=	1	L= 11	**		2	84	82 135
	1 2	86	83 355		0	00	01	270		3	60	65 164
	2	74	70 234		0	98	94	270		4	58	60 46

rved and calculated structure factors for

H /FO/ /FC/ PHI	H /FO/ /FC/ PHI	H /FO/ /FC/ PHI
** K= 2 L= 12 **		
1 25 28 202 2 47 50 305 3 28 26 347 ** K= 3 L= 12 **		
0 23 25 270 1 32 26 120 2 32 35 312	** X= 0 L= 1 ** -7 344 317 0 -3 1013 \$55 0	
** K= 4 L= 12 ** 0 33 36 0 1 31 36 227 2 23 19 172		
** K= 0 L= 13 **		
2 40 40 270	-6 259 397 0	
** K= 1 L= 13 ** 0 41 34 270 1 41 45 241 2 33 33 229		
** K= 2 L= 13 **		
0 32 29 0 1 24 26 229 2 24 27 8		
*≈ K= 3 L= 13 **		
0 20 17 90		
		· · · · · · · · · · · · · · · · · · ·
		-8 287 282 0

Observed and calculated structure factors for $[Cu(clge)_2(NO_3)_2]$

H /FO/	/FC/ PHI	H /FO/	/FC/ PHI	H /FO	//FC/ PHI
** K= 0	L= 0 **	** K= 6	L= 0 **	-7 170	
2 655	174 100	0 2/3	252 0	-6 269	
		0 240		-4 184	
		4 176	163 0	-2 430	
				-1 101	
8 35 0	365 0	** K= ()	L= 1 **	0 369	
	232 0			2 304	
** K= 1	L= 0 **	-7 344		6 337	
	202	-3 1010	955 0	8 168	8 180 0
1 728		-1 314	342 0		
3 328		1 167	202 0	** K= 4	L= 1 **
4 176		3 599	608 0		
5 134		5 198	220 0	-9 192	
6 211	and the free of the second	7 369	372 0	-5 285	5 295 0
7 353	343 0		4	-4 241	1 247 0
9 202	217 0	** K= 1	L= 1 **	-3 256	5 281 0
10 110	116 0			-2 391	431 180
		-8 337	353 0	1 321	1 316 0
** K = 2	L= 0 **	-6 259	257 0	2 292	2 273 0
		-4 301	309 0	3 296	
0 281	277 180	-2 391	419 0	4 183	
2 721		0 605	652 0	5 232	
3 223		2 471	474 0	9 126	
4 465		3 145	140 180		120 0
5 505		4 454	451 0	** K= 5	L= 1 **
6 173		5 264	254 0	K- 3	
8 181		6 193	199 0	-6 181	175.0
	102 0	8 172	185 0	-4 158	
** K= 3	L= 0 **	10 151	153 0	-2 183	
	- 0	10 151	122 0	0 157	
1 473	447 0	** K= 2	L= 1 **	2 174	
2 247		~~ K- 2	L- 1 **	4 24	
3 179		-9 147	119 0	6 117	
5 379					121 0
6 120					L= 1 **
7 207		-6 176 -5 314			L= 1 **
					201 0
** K= 4		-4 234			1 294 0
		-3 186	127 180	3 208	8 213 0
	472 400	-2 121			
0 197		-1 901	974 0	** K= 7	L= 1 **
1 393		0 196			
2 468		1 645		-4 125	5 148 0
3 104		5 389			
4 336		6 109			L= 2 **
6 174		7 224			
2 224		9 116	111 0	-8 267	7 288 0
** K= 5	L= 0 **			-6 55	1 567 0
			L= 1 **	-4 217	
	262 0				
5 182	186 0	-10 181	168 0		

H /FO/ /FC/ PHI H /FO/ /FC/ PHI H /FO/ /FC/ PHI

4 446 430 0 8 148 137 180 3 186	156 0
	120 0
6 392 409 0 4 450	451 0
	197 0
	132 0
	141 0
-4 155 152 0	366
	= 3 **
-7 288 278 0 1 149 118 180	
-5 258 262 0 2 194 174 0 -9 182	195 0
-3 378 378 0 4 279 254 0 -6 121	122 0
	306 0
	497 0
	366 0
	206 0
	394 0
	329 0
5 254 257 0 -1 211 211 0 7 191	180 .0
9 231 257 0 1 250 234 0	
	= 3 **
** K= 2 L= 2 ** 7 141 150 0	0.0.0
	129 0
	158 0
	233 0
	237 0
	133 0
	232 0
	570 0
-1 544 566 180 1 143	122 180
0 258 292 0 ** K= 0 L= 3 ** 2 141	155 0
1 231 206 0 4 349	347 0
2 554 560 0 -7 418 442 0 6 119	131 0
4 321 319 0 -5 332 339 0	
	= 3 **
7 135 143 0 -1 412 425 0	- 5 **
	209 0
	241 0
	226 .0
	276 0
** K= 3 L= 2 ** 2 128	115 180
** K= 1 L= 3 ** 3 179	181 0
	126 0
	192 0
-3 343 347 0 -8 192 194 0	
1 70/ 775 7	= 3 **
	= 3 **
2 222 224 44	450 0
7 770 75-	159 0
/ 405 407 2	113 0
	232 0
	181 0
7 239 226 0 2 637 608 0 6 157	149 0

H /FO/ /FC/ PHI H /FO/ /FC/ PHI H /FO/ /FC/ PHI

** K =	6	L= 3	**	- 4	435	425	0	-1	180	209 0
				7	131	131	0	1	265	301 0
-3	117	113	0	- 8	133	146	0	3	401	399 0
-1	112		Ď	0		140	U			
		128			263			5	220	243 0
1	158	156	0	** K=	3	L= 4	**	7	175	155 0
								9	162	180 0
** K=	7	L= 3	**	-7	280	285	0			
				-6	190		180	** K=	1	L= 5 **
- 2	477	405						** N-		
-2	123	127	0	-5	163		0		292	313 0
				-2	325	304	0	-10	176	153 0
** K =	0	L= 4	**	-1	444	497	0	-7	187	176 180
				D,	231	208	180	-6	337	303 0
-10	253	253	0	1	553	511	0	- 5	331	310 0
-6	323									
		325	0	2	153		180	- 4	244	272 0
-4	679	630	0	3	139	145	0	-2	435	440 0
- 2	345	365	0	7	402	402	0	-1	231	213 180
0	195	224	0					-0	173	184 0
-2	506	498	0	** K=	4	L= 4	++	-1	166	173 180
4	280			K-			~ ~			
		309	G		4.08	0.238		2	645	607 0
.6	430	427	0	-8	214	215	0	- 3	451	406 0
				-4	175	176	0	-4	203	213 0
** K=	1	L= 4	**	-2	216	241	0	-5	142	133 180
		705		0	283	295	0	6	157	150 0
-9	213		0				-			
		205	0	1	153		180	8	169	195 0
-8	154	147	0	2	169	160	0			
-6	204	167	180	4	229	187	0	** K=	2	L= 5 **
-5	461	445	0	5	196	189	0			
-4	317	204	180	8	133	152	0	-9	127	119 0
-3	861	764	0		122	132		-5	346	
-2	630									
		558	0	** K=	5	L= 4	**	- 3	275	301 0
0	161	129	0					-2	152	158 0
1	189									120 0
5	101	107	0	-7	142	154	0	- 1	280	331 0
-	494	471	0 C						280	331 0
		471	e	-3	157	127	0	-1	280 330	331 0 361 0
6	436	471 432	0	-3 -1	157 248	127 274	0	-1 3	280 330 246	331 0 361 0 249 0
6 8	436 209	471 432 214	0 0 180	-3 -1 1	157 248 153	127 274 132	0 0 0	1 3 5	280 330 246 283	331 0 361 0 249 0 289 0
6	436	471 432 214	0	-3 -1 1 5	157 248 153 146	127 274 132 147	00000	-1 3	280 330 246	331 0 361 0 249 0
6 8 9	436 209 160	471 432 214	0 0 180	-3 -1 1	157 248 153	127 274 132 147	0 0 0	1 3 5	280 330 246 283	331 0 361 0 249 0 289 0
6 8	436 209	471 432 214	0 0 180 0	-3 -1 1 5	157 248 153 146	127 274 132 147	00000	1 3 5	280 330 246 283 154	331 0 361 0 249 0 289 0 155 0
6 8 9	436 209 160	471 432 214 175	0 0 180 0	-3 -1 1 5 6	157 248 153 146 132	127 274 132 147 136	0 0 0 180	1 3 5 7	280 330 246 283 154 3	331 0 361 0 249 0 289 0 155 0
6 8 9 ** K=	436 209 160 2	471 432 214 175 L= 4	0 180 0 **	-3 -1 1 5 6	157 248 153 146	127 274 132 147 136	0 0 0 180	1 3 5 7 ** K=	280 330 246 283 154 3	331 0 361 0 249 0 289 0 155 0 L= 5 **
6 8 9 ** K= -9	436 209 160 2 164	471 432 214 175 L= 4 175	0 180 0 **	-3 -1 1 5 6 ** K=	157 248 153 146 132 6	127 274 132 147 136 L= 4	0 0 0 180 **	1 3 5 7 ** K= -8	280 330 246 283 154 3 164	331 0 361 0 249 0 289 0 155 0 L= 5 ** 159 0
6 8 9 ** K= -9 -8	436 209 160 2 164 195	471 432 214 175 L= 4 175 188	0 180 ** 0	-3 -1 1 5 6 ** K= -6	157 248 153 146 132 6 134	127 274 132 147 136 L= 4 136	0 0 0 180 **	1 3 5 7 ** K= -8 -5	280 330 246 283 154 3 164 133	331 0 361 0 249 0 289 0 155 0 L= 5 ** 159 0 164 180
6 9 ** K= -9 -8 -7	436 209 160 2 164 195 186	471 432 214 175 L= 4 175 188 197	0 180 ** 0 180	-3 -1 1 5 6 ** K= -6 -2	157 248 153 146 132 6 134 123	127 274 132 147 136 L= 4 136 112	0 0 0 180 **	1 3 5 7 ** K= -8 -5 -4	280 330 246 283 154 3 164 133 501	331 0 361 0 249 0 289 0 155 0 L= 5 ** 159 0 164 180 503 0
6 8 9 ** K= -9 -8 -7 -6	436 209 160 2 164 195 186 240	471 432 214 175 L= 4 175 188 197 246	0 180 ** 0 180 0	-3 -1 1 5 6 ** K= -6 -2 0	157 248 153 146 132 6 134 123 204	127 274 132 147 136 L= 4 136	0 0 0 180 **	1 3 5 7 ** K= -8 -5	280 330 246 283 154 3 164 133	331 0 361 0 249 0 289 0 155 0 L= 5 ** 159 0 164 180
6 9 ** K= -9 -8 -7	436 209 160 2 164 195 186	471 432 214 175 L= 4 175 188 197	0 180 ** 0 180	-3 -1 1 5 6 ** K= -6 -2	157 248 153 146 132 6 134 123	127 274 132 147 136 L= 4 136 112	0 0 0 180 **	1 3 5 7 ** K= -8 -5 -4 -2	280 330 246 283 154 3 164 133 501 193	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 8 9 ** K= -9 -8 -7 -6	436 209 160 2 164 195 186 240	471 432 214 175 L= 4 175 188 197 246 347	0 180 ** 0 180 0 180 0 0	-3 -1 1 5 6 ** K= -6 -2 0	157 248 153 146 132 6 134 123 204	127 274 132 147 136 L= 4 136 112 193	0 0 0 180 **	1 3 5 7 ** K= -8 -5 -4 -2 -1	280 330 246 283 154 3 164 133 501 193 315	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 8 9 ** K= -9 -8 -7 -6 -4 -3	436 209 160 2 164 195 186 240 337 191	471 432 214 175 L= 4 175 188 197 246 347 169	0 180 0 ** 0 180 0 0 0	-3 -1 1 5 6 ** K= -6 -2 0 2	157 248 153 146 132 6 134 123 204 115	127 274 132 147 136 L= 4 136 112 193 95	0 0 0 180 **	1 3 5 7 ** K= -8 -5 -4 -2 -1 0	280 330 246 283 154 3 164 133 501 193 315 205	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6 8 9 ** K= -9 -8 -7 -6 -4 -3 -2	436 209 160 2 164 195 186 240 337 191 302	471 432 214 175 L= 4 175 188 197 246 347 169 346	0 180 0 ** 0 180 0 0 0	-3 -1 1 5 6 ** K= -6 -2 0 2 ** K=	157 248 153 146 132 6 134 123 204 115 0	127 274 132 147 136 L= 4 136 112 193 95 L= 5	0 0 0 180 **	1 3 5 7 ** K= -8 -5 -4 -2 -1 0 1	280 330 246 283 154 3 164 133 501 193 315 205 218	331 0 361 0 249 0 289 0 155 0 L= 5 ** 159 0 164 180 503 0 240 0 344 0 235 0 223 180
6 8 9 ** K= -9 -8 -7 -6 -4 -3 -2 -1	436 209 160 2 164 195 186 240 337 191 302 99	471 432 214 175 L= 4 175 188 197 246 347 169 346 86	0 0 180 0 ** 0 180 0 0 0 0	-3 -1 1 5 6 ** K= -6 -2 0 2 ** K=	157 248 153 146 132 6 134 123 204 115 0	127 274 132 147 136 L= 4 136 112 193 95 L= 5	0 0 180 ** 0 0 0 0 0 0	1 3 5 7 ** K= -8 -5 -4 -2 -1 0 1 4	280 330 246 283 154 3 164 133 501 193 315 205 218 461	331 0 361 0 249 0 289 0 155 0 L= 5 ** 159 0 164 180 503 0 240 0 344 0 235 0 223 180 425 0
6 8 9 ** K= -9 -8 -7 -6 -4 -3 -2 -1 0	436 209 160 2 164 195 186 240 337 191 302 99 164	471 432 214 175 L= 4 175 188 197 246 347 169 346 86 186	0 180 ** 0 180 0 180 0 0 0	-3 -1 1 5 6 ** K= -6 -2 0 2 ** K= -7	157 248 153 146 132 6 134 123 204 115 0 214	127 274 132 147 136 L= 4 136 112 193 95 L= 5 214	0 0 0 180 **	1 3 5 7 ** K= -8 -5 -4 -2 -1 0 1 4 6	280 330 246 283 154 3 164 133 501 193 315 205 218	331 0 361 0 249 0 289 0 155 0 L= 5 ** 159 0 164 180 503 0 240 0 344 0 235 0 223 180
6 8 9 ** K= -9 -8 -7 -6 -4 -3 -2 -1 0 1	436 209 160 2 164 195 186 240 337 191 302 99 164 187	471 432 214 175 L= 4 175 188 197 246 347 169 340 86 186 186 142	0 0 180 0 ** 0 180 0 0 0 0	-3 -1 1 5 6 ** K= -6 -2 0 2 ** K=	157 248 153 146 132 6 134 123 204 115 0	127 274 132 147 136 L= 4 136 112 193 95 L= 5	0 0 180 ** 0 0 0 0 0 0	1 3 5 7 ** K= -8 -5 -4 -2 -1 0 1 4	280 330 246 283 154 3 164 133 501 193 315 205 218 461	331 0 361 0 249 0 289 0 155 0 L= 5 ** 159 0 164 180 503 0 240 0 344 0 235 0 223 180 425 0
6 8 9 ** K= -9 -8 -7 -6 -4 -3 -2 -1 0	436 209 160 2 164 195 186 240 337 191 302 99 164	471 432 214 175 L= 4 175 188 197 246 347 169 346 86 186	0 180 ** 0 180 0 180 0 0 0	-3 -1 1 5 6 ** K= -6 -2 0 2 ** K= -7	157 248 153 146 132 6 134 123 204 115 0 214	127 274 132 147 136 L= 4 136 112 193 95 L= 5 214	0 0 180 ** 0 0 0 0 0 0 0 0 0 0 0	1 3 5 7 ** K= -8 -5 -4 -2 -1 0 1 4 6	280 330 246 283 154 3 164 133 501 193 315 205 218 461 175	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

-							
-7	180	165 D	-7	199	207 180	** K= 1	L= 7 **
-5	119	121 0	-6	144			
-1	202	224 0	-4	294	282 0	-8 122	125 0
1	221	216 0	-2	263	287 0	-6 228	245 0
3	215	235 0	0	246	279 0	-5 135	124 0
	_		2	305	337 0	-4 188	180 0
** K=	5	L= 5 **	3	125	117 180	-3 105	102 180
			4	146	137 0	-2 307	324 0
-6	224	236 0	5	115	97 180	0 292	313 0
-5	134	145 180	6	144	145 0	2 246	244 0
-3	154	173 0	7	123	131 0	4 185	180 0
0	336	326 0	8	180	222 0	6 194	194 0
2	169	181 0				8 162	177 0
6	165	162 0	** K=	3	L= 6 **		
						** K= 2	L= 7 **
** K=	7	L= 5 **	-7	384	· 380 0		
			-5	235	241 0	-7 144	120 0
-2	122	164 0	-1	241	272 0	-6 141	130 0
			1	408	430 0	-5 228	222 0
** K=	0	L= 6 **	3	211	200 0	-3 277	278 0
			7	154	162 0	-2 170	174 180
-10	170	191 0				-1 247	270 0
-6	383	399 0	** K=	4	L= 6 **	1 192	211 0
- 4	334	329 0		288	-	2 133	115 0
-2	323	354 0	-8	179	183 D	-3 170	171 0
0	390	386 0	-4	166	163 0	5 263	272 0
4	322	335 0	-2	185	182 0	6 174	183 180
6	367	386 0	ō	171	186 0	V 114	105 105
		176 10	2	222	205 0	** K= 3	L= 7 **
** K=	1	L= 6 **	3	109	43 0		-
			4	168	173 D	-8 148	151 0
-9	227	242 0				-4 227	234 0
-8	303	333 0	** K=	5	L= 6 **	-2 131	172 0
-6	185	191 180		-		0 260	269 0
-5	236	232 0	-3	119	136 0	2 183	190 0
-4	367	345 180	3	183	180 0	4 138	139 0
-3	648	619 0			100 0	6 165	
-2	438	411 0	** K=	6	L= 6 **	0 105	140 0
	274	286 0		v	L- 0	** K= 4	L= 7 **
0	211	193 0	2	123	97 0	~~ K- 4	L- /
1	159	182 0	-	. 25	,, ,	-5 187	181 0
2	230	215 180	** K=	0	L= 7 **		
3	250	246 0	K-	0	L- / **	-1 131	
5	275	296 0	-7	313	326 0	1 170	132 0
7	205	186 0					167 0
		100 0	-5	153	146 0	3 115	121 0
** K=	2	L= 6 **	-1	482	480 0	4 118	137 180
K -	-	L- 0 **	1 3	526	508 0	5 164	175 0
-9	162	154 0		168	158 0	44 K- F	1 - 7
-8	211		7	329	355 0	** K= 5	L= / **
0	611	198 0					

. (

H /FO/ /FC/ PHI H /FO/ /FC/ PHI H /FO/ /FC/ PHI

-6 125	124 0	1	208	197	0	-2	170	186 0
-4 118	93 0	5	201	182	0	2	166	149 0
-2 113	111 0				1. 11. 1	4	182	
and the second	94 0		4		**		106	100 0
4 169	115 0	~~ K-	17	L- 0	~ ~	** K=	4	L= 9 **
4 107	115 0					** *-	4	L- 9 **
		-6	115		0			
** K= 6	L= 7 **	-5	117		0	-3	162	161 0
		-4	192	182	0	0	122	101 180
-3 134	104 0	-3	111	126 1	80	1	158	162 0
3 160	181 0	-2	183	188	0	2	143	148 0
194 194 8	152 0	2	245		0			
	L= 8 **	4	220	205		** K=	0	L= 10 **
N N I	L- 0 **	4	220	203	U	** K-	0	L- 10 **
-6 160	1/1 0		F	1 - 0		0		177 0
	141 0	** K=	2	L= 8	**	- 8	141	137 0
-4 263	218 0						241	
-2 196	166 0	-5	181	174	0	-4	204	215 0
0 654	582 0	3	176	163	0	-2	249	241 180
6 228	249 0					0	476	455 0
3 160	136 0	** K=	0	L= 9	++	2	311	
	L= 8 **	~~ ~-	0	L- 7	~ ~	4	511	524 0
	L- 0 **	-	201	714	0		4	1 - 40 44
		-7	296	311	0	** K=	1	L= 10 **
-9 185	185 0	-3	142	157	0			
-7 195	193 0	-1.	490	490	0	-7	122	139 0
-3 176	157 0	3	238	246	0	- 5	159	114 0
-2 132	109 180	5	195	192	0	-3	141	148 0
-1 403	388 D				-	-1	217	219 0
	000 U							
1 ///	282 0	++ V-	1	1 - 0	44			
1 277	282 0	** K=	1	L= 9	**	3	201	198 0
3 163	150 0					3	201	19 8 0
3 163 5 162	150 0 126 0	-8	203	210	0	3		19 8 0
3 163 5 162 7 200	150 0 126 0 196 0		203 123			3	201	19 8 0
3 163 5 162 7 200	150 0 126 0	-8	203	210	0	3	201	19 8 0
3 163 5 162 7 200	150 0 126 0 196 0	-8 -6 -4	203 123	210 101 134	0	3 ** K= -3	201 2 160	198 0 L= 10 ** 169 0
3 163 5 162 7 200	150 0 126 0 196 0 L= 8 **	-8 -6 -4 -2	203 123 135 204	210 101 134 220	0 0 0 0	3 ** K= -3 -2	201 2 160 370	198 0 L= 10 ** 169 0 376 0
3 163 5 162 7 200 ** K= 2	150 0 126 0 196 0 L= 8 **	-8 -6 -4 -2 0	203 123 135 204 303	210 101 134 220 296	000000	3 ** K= -3 -2 -1	201 2 160 370 285	198 0 L= 10 ** 169 0 376 0 312 180
3 163 5 162 7 200 ** K = 2 -8 174	150 0 126 0 196 D L= 8 ** 184 0	-8 -6 -4 -2 0 2	203 123 135 204 303 190	210 101 134 220 296 175	000000000000000000000000000000000000000	3 ** K= -3 -2 -1 3	201 2 160 370 285 128	198 0 L= 10 ** 169 0 376 0 312 180 132 0
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	150 0 126 0 196 D L= 8 ** 184 0 210 D	-8 -6 -4 -2 0	203 123 135 204 303	210 101 134 220 296	000000	3 ** K= -3 -2 -1	201 2 160 370 285	198 0 L= 10 ** 169 0 376 0 312 180
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258	150 0 126 0 196 D L= 8 ** 184 0 210 0 278 0	-8 -6 -4 -2 0 2 4	203 123 135 204 303 190 154	210 101 134 220 296 175 128	00000000	3 ** K= -3 -2 -1 3 4	201 2 160 370 285 128 194	198 0 L= 10 ** 169 0 376 0 312 180 132 0 206 0
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258 -1 260	150 0 126 0 196 D L= 8 ** 184 0 210 D 278 0 219 180	-8 -6 -4 -2 0 2	203 123 135 204 303 190 154	210 101 134 220 296 175	00000000	3 ** K= -3 -2 -1 3 4	201 2 160 370 285 128 194	198 0 L= 10 ** 169 0 376 0 312 180 132 0
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258 -1 260 0 292	150 0 126 0 196 0 L= 8 ** 184 0 210 0 278 0 219 180 288 0	-8 -6 -4 -2 0 2 4	203 123 135 204 303 190 154 2	210 101 134 220 296 175 128	00000000	3 ** K= -3 -2 -1 3 4	201 2 160 370 285 128 194 3	198 0 L= 10 ** 169 0 376 0 312 180 132 0 206 0 L= 10 **
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258 -1 260 0 292 1 298	150 0 126 0 196 D L= 8 ** 184 0 210 D 278 0 219 180	-8 -6 -4 -2 0 2 4	203 123 135 204 303 190 154	210 101 134 220 296 175 128	0 0 0 0 0	3 ** K= -3 -2 -1 3 4	201 2 160 370 285 128 194 3	198 0 L= 10 ** 169 0 376 0 312 180 132 0 206 0
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258 -1 260 0 292	150 0 126 0 196 0 L= 8 ** 184 0 210 0 278 0 219 180 288 0	-8 -6 -4 -2 0 2 4 ** K=	203 123 135 204 303 190 154 2	210 101 134 220 296 175 128 L= 9 126	0 0 0 0 0 0	3 ** K= -3 -2 -1 3 4 ** K= -3	201 2 160 370 285 128 194 3 121	198 0 L= 10 ** 169 0 376 0 376 0 312 180 132 0 206 0 L= 10 ** 145 0
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258 -1 260 0 292 1 298 2 179	150 0 126 0 196 0 L= 8 ** 184 0 210 0 278 0 278 0 219 180 288 0 306 0 180 0	-8 -6 -4 -2 0 2 4 ** K= -6 -5	203 123 135 204 303 190 154 2 113 208	210 101 134 220 296 175 128 L= 9 126 212	0 0 0 0 0 0 0	3 ** K= -3 -2 -1 3 4 ** K=	201 2 160 370 285 128 194 3 121	198 0 L= 10 ** 169 0 376 0 312 180 132 0 206 0 L= 10 **
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258 -1 260 0 292 1 298 2 179 4 160	150 0 126 0 196 0 L= 8 ** 184 0 210 0 278 0 219 180 288 0 306 0 186 0 129 0	-8 -6 -4 -2 0 2 4 ** K= -6 -5 -3	203 123 135 204 303 190 154 2 113 208 119	210 101 134 220 296 175 128 L= 9 126 212 123	0 0 0 0 0 0 0 0 0	3 ** K= -3 -2 -1 3 4 ** K= -3 1	201 2 160 370 285 128 194 3 121 179	198 0 L= 10 ** 169 0 376 0 312 180 132 0 206 0 L= 10 ** 145 0 173 0
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258 -1 260 0 292 1 298 2 179 4 160 5 181	150 0 126 0 196 0 L= 8 ** 184 0 210 0 278 0 219 180 288 0 306 0 180 0 129 0 165 180	-8 -6 -4 -2 0 2 4 ** K= -6 -5 -3 -2	203 123 135 204 303 190 154 2 113 208 119 114	210 101 134 220 296 175 128 L= 9 126 212 123 113 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 ** K= -3 -2 -1 3 4 ** K= -3	201 2 160 370 285 128 194 3 121	198 0 L= 10 ** 169 0 376 0 376 0 312 180 132 0 206 0 L= 10 ** 145 0
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258 -1 260 0 292 1 298 2 179 4 160 5 181 6 173	150 0 126 0 196 0 196 0 184 0 210 0 278 0 219 180 288 0 300 0 180 0 129 0 165 180 177 0	-8 -6 -4 -2 0 2 4 ** K= -6 -5 -3 -2 -1	203 123 135 204 303 190 154 2 113 208 119 114 135	210 101 134 220 296 175 128 L= 9 126 212 123 113 1 134	0 0 0 0 0 0 0 0 0 0	3 ** K= -3 -2 -1 3 4 ** K= -3 1 ** K=	201 2 160 370 285 128 194 3 121 179 4	$\begin{array}{ccccccc} 198 & 0 \\ L = & 10 & ** \\ & 169 & 0 \\ & 376 & 0 \\ & 312 & 180 \\ & 132 & 0 \\ & 206 & 0 \\ \\ L = & 10 & ** \\ & 145 & 0 \\ & 173 & 0 \\ L = & 10 & ** \\ \end{array}$
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258 -1 260 0 292 1 298 2 179 4 160 5 181 6 173	150 0 126 0 196 0 196 0 184 0 210 0 278 0 219 180 288 0 306 0 180 0 129 0 165 180 177 0	-8 -6 -4 -2 0 2 4 ** K= -6 -5 -3 -2 -1 0	203 123 135 204 303 190 154 2 113 208 119 114 135 188	210 101 134 220 296 175 128 L= 9 126 212 123 113 1 134 174	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 ** K= -3 -2 -1 3 4 ** K= -3 1 ** K= -3	201 2 160 370 285 128 194 3 121 179 4 133	198 0 L= 10 ** 169 0 376 0 312 180 132 0 206 0 L= 10 ** 145 0 173 0 L= 10 ** 162 180
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258 -1 260 0 292 1 298 2 179 4 160 5 181 6 173 ** K = 3	150 0 126 0 196 0 L= 8 ** 184 0 210 0 278 0 219 180 288 0 306 0 180 0 129 0 165 180 177 0 L= 8 **	-8 -6 -4 -2 0 2 4 ** K= -6 -5 -3 -2 -1 0 1	203 123 135 204 303 190 154 2 113 208 119 114 135 188 338	210 101 134 220 296 175 128 L= 9 126 212 123 113 134 174 343	0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 ** K= -3 -2 -1 3 4 ** K= -3 1 ** K=	201 2 160 370 285 128 194 3 121 179 4	198 0 L= 10 ** 169 0 376 0 312 180 132 0 206 0 L= 10 ** 145 0 173 0 L= 10 ** 162 180
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258 -1 260 0 292 1 298 2 179 4 160 5 181 6 173 ** K = 3	150 0 126 0 196 0 L= 8 ** 184 0 210 0 278 0 219 180 288 0 306 0 180 0 129 0 165 180 177 0 L= 8 **	-8 -6 -4 -2 0 2 4 ** K= -6 -5 -3 -2 -1 0	203 123 135 204 303 190 154 2 113 208 119 114 135 188	210 101 134 220 296 175 128 L= 9 126 212 123 113 1 134 174	0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 ** K= -3 -2 -1 3 4 ** K= -3 1 ** K= -3	201 2 160 370 285 128 194 3 121 179 4 133	198 0 L= 10 ** 169 0 376 0 312 180 132 0 206 0 L= 10 ** 145 0 173 0 L= 10 ** 162 180
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258 -1 260 0 292 1 298 2 179 4 160 5 181 6 173 ** K = 3 -7 164	150 0 126 0 196 0 196 0 184 0 210 0 278 0 219 180 288 0 306 0 129 0 165 180 177 0 L= 8 ** 145 0	-8 -6 -4 -2 0 2 4 ** K= -6 -5 -3 -2 -1 0 1	203 123 135 204 303 190 154 2 113 208 119 114 135 188 338	210 101 134 220 296 175 128 L= 9 126 212 123 113 134 174 343	0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 ** K= -3 -2 -1 3 4 ** K= -3 1 ** K= -3 -2	201 2 160 370 285 128 194 3 121 179 4 133	198 0 L= 10 ** 169 0 376 0 312 180 132 0 206 0 L= 10 ** 145 0 173 0 L= 10 ** 162 180
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150 0 126 0 196 0 L= 8 ** 184 0 210 0 278 0 219 180 288 0 306 0 180 0 129 0 165 180 177 0 L= 8 **	-8 -6 -4 -2 0 2 4 ** K= -6 -5 -3 -2 -1 0 1	203 123 135 204 303 190 154 2 113 208 119 114 135 188 338	210 101 134 220 296 175 128 L= 9 126 212 123 113 134 174 343	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 ** K= -3 -2 -1 3 4 ** K= -3 1 ** K= -3 -2	201 2 160 370 285 128 194 3 121 179 4 133 173	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258 -1 260 0 292 1 298 2 179 4 160 5 181 6 173 ** K = 3 -7 164	150 0 126 0 196 0 L= 8 ** 184 0 210 0 278 0 219 180 288 0 306 0 180 0 129 0 165 180 177 0 L= 8 ** 145 0 136 0	-8 -6 -4 -2 0 2 4 ** K= -6 -5 -3 -2 -1 0 1 2	203 123 135 204 303 190 154 2 113 208 119 114 135 188 338 133	210 101 134 220 296 175 128 L= 9 126 212 123 113 1 134 174 343 124 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 ** K= -3 -2 -1 3 4 ** K= -3 1 ** K= -3 -2 ** K=	201 2 160 370 285 128 194 3 121 179 4 133 173 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 163 5 162 7 200 ** K = 2 -8 174 -6 224 -2 258 -1 260 0 292 1 298 2 179 4 160 5 181 6 173 ** K = 3 -7 164 -5 136	150 0 126 0 196 0 196 0 184 0 210 0 278 0 219 180 288 0 306 0 129 0 165 180 177 0 L= 8 ** 145 0	-8 -6 -4 -2 0 2 4 ** K= -6 -5 -3 -2 -1 0 1 2	203 123 135 204 303 190 154 2 113 208 119 114 135 188 338 133 3	210 101 134 220 296 175 128 L= 9 126 212 123 113 1 134 174 343 124 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 ** K= -3 -2 -1 3 4 ** K= -3 1 ** K= -3 -2	201 2 160 370 285 128 194 3 121 179 4 133 173 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

	H ,	/ FO /	/FC/	PHI		н /	FO/	/FC/	PHI	н /	F0/	/FC/	PHI
*	* K=	D	L= 11	**	-	-1	164	176	0				
	-3	281 232	297	0	**	K =	0	L= 13	**				
	3	225	229 213	0	-	-3	175	160	0				
*	* K =	1	L= 11	**	**	K=	.1	L= 13	**				
	-4 -2 2 4	199 151 153 159	194 155 152 178	0000				138					
*	* K =	2	L= 11	**									
	-5 -4 1 3	242 122 192 140	232 96 201 130	0									
*	* K=	z	L= 11	++									
		2	L- 11	~ ~									
	-2	118	119	0									
	02	145 149		0									
*	* K=	4	L= 11	**									
	-3	140	131	n									
	5	252	268										
*	* K=	0	L= 12	**							119		
	,												
	-0	169 235	167 228	0									
			173							,			
	-	100	11.5	0								666.	
*	* K =	1	L= 12	**									
	-5	166	159	0									
	-3	183		Ũ									
	0	129	141										
	1	144	159										
*:	* K =	2	L= 12	**									
	-3 -2	117 159	126 141										
*:	* K =	3.	L= 12	**									

Observed and calculated structure factors for [clgeH]ClO4

	H /FO/	/FC/ PHI		H /FO/	/FC/ PHI	н	/FO/	/FC/ PHI
**	K= 0	L= 1) **			36 180		11	L= () **
				9 52	51 180			
	1 26						30	34 180
	2 318		**	K = 5	L= 0 **			
		220 0		210	203 188	** K=	1	L= 1 **
		449 180		1 164	166 180			
		99 0		2 34	14 180 41 0 227 0	-9	77	78 0
		257 0		3 53	41 0	-8	138	137 180
	7 160				tes tes t			
	8 52 9 68	49 180 66 0			163 180	-0	235	229 0
				7 171 8 107	174 180 109 0	-5	177	220 180
	K= 1	L= 0 **			109 0		293	
	K- 1				L= 0 **		863	
	1 165						272	
	2 317				493 180			
	3 230			1 177	179 0	1	708	724 180
	4 398				128 0	2	838	855 0
		300 0		4 86	`86 G			548 180
	8 173							
			**	K= 7	L= 0 **	5	223	218 0
**	K= 2	L= 0 **				. 7	106	103 180
			•	1 146	150 180	9	88	95 180
	0 340				185 0			
	1 593			3 42				
	2 336 3 205	340 180			119 180			
		188 180			152 0	-9	36	33 180
	4 275	188 180 271 180		6 46	48 180	-9 -8	36 36	33 180 47 0
	4 275 5 257	188 180 271 180 260 0		6 46	48 180	-9 -8 -7	36 36 227	33 180 47 0 225 0
	4 275 5 257 6 250	188 180 271 180 260 0 247 0	**	6 46 K= 8	48 180 L= 0 **	-9 -8 -7 -6	36 36 227 219	33 180 47 0 225 0 226 180
	4 275 5 257 6 250 7 128	188 180 271 180 260 0 247 0 136 180	**	6 46 K= 8	48 180 L= 0 **	-9 -8 -7 -6 -5	36 36 227 219 225	33 180 47 0 225 0 226 180 225 0
	4 275 5 257 6 250 7 128 9 75	188 180 271 180 260 0 247 0 136 180 77 0	**	6 46 K= 8 0 180	48 180 L= 0 ** 172 180	-9 -8 -7 -6 -5 -4	36 36 227 219 225 137	33 180 47 0 225 0 226 180 225 0 135 0
**	4 275 5 257 6 250 7 128 9 75	188 180 271 180 260 0 247 0 136 180 77 0	**	6 46 K= 8 0 180 1 82	48 180 L= 0 ** 172 180 89 0	-9 -8 -7 -6 -5 -4 -3	36 36 227 219 225 137 41	33 180 47 0 225 C 226 180 225 0 135 C 50 180
**	4 275 5 257 6 250 7 128 9 75	188 180 271 180 260 0 247 0 136 180 77 0	**	6 46 K= 8 0 180 1 82 3 103	48 180 L= 0 ** 172 180 89 0 96 180	-9 -8 -7 -6 -5 -4 -3 -2	36 36 227 219 225 137 41 121	33 180 47 0 225 0 226 180 225 0 135 0 135 0 50 180 134 0
**	4 275 5 257 6 250 7 128 9 75	188 180 271 180 260 0 247 0 136 180 77 0 L= 0 **	**	6 46 K = 8 0 180 1 82 3 103 4 130 5 64	48 180 L= 0 ** 172 180 89 0 96 180 129 0 65 180	-9 -8 -7 -6 -5 -4 -3 -2 -1	36 36 227 219 225 137 41 121 550	33 180 47 0 225 0 226 180 225 0 135 0 135 0 50 180 134 0 608 0
**	4 275 5 257 6 250 7 128 9 75 K= 3	188 180 271 180 260 0 247 0 136 180 77 0 L= 0 ** 1306 180	**	6 46 K = 8 0 180 1 82 3 103 4 130 5 64	48 180 L= 0 ** 172 180 89 0 96 180 129 0 65 180 102 180	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1	36 36 227 219 225 137 41 121	33 180 47 0 225 0 226 180 225 0 135 0 135 0 134 0 608 0 18 180
**	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	188 180 271 180 260 0 247 0 136 180 77 0 L= 0 ** 1306 180 180 180 180 180 123 180	**	6 46 K= 8 0 180 1 82 3 103 4 130	48 180 L= 0 ** 172 180 89 0 96 180 129 0 65 180 102 180	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1	36 227 219 225 137 41 121 550 38	33 180 47 0 225 0 226 180 225 0 135 0 134 0 608 0 18 180 552 0
**	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	188 180 271 180 260 0 247 0 136 180 77 0 L= 0 ** 1306 180 180 180 123 180 216 0	**	6 46 K = 8 0 180 1 82 3 103 4 130 5 64 6 104 7 80	48 180 L= 0 ** 172 180 89 0 96 180 129 0 65 180 102 180 84 0	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 .3 4	36 36 227 219 225 137 41 121 550 38 549	33 180 47 0 225 0 226 180 225 0 135 0 134 0 608 0 18 180 552 0
**	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	188 180 271 180 260 0 247 0 136 180 77 0 L= 0 ** 1306 180 180 180 123 180 216 0 186 180	**	6 46 K = 8 0 180 1 82 3 103 4 130 5 64 6 104 7 80 K = 9	48 180 L= 0 ** 172 180 89 0 96 180 129 0 65 180 102 180 84 0 L= 0 **	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 .3 4 5	36 36 227 219 225 137 41 121 550 38 549 534 102 88	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
•	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	**	6 46 K = 8 0 180 1 82 3 103 4 130 5 64 6 104 7 80 K = 9	48 180 L= 0 ** 172 180 89 0 96 180 129 0 65 180 102 180 84 0 L= 0 **	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 .3 4 5 6	36 36 227 219 225 137 41 121 550 38 549 534 102 88 154	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
•	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	**	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48 180 L= 0 ** 172 180 89 0 96 180 129 0 65 180 102 180 84 0 L= 0 ** 67 180	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 .3 4 5 6 7	36 36 227 219 225 137 41 121 550 38 549 534 102 88 154 54	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	**	$ \begin{array}{rcrcrcr} 6 & 46 \\ K = & 8 \\ 0 & 180 \\ 1 & 82 \\ 3 & 103 \\ 4 & 130 \\ 5 & 64 \\ 6 & 104 \\ 7 & 80 \\ K = & 9 \\ 3 & 66 \\ 5 & 57 \\ \end{array} $	48 180 L= 0 ** 172 180 89 0 96 180 129 0 65 180 102 180 84 0 L= 0 ** 67 180 57 0	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 .3 4 5 6 7	36 36 227 219 225 137 41 121 550 38 549 534 102 88 154 54	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	188 180 271 180 260 0 247 0 136 180 77 0 L= 0 ** 1306 180 123 180 216 0 180 180 123 180 216 0 186 180 158 0 73 180 L= 0 **	**	$ \begin{array}{rcrcrcr} 6 & 46 \\ K = & 8 \\ 0 & 180 \\ 1 & 82 \\ 3 & 103 \\ 4 & 130 \\ 5 & 64 \\ 6 & 104 \\ 7 & 80 \\ K = & 9 \\ 3 & 66 \\ 5 & 57 \\ \end{array} $	48 180 L= 0 ** 172 180 89 0 96 180 129 0 65 180 102 180 84 0 L= 0 ** 67 180 57 0	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 .3 4 5 6 7 9	36 36 227 219 225 137 41 121 550 38 549 534 102 88 154 61	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	188 180 271 180 260 0 247 0 136 180 77 0 L= 0 ** 1306 180 180 180 123 180 216 0 186 180 158 0 73 180 L= 0 **	** **	$ \begin{array}{rcrcr} 6 & 46 \\ K = & 8 \\ 0 & 180 \\ 1 & 82 \\ 3 & 103 \\ 4 & 130 \\ 5 & 64 \\ 6 & 104 \\ 7 & 80 \\ K = & 9 \\ 3 & 66 \\ 5 & 57 \\ K = & 10 \end{array} $	48 180 L= 0 ** 172 180 89 0 96 180 129 0 65 180 102 180 84 0 L= 0 ** 67 180 57 0	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 .3 4 5 6 7 9	36 36 227 219 225 137 41 121 550 38 549 534 102 88 154 61	33 180 47 0 225 0 226 180 225 0 135 0 50 180 134 0 608 0 18 180 552 0 531 180 104 0 92 0 157 180 39 0 57 180 L= 1 **
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	** **	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	48 180 L= 0 ** 172 180 89 0 96 180 129 0 65 180 102 180 84 0 L= 0 ** 67 180 57 0 L= 0 **	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 .3 4 5 6 7 9 ** K=	36 36 227 219 225 137 41 121 550 38 549 534 102 88 154 61 3	33 180 47 0 225 0 226 180 225 0 135 0 50 180 134 0 608 0 18 180 552 0 531 180 104 0 92 0 157 180 39 0 57 180 L= 1 **
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	188 180 271 180 260 0 247 0 136 180 77 0 L= 0 ** 1306 180 180 180 123 180 216 0 186 180 158 0 73 180 L= 0 ** 164 180 185 0	** ** **	$ \begin{array}{rcrcrcr} 6 & 46 \\ K = 8 \\ 0 & 180 \\ 1 & 82 \\ 3 & 103 \\ 4 & 130 \\ 5 & 64 \\ 6 & 104 \\ 7 & 80 \\ K = 9 \\ 3 & 66 \\ 5 & 57 \\ K = 10 \\ 0 & 117 \\ \end{array} $	48 180 L= 0 ** 172 180 89 0 96 180 129 0 65 180 102 180 84 0 L= 0 ** 67 180 57 0 L= 0 ** 112 180	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 .3 4 5 6 7 9 ** K= -8	36 36 227 219 225 137 41 121 550 38 549 534 102 88 154 61 3 85	33 180 47 0 225 0 226 180 225 0 135 0 50 180 134 0 608 0 18 180 552 0 531 180 104 0 92 0 157 180 39 0 57 180 L= 1 ** 84 180
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	** ** **	$ \begin{array}{rcrcrc} 6 & 46 \\ K = & 8 \\ 0 & 180 \\ 1 & 82 \\ 3 & 103 \\ 4 & 130 \\ 5 & 64 \\ 6 & 104 \\ 7 & 80 \\ K = & 9 \\ 3 & 66 \\ 5 & 57 \\ K = & 10 \\ 0 & 117 \\ 2 & 57 \\ \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 .3 4 5 6 7 9 ** K= -8 -6	36 36 227 219 225 137 41 121 550 38 549 534 102 85 49 534 102 85 61 3 85 66	33 180 47 0 225 0 226 180 225 0 135 0 135 0 134 0 608 0 18 180 552 0 157 180 157 180 57 180 L= 1 ** 84 180 67 0
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	** ** **	$ \begin{array}{rcrcrc} 6 & 46 \\ K = & 8 \\ 0 & 180 \\ 1 & 82 \\ 3 & 103 \\ 4 & 130 \\ 5 & 64 \\ 6 & 104 \\ 7 & 80 \\ K = & 9 \\ 3 & 66 \\ 5 & 57 \\ K = & 10 \\ 0 & 117 \\ \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 .3 4 5 6 7 9 ** K= -8 -6	36 36 227 219 225 137 41 121 550 38 549 534 102 88 154 61 3 85	33 180 47 0 225 0 226 180 225 0 135 0 135 0 134 0 608 0 18 180 552 0 531 180 104 0 92 0 157 180 57 180 L= 1 ** 84 180 67 0 142 180

H /F	0/	/FC/	PHI	Н	/F0/	/FC/	PHI	н	/F0/	/FC/	PHI
	35	31		1		208	0	4	165		
	+33	452	0	0	265	257 332	180 180	5	83 32	77	180
	175	183	C		33	52	180	0	26		U
	42	45	180	3	216	203	180	** K=	10	L= 1	**
	40	28	0	4	126	120	0	-			
	84	88	180 0	56	123 135	126	0 180	-5	49 61	47 65	180 180
	59	61		7		78	0	4	31	33	180
8 .	57	59	0					5			180
	159	156	0	** K=		L=	1 **	-2	124	134	0
		L= 1	**	-8		58	0	** K=	11	L= 1	**
	74	79	180	-6		45	180	-4	40	41	180
	43	40	180		79	75	0	-2	83		0
	173		0	-4	47	33	180	-1		59	180
-6 2 -4	34	237	180	-3	112	112	180	1	72	84	0
	57	69 344	180 180	-2 1	270	270	0	4	27	30	0
	46		180	2		178	180	** K=	12	L= 1	**
	62	176	0	5		150	180				
	49	151			50	48	180	-2		52	180
	215	218 199	0	** K=		L=	1 ++	-1			180 0
	207	202	0	~~ N-			1	0	40	09	U
	88	184	0	-7	. 41	43	0	** K=	0	L= 2	2 **
	212	218		-5	38	40	180	-			100
'	61	60	0	-4 -3	107	99 106	0 180	-9	59 155	70	180 180
** K=	5	L= 1	1 **	-2	130	128	0	-7	263		0
				-1	103	104	0	-6	291	293	180
-8 -3 1	28		0		132	128	180	-5		199	
-2	81	171	180	1 2	132	67 125	0	-4	251 242	258 260	180
0 1	114	107	180	3	63	61	0	-2	167		0
	84	80	180	4	156	152	0	-1	808	989	0
	864	494	180	6	87	91	180	0	610	632	180
	49	129	0	** K=	. 9	L=	1 **	1	210	213 239	0 180
	128	123	0		. ,	L-	1 ~ ~	23	386	401	180
		43	180	-6	78	76	180	4	500		0
** K=	6	L= 1	1 **	-5	115	116	0	5	118	113	180
-8	40	43	180	-4	50 54	49	180	6 7	164	164	180
	114	115	0	-2	135	135	180	8	72	86 79	0
-6	91	88	180	-1	237	234	180	9	83	88	180
-5	63	56	180	0	116	117	180				
	173	167	120	1	120	110	100	** K=	1	L= 2	**
	68	66 241	180	23	41	33 107	180 0	-9	92	07	180
			5	5	101		U		12	,,	100

Н	/F0/	/FC/ PHI	н./	F0/	/FC/	PHI	Н	/F0/	/FC/	PHI
-7	86	92 180	7	152	152	0	4	72	72	180
-6	61	54 0	8	114	117	180	. 5	93	96	Ū
-5	99	101 0					6	75	74	Ω
-4	368	376 180	** K=	4	L= 3	2 **				
-3	152	150 0					** K=	= 7	L= 3	2 **
-2	34	29 180	-9	33	36	180				
1	488	543 180		63	70	0	-8	117	110	C
0	301	306 180		160	158	0	-6	168	168	180
1	555	555 0		100	99	0	-5	92	90	C
3	175	176 0		156	156	180	-3	150	148	180
4	159	156 0		165	160	0	-2	134	134	C
5	166	158 180		160	159	0	-1	141	152	180
6 8	116 56	122 180		102		0	0	32	25	180
0	20	59 180		372	368	0	2	163	161	180
** K=	2	L= 2 **		60	57	0 180	3	108	104	180 180
** N-	- 2	L= 2 **	3 4	67	55 201	180	5	127	126	a
-8	47	47 180		45	.45	180	6 7		50	0
-7	126	129 0		154	155	180		43	20	0
-6	123	122 180	Ŭ	134		100	** K=	= 8	L= 2	2 **
-5	84	91 180	** K=	5	L= 7	2 **				2.84
-4	164	168 G		-	-		-7	94	92	180
-3	317	323 180	-9	92	92	180	-6	69	60	0
-2	109	101 0	-8	73	75	0	-5	107	109	0
-1	385	430 O	-7	79	76	180	-4	125	126	180
0	901	990 180		181	176	180	-3	172	169	C
1	130	138 180		154	149	0	-1	132	140	180
2	302	292 0		38	27	180	0	248	235	C
3	167	172 180		268	281	0	1	88	85	180
4	277	269 0		40	38	180	2	170	179	180
5	214	217 0		125	128	180	3	139	130	0
6	80	76 180		627	620	0	5	43	42	180
** K=	3	L= 2 **		124	119 86	180	0	68	73	0
K-	5	L- 2 **		357	347	0	** K=	= 9	L= 2	**
-9	123	123 180		132	130	180	K-	,	L	
-8	199	206 0		47	43	180	-2	93	99	0
-7	58	58 180		110	112	0	-1	93	97	180
-6	125	122 180		82		180	2	66		180
-5	289	291 0								
-4	35	43 180	** K=	6	L= 2	2 **	** K=	: 10	L= ;	2 **
-3	113	115 0								
-2	21	1 180		38		Q	-6	60	61	0
0	671	686 180		107	112	180	-5	66	67	0
1	28	26 0		235		180	-4	98	101	180
2	243	252 180		118	110	130	-3	89	93	0
3	33	32 0		28	34	0	-1	31	31	180
4	125	122 0	-1	264		180	0	116	118	0
5	284	272 180		77		0	2	81	7.7	180
0	46	47 0	3	95	92	. 0	3	57	55	C

H /F0/	/FC/ PHI	H /FO/	/FC/ PHI	H /FO/	/FC/ PHI
4 43	42 180	6 213	212 0	2 13	
5 38	40 180			3 101	
++ K= 11	L= 2 **	** K= 3	L= 3 **	4 199	
** K= 11	L= 2 **	-9 66	66 180	5 100	100 0
-4 35	35 0	-9 66		** K= ó	L= 3 **
-2 40	42 180	-7 70	70 0	~~ ~~ 0	L- 5 **
1 41	43 180	-6 129	133 180	-8 101	108 0
2 76	86 . 0	-3 327	338 180	-8 101	
3 86	103 0	-2 341	365 0	-5 92	
5 00	105 0	-1 94		-4 193	
** K= 12	L= 2 **	0 476	480 180	-3 184	
Nº Nº TE	L- L	1 92	71 180	-2 80	
-1 40	56 180	2 175	169 180	-1 43(
	20 100	3 109		2 . 124	
** K= 1	L= 3 **	4 155	154 0	3 170	
-2 63	L- J	5 131	127 180	4 105	
-9 79	83 180	6 104		5 183	
-8 216	226 0	7 66	63 0	6 146	
-7 130	136 0				
-6 379	386 180	** K= 4	L= 3 **	** K= 7	L= 3 **
-5 118	117 0				245 180
-4 206	210 180	-9 66	75 0	-8 36	33 180
-3 168	151 0	-8 116	116 0	-6 200	
-2 676	772 0	-7 265	269 180	-5 45	
-1 183	192 180	-6 82		-3 157	
0 343	355 180	-5 141	135 0	-2 179	181 180
1 432	439 0	-4 41	40 0	-1 170	172 0
2 225	229 180	-3 250	252 0	0 261	258 0
3 222	214 0	-2 44	50 0	1 111	
4 206	210 0	-1 406	427 180	2 76	
5 158	146 180	0 89	90 0		54 180
7 69	64 0	1 420		4 173	165 180
8 50	54 180	2 263	259 180		100
1 · K- 0		3 315	302 0	** K= 8	L= 3 **
** K= 2	L= 3 **	4 131	132 180	7 74	71 400
-0 0/		5 276	278 180	-7 29	
-9 86	84 0	6 112	108 0	-4 87	
-8 56 -7 327	55 0	7 88	90 180	-3 75	
-7 327 -5 149	338 180	8 56	59 180	-1 116	
-4 145	148 180 145 0	** K= 5	1 - 7 ++	0 114	
-3 194	145 0 199 0	** K= 5	L= 3 **	1 35	
-2 249	249 180	-9 30	19 180	2 166 3 147	
-1 112	122 180	-8 75	74 180	5 73	
1 187	179 0	-7 90	89 180	5 13	13 100
2 280	275 180	-6 85	87 0	** K= 9	L= 3 **
3 233	235 0	-4 83	75 0		
4 69	65 180	-3 57	53 180	-6 44	42 0
5 47	51 0	1 198	188 180	-5 125	

ни	F0/	/FC/ PHI	н	/F0/	/FC/	PHI	н	/F0/	/FC/ 1	PHI
1 2 4 5 ** K= 1	67 245 64 79 57 102 97 10 88	72 0 256 180 57 0 83 180 55 0 103 180 99 0 L= 3 ** 92 180	-3 -2 -1 0 1 2 4 5 6 7	222 189 58 120 66	214 423 105 147 388 215 192 61 118 68	0 180 0 180 180 180 180	- 6 - 5 - 4 - 3 2 - 1 - 1 2 5 6	65 41 51 183 260 55 196 82 67	17 54 174 145 228 250 42 194 81	180 180 0 180 180 180
3	63	71 180	** K	= 2	L=	4 **	** K=	5	L= 4	* *
** K= -3 -2 0	11 40 63 53	L= 3 ** 46 0 69 180 62 0	-9 -8 -7 -6 -5 -4	35 82 277 71 161 430	36 88 273 74 159 440	180 0 180 180 0 180	-9 -8 -7 -6	104 152 122 171 170	103 152 123 170	0 180 180 0 180
** K=	12	L= 3 **	-3	182	190	0	- 4	48	50 1	180.
-1	46	73 0	-2		388 188	0 180	-3	341 243		0 180
** K=	0	L= 4 **	0	44 31	21 32	180 180	-1	234	227 199	180
-10 -9 -8 -7 -6 -5	26 62 231 48 273 170	43 180 65 180 233 0 47 0 275 0 171 0	2 3 4 7 8	445 144 62 50	43 440 152 63 53	0 0 180 180		186 172 207 248 84 87	173 202 239 82	180 0 180 180
-4	424	443 180		- 5	L= .	4 **	** K=	6	L= 4	**
-3 -2 -1 0 1 2 3 4 5 6 7 ** K=	3 42 95 2 02 1 32 4 32 3 85 2 91 86 3 42 1 26 27 1	355 0 95 180 211 180 121 180 414 180 376 180 287 0 82 180 330 180 132 180 29 180 L= 4 **	-8 -6 -5 -4 -2 -1 0 1 2 3 4	61 341 75 65 270 96 229 129 257 422	133 59 58 349 74 71 272 99 223 128 254 417 103	0 0 180 180 180 180 0 180 0 180 0	-8 -6 -5 -4 -3 -1 -1 -1 -3 -1 -3 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	45 68 105 198 142 59 144 99 189 44 80	72 106 199 143 61 70 147 98 186	180 180 180 180 180 180 180 180
-8	39	33 180	** K	= 4	L=	4 **	** K=	7	L= 4	**
-7 -6 -4	58 197 177	55 0 205 0 181 0	-9	56 63	50 64	0	-8 -7	63 53		180 180

н	FO/	/FC/ PHI	ни	FO/	/FC/	PHI	н	/F0/	/FC/ PHI
,	F/	17 0	7	777	777	100		171	407 0
-0	54	63 0 71 0	-7	327	333 175	0	-6		
-3	163	162 0	-5	154	152		-4		81 180
-2	223	222 180	-4	122		0	-2		
-1	60	61 0	-3	293	313		-1	365	365 0
0	80	73 0	-2	398		180	1	172	170 180
1	187	192 180	0	160		0	2	362	350 0
2	68	69 0	1	111		180	3	123	115 180
-3		75 0	3	152	152	0	5	138	134 C
- 4	55	57 180	4		73		6		190 180
			5	122		0			
** K=	8		6		94		** K=	5	
4	64	59 186	7	110		180		129	
-7	109	106 0					-9		36 180
-5	87	91 180	** K=	2	L= 5	**		68	64 180
-4	204	206 0		440	477	100		62	56 0
	89 124	91 180	-8		123	081	-6		
-1	144	118 180 143 0	-6 -5			180		69 136	
-0	114	109 180	-3			180	2	140	
	31	49 0		175		180			66 0
2	109	107 0	-1			180			45 180
	73	71 180	Ö			0	6		16 180
4	27	1 0	1		393				51
			2	129		0	** K=	6	L= 5 **
** K=	9	L= 4 **		45	50	180			
			5	112	107	0	-8	69	65 180
-5	28	23 0	6	139	137	180	-7	111	114 C
	40	35 0			7.4	160	-6	71	74 180
3		60 180	** K=	3	L= 5	5 **		223	215 180
4	41	42 0		471		-		83	77 0
++ V-	10	1 - / 44	-9			0		63	68 180
** K-	10	L= 4 **			53				
-4	52	53 0		41	242			319	305 0 114 180
-3		84 180	-4	222		0	0 2	157	158 0
	42	48 180	-2	265	272			189	
	104	111 0	0				4	48	
	62	61 180	1	205		180	5		144 0
2	106	111 0		78		0	-		
			3	53			** K=	7	L= 5 **
** K=	11	L= 4 **	4						
			5	74		180	-8	58	56 0
-3		71 180	7	59			-7	104	111 0
-1	43	57 0					-6	137	135 180
	54		** K=	4	L= 5	5 **		74	76 0
** K=	1	L= 5 **					-3	204	202 180
-	1.04		-9		58		-2	165	174 180
-9	101	106 0	-8			180		97	100 180
-8	82	81 180	-7	168	161	0	0	137	130 180

H /FO/	/FC/ PHI	Н	/FO/	/FC/	PHI	н	/F0/	/FC/ PHI
1 105	102 0	4	252	256	180	5	57	55 0
3 34	40 180	5			0	6		46 0
4 55	49 0			69		U	40	40 0
5 55	52 180		00				4	
		** K=		L= 6			100	-
** K= 8	L= 5 **			-		-8	61	59 180
		=9	48	54	180	-7		77 0
-7 40	36 0	-8			180		39	
-4 65	63 0	-6	51	53	Q	-4	53	49 0
-2 92	87 180	-5	78	73	0	-3	64	58 180
0 61	64 180	-4	176	165	0	-2	325	320 180
3 64	68 180	-3	113	100	0	- 1	88	90 180
4 64	59 180	-2	75	75	0	-0	95	87 180
				64		3		47 180
** K= 9	L= 5 **		54	50	0	6		41 180
		2	69		. 0			
-6 115	120 180	3	168		180	** K=	5	L= 6 **
-5 65	68 0	4	111					
-4 96	98 0		55		0	-7		136 0
-2 144		6	40	27	180	- 5		189 0
0 98			-				71	65 0
1 80		** K=	2	L= 6	**	-3		272 180
3 49		0	25	75	-		164	161 0
4 96	102 0	-9	201	35		-1		51 0
** K= 10	1 - 5 ++	-8	63		180	0	200	200 180 209 0
K- 10	L- J **	-5	152		180	1 2	212	209 0 123 180
1 39	44 0	-4	318		100	3	258	248 180
3 26		-3	62		180	4	124	126 0
0 20	55 0	-2	87		180		43	52 180
** K= 11	L= 5 **	-1	230		0	6		
		0	115	114				
-3 59	64 180	2	256		0	** K=	6	L= 6 **
0 49	58 180			93	180			
		4	131	137	180	-8	44	51 0
** K= 0	L= 6 **	5	126	121	0	-7	76	71 180
						-5	218	214 0
-9 103	102 0	** K=	3	L= 6	**	-4	96	101 180
-8 80						-3	134	138 0
-7 236	230 0	-9	80	83	180	-5	114	115 0
-6 235	246 0		68		0	0	93	94 0
-5 347	347 180	-6		280			77	77 C
-4 397	400 0		44	51		4	48	47 0
-3 73	69 180	-4	115		0.	-6	226	232 120
-2 296		-3		332		** K=		L= 6 **
-1 54		-1	235		0	-		
1 75	112 0	0		82		-7		54 0
2 163	64 0 169 0		69		0	-6	54	47 180
3 116		3		243			60	5.6 0
5 110	114 180	4	211	210	0	-3	227	225 180

H /FO/	/FC/ PHI	H /FC	D/ /FC/ PHI	H /F	O/ /FC/ PHI
-1 117	11 6 0	1 17	77 177 0	-5	70 63 0
0 37	36 180		79 181 180		17 106 180
1 112	112 0		46 48 0		59 52 180
4 56			16 120 180		17 120 0
4 50	20 0		48 53 0		95 92 180
** K= 8	L= 6 **	0	40 55 0		07 00 0
K - 0		** K=	3 L= 7 **		14 118 0
-7 37	38 180	~~ K			38 137 180
-4 161	161 180	-9 6	66 65 180		57 51 0
-3 65	66 0		61 62 0		
-2 118	108 0	-6 9			7 L= 7 **
-1 124	119 180	-5 7			
0 60	59 0	-3 9			23 119 0
2 120	1.16 180		59 56 0		76 75 180
4 33	34 0		46 33 180		24 128 180
			98 196 0		64 164 180
** K= 10	L= 6 **		53 71 0	Ū.	42 29 0
			43 41 180		99 97 180
-4 109	115 180				54 61 0
-3 46	46 180	** K= 4	4 L= 7 **		34 36 180
-2 98	99 .0				28. 27. 150
-1 55	53 180	-8 5	57 61 0	** K=	8 L= 7 **
		-7			3. 14 3. 44
** K= 1	L= 7 **		19 224 0		29 36 0
			84 192 180		20 12/ 0
-9 79	75 180		39 141 180		70 69 0
-8 57	61 180		45 141 0		79 84 180
-7 123	117 0		10 213 180		36 32 180
-6 171	163 180	0 6			53 51 180
-5 121	122 0		D8 108 C		
-4 295	302 0	2 25	58 260 180	** K=	9 L= 7 **
-3 400	404 180	3 4			
-1 43	43 .180		89 88 0		03 102 0
0 121	113 180	5 8	85 84 180	0 1	15 121 0
1 156	155 0				
2 88	92 G	** K=	5 L= 7 **	** K= 1	0 L= 7 **
3 199	211 180				
6 104	102 180	-7 5		-1	44 47 0
		-5 4	43 41 180		
** K= 5	L= 7 **		33 231 0	** K=	0 L= 8 **
			34 35 0		
-8 67	68 0	-1 7	70 68 0		37 134 180
-7 65	70 0		67 71 180		35 129 0
-6 43	41 180		50 50 180		26 232 180
-5 187	186 0	3 3	39 28 180		95 83 0
-4 187	184 180				45 240 180
-3 170	167 180	** K= (5 L= 7 **		98 95 180
-2 294	301 0				66 167 0
-1 63	63 0		28 123 180		62 368 180
0 79	79 0	-6 7	71 70 180	1 2	33 233 0

H /.FO.	/ /FC/ PHI	H /FO/	/FC/ PHI	H /FO/	/FC/ PHI
2 3		-3 122			
	9 42 0	-2 113			
	5 173 0		57 0	-4 271	
	5 83 180	1 67	5.5 0	-3 186	
	L= 8 **	2 ()	75 180	-2 95	
** K- 1	L- C **	** K= 5	L= 8 **		182 0 136 180
-6 104	4 109 0	** K-)	L- 0 ##	2 147	
-5 13		-7 72	74 180		
-4 12		-6 153		5 70	101 0
-3 7		-5 33		** K= 2	L= 9 **
	5 179 180	-4 80		Nº C	67 180
-1 318	3 328 180	-3 217		-8 83	79 180
1 6		-1 118		-5 190	
2 8		0 144		-3 271	
** K= 7	2= 9 ++	1 64	67 180	-2 58	
** K= 2	L= 8 **	2 37	32 180	-1 174	
		3 - 72	77 0	1 121	
-8 13		4 59	70 180	2 163	161 0
-7 75				3 39	42 0
-6 5		** K= 6	L= 8 **	4 45	47 180
-5 230					
-3 7			79 180	** K= 3	L= 9 **
-2 28		-1 155			
-1 8.			(L.S. 10. PA	-7 70	
0 4			L= 8 **	-5 59	
1 50		F 90		-4 139	
2 9 5 7	5 102 180	-5 89		-3 70	
-6 9		-4 103		-2 67	
	L= 8 **			-1 73 0 55	
		1 87	01 180	3 70	
-7 13	5 140 180	2 53	48 180	3 70	
-6 40	6 41 180	3 66	66 0		L= 9 **
-5 40		-3 31			-
-4 147		** K= 8	L= 8 **	-7 65	62 0
-3 18:	3 190 0			-6 75	
-2 13		-5 74	78 180	-5 151	143 180
-1 10	96 180	-4 90	88 0	-4 41	41 0
0 310		-3 52		-3 160	160 C
3 14		-2 93		-2 186	187 180
4 87	7 95 180	1 72	76 180	0 113	117 180
				1 203	
** K= 4	L= 8 **	** K= 9	L= 8 **	2 108	111 0
-8 3		-2 37	. 34 0	** K= 5	L= 9 **
-7 4:		++ 1/- 1	1- 0.00	- 5 / 7	15 0
-5 3		** K= 1	L= 9 **	-5 60	
-4 8		-8 35	43 0	-3 42	
4 0.		-0 33	45 0	-5 42	20 0

H /FO/	/FC/ PHI	H /FO/	/FC/ PHI	H /F0/	/FC/ PHI
					1.11
-2 32	39 0	-3 93		-3 99	
-1 71	64 180	-1 105		-2 58	
0 34	40 180	1 152	151 180	-1 86 0 63	87 180
** K= 6	L= 9 **	** K= 3	L= 10 **	0 63 1 84	
-6 33	37 0	-7 92		** K= 3	L= 11 **
-5 137	131 180	-6 91			
-3 63	62 0	-5 90		-5 48	
-2 46	52 180	-4 136		-4 56	57 0
-1 105 0 79	104 0 79 0	-3 85		-3 49	
1 72	72 180	-1 267 0 75		-2 69 -1 78	
2 68	73 0	u 1,5	14 100	-1 10	01 0
	L= 9 **	** K= 4	L= 10 **	** K= 4	L= 11 **
~~ K- 1	L- 9 **	-6 44	37 0	-3 93	93 180
-4 49	52 0	-5 77			100 0
-3 77	79 180	-4 41			
-2 29	38 180	-3 47		** K= 0	L= 12 **
1 73	69 0	-2 30	39 0		
		-1 27	14 0	-2 81	81 C
** K= 8	L= 9 **	0 82	83 0		
-2 72	73 180	** K= 5	L= 10 **		
	73 180 L= 10 **	-5 94	91 180		
** K= 0	L= 10 **	-5 94 -4 63	91 180 63 0		
** K= 0 -7 91	L= 10 ** 76 0	-5 94 -4 63 -3 66	91 180 63 0 66 180		
** K= 0 -7 91 -6 95	L= 10 ** 76 0 102 0	-5 94 -4 63 -3 66 -1 45	91 180 63 0 66 180 51 0		
** K= 0 -7 91 -6 95 -5 226	L= 10 ** 76 0 102 0 223 180	-5 94 -4 63 -3 66	91 180 63 0 66 180 51 0		
** K= 0 -7 91 -6 95 -5 226 -4 70	L= 10 ** 76 0 102 0 223 180 68 180	-5 94 -4 63 -3 66 -1 45 0 164	91 180 63 0 66 180 51 0 165 180		
** K= 0 -7 91 -6 95 -5 226 -4 70 -2 324	L= 10 ** 76 0 102 0 223 180 68 180 326 180	-5 94 -4 63 -3 66 -1 45 0 164 ** K= 6	91 180 63 0 66 180 51 0 165 180 L= 10 **		
** K= 0 -7 91 -6 95 -5 226 -4 70 -2 324	L= 10 ** 76 0 102 0 223 180 68 180 326 180 75 0	-5 94 -4 63 -3 66 -1 45 0 164 ** K= 6	91 180 63 0 66 180 51 0 165 180 L= 10 **		
** K= 0 -7 91 -6 95 -5 226 -4 70 -2 324 -1 74 0 136 1 78	L= 10 ** 76 0 102 0 223 180 68 180 326 180 75 0 131 0 74 180	-5 94 -4 63 -3 66 -1 45 0 164 ** K= 6 -3 39	91 180 63 0 66 180 51 0 165 180 L= 10 **		
** K= 0 -7 91 -6 95 -5 226 -4 70 -2 324 -1 74 0 136	L= 10 ** 76 0 102 0 223 180 68 180 326 180 75 0 131 0 74 180	-5 94 -4 63 -3 66 -1 45 0 164 ** K= 6 -3 39	91 180 63 0 66 180 51 0 165 180 L= 10 ** 34 180 31 180		
** K= 0 -7 91 -6 95 -5 226 -4 70 -2 324 -1 74 0 136 1 78 2 60	L= 10 ** 76 0 102 0 223 180 68 180 326 180 75 0 131 0 74 180 63 0	-5 94 -4 63 -3 66 -1 45 0 164 ** K= 6 -3 39 -1 28 0 76	91 180 63 0 66 180 51 0 165 180 L= 10 ** 34 180 31 180 75 180		
** K= 0 -7 91 -6 95 -5 226 -4 70 -2 324 -1 74 0 136 1 78 2 60	L= 10 ** 76 0 102 0 223 180 68 180 326 180 75 0 131 0 74 180 63 0	-5 94 -4 63 -3 66 -1 45 0 164 ** K= 6 -3 39 -1 28	91 180 63 0 66 180 51 0 165 180 L= 10 ** 34 180 31 180 75 180		
** $K = 0$ -7 91 -6 95 -5 226 -4 70 -2 324 -1 74 0 136 1 78 2 60 ** $K = 1$	L= 10 ** 76 0 102 0 223 180 68 180 326 180 75 0 131 0 74 180 63 0 L= 10 **	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	91 180 63 0 66 180 51 0 165 180 L= 10 ** 34 180 31 180 75 180 L= 11 **		
** $K = 0$ -7 91 -6 95 -5 226 -4 70 -2 324 -1 74 0 136 1 78 2 60 ** $K = 1$ -7 56	L= 10 ** 76 0 102 0 223 180 68 180 326 180 75 0 131 0 74 180 63 0 L= 10 ** 62 0	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	91 180 63 0 66 180 51 0 165 180 L= 10 ** 34 180 31 180 75 180 L= 11 ** 61 180		
** $K = 0$ -7 91 -6 95 -5 226 -4 70 -2 324 -1 74 0 136 1 78 2 60 ** $K = 1$ -7 56 -6 36	L= 10 ** 76 0 102 0 223 180 68 180 326 180 75 0 131 0 74 180 63 0 L= 10 ** 62 0 46 0	$\begin{array}{ccccc} -5 & 94 \\ -4 & 63 \\ -3 & 66 \\ -1 & 45 \\ 0 & 164 \\ ** & K = 6 \\ -3 & 39 \\ -1 & 28 \\ 0 & 76 \\ ** & K = 1 \\ -6 & 65 \\ -4 & 108 \\ \end{array}$	91 180 63 0 66 180 51 0 165 180 L= 10 ** 34 180 31 180 75 180 L= 11 ** 61 180 111 0		
** $K = 0$ -7 91 -6 95 -5 226 -4 70 -2 324 -1 74 0 136 1 78 2 60 ** $K = 1$ -7 56 -6 36 -3 90	L= 10 ** 76 0 102 0 223 180 68 180 326 180 75 0 131 0 74 180 63 0 L= 10 ** 62 0 46 0 89 180	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	91 180 63 0 66 180 51 0 165 180 L= 10 ** 34 180 31 180 75 180 L= 11 ** 61 180 111 0 48 180		
** $K = 0$ -7 91 -6 95 -5 226 -4 70 -2 324 -1 74 0 136 1 78 2 60 ** $K = 1$ -7 56 -6 36 -3 90 0 143	L= 10 ** 76 0 102 0 223 180 68 180 326 180 75 0 131 0 74 180 63 0 L= 10 ** 62 0 46 0 89 180 141 180	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91 180 63 0 66 180 51 0 165 180 L= 10 ** 34 180 31 180 75 180 L= 11 ** 61 180 111 0 48 180 114 0		
** $K = 0$ -7 91 -6 95 -5 226 -4 70 -2 324 -1 74 0 136 1 78 2 60 ** $K = 1$ -7 56 -6 36 -3 90 0 143	L= 10 ** 76 0 102 0 223 180 68 180 326 180 75 0 131 0 74 180 63 0 L= 10 ** 62 0 46 0 89 180 141 180	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91 180 63 0 66 180 51 0 165 180 L= 10 ** 34 180 31 180 75 180 L= 11 ** 61 180 111 0 48 180 114 0 114 180		
** $K = 0$ -7 91 -6 95 -5 226 -4 70 -2 324 -1 74 0 136 1 78 2 60 ** $K = 1$ -7 56 -6 36 -3 90 0 143 3 43	L= 10 ** 76 0 102 0 223 180 68 180 326 180 75 0 131 0 74 180 63 0 L= 10 ** 62 0 46 0 89 180 141 180	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91 180 63 0 66 180 51 0 165 180 L= 10 ** 34 180 31 180 75 180 L= 11 ** 61 180 111 0 48 180 114 0 114 180		
** $K = 0$ -7 91 -6 95 -5 226 -4 70 -2 324 -1 74 0 136 1 78 2 60 ** $K = 1$ -7 56 -6 36 -3 90 0 143 3 43 ** $K = 2$	L= 10 ** 76 0 102 0 223 180 68 180 326 180 75 0 131 0 74 180 63 0 L= 10 ** 62 0 46 0 89 180 141 180 42 180 L= 10 **	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91 180 63 0 66 180 51 0 165 180 L= 10 ** 34 180 31 180 75 180 L= 11 ** 61 180 111 0 48 180 114 0 114 180 26 180		
** $K = 0$ -7 91 -6 95 -5 226 -4 70 -2 324 -1 74 0 136 1 78 2 60 ** $K = 1$ -7 56 -6 36 -3 90 0 143 3 43	L= 10 ** 76 0 102 0 223 180 68 180 326 180 75 0 131 0 74 180 63 0 L= 10 ** 62 0 46 0 89 180 141 180 42 180 L= 10 **	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91 180 63 0 66 180 51 0 165 180 L= 10 ** 34 180 31 180 75 180 L= 11 ** 61 180 111 0 48 180 114 0 114 180 26 180		

Observed and calculated structure factors for

[clgeH] 2 [CuCl 4 (H20) 2]

2 7 2	4				
H /FO/ /FC/ PHI		H /FO/	/FC/ PHI	H /FO/	/FC/ PHI
++ K= 0 1= 0 ++			470 400		
		1 191			110 0
1 716 723 D		2 351	337 180	3 56	56 180
		3 88 [°] 4 314		** K= 12	1- 0 ++
			92 180		L- 0 **
				0 265	258 0
5 369 357 0		0 105	170 100		169 0
6 216 211 D					51 0
7 57 56 0		N U	- 0 · · ·	3 96	
		0 967	1124 0	5 .0	
** K= 1 L= 0 **				** K= 1	L= 1 **
			192 180	-1 326	530 0
1 133 122 180			70 0	-7 182	184 0
			372 0	-6 446	446 0
3 98 103 0		5 336	334 D	-5 170	167 0
4 557 540 180		6 191	190 0	-4 32	22 180
5 36 39 180				-3 507	
6 248 251 0	**	K= 7	L= 0 **		
				-1 255	249 0
** K= 2 L= 0 **			48 180		544 0
1 525 413 0			45 180		842 0
0 685 925 0				2 326	
1 657 637 0		6 62	62 180	3 226	
2 162 156 0		- 133	121 0	4 405	387 0
3 107 108 0	**	K= 8	L= 0 **	5 282	
4 443 426 D 5 475 464 0		0 7/1	775 0		140 0
5 475 464 0 6 141 143 0		0 140	775 0		52 0
0 141 145 0		2 113			1- 1 ++
** K= 3 L= 0 **				** K= 2	L= **
			292 0	-7 136	145 0
		5 318	319 0	-6 97	03 180
2 245 230 0			5.7 5		181 180
3 63 61 0	**	K= 9	L= 0 **	-4 259	250 0
4 261 249 180				-3 237	217 0
5 28 10 180		1 32	32 0	-2 261	246 180
6 126 133 0		2 92	89 0	-1 48	44 180
2 247. 235 2		3 92	89 180	1 408	364 180
** K= 4 L= 0 **		4 141	141 180	2 192	177 0
4 429 412 0.		5 71	74 0	3 399	373 0
0 115 116 0				4 172	171 180
1 664 653 0	**	K= 10	L= 0 **	5 193	188 180
2 617 590 0		1 198	183	6 68	68 0
3 61 51 180		0 384	374 0		
4 254 246 0		1 345	334 0	** K= 3	L= 1 **
5 519 512 0 6 107 109 0		2 71	64 0		
		3 86	89 180	-7 115	104 0
		4 228	226 0	-6 166	157 0
		V- 11	1 - 0 ++	-5 450	441 0
	**	K= 11	L= 0 **	-4 164	156 0

н	/F0/	/FC/ PHI	E H	/F0/	/FC/	PHI	н	/F0/	/FC/ PHI
-3	279	259 180	2	246	232	180	- 4	76	75 0
-2	744	751 0		169	166	180	- 1	94	98 0
-1	1166	1548 (227		Ō	Ó	75	74 180
0	269	256		37	41	ō	1	122	123 180
1	331	296 180		145	147	-	2	160	159 0
2	321	306 (142	141	100	3	84	88 0
3	475	454 (= 7	L= 1	1 **	4	179	176 180
- 4	515	497 (- •			-		
5	371	370 (313	310	0	** K=	: 11	L= 1 **
6	63	50 180		31	20	Ő	~~ ~~		
Ŭ	05	50 180	-4	96			2	7/7	744 0
	- /				90	0	-2	367	364 0
** K=	= 4	L= 1 **	-	365	347	0	-1	326	339 0
,			-2	135	131	0	0	32	27 180
-6	113	115 (372	394	0	1	140	137 0
-5	38		0	764	779	0	2	278	269 0
-4	182	174 180		88	81	0	3	64	64 0
-3	87	82 (162	154	180			
-2	179	173 [) 3	498	481	0	** K=	: 12	L= 1 **
-1	317	319 180) 4	415	409	D			
0	60	55 ()				-3	127	121 0
1	523	483 () ** K=	= 8	L= 1	 **	- 2	146	143 0
2	178	169 180		÷	-		-1	156	165 180
3	331	314 180		51	54	0	Ō	53	60 180
4	113	111 (133	131	õ	1	157	150 0
5	71	80 (189	179	180	2	72	67 180
6	84	91 180	-	74	73	180	2	12	01 100
•		// ///	-1	366	379	0	** K=	: 13	L= 1 **
** K=	= 5	L= 1 **	-	62	55	180	** K-	• 13	L- **
N - N -						180	•	205	245 0
-6	218	213 (1	412	391		-1	205	215 0
-5	224			194	182	0	0	182	176 0
-4	170		-	223	220	0		•	
-4				241	233	180	** K=	• 0	L= 2 **
-2	223	217 (85	95	180	_		
	430	421 (~			-7	222	223 0
-1	485	529 (= 9	L= 1	★ ★	-6	445	445 0
0	434	425 (-	-5	55	49 0
1	282	260 (188	184	0	-4	69	62 180
2	247	235 (87	82	0	-3	499	502 0
3	401	378 (70	68	0	-2	722	775 0
4	429	412 () -2	272	263	9	-1	759	1055 0
5	183	186 () –1	372	387	0	0	623	6 1 4 0
			0	308	294	٥	1	693	663 180
** K=	= 6	L= 1 **	•	194	183	0	2	109	116 0
			2	138	135	Ō	3	1212	1233 0
-6	79	81 (153	140	ō		523	509 0
-4	160	154 180		231	224	0	5	309	322 180
-3	151	144 0		219	223	Ő	6	38	31 0
-2	206	202				-	v	20	
-1	236	241 180		= 10	L= 1	**	** K=	1	L= 2 **
1	251	236 (- '			T	b = 6
. •			•						

н	/F0/	/FC/	PHI	н	/F0/	/FC/	PHI	н	/F0/	/FC/	PHI
-7 -6	62 75	65 74	0 180	-4 -3	42 376	38 366	0	2	110		180
-5 -4	90 237	88 228	180 0	-2 -1	1097 ⁻ 577	1264	0 0	** K=	= 8	L=	2 **
- 3	30	31	Õ	O	804	791	180	- 6	313	314	0
-2	323	315	180	1	30	15	180	-5	64	57	
-1	166 223	187 195	0 0		1090 571	1088	0	- 4	87	83	180
0 1	208	193	180	3 4	74	554 70	0 0	-3 -2	294 416	290 430	
2	66	65	0	5	126	127	Ő	-1	242	276	
3	52	53	Õ	6	68	46	õ	o	311	299	
4	184	173	180			_	_	1	182	177	
6	130	134	0	** K=	= 5	L= 7	2 **	2	120	119	
	_			_				3	390	374	
** K=	= 2	L= 2	**	-7	70	69	180	4	296	286	1 0
-7	267	269	0	-6 -5	128 159	127 158	0	5	42	29	180
-6	250	249	0	-4	336	323	180	** K:	= 9	L=	2 **
-5	67	61	õ	-3	157	151	180		- /	L -	
- 4	44	45	Ō	-2	531	548	0	-5	100	98	180
-3	440	437	0	-1	85	90	0	-4	342	337	0
-2	802	863	0	0	451	424	180	-3	165	161	0
-1	586	735	0	1	82	80	0	-2	390	402	
D 1	138 29	148 37	0	2	95	89	0	-1	66	78	
2	588	564	0 0	3 4	148 68	145 64	180 0	0	288 55	279 55	0 180
3	710	687	0	5	50	49	0	2	58	52	
4	270	269	Ō	6	105	101	180	3	114	116	
6	57	56	D					4	93		180
A. A. 10 -				** K=	= 6	L= 3	2 **				_
** K=	= 3	L= 2	**	,		744	•	** K:	= 10	L=	2 **
-6	92	05	180	-6 -4	314	314	10		4.0.4	407	•
-4	322	309			97 473	463	180 0	-5 -4	101 34	107 32	0 0
-3	33		180	-2	692	726	D	-3	48	50	
-2	394	396	180	-1	287	331	Ō	-2	531	558	õ
-1	88	103	0	0	94	101	0	-1	417	494	
0	109	102	D	1	132	131	0	0	283	282	
1	167	158	180	2	297	283	Ō	1	142	137	
2 3	226	210	0	3	550	540	0	2	557	549	
	111 233	111 227	0 180	4 5	367 52	359	0	3	398	390	0
5	44	48	180	2	52	52	180	** K:	= 11	L=	2 **
6	117	117	0	** K=	: 7	L= 3	2 **	N-		L-	2
			-		-	- '	-	-4	98	97	180
** K=	- 4	L= 2	**	-5	53	57		- 2	155	155	0
			-	-4	39	34	180	-1	59	62	
-7 -6	271	274	D	-3	71	69	0	0	96	91	
-5	81 48	82 41	0	-2	70	73	0	1	110	106	
2		-	U	0	33	28	D	3	115	110	180

H /FO/	/FC/ PHI	H /FO/	/FC/ PHI	H /F0/	/FC/ PHI
** K= 12	L= 2 **	-5 209	204 D	2 132	128 180
		-4 493	486 0	3 230	
-3 168	166 O	-3 275		4 111	113 0
-2 241	247 0	-2 558	637 0	5 128	129 0
-1 198	225 0	-1 582	637 0		
0 45	46 0	0 349	321 180	** K= 7	L= 3 **
2 195	1 88 O	1 174	175 0		
		2 1043	1065 D	-6 155	147 0
** K= 13	L= 2 **	3 488	468 O	-4 225	218 0
-		4 129	127 180	-3 633	
0 94	8 9 18 0	5 100	99 D	-2 199	
		6 206	217 0	- 1 258	269 180
** K= 1	L= 3 **			0 375	
		** K= 4	L= 3 **	1 686	
-7 101	101 0			2 291	
-6 145	136 D	-4 49	42 180	3 176	
-5 94	96 D	-3 214	206 0	4 122	117 0
-4 361	350 D	-2 120	132 0		_
-3 797	836 D	-1 341	347 180	** K= 8	L= 3 **
-2 304	339 0	1 291	275 D		
-1 337	336 180	2 149	137 180	-5 110	
0 666	655 0	3 155	152 180	-4 76	
1 1061 2 319	1109 0	4 144	142 0	-3 120	
3 118	314 D 119 D	5 42	45 0	-2 55	57 180
4 258	119 0 257 0	6 101	110 180	-1 43	36 0
5 119	122 0	** K= 5	L= 3 **	1 155 2 38	144 180 41 0
6 142	140 0	AA K- J	L= 3 **	2 38 3 121	41 0 117 0
	140 0	-7 188	184 0	4 102	
** K= 2	L= 3 **	-5 40	32 0	5 66	67 180
_		-4 330	331 0	2 00	01 100
-7 103	104 0	-3 426	435 0	** K= 9	L= 3 **
-6 88	86 180	-2 371	409 0		
-5 198	196 180	-1 451	466 D	-5 135	138 0
-4 310	296 0	0 215	205 0	-4 328	
-3 291	286 0	1 97	108 0	-3 214	
-2 423	469 180	2 519	496 O	-2 83	
-1 158	171 180	3 495	482 0	-1 180	194 0
0 336	316 0	4 74	79 D	0 264	
1 174	162 180			1 268	252 0
2 69	59 0	** K= 6	L= 3 **	2 291	280 0
3 313	298 0			3 182	179 0
4 203	204 180	-6 81	83 0	4 51	52 0
5 225	229 18D	-5 242	243 0		
6 152	160 0	-4 129	125 18D	** K= 10	L= 3 **
.		-3 283	284 180		
** K= 3	L= 3 **	-2 120	130 0	-5 54	
_7 45/	487 0	-1 184	185 0	-4 146	
-7 154	154 0	0 29	27 0	-3 132	
-6 115	111 180	1 96	97 0	-2 71	84 180

H /FO/ /	FC/ PHI	н.	/F0/	/ FC /	PHI	н	F0/	/FC/ PHI
-1 79	87 180	0	452	422	0	5	312	325 0
2 90	87 0	2	105	103	180			
	_	3	209'		0	** K=	5	L= 4 **
** K= 11 L	_= 3 **	5	162	168	180	_		
-4 227	225 D	** 14-	2			-7	81	79 180
-4 227 -3 154	225 0 156 0	** K=	2	L= 4	**	-6 -5	33 228	22 0 232 0
-2 193	202 0	-7	82	79	0	-4	174	174 180
-1 230	239 0	-6	80	78	180	-3	263	274 180
1 90	88 0	-5	182	184	Õ	-2	376	412 0
2 339	329 0	-4	688	705	Ō	-1	184	179 0
3 181	173 0	-3	536	568	õ	Ó	408	383 180
		-2	31	16	18D	1	98	95 0
** K= 12 L	_= 3 **	-1	104	118	0	2	166	158 0
	_	0	553	546	0	3	249	245 180
-3 87	87 180	1	672	647	0	5	163	175 0
-2 39	48 0	2	538	517	0			
0 44 1 125	35 180	3	125	123	0	** K=	6	L= 4 **
1 125	124 0	4	29	19	180	4	407	105 0
** K= 13 L	.= 3 **	5 6	248	254	0	-6	103	105 0
	-) **	0	294	316	0	-5 -4	239 313	237 0 314 0
-1 106	112 180	** K=	3	L= 4	**	-3	407	430 0
		K-	5	L - 7		-2	97	107 0
** K= 0 L	_= 4 **	-7	67	69	0	-1	161	150 180
		-5	83	77	180	Ó	572	547 0
-7 62	69 180	-4	33	37	0	1	840	835 0
-6 242	238 0	-3	50	49	0	2	138	133 0
-5 321	320 0	-1	104	104	0	3	104	101 180
-4 401	404 0	0	29	19	180	4	193	193 0
-3 664 -2 116	718 0	1	151	147	180	5	210	215 0
-1 626	104 180 632 180	2 3	55 85	53	0		7	1 - 1 - 1
0 1063 1			65	90	0 180	** K=	7	L= 4 **
	528 0	5	49		180	-5	57	51 0
2 193	181 D	-		40	100	-4	126	121 0
3 250	240 180	** K=	4	L= 4	**	- 2	152	157 180
4 124	123 0			_		Ō	195	181 0
5 263	269 0	-7	129	124	0	2	132	128 180
6 281	300 0	-6	157	152	180	4	35	41 0
		-5	191	189	0			
** K= 1 Ł	_= 4 **	-4	696	713	С	** K=	8	L= 4 **
-7 407	•• •	-3	342	360	0			
-7 103 -6 59	99 0	-2	35	20	180	-6	48	44 0
-6 59 -5 233	60 180	-1	236	250	0	-5	177	178 0
-4 341	227 180 337 0	0	439	421	0	-4	300	301 0
-3 406	423 0	1 2	603 536	582	0	-3 -2	370	390 0
-2 524	589 180	3	> 3 o 3 5	529 36	0 0	-2	83 140	93 0 134 180
-1 411	407 180	4	36	35	180		359	134 180 351 0
- ••*		-	20	22	100	U	222	0 166

н	/F0/	/FC/ PHI	Н	/F0/	/FC/ PH	HI H	/F0/	/FC/ PHI
1	646	634 0	-4	146	151	0 3	56	56 180
2	221	209 D	-3	91	98	0		
3	40	43 180	-2	312	342	0 ** K	= 5	L= 5 **
4	75	71 0	-1	309	321	0		
			0	680	663	0 -7	79	76 0
** K=	9	L= 4 **	1	717	707	0 -6	166	163 0
			2	45	47	0 -5	273	271 0
-5	85	81 180	4	381	382	0 -4	283	286 O
-4	70	68 0	5	275	284	D -3	123	132 0
-3	104	110 0				- 2	198	211 0
-2	135	144 180	** K:	= 2	L= 5 #	** -1	465	468 0
-1	37	34 0	-			0	383	377 0
0	211	199 0	-7	46	44	0 1	267	251 0
1	165	155 180	-6	109	111	0 2	278	264 0
2	135	126 180	-5	238		BO 3	152	152 0
3	166	168 D	-4	50		80 4	142	140 0
			-3	462	495	0 5	239	257 0
** K=	10	L= 4 **	-1	434	423 18			
-5	17/	434 0	0	64	62	0 ** K	= 6	L= 5 **
-4	124	121 0	1	25	10	0		
-3	376 175	382 0 188 0	2	69		BD -6	41	32 0
-1	79	188 0 80 0	35	208 171	206	0 -5	104	106 0
0	210	201 0	2	171	179 18		124	125 180
1	382	377 0	** K:	= 3	L= 5 +	-3 ** -2	132	145 180
2	365	356 0	** **	- 3	L-),	-		273 0 140 0
3	54	53 180	-7	165	162	-1 0 0	226	140 0 218 180
-		22 100	-6	147	142	0 2	66	68 0
** K=	11	L= 4 **	-5	291	293	0 3	120	123 180
		-	-4	342	359	0	120	125 100
-3	47	50 0	-3	74	63 18	-	= 7	L= 5 **
-2	97	100 0	-2	163	168	0	•	-
-1	72	71 180	-1	950	1000	0 -6	311	309 0
0	114	105 180	0	632	619	0 -5	274	281 0
1	61	65 0	1	86	72 18	80 -4	49	45 0
2	60	60 0	, 2	160	156	0 -3	196	207 0
			3	303	302	0 -2	170	189 0
** K=	12	L= 4 **	4	193		0 -1	95	89 O
_			5	272	282	0 0	568	548 0
-3	138	145 0				1	552	543 0
-2	48	56 0	** K=	= 4	L= 5 #	** 2	100	99 180
-1	128	126 0	_			3	65	62 180
0	155	153 0	-7	70	68 18		335	342 0
1	156	151 D	-5	183	182	0		
	4		-4	58	57	0 ** K	= 8	L= 5 **
** K=	1	L= 5 **	-3	206	216 18			
-7	84	94 40n	-2	105		80 -6		67 0
-6	333	81 180 329 D	-1	167	162	0 -5		
-5	522	329 D 531 D	0 2	146		0 -4	39	39 0
	766		2	53	56 18	80 -3	153	162 0

H	/F0/	/FC/	PHI	Н	/F0/	/FC/	PHI	н	/F0/	/FC/	PHI
-2	85	95	180	0	619	584	0	** K=	4	L= 6	**
-1	57	54	180	1	250	250	0				
0	140	144	0	2	127		180	-7	268	269	0
1	65	57	180	3	219	222	Õ	-6	199	205	0
2	103	108	180	4	542	560	Ō	- 5	115	110	0
3	101	102	0	5	184	194	Ō	- 4	172	174	0
							•	-2	301	320	Ō
** K=	9	L=	5 **	** K=	1	L= (6 **	-1	931	943	0
		_	-		•	-	-	Ō	433	417	Ō
-5	272	276	D	-7	39	32	0	1	363	343	180
-4	196	199	Ō	-5	103	101	180	2	97	90	0
-3	47	56	180	-4	74	77	Ď	3	560	558	ō
-2	53	56	0	-3	106	121	Õ	4	298	303	Õ
-1	424	429	Õ	-2	216	220	180	5	57	65	õ
Ď	392	376	õ	ō	304	278	Ő	2	2,	•••	•
1	89	81	Õ	1	113	112	180	** K=	5	L= 6	**
2	72	69	Ő	2	175	175	180	K-	,		
3	155	154	Ö	3	142	151	0	-6	49	54	180
-		124	U	4	48	53	0	-5	180	189	0
** K=	10	L=	5 * *	5	121	130	180	-3	283	297	180
n		L -	J	2	121	150	100	-2	176	186	0
-4	83	81	0	** K=	2	L= (6 **	-1	272	268	ŏ
-3	39	40	0	~~ K-	۲.	<u> </u>		-1	263	250	180
-2	63	74	180	-7	156	157	0			<u>41</u>	180
Ō	68	67	100	-6	281	282	0 0	1	34		0
1	35	44	180					2	192	190	
3	51	51		-5 -4	282 179	282	0	3	126	123	180
J	1	21	U	-2		178	0	4	88	88	180
** K=	11	L=	5 **		225	259	0			4	
		L-) * *	-1	761	767	0	** K=	6	L= 6	**
-4	217	222	C	0 1	603	568	0		7 7 0	777	0
-2	41	37			28	28	0	-6	329	333	0
-1	379	387	0 0	2	64	64	0	-5	343	359	0
0	228		0	3	343	342	D	-4	133	142	180
2	130	222	-	4		348	0	-3		43	
2	150	130	0	5	154	165	0	-2	528	568	0
** K=	12	L=	F A A	** K=	7			-1	553	544	0
~-	12	L-		** K=	3	L=	6 **	0	216	2 06	0
-2	125		•	-			~	1	71	70	0
-1	125	136		-7	42	41	0	2	41	34	0
0	123	126	0	-6	65	68	180	3	254	255	0
U	137	14.5	180	-5	117	116	180	4	384	389	0
** K=	0			-4	133	139	0		-		
K.	0	L= (6 **	-3	250	256	0	** K=	7	L= 6	**
_ 1	700		-	-2	92	100	180	-		. .	-
-6	389	394	0	-1	246	238	180	-6	85	86	0
-5	389	405	0	0	33	23	D	-5	87	90	0
-4	45	48	180	1	74	68	0	-4	49	53	180
-3	84	84	0	3	44	56	0	-3	130	134	180
-2	455	506	0	5	86	88	180	-2	35	30	0
-1	579	575	0					- 1	189	178	0

H /FO/ /FC/ PHI H /FO/ /FC/ PHI

H /FO/ /FC/ PHI

Н	/F0/	/FC/ PHI	н /	F0/	/FC/	PHI	Н	/F0/	/FC/ PHI
-4	100	102 0	** K=	2	L= 8	8 **	-6	113	118 0
-3	240	256 D	_			_	-5	144	144 0
-2	262	271 0		224	224	D	-3	316	324 0
-1	178	170 0	-5	90	91	180	- 2	551	567 0
0	38	33 0		321	327	0	-1	35	27 180
1	61	67 D		551	586	0	0	223	215 180
2	254	260 0		265	267	D	1	423	418 0
.	4.0			73	59	D	2	505	509 0
** K=	10	L= 7 **		166	163	0	3	58	52 0
-3	75	71 D		285	281 373	0 0		7	L= 8 **
-2	67	71 0		267			** K=	r	L= 8 **
Ď	60	55 180		207	269	0	- 4	59	63 0
1	39	37 180	** K=	3		8 **	-6 -3	52	
	7.4	51 100	** K-	2	L= 8		-3 -2	55	62 0 55 0
** K=	11	L= 7 **	-7	209	73	180	- <i>2</i> -1	50	53 180
Ň	••		-5	90	92	0	-1	54	53 0
-3	148	156 0	-3	68	66	180	3	36	45 180
-2	182	190 0	-1	69	64	0	3	50	43 160
-1	251	242 0	o o	58	55	ŏ	** K=	8	L= 8 **
Ó	88	79 0	1	51	48	180	··· K-	U	
-			2	67	64	180	-5	86	87 0
** K=	0	L= 8 **	-3	45	43	Ō	-4	76	73 0
		- •	-			-	-3	295	300 0
-6	47	37 0	** K=	4	L= 8	3 **	-2	360	363 0
-5	283	2 82 D					ō	58	59 180
-4	220	222 0	-7 2	244	244	0	1	323	320 0
-3	284	294 0	-6	38	36	D	2	311	314 0
-2	486	501 0		135	141	180			
-1	69	61 0		320	319	0	** K=	9	L= 8 **
0	129	130 180		536	568	0			
1	505	501 0		170	176	0	-4	61	52 180
2	586	602 0	-1	61	56	D	-3	131	137 0
3	93	94 0		188	186	0	- 1	118	115 180
4	49	40 180		232	220	0	0	159	162 0
	•			375	374	0	1	63	60 0
** K=	1	L= 8 **	3 8	277	285	0			
-7	0 4	04 490	1.6 M -	~		• • •	** K=	10	L= 8 **
-6	86 63	91 180	** K=	5	L= {	8 **	_		
-4	93	65 0					-3	270	268 0
-3	154	88 180 163 0	-6 ⁻	111		180	-1	57	60 0
-2	111			83	83	0	0	188	189 0
-1	201	106 0 207 180		139 186	141	0	 V-	•	
0	47	43 180		231	189 222	180	** K=	1	L= 9 **
1	88	91 0		117	107	0 180	-7	126	120 180
ż	52	49 180		101	95	180	-5	413	_
3	38	24 0		166	165	0	-4	381	
4	67	70 0	E .		105	U	-4	150	383 0 153 0
-			** K=	6	L= 8	3 **	-2	85	85 0
			··· • • • • •		- (- C		

H /F	0/	/FC/	PHI	н	/F0/	/FC/	PHI	н	/F0/	/FC/	PHI
-1	35	38	D	** K=	: 6	L=	9 **	-1	355	345	0
03	03	291	0					0	165	158	0
	587	584	Č	-5	133	128	0	1	245	250	ō
	:33	240	ŏ	-4	98	93		ż	195	200	ō
3 1	41	140	180	-3	238	248	-	-			
				-2	74	74		** K:	= 1	L= 10) **
** K=	2	L= 9	**	-1	318	318	Ō				
				0	51	47	D	-7	64	67	180
-7	34	34	0	1	208	204		-6	144	139	0
-6	69	67	0					-5	61	68	0
-5 1	98	193	180	** K=	: 7	L=	9 **	-4	220	214	180
-4 1	34	130	180					-2	183	182	0
-3 3	67	382	D	-5	384	380	0	-1	43	34	180
-2 1	34	138	0	-4	316	323		0	50	48	180
-1 3	81	368	180	-3	34	43		1	50	51	0
1 2	205	192	0	-2	33	35		2	55	55	180
2	89	93	180	-1	170	167					
				0	214	207	-	** K=	= 2	L= 1() **
** K=	3	L= 9	**	1	355	354			-		-
				2	180	181	Ō	-6	96	94	0
-7 1	27	116	0					- 5	304	297	0
-6 1	94	194	0	** K=	= 8	L=	9 **	-4	341	337	0
-5	91	94	C					-2	102	98	180
-4 2	25	218	0	-5	38	44	٥	-1	330	326	0
-3 2	64	270	0	-4	61	68	-	Ó	518	514	Ō
-2	44	51	0	-3	64	73	Ď	1	175	175	Ō
-1 2	00	199	0	-2	57	63		2	39	35	180
04	61	450	0	-1	126	123	180	3	61	78	0
1 2	39	236	D	1	113	121	0	-			
	76	81	0					** K:	= 3	L= 1() **
31	39	137	0	** K=	: 9	L=	9 **				
								-6	82	79	0
** K=	4	L= 9	**	-4	257	260	-	- 5	66	65	0
				-3		164	0	-4	158	161	180
	21		0	-2	38		180	-2	243	241	0
	45	149		-1	37	30		0	197		180
01	21	116	0	0	258	261	0	2	79	76	0
.	~						•				
** K=	5	L= 9	**	** K=	10	L=	9 **	** K:	= 4	L= 1(] **
-5 1	75	171	0	-2	82		•		220	247	•
	577	384	0 0	-2 -1			0	-6	228	217	0
_	65	167	0	- 1	48	47	18D	-5	158	150	0
	56	57	180	** K=	: 0	1 - 1	0 ++	-4	188	190	0
	39	227	0	K=		L= 1	U **	-3 -2	137	143	0
	89	387	0	-6	33	26	•		78	83	180
	67	168	3	-5	361	346	-	-1	240 613	233	0
	07	104	0	-4	225	226	-	0	175	605	0
	44	153	D	-3	35			1		172	0
	~ ~	تي في ا	0	-3 -2	235	38		2	198	199	180
				-2	())	237	0				

н /	F0/	/FC/	PHI	н	/F0/	/FC/	PHI	н	/F0/	/FC/ PHI
** K=	5	L= 10	**	** K=	2	L= 11	**	** K=	8	L= 11 **
-6	101	102	180	-4	36'	31	180	-3	42	32 0
-4	199	195	0	-3	103	104	0	- 2	144	139 0
-3	60	58	180	-2	67	60	D	-1	61	60 180
	148		180	-1		186	180			
	112	111	0	1	151	159	0	** K=	0	L= 12 **
0	51	43	0	2	44	48	180			
1	69		180					-6	74	67 180
2	62	62	0	** K=	3	L= 11	**	-5	107	105 0
				_			-	-4	247	240 0
** K=	6	L= 10	**	-6	302	279	0	-3	115	110 0
- 6	214	37 3	0	-5	96	87	180	-2	231	234 0
	246	232	0	-4	67	68	180	-1	234	241 0
	54	102 51	0 0	-3	334 298	347 296	0	0 1	84	88 180 36 0
	168	174	0	-1		141	0 0	•	35	30 0
	173	169	Ŭ	0	211	210	0	** K=	1	L= 12 **
	215	208	õ	1	58	51	Õ	~~ ~~	,	
	274	276	ō	•	20		•	-5	35	30 O
		- · ·	-	** K=	: 4	L= 11	**	-4	142	143 180
** K=	7	L= 10	**					-2	234	244 0
				-6	35	25	180	- 1	49	49 180
-4	46	45	0	-5	58	57	180	0	205	207 180
-2	69		180	-4	68	72	0	1	46	49 0
0	92	94	0	-2	71	74	180			
	-			-1	126	126	0	** K=	2	L= 12 **
** X =	8	L = 10	**	0	79	71	D			
-4	100	405	~	1	143	149	180	-5	35	32 0
	190	185	0					-4	45	38 180
	153	63 153	0	** K=	5	L= 11	ŤŤ	-3	176	178 0
	177	179	0 0	-5	136	132	•	-2	354	365 0
Ū	• • •	117	U	-4			0 180	-1	215	214 0 13 0
** K=	9	L= 10	**	-2	286	293	0	e e	94	15 0
	•			-1	389	386	Ő	** K=	3	L= 12 **
-3	100	92	0	O	118	112	Ö		5	
	143	148	Ō	ī	50		180	- 4	92	94 180
-1	91	86	180					-3	35	37 0
				** K=	6	L= 11	**	-2	134	135 0
** K=	1	L= 11	**					-1	67	66 180
				-4	49	51	0	0	89	90 180
	186	173	0	-2	58	62	180	1	75	80 0
	219	211	0		_					
	328	333	D	** K=	7	L= 11	**	** K=	4	L= 12 **
	390 95	388	0				_	-		— • -
	45	92	0	-4	104	100	0	-4	77	75 180
	45	31 127	0	-3	62	70	180	-3	223	220 0
٤.	114	121	0	-2	226	227	0	-2	273	276 0
				-1	361	355	0	-1	152	152 0

H	1F	01	/FC/	PHI
---	----	----	------	-----

	0	124	123	D
**	K =	5	L= 12	**
-	-4 -2 -1 0	150 174 33 131	178 38	0 180 0 0
**	K =	6	L= 12	**
-			140 221	0
**	K=	1	L= 13	**
-	-5 -4 -3 -2 -1	60 267 216 93 36	265 226 92	0
**	K =	2	L= 13	**
-	K = -5 -4 -3 -2 -1	2 85 70 69 116 56	81 60 80 109	0 180 180 0
-	-5 -4 -3 -2	85 70 69 116	81 60 80 109 59	0 180 180 0 0
- - - - - - - - -	-5 -4 -3 -2 -1	85 70 69 116 56	81 60 80 109 59 L= 13 125 273 84	0 180 180 0 0 ** 0 0 0
- - - - - - - - -	-5 -4 -3 -2 -1 K = -4 -3 -2	85 70 69 116 56 3 127 277 93 79	81 60 80 109 59 L= 13 125 273 84	0 180 180 0 ** 0 0 180
- - - - - - - - - - - - - - - - - - -	- 5 - 4 - 3 - 2 - 1 K = - 4 - 3 - 2 - 1	85 70 69 116 56 3 127 277 93 79	81 60 80 109 59 L= 13 125 273 84 75	0 180 180 0 ** 0 0 180 **
- - - - - - - - - - - - - - - - - - -	-5 -4 -3 -2 -1 K = -4 -3 -2 -1 K = -3 -2	85 70 69 116 56 3 127 277 93 79 4 42 37	81 60 80 109 59 L= 13 125 273 84 75 L= 13 38	0 180 180 0 ** 0 0 180 **

Observed and calculated structure factors for [Cu(aOeu)Cl2]2

		,													
	H /F	0//	FC/	PHI		ни	F0/	/FC/	/ PHI	· · · ·	н	/F0/	/FC/	PHI	
		••••			·					•	••				
	. ,														
**	K =	0 L	.= () **		5	243	231	180	**	κ=	15	L=	(i **	;
			•										_		
	1 8	25	872	C	**	K =	7	L=	0 **		1	166	137	, o	
	2 182	23 1	939	180							2	365	353	; 0	
	4	97	98	180		1	130	134	4 180		_				
	5 2	03	235	0		2	283	271	180	**	к=	16	L=	0 **	
						5	176	135	5 0						
**	K =	1 L	= () **							0	852	856	c C	,
					**	K =	8	L=	() **		1	234	204	. J	
	1 5	48	545	180							2	217			
	2 14		460			0	535	546	5 180		4	140		180	
				0			541								
	5 1			ō		ż	121	116	·· •	**	К=	18	L=	() * *	
	- •	•••		-		4	437	425	-				-	-	
**	K =	2 L	= () **		•					0	391	362	Ū Ū	
	•.•		-		**	К=	9	1 =	() **	• .	•	• · ·		•	
	0 19	16 1	957	0		i,		-	•	**	К=	19	I =	0 **	
	1 3			· 0		1	462	487	7 0			• •	-	5	
	2 14			180		ż	308		0 .	·	1	200	.199	180	
	4 4		475	0		4	124	120			ż		213		
•	5 2		290	- Õ		•					7	•••		,	
			18	180	**	K =	10	! =	() * *	**	к=	. 1	1 =	1 **	
	• •			100				-	Ų i				-	•	
**	κ=	3 L	= () **		0	115	98	3 180	•	- 5	366	408	0	
		-				-	97	86				296	320		
	1 9	09	867	180		4	143		4 0			118	134		
	-	57	843	180	•	5	154		5 180			1087	1069		
•			736	0	•	-						1102	1149		
•		51		Ū	**	K =	11	L=	0 **			265			
		50	187	180											
					•	1	568	573	3 0	**	К=	2	L=	1 **	
**	К=	4 L	.= () **		2	388	371				-	_		
	-					4	195	180	-		- 4	103	97	180	
•	0 3	30	335	0		5	114		180		-2	411	409		
				180					1		- 1	917	906		
				180	**	К=	12	L=	0 **		0	140	116		
•			438	Ō			-		-		1	157	165		
	•			-		0	382	371	1 0		Ż	423	460		
**	κ=	5 L	.= () **		•		•••	•		5	323	349		
					. **	к =	13	L=	() **		-		• • •	•	
	2 1	82	204	180		••		-	ч а т.	**	к=	3	L=	1 **	
				Õ		1	368	386	5 0		,	-		•	
			299	ŏ		4	297		5 180		- 8	131	95	180	
				180		5	147	138			- 5	325	324		
		•				-					-4	140	128		
**	K =	6 - L	= () **	**	κ=	14	L=	0 **		- 2	781	765		
		- •	- `	. .		••		-	-		- 1	92	89		
	0 3	57	317	Ũ		2	201	227	7 180		Ö	352	346		
			102	ŭ		5	189		4 0		ĭ	380		180	
,		43	234	ŏ		-					ż	215		5 180	
				- 1							-				

	÷		· ·		en de la composition de la composition Composition de la composition de la comp	
	H /FO/	/FC/ PHI	H /F0/	/FC/ PHI	H /F0/	/FC/ PHI
	5 185	172 0	0 272 2 104	263 180 96 180	-2 276 -1 400	246 180 400 180
· · ·	** K= 4	L= 1 **	** K= 9	L= 1 **	1 263	268 0
. •	-7 213 -4 725 -1 628	196 0 724 183 644 0	-2 351 0 1350	352 0 1356 180	** K= 15 -5 235	L= 1 **
	0 917 2 285 4 197	922 0 316 180 221 0	1 762 2 160 4 408	779 180 144 0 401 0	-2 318 -1 124 0 346	313 180 118 0 346 0
	5 334 7 163	355 - 0 182 180	** K= 10	L= 1 **	** K= 16	L= 1 **
	** K = 5	L= 1 **	-4 179 -2 522	184 D 527 180	-2 215 -1 207	200 180 219 180
· · · ·	-5 153 -4 200 -2 333	138 180 196 180 342 0	-1. 631 1 591 2 647	658 180 603 0 643 0	0 281 1 171	291 C 188 O
	-1 823 0 699	798 0 664 0	4 193	194 180	** K= 17	L= 1 **
•	1 474 2 373 4 105	460 180 341 180 117 0	** K= 11 -4 108	L = 1 ★★	-2 120 -1 173 0 546	136 180 195 0 545 0
	** K= 6	L= 1 **	-2 296 -1 410	299 D 429 D	1 249	250 C
	-5 168 -4 396	150 180 392 180	0 175 1 165 5 221	189 0 180 180 230 180	** K= 18 -1 195	L= 1 ** 206 0
X	-2 694 -1 506 1 494	679 0 509 0 451 180	** K= 12	L= 1 **	0 211 1 128 2 356	207 0 104 180 336 180
	2 689 4 269 5 260	695 180 263 0 264 0	-5 123 -4 511 -2 220	990 4910 196180	** K= 19	L= 1 **
	7 133	- 88 180	-1 408 0 296	404 180 300 180 '		118 180 L= 2 **
- - -	** K= 7 -5 129	L= 1 ** 156 180	1 291 2 243 4 139	288 0 246 0 167 180	** K= 0 -8 209	189 180
• •	-2 639 -1 222 0 1054	656 0 246 0 1073 180	** K= 13	L= 1 **	-7 188 -5 391 -4 140	190 180 384 0 83 0
	1 893 4 377	893 180 376 0	-2 236 -1 239	229 180 261 0	-2 445 -1 1307	499 180 1208 0
	5 140 ** K= 8	141 180 L= 1 **	0 234 1 247	227 0 248 180	0 771 1 348 2 514	689 0 392 0 515 0
, .	-2 209 -1 160	194 0 142 180	** K= 14 -4 257	L= 1 **	4 593 5 227 7 165	627 180 242 180 179 0
,	, , , , , , , , , , , , , , , , , , , ,	176 IU'3	- 231			··· 2 U
•						- -
		• •			· · · · · · · · · · · · · · · · · · ·	
	· · · _ · ·	! /			· · · · ·	

·.			· · ·		•••					
	·				•	•				
• • •	-7 -4 -2 -1 0 1	0 1 2 5 ** K	** K= -5 -4 -2 -1	-4 -1 0 1 2 4 5	7 ★★ K= -7	-2 -1 0 2 4	5 ** K= -5	-2 -1 0 1 2	** K=	H
	1088	544 309 156 131 = 5	147 312 243 222	479 1004 966 193 648 125 122	123 = 3 151	298 271 172 337 312 130	551	217 468 573 908 450	= 1	/F0/
• • • • • • • • • • • • • • • • • • • •	767	162 147 1 L= 2	165 304 1 237 185	997 915 186 1	102 L= 2 166	243 1 98 1 324 309 1	557	472 1	L= 2	/FC/ P
•	0 80 0 0 0	80 0 80 **	0 80 0 0	80 0 80 80 0 0	0 ** 0	80 80 80 80 80 80	0 ** 0	0 0 0 0 8 0 8 0 8	**	ΗI
	** K= -7 -5 -4 -2 -1	2 5	1 4 ** K= -5	** K= -5 -4 -2 -1 0	-1 0 1 2 5	5 ** K= -5 -2	-1 0 1 2	** K= -5 -4	2 5	н
			1157 398 9 148		841 410 560 447 137	165 7 140 285	1040 727 447 511 170	6 273 339	356 119	/F0/
	83 205 224 588	139	1150 405 L= 1 139	181 211 420 300	845 299 534 423 152		1054 747 430 477 183	L= 281 342	324 151	/FC/
	2 ** 0 180 180 0 0	0 180	180 0 2 ** 0	2 ** 180 180 0 0 180	0 180 180 180 0	180 2 ** 0	0 0 180 180 180	2 ** 180 180	180 0	PHI
	** K= -5 -2	Í O	-5 -2 -1 0 1	-4 -1 0 1 2 ** K=	-2 -1 0 ** K=	2 5 ** K= -4	-7 -4 -2 -1	2 4 ** K=	0	:
	= 16 184 183	124 115	325 327 261 179 146	279 290 604 235 248 = 14	160 358 185		322 155 366 484	113 224 = 11	481	/F0/
	L= 2 156	71 128	269 153 153		135 371 155	391 257 L= 2 169	375 493	100 187 L= 2	475 668	/FC/
	C	** 180 180	0	0 180 180 180 0	000	**	G 180 180 180	180 0	18C 180	PHI
	•						-			

н /	FO/ /FC/ PHI	H /FO/	/FC/ PHI	H /FO/	/FC/ PHI
	•		•	2	
	192 191 0	-7 139	157 0	** K= 9	L= 3 **
	146 137 0 218 188 180	-5 146 -4 525	133 D 533 180	-7 219	210 C
. * ★ K=	17 L= 2 **	-2 412	408 180 823 0	-5 299	283 180 523 180
-1	170 191 0	0 1630	1638 D 540 0	-2 633 0 616	640 0 609 180
D	211 198 0 164 126 180	2 347 5 125	340 180 132 0	1 323 4 218	330 180
	· ·			5 159	216 0 128 0
** K=	19 L= 2 **	** K= 5	L= 3 **	** K= 10	L= 3 **
	169 177 0 200 213 0	-5 372 -4 326	388 180 333 180	-5 119	161 180
-	1 L= 3 **	-2 813 -1 491	814 0 493 0	-2 139	163 D 124 180
	· - •	0 704	694 180	0 555	571 180
· - - 1	167 139 18D 732 741 18J	1 214 2 238	211 180 230 0	2 379 4 113	352 O 92 O
	182 173 180 800 797 0	4 181	176 180	5 197	191 180
	559 588 0	** K= 6	L= 3 **	** K= 11	L= 3 **
5	167 178 180 158 138 0	-5 173 -4 116	163 D 132 180	-5 231 -4 160	215 180 201 180
		-2 390	387 180	-2 382	392 0
** K=	2 L= 3 **	-1 569 0 1113	556 0 1109 0	-1 142 4 175	174 0 157 180
- 4	299 316 0 138 124 180	1 167 2 520	151 180 513 180	** K= 12	L= 3 **
-2 -1	159 143 0 121 130 D	5 143	130 0	-4 204	223 0
. 0	185 220 0 146 126 180	** K = 7	L= 3 **	-2 278	282 0 200 180
2	556 557 180	-7 251	228 0	0 686	725 180
	215 204 0	-5 457 -4 672	470 180 676 180	1 352 4 126	364 180 103 0
** K=	3 L= 3 **	-2 1048 -1 434	1050 D 435 D	5 135	109 180
	209 211 0 101 94 0	0 770 1 572	-759 180 562 180	** K= 13	L= 3 **
-2	272 258 180 165 1102 180		162 180 174 0	-1 328 0 352	332 180 373 180
0 1	104 1083 180	5 132	144 0	1 236	228 0
2	619 602 0 766 768 0	** K= 8	L= 3 **	2 321 4 188	329 0 138 180
4	229 227 180	-4 110	102 0	** K= 14	L= 3 **
** K=	4 L= 3 **	0 95	75 180 302 180		200 180
2000 - 2000 2000 - 2000 2000 - 2000	• • •				
		· · · · · ·			•

H /FO	//FC/PHI H	/F0/ /FC/ PHI	H /FO/ /FC/ PHI
1 12 2 12 ** K= 15		269 276 0 370 366 180 937 939 180 599 579 180	0 205 214 180 2 131 194 180 5 121 63 0
-5 13 -2 22 -1 26 0 14 1 26 2 25	202 180 4 3 289 180 9 142 180 ** K 8 256 0	262 256 0	** K= 8 L= 4 ** -7 284 264 0 -5 166 162 180 -4 279 290 180 -2 107 108 0 -1 236 230 0
** K= 16 -1 12 0 15		335 320 0	0 205 195 180 2 172 138 180 4 169 177 0 5 213 195 0 ** K= 9 L= 4 **
** K = 17 0 19 1 19 ** K = 18	175 0 -5 -1	258 243 180	-5 136 140 180 -4 204 204 180 -2 127 118 0 -1 254 247 0 0 125 99 180 2 136 145 0
-2 9 -1 74	L= 4 ** -5 -4 4 232 180 -2 6 144 0 -1 5 498 0 0 7 83 180 1 0 708 180 2	18319702442601804444371802302080717744048748601201120	** K= 10 L= 4 ** -7 145 153 0 -5 212 197 180 -4 306 303 180 -2 356 355 0 -1 288 278 0 0 130 72 0
0 35 1 88 2 47 4 42 5 17 ** K= 1 -5 23	1 884 0 3 486 0 ** K 6 445 180 5 150 180 -5 -4 L= 4 ** -2 -1		1 177 176 180 2 154 165 180 ** K= 11 L= 4 ** -5 254 263 180 -2 385 403 0 0 577 577 180 1 308 300 180
-4 13 -2 17 -1 21 2 20 ** K= 2	D 137 0 1 D 175 180 2 B 187 0 6 214 180 ** K L= 4 ** -5 -2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 181 168 0 ** K= 12 L= 4 ** -5 188 175 180 -2 196 181 0
-5 14	4 128 0 -1	271 258 180	** K= 13 L= 4 **

0

C

0

0

0

0

0

0

. 0

367 180

172

258 180

369

253

175

0

2

C

0

0

0

600

231

199

589

232

186 180

1

2

-4

-2

- 0

139

176

111

146 180

0

0

175

120

	· ·	· · · ·		•	
H /F0/	/ /FC/ PHI	H /F0/	/FC/ PHI	H /FO/	/FC/ PHI
** K = 4	L= 7 **	-5 214		1 172	181 0
-7 191	· · · · · · · · · · · · · · · · · · ·	-4 239 -2 277	219 180 279 0	2 153	
-4 220 -2 189	210 180	-1 419 0 202	178 0		L= 8 **
0 126 1 345 2 235	5 352 0	1 176 2 167	163 180 168 180	-4 351 -2 325 -1 140	353 180 316 0
	L= 7 **	** K= 11	L= 7 **	-1 140 0 314 2 138	133 0 280 180 130 0
-5 149		-5 167 -1 263	191 0 269 0	** K= 5	L= 8 **
-4 11(-1 145	0 73 0	1 219	218 180	-4 274	274 C
0 179		** K= 12	L= 7 **	· -1 178 0 168	135 18C 142 180
2 132		-1 188 1 274		2 196	177 0
** K= 6	· ·	** K= 0	L=, 8 **	** K= 6	L= 8 **
-5 337	4 231 0	-5 276		-5 233	221 0
-2 298	413 180	-2 636	641 0 193 180	** K= 7	
1 284 2 156		0 904 1 345 2 176		-5 158	139 0 182 0
** K= 7	L= 7 **	2 170 ** K= 1	175 0 L= 8 **	-2 160 -1 141 0 312	146 180 137 180 307 180
-5 321 -4 171	300 0 165 180	-5 255	253 0	** K= 8	L= 8 **
-2 191 -1 378	194 180	-4 180 -2 232	158 0 219 180	-4 195	164 180
0 503 2 179	5 536 C	-1 315	330 180	-2 286 0 264	268 180 259 0
** K= 8	L= 7 **	** K= 2	L= 8 **	1 226	214 0
-5 12 8	3 125 0	-5 293 -4 303	294 180 316 180	** K= 9	·
** K= 9	L= 7 **	-2 466 0 603 2 224	467 0 624 180	-4 155 -2 143	163 180 .95 0
-5 273		2 224 ** K= 3	228 D	-1 217 0 223	229 0 209 0
-2 246 -1 393	5 247 180	-5 184	193 0	** K= 10	L= 8 **
0 481 2 124	1 518 0	-4 273 -2 227	276 0 210 180	0 149	132 0
** K= 10	L= 7 **	-1 261 0 114	266 180	** K= 11	L= 8 **
• •			• •		
	•			•	· .
				,	

-2 -1	131 250	152 J 281 D
** K=	1	L= 9 **
-5 -4 -2 0 1	245 203 480 448 190	251 180 196 180 476 0 464 180 207 180
** K=	2	L= 9 **
-4 -1 0	252 245 366	218 0 224 180 384 180
** K=	•	L= 9 **
- 5 - 4	276 215	278 180 201 180
	4	L= 9 **
** K= -5 -4 -1 0	4 115 243 162 163	L= 9 ** 60 180 229 0 141 180 206 180
-5 -4 -1	115 243 162 163	60 180 229 0 141 180 206 180 L= 9 **
-5 -4 -1 0	115 243 162 163	60 180 229 0 141 180 206 180 L= 9 **
-5 -4 -1 0 ** K = -4 -1	115 243 162 163 5 130	60 180 229 0 141 180 206 180 L= 9 ** 144 0 161 180
-5 -4 -1 0 ** K= -4 -1 ** K=	115 243 162 163 5 130 178	60 180 229 0 141 180 206 180 L= 9 ** 144 0 161 180
-5 -4 -1 0 ** K = -4 -1 ** K = -1	115 243 162 163 5 130 178 6 165 192	60 180 229 0 141 180 206 180 L= 9 ** 144 0 161 180 L= 9 ** 184 180

	H /FO/	/FC/ PHI	H /F	0/ /FC	/ PHI	к 71	FO/ /FC/ PHI
**	κ= 0	L= 0 **	** K=	8 L=	0 **		319 294 0 273 283 0
	1 563	460 0	0 2	54 29	9 0		355 442 0
	2 269	232 180		77 17			
	3 342	345 0	24	58 42	7 0	** K=	4 L= 1 **
	4 250	267 0		ó3 18	7 0		
	5 161	209 0	4 1	83 24	2 0		285 291 0
				_	_		301 333 0
**	K= 1	L= 0 **	** K=	9 L=	() **		618 545 180
				.			442 539 180
	1 181	164 0	31	76 16	1 0		361 194 180
	2 342	347 180		o	• • • •		101 58 180
	4 156 5 174	119 D	** K= 1	0 L=	0 **	3 2	211 181 0
	5 174	18 2 D	0 7	93 43	- -	** K=	5 L= 1 **
**	K= 2	L= 0 **		9 3 43 9 9 26		** K=	5 L= 1 **
				83 24		- 4	180 235 0
	0 450	505 0	5 1	0, 24	., 0		387 403 0
	1 627	587 0	** K= 1	1 L=	0 **		343 282 C
	2 561	529 0		• • -	0		451 330 0
	3 614	631 0	21	28 7	3 180		332 368 0
	4 352	39 8 0	_		-		740 699 0
			** K=	1 L=	1 **		580 558 0
**	K= 3	L= 0 **		• –			389 406 0
			-4 3	46 40	5 0		
	1 1689	1458 0	-3 4	51 43	0 8	** K=	6 L= 1 **
			-2 4	46 26			
**	K= 4	L= 0 **		75 23			511 460 180
				73 100	-		123 82 180
	0 257	256 180		52 64			392 416 0
	1 1160	1013 0		53 78	-		230 55 0
	2 519	565 O		18 54		3	238 280 180
	4 167	161 0		37 23			-
**	K= 5	1- 0 + 4	5 1	83 24	3 0	** K=	7 L= 1 **
~ ~	N- 3	L= 0 **	** K=	2 L=	1 **	_/ ·	150 97 0
	4 264	205 0	** N-	2 L=	1 **		159 82 0 141 117 0
	- 204	203 0	-2 1	27 3	2 0		
**	K= 6	L= 0 **			5 180		779 740 0 410 405 0
					4 180		386 510 0
	1 368	306 0			7 180		227 137 0
	2 684	665 Ú	4 1		100		376 169 D
	3 228	227 0	** K=	3 L=	1 **		210 208 0
	4 150	179 J		-	•		243 328 0
			-4 1	59 17	5 0		
**	K= 7	L= 0 **		63 15		** K=	8 L= 1 **
				94 30			-
	1 494	449 180	-1 14	26 138	8 0	0	233 278 180
	2 304	269 0		50 33			167 171 180
			1 8	44 59	2 0	3	213 167 0

H /FO.	//FC/ PHI	H /FO/	/FC/ PHI	H /F0/	/FC/ PHI
** K= 9	L= 1 **	-2 228 -1 655	78 0 486 0	-1 234 1 136	176 180 128 180
-3 23 -2 28	2 230 0	0 462 1 968	556 0 914 0	** K= 8	L= 2 **
-1 160 1 391	5 386 Ū	2 502 4 17 2	551 0 220 0	-2 390	310 0
2 400 3 18		** K= 3	L= 2 **	-1 300 0 229	259 0 329 0
** K= 1 0	L= 1 **	-3 178 -2 182	190 180	1 331 2 396 3 116	337 0 343 0
-3 260 1 149	-	-1 644 0 134	55 0 656 0 100 0	3 116 ** K= 9	147 0 L= 2 **
** K= 11	L= 1 **	1 383	278 180 322 180	0 112	147 180
-1 29		++ K= 4	L= 2 **	2 281	291 180
0 11 1 17	7 178 0	-4 188	184 0	** K= 10	L= 2 **
** K= 12	L= 1 **	-3 548 -2 222	563 O 185 D	-3 286 -2 369	296 0 306 0
2 13	73 0	-1 413 0 147	413 0 200 0	-1 291 1 147	307 0 151 0
** K= 0	L= 2 **	1 323 2 359 3 510	339 0 383 0 525 0	2 275 3 185	255 0 204 0
-4 22° -3 37		4 383	445 0	** K= 11	L= 2 **
-2 109 -1 28	2 1141 0	** K= 5	L= 2 **	-1 120	112 180
1 21; 2 864	524 0	-2 111 -1 39 8	100 0 291 180	** K= 12	L= 2 **
3 71 4 29		1 222 2 103	156 180 95 0	-1 190 0 206	230 0 202 0
** K= 1	L= 2 **	3 118 ** K= 6	113 180	1 240	243 0
-4 29 ⁻ -3 16		** K= 6 -3 279	L= 2 **	** K= 1	L= 3 **
-2 48 -1 12	7 433 180	-2 243 -1 201	214 0 209 0 211 0	-4 186 -3 279 -2 243	236 0 301 ú 289 0
0 23	5 319 180	0 569	752 0 360 0	-1 260 0 593	244 0 738 0
2 53 3 23	0 420 0 3 217 0	2 233 3 418	201 0 426 0	1 352 2 239	257 0 253 0
4 32		4 164	255 0	3 605 4 267	641 0 220 0
** K= 2		** K= 7	L= 2 **	** K= 2	L= 3 **
-4 272	2 341 0	-3 154	141 0		

н	/F0/	/FC/ PHI	H /F0/	/FC/ PHI	H /F0/	/FC/ PHI
- 3 -2	163 147	167 D 73 D	-4 363 -3 340	.396 0 275 0	4 220	174 0
-1	153	102 0	-2 355	298 0	** K= 1	L= 4 **
0	281	289 1 80	-1 167	62 0		
1	217	167 180	1 351	368 0	-2 253	161 180
2	339	314 180	2 480	441 0	-1 203	254 0
3 4	175 183	204 0 184 0	3 331 4 173	264 0	0 538	597 0
4	103	184 0	4 173	166 D	1 108 2 4 91	90 0 432 180
** K=	3	L= 3 **	** K= 8	L= 3 **	3 254	255 180
-4	268	292 0	-2 175	136 180	** K= 2	L= 4 **
-3	369	400 0	-1 117	128 0		
-2	369	271 0	3 182	134 180	-4 208	230 0
-1	335	283 0			-3 342	36 8 0
1	453	467 0	** K= 9	L= 3 **	-2 447	474 0
2	744	625 O	2 2 4	a (a a	-1 628	632 0
3 4	253	198 0	-2 267	269 0	0 88	129 0
4	252	315 0	-1 447	425 O	1 382	251 180
** K=	4	L= 3 **	0 290 1 226	352 0 152 0	2 358 3 499	209 0 461 0
	-	L- J	2 211	179 0	4 377	387 0
-3	153	124 180	3 134	175 0	4 211	J01 U
-1	401	364 180	5 154		** K= 3	L= 4 **
0	124	151 0	** K= 10	L= 3 **		- 1
1	499	443 Ü			-3 312	314 0
2	214	205 180	-3 150	111 0	-2 126	110 0
3	216	180 180	-2 190	143 0	-1 477	435 180
	c		-1 120	68 0	1 337	325 0
** K=	5	L= 3 **	0 106	121 180	2 262	290 180
-4	143	81 0	1 111 2 177	54 180 134 180	3 150	54 180
-3	150	134 0	2 117	134 100	** K= 4	L= 4 **
-2	290	344 0	** K= 11	L= 3 **	~~ <u>~</u> 4	
-1	509	498 D			-4 192	246 0
0	387	445 0	-2 154	130 0	-3 190	219 0
1	358	316 0	-1 221	186 0	-2 369	300 0
2						
-	101	56 0	0 163	276 0	-1 319	239 0
4	301	56 0 330 0	0 163 1 185		-1 319 0 150	239 0 203 0
4	301	330 0		209 0	0 150 1 599	203 0 620 0
			1 185 2 244	209 0 201 0	0 150 1 599 2 597	203 0 620 0 561 0
4 ** K=	301 6	330 0 L= 3 **	1 185	209 0	0 150 1 599	203 0 620 0
4 ** K= -3	301 6 150	330 0 L= 3 ** 132 0	1 185 2 244 ** K= 0	209 0 201 0 L= 4 **	0 150 1 599 2 597 4 137	203 0 620 0 561 0 110 0
4 ** K= -3 -2	301 6 150 312	330 0 L= 3 ** 132 0 263 0	1 185 2 244 ** K= 0 -4 391	209 0 201 0 L= 4 ** 390 0	0 150 1 599 2 597	203 0 620 0 561 0
4 ** K= -3 -2 -1	301 6 150 312 194	330 0 L= 3 ** 132 0 263 0 95 0	1 185 2 244 ** K= 0 -4 391 -3 312	209 0 201 0 L= 4 ** 390 0 325 0	0 150 1 599 2 597 4 137 ** K= 5	203 0 620 0 561 0 110 0 L= 4 **
4 ** K= -3 -2	301 6 150 312 194 437	330 0 L= 3 ** 132 0 263 0 95 0 452 180	1 185 2 244 ** K= 0 -4 391 -3 312 -2 184	209 0 201 0 L= 4 ** 390 0 325 0 187 180	0 150 1 599 2 597 4 137 ** K= 5 -2 244	203 0 620 0 561 0 110 0 L= 4 ** 198 0
4 ** K= -3 -2 -1 1	301 6 150 312 194	330 0 L= 3 ** 132 0 263 0 95 0	1 185 2 244 ** K= 0 -4 391 -3 312 -2 184 -1 85	209 0 201 0 L= 4 ** 390 0 325 0 187 180 71 0	0 150 1 599 2 597 4 137 ** K= 5 -2 244 0 182	203 0 620 0 561 0 110 0 L= 4 ** 198 0 237 0
4 ** K= -3 -2 -1 1	301 6 150 312 194 437	330 0 L= 3 ** 132 0 263 0 95 0 452 180	1 185 2 244 ** K= 0 -4 391 -3 312 -2 184	209 0 201 0 L= 4 ** 390 0 325 0 187 180 71 0	0 150 1 599 2 597 4 137 ** K= 5 -2 244	203 0 620 0 561 0 110 0 L= 4 ** 198 0

H /	/F0/	/FC/ PH	і н	/F0/	/ F C /	PHI	н	/F0/	/FC/ PHI
- 3	282	297	D 2	430	339	0	1	319	319 0
-2	555		0 3		218	ŏ	2	137	103 0
-1	287		0 4		172	0 0	4	131	103 180
0	111			237	112	U	4	1.71	
1	525	-) ** K	= 2	L=	5 **	** K=	7	L= 5 **
2	320			- 2	L -		~* K-	1	
3	130			10.9	1(0	0	- 7	204	202 0
4	195		0 -4 0 -3	108 132	140 106	0	-2 -1	201 249	202 0 220 0
*	175	200	u -3 -2		267	180	-1	327	378 0
** K=	7	L= 4 *					_	399	431 U
~~ ~~	'	L= 4 *	* 0 2		339	0	1		194 0
-1	249	247			221	0 180	2	176	174 0
- 1	174	177 18		110	110	100		8	L= 5 **
2	155		_	= 3	L=	5 **	** K=	0	
2	1))	104) ** K	- 3	L= .] **	-2	295	256 0
** K=	8	1- / -	•	407	374	0	-		
** K-	o	L= 4 *	•	. –	231 139	0	-1	183 101	175 0 92 180
-3	170	143	-3 0 -2	-	237	0	1	101	92 100
-2	352					0		0	
-1	354	-	0 -1		633	0	** K=	9	L= 5 **
			0 0		589	0	- 7	271	477 0
0	196		0 1		286	0	-3	234	173 0
1	278		0 2	-	168	0	-2	290	236 0
2 3	215 185		0 4	173	209	0	-1	172	154 0
2	102	131		_ /	• -	E	1	209	209 0
** K=	9	1= 4 *	** K	= 4	L=	5 **	2	369	338 0
** <u>N</u> -	7	L= 4 *	-2	117	120	0	3	218	207 0
-2	178	140		303	262	0		4 4	1- 5-44
0	169	173 18	-		243	0	. * ★ K=	11	L= 5 **
2	219		0 2		160	180	-1	256	255 0
L	217	131	u 2 4		79	0	-	200	
** K=	10	L= 4 *	-	117	17	U	0	150	246 0 122 0
	10	L- 4 ~	- ** K	= 5	L=	5 **	•	150	
-1	130	145	0	_ ,	F	,	** K=	0	L= 6 **
Ō	244		0 -4	179	144	0	· · · · · · · · · · · · · · · · · · ·	Ŭ	- •
1	199		0 -3		499	õ	-3	120	113 0
2	196		0 -2		387		-2	475	542 0
•		200	-1		39	180	-1	654	753 0
** K=	12	L= 4 *	-	206	223	0	0	494	573 0
N -		<u> </u>	- 0		326	0	1	258	134 0
-1	264	270	0 2		277		2	306	233 0
•		LIU	3		456	ŏ	3	276	256 0
** K=	1	L= 5 *			226	Ő	4	319	309 0
	•	L- J ~				Ŭ		517	507 0
-4	286	303	0 * * K	= 6	L=	5 **	** K=	1	L= 6 **
- 3	283) K	v	-	-		•	
-2	490		0 -3	105	79	0	-3	227	178 0
-1	560		0 -2		133		-1	143	142 180
0	185		0 -1		126		-1	241	284 180
1	280		0 0		203		2	175	168 D
•	200	L L 7	- U	10.2	203	U	2	173	

H /FO/	/FC/ PHI	H /FO/	/FC/ PHI	H /FO/ /FC/ PHI
3 269	223 0	-2 246 -1 216	.193 0 244 0	1 163 193 0
** K= 2	L= 6 **	0 108	143 0	** K= 5 L= 7 **
(70/	77/ 0	1 149	115 0	
-4 304	334 0	2 309	327 0	-2 199 196 0
-3 200	233 0	3 156	132 0	-1 420 358 0
-2 240	129 0			0 271 351 0
-1 378	254 0	** K= 9	L= 6 **	1 406 485 0
0 358	397 C			2 231 199 0
1 571	636 0	0 169	171 0	
2 527	5 26 O			** K= 6 L= 7 **
3 194	17 8 0	** K= 10	L= 6 **	
4 168	10 6 0			-1 254 234 0
		-2 176	1 41 0	1 186 148 180
** K= 3	L= 6 **	-1 220	222 0	
		0 145	175 0	** K= 7 L= 7 **
-2 235	194 180	1 149	151 0	
0 290	263 0			-3 205 182 0
		** K= 1	L= 7 **	-2 327 282 0
** K= 4	L= 6 **			-1 190 185 0
	- •	-4 157	204 0	0 139 186 0
-3 326	321 0	-3 235	274 0	1 133 107 0
-2 409	396 0	-2 230	137 0	2 300 301 0
-1 363	34 6 0	-1 148	122 0	3 201 168 0
0 261	327 0	0 530	596 0	3 204 100 0
1 315	306 0	1 227	294 0	** K= 8 L= 7 **
2 177	92 0	2 266	280 0	** K= 8 L= 7 **
3 287	291 0	3 273		2 244 4/8 480
4 206				-2 211 148 180
4 200	208 0	4 178	170 0	-1 139 110 180
** K= 5				2 150 122 0
** K= 5	L= 6 **	** K= 2	L= 7 **	
-2 100	11 0	2 404	400 0	** K= 9 L= 7 **
	44 0	-2 191	199 0	
0 170	216 180	-1 140	125 180	-1 175 154 0
1 131	145 0	2 199	163 180	0 231 272 0
2 143	137 0	3 112	61 0	1 161 179 0
				2 135 125 0
** K= 6	L= 6 **	** K= 3	L= 7 **	
				** K= 0 L= 8 **
-3 291	248 0	-3 308	244 0	
-2 293	263 0	-2 378	365 O	-3 226 237 0
-1 188	206 0	-1 457	457 Û	-2 333 301 0
0 247	34 6 0	1 270	282 0	0 269 313 0
1 198	222 Ū	2 345	315 0	1 177 232 0
2 198	15 8 O	3 340	301 0	2 472 441 0
3 252	228 0			3 294 287 0
		** K= 4	L= 7 **	U
** K= 8	L= 6 **			** K= 1 L= 8 **
		-1 178	180 180	
-3 175	15 5 O	0 131	152 180	-3 134 126 180

0	204	223	0	** K=	9	L= 8	3 **	-2	189	210	0
1	96	124	С	0	42.4	454	4 6 0	-1	137	171	0
** K=	2	L= 8	**	0	121	151	180	Û	185	225	0
	L	L- 0	~ ~	** K=	1	L= 9) **	** K=	1	L= 10	* *
-2	231	213	0		•				·	- 10	
-1	461	474	0	-2	293	266	0	-1	128	118	0
0	259	319	0	-1	174	168	C	1	123		80
1	198	173	G	1	13 0	145	0	2	154	146 18	BC
2	234	210	0	2	351	348	0		_		
3	176	182	0	3	222	222	0	** K=	2	L= 10 ·	* *
** K=	3	L= 8	**	** K=	2	L= 9) **	-2	175	119	0
	J	L- 0	~ ~		2	L ,		-2	253	179	0
-2	99	88	0	-2	123	101	180	Ľ		• • • •	0
3	231	174	Ō	3	266	204	0	** K=	3	L= 10 ¹	* *
-				-			-		•		
** K=	4	L= 8	**	** K=	3	L= \$	**	- 2	158	78 18	50
								1	136		0
-3	211	171	Û	- 3	165	174	0	2	124	100 18	50
-1	268	206	0	-1	219	201	0				
0	114	112	0	0	132	158	0	** K=	4	L= 10 ·	* *
1 2	343 252	390 248	0 0	1 2	234 193	256 188	0 0	_ 1	203	1.0.1	0
3	249	234	0	2	149	152	0	-1 0	160	191 148	0 0
5		234	U		147	175	U		160	140	0
							_				
** K=	5	L= 8	**	★★ K=	4) **	1 2	197	198	0
** K=				** K=	4) **	1			0
** K= -2	5 223	L= 8 125		-1	151	L= 9 125	0	1	197	198	0 0
- 2	223	125	180	-1 1	151 145	L= 9 125 152	0 180	1 2 ** K=	197 118 5	198 107 L= 10	0 0
		125		-1	151	L= 9 125	0 180	1 2	197 118	198 107	0 0
-2 ** K=	223 6	125 L= 8	180 **	-1 1 2	151 145 123	L= 9 125 152 113	0 180 180	1 2 ** K= -2	197 118 5 132	198 107 L= 10 5 94	0 9 * *
-2 ** K= -3	223 6 158	125 L= 8 153	180 **	-1 1	151 145 123	L= 9 125 152 113	0 180	1 2 ** K=	197 118 5	198 107 L= 10 y	0 9 * *
-2 ** K= -3 -2	223 6 158 198	125 L= 8 153 207	180 ** 0	-1 1 2 ** K=	151 145 123 5	L= 9 125 152 113 L= 9	0 180 180 **	1 2 ** K= -2 ** K=	197 118 5 132 6	198 107 L= 10 5 94 L= 10 5	0 9 * * 0
-2 ** K= -3	223 6 158 198 141	125 L= 8 153 207 66	180 ** 0 0	-1 1 2	151 145 123 5 177	L= 9 125 152 113 L= 9 156	0 180 180 **	1 2 ** K= -2	197 118 5 132 6 123	198 107 L= 10 5 94 L= 10 5 145	0 9 * * 0 * *
-2 ** K= -3 -2 -1	223 6 158 198	125 L= 8 153 207	180 ** 0	-1 1 2 ** K= -2	151 145 123 5	L= 9 125 152 113 L= 9 156 133	0 180 180 **	1 2 ** K= -2 ** K= 0	197 118 5 132 6	198 107 L= 10 5 94 L= 10 5	0 9 * * 0
-2 ** K= -3 -2 -1 0 1 2	223 6 158 198 141 193 170 119	125 L= 8 153 207 66 234	180 ** 0 0 0	-1 1 2 ** K= -2 -1	151 145 123 5 177 170	L= 9 125 152 113 L= 9 156	0 180 180 ** 0	1 2 ** K= -2 ** K= 0 1	197 118 5 132 6 123	198 107 L= 10 5 94 L= 10 5 145 195	0 ** 0 **
-2 ** K= -3 -2 -1 0 1	223 6 158 198 141 193 170	125 L= 8 153 207 66 234 203	180 ** 0 0 0 0 0	-1 1 2 ** K= -2 -1	151 145 123 5 177 170	L= 9 125 152 113 L= 9 156 133	0 180 180 ** 0 0 0	1 2 ** K= -2 ** K= 0 1	197 118 5 132 6 123 158	198 107 L= 10 5 94 L= 10 5 145 195	0 ** 0 **
-2 ** K= -3 -2 -1 0 1 2 3	223 6 158 198 141 193 170 119 181	125 L= 8 153 207 66 234 203 114 166	180 ** 0 0 0 0 0 0 0	-1 1 2 ** K= -2 -1 0 ** K=	151 145 123 5 177 170 144 6	L= 9 125 152 113 L= 9 156 133 200 L= 9	0 180 180 ** 0 0 0 0	1 2 ** K= -2 ** K= 0 1 ** K= -1	197 118 5 132 6 123 158 1 122	198 107 L= 10 7 94 L= 10 7 145 195 L= 11 7 74	0 9 * * 0 * * 0 0 * *
-2 ** K= -3 -2 -1 0 1 2	223 6 158 198 141 193 170 119 181	125 L= 8 153 207 66 234 203 114	180 ** 0 0 0 0 0 0 0	-1 1 2 ** K= -2 -1 0	151 145 123 5 177 170 144 6	L= 9 125 152 113 L= 9 156 133 200 L= 9	0 180 180 ** 0 0 0 0	1 2 ** K= -2 ** K= 0 1 ** K= -1 C	197 118 5 132 6 123 158 1 122 221	198 107 L= 10 7 94 L= 10 7 145 195 L= 11 7 74 226	0 9 * * * 0 0 * * 0 0
-2 ** K= -3 -2 -1 0 1 2 3 ** K=	223 6 158 198 141 193 170 119 181 7	125 L= 8 153 207 66 234 203 114 166 L= 8	180 ** 0 0 0 0 0 0 0 0	-1 1 2 ** K = -2 -1 0 ** K = -1	151 145 123 5 177 170 144 6 185	L= 9 125 152 113 L= 9 156 133 200 L= 9 161	0 180 180 2 ** 0 0 0 0 ** 180	1 2 ** K= -2 ** K= 0 1 ** K= -1	197 118 5 132 6 123 158 1 122	198 107 L= 10 7 94 L= 10 7 145 195 L= 11 7 74	0 9 * * 0 * * 0 0 * *
-2 ** K= -3 -2 -1 0 1 2 3	223 6 158 198 141 193 170 119 181 7	125 L= 8 153 207 66 234 203 114 166	180 ** 0 0 0 0 0 0 0 0	-1 1 2 ** K= -2 -1 0 ** K=	151 145 123 5 177 170 144 6 185	L= 9 125 152 113 L= 9 156 133 200 L= 9 161	0 180 180 2 ** 0 0 0 0 ** 180	1 2 ** K= -2 ** K= 0 1 ** K= -1 0 1	197 118 5 132 6 123 158 1 122 221 148	198 107 L= 10 7 94 L= 10 7 145 195 L= 11 7 74 226 166	0 9 * * 0 * * 0 0 * *
-2 ** K= -3 -2 -1 0 1 2 3 ** K= -2	223 6 158 198 141 193 170 119 181 7 124	125 L= 8 153 207 66 234 203 114 166 L= 8 81	180 ** 0 0 0 0 0 0 0 0 180	-1 1 2 ** K= -2 -1 0 ** K= -1 ** K=	151 145 123 5 177 170 144 6 185 7	L= 9 125 152 113 L= 9 156 133 200 L= 9 161 L= 9	0 180 180 2 ** 0 0 0 0 ** 180 2 **	1 2 ** K= -2 ** K= 0 1 ** K= -1 0 1	197 118 5 132 6 123 158 1 122 221 148	198 107 L= 10 7 94 L= 10 7 145 195 L= 11 7 74 226	0 9 * * 0 * * 0 0 * *
-2 ** K= -3 -2 -1 0 1 2 3 ** K=	223 6 158 198 141 193 170 119 181 7 124	125 L= 8 153 207 66 234 203 114 166 L= 8	180 ** 0 0 0 0 0 0 0 0 180	$ \begin{array}{c} -1 \\ 1 \\ 2 \\ ** K = \\ -2 \\ -1 \\ 0 \\ ** K = \\ -1 \\ ** K = \\ 0 \\ \end{array} $	151 145 123 5 177 170 144 6 185 7 258	L= 9 125 152 113 L= 9 156 133 200 L= 9 161 L= 9 294	0 180 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 ** K= -2 ** K= 0 1 ** K= -1 0 1 ** K=	197 118 5 132 6 123 158 1 122 221 148 2	198 107 L= 10 7 94 L= 10 7 145 195 L= 11 7 74 226 166 L= 11 7	0 9 * * 0 0 * * 0 0 * *
-2 ** K= -3 -2 -1 0 1 2 3 ** K= -2	223 6 158 198 141 193 170 119 181 7 124	125 L= 8 153 207 66 234 203 114 166 L= 8 81 L= 8	180 ** 0 0 0 0 0 0 0 0 0 ** 180 **	$ \begin{array}{c} -1 \\ 1 \\ 2 \\ ** K = \\ -2 \\ -1 \\ 0 \\ ** K = \\ -1 \\ ** K = \\ 0 \\ 1 \end{array} $	151 145 123 5 177 170 144 6 185 7 258 145	L= 9 125 152 113 L= 9 156 133 200 L= 9 161 L= 9 294 204	0 180 180 0 ** 0 0 ** 180 2 ** 180 2 **	1 2 ** K= -2 ** K= 0 1 ** K= -1 0 1	197 118 5 132 6 123 158 1 122 221 148 2	198 107 L= 10 7 94 L= 10 7 145 195 L= 11 7 74 226 166 L= 11 7	0 9 * * 0 * * 0 0 * *
-2 ** K= -3 -2 -1 0 1 2 3 ** K= -2 ** K=	223 6 158 198 141 193 170 119 181 7 124 8	125 L= 8 153 207 66 234 203 114 166 L= 8 81	180 ** 0 0 0 0 0 0 0 0 180	$ \begin{array}{c} -1 \\ 1 \\ 2 \\ ** K = \\ -2 \\ -1 \\ 0 \\ ** K = \\ -1 \\ ** K = \\ 0 \\ \end{array} $	151 145 123 5 177 170 144 6 185 7 258	L= 9 125 152 113 L= 9 156 133 200 L= 9 161 L= 9 294	0 180 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 ** K= -2 ** K= 0 1 ** K= -1 0 1 ** K= 1	197 118 5 132 6 123 158 1 122 221 148 2 147	198 107 L= 10 7 94 L= 10 7 145 195 L= 11 7 74 226 166 L= 11 7	0 9 * * 0 * * 0 0 * * 0 0 * *
-2 ** K= -3 -2 -1 0 1 2 3 ** K= -2 ** K= -2	223 6 158 198 141 193 170 119 181 7 124 8 188	125 L= 8 153 207 66 234 203 114 166 L= 8 81 L= 8 156	180 ** 0 0 0 0 0 0 0 0 0 ** 180 ** 0	$ \begin{array}{c} -1 \\ 1 \\ 2 \\ ** K = \\ -2 \\ -1 \\ 0 \\ ** K = \\ -1 \\ ** K = \\ 0 \\ 1 \end{array} $	151 145 123 5 177 170 144 6 185 7 258 146 114	L= 9 125 152 113 L= 9 156 133 200 L= 9 161 L= 9 294 204	0 180 180 0 ** 0 0 ** 180 2 ** 180 2 **	1 2 ** K= -2 ** K= 0 1 ** K= -1 0 1 ** K= 1	197 118 5 132 6 123 158 1 122 221 148 2 147	198 107 L= 10 7 94 L= 10 7 145 195 L= 11 7 74 226 166 L= 11 7 174	0 9 * * 0 * * 0 0 * * 0 0 * *
-2 ** K= -3 -2 -1 0 1 2 3 ** K= -2 ** K= -2 0	223 6 158 198 141 193 170 119 181 7 124 8 188 189	125 L= 8 153 207 66 234 203 114 166 L= 8 81 L= 8 156 246	180 ** 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} -1 \\ 1 \\ 2 \\ ** K = \\ -2 \\ -1 \\ 0 \\ ** K = \\ -1 \\ ** K = \\ 0 \\ 1 \\ 2 \\ \end{array} $	151 145 123 5 177 170 144 6 185 7 258 146 114	L= 9 125 152 113 L= 9 156 133 200 L= 9 161 L= 9 294 204 114	0 180 180 0 ** 0 0 ** 180 2 ** 180 2 **	1 2 ** K= -2 ** K= 0 1 ** K= -1 0 1 ** K= 1	197 118 5 132 6 123 158 1 122 221 148 2 147 3	198 107 L= 10 7 94 L= 10 7 145 195 L= 11 7 74 226 166 L= 11 7 174 L= 11 7	0 9 * * 0 * * 0 0 * * 0 0 * *

- ** K= 0 L= 12 ** 1 171 144 0
- ** K= 2 L= 12 **
 - 0 151 141 0

I.

!

Observed and calculated structure factors for $[Cu(aOeu)_2]Br_2$

	н /	FOI	/FC/	PHI		H	F0/	/FC/	PHI	· H	/F0/	/FC/	PHI	
	•						,		-					
**	к =	0	L= 0	**		3	222	·233	0	1	143	147	C	
	κ -	U	L- U	• •		4			-		140	1 - /	U	
		-	·	~		•	391	399	0		•		• • •	
	1	260	247	0		5	138	127	0	** K:	= 1	L= '	1 **	
	2	681		180		••			12		•			
	3	507	507	0	**	K =	7	L= (] **	-5	223	246	. 0	
1.1	4	565	`575	0						- 4	113	114	0	
	5	173	183	0		1	735	735	0	-3		126	Č	
	6	102		180		3	485	491	180	-2	573	582	Ő	
	0	102	70	ICU	· .	5								
		_	_			2	114	104	0	-1	464	446	C	
**	K = 1	1.	L= 0	**						0	631	649	0	
					**	K =	8	L= (C **	1	59	30	0	
	1	454	445	0						2	616	628	0	
	2	165	154	õ		0	273	293	180	3	551	542	ō	
	3	576		18Ŭ		1	291	297	0	. 4	158	168		
						•							0	
	5	195	211	0		2	911	914	0	5	120	139	0	
						3	167	160	0	6	111	88	0	
**	K =	2	L= 0	**		4	204	208	180					
					· .	5	206	213	0	** K	= 2	L= '	1 **	
	0	71	44	180		-			•		-	-		
	-	275	270	0	ـــ	K =	9	L= 1) * *	-6	119	103	180	
					××	K = .	7							
		157	1193	0		_				-5	153	133	0	
-	3	211	218	0		1	490	49.4	130	-4	263	266	0	
	5	280	289	0		3	143	132	0	-3	78	50	0	
										-2	456	476	180	
**	к =	3	L= 0	**	**	К=	10	L= (] **	-1	311	307	Ō	
	N Ţ	2	L- U		~~	N -	10	L- (_	•				
	•					· ·		-		0	570	560	0	
	1	208		180		0.	567	568	0	1	618	620	180	
	2	131	122	0 -		1	165	166	0	2	536	540	180	
· · · · ·	4	178	181	0		- 3	297	298	0	4	100	98	0	
•						4	210	210	0	5	97	103	180	
**	K =	4	L= 0	**						•				
		•			**	K=	11	L= (· **	** K:	= 3	L= '	1 + +	
	•	440	444	0	~ ~	<u> </u>		L - (] ^ ~			L		
	0	.119	116	.0		-			_	· · · _		~ ^ /	. .	
•	1	77		0		2	120	131	0	- 5	100	84	0	
	2	375	385	0						-4	403	412	0	•
	3 -	428	429	0	**	K =	12	L= (] **	-3	909	938	0	
	4	195	201	C						-2	128	123	180	
	5	132	144	· 0		0	153	148	0	- 1	590	590	180	
	2	172	144	υ.										
4		-				1	262	252	0	0	1225	1234	0	
**	K =.	5	L= 0	**		2	142	143	0	1	1097	1111	0	
		•				3	131	119	0	· 2	167	156	180	
	1	167	183	180		•				3	141	148	180	
	2	253	252	Ō	**	κ=	13	L= (3 ** 5	· · 4	425	438	0	
	3	163	160				• •	-	•	5	286		ō	
	ر	105	100	0	. *		217	n / 7	•	2	200	100	, U	
_						1	243	243	0					
**	К =	6	L= 0	**		2	85	23	0	. ★★ K	= 4	L= '	1 **	
	. Oʻ 1	1245	1238	0	**	κ=	14	L=	0 **	-5	161	167	180	
	1	341	347	Ō.		•				- 4	373	390	180	
	ż	223		180		0	153	1/0	180	-3	454	463	Ō	
	4		220	100		J	172	140	100	- 3	777	- U J	ų	

									,				
. *			~	,									
	. Н. И	/F0/	/FC/ F	ні	H	/F0/	/FC/	PHI		н	/F0/	/FC/	PHI
	- 2	499	51G \	0	-2	122	130	180		1	405	403	0
	-1	702	699 1	180	-1	243	247	0		,			U
	0 1	185 683	1193 1 690	180	0	116	131	0	**	Κ=	= 14	L= '	1 **
	2	697	720	0 0	. 2	86	84	180		0	101	88	180
	3	360	369 1	08	** K=	9	L= '	1 **					
	. 4	285		180	,	7 /7			**	К=	= 0	L= 7	2 **
	5	158	160	0	-4	247 221	237 213	0 0		-6	198	187	0
,	** K=	5	L= 1	**	-2	259	257	. 0		-5	112	98	180
	-	740	774	~	0	260	265	D		- 4	108	107	Û
	-5 -4	310 207	331 201	0 0	1 2	393 134	394 132	0 0		-3 -2	1131 1019	1071 944	ي 0
	-3	100		180	23,	170	172	0		-2 -1	1006	922	180
	- 2	596	616	0	4	94	103	õ		0	378	373	- ŋ
		1351	1361	0	 	4.0	1 -	1			2759	2842	0
	1	124 148	120 138 1	0 80	** K=	10	L= '	1 **		3 4	363	369 160	180 0
	2	763	776	0	-4	203	-213	180		5	242	251	Ő
	3	440	444	0	-3	229	229	0		6	113	119	0
•	** K=	6	L= 1	**	-2	328 356	331	180	**	K=	. 1	1	2 **
	- ^ K=	o	L I	* *	- <u>1</u> 0	500 472	350 465	180 180	**	κ-	: 1	L= 2	2 **
		100	105	0	. 1	347	341	Ö		-6	93	86	0
	-3	250		081	2	358	366	0		- 4	340	338	180
	-2 -1	277	293 1 372	80 0	3	223	227 129	180 180		-3 -2	166 881	164	180 0
	0	132	162	0	·. ·		167	100		-1	737	689	Ū.
	1	115	97	0	** K=	11	L= '	**		0	258	242	180
	23	379 158	374 1 175	081	-3	136	129	180		1 2	632 382	622 386	180 0
	. 5	254	261	0	-2	389	-385			3	277	282	0
			•		-1	484	470	0,		4	312	322	
	** K=	7	L= 1	**	1	117	136	180		V			
	<u> </u>	99	78	0	2	274 405	267 407	0 0	**	K =	: 2	L= .2	2 **
	-4	81	8G	0	.	-05	407	U		-5	295	290	0
	-3	353	350	0	** K=	12	L= 1	**		-4	549	550	0
	-2 -1	480 63	475	0 0	-3	1 2 0	474	120		-1	1466 497	1460 497	0 0
	- 1	626	619	0		129 411	136 399	130 180		0 1	497	497	U 180
	1	493	501	0	-1	232	215	0		2	139	142	0
	2	144	150	0	0	372	376	0		3	590	596	0
	3 4	342 104	341 120	0 0	1	329 215	339 219	180 180	· ·	4	225	227	0
	-		120	U	3	199	186		**	K =	: 3	L= 2	2 **
	** K=	8	L= 1	**	_			-					_
	-5	91	68 1	180	** K=	13	L= '	1 **		-2	241	223	0
	-4	88		0	0	310	301	0		0 1	312 390	319 389	0 0
•	•			~	U	510	501	U.		·	J / U	507	C
		·••						`	`				
								•					
		-	,		•								
•							-						

· .	·					
. •	H /FO/	/FC/ PHI	H /F0/	/FC/ PHI	H /FO/	/FC/ PHI
:				• · · · · · ·		• • •
	2 129	143 180	** K= 8	L= 2 **	** K= 1 3	L= 2 **
	** K = 4 -5 181 -4 178 -3 339 -2 410 -1 400 0 206 1 268 2 275	L= 2 ** 178 C 163 O 350 O 408 O 408 O 403 O 214 O 271 O 287 O	-5 321 -4 392 -3 383 -2 142 -1 958 0 554 1 229 3 596 4 101	329 0 400 0 376 180 131 0 959 0 561 0 237 180 593 0 104 0	-2 168 0 215 2 134 ** K= 14 -1 346 0 280 1 93	174 0 189 180 174 0 L= 2 ** 337 0 281 0 66 120
	3 372 4 318 5 98	367 0 336 0 125 D	** K= 9 -4 139	L= 2 ** 127 D	** K= 1	L= 3 ** 125 0
	** K= 5 -5 134	L= 2 ** 126 180	-4 139 -3 115 -2 206 -1 212 0 362	107 0 210 180 202 180 367 0	-4 524 -3 228 -2 126 -1 793	499 0 222 0 128 0 769 0
· · ·	$\begin{array}{c} -5 & 134 \\ -4 & 149 \\ -3 & 133 \\ -2 & 372 \\ -1 & 427 \\ 0 & 63 \\ 1 & 410 \end{array}$	120 180 148 0 121 0 374 180 412 180 80 0 410 0	1 195 2 378 3 126 4 95 ** K= 10	184 0 381 180 127 180 88 0	-1 795 0 603 1 1196 3 398 4 348 5 103	789 0 595 0 1208 0 395 0 348 0 102 0
	2 117	137 180	-4 132	143 0	** K= 2	L= 3 **
	** K = 6 -3 534 -2 510 -1 178 0 199 1 1071 2 497 4 126 5 223	L= 2 ** 546 0 528 0 185 180 202 0 1082 0 514 0 113 0 231 0	-3 307 -2 512 -1 112 0 81 1 435 2 123 3 101 4 86 ** K= 11	294 0 518 0 115 180 71 0 440 0 127 0 71 0 88 0 L= 2 **	$\begin{array}{cccc} -5 & 228 \\ -4 & 91 \\ -3 & 401 \\ -2 & 286 \\ -1 & 1133 \\ 0 & 61 \\ 1 & 671 \\ 2 & 139 \\ 3 & 260 \\ 4 & 76 \\ 5 & 131 \end{array}$	232 180 78 0 385 0 269 0 1112 180 45 180 673 0 135 180 264 180 68 180 116 0
	** K= 7	L= 2 **	0 100 3 97	103 D 104 O		L= 3 **
	-4 185 -3 224 -2 505 -1 302 0 907 1 181 2 380 3 118 4 239 5 90	184 180 219 180 521 0 294 0 917 180 188 180 389 0 114 0 223 180 69 180	-** K= 12 -3 158 -2 245 -1 135 0 135 1 174 2 242 3 141	L= 2 ** 153 0 248 0	-6 268 -5 216 -4 80 -3 373 -2 1277 -1 144 0 851 1 676 2 716	273 0 222 0 26 180 372 0 1283 0 148 0 860 180 687 0 734 0

			· · · · · · · · · · · · · · · · · · ·	¢		,	· · ·		
	-5 -2 -1 1 2 3 4 ** K=	** K= -3 -1 1 3 5 ** K=	-3 -2 -1 0 1 2 3 4 5	** K= -5 -4	-1 0 1 2 4 5	-5 -4 -3 -2	3 4 5 ** K=	H	
	147 566 426 521 285 192 179	151 321 365 259 117	345 448 417 1209 208 220 246	144 651	538 324 861 229 132 118	246 176 737 337	120 77 148 4	/F0/	
·	159 0 579 0 425 C 503 0 291 0 198 0 176 0	L= 3 ** 155 0 328 180 363 0 266 180 114 0 L= 3 **	355 0 451 180 414 0 1224 0 209 0 223 180 255 0 279 0 102 0	L= 3 ** 131 0 656 0	547 0 321 180 877 180 225 0 139 180 98 180	251 0 167 180 728 180 317 0	115 0 32 180 155 0 L= 3 **	/FC/ PHI	
•	** K= 12 -3 18 -2 112 -1 512 0 9 1 312 2 14 ** K= 13	-4 35 -3 13 -2 15 -1 21 0 63 1 18 2 13 3 15	-2 21 -1 34 0 19 1 36 2 12 3 24 4 8 ** K= 11	** K= 10 -3 38	-3 17 -2 48 -1 40 0 12 1 17 2 40 3 24	** K= 9 4 9	-3 180 -2 120 -1 130 0 189 1 90 2 70	H /FO	
e a secondaria de la composición de la Composición de la composición de la composic	2 116 180 8 513 180 1 121 0 8 312 0 7 141 180	0 344 0 6 120 0 9 174 180 8 224 0 3 637 0 1 170 0 5 131 180	7 208 0 6 344 0 5 188 180 8 363 180 2 135 0 7 245 0	6 386 180	5 490 0 9 404 0 5 126 180 7 174 0 9 405 0	L= 3 ** 9 94 0	8 130 0 9 142 180 9 198 0 9 110 0	/ /FC/ PHI	×
	$\begin{array}{rrrr} -6 & 161 \\ -4 & 546 \\ -3 & 784 \\ -2 & 66 \\ -1 & 197 \\ 0 & 890 \\ 1 & 684 \\ 2 & 73 \\ 3 & 112 \\ 4 & 267 \end{array}$	0 1037 1 369 2 764 3 189 4 155 5 122 ** K= 2	5 100 ** K= 1 -6 138 -5 172 -4 343 -3 336 -2 407 -1 634	0 897 1 470 2 987 3 250	** K= 0 -6 305 -5 305 -3 321 -2 1234 -1 1042 0 897		-2 325 -1 164 0 85 1 145 2 350	H /FO/	· ·
•	699 0	1053 0 366 180 768 180 187 0 158 0 122 180 L= 4 **	71 0 L= 4 ** 117 180 161 0 324 0 320 180 400 180 611 0	896 180 466 0 1004 0 251 0	L= 4 ** 306 0 304 0 303 180 1150 0 1000 0 864 180	L= 3 ** 168 0	318 0 162 0 14 180 132 0 340 0	/FC/ PHI	

· · ·				• • • •	ł	` `	
	H /F0/	/FC/ PHI	к.) Н	/F0/	/FC/ PHI	H /FO/	/FC/ PHI
	5 165	148 0	-1	373	385 0	2 146	152 0
	** K = 3	L= 4 **	0 1 2	550 525 163	562 0 523 183 183 180	** K= 13	L= 4 **
	-3 86 -2 408 -1 148 0 248	396 0 127 0 247 180	2 3 4 ** K=	202 137	196 0 135 0 L= 4 **	-2 176 -1 153 0 134 1 122	162 180 144 0 124 0 117 180
	2 151 3 114 4 144	115 180	-4 -3	448 532	458 0 552 0	** K= 14	L= 4 **
	** K= 4	L= 4 **	-2 0	369 650	360 180 667 0	G 315	308 0
	-5 182		1	609 77	619 0 76 180	** K= 1	L= 5 **
	-4 282 -3 315 -2 620 -1 392 0 377	304 0 607 0 391 0	4 ** K= -4	296 = 9 219	297 0 L= 4 ** 224 180	-6 254 -5 82 -3 759 -2 574 -1 197	235 0 71 0 721 0 559 0 185 0
	1 386 2 219 3 221	387 0 210 0	-2 -1 0	388 193 311	389 0 184 180 311 180	0 494 1 538 2 683	506 0 551 0 681 0
•	4 217 5 151	213 D	1 2 3	198 235 156	203 0 236 0 149 180	4 152 5 148	.141 0 149 0
·	** K= 5	L= 4 **	4	127	114 180	** K= 2	L= 5 **
· · ·	-4 281 -3 169 -2 329 -1 520 C 394 2 404	331 0 506 180 398 180	** K= -4 -3 -2 -1 0	10 116 82 268 519 140	L= 4 ** 124 0 56 0 269 0 515 0 134 180	-4 357 -3 95 -2 630 -1 603 0 766 2 484 4 121	336 180 91 180 609 0 566 0 768 180 489 0 116 180
	** K= 6	L= 4 **	2	263	258 D 122 D	5 86	58 180
	-5 227 -2 650	655 0	4	108	114 0	** K= 3	L= 5 **
	-1 880 1 109 2 626 3 387	94 0 624 0	** K= -1 2	= 1 <u>1</u> 103 104	L= 4 ** 87 180 109 180	-5 475 -4 477 -3 225 -2 155	482 0 472 0 226 180 168 0
•	** K= 7		** K=		L= 4 **	-1 1156 0 461	1149 0 464 0
	-5 105	102 0	-3	124	120 0	1 462 2 243	471 180 230 0
	-4 143 -3 243 -2 457	238 180	-2 -1 0	145 305 140	158 0 320 0 145 0	3 442 4 183	441 0 179 0
•							

×

				· · · · ·	- * -	
· • •			• • •			
,	H /F0/	/FC/ PHI	H /FO/	/FC/ PHI	H /FO/	/FC/ PHI
				_		
	** K= 4	L= 5 **	** K= 9	L= 5 **	5 136	99 0
	-4 281 -2 729	282 0 738 180	-4 210	206 0 135 0	** K= 1	L= 6 **
	-1 70	77 180	-1 680	685 0	-5 272	267 180
	0 579	595 0 82 -0	0 413 1 116	409 0 125 180	-4 83 -3 582	80 D 563 D
	2 365	376 180	3 246	237 0	-2 162	162 180
•	4 247	243 0	4 191	1 90 0	-1 659 0 110	659 180 112 0
	** K= 5	L= 5 **	** K= 10	L= 5 **	1 786	781 0
	-3 817	822 0	-4 230	229 0	2 199 3 428	197 180 439 180
	-2 485 -1 571	481 0 565 180	-3 92 -2 404	65 0	4 86	83 0
•	0 196	193 0	0 263	414 180 263 0	** K= 2	L= 6 **
	1 851 2 346	870 O 348 D	2 182	168 180	-5 225	221 0
	4 98	92 0	** K= 11	L= 5 **	-4 264	255 180
	5 188	172 0	-3 496	496 0	-3 646 -2 861	622 D 840 D
	** K= 6	L= 5 **	-2 250	255 0	0 85	64 180
	-5 147	152 0	-1 130 1 535	122 180 528 0	1 353 2 592	353 0 596 0
	-4 216	213 180	2 208	217 0	4 100	84 0
•	-3 82 -2 133	91 180 138 0	** K= 12	L= 5 **	5 116	115 0
	-1 186 0 308	186 0 312 180	-2 244	247 0	** K= 3	L= 6 **
	1 304	298 180	0 354	358 180	-3 179	173 18G
•	2 293 4 127	305 0 126 180	1 84 2 183	42 0 187 0	-2 301 -1 555	290 180 536 0
	- · ·				0 103	88 180
	** K= 7	L= 5 **	** K= 13	L= 5 **	1 321 3 92	327 18C 81 0
	-5 166 -4 211	181 0 213 0	-1 366 0 229	366 0 227 D	** K= 4	L= 6 **
	-1 646	638 0	*		•	
	0 300 1 133	318 0 125 0	** K= 0	L= 6 **	-5 202	206 D 254 D
	2 299	30 0 0	-5 333	332 0	-3 356	346 0
	3 168	166 0 184 0	-4 438 -3 160	420 0 155 0	-2 462 -1 560	452 0- 551 0
	** K= 8	L= 5 **	-2 578 -1 780	575 180 750 0	0 209	208 C 176 D
			0 1028	1038 0	2 245	250 0
	-4 164 -2 199	163 180 203 0	1 1 16 2 458	116 180 456 0	3 104 4 124	100 0 114 0
	0 95	114 180	3 292	284 0	5 107	104 0
	<i>i</i>	•	4 214	214 0		•
•		х.	· · ·			
		•	·		•	

•

•

H /FO/ /FC/ PHI H /FO/ /FC/ PHI H /FO/ /FC/ PHI

•

** K=	5	L= (5 **	**	к=	10	L=	6	**		-4	610	, 59 7	Ċ
~~ K-	2	L - (,		N -	10	L	U			-3	802	785	0
-5	183	196	Ó		-4	294	30	5	Ō		-2	237	244	18 Ŏ
	359	359	180	-	-3	179	17	1	Ō		Ō	773	769	0
- 1	421	412	0	•	-1	246	25	7	0		1	501	513	0
O`	321	322	180		0	414	40		0		2	84	. 72	180
	317	325	180		3	149	13	8	0		4	215	210	0
	225		. 0								5	140	124	0
- 5	93	61	180	**	K =	11	L=	6	**					_
							4			* **	K =	4	L=	7 **
** K=	6	L= (5 **		0	138	13	-	180		e		410	100
-	227	277	•		1	98	8	ſ	0		-5	118	140	180
	223 423	237 428	0 0	. مادينات	К=	12	L=	6	**		-4 -3	141 265	134 258	180 0
	116	125	0	**	K-	12	L-	0	**		-2	344	352	0
	190	197	-		-1	182	17	8	. 0		-1	377	390	180
	485	486	0		0	277	29		0	•	0	422	420	180
	824	837	Ö		1	148	14		Ö		1	370	366	0
	125	136	õ		•	140		•	Č.		2	159	161	õ
	220		Ō	* **	К=	13	L=	6	**		. 3	124		180
	197	184	Ō				-	-			-			
				-	-1	227	22	5 '	180	**	K =	5	L= 1	7 **
** K=	7	L= (6 **		1	103	10	4	0					
											-5	331	338	0
	258	250	180	**	К=	1	L=	7	**		-4	141	133	180
	440	454	0		_			,	•		- 3	91	79	180
	90	85	180		-5	420	42		0		-2	789	795	0
	487		180		-4	85	6		180		-1	625	634	0
	190	190	0		-3	. 86	7		Ó		0	222	219	180
	481	481	10		-2	616	61		0		1	84	95	0
	127 155	133	180 180	-	-1 0	642 150	63 13		0		2 3	510 294	516 294	0 0
2	()))		100		2	393	39		0		5	274	274	U
** K=	8	L= (5 **		3	281	28		Ō	**	K'=	6	L= 7	7 **
	U		•		5	90	6		Š		<u>-</u>	v	.	
-4	116	134	180				• •	•			- 4	256	265	0
•	421	423	Ū.	**	K =	2	L=	7	**		-3	271	275	
	552	571	· Ō				-				-2	337		180
	86	88	180	•	-5	87	7	4	0		-1	129	,116	Ŋ
	333	339	0		-4	146	14		0		0	234	231	0
2	479	485	0	•	-3	240	22	8 - 1	180		1	160	169	180
				•	-2	290	.28	0.1	180		2	228	234	180
** K=	9	L= (6 **	•	-1.	704	69		0		3	175	166	0
· ·					0	495	50		0					
	311	330	180		1	363	37		180	. **	• K=	, 7	L= '	7 **
	571	577	0	•	2	149	14		180		-	• • •		-
0	75	59	180		3	139	14	3	0	÷	- 4	214	200	0
	301	295	180		u –		•	_			-3	258	251	0
2 3	86	74	0	**	K =	5	L=	.7	**.		-2	81	54	0
\$	128	142	0				•				- 1	116	117	0

H /FO/ /FC/ PHI

H /FO/ /FC/ PHI H /FO/ /FC/ PHI

0 17	8 174 0	0 554	557 D	-5 289	294 C
1 20		3 229	221 0	-3 87	96 180
1.20		4 115	135 0	-2 668	_
** K = 1	L= 9 **	4 115	132 0		-
** K = 1	L= 9 **			-1 574	
5 94	2 2/5 3	** K= 6	L= 9 **	0 109	102 180
-5 26				2 295	293 0
-4 51		-3 298	297 0	3 249	248 0
-3 17		-2 146	150 180		
-2 8		-1 402		** K= 1	L= 10 **
-1 34		0 106	101 0		
0 47		1 217		-5 153	150 0
1 16		3 110	91 180	-4 203	201 0
3 26	8 268 0			-3 394	400 180
4 12	6 11 7 0	** K= 7	L= 9 **	-2 276	277 180
	1			-1 475	485 D
** K= 2	L= 9 **	-4 104	91 0	D 268	266 Ū
-		3 185	177 0	1 281	276 180
-5 11	3 122 180	-2 250	255 Q	3 168	163 0
-3 34		-1 96	94 0		•
-1 41		0 156	156 0	** K= 2	L= 10 **
0 37		1 294	287 0		2 10
1 21		2 135	142 0	-4 498	496 0
2 17		3 121	123 0	-3 334	325 0
3 13			125 0	-1 159	158 0
2 12	2 110 100			- 1 127	
•	•	** K = - 8	1 = 0 ++	0 441	777 U
++ V - 7	1- 0 ++	** K= 8	L= 9 **	0 441	445 0
** K = 3	L= 9 **		N	1 298	296 0
		-2 132	133 180		
-4 10	7 116 180		N	1 298 4 144	296 0 123 0
-4 10 -3 53	7 116 180 1 532 0	-2 132 0 143	133 180 124 J	1 298	296 0
-4 10 -3 53 -2 90	7 116 180 1 532 0 0 902 0	-2 132	133 180	1 298 4 144 ** K= 3	296 0 123 0 L= 10 **
-4 10 -3 53 -2 90 0 13	7 116 180 1 532 0 0 902 0 8 139 180	-2 132 0 143 ** K= 9	133 180 124 J L= 9 **	1 298 4 144 ** K= 3 -3 154	296 0 123 0 L= 10 ** 151 0
-4 10 -3 53 -2 90 0 13 1 37	7 116 180 1 532 0 0 902 0 8 139 180 5 376 0	-2 132 0 143 ** K= 9 -3 229	133 180 124 J L= 9 ** 211 0	1 298 4 144 ** K= 3 -3 154 -2 160	296 0 123 0 L= 10 ** 151 0 147 0
-4 10 -3 53 -2 90 0 13 1 37 2 32	7 116 180 1 532 0 0 902 0 8 139 180 5 376 0 7 327 0	-2 132 0 143 ** K= 9 -3 229 -2 409	133 180 124 J L= 9 ** 211 0 419 D	1 298 4 144 ** K= 3 -3 154 -2 160 -1 250	296 0 123 0 L= 10 ** 151 0 147 0 242 180
-4 10 -3 53 -2 90 0 13 1 37	7 116 180 1 532 0 0 902 0 8 139 180 5 376 0 7 327 0	-2 132 0 143 ** K= 9 -3 229 -2 409 1 318	133 180 124 J L= 9 ** 211 0 419 0 321 0	1 298 4 144 ** K= 3 -3 154 -2 160	296 0 123 0 L= 10 ** 151 0 147 0
-4 10 -3 53 -2 90 0 13 1 37 2 32 4 8	7 116 180 1 532 0 0 902 0 8 139 180 5 376 0 7 327 0 4 6 180	-2 132 0 143 ** K= 9 -3 229 -2 409	133 180 124 J L= 9 ** 211 0 419 D	1 298 4 144 ** K= 3 -3 154 -2 160 -1 250 1 244	296 0 123 0 L= 10 ** 151 0 147 0 242 180 247 0
-4 10 -3 53 -2 90 0 13 1 37 2 32	7 116 180 1 532 0 0 902 0 8 139 180 5 376 0 7 327 0 4 6 180	-2 132 0 143 ** K= 9 -3 229 -2 409 1 318 2 154	133 180 124 J L= 9 ** 211 0 419 D 321 0 141 0	1 298 4 144 ** K= 3 -3 154 -2 160 -1 250	296 0 123 0 L= 10 ** 151 0 147 0 242 180
-4 10 -3 53 -2 90 0 13 1 37 2 32 4 8 ** K= 4	7 116 180 1 532 0 0 902 0 8 139 180 5 376 0 7 327 0 4 6 180 L= 9 **	-2 132 0 143 ** K= 9 -3 229 -2 409 1 318	133 180 124 J L= 9 ** 211 0 419 D 321 0 141 0	1 298 4 144 ** K= 3 -3 154 -2 160 -1 250 1 244 ** K= 4	296 0 123 0 L= 10 ** 151 0 147 0 242 180 247 0 L= 10 **
$ \begin{array}{rrrrr} -4 & 10 \\ -3 & 53 \\ -2 & 90 \\ 0 & 13 \\ 1 & 37 \\ 2 & 32 \\ 4 & 8 \\ ** & K = 4 \\ -5 & 27 \\ \end{array} $	7 116 180 1 532 0 9 02 0 8 139 180 5 376 0 7 327 0 4 6 180 L= 9 ** 0 265 0	-2 132 0 143 ** K= 9 -3 229 -2 409 1 318 2 154 ** K= 10	133 180 124 J L= 9 ** 211 0 419 D 321 0 141 0 L= 9 **	1 298 4 144 ** K= 3 -3 154 -2 160 -1 250 1 244 ** K= 4 -4 210	296 0 123 0 L= 10 ** 151 0 147 0 242 180 247 0 L= 10 ** 203 0
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2 132 0 143 ** K= 9 -3 229 -2 409 1 318 2 154 ** K= 10 -2 164	133 180 124 J L= 9 ** 211 0 419 0 321 0 141 0 L= 9 ** 182 0	1 298 4 144 ** K= 3 -3 154 -2 160 -1 250 1 244 ** K= 4 -4 210 -3 234	296 0 123 0 L= 10 ** 151 0 147 0 242 180 247 0 L= 10 ** 203 0 234 0
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrr} -2 & 132 \\ 0 & 143 \\ ** & K = & 9 \\ -3 & 229 \\ -2 & 409 \\ 1 & 318 \\ 2 & 154 \\ ** & K = & 10 \\ -2 & 164 \\ -1 & 157 \end{array}$	133 180 124 J L= 9 ** 211 0 419 0 321 0 141 0 L= 9 ** 182 0 161 0	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	296 0 123 0 L= 10 ** 151 0 147 0 242 180 247 0 L= 10 ** 203 0 234 0 152 0
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2 132 0 143 ** K= 9 -3 229 -2 409 1 318 2 154 ** K= 10 -2 164 -1 157 0 86	133 180 124 J L= 9 ** 211 0 419 0 321 0 141 0 L= 9 ** 182 0 161 0 39 180	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{rrrrr} -4 & 10 \\ -3 & 53 \\ -2 & 90 \\ 0 & 13 \\ 1 & 37 \\ 2 & 32 \\ 4 & 8 \\ $	7 116 180 1 532 0 0 902 0 8 139 180 5 376 0 7 327 0 4 6 180 L= 9 ** 0 265 0 8 391 180 0 112 0 6 417 0 1 109 180	$\begin{array}{rrrrr} -2 & 132 \\ 0 & 143 \\ ** & K = & 9 \\ -3 & 229 \\ -2 & 409 \\ 1 & 318 \\ 2 & 154 \\ ** & K = & 10 \\ -2 & 164 \\ -1 & 157 \end{array}$	133 180 124 J L= 9 ** 211 0 419 0 321 0 141 0 L= 9 ** 182 0 161 0	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	296 0 123 0 L= 10 ** 151 0 147 0 242 180 247 0 L= 10 ** 247 0 L= 10 ** 203 0 234 0 152 0 156 0 332 0
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2 132 0 143 ** K= 9 -3 229 -2 409 1 318 2 154 ** K= 10 -2 164 -1 157 0 86 1 207	133 180 124 J L= 9 ** 211 0 419 J 321 0 141 0 L= 9 ** 182 0 161 J 39 180 191 180	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	296 0 123 0 L= 10 ** 151 0 147 0 242 180 247 0 L= 10 ** 203 0 234 0 152 0 156 0 332 0 186 0
$ \begin{array}{rrrrr} -4 & 10 \\ -3 & 53 \\ -2 & 90 \\ 0 & 13 \\ 1 & 37 \\ 2 & 32 \\ 4 & 8 \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2 132 0 143 ** K= 9 -3 229 -2 409 1 318 2 154 ** K= 10 -2 164 -1 157 0 86	133 180 124 J L= 9 ** 211 0 419 J 321 0 141 0 L= 9 ** 182 0 161 J 39 180 191 180	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	296 0 123 0 L= 10 ** 151 0 147 0 242 180 247 0 L= 10 ** 247 0 L= 10 ** 203 0 234 0 152 0 156 0 332 0
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2 132 0 143 ** K= 9 -3 229 -2 409 1 318 2 154 ** K= 10 -2 164 -1 157 0 86 1 207 ** K= 11 -2 135	133 180 124 J L= 9 ** 211 0 419 0 321 0 141 0 L= 9 ** 182 0 161 J 39 180 191 180 L= 9 ** 128 180	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	296 0 123 0 L= 10 ** 151 0 147 0 242 180 247 0 L= 10 ** 203 0 234 0 152 0 156 0 332 0 186 0 77 0
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7 116 180 1 532 0 902 0 8 139 180 5 376 0 7 327 0 4 6 180 L= 9 ** 0 265 0 8 391 180 0 112 0 6 417 0 1 109 180 7 422 180 6 105 0 L= 9 **	$\begin{array}{ccccc} -2 & 132 \\ 0 & 143 \\ ** & K = & 9 \\ -3 & 229 \\ -2 & 409 \\ 1 & 318 \\ 2 & 154 \\ ** & K = & 10 \\ -2 & 164 \\ -1 & 157 \\ 0 & 86 \\ 1 & 207 \\ ** & K = & 11 \\ -2 & 135 \\ -1 & 275 \\ \end{array}$	133 180 124 J L= 9 ** 211 0 419 0 321 0 141 0 L= 9 ** 182 0 161 J 39 180 191 180 L= 9 ** 128 180 272 0	1 298 4 144 ** K= 3 -3 154 -2 160 -1 250 1 244 ** K= 4 -4 210 -3 234 -2 168 -1 151 0 325 1 169 2 94 ** K= 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7 116 180 1 532 0 0 902 0 8 139 180 5 376 0 7 327 0 4 6 180 L= 9 ** 0 265 0 8 391 180 0 112 0 6 417 0 1 109 180 7 422 180 6 105 0 L= 9 ** 6 505 0	-2 132 0 143 ** K= 9 -3 229 -2 409 1 318 2 154 ** K= 10 -2 164 -1 157 0 86 1 207 ** K= 11 -2 135	133 180 124 J L= 9 ** 211 0 419 0 321 0 141 0 L= 9 ** 182 0 161 J 39 180 191 180 L= 9 ** 128 180	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccc} -2 & 132 \\ 0 & 143 \\ ** & K = & 9 \\ -3 & 229 \\ -2 & 409 \\ 1 & 318 \\ 2 & 154 \\ ** & K = & 10 \\ -2 & 164 \\ -1 & 157 \\ 0 & 86 \\ 1 & 207 \\ ** & K = & 11 \\ -2 & 135 \\ -1 & 275 \\ 0 & 316 \\ \end{array}$	133 180 124 J L= 9 ** 211 0 419 0 321 0 141 0 L= 9 ** 182 0 161 J 39 180 191 180 L= 9 ** 128 180 272 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7 116 180 1 532 0 0 902 0 8 139 180 5 376 0 7 327 0 4 6 180 L= 9 ** 0 265 0 8 391 180 0 112 0 6 417 0 1 109 180 7 422 180 6 105 0 L= 9 ** 6 505 0	$\begin{array}{cccccc} -2 & 132 \\ 0 & 143 \\ ** & K = & 9 \\ -3 & 229 \\ -2 & 409 \\ 1 & 318 \\ 2 & 154 \\ ** & K = & 10 \\ -2 & 164 \\ -1 & 157 \\ 0 & 86 \\ 1 & 207 \\ ** & K = & 11 \\ -2 & 135 \\ -1 & 275 \\ 0 & 316 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-4 274 -3 137 -2 325 0 329 1 80 2 86	90 0	H /F0 -3 11 ** K= 9 -2 14 -1 38 ** K= 0 -4 38 -3 9 -2 33 -1 42 0 40 3 8 ** K= 1	L= 11 ** 4 147 0 5 388 0 $L= 12 **$ 9 388 0 0 73 0 1 330 180 4 435 0 3 406 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-4 274 -3 137 -2 325 0 329 1 80 2 86 ** K= 3 -4 119 -3 140 -2 319 -1 681 0 132 1 103 2 143 3 159	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-4 274 -3 137 -2 325 0 329 1 80 2 86 ** K= 3 -4 119 -3 140 -2 319 -1 681 0 132 1 103 2 143 3 159	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	143 180 341 0 324 180 90 0 83 0 L= 11 ** 95 0 126 180 320 0 679 0 120 0 115 180 130 0	** K= 9 -2 14 -1 38 ** K= 0 -4 38 -3 9 -2 33 -1 42 0 40 3 8	L= 11 ** 4 147 0 5 388 0 $L= 12 **$ 9 388 0 0 73 0 1 330 180 4 435 0 3 406 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2 325 0 329 1 80 2 86 ** K= 3 -4 119 -3 140 -2 319 -1 681 0 132 1 103 2 143 3 159	341 0 324 180 90 0 83 0 L= 11 ** 95 0 126 180 320 0 679 0 120 0 115 180 130 0	-2 14 -1 38 ** K= 0 -4 38 -3 9 -2 33 -1 42 0 40 3 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 80 2 86 ** K= 3 -4 119 -3 140 -2 319 -1 681 0 132 1 103 2 143 3 159	90 0 83 0 L= 11 ** 95 0 126 180 320 0 679 0 120 0 115 180 130 0	-1 38 ** K= 0 -4 38 -3 9 -2 33 -1 42 0 40 3 8	5 388 0 L= 12 ** 9 388 0 0 73 0 1 330 180 4 435 0 3 406 0
0 117 118 180 * 1 104 85 0 2 277 276 0 3 157 159 0 ** K= 7 L= 10 ** -3 272 286 180 -2 271 288 180 -1 403 406 0 0 149 141 0	-4 119 -3 140 -2 319 -1 681 0 132 1 103 2 143 3 159	95 0 126 180 320 0 679 0 120 0 115 180 130 0	-4 38 -3 9 -2 33 -1 42 0 40 3 8	9 388 C 0 73 O 1 330 180 4 435 O 3 406 C
2 277 27C 0 3 157 159 0 ** K= 7 L= 10 ** -3 272 286 180 -2 271 288 180 -1 403 406 0 0 149 141 0	-3 140 -2 319 -1 681 0 132 1 103 2 143 3 159	126 180 320 0 679 0 120 0 115 180 130 0	-3 9 -2 33 -1 42 0 40 3 8	0 73 0 1 330 180 4 435 0 3 406 0
** K= 7 L= 10 ** -3 272 286 180 -2 271 288 180 -1 403 406 0 0 149 141 0	-2 319 -1 681 0 132 1 103 2 143 3 159	320 0 679 0 120 0 115 180 130 0	-2 33 -1 42 0 40 3 8	1 330 180 4 435 0 3 406 C
-3 272 286 180 -2 271 288 180 -1 403 406 0 0 149 141 0	0 132 1 103 2 143 3 159	120 0 115 180 130 0	0 40 3 8	3 406 C
-2 271 288 180 -1 403 406 0 0 149 141 0	2 143 3 159	130 0		9 88 0
0 149 141 0	3 159		** K= 1	
	** K= 4			L= 12 **
1 274 217 180 *		L= 11 **	-4 17	
** K= 8 L= 10 **	-4 360 -3 116	364 0 111 0	-2 210 -1 27	6 228 180
-3 330 332 0 0 263 259 0	-2 512 0 307	522 180 309 D	0 22	4 213 0
1 316 314 0	2 213	223 180	2 10	
** K= 9 L= 10 ** *	** K= 5	L= 11 **	** K= 2	L= 12 **
-3 216 237 0 -2 136 133 0	-4 196 -3 506	212 D 523 D	-3 39 -2 28	
-1 300 296 180 0 112 99 180	-2 158 0 212	160 0 199 0	-1 13 1 22	5 127 0
1 232 214 0	1 307	302 0	2 19	
** K= 10 L= 10 ** *	** K= 6	L= 11 **	** K=`3	L= 12 **
-2 312 313 0 -1 295 299 0	-2 242 0 284	244 0 273 180	-3 13	
1 114 117 0	2 134	125 0	-1 160	0 139 0
** K= 1 L= 11 ** *	** K= 7	L= 11 ** .	** K= 4	L= 12 **
-4 222 223 0 -3 412 426 0	-2 96 -1 192	107 0 200 0	-3 23	•
-1 85 96 0 0 217 226 0	0 97 1 124	97 D 141 D	-2 21 -1 14	0 214 0
1 323 322 0 2 147 152 0	2 112	125 0	0 15	2 157 0
	** K= 8	L= 11 **	1 21 2 9	
	•	· .		

H /FO/ /FC/ PHI

H /FO/ /FC/ PHI

	_				
** K=	5	L= 12 **	-3 -2	338 194	· · ·
-2	120	156 0		374	
	84	41 0	Ŭ.	137	
۵	114	114, 180	1	204	187 0
** K=	6	L= 12 **	** K=	5	L= 13 **
- 2	137	124 180	-2	335	342 0
-1	299	314 O	-1		214 0
0	309	315 0	** *=	6	L= 13 **
** K=	7	L= 12 **		Ū.	
			-1		116 0
		213 180	1	146	134 180
		257 180 178 0	** K=	7	L= 13 **
1	109	.126 0			
	•		0	122	127 0
** K=	3	L= 12 **	** K=	0	L= 14 **
-2	356	369 0		Ŭ	2
1	105	115 0			132 0
** K =	1	L= 13 **	-1		280 180 204 0
	•				244 0
		219 0	` 		
		242 0 121 0	** K=	T.	L= 14 **
	104		-2	264	274. 0
		127 0	1		80 180
2	174	176 0	0	170	179 180
** K=	2	L= 13 **	** K=	2	L= 14 **
-3	296	313 180	-2	219	215 Ó
-2	190	189 180	-1	241	241 0
-1	285	276 0	0	166	154 0
0	115 104	101 0 109 180	** K=	4	L= 14 **
				4.0.5	207 0
** K=	5.	L= 13 **	-2 -1	195 160	
-3	213	233 0	Ū	129	
-1	131	123 0			
· 0	366 131	356 0 134 0	** K=	1	L= 15 **
. •	121	104 U	-1	92	64 0
** K=	- 4	L= 13 **	·	. –	- ·

REFERENCES

- Kirk Othmer Encyclopedia of Chemical Technology,
 3rd Edition, Volume 7, p.291.
- 2. Beilstein and Geuther, Annalen, 1858, 108, 99.
- H.E. Williams, 'Cyanogen Compounds', Arnold, London, 1948.
- 4. E.W. Hughes, J.Amer.Chem.Soc., 1940, 62, 1258.
- Z.V. Zvonkova, V.J. Krivnov and A.N. Khvatkina, Dokl.Akad.Nauk.SSSR, 1964, 155, 398.
- N.V. Rannev, R.P. Ozerov, I.D. Datt and A.N. Kshnyakina, Sov.Phys.Cryst., 1966, 11(2), 177.
- F.L. Hirshfeld and H. Hope, Acta Cryst., 1980, <u>B36</u>, 406.
- 8. A.J. Owen, Tetrahedron, 1961, 14, 237.
- 9. W.J.Jones and W.J. Orville Thomas, Trans.Farad.Soc., 1959, 55, 193.
- M.J. Begley and P. Hubberstey, J.Chem.Research, 1982,
 (S) 118; (M) 1415.
- 11. J. Haag, Annalen, 1862, 122, 31.
- S.R. Ernst and F.W. Cagle, Acta Cryst., 1977, <u>B33</u>, 235.
- A.A. Pinkerton and D. Schwarzenbach, J.Chem.Soc.
 Dalton Trans., 1978, 989.
- 14. S.R. Ernst, Acta Cryst, 1977, <u>B33</u>, 237.
- 15. L. Coghi, M. Nardelli and G. Pelizzi, Acta Cryst., 1976, <u>B32</u>, 842.

- 16. E.W. Hughes, H.L. Yakel and H.C. Freeman, Acta Cryst., 1961, <u>14</u>, 345.
- 17. B.M. Craven, Acta Cryst, 1973, <u>B29</u>, 1525.
- H.C. Freeman, J.E.W.L. Smith and J.C. Taylor, Acta Cryst., 1961, 14, 407.
- H.C. Freeman, J.E.W.L. Smith and J.C. Taylor, Nature, London 1959, <u>184</u>, 707.
- 20. N.N. Greenwood and A. Earnshaw, 'Chemistry of the Elements', Pergammon, 1984, p.1383.
- 21. C.H.L. Kennard, G. Smith and E.J. O'Reilly, Inorg.Chim.Acta, 1983, <u>77</u>, L113.
- 22. H.C. Freeman and J.E.W.L. Smith, Acta Cryst., 1966, <u>20</u>, 153.
- L. Cavalca, M. Nardelli and G. Fava, Acta Cryst., 1960, <u>13</u>, 594.
- R.L. Dutta and P. Ray, J.Ind.Chem.Soc., 1959, <u>36</u>(8), 567.
- 25. W.A. Baker and M. Daniels, J.Inorg.Nucl.Chem., 1963, <u>25(9)</u>, 1194.
- 26. K. Kawano and K. Odo, Yuki Gosei Kagaku Kyokaishi, 1962, <u>20</u>, 568. (Index Chemicus, 1962, <u>6</u>, 2, 1383, Chem.Abs., 1962, <u>58</u>, 12150c).
- 27. G.D. Diana, E.S. Zalay and R.A. Cutler, J.Org.Chem., 1965, <u>30</u>, 298.
- 28. P.K. Panda, S.B. Mishra and B.K. Mohapatra, J.Inorg.Nucl.Chem., 1980, 42, 497.
- 29. Reference 20 p.1379.

- B.J. Hathaway, Essays in Chemistry, 1971, <u>2</u>, 61,
 Academic Press, London.
- 31. O. Kahn, Angew.Chem.Int.Ed.Engl., 1985, 24, 834.
- 32. P. Main, S.I. Fiske, S.E. Hull, L. Lessinger, G. Germain, J.P. Declerq and M.M. Woolfson, MULTAN, system of computer programs for the automatic solution of crystal structures from X-ray diffraction data. Universities of York, England and Louvain, Belgium, 1980.
- 33. J.R. Carruthers, CRYSTALS User Manual, Oxford University Computing Laboratory, 1975.
- 33a. G.H. Stout and L.H. Jensen, 'X-Ray Structure Determination', Macmillan, Toronto, 1969.
- 33b. M.J. Buerger, 'X-Ray Crystallography', Wiley, New York, 1942.
- 34. P. Hubberstey and C.P. Falshaw, J.Chem.Research, 1982, (S) 176; (M) 1809.
- 35. A. Chiesi-Villa, L. Coghi, A. Gaetoni-Manfredotti and
 C. Guastini, Cryst.Struct.Comm., 1974, <u>3</u>, 739.
- 36. A. Chiesi-Villa, L. Coghi, A. Mangia, M. Nardelli and G. Pelizzi, J.Cryst.Mol.Struct., 1971, 1, 291.
- H. Grossman and B. Schuck, Chem.Berichte, 1906, <u>34</u>, 3591.
- J.R. Wasson and C. Trapp, J.Phys.Chem., 1969, <u>73</u>(11), 3763.
- 39. A. Chiesi, L. Coghi, A. Mangia, M. Nardelli and G. Pelizzi, Acta Cryst., 1971, <u>B27</u>, 192.

- 40. L. Cogi, A. Mangia, M. Nardelli, G. Pelizzi and L. Sozzi, Chem.Comm., 1968, 1475.
- W.W. Porterfield, 'Inorganic Chemistry', Addison-Wesley, 1984.
- 42. U. Kolodziej and J. Przyluski, Polyhedron, 1985,
 <u>4</u>(3), 395.
- 43. K. Nakamoto, 'Infrared and Raman Spectra of Inorganic and Coordination Compounds', Wiley, 3rd Edition, 1978, Part III.
- 44. N.S. Bayliss, A.R.H. Cole and L.H. Little, Spectrochim.Acta, 1959, 10.
- G. Davidson, 'Introductory Group Theory for Chemists', Applied Science, 1971, Chapter 8.
- 46. M.J. Begley, A. Harper and P. Hubberstey, J.Chem.Research, 1979, (S) 398; (M) 4620.
- 47. P. Chaudhuri, K. Wieghardt, B. Nuber, J. Weiss, J.Chem.Soc., Chem.Commun., 1985, 285.
- 48. P. Ray, Chem.Rev., 1961, <u>61</u>, 313 and references cited therein.
- P.V. Babykutty, C.P. Prabhakaran, R. Anantaraman and
 C.G.R. Nair, J.Inorg.Nucl.Chem., 1977, <u>39</u>, 913.
- 50. M. Takimoto, Nippon Kagaku Zasshi, 1964, <u>85</u>, 159.
- 51. J.V. Dubsky and M. Strnard, Chem.Obzer., 1942, <u>17</u>,
 69. (Chem.Abs., 1945, <u>39</u>, 1848.7).
- 52. P. Ray and G. Bandopadhyay, J.Indian Chem.Soc., 1952, <u>29</u>(11), 871.
- 53. A. Syamal, Z.Naturforschung, 1969, <u>24b</u>, 1514.
- 54. A. Piskala, Coll.Czech.Chem.Comm., 1967, <u>32</u>, 3966.

- 55. J.G. Stark and H.G. Wallace, 'Chemistry Data Book', Murray, 1972.
- 56. Reference 43, Part IV.
- 57. W.J. Jones, Trans.Faraday Soc., 1959, 55, 524.
- 58. F.H. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry', Wiley, 1980.
- 59. B.J. Hathaway and D.E. Billing, Corrd.Chem.Rev., 1970, <u>5</u>, 143.
- 60. F.J. Welcher, Organic Analytical Reagents, Van Nostrand, N.Y., 1947.
- 61. J.C. Reeve, J.Chem.Educ., 1985, 62(5), 444.
- 62. N. Mabiala, J.P. Barbier and R.P. Hugel, Polyhedron, 1984, 3(1), 99.
- P.V. Babykutty, C.P. Prabhakaran, R. Awantaraman and
 C.G.R. Nair, J.Inorg.Nucl.Chem., 1974, <u>36</u>, 3685.
- 64. R.L. Dutta and A. Syamal, Coord.Chem.Rev., 1967, <u>2</u>,
 441.
- 65. A. Syamal and V.D. Ghanekar, Transition Met.Chem., 1977, <u>2</u>, 217.
- 66. N.R. Kunchur and M. Mathew, J.Chem.Soc., Chem.Comm., 1966, 86.
- 67. F.R. Hartley, C. Burgess and R.M. Alcock, 'Solution Equilibria', Wiley, 1980.
- 68. R.L. Dutta, J.Indian Chem.Soc., 1960, <u>37</u>(8), 499.
- 69. J.W. Moore and R.G. Pearson, 'Kinetics and Mechanism', Wiley, 1981.

PUBLICATIONS

Work from this thesis has been included in the following publications. Copies are appended overleaf.

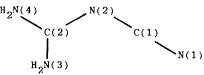
M.J. Begley, P. Hubberstey and C.H.M. Moore:-J.Chem.Research (S), 1985, 378-379; (M), 1985, 4001-4034. J.Chem.Research (S), 1985, 380-381; (M), 1985, 4035-4088. J.Chem.Research (S), 1986, 120-121; (M), 1986, 1033-1062. J.Chem.Research (S), 1986, 172-173; (M), 1986, 1501-1545.

Structural and Spectroscopic Properties of Co-ordinated 1-Cyanoguanidine. Part 2.[†] Bis(1-cyanoguanidine)di-µ-aquocopper(II) Dinitrate Dihydrate and Related Copper(II) Complexes

MICHAEL J. BEGLEY, PETER HUBBERSTEY,* and CHARLES H. M. MOORE Department of Inorganic Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.

Reprinted from

JOURNAL OF CHEMICAL RESEARCH (S)


Structural and Spectroscopic Properties of Co-ordinated 1-Cyanoguanidine. Part 2.[†] Bis(1-cyanoguanidine)di-µ-aquocopper(II) Dinitrate Dihydrate and Related Copper(II) Complexes

MICHAEL J. BEGLEY, PETER HUBBERSTEY,* and CHARLES H. M. MOORE

Department of Inorganic Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.

Following our attempted empirical correlation of the structural and spectroscopic properties of 1-cyanoguanidine (cnge) co-ordinated to cadmium(II),⁵ we have now undertaken a corresponding study of copper(II)cnge complexes.

Both anhydrous $Cu(cnge)_2X_2[X_2 = Cl_2, Br_2, (NO_3)_2, SO_4]$ and hydrated $Cu(cnge)_2X_2 2H_2O$ [$X_2 = Cl_2, Br_2, (NO_3)_2, SO_4$], $Cu(cnge)_2(NO_3)_2 4H_2O$, and $Cu(cnge)_2SO_4 5H_2O$ complexes were synthesised and characterised spectroscopically. The structure of the nitrate tetrahydrate was determined by single-crystal X-ray-diffraction methods. As for the other copper(11)-cnge complexes for which structural data are available, [$Cu(cnge)_2Cl_2(H_2O)_2$]¹ and [$Cu(cnge)_4$ -(aebg)]SO_4 H_2O [aebg = 1-(2-aminoethyl)-biguanide],³ it contains monodentate cnge ligands coordinated to the copper atom through the nitrile nitrogen atom.

1-cyanoguanidine numbering scheme

Comparison of the i.r. spectra of the complexes with that of enge reveals that the two absorption bands attributed to the antisymmetric and symmetric stretching vibrations of the nitrile group move to higher wavenumbers on co-ordination. Whereas $v_a[N(1)C(1)N(2)]$, which appears as a sharp doublet, moves from 2203/2157 cm⁻¹ 2250/2200 cm⁻¹, between 2235/2180 to and $v_s[N(1)C(1)N(2)]$ moves from 1252 cm⁻¹ into the range 1300 to 1275 cm⁻¹. The pertinent i.r. data are summarised in Table 9. It is probable that these increases, which are typical of monodentate co-ordinated nitriles and which are attributed to a more effective σ -donor than π -acceptor interaction,¹³ are diagnostic of this coordination mode for cnge.

Several of the hydrates are novel; the properties of the others are consistent with those reported previously. A discrepancy occurs, however, between the anhydrous complexes prepared in this work by thermal dehydration of the hydrates and those synthesised by Panda et al.¹⁰ by reaction of stoicheiometric quantities of enge and the appropriate copper(II) salt in ethanol. A comparison of the properties of the two sets of compounds is effected in Table 8. We believe the discrepancy arises from the different synthetic routes employed. Despite many attempts we were unable to prepare the anhydrous halides by Panda's route: depending on the molar ratios of the reactants either mono- or bis-[1-(amidino-O-ethyl)urea] complexes of copper(II) were invariably obtained, presumably as a result of solvolysis of the nitrile group, a known facile reaction in the presence of copper(11) salts. A comparison of the properties of these products with those of the anhydrous compounds prepared by Panda is also included in Table 8. The remarkable similarity between the two sets of data and the marked difference between the properties of the two groups of anhydrous complexes lead us to question the reliability of the earlier work.

Table 8 Products of the reaction between cnge and copper(II) halides in refluxing ethanol

Product	Appearance	λ _{max} /nm
Anhydrous products	obtained by thermal dehy	dration

of hydrates ^a		0.000
Cu(cnge) ₂ Cl ₂	Bright green	870
Cu(cnge) ₂ Br ₂	Pale brown	865
Cu(cnge) ₂ (NO ₃) ₂	Bright green	870

Anhydrous products obtained by refluxing cnge and copper(II) sait in ethanol^b

Cu(cnge) ₂ Cl ₂	Pink	530
Cu(cnge) ₄ Cl ₂	Blue	675
Cu(cnge) ₂ Br ₂	Pink	525
Cu(cnge) ₄ Br ₂	Blue	665
Cu(cnge) ₂ (NO ₃) ₂	Deep pink	520

Solvolysis products obtained by refluxing cnge and copper(II) salt in ethanol^a

Cu(aOeu) ₂ Cl ₂ ·2H ₂ O ^c	Pink	540
Cu(aOeu) Cl2	Blue	670
Cu(aOeu) ₂ Br ₂	Purple	525
Cu(aOeu)Br ₂ 2H ₂ O	Green	660

^aPresent work.

^bRef. 10.

^caOeu = 1-(amidino-O-ethyl)urea [NH₂·C(=NH)·NH·C-

(=NH)·OEt].

Crystal and Molecular Structure of $[Cu(cnge)_2(H_2O)_2](NO_3)_2 \cdot 2H_2O$.—After preliminary cell parameters had been determined from oscillation and Weissenberg photographs, reflection intensities were measured on a Hilger and Watts four-circle diffractometer. The structure was solved by heavy-atom methods and refined by least squares to R = 0.075 for 705 observed structure amplitudes.

Crystal Data.—C₄H₁₆N₁₀O₁₀Cu, M = 427.8, triclinic, space group $P\bar{1}$, a = 350.8(2), b = 1020.1(3), c = 1192.7(3) pm, $\alpha = 102.45(3)$, $\beta = 101.58(3)$, $\gamma = 101.60(3)^{\circ}$; $U = 394.67 \times 10^{6}$ pm³, $D_m = 1.82$ g cm⁻³, $D_c = 1.80$ g cm⁻³ for Z = 1, F(000) = 219, μ (Mo- K_x) = 15.18 cm⁻¹.

The structure is shown in Figure 1(b). It comprises a series of planes parallel to (120) which contain $[Cu(cnge)_2(H_2O)_2]^{2+}$ cationic fragments and the nitrate anions, both of which are effectively planar, together with the free water molecules. Within the planes, the molecular units are held together by both electrostatic and hydrogen-bonding interactions. The planes are linked by Cu—O bridging contacts supported by weak hydrogen bonding between the free water molecule and a nitrate anion.

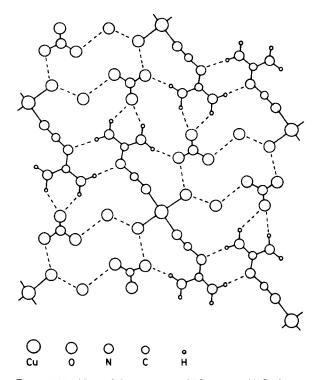
The Cu²⁺ ion lies in a tetragonally elongated centrosymmetric octahedral co-ordination sphere typical of Jahn-Teller distorted d^9 systems. The equatorial positions of the co-ordination sphere are occupied by two cnge nitrile nitrogen atoms, $r[Cu(1)\cdots N(1)] = 192$ pm, and two water oxygen atoms, $r[Cu(1)\cdots O(1)] = 196$ pm [Figure 1(b)]; the axial positions are occupied by two somewhat more remote water oxygen atoms, $r[Cu(1)\cdots O(1)] = 260$ pm, located in the two adjacent planes.

J. Chem. Research (S), 1985, 378-379 J. Chem. Research (M), 1985, 4001-4034

^{*}To receive any correspondence.

⁺Ref. 5 is taken as Part 1 of this series.

Table 6 Molecular geometries of cnge in the free molecule and in a number of copper(ii)-cnge complexes


	cnge ^a	[Cu(cnge) ₂ (H ₂ O) ₂](NO ₃) ₂ ·2H ₂ O	$[Cu(cnge)_2Cl_2(H_2O)_2]^b$	[Cu(cnge)(aebg)]SO ₄ ·H ₂ O ^c
(a) Bond distances (pm))			
C(1)-N(1)	115	116(2)	116(1)	117(1)
C(1) - N(2)	129	129(2)	129(1)	128(1)
C(2) - N(2)	133	133(2)	133(1)	136(1)
C(2)-N(3)	133	134(2)	134(1)	133(1)
C(2) - N(4)	133	131(2)	132(1)	133(1)
(b) Bond angles (°)				
N(1) - C(1) - N(2)	175	173.0(1.1)	170.6(9)	172.6(6)
C(1) - N(2) - C(2)	119	122.8(1.0)	123.1(7)	118.6(6)
N(2) - C(2) - N(3)	123	123.3(1.1)	123.8(4)	124.4(5)
N(2) - C(2) - N(4)	117	117.7(1.1)	117.4(7)	116.6(5)
N(3) - C(2) - N(4)	120	118.9(1.1)	118.8(7)	118.9(6)

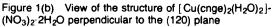

^aN. V. Rannov, R. P. Ozerov, I. D. Datt, and A. N. Kshnyakina, Sov. Phys. Crystallogr., 1966, 11, 177. ^bRef. 1. ^cRef. 3.

Table 9 I.r. data/cm⁻¹ for the N(1)C(1)N(2) stretching vibrations of the carbon-nitrogen skeleton of cnge in the free molecule and in a number of copper(u)-cnge complexes^a

Species	v _a [N(1)C(1)N(2)]	ν _s [N(1)C(1)N(2)]	Species	$\nu_{a}[N(1)C(1)N(2)]$	ν _s [N(1)C(1)N(2)]
cnge	2203/2157	1252	cnge	2203/2157	1252
Cu(cnge) ₂ Cl ₂	2240/2180	1280	Cu(cnge) ₂ Cl ₂ 2H ₂ O	2250/2200	1300
Cu(cnge) ₂ Br ₂	2240/2200	1280	Cu(cnge) ₂ Br ₂ ·2H ₂ O	2240/2200	1275
$Cu(cnge)_2(NO_3)_2$	2225/2185	1295	Cu(cnge) ₂ (NO ₃) ₂ ·2H ₂ O	2240/2200	1275
$Cu(cnge)_2SO_4$	2235/2180	1280	Cu(cnge) ₂ SO ₄ ·2H ₂ O	2240/2200	1280
ou(ongo)2004	2200/2:00		Cu(cnge)2(NO3)2·4H2O	2240/2200	1295
			Cu(cnge)2SO4 5H2O	2250/2210	1300

^aThe assignment is based on that of Jones and Orville-Thomas¹² for the unco-ordinated ligand; v_a = antisymmetric A' stretch, v_s = symmetric A' stretch.

The molecular geometry of the cnge molecule, which is effectively planar (the maximum deviation of the skeletal atoms from the best plane being 6 pm), is almost identical to that in [Cu(cnge)₂Cl₂(H₂O)₂];⁴ it differs somewhat, however, from that in [Cu(cnge)(aebg)]SO₄·H₂O.³ Bond distances and angles for cnge in these complexes and in the free molecule are compared in Table 6. The differing geometries are tentatively attributed to the existence of a very weak Cu(1)—N(2) interaction, r[Cu(1)...N(2)] = 314 pm, in the sulphate complex.

We thank the S.E.R.C. for a maintenance grant (to C. H. M. M.).

References: 13

Figure 1(a): View of the structure of $[Cu(cnge)_2(H_2O)_2]$ (NO₃)₂·2H₂O perpendicular to (001)

Figure 2: T.g.a. curves for hydrated copper(II)-cnge complexes

Table 1: Final positional parameters -

Table 2: Thermal parameters

Table 3: Intermolecular contacts of less than 330 pm in $[Cu(cnge)_2(H_2O)_2](NO_3)_2 \cdot 2H_2O$; hydrogen bond and electrostatic interactions

Table 4: Bond distances and bond angles in $[Cu(cnge)_2(H_2O)_2](NO_3)_2 \cdot 2H_2O$

Table 5: Planarities of the enge molecule and of the NO_3^- anion in [Cu(enge)₂(H₂O)₂](NO₃)₂·2H₂O

Table 7: Thermal behaviour of hydrated copper(11)-cnge complexes; isothermal experiments

Appendix: Observed and calculated structure factors for $[Cu(cnge)_2(H_2O)_2](NO_3)_2 \cdot 2H_2O$

Paper: E/137/85 Received: 21st June 1985

References cited in this synopsis:

¹A. Chiesi-Villa, L. Coghi, A. Mangia, N. Nardelli, and G. Pelizzi, Acta Cryst., Sect. B, 1971, 27, 192.

³L. Coghi, A. Mangia, N. Nardelli, G. Pelizzi, and L. Sozzi, J. Chem. Soc., Chem. Commun., 1968, 1475.

⁵P. Hubberstey and C. P. Falshaw, J. Chem. Research, 1982, (S) 176; (M) 1809.

¹⁰P. K. Panda, S. B. Mishra, and B. K. Mohapatra, J. Inorg. Nucl. Chem., 1980, **42**, 497.

¹²W. J. Jones and W. J. Orville-Thomas, *Trans. Faraday Soc.*, 1959, **55**, 193.

¹³K. Nakamoto, 'Infrared and Raman Spectra of Inorganic and Co-ordination Compounds', 3rd edn., Wiley, New York, 1977.

Co-ordination Chemistry of Guanidine Derivatives. Part 1. Crystal and Molecular Structures of the 1 : 1 Ethanol Adduct of 1-Carbamoylguanidine and of 1-Carbamoylguanidinium Perchlorate

MICHAEL J. BEGLEY, PETER HUBBERSTEY,* and CHARLES H. M. MOORE

Department of Inorganic Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.

Reprinted from

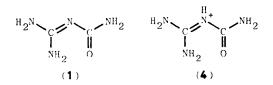
JOURNAL OF CHEMICAL RESEARCH (S)

Co-ordination Chemistry of Guanidine Derivatives. Part 1. Crystal and Molecular Structures of the 1 : 1 Ethanol Adduct of 1-Carbamoylguanidine and of 1-Carbamoylguanidinium Perchlorate

MICHAEL J. BEGLEY, PETER HUBBERSTEY,* and CHARLES H. M. MOORE

Department of Inorganic Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.

We report the crystal and molecular structures of the 1:1 ethanol adduct of 1-carbamoylguanidine (clge EtOH) and of 1-carbamoylguanidinium perchlorate ([clgeH]⁺ClO₄⁻), together with spectroscopic data for 1-carbamoylguanidine (clge), its ethanol adduct, and various 1-carbamoylguanidinium salts ([clgeH]⁺X⁻).


1-Carbamoylguanidine exhibits amphoteric properties readily forming both cationic and anionic derivatives by reaction with acids and bases respectively. All three species can form complexes with diverse metal cations. The literature on these resultant complexes is extremely confusing owing to the diversity of nomenclature used for 1-carbamoylguanidine and its two derivatives, resulting, presumably, from the plethora of molecular structures proposed for the three species; three tautomeric forms can be envisaged for the neutral molecule, eight for the cation and seven for the anion.

Our present understanding of the co-ordination chemistry of these species is somewhat limited and uncertain since it is generally inferred from spectroscopic (i.r., Raman, u.v.-visible), magnetic, and chemical analytical data.^{4,5,8} There is a complete absence of structural data for both the uncomplexed species and the complexes in which they occur. The present paper which reports samples of such structural data, is a prelude to a study of the co-ordination chemistry of these species.

Structural Data.—After preliminary cell parameters had been determined from oscillation and Weissenberg photographs, reflection intensities were measured on a Hilger and Watts Y290 (clge EtOH) or an Enraf-Nonius CAD4 ([clgeH]⁺ClO₄) four-circle diffractometer using Mo- K_{α} or Cu- K_{α} radiation respectively. Whereas the structure of the adduct was solved by direct methods and refined by least squares to R = 0.046for 715 observed structure amplitudes, that of the salt was solved by heavy-atom methods and refined by least squares to R = 0.041 for 1108 observed structure amplitudes.

Crystal Data.—C₄H₁₂N₄O₂, M = 148.2, orthorhombic, space group $P2_{12}l_{12}l_{1}$, a = 750.9(2), b = 889.6(3), c = 1156.5(3) pm, $U = 772.5 \times 10^{6}$ pm³, $D_m = 1.25$, $D_c = 1.27$ g cm⁻³ for Z = 4, F(000) = 320, μ (Mo- K_{α}) = 1.1 cm⁻¹; C₂H₇N₄ClO₅, M = 202.6, monoclinic, space group $P2_{1}/c$, a = 802.0(3), b = 999.9(3), c = 961.1(3) pm, $\beta = 105.54(3)^{\circ}$, $U = 742.6 \times 10^{6}$ pm³, $D_m = 1.79$, $D_c = 1.81$ g cm⁻³ for Z = 4, F(000) = 416, μ (Cu- K_{α}) = 47.8 cm⁻¹

The molecular geometries of clge and its protonated derivative are shown in Figures 1(a) and (b) respectively. It is clear that the neutral molecule adopts the tautomeric form (1) (hence the nomenclature used in this publication) and that protonation occurs at the central nitrogen atom giving the tautomeric form (4) for the cationic species. It is important to note that the conformation of both species about the C(1)-N(2) bond is such that an intramolecular hydrogen bond can be formed between O(1) and N(4). The two molecules are effectively planar.

the maximum deviation of the carbon and nitrogen atoms of the skeleton from the best plane being 9.8 pm (for clge) and 5.3 pm (for [clgeH]⁺), inferring sp^2 hybridisation of all skeleton atoms and the presence of a delocalised π system over the entire C-N skeleton.

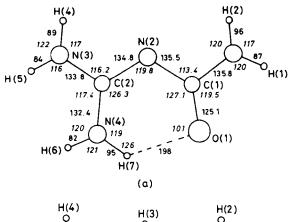
Significant aspects of the geometries of clge and of [clgeH]⁺ are compared with those of the analogous species biuret $(bu)^{13,14}$ and biguanide $(bg)^{12}$ and the mono- and di-protonated derivatives of the latter $([bgH]^+$ and $[bgH_2]^{2+})^{15,16}$ in Table 7. Whereas bu exists as the carbamoylurea tautomer, bg adopts the (aminoiminomethyl)guanidine tautomeric form; protonation of the latter occurs first at the imino nitrogen atom and then at the bridging nitrogen atom. Although bu, clge, bg, and [clgeH]⁺ are effectively planar, the dihedral angle between the normals to the two planar halves of the molecules not exceeding 12.5°, the out-ofplane distortion is extensive for $[bgH]^+$ and $[bgH_2]^2$ with dihedral angles of ca. 40 and 48° respectively (Table 7). The planarity of the former species is attributed to the formation of an intramolecular hydrogen bond between an amine donor and an oxygen or imine acceptor; the lack of planarity of the latter species is due to steric interactions between hydrogen atoms on juxtapositioned amine groups. The electronic structures of the molecules, however, do not appear to be influenced by the dihedral angle; they are dependent solely on the adopted tautomeric form. Thus, whereas those species with a bridging C-NH-C group (bu, [clgeH]⁺, and [bgH]²⁺) all have longer bridging than terminal C-N bonds, those with a bridging C=N-C group (bg, clge, and [bgH]⁺) exhibit near equivalence of C-N bond distances. Obviously, the out-of-plane distortion has little effect on the delocalised π -system which exists over the sp²-hybridised CN skeleton.

Spectroscopic Data.—Infrared spectra for clge, clge EtOH, and various [clgeH]⁺ salts and for [²H₆]-[clge] and [²H₇]-[clgeH]⁺Cl⁻ have been measured. The spectra of clge and clge EtOH are very similar; those of [clgeH]⁺ are virtually independent of the associated anion. An unambiguous assignment of the spectra is not possible owing to extensive mixing of the internal co-ordinates of the planar clge and [clgeH]⁺ species, both of which have C_s symmetry. Those bands attributable primarily to v(N-H) and $\delta(NH_2)$ vibrations have been assigned, however, by comparison of the spectra of the protonated and deuterated samples.

Following earlier assignments of the spectra of $cnge^{17}$ and guanidine,¹⁸ the majority of the bands associated with the A' stretching vibrations of the C-N-O skeletons are expected to occur in the range 1800-1250 cm⁻¹. Although comparison of the spectra of cnge and clge in

^{*}To receive any correspondence.

Table 7 Significant features of the molecular geometries of bu, clge, bg, [clgeH]⁺, [bgH]⁺, and [bgH₂]²⁺


	bu ^a	bu ^a bu ^b		[clgeH] ⁺ c [bgH] ⁺		-	[bgH ₂] ²			
			u ^b cige ^c	bg ^d	g ^d bg ^e CIC	CIO4-	CI-f	CO ₃ ^{2 - e}	SO4 ^{2 - 0}	SO42-
Dihedral angle/ ^{°g} Intramolecular hydrogen	5.6	6.3	7.5		12.5	4.4	39.5	42.1	46.6	48.4
distance/pm	276	272	265	264		266				
Average r[CN(bridge)]/pm	139.5	138.5	135.2	135.2	135.6	137.5	133.0	134.3	134.6	137.8
Average r[CN(terminal)]/pmh	134.5	132.5	134.0	136.8	135.8	132.0	133.8	133.1	132.8	130.7

^aRef. 13. ^bRef. 14. ^cPresent results. ^dRef. 12. ^eRef. 16. ^fRef. 15.

⁹This is the angle between the normals to the planes which best represent the two halves of the molecule. ^hThis average does not include those contacts, formally defined as double bonds, between carbon and terminal imine

groups.

this region does not reveal unambiguously the bands due to the stretching vibrations of the carbamoyl fragment of clge (one occurs in the range 1600-1500 cm⁻¹, the other at 1425 cm⁻¹), the fact that for $[^{2}H_{6}]$ -[clge] bands do not occur at wavenumbers higher than 1580 cm⁻¹ suggests that the v(C-O) band is moved to lower wavenumbers not only by mixing the other skeletal stretches but also by intramolecular hydrogen-bond formation. For [clgeH]⁺, however, a similar comparison reveals intense bands at 1735 and 1460 cm⁻¹ which are tentatively assigned to these vibrations. The movement of these bands to higher wavenumbers on protonation is indicative of less effective mixing of the internal coordinates for [clgeH]⁺ rather than clge, a suggestion which is corroborated by the decrease observed in $r[C(1)\cdots N(1)]$ and $r[C(1)\cdots O(1)]$ from clge to [clgeH]⁺ (Figure 1).

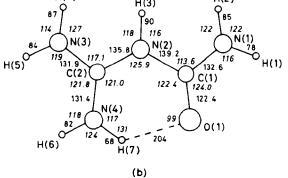


Figure 1 Molecular geometries of (a) 1-carbamoylguanidine and (b) its monoprotonated derivative: interatomic distances in pm; angles (in italics) in degrees

We thank the late Professor T. J. King for assistance in the determination of the structure of the perchlorate and Miss F. Leonard for sample preparation. One of us (C. H. M. M.) thanks the S.E.R.C. for a maintenance grant. References: 18

Table 1: Final positional parameters for the adduct

Table 2: Thermal parameters for the adduct

Table 3: Final positional parameters for the perchlorate

Table 4: Thermal parameters for the perchlorate

Table 5: Bond distances and bond angles in 1-carbamoylguanidine and its protonated derivative

Table 6: Planarity of and torsion angles in the carbon-nitrogen skeletons of 1-carbamoylguanidine and its protonated derivative

Table 8: Geometry of the ethanol molecule

Table 9: Geometry of the perchlorate anion

Table 10: Intermolecular contacts of less than 330 pm in both structures; hydrogen bond and electrostatic interactions

Table 11: I.r. spectroscopic data for clge, $[^{2}H_{6}]$ -[clge], clge EtOH, various [clgeH]⁺ salts, and [clgeH]⁺Cl⁻

Table 12: Analytical data for all products

Appendix A: Observed and calculated structure factors for the 1:1 ethanol adduct of 1-carbamoylguanidine

Appendix B: Observed and calculated structure factors for 1-carbamoylguanidinium perchlorate

Figure 2: Projection of the structure of the adduct onto the (100) plane

Figure 3: Projection of the structure of the adduct perpendicular to the plane of the 1-carbamoylguanidine molecule

Figure 4: Projection of the structure of the perchlorate onto the (001) plane

Paper: E/145/85 Receive

Received: 1st July 1985

References cited in this synopsis:

⁴H. E. Williams, 'Cyanogen Compounds', Arnold, London, 1948.

⁵P. Ray, Chem. Rev., 1961, **61**, 313.

⁸A. Syamal, Z. Naturforsch., Teil B, 1969, 24, 1514.

¹²S. R. Ernst and R. W. Cagle, Acta Crystallogr., Sect. B, 1977, 33, 235.

¹³E. W. Hughes, H. L. Yakel, and H. C. Freeman, *Acta Crystallogr.*, 1961, **14**, 345.

¹⁴B. M. Craven, Acta Crystallogr., Sect. B, 1973, 29, 1525.

¹⁵S. R. Ernst, Acta Crystallogr., Sect. B, 1977, 33, 237.

¹⁶A. A. Pinkerton and D. Schwarzenbach, J. Chem. Soc., Dalton Trans., 1978, 989.

¹⁷W. J. Jones and W. J. Orville-Thomas, Trans. Faraday Soc., 1959, 55, 193.

¹⁸W. J. Jones, Trans. Faraday Soc., 1959, 55, 524.

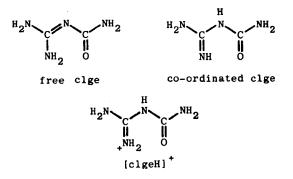
Co-ordination Chemistry of Guanidine Derivatives. Part 2.† Crystal and Molecular Structures of Bis(1-carbamoylguanidine)dinitratocopper(II)

MICHAEL J. BEGLEY, PETER HUBBERSTEY,* and CHARLES H. M. MOORE

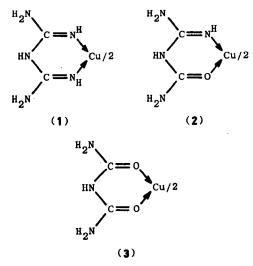
Department of Inorganic Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.

Reprinted from

JOURNAL OF CHEMICAL RESEARCH (S)


Co-ordination Chemistry of Guanidine Derivatives. Part 2.† Crystal and Molecular Structures of Bis(1-carbamoyiguanidine)dinitratocopper(II)

J. Chem. Research (S), 1986, 120-121 J. Chem. Research (M), 1986, 1033-1062


MICHAEL J. BEGLEY, PETER HUBBERSTEY,* and CHARLES H. M. MOORE

Department of Inorganic Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.

We report a structural analysis of bis(1-carbamoylguanidine)dinitratocopper(II) which shows that, on complex formation, 1-carbamoylguanidine (clge) undergoes proton transfer from a terminal amine group to the central nitrogen atom. The structure of the resultant ligand is very similar to that of the isoelectronic species, [clgeH]^{+,8}

The co-ordination mode of clge is thus intermediate between those of biguanide (bg) and biuret (bu), bg co-ordinating via two imine groups (1),³ clge via one imine and one carbonyl group (2), and bu via two carbonyl groups (3).⁴ It is significant that in none of these complexes does the ligand co-ordinate the transition metal through an amine group, a co-ordination mode gen-

erally accepted by earlier workers in the field.¹⁰ Since the ligands are planar, extensive delocalised π -systems must extend over the entire C—N—O skeleton of the molecules, resulting in sp^2 hybridisation of the amine groups. Consequently, these groups do not have lone pairs of electrons which can be directed towards a transition metal and hence co-ordination through amine residues is not possible; the only functional groups which act as co-ordinating centres in these ligands are imine and carbonyl fragments.

The observed tautomeric change in clge on coordination to copper(II) is analogous to that experienced by bg, a C-NH-C bridge being generated at the expense of a C-N=C bridge. No tautomeric change occurs in bu on co-ordination, both free and co-ordinated bu having a C-NH-C bridge. The formation of a C-NH-C rather than a C-N=C bridge has several structural ramifications, as evidenced by the structural features of free and co-ordinated clge, bg, and bu, collated in Table 4, together with corresponding data for [clgeH]⁺. It is clear that the bridging C-N bonds lengthen at the expense of the terminal C-N bonds, that the C-N-C bond angle increases, and that the molecule becomes flatter.

Crystal Structure of Bis(1-carbamoylguanidine)dinitratocopper(11). – After preliminary cell parameters had been determined from oscillation and Weissenberg photographs, reflection intensities were measured on a Hilger and Watts Y290 four-circle diffractometer. The structure was solved by heavy-atom methods and refined by least squares to R = 0.066 for 555 observed structure amplitudes.

Crystal Data. - C₄H₁₂N₁₀O₈Cu, M = 391.8, monoclinic, space group $P2_1/n$, a = 914.6(3), b = 665.4(3), c = 1118.3(3) pm, $\beta = 98.56(3)^\circ$, $U = 672.9 \times 10^6$ pm³, $D_m = 1.90$, $D_c = 1.93$ g cm⁻³ for Z = 2, F(000) = 398, μ (Mo- K_a) = 17.60 cm⁻¹.

The structure consists of ribbons of coplanar $[Cu(clge)_2]^{2+}$ cationic fragments and nitrate anions linked through the anions to give two sets of planes parallel to (120) and (120). The intra- and inter-ribbon contacts involve both electrostatic and hydrogen-bonding interactions.

In the cation, two bidentate clge molecules chelate the Cu^{2+} ion to form a centrosymmetric square planar CuO_2N_2 chromophore of D_{2h} symmetry. The molecular geometry of this moiety is summarised in Figure 1; its

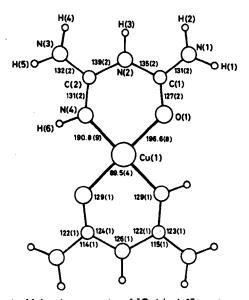


Figure 1 Molecular geometry of [Cu(clge)₂]²⁺ cationic fragment (bond lengths/pm, bond angles/°)

^{*}To receive any correspondence.

[†]Part 1 is ref. 8.

Table 4 Significant features of the molecular geometries of free and co-ordinated clge, bg, and bu and of [clgeH]⁺

Parameter	cige ^a (free)	cige (co-ord)	[clgeH] ^{+a}	bg ^b (free)	bg ^c (co-ord)	bu ^d (free)	bu ^e co-ord
Dihedral angle ^f Average	7.5	1.7	4.4	12.5		6.3	
<i>r</i> (C···N _{bridge})/pm Average	135.2	137.0	137.5	135.6	137.4	138.5	137.1
r(C N _{terminal})/pm ⁹ CNC/°	134.0 119.8	131.5 126.0	132.0 125.9	135.8 119.9	134. 9 127.3 ^h	132.5 128.5	132.1 126.8

^aRef. 8.

^bA. A. Pinkerton and D. Schwartzenbach, J. Chem. Soc., Dalton Trans, 1978, 989.

°Ref. 3.

^dB. M. Craven, Acta Crystallogr, Sect. B., 1973, 29, 1525.

^eRef. 4.

¹This is the angle between the normals to the planes which best represent the two halves of the molecule. ⁹This average does not include those contacts, formally defined as double bonds, between carbon and

terminal imine groups.

^hAverage of two determinations.

planarity is such that the maximum deviation of the constituent atoms from the best plane is 7.4 pm. A very weak bonding interaction exists between the copper atom and axially located oxygen atoms of a pair of centrosymmetrically related nitrate anions. $r[Cu(1)\cdots O(4)] = 289 \text{ pm} [cf. \text{ the sum of the van der Waals' radii of copper (143 pm) and oxygen (152 pm)], O(1)-Cu(1)-O(4) = 86.1, N(4)-Cu(1)-O(4) = 85.9°. Thus, the Cu²⁺ ion lies in a tetragonally elongated centrosymmetric octahedral co-ordination sphere typical of Jahn-Teller distorted <math>d^9$ systems. Spectroscopic Data. – I.r. spectra for protonated and

Spectroscopic Data. – I.r. spectra for protonated and deuterated samples of $[Cu(clge)_2(NO_3)_2]$ were compared with corresponding data, particularly in the 1800–1300 cm⁻¹ range, for clge, [clgeH]Cl, $[clgeH]_2CuCl_4$, $Cu[clge]_2$, and the analogous complexes $Cu(clge)_2X_2$ (X = Cl, Br). The spectra exhibit sufficiently marked differences to permit the differentiation between free and co-ordinated clge, $[clgeH]^+$, and $[clge]^-$. Mixing of internal co-ordinates is, however, so extensive that absorption bands do not necessarily correspond to the vibration of one particular functional group and hence changes therein cannot be used for structural elucidation.

We thank Miss Gillian Eggleston and Miss W. Antoinette Groenewegen for assistance in sample preparation and the S.E.R.C. for a maintenance grant (to C. H. M. M.).

References: 11

Table 1: Final positional parameters

Table 2: Thermal parameters

Table 3: Planarities of the clge molecule, of the chelate complex, and of the nitrate anion in $[Cu(clge)_2(NO_3)_2]$

Table 5: Intermolecular contacts of less than 330 pm in [Cu(clge)₂(NO₃)₂]; hydrogen bond and electrostatic interactions

Appendix: Observed and calculated structure factors

Figure 2: View of the structure of $[Cu(clge)_2(NO_3)_2]$ perpendicular to (001)

Figure 3: View of the structure of $[Cu(clge)_2(NO_3)_2]$ perpendicular to (120)

Figure 4: I.r. spectra $(1800-600 \text{ cm}^{-1})$ of $Cu(clge)_2X_2$ (X = NO₃, Cl, Br)

Figure 5: I.r. spectra $(1800-1300 \text{ cm}^{-1})$ of $[Cu(clge)_2(NO_3)_2]$, $[Cu([^{2}H_6]-clge)_2(NO_3)_2]$, and clge

Figure 6: I.r. spectra $(1800-1300 \text{ cm}^{-1})$ of $[Cu(clge)_2(NO_3)_2]$, $[clgeH]_2CuCl_4$, and $Cu[clge]_2$

Paper: E/228/85

Received: 28th October 1985

References cited in this synopsis:

³C. H. L. Kennard, G. Smith, and E. J. O'Reilly, *Inorg. Chim.* Acta, 1983, **77**, L113.

- ⁴H. C. Freeman and J. E. W. L. Smith, *Acta Crystallogr.*, 1966, **20**, 153.
- ⁸M. J. Begley, P. Hubberstey, and C. H. M. Moore, J. Chem. Res., 1985, (S) 380; (M) 4035.
- ¹⁰P. Ray, Chem. Rev., 1961, 61, 313.

Co-ordination Chemistry of Guanidine Derivatives. Part 3.¹ Crystal and Molecular Structures of the Bis(1-amidino-Oethylurea)dichlorodi-µ-chlorodicopper(II) Dimer and of Bis(1-amidino-O-ethylurea)copper(II) Dichloride Dihydrate

MICHAEL J. BEGLEY, PETER HUBBERSTEY,* and CHARLES H. M. MOORE Department of Inorganic Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K.

Reprinted from

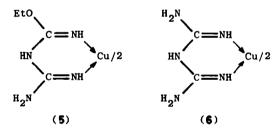
JOURNAL OF CHEMICAL RESEARCH (S)

Co-ordination Chemistry of Guanidine Derivatives. Part 3.¹ Crystal and Molecular Structures of the Bis(1-amidino-Oethylurea)dichlorodi-µ-chlorodicopper(II) Dimer and of Bis(1-amidino-O-ethylurea)copper(II) Dichloride Dihydrate

J. Chem. Research (S), 1986, 172–173

J. Chem. Research (M), 1986, 1501–1545

MICHAEL J. BEGLEY, PETER HUBBERSTEY,* and CHARLES H. M. MOORE


Department of Inorganic Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K.

We report the crystal and molecular structures of the products of the reaction between cyanoguanidine (cnge) and copper(11) chloride in refluxing ethanol. Their identification as $[Cu(aOeu)Cl_2]_2$ and $[Cu(aOeu)_2]Cl_2 \cdot 2H_2O$ (aOeu = 1-amidino-O-ethylurea) and the establishment of the tautomeric form (5) for the co-ordinated aOeu ligand has resolved uncertainty in this system.

Previously the products had been reported both as anhydrous bis- or tetrakis-1-cyanoguanidine-copper(II) complexes⁴ and as mono- or bis-(amidino-ethylurea)-copper(II) complexes;⁵⁻⁸ whereas the former were thought to arise from simple complexation reactions, the latter were said to result from solvolysis of the nitrile function of cnge.

The authors identifying the products as amidinoethylurea complexes differed in their assessment of the geometrical conformation of the ligand, both 1-amidino-3-ethylurea (a3eu)^{5.6} and aOeu^{7.8} tautomers being suggested. Furthermore, the co-ordination mode of the ligand had not been ascertained.

Chemical evidence suggested that the products were, in fact, copper(11)-aOeu complexes^{2,8} and, by analogy with the structure of co-ordinated biguanide [bg (6)] in [Cu(bg)₂]Cl₂·2H₂O¹² it was thought likely that the aOeu ligand co-ordinated the Cu²⁺ ion through the imine groups (5).¹¹

Structural Data. – After preliminary cell parameters had been determined from oscillation and Weissenberg photographs, reflection intensities were measured on a Hilger and Watts Y290 four-circle diffractometer using graphite-monochromated Mo- K_{α} radiation. Both structures were solved by heavy-atom methods. Whereas the solution of [Cu(aOeu)Cl₂]₂ proceeded satisfactorily to a final R value of 0.047 for 790 observed structure amplitudes, that of [Cu(aOeu)_2]Cl₂·2H₂O was disappointing owing to the presence of several elements of internal twinning which could not be resolved, a final R value of 0.148 being obtained for 557 observed structure amplitudes. Consequently, whereas detailed geometrical parameters can be quoted with confidence for [Cu(aOeu)Cl₂]₂, only gross aspects of the structure can be described for [Cu(aOeu)_2]Cl₂·2H₂O.

bed for $[Cu(aOeu)_2]Cl_2 \cdot 2H_2O.$ Crystal Data. - C₄H₁₀N₄OCl₂Cu, M = 264.6, monoclinic, space group $P2_1/c$, a = 717.5(2), b = 1677.3(3), c= 831.2(2) pm, $\beta = 106.99(3)^\circ$, $U = 956.66 \times 10^6$ pm³, $D_m = 1.85$ g cm⁻³, $D_c = 1.84$ g cm⁻³ for Z = 4, F(000)= 532, μ (Mo- K_a) = 28.80 cm⁻¹.

 $C_8H_{24}N_8O_4Cl_2Cu$, M = 430.8, monoclinic, space group $P2_1/c$, a = 529.9(2), b = 1373.9(3), c = 1280.6(3) pm, $\beta = 89.89(3)^\circ$, $U = 932.31 \times 10^\circ$ pm³, $D_m = 1.55$ g cm⁻³, $D_c = 1.53$ g cm⁻³ for Z = 2, F(000) = 446, μ (Mo- K_a) = 15.33 cm⁻¹.

*To receive any correspondence.

Whereas the mono-chelate complex solely comprises dimeric $[Cu(aOeu)Cl_2]_2$ units, the bis-chelate complex contains cationic $\{[Cu(aOeu)_2]^{2+}2H_2O\}$ fragments and chloride anions. The structures of the centrosymmetric chlorine-bridged $[Cu(aOeu)_2Cl_2]_2$ dimer and of the planar $\{[Cu(aOeu)_2]^{2+}2H_2O\}$ fragments are shown in Figures 1 and 5, respectively.

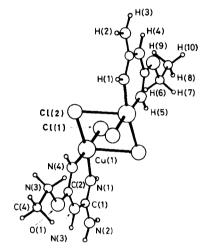


Figure 1 Molecular geometry of the [Cu(aOeu)Cl₂]₂ dimer

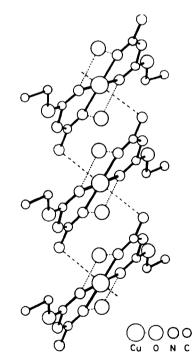


Figure 5 Molecular geometry of the $[Cu(aOeu)_2]^{2+}\cdot 2H_2O$ fragment

In the dimer (Figure 1), the Cu^{2+} ions are located 11.8 pm above the base of a square-pyramidal coordination sphere typical of five-co-ordinate copper. The equatorial plane is composed of the two imine nitrogen atoms of the chelating bidentate aOeu ligand $\{r(Cu\cdots N(1)] = 193.5 \text{ pm}; r[Cu\cdots N(4)] = 194.0 \text{ pm}\}$ and the chlorine atoms $\{r[Cu\cdots Cl(1)] = 227.9 \text{ pm}; r[Cu\cdots Cl(2)] = 231.4 \text{ pm}\}$; the axial position is occupied by a more remote chlorine atom centrosymmetrically related to Cl(2) $\{r[Cu\cdots Cl(2)'] = 295.7 \text{ pm}\}$.

Table 4 Geometries of the aOeu ligand in [Cu(aOeu)Cl₂]₂ and in [Cu(aOeu)₂]Cl₂·2H₂O

Bond distances/pm			Bond angles/°			
Bond	Mono- complex	Bis- complex	Angle	Mono- complex	Bis- complex	
C(1)-N(1)	130(2)	120(5)	N(1)-C(1)-N(2)	123(1)	128(4)	
C(1)-N(2)	132(2)	138(5)	N(1)—C(1)—N(3)	122(1)	123(4)	
C(1)-N(3)	137(2)	135(5)	N(2)-C(1)-N(3)	115(2)	109(4)	
C(2)-N(3)	136(2)	154(5)	C(1)-N(3)-C(2)	126(1)	126(4)	
C(2) N(4)	128(2)	121(5)	N(3)—C(2)—N(4)	124(1)	121(4)	
C(2) - O(1)	134(2)	126(5)	N(3)-C(2)-O(1)	110(1)	105(3)	
C(3) - O(1)	144(2)	150(5)	N(4)—C(2)—O(1)	126(1)	133(4)	
C(3)-C(4)	151(2)	153(7)	C(2)—O(1)—C(3) O(1)—C(3)—C(4)	117(1) 107(1)	114(3) 106(4)	

Table 7 Significant features of the molecular geometries of aOeu, bg, edbg, and clge co-ordinated to copper(ii)

Ligand	Free molecule		Co-ordinated to copper(II)			
	Average r (C N _{br})/pm	Average r (C…N _{ter})/pm ^a	Ratio	Average r(C N _{br})/pm	Average r (C N _{ter})/pm ^a	Ratio
aQeu				136.5	132.0	1.035
bg ^{b,c}	135.2	136.8	0.988	137.4	134.2	1.024
edbgd				141.0	137.2	1.028
cige ^{e,f}	135.2	134.0	1.009	137.0	131.5	1.042

^aThis average does not include those contacts formally defined as double bonds between carbon and terminal imine groups. ^bS. R. Ernst and R. W. Cagle, *Acta Crystallogr., Sect. B*, 1977, **33**, 235. ^cRef. 12. ^dN. R. Kunchur and M. Mathew, *J. Chem. Soc., Chem. Commun.*, 1966, 86. ^eM. J. Begley, P. Hubberstey, and C. H. M. Moore, *J. Chem. Res.*, 1985, (S) 180; (M) 4035.[†] Ref. 2.

The co-ordination polyhedron around the Cu²⁺ ion in the cationic fragment (Figure 5), which consists of a planar arrangement of a centrosymmetric bis(aOeu)-copper(II) complex hydrogen-bonded to two water molecules, can be described as either a square plane comprising the four imine nitrogen atoms of the two chelating aOeu ligands {r[Cu···N(1)] = 203 pm; r[Cu···N(4)] = 202 pm} or an axially distorted octahedron, the axial positions above and below the CuN₄ chromophore being occupied by the terminal amine nitrogen atoms of two {[Cu(aOe- $(u)_{2}^{2+} \cdot 2H_{2}O)$ fragments adjacent in ribbons $\{r[Cu - N(2)'] = 311 \text{ pm}\}$. Evidence for a Cu - N(2)' bonding interaction arises from the location and electronic structure of the ligand.

The molecular geometries of the aOeu ligand in the two complexes are summarised in Table 4. Although very little significance can be ascribed to that in [Cu $(aOeu)_2$]Cl₂+2H₂O, that in [Cu $(aOeu)Cl_2$]₂ is accurately known. The ligand is effectively planar and chelates the Cu²⁺ ion adopting the di-imine tautomeric form (5). Its geometry (Table 4) is consistent with sp^2 hybridization of the skeletal atoms, excluding those of the OEt fragment, and the presence of a delocalized π system.

The co-ordination geometry of aOeu is comparable with those of co-ordinated biguanide (bg) and ethylenediaminebiguanide (edbg), all three ligands forming Cu-NH=C(R)-NH-C(R)=NH chelate rings. The formation of bridging C-NH-C fragments on coordination, C=N-C bridges existing in the free molecules, also occurs for 1-carbamoylguanidine (clge). It leads to changes in the π -electron density which are manifest in shorter terminal than bridging C-N bonds. Comparison of data for aOeu, bg, edbg, and clge coordinated to copper(11) is effected in Table 7.

We thank the S.E.R.C. for a maintenance grant (to C. H. H. M.).

References: 17

Table 1: Comparison of the products of the reaction between cnge and copper(ii) chloride in refluxing ethanol

Table 2: Final positional parameters for [Cu(aOeu)Cl₂]₂

Table 3: Final thermal parameters for [Cu(aOeu)Cl₂]₂

Table 5: Intermolecular contacts of less than 330 pm;

hydrogen-bond and electrostatic interactions for $[Cu(aOe-u)Cl_2]_2$

Table 6: Planarities of the aOeu ligand and of the ligating atoms in $[Cu(aOeu)Cl_2]_2$

Table 8: Final positional parameters for $[Cu(aOe-u)_2]Cl_2 \cdot 2H_2O$

Table 9: Final thermal parameters for $[Cu(aOeu)_2]Cl_2 \cdot 2H_2O$

Table 10: Bond distances and angles for $[Cu(aOe-u)_2]Cl_2 \cdot 2H_2O$

Table 11: Planarity of the {[Cu(aOeu)_2]2H_2O} fragment and of the aOeu ligand in [Cu(aOeu)_2]Cl_2 \cdot 2H_2O

Table 12: Intermolecular contacts of less than 330 pm; hydrogen-bond and electrostatic interactions for $[Cu(aOe-u)_2]Cl_2 \cdot 2H_2O$

Appendices: Observed and calculated structure factors for $[Cu(aOeu)Cl_2]_2$ and $[Cu(aOeu)_2]Cl_2 \cdot 2H_2O$

Figures 2 and 3: Projections of the structure of $[Cu(aOeu)Cl_2]_2$ onto the (001) and (100) planes

Figure 4: Projection of the structure of $[Cu(aOeu)_2]Cl_2 \cdot 2H_2O$ onto the (001) plane

Paper: E/270/85 Received: 16th December 1985

References cited in this synopsis:

¹Part 2, M. J. Begley, P. Hubberstey, and C. H. M. Moore, J. Chem. Res., 1986, (S) 120; (M) 1033.

²M. J. Begley, P. Hubberstey, and C. H. M. Moore, J. Chem. Res., 1985, (S) 378; (M) 4001.

⁴P. K. Panda, S. B. Mishra, and B. K. Mohapatra, J. Inorg. Nucl. Chem., 1980, **42**, 497.

⁵R. L. Dutta and P. Ray, *J. Indian Chem. Soc.*, 1959, **36**, 567. ⁶W. A. Baker and M. Daniels, *J. Inorg. Nucl. Chem.*, 1963, **25**, 1194.

⁷K. Kawano and K. Odo, Yuki Gosei Kagaku Kyokaishi, 1962, **20**, 568.

⁸G. D. Diana, E. S. Zalay, and R. A. Cutler, *J. Org. Chem.*, 1965, **30**, 298.

¹¹A. Syamal and V. D. Ghanekar, *Transition Met. Chem.*, 1977, 2, 217.

¹²C. H. L. Kennard, G. Smith, and E. J. O'Reilly, *Inorg. Chim.* Acta, 1983, **77**, L113.