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ABSTRACT 

This thesis describes an investigation of the 

coordination chemistry of l-cyanoguanidine (cnge), 

l-carbamoylguanidine (clge) and l-amidino-O-ethylurea 

(aOeu). Various copper(II) complexes of these analogous 

molecules were synthesised and characterised using mainly 

X-ray crystallographic and spectroscopic (infrared and 

UV-visible) techniques. 

Only bis (cnge) complexes were observed for 

copper(II) ions. The monodentate cnge ligands 

coordinated the copper(II) via their nitrile nitrogen 

atoms which were located in trans equatorial positions of 

the copper(II) ions's tetragonally distorted octahedral 

coordination sphere. Comparison of the infrared spectra 

of the complexes with that of cnge indicated that the 

spectra were highly diagnostic of coordination to the 

copper(II) ion. 

Clge exhibited amphoteric properties; the neutral, 

anionic and cationic derivatives formed complexes with 

the copper(II) ion. Whereas the former pair gave bis 

chelate complexes, the latter derivatives acted merely as 

a cation and was remote from the copper(II) ion's 

coordination sphere. Complexation of the neutral 

molecule resulted in a proton transfer from a terminal 

amine group to a central nitrogen atom permitting 

chelation via an imine nitrogen atom and a carbonyl 

oxygen atom to give a square planar CUN
2

0
2 

chromophore. 
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The structural ramifications of this tautomeric shift 

were near identical to those observed upon cation 

formation which occurred by protonation of the central 

nitrogen atom of the uncoordinated neutral molecule. 

Unequivocal structural data could not be obtained for the 

complex of the anionic derivative. Spectroscopic 

analysis indicated, however, that chelation occurred via 

two imine nitrogen atoms to give a square planar CuN4 

chromophore. 

Ethanolysis of cnge was effected in the presence of 

copper(II) ions and ethanol producing complexes of aOeu 

with a metal:ligand ratio of 1:1 or 1:2. In both 

complexes the ligand(s) chelated the copper(II) ion via 

two imine nitrogen atoms. The former complex, a dimer, 

exhibited a square pyramidal CUN2X
3 

chromophore (X=Cl,Br) 

whilst the latter complex was a bis chelate with a square 

planar CUN4 chromophore. 

Monitoring the Uv-visible and infrared spectra of 

ethanol solutions containing copper(II) chloride and 

cnge, indicated the presence of a plethora of reactions. 

However, it was concluded that initially mono and/or 

bis(cnge)copper(II) complexes, of low stability, were 

present in equilibrium with the reactants. Subsequently, 

ethanolysis of coordinated cnge occurred producing 

mono(aOeu)copper(II) complexes. Series first order 

kinetics approximated to those of the ethanolysis 

reaction. The ethanolysis process was then repeated to 

give the final product a bis(cnge)copper(II) complex. 
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C HAP T E R ONE 

INTRODUCTION 

1.1 General Introduction 

Molecules with a nitrogen to carbon ratio of 1:1 or 

greater, including guanidine (1.1) and its derivatives, 

are extensively employed in the modern chemicals 

industry. Typical of this type of compound are cyanamide 

(1.2) and l-cyanoguanidine (1.3). 

1.1 1.2 1.3 

Cyanamide is mainly used as the precursor to 

l-cyanoguanidine but has been utilized as a fertilizer, a 

weedkiller and in the treatment of alcoholics. l 

l-Cyanoguanidine will form a myriad of polymers and 

resins, and is sometimes used to enhance their flow or 

fire retardent properties. Other applications are in the 

preparation of guanidine salts, biguanide (1.4) and a 

host of nitrogen heterocycles such as melamine (1.5).1 
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Presented in this thesis are the results of an 

investigation into the coordination chemistry of 

l-cyanoguanidine, l-carbamoylguanidine and l-amidino-O-

ethylurea. Single crystal X-ray diffraction and 

spectroscopic (i.r. and uv-visible) data are reported for 

various copper(II) complexes containing these ligands. 

There follows a series of sections introducing each 

of the ligands, the properties of copper(II) complexes 

and the main experimental techniques. 

1.2 The Chemistry of l-Cyanoguanidine 

l-Cyanoguanidine* (cnge) is the dimer of cyanamide 

and was first observed by Beilstein and Geutncr 2 during 

the evaporation of an aqueous solution of cyanamide. It 

is manufactured on an industrial scale by heating an 

alkaline solution (pH 8-9) of cyanamide (25%) at 80°C for 

2 hours.
l 

The material is also formed when cyanamide is 

kept in a molten state at 48°C for 48 hours. 3 

Cnge is a white solid melting at 208-211 o C. It is 

available at 97% purity and can be readily recrystallised 

from water. It is moderately soluble in ethanol and 

sparingly soluble in acetone. 

The crystal and molecular structures of cnge have 

been investigated by single crystal X-ray and neutron 

diffraction methods. 4 ,5,6,7 The positions of the 

hydrogen atoms have been accurately determined and they 

show that cnge adopts a 'diamino' form (l.3a) rather than 

* Also known by its pseudonym dicyandiamide. 
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'an imino-amino' form typified by 1.6. 

N( 1) 

Numbering scheme for l-cyanoguanidine 

1. 3a 1. 3b 

1.3c 1.6 

The results of ab initio molecular orbital calculations 

also indicate that form 1.3a is the energetically most 

favourable. 8 

The cnge molecule, including the hydrogen atoms, is 

planar and bond lengths and angles reveal extensive 

electron delocalisation throughout the C-N skeleton. This 
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implies that form 1.3a does not completely describe the 

electron distribution about the cnge molecule and that 

other forms such as 1.3b and 1.3c must be considered to 

contribute to the overall electronic structure. 

From its molecular and electronic structures it can 

be inferred that cnge could act as a ligand to metal 

ions. It could ligate via the donation of the lone pairs 

of electrons on the nitrile or imino nitrogens, N(l) and 

N(2) respectively. Bonding to metal ions is not possible 

through either of the amino nitrogens, N(3) or N(4), as 

each nitrogen is sp2 hybridised, evidenced by the amino 

hydrogen atoms lying in the same plane as the C-N 

skeleton. Hence the lone pair of electrons on the 

nitrogen atom is delocalised and not available for 

donation. 

Cnge has the potential to act as a monodentate 

ligand bonding to the metal ion via either N(l) or N(2) 

or a bidentate ligand bridging two metal ions by using 

both N(l) and N(2) as donors (Figure 1.1). 

FIGURE 1.1 possible donor atoms of l-cyanoguanidine 
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It would, however, seem unlikely that cnge could chelate 

a metal ion via N(l) and N(2); the geometry of the 

N(1)-C(1)-N(2)-C(2) fragment is such that the vectors 

along which the lone pairs of N(l) and N(2) lie are in 

the same plane at an angle of -120° to each other. 

A hydrogen transfer between nitrogens within the 

cnge molecule, as observed on coordination of other 

ligands (e.g. biguanide), could produ~e several 

tautomers similar to form 1.6 which might coordinate via 

N(l), N(3) or N(4). 

A readily accessible property of metal-cnge 

complexes which could distinguish between the various 

possible modes of cnge coordination, is their vibrational 

spectra. The infrared spectrum of cnge has been 

inv~stigated by Jones and Orville-Thomas. 9 They assigned 

many of the absorption bands to vibrations of cnge that 

could prove to be diagnostic of coordination to a metal 

ion. 

In this work, single crystal X-ray diffraction 

methods have been used to determine the structure of a 

copper(II)-cnge complex and a correlation with the 

infrared spectrum has been attempted. 

1.3 The Chemistry of l-Carbamoylguanidine 

Although l-cyanoguanidine has been deprotonated to 

+ 10 give M [cnge]- type compounds, the protonated form 

[cngeH]+ has not been observed. 

5 



In acidic aqueous solution cnge is not protonated 

but is hydrolised to give the acid salt of l-carbamoyl­

guanidine ([clgeH]X). The hydrolysis was noted as early 

H2N" H2N" /NH" /NH2 HX 

• C C /C=N, 
H2O II II 

H2N C~ H2N 0 
~N 

cnge [clgeHJX 

11 as 1862 by Haag, since when, l-carbamoylguanidine has 

been referred to in the literature by several 

pseudonyms.* It is possible to deprotonate [clgeH]+ to 

give the neutral l-carbamoylguanidine molecule (clge) and 

removal of another proton produces the anionic 

l-carbamoylguanidine moiety ([clge]-). With the 

possibility of several ionic forms and a wide variety of 

nomenclature, the literature is often difficult to 

follow, however, + -[clgeH] and [clge] are most commonly 

encountered with little mention made of clge. 

l-Carbamoylguanidine is analogous to biguanide (bg, 

1.4) and biuret (bu, 1.7). 

1.4 1.7 

* Most common pseudonym is guanylurea. 
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Biguanide is known in neutral 12 (bg), cationic l3 ,14 

([bgH]+), dicationic13 ([bgH2 ]2+), and anionic15 ([bg]-) 

forms, whilst biuret is known in neutral 16 ,17 (bu), and 

anionic 18 ([bur-) forms. 

Consideration of the C-N-O skeletons of clge, bg 

and bu shows clge to be structurally intermediate between 

bg and bu. 

N"-./N,,/N 
C C 
I I N 0 

clge 

Both bg and bu coordinate metal ions; this is the 

basis of the 'biuret test' which is used in the detection 

of peptide linkages. 19 ,20 Bg chelates via two imino 

nitrogens 21 (1.8), whilst bu chelates via two carbonyl 

oxygens 22 (1.9) or acts as a monodentate ligand 

23 coordinating via one carbonyl oxygen (1.IO). 
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It must be noted that to facilitate chelation a 

hydrogen shift occurs for bg and a conformational change 

occurs for bu. Thus, just considering the coordination 

properties of the clge molecule only, several 

possibilities for both tautomers and coordination modes 

can be envisaged. If the other ionic forms of clge are 

also considered then a plethora of structures can be 

imagined. 

By analogy to previous investigations of the 

chemistry of coordinated bg and bu, X-ray crystallography 

and vibrational spectroscopy are the two techniques which 

have been employed in this study to establish the 

coordination properties of clge compounds. 

1.4 The Chemistry of l-Amidino-O-Alkylureas 

I-Cyanoguanidine is subject to solvolysis by water 

to produce l-carbamoylguanidine as described in Section 

1.3. It is also known that solvolysis of cnge can be 

effected by alcohols in the presence of copper(II) 

It 24,25,26 sa s. Although this reaction has been known for 

many years, the exact identity of the products is 

unknown. Copper(II) complexes of l-amidino-O-alkylureas 

(aOau) and l-amidino-3-alkylureas (a3au) have both been 
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proposed as the products of the reaction. Recent 

h . I . d 27 f th ft' f 0 h c emlca eVl ence avours e orma lon 0 a au rat er 

than a3au, but no data is available to indicate how the 

ligand is attached to the transition metal. Consideration 

of the C-N-O skeletons of aOau and a3au implies 

coordination modes that are comparable to bg, for aOau, 

and to clge, for a3au. 

aOau a3au 

Despite the availability of these results in the 

literature, it has been recently reported, on the basis 

of a study of the reaction of cnge with copper(II) salts 

in refluxing ethanol, that solvolysis did not occur, the 

products being described as copper(II)-cnge complexes. 28 

In this study X-ray diffraction methods have been 

used to determine the identity of the products and the 

mode of coordination of the ligands. 

The kinetics and mechanisms of the alcoholysis of 

cnge in the presence of copper(II) salts have not been 

studied. Structural details of complexes that can be 

isolated from a reaction mixture are obviously of value 

in determining the species present in solution. 

Techniques which examine the solution state are, however, 

much more effective. Consequently, in situ infrared and 
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UV-visible spectroscopic methods have been used to 

examine this reaction. 

1.5 Chemistry of the Copper(II) Ion 

1.5.1 Simple copper(II) compounds 

Copper (Cu) (electronic configuration (Ar)3d l0 4s l ) 

is known with oxidation states I, II, III and IV. Most 

common are oxidation states I to III with IV being known 

for a single hexafluoro complex. 29 

Under normal conditions copper{II) compounds are 

favoured. Thus copper(I) is fairly readily oxidised to 

copper(II) whilst further oxidation to copper(III) is 

more difficult. 

Copper(II) compounds have been exclusively studied 

in this thesis. 

A large number of simple copper(II) salts can be 

formed which are predominantly water soluble and often 

crystallize as hydrates. The best known salt, CUS0
4

.SH
2

0 

(blue vitriol), is widely used in industry for 

electroplating, as a fungicide for crops (Bordeaux 

mixture) and as an algicide for water treatment. Indeed, 

the latter property of copper was unknowingly utilized in 

ancient Persia where, by law, drinking water had to be 

stored in bright copper vessels. 

The aqueous solutions are blue in colour due to the 

formation of the [CU(H 20)6]2+ ion and are prone to slight 

hydrolysis. Unless stabilised by small amounts of acid 

they will deposit basic salts. 
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1.5.2 Copper(II) Complexes 

Copper(II) will form complexes with mono and 

mUltidentate ligands, particularly those with nitrogen or 

oxygen ligating atoms. Coordination numbers of four, 

five and six predominate, but regular geometries are 

rare. The vast majority of complexes are coloured with 

colours of purple-blue-green-yellow being frequently 

found. varying either the coordination number or the type 

of ligand results in a colour change. Copper(II) 

complexes also exhibit paramagnetic properties 

corresponding to one unpaired electron or less. 

To account for the irregular geometries and 

interpret the spectral and magnetic properties, it is 

necessary to consider the ground and excited electronic 

states of the copper(II) ion in a variety of environments. 

The copper(II) ion has a 3d 9 outer electronic 

configuration. The unpaired electron present has an 

orbital angular momentum quantum number (1) of 2 and as 

there is only one unpaired electron the total orbital 

angular momentum (L) is 2, implying a n spectroscopic 

state. The total spin angular momentum(S) is ~ and 

therefore the spin multiplicity, given by 2S+1, is 2. 

Hence, the free copper(II) has a 2n state. 

To examine how the spectroscopic state is affected 

by coordination, it is first necessary to examine the 

symmetry properties of the d orbitals in crystal fields 

of varying symmetry. The relative energy levels of the d 

orbitals must then be determined and then the 
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spectroscopic states may be evaluated by filling the 

orbitals with the nine d electrons of copper(II). 

The principles of this analysis are easily 

demonstrated by firstly considering the copper(II) ion in 

an octahedral environment and then tetragonally 

elongating the octahedron to produce coordination 

symmetries closely related to the structures determined 

in this thesis. 

In an octahedral (Oh) environment, the energy of 

the d orbitals is increased and they are split into two 

groups (Figure 1.2). The d 2 and d 2 2 are increased z x -y 

e 
I 9 , , 

I , , , , , , ,--- --\ 
I , , , 

I \ , \ , \ , ' 
, '- - - t 2g 

I , 
I 

free ion spherical field 0h field 

FIGURE 1.2 The splitting of the d orbitals in an 0h 

crystal field 

in energy more than the d , d and d as the former xy xz yz 

pair point directly at the ligands, whilst the latter 

trio point between the ligands. It can be shown that the 
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d 2 and d 2 2 have e z x -y g 

d yz have t 2g symmetry. 

symmetry, whilst the d , d and xy xz 

If the d orbitals are now filled 

with nine electrons then the ground state can be 

established as shown below:-

+t+- t--H-

**-H- -tt-tt+t 

There are two possible ground state arrangements with 

spin multiplicity 2 and, therefore, the ground state is 

2Eg . By a transition of one electron from the t 2g to e g 

orbitals, the excited state can be determined as shown 

below:-

-H--H- -H--H- -H--H-

**-l- +t+--H- +--t+-t+ 

13 



There are three possible excited state arrangements with 

spin mUltiplicity 2 and therefore the excited state is 

2 
T2g · 

It can now be seen that the symmetry of the state 

is the same as the symmetry of the orbital which contains 

the one unpaired electron. 

The irregular geometries that are found for 

virtually all copper(II) complexes can be primarily 

ascribed to the Jahn-Teller effect. 

The Jahn-Teller Theorem states that a molecule in a 

degenerate electronic state will be unstable and will 

undergo geometrical distortion that lowers its symmetry 

and splits the degenerate electronic state. 

The copper(II) ion in a regular °h field has been 

shown to exist in a degenerate ground state 2E 
g' hence 

this moiety is expected to be unstable and distortion 

from a regular geometry should occur. The nature of 

distortion is most easily understood by considering 

complex formation from the ligands' point of view. 

the 

As well as the splitting of the d orbitals of the 

free metal ion by the ligands, there is a corresponding 

repulsion of the ligands by the d electrons. If the d 

orbitals are unsymmetrically occupied, as is the case 

with the d 9 system of copper(II), then the repulsions are 

unsyrru~etrical and some of the ligands will be prevented 

from approaching the metal ion as closely as others, 

resulting in distortions from regular 0h geometry. The 

effect will be greatest in those orbitals which point 

14 



directly at the ligands. Hence, if the d 2 orbital 
z 

contains one more electron than the d 2 2 then the x -y 

resulting distortion is an elongation of the octahedron 

along the z-axis. However, if the d 2 2 has the extra x -y 

electron then elongation along x and y results. 

The most commonly observed geometry of the 

complexed copper(II) ion is that caused by elongation of 

the octahedron along the z-axis giving rise to the 

so-called tetragonally elongated octahedron. 

The two axial ligands of a metal ion in a 

tetragonally elongated 0h stereochemistry have been 

described as 'semi-coordinated' implying that they are 

only weakly bonded to the metal ion. 30 As a measure of 

the magnitude of this tetragonal distortion, the concept 

of the tetragonality (T) of a complex has been defined as 

the ratio of the short equatorial (RS) to long axial (RL ) 

metal to ligand bond distances. 

Hence, T = 

If the value of T lies in the ranges -0.90--0.75 or 

-0.66--0.56, the geometries are considered to be 

tetragonally distorted 0h or square coplanar 

stereochemistries respectively. A value of 1.0 

corresponds to a regular 0h geometry. 

The concept of tetragonality is used where 

appropriate in the description of the copper(II) 

structures discussed in this work. 
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Tetragonal distortion of the 0h environment by 

axial elongation with results in the symmetry point group 

D4h , in which the d orbitals have the following symmetry:-

d 2 .- a lg d 2 2 . - bIg z x -y 

d . - b 2g d . - e xy xz,yz g 

By consideration of the relative repulsions between 

the d orbitals and the ligands, it is found that 

tetragonal elongation further splits the energies of the 

d orbitals, the d 2 2 and d levels being destabilized x -y xy 

and the d 2, d and d levels being stabilized relative z xz yz 

to the 0h levels 30 (Figure 1.3). 

For a tetragonal 0h coordination geometry, the five 

possible arrangements of the nine d electrons are shown 

below, together with the derived states. 

16 

Orbital Symmetry 

t-

tt -H-

-H- -H- -1-

-H- -H 

tt 

d 2 2 x -y 

1t+t+t4+-tt+t+-4t4tt- d ,d xz yz 

State 

Ground State 
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For square planar coordination geometry the 

procedure can be repeated. 

Orbital Symmetry 

t- -H- -H -H 

-H -1- tt -H 

-H 

-H 

d 2 x -y 

d xy 

2 bIg 

#+ttt-1-tt--1-tttt-4ttt d d xz' yz 

tt tt 
2S 

Ig 

Ground State 

-H- -H- t- d 2 z 

.. Having established the nature of the ground and 

excited electronic states of the copper(II) ion in a 

State 

variety of environments, it is now possible to understand 

its spectroscopic properties. 

Transitions can be envisaged between the ground and 

excited states of the metal ion. Thus, 

ion in an 0h environment one transition 

for a copper(II) 

(2T2 +_2E ) is 
g g 

possible and hence one absorption band should be 

observed. On tetragonal distortion, geometries of D4h are 

formed. Three transitions from the 2B19 ground state are 

possible: 

e g 



FIGURE 1.3 Changes in the electronic energy levels of a copper(II) ion in an octahedral 

crystal field subjected to increasing tetragonal distortion 
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with the relative energy of each transition varying as 

the distortion changes. The d 2, d ,d orbitals are, z xy xz 

however, close in energy throughout the tetragonal 

distortion and so it follows that the three transitions 

are of very similar energy. Experimental spectra for 

complexes with the copper(II) ion in tetragonal 

octahedral or square coplanar environments all show one 

broad absorption in the visible region which is 

considered to be due to the overlapping of the absorption 

bands due to the three transitions. 

For simplicity this analysis has considered the six 

ligands to be equivalent. The structures determined in 

this work do not completely satisfy this condition. 

However, for each structure the ligating atoms are 

usually similar and at comparable distances from the 

copper(II) ion. Hence, deviation from this analysis are 

usually minor. The most common deviation results in C
2h 

symmetry which gives four possible absorptions all close 

in energy as before. In all cases only one broad band is 

observed in the visible region. The wavelength of the 

absorption does vary with changing ligands and 

coordination number, and so it is possible to 

qualitatively distinguish between the various complexes. 

The paramagnetic properties of the copper(II) ion 

may now be explained by considering the ground state of 

the ion. 

The magnetic properties of any individual ion or 

atom will result from some combination of the magnetic 
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moment due to the spinning of the electron on its own 

axis, the spin moment, and the magnetic moment induced by 

the electron orbiting the nucleus, the orbital moment. If 

ions or atoms are sufficiently close then interactions 

may occur between electrons on adjacent atoms, affecting 

the magnetic properties. 

In magnetically dilute copper(II) complexes, with 

0h or D4h symmetries, the effective magnetic moment is 

given by the spin only value (~s) as the ground state 2Eg 

or 2Blg does not permit any orbital contribution 

~s = g/S(S+l) S = spin = 1 
2 

g = gyromagnetic ratio = 2.00 

~s = 1.73 Bohr magnetons 

Experimental values show good agreement with the ~ value. s 

In non-magnetically dilute copper(II) complexes the 

individual copper(II) ions are relatively close {e.g. 

[CU(CH3C02)2H20]2 r(Cu-Cu) = 2.64 ~} and spin-spin 

interactions can occur. These interactions give rise to 

a molecular spin singlet (S = 0) and triplet ( S = 1). 

If the ground state is the singlet then the interaction 

is said to be antiferromagnetic, whilst if the triplet is 

the ground state then the interaction is said to be 

ferromagnetic. Since the energy gap between the states 

(J) is relatively small, complexes may be classified by 

following their magnetic susceptibilities (~) as a 

function of temperature (T). If ~.T increases on 

cooling (corresponding to increased population of the 
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triplet ground state) the interaction is ferromagnetic, 

whilst II \n.T decreases on cooling (corresponding to 

increased population of the singlet ground state) the 

interaction is antiferromagnetic. 

Complexes in which magnetic interactions occur 

between copper(II) ions have been recently reviewed in 

31 detail by Kahn, they are, however, beyond the scope of 

this thesis and have not been examined. 

1.6 Physical Methods of structural Analysis 

1.6.1 X-ray crystallography 

Of all the methods available for structural 

analysis, one of the most powerful techniques is X-ray 

crystallography. The technique is limited to the solid 

crystalline state, although in practice it is possible to 

use the results to facilitate interpretation of reaction 

kinetics and mechanisms occurring in other phases. 

In the crystalline state, molecules are arranged in 

a regular three-dimensional array or lattice which may 

possess a variety of symmetry elements. The lattice 

nature of the crystal enables it to diffract 

electromagnetic radiation of a suitable wavelength 

(X-radiation), according to Bragg's Law, which is 

illustrated in Figure 1.4. Reinforcement of diffracted 

rays will occur only when the difference in path length 

of the rays scattered from different underlying lattice 

planes (2d sine) is an integral number of wavelengths(nA). 

Thus, nA = 2d sine. 
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FIGURE 1.4 Geometrical derivation of the Bragg equation for 

the reflection of X-rays from a crystal, considered 

to be an array of parallel equidistant layers of 

scattering material 

d 

The basic repeating unit of the crystal lattice is 

the unit cell, which is defined by three vectors, ~'Q'~' 

having magnitudes a,b,c, and relative directions defined 

by the angles a,B,y. A lattice plane capable of 

diffracting X-rays must intersect with the unit cell axes 

(~,~,~) at the points ~/h, ~/k, ~/l, where h,k,l are 

known as the Miller indices and are necessarily integral 

quantities. The resulting plane is defined by the 

notation h,k,l and X-rays reflected from a series of 

these planes are indexed by the same values. On the 

basis of the a,b,c,a,B,y values and the symmetry elements 

contained in the unit cell, the cell can be classified 

into one of seven crystal system?,fourteen Bravais 

lattices and two hundred and thirty space groups. 



Determination of the space group of a crystal 

involves the recognition of its symmetry elements in the 

diffraction pattern when irradiated by a monochromatic 

beam of X-rays. The main techniques used for preliminary 

determination of a,b,c,a,8,y and space group in this work 

were oscillation and Weissenberg methods. 

For an oscillation photograph the crystal is 

mounted such that a direct axis is perpendicular to the 

incident X-ray beam. The crystal is then oscillated by 

ca. +10 0 about this axis and the diffracted X-rays are 

recorded on a cylindrical film coaxial with the 

oscillation axis. This photograph (Figure 1.5) is a 

series of parallel lines of spots, called layer lines, 

resulting from a series of lattice planes in which one 

Miller index remains constant. From the distance beween 

the two layer lines it is possible to determine the 

magnitude of the axis about which the crystal is 

oscillating. Also is is possible to determine whether 

the crystal axis is perpendicular to a mirror symmetry 

element in the lattice. 

The next stage in the determination is to obtain 

photographs using the Weissenberg method. In this method 

a single layer line is selected by a slotted screen which 

stops all other diffracted beams from reaching the film. 

AS the crystal is rotated through ca. 180 0 the film lS 

moved past the slot and reflections which occur at 

different times are recorded at different points on the 

film. Weissenberg photographs of the zero and first 
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FIGURE 1.5 The oscillation photograph 

h,2,1 •••••••• • • •• ••• •••• •• • 

.---~----~----~--~~ h,l,l ••••• •••• ••• • ••• •••• 

X-ray hOI •••• • •• • •• • • • • • •• •• • ••• 

h,-l,l .............. . • •••• 

h,-2,1 ••.••• •• •• ••••• •• •• •• • 

b crystal axis 

layer lines are recorded. From these photographs it is 

possible to measure the magnitude of the remaining axes 

and the angles between them and so determine the crystal 

class. The presence of any symmetry elements and the 

systematic absence of certain reflections can now help in 

the choice of space group. 

To further narrow down this choice, a knowledge of 

the number of formula units per unit cell (Z) is useful. 

This may be calculated from the equation, 

o = 
MZ 

LU 

where, 0 = density of the material 

M = relative molecular mass of the material 
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Z = number of formula units per unit cell 

L = Avagadro's number 

U = volume of unit cell 

U can be calculated from the unit cell dimensions and 

angles but D must be measured by an independent method. 

The density of the crystalline material can be 

determined by a flotation method. The crystals are 

suspended in a mixture of two miscible liquids in which 

the material is insoluble. The proportions of the two 

liquids are adjusted until the crystals possess neutral 

bouyancy and the density of the liquid mixture is 

measured by weighing a known volume. This density is the 

same as the density of the crystalline material and hence 

the number of formula units per unit cell can be 

calculated. 

Hexane-bromoform mixtures were used in all the 

density determinations in Jd1isthesis. 

The unit cell dimensions obtained from the 

oscillation and Weissenberg photographs were redetermined 

and refined by a least squares procedure using ca. 20 

strong reflections accurately measured on a Hilger and 

Watts Y290 four circle diffractometer unless otherwise 

stated. After refinement of the cell dimensions, one 

unique set of intensity data was collected on the 

diffractometer using graphite monochromated MoK a 

radiation, normally in the range Oo~e~25°. Three 

standard reflections were monitored every hundred 

reflections measured and in all cases these remained 

constant indicating that the crystals were stable. 
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The intensities were corrected for Lorentz and 

polarisation effects but not for absorption as there were 

minimal numbers of heavy atoms in the compounds and 

crystal sizes were small. Reflections were considered to 

be observed if their intensities (r) were greater than 

three times their standard deviations (or)' [where or = 
1 

(total background count + integrated count)2). 

Due to the wavelength of X-rays, it is not 

physically possible to resynthesize the image of the 

crystal lattice. Instead, the process can be done 

mathematically by the Fourier transform method. This is 

possible because the electron density in the crystal 

lattice, which is in real space, is the Fourier transform 

of the diffraction pattern in reciprocal space. The 

equation that relates the electron density [p(x,y,z») to 

the intensity of the diffracted X-rays [r(h,k,l»), is of 

the form: 

p(x,y,z) = 1 EEEF(h,k,l)exp[-2ni(hx + ~ + ~») 
U abc 

where, the structure factor, F(h,k,l) cr Ir(h,k,l) . The 

term r(h,k,l) is a vector quantity having both magnitude 

and phase of which only the former can be determined 

experimentally. 

All but two of the crystal structures in this 

thesis contain copper atoms which are significantly 

heavier than other atoms in the complexes and, as such, 
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constitute a high proportion of the total electron 

density. By locating the positions of the copper atoms 

in the structure, an approximation to the phases of the 

reflection data can be determined. This method of 

locating the heavy atoms is a modification of the Fourier 

transform called a Patterson synthesis. 

p(u,v,w) = ~ ~~~ \F(h,k,l) 12exp[-2TIi(~u + ~v + ~w)] 

The quantity \F(h,k,I)\2 is phasesless and hence the 

distribution in Patterson space can be determined 

directly from the intensity data. Maxima in the quantity 

p(u,v,w) represent interatomic vectors and their 

intensities are proportional to the products of the 

atomic numbers of the two atoms concerned. Those between 

two heavy atoms, i.e. Cu ... Cu, will be prominent and 

hence the positions of the heavy atoms in the unit cell 

can be determined. 

After location of the heavy atoms, the lighter 

atoms can be located by a difference Fourier map phased 

on the positions of the heavy atoms. 

i . e. : 

In structures where no heavy atoms are present, it 

is necessary to use direct methods to determine the 

location of the atoms. Direct methods depend on the 
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application of mathematical relationships to determine 

the phases of the structure factors. Any atoms not 

located by direct methods can be found using a difference 

Fourier map in a similar manner to that defined above. 

In both heavy atom and direct methods refinement of 

the structure is effected by minimising the function: 

where, W is a weighing factor. The criterion used for 

judging the agreement between the observations and the 

proposed structure is the so-called R value, where, 

R = 
L IIFobSI - IFcalcl1 

EIFobsl 

The MULTAN 80 series of programs 32 were used for 

direct methods, whilst all other crystallographic 

calculations were performed using the CRYSTALS suite of 

programs. 33 

Standard texts on practical X-ray crystallography 

which have been found to be most useful are Stout and 

33a 33b Jensen and Buger. 

1.6.2 Vibrational Spectroscopy 

Infrared spectra (4000-400 cm-
l

) were obtained for 

solid samples in nujol and halocarbon mulls and in 

potassium bromide discs using a Perkin Elmer 598 grating 

spectrometer. Spectra of solution samples contained in a 
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cell with sodium chloride windows were obtained using a 

Perkin Elmer 683 grating spectrometer controlled by a 

3600 data station. 

Where possible, group theory has been used to 

examine the spectra and assignments have been made to try 

to elucidate structural features. Although unequivocal 

assignments of the bands is difficult, the infrared 

spectra can be used for identification of the complexes. 

1.6.3 Ultraviolet-Visible Spectroscopy 

A Perkin Elmer Lambda 5 UV-~sible spectrometer 

with thermostatted cell holders has been used to follow 

the visible absorption spectrum of the reaction in 

alcohol solution of copper(II) salts with 

l-cyanoguanidine. Characteristic absorption bands have 

been observed and the kinetics and mechanism of this 

reaction have been investigated. 

Diffuse reflectance UV-visible spectra have been 

measured for several copper(II) complexes using the above 

spectrometer. Unlike the solution data, these results 

are used in a qualitative rather than quantitative manner. 
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C HAP T E R TWO 

COPPER(II) COMPLEXES OF l-CYANOGUANIDINE 

2.1 Introduction 

Although several transition and alkali metal 

complexes of l-cyanoguanidine*(cnge) have been reported, 

structural and spectroscopic data are limited. The most 

extensively investigated complexes are those of the 

cadmium(II) cation. 34 

structure determinations of cadmium(II)- cnge 

complexes have shown cnge to act as either a monodentate 

ligand, 35 in [Cd(cnge)2I2]' or a bridging bidentate 

ligand, in [Cd(Cnge)C1 2 ]36 and [Cd(Cnge)(H20)2(S04)]z34 

and that there are changes in the molecular geometry and 

electronic structure of the ligand on coordination. 

These changes are manifest in the vibrational spectrum of 

free and coordinated cnge. 

There is a paucity of data available in the 

literature on copper(II)-cnge complexes, possibly owing 

to the facile solvolysis of the nitrile group in the 

presence of copper(II) cations. After an early report of 

the synthesis of cu(cnge)2so4.4H20,37 fifty years elapsed 

before Cu(cnge)2so4~H20 was prepared as an intermediate 

during a study of the copper(II) catalysed addition of 

alcohols to cnge. 25 Dehydration of this latter material 

at 50°C under vacuum resulted in the corresponding 

dihydrate. Subsequently, Cu(cnge)2(N03)2.2H20 was 

obtained as a by-product of the attempted solvolysis of 

* Chemical Abstracts Registry Number [461-58-5]. 
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cnge by isopropanol or phenyl-2-ethanol in the presence 

38 of CU(N03)2.3H20. Other than chemical analytical and 

electronic absorption spectroscopic data, very few 

physicochemical characteristics have been reported for 

these materials. 

Structural information has since been published for 

[cu(cnge)2C12(H20)21,39 which was crystallised from 

aqueous solution, and for [Cu(cnge)(aebg)]S04.H20 (aebg = 

1-(2-aminoethylbiguanide),40 which was serendipitously 

obtained from the mother liquor remaining from the 

preparation of ethylene-bis(biguanide) copper(II) 

sulphate. In both complexes the cnge ligand is 

effectively monodentate despite the location of the N(2) 

atom of the cnge molecule in the latter complex in one of 

the axial positions above the square planar copper(II) 

coordination sphere. This contact is quite remote, 

r(Cu ... N) = 3.14 ~ (cf. the van der Waals radii 41 of Cu 

(1.43 ~) and N (1.55 ~) and cannot be considered a strong 

bonding interaction as in [Cd(Cnge)C1
2

]36 or 

[Cd(Cnge)(H20)2S041234 since the lone pair on N(2) is not 

directed at the copper atom but is involved in the 

intermolecular hydrogen bonding interactions. 

Subsequently, the preparation of the anhydrous 

compounds, Cu(cnge)4X2 (X = Cl, Br, CI04 ) and cu(cnge)2X2 

(X = Cl, Br, N0
3

, NCS) in ethanol has been claimed. 28 

Analytical, conductance, magnetic susceptibility and 

electronic absorption spectroscopic data are quoted for 

these compounds. This report is surprising in view of 

31 



the facile solvolysis of the nitrile group of the cnge 

molecule. 

Most recently the electroreduction of an aqueous 

solution of Cu(cnge)2so4·SH20 has been reported, together 

with the infrared spectrum of the complex. 42 

In this work the possibiliy of correlating the 

infrared spectrum and the mode of coordination of cnge 

the copper(II) ion, has been investigated. Several 

copper(II)-cnge complexes have been prepared and their 

infrared spectra recorded. Also the crystal and 

molecular structure of bis(l-cyanoguanidine)-di-~­

aquocopper(II) dinitrate dihydrate {[cu(cnge)2(H20)2]­

(N03)2.2H20} has been determined. 

to 

Ideally, any attempted correlation of spectroscopic 

and structural properties of coordinated cnge should be 

based on the three complexes for which structural data 

are now available, [Cu(cnge)2(H 20)2](N0
3

)2.2H
2
0, 

[Cu(cnge)2Cl 2(H20)2] and [Cu(cnge) (aebg)]so4.H20. 

Unfortunately, despite repeated attempts, it was not 

possible to repeat the serendipitous preparation of 

[cu(cnge)(aebg)]So4.H20; furthermore, attempts to 

synthesize the compound by first producing the aebg 

ligand proved to be unsuccessful. Consequently, for this 

thesis it was only possible to base the correlation on the 

former two complexes. 

2.2 Experimental 

Copper(II)-(l-cyanoguanidine) salts were prepared 
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by the reaction of the requisite molar ratio of cnge and 

the appropriate copper(II) salt. The copper(II) salt and 

the cnge were each dissolved in the minimum of hot 

deionised water. A typical synthesis used 20mmol of the 

copper(II) salt and 40mmol of cnge. The solutions were 

mixed and a trace of acid, appropriate to the copper(II) 

salt, added to prevent precipitation of the basic 

copper(II) salt. The resulting solution was cooled in 

ice to facilitate precipitation. The precipitate was 

filtered off, washed with a little ice-cold deionised 

water and dried over silica gel for 12 hrs. 

This method produced hydrated complexes: lower 

hydrates and anhydrous complexes were produced by 

dehydration in an oven with high vacuum facilities as 

required (see Section 2.4). 

Anhydrous copper(II)-cnge chloride and bromide 

complexes were also prepared by using dry acetone instead 

of deionised water as a solvent. However, the low 

solubilities of the copper(II) salts and cnge in acetone 

necessitated a different method of synthesis. 

The anhydrous copper(II) salt (lOmmol: 1.34g 

CuC1
2

:2.22g CuBr
2

) and cnge (20mmol: 1.68g) were powdered 

together in a mortar and pestle. The mixture was added 

to acetone, previously dried by distillation from a 

P2oS/acetone mixture, and refluxed for 1 hour. The 

suspended solids were filtered off, washed with dry 

acetone and dried under a vacuum. 
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Deuterated hydrated complexes were obtained by 

repeated solution of the samples in D20, under a nitrogen 

blanket, followed by removal of the excess water under 

vacuum. 

2.3 The Crystal and Molecular Structure of Bis(l­

Cyanoguanidine)Diaquocopper(II)Dinitrate Dihydrate 

2.3.1 structure solution and crystal data 

Needle-like crystals of the title compound were 

obtained by slow evaporation of an aqueous solution at 

room temperature. A suitable crystal (0.6 x 0.1 x 0.1 

mm) was mounted at the end of a glass fibre with 

'Araldite' adhesive. 

Cell parameters, space group and X-ray diffraction 

data, were obtained as described in Section 1.6.1. Of 

the 1392 intensities collected, 705 were deemed to be 

observed. 

Taking into account the molecular formula allied 

with the crystal symmetry, suggested that the copper atom 

must be situated in a special position (0,0,0) of the Pl 

space group and that pairs of cnge molecules, nitrate 

anions and water molecules must be located in 

centrosymmetrically related positions. Consequently, 

following the data reduction stage, the positions of the 

carbon, nitrogen and oxygen atoms were determined by a 

difference Fourier synthesis. Full matrix least squares 

refinement with anisotropic temperature factors for all 

these atoms convered at R = 0.077. Attempts to locate 
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TABLE 2.1 Analytical Data for Copper(II)-cnge Complexes 

Experimental/Theoretical % 

Complex 

[Cu(cnge)2(H20)2 1 
(N0 3 )2 2H20 

a 
Cu(cnge)2(N03 )2 2H20 

a 
Cu(cnge)2(N03 )2 

Cu(cnge)2(S04)5H20 

Cu(cnge)2(S04)2H20 a 

cu{cnge)2(S04)a 

[Cu(cnge)2C1 2(H20)2 1 

cu(cnge)2C1 2
a 

cu(cnge)2C1 2b 

Cu(cnge)2Br22H2o 

cu(cnge)2Br20.SH20a 

Cu(cnge)2Br 2
a 

cu(cnge)2Br 2
b 

C 

11.02/11.23 

12.09/12.26 

13.47/13.50 

11.35/11.50 

13.24/13.20 

14.37/14.65 

14.04/14.18 

15.59/15.87 

15.91/15.87 

11.39/11.23 

12.02/11.99 

12.04/12.27 

12.34/12.27 

a:- Products of dehydration. 

b:- Products of anhydrous reaction. 

H 

3.71/3.74 

3.07/3.07 

2.29/2.25 

4.21/4.31 

3.16/3.30 

2.60/2.44 

3.71/3.55 

2.60/2.64 

2.61/2.64 

2.72/2.81 

2.11/2.25 

2.27/2.04 

2.15/2.04 

N 

32.25/32.74 

32.26/32.76 

38.92/39.38 

26.48/26.83 

30.58/30.81 

33.60/32.20 

33.39/33.09 

36.78/37.02 

36.90/37.02 

26.51/26.20 

28.07/27.97 

28.33/28.62 

28.85/28.62 



the positions of the hydrogen atoms by subsequent 

difference Fourier syntheses were unsuccessful. The 

positions of the cnge hydrogen atoms were defined using a 

hydrogen placing routine by analogy with the structures 

of the free molecule [r(C-H) = 1.00 R, U(ISO) = 0.05 R2]; 

those of the water hydrogen atoms were not determined. 

Further refinement of the structure with fixed hydrogen 

atoms converged at R = 0.075. Final positional 

parameters and thermal parameters are given in Tables 2.2 

and 2.3 respectively. Observed and calculated structure 

factors are included in Appendix B. 

Crystal Data 

C4H16NIOOIOcu, M = 427.8, triclinic, space group 

pI, a = 3.508(2), b = 10.201(3), c = 11.927(3) R, a = 

102.45(3), 8 = 101.58(3), Y = 101.60(3)°, U = 394.67 R3 , 

-3 -3 Dm = 1.82 g.cm ,Dc = 1.80 g.cm for Z = 1, F(OOO) = 
219, ~(MoK ) = 15.18 cm- l 

a 

2.3.2 Intermolecular contacts and the coordination of the 

copper(II) ion 

Views of the structure of the complex perpendicular 

to (120) and to (001) are shown in Figures 2.1 and 2.2 

respectively. Figure 2.1 also gives the atom numbering 

scheme. It comprises a series of planes parallel to 

(120) which contain [cu(cnge)2(H20)2 12+ cationic 

fragments and the nitrate anions, both of which are 

effectively planar, together with the free water 
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TABLE 2.2 Final positional Parameters (x 10 3 ) 

Atom x/a y/b z/c 

Cu(l) 0 0 0 
C(1) 146(3) 61( 1) 271(1) 
C (2) 343(3) 189(1) 466(1) 
N( 1) 129(3) 35 (1) 170(1) 
N( 2) 140(3) 75 (1) 381(1) 
N ( 3 ) 546(3) 303(1) 446(1) 
N(4) 343(4) 188(1) 576(1) 
O( 1) 476(2) 146(1) 11 (1 ) 
O( 2) 578(4) 709 (1) 150 ( 1) 
N(5) 941(4) 443(1) 217(1) 
O( 3) 761(3) 328(1) 226(1) 
0(4) 1041(4) 544(1) 308(1) 
0(5) 1001(4) 457(1) 123(1) 
H( 1) 553 306 363 
H (2 ) 694 387 513 
H( 3) 491 271 642 
H( 4) 193 102 592 

TABLE 2.3 Final Thermal Parameters (x 103/~2) 

Atom U(11) U(22) U(33) U(23) U (13) U(12) 

Cu(l) 37(2) 20 (1) 12 (1) 4.0(9) 16 (1) 0(1) 
C( 1) 34 (7 ) 12(6) 26(6) l( 5) 2 ( 5 ) -9(5) 
C(2) 1 4 ( 6 ) 38(7) 23(6) 3 ( 5 ) -3(5) 3 (5 ) 
N( 1) 41( 7) 31(6) 14(5) -2(4) 11( 4) 2 ( 5 ) 
N ( 2) 37(6) 29(5) 19 ( 5 ) 4 ( 4 ) 8 ( 4 ) -2(4) 
N ( 3 ) 41( 7) 36(6) 28(5) 4 ( 5 ) 10(5) 1( 5) 
N( 4 ) 73(8) 27(6) 19 ( 5 ) -6(4) 17(5) -9(5) 
O( 1) 32 ( 5 ) 27(4) 30(4) 4 ( 4 ) 6 ( 4 ) -3(4) 
0(2 ) 109(9) 44(6) 35(5) 14(4) 23(6) 6(6) 
N(5) 54(7) 26(6) 32(6) 1( 5) 15(5) -2(5) 
0(3) 74(7) 32(5) 39(5) 5 ( 4) 23(5) -13(5) 
o ( 4 ) 110(10) 47(7) 41(6) -7(5) 15(6) -14(7) 
0(5) 101(9) 47(6) 35(5) 10 ( 5) 22(6) -4(6) 

In the form: [exp-2n2(U(11)h2a*2+U(22)k2b*2+U(33)12c*2+2U 

(12)hka*b*+2U(13)hla*c*+2U(23)klb*c*)] 
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molecules. Within the planes, the molecular units are 

held together by both electrostatic and hydrogen bonding 

interactions (Figure 2.1). The planes are linked by Cu-O 

bridging contacts supported by weak hydrogen bonding 

between the free water molecule and a nitrate anion 

(Figure 2.2). Full details of all intra- and 

inter-planar contacts under 3.30 ~ are collated in Table 

2 . 4 . 

The copper(II) ion is coordinated by the nitrile 

nitrogens of two centrosymmetrically related cnge 

molecules, [r(Cu(l)-N(l» = 1.92 ~] and the oxygen atoms 

of two centrosymmetrically related water molecules, 

[r(cu(l)-O(l» = 1.96 ~], which form a square planar 

CUN20 2 unit (Figure 2.1). Axial positions above and 

below this square plane are occupied by the oxygen atoms 

of two more remote symmetry related water molecules 

located in two adjacent planes, [r(Cu(l)-O(l)') = 2.60 R] 
(Figure 2.2). Assuming the ligating donor atoms to be 

equivalent then R is given by the average of s 

r(Cu(l)-N(l» and r(Cu(l)-O(l» (1.94 ~), and RL is given 

by r(Cu(l)-O(l)') (2.60 ~). Hence, the tetragonality (T) 

is 0.75 (Section 1.5.2). This value defines the 

coordination stereochemistry to be a tetragonally 

elongated octahedron. 

The copper(II) ion's coordination geometry (Table 

39 2.5) is similar to that in [Cu(cnge)2C12(H20)2]. The 

only difference is the replacement of the axial oxygen by 

chlorine atoms [r(Cu-Cl) = 2.87 ~, the CuN
2

0
2 

unit being 
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TABLE 2.4 Intermolecular Contacts of less than 3.30 R; 
Hydrogen Bond and Electrostatic Interactions 

Interaction Symmetry r(X ... X') r(X ... H) r(h ... X') XHX' 

X-H ... X' Properties R R R 0 

of X' 

N(l) ... 0(3) x,y,z 3.19 

N(3)-H(1) ... 0(3) x,y,z 2.92 1. 00 1. 95 161 

N(3)-H(2) ... 0(4) 2-x,1-y,1-z 2.92 1. 00 2.04 145 

N(4)-H(3) ... 0(4) 2-x,1-y,1-z 2.98 1. 00 2.11 143 

N(4)-H(4) ... N(2) -X,-y,l-z 3.07 1. 00 2.07 177 

N(4) ... 0(2) 1-x,1-y,1-z 3.15 

O(1)-H ... 0(2)* 1-x,1-y,-z 2.67 

O(1)-H ... 0(3)* x,y,z 2.68 

0(1) ... 0(5) x,y,z 3.17 

0(2) ... 0(4) x,y,z 3.20 

0(2)-H ... 0(5) # l+x,y,z 2.84 

0(2) ... 0(5) x,y,z 3.21 

* These contacts are designated hydrogen bond interactions not only 

# 

because of the short interatomic distances, but also because of 

appropriate geometries for sp3 hybridised 0(1) (contacts to 

Cu(l), Cu(l)', 0(2) and 0(3» and for sp2 hybridised 0(3) 

(contacts to N(S), N(3) and 0(1». 

The geometry around 0(2) is somewhat more complex but one acceptor 

(contact to 0(1» and one donor interaction (contact to 0(5» can 

be designated assuming sp3 hybridisation. 



almost identical [r(Cu-N) = 1.92 ~, r(Cu-O) = 2.00 ~]. 

TABLE 2.5 Coordination of the Copper(II) Ion 

Bond distance/~ Bond angle/o 

Cu(l)-O(l) 

Cu(l)-N(l) 

Cu ( 1 ) -0 ( 1 ) , 

1.964(8) 

1.922(9) 

2.597(8) 

o ( 1 ) Cu ( 1) N ( 1 ) 

o ( 1 ) Cu ( 1 ) 0 ( 1 ) , 

N ( 1) Cu ( 1) 0 ( 1) , 

90.7(4) 

99.6(3) 

89.6 (4) 

Symmetry properties of 0(1)'; -l+x,y,z 

2.3.3 Molecular geometry of the l-cyanoguanidine ligand 

The cnge ligand is effectively planar, the maximum 

deviation of the skeletal carbon and nitrogen atoms from 

the best plane being 0.06 ~ (Table 2.6). 

TABLE 2.6 

Atom 

N( 1) 

C(l) 

N(2) 

Equation of 

best plane: 

Planarity of the cnge ligand 

Deviation from Deviation from 

plane/~ Atom plane/~ 

+0.042 C(2) -0.010 

-0.010 N ( 3) -0.013 

-0.056 N( 4) +0.049 

3.2163x - 5.6568y + 0.4515z = 0.254 
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The molecular geometry of the cnge ligand is almost 

39 identical to that in [Cu(cnge)2C12(H20)2]' however, it 

differs considerably from that in [Cu(cnge)(aebg)]-

40 S04.H20. Bond distances and angles for the cnge ligand 

in these three complexes are collected together with 

those for free cnge in Table 2.7. It is clear that the 

C(1)N(2)C(2) bond angle is larger and the C(2)-N(2) bond 

distance shorter in the dinitrate and dichloro complexes 

than in the sulphate complex. The differing geometries 

may be due to the weak interaction in the latter complex 

between the copper atom and the axially located imino 

nitrogen atoms, r(Cu(1) ... N(2» = 3.14~. A similar 

situation pertains in the cadmium(II)-cnge complexes for 

which monodentate and bidentate coordination clearly 

occurs. Thus, the monodentate cnge molecule in 

[Cd(cnge)2I2]35 has a larger C(1)N(2)C(2) bond angle 

(120°) and a shorter C(2)-N(2) bond distance (1.31 ~) 

than the bidentate bridging cnge molecules in 

[Cd(cnge)(H20)2(S04)]2 34 [C(1)N(2)C(2) = 118.8°, 

r(C(2)-N(2» = 1.34 ~] and in [Cd(Cnge)C1 2 ]36 

[C(1)N(2)C(2) = 116.4°: r(C(2)-N(2» = 1.363 ~]. 

The molecular geometry of the nitrate anion is 

unremarkable, data are given in Table 2.8. 
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TABLE 2.7 Molecular Geometries of l-Cyanoguanidine in 

the Free Molecule and in a number of 

Copper(II)-(Cyanoguanidine) Complexes 

Bond [Cu(cnge)2 [Cu(cnge) 

Distances (H 2O)2] [Cu(cnge)2 (aebg)] So4· 

I~ cnge 7 (N0 3 )2·2H2O 
39 H 0 40 

C1 2 (H2O)2] 2 

C(1)-N(l) 1.1694(3) 1.16(2) 1.16(1) 1.17(1) 

C(1)-N(2) 1.3054(4) 1.29(2) 1.29(1) 1.28(1) 

C(2)-N(2) 1.3414(3) 1.33(2) 1.33(1) 1.39(1) 

C(2)-N(3) 1.3391(3) 1.34(2) 1.34(1) 1.33(1) 

C(2)-N(4) 1.3327(3) 1.31(2) 1.32(1) 1.33(1) 

Bond [Cu(cnge)2 [Cu(cnge) 

Ang12s (H2O)2] [Cu(cnge)2 (aebg) ] SO 4. 

cnge 7 39 H 0 40 
1° (N03 )2· 2H 20 C1 2 (H2O)2] 2 

N(1)C(1)N(2) 175.10(2) 173.0(1.1) 170.6(9) 172.6(6) 

C(1)N(2)C(2) 118.38(2) 122.8(1.0) 123.1(7) 118.6(6) 

N(2)C(2)N(3) 123.75(2) 123.3(1.1) 123.8(4) 124.4(5) 

N(2)C(2)N(4) 117.50(2) 117.7(1.1) 117.4(7) 116.6(5) 

N(3)C(2)N(4) 118.73(2) 118.9(1.1) 118.8(7) 118.9(6) 



TABLE 2.8 Molecular Geometry and Planarity of the 

Nitrate Anion 

Bond Distance/~ 

N(5)-0(3) 

N(5)-0(4) 

N(5)-0(5) 

1.25(2) 

1.26(2) 

1.22(2) 

Bond Angle/o 

0(3) N(5) 0(4) 

0(4) N(5) 0(5) 

0(5) N(5) 0(3) 

117(1) 

121(1) 

12l( 1) 

Atom 

Deviation from 

Plane/~ Atom 

Deviation from 

Plane/~ 

N(5) +0.014 0(4) -0.005 

0(3 ) -0.005 0(5) -0.005 

Equation of 

best plane: 3.2403x - 4.7700y + 1.5408z = 1.257 

2.4 Thermal behaviour of hydrated copper(II)-

(l-cyanoguanidine) complexes 

The hydrated copper{II)-cnge complexes, 

[Cu(cnge)2C1 2(H20)2]' Cu(cnge)2Br2·2H20, 

Cu(cnge)2(S04).5H20 and [Cu(cnge)2(H20)2](N03 )2.2H20 

crystallised from aqueous solutions containing cnge and 

the appropriate copper(II) salt. Varying either the 

reaction conditions or the molar ratios of the reactants 

had no effect on the identity of the product. 
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The thermal behaviour of the hydrates was studied 

by both dynamic and isothermal methods. Thermo­

gravimetric analyses (tga) were carried out using a 

Stanton Redcroft TG750 instrument (~lOmg sample; 2°e 

min- l heating rate). The dehydrations were effected on 

~lg samples in an isothermal oven (±lOe) with high vacuum 

(0.1 Pal facilities when required. 

Tga curves for the four hydrates and for 

Cu(cnge)2S04.2H20 are shown in Figure 2.3. Those for the 

halides (curves B and C) and sulphates (curves D and E) 

show that with the exception of bromide, which appears to 

form a hemihydrate intermediate at 45°C, they all 

dehydrate directly to the anhydrous material commencing 

at ~60°C. All three anhydrous complexes are fairly 

stable, further decomposition, which commenced at 160°C 

(for the sulphate), l75°e (chloride) or 190°C (bromide), 

being complete at about 600 o e. The tga curve for the 

nitrate (curve A, Figure 2.3) shows the formation of a 

dihydrate commencing at 45°C, followed by a gradual 

decomposiiton process at 80°C. A plateau corresponding 

to the anhydrous material was not observed, however, the 

decomposition culminating in an explosive reaction at 

162°C. 

Careful isothermal dehydration experiments at 

ambient pressures confirmed the tga results yielding 

samples of eu(cnge)2C12' Cu(cnge)2Br2' Cu(cnge)2-

Br 2 ·O.5H 20, Cu(cnge)2(S04) and cu(cnge)2(N03)2.2H20 

(Table 2.9). All attempts to produce the anhydrous 

nitrate by this route failed. Low temperature (50°C) 

thermal decomposition under vacuum (0.1 Pal led to 

46 



, ' 
'() 

A 

B 

n 
4 

3 

2 

1 

47 

- anhyd 

2 

1 

- anhyd 

2 
C Cu(cnge)2Br2-nH2o 1 

~-_______ - anhyd 

D 

E 
Cu(cnge)2S04-nH2o 

1 10% 
Mass 
Loss 

20 40 60 80 100 

FIGURE 2.3 Tga curves for hydrated copper(II)­
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cu(cnge)2X2 (X = Cl, Br), Cu(cnge)2(N03 )2 and 

Cu(cnge)2(S04)2H20 (Table 2.9) 

The facile loss of two water molecules from the 

nitrate is consistent with the removal of the two water 

molecules of crystallisation, the two water molecules 1n 

the cation coordination sphere being retained. It is 

assumed that the similar loss of three of the five water 

molecules in Cu(cnge)2(S04).SH20 indicates that again 

only two are directly coordinated to the cation. 

TABLE 2.9 Thermal Behaviour of Hydrated Copper(II)-

(l-Cyanoguanidine) Complexes; Isothermal 

Experiments 

Experimental Calculated 

Weight Loss Weight Loss 

Hydrate Product /% /% 

[Cu(cnge)2(H2O)2 1 Cu(cnge)2(H2O)2 8.5 8.1 

(N0 3 )2 2H20 (N03 )2 

[Cu(cnge)2(H2O)2 1 Cu(cnge)2(N03 )2 16.1 16.8 

(N0 3 )2 2H20 

Cu(cnge)2(S04) Cu(cnge)2(S04) 13.8 12.9 

SH20 2H 2O 

Cu(cnge)2C1 2 Cu(cnge)2C1 2 11.9 10.6 

2H 2O 

Cu(cnge)2 Br 2 Cu(cnge)2Br 2 6.4 6.4 

2H 2O 0.SH2O 

Cu(cnge)2Br 2 Cu(cnge)2 Br 2 8.1 8.4 

2H 2O 

* Under vacuum (0.1 Pa) 
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2.5 Anhydrous Copper(II)-(l-Cyanoguanidine) Derivatives 

The anhydrous bis(cnge) derivatives of copper(II) 

chloride, bromide and nitrate, prepared in this work, 

differ completely from the description given by Panda et 

a1 28 for their products. A comparison of the data is 

effected in Table 2.10. Repeated attempts to prepare the 

anhydrous halides by refluxing the requisite molar ratio 

of copper(II) halide and l-cyanoguanidine in ethanol, 

Panda's route, failed. Depending on the molar ratios of 

the reactants, either blue (or green) crystals of 

[cu(aOeu)C1
2

1 {or cu(aOeu)Br2 .2H20} or pink crystals of 

[Cu(aOeu)2]C1 2 .2H20 {or Cu(aoeu)2Br2} (aOeu = l-amidino­

O-ethylurea), were invariably obtained, presumably as a 

result of solvolysis of cnge in the presence of the 

copper(II) salt. These products have been characterised 

in single crystal X-ray diffraction, infrared and 

UV-visible spectroscopic studies, the results of which 

are reported in Chapters Six, Seven and Eight. Since 

these materials closely resemble, and the anhydrous 

copper(II)-cnge salts described herein differ from, those 

prepared by Panda et aI, then their results must be 

considered with extreme caution. 

2.6 Vibrational Spectroscopy of Copper(II)-(l­

Cyanoguanidine) Complexes 

The vibrational spectra for various anhydrous, 

hydrated and deuterated copper(II)-cnge complexes were 

recorded (4000-400 em-I), with the exception of the 

49 



50 

TABLE 2.10 Products of the Reaction between cnge and 

Copper(II) Halides in Refluxing Ethanol 

UV-visible 

spectra 

Product Appearance A /nm max 

Present Results* 

Cu(aoeu)2C12·2H20 pink 515 

Cu(aOeu)C1 2 blue 650 

Cu(aOeu)2Br 2 pink 515 

Cu(aOeu)Br2 ·2H2O dark green 660 

Panda's Results 28 

Cu(cnge)2C1 2 pink 530 

Cu(cnge)4C1 2 blue 675 

cu(cnge)2Br 2 pink 525 

Cu(cnge)4 Br 2 blue 665 

Anhydrous Bis(cnge) Copper(II) Complexes Produced in this work 

UV-visible 

spectra \J (C=N) \J (C=N) 

Product Appearance A /nrn 
as -1 s -1 

cm crn max 

Cu(cnge)2C1 2 bright green 870 2240 1280 
2180 

Cu(cnge)2 Br 2 pale brown 865 2245 1280 
2200 

Cu(cnge)2(N03 )2 bright green 870 2225 1285 
2185 

*These compounds ,are ,described in Chapters Six" Seven and Eight. 



copper(II) nitrate derivatives, in both nujol and 

halocarbon mulls using KBr windows as well as in KBr 

discs. Spectra of the nitrates were recorded solely in 

mulls using AgCl windows owing to the susceptibility of 

KBr to oxidative attack. The spectra are compared with 

those for cnge and D
4
-cnge in Tables 2.11 and 2.12. 

Bands attributable to the anions have been omitted. 

The vibrational spectrum of cnge (point group Cs ) 

has been discussed by Jones and Orville-Thomas. 9 There 

are 24 fundamental vibrational modes (l5A I and 9A") all 

of which should be infrared active. Jones and Orville-

Thomas assigned frequencies to five of the six (3A I and 

3A") fundamental vibrations associated with each of the 

NH2 fragments and to nine of the 12 (9A I and 3A") 

skeletal vibrational modes. These assignments are used 

as a basis in this work. However, it must be remembered 

that for a molecule of this complexity the descriptions 

of the vibrations can only be approximate owing to the 

extensive mixing of the internal coordinates. 

The present spectrum of cnge is in agreement with 

that reported by Jones et al. 9 However, advances in 

spectrophotometric accuracy have led to slight changes In 

the absorption frequencies. 

In all the complexes studied, the spectra of 

coordinated cnge are similar, they do, however, differ 

significantly from the spectrum of free cnge. 

The spectra of the two complexes for which 

structural data are available [cu(cnge)2C12{H20)2]39 and 
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TABLE 2.11 

18 cnge 

3422 ] 
3370 s,br 

3324 

3175 ] 
s,br 

3134 

2203 s 

2159 s 

1657 ] 
s,br 

1633 

1567 s,br 

1500 ms 

1252 ms 

1085 w,br 

928 ms 

721 w 

668 m 

550 ms,br 

525J 517 m 
508 

470 ms,br 

*Masked by 

-1 
Infrared Spectroscopic Data/em for cnge and Various 
Copper(II) cnge Salts 

cnge 

3540 mw,br 

3422 ] 3420 ] 
s,br 

3370 s,br 3340 3390 ] 3340 vs,br 
s,br 

3331 3320 

3187 ] 3210 J 3210 ] 
s,br s,br s,br 3200 vs,vbr 

3154 3160 3160 

2208 s 2240 ] 2240 vs 2235 ] 
vs vs 

2164 s 2180 2200 ms 2180 

1662 ] 1690 vs 1670 ] s 
1643 s,br 1650 vs,vbr 
1635 1650 vs 1640 

1574 s 1565 vs 1555 vs 
1570 s 1550 vs,vbr 
1506 ms 1520 ms 1515 s 

1255 ms 1280 m 1280 m 1280 m,br 

1088 w,br 1110 mw 1110 w * 

930 ms 935 m 935 w 

721 w 720 vw 720 vw 

668 m 685 m 680 vw * 

560 ms,br 535 m,br 540 m,br 550 m,br 

530 ] 
517 m 515 m 
509 

473 ms,br 460 m,br 460 m,vbr 500 m,br 

~ 
anion vibrations 
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Cu(cnge)2(N03 )2 [Cu(cnge)2C1 2 Cu(cnge)2 Br 2 

(H 2O)2] .2H2O Assignment 

3540 ms,br 
3430 sh 

3427 m 
3330 vs,br 

3355 J 3400 J v [N-H] 
s,br s,br a and 

3323 3320 v [N-H] s 

3190 vs,br 3200 s,br 3200 s,br 

2225 ] s 2256 J 2240 vs 
s v [N(1)C(1)N(2)] 

2185 2205 2200 
a ms 

1660 vs,vbr 1660 vs,br 
1680 ] s 

o[NH
2

] 
1650 

1565 ] 1550] s V
a

[N(3)C(2)N(4)] 
1540 s,br s,br 

1537 1520 v [N(2)C(2)N(3)] a 

1295 m,br 1300 m 1275 ms v [N(1)C(1)N(2)] 
s 

1100 w,br 1100 m 1110 m o[NH 2 ] 

935 w,br 921 m 935 mw V
s

[N(2)C(2)N(3) ] 

* 710 mw y[N(3)C(2)N(4) ] 

665 w 665 m 690 w o[N(3)C(2)N(4) ] 

565 w,br 560 m,br 540 rn,br y[NH
2

] 

530 m y[N(l)C(l)N(2) ] 
510 w,br 515 m 510 w 8[N(3)C(l)N(4) ] 

480 w,br 430 w,br 450 rn,br y[NH 2 ] 
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TABLE 2.11 (contd.) 

Cu(cnge)2- Cu(cnge)2- Cu(cnge)2- [Cu(cnge)2(H2O] 

S04· 2H 20 (N03 )2·2H2O S04· 5H20 (N03 )2·2H2O Assignment 

3580 m,br 

340 0 J 3420 J 
3360 vs,vbr vs,br 3400 vs,vbr s,br Va[N-H] 

3350 3320 and 
v [N-H] s 

3220 J 3200 s,br 3240 vs,vbr 3220 vs,vbr s,br 
3160 

224 0J 2240J 2250} 2240] s vs s,br Va [N(I)C(I)N(2)] 
2200 2200 2210 2200 

1660 vs,vbr 1650 s,br 1680 vs,br 1660 s,br 

1560 vs,vbr 1550 s,br 1580 vs,vbr 1570 s,br Va [N(3)C(2)N(4)] 

1530 sh 1530 sh 1530 m Va [N(2)C(2)N(3)] 

1280 ms,br 1275 m 1300 m 1295 m Vs [N(l)C(l)N(2) ] 

* 1120 w,br * 1100 w,br O[NH2 ] 

930 mw 950 m 930 m 925 w Vs [N(2)C(2)N(3) ] 

* * y[N(3)C(2)N(4) ] 

* 690 mw * 670 mw o[N(3)C(2)N(4) ] 

550 m,br 565 m,br 550 m,br 550 w,br y[NH2 ] 

540 m y[N(l)C(l)N(2) ] 
525 m,br o[N(3)C(l)N(4) ] 

500 m,br 500 m,br 500 w,br y[NH 2 ] 

*Masked by anion vibrations 



TABLE 2.12 

°4-cnge 

2580] s 

2540 

2415J 
s,br 

2345 

2170 vs,br 

1185J w 

1155 

Infrared Spectroscopic Data for 04-cnge and 

Copper(II)-(04-cnge) Salts 

CU(04-cnge)2C12 

.202° 

2570 s,br 

2410 s,sh 

2380 s,br 

2230 vs,br 

1195JW 

1165 

CU(04-cnge)2Br2 

.202° 

2550 s,br 

2380 s,br 

2235 vs,br 

1195]W 

1160 

Assignment 

Va[N-O] and 
Vs[N-O] 

55 

1570] 
vs,br 

1595 ] 
vs,br 

1590] 
vs,br 

1540 1520 1510 

1255 ms 1280 s 1280 ms 

835 w 845 w,br 835 vw,br 

920 m 925 rn 920 rn 

715 s 715 m 715 m y[N(3)C(2)N(4) ] 

635 mw 660 rnw 660 rnw 6[N(3)C(2)N(4) ] 

410 m,br 400 m,br 400 rn,br 

565 rn 565 rnw 555 mw y[N(l)C(l)N(2)] 

480 rn 485 mw 490 rnw 6[N(3)C(2)N(4) ] 

360 rn,br 360 m,br 345 m,br 



[Cu(cnge)2(H20)2](N03 )2.2H20 are very similar in accord 

with the near identic~geometries of the cnge molecules. 

Bands diagnostic of cnge coordination to copper(II) are 

apparent for these two compounds, and, indeed, for all 

the complexes studied: they have been attributed to the 

asymmetric and symmetric stretches of the nitrile group. 

Both bands move to higher frequency on coordination; 

whereas the band designated Va [N(1)C(1)N(2)], which 

appears as a sharp doublet, moves from 2208/2164 cm- 1 

(for cnge) to at least 2235/2180 cm- l (for Cu(cnge)2S04)' 

Vs [N(1)C(1)N(2)] moves from 1255 cm- l (for cnge) to at 

-1 
least 1275 cm (for [Cu(cnge)2C12(H20)2] or 

Cu(cnge)2(N03 )2.2H20). This increase in frequency is 

typical of un identate coordinated nitrilesand has been 

attributed to a more effective a-donor than n-acceptor 

. t . 43 ln eractlon. 

The N(1)C(1)N(2) fragment of free cnge should give 

rise to only two infrared active stretching vibrations -

the asymmetric, v (NCN), and symmetric, v (NCN), 
a s 

stretches. Jones et a1 9 assigned these vibrations to the 

1255 cm- l band 

2208/2164 -1 
cm 

[VS(NCN)] and to the doublet band at 

[Va(NCN)). They attributed the doublet 

structure of the latter band to the splitting of a 

fundamental vibration by the crystal field, a correlation 

interaction. They claimed that the infrared spectrum of 

a pyridine solution of cnge exhibited only a single band 

in the 2300-2000 cm- l region at 2182 cm- l . Repeating 

this spectrum in this work, a doublet was observed at 
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2184/2150 cm- l (Figure 2.4). Indeed, an ethanol solution 

of cnge also gave a doublet at 2200/2157 cm- l , so ruling 

out a correlation interaction as a possible explanation 

of this phenomenon. 

Careful examination of the infrared spectra of 

coordinated cnge and of deuterated free and coordinated 

cnge in the 2300-2000 cm- l region, does help in the 

explanation of the curious 'Va(NCN)' doublet. 

For this analysis [Cu(cnge)2C12(H20)2]' 

Cu(cnge)2Br2.2H20 and their deuterated analogues have 

been chosen as typical examples since there are no 

consistent differences between the spectra of the 

anhydrous and hydrated complexes, and the spectra of the 

halides exhibit much better resolution than those of the 

oxy-salts, presumably owing to reduced hydrogen bonding. 

-1 . A comparison of the 2300-2000 cm reglon of the infrared 

spectra of cnge, [Cu(cnge)2C12(H20)2] and 

Cu(cnge)2Br2.2H20 is effected in Figure 2.5. 

For free cnge the lower frequency band, 2164 cm- l 

is of slightly greater intensity than its higher 

frequency partner, 2208 cm- l , whereas for 

[Cu(cnge)2Cl2(H20)2] and Cu(cnge)2Br2.2H20 the reverse is 

observed: bands at 2255 and 2240 cm- l being greater in 

intensity than those at 2205 and 2200 cm- l respectively. 

This could imply that upon coordination of cnge it is the 

band at 2164 cm- l which shifts to 2255 or 2240 cm- l , 

whilst the band at 2208 cm- 1 shifts but marginally. 

-1 Assuming this interpretation the band at 2208 cm of 
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FIGURE 2.4 IR spectra of l-cyanoguanidine in pyridine 

and ethanol solutions 

2300 

Pyridine 
Solution 

2100 2300 

Ethanol 
Solution 

2100 

FOOTNOTE Compared to the solid state spectrum of cnge the 

frequencies of the doublet have been shifted and 

the relative intensities of the individual bands 

- -1 v/cm 
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reversed. The effect of a solvent on infrared frequency 

and intensity has been investigated for nitriles 

with only limited success leaving the phenomenon 

1 t · 1 l' d 44 re a lve y unexp alne . 



FIGURE 2.5 IR spectra of cnge, [Cu(cnge)2C12(H20)2J and 

[Cu(cnge)2Br2(H20)2J 
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-1 cnge and those at 2205 and 2200 cm of the complexes are 

probably incorrectly assigned to a nitrile stretching 

vibration. 

To try to clarify the situation, cnge, 

[Cu{cnge)2C12{H20)2J and cu{cnge)2Br2.2H2o were 

deuterated. Bands in cnge and in the two copper{II) 

complexes that were assigned to v{NH), o(NH 2 ), and y{NH 2 ) 

clearly shifted to lower frequencies and with the 

exception of the band designated Va(NCN), there were only 

minor changes in the frequencies of the bands assigned to 

the C-N skeletal vibrations (Table 2.12). Figure 2.6 

compares the 2300-2000 cm- l region of the spectra of 

D4-cnge, [Cu(D4-cnge)2C12(D20)21 and Cu(D4-cnge)2Br2.2D20. 

For cnge deuteration modifies the doublet to give a 

single broad band centred at 2170 cm- l 

Coordinated cnge also exhibits a similar 

modification of the doublet on deuteration. The 

absorption occurs as a single broad band centred at 2230 

-1 
cm for both [Cu(D4-cnge)2C12(D20)2Jand Cu(D 4-cnge)2-

Br 2 .2D20. These results further indicate that it is the 

2164 cm- l band of cnge which shifts to higher frequency 

(to 2255 and 2240 cm- l ) whilst the 2208 cm- l band only 

shifts marginally (to 2205 and 2200 em-I) implying that 

only the 2164 cm- l absorption should be attributed to the 

asymmetric nitrile stretch of free cnge. 

The loss of the 2208 cm- l band on deuteration 

suggests that it involves an N-H vibration and that an 

alternative explanation involving Fermi resonance may 

account for the doublet structure. 
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FIGURE 2.6 IR spectra of D4-cnge, [Cu(D 4-cnge)2 C1 2(D
2
0)2] 

and [Cu(D4-cnge)Br 2 (D 20)2] 

2300 2100 2300 2100 2300 

D4-cnge 
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Fermi resonance occurs when two different 

vibrations (or combinations of vibrations) of the same 

symmetry species have nearly the same energy, that is, 

they are accidentally degenerate. It results in a shift 

of one vibration towards lower energy and the other 

towards higher energy.45 Thus, the doublet may be due to 

the interaction of the nitrile vibration with an overtone 

or combination band involving an N-H vibration. For free 

cnge the mean of the observed doublet (2208/2164 cm- l ) is 

2186 -1 cm possible combinations of vibrations which 

have frequencies close to this mean are the first 

overtone of the 1088 cm- 1 band [assigned 6(NH 2 )] and the 

-1 combination of the 1662 cm [assigned 6(NH 2 )] and 530 

cm- l (undefined assignment) bands giving values of 2176 

-1 and 2192 cm respectively. 

2.7 Conclusions 

The studies of transition metal-cnge complexes all 

show that infrared spectroscopy is sometimes effective in 

assessing the coordination of cnge. 

On coordination of cnge to cadmium(II) only minor 

changes are noted in the infrared spectra. 

Differentiation between mono- and bidentate coordination 

is not possible since neither the absorption bands, nor 

the structural parameters vary consistently. Some of the 

absorption bands {Vs [N(1)C(1)N(2)], V
s

[N(2)C(2)N(3)], 

6[N(3)C(2)N(4)]} do, however, tend to mirror trends in 

structural parameters. 34 

62 



The similarity of the spectra of all the copper(II) 

complexes studied, which exhibit significant changes 

relative to free cnge, implies that coordination is 

exclusively monodentate. 

It is difficult to rationalise the differing 

behaviour of cnge in the presence of cadmium(II) (Cd 2+) 

and copper(II) (cu2+) cations. Hubberstey et al 

determined that cnge also acts as a bidentate ligand in 

the presence of potassium (I) ions (K+).46 The 

similarity in the coordination properties of cnge towards 

Cd 2+ and K+, both of which have fully occupied electronic 

configurations, suggests that the bonding interactions 

may be predominantly electrostatic in nature. In a 

recent structural and theoretical study of cnge 7 the net 

atomic charges on N(l) and N(2) have been shown to be 

similar and much greater than those on the other atoms of 

cnge (Figure 2.7). 

-0.12 

N(4)~+0.22 -0.21 

/C(2)--N(2)" 

N(3) C(1) 
-0.09 +0.07 "NO) 

-0.29 
FIGURE 2.7 Net Atomic Charges Ie for cnge 

Electrostatic interactions would favour equally N(l) and 

N(2) as ligating atoms giving the possibility of both 

mono- and bidentate behaviour. 
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For Cu 2+, which has a d 9 configuration and 

coordinates cnge equatorially, the bonding may involve a 

more covalent interaction utilising the single occupied 

d 2 2 orbital of Cu 2+. Monodentate bonding via N(l) x -y 

alone is probably preferred to give a strong a-donor 

interaction. 

Although no copper(II)-cnge complexes with 

bidentate cnge are known, a structure has been reported 

in which two copper(II) ions are bridged by two 

hydrocyanamido( -1) ligands 47 (Figure 2.8). These ligands 

are of similar geometry to the N(l) C(l) N(2) fragment of 

cnge. 

1.15 1.27 

'\. 178.3 I /H 
N C---N 

1. 962--../ '\.--- 2.017 

7 146.6 120.9 '\ 

Cu 84.8 89.6 Cu 

1.977~ 124.5 146.6 /-1.964 

N~C N 
/ I 175.4 '\ 

H 1.29 1.15 

FIGURE 2.8 Geometry of bridging hydrocyanamido(-l ) 

ligands in [Cu(C9H21N3)2(~HNCN)2](C104)2.H20 

(Bond distances/~, bond angles/C). 

The nitrile nitrogen is, however, not directly end-on 

bonded and the ligand is anionic, the negative charge 
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obviously influencing the coordinating properties. This 

structure does imply that under appropriate conditions 

bridging bidentate cnge ligands may be possible with 

copper(II) ions. 

Confirmation of this interpretation of the 

coordinating properties of cnge is obviously dependent on 

the synthesis and structural characterisation of cnge 

complexes of a wider range of metals, with both filled 

and partially filled electronic configurations. 
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C HAP T E R T H R E E 

COPPER(II) COMPLEXES OF l-CARBAMOYLGUANIDINE 

3.1 Introduction 

As an extension to the study of the coordination 

properties of l-cyanoguanidine described in Chapter Two, 

a similar investigation of the chemistry of its 

hydrolysis product, variously referred to in the 

literature as l-carbamoylguanidine, ureidoguanidine, 

dicyandiamidine, guanylurea, guanylcarbamate, 

aminoiminourea, aminoiminomethylurea*, was undertaken. 

(The choice of nomenclature, l-carbamoylguanidine, is 

based on the structure determinations described in this 

Chapter.) The diversity of nomenclature undoubtedly 

arises from the fact that three tautomeric forms 

(3.1-3.3) can be envisaged for this material for which no 

definite structural analysis has been published. All 

previous structural analyses, which tend to favour form 

3.2, have been based on spectroscopic (ir, UV-visible) 

and chemical analytical data. 3 ,48,49,50 

l-Carbamoylguanidine (clge) has been reported to 

bond to transition metals. 48 The early literature on 

transition metal-clge complexes is, however, extremely 

difficult to follow owing to the indiscriminate 

application of pseudonyms to neutral clge as well as its 

cationic, [clgeH]+, and anionic, [clge]-, derivatives. 

* Chemical Abstracts Registry Number [141-83-3]. 
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3.1 3.2 

3.3 

The majority of papers refer to complexes containing 

either [clgeH]+ or [clge] moieties and there appears to 

be only two original reports of the preparation of 

copper{II) complexes containing the neutral molecule, 

clge. They are both superficial; characterisation of the 

products being based almost exclusively on chemical 

analytical data; Dubsky and Strnad5l claim the 

preparation of Cu{clge)2S04 and Cu(clge)2(N03 )2' whereas 

Ray and Bandopadhyay52 claim the preparation of 

Cu{clge)2S04' l.5H20 and Cu{clge)2Cl 2 • 

These complexes are, however, quite significant 

owing to their similarity to corresponding complexes of 

biguanide (bg; 3.4) and biuret (bu; 3.5). 

Structural studies of [CU(b9)21Cl2.2H202l and of 

[CU{bU)2Cl2]22 have shown that bg chelates copper{II) via 
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3.4 3.5 

two imine groups (3.6) whereas bu chelates copper(II) 

through its two carbonyl groups (3.7). 

3.6 3.7 

Since clge contains fragments of bg and bu, a number of 

coordination modes can be envisaged, the most probable 

being those involving either two imine groups (3.8) or 

one imine and one carbonyl group (3.9) as donor centres. 

In an early attempt to ascertain how clge bonds to 

t " 53 'kS2 d rans1t1on metals, Syamal repeated Ray s wor an 

undertook a spectroscopic (i.r. and Uv-visible) study of 

his products which he designated on the basis of chemical 

analytical data, as Cu(clge)2S04.l.SH20 and Cu(clge)2Cl2. 

lH 20. He concluded that the carbonyl group of clge, 
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3.8 3.9 

although retained on coordination to copper(II), is not 

bonded to the metal ion and that both donor atoms are 

nitrogen atoms. This conclusion is not consistent with 

either of the coordination modes (3.8, 3.9) derived by 

analogy with copper(II) complexes of bg and bu, but is 

best described by a Lewis structure (3.10) which involves 

coordination through an amine group. 

3.10 

Since no definitive evidence is available for 

uncoordinated clge or any transition metal-clge 

complexes, the crystal and molecular structures of the 

1:1 ethanol adduct of l-carbamoylguanidine (clge.EtOH) 

and of bis(l-carbamoylguanidine)dinitrato copper(II) 
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[Cu(clge)2(N03 )2] have been determined. Furthermore, the 

vibrational spectra of these compounds, their deuterated 

analogues and the analogous complexes Cu(clge)2X2 (X = 

Cl, Br) have also been recorded with a view to using them 

as an effective diagnostic tool in assessing the mode of 

coordination of the ligand. 

3.2 Experimental 

3.2.1 Clge.EtOH and clge 

l-Carbamoylguanidine was prepared by a modified 

version of the capricious synthesis reported by Piskala. 54 

An aqueous solution of l-carbamoylguanidinium 

hydrochloride (5g in 50 cm3 ) (see Section 4.2 for 

preparation) was treated with Dowex-l ion exchange resin 

(lOOg, previously soaked in sodium hydroxide (10M) for 

seven days, then washed in deionised water) by allowing 

the mixture to stand for two days. The resin was 

filtered off and washed with water. The combined 

filtrates were evaporated under vacuum at temperatures 

not exceeding 35°C and crystallised from ethanol. 

Colourless crystals of the adduct were stored in a 

stoppered bottle to prevent loss of ethanol. The 

unsolvated product was obtained, in powder form, by 

drying the adduct under vacuum over concentrated sUlphuric 

acid and potassium hydroxide. Yield 2.1g (58%), mpt 

l03-104°C. 

Analytical data for these and all subsequent products 

are collated in Table 3.1. 
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3.2.2 [Cu(clge)2(N03121 

Bis(l-carbamoylguanidine)dinitrato copper(II) was 

prepared via two routes:- (a) the hydrolysis of 

bis(l-cyanoguanidine)di-~-aquocopper(II) dinitrate 

dihydrate and (b) the reaction of clge with copper(II) 

nitrate trihydrate in aqueous solution. The former route 

produced small amounts of a crystalline sample whilst the 

latter gave an almost 100% yield of the product in powder 

form. 

Route (a) 

An aqueous solution of bis (l-c j()...'o- guanidine)di-

~-aquocopper(II) dinitrate dihydrate [2.1g (5 mmol) in 10 

cm3 ] was allowed to stand in an open conical flask (100 

3 cm ) at room temperature. After 7 days a few dark blue 

crystals had grown from the solution. They were 

collected, washed with deionised water, and dried over 

silica gel. Further quantities of the product were 

produced on leaving the solution to stand for several 

more days. 

Route (b) 

An excess of an aqueous solution of copper(II) 

nitrate trihydrate [2.4g (10 mmol) in 10 cm3 ] was added 

to an aqueous solution of clge [2.04g (20 romol) in 5 

cm3 ]. The blue precipitate which formed immediately was 

collected, washed with deionised water, and dried over 

silica gel. Yield 3.80g (97%). 
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3.2.3 Cu(clge)2C12 and Cu(clge)2Br2 

Attempted preparations of copper(II)-clge chloride 

and bromide complexes by a method analogous to Route (b) 

for ~u(clge)2(N03)~ were unsuccessful, due to the 

instability of the complexes in aqueous solutions. 

However, ethanol proved to be a suitable alternative to 

water and Cu(clge)2C12 and Cu(clge)2Br2 complexes were 

synthesised in powder form using the following method. 

The addition of an ethanolic solution of cuC1 2 .2H20 

[0.17g (1 mmol) in 10 cm3 ] or CuBr 2 [0.22g (1 mmol) in 10 

cm3 ] to an ethanolic solution of clge [0.20g (2 mmol) in 

20 cm3 ] yielded blue precipitates which, after 

collection, washing with cold ethanol, and air drying, 

were analysed for Cu(clge)2C12. H20 or Cu(clge)Br 2 . 

Isothermal dehydration of Cu(clge)2C12.H2o at 110°C for 2 

hours gave Cu(clge)2C12. Yields:- 0.31g (97%) 

Cu(clge)2C12' 0.36g (84%) Cu(clge}2Br2. 

3.2.4 Q6-clge and CU(D6-clge)2(N0312 

Deuterated clge was obtained by repeated solution 

of clge in D20 followed by removal of excess water under 

vacuum. 

[Cu(clge)2(N03 }2 1 could not be deuterated directly 

because the material was insoluble in most common 

deuterated solvents with labile deuterium atoms (e.g. D20 

or C2H
S

OD). 

CU(D6-clge)2(N03 )2 was prepared by the addition of 

a D20 solution of copper(II) nitrate trihydrate 
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TABLE 3.1 Analytical Data for clge and Copper(II)-clge 

Complexes 

Experimental/Theoretical % 

Compound C H N 

c1ge.EtOH* 32.24/32.43 7.60/8.11 41. 81/37.84 

c1ge 23.15/23.53 5.88/5.88 54.90/54.94 

[Cu(c1ge)2(N03 )2]a 12.06/12.26 3.18/3.06 36.03/35.76 

[Cu(clge)2(N03 )2]b 12.13/12.26 3.25/3.06 35.93/35.76 

Cu (clge) 2 C1
2 

. H2O 13.56/13.47 3.71/3.96 31.43/31.42 

Cu(c1ge)2 Cl~ 14.10/14.18 3.66/3.57 32.78/33.09 

Cu(clge)2Br 2 11.33/11.24 2.88/2.81 26.02/26.21 

* The poor analytical data is undoubtendly due to 

ethanol loss during analytical handling. 

a Product from Route (a) 

b Product from Route (b) 



(previously deuterated by the same method as clge) [0.25g 

(1 mmol) in 2 cm3 ] to a D20 solution of D
6
-clge [0.2g (2 

mmol) in 2 cm3 ] under a dry nitrogen blanket. '~'he bl ue 

precipitate which formed immediately was collected, 

washed with D20 and dried under vacuum. Yield .37g (92%). 

3.3 Crystal and Molecular structures of the 1:1 Ethanol 

Adduct of I-Carbamoyl guanidine and of 

Bis(l-carbamoylguanidine)dinitratocopper(II) 

3.3.1 Structure solution and crystal data for clge.EtOH 

The ethanol adduct was chosen for structural 

analysis since clge formed initially in aqueous solution 

could not be· crystallised as the free molecule from any 

solvent. 

A suitable colourless crystal (0.4 x 0.2 x 0.2 mm) 

of the adduct was obtained by allowing a warm saturated 

ethanol solution of clge to cool slowly to room 

temperature. The crystal was mounted in a sealed 

Lindemann tube to prevent loss of ethanol. 

Cell parameters, space group and X-ray diffraction 

data were obtained as described in Section 1.6.1. Of the 

830 intensities collected, 715 were deemed to be observed. 

The carbon, nitrogen and oxygen atoms of the two 

molecules were located by direct methods using the 

'MULTAN 80' suite of programs. 32 Full matrix least 

squares refinement with anisotropic temperature factors 

for all these atoms converged at R = 0.075. The top six 

peaks (electron densities 0.41 to 0.34 e/~3) of a 
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subsequent difference Fourier synthesis gave the 

positions of all the hydrogen atoms of the clge molecule. 

The eighth distinct peak (density 0.23 e/g3 ) gave the 

position of the hydroxyl hydrogen atom. The thermal 

lability of the ethyl group prevented accurate location 

of its hydrogen atoms which had to be positioned using a 

hydrogen placing routine [r(C-H) = 0.95 R, U(1SO) = 0.05 

R2 ]. Further refinement of the structure included the 

clge and alcoholic hydrogen atoms with isotropic thermal 

parameters; it converged at R = 0.046. The ethyl 

hydrogen atoms were included in the structure factor 

calculations without refinement. Final positional 

parameters and thermal parameters are given in Tables 3.2 

and 3.3. Observed and calculated structure factors are 

included in Appendix B. 

Crystal Data 

C4H12N402' M = 148.2, orthorhombic, space group 

P2 1 21 21 , a = 7.509(3), b = 8.896(3), c = 11.565(3) ~, u = 

772.5 ~3, Dm = 1.25, Dc = 1.27 g cm- 3 for Z = 4, F(OOO) = 

320, ~(MoK ) = 1.1 cm- l . a 

3.3.2 Structure solution and crystal data for 

[Cu(clge)2(N°3121 

Deep blue crystals of [Cu(clge)2(N03 )2] were 

obtained by slow hydrolysis of bis(l-cyanoguanidine)di­

~-aquo-copper(11)dinitrate dihydrate as described in 

Section 3.2.2a. Several crystal were mounted in 
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TABLE 3.2 Final positional Parameters (x10 3 ) for 
c1ge.EtOH 

Atom x/a y/b z/c 

0(1) 319.1(3) 135.6(2) 388.4(2) 
e (1 ) 173.4(4) 198.5(3) 409.1(2) 
e (2 ) 2 . 2 ( 4 ) 64.0(3) 275.6(3) 
N(1) 165.3(4) 307.8(3) 490.9(2) 
N(2) 16.3(3) 174.9(3) 354.4(2) 
N ( 3 ) -155.2(4) 51.6(4) 222.1(3) 
N (4 ) 127.4(4) -34.3(3) 247.8(3) 
0(2 ) 545.9(4) 267.3(4) 224.2(3) 
e ( 3 ) 455.2(8) 281.5(6) 117.3(4) 
e(4) 465(1) 151.9(8) 44.8(6) 
H(1) 258 (7) 327(5) 533(5) 
H(2) 53(9) 339(6) 521(5) 
H(4) -232(6) 127(5) 231(4) 
H (5 ) 157(6) -5(5) 164(4) 
H(6) 103(6) -105(5) 206(4) 
H (7 ) 242(7) -26(5) 282(4) 
H(8) 476(9) 233(7) 275(5) 
H(9) 513 368 73 
H (10) 328 307 131 
H(11) 399 171 -30 
H (12) 591 126 27 
H(13) 406 65 85 

TABLE 3.3 Thermal 3 ~2 Parameters (x10)/ for clge.EtOH 

Atom U(1) U(22) U(33 ) U(23) U(13 ) U(12 ) U ( ISO) 

O( 1) 24(1) 45 (1) 48(1) -11(1) -1 (1) 4 (1) 
e(1) 29 (1) 28 (1 ) 32 (1) 2 (1) 0(1) -2(1) 
C(2) 29 (1) 29 (1) 36(2) -2(1) 0(1) 1 (1) 
N( 1) 29 (1) 41 (1) 37 (1) -12(1) -1 (1 ) o ( 1 ) 
N (2 ) 26 (1) 28 (1) 36(1) -4(1) -l( 1) 2 (1) 
N(3) 39 ( 2 ) 45(2) 55(2) -18(2) -14(1) 8 ( 1 ) 
N (4) 35(2) 35 (1) 51(2) 15(1) -5 (1) 4 ( 1 ) 
o ( 2) 40 (1) 78(2) 51(2) 

-
-3 (1) -2 (1) - 3 ( 1 ) 

C ( 3 ) 83(3) 79(2) 67(3) -7(3) -26 (3) 19(3) 
C(4) 102(4) 117(5) 80(4) -28(4) -9(4) -1(4) 
H( 1) 40(10) 
H(2) 60(20) 
H(4) 20(10) 
H(5) 20(10) 
H(6) 20(10) 
H(7) 20(10) 
H(8) 60(20) 

In the form: [exp-2n2(U(11)h2a*2+U(22)k2b*2+U(33)lc*2+ 

2U(12)hka * b*+2U(13)hla*c*2U(23)k1b*c*)] 



Lindemann tubes for preliminary study. Oscillation and 

Weissenberg photographs revealed cell parameters, space 

group and the fact that the crystals were twinned about 

the (100) plane. The ratio of the two components varied 

from crystal to crystal. X-ray diffraction data for the 

refinement of cell parameters and structure determination 

were calculated as described in Section 1.6.1 for the 

major component of the crystal (0.3 x 0.2 x 0.2 mm) which 

was found to have the maximum component ratio; allowance 

was made, at a later stage, for the twinning of the 

crystals. Of the 1301 intensities collected 555 were 

deemed to be observed. 

Consideration of the molecular formula within the 

context of the crystal symmetry indicated that the copper 

atom must be situated in one of the two-fold special 

positions (0.5, 0.5, 0.5) of the P2 1/n space group and 

that the pairs of clge molecules and nitrate anions must 

be located in centrosymmetrically related positions. 

Consequently, subsequent to the data reduction stage, the 

positions of the carbon, nitrogen and oxygen atoms were 

determined by a difference Fourier synthesis. The 

identities of the skeletal atoms of the chelating ligand 

were confirmed by equating their atomic scattering factors 

to that of carbon and then determining their isotropic 

temperature factors. Those atoms with factors between 

0.0296 and 0.0318, between 0.0105 and 0.0235, and equal 

to -0.0067 were designated carbon, nitrogen and oxygen, 

respectively. Full matrix least squares refinement with 
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anisotropic temperature factors for all these atoms 

converged at R = 0.070. A subsequent difference Fourier 

synthesis indicated the presence of electron density 

(varying from 0.50 to 0.29 e/~3) consistent with the 

ligand adopting coordination mode 3.9. The positions of 

the corresponding hydrogen atoms were then defined 

[r(N-H) = 0.95 ~; U(ISO) = 0.03 ~2] using a hydrogen 

placing routine. Further refinement of the structure 

with fixed hydrogen atoms converged at R = 0.066. Final 

positional parameters and thermal parameters are given in 

Tables 3.4 and 3.5 respectively. Observed and calculated 

structure factors are included in Appendix B. 

Crystal Data 

C4H12NI008Cu, M = 391.8, monoclinic, space group 

P2 1/n, a = 9.146(3), b = 6.654(3), c = 11.183(3) R, 8 = 

98.56(3)°, ~ = 672.9 ~3, D = 1.89, D = 1.93 g.cm- 3 for m c 

Z = 2, F(OOO) = 398, ~(MOK ) = 17.60 cm- l . 
a 

3.3.3 Molecular geometries of uncoordinated and 

coordinated l-carbamoylguanidine 

Whereas the clge molecules are held by hydrogen 

bond interactions in the structure of the ethanol adduct, 

they act as bidentate ligands in the structure of the 

complex. Two centrosymmetrically related clge molecules 

chelate the copper(II) ion to form a [Cu(clge)2]2+ 

moiety. The molecular geometries of the clge molecule in 

the adduct and in the [CU(Clge)2]2+ moiety are shown in 
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TABLE 3.4 Final positional Parameters (xl0 3 ) for 

[Cu(clge)2(N03 )2] 

Atom x/a y/b z/c 

Cu(l) 500 500 500 
C(1) 245(1) 338(2) 598(1) 
C ( 2 ) 215(1) 358(2) 377(1) 
N(1) 171(1) 293(2) 686(1) 
N(2) 164(1) 321(2) 486(1) 
N(3) 115(1 ) 333(2) 280(1) 
N ( 4 ) 350(1) 420(2) 371(1) 
N (5 ) 298(1) 339(2) 11 ( 1 ) 
O( 1) 376(1) 402(1) 617(1) 
0(2) 369 (1) 348(2) 112(1) 
0(3) 361(1) 295(2) -75(1) 
0(4) 163(1) 372(2) 12 ( 1 ) 
H( 1) 219 306 767 
H(2) 74 244 669 
H ( 3 ) 63 284 482 
H(4) 19 288 289 
H(5) 140 360 203 
H (6) 378 426 293 

TABLE 3. 5 Final Thermal Parameters (xl0 3 )/g2 for 

[Cu(clge)2(N03 )2] 

Atom U(11) U(22) U(33) U(23) U (13) U(12 ) 

Cu(l) 27 (1) 54(2) 28(1) -1(2) 1.0(8) -4(2) 
C(1) 29 (7 ) 28(8) 24(6) -10(6) 7(5) -4(6) 
C(2) 22(6) 21( 8) 37(7) 1 ( 6 ) 0(5 ) 3 ( 5 ) 
N(1) 32(6) 63(9) 23(5) -6(5) 0(4 ) -14(6) 
N ( 2 ) 15(5) 39(7) 29(5) 0(5) 8 ( 4 ) -9(5) 
N ( 3 ) 24(6) 62(9) 31( 6) -8(6) 3 ( 4 ) -12(5) 
N ( 4) 21(5) 41( 7) 30(5) -13(5) 6 ( 4 ) -9(4) 
N ( 5 ) 29(6) 35(8) 38(6) 14(6) 14 ( 5 ) 6 ( 5 ) 
O( 1) 15(4) 50(6) 22(4) 3 ( 4 ) o ( 3 ) -7(4) 
0(2 ) 49(6) 100(10) 27(5) -8(6) 3 ( 4 ) 15 (7) 
o ( 3 ) 29(5) 80(9) 27(5) 0(5) 7 ( 4 ) 12 ( 5 ) 
0(4 ) 19(5) 74(9) 80(7) 3 (7 ) 18(5) 5 ( 6 ) 

In the form: [exp-2TI2(U(11)h2a*2+U(22)k2b*2+U(33)12c*2+ 

2U ( 12 ) hk a * b*+2U (13) h la *c*+ 2U ( 23) k 1 b*c * ) ] 

79 



Figures 3.1 and 3.2 respectively; bond lengths and angles 

are compared in Table 3.6. 

It is clear that the geometry of coordinated clge 

differs from that of free clge. Uncoordinated clge 

adopts tautomeric form 3.1 such that an intramolecular 

hydrogen bond occurs between 0(1) and N(4). Proton 

transfer from N(4) to N(2) during the coordination 

process results in tautomeric form 3.2, which can readily 

chelate the copper(II) ion giving rise to coordination 

form 3.9. 

Both clge molecules are close to planarity, the 

maximum deviation of the skeletal atoms from the best 

planes (Table 3.7) being 0.098 ~ for free clge and 0.028 

~ for coordinated clge, inferring sp2 hybridisation of 

the skeletal atoms and the presence of a delocalised 

n-system over the entire C-N-O skeleton. This inference 

is supported by the intermediate length C-O and C-N bonds 

55 [typical bond lengths: r(C-O) = 1.43, r(C=O) = 1.22, 

r(C-N) = 1.47, r(C=N) = 1.27 ~] and the O-C-N, N-C-N and 

C-N-C bond angles which are close to 120°. 

The tautomeric change on coordination, generation 

of a C-NH-C bridge at the expense of a C=N-C bridge, has 

several ramifications. The bridging C-N bonds lengthen 

at the expense of the terminal C-N bonds, the C-N-C bond 

angle increases and the molecule is flattened. Pertinent 

structural features of free and coordinated clge are 

compared in Table 3.8, together with the corresponding 

data for bg and bu. 
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H2 

H5 

1.98(5) 

H7 

117(3) 120(4) 

--
FIGURE 3.1 Molecular geometry of l-carbamoylguanidine 

(bond lengths/R and bond angles/oJ 
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FIGURE 3.2 Molecular geometry of [Cu(clge)2]2+ cationic 

fragment (bond lengths/~ and bond angles/C) 
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TABLE 3.6 Molecular Geometries of Uncoordinated and 

Coordinated 1-Carbamoy1guanidine 

Bond Distances/~ c1ge.EtOH [Cu(c1ge)2(N03 )2 1 

C(l)-O(l) 1.251(4) 1.27(2) 

C(1)-N(1) 1.358(4) 1.31(2) 

C(1)-N(2) 1.355(4) 1.35(2) 

C(2)-N(2) 1.348(4) 1.39(2) 

C(2)-N(3) 1.338(4) 1.32(2) 

C(2)-N(4) 1.324(4) 1.31(2) 

Bond Ang1es/ o c1ge.EtOH [Cu(c1ge)2(N03 )2 1 

O(1)C(1)N(l) 119.5(3) 122(1) 

O(1)C(1)N(2) 127.1(3) 124(1) 

N(1)C(l)N(2) 113.4(3) 114(1) 

C(l)N(2)C(2) 119.8(3) 126(1) 

N(2)C(2)N(3) 116.2(3) 115(1) 

N(2)C(2)N(4) 126.3(3) 122(1) 

N(3)C(2)N(4) 117.4(3) 123(1) 
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TABLE 3.7 Planarities of Free and of Coordinated 
2+ l-Carbamoylguanidine and of the [Cu(clge)2 J 

Fragment 

clge in clge.EtOH 

Deviation from Deviation from 

Atom Plane/~ Atom plane/~ 

O( 1) -0.098 N ( 2 ) -0.008 

C(l) -0.001 N ( 3) -0.055 

C(2) +0.006 N(4) +0.095 

N( 1) +0.062 

Equation of best plane: -1.9704x - 5.76071y + 8.27349z = 1.901 

Deviation from Deviation from 

Atom Plane/g Atom Plane/g 

O( 1) +0.028 N(2) +0.003 

c(1) -0.018 N(3) +0.020 

C (2) -0.014 N ( 4) -0.016 

N( 1) -0.005 

Equation of best plane: -2.8725x + 6.3119y + 0.9582z = 2.018 

Deviation from Deviation from 

Atom Plane/g Atom plane/~ 

Cu(l) +0.072 N( 1) +0.017 

0(1) -0.028 N(2) +0.018 

Cn) -0.026 N(3 ) +0.042 

C(2) -0.022 N ( 4) -0.074 

Equation of best plane: -3.l976x + 6.2292y + 0.9938z = 1.940 



The coordination mode of clge is intermediate 

between that of bg and that of bu; bg coordinates via two 

imine groups (3.6), clge via one imine and one carbonyl 

group (3.9), and bu via two carbonyl groups (3.7). On 

coordination to copper(II), clge undergoes an analogous 

tautomeric change to that experienced by bg, proton 

transfer from a terminal amine group to the central 

nitrogen atom generating a C-NH-C bridge at the expense 

of a C-N=C bridge. No tautomeric change occurs in bu on 

coordination, both free and coordinated bu having a 

C-NH-C bridge. 

It is clear from the data in Table 3.8 that the 

effect of protonation at N(2), caused by coordination, is 

extremely marked and consistent within this group of 

molecules. 

It is significant that in none of these complexes 

does the ligand coordinate the transition metal through an 

amine group, a coordination mode generally accepted by 

early workers in this field. 48 ,52,53 Since the ligand is 

planar, an extensive delocalised n-system must extend 

over the whole molecule, resulting in sp2 hybridisation 

of the amino groups. Consequently, the groups do not 

have lone pairs of electrons which can be directed 

towards a transition metal and hence coordination through 

amine residues is not possible; the only functional 

groups which act as coordinating centres in these ligands 

are imine and carbonyl fragments. 
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TABLE 3.8 Significant Features of the Molecular Geometries 

of Free and Coordinated clge, bg and bu. 

Dihedral Average Average C-N-C 

angle/o* r(C-Nb 'd )/~ r(C-Nterminal)/~ # angle/o 
rl. ge 

clge (free) 7.5 1.352(4) 1.348(4) 119.8(3) 

clge (coord) 1.7 1.370(20) 1.315(20) 126.0(1.0) 

bg (free)13 12.5 1.356(2) 1.358(2) 119.9(1) 

bg (coord)21 1.374(8) 1.349(8) 127.3(5)** 

bu (free)17 6.3 1.385(3) 1.325(3) 128.5(2) 

bu (coord)22 6.4 1.371(6) 1.321(6) 126.8 

* This is the angle between the normals to the planes which 

best represent the two halves of the molecule. 

# This average does not include those contacts, formally 

defined as double bonds, between carbon and terminal imine 

groups. 

** Average of two determinations. 

3.3.4 Intermolecular contacts in clge.EtOH 

A projection of the structure of the adduct onto 

the (100) plane is shown in Figure 3.3. The structure is 

composed of mutually perpendicular ribbons of clge 

molecules, running parallel to the x axis, with ethanol 

molecules located above and attached to the carbonyl 

oxygen by a fairly strong hydrogen bond, r(O(l) ... 0(2)) = 



o 

H 
o 
c 

o o 
N o 

FIGURE 3.3 Projection of the structure of 

clge.EtOH onto the (100) plane 
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2.806 R. The ribbon-like structure is more clearly seen 

in Figure 3.4 which shows a projection of the structure 

perpendicular to the plane of the clge molecule. Hydrogen 

bonds (Table 3.9) maintain the inter- and intra-ribbon 

contacts and strengthen the rigidity of the ethanol 

oxygen atom. The inter- and intra-ribbon hydrogen bonds 

are depicted in Figures 3.3 and 3.4. Details of the 

molecular geometry of the ethanol molecule are given in 

Table 3.10. With the exception of the short C-C bond 

distance which results from the thermal libration of the 

ethyl moiety, this data is unremarkable. 

TABLE 3.9 Intermolecular Contacts of Less than 3.30 ~ in 

clge.EtOHi Hydrogen Bond and Electrostatic Interactions 

Symmetry 

Interaction Properties r(X ... XI) reX-H) r(H ... XI) XHX I 

X-H ... X I of Xl R ~ ~ 0 

N(l}-H(l} ... N(2) 1 III 2+X'2-y, 2- 2 3.189 0.87 2.23 168 

N( l}-H( 2) ... O( 1) 1 III -2+X, 2-Y' 2- Z 2.994 0.96 2.06 166 

N(3)-H(4) ... 0(2) -l+x,y,z 2.953 0.89 2.08 165 

N(3)-H(5) ... N(1) -x,-t+y,t-z 3.283 0.84 2.45 174 

N ( 4 ) -H ( 6 ) ... N ( 2 ) 1 1 
-X'-2+Y'2- Z 3.042 0.82 2.26 160 

N(4)-H(7) ... 0(2)* l-x,-~-y,~-z 3.039 0.95 2.44 121 

o ( 2 ) -H ( 8 ) ... 0 ( 1 ) x,y,z 2.806 0.84 1. 97 175 

* For this interaction the angle at H(7) is very low owing to the 

N(4)-H(7) ... 0(1) intramolecular hydrogen bond interaction, 

r(N(4)-H(7)) = 0.95, r(H(7) ... 0(1)) = 1.98, r(N(4) ... 0(1)) = 

2.646 ~ and N(4)H(7)0(1) = 126°. 
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FIGURE 3.4 Projection of the structure of clge.EtOH 

perpendicular to the plane of the clge molecule 



Table 3.10 Geometry of the Ethanol Molecule in clge.EtOH 

Bond Distances/~ Bond Angles/o 

C(3)-0(2) 

C(3)-C(4) 

0(2)-H(8) 

1.417(6) 

1.428(8) 

0.84(6) 

O(2)C(3)C(4) 

H(8)O(2)C(3) 

114.5(5) 

110(4) 

3.3.5 Intermolecular Contacts and the Coordination of the 

Copper(II) Ion in [cu(clge)2(N0 3121 

Views of the structure of the complex perpendicular 

to (001) and (120) are shown in Figures 3.5 and 3.6 

respectively. It consists of ribbons of coplanar 

2+ [Cu(clge)2] cationic fragments and nitrate anions 

linked through the anions to give two sets of planes 

parallel to (120) and (120). The intra- and inter-ribbon 

contacts involve both electrostatic and hydrogen bonding 

interactions. All intermolecular contacts of less than 

3.30 ~ are summarised in Table 3.11; the principal 

hydrogen bonding interactions are also shown in Figure 

3 . 6 . 

The copper(II) ion is coordinated by two 

centrosyrnmetrically related clge molecules which form an 

effectively planar [Cu(clge)2]2+ cationic fragment, the 

maximum deviation of the constituent atoms being 0.074 ~ 

(Table 3.7). The Cu(l)-O(l) and Cu(1)-N(4) bond 

distances, 1.966 ~ and 1.908 ~ respectivel~ are 
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FIGURE 3.5 View of the structure of [Cu(clge)2(N0 3 )2] 

perpendicular to the (001) plane 
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TABLE 3.11 Intermolecular Contacts of Less than 3.30 ~ in 

[Cu(clge)2(N03 )2]: Hydrogen Bond and Electrostatic 

Interactions 

Interaction Symmetry r(X ... X') r(X ... H) r(H ... X') XHX' 

X-H ... X' Properties of X' ~ ~ ~ 

N(l)-H(l) ... O(3) x,y,l+z 2.96 0.95 2.03 

N(l)-H(2) ... O(2) III 
-2+X '2-y'2+ Z 2.92 0.94 1. 98 

N(2)-H(3) ... O(3) III 
-2+X '2-y'2+ Z 2.86 0.95 1. 94 

N(3) ... O(l)* III 
-2+X '2-Y'-2+ Z 3.06 

N(3) ... O(3)* III 
-2+X '2-Y'2+ Z 3.14 

N(3) ... O(2)* x,y,z 3.20 

N(3) ... O(4)* x,y,z 3.26 

N(3) ... N(4)* III 
2- X '-2+Y'2- Z 3.27 

N(4)-H(6) ... O(2) x,y,z 2.97 0.95 2.08 

* The strengths of the intermolecular contacts involving N(3) are 

much weaker than those involving N(l), N(2) and N(4) inferring 

much weaker hydrogen bonding interactions. Indeed, unequivocal 

designation of the hydrogen bonds about N(3) is not possible, 

only H(S) lying along an intermolecular contact [N(3)H(S)O(4) = 

168°]. Although H(4) is located near the contact to 0(3) 

[N(3)H(4)O(3) = 146°], it is difficult to consider this a true 

hydrogen bonding interaction, since 0(1) also acts as a hydrogen 

bond acceptor from N(l) and N(2), the three angles at 0(3) 

summing to exactly 360° inferring sp2 hybridisation of the 

oxygen atom. The only other contact which H(4) is remotely near 

is that to 0(1), [N(3)H(4)O(l) = 118°] but the angle is too 

small for it to be a significant hydrogen bonding contact. 

° 

166 

173 

163 

156 



comparable to the Cu-O and Cu-N bond distances found for 

coordinated bu [r(C-O) = 1.935 ~]22 and coordinated bg 

[average r(Cu-N) = 1.946 ~].21 

A weak bonding interaction also occurs between the 

copper atom and the nitrate anions in adjacent planes, 

theO(4) atoms of centrosymmetrically related nitrate 

anions being located in the axial positions of the square 

planar Cu02N2 chromophore. This contact is almost at the 

limit of the copper atom's sphere of influence, the 

Cu(1) ... O(4) interatomic distance (2.98 ~) being 

marginally less than the sum (2.95 ~) of the van der 

Waal's radii of copper (1.43 ~) and oxygen (1.52 ~).4l 

Assuming the copper(II) ions coordination sphere to 

consist of six equivalent donor atoms then the 

tetragonality (T) can be calculated. A value for R of s 

1.937 ~ is obtained by averaging r(Cu(l)-O(l» and 

r(Cu(1)-N(4» and RL is taken as r(Cu(1)-O(4» = 2.890 ~. 

Hence T is calculated to be 0.67 which defines the 

copper(II) ion's stereochemistry to be at the limit of a 

tetragonally elongated octahedron, just outside the range 

for square coplanar stereochemistry (Section 1.5.2). This 

is in agreement with the stereochemistry predicted from 

the van der Waal data noted above. Full details of the 

copper(II) ion's coordination geometry are given in Table 

3.12. 

The molecular geometry of the nitrate anion (Table 

3.13) is consistent with D3h symmetry. The infrared 

spectrum of the complex, which is compared with those of 
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TABLE 3.12 Coordination Geometry of the Copper(II) Ion in 

Bond Distances/~ 

Cu(l)-O(l) 

Cu(1)-N(4) 

Cu(1)-0(4) 

1.966(8) 

1.908(10) 

2.890(11) 

Bond Angles/o 

o (1 ) Cu ( 1 ) N ( 4 ) 

O(1)Cu (1)0( 4) 

N ( 4 ) Cu ( 1 ) 0 ( 4 ) 

81.5(4) 

86.1(4) 

85.9(4) 

TABLE 3.13 Geometry and Planarity of the Nitrate Anion in 

Bond Distances/~ 

N(5)-0(2) 

N(5)-O(3) 

N(5)-0(4) 

Atom 

N(S) 

0(2 ) 

1.22(2) 

1.23(2) 

1.23(2) 

Deviation from 

plane/~ 

+0.005 

-0.002 

Bond Angles/o 

O(2)N(S)O(3) 

O(2)N(S)O(4) 

0(3)N(S)0(4) 

119(1) 

119(1) 

120(1) 

Atom 

Deviation from 

plane/~ 

o ( 3 ) 

0(4) 

-0.002 

-0.002 

Equation of best plane: 1.8042x + 6.4539y - 1.9050z = 2.698 
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-1 
Cu(clge)2X2 (X = Cl, Br) in Figure 3.7 (1800-600 cm ) 

does not, however, entirely support this conclusion. It 

contains bands which can be attributed to the B2 (1390 

-1 cm ; probably superimposed on a vibrational mode of the 

-1 
coordinated clge ligand) and Al (1330 and 1050 cm ) 

-1 
stretching vibrations and to the A2 (620 cm ), Al (760 

-1 -1 
cm ) and B2 (720 em ) deformation vibrations of a 

un identate C2v nitrate anion. 56 These observations are 

also consistent with a very weak copper(II)-nitrate 

interaction which reduces the local symmetry of the anion 

3.+ Spectroscopic properties 

Assignment of the vibrational spectra of species as 

complex as clge can only be approximate owing to 

extensive mixing of the internal coordinates of the 

planar skeleton exacerbated by the delocalised n-system. 

Accepting this, a limited qualitative vibrational 

analysis has been attempted for uncoordinated clge. This 

assignment has then been used as a basis for 

interpretation of the spectrum of the coordinated ligand. 

Uncoordinated clge has C symmetry and should have 
s 

33 (23A' and lOAn) vibrational modes all of which are 

infrared active. The in-plane vibrations consist of six 

N-H [designated as three v (N-H) and three v (N-H)] plus s a 

six skeletal [three V(C-Nterminal)' two V(C-Nbridging) 

and one v(C-O)] stretching vibrations and six NH2 [three 

scissors and three rocking] plus five skeletal [two at 
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FIGURE 3.7 IR spectra of Cu(c1ge)2x2 (X = N0
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C(l), one at N(2) and two at C(2)] deformation 

vibrations. The ten out-of-plane deformations can be 

split into six N-H [three wagging and three twisting] 

and, by difference, four skeletal deformation vibrations. 

Infrared spectra for clge.EtOH, clge, D6-clge, 

Cu(clge)2X2 (X = N0 3 , Cl, Br) and CU(D6-clge)2(N03 )2 were 

measured in nujol and halocarbon mulls and in KBr discs 

on a Perkin Elmer 598 spectrometer (4000-400 cm- l ). They 

are collated in Table 3.14. For uncoordinated clge the 

v(N-H) and O(NH 2 ) vibrations were assigned by comparison 

of the spectra of the protonated and deuterated samples 

using, as a basis, the analysis proposed by Jones et al 

for cnge9 and guanidine. 57 Assignment of the skeletal 

vibrations is restricted to those stretches, v(C-N), 

v(C-O), which give bands in the limited wavenumber range 

-1 
1750-1350 cm . Also observed in this region are bands 

due to O(NH 2 ) scissors deformation. All of these 

vibrations have A' symmetry and are extensively mixed. 

The spectra of clge.EtOH, clge and D6-clge in the 

region (1800-1250 cm- l ) are compared with that of cnge in 

Figure 3.8. The deuteration experiments indicate that 

the bands due primarily to the O(NH
2

) scissors 

deformations occur in the 1680-1630 cm- l range; the other 

bands must be attributable to the skeletal stretches. 

The spectra of clge.EtOH and of clge are very similar and 

contain an isolated band at -1410 cm- l which is absent 

from the spectrum of cnge. The spectra also differ from 

that of cnge in the complex structure in the range 
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TABLE 3.14 

c1ge 

3450 ] 
3430 
3380 s,br 
3340 

3220 ] 
3150 s,br 

1675 ] 
1640 s,br 

1600 ] 
1540 s,br 

1420 s,br 

1175 w 

1100 ms 

1040 vw 

920 w 
805 mw 

710 mw 

560 rn,br 

460 m,br 

Key 

-1 Infrared Spectroscopic Data/crn for c1ge,c1ge.EtOH, 

c1ge.EtOH 

3440Sh] 
3400 s,br 
3350 

3230 ] s,br 3160 

1650 s,br 

1600 
1550 ] s,br 

1405 s,br 

1170 w 

1105 
1095 rnw 

1045 m 

925 mw 
820 mw 

725 m 

570 rn,br 

450 m,br 

[Cu(c1ge)2(N03 )2 1 

3480 J 
3380 s,br 

3220 s,br 

1710 sh 
1685 s 
1645 rn 

1510 s 
1385 rn 
1390 s 
1330 rn 
1260 rnw 

1115 rnw 

1050 w 

950 w 
820 rnw 

790 rnw 
760 rn 
720 mw 
670 w 

580 mw 
515 w 
480 mw 

410 rnw 

Cu(c1ge)2 C1 2 

3420 ] 
3330 s,br 

3190 s,br 

1700 sh 
1680 s 
1630 s 

1520 s 
1380 s 

1265 rn 
1230 m 

1110 m 

950 m 

750 m 

670 mw 

600 rn,vbr 

495 m 

420 m,br 

a Cu(clge)2X2 (X = N0 3 , C1, Br) and CU(D6-c1ge)2(N03 )2 only. 

b clge, clge.EtOH and D6-c1ge only. 

c [cu(clge)2(N03 )2] and CU(D6-clge)2(N03 )2 only. 

d Cu(D
6
-clge)2(N03 )2 and D6-clge only. 

s, strong; m, medium; w, weak; v, very; sh, shoulder; br, broad. 



Cu(clge)2Br 2 

3300 s,vbr 

3160 s,br 

1655 s,br 

1490 s,br 
1370 m,br 

1220 m 

1110 mw 

950 w 

755 rn 

650 rn,br 
570 rn,br 

480 rnw 

400 w,br 

2600 ] 
2560 m,br 

2450 ] 
2290 s,br 

1240 ] 
1215 w 

1580 ] 
1540 s,br 
1520 
1420 s,br 

1185 w 
1130 m 

960 m 

1055 vw 

890 w 
815Sh] 
795 m 

740 rnw 
720 w 

660 w 

2600 J 
2545 m 

2480 ] 
2430 m 
2380 s 

1200 w 
1610 s 
1635 s 

1460 s 

1385 s 
1400 ] 
1335 s 
1265m 

1045 mw 
1015 rn 

945 rn 
820 mw 

760 rns 
720 rnw 
690 w 
620 w 
565 w 
546 w 
480 rn 
455 rnw 
420 mw,br 

[ 

[ 

Assignment 

v [N-H] a and 
v [N-H] s 

or d 
v [N-D] a 

and d 
v [N-D] s 

100 

d 6[NH 2 ] or 6[ND2 ] 

v[O(l)C(l)N(l)]a 

v[O(l)C(l)N(l)]b 
v[N(3)C(2)N(4) ] 
v[N(2)C(2)N(3) ] 

O[NH
2

] or 6[ND 2 ]d 

c 
V[N0

3
] 
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c1ge.EtOH 

c1ge 

1800 1600 1400 1200 

FIGURE 3.8 IR spectra of cnge, clge.EtOH, clge 

and D6 -clge 
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1600-1500 cm- l where an extra band occurs. These two 

bands are additional to those assigned by Jones et al to 

the stretching vibrations (at 1580 and 1510 cm- l ) of the 

guanidine residue of the cnge molecule;9 they are 

attributed primarily to the carbamoyl function. The 

absence of bands in the spectrum of D
6
-clge at 

-1 wavenumbers greater than 1580 cm suggests that the 

carbonyl band is moved to lower wavenumbers not only by 

mixing with other skeletal stretches, but also by 

intramolecular hydrogen bond formation to the adjacent 

amine group (Figure 3.l). 

The spectra of the complexes Cu(clge}2X2 (X = N0 3 , 

Cl, Br) are compared in Figure 3.7 in the region 1800-600 

cm- l After subtraction of the bands attributable to the 

vibration of the nitrate anion they are very similar 

suggesting the presence of the planar centrosymmetric 

[Cu(clge}2 12+ moiety in all three complexes. This is 

confirmed by the similarity of their diffuse reflectance 

UV-visible spectra which exhibit very broad absorption 

bands with A values between 695 and 705 nm. 
max 

The spectra of uncoordinated and coordinated clge 

are compared in Figure 3.9 in the 1800-1200 cm- l region. 

Although different, it is clear that spectroscopic 

methods cannot be used on their own to determine the 

exact mode of coordination as evidenced by Syamals 

incorrect interpretation of the tautomeric form and 

coordination mode (3.l0) adopted by the clge molecule. 53 

Unfortunately, the extensive mixing of internal 
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FIGURE 3.9 IR spectra of clge, [Cu(clge)2(N0
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)2] and 
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coordinates which occurs in molecules of this type means 

that changes in the vibrational frequencies do not 

necessarily reflect changes in one particular functional 

-1 
group. Indeed, in the 1800-1300 cm range of the 

spectra of [Cu(clge)2(N0
3

)2] (Figure 3.9) which should 

contain bands due to v(C-N), v(C-O) and O(NH
2

) 

vibrations, all of which have A' symmetry, we were unable 

to separate the O(NH
2

) vibration from the others, even 

following deuteration experiments. The sole observable 

effect of deuteration was to reduce the frequency at 

which the two higher energy bands absorb (Figure 3.9). 

Clearly, unambiguous assignment of the vibrational 

spectra of clge and its derivatives is impossible without 

further isotopic enrichment experiments and a full normal 

coordinate analysis. It is probable, however, that the 

v(C-O) stretching vibration of the carbonyl fragment of 

coordinated clge is a major component of the band at 1700 

cm-
l 

Compared with the free molecule for which the 

maximum frequency for this band is 1600 cm- l (the bands 

-1 at 1675 and 1645 cm have been assigned to O(NH
2

) 

vibrations), this absorption has moved to higher 

frequency (Figure 3.9). Although carbonyl stretching 

frequencies are generally expected to decrease on 

d ' , h 43, h' h coor 1nat10n t rough the oxygen atoms, 1n t 1S case t e 

increase can be rationalised by the loss of the 

intramolecular hydrogen bond present in free clge. 

Previously, the vibrational spectroscopy of these 

materials has been little studied. The only spectrum in 
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the literature is that reported by Babykutty et a1 49 for 

'guanylurea'. Comparison with out data indicates that 

their spectrum is not that of clge, as inferred by their 

nomenclature, but is that of a [clgeH]+ salt. 
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C HAP T E R F 0 U R 

SALTS AND COPPER(II) COMPLEXES OF THE 

!-CARBAMOYLGUANIDINIUM CATION 

4.1 Introduction 

The primary precursors to all l-carbamoylguanidine 

(clge) compounds, are the l-carbamoylguanidinium salts 

([clgeH]X) produced by the acid hydrolysis of 

l-cyanoguanidine (cnge). 

Ion ExcQange 
(-H) 

clge 

! CuX2 
Cu(clge)2X2 

cnge 

HX 1 H20 

[clgeHJX 

CUX 2 
2NH40H 

2NaOH 

Cu[clgeJ 2 

The chemistry of the cationic species [clgeH]+ will 

be discussed in this chapter. Chapter Three described 

the synthesis of neutral clge compounds, whilst Chapter 

Five will describe the production of anionic [clge] 

compounds. 

The salts ([clgeH]X) are frequently mentioned in 

the literature on clge derivatives,48 but little is known 
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of their electronic structure which might be described by 

any of the numerous forms (4.1-4.8) shown below. 

+ 

NH2'-..C/NH'C/NH2 

II I 
NH OH 

4.1 4.2 

4.3 4.4 

+ 

NH2'C/N~C/NH3 
II I 
NH OH 

4.5 4.6 

4.7 4.8 



Forms 4.1 and 4.2 retain a completely sp2 

hydridised skeleton, similar to that found in neutral 

clge, whilst forms 4.3-4.8 all contain one sp3 hybridised 

skeletal atom. This would result in a less extensive 

delocalised n-system in the latter sextet than in the 

former pair of tautomers, and hence 4.1 and 4.2 are the 

most probable description of the electronic structure of 

[clgeH]+. 

There has been little mention of complexes 

containing [clgeH]+ and transition metal ions. Evidence 

for the formation of such complexes containing copper(II) 

51 ions is based on the early report by Dubsky and Strnad 

which was reviewed by Ray.48 Dubsky and strnad51 

reported that the reaction of copper(II) chloride, 

[clgeH]Cl and hydrochloric acid in aqueous solutions, 

produced products which, by elemental analysis, had a 

copper(II):chloride:[clgeH]+ ratio of 1:4:2 and were 

green to blue in colour. Corresponding compounds could 

be produced using bromide analogues of the starting 

materials. No data is available on the structure of 

+ these compounds, particularly as to whether [clgeH] acts 

as a ligand or a cation. 

To investigate the nature of the [clgeH]+ cation, a 

number of salts and copper(II) complexes have been 

synthesised and characterised. The crystal and molecular 

structures of l-carbamoylguanidinium perchlorate 

([clgeH]Cl04 ) and di(l-carbamoylguanidinium)diaquotetra­

chlorocuprate(II){[clgeH]2[cuC1 4 (H
2
0)2]} have been 
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determined and the infrared spectra of all the salts and 

complexes have been recorded. 

4.2 Experimental 

4.2.1 l-Carbamoylguanidinium salts 

+ A number of [clgeH] salts were synthesised by the 

acid hydrolysis of cnge in aqueous solution. 

(a) [clgeH]Cl0
4 

Perchloric acid (6 cm3 ; 70%) was slowly added to 

cnge (5g) dissolved in the minimum of boiling 

deionised water. The solution was further boiled 

to reduce its volume by half before cooling in ice. 

The fine white precipitate so formed was 

recrystallised from water and dried over silica 

gel. Yield 8.9g (74%); m.p. ca. 176°C. Analytical 

data for this and all subsequent products are 

collated in Table 4.1. 

(b) [clgeH]Cl and [D7-clgeH]Cl 

As for (a) with the substitution of hydrochloric 

acid (10 cm3 ; 36%) for perchloric acid. Yield 7.1g 

(86%); m.p. 173-175°C. [D7-clgeH]Cl was produced 

by successive solvation in 020 and then removal of 

the excess water under vacuum. 

(c) [clgeH]N0
3 

As for (a) with the substitution of nitric acid 

(5 cm3 ; 70%) for perchloric acid. Yield 8.2g 

(83%); m.p. ca. 220°C. 
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(d) [clgeH]H2P04 

As for (a) with the substitution of orthophosphoric 

acid (S cm3 ; 8S%) for perchloric acid. Yield 7.3g 

(61%); m.p. 184-185°C. 

(e) [clgeH]2S04.2H2Q 

As for (a) with the substitution of sulphuric acid 

(10 cm3 ; 47%) for perchloric acid. Yield 8.2g 

(82%): m.p. ca. 190°C. 

(f) [clgeH]HS0
4 

As for (a) with the substitution of sulphuric acid 

(S cm3 ; 95%) for perchloric acid. The product was 

not recrystallised but simply washed with ice-cold 

deionised water. Yield 4.3g (36%): m.p. lSO-lSl °C. 

This material was also obtained by adding 

sulphuric acid (30 cm3 , 30%) to [clgeH]2so4.2H20 

(Sg) dissolved in the minimum of hot deioniseG 

water. After boiling for 10 minutes the solution 

was cooled in ice. The crystals so formed were 

washed with ice-cold deionised water. Yield 4.6g 

(78%); m.p. l50-l5l o C. 

(g) [clgeH] 2lf2Q41 

As for (a) with the substitution of oxalic acid 

(3.7Sg), dissolved in the minimum of hot deionised 

water, for perchloric acid. Yield 7.4g (85%); m.p. 

205-206°C. 
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(h) [clgeH]Br 

[clgeH]2so4.2H20 (4.13g) was added to barium 

bromide (4.12g) dissolved in the minimum of hot 

deionised water. The solution was boiled for 10 

minutes before removal of precipitated barium 

sulphate by filtration. When cooled, the filtrate 

yielded crystals of the product which were 

subsequently recrystallised from hot deionised 

water. Yield 3.0g (78%); m.p. 17S-IS0°C. 

(i) [clgeH]I 

[clgeH]2S04.2H20 (4.95g) and ammonium iodide 

(4.73g) were added to an aqueous solution of barium 

hydroxide (9S.S cm3 , 0.165M). The solution was 

boiled until no more ammonia was given off. The 

precipitated barium sulphate was then filtered off 

and the solution cooled. The crystals so formed 

were recovered and dried under vacuum. Yield 0.6g 

(17%). 

4.2.2 l-Carbamoylguanidinium copper{II) complexes 

Two complexes were produced by two different routes 

(i) reaction of [clgeH]+ salts with copper(II) salts, 

(ii) reaction of copper{II)di(l-carbamoylguanidate)­

dihydrate{Cu[clge]2.2H20) with aqueous acid. 

(a) [clgeH]2[cuCI4~2Ql21 

Route (i): Solutions of CUCI 2 .2H20 (IOmmol, 1.71g) 

and [clgeH]CI (20mmol, 2.77g) in the minimum of hot 

deionised water, were mixed together and the 
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resulting solution reduced under a vacuum at 45°C 

until the onset of precipitation. The blue-green 

precipitate was filtered off and washed with 

ice-cold &ionised water and dried over silica gel. 

Yield 4.07g (91%). 

Route (ii): Cu[clge] 2H 20 (see Section 5.2 for 

preparation) was dissolved in the minimum of dilute 

hydrochloric acid (2M). The solution was allowed 

to evaporate at room temperature and the crystals 

produced were filtered off, washed with ice-cold 

deionised water and dried over silica gel. Yield 

-95%. Analytical data for this and all subsequent 

copper(II) products are collated in Table 4.1. 

Isothermal dehydration of the blue-green 

[clgeH]2[CUCI 4 (H20)2] complex at 100°C produced the 

yellow [clgeH]2[CuC1
4

] complex. 

(b) [clgeH]2[CuBr4~2Ql21 

This complex was synthesised in a similar manner to 

that used for (a) by either Route (i) or (ii). 

For Route (i): CUBr
2 

(10 mmol, 2.23g) was 

substituted for CUC1
2

.2H
2
0. Yield 5.44g (87%). 

For Route (ii): Dilute hydrobromic acid (2M) was 

substituted for dilute hydrochloric acid. Yield 

~95%. 

Isothermal dehydration of [clgeH]2[CuBr 4 (H 20)2] at 

100°C produced [clgeH]2[CUBr]4. No colour change was 

observed, both the hydrated and anhydrous complexes 

being dark brown-black in colour. 
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For both (a) and (b), Route (ii) produced better 

quality of crystals than Route (i) even if the reaction 

mixture from (i) was allowed to evaporate slowly. 

TABLE 4.1 Analytical Data for the Products 

Experimental/Theoretical % 

Product C H N 

[clge]ClO
4 11. 58/11. 86 3.47/3.49 28.23/27.66 

[clgeH]Cl 17.06/17.32 5.14/5.05 41.05/40.43 

[c 1geH] Br 13.03/13.11 3.78/3.83 30.46/30.61 

[c1geH]I 9.28/10.44 3.17/3.04 22.52/24.36 

[clgeH]N0
3 14.32/14.54 4.22/4.24 42.58/42.42 

[clgeH]H2Po4 11.82/12.00 4.53/4.50 27.66/28.00 

[clgeH]2so4·2H20 14.03/13.20 5.36/5.32 33.08/33.14 

[c1geH]HS0
4 12.32/12.00 4.11/4.00 29.25/28.00 

[ c 1 geH ] 2 ( C
2
0

4
) 24.36/24.54 4.82/4.81 38.39/38.13 

[clgeH]2[CuCI 4 (H 2O)2] 10.59/10.73 3.97/4.02 25.20/25.03 

[c1geH]2[CuC1
4

] 11.55/11.66 3.42/3.40 27.34/27.22 

[clgeH]2[cuBr 4 (H2O)2] 7.79/7.68 2.89/2.88 18.02/17.92 

[clgeH]2[CuBr
4

] 8.05/8.15 2.40/2.38 19.20/19.01 



4.3 Crystal and Molecular structure of I-Carbamoyl-

9uanidinium Perchlorate and Di(l-Carbamoyl-

guanidinium)diaquotetrachlorocuprate(II) 

4.3.1 Structure solution and crystal data for 

l-Carbamoylguanidinium Perchlorate 

The perchlorate salt was chosen for structure 

determination because of the poor coordinating properties 

of the anion and the eaSe of crystallisation. 

Colourless crystals were prepared by the slow 

evaporation of an aqueous solution of the salt. A 

suitable needle-like crystal (0.5xO.2xO.lmm) was mounted 

in a Lindemann tube. Oscillation and Weissenberg 

photographs revealed preliminary cell parameters and 

space group. X-ray diffraction data for the refinement 

of cell parameters and structure determination were 

collected using an Enraf-Nonius CAD 4 four circle 

diffractometer. One unique set of data was collected in 

the range 1 ~ 0 ~ 66° using CuK radiation. Of the 1540 
a 

observable intensities collected, 1108 were deemed to be 

observed. 

The chlorine atom was located from a Patterson 

function. The carbon, nitrogen and oxygen atoms were 

then located by difference Fourier syntheses. Full 

matrix least squares refinment with anisotropic 

temperature factors for all these atoms converged at R = 

0.057. The top seven distinct peaks (densities 0.80 to 

0.46 e/~3) of a subsequent difference Fourier synthesis 

gave the positions of all the hydrogen atoms. 
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No other feature with density greater than 0.2S e/~3 was 

apparent. Further refinement of the structure with fixed 

hydrogen atoms converged at R = 0.041. Final positional 

parameters and thermal parameters are given in Tables 4.2 

and 4.3 respectively. Observed and calculated structure 

factors are given in Appendix B. 

Crystal Data 

C2H7N4CIOS ' M = 202.6, monoclinic, space group 

P2 1/c, a = 8.020(3), b = 9.999(3), c = 9.611(3) ~, 

B = 10S.54(3)0, U = 742.6 R3 , Dm = 1.79, Dc = 1.81 g.cm-
3 

-1 
for Z = 4, F(OOO) = 416, ~(CUKa) = 47.8 cm . 

4.3.2 Structure solution and crystal data for di(l-

carbamoylguanidinium)diaquotetrachlorocuprate(II) 

A suitable crystal (ca. 0.lxO.4SxO.4mm) was chosen 

from a crop grown by slow evaporation of a dilute aqueous 

hydrochloric acid solution of copper(II)bis(l-carbamoyl-

guanidinate) and was mounted in a Lindemann tube. Cell 

parameters, space group and X-ray diffraction data were 

obtained as described in Section 1.6.1. Of the 1509 

intensities collected, 1244 were deemed to be observed. 

Consideration of the molecular formula within the 

context of the crystal's symmetry indicated that the 

copper atom must be situated in a special position 

(0,0,0) of the P2
1
/c space group and that pairs of 

[clgeH]+ cations, chlorine anions and water molecules 

must be located in centrosymmetrically related positions. 
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TABLE 4.2 Final positional Parameters (Xl0 3 ) for 

[clgeH]C104 

Atom x/a y/b z/c 

O( 1) -59.8(2) 277.1(2) -86.3(2) 
C(1) -124.8(3) 286.0(3) 15.0(3) 
C(2) 126.9(3) 390.4(3) 181.7(3) 
N (1) -285.4(3) 249.0(3) 8.9(3) 
N (2 ) -35.1(3) 337.8(3) 148.5(2) 
N ( 3 ) 190.3(5) 435.2(3) 314.4(2) 
N(4) 214.4(3) 398.2(3) 84.4(2) 
Cl(l) 346.19(8) 54.3(7) 216.87(7) 
0(2) 457.0(3) 99.7(3) 133.3(3) 
0(3) 404.8(3) -77.9(2) 272.5(3) 
0(4 ) 172.7(2) 42.7(3) 127.1(2) 
0(5 ) 350.8(3) 143.5(3) 332.1(3) 
H(1) -339.1 219.2 -64.5 
H(2) -330.7 264.8 78.1 
H(3) -83.2 321. 9 221. 8 
H(4) 137.6 439.5 382.8 
H(5) 291. 6 466.2 337.9 
H(6) 294.8 426.0 105.9 
H(7) 179.7 426.0 105.9 

TABLE 4.3 Thermal Parameters (Xl03)/~2 for [clgeH]C104 

Atom UOI ) U(22) U(33 ) U(23) U (13) U(l2 ) 

0(1) 43 (1 ) 6l( 1) 29 (1) -101(9) 163(9) -10(1) 
C( 1) 34 (1) 41( 2) 29 (1) 0(1) 12 (1) 0(1) 
C(2) 31( 1) 40(2) 29 (1) 2 (1) 7 (1) 4 ( 1 ) 
N( 1) 38 (1) 72(2) 46 (1) -16(1) 19 (1) -13(1) 
N (2 ) 33 (1) 52 (1) 25 (1) -1 (1) 133(9) -2(1) 
N( 3) 39(2) 69(2) 29 (1) -10(1) 7(1) -5 (1 ) 
N (4 ) 32 (1) 60(2) 35 (1) -4(1) 15 (1) 0.6(3) 
Cl(l) 28.3(3) 43.9(4) 28.0(3) 2.1(3) 11.3(2) 0.6(3) 
0(2) 53 (1) 80(2) 65(2) 14 ( 1 ) 36 (1) -1(1) 
0(3) 47(1 ) 51( 1) 63(1 ) 18 (1) 6 (1) 7 (1) 
0(4) 32 (1) 79(2) 52 (1) 9 ( 1 ) 22(9) 1(1) 
o ( 5 ) 80(2) 81(2) 52 (l) -24(1) 24 (1) -2 (1) 

In the form: [exp-2n2(U(II)h2a*2+U(22)k2b*2+U(33)12c*2+ 

2U(12)hka*b*+2U(13)hla*c*+2U(23)klb*c*)] 
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Consequently, subsequent to the data reduction stage, the 

positions of the chlorine anions, and then the oxygen 

atoms of the water molecules and the carbon, nitrogen and 

oxygen atoms of the [clgeH]+ cations, were determined by 

successive difference Fourier syntheses. Full matrix 

least squares refinment with anisotropic temperature 

factors converged at R = 0.052. A difference Fourier 

synthesis gave the positions of the hydrogen atoms of the 

[clgeH]+ cation and the water molecule (the electron 

density varied from 0.77 to 0.37 e/~3). Further 

refinement of the structure including the hydrogens with 

isotropic temperature factors converged at R = 0.044. 

Final positional parameters and thermal parameters are 

given in Tables 4.4 and 4.5 respectively. Observed and 

calculated structure factors are included in Appendix B. 

Crystal Data 

C4H18N804C14Cu, M = 447.3, monoclinic, space group 

P2 1/c, a = 6.522(3), b = 11.218(3), c = 11.790(3) ~, 

B = 110.66(3)°, U = 807.1 ~3, D = 1.82 g.cm- 3 
m 

-3 Dc = 1.84 g.cm for Z = 2, F(OOO) = 454, ~(MOKa) = 
-1 20.88 cm . 

4.3.3 Molecular geometries of [clgeH]+ in [clgeH]Cl0
4 

and 

[clgeH] 2 [CuC1 41g2Ql21 
+ In both the salt and the complex the [clgeH] 

moiety (designated [clgeH]s+ for [clgeH]Cl0
4 

and [clgeHJ+ 

for [clgeH]2[cuC1 4 (H20)2]) acts as a cation. 
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TABLE 4.4 Final positional parameters (xl0 3 ) for 

[clgeH]2[cuC1 4 (H20)2] 

Atom 

Cu(l) 
Cl(l) 
Cl(2) 
C(1) 
C(2) 
N(1) 
N ( 2 ) 
N ( 3 ) 
N ( 4 ) 
0(1) 
0(2) 
H(1) 
H(2) 
H ( 3 ) 
H(4) 
H ( 5 ) 
H(6) 
H(7) 
H ( 8 ) 
H(9) 

x/a 

o 
203.6(2) 

-303.9(1) 
783.6(6) 
735.4(6) 
812.7(6) 
775.6(5) 
729.8(6) 
708.0(6) 
765.3(5) 

-190.0(4) 
828(9) 
835(8) 
789(8) 
737(8) 
710(1) 
682(8) 
710(1) 

-188(9) 
-320(2) 

y/b 

o 
2.25(8) 

-143.91(8) 
121.8(3) 
-90.9(3) 
196.9(3) 

2 • 5 ( 2 ) 
-197.6(3) 
-77.3(3) 
151.3(2) 
128.1(2) 
270(6) 
169(5) 
-17(4) 

-200(5) 
-259(5) 
-134(4) 

-6(6) 
196(5) 
103(9) 

z/c 

o 
204.38(9) 
52.64(8) 

346.6(3) 
375.3(3) 
267.5(3) 
313.3(3) 
326.4(3) 
478.9(3) 
443.3(3) 
26.2(2) 

290(5) 
200(5) 
243(5) 
255(4) 
368(6) 
516(5) 
511(6) 
-4(5) 
-6(9) 

TABLE 4.5 Final thermal parameters (xl03)/~2 for 

[c1geH]2[CuC1 4 (H 20)2] 
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Atom U (11) U(22) U(33) U(23) U (13) U(12) U(I50) 

Cu(l) 
C1(1) 
C1(2) 
C(1) 
C(2) 
N(1) 
N(2) 
N (3) 
N (4 ) 
0(1) 
0(2) 
H(1) 
H(2) 
H(3) 
H(4) 
H(5) 
H(6) 
H (7 ) 
H(8) 
H (9 ) 

27.2(4) 
29.6(6) 
30.6(5) 
26 ( 2 ) 
23(2) 
57(2) 
36(2) 
56 ( 2 ) 
44(2) 
58(2) 
28 (1) 

21.1(4) 
31.2(6) 
24.7(5) 
25(2) 
24(2) 
22(2) 
21( 2) 
20(2) 
26(2) 
26 (1) 
20 (1) 

21.8(4) 
25.0(6) 
33. 1 ( 5 ) 
31( 2) 
28(2) 
33(2) 
28(2) 
28(2) 
35(2) 
38(2) 
3l( 1) 

-0.9(2) 
o • 0 ( 3 ) 

-2.0(4) 
-3 (1) 

1( 1 ) 
-4 (1 ) 
-3 (1) 
-1( 1) 

2 ( 2 ) 
-9 (1) 

4(1) 

2.3(3) 
1.6(4) 
9 . 7 ( 4 ) 
9 (1) 
5(1) 

1 7 ( 2) 
12 (1) 
11( 2) 
18(2) 
25 (1) 

7 (1) 

5.6(2) 
2.1(3) 

-3.1(4) 
0(1) 
3 ( 1 ) 

-4(2) 
o ( 1 ) 

-1( 1) 
0(1) 

-5 (1) 
2(1) 

In the form: [exp-2n2(U(11)h2a*2+U(22)k2b*2+U(33)12c*2+ 
2U(12)hka*b*+2U(13)hla*c *+2U( (23)klb*c*)] 

20(10) 
20(10) 
10(10) 
30(10) 
20(10) 
30(10) 
10(20) 
20(10) 
90(40) 



Significantly [clgeH] + does not ligate the copper(II) c 

ion in the complex. Hence, the molecular geometries of 

+ + [clgeH] and [clgeH] are very similar. The atom 
s c 

numbering scheme is shown in Figure 4.1, and bond 

distances and angles are compared in Table 4.6. 
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FIGURE 4.1 Numbering scheme for [clgeH]+ 

Comparison with the structure of uncoordinated clge 

(form 4.9; Section 3.3.3 for full details) reveals that 
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TABLE 4.6 Molecular geometries of the [c1geH]+ cation in 

[c1geH]C104 and [c1geH]2[cuC1 4 (H 20)2] 

Bond Distances/~ 

C(l)-O(l) 

C(l)-N(l) 

C(1)-N(2) 

C(2)-N(2) 

C(2)-N(3) 

C(2)-N(4) 

N(l)-H(l) 

N(1)-H(2) 

N(2)-H(3) 

N(3)-H(4) 

N(3)-H(5) 

N(4)-H(6) 

N(4)-H(7) 

Bond Ang1es/o 

O(l)C(l)N(l) 

O(l)C(l)N(2) 

N(l)C(1)N(2) 

C(1)N(2)C(2) 

N(2)C(2)N(3) 

N(2)C(2)N(4) 

N(3)C(2)N(4) 

H(l )N( 1 )C(l) 

H(2)N(l)C(1) 

H(l)N(l)H(2) 

H(3)N(2)C(l) 

H(3)N(2)C(2) 

H(4)N(3)C(2) 

H(5)N(3)C(2) 

H(4)N(3)H(5) 

H(6)N(4)C(2) 

H(7)N(4)C(2) 

H(6)N(4)H(7) 

[c1geH]C104 

1.224(3) 

1.326(3) 

1.392(3) 

1.358(3) 

1.319(3) 

1.314(3) 

0.78 

0.85 

0.90 

0.87 

0.84 

0.82 

0.68 

[c1geH]C104 

124.0(3) 

122.4(2) 

113.6(2) 

125.9(2) 

117.1(2) 

121.0(2) 

121.8(3) 

116 

122 

122 

116 

118 

127 

119 

114 

118 

117 

124 

1.232(5) 

1.319(5) 

1.391(5) 

1.354(5) 

1.323(5) 

1.305(5) 

0.85 

0.92 

0.90 

0.86 

0.88 

0.82 

0.89 

124.6(4) 

120.9(4) 

114.5(4) 

126.0(4) 

116.5(4) 

122.1(4) 

121.4(4) 

115 

120 

124 

120 

114 

117 

117 

126 

122 

122 

116 

120 



protonation occurs at the central bridging nitrogen atom, 

N(2), giving tautomer 4.1. This permits retention of the 

2 intramolecular hydrogen bond and the totally sp 

hybridised planar skeleton with the associated n-system. 

The cations have intermediate length C-N and c-o bonds, 

bond angles close to 120 0 and are effectively planar (the 

maximum deviation from the 

[clgeH] +, and 0.033 g for s 

best planes being 0.053 g for 

+ [clgeH] ,Table 4.7). c 

TABLE 4.7 Planarities of the [clgeH]+ cation in 

Deviation from the plane/g 

Atom [clgeH]Cl04 * [clgeH]2[cuC1 4 (H 2O)2] 

O( 1) 0.046 0.036 

C (1) 0.012 0.004 

C (2 ) 0.003 -0.006 

N(l) -0.048 -0.027 

N(2) 0.025 0.033 

N(3) 0.014 -0.002 

N(4) -0.053 -0.018 

* Equation of best plane: 

2.39358x - 9.06193y + 2.00330z =-2.873 

# Equation of best plane: 

5.72655x - 1.04191y + 1.52695z = 4.885 
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There are but minor differences between clge and 

+ [clgeH] . On cation formation the bridging C-N bonds 

lengthen, the terminal C-N bonds shorten, and the 

C(1)N(2)C(2) bond angle increases. These changes are 

analogous to those found upon coordination of clge and 

biguanide (bg; 4.10) when proton transfer occurs from a 

terminal amine to a bridging nitrogen. It seems apparent 

4.10 4.11 

that protonation of the central nitrogen decreases the 

TI-character in the central C-N-C system, whilst 

increasing it in the terminal C-N bonds of coordinated 

+ clge, bg and [clgeH] . As noted in Chapter Three, biuret 

(bu; 4.11) has a C-NH-C bridge in both free and 

coordinated forms. Its geometry in these two forms is 

+ similar to that of coordinated clge and bg and [clgeH] 

but differs from those of free clge and bg. 

Significant features of [clgeH] +, [clgeH] + and s c 

clge, bg and bu (free and coordinated) are compared in 

Table 4.8. 

Also, it is instructive to compare structural data 

for the protonated derivatives of bg. They have been 

reported for both mono- and di- protonated derivatives of 
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TABLE 4.8 Significant features of the molecular 

geometries of free and coordinated c1ge, bg and 

+ + 2+ bu and [c1geH] , [bgH] and [bgH 2 ] 

Average Average 

Dihedral C-N-C r(C-Nbridge r(C-N ) 
terwinal 

ang1e/o* ang1e/o /J{ /J{ 

bu (free)17 6.3 128.5(2) 1.385(3) 1.325(3) 

bu (coord)22 6.4 126.8 1.371(6) 1.321(6) 

c1ge (free) 7.5 119.8(3) 1.352(4) 1.340(4) 

clge (coord) 1.7 126.0(1.0) 1.370(20) 1.315(20) 

bg (free)13 12.5 119.9(1) 1.356(2) 1.358(2) 

bg (coord)2l 127.3(5) 1.374(8) 1.349(8) 

[clgeH] .C10
4 4.4 125.9(2) 1.375(3) 1.320(3) 

[clgeH]2[CuCl 
(H20)2] 4 

3.8 126.0(4) 1.373(5) 1.321(5) 

[bgH]Cl l4 
39.5 122.8(4) 1.330(5) 1.338(5) 

[bgH]2C03 
13 42.1 122.6(2) 1.338(4) 1.331(4) 

[bgH]2 S04 
13 

46.6 121.2(2) 1.346(4) 1.328(4) 

[bgH ]80 13 
2 4 48.4 126.2(3) 1.378(5) 1.307(5) 

* This is the angle between the normals to the planes which best 

represent the two halves of the molecule. 

# This average does not include those contacts, formally defined 

as double bonds, between carbon and terminal imine groups. 



bg, viz [bgH]+ and [bgH
2

]2+, details of which are 

included in Table 4.8. Protonation occurs first at the 

imino nitrogen and then at the bridging nitrogen atom to 

give forms 4.12 and 4.13 respectively. Although free bg, 

4.12 4.13 

free clge, free bu, and [clgeH]+ are effectively planar, 

the dihedral angles between the normals to the planes 

which best represent the two halves of the molecules, do 

not exceed 12.5°, the out of the plane distortion is 

extensive for [bgH]+ and [bgH
2

]2+, with dihedral angles 

of ca. 40° and 48°, respectively (Table 4.8). Thus, 

whereas the planarity of the former species is enhanced 

by the formation of an intramolecular hydrogen bond 

between an amine donor and either an oxygen or imine 

acceptor, for the latter species the juxtaposition of 

amine groups results in steric interactions between 

hydrogen atoms and hence a loss of planarity. 

The electronic structures of the molecules, 

however, do not appear to be influenced by the dihedral 

angle; they are dependent solely on the adopted 

tautomeric form. Thus, coordinated clge, bg, free and 

+ 2+ coordinated bu, [clgeH] and [bgH
2

] ,all of which have 
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a bridging C-NH-C group, have longer bridging than 

terminal C-N bonds and a C-N-C bond angle between 125 and 

129 0 (Table 4.8). The other three species, free bg, free 

clge and [bgH]+, all of which have a bridging C=N-C 

group, exhibit near equivalence of C-N bond distances and 

a C-N-C bond angle between 119 and 123 0 (Table 4.8). 

Obviously, the out of plane distortion has little effect 

on the delocalised 'IT-system which exists over the sp2 

hybridised C-N skeleton. 

4.3.4 Intermolecular contacts in [clgeH]Cl0
4 

and 

[clgeH]2[cuC1 41g221
2

] 

Views of the structures of the salt and the complex 

perpendicular to (100) are shown in Figures 4.2 and 4.3 

respectively. 

Both structures consist of an array of alternating 

cationic and anionic fragments. Whereas for the salt 

+ -single cations ([clgeH] ) and anions (CI0
4 

) alternate, 

in the complex 

the dinegative 

pairs of cations ([clgeH]+) alternate with 

2-anions ([CuC1 4 (H 20)2] ). Details of 

intermo~ular contacts for both structures are given in 

Tables 4.9 and 4.10. An extensive hydrogen-bonded 

network enhances the electrostatic interactions. For the 

salt it is obvious that extensive charge delocalisation 

occurs in both [clgeH]+ and CI0
4 

because of the near 

equivalence of many interactions (Table 4.9) and the fact 

that the shortest interaction [r(N(2)-H(3) ... O(1» = 

2.85 ~],occurs between adjacent cations. For the complex 
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o o o 0 o 
H C N 0 Cu 

FIGURE 4.2 View of the structure of [clgeH](C104 ) 

perpendicular to the (100) plane 
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H C N 0 Cl Cu 
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FIGURE 4.3 View of the structure of [clgeH]2[cuC1 4 (H 20)2] 

perpendicular to the (100) plane 



TABLE 4.9 Intermolecular contacts of less than 3.30 ~ in 

[c1geH]C104 ; hydrogen bond and electrostatic 

interactions 

128 

Interaction 

X-H ... X' 

Symmetry 

Properties 

of X' 

r(X ... X') r(X-H) 

/~ 
r ( H ... X') XHX ' 

N(1)-H(1) ... 0(3) -x,-y,-z 
N(1)-H(2) ... 0(3) -x,~+y,~-z 
N(1) ........ 0(2) -l+x,y,z 
N(l) ........ 0(5) -l+x,l-y,-l+z 
N(2)-H(3) ... 0(1) x'I-y'I+z 
N(3)-H(4) ... 0(4) X'2-y'2+Z 
N(3)-H(5) ... 0(2) 1-x,t+y,~-z 
N(3) ........ 0(1) x,t-y,~+z 
N(3) ........ 0(2) x,i-y,i+z 
N(3) ........ 0(4) -x,i+y,i-z 
N(3) ........ O(5) x,y,z 
N(4)-H(6) ... O(3) 1-x,i+y,t-z 
N(4)-H(7) ... O(5)* x,i-y,-i+z 
Intramolecular hydrogen bond 
N(4)-H(7) ... O(1) x,y,z 

/~ 

3.130 
3.072 
3.041 
3.147 
2.851 
3.054 
3.193 
3.236 
3.252 
3.290 
3.175 
3.004 
2.945 

2.658 

0.78 
0.85 

0.90 
0.87 
0.84 

0.68 
0.82 

0.82 

/~ /0 

2.39 
2.32 

2.06 
2.30 
2.37 

2.38 
2.46 

2.04 

158 
147 

146 
145 
165 

154 
119 

131 

* For this interaction the angle at H(7) is very low owing to the 
N(4)-H(7) ... 0(1) hydrogen bond interactions. 

TABLE 4.10 Intermolecular contacts of less than 3.50 ~* in 

[c1geH]2[CuC1 4 (H 20)2]; hydrogen bond and electrostatic 

interactions 

Symmetry 

Interaction Properties r(X ... X') r(X-H) r(H ... X') XHX' 

X-H ... X' of X' /g /~ /~ /0 

N(1)-H(l) ... C1(l) III 3.447 0.85 2.62 164 -X'2+Y'2- Z 
N(1)-H(2) ... 0(2) l+x,y,z 2.941 0.92 2.04 165 
N(2)-H(3) ... Cl(2) l+x,y,z 3.360 0.90 2.54 153 
N(3)-H(4) ... C1(2) l+x,y,z 3.277 0.86 2.39 161 
N(3)-H(5) ... Cl(2) l+x,-i-y,i+z 3.214 0.88 2.46 154 
N(4)-H(6) ... C1(2) III 3.254 0.82 2.53 148 +X'2-y'2+ Z 
0(2)-H(8) ... 0(1) -l+xd-y,-~+z 2.638 0.84 1. 81 167 
0(2)-H(9) ... C1(2) -l-x,-y,-z 3.102 0.80 2.30 147 
Intramolecular hydrogen bond 
N(4)-H(7) ... 0(1) x,y,z 2.647 0.89 2.02 127 

* A value of 3.50 ~ was chosen owing to the larger van der Waals 
radius of chlorine than other previous hydrogen bond acceptor 
atoms. 



charge delocalisation is less prevailent and there are no 

cation-cation interactions. The closest approach is 

between a water oxygen of the anion and the carbonyl 

oxygen of the cation [r(O(2)-H(8) ... O(1» = 2.638 ~; 

Table 4.10]. This hydrogen bond is the shortest that has 

been observed in the series of compounds discussed in 

this thesis. 

The copper(II) ion is in a centrosymmetric 

distorted octahedral geometry. It is surrounded 

equatorially by a pair of oxygens of the water molecules 

[r(Cu(1)-O(2» = 1.992 g] and a pair of chlorine atoms 

[r(Cu(I)-Cl(I» = 2.305 ~], another pair of chlorine 

atoms lying in the axial positions [r(Cu(1)-Cl(2» = 
o 2-2.791 A]. Further details of the [CuC1 4 (H 20)2] 

fragment are given in Table 4.11. 

TABLE 4.11 Molecular geometry of the [CuC1 4 (H 20)2]2-

anionic fragment of [clgeH]2[CuCI 4 (H 20)2] 

Bond Distances/R 

Cu(l)-Cl(l) 2.305(1) 

Cu(I)-Cl(2) 2.791(1) 

Cu(1)-O(2) 1.992(3) 

O(2)-H(8) 0.841 

O(2)-H(9) 0.854 

Bond Angles/o 

Cl(I)Cu(I)Cl(2) 88.07(3) 

Cl(1)Cu(I)O(2) 89.46(8) 

Cl(2)Cu(I)O(2) 81.57(8) 

H(8)O(2)H(9) 106(7) 
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Unfortunately, it was not possible to obtain 

[clgeH]2[cuC1 4 ] in a crystalline form suitable for 

structure determination. However, the coordination 

2-geometry of the [CuC1 4 ] anion may be inferred from the 

colour changes that occur upon dehydration of 

[clgeH]2[CuC1 4 (H20)2]' 

The anion of the hydrated complex has been shown to 

have a distorted octahedral geometry analogous to that 

observed for [CU(H
2
0)6]2+, both moieties exhibiting a 

similar blue-green colour (arising from the 2E ~2T2 g g 

transition). The loss of two water molecules from the 

2-[CuC1 4 (H20)2] moiety leads to the formation of a yellow 

complex. The copper chromophore is probably a flattened 

2-tetrahedral [CuC1 4 ] anion analogous to that in 

58 59 . [Me4N]2CuC14 and Cs 2 [CuC1 4 ] wh1ch are a similar 

yellow colour (arising from the 2T2~2E transition). 

The molecular geometry of the perchlorate anion is 

unremarkable. Data are given in Table 4.12. 

TABLE 4.12 Geometry of the perchlorate anion in 

[c1geH]CI0
4 

Bond Distances/~ Bond Ang1es/o 

Cl(1)-0(2) 1.423(2) 0(2)Cl(1)O(3) 107.9(2) 

Cl( 1 )-0(3) 1.448(2) 0(2)Cl(1)O(4) 109.8(2) 

Cl(1)-0(4) 1.432(2) o ( 2 ) Cl ( 1) ° ( 5 ) 110.6(2) 

Cl (l ) -0 (5 ) 1.414(2) O( 3 )Cl( 1)0( 4) 108.4(2) 

o ( 3 ) Cl ( 1) ° ( 5 ) 110.2(2) 

0(4) Cl( 1) 0 ( 5) 109.9(2) 
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4.4 Spectroscopic Properties 

Extensive mixing of the internal coordinates of a 

planar skeleton makes assignment of the vibrational 

spectra of species such as [clgeH]+ difficult. + [clgeH] 

has Cs symmetry and should have 36 (25A' and llA") 

vibrational modes, all of which are infrared active. The 

vibrations of [clgeH]+ are the same as those for clge 

(Section 3.3.6) but there is an extra N-H stretch as well 

as one extra in-plane and one extra out-of-plane 

deformation. 

+ Infrared spectra for the various [clgeH] salts, 

[D7-clgeH]Cl and [clgeH]2[CuX4 (H20)2] (where X = Cl, Br), 

were recorded (4000-400 cm- l ) in nujol and halocarbon 

mulls and KBr discs. They are collated numerically in 

Table 4.13; bands attributable to the anion have been 

omitted. + The spectrum of the [clgeH] cation is s 
+ virtually independent of anion; that of the [clgeH] c 

cation, however, differs with the copper(II)-containing 

anion. 

The spectra of cnge, clge, [clgeH]Cl and 

[D7-clgeH]Cl (1880-1280 cm- l ) are compared in Figure 4.4. 

+ The spectrum of the [clgeH] cation in this region is s 
markedly different from that of neutral clge. The 

[clgeH] + spectrum exhibits better resolution showing s 

distinct peaks, whilst that of clge contains broad bands 

with several shoulders. By comparison with clge, the 

b -1 ands at 1670, 1640 and 1610 cm are assigned to O[NH
2

] 

vibrations. Four peaks (1735, 1585, 1520 and 1460 cm- l ) 
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TABLE 4.13a 



-1 + 
TABLE 4.13a Infrared spectroscopic data/ern for various [clgeH] salts 

[clgeH]Br [clgeH]H2
P04 [clgeH]N0

3 
[clgeH]HS0

4 [clgeH]S0402H20 

3400sh 3410 s,br 3440Sh} 3440 
3360 }s,br 3370 s 3410} s 

3340rns 3350 s,br 

3250rn 3300rn 3280rns 3210s,br 3180s,br 
3175s ,br 3185s,br 3190s,br 

1730s 1735s 1735 
}s 

1745s 1735 
1725 1725} s 

1670 
}s ,br 

1690 
}s ,br 

1685 
}s,br 

1695 1690 } 
1630 1635 1635 1640} s,br 1630 s,br 

1610rn 

1580s,br 1595s,br 1585s,br 1590s,br 1600s,br 
1520rnw 1520w 1520w 1525w 

1460s 1460s 1455rn 1460rn 1455rns 

1380sh} 
1340 s 

1380sh} 
1350 rn * 

1380Sh} 
1340 ms 

1380Sh} 
1350 m,br 

1115w * * * * 

1055m * * * * 
930w 930vw 930vw 930vw 

760mw 765w 750w * * 

715mw 700m 705m * * 

535w,br 550m 

450m,br 450m 450w 450w 440w 

Foo'rNo'rE 

* Masked by anion vibrations. 
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[clgeH]CI0
4 [clgeH]Cl [D

7
-clgeH]Cl Assignment 

3475 
}ms,br 

3410sh 
}s,br 

2550 
} s,br 3455 3380 2550 V [N-H] 

3405sh 
a 

3370 }s,br and 

3250 } 3250m 2380 } s,br 
V [N-H] 

3180 ms,br 3160s,br 
s 

2290 

1735s 1700s 
1725 

V[O( 1 )C( 1 )N( 1)] 

1695} 1670 1265m,br 6[Nfl2 ] 1655 s,br 1640 s,br 

1610m 1610s 

1580s,br 1585s 1570s } 
1530rnw 1520rnw 1540 s {V[N(3)C(2)N(4)] 

1510sh V[N(2)C(2)N(3) ] 

1465ms 1460s 1430 
} s V[O( 1 )C( 1 )N( 1)] 

1370 
1380Sh} 
1345 ms 

1380Sh} 
1345 rns 

1145m 

* 1120m 945w 6[NH
2

] 

* 1060m 1090vw 

930vw 

765w 735mw 755m 

715w 720m 710vw 
660w 655w 

560w 550m,br 

470w 460m,br 
Y[NH2 ] 



TABLE 4.13b -1 
Infrared spectroscopic data/cm for 

+ copper (II )-[clgeH] complexes 

3475 } 
3400sh ms,br 

3200ms,br 

1680s 
1640m 
1610ms 
1565ms 

1455m 

1350m 

1130w 
1080w 

755w 
715mw 
670w 
540m,br 

445m 

3540m 
3405 } 
3360 s 

3260 } s 
3190 

1740s 

1685s 
1670sh,s 
1630ms 
1580s 
1520m 

1455m 

1335m 

1110mw 
l075w 
l060w 

760w 
715mw 
630mw,sh 
580m,br 
510m 
450m 

Assignment 

v [N-H] a 
and 

v [N-H] 
s 

v[o( l)C( l)N( 1)] 

6[NH ] 
v[O(~)C(l)N(l)]* 

{ 
v[N(3)C(2)N(4)] 
v[N(2)C(2)N(3) ] 

v[O(l)C(l)N(l) ] 
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cnge 

c1ge 

[c1geH]C1 

1800 1600 1400 1200 

FIGURE 4.4 IR spectra of cnge, clge, [clgeH]Cl and [D
7
-clgeH]Cl 



remain in this region which can be associated with 

skeletal vibrations. By analogy with cnge the bands at 

1585 and 1520 cm- l are considered to arise primarily from 

-1 
the C-N skeleton, leaving the bands 1735 and 1460 cm 

due to the carbamoyl fragment. These bands occur at 

higher wavenumbers than in the spectrum of clge (~1550 

and 1420 cm- l ) and are in agreement with the decreased 

C(l)-O(l) bond length from 1.251 R, for clge, to 1.224 R, 
for [clgeH] +. 

s 

The spectra of [clgeH]Cl, [clgeH]2[CuC1 4 (H 20)2] and 

[clgeH]2[CuBr 4 (H20)2] are compared in Figure 4.5. 

Although the spectrum of [clgeH]2[CuBr 4 (H 20)2] is 

nearly identical to those of the salts (Table 4.13) that 

of [clgeH]2[CuC1 4 (H 20)2] is different despite the similar 

geometry of the [clgeH] + and [clgeH] + cations. Most 
s c 

significantly in the 1800-1500 cm- l region, no absorption 

-1 greater than 1680 cm is observed for [clgeH]2[CuC1 4-

-1 The 1735 cm absorption observed for 

[clgeH]S+' assigned to a vibration of the carbamoyl 

fragment, must be reduced in energy. Consideration of 

the structural data for the two species reveals that the 

carbamoyl moiety of the [clgeH]+ cation is involved in an 

exceedingly strong hydrogen bond in the structure of the 

complex [O(l) ... H(7)-O(2), r(O(l)-O(2» = 2.638 R] but 

not in that of the salt [O(l) ... H(3)-N(2), r(O(l)-N(2» = 

2.851 ~]. Presumably such a strong interaction leads to 

a weakening of the carbonyl bond and hence explains the 

reduction in the frequency of the v(C-O) absorption band. 
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[e1geH]C1 

1800 1600 1400 1200 

FIGURE 4.5 IR spectra of [c1geH]C1, [clgeH]2[CuC1 4 (H 20)2] 

and [clgeH]2[CuBr 4 (H 20)2] 
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A second reason for the different spectra of the 

[clgeH]+ cation in the salts and the chloro complexes, is 

+ the fact that hydrogen bonds from [clgeH]s are 

exclusively to oxygen atoms (Table 4.9), whilst those 

+ from [clgeH] are primarily to chlorine atoms (Table 
c 

4.10). The latter bonds will be less effective than the 

former owing to the more diffuse charge of the chlorine 

atoms. Hence the bands assigned to O[NH 2 ] vibrations will 

occur at different frequencies in the two species. 

The observation that the spectrum of [clgeH]2-

[CuBr 4 {H20)2] differs from that of the analogous chlorine 

derivative but is similar to those of the salts is 

difficult to understand. 
-1 

The presence of the 1735 cm 

absorption in the spectrum of the bromo complex implies 

the absence of a strong hydrogen bond to the 

carbonyl oxygen; while the similarities in the spectra of 

the bromo complex and the salts indicate similar hydrogen 

bonding networks. The former may be attributable to 

steric effects of the bromine atoms; the latter to their 

near non-existent hydrogen bond acceptor properties. 

Confirmation of these hypotheses can, however, only be 

achieved by a full structural analysis. 
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C HAP T E R F I V E 

COPPER(II) COMPLEXES OF THE l-CARBAMOYLGUANIDATE ANION 

5.1 Introduction 

To complete the study of the amphoteric 

l-carbamoylguanidine molecule and its coordination 

properties towards the copper(II) ion, an investigation 

similar to those undertaken for neutral and cationic 

l-carbamoylguanidine (clge; C2H6N40, Chapter Three and 

+ + [clgeH] ; C2H7N
4

0 , Chapter Four) was attempted for the 

l-carbamoylguanidate anion ([clge]-; C
2

H
S

N
4
0-). 

11 In 1862 Haag prepared a distinctive rose-red 

copper(II) complex from copper(II) sulphate and 

di(l-carbamoylguanidinium) sUlphate ([clgeH]2S04) under 

alkaline conditions and formulated it to be 

Cu[clge]2· 2H20. 
51 

Eighty years later Dubsky and Strnad 

verified this formula by chemical analysis, and shortly 

afterwards [clgeH]2S04 was noted as a precipitant for the 

gravimetric determination of copper;60 the precipitate 

produced being the highly water insoluble Cu[clge]2.2H20 

complex. The complex was next noted by Ray and 

Bandopadhyay.S2 Their interest stemmed from the close 

analogy of clge (5.1) to biguanide (bg; 5.2) a compound 

from which they had produced several copper(II) complexes. 

H2N" ~ N" /NH2 
C C 
I II 
NH2 0 

H2N" "N" /NH2 
C C 
I II 
NH2 NH 

5.1 5.2 
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Ray's interest in the rose-red complex continued as he 

and fellow workers prepared a series of what were thought 

to be copper(II) complexes for both neutral and anionic 

lk 1 b Od 1 0 24 Th 1 0 d a y su stltute c ge specles. ese 19an s were 

termed alkylguanylureas or a~idino-3-alkylureas (a3aui 

5.3). Since the complexes of their anions can best be 

represented by the general formula Cu[a3au]2' the complex 

Cu[clge]2 was considered to be the unsubstituted first 

member of the series. 27 However, it was later proposed, 

and has since been proven unequivocally (Chapter Six), 

that Ray's sUbstituted clge species were 

l-amidino-O-alkylureas (aOaui 5.4). 

H2N, ,N, /NHR 
C C 
I II 
NH2 0 

H2N, .,N, /OR 
C C 
I II 
NH2 NH 

5.3 5.4 

R = alkyl 

During the course of this work, it has been found 

that there is often considerable confusion in the 

literatULe as to the identity of the clge species in 

question (i.e. anion, cation or neutral molecule). 

Indeed, Ray envisaged the rose-red complex to consist of 

clge ligands coordinated to the copper(II} cation, best 

described by form 5.5, with hydroxyl anions balancing the 

charge [i.e. Cu(clge}2(OH}2 i where clge = C
2

H
6

N
4
0].48 

Th o f 0 53 
1S con USlon was further compounded by Syamal who, 
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5.5 

following Ray's work, investigated the structure of 

three complexes, which he described as Cu(clge)2X2 (where 

X = OH,Cl,~S04) using infrared and UV-visible 

spectroscopy. Syamal's 'chloride and sulphate complexes' 

were quoted as being purple with Amax values of 500 and 

520nm, whilst the 'hydroxy complex' was rose-red with a 

Amax value of 5l0nm. He assumed the similarity in the 

Uv-visible spectra to suggest similar structural formulae 

and concluded that these complexes contained the fragment 

5.6 giving rise to a CuN
4 

square planar chromophore. 

/N, 
C c 
I I 
N NH 

"M/ 
12 

5.6 

However, some of these results should be treated 

with caution as complexes of the form Cu(clge)2Y2 (where 

Y = N0 3 ,Cl,Br) where synthesized in the work described in 

Chapter Three and the structure of [Cu(clge)2(N03 )2 1 

elucidated. The structure consisted of [Cu(clge)2 12 + 

moieties, containing a Cu02N
2 

chromophore, and nitrate 
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anions. All three complexes were blue in appearance with 

A values of 610nm and differed significantly in max 

appearance from the rose-red 'hydroxy complex' which 

absorbed at 505nm. This difference is further supported 

by the conditions employed by syamal and in the present 

work for the synthesis of the complexes which were 

(i) precipitation from aqueous solutions at neutral pH 

for the halides, nitrate and sulphate complexes, and 

(ii) precipitation from an aqueous solution at alkaline 

pH for the 'hydroxy complex'. These observations suggest 

that Syamal's 'hydroxy complex' formulation is incorrect 

and should be replaced by Cu[clge]2.2H
2

0 and that his 

spectroscopic data for the chloride and sulphate are in 

error. 

The most recent report to examine the rose-red 

complex, that published by Babykutty et al,49 describes 

the complex by the Cu[clge]2.2H
2

0 notation and 

investigates its structure spectroscopically. Their 

infrared spectra were assigned by comparison with those 

of what were supposed to be free clge and other 

structurally similar molecules, such as bg and urea. 

However, Babykutty et aI's spectrum of free clge is in 

fact that of a [clgeH]+ salt (see Sections 3.3.6 and 

4.4). They propose that free clge has structure 5.7 or 

5.8 and from these derive the structures 5.9 to 5.12 as 

possible modes of coordination for [clge] . They 

consider that the UV-visible data (A - 505nm) and 
max 

infrared data are most consistent with 5.9 and that the 
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copper(II) ion is coordinated by the four donor atoms of 

two [clge]- ligands occupying a square plane, with two 

remote water molecules situated in the axial positions of 

the coordination sphere. 

5.7 

HN~ /NH" ~NH 
C C 

H2~ ~ 
'M/ 

12 

5.11 

5.8 

H2N" /NH" ~ 0 
C C 
II I 
N NH2 
"-M/ 

12 

5.10 

H2N" /NH, ~NH 
C C 
II I 
HN~ /0 

M/2 

5.12 

By analogy with the investigations of copper(II) 

complexes of clge and [clgeH]+, a determination of the 

structural chemistry of a copper(II)-[clge] complex 

might best be effected using X-ray crystallographic 
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techniques. This, however, necessitates the synthesis of 

suitable crystalline material. Williams method 3 of 

preparation of Cu[clge]2.2H20, by the deprotonation of 

[clgeH]+ in the presence of copper(II) ions dissolved in 

aqueous ammonium hydroxide solution, gave high yields of 

product, but only in the form of a microcrystalline 

precipitate. 

Varying the conditions for this reaction by slow addition 

of base, either sodium hydroxide (in solution and solid 

phases) or lithium hydroxide (generated in situ via 

hydrolysis of lithium metal) were fruitless, such 

reactions resulting in only a fine suspension of 

Cu[clge]22H20. Crystallization from solutions of 

Cu[clge]2.2H20 by slow evaporation or cooling was not 

possible since the complex was found to be highly 

insoluble in every solvent tested. Dissolution was only 

possible in acidic media, but such solutions only 

resulted in clge or [clgeH]+ complexes, depending on the 

molar ratio of acid to [clge] • Slow neutralisation of 

these acidic solutions over a period of several days was 

accomplished using the hydrolysis of urea6l but, as 

before, proved to be unsuccessful in producing 

crystalline material. Finally, to try to influence the 

precipitation process, attempts were made to incorporate 

an uncharged stereochemically bulky ligand into the 

copper(II) ion's coordination sphere. Triphenyl 
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phosphine (PPh 3 ) was chosen as a candidate ligand but, 

unfortunately could not be incqporated into a copper(II)­

[clge] complex, either by direct reaction of an ethanol 

solution of PPh
3 

with Cu[clge]2.2H20, or by the 

basification of an ethanol solution containing copper(II) 

chloride, clge, and PPh
3 

in the molar ratio 1:2:2. 

Due to time constraints it was not possible to 

continue the attempts to crystallize a copper(II)-[clge] 

complex and, therefore, in the absence of 

crystallographic data, it has only been possible to base 

an analysis of the structure of Cu[clge]2.2H20 on 

infrared and UV-visible spectroscopic and thermogravimetric 

analytical results. 

5.2 Experimental 

Synthesis of Cu[clge]2.2H20 3 and Cu[clge]2 

An equimolar ratio of CUS04 .SH20 and 

[clgeH]2S04.2H20 were dissolved in the minimum of hot 

dilute ammonium hydroxide solution (3M). Addition of 

excess dilute sodium hydroxide solution (2M) precipitated 

a rose-red product which, after washing with deionised 

water and drying over silica gel, was analysed for 

Cu[clge]2·2H20. Yield 98%. 

Isothermal dehydration at lOO°C for 2 hours gave 

the anhydrous complex. 
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Analytical Data 

Experimental/Theoretical % 

Product C H N 

Cu[clge]2· 2H 20 

Cu[clge]2 

15.97/15.92 

18.08/17.97 

4.59/4.64 

3.84/3.77 

36.89/37.15 

41.88/42.18 

Thermogravimetric analysis (tga) was effected using 

a Stanton Redcroft TG750 instrument (~lOmg sample; 

lOCmin- l heating rate). 

-1 
Infrared spectra were recorded (4000-400cm ) in 

KBr discs using a PE680 spectrometer. Uv-visible spectra 

of solid samples were recorded using a PE Lambda 5 

spectrometer with a diffuse reflectance facility. 

5.3 Results and Discussion 

A tga curve (O-120°C) for Cu[clge]2.2H20 is shown 

in Figure 5.1. Dehydration occurred in a single step in 

the 40-100°C region giving the anhydrous complex. 

Further decomposition commenced at 150°C and was 

complete by 600°C. Isothermal dehydration (T = 100°C) 

of larger samples confirmed the facile loss of two water 

molecules per Cu[clge]2 unit, implying that the complex 

was composed of tightly bound [clge] ligands and more 

weakly held water molecules. 
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1 5% Mass Loss 

20 30 40 50 60 70 80 90 100 

FIGURE 5.1 Tga curve for Cu[clge]2.2H2o 

The infrared spectra of Cu[clge]2 and 

Cu[cl ge]2.2H20 are collated numerically in Table 5.1 and 

shown in Figure 5.2 (1800-1200cm- l ). The spectral data 

for the latter complex is in agreement with those 

49 recorded by Babykutty et ale There are, however, 

significant differences between the spectra of the former 

and latter complexes. These occur in the regions 

associated with O-H and N-H stretches. The anhydrous 

complex exhibits slightly better resolution and fewer 

bands in the 3500-3000, 1700-1600 and 850-450cm- l 

regions, presumably due to the loss of the O-H vibrations 

and a reduced level of hydrogen bonding arising from the 

loss of the water molecules from the crystal structure. 
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TABLE 5.1 -1 Infrared Spectroscopic Data/em for Cu[clge]2 

and Cu[clge]2.2H20 

Cu[clge]2 Cu[clge]2·2H2O Assignment 

3440 

} msbr 
N-H stretches 

3400ms }br 3400 
3360m 3350 O-H stretches a 

3200ms 3270 

1695ms }br 1680SSh} 
1650s br N-H deformation 

1630s 1620ssh 
1540ms 1535ms } O-H deformation a 

1430mw 1440mw skeletal 
1380m 1400m stretches 
1250ms 1260ms 

1105w 1110w 
960w 965w 

775 }mw 845mw 
755 770m skeletal deformations 
725 
700m 705mw 
630 

}mw,br 
N-H deformations 

600 O-H f . a de ormat10ns 
525 }mw 530 }mw 510 510 
490 495 

a 



Cu[clge]2-2H20 

Cu[clge]2 

1800 1600 1400 1200 

FIGURE 5.2 IR spectra of Cu[c1ge]2.2H
2

0 and Cu[c1ge]2 
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The broad assignments noted in Table 5.1 are made 

by comparison with the spectra of the complexes of 

l-cyanoguanidine (cnge), clge and in the light of 

structural data given in previous chapters. The 

vibrational spectra are useful in distinguishing between 

the various ionic forms of clge and its complexes (Figure 

5.3) but from these data it is not possible to establish 

the mode of coordination of the ligand in Cu[clge]2 since 

extensive mixing of internal coordinates prevents precise 

assignment of the vibrational spectra. Several authors 

have attempted a more detailed analysis, but without a 

full normal coordinate analysis, the results have been 

inconclusive. 

Throughout the course of this thesis it has been 

observed that the ligands found in copper(II) complexes 

of neutral and/or anionic clge, bg and bu exhibit 

extensive electron delocalisation about an essentially 

planar skeleton. In all the complexes the copper(II) ion 

lies at the centre of two planar six membered rings to 

give a fragment typified by form 5.13, with the ligating 

(0) (0) 

/C-N, /N C, 
N Cu N 

'C-N/ 'N-C/ 
(0 ) (0 ) 

5.13 
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Cu[clge]2 

Cu(clge)2Br2 

1800 1600 1400 1200 v/cm- 1 

FIGURE 5.3 IR spectra of Cu[clge]2' Cu(clge)2Br2 and [c1 g eH]2[CuBr
4

] 



atoms of the two chelating ligands lying close to the 

corners of a square plane. Thus it is logical to suppose 

that [clge] will adopt a similar planar arrangement and 

by consideration of the electronic structures of 

structurally characterised copper(II)-clge, bg and bu 

complexes, it is possible to predict several probable 

coordination modes. 

Table 5.2 shows the Lewis structures which describe 

the bonding of the ligands in the copper(II) complexes of 

clge, bg, [bg]- and [bu]2-. Structures of cations have 

not been included since the cations do not coordinate the 

copper(II) ion (Chapter Four). Coordination via amine 

residues is not observed; since the ligands are planar 

the delocalised n-system extends over the whole of the 

molecule resulting in sp2 hybridisation of the amine 

groups. Thus, these groups do not have lone pairs of 

electrons to direct towards the metal ion. Only imine 

nitrogen atoms or carbonyl oxygen atoms act as 

coordinating centres. Non-ligating oxygen atoms only 

occur as anionic oxy residues, whilst non-ligating 

nitrogen atoms, except the bridging nitrogen atom, are 

only found as amine residues. The bridging nitrogen is 

protonated, giving a C-NH-C bridge, in all forms but that 
e 

for [bg]- (5.13) in which a C=N-C bridge exists. By 

consideration of these observations, two tautomers for 

the [clgeJ ligand that are consistent with the 

structures in Table 5.2 are proposed. Form 5.18 is 

obtained by sUbstitution of a carbonyl group for an imine 
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TABLE 5.2 Tautomeric Forms Observed in bg, clge and bg Complexes 

L2-

L 

L 

Biguanide 

H2N"" ,..,......N" /NH2 
C C 
II II 

HN NH 
....... Cu y 

12 

5.13a 

H2N" ,.,...,NH" /NH2 
C C 
.. II 

HN NH 
........ Cu k"" 

12 

5.14b 

a: Reference 15 
b: Reference 21 

c: Chapter Three 
d: Reference 18 

I-Carbamoyl 
guanidine 

H2N" /"NH", ,..,......NH2 
C C 
.. II 

HN 0 
........ Cu y 

12 

5.1SC 

e: Reference 22 

Biuret 

-0" ,..,.....NH" ,/0-
C C 
II .. 

HN NH 
~~ 

CU/2 

5.16d 

H2N", /NH" ,/NH2 
C C 
II II 

0 ........ ~O 
CU / 2 

5.17e 

f-' 

U1 
W 



group in form 5.13, whilst substitution of an amine group 

for an oxy moiety in form 5.16 gives form 5.19. 

5.18 5.19 

Coordination of a copper(II) ion by a pair of 

[clge] ligands adopting either form 5.18 or 5.19 would 

result in two isomeric complexes with Cu0 2N2 and CuN 4 

chromophores respectively. 

A possible method to distinguish between the two 

possible isomers is uv-visible spectroscopy, the visible 

spectrum of the copper(II) ion being determined by the 

number and nature of the ligating species. Table 5.3 

shows spectroscopic data for all structurally 

characterised copper(II) complexes containing ligands 

analogous to clge. The ligating atoms which form the 

chromophore are those lying in the equatorial positions 

of the copper atoms square planar or tetragonally 

elongated octahedral coordination sphere. The distortion 

of the latter geometry is such that ligating atoms in the 

axial positions are so distant that they can be assumed 

to play no part in the chromophore. The solid state 

spectra of the complexes all exhibit a broad 
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TABLE 5.3 Structural and Spectroscopic Data for 

Copper(II) Complexes of bu, clge, bg, [bg]-, 

[bu]2- and aOeu 

Complex Chromophore Amax 

Cu(bu)2C1 2 cuo4
22 760 62 

[Cu(clge)2(N03 )2] Cu0 2N2 
610 

[Cu(bg)2]C1 2 ·2H2O CUN4
21 505 53 

Cu[bg]2·2H2O CUN4
15 500 63 

K2Cu[bu]2· 4H 20 CUN 4
l8 485 18 

[Cu(aOeu)2]C1 2 ·2H2O CUN4 
515 

[cu(aOeu)2]Br 2 CUN4 
515 
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unsymmetrical absorption band in the visible region. The 

wavelength of maximum absorbance, A , correlates max 

remarkably well with the three types of chromophore. For 

the CU04 chromophore Amax occurs at ~760nm. Replacing 

two oxygen atoms by two nitrogen atoms results in a CUOf2 

chromophore for which A is ~610nm. Complete max 

substitution of oxygen atoms by nitrogen atoms gives a 

CuN4 chromophore for which A is between 480 and 515nm. max 

As noted earlier, both Cu[clge]2 and its dihydrate have 

Amax values of 505nm and hence, in line with the data in 

Table 5.3, it can be predicted that both Cu[clge]2 and 

its dihydrate contain a CUN
4 

chromophore. This 

necessitates that the [clge] ligands exist in a form 

which is described by tautomer 5.19. Unfortunately, 

however, for Cu[clge]2.2H20 it is not possible to 

distinguish between a square planar coordination geometry 

with the water molecules merely held in the crystal 

lattice or a distorted octahedral coordination geometry 

in which the water molecules are distant from the 

copper(II) ion but lie axially above and below the CUN4 

square plane. 
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C HAP T E R S I X 

COPPER(II) COMPLEXES OF l-AMIDINO-O-ETHYLUREA 

6.1 Introduction 

In the course of the examination of the 

spectroscopic and structural properties of coordinated 

l-cyanoguanidine (cnge) (see Chapter Two) the preparation 

of the anhydrous copper(II)-cnge complexes cu(cnge)2C12 

and cu(cnge)4C12 was attempted. A method reported by 

Panda et a1 28 was followed in which the requisite molar 

quantities of an anhydrous copper(II) halide (chloride or 

bromide) and cnge were reacted in ethanol. Although the 

appearance, Uv-visible absorption spectra and magnetic 

properties of the products were very similar to those 

reported for the anhydrous copper(II)-cnge complexes 

(Table 6.1) the infrared spectra of the former did not 

contain absorption bands characteristic of the stretching 

vibrations of the nitrile group of cnge coordinated to 

copper(II) (see Section 2.6 and Table 6.18). Furthermore, 

chemical analysis (see Section 6.2) indicated that the 

products contained cnge and ethanol in a 1:1 molar ratio. 

The absence of absorption bands attributable to the 

nitrile stretching vibration of cnge suggested that 

solvolysis of the nitrile group had occurred with 

subsequent formation of copper(II)-amidinoethylurea 

complexes. 

These preliminary experiments yielded a mixture 

containing pink and blue powders, for the chloride 
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complexes, or ruby red and dark green powders for the 

bromide complexes. By controlling the copper(II) 

halide:cnge molar ratio, the order of addition of the 

reactants and the concentration of the reaction solution, 

it was possible to produce pure products. Analytical 

data showed them to be 1:1 and 1:2 molar adducts. 

TABLE 6.1 Products of the Reaction between cnge and 

Copper(II) Halides in Refluxing Ethanol 

Product 

Present Results 

Cu(aOeu)2C1 2·2H20 

Cu(aOeu lC1 2 

Cu(aOeul2Br2 

Cu(aOeu)Br 2 ·2H20 

Cu[aOeu]2 

Panda's Results 28 

Cu(cnge)2C1 2 

Cu(cngel
4

Cl
2 

cu(cnge)2Br 2 

Cu(cnge)4 Br 2 

Appearance 

pink 

blue 

ruby red 

dark green 

pink-red 

pink 

blue 

pink 

blue 

UV-visible 
spectra 
A /nm max 

515 

650 

515 

660 

540 

530 

675 

525 

665 

Examination of the literature revealed that 

alcoholysis of cnge in the presence of a copper(II) salt 
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is well known; there is, however, some confusion over the 

molecular structure of the product amidinoalkylurea and 

its coordination mode to copper{II). The reaction was 

first reported by Dutta and Ray24 who assumed reaction 

proceeded through l-amidino-O-alkylurea (aOaui 6.1) 

intermediates to the isomeric l-amidino-3-alkylurea 

(a3aui 6.2) products. Subsequently, Baker and Daniels
25 

emphasised the role of the metal cation, proposing a 

reaction mechanism sequentially involving copper{II)-

cnge, copper{II)-aOau and copper{II)-a3au complexes. 

Meanwhile, Kawano and Odo 26 proposed that the reaction 

products were l-amidino-O-alkylureas and that the 

geometrical rearrangement did not occur; they also 

recognised the significance of copper{II)-cnge complexes 

as intermediates. Diana et al,29 by synthesising the two 

isomers via alternative unambiguous routes, resolved this 

dichotomy showing chemically that the ligands produced in 

the alcoholysis reaction were l-amidino-O-alkylureas. 

6.1 6.2 
R = alkyl 

These tautomeric forms are assumed by analogy with 

biguanide, l-carbamoylguanidine and biuret; they have not 

been confirmed experimentally. 
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Although this conclusion has since been generally 

accepted, the coordination mode of aOau to copper(II) has 

not been established, numerous tautomeric forms being 

suggested. Initially Diana et a1 27 and Dutta and 

Syamal 64 favoured structure (6.3); Wasson and Trapp38 

then proposed structure (6.4). Subsequently, after 

65 detailed infrared studies, Syamal and Ghanekar 

preferred structure (6.5). 

+ 

6.3 6.4 

6.5 6.6 

In the absence of structural verification, comparison 

with the more extensively studied, analogous ligand, 

biguanide (bg) indicates coordination probably occurs 

through two imine groups as in structure (6.5). The 
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tautomeric form adopted by bg (6.6) when coordinated to 

copper(II) was elucidated in a recent high precision 

single crystal X-ray diffraction study of the structure 

21 of [Cu(bg)2]C1 2 .2H
2
0. 

To verify the identity of the products generated by 

this present work and to ascertain the coordination 

geometry of the chelating ligand, their crystal and 

molecular structures have been determined. The results 

reported in this Chapter identified the complexes as 

[Cu(aOeu)Cl 2 ]2 and [Cu(aOeu)2]Cl 2 .2H20. However, 

although the solution of the structure of the former 

complex was satisfactory, that of the latter complex was 

disappointing owing to the presence of several elements 

of twinning. Consequently, whereas detailed geometrical 

parameters could be quoted with confidence for the 

structure of [Cu(aOeu)CI
2

]2' only gross aspects of the 

structure could be described for Cu(aOeu)2CI2.2H2o. 

Hence a determination of the structure of the analogous 

complex [Cu(aoeu)2]Br
2 

was attempted. This proved to be 

very successful, enabling a complete analysis of the aOeu 

ligand. 

To characterise further the aOeu molecule, the 

preparation of the cationic and anionic forms ([aOeuH]+ 

and [aOeu]- respectively) and of neutral uncoordinated 

aOeu was attempted. Microcrystalline samples of 

[aOeuH]CI and Cu[aoeu]2 were obtained, however, the 

neutral species could not be synthesised. The methods 

employed to try to produce this molecule involved either 
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neutralisation of aqueous solutions of [aOeuH]Cl with 

NaOH or deprotonation of [aOeuH]Cl in aqueous or 

ethanolic solution using an ion exchange resin in a 

manner similar to that used for the preparation of 

l-carbamoylguanidine (see Section 3.2). Unfortunately, 

these efforts only produced cnge and ethanol, presumably 

due to the decomposition of uncoordinated neutral aOeu. 

The infrared spectra of the aOeu compounds produced 

in this work have been recorded but detailed assignment 

has not been possible owing to the complexity of the 

vibrations associated with the aoeu ligand. 

6.2 Experimental 

The complexes and the cation were produced as 

follows. Analytical data for all the products are given 

in Table 6.2 

(a) [Cu(aOeu)CI
2
1

2 

Cnge (2.52g, 30mmol) and copper(II) chloride 

(4.04g, 30rnmol) were dissolved in the minimum of 

hot ethanol. The cnge solution was added slowly to 

the refluxing copper(II) chloride solution and the 

dark blue complex precipitated after several 

minutes. It was filtered off, washed with ethanol 

and air dried. Yield 7.5g, 95%. 

(b) [cu(aoeu)2]CI
2

.2H
2
Q 

An ethanol solution of copper(II) chloride (4.04g, 
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30mmol in lSOcm3 ) was added in small aliquots to a 

refluxing ethanol solution of cnge (S.04g, 60mmol 

in 2S0cm3 ). The solution was refluxed for IS 

minutes and then reduced to one quarter of its 

volume. It was cooled in ice for 2 hours and the 

pink complex precipitated was filtered off, washed 

with cold ethanol and air dried. Yield ll.lg, 86%. 

[Cu(aOeu)2]C1 2 was obtained upon isothermal 

dehydration of [Cu(aoeu)2]C1 2 .2H
2

0 at 8SoC. 

(c) Cu(aOeu)Br
2

.2H
2
Q 

As (a), but copper(II) bromide (6.70g, 30mmol) was 

substituted for copper(II) chloride and for blue 

read green. Yield lO.Sg, 90%. Cu(aOeu)Br 2 was 

obtained upon isothermal dehydration of 

Cu(aOeu)Br2 .2H
2

0 at 90°C. 

(d) Cu(aOeu)2 Br 2 

As (b), but copper(II) bromide (6.70g, 30mmol) was 

substituted for copper(II) chloride and for pink 

read ruby-red. Yield 10.9g, 7S%. 

(e) [aOeuH]el 

H2S gas was bubbled through an aqueous solution of 

[cu(aoeu)2]C1 2 .2H
2

0 (4.30g, 10mmol in SOOml water) 

until the blue solution became colourless. Air was 

drawn through the solution for several minutes to 

remove traces of H
2
S. The black precipitate of eus 
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was filtered off and the filtrate evaporated under 

vacuum until the onset of precipitation. The 

precipitate was collected, washed with ice cold 

water and dried over silica gel under vacuum. 

Yield 2.99g, 90%. 

(f) cu[aOeu]2 

Dilute NaOH (2M) was added to an aqueous solution 

of [Cu(aoeu)2]C1 2 .2H20 (4.30g, 10mmol in 500ml 

water) until the solution became colourless. The 

pink-red precipitate was filtered off, washed with 

water and dried over silica gel. Yield 3.11g, 96%. 

TABLE 6.2 Analytical Data for the Products 

Product 

[Cu(aOeu)C1 2 ]2 

[cu(aoeu)2]C1 2 ·2H
2

O 

[Cu(aOeu)2]C1 2 

Cu(aOeu)Br
2

·2H
2

O 

Cu(aOeu)Br
2 

Cu(aOeu)2Br 2 

[aOeuH]Cl 

Cu[aoeu]2 

aOeu = C H N 0 4 10 4 

Experimental/Theoretical % 

C H N 

18.37/18.15 3.86/3.78 21.63/21.17 

22.23/22.30 5.51/5.57 26.50/26.02 

24.45/24.33 5.28/5.07 28.36/28.39 

12.25/12.33 3.63/3.60 14.30/14.38 

13.45/13.59 2.94/2.83 15.61/15.85 

19.93/19.86 4.01/4.14 22.99/23.17 

29.01/28.83 6.80/6.61 33.77/33.63 

29.76/29.86 5.91/5.60 34.91/34.84 
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-1 Infrared spectra (4000-400cm ) were recorded in KBr 

discs using a P.E.598 spectrometer. UV-visible spectra 

were recorded using a P.E. Lambda 5 spectrometer with a 

diffuse reflectance facility. 

6.3 Crystal and Molecular Structures of the Bis(l­

amidino-O-ethylurea)dichlorodi-~-chlorodicopper(II) 

dimer,of Bis(l-amidino-O-ethylurea)copper(II) 

Dichloride Dihydrate and of Bis(l-amidino-O­

ethylurea)copper(II) Dibromide 

6.3.1 Structure solution and crystal data for 

[Cu{aOeu)C1
2
1

2 

Deep blue crystals of [Cu{aOeu)C1 2 12 were obtained 

by slow evaporation of an ethanolic solution. Microscopic 

examination of the crystals showed them to have the shape 

of an arrowhead, implying twinning. Since the crystals 

were too small for cleavage, an apparently twinned 

crystal (0.2xO.lxO.05mm) was mounted in a Lindemann tube 

for preliminary study. Oscillation and Weissenberg 

photographs revealed cell parameters, space group and 

twinning about the (100) plane. Moreover, as a/c.cos B = 

3.04 (~3) there was approximate overlap of the (3kl) and 

(6kl) reflections of the twinned crystals. Cell 

parameters space group and X-ray diffraction data were 

collected for one component of the twinned crystal as 

described in Section 1.6.1. Allowance was made at a 

later stage for the twinning of the crystal. Of the 1751 

intensities collected 1075 were deemed to be observed. 
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The copper atom was located from a Patterson 

function. The chlorine atoms and the carbon, nitrogen 

and oxygen atoms were then located from successive 

difference Fourier syntheses. The identities of the 

skeletal atoms of the chelating ligand were confirmed by 

equating their atomic scattering factor to that of carbon 

and then determining their isotropic temperature factors. 

Those atoms with factors between 0.03906 and 0.06154, 

between 0.02553 and 0.02808 and equal to 0.01506 were 

designated carbon, nitrogen and oxygen, respectively. 

Full matrix least squares refinement with anisotropic 

temperature factors for all these atoms converged at R = 

0.098. Analysis of F band F I values showed this o s ca c 

disappointingly high R value to be due to poor agreement 

for the (Okl), (3kl) and (6kl) reflections, presumably 

owing to the twinning. Although (Okl) reflections could 

be corrected by a layer scale factor, incomplete overlap 

within the (3kl) and (6kl) reflections made allowance for 

the twinning impossible despite many attempts. The 285 

reflections of the type (3kl) and (6kl) were therefore 

removed, leaving 790 for the calculations. Full matrix 

least squares refinement with anisotropic temperature 

factors then converged at R = 0.054. A subsequent 

difference Fourier synthesis indicated the presence of 

electron density (varying from 0.47 to 0.25 e/~3) 

demonstrating the approximate positions of hydrogen atoms 

consistent with the amidino-O-ethylurea tautomeric form. 

The accurate positions of the hydrogen atoms were then 
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defined [r{N-H)=r{C-H) = 1.00~, U{1SO) = 0.03~2] using a 

hydrogen placing routine. Further refinement of the 

structure with fixed hydrogen atoms converged at R = 

0.047. Final positional parameters and thermal 

parameters are given in Tables 6.3 and 6.4. The refined 

layer scale factor for the (Okl) reflections was 1.46 

corresponding to 47% of the minor twin component. 

Observed and calculated structure factors are included in 

Appendix B. 

Crystal Data 

C4HION40C12cu, M = 264.4, monoclinic, spacegroup 

P2 1/c, a = 7.175(2), b = 16.773(3), c = 8.312(2), B = 
03 -3 -3 106.99(3), U = 956.66A , Dm = 1.85gcm , Dc = 1.84gcm 

-1 
for Z = 4, F(OOO) = 532, ~ (MoK ) = 28.80cm . 

a 

6.3.2 Structure solution and crystal data for 

[Cu{aOeu)2]C12·2H2Q 

Small pink crystals of [Cu{aOeu)2C12.2H20 were 

deposited from the mother liquor of the reaction of cnge 

with copper(11) chloride in ethanol (Section 6.2). A 

very small crystal (O.2xO.lxO.Olmm) was mounted on the 

end of a glass fibre with 'Araldite' adhesive. Cell 

parameters, space group and X-ray diffraction data (in 

the range 1<0<20) were obtained as described in Section 

1.6.1. Of the 906 intensities collected, 557 had net 

counts exceeding 201 and were deemed to be observed. 
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TABLE 6.3 Final Positional Parameters (x10 3 ) for 

[Cu(aoeu) C1 2 12 

Atom x/a y/b z/c 

Cu(l) 171.7(3) 437.17(7) 428.5(1) 
C1 ( 1 ) 106.0(6) 321.7(1) 546.0(3) 
C1(2) 236.7(6) 506.6(2) 679.4(3) 
C(1) 193(2) 408.9(6) 84(1) 
C(2) 269(2) 544.2(6) 188(1) 
C (3) 356(2) 680.1(6) 241(1) 
C(4) 404(2) 749.4(7) 144(2) 
N(1) 164(2) 382.0(4) 222.2(9) 
N (2 ) 177(2) 363.8(5) -49(1) 
N ( 3 ) 244(2) 486.4(5) 69.4(9) 
N(4) 247(2) 533.3(5) 334(1) 
0(1) 317(1) 612.8(4) 128.4(8) 
H(1) 137 323 223 
H(2) 140 306 -48 
H( 3) 205 386 -153 
H (4) 265 502 -42 
H(5) 273 582 410 
H(6) 235 693 278 
H ( 7 ) 465 669 345 
H(8) 431 799 214 
H(9) 292 760 40 
H (10) 522 736 107 

TABLE 6.4 Final Thermal Parameters (x103)/~2 for 

[Cu(aOeu) C1 2 12 

Atom U(11 ) U(22) U(33) U(23) U ( 13 ) U(12 ) 

Cu(l) 55 (1) 32.5(6) 23.9(6) 3 . 0 ( 6 ) 18.4(6) 3.1(9) 
Cl(l) 84 ( 3 ) 35 (1 ) 37 (1) 6 (1) 28(2) 1( 2) 
C1(2) 69(2) 43 (1) 25 (1) 0(1) 18 ( 1 ) -4(2) 
C(1) 54(9) 45(6) 36(5) 6 ( 5 ) 30(6) 10(6) 
C(2) 44(8) 41( 6) 26(5) -2(4) 15 ( 5 ) -1( 6) 
C(3) 70(9) 36(6) 45(6) 1( 5) 19(71 -14(7) 
C(4) 80(9) 44(6) 67(8) 3 ( 6 ) 24(9) -11(8) 
N(l) 79(9) 27(4) 32(4) 5(3) 21(6) 3 ( 5 ) 
N(2) 110(9) 39(5) 25(4) -9(4) 32(6) -9(7) 
N ( 3 ) 70(8) 39(5) 26(4) -l( 4) 23(5) -6(5) 
N ( 4 ) 90(9) 34(5) 31 ( 4) -4(4) 32(6) -14(6) 
O( 1) 80 (7) 39(4) 34(4) 5(3) 29(5) -12(5) 

In the form: [exp-2n 2 U(11)h2a*2+U(22)k2b*2+U(33)12c*2 

+2U(12)hka*b*+2U(13)h1a*c*+23)k1b*c*)1 



Consideration of the molecular formula within the 

context of the crystal symmetry indicated that the copper 

atom must be situated in a special position (0,0,0) of 

the P2 1/c space group and that pairs of aOeu molecules, 

chlorine atoms and water molecules must be located in 

centrosymmetrically related positions. Consequently, 

subsequent to the data reduction stage, the positions of 

the chlorine atoms and then the positions of the carbon, 

nitrogen and oxygen atoms were determined in successive 

difference Fourier syntheses. Full matrix least squares 

refinement with anisotropic temperature factors for all 

the atoms converged at R = 0.148. A subsequent 

difference Fourier synthesis showed there was 

considerable residual electron density, the larger peaks 

(largest 0.15 e/~3) being related to Cl(l) by twinning 

operations. The twinned elements, permitted by the 8 

angle close to 90°, together with the limited intensity 

data owing to the small size of the crystal, were thought 

to contribute to the disappointingly high R value. 

Attempts to refine the structure with sets of coordinates 

for all the twinned atoms resulted in but minor 

improvements in R-value, presumably owing to the limited 

intensity data. It was then decided to discontinue 

refinement at R = 0.148. Final positional parameters and 

thermal parameters are given in Tables 6.5 and 6.6 

respectively. Observed and calculated structure factors 

are included in Appendix B. 
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TABLE 6.5 Final Positional Parameters (X10 3 ) for 

[Cu(aOeu)2]C1 2 ·2H20 

Atom x/a y/b z/c 

Cu(l) 0 0 0 
C1(1) -823(2) 212(1) -293(1) 
C(1) -444(7) 132(3) 12 ( 3 ) 
C(2) -231(6) 89(3) 187(3) 
C(3) -104(8) 82(3) 360 (3 ) 
C ( 4 ) -187(9) 132(5) 461(4) 
N( 1) -297(6) 87(2) -39(3) 
N ( 2 ) -655(5) 182(2) -22(2) 
N ( 3 ) -435(5) 137(2) 118(2) 
N ( 4 ) -78(7) 33(2) 150(2) 
0(1 ) -295(5) 111(2) 279(2) 
o ( 2 ) -310(4) 88(2) -273(2) 

TABLE 6.6 Final Thermal Parameters (xl03)/~2 for 

Atom U ( 11 ) U(22) U(33 ) U(23) U(13) 

Cu(l) 1.3(3) 3.5(3) 5 . 7 ( 4 ) -0.5(4) -0.4(2) 
C1(1) 5.6(7) 9 . 2 ( 9 ) 9 . 5 ( 9 ) -2.6(7) 0.8(6) 
C(I) 5 ( 3 ) 2 ( 2 ) 5 (3) -1(2) 1 ( 2 ) 
C(2) 3 ( 2 ) 3 ( 2 ) 6 ( 3 ) -3(2) -I( 2) 
C(3) 8 ( 3 ) 9 ( 3 ) 5 ( 3 ) -1(2) -3(2) 
C(4) 6 ( 3 ) 21 (7) 10(4) -3(4) -I( 3) 
N(1) 3 ( 2 ) 5 ( 2 ) 9 ( 3 ) -2(2) o ( 2 ) 
N(2) I( 1) 5 ( 2 ) 10(3) 0(2) -2(2) 
N(3) 6 ( 2 ) 3 ( 2 ) 7 (3) o (2) o (2) 
N(4) II( 3) 1{ 2) 6(2) -l( 1) -l( 2) 
0(1) 5 (2 ) 8 (2 ) 6(2) -2(2) 0(1) 
0(2 ) 4 ( 2 ) 7 ( 2 ) 8(2) -l( 1) 0(1) 

In the form: [exp-2n2U(11)h2a*2+U(22)k2b*2+U(33)12c*2 

+2U(12)hka*b*+2U(13)hla*c*+23)klb*c*)] 
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U (12) 

0.8(3) 
1.1(6) 

-3(2) 
I( 2) 
2 ( 2 ) 
4 ( 4 ) 

-1(2) 
3(1) 
o ( 2 ) 

-l( 2) 
1(1) 

-1{ 1) 



Crystal Data 

CSH24NS04C12Cu, M = 430.4, monoclinic, space group 

P2 1/c, a = S.299(2), b = 13.739(3), c = 12.S06(3)g, 8 = 

S9.S9(3)0, U = 932.31~3, Dm = 1.S5gcm- 3 , Dc = 
-1 

for Z = 2, F(OOO) = 446, ~(MOKa) = lS.33cm . 

6.3.3 Structure solution and crystal data for 

Cu(aOeu)2Br 2 

-3 1.53gcm 

Ruby red crystals of [Cu(aOeu)21Br2 were obtained 

-2 
from an ethanol solution of Cu(cnge)2Br2 (SxlO M) 

allowed to stand for several days at room temperature. A 

suitable crystal (0.3xO.lxO.lmm) was mounted in a 

Lindemann tube for preliminary study. Cell parameters, 

space group and X-ray diffraction data were obtained as 

described in Section 1.6.1. Of the lSlO intensities 

collected, 1079 were deemed to be observed. 

Consideration of the molecular formula within the 

context of the crystal symmetry indicated that the copper 

atom must be situated in a special positon (0,0,0) of the 

P2 1/c space group and that pairs of aOeu molecules and 

bromide atoms must be located in centrosymmetrically 

related positions. A Patterson function confirmed the 

position of the copper atom and revealed the position of 

the bromine atoms. A subsequent difference Fourier 

synthesis located the carbon, nitrogen and oxygen atoms. 

Full matrix least squares refinement with anisotropic 

temperature factors converged at R = 0.041. The top nine 

peaks (density 0.79 to 0.48 e~3) and the eleventh peak 
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(density 0.46 e/g3 ) of a subsequent difference Fourier 

synthesis gave the positions of the hydrogen atoms of the 

aOeu molecule. Further refinement of the structure using 

isotropic temperature factors for all the atoms including 

the hydrogens was totally successful but for the fact 

that five of the hydrogen atoms [H(1),(2),(3),(S) and 

(6)] gave virtually zero (i.e. less than their standard 

deviations) U(ISO) values. Thus for the last few cycles 

of refinement these hydrogen atoms were refined with a 

fixed U(ISO) value (0.00l~2) whilst the other hydrogens 

had both their positions and U(ISO) values refined. This 

final refinement converged at R = 0.031. Final 

positional parameters and thermal parameters are given in 

Tables 6.7 and 6.8. Structure factors are included in 

Appendix B. 

Crystal Data 

C8H20N802Br2cu, M = 483.3, monoclinic, space group 

P2 l /c, a = 5.221(2), b = 12.306(3), c = l2.703(3)~, B = 

95.94(3)°, U = 811.78~3, Om = l.97gcm- 3 , Dc = l.98gcm- 3 

for Z = 2, F(OOO) = 478, ~(MoK ) = 66.33cm- l . 
a 

6.3.4 Coodination geometry of the copper(II) cation and 

intermolecular contacts for [cu(aOeu)C1 212L 

[Cu(aoeu)2C12.2H20 and [Cu(aoeu)2]Br 2 

The basic unit in the structure of [cu(aOeu)C1 2 ]2 

is the centrosymmetric chlorine bridged [cu(aOeu)C1
2

]2 

dimer (Figure 6.1). The Cu2+ ion is located 0.ll8~ above 
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TABLE 6.7 Final positional Parameters (xl0 3 ) for [cu(aoeu)2]Br 2 

Atom x/a y/b z/c 

Cu(l) 0 0 0 
Br (1 ) 746.2(1) 316.29(4) 157.70(5) 
C(1) -400.3(9) -5.3(4) 145.0(4) 
C(2) -259.2(9) -184.6(4) 89.8(4) 
C(3) -197(1) -374.4(4) 59.6(4) 
C(4) 59 (1) -398.1(5) 116.6(5) 
N(l) -251.1( 8) 49.4(3) 90.1(3) 
N ( 2 ) -572.4(9) 39.8(4) 202.6(4) 
N(3) -398.2(8) -115.9(3) 147.1(3) 
N(4) -101.4(8) -150.9(3) 27.5(3) 
o( 1) -322.8(7) -285.6(2) 110.0(3) 
H (1) -275(9) 118(4) 100(4) 
H(2) -573(9) 109(4) 203(4) 
H ( 3 ) -650(10) 3 ( 4 ) 238(4) 
H(4) -490(1) -143(5) 190(5) 
H(5) -30(10) -193(4) -2(4) 
H(6) -196(9) -360(4) -3(4) 
H(7) -300(10) -431(5) 64(5) 
H(8) 120(20) -458(7) 97(6) 
H ( 9 ) 180(20) -346(8) 104(8) 
H(lO) 50(10) -401(6) 188(6) 

TABLE 6.8 Final Thermal Parameters (xl03)/~2 for [Cu(aOeu)2]C1 2 .2H2O 

Atom U ( 11 ) U(22) U(33) U(23) U ( 13) U ( 12) u(rso) 

Cu(l) 28.2(4) 21.3(4) 29.1(4) 1.9(3) 16.6(3) -1.5(3) 
Br(l) 69.9(4) 31.6(3) 47.0(3) -2.4(3) 34.3(3) 3.4(3) 
CO) 33(2) 26(2) 28(2) o ( 2 ) 12(2) o ( 2 ) 
C (2 ) 30 ( 2 ) 24(2) 29(2) 0(2 ) 8(2) -3(2) 
C(3) 45(3) 25(2) 36 (3) -6(2) 16(2) -3(2) 
C(4) 46(3) 37(3) 49(4) -1( 3) 15 (3) 3(3) 
NO) 35(2) 25(2) 40(2) 2 ( 2 ) 19 ( 2) 2 ( 2 ) 
N(2) 45(3) 28(2) 49 ( 3 ) 2 ( 2 ) 33(2) 2 ( 2 ) 
N(3) 34(2) 27(2) 34(2) o ( 2 ) 24 ( 2 ) -2(2) 
N (4 ) 41( 3) 24(2) 41( 2) 1( 2) 24(2) 2 (2) 
O( 1) 39 ( 2 ) 22(2) 45(2) -2 (1) 24(2) -40) 
H( 1) 1 
H(2) 1 
H(3) 1 
H(4) 20(10) 
H(5) 1 
H(6) 1 
H (7 ) 20(20) 
H(8) 50(90) 
H(9) 90(30) 
H(10) 50(20) 



the base of a square pyramidal coordination sphere 

typical of 5-coordinate copper(II).59 The equatorial 

plane is composed of the two imine nitrogen atoms of the 

chelating bidentate aOeu ligand [r(Cu-N(l» = 1.935R i 

r(Cu-N(4» = 1.940~] and two chlorine atoms [r(Cu-Cl(l» 

= 2.227R i r(Cu-Cl(2» = 2.314~]; the axial position is 

occupied by a more remote chlorine atom centro-

symmetrially related to Cl(2) [r(Cu-Cl(2)') = 2.957R1. 

Full details of the copper(II) cations coordination 

sphere are given in Table 6.9. 

TABLE 6.9 2+ Coordination Sphere of the Cu Cation and 

Planarity of the Ligating Atoms for 

[Cu(aOeu)C1
2

1
2

; Bond Distances/R and Angles/o 

Cu(l)-Cl(l) 2.279(3) 

Cu(1)-Cl(2) 2.314(3) 

Cu (l ) -Cl ( 2 ) , 2.957(4) 

Cu(l)-N(l) 1.935(8) 

Cu(1)-N(4) 1.940(8) 

symmetry properties of 
C1( 2) , -x,l-y,l-z 

Ligating 
atom 

Cl ( 1 ) 

Cl(2) 

N(l) 

N(4) 

Deviation from 
plane/R 

0.037 

-0.038 

-0.046 

0.047 

Cu(l)N(l)C(l) 130(1) 

Cu(1)N(4)C(2) 129 (1) 

Cl (l ) Cu (l ) Cl ( 2 ) 93.1(1) 

Cl(1)Cu(1)Cl(2) , 95.2(1) 

Cl (l ) Cu ( 1 ) N (l ) 91.0(2) 

Cl ( 1 ) Cu ( 1) N ( 4 ) 175.9(4) 

Cl(2)Cu(1)Cl(2) , 91.9(1) 

Cl(2)Cu(l)N(1) 170.2(4) 

Cl(2)Cu(l)N(4) 86.6(3) 

Cl ( 2 ) , Cu ( 1 ) N ( 1 ) 96.5(4) 

C 1 ( 2 ) 'Cu ( 1 ) N ( 4 ) 89.0(4) 

N ( 1 ) Cu ( 1) N ( 4 ) 88.6(4) 

Cu(l) is 0.ll8~ above the 

Cl(l)Cl(2)N(l)N(4) plane 

Equation of best plane: -6.59858x+4.3394y-0.ll507z = 0.597 
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H3 

H9 

FIGURE 6.1 Molecular geometry of the [cu(aOeu)C12]2dimer 



The dimers form part of pairs of corrugated planes 

which run parallel to (100) (Figure 6.2). Intermolecular 

contacts of less than 3.30~ only occur within these 

planes (Table 6.10, Figure 6.3). They arise between 

nitrogen and chlorine atoms and can be classified into 

two types; those with a geometry consistent with an 

intermolecular hydrogen bond, N(2)-H(2) ... Cl(1) and 

N(3)-H(4) ... Cl(2), and those within the CuN 2C1 2 square 

plane, N(l) ... Cl(l) and N(4) ... Cl(2). 

TABLE 6.10 Intermolecular Contacts of Less than 2.30~ # 

for [Cu(aOeu)C1 2 ]2: Hydrogen Bond and 

Electrostatic Interactions 

Symmetry r(X •.. X') r(H-H) r(H ... X') 
properties 

Interaction of X' ~ ~ ~ 

N(l)-H(l) ... Cl(l)* x,y,z 3.02 1. 01 2.76 

N(2)-H(2) ... Cl(1) x .!+y _.!-z , 2 , 2 3.29 1. 00 2.32 

N(3)-H(4) ... Cl(2) x,y,-l+z 3.24 1. 01 2.27 

N(4)-H(5) ... Cl(2)* x,y,z 2.93 1. 01 2.65 

# There are two other contacts to N(2) over 3.30~, 
r(N(2) ... Cl(1)a) = 3.33~, r(N(2)-Cl(2)a) = 3.40~, 
symmetry of Cl(l)a and Cl(2)a x,y,-l+z. Hydrogen H(3) 

lies on a line bisecting the angle CI(1)a-Cu (1)-Cl(2)a. 

* These contacts are within the CUN
2

C1
2 

square plane 

giving rise to the small XHX' angle. 

Both the structures of [Cu(aoeu)2]C1 2 .2H 20 and 

Cu(aOeu)2Br2 consist of essentially planar cationic 

fragments (Table 6.11) and chloride or bromide anions as 
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FIGURE 6.2 Projection of the structure of [Cu(aOeu)C 1 2
1

2 

onto the (001) plane 
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FIGURE 6.3 Projection of the structure of [eu(aOeu) C1 2 ]2 

onto the (100) plane 
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appropriate. The cationic fragments of the former 

complex are {[cu(aoeu)2]2+.2H20} units which form two 

sets of interlinked ribbons which lie parallel to (120) 

and (120) (Figure 6.4). The cationic fragments of the 

latter complex are [cu(aoeu)2]2+ units and they form a 

set of planes parallel to (102) (Figure 6.6). In both 

fragments the copper(II) ion is coordinated by two 

centrosymmetric bidentate aOeu ligands with the water 

molecules in {[cu(aoeu)2]2+.2H20} being hydrogen bonded 

to pairs of ligating atoms of the two (aOeu) ligands 

(Figure 6.5). 

TABLE 6.11 Planarity of the {[cu(aoeu)212+.2H20} fragment 

in [Cu(aoeu)2]C1
2

2H20 and of the [cu(aoeu)2]2+ 

fragment in [Cu(aoeu)2]Br 2 

{[cu(aoeu)2]2+2H20} [Cu(aOeu)2 1 
2+ 

Deviation from Deviation from 

Atom plane/~b plane/~c 

Cu(l) -0.084 -0.017 

C(1) -0.020 -0.011 

C(2) -0.038 -0.012 

C (3) 0.060 0.018 

C(4) 0.242 see footnote (a) 

0(1) -0.114 -0.005 

N(1) -0.002 0.005 
N ( 2 ) -0.087 0.043 

N(3) -0.066 -0.058 

N(4) -0.141 0.038 

0(2) 0.250 

(a) C(4) lies 1.339~ below the plane. 
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(b) Equation of best plane: 3.10780x+ll.05139y-l.20068z = 0.084 

(c) Equation of best plane: -3.27956x+0.19590y-9.00324z = 0.017 
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FIGURE 6.4 Projection of the structure of [Cu(aOeu)2]C1 2 .2H 20 

onto the (001) plane 
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FIGURE 6.6 Projection of the structure of 

[cu(aOeu)2Br2 onto the (010) plane 



Whereas for [Cu(aoeu)2]C1 2 .2H20 there is inter­

ribbon hydrogen bonding between chlorine and either 

ligand nitrogen or water oxygen (Figure 6.4, Table 6.12), 

for [Cu(aOeu)2]Br
2 

hydrogen bonding only occurs between 

bromine and ligand nitrogen atoms within the planes. 

Full details of intermolecular bonding are given in 

Tables 6.12 and 6.13. 

In both complexes the copper(II) ion is surrounded 

by four imine nitrogens, which lie at the corners of a 

square plane, of the two chelating aOeu ligands (Table 

6.14; Figures 6.5 and 6.7). 

TABLE 6.14 

Cu(l)-N(l) 

Cu(l)-N(4) 

Cu (l ) - N ( 2 ) I 

N ( 1 ) Cu(l) 

N(l) Cu(l) 

2+ Coordination sphere of the Cu cation for 

[Cu(aOeu)2]C1 2 .2H20 and [Cu(aoeu)2]2Br2; Bond 

distances/~ and angles/o 

[cu(aoeu)2]C1 2 ·2H2O [Cu(aOeu)2]2Br 2 

2.03(4) 1.926(4) 

2.02(4) 1.972(4) 

3 . 1 1 ( 3 ) 3.265(5) 

N(4) 87(2) 88.8(2) 

N (2) I 88 (l) 86.3(2) 

N ( 4 ) Cu ( 1) N (2) I 92(1) 100.1(2) 

Cu ( 1) N (2) I C ( 1 ) I 93 (1) 87.1(3) 

Symmetry of N(2) I and C(l) I l+x,y,z 

By consideration of the structural data it can also 

be inferred that a bonding interaction, albeit weak, 

occurs between the copper(II) ion and two [Cu(aoeu)2]2+ 
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TABLE 6.12 Intermolecular contacts of less than 3.305(; 

Hydrogen bond and electrostatic interactions 

for [Cu(aOeu)2]C1 2 2H 2O 

Interaction Symmetry r(X ... X·) Angle 
X ... X' Properties of X' ~ 

0 

N(l) ... O(2) x,y,z 3.00 C (l ) -N (l ) -0 ( 2 ) 122 

Cu(1)-N(1)-O(2) 106 

N(3) ... Cl(l) 1 1 
X'2-Y'2+ Z 3.14 C(1)-N(3)-Cl(1) 112 

C ( 2 ) -N (3 ) -Cl (1 ) 122 

N(4) ... O(2) -x,-y,-z 3.08 C(2)-N(4)-O(2) 126 

Cu(l)-N(4)-O(2) 103 

O(2) ... Cl(l) x,y,z 3.22 O( 2 )-Cl( 1 )-O( 2) 114 

O(2) ... Cl(l) l+x,y,z 3.10 Cl(1)-O(2)-Cl(1) 114 

TABLE 6.13 Intermolecular contacts of less than 3.60~; 

Hydrogen bond and electrostatic interactions 

for [Cu(aoeu)2]Br 2 

Interaction Symmetry r(X ... X·) r(X-H) r(H ... X·) XHX' 
X-H ... x' Properties of X' ~ ~ ~ 0 

N(l)-H(l) ... Br(l) x-l,-y,z 3.395(4) 0.86(5) 2.55(5) 167(4) 

N(2)-H(3) ... Br(1) 1 1 
-X'-2-Y''2- Z 3.445(5) 0.78(6) 2.73(5) 154(5) 

N(3)-H(4) ... Br(l) 1 1 -x,-'2-y''2- z 3.329(4) 0.84(6) 2.51(6) 166(5) 

N(4)-H(5) ... Br(1) l-x,y,z 3.6+ 0.74(5) 3.02(5) 166(5) 
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fragments in adjacent ribbons, for[Cu(aoeu)2]Cl 2 .2H20, or 

planes, for [cu(aoeu)2]Br 2 . The fragments are related by 

translations of ±a such that the terminal amine nitrogens 

N(2)' are located in the axial positions above and below 

the CUN4 plane close to the limit of the copper(II) ions 

coordination sphere (Figures 6.5 and 6.6). Whereas for 

the chloride complex this contact [r(Cu(l)-N(2)') = 

3.11~] is only marginally greater than the sum (2.98~) of 

Van der Waals radii for copper (l.43~) and nitrogen 

(1.55~) that in the bromide complex [r(Cu(l)-N(2)') = 

3.265~] is markedly larger. Evidence for an interaction 

arises from the location and electronic structure of the 

ligand. The amine nitrogen N(2)' can be considered to be 

sp2 hybridised (see Section 6.3.5 for details) and lies 

in such a position {Cu(1)N(2)'C(1)' bond angle = 93° for 

[Cu(aOeu)2]C1 2 .2H20 or 87.1° for [cu(aoeu)2]Br 2 } that its 

2pz orbital, and hence a lone pair of electrons, can be 

directed towards the copper(II) ion. 

The coordination geometry around the copper(II) ion 

in both the chloride and bromide complexes could be 

described as either a square plane or an axially 

distorted octahedron, both of which are typical of d 9 

systems. The tetragonal distortion parameters (0.65 and 

0.58 respectively), however, lie within the range 

(0.66-0.56) allocated to square coplanar complexes. 59 

Similar tetragonal distortion parameters (0.62; 0.64) are 

found for analogous complex [Cu(aebg)(cnge)]So4.H20 (aebg 

= 1-(2-aminoethyl)biguanide)40 in which the copper(II) 
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ion is situated in a CUN4 square planar chromophore 

derived from three nitrogen atoms of the tridentate aebg 

ligand [r(Cu-N) = 1.93, 1.93, 2.0l~] and the nitrile 

nitrogen atom of cnge [r(Cu-N) = 1.96~]. Remotely 

located in the axial positions of the CUN4 chromophore 

are the nitrile [r(Cu-N) = 3.06~] and imine [r(Cu-N) = 

3.14~] nitrogen atoms of cnge molecules in adjacent 

complexes. As in the present complexs, the ligands 

providing the axial ligating atoms lie parallel to the 

square plane of the copper(II) ions coordination sphere. 

6.3.5 Molecular geometry of the aOeu ligand in 

[Cu(aOeu)C1 2 ], [Cu(aOeu)2]C1 2 .2H20 and 

[Cu(aoeu)2]Br 2 

In all three complexes the bidentate aOeu ligand 

chelates the copper(II) ion adopting the di-imine 

tautomeric form 6.5. The C-N and c-o bond distances, 

which are intermediate between single and double bonds, 

the NCN, CNC and NCO bond angles, which are close to 120 0 

(Table 6.15), and the planarity of the skeletal atoms 

C(l), C(2), N(l), N(2), N(3), N(4) and 0(1) (Table 6.16) 

infer sp2 hybridisation of, and the presence of a 

delocalised rr-system over, the ligand excluding the ethyl 

moiety. 

Whereas both the carbon atoms of the ethyl moiety, 

C(3) and C(4), are effectively coplanar with the other 

skeletal atoms of the ligand for the two chloro complexes 

the terminal ethyl carbon atom, C(4), of the ligand in the 

187 



TABLE 6.15 

C(1)-N(1) 

C(1)-N{2) 

C(1)-N(3) 

C(2)-N{3) 

C(2)-N{4) 

C ( 2 ) -0 (1 ) 

C ( 3 ) -0 ( 1 ) 

C(3)-C(4) 

N(1) C (1 ) 

N(1) C{ 1) 

N ( 2 ) C(1) 

C(1) N ( 3) 

N(3) C(2) 

N (3 ) C(2) 

N(4) C(2) 

C(2) O(1) 

O( 1) C(3) 
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Geometry of the aOeu ligand in 

[Cu{aOeu)C1 2 ]2' [Cu{aOeu)2]C1 2 .2H20 and 

[Cu{aOeu)2]Br 2 ; bond distances/~ and angles/o 

[cu{aOeu)C1 2 ]2 [Cu{aOeu)2]C1 2 ·2H2O [Cu(aOeu)2]Br 2 

1.30(2) 1.20(5) 1.288(6) 

1.32(2) 1.38(5) 1.337(6) 

1.37(2) 1.35(5) 1.362(6) 

1.36(2) 1.54{S) 1.371(6) 

1.28(2) 1.21(5) 1.269(6) 

1.34(2) 1.26{S) 1.319(5) 

1.44(2) 1.50(5) 1.458(6) 

1.51(2) 1.S3(7) 1.481(8) 

N ( 2 ) 123(1) 128(4) 124.0(4) 

N ( 3 ) 122{l) 123(4) 122.0(4) 

N ( 3 ) 115(1) 109(4) 114.1(4) 

C ( 2 ) 126 (l ) 126(4) 127.5(4) 

N (4 ) 124(1) 121(4) 122.9(4) 

O{ 1) 110(1) 105(3) 108.8(4) 

0(1) 126(1) 133(4) 128.4(4) 

C(3 ) 117(1) 114(3) 119.1(4) 

C(4) 107(1) 106(4) 111.0(4) 



bromide complex lies 1.341~ below the plane of the other 

skeletal atoms (Table 6.16). This anomally in 

conformation about the O(1)-C(3) bond is presumably a 

manifestation of the location of the stereochemically 

bulky bromide anion and the minimization of interactions 

between the ethyl moiety and the anion. 

TABLE 6.16 Planarities of the aOeu ligand in 

[Cu(aOeu)C1 2 ]2' [cu(aoeu)2]C1 2 .2H20 and 

[Cu(aoeu)2Br 2 

[Cu(aOeu)C1 2 ]2 

Deviation from 

Atom Plane/~b 

C( 1) -0.003 

C(2) -0.004 

C ( 3 ) 0.028 

C(4) -0.008 

O( 1) -0.012 

N( 1) 0.006 

N(2) 0.005 

N(3) 0.001 

N(4) -0.012 

(a) C(4) lies 1.341~ 

[Cu(aOeu)2]C1 2 ·2H 20 

Deviation from 

Plane/~c 

0.053 

-0.017 

0.013 

0.128 

-0.148 

0.009 

-0.029 

-0.043 

-0.075 

below the plane 

[Cu(aOeu)2 Br 2 

Deviation from 

Plane/~d 

-0.013 

-0.014 

0.019 

see footnote (a) 

0.000 

-0.009 

0.049 

-0.056 

0.024 
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(b) Equation of best plane: 6.4764x-4.14202y+0.60884z = -0.392 

(c) Equation of best plane: 3.19713x+lO.180675y-l.6683lz = 0.066 

(d) Equation of best plane: -3.31213x+0.15246y-8.93169z 

As noted in Section 6.3.4 for [Cu(aOeu)2]C1 2 .2H
2

0 

and [Cu(aoeu)2]Br 2 a weak bonding interaction may occur 

= 0.043 



between the amine nitrogens, N(2) I, of two translationally 

2+ related [cu(aOeu)2] fragments and the copper(II) ion. 

Such an interaction would be expected to result in a 

reduction of the electron density of the TI-system over 

the N(2) '-C(l) I bond and hence in a lengthening of the 

bond. Unfortunately, the poor quality of data precludes 

such an analysis for [Cu(aOeu)2]C1
2

.2H
2

0 and it seems 

that the interaction in [Cu(aOeu)2]Br 2 is so weak that it 

has no marked effect on the N(2)-C(1) bond length in 

comparison with that in [Cu(aOeu)C1 2 ]2. 

The coordination geometry of aOeu is consistent 

with those of coordinated biguanide (bg)21 and ethylene­

diaminebiguanide (edbg),66 all three ligands forming 
I 

Cu-NH=C(R)-NH-C(R)=NH chelate rings. The formation of 

bridging C-NH-C fragments, C=N-C bridges existing in the 

free molecules, leads to a decrease in the TI character of 

the bridging C-N bonds and an increase in that of the 

terminal C-N bonds. These changes, which also occur for 

l-carbamoylguanidine (clge; see Chapters Three and Four 

for detailed discussion) are manifest in shorter terminal 

than bridging C-N bonds. Comparison of data for aOeu, 

bg, edbg and clge coordinated to copper(II) is effected 

in Table 6.17. 
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TABLE 6.17 Significant features of the molecular geometries 

of aOeu, bg, edbg and clge coordinated to copper(II) 

Free Molecule 

Average 
r(C-Nb'd ) 

Ligand rl. ge 

/~ 

aOeu a 

aOeu b 

bg13 ,21 1. 356 

edbg66 

clge 1.352 

(a) For [Cu(aOeu)C1 2 ]2 

(b) For [Cu(aOeu)2]Br 2 

Average 
r(C-Nterminal) 

/~c 

1. 358 

1.348 

Coordinated to Copper(II) 

Average Average 
r(C-Nbridge) r(C-Nterminal) 

/~ /~c 

1. 365 1.320 

1. 367 1.337 

1. 374 1.349 

1.410 1.372 

1. 370 1.315 

(c) This average does not include those contacts formally defined 

as double bonds between carbon and terminal imine groups. 



6.4 Spectroscopic Properties 

6.4.1 Vibrational spectra 

As has been shown in previous chapters, extensive 

mixing of internal coordinates occurs in molecules with 

planar skeletons making assignment of the vibrational 

spectra difficult. However, the spectra are of value in 

distinguishing between the compounds examined in this 

chapter. Where possible approximate assignments have 

been made by comparison with structurally similar 

molecules described in earlier chapters. 

The infrared spectra are collated numerically in 

Table 6.lS. The most striking feature of the spectra 

which first distinguished aOeu complexes from those of 

cnge was the absence of absorptions in the 2300-2000cm- l 

region and the presence of absorptions in the 

-1 
2990-29S0cm region. The absorptions in the former 

region would be attributable for cnge to nitrile 

stretching vibrations whilst those in the second region 

arise from the stretching vibrations of the C-H bonds in 

the ethyl moiety of aOeu. 

The stretching and bending vibrations of N-H bonds 

v[NH] and O[NH] will give rise to absorptions in the 

-1 1 3500-3000cm and l700-l500cm- regions. All the 

compounds exhibit several overlapping bands in both 

regions (Figures 6.8 and 6.9). For [Cu(aOeu)2]C1 2 , its 

dihydrate and [aOeuH]Cl the bands in the first region are 

broad and poorly defined whilst for [Cu(aOeu)C1 2 ]2' 

[Cu(aOeu)2]Br 2 and Cu[aOeu]2 they are more highly 
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TABLE 6.18 



TABLE 6.18 
-1 Infrared spectroscopic data/em for copper(II) 

[cu(aOeu)C1 2 ]2 

3380s 
3350 } 
3305 ms 
3260 
3220 } 
3185 m 

2980mw 

1665 } 
1650 s 

1550ms 
1495m 
1460m 
1390 } 
1375 mw 
1340ms 

1230w 
1180ms 
1115mw 

1025mw 
980w 
880mw 

790m 
755m 
730ms 
695mw 
640w,br 

560 } 
530 mw 
505 
405w 

[cu(aOeu)2]C1 2 and 

[Cu(aOeu)2]C1 2 0 2H 20 

3390 
3325 

3205 

2985m 

1670s 
1630m 

1560m 
1480 } 
1465 mw 
1390mw 

1275mw 
1210ms 
1125mw 

1015w 
1015w 

980w 
880 1 
860slfmw 

790 ! 750s mw 
735 

570w,br 
525mw 
505w 
475mw,br 

3420 

3285 

3190 
3030 

2990m 

ms,br 

1670s,br 
1645s 
1615ms 
1560ms 
1465 } 
1440 m 
1400 

1345m 
1275ms 
1205s 
1120m 

1080mw 
995 } 
980 m 
870w 

810m 
760 } 
730 m 
700mw,br 

525 J 495 mw 
450br 
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(aOeu) complexes and [aOeuH]Cl 

Cu[aOeu]2 [aOeuH]Cl Assignment 

3480 }ms 
}S'br 

3370 3350 
3340 }m 3300sh v[NH] 
3260 

3180 



FIGURE 6.8 Comparison of the ir spectra (3500-2800cm- l ) for copper(II)~aOew 

and copper-[aOeu] complexes and [aOeuH]Cl 
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FIGURE 6.9 
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resolved. In the second region all the compounds exhibit 

similar resolution but only Cu[aoeu]2 has one band at 

-1 wavenumbers greater than 1600cm whilst all the others 

have at least two. These difficulties are very difficult 

to explain in the absence of structural data for all the 

compounds, however, it is likely that the level of 

hydrogen bonding and the tautomeric form adopted by the 

various aOeu moieties will influence the nature of these 

absorptions. For example, the well resolved band in the 

V[NH] absorption region of the spectra of [Cu(aOeu)C1 2 ]2 

and [Cu(aOeu)2]Br 2 is consistent with the presence of 

localised N-H bonds (Tables 6.10 and 6.13). 

The number and complexity of the absorptions 

occurring at lower than lSOOcm- l precludes any useful 

analysis of the spectra in this region. These 

absorptions are only useful in fingerprinting each 

compound. It must be noted, however, that the spectra of 

[cu(aoeu)2]C1 2 and its dihydrate were identical and 

cannot be used to distinguish between these complexes. 

6.4.2 UV-Visible Spectra 

All the complexes give rise to broad absorptions in 

the visible region which can be used to distinguish 

complexes with a 1:1 ratio from those with a 1:2 ratio of 
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copper:aOeu. The former class of complexes {[Cu(aOeu)C1
2

]2 

and Cu(aOeu)Br 2 .2H20} give absorptions with a Amax 

650-660nm whilst the latter class of complexes 

{[Cu(aoeu)2]C1 2 , its dihydrate, [Cu(aoeu)2]Br 2 and 



Cu[aoeu]2} give absorptions with A = 515-540nm (Table max 

6. 1 ) • 

The similarity of the absorptions within each class 

of compounds suggest similar chromophores. Hence, the 

copper(II) ion of Cu(aOeu)Br 2 .2H20 may have a square 

based pyramidal coordination sphere analogous to that of 

[Cu(aOeu)C1 2 ] with bromine atoms in place of chlorine 

atoms, the water molecules probably occurring as water of 

crystallization. Also the copper(II) ion of Cu(aOeu)2C12 

and Cu[aOeu]2 is likely to have a square planar or highly 

tetragonally distorted octahedral coordination sphere 

nearly identical to those found in [Cu(aOeu)2]C1 2 .2H20 

and [Cu(aOeu)2]Br2 . 

6.5 The Bonding in Cu[aOeu]2 and [aOeuH]Cl 

The tautomeric form adopted by the aOeu ligand 

(6.5) parallels that of the biguanide ligand (6.6). 

Therefore, it is logical to assume that the tautomeric 

- + forms adopted by the anion [aOeu] and cation [aOeuH] 

will mirror those of their structurally characterised 

biguanide equivalents [bg]- (6.7) and [bgH]+ (6.8). 

Hence the most probable tautomers for [aOeu] and 

[aOeuH]+ are forms 6.9 and 6.10 respectively. 

6.7 6.8 
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6.9 6.10 

Evidence for the former correlation may be derived 

from the similarity of the UV-visible spectra of 

cu[aOeu]2 and Cu[bg]2.2H20. Both complexes exhibit a 

single broad absorption band centred at 480nm~or 

Cu[aOeu]2) and at 500nm (for Cu[bg]2.2H20) confirming 

the presence of CuN
4 

chromophores (Section 5.3). This is 

entirely consistent with the [aOeu] ligand adopting 

tautomeric form 6.9. 
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C HAP T E R S EVE N 

THE COPPER(II)CHLORIDE-I-CYANOGUANIDINE-ETHANOL SYSTEM: 

AN INFRARED SPECTROSCOPIC STUDY 

7.1 Introduction 

X-ray diffraction studies of the complexes that can 

be isolated after various time periods and under 

different conditions from the copper(II)halide-cnge­

ethanol system, have shown them to be copper(II) (aOeu)nX2 

(where aOeu = l-amidino-O-ethylurea; n = 1,2; X = Cl,Br) 

complexes. Copper(II)-cnge complexes were not isolated 

(Chapter Six). The nature of the species in solution and 

the reaction mechanisms for such a system have not been 

examined. 

This Chapter describes the use of solution infrared 

spectroscopy in an investigation of the CuC1 2-cnge-EtOH 

system. 

This technique was chosen by analogy to the solid 

state studies of copper(II)-cnge and copper(II)-aOeu 

complexes (Sections 2.6 and 6.4 respectively). Although 

the spectrum of the former complexes showed infrared to 

be effective in detecting coordination of cnge, those of 

the latter complexes gave only 'fingerprint' absorptions 

characteristic of each complex studied. 

Unfortunately, ethanol is a poor solvent for 

infrared spectroscopy as it has many strong and broad 

absorptions in the 4000 to 400cm- l region (Figure 7.1, 

n.b. the spectrum is of a liquid film) which could mask 
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solute absorptions. -1 However, the 2300 to l600cm region 

is comparatively free of strong ethanol absorptions and 

offers a window in which solute absorptions may be 

observed. The solute bands can be enhanced by 

subtraction of the ethanol absorptions using computerised 

data handling techniques. 

Figures 7.2, 7.3 and 7.4 illustrate the use of this 

technique for the enhancement of the absorptions due to 

cnge dissolved in ethanol. Figures 7.2 and 7.3 show the 

spectra (2300 to l600cm- l ) of ethanol and a solution of 

cnge in ethanol respectively. Differencing these two 

spectra the absorptions due to cnge alone are obtained 

(Figure 7.4). 

The ethanol absorptions are much more intense in 

Figures 7.2 and 7.3 than in Figure 7.1 due to the use of 

an infrared solution cell. This ensured a sufficient 

amount of the solute in the spectrometer beam to be 

detected (the samples had relatively low solubilities) 

but gave a longer path length through the ethanol than 

for the liquid film (Figure 7.1). 

The difference spectra of [Cu(cnge)2C12(H20)2] and 

[Cu(aOeu)2]C1 2 .2H20 in ethanol solution have also been 

recorded (2300-1600cm- l ) and the changes in the 

difference spectrum of a 1:1 molar ratio of copper(II) 

chloride and cnge in ethanol have been monitored as a 

function of time. 
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7.2 Experimental 

7.2.1 Infrared solution spectra 

All infrared solution spectra (2300-l600cm- l ) were 

recorded using a Perkin Elmer PE680 grating instrument 

controlled by a PE3600 data station with PE 680 software. 

An infrared solution cell (NaCl windows, O.lmm path 

length) was filled with samples of ethanol and ethanol 

solutions of cnge (IOOmM), [Cu(cnge)2C12(H20)2] (lOrnM; 

freshly prepared) and [Cu(aOeu)2]CI 2 .2H 20 (SrnM) and their 

spectra recorded. Between samples the cell was flushed 

with ethanol and dried with a flow of nitrogen gas. Bands 

due to ethanol were subtracted from the spectra of cnge 

and the two complexes. 

7.2.2 Sequential infrared solution spectra 

Aliquots (2cm3 ) of ethanol solutions of copper(II) 

chloride (IOOrnM) and cnge (IOOrnM) were mixed and a sample 

of the resulting solution used to fill the infrared 

solution cell. Using an 'OBEY' programme (Appendix A) 

spectra were recorded at 2 hour intervals for 8 hours. 

The spectrum of ethanol was subtracted from each of these 

spectra. The experiment was carried out in duplicate. 

7.3 Results and Discussion 

7.3.1 Infrared solution spectra of cnge, [cu(cnge)2= 

CI2~2Ql2] and [Cu(aoeu)2]CI 2 .2H20 in ethanol 

By analogy with solid state spectra, for cnge and 

its complexes, the bands expected to occur in the 
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2300-l600cm- l window are a doublet in the 2300-2000cm- l 

region and a single broad band in the l700-l600cm- l 

region. The doublet has been attributed to a Fermi 

interaction between the asymmetric nitrile stretch 

Va [N(1)C(1)N(2)] and a combination containing, or an 

overtone of, an N-H vibration. For brevity this doublet 

will be defined as v (NCN)*. The doublet is particularly a 

sensitive to coordination to copper(II), coordination 

resulting in a hypsochromic shift of v (NCN)* (Section a 

2.6). The broad band has been assigned to the 6[NH 2 ] 

vibration and as such is less sensitive to coordination. 

For copper(II)-aOeu complexes the solid state 

spectrum has not been rigorously assigned, however, 

absorptions characteristic of this ligand do occur in the 

l700-l600cm- l region (Section 6.4). 

Examination of the 2300-2000cm- l region of the 

difference spectra of cnge, [Cu(cnge)2C12(H20)2] and 

[Cu(aoeu)2]C1 2 .2H20 in ethanol solution (Figures 7.4, 7.5 

and 7.6 respectively) shows that cnge exhibits two 

absorptions at 2200 and 2l57cm- l whilst the cnge complex 

exhibits three bands at 2237, 2196 and 2l55cm- l . The 

aOeu complex shows no strong absorptions in this region. 

The three absorptions in the solution spectrum of 

the copper(II)-cnge complex can be assigned to the 

overlapping of the two v (NCN)* doublets of free and a 

coordinated cnge. The lowest wavenumber absorption 

(2l55cm- l ) and a proportion of the middle absorption 

(2l96cm- l ) arise from free cnge v (NCN)* absorptions 
a 
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FIGURE 7.5 Difference ir spectrum (2300-l600cm- l ) of 

[Cu(cnge)2C12(H20)2] in ethanol solution 
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FIGURE 7.6 Difference ir spectrum (2300-l600cm- l ) of 

[Cu(aOeu)2]Cl 2 .2H20 in ethanol solution 

2300 2100 1900 1800 1700 1600 

206 

- -1 
v/cm 

- -1 
v/cm 

iii 



(found at 2157 and 2200cm- l ) whilst the highest 

wavenumber absorptions (2236cm- l ) and a proportion of the 

middle absorption (2196cm- l ) arise from the Va(NCN)* 

absorption of coordinated cnge. 

These data necessarily imply that some form of 

dissociation of the copper(II) complex has occurred in 

ethanol to give an equilibrium between free and 

coordinated cnge. Some possible equilibria are shown 

below (ligands other than cnge are omitted for clarity). 

2+ Cu(cnge)2 

2+ Cu(cnge) 

2cu(cngei2+ 

EtOH 
> cu{cnge)2+ + cnge , 

EtOH 
------~> 2+ Cu + cnge , 

EtOH 

c 
2+ 2+ Cu{cnge) + Cu + 3cnge 

Although from these data it is not possible to 

distinguish between the various equilibria, it is clear 

that the dissociation is quite significant from the 

similar intensities of the 2236 and 2l55cm- l absorptions. 

Unfortunately, quantitative analysis of the spectra 

cannot be affected as it is not possible to obtain an 

ethanol solution spectrum of coordinated cnge alone owing 

to the existence of the equilibria. 

There are significant differences in the solution 
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in the 1700 to 1600cm- l region (Figures 7.4, 7.5 and 7.6 

respectively). 

Both cnge and its copper(II) complex exhibit bands 

-1 at 1650cm . That in the spectrum of the complex, 

however, is broader, an assumed manifestation of 

coordination to copper(II). 

The spectrum of [cu(aoeu)2]C1 2 .2H20 exhibits only 

one band at l683cm- l . It is much sharper than those of 

cnge and its complex in this region and hence it would be 

possible to observe the formation of copper(II)-aOeu 

complexes from an ethanol solution containing copper(II) 

chloride and cnge. 

7.3.2 Sequential infrared solution spectra monitoring the 

copper(II) chloride-l-cyanoguanimidine-ethanol system 

Both the 2300 to 2500cm- l and the 1750 to 1600cm- l 

regions proved to be useful in monitoring changes in this 

system. The first region showed loss of the starting 

material whilst the second region showed the formation of 

the product. 

Figure 7.7 shows the changes in the difference 

-1 spectrum (2300 to 1600cm ) of a 1:1 molar ratio of 

copper(II) chloride and cnge in ethanol over an 8 hour 

period. Monitoring for longer periods was not possible 

owing to leakage of the reaction solution from the cell 

and precipitation of products. 

Initially in the 2300 to 2000cm- l region two 

-1 
strong absorptions (2238 and 2l96cm ) and a lower 
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intensity shoulder (-2155cm- l ) were observed. By 

comparison with the spectrum of [Cu(cnge)2C12(H20)2] in 

ethanol, it can be inferred that both free and 

coordinated cnge are present initially in the reaction 

mixture. Since there is not complete formation of 

coordinated cnge then free and coordinated cnge must be 

in equilibrium. The relative intensities of the 2238 and 

2l55cm- l bands implies that coordinated cnge forms a 

significant proportion of the equilibrium mixture. 

Over the period the reaction was monitored, all 

three of the absorptions in the 2300-2000cm- l region 

diminish in intensity inferring loss of both free and 

coordinated cnge. The lowest wavenumber absorption 

appears (within the experimental limits) to diminish at a 

slower rate than the other two absorptions, the shoulder 

eventually being resolved into a peak at 2l55cm- l . 

The change in the relative intensities of the 

absorptions is also consistent with the presence of an 

equilibrium since loss of cnge from the system will 

result in an increase in the [cnge]/[Cu(cnge)2+] ratio 

([X] = concentration of X) according to either of the 

following equilibria. 

2+ Cu + cnge 

2+ Cu(cnge) + cnge 

[Cu(cnge)2+] 
Cu(cnge)2+ B

l
= ------------

[cu2+] [cnge] 

2+ 2 [eu ][cnge] 
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The increase in the [cnge]/[Cu(cnge)] ratio also 

precludes the copper(II) species acting solely as a 

catalyst; it must form part of the product. If this were 

not the case, increase in [Cu2+] would occur which must 

be ~~untered by a decrease in the [cnge]/[cu(cnge)2+] 

ratio. 

-1 Examination of the 1700 to 1600cm region is also 

of value. -1 Initially a broad absorption at 1650cm is 

observed. As the reaction proceeds a relatively sharp 

band at 1690cm- l grows, whilst the 1650cm- l band 

decreases in intensity inferring formation of aOeu at the 

expense of cnge. 

7.4 Conclusions 

These results go someway to identify the species in 

a solution of copper(II) chloride and cnge in ethanol 

over a period of time. Initially free cnge and a 

{ 2+ 2+} copper(II)-cnge complex Cu(cnge) or Cu(cnge)2 are 

present. With time, ethanolysis occurs and copper(II) 

aOeu complexes are produced. Loss of both free and 

coordinated cnge is observed, although the differing 

rates of loss imply the presence of an equilibrium 

between free and coordinated cnge. 

These results give a qualitative insight into the 

reaction of cnge with copper(II) chloride in ethanol. A 

more detailed quantitative analysis of the reaction based 

on the use of UV-visible spectroscopy has been attempted 

and this is presented in the next chapter. 
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C HAP T E R E I G H T 

THE COPPER(II)CHLORIDE-l-CYANOGUANIDINE-ETHANOL 

SYSTEM: A UV-VISIBLE SPECTROSCOPIC STUDY 

8.1 Introduction and Preliminary Experiments 

The work described in the two previous chapters has 

given some understanding of the CuCI 2-cnge-EtOH system. 

That in Chapter Six unequivocally identified the ligand 

produced by the ethanolysis of cnge as l-amidino-O­

ethylurea (aOeu) and characterised the crystalline 

products as [cu(aOeu)CI 2 12 and [cu(aOeu)21cI2' The work 

described in Chapter Seven investigated the nature of the 

species in solution using infrared spectroscopy and 

demonstrated the formation of one or more copper(II)-cnge 

species initially and then their decay with subsequent 

formation of copper(II)-aOeu species. The infrared 

spectra (2300-1600cm- l ) were only sensitive to absorptions 

arising from ligand vibrations and could not be used to 

examine the coordination geometry of the copper(II) ion. 

Also, due to its qualitative nature, it was not possible 

to determine the stoichiometry of the complexes in 

solution nor the kinetics of their formation and decay. 

It was apparent that a more quantitative technique 

complementary to vibrational spectroscopy was required to 

study the CuCI 2-cnge-EtOH system in greater detail. 

As noted in Chapter Six, the crystalline products 

that were isolated could be distinguished by their 
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distinctive colours, blue, for [Cu(aOeu)C1 2 12 , and pink, 

for [Cu(aoeu)2]C1 2 . The solid state visible spectra 

(400-900nm) of the complexes gave the wavelengths of 

their maximum absorption (A ) as 515 and 650nm max 

respectively and illustrated that visible spectroscopy 

could be used to distinguish between the complexes. 

The visible spectra of ethanol solutions of cuC1 2 , 

[Cu(aOeu)C1
2

1
2 

and [cu(aOeu)2]C1 2 , all at 2.0mM, are 

shown in Figure 8.1. Spectra at low concentrations are 

illustrated since [cu(aOeu)C1 2 12 was not particularly 

soluble. All three spectra exhibit a single broad 

absorption but with decreasing A and € (€ = max max max 

molar absorptivity at A ) values (Table 8.1). max 

Although all three absorptions overlap to varying 

extents, it is possible to distinguish between the 

complexes via their spectra. 

An ethanol solution of cnge gives no absorption in 

the visible region. However, addition of cnge in ethanol 

to CUC1 2 or [Cu(aOeu)C1
2

1
2 

in ethanol immediately shifted 

the Amax value from 890nm to 820nm or 680nm to 650nm 

respectively (Table 8.1). The minimum values of Amax 

were only obtained when the cnge was in great excess. 

Addition of cnge in ethanol to [Cu(aoeu)21C12 in ethanol 

gave no visible change (Table 8.1). Figures 8.2 and 8.3 

show the two extremes of the spectra for the addition of 

cnge to CuC1 2 and [Cu(aOeu)C1
2

1
2 

respectively. These 

observations indicate the presence of equilibria in 

solution in which cnge forms complexes with both CuC1
2 
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TABLE 8.1 Spectroscopic Data for CuC1 2 , [Cu(aOeu)C1 2 J2 and [cu(aOeu)2JC12 

Ethanol Solution 
Solid Phase Ethanol solution Containing Excess cnge 

"max/nm "max/nm -1 -1 -1 -1 e: /lmol cm "/nm e: /lmol cm max max max 

CUC1 2 >900 880 71. 5 820 90.0 

[Cu(aOeu)C1 2 12 650 680 47.0 650 54.5 

[Cu(aoeu)2 1C1 2 515 540 40.0 540 40.0 

N 
t-' 
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and [Cu(aOeu)C1 2 ]2 but not [Cu(aOeu)2]C1 2 . The 

equilibrium involving CUC1 2 and cnge is consistent with 

the results of the infrared study described in Chapter 

Seven. 

The spectrum of CuC1 2 and cnge in ethanol only 

remained constant for time periods which varied with the 

concentrations of the two solutes. For all the 

concentrations studied, the absorbance and A gradually max 

decreased in value from 820nm to give a meta stable Amax 

at 650nm which eventually decreased to a final value of 

540nm. Figure 8.4 illustrates this behaviour and shows 

the overlayed sequential Uv-visible spectra of an ethanol 

solution initially containing copper(II) chloride (2.5mM) 

and cnge (lOOmM). Spectra were recorded at 1 hour 

intervals for 16 hours. Further monitoring of the 

spectrum resulted in the lines becoming too close 

together to be resolved and these lines are not shown for 

clarity. Eventually, however, a peak at 540nm was 

observed and no further changes in the spectrum occurred. 

The similarity of the intermediate and final 

spectra to those of ethanol solutions of [Cu(aOeu)Cl 2 ]2 

and [cu(aoeu)2]Cl 2 containing cnge, suggested that a 

sequence of reactions was being observed in which 

ethanolysis of cnge occurred in the presence of CuCl 2 

giving first mono- and then bis-aOeu-copper(II) complexes 

in ethanol solution. 

Hence, after the success of these preliminary 

experiments it was decided to attempt to quantify the 
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equilibria and reactions observed using visible 

spectroscopy. The study has been divided into three 

sections. The first two sections describe the 

investigation of the initial equilibrium on addition of 

cnge to CuC1
2 

in ethanol, whilst the third section 

examines the kinetics and mechanism of the subsequent 

ethanolysis reactions. 

8.2 The Initial Equilibria Present in the CUC1 2-cnge­

EtOH System: The Stoichiometry of the Solution 

Species 

8.2.1 The molar ratio method67 

The simplest approach to examine the nature of the 

species using uv-visible spectroscopy is the Molar Ratio 

Method. The absorbance (A), at a suitable wavelength, of 

a series of solutions of constant metal concentration 

([M]T) containing varying concentrations of ligand ([L]T) 

is measured and a plot of A against [L]T/[M]T 

constructed. Ideally, two intersecting straight lines 

should be obtained with the point of intersection on 

interpolation to the [L]T/[M]T axis giving the 

stoichiometric ratio of ligand to metal occurring in the 

complex (Figure 8.5). However, this method is valid only 

if the metal and ligand form only one complex and the 

stability constant for this complex is sufficiently large 

so as to produce a ckar-cut point of intersection. 

Figure 8.6 shows the molar ratio plot obtained for 

various ethanol solutions of CuCl
2 

and cnge. The 
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absorbance values at 820nm are taken from experiment 8.5 

(see Section 8.3). A curve is obtained for the plot 

rather than two intersecting lines, which suggests that 

the conditions for the molar ratio method are not 

satisfied by this system. Hence the results imply the 

formation of one or more complexes with low values for 

their stability constants. This work verifies the 

observations in the preliminary experiments that only 

large values of [cnge]T/[CuCl 2 ]T gave the lowest Amax 

value (820nm) and the greatest increase in absorbance for 

a particular [CuCl
2

]T. 

Although the molar ratio method has been shown to 

be unsuitable for this system, it has been possible to 

demonstrate that only one or more weak complexes formed 

in solution. Further investigation of the initial 

equilibrium has been accomplished using a more suitable 

technique, the Method of Continuous Variation more 

commonly known as Job's Method. 

8.2.2 Job's Method67 

Consider the formation of complex ML from metal M n 

and n moles of ligand L with overall stability constant 8n 

8n~ 
M + nL ~ ML 

n 

A series of solutions can be prepared such that the sum 

of total metal and total ligand concentrations ([M]T and 

[L]T respectively) is constant (C). Hence 
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Three mass balance equations may now be written. 

[M] = C(l-x) - [MLn] 

[L] = Cx - n[MLn ] 

[MLn] = Bn[M][L]n 

where x is the mole fraction of the ligand. 

Taking first differentials of equations 3 and 4, 

followed by elimination of [M] [L] and [ML ], yields a 
n 

value for x, xmax ' which is dependent only on n 

i.e. 
xmax n = ~----I-x max 

Now at a given wavelength A for the reaction 

Aobs = EM[M] + EL[L] + EMLn[MLn] 

( I ) 

( 2 ) 

( 3 ) 

( 4 ) 

( 5 ) 

( 6 ) 

where A b is the observed absorbance per unit path length o s 

EM' EL , EML are the molar absorptivities of the 
n 

metal, ligand and complex respectively. 

The theoretical absorbance due to the ligand and metal 

alone if there were no reaction between them can be 

written as Atheo and therefore, 

Using equations 2 and 3 the following is obtained 

Aobs = EMC(I-X)-EMC[MLn]+ELcx-ELn[MLn]+EMLn[MLn] 

Atheo = EMC(I-x)+£LCX 

( 7 ) 

( 8 ) 

( 9 ) 
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Hence, a corrected absorbance function Ycalc ' can be 

defined as the difference between Aobs and Atheo . 

Subtracting equation 9 from equation 8 

Thus, Ycalc is independent of C and a function of [MLn] 

only. 

If the ligand does not absorb in the region of 

interest, as has been found for cnge, equation 10 becomes 

( 11) 

Hence, if €ML>€M then when [MLn] is a maximum Ycalc will 

be at a maximum. 

Thus, if the Y 1 values of a set of solutions ca c 

with [MT]+[LT]=C at a given wavelength are plotted 

against mole fraction of ligand, x, a plot such as Figure 

8.7 will result. Interpolation of the maximum Ycalc 

value onto the x-axis will give a value xmax . If xmax 

was 0.5 or 0.67 or 0.75 then, from equation 5, these 

values would correspond to values of n of 1 or 2 or 3 

respectively and hence complex stoichiometries of 1:1, 

1:2 or 1:3 respectively. 

Experimentally Aobs is measured and Atheo obtained 

from Atheo = €MC(l-x) (from equation 9 for non-absorbing 

L) where €MC is readily available since when x = 0 

Aobs = €MC 

x=o and hence Atheo = Aobs(l-x) 

However, there are a number of inherent assumptions 

made in Job's Method. These are that: 
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(a) The reactants do not participate in other 

equilibria in addition to the reaction 

specified. 

(b) The activity coefficients are effectively 

constant. 

(c) There is only one complex formed. 

For the system studied, the first two conditions 

are assumed to be satisfied, but it seems unlikely that 

the latter is obeyed in the light of the molar ratio 

plot. However, if data are obtained at several 

wavelengths and a Job's plot constructed at each 

wavelength, then x may be found to be wavelength max 

dependent. If so, then these x values would give max 

the stoichiometries of the different complexes in 

solution. 
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8.2.3 Experimental 

(i) Chemicals and Apparatus 

Analar grade ethanol and copper(II) chloride 

(predried overnight at 110°C) and twice recrystallised 

cnge were used. Stock solutions of CuC1 2 and cnge were 

prepared several days prior to the experiments to allow 

for complete dissolution. This was particularly 

necessary for the cnge solutions. During solution make 

up and prior to an experiment all solutions were 

thermostatted to 20°C +O.loC. Aliquots of solutions were 

measured using grade A burettes (lOml volume, accuracy 

O.02ml). All spectrophotometric measurements were made 

in stoppered quartz solution cells (lOmm path length) 

using a Perkin Elmer Lambda 5 spectrometer fitted with a 

custom made sample and reference cell holder that was 

thermostatted to 20°C +O.loC. The cell holder (Figure 

8.8) was manufactured from a copper block, milled to 

allow accurate location of, and the passage of the light 

beams through,the solution cells. The block was drilled 

to allow for internal circulation of the coolant 

(water/antifreeze 1:1) throughout the holder. This 

system ensured identical constant temperatures for both 

sample and reference cells. 

(ii) Procedure 

Sample and reference cells were filled with ethanol 

and placed in the thermostatted cell holder of the 

spectrometer. The cells were allowed to equilibrate to 
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constant temperature and then the spectrometer was 

background corrected in the range 800-900nm. The sample 

cell was emptied and dried in a stream of nitrogen gas. 

Aliquots of equimolar CuC1 2 and cnge ethanol solutions (A 

and Bml respectively) were mixed and the resulting 

solution transferred to the sample cell in the 

spectrometer. Spectra were recorded every two minutes in 

the range 800-900nm until a constant spectrum was 

obtained. The sample cell was then rinsed with ethanol 

and dried with nitrogen as before. The procedure was 

then repeated using values of A and B until the range 

mole fraction cnge (x ) 0.0 to 1.0 was completed. The 
cnge 

complete experiment was performed four times. Experiments 

8.1 and 8.2 used stock solutions with [CuC1 2 ]T=[cnge]T= 

12.0SmM. Experiments 8.3 and 8.4 used stock solutions 

with [CuC1 2 ]T=[cnge]T = 12.05mM and 25.00mM respectively, 

however, values of A and B in these experiments were 

concentrated on the region xcnge 0.5-0.75. Values of A 

and B for all the experiments are given in Appendix A. 

For each experiment, tables of data were collated from 

the spectra to give absorbance values at 800, 820, 840, 

860 and 880nm which correlated with xcnge values. Values 

of Ycalc were then calculated and plotted against xcnge 

values. 

8.2.4 Results and Discussion 

Absorbance data and the corresponding Ycalc values 

at all wavelengths and x studied are collated for all cnge 

experiments in Appendix A. 
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The Job plots at all the wavelengths studied in 

Experiment B.l are shown in Figure B.9. The plots for 

Experiment B.2 are shown in part in Figure B.1Da. 

The curves for Experiments 8.1 and 8.2 all follow 

the same pattern with the maximum value of Ycalc at a 

particular x decreasing with increasing wavelength. cnge 

This is in line with Figure 8.2 since the greatest 

difference in absorbance between the spectra of ethanol 

solutions of CuC1 2 and CuC1 2 with excess cnge occurs 

close to BDDnm. All the curves pass through their 

maximum value of Y 1 at values of x between 0.5 and ca c cnge 

0.7 and hence x lies in this range. This implies the max 

formation of complexes with a 1:1 or 1:2 Cu:cnge ratio. 

However, it is not possible to distinguish between these 

two stoichiometries at different wavelengths. To try to 

resolve this problem experiments 8.3 and 8.4 were 

performed, concentrating on the x region 0.5 to 0.7. cnge 

The Job plots at the maximum and minimum wavelengths 

studied for these experiments are shown in Figures 8.10b 

and c. The other plots are omitted for clarity. 

Although there is slight scatter in the data, all the 

curves follow the same pattern as before and maximise 

Ycalc at between 0.5 and 0.7 cnge. 

Unfortunately, it has not been possible to observe 

different xmax values at different wavelengths and hence 

determine unequivocally the number and stoichiometry of 

the complexes in solution. This is presumably a 

consequence of very small stability constant(s) for the 
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complex(es) and the broad overlapping bands for both the 

metal and the complex(es) in solution. Both will give 

rise to only relatively small differences between the 

spectra of the metal and the complex(es) in solution over 

a limited range of wavelengths even at x when the max 

difference should be greatest. However, this work has 

demonstrated the presence of either one or both of the 

complexes with Cu:cnge ratios of 1:1 or 1:2. The 

presence of a 1:2 type complex is also consistent with 

the copper(II)-cnge complexes that have been studied 

structurally (Chapter Two). Apart from one complex in 

which the copper(II) atom was coordinated bYI-('l-W\'\i.noct~,~l) 

biguanide and cnge, all the complexes have shown two 

trans coordinated cnge ligands. However, it must be 

noted that none of these complexes were isolated from 

ethanol solutions. 

Having demonstrated the presence of a mono- and/or 

bis-cnge-copper(II) complex in solution, it was then 

attempted to further quantify the equilibria by assuming 

the stepwise formation of these complexes and then 

calculating their stability constants. 

8.3 The Initial Equilibria Present in the CuCl 2-cnge­

EtOB System: the Stability of the Species in 

Solution 

8.3.1 Introduction 

In this work the stability constants have been 

evaluated using the Method of Corresponding Solutions. 67 
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This method relies upon the relationship between the 

stability constants and a secondary concentration 

variable the complex formation function (n; defined 

below). In the following sub-sections, firstly n is 

related to the stability constants, then it is shown how 

n can be calculated from spectrophotometric data and 

finally the experimental data is given. 

8.3.2 The Relationship Between the Stability Constants and 

the Complex Formation Function 

Consider the metal ion M and the ligand L 

interacting in solution. The equilibria present are 

M + L , ML 

ML + L 
K, 

~ ML2 4 

K 
ML n-l+L Q >m c n 

and where 

[ML ] 
K n = [MLn_l][L] n 

( 1 2 ) 

and 

Bn 
[MLn] 

= 
[M][L]n 

( 1 3 ) 

The maximum value of n (N) will be a function of both the 

maximum coordination number of the metal ion and the 

mUltidentism of the ligand. Writing mass balance 
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equations for the total metal and ligand concentrations 

([M]T and [L]T respectively):-

[M]T [M]+[ML]+[ML2 ]+ ... [MLn] ( 14) 

[L]T = [L]+[ML]+2[ML2 ]+ ... n[MLn ] ( 1 5 ) 

A function, n, defined as the average number of ligands, 

L, attached to the metal M may be written 

n = total bound ligand 
total metal = 

substituting equations 14 and 15 in 16 gives 

n = 
[ML]+2[ML

2
]+ ... n[MLn ] 

[M]+[ML]+[ML
2

]+ ... [MLn] 

Now substituting equation 12 in 17 gives 

n = 

Dividing through by [M] gives 

n = 

Returning to equation 16 and rearranging gives 

(16 ) 

(17) 

( 1 8 ) 

( 1 9 ) 

(20 ) 

so that if a series of solutions could be prepared in 

which nand [L] were constant although unknown, a plot of 

[LT ] against [M]T would be a staight line of slope nand 
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intercept [L]. Such a series of solutions are known as 

'Corresponding Solutions'. Since n is shown in equation 

19 to be a function of [L] only it is apparent that if it 

could be established that [L] was constant, albeit 

unknown, for a set of solutions n would also necessarily 

be constant. Thus, if a series of solutions of different 

[M]T and [L]T were prepared, a parameter measured (e.g. 

absorbance of a suitable wavelength) then the total metal 

and total ligand concentrations of strictly 

corresponding solutions could be determined by 

interpolation and plots of [L]T against [M]T would give n 

and [L] values. These values could be used to determine 

stability constants when N=l or 2 by rearranging 

equation19. 

Consider the case when N=l then equation 19 becomes 

n = (21 ) 

which can be rearranged to give 

n (22 ) 

Thus, a plot of n/(l-n) with [L] will give a linear plot 

of gradient KI' 

Now, if N=2 then equation 19 can be rearranged to 

give 

( 23) 

which, on division by n and further rearrangement, gives 
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(l-n) = 
-n ( 24) 

(2-n)[L] - 2 (2-n)[L] 

Thus, if the left hand side of equation 24 was plotted 

against n/(2-n)[L]2 then a straight line of gradient llKl 

and ordinate intercept -K
2 

is obtained. Hence, the 

relationship between n, [L] and the stability constants 

is clearly demonstrated. 

8.2.3 The Calculation of n using the Method of 

Corresponding Solutions 

For the general equilibria defined earlier Eobs can 

be defined such that 

t:obs = ( 25 ) 

The absorbance at a specific wavelength Aobs is given by 

A obs 

i=n 
= EM [M] + { L: (E. [ML. ] )} + E L [ L ] 

. 1 1 1 1= 
(26 ) 

where Ei is the molar absorptivity of MLi at a specific 

wavelength. Substituting equation 26 in 2~ gives 

i=n 
{L: (c[ML.])} 

. 1 1 1 1= 

and hence from equation 15 

i=n i=n . 
EM[M] + L: (E.[ML.]) - L: (E Li([ML.]l) 

'111'1 1 1= 1= 

(27 ) 

(28) 
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Expanding using equation 13 and combining terms 

i=n . 
+ l: (E.B.[M][L]1. -

. 1 1. 1. 1.= 

Dividing through by [M] gives 

i=n . 1. 
EM + l: (E.-EL)B.[L] 

. 1 1. 1. 1.= 

and from equations 14 and 13 this finally becomes 

i=n . - 1. 
EM + l: (E.-EL)B.[L] 

. 1 1. 1. 1.= 

i=n . 
1+ l: S. [L]1. 

i=l 1. 

Hence E b is a function of [L] only, an analogous o s 

(29 ) 

( 30 ) 

( 31) 

situation to n described earlier. If Eobs is calculated 

from the absorbance of solutions of different [L]T and 

[M]T values using equation 25, it follows that solutions 

having the same E b value must have the same [L] and n o s 

values. Thus, the solutions are said to be 

'Corresponding Solutions'. 

Thus, in practice Aobs 1.S measured for a series of 

solutions of constant [M]T and increasing [L]T.Eobs is 

calculated. The experiment is then repeated at different 

[M]T values. A series of graphs of Eobs against [L]T are 

plotted as illustrated in Figure 8.11. Sets of values of 
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FIGURE 8.11 Corresponding solutions: Plots of €obs 

against [L]T at various [M]T values 
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[M]T and the corresponding [L]T are then determined for a 

series of £obs values. Linear plots at each £obs using 

equation 20, illustrated in Figure 8.12, then gives a 

series of nand [L] values from which stability constants 

can be calculated from a linear plot using equation 22 or 

24 as appropriate. 

8.3.4 Experimental 

(i) Chemicals and Apparatus 

These are described in Section 8.2.3(i). 

(ii) Procedure 

This is similar to that described in Section 

8.2.3(ii), however, for this experiment (experiment 8.5) 

it was necessary to prepare solutions at several 

concentrations of CuCl 2 ([CuCl 2 ]T) containing a range of 

cnge concentrations ([cnge]T) for each [CuCl 2 ]T. Thus it 

was necessary to mix aliquots of CUCl 2 and cnge solutions 

(A and Bml respectively) with one of ethanol (Cml) to 

obtain a sufficiently large range of concentrations. 

(Values of A, Band C are given in Appendix A.) The 

concentrations of the stock solutions of CuCl 2 and cnge 

were 36.03mM and 39.64mM respectively. 

In practice solutions with a fixed [cnge]T 

containing various [CuCl 2 ]T were prepared and their 

absorbance at 820nm measured. The value of [cnge]T was 

then changed and the set of measurements repeated. For 

each set of measurements the spectrum of a solution of 
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CuC1 2 alone (9.0lmM) was measured to act as internal 

standard. The range of concentrations studied was 

[cnge]T at 0.00, 2.20, 4.40, 6.61, 8.81, 11.01 and 

l3.21mM with [CuC1 2 ]T at 2.00, 4.00, 6.01, 9.01, 12.01 

and l6.0lmM for each [cnge]T. 

A further experiment (experiment 8.6) was also 

performed in which the stock CuC1 2 solution was diluted 

with ethanol to give several solutions of varying 

[CuC1 2 ]T in the range 2 to 20mM and their absorbancies at 

820 and 880nm measured using the procedure described 

earlier. 

8.3.5 Results and Discussion 

The raw absorbance data at 820nm are collated 

together with the calculated € b values in Appendix A. o s 

The data shows marginal scatter but are self consistent 

within sets of measurement at each [cnge]T. The scatter 

is most pronounced for the data at [cnge]T = 2.20 and 

6.61mM. 

Over the concentration range employed the CuC1 2 

solutions were shown to obey the Beer Lambert law 

i.e. A = cl£ 

where c = concentration 

1 = path length 

A and € as defined earlier. 

This is illustrated in Figure 8.13 (data from experiment 

8.6; collated in Appendix A). Hence the data at [cnge]T 

= 2.20 and 6.61mM have been normalised to the data for 

the other [cnge]T values. 
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FIGURE 8.13 Graphs of the absorbance at 880 and 820nm 

against the concentration of CuC1 2 in ethanol 

solution ([CuC1 2 1T ) 
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Figure 8.14 illustrates the plot of € b at 820nm o s 

against [cnge]T for various [CuC1 2 ]T. Curves have been 

visually fitted to the data. Sets of values of [CuC1 2 ]T 

and [cnge]T have been determined for €obs at the values 

66, 67, 68, 69 and 70 Imol-lcm- l (data in Appendix A). 

The plots of [cnge]T against [C'uC1 2 ]T are illustrated in 

Figure 8.15. In agreement with equation 20 they are 

linear (corr.coeff's in the range 0.996 to 0.999), the 

intercepts on the [cnge]T axis and the gradients of the 

lines giving values of nand [cnge] (data in Appendix A). 

Using these values of nand [cnge] the stability 

constants for the two cases when N=l and N=2 have been 

- -1. . determined; in Figure 8.16 n(l-n) 1S plotted aga1nst 

[cnge], whilst in Figure 8.17 (1-n)(2-n)-1[cnge]-1 is 

plotted against n(2-n)-1[cnge]-2. 

For both analyses the points generated for €obs 

equal to 66 and 69 lmol-lcm- l appear to fallon straight 

lines but those for €obs = 70 Imol-lcm- l show 

considerable deviation from these lines implying that the 

data may not be linearly related. The validity of the 

points at € b = 701mol- l cm- l could not be established 
o s 

since there was insufficient experimental data to extend 

the analysis to € b greater than 70 lmol-lcm- l . 
o s 

Ignoring the points for £ b equal to 70 Imol-lcm- l , the o s 

plots of n(l-n)-l against [cnge] gives a best straight 

line of gradient 795 (corr.coeff. 0.995) which, according 

to equation 22, is equal to Kl (units Imol- l ). 

Similarly, the plot of (1-n)(2-n)-1[cnge]-1 against 
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FIGURE 8.14 Corresponding solutions: plots of € b o s 
at 820nm against [cnge]T at various [CuC1 2 ]T 
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FIGURE 8.15 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

o 
o 2 

Corresponding solutions: Plots of [cnge]T 

against [CuC1 2 ]T 

-1 
Eobs/lmol em -1 .. 70 

0 69 

• 68 

6. 67 

• 66 

4 6 8 10 12 14 16 

244 



5 

4 

3 

2 

FIGURE 8.16 

- --1 n(l-n) 

- --1 Corresponding solutions: plot of n(l-n) 

against [engel 

= 69 Imol-1cm- 1 

= 67 Imol- 1cm- 1 

= 66 Imol-1cm- 1 

245 

1 T---~----------~----------------~----------------T---~ 
1 2 3 4 



22 

20 

18 

16 

14 

12 

10 

8 

6 

4 

2 

o 
o 

FIGURE 8.17 Corresponding solutions: plot of 

(1-n)(2-n)-1[cnge]-1 against n(2-n)-1[cnge]-2 

-1 - - -1 -1-1 10 x(l-n)(2-n) [engel 1M 

2 4 6 7 

e: 
obs 

e: 
obs 

= 68 lrnol-1ern-1 

8 10 12 14 

246 

16 



n(2-n)-1[cnge]-2 (Figure 8.17) gives a best staight line 

(corr.coeff. 0.998) of gradient 1.24xlO- 3 and of ordinate 

intercept 4.7. Using equation 24 Kl and K2 are calculated 

to be 806 and -4.7 Imol- l respectively. 

The similar values of Kl obtained from the two 

analyses and the small magnitude of K2 suggest the sole 

formation of a mono cnge-copper(II) complex. However, if 

-1 -1 the data for ( equal to 70 Imol cm are included in 
obs 

the analysis, the plot of (l-n)(2-n)-1[cnge]-1 against 

n(2-n)-1[cnge]-2 would give an increased gradient and a 

negative ordinate intercept which in turn imply a smaller 

Kl value and a positive K2 value. Hence, both mono and 

bis cnge-copper(II) complexes may be present in solution. 

-1 -1 
The fact that the data for (b equal to 70 Imol cm o s 

differ considerably from the plot of n(l-n)-l against 

[cnge] may provide additional evidence for the presence 

of the bis complex. 

The inconclusive nature of the results may be 

attributable to the difficulties associated with the 

accurate measurement of the small absorbance changes 

which occur in these systems. Consideration of Figure 

8.14 shows that the (obs values differ by no more than 10 

Imol-lcm- l at a given [cnge]T and by no more than 20 

-1 -1 Imol cn at a given [CuC1 2 ]T· It is possible that the 

concentration ranges studed ([cnge]T from 2.21 to 13.21mM, 

[CuC1 2 ]T from 2.00 to 16.01mM and [cnge]T/[CuC1 2 1T from 

0.14 to 6.6) are too restricted and more consistent data 

might be obtained from an extended study. Unfortunately 

time constraints did not permit such an extension. 
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During the course of the study of the CuCl 2-cnge­

EtOH system, an investigation of the equilibrium 

constants for the formation of mono and bis(aOeu)­

copper(II) complexes was envisaged using the techniques 

applied to the cnge-copper(II) system. The literature 

revealed that a similar study had been attempted by 

Dutta68 in aqueous solutions. (In this reference the 

ligands are incorrectly termed alkylguanylureas.) 

Dutta's work demonstrated spectrophotometrically the 

formation of mono and bis aOeu copper(II) complexes by 

varying the pH of aqueous solutions containing CuC1 2 and 

[aOeuH]Cl. Formation of the blue mono aOeu complex was 

complete at pH 4.0, whilst formation of the red-violet 

bis aOeu complex was complete when the pH was increased 

to pH 6.8. Since the conditions employed in this 

investigation do not reflect those encountered in the 

system considered in this chapter, the study of the 

interaction of uncoordinated aOeu with copper(II) ions in 

ethanol was contemplated. Unfortunately, uncoordinated 

aOeu could not be synthesised (as noted in Chapter Six) 

and hence the study could not be pursued. 

8.4 The Kinetics and Mechanism of the Ethanolysis 

Reactions Occurring in the Cuc1 2-cnge-EtOH System 

8.4.1 Introduction 

The preliminary experiments revealed that by 

monitoring the UV-visible spectrum of an ethanol solution 

containing CuC1 2 and cnge, it was possible to follow the 
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reactions occurring in solution (as illustrated in Figure 

8.4). Extraction of viable kinetic data from the 

experimental data available did, however, prove to be 

more difficult than first envisaged. 

The concurrence of the three A values observed max 

in Figure 8.4 with those found for CuC1 2 , [Cu(aOeu)C1 2 12 

and [Cu(aoeu)21C12 in the presence of cnge (Table 8.1) 

implied the consecutive formation of these complexes. By 

monitoring, as a function of time, the changes in 

absorbance at these A values, it was thought possible 
max 

to evaluate the rate of decay or formation of the species 

giving rise to the absorptions and hence to evaluate 

reaction rates. 

8.4.2 Experimental 

(i) Chemicals and Apparatus 

Stock ethanol solutions of CuC1 2 (29.98 and 

60.57mM) and cnge (119.86 and 119.98mM) were prepared; 

the experimental apparatus was as described in Section 

8.2.3(i). 

(ii) Procedure 

A background correction was performed (Section 

8.2.3.(ii)) in the range 900-400nm. Aliquots of a CuC1 2 

solution, a cnge solution and ethanol (Aml, Bml and Cml 

respectively) were mixed and the resulting solution 

transferred to the sample cell in the spectrometer. 

Absorbance measurements were made at 820, 715, 640 and 
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540nm every 10 minutes for at least 400 mins. The 

interval between measurements was then increased to 60 

minutes and the measurements continued for at least a 

further 720 minutes. The contents of the sample cell 

were then transferred to a stoppered bottle and 

maintained at 20°C for several days. The absorbancies of 
r 

this solution wer~ then measured at the four specified 

wavelengths. The sample cell was washed and dried. The 

whole experiment was repeated several times using 

different aliquots of the reagents to obtain measurements 

for the range of [CuC1 2 ]T:[cnge]T values shown below: 

Experiment [CuC1 2 ]T/mM :[cnge]T/mM Experiment [CuC121T/mM:[cnge]T/mM 

8.7 2:40 8.11 4:40 

8.8 2:60 8.12 4:60 

8.9 2:80 8.13 4:80 

8.10 2:100 8.14 4:100 

8.4.3 Results and Discussion 

Changes in the absorptions at 820, 715, 640 and 

540nm for experiments 8.10 and 8.14 are shown in Figures 

8.18 and 8.19 respectively. The other six experiments 

exhibited near identical behaviour. All absorbance data 

are given in Appendix A. The Figures show the decay of 

the absorption at 820nm, the growth and then decay of the 

absorption at 640nm and the growth of the absorption at 

540nm. The absorption at 715nm remains relatively 

constant until ~200 mins. when it starts to decrease. 
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Examination of the data at 820nm for all the 

experiments indicates that the times taken for the 

absorbancies to reach 50% of their initial values 

(defined as the half life) were very similar (Table 8.2) 

and gave an average of 234 minutes. 

TABLE 8.2 Half lives of the absorption at 820nm 

[CuC1 2 JT/mM: 50% of 
Initial Initial Half Life 

Experiment [cngeJT/mM Absorbance Absorbance /mins 

8.7 2:40 0.174 0.087 245 

8.8 2:60 0.184 0.092 250 

8.9 2:80 0.180 0.090 235 

8.10 2:100 0.182 0.091 235 

8.11 4:40 0.353 0.177 225 

8.12 4:60 0.354 0.177 250 

8.13 4:80 0.374 0.187 225 

8.14 4:100 0.371 0.186 210 

Thus, at each [CuC1 2 JT the half life and hence the 

reaction rate, is independent of [cngeJ T- The similarity 

in the half lives for the two sets of experiments at 

[CUC1 2 JT = 2.0 a~d 4.0mM indicates that the rate is 

proportional to [CuC1 2 JT. It may be surmised that the 

reacting species is a copper(II)-cnge complex since under 

the conditions of the experiments (a vast excess of cnge) 

the concentration of such a complex will be virtually 

independent of [cnge]T. 
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For a quantitative kinetic analysis, the adsorption 

data must be converted into concentration data. For this 

system the existence of two equilibria involving 

coordination of CuC1 2 and [Cu(aOeu)C1 2 ] by cnge as well 

as the formation of the intermediate and final products 

of the ethanolysis, complicates the situation such that a 

rigorous analysis cannot readily be undertaken. 

Consequently, simplification of the analysis was 

considered. Figure 8.4 clearly shows the presence of 

isosbestic points at 715 and 555nm. Since the presence 

of an isosbestic point generally indicates that the 

presence in solution of only two species with differing 

absorptions, it was assumed that the point at 7l5nm 

exists whilst the starting material and intermediate 

predominates (i.e. the concentration of the final product 

could be assumed to be negligible) and the point at 555nm 

exists whilst the intermediate and final product 

predominates (i.e. the concentration of the starting 

material could be assumed to be negligible). 

Figures 8.18 and 8.19 illustrate that the 

isosbestic point at 715nm is maintained for -200 mins. 

Thus for this section of the reaction the absorptions 

arising from the [Cu(aOeu)2]C1 2 in solution can be 

ignored and only the reaction of the copper(II)-cnge 

complex to form the mono-(aOeu)-copper(II) complex 

considered. 

Figures 8.20 and 8.21 show the decay of the 

absorption at 820nm for all experiments up to 200 
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minutes. Surprisingly the decay is seen first to 

accelerate and then to slow down. T~s behaviour is not 

typical of a simple reaction (i.e. either first, second 

or third order) but it has been observed for series first 

order reactions exemplified by certain hydrolysis. 69 

Initially it was thought the two reactions may 

arise from the formation and decay of the 

copper(II) mono-(aOeu) intermediate complex and that the 

existence of the isosbestic point at 715nm was 

accidental. An attempted analysis of the data in Figures 

8.20 and 8.21 on this basis (i.e. the three absorbing 

species have € values close to those for ethanol 

solutions of CuC1 2 , [Cu(aOeu)C1 2 12 and [Cu(aOeu)2C121 in 

the presence of cnge) was, however, quite unsuccessful. 

They could only be rationalised by assuming two of the 

absorbing species to have € values close to that of 

ethanol solutions of CUCl
2 

+ cnge and the third to have 

an € value close to that of ethanol solutions of 

[Cu(aOeu)C1 2 12 + cnge. This implies that the formation 

of the copper(II) mono-(aOeu) complex from the 

copper(II)-cnge complex proceeds via an intermediate 

which has the same absorption properties as the initial 

copper(II)-cnge complex, thus generating the isosbestic 

point. It follows that the initial reaction must occur 

at a site remote from the copper(II) chromophore. 

A curve fitting exercise was performed on the 

decay at 820nm for experiment 8.10 assuming series first 

order kinetics in an attempt to quantify the rate 
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constants. This experiment was chosen for analysis since 

it has the greatest [CuC1 2 ]T:[cnge]T ratio (Le. 2:100). 

It is for this experiment the assumptions that [cnge]T 

remains constant and that the formation of the copper(II)-

cnge complex is favourable, are most valid. 

Time dependent values of absorbance for different 

rate constants were computed as follows. Concentrations 

of the copper(II)-cnge complex, the intermediate complex 

and the copper(II)-mono-aOeu complex {[Cu(cnge)], [I] and 

[Cu(aOeu)] respectively} were calculated (see below) and 

then the absorbance values for the complexes, derived 

using their € values at 820nm, summed at regular time 

intervals. 

The relationship used to calculate the 

concentrations of the different complexes are derived 

thus : 

Consider the case 

A 

B 

The differential equations are 

d[A] = -k
l 

[A] 
Cit ( 32) 

( 33) 

(34 ) 
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Equation 32 integrates to give 

[A] = [A] e-kl t 
o 

Substituting equation 35 into 33 gives 

Equation 36 intergrates to give 

Also 

Rearranging 

[B) = 
[A]O kl (e- k l t _e- k 2 t ) 

k 2-kl 

[A]+[B]+[C] = [A]o 

(35 ) 

( 36) 

( 37) 

( 38 ) 

(39 ) 

thus, [A],[B],[C] can be calculated for various kl and k2 

values at various t values provided that [A]o (the 

initial concentration of A) is known. In the system 

under study [A] = [Cu(cnge)], [B]=[I] and [C]=[Cu(aOeu)]. 

Figure 8.22 shows the decay of the 820nm absorption 

for experiment 8.10 and several computed curves (A,B and 

C) in the 0 to 300 minute period. Values of kl and k2 

close to 0.01 min- l gave curves which were most similar 

to the experimental data. For completeness the curve for 

k l =k 2=0.01 (A) is given. As expected, it is exponential 

in form and shows considerable deviation from the 

experimental data. The best overall fit to the 

experimental data was found for kl=O.Ol and k 2=0.012 

min- l (curve B). A better fit in the 0-100 minute period 
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-1 
was achieved using kl=O.Ol and k 2=0.016 min (curve C), 

however, this curve then deviated from the experimental 

data in the 100-200 minute region. 

Both curves Band C after 200 minutes tend to 

absorbance values greater than the experimental data. 

This is in line with the formation of the 

bis(aOeu)-copper(II) complex at the expense of the mono-

(aOeu)-copper(II) complex since the molar absorptivity of 

the bis complex is considerably lower than that of the 

mono complex at 820nm. 

Clearly an ideal fit to the experimental data was 

not possible, implying that unambiguous values for the 

rate constant cannot be readily obtained. Nonetheless, 

the analysis is of value as it indicates that the 

ethanolysis reaction proceeds by series first order 

-1 
kinetics with values of kl and k2 close to 0.01 min . 

This conclusion introduces a further complication to the 

CuCI 2-cnge-EtOH system by increasing the number of 

species involved in the formation of the mono(aOeu) 

complex. Furthermore, it is not unreasonable to expect 

that the conversion of the mono(aOeu) complex to the 

bis(aOeu) follows a similar mechanism. 

Unfortunately, this could not be confirmed as 

careful inspection of the spectral data associated with 

the isosbestic point at 555nm (Figure 8.4) indicated that 

detailed analysis was not possible as the rate of change 

of the absorption was too slow to be accurately monitored 

using the equipment available. 
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8.5 The CuC1 2-cnge-EtOH System: General Conclusions 

The structural and infrared studies described in 

Chapters Six and Seven allied with the uv-visible studies 

discussed in the present chapter, have gone some way 

to unravelling the processes that occur in ethanol 

solutions containing copper(II) chloride and cnge. 

A mechanism consistent with the available data is 

presented in Scheme 8.1. The dissolution of anhydrous 

copper(II) chloride in ethanol results in the formation 

of a solvated copper(II) species. Chloride anions may be 

ligands (as shown) or may themselves be solvated. 

Addition of cnge to the solution displaces a solvent 

molecule and gives a mono(cnge)-copper(II) species. This 

process may be repeated to give a bis(cnge)-copper(II) 

species (not shown), however, the thermodynamic study 

(Section 8.3) implies that the mono(cnge) species will 

predominate. Ethanolysis then occurs in a two step 

process: nucleophilic attack by the ethanol on the 

nitrile carbon followed by proton transfer and 

rearrangement to produce a mono(aOeu)-copper(II) species. 

Crystallisation from solution at this stage affords 

[Cu(aOeu)C1 2 12 · 

The ethanolysis process is then repeated by the 

addition of ethanol to cnge coordinated to a mono­

(aOeu)-copper(II) sPQcies followed by rearrangement to 

give the bis(aOeu)-copper(II) complex. Cnge does not 

coordinate the bis complex since only axial sites on the 

copper(II) ion are available and hence the reaction 
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SCHEME 8.1 Reactions Occurring in the CuC1 2-cnge-EtOH System 
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ceases when all the copper(II) ions are converted to 

bis(aOeu) complexes. 

Crystallisation at this stage affords 

[Cu(aOeu)2]C1 2 · 

The preliminary studies have simply revealed the 

complexity of the ethanolysis process; they seem to have 

revealed more questions than they have answered. 

Clearly, many more studies must be effected if true 

understanding and quantitative interpretation of the 

reaction are to be achieved. 
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APPENDIX A 

NON-STRUCTURAL DATA 



'OBEY' Computer Program for use with PE680 

Software as described in Chapter Seven 

SET FILID SPOOl 

&L2 SET WAIT OFF 

SCAN X,2300,1500,1.O 

SAVE X,* 

DIFF X Y 

SAVE X,* 

DO PAUSE,3000 

DO PAUSE,600 

&GOTO L2 



Aliquot Data for Experiments 8.1, 8.2, 8.3 and 8.4 

Experiments 8.1 and 8.2 

CuCl
2 

A/ml 

cnge Bimi 

x cnge 

Experiment 8.3 

CuCI 2 Aimi 

cnge Bimi 

x cnge 

Experiment 8.4 

CUCI
2 

Aimi 

cnge Bimi 

x cnge 

10 

o 

9.0 

1.0 

0.0 0.1 

10.0 5.5 

0.0 4.5 

8.0 

2.0 

0.2 

5.0 

5.0 

7.0 

3.0 

0.3 

4.5 

5.5 

6.0 

4.0 

0.4 

4.0 

6.0 

5.0 

5.0 

0.5 

3.7 

6.3 

4.0 

6.0 

0.6 

3.5 

6.5 

3.0 

7.0 

0.7 

3.3 

6.7 

2.0 

8.0 

0.8 

3.0 

7.0 

1.0 0.0 

9.0 10.0 

0.9 1.0 

2.5 

7.5 

0.0 0.45 0.50 0.55 0.60 0.63 0.65 0.67 0.70 0.75 

10.0 8.0 7.0 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.0 

0.0 2.0 3.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0 8.0 

0.0 0.20 0.30 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80 



A 

Y calc 

Absorbance and Corrected Absorbance Data 

for Experiment 8.1 

A/nm 

800 820 840 860 880 

0.608 0.676 0.730 0.773 0.798 

0.575 0.638 0.685 0.720 0.738 

0.525 0.578 0.618 0.646 0.660 

0.474 0.519 0.552 0.575 0.585 

0.418 0.456 0.483 0.499 0.507 

0.363 0.393 0.413 0.425 0.429 

0.305 0.328 0.342 0.349 0.350 

0.240 0.257 0.266 0.270 0.269 

0.172 0.182 0.186 0.188 0.186 

0.086 0.092 0.094 0.094 0.093 

0 0 0 0 0 

0 0 0 0 0 

0.028 0.029 0.028 0.016 0.020 

0.039 0.037 0.034 0.033 0.022 

0.048 0.046 0.041 0.038 0.027 

0.053 0.051 0.045 0.040 0.028 

0.059 0.055 0.048 0.039 0.030 

0.062 0.057 0.050 0.036 0.031 

0.058 0.054 0.047 0.035 0.029 

0.050 0.047 0.040 0.028 0.027 

0.025 0.024 0.021 0.025 0.013 

0 0 0 0 0 

x cnge 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 



A 

Y calc 

Absorbance and Corrected Absorbance Data 

for Experiment 8.2 

A/nm 

800 820 840 860 880 

0.650 0.723 0.778 0.813 0.847 

0.624 0.688 0.734 0.771 0.790 

0.568 0.622 0.663 0.692 0.706 

0.540 0.585 0.616 0.640 0.650 

0.479 0.517 0.542 0.559 0.565 

0.418 0.449 0.468 0.480 0.484 

0.359 0.382 0.393 0.401 0.400 

0.265 0.281 0.289 0.293 0.292 

0.090 0.199 0.203 0.203 0.200 

0.098 0.101 0.103 0.101 0.099 

0 0 0 0 0 

0 0 0 0 0 

0.039 0.037 0.034 0.039 0.028 

0.048 0.041 0.042 0.028 0.028 

0.085 0.079 0.071 0.071 0.033 

0.089 0.083 0.075 0.071 0.057 

0.093 0.088 0.079 0.074 0.061 

0.099 0.093 0.082 0.076 0.061 

0.070 0.064 0.056 0.049 0.038 

0.060 0.054 0.047 0.040 0.031 

0.033 0.029 0.025 0.020 0.014 

0 0 0 0 0 

x cnge 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 



Absorbance and Corrected Absorbance Data 

for EXEeriment 8.3 

>"/nm 

800 820 840 860 880 xcnge 

0.626 0.695 0.748 0.790 0.814 0.00 

0.405 0.439 0.461 0.475 0.480 0.45 

0.388 0.412 0.431 0.442 0.445 0.50 

0.349 0.375 0.391 0.400 0.402 0.55 

0.314 0.336 0.350 0.357 0.357 0.60 

A 0.294 0.314 0.325 0.332 0.331 0.63 

0.280 0.299 0.310 0.315 0.314 0.65 

0.273 0.290 0.300 0.304 0.303 0.67 

0.252 0.267 0.276 0.279 0.278 0.70 

0.210 0.223 0.229 0.231 0.230 0.75 

0 0 0 0 0 1. 00 

0 0 0 0 0 0.00 

0.061 0.057 0.050 0.041 0.032 0.45 

0.070 0.065 0.057 0.041 0.038 0.50 

0.067 0.062 0.054 0.045 0.036 0.55 

0.064 0.058 0.051 0.041 0.034 0.60 

y 
calc 0.062 0.057 0.048 0.040 0.030 0.63 

0.061 0.056 0.048 0.039 0.029 0.65 

0.066 0.061 0.053 0.043 0.034 0.67 

0.064 0.059 0.052 0.042 0.034 0.70 

0.054 0.049 0.042 0.034 0.027 0.75 

0 0 0 0 0 1. 00 



Absorbance and Corrected Absorbance Data 

for EX2eriment 8.4 

>../nm 

800 820 840 860 880 x cnge 

1. 342 1. 488 1.608 1.708 1.764 0.00 

1.178 1. 296 1.382 1. 442 1.472 0.20 

1. 068 1.168 1. 238 1.286 1. 306 0.30 

0.969 1. 050 1.104 1.138 1.151 0.40 

0.897 0.970 1. 016 1.045 1.052 0.45 

A 0.841 0.904 0.944 0.966 1. 070 0.50 

0.775 0.830 0.864 0.880 0.881 0.55 

0.715 0.782 0.790 0.801 0.798 0.60 

0.641 0.681 0.703 0.711 0.707 0.65 

0.616 0.652 0.672 0.679 0.673 0.70 

0.417 0.438 0.446 0.445 0.438 0.80 

0 0 0 0 0 1. 00 

0 0 0 0 0 0.00 

0.104 0.106 0.096 0.076 0.061 0.20 

0.129 0.126 0.112 0.090 0.071 0.30 

0.164 0.157 0.139 0.113 0.093 0.40 

0.159 0.152 0.132 0.106 0.082 0.45 

Y calc 0.170 0.160 0.140 0.112 0.108 0.50 

0.171 0.160 0.140 0.111 0.087 0.55 

0.178 0.187 0.147 0.118 0.092 0.60 

0.171 0.160 0.140 0.113 0.090 0.65 

0.213 0.206 0.190 0.167 0.144 0.70 

1.149 0.140 0.124 0.103 0.085 0.80 

0 0 0 0 0 1. 00 



Aliquot Data for Experiment 8.S 

Concentrations of stock solution of CuC1 2 = 36.06mM and of 

cnge = 39.64mM 

A/ml C/ml [CuC1 2 ]T/mM A/ml C/ml [CuC1 2 ]T/mM 

B/ml=O.O, [cnge]T/mM=O.OO B/ml=1.0, [cnge]T/mM=2.21 

1.0 17.0 2.00 1.0 16.0 2.00 

2.0 16.0 4.00 2.0 lS.0 4.00 

3.0 lS.0 6.01 3.0 14.0 6.01 

2.0 6.0 9.01 4.S 12.S 9.01 

3.0 6.0 12.01 6.0 11.0 12.01 

4.0 5.0 16.01 8.0 9.0 16.01 

B/ml=2.0, [cnge]T/mM=4.41 B/m1=3.0, [cnge]T/mM=6.61 

1.0 15.0 2.00 1.0 14.0 2.00 

2.0 14.0 4.00 2.0 13.0 4.00 

3.0 13.0 6.01 3.0 12.0 6.01 

4.5 11. 5 9.01 4.5 10.5 9.01 

6.0 10.0 12.01 6.0 9.0 12.01 

8.0 8.0 16.01 8.0 7.0 16.01 

B/m1=4.0, [cnge]T/mM=8.81 B/m1=5.0, [cnge]T/mM=11.01 

1.0 13.0 2.00 1.0 12.0 2.00 

2.0 12.0 4.00 2.0 11.0 4.00 

3.0 11.0 6.01 3.0 10.0 6.01 

4.5 9.5 9.01 4.5 8.5 9.01 

6.0 8.0 12.01 6.0 7.0 12.01 

8.0 6.0 16.01 8.0 5.0 16.01 

B/ml=6.0, [cnge]T/mM=13.21 

1.0 11.0 2.00 

2.0 10.0 4.00 

3.0 9.0 6.01 
4.5 7.5 9.01 

6.0 6.0 12.01 

8.0 4.0 16.01 



Absorbance Data for Experiment 8.5 

[CuC1 2 l
T

/mM 2.00 4.00 6.01 9.01 12.01 16.01 9.01 std 

[cngel/mM=O.OO 

A
820 

0.122 0.237 0.360 0.551 0.726 0.961 0.549 

(820/1 1-1 -1 
b mo em o s 61.0 59.0 60.0 61.0 60.5 60.0 60.9 

cnge 1 /mM=2. 20 

A
820 

O. 119 0.236 0.352 0.521 0.693 0.915 0.500 
[820/11-1 -1 

b mo em o s 
59.5 59.0 58.7 57.8 57.7 57. 1 55.5 

cnge] ./mM=4. 40 

A
820 

0.141 0.270 0.394 0.578 0.758 1.002 0.543 
820 -1-1 

( b /lmol em 
o s 70.5 67.5 65.6 64.2 63.1 62.6 60.2 

enge]T/mM=6.61 

A
820 

0.135 0.262 0.379 0.558 0.733 0.972 0.505 
820 -1-1 

( b /lmol em 
o s 67.5 65.5 63.1 61.9 61.0 60.7 56.0 

cnge 1 ./mM=8 .81 

A
820 

O. 151 0.288 0.425 0.616 0.797 1.044 0.535 
820 -1-1 

e: b /lmol em o s 75.5 72.0 70.7 68.4 66.4 65.2 59.4 

engel /mM=11.01 
820 T 

A 0.152 0.298 0.432 0.627 0.818 1.089 0.540 
820 -1-1 

e: b /lmol em 76.0 74.5 71.9 69.6 68.1 66.8 59.9 o s 

cnge] /mM= 13 . 2 1 
820 r 

A 0.156 0.306 0.445 0.645 0.841 1.092 0.542 
820 -1-1 

(obs/lmol em 78.0 76.5 74.0 71.6 70.0 68.2 60.2 



Corresponding [CuC1 21r and [enge]r Values for Experiment 8.5 

820 -1 -1 820 -1-1 820 -1 -1 820 -1 -1 820 -1 -1 
E: b =66 lmol em E: b =67 lmol em E: b =68 lmol em E: b = 69 lmol em E: b =70 lmol em o s o s o s o s o s 

[ cuCl 2 ] ,/mM [enge]-r/mM [enge ],/mM [ enge ] 'r/mM [enge],/mM [enge ],/mM 

2.00 2.55 3.10 3.70 4.35 5.05 

4.00 3.60 4.30 5.00 5.75 6.55 

6.01 4.65 5.55 6.50 7.45 8.50 

9.01 6.10 7.25 8.40 9.55 10.75 

12.01 8.25 9.50 10.80 12.10 13.35 

16.01 9.90 11.25 12.60 14.00 

Corresponding [engel and n Values for Experiment 8.5 

820 
[engel E: n obs 

66 1.46 0.537 

67 1.96 0.596 

68 2.50 0.653 

69 3.07 0.710 

70 3.35 0.831 



Aliquot and Absorbance Data for Experiment 8.6 

Concentration of stock solution of CuCL2 = 36.06mM 

Alml C/ml [CuC1 2 1T 
A880nm A820nm 

1.0 17.0 2.01 0.144 0.123 

2.0 16.0 4.01 0.286 0.246 

3.0 15.0 6.01 0.429 0.370 

2.0 7.0 8.01 0.572 0.494 

2.5 6.5 10.02 0.716 0.617 

3.0 6.0 12.02 0.858 0.740 

3.5 5.5 14.02 1. 001 0.862 

4.0 5.0 16.02 1.145 0.985 

4.5 4.5 18.02 1. 288 1.109 

5.0 4.0 20.03 1. 432 1. 233 



Aliquot Data for Experiments 8.7 to 8.14 

[CuC1 2 ] stock soln. = 29.98mM, [cnge] stock soln. = 119.86mM 

Experiment 
Number A B C [CuC1 2 ]T/mM [cnge]T/mM 

8.7 1.3 6.7 12.0 1. 95 40.15 

8.8 1.3 10.0 8.7 1. 95 59.93 

8.9 1.3 13.3 5.0 1. 95 79.71 

8.10 1.3 16.7 2.0 1. 95 100.08 

[CuC1 2 ] stock soln. = 60.57mM, [cnge] stock soln. = 119.98mM 

Experiment 
Number A B C [CuC1 2 ]T/mM [cnge]T/mM 

8.11 1.3 6.7 12.0 3.93 40.19 

8.12 1.3 10.0 8.7 3.93 59.99 

8.13 1.3 13.3 5.4 3.93 79.78 

8.14 1.3 16.7 2.0 3.93 100.20 



Absorbance Data For Experiment 8.7 [CuCll]T:[cnge]T 2:40mM 

Time/mins Absorbance 
820nm 640nm 540nm 715nm 

0 .174 .033 .011 .101 
10 .171 .037 .013 .102 
20 .168 .041 .014 .102 
30 .164 .045 .016 .103 
40 .160 .048 .018 .104 
50 .156 .052 .019 .105 
60 .152 .056 .021 .106 
70 .149 .060 .023 .106 
80 .145 .064 .024 .107 
90 .141 .067 .026 .107 

100 .137 .071 .027 .108 
110 .133 .071 .029 .108 
120 .129 .078 .031 .109 
130 .125 .081 .032 .110 
140 .122 .085 .034 .110 
150 .118 .088 .035 .111 
160 .114 .091 .037 .111 
170 .111 .094 .038 .111 
180 .107 .097 .040 .112 
190 .104 .100 .041 .112 
200 .100 .103 .043 .112 
210 .097 .105 .044 .112 
220 .094 .108 .045 .112 
230 .091 .110 .047 .112 
240 .088 .112 .048 .112 
250 .085 .114 .049 .112 
260 .082 .115 .050 .112 
270 .080 .117 .051 .111 
280 .077 .118 .052 .111 
290 .075 .119 .053 .110 
300 .073 .120 .055 .110 
310 .071 .120 .055 .109 
320 .069 .121 .056 .108 
330 .067 .121 .057 .108 
340 .065 .121 .058 .107 
350 .063 .121 .059 .106 
360 .062 .121 .059 .105 
370 .060 .121 .060 .104 
380 .059 .121 .061 .103 
390 .058 .120 .062 .102 
450 .051 .117 .065 .096 
510 .047 .113 .067 .091 
570 .043 .109 .069 .086 
630 .040 .105 .071 .082 
690 .038 .102 .072 .078 
750 .036 .099 .072 .075 
810 .034 .096 .073 .072 
870 .033 .094 .074 .069 
930 .032 .091 .074 .067 
990 .031 .090 .075 .065 

1050 .030 .088 .075 .063 
1110 .029 .086 .076 .062 
1170 .028 .085 .076 .060 

Final .009 .047 .081 .023 



Absorbance Data For Experiment 8.8 [CuCl1]T:[cnge]T 2:60mM 

Time/mins Absorbance 
820nm 640nm 540nm 715nm 

0 .182 .037 .013 .108 
10 .179 .040 .015 .109 
20 .175 .044 .017 .109 
30 .171 .047 .018 .110 
40 .168 .051 .020 .11 0 
50 .164 .054 .021 .111 
60 .160 .058 .023 .111 
70 .157 .061 .024 .112 
80 .153 .065 .026 .112 
90 .149 .068 .027 .113 

100 .145 .072 .029 .113 
110 .141 .075 .030 .113 
120 .137 .079 .032 .114 
130 .133 .082 .033 .114 
140 .130 .085 .035 .114 
150 .126 .088 .036 .115 
160 .122 .092 .038 .115 
170 .118 .095 .039 .115 
180 .115 .098 .041 .115 
190 .111 .100 .042 .115 
200 .108 .103 .044 .115 
210 .104 .106 .045 .115 
220 .101 .108 .046 .115 
230 .098 .111 .048 .115 
240 .095 .113 .049 .115 
250 .092 .115 .050 .115 
260 .089 .117 .051 .115 
270 .086 .118 .053 .114 
280 .083 .120 .054 .114 
290 .080 .121 .055 .114 
300 .078 .122 .056 .113 
310 .076 .123 .057 .112 
320 .074 .124 .058 .112 
330 .071 .125 .059 .111 
340 .070 .125 .060 .110 
350 .068 .125 .061 .109 
360 .066 .126 .061 .109 
370 .064 .125 .062 .108 
380 .063 .125 .063 .107 
390 .061 .125 .064 .106 
400 .060 .125 .064 .105 
460 .053 .122 .067 .099 
796 .036 .102 .076 .076 
856 .035 .100 .077 .073 
916 .033 .097 .078 .071 
976 .032 .095 .078 .069 

1036 .031 .093 .079 .067 
1096 .030 .092 .079 .065 
1156 .030 .090 .080 .064 
1216 .029 .089 .080 .062 

Final .007 .043 .081 .020 



Absorbance Data For Experiment 8.9 [CuCl1]T:[cngelr 2:80mM 

Time/mins Absorbance 
820nm 640nm 540nm 715nm 

a .180 .036 .010 .109 
10 .177 .040 .012 .109 
20 .173 .043 .013 .110 
30 .169 .047 .015 .110 
40 .165 .050 .016 .110 
50 .161 .054 .018 .110 
60 .157 .057 .019 .111 
70 .153 .061 .021 .111 
80 .149 .064 .022 .111 
90 .145 .068 .024 .111 

100 .141 .071 .025 .112 
110 .137 .075 .027 .112 
120 .133 .078 .029 .112 
130 .129 .082 .030 .112 
140 .125 .085 .032 .112 
150 .121 .088 .033 .112 
160 .117 .091 .035 .113 
170 .113 .094 .036 .113 
180 .109 .097 .038 .113 
190 .105 .100 .039 .113 
200 .102 .103 .040 .112 
210 .098 .105 .042 .112 
220 .095 .107 .043 .112 
230 .091 .110 .044 .112 
240 .088 .112 .046 .112 
250 .085 .114 .047 .111 
260 .082 .115 .048 .111 
270 .079 .117 .049 .110 
280 .077 .118 .050 .110 
290 .074 .119 .052 .109 
300 .072 .120 .052 .108 
310 .070 .121 .053 .108 
320 .068 .121 .054 .107 
330 .066 .122 .055 .106 
340 .063 .122 .056 .105 
350 .062 .122 .057 .104 
360 .060 .122 .057 .103 
370 .058 .122 .058 .102 
380 .057 .122 .059 .101 
390 .056 .121 .059 .100 
400 .054 .121 .060 .099 
460 .048 .117 .063 .093 
520 .043 .113 .065 .088 
580 .040 .109 .067 .083 
640 .037 .106 .068 .079 
700 .035 .102 .069 .075 
760 .033 .099 .070 .072 
820 .031 .097 .071 .070 
880 .030 .094 .072 .067 
940 .029 .092 .072 .065 

1000 .028 .090 .073 .063 
1060 .027 .088 .073 .061 
1120 .026 .086 .074 .059 
1180 .025 .085 .074 .058 

Final .008 .047 .084 .023 



Absorbance Data For Experiment 8.10 [CuCl21,:[cnge1r2:100mM 

Time/mins Absorbance 
820nm 640nm 540nm 715nm 

0 .181 .038 .010 .111 
10 .177 .041 .011 .111 
20 .174 .044 .013 .111 
30 .170 .047 .014 .112 
40 .166 .050 .016 .112 
50 .162 .054 .017 .112 
60 .158 .057 .019 .112 
70 .154 .060 .020 .112 
80 .150 .064 .021 .112 
90 .146 .067 .023 .112 

100 .142 .070 .025 .113 
110 .138 .074 .026 .113 
120 .134 .077 .028 .113 
130 .130 .080 .029 .113 
140 .126 .083 .031 .113 
150 .122 .087 .032 .113 
160 .118 .090 .034 .113 
170 .115 .093 .035 .113 
180 .111 .096 .036 .113 
190 .107 .098 .038 .112 
200 .103 .101 .039 .112 
210 .100 .104 .041 .112 
220 .096 .106 .042 .112 
230 .093 .108 .043 .112 
240 .090 .110 .045 .111 
250 .087 .112 .046 .111 
260 .084 .114 .047 .110 
270 .081 .116 .048 .110 
280 .078 .117 .049 .109 
290 .076 .118 .050 .109 
300 .073 .119 .051 .108 
310 .071 .120 .052 .107 
320 .069 .121 .053 .107 
330 .067 .121 .054 .106 
340 .065 .122 .055 .105 
350 .063 .122 .055 .104 
360 .061 .122 .056 .103 
370 .059 .122 .057 .102 
380 .058 .122 .057 .101 
390 .056 .122 .058 .100 
450 .049 .119 .061 .094 
510 .044 .115 .064 .089 
570 .041 .111 .066 .084 
630 .038 .108 .067 .080 
690 .035 .104 .069 .077 
750 .033 .101 .070 .073 
810 .032 .098 .070 .070 
870 .030 .095 .070 .067 
930 .028 .093 .070 .065 
990 .027 .090 .071 .063 

1050 .026 .088 .071 .061 
1110 .025 .087 .071 .061 
1170 .025 .085 .072 .059 

Final .008 .041 .084 .023 



Absorbance Data For Experiment 8.11 [CUC12~:[cnge]T 4:40mM 

Time/mins Absorbance 
820nm 640nm 540nm 715nm 

0 .353 .060 .012 .198 
10 .349 .064 .014 .198 
20 .344 .070 .016 .199 
30 .338 .076 .019 .202 
40 .332 .081 .022 .202 
50 .325 .087 .024 .203 
60 .319 .094 .026 .204 
70 .312 .100 .029 .205 
80 .305 .107 .032 .207 
90 .298 .113 .035 .208 

100 .290 .120 .038 .209 
110 .283 .127 .040 .210 
120 .275 .134 .043 .212 
130 .268 .141 .046 .212 
140 .260 .147 .049 .214 
150 .253 .154 .052 .215 
160 .245 .161 .055 .216 
170 .237 .167 .058 .216 
180 .230 .174 .061 .218 
190 .223 .179 .064 .218 
200 .215 .186 .067 .219 
210 .208 .191 .070 .219 
220 .201 .196 .072 .220 
230 .194 .202 .075 .220 
240 .187 .206 .078 .220 
250 .181 .211 .080 .220 
260 .174 .215 .083 .220 
270 .168 .218 .085 .219 
280 .163 .222 .088 .219 
290 .157 .225 .090 .217 
300 .152 .227 .092 .217 
310 .147 .229 .094 .215 
320 .142 .230 .097 .214 
330 .137 .231 .098 .213 
340 .133 .234 .100 .211 
350 .129 .233 .103 .209 
360 .125 .233 .104 .207 
370 .121 .232 .106 .205 
380 .118 .232 .108 .203 
390 .115 .231 .109 .200 
400 .112 .230 .110 .198 
445 .101 .225 .115 .188 
505 .089 .216 .121 .175 
S65 .081 .206 .126 .164 
625 .074 .198 .129 .1 S4 
685 .069 .190 .132 .146 
745 .064 .184 .134 .138 
805 .061 .178 .136 .132 
865 .058 .174 .138 .127 
925 .055 .168 .139 .122 
985 .052 .165 .141 .117 

1045 .050 .160 .142 .113 
1105 .049 .157 .143 .110 
1165 .047 .154 .1 " .107 

Final .016 .094 .153 .047 



Absorbance Data For Experiment 8.12 [CUCl2~:[cnge]T 4:60mM 

Time/mins Absorbance 
820nm 640nm 540nm 715nm 

0 .354 .059 .007 .201 
10 .351 .063 .009 .203 
20 .346 .067 .010 .204 
30 .340 .072 .012 .204 
40 .335 .078 .015 .205 
50 .328 .084 .017 .206 
60 .321 .090 .020 .207 
70 .314 .096 .023 .207 
80 .307 .103 .025 .208 
90 .299 .109 .028 .209 

100 .292 .116 .031 .210 
110 .284 .123 .034 .211 
120 .276 .129 .037 .211 
130 .268 .136 .040 .212 
140 .260 .143 .043 .213 
150 .252 .149 .046 .213 
160 .244 .156 .049 .214 
170 .236 .163 .052 .214 
180 .228 .169 .055 .215 
190 .220 .175 .058 .215 
200 .213 .181 .061 .215 
210 .205 .187 .063 .215 
220 .198 .192 .066 .215 
230 .191 .197 .069 .215 
240 .183 .202 .072 .215 
250 .117 .207 .075 .215 
260 .170 .211 .017 .214 
270 .164 .215 .080 .213 
280 .158 .218 .082 .212 
290 .152 .221 .085 .211 
300 .146 .223 .087 .210 
310 .141 .225 .089 .209 
320 .136 .226 .091 .207 
330 .131 .227 .093 .205 
340 .127 .228 .095 .204 
350 .123 .228 .097 .202 
360 .119 .229 .098 .200 
370 .115 .228 .100 .197 
380 .112 .228 .101 .195 
390 .109 .227 .103 .193 
400 .106 .226 .104 .191 
460 .091 .218 .111 .117 
520 .081 .209 .116 .165 
580 .073 .200 .120 .154 
640 .067 .192 .123 .145 
700 .062 .185 .126 .137 
760 .058 .178 .128 .131 
820 .055 .172 .130 .124 
880 .052 .167 .131 .119 
940 .049 .163 .132 .115 

1000 .047 .158 .133 .'10 
1060 .045 .155 .134 .106 

Final .014. .088 .161 .041 



Absorbance Data For Experiment 8.13 [CuCl1]T:[cnge]T 4:80mM 

Time/mins Absorbance 
820nm 640nm 540nm 715nm 

0 .314 .070 .015 .219 
10 .366 .076 .018 .221 
20 .360 .081 .021 .221 
30 .353 .088 .024 .222 
40 .345 .094 .026 .222 
50 .337 .101 .030 .223 
60 .328 .109 .032 .223 
70 .320 .116 .036 .224 
80 .311 .124 .039 .225 
90 .302 .131 .043 .225 

100 .293 .139 .046 .226 
110 .285 .147 .049 .226 
120 .275 .154 .053 .227 
130 .266 .162 .056 .227 
140 .257 .169 .060 .228 
150 .248 .177 .063 .228 
160 .238 .184 .067 .228 
170 .230 .191 .070 .228 
180 .221 .197 .074 .228 
190 .213 .204 .077 .228 
200 .204 .209 .080 .228 
210 .196 .215 .083 .227 
220 .188 .220 .087 .227 
230 .181 .225 .089 .226 
240 .173 .229 .092 .225 
250 .166 .232 .095 .224 
260 .160 .235 .097 .222 
270 .154 .237 .100 .221 
280 .148 .240 .102 .219 
290 .142 .241 .104 .217 
300 .137 .242 .106 .215 
310 .132 .243 .108 .213 
320 .128 .243 .110 .211 
330 .123 .243 .112 .208 
340 .120 .242 .113 .206 
350 .116 .242 .115 .203 
360 .113 .240 .116 .201 
370 .109 .240 .117 .198 
380 .106 .238 .119 .196 
390 .104 .236 .120 .193 
400 .101 .235 .121 .190 
450 .090 .226 .126 .178 
510 .081 .216 .130 .166 
570 .014 .206 .133 .155 
630 .068 .198 .136 .147 
690 .064 .191 .138 .139 
750 .060 .185 .140 .133 
810 .057 .179 .141 .127 
870 .054 .174 .143 .122 
930 .052 .169 .144 .117 
990 .050 .165 .145 .113 

1050 .048 .162 .146 .110 
1110 .046 .158 .146 .107 
1170 .045 .155 .147 .104 

Final .012 .087 .156 .039 



Absorbance Data For Experiment 8.14 [CuCl21([cnge]T4:100mM 

Time/mins Absorbance 
820nm 640nm 540nm 715nm 

0 .371 .070 .013 .222 
10 .365 .076 .016 .223 
20 .358 .083 .019 .224 
30 .350 .089 .022 .224 
40 .341 .097 .025 .224 
50 .333 .104 .028 .225 
60 .324 .111 .032 .225 
70 .315 .119 .035 .226 
80 .305 .127 .039 .226 
90 .296 .135 .042 .226 

100 .286 .144 .046 .227 
110 .276 .151 .050 .227 
120 .266 .159 .053 .227 
130 .257 .167 .057 .227 
140 .247 .175 .061 .228 
150 .238 .182 .064 .227 
160 .228 .190 .068 .227 
170 .219 .196 .072 .227 
180 .210 .203 .075 .227 
190 .201 .209 .078 .226 
200 .193 .215 .082 .226 
210 .185 .220 .085 .225 
220 .177 .225 .088 .224 
230 .169 .229 .091 .223 
240 .162 .233 .094 .221 
250 .155 .236 .096 .220 
260 .149 .238 .099 .218 
270 .143 .240 .101 .216 
280 .137 .242 .104 .214 
290 .132 .243 .106 .212 
300 .127 .243 .108 .210 
310 .123 .243 .110 .207 
320 .119 .243 .112 .205 
330 .115 .243 .113 .202 
340 .111 .242 .115 .200 
350 .108 .240 .116 .197 
360 .105 .239 .118 .195 
370 .102 .238 .119 .192 
380 .099 .236 .120 .189 
390 .097 .235 .121 .187 
400 .094 .233 .122 .184 
440 .086 .226 .126 .175 
500 .077 .216 .130 .163 
560 .070 .206 .134 .153 
620 .065 .198 .136 .144 
680 .061 .191 .138 .137 
740 .057 .185 .140 .130 
800 .054 .179 .142 .125 
860 .052 .174 .143 .120 
920 .050 .170 .145 .116 
980 .048 .166 .146 .112 

1040 .046 .162 .146 .109 
1100 .045 .159 .147 .106 
1160 .043 .156 .148 .103 

Pinal .014 .092 .155 .043 



Computed Values for the Decay of the 820nm Absorption 

820 . 820 -1 -1 
A values calculated uSlng £ for Cu(cnge) and I 90.5 lmol ern and for Cu(aOeu) 

t/mins 0 20 40 60 80 100 120 140 160 

. -1 
~1=k2- = 0.01 mln 

[ Cu ( cnge) l/mM 2.0 1.64 1. 34 1. 10 0.90 0.74 0.60 0.49 0.40 

[I]/rnM 0 0 0 0 0 0 0 0 0 

[ Cu ( aOeu) l/mM 0 0.34 0.66 0.90 1. 10 1. 26 1.40 1. 51 1. 60 

10
3

XA
82O 

181 158 141 126 113 104 95 88 83 

~1 = 0.01, k2 = 0.012 

[Cu(cnge)]/mM 2.0 1.64 1. 34 1. 10 0.40 0.74 0.60 0.49 0.40 

[I]/rnM 0 0.32 0.51 0.62 0.66 0.67 0.64 0.61 0.55 

[Cu(aOeu) ]/mM 0 0.04 O. 15 0.28 0.44 0.59 0.76 0.90 1. 05 

10
3

xA
82O 181 178 172 164 154 144 134 125 116 

~1 = O.Ol l k 2- 0.016 

[Cu(cnge) ]/mM 2.0 1.64 1.34 1. 10 0.90 0.74 0.60 0.49 0.40 

[I]/mM 0 0.31 0.48 0.55 0.57 0.55 0.51 0.47 0.42 

[Cu(aOeu) ]/mM 0 0.05 O. 18 0.35 0.53 0.71 0.89 1. 04 1. 18 

10
3

XA
82O 

181 178 170 160 148 137 126 117 108 

-1 -1 
29.0 lmol cm 

180 200 

0.33 0.27 

0 0 

1. 67 1. 73 

78 75 

0.33 0.27 

0.50 0.44 

1.17 1. 29 

108 101 

0.33 0.27 

0.36 0.31 

1. 31 1. 42 

100 94 

240 280 

0.18 0.15 

0 0 

1.82 1. 85 

69 67 

0.18 0.15 

0.35 0.27 

1.47 1. 58 

91 84 

0.18 0.12 

0.23 0.17 

1. 59 1. 71 

83 76 



APPENDIX B 

OBSERVED AND CALCULATED STRUCTURE FACTORS 



Observed and calculated structure factors for 

[Cu(cnge)2(H20)2](N03)202H20 

H IF 0 I IF C I PH I H IFOI IFCI PHI H IFOI IFCI PHI 

** K= 0 l= 0 ** ** K= 7 l= 0 ** ** K= -6 L= 1 ** 

1 274 297 0 -2 188' 188 0 -1 136 152 0 
2 303 277 0 -1 75 80 0 0 243 256 0 

0 183 210 a 1 198 203 0 
** K= 1 L= 0 ** 2 210 189 0 2 211 199 0 

-1 160 204 0 ** K= 8 L= 0 ** ** K= -5 L= 1 ** 
0 245 241 0 
2 144 119 0 -2 99 97 0 -2 139 145 0 

-1 135 119 0 -1 362 341 0 
** K= 2 L= 0 ** 0 115 110 180 0 248 245 0 

1 322 349 0 
-2 199 238 0 ** K= 9 L= 0 ** 2 194 202 0 
-1 1218 1228 0 

0 321 337 0 -2 109 96 0 ** K= -4 L= , ** 
1 514 420 0 -1 139 131 0 
2 159 143 0 1 179 169 0 -2 151 132 0 

-1 332 308 0 
** K= 3 l= 0 ** ** K= 11 l= 0 ** 0 400 396 0 

1 441 420 0 
-2 157 169 0 -1 94 99 0 2 114 116 180 
-1 238 234 0 

0 192 187 0 ** K=-ll l= 1 ** ** K= -3 L= 1 ** 
1 127 113 0 

2 100 90 0 -3 140 137 0 
** K= 4 l= 0 ** -2 134 132 0 

** K=-10 L= 1 ** 0 555 560 0 
-3 133 133 0 1 372 394 0 
-2 336 363 0 1 150 160 0 
-1 334 316 0 ** K= -2 L= 1 ** 

0 282 283 0 ** K= -9 L= 1 ** 
1 300 272 0 -3 119 107 0 

0 99 119 0 -2 196 183 0 
** K= 5 L= 0 ** 1 219 209 0 0 469 450 0 

2 107 118 0 1 136 136 180 
-3 123 123 0 2 136 159 0 
-2 158 153 0 ** K= -8 L= l' ** 
-1 304 305 0 ** K= -1 L= 1 ** 

1 89 98 0 0 158 181 0 
3 159 126 0 1 131 112 0 -2 322 279 0 

2 143 127 0 -1 633 546 0 
** K= 6 l= 0 ** 0 352 351 0 

** K= -7 L= 1 ** 
-3 107 115 0 ** K= 0 L= 1 ** 
-2 163 172 0 -1 124 121 0 
-1 127 134 0 0 351 370 0 -2 486 395 0 

0 236 247 0 1 200 189 0 -1 224 284 0 
1 105 107 180 2 175 177 0 0 252 168 0 

1 264 299 0 



H IFO I lFe I PH I H IFOI IF CI PHI H /FOI IFel PH I 

** K= 1 L= 1 ** 1 117 121 0 -2 252 252 0 
2 112 105 0 G 261 262 0 

-3 119 137 0 
-2 333 353 0 ** K= 8 L= 1 ** ** K= -5 L= 2 ** 
-1 102 108 0 

1 142 132 180 0 209 229 0 -3 128 122 0 
2 139 116 0 -2 150 126 0 

** K= 9 L= 1 ** -1 498 466 0 
** K= 2 L= 1 ** 0 382 364 0 

-1 136 129 0 1 95 102 0 
-3 149 165 0 0 109 119 0 2 87 89 0 
-2 219 242 0 3 113 107 0 
-1 358 282 0 ** K= 10 L= 1 ** 0 391 413 0 ** K= -4 L= 2 ** 

1 97 88 0 -1 135 128 0 
3 138 125 0 1 91 103 0 -3 186 170 0 

-1 350 312 0 
** K= 3 l= 1 ** ** 1(=-12 L= 2 ** 0 313 275 180 

-3 171 188 0 1 127 119 0 ** K= -3 L= 2 ** 
-1 106 108 0 

1 205 181 0 ** 1(=-11 L= 2 ** -3 138 117 0 
3 147 136 0 -2 394 340 0 

1 139 118 0 -1 417 371 0 
** K= 4 l= 1 ** 0 163 180 0 

** 1(=-10 L= 2 ** 1 315 329 0 
-3 160 170 0 2 170 204 0 
-2 111 111 0 -1 113 128 0 3 95 95 0 
-1 393 366 0 0 158 189 0 

1 111 109 0 1 137 149 0 ** K= -2 L= 2 ** 
2 206 193 0 
3 139 110 0 ** K= -9 L= 2 ** -2 217 201 0 

0 179 173 180 
** 1(= 5 l= 1 ** -1 138 138 0 1 81 94 180 

0 138 143 0 
-2 85 92 0 ** K= -1 L= 2 ** 
-1 173 157 0 ** K= -8 L= 2 ** 

2 154 143 0 -3 202 164 0 
-2 114 120 0 -2 232 226 0 

** K= 6 l= 1 ** -1 254 255 0 -1 274 276 0 
1 128 130 0 0 501 466 0 

-2 208 207 0 1 357 431 0 
0 106 122 0 ** K= -7 L= 2 ** 2 118 124 0 
1 257 261 0 
2 94 81 0 -2 178 167 0 **' K= 0 L= 2 ** 

-1 113 125 0 
** K= 7 l= 1 ** 0 279 301 0 -2 172 182 0 

1 211 205 0 -1 274 308 180 
-2 125 133 0 0 165 138 0 

0 154 156 0 ** K= -6 L= 2 ** 1 139 124 180 



H IF 0 I lFel PHI H IFOI IFCI PH I H IFOI IFC/ PHI 

2 196 221 0 -2 98 117 0 ** K= -4 L= 3 ** 

** K= 1 L= 2 ** ** K= 8 'L= 2 ** -3 108 119 0 
-2 131 115 0 

-4 119 83 0 -2 154 137 a -1 79 75 0 
-2 174 227 0 -1 166 148 0 1 242 269 0 
-1 274 298 0 0 181 199 0 

a 595 537 0 1 165 162 0 ** K= -3 L= 3 ** 
2 217 226 0 

** K= 10 L= 2 ** -3 109 100 0 
** K= 2 l= 2 ** -2 115 110 0 

-1 125 115 0 -1 422 344 0 
-3 116 113 0 0 106 105 0 1 284 330 0 
-2 93 84 180 3 168 162 a 
-1 434 355 0 ** K=-11 L= 3 ** 

1 381 367 0 ** K= -2 L= 3 ** 
2 182 176 0 0 85 91 0 

-3 115 117 0 
** K= 3 L= 2 ** ** K=-10 L= 3 ** -1 155 148 0 

0 439 393 0 
-3 128 119 0 1 117 122 0 2 95 10~ 0 
-2 182 164 0 
-1 274 242 0 ** K= -9 L= 3 ** ** K= -1 L= 3 ** 
a 210 193 180 
1 332 316 0 -1 146 150 a -2 218 226 0 

0 95 108 0 0 369 330 0 
** K= 4 L= 2 ** 1 120 153 0 

** K= -8 L= 3 ** 2 265 290 0 
-2 255 222 0 
-1 15C 150 0 0 180 192 0 ** K= 0 L= 3 ** 

0 394 392 0 2 108 87 0 
1 283 271 a -2 236 273 0 
2 98 86 0 ** K= -7 L= 3 ** -1 230 272 0 
3 122 111 0 1 174 173 0 

-2 180 175 0 2 107 114 0 
** K= 5 l= 2 ** 2 117 108 0 

** K= 1 L= 3 ** 
-3 101 104 0 ** K= -6 L= 3 ** 

0 186 183 0 -2 119 157 0 
-2 142 130 a -1 105 119 0 

** K= 6 l= 2 ** -1 149 154 0 0 488 44R 0 
2 117 121 0 1 212 224 a 

-3 105 101 0 2 88 84 0 
-2 158 128 '0 ** K= -5 L= 3 ** 
-1 281 259 0 ** K= 2 l= 3 ** 

0 237 240 0 -3 112 109 0 
1 186 170 0 -2 95 92 0 -3 138 159 0 
2 179 180 0 -1 129 125 0 -2 139 154 0 

0 255 235 0 0 351 317 0 
** K= 7 l= 2 ** 2 145 147 0 1 86 101 0 



H IFO I IFCI PHI 

2 123 123 o 

** K= 3 

-3 158 
-1 470 

1 126 
3 100 

l= 3 ** 
131 0 
406 0 
125 0 
110 0 

** K= 4 l= 3 ** 
-3 125 
-1 369 
o 92 
1 238 

** K= 5 

-3 97 
-2 191 

1 117 
2 118 

** K= 6 

-2 181 
-1 81 
o 172 
1 97 
2 126 

** K= 7 

110 0 
313 0 

85 0 
229 0 

L= 3 ** 
76 0 

165 0 
104 0 
119 0 

l= 3 ** 
181 0 

90 0 
171 0 

91 0 
114 0 

l=. 3 ** 
o 124 126 o 

** K= 8 l= 3 ** 
o 152 

** K= 9 L= 3 ** 
-1 89 91 0 

** K= 10 L= 3 ** 
-1 132 145 o 

** K= -9 l= 4 ** 
o 107 112 0 

H IFOI IFCI PHI 

** K= -8 l= 4 ** 
o 144' 156 0 
1 143 133 0 
2 133 120 0 

** K= -7 L= 4 ** 
-2 119 111 o 

o 
o 

-1 114 120 
2 111 109 

** K= -6 

-2 111 
o 321 
1 135 

** K= -5 

-3 120 
-2 116 
o 135 
1 118 

** K= -4 

-3 130 
-1 491 

1 223 
2 127 
3 91 

l= 4 ** 
101 0 
323 0 
144 0 

L= 4 ** 
109 0 
104 0 
138 0 
120 0 

L= 4 ** 
131 0 
446 0 
249 0 
124 0 

97 0 

** K= -3 L= 4 ** 
-1 295 

1 147 

** K= -2 

-2 258 
o 367 
1 229 
2 91 

261 0 
168 0 

L= 4 ** 
283 0 
338 0 
256 0 

92 0 

** K= -1 L= 4 ** 
-3 95 72 
-2 167 194 
o 206 171 

o 
o 
o 

H IF 0 I IF C I PH I 

2 151 168 o 

** 1(= 0 

-2 89 
-1 244 
o 271 
2 125 

L= 4 ** 
101 0 
250 0 
260 0 
129 0 

** K= 1 L= 4 ** 
-2 136 
o 321 
1 277 
2 218 

** K= 2 

- 2 126 
-1 142 

1 116 
2 95 

** K= 3 

-3 108 
o 255 
1 327 
2 136 

** K= 4 

161 0 
306 0 
287 0 
206 0 

l= 4 ** 
125 0 
130 0 
109 0 

87 0 

L= 4 ** 
102 0 
262 0 
322 0 
130 0 

l= 4 ** 
1 178 166 0 

** 1(= 5 L= 4 ** 

-2 239 
-1 196 
o 271 
1 196 
2 119 

** K= 6 

196 0 
175 0 
279 0 
206 0 
112 0 

L= 4 ** 
-1 107 117 
o 132 147 

o 
o 

** K= 7 L= 4 ** 
-2 134 121 0 



H IFOI IFel PHI 

-1 144 
o 199 
1 130 

** K= 8 

146 0 
215 0 
130 0 

l= 4 ** 
-2 105 107 o 

** K= 9 

-1 153 
o 99 

** K= 10 

-1 91 

** Ie =-10 

-1 124 

L= 4 ** 

145 0 
112 0 

l= 4 ** 
82 0 

l= 5 ** 
140 0 

** 11:= -9 l= 5 ** 

1 158 147 0 

** K = -8 l= 5 ** 
-2 141 156 
o 124 140 
2 115 94 

c 
o 
o 

* * k = - 7 l= 5 ** 
-2 126 116 
o 217 213 
2 98 117 

o 
o 
o 

** II: = -6 

-1 109 
1 192 

** K = -5 

-3 
-2 
-1 

1 
2 

122 
127 
166 
168 
135 

l= 5 ** 
102 0 
183 0 

l= 5 ** 
114 
123 
153 
174 
140 

o 
o 
o 
o 
o 

H IFOI IFeI PHI 

** K= -4 l= 5 ** 
-1 146' 143 0 
o 206 199 0 
2 125 126 0 

** k= -3 l= 5 ** 

-3 
-1 
o 
1 

114 
331 
134 
357 

** K= -2 

-2 96 
-1 80 

1 270 
2 115 
3 117 

114 
292 
134 
402 

o 
o 
o 
o 

l= 5 ** 

105 0 
91 a 

290 0 
109 a 

95 0 

** K= -1 l= 5 ** 

-2 246 263 o 
o 
o 
o 

-1 119 129 
o 745 659 
2 155 182 

** K= 0 l= 5 ** 
o 433 391 
1 135 135 
2 150 155 

o 
o 
o 

** K= 1 l= 5 ** 

-3 96 
-2 143 
o 203 
1 300 
2 134 

** K= 2 

-1 295 
o 224 
1 96 

** K= 3 

108 0 
158 0 
186 0 
299 a 
126 0 

l= 5 ** 

261 0 
220 0 

99 0 

l= 5 ** 

H IFOI IFel PHI 

-2 
-1 
o 
1 

150 
279 
320 
198 

13~ 
256 
312 
207 

o 
o 
o 
o 

** K= 4 l= 5 ** 
-3 125 
-1 268 

1 207 

** K= 5 

-2 158 
-1 242 
o 157 

** K= 6 

-2 174 
o 234 

124 0 
258 0 
199 0 

l= 5 ** 
156 0 
206 0 
185 0 

l= 5 ** 
165 0 
255 0 

** K= 7 l= 5 ** 
-2 117 117 0 

** K= 8 l= 5 ** 
-1 162 155 o 

** K= 9 l= 5 '* * 
o 103 107 0 

** K=-10 l= 6 ** 

1 114 

** K= -9 

1 123 

** K= -8 

-2 110 
-1 90 

o 168 

** K= -7 

116 0 

l= 6 ** 

103 0 

l= 6 ** 

120 0 
92 0 

180 0 

l= 6 ** 



H !Fa I IFel PH I H IFOI IFel PHI H /FOI IF CI PHI 

0 226 233 0 ** Ie= 0 L= 6 ** -2 109 99 0 
1 125 107 C -1 88 82 0 
2 135 129 :) -2 195 . 216 0 0 139 156 0 

0 242 246 0 
** K= -6 l= 6 ** 1 163 148 0 ** K= 8 L= 6 ** 

2 157 145 0 
-2 97 109 0 -2 94 87 0 
-1 157 153 0 ** K= 1 L= 6 ** -1 142 139 0 

0 118 123 0 0 148 154 0 
1 146 146 0 -2 240 250 0 
2 107 135 C -1 254 248 0 ** K= 9 L= 6 ** 

0 159 152 0 
** Ie= -5 l= 6 ** -1 129 122 0 

** K= 2 L= 6 ** 
-2 169 147 0 ** K=-11 L= 7 ** 
-1 257 244 0 -3 111 113 0 

0 155 159 0 -1 227 213 a 0 93 107 0 
1 219 231 0 0 250 244 0 

1 224 226 0 ** K=-10 L= 7 ** 
** k= -4 l= 6 ** 

** Ie= 3 L= 6 ** 0 124 122 0 
-3 127 107 0 
-1 197 181 0 -3 164 166 0 ** K= -9 L= 7 ** 

0 267 259 0 -1 173 162 0 
1 245 249 0 0 75 74 0 -1 169 165 0 
3 96 80 0 1 128 129 0 

** K= -8 L= 7 ** 
** K= -3 L= 6 ** ** K= 4 L= 6 ** 

-2 111 132 0 
-3 126 151 0 -2 104 120 0 -1 158 168 0 
-2 129 125 0 -1 310 282 0 0 168 177 0 
-1 282 270 0 0 141 159 0 1 159 150 0 

0 299 257 0 1 106 111 0 
1 151 170 0 2 124 113 0 ** K= -7 L= 7 ** 
2 113 111 0 

** Ie= 5 L= 6 ** -2 166 163 0 
** K= -2 l= 6 ** 0 200 193 0 

-2 123 124 0 
-2 145 176 0 0 98 116 0 ** Ie= -6 L= 7 ** 
-1 347 308 0 1 115 121 0 

0 226 213 a -2 179 188 0 
2 111 116 0 ** K= 6 L= 6 ** -1 249 245 0 

0 245 259 0 
** Ie= -1 l= 6 ** -2 173 173 0 1 93 84 0 

-1 100 93 0 2 91 93 0 
-2 229 251 0 0 147 164 0 
-1 273 247 0 1 140 145 0 ** k= -5 L= 7 ** 

0 345 315 0 
1 119 142 0 ** K= 7 L= 6 ** -3 113 104 0 

-1 256 239 0 



H IFO I IFel PHI H IFOI IFel PHI H /FOI lFel PH I 

** K= -4 l= 7 ** ** K= 4 L= 7 ** ** K= -5 L= 8 ** 

-3 156 146 0 -3 92 . 81 a 0 86 103 0 
-2 195 204 0 -1 170 146 J 1 153 169 0 
-1 316 276 0 0 153 174 0 

0 195 1,98 0 ** K= -4 L= 8 ** 
1 205 218 0 ** K= 5 L= 7 ** 
2 102 95 0 -3 128 128 0 

-3 172 140 0 -2 160 169 0 
** K= -3 L= 7 ** -2 126 132 a -1 251 237 0 

-1 237 213 0 0 150 147 a 
-2 142 168 a a 169 188 0 1 256 252 a 

1 96 113 0 
** Ie= 6 L= 7 ** ** K= -3 L= 8 ** 

** K= -2 L= 7 ** 
-2 162 159 0 -1 182 182 0 

-2 176 175 a -1 107 103 0 0 255 236 0 
-1 331 321 0 

0 254 238 0 ** K= 7 L= 7 ** ** Ie= -2 L= 8 ** 
1 227 230 0 

-2 186 168 0 -3 103 102 0 
** Ie= -1 l= 7 ** -1 148 145 0 -2 154 162 0 

0 102 107 0 -1 294 268 C 
0 287 252 0 0 373 336 0 
1 128 124 0 ** K=-11 L= 8 ** 1 83 82 0 

2 99 110 0 
** K= 0 L= 7 ** 1 138 106 0 

** K= -1 L= 8 ** 
-2 220 245 0 ** Ie= -9 l= 8 ** 
-1 145 121 0 -2 206 220 0 

0 378 365 0 0 156 149 a -1 246 228 0 
to 147 151 0 1 142 141 0 

** K= -8 L= 8 ** 
** K= 1 L= 7 ** ** K= 0 L= 8 ** 

0 137 142 a 
-1 387 354 0 2 90 88 0 -2 303 296 0 

0 221 211 0 -1 271 254 0 
1 114 125 0 ** K= -7 l= 8 ** 0 198 193 0 

1 108 91. 0 
** K= 2 L= 7 ** -2 119 118 0 

2 91 88 0 ** Ie= 1 l= 8 ** 
-1 275 265 0 

1 208 219 0 ** K= -6 l= 8 ** -3 124 146 0 
-2 187 191 0 

** Ie= 3 L= 7 ** -2 101 113 0 -1 88 90 0 
-1 191 186 0 0 313 302 0 

-2 271 266 0 0 172 182 0 
-1 222 210 0 1 113 110 0 ** K= 2 L= 8 ** 

0 173 172 0 2 95 107 0 
1 156 173 0 -3 170 1 ~6 0 



H IFOI IFCI PHI 

-2 163 166 0 
-1 211 196 a 

*. K= 3 l= 8 *. 

-3 126 
-2 114 
-1 376 

*. K = 4 

-3 117 
-2 122 
-1 93 

** K= 5 

147 0 
115 0 
335 0 

l= 8 ** 
112 0 
111 0 

88 0 

l= 8 ** 
-3 119 94 o 

o -2 246 225 

** K= 6 l= 8 ** 

-2 107 102 0 

** K = 7 l= 8 ** 
o 109 

** K= -9 

-1 125 
o 160 
1 110 

** K= -8 

1 91 

** K = -7 

-2 
-1 
o 
1 

196 
174 
262 
111 

108 0 

l= 9 *. 
113 0 
154 0 
127 0 

l= 9 ** 
97 0 

l= 9 ** 
177 
164 
251 

98 

o 
o 
o 
o 

** K = -6 l= 9 ** 
o 235 227 0 

** K = -5 l= 9 ** 

H IFOI IFCI PHI 

-3 143 154 o 
o 
o 
o 
o 

-2 127 118 
-1 364·329 
o 127 131 
1 104 89 

** K= -4 L= 9 ** 

-2 127 113 0 
-1 351 337 0 

** K= -3 

-2 283 
-1 153 
o 117 
1 96 

L= 9 ** 

266 0 
148 0 
119 0 
100 0 

** K = - 2 L = 9 '* '* 
-3 
-2 
o 
1 

135 
268 
155 

86 

149 
275 
144 

94 

o 
o 
o 
o 

'** K= -1 L= 9 '** 
-3 149 
-2 146 
-1 142 

1 89 

** K= 0 

-3 130 
-2 146 
-1 147 
o 214 
2 97 

163 0 
149 0 
120 0 

85 180 

l= 9 '** 
151 0 
176 0 
146 0 
212 a 
114 0 

** K= 1 L= 9 ** 

o 79 84 180 
2 100 89 a 

** K= 2 L= 9 ** 

-2 134 130 
-1 249 237 

1 150 154 

o 
o 
a 

H /FOI Ifel PHI 

** K= 3 L= 9 ** 

1 107 120 0 

** K= 4 l= 9 *'* 
-2 
o 
1 

104 
150 
135 

123 
154 
146 

o 
o 
o 

** K= 6 L= 9 *'* 
-1 104 
o 133 

** K= -9 

113 0 
136 (1 

L= 10 ** 

-1 92 95 
o 156 150 

o 
o 

** K= -8 L= 10 '** 
o 109 101 0 

** K= -7 L= 10 ** 

-2 147 
-1 223 
o 96 

** K= -5 

-2 219 
-1 100 
o 97 

** K= -4 

-3 119 

** K= -3 

-3 161 
-1 112 

1 101 

143 0 
218 0 

88 0 

L= 10 ** 
224 0 
104 0 
102 0 

L= 10 ** 

135 0 

L= 10 ** 

185 0 
121 0 
107 0 

** K= -2 l= 10 ** 

2 154 152 o 



H IFOI IFel PHI 

** K = -1 L= 10 ** 
-2 
o 
2 

98 
104 
112 

107 
100 
113 

o 
o 
o 

** K = 0 L= 10 ** 

o 124 
1 232 

** K= 1 

114 0 
238 0 

L= 10 ** 
o 112 122 
1 94 97 

o 
o 

** K = 2 l= 10 ** 
-1 185 
o 280 
1 100 

** K= 3 

-1 162 
1 127 

** K= 4 

-2 112 
-1 263 
o 88 

** K= 5 

-2 130 
o 121 

168 0 
290 0 
111 0 

l= 10 ** 
152 0 
121 0 

l= 10 ** 
131 0 
237 0 

93 0 

L= 10 ** 

117 0 
140 0 

** K = 6 L= 10 ** 
-2 158 138 0 

** K= -7 l= 11 ** 
a 108 91 o 

** K= -5 l= 11 ** 
-1 150 144 
a 98 111 

o 
o 

H IFOI IFCI PHI 

1 133 127 o 

** K = -4 . L = 11 * * 
-1 105 95 0 

1 126 130 0 

** K= -3 L= 11 ** 

-2 
-1 
o 
1 

148 
152 
159 
195 

148 
143 
144 
203 

o 
[) 

o 
o 

** K= -2 l= 11 ** 

-2 108 96 o 
o o 174 160 

** K= -1 

-1 148 
o 336 
1 118 

** K= 0 

-1 121 
o 142 

** K= 1 

-2 161 
-1 295 
o 147 
1 102 

** K= 2 

-2 
-1 

1 

88 
100 
116 

l= 11 ** 

156 0 
309 0 
117 0 

L= 11 ** 
135 0 
117 0 

L= 11 ** 

162 0 
267 0 
146 0 
108 0 

L= 11 ** 

91 
118 
119 

o 
-0 
o 

** K= 3 L= 11 ** 

-2153 149 
-1 139 138 
o 116 109 

o 
o 
o 

** K = 4 L = 11 * * 

H IF 0 I IF C I PH I 

-1 125 114 o 
o o 116 120 

** K= 5 L= 11 ** 

-1 97 97 0 

** K= -8 L= 12 ** 

o 173 161 0 

** K= -6 l= 12 ** 

-1 186 181 o 
o 
o 

o 104 85 
1 136 118 

** K= -5 L= 12 ** 
-1 111 
o 158 
1 130 

** K= -4 

-2 
-1 
o 

126 
96 

140 

** K= -3 

-1 274 
o 124 

** K= -2 

-2 114 
-1 121 

** K= -1 

-2 238 
o 189 

116 0 
157 0 
122 0 

L= 12 ** 
122 

99 
138 

(' 

o 
o 

L= 12 ** 

260 0 
125 a 

L= 12 ** 

98 0 
130 0 

L= 12 ** 

241 0 
177 0 

** K= a L= 12 ** 

-2 116 121 o 

** K= 1 l= 12 ** 



H /FO I IFe I PH I H IFOI IFel PH I H IFOI IFel PH I 

-1 180 186 0 -1 126 136 0 
0 136 138 D 

** K= 3 l= 12 ** 

-2 127 120 0 
-1 174 173 0 

** K= 4 l= 12 ** 

-1 134 121 0 

** K= -6 L= 13 ** 

-1 138 137 0 
0 139 129 0 

** K= -5 l= 13 ** 

-1 101 115 0 

** K= -4 L= 1" ** 

-1 181, 159 0 

** K= -2 L= 13 ** 

-2 133 141 0 
-1 110 108 0 

0 120 123 0 

** Ie= -1 L= 13 ** 

-2 129 124 0 

** K= 0 l= 13 ** 

-2 99 116 0 
-1 130 134 0 

0 144 143 0 

** K= 2 L= 13 ** 

-1 146 141 0 

** K= -4 l= 14 ** 

-1 115 141 0 

** 1(= -2 L= 11, ** 



Observed and calculated structure factors for <:1 je. EtOH 

H IF C I IFCI Pf-JI H IFOI IFCI PHI H IFoI IF C I PH I 

of< +- K= C L= G ** 1 21 2C 27 0 7 179 170 90 
2 8 4 85 C 3 71 72 270 

2 397 42". oj 3 4 ? 51 90 
4 

~ ,... 

c:: .. 2S -J 5 30 33 90 ** K= 1 L= 1 ** 
t 31.C 345 I] 6 92 8 7 n lj 

8 23 - 7 Co __ 1:3[- 0 3 09 311 27 G 

** K= 6 L= C i :* 1 11 3 1 Z 237 
* -: K= 1 L= G -Jc l< 2 357 3 8 3 84 

0 1 1 ( 1 u6 a 3 256 245 157 
1 1 59 155 9 ~ 1 1 e6 132 9 ') 4 163 14 8 152 
2 45 45 12 0 2 65 65 1 \~ U 5 61 64 69 
3 111 111 9 '; 3 33 27 O v 6 174 17 7 234 
l.. 53 49 180 5 12 9 135 90 7 56 S5 266 
c 37 3l. 9 _~ 0 5et 63 0 a 44 42 6 1. J 

6 63 6L 18 : 
~ 72 73 1 (3 : ;r* K= 7 L= f) 1<* ** K= 2 L= 1 ** 

* .: K= 2 L= 'j ** 1 84 77 90 C 46 4 46 c 120 
2 1 ~ 14 0 1 544 597 79 

0 469 l.63 13 (; 4 4 5 43 0 2 221 21£ 93 
1 90 b4 90 5 32 45 270 3 62 6C 200 
2 267 256 18 ;:- 6 se 54 180 4 13 0 11 3 207 
-.: 361 352 9 ~ 5 38 40 203 
It 18 2 17 4 1JO ** K= 8 L= 0 ** 6 16 4 1 56 16 8 
5 63 7G 9 J 7 64 66 37 
b 3F. 36 18C 0 144 144 10 0 8 45 [.5 87 
7 63 61 9 L 1 66 62 27J 
8 1 J I. 10 1 1 2 46 45 va ** K= 3 L= 1 ** 

3 40 41 90 
* ,~ K= 3 L= 0 ** a 30 37 90 

..".* K= 9 L= 0 ~ * 1 166 17 2 73 
1 116 1 (J4 27 ::- 2 92 82 227 
2 474 [,62 J 1 2 8 27 90 3 199 19 0 5 
l. 1 37 132 180 2 12 0 11 9 C I. 64 55 28 4 
7 123 12.5 27 0 4 85 8 4 180 5 13 1 12 8 263 
8 74 7 0 .... 6 41 39 I.e. 

** K= 1') L= 0 +-* 7 42 4C 285 
)'1: • • K= 4 L= a *'1; g 24 26 15 

a 23 26 180 
G 79 7C IJ 1 61 61 270 ** K= 4 L= 1 ** 
1 63 65 27 ": 2 28 33 180 
'- So3 9 1 Ij 24 2t 1 £0 
3 12 8 128 27 (J *Ir K= 0 L= 1 ** 1 67 68 293 
I. 67 64 18 J 2 13 4 136 236 
5 39 37 9 .) 1 193 20 9 90 3 270 255 271 
6 LJ 1. 1 HG 2 324 361 270 4 13 ... 121 11 3 
7 35 35 9 1) 3 192 201 270 5 32 36 16 '1 

4 2S 29 270 6 26 23 223 
* :, K= 5 L= 0 ** 5 29 3G 90 7 41 3 0 124 

6 20 2(J 270 



H IFOI / F CI PHI H IFO / IF C I PH I H /F O/ IFe/ PHI 

~: ";~ K= 5 L= 1 ** 2 78 79 327 " 294 307 18 0 v 

1 132 133 14 3 
0 17 3 162 9J ** K= 0 L= 2 ** 2 9 1 9 0 172 
1 244 235 Set 3 65 c:: ~ 

J.:J 29L 
-, 111 108 20 d 0 403 422 13 0 4 31 '-7 3 19 (. 

3 1 07 94 9 =, 1 399 443 0 5 64 61 295 
4 s t) 52 347 2 234 294 1 :3 ') 6 35 37 261 
5 6 3 7 0 23 ';- 3 70 72 180 7 41 43 205 
6 49 :1 8'i 4 34 31 PO 
7 52 5.5 8 5 5 12 5 1~3 13 J ,~* K= 5 L= 2 ** 

7 137 137 r 

* .. K= 6 L= 1 ** 3 85 35 1 (~ O Q 165 164 270 
1 129 115 271 

J 46 1.,7 r-; 0:* K= 1 L= 2 7< * 2 1 58 149 221 
1 6 4 8 7 1? ? .. - 3 95 8 8 2C7 
2 4 9 44 25 ::' .J 274 267 27 ,j 4 79 8 C' ~29 
3 51 52 57 1 t+ 9 1 537 357 6 69 72 334 
4 36 37 182 2 14 0 134 189 7 38 39 217 
5 36 3 2, 35t 3 296 295 3f.5 
6 54 55 2 0 1 4 2 39 2 )38 339 ** K= 6 L= 2 ** 

5 68 65 353 
* .r K= 7 L= 1 ** 6 12 9 134 324 0 166 167 0 

7 5f. 53 50 1 82 84 310 
u 11 J 102 27 ,] 2 115 11 7 60 
1 56 57 109 ** K= 2 L= 2 ** 3 31 31 278 
2 22 20 312 4 1 0 9 10 5 282 
3 68 50 177 0 509 516 1RO 5 52 60 267 
4 ~6 3~ 139 1 352 389 26 1 6 40 46 29 
5 78 76 29 .j 2 232 225 353 7 44 48 329 
6 49 51 29 .3 <:: 43 37 2 ~, 4 -' 

4 239 223 37 ** K= 7 L= 2 ** 
* .': K= 8 L= 1 ** 5 12 5 119 27 8 

6 137 136 1 ~n 1 7S 7 3 3 
0 4 0 37 12 e 7 75 69 224 2 154 1 54 15 8 
1 1 37 142 271 8 48 SO 153 3 20 1 3 S6 
2 1 00 107 11 2 4 65 61 19 
4 86 84 ' 234 ** K= 3 L= 2 *", 5 79 78 24 
5 67 71 26 3 6 27 24 340 

0 498 519 90 
* . .'" K= 9 L= 1 ** 1 1 89 1 37 167 ** K= 8 L= 2 ** 

2 167 17 4 177 
Q 52 t;-.: , .., 9 ,' 3 13 C, 1 25 354 0 25 19 0 
1 35 5':' 43 4 103 1 J 2 161 1 26 26 11 8 
3 51 50 36 5 ~Q J . 6 0 19 3 2 60 5 ~ 339 
4 33 31 34 'i 6 12 9 132 8 6 3 . 24 25 199 

7 53 56 8 2 4 62 S7 56 
,~ . K= 1 IJ L= 1 ** 8 32 34 242 5 28 26 278 

0 81 20 " *,'r K= 4 L= 2 ** ** K= 9 L= 2 ** j 

1 36 33 31 3 



H IF OI IFel PHI H IFOI IFel PHI H IFO I {Fel PHI 

1 53 t.9 1&7 5 134 159 1,: 6 .J 39 32 180 
2 It 2 41 7° 6 2.9 29 126 1 21 23 12 0 
:3 37 41 348 7 73 73 147 2 35 29 212 
4 45 42 123 8 2 ') 23 29 0 :3 72 7 2 95 

5 23 24 256 
* ,. K= 1 0 L= 2 ** ** K= 4 L= 3 ** 

** K= 9 L= 3 ** 
0 81 8'" C Q 257 237 r; 
1 39 44 (3 ~. 1 1 66 162 38 -. 26 22 9ij 

- ..I '-
2 - . ~ 

Co ... 24 25 ;:; 2 61 63 43 1 6e 6 e 2,"15 
3 21 2 1 20 2 37 4 4 262 

* ··r K= C L= 3 ** 4 96 97 328 3 55 55 2S0 
5 77 7 8 9 1 4 :~ 9 4 C 237 

1 354 377 27 J 6 117 11 9 1 
2 1 39 1 1 n .. .. 27 ;J 7 71 7 0 329 ** K= 10 L= ~5 ** 
oJ 2 03 191 9·: 
4 1 u'~ 92 9 :':; ** K= 5 L= 3 ,!t * 0 Sf.. 51 1 PO 
7 73 73 27 j 1 51 5 1 81 

Q 190 19 1 270 2 21 15 275 
* ~ K= 1 L= < ** 1 76 76 313 .; 

2 93 98 212 ** K= 0 L= 4 ** 0 29 32 27 C "Z 129 131 235 ... 
1 4 6 7 [.91 26 :' 4 20 22 340 0 318 3 13 0 
2 1 9J 1 8 4 51 5 50 51 1 1 2 76 7S 0 
3 243 226 31 3 6 81 79 201 3 144 144 18 0 
4 127 11 9 92 7 46 44 46 4 117 116 12,0 
5 41 41 35 1 5 1"'~ J~ 1 3 1 18 I] 
6 42 43 12 6 ** K= 6 L= 7. ** 8 58 61 G ... 
7 1f..3 143 279 
8 41 39 12 0 0 30 34 0 ** K= 1 L= 4 ** 

1 52 53 151 
* .- K= 2 L= 3 ** 2 53 53 279 0 1 8 15 270 

3 31 31 13 3 1 17 0 163 255 
0 305 29 .J 180 4 75 7 3 49 2 290 280 134 
1 5 C 1 530 23 4 5 53 5 0 49 3 1 90 172 145 
2 1 8 2 17 9 65 6 51 50 3 4 4 1f.. O 1 28 83 
3 12 8 121 ' 11 4 7 3 8 37 12 Q 5 57 5 8 97 
4 91 &7 302 6 66 67 192 
5 71 69 315 ** K= 7 L= 3 ** 7 91 94 276 
6 35 32 196 8 38 36 13 1 
7 11 ~ 11 3 221 0 21 25 90 
.3 53 5c Z7 1 8 1 33 257 ** K= 2 L= 4 ** 

2 146 150 42 
"* jo K= 3 L= 3 *"" 3 55 49 333 0 271 274 '" u 

4 75 8 4 127 1 161 172 229 
C 2 -q 1... . 22C 9 !~ 5 8 1 73 116 2 80 60 23 4 
1 172 1£.3 245 6 28 27 1 3 112 1 0 7 312 
2 "1 6 °7 5<1 4 50 46 EG 
3 65 60 53 ·t* K= 8 L= 7 

** 5 132 130 18 .J 

4 1 C2 9 3 22 6 71 72 35 7 



H IF OI IFCI PHI 

7 
3 

"'- K= 

o 
1 
2 
3 
4 
5 
7 
3 

Q 
1 
2 
3 
4 
c:: 
-' 

6 
7 

* -. K= 

1 
2 

4 
5 
b 

7 

Ll 
1 
2 
?: 

4 

5 
6 

* -, K = 

2 
3 
4 

26 
Sc 

62 
2 c 9 
215 

27 
G6 

129 
63 
31 

264 
23 ~ 

67 
32 
75 

143 
74 
74 

5 

42 
138 

92 
161 

4 8 
68 
36 

116 
84 
92 

1 44 
~: 

45 
53 

7 

L= 

27 270 
56 33:: 

6G 
286 
2" 0 l.-. 

2B­
E1 

32 !-
31'1 
35 .: 

1Z7 245 
t3 1 02 
33 32 3 

L= 4 ** 

241 
247 10 1 

65 2L2 
34 11 3 
74 11 ~ 

1/. 8 9: 
69 20 
74 1C 5 

L= 4 ** 
[.3 21 : 

132 14 
qs 157 

160 173 
5J 99 
67 19 0 
37 285 

L = l. *~ 

1 C8 18C 
b'i 30C 
E7 17 G 

137 84-
92 21 3 
.39 217 
5,) 17 ': 

L= 4 ** 

99 34 C 
77 189 
33 295 

H /FOI IFCI PHI 

6 

** K= 

8 
1 
2 
3 
4 
5 

** K= 

a 
2 
:5 

48 
2C 

8 

55 
2 8 
4J 
57 
47 
22 

9 

35 
28 
61 

** K = 10 

o 40 
1 36 

** K= 0 

1 S2 
2 111 
3 3S7 
4 234 
5 24 
6 52 
7 40 
8 20 

** K= 1 

a 1 53 
1 111 
2 74 
:3 148 
4 22 
5 96 
6 64 
7 39 
8 51 

** K= 2 

o 47 
1 357 

48 271 
11 27 

59 1 R a 
28 278 
42 335 
57 2P1 
44 45 
22 93 

l= 4 ** 
37 270 
2~ 297 
Sb 1 ~ 

L= 4 ,\-* 

36 180 
' 35 15 

L= 5 ** 
46 270 

1 3 270 
372 27J 
234 90 

25 270 
49 90 
42 9 0 
17 270 

L= 5 ** 
142 90 
11 C 91 

75 232 
149 138 

27 33 8 
91 13 C 
62 2 4 
41 67 
52 297 

L= 5 ** 
37 0 

346 127 

H /FOI IFCI PHI 

2 97 
3 99 
4 69 
5 55 
6 61 
7 1 03 
8 24 

** K= 3 

o 45 
1 96 
2 174 
3 S1 
4 1 37 
5 1 2 2 
6 22 
7 23 

** K= 4 

o 135 
1 22 8 
2 150 
3 51 
4 1 03 
5 82 
6 1 0 1 
7 93 

** K= 5 

a 36 
1 122 
3 141 
4 66 
5 78 
6 55 
7 28 

** K= 6 

1 62 
2 3S 
3 1 . 7 
4 2 'J 
5 43 
6 38 

** K= 7 

c;.4 267 
95 72 
66 254 
56 32 
54 295 

10 13 147 
25 2(1 G 

L= 5 ** 

46 90 
93 1 C4 

16 9 21.1 
47 25 8 

12 8 22 J 
11 6 26 1 

26 122 
26 226 

L= 5 ** 
122 180 
241 14 
143 13 0 

52 355 
99 191 
83 192 

102 1/.9 
94 19 

L= 5 ** 
41 270 

114 39 
139 148 

64 :'(07 
79 339 
59 323 
27 335 

L= 5 ** 

62 252 
42 325 

1 08 255 
21 220 
42 248 
37 215 

L= 5 ** 



H IFOI IFeI PHI 

G 21 
1 3:;; 
2 32 
3 133 
5 28 

*~ K= :3 

..., 
u 

1 
4 

* " K = 

[I 

1 
3 

* ..: K= 

o 
1 
7 
..J 

4 
5 
6 

* .'" K= 

54 
34 
27 

9 

36 
47 
32 

o 

313 
19 

1 0 3 
48 
39 
3 3 

1 

o 217 
1 157 
2 111 
3 57 
4 95 
5 65 
6 54 

'/d: K = 2 

o 156 
1 28 
2 113 
3 92 
L 64 
5 76 
6 46 

1 C 27 1-~ 

44 12 :-
31 19 -:: 

13 2 11 
32 221 

L= 5 ** 
60 G 
32 3 1 .~ 

29 11 2 

L = 5 * ,~ 

36 9 : 
53 7 ~ 
2° 1 9 

L= 6 ** 
zt;E 180 

17 IJ 
100 0 

4C ~ 
3L J 

36 1 gO 

L= 6 ** 
21 G 9f: 
157 29 (~ 

103 22 3 
59 235 
93 303 
66 6':' 
54 8 ·, , , 

L= 6 ** 

142 1 8 0 
27 331 

11 L! 64 
t:3 151 
66 32 4 
75 2 O ,~ 

51 15 3 

* :< K= :5 L= 6 ** 

J 229 229 271 

H /FO/ IFeI PHI 

1 
2 
3 
4 
5 
6 
7 

CJ 
1 
2 
3 
4 
5 
6 
7 

** K= 

Q 

1 
2 
3 
4 
5 
6 

** K= 

o 
1 
2 
3 
4 
5 
6 

** K = 
o 
1 
2 
4 
5 

12 9 
123 

74 
69 
90 
75 
67 

4 

73 
99 
76 

173 
62 
44 
24 
57 

5 

4 3 
102 

49 
162 

30 
71 
66 

126 71 
1312'i2 

67 312 
71 28 5 
91 3:19 
77 267 
6 8 32 

L= 6 .~,Ir 

7c 1 ;~i) 

104 1 3 
74 144 

1 b 8 286 
S9 233 
46 322 
21. 269 
56 35 7 

L= 6 ** 

55 90 
95 277 
55 116 

156 358 
31 49 
71 79 
64 34 

6 L= 6 ** 
75 8C 0 
80 78 226 
69 14 359 
81 82 125 
73 71 1.3 
85 84 258 
31 3 0 339 

7 L= 6 ** 

6 8 62 90 
4 8 5C 148 
68 72 151 
47 42 1 0 9 
23 24 214 

** K= 8 L= 6 ** 
1 66 71 127 

H IFOI IFel PHI 

4 40 4 0 259 

** K= 9 L= 6 ** 

1 
2 

36 27 323 
35 38 174 

** K= 0 L= 7 ** 
2 42 
4 119 
5 46 
6 56 
7 4 3 

** K= 1 

o 239 
1 81 
2. 99 
3 50 
4 52 
5 49 
6 61 
7 24 

** K= 2 

o 95 
1 163 
2 16 8 
3 30 
4 63 
5 88 
6 3 5 
7 2S 

** K= 3 

{) 47 
1 31 
2 1 0 7 
3 2J9 
4 7 3 
5 21 
6 22 

42 270 
112 270 

43 90 
57 270 
43 270 

L= 7 ** 
224 270 

78 Q7 
93 291 
50 307 
55 323 
4 8 3C9 
63 227 
32 99 

L= 7 ** 
83 !) 

161 245 
177 137 

32 349 
58 112 
91] ::59 
83 27 
25 268 

L= 7 ** 
44 oQ 
33 :33 

11 C 76 
2 06 354 

7f. 94 
26 51 
26 143 

** K= 4 L= 7 ** 
{) 31 25 HO 



H IF 0 / / F C/ PHI H / F 0 / IFCI PHI H IF 0 I IFCI PH I 

1 17 12 357 1 47 46 113 2 <.: 5 88 256 
2 110 115 33 5 ~ 24 25 ;;; 6 3 49 49 48 
3 1St.: 1:C 11 : 3 41 41 1 /t 6 4 64 68 101.. 
4 1 0 1 102 :: 4fj 4 bO 56 107 5 30 31 20 
5 52 56 2Q1 5 29 30 298 
6 26 -A 

'- J 231 6 29 27 06 ** K= 7 L= 3 ** 
7 21.. 22 331 

* . K= .... L= 7 * ,~ 0 43 47 270 . 
~ .'t K= 2 L= 8 ;:/c 1 54 60 47 

n l.1 41 9 '. 2 5C 47 289 -
1 92 94 247 0 57 57 1JO 3 30 2 8 351 
2 1 ;: 3 1(7 37 1 23 20 ~S l.. 30 33 276 
3 1 L 1 136 18 3 2 50 53 233 
4 1 1: 1 9C 12 7 3 1 5C 149 

., .... +:* K= 8 L= ** u ... 

5 L, .j 47 1:)0 4 51 4'1 137 
6 ::6 36 ~ 1 5 30 26 360 0 32 27 1cQ 

6 35 32 118 2 25 22 156 
x · · K= 6 L= 7 ** 

** K= 3 L= 8 ** l'r* K= G L= 9 ** 
0 42 47 18C 
1 69 75 189 0 103 18 9 270 1 51 5t. 90 
2 19 22 24 ;' 1 64 63 33 2 18 14 270 
5 79 30 15 2 110 100 56 3 22 2~ 90 

3 103 99 153 t. 60 6 0 90 
of( ~ K= 7 L= 7 ** 4 97 93 123 S 43 4 ~ 90 

5 20 23 274 
a 51 S3 27 -] 6 4C 42 ,259 ** K= 1 L= 9 ** 
1 52 57 233 
2 33 41.. 183 ** K= 4 L= 8 ** 0 29 23 270 
3 23 23 252 1 45 46 15 
4 45 41 I. 0 45 41 0 2 112 11 5 107 

2 51) 46 1 0 3 1 J3 105 195 
it )' K= e L= 7 ** 3 74 75 243 4 53 55 125 

4 46 46 239 5 28 30 283 
1 30 34 6b 5 48 45 125 6 58 65 292 
2 20 2 ( , 263 6 2t 20 173 
~ 29 29 247 ** K= 2 L= 9 ** 

** K= 5 L= 3 ** 
* " K= a L= 8 ** 1 85 81 29 

0 25 26 90 2 76 79 184 
("I 326 3CS 1 1 C9 11 5 2l) 4 3 60 64 262 
1 1 5 L. 147 18J 2 52 st: 5('8 4 91 90 210 
4 27 27 13 ~ ot 37 (',5 173 5 31 29 211 oJ 

5 25 24 I. 47 41. 309 
6 b 1 £6 !J 5 60 68 157 ** K= 3 L= 9 ** 
7 c;-

oJ) : 1 18 (} 
.. * K= 6 L= 8 ** 0 87 83 270 

~ ": K= 1 L= ~ * .... 1 102 99 173 
G 45 4 8 J 2 133 132 21.0 

C 58 56 9 1~ 1 22 2" 343 3 26 3C 1 :7 



H /F O I IFCI PHI 

l. 1 0 4 102 304 
c; 5f. 57 17 6 
6 32 21:. 35 ,': 

* <. K= L L= 9 -!d: 

o 
1 
2 
7 

* ,- K = 

(1 
'"' 
1 
2 
3 
4 
5 

*"r K = 

o 
1 
2 
4 

23 
36 
79 
32 
5~ 
33 

5 

3 7 
68 
48 
47 
78 
20 

6 

57 
47 
27 
1.4 

L= 

L= 

26 G 
37 3t., :; 
79 33 '!, 
31 ' 0 6 
59 67 
32 224 

85 9C 
74 3,': 
50 ::0 0 

44 31 
74 219 
18 316 

9 *., 
61 0 
46 12 0 
26 156 
44 185 

*-; K= 7 L= 9** 

1 23 22 51 

"n~ K = 8 L = 9 ** 

o 

G 
1 
2 
4 
6 

* ./: K = 

1 
2 

24 

o 

~2 
65 

1 0 8 
42 
39 

1 

1 ~ 

86 
74 

23 18 C 

L = 10 ** 
33 
7 0 

1 r ::: 
~ ... 
43 18C 
.42 

1'1 27 ': 
~3 355 
7':, 23L. 

H / F a I IF C I PH I 

3 105 104 333 
4 75 73 303 

.\\, * K= 2 L= 1 0 ** 

a 
1 
2 
4 
5 

o'd'; K = 

o 
1 
2 
3 
4 
5 

** K = 

1 
2 
4 
5 

** K = 
o 
1 
2 
3 
4 

~* K= 

2 
3 

*,'r K = 

1 
2 
4 
5 

** K= 

73 
2 ·J 
56 
72 
45 

3 

3 0 
52 
3 1J 
33 
4 9 
43 

4 

57 
72 
73 
23 

5 

35 
3 8 
34 
44 
23 

6 

41 
43 

o 

67 
32 
35 
22 

1 

,,) r' 
7 0 

71 180 
20 3 07 
62 3 29 
7 () 35 
46 243 

L= 1 0 ** 
27 91] 
4G 221 
35 13 
54 19 
5 0 1<3 6 
4 3 66 

L= 10 ** 
56 119 
74 58 
70 300 
24 2 

L= 10 ** 
32 ;,0 
38 333 
40 221 
45 341 
20 306 

L= 10 ** 
1.3 164 
42 250 

L= 11 ** 

64 270 
34 270 
31 90 
21 270 

L = 11 ** 
94 270 

H IFOI /FCI PH I 

1 
2 
3 
4 
5 

** K= 

r 

1 
2 
3 
4 
5 

** K= 

o 
1 
2 
4 

** K= 

o 
1 
2 

56 
70 
71 
S6 
40 

2 

2L 
26 
7 0 
57 
50 
22 

63 
3 9 
45 
36 

4 

74 
26 
38 

57 310 
72 35 
7 0 7 
56 119 
4 ::: 42 

L= 11 ** 

1 f' H ,) 
27 9 ~ 
7 t.. 60 
54 95 
48 ::03 
21 76 

L= 11 ** 

6t. 90 
35 2C1 
44 114 
41 33 

L= 11 ** 

75 180 
25 217 
40 228 

** K= 5 L= 11 ** 

1 32 26 131 
3 25 2 6 309 

** K= 6 L= 11 ** 

1 

** K= 

1 
2 
3 
4 

** K= 

1 
2 
3 
4 

25 

o 

29 
55 
35 
42 

1 

49 
84 
60 
58 

26 2':! 9 

L= 12 ** 

31 0 
52 180 
34 1 to 
4"!- 1 ~C 

L= 12 ** 

1.9 165 
8 2 135 
65 164 
6 a 46 



H IF OI I FCI PHI H IFOI I Fe I PH I H IFOI IF C I PHI 

* "' .. K= 2 L= 12 ** 

1 25 28 202 
Z 47 50 305 
3 ? ? 26 347 

* -" K= 3 l= 12 *,,: 

Q 23 2 ,. ::; 27 C 
1 .32 2b 12 ] 
2 32 35 312 

* :. K= L l= 12 ** 
0 33 -~ , 

--' C C 
1 3 1 36 227 
2 23 19 172 

* .. - K= i"l L= 13 ** 
2 4 0 40 27 ~ \ 

* ,', K= 1 L= 13 ** 
I] 41 34 270 
1 41 45 241 
2 33 33 z~ o c. . 

-I< ;: K= 2 L= 13 ** 
0 32 29 0 
1 2L. 26 22 9 
2 24 27 8 

* '" K= 3 L= 13 ** 
0 20 1 7 90 



Observed and calculated structure factors for [Cu( cl~e )2(N0 3 )2] 

H I FO I IF CI PHI H IFOI IF C I PH I H IF CI IFCI PHI 

** K= 0 l= 0 ** ** K= 6 L= 0 ** -7 17 0 157 0 
-6 269 254 n 

2 655 476 18 0 [i 240 ZS2 0 -4 184 189 0 
4 S64 432 180 4 176 163 J -2 4 36 45 3 G 
6 669 651 j -1 1 (' 1 97 18U 
8 350 365 C' ** K= 0 L= ** 0 369 397 0 

2 3 ; 4 276 L 
** K= 1 L= 0 ** -7 3 44 317 a t- 33 7 312 a 

-3 101 -; 955 0 b 16 8 1 bG r~ 

1 72 8 7 0 4 0 -1 314 342 0 
~ 328 34C I) 1 167 202 .) ** K= I.. L;:: 1 ** -' 

4- 176 148 L: 3 599 6 Cc3 0 
5 134 155 (' 5 19 8 22 C Q -0 192 175 0 
6 211 196 18 0 7 369 372 U -5 2[:5 295 C 
7 ~C;"l 343 -4- 241 247 G ..}';-J '"' 9 2Q2 217 0 ** K= 1 L;:: 1 ** -3 256 281 (I 

1 0 11.0 11(, I"' '.J -2 3i 1 431 180 
-8 337 353 0 1 321 316 0 

** K= 2 L= 0 ** -6 259 257 0 2 292 273 Ii 
-4 301 309 a 3 296 294 (1 

0 281 277 18 1j -2 391 419 a 4- 1 8 3 157 1 e () 
2 721 69S '"' 0 6 05 652 I" S 232 2 1.; 7 ,.. 

I'; \J t 

3 223 16<; 2 471 474 0 9 126 12 8 0 
4 465 441 !J 3 145 141., 180 
5 5 (J 5 46G 18 0 4 454 451 0 ** K= 5 L= 1 ** 6 173 162 0 5 264 254 0 
& 181 1 &2 l\ 6 -193 199 0 -6 1 1 175 n 

e 172 18 5 0 -4 158 187 0 
** K= 3 L= 0 ** 10 151 153 0 -2 183 165 C 

() 157 139 I 
1 473 447 0 ** K= 2 L= 1 ** 2 174 156 n 
2 247 23Z (\ 4- 245 224 0 
"7 179 16 8 0 -9 147 11 9 () 6 117 121 {". 
-' 

5 379 352 0 -7 376 380 i) 
6 120 113 18 [I -6 176 154 0 ** K= 6 L= 1 ** 
7 2(1 7 18'1 Q -5 31 it 3u5 0 

-4 234 219 180 -3- 291 294 0 

** K= 4 L= 0 ** -3 186 127 180 3 208 213 0 
-2 121 129 0 

0 197 172 18 0 -1 901 974 0 ** K= 7 L= 1 ** 1 393 358 18 0 a 196 201 0 
2 468 428 1 645 658 0 -4 125 148 0 
3 104 67 (] 5 389 377 0 
4 336 323 ) 6 109 122 180 ** K= /) L= 2 ** 
6 174 165 0 7 224 226 a 

9 116 111 0 - 8 267 28e 0 
** K= 5 l= 0 ** -6 551 567 0 

** -K= 3 L= 1 ** -4 217 23 r, ,] 
3 25 S- 262 0 0 1154 1062 0 
'5 182 18 C -1 0 1 81 168 0 2 130 22 C 



H I FO I IFel PHI H IF OI IF C I PH I H !FO I I Fe l PH I 

4 446 43(, (' 8 148 13 7 HO 3 186 156 0 
6 392 40S ') 4 45 0 451 p 

10 164 164 G ** K= 4 L= 2 ** 6 214 197 C 
8 12 7 13 2 

**' K= 1 L= 2 ** - 8 140 11 8 0 1 0 145 141 (I 

-4 1 S 5 152 0 
- 9 229 232 G -2 543 55 7 0 ** K= 2 L= 3 ** 
-7 28 8 27' tJ 1 149 11 8 l ~O 
-s 258 262 ;) 2 194 174 0 - 9 1 ~ 2 19 5 0 
-3 378 378 0 4 279 254 0 - 6 121 12 2 Q 
-2 21 8 1t2 180 6 117 101 J - 5 3'1 1 3 11 6 ') 

-1 456 sec I) 8 199 1e4 0 - ~ 494 497 0 
0 132 126 18 ;l -1 3 'J 9 366 f) 

1 539 574 ') It* K= 5 L= 2 ** 1 1 9~ 2 06 0 
2 311 271 I) 3 379 39 4 Q 
3 550 526 0 -3 204 192 I) 5 336 329 n 
5 254 257 f"~ -1 211 211 I) 7 - 191 H e 0 
9 231 257 J 1 250 234 0 

5 159 169 0 ** K= 3 L= 3 ** 
** K= 2 L= 2 ** 7 141 15 0 [) 

-1 '; 156 129 " 
- 8 174 173 \J ** K= 6 L= 2 ** - & 1 65 1 5 ,- .-' 
-6 241 235 0 -6 231 233 'J 
-5 232 227 0 -4 157 176 0 -4 213 237 r. 
-4 376 371 0 0 191 191 0 - 2 1 21 1 33 
-3 257 247 J 2 1 C9 9 Cl 0 -1 227 232 0 
-2 408 44G J 6 13 8 127 Q n 55 3 570 (I 
-1 544 566 18 0 1 143 122 1 f 0 
r 258 29'- r-. 

** K= () L= "3 ** "2 141 155 I..' 

1 231 206 0 4 349 3 47 C 
2 554 560 tJ -7 4H; 442 J 6 119 131 0 
4 321 319 Q -5 332 339 >J 
6 18 4 174 0 -3 213 249 'J ** K= 4 L= 3 ** 
7 13 5 143 0 -1 41 2 425 a 
8 196 184 G 1 571 569 0 -5 215 2 J9 0 
9 117 116 18 0 3 615 60 1 0 - 3 244 241 (1 

1 0 154 138 0 5 318 323 0 -1 205 226 0 
9 216 235 0 1 25 C 276 ( , 

** K= 3 L= 2 ** 2 128 115 180 
** K= 1 L= 3 ** 3 179 18 1 fi 

-7 174 20G 0 5 136 126 0 
-5 271 284 (; -1 0 125 11]9 I.) 7 205 192 a 
_ 'l 343 347 " -8 192 191. 0 oJ ..J 

-1 304 337 0 -6 172 170 0 ** K= 5 L= 3 ** 
1 132 155 0 -5 175 154 180 
2 220 2C6 18C -4 533 505 0 -6 161 159 ('I 
3 378 357 .~ -2 716 7:) 6 0 -4 1 27 11 3 P -
4 185 183 0 -1 512 517 0 .. 246 232 0 -' 5 264 282 (] 1 561 53[1 18U 2 199 18 1 r , 

7 239 226 Ct 2 637 6U8 0 6 157 149 a 



H I FO I IF CI PH I H !Fel IFCI PHI H IF " I IFCI PH I 

** K= 6 L= 3 ** 4 435 425 0 -1 1 3("1 209 r-. 
,.; 

7 131 . Pi1 I) 1 265 3 _ 1 C 
- 3 117 113 IJ 8 133 146 r, 3 4 01 :.99 'oJ 

-1 112 12h ) 5 220 243 0 
1 15 8 156 0 ** K= 3 l= 4 .~* 7 17 5- 155 

9 162 1 ,., ~ 
(,.\ r) 

** K= 7 L= 3 ** -7 280 285 0 
-6 19 0 199 1d] ** K= 1 L= c:: ** -2 123 127 I .. -5 16 3 163 0 
-2 325 304 Q -1 0 176 15 3 (I 

* 1< K= G L= 4 ** -1 444 497 0 -7 187 1?c' HO 
t 231 20e: l2J - 6 B7 ~ [ I 3 ~ ... 

-1~ 253 253, t.! 1 55 3 511 0 - 5 S 1 310 0 
-6 323 325 IJ 2 153 153 180 -I.. 244 272 C 
-4 679 63G ) 3 13 9 145 Q - 2 4 3 5 44 1.. 0 
-2 345 365 (1 7 402 40 2 1"1 -1 231 (1? H, C u 

r· 195 224 j .1 1 ~ 3 184 
2 50 6 498- <j ... * K= 4 L= L. ** 1 166 17 3 180 
4 28 0 30 S G 2 645 6L7 () 

6 430 427 "'\ -8 214 215 0 'l' 451 4 06 IJ -
-4 175 176 I,) 4 2 ( ... 3 213 f) 

*~ K= 1 L= 4 ** -2 216 241 0 5 142 133 180 
0 283 295 0 6 157 15 0 (I 

- 9 213 2CJ5 0 1 153 166 180 f 1 69 195 \' 
- ~ 154 147 - 2 169 160 0 I.. 

-6 2 (' 4 167 13 ~ 4 229 187 0 ** K= 2 L= 5 ** 
-5 461 44S 0 5 1</6 1b9 (' 
-4 317 204 180 8 13 3 152 0 - 9 127 11 9 0) 

- 3 861 764 j ' 
oJ -5 346 3 47 (" 

-2 630 558 0 ** K= 5 L= 4 ** - 3 275 301 f1 
C 161 12S ~~ - 7 15 2 15 8 (' 
1 189 107 L: -7 142 154 Q - 1 28 ("\ 331 0 
5 494 471 C -3 157 127 0 1 330 361 0 
6 436 432 ;j -1 248 274 0 ~ 246 249 II 

8 209 214 18 0 1 15 3 132 0 5 28:: 289 n 
9 160 175 5 146 147 7 154 155 (I 

6 13 2 136 11' 0 
** K= 2 L= 4 ** ** K= 3 L= 5 ** 

** K= 6 L= 4 ** -9 164 175 0 - 8 164 15 9 C 
-8 195 188 J -6 134 136 0 -5 133 164 18 S 
-7 186 197 18 0 -2 123 11 2 \) -4 5 0 1 5 0~ '"' I. 

-6 24 Q 246 Q 0 20.4 1 Q 3 0 -2 193 24 C1 (' 
-4 337 347 0 2 115 95 0 -1 3 15 344 0 
-3 191 16'T i~ \) 2 .1 5 235 (' 
-2 3C 2 34C \] ** K= 0 L= 5 ** 1 218 223 18 0 
-1 99 86 L 4 461 425 f1 

(; 164 1 86 0 -7 214 214 0 6 175 15 0 fI 
1 18 7 14~ 18.' -5 295 3 0 5 0 
2 400 41<; C -3 5 b l' 533 0 ** K= 4 L= 5 ** 



H I FO I /Fe/ PHI H IF OI / Fe I PH I H /F OI IF CI PHI 

-7 1 EO 16 5 0 -7 1 99 207 1? 0 ** K= 1 L= 7 ** 
-5 119 121 LJ -6 144 . 13 It 0 
-1 20 2 224 J -4 294 2E2 D - E 1 22 125 ·1 

1 221 216 0 -2 263 287 0 - 6 228 245 G 
3 215 235 ( C 246 279 ) - 5 1 ~5 124 r. 

2 305 !-37 .J -4 188 180 0 
** K= 5 L= 5 ** 3 12 5 117 Ht) 1 . is 1 C 2 H O 

4 14 6 157 .., - 2 3u 7 324 i} j 

-6 224 236 
o. 

S 11 5 97 1i-!fJ Q 292 3 13 0 'w 
- 5 134 145 18 '. 6 144 145 (J 2 246 2 1.,4 ' . , 
_<: 154 173 G 7 123 131 0 4 185 180 0 

0 336 326 a 8 180 222 Q 6 1 94 19 4 n 
2 16 q 181 [I 8 162 177 
6 165 162 Q ** K= 3 L= 6 ** 

** K= 2 L= 7 ** ** K= 7 L= 5 ** -7 38 4 . 380 0 
-5 235 241 G -7 144 1 20 (' 

-2 122 164 ~) -1 241 272 0 - 6 1 41 13 0 I) 

1 40 8 430 Q _t; 228 222 C 
** K= C L= 6 ** 3 211 2JU 0 - 3 277 278 n 

7 154 162 0 - 2 17 0 174 1 ~ J 
-1 L' 17 D 191 0 -1 247 27 C .~ 

- 6 :83 39<; :J ** K= 4 L= 6 ** 1 1 02 211 0 
-4 334 329 0 2 133 11 ~ r 
-2 32 3 354 0 - 8 179 183 Q 3 17 0 1 71 IJ 

(J 39 0 38G 0 -4 166 163 G 5 263 272 0 
4 322 335 () -2 185 182 0 6 174 1 83 1 e I) 
6 367 386 0 0 171 186 0 

2 222 205 ~ ** K= L= 7 ** 
** K= 1 L= 6 ** :Jj 1119 43 0 

4 16 b '.73 0 - ~ 14 e 151 
-9 227 2" 2 . [) -4 227 234 0 
- 8 303 333 a ** K= 5 l= 6 ** -2 1 ~ 1 17 2 0 
-6 18 S 191 18 0 (i 26 0 269 ~ 
-5 236 232 (I - 3 119 136 0 2 183 19 C 0 
-4 367 345 18 J 3 1 83 180 a 4 13 8 13 9 r: 
- 3 64 8 61S u 6 165 146 n 
-2 438 411 0 ** K= 6 L= 6 ** 
-1 274 286 CI ** K= 4 L= 7 ** 

0 211 19 ."3 Ci 2 123 97 0 
1 159 1 82 0 - 5 187 1P1 0 
2 23 0 215 18 0 ** K= 0 L= 7 ** -3 163 16 6 0 
3 25 0 246 C -1 131 132 
5 275 29 C q -7 313 326 C 1 17 0 167 0 " 7 2C5 1eG '" -5 1 53 146 0 3 115 121 r u 

-1 482 4bO 0 4 11 8 137 18r. 
** K= 2 L= 6 ** 1 526 50£ 0 5 164 17 5 Q 

3 16 8 158 U 
-Q 162 154 u 7 29 355 0 ** K= 5 L= 7 ** 
- 8 211 19 5 0 



H IFOI IFCI PHI 

-6 
-4 
- 2 

4 

*+' K = 

3 

** K = 
-6 
-4 
-2 

6 

125 
11 8 
11 3 
125 
169 

124 
93 

111 
94 

115 
l ' 

6 L= 7 ** 

134 
16 J 

1C4 
181 

o L= 8 ** 

16 ') 141 
263 218 
196 166 
654 582 
228 249 

l 

o 
r: 
o 
o 

*+ K= 1 L= 8 ** 

-9 
-7 
- 5 
-2 
-1 

1 

5 
7 

** K = 
- 8 
-6 
-2 
-1 
r 
1 
2 
l. 

5 
6 

* * K = 

-7 
-5 
-3 
-1 

185 
195 
176 
132 
403 
277 
163 
162 
2 CiC1 

2 

174 
224 
258 
26 (\ 
292 
298 
179 
160 
1 E 1 
173 

164 
136 
220 
17() 

185 
193 
157 
1 CS 
388 
282 
15G 
126 
196 

L= 

184 
21G 
278 
21<; 
28B 
3CG 
1 EG 
129 
165 
177 

L= 

145 
136 
216 
167 

,. 
v 
C 
u 

IJ 
o 
(i 

c 

8 ** 
[l 

;) 

18 .1 
(; 

o 
!) 

o 
18 0 

o 

8 ** 

u 
o 
f; 
o 

H /FOI IFel PHI 

1 2(;E 197 
5 201' H20 

** K= 4 L= 8 ** 
-6 
-5 
-I. 

-3 
-2 

2 
4 

115 
117 
192 
111 
183 
245 
220 

1 l' ) 
12 (' 
182 
126 
188 
24S 
205 

(l 

o 
o 

13) 
a 
l) 

o 

** K= 5 L= 8 ** 

-5 181 174 0 
3 176 163 0 

~* K= G L= 9 ** 

-7 
-3 
-1 

3 
5 

** K= 

- 8 
-6 
-4 
-2 
o 
2 
4 

** K= 

-6 
-5 
-3 
-2 
-1 
a 
1 
2 

** K = 
-6 

296 
142 
49 i" 
238 
1 95 

1 

2 03 
12 3 
135 
2 C4 
3(3 
19l 
1 54 

2 

113 
2f)5 
119 
114 
135 
18 e 
33(; 
133 

3 

179 

311 LJ 
157 C 
49 lJ 0 
246 U 
192 a 

L= 9 ** 

21(, 0 
10 1 0 
1 3 4 0 
22 (1 0 
296 U 
175 0 
12 8 0 

L= 9 ** 

126 ) 
212 0 
123 0 
113 180 
154 
174 0 
343 .J 
124 180 

L= 9 ** 
200 a 

H IF OI IFel PI-II 

- 2 17 n 

2 1 116 
4 1 1'2 

** K= 4 

_ 7 

1 
2 

** K= 

1 62 
122 
1 5 
143 

- p 1t.1 
-6 241 
- 4 2 0 4 
- 2 249 

J 476 
'2 511 

*It K= 

-7 
-5 
-3 
-1 

3 

** K= 

- .~ 

- 2 
- 1 

3 
t. 

** K= 

- 3 
1 

** K= 

-3 
-2 

** K= 

-3 

1 

122 
159 
1 41 
217 
201 

2 

16 r 
37 ,) 
285 
128 
1 94 

3 

121 
179 

4 

133 
173 

5 

124 

1 0t C 
149 l 

1b 6 C 

L= 9 ** 
1 61 n 
1 ::' 118lJ 
162 
14 8 0 

l= 1 0 ** 
137 n 
256 ("I 

215 
241 1 01" 
455 0 
324 P 

l= 1 0 ** 
1 39 
114 0 
1 4 c ( I 

219 0 
19 0 [) 

L= 1 J ** 
16<,1 n 
376 I 

_') 12 18r 
132 " 
2 1J6 0 

L= 1 0 * * 
145 r: 
1 73 () 

L= 1 '. • * 
162 1 ~( 

192 'J 

L= 1 r ** 
11 7 n. 



H I FO I IF CI PH I H IFOI I Fe I PHI H IF 0 I IF CI ?HI 

** K= [l l= 11 ** -1 164 170 0 

- 3 2E 1 297 n 

** K= [ I l = 13 ** v 
-1 232 22<; 0 

.5 22 5 21:: 0 -3 175 16C 0 

* * K= 1 L= 11 ** ** K= -1 L= 13 -k* 

-I. 199 194 0 -2 177 13 8 :J 
- 2 151 155 0 

2 15 3 152 Cl 
4 159 17 «, (, 

* J: K= 2 L= 11 ** 
-5 242 23'- C 
-l. 122 96 180 

1 192 201 P 
3 1 4 ~) 13(; I) 

* * K= 3 L= 11 ** 
-2 11 8 11S 0 
a 145 12 (j 0 
2 149 142 0 

** K= I. L= 11 ** 

-3 140 131 0 

** K= 0 L= 12 ** 

-6 169 167 0 
-4 23 5 228 " ; 

2 186 173 0 

* ;1; K= 1 L= 12 ** 

-5 166 15<; 0 
-3 183 153 G 

0 12 Q 141 180 
1 144 15<7 0 

** K= 2 L= 12 ** 

-3 117 126 fj 
... 159 141 0 -c. 

** K= 3 l= 12 ** 



Observed and calculated structure factors for [c.I
J

e 'H]C10
4 

H IFOI IF C I PHI H IFOI I Fe I PHI H IFOI IFel PHI 

** K= G L= fJ ** 8 33 36 180 ** K= 11 l= I.) ** 
9 52 51 1 80 

1 26 11 0 2 3 0 34 HO 
2 3 18 335 18 0 ** K= 5 l= 0 ** 
3 210 220 0 ** K= 1 l= 1 ** 
4 431 449 1 80 1 164 16 6 180 
5 103 99 0 2 34 14 1 80 - 9 77 78 0 
6 2 55 257 0 3 53 41 '1 - 8 13 8 1 3 7 1 8 0 
7 16 0 155 1 80 5 228 227 0 -7 1 35 137 
8 52 49 1 80 6 164 163 18 J -6 235 229 () 

9 68 66 0 7 171 174 180 -5 217 220 1 EO 
8 107 109 0 -4 1 "l~ 

-'- 131 0 
*ic K= 1 l= 0 ** - 3 293 2 97 . . 

-It * K= 6 L= 0 ** 
.., 

863 965 1ee -" 
1 165 159 180 -1 272 283 (' 

2 3 17 314 0 0 501 493 1 80 a 51 24 0 
3 230 221 0 1 177 179 0 1 7 G8 724 180 
4 3 98 374 0 2 138 128 a 2 838 855 a 
5 309 3 00 0 4 86 '8 6 0 3 561 54 8 180 
8 173 172 0 4 174 173 180 

** K= 7 L= 0 ** 5 223 21 8 0 
i"": K= 2 L= 0 ** 7 1 06 103 18 0 

1 146 15 0 180 9 88 95 18 C 
0 3 4 0 354 0 2 180 1 8 5 0 
1 593 598 18 0 3 42 36 0 ** K= 2 L= 1 ** 
2 336 340 180 4 121 119 180 
3 20 5 188 180 5 156 152 0 -9 36 33 18 C 
4, 2 75 271 18n 6 46 4 8 180 - 8 36 47 (j 

5 257 260 0 -7 227 225 C 
6 2 50 247 0 ** K= 8 L= 0 ** -6 219 226 l Ee 
7 128 136 18 0 -5 225 225 0 
9 75 77 Q 0 180 172 180 -4 137 135 C 

1 82 89 0 -3 41 50 l 8C 
** K= 3 L= o ** 3 103 96 180 -2 121 134 C 

4 130 129 a -1 SS G 60e C 
1 1 138 13 06 18 0 5 64 65 180 a 38 1 8 180 
2 1 8 9 1 81] 18C 6 1 0 4 h,2 18 . 1 549 552 C 
4 119 123 180 7 80 8 4 0 ,3 534 531 18 C 
5 2 19 216 C 4 10 2 104 C 
7 187 1 86 180 ** K= 9 L= C ** 5 88 92 C 
8 155 15 8 0 6 154 157 1ac 
9 78 73 1 ~o 3 66 07 180 7 54 39 f: 

5 57 57 0 9 61 57 18G 
** K= 4 L= 0 * -k 

** K= 10 L= 0 ** ** K= 3 L= 1 ** 0 173 164 1 8c 
1 199 185 0 0 117 112 1 80 - 8 85 8 4 l tD 
2 142 142 180 2 57 5S a -6 66 67 0 
3 131 131 0 3 160 163 180 -5 144 142 18 1'} 
5 131 128 t80 4 45 42 0 -4 123 117 18C 



H I FO/ /FC/ PHI H / FO! !FC! PH 1 H /FO! /FC/ PHI 

-2 35 31 180 0-1 205 208 0 4 165 164 r; 
-1 4 33 452 G a 265 257 180 5 83 77 l 8C 

0 6 12 631 0 1 352 33 2 13C 6 32 33 'j 
1 175 183 0 2 33 52 1?-0 
2 42 45 18C 3 216 203 180 ** K= 1 f) L= 1 ** 
:5 4 J 2~ C 4 12 6 12C 0 
4 &4 88 180 5 12 3 126 0 -5 49 1..7 l 8C 
5 164 162 C 6 135 13u 180 2 6 1 65 1 2 oJ 

6 59 61 0 7 7 8 78 0 4 31 33 180 
8 57 S9 0 5 31 39 180 

** K= 7 L= 1 ok * 
-t:"'r K= 4 L= 1 ** ** K= 1 1 L= 1 ** 

- 8 63 52 0 
- 9 74 79 180 - 6 53 45 13 G -4 4 0 41 1 E a 
-8 4 3 4 0 18 0 _t:: 79 75 .... e3 88 .' -' -~ 

-7 173 163 0 -4 47 33 180 -1 48 S 9 H C 
-6 234 237 18G -3 112 112 18G 1 72 84 "' J 

-4 76 69 180 -2 270 270 0 4 27 30 C 
-3 3 57 344 180 1 181 1"67 0 
-2 246 251 18 G 2 17 3 17 8 18 D ** K= 12 L= 1 ** 
-1 1 62 176 0 5 15 u 15 0 180 

'" 'J 149 1 5 1 180 6 5 0 48 18 C - 2 31 52 18': 
2 215 21 8 0 -1 36 49 180 
3 200 199 18 0 ** K= 8 L= 1 ** 0 46 69 0 
4 207 2 0 2 0 
5 188 18 4 C -7 41 43 0 ** K= 0 L= 2 ** 6 212 21 8 180 -5 3 8 40 18C 
7 61 6 0 C -4 107 99 0 -9 59 7 0 18e 

-3 11 0 106 18 C - 8 155 15 2 18 v 
** K= 5 L= 1 "** -2 13 C 128 G -7 263 27 2 C 

-1 1 1) 3 1C4 0 -6 291 29 3 1 8G 
- 8 28 23 0 0 132 12 8 180 -5 2C 1 199 18C 
-3 169 171 180 1 62 67 0 -4 251 258 0 
-2 81 80 ° 0 ... 132 125 0 -3 242 260 180 ~ 

0 11L.. 107 18C 3 63 61 0 -2 167 171 G 
1 84 80 181j 4 156 152 n 

" -1 8[;8 9 89 t' 

2 498 494 180 6 87 91 180 a 61 0 632 180 
3 129 129 0 1 21 0 21 3 0 
4 49 46 G * oJc K= 9 L= 1 ** 2 272 239 18 1: 

5 128 123 a 3 386 4 0 1 18G 
-6 78 76 180 4 5 (,0 4 88 C 

** K= 6 L= 1 ** -5 115 11 b 0 5 11 8 11 3 18 C 
-4 50 49 180 6 164 164 180 

- 8 40 43 18 0 -3 54 49 180 7 85 86 0 
-7 114 115 0 -2 135 135 a 8 72 79 C 
-6 91 88 1 80 -1 237 234 1 a I) 9 83 8b 180 
-5 63 56 180 a 116 117 180 
-4 17 3 167 0 1 120 11 Q 0 ** K= 1 L= 2 ** -3 68 66 180 2 41 33 180 
-2 2 42 241 0 3 107 107 a -9 92 97 18 C 



H I fO! {Fe! PHI H ! FO I !Fel PH I H IFOI !Fel PHI 

-7 86 92 18C 7 152 152 0 4. 7 2 72 180 
-6 61 54 0 8 114 117 1 ~C 5 93 96 ~ 

l. 

-5 99 1:J 1 0 6 75 74 Cj 

-4 3 68 376 18C ** K= 4 L= 2 ** 
-3 152 150 L. ** K= 7 L= 2 ** 
-2 34- 29 1 80 -9 33 36 l aG 
-1 488 54 3 1 8C - 8 6~ 7C (} ~ 

- (:; 117 11 C G 
0 301 306 18C -7 16 0 15 8 0 - 6 168 16 8 1en 
1 5 55 555 0 -6 100 99 0 - 5 92 90 C 
3 175 17 6 a -5 156 156 180 _ '7: 15 0 14 8 18 _ 
4 159 156 G -4 165 16 0 0 - 2 1 34 134 r: 
5 166 15 8 1 =31 - 3 16 ,~ 15Ci '] -1 141 15 2 1 ~ : 
b 116 12 2 1aO -1 102 11 0 0 U 32 25 He 
8 56 59 18 C 0 372 368 0 2 163 16 1 1£': 

2 60 57 0 3 1 08 104 180 
·Jdr K= 2 L= 2 ** 3 67 55 180 5 127 12 6 18G 

4 20 J 201 1dL 6 31 26 OJ 

- 8 47 47 180 5 45 .~4 5 180 7 45 5 0 0 
-7 126 129 0 6 · 154 155 180 
-6 123 122 18C ** K= 8 L= 2 ** 
-5 84 91 18 0 ** K= 5 L= 2 ** 
-4 164 16 8 G -7 94 92 18.1 

- 3 3 17 323 180 -9 92 92 180 -6 69 6 0 G 
-2 109 10 1 a -8 73 7S 0 - 5 1 07 109 0 
-1 385 43 0 C -7 79 76 180 -4 125 126 18 ~ 

0 901 99 G 18C -6 181 176 180 - 3 172 169 C 
1 130 13 8 18.: -5 154 149 a -1 132 14 G 180 
2 302 292 0 -4 38 27 180 0 248 235 a 
3 167 172 18 0 -2 268 281 0 1 88 85 1 80 
4 2 77 269 0 -1 40 38 180 2 170 179 180 
5 214 217 C 0 125 12 8 180 3 139 13G " 4 

6 8' l. 76 18G 1 627 621 a 5 4 3 42 18" 
2 124 119 a 6 68 73 ( 

** K= 3 L= 2 ** 3 91 86 180 
4 357 347 0 ** K= 9 L= 2 ** -9 123 123 18 G 5 132 130 180 

- 8 199 206 C 6 47 43 180 -2 93 9q "I 
oJ 

-7 58 5 8 180 7 11 0 112 0 -1 93 97 180 
-6 125 122 180 8 82 84 180 2 66 66 1 E IJ 
-5 289 291 G 
-4 35 43 180. ** K= 6 L= 2 ** ** K= 10 L= 2 ** -3 113 115 0 
-2 21 1 180 - 8 38 44 0 -6 60 61 a 

0 6 71 686 180 .-7 107 112 182 -5 66 67 n 
1 28 26 0 -4 235 22E 18G -4 98 1 0 1 l 8C 
2 2 43 252 180 - 3 11 6 11 0 1,3 n - 3 89 93 r 
3 33 32 0 -2 28 34 0 -1 3 1 31 18 
4 125 122 U -1 264 278 180 a 116 11 8 0 
5 28 4 272 18 G 0 77 68 a 2 81 77 18 t; 
6 46 47 0 3 95 92 0 3 57 55 C 



H If 01 IFel PHI H I FO I IFel PHI H IFol /Fe/ PHI 

4 43 42 18 0 6 213- 212 0 2 13 1 123 a 
5 38 4 0 H .C 3 1 0 1 89 r.; 

** K= 3 L= 3 ** 4 1 99 203 r 
** K= 11 L= 2 ** 5 1 CG 1 00 G 

-9 66 66 180 
-4 35 35 ( - 8 69 6E a ** K= 6 L= 3 ** 
-2 40 42 18G -7 7 C; 7 G 

1 41 43 18 r -6 129 133 18 C - 8 1 I) 1 1 GB r. 
2 76 8 6 Q -3 ' 327 338 1 ~ 0 -7 89 8 7 1 S C 
3 86 1[3 0 -2 341 365 0 -5 92 91 .J 

-1 9l.. 1CQ 18 -I. 193 19 6 1 E : 
** K= 1 2 L= Z ,'r .:., 0 47 6 4 ~C 18C - 3 134 186 ,., . 

1 92 71 1 Z ~ - 2 8 i, 8 1 
-1 40 56 H e 2 175 169 18 0 -1 43 (, 442 1 E C 

3 109 107 180 2 ' 124 11 9 180 
** K= 1 L= :3 ** 4 155 154 a 3 17 0 169 a 

5 131 127 180 4 1 0 5 1 CO 180 
-9 79 8 3 18C 6 1 4 1 28 18 C 5 183 1 83 18r 
- 8 2 16 226 0 7 66 '63 0 6 146 146 0 
-7 130 136 C 
-6 3 79 386 1 8~ ** K= 4 L= 3 ** ** K= 7 L= 3 ** 
-5 118 117 0 
-4 2 1')6 21 J 18C -9 66 75 C -8 36 33 He 
-3 168 151 G - 8 116 116 0 -6 zoe 199 C 
-2 6 76 772 (1 -7 265 269 180 -5 45 52 1S t} 
-1 183 192 180 -6 82 77 a -3 157 160 G 

0 3 43 355 180 -5 141 13S 0 -2 179 18 1 18 2 
1 432 439 '"' -4 41 4 G 0 -1 17 C 172 '. 
2 225 229 180 -3 250 252 0 0 261 258 C 
3 2 22 214 0 -2 44 50 0 1 111 11 0 180 
4 206 21 a -1 406 427 180 2 7 6 74 0 
5 158 146 18 0 0 89 90 a 3 S1 S4 1EC 
7 69 64 '- 1 42 C 4('1 2 a 4 17 3 165 18· . 
8 50 54 '180 2 263 259 180 

3 315 30 2 0 ** K= 8 L= 3 ** 
* 'Jc K= 2 L= 3 ** 4 131 132 180 

5 27 6 278 180 -7 29 34 1EC 
-9 86 8 4 • J 6 112 1, ·8 (I -4 87 91 18'J 
- 8 56 S5 0 7 88 9(; 180 -3 75 78 0 
-7 327 338 10u 8 56 59 180 -1 11 6 12 0 l tO 
-5 149 148 180 0 114 11 3 
-4 145 145 0 ** K= 5 L= 3 ** 1 3 5 25 C 
-3 194 199 a 2 166 164 I,; 

-2 Z. 49 249 180 -9 3 0 19 130 3 147 14 C C 
-1 112 122 18 0 - 8 75 74 180 5 7 3 7 3 180 

1 1 87 179 0 -7 90 8 9 180 
2 28{) 275 180 -6 85 87 0 ** K= 9 L= 3 * .... 
3 2 33 235 0 -4 83 75 0 
4 69 65 18 0 -3 57 S3 180 -6 44 42 C 
5 47 5 1 0 1 198 188 180 -5 125 1 3 1 1 80 



H 1 F 01 I FC I PHI H IFel IFCI PHI H /Fe I I Fe I PH I 

- 3 67 72 a -3 217 214 0 -6 65 66 18 0 
-2 2 45 2 C ' .10 18(: -2 432 423 0 -5 4 1 17 188 

0 64 57 G -1 106 105 1 80 -4 51 54 C 
1 79 83 1 8 '~ .: 14 6 147 0 - 3 1 8 1 1 74 ,., 
2 57 55 0 1 409 3e8 0 -2 14 3 145 C 
4 1 0 2 10 3 HQ 2 222 215 G -1 218 228 1 g ,j 
5 97 99 Q 4 189 192 180 C 26 C' 25 0 C 

5 53 61 18C 1 55 42 
** K= 1 G L= 3 ** 6 12 J 11 8 180 2 1 96 194 1 8 ': 

7 66 6<3 1bu 5 82 81 18 ,~ 
1 88 92 1eo 6 67 7 0 
~ 63 71 1 8U Jlt"k K= ..,. L= 4 * .)C ..; t:.. 

ofr ':r K= 5 L= 4 *ic 

** K= 11 L= 3 ** -9 35 36 13r! 
- 8 82 88 0 - 9 1 04 1 0 3 C 

-3 4 J 46 0 -7 277 273 180 -8 152 152 1Ee 
-2 63 69 1 8 r -6 71 74 180 -7 122 123 180 

0 53 62 0 -5 161 159 0 ; 171 17 C C -0 

-4 43 [, 4'4C 13t1 -5 17 0 16 8 18C 
** K= 12 L= 3 ** -3 182 19 G 0 -4 48 50 He 

-2 374 388 0 -3 341 342 a 
-1 46 73 0 -1 166 188 180 -2 243 245 18 _ 

0 44 21 180 -1 234 227 1ee 
** K= 0 L= 4 ** 1 31 32 180 0 2 0 2 199 0 

2 46 43 0 1 1 86 18 1 180 
-1 0 26 43 18 0 3 445 44 0 0 2 172 17 3 0 
-9 62 65 180 4 144 152 0 3 2 Q7 202 I"'. 

w 

~8 231 233 0 7 62 63 180 4 248 239 18C 
-7 4 8 47 0 8 5 C 53 18 C 5 84 82 a 
-6 273 275 0 7 87 87 180 
-s 170 171 0 ** K= 3 L= 4 ** -4 424 443 18 0 ** K= 6 L= 4 ** 
-3 342 355 r -9 129 13 3 0 
-2 95 95 '18 u -8 61 59 0 45 41 1 8C 
-1 202 211 180 -6 61 58 0 -6 68 72 1 8C 

0 132 121 180 -5 341 349 180 -5 1 05 1 06 180 
1 432 414 18 0 -4 75 74 0 -4 19E 19 9 C 
2 385 376 18 C -2 65 ·71 18 C! - 3 14 2 143 1 t: 
3 291 287 G -1 27 0 272 1ao -2 S9 61 l 8C 
4 86 82 180 0 96 99 0 -1 69 7 0 
5 3 42 330 180 1 229 223 180 0 14t. 147 18 0 
6 126 132 18 0 2 129 128 0 2 99 9 8 

,.. 
'--

7 27 29 18 C 3 257 254 C 3 1 89 1 86 1 8 d 
4 422 417 130 4 44 48 1eo 

** K= 1 L= 4 ** 6 103 1 03 0 5 80 7C 0 

-8 39 33 18C ** K= 4 l= 4 ** ** K= 7 L= 4 ** 
-7 53 55 .) 

-6 197 205 0 -9 56 50 0 - 8 63 58 18C 
-4 177 181 0 - 8 63 64 0 -7 53 52 180 



H IF 01 IFel PHI H 1 Fa I IFel PHI H IFal ·/FC I PHI 

-6 54 63 0 -7 327 333 1 80 -6 124 127 C 
-4 64 71 0 -6 174 175 0 -4 319 319 C 
-3 163 162 0 -5 154 152 180 -3 85 8 1 18 r 
~2 2 23 222 18 0 -4 122 108 0 -2 124 12 6 He 
-1 60 61 J -3 29 3 3 13 G -1 365 365 r 

(\ 8 0 73 G -2 39 8 409 1 8C 1 1"12 17 C He 
1 187 192 18 0 0 16 0 151 0 2 362 350 C 
2 68 69 I] 1 111 107 180 3 123 11 5 18 C 
3 81 75 0 3 15 2 152 (j 5 138 134 ( 

4 55 57 18fj 4 72 73 180 6 194 19 C 1 6~ 
5 122 123 0 

** K= 8 L= 4 ** 6 95 94 0 ** K= 5 L= 5 ** 
7 11 0 1 09 180 

-7 1 09 1 0 6 0 - 9 36 36 18 C 
-5 87 91 1 R'; 

~ .... ** K= 2 L= 5 ** - 8 68 64 18' 
-4 204 206 0 -7 62 56 0 
- 3 89 91 180 - 8 11 3 123 180 -6 117 1 20 180 
-2 124 11 8 18 0 -6 80 . ·,91 0 -4 69 7 0 18G 
-1 144 143 rJ -5 63 66 180 -2 136 143 C 

0 114 109 180 -3 290 289 180 2 14 0 136 C 
1 31 49 0 -2 175 176 180 3 62 66 C 
2 109 10 7 0 .-1 91 84 180 5 46 45 18 ': 
3 73 71 180 0 64 67 0 6 27 16 1aC 
4 27 1 () 1 40 4 393 1 80 

2 129 132 0 ** K= 6 L= 5 ** 
** K= 9 L= 4 ** 3 45 50 180 

5 112 107 0 - 8 69 65 18 J 
-5 28 23 0 6 139 137 180 -7 111 114 C 
-1 4:) 35 0 -6 71 74 1 9C 

3 58 6 0 180 ** K= 3 L= 5 ** -5 223 215 18 G 
4 41 42 0 -4 83 77 0 

:-9 13t.. 129 0 -3 63 68 180 
** K= 1 0 L= 4 ** -7 47 53 0 -2 14 3 1 45 He 

-6 233 242 0 -1 319 305 a 
-4 52 53 p 

u -4 41 33 180 0 11 G 114 180 
-3 82 84 180 -3 222 224 a 2 157 15 8 C 
-2 42 48 180 -2 265 272 180 3 18 9 191 H e 
-1 104 111 Q 0 169 162 0 4 48 43 18 '_ 

0 62 61 180 1 205 210 130 5 143 144 C 
2 1 06 111 0 2 7 8 79 0 

3 5 3 46 0 ** K= 7 L= 5 ** 
** K= 1 1 L= 4 ** 4 225 221 180 

5 74 73 18 ) - 8 58 56 0 
-3 66 71 18 0 7 59 62 l ~O -7 10 4 111 0 

1 43 57 0 -6 137 135 18C 

** K= 4 L= 5 ** -s 74 7 6 0 

** K= 1 L= 5 ** - 3 204 202 18C 
-9 67 5~ 18 0 -2 165 174 r 

\ 

-9 1 01 106 0 -8 1 8 1 182 180 -1 97 10 C 180 
- 8 82 81 18 0 -7 168 1b1 0 0 137 13 0 1 80 



H / FO / / Fe / PHI H I FO I /FC/ PHI H IF 0 I IF C I PH I 

1 105 10 2 0 4 252 256 180 5 57 55 a 
3 34 4 C, 180 5 63 57 0 6 46 46 (; 

4 55 49 0 7 6C 69 0 
5 55 52 1 8'1 id, K= 4 L= 6 ** 

** K= 1 L= 6 ** 
** K= 8 L= 5 ** - 8 61 S9 He 

-9 4 8 S4 180 -7 82 77 -l 
-7 40 36 0 -8 85 88 180 -6 39 42 He 
-4 65 63 .. , -6 51 53 G -4 53 49 r-

- 2 92 87 180 -5 78 73 0 -3 64 58 HO 
0 61 64 180 -4 176 165 0 - t... 325 32 C 1ee 
3 64 68 l8 C -3 113 1 or; 0 -1 8[ 9 0 H r 
4 64 59 18 0 -2 75 75 0 G 95 8 7 Ht: 

69 64 1 P ~J 3 SE 47 1f_ 
** K= 9 L= 5 ** 1 54 50 0 6 42 41 H.O 

2 69 65 0 
-6 115 12 G 180 3 168 172 18 0 ** K= 5 L= 6 ** 
-5 65 68 a 4 111 1,09 a 
-4 96 98 0 5 55 53 0 -7 134 136 C 
-2 144 147 0 6- 4 0 27 180 -5 193 189 C 

G 9 3 99 180 -4 . 71 65 G 
1 80 76 G 'k -Ie K= .., L= 6 ** - 3 279 27 Z 18'] ~ 

3 49 50 180 -2 164 161 C 
4 96 10 2 0 -9 25 35 0 -1 56 51 ,., . 

-a 201 19 8 180 a 200 20 e 180 

** K= 10 L= 5 ** -7 63 69 18·"] 1 212 2C9 a 
-5 152 146 180 2 11 5 123 18 r 

1 39 44 0 -4 31 8 319 3 258 24 8 18C 
3 26 33 0 -3 62 74 180 4 1 24 126 0 

-2 8 7 87 180 5 43 52 180 
** K= 1 1 l= 5 ** -1 230 232 0 6 91 91 180 

0 115 114 1 80 
- 3 59 64 180 2 256 252 ** K= 6 L= 6 ** 
a 49 58 180 3 95 93 180 

4 13 1 137 18 0 - 8 44 51 a 
** K= 0 l= 6 ** 5 12 6 121 0 -7 76 71 18 ~ 

-5 218 21", C 
-9 1 03 1': 2 ( . ** K= 3 L= 6 *t. -4 96 l Cl l ac 
- 2 8 0 EO 180 - 3 134 138 C 
-7 236 23 C ~ -9 80 83 180 - 2 114 11 5 0 
-6 2 35 246 0 -7 68 74 0 0 93 91. C 
-5 3 47 347 1 30 -6 27 8 2)1 ~ oJ \... 1 ~ c: 3 77 77 C 
-4 397 400 0 -5 44 51 180 4 48 47 Q 
- 3 73 69 180 -4 115 115 o· 
- 2 2 96 312 180 - 3 314 332 13 :) ** K= 7 L= 6 ** 
-1 S4 56 0 -1 235 233 0 

11 119 112 • J a 79 b2 180 -7 57 54 
,., 
'-

1 75 64 0 1 69 7L a - 6 54 47 180 
2 163 169 0 3 240 243 130 -5 60 S6 0 
3 11 6 114 180 4 211 210 0 - 3 227 225 18 C 



H IFOI IF C I PHI H I FO I I FC I PHI H /Fa I IFel PH I 

-1 117 11 6 a 1 177 177 0 -5 7G 63 a 
0 37 36 180 2 17<; 181 130 -4 117 1 06 180 
1 112 112 0 4 46 48 0 -3 59 52 l 8e 
If 56 sa c 5 116 120 18 0 - 2 11 7 1 2C 0 

6 48 53 0 -1 95 92 H O 
** K= 8 L= 6 ** 0 97 99 0 

*'ic K= 3 L= 7 ** 1 114 11 8 G 
-7 37 38 180 2 1 38 137 1 ~O 
-4 161 161 180 -9 66 65 1 80 4 57 51 11 
-3 65 66 0 -7 6 1 62 0 
-2 i 18 103 0 .- 6 96 1 ')3 18':' ** K= 7 L= 7 ** 
-1 124 119 18G - 5 7 3 64 0 

0 60 59 It - 3 99 93 1 8 0 - 6 1 23 11 9 
2 120 1.1 6 180 - 2 59 56 a - 5 7 6 75 180 
4 33 34 0 0 46 33 180 -4 124 128 18 0 

1 19 8 196 0 - 2 16 4 164 180 

** K= 10 l= 6 ** 2 6 3 71 0 0 4 2 29 Q 

3 43 41 180 1 99 97 18 
-4 1 09 115 180 3 54 61 0 
- 3 46 . 46 l eo ** K= 4 L= 7 ** 4 3 4 36 1 80 
-2 98 99 . 1} 

-1 55 S3 1 8 f~ -8 57 6 1 G ** K= 8 L= 7 ** 
-7 5S 49 180 

** K= 1 L= 7 ** -5 219 224 0 -6 29 36 a 
-4 184 192 180 -5 1 29 12 4 0 

-9 79 75 180 .. 13 9 11.1 180 -4 7C 69 Q -.) 

- 8 57 61 180 -2 145 141 a -1 79 84 18 
-7 123 117 C -1 210 213 180 a 36 32 18 G 
-6 171 163 180 0 64 64 0 2 53 5 1 1 80 
-5 12 1 122 0 1 10e 108 0 
-4 295 302 0 2 258 260 180 ** K= 9 L= 7 ** 
- 3 L. CO 4G4 1 8G 3 48 45 0 
-1 · 43 43 .18 0 4 89 88 0 - 3 1 03 102 (l 

0 121 113 180 5 85 84 180 0 11 5 121 a 
1 156 155 0 
2 88 92 C ** K= 5 L= 7 ** ** K= 10 L= 7 ** 
3 199 211 188 
6 104 102 180 -7 S 1 53 1aG -1 44 47 0 

-5 43 41 180 
** K= 2 L= 7 '1<* - 3 233 23 1 0 ** K= 0 L= 8 ** 

-2 31. 3S 0 
- 8 67 68 I) -1 7 J 6 8 0 -9 137 134 1 C 
-7 65 70 0 a 67 71 180 - 8 135 129 0 
-6 4 3 41 18C 1 5 0 50 180 - 6 226 232 18 0 
-5 187 186 0 3 39 28 180 -5 9S 83 0 
-4 187 181. 180 -t. 245 24 l 8G 
- 3 l70 167 l 8n ** K= 6 l= 7 ** - 3 9 8 95 1 e~ 

-2 29 4 3 0 1 0 -2 166 167 0 
-1 63 63 } -7 12 8 123 130 -1 362 368 18 0 

0 79 79 0 -6 71 70 180 1 27 , ..J_ 233 0 



H l .rOI IFCI PHI H I FO I IFel PHI H !FO! IFCI PHI 

2 39 41 180 -3 122 114 1eo -7 73 71 18 0 
3 39 42 I) -2 113 119 13 0 -6 1 8 1 176 C 
4 165 173 tj 0 54 57 0 -4 271 267 18 
5 75 83 l 8G 1 67 55 G -3 186 189 r 

2 75 75 18 0 -2 95 94 C' 
*x K= 1 L= e ** a 186 182 

** K= 5 L= 8 ** 1 13 1 136 1 a c 
-6 1 04 109 0 2 147 156 18C 
-5 1 ~ --_L 13 9 G -7 72 74 180 3 96 10 1 C 
-4 129 128 18 0 -6 153 155 0 
-3 71 73 0 -5 33 36 0 * 'k K= 2 L= 9 Jt ·ic 

- 2 176 179 1 3:; -4 8 0 77 1 ~ ii 
-1 .5 13 328 18C -3 217 218 0 - 8 e 7 9 1 2C 

1 67 5 8 18 0 -1 11 8 117 180 -5 1 90 19 6 1Ee 
2 81 82 18 [; 1t.4 141 a -3 271 270 0 

1 64 67 18 -2 58 54 1Ee 
** K= 2 L= E ** 2 37 32 18 fl -1 174 17 ' C 

• - 72 77 0 1 121 116 1 ~ 0 ~ 

- 8 132 123 a 4 59 70 180 2 163 161 0 
-7 78 79 18 0 3 39 4 2 f'\ 

-6 53 6 0 18 0 ** K= 6 L= 8 ** 4 45 47 l 8G 
-5 23 6 242 0 
-3 72 71 0 -3 88 79 180 ** K= 3 L= 9 ** -2 2 85 286 G -1 155 154 0 
-1 83 81 18 0 -7 7 0 71 18 C 

0 49 47 1811 ** K= 7 L= 8 ** -s 59 67 18(' 
1 5 0 40 0 -4 139 13 1 18C 
2 95 10 2 180 -5 89 84 180 - 3 7 C 72 180 
5 72 80 18 0 -4 103 1eo 180 -2 67 69 18G 

-3 52 46 0 -1 7 3 75 18C 
** K= 3 L= 8 ** 0 67 60 0 55 54 (' 

1 87 91 180 3 7 0 73 a 
-7 136 140 .18 0 2 53 48 180 
-6 46 41 180 3 66 66 G ** K= 4 L= 9 ** 
-5 46 46 0 
-4 147 14 . 181, ** K= 8 L= 8 ** -7 65 62 C 
- 3 183 19 0 G -6 75 76 0 
-2 134 139 18 G -5 74 78 180 -5 151 143 He 
-1 1 01 96 180 -i. 9C 88 0 -4 41 41 C 

0 3 16 315 0 -3 52 49 0 -3 16 - 16 0 C 
3 14 : 146 I} -2 93 94 130 -2 186 Hs7 181" 
4 87 95 18 0 1 72 76 18 0 0 113 117 l 8C 

1 2 03 197 H e 
* .... K= 4 L= 8 ** ** K= 9 L= 8 ** 2 108 111 a 

- 8 33 44 0 -2 37 34 Q ** K= 5 L= 9 ** 
-7 43 43 Q 
-6 91 89 0 ** K= 1 L= 9 ** -5 6 0 65 
-5 34 34 180 -4 133 140 0 
-4 84 89 18 0 -8 35 43 0 -3 42 36 C 



H IF 01 IFel PHI H I FO 1 IFC/ PHI H /Fol {FC/ PHI 

-2 32 39 0 -3 9 3 92 0 - 3 99 1 03 H IJ 
-1 71 64 180 -1 10 5 104 0 -2 SE 66 (' 

0 34 4 1) 1 e\.; 1 152 151 1 3 fJ -1 86 87 18n 
0 63 59 H I; 

** K= 6 L= 9 ** ** K= 3 L= 10 ** 1 8 4 82 C 

~6 33 3 7 (j -7 92 93 0 'k* K= 3 L= 11 ** 
-5 137 13 1 180 -6 91 9c 180 
-3 63 62 a -5 90 91 1 30 -s 48 41 18C 
-2. 46 52 18G -4 136 134 0 -4 56 57 G 
-1 105 10 4 0 - 3 85 87 130 - 3 49 46 1 ~ '" G ', 

C 79 7 9 (; -1 267 26e, a - 2 69 67 1" ~ ( ~ 

1 7 2 72 1 ~ !--
'J"; 

I) 75 74 1 8 0 -1 7 8 67 
2 68 73 0 

** K= 4 L= 1 0 ** ** K= 4 L= 11 ** 
** K= 7 L= 9 ** 

-6 44 37 a - 3 93 93 H e 
-4 49 52 0 -5 77 76 l BO -2 1 03 1 DC J 

-3 77 79 18 0 -4 41 41 1 8 0 
-2 29 3 8 18 0 -3 47 40 0 ** K= 0 L= 12 ** 

1 73 69 0 -2 3 0 39 0 
-1 27 14 0 -2 8 1 8 1 C 

** K= 8 L= 9 ** 0 82 83 .:> 

-2 72 73 180 ** K= 5 L= 1 0 ** 

** K= 0 L= 1 0 ** -5 94 91 180 
-4 63 63 0 

-7 91 76 P -3 66 66 18 
-6 95 10 2 0 -1 45 51 a 
-5 226 223 18 0 0 164 165 180 
-4 70 68 18C 
-2 324 326 180 ** K= 6 L= 1 0 ** -1 74 75 'J 

0 136 131 0 -3 39 34 180 
1 78 74 180 -1 28 31 180 
2 60 63 0 0 76 75 18 C 

~-:* K= 1 L= 1 0 ** ** K= 1 L= 11 ** 
-7 56 62 0 -6 65 61 18 0 
-6 36 46 0 -4 108 111 0 
- 3 90 89 1 80 -3 49 48 18 (; 
a 143 141 180 -1 115 114 0 
3 43 42 1 8 - ~ 0 10 4 114 1'30 

1 38 26 18 0 
** K= 2 L= l C ** 

* :/r K= 2 L= 11 -It'll. 

-6 l 1j8 10 5 0 
-4 59 56 0 -6 52 59 18 0 



Observed and calculated structure factors for 

[cljeH] 2 [CuC1 4 (H 20) 2] 

H IFO I IFCI PHI H I FOI IFCI PHI H !FO 1 IF CI PH I 

** K= 0 L= o ** 1 191 170 180 1 115 110 0 
2 357 337 180 3 56 56 180 

1 716 723 0 3 88' 81 0 
2 1646 1807 180 4 314 306 0 ** K= 12 L= 0 ** 
3 148 143 0 5 90 92 180 
4 879 868 0 6 185 190 180 0 265 258 0 
5 369 357 0 1 176 169 0 
6 216 211 0 ** 1<= 6 L= 0 ** 2 61 51 0 
7 57 56 0 3 96 96 0 

0 967 1124 0 
** K= 1 L= 0 ** 1 499 476 a ** K= 1 L= 1 ** 

2 209 192 180 
1 133 122 180 3 70 70 a -7 182 184 0 
2 732 708 0 4 389 372 0 -6 446 446 a 
3 98 103 0 5 336 334 a -5 170 167 0 
4 557 540 180 6 191 190 a -4 32 22 180 
5 36 39 180 -3 507 488 0 
6 248 251 0 ** 1(= 7 L= 0 ** -2 716 721 0 

-1 255 249 0 
** K= 2 L= 0 ** 1 49 48 180 0 557 544 a 

2 42 45 180 1 823 842 0 
a 685 925 0 4 32 33 0 2 326 320 0 
1 657 637 0 6 62 62 180 3 226 218 0 
2 162 156 0 4 405 387 0 
3 107 108 0 ** K= 8 L= 0 ** 5 282 282 0 
4 443 426 0 6 132 140 0 
5 475 464 0 0 746 775 0 7 53 52 0 
6 141 143 0 1 371 358 0 

2 113 100 180 ** K= 2 L= 1 ** 
** K= 3 l= 0 ** 3 50 46 0 

4 305 292 0 -7 136 145 0 
1 229 219 180 5 318 319 0 -6 97 93 180 
2 245 230 0 -5 185 181 180 
3 63 61 0 ** K= 9 L= 0 ** -4 259 250 0 
4 261 249 180 -3 237 217 0 
5 28 10 180 1 32 32 0 -2 261 246 180 
6 126 133 0 2 92 89 0 -1 48 44 180 

3 92 89 180 1 408 364 180 
** K= 4 l= 0 ** 4 141 141 180 2 192 177 0 

5 71 74 0 3 399 373 0 
0 115 116 0 4 172 171 180 
1 664 653 0 ** K= 10 L= 0 ** 5 193 188 180 
2 617 590 0 6 68 68 0 
3 61 Sl 180 a 384 374 0 
4 254 246 0 1 345 334 0 ** K= 3 l= 1 ** 
5 519 512 0 2 71 64 0 
6 107 109 0 3 86 89 180 -7 115 104 0 

4 228 226 a -6 166 157 0 
** K= S l= 0 ** -5 450 441 0 

** K= 11 l= o ** -4 164 156 0 



H IF 0 I IFel PHI H IFOI IFel PHI H IFOI IFel PH I 

-3 279 259 180 2 246 232 180 -4 76 75 0 
-2 744 751 0 :3 169 166 180 -1 94 98 0 
-1 1166 1548 0 4 227' 224 a 0 75 74 180 

0 269 256 0 5 37 41 0 1 122 123 180 
1 331 296 180 6 145 147 180 2 160 159 0 
2 321 306 0 3 84 88 0 
3 475 454 0 *Ir K= 7 L= 1 ** 4 179 176 180 
4 515 497 0 
5 371 370 0 -6 313 310 0 ** K= 11 L= 1 *" 
6 63 50 180 -5 31 20 0 

-4 96 90 0 -2 367 364 0 
** K= 4 l= 1 ** -3 365 347 0 -1 326 339 0 

-2 135 131 a 0 32 27 180 
-6 113 115 0 -1 372 394 a 1 140 137 0 
-5 38 33 0 0 764 779 0 2 278 269 0 
-4 182 174 180 1 88 81 0 :3 64 64 0 
-3 87 82 0 2 162 154 180 
-2 179 173 0 3 498 481 0 ** K= 12 L= 1 ** 
-1 317 319 180 4 415 409 a 

0 60 55 0 -3 127 121 0 
1 523 483 0 *Ir K= 8 l= 1 ** -2 146 143 0 
2 178 169 180 -1 156 165 180 
3 331 314 180 -5 51 54 0 0 53 60 180 
4 113 111 0 -4 133 131 0 1 157 150 0 
5 71 80 0 -3 189 179 180 2 72 67 180 
6 84 91 180 -2 74 73 180 

-1 366 379 a *" K= 13 L= 1 ** 
** K= 5 l= 1 ** a 62 55 180 

1 412 391 180 -1 205 215 0 
-6 218 213 0 2 194 182 0 0 182 176 0 
-5 224 217 0 3 223 220 0 
-4 170 164 0 4 241 233 180 ** K= 0 L= 2 ** 
-3 223 217 0 5 85 95 180 
-2 430 421 0 -7 222 223 0 
-1 485 529 0 ** K= 9 L= 1 ** -6 445 445 0 

0 434 425 0 -5 55 49 0 
1 282 260 0 -5 188 184 0 -4 69 62 180 
2 247 235 0 -4 87 82 0 -3 499 502 0 
3 401 378 0 -3 70 68 0 -2 722 775 0 
4 429 412 0 -2 272 263 () -1 759 1055 0 
5 183 186 0 -1 372 387 0 0 623 614 a 

0 308 294 a 1 693 663 180 
** 1(= 6 l= 1 ** 1 194 183 a 2 109 116 0 

2 138 135 0 3 1212 1233 0 
-6 79 81 0 3 153 140 0 4 523 509 0 
-4 160 154 180 4 231 224 0 5 309 322 180 
-3 151 144 0 5 219 223 a 6 38 31 0 
-2 206 202 0 
-1 236 241 180 ** k= 10 L= 1 ** ** K= 1 L= 2 ** 

1 251 236 0 



H /FOI IFel PHI H /FOI IF C I PHI H IFOI I Fe I PH I 

-7 62 65 a -4 42 38 a 2 110 100 180 
-6 75 74 183 -3 376 366 0 
-5 90 88 180 -2 1097' 1264 0 ** K= 8 L= 2 ** 
-4 237 228 0 -1 577 718 0 
-3 30 31 0 a 804 791 180 -6 313 314 0 
-2 323 315 180 1 30 15 180 -5 64 57 0 
-1 166 187 0 2 1090 1088 0 -4 87 83 180 

0 223 195 0 3 571 554 0 -3 294 290 0 
1 208 193 180 4 74 70 0 -2 416 430 0 
2 66 65 0 5 126 127 0 -1 242 276 0 
3 52 53 0 6 68 46 a 0 311 299 0 
4 184 173 180 1 182 177 0 
6 130 134 0 ** K= 5 L= 2 ** 2 120 119 0 

3 390 374 0 
** K= 2 L= 2 ** -7 70 69 180 4 296 286 0 

-6 128 127 0 5 42 29 180 
-7 267 269 a -5 159 158 0 
-6 250 249 0 -4 336 323 180 ** K= 9 L= 2 ** 
-5 67 61 J -3 157 151 180 
-4 44 45 a -2 531 548 0 -5 100 98 180 
-3 440 437 0 -1 85 90 a -4 342 337 0 
-2 802 863 0 0 451 424 180 -3 165 161 0 
-1 586 735 0 1 82 80 0 -2 390 402 180 

0 138 148 0 2 95 89 a -1 66 78 180 
1 29 37 0 3 148 145 180 0 288 279 0 
2 588 564 0 4 68 64 0 1 55 55 180 
3 710 687 0 5 50 49 0 2 58 52 180 
4 270 269 0 6 105 101 180 3 114 116 0 
6 57 56 0 4 93 95 180 

** K= 6 L= 2 ** 
** Ie= 3 L= 2 ** ** K= 10 L= 2 ** 

-6 314 314 0 
-6 92 95 180 -4 97 93 180 -5 101 107 0 
-4 322 309 0 -3 473 463 a -4 34 32 0 
-3 33 26 180 -2 692 726 0 -3 48 50 0 
-2 394 396 180 -1 287 331 0 -2 531 558 0 
-1 88 103 0 0 94 101 0 -1 417 494 . 0 

0 109 102 0 1 132 131 0 0 283 282 180 
1 167 158 180 2 297 283 0 1 142 137 180 
2 226 210 0 3 550 540 0 2 557 549 0 
3 111 111 0 4 367 359 a 3 398 390 a 
4 233 227 180 5 52 52 180 
5 44 48 180 ** K= 11 L= 2 ** 
6 117 117 0 ** K= 7 L= 2 ** 

-4 98 97 180 
** K= 4 L= 2 ** -5 53 57 180 -2 155 155 a 

-4 39 34 180 -1 59 62 180 
-7 271 274 D -3 71 69 0 0 96 91 180 
-6 81 82 0 -2 70 73 0 1 110 106 0 
-5 48 41 a 0 33 28 0 3 115 110 180 



H IF 0 I I FC I PH 1 H IFOI IFel PHI H IFOI IF C I PH I 

** 1(= 12 L= 2 ** -5 209 204 0 2 132 128 180 
-4 493 486 0 3 230 224 180 

-3 168 166 0 -3 275 ' 281 0 4 111 113 0 
-2 241 247 0 -2 558 637 0 5 128 129 0 
-1 198 225 0 -1 582 637 0 

0 45 46 0 0 349 321 180 *. K= 7 L= 3 .* 
2 195 188 0 1 174 175 a 

2 1043 1065 0 -6 155 147 0 
** K= 13 L= 2 ** 3 488 468 a -4 225 218 0 

4 129 127 180 -3 633 653 0 
0 94 89 180 5 100 99 0 -2 199 214 a 

6 206 217 a -1 258 269 180 
** K= 1 L= 3 ** 0 375 353 0 

** K= 4 L= 3 ** 1 686 672 0 
-7 101 101 0 2 291 277 0 
-6 145 136 0 -4 49 42 180 3 176 171 0 
-5 94 96 0 -3 214 206 0 4 122 117 a 
-4 361 350 0 -2 120 132 0 
-3 797 836 a -1 341 347 180 ** K= 8 L= 3 .* 
-2 304 339 0 1 291 275 0 
-1 337 336 180 2 149 137 180 -5 110 110 180 
a 666 655 a 3 155 152 180 -4 76 74 a 
1 1061 1109 0 4 144 142 0 -3 120 119 0 
2 319 314 0 5 42 45 0 -2 55 57 180 
3 118 119 0 6 101 110 180 -1 43 36 0 
4 258 257 0 1 155 144 180 
5 119 122 0 ** K= 5 L= 3 ** 2 38 41 a 
6 142 140 a 3 121 117 a 

-7 188 184 0 4 102 104 180 
** K= 2 L= 3 ** -5 40 32 0 5 66 67 180 

-4 330 331 0 
-7 103 104 0 -3 426 435 a ** K= 9 L= 3 ** 
-6 88 86 180 -2 371 409 0 
-5 198 196 180 -1 451 466 0 -5 135 138 0 
-4 310 296 0 0 215 205 0 -4 328 328 a 
-3 291 286 0 1 97 108 0 -3 214 212 0 
-2 423 469 180 2 519 496 0 -2 83 84 0 
-1 158 171 180 3 495 482 0 -1 180 194 0 

0 336 316 a 4 74 79 0 a 264 258 0 
1 174 162 180 1 268 252 0 
2 69 59 0 ** K= 6 l= 3 ** 2 291 280 0 
3 313 298 0 3 182 179 0 
4 203 204 180 -6 81 83 0 4 51 52 0 
5 225 229 180 -5 242 243 0 
6 152 160 a -4 129 125 180 ** K= 10 L= 3 ** 

-3 283 284 180 
** K= 3 l= 3 ** -2 120 130 0 -5 54 52 180 

-1 184 185 0 -4 146 144 a 
-7 154 154 0 0 29 27 0 -3 132 132 a 
-6 115 111 180 1 96 97 0 -2 71 84 180 



H IF 0 I IFel PH I H I FOI I Fe I PHI H IFOI I Fe I PH I 

-1 79 87 180 0 452 422 0 5 312 325 0 
2 90 87 0 2 105 103 180 

3 209' 204 0 ** K= 5 L= 4 ** 
** K= 11 L= 3 ** 5 162 168 180 

-7 81 79 180 
-4 227 225 0 ** K= 2 L= 4 ** -6 33 22 0 
-3 154 1-56 0 -5 228 232 0 
-2 193 202 0 -7 82 79 0 -4 174 174 180 
-1 230 239 0 -6 80 78 180 -3 263 274 180 

1 90 88 0 -5 182 184 0 -2 376 412 0 
2 339 329 0 -4 688 705 0 -1 184 179 0 
3 181 173 0 -3 536 568 0 0 408 383 180 

-2 31 16 180 1 98 95 0 
** K= 12 L= 3 ** -1 104 118 0 2 166 158 0 

0 553 546 0 3 249 245 180 
-3 87 87 180 1 672 647 0 5 163 175 0 
-2 39 48 0 2 538 517 0 

0 44 35 180 3 125 123 J ** K= 6 L= 4 ** 
1 125 124 0 4 29 19 180 

5 248 254 0 -6 103 105 0 
** K= 13 L= 3 ** 6 294 316 0 -5 239 237 0 

-4 313 314 0 
-1 106 112 180 ** K= 3 l= 4 ** -3 407 430 0 

-2 97 107 0 
** K= 0 l= 4 ** -7 67 69 0 -1 161 150 180 

-5 83 77 180 0 572 547 0 
-7 62 69 180 -4 33 37 0 1 840 835 0 
-6 242 238 0 -3 50 49 a 2 138 133 0 
-5 321 320 0 -1 104 104 0 3 104 101 180 
-4 401 404 0 0 29 19 180 4 193 193 0 
-3 664 718 0 1 151 147 180 5 210 215 0 
-2 116 104 180 2 55 53 0 
-1 626 632 180 3 85 90 0 ** K= 7 L= 4 ** 

0 1063 1082 a 4 65 64 180 
1 1390 1528 a 5 49 48 180 -5 57 51 0 
2 193 181 0 -4 126 121 0 
3 250 240 180 ** K= 4 L= 4 ** -2 152 157 180 
4 124 123 a 0 195 181 a 
5 263 269 0 -7 129 124 0 2 132 128 180 
6 281 300 0 -6 157 152 180 4 35 41 0 

-5 191 189 0 
** K= 1 L= 4 ** -4 696 713 0 ** K= 8 L= 4 ** 

-3 342 360 0 
-7 103 99 a -2 35 20 180 -6 48 44 0 
-6 59 60 180 -1 236 250 0 -5 177 178 0 
-5 233 227 180 0 439 421 0 -4 300 301 0 
-4 341 337 a 1 603 582 0 -3 370 390 0 
-3 406 423 0 2 536 529 0 -2 83 93 0 
-2 524 589 180 3 35 36 0 -1 140 134 180 
-1 411 407 180 4 36 35 180 0 359 351 0 



H If 01 IFe I PHI H IFOI IFCI PHI H IFO' 'FC' PH I 

1 646 634 0 -4 146 151 0 3 56 56 180 
2 221 209 0 -3 91 98 0 
3 40 43 180 -2 312' 342 0 ** K= 5 L= 5 ** 
4 75 71 0 -1 309 321 0 

0 680 663 0 -7 79 76 0 
** K= 9 L= 4 ** 1 717 707 0 -6 166 163 0 

2 45 41 0 -5 273 271 0 
-5 85 81 180 4 381 382 0 -4 283 286 0 
-4 70 68 0 5 275 284 a -3 123 132 0 
-3 104 110 0 -2 198 211 0 
-2 135 144 180 ** K= 2 L= 5 ** -1 465 46S 0 
-1 37 34 0 0 383 377 0 

0 211 199 0 -7 46 44 0 1 267 251 0 
1 165 155 180 -6 109 111 0 2 278 264 0 
2 135 126 180 -5 238 240 180 3 152 152 0 
3 166 168 0 -4 50 47 180 4 142 140 0 

-3 462 495 0 5 239 257 0 
** K= 10 L= 4 ** -1 434 423 18J 

0 64 62 0 ** 1(= 6 L= 5 ** 
-5 124 121 0 1 25 10 0 
-4 376 382 0 2 69 61 180 -6 41 32 0 
-3 175 188 0 3 208 206 0 -5 104 106 0 
-1 79 80 0 5 171 179 180 -4 124 125 180 

0 210 201 0 -3 132 145 180 
1 382 377 a ** K= 3 L= 5 ** -2 247 273 0 
2 365 356 0 -1 146 140 0 
3 54 53 180 -7 165 162 0 0 226 218 180 

-6 147 142 0 2 66 68 0 
** K= 11 L= 4 ** -5 291 293 0 3 120 123 180 

-4 342 359 0 
-3 47 50 0 -3 74 63 180 ** K= 7 L= 5 ** 
-2 97 100 0 -2 163 168 0 
-1 72 71 180 -1 950 1000 0 -6 311 309 0 

0 114 105 180 0 632 619 0 -5 274 281 0 
1 61 65 0 1 86 72 180 -4 49 45 0 
2 60 60 0 2 160 156 0 -3 196 207 0 

3 303 302 0 -2 170 189 0 
** K= 12 L= 4 ** 4 193 196 0 -1 95 89 0 

5 272 282 0 0 568 548 0 
-3 138 145 0 1 552 543 0 
-2 48 56 0 ** K= 4 L= 5 ** 2 100 99 180 
-1 128 126 0 3 65 62 180 

0 155 153 0 -7 70 68 180 4 335 342 0 
1 156 151 0 -5 183 182 0 

-4 58 57 0 ** 1(= 8 L= 5 ** 
** K= 1 L= 5 ** -3 206 216 180 

-2 105 104 180 -6 66 67 0 
-7 84 81 180 -1 167 162 0 -5 117 119 180 
-6 333 329 0 0 146 133 0 -4 39 39 0 
-5 522 531 0 2 53 56 180 -3 153 162 0 



H /FOI IFCI PHI H IFOI I Fe I PH I H IFOI IFCI PHI 

-2 85 95 180 0 619 584 a ** K= 4 L= 6 ** 
-1 57 54 180 1 250 250 0 
a 140 144 a 2 127' 115 180 -7 268 269 0 
1 65 57 180 3 219 222 0 -6 199 205 0 
2 103 108 180 4 542 560 0 -5 115 110 0 
3 101 102 0 5 184 194 a -4 172 174 0 

-2 301 320 0 
** K= 9 L= 5 ** ** K= 1 L= 6 ** -1 931 943 0 

0 433 417 0 
-5 272 276 D -7 39 32 0 1 363 343 180 
-4 196 199 0 -5 103 101 180 2 97 90 0 
-3 47 56 180 -4 74 77 0 3 560 558 a 
-2 53 56 0 -3 106 121 0 4 298 303 0 
-1 424 429 a -2 216 220 180 5 57 65 a 

0 392 376 0 a 304 278 0 
1 89 81 0 1 113 112 180 ** K= 5 L= 6 ** 
2 72 69 0 2 175 175 180 
3 155 154 0 3 142 151 0 -6 49 54 180 

4 48 53 0 -5 180 189 0 
** 1(= 10 L= 5 ** 5 121 130 180 -3 283 297 180 

-2 176 186 0 
-4 83 81 0 ** K= 2 L= 6 ** -1 272 268 a 
-3 39 40 a 0 263 250 180 
-2 63 74 180 -7 156 157 a 1 34 41 180 

0 68 67 a -6 281 282 a 2 192 190 0 
1 35 44 180 -5 282 282 0 3 126 123 180 
3 51 51 0 -4 179 178 0 4 88 88 180 

-2 225 259 0 
** K= 11 L= 5 ** -1 761 767 0 ** K= 6 L= 6 ** 

0 603 568 0 
-4 217 222 0 1 28 28 0 -6 329 333 a 
-2 41 37 0 2. 64 64 0 -5 343 359 0 
-1 379 387 a :3 343 342 0 -4 133 142 180 

0 228 222 0 4 340 348 0 -3 45 43 180 
2 130 130 0 5 154 165 0 -2 528 568 0 

-1 553 544 a 
** K= 12 L= 5 ** ** K= 3 L= 6 ** a 216 206 0 

1 71 70 0 
-2 125 136 0 -7 42 41 0 2 41 34 0 
-1 123 126 0 -6 65 68 180 3 254 255 0 

0 137 143 180 -5 117 116 180 4 384 389 0 
-4 133 139 0 

** K= 0 L= 6 ** -3 250 256 a ** K= 7 L= 6 ** 
-2 92 100 180 

-6 389 394 0 -1 246 238 180 -6 85 86 a 
-5 389 405 0 0 33 23 0 -5 87 90 0 
-4 45 48 180 1 74 68 0 -4 49 53 180 
-3 84 84 0 3 44 56 a -3 130 134 180 
-2 455 506 0 5 86 88 180 -2 35 30 0 
-1 579 575 0 -1 189 178 0 



H /FOI IFel PHI H IFOI IFel PHI H !FOI IFel PHI 

0 60 56 0 -3 418 441 0 ** K= 5 L= 7 ** 
1 96 95 180 -2 706 753 J 
2 70 71 180 -1 62' 71 0 -7 269 267 0 

0 100 86 180 -6 147 151 0 
** K= 8 L= 6 ** 1 491 478 0 -5 54 59 180 

2 460 451 0 -4 105 107 a 
-6 252 254 0 3 178 179 0 -3 342 362 0 
-5 341 357 0 4 145 155 a -2 360 371 a 
-4 32 18 180 -1 345 329 a 
-3 35 27 180 ** K= 2 L= 7 ** 0 223 214 0 
-2 279 294 0 1 82 76 0 
-1 290 290 0 -7 54 67 0 2 181 183 0 

0 303 288 0 -6 177 189 0 :3 316 318 0 
1 276 267 Q -5 269 275 180 4 206 214 0 
:3 54 59 a -4 159 160 180 

-3 531 550 0 ** K= 6 L= 7 ** 
** K= 9 L= 6 ** -2 57 56 0 

-1 563 541 180 -6 laO 102 180 
-5 151 158 180 0 86 87 a -5 133 137 0 
-3 312 341 0 1 231 219 0 -4 192 198 a 
-1 288 293 180 2 129 131 180 -3 183 188 180 

0 112 113 0 3 53 50 C -2 183 189 180 
1 102 98 0 4 79 85 a -1 150 141 0 
2 90 88 180 a 109 113 a 
3 63 62 0 ** K= 3 L= 7 ** 1 32 25 a 

:3 116 120 180 
** K= 10 L= 6 ** -7 321 321 0 4 54 60 180 

-6 97 107 0 
-4 190 196 0 -5 104 102 180 ** K= 7 L= 7 ** 
-3 73 70 0 -4 229 232 0 
-2 35 33 a -3 394 406 0 -6 52 45 0 
-1 419 420 0 -2 382 392 a -5 96 94 0 

0 326 326 0 -1 530 526 0 -4 124 130 a 
1 121 125 180 0 138 132 0 -3 321 340 0 

1 189 182 180 -2 375 385 0 
** K= 11 L= 6 ** 2 364 368 a 1 349 343 a 

3 579 593 0 2 296 301 0 
-2 91 86 0 4 107 106 a 3 135 129 0 

0 109 106 180 
1 40 5 180 ** K= 4 l= 7 ** ** K= 8 l= 7 ** 

** K= 12 L= 6 ** -5 41 33 G -5 83 88 180 
-4 56 51 180 -3 191 196 0 

-1 307 299 0 -3 61 61 180 -2 46 52 0 
-2 154 160 0 -1 159 150 180 

** K= 1 L= 7 ** -1 127 120 0 1 55 54 0 
0 162 156 180 2 45 49 180 

-7 95 97 0 1 81 77 180 
-6 186 187 0 2 282 100 0 ** K= 9 L= 7 ** 
-5 159 159 0 4 45 57 180 



H IF 0 I IFel PHI H IFOI IFel PHI H IFOI IFel PH I 

-4 100 102 0 ** K= 2 L= 8 ** -6 113 11~ 0 
-3 240 256 0 -5 144 144 a 
-2 262 271 G -7 224 224 0 -3 316 324 a 
-1 178 170 0 -5 90 91 180 -2 551 567 a 

0 38 33 a -4 321 327 0 -1 35 27 180 
1 61 67 0 -3 551 586 0 0 223 215 180 
2 254 260 a -2 265 267 0 1 423 418 a 

-1 73 59 0 2 505 509 a 
** K= 10 L= 7 ** 0 166 163 a 3 58 52 a 

1 285 281 0 
-3 75 71 0 2 369 373 a ** K= 7 L= 8 ** 
-2 67 71 0 3 267 269 0 

0 60 55 180 -6 59 63 0 
1 39 37 180 ** K= 3 L= 8 ** -3 52 62 a 

-2 55 55 0 
** K= 11 L= 7 ** -7 209 73 180 -1 50 53 180 

-5 90 92 0 1 54 53 0 
-3 148 156 0 -3 68 66 180 3 36 45 180 
-2 182 190 0 -1 69 64 0 
-1 251 242 0 a 58 55 0 ** K= 8 L= 8 ** a 88 79 0 1 51 48 180 

2 67 64 180 -5 86 87 0 
** K= 0 L= 8 ** 3 45 43 0 -4 76 73 0 

-3 295 300 0 
-6 47 37 0 ** K= 4 L= 8 ** -2 360 363 a 
-5 283 282 0 a 58 59 180 
-4 220 222 0 -7 244 244 0 1 323 320 0 
-3 284 294 0 -6 38 36 0 2 311 314 0 
-2 486 501 a -5 135 141 180 
-1 69 61 0 -4 320 319 0 ** K= 9 L= 8 ** 

0 129 130 180 -3 536 568 a 
1 505 501 0 -2 170 176 0 -4 61 52 180 
2 586 602 0 -1 61 56 0 -3 131 137 0 
3 93 94 0 0 188 186 0 -1 118 115 180 
4 49 40 180 1 232 220 0 0 159 162 0 

2 375 374 0 1 63 60 0 
** K= 1 L= 8 ** 3 277 285 0 

** 1(= 10 L= 8 ** 
-7 86 91 180 ** K= 5 L= 8 ** 
-6 63 65 0 -3 270 26l! a 
-4 93 88 180 -6 111 114 180 -1 57 60 0 
-3 154 163 a -5 83 83 0 0 188 189 0 
-2 111 106 a -4 139 141 0 
-1 201 201 180 -3 186 189 180 ** K= 1 L= 9 ** 

0 47 43 180 -1 231 222 0 
1 88 91 0 0 117 107 180 -7 126 120 180 
2 52 49 180 1 101 95 180 -5 413 405 0 
3 38 24 0 2 166 165 0 -4 381 383 0 
4 67 70 0 -3 150 153 0 

** K= 6 L= 8 ** -2 85 85 0 



H IF 0 I IF CI PHI H I FO I IFC I PH I H IFO/ If CI PH 1 

-1 35 38 0 ** K= 6 L= 9 ** -1 355 345 a 
a 303 291 0 0 165 158 0 
1 587 584 C -5 133 128 0 1 245 250 0 
2 233 240 0 -4 98 93 0 2 195 200 0 
3 141 140 180 -3 238 248 180 

-2 74 74 180 ** K= 1 L= 10 ** 
** K= 2 L= 9 ** -1 318 318 0 

0 51 47 0 -7 64 67 180 
-7 34 34 0 1 208 204 180 -6 144 139 0 
-6 69 67 0 -5 61 68 a 
-5 198 193 180 ** K= 7 L= 9 ** -4 220 214 180 
-4 134 130 180 -2 183 182 0 
-3 367 382 0 -5 384 380 0 -1 43 34 180 
-2 134 138 0 -4 316 323 0 0 50 48 180 
-1 381 368 180 -3 34 43 180 1 50 51 0 

1 205 192 0 -2 33 35 0 2 55 55 180 
2 89 93 180 -1 170 167 a 

0 214 207 0 ** K= 2 L= 10 ** 
** K= 3 L= 9 ** 1 355 354 0 

2 180 181 0 -6 96 94 0 
-7 127 116 a -5 304 297 0 
-6 194 194 0 ** K= 8 L= 9 ** -4 341 337 0 
-5 91 94 0 -2 102 98 180 
-4 225 218 0 -5 38 44 a -1 330 326 0 
-3 264 270 0 -4 61 68 180 a 518 514 0 
-2 44 51 0 -3 64 73 J 1 175 175 0 
-1 200 199 0 -2 57 63 0 2 39 35 180 
a 461 450 a -1 126 123 180 3 61 78 0 
1 239 236 0 1 113 121 0 
2 76 81 0 ** K= 3 L= 10 ** 
3 139 137 0 ** K= 9 L= 9 ** 

-6 82 79 0 
** K= 4 L= 9 ** -4 257 260 0 -5 66 65 0 

-3 173 164 0 -4 158 161 180 
-4 121 118 0 -2 38 44 180 -2 243 241 a 
-2 145 149 180 -1 37 30 0 a 197 189 180 

0 121 116 0 0 258 261 0 2 79 16 0 

** K = 5 L= 9 ** ** K= 10 L= 9 ** ** K= 4 L= 10 ** 

-5 175 171 a -2 82 81 a -6 228 217 0 
-4 377 384 0 -1 48 47 180 -5 158 150 0 
-3 165 167 0 -4 188 190 0 
-2 56 51 180 ** K= 0 L= 10 ** -3 137 143 0 
-1 239 227 0 -2 78 83 180 

0 389 387 0 -6 33 26 a -1 240 233 0 
1 167 168 :1 -5 361 346 0 a 613 605 0 
2 107 104 0 -4 225 226 a 1 175 172 0 
3 144 153 0 -3 35 38 180 2 198 199 180 

-2 235 237 0 



H IFOI IFel PHI H /FOI I Fe I PH I H IFOI IFel PHI 

** K= 5 L= 10 ** ** K= 2 l= 11 ** ** K= 8 L= 11 ** 

-6 101 102 180 -4 36' 31 180 -3 42 32 0 
-4 199 195 0 -3 103 104 0 -2 144 139 0 
-3 60 58 180 -2 67 60 0 -1 61 60 180 
-2 148 150 180 -1 184 186 180 
-1 112 111 0 1 151 15Ci a ** K= 0 L= 12 ** 

0 51 43 0 2 44 4S 180 
1 69 71 180 -6 74 67 180 
2 62 62 0 ** K= 3 l= 11 ** -5 107 105 a 

-4 247 240 0 
** K= 6 L= 10 ** -6 302 279 0 -3 115 110 0 

-5 96 87 180 -2 231 234 0 
-5 246 232 0 -4 67 68 180 -1 234 241 0 
-4 106 102 0 -3 334 347 a 0 84 88 180 
-3 54 51 0 -2 298 296 0 1 35 36 0 
-2 168 174 0 -1 144 141 0 
-1 173 169 (J 0 211 210 0 ** K= 1 l= 12 ** 

0 215 208 0 1 58 51 0 
1 274 276 0 -5 35 30 a 

** K= 4 L= 11 ** -4 142 143 180 
** K= 7 L= 10 ** -2 234 244 0 

-6 35 25 180 -1 49 49 180 
-4 46 45 0 -5 58 57 180 a 205 207 180 
-2 69 69 180 -4 68 72 0 1 46 49 0 

0 92 94 0 -2 71 74 180 
-1 126 126 0 ** K= 2 L= 12 ** 

** K= 8 L= 10 ** 0 79 71 0 
1 143 149 180 -5 35 32 0 

-4 190 185 0 -4 45 3~ 180 
-2 64 63 0 ** K= 5 L= 11 ** -3 176 178 0 
-1 153 153 0 -2 354 365 0 

0 117 179 0 -5 136 132 0 -1 215 214 0 
-4 46 46 180 1 34 13 0 

** K= 9 l= 10 ** -2 286 293 0 
-1 389 386 0 ** K= 3 L= 12 ** 

-3 100 92 0 0 118 112 0 
-2 143 148 0 1 50 55 180 -4 92 94 180 
-1 91 86 180 -3 35 37 0 

** K= 6 L= 11 ** -2 134 135 0 
** K= 1 L= 11 ** -1 67 66 180 

-4 49 51 a 0 89 90 180 
-6 186 173 a -2 58 62 180 1 75 80 0 
-5 219 211 0 
-2 328 333 0 ** K= 7 L= 11 ** ** K= 4 l= 12 * * 
-1 390 388 a 

0 95 92 0 -4 104 100 0 -4 77 75 180 
1 45 31 a -3 62 70 180 -3 223 220 0 
2 114 127 0 -2 226 227 a -2 273 276 0 

-1 361 355 0 -1 152 152 0 



H /FO I IFCI pHI H IFOI IFel PHI H !FOI IFCI PHI 

0 124 123 0 

** K= 5 L.= 12 ** 

-4 150 145 0 
-2 174 178 180 
-1 33 38 0 

0 131 136 0 

** K= 6 L= 12 ** 

-4 86 87 0 
-3 136 140 0 
-2 226 221 0 
-1 172 165 0 

** K= 1 L.= 13 ** 

-5 60 45 0 
-4 267 265 0 
-3 216 226 0 
-2 93 92 0 
-1 36 31 0 

** K= 2 L.= 13 ** 

-5 85 81 0 
-4 70 60 180 
-3 69 80 180 
-2 116 109 0 
-1 56 59 a 

** K= 3 L= 13 ** 

-4 127 125 0 
-3 277 273 a 
-2 93 84 0 
-1 79 75 180 

** K= 4 L= 13 ** 

-3 42 38 0 
-2 37 41 180 

** K = a L= 14 ** 

-3 76 78 0 



Observed and calculated structure factors for [Cu(aOeu)C1 2 J2 

H IFOI IFel PHI H IFOI IF C I PHI ,H /FO I IFel PH I 

** K= a L= o ** 5 243 231 180 ** K= 15 L= 0 ** 

1 825 872 C ** K= 7 L= o ** 1 166 137 0 
2 1823 1939 18 !) 2 365 353 0 
4 97 98 180 1 130 134 180 
5 203 235 0 2 283 271 130 ** K= 16 L= 0 ** 

5 176 135 0 
** K= 1 L= 0** 0 852 856 C 

** K= 8 L= 0 ** 1 234 204 U 
1 548 545 180 2 217 ,208 1E 0 
2 1402 1460 180 0 535 546 180 4 140 117 180 
4 280 294 G ' 1 541 532 180 
5 161 184 0 2 121 116 130 ** K= 1 8 L= (1 ** 

4 437 425 0 
** K= 2 L= 0 ** a 391 362 I) 

** K= 9 L= 0 ** 
0 1916 1957 0 ** K= 1 9 L= C ** 
1 388 39G 0 1 462 487 0 
2 1496 1483 180 2 '308 314 0 1 200 199 180 
4 483 475 0 4 124 ' 120 180 2 177 213 180 
5 269 29(, 0 

\ 

8 139 18 180 ** K= 10 L= o ** ** K=, 1 L= 1 ** 

, ** K= 3 L= o ** 0 115 98 180 -5 366 4G8 0 
1 97 86 180 -2 ,296 32C 181J 

. 1 909 867 180 4 143 164 0 -1 118 134 18 a 
2 857 843 180 5 154 106 130 0 1087 1069 0 
4 740 736 0 1 1102 1149 0 
5 351 359 0 ** K= 11 L= 0 ** ,4 265 292 180 
7 150 187 180 

1 568 573 0 ** K= 2 L= t ** 
** K= 4 L= 0 ** 2 388 371 0 

4 195 180 180 ~4 103 97 180 
0 3'30 335 0 5 114 129 180 -2 411 409 0 
1 363 347 180 ,-1 917 906 0 
2 356 351 '180 ** K= 12 L= 0 ** 0 140 116 180 
4 456 43S 0 1 157 165 180 

0 382 371 0 2 423 460 180 
** K= 5 L= 0 ** 5 323 349 0 

** K= 13 L= 0 ** 
2 182 204 180 ** K= 3 L= 1 ** 
4 356 357 0 1 368 386 0 
5 297 29<; 0 4 297 296 180 -8 131 95 180 
7 211 204 18G ' ' 5 147 138 180 -5 325 324 0 

-4 140 128 0 
** K= 6 L= 0 ** ** K= 14 L= 0 ** -2 781 765 180 

-1 92 89, 0 
0 357 317 0 '2 201 227 180 0 352 346 0 
1 143 102 0 5 189 174 0 1 380 332 180 

, 4 243 234 0 2 215 206 180 



H !FO I IFel PH I H I FOI IFel PH I H IFOI IFel PH I 

5 185 17, 0 G 272 263 13J -2 276 246 180 
2 104 96 180 -.1 400 400 180 

** K= 4 l= 1 ** 1 263 268 0 
** K= 9 L= 1 ** 

-7 213 19(, 0 ** K= 15 l= 1 ** 
-4 725 724 18J -2 351 352 0 
-1 628 644 a o· 1350 1356 180 -5 235 240 0 

G 917 92, u 1 762 779 180 -2 318 . 313 18C' 
2 285 31G 180 2 160 144 O. -1 124 118 0 
4 197 221 0 4 408 401 0 0 346 346 ' (; 

5 334 355 / G 
7 163 182 18C ** K= 10 L= 1 ** ** 1<= 16 l= 1 ** 

** K= 5 l= 1 ** -4 179 134 0 -2 215 2et: 180 
-2 522 527 180 -1 207 219 HC 

-5 153 138 180 -t 631 658 180 (I 281 291 . C 
-4 200 196 180 1 591 603 .0 1 171 188 0 
-2 333 342 0 2 647 643 O· 
-1 823 79& a ,4 193 194 180 ** K= 17 L= 1 ** 
a 699 664 G 
1 474 46G 180 *Ic K= 11 L~ 1 ** -2 120 136 180 
2 373 341 180 -1 173 195 a 
4 105 117 0 -4 108 111 180 0 546 545 0 

-2 296 299 0 1 249 250 C 
** K= 6 l= 1 ** -1 410 429 0 

0 175 189 0 ** K= 13 l= 1 ** 
-5 168 15G 180 1 165 180 180 
-4 396 39'- 180 5 221 230 180 -1 195 206 0 
-2 694 67S a 0 211 2'07 0 
-1 506 50C; a ** K= 12 l= 1 ** 1 128 104 180 

1 494 451 180 2 356 336 180 
2 689 695 180 -5 123 99 0 
4 269 263 0 -4 .511 491 0 ** K= 19 l= 1 ** 
5 260 264 0 -2 220 196 180 
7 133 - 88 180 -1 408 404 180 -2 135 118 180 

0 296 300 180 
, 

** K= .7 L= 1 ** 1 291 288 0 ** K= 0 .L= 2 ** 
2 243 246 0 

-5 ' 129 15(, 180 4 139 . 167 180 -8 209 189 1eo 
-2 639 656 0 -7 188 . 190 .10 G 
-1 222 246 0 ** K= 13 L= 1 ** -5 391 384. 0 

C 1 C5 4 1073 180 -4 140 83 0 
1 893 893 180 -2 236 229 180 -2 4~S 499180 
4 377 376 0 -1 239 261 a -1 1307 1208 0 
5 140 141 180 0 234 227 0 0 771 689 0 

1 247 248 180 1 348 392 . a 
** K= 8 L= 1 ** 2 514 51 5 0 

*Ic K= 14 L= 1 ** 4 593 627 180 
-2 209 194 0 5 227 242 180 
-1 160 142 18G -4 257 261 0 7 165 179 a 



H I FO 1 1 F CI PH I H I FO I IFel PH I H IFOI IF CI PHI 

** K= 1 L= 2 ** 2 356 324 180 0 481 475 18C 
5 119 151 0 1 .694 668 180 

-2 217 138 0 2 113 100 180 
-1 468 445 a ** K= 6 L= 2 ** 4 224 187 0 

0 573 557 a 
1 908 891 180 -5 273 281 130 ** K= 1 1 L= 2 ** 
2 450 472 18G -4 339 342 180 
5 129 165 0 -2 1040 1054 0 -7 156 139 lEO 

-1 727 747 0 -4 322 305 G 
** K= 2 L= 2 ** 0 447 430 180 -2 155 153 180 

1 511 477 180 -1 366 375 18 'J 
-s 551 557 /'"' 

'J 2 170 183 18) 0 484 493 180 
-2 298 31'1 180 5 165 140 180 ·2 338 391 C 
-1 271 243 180. 5 263 257 18 r, 

0 172 9& 18J ** K= 7 L= 2 ** 
2 337 324 0 ** K= 12 L=, 2 * * 
4 312 30'1 180 -5 140 140 0 
5 130 107 180 -2 285 250 a '-4 189 169 180 
7 123 102 0 -1 841 845 0 -2 160 135 0 

0 410 ·299 180 -1 358 371 0 
*.~ K= 3 L= 2 ** 1 560 5'34 180 0 185 155 0 

,2 447 423 lBO 
-7 151 166 0 5 137 152 O· ** K= 13 L= 2 ** 
-4 479 495 180 
-1 1004 997 0 ** K= 8 L= 2 '** -4 279 281 0 

0 966 915 0 -1 290 300 180 
1 193 186 18~ ~5 192 181 180 . 0 604 606 180 
2, 648 659 180 -4 236 211 180 1 '235 241 180 
4 125 115 0 -2 428 420 0 2 248 23'9 0 
5' 122 121 0 :-1 325 300 a 

0 1035 1055 180 ** K= 14 L= 2 ** 
, ** K= 4 L= 2 ** 1 1157 1150 180 

4 398 '405 0 -5 325 322 a 
-5 147 165 0 -2 327 331 180 
-4 312 304 180 *11t K= 9 L= 2 ** ' -1 261 269 180 
-2 243 237 ' ,0 0 179 153 0 
-1 222 185 0 -5 148 139 0 1 146 . 153 0 

0 544 507 18) -2 157 137 180 4 124 79 180 
1 309 296 18') -1 116 120 180 
2 .156 16~ 0 0 103 76 0 ' ** K= 15 L= 2 ** 
5 131 147 18iJ 2 244 244 0 

5 145 139 1~a ~4 124 71 u:O 
** K= 5 L= 2 ** '0 115 128 180 

** K= 10 L= ,2 ** 2 154 131 0 
-7 175 163 0 
-4 618 617 180 -7 125 83 0 ** K= 16 L= 2 ** 
-2 109 130 a -5 193 2Q5 180 
-1 768 767 0 -4 234 224 130 -5 184 156 C 

0 1088 1065 a -2 584 588 a -2 183 203 180 
1 162 176 180 -1 510 508 0 0 236 240 (} 





H /FO I IFCI PHI H IFOI IFCI PH 1 H IFOI IFel PH I 

1 120 121 18 G -4 269 276 Q 0 205 214 l8D 
2 '125 111 0 -2 370 366 180 2 131 194 1 80 

-1 937 939 130 .5 121 63 0 
** K= 15 L= 3 ** 0 599 579 180 

1 511 513 0 ' ** K= 8 L= 4 ** 
-5 131 122 (J 2 641 639 0 
-2 22') 202 18 C 4 193 164 130 -7 2e4 264- 0 
-1 268 289 18 !) -5 166 162 180 

0 149 142 18i.J ** K= 3 L= 4 ** -4- 279 290 180 
1 268 256 0 -2 107 1e8 0 
2 257 255 0 -5 262 256 a -1 236 230 0 

-4 157 149 180 0 205 195 180 
** K= 16 L= 3 ** -2 438 426 180 2 172 138 1&0 

-1 441 414- 0 4 169 177 0 
-1 12 I] 121 () 0 1020 11]07 0 5 213 195 I] 

0 151 171 0 1 335 320 Q 

4 260 279 180 ** K= 9 L= 4 ** 
** K= 17 L=' 3 ** 

** K= 4 L= 4 ** -5 136 140 180 
0 194 207 0 \ -4 204 2e4 180 
1 190 175 0 -5 258 243 180 -2 127 118 0 

-1 217 188 181 -1 254 247 0 

** K= 18 l= 3 ** ·0 . 234- 230 180 0 125 99 180 
2 136 145 0 

-1 140 10S-_ a ** K= 5 L= 4 ** 
** K= 10 L= 4 ** 

** K= 0 L= 4 ** -5 183 197 0 
-4' 244 ·260 180 -7 145 153 0 

-7 244 232 180 -2 444 437 180 -5 l-12 197 180 
-5 156 144 0 -1 230 208 0 -4 306 303 '180 
-4 480 498 o· 0 717 744- 0 -2 356 355 0 
-2 97 .83 180 1 487 486 a -1 288 278 0 
-1 740 708 180 2 120 112 0 0 130 72 0 

0 353 349 180 . 4 227 221 180 1 177 176 180 
1 881 884 0 2 154 165 180 
2 478 486 0 ** K= 6 l= 4 ** 
4 426 445 180 ** 1(= 11 l= 4 ** 
5 175 15(, 180 -5 263 279 180 

: 

-4 347 349 180 -5 254 263 180 
** K= 1 l= 4 ** -2 479 479 0 -2 385 403 0 

-1 366 345 0 0 577 577 180 
-5 234 238 0 0 505 502 0 1 308 300 HO 
-4 130 137 0 1 234 224 181 2 181 168 0 
-2 170 175 18~ 2 382 357 180 
-1 218 187 0 ** K= 12 ' L= 4 ** 

2 206 214 18:) ** K= 7 L= 4 ** 
-5 188 175 18 a 

** K= 2 l= 4 ** -s 342 352 a -2 196 181 a 
-2 169 169 0 

-5 144 128 0 -1 271 258 180 ' ** K= 13 L= 4 ** 





H IFO I !Fel PH I H IFOI !Fel PHI H /FO I IFel PH 1 

** K= 15 L= 5 ** ** K= i' L= 6 ** 1 127 11 C 0 

-4 222 211 0 -5 1 Q6 189 0 ** K= 1 :J L= 6 ** 
-2 144 163 18) -4 158 143 0 
-1 352 338 180 -2 338 341 180 -4 216 ,206 120 

I"J 151 13S 18 C -1 261 259 o· -1 304 345 C 
1 178 166 ~ 0 499 490 0 0 345 32C a 
2 159 149 J 1 111 108 1r;o 2 225 242 18 C 

** K= 1,7 L= 5 ** ** K= 5 -L= 6 ** ** K= 1 1 L= 6 ** 

-1 201 217 180 -4 249 242 a -5 274 265 180 
-2 423 418 130 ' -4 163 152 180 

** K= 0 L= 6 ** -1 329 319 180 -2 341 353 0 
G 483 489 a 0 228 204 18G 

-7 293 298 180 1 591 589 0 1 129 135 180 
-4 627 661 0 2 107 7,) , a 2 116 69 180 
-2 205 207 0 4 186 177 180 
-1 290 277 180 ** K= 12 L= 6 ** 

0 532 530 180 ** K= 6 L:; , 6 ** \ 

1 296 28t 180 -1 118 111 0, 
-5 216 ,182 , 0 

** K= 1 L= 6 ** , -2 188 154 180 ** K= 13 L= ,6 ** 
-1 568 583 a 

-5 274 286 0 0 599 604 0 '-5 176 176 180 
~4 .349 377 , 'C 1 182 150 180 -2 175 177 0 
-2 385 1 381 180 2 412 391 180 0 357 366 180 
-1 389 385 18C 1 180 189 180 
o ' 188 222 18:) ** K= 7 L= 6 ** 
1 17 C 15'9 0 - ** 'K= 14, L= 6 ** 

-4 165 176 0 
** K= 2 L= 6 ** -2 367' 365 180 -1 162 174 180 

-1 382 385 180 0 155 135 180 
-7 173 158 180 0 109 107 0 
-5 132 .71 0' ** K= 1 L= 7 ** 
-4 303 308 

, 
0 ** K= 8 L:: 6 ** 

-2 329 328 180 -4 155 179 0 
-1 213 184 180 -5 197 189 0 -2 226 ,237 0 

2 125 114 0 -4 360 367 180 -1 108 114 0 
-2 235 223 180 0 394 400 180 

** K= 3 L= 6 ** -1 232 237 a 1 355 361 180 
0 744 744 0 

-5 322 335 Q 2 289 279 130 ** K= 2 L= 7 ** 
-4 373 344 0 
-2 551 554 180 ** K= 9 L= 6 ** -5 187 165 0 
-1 487 475 180 -4 254 259' C 

0 316 329 0 -s 254 ,255 180 -2 253 254 180 
1 600 58C; Q -4 139 146 180 -1 369 367 1 SO 
2 231 232 a -2 176 175 a a 253 258 180 ' 
4 199 186 18 U 0 111 120 0 2 175 172 0 





H /FO I IF C I PH I H !FO! IFe! PHI H ! FO I IF C! PH I 

-2 131 152 :J 
-1 25 I) 281 a 

** K= 1 L= 9 ** 

-5 245 251 180 
-4 203 196 180 
-2 480 476 C 

0 448 464 18 '.; 
1 190 207 180 

*'k K= 2 L= 9 ** 
-4 2S 2 218 0 
-1 245 224 18C 

0 366 384 180 

** K= 3 L= 9 ** 

-5 276 278 180 
\ 

-4 215 ,201 180 

** K= I.' L= 9 ** 

-s 11 S 6G 180 
,..4 243 229 0 
-1 162 141 180 
a 163 206 18G 

** K= 5 L= 9 ** 

-4 13 a .144 0 
-1 178 161 180 

** K= 6 L= 9 ** 
-1 165 184 18) 

0 192 183 180 

** K= 7 L= 9 ** 
-2 203 195 18 C 
-1 189 191 180 



Observed and calculated structure factors for [Cu(aOeu)3C1202H20 

H IFOI !Fel PHI Ii /FO I IFel PHI t1 I FOI IFel PH I 

** K= a l= o ** ** K= 8 l= a ** , 319 294 a 
3 273 283 0 

1 563 460 0 0 254 299 0 
, 355 442 0 -i 

2 269 232 180 1 177 173 0 
3 342 345 (j 2 458 427 a ** K= 4 l= 1 ** 
4 250 267 0 3 163 187 0 
5 161 209 0 4 183 242 0 -3 285 291 0 

-2 301 333 0 
** K= 1 l= 0 ** ** K= 9 L= a ** -1 618 545 180 

0 442 539 180 
1 181 164 U 3 176 161 0 , 361 194 18 a 
2 342 347 180 2 101 58 180 
4 156 119 0 ** K= 10 L= 0 ** 3 211 181 a 
5 174 182 (: 

0 393 432 0 ** K= 5 L= 1 ** 
** K= 2 l= 0 ** 1 299 262 a 

3 183 249 0 -i- 180 235 a 
0 450 505 0 -3 387 403 0 
1 627 587 0 ** K= 11 l= a ** -2 343 282 C 
2 561 529 0 -1 451 330 0 
3 614 631 0 2 128 73 180 0 332 368 0 
4 352 398 0 1 740 699 0 

** K= 1 L= 1 ** 2 580 5 S~ a 
** K= 3 l= 0 ** 3 389 406 0 

-4 346 405 0 
1 1689 1458 0 -3 451 438 a ** K= 6 L= 1 ** 

-2 446 264 a 
** K= 4 l= 0 ** -1 375 238 180 -2 511 460 180 

0 773 1003 a -1 123 82 180 
0 257 256 180 1 652 645 0 0 392 416 0 
1 1160 1013 0 2 653 782 0 2 230 5S a 
2 519 565 0 3 418 544 0 3 238 280 180 
4 167 161 0 4 237 232 0 

5 183 243 0 ** K= 7 L= 1 ** 
** K= 5 L= 0 ** 

** K= 2 L= 1 ** -4 159 82 0 
4 264 205 0 -3 141 117 0 

-2 127 32 0 -2 779 740 a 
** K= 6 l= 0 ** 0 211 295 lbO -1 410 405 0 

2 226 254 180 0 386 510 a 
1 368 306 0 4 147 167 18G 1 227 137 0 
2 684 665 0 2 376 169 0 
3 228 227 0 ** K= 3 L= 1 ** 3 210 208 a 
4 1 SO 179 tl 4 243 328 0 

-4 159 175 0 
** K= 7 L= 0 ** -3 163 158 0 ** K= 8 L= 1 ** 

-2 294 307 0 
1 494 449 180 -1 1426 1388 0 C 233 278 180 
2 304 269 0 0 250 331 0 1 167 171 180 

1 844 592 0 3 213 167 a 



H I FOI IFtl PH I H IFOI IFe! P~I H IFO! IF CI PH 1 

** 1(= 9 l= 1 ** -2 228 78 0 -1 234 176 HO 
-1 655 406 0 1 130 128 18 C 

-3 233 238 (l 0 462 556 0 
-2 282 230 0 1 968 914 0 ** K= 8 L= 2 ** -1 160 77 0 2 502 551 0 

1 395 386 0 4 172 220 0 -2 390 310 0 
2 406 345 (\ -1 3UO 259 0 
3 185 160 0 ** K= 3 L= 2 ** (1 229 329 0 

1 331 337 0 
** K= 10 L= 1 ** -3 110 190 100 2 396 343 C 

-2 18 ~ 55 0 7 116 147 0 ..J 

-3 260 215 180 -1 644 656 0 
1 149 137 0 0 134 100 a ** K= 9 L= 2 ** 

1 383 278 180 
** K= 11 L= 1 ** 2 363 322 180 G 112 147 180 

2 281 291 180 
-1 295 300 a ** K= 4 L= 2 ** 

0 117 178 0 ** 1(= 10 L= 2 ** 
1 173 159 C -4 18b 184 0 

-3 548 563 0 -3 286 296 0 
** 1(= 12 L= 1 ** -2 222 185 0 -2 369 306 0 

-1 413 413 0 -1 291 307 0 
2 139 73 0 0 147 200 0 1 147 151 0 

1 323 339 a 2 275 255 0 
** K= 0 L= 2 ** 2 359 3f)3 0 3 185 204 a 

3 510 525 0 
-4 221 215 0 4 383 445 0 ** K= 11 L= 2 ** 
-3 374 357 0 
-2 1092 1141 0 ** K= 5 L= 2 ** -1 120 112 180 
-1 285 243 0 

1 213 106 180 -2 111 100 0 ** K= 12 L= 2 ** 
2 864 524 0 -1 398 291 180 
3 714 628 0 1 222 156 180 -1 190 230 0 
4 293 250 0 2 103 95 0 0 206 202 0 

3 118 113 180 1 240 243 0 
** K= 1 L= 2 ** 

** K= 6 L= 2 ** ** K= 1 L= 3 ** 
-4 291 286 0 
-3 1()8 149 a -3 279 214 0 -4 186 236 a 
-2 487 433 180 -2 243 209 0 -3 279 301 U 
-1 120 87 180 -1 201 211 0 -2 243 289 0 

0 236 319 180 0 569 752 0 -1 260 244 0 
1 233 166 0 1 359 360 a 0 593 738 0 
2 530 420 0 2 233 201 0 1 352 257 0 
3 233 217 0 3 418 426 0 2 239 253 a 
4 321 301 180 4 164 255 a 3 605 641 0 

4 267 220 0 
** K= 2 L= 2 ** ** K= 7 L= 2 ** 

** k= 2 l= 3 ** 
-4 272 341 0 -3 154 141 0 



H I FOI IFel PH I H IFOI IFel PHI H IFOI IFel PH I 

-3 163 167 a -4 363 .396 0 4 220 174 0 
-2 147 73 0 -3 340 275 0 
-1 153 102 C -2 355 29& 0 •• K= 1 L= 4 ** 

0 281 289 18 C -1 167 62 0 
1 217 167 180 1 351 368 0 -2 253 161 180 
2 339 314 180 2 480 441 0 -1 203 254 0 
3 175 204 0 3 331 264 0 a 538 597 0 
4 183 184 0 4 173 166 0 1 108 90 0 

2 491 432 180 
** K= 3 L= 3 ** ** K= 8 L= 3 ** 3 254 255 180 

-4 268 292 0 -2 175 136 180 ** K= 2 L= 4 ** 
-3 369 400 0 -1 117 128 0 
-2 369 271 0 3 182 134 180 -4 20fl 230 0 
-1 335 283 C -3 342 368 0 

1 453 467 0 ** K= 9 L= 3 ** -2 447 474 a 
2 744 625 0 -1 62& 632 IJ 
3 253 198 0 -2 267 269 0 0 88 129 a 
4 252 315 a -1 447 425 a 1 382 251 lbO 

a 290 352 0 2 358 209 0 
** K= 4 L= 3 ** 1 226 152 0 3 499 461 0 

2 211 179 0 4 377 387 0 
-3 153 124 180 3 134 175 0 
-1 401 364 180 ** K= 3 L= 4 ** 

0 124 151 0 ** K= 10 L= 3 ** 
1 499 443 U -3 312 314 0 
2 214 205 180 -3 150 111 0 -2 126 110 0 
3 216 180 180 -2 190 143 0 -1 477 435 180 

-1 120 68 0 1 337 325 0 
** K= 5 L= 3 ** 0 106 121 180 2 262 290 lP-O 

1 111 54 180 3 150 S4 180 
-4 143 81 0 2 177 134 180 
-3 150 134 0 ** Ie= 4 L= 4 ** 
-2 290 344 0 ** K= 11 L= 3 ** 
-1 509 498 0 -4 192 246 0 

0 387 445 0 -2 154 130 0 -3 190 219 0 
1 358 316 0 -1 221 186 0 -2 369 300 0 
2 101 56 0 0 163 276 0 -1 319 239 0 
4 301 330 0 1 185 209 0 0 150 203 0 

2 244 201 0 1 599 620 a 
** K= 6 L= ·3 ** 2 597 561 0 

** K= 0 L= 4 ** 4 137 110 0 
-3 150 132 0 
-2 312 263 a -4 391 390 0 ** K= 5 L= 4 ** 
-1 194 95 0 -3 312 325 0 

1 437 452 180 -2 184 187 180 -2 244 198 0 
2 174 80 0 -1 85 71 0 0 182 237 0 

0 795 996 0 2 332 263 180 
** K= 7 L= 3 ** 1 151 215 0 

3 535 580 0 ** K= 6 L= 4 ** 



H I fO I Ifel PH I H I fO I I Fe I PHI H IFOI IFel PH I 

-3 282 297 0 2 430 ,339 0 1 319 319 0 
-2 555 501 0 3 231 218 0 2 137 103 0 
-1 287 203 0 4 239 172 a 4 131 103 18 a 

0 111 173 0 
1 525 538 0 ** K= 2 L= 5 ** ** K= 7 L= 5 ** 
2 320 262 0 
3 130 94 0 -4 108 140 0 -2 201 202 0 
4 195 200 0 -3 132 106 0 -1 249 220 0 

-2 2tS2 267 180 0 327 378 0 
** K= 7 L= 4 ** 0 324 339 a 1 399 431 0 

2 309 221 0 2 176 194 0 
-1 249 247 0 4 178 118 180 

1 174 177 18 a ** K= 8 L= 5 ** 
2 155 164 0 ** K= 3 L= 5 ** 

-2 295 256 0 
** K= 8 L= 4 ** -4 193 231 0 -1 183 175 0 

-3 162 139 a 1 101 92 180 
-3 170 143 0 -2 237 237 0 
-2 352 315 0 -1 679 633 0 ** K= 9 L= 5 ** 
-1 354 326 0 0 493 589 a 

0 196 249 0 1 306 286 0 -3 234 173 0 
1 278 319 0 2 150 168 0 -2 290 236 a 
2 215 203 0 4 173 209 0 -1 172 154 0 
3 185 131 0 1 209 209 0 

** k= 4 L= 5 ** 2 369 338 0 
** K= 9 L= 4 ** 3 218 207 0 

-2 117 120 0 
-2 178 140 0 -1 303 262 0 ** K= 11 L= 5 ** 

0 169 173 180 a 184 243 o· 
2 219 157 0 2 211 160 180 -1 256 255 a 

4 119 79 0 0 200 246 0 
** K= 10 L= 4 ** 1 150 122 a 

** K= 5 L= 5 ** 
-1 130 145 a ** K= 0 L= 6 ** 

0 244 347 0 -4 179 144 0 
1 199 205 a -3 505 499 0 -3 120 113 0 
2 196 206 0 -2 420 387 0 -2 475 542 0 

-1 142 39 180 -1 654 753 a 
** K= 12 L= 4 ** a 206 223 0 0 494 573 0 

1 311 326 a 1 258 134 0 
-1 264 270 0 2 339 277 0 2 306 233 0 

3 509 456 0 3 276 256 0 
** K= 1 L= 5 ** 4 181 226 0 4 319 309 0 

-4 286 303 0 ** K= 6 L= 5 ** ** K= 1 L= 6 ** 
-3 283 292 0 
-2 490 451 C -3 105 79 0 -3 227 178 a 
-1 560 578 0 -2 182 133 180 -1 143 142 180 

0 185 277 (! -1 199 126 180 1 241 284 180 
1 280 224 0 a 183 203 0 2 175 168 0 



H I FO I IFeI PH I H IFOI IFel PhI H IFOI IFel PH I 

.) 269 223 C -2 246 . 1 'i 3 0 1 163 193 0 
-1 216 244 0 

** K= 2 L= 6 ** 0 108 14t3 0 ** 1<= 5 L= 7 ** 1 149 115 0 
-4 304 334 0 2 309 327 0 -2 199 196 0 
-3 ZOO 233 0 3 156 132 0 -1 420 358 0 
-2 240 129 0 a 271 351 0 
-1 378 254 0 ** 1(= 9 L= 6 ** 1 406 485 0 

0 358 397 C 2 231 199 0 
1 571 636 0 0 169 171 0 
2 527 526 0 ** K= 6 L= 1 ** 
3 194 178 0 ** K= 10 L= 6 ** 
4 168 106 a -1 254 234 a 

-2 176 141 0 1 186 148 180 
** K= 3 L= 6 ** -1 220 222 0 

0 145 175 a ** K= 7 L= 7 ** 
-2 235 194 180 1 149 151 0 
a 290 263 0 -3 205 182 0 

** 1(= 1 L= 7 ** -2 327 282 0 
** 1(= 4 L= 6 ** -1 190 185 0 

-4 157 204 0 a 139 186 a 
-3 326 321 IJ -3 235 274 a 1 133 107 a 
-2 409 396 0 -2 230 137 0 2 300 301 0 
-1 363 346 0 -1 14b 122 0 3 201 168 a 

0 261 327 0 0 530 596 a 
1 315 306 0 1 227 294 0 ** K= 8 L= 7 ** 
2 177 92 a 2 266 280 0 
3 287 291 0 3 273 269 0 -2 211 148 180 
4 206 208 0 4 178 170 0 -1 139 110 180 

2 150 122 0 
** 1(= 5 L= 6 ** ** K= 2 L= 7 ** 

** K= 9 L= 7 ** 
-2 100 44 0 -2 191 199 0 

0 170 216 180 -1 140 125 180 -1 115 154 0 
1 131 145 0 2 199 163 180 0 231 272 0 
2 143 137 0 3 112 61 a 1 161 179 0 

2 135 125 0 
** K= 6 L= 6 ** ** K= 3 L= 7 ** 

** K= 0 L= 8 ** 
-3 291 248 0 -3 308 244 0 
-2 293 263 0 -2 37H 365 0 -3 226 237 0 
-1 188 206 0 -1 457 457 0 -2 333 301 0 

0 247 346 0 1 270 282 0 0 269 313 0 
1 198 222 0 2 345 315 0 1 177 232 a 
2 198 158 0 3 340 301 0 2 472 441 0 
3 252 228 0 3 294 287 0 

** K= 4 L= 7 ** 
** K= 8 L= 6 ** ** K= 1 L= 8 ** 

-1 178 180 180 
-3 175 155 a 0 131 152 180 -3 134 126 180 



Ii IFOI IFel PH I H /FO' 'Fel PHI H 'FOI IFel PH I 

0 204 223 0 ** K= 9 ~= 8 ** -2 189 21C 0 
1 96 124 C -1 137 171 0 

0 121 151 180 Q 185 225 0 
** K= 2 L= 8 ** 

** K= 1 l= 9 ** ** K= 1 L= 10 ** 
-2 231 213 0 
-1 461 ,.74 0 -2 293 266 0 -1 128 118 0 

0 259 319 0 -1 174 168 C 1 123 69 180 
1 198 173 (j 1 130 145 a 2 154 146 18 C 
2 234 210 Q 2 351 348 0 
3 176 182 0 3 222 222 0 ** K= 2 L= 10 ** 

** K= 3 L= 8 ** ** K= 2 L= 9 ** -2 175 119 a 
2 253 179 0 

-2 99 88 0 -2 123 101 180 
3 231 17 l t 0 3 266 204 0 ** K= 3 L= 10 ** 

** K= 4 L= 8 ** ** K= 3 L= 9 ** -2 158 78 HO 
1 136 109 0 

-3 211 171 0 -3 165 174 0 2 124 100 180 
-1 268 206 0 -1 219 201 0 

0 114 112 0 0 132 158 0 ** K= It L= 10 ** 
1 343 390 0 1 234 256 G 
2 252 248 0 2 193 188 0 -1 2U3 191 0 
3 249 234 0 3 149 152 0 0 1(; 0 148 0 

1 197 198 0 
** K= 5 L= 8 ** ** K= 4 L= 9 ** 2 118 107 0 

-2 223 125 180 -1 151 125 0 ** K= 5 L= 10 ** 
1 145 152 180 

** K= 6 L= 8 ** 2 123 113 100 -2 132 94 a 
-3 158 153 (I ** K= 5 L= 9 ** ** K= 6 L= 10 ** 
-2 198 207 0 
-1 141 66 a -2 177 156 a 0 123 145 0 

0 193 234 0 -1 170 133 a 1 158 195 0 
1 170 203 0 0 144 200 a 
2 119 114 0 ** K= 1 L= 11 ** 
3 181 166 0 ** K= 6 L= 9 ** 

-1 122 74 0 
** K= 7 L= 8 ** -1 185 161 180 0 221 226 C 

1 148 166 0 
-2 124 81 18C ** K= 7 L= 9 ** 

** K= 2 L= 11 ** 
** K= B L= 8 ** a 258 294 0 

1 140 204 0 1 147 174 0 
-2 188 156 a 2 114 114 0 

(j 189 246 0 ** K= 3 L= 11 ** 
2 122 149 0 ** K= 0 L= 10 ** 

-1 231 212 0 



H IFOI IFel PHI 

** K= a 
1 171 

** K= 2 

L= 12 * * 
144 0 

L= 12 ** 
o 151 141 0 

H IFOI IFel PHI H IFOI IFel PHI 



Observed and calculated structure factors for [Cu(aOeu)2]Br
2 



H I FO I IF CI PHI H I FO I I Fe I PH I H IFOI IFel PHI 

-2 499 51G ' 0 -2 122 130 180 1 405 403 0 
-1 702 69S 180 -1 243 247 0 

0 1185 1193 180 0 116 131 0 ** K= 14 L= 1 ** 
1 683 69(j 0 2 86 84 130 
2 697 720 0 0 101 88 180 
3 360 36y 180 ** K= 9 L= 1 ** 
4 285 296 18G ** K= 0 L= 2 ** 
5 158 16(j 0 -4 247 237 0 

-3 221 213 0 -6 198 187 0 
** K= 5 L-' - 1 ** -2 259 257 0 -5 112 98 1BO 

0 260 265 0 -4 1G8 107 a 
-5 310 331 0 1 393 394 0 -3 1131 1071 0 
-4 207 201 G 2 134 132 0 -2 1019 944 r 

-3 10r) 112 18Q 3, 178 172 0 -1 1086 922 150 
-2 596 616 0 4 9L 103 0 0 378 373 ' 0 
-1 1351 1361 0 1 2759 2842 0 

0 124 12(, 0 ** K= 10 L= 1 ** 3 363 369 180 
1 148 '138 180 4 166 160 0 
2 763 776 0 -4 203 "213 130 5 242 251 0 
3 44Q 444 0 ,-3 229- 229 0 6 113 119 0 

-2 328 331 0 
** K= 6 L= 1 ** -:-1 356 350 180 ** K= 1 L= 2 ** 

0 472 465 180 
-4 ' 100 105 0 1 347 341 a -6 93 86 0 
-3 25:) 256 180 2 358 366 a -4 340 338 180 
-2 277 293 180 3 223 227 180 -3 166 164 180 
:"1 368 372 a 4 129 129 180 -2 881 846 0 

0 132 162 0 -1 737 689 0 
1 115 97 a ** K= 11 L= 1 ** a ' 258 242 180 
2 379 374 180 1 632 622 180 
3 158 175 a -3 136 '129 180 2 382 386 0 
4 254 261 0 -2 389 '385 0 3 277 282 0 

-1 484 470 O. 4 312 322 180 
** K= 7 L= , ** 1 117 136 180 

2 274 267 a ** K= 2 L= ,2 ** 
-5 99 '78 0 3 405 407 0 
-4 81 8G 0 -5 295 290 0 
-3 353 35C 0 ** K= 12 L= 1 ** -4 549 550 0 
-2 480 475 C -1 1466 1460 0 
-1 63 65 0 -3 129 136 130 0 497 497 0 

0 626 61S 0 -2 411 399 130 1 161 159 180 
1 498 501 a -1 232 215 0 2 139 142 0 
2 144 15C 0 0 372 376 0 3 590 596 G 
3 342 341 0 1 329 339 180 4 225 227 0 
4 104 12G 0 2 215 219 180 

3 199 186 a ** K= 3 L= 2 ** 
** K= 8 L= 1 ** 

.** K= 13 L= 1 ** -2 241 223 0 
-5 91 68 180 0 312 319 0 
-4 88 60 ,0 0 310 301 a 1 390 389 0 



H I Fa I IFci PH I H I FOl IFCI PHI H /Fa I IFCI PHI 

2 129 143 180 ** 1<= 8 L= 2 ** ** K= 13 L= 2 ** 

** K= 4 L= 2 ** -5 321 . 329 0 -2 168 174 0 
-4 392 4QO 0 0 215 189 180 

-5 181 178 C -3 383 376 1.30 2 184 174 0 
-4 178 163 0 -2 142 131 0 
-3 339 35G 0 -1 958 959 0 ** K= 14 L= 2 ** 
-2 410 408 a 0 554 561 0 
-1 400 4C3 0 1 229 237 180 -1 346 337 0 

0 206 214 0 3 596 593 0 a 280 281 0 
1 268 271 a 4 101 104 0 1 93 66 1£0 
2 275 287 Q 
3 372 367 0 ** K= 9 L= 2 ** ** K= 1 L= 3 ** 
4 318 33C 0 
5 98 125 0 -4 139 127 . 0 -6 124 125 0 

-3 .115 107 0 -4 524 499 0 
** K= 5 L= 2 ** -2 206 210 180 :-3 228 222 0 

-1 212 202 180 -2 126 128 0 
-5 134 126 180 0 362 ' '367 0 -1 793 769 0 
-4 149 148 0 1 195 184 . 0 0 603 595 0 
-3 '133 121 0 2 378 381 180 ' 1 1196 1208 0 
,-2 372 374 180 3 126 127 180 3 398 395 0 
-1 427 412 180 4 95 88 0 4 348 348 0 

O· 63 8(, ·0 5 103 102 0 
1 410 41G 0 ** K= 10 L= 2 ** 
2 117 137 180 ** K= 2 L= 3 ** 

'-4 132 143 0 
** K= 6 L= 2 ** -3 307 

\ 

294 a -5 228 232 180 
-2 512 518 0 -4 91 78 0 

-3 534 546 0 -1 112 115 180 -3 401 385 a 
-2 510 528 a a 81 71 0 -2 286 269 0 
-1 178 185 180 1 435 440 0 '-1 1133 1112 180 

0 199 202 0 2 '123 . 127 0 0 61 45 180 
·1 1071 108~. 0 3 101 .71 0 1 671 673 0 
2 497 514 0 4 86 88 0 2 139 135 180 
4 126 113 0 3 260 264 18G 
5 223 231 0 ** K= 11 L= . 2 ** 4 76 68 18C 

5 131 116 C 
** 1<= 7 L= 2 ** 0 ,100 103 0 

"l 97 lG4 0 ** K= 3 ,L= 3 ** -' 
-4 185 lE4 18C 
-3 224 219 180 '.** K= 12 L= 2 ** -6 ,268 273 0 
-2 505 521 '0 -5 216 222 ('} 
-1 302 294 0 -3 158 153 0 -4 '80 26 180 

0 907 917 18C -2 245 248 a -3 3.73 372 0 
1 181 18S 181) -1 135' 136 a -2 1277 1283 0 
2 380 389 0 0 135 140, a -1 144 14£ a 
3 118 114 0 1 174 155 0 0 851 860 180 
4 239 223 18G 2 242 248 0 1 676 687 0 
5 90 6e; 180 3 141 132 0 2 716 734 0 

.' 



H I FO I /FC I PHI" H IFOI IFCI PHI H IFOI I Fe I PH I 

3 120 115 0 -3 186 186 0 -2 325 318 0 
4 77 32 18J ~2 128 130 0 -1 164 162 0 
5 148 155 0 -1 139 142 180 0 85 14 180 

0 189 198 0 1 145 132 0 
** K= 4 l= 3 ** 1 99 110 , 0 2 350 340 0 

2 74 81 180 
-5 246 251 0 ** K= 14 l= 3 ** 
-4 176 167 180 ** K= 9 l= 3 ** 
-3 737 728 180 -1 170 168 a 
-2 337 317 C. -4 99 94 0 
-1 538 547 0 -3 171 157 a ** K= 0 l= 4 ** 

D 324 321 180 -2 485 490 a 
1 861 877 18i} -1 409 404 0 -6 . 305 306 C 
2 229 225 0 a 125 126 180 -5 3.j5 304 \J 
4 132 13<; 180 1 177 174 a -3 321 303 180 
5 118 98 180 2 409 405 0 -2 1234 1150 0 

3 244 251 0 -1 1042 1000 0 
** K= 5 l= 3 ** 0 897 896 180 

** K= 10 l~ 3 ** 1 470 466 0 
-5 144 131 0 2 987 1004 0 
-4 651 656 Q -3 386 336 180 3 250 251 0 
-3 345 355 0' -2 217 208, 0 5 100 71 D. 
-2 448 451 180 -1 346 344 0 
-1 417 414 0 0 195 188 180 ** K= 1 L= 4 ** 

0 1209 1224 0 1 368 363 180 
1 208 20'1 0 2 122 135 a -6 138 117 180 
2 220 223 180 3 247 245 o ' -5 . 172 161 0 
3 246 255 . 0 4 89 105 180 -4 343 324 0 
4 275 .27«; a -3 336 320 1~ 0 
5 1,17 102 0 ** K= 11 l= 3 ** -2 407 400 180 

-1 634 611 0 
** K= 6 l= 3 ** -4 350 344 0 o 1037 1053 0 

-3 136 120 0 1 369 36~ 180 
-3 151 155 0 -2 -159 174 180 2 764 768 180 
-1 321 328 180 -1 218 224 '0 3 189 187 0 

1 365 363 0 0 633 637 0 4 155 158 0 
3 259 266 180 1 181 170 0 5 122 ·122 180 
5 117 114 0 2 135 .131 180 

3 151 142 0 . ** K= 2 L= 4 ** 
** K= 7 L= 3 ** 

** K= 12 L= :3 ** -6 161 142 0 
-5 147 159 0 -4 546 524 0 
-2 566 57'1 0 -3 187 198 a -3 784 769 0 
-1 426 425 C -2 112 116 180 -2 66 55 180 

1 521 503 0 -1 518 513 180 -1 197 182 180 
2 285 291 0 0 91 12.1 , 0 a 890 896 0 
3 192 19& 0 1 318 312 0 1 684 699 0 
4 179 176 0 2 147 141 180 2 73 68 180 

\ 3 112 116 0 
. ** K,: 8 L= 3 ** ** K= 13 L= 3 ** 4 -267 271 0 



H IFO I IF C I PHI H I FO I IF C I PH I H IFOI IFel PH I 

5 165 140 0 -1 373 385 0 2 1 t. 6 152 0 
0 550 562 0 

** K= 3 L= 4 ** 1 525 523 13J ** 1<= 13 L= 4 ** 
2 163 183 180 

-3 86 52 180 3 202 196 0 -2 176 162 18 () 
-2 41J 8 396 0 4 137 135 0 -1 153 144 0 
-1 148 127 0 0 134 124, 0 

0 248 '247 180 ** K= 8 L= 4 ** 1 122 117 180 
2 151 16e; 0 
3 114 11 e; 180 -4 448 458 0 *. K= 14 L= 4 .* 4 144 143 180 -3 532 552 0 

-2 369 360 18Q (} 315 30P. 0 
** K= 4, L= 4 ** 0 650 667 0 

1 609 619 0 *. K= 1 L= 5 ** 
-5 182 1 Be; 0 2 77 76 180 
-4 282 281 G 4 296 297 0 -6 254 235 0 
-3 ' 315 304 0 -5 82 71 0 
-2 620 607 0 *ft K= 9 L= 4 ** -3 759 721 0 
-1 392 391 Q -2 '574 559 0 

0 377 395 0 -4 219 224 180 -1 197 185 0 
1 386 387 0 -2 388 389 a 0 494 506 a 
2 219 21(, 0 -1 193 184 180 1 538 551 0 
3 221 22(, 0 0 311 311 180 2 683 681 0 
4 217 213 0 1 198 203 0 4 '152 .141 0 
5 151 144 0 2 235 236 0 5 148 149 0 

3 156 149 1'80 
** K= 5 l= 4 ** 4 127 114 180 ** K= 2 L= 5 ** 

-4 281 282 180 ** K= 10 L= 4 ** -4 357 336 180 
-3 169 175 0 -3 95 91 180 
-2 329 331 0 -4 116 124 0 -2 630 609 0 
-1 520 506 180 -3 82 56 0 -1 603 566 0 

C 394 398 180 -2 268 ' 269 a 0 766 768 180 
2 404 401 . 0 -1 519 515 0 2 484 489 0 

o· 140 134 180 4 121 116 180 
** K= 6 l= 4 ** 2 263 258 0 5 86 58 180 

3 133 122 a 
-5 227 237 0 4 108 114 0 ** K= 3 L= 5 ** 
-2 650 655 0 
-1 880 8-95 a ** K= 1 1 l= 4 ** -5 475 482 0 

1 1C9 94 0 -4 477 472 0 
2 626 624 0 -1 103 87 180 -3 225 226 180 
3 387 381 0 2 104 109 180 -2 155 168 0 

-1 1156 1149 0 
** K= 7 l= 4 ** ' ** K= 12 l= 4 ** 0 4,61 464 0 

1 462 471 180 
-5 1u5 102 0 -3 124 12Q· a 2 243 230 0 
-4 143 147 0 -2 145 158 0 3 442 441 0 
-3 243 23& 180 -1 305 320 o· 4 183 179 0 
-2 457 464 180 0 140 145 0 



H IFO! ! F CI PHI H IFOI IFel PH I H !FOI IFel PHI 

** K= I" L= 5 ** ** K= 9 L= 5 ** 5 136 99 0 

-4 281 28, 0 -4 21Q 206 0 ** K= 1 L= 6 ** 
-2 729 738 18J -3 132 135 0 
-1 70 77 18 Q -1 680 685 0 -5 272 267 180 

Q 579 595 0 0 413 409 0 -4 83 80 0 
1 91 82 0 1 116 125 18Q _':I: 582 563 0 
:z 365 376 180 3 246 237 0 -2 162 162 180 
4 247 243 0 4 191 190 0 -1 659 659 180 

0 11 G 112 0 
** K= 5 L= 5 ** ** K= 10 L= 5 ** 1 786 781 0 

2 199 197 180 
-3 817 82£ D -4 23C 229 0 3 428 439 180 
-2 485 481 a -3 92 65 0 4 86 83 0 
-1 571 565 180 -2 404 414 180 

0 196 193 0 0 263 263 0 ** 1<= 2 L= 6 ** 
1 851 870 0 2 182 168 180 
2 346 348 0 -5 225 221 0 
4 98 92 0 ** K= 11 L9 5 ** -4 264 255 18D 
5 188 172 0 -3 646 622 0 

-3 496 496 0 -2 861 840 0 
** K= 6 L= 5 ** -2 250 255 0 0 85 64 180 

-1 130 122 180 1 353 353 0 
-5 147 15~ 0 1 535 528 0 2 592 596 0 
-4 216 213 180 2 208 217 0 4 1 GO 84 . 0 
-3 82 91 180 5 116 115 0 
-2 133 138 0 ** K= 12 -L= 5 ** 
-1 186 18(, 0 ** 1(= 3 L= 6 ** 

0 308 312 180 -2 244 247 0 
1 304 298 180 a 354 358 180 -3 179 173 18G 
2 293 305 0 1 84 ·42 0 -2 301 290 180 
4 127 12(, 180 2 183 187 0 -1 555 536 0 

0 103 88 180 
** K= 7 l= s.. ** ** K= 13 L= 5 ** 1 321 327 18C 

3 92 - 81 o· 
-5 166 -181 0 -1 366 366 0 
-4 211 213 n. 0 229 - 227 0 ** K= 4 L= 6 ** 
-1 646 638 0 

0 300 318 0 ** K= 0 L= 6 ** -5 202 2G6 0 
1 133 125 0 -4 266 254 a 
2 299 30G a -5 333 332 0 -3 356 31,,6 0 
3 168 166 G -4 438 420 0 -2 _ 462 452 0 
4 197 184 C -3 160 155 0 -1 560 551 0 

-2 578 575 180 0 209 208 C 
** K= 8 L= 5 ** -1 780 750 0 1 168 176 0 

0 1028 1038 0 2 245 250 a 
-4 164 163 18') 1 116 116 180 3 11J4 10G 0 
-2 199 203 0 2 458 456 0 4 124 114 0 

0 95 114 180 3 292 284 0 5 .107 104 0 
4 214 214 0 



H I FO I lFel PH I H IFOI IFel PHI H /FOI IF C I PH I 

** K= 5 L= 6 ** ** K= 10 L= 6 ** -4 610 597 C 
-3 802. 785 0 

-5 183 196 0 -4 294 305 0 -2 237 244 180 
-3 359 35'7 180 -3 179 171 0 0 773 769 0 
-1 421 412 0 -1 246 257 0 1 501 513 0 

0 321 322 180 0 414 404 0 2 84 72 180 
1 317 325 18J 3 149 138 Q 4 215 210 0 
3 225 226 . 0 5 140 124 0 
5 93 61 180 ** K= 11 L= 6 ** 

** K= 4 L= 7 ** , 
** K= 6 L= 6 ** 0 138 133 180 

1 98 87 0 -5 118 14C 180 
-5 223 237 0 -4 141 134 180 
-4 423 426 0 ** K= 12 L= 6 ** -3 ?65 258 0 
-3 116 . 125 0 -2 344 352 0 
-2 _ 190 197 180 -1 182 178 .0 -1 377 390 180 
-1 485 486 0 0 277 292 . 0 0 422 420 180 

0 '824 837 0 1 148 . 141 0 1 370 366 0 
1 125 136 0 2 159 161 0 
3 22 a 224 0 ' ** K= 13 L= 6 ** . 3 124 127 100 
4 197 184 .0 

-1 227 225 180 ** K= 5 L= 7 ** 
** K= 7 L= 6 ** 1 103 104 0 

-5 331 338 0 
-5 258 250 180 ** K= 1 L= 7 ** -4 141 133 180 
-3 44Q 454 0 -3 91 79 180 
-2 90 85 180 -s 420 422 0 -2 789 795 . 0 
-1 487 . 485 180 -4 85 68 180 -1 625 634 0 

0 190 190 0 -3 . 86 74 0 0 222 219 180 
1 481 481 0 -2 616 614 0 1 84 95 0 
2 127 133 180 -1 642 638 0 2 510 516 0 
3 .155 155 180 0 150 134 0 3 294 294 0 

2 393 396 0 
** K= 8 L= 6 ** 3 281 281 0 ** K= 6 L= 7 ** 

5 90 69 0 
-4 116 134 180 -4 256 '265 0 
-3 421 423 0 ** K= 2 ,L= 7 .** ;"3 271 275 180 
-2 552 571 0 -2 337 34C 180 

0 86 88 180 -5 87 74 0 -1 129 .116 I) 

1 333 339 C -4 146 140 0 0 234 231 0 
2 479 485 0 -3 240 228 180 1 160 169 180 

-2 290 280 180 2 228 ' 234 180 
** K= 9 L= 6 ** -1 .704 690 a 3 175 166 0 

a 495 500 a 
-3 311 33G 180 1 363 370 180 ** K= 7 L= 7 ** 
-1 571 577 0 2 149 146 180 

0 75 5<; 180 3 139 143 0 -4 214 200 0 
1 301 295 180 -3 258 251 0 
2 86 74 0 ** K= 3' L= 7 ** -2 81 54 0 
3 128 142 a -1 116 117 0 



H / FO/ '/Fe/ PHI .H IFOI IF C I PHI H I FO I / Fe I PH I 

0 505 498 0 0 328 336 O. -3 94 99 18 a 
1 229 23G C 1 742 740 0 -2 315 324 180 
2 159 16Z a 2 256 257 0 0 271 268 0 
3 134 14Z 0 3 237 241 0 1 '97 88 180 
4 104 97 0 2 214 213 180 

** K= 1 L= 8 ** 4 99 97 0 
** K= 8 L= 7 ** 

-4 444 425 180 ** K= 6 L= 8 ** 
-3 241. 240 180 -3 161 149 180 
-1 173 157 0 -2 634 629 0 -4 142 132 0 

-1 11)5 102 0 -3 '498 507 0 
** K= 9 L= 7 ** 0 57G 560 180 -2 252 260 a 

2 441 442 a -1 249 256 180 
-4 276 264 0 4 16'4 164 180 '0 208 208 0 
-3 360 363 0 1 513 526 0 
-2 96 91 0 ** K= 2 L= 8 ** 2 175 169 0 
-1 126 131 18G 

0 554 552 0 -5 406 402 0 "** K= '7 L= 8 **. 
1 263 26G 0 -4 30.6 '297 0 

-3 244 241 130 -4 290 280 180 
** K= 10 L= 7 ** -2 462 451. a -3 1.19 126 180 

-1 724 729 0 -2 593 604 0 
-3 268 266 0 0 256 259 0 0 423 430 180 
-2 152 141 0 2 118 111 a 2 202 206 0 
-1 249 234 180 3 31.8 321 0 

0 152 143 180 .** K= 8 L= 8 ** 
1 107 119 0 ** K= 3 L= 8 ** 
2 106 .81 0 -4 188 187 a 

. -4 108 88 0 -3 151 153 180 
** K= 11 L= . 7 ** -2 299 294 180 -2 251 252 0 

-1 281 265 180 -1 454 456 0 
-2 475 466 a a 439 438 0 0 271 266 0 
-1 326 330 0 2 149 153 180 2 128 123 0 

1 ,95 86 180. 3 258 263 '0 
2 298 28S 0 ** K= 4 L= 8 ** 

** K= 9 L= 8 ** 
** K= 1,2 L= 7 ** -5 180 191 0 

-4 277 264 0 -2 354 348 180 
-2 169 181 180 -3 205 217 0 0 445 450 0 
-1 218 205 0 -2 238 236 0 2 200 20t. 180 

0 111 10C 0 -1 425 421 0 
1 . 161 156 180 0 290 294 0 ** K= 10 L= 8 ** 

1 102 90 0 
** K= 0 L= 8 ** 2 93 94 0 -3 365 362 0 

3 147 138 0 -2 277 291 0 
-5 140 14(' 180 4 93 75 a o· 225 230 0 
-4 206 fB; 0 1 256 246 0 
-3 . 634 622 0' ** K= 5 L= 8 ** 2 103 97 0 
-2 469 455 Q 

-1 332 334 180 -4 326 327 0 ** K= 12 L=· 8 ** 



H IFOI IF CI PHI H I FOI IFel PH I H IFOI IF CI PHI 

0 178 174 0 0 554 557 0 -5 289 294 0 
1 209 2C2 0 3 229 221 0 ·-3 87 96 180 

·4 115 135 0 -2 66E 681 C 
** K= 1 L= 9 ** -1 574 563 0 

** K= 6 L= 9 ** C 109 102 180 
-5 26 a 245 0 2 295 293 0 
-4 51 5 5G6 0 -3 298 297 0 3 249 24E 0 
-3 176 185 180 -2 146 150 180 
-2 85 81 0 . -1 402 402 180 ** K= 1 L= 10 ** 
-1 346 351 0 0 106 101 0 

0 471 466 0 1 217 ' 218 0 -5 153 150 0 
1 168 162- 0 3 110 91 130 -4 203 201 0 
3 268 268 0 -3 394 40C 1£0 
4 126 1'; t· v ** K= 7 L= 9 ** -2 276 277 HO 

-1 . 475 485 0 
** K= 2 L= 9 ** -4 104 91 a a 268 266 G 

-3 185 177 a 1 281 276 180-
-5 113 122 180 -2 250 255 Q 3 168 163 0 
-3 . 347 341 . 0 -1 96 ',94 a 
-1 415 418 180 0 . 156 156 0 ** . K= 2 L= 10 ** 

0 378 364 0 1 294 287 0 
1 216 215 0 2 1~5 . 142 0 -4 498 496 0 
2 172 157 180 3 121 123 a -3 334 325 0 
3 132 . 116 18G -1 159 158 0 

** K= 8 L= .9 ** 0 441 445 0 
** K= 3 L= 9 ** 1 298 296 0 

-2 132 133 180 4 144 123 0 
-4 107 11 L 180 0 143 124 U 
-3 531 532 0 ** K= 3 L= 10 ** 
-2 900 902 0 ** K= 9 L= 9 ** 

0 138 13'1 180 -3 154 151 0 
1 375 376 0 -3 229 211 0 ·-2 160 147 0 
2 327 327 0 . -2 409 419 0 -1 250 242 180 
4 84 6.180 1 318 321 0 1 244 247 0 

2 154 141 a 
**' K= 4 l= 9 ** ** K= 4 L= 10 ** 

** K= 10 L= 9 ** 
-5 270 265 0 -4 210 203 a 
-3 388 391 180 -2 164 182 0 -3 234 234 0 
-2 120 112 0 -1 157 161 a -2 168 152 0 
-1 416 417 0 0 86 39 180 -1 151 156 0 

0 121 109 180 .1 207 191 ·180 0 325 332 0 
1 417 42" 180 1 169 186 0 
3 116 1 C5 a *" K= 11 L= 9 ** 2 ·94 77, 0 

** K= 5 L= 9 ** -2 135 128 180 ** K= 5 L= 10 ** 
-1 275 272 0 

-4 516 SOC; a 0 316 319 0 -4 91 59 180 
-2 80 76 180 -3 299 313 0 
-1 542 548 ' 0 ** K= o· L= 10 ** -1 234 230 180 



H I FO I IFe! PH I H !FO! IFel PHI H IFO! ! Fe I PH I 

:I 89 92 0 -4 274 267 180 -3 118 84 0 
3 99 90 180 -3 137 143 130 

-2 325 341 0 ** K= 9 L= 1 1 ** 
** K= 6· l= 10 ** 0 329 324 180 

1 8a 90 0 -2 144 147 0 
-2 424 438 0 2 86 83 a -1 385 388 '0 
-1 346 342 0 

0 117 118 180 ** K= 3 L= 11 ** ** K= a l= 12 ** 
1 104 85 I~ 

2 277 27(, 0 -4 119 95 0 -4 389 388 0 
3 157 1SCf 0 -3 140 . 126 180 -3 90 73 0 

-2 319 320 a -2 331 330 180 
** K= 7 l= 10 ** -1 681 679 0 -1 424 435 0 

a 132 12 Q Cl a 403 406 r 
-3 272 28G 180 1 103 115 180 3 89 08 0 
-2 271 288 18D 2 143 130 0 
-1 403 406 0 3 159 154 0 ** K= 1 L= 12 ** 

0 149 141 ,a 
1 294 27<; 180 ** K= 4 l= 11 ** -4 173 167 0 

-3 322 326 0 
** K= 8 l= 10 ** -4 360 364 0 -2 216 228 180 

-3 116 111 0 -1 271 261 180 
-3 330 332 0 -2 512 522 180 0 224 213 0 

0 263 25«; 0 0 307 309 0 .1 2 t12 190 C 
1 316 314 0 2 213 '223 180 2 1 C2 100 180 

** K= 9 L= 10 ** ** K= 5 l= 11 ** ** K= 2 l= 12 ** 

-3 216 237 0 -4 196 212 0 -3 '396 415 0 
-2 136 133 0 -3 506 523 0 -2 286 293 0 
-1 300 29(, 180 -2 158 160 0 -1 135 127 0 

0 112 99 180 0 212 199 0 1 220 193 0 
1 232 . 214 a 1 307 302 0 2 193 209 0 

** K= 10 l= 10 ** ** K= 6 L=,11 ** ** K= 3 L= 12 **. 

-2 312 313 a -2 2.42 244 0 -3 130 114 180 
-1 295 29«; 0 0 284 273 180 -2 140 138 C 

1 114 117 0 2 134 125 0 -1 160 139 . 0 
Q 145 158 180 

*-t- K= 1 l= 11 ** ** K= 7 l= l' ** . 
** K= 4 l= 12 ** 

-4 222 223 0 -2 96 107 0 
-3 412 42(, 0 -1 192 200 0 -3 237 234 0 
-1 85 96 0 Q 97 97 0 -2 21::1 214 a 

0 . 217 226 0 1 124 141 '0 -1 145 148 0 
1 323 322 0 2 112 125 a a 152 157 P. 
2 147 152 0 1 218 220 0 

** K= 8 l= 11 ** 2 95 117 0 
** K= 2 L= 11 ** 
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Following our attempted empirical correlation of the 
structural and spectroscopic properties of 1-cyano­
guanidine (cnge) co-ordinated to cadmium(n),5 we have 
now undertaken a corresponding study of copper(u)­
cnge complexes. 

Both anhydrous Cu(cngehXz [X2 = Clz, Brz, (N0 3)z, 
S04] and hydrated Cu(cnge)zX2·2Hp [Xz = C1 2, 
Brz, (N03h S04], Cu(cngeHN03h4Hz.O, and 
Cu(cngehS04' 5HzO complexes were synthesIsed and 
characterised spectroscopically. The structure of the 
nitrate tetrahydrate was determined by single-crystal 
X-ray-diffraction methods. As for the other cop­
per(I1)-cnge complexes for which structural data are 
:lvailable, [Cu(cngehCI2(HzOhJ1 and [~u(cnge)­
(aebg)]S04' HzO [aebg = 1-(2-a~moethyl)­
biguanide V it contains monodentate cnge ~lg~nds. co­
ordinated to the copper atom through the mtrIle mtro­
gen atom. 

H2N(4) /N(2) 

'-.....C(2) "C(1) 

I '-.....N(1) 
H

2
N(3) 

1-cyanoguanidine numbering scheme 

Comparison of the i.r. spectra of the complexes wit~ 
that of cnge reveals that the two absorption bands attn­
buted to the antisymmetric and symmetric stretching vib­
rations of the nitrile group move to higher wavenumb~rs 
on co-ordination. Whereas va[N(I)C(I)N(2)], which 
appears as a sharp doublet, moves from 2203/2157 cm- I 
to between 2235/2180 and 2250/2200 cm -I, 
v,[N(I)C(I)N(2)J moves from 1252 cm- I into the range 
1300 to 1275 cm- I . The pertinent i.r. data are summar­
ised in Table 9. It is probable that these increases, which 
are typical of monodentate c~ordin~ted nitriles and 
which are attributed to a more effectIve a-donor than 
n-acceptor interaction, I 3 are diagnostic of this co­
ordination mode for cnge. 

Several of the hydrates are novel; the propert~es of the 
others are consistent with those reported prevIously. A 
discrepancy occurs, however, between the anhydr,:lUs 
complexes prepared in this work by thermal dehydratIOn 
of the hydrates and those synthesised by Panda et al. 10 by 
reaction of stoicheiometric quantities of cnge and the 
appropriate copper(u) salt in ethanol. A c~mparison ?f 
the properties of the two sets of compounds IS effected .m 
Table 8. We believe the discrepancy arises from the dIf­
ferent synthetic routes employed. Despite many attempts 
we were unable to prepare the anhydrous halides by 
Panda's route: depending on the molar ratios of the rellc­
tants either mono- or bis-[ 1-( amidino-O-ethyl)urea] com­
plexes of copper(lI) were invariably obtained, presum­
ably as a result of solvolysis of the nitrile group, a known 
facile reaction in the presence of copper(lI) salts. A com­
parison of the properties of these products with those of 
the anhydrous compounds prepared ~y. Pa~da is also 
included in Table 8. The remarkable slmtlanty between 
the two sets of data and the marked difference between 
the properties of the two groups of anhydrous complexes 
lead us to question the reliability of the earlier work. 

"To receive any correspondence. 
tRef. 5 i~ taken as Part 1 of this series. 

Table 8 Products of the reaction between cnge and 
copper(ll) halides in refluxing ethanol 

Product Appearance lmax/nm 

Anhydrous products obtained by thermal dehydration 
of hydrates 8 

Cu(cnge)~12 
Cu(cngeh· Br2 
Cu(cnge)2(N03)2 

Bright green 
Pale brown 
Bright green 

Anhydrous products obtained by refluxing cnge and 
copper(11} salt in ethano/b 

870 
865 
870 

Cu(cnge)~12 Pink 530 
Cu(cnge)4CI2 Blue 675 
Cu(cnge)~r2 Pink 525 
Cu(cnge)4Br2 Blue 665 
Cu(cnge)2(N03)2 Deep pink 520 

Solvolysis products obtained by refluxing cnge and 
copper(11} salt in ethano/8 

Cu(aOeu)2CI2'2H20c Pink 540 
Cu(aOeu)·CI2 Blue 670 
Cu(aOeU)~r2 Purple 525 
Cu(aOeu)Br2'2H;P Green 660 

apresent work. 
bRet. 10. 
caDeu = 1-(amidino-O-ethyl)urea [NH2·C(=NH)·NH·C­
(=NH)·OEt]. 

Crystal and Molecular Structure of 
[Cu( cnge )z(H20)2](N0 3)2' 2Hp.--:-After preli~in~ry 
cell parameters had been determtn~d f~om ~s~llIatlOn 
and Weissenberg photographs, reflectIOn mtensltles were 
measured on a Hilger and Watts four-circle diffracto­
meter. The structure was solved by heavy-atom 
methods and refined by least squares to R = 0.075 for 
705 observed structure amplitudes. 

Crystal Data,-CiH16NlOOIOCU, M = 427.8, triclinic, 
space group PI, a = 350.8(2), b = 1020.1(3), 
c = 1192.7(3) pm, a = 102.45(3), P = 101.58(3), 
'I = 101.60(3)"; U = 394.67 X 106 pm3, Dm = 1.82 g 
cm-3 D = 1.80 g cm- 3 for Z = 1, F(OOO) = 219, 

'C -1 
I-/(Mo-K.) = 15.18 cm '. . . 

The structure is shown m FIgure l(b). It compnses a 
series of planes parallel to (120) which contain 
[Cu( cnge h(H20)z] + cationic fragments and the nitrate 
anions, both of which are effectively planar, together 
with the free water molecules. Within the planes, the 
molecular units are held together by both electrostatic 
and hydrogen-bonding interactions. The planes are 
linked by Cu-O bridging contacts supported by weak 
hydrogen bonding between the free water molecule and 
a nitrate anion. 

The Cu z+ ion lies in a tetragonally elongated cen­
trosymmetric octahedral co-ordination sphere typical of 
Jahn-Teller distorted d 9 systems. The equatorial posi­
tions of the co-ordination s{lhere are occupied by two 
cnge nitrile nitrogen atoms, r[Cu(l)"'N(I)J = 192 pm, 
and two water oxygen atoms, r[ Cu( I y·O( I)] = 196 pm 
[Figure 1 (b)]; the axial positions are occupied by two 
somewhat more remote water oxygen atoms, 
r[Cu(l)'''O(l)] = 260 pm, located in the two adjacent 
planes. 
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Table 6 Molecular geometries of cnge in the free molecule and in a number of copper(II)-cnge complexes 

cngea [Cu(cnge);1(H~)2](N03)2'2H~ [ Cu(cnge)2CI~H~)2]b [ Cu(cnge)(aebg)]S04'H~c 

(a) Bond distances (pm) 
C(l)-N(l) 115 116(2) 116(1) 117(1 ) 
C(1)-N(2) 129 129(2) 129(1) 128(1) 
C(2)-N(2) 133 133(2) 133(1) 136(1) 
C(2)-N(3) 133 134(2) 134(1) 133(1) 
C(2)-N(4) 133 131(2) 132(1) 133(1) 

(b) Bond angles n 
N(1)-C(1)-N(2) 175 173.0(1.1) 170.6(9) 172.6(6) 
C( 1)-N(2)-C(2) 119 122.8(1.0) 123.1(7) 118.6(6) 
N(2) -C(2) -N(3) 123 123.3(1.1) 123.8(4) 124.4(5) 
N(2) -C(2)-N(4) 117 117.7(1.1) 117.4(7) 116.6(5) 
N(3)-C(2)-N(4) 120 118.9(1.1) 118.8(7) 118.9(6) 

aN. V. Rannov. R. P. Ozerov. I. D. Datt. and A. N. Kshnyakina, Sov. Phys. Crysta/logr., 1966. 11. 177. bRet. 1. cRef.3. 

Table 9 I.r. data/cm- 1 for the N(1)C(1)N(2) stretching vibrations of the carbon-nitrogen skeleton of cnge in the free 
molecule and in a number of copper(II)-cnge complexes8 

Species v.,[N(1)C(1)N(2)] vs[N(l)C(l )N(2)] Species val:N(1)C(1)N(2)] vs[ N( 1 )C(1 )N(2) 1 

cnge 2203/2157 1252 cnge 2203/2157 1252 

Cu(cnge)2CI2 2240/2180 1280 Cu(cnge)~12'2H20 2250/2200 1300 

Cu(cnge)2Br2 2240/2200 1280 Cu(cnge)~r2'2H~ 2240/2200 1275 

Cu(cnge)2(N03)2 2225/2185 1295 Cu(cnge)2(N03)2'2H~ 2240/2200 1275 

Cu(cnge)~04 2235/2180 1280 Cu(cnge)~04·2H~ 2240/2200 1280 
Cu(cnge)iN03)2·4H~ 2240/2200 1295 
Cu(cnge);!S04'5H~ 2250/2210 1300 

8The assignment is based on that of Jones and Orville-Thomas 12 for the unco-ordinated ligand; Va = antisymmetric A' 
stretch. Vs = symmetric A' stretch. 

~/,O--- . 
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, ---c/) 
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H 

Figure 1 (b) View of the structure of [Cu(cnge)2(H~)21-
(N0312'2H~ perpendicular to the (120) plane 

The molecular geometry of the cnge molecule. which is 
effectively planar (the maximum deviation of the skeletal 
atoms from the best plant> heing (, pm), is almost identi­
cal to that in [Cu(cnge)"CI"(HP)2]; I it differs some­
what. however. from that in [Cu(cnge)(aebg)]SO~· H,O. 3 
Bond distances and angles for cnge in these complexes 
and in the free molecule are compared in Table 6. The 
differing geometries are tentatively attributed to the exis­
tence of a very weak Cu(l)- N(2) interaction. 
r[Cu(I)"'N(2)] = 314 pm. in the sulphate complex. 

We thank the S.E.R.C. for a maintenance grant (to 
C. H. M. M.). 

References: 13 

Figure l(a): View of the structure of [Cu(cnge12(H20)i1 
(N03)2 . 2HzO perpendicular to (001) 

Figure 2: T.g.a. curves for hydrated copper(II)-cnge complexes 

Table I: Final positional parameters . 

Table 2: Thermal parameters 

Table 3: Intermolecular contacts of less than 330 pm in 
[Cu(cnge)z(HzO)z](NO,h2H20; hydrogen bond and elec­
trostatic interactions 

Table 4: Bond distances and bond angles 
[Cu(cnge)z(HzO)2](NO,h 2H 20 

Table 5: Planarities of the cnge molecule and of the NO:i anion 
in [Cu(cnge)z(HzOh](N03h'2HzO 

Table 7: Thermal behaviour of hydrated copper(II)-cnge com­
plexes; isothermal experiments 

Appendix: Observed and calculated structure factors for 
[ Cu(cnge)z(HzOh](NO,)2'2HzO 

Paper: E/137/85 Received: 21st June 1985 
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Perchlorate 
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Nottingham NG7 2RD, U. K. 

We report the crystal and molecular structures of 
the 1: 1 ethanol adduct of l-carbamoylguanidine 
(c1ge' EtOH) and of l-carbamoylguanidinium perchlo­
rate ([ c1geH] +CI04), together with spectroscopic data 
for l-carbamoylguanidine (c\ge), its ethanol adduct, and 
various l-carbamoylguanidinium salts ([ clgeH) +X -) .. 

l-Carbamoylguanidine exhibits amphoteric properties 
readily forming both cationic and anionic derivatives by 
reaction with acids and bases respectively. All three 
species can form complexes with diverse m~tal cations. 
The literature on these resultant complexes IS extremely 
confusing owing to the diversity of nomenclature used 
for I-carbamoylguanidine and its two derivatives, re­
sulting, presumably, from the plethora of molecular 
structures proposed for the three species; three tauto­
meric forms can be envisaged for the neutral molecule, 
eight for the cation and seven for the anion. . . 

Our present understanding of the co-ordmatlOn 
chemistry of these species is somewhat limited an.d 
uncertain since it is generally inferred from spectrosc~Plc 
(i.T., Raman, u.v.-visible), magnetic, and chemical 
analytical data. 45.s There is a complete absence of struc­
tural data for both the uncomplexed species and the 
complexes in which they occur. The present paper which 
reports samples of such structural data, is a prelud~ to a 
study of the co-ordination chemistry of these species. 

Structural Data. - After preliminary cell parameters 
had been determined from oscillation and Weissenberg 
photographs, reflection intensities were measured on 
a Hilger and Watts Y290 (clge' EtOH). or ~n 
Enraf-Nonius CAD4 ([ c\geH] +CIO'4) four-Clfcle dif­
fractometer using Mo-K. or Cu-K. radiation respec­
tively. Whereas the structure of the adduct was solved by 
direct methods and refined by least squares to R = 0.046 
for 715 observed structure amplitudes, that of the salt 
was solved by heavy-atom methods and refined by least 
squares to R = 0.041 for 1108 observed structure amp­
litudes. 

Crystal Data .-C4H 12N40 2, M = 148.2, orthorhom­
bic, space group P2 1212 1, a = 750.9(2), b = 889.6(3), 
c = 1156.5(3) pm, U = 772.5 X 106 pm3, Dm = 1.25, 
D = 1.27 g cm- 3 for Z = 4, F(OOO) = 320, Jl(Mo-K.) = 
1.

c
l cm -1; C2H 7N4CI05, M = 202.6, monoclinic, space 

group P2dc,a.= 802.0(3), b = 999.9(3), c = 961.1(3) 
pm, P = 105.54(3)", U = 742.6 X 106 pm 3

, Dm = 1.79, 
Dc = 1.81 g cm"] for Z = 4, F(OOO) = 416, Jl(Cu-K.) = 
47.8 cm- I 

The molecular geometries of c1ge and its proto~ated 
derivative are shown in Figures l(a) and (b) respectlvelr 
It is clear that the neutral molecule adopts the tautomenc 
form (1) (hence the nomenclature used in this p.ublica­
tion) and that protonation occurs at the central Dltr?ge.n 
atom giving the tautomeric form (4) for the ca!lODlC 
species. It is important to note that the conformation of 
both species about the C( 1)-N(2) bond is such that an 
intramolecular hydrogen bond can be formed between 
0(1) and N(4). The two molecules are effectively planar~ 

'To receive any correspondence. 

H2N.... ~N, ....... ,·nl 2 
'C~ (' 

I II 
:'-JH

2 
0 

(1 ) 

II 
H2]\;, ~:'-J~ ....... NH 2 c~ C 

I " NH2 0 

(4) 

the maximum deviation of the carbon and nitrogen 
atoms of the skeleton from the best plane being 9.8 pm 
(for clge) and 5.3 pm (for [cIgeH]+), inferring Sp2 hyb­
ridisation of all skeleton atoms and the presence of a 
delocalised n system over the entire C-N skeleton. 

Significant aspects of the geometries of c\ge and of 
[ cIgeH] + are compared with those of the analogous 
species biuret (bU)13,14 and biguanide (bg)12 and the 
mono- and di-protonated derivatives of the latter 
([bgH]+ and [bgH2]2+)15.16 in Table 7. Whereas bu 
exists as the carbamoylurea tautomer, bg adopts the 
(aminoiminomethyl)guanidine tautomeric form; proto­
nation of the latter occurs first at the imino nitrogen 
atom and then at the bridging nitrogen atom. Although 
bu, c\ge, bg, and [c\geH]+ are effectively planar, the 
dihedral angle between the normals to the two planar 
halves of the molecules not exceeding 12.5 0

, the out-of­
plane distortion is extensive for [bgH]+ and [bgH2]2+, 
with dihedral angles of ca. 40 and 48° respectively 
(Table 7). The planarity of the former species is attri­
buted to the formation of an intramolecular hydrogen 
bond between an amine donor and an oxygen or imine 
acceptor; the lack of planarity of the latter species is due 
to steric interactions between hydrogen atoms on juxta­
positioned amine groups. The electronic structures of the 
molecules, however, do not appear to be influenced by 
the dihedral angle; they are dependent solely on the 
adopted tautomeric form. Thus, whereas those species 
with a bridging C-NH-C group (bu, [c\geH]+' and 
[bgH]2+) a1\ have longer bridging than terminal C-N 
bonds, those with a bridging C=N-C group (bg, c\ge, 
and [bgH]+) exhibit near equivalence of C-N bond dis­
tances. Obviously, the out-of-plane distortion has little 
effect on the delocalised n-system which exists over the 
sp2-hybridised CN skeleton. 

Spectroscopic Data.-Infrared spectra for elge, 
c\ge' EtOH, and various [c\geH] + salts and for [2H6]­
[c\ge] and [2H 7 ]-[ c\geH J +C\ - have been measured, 
The spectra of elge and elge· EtOH are very similar; 
those of [c\geH] + are virtualIy independent of the 
associated anion. An unambiguous assignment of the 
spectra is not possible owing to extensive mixing of the 
internal co-ordinates of the planar c\ge and [c\geH]+ 
species, both of which have Cs symmetry, Those bands 
attributable primarily to v(N-H) and o(NH2) vibrations 
have been assigned, however, by comparison of the 
spectra of the protonated and deuterated samples. 

Fo1\owing earlier assignments of the spectra of cnge 17 

and guanidine,ls the majority of the bands associated 
with the A' stretching vibrations of the C-N-O skele­
tons are expected to occur in the range 1800-1250 cm -I. 
Although comparison of the spectra of cnge and c\ge in 
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Table 7 Significant features of the molecular geometries of bu, clge, bg, [clgeH)+, [bgH)" and [bgH212; 

[clgeH)+ C [bgH]+ [bgH212 ,. 

bUB bUb clgeC bgd bge C104- CI- I coi- e SOl-e S042 -

Dihedral angle/ og 5.6 6.3 7.5 12.5 4.4 39.5 42.1 46.6 48.4 
Intramolecular hydrogen 

distance/pm 276 272 265 264 266 
Average r[C .. ·N(bridge»)/pm 139.5 138.5 135.2 135.2 135.6 137.5 133.0 134.3 134.6 137.8 
Average r[C"'N(terminal))/pmh 134.5 132.5 134.0 136.8 135.8 132.0 133.8 133.1 132.8 130.7 

BRef. 13. bRef. 14. cPresent results. dRet. 12. eRef. 16. IRef. 15. 
QThis is the angle between the normals to the planes which best represent the two halves of the molecule. 
hThis average does not include those contacts, formally defined as double bonds, between carbon and terminal imine 
groups. 

this region does not reveal unambiguously the bands due 
to the stretching vibrations of the carbamoyl fragment of 
clge (one occurs in the range 1600-1500 cm -I, the other 
at 1425 cm- I ), the fact that for [2H6]-[clge] bands do 
not occur at wave numbers higher than 1580 cm -1 sug­
gests that the v(C-O) band is moved to lower wave­
numbers not only by mixing the other skeletal stretches 
but also by intramolecular hydrogen-bond formation. 
For [clgeH] +, however, a similar comparison reveals 
intense bands at 1735 and 1460 cm -I which are tenta­
tively assigned to these vibrations. The movement of 
these bands to higher wavenumbers on proton at ion is 
indicative of less effective mixing of the internal co­
ordinates for [clgeH] + rather than clge, a suggestion 
which is corroborated by the decrease observed in 
r[C(1)"'N(1)] and r[C(1)"'O(1)] from clge to [c1geH]+ 
(Figure 1). 

H(2) 

(a) 

H(4) 

H(1) 

(b) 

Figure 1 Molecular geometries of (a) l-carbamoyl­
guanidine and (b) its rnonoprotonated derivative: 
interatomic distances in pm; angles (in italics) in degrees 

We thank the late Professor T. J. King for assistance in 
the determination of the structure of the perchlorate and 
Miss F. Leonard for sample preparation. One of us 
(c. H. M. M.) thanks the S.E.R.C. for a maintenance 
grant. 
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We report a structural analysis of bis(l-carbamoyl­
guanidine)dinitratocopper(n) which shows that, on com­
plex formation, l-carbamoylguanidine (clge) undergoes 
proton transfer from a terminal amine group to the cen­
tral nitrogen atom. The structure of the resultant ligand 
is very similar to that of the isoelectronic species, 
[clgeH]+.s 

free clge co-ordinated clge 

H 
H2N, ...... N, ,....NH2 C c 

II II 
+NH2 0 

[clgeH) + 

The co-ordination mode of clge is thus intermediate 
between those of biguanide (bg) and biuret (bu), bg 
co-ordinating via two imine groups (1),3 clge via one 
imine and one carbonyl group (2), and bu via two car­
bonyl groups (3).4 It is significant that in none of these 
complexes does the ligand co-ordinate the transition 
metal through an amine group, a co-ordination mode gen-

(1) (2) 

(3) 

erally accepted by earlier workers in the field. 10 Since the 
ligands are planar, extensive delocalised It-systems must 
extend over the entire C-N-O skeleton of the mole­
cules, resulting in sp2 hybridisation of the amine groups. 
Consequently, these groups do not have lone pairs of 
electrons which can be directed towards a transition 
metal and hence co-ordination through amine residues is 
not possible; the only functional groups which act as 
co-ordinating centres in these ligands are imine and car­
bonyl fragments. 

-To receive any correspondence. 
tPart 1 is ref. 8. 

The observed tautomeric change in clge on c0-

ordination to copper(n) is analogous to that experienced 
by bg, a C-NH-C bridge being generated at the 
expense of a C-N=C bridge. No tautomeric change 
occurs in bu on co-ordination, both free and co-ordinated 
bu having a C-NH-C bridge. The formation of a 
C-NH-C rather than a C-N=C bridge has several 
structural ramifications, as evidenced by the structural 
features of free and co-ordinated clge, bg, and bu, col­
lated in Table 4, together with corresponding data 
for [clgeH]+. It is clear that the bridging C-N bonds 
lengthen at the expense of the terminal C-N bonds, that 
the C-N-C bond angle increases, and that the molecule 
becomes flatter. 

Crystal Structure of Bis(l,arbamoylguanidine}dini­
tratocopper(IJ). - After preliminary cell parameters had 
been determined from oscillation and Weissenberg 
photographs, reflection intensities were measured on a 
Hilger and Watts Y290 four-circle diffractometer. The 
structure was solved by heavy-atom methods and refined 
by least squares to R = 0.066 for 555 observed structure 
amplitudes. 

CrYstal Data. - C4H12NlOOSCu, M = 391.8, mono­
clinic, space group P2 1/n, a = 914.6(3), b = 665.4(3), c 
= 1118.3(3) pm, fJ = 98.56(3t, U = 672.9 X 106 pm3, 

Dm = 1.90, Dc = 1.93 g em-3 for Z = 2, F(OOO) = 398, 
Jl(Mo-K .. ) = 17.60 em-I. 

The structure consists of ribbons of coplanar 
[Cu(elgehP+ cationic fragments and nitrate anions 
linked through the anions to give two sets of planes paral­
lel to (120) and (120). The intra- and inter-ribbon con­
tacts involve both electrostatic and hydrogen-bonding 
interactions. 

In the cation, two bident.ate elge molecules chelate the 
Cu2+ ion to form a centrosymmetric square planar 
Cu02N2 chromophore of Dv. symmetry. The molecular 
geometry of this moiety is summarised in Figure 1; its 

H(ll 

Figure 1 Molecular geometry of [Cu(clge)2]2+ cationic 
fragment (bond lengths/pm, bond angles/") 
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Table 4 Significant features of the molecular geometries of free and co-ordinated clge, bg, and bu and 
of (clgeH)+ 

clgea clge bgb bgc bud bue 
Parameter (free) (co-ord) [clgeH)+a (free) (co-ord) (free) co-ord 

Dihedral angle' 7.5 1.7 4.4 12.5 6.3 
Average 
r(C···Nbridge)/pm 
Average 

135.2 137.0 137.5 135.6 137.4 138.5 137.1 

r(C"·NterminaJ)/pm9 134.0 131.5 132.0 135.8 134.9 132.5 132.1 
C-N-Cr 119.8 126.0 125.9 119.9 127.3h 128.5 126.8 

aRef.8. 
bA. A. Pinkerton and D. Schwartzenbach, J. Chem. Soc., Dalton Trans, 1978, 989. 
cRef.3. 
dB. M. Craven, Acta Crystal/ogr, Sect. B., 1973,29, 1525. 
eRef. 4. -
'This is the angle between the normals to the planes which best represent the two halves of the molecule. 
9This average does not include those contacts, formally defined as double bonds, between carbon and 
terminal imine groups. 
hAverage of two determinations. 

planarity is such that the maximum deviation of the 
constituent atoms from the best plane is 7.4 pm. A 
very weak bonding interaction exists between the 
copper atom and axially located oxygen atoms of a 
pair of centrosymmetrically related nitrate anions. 
rlCu(1)--'O(4)] = 289 pm lcf. the sum of the van der 
Waals' radii of copper (143 pm) and oxygen (152 pm)], 
O(1)-Cu(1)-O(4) = 86.1, N(4)-Cu(1)-O(4) = 
85.9°. Thus, the Cu2+ ion lies in a tetragonally elongated 
centrosymmetric octahedral co-ordination sphere typical 
of Jahn-Teller distorted d 9 systems. 

Spectroscopic Data. - I.r. spectra for protonated and 
deuterated samples of [Cu(cIgeh(N03h] were com­
pared with corresponding data, particularly in the 
1800-1300 cm- I range, for cIge, lcIgeH]CI, 
[dgeH]2CuCI4' CU[dgeh, and the analogous complexes 
Cu(dge)2X2 (X = CI, Br). The spectra exhibit suf­
ficiently marked differences to permit the differentiation 
between free and co-ordinated cIge, [c1geH] +, and 
[dge]-. Mixing of internal co-ordinates is, however, so 
extensive that absorption bands do not necessarily cor­
respond to the vibration of one particular functional 
group and hence changes therein cannot be used for 
structural elucidation. 

We thank Miss Gillian Eggleston and Miss W. 
Antoinette Groenewegen for assistance in sample 
preparation and the S.E.R.C. for a maintenance grant (to 
C. H. M. M.). 

References: 11 

Table 1: Final positional parameters 

Table 2: Thermal parameters 

Table 3: Planarities of the clge molecule, of the chelate com­
plex, and of the nitrate anion in [Cu(clgeh(N03h] 

Table 5: Intermolecular contacts of less than 330 pm in 
[Cu(c1geh(N03)z]; hydrogen bond and electrostatic inter­
actions 

Appendix: Observed and calculated structure factors 
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We report the crystal and molecular structures of the 
products of the reaction between cyanoguanidine (cnge) 
and copper(ll) chloride in refluxing ethanol. Their identi­
fication as l Cu(aOeu)CI2J2 and l Cu(aOeuh]CI 2'2H zO 
(aOeu = l-amidino-O-ethylurea) and the establishment 
of the tautomeric form (5) for the co-ordinated aOeu 
ligand has resolved uncertainty in this system. 

Previously the products had been reported both as 
anhydrous bis- or tetrakis-l-cyanoguanidine-copper(ll) 
complexes4 and as mono- or bis-(amidino-ethyl­
urea)-copper(n) complexes;5-8 whereas the former were 
thought to arise from simple complexation reactions, the 
latter were said to result from solvolysis of the nitrile 
function of cnge. 

The authors identifying the products as amidinoethyl­
urea complexes differed in their assessment of the geo­
metrical conformation of the ligand, both l-amidino-
3-ethylurea (a3eu)5." and aOeu 7.X tautomers being sug­
gested. Furthermore, the co-ordination mode of the ligand 
had not been ascertained. 

Chemical evidence suggested that the products were, 
in fact, copper(n)-aOeu complexesz.8 and, by analogy 
with the structure of co-ordinated biguanide [bg (6)] in 
[Cu(bg)z]Clz·2H 2012 it was thought likely that the aOeu 
ligand co-ordinated the Cu 2+ ion through the imine 
groups (5).11 

( 5) (6) 

Structural Data. - After preliminary cell parameters 
had been determined from oscilIation and Weissenberg 
photographs, reflection intensities were measured on a 
Hilger and Watts Y290 four-circle diffractometer using 
graphite-monochromated Mo-K. radiation. Both struc­
tures were solved by heavy-atom methods. Whereas the 
solution of [Cu(aOeu)Clz]z proceeded satisfactorily to a 
final R value of 0.047 for 790 observed structure ampli­
tudes, that of [Cu(aOeuhJCl z'2HP was disappointing 
owing to the presence of several elements of internal 
twinning which could not be resolved, a final R value of 
0.148 being obtained for 557 observed structure ampli­
tudes. Consequently, whereas detailed geometrical par­
ameters can be quoted with confidence for [Cu(aOe­
u)ClzJ2' only gross aspects of the structure can be descri­
bed for [Cu(aOeuh]CJ2·2H20. 

Crystal Data. - C4 H ION40Cl zCu, M = 264.6, mono­
clinic,spacegroupP2dc,a = 717.5(2),b = 1677.3(3),c 
= 831.2(2) pm, p = 106.99(3)°, U = 956.66 X 10" pm3, 
Dm = l.85 g cm--', Dc = 1.84 g cm- 3 for Z = 4, F(OOO) 
= 532, Jl(Mo-K.) = 28.80 em-I. 

C8H24Nx04CI1CU, M = 430.8, monoclinic, space 
group P2dc, a = 529.9(2), b = 1373.9(3), c = 
1280.6(3) pm, fJ = 89.89(3)°, U = 932.31 X 10" pm'. 
Dm = 1.55 g cm- -', Dc = 1.53 g cm- 3 for Z = 2, F(OOO) 
= 446, Jl(Mo-K.} = 15.33 cm -I. 

• To receive any correspondence. 

Whereas the mono-chelate complex solely comprises 
dimeric [Cu(aOeu)CI2h units, the bis-chelate complex 
contains cationic {lCu(aOeu)zF+'2H zO} fragments and 
chloride anions. The structures of the centrosymmetric 
chlorine-bridged l Cu(aOeu)zCJ Z]2 dimer and of the 
planar {l Cu(aOeu)2F+'2HP} fragments are shown in 
Figures 1 and 5, respectively. 

Figure 1 Molecular geometry of the l Cu(aOeu)CI212 dimer 

0000 
Cu 0 N C 

Figure 5 Molecular geometry of the lCu(aOeu)2j2+'2H20 
fragment 

In the dimer (Figure 1), the Cu 2 • ions are located 
11.8 pm above the base of a square-pyramidal co­
ordination sphere typical of five-eo-ordinate copper. The 
equatorial plane is composed of the two imine nitrogen 
atoms of the chelating bidentate aOeu ligand 
{r(Cu'''N(I)] = 193.5 pm; r[Cu"'N(4)] = 194.0 pm} 
and the chlorine atoms {r[Cu .. ·CJ(I)J = 227.9pm; 
r[ CU"'CI(2)] = 231.4 pm}; the axial position is occupied 
by a more remote chlorine atom centrosymmetrically 
related to CI(2) {r[Cu .. ·CI(2)'] = 295.7 pm}. 
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Table 4 Geometries of the aDeu ligand in lCu(aOeu)CI2h and in lCu(aDeu)2]CI2·2H:P 

Bond distances/pm Bond angles/ o 

Mono- Bis- Mono- Bis-
Bond complex complex Angle complex complex 

C(l)-N(l) 130(2) 120(5) N(1 )-C(l )-N(2) 123(1) 128(4) 
C(1)-N(2) 132(2) 138(5) N(l )-C(l )-N(3) 122(1) 123(4) 
C(1)-N(3) 137(2) 135(5) N(2)-C(1 )-N(3) 115(2) 109(4) 
C(2)-N(3) 136(2) 154(5) C(1)-N(3)-C(2) 126(1 ) 126(4) 
C(2) --N(4) 128(2) 121(5) N(3)-C(2)-N(4 ) 124(1) 121 (4) 
C(2)-O(1) 134(2) 126(5) N(3)-C(2)-O(1 ) 110(1 ) 105(3) 
C(3)-O(1) 144(2) 150(5) N(4)-C(2)-O(1) 126(1) 133(4) 
C(3)-C(4) 151(2) 153(7) C(2)-O(1 )-C(3) 117(1 ) 114(3) 

O(1)-C(3)-C(4) 107(1) 106(4) 

Table 7 Significant features of the molecular geometries of aDeu, bg, edbg, and clge co-ordinated to copper (II) 

Free molecule Co-ordinated to copper(lI) 

Average Average Average Average 
Ligand r(C .. ·Nbr)/pm r(C"·Nter)/pma Ratio r(C .. ·Nbr)/pm r(C .. ·Nter)/pm8 Ratio 

aOeu 136.5 132.0 1.035 
bgb.c 135.2 136.8 0.988 137.4 134.2 1.024 
edbgd 141.0 137.2 1.028 
clgeQ

·' 135.2 134.0 1.009 137.0 131.5 1.042 

aThis average does not include those contacts formally defined as double bonds between carbon and terminal 
imine groups. bS. R. Emst and R. W. Cagle, Acta Crystallogr., Sect. B, 1977, 33,235. cRef. 12. dN. R. Kunchur and M. 
Mathew, J. Chern. Soc., Chern. Commun., 1966,86. eM. J. Begley, P. Hubberstey, and C. H. M. Moore, J. Chem. 
Res., 1985, (S) 180; 1M) 4035.' Ref. 2. 

The co-ordination polyhedron around the Cu 2+ ion in 
the cationic fragment (Figure 5), which consists of a pla­
nar arrangement of a centrosymmetric bis(aOeu)-cop­
perCH) complex hydrogen-bonded to two water mole­
cules, can be described as either a square plane comprising 
the four imine nitrogen atoms of the two chelating aOeu 
ligands {r[Cu"'N(l)] = 203 pm;r[Cu"'N(4)] = 202 pm} 
or an axially distorted octahedron, the axial positions 
above and below the CuN4 chromophore being occupied 
by the terminal amine nitrogen atoms of two ([ Cu( aOe­
u)2F+'2H 20) fragments in adjacent ribbons 
{r[Cu"'N(2)'] = 311 pm}. Evidence for a Cu'''N(2), 
bonding interaction arises from the location and elec­
tronic structure of the ligand. 

The molecular geometries of the aOeu ligand in the 
two complexes are summarised in Table 4. Although 
very little significance can be ascribed to that in [Cu 
(aOeuh]CI2'2HP, that in [Cu(aOeu)CI2]2 is accurately 
known. The ligand is effectively planar and chelates the 
Cu2+ ion adopting the di-imine tautomeric form (5). Its 
geometry (Table 4) is consistent withsp2 hybridization of 
the skeletal atoms, excluding those of the OEt fragment, 
and the presence of a delocalized It system. 

The co-ordination geometry of aOeu is comparable 
with those of co-ordinated biguanide (bg) and ethylene­
diaminebiguanide (edbg), all three ligands forming 

Cu-NH=C(R)-NH-C(R)=NH chelate rings. The 
formation of bridging C-NH-C fragments on co­
ordination, C=N-C bridges existing in the free mole­
cules, also occurs for 1-carbamoylguanidine (clge). It 
leads to changes in the It-electron density which are mani­
fest in shorter terminal than bridging C-N bonds. 
Comparison of data for aOeu, bg, edbg, and clge co­
ordinated to copper(lI) is effected in Table 7. 

We .thank the S.E.R.C. for a maintenance grant (to 
C. H. H. M.). 
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Table I: Comparison of the products of the reaction between 
eng.: and copper(ll) chloride in re/luxing ethanol 

Table 2: Final positional parameters for l Cu(aOeu)CI212 

Table 3: Final thermal parameters for l Cu(aOeu)CI 2b 

Table 5: Intermolecular contacts of less than 330 pm; 

hydrogen-bond and electrostatic interactions for l Cut aOe­
u)CI21z 

Table 6: Planarities of the aOeu ligand and of the ligating 
atoms in [Cu(aOeu)CI212 

Table 8: Final positional parameters for [Cu(aOe-
uh]Clz'2H20 

Table 9: Final thermal parameters for [Cu(aOeuh]CI2'2H20 

Table 10: Bond distances and angles for l Cut aOe­
u)z]Cl z·2H20 

Table 11: Planarity of the {[ Cu(aOeuh]2H20} fragment and 
of the aOeu ligand in [Cu(aOeuh]Clz'2HzO 

Table 12: Intermolecular contacts of less than 330 pm; 
hydrogen-bond and electrostatic interactions for [Cu(aOe­
u)z]Clz'2H 20 

Appendices: Observed and calculated structure factors for 
[Cu(aOeu)Clzh and l Cu(aOeu)z]CI2'2HzO 

Figures 2 and 3: Projections of the structure of [Cu(aOeu)CI2h 
onto the (001) and (100) planes 

Figure 4: Projection of the structure of l Cu(aOeuh]CI 2'2H 20 
onto the (001) plane 
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