University of Nottingham

Department of Civil Engineering

PREDICTION AND REDUCTION OF TRAFFIC POLLUTION IN URBAN AREAS

by

Adam K Bostock, BSc

Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy

September, 1994

Contents

		Page
List of Figu	ires	i
List of Tab	les	ii
Acknowledg	gements	iii
Abstract		iv
Chapter 1	Introduction	1
Chapter 2	Air Pollution	
2.1	Introduction	4
2.2	The atmosphere and its pollutants	5
2.2		9
2.3		15
2.5	1	13
2.5	*	24
2.0	ounna y	24
Chapter 3	Air Pollution Studies	
3.1	Introduction	26
3.2	Air quality standards	26
3.3		29
3.4	Traffic pollution studies	32
3.5	The DRIVE programme	43
3.6	Summary	46
Chapter 4	Reduction of Emissions	
4.1	Introduction	47
4.2	Fuel and emission optimisation technologies	47
4.3	Fuel and emission optimisation strategies	60
4.4	Summary	63
Chapter 5	Modelling and Prediction	
5.1	Introduction	65
5.2	Traffic modelling	65
5.3	Emissions modelling	71
5.4	Dispersion modelling	77
5.5	Model suites	85
5.6	Summary	86

Chapter 6	Model Suite	
6.1	Introduction	88
6.2	Objectives	88
6.3	PREDICT model suite	89
6.4	Assessment of model suite	101
6.5	Summary	108
Chapter 7	Control Strategies	
7.1	Introduction	109
7.2	Optimisation of traffic signal timings	110
7.3	Pollution-sensitive traffic rerouting	112
7.4	Introduction of clean vehicles	114
7.5	Environmental area licensing M	115
7.6	QUARTET field trials	116
7.7	Summary	119
Chapter 8	Modelling Methodology	
8.1	Introduction	120
8.2	Model implementation	120
8.3	Base case	121
8.4	Environmental signal optimisation	124
8.5	Environmental area licensing	127
8.6	Data analysis	127
Chapter 9	Results	
9.1	Introduction	129
9.2	Base case	129
9.3	No optimisation scenario	130
9.4	Sensitivity to flow	133
9.5	Sensitivity to cruise speed	143
9.6	Delay to stops weighting ratio	151
9.7	Cycle times	155
9.8	Optimisation of hot links	158
9.9	Environmental area licensing	183
9.10	Discussion	184
Chapter 10	Summary	195
Chapter 11	Conclusions	
11.1	Environmentally sensitive traffic control strategies	203
11.2	Models	205
11.3	Modelling control strategies	206
11.4	Sensitivity of road traffic emissions	207

Page

		Page
11.5	Evaluation of control strategies	208
11.6	Demonstration and evaluation	213
11.7	Achievements	214
11.8	Recommendations	215
References		220
Appendix A	Network maps	247
Appendix B	pendix B TRANSYT data	
Appendix C	PREMIT emissions data	273
Appendix D	Link-node cross reference table	289
Appendix E	Traffic rerouting results	292

List of Figures

Figure		Page
2.1	Effect of air-fuel ratio on exhaust emissions of CO, HC and NOx	11
6.1	PREDICT model suite	90
6.2	Example of a PREMIT output file	100
9.1	Link emissions against average link speed	131
9.2	Network delay as a function of flow	133
9.3	Network emissions as a function of flow	134
9.4	Percentage change in emissions as a function of flow	135
9.5	CO emissions by driving mode as a function of flow	136
9.6	HC emissions by driving mode as a function of flow	138
9.7	NOx emissions by driving mode as a function of flow	139
9.8	Breakdown of emissions by driving mode as a function of flow	141
9.9	Ratios between pollutants as a function of flow	143
9.10	Base case link emissions of CO, HC and NOx	144
9.11	Network emissions as a function of speed (cruise time)	146
9.12	Percentage change in emissions as a function of speed	147
9.13	Emissions by driving mode as a function of speed (cruise time)	148
9.14	Breakdown of emissions by driving mode as a function of speed	150
9.15	Ratio of pollutants as a function of speed	150
9.16	Emissions as a function of delay/stop ratio	152
9.17	Percentage change in emissions and delay as a function of	153
2.17	delay/stop weighting ratio	155
9.18	Emissions by driving mode as a function of delay/stop ratio	154
9.19	Emissions as a function of cycle time	156
9.20	Percentage change in emissions and delay as a function of cycle time	157
9.21	Emissions by driving mode as a function of cycle time	159
9.22	Hot link (195 196) emissions of CO by driving mode	165
9.23	Hot link (195 196) emissions of NOx by driving mode	166
9.24	Hot link (213 218) emissions of CO by driving mode	167
9.25	Hot link (213 218) emissions of NOx by driving mode	168
9.26	Impact of 500 percent delay weighting on link degree of saturation	169
9.20	and delay as a function of flow	109
9.27	•	170
9.27	Impact of 500 percent delay weighting on link stops and queue length	170
9.20	Impact of 500 percent delay weighting on link emissions as a function of flow	1/1
9.29	Impact of 500 percent delay weighting on link emissions of NOx	172
	by driving mode as a function of flow	
9.30	Link emissions of CO by driving mode for hot CO links	181
9.31	Link emissions of HC by driving mode for hot CO links	182
	Link emissions of NOx by driving mode for hot NOx links	183
9.33	Breakdown of emissions by driving mode for the environmental area	185
	licensing strategy	105

List of Tables

<u>Table</u>		Page
3.1	ECE Regulation 15-04	28
3.2	Comparison between before, after and new scenarios	41
6.1	Input parameters used by PREMIT	98
9.1	Comparison of no optimisation and base case scenarios	132
9.2	Regression analysis of CO/HC and CO/NOx	145
9.3	Highest and lowest emissions, and corresponding cycle times	158
9.4	Network summary of hot CO link strategy with delay weighting of 9999 percent	160
9.5	Network summary of hot CO link strategy with delay weighting of 500 percent	162
9.6	Impact of 500 percent delay weighting on hot CO links	163
9.7	Network summary of hot CO link strategy with delay and stop weighting of 500 percent	173
9.8	Impact of 500 percent delay and stop weighting on hot CO links	174
9.9	Network summary of hot NOx link strategy with stop weighting of 9999 percent	175
9.10	Network summary of hot NOx link strategy with stop weighting of 500 percent	176
9.11	Network summary of hot NOx link strategy with stop weighting of -500 percent	177
9.12	Network summary of hot NOx link strategy with stop weighting of -200 percent	177
9.13	Impact of -200 percent stop weighting on hot NOx links	179
9.14	Impact of catalyst on network emissions	184

Acknowledgements

I am grateful to those people whose advice and support have contributed to this research. I would like to thank the members of Castle Rock Consultants for their advice and moral support, and Peter Davies who gave me the opportunity to embark on this research and acted as one of my supervisors. Thanks are also due to Margaret Bell, my academic supervisor, whose technical advice and precious time were given willingly.

Members of the Athens PREDICT and QUARTET project consortiums should also be acknowledged for their contribution to the development of pollution control strategies. Particular thanks are due to Dr Antony Stathopoulos, of the National Technical University of Athens, for sharing his expertise in this area, providing input data specific to the Athens study network, and for his role in running part of the PREDICT model suite.

Special thanks are also due to those people who gave me moral support and encouragement, especially at times when I doubted that I would ever complete this research. I would like to thank my mother for her unfailing support, and my father for inspiring me, at an early age, to be inquisitive. As this research aims to add to existing knowledge, it seems appropriate to quote one of his favourite phrases; "all knowledge is good knowledge".

Abstract

This thesis is the result of five years research into road traffic emissions of air pollutants. It includes a review of traffic pollution studies and models, and a description of the PREDICT model suite and PREMIT emissions model. These models were used to evaluate environmentally sensitive traffic control strategies, some of which were based on the use of Advanced Transport Telematics (ATT).

This research has improved our understanding of traffic emissions. It studied emissions of the following pollutants: carbon monoxide (CO), hydrocarbons (HC) and oxides of nitrogen (NOx). PREMIT modelled emissions from each driving mode (cruise, acceleration, deceleration and idling) and, consequently, predicted relatively complex emission characteristics for some scenarios.

Results suggest that emission models should represent emissions by driving mode, instead of using urban driving cycles or average speeds. Emissions of NOx were more complex than those of CO and HC. The change in NOx, caused by a particular strategy, could be similar or opposite to changes in CO and HC. Similarly, for some scenarios, a reduction in stops and delay did not reduce emissions of NOx. It was also noted that the magnitude of changes in emissions of NOx were usually much less than the corresponding changes in CO and HC.

In general, the traffic control strategies based on the adjustment of signal timings were not effective in reducing total network emissions. However, high emissions of pollutants on particular links could, potentially, be reduced by changing signal timings. For many links, mutually exclusive strategies existed for reducing emissions of CO and HC, and emissions of NOx. Hence, a decision maker may have to choose which pollutants are to be reduced, and which can be allowed to increase.

The environmental area licensing strategy gave relatively large reductions in emissions of all pollutants. This strategy was superior to the traffic signal timing strategies because it had no detrimental impact on the efficiency of the traffic network and gave simultaneous reductions in emissions of CO, HC and NOx.

Chapter 1 INTRODUCTION

This thesis describes research undertaken between 1989 and 1994 into road traffic emissions and environmentally sensitive traffic control strategies. Part of this research was conducted by the author in the PREDICT project of the DRIVE I research programme funded by the European Union (EU). The author then built on his work in PREDICT to pursue a more detailed analysis of road traffic emissions and the effectiveness of environmentally sensitive traffic control strategies. The work of PREDICT is now being demonstrated in the DRIVE II QUARTET project, in which the author continues to play a major role.

Road traffic emissions of air pollutants are, in part, responsible for high levels of air pollution within urban areas throughout the world. These pollutant concentrations can have a significant impact on health and the environment. This has been recognised in many countries throughout the world and has led to the introduction and review of air pollution guidelines, such as those set by the World Health Organisation, and air pollution standards, such as those specified by the directives of the European Union. In some cases, these air pollution standards are exceeded.

The author's work aims to assist in the development of innovative short and medium term solutions to this problem, whilst maintaining a relatively high degree of mobility to support late twentieth century lifestyles. The theoretical and modelling aspects are described within this thesis. A field trial demonstration is currently being conducted in Athens to evaluate the implementation aspects of this work.

This thesis focuses, primarily, on the understanding of road traffic emissions and the implications for environmentally sensitive traffic control strategies. The approach is biased towards academic research into emissions, as opposed to the implementation aspects of traffic control strategies.

The author formulated and designed four environmentally sensitive traffic control

strategies. These strategies were:

- * environmental optimisation of traffic signal timings;
- * environmentally sensitive traffic rerouting;
- * the introduction of 'clean' vehicles; and
- * environmental area licensing.

These strategies are described in this thesis along with an overview of the relevant aspects of the urban air pollution problem caused by road traffic emissions. The structure of this thesis is described in the following paragraphs.

An introduction to air pollution is provided in Chapter 2. This describes atmospheric pollution, its sources, the mechanisms responsible for the dispersion of emissions, and the effects of the resulting pollutant concentrations. A description of air pollution in general is given, along with a specific focus on pollutants emitted by road traffic. A distinction is also drawn between primary and secondary pollutants.

Chapter 3 reviews air pollution studies. This aims to outline some of the issues addressed and techniques used. The chapter describes air quality standards, the significance of traffic emissions, and studies investigating emission characteristics and emission control strategies.

One approach to improving air quality is to develop strategies and technologies which aim to reduce vehicle emissions at source. Chapter 4 describes the concepts of fuel and emission reduction technologies and strategies. It outlines a range of potential options for reducing emissions, including some traditional strategies. Some of the technologies described in this chapter form the basis for two of the strategies described in this thesis: the introduction of clean vehicles; and environmental area licensing.

Chapter 5 contains a review of modelling and prediction techniques for air pollution caused by road traffic emissions. This chapter addresses the different modelling

stages that are typically used: traffic; emissions; and dispersion modelling.

To assess the strategies designed by the author, a model suite was selected and the PREMIT emissions model developed. The model suite consisted of four models and a graphics package. This suite is described in Chapter 6, along with its objectives and an assessment of the model suite.

The control strategies designed by the author are based around the adoption of Advanced Transport Telematics (ATT) principles which aim to protect the environment whilst maintaining traffic efficiency and safety. These strategies are described in Chapter 7. The four strategies are described followed by a description of the QUARTET field trial which is demonstrating and evaluating two of these strategies in a real world environment.

The author's work included a detailed analysis of road traffic emissions. Several options within Strategy One (the environmental optimisation of traffic signal timings) of PREDICT have been investigated. This thesis focuses primarily on that work in the methodology and results chapters (8 and 9 respectively). These chapters also describe modelling of the environmental area licensing strategy.

The methodology describes the actual implementation aspects of the model, establishing a base case scenario, the options investigated as part of Strategy One, and the modelling of the environmental area licensing strategy. The results chapter contains the results of sensitivity tests and the two strategies, followed by a discussion of the findings.

Chapter 10 summarises the findings of the author's work, and Chapter 11 provides conclusions and recommendations.

.

Chapter 2 AIR POLLUTION

2.1 INTRODUCTION

This chapter provides an introduction to air pollution and a review of mechanisms responsible for the generation of traffic emissions, pollutant dispersion, and the effects of air pollution on health and the environment.

But what do we mean by pollution? The Concise Oxford Dictionary describes pollute as: contaminate or defile (the environment); make foul or filthy; destroy the purity or sanctity of. The author suggests that the term pollution may also be associated with the following processes: releasing man made substances into the environment which are not encountered naturally; and releasing substances into the environment at such a rate and/or concentration that the environment, or parts of the environment, are significantly affected as a direct or indirect result of this. It appears that the degree to which emissions impact the environment, may influence whether a process is regarded as polluting. For example, carbon dioxide emissions, at the turn of the century, were not perceived as a significant problem, even though it was suspected that they could eventually lead to climatic change (Arrhenius, 1908). Whereas now, people are assessing ways in which its emissions can be reduced (Mot et al, 1993).

Potentially, air pollution can have a significant impact on health and the environment (WHO, 1987). Pollutant effects can be experienced globally (Ausubel, 1983; Watson et al, 1990; Firor and Jacobsen, 1993), across nations and regions (Derwent and Jenkin, 1991; Borrel et al, 1991; Jayanty and Gay, 1993), or locally (Brown, 1994). There are many sources of air pollution which have wide ranging effects on the environment, buildings, vegetation, animals and human health (Heagle, 1988; Lippmann, 1989 and 1991; Miller et al 1989; Lefohn and Foley, 1992; WHO, 1979, 1984 and 1987).

To set air pollution in its environmental context, this chapter begins by describing the atmosphere, along with the terminology and mechanisms of atmospheric pollution, covering the topics of emission, dispersion and pollutant concentration.

The sources of air pollution, particularly road traffic emissions are described. This includes the primary pollutants carbon monoxide, carbon dioxide, hydrocarbons, oxides of nitrogen, sulphur dioxide, lead, particulates and smoke, and secondary photochemical pollutants.

Pollutant emissions, whether arising from a single point source or several sources, are dispersed in the atmosphere. The emission rate and the dispersion process account for the observed pollutant concentration at a particular point in time and space. A section of this chapter outlines the mechanisms responsible for the dispersion of traffic emissions.

The effects of air pollution on the environment, vegetation and health are wide ranging and, potentially, significant (WHO, 1979, 1984 and 1987). Hence the need to safe guard the environment and health, by ensuring acceptable levels of air quality are maintained. As a result of studies investigating the impact of air pollutants, air quality guidelines are established (WHO, 1987).

2.2 THE ATMOSPHERE AND ITS POLLUTANTS

This section describes the atmosphere, and the terminology used within the topic of air pollution. This terminology is typically used to describe all types of air pollution, not just those resulting from traffic emissions.

The Atmosphere

The Earth's atmosphere has an intricate physical structure and chemical composition. Its structure and composition regulate ambient temperature and provide a major contribution to meteorological and climatic conditions. Water vapour and carbon dioxide provide the so called greenhouse roof of the Earth (Firor and Jacobsen, 1993). They do so by absorbing radiation reflected from the Earth's surface. Water vapour absorbs six times as much radiation as the other gases, including carbon dioxide. The effect of this is to regulate global temperatures (Charlson and Wigley, 1994).

Nitrogen and oxygen account for most of the chemical content of the atmosphere, making up 78 and 21 percent, of dry air, respectively (Chanlett, 1973). In addition to water vapour, with an average global concentration of three percent, air in some localities also contains a variety of gaseous and particulate pollutants.

Troposphere

The lowest level of the atmosphere, the troposphere, consists of a relatively uniform gaseous mixture. The thickness of the troposphere varies from about 7 km at the poles to 28 km at the equator and in this layer the temperature falls with increasing height (Chanlett, 1973). At sea level the average global temperature is about 17 degrees celsius (Charlson and Wigley, 1994).

Meteorological factors, particularly atmospheric stability, have a significant impact on the dispersal of air pollutants (Bond, Straub and Prober, 1972). When the temperature increases with height it is called a temperature inversion. This can happen at night, especially in the absence of clouds, when the ground cools rapidly and lowers the temperature of the air immediately above it. Inversions can also occur at higher altitudes above the ground. Such inversions present a barrier to the upward movement of air. In conjunction with the local topography, as in the Los Angeles basin, an upper air thermal inversion can result in a stagnated air mass. Thermal inversions can form in valleys at night as the cooler and denser air slides down into the valley and leaves the warmer air on top. Stable equilibrium is the term used to describe the atmosphere when there is no vertical movement of air, as opposed to instability which has vertical air currents.

Ozonosphere

The area between 10 km to 50 km is known as the Ozonosphere (Chanlett, 1973). At this altitude ozone absorbs ultra-violet radiation. At 25 to 30 km the concentration of ozone may reach 10 parts per million (ppm), much higher than the average of 0.04 ppm in the troposphere (Chanlett, 1973). The concentration of ozone in the ozonosphere can be reduced by man-made pollutants in the atmosphere, particularly over the poles of the Earth (Zimmer, 1993). Below these areas higher levels of harmful ultra-violet radiation falls and may result in increased incidents of skin cancer and damage to vegetation (Graedel and Crutzen, 1993).

However, this ozone problem is not the major ozone problem associated with emissions from road transport vehicles. Such emissions are responsible for an increase in the level of ozone at, or near, ground level (Borrel et al, 1991; National Academy of Sciences, 1991; Finlayson-Pitts and Pitts Jr., 1993).

Air Pollution

Air pollution is caused by many emission sources and the emitted pollutants occupy several physical forms. The pollutant is dispersed by meteorological parameters and, in conjunction with the emission rate, determines the resultant concentrations. These phenomena are described below.

Emissions

Emissions may be in the form of a solid, liquid or gas. Depending on the form of the pollutant it may be described as particulate, aerosol, fumes, vapour or gas. It is convenient to describe the emission rate as a mass per unit time, for example grammes per minute (g/min).

Particulates are small solid or liquid particles, typically ranging in size from less than one micrometre to hundreds of micrometres. The larger the particulates the shorter the time they spend suspended in the air. Such colloidal suspensions are known as aerosols (e.g. fog, smoke, etc.) - solutions in the air.

A vapour is the gaseous phase of a material that usually exists in the form of a solid or liquid at normal temperatures and pressures. The vapour may be generated by evaporation from the surface of a liquid or by boiling of the liquid. Some materials undergo sublimation and change directly from the solid phase to the vapour phase. Fumes are vapours which render themselves visible by condensing or reacting in the air to form a mist like suspension or aerosol.

A gas, like the nitrogen and oxygen of the air itself, is one in which the molecules' inter-molecular forces of attraction are unable to hold them together at a given temperature and pressure. A gas will fully occupy a container of any shape.

Dispersion

As pollutants are emitted into the atmosphere they are dispersed and, generally, become more diluted with increasing distance from the source. The profile of a pollutant's concentration will vary with distance from the emission source and direction relative to that of the wind. The main mechanisms responsible for the dispersion of aerosols and gases are the physical movements of air such as: winds, the flow of air around vehicles, warm rising currents and turbulence. The dispersion process is heavily dependent on the meteorology and topography of the surrounding area. Winds and rising air currents can carry pollutants over hundreds or thousands of miles (Nriagu, 1978; Derwent and Jenkin, 1991; Aneja and Kim, 1993).

Pollutant Concentrations

The pollutant concentration represents the quantity of material in a given volume of air. Pollutant concentrations are expressed in different ways depending on the type or form of pollutant.

Gaseous pollutants have physical attributes similar to all other gases of the

atmosphere: one mole¹ of gas occupies 22.4 litres at standard temperature (zero degrees celsius) and pressure (760 mm of mercury). So for example, one mole of oxygen would occupy the same volume as one mole of nitrogen under identical conditions even though they each represent different masses. Hence, given the mass of a gaseous pollutant per unit volume, the ratio of the pollutant volume to the volume of air containing it can be calculated and vice-a-versa.

Pollutants of the gaseous form may have their concentration expressed in one of three ways:

- * mass per unit volume the mass of pollutant contained in a unit volume of air, the units usually being micro grammes per metre cubed ($\mu g/m^3$) or milli grammes per metre cubed (mg/m^3); or
- volume per volume a ratio of the volume of pollutant to the volume of air containing that pollutant, the units usually being parts per million (ppm or ppmv) or parts per billion (ppb); or
- * mass per mass a ratio of the mass of pollutant to the mass of air containing that pollutant, the units being in parts per million or parts per billion by weight though this form is rarely used.

Particulates do not share the same characteristics as gases (i.e. the relationship between mass and volume occupied) and their concentrations are typically expressed as a mass per unit volume ($\mu g/m^3$).

2.3 SOURCES OF AIR POLLUTION

Man-made air pollutants cover a vast range of substances and may be in particulate or gaseous form. Air pollution may be caused by combustion, evaporation, abrasive actions on solid materials, and other mechanisms which generate particulates.

¹ One mole of a substance represents the molecular weight (mass) of that substance expressed in grammes, e.g. one mole of hydrogen (molecular weight 2) weighs 2 grammes.

Combustion Products

The combustion of fossil fuels (e.g. coal, petrol, diesel and natural gas) provide a major contribution to atmospheric pollution (Bond, Straub and Prober, 1972; Chanlett, 1973). The combustion of fossil fuels when carried out to completion usually results in the production of water vapour and carbon dioxide (and ash in the case of coal). Since several fossil fuels also have a sulphur content the combustion products often contain oxides of sulphur. The combustion process is rarely 100 percent complete and most of the products of incomplete combustion are regarded as pollutants. Until a few decades ago, only the oxides of sulphur and nitrogen, and products of incomplete combustion were thought to warrant concern. However, attention is now also being focused on the emissions of carbon dioxide (Mot et al 1993).

Traffic Emissions

Road traffic represents a major component of twentieth century transport in many countries throughout the world and accounts for many billions of vehicle miles travelled every year. In the US alone, 3500 billion passenger-miles are travelled in one year, a large proportion of which is by road (US Department of Transportation, 1990). Almost all of these road vehicles use an internal combustion engine as their power source and the resulting traffic emissions represent a significant threat to air quality (Watson et al, 1990).

Several pollutants are emitted from road traffic (Eggleston et al 1993). Exhaust emissions from petrol and diesel engines include: carbon monoxide (CO); hydrocarbons (HC); nitrogen oxides (NOx); sulphur dioxide (SO₂); lead (Pb); particulate and smoke emissions; and carbon dioxide (CO₂).

The mechanisms responsible for the production of these pollutants are discussed in subsequent paragraphs. These are called primary pollutants. In sunlight these react to produce secondary pollutants (Derwent and Jenkin, 1991; Finlayson-Pitts and Pitts, 1993). These are the compounds found in smog (Lippmann, 1989; Davidson, 1993).

Because the reactions are stimulated by sunlight, the result is often known as photochemical smog. Two of the major pollutants in photochemical smog are ozone (O_3) and peroxyacetyl nitrate (PAN).

Primary pollutants

Figure 2.1 (Hodges, 1973) shows how the emissions of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx) vary with the air-fuel ratio used in the combustion engine. Conventional petrol engine cars use an air to fuel ratio of about 15 to 1. It can be seen that by increasing the proportion of air in the mixture the emissions of CO and HC fall, while NOx initially rises and then falls.

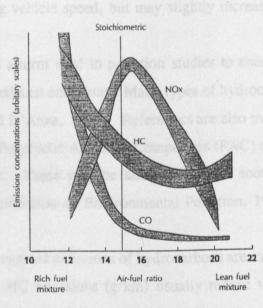


Figure 2.1 Effect of air-fuel ratio on exhaust emissions of CO, HC and NOx.

It should also be noted that with increasing vehicle speed CO and HC emissions tend to fall while NOx emissions rise (Potter and Savage, 1983). At low speeds, as encountered in congested conditions, high emissions of CO and HC (measured in grams per kilometre) are typical. These pollutants are described in more detail below.

Carbon Monoxide (CO) is produced as a result of incomplete combustion within the cylinders of a petrol or diesel engine. During the combustion process fuel burns to form firstly carbon monoxide and water vapour. When complete combustion takes

place the carbon monoxide is further oxidised to form carbon dioxide.

When there is insufficient air, and hence oxygen, in the air-fuel mixture it is not possible to oxidise all the carbon monoxide to carbon dioxide. Hence a low air-fuel ratio can be expected to result in higher emissions of carbon monoxide. An engine running on a higher air-fuel ratio can be expected to have lower CO emissions, provided the mixture is not too weak to adequately support combustion.

An uneven burn of the fuel in the combustion chamber can also result in an increase of CO and hydrocarbons. The highest levels of CO emissions can occur when a vehicle is cold and choked or when the engine is idling. CO emissions (g/km) usually reduce with increasing vehicle speed, but may slightly increase at very high speeds.

Hydrocarbon (HC) is a term used in pollution studies to encompass all the organic compounds found in exhaust emissions. Many types of hydrocarbons may be emitted (Barbella, Ciajolo and D'Anna, 1989). References are also made to a specific group of hydrocarbons: the Polycyclic Aromatic Compounds (PAC) or Polycyclic Aromatic Hydrocarbons (PAH). These may be adsorbed on the soot particles from diesel emissions (Royal Commission on Environmental Pollution, 1991).

As in the case of CO, exhaust emissions of hydrocarbons are caused by the incomplete combustion of fuel. HC emissions (g/km) usually reduce with increasing vehicle speed, but may slightly increase at very high speeds.

A significant quantity of hydrocarbons, or volatile organic compounds (VOC), can arise from evaporation of the fuel from the fuel tank, carburettor and engine crankcase (Stump, Knapp and Ray, 1990). This is primarily a problem with some of the older vehicles. In the US this problem was recognised sometime ago and resulted in devices which trap the fuel vapours and route them to the engine to be burnt. Preventative measures are also available on some of the vehicles in the European fleet.

Williams et al (1989) looked at diesel emissions and identified over 50 different PAHs in the aromatic fraction of diesel fuel. This research showed that lubricating oil can contribute up to 90 percent of the solvent organic fraction of diesel particulates. The oil accumulates unburned fuel and PAH. Unburned fuel can then contribute to particulate composition directly and via the lubricating oil. As the oil ages, the latter route becomes dominant and PAH emissions increase.

Nitrogen oxides (NOx) encompass nitric oxide (NO) and nitrogen dioxide (NO₂). Another oxide of nitrogen is nitrous oxide (N₂O).

Nitrous oxide (N_2O) is not generally regarded as being emitted in significant concentrations to be a health problem. However, it has been shown recently (Gould and Gribbin, 1989) from tests carried out in Sweden and France that cars equipped with catalytic converters emit higher quantities of this gas.

Nitric oxide (NO) is a colourless gas, formed almost exclusively during the combustion of fuels when high temperatures and pressures allow some of the nitrogen in the air supply to combine directly with oxygen.

Nitrogen dioxide (NO_2) is formed by the oxidation of nitric oxide. On leaving the high temperature of the flame, nitric oxide can combine with more oxygen to form the reddish-brown gas nitrogen dioxide. The ratio of the concentrations of nitric oxide to nitrogen dioxide varies according to temperature and a number of other ambient factors.

Once nitric oxide has been diluted in the atmosphere, oxidation to nitrogen dioxide at normal temperatures usually proceeds only slowly. However, in California and other places with similar climates, the reaction rate is substantially increased by bright sunlight and the presence of hydrocarbons (Finlayson-Pitts and Pitts Jr., 1993).

Sulphur dioxide (SO_2) is formed when sulphur, or compounds containing it, are burnt. Diesel engines in particular are responsible for high emissions of sulphur dioxide, as diesel fuel has a relatively high sulphur content. Traffic emissions of this pollutant are relatively low compared to some stationary emission sources (Watson et al, 1990). Nevertheless, it contributes to the problem of acid rain (National Research Council, 1983; Brimblecombe, 1993; Firor and Rhodes, 1993). The US plans to reduce its contribution by reducing the sulphur content of diesel fuel to 0.05% compared with

0.3% in the UK.

Lead (Pb) is emitted in particulate form as lead halides which slowly convert to carbonates, oxides and sulphates in the atmosphere. The emissions of lead are primarily caused by 'anti-knock' additives that are present in leaded petrol (Standen, 1967). Their purpose is to control the combustion process within the engine and to reduce wear of the valves within the cylinder. However, car manufacturers are now producing engines which can run on petrol without these additives.

Particulate and smoke emissions are those which consist of small particles of liquid or solid matter. These particles typically consist of carbon, hydrocarbons and sulphates. The diameter of such particles can be less than one micrometre. An agglomeration of particles may be hundreds of micrometres. These particulates are responsible for the reduced visibility of smoke.

Although particulates can be emitted from petrol engine exhausts, these emissions are normally associated with diesel engines (Bryzik and Smith, 1977; Linaritakis, 1983; Williams et al 1989, 1989a; Williams, Abbass, Andrews and Bartle, 1989). The Royal Commission on Environmental Pollution (1991) states that diesel vehicles are the major source of smoke in urban areas. These emissions are typically generated when the engine is under load.

There are many factors responsible for these emissions including engine design, the chemical content of the fuel, vehicle age and vehicle maintenance (Becker and Rutherford, 1979; Rutherford and Waring, 1980; Royal Commission on Environmental Pollution, 1991). Bryzik and Smith (1977) have shown the relationship between smoke opacity and air-fuel ratio for selected diesel engine speeds. This shows that, generally, higher engine speeds produce slightly higher levels of opacity, and as the air-fuel ratio is increased the opacity decreases.

Carbon Dioxide (CO_2) is a commonly occurring gas which is produced from the combustion of many organic compounds and fossil fuels. Complete combustion, for a given quantity of fuel, produces slightly higher emissions of CO_2 than does incomplete combustion. Carbon dioxide is a major product of the combustion process.

Secondary Pollutants

The secondary pollutants are so called, not because of their lesser importance, but because they are produced by reactions between the emitted primary pollutants. Secondary pollutants may form some time after the emission of primary pollutants and downwind of the emission source (Borrell et al, 1991; Derwent and Jenkin, 1991; Uthe, Livingstone, Nielsen, 1992).

Secondary pollutants are produced by the reactions between nitrogen oxides and the hydrocarbons. These reactions are stimulated by the presence of bright sunlight, and because the secondary pollutants are responsible for smog they are also referred to as photo-chemical smog. The two of the secondary pollutants are ozone (O_3) and peroxyacyl nitrate (PAN) (Williams, Grosjean and Grosjean, 1993).

2.4 DISPERSION OF TRAFFIC EMISSIONS

In conjunction with the emission rate, the dispersion process is responsible for determining the rate at which pollutants are diluted and, hence, the pollutant concentration at a given point from the emission source.

Traffic emissions are dispersed by the following mechanisms to varying degrees, depending on the distance from the source, meteorological factors and the surrounding topology. Directly adjacent to the source of air pollution, the exhaust, emissions are dispersed by: air currents flowing around the vehicle as a result of the vehicle's motion and ambient air currents (wind); turbulent air currents; and vertical air currents, including to some extent the rising warm air of the exhaust.

Wind over an emission source will tend to carry the pollutants along with the air current and form a plume in the direction of such an air current. The size and shape of the plume is dependent upon the speed, and variation in speed and direction of the wind (Pasquill, 1974). A strong wind will carry pollutants far away from their source and one varying in direction will broaden the width of the plume (Hickman et al, 1979; Hickman and Colwill, 1982; Aneja and Kim, 1993). In addition to the wind,

the emission source is often in motion and experiences a turbulent air current around the vehicle. Hence the net effect is derived from a combination of the wind and the motion of the vehicle. At high wind and/or vehicle speeds the air current flowing over the point source rapidly carries away the pollutants and represents the major dispersive mechanism. The air currents provide an effective dispersion mechanism both local to the source, over many kilometres and even across continents (Derwent and Jenkin, 1991; Uthe et al, 1992).

Tall buildings either side of a street are able to reduce the dispersive effects of wind. This phenomena is known as the canyon effect. Depending on the wind speed and direction relative to the street, vehicle emissions may disperse slowly resulting in relatively high pollutant concentrations. Consequently, during peak hours, air quality standards may be violated (Koushki, 1991).

Studies and modelling of fluids flowing over and around objects have shown that random or chaotic motion is traced out around those objects. This phenomenon is known as turbulence, and a fluid mass performing such random motion is referred to as a turbulent eddy current. These currents can be a significant part of the dispersion process. As turbulent eddies are readily created around vehicles and buildings they contribute to the dispersive mechanism at street level.

Over a conurbation, atmospheric stability can play a major role in the dispersal of pollutants. Temperature inversions and atmospheric stability present poor dispersive powers and pollutants can become trapped at or near ground level. As emissions continue the pollutant concentrations rise, resulting in degradation of air quality and a potential risk to health and the environment (Chanlett, 1973; Creswell, 1974). These high primary pollutant concentrations in the presence of strong sunlight can react to form photochemical smog (Borrell et al 1991; Derwent and Jenkin, 1991).

The Los Angeles basin, California, is sheltered by mountains, exposed to bright sunlight, experiences temperature inversions and has high traffic volumes. These conditions result in the formation of photochemical smog. Consequently, the federal standard for ozone is frequently exceeded (Davidson, 1993). Similar conditions exist in Athens, Greece (Hope, 1992).

2.5 EFFECTS OF AIR POLLUTION

A pollutant may exhibit effects varying from harmless to fatal depending on the concentration and dose that an organism is exposed to. Some pollutants accumulate in the body and, after long periods of exposure, chronic health effects may result. Some cause no ill effects when exposed for long durations to a low concentration; but can be fatal when briefly exposed to a high concentration. Carcinogenic pollutants appear to have no safe level; the higher the exposure the greater the risk of cancer. Pollutants also have effects on vegetation and buildings.

Carbon Dioxide

It has been indicated that the increasing average global concentration of carbon dioxide (Neftel et al, 1982 and 1985) is making a significant contribution to global warming (Oerlemans, 1994; Schneider, 1994). Oerlemans reported that during the last 100 years there has been a linear warming trend of 0.66 kelvin per century.

Global warming involves many complex interactions that are difficult to accurately represent, but it has been predicted that there could be significant climatic changes, and impacts on vegetation (Ausubel, 1983; Firor and Jacobsen, 1993; Bongaarts, 1994; MacKenzie, 1994; Pimm and Sugden, 1994; Reilly, 1994; Rosenzweig and Parry, 1994; Stocker, 1994).

However, observed and predicted climatic trends are further complicated by natural variations in climate and driving forces from other sources (Flan, 1993; Pearce, 1993; Charlson and Wigley, 1994; Christy and McNider, 1994; Groisman, Karl and Knight, 1994; Kerr, 1994; Leuturgler, 1994; Novelli et al, 1994; Foukal, 1994; Schlesinger and Ramankatty, 1994; Stouffer et al, 1994).

Hence, while there appears to be little doubt that carbon dioxide does have a role to play in global warming, the global processes are so complex that it is difficult to accurately quantify the impact of carbon dioxide.

Carbon Monoxide

Carbon monoxide (CO) is a colourless, odourless, tasteless gas. It reacts with haemoglobin to form carboxyhaemoglobin (COHb). The affinity of CO to haemoglobin is more than 200 times higher than for haemoglobin to oxygen. Quantitative levels for COHb are dependent on CO concentration and the degree of exercise during exposure.

Several important relationships between carboxyhaemoglobin levels and physiological parameters, considered in the WHO (1979) and US Environmental Protection Agency (EPA, 1984) criteria documents have continued to be the subject of discussion and it is thought additional research is needed.

Various health effects are reported to be associated with carbon monoxide exposure (EPA, 1984). CO leads to deficient function in sensitive organs and tissues like the brain, heart, the inner wall of blood vessels and platelets. Curtailment of certain physically demanding occupational or recreational activities may take place when exposed to a high dose of carbon monoxide.

Of greater concern at typical ambient levels is the additional stress placed on the heart of those with existing health problems (e.g. chronic angina) during exercise. CO can impair behavioral functions and vigilance tasks. Perinatal effects may result in reduced birth weight and retarded postnatal development WHO (1987).

Guidelines

The WHO (1987) recommends a level of 2.5-3.0 percent carboxyhaemoglobin for the protection of the general population, including sensitive groups. Maximum carbon monoxide concentrations being:

- 100 mg/m³ for periods not exceeding 15 minutes;
- 60 mg/m^3 (50 ppm) for 30 minutes;
- 30 mg/m^3 (25 ppm) for 1 hour; and
- 10 mg/m³ (10 ppm) for 8 hours.

Hydrocarbons

Hydrocarbons represent a wide range (hundreds) of organic compounds and so it is difficult to give a comprehensive review of each substance. However, the hydrocarbons may be classified into groups which have similar effects. Some may have no discernable health effect at typical ambient levels. Others may cause irritation to the eyes and respiratory tract, or be responsible for obnoxious odours. Perhaps more alarming are the carcinogenic (cancer inducing) and mutagenic (mutation of DNA) hydrocarbons.

Some of the hydrocarbons have little or no effect on human health but may represent a threat to the environment in terms of global warming, e.g. methane. Some hydrocarbons are also precursors to the formation of photochemical compounds found in smog, e.g. peroxyacetyl nitrate. In this form they provide irritation, particularly of the eyes (WHO, 1987).

Carcinogens increase the risk of receiving cancer over a lifetime (WHO, 1987). It appears that there may not be a safe threshold level for such substances; higher exposures lead to higher probabilities of receiving cancer. Carcinogens are present in petrol and diesel, and emissions from vehicles powered by such fuels. These include, but are not limited to: benzene, formaldehyde, polynuclear aromatic hydrocarbons (PAH), styrene, and toluene. However, the quantitative impact that vehicle emissions have on health is difficult to establish: the World Health Organisation's health risk evaluation of PAH was mainly based on coke-oven emissions and it points out that diesel emissions include additional carcinogenic agents.

Oxides of Nitrogen

WHO (1987) indicates that asthmatics are likely to be the most sensitive subjects to NO_2 although uncertainties exist in the health database. It has effects on pulmonary function, and at relatively high doses has been shown to produce reversible and irreversible damage to the lungs of animals. Exposure to NO_2 can also lower the

resistance of the lungs to infection.

Nitrogen dioxide can damage vegetation. Plant leaf symptoms have been observed as a result of a four hour exposure to an average concentration of 2.5 ppm (Bond, Straub and Prober, 1972.)

Nitrogen oxides, along with sulphur oxides, form acid rain. This is known to damage materials, buildings and plant life. Although these can be caused by other sources, there was sufficient certainty to convince governments to take action against these emissions (Firor and Rhodes, 1993).

Nitrogen dioxide also plays a role in the formation of ozone (Finlayson-Pitts and Pitts, 1993), a strong oxidising agent, which is responsible for damage to plants, materials, animals and humans.

Guidelines

The guidelines recommended by WHO (1987) for nitrogen dioxide levels are 400 μ m³ and 150 μ m³ for 1 hour and 24 hour periods respectively.

Sulphur Dioxide

WHO (1987) reported that the effects of sulphur dioxide on the health of asthmatics were demonstrable down to levels of about 1000 $\mu g/m^3$, with discernible effects of less certain consequence below that level. Of importance to public health is the proportion of people liable to be affected. Detailed information regarding the proportion of asthmatics or other sensitive people in the community were not available, but estimates of around 5 percent have been suggested.

Sulphuric acid aerosols associated with SO₂ emissions also produce adverse health effects. Respiratory effects from exposure to sulphuric acid (350-500 μ g/m³) have been reported to include increased respiratory rate, decreased flow rates and tidal volume (EPA, 1982; Ericsson and Camner, 1983). Other studies have shown that in

healthy non-sensitive adults health is little affected up to 1000 μ g/m³ when exposed from 10 to 120 minutes. Asthmatics, again, are substantially more sensitive in terms of changes in pulmonary mechanics than healthy people. The lowest demonstrated effect level was 100 μ g/m³ in adolescent asthmatics. The effects were relatively small and disappeared within about 15 minutes. In adult asthmatics the lowest observed effect level was 350 μ g/m³ (Ericsson and Camner, 1983; Utell and Morrow, 1986).

The effects of longer term exposure is circumstantial and based on air pollution case histories. Respiratory diseases in 600 people in the Yokkaichi area of Japan were attributed to sulphuric acid (Kitagawa, 1984).

Sulphur dioxide is also a major constituent of acid rain and is known to attack buildings, aquatic life and affect plant growth (Schulze, 1989).

Guidelines

The WHO recommend 500 μ g/m³ as the guideline level for a 10 minute exposure to sulphur dioxide, and a 1 hour maximum of 350 μ g/m³. Recommendations are also provided for acid aerosols and the combined effects of smoke. For example, over a 24 hour period the levels for sulphur dioxide and smoke are 125 μ g/m³ for each pollutant; and over a year, 50 μ g/m³ for each.

Lead

WHO (1987) documents a wide range of effects of lead. Its effects the nervous system, kidneys, reproduction, the immune system, cardiovascular system and gastrointestines. Atmospheric lead contributes between 15 and 70 percent to the total intake in adults, and 2 to 17 percent in children. A study showed that about 25 percent of lead in the body is from petrol (Facchetti and Geiss, 1982).

Smoke and Particulate Matter

The small particulates from road transport emissions distort visibility more than larger particles, and if deposited in the lungs they take much longer to be removed than larger particles (Walsh, 1985 and Burt, 1972).

The effect of particulates on health relates to physical form and the presence of other substances adsorbed onto the particle's surface. In the WHO guidelines, the combine effects of sulphur dioxide, acid aerosol, and particulate are described.

Diesel smoke may represent a threat to health. In diesel smoke, the carbon particles have polynuclear (or polycyclic) aromatic hydrocarbons (PAH) adsorbed onto the surface of the particles (Barbella, Ciajolo, and D'Anna, 1989). In this microscopically concentrated form, the particles can be inhaled deep into the lungs where particles may become trapped, exposing the tissue to mutagenic and carcinogenic PAH. With regard to PAH, the World Health Organisation (WHO, 1987) concluded that, owing to its carcinogenicity, no safe level can be recommended.

According to Dr Sandra Jones at the Polytechnic of North London's pollen research unit (LTT, 1992), diesel smoke combine with high pollen levels seems to be worsening hay fever. More people appear to be suffering, and attacks growing more severe. A rise in patient numbers that was out of proportion with a rise in pollen levels, created the suspicion that pollution was responsible.

Small particulates less than 10 micrometre in diameter (PM_{10}) from road transport emissions, particularly diesel emissions, along with the chemicals adsorbed on them, are suspected of being a health hazard to the elderly and people with pneumonia, and chronic lung and heart disease (Bown, 1994). Schwartz, an epidemiologist at the US Environmental Protection Agency, estimates as much as 60,000 deaths per year are linked to particulate levels. He also estimates that in England and Wales, it could be responsible for about 10,000 deaths. Schwartz says that there is no safe level for particulates, and higher levels result in more deaths. Particulate matter, along with adsorbed PAH, deposited on soil is taken up into crops. Eating food contaminated in this way is thought to be the major source of exposure to PAHs by non-smokers (Jones et al, 1989).

Since pollution from coal smoke has been reduced, diesel particulates have become the major cause of soiling on buildings (Royal Commission on Environmental Pollution, 1991). Not only does this affect the look of buildings, it is also suspected of accelerating erosion from acidic gases. Diesel particulates are not easily washed off by rain, and are estimated to be three times more effective than coal smoke and six times more effective than particulates from petrol engines, at soiling buildings (Ball and Caswell, 1983).

Ozone

The WHO (1987) describe ozone as a powerful oxidant, able to react with virtually every class of biological substance. It can produce damage to all parts of the respiratory tract. The symptoms include cough, throat dryness, chest pain, increased mucus production, chest tightness and nausea, amongst others. The most sensitive people are not necessarily the same ones who suffer from asthma, allergies or other lung diseases.

Studies have shown that exposure to levels of ozone below the US federal standard (0.12 ppm) produce significant biological effects (Science 1989) and changes in respiratory function, especially during moderate exercise (Lippmann, 1989 and 1991). Levels below the federal standard also have a significant impact on agricultural crops and forest ecosystems (Heagle et al 1988; Miller et al 1989; Lefohn and Foley, 1992). Ozone has a significant impact on crop yield in the US (Heck et al, 1983) and to a lesser extent in the UK (United Kingdom Photochemical Oxidants Review Group, 1987).

James Crapo (Science, 1989) at Duke University found evidence of inflammation and fibrosis in rat lungs after the animals had lived for 18 months in an air-ozone mixture like the summer breezes of Los Angeles.

Recent studies (Finlayson-Pitts and Pitts, 1993; Lefohn and Foley, 1993) suggest that ozone exposure patterns are important for establishing suitable air quality standards. High hourly average concentrations should be weighted higher to account for the damage caused to vegetation. Similarly, for human health, concentration may be more important than exposure or respiration rate.

The WHO (1987) recommend a 1-hour guideline of 150-200 μ g/m³ (0.076-0.1 ppm), and a 8-hour guideline of 100-120 μ g/m³ (0.05-0.06 ppm).

2.6 SUMMARY

This chapter has introduced the concepts of air pollution, emission and dispersion mechanisms, and described the effects of air pollution.

Meteorological conditions are a major factor in the dispersal of pollutants. Temperature inversions and stable atmospheric conditions provide an unfavourable environment for the dispersal of pollutants, leading to increased concentrations.

The mechanisms responsible for emissions have been outlined. In the case of carbon monoxide and hydrocarbons, emissions generally fall with increasing speed. Whereas, emissions of nitrogen oxides generally increase with increasing speed. These, and other, inverse relationships suggest that strategies which aim to regulate emissions based on traffic speed control or enhanced engine technology, may have to determine which pollutants should be reduced at the potential expense of increasing others.

Lead and sulphur dioxide emissions are related to fuel content and quantity of fuel consumed. Smoke emissions, from diesel vehicles under load, are a result of incomplete combustion. Emissions of carbon dioxide represent a by-product of the fossil fuel combustion process. The precursors to photochemical smog are hydrocarbons and nitrogen dioxide.

The factors involved in the dispersion of traffic emissions, and unfavourable conditions, have been described in this chapter. Emissions will be dispersed

effectively when the source is exposed to relatively high wind speeds and unstable atmospheric conditions, as opposed to stable conditions with little wind.

The effects of air pollution are wide ranging, affecting the environment, vegetation, and animal and human health. However, the World Health Organisation has indicated that the process of gathering data and conclusively identifying the effects of air pollution is a complex and difficult task, which may be further complicated by interactions and cumulative effects of different pollutant species (WHO, 1987).

Most of the pollutants in traffic emissions have an impact on human health, are irritants or obnoxious smells. Such effects may lead to acute or chronic illness. Some pollutants, namely polycyclic aromatic hydrocarbons found on the particulates of diesel emissions, are carcinogens. The secondary pollutants found in photochemical smog produce irritation and damage to the respiratory track and vegetation.

, ·

Chapter 3 AIR POLLUTION STUDIES

3.1 INTRODUCTION

This chapter describes air quality standards, the impact of traffic pollution based on its contribution to ambient levels, and studies specifically related to road traffic emissions.

Given air quality guidelines, along with economic, social and political influences, air quality standards may be defined whereby air pollution levels should not exceed a set value. This chapter summarises the types of standard relevant to traffic emissions, and organisational and regulatory frameworks involved in their enforcement.

The previous chapter described the mechanisms responsible for the generation of air pollution and its associated effects. In this chapter, the contribution which road traffic emissions make to the air pollution problem are discussed. This considers the impact of each pollutant emitted wholly, or partly, by road traffic.

To meet air quality standards a reduction in emissions may be necessary. This chapter describes studies which have investigated road traffic emissions, either to further academic knowledge, improve the data in an emissions inventory/database, or in order to reduce emissions.

3.2 AIR QUALITY STANDARDS AND REGULATION

European Union (EU) law is central to environmental policy and regulation in the UK. Any organisation wishing to know about environmental law needs to consider policy and proposed legislation with the EU, and specifically within Directorate-General XI, the Directorate concerned with environmental protection. EU environmental policy began in 1973 with the first environmental action plan; the fourth running from 1987 - 1992 (Simmons & Simmons, 1991). Environmental law has developed rapidly within the EU. There are many areas of activity in air pollution. The areas that are relevant to road traffic emissions are specified by the following directives:

- * air quality limit values for smoke and sulphur dioxide;
- * air quality standard for nitrogen dioxide;
- * limit value for lead in air and on biological screening for lead;
- * content of fuels, e.g. lead in petrol; and
- * vehicle emissions.

A directive is binding concerning the ends to be achieved by Member States, but leaves the choice of means to the national authorities. Thus directives are, in effect, blueprints for legislation and can only take effect through national measures. However it may be possible for individuals to rely on the terms of directives in actions against the state. Simmons and Simmons (1991) say, EC statistics show a considerable rise over recent years in complaints made to the Commission by individuals or public interest groups about failure of Member States to implement directives. Such complaints are investigated by the Commission and may result in prosecutions against the relevant governments.

Because traffic is a significant contributor to NOx levels in urban areas, the directive for nitrogen dioxide should be considered when defining the objectives of an environmental traffic control strategy. The 1985 directive (85/203/EEC) on air quality standards for nitrogen dioxide states, measurement points should be selected to: cover examples of the main types of zone predominantly affected by pollution from motor vehicles, particularly 'canyon' streets carrying heavy traffic and major intersections; and be, as far as possible, those in which NO₂ concentrations are likely to be among the highest. The limit value is expressed as the 98th percentile of all readings recorded over a year, with each reading representing a period of one hour or less. For NO₂ the limit value is 200 μ g/m³ and guide values are 135 μ g/m³ and $50 \ \mu g/m^3$ for the 98th and 50th percentiles, respectively. The limit value should not be exceeded. It is to help protect people against the effects of NO₂ in the environment. The guide values are to improve the protection of human health and contribute to the long-term protection of the environment.

Legislative requirements for vehicle emissions fall into two categories: type approval standards and in-service standards. New production vehicles have to meet limits set in type approval standards, but as vehicles age they must also be able to demonstrate a degree of durability and satisfy the in-service standards. In Europe in 1968 the United Nations Economic Commission for Europe (ECE) set up the ECE 15 standard which has undergone four amendments, ECE 15-01 to ECE 15-04. The regulation was first applied in the UK in 1973. The ECE Regulation 15 test with amendment 4 (Bosch, undated) is given below in Table 3.1.

Vehicl weight	e equivalent inertia (kg)	CO g/test	HC + NOx g/test
	< 1020	58	19.0
1020	< 1250	67	20.5
1250	< 1470	76	22.0
1470	< 1700	84	23.5
1700	< 1930	93	25.0
1930	< 2150	101	26.5
	> 2150	110	28.0

Table 3.1	ECE	Regulation	15-04	ļ
-----------	-----	------------	-------	---

In the UK regulation of air quality may involve local authorities, Her Majesty's Inspectorate of Pollution (HMIP), the Department of the Environment, and in the case of traffic emissions, the Department of Transport. District and borough councils are the enforcing authorities for control over smoke, dust and grit under the Clean Air Acts (1956 and 1968), and for the new system of prior approval under Part I of the Environmental Protection Act 1990 (EPA). Currently, their powers for enforcing air

quality levels through the use of environmentally sensitive traffic control strategies appears to be less clearly defined.

3.3 SIGNIFICANCE OF TRAFFIC EMISSIONS

In the past, stationary source emissions played a major role in urban air pollution (Chanlett, 1973; Creswell, 1974; Arvill, 1976). Over the past 10 to 20 years these emissions have declined throughout most of the European region (WHO, 1987). Whereas, emissions from road traffic now account for a significant proportion of urban air pollution (WHO, 1987; U.S. Department of Transportation, 1990; Royal Commission on the Environment, 1991; Watkins, 1991; DTp, 1993; Bown, 1994).

Road transport has become the dominant means of travel in Britain, providing 93 percent of all passenger kilometres travelled, 82 percent of the total tonnage of freight lifted and 59 percent of the tonne kilometres of freight moved (Mitchell, 1991). It is not surprising, therefore, that road transport represents a significant contribution to air pollution.

The impact of traffic emissions is probably most notable in urban areas where traffic densities are relatively high and characterised by slow speeds, and frequent acceleration and deceleration (Watson, 1972; Evans, 1979; Nishimura and Hino, undated). The impact of traffic emissions varies for each pollutant.

In the UK, vehicle emissions of CO in 1991 accounted for 89 percent of the UK's total emissions of CO (DTp, 1993). High pollutant concentrations, referred to as hot spots, of CO are known to occur at busy urban intersections (Ott, 1977; Benesh, 1978; Claggett, Shrock and Noll, 1981; Zamurs and Piracci, 1982). Hot spot levels of CO may exceed air quality standards and guidelines (Koushki, 1991). Levels in London are known to exceed guideline values, but studies do not agree on whether these levels significantly impair the driver and have an impact on safety (Watkins, 1991).

The hydrocarbons emitted by vehicles in 1991, accounting for 46 percent of the UK's

total emissions of HC (DTp, 1993). These emissions are precursors of photochemical pollution, and so their indirect impact in this form is significant (Finlayson-Pitts and Pitts, 1993).

In 1991, vehicle emissions accounted for 52 percent of the UK's total emissions of NOx (DTp, 1993). Other studies confirm that cars are the major source of nitrogen oxides in Europe (New Scientist, 1989) and the UK (Royal Commission on Environmental Pollution, 1991). These emissions also make a significant contribution to photochemical pollution (Finlayson-Pitts and Pitts, 1993).

A number of cities throughout Britain exceed advised levels several days a year. For example, in Edinburgh over a 12 month period 13 of the 14 monitoring sites exceeded EC guideline values (Hughes, 1992). This led the researchers to speculate that London, with its greater traffic density, would be worse. However, Hughes points out that more monitoring stations in London need to be sited by the roadside. The author also emphasises the need for this, given the type of sites specified by the EC directive for NO_2 . Studies have shown that air quality guidelines are exceeded in London (Watkins, 1991).

So although it is generally recognised that vehicles are the major source of NO_2 emissions, actual pollutant levels at critical sites will not be known unless they are measured. The author suggests that, perhaps, a modelling approach could be used to estimate such levels, or identify where the worst sites are likely to be. These sites could then have their NO_2 levels measured.

The author did not find any recent studies which associate vehicle emissions to ambient levels of sulphur oxides. This may be because urban levels have fallen and vehicle emissions are not a major contributor (WHO, 1987).

Emissions of lead from petrol were thought to account for 15 to 70 percent of the lead intake of adults, and 2 to 17 percent for children (WHO, 1987). Unleaded petrol is not necessarily free from lead and future levels for the maximum lead content are expected to be 0.013 g/litre; leaded being 0.4 g/litre (Russell 1988). Russell indicates that petroleum demand within Europe will reduce slightly throughout the 1990s.

Projections show that about 50 percent of gasoline will be unleaded by 1995 and about 80 percent will be unleaded by the year 2000.

A reduction of lead in petrol makes a significant impact on airborne lead. This was seen in Germany in 1976 when lead concentrations in petrol changed from 0.4 g/l to 0.15 g/l. The corresponding reductions in atmospheric lead in urban and rural areas were 65 percent and 20 percent respectively (Royal Commission on Environmental Pollution, 1983). Falling concentrations of lead have been observed on the M4 and in London, as a consequence of reduced levels in petrol (Bevan et al, 1974; Hogbin and Bevan, 1976; Dorling and Sullivan, 1980; Hickman, 1989). DTp (1993) figures show that the total emission of lead from vehicles in the UK, has fallen from 6.5 thousand tonnes, in 1985, to 2.0 thousand tonnes in 1991.

Diesel emissions make the largest contribution to emissions of particulate carbon, contribute about a third of the UK emissions of black smoke, and represent a potential health problem (WHO, 1987; Royal Commission on the Environment, 1991; Bown, 1994). The Royal Commission on the Environment note that heavy duty diesel vehicles account for a significant and growing source of these emissions. Therefore, the author suggests a cautious approach, when promoting diesel vehicles as environmentally friendly. These emissions should be taken into account.

In the UK, vehicles emitted over 106 million tonnes of CO_2 in 1988 and 120 million tonnes in 1991, 21 percent of total UK emissions (DTp, 1993). Although vehicle emissions are not the major contributor to CO_2 emissions, they make a significant contribution and are the fastest growing source of emissions (Hughes, 1992a). Hughes discusses regulation of these emissions by a sustainable transport policy.

In June 1992, at the United Nations Earth Summit in Rio, Brazil, global warming was discussed. It was generally agreed that steps should be taken to curb carbon dioxide emissions. The European Union aimed to fix 20th century emission levels to those of the 1990s; the UK is committed to returning total emissions to the 1990 level by the year 2000 (DTp, 1993). It has been estimated that European emissions could be reduced by sixty percent (Mot et al, 1993).

As a result of the volume of traffic and its associated emissions, Los Angeles is well known for its photochemical smog (Arvill, 1976; Maclean & Thomson, 1981; Science, 1989). In spite of strict environmental controls it still has an air pollution problem (Davidson, 1993). Traffic pollution is also a major contributor to air pollution in Athens (Hope, 1992). This results in a rising number of admissions to hospital and people with respiratory problems are warned to stay indoors. Under these conditions the environment ministry imposes a traffic ban. Pan-European photochemical pollution is significant and its complex transport and chemistry have been studied by many experts (Borrel et al, 1991; Derwent and Jenkin, 1991). It has been suggested that concurrent controls on the emissions of hydrocarbons and oxides of nitrogen are needed to control ozone levels (Finlayson-Pitts and Pitts, 1993).

3.4 TRAFFIC POLLUTION STUDIES

It has been shown above that road transport makes a significant contribution to air pollution. Consequently, there appears to be a need for traffic pollution studies to understand vehicle emissions and provide solutions which improve air quality.

Emission Studies

Air quality is strongly influenced by source emissions, therefore, for pollution control strategies to be effective a good understanding of emission characteristics can be particularly useful. Analysis of vehicle emission data is useful for understanding the significance of various factors on emission rates, and provides valuable insight into what factors an emission model should represent. The collection of emission data is also necessary for the calibration of emission models.

Driving Cycles

The purpose of a dynamometer is to be able to 'drive' the vehicle over a standard cycle consisting of cruise, idling, acceleration and deceleration with the dynamometer absorbing the power and, in some cases, simulating vehicle inertia. The standard

cycle is usually designed to represent typical driving conditions and, in some cases provides the basis for the modelling of on-road vehicle emissions.

Worldwide there are a number of standard driving cycles, the most common being the US, European and Japanese cycles (Watkins, 1991). Some of these driving cycles also have variations. If the cycle is based only on urban driving patterns, high speed driving may not be represented and so the cycle may have a high speed extra cycle added. Although the standard driving cycle is ideally suited to emissions legislation tests, study groups often use these driving cycles to model emissions for other non-legislative research projects.

The dynamometer provides a useful tool allowing various vehicle driving modes to be simulated and allows detailed models for vehicle emissions and fuel consumption as a function of driving mode to be developed (Post et al, 1985). Many studies have used this tool to investigate vehicle emissions over the ECE 15 driving cycle (Eggleston et al, 1988; Potter and Savage, 1986; Potter and Simmonds, 1988; Samaras, 1988; Williams et al, 1989). This can be used for new production and inservice vehicles, different production type years across different vehicle types and engine capacities, before and after maintenance, and with and without emission reduction devices fitted. Generally, the methodology used in such studies is based on a standard driving cycle, for example ECE 15, and their experimental approaches are usually similar.

Colwill, Hickman and Waterfield (undated) investigated emissions from vehicles using the ECE Regulation 15 test procedure with its various amendments. The cars chosen represented 85 percent of the best selling cars in the UK. They were selected from garages, car hire firms, private individuals and a few company cars. Exhaust measurements were made to investigate changes in CO, HC and NOx emissions as a function of amendments made to ECE regulation 15, vehicle speed, and unmaintained vehicles.

The study's findings are, generally, in agreement with those of other studies. It had three major conclusions:-

- Vehicles built before the ECE 15 period had a very wide range of emissions, particularly those that were 'as received'. However, the mean emissions from tuned vehicles generally fell within the required limits. NOx emissions complied with the limits most easily.
- 2) Speed was an important factor in estimating exhaust emissions. HC and CO emissions dropped rapidly with speed, but NOx emissions increased. Due to the low test speed for ECE 15, the test results gave slightly high values for CO and HC emissions and low values for NOx emissions.
- 3) Vehicle age had a considerable effect on emissions. Emissions of CO increased by a factor of four over a year. However, servicing generally brought the emissions back down to levels complying with ECE 15.

The CORINAIR Working Group on Emission Factors made use of a comprehensive set of investigations and analyzed emissions over driving cycles and as a function of speed (Eggleston, 1988; Samaras, 1988). The results represented an extensive emissions inventory, including work carried out in Britain, Holland, France, Germany, Greece and Switzerland. This study's comprehensive analysis of emissions from vehicles throughout Europe provides a useful emissions inventory, indicating how vehicle emissions vary with production type period, and country. There were many findings from this study and the main points are summarised below.

In general, emissions of CO and HC, and fuel consumption, fell with the introduction of the ECE 15 test and with each of its amendments. Conversely, the introduction of ECE 15, through to 15-03, led, in many cases, to an increase of NOx emissions. With the introduction of the ECE 15-04 regulation, emissions of NOx fell slightly, compared with ECE 15-03, but levels were still slightly higher than those before the introduction of the first ECE 15 regulation. This illustrates that the engine conditions required to minimise emissions of CO and HC are not necessarily those required to reduce emissions of NOx. The CORINAIR study illustrates that, in general, emissions of CO and HC fall with increasing vehicle speed, up to about 60 to 70 km/h. The influence of engine capacity is to change the speed at which minimum emissions occur, but its effect is not very significant. Emissions of NOx increase with increasing speed, over the whole speed range tested. Engine capacity clearly affects NOx emission, with higher capacities emitting more over the speed range.

This work has been updated to produce emission factors for 1990 emissions from road traffic (Eggleston et al, 1993). This later study has provided additional detail and added new classes of vehicle to its database. In particular, it includes passenger cars equipped with catalysts. The list of pollutants has also been extended and includes NOx, N_20 , SOx, VOC, CH_4 , CO, CO_2 , NH_3 , diesel particulates and lead.

It has also been shown that emissions of NOx can behave differently to emissions of CO and HC, when a vehicle's engine is tuned. Williams and Everett (1983) investigated the effect of tuning in-service vehicles and found that tuning to manufacturer's specifications reduced idle CO, mass CO and mass HC emissions on average by 38, 36 and 14 percent, respectively. However, NOx emissions increased by 19 percent.

Potter and Savage (1982 and 1983) have also confirmed that tuning can reduce CO and HC emissions whilst increasing NOx. Their work also illustrated that there was a wide range in vehicle emissions for a given speed, indicating that some vehicles emit significantly more than others.

Indeed, recent studies have shown that as little as 10 percent of the traffic fleet can be responsible for about half the fleet's total emissions (Hansen and Rosen, 1990; Stephens and Cadle, 1991; Beaton et al, 1992). There also appears to be little correlation between their emissions and the length of time since their routine inspection (Lawson et al, 1990). A wide variation in emission rates exist for these high emitting vehicles (Cadle, Gorse and Lawson, 1993).

The standard driving cycle cannot always accurately represent driving patterns found in all real life situations, and may become outdated. For example, research in Holland indicated that the European test did not represent current driving conditions (MacKenzie and Watts, 1989). The test put cars through the equivalent of a 4 km drive at 40 kph, but actual on-road driving patterns included more long distance motorway driving. Consequently, in 1985 the European Commission asked car companies to redesign this test to bring it into line with the American version. Car manufacturers then proposed a test with an added "extra-urban cycle", simulating an extra 7 km at speeds from 90 to 120 kph.

It is interesting to note that it was recently pointed out that the U.S. FTP driving cycle does not adequately represent on-road driving patterns and emissions. It was recommended that the FTP cycle should include high speed driving, and high acceleration and deceleration rates (Cadle et al, 1991; Cadle, Gorse and Lawson, 1993). The absence of emission data for high accelerations is thought to be even more significant than the absence of emission data for high emission vehicles.

MacKenzie and Watts (1989) tested a variety of engines under the new extra-urban test cycle . They found that the most significant effect of this new cycle was on emissions of nitrogen oxides. Lean burn engines emit five times as much NOx during the fast driving as they do under the old urban cycle. Whereas, that emitted by cars equipped with closed-loop, three-way catalytic converters was still low. The researches found that engines with lambda-controlled closed loop catalysts, which hold the mixture to strict limits, burn 15 percent less fuel than standard engines. This leaves only a 5 percent advantage for lean burn engines; the researchers said this fell to 2 percent under realistic driving conditions.

More recent studies also indicate that an average speed approach may not be suitable for predicting emission rates and concentrations on a street by street basis. A representation of emissions from each driving mode seems to be an important requirement for the accurate modelling of emissions at an intersection, for example (Zamurs, 1990). It has been suggested that for models to perform accurately, they should represent emissions by driving mode (Cadle et al, 1991).

For the purpose of urban traffic management, some of the earlier results of Potter and Savage (1982) may be more appropriate to the prediction of curbside concentrations on individual streets. These results showed that, CO emission rates at steady-state (constant) speeds vary with speed and selected gear, but do not follow a consistent pattern. Emission rates for CO and HC increase with the acceleration rate. Hill ascents and roundabout negotiations are characterised by relatively high NOx emissions, whilst descents result in low NOx emissions. Generally, emissions of CO and HC increase, in terms of mass per unit time and mass per unit distance, with increasing acceleration rate. For NOx, rapid accelerations may not always produce the highest emissions.

On-Road Emissions

Recent studies have measured actual on-the-road emissions using in-vehicle gas analysis equipment (Andre, Hickman and Hassel, 1992). These data can be used to calibrate laboratory test-benches, and calibrate and validate emission models. Onvehicle equipment has also been used to measure propshaft torque, engine speed, vehicle inclination and road speed of selected heavy duty vehicles (Rendell, 1989). The results of these measurements are then used to simulate, on an engine test bed, the typical lifecycle of a truck in daily use, and to model truck emissions.

Technology is now available to monitor individual vehicle emissions as they pass a particular point (Lawson et al, 1990). For example, in October 1991, the RAC carried out a roadside survey of CO emissions involving 21,000 vehicles, using open path spectroscopic apparatus (Hughes, 1992). An infrared beam was directed through the path of vehicles' exhaust emissions to measure CO concentration. The measurement was superimposed on video images of passing traffic, to allow the study team to identify the types of vehicles producing the most pollution.

The measurement of on-road vehicle emissions in the US has shown that a small proportion of the vehicle fleet is responsible for a major proportion of total emissions (Pierson, Gertler and Bradlow, 1990; Stephens and Cadle, 1991; Bishop and Stedman, 1992). In Chicago, 10 percent of the vehicles emitted half the total amount of CO, and in Los Angeles 10 percent of the vehicles emitted 55 percent of the CO. Another study has shown that 20 percent of vehicles accounted for 65 percent of the emissions of black carbon (Hasen and Rosen, 1990).

Based on such results, Cadle et al (1991) proposed that the existing Federal driving cycle was not adequate and needs to be supplemented with additional driving cycles. They also recommended that more information should be obtained on in-use driving patterns, and the effect of high engine loads on emissions. It was noted that heavy duty vehicle emissions are becoming more significant, but little data exists on their real-world emissions.

A study used a remote sensor to identify vehicles with high CO emissions (Lawson et al, 1990). Their current emissions were compared against those recorded as part of the U.S. inspection and maintenance programme. It was found that their emissions were much higher than when they received their inspection/maintenance test. Further, the length of time since the routine test had little influence on the emissions found in the roadside inspection.

Emissions from Catalytic Converters

Catalytic converters, described in Chapter 4, represent an effective technology for reducing vehicle emissions. Certification emission values may be used for calculating ambient concentrations of pollutants. However, climatic conditions throughout Europe result in a wide range of temperatures, and their effects on the efficiency of catalytic converters may become increasingly significant as the number of vehicles equipped with catalysts rise.

Laveskog et al (undated) investigated emissions from catalytic converters at sub-zero temperatures and the use of block-heaters to reduce emissions and fuel consumption. The ECE test procedure was modified, making it more suitable for testing advanced catalyst vehicles in a cold climate. Their performance over a range of operating, ageing and failed conditions was also assessed.

In some cases, equipment failure caused emissions of CO and HC to increase by a factor of 100. This indicated a need for on board diagnostic systems, as failures are not always noticeable in terms of drivability and fuel consumption. Ageing of the catalyst and lambda oxygen sensor resulted in a significant increase in emissions of CO, HC and NOx, with little effect on fuel consumption.

Other tests indicated that emissions from vehicles equipped with catalytic converters can be influenced in a significant and complex way. The study concluded air pollution modelling will require much more detailed input of emissions data compared to that used for non-catalyst vehicles. For example, it also showed that test cycles and test fuels have to be scrutinized in order to get comparable results, and results that reflect reality.

Improving the Efficiency of Traffic Networks

Having described studies which aim to understand the characteristics of vehicle emissions, the following paragraphs describe studies which apply this knowledge in order to reduce road traffic emissions. For example, delays and slow speeds often result in higher emissions of carbon monoxide and hydrocarbons, along with increased fuel consumption. Consequently, studies have aimed to improve the efficiency of traffic networks and reduce delay.

Red Routes

Red Routes were introduced into London to improve traffic efficiency (Jourdain, 1990). Red lines, replacing the conventional yellow no-parking lines, over 300 miles of clearway indicated no parking during peak hours, with extra high penalties for parking. In theory this would lead to increased efficiency of the traffic network, by improving the smoothness of flows along links. It was estimated that this would reduce fuel consumption by approximately one million litres a day.

However, Jourdain (1990) indicated that this strategy may not have been as effective as was expected. Some of the savings could be taken up by longer crawl in queues at 'difficult' junctions. The prohibition of stopping has a greater effect near junctions, but the improved link capacities place a higher burden on the junctions. The saving in greenhouse gases could also be annulled if any extra mileage was undertaken to take advantage of the improved journey time. Jourdain believes that only changes in habit will confirm the potential fuel savings which Red Routes offer.

Environmentally Optimised Traffic Signal Timings

A study, based on the Athens road network, developed a control mechanism that took into account both air quality and traffic performance of the transportation system (Costas Abacoumkin and Associates, 1988).

The control mechanism was designed to route vehicles around pollution sensitive areas and optimise traffic flow. Traffic was assigned according to historical traffic data, meteorological data, and pollution forecasts. The control strategy assigned traffic in a manner that reduced overall pollution in the central area of Athens. The result was a 13 percent reduction in emissions of CO and an 11 percent reduction in NOx. Within this area, the strategy reduced distance travelled by 14 percent, total travel time by 34 percent, and delay by 39 percent. The average speed was increased by 31 percent. These savings were traded for a slight, 2 percent, increase in carbon monoxide emissions over the outer urban area.

The study also included work on emission levels, conducted by Bell and Lear with Castle Rock Consultants; these results were included in the final report (Costas Abacoumkin and Associates, 1988). This used the TRANSYT traffic model and an air pollution model based on average speed, to predict link emissions in the network.

Varying the ratio of delay to stop costs from 0.01 to 100, in the West area of Athens, showed no significant variation in emissions. The study team concluded that this could have been because the traffic network was of a radial type and there was no scope for further optimisation. In the central area (a grid based network) emissions of CO and HC, per vehicle per unit distance, increased with increased stops and delay. Whereas, emissions of NOx reduced slightly. Overall, coordination of traffic signals gave an average reduction in link emissions of three percent.

The use of green waves to improve traffic movements were investigated (Lear and Bell, 1988). It was found that once a network's signal timings have been coordinated, further enhancements to reduce delay or stops on all, or particular, links of the network do not affect overall emission levels provided the network remained unsaturated.

The study team investigated the effect of redistributing traffic throughout the network ("after" flows), followed by the effect of reducing traffic in the central area ("new" flows). Comparisons were made between the congested "before" and "after" flows, and between "after and "new" flows. These are summarised in Table 3.2.

	Flow	СО	НС	NOx
percentage reduction between 'before' and 'after'	13.0	43.6	36.1	10.5
percentage reduction between 'after' and 'new'	35.5	22.7	23.9	32.4

Table 3.2 Comparisons between before, after and new scenarios

It was found that the major factors influencing emissions were the total network flow and link lengths. Over-saturated junctions in the network had relatively high emissions of CO and HC. The study concluded that emissions are highly correlated with flow levels and traffic restraint is the only effective measure to reduce pollution significantly.

Prediction of Future Traffic Emissions

The Earth Resources Research study (Holman et al, undated) using a computer model commissioned by the World Wide Fund for Nature has predicted the effect of traffic growth on pollutant emissions up to the year 2020. The study investigated the effect of introducing three-way catalytic converters on new cars from 1992, on emissions of NOx, HC and CO. For heavy goods vehicles the model assumed that there would be a change in emissions reflected by the introduction of turbocharged and turbocharged with after-cooled engines. Predictions were also made for carbon dioxide using the assumption that new cars in the future will have the same fuel efficiency as current new cars.

In general, the results showed that pollutant emissions would fall until about 2005 when a minimum would be reached and after this date emissions would rise again.

Whereas, carbon dioxide emissions were predicted to increase every year. These results also agree with a statement from, the former, Warren Spring Laboratory (LTT, 1990). The results also showed that heavy goods vehicles would remain a significant contributor to emissions of CO_2 and perhaps more importantly, become the dominant vehicle emission source of nitrogen oxides. Emissions of NOx were predicted to fall to a minimum of 70 percent of current levels.

By the year 2020, CO emissions were projected to be 50 to 63 percent of current levels, and hydrocarbons being 56 to 74 percent of current levels. Perhaps alarmingly, the high traffic growth forecast resulted in more than a 100 percent increase of CO_2 emissions between the years 1988 and 2020. Also, although emissions for NOx, CO and HC were predicted to be lower in 2020 than in 1988, emissions had started to increase again after about 2005, indicating potential problems for the long term.

Hence, although three-way catalytic converters have a major part to play in reducing pollution levels in the short term, if traffic growth continues to increase as predicted (DTp, 1989), these benefits will be overtaken by the volume of traffic.

Their research investigated the effects of speed limits, removal of company car subsidies, improved traffic management, modal split and technical innovation in vehicle efficiencies on emissions. Enforced speed limits at 70, 60 and 50 mph resulted in predicted savings of 2.4, 4.4 and 5.8 percent for CO_2 emissions respectively. Removal of subsidies to company car users were predicted to reduce annual emissions of CO_2 in the UK by up to 8.5 percent. Better traffic management and improved traffic flow in urban areas could lead to a 5 percent saving in fuel consumption in urban areas, and an overall reduction of about 2.5 percent in carbon dioxide emissions in the UK.

In a scenario where the number of passengers using buses and trains doubled by the year 2005, a reduction of nearly 15 percent of CO_2 emissions, taking into account those from buses and trains, was predicted. Optimistic assumptions for the rate of technical innovation and market penetration of new improved efficient vehicle technologies were thought to bring up to a 25 percent reduction in CO_2 emissions.

Overall System Studies

Studies need to address the overall concept of transportation and vehicle emissions in order to seek ways of reducing both vehicle usage and their associated emissions. Though an important area, the literature appears to indicate that there have been fewer comprehensive European studies of this type.

The Royal Commission on Environmental Pollution has begun a study on transport and the environment which will produce its final report in 1994. They will investigate the contribution of transport to greenhouse gas emissions, taking into account the relationship between transport, land use and planning policies.

A study in Athens (NTUA, 1988) investigated the development of a city center bus system. It considered a wide range of issues in order to determine the overall impact on the environment and, in particular, addressed emission measurements and standards. The study built on emission characteristics established earlier in Athens (Pattas and Samaras, 1987). The study indicated that a reduction in car journeys, in favour of the bus, would approximately result in a proportional reduction in emissions of CO and HC. However, as diesel buses have relatively high NOx emission rates, in some cases transit improvements that reduce CO and HC emissions may cause NOx to increase. It was also shown that the relationship between emissions and traffic quality, or speed, was a complex one.

3.5 THE DRIVE PROGRAMME

In 1988 the European Community approved a three year R&D programme for a Dedicated Road Infrastructure for Vehicle safety in Europe (DRIVE). The objectives of the programme were defined as the improvement of road safety, transport efficiency and environmental quality (CEC, 1990, 1991 and 1991a). Innovations and cost reductions in information technology, telecommunications and broadcasting were seen to offer new effective means of achieving these objectives. If brought together to provide integrated advanced communications, control and information systems they

would enable new, more flexible and responsive forms of traffic management and safety systems to be created for the benefit of all road users. This concept is know as Advanced Transport Telematics (ATT).

The programme contained 71 projects. Of these, 15 projects were assigned to the general approach and modelling group of which two projects would model the environmental effects of road traffic air pollution. The two projects were PREDICT (Pollution reduction by information and control techniques) and MODEM (Modelling of emission and consumption in urban areas). These projects made major contributions to the programme's environmental objective.

MODEM

As this chapter has shown, many research activities have concentrated their efforts on exhaust emissions, mainly cruise emissions, partly idling emissions and less often emissions during acceleration and deceleration. Many have attempted to incorporate the contributions from all driving modes by using a standardised urban driving cycle. The MODEM project has extended this work, within a pan-European context, and recorded actual urban driving cycles, determined a realistic driving cycle model based on the collected on-road data, and tested actual emissions both in the laboratory and on the road (LTT, 1989; CEC, 1991; Andre, Hickman & Hassel, 1992).

Twenty vehicles selected from each of the countries (England, France and Germany) were fitted with in-vehicle monitoring equipment which monitored the following parameters every second: vehicle speed, engine rotation speed, throttle opening, fuel consumption, oil and water temperatures, the use of manual choke and wipers and external ambient temperature. Monitoring of these parameters provided an extensive database on vehicle use and driving cycles and from this the project team were able to analyze real driving modes and urban driving cycles.

This led to the production of test cycles for the measurement and modelling of exhaust emissions in urban areas. In order, to determine typical emission characteristics the project had to address the variations in vehicle emissions across different types of vehicles of varying ages, with and without catalytic converters. Although the testing of 150 vehicles would not allow a statistically significant representation of all vehicle types, the main types were believed to be sufficiently well represented.

The results of the project have provided additional information on European vehicle emissions and led to an increased understanding of the relationship between urban driving cycles and emissions. The project provided information on actual speed profiles, vehicle usage in urban areas and was a step towards understanding the effects of traffic control systems on the environment.

PREDICT and QUARTET

PREDICT was the only DRIVE project to specifically design and evaluate environmentally sensitive traffic control strategies based on ATT. As a member of the project team, the author was responsible for a major contribution to the PREDICT project, particularly in the areas of review, strategy selection and design, modelling and evaluation. Control strategies were developed for reducing environmental pollution in urban areas. A comprehensive environmental modelling approach was developed and used to evaluate the control strategies.

A follow-up programme, DRIVE II, is demonstrating and evaluating the Advanced Transport Telematics (ATT) applications required to meet the programme's objectives (CEC, 1993). A work-module of the QUARTET project directly addresses the DRIVE programme's environmental objective. This module is demonstrating and evaluating environmentally sensitive traffic control strategies.

QUARTET consists of field trials in Birmingham, Stuttgart, Torino and Athens. In Athens the field trial demonstrates an ATT system architecture for the implementation of environmentally sensitive strategies designed to improve urban air quality (QUARTET Consortium, 1992b and 1993a). These field trials build on the early work of the author and that of PREDICT. The author continues to play a significant role within the QUARTET project, in system design, modelling and evaluation. He is also responsible for compiling the final "Overall Assessment" report.

3.6 SUMMARY

Air pollution studies are required to understand the mechanisms responsible for the generation and dispersion of traffic emissions, and to evaluate potential solutions for improving air quality and achieving air quality standards.

Air quality standards aim to establish safe levels. These should be enforced by local or national organisations. The regulatory framework in the UK has been described in this chapter and it shows the role of standards and organisations at various levels. Standards are not always achieved, and in urban areas, traffic can be a significant contributor to poor air quality levels. In particular, CO, NOx and particulate levels are frequently associated with road traffic. It is also worth noting that heavy duty diesel vehicles make a significant contribution to NOx and particulate levels.

Many studies involve monitoring emissions over a standard driving cycle, usually ECE Regulation 15. These have analysed emissions as a function of speed, driving mode, and many other factors. Emissions of CO and NOx often behave differently; an increase in one may correspond to a decrease in the other. A wide range in vehicle emissions have been observed, with a relatively small number of vehicles accounting for a substantial proportion of total traffic emissions. The results of these studies indicate that if an emission model aims to acurately represent reality it should be able to represent these factors and have a comprehensive set of corresponding emissions input data. Some studies have also indicated that the standard driving cycle may not always be adequate for representing real on-road emissions.

Overall, the literature shows a large number of studies have investigated vehicle emissions, but fewer studies have investigated strategies aimed at reducing urban air pollution, particularly the implementation aspects of such strategies. This chapter has, however, identified studies which have considered several aspects of the air pollution problem in an attempt to improve air quality. This state-of-art review provided a sound basis on which to author was able to build, identifying new and important areas of research which could be undertaken without the need for duplication of effort.

Chapter 4 REDUCTION OF EMISSIONS

4.1 INTRODUCTION

Earlier chapters have shown the effects of air pollution on health and the environment, and as a result of these effects air quality guidelines and standards have been specified. However, in some urban areas these standards are not achieved. Given the recent advances in Advanced Transport Telematics (ATT), there may be an opportunity to develop new strategies for urban traffic management and control. These strategies could take into account both air quality and performance of the transport system. The author has evaluated the potential of this approach for reducing urban air pollution from road traffic. Part of this approach is based on new vehicle technologies which result in lower vehicle emissions.

This chapter outlines the technological options available. Other strategies, that are not necessarily based on ATT, with the aim of improving air quality are also described.

4.2 FUEL AND EMISSION OPTIMISATION TECHNOLOGIES

This section shows that vehicle modifications, and alternative fuels, have the potential to significantly reduce vehicle emissions. There are many possibilities in terms of vehicle and fuel modifications (Watkins, 1991). These modifications and enhancements include:

- * engine modifications to improve efficiency (Barrie, 1989a, 1989b);
- * alternative sources of fuel or energy (Mech. Eng., 1989; Science, 1989);

- * emission reducing devices on the exhaust system (Watkins, 1991);
- improved transmission systems and reduced friction (Monaghan, 1988;
 Engineers Digest, 1989);
- * lower vehicle weights (Ashley, 1992); and
- * aerodynamically improved vehicles (Ashley, 1992).

Potentially, vehicle modifications have a significant role to play in Fuel and Emission Optimisation Strategies (FEOS) which aim to reduce fuel consumption and exhaust emissions. As shown in Chapter 2, emissions of carbon dioxide are the result of combustion of fossil and organic fuels. Their emissions are approximately proportional to the quantity of fuel consumed. Hence, improvements in fuel economy can reduce carbon dioxide emissions. Vehicle modifications also have the potential to reduce the by-products arising from incomplete combustion, namely carbon monoxide, hydrocarbons and particulates. Modifications can also be made to reduce emissions of nitrogen oxides.

Engine Modifications

Engine modifications may decrease fuel consumption, although some modifications increase consumption (CEC, 1983). For a given modification, some pollutant emissions may be decreased while others are increased (Watkins, 1991). These modifications are primarily concerned with ways in which the combustion process can be made more efficient. Improved combustion efficiency usually leads to a reduction in the emissions of CO, HC and particulates (Siuru, 1992). In addition, if efficiency is improved, fuel economy improves along with a reduction in emissions of carbon dioxide. When an engine's efficiency is increased this may increase the engine temperature, and as a result NOx emissions. Consequently, additional modifications are specifically designed to reduce emissions of NOx (Watkins, 1991).

Lean Burn Engines

Lean burn engines have a higher ratio of air to fuel than the rich air-fuel mixture (15:1) found in conventional engines. This gives a plentiful supply of oxygen resulting in higher combustion efficiency and lower emissions of carbon monoxide, compared with a conventional engine. Emissions of NOx are also reduced. Because of better combustion, these engines also consume less fuel and emit less carbon dioxide.

Conventional engines have difficulty running on a mixture of air and fuel in a ratio of more than 15:1; any ratio higher than this can be regarded as lean. In conventional engine designs, a lean mixture burns slowly and the engine can stall. This can be prevented by modifying the shape of the intake manifold, the pistons and the cylinder heads. The manifold has fewer bends to ease the flow of air and fuel. It is designed to generate turbulence in the cylinders to ensure thorough mixing of the air-fuel mixture and so speed up combustion. The cylinder heads are hemispherical rather than square-cylindrical shape with a concave cup in the piston. These modifications are meant to minimise the areas where the combustion flame is quenched.

However, lean burn engines emit five times as much NOx during fast driving as they do under the urban cycle (MacKenzie and Watts, 1989). MacKenzie and Watts also point out that if a catalytic converter was added to reduce these emissions, difficulties may be encountered. Three-way catalytic converters are usually designed to work best with emissions from a conventional engine which has a richer air-fuel mixture.

Fuel Injection

Fuel injection systems allow engine characteristics, to be controlled much more precisely than in engines which use a carburetor. The corresponding benefits, including reduced emissions, have led to an increasing number of fuel injection systems in Europe, Japan and the US (Glocker, 1985; Bradshaw, 1988).

A carburetor is responsible for producing the air-fuel mixture. This process relies on a flow of air over a fuel nozzle picking up fuel. This may be influenced by ambient temperature, air pressure and humidity. The result is that the air-fuel ratio is not accurately controlled and an optimum mixture cannot be guaranteed.

In contrast, the fuel injection system consists of a fuel injection valve for the cylinders of the engine. These valves may inject indirectly, into the intake manifold just before the cylinder, or directly into the cylinder (Bradshaw, 1988). The fuel injection system delivers an exact measure of fuel on each squirt, resulting in an accurately controlled air-fuel ratio and a finer fuel vapour which mixes more uniformly with the air. This can result in improved combustion and lower emissions (Kosowski, 1985; Bradshaw, 1988; Barrie, 1989a). A precise air fuel ratio is also important for the efficient operation of three-way catalytic converters (Hodgson, 1987).

Research has been undertaken to improve fuel injection systems further (Grenier et al, 1987). Different methods of fuel injection give different benefits (Hoonhorst, 1986). Diesel engines burn about 30 percent less fossil fuel than petrol engines, but by using direct injection systems, instead indirect ones, fuel consumption can be improved by 10 to 15 percent (Barrie, 1989a). Each injection valve only squirts fuel when its corresponding cylinder requires it, on the cylinders intake stroke. Further benefits are obtained when used with an electronic control unit or an engine management system (Hamburg, 1982; Marshall, 1987). It has also been shown that the use of an injector with a supersonic atomizer promotes better combustion by reducing the fuel adhesion (Matthes and McGill, 1976; Barrie, 1989a).

Conventional diesel engines emit some unburnt fuel, including soot, because fuel touches the walls of the cylinder, which quenches combustion. In a newer system, less diesel reaches the cylinder walls because the fuel is injected more slowly. The developers claim pollutants are reduced by a third compared with conventional diesel engines (Barrie, 1989a).

Turbochargers

Turbochargers and charge coolers are methods of increasing the power output of an engine (Watkins, 1991). A turbocharger uses exhaust gases to drive a turbine which

forces more air into the engine. The turbocharger operates at high speeds and has two advantages. The increased air pressure ensures that air and fuel mix more thoroughly and are delivered more evenly. This increases the performance of an engine giving up to a third more power, from a small engine. It also boosts the flow and pressure of the exhaust gases, which helps to oxidise unburnt and partially burnt fuel in the exhaust pipe. Turbochargers can reduce emissions of CO and HC from engines by 10 percent. However, they raise the temperature of a diesel engine which increases the emissions of NOx. This can be overcome by cooling the air that is blown into the cylinder, a system known as turbo-intercooling. Charge coolers result in lower peak temperatures and reduce emissions of NOx.

However, turbochargers are partly to blame for the smoke when buses and lorries accelerate from rest. This is because the turbo takes time to build up speed and until it does the engine runs on the wrong air-fuel mixture (Barrie, 1989a). Barrie indicates that the development of variable geometry turbochargers will reduce this problem.

Engine Management Systems

Engine management systems are likely to become much more widely used in the near future, especially with the introduction of catalytic converters (Watkins, 1991), and stricter emission legislation. These systems can be used on both diesel and petrol engines. They are essentially small computers (Scrimshaw, 1985) responsible for monitoring the engine's performance and setting engine parameters to give optimum performance in terms of fuel consumption and exhaust emissions.

Sensors can be placed in the combustion chamber to precisely monitor the engine's performance. The sensors will allow the engine management system to run the engine at its most efficient rate, cutting both fuel consumption and emissions (Barrie, 1989a). Similarly, a sensor in the exhaust allows the engine management system to reduce emissions caused by a poorly maintained engine. An adaptive learning system discovers, by itself, what the optimum engine parameters are and adjusts these as the engine becomes older.

The system can control the air-fuel ratio, which is important in achieving complete

combustion and optimum operation of a catalytic converter. It is also possible to accurately control the ignition timing for all engine modes (accelerating, cruising, etc).

Ford have also used engine management to control the intake valves in their new engine. It has also been used along with other enhanced features of the Ford engine. Hence, such a system can optimise the engine over all operating modes. Lucas Automotive claim to be at an advanced stage and so are several other companies, particularly Bosch, who are responsible for many contributions to this sort of technology.

One future possibility is a system which extends management of the engine to include control of an advanced low-loss automatic transmission system. The potential for further improvements in fuel consumption, and hence emissions, is said to be considerable (Engineers Digest, May 1989).

Integrated Approach

The integration of the above technologies into an engine design can be expected to make significant contributions over the next five to ten years. Such engine designs are now in prototype form or nearing production.

For example, Ford's new engine, I4, is said to have a fuel economy 10 percent better than its two litre predecessor (Barrie, 1989b). Ford has developed 'jet ports' to allow the air-fuel mixture into the engine without too much turbulence. This is to achieve a thorough combustion. Variable valve controls, run by computer, can close one of the intake valves in each cylinder. This allows one intake port to be designed for torque and the other for efficiency, allowing control of the amount of fuel and its behaviour more precisely.

The engine can run on leaded or unleaded fuel without adjustment, and is designed to use a 3-way catalytic converter. It will run smoothly on mixtures as lean as 19:1 air to fuel. The inlet manifolds have been designed to improve circulation in the combustion chamber. The chamber has a scroll shaped wall which forces the mixture to whirl in the chamber at high speed, helping it to burn thoroughly. The position of the sparking plug is such that a more efficient burn is obtained. Low friction pistons and bearings have cut mechanical losses in the engine by 40 percent. The engine can be equipped with a microprocessor-driven fuel injection system. This has an adaptive learning programme and a memory, so that control matches the needs of each engine.

This is by no means the only example of an integrated approach. Equally effective engines are being developed by many other vehicle manufacturers and such developments are also being applied to diesel engines (Siuru, 1992).

Alternative Engine Types

There are alternatives to the conventional reciprocating piston engine. The Wankel rotary engine, for example, is in limited use today. They can rotate at high speeds and run quietly. However, emissions of CO and HC, from current designs, are higher than conventional engines, while NOx is similar (Watkins, 1991).

Gas turbines are simpler and lighter than piston engines and may, therefore, have advantages over conventional engines. Combustion is continuous and can be controlled to give low rates of emission (Watkins, 1991).

A ceramic gas turbine engine has been demonstrated which has a fuel economy 35 percent better than conventional engines, and gaseous and particulate emissions below current and proposed US federal standards (Harmon, 1992). The turbine is also able to run on alternative fuels. Harmon says that it has competitive initial and life cycle costs, relative to a conventional engine. However, further developments are needed in the areas of cold start, acceleration, deceleration, and the mass production of ceramic turbines for cars.

Alternative Fuels

Alternative fuels have been, and still are being, used around the world. Some of these alternative fuels can be used in conventional engines with little or no modification.

These alternative fuels usually result in lower emissions of some pollutants. Potential alternative fuels include: alcohols; natural gas; and hydrogen (Siuru, 1989; Valenti, 1991; Harmon, 1992).

Alcohols

The two alcohols usually used as a fuel are methanol and ethanol. Generally, methanol emits less pollutants than petrol (Valenti, 1991). Any incomplete combustion results in the emission of the alcohol, and other organic compounds. However, methanol is toxic and associated formaldehyde emissions also need to be regulated (WHO, 1987). Aldehyde emissions from alcohol fuels are approximately three times those from petrol (Watkins, 1991). The alcohol can be used directly as a fuel or as part of a mixture containing conventional fuel (Harmon, 1992; Gabele and Knapp, 1993).

In an attempt to meet ozone limits in Los Angeles, California, one of their strategies is to introduce fleets of methanol and ethanol fuelled automobiles (Science, 1989).

Natural Gas

The burning quality of natural gas is such that it would operate satisfactorily in a highcompression diesel engine. Emissions of carbon dioxide are lower than conventional fuels. As well as occurring in natural deposits, it is also possible to grow plants which will subsequently yield bio-gas.

The Ricardo Group has been awarded a contract by a consortium of five Scandinavian bus companies to convert a Saab-Scania 6-cylinder diesel bus engine to run on natural gas (Barrie, 1989c). The gas is 94 percent methane, to which a mixture of gaseous hydrocarbons are added. The resulting engine is expected to give very low levels of emission. For example, it should meet standards of 2 g/kWh for NOx and 0.1 g/kWh for particulates. This will be achieved using: a 3 way catalytic converter; electronically controlled carburetor to mix the gas and air; software to run carburetor and ignition system; a Nebula combustion chamber design; and exhaust gas recirculation. A new tank to hold sufficient quantities of natural gas has been developed (Automotive Engineer April/May 1989). A research project which has run for nearly five years at the Royal Military College of Canada is showing promising signs for an eventual breakthrough in vehicle propulsion by natural gas. Gas tanks also exist that are able to survive in a vehicle collision (Valenti, 1991).

Hydrogen Power

Hydrogen burns with oxygen to produce water. Consequently, from an air pollution point of view, it has very desirable combustion characteristics. Siuru (1989) described a hydrogen powered vehicle with a 25 gallon tank and reciprocating engine which was able to travel 300 km on a tank of fuel. It had low emissions of nitric oxide and nitrous oxide.

Exhaust Gas Recirculation

Exhaust gas recirculation (EGR) offers an effective method for reducing emissions of nitrogen oxides from internal combustion engines. As shown in Chapter 2, NOx is produced from a high temperature reaction between nitrogen and oxygen. Therefore, changing the fuel used in a combustion engine may not reduce NOx emissions.

Small quantities of exhaust gas are introduced into the cylinder to dilute the incoming mixture of fuel and air. This reduces the mixtures oxygen content, combustion power and, hence, the temperature of combustion (Watkins, 1991). As EGR lowers the temperature of combustion, NOx is also reduced. EGR is widely used to meet emission legislation (Siuru, 1992). Although, EGR can increase fuel consumption (CEC, 1983) and increase diesel emissions of HC and particulates (Hollis, 1984), EGR is widely used in diesel vehicles to reduce NOx (Siuru, 1992).

Catalytic Converters

A catalytic converter reduces the pollutants in a vehicle's exhaust. Today there are

two types of catalytic converter: oxidation catalyst; and three way catalyst (Watkins, 1991). Oxidation catalysts oxidise carbon monoxide and hydrocarbons to carbon dioxide and water. The three-way catalyst (TWC), also oxidises carbon monoxide and hydrocarbons, but in addition, it reduces nitrogen oxides, primarily to nitrogen and oxygen.

A typical catalytic converter is made from a ceramic honeycomb coated with a paint to increase the microscopic surface area. On the surface is one and a half to two grams of platinum and rhodium - the catalyst. A catalyst encourages, or speeds up, a reaction but does not react itself and hence remains unchanged. If, however, the catalyst's surface becomes covered by another substance, such as lead, its effectiveness deteriorates. Consequently, to use a catalytic converter unleaded petrol must be used, as lead destroys the catalytic properties. The TWC works most efficiently within a fixed air-fuel ratio (Hodgson, 1987), maintained by an engine management system equipped with an oxygen lambda sensor in the exhaust.

A catalytic converter can remove up to 90 percent of the three pollutants mentioned. The exact figure depends on many factors such as catalyst temperature, engine cylinders misfiring, and the age of the catalytic converter. The use of leaded fuel will damage the catalyst.

Typically, there are two ways of operating a catalytic converter: unregulated and regulated. An unregulated catalyst is one in which the content of gas entering the system is uncontrolled. The effect of such a catalyst depends on whether the engine is run lean or rich. The former gives over 60 percent reduction in HCs and CO, and 30 percent less NOx. While the rich setting gives up to 40 percent less HCs and CO but up to 60 percent less NOx.

The second option is to use a controlled catalyst, in which a device (known as the lambda-probe, invented by Bosch in 1973) measures the remaining oxygen content of the exhaust gas flow. The measurement can be fed back to the fuel injection system to ensure the oxygen content is maintained at the optimum level, allowing the catalyst to work at peak efficiency. It represents a relatively complicated setup, typically requiring an engine management system, and is more expensive than an uncontrolled

version. However, levels of all three pollutants can be cut by over 90 percent.

It has been said that catalytic converters result in about a 10 percent loss in fuel economy, although this is questionable. This is because the catalyst may require a richer mixture and hence the engine consumes more fuel. Other sources show that catalytic converters have a slight effect or even no effect on fuel consumption. A report (CEC, 1983) shows that a controlled TWC may increase fuel consumption by up to 16 percent, but in other cases may reduce it by up to 5 percent.

American engineers doubt that 3-way catalytic converters will be durable enough in Europe. Here vehicles travel faster than in the US resulting in hotter exhaust gases. The hotter the exhaust gas, the sooner a TWC deteriorates. Climatic differences between Europe and the US are also significant. The colder European climate means that a vehicle's catalyst can take longer to warm up to its 'light-up' temperature at which it operates efficiently. This results in more emissions over the warm up period.

Catalytic converters are known to produce unwanted by-products. The small sulphur content in fuel, mainly diesel, results in sulphur dioxide emissions which are then converted, by the catalyst, to sulphuric acid. This is a corrosive acid and one present in acid rain. A reduction in the fuel's sulphur contents will reduce these emissions. The US plans to reduce the sulphur content of diesel fuel to 0.05 percent, compared with 0.3 percent in the UK. The other by-product nitrous oxide, is known to contribute to the greenhouse effect. However, although the emissions have been shown to be higher than a vehicle without a catalyst (Gould and Gribbin, 1989), no conclusions can yet be drawn because without a catalyst the higher NOx emissions can also react, in the environment, to form nitrous oxide.

Another potential disadvantage concerns the catalyst itself. The actual catalytic material is known to be a danger to health and concern exists over possible emissions of platinum from a large number of vehicle's equipped with catalytic converters (LTT, 1992). There is also concern over the highly toxic hydrogen sulphide gas, produced from catalytic converters. Currently though, it appears that dangerous levels of these substances do not occur and even in the US, where catalytic converters have been widely used for years, there seems to be no serious concern.

Electric Vehicles

Electric vehicles provide an effective solution to the reduction of *urban* air pollution. The electric motor has no emissions, nor does it make much noise. However, electric vehicles typically have limited power and range. The range is limited by the capacity of the vehicle's batteries, and so they need to hold as much charge as possible, whilst being relatively small and light weight.

Although they reduce emissions in urban areas, electric vehicles may increase emissions elsewhere. For example, if the batteries were to be charged up from the electricity mains supply, fossil fuel power stations may emit more pollution, to cater for an increased demand. The electricity supply could, however, be generated by other means which would not contribute to air pollution, such as nuclear and renewable sources of power.

A study of the overall impact from the widespread use of electric vehicles in California predicted that large reductions in CO and HC were possible (Wang, DeLuchi and Sperling, 1990). Emissions of NOx decreased moderately, while sulphur oxides and particulates increased or slightly decreased.

Electric vehicles are possibly a viable alternative for urban travel. They have sufficient speed for most urban travel and need not consume energy when stationary in a queue. Considerable work has been carried out in this area and vehicles suitable for urban travel have been produced (Porter, 1980; Siuru, 1989 and 1991; Harmon, 1992).

Denmark's battery powered minicar, the Mini-el, is produced at the rate of about 30 each month (Mech. Eng, Feb. 1989). These are primarily for use in neighbourhoods where petrol-powered vehicles have been banned. Three 12 volt lead acid batteries supply power for distances from 25 to 45 miles at cruising speeds of 25 mph. The Mini-els are made from a strong but lightweight plastic construction.

Electric vehicles do not necessarily have to use batteries charged from the mains

power supply as their source of power. For example, fuel cells generate electricity by a chemical reaction between a hydrogen rich fuel and oxygen. Romano (1989) points out that the theoretical efficiency of a fuel cell is 80 to 85 percent, whereas the internal combustion engine's is only 40 to 50 percent. Methanol would be a suitable fuel for the fuel cell. However, Romano indicates that the size and weight of the fuel cell needs to be reduced. The operation of fuel cells have been demonstrated and developments are taking place (Hirshenhofer, 1989).

Volkswagen's solution is to use an electric hybrid vehicle (Barrie, 1989a). A combustion system is used only when its extra power and torque are needed, relying at lower speeds on an electric motor. The Volkswagen hybrid Golf will use an electric motor up to 50 kph, with a diesel engine for higher speeds. They estimate that in urban traffic the Golf will do 100 kilometres on 2.5 litres of fuel.

Friction

Losses caused by friction are significant and it is worth taking measures to reduce them. One possibility is the introduction of low loss transmission systems, but there are also losses in the engine (Monaghan, 1988). Reducing the friction of a petrol engine by 10 percent would yield a fuel economy improvement of about 5 percent and a similar proportional reduction of the diesel engine's friction would give as much as 7 percent. Truck engines burn about 70 percent of their fuel at full engine load and so reduced friction would give a smaller saving in fuel consumption.

Monaghan states that reduced friction and improved oil formulations will allow engines to be produced which have better efficiency, longer service intervals and better overall durability.

The analytical and experimental tools to achieve worthwhile reductions in friction are essentially available today. Monaghan claims, to achieve those worth-while gains, the study of engine friction needs to be changed from a 'passive' to an 'active' role.

Vehicle Weight

Low weight vehicles provide another way of contributing to FEOS. In urban travel a significant proportion of the time is spent accelerating (Nishimura and Hino, undated). Significant amounts of energy, and hence fuel, are required to accelerate the vehicle up to speed. By reducing the vehicle weight a saving in energy and fuel consumption can be expected. Vehicle body weights could be reduced by the introduction of light alloys, plastics and carbon fibre composites. A car with a weight half that of a conventional car has been demonstrated by General Motors (Ashley, 1992). However, the carbon composite body cost US \$13,000. Hence, a significant reduction in material costs would be needed before these materials became viable.

Aerodynamics

Aerodynamic vehicle designs can help save energy, and hence fuel (Vicker, 1983). These savings increase rapidly with speed although at low urban speeds the effects are less significant (Gotz, 1983; Hucho, 1987).

4.3 FUEL AND EMISSION OPTIMISATION STRATEGIES

Fuel and Emission Optimisation Strategies (FEOS) aim to reduce fuel consumption and emissions. They may incorporate many of the technological options described above, in addition to planning philosophies and policy choices. The author envisages that FEOS may make use of many technologies, such as vehicle design, ATT, traffic management, and the planning of roads.

Wide scale traffic restrictions and bans, are generally expected to provide environmentally effective results, because the emission source is reduced or removed. However, such decisions are viewed by many as politically and socially unacceptable. Hence, improved air quality is likely to arise, at least in the short to medium term, from strategies which offer an effective compromise between society's environmental and travel demands. Several options have been considered and these offer varying degrees of air quality protection and restrictions on the public's freedom to travel.

There is a philosophy that a substantial reduction in the total volume of traffic will significantly reduce emissions. This has been demonstrated in Gothenburg, Sweden (Elmberg, 1977). The philosophy applies both nationally and at the local urban level. The types of strategies required to implement such philosophies are, however, likely to be different at national an urban levels. For example, at the national level traffic restrictions cannot be directly applied in a physical sense, with ease. Whereas at the urban level, access to environmentally sensitive areas can be physically restricted, enforcing a total ban or a selective ban based on vehicle types.

At the national level, a reduction in traffic volume and hence emissions may be achieved by the introduction of a 'carbon tax'. This forms part of a 'make the polluter pay' philosophy and involves adding an additional tax which takes into account the environmental damage caused by the use of fuel and its corresponding emissions. By adding this tax to the cost of fuel, it is anticipated that the higher prices will discourage people from making unnecessary journeys. Carbon dioxide emissions from transport in the UK are projected to increase by up to 70 percent in 2020, relative to 1990 levels; total UK emissions are projected to increase by 38 percent (DTp, 1993). The UK has a commitment of returning overall emissions of carbon dioxide in 2020 to 1990 levels (DTp, 1993). Therefore, the application of such a strategy, or a suitable alternative, appears likely if the commitment is to be achieved.

Some strategies to reduce vehicle emissions can be applied at national, or regional, level and within conurbations. For example, traffic volumes can, potentially, be reduced by encouraging several people to make their journey in the same shared car. These High Occupancy Vehicles (HOV) can be given preferential treatment such as access to specific areas and roads, or lanes, on which low occupancy vehicles are banned. This, combined with the will to improve air quality, may encourage its use and reduce the total traffic volume. Taking the concept further, traffic volumes have the potential to be reduced by encouraging people to leave their cars at home and make their journeys by public transport. However, before people are persuaded to switch their mode of transport from private to public, a clean, comfortable, safe,

reliable and efficient image for public transport may be necessary.

The use of public transport is seen by many as an important tool in the combat of air pollution. Public transport often operates most effectively within urban areas, and inter-urban travel, but for many commuters in rural or semi-rural habitats private transport still represents the most effective way of reaching an urban dwelling. Even in this case, public transport has something to offer in the form of park-and-ride schemes. This involves driving your car to the periphery of an urban, or inner urban, area and leaving it in a car park, from which you are collected by a bus and driven into the central area. Such schemes can be encouraged by relatively low park-and-ride costs, efficient public transport and effective disincentives such as high car parking costs within the central urban area. While this scheme may not control travel outside an urban area, it can assist in reducing the traffic volume inside an urban area.

Ideally, decision makers would seek a system which offers an effective compromise between society's demands for freedom of travel and protection of the environment. Ideally, such a system would need to be sufficiently flexible to support those demands during changing moods of public opinion and changing levels of air quality. Advanced Transport Telematics (ATT) can provide a flexible infrastructure which may have the potential to reduce vehicle emissions by offering a series of scalable strategies. This offers the potential to introduce a range of strategies from mildly restrictive measures, up to stringent control measures offering a very high degree of environmental protection. Further, such strategies may be automatically implemented only when required, avoiding otherwise poor levels of air quality and applying restrictions only when necessary. ATT can be applied to many areas of traffic management and control; in terms of air quality some of its potential applications are:

- traffic restrictions and the encouragement of inter-modal travel and public transport, potentially reducing the total vehicle-miles travelled, and hence overall emission levels;
- * emissions per vehicle-kilometre may be reduced by, for example, maintaining optimum vehicle speeds, reducing the number of speed changes and the time spent queuing;

- high concentrations of pollutants may be preventable, where they will harm people, property, or agriculture, through the implementation of traffic restrictions;
- peak concentrations could potentially be reduced by distributing traffic spatially and temporally;
- * through traffic could be rerouted, reducing emission levels in an urban area; and
- emissions could be regulated by restricting access to environmentally sensitive areas, based on a vehicle's emission characteristics.

The author has been actively involved in some of these potential applications, and later chapters of this thesis describe their demonstration and evaluation.

4.4 SUMMARY

This chapter has shown that there are many options available for reducing air pollution. These options have a wide range of costs and are potentially useful for short to medium term solutions. At least some of these options may have to be taken in the near future, given existing pollution levels and traffic growth forecasts.

Although many of the options described in this chapter are concerned with vehicle modifications, the author acknowledges that there are options available which do not necessarily involve vehicle modification. For example, careful road and urban planning may have the potential to reduce air pollution. However, they do not fall directly within the scope of the author's work and so have not been described.

The reduction of fuel consumption and carbon dioxide emissions should also be borne in mind, especially in view of concerns about global warming and the commitment to reduce total emissions in the year 2000 to the 1990 level. Technological options may provide assistance in achieving this goal. However, the potential growth in road traffic needs to be seriously considered; high levels of traffic growth could potentially counteract any savings arising from vehicle modifications.

One of the main objectives of this chapter has been to illustrate that there are many options available to the decision maker and that no one option alone is likely to offer a completely satisfactory solution to the air pollution problem. In addition, the options available and the demands of society are evolving, and as such should be anticipated.

This was recognised by the author at an early stage in his research. Consequently, an approach was adopted that would offer a high degree of flexibility, and incorporate several state-of-the-art technologies and strategic options. It would also provide a framework capable of evolving with the technology and environmental demands of the future.

Chapter 5 MODELLING AND PREDICTION

5.1 INTRODUCTION

A model is a representation of reality. It is usually a simplified and generalised statement of what seem to be the most important characteristics of a real-world situation. The value of a model is that it can be used to improve our understanding of the ways in which a system behaves, in circumstances where it is not possible (for technical, economic, political or social reasons) to construct or experiment with a real-world situation.

Modelling provides an alternative to on-site monitoring, and is typically a more economical approach, assuming input data already exist and no comprehensive data collection exercise is required for model calibration. Given the flexible nature of models, many strategies can be compared in order to determine the most effective and beneficial approach. Such an approach has been used in this research.

This chapter provides a review of modelling and prediction techniques suitable for application to traffic related air pollution studies. In this chapter a brief outline of traffic modelling techniques are given, followed by a review of emission and dispersion prediction methods and models. Finally, this chapter summaries these techniques and assesses their suitability for the modelling of advanced environmentally sensitive control strategies.

5.2 TRAFFIC MODELLING

This section describes some common techniques used to model traffic. The output from traffic models are often used to provide direct, or indirect, input data for environmental modelling. Hence, in studies which are unable to obtain actual traffic data, these models provide an essential component in the pollution modelling process. Traffic models have a role in planning the urban traffic network, understanding its behaviour and providing predictions for traffic appraisal schemes. The role of models in the planning process has been described by Lee (1973), and the Institution of Highways and Transportation (1987) and provides a comprehensive description of transportation planning tasks and the use of models. It has not been practical to go into such detail in this thesis.

An hierarchy of data collection, prediction and forecasting tasks are necessary for transportation planning. These tasks can be grouped into the following areas:

- * urban growth, socio-economic aspects and the demand for travel;
- * trip origins and destinations and the demand between them;
- * choice of mode of travel;
- * transport network capacity and traffic assignment;
- traffic flows and traffic performance (e.g. average speeds, stops, delays, etc.);
- * signal coordination; and
- * policy selection and feedback.

With the possible exception of the first (Wickstrom, 1991) and last areas, the transportation planner may use one or more models to assist in the prediction or forecasting of these effects. Urban growth and socio-economic aspects involve many factors and are difficult to understand and accurately represent in a model (Edner, 1991; McDowell, 1991). Hence, the demand for travel is also difficult to forecast (Pisarki, 1991; Wachs, 1991). The quality of the forecasts is therefore dependent on the skills of town planners and economists in predicting demographic trends, and national and local economic performance.

Trip Origins and Destinations

Trip origins and destinations can be established by conducting surveys and identifying zones perhaps split by residential, industrial and commercial areas. These surveys provide an indication of the number of trips made from one zone to another and vice versa (Lane, Powell and Smith, 1971). This process establishes the overall demand for travel and the origin and destination of trips (Stopher and Meyburg, 1976).

Travellers have the option of travelling by various modes of transport, such as car, bus, or train for example (TRB, 1993). Based on the modal choice trips are allocated to the various categories, or modes, of transport. This allows the volume of road traffic to be predicted.

Traffic Assignment

The route that traffic will take through a finite capacity network is determined by modelling the assignment of traffic flows to routes which offer the 'best' journey between origin and destination (O-D). The criteria used to define the 'best' journey is usually one, or a combination of, the following:

- minimum journey time;
- * minimum journey distance; and
- * minimum cost (based on such parameters as time, distance, etc).

Calculation of the best journey based on time, distance or cost is a relatively easy task and represents the methodology employed by most assignment models. In rare cases, the assignment model may also represent modal split, for the routing of different modes of transport (Southworth and Janson, 1980), or just public transport (Lane, Powell and Smith, 1971; Chaplean and DeCea, 1983). Thomas (1991) describes a range of traffic assignment techniques. The assignment process may simply assign all the traffic between a given origin-destination pair to the same route, and repeat this process for all origin-destination pairs throughout the network. This technique is referred to as all-or-nothing assignment because all the trips, between an O-D pair, are assigned to one route, and none to the others.

An alternative is to assume that all trips between a given origin-destination pair do not use the same route and adopt a stochastic approach. The probability of a trip taking a particular route is assigned for all 'reasonable' routes between origin and destination. Routes are assigned a probability based on their attractiveness (e.g. short travel time). The 'best' route would be assigned the highest probability and other routes ranked according to their attractiveness. The trips between origin and destination are then assigned across all reasonable routes, based on the probabilities. This method of assignment has been widely used (Burrel, 1968; Dial, 1971; and Van Vliet and Dow, 1979).

However, this approach takes no account of changes in journey times as a result of traffic loaded onto the network and the finite link capacities. For example, if all journeys travelled along the same route then it is likely that there may be a faster alternate route unhindered by traffic delays. As the flow increases along a link its average speed falls according to a speed-flow relationship until a critical point is reached at which the flow cannot increase any further. Therefore, as the flow on a link increases the link becomes less attractive due to increased link travel times. The assignment model may take these effects into account and repeat the above assignment process for a preset number of iterations, or until convergence.

Other factors can also be incorporated into the process such as: different delays for turns; over-saturated conditions; interaction of queues; effects of traffic signal settings; delays due to conflicting flows and lane sharing; bus routes; and prohibition of HGVs. Models have been developed to take account of some of these factors: HINET (TPA, 1981); JAM (Wootton Jeffreys and Partners, 1980) and TRIPS (MVA, 1982). Congestion assignment models may use simulation techniques, rather than fixed equations to represent delays. Examples being: SATURN (Van Vliet, 1981), CONTRAM (DTp/TRRL, 1982) and TRAFFIQ (Transpotech Ltd, 1983).

An in-vehicle route guidance system being used in the QUARTET field trials allows the user to select between "short, economy and easy routing modes" (QUARTET Consortium, 1993a). Easy routing is defined by the number of junctions/turnings and preferred type of road. Therefore, it may eventually be necessary to represent these options in assignment models, if such route guidance systems achieve a significant market penetration.

Traffic Models and Signal Coordination

Traffic flows and traffic performance are represented by the traffic model to simulate how flows behave, interact at intersections and to calculate stops, delays and average speed. A traffic model is also likely to form part of a model designed to coordinate signal timings. Using these tools, the traffic engineer can alter signal timings to change, for example, the capacity at junctions. This alters the stops and delay at junctions, and has an associated impact on traffic emissions. The author's research has investigated this impact in detail. The methodology and results are described in later chapters.

Signal coordination improves the efficiency of the road traffic network by coordinating traffic signals that are in the same urban area. This results in significant benefits in terms of total stops and delays compared to uncoordinated traffic signals. Traditionally, a set of fixed-time traffic signal plans are calculated, for various periods throughout the day, that offer the best traffic performance index (minimising stops and delays).

The signal settings in each plan are fixed in that the green periods and offsets do not vary from cycle to cycle. Fixed-time systems control known patterns of traffic, rather than respond to instantaneous demand. Probably the most widely used and proven fixed-time model is TRANSYT, developed and revised by the former Transport and Road Research Laboratory (Robertson, 1969; Vincent, Mitchell and Robertson, 1980).

TRANSYT is a method of determining optimum fixed-time traffic signal settings that enable known flows to pass through a road network with the minimum of stops and delay. It uses a traffic model which allows for flow interaction between successive road intersections, and the dispersion of platoons between them. Traffic flow may be controlled by signals or another (priority) traffic stream which has right of way. Optimum signal settings are achieved by using a procedure that minimises any chosen balance between total delay and the number of stops. Both the signal offsets and the allocation of the green times can be optimised.

This model forms an essential part of the PREDICT model suite, its role has been described in PREDICT Deliverable Two (PREDICT Consortium, 1989a), and in this thesis in Chapters 6 (Model Suite) and 8 (Modelling Methodology).

TRANSYT is a good signal coordination model for producing optimised fixed-time plans, but, as an off-line model, it does have a number of weaknesses (Institution of Highways and Transportation, 1987). These are:

- * traffic flows need to be collected throughout the road network, for representative periods of the day, week, etc., and should be kept up to date to achieve maximum benefit from signal coordination (Bell, 1986);
- * significant short term traffic fluctuations within the period of a fixedtime plan will not be accounted for; and
- differences between input and actual link flow data on saturated links can give rise to large errors in the prediction of total delay for those links.

Policy Selection and Feedback

Policy selection and feedback represent the final steps in the transportation planning tasks described above. This may form part of the modelling software, and both these steps are important to the transportation management process.

Given the initial predictions from the model suite the 'decision maker' may decide that

the existing scenario (as predicted) is not satisfactory. A policy, or strategy, will then be defined to modify the existing scenario in an attempt to make it more satisfactory. For example, it may be decided that link journey times are too long for particular links and that signal timings should be adjusted to resolve this problem. In this case the timings may be adjusted and the modelling process repeated.

The output of a model may be used to adjust the model's input parameters; this is known as feedback. Feedback can be used to give a model stability and provide a more accurate representation of the process being modelled. Alternatively, manual feedback may be introduced with adjustment to some of the model's parameters according to a preferred traffic control strategy or policy.

In addition to traffic criteria, such as journey time, the criteria influencing policy choice and strategy activation may be based on environmental considerations, such as high levels of noise or atmospheric pollution. In this case, the policy decision step is taken after the environmental modelling steps, such as the emission and dispersion modelling techniques described in the following sections of this chapter.

5.3 EMISSIONS MODELLING

Emission modelling techniques vary from relatively simple average speed models to more complex types representing emissions from each driving mode and the effects of different vehicle types and ages.

For mean emission rates based on laboratory simulation of different driving schedules there have been indications that CO and HC from petrol vehicles can be estimated by mathematical models (Watson, 1972; Watson, Milkinks & Bulach, 1976; Evans, 1979; Kent & Mudford, 1979: Potter & Savage, 1983). These account for variations of average traffic speed from area to area or from link to link. However, for NOx complex models must be used because of its sensitivity to vehicle acceleration rates.

Whatever type of model is used, the availability of comprehensive, accurate and up-todate emissions input data is a fundamental requirement for accurate predictions from an emissions model. In the US, comprehensive guidelines for the preparation of mobile source emission inventories exist (EPA, 1989) and significant efforts have been made to compile such inventories. However, the task is not a trivial one and a number of technical and institutional problems were identified in a study based on existing practises for fifteen urban areas (Suhrbier, Lawton and Moriarty, 1991). Nevertheless, if accurate model predictions are deemed necessary this task must be pursued.

Emission Models

Models to predict air pollutant emissions generally represent speed and/or a driving cycle. Models developed in the US require additional information on factors such as age and condition of vehicles (including their emission control devices) in the fleet.

In the past, methods used in the United Kingdom and the Federal Republic of Germany have been based on a simple emission rate equation. Generally, in the UK, the emission rate was only based on speed (Hickman & Colwill, 1982; Costas Abacoumkin and Associates, 1988). In the Federal Ministry's method, traffic composition was also included (Federal Minister of Transport, 1982). The model also required information for traffic conditions, based on a classification of individual road links used in the Federal Republic of Germany.

MOBILE is widely used in the US, forming the emissions component of several pollution model suites (Schewe and Braverman, 1991; Halcrow Fox, 1993). It is a comprehensive computer model developed by the US EPA (1981) for the calculation of CO, HC and NOx emission rates from highway motor vehicles. It calculates emissions for eight individual vehicle types in three regions of the USA. The program uses the calculation procedures and emission factors presented in the document EPA 460/3-81-005 (EPA, 1981a) and will estimate emission factors for any calendar year between 1970 and 2020. Emissions per unit distance are calculated as a function of trip length and average speed, based on a series of simultaneous equations. A constant rate of emission is assumed over the length of the road. It also makes use of speed values which incorporate the delay at intersections, as opposed to

specifically modelling emissions by driving mode.

MOBILE emission estimates depend on various ambient factors, vehicle usage and maintenance, and fleet composition factors. The required percentage of hot-starts is determined based on a document published by the FHWA (Ellis, Camps & Treadway, 1978) and the results of an earlier study (Midurki & Castaline, 1977). The emission rates for all areas except high altitude (greater than 4000 ft) and California are based on dynamometer test results, over-the-road emission sampling (heavy duty trucks only) and emission standards.

An earlier mathematical model, the Modal Analysis Model (MAM) by Kunselman et al (1974) can be used to calculate the amount of CO, HC and NOx emitted by individual vehicles, or groups of vehicles, which are driven over particular driving sequences. Vehicle emission data collected in 1971 from 1020 individual light duty vehicles is the basis of the model. The definition of 37 speed-time profiles (5 steadystate) are used to predict the emission response over a specified driving sequence. Though the model is now rather qualitative, as many years have passed since its data base was collected, no other model in the US exists to provide similar predictions. The model has been used for modelling carbon monoxide hot spots (Zamurs & Piracci, 1982), and consists of part of the EPA Intersection Midblock Model (IMM) (Benesh, 1978) where some care has been taken regarding the update of emission rates used by the model.

The Emission Modal Analysis Model models CO emission rates near isolated signalised junctions, or in conjunction with traffic simulation models (UTC-1 and NETSIM). It distinguishes between emission rates near intersections and those along a link. It is typically used to model on a network wide basis in conjunction with detailed traffic simulation models that follow every vehicle throughout the network and through each of their driving modes (cruise, acceleration, idling and acceleration). The model represents the spatial variation of emissions along the link and at the intersection. However, it only models emissions of carbon monoxide.

The MODEM Emissions Model uses speed-time profiles to express emissions in terms of averages per driving cycle. The calibration data is based on a recent pan-European study of car emissions (Joumard et al, 1992). This involved collecting driver behaviour measurements on 58 vehicles in 6 European towns. The processing of urban speed curves allowed the design of 14 driving cycles representative of urban characteristics and passenger car behaviour. The emissions database is based on laboratory measurements from 150 cars including conventional, catalyst equipped and diesel cars. This resulted in the derivation of emissions and fuel consumption as functions of instantaneous speed, and the product of speed and acceleration. An attempt to validate this model with an in-vehicle emissions sampling system was unsuccessful. It was concluded that the correlation between traffic parameters and emissions were not entirely satisfactory, and that further developments are needed.

Modelling studies which simulate traffic flow and emissions (and dispersion) have been carried out to assess the air quality impact of signalised intersections (Patterson, 1976; Claggett, Shrock & Noll, 1981; Griffin, 1980). Models in this area include the German Federal Ministry of Transport (FMT) which calculates CO and NOx emissions at junctions with or without traffic control and the US IMM (Benesh, 1978), MICRO (Griffin, 1980) and TEXIN (Messina, Bulin, Nelli & Moe, 1982) models. In the same area theoretical studies have been carried out to optimise signal progression using air quality criteria as a measure of effectiveness (Patterson, 1975; Ludwig, Simmon and Moon, 1973; Mahalel & Peled, 1984).

A relatively comprehensive emissions modelling approach has been adopted as part of the UROPOL pollution model suite (Matzoros, 1990). This models emissions from cruise, acceleration, deceleration, idling and creeping. The creeping mode represents the characteristics of vehicles queuing at a priority junction, whereby vehicles gradually move forward towards the junction.

A comprehensive emissions model is being developed in Italy (Negrenti, 1993). The TEE computer model represents vehicle emissions and energy consumption. It aims to be a decision support system for the impact analysis of traffic management strategies, traffic control systems, fleet development, and driver behaviour modifications. It also aims to predict absolute emission estimates for input into atmospheric dispersion models.

TEE has been designed so that it is able to make use of virtually all existing types of vehicle emission data. It is able to represent a mixed fleet containing various vehicular categories. It supports standard vehicular categories, such as those used in CORINAIR studies, and user defined categories. In addition to normal traffic flows, vehicles parking along the street or joining the traffic stream from parking are also represented. It can model on street parking and parking lots. The model also includes a set of correction factors to take into account engine temperature, gradient of the road, altitude above sea level, and other parameters.

There are several kinematic options for representing the driving patterns of each vehicle category. The three main kinematic models are average speed, real speed cycle and the four phase drive cycle. The output of the TEE model can be reported as grams per vehicle and kilometre, grams per vehicle along a particular stretch, and total emission rate in kilograms per hour. Totals and intermediate results can be requested for each vehicular flow or traffic 'mode'.

The model incorporates most of the desirable features of existing emission models around the world. It has been designed in a modular manner, provides menus for the creation of data-sets, and includes predefined data-sets. If the proposed final version of this model achieves all its objectives, it is likely to be an effective research and decision tool for air pollution impact studies.

Emission model performance

The analysis of poor air quality levels, as a result of traffic emissions, has been the subject of many studies in the United States. Not surprisingly therefore, there have been some detailed studies assessing the performance of emission models.

As noted earlier, the availability of comprehensive, accurate and up-to-date emissions input data is a fundamental requirement for accurate predictions from an emissions model. In a European perspective, the apparent absence of relevant literature seems to suggest that these issues are not being actively pursued in great detail. Although the author has identified some pan-European activity, in terms of collecting emission data over a driving cycle (e.g. MODEM and CORINAIR). The author did not find any evidence for the existence of recent UK or pan-European activities aiming to specifically validate emission model performance.

Chapter 3 and this chapter, have shown that there are problems associated with emission models based solely on input data from standard (fixed) driving cycles, such as ECE and the US Federal Test Procedure (FTP). History, has shown that the standard driving cycle has been revised a number of times to incorporate various aspects of modern day driving patterns (e.g. the higher speeds of inter-urban travel). Further revisions may also be required in the future.

Given studies have shown that many factors have a significant influence on vehicle emissions, the availability of emission data for these factors will significantly influence the accuracy of emission model predictions. In the US, it has been shown that their relatively comprehensive emissions database, and to some extent emission model algorithms, are not adequate for accurate model predictions (Bradlow, 1990; Fujita et al, 1992; Cadle et al, 1993). Consequently, more data needs to be collected for emissions as a function of several factors (Cadle et al, 1991 and 1993). Ostria and Lawrence (1994) have also recommended that consideration is given to efforts by the US EPA and the California Air Resources Board (CARB) to develop new motor vehicle emission certification processes.

Studies have concluded that vehicles emit two to four times as much HC and CO emissions as estimated by US emission models (Pierson et al, 1990; National Research Council, 1991). They have suggested many factors may be responsible for these under-predictions. It is also suggested that much of this under-estimation may be related to the driving cycle tests used in: measuring vehicle emissions; the emissions certification process of new vehicles; and the development of existing emission models (Sperling et al, 1992).

The FTP does not allow for various vehicle operating conditions, such as speeds above 57 miles per hour, accelerations greater than 3.3 miles per hour per second, or sharp decelerations. Activities such as these are believed to be significant contributors to instantaneous vehicle emission rates. Indeed, a recent report by the EPA assessing average driver behaviour concluded that actual driving speeds and acceleration rates are much higher than those represented by the current FTP (EPA, 1993). Hence, the FTP may no longer adequately represent emissions under current driving conditions. Recently, the EPA scheduled a set of tests to quantify emissions for those driving patterns that are outside the envelope of the FTP (EPA, 1993a).

5.4 DISPERSION MODELLING

The role of the dispersion model is to predict pollutant concentrations based on pollutant emission rates, meteorological conditions and site geometry. This often represents the last step in the traffic air pollution modelling process. However, dispersion modelling did not form part of the author's research. This section has only been included to give an overview of the overall pollution modelling process.

A dispersion model has a number of input parameters to calculate the pollutant concentration at a point, or receptor. In particular, it needs the spatial separation of the point sources (or line sources), emission rates, meteorological conditions (typically, at least wind speed and direction) and the distance between source(s) and receptor. These represent the minimum input requirements for a dispersion model, more sophisticated models may have additional requirements.

Techniques for Predicting Pollutant Concentrations

Pollutants emitted from moving point sources are diluted by the mechanical turbulence from vehicles. This gives an apparent source that is a long rectangular volume over the paved roadway containing a relatively well mixed pollutant source from which the pollutants are typically dispersed by the wind.

The starting point for modelling pollutant dispersion is typically a differential equation which expresses the rate of change of the pollutant concentration in terms of average wind and turbulent diffusion. The change in concentration is the result of pollutant movement under the influence of wind or turbulence, contribution from sources within the volume and changes because of chemical reactions. The dispersion process may be represented by a number of methods depending on the way in which the dispersion equation is solved (Linaritakis, 1987). The most complex solution is by numerical integration. Models following this approach are called numerical models.

The second approach assumes that the wind and turbulence functions are independent of time and position. This allows an analytical solution whereby the concentration is expressed as a Gaussian distribution in the vertical and crosswind directions. Such models are called Gaussian Plume models. Generally, Gaussian models have been applied to highway modelling whereas numerical models have been applied to highway and street-canyon cases. Highway situations often don't have significant topological features nearby and the dispersion is primarily related to wind speed and direction. Whereas, canyons typically refer to urban streets which have tall buildings either side of the street. In these cases the wind's speed and direction can be significantly altered leading to high pollutant concentrations. A useful source of information for these studies are experimental observations from wind tunnel and field studies (McCormick and Xintaras, 1962; Georgii et al, 1967; Linaritakis, 1987).

A third type of model has been derived from the idea of the continuity of mass of a volume element. If the volume element is large enough and diffusion can be neglected, the Box Model may be used. This model has been applied to the street-canyon case for the prediction of pollutant concentrations, but its main use has been in urban mesoscale modelling (Tenekes, 1976).

Empirical models have also been developed based on field and wind tunnel observations using regression analysis to correlate pollutant levels and affecting factors. They vary as to the number of explanatory variables they incorporate and the range of traffic, weather and layout characteristics that they can describe.

Dispersion Models

This section describes some models used for predicting short-term traffic pollutant concentrations at the microscale level. These can be classified into two main

categories: highway models; and street canyon models.

Highway Models

The major existing dispersion models are of Gaussian Plume type and are empirical or semi-empirical models. Numerical models have not been widely used because they require detailed meterological data which are often not available and they require considerable computing power. Sistla et al (1979) compared four numerical models with four Gaussian models using data collected at a particular highway site. They concluded that the numerical models did no better than the gaussian models. Numerical models yielded good correlations for neutral stability, while Gaussian had good correlations for unstable conditions.

Most of the models describe pollutant dispersion as a function of the wind angle with respect to the roadway. The UK TRRL method (Hickman & Colwill, 1982) and a wide range of US models are Gaussian type models.

The US Environmental Protection Agency's (EPA) HIWAY model is an empirical gaussian model, designed for estimation of dispersion from a highway in a stable atmosphere (Petersen, 1980). Highway emissions are represented as a series of finite line sources. Each traffic lane is modelled as if it were a straight, continuous finite line source with a uniform emission rate.

CALINE-3 (Benson, 1979) is a Gaussian plume line source model developed by the California Department of Transportation. It can be used to predict carbon monoxide concentrations near highways and arterial streets, given traffic emissions, site geometry and meteorology. The model has adjustments for averaging time and surface roughness and can handle up to 20 links and 20 receptors. Individual links are divided into a series of elements from which incremental concentrations are computed and added. The enhanced version, CALINE4/V9-PG (Benson, 1984; Ireson, 1986), can also model CO in street canyons.

The Intersection Midblock Model (IMM) has been developed as an aid to the identification and analysis of carbon monoxide hot spot locations. It calculates hourly

carbon monoxide concentrations at specified locations near streets or intersections (Benesh, 1978). IMM uses carbon monoxide emissions from vehicles cruising, accelerating, decelerating and idling by using the EPA Modal Analysis Model (MAM).

After the emissions have been calculated and distributed among the individual lanes of each link, the EPA HIWAY model is called to calculate CO concentrations at each receptor location based upon values of hourly wind speed and direction and atmospheric stability. If the street configuration complies with a criterion suggested by Georgii et al (1967) then a street canyon vortex is likely to be developed and the model will use the street canyon model of the Stanford Research Institute (Johnson et al, 1973) to calculate the concentration of a street orientated receptor.

The computer based TRRL Method (Hickman, Colwill & Hughes, 1979; Hickman & Colwill, 1982; Hickman & Waterfield, 1984) is based on the gaussian dispersion theory with empirical formulation so that it represents the roadside situation. The method uses a simplified version of the Gaussian dispersion equation which assumes that there is no difference in height between source and receptor (two dimensional model). This method forms the basis of the dispersion model used in the PREDICT model suite.

Its inputs have been confined to information readily available to the transportation planner. Pollutant concentrations can be calculated for either a single location or for a grid of receptors. Although the calibration and validation of the composite (emission-dispersion) model has been based on measurements of carbon monoxide, some relationships which use CO levels as a guide to HC, NOx and lead concentrations have also been included in the method.

The model (PREDCO) based on this method used measurements from two highway sites which may not be representative of all situations. A single concentration value is considered implicitly by the model as background concentration but on many occasions this value may prove to be quite different from background levels local to a transportation scheme. Therefore, it has been argued that no estimated concentration should be regarded as an accurate prediction, and that predicted changes between 'before' and 'after' scenarios should be considered. The method is not suitable in situations where large topographical features are present, nor where there is more than one level of traffic.

The Site Monitoring Method is a flexible method which can be used in the air quality impact assessment of a rural (highway) or an urban (street canyon) transportation scheme (Watkins, 1991). The method can be used to assess future pollutant concentrations using specifically developed site models or site calibrated dispersion models. The method usually requires concurrent measurement of pollutant concentrations and traffic and weather data which are analyzed later to determine background variation and/or to develop empirical relationships between pollutant concentrations and different exploratory variables.

As the method is specific to the monitoring site, developed relationships are not necessarily valid for other locations. The accuracy of these relationships varies depending on the pollutant, the number of the explanatory variables, the traffic and weather conditions, and the method of the analysis.

Specially designed dispersion experiments in the US resulted in improved model accuracy. Evaluation of some commonly used American Gaussian and numerical highway models (Chock, 1978; Maldonado & Bullin, 1977; Noll, Miller & Claggett, 1978; Rodden, Green, Messina & Bullin, 1982) using data from different studies showed that:

- * numerical models perform no better than gaussian;
- * when the entire range of concentrations is considered, gaussian models appear to be more accurate;
- * in general, all models seem to give good predictions close to the source, with correlations between predicted and observed levels decreasing as the distance from the source increases;
- * the models tend to over-estimate pollutant concentrations much more

as the distance between source and receptor increases;

- * the accuracy of model predictions depends on the atmospheric conditions; most of the models perform poorly for wind speeds less than 1.0 m/sec; whereas model accuracy in most cases increases with the angle between wind direction and road alignment (performs best for winds perpendicular to the road); and
- the more accurate models over- or under-predict by a factor of 2 for the majority of the cases (85 per cent of the time).

Street Canyon Models

Complex numerical models may be used to study pollutant concentrations in street canyons. However, such techniques require considerable computer power. There are also difficulties in accounting for variations in street-level dispersion parameters which arise from the air motion induced by counter flowing traffic streams along roadways.

Box models have been used to represent pollutant dispersion in a street canyon. Williams (1982) used a simple box model for long-term (annual average) prediction of CO, NOx and black smoke concentrations based on data collected from a road with high traffic volumes in London. Application of the model to another site allowed him to conclude that the most important factor in determining the accuracy of the simple box model for a street canyon is likely to be the accurate specification of pollutant emission rates.

Nicholson (1975) developed a "scalar budget-box" diffusion model to predict hourly pollutant (CO) concentrations in street canyons. It comprised two equations for wind parallel and perpendicular to the street respectively. For most days at all sites, the predicted values were within 33 percent of the observed. The model appeared to be less reliable in the case of weak winds. The model performed reasonably well as an average street canyon air quality model. However, it appears that the number of wind profile parameters required for its application at each site have resulted in it no longer being used.

A street canyon model developed by the Stanford Research Institute has been used in America (Johnson, Ludwig, Dabberdt & Allen, 1973). This is largely based upon extensive measurements made by Georgii et al (1967) and experimental contributions from other researchers. The input data consists of emission rates, street canyon depth, street width, wind speed at roof-level and the slant distance between receptor and the nearest traffic lane.

A Street-Canyon Model has been developed in the UK (Crompton and Gilbert, 1970). Research concentrated on relating traffic, layout and meteorological factors to pollutant levels at the kerbside of urban roads over short periods of time. The first attempts to quantify air pollution levels (CO) at the kerbside (Crompton and Gilbert, 1972) were based on data measured in Edinburgh, Canterbury, Kingston and Greenwich, representing a wide variety of traffic and layout characteristics. Although they could not explain more than 70 per cent of the variation in the data, Crompton and Gilbert found that by far the most significant variable was the traffic density per unit width of carriageway.

Studies (Richardson, 1982 and Linaritakis, 1983), using data collected from a range of typical urban streets in central London, demonstrated that empirical models based on multiple regression techniques have the potential to produce robust models. Such models describe the situation in urban street canyons in relation to traffic generated air pollution, and can be used for practical transportation planning studies.

Evaluation of Models

Predictions from the TRRL dispersion model have been compared with observations (Hickman and Colwill, 1982). At a tunnel site 86 percent of the predictions were within 50 percent of the observed values. At an urban site 74 percent were within 50 percent of the observed values; and 57 percent were within that range at a rural site. Members of the QUARTET Consortium have used the model in Athens and found plots of model predictions closely followed observed pollutant concentrations (PREDICT Consortium, 1989a; QUARTET Consortium 1992). However, Watkins (1991) points out that the model is based on many assumptions and a simplified

dispersion theory. He suggests that it would be unwise to literally interpret the predictions of absolute concentration values. It is better used for the comparison of 'before' and 'after' road traffic scenarios.

An evaluation of eight intersection modelling techniques was conducted by the US Environmental Protection Agency (Schewe and Braverman, 1991). The study measured air quality, traffic and on-site meteorological data at an intersection in suburban Chicago. The topography of the site consisted of flat, level terrain and no street canyon effects were present. Their results indicated that TEXIN2/MOBILE4, CALINE4/MOBILE4 and CAL3QHC/MOBILE4 were the best performing models and, generally, it was concluded that they performed well.

However, difficulties with dispersion modelling are encountered in urban areas with significant topological features. In particular, street canyons have to be treated in a special way (Linaritakis, 1983). The Stanford Research Institute's canyon model has been shown to perform "reasonably well" (Koushki, 1991). The correlation coefficients, for measured versus predicted levels, varied between 0.53 and 0.85. It has also been shown that the model can be applied to European sites (Leisen and Sobottka, 1981; Hamilton, 1984).

Zamurs (1990) has emphasised the importance of a modal emissions approach for intersection modelling, and the need for further developments in dispersion modelling.

As part of the environmental impact statement for a major transport project in New York, an air quality study was undertaken to determine the performance of intersection air quality models and determine which model would be most suitable for the impact analysis (Zamurs and Conway, 1991). The study collected traffic and meteorological data, and monitored carbon monoxide concentrations. The study concluded that model performance was disappointing. The models under-predicted, except for a modal emissions approach, which approached or over-predicted, compared with observed concentrations.

5.5 MODEL SUITES

The previous sections of this chapter have described traffic, emission and dispersion models in isolation. However, when a study team investigates the impact of traffic management and control strategies on air pollution they often make use of a model suite. A model suite is a collection of traffic and pollution models which are used together. A model suite may also include additional software modules to automatically translate the output data of one model into a format suitable for input into the next model.

A good example of a model suite is the Urban Road Pollution Model, called UROPOL (Halcrow Fox, 1993). This model suite comprises the SATURN traffic assignment and simulation model (Van Vliet, 1982; Hall et al, 1980), queuing model, emission model (Matzoros, 1990) and PREDCO dispersion model (Hickman and Colwill, 1982). It is designed to model pollutant emissions and concentrations caused by junction effects and driving modes. Queue lengths at signalised, priority and roundabout intersections are specifically modelled, and predictions include the spatial variability of emissions on such urban roads.

The queuing, emission and dispersion modelling elements of the model suite are described by Matzoros (1990). The model incorporates the following characteristics of an urban road networks and its associated air pollution:

- * the formation and dissipation of queues;
- different vehicle operating modes (cruise, deceleration, queuing and acceleration) at different points along a link;
- * emission rates by operating mode; and
- * the effects of the movement of vehicles on the dispersion of their exhaust gases.

The modelling procedure starts by feeding network and trip matrix details into the traffic model. The output of the traffic model consists of traffic flows, speeds, signal settings, road capacities, and junction types. These data, along with acceleration and deceleration rates, are then used as input to the queuing model. The predicted queue lengths for each link in the network and emission rates for each driving mode are used by the emissions model to predict the spatial distribution of emissions along links. Finally, the dispersion model uses these emissions, along with wind speed and direction, to predict pollutant concentrations. The pollutants modelled are carbon monoxide, hydrocarbons, nitrogen oxides, and lead.

5.6 SUMMARY

This chapter has described the various techniques available for modelling the impact of transport policy and traffic control strategies on air quality. The technique can be broken into two key areas: transport and air pollution. The transport models are used to produce predictions of traffic flows, speeds, and delays. These are used by an emission model to predict pollutant emission rates. These emission rates are input to a dispersion model to predict pollutant concentrations.

An emission model usually predicts pollutant emission rates either over an area or link by link. Emission models typically require, as a minimum, the average speed of the vehicle and emission rate as a function of vehicle speed, for each pollutant. In some cases the emission model makes predictions based on a standard driving cycle which is assumed to be representative of the urban driving pattern. It has been indicated that there are problems with models based upon standard driving cycles.

The standard driving cycle provides a standardised way of certifying emissions of new vehicles, conformity testing in-service vehicles and, to a lesser extent, estimating total emissions over a region. The author recognises such benefits of the standard driving cycle. However, in terms of modelling emissions within an urban area, particularly at street level, predictions based on such driving cycles can have significant problems, as has been indicated in this review. Indeed, the findings of the author's work support this view strongly, due to the complexity and variability of driving patterns

and emissions from street to street.

For some studies a more detailed modelling approach that specifically represents all driving modes is preferable. In addition, emission modelling needs to accurately represent the emission characteristics of various types of vehicle.

Emissions can be influenced by many factors, such as vehicle type, vehicle condition and ambient factors. MOBILE represents many of these factors, but lacks the ability to specifically represent emissions by driving mode. Also, the database for this model is specific to vehicles in the US. The emissions model incorporated into UROPOL has several good features, particularly the representation of driving modes and the effects of different junction types.

Pollutant emission rates from an emission model are input to a dispersion model to predict pollutant concentrations for a given network (or link) topology and set of meteorological conditions. Dispersion modelling can be a complex process and often a model will be developed to work in a particular context, such as highways/rural roads or roads in a 'canyon'.

The PREDICT model suite follows a modelling approach similar to that outlined in this chapter. It consists of an assignment model based on the Dial algorithm, the TRANSYT signal optimisation program, a specially developed emission model and the PREDCO dispersion model. The PREDICT model suite is described in more detail in the following chapter.

Chapter 6 MODEL SUITE

6.1 INTRODUCTION

This chapter describes the model suite used in the PREDICT and QUARTET projects, and in the research described in this thesis. At the start of PREDICT, the project consortium decided there was not a suitable model suite for modelling advanced environmentally sensitive traffic control strategies. Consequently, the project consortium enhanced an existing model suite and developed a flexible emissions model able to meet the requirements of PREDICT. Further enhancements were also made to the model suite in the QUARTET project.

This chapter outlines the PREDICT model suite's functionality and the interaction between models. The PREMIT emissions model is described in greater detail than the other models of the suite, for two reasons. Firstly, this represents a new and important component of the model suite, whereas the other models are based on techniques that are widely used throughout the traffic engineering and research community. Secondly, the emissions model is directly related to the author's research, and was developed by the author. Its key features are, a high degree of flexibility, and the representation of driving mode and fleet composition.

Finally, this chapter assesses the suitability of the PREDICT model suite for the PREDICT and QUARTET projects, and the author's research.

6.2 OBJECTIVES

The PREDICT consortium needed a model which could simultaneously and accurately represent all of the changes caused by the introduction of environmentally sensitive traffic control strategies. These strategies would change traffic flows, driving cycles, fleet composition and vehicle emissions. The main objective of the model was to compare the effectiveness of different strategies relative to a base case scenario. The emission model also had to have sufficient flexibility to readily accept new emissions data as they became available. This would allow the emission inventory to be improved over time, and sites other than Athens to be evaluated.

In the QUARTET project, an online real-time capability was required, whereby real traffic data would provide the input to predictions. This would allow a closed-loop traffic control infrastructure to be developed which was capable of responding to potential air pollution threats in real-time.

The objectives of the research described in this thesis were, primarily, to investigate the behaviour of road traffic emissions and their implications for environmentally sensitive traffic control strategies. These objectives were met using a subset of the PREDICT model suite.

6.3 PREDICT MODEL SUITE

The PREDICT model suite consists of four main modules: traffic assignment; signal optimisation model; emission model; and dispersion model (PREDICT Consortium, 1989a and 1989b). Figure 6.1 illustrates the structure of the PREDICT model suite.

Starting with an origin-destination (O-D) trip matrix, and a representation of the road network including link travel times, the assignment model allocates traffic flows to links in the network. These flows then provide the input to the signal optimisation model. This model is typically used to produce signal timings that minimise stops and delay. The resulting estimates of delays, stops and queue lengths are then fed into the emissions model, which determines emissions based on the times spent in each of four driving modes: acceleration; cruise; deceleration; and idling. The emissions model calculates pollutant emission rates for each link. These are used by the dispersion model to predict roadside pollutant concentrations.

The author's research involved using the TRANSYT signal optimisation model and the PREMIT emissions model.

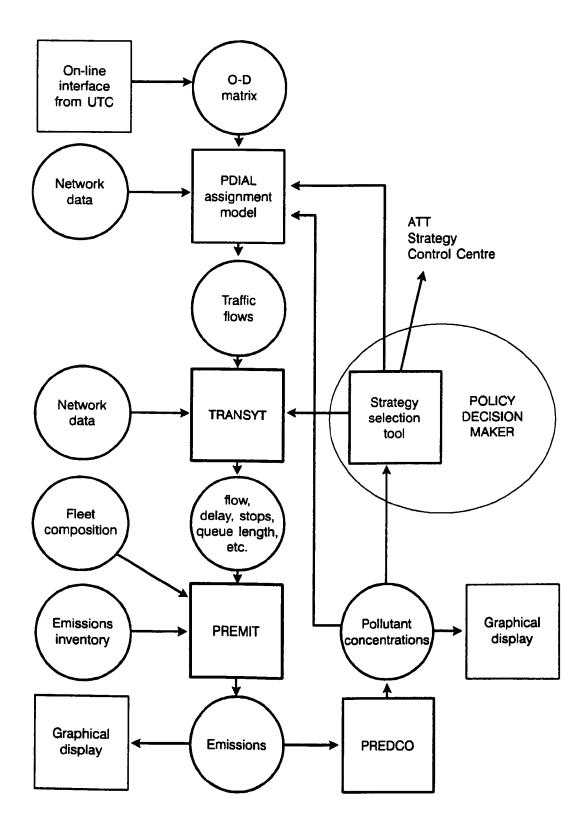


Figure 6.1 PREDICT Model Suite

Assignment Model

The PDIAL assignment model is designed to study cities which have traffic pollution problems. PDIAL distributes trips in such a way that delay (and, potentially, pollution levels) can be optimised over an urban network. The impedance function, used to construct minimum paths through the network, is based on link travel time and, optionally, link pollutant concentration.

The model uses an adaption of Dial's multipath traffic assignment algorithm (Dial, 1971) which distributes flows to all 'reasonable' paths. PDIAL uses capacity-restraint and incremental assignment. The following impedance (cost) function is used to find efficient paths through the network:

C = w1 * t + w2 * p

where, w1, w2 are user defined weighting factors; t is the link travel time (seconds); and p is the pollutant concentration (ppm). For assignment of traffic based only on conventional factors (i.e. link travel time), the weighting factor w2 is set to zero, removing the pollution component from the assignment.

In its first iteration, PDIAL calculates routes based on given free flow travel times for each link. In subsequent iterations the full cost function is used, whereby link travel times take into account flow and link capacity. To suit the specific needs of PREDICT, the assignment model performs a concurrent two-tier assignment for each and every O-D pair: a minimum path assignment for all route-guided traffic; and a stochastic assignment for non-guided traffic. Composite impedance functions can be defined which convey the strategic routing decisions.

Signal Optimisation Model

Signal coordination is modelled using the TRANSYT 8 program. This was described in the previous chapter and so this section briefly focuses on the weighting factors that were adjusted as part of the author's research.

TRANSYT can find the best fixed-time plan for a signalised network by finding the minimum value of the Performance Index. The Performance Index PI is defined as follows:

$$PI = \sum_{i=1}^{N} (W \cdot w_{i}d_{i} + \frac{K}{100} \cdot k_{i}s_{i})$$

where	Ν	=	number of links
	W	=	overall cost per average pcu-hour of delay
	Κ	=	overall cost per 100 pcu-stops
	w _i	=	delay weighting on link i
	d _i	=	delay on link i
	k _i	=	stop weighting on link i
	s _i	=	number of stops on link i

The overall cost values for delay and stops, W and K, apply throughout the network. In addition, if for any reason the user sees it appropriate to adjust these values for particular links, the cost scaling factors for those links, w_i and k_i can be adjusted. For example, the author adjusted the cost of stops and delay on links which had high emission rates, in an attempt to reduce emissions on such links.

PREMIT Emissions Model

The PREMIT emissions model has three key features: flexibility and ease of use; modelling of emissions from each driving mode; and representation of different vehicle types in the traffic fleet.

Representation of Driving Modes

Earlier chapters have illustrated how emissions significantly vary as a function of

speed and driving mode. Traffic control strategies sometimes significantly alter the proportions of time a vehicle spends in each of these driving modes, both over individual links and the network, or 'driving cycle', as a whole. Therefore, in order to accurately model the impact of traffic control strategies on pollution, the following driving modes were incorporated into the PREMIT emissions model: cruise; acceleration; deceleration; and idling. Within the emissions model, pollutant generation is considered for each element of the driving cycle, as follows.

Cruising is assumed to take place for all the vehicles which are not delayed on a link. For these vehicles, a constant cruise speed is used over the whole length of the link; the emissions from these vehicles being entirely due to their cruise speed. For vehicles that are, at least partly, delayed, the distance over which vehicles cruise is calculated and the corresponding cruise emissions form part of their total emissions; the other emissions coming from the driving modes described below.

Deceleration is assumed to take place as a vehicle arrives within the 'stopping distance' of the back of the queue. The stopping distance is calculated using the vehicle's cruise speed and a specified deceleration rate entered in the parameters file.

Idling is assumed to take place once the vehicle reaches the back of the queue or is held by a red light at the stop line. The output of the signal coordination model (TRANSYT) contains the link delay and it is this value that is used to calculate the total emissions due to idling in any one cycle.

Acceleration from the idling state, for the vehicles which were delayed, is also modelled. The distance over which acceleration takes place is calculated based on the cruise speed and a specified acceleration rate.

The emissions from each of the above driving modes are totalled to produce the overall emission rate for a given link. The emissions model then outputs the total emissions on a segment of road between two nodes; this may include emissions from more than one TRANSYT link. Emissions for selected driving modes can also be reported, providing a breakdown of emissions by driving mode. This feature allows the researcher to determine which driving modes produce significant emissions.

Representation of Vehicle Fleets

PREMIT can model the effects of new vehicle technologies and represent the diverse vehicle fleet encountered within an urban area. The model can represent a wide range of vehicle categories and a range of emission characteristics for each vehicle category.

In strategies where a modal shift or change in vehicle emission characteristics are imposed, the PREMIT can readily represent the new traffic fleet composition and emission characteristics. In particular, two of the most successful strategies in PREDICT were based on changing the emission characteristics of cars, by fitting them with catalytic converters. Consequently, fleet representation was an important requirement for the PREMIT emission model.

The model can incorporate data for a range of vehicle types which are considered to have different emission characteristics. PREMIT can represent a large number of vehicle types, assuming the appropriate emissions data are available. For example, it is possible to represent various combinations of the following vehicle types and vehicle states:

- * fuel type: petrol (leaded, unleaded), diesel, alcohol, mixture;
- * vehicle type and laden weight;
- * engine size and type;
- * emission reduction devices: catalytic converter, particulate trap;
- * engine and catalyst temperature; and
- * vehicle's age and state of maintenance.

For an accurate representation of pollution levels, the emission rates for idling, acceleration, cruise and deceleration are required. The proportion of each individual vehicle type within the overall vehicle population must also be known.

As emission characteristics for different vehicle types can vary significantly, this feature allows a more thorough representation of the vehicle fleet. The accuracy of the model depends largely on the accuracy of the emission rates entered into the model. Where such detailed data are not available, the emissions model can work with a small number of vehicle types, or just one vehicle type if necessary, i.e. treat the whole fleet as one vehicle type.

This flexibility allows the model to make maximum use of all available data and, potentially, provides a more realistic representation of the traffic fleet. In addition, the model can be easily updated to reflect new vehicle emission characteristics. PREMIT can represent advanced vehicle types with much lower emissions, whether they be based on better engine designs, emission reduction systems or alternative fuels, for example. In summary, the emission model provides a high degree of flexibility, ease of use and a detailed representation of the mechanisms involved in pollutant emissions.

Input Data

The PREMIT emissions model receives input data from three areas: vehicle emission database; traffic performance data from TRANSYT; and a miscellaneous traffic parameters file. All these data sources are standard ASCII text files. These are described below.

Emissions Input Data

The emission rates for each pollutant over a range of cruise speeds, and for idling, acceleration and deceleration, are held within a text file. Having specified the name of the pollutant, all emissions data input refer to this pollutant until the next pollutant is specified. For each pollutant, one or more vehicle types may be identified.

For each vehicle type modelled, the percentage it makes up of the entire fleet is specified. For example, the traffic fleet may consist of cars with and without catalytic converters, petrol and diesel engines, buses and heavy goods vehicles. For each vehicle type emission rates for cruise, acceleration, deceleration and idling must be specified.

For the cruise driving mode, speed is specified in units of kilometres per hour (km/h) and emissions in grams/km. The emissions for acceleration correspond to the average emission rate over the period taken for a vehicle to accelerate from rest to the final cruise speed. Similarly, the emissions for deceleration correspond to the average emission rate over the period taken for a vehicle to decelerate from the initial cruise speed to rest. The emission rates for acceleration, deceleration and idling are specified in units of grams/minute.

For each pollutant in the emissions input file, the data points for each vehicle type are used to make a 'graph' in which linear interpolation is used between adjacent points in the input file. When a graph has been obtained for each vehicle type they are combined into one graph, based on the average values from each vehicle type graph weighted by its traffic composition percentage. The result is, that for each pollutant, there will be one graph for each of the following driving modes:

- * cruise emissions as a function of speed;
- * acceleration emissions as a function of cruise speed; and
- * deceleration emissions as a function of cruise speed.

In addition, for each pollutant there will be one value representing the idling emissions.

Traffic Input Data

The emissions model extracts relevant data from the TRANSYT output file, these are: link numbers; cruise speed; link length; flow; stops; queue length; stop-line saturation flow; and total link delay. PCU delay (the average delay per PCU) is also read from the TRANSYT output file to report average link speeds in the output listing. This, along with other output data, may be used by the assignment model, on the next iteration of the model suite, to reroute traffic through the network as described earlier. This file holds values of the following network parameters:-

- Vehicle spacing is the average length occupied by a vehicle in a queue
 i.e. queue length divided by the number of vehicles in the queue. This is used to determine the length of a queue.
- * Acceleration rate is the average rate at which vehicles accelerate in the network, and deceleration rate is the average rate at which vehicles decelerate. These two values are used to calculate the time and distance over which vehicles accelerate and decelerate for each link.
- Maximum lane flow is used to calculate how many lanes there are on a given link.

Emissions Algorithm

Pollutant emissions are calculated based on the above input data and the algorithm described below. A simplified version of the algorithm, which ignores the scaling factors needed to account for the input data being in different units, has been presented. The key input parameters are described in Table 6.1.

The number of vehicles which are delayed, N_D , in one cycle (c) of the traffic signals is calculated for a given link:

For vehicles which are not delayed, their free flow cruise emissions are calculated:

 $E_{\text{free}} = (f c - N_D) l E_c(v) \qquad \dots \qquad \dots \qquad \dots \qquad (2)$

For vehicles that are delayed, emissions from all driving modes need to be calculated. The queue length, q_1 , is calculated based on the number of vehicles in the queue and

Parameter notation	Parameter description		
а	acceleration rate		
d	deceleration rate		
S	vehicle spacing when queuing		
1	link length		
f	link flow		
D	total link delay		
Z	number of stops on link (as a fraction of flow)		
q	maximum number of PCUs in queue		
v	link cruise speed		
E _c (v)	cruise emission (function of speed) per unit distance		
E _a (v)	acceleration emission (function of final speed) per unit time		
E _d (v)	deceleration emission (function of initial speed) per unit time		
E _{idle}	idling emission per unit time		

Table 6.1 Input parameters used by PREMIT

the average spacing between vehicles when queuing:

The queue length, and the distance that vehicles cover while decelerating and accelerating, are subtracted from the link length to give the average distance available for cruising, l_c :

Given the distance available for cruising (4), to vehicles that are delayed, cruise emissions, E_{delay} , from delayed vehicles are calculated:

Emissions resulting from the deceleration, E_d , and acceleration, E_a , of delayed vehicles are calculated, as shown in equations (6) and (7).

Finally, idling emissions, E_i , are calculated based on total link delay, provided by TRANSYT, and the idling emission rate:

$$E_i = D E_{idle} \qquad \dots \qquad \dots \qquad (8)$$

To obtain the total link emission rate, the above emissions are totalled, but the emissions from cruise, deceleration and acceleration are first converted to an emission rate per unit time, as opposed to emissions over the duration of one cycle, c. Idling emissions do not need this conversion and, using equations (2), (5), (6), (7) and (8), the total link emission rate, E, can be calculated:

$$E = (E_{free} + E_{delay} + E_d + E_a) / c + E_i$$

The above process is repeated for each pollutant. As the algorithm calculates emissions from each driving mode, the emissions model is able to report the emissions produced by each driving mode.

Output Data

The results of the emission calculations for each link are recorded in an output file. Figure 6.2 illustrates the format of a PREMIT output file. Each line of data corresponds to a road segment carrying traffic between nodes A and B. Total delay, number of vehicles in the queue, mean stops and average speed are based on the output of TRANSYT.

PREMIT EMISSIONS MODEL Version 3.07 Copyright (C) Castle Rock Consultants 1993. All rights reserved.									
Run time: 19 Jul 93 20:56 Emissions based on: ATHENS * CENTRAL ARTERIES * Optimisation ON BASECASE.ctl ** BASE CASE ** using Greek parameters Modes modelled are: cruising acceleration deceleration idling									
A node	B node	total delay	number of vehicles in	mean stops	average speed	Carbon Monoxide	Hydroc arbons (THC)	Nitrogen Oxides	
			the queue	per PCU	speed	(CO)		(NOx)	
	(PCU-h/h)		•	(km/h)		(g/min)		
151 160	(187 189	PCU-h/h) 0.9 1.0		per PCU	•	(CO)		(NOx)	

Total pollution emission rates for this network (g/min) :

Carbon Monoxide (CO) :	7772.1
Hydrocarbons (THC) :	889.8
Nitrogen Oxides (NOx) :	404.7

Figure 6.2 Example of a PREMIT output file

The units for the emission rate are grams per minute (g/min), or grams per metre per hour (g/m/h). The former units readily allow the comparison of emission control strategies as the total emission rate for a network, or part of a network, can easily be totalled from the link emission rates. When output is generated in units of g/min the model automatically provides the total network emission rate for each pollutant. The latter units (g/m/h) can be used as input to the PREDICT dispersion model.

Dispersion Model

The dispersion model used in the PREDICT model suite is based on the PREDCO model. The model is primarily used to compare the effectiveness of different traffic control strategies, as opposed to the prediction of absolute values for pollutant concentrations. It also allows the identification of links which are likely to have significant pollution problems. To make this task easier, a graphical display indicates pollutant concentrations by colour coding each link of the traffic network.

Although the dispersion algorithm was initially developed to predict concentrations of CO, it can also be used to predict concentrations of other gaseous pollutants (PREDICT Consortium, 1989a). Assuming different pollutants disperse at the same

rate leads to the following relationship:

where, P and C are the concentrations of the pollutant under study and CO from the same source, and R is the ratio of the emission rate of pollutant P to that of CO.

Concentrations for oxides of nitrogen may be the result of emissions from traffic, industry and other sources. Therefore, it may be necessary to use a modification of equation (1) to represent the contribution from sources other than traffic:

where, a and b are empirically estimated parameters that account for the contribution from non-traffic related sources. These parameters have to be calibrated for the particular study site.

In Athens traffic was the major contributor to the roadside pollutant concentrations of NOx and other sources were practically negligible. Consequently, the validation of the dispersion model found that the value for parameter a was approximately one and parameter b was approximately zero (PREDICT Consortium, 1989a). This meant that equation (1) could be used for the prediction of roadside NOx in Athens.

6.4 ASSESSMENT OF MODEL SUITE

Although, the PREDICT and QUARTET project teams have made, or intend to make, full use of all the components of the PREDICT model suite, the author's research focuses specifically on the impact that various traffic control strategies have on traffic emissions. Therefore, the performance of the dispersion model is not directly relevant to the work described in this thesis. Similarly, most of the strategies investigated in this thesis have not involved the use of the assignment model. Nevertheless, for the sake of completeness, an overview of all the PREDICT models has been included.

Comparison of Conventional and Enhanced Techniques

The model suite is based mainly around conventional and proven techniques. In addition, it makes use of state-of-the-art modelling techniques, especially in the case of the emissions model. The traffic assignment and signal coordination modules are based on widely known algorithms. The dispersion model is based on the proven technique adopted in PREDCO and has also been calibrated and validated in Athens (QUARTET, 1992). Given that much of the model suite is based on traditional, proven modelling techniques which are widely understood, the author has chosen to focus the assessment on the PREMIT emissions model.

The main advantage of the PREMIT emission model over most other emission models is that it has been specifically designed to represent the impact of ATT traffic control strategies. In particular, it represents driving modes on each link of a traffic network, and has a flexible representation of different vehicle types. These aspects have been shown to be very important in earlier chapters of this thesis.

The ability of PREMIT to output pollutant emissions by driving mode, also provides a powerful research tool for the quantitative analysis and understanding of traffic emissions. These benefits are clearly illustrated in the author's research, which is described in later chapters of this thesis.

Models based on hard-coded data, prevent the user from updating that data; only the designer of the model can update the data, resulting in a clumsy rigid system unable to adapt to strategies based on evolving vehicle emission characteristics and fleet composition. The PREDICT emissions model scores highly in this area, offering maximum flexibility to the user, allowing all input data and configuration parameters to be easily updated. For example, as new or more detailed emissions data become available the PREMIT emissions inventory can be easily updated.

PREMIT's degree of flexibility also allows the transferability of these concepts and strategies to other European cities, where emission characteristics may be different. Potentially, this flexibility can also be used to model changing traffic compositions and

emission characteristics throughout the day, providing a more realistic representation of the urban environment and a useful tool for modelling in real-time. For example, the ratio of cold to hot vehicles could be represented. This flexibility is also extremely important to the modelling of strategies which directly force a change in the traffic composition and vehicle emission characteristics. This was used to model the impact of the environmental area licensing strategy described in the following chapter.

Finally, in support of the above, it is worth mentioning that an independent review of traffic pollution modelling techniques illustrated PREMIT's abundance of features for modelling the impact of ATT strategies on emissions (Halcrow Fox, 1993).

Context of the Modelling

An assessment of the context in which a model is to be used is useful for determining requirements and establishing a model's suitability. The Department of Transport (1988) summarises the overall requirements of a model as follows. No model, or set of data, can be expected to represent reality other than within known ranges of tolerance. For complex models involving human choice or meteorological phenomena, these tolerance limits are normally wide. In most cases, it is not necessary to attempt to reduce the error limits by seeking greater precision. What is important is to ensure:

- that the degree of accuracy is adequate for the decisions which need to be taken;
- * that the decision makers understand the quality of the information with which they are working; and
- * that they take the inherent uncertainties into account in reaching decisions.

Therefore, the quality of a model's predictions should not be judged merely in terms of their proximity to actual values. They should be judged in terms of the ultimate objective; in the case of PREDICT model suite that is, the effectiveness of the control strategies that it evaluates. The degree of accuracy needs to be such that different control strategies can be compared and the most effective identified.

The decision makers, in this case, are experienced in the use of the PREDICT model and fully understand the quality of the information with which they are working. It is realised that the model's predictions have significant uncertainties and these are taken in account when making decisions.

Model Accuracy

To conclusively determine model accuracy a validation study is necessary. This involves the collection of relevant real-time traffic and environmental data. Collected data are then input to the model and its predictions are compared with measured pollutant concentrations. However, such a validation study was not funded in either the PREDICT or QUARTET projects. Therefore, it is not possible to scientifically discuss the quantitative accuracy of the entire PREDICT model suite.

Instead, a semi-quantitative assessment of model accuracy is described in this section, based on a literature review and limited validation studies. This takes into account accuracy of the input data, algorithm and model sensitivity.

Assignment Model

Thomas (1991) describes traffic assignment models and their behaviour. He noted that it is generally accepted that assignment models typically have errors of up to 30 percent of the observed link flows. Typically, the errors in estimated flows, based on a traditionally derived O-D matrix, are of the order of 25 percent.

Janson et al (1986) validated a recently-developed traffic assignment model and found that its estimates of link volumes differed from the observed link counts, on average, by 16 to 28 percent.

Choraffa and Ferreira (1983) demonstrated that the O-D matrix being used by an assignment model could be updated by using observed traffic flows. In this case, the resulting estimates of traffic flows from the assignment model were in better agreement with observed flows. The on-line version of the PREDICT model suite now includes such a technique, using an interface to an urban traffic control centre and a set of inductive loops (QUARTET Consortium, 1993a).

Path spreading, in PDIAL, is kept to low levels: it has been found not to exceed 4 to 5 percent of total kilometres for the range of different rerouting strategies examined.

In QUARTET, assignment modelling results will not represent the only source of traffic information. Traffic counts will be used as an alternative source of basic information. The model suite will link-up with the UTC system to utilise accurate traffic information. Hence, the uncertainty in predictions is expected to be less than a conventional modelling scenario, because of the availability of real traffic data.

Signal Optimisation Model

It has been shown that TRANSYT gives accurate delay/stop predictions (Robertson, 1969). Estimates of delay over the network have been within 2 to 4 percent of those directly measured on the streets (Hillier and Lott, 1966). Though larger discrepancies can arise on individual links. For example, a 10 percent variation between measured and modelled delay would be a reasonable estimate for a typical link.

Sensitivity tests indicate that larger errors can be anticipated in total delay on links operating near to capacity, because of the non-linear random plus over-saturation component. According to Vincent et al (1980), this sensitivity reflects actual traffic behaviour. Presumably then, any model will, potentially, be subject to significant errors on over-saturated links.

A study by Bell (1986) showed the effect of forecasting errors associated with the "ageing" of data. The extra network delay may be 3 percent for each year's discrepancy, so for example an 'optimised' network based on 3 year old traffic data may incur an additional 9 percent delay, compared to the same network optimised

with up to date data. In PREDICT, these modelling errors had to be accepted, as they are in other traffic engineering studies. However, in QUARTET, the model can use up to date data from a traffic control centre. This is expected to reduce the uncertainty in predictions.

Emissions

The sensitivity of the emissions model has been illustrated and its implications analyzed (QUARTET Consortium, 1992). The predicted emissions are sensitive to a number of input parameters. However, the number of critical parameters is low. This is because some of the parameters can be accurately measured, or, more commonly, because their variation is insignificant from strategy to strategy. The greatest degree of uncertainty affecting comparisons between strategies was found to result from uncertainty in TRANSYT output parameters. In particular, delay has a significant impact on the emissions. Because delay is very sensitive to traffic flow on links that are operating at or near saturation, higher levels of uncertainty are expected on such links. Hence, this fact has to be borne in mind by the decisionmakers who use this tool. In some cases, this problem can be overcome by the automatic measurement of actual traffic flows, especially on critical links.

Overall emissions calculated by the model are also significantly affected by errors in the input data emission rates for cruise, acceleration and idling modes. Deceleration emissions have little or no significant effect. Re-routing strategy evaluations are not greatly influenced by these errors, since the rates do not change for these strategies.

For scenarios involving clean vehicles or environmental area licensing, the uncertainty in the emissions inventory may be more important. These strategies substantially reduce emissions rates, due to the much lower emission levels experienced with catalytic converters. Where substantial uncertainty exists in the emissions inventory, it will be possible to over- or under-estimate the total magnitude of the potential benefits of such strategies. However, the overall magnitude of the emissions reduction resulting from catalytic converters is substantially larger than the range of uncertainty expected in the base emissions data. Thus, while the precise magnitude of the benefits to be gained is subject to error, the overall worthiness of the policy (in producing major reductions in pollution) is not itself in question.

A number of fundamental questions relevant to the assessment can now be asked and answered.

Is the degree of accuracy of the forecasts adequate for the decisions which have to be taken?

The degree of accuracy of the policy variables (pollutant emissions) has been thoroughly examined. Despite significant limitations in both the projected traffic data, in an off-line modelling scenario, and the available emissions inventories, the emissions model meets the UK Department of Transport's major criterion for model selection: that is, the degree of accuracy is adequate for the decisions which need to be taken.

Are simpler, or more complex models available which would give more cost-effective guidance to decision-makers?

There exist both simpler and more complex models of vehicle emissions. Simpler models were used for previous traffic planning studies, but these were not sensitive to changes in traffic management measures. Therefore, they cannot evaluate the effects of ATT. Similarly, models based on fixed representations of the urban driving cycle are incapable of reflecting the consequences of ATT policy choices. More complex microscopic models have the potential to model ATT, but the detailed emission data that they require are not generally available.

Dispersion Model

The validation of PREDCO was described in the previous chapter. Note, however, that the dispersion model was not actually used by the author. This was because his research focused on pollutant emissions, rather than pollutant concentrations.

6.5 SUMMARY

This chapter has highlighted the objectives of the model suite used in the author's research, and in the projects PREDICT and QUARTET. The model suite's structure and functionality have been described and its suitability assessed.

The PREDICT model suite offers an effective combination of conventional and enhanced modelling techniques. Indeed, the PREDICT model suite is the only model suite which is currently able to satisfy all of the requirements of the QUARTET project. The traffic modelling is based on conventional techniques. The PREMIT emissions model is based on state-of-the-art techniques, in particular, the representation of emissions by driving mode and traffic fleet composition.

In terms of its functionality, the PREDICT model suite satisfies all its objectives and works well in its operational context. In terms of accuracy, its actual performance is unknown. This is because there has not been an opportunity to validate the PREDICT model in its entirety. Although it should be noted that the TRANSYT and PREDCO models have already been independently validated. However, most components of the PREDICT model suite use techniques comparable to, and in some cases better than, those described in the previous chapter. Therefore, it seems reasonable to suppose that the PREDICT model suit would at least perform reasonably, compared with other pollution modelling approaches.

In terms of the author's research, the TRANSYT and PREMIT models are assumed to be more than adequate for illustrating the characteristics of traffic pollution as reported in this thesis, and demonstrating the importance of representing emissions by driving mode.

Chapter 7 CONTROL STRATEGIES

7.1 INTRODUCTION

In the PREDICT project, following the development of the model suite, four environmentally sensitive traffic control strategies were designed and modelled. The objectives of these strategies were to:

- * reduce traffic emissions and improve urban air quality levels; and
- * maintain transport efficiency.

Each PREDICT control strategy was developed with particular environmental objectives in mind. These objectives aimed to reduce pollution levels over a wide area, within an environmentally sensitive area, and at particular "hot spots". Each of these aimed to address the concern over urban air pollution, and assist in achieving the mandate of air quality standards. These policy objectives have an adjunct that traffic efficiency on the network should not suffer significant adverse effects as a result of an environmental control strategy.

These strategies aim to provide short to medium term improvements in urban air quality. It was also envisaged that some of these concepts could be revised in the future, reflecting developments in vehicle technology, and changes in emission and air quality legislation. In these cases, the advanced transport telematics (ATT) infrastructure needed for strategy implementation could be adapted to complement transport planning policies aimed at long term improvements in air quality.

Four strategies were designed to meet the above objectives (PREDICT Consortium, 1990). They were evaluated using the PREDICT model suite and central Athens as the case study area. The strategies modelled were:

- 1) environmental optimisation of traffic signal timings;
- 2) pollution sensitive traffic rerouting;
- 3a) the introduction of clean vehicles; and
- 3b) environmental area licensing.

These strategies are based on varying degrees of technological innovation in urban traffic control, monitoring systems, and vehicle emission reduction devices. For example, at the most basic level, strategy one aims to improve air quality using existing traffic control systems and vehicle designs. While strategy 3b makes use of a combination of state-of-the-art advanced transport telematics and vehicle designs which have lower emissions. These strategies are described in the following sections.

7.2 OPTIMISATION OF TRAFFIC SIGNAL TIMINGS

The first PREDICT strategy involves the adjustment of traffic signal timings to reduce air pollutant emissions. This strategy is divided into two sub-strategies with objectives to minimise:

- * pollution over an urban area (strategy 1a); and
- * pollution at links and intersections with high emissions (strategy 1b).

These are achieved by the strategic implementation of environmentally optimised traffic signal plans, developed using the TRANSYT model in conjunction with the PREMIT emissions model. These objectives aim to reduce air pollution levels, without significantly reducing a traffic network's efficiency.

TRANSYT 8 does not include any direct measure of emissions within its traffic performance index. Effects on pollutant emission levels therefore need to be taken into account by running TRANSYT in tandem with the PREMIT emissions model.

Environmentally optimised signal plans may then be derived through an iterative process involving adjustments to traffic signal timings.

Network-wide Pollution Reduction - Strategy 1a

The concept of this strategy is to adjust traffic signal timings in such a way that total network emissions, of one or more pollutants, are reduced whilst maintaining an adequate degree of efficiency in the traffic network. The specific reductions to be achieved would probably be set by the decision maker(s) responsible for transport and air pollution policy. Thresholds are likely to be different for each pollutant and the methodology used to determine such values may be specific to the decision maker and particular air pollution problems. For example, a city aiming to achieve a reduction in the severity and number of air pollution episodes involving photochemical smog may wish to establish a total network emission threshold for nitrogen oxides and hydrocarbons.

The strategy aims to reduce emissions by making significant adjustments to urban driving patterns. This is implemented by making adjustments to traffic signal timings.

Conventional thinking is based on the hypothesis that optimisation of the traffic network to reduce congestion (stops and delays) will also reduce pollutant emissions. Strategy 1a incorporates this philosophy and additional concepts. Evaluation of this strategy explored the validity of such concepts and the potential benefits and disadvantages to traffic efficiency and network emissions.

In practical terms, implementation of this strategy at a network-wide level, could be accomplished using either off-line or on-line automatic selection of environmentally optimised signal plans. Off-line selection of fixed time signal plans may involve several changes of plan during a normal weekday.

With on-line automated plan selection, information received from on-street detectors at critical intersections would be used to select the most appropriate signal plan from a pre-determined library. Although this method provides a degree of self-adjustment to prevailing traffic conditions, it requires preparation of signal plans off-line.

The process of developing environmentally optimised signal plans could be improved if a measure of air pollutant emissions was built into TRANSYT's traffic performance index. This would incorporate a feedback loop directly from the PREMIT emissions model. Implementation of environmentally optimised signal settings calculated in realtime would also be conceptually feasible if adaptive systems, such as the SCOOT system, were linked into a suitably adapted emissions model.

Pollution Reduction at Hot Spots - Strategy 1b

Within an urban area, pollutant emissions and concentrations are unlikely to be uniformly distributed across the network. High pollution levels may occur on links with high traffic flows, and at busy intersections. These locations are often referred to as pollution "hot spots".

This strategy involves adjusting signal settings at pollution hot spots in order to reduce pollution levels at those particular locations. Critical links are given favourable signal settings, even if this results in a slight degradation to other parts of the road network.

In a practical context, this involves intervention in the signal plan development. Hot spots on the road network are identified based on an initial run of the PREDICT model suite. Intervention is then required to reduce pollution levels at these points. For example, within TRANSYT weighting values for delay and stops can be adjusted for particular links. The theory was that by reducing congestion, reductions in pollutant emissions may result. The validity of this theory was tested in the author's research.

7.3 POLLUTION-SENSITIVE TRAFFIC REROUTING

This strategy is based on pollution-sensitive rerouting of traffic around a congested central area. High traffic flows and congestion are responsible for high levels of

pollutants for a number of reasons:

- the more vehicles there are, the more contributors there are to the pollutant emissions;
- * slow moving traffic is responsible for high emission rates of carbon monoxide and hydrocarbons - slow speeds result in the highest emissions (in terms of quantity per unit distance) of these pollutants when cruising; and
- * idling vehicles in congested networks contribute substantial additional emissions of carbon monoxide and hydrocarbons.

On the basis of these factors, this strategy is aimed at reducing congestion levels and, hence, pollution levels within a defined area. The strategy is activated during, or in advance of, an air pollution episode. Advanced strategy activation is based on forecasts from PREDICT model predictions.

It also aims to achieve these reductions without significant detrimental impacts to traffic and air quality on links around the periphery of the defined area. Specific aspects for ensuring this may include increased road capacity for particular peripheral routes; and the use of in-vehicle route guidance systems and Variable Message Signs (VMS) supplied with optimum rerouting information from a traffic control centre.

This strategy is dependent on real-time monitoring of pollution levels and short-term prediction of future trends. It utilises a monitoring system of the type discussed in the PREDICT project (PREDICT consortium, 1989d), in conjunction with the PREDICT model suite. When pollutant concentrations are predicted to reach unacceptable levels due to prevailing traffic and meteorological conditions, the re-routing strategy would be activated.

In practical terms, the strategy is based on a network of VMS around the environmentally sensitive area. During strategy activation, these advise drivers of optimum diversions around the sensitive area. The VMS may act as an advisory tool encouraging drivers to reroute around polluted areas. Alternatively, the strategy could be enforced by a system of flexible traffic cells to prevent through traffic passing through the sensitive area.

VMS would be positioned at all main access points between these cells, with minor access roads physically blocked to vehicular traffic. During periods when the strategy is in use, these variable message signs would display a "no entry" message, forbidding vehicle access between adjacent cells and thus preventing traffic from passing straight through the sensitive area.

Enforcement of the re-routing strategy would concentrate primarily on preventing the access between cells. Although this could be accomplished by routine police surveillance, a more effective system would use ATT enforcement technologies such as automated cameras, video capture systems or licence plate readers. Licence plate readers would offer a highly automated solution, avoiding the need for manual examination of photographs.

Alternatively, the enforcement system could be replaced by physical restrictions between traffic cells. For example, the main access points between cells could be equipped with automatic barriers, linked to the traffic control centre. When the strategy is activated the barriers would block the road, prevent vehicles passing between cells.

Vehicles authorised to pass between cells would be equipped with automatic vehicle identification (AVI) transponders. Roadside AVI readers would be used to detect the presence of such vehicles, then open the barrier and allow the vehicle to pass.

7.4 INTRODUCTION OF CLEAN VEHICLES

The objective of Strategy 3a is to produce a network-wide decrease in air pollution levels. This is based on a policy which specifies that all new vehicles must be "clean"; for example, all new vehicles should have emission reduction devices, such as catalytic converters and/or lean burn engines.

This would probably require appropriate legislation at national or pan-European level. Indeed, such legislation is now effective in the form of European Community Directives regulating emissions from new vehicle types. PREDICT modelled the impact of an evolving traffic fleet, which had an increasing proportion of vehicles fitted with catalytic converters.

7.5 ENVIRONMENTAL AREA LICENSING

Assuming that there is a gradual penetration of low emission ("clean") vehicles, areawide emissions will gradually reduce, until offset by increasing traffic growth (Holman et al, undated; LTT, 1990). However, the rate at which a vehicle fleet is replaced may be relatively slow, taking several years. Hence, although the impact of Strategy 3a may be effective, it does not necessarily offer a rapid solution to existing air pollution problems.

Therefore, Strategy 3b imposes a restriction that all vehicles entering a defined environmentally sensitive area must be low emission vehicles. This offers an interim measure in European cities with severe air pollution problems, prior to achieving a complete fleet of low emission vehicles.

The strategy's system architecture is also sufficiently flexible to provide benefits beyond this interim period, by allowing stricter emission standards and strategies to be adopted. For example, later strategies may restrict areas to very low or zero emission vehicles.

In practical terms, "clean" vehicles wishing to enter the central area need to be fitted with AVI transponders. AVI readers, strategically placed around the environmentally sensitive area, ensure that only authorised vehicles are allowed access. Visitors who only make the occasional trip into the restricted area would be able to go to a hire booth and hire an AVI transponder for the duration they were in the restricted area, provided they could supply certification that their vehicle is clean.

Enforcement of the restriction involves using an automated camera, video surveillance

or licence plate reading system. Vehicles that do not have clean status would be advised to reroute around the sensitive area by variable message signs. This aspect is implemented using the same approach as that of the traffic rerouting strategy.

The transponder, or a central computer database, would indicate that the vehicle has a valid clean status. However, a catalytic converter's performance is likely to deteriorate with time. A vehicle's "clean" status therefore needs to be reviewed periodically by approved inspection centres. This involves testing the vehicle's inservice emissions. Hence, to indicate the validity of a vehicle's clean status it is also necessary to include an expiry date, upon which the vehicle must be inspected. The expiry date would either be held in the transponder, or in a central computer database.

In order to support future environmental demands, later strategies may be based on very low or zero emission vehicles. Therefore, the transponder, or central database, would have to reflect the category of the vehicle (e.g. low, very low, or zero emission), as opposed to just a "clean" flag.

7.6 QUARTET FIELD TRIALS

Following the model based evaluation of the PREDICT strategies a demonstration plan was designed to test the strategies in a real-world environment (PREDICT consortium, 1990c and 1992). This led to the evaluation of strategies 2 and 3b in a real-world environment as part of the QUARTET field trials.

The ATT system architecture requirements, technology used in the demonstration, operational aspects, and evaluation methodology are described in detail in the project's reports (QUARTET consortium, 1992b, 1993a, and 1993b). This section outlines the APOLLON system architecture that was used for the environmentally sensitive traffic control strategies in QUARTET. The Athens APOLLON system design consisted of the following components:

* traffic data collection;

- meteorological data collection;
- environmental monitoring;
- * central prediction and control systems;
- * variable message signs (VMS);
- * radio data system (RDS);
- * in-vehicle route guidance;
- * automatic vehicle identification (AVI) system; and
- * a network integrating these sub-systems.

Many of the above sub-systems are common to both strategies being demonstrated. The data collection and monitoring sub-systems provide input to the central prediction and control systems. From this, short-term forecasts are derived and a suitable strategy is recommended. Based on these forecasts and recommendations, the system operator determines if an environmentally sensitive traffic control strategy needs to be activated, and if so which one.

The environmental area licensing restricts access to the environmentally sensitive area, allowing only clean vehicles to enter. Consequently, vehicles which are not clean, and would normally take a route through the sensitive area to reach their destination, are rerouted around this area. Hence, the environmental area licensing strategy makes use of a selective (for vehicles which are not clean) rerouting strategy, using the ATT infrastructure of the traffic rerouting strategy.

In a full scale implementation, the actual strategy approach to be adopted may be influenced by one or more of the following factors:

* the predicted severity of air quality deterioration resulting from a do-

nothing scenario (based on forecast traffic and meteorological conditions);

* the relative effectiveness, cost, and administration of the two strategies;

* and the political/social acceptability of each strategy.

Indeed, it is feasible to select both strategies for full scale implementation in a given urban environment. A particular strategy, or combination of strategies, would then be activated during periods of unfavourable traffic and environmental conditions.

Rerouting Strategy

The rerouting strategy incorporates all of the ATT infrastructure described above except the AVI system. A recommended strategy is selected by a strategy selection tool, but the system operator must make the decision to activate either the recommended strategy or an alternative strategy. A strategy will be activated in advance of a predicted air pollution episode, or when an air pollution episode is actually in progress.

When the strategy becomes active, variable message signs show traffic to rerouting details and optimum routes. RDS broadcasts transmit specific rerouting information for all trips that would otherwise have passed through the environmentally sensitive area. Vehicles equipped with route guidance systems are able to use this information to automatically provide the driver with an efficient alternative route.

Environmental Area Licensing

The environmental area licensing strategy uses all components of the APOLLON system. The criteria for strategy activation and operation is similar to that described for the traffic rerouting strategy. In a full-scale implementation an AVI system would be used to enforce access to the environmentally sensitive area, as described earlier.

7.7 SUMMARY

In PREDICT, four strategies were designed with the aim of improving urban air quality whilst maintaining the efficiency of the traffic network.

Strategy 1 aimed to improve air quality levels by developing traffic signal plans which take into account both traffic performance and pollutant emissions. This is a relatively low cost approach because in many cities a traffic signal network will already exist, and the strategy does not require vehicle modifications.

Reductions in traffic levels may give a significant reduction in pollutant emissions and this forms the philosophy of Strategy 2: traffic rerouting. When an air pollution episode is predicted to occur, through traffic will be rerouted around an environmentally sensitive area. This strategy uses variable message signs and RDS broadcasts, coupled with in-vehicle route guidance, to advise drivers to reroute.

A significant reduction in emissions may be achieved by developments in vehicle technology. This formed the basis for the introduction of clean vehicles (Strategy 3a); and environmental area licensing (Strategy 3b). Strategy 3a reflects national or pan-European legislation and a gradual introduction of low emission vehicles to the traffic fleet.

Strategy 3b defines an environmentally sensitive area in which only low emission vehicles are allowed. In the short to medium term, this may mean restricting access to vehicles which have a catalytic converter and/or lean burn engine. In the long term, the strategy could be modified to restrict access to very low and zero emission vehicles. This strategy uses the same technology as Strategy 2 plus an AVI system. Permitted low emission vehicles are fitted with AVI transponders to indicate their emissions status. Unauthorised, vehicles attempting to enter the area will be photographed by the AVI enforcement system.

The work of PREDICT led to the demonstration of strategies 2 and 3b in a real-world environment as part of the QUARTET Athens APOLLON field trial.

Chapter 8 MODELLING METHODOLOGY

8.1 INTRODUCTION

This chapter describes the methodology used by the author to model the impact of environmentally sensitive traffic control strategies. This includes general implementation aspects of the TRANSYT and PREMIT models, representation of the base case scenario, the specific methodology used for each strategy, and the data analysis methodology.

8.2 MODEL IMPLEMENTATION

The modelling was carried out using part of the PREDICT model suite: version 8 of the TRANSYT signal optimisation program; and version 3.07 of the PREMIT emissions model.

The software was run on an IBM PC AT compatible with 486DX processor running at 33MHz. A TRANSYT run with green time and offset optimisation enabled took of the order of ten minutes to run (whereas, in the initial PREDICT modelling the old PCs took about an hour!). The improved performance of the new PC, and the disk space available, allowed the author to investigate more options and conduct a more detailed investigation than was feasible at the time of the PREDICT project.

Many options were investigated by the author, much more than reported. For example, many TRANSYT runs were made with different stop and delay weights in order to find values which provided the most beneficial reduction in emissions, whilst having a reasonable impact on network efficiency. Of these, the most interesting options were presented in the results chapter.

The TRANSYT program was run directly from the DOS command prompt. PREMIT

was run via a batch file. The batch file recorded comments for each run, recorded the input parameters used, and ran PREMIT several times to generate output files for total emissions from all driving modes (default output) and emissions from individual driving modes. The emissions output data by individual driving mode was very useful for assisting in the formulation and testing of hypotheses.

In some cases the batch file was also used to capture the detailed emissions data produced by PREMIT in its verbose mode. This additional information provided valuable evidence for formulating and testing hypotheses which aimed to explain the complex behaviour observed in traffic emissions. For example, in verbose mode, for each link of the network, PREMIT separates cruise emissions into those arising from vehicles which are delayed on the link, and those arising from vehicles that are not delayed. It also provides the average cruise distance available, to vehicles that are delayed.

8.3 BASE CASE

This section describes the base case scenario and the modelling aspects of this scenario. The base case represented existing conditions in the Athens study area. It provided a reference, against which the model predictions for various strategies could be compared.

Base Case Scenario

The base case represented the existing conditions within the defined study area. The study area contains a large number of signalized intersections, with signal timings coordinated using the TRANSYT model. It is also subject to vehicle restrictions, as it lies within the Daktylios controlled area of Athens.

The Athens Daktylios restriction operates in the central area defined by a ring road on its periphery. The scheme was introduced in September 1982 and has undergone a number of extensions since then, though the basic principle is the same. Vehicle entry is permitted on a given day according to the last digit of the number plate of the vehicle, such that each vehicle is banned on alternate days, Monday to Friday.

The current version of the scheme is based on an odd/even differentiation, with the permitted plate matching the date. The scheme operates from 07.00 to 20.00 and includes taxis as well as cars and lorries. Motorcycles and buses are the only general classes of vehicle that are exempt. However, there are some exemptions for specific individuals (doctors, journalists, tourists). The ban also applies to the cars of residents living inside the area, but it only affects moving traffic, so prohibited vehicles may be left parked on the street during restricted hours.

The authorities were initially prompted to introduce the scheme because of a deterioration in environmental conditions, with the objective of reducing car traffic by 50 percent. Although early monitoring studies did find significant reductions in traffic, these were not as great as anticipated. Nevertheless, vehicle-kilometres decreased by around 15 percent and vehicle-hours dropped by 22 percent, showing worthwhile reductions. Reductions in some types of pollutant were also recorded in the first year.

However, a substantial growth has occurred in traffic in the area since 1983. This is thought to be related to a general growth in car ownership in the Athens region. Nevertheless, traffic levels are lower than they would have been in the absence of the scheme. There is no information on the type of adaptations that people have made in response to the scheme (eg. re-routing, re-timing, or mode switching).

Original TRANSYT input files representing this scenario were supplied in 1989 by Dr Stathopoulos of the National Technical University of Athens, as were miscellaneous network parameters (average lane capacities, vehicle spacing in queues and acceleration and deceleration rates). Files were supplied for each area of the Athens study network. These areas were: North, West, Centre, South and Ring (the ring road).

Modelling Aspect

Although the work in PREDICT modelled all areas of the Athens study network, the author's results presented in this thesis have been confined to the central area. This consisted of approximately 100 TRANSYT links and provides a conveniently sized network for research purposes and analysis of the emissions data. This area is shown in the maps of Appendix A.

The flows in the TRANSYT input file represent morning peak flows for this area. The TRANSYT model is run with flow and speed scaling factors set to unity and the optimisation is set to full optimisation (offsets and green times). This provides the 'optimum' signal timings for this network, such that the performance index is minimised. The weights assigned to delay and stops were 55 and 50 respectively.

The results of the TRANSYT run were processed by the PREMIT emissions model. The Greek traffic emissions data and miscellaneous traffic parameters were used for this scenario (and all following scenarios, with the exception of Strategy Three).

The output of this run represented the base case data set for TRANSYT statistics, and link and total network emissions. All emissions output data produced by PREMIT were expressed in units of grams per minute (g/min).

Emissions Input Data

The emissions input data came from several sources. The primary sources of emission input data were as follows. The emissions for the petrol engine cars were obtained from an existing emissions inventory, modified with data supplied by the Aristole University of Thessaloniki (Pattas and Samaras, 1987). These data were based on work carried out under a contract with the Commission of the European Communities DG XI programme (NTUA, 1988). A graphical representation of data used has also been reported by Stathopoulos (1989). The emissions for taxis and buses were based on a German study by the Institut Fuer Stadtbauwesen (1985).

Emissions from petrol engine cars equipped with catalytic converters were obtained directly from the Saab car manufacturer, in June 1990. General purpose studies were unsuitable for this type of emission data as their results were provided as emissions over an entire driving cycle or for an average cruise speed only, as opposed to specific emission rates for each driving mode. Hence, the need to approach the manufacturer directly.

Supplementary data sources were also used to provide emission rates for ranges or driving modes not covered by the above sources. These data sources were also used to provide comparative and sensitivity tests (QUARTET consortium, 1992).

The PREDICT study team had great difficulty obtaining vehicle emission data for all driving modes and vehicle types. In particular, acceleration and deceleration emission data were only available for petrol engine cars. Therefore, these data were also used to represent diesel vehicles. Whilst not being ideal, there were three justifications to support this decision. Firstly, while emissions from diesel powered cars are lower than those from petrol cars, the larger exhaust volume from buses offsets this and overall diesel emissions are comparable to petrol. This assumption has been used by others (Watkins, 1991). Secondly, the proportion of petrol engine cars in the Athens fleet was the dominant factor. The fleet composition was: 57 percent petrol engine cars; 31 percent diesel engine cars; and 12 percent diesel engine buses. Finally, the proportion of total emissions arising from these two driving modes was, in general, less than those arising from cruise and idling.

Details of emission data sources, variations by vehicle category and state of maintenance, and sensitivity to driving mode and speed have been discussed in QUARTET Deliverable 2 (QUARTET consortium, 1992).

8.4 ENVIRONMENTAL SIGNAL OPTIMISATION

The modelling methodology used for Strategy 1 is described in two parts: signal optimisation for reducing total network emissions; and signal optimisation for reducing emissions on links which have the highest emissions, these were named hot links.

Network Emissions

Several sensitivity tests were carried out to investigate how total network emissions varied as a result of the following scenarios:

- * an unoptimised network;
- * flow scaling;
- * cruise time (speed) scaling;
- * delay to stop weight ratios; and
- * different cycle times.

Systematic changes were made to the base case TRANSYT input file to represent the above scenarios. PREMIT was run with the corresponding TRANSYT output data, whilst keeping all other input parameters constant.

To model the impact of an unoptimised network on emissions, TRANSYT's optimisation and 'equisat' options were disabled. This meant that signal timings specified on the TRANSYT input cards were used, as opposed to TRANSYT automatically adjusting signal timings to give optimum settings which minimise the performance index.

Flow scaling was modelled by running TRANSYT with flow scaling factors of 50, 75, 80, 90, 110 and 120 percent. This causes TRANSYT to scale the input flows by the specified factor and then optimise the network based on the scaled flows. Of course, a flow scaling factor of 100 percent represented the base case scenario.

Cruise time scaling alters the free flow link cruise times, and allowed the sensitivity of emissions to cruise speed to be investigated. Model runs were made for cruise time scaling factors of 50, 75, 150 and 200 percent.

The delay to stop weight ratios were varied by changing the network cost values for stops and delay. Ratios of 0.01, 0.1, 1, 10 and 100 were used. This tested the effect of reducing network delay, as opposed to reducing the number of vehicles stopped, and vice-a-versa.

Finally, the impact of different cycle times were tested. The cycle times tested were 90 (base case), 100, 120, 140, 150, 160, 170, 180 and 200 seconds. The 180 second cycle time corresponded to the value chosen by TRANSYT, when its automatic optimum cycle time and double node cycling option was enabled.

Hot Links

Links were sorted by carbon monoxide emission rate and the top twenty links were arbitrarily defined as hot CO links. A similar process was used to determine the hot NOx links. Hot HC links were not specifically identified because HC emissions follow a similar pattern to CO emissions. Therefore, hot CO links were also expected, in general, to correspond to hot HC links.

These links were highlighted on maps of the central Athens area to obtain a clear picture of where the hot links were and where hot links would be competing for green time with other hot links.

A set of hypotheses were developed and used to test different strategies that aimed to reduce emissions of CO and NOx, on hot CO and NOx links respectively. Many tests were performed but only those that represented effective and practical scenarios were described in detail in the results chapter.

The analysis had indicated that CO (and HC) emissions were very sensitive to delay, especially for links near saturation. Consequently, strategies that aimed to reduce the delay on hot links were tested. This involved assigning higher delay and stop weights to hot CO links by setting the delay and stop weight scaling factors on the TRANSYT input 'cards' corresponding to the hot links. Various combinations of delay and stop weight scaling factors from the maximum of 9999 to 200 were tried.

A similar approach was adopted with hot NOx links. However, the mechanisms behind NOx emissions showed a behaviour different to that for CO and HC emissions. This behaviour was harder to understand and eventually a strategy aimed at increasing the number of stops on hot NOx links was investigated.

8.5 ENVIRONMENTAL AREA LICENSING

This strategy results in an environmentally sensitive area where all petrol engine cars are fitted with a catalytic converter. Therefore modelling of this strategy involved modifying a copy of the emissions input file to include emissions from petrol engine cars with catalytic converters. The emissions from non-catalyst petrol engine cars were removed by changing its fleet composition percentage from 57 percent to 0 percent. The composition value for catalyst petrol cars was set to 57 percent.

The base case TRANSYT output file is used along with the modified emissions file to run the PREMIT emissions model and establish the emissions as a result of the environmental area licensing strategy.

8.6 DATA ANALYSIS

The above sections have described how the emission output files were generated for each strategy; this section describes how they were analyzed. This analysis was mainly based around the use of Lotus 123 spreadsheets.

In order to import the data (text files) into a 123 spreadsheet the emissions output files had to be converted into a formatted text file suitable for 123. The author created a program to automate the conversion from the PREMIT output format to the 123 import format. This program was run for each PREMIT output file to be analyzed using 123.

A number of spreadsheets were set up for the different sensitivity tests, strategies and options within strategies. Data were sorted using 123 by CO emissions and NOx

emissions respectively. Graphs were plotted of link emissions to establish the distribution of link emissions and the relationships between pollutants. Graphs were plotted of network emissions against 'sensitivity' parameter (e.g. flow and speed scaling). As were changes from base case and emissions for each driving mode.

Ratios between network emissions of CO:NOx, HC:NOx and CO:HC as a function of flow scaling factor were tabulated and plotted.

In order to try and assist the author postulate some hypotheses a number of correlations between network emissions and network traffic parameters (TRANSYT summary totals) were tested, as were correlations at the link level. However, many of these proved unsuitable in terms of the limited amount of data given the number of 'independent' variables. In cases where a correlation may have been feasible, between link traffic and emission data, the correlations were often poor and/or inconsistent from strategy to strategy. The link correlations also required the conversion of the output section of the TRANSYT output file to the 123 import format, followed by manual editing in the spreadsheet to take care of unusual field values, reduced output flows and link totals (where several TRANSYT links exist between a given pair of nodes). This manual process was awkward and very time consuming. For these reasons, it was decided not to use such correlation factors in the data analysis methodology.

The whole analysis process required considerable manual intervention and was extremely time consuming given the number of modelling runs done and the vast amount of data generated. As the author's research was of an innovative nature part of the methodology, and analysis procedure, had to be modified throughout the course of the work. For example, it was not initially obvious which factors were significant, and which may or may not be correlated with other factors. Therefore, by the very nature of this research, the process could not be automated as it was unknown what the analysis would involve. Further, as the author's research progressed from strategy to strategy the important factors requiring analysis changed to some extent.

The results of the modelling and data analysis are presented and discussed in the results chapter.

Chapter 9 RESULTS

9.1 INTRODUCTION

This chapter presents the results of the author's modelling work, based on the PREMIT emissions model and the methodology described in the previous chapter. The results include sensitivity tests, signal timings to reduce network and hot link emissions, and the impact of the environmental area licensing strategy. These results are discussed in the final section of this chapter.

The TRANSYT and PREMIT output data corresponding to these results are included in Appendices B and C respectively. The translation between TRANSYT link numbers and the node numbers used in the PREMIT output was achieved using the link-node translation table included in Appendix D. The modelling work for the pollution sensitive traffic rerouting strategy was not carried out by the author, but for the sake of completeness it has been included as Appendix E.

9.2 BASE CASE

The base case, as described in the previous chapter, represented the existing Athens scenario for the central area. This scenario was used as a reference by which the effectiveness of various strategies could be assessed.

The traffic network values, produced by TRANSYT, for this scenario were:

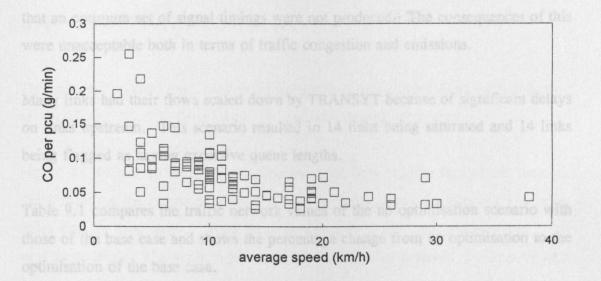
total time spent (pcu-h/h)	1125.6
mean journey speed (km/h)	11.8
total uniform delay (pcu-h/h)	267.6
total random + over-saturation delay (pcu-h/h)	234.3

links and seven links were flagged as having excessive queue lengths². The total pollution emission rates, expressed in grams per minute, for this network were:

carbon monoxide (CO)	7772
hydrocarbons (HC)	890
nitrogen oxides (NOx)	405

The approach used by the PREMIT emissions model is more detailed than that used by an average speed emissions model. Therefore, it is interesting to plot the PREMIT predictions against average speed, to see if emissions appear to correlate with average speed. The average speed corresponds to the link length over total link journey time, which includes delay.

Figure 9.1 shows the PREMIT predictions for emissions per pcu (passenger car unit) against average link speed. These emissions were determined by dividing link emissions by link flow.


For CO and HC, at low average speeds there is clearly a wide spread in emission rates. Overall though, there is an underlying trend showing relatively high emissions at low average speeds and a reduction in emissions with increasing average speed. Emissions of HC show a similar trend to that of CO. Whereas, emissions of NOx do not follow these trends. Indeed, the plot of NOx emissions illustrates that an algorithm based on average speed would not be suitable for predicting NOx emissions.

9.3 NO OPTIMISATION SCENARIO

This section describes the worst case scenario that the author modelled. This involved running TRANSYT with the base case input data, but with optimisation disabled so

¹ The author has used the term saturated to refer to links which have a degree of saturation equal to, or greater than, 95 percent.

² Taken from the average excess queue column of the TRANSYT output. Excessive queue lengths are indicated by a '+' in this field.

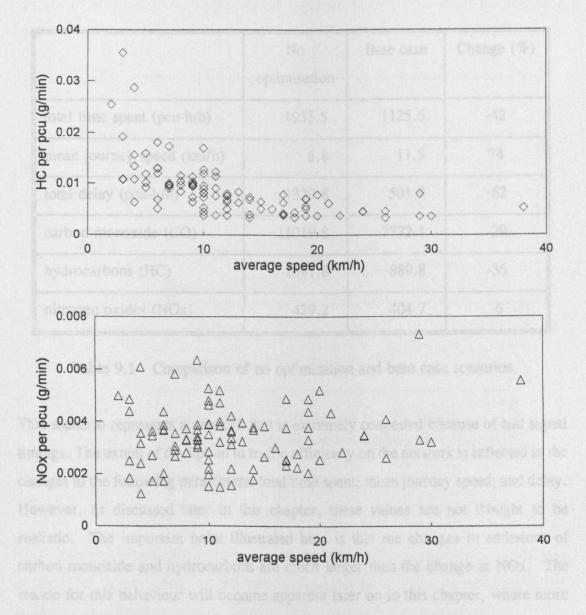


Figure 9.1 Link emissions against average link speed

131

that an optimum set of signal timings were not produced. The consequences of this were unacceptable both in terms of traffic congestion and emissions.

Many links had their flows scaled down by TRANSYT because of significant delays on links upstream. This scenario resulted in 14 links being saturated and 14 links being flagged as having excessive queue lengths.

Table 9.1 compares the traffic network values of the no optimisation scenario with those of the base case and shows the percentage change from no optimisation to the optimisation of the base case.

	No optimisation	Base case	Change (%)
total time spent (pcu-h/h)	1953.5	1125.6	-42
mean journey speed (km/h)	6.8	11.8	74
total delay (pcu-h/h)	1329.8	501.9	-62
carbon monoxide (CO)	11019.8	7772.1	-29
hydrocarbons (HC)	1391.8	889.8	-36
nitrogen oxides (NOx)	429.2	404.7	-6

Table 9.1 Comparison of no optimisation and base case scenarios

This scenario represents a network that is extremely congested because of bad signal timings. The extent of disruption to traffic efficiency on the network is reflected in the changes to the following parameters: total time spent; mean journey speed; and delay. However, as discussed later in this chapter, these values are not thought to be realistic. The important point illustrated here is that the changes in emissions of carbon monoxide and hydrocarbons are much larger than the change in NOx. The reason for this behaviour will become apparent later on in this chapter, where more detailed investigations of link emissions have been carried out.

9.4 SENSITIVITY TO FLOW

This section illustrates the sensitivity of emissions to traffic flow. Flow scaling factors of 50, 75, 80, 90, 100 (base case), 110 and 120 percent were used.

Figure 9.2 illustrates the relationship between the flow (scaling factor) and network delay based on the output of TRANSYT. The figure shows the network's uniform delay and its total delay. Total delay is the sum of uniform, random and over-saturation delay. The random plus over-saturation delay behaves non-linearly as a function of flow and increases rapidly for slight increases in flow above the base case level.

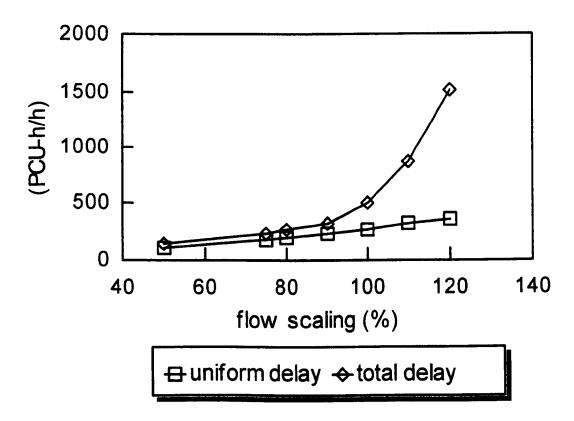


Figure 9.2 Network delay as a function of flow

This figure has been included because delay has a significant influence on emissions. In particular, idling emissions are directly proportional to delay and therefore idling emissions as a function of flow have a similar relationship to that of delay.

Total Network Emissions

Figure 9.3 illustrates the relationship between total network emissions and flow, for each of the pollutants CO, HC and NOx. A number of important relationships are illustrated in this figure. The pollutants CO and HC behave in a similar non-linear manner to each other, whilst NOx behaves in a linear manner.

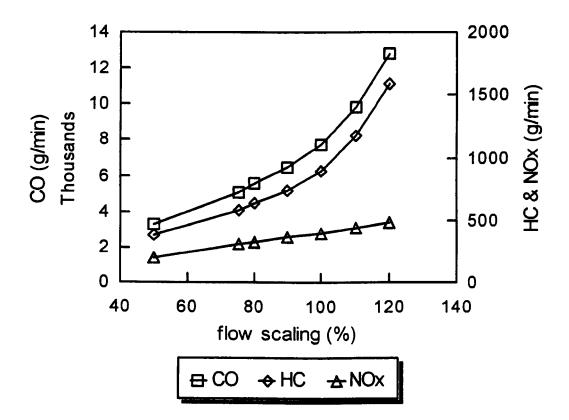


Figure 9.3 Network emissions as a function of flow

The percentage change in emissions, relative to the base case, is shown in Figure 9.4. This shows that the percentage changes are relatively similar for each pollutant for flows below the base case level. However, because of the non-linear relationship of CO and HC to flow, the changes in CO and HC above the base case flow level are much larger than those for NOx.

When the flow was reduced to 50 percent of the base case level, the emissions fell from the base case by 58, 57 and 48 percent for CO, HC and NOx respectively. While an increase in flow to 120 percent of the base case caused emissions to rise by 65, 79 and 22 percent for CO, HC and NOx respectively.

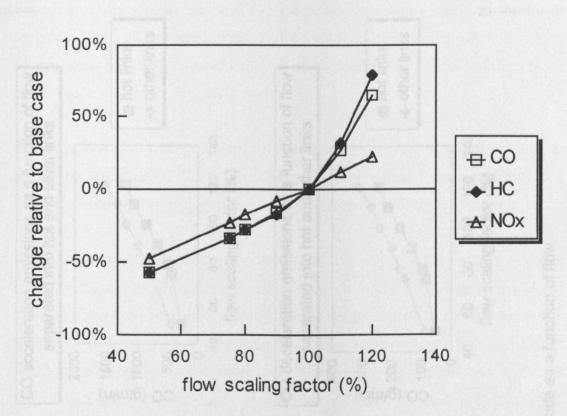
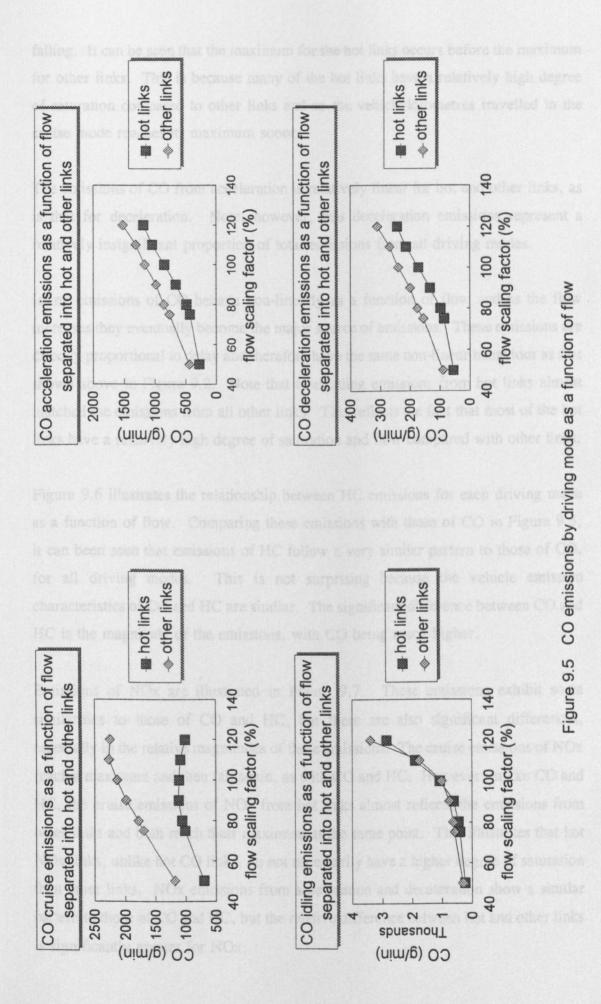
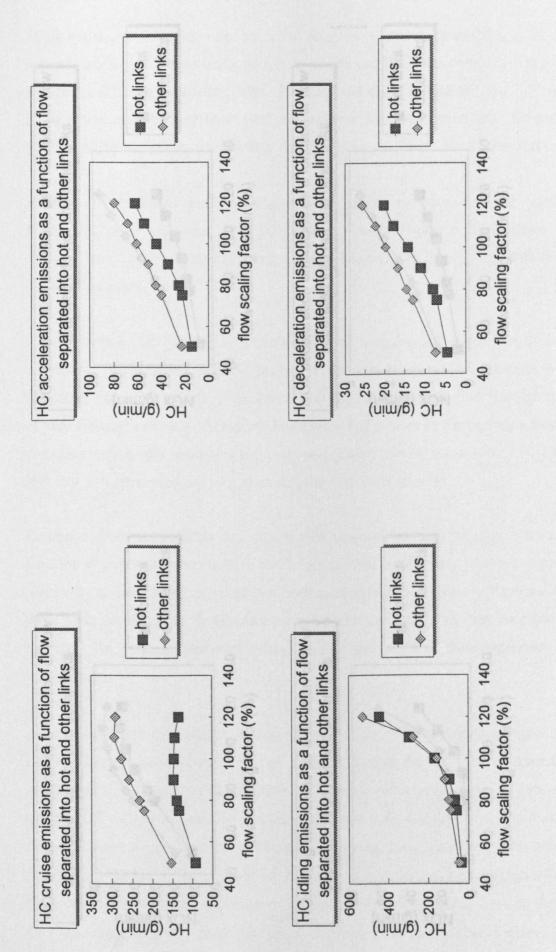



Figure 9.4 Percentage change in emissions as a function of flow

Emissions by Driving Mode

The emissions of CO by driving mode are illustrated in Figure 9.5. The emissions have also been split into two parts: the total emissions from the top 20 links with the highest emission rate (hot links); and the total emissions from the remaining links. This illustrates a number of important points about the emissions from each driving mode.

Cruise emissions of CO initially increase as the flow on the network increases. This is because the number of vehicles cruising, and the vehicle-kilometres travelled during cruising, initially increases with flow. However, as the flow continues to increase, the degree of saturation, stops and queue length on links within the network begins to increase. Hence the proportion of time spent by vehicles cruising begins to decrease as the proportion of time spent decelerating, idling and accelerating increases. Also, the larger queue lengths result in the distance available for cruising being shorter. This is reflected by the cruise emissions reaching a maximum and then


falling. It can be seen that the maximum for the hot links occurs before the maximum for other links. This is because many of the hot links have a relatively high degree of saturation compared to other links and so the vehicle-kilometres travelled in the cruise mode reaches its maximum sooner.

The emissions of CO from acceleration is relatively linear for hot and other links, as is that for deceleration. Note, however, that deceleration emissions represent a relatively insignificant proportion of total emissions from all driving modes.

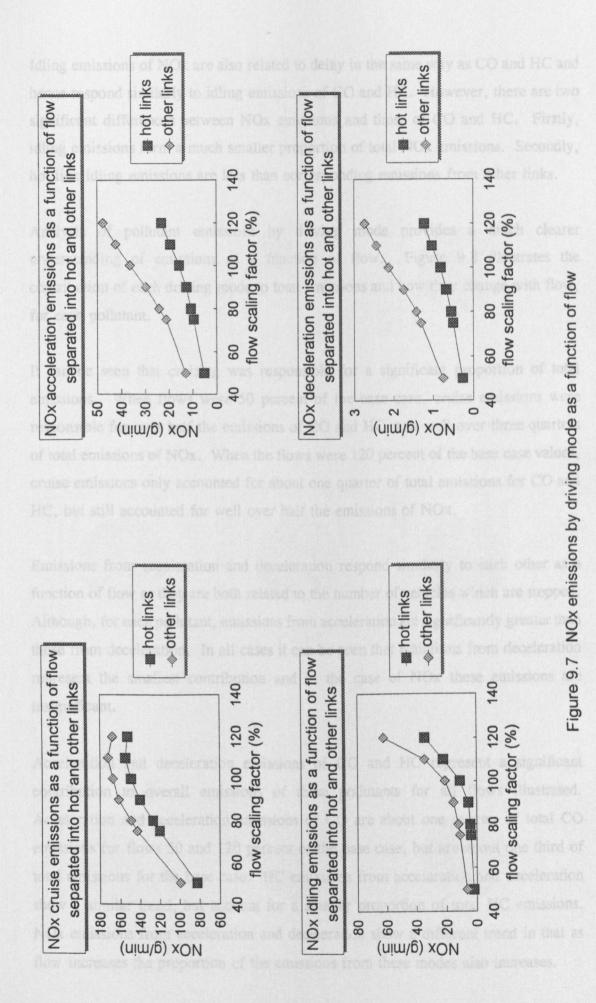
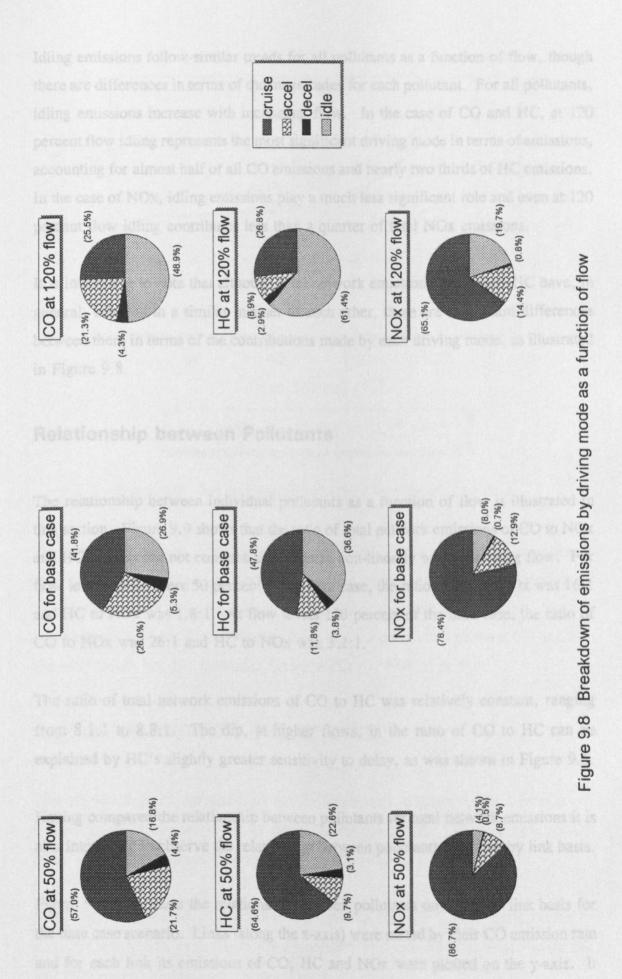

Idling emissions of CO behave non-linearly as a function of flow and as the flow increases they eventually become the major source of emissions. These emissions are directly proportional to delay and therefore have the same non-linear behaviour as that shown above in Figure 9.2. Note that total idling emissions from hot links almost matched the emissions from all other links. This reflects the fact that most of the hot links have a relatively high degree of saturation and flow compared with other links.

Figure 9.6 illustrates the relationship between HC emissions for each driving mode as a function of flow. Comparing these emissions with those of CO in Figure 9.5, it can been seen that emissions of HC follow a very similar pattern to those of CO, for all driving modes. This is not surprising because the vehicle emission characteristics of CO and HC are similar. The significant difference between CO and HC is the magnitude of the emissions, with CO being much higher.

Emissions of NOx are illustrated in Figure 9.7. These emissions exhibit some similarities to those of CO and HC, but there are also significant differences, especially in the relative magnitudes of these emissions. The cruise emissions of NOx reach a maximum and then fall again, as with CO and HC. However, unlike CO and HC, the cruise emissions of NOx from hot links almost reflects the emissions from other links and both reach their maximum at the same point. This illustrates that hot NOx links, unlike hot CO links, do not necessarily have a higher degree of saturation than other links. NOx emissions from acceleration and deceleration show a similar pattern to those of CO and HC, but the relative difference between hot and other links is significantly greater for NOx.


Idling emissions of NOx are also related to delay in the same way as CO and HC and hence respond similarly to idling emissions of CO and HC. However, there are two significant differences between NOx emissions and those of CO and HC. Firstly, idling emissions form a much smaller proportion of total NOx emissions. Secondly, hot link idling emissions are less than corresponding emissions from other links.

Analysis of pollutant emissions by driving mode provides a much clearer understanding of emissions as a function of flow. Figure 9.8 illustrates the contribution of each driving mode to total emissions and how they change with flow, for each pollutant.

It can be seen that cruising was responsible for a significant proportion of total emissions. When flows were 50 percent of the base case, cruise emissions were responsible for over half the emissions of CO and HC, and well over three quarters of total emissions of NOx. When the flows were 120 percent of the base case values, cruise emissions only accounted for about one quarter of total emissions for CO and HC, but still accounted for well over half the emissions of NOx.

Emissions from acceleration and deceleration respond similarly to each other as a function of flow as they are both related to the number of vehicles which are stopped. Although, for each pollutant, emissions from acceleration are significantly greater than those from deceleration. In all cases it can be seen that emissions from deceleration represent the smallest contribution and in the case of NOx these emissions are insignificant.

Acceleration and deceleration emissions of CO and HC represent a significant contribution to overall emissions of these pollutants for all flows illustrated. Acceleration and deceleration emissions of CO are about one quarter of total CO emissions for flows 50 and 120 percent of the base case, but are about one third of total emissions for the base case. HC emissions from acceleration and deceleration show a similar trend, but account for a smaller proportion of total HC emissions. NOx emissions from acceleration and deceleration and deceleration show a different trend in that as flow increases the proportion of the emissions from these modes also increases.

Idling emissions follow similar trends for all pollutants as a function of flow, though there are differences in terms of the magnitudes for each pollutant. For all pollutants, idling emissions increase with increasing flow. In the case of CO and HC, at 120 percent flow idling represents the most significant driving mode in terms of emissions, accounting for almost half of all CO emissions and nearly two thirds of HC emissions. In the case of NOx, idling emissions play a much less significant role and even at 120 percent flow idling contributes less than a quarter of total NOx emissions.

It is interesting to note that although total network emissions of CO and HC have, in general, behaved in a similar manner to each other, there are significant differences between them in terms of the contributions made by each driving mode, as illustrated in Figure 9.8.

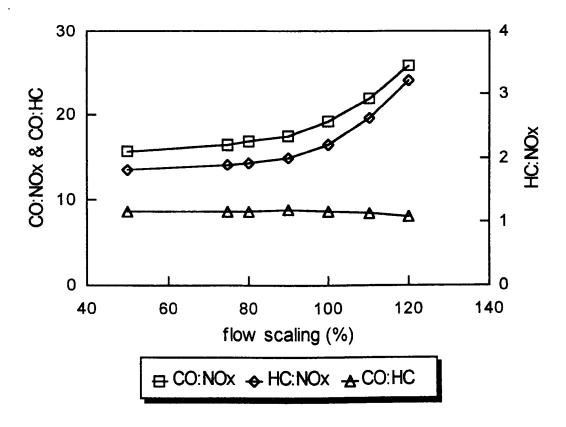
Relationship between Pollutants

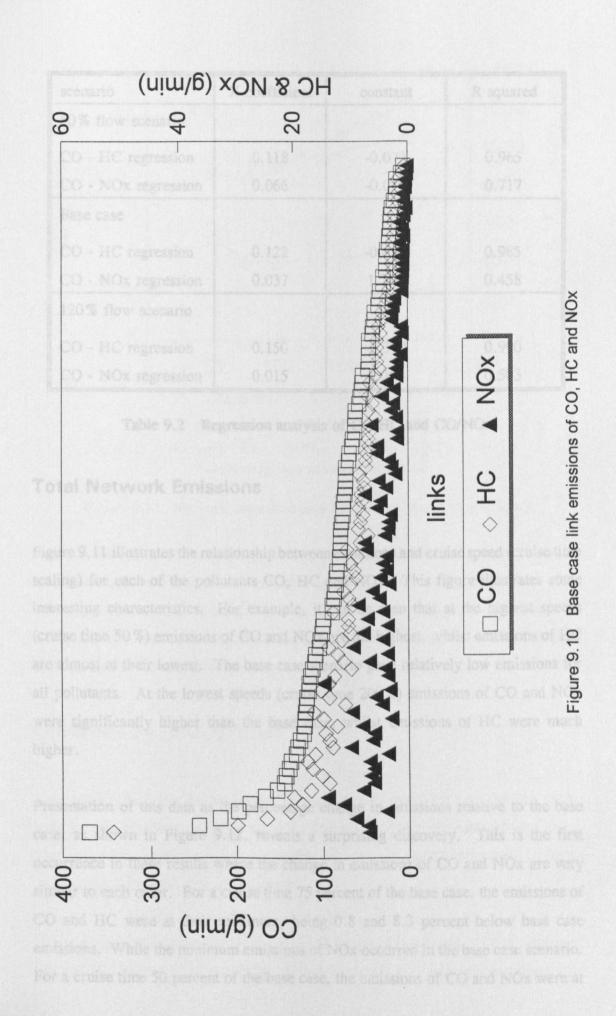
The relationship between individual pollutants as a function of flow is illustrated in this section. Figure 9.9 shows that the ratio of total network emissions of CO to NOx and HC to NOx are not constant and increase non-linearly with increasing flow. For flow levels which were 50 percent of the base case, the ratio of CO to NOx was 16:1 and HC to NOx was 1.8:1. At flow levels 120 percent of the base case, the ratio of CO to NOx was 26:1 and HC to NOx was 3.2:1.

The ratio of total network emissions of CO to HC was relatively constant, ranging from 8.1:1 to 8.8:1. The dip, at higher flows, in the ratio of CO to HC can be explained by HC's slightly greater sensitivity to delay, as was shown in Figure 9.8.

Having compared the relationship between pollutants for total network emissions it is also interesting to observe the relationship between pollutants on a link by link basis.

Figure 9.10 illustrates the relationship between pollutants on a link by link basis for the base case scenario. Links (along the x-axis) were sorted by their CO emission rate and for each link its emissions of CO, HC and NOx were plotted on the y-axis. It shows that there was a relatively good correlation between emissions of CO and HC.




Figure 9.9 Ratios between pollutants as a function of flow

However, emissions of NOx correlated poorly with CO and HC. The correlations between pollutants were determined for the base case and at flows corresponding to 50 and 120 percent of the base case. The correlation coefficients for these scenarios are presented in Table 9.2. This confirmed that the correlation between CO and HC was very good, but the correlation between CO and NOx is poor.

9.5 SENSITIVITY TO CRUISE SPEED

This section presents the results of the sensitivity test of emissions as a function of cruise speed. This was performed by adjusting the TRANSYT cruise time scaling factor over a range of values between 50 to 200 percent.

Although a cruise time scaling factor was used in TRANSYT and plotted on the xaxis, the text in this section refers to the scaling of cruise speed as cruise speed can be easily related to emissions.

scenario	X coefficient	constant	R squared	
50% flow scenario				
CO - HC regression	0.118	-0.073	0.965	
CO - NOx regression	0.066	-0.070	0.717	
Base case				
CO - HC regression	0.122	-0.652	0.965	
CO - NOx regression	0.037	1.241	0.458	
120% flow scenario				
CO - HC regression	0.150	-3.399	0.990	
CO - NOx regression	0.015	3.063	0.503	

Table 9.2 Regression analysis of CO/HC and CO/NOx

Total Network Emissions

Figure 9.11 illustrates the relationship between emissions and cruise speed (cruise time scaling) for each of the pollutants CO, HC and NOx. This figure illustrates some interesting characteristics. For example, it can be seen that at the highest speeds (cruise time 50%) emissions of CO and NOx are the highest, whilst emissions of HC are almost at their lowest. The base case scenario gave relatively low emissions for all pollutants. At the lowest speeds (cruise time 200%) emissions of CO and NOx were significantly higher than the base case, whilst emissions of HC were much higher.

Presentation of this data as the percentage change in emissions relative to the base case, as shown in Figure 9.12, reveals a surprising discovery. This is the first occurrence in these results where the change in emissions of CO and NOx are very similar to each other. For a cruise time 75 percent of the base case, the emissions of CO and HC were at their minimum, being 0.8 and 8.3 percent below base case emissions. While the minimum emissions of NOx occurred in the base case scenario. For a cruise time 50 percent of the base case, the emissions of CO and NOx were at

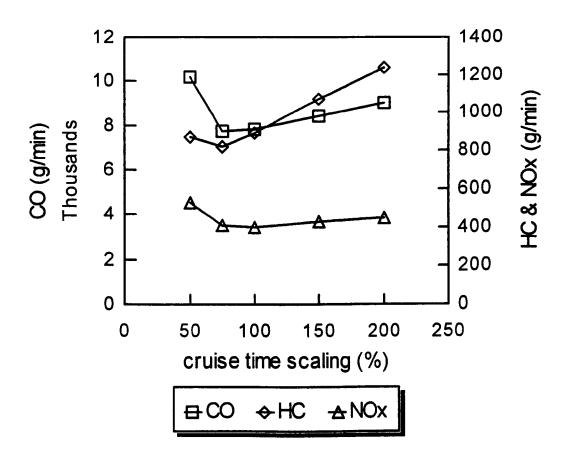


Figure 9.11 Network emissions as a function of speed (cruise time)

their maximum, both being 31 percent above their base case emissions. While maximum emissions of HC occurred for a cruise time 200 percent of the base case, with emissions being 39 percent above the base case. To understand the reasons for the similarities and differences between these pollutant emissions a more detailed analysis by driving mode is required.

Emissions by Driving Mode

Figure 9.13 illustrates the sensitivity of emissions to speed for each driving mode. Note that the acceleration graph has an additional line which has been labelled stops. This is the total cost of stops on the traffic network; its values correspond to the yaxis on the right hand side of the graph.

Cruise emissions for all pollutants increase as the speed is reduced, with emissions of CO and HC increasing substantially. It can be clearly seen that cruise emissions of

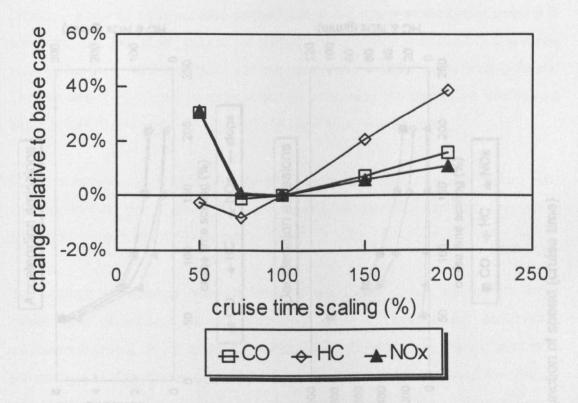
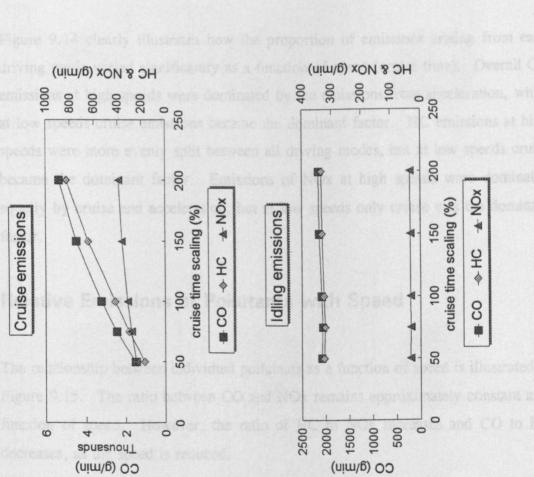



Figure 9.12 Percentage change in emissions as a function of speed

CO and HC are very sensitive to changes in cruise speed, while NOx is much less sensitive. An inspection of PREMIT's verbose output listings for these scenarios showed that cruise emissions reduced with increasing speed for two reasons. Firstly, higher cruise speeds corresponded to lower vehicle emission rates. Secondly, and more significantly, as speeds increased the proportion of a link's length available for cruising became smaller. This was because more of a link's length was occupied by vehicles accelerating and decelerating. Indeed, at the highest speed tested, for most links (73 links) there were no cruise emissions from vehicles that had to stop.

Acceleration emissions of all pollutants are very sensitive to cruise speed. At high speeds, as the speed is reduced these emissions fall rapidly, while at lower speeds a reduction in speed results in a relatively smaller reduction in emissions. Deceleration emissions behaved in a similar way, but NOx emissions were very small. The sensitivity of these emissions was due to the increased distance travelled, in the acceleration and deceleration modes, with increased speed. For a linear acceleration rate, the distance travelled from rest to the final cruise speed is proportional to the square of the cruise speed. These emissions follow the cost of stops plot on the same graph. TRANSYT calculates the cost of stops using a kinetic energy adjustment

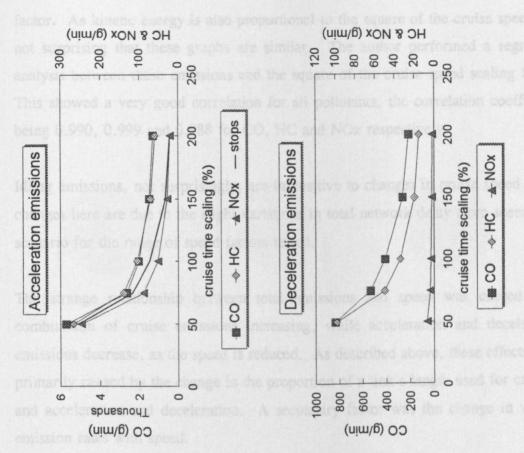
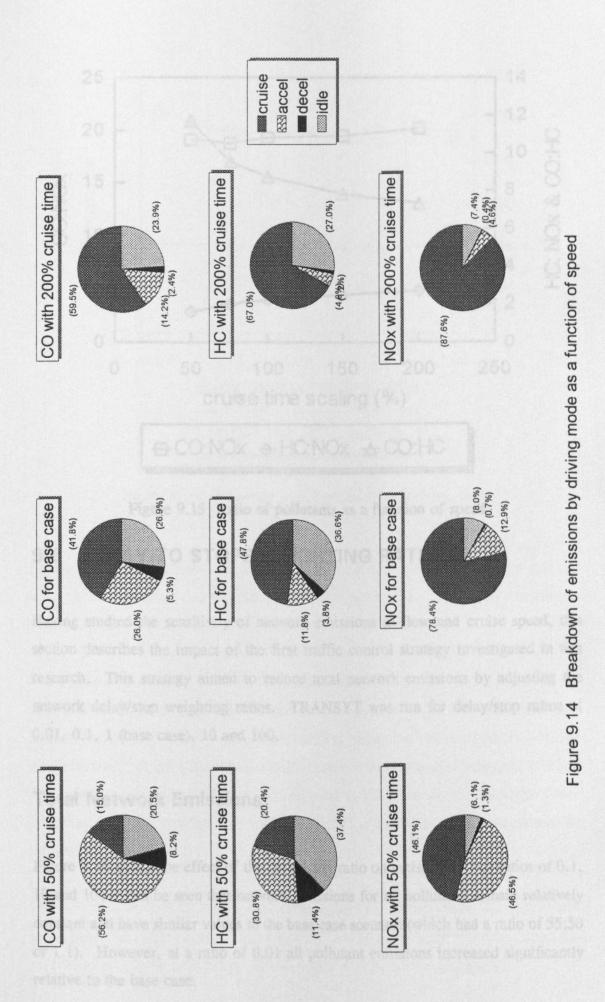


Figure 9.13 Emissions by driving mode as a function of speed (cruise time)

factor. As kinetic energy is also proportional to the square of the cruise speed it is not surprising that these graphs are similar. The author performed a regression analysis between these emissions and the square of the cruise speed scaling factor. This showed a very good correlation for all pollutants, the correlation coefficients being 0.990, 0.999 and 0.988 for CO, HC and NOx respectively.


Idling emissions, not surprisingly, are insensitive to changes in cruise speed. Any changes here are due to the slight variations in total network delay from scenario to scenario for the range of speed factors tested.

The strange relationship between total emissions and speed was caused by a combination of cruise emissions increasing, while acceleration and deceleration emissions decrease, as the speed is reduced. As described above, these effects were primarily caused by the change in the proportion of a link's length used for cruising and acceleration and deceleration. A secondary factor was the change in vehicle emission rates with speed.

Figure 9.14 clearly illustrates how the proportion of emissions arising from each driving mode varied significantly as a function of speed (cruise time). Overall CO emissions at high speeds were dominated by the emissions from acceleration, while at low speeds cruise emissions became the dominant factor. HC emissions at high speeds were more evenly split between all driving modes, but at low speeds cruise became the dominant factor. Emissions of NOx at high speeds were dominated equally by cruise and acceleration, but at low speeds only cruise was the dominant factor.

Relative Emissions of Pollutants with Speed

The relationship between individual pollutants as a function of speed is illustrated in Figure 9.15. The ratio between CO and NOx remains approximately constant as a function of speed. However, the ratio of HC to NOx increases and CO to HC decreases, as the speed is reduced.

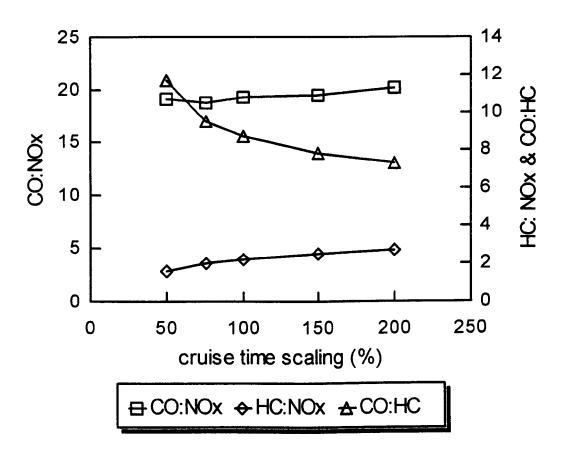


Figure 9.15 Ratio of pollutants as a function of speed

9.6 DELAY TO STOPS WEIGHTING RATIO

Having studied the sensitivity of network emissions to flow and cruise speed, this section describes the impact of the first traffic control strategy investigated in this research. This strategy aimed to reduce total network emissions by adjusting the network delay/stop weighting ratios. TRANSYT was run for delay/stop ratios of 0.01, 0.1, 1 (base case), 10 and 100.

Total Network Emissions

Figure 9.16 shows the effect of the delay/stop ratio on emissions. For ratios of 0.1, 10 and 100 it can be seen that network emissions for all pollutants remain relatively constant and have similar values to the base case scenario (which had a ratio of 55:50 or 1.1). However, at a ratio of 0.01 all pollutant emissions increased significantly relative to the base case.



Figure 9.16 Emissions as a function of delay/stop ratio

Figure 9.17 shows the percentage change in emissions, relative to the base case, as a function of the delay/stop weighting ratio. For ratios of 0.1, 10 and 100 the change relative to the base case is less than 3 percent for each pollutant.

For a ratio of 0.01 there were significant increases of 9.8, 16.5 and 3.5 percent for CO, HC and NOx respectively. It can be seen that the trend in emissions closely follows that of total delay. However, a detailed inspection of the TRANSYT output data revealed that three links had unrealistically excessive queue lengths and delay. These links were responsible for a large increase in idling emissions. TRANSYT also predicted that a third of the links in the network had their flows reduced, because of congestion upstream.

The best reductions in emissions were relatively small. Emissions of CO were lowest in the base case. The lowest emissions of HC and NOx occurred at a delay/stop ratio of 100, at which the reductions were -0.4 and -0.9 percent respectively.

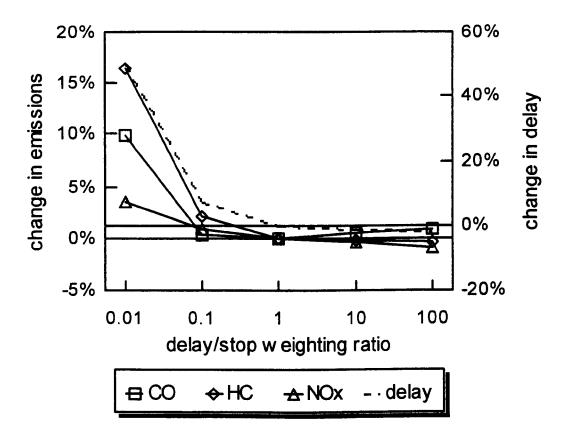
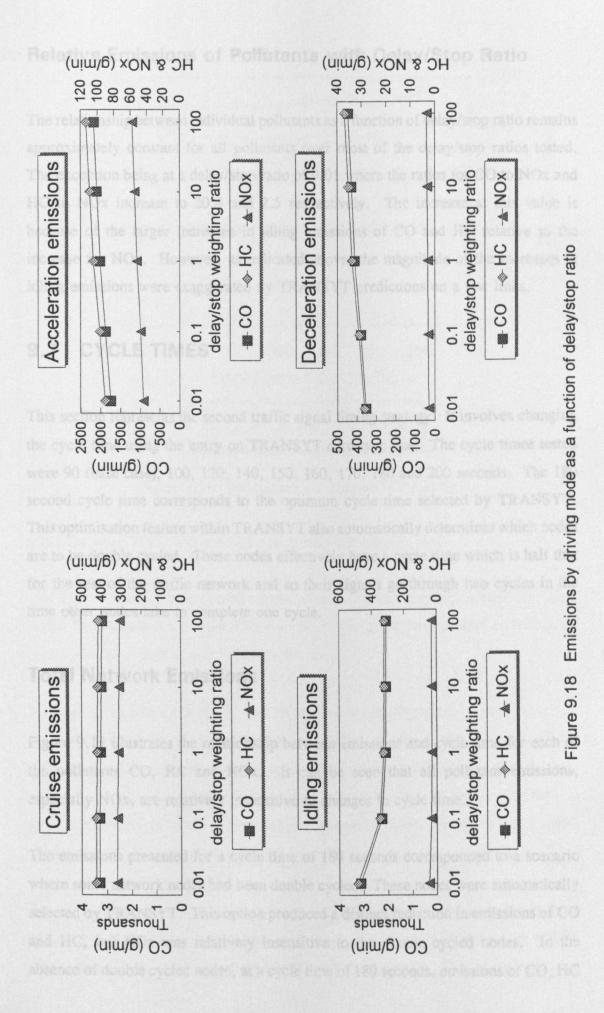



Figure 9.17 Percentage change in emissions and delay as a function of delay/stop weighting ratio

Emissions by Driving Mode

Analysis of these emissions by driving mode, as illustrated in Figure 9.18, reveals that the significant increase of emissions for a delay/stop ratio of 0.01 is due to an unrealistic increase in idling emissions, as discussed above. It can be seen that cruise emissions decrease slightly, while emissions from acceleration and deceleration increase with increasing values of the delay/stop ratio. This was because, at higher delay/stop ratios, TRANSYT optimised the network to reduce delay rather than stops, and this led to many links having increased queue lengths. Increased stops resulted in more vehicles having to decelerate and then accelerate, with a corresponding increase in their emissions. For links with increased queue lengths, the distance available for cruising became shorter, resulting in reduced cruise emissions.

Relative Emissions of Pollutants with Delay/Stop Ratio

The relationship between individual pollutants as a function of delay/stop ratio remains approximately constant for all pollutants over most of the delay/stop ratios tested. The exception being at a delay/stop ratio of 0.01 where the ratios for CO to NOx and HC to NOx increase to 20.4 and 2.5 respectively. The increase at this value is because of the larger increases in idling emissions of CO and HC relative to the increase for NOx. However, as indicated above, the magnitude of the increases in idling emissions were exaggerated by TRANSYT predictions on a few links.

9.7 CYCLE TIMES

This section represents the second traffic signal timing strategy. It involves changing the cycle time using the entry on TRANSYT card type one. The cycle times tested were 90 (base case), 100, 120, 140, 150, 160, 170, 180 and 200 seconds. The 180 second cycle time corresponds to the optimum cycle time selected by TRANSYT. This optimisation feature within TRANSYT also automatically determines which nodes are to be double cycled. These nodes effectively have a cycle time which is half that for the rest of the traffic network and so their signals go through two cycles in the time other nodes take to complete one cycle.

Total Network Emissions

Figure 9.19 illustrates the relationship between emissions and cycle time for each of the pollutants CO, HC and NOx. It can be seen that all pollutant emissions, especially NOx, are relatively insensitive to changes in cycle time.

The emissions presented for a cycle time of 180 seconds corresponded to a scenario where some network nodes had been double cycled. These nodes were automatically selected by TRANSYT. This option produced a distinct reduction in emissions of CO and HC, but NOx was relatively insensitive to the double cycled nodes. In the absence of double cycled nodes, at a cycle time of 180 seconds, emissions of CO, HC

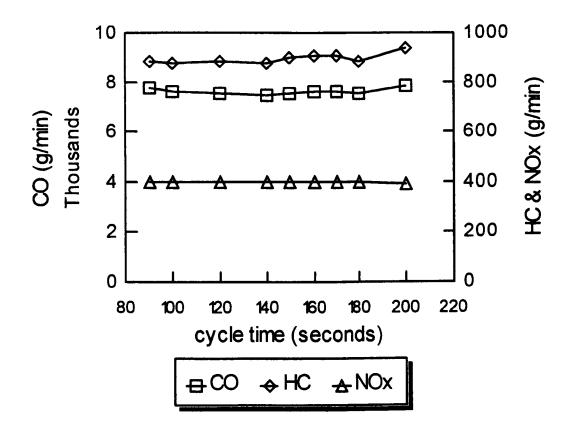


Figure 9.19 Emissions as a function of cycle time

and NOx were 7777, 930 and 401 g/min respectively.

The relative changes in emissions compared with the base case is illustrated in Figure 9.20. The changes follow relatively complex patterns and the minimum emissions for each pollutant occurs at a different cycle time.

The change in emissions of CO and HC follow a similar pattern to each other, for most of the cycle times that were modelled. However, the level of HC is displaced above that of CO such that for some cycle times emissions of CO are below the base case value whilst emissions of HC are above the base case. It can be seen that, in general, the changes in HC closely follow changes in delay. For some cycle times, changes in CO also correspond with changes in delay, but to a lesser extent.

For short cycle times, changes in emissions of NOx show a similar pattern to those of CO, but at the longer cycle times changes in NOx do not follow changes in CO. The changes in NOx do not correspond with changes in delay. This is not surprising

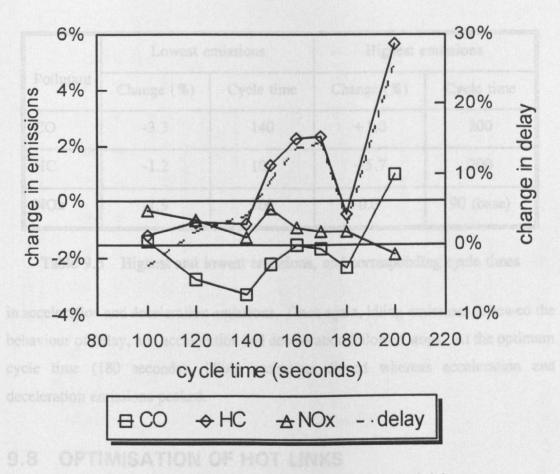


Figure 9.20 Percentage change in emissions and delay as a function of cycle time

because, as illustrated earlier, emissions from idling are only responsible for a small proportion of total NOx emissions.

Table 9.3 shows the highest and lowest emissions for each pollutant over the range of cycle times tested. Note that all cycle times gave emissions of NOx that were lower than those of the base case.

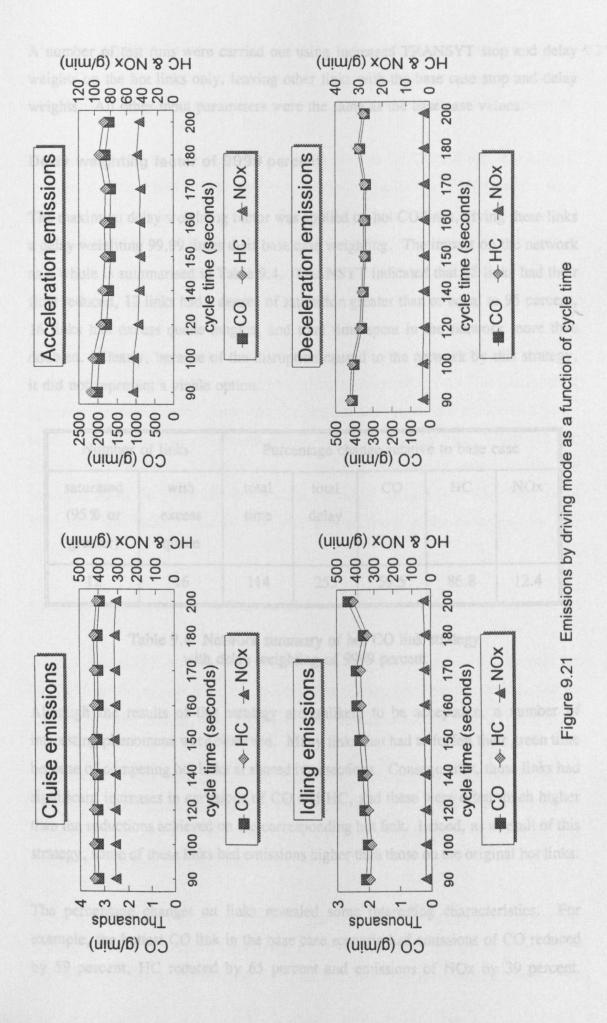
Emissions by Driving Mode

Analysis of emissions by driving mode, as illustrated in Figure 9.21, revealed that cruise emissions were relatively insensitive to cycle time, whereas emissions from acceleration, deceleration and idling were sensitive to cycle time.

The trend of changes in idling emissions were approximately the inverse of changes

	Lowest e	missions	Highest emissions		
Pollutant	Change (%)	Cycle time	Change (%)	Cycle time	
СО	-3.3 140		+1.0	200	
НС	-1.2	100	+5.7	200	
NOx	-1.9	200	0.0	90 (base)	

Table 9.3 Highest and lowest emissions, and corresponding cycle times


in acceleration and deceleration emissions. Once again, idling emissions followed the behaviour of delay, and acceleration and deceleration followed stops. At the optimum cycle time (180 seconds), idling emissions dipped whereas acceleration and deceleration emissions peaked.

9.8 OPTIMISATION OF HOT LINKS

This section presents the results of environmentally sensitive traffic control strategies that aimed to reduce link emissions for links which had the highest emissions in the network. The top 20 links with the highest emissions were termed hot links and were selected for optimisation. There were 20 hot CO links and 20 hot NOx links, of these 11 were both hot CO and NOx links. The study network had a total of 86 links. The term link is used here to refer to an actual unidirectional stretch of road between two intersections; some of these include more than one TRANSYT "link".

Hot CO Links

Based on the results described earlier in this chapter it was possible to formulate an hypothesis that emissions of CO, and HC, were very sensitive to delay, especially on links with a high degree of saturation. Therefore, the strategy to reduce hot link emissions of CO was based on reducing the delay on hot CO links.

A number of test runs were carried out using increased TRANSYT stop and delay weights on the hot links only, leaving other links with the base case stop and delay weights. All other input parameters were the same as the base case values.

Delay weighting factor of 9999 percent

The maximum delay weighting factor was applied on hot CO links, giving these links a delay weighting 99.99 times their base case weighting. The impact on the network as a whole is summarised in Table 9.4. TRANSYT indicated that 68 links had their flow reduced, 12 links had a degree of saturation greater than or equal to 95 percent, 16 links had excess queue lengths, and total time spent in the network more than doubled. Clearly, because of the disruption caused to the network by this strategy, it did not represent a viable option.

Number	of links	Percentage change relative to base case					
saturated (95% or greater)	with excess queue	total time	total delay	СО	нс	NOx	
12	16	114	255	59.5	86.8	12.4	

Table 9.4 Network summary of hot CO link strategy with delay weighting of 9999 percent

Although the results of this strategy are unlikely to be acceptable, a number of interesting phenomena were observed. Many links that had to forfeit their green time because of competing hot links at shared intersections. Consequently, these links had significant increases in emissions of CO and HC, and these were often much higher than the reductions achieved on the corresponding hot link. Indeed, as a result of this strategy, some of these links had emissions higher than those on the original hot links.

The percentage changes on links revealed some interesting characteristics. For example, the hottest CO link in the base case scenario had emissions of CO reduced by 59 percent, HC reduced by 65 percent and emissions of NOx by 39 percent.

Whereas the second hottest link had emissions reduced by 16, 17 and 7 percent for CO, HC and NOx respectively. Note that in this case the percentage reduction in NOx emissions was less than half the percentage reduction in CO and HC emissions.

The third hot link had increases of 22 and 24 percent for CO and HC respectively, because of competition with hotter links. However, emissions of NOx for the same link actually decreased by 3 percent. This lack of correlation between changes in CO and changes in NOx is also illustrated on the fourth hot link, on which emissions of CO and HC fell by 63 and 58 percent respectively. Whereas emissions of NOx for the same link actually increased by 43 percent!

Because the impact of these signal timings was so disruptive to the traffic network, many drivers may, in reality, respond by taking an alternate route. This would result in a different set of traffic flows. So if a detailed analysis of this particular strategy were to be pursued an assignment model would have to be used. Although the magnitude of the changes reported above are not expected to reflect reality, the concepts, particularly the lack of correlation between changes in CO and changes in NOx, are still valid. This is illustrated and analyzed in the following hot link strategies.

Delay weighting factor of 500 percent

When a TRANSYT run was made with a delay weighting factor of 500 percent for hot CO links the disruption to the network was considerably less than that caused by a factor of 9999 percent. The impact on the network is summarised in Table 9.5.

The number of saturated links remained the same as the base case and the number of links with excess queues increased by one. However, 21 links had their flow reduced compared with only 4 in the base case. The total time spent in the network was slightly higher than the base case value.

In the base case, the CO emission rate for hot link number 20 was 118. The hot link strategy resulted in only 16 links being at or above this hot link threshold emission rate for CO. Six of the original hot links had their emissions reduced below this

Number	of links	Percentage change relative to base case					
saturated (95% or greater)	with excess queue	total time	total delay	CO	нс	NOx	
4	8	3.1	7.0	1.4	2.3	-0.1	

Table 9.5 Network summary of hot CO link strategy with delay weighting of 500 percent

threshold value, and two links became new hot links. Hence, the strategy had the net effect of removing four links from the hot link category.

The impact that this strategy had on hot links is shown in Table 9.6. The table lists the link number for each hot link. These numbers correspond to the ranking of the hot link in the base case scenario, based on its emission rate of CO. Links are sorted in the table by their emission rate of CO in the hot link strategy. The greatest increases and decreases in hot link emissions are underlined.

The worst percentage increase, for the hot links, in emissions of CO and HC occurred on hot link two for which the increases were 56 and 73 percent respectively. The worst percentage increase in emissions of NOx occurred on hot link four, on which emissions increased by 30 percent.

The best percentage decrease in hot link emissions of CO occurred on hot link nineteen, on which emissions of CO fell by 41 percent. Hot link one had the best percentage decrease in emissions of HC and NOx which fell by 37 and 27 percent respectively.

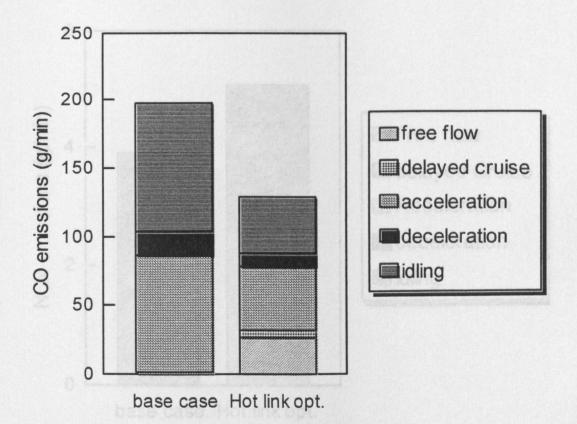
Of the 20 hot CO links, emissions were reduced on 14, 13 and 7 links for CO, HC and NOx respectively. Note that most hot CO links had their emissions of CO and HC reduced, but had their emissions of NOx increased. The changes in link emissions of CO and HC behaved differently to those for NOx. Of the 20 hot CO

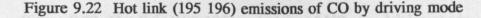
Hot li	nk number	Network emissions		Change in emissions (%)			
and	d nodes	CO	HC	NOx	CO	HC	NOx
2	227 226	380.73	51.62	8.38	<u>56.1</u>	<u>72.8</u>	15.7
1	225 226	247.12	32.33	5.14	-33.2	- <u>37.1</u>	- <u>27.0</u>
3	491 226	215.68	24.44	9.34	-1.6	-1.5	0.1
5	216 217	196.66	19.73	11.52	6.3	6.1	0.2
8	213 214	176.31	15.07	6.01	21.3	8.0	-2.4
15	259 216	162.86	19.02	5.38	33.1	30.5	-10.8
6	226 207	148.45	19.08	14.28	-11.2	-5.0	0.3
7	228 227	148.38	16.68	8.24	-3.3	-2.5	1.7
10	206 227	143.75	17.61	6.25	3.2	4.6	1.3
9	198 199	142.42	14.91	6.63	-0.5	-1.4	-0.7
11	218 219	132.62	17.69	7.2	-3.2	0.1	4.7
4	195 196	129.29	13.87	5.07	-34.8	-33.3	<u>30.0</u>
18	219 220	120.89	16.57	9.94	0.5	0.0	-0.1
13	207 208	120.23	12.2	9.94	-7.0	-8.6	-2.0
14	217 218	114.65	11.93	6.16	-9.5	-14.0	-3.4
16	196 197	113.19	11.81	8.12	-6.9	-6.0	0.1
17	262 261	112.25	13.81	3.1	-7.2	-7.3	4.0
20	199 212	112.14	13.17	5.83	-5.3	-4.9	0.9
12	331 216	108.68	13.7	3.89	-17.2	-16.1	6.9
19	212 213	70.11	7.61	4.89	- <u>41.1</u>	-31.6	5.2

Table 9.6 Impact of 500 percent delay weighting on hot CO links

links, 13 links had changes in CO which were in the opposite direction to changes in NOx. This illustrates that changes in NOx do not correlate well with changes in CO, or HC.

Analysis of opposite behaviour between changes in CO and NOx

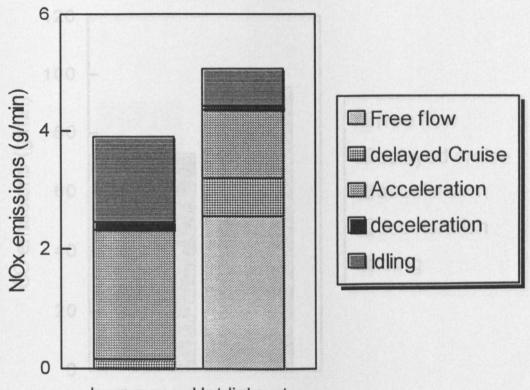

The irregular behaviour of changes in emissions of NOx relative to changes in CO represents an interesting and important feature of traffic emissions. It is important to understand the reason for such behaviour.


The link between nodes 195 and 196 was the fourth hottest link and its emissions changed by -35, -33 and +30 percent relative to the base case for CO, HC and NOx respectively. This link, therefore, represents an excellent example of the opposite behaviour in the changes of CO and NOx. This behaviour can be explained by analysing the link's emissions by driving mode. The analysis separated cruise emissions into two parts: cruise emissions from vehicles which are not delayed on a link (free flow); and cruise emissions from vehicles which are delayed.

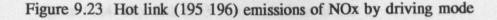
Emissions of CO significantly decreased on this link after optimisation, as illustrated in Figure 9.22. This was because emissions from idling and acceleration reduced substantially and exceeded the increase in cruise emissions. Emissions of HC behaved similarly to those of CO.

Unlike CO and HC, Figure 9.23 illustrates how NOx emissions increased on this link after 'optimisation'. This was because the proportion of vehicles on this link which experienced free flow conditions increased after 'optimisation'. In fact, a detailed analysis of this link revealed that in the base case there were no vehicles which experienced free flow - all vehicles were delayed. After optimisation of this link over 1200 vehicles per hour were able to travel down this link without being stopped. This resulted in a substantial increase of free flow cruise emissions.

A secondary factor for the increase in cruise emissions was the increase in cruise emissions from vehicles that are delayed, although this increase was not as significant as the increase in free flow cruise emissions. This increase was because the queue length reduced, allowing a longer distance for vehicles to cruise over before joining the back of the queue. Hence, although the number of delayed vehicles fell with optimisation, the increase in cruise distance resulted in a net increase of these emissions.

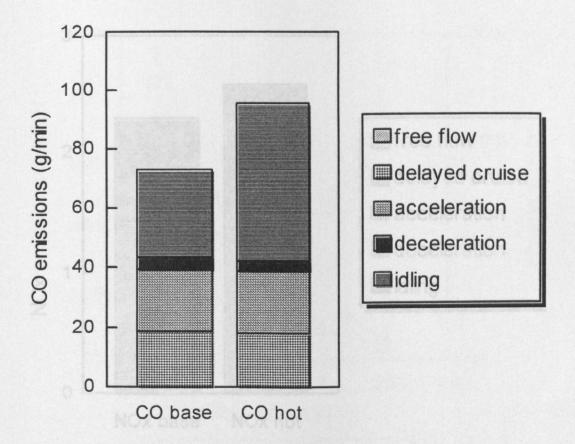


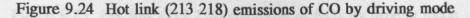
Emissions from acceleration, deceleration and idling were reduced because the stops and delay had been reduced at the intersection. However, these reductions were outweighed by the increase in cruise emissions of NOx.


Likewise, opposite behaviour can be observed on links where emissions of CO and HC have increased, but NOx has decreased. The reason is the same as the above example, except that delay and queue length have increased instead of decreasing. An example of this behaviour was observed on link 259 216.

Analysis of similar behaviour for changes in CO and NOx

It has been shown above that emissions of CO and NOx can change in opposite directions on the same link for a given strategy. Although this occurred on many links, some links had emissions of CO and NOx change in the same direction. This section analyses this behaviour using link 213 218 as an example. This link was not a hot link and after hot link optimisation the delay on this link was increased.


base case Hot link opt.



Emissions of CO, HC and NOx all increased after hot link optimisation by 30, 41 and 13 percent respectively.

Figure 9.24 illustrates the increase in emissions of CO by driving mode. Both before and after optimisation, there were no free flow cruise emissions. This was because all vehicles on this link were delayed. The change in emissions for delayed cruise, acceleration and deceleration were insignificant and the dominant factor was a significant increase in idling emissions.

Figure 9.25 illustrates the change in emissions of NOx by driving mode. The changes for each driving mode are similar to those for CO and the only significant change is the increase in NOx idling emissions. However, NOx idling emissions account for a much smaller proportion of total emissions from all modes compared to CO idling emissions. Consequently, the increase in total emissions of NOx is much smaller than that for CO.

Analysis of change in pollutants as a function of flow

It has been shown above that some links for this strategy have emissions of CO and NOx change in opposite directions to each other, while some links have CO and NOx change in the same direction. It is interesting to ask, does a particular link always have emissions of CO and NOx change in the same or opposite direction as a function of flow?

This section analyses the change in emissions, caused by the hot link optimisation strategy, as a function of flow. The analysis is based on link 213 218. For each flow tested, values were obtained for scenarios corresponding to before and after optimisation.

Figure 9.26 illustrates the impact of hot link optimisation on the link's degree of saturation and delay. For a flow scaling factor of 50 percent, the optimisation caused the saturation and delay on this link to rise considerably compared with their values

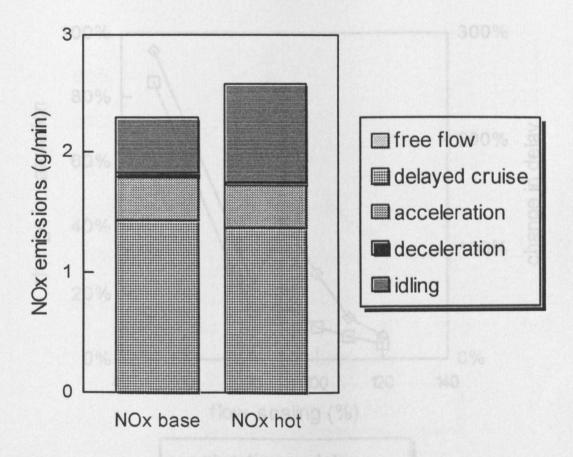


Figure 9.25 Hot link (213 218) emissions of NOx by driving mode

before optimisation. The degree of saturation was increased by over 80 percent and delay by almost 300 percent. The figure shows that the changes in delay were very sensitive to changes in the degree of saturation.

Figure 9.27 illustrates the impact the hot link strategy had on stops and queue length as a function of flow. The change in stops closely followed changes in queue. It is interesting to note that although the strategy used a constant weighting on the hot links, the changes to saturation, delay, stops and queue are relatively complex. Also, the change observed for delay did not follow the changes observed for stops and queue length.

The impact on emissions is illustrated in Figure 9.28. The change in emissions of CO and HC are similar to each other over the whole range of flows tested. These changes are clearly influenced by the changes in delay. For example, the peak in the change to delay also corresponds to the peak in the change of CO and HC.

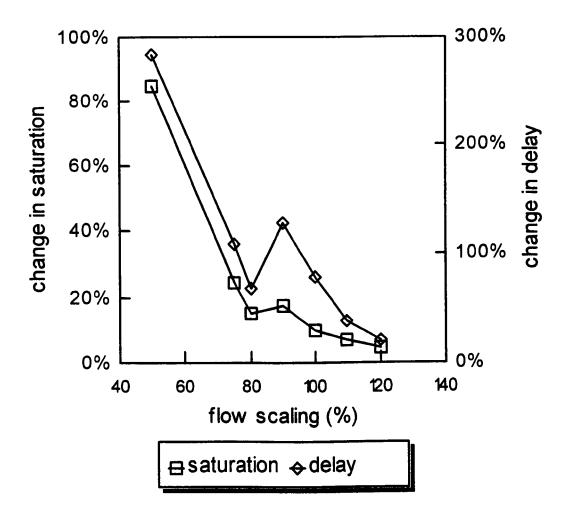


Figure 9.26 Impact of 500 percent delay weighting on link degree of saturation and delay as a function of flow

However, the changes in emissions of NOx reveal some interesting characteristics. Firstly, the changes in NOx do not correspond to the changes in CO and HC. Secondly, the changes in NOx are sometimes positive and sometimes negative. This, therefore, answers the above question: on a given link, changes in emissions of NOx caused by a particular strategy may or may not be in the same direction as changes in emissions of CO and HC.

The changes in NOx do not closely follow the change in delay. They do, however, indicate a relationship to stops, in that its trend is almost the inverse of the change in stops. The exception being at a flow scaling value of 90 percent where the change in NOx increases relative to the previous point. This is because, at this flow, the significant increase in idling emissions causes overall NOx emissions to increase.



Figure 9.27 Impact of 500 percent delay weighting on link stops and queue length

The change in emissions from each driving mode were investigated to understand the behaviour of NOx emissions. Figure 9.29 illustrates the effect the strategy had on emissions from each driving mode as a function of flow. In this figure, the change in driving mode emissions represents the percentage change of total link emissions, as opposed to the percentage change in a particular driving mode's emissions. Hence, if changes from all driving mode emissions are totalled they give the change in total link emissions.

A number of important points may be derived from this figure. It can be seen that the changes in deceleration emissions were not significant (being barely detectable on the graph), whereas changes in acceleration emissions were significant. The changes in idling and cruise emissions were the dominant factors influencing the change in total NOx emissions. Changes in idling and cruise emissions were always in opposite directions and whichever had the greater magnitude of change usually determined the

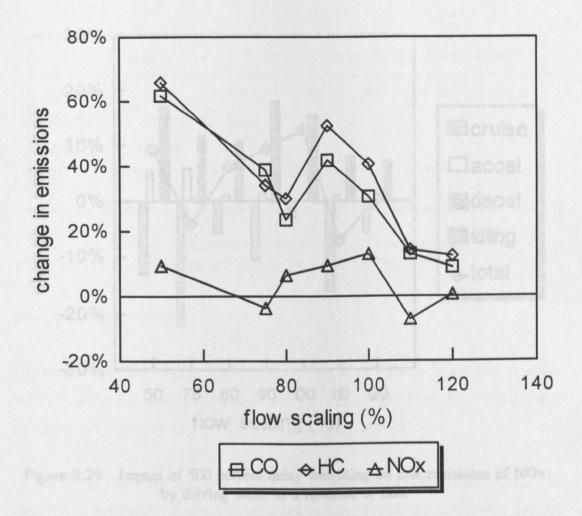


Figure 9.28 Impact of 500 percent delay weighting on link emissions as a function of flow

change in overall emissions.

At 50 percent flow the increase in idling emissions slightly outweighed the decrease in cruise emissions resulting in a net increase of NOx. In this particular case, the change in acceleration emissions also made a significant contribution to the net increase in NOx emissions.

At 100 percent flow, the strategy only caused a slight reduction in cruise emissions, but increased idling emissions substantially. Consequently, the net effect was a relatively large increase in total NOx emissions.

Comparing the change in cruise emissions with the change in stops, it can be seen that

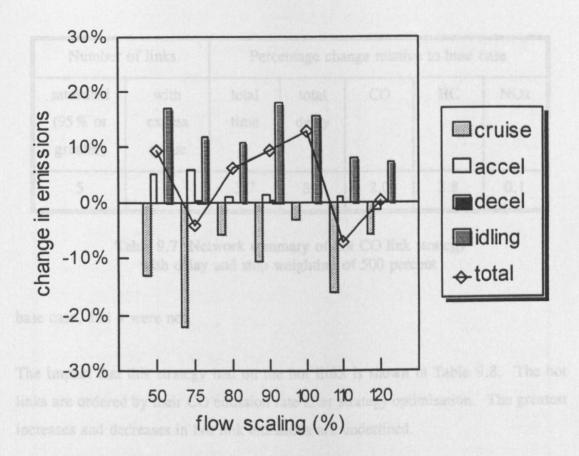


Figure 9.29 Impact of 500 percent delay weighting on link emissions of NOx by driving mode as a function of flow

they reflected the inverse behaviour of stops. The change in acceleration followed the change in stops, and the change in idling followed the change in delay.

Delay and stop weighting factor of 500 percent

This section describes the results obtained from a TRANSYT run which had both delay and stop weighting factors of 500 percent assigned to hot CO links. This resulted in 21 links having their flow reduced. The impact this strategy had on the network is summarised in Table 9.7. The number of saturated links had increased by one and the number of links with excessive queue lengths had increased by four.

In the base case 20 hot links had emissions of CO greater than, or equal to, 118 g/min. After the application of this strategy, only 17 links on the network had emissions greater than or equal to this value. Of these 13 links were hot links in the

Number of links		Percentage change relative to base case					
saturated (95% or greater)	with excess queue	total time	total delay	CO	нс	NOx	
5	11	3.7	8.4	2.0	2.8	0.1	

Table 9.7 Network summary of hot CO link strategy with delay and stop weighting of 500 percent

base case, and 4 were not.

The impact that this strategy had on the hot links is shown in Table 9.8. The hot links are ordered by their CO emission rate after strategy optimisation. The greatest increases and decreases in hot link emissions are underlined.

Of the 20 hot CO links, emissions were reduced on 15, 15 and 7 links for CO, HC and NOx respectively. However, emissions increased on 5, 4 and 13 links for CO, HC and NOx respectively. Note that most hot CO links experienced reductions in emissions of CO and HC, but experienced increases in emissions of NOx.

Fourteen hot links experienced changes of CO in the opposite direction to changes in NOx. On a link by link basis, the changes in CO and HC were very similar to each other, with the change in CO usually (14 of the 20 hot links) being greater that the change in HC. The hot link changes in CO, and HC, reflected the changes in link delays and stops.

Hot NOx Links

This section describes the results of strategies which aimed to reduce emissions of NOx on those links which had the highest emissions of NOx. These links were referred to as hot NOx links.

Hot l	ink number	Netwo	ork emissi	ons	Change in emissions (%)			
an	d nodes	со	HC	NOx	CO	HC	NOx	
2	227 226	382.25	51.80	8.37	<u>56.7</u>	<u>73.4</u>	15.6	
1	225 226	247.96	32.46	5.15	-33.0	- <u>36.9</u>	- <u>26.8</u>	
3	491 226	212.87	24.08	9.37	-2.9	-2.9	0.4	
5	216 217	191.19	18.79	11.36	3.3	1.1	-1.2	
15	259 216	170.58	19.58	4.90	39.4	34.4	-18.7	
6	226 207	153.25	19.43	14.28	-8.3	-3.2	0.3	
7	228 227	148.38	16.68	8.24	-3.3	-2.5	1.7	
10	206 227	143.75	17.61	6.25	3.2	4.6	1.3	
9	198 199	135.43	14.64	6.85	-5.3	-3.2	2.5	
11	218 219	133.50	17.48	7.02	-2.6	-1.1	2.0	
4	195 196	129.86	14.16	5.39	-34.5	-31.9	<u>38.2</u>	
8	213 214	129.31	12.58	6.07	-11.0	-9.9	-1.5	
18	219 220	120 .8 9	16.57	9.94	0.5	0.0	-0.1	
13	207 208	113.33	11.99	10.06	-12.3	-10.2	-0.8	
16	196 197	113.19	11.81	8.12	-6.9	-6.0	0.1	
17	262 261	112.25	13.81	3.10	-7.2	-7.3	4.0	
20	199 212	108.26	12.40	5.68	-8.6	-10.5	-1.7	
14	217 218	104.32	11.72	6.66	-17.6	-15.6	4.4	
12	331 216	103.92	13.16	3.94	-20.8	-19.4	8.2	
19	212 213	63.27	7.16	4.94	- <u>46.8</u>	-35.6	6.2	

Table 9.8 Impact of 500 percent delay and stop weighting on hot CO links

The earlier sections of this chapter have shown that a significant proportion of NOx emissions arise from acceleration. Therefore, the first of the strategies described below aimed to reduce NOx emissions by reducing the number of stops on hot NOx links and hence the emissions contribution from acceleration. A number of runs were carried out using increased TRANSYT stop weighting factors on the hot NOx links,

leaving other links with the delay and stop weights used in the base case scenario.

It has also been shown above that the major contribution to NOx emissions comes from cruise emissions. Therefore, strategies which aimed to increase the number of stops on hot NOx links were also tested by lowering the stop weighting factor on these links below their base case values.

Stop weighting factor of 9999 percent

The maximum stop weighting factor was applied to the hot NOx links, giving these links a stop weighting 99.99 times their base case value. Table 9.9 summarises the impact this strategy had on the network.

Number of links		Percentage change relative to base case					
saturated (95 % or greater)	with excess queue	total time	total delay	CO	нс	NOx	
7	11	16.6	37.2	9.5	12.6	1.5	

Table 9.9 Network summary of hot NOx link strategy with stop weighting of 9999 percent

The worst increases in emissions on the hot NOx links were 55, 71 and 16 percent for CO, HC and NOx respectively. The best decreases on the hot NOx links were 38, 40 and 28 percent for CO, HC and NOx respectively. Once again, this illustrates that the change in network emissions of CO and HC are larger than the change in emissions of NOx.

This strategy caused significant disruption to the network, with significant increases in total network emissions and would have also resulted in traffic rerouting. Therefore, these unrealistic results did not represent a viable solution.

Stop weighting factor of 500 percent

A stop weighting factor of 500 percent was tried on the hot NOx links, but this was also unsuccessful. The impact this strategy had on the network is summarised in Table 9.10.

Number of links		Percentage change relative to base case					
saturated (95% or greater)	with excess queue	total time	total delay	СО	нс	NOx	
4	9	0.5	1.1	0.0	0.3	0.3	

Table 9.10 Network summary of hot NOx link strategy with stop weighting of 500 percent

The largest hot link increases were 10, 9 and 7 percent for CO, HC and NOx respectively. The best decreases in hot link emissions were 29 and 25 percent for CO and HC, but only 1 percent for NOx. Of the 20 hot NOx links, 9 had changes of CO in the opposite direction to changes in NOx, only 5 links had emissions of NOx reduced, 8 links had NOx increased and 7 had changes smaller than 0.1 percent.

Stop weighting factor of -500 percent

This strategy involved reducing the stop weighting factor on hot NOx links to encourage TRANSYT to increase the number of stops on these links, compared with the base case scenario. This resulted in significant disruption to the network, as illustrated in Table 9.11.

The largest percentage increase of the hot NOx links for CO and HC occurred on hot link 12, for which the increases were 472 and 495 percent respectively! The largest increase in NOx also occurred on the same link, and was an increase of 46 percent. The best reduction in emissions of CO and HC occurred on hot NOx link 17, for which the reductions were 17 and 19 percent respectively. Hot link 9 experienced the

Number of links		Percentage change relative to base case						
saturated (95% or greater)	with excess queue	total time	total delay	CO	HC	NOx		
10	9	19.5	43.1	21.5	17.1	3.9		

Table 9.11 Network summary of hot NOx link strategy with stop weighting of -500 percent

best percentage reduction in NOx of 29 percent.

Of the 20 hot NOx links, 18 experienced changes in CO in the opposite direction to changes in NOx, and 17 links had emissions of NOx reduced.

Stop weighting factor of -200 percent

Although the above strategy reduced emissions of NOx by a significant amount, it caused significant delay to traffic on the network and increased emissions of CO and HC. Therefore, a compromise between emissions of CO and HC, and NOx was sought by applying a smaller stop weighting factor of -200 percent. The impact this strategy had on the network is summarised in Table 9.12.

Number of links		Percentage change relative to base case					
saturated (95% or greater)	with excess queue	total time	total delay	СО	НС	NOx	
4	6	3.7	8.4	9.9	4.6	-3.9	

Table 9.12Network summary of hot NOx link strategy
with stop weighting of -200 percent

This strategy resulted in the same number of saturated links as the base case scenario, reduced the number of links with excessive queue lengths by one, but had 7 links with reduced flows compared with 4 for the base case.

In the base case the emission rate of NOx for hot link number 20 was 6.68 grams per minute. After the application of this strategy only 14 links had emissions equal to, or greater than, this value.

The impact that this strategy had on the hot links is shown in Table 9.13. The hot links are ordered by their NOx emission rate after strategy optimisation. The greatest increases and decreases in hot link emissions are underlined.

Note that the increases in CO and HC were much less than the previous strategy, whilst changes in NOx were almost identical. The largest hot link percentage increase in emissions of CO occurred on the hottest NOx link and increased by 166 percent. The largest increase in HC was 77 percent on hot link 11. Hot NOx link 15 had the biggest increase in NOx emissions of 9 percent. The best hot link decrease in emissions of CO and HC occurred on hot link 17, for which the decreases were 17 and 19 percent respectively. Hot link 9 experienced the best percentage reduction in NOx of 25 percent.

Of the 20 hot NOx links, emissions increased on 17, 16 and 3 links and decreased on 3, 4, and 17 links for CO, HC and NOx respectively. Of the 20 hot links, 16 experienced changes of CO in the opposite direction to changes in NOx. The changes in emissions of NOx were also found to be in the opposite direction to changes in delays and stops.

Other strategies for hot NOx links

Other strategies were tried for reducing NOx emissions on hot links but they were unsuccessful or not practical. A stop weighting factor of -1000 was rejected on the basis of its impact on the traffic network and increases to network emissions of CO, HC and NOx of 53, 60 and 2 percent respectively. Setting the delay weighting factor on hot NOx links to a value of -500 was rejected based on its unacceptable impact

Hot li	nk number	Imber Network emissions			Change in emissions (%)		
an	d nodes	СО	HC	NOx	CO	HC	NOx
2	226 207	210.69	22.41	13.31	26.1	11.6	-6.5
1	210 211	308.46	24.61	13.09	<u>166.3</u>	75.7	-11.9
5	219 220	134.55	17.28	9.86	11.8	4.3	-0.9
3	216 217	227.58	22.13	9.42	23.0	19.0	-18.1
7	491 226	212.87	24.08	9.37	-2.9	-2.9	0.4
6	260 259	120.93	14.46	9.32	15.8	3.1	-4.3
4	207 208	245.94	21.02	8.53	90.2	57.5	-15.9
10	228 227	158.72	17.62	8.01	3.4	3.0	-1.1
12	205 206	170.97	14.76	7.99	115.1	74.9	4.2
15	227 226	292.33	38.44	7.89	19.8	28.7	<u>9.0</u>
13	226 227	107.91	11.27	7.58	45.7	35.9	-0.8
14	215 259	79.49	10.8	7.28	-0.2	-0.2	-0.1
8	214 215	160.04	14.18	6.86	80.4	45.1	-22.3
11	204 205	208.26	18.12	6.46	106.2	<u>77.1</u>	-18.9
18	218 219	140.9	17.44	6.42	2.8	-1.4	-6.7
20	198 199	160.61	16.3	6.27	12.3	7.8	-6.1
19	208 209	200.46	16.52	6.21	83.3	44.7	-9.5
17	225 226	307.55	41.72	6.07	<u>-16.8</u>	<u>-18.8</u>	-13.8
9	196 197	198.03	17.8	6.05	62.9	41.7	- <u>25,4</u>
16	209 210	191.6	16.78	5.71	92.9	59.7	-20.9

Table 9.13 Impact of -200 percent stop weighting on hot NOx links

on the traffic network. Similarly, a delay and stop weighting factor of -500 was also rejected.

Link Emissions by Driving Mode

As shown earlier, the reason as to why some links behave differently to others can be illustrated if individual link emissions are analyzed by driving mode. This section presents link emissions by driving mode and highlights reasons for particular link emission characteristics.

The impact that stops and delay have on link emissions is represented by the emissions resulting from acceleration, deceleration and idling. Therefore, significant changes in stops and delay will have significant changes on these emissions. If these emissions represent a significant proportion of overall link emissions, then the changes in stops and delay can have a significant impact on overall link emissions.

Analysis of the hot CO and hot NOx links by combined emissions from acceleration, deceleration and idling revealed the following. Of the 20 hot CO links, 14 links were in the top 20 links when sorted by combined CO emissions from these three driving modes. This illustrates the strong correlation between emissions from these driving modes and overall hot link emissions.

Whereas, of the 20 hot NOx links, only 8 links were in the top 20 links sorted by combined NOx emissions from these driving modes. This illustrates that hot NOx emissions are much less dependent on emissions from acceleration, deceleration and idling. Generally, for hot NOx links, cruise emissions were the dominant factor.

Figure 9.30 illustrates individual link emissions of CO by driving mode, for the hot CO links of the base case scenario. The x-axis represents individual links sorted by their CO emission rate. Many of the links with high emissions of CO have a substantial contribution from idling and significant contributions from acceleration and cruising. Some of the links with high CO emissions have major contributions from cruising. This is because one of the dominant factors in overall link emissions is, of course, the link flow. Therefore, a relatively unsaturated link, with most of its emissions arising from cruise emissions, can have high emissions simply because it has a high flow.

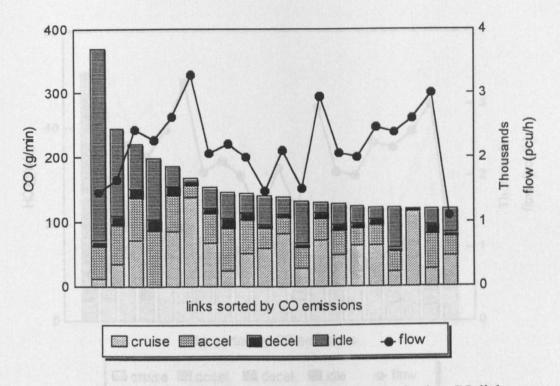


Figure 9.30 Link emissions of CO by driving mode for hot CO links

This figure also includes the link flow on each link. This illustrates that whilst link flow is a factor in link emissions, link emissions do not correlate well with flow alone, especially for the congested links.

Figure 9.31 illustrates individual link emissions of HC by driving mode, again with links sorted by their CO emission rate. Comparison with Figure 9.30 highlights the similarity between emissions of CO and HC, both in terms of overall link emissions and the relative contributions from each driving mode. Consequently, emissions of CO and HC generally behave in a similar manner to each other, for a given traffic control strategy. Although as shown earlier, there are occasions when their behaviour is different to some extent.

Link emissions of NOx by driving mode are illustrated in Figure 9.32. The x-axis represents hot NOx links sorted by their emission rate of NOx. This clearly illustrates the marked contrast between emissions of NOx and those of CO and HC. In particular, it can be seen that for most links, cruise emissions are the dominant factor for overall emissions of NOx. It is this factor that often explains the frequently observed opposite behaviour between changes in emissions of NOx and changes in CO

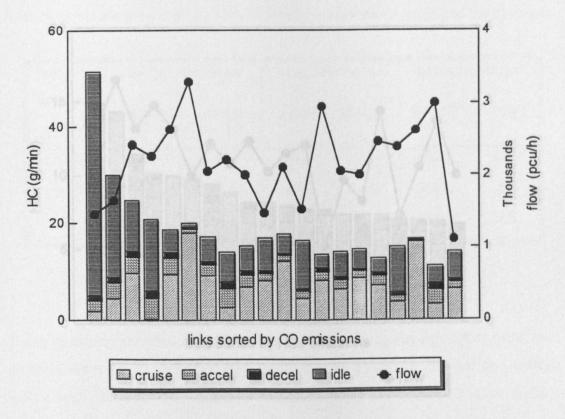


Figure 9.31 Link emissions of HC by driving mode for hot CO links

and HC. Note also that emissions from deceleration are negligible.

A few heavily saturated links have significant, and in one case major, contributions from idling and acceleration. Such links may have their overall emissions of NOx respond in the same manner as overall emissions of CO and HC for a given strategy.

If the major component of NOx emissions arise from acceleration and idling then a significant reduction in the link's degree of saturation may result in a significant reduction of overall NOx emissions. However, if emissions from acceleration and idling are comparable with cruise emissions, a reduction in the degree of saturation may result in a reduction of emissions from acceleration and idling, but these could be offset by a similar or slightly larger increase in cruise emissions. For links which have a high proportion of cruise emissions, it is likely that a reduction in the degree of saturation will increase overall NOx emissions.

Therefore, looking at Figure 9.32, most hot NOx links would be expected to increase their emissions of NOx, if the degree of saturation was reduced. Indeed, this was



Figure 9.32 Link emissions of NOx by driving mode for hot NOx links

observed in the above strategies. Hence, to reduce NOx emissions on most of these links the degree of saturation needs to be increased by setting non-optimal, in terms of traffic performance, signal timings for these links. This was shown to be the case for the hot NOx link optimisation strategy. Emissions of NOx were decreased by reducing the cost of stops and, hence, allowing more traffic to be stopped on links which initially had high emissions of NOx.

9.9 ENVIRONMENTAL AREA LICENSING

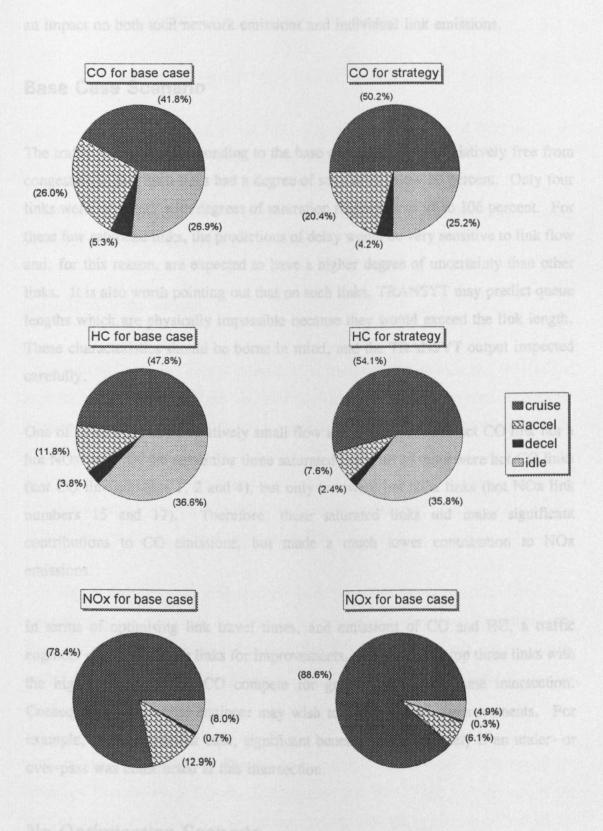
This section describes the impact that the introduction of petrol powered cars equipped with catalytic converters would have on network emissions. The findings of this are directly applicable to the environmental area licensing strategy.

The impact of this strategy is illustrated in Table 9.14. Total network emissions for the base case, and scenarios with 50 and 100 percent of petrol powered cars fitted

petrol cars	carbon monoxide		hydroc	hydrocarbons		n oxides
fitted with catalyst	(g/min)	change	(g/min)	change	(g/min)	change
0%	7772.1	0%	889.8	0%	404.7	0%
50 %	6043.2	-22 %	748.6	-16%	388.6	-4%
100 %	4252.6	-45 %	602.4	-32 %	371.9	-8%

with catalysts are shown, along with the change in emissions relative to the base case.

Table 9.14 Impact of catalyst on network emissions


It can be clearly seen that the environmental area licensing strategy offers significant potential for reducing emissions and hence improving air quality. Indeed, this strategy offers significant and simultaneous reductions in emissions of all pollutants, without compromising the efficiency of the traffic network.

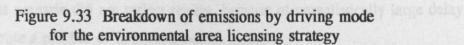

Analysis of the reductions in link emissions, as a result of environmental area licensing, revealed that the best reductions in individual link emissions were 53, 43 and 49 percent for CO, HC and NOx respectively. Note that all pollutants were reduced and the reduction in NOx was comparable to those for CO and HC.

Figure 9.33 illustrates the impact that the environmental area licensing strategy had on emissions by driving mode. It can be seen that significant changes were made to the proportions of emissions from each driving mode. In particular, the proportion from cruise emissions increased for all pollutants. While the proportion from all other driving modes decreased.

9.10 DISCUSSION

The results from each of the sensitivity tests and control strategies are discussed below. The control strategies either had a primary objective to minimise total network emissions, or particular hot link emissions. All of these strategies did of course have

an impact on both total network emissions and individual link emissions.

Base Case Scenario

The traffic network corresponding to the base case scenario was relatively free from congestion in that most links had a degree of saturation below 80 percent. Only four links were saturated, with degrees of saturation ranging from 98 to 106 percent. For these few saturated links, the predictions of delay would be very sensitive to link flow and, for this reason, are expected to have a higher degree of uncertainty than other links. It is also worth pointing out that on such links, TRANSYT may predict queue lengths which are physically impossible because they would exceed the link length. These characteristics should be borne in mind, and the TRANSYT output inspected carefully.

One of these links had a relatively small flow and it was neither a hot CO link nor a hot NOx link. Of the remaining three saturated links, all of them were hot CO links (hot CO link numbers 1, 2 and 4), but only two were hot NOx links (hot NOx link numbers 15 and 17). Therefore, these saturated links did make significant contributions to CO emissions, but made a much lower contribution to NOx emissions.

In terms of optimising link travel times, and emissions of CO and HC, a traffic engineer may target these links for improvements. However, the top three links with the highest emissions of CO compete for green time at the same intersection. Consequently, the traffic engineer may wish to make junction improvements. For example, in this particular case, significant benefits would be likely if an under- or over-pass was constructed at this intersection.

No Optimisation Scenario

Although this scenario did not reflect reality, because of unrealistically large delay, it does illustrate a number of important points, namely:

- * poor signal timings can cause long delays;
- * poor signal timings result in large emissions of CO and HC; and
- * compared to CO and HC, total network emissions of NOx are much less sensitive to the change in signal timings.

These conclusions have been confirmed in the sensitivity tests and signal timing strategies presented throughout this chapter.

Sensitivity to Flow

Total network and link delays increase in a non-linear manner as the flow in the network is increased, and links near saturation are very sensitive to changes in flow. Therefore, any pollutant which has a significant contribution to its emissions from idling will respond in a non-linear manner. This was the case with CO and HC and their emissions increased non-linearly with flow. In the case of NOx, idling emissions did not represent a significant contribution to overall emissions. Consequently, overall NOx emissions had an almost linear relationship with flow.

The higher flow levels tested resulted in a few links being unrealistically over saturated and in reality some vehicles may have rerouted around these congested links. Therefore, for a more accurate representation of the overall process, an assignment model should be used. Nevertheless, the general relationships observed in this sensitivity test are still valid.

The analysis of emissions by driving mode was split into two parts: the top 20 hot links; and the remaining 76 links. This revealed that, for CO and HC, the total of the hot link emissions from idling almost matched the total idling emissions from all the other links. Whereas, hot link cruise emissions were considerably lower than total cruise emissions from the other links. Also it indicates that idling emissions are a major contributor to overall emissions of CO and HC. Indeed, at the higher flows they were the dominant source of these emissions. Emissions from acceleration remained a relatively constant proportion of overall emissions, over the range of flows tested. The proportion of overall emissions from deceleration also remained relatively constant, but these emissions only made a small contribution to overall emissions.

Emissions of NOx behaved differently to those of CO and HC. Cruise emissions remained the dominant source of emissions for all links over the range of flows tested. The proportion of emissions from acceleration were greater than those from idling at low flows, but the situation was reversed at high flows. Emissions from deceleration were negligible for all flows.

This sensitivity test showed that, for all pollutants, the proportion that each driving mode contributed to overall emissions varied with flow. It also indicated that, even for a given flow, these proportions varied significantly from link to link, particularly between hot links and other links.

The relationship between different pollutants as a function of flow revealed that the ratio of CO to HC remained relatively constant. However, the ratios of CO to NOx and HC to NOx did not remain constant, and the relationship was a non-linear one. At the higher flows, the emissions of CO and HC increased much quicker than that of NOx because idling emissions of CO and HC were the dominant factor and followed the non-linear response of total delay.

It was observed that the link emissions of CO and HC correlated well with each other. Whereas, link emissions of CO and HC did not correlate well with emissions of NOx.

Sensitivity to Cruise Speed

The sensitivity test of emissions with respect to cruise speed revealed an interesting aspect. Unlike most of the other tests and strategies described in this chapter, the behaviour of CO and NOx, in terms of changes relative to the base case, were very similar but HC behaved differently. For example, at the lowest speeds emissions of HC reached their highest. While emissions of CO and NOx were at their highest at the highest speeds tested.

This behaviour was relatively complex and can only be predicted by an emissions model which represents emissions from each driving mode, or one which models emissions as a function of instantaneous speed and acceleration.

For example, the reason that emissions of HC increased quicker than CO and NOx at low cruise speeds was as follows. Idling emissions were relatively insensitive to the cruise speed and deceleration emissions were relatively insignificant. Therefore, idling and deceleration did not play a significant role in the behaviour of overall emissions. At the lower speeds, acceleration emissions were relatively insensitive to changes in cruise speed. Therefore, the behaviour of overall emissions was mainly due to cruise emissions.

Cruise emissions of NOx increased relatively slowly, hence the relatively small increase in NOx emissions compared to HC. However, cruise emissions of CO increased in a similar way to those for HC, so why did overall CO emissions not increase as much as overall HC emissions? The reason was that the proportion of total emissions from cruising were higher for HC than they were for CO. In addition, cruise emissions of HC increased slightly faster than CO with reductions in cruise speed. Hence, overall HC emissions increased more than overall CO emissions.

Perhaps surprisingly, the analysis of the relationship between different pollutants revealed that the ratio between CO and HC is not constant as a function of speed.

Therefore, this sensitivity test illustrated two important points:

- each pollutant has its own unique characteristics and may respond in a different way to other pollutants; and
- * it is important that such behaviour is recognised, and this can only be achieved by representing emissions from each driving mode.

Delay to Stops Weighting Ratio

The degree of success that this strategy had, in terms of reducing total network emissions, was small. Emissions of CO were not reduced below the base case emissions level. A delay weighting 100 times the stop weighting managed to achieve the best reductions for HC and NOx. However, these reductions were small at 0.4 and 0.9 percent for HC and NOx respectively. A stop weighting 100 times that of delay caused TRANSYT to predict unrealistically large delays on a few links.

On a positive note, the base case delay and stop weightings represented a good optimisation for network emissions of all pollutants. Therefore, using a fairly typical delay to stop weighting ratio of 55:50 not only gives a good optimisation in terms of stops and delay, it also appears to give a good optimisation in terms of the emissions of CO, HC and NOx.

Cycle Times

In general, changes to the cycle time reduced network emissions of CO and NOx. Whereas, for HC some cycle times increased emissions and others reduced emissions. A cycle time of 140 seconds gave relatively good reductions in all pollutants, particularly CO which had its emissions reduced to a minimum. The best reduction of HC emissions occurred at a cycle time of 100 seconds. While the best reduction in emissions of NOx occurred at a cycle time of 200 seconds, but this slightly increased emissions of CO and significantly increased emissions of HC.

The 'blip' for a cycle time of 180 seconds was because the automatic cycle time option of TRANSYT had been selected. This caused TRANSYT to automatically determine which nodes should be double cycled, resulting in a further reduction of pollutant emissions.

The results from this strategy showed that each pollutant behaved differently. Some cycles times represented a good compromise in terms of reducing all pollutant

emissions, but other cycle times gave good reductions in one or two pollutants at the expense of others. This illustrates the need for the objectives of a pollution reduction strategy to be clearly defined, particularly in terms of which pollutants are to be reduced and which have priority.

Optimisation of Hot Links

The 'decision maker' should recognise that a traffic control strategy may have to address pollutant emissions on particular links, rather that total network emissions. For example, the EC directive for NOx defines limit and guideline pollutant concentrations which correspond to values measured at point locations. So for example, if a few streets were exceeding the limit value for NOx the traffic control strategy may have to address this. Lowering the NOx emissions on these streets may be at the expense of increased emissions on other streets, or even other pollutants on the same streets. This was the purpose of the strategies presented in this section: to address emissions on a street by street basis.

Hot links

The 20 links that had the highest emissions of CO, and typically the highest of HC, were labelled hot CO links. This strategy aimed to reduced the emissions of CO on the hot CO links.

It was shown that emissions of CO and HC could be significantly reduced on links that had high emissions of these pollutants, by increasing their cost of delay relative to other links. However, care had to be taken to ensure that unrealistic sacrifices were not made on other links sharing the same downstream intersection.

The reductions made in emissions of CO and HC frequently resulted in increased emissions of NOx on the same links. Closer inspection revealed that when link emissions of CO and HC were reduced, NOx emissions either increased, decreased or did not significantly change. The reasons for this could only be explained by analysing emissions from each driving mode. For a given link, the response of NOx was dependent upon its initial emissions from cruise, acceleration and idling. For example, a heavily congested link may have most of its NOx emissions caused by idling and acceleration. When such a link is optimised to reduce emissions of CO and HC, the NOx idling and acceleration emissions may fall substantially. However, a significant increase in the amount of free flowing traffic can cause a much larger increase in cruise emissions. Hence, the net effect is an increase in overall emissions of NOx.

On some links the balance between emissions from idling and acceleration emissions, and those from cruising are such that the decrease in one is almost counteracted by an increase in the other resulting in no significant change to overall emissions of NOx.

In some cases, optimisation reduces emissions of CO and HC by only removing some delay on a link. This causes NOx idling emissions to fall, but it may not increase emissions from cruising. Hence, overall emissions of NOx fall, along with those of CO and HC.

In practice, identification of such links can only be performed with the use of a model, such as that used by the author in this research. Although the cause of this behaviour can be identified and explained, there are too many parameters involved to make generalisations. For example, some of the parameters which typically determine how a link's emissions of NOx will respond are: flow, degree of saturation, cruise speed, link length, delay, stops and queue length. This represents a multi-dimensional problem which is best solved through the aid of a computer model.

It should be stressed that no simple generalisation can be made about emissions of NOx, and each link must be treated as a unique case.

Although an exhaustive number of combinations were not tested, a good reduction in emissions of CO and HC was obtained by increasing delay and stop costs by 500 percent on hot CO links. This caused a slight increase in total network emissions by 2.0, 2.8 and 0.1 percent for CO, HC and NOx respectively.

Note that the change in idling and cruise emissions on a given link can be relatively

large, but in opposite directions to each other. Also, these emissions are likely to be spatially separated. For example, idling emissions often occur near the downstream intersection, whereas cruise emissions are distributed along (part of) the link. Therefore, pollutant concentrations may change significantly at points along a link.

Bearing in mind the magnitude of these changes, it could be envisaged, for example, where a strategy makes no, or little, change in terms of total NOx emissions on a link, but increases idling and decreases cruise emissions by a significant amount. Such a scenario may result in lower pollutant concentrations along that part of the link corresponding to cruise emissions and increased concentrations nearer the downstream intersection.

As described above, the mechanisms responsible for the emissions of NOx are relatively complex and their behaviour is frequently opposite to that of CO or HC. Of the strategies tested by the author, the best strategy for reducing emissions of NOx, on hot NOx links, involved increasing the number of stops on hot NOx links.

Clearly, such a strategy has a negative impact on traffic performance and emissions of CO and HC. Initially, a scaling factor of -500 percent was applied to the cost of stops for hot NOx links. This gave good reductions in emissions of NOx, at the expense of severe increases in emissions of CO and HC. However, it was found that when the scaling factor was changed to -200 percent, the impact on emissions of NOx was the same but the increases in CO, HC and delay were much less severe.

Link emissions by driving mode

An analysis of hot link emissions by driving mode illustrated why individual link emissions behave in a particular manner. It was shown that the hot CO link emissions of CO and HC were dominated by emissions from idling, and to a lesser extent acceleration. Whereas, hot NOx link emissions of NOx, indeed most link emissions NOx, were dominated by cruise emissions.

Environmental Area Licensing

This strategy gave substantial reductions in individual link and total network emissions for all pollutants. From an environmental point of view, this strategy is superior to the above strategies based on the adjustment of traffic signal timings.

The reductions in emissions for the Athens study network could probably be improved further if the approach was applied to all vehicle categories. In the scenario tested catalytic converters were only fitted to petrol powered cars, which accounted for 57 percent of the Athens traffic fleet. Hence, some of the remaining emissions, after the application of this strategy, were due to diesel powered cars and buses.

The reduction in emissions of NOx were smaller than the reduction in emissions of CO and HC. There are two reasons for this. Firstly, the NOx cruise emissions of the Athens petrol car fleet were relatively low. The PREDICT consortium members recognised that the Athens fleet consisted of a high proportion of old vehicles. As was shown in earlier chapters of this thesis, old poorly maintained vehicles often have higher emissions of CO and HC but lower emissions of NOx. Secondly, it is also known that diesel cars have relatively high emissions of NOx compared with petrol cars equipped with a catalytic converter; and large diesel engines, such as those in buses, emit large quantities of NOx. As a large proportion of the Athens' fleet consisted of these diesel vehicles, they made a significant contribution to total network emissions of NOx.

Perhaps these factors could be investigated in a follow-up study, and the results of this work validated using emissions data suitable to other urban areas throughout Europe. As part of the QUARTET project, the author is currently assessing the implications of these strategies to other urban areas throughout Europe, and the corresponding modelling work will attempt to address these factors.

Chapter 10 SUMMARY

This chapter summarises the work carried out by the author and documented in this thesis. It covers the author's research from 1989 to 1994 into road traffic emissions and environmentally sensitive traffic control strategies.

Chapter 2 introduced the concepts, mechanisms and effects of air pollution. Emissions of carbon monoxide and hydrocarbons are formed as a result of incomplete combustion in a vehicle's engine. While emissions of nitrogen oxide are formed from the reaction between atmospheric nitrogen and oxygen as a result of the high temperatures in the combustion chamber. The mechanisms for pollutant generation tend to suggest that strategies which aim to regulate emissions based on traffic speed control or enhanced engine technology, may reduce emissions of some pollutants but increase others.

In general, emissions will be dispersed effectively when the source is exposed to relatively high wind speeds and unstable atmospheric conditions. However, sources sheltered in 'canyons', formed by tall buildings both sides of a road, may experience poor dispersion of pollutants, resulting in higher pollutant concentrations. Urban areas sheltered by the local geographic topology and stable atmospheric conditions, may also experience high pollutant concentrations. Under these conditions, and in bright sunlight, the primary pollutants react to form a photochemical smog. Examples of this phenomena are found in Los Angeles and Athens.

The effects of air pollution are wide ranging, affecting the environment, vegetation and health. The effects of air pollution form the basis for air pollution guidelines and standards. Ultimately, these represent the goals that environmentally sensitive traffic control strategies aim to achieve.

The regulatory framework for air quality has been briefly described in Chapter 3. Air quality standards serve to ensure that safe levels are maintained and these are

supposed to be enforced by local or national organisations.

Chapter 3 has also described studies which aimed to improve our knowledge of emissions, collect data for emission inventories, and investigate pollution reduction strategies. Many of these studies involved measuring emissions over a standard driving cycle, usually that defined by ECE Regulation 15. Analysis of emissions as a function of speed, driving mode, vehicle age, ambient and engine temperature, engine capacity, vehicle maintenance, engine and emission reduction technology have been performed within these studies. Overall, the literature shows that a large number of studies have investigated vehicle emissions, but fewer studies investigated strategies for reducing urban traffic pollution. However, some studies have explored several aspects of the air pollution problem in an attempt to improve air quality. These studies provided a foundation on which the author was able to build, and identify new and important areas of research.

Some of the most extensive and innovative pan-European work was that carried out as part of the DRIVE research programme, which had objectives to improve traffic efficiency, safety and environmental quality. The author participated in two major environmental projects: PREDICT in DRIVE I, and QUARTET in the follow-up programme, DRIVE II.

One of the main objectives of Chapter 4 was to illustrate that there are many potential options available to the decision maker, and that no one option alone is likely to offer a completely satisfactory solution to the air pollution problem. In addition, the options available, and the demands of society, are evolving and as such should be anticipated. This was recognised by the author at an early stage in his research and consequently an approach was adopted that would provide a high degree of flexibility, allowing the incorporation of several technologies and strategic options. This aimed to ensure that the author's work would establish a foundation, upon which suitable strategies could be built. These strategies were based on state-of-the-art techniques and technologies. Indeed, not only does this approach allow optimum use of today's state-of-the-art technology, it also aims to provide a framework able to evolve with the vehicle technology and environmental demands of the future.

Although monitoring technology is capable of providing an accurate picture of traffic performance and air quality levels, its cost, the large number of sensors required for network-wide coverage, and problems associated with real-life experiments often make monitoring an impractical choice for air pollution studies. The alternative is a computer based model. Chapter 5 described the techniques and models available for representing the impact of transport policy and traffic control strategies on air quality. The technique can be broken into two key areas: traffic and air pollution. The traffic models are used to produce predictions of traffic flows, speeds and delays. These are used by a model to predict pollutant emission rates which are used by a dispersion model to predict pollutant concentrations.

A model predicts pollutant emission rates over an area or link by link. Emission modelling generally requires, as a minimum, the speed of the vehicle and emission rate as a function of speed. However, for detailed studies investigating urban emissions as a function of various control strategies, a more detailed modelling approach is required that specifically represents all driving modes, not just (cruise) speed. Emission modelling also needs to represent various types of vehicle and their corresponding emission characteristics. Emission factors can be influenced by many aspects, including vehicle type, vehicle condition and ambient factors.

Given pollutant emission rates, a dispersion model can predict pollutant concentrations for a given network (or link) topology and meteorological conditions. Dispersion modelling can be a complex process and often a model will be developed to work in a particular context, e.g. highways/rural roads or roads in a 'canyon'. However, dispersion modelling did not form part of this research.

In the early stages of the PREDICT project, it became apparent that to meet the objectives of the project a new emissions model had to be developed. The requirements specified that it would need to be user friendly, very flexible, and able to model emissions from all driving modes and several vehicle categories. By developing the model 'in-house' the exact requirements of the research team could be met, and if the objectives were changed at a later stage the model could readily be enhanced. Chapter 6 has highlighted the objectives of the model suite used in the author's research, and in the projects PREDICT and QUARTET. The PREDICT

model suite's structure and functionality have been described and assessed.

The PREDICT model suite offered an effective combination of conventional and advanced modelling techniques. Most of the traffic modelling was based on conventional techniques and algorithms; whilst the PREMIT emissions model was based on state-of-the-art techniques and applied to a unique area of research. The model suite satisfied all its objectives and worked well in its operational context.

Chapter 7 documents four innovative strategies, designed to improve urban air quality whilst maintaining a high degree of mobility. These strategies were evaluated using central Athens as a case study area. With the exception of Strategy 2, modelling work was conducted by the author. These strategies were based on varying degrees of technological innovation in vehicle engine design, emission reduction systems, and the urban traffic control and monitoring infrastructure.

Strategy 1 aimed to improve air quality levels by optimising signalised traffic networks on the basis of emission rates. This offers a relatively low cost solution for two reasons: in many cases the traffic signal network will already exist; and the strategy does not require vehicle modifications. Traffic signal plans were developed with the aim of maintaining similar levels of traffic performance and reducing pollutant emissions.

Reductions to traffic levels can give a significant reduction in pollutant emissions and this formed the basis of Strategy 2: pollution sensitive traffic rerouting. When an air pollution episode is predicted to occur through traffic would be rerouted around an environmentally sensitive area in advance of the predicted episode to ensure that the air pollution episode is avoided or its severity reduced. The activation of the strategy would be indicated primarily by variable message signs which tell drivers to reroute. Rerouting information would also be broadcast to in-vehicle route guidance systems, allowing alternate routes to be automatically selected.

Significant reductions are expected if vehicle emissions are reduced at source, by developments in vehicle engine and emissions technology, such as lean burn engines and catalytic converters. Two strategies were developed based around this idea: the

introduction of clean vehicles (Strategy 3a); and environmental area licensing (Strategy 3b). Strategy 3a reflects national or pan-European legislation and assumes a gradual introduction of low emission vehicles to the traffic fleet.

Strategy 3b, environmental area licensing only allows low emission vehicles to enter an environmentally sensitive area. In the short to medium term, this may mean restricting access to vehicles which have a catalytic converter and/or lean burn engine. However, as vehicle technology and emissions/air quality legislation evolve, the strategy may be readily revised to restrict access to very low and zero emission vehicles.

The strategy is implemented using variable message signs (indicating restricted access) and enforced by AVI systems. Permitted low emission vehicles are fitted with AVI transponders that indicate the vehicle has low emissions. These vehicles are allowed into the restricted area. Other vehicles attempting to enter the area will be photographed by the AVI enforcement system.

The work in PREDICT led to the demonstration of strategies 2 and 3b in a real-world environment as part of the QUARTET field trials. The two strategies shared a common system architecture with the exception of the AVI sub-system which was specific to Strategy 3b. This system had monitoring, information and control subsystems networked to a central processing unit which predicted air quality levels, and selected and activated a suitable control strategy. Such a system should be able to anticipate and respond to the threat of poor air quality levels and may offer 'city managers' an effective method of controlling air quality levels and adhering to air quality standards, such as those introduced by the European Commission.

The modelling and analysis methodology have been described in Chapter 8 and the results presented in Chapter 9.

Network values summarised traffic statistics and emissions were derived for the base case scenario, against which sensitivity tests and strategies could be compared. A plot of emissions per pcu as a function of average link speed illustrated a trend of high emissions of CO and HC at low average speeds and lower emissions at higher speeds.

There was no obvious trend in emissions of NOx as a function of average link speed.

The sensitivity of emissions to changes in flow were investigated. Emissions of CO and HC increased non-linearly with flow, because of the increase in delay. On links with relatively high degrees of saturation, the delay and hence idling emissions were very sensitive to increases in flow. Indeed, total idling emissions from the 20 hot CO links were comparable to those from the other 76 links. However, idling emissions of NOx represented a relatively small proportion of total NOx emissions. Being relatively independent of delay, total NOx emissions had an approximately linear relationship with flow.

Emissions were sensitive to changes cruise speed, but in a more complex manner than their sensitivity to flow. Emissions of CO and NOx were at their highest when the cruise speed was doubled. While HC was at it's highest when the cruise speed was halved. Emissions of CO and HC were both reduced when the cruise speed was increased by 33 percent, but NOx increased.

The relatively complex behaviour was because of opposite trends in emissions from cruise, and acceleration and deceleration. Cruise emissions decreased with increasing speed. For CO and HC, this was partly due to the change in vehicle emission rates with speed. Although, for all pollutants, the significant factor was the reduction in the proportion of a link's length available for cruising. At higher speeds a large proportion of a link's length was occupied by acceleration and deceleration. Consequently, emissions from acceleration and deceleration also increased with increasing speed. This clearly illustrates the importance of modelling emissions by driving mode as opposed to average speed. It also indicates that each pollutant may respond differently to a given change in scenario, or traffic control strategy.

Two traffic control strategies that aimed to reduce total network emissions by adjusting traffic signal timings were investigated. The first of these strategies adjusted the ratio of the cost of delay to the cost of stops and evaluated the impact of the corresponding signal timings. However, this strategy was not particularly effective in reducing emissions. The second of these strategies made adjustments to the cycle time of the signal timings. In general, changes to the cycle time reduced network emissions of CO and NOx. Whereas, for HC, some cycle times increased emissions and others reduced emissions. This strategy clearly illustrated that each pollutant responds differently.

An investigation of the strategies designed to reduce emissions on hot links (those with the highest emission rates), gave some interesting insights into the behaviour of pollutant emissions on a link. Different signal timing strategies were tested for reducing emissions on hot CO and hot NOx links respectively.

Link emissions of CO could be significantly reduced by increasing a link's cost of delay. However, care had to be taken to ensure that unrealistic sacrifices were not made on other links, in terms of delay and emissions. On the hot CO links, a reduction in emissions of CO often produced an increase in NOx. Not surprisingly then, a different approach was needed to reduce link emissions of NOx on hot NOx links. To reduce link emissions of NOx, hot links were given a lower cost for stops to encourage more stops on those links. This gave reductions in emissions of NOx on hot links and even reduced total network emissions of NOx. However, this unconventional strategy significantly increased total network emissions of CO and HC, and increased total network delay. Although the delay value was only slightly higher than that corresponding to the best CO hot link strategy.

The results of the hot link strategies showed an apparently random behaviour in the changes of link emissions of NOx. Sometimes they changed in the direction as CO, sometimes in the opposite directions, and at other times they didn't significantly change. A detailed analysis of link emissions by driving mode showed that the relative proportions and changes in emissions of NOx from idling, acceleration and cruise generally determined how total link emissions of NOx would respond.

In general, all of the above strategies were not able to produce significant and simultaneous reductions in total network emissions of all pollutants. Similarly, for a given link, it was difficult to significantly reduce emissions of all pollutants. However, there was potential for significantly reducing a link's emissions of either CO and HC, or NOx. This often meant increasing emissions of the other pollutant and

increasing delay and emissions throughout the rest of the network.

The last strategy tested, environmental area licensing, was superior to the above strategies for three reasons: the magnitude of the reduction in a pollutant's emission rate was, in general, much larger; all pollutants were simultaneously reduced; and there were no detrimental impacts to the efficiency of the traffic network.

The final chapter of this thesis contains the author's conclusions drawn from the work described in this thesis. Recommendations are also made for further research, demonstration and evaluation.

Chapter 11 CONCLUSIONS

This chapter contains the author's conclusions, which have been based on the topics discussed in this thesis and findings arising from the results chapter. The final section of this chapter contains a set of recommendations for further areas of research, demonstration and evaluation.

The author has been actively involved in the design and evaluation of environmentally sensitive traffic control strategies for five years, and has made a significant contribution towards understanding traffic pollution in urban areas. His work has covered many key areas of research, development and evaluation:

- the design of innovative environmentally sensitive traffic control strategies;
- 2) development of a state-of-the-art emissions model;
- 3) identification of environmentally sensitive modelling approaches;
- 4) a detailed understanding of road traffic emissions;
- 5) evaluation of the control strategies (based on modelling); and
- 6) demonstration of the control strategies in a real-world environment.

11.1 Environmentally sensitive traffic control strategies

Increasing concern over the impact of air pollution on health and the environment may result in a demand for action which aims to reduce urban traffic pollution. This action is likely to appear, at least partly, in the form of environmentally sensitive traffic control strategies. These aim to reduce emissions from road traffic and protect air quality levels network-wide and/or on particular streets.

The objectives of an environmentally sensitive strategy should be clearly defined. It is not adequate to simply state that pollution levels are to be reduced; objectives need more clarification. A whole range of potential objectives exist and a 'decision maker' must determine which objective, or combination of objectives, are to be achieved.

It is important to recognise that a particular strategy may be unable to simultaneously satisfy multiple objectives, because of conflicting requirements. Hence, the decision maker may have to relax some of the requirements or prioritise objectives. Objectives also need to be specified for each pollutant to be regulated. In some cases, it may not be feasible to achieve all objectives without significantly changing existing traffic patterns.

For example, consider the case where a local authority wishes to reduce the emission rate of CO and NOx on a particular link whilst maintaining the traffic flow. It may be possible to reduce emissions of CO by adjusting the signal timings at the downstream intersection so that link delay is reduced. However, as the author's research has shown, this may result in an increase of NOx emissions. Therefore, adjusting the signal timings in this way may reduce the emissions of CO below a specified limit value, but it may force emissions of NOx to rise above its corresponding limit value. Hence, in this case a contradictory set of objectives were specified. It may then be decided to relax the traffic flow objective so that the link's traffic flow can be reduced to allow emissions of CO and NOx to fall.

Hence, not only should strategy objectives be clearly defined, they should also be prioritised against each other in cases where they may be mutually exclusive. Ideally, a cost function would be associated with each objective. However, in practice this may be difficult to do.

In reality, the environmental objectives must be balanced against the objective to sustain a given degree of mobility. Therefore, environmentally sensitive traffic control strategies should be able to address both these aspects. Finally, having defined

environmental and mobility objectives an environmental strategy may be designed to achieve those objectives.

11.2 Models

The author's work has involved reviewing current modelling techniques and developing a state-of-the-art emissions model. These activities contributed to the following conclusions.

A considerable number of studies and a substantial amount of emissions data are based around the concept of driving cycles. These driving cycles are usually fixed in that they effectively define the proportions of time a vehicle spends in each driving mode and the cruise speeds to be maintained. The fixed driving cycle aims to represent typical urban driving conditions. This approach provides a good method for comparing emissions from different vehicles and technologies, and is also used to set emission standards.

However, it must be emphasised that fixed driving cycles have serious limitations in terms of accurately predicting urban emissions on a link by link basis and are not suited to the evaluation of particular traffic control strategies. This is due to the fact that the driving cycle is meant to represent the average urban driving pattern not that of a specific link, which may vary significantly between links. Also, some strategies directly change the urban driving pattern, especially on particular links. In order to predict emissions and concentrations on a link by link basis the model must be able to specifically represent the driving modes on each link.

Modelling techniques are unavoidable when quantifying the effects of proposed strategies that do not exist and therefore cannot be monitored. However, it is recognised by the author, and others, that modelling techniques have inherent uncertainties as a result of their approximations and the limited availability of comprehensive data sets. For example, some of the state-of-the-art emissions models in the US are known to give predictions out by a factor of two or more. Therefore, the author recommends caution when using model results. The actual values predicted should not be interpreted literally (as absolute values), unless the model has been validated and it is known to give accurate results for the particular type of scenario being modelled. However, the relative changes predicted between strategies may be useful for comparative purposes.

As has been illustrated by the author's results, an accurate modelling approach for this type of research must represent emissions from each driving mode (cruising, acceleration, deceleration and idling) on a link by link basis. Vehicle emissions can also be studied and understood in much greater detail if an emissions model is able to report link emissions by driving mode.

Models may also be used in an on-line environment whereby all, or part, of the input data is supplied from actual measurements. This has two key advantages: the input data source is an accurate reflection of the study area; and the information is available in real-time. The operation of an on-line real-time model suite was being demonstrated in Athens, though the findings are not yet available. However, the benefits are expected to include a calibration mechanism for the model suite and improved accuracy in model predictions. This can also be used to form part of an air pollution early warning system, allowing a pro-active response to be taken against the threat of an air pollution episode.

11.3 Modelling control strategies

In order to determine the modelling approach to be used for the evaluation a particular strategy, the following questions need to be answered:

- * what are the objectives of the strategy?;
- * what is the design of the strategy?; and
- * what modelling approaches will be suitable?

The answer to the first question should indicate which parameters need to be

compared in the base case and control strategy scenarios. This means that the modelling approach will, at least, have to predict values for these parameters. The objectives will also provide input to the strategy design process. The strategy's design will indicate what parameters the modelling approach needs to represent, particularly with regard to data input requirements and model algorithms.

It should be recognised that all modelling approaches have limitations in terms of their accuracy because of approximations in algorithms and the unavailability of a complete set of input data specific to the study area. The study team should determine whether the level of accuracy provided by the model is adequate for their purpose and consider if there are any feasible alternatives that are likely to be more accurate.

11.4 Sensitivity of road traffic emissions

This section draws conclusions from the sensitivity tests of emissions as a function of traffic flow and speed, and the analysis of these emissions by driving mode.

In the study areas, large delays were responsible for a major proportion of CO and HC emissions, whereas emissions of NOx were relatively insensitive to delay.

A sensitivity test of emissions as a function of flow revealed that emissions of CO and HC behaved non-linearly as a function of flow, whereas NOx behaved linearly. Therefore, a slight reduction in traffic flow on a heavily loaded network can provide a significant reduction in the emissions of CO and HC, and a smaller reduction in NOx.

Analysis of the flow sensitivity test by network emissions from each driving mode provided a useful insight. Idling emissions responded non-linearly to flow and at the higher flows became the dominant source of emissions for CO and HC, and a much lower, though significant, source of NOx emissions. This relationship was caused by the non-linear relationship between total delay and flow. Links near saturation were very sensitive to increases in flow, resulting in delay increasing rapidly along with idling emissions, particularly for CO and HC. The relationship between pollutants was also investigated as a function of flow. This showed an increasing non-linear ratio between CO and NOx, and between HC and NOx. The ratio between CO and HC was relatively constant.

A good correlation was found between link emissions of CO and HC for the base case, but the correlation between CO and NOx was poor. In general, this was observed for all scenarios. Also, the percentage change in emissions of CO were similar to the change in HC.

A sensitivity test of emissions as a function of cruise speed revealed some interesting characteristics. The scenarios corresponding to the lowest and highest cruise speeds tested both had higher pollutant emissions than the base case, with the exception of HC which had lower emissions at the highest speed. The surprising finding was that total emissions of CO and NOx behaved similar to each other as a function of speed, whereas HC did not. Emissions changed in a relatively complex manner as a function of speed. This was because cruise emissions decreased with increasing speed, but emissions from acceleration and deceleration increased. This was primarily due to an increasing proportion of a link's length being taken up by acceleration and deceleration.

The ratios of CO to NOx and HC to NOx increased slightly as speed was reduced. While the ratio of CO to HC fell significantly with decreasing speed. These changes, along with the change in the proportion of emissions from each driving mode, suggest that the impact of a traffic control strategy could be sensitive to cruise speed.

11.5 Evaluation of control strategies

The impacts of the environmentally sensitive traffic control strategies have been described in the results chapter; this section draws conclusions from those results.

Environmental optimisation of traffic signal timings

The adjustment of traffic signal timings provides a relatively inexpensive way of implementing an environmentally sensitive traffic control strategy because, typically, the infrastructure is already in place. A particular strategy is activated by downloading the appropriate signal timings to the traffic signal controllers at each intersection.

Delay to stop weight ratios

Values of the delay to stop weight ratio were tested over a range from 0.01 to 100. It was found that emissions could not be significantly reduced below their base case values. Emissions of CO were increased for all ratios tested. Hence, assuming that there are no significant dips between the ratios tested, this approach is not suitable for reducing total network emissions.

Cycle time

The base case scenario had a 90 second cycle time. For longer cycle times the change in emissions, compared to the base case, was relatively complex. The change in pollutants as a function of longer cycle times did not follow a simple trend and all pollutants responded differently.

All cycle times tested, up to 200 seconds, reduced network emissions for CO and NOx, except at 200 seconds CO increased. A cycle time of 200 seconds produced the largest increase in emissions of HC. For half the cycle times tested emissions of HC were reduced, and for the other half they were increased. The cycle times giving the best reductions in emissions were 140, 100 and 200 seconds for CO, HC and NOx respectively; the corresponding reductions were 3.3, 1.2 and 1.9 percent.

It was shown that a longer cycle time could reduce emissions of any pollutant, though some of these cycle times simultaneously increased emissions of other pollutants. Surprisingly, over the range tested, the change in emissions of CO were significantly different to the change in emissions of HC. For example, three cycle times reduced emissions of CO but increased emissions of HC.

The complex behaviour observed for the change in pollutant emissions, and the different behaviour between pollutants, could only be explained by the analysis of emissions from each driving mode.

It was shown that the change in emissions of HC closely followed the change in delay. Whereas, the change in CO followed the change in delay to a lesser extent. This was because the change in emissions of CO were dominated by the change in emissions from acceleration; the change in idling emissions was a secondary factor. The reason for this behaviour is that, in the base case, CO emissions had almost equal contributions from idling and acceleration; whereas for HC, the contribution from idling was over three times that from acceleration, and so HC was more sensitive to delay.

Hot links

The hot link strategies demonstrated that emissions could be reduced on links that had high emissions. However, the strategies to reduce emissions of CO and HC appear to be mutually exclusive to those that reduce emissions of NOx. Nevertheless, links with high emissions could have their emissions reduced by adjusting the delay and/or stop weights for those links.

On congested links, emissions of CO and HC were very sensitive to delay and reductions to link delay significantly reduced these emissions. One of the most effective hot CO link strategies involved scaling hot link delay and stop weights up by 500 percent. Of the 20 hot links, 15 links had emissions of CO and HC reduced, and 7 links had emissions of NOx reduced. The percentage changes in CO and HC were similar, but the percentage change in CO was usually greater than that for HC.

However, care needs to be taken when using this approach as it may have a negative impact on emissions of NOx on those links, and increase emissions on other links.

For example, of the 20 hot CO links, 14 links showed changes of CO and NOx emissions in opposite directions to each other.

Hot NOx links, and NOx emissions in particular, are more difficult to predict and reduce. Many options were investigated and the best solution found involved reducing the proportion of time spent cruising, i.e. increase link congestion by reducing the cost of stops! One of the most effective strategies involved scaling the cost of stops, on hot NOx links, by -200 percent. Of the 20 hot links, 17 links had emissions of NOx reduced, 3 had CO reduced and 4 had HC reduced. Of the 20 hot NOx links, 16 showed changes of NOx and CO emissions in the opposite direction to each other. Hence, reducing stop weights on hot NOx links can significantly reduce emissions of NOx. However, the impact this has on traffic in terms of increased link and network congestion may not be acceptable.

This strategy was particularly effective on links with a significant level of cruise emissions. The philosophy is that the major contributor to overall NOx emissions are cruise emissions. Consequently, to reduce emissions of NOx the proportion of time spent cruising, on a given link, needs to be reduced. Reducing the green time at a downstream intersection will cause a longer queue to develop and reduce the average distance over which vehicles cruise for a given link.

However, it should be noted that the degree of impact that this approach has on emissions of NOx depends on the initial contributions from each driving mode on a given link. In some cases this approach will not reduce emissions and may even increase them. For example, a link with no, or very little, cruise emissions may not benefit from this strategy as the increase in emissions from acceleration would outweigh the decrease in cruise emissions.

It can be concluded that, in general, signal timing strategies which aim to reduce a particular link's emissions of CO and HC may increase emissions of NOx, and vice-a-versa. However, for a given strategy, changes in CO and HC generally tend to be larger than changes in NOx. Therefore, it may be reasonable to reduce link emissions of CO and HC, by increasing the delay and stop weights of hot links, as it also reduces link delay. The benefits of lower link emissions of CO and HC must be

offset against a potential increase in emissions of NOx. However, for links that exceed, or are near to, the NO_2 air quality limit value this option may not be acceptable.

It is also important to note that, in general, a reduction in hot link emissions will be at the expense of an increase in total network emissions.

Environmental area licensing

The environmental area licensing strategy offered considerable benefits in terms of improved air quality for all three pollutants. Emissions of CO, HC and NOx were reduced by 45, 32 and 8 percent respectively. This strategy also has no impact on the efficiency of the traffic network.

The concept of this strategy can be extrapolated towards shorter and longer term solutions. For example, the strategy as described in this thesis was based on clean vehicles being fitted with catalytic converters, whereas a shorter term strategy could be based on clean vehicles corresponding to the ECE 15-04 emissions standard, or later. A longer term strategy could be based on very low emission vehicles (emissions lower than conventional vehicles fitted with catalysts), or ultimately zero emission vehicles (e.g. electric vehicles).

Chapter Four illustrated that there are several technologies and alternative fuels that have the potential to reduce vehicle emissions. The author has considered this aspect when designing the system architecture for the environmental area licensing strategy. The system's flexible design allows the implementation of a strategy that will be effective irrespective of the emission reduction technology available today and in the first few decades of the next century. This is because any vehicle type can be readily declared as the 'clean' vehicle type, and a hierarchy of clean vehicles, with different emission rates, could even be supported.

Implications for other strategies

Analysis of emissions by driving mode shows that on congested links the major proportion of CO and HC emissions are produced by idling. Therefore any strategy which reduces the delay on congested links is likely to reduce emissions of CO and HC. Further, the relationship between flow and delay on links at or near saturation is non-linear and extremely sensitive to changes in flow. Therefore, a slight reduction of flow on a link at or near saturation produces a significant reduction in emissions of CO and HC. Conversely, a slight increase on such links would produce a significant increase in those emissions. Therefore, a strategy which aims to distribute traffic more equally throughout a road network could, potentially, achieve significant reductions in emissions of CO and HC. Whereas, a network that focuses high volumes of traffic onto a few congested links may suffer very high emissions on those links, giving rise to high total network emissions.

11.6 Demonstration and evaluation

In Chapter Seven the author described each strategy and the demonstration of environmentally sensitive traffic rerouting and environmental area licensing. These two strategies were demonstrated in the QUARTET Athens field trial. Unfortunately, the final conclusions based on the evaluation of these control strategies were not available at the time this thesis was finalised.

However, a number of initial conclusions have been drawn. Before these strategies are implemented on a full-scale basis, it is recommended that they should be evaluated in a large scale demonstration. These strategies should be evaluated in a real-world environment which aims to test technical aspects of the system, operational procedures, traffic and environmental impact, socio-economic impact, and organisational and institutional issues.

It has also been recognised that the current Athens demonstration, though unique and significant, is too small to adequately evaluate all the above aspects. Therefore, to

provide a comprehensive evaluation, a large scale demonstration is required such that it has a direct and measurable impact on traffic and traffic emissions. The effects of the demonstration need to be directly measured, understood and extrapolated, to determine the impact of a full-scale implementation.

11.7 Achievements

The outstanding achievements of the author's research are highlighted below. The author has extended the scope of academic knowledge and formulated effective environmentally sensitive traffic control strategies. This research has significant implications for emission modelling methodologies and environmentally sensitive traffic control strategies.

The author has demonstrated the importance of modelling traffic emissions by driving mode. He has also created a state-of-the-art emissions model and demonstrated the benefit of being able to analyse emissions by driving mode. A detailed analysis of traffic emissions by driving mode explained the relatively complex, and surprising, behaviour observed in pollutant emissions. Many of the characteristics of network and link emissions would not have been identified without the ability to model emissions by driving mode.

Emissions of NOx have been shown to be more complex than those of CO and HC. The change in emissions of NOx may be similar, or totally opposite, to the change in emissions of CO and HC, for a given strategy on a given street. Therefore, the belief that a traffic network optimised to reduce stops and delay will also reduce pollutant emissions, may not be true for NOx. It was also observed that the magnitude of the change in emissions of NOx, as the result of a particular strategy, were usually much less than the corresponding change in CO and HC. Surprisingly, the results presented in this thesis also show that in some cases even emissions of CO and HC behave differently to each other.

It was shown that traffic control strategies based only on the adjustment of signal timings were not very effective in reducing total network emissions, if the network was already optimised for traffic delay and stops. Whereas, high emissions of pollutants on particular streets could be reduced by adjusting signal timings. However, for many streets, mutually exclusive strategies exist for reducing emissions of CO and HC, and emissions of NOx. Hence, the decision maker may have to determine which pollutants should be reduced, perhaps, at the expense of an increase in other pollutants.

The author has designed innovative traffic control strategies and modelled their impact on emissions. He has also been involved in the development of the advanced transport telematics infrastructure required to implement these strategies. These were demonstrated in a real-world environment as part of the QUARTET field trials. The evaluation of the field trial aims to assess the overall effectiveness and socio-political acceptance of these strategies.

11.8 Recommendations

The author's research has produced several interesting findings and opened up a number of areas of innovative environmental research. Based on these findings many recommendations can be made for further research, data collection, modelling, strategy design, and strategy implementation. This section outlines these recommendations:-

- 1. Organisations responsible for maintaining urban air quality need to recognise existing air quality standards and formulate clear objectives that address air quality and the demand for mobility.
- 2. Existing air quality levels need to be determined either by monitoring alone, or a combination of monitoring and modelling. This should be used on an ongoing basis to monitor air quality levels and ensure that air quality standards are not violated.
- 3. Based on the findings of recommendations 1 and 2, it may be necessary to implement an environmentally sensitive traffic control strategy. This should

bear in mind:

- * air quality and mobility objectives;
- the degree to which air quality is violated, both in terms of magnitude, frequency and geographical scope;
- forecast trends in traffic growth and corresponding emissions,
 over the lifetime of the strategy;
- * technical feasibility;
- * overall strategy impact;
- * socio-economic aspects and political acceptance.
- 4. It is strongly recommended that modelling methodologies represent emissions by driving mode, in order to accurately represent the impact of environmentally sensitive traffic control strategies on emissions.
- 5. Studies should be set up with the specific aim of collecting a comprehensive set of emissions data by driving mode for all major vehicle categories, under all typical operational conditions. This should be a coordinated pan-European effort. Ideally, the resulting emissions inventory should be publicly available, providing the necessary input to emission models that represent emissions by driving mode. It is the author's view that this would make a substantial contribution towards improving the accuracy of predictions in road traffic emissions. Also, it is felt that, the important findings of the author's work cannot be fully validated until these data are made available.
- 6. The findings of the author's modelling should be further validated. This should consider alternative sources of emissions input data, different network topologies, and ideally should be validated in a real-world demonstration using actual measurements for traffic, meteorological and air pollution parameters.

for particular pollutants and streets. Hence, an automated approach is expected to greatly assist in finding optimum solutions to a given air pollution problem.

7.

- 8. The limitations and accuracy of current state-of-the-art models should be recognised and their predictions used with caution. Wherever feasible, it is recommended that model results are supplemented with direct measurements of traffic and environmental parameters. These measurements also allow a model to be calibrated and validated.
- 9. Studies should be set up to analyse the relationship between traffic and emissions, by directly measuring these parameters in an urban environment. They should aim to establish correlations between traffic parameters and emissions; and if correlations are not observed identify why. The variability in emissions between, and within, vehicle categories should be measured in the urban environment. Reasons for variability should be identified and understood (e.g. engine type, cold start, poor maintenance, driver behaviour). The results of such studies would be extremely useful for calibrating and validating emission models, and determining the overall suitability of a modelling approach.

These studies should directly monitor exhaust emissions of individual vehicles, for all vehicles within the traffic flow of selected streets. This will allow the compilation of vehicle emission profiles by category and within categories. The implementation of these studies will, therefore, involve the use of roadside devices for monitoring exhaust emissions of individual vehicles. Though such devices exist, they may need further development to improve their operational accuracy and the range of pollutants that they are able to monitor. responsible for a large proportion of total fleet emissions. Therefore, strategies aimed at regulating these vehicles have the potential to give substantial improvements in urban air quality, whilst maintaining levels of traffic efficiency.

- 11. Strategies which aim to reduce delay may reduce emissions of CO and HC. However, the impact this has on emissions of NOx should be considered. Indeed, given the European Union's air quality directive for nitrogen dioxide, and the frequency with which it may be violated, it may be more important to reduce emissions of NOx, perhaps at the expense of an increase in emissions CO and HC.
- 12. Studies should investigate the potential benefits of vehicle modifications, such as reduced fuel consumption and lower emissions. The reduction of a vehicle's mass could potentially reduce fuel consumption and emissions caused by acceleration/deceleration cycles. At higher speeds, cruise emissions may be reduced by improved vehicle aerodynamics.

If emissions from idling and acceleration could be substantially reduced, or eliminated, network emissions of CO and HC would fall substantially. The elimination of emissions from acceleration may also result in a significant reduction to emissions of NOx.

This is may be feasible. Idling and acceleration emissions could be eliminated, or at least significantly reduced, by employing a regenerative braking system. As the vehicle brakes its kinetic energy is converted to potential energy within the regenerative braking system. When the vehicle stops the engine could automatically turn off, eliminating idling emissions. The potential energy stored in the regenerative braking system would then be used to accelerate the vehicle, perhaps, with some assistance from the vehicle's engine.

13. Further research is required into the design, development and implementation aspects of environmentally sensitive traffic control strategies. Whilst the technical feasibility is currently being evaluated, the overall impact and

acceptability needs further investigation. Large scale demonstrations are required to identify and evaluate all the aspects of environmentally sensitive traffic control strategies.

14. Strategies based on other philosophies and technologies should also be investigated. In particular, specific strategies should be developed for short-, medium- and long-term time frames.

Currently, the author is disseminating the findings of his research to a wider audience and actively pursuing several of the above recommendations. He acknowledges that to achieve satisfactory air quality levels whilst maintaining mobility is extremely difficult, though he also recognises that this research has taken a significant stride towards that goal.

REFERENCES

Andre, M., Hickman, A.J., an Hassel, D., 1992. Operating Characteristics of Cars in Urban Areas and their Influence on Exhaust Emissions. Private correspondence.

Aneja V.P. and Kim D. 1993. Chemical dynamics of clouds at Mt. Mitchell, North Carolina, J. Air Waste Manag. Assoc. 43(8): 1074 - 1083, 1993.

Arai M., Mujashita S., and Sato K. 1987. Development and selection of diesel regeneration schemes. *SAE Paper 870012*, Society of Automotive Engineers Warrendale.

Arrhenius S. 1908. Worlds in the making. Trans H. Borns, Harper and Bros. New York and London, 1908.

Arvill, R., 1976. Man and Environment. Penguin Books. Harmondsworth, Middlesex, England

Ashley S. 1992. GM's Ultralite is Racing Toward Greater Fuel Efficiency. *Mechanical Engineering*, May 1992. 64 - 67.

Ausubel J.H. 1983. Historical Note, *Changing Climate*, National Reasearch Council, National Academy Press, Washington, 1983.

Automotive Engineer, 1989. Carbon absorption for vehicle natural gas storage. Automotive Engineer, 14 (2).

Ball D. and Caswell R. 1983. Smoke from Diesel Engine Road Vehicles: an Investigation into the Basis of British and European Emission Standards. *Atmospheric Environment* 17, 169 - 181.

Barbella, R., Ciajolo, A., and D'Anna, A. 1989. The emissions of heavy hydrocarbons from a diesel engine and a spray flame. *FUEL* Vol. 68 No. 6, June 1989

Barrie, C., 1989a. Driving for a green and pleasant land. The Engineer. 16 March.

Barrie, C., 1989b. New hope for Dagenham. The Engineer. 18 May 1989.

Barrie, C., 1989c. Diesel engine fumes cut by conversion to natural gas. The Engineer. 25 May 1989.

Barry E.G., McGabe L.J., Gerke D.H. and Perez J.M. 1985. Heavy duty diesel engine fuels combustion performance and emissions - a co-operative research programme. *SAE Paper 852078*, Society of Automotive Engineers Warrendale.

Beard J. 1994. Green hybrid takes to the track at Le Mans, New Scientist 1918: 18 - 19

Beaton S.P., Bishop G.A. and Stedman D.H. 1992. Emission characteristics of Mexico City vehicles, J. Air Waste Manag. Assoc. 42(11): 1424 - 1429

Bell M.C., 1986. Ageing of fixed-time traffic signal plans. *IEE Second International Conference on Road Traffic Control*, Conf Public No. 260, 15-18 April, 1986.

Benesh, F. 1978. Carbon monoxide hot spot guidelines - Volume V: User's manual for intersection midblock model, Report EPA-450/3-78-037. Office of Air Quality Planning and Standards, US Environmental Protection Agency, Research Triangle Park, NC.

Benson, P.E. 1979. CALINE 3 - A versatile dispersion model for predicting air pollutant levels near highways and arterial streets, Report FHWA/CA/TL-79/23. US Federal H/W Authority, California.

Benson, P.E. 1984. CALINE 4 - A dispersion model for predicting air pollutant concentrations near roadways. Report No FHWA/CA/TL-84/15, California Dept. of Transp., Sacremento, California.

Bevan, M.G., Colwill, D.M. and Hogbin, L.E. 1974. Measurement of particulate lead on the M4 motorway at Harlington, Middlesex. *TRRL Report 626*, Department of Transport, Crowthorne, Berkshire.

Birch S. 1988. Hydrogen-pwered vehicles. Automotive Engineering, December.

Bishop, G.A. and Stedman, D.H. 1989. Oxygenated fuels, a remote sensing evaluation. SAE Paper No. 891116, 1989.

Bishop, G.A. and Stedman, D.H. 1990. On-road carbon monoxide measurement comparisons for the 1988-1989 Colorado Oxy-Fuels Program, *Environ. Sci. Technol.* 24(6) : 843-847 (1990).

Bond R.G., Straub C.P. and Prober R. 1972. *Handbook of Environmental Pollution*. *Volume I : Air Pollution*. Eds Bond R.G., Straub C.P. and Prober R. CRC Press (A division of the Chemical Rubber Co.), Cleveland, Ohio. ISBN 0-87819-271-9.

Bongaarts J. 1994. Can the growing human population feed itself?, Scientific American, March 1994, 18 - 24.

Borrell P., Borrell P.M. and Aeiter W. 1991. EUROTRAC Symposium 1990: Transformation of pollutants in the troposphere, Garmisch-Partenkirchen, FRG:SPB Academic Publishing, 1991.

Bosch (undated). Exhaust gases emitted by internal combustion engines. Bosch Automotive Handbook.

Bradshaw B.J. 1988. Fuel Injection with Multipoint Distribution System for Spark Ignition Engines. Theses submitted to University of Nottingham for Degree of Doctorate of Philosophy. May 1988. Brimblecombe P. 1993. Environmental acidification, *Global Atmospheric Chemical Change*, Hewitt C.N. and Sturges W.T. Eds., Elsevier Applied Science, London and New York, 1993.

Brown W. 1994. Dying from too much dust, New Scientist 1916: 12 - 13.

Bryzik, W. and Smith, C.O. 1977. Relationships between exhaust smoke emissions and operating variables in diesel engines. SAE Technical Paper 770718

Burrel J.E., 1968. Multiple Road Assignment and its Application to Capacity Restraint, *Proceedings of the 4th International Symposium on the Theory of Traffic Flow*, Strassenbahn and Strassenverhrhrslectnick, 86.

Burt, M.E. 1972. Roads and the Environment. TRRL Report 441. Department of Transport, Crowthorne.

Cadle S.H., Gorse G.A. and Lawson D.R. 1993. Real world vehicle emissions: A summary of the Third Annual CRC-APRAC on-road vehicle emissions workshop, J. Air Waste Manag. Assoc. 43(8): 1084 - 1090, 1993.

Cadle, S.H., Knapp, K.T., Carlock, M., Lloyd, A.C., Gibbs, R.E. and Pierson, W.R. 1991. CRC-APRAC Vehicle emissions modelling workshop. *j. Air Waste Manag. Assoc.*, 41(6): 817 - 820.

CCMC, 1987. Impact of More Stringent Emission Standards On Vehicles with an Engine Displacement below 1.4 litres, CCMC Report AE/104/87, Committee of Common Market Automobile Constructors, Brussels.

CEC 1983. Report of the ad-hoc group ERGA - Air pollution. Report III/602.83 - EN-Final. Commission of the European Communities, Brussels.

CEC, 1990. R + D in Advanced Road Transport Telematics in Europe. DRIVE '90. Commission of the European Communities, DG XIII - Telecommunications, Information Industries and Innovation. Brussels, March 1990.

CEC, 1991. R + D in Adavnced Road Transport Telematics in Europe. DRIVE '91. Commission of the European Communities, DG XIII - Telecommunications, Information Industries and Innovation. Brussels, April 1991.

CEC, 1991a. Advanced Telematics in Road Transport. Proceedings of the DRIVE Conference, Brussels, February 4-6, 1991. Volumes I and II. Commission of the European Communities, DG XIII: Telecommunications, Information Industries and Innovation. Elsevier, Amsterdam - New York - Oxford - Tokyo.

CEC, 1992. Green paper on the impact of transport on the environment: Community strategy for sustainable mobility. Commission of the European Communities, Brussels, Belgium.

CEC, 1993. Advanced Transport Telematics, Volume II: Project Reports. Proceedings of the Technical Days, Brussels, 8-10 March, 1993. Commission of the European

Communities, Directorate General XIII: Information Technologies and Industries and Telecommunications.

Chanlett, E.T., 1973. Environmental Protection. McGraw-Hill, New York.

Chaplean R. and DeCea J. 1983. User perception of transit network characteristics from the view point of an assignment model. p 440 - 449 in *Research for transport policies in a changing world*. Proceedings of a World Conf. on Transport Research, Hamburg 26-29 April, 1983. Eds: Baron P. and Nuppnau. SNV Studiengesellschaft Nativerkehr mbH, Hamburg.

Charlson R.J. and Wigley T.M.L. 1994. Sulfate aerosol and climate change, *Scientific American*, February 1994, 28 - 35.

Chock, D.P. 1978. A simple line-source model for dispersion near roadways. Atmos. Environ., 12, 823-829.

Choraffa A., and Ferreira L.J.A., 1983. Assessing the impact of traffic management measures in Liverpool. *Traffic Eng Control* 24 (1) January 1983, 14-22

Christy J.R. and McNider R.T. 1994. Satellite greenhouse signal, *Nature* 367(6461): 325.

Claggett, M., Shrock, J., and Noll, K.E. 1981. CO near an urban intersection. Atmos. Environ., 15(9), 1633-1642.

Colwill D.M. 1974. The assessment of a lead trap for motor vehicles. TRRL Report LR 662. Transport and Road Research Laboratory, Crowthorne.

Colwill, D.M., Hickman, A.J. and Waterfield, V.H. (undated). Exhaust emissions from cars in service - changes with amendments to EEC Regulation 15. *TRRL* Supplementary Report 840. Dept. of Transport, Crowthorne, Berkshire.

Cookson, C. 1992. Blots on the landscape. Financial Times. February 19, 1992.

Cooper C.D., Malone L.C. and Liu P.S 1992. Identifying "worst case" persistence factors for carbon monoxide modelling near intersections in Orlando, Florida, J. Air Waste Manag. Assoc. 42(11): 1461 - 1465, 1992.

Cooper C.D. 1987. Indirect source impact analysis - carbon monoxide modelling. J. Air Pollution Control. Assoc. 37(2) : 1308 - 1313.

Costas Abacoumkin and Associates 1988. Use of environmental pollution parameters (air-noise) as on line input for developing traffic management schemes and particularly for traffic signal settings. Final Report to the Commission of the European Communities, Directorate-General for Transport. Costas Abacoumkin and Associates, Athens, Greece, October 1988.

Cresswell, C.R., 1974. Notes on Air Pollution Control. H.K. Lewis & Co. Ltd, London.

Crompton, D.H. and Gilbert, D.A.M. 1970. Traffic and the environment. Survey and analysis of a group of representative streets. *Traff. Engng & Control*, 12(6), 323-326.

Crompton, D.H. and Gilbert, D.A.M. 1972. *Traffic and the environment*. Summary of studies to develop predictive models carried out for the Department of the environment. Department of Civil Eng., Imperial College, London University.

Danard, M.B. 1972. Numerical modelling of carbon monoxide concentrations near highways. J. Appl. Met., <u>11</u>, 947-957.

Dasch, J.M. 1992. Nitrous oxide emission from vehicles, J. Air Waste Manag. Assoc. 42(1): 63 - 67, 1992.

Davidson A. 1993. Update on ozone trends in California's South Coast Air Basin, J. Air Waste Manag. Assoc. 43(2): 226 - 227, 1993.

Deakin E.A. 1991. Jobs, Housing and Transportation : theory and evidence on interactions between land use and transportation. Proceedings of a conf. on Transportation, Urban Form and Environment. Irvine, California, 9 - 12 December 1990. Special Report 231. Transportation Research Board, Washington D.C. 1991.

Department of Transport, 1988. Traffic Appraisal Manual (TAM), Assessments policy and methods division, 1981-1988, Department of Transport, 2 Marsham Street, London SW1

Derwent R.G. and Jenkin M.E. 1991. Hydrocarbons and the long range transport of ozone and PAN across Europe, Atmos. Environ. 25A : 1661, 1991.

Dial R.B., 1971. A probabilistic multipath traffic assignment model which obviates path enumeration. *Transportation Research*, 5 (2), 83-111.

DoE & DTi, (undated). Environmental Technology Innovation Scheme, Support for research in environmental technology. ETIS brochure prepared by Department of Trade and Industry. Printed by Moore & Matthes. Pub 282/3rd reprint/10K/2/91.

Dorling, T.A. and Sullivan, E.J. 1980. Airborne particulate lead levels in Central London 1973-1979. Department of Industry, Warren Spring Laboratory, *LR 366 (AP)*.

DTi, 1991. Environmental Markets in Europe. The Enterprise Initiative. DTi Environmental Unit. September 1991.

DTi, (undated a). DEMOS DTI's Environmental Management Options Scheme. Brochure prepared by the Department of Trade and Industry, produced by Horrex Davis Design. 2nd reprint 2/91/20K.

DTi, (undated b). EUROENVIRON Collaboration for Environmental Research in Europe. A brochure for the EUREKA programme. Prepared by the Department of Trade and Industry and the Central Office of Information. Printed in the UK for HMSO, 2/91. Dd8240600 INDY J1512AR.

DTp/TRRL, 1982. Supplementary Report SR 735, Users Guide to CONTRAM Version 4, Department of Transport 1982.

DTp, 1989. National Road Traffic Forecasts. Department of Transport.

DTp, 1993. Transport Statistics, Great Britain 1993. The Dept. of Transport, Scottish Office Industry Dept., Welsh Office. HMSO, London.

Dutton E. and Christy J. 1992. J. Geophys. Res. lett. 19, 2313 - 2316.

Edner S.M. 1991. Workshop 3 on Jobs, Housing and Transportation : theory and evidence on interactions between land use and transportation. Proceedings of a conf. on Transportation, Urban Form and Environment. Irvine, California, 9 - 12 December 1990. Special Report 231. Transportation Research Board, Washington D.C. 1991.

Eggleston, H.S. (undated). The Calculation of Emissions from UK Petrol Engined Motor Vehicles. Warren Spring Laboratory, LR 612 (AP) M.

Eggleston, H.S., Gorißen, N., Joumard, R., Rijkeboer, R.C., Samaras, Z. and Zierock, K.H. 1988. Summary Report of the CORNAIR Working Group on Emission Factors for Calculating 1985 Emissions from Road Traffic. Draft Final Report, December 1988.

Eggleston, H.S., Gaudioso, D., Gorissen, N., Joumard, R., Rijkeboer, R.C., Samaras, Z., Zierock, K.-H. 1993. CORINAIR Working Group on Emission Factors for Calculating 1990 Emissions from Road Traffic. Volume 1: Methodology and Emission Factors. Contract no. B4-3045 (91) 10PH. ECSC-EEC-EAEC, Brussels, 1993. ISBN 92-826-5771-X.

Ellis, G.W., Camps, W.T. and Treadway, A. 1978. Determination of vehicular cold and hot operating conditions for estimating highway emissions. Federal Highway Administration, Washington, DC : US Department of Transportation.

Elmberg C.M. 1977. Gothenburg transport developments. p 172 - 190 in *Passenger transport and the environment*. Eds: Cresswell R. and Hill L. Leonard Hill, London. ISBN 249 44153 5.

Engineers Digest, 1989. Engineers Digest, May 1989.

Enviro Technology 1991. Enviro Technology Newsletter, Special OPSIS Edition. Enviro Technology Services, Stroud, Gloucestershire.

EPA 1981. User's guide to MOBILE-2 (Mobile Source Emission Model) - Final Report. Ann Arbor, MI. US Environmental Protection Agency, Research Triangle Park, NC.

EPA 1981a. Compilation of air pollution emission factors : Highway mobile sources. Report EPA 460/3-81-005. US Environmental Protection Agency, Research Triangle Park, NC. EPA 1982. Air quality criteria for particulate matter and sulfur oxides, Vol I, II & III. (EPA-600/8-82-029a, b & c). US Environmental Protection Agency, Research Triangle Park, NC.

EPA 1984. Air quality criteria for carbon monoxide (Report No. EPA-600/8-79-022) and Revised evaluation of health effects associated with carbon monoxide exposure: addendum to the 1979 air quality criteria document for carbon monoxide (Report No. EPA-600/8-83-033F). Washington, DC, US Environmental Protection Agency, 1979 and 1984.

EPA 1986. Standards for emissions from methanol fueled motor vehicles and motor vehicle engines, Report AMS-FRL-2974-50, Environmental Protection agency.

EPA 1989. User's guide to MOBILE4. Office of Air and Radiation, Office of Mobile Sources, Emission Control Technology Division, Test and Evaluation Branch, Ann Arbor, Michigan 1989.

EPA 1989. Procedures For Emission Inventory Preparation - Volume IV: Mobile Sources, prepared by the Technical Support Division of the Office of Air Quality Planning and Standards and the Emission Control Technology Division of the Office of Mobile Sources, July 1989.

EPA 1993. Federal Test Procedure Review Project: Preliminary Report. US Environmental Protection Agency. May 1993.

EPA 1993a. Inside E.P.A. - Weekly Report. US Environmental Protection Agency. June 25, 1993.

EPA 1993b. US Environmental Protection Agency's Ozone Epidemiological Research Program: A stratgey for assessing the effects of ambient ozone exposure upon morbidity in exposed populations, J. Air Waste Manag. Assoc. 43(7).

Ericsson, G. and Camner, P. 1983. Health effects of sulphur oxides and particulate matter in ambient air. Scandinavian journal of work, environment & health, 9(Suppl. 3): 1-52.

EVA 1980. *Electric Vehicle Handbook*. The Electric Vehicle Association of Great Britain (EVA). Published in conjunction with Electrical Review. October 1980. IPC Electrical-Electronic Press, Surrey.

Evans, L. 1979. Exhaust emissions, fuel consumption and traffic : Relations derived from urban driving schedule data. <u>Transportation Research Record</u>, Report No 714, 24-30.

Evans W.D.J. and Wilkins A.J.J. 1985. Single bed three way catalyst in the European environment. *SAE Paper 852096*, Society of Automotive Engineers Warrendale.

Facchetti S. and Geiss F., 1982. Isotopic lead experiment: status report. Luxembourg, Commission of the European Communities (Publication No. EUR 8352 EN).

Fairley D. 1993. Photochemical model bias: Is it real or is it a statistical artifact?, J. Air Waste Manag. Assoc. 43(3): 348 - 351, 1993.

Federal Minister of Transport, W. Germany 1982. Urban Transport Research. Transport Policy Department : Bonn. Special Issue Heft 31.

Felger G. 1987. Engine management systems - a substantial contribution to emission control. Proceedings of a conference on Vehicle emissions and their impact on European air quality, Inst. Mech. Eng., London.

Freeman H.D. 1989. Heavy duty diesel emission control - implications for fuel consumption. Atmospheric ozone research and its policy implications. Elsevier Science Publishers. B.V. Amsterdam.

Finlayson-Pitts B.J. and Pitts J.N. Jr. 1993. Atmospheric chemistry of troposphere ozone formation: Scientific and regulatory implications, J. Air Waste Manag. Assoc. 43(8): 1091 - 1100, 1993.

Firor J. and Jacobsen J.E. 1993. Global climate change and substainable development, J. Air Waste Manag. Assoc. 43(5): 707 - 722, 1993.

Firor J. and Rhodes S.L. 1993. Political and legislative control of global air pollution, *Global Atmospheric Chemical Change*, Hewitt C.N. and Sturges W.T. Eds, Elsevier Applied Science, London and New York, 1993.

Flan F. 1994. Climate written in the stars?, Science 262: 1372 - 1373.

Foukal P. 1994. Stellar luminosity variations and global warming, Science 264: 238.

Fujita, E.M., Croes, B.E., Bennett, C.L., Lawson, D.R., Lurmann, F.W. and Main, H.H. 1992. Comparison of emissions inventory and ambient concentration ratios of CO, NMOG, and NOx in California's South Coast Air Basin. J. Air Waste Manag. Assoc., 42(3): 264 - 276.

Gabele, A. 1990. Characterization of Emissions from a Variable Gasoline/Methanol fuel car, J. Air Waste Manag. Assoc. 40(3): 296 - 304, 1990.

Gabele P.A. and Knapp K.T. 1993. A characterization of emissions from early model flexible fuel vehicle, J. Air Waste Manag. Assoc. 43(6): 851 - 858, 1993.

Georgii, H.W., Bush, E. and Weber, E. 1967. Investigation of the temporal and spatial distribution of the emission concentration of carbon monoxide in Frankfurt/Main. Report No 11. Institute for Meteor. and Geophy. of the Univ. of Frankfurt : Mains, F.R. of Germany. (Translation No 0477, US Nat. Air Pollut. Control Assoc.).

Glockler O. 1985. New developments in fuel injection. Institute of Mechanical

Engineering. Publication Number C222/85.

Gould, R. 1989. The exhausting options of modern vehicles. New Scientist. 13 May 1989.

Gould, R. and Gribbin, J. 1989. Greener cars may warm the world. New Scientist. 20 May 1989.

Gotz H. 1983. Bus design features and their aerodynamic effects. Int. J. of Vehicle Design, Technological Advances in Vehicle Design Series, SP3, Impact of Aerodynamics on Vehicle Design. pp 225-229.

Graedel T.E. and Crutzen P.J. 1993. An Earth System Perspective, W.H. Freeman Publisher, 1993

Grant, W.B., Kagann, R.H. and Clenny, W.A. 1992. Optical remote measurement of toxic gases, J. Air Waste Manag. Assoc. 42(1): 18 - 30, 1992.

Gremier M et al. 1987. Bosch fuel injectors - new developments Society of Automotive Engineers. Paper No. 870124.

Griffin, R. 1980. Air quality impact of signaling dicision. Report FHWA/CO/RD-80/12. Federal Highway Authority, Washington, DC.

Groisman P.Y., Karl T.R. and Knight R.W. 1994. Observed impact of snow cover on the heat balance and the rise of continental spring temperatures, *Science* 263: 198 - 200.

Gunson, 1991. Emission Data for Most Cars and Vans, Gunson Limited, Pudding Mill Lane, London E15 2PJ.

Halcrow Fox 1993. ATT Pollution Impact Assessments - Southampton and Cologne, Deliverable 1.00, Phase 1 Report. Proposal for Ford Motor Company. Halcrow Fox and Associates, London. January 1993.

Hall, M.D., Van Vliet, D., and Willumsen, L.G., 1980. SATURN - A simulation/assignment model for the evaluation of traffic management schemes. *Traffic Engineering and Control*, 21(4), April 1980, 168-176.

Hamburg D.R. and Klick D. 1982. The measurement and improvement of the transient A/F characteristics of an electronic fuel injection system. Society of Automotive Engineers. Paper No. 820776.

Hamilton R.S. and Dunsby R. 1984. evels of vehicle generated air pollutant in a street canyon. *Envir. Tech. Letters* 5(6): 349 - 368.

Hansen, A.D.A, and Rosen H. 1990. Individual measurements of the emission factor of aerosol black carbon in automobile plumes. J. Air Waste Manag. Assoc., 40(12): 1654 - 1657.

Hardenburg H.O. 1987. Urban bus application of a ceramic fibre particulate trap. SAE Paper 870016, Society of Automotive Engineers Warrendale.

Harmon R. 1992. Alternative vehicle propulsion systems. *Mechanical Engineering*, March 1992, 58 - 65.

Hassel, D., Dursbeck, F. Brosthaus, J., Jost, P. and Hoffmann, K. 1985. Das Abgas-Emissionsverhalten von Personenkraftwagen in der Bundesrepublik Deutschland im Bezugsjahr 1985. UBA Berichte 7/87.

Heck W.A, Adams R., Cure W.W., Heagle A.S., Heggestad H.E., Kohut R.J., Kress L.W., Rawlings J.O. and Taylor O.C. 1983. A Reassessment of Crop Loss from Ozone. *Environmental Science and Technology* 17, 537A - 581A.

Heagle A.S., Kress L.W., Temple P.J., Kohut R.J., Miller J.E. and Heggestad H.E. 1988. Factors influencing ozone dose-yield response relationships in open-top field chamber studies, *Assessment of Crop Loss from Air Pollutants*, Heck W.W., Taylor O.C. and Tingley D.T. Ed., Essex Elsevier Science Publishers, 1988, p141.

Hickman, A.J. 1989. Measurements of particulate lead on the M4 motorway at Harlington, Middlesex (Fith report) *TRRL Report 184*. Transport and Road Research Laboratory, Crowthorne. (Earlier reports 1974, 1976, 1981 and 1984).

Hickman A.J. and Colwill D.M., 1982. The estimation of air pollution concentrations from road traffic, TRRL Laboratory Report 1052. Department of the Environment, Department of Transport, Transport and Road Research Laboratory, Crowthorne.

Hickman, A.J., Colwill, D.M. and Hughes, M.R. 1979. *Predicting air pollutant levels from traffic near roads*. Department of the Environment, Department of Transport: Crowthorne, UK. TRRL Report SR-501.

Hickman A.J. and Jaffray C. 1986. Performance of a catalyst trap oxidiser installed on a city bus for 65,000 miles of revenue service. *SAE Paper 860138*, Society of Automotive Engineers Warrendale.

Hickman A.J. and Mitchell C.G.B. 1989. Technical and economic implications of regulations of air pollution and noise from road vehicles. OECD/ECMJ Special Ministerial Conference on Transport and the Environment, Background Paper.

Hickman, A.J. and Waterfield, V.H. 1984. A user's guide to the computer programs for predicting air pollution from road traffic. Department of the Environment, Department of Transport : Crowthorne, UK. TRRL Report SR-806.

Hillier J.A. and Lott R.S., 1966. A method of linking signals to minimise delay. International Study Week in Traffic Engineering 5-10 Sept 1966, Barcelona London, (World Touring and Automobile Organization).

Hirshenhofer J.H. International developments in fuel cells. *Mechanical Engineering* August 1989, 78 - 83.

Hodges, L. 1973. Environmental pollution. New York: Holt, Rinehart and Winston, Inc.

Hogbin, L.E. and Bevan, M.G. 1976. Measurement of particulate lead on the M4 motorway at Harlington, Middlesex (Second report). *TRRL Report 716*. Transport and Road Research Laboratory, Crowthorne.

Hollmans, B. 1987. VROM/RDW Projekt Steekproefkontrole van voertuigen uit het verkeer. TNO Report No. 700330165, 1987.

Holma, B. 1985. Influence of buffer capacity and pH-dependent rheological properties of respiratory mucus on health effects due to acidic pollution. *Science of the total environment*, **41**: 101-123.

Holman, C., Fergusson, M. and Robertson, T. (undated). *The Route Ahead, Vehicle Pollution causes effect answers?* World Wide Fund for Nature (UK), Godalming, Surrey.

Hoonhorst H. 1986. Bendix sequential fuel injection. Society of Automotive Engineers. Paper No. 865079.

Hope, K. 1992. Urban Air Pollution - Greeks battle to defeat the 'nefos'. Financial Times. March 11, 1992.

Hucho W-H. 1987. Aerodynamics of Road Vehicles. Ed.: Hucho W-H. Butterworths, London, 1987. ISBN 0-408-01422-9.

Hughes, P. 1992. City air pollution: will new monitoring evidence make the case for action? *Local Transport Today*. 30 April 1992.

Hughes, P. 1992a. Sustainable transport - a new green urgency in the air? Local Transport Today. 5 March 1992.

Iestraaten, B. et al 1984. Investigation into Influence of Driver Behaviour. TPD/TNO Report No. 307.863, 1984.

Ingham M.C. and Warden R.B. 1987. Cost effectiveness of diesel fuel modifications for particulate control. *SAE Paper 870556*. Society of Automotive Engineers Warrendale.

Institut Fuer Stadtbauwesen, 1985. Rheinisch-Westaelische Hochschule Aachen. Aachen, Den 18.12.1985

Institute of Petroleum 1986. A review of diesel quality world-wide, Petroleum Review, London.

Institution of Highways and Transportation, 1987. Roads and Traffic in Urban Areas. Institution of Highways and Transportation with the Department of Transport. ISBN 0 11 550818 X. Ireson, R.G. and Mahoney, L.A. 1986. Technical Report: Predicting nearintersection carbon monoxide concentration in Phoenix : A performance evaluation study of CALINE4/V9-PG. Prepared for Maricopa Association of Governments, Phoenix, Arizona.

ISATA 1992. Proceedings of 25th ISATA Silver Jubilee International Symposium on Automotive Technology and Automation. Florence, Italy 1st-5th June 1992.

Janson B.N., Thint S.P.T. and Hendrickson C.T., 1986. Validation and use of equilibrium network assignment for urban highway reconstruction planning. *Transportation Research*, 20A (1), 61-73.

Jayanty R.K.M. and Gay B.W. Jnr. 1993. Summary of the 1992 EPA/A&WMA International Symposium Measurement of Toxic and Related Air Pollutants, J. Air Waste Manag. Assoc. 43(2): 191 - 196, 1993.

Johnson, W.B., Ludwig, F.L., Dabberdt, W.F., and Allen, R.J. 1973. An urban diffussion simulation model for CO. J. Air Pollut. Control Assoc., 23 (6), 490-498.

Jones K.C., Stratford J.A., Tidbridge P. and Waterhouse K.S. 1989. Polynuclear aromatic hydrocarbons in agricultural soil: long-term changes in profile distribution. *Environmental Pollution* 56, 337 - 351.

Joumard, R. and Andre, M. 1988. Real Exhaust Gas Emissions and Fuel Consumption of the Passenger Car Fleet. Paper presented to Society of Automotive Engineers' meeting on Passenger Cars, October 1988, Dearborn.

Joumard, R., Hickman, J., Nemerlin, J., and Hassel, D. 1992. Modelling of emissions and consumption in urban areas. MODEM final report. Deliverable 12 of DRIVE project V1053. June 1992. INRETS Laboratoire Energie Nuisances, case 24 - 69675 Bron cedex, France.

Joumard, R., Vidon, R. and Guitton, J.-P. 1987. Emissions Unitaires de CO, HC, NOx et Consommation des Vehicules a Essence: Resultats de la Premeriere Phase, INRETS NNP 8706.

Jourdain, S. 1990. Red routes or red faces? Local Transport Today, 13 June 1990.

Karylko D. 1988. Tough diesel rules spur research for cleaner bus engine. Automotive News. November.

Kent, J.H. and Mudford, N.R. 1979. Motor vehicle emissions and fuel consumption modelling. *Transpn Res.*, 13A, 395-406.

Kerr R.A. 1994. Methane increases put on pause, Science 263: 751.

Kerr R.A. 1994. Did Pinatubo send climate-warming gases into a dither?, Science 263: 1562.

Kirsch, J.W. and Mason, B.F. 1975. Mathematical models for air pollution

involving the Oregon I205 highway project, Report SSS-R-76-2744. Systems, Science and Software Inc., US.

Kitagawa, T. 1984. Cause analysis of the Yokkaichi asthma episode in Japan. Journal of Air Pollution Control Association, 34: 743-746.

Kleinjans JCS, van Maanen JMS and van Schooten FJ? Human respiratory disease: environmental carcinogens and lung cancer risk. *Environmental Change and Human Health*. Wiley, Chichester (Ciba Foundation Symposium 175). 171 - 181.

Kosowski M.G. 1985. Soot formation in a multipoint fuel-injected spark-ignited engine. Society of Automotive Engineers. Paper No. 850294.

Koushki P.A. 1991. Evaluation of street-canyon carbon monoxide - dispersion simulation model. J. Transportation Engineering 117(4): 444 - 456.

Kunselman, P., McAdams, H.L., Pomke, C.J. and Williams, M. 1974. Automobile programs exhaust emission modal analysis model, Report EPA-460/3-74-005. US Environmental Protection Agency. Research Triangle Park, NC.

Lane R., Powell T.J. and Smith P.P. 1971. Analytical transport planning. Gerald Duckworth & Co. Ltd., London. ISBN 0 7156 05917.

Laveskog, A., Hedbom, A. and Kutscher, E. (undated). *Emissions from Catalyst Cars Outside Regulated Test Conditions*. A report from the Swedish Motor Vehicle Inspection Co., Motortestcenter.

Lawson D.R. and SCAQS Management Advisory Group 1990. The Southern California Air Quality Study, J. Air Waste Manag. Assoc. 40(2): 156 - 165, 1990.

Lawson D.R., Groblicki P.J., Stedman D.H., Bishop G.A. and Guenther L. 1990. Emissions from in-use motor vehicles in Los Angeles: A pilot study of remote sensing and the inspection and maintenance program. J. Air Waste Manag. Assoc. 40(8): 1096 - 1105, 1990.

Lear, D. and Bell, M.C. 1988. Preparation of a publication for IHT. Department of Civil Engineering, Nottingham University.

Lee, C. 1973. Models in Planning. Pergamon Press, Oxford. ISBN 0 08 017021 8.

Lefohn A.S. and Foley J.K. 1992. NCLAN results and their application to the standard setting process: protecting vegetation from surface ozone exposures, J. Air Waste Manag. Assoc. 42: 1046, 1992.

Lefohn A.S. and Foley J.K. 1993. Establishing relevant ozone standards to protect vegetation and human health: exposure/dose-response considerations, J. Air Waste Manag. Assoc. 43(1): 106 - 112, 1993.

Leisen P., Sobottka H. 1981. The modelling of dispersion of transport pollution.

Inst. of Mathematics and its Applications, Southend-on-Sea, UK. 129 - 146.

Leuturyler K. 1994. No Global Warming?, Scientific American, February 1994, 12-13.

Linaritakis, K.N. 1983. Diesel smoke from urban traffic under interrupted flow conditions. MSc Thesis, Civil Eng. Dept., Imperial College, London University.

Linaritakis, K.N. 1987. Factors affecting traffic - Related air pollutant levels in urban streets; PhD thesis. Transport Section, Department of Civil Engineering, Imperial College of Science and Technology, London. Also see: PTRC, Environmental Issues Seminar (P) Summer Annual Meeting 1987, University of Bath; Air Pollution from urban road traffic, by Linaritakis K. and Gilbert D.

Lippmann M. 1989. Health effects of ozone, J. Air Waste Manag. Assoc. 39, 672.

Lippmann M. 1991. Health effects of tropospheric ozone, *Environ. Sci. Technol.* 25 : 1954 (1991)

LTT, 1989. TRRL tests probe traffic management - pollution links. Local Transport Today. Issue 19, 27 December 1989.

LTT, 1990. Vehicle emissions to peak in 1992 claims expert. Local Transport Today. Issue 26, 4 April 1990

LTT, 1991. Smog level checks to come under new environmental agency. Local Transport Today, 24 July 1991.

LTT, 1992. Birmingham suspects platinum pollution from traffic. Local Transport Today. Issue86, 23 July 1992.

LTT, 1994. Traffic management 'should take account of air quality' - DOE. Local Transport Today, Issue 132, 28 April 1994.

Ludwig, F.L., Sandys, R.C., and Moon, A.E. 1973. A preliminary study of modelling the air pollution effects from traffic engineering alternatives. J. Air Pollut. Control Assoc., 23(6), 499-504.

MacKenzie D. 1994. Where has all the carbon gone, New Scientist 1907: 30 - 33.

MacKenzie, D., and Watts, S. 1989. Realistic test forces new look at vehicle emissions. New Scientist, 22 April 1989, No 1661.

Maclean, K. and Thomson, N. 1981. World Environmental Problems. Bartholomew/Holmes McDougall.

Mahalel, D., and Peled, A. 1984. A safety, energy and environmental evaluation of traffic signal operation at off-peak hour. *Traff. Engng. & Control*, 25(2), 79-81.

Maldonado, C., and Bullin, J.A. 1977. Modelling carbon monoxide dispersion from

roadways (TRAPS). Environ. Sci. Techn., <u>11</u>(12). 1071-1076.

Mallet, V. 1992. Urban Air Pollution - Third world city, first world smog. *Financial Times*. March 25, 1992.

Marshall D.W.R. et al 1987. *Electronic fuel injection optimisation*. Progress Report 7. Department of Mechanical Engineering, University of Nottingham. 31 July 1987.

Mass C. and Portmann D. 1989. J. Climate 2: 566-593.

Matthes W.R. and McGill R.N. 1976. Effects of the degree of atomisation on single cyclinder engine performance. Society of Automotive Engineers. Paper No. 760117.

Matzoros, A. 1990. Results from a model of road traffic air pollution, featuring junction effects and vehicle operating modes. Traffic Engineering and Control, 31 (1) : 24 - 37, January 1990.

May, H. and Plassmann, E. 1973. Abgasemissionen von Kraftfahrzeugen in Grossstaedten und industriellen Ballungsgebieten. Verlag TUeV Rhienland GmbH, Koeln.

McCormick, R.A. and Xintaras, C. 1962. Variation of carbon monoxide concentrations as related to sampling interval, traffic and meteorological factors. J. Appl. Meteor., 1, 237 - 243.

McDowell B.D. 1991. Workshop 5 on Jobs, Housing and Transportation : theory and evidence on interactions between land use and transportation. Proceedings of a conf. on Transportation, Urban Form and Environment. Irvine, California, 9 - 12 December 1990. Special Report 231. Transportation Research Board, Washington D.C. 1991.

Mech. Eng. 1989. Tech News. Mechnical Engineering, vol 111, No.2. February 1989

Messina, A.D., Bullin, J.A., Nelli, J.P. and Moe, R.D. 1982. Estimates of air pollution near simple signalised intersections, Report FHWA/TX-81-541-1. Texas Transportation Institute.

Messina et al 1983. Estimates of air pollution near signalised intersections. Report No FHWA/RD-83/009 US Dept. of Transp. Washington D.C.

Midurski, T. and Castaline, A.H. 1977. Determination of percentages of vehicles operating in the cold start period, Report EPA-450/3-77-023. US Environmental Protection Agency, Research Triangle Park, NC.

Miller P.R., McBride J.R. Schilling S.L. and Gomez, A.P. 1989. Trend of ozone damage to conifer forests 1984 - 1988 in the San Bernardino Mountains of Southern California, Paper 89-129.6 in *Proceedings of Air and Waste Manag. Assoc. Annual Meeting*, Anaheim, CA, June 25-30, 1989.

Mitchell, K. 1991. Enemy Emissions. New Civil Engineer. 12 September 1991.

Monaghan, M.L., 1988. Engine friction - a change in emphasis. Proceedings of the Institution of Mechnical Engineers. Part D Transport Engineering.

Mot E., Bartelds H., Esser P.M., Huurdeman A.J.M., van de Laak P.J.A., Michon S.G.L. and Nielson R.J. 1993. European Community can reduce CO_2 emissions by sixty percent: A feasibility study, *J. Air Waste Manag. Assoc.* 43(6): 835 - 838, 1993

Motor Vehicle Emissions Group 1990. Fuel Quality and Diesel Emissions. Report of a sub-group of the Motor Vehicle Emissions Group of the European Commission. Submitted in evidence to the Royal Commission by the UK Petroleum Industry Association.

MVA, 1982. TRIPS manual, MVA Systematica.

Nadis S. 1994. High hopes for faster transit, New Scientist 1915: 28 - 32.

National Academy of Sciences 1991. Rethinking the ozone problem in urban and regional air pollution, National Academy Press, Washington, 1991.

National Research Council, 1983. Acid deposition: Atmospheric processes in Eastern North America, National Academy Press, Washington, 1983.

National Research Council, 1991. Rethinking the Ozone Problem in Urban and Regional Air Pollution, 1991.

Neftel A., Moor E., Oeschger H. and Stauffer B. 1985. Evidence from polar ice for the increase in atmospheric CO_2 in the past two centuries, *Nature* 315, 45, 1985.

Neftel A, Schwander J., Stauffer B. and Zumbrunn R. Ice core sample measurements give atmospheric CO_2 content during the past 40,000 years, *Nature* 295, 220, 1982.

Negrenti, E. 1993. TEE: Traffic Emissions and Energetics Model Description. ENEA, (Depratmento Energia), Via Anguillarese km 1,3, C.R.E. Casaccia, 00060 Rome.

New Scientist, 1989. Dutch government crashes over plan for 'green cars'. New Scientist, 13 May 1989, No. 1664.

Nicholson, S.E., 1975. A pollution model for street-level air. Atmos. Environ., 9, 19-31.

Nishimura T. and Hino Y. (undated). An Estimation Model of the Driving Modes of Vehicle Traffic for the Exhaust Gas Volume. Dept. of Civil Eng., Osaka City University, Sugimoto 3, Sumiyoshiku, Osaka 558, Japan.

Noll, K.E., Miller, T.L., and Clagget, M. 1978. A comparison of three Highway line source dispersion models. *Atmos. Environ.*, <u>12</u>, 1323-1329.

Novelli P.C., Masarie K.A., Tans P.P and Lang P.M. 1994. Recent changes in atmospheric carbon monoxide, *Science* 263 : 1587 - 1590.

Nriagu J.O. 1978. Lead in the atmosphere. The biochemistry of lead in the environment. Amsterdam, Elsevier-North Holland, Part A, 137 - 184.

NTUA, 1985. Evaluation of Traffic and Traffic Conditions and their Contribution to the Air Pollution, B6612/83/1 (II), Final Report, National Technical University of Athens, Ministry of Physical Planning Housing & the Environment P.E.R.P.A., EEC DG XI, Athens 1985.

NTUA, 1988. Techno-economic study for the development of a city-center bus system. Report EUR 11600 EN. National Technical University of Athens for the Directorate General Environment, Consumer Protection and Nuclear Safety, Commission of the European Communities, DG XI.

O' Connor L. 1993. A New Turn for Rotary-Valve Engines. *Mechanical Engineering* 115 (1): 54 - 58. January 1993.

O' Connor L. 1993. Energizing the batteries for electric cars. *Mechanical Engineering* 115(7): 73 - 75, July 1993.

Oerlemans J. 1994. Quantifying global warming from the retreat of glaciers. Science 264, 8 April 1994, 243 - 245.

Ostria, S.J. and Lawrence M.F. 1994. Potential Emission and Air Quality Impacts of IVHS. Preprint: Paper No. 940969. Transportation Research Board, 73rd Annual Meeting, January 9-13, 1994, Washington D.C.

Ott W.R. 1977. Developmentof criteria for siting air monitoring stations. J. Air Pollution Control Assoc. 27(10) 543.

Pasquill F. 1974. Atmospheric Diffusion: The dispersion of windborne material from industrial and other sources. (2nd Edition). Ellis Horwood, 1974.

Pattas, K., Kyriakis, N. Samaras, Z., Aidarinis, J. undated. Air Pollution by Road Traffic in Greater Athens. Society of Automotive Engineers' Paper 871990.

Pattas, K., and Kyriakis, N. 1983. Exhaust Emissions Study of the Current Fleet in Athens - Phase I. Final Report to EEC (DG II) / Ministry of Environment, Contract No. B 6612/9.

Pattas, K., Kyriakis, N., and Samaras, Z. 1985. Exhaust Emission Study of the Current Vehicle Fleet in Athens - Phase II. Final Report to EEC (DG II) / Ministry of Environment, Contract No. B 6612/9.

Pattas, K. and Samara, K., 1987. Techno-economical study of retrofitting existing vehicles with air-pollution reducing devices. Lab. of Applied Thermodynamics, Aristotle University, Thessaloniki, January 1987.

Patterson, R.M. 1975. Traffic flow and air quality. Traff. Engng., 45(11), 14-17.

Patterson, R.M. 1976. Air quality modelling at signalised intersection, Special Report 167, 138-151. Transportation Research Board : Washington D.C., US.

Pearce F. 1994. Bedtime warning baffles climatologists, New Scientist 1900: 15.

Petersen, W.B. 1978. User's guide for PAL. Report No EPA-600/4-78-013, US Environmental Protection Agency, Research Triangle Park N.C.

Petersen, W.B. 1980. User's guide for HIWAY-2 : A highway air pollution model, Report EPA-600/8-80-018. US Environmental Protection Agency, Research Triangle Park, NC.

PIARC, 1987. Pollution - Ventilation. *Road Tunnels, Technical Committee Report* No. 5. XVIIIth World Road Congress, Brussels, 13-19 September 1987. Permanent International Association of Road Congress. pp 53-78.

Pierson, W.R., Gertler, A.W., and Bradlow, R.L. 1990. Comparison of SCAQS Tunnel Study with Other On-Road Vehicle Emissions Data. J. Air Waste Manage. Assoc., 40(11), 1495-1504.

Pimm S.L. and Sugden A.M. 1994. Tropical diversity and global change, *Science* 263: 933 - 934.

Pisarski A.E. 1991. Workshop 1 on Jobs, Housing and Transportation : theory and evidence on interactions between land use and transportation. Proceedings of a conf. on Transportation, Urban Form and Environment. Irvine, California, 9 - 12 December 1990. Special Report 231. Transportation Research Board, Washington D.C. 1991.

Pischinger, R., and Schweiger, H. 1985. Determining exhaust emission of motor vehicles in tunnels. 5th International Symposium on the Aerodynamics & Ventilation of Vehicle Tunnels. Lille, France: 20-25 May 1985.

Pitter, R.L. 1976. User's Manual ROADS, PSMOG, VISI. Beaverton. Oregon : Oregon Graduate Center.

Porter D.F. 1980. *Electric Vehicle Handbook*. p 60 - 61. The Electric Vehicle Association of Great Britain (EVA). Published in conjunction with Electrical Review. October 1980. IPC Electrical-Electronic Press, Surrey.

Post, K., Kent, J.H., Tomlin, J. and Carruthers N. 1985. Vehicle characterization and fuel consumption prediction using maps and power demand models. *Int. Journal* of Vehicle Design 6 (1) Jan. ISSN: 0143-3369. Univ of Sidney, Dep of Mechanical Eng., Sydney, Australia.

Potter, C.J. and Savage, C.A., (?). The gaseous pollutant emissions of a 1.8 litre Volkswagen Scirocco without and with three-way catalyst systems. *Report LR 564* (AP) M. Department of Industry, Warren Spring Laboratory: Stevenage, England.

Potter, C.J. and Savage, C.A. 1982. The determination of in-service vehicle gaseous emissions over a wide range of road operating conditions. *Report LR442(AP)M*. Department of Industry, Warren Spring Laboratory: Stevenage, England.

Potter, C.J. and Savage, C.A. 1983. A survey of gaseous pollutant emissions from tuned in-service gasoline engined cars over a range of road operating conditions. *Report LR447(AP)M*. Department of Industry, Warren Spring Laboratory: Stevenage, England.

Potter, C.J. and Savage, C.A. 1986. An Ivestigation of the Variation of In-Service Vehicle Emissions and Fuel Economy with Age and Mileage Accumulation, Stage 1, Warren Spring Lab. Report LR562 (AP) M.

Potter, C.J. and Simmonds, A.C., 1988. Measurement of exhaust emissions from light duty diesel engined vehicles. *Contractor Report 120*. Warren Spring Laboratory under contract to Transport and Road Research Laboratory, Dept. of Transport. ISSN 0266-7045.

PREDICT Consortium, 1989. Working Paper on Work Package One. Deliverable One. PREDICT project manager: Castle Rock Consultants, Nottingham, England.

PREDICT Consortium, 1989a. Model Specification and Refinement. Deliverable Two. PREDICT project manager: Castle Rock Consultants, Nottingham, England.

PREDICT Consortium, 1989b. *Modified Software*. Deliverable Three. PREDICT project manager: Castle Rock Consultants, Nottingham, England.

PREDICT Consortium, 1989c. Emissions Model - Program User Guide. Deliverable of Work Package Two. PREDICT project manager: Castle Rock Consultants, Nottingham, England.

PREDICT Consortium, 1989d. Working Paper on Work Package Three (D-WP3) -Development of Monitoring Plans. Deliverable Four. PREDICT project manager: Castle Rock Consultants, Nottingham, England.

PREDICT Consortium, 1989e. Report on Quantitative Aspects of Human Health Effects. Deliverable Five. (Revised version, Deliverable Six, 1990.) PREDICT project manager: Castle Rock Consultants, Nottingham, England.

PREDICT Consortium, 1990. Working Paper on Work Package Four (D-WP4) -Control Strategies. Deliverable Seven. PREDICT project manager: Castle Rock Consultants, Nottingham, England.

PREDICT Consortium, 1990a. Working Paper on Work Package Five (D-WP5). Deliverable Eight. PREDICT project manager: Castle Rock Consultants, Nottingham, England.

PREDICT Consortium, 1990b. Working Paper on Work Package Six (D-WP6) -Benefit Assessment. Deliverable Nine. PREDICT project manager: Castle Rock Consultants, Nottingham, England. PREDICT Consortium, 1990c. Working Paper on Work Package Seven (D-WP7) - Demonstration Project Planning. Deliverable Ten. PREDICT project manager: Castle Rock Consultants, Nottingham, England.

PREDICT Consortium, 1992. (Revised) Final Report (D-FR). Deliverable Thirteen. PREDICT project manager: Castle Rock Consultants, Nottingham, England.

Pucher, K., and Sturm, P. 1985. Measurements of CO concentration in the vicinity of tunnel portals and exhaust air chimneys by model tests. 5th International Symposium ont the Aerodynamics & Ventilation of Vehicle Tunnels. Lille, France: 20-22 May 1985

Quader A.A. 1982. The axially-stratified-charge engine. Society of Automotive Engineers. Paper No. 820131.

QUARTET Consortium, 1992. Assessment of Current Tools for Environmental Assessment in QUARTET. Deliverable Two. QUARTET Consortium, principal authors: Castle Rock Consultants and Transport Environmental Development Systems. September 1992.

QUARTET Consortium 1992b. Control Strategy Requirements. Deliverable 5. QUARTET Consortium, Workpackage leader: Intracom, Athens, Greece. December 1992.

QUARTET Consortium 1993a. Telematics System Design Report. Deliverable 12. QUARTET Consortium, Workpackage leader: Intracom, Athens, Greece. March 1993.

QUARTET Consortium 1993b. Field Trial Manual. Deliverable 13. QUARTET Consortium, Workpackage leader: Castle Rock Consultants, Nottingham, England. March 1993.

Ragland, K.W. and Pierce, J.J. 1975. Boundary layer model for air pollutant concentrations due to highway traffic. J. Air Pollut. Control Ass., 25, 48-51.

Ramackers, M. 1985. Change in Traffic Situation - Rijkswijk and Eindhoven, IW/TNO Report No. 700330120.

Reilly J. 1994. Crops and climate change, Nature 367(6459) : 118 - 119.

Rendel, J. 1989. Two academics, a laboratory and 100 borrowed trucks. *Transport Week*. pp 22-23. 30 September 1989.

Reuter, 1992. Mexico to clean up vehicle emissions. Financial Times. February 13.

Richardson, C. 1982. Carbon monoxide in urban streets. MSc Thesis, Imperial College, Civil Eng. Dept., London University.

Rijkeboer, R.C. 1982. High Speed Emissions - First Investigation. TNO Report No. 700330111, 1982.

Rijkeboer R.C., 1985. *High speed emissions*. Project carried out for the Ministry of Public Housing, Physical Planning and Environmental Protection, Leidschendam, the Netherlands. Project number 700 300 111/2. Approved Ir.Drs. P.D. van der Koogh.

Rijkeboer, R.C. 1985. High Speed Emissions - Second Investigation. TNO Report No. 700330111/2, 1985.

Rijkeboer R.C., van Ling J.A.N. and van der Weide J. 1986. The catalytic oxidiser on a city bus : A Dutch demonstration program. *SAE Paper 860134*. Society of Automotive Engineers, Warrendale.

Robertson D.I., 1969. TRANSYT: a traffic network study tool, RRL Report LR 253, Ministry of Transport, Road Research Laboratory, Crowthorne.

Rodden, J.B., Green, N.J., Messina, A.D, and Bullin, J.A. 1982. Comparison of roadway pollutant dispersion models using the Texas data. J. Air Pollut. Control Assoc., 32(12), 1226-1226.

Romano S. 1989. Fuel cells for transportation. *Mechanical Engineering* August 1989 p 74 - 77.

Rosenzweig C. and Parry M.L. 1994. Potential impact of climate change on world food supply, *Nature* 367(6459) : 133 - 138.

Ross S. 1971. Laws: Current Legislation. Chemical Engineering. June 21, 1971.

Royal Commission on Environmental Pollution 1983. Lead in the Environment. HMSO London.

Royal Commission on Environmental Pollution 1991. Fifteenth Report, Emissions from heavy duty diesel vehicles. September 1991, HMSO, London.

Rueff R.M. 1992. The cost of reducing emissions from late-model high emitting vehicles detected via remote sensing, J. Air Waste Manag. Assoc. 42(7): 921 - 925, 1992.

Russel, T.J. 1988. Petrol and Diesel Additives. The Institute of Petroleum, Quartely Journal of Technical Papers. Oct-Dec 1988.

Samaras, Z. 1988. Evaluation of the data on hot emission factors of gasoline passenger cars. Paper contributed to the CORNAIR Working Group on Emissions from Road Traffic. University of Thessaloniki, Thessaloniki, Greece. 31 October 1988.

Samaras, Z. and Zierock K.H. 1994. Assessment of the effect in EC member states of the implementation of policy measures for CO_2 reduction in the transport sector : final report. Prepared for Commission of the European Communities. Luxembourg : office for official publications of the European Communities. -92-826-6505-4.

Sato, N., Ohta, Y., Komatsu, K. 1985. Discharge of exhaust pollutant from portal

of one-way traffic automobile tunnel with exhaust shaft. 5th International Symposium on the Aerodynamics & Ventilation of Vehicle Tunnels. Lille, France: 20-22 May 1985.

Savage, C.A. (undated). The Assessment of the Exhaust Gas Emissions from a Standard 1.81 Petrol Injection Engined Vehicle Equipped with a Closed Loop Three Way Catalyst System. LR 700 (AP). ISBN 0 85624 558 5. Warren Spring Laboratory, Dept. of Trade and Industry, Stevenage.

Schulze, E.D. 1989. Air pollution and forest decline in a spruce (picea abies) forest. SCIENCE, 19 May 1989, 244.

Schewe G.J. and Braverman T.N., 1991. Evaluation of CO Intersection Modelling Techniques. Paper No. 910734, Transportation Research Board, 70th Annual Meeting, January 13-17, Washington, D.C.

Science, 1989. Clean Air? Don't Hold Your Breath, News & Comment. SCIENCE, 5 May 1989, 244.

Schneider S.H. 1994. Detecting climatic change signals: Are there any "Fingerprints"?, *Science* 263 : 341 - 347.

Scrimshaw P.R. 1985. A Z-80 based engine management system. Dissertation submitted to the University of Nottingham for the Degree of Master of Science. October 1985.

Simmonds, A.C. (undated). Exhaust Emission Survey of Thirty In-Service Vehicles. LR 739 (AP). ISBN 0 85624 597 6. Warren Spring Laboratory, Dept. of Trade and Industry, Stevenage.

Simmons & Simmons 1991. Environmental Law - The Commercial Perspective. Simmons & Simmons, London. July 1991.

Sistla, G., Samson, P., Keenan, M., and Rao, S.T. 1979. A study of pollutant dispersion near highways. *Atmos. Environ.*, 13, 669-685.

Siuru B. 1989. R&D in the fast lane. Mechanical Engineering October 1989.

Siuru B. 1991. Electric vehicles: getting the lead out. *Mechanical Engineering* 36 - 41, December 1991.

Siuru B. 1992. European diesels: steady R&D is paying off. Mechanical Engineering, March 1992, 52 - 57.

Schlesinger M.E. and Romankutty N. 1994. An oscillation in the global climate system of period 65 - 70 years, *Nature* 367(6465) : 723 - 726.

Small K.A. 1988. Reducing transit bus emissions: comparative costs and benefits of methanol, particulate traps and fuel modification. *Transportation Research Record*, No 1164, 15-22, Washington.

Sodhi, D., Abraham, M.A. Summers J.C. 1990. The kinetics of formaldehyde oxidation and emissions reduction in methanol fueled vehicles, *J. Air Waste Manag.* Assoc. 40(3): 352 - 356, 1990.

Sontowski, J. 1976. Microscale modelling of near-roadway air quality by numerical techniques, Special Report No 167, 121-130. National Research Council, Transportation Research Board, Washington DC.

Southworth, F., and Janson, B. 1980. Measurement of energy consumption and mobile source emissions using an equilibrium assignment - modal split model. *Proceedings of 12th UTSG meeting*. Newcastle.

Sperling, D., Guensler, R., Page, D., and Washington, S. 1992. Air Quality Impacts of IVHS: An Initial Review, *Transportation, Information, Technology and Public Policy*, proceedings of the Asilomar IVHS Policy Conference, 1992.

Standen A. 1967. Manganese and Manganese Compunds. *Encyclopedia of Chemical Technology*, Kirk-Othmer. 2nd Ed. Interscience Books Inc. (DN of John Wiley & Sons Inc), New York NY.

Stathopoulos A., 1989, Traffic and Atmospheric Pollution: Levels, Measures, Eficiency, Proc. Conf. of the Hellenic Institute of Transportation Engineers, Athens, 1989, pp. 243-253 (in Greek).

Stathopoulos A. and Ayland N. 1991. Environmental Monitoring and Control: Technological Options for Combatting Urban Traffic Pollution. *Proceeding of 24th ISATA International Symposium on Automotive Technology and Automation*. Florence, Italy, 20-24th May, 1991. Paper No 910093, 357 - 363.

Stephens, R.D., and Cadle, S.H. 1991. Remote sensing measurements of carbon monoxide emissions from on-road vehicles. J. Air Waste Manag. Assoc., 40(1): 39 - 46.

Stocker T.F. 1994. The variable ocean, Nature 367(6460) : 221 - 222.

Stollery J. and Garry K.P. 1983. Techniques for reducing commercial vehicle aerodynamic drag. Int. J. of Vehicle Design, Technological Advances in Vehicle Design Series, SP3, Impact of Aerodynamics on Vehicle Design, pp 210 -228.

Stopher P.R. 1993. Deficiencies of Travel-Forecasting Methods Relative to Mobile Emissions. J. Transportation Engineering 119(5): 723 - 741.

Stopher P.R. and Meyburg A.H. 1976. Behavioural travel-demand models. Lexington Books, Lexington, Massachusetts. ISBN 0-669-00734-x.

Stouffer R.J., Manabe S. and Vinnikov K. Y. 1994. Model assessment of role of natural variation in recent global warming, *Nature* 367(6464) : 634 - 636.

Stump, F.D., Knapp, K.T. and Ray, W.D. 1990. Seasonal Impact of Blending Oxygenated Organics with Gasoline on Motor Vehicle Tailpipe and Evaporative Emissions. J. Air Waste Manage. Assoc. 40: 872-880.

Stump F.D., Knapp K.T., Ray W.D., Snow R, and Burton C. 1992. The composition of motor vehicle organic emissions under elevated temperature summer driving conditions (75 to 105 °F), J. Air Waste Manag. Assoc. 42(2): 152 - 158, 1992.

Stump F.D., Knapp K.T., Ray W.D., Snow R, and Endy L. 1992. The composition of motor vehicle organic emissions under elevated temperature summer driving conditions (75 to 105 °F) Part II, J. Air Waste Manag. Assoc. 42(10): 1328 - 1335, 1992.

Stjernberg, N, et al. 1985. Prevalence of bronchial asthma and chronic bronchitis in a community in Northern Sweden; relation to environmental and occupational exposure to sulphur dioxide. *European journal of respiratory diseases*, 67: 41-49.

Suhrbier, J.H., Lawton, S.T. and Moriarty, J.A. 1991. The Preparation of Highway Vehicle Emissions Inventories. Preprint Paper No. 910672. Transportation Research Board, 70th Annual Meeting, January 13-17, 1991, Washington D.C.

Tenekes, H. 1976. Observations on the dynamics and statistics of simple box models with a variable inversion lid. 3rd Symp. Atmospheric Turbulence, Diffusion and Air Quality, Raleigh NC, US.

Thomas Roy, 1991. Traffic Assignment Techniques. Centre for Transport Studies, Dept. of Civil Engineering, University of Salford, Avebury Technical, Aldershot. ISBN 1 85628 1663

TPA, 1981. HINET Manual, Transport Planning Associates.

Transpotech Ltd, 1983. TRAFFICQ Manual, MVA Systematica.

TRB 1992. Data for decisions. Requirements for National Transportation Policy Making. Special Report 234. Transportation Research Board, National Research Council, Washington D.C. 1992. ISBN 0-309-05156-8.

TRB 1993. ISTEA and intermodal planning: Concept, parctise, vision. Proceedings of Conf., Irvine California, December 1992. Transportation Research Board, Washington D.C. 1993.

TRRL, 1981. SCOOT: a traffic-responsive method of coordinating signals, Report LR 1014. Transport and Road Research Laboratory, DoE/DTp.

TRRL, 1986. SCOOT - the UK traffic-responsive signal coordination system - a summary of the latest assessment surveys, Leaflet LF 1025. Transport and Road Research Laboratory, DTp.

TUeV Rheinland 1975. Emissionsverhalten von Personnenkraftwagen in der Bundesrepublik Duetschland im Bezugsjahr 1975. UBA Berichte 9/80.

United Kingdom Photochemical Oxidants Review Group, 1987. Ozone: First Report. Department of the Environment, London.

US Department of Transportation, 1990. Moving America, New Directions, New Opportunities: A Statement of National Transportation Policy Strategies for Action. U.S. Department of Transportation, February 1990.

Utell, M.J. and Morrow, P.E., 1986. Effects of inhaled aerosols on human lung function: studies in normal and asthmatic subjects. *In*: Lee, S.D. et al., *Aerosols*. Chelsea, MI, Lewis.

Uthe E.E., Livingston J.M. and Nielson N.B. 1992. Airborne lidar mapping of ozone concentrations during the Lake Michigan ozone study, J. Air Waste Manag. Assoc. 42(10) : 1313 - 1318, 1992.

Valenti M. 1991. Alternative fuels: paving the way to energy independence. *Mechanical Engineering*, December 1991, 42 - 46.

Van Vliet, D., unpublished report of the study by Greater Manchester Council and Institute for Transport Studies, University of Leeds.

Van Vliet, D., 1981. SATURN: a users guide, Institute for Transport Studies, University of Leeds.

Van Vliet, D., 1982. SATURN - A modern assignment model. *Traffic Engineering* and Control, 23(12), December 1982. 578-581

Van Vliet, D. and Dow, P.D.C., 1979. Capacity restrained road assignment, Traffic Engineering and Control, 20(6).

Vicker P.T. 1983. Vehicle aerodynamics - A review from General Motors research. Int. J. of Vehicle Design, Technological Advances in Vehicle Design Series, SP3, Impact of Aerodynamics on Vehicle Design, pp 99 - 113.

Vincent R.A., Mitchell A.I. and Robertson D.I., 1980. User Guide to TRANSYT Version 8, TRRL Laboratory Report 888, Department of the Environment, Department of Transport, Transport and Road Research Laboratory, Crowthorne.

Wachs M. 1991. Workshop 4 on Jobs, Housing and Transportation : theory and evidence on interactions between land use and transportation. Proceedings of a conf. on Transportation, Urban Form and Environment. Irvine, California, 9 - 12 December 1990. Special Report 231. Transportation Research Board, Washington D.C. 1991.

Walsh, M.P. 1985. Worldwide developments in motor vehicle air pollution control. The significance for Hong Kong and other rapidly developing urban areas. *Pollution in the Urban Environment, Polmet.*

Wang Q., DeLuchi M.A., and Sperling D. 1990. Emissions impacts of electric vehicles, J. Air Waste Manag. Assoc. 40(9): 1275 - 1284, 1990.

Warren Spring Laboratory, 1992. Technology and the Environment: Annual review 1992. Warren Spring Laboratory, Stevenage.

Waterfield, V.H. and Hickman, A.J. 1982. *Estimating air pollution from road traffic* : a graphical screening method. Department of the Environment, Dept. of Transport : Crowthorne, England. TRRL Report SR-752.

Watkins, L.H., 1991. Air pollution from road vehicles. State of the Art Review 1. Transport and Road Research Laboratory, Department of Transport. London: HMSO. ISBN 0 11 551000 1

Watson, H.C. 1972. The influencing of driving patterns on the localised urban emission sources. Imperial College of Science and Technology, Dept. of Mech. Eng. : London. <u>Report</u> TP7202.

Watson, H.C., Milkins, E.E., and Bulach, V. 1976. How sophisticated should a vehicle emission source model be? <u>Smog'76, Proc. Suppl.</u> : Clean Air Society of Australia and N-Z., 110-121.

Watson R.T., Rodhe H., Oeschger H. and Siegenthalar U. 1990. Greenhouse gases and aerosols, *Climate Change: The IPCC assessment*, Houghton J.T, Jenkins G.J and Ephraums J.J., Eds., Cambridge University Press, Cambridge, 1990.

Weaver C.S., Miller C., Johnson W.A. and Higgins T.S. 1986. Reducing the sulfur and aromatic content of diesel fuels - costs, benefits and effectiveness for emissions control. *SAE Paper 860622*, Society of Automotive Engineers, Warrendale.

WHO, 1979. Carbon monoxide. Geneva, World Health Organisation, 1979 (Environmental Health Criteria, No. 13).

WHO, 1984. Urban Air Pollution 1973-1980. World Health Organisation, Geneva, ISBN 92 4 156082 7.

WHO, 1987. Air quality guidelines for Europe. WHO Regional Publications, European Series No. 23., World Health Organisation, ISBN 92 890 1114 9, ISSN 0378-225.

Wickstrom G.V. 1991. Workshop 2 on Jobs, Housing and Transportation : theory and evidence on interactions between land use and transportation. Proceedings of a conf. on Transportation, Urban Form and Environment. Irvine, California, 9 - 12 December 1990. Special Report 231. Transportation Research Board, Washington D.C. 1991.

Williams, C. and Everett, M.T. 1983. In-Service Emissions of Cars Manufactured Between 1971 and 1982. Executive summary of MIRA project No. 321260, Report No. K32126/S, carried out for the Department of Transport, Contract No. DGR/463/188.

Williams E.L. II, Grosjean E. and Grosjean D. 1993. Ambient levels of the Peroxyacyl Nitrates PAN, PPN and MPAN in Atlanta, Georgia, J. Air Waste Manag.

Assoc. 43(6): 873 - 879, 1993.

Williams, D.J., Milne, J.W., Roberts, D.B. and Kimberlee, M.C., 1989. Particulate Emissions from In-Use Motor Vehicles - I. Spark Ignition Vehicles. *Atmospheric Environment* 23 (12), pp 2639-2645.

Williams, D.J., Milne, J.W., Quigley, S.M., Roberts, D.B. and Kimberlee, M.C., 1989a. Particulate Emissions from In-Use Motor Vehicles - II. Diesel Vehicles. Atmospheric Environment 23 (12), pp 2647-2661.

Williams, M.L., 1982. Air pollution dispersion in street canyons - Comparison of a simple model with measured data. Warren Spring Laboratory : Stevenage, England. Report LR 423(AP).

Williams, P.T., Abbass, M.K., Andrews, G.E., and Bartle, K.D. 1989. Diesel particulate emissions : The role of unburned fuel. *Combustion and Flame* vol. 75 No 1, Jan 1989

Wootton Jeffreys and Partners, 1980. JAM users guide, Wootton Jeffreys and Partners.

Zamurs J. and Conway R., 1991. A Comparison of Intersection Air Quality Models' Ability to Simulate Carbon Monoxide Concentrations in an Urban Area. Paper No. 910378, Transportation Research Board, 70th Annual Meeting, January 13-17, Washington, D.C.

Zamurs, J., and Piracci, R.J. 1982. Modelling of carbon monoxide hot spots. J. Air Pollut. Control Assoc., 32(9), pp 947-953.

Zamurs J. 1990. Intersection Carbon Monoxide Modelling, J. Air Waste Manag. Assoc. 40(5): 769 - 771, 1990.

Zimmer C. 1993. Son of ozone hole, *Discover (the world of science)*, October 1993, 28 - 29.

Appendix A NETWORK MAPS

The Athens study area, as used in the PREDICT project, is show in Figure A.1. It was divided into three TRANSYT networks called Centre, North and South. For the purpose of the rerouting strategy another TRANSYT network called Ring was also used. The ring network corresponded to a ring road around the central area.

The central area, called Centre, corresponds to the grid network on the western side of the Athens study area.

In the author's research described in this thesis, all the work focused on the TRANSYT network called Centre. This study area is shown in Figure A.2. The map for the central area includes the node numbers corresponding to those listed in the PREMIT emission model's output.

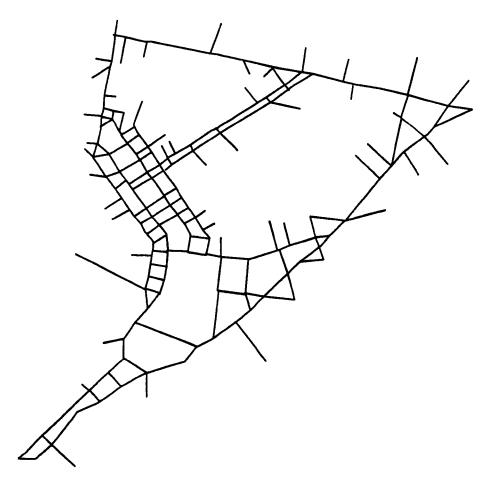
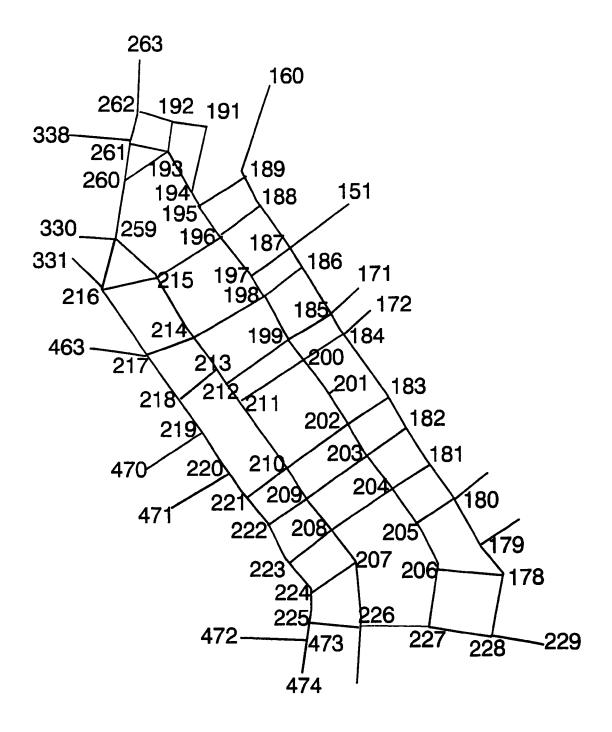



Figure A.1 The Athens study network used in PREDICT

Figure A.2 The Athens central area used in this research

Appendix B TRANSYT DATA

This appendix includes the TRANSYT output data. The listings included in this appendix are edited versions of the actual TRANSYT output files, because the complete listings are very large. The listings in this appendix only include the initial input and final output parts of the TRANSYT listings.

The TRANSYT output files have been included for the base case and some of the more interesting strategies described in the Results Chapter. The TRANSYT output files included in this appendix are summarised in Table B.1.

Scenario/strategy	Initial input data included?
1. Base case scenario.	Yes.
2. Delay:stop weighting ratio of 0.01.	No - same input as base case.
3. Delay:stop weighting ratio of 100.	No - same input as base case.
4. Cycle time of 140 seconds.	No - same input as base case.
5. Hot CO links with delay weighting of 500 percent.	Yes.
6. Hot CO links with delay and stop weighting of 500 percent.	No - similar to input for hot CO links with delay weighting of 500 percent.
7. Hot NOx links with stop weighting of -200 percent.	Yes.

Table B.1 Summary of output listings included in Appendix A

In cases where a TRANSYT run used the same link input data as an earlier TRANSYT file in this appendix, the input data has been left out. The only difference in the input data for such scenarios is on card type one. So card type one has always been included.

The link input data for the two hot CO link strategies are similar to each other. The only difference being that the strategy with a link weighting for delay and stops has an additional value in the stop weighting column. This value is equal to the value in the delay weighting column, for a given link.

Base Case Scenario

						E	sase	Case S	cenari	0						
OCARD NO.	CARD															
(1)= 0CARD NO.	TITLE: CARD TYPE	- ATHEN: CYCLE TIME	NO. OF	TIME EF	FECTIVE- ISPLACEM	GREEN EG	ON ON QUISAT TTINGS 0=NO	INFO.	FLOW SCALE 10-200		CARD32	OPTIMIS 0=NONE 1=0/SET	COPIES	HILL- CLIMB OUTPUT	DELAY VALUE P PER	STOP VALUE P PER
2) = 0CARD	1 CARD	(SEC) 90	CYCLE 45		(SEC) 2	(SEC) 3 LIST	1=YES 1	CHOICE 0 NODES TO	8 O BE OP1	8 0	1=SPEEDS 0		OUTPUT 0	1=FULL 0	PCU-H 55	100 50
NO. 3)=	TYPE 2	261	260	178	179	180	181	182	183	184	185	186	187	188	189	193
4) =	2	194	195	196	197	198	199	200	201	202	203 259	204 216	205	206	227 219	226 220
5) = 6) =	2 2	207 221	208 222	209 223	210 224	211 225	212	213 0	214 0	215 0	259	0	217 0	218 0	0	0
0				NOD	E CARDS	: STAGE		NGE TIMES		MINIMUM		CIMES AGE 5	CT	NCE 6	STI	AGE 7
CARD NO.	CARD	NODE NO.	STA CHANGE	AGE 1 MIN	CHANGE	GE 2 MIN	CHANG	TAGE 3 E MIN	CHANGE	AGE 4 MIN	CHANGE	MIN	CHANGE	AGE 6 MIN	CHANGE	MIN
7)=	13	261	35	10	64	10	90	10	0	0 10	0	0	0	0	0	0
8) = 9) =	14 22	260 178	44	10 10	55 26	10 10	66 0	10 0	33 0	0	0	0	0	0	0	0
10)=	22	179	14	10	33	10	0	0	0	0	0	0	0	0	0	0
11) = 12) =	22 22	180 181	39 16	10 10	13 34	10 10	0	0	0	0	.0	0	0	0	0	0
13)=	22	182 183	28 9	10 10	39 38	10 10	0	0	0	0	0	0	0	0	0	0
14) = 15) =	22 22	184	17	10	43	10	0	0	0	0	0	0	0	0	0	0
16) = 17) =	22 22	185 186	3 19	10 10	21 40	10 10	0	0	0	0	0	0	0	0	0	0
18)=	22	187	31	10	4	10	0	0	0	0	0	0	0	0	0	0
19)= 20)=	22 22	188 189	12 35	10 10	32 20	10 10	0	0	0	0	0	0	0	0	0	0
21)=	12	193	30	10	89	10 10	0	0	0	0	0	0	0	0	0	0
22) = 23) =	12 22	194 195	30 0	10 10	9 31	10	0	0	0	0	0	0	0	0	0	0
24)= 25)=	22 22	196 197	10	10	36 1	10 10	0	0	0	0	0	0	0	0	0	0
26) =	22	198	13	10	40	10	0	0	0	0	0	0	0	0	0	0
27) = 28) =	22 22	199 200	31 31	10	11 16	10 10	0	0	0	0	0	0	0	0	0	0
29)=	22	201	2	10	37	10	0	0	0	0	0	0	0	0	0	0
30) = 31) =	22 22	202 203	40 10	10 10	19 37	10 10	0	0	0	0	0	0	0	0	0	0
32) =	22	204	16	10	43 9	10 10	0	0	0	0	0	0	0	0	0	0
33) = 34) =	22 12	205 206	22 28	10 10	17	10	0	0	0	0	0	0	0	0	0	0
35) = 36) =	12 13	227 226	75 49	10	41 80	10 10	0 25	0 10	0	0	0	0	0	0	0	0
37) =	12	207	65	10	76	10	0	0	0	0	0	0	0	0	0	0
38) = 39) =	12 12	208	80 83	10 10	57 55	10 10	0	0	0	0	0	0	0	0	0	0
40) =	12	210	85	10	60 1	10 10	0	0	0	0	0	0	0	0	0 0	0
41) = 42) =	12 12	211 212	11 33	10 10	88	10	0	0	0	0	0	0	0	0	0	0
43) = 44) =	12 12	213 214	15 26	10 10	85 82	10 10	0	0	0	0	0	0	0	0	0	0
45)=	12	215	46	10	26	10	0	0	0	0	0	0	0	0	0	0
46) = 47) =	12 12	259 216	85 86	10	45 41	10 10	0	0	0	0	0	0	0	0	0	0
48)=	12	217	7	10	76	10 10	0	0	0	0	0	0	0	0	0	0
49)= 50)=	12 12	218 219	12 43	10 10	72 21	10	0	0	0	0	0	0	0	0	0	0
51) = 52) =	12 12	220 221	23 35	10 10	12 18	10 10	0	0	0	0	0	0	0 0	0	0	0
53)=	12	222	35	10	4	10	0	0	0	0	0	0	0	0	0	0
54) = 55) =		223 224	29 59	10 10	11 33	10 10	0	0	0	0	0	0	0	0	0	0
56)=	13	225	40	10	59			10	0	0	0	0	0 PAGE	0 3 RI	0 JN ON 24/	0 6/1993
1PROGRA	M TRANS	YT8	ATHENS '	CENTRAL	ARTERIE	ss * optim	misati	on UN								
0					FIRST			ARDS: FI	SECON	D GREEN	N END	LINK	STOP	SAT	DELAY	DISPSN
	TYPE	LINK NO.	EXIT	STAGE	LAG	STAGE	LAG	STAGE	LAG		S LAG	LENGTH 54	WT.X100 0	FLOW 3500	WT.X100	X100 0
57) = 58) =		2846 2845	261 261	2 3	6	1	0 3	0	0	0	0	54	0	1600	0	0
59)=		2820	261	2	5 7	3 2	0	0	0	0	0	120 120	0	1800 5000	0	0
60) = 61) =		3850 2825	261 260	3	0	1	0	0	0	0	0	68	0	5000	0	0
62) = 63) =		2800 1620	260 260	2	4	4 2	0	0	0	0	0	156 64	0	1800 1800	0	0
64) =		1820		2	4	1	0	0	0	0	0	130	0	2000 3200	0 0	0 0
65) = 66) =		2230 1330	178 179	1	3	2 2	0	0	0	0	0	118 75	0	3200	0	0
67) =	31	1300	179	2	4	1	0	0	0	0	0	100		1500 3200	0	0
68) = 69) =		1340 1280	180 180	2	3	1 2	0	0	0	0	0	124 98		1500	0	0
70)=	31	1350	181	2	3	1	0	0	0	0	0	114 116	0	3200 1500	0	0
71) = 72) =		1790 1380	181 182	1 2	3 4	2 1 2	0	0	0	0	0	81	0	3200	0	0
73)=	31	1390	183	1	3	2 1	0	0	0	0	0	96 128		3200 1500	0	0
74) = 75) =	31	1750 1420	183 184	2 1	3	2	0	0	0	0	0	172	0	3200	0	
76) = 77) =		1720	184 185	2 2	3 4	1	0	0	0	0	0	140 52	0	1500 3200	0	0
78)=	31	1440 1210	185	1	4	2	0	0	0	0	0	92	0	4000	0	0 0
79) = 80) =		1450 1680	186 186	2	3	1 2	0	0	0	0	0	124 122	0	3200 3200	0	0
81)=	31	1480	187	2	3	1	0	0	0	0	0	55	0	3200	0	0
82) = 83) =		900 1490	187 188	1 2	3	2 1	0	0	0	0	0	100 110	0	1500 3200	0	0

							Base (Case S	cenari	io						
84)=		1650	188	1	3	2	0	0	0	0	0	122 82	0	1500 3200	0	0
85)= 86)=	31 31	1520	189 189	1 2	4	2 1	0	0	0	0	0	100	0	1500	0	0
87)=	31	2830	193	1	5	2	0	0	0	0	0	88 50	0	5500 1500	0	0
88) = 89) =	31 31	1590 1610	193 194	2	3 10	1 2	0	0	0	0	0	96	0	4300	0	0
90)=	31	1580	194	2	10	1	0	0	0	0	0	100 52	0	1500 4300	0	0
91)= 92)=	31 31	1630 1540	195 195	1 2	4	2	0	0	0	0	0	108	0	1000	0	0
93)=	31	1640	196	1	4	2	0	0	0	0	0	80 188	0	4300 1500	0	0
94) = 95) =	31 31	1990 1660	196 197	2	3	1 2	0	0	0	0	0	112	0	4300	0	0
96)=	31	1500	197	2	4	1	0	0	0	0	0	108 50	0	1500 4300	0	0
97)= 98)=	31 31	1670 1970	198 198	1 2	4	2	0	0	0	0	0	208	0	3000	0	0
99)=	31	1690	199	1	5	2	0	0	0	0	0	118 110	0	4300	0	0
100)= 101)=	31 31	1460 1700	199 200	2	4	1 2	0	0	0	0	0	62	0	4000	0	0
1PROGRAM			ATHENS			ES * Opt							PAGE	4	RUN ON 24/	6/1993
	31	1920	200	2	4	1	0	0	0	0	0	160 108	0	3000 5500	0	0
103) = 104) =	31 31	1730 1740	201 202	1	0 6	2	0	0	0	0	0	64	0	5500	0	0
105)=	31	1900	202	2	12	1	0	0	0	0	0	180 90	0	2400 5500	0	0
106) = 107) =	31 31	1760 1400	203 203	1 2	4	2	0	0	0	0	0	106	0	1800	0	0
108)=	31	1770	204	1	4	2	0	0	0	0	0	82	0	5500 1800	0	0
109)=	31	1860	204 205	2	3	1 2	0	0	0	0	0	178 116	0	5500	0	0
110) = 111) =	31 31	1800 1360	205	2	3	1	0	0	0	0	0	106	0	1500	0	0
112)=	31	1810	206	1	7	2 2	0	0	0	0	0	104 130	0	5500 3000	0	0
113) = 114) =	31 31	1830 1831	227 227	1	3	2	0	0	0	0	0	130	0	3000	0	0
115)=	31	2200	227	2	6	1	0	0	0	0	0	240 140	0	4000	0	0
116) = 117) =	31 31	2225 2215	227 226	2 1	0	1 2	1	0	0	0	0	132	0	8000	0	0
118)=	31	2205	226	2	4	3	0	0	0	0	0	138 138	0	2500	0	0
119)= 120)=	31 31	2206 2170	226 226	23	4	32	0	0	0	0	0	120	0	1500	0	0
121)=	31	2171	226	3	4	1	0	0	0	0	0	120	0	4500	0	0
122)=	31	2190	207	2	0	1 2	0	0	0	0	0	142 114	0	9000	0	0
123)= 124)=	31 31	1840 2140	208 208	1 2	4	1	0	0	0	0	0	114	0	2800	0	0
125)=	31	1870	209	1	5	2	0	0	0	0	0	82 166	0	9000 2000	0	0
126)= 127)=	31 31	1780 1880	209 210	2 1	4 5	2	0	0	0	0	0	84	0	9000	0	0
128)=	31	2110	210	2	4	1	0	0	0	0	0	114 182	0	2800	0	0
129)= 130)=	31 31	1910 1930	211 212	1	4 5	2 2	0	0	0	0	0	66	0	7500	0	0
131)=	31	1710	212	2	4	1	0	0	0	0	0	172 54	0	3800	0	0
132)= 133)=	31 31	1940 1950	213 214	1	10 7	2 2	0	0	0	0	0	54 86	0	7500	0	0
134)=	31	2040	214	2	7	1	0	0	0	0	0	114	0	1800 7500	0	0
135)= 136)=	31 31	1980 2010	215 215	1 2	5	2	0	0	0	0	0	134 100	0	1500	0	0
137)=	31	2000	259	2	7	2	0	0	0	0	0	120	0	7500	0	0
138)= 139)=	31 31	2805 2790	259 216	1 2	4	1	0	0	0	0	0	156 100	0	5000	0	0
140)=	31	3730	216	1	6	2	0	0	0	0	0	82	0	5000	0	0
141)= 142)=	31 31	2020 5800	217 217	1 2	8	2 1	0	0	0	0	0	164 100	0	5000 1800	0	0
142)=	31	2050	218	1	8	2	0	0	0	0	0	110	0	5000	0	0
144)=	31	1960	218	2	4	1	0	0	0	0	0	92 106	0	2800	0	0
145)= 146)=	31 31	2060 5930	219 219	1 2	7 10	2 1	0	0	0	0	0	100	0	1800	0	0
147) =	31	2080	220	1	0	2	0	0	0	0	0	118 70	0	7000	0	0
148)= 149)=		2090 5940	221 221	1 2	0	2	0	0	0	0	0	100	0	1800	0	0
150)=	31	2120	222	1	4	2	0	0	0	0	0	82	0	5000 1600	0	0
151)= 1PROGRA		1890 SYT8	222 ATHENS	* CENTRA	4 L ARTERI	IES * Opt	0 imisatio	on ON	0	0	0	128	PAGE	5	RUN ON 24/	
152)=		2130	223	1	10 4	2	0	0	0	0	0	72 116	0 0	5000 5000	0 0	0 0
153)= 154)=		2150 1850	224 224	1 2	4	1	0	0	0	0	0	98	0	1600	0	0
155)=		2161	225	3	1	2	0	0	0	0	0	48 48	0	4500	0	0
156) = 157) =		2160 2185	225 225	3 2	10 4	1 3	0 10 LINK CAN	0	0 LOW DATA	0	0	100	0	3000	0	0
0 CARD	CARD	LINK	TOTAL	UNIFORM	ENTRY	1			2		ENTRY LINK	3	CRUISE	ENT	RY 4 K	CRUISE
NO.		NO.	FLOW	FLOW	NO.	FLOW	TIME	NO.	FLOW	TIME	NO.	FLOW	TIME	NO		TIME
158)=		2846	1755	0	0	0	20 20	0	0	0	0	0	0	0	0	0 0
159)= 160)=		2845 2820	617 300	0	2800	300	15	1620	30	15	0	0	0	0	0	0
161)=	32	3850	1000	0	0	0	20	0	0	0	0	0	0	0	0	0
162) = 163) =		2825 2800	1700 300	0	2846 2000	1700 300	15 25	0	0	0	0	0	0	0	0	0
164)=	32	1620	156	0	1590	156	25	0	0	0	0	0	0	0	0	0
165) = 166) =		2230 1820	945 550	0	0 1810	0 550	22 26	0	0	0	0	0	0	0	0	0
167)=	32	1330	995	0	2230	945	11	1820	50	11	0	0	0	0	0	0
168)= 169)=		1300 1340	307	0	0 1330	0 995	18 18	0 1300	0 307	0 18	0	0	0	0		0
170) =	32	1340	1302 361	0	0	995	18	0	0	0	0	0	0	0	0	0
171) =	32	1350	1393	0	1340	1157	25 18	1280 1770	236 97	25	0	0	0	0		0
172) = 173) =		1790 1380	302 1147	0	1860 1350	205 1030	18	1790	97	18 13	0	0	0	0	0	0
174)=		1390	930	0	1380	900	16 20	0 1740	0 60	0 20	0	0	0	0		0
175)=		1750	242	0	1900	182										

							Base	Case S	Scenar	io					
176)=	32	1420	1010	0	1390	860	24	1750	150	24	0	0	0	0	0 0
177)=		1720	259	0	1920	159	30	1700	100	30	0	0	0	0	0 0
178)=	32	1440	1088	0	1420	832	6	1720	256	6	0	0	0	0	0 0
179)=	32	1210	1094	0	0	0	17	0	0	0	0	0	0	0	0 0
180)=	32	1450	1059	0	1440	937	19	1210	122	19	0	0	0	0	0 0
181)=	32	1680	1228	0	1970	545	30	1670	683	30	0	0	0	0	0 0
182)=	32	1480	820	0	1450	780	10	1680	40	10 0	0	0	0	0	0 0
183)=	32	900	222	0	0	0	18	0 900	0 95	24	0	0	0	0	0 0
184)=	32	1490	849	0	1480 1990	754 445	24 26	1640	160	26	0	0	0	0	0 0
185)= 186)=	32 32	1650 1520	605 1020	0	1490	805	13	1650	214	13	0	0	0	0	0 0
187)=	32	1060	142	0	0	0	18	0	0	0	0	0	0	0	0 0
188)=	32	2830	1847	0	0	0	15	0	0	0	0	0	0	0	0 0
189)=	32	1590	190	0	0	0	9	0	0	0	0	0	0	0	0 0
190)=	32	1610	1948	0	2830	1847	12	1590	101	12	0	0	0	0	0 0
191)=	32	1580	22	0	0	0	18	0	0	0	0	0	0	0	0 0
192)=	32	1630	1970	0	1610	1948	9	1580	22	9	0	0	0	0	0 0
193)=	32	1540	230	0	1060	95	22	1520	135	22	0	0	0	0	0 0
194)=	32	1640	2255	0	1630	2025	13	1540	230	13	0	0	0	0	0 0
195)=	32	1990	530	0	2010	259	30	1980	271	30	0	0	0	0	0 0
196)=		1660	2452	0	1640	2095	14	1990	357	14	0	0	0 PAGE	0 6 R	0 0 UN ON 24/ 6/1993
1PROGRA	M TRA	NSYT8	ATHENS	* CENTR	AL ARTER	IES * Opt	timisati	on ON							
197)=		1500	192	0	900	127	22	1480	65	22 11	0	0	0	0	0 0
198)=		1670	2284	0	1660	2091	11	1500 0	193 0	0	0	0	0	0	0 0
199)=		1970	597	0	2040	597	32		394	21	0	0	0	0	0 0
200)=	32	1690	1995	0	1670	1601	21	1970	151	20	0	0	0	0	0 0
201)=	32	1460	1123	0	1210	972	20 7	1440	548	20	0	0	0	0	0 0
202)=	32	1700	2015	0	1690	1467	30	1460 0	040	0	0	0	0	0	0 0
203)=	32	1920	740	0	1910	740 1789	12	1920	171	12	0	0	0	0	0 0
204)=	32	1730 1740	1960	0	1700 1730	1823	20	1920	0	0	0	0	0	0	0 0
205)= 206)=	32 32	1900	1823 582	0	2110	373	30	1880	209	30	0	0	0	0	0 0
200)=	32	1760	2003	0	1740	1848	14	1900	155	14	0	0	0	0	0 0
208)=	32	1400	370	0	1380	250	20	0	0	0	0	0	0	0	0 0
209)=	32	1770	2100	0	1760	2000	8	1400	67	8	0	0	0	0	0 0
210)=		1860	511	0	2140	231	28	1840	280	28	0	0	0	0	0 0
211)=	32	1800	2300	0	1770	1903	13	1860	314	13	0	0	0	0	0 0
212)=	32	1360	260	0	1280	125	22	1340	135	22	0	0	0	0	0 0
213)=	32	1810	2400	0	1800	2055	10	1360	260	10	0	0	0	0	0 0
214)=	32	1831	729	0	1810	729	30	0	0	0	0	0	0	0	0 0
215)=	32	1830	738	0	1810	738	30	0	0	0	0	0	0	0	0 0
216)=	32	2200	1043	0	2171	560	25	2215	483	25	0	0	0	0	0 0
217)=	32	2225	2050	0	0	0	25	0	0	0	0	0	0	0	0 0
218)=	32	2215	2417	0	0	0	24	0	0	0	0	0	0	0	0 0
219)=	32	2205	824	0	2225	568	22	1831	256	22	0	0	0	0	0 0
220)=	32	2206	827	0	2225	357	22	1831	470	22	0	0	0	0	0 0 0
221)=	32	2170	955	0	2185	567	22	2160	388	22	0	0	0	0	0 0
222)=	32	2171	500	0	2185	150	22	2160	350	22	0 2170	370	23	0	0 0
223)=	32	2190	3300	0	2215	1933	23	2205	833	23 0	2170	0	0	0	0 0
224)=	32	1840	2955	0	2190	2955 373	12	0	0	0	0	0	0	0	0 0
225)= 226)=	32 32	2140 1870	523 2725	0	2130 1840	2666	22 9	2140	59	9	0	0	0	0	0 0
220)=	32	1780	528	0	1400	182	24	1760	346	24	0	0	0	0	0 0
228)=	32	1880	2861	0	1870	2500	10	1780	361	10	0	0	0	0	0 0
229)=	32	2110	590	0	5940	10	20	2090	580	20	0	0	0	0	0 0
230)=	32	1910	2681	0	1880	2475	17	2110	206	17	0	0	0	0	0 0
230)=	32	1910	1895	0	1910	1895	7	0	0	0	0	0	0	0	0 0
232)=	32	1710	1099	0	1460	638	30	1690	214	30	0	0	0	0	0 0
233)=	32	1940	3000	0	1930	1100	8	1710	1895	8	0	0	0	0	0 0
234)=		1950	2200	0	1940	2200	9	0	0	0	0	0	0	0	0 0
235)=		2040	721	0	5800	307	20	2020	414	20	0	0	0	0	0 0
236)=	32	1980	2165	0	1950	2095	16	2040	70	16	0	0	0	0	0 0
237)=		2010	268	0	3730	258	18	2790	10	18	0	0	0	0	0 0
238)=	32	2000	1933	0	1980	1883	22	2010	50	22	0	0	0		
239)=		2805	2000	0	2825	1733	28	1620	256	28	0	0	0	0	0 0 0
240)=		2790	2000	0	2805	1624	25	2000	370	25	0	0	0	0	0 0
241)=		3730	1520	0	0	0	25	0	0	0	0	0	0	0	0 0
242)=		2020	2620	0	2790	1360	20	3730	1260	20	0	0	0	0	0 0
243)=		5800	330	0	0	0	25	0	0	0	0	0	0	0	0 0
244)=		2050	2050	0	2020	2021	18	5800	23	18	0	0	0	0	0 0
245)=		1960	850	0	1940	850	25	0	0	0	0	0	0	0	0 0
246)=		2060	2100	0	2050	1725	30	1960	375	30	0	0	PAGE		RUN ON 24/ 6/1993
1PROGR	AM TRA	ANSYT8	ATHENS	* CENTI	RAL ARTER	RIES * Op	cimisati	Lon ON							
0.4.00.		5930	420	0	0	0	25	0	0	0	0	0	0	0	0 0 0
247)=		2080	2600	0	2060	2100	25	5930	500	25	0	0	0		0 0
248)=			2038	0	2080	2038	20	0	0	0	0	0	0	0	0 0
248) = 249) =	32	2090					25	0	0	0	0	0	0	0	
248) = 249) = 250) =	32 32	5940	50	0	0	0							0	0	
248) = 249) = 250) = 251) =	32 32 32	5940 2120	50 1500	0	2090	1424	15	5940	50	15	0	0	0	0	0 0
248) = 249) = 250) = 251) = 252) =	32 32 32 32	5940 2120 1890	50 1500 570	0 0 0	2090 1780	1424 352	15 25	5940 1870	50 218	25	0	0	0	0	0 0 0 0
248) = 249) = 250) = 251) = 252) = 253) =	32 32 32 32 32 32	5940 2120 1890 2130	50 1500 570 2036	0 0 0	2090 1780 2120	1424 352 1474	15 25 12	5940 1870 1890	50 218 562	25 12	0 0	0 0	0 0	0 0	0 0 0 0 0 0
248) = 249) = 250) = 251) = 252) = 253) = 254) =	32 32 32 32 32 32 32	5940 2120 1890 2130 2150	50 1500 570 2036 1675	0 0 0 0	2090 1780 2120 2130	1424 352 1474 1625	15 25 12 25	5940 1870 1890 0	50 218 562 0	25 12 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0 0 0
248) = 249) = 250) = 251) = 252) = 253) = 254) = 255) =	32 32 32 32 32 32 32 32 32	5940 2120 1890 2130 2150 1850	50 1500 570 2036 1675 200	0 0 0 0	2090 1780 2120 2130 2190	1424 352 1474 1625 180	15 25 12 25 25	5940 1870 1890 0	50 218 562 0 0	25 12 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0
248) = 249) = 250) = 251) = 252) = 253) = 254) = 255) = 256) =	32 32 32 32 32 32 32 32 32 32	5940 2120 1890 2130 2150 1850 2161	50 1500 570 2036 1675 200 2000	0 0 0 0 0	2090 1780 2120 2130 2190 2150	1424 352 1474 1625 180 1900	15 25 12 25 25 20	5940 1870 1890 0 0 1850	50 218 562 0 0 200	25 12 0 0 20	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
248) = 249) = 250) = 251) = 252) = 253) = 254) = 255) =	32 32 32 32 32 32 32 32 32 32 32	5940 2120 1890 2130 2150 1850	50 1500 570 2036 1675 200	0 0 0 0	2090 1780 2120 2130 2190	1424 352 1474 1625 180	15 25 12 25 25	5940 1870 1890 0	50 218 562 0 0	25 12 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0

0+++++*END OF SUBROUTINE TINPUT+++++

Base Case Scenario

0 90 0 LINK	TRANSYT				AL ART	ERIES * Optimis	sation ON					PAGE	20 R	UN ON 24/ 6/1993
NUMBER	SECOND FLOW INTO LINK		45 STE DEGREE OF SAT	MEAN PER CRUISE	PCU	UNIFORM RANDOM OVERSA (U+R+O=MEAN Q)	+ COST	STO MEAN STOPS /PCU	OF STOPS	QUEUE MEAN MAX. AVERA(EXCE	GE	PERFORMANCE INDEX. WEIGHTED SUM OF () VALUES	EXIT	GREEN TIMES START START END END 1ST 2ND
	(PCU/H)	(PCU/H)	(%)		DELAY (SEC)	(PCU-H/H)	(\$/H)	(8)	(\$/H)	(PCU) (PCI		(\$/H)		(SECONDS)
900	222	1500	37	18	14	.6 + .3 (72 (.2)	2			187	37 54 82 9 84 2 39 47
1060 1210	142 1094	1500 4000	47 68	18 17	27 15	.6 + .4 4	(.6)	104 (.2)	2 12		.7 3.3	189 185	84 2 39 47 10 27 55 72
1280	361	1500	72	18	26	1.3 + 1.3	(1.4)	104 (.4)	5		1.8	180 179	55 69 10 24 43 58 88 13
1300 1330	307 995	1500 3200	58 61	18 11	20 4	1.0 + .7	(.9)	89 (18 (.3)	4		1.2	179	17 39 62 84
1340	1302	3200	70	18	7	1.4 + 1.2	(1.4)	38 (.8)	7		2.2	180	72 7 27 52
1350	1392	3200	70	25	8	1.8 + 1.2	(1.6) (1.1)	45 (-4) -2)	9		2.1 1.4	181 205	40 67 85 22 59 70 14 25
1360 1380	260 1147	1500 3200	65 50	22 13	29 3	.4 + .5	(.5)	16 (.2)	3		.7	182	49 80 4 35
1390	929	3200	47	16	4	.6 + .4	(.6) (.9)	23 (.3)	3		.8 1.2	183 203	17 44 62 89 40 55 85 10
1400 1420	369 1007	1800 3200	58 52	20 24	16 6	.9 + .7 1.3 + .6	(1.0)	40	.7)	6		1.7	184	33 59 78 14
1440	1085	3200	73	6	12	2.4 + 1.3	(2.0)	61 (58 (1.7)	10 11		3.7 2.8	185 186	31 51 76 6 49 67 4 22
1450 1460	1058 1121	3200 4000	78 90	19 20	12 23	1.7 + 1.8 2.7 + 4.4	(1.9) (3.9)	101	1.1)	18		5.0	199	32 45 77 0
1480	818	3200	50	10	3	.3 + .5	(.4)	13	.1)	2		.5 2.0	187 188	57 79 12 34 41 57 86 12
1490 1500	848 192	3200 1500	70 72	24 22	12 39	1.7 + 1.2 .8 + 1.3	(1.6) (1.1)	72 123	.4)	3		1.3	197	58 65 13 20
1520	1020	3200	48	13	3	.3 + .5	(.4)	15	.2)	3		.6 1.4	189 195	51 80 6 35 33 46 78 1
1540 1580	230 22	1000 1500	74 44	22 18	34 106	.8 + 1.4 .3 + .4	(1.2)	125 153	.2)	4		.4	194	28 30
1590	190	1500	60	9	46	1.7 + .7	(1.3)	101	.2)	5		1.5	193 194	8 26 40 18
1610 1620	1948 156	4300 1800	59 60	12 25	3 34	.7 + .7 .7 + .7	(.8)	15 114	.6)	23 5		.9	260	52 64
1630	1970	4300	79	9	7	2.2 + 1.9	(2.2)	43	.9)	19		3.2 15.6	195 196	5 30 50 75 14 37 59 82
1640 1650	2255 606	4300 1500	98 76	13 26	36 14	3.1 + 19.5 .8 + 1.5	(12.4) (1.3)	108 60	(3.2)	47 +		1.5	188	15 38 60 83
1660	2457	4300	86	14	6	1.3 + 3.0	(2.4)	30	1.6)	14		3.9 2.7	197 198	25 54 70 9 35 63 80 18
1670 1680	2287 1230	4300 3200	83 79	11 30	6 17	1.4 + 2.3 3.9 + 1.8	(2.1) (3.2)	39 93	(.6)	18 17		3.8	186	25 46 70 1
1690	1994	4300	87	21	13	4.0 + 3.3	(4.0)	73	(1.6)	25		5.6	199	5 28 50 73 55 75 10 30
1700	2015	5500	79 79	7	10 28	4.0 + 1.8 6.7 + 1.8	(3.2) (4.7)	60 79	(3.1)	19 24		6.3 5.6	200 212	0 32
1710 1720	1096 259	3800 1500	55	30 30	19	.8 + .6	(.8)	83	(.1)	3		.9	184	62 75 17 30 20 55 65 10
1730	1961	5500	45	12	1	.1 + .4 4.0 + 3.5	(.3) (4.2)	4 90	(.2) (.5)	2 25		.5 4.7	201 202	20 55 65 10 46 62 1 17
1740 1750	1823 240	5500 1500	88 55	20 20	15 19	4.0 + 3.5	(4.2)	69	(.2)	3		.9	183	47 59 2 14
1760	2004	5500	68	14	3	.9 + 1.1 .6 + 1.3	(1.1) (1.0)	19 12	(.5)	9		1.6 1.9	203 204	14 37 59 82 20 43 65 88
1770 1780	2100 526	5500 2000	72 61	8 24	27	3.2 + .8	(2.2)	81	(7)	11		2.8	209	47 85 25 37 70 82
1790 1800	300 2297	1500 5500	69 67	18 13	25 4	.9 + 1.1 1.2 + 1.0	(1.1) (1.2)	105 21	(.4)	5		1.6 2.6	181 205	25 37 70 82 29 56 74 11
1810	2397	5500	53	10	2	.6 + .6	(.6)	10	(.8)	8		1.5	206 178	36 19 32 50 77 5
1820 1830	551 738	2000	65 62	26 30	16 24	1.4 + .9 4.2 + .8	(1.3) (2.7)	90 77	(.4)	7		1.7 3.1	227	
1831	729											7.7	66'	17 52
1031		3000	66	30	26	4.3 + 1.0	(2.9)	80	(.4)	15 15		3.3	227	17 49
1840	2940<	9000	52	12	26 5	4.3 + 1.0 3.4 + .5	(2.9) (2.1)	80 19	(.4) (1.7)					
1840 1850 1860	2940< 197 507	9000 1600 1800	52 55 79	12 25 28	26 5 35 26	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(2.9) (2.1) (1.1) (2.0)	80 19 93 111	(.4) (1.7) (.1) (.7)	15 17 5 8		3.3 3.9 1.1 2.8	227 208 224 204	17 49 84 50 26 45 46 61 1 16
1840 1850 1860 1870	2940< 197 507 2711<	9000 1600 1800 9000	52 55 79 62	12 25 28 9	26 5 35 26 8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(2.9) (2.1) (1.1) (2.0) (3.2)	80 19 93 111 22	(.4) (1.7) (.1) (.7) (1.6)	15 17 5 8 21		3.3 3.9 1.1	227 208 224	17 49 84 50 26 45 46 61 1 16 0 43 2 51
1840 1850 1860 1870 1880 1890	2940< 197 507 2711< 2848< 567	9000 1600 1800 9000 9000 1600	52 55 79 62 57 71	12 25 28 9 10 25	26 5 35 26 8 5 20	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (2.1) (1.7)	80 19 93 111 22 16 59	(.4) (1.7) (.1) (.7) (1.6) (1.1) (.3)	15 17 5 8 21 11 10		3.3 3.9 1.1 2.8 4.8 3.1 2.0	227 208 224 204 209 210 222	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1840 1850 1860 1870 1880 1890 1900	2940< 197 507 2711< 2848< 567 583	9000 1600 1800 9000 9000 1600 2400	52 55 79 62 57 71 91	12 25 28 9 10 25 30	26 5 35 26 8 5 20 52	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (2.1) (1.7) (4.7)	80 19 93 111 22 16 59 146	(.4) (1.7) (.1) (.7) (1.6) (1.1)	15 17 5 8 21 11		3.3 3.9 1.1 2.8 4.8 3.1	227 208 224 204 209 210 222 202	17 49 84 50 26 45 46 61 1 16 0 43 2 51
1840 1850 1860 1870 1880 1890 1900 1PROGRAM 0 90	2940< 197 507 2711< 2848< 567 583 4 TRANSY 9 SECOND	9000 1600 1800 9000 1600 2400 T8 CYCLE	52 55 79 62 57 71 91 ATHENS 45 STE	12 25 28 9 10 25 30 * CENT	26 5 35 26 8 5 20 52 RAL ARI	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation Of	80 19 93 111 22 16 59 146	(.4) (1.7) (.1) (.7) (1.6) (1.1) (.3) (1.0)	15 17 5 8 21 11 10 14		3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE	227 208 224 204 209 210 222 202 21	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993
1840 1850 1860 1870 1880 1890 1900 1PROGRAM	2940< 197 507 2711< 2848< 567 583 4 TRANSY 0 SECOND FLOW	9000 1600 1800 9000 1600 2400 T8 CYCLE SAT	52 55 79 62 57 71 91 ATHENS 45 STE DEGREE	12 25 28 9 10 25 30 * CENT EPS * MEAN	26 5 35 26 8 5 20 52 RAL ART	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (1.7) (1.7) (4.7) sation Ol	80 19 93 111 22 16 59 146	(.4) (1.7) (.1) (.7) (1.6) (1.1) (.3)	15 17 5 8 21 11 10 14 QUEUE MEAN		3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX.	227 208 224 209 210 222 202 21 EXIT NODE	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START
1840 1850 1860 1870 1880 1890 1900 1PROGRAM 0 90 0 LINK	2940< 197 507 2711< 2848< 567 583 4 TRANSY 9 SECOND	9000 1600 1800 9000 1600 2400 T8 CYCLE	52 55 79 62 57 71 91 ATHENS 45 STE	12 25 28 9 10 25 30 * CENT EPS * MEAN	26 5 35 26 8 5 20 52 RAL AR' TIMES PCU E	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi DELAY- UNIFORM RANDO OVERS	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation Ol 	80 19 93 111 22 16 59 146 N ST MEAN STOPS	(.4) (1.7) (.1) (.7) (1.6) (1.1) (.3) (1.0) OPS COST OF	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ	AGE	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM	227 208 224 209 210 222 202 21 F EXIT NODE	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES
1840 1850 1860 1870 1880 1890 1900 1PROGRAM 0 90 0 LINK	2940< 197 507 2711< 2848< 567 583 4 TRANSY 582 50 5ECOND FLOW INTO LINK	9000 1600 1800 9000 1600 2400 T8 CYCLE SAT	52 55 79 62 57 71 91 ATHENS 45 STE DEGREE OF SAT	12 25 28 9 10 25 30 * CENT EPS * MEAN PER CRUIS	26 5 35 26 8 5 20 52 RAL ARI TIMES PCU	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi DELAY- UNIFORM RANDO	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation Ol 	80 19 93 111 22 16 59 146 N ST MEAN	(.4) (1.7) (.1) (.7) (1.6) (1.1) (.3) (1.0) OPS COST	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ	AGE	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX.	227 208 224 209 210 222 202 21 F EXIT NODE	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END
1840 1850 1860 1870 1880 1890 1900 1PROGRAM 0 90 0 LINK	2940< 197 507 2711< 2848< 567 583 4 TRANSY 582 50 5ECOND FLOW INTO LINK	9000 1600 1800 9000 9000 1600 2400 T8 CYCLE SAT FLOW	52 55 79 62 57 71 91 ATHENS 45 STE DEGREE OF SAT	12 25 28 9 10 25 30 * CENT EPS * MEAN PER CRUIS	26 5 35 26 8 5 20 52 RAL AR' TIMES PCU E DELAY	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H)	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation Ol M+ COST AT OF) DELAY	80 19 93 111 22 16 59 146 V ST MEAN STOPS /PCU (%)	(.4) (1.7) (.1) (.7) (1.6) (1.1) (.3) (1.0) OPS COST OF STOPS	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI	AGE	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3	227 208 224 209 210 222 202 21 EXIT NODE S	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1
1840 1850 1860 1870 1880 1900 1PROGRAM 0 1900 0 LINK NUMBER 1910 1920	2940< 197 507 2711< 2848< 567 583 4 TRANSY 585 585 585 585 585 585 100 FLOW INTO LINK (PCU/H) 2673 738	9000 1600 9000 9000 2400 2400 78 CYCLE SAT FLOW (PCU/H) 9000 3000	52 55 79 62 57 71 91 ATHENS 45 STE DEGREE OF SAT) (%) 35 74	12 25 28 9 10 25 30 * CENT: CPS * MEAN PER CRUIS: (SEC) 17 30	26 5 35 26 8 5 20 52 RAL AR' TIMES PCU E DELAY (SEC) 0 25	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation Ol 	80 19 93 111 22 146 59 146 V * * * * * * * * * * * * * * * * * *	(.4) (1.7) (.1) (.7) (1.6) (1.1) (.3) (1.0) OPS OF STOPS (\$/H) (.1) (.8)	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 15	AGE	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6	227 208 224 209 210 222 202 21 EXIT NODE S	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48
1840 1850 1860 1870 1880 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930	2940< 197 507 2711< 2848< 567 583 4 TRANSY 58COND FLOW INTO LINK (PCU/H) 2673 738 1887	9000 1600 9000 9000 1600 2400 T8 CYCLE SAT FLOW (PCU/H; 9000 3000 7500	52 55 79 62 57 71 91 ATHENS 45 STE DEGREE OF SAT 0) (%) 35 74 45	12 25 28 9 10 25 30 * CENT: CPS * MEAN PER CRUIS: (SEC) 17 30 7	26 5 35 20 52 RAL ART TIMES PCU E DELAY (SEC) 0	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 2.2 + .4	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation OI 	80 19 93 3111 22 16 59 146 N ST MEAN STOPS /PCU (%) 1 105 36	(.4) (1.7) (.1) (.7) (1.6) (1.1) (1.0) OPS COST OF STOPS (\$/H) (.1)	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4	227 208 224 209 210 222 202 21 EXIT NODE S	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19
1840 1850 1860 1870 1900 1900 1PROGRAM 0 900 0 LINK NUMBER 1910 1920 1930 1940 1950	2940< 197 507 2711< 2648< 563 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992	9000 1600 9000 9000 2400 78 SAT FLOW (PCU/H) 9000 3000 7500 7500	52 55 79 62 57 71 91 ATHENS 45 STE DEGREE OF SAT 0 (%) 35 74 45 51 175	12 25 28 9 10 25 30 * CENT! CRUIS! (SEC) 17 30 7 8 9	26 5 35 26 8 5 20 52 RAL AR' TIMES PCU E DELAY (SEC) 0 25 5 7 7 15	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 2.2 + .4 5.4 + .5 7.9 + 1.5	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (4.7) sation OI 	80 19 93 111 22 146 59 146 V ST MEAN STOPS /PCU (%) 1 105 36 47 50	(.4) (1.7) (.1) (.7) (1.6) (1.1) (.3) (1.0) OPS OF STOPS (\$/H) (.1) (.8) (.20) (2.2) (3.4)	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 15 21 15 21 40 30	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4 8.6	227 208 224 209 210 222 202 21 EXIT NODE S 211 200 212 213 214	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73
1840 1850 1860 1870 1880 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1960	2940< 197 507 2711< 2848< 583 4 TRANSY 9 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850	9000 1600 9000 9000 2400 78 SAT FLOW (PCU/H, 9000 3000 7500 7500 7500 2800	52 55 79 62 57 71 91 91 ATHENS 45 STE DEGREE OF SAT 0 (%) 35 74 45 51 75 83	12 25 28 9 10 25 30 * CENT EPS * MEAN PER CRUIS (SEC) 17 30 7 8 9 9 25	26 5 35 26 8 5 20 52 RAL ART TIMES PCU E DELAY (SEC) 0 25 5 7 15 30	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 2.2 + .4 5.4 + .5 7.9 + 1.5 4.7 + 2.4	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation OI 	80 19 93 111 22 16 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 50 19 3 146 50 19 3 111 22 16 59 146 50 19 3 111 22 16 59 146 50 50 146 50 50 146 50 50 146 50 50 146 50 50 146 50 50 146 50 146 50 146 50 146 50 50 146 50 146 50 146 50 146 50 146 50 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 19 146 50 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 146 50 146 50 146 146 50 146 50 146 146 50 146 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 50 146 50 146 50 50 146 50 146 50 146 50 146 146 50 146 50 146 50 146 146 146 146 146 146 146 146 146 146	(.4) (1.7) (.1) (.7) (1.6) (1.1) (.3) (1.0) OPS COST OF STOPS (\$/H) (.1) (.8) (2.0) (2.2) (3.4) (.4)	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 15 21 40	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4	227 208 224 209 210 222 202 21 F EXIT NODE S 211 200 212 213 214 218 198	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31
1840 1850 1860 1870 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970	2940< 197 507 2711< 2648< 567 583 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161	9000 1600 9000 9000 2400 78 SAT FLOW (PCU/H, 9000 3000 7500 7500 2800 3000 7500	52 55 799 62 57 711 91 91 91 91 91 91 91 91 91 91 91 91 9	12 25 28 9 10 25 30 * CENT: ES MEAN PER CRUIS: (SEC) 17 30 7 8 9 25 25 216	26 5 35 26 8 5 20 52 RAL ART TIMES PCU E DELAY (SEC) 0 25 5 7 15 300 36 2	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TRERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 2.2 + .4 5.4 + .5 7.9 + 1.5 4.7 + 2.4 3.8 + 2.1 .5 + .5	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (2.1) (4.7) sation OI 	80 19 93 111 22 146 59 146 59 146 50 STOPS STOPS STOPS STOPS STOPS 7PCU (%) 1 105 36 47 50 102 102 102 102	(.4) (1.7) (1.7) (1.6) (1.1) (.3) (1.0) OPS COST OF STOPS (\$/H) (.1) (.8) (2.0) (2.2) (3.4) (.2)	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 15 21 40 40 30 22 13 2	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2 .8	227 208 224 204 209 210 222 202 21 EXIT NODE S S 211 200 212 213 214 213 214 215	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8
1840 1850 1860 1870 1880 1900 1PROGRAM 0 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980 1990	2940< 197 507 2711< 2848< 583 4 TRANSY 9 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 534	9000 1600 9000 9000 2400 T8 SAT FLOW (PCU/H, 9000 3000 7500 7500 2800 3000 7500 2800 3000 7500	52 55 799 62 57 711 91 ATHENS 45 STE DEGREE OF SAT 0 (%) 35 74 45 51 75 83 81 52 2100	12 25 28 9 10 25 30 • CENT: PER CRUIS: (SEC) 17 30 7 8 9 25 32 16 6 6 30	26 5 35 26 8 5 20 5 20 7 20 FCU E DELAY (SEC) 0 25 5 7 7 30 36 2 124	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 FERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+0=HEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 5.4 + .5 7.9 + 1.5 4.7 + 2.4 3.8 + 2.1 .5 + .5 2.0 + 16.4	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation OI 	80 19 93 111 22 16 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 50 10 8 30 50 10 10 10 10 10 10 10 10 10 10 10 10 10	(.4) (1.7) (.1) (.7) (1.6) (1.1) (.3) (1.0) OPS COST OF STOPS (\$/H) (.1) (.8) (2.0) (2.2) (.4) (.4) (.9) (.2) (.6)	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 15 21 40 40 22 13	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2	227 208 224 209 210 222 202 21 F EXIT NODE S 211 200 212 213 214 218 198	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40
1840 1850 1860 1870 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010	2940< 197 507 2711< 2648< 567 583 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 534 1931 270	9000 1600 9000 9000 2400 78 SAT FLOW (PCU/H) 9000 3000 7500 7500 7500 2800 3000 7500 1500	52 55 799 62 57 711 41 45 57 45 55 51 55 74 45 55 51 75 83 81 52 100 288 48	12 25 8 9 10 25 30 * CENT: ES MEAN PER CRUIS: (SEC) 17 30 7 8 9 25 25 25 216 30 25 16 30 25 218	26 5 35 26 8 52 RAL ART TIMES PCU DELAY (SEC) 0 25 5 7 15 300 22 124 0 9	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TRERIES * Optimi DELAY UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 2.2 + .4 5.4 + .5 7.9 + 1.5 2.0 + 16.4 .0 + .2 .2 + .5	(2.9) (2.1) (1.1) (1.1) (2.0) (3.2) (2.1) (4.7) (4.7) (4.7) (4.7) (4.7) (4.7) (4.7) (4.7) (4.7) (2.8) (1.4) (3.3) (5.2) (3.9) (3.3) (5.2) (3.3) (6) (10.1) (.4)	80 19 93 111 22 146 59 146 59 146 50 500 500 500 8 30 6 47 50 102 102 102 102 102 102 102 102 102 10	(.4) (1.7) (1.7) (1.6) (1.1) (1.1) (.3) (1.0) OPS COST OF STOPS (\$/H) (.1) (.8) (2.0) (2.2) (3.4) (.2) (.2)	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 15 21 40 30 22 13 2 2 13 2 2 1 2	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2 .8 11.7 .1 .4	227 208 224 204 209 210 222 202 21 F EXIT NODE S S 211 200 212 213 214 213 214 215 198 215 198 2259 215	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44
1840 1850 1860 1870 1900 1PROGRAM 0 01PROGRAM 0 01PROGRAM 0 01PROGRAM 1900 1920 1930 1940 1950 1950 1950 1970 1980 1990 2000 2010 2020	2940< 197 507 2711< 2848< 583 4 TRANSY 5 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 534 1931 270 2618	9000 1600 9000 9000 2400 T8 CYCLE SAT FLOW (PCU/H; 9000 3000 7500 7500 2800 3000 7500 2800 3000 7500 1500 7500 1500	52 55 799 62 57 711 91 ATHENS 45 STE OF SAT 0 (%) 355 74 45 51 75 83 81 522 1000 28 8 79	12 25 28 9 10 25 30 * CENT: PPS * MEAN PER CRUIS: (SEC) 17 30 7 8 9 25 32 16 6 30 22 8 9 25 32 16 30 22 12 25 28 28 20 25 28 20 20 20 20 20 20 20 20 20 20 20 20 20	26 5 35 26 8 5 20 7 20 7 20 FCU E DELAY (SEC) 0 25 5 7 7 30 36 2 124 0 9 10	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 FERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 5.4 + .5 7.9 + 1.5 4.7 + 2.4 3.8 + 2.1 .5 + .5 2.0 + 16.4 .0 + .2 .2 + .5 5.2 + 1.8	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation OI 	80 19 93 111 22 16 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 140 59 59 140 59 140 59 140 59 140 59 19 140 59 140 59 59 140 59 19 140 59 10 10 59 140 59 140 59 10 10 59 10 10 59 10 10 10 59 10 10 10 59 110 10 59 59 140 59 10 10 10 59 10 10 59 10 10 59 10 10 10 59 10 10 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	(.4) (1.7) (1.1) (.1) (.7) (1.6) (1.1) (.3) (1.0) OPS COST OF STOPS (\$/H) (.1) (.8) (2.0) (2.2) (.2) (.4) (.4) (.4) (.2) (.1) (.2) (.1) (.2) (.1) (.2) (.1) (.2) (.1) (.2) (15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 15 21 40 40 22 13 30 22 13 2 2 23 1 2 2 44	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2 .8 11.7 .1	227 208 224 204 209 210 222 202 21 F EXIT NODE S S 211 200 212 213 214 200 212 213 214 218 198 215 196 259	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44 4 63 80 32
1840 1850 1860 1870 1880 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2040 2050	2940< 197 507 2711< 2648< 567 583 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 534 1931 270	9000 1600 9000 9000 2400 78 SAT FLOW (PCU/H) 9000 3000 7500 7500 7500 2800 3000 7500 1500	52 55 799 62 57 711 41 45 57 45 55 51 55 74 45 55 51 75 83 81 52 100 288 48	12 25 8 9 10 25 30 * CENT: ES MEAN PER CRUIS: (SEC) 17 30 7 8 9 25 25 25 216 30 25 16 30 25 218	26 5 35 26 8 52 RAL ART TIMES PCU DELAY (SEC) 0 25 5 7 15 300 22 124 0 9	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 2.2 + .4 5.4 + .5 7.9 + 1.5 4.7 + 2.4 3.8 + 2.1 .5 + .5 2.0 + 16.4 .0 + .2 .2 + .8 3.8 + 2.5	(2.9) (2.1) (1.1) (1.1) (2.0) (3.2) (2.1) (4.7) (4.7) (4.7) (4.7) (4.7) (4.7) (4.7) (4.7) (4.7) (2.8) (1.4) (3.3) (5.2) (3.9) (3.3) (5.2) (3.3) (6) (10.1) (.4)	80 19 93 111 22 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 146 50 50 146 50 50 50 50 50 50 50 50 50 50	(.4) (1.7) (1.7) (1.6) (1.1) (1.1) (.3) (1.0) OPS COST OF STOPS (\$/H) (.1) (.8) (2.0) (2.2) (3.4) (.2) (.2)	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 1 15 21 40 30 22 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 30 30 30 30 30 30 30 30 30 30 30 30 30	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2 .8 11.7 .1 .4 6.7 4.2 5.4	227 208 224 204 209 210 222 202 21 F EXIT NODE S S 211 200 212 213 214 218 198 215 198 225 9 215 215 217 214 218	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44 4 63 80 32 19 65
1840 1850 1860 1870 1900 1900 1PROGRAM 0 900 1PROGRAM 0 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2010 2010 2010 2020 2040 2050 2050	2940< 197 507 2711< 2648< 583 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2996 850 597 2196 850 597 216 216 216 216 216 216 216 216	9000 1600 9000 9000 2400 78 SAT FLOW (PCU/H) 9000 3000 7500 7500 2800 3000 7500 2800 3000 7500 1500 1500 1500 1500 5000	52 55 799 62 57 71 91 ATHENS 45 STE OF SAT 0 (%) 35 74 45 57 83 81 52 100 28 48 9 81 52 79 64 79 64 77	12 25 28 9 10 25 30 * CENT: PER CRUIS: (SEC) 17 30 7 8 8 9 25 32 16 6 30 22 21 8 8 9 25 32 16 30 22 32 16 30 30 7 8 8 9 30 7 8 9 10 25 30 7 8 9 10 25 30 7 9 10 25 30 7 8 9 10 25 30 7 9 10 25 30 7 9 10 25 30 7 9 10 25 30 7 9 10 25 30 7 9 10 25 30 7 9 10 25 30 7 9 10 25 30 7 10 25 30 7 10 25 30 7 10 25 30 7 10 25 30 7 10 25 30 7 10 25 30 7 10 25 30 7 10 25 30 7 10 25 30 7 10 25 30 7 10 25 30 7 10 25 30 7 10 25 25 26 10 27 25 26 26 20 10 27 25 26 20 27 20 27 20 27 20 20 20 20 20 20 20 20 20 20 20 20 20	26 5 35 26 8 5 20 7 20 FCU E DELAY (SEC) 0 25 5 7 7 5 30 36 2 124 0 9 9 10 31 11	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 FERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 5.4 + .5 7.9 + 1.5 4.7 + 2.4 3.8 + 2.1 .5 + .5 2.0 + 16.4 .0 + .2 .2 + .5 5.2 + 1.8 3.8 + 2.5 5.6 + 1.8 4.6 + 1.7	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation OI m+ cost AT OF) DELAY (\$/H) (2.8) (2.8) (1.4) (3.3) (5.2) (3.9) (3.3) (10.1) (1.1) (1.1) (3.8) (3.5) (3.5)	80 19 93 111 22 16 59 146 59 146 59 146 59 146 59 146 59 146 50 102 108 102 102 108 4227 1 222 49 96 50 52	(.4) (1.7) (1.1) (.1) (.7) (1.6) (1.1) (.3) (1.0) OPS COST OF STOPS (\$/H) (.1) (.1) (.1) (.2) (.	15 17 5 8 21 11 10 14 MEAN MAX. AVERJ (PCU) (PC 1 15 21 40 40 22 13 2 2 23 1 2 2 23 1 2 2 44 18 34 34	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2 .8 11.7 .1 .4 6.7 4.2 5.4 3.9	227 208 224 204 209 210 222 202 21 F EXIT NODE S S 211 200 212 213 214 218 198 215 219 215 217 214	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44 4 63 80 32
1840 1850 1860 1870 1880 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1940 1950 1960 1970 1980 1990 2010 2010 2010 2010 2020 2040 2050 2060 2080 2090	2940< 197 507 2711< 2648< 567 583 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 534 1931 270 2618 721 2049 2101 2049 2101 2049 2101 2049 2101 2039	9000 1600 1800 9000 2400 2500	52 55 799 62 57 711 91 91 45 57 45 51 51 76 45 51 51 75 83 81 52 100 28 84 87 76 48 77 45 75 81 81 52 100 24 83 81 52 100 24 83 81 84 83 79 91 91 91 91 91 91 91 91 91 91 91 91 91	12 25 28 9 10 25 30 * CENT: EFS (SEC) 17 30 7 8 9 25 25 26 16 30 20 20 18 30 25 20	26 5 35 26 8 5 20 52 RAL AR' TIMES PCU E DELAY (SEC) 0 25 5 7 15 30 36 2 124 0 9 10 31 13 11 13 11	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi DELAY UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 2.2 + .4 5.4 + .5 7.9 + 1.5 4.7 + 2.4 3.8 + 2.1 .5 + .5 2.0 + 16.4 .0 + .2 .2 + .5 5.6 + 1.8 4.6 + 1.7 .1 + .4 1.1 + .4	(2.9) (2.1) (1.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation OI 	80 19 93 111 22 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 47 50 102 102 102 103 47 50 102 102 103 50 50 50 50 50 50 50 50 50 50	(.4) (1.7) (1.1) (.1) (.7) (1.6) (1.1) (.3) (1.0) OPS COST OF STOPS (\$/H) (.1) (.8) (.1) (.8) (.20) (2.2) (3.4) (.9) (.2) (.2)	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 1 15 21 40 40 30 22 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 3 1 1 2 2 3 1 3 2 2 3 1 2 2 3 3 2 3 3 2 3 3 2 3	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2 .8 11.7 .1 .4 6.7 4.2 5.4 3.9 .3 1.1	227 208 224 204 209 210 222 202 21 F EXIT NODE S S 211 200 212 213 214 218 198 215 196 259 215 217 214 219 221 221 212 213 214 219 221 221 221 222 221 222 222 222 222	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44 4 63 80 32 19 65 45 3 66 56 10 89
1840 1850 1860 1870 1900 1PROGRAM 0 900 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980 1970 1980 1990 2010 2010 2010 2020 2040 2050 2050 2060 2080 2080 2110	2940< 197 507 2711< 2648< 583 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2996 850 597 2161 534 1931 2700 2618 721 2049 2101 2049 204 557 211	9000 1600 9000 9000 2400 78 CYCLE SAT FLOW (PCU/H) 9000 3000 7500 7500 7500 7500 7500 7500 1500 5000 1500 5000 1500 5000 1500 5000 2800	52 55 799 62 57 711 91 ATHENS 45 STE DEGREE OF SAT 0 (%) 35 74 45 57 100 28 48 48 79 64 77 41 45 57	12 25 28 9 10 25 30 * CENT: CRUIS: (SEC) 17 30 7 8 8 9 25 326 16 30 22 21 18 8 9 25 326 30 20 20	26 5 35 26 8 5 20 7 20 FCU E DELAY (SEC) 0 25 5 7 7 15 5 30 36 2 124 0 9 9 10 31 11 13 325	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 2.2 + .4 5.4 + .5 7.9 + 1.5 4.7 + 2.4 3.8 + 2.1 .5 + .5 2.0 + 16.4 .0 + .2 .2 + .5 5.2 + 1.8 3.8 + 2.5 5.6 + 1.8 4.6 + 1.7 .1 + .4 3.4 + .7 .1 + .4 3.4 + .7	(2.9) (2.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation OI sation OI 	80 19 93 111 22 16 59 146 59 146 59 146 59 146 59 146 50 108 105 108 102 108 427 1 227 1 227 1 224 99 60 50 52 35 35 89	(.4) (1.7) (1.1) (.1) (.7) (1.6) (1.1) (.3) (1.0) OPS COST OF STOPS (\$/H) (.1) (.1) (.1) (.2) (.	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 15 21 40 40 22 13 2 2 30 22 13 2 2 31 1 2 2 44 18 34 34 34 34 34 31 14	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2 .8 11.7 .1 .4 6.7 4.2 5.4 3.9 .3 1.1 2.8	227 208 224 204 209 210 222 202 21 EXIT NODE S S 211 200 212 213 214 218 198 215 217 214 219 220	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44 4 63 80 32 19 65 45 3 66 56
1840 1850 1860 1870 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1940 1950 1960 1970 1980 2010 2010 2010 2010 2010 2010 2010 20	2940< 197 507 2711< 2648< 567 583 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 534 1931 270 2618 721 2049 2101 2049 2101 2049 2101 2049 2101 2039	9000 1600 1800 9000 2400 2500 7500 7500 7500 7500 7500 7500 2500 7500 2500 7500 2500 7500 2500	52 55 799 62 57 711 91 91 45 57 45 51 51 76 45 51 51 75 83 81 52 100 28 84 87 76 48 77 45 75 81 81 52 100 24 83 81 52 100 24 83 81 84 83 79 91 91 91 91 91 91 91 91 91 91 91 91 91	12 25 28 9 10 25 30 * CENT: EFS (SEC) 17 30 7 8 9 25 25 26 16 30 20 20 18 30 25 20	26 5 35 26 8 5 20 52 RAL AR' TIMES PCU E DELAY (SEC) 0 25 5 7 15 30 36 2 124 0 9 10 31 13 11 13 11	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi DELAY UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 2.2 + .4 5.4 + .5 7.9 + 1.5 4.7 + 2.4 3.8 + 2.1 .5 + .5 2.0 + 16.4 .0 + .2 .2 + .5 5.6 + 1.8 4.6 + 1.7 .1 + .4 1.1 + .4	(2.9) (2.1) (1.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation OI 	80 19 93 111 22 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 47 50 102 102 102 103 47 50 102 102 103 50 50 50 50 50 50 50 50 50 50	(.4) (1.7) (1.1) (.1) (.7) (1.6) (1.1) (.3) (1.0) OPS COST OF STOPS (\$/H) (.1) (.8) (.1) (.8) (.20) (2.2) (3.4) (.9) (.2) (.2)	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 15 21 40 40 22 13 22 13 22 13 22 13 22 13 22 13 22 13 23 1 1 23 1 1 23 1 2 34 34 34 34 34 35 5	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2 .8 11.7 .1 .4 6.7 4.2 5.4 3.9 .3 1.1 2.8 3.9 .3 1.1	227 208 224 204 209 210 222 202 21 F EXIT NODE S S 211 200 212 213 214 218 198 215 196 259 215 217 214 219 220 221 7 214 219 220 221 221 223	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44 4 63 80 32 19 65 45 3 66 56 10 89 55 87 18 56 27 7
1840 1850 1860 1870 1900 1PROGRAM 0 900 0 LINK NUMBER 1910 1920 1930 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2040 2050 2040 2050 2060 2080 2080 2080 2090 2110 2120 2130 2140	2940< 197 507 2711< 2648< 583 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 534 1931 2700 2618 721 2049 2101 2049 2101 2049 2105 597 2161 534 1931 270 2618 721 2049 2055 521	9000 1600 1800 9000 2400 2500	52 55 799 62 57 711 91 91 45 57 45 51 51 74 45 55 100 28 48 79 84 79 84 79 84 77 41 46 57 69 52 64	12 25 28 9 10 25 30 * CENT: CRUIS: (SEC) 17 30 7 8 8 9 25 326 30 222 17 30 7 8 9 25 326 30 20 20 15 12 22	26 5 35 26 8 5 20 20 TIMES PCU E DELAY (SEC) 0 25 5 7 7 5 30 36 2 124 0 9 9 10 31 11 1 3 25 14 2 27	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 2.2 + .4 5.4 + .5 7.9 + 1.5 4.7 + 2.4 3.8 + 2.1 .5 + .5 2.0 + 16.4 .0 + .2 .2 + .5 5.2 + 1.8 3.8 + 2.5 5.6 + 1.8 4.6 + 1.7 .1 + .4 1.1 + .4 3.4 + .7 4.7 + 1.1 .5 + .5 2.9 + .9	(2.9) (2.1) (1.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation OI sation OI m+ cost AT OF) DELAY (\$/H) (2.8) (2.8) (1.4) (3.3) (3.3) (10.1) (1.1) (1.1) (3.5) (3.1) (3.5) (3.1) (3.5) (3.2) (3.2) (3.1) (3.5) (3.2) (3.2) (3.2) (3.1) (3.5) (3.2) (3.3) (1.2) (3.2) (3.3) (3.5) (3.2) (3.2) (3.2) (3.2) (3.2) (3.2) (3.3) (3.5) (3.2) (80 19 93 111 22 16 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 140 59 140 59 140 59 140 59 140 59 140 59 140 59 140 59 140 50 100 100 100 100 100 100 100	(.4) (1.7) (1.1) (.7) (1.6) (1.1) (.3) (1.0) OPS COST OF STOPS (\$/H) (.1) (.3) (.0) (.1) (.2) (.	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVER7 EXCI (PCU) (PC 1 15 21 40 40 22 13 2 23 1 2 23 1 2 23 1 2 2 34 34 34 34 34 34 34 34 31 1 1	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2 .8 11.7 .1 4.6.7 4.2 5.4 3.9 .3 1.1 2.8 3.9 .3 1.1 2.8 3.9 .3 1.1 2.8 3.9 .3 1.1 2.8 3.9 .3 1.1 2.8 3.1 2.0 5.7 PAGE	227 208 224 204 209 210 222 202 21 F EXIT NODE S S 211 200 212 213 214 218 196 259 215 217 214 215 196 259 215 217 214 218 196 259 200 212 213 210 202 203 203 204 204 209 209 209 209 210 202 201 202 202 201 202 202 202 202	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44 4 63 80 32 19 65 45 3 66 56 10 89 55 87 18 56
1840 1850 1860 1870 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1940 1950 1960 1970 1980 2010 2010 2010 2010 2010 2010 2010 20	2940< 197 507 2711< 2848< 567 583 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 534 1931 270 2618 721 2049 2101 2039 589 1503 2035	9000 1600 1800 9000 2400 2500 7500 7500 2500 7500 2500 7500 2500	52 55 799 62 57 711 45 515 DEGREE OF SAT 0 (%) 35 74 45 51 75 83 81 52 100 28 84 83 81 52 100 28 74 45 55 51 75 74 45 75 83 81 75 75 83 81 79 90 48 79 90 48 79 70 10 91 91 91 91 91 91 91 91 91 91 91 91 91	12 25 9 10 25 	26 5 35 26 8 5 20 52 RAL AR' TIMES PCU E DELAY (SEC) 0 25 5 7 15 30 36 2 124 0 9 10 31 31 13 11 1 3 2 5 5 7 7 15 30 36 2 4 2 2 124 4 3 124 124 124 125 125 125 125 126 125 126 126 126 126 126 126 126 126 126 126	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TEFRIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 2.2 + .4 5.4 + .5 7.9 + 1.5 4.7 + 2.4 3.8 + 2.1 .5 + .5 2.0 + 16.4 .0 + .2 .2 + .5 5.6 + 1.8 3.8 + 2.5 5.6 + 1.8 4.6 + 1.7 .1 + .4 1.1 + .4 1.1 + .4 1.1 + .4 1.1 + .4 1.1 + .5 2.9 + .9 1.1 + .5	(2.9) (2.1) (1.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation OI M+ COST AT OF) DELAY (\$/H) (.2) (2.8) (1.4) (3.3) (5.2) (3.9) (3.3) (.6) (1.1) (.1) (.1) (.1) (.38) (3.5) (.3) (.3) (.9) (.2) (.3) (.9) (.2) (.3) (.3)	80 19 93 111 22 146 59 146 59 146 59 146 59 146 50 50 50 102 108 47 50 102 108 47 50 102 102 108 47 50 50 50 50 50 50 50 50 50 50	(.4) (1.7) (1.17) (1.17) (1.16) (1.11) (.3) (1.0) OPS COST OF STOPS (\$/H) (.11) (.8) (2.0) (2.2) (3.4) (.1) (.2) (.2) (.2) (.2) (.2) (.2) (.2) (.1) (.2) (.2)(15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 15 21 40 30 22 13 2 23 1 2 23 1 2 23 1 2 23 1 3 44 18 34 34 34 34 34 34 34 34 34 34 34 34 34	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 4.3 4.2 .8 11.7 .1 .4 6.7 4.2 5.4 3.9 .3 1.1 2.8 3.9 .3 1.1 2.8 3.9 .8 2.4 1.1 .4	227 208 224 204 209 210 222 202 21 EXIT NODE S S 211 200 212 213 214 218 198 215 217 214 219 225 217 214 219 220 221 217 214 219 220 221 221 222 223 208 224 224 222 223 208 224 222 222 222 222 222 222 222 222 22	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44 4 63 80 32 19 65 45 3 66 56 10 89 55 87 18 56 27 7 54 79 49 20 69 27
1840 1850 1860 1870 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1930 1940 1950 1960 1970 1980 1990 2010 2010 2010 2040 2050 2040 2050 2040 2050 2060 2080 2090 2110 2120 2140 2150	2940< 197 507 2711< 2648< 583 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 534 1937 2016 597 2161 534 1937 2010 2019 589 1503 2035 521 1673 598 1994	9000 1600 1800 9000 2400 2500	52 55 799 62 57 711 91 91 45 55 0 0 45 55 51 5 5 1 6 8 3 8 3 8 1 52 100 288 48 79 84 8 79 84 877 41 52 57 69 52 54 57 69 55 57 791 91 91 91 91 91 91 91 91 91 91 91 91 9	12 25 28 9 10 25 30 * CENT: ES (SEC) 17 30 7 7 8 9 25 32 16 30 22 21 6 30 22 21 6 30 22 21 6 30 22 21 6 30 22 21 20 20 20 20 20	26 5 35 26 8 5 20 20 TIMES PCU E DELAY (SEC) 0 25 5 7 7 5 30 36 2 124 0 9 9 10 31 11 1 3 25 14 2 27 3 15 3 3	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 FERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 2.2 + .4 5.4 + .5 7.9 + 1.5 4.7 + 2.4 3.8 + 2.1 .5 + .5 2.0 + 16.4 .0 + .2 2.2 + .5 5.2 + 1.8 3.8 + 2.5 5.6 + 1.8 4.6 + 1.7 .1 + .4 3.4 + .7 4.7 + 1.1 .5 + .5 2.9 + .9 1.1 + .4 3.4 + .7 4.7 + 1.1 .5 + .5 2.9 + .9 1.1 + .4 3.4 + .7 4.7 + 1.1 .5 + .5 2.9 + .9 1.1 + .4 3.4 + .7 4.7 + 1.1 .5 + .5 2.9 + .9 1.1 + .4 .9 + .7 .1 + .4 .9 + .7 .1 + .4 .9 + .7 .2 + .5 .2 + .9 .2 + .5 .2 + .9 .2 + .5 .2 + .8 .2 + .5 .2 + .8 .2 + .5 .2 + .8 .2 + .5 .2 + .8 .2 + .5 .2 + .8 .4 + .7 .1 + .4 .1 + .4 .4 + .7 .1 + .4 .1 + .4 .4 + .7 .1 + .4 .1 + .4 .4 + .7 .1 + .4 .1 + .4 .4 + .7 .1 + .4 .5 + .5 .2 + .5 .2 + .5 .2 + .5 .2 + .5 .2 + .5 .1 + .4 .4 + .7 .1 + .4 .5 + .5 .2 + .5 .5 .2 + .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	(2.9) (2.1) (1.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) (3.2) (1.7) (4.7) (4.7) (5.8) (1.4) (2.8) (1.4) (3.3) (3.9) (3.3) (3.9) (3.3) (3.9) (3.3) (3.1) (3.1) (3.1) (3.1) (3.1) (3.1) (3.2) (80 19 93 111 226 59 146 59 146 59 146 59 146 59 146 59 146 59 146 105 36 47 102 102 102 102 102 102 102 102	(.4) (1.7) (1.0) (.1) (.7) (1.6) (1.1) (.3) (1.0) OPS COST OF STOPS (\$/H) (.1) (.2) (.1) (.2) (.1) (.2) (.2) (.2) (.1) (.2) (.1) (.2) (.1) (.2) (.2) (.2) (.1) (.2) (.	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 1 15 21 40 40 30 22 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 1 13 2 2 1 13 2 2 1 1 1 1	AGE SSS CU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2 .8 11.7 .1 .4 6.7 4.2 5.4 3.9 .3 1.1 2.8 3.9 .3 .3 .4 .5 .4 .5 .4 .5 .4 .5 .4 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	227 208 224 204 209 210 222 202 21 EXIT NODE S S 211 200 212 213 214 218 196 259 215 217 214 218 215 196 259 221 217 214 218 219 220 221 217 210 222 223 200 222 223 200 222 223 225 225	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44 4 63 80 32 19 65 5 87 18 56 6 56 10 89 55 87 18 56 27 7 54 79 49 20 69 27 60 37
1840 1850 1860 1870 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1940 1950 1940 1950 1960 1970 1980 2010 2010 2010 2020 2040 2050 2060 2060 2060 2060 2090 2110 2120 2130 2140	2940< 197 507 2711< 2848< 567 583 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 534 1931 270 2618 721 2049 2101 2039 589 589 589 503 598	9000 1600 1800 9000 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2500 7000 5000	52 55 799 62 57 711 45 55 DEGREE OF SAT 0 (%) 35 74 45 55 51 75 83 81 52 1000 288 79 84 83 81 52 1000 288 79 964 46 57 52 64 46 57 79 97 91 91 91 91 91 91 91 91 91 91 91 91 91	12 25 9 0 25 30 * CENT PER CRUIS (SEC) 17 30 7 7 8 9 9 25 32 16 30 20 20 15 12 22 25 20 20 22	26 5 35 26 8 5 20 52 RAL AR' TIMES PCU E DELAY (SEC) 0 25 5 7 15 30 36 2 124 0 9 10 31 13 11 1 3 25 5 12 4 2 27 31 5 2 5 2 7 15 30 5 2 7 15 2 6 8 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 7 7 7 7 5 7 8 5 7 7 7 8 5 7 7 7 7 7	$\begin{array}{c} 4.3 \ + \ 1.0 \\ 3.4 \ + \ .5 \\ 1.3 \ + \ .6 \\ 1.8 \ + \ .9 \\ 4.9 \ + \ .8 \\ 3.1 \ + \ .7 \\ 1.9 \ + \ 1.2 \\ 3.8 \ + \ 4.7 \\ \hline 1.9 \ + \ 1.2 \\ 3.8 \ + \ 4.7 \\ \hline 1.9 \ + \ 1.2 \\ \hline 0.0 \ CVERS \\ \hline (U+R+0=MEAN \ Q \\ (PCU-H/H) \\ .1 \ + \ .3 \\ 3.7 \ + \ 1.4 \\ 2.2 \ + \ .4 \\ 5.4 \ + \ .5 \\ 7.9 \ + \ 1.5 \\ 4.7 \ + \ 2.4 \\ 3.8 \ + \ 2.1 \\ .5 \ + \ .5 \\ 2.0 \ + \ 1.5 \\ 4.7 \ + \ 2.4 \\ 3.8 \ + \ 2.1 \\ .5 \ + \ .5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 4.6 \ + \ 1.7 \\ .1 \ + \ .4 \\ 1.1 \ + \ .4 \\ 1.1 \ + \ .4 \\ 1.1 \ + \ .4 \\ 1.1 \ + \ .4 \\ 1.1 \ + \ .5 \\ 1.1 \ + \ 1.4 \\ .9 \ + \ .7 \\ 5.0 \ + \ 60.9 \\ \end{array}$	(2.9) (2.1) (1.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation OI 	80 19 93 111 22 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 59 146 50 50 50 50 50 50 50 50 50 50	(.4) (1.7) (1.17) (1.17) (1.17) (1.16) (1.11) (.3) (1.0) COST OF STOPS (\$/H) (.11) (.8) (2.0) (2.0) (2.2) (3.4) (.12) (.2) (.	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 1 15 21 40 40 30 22 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 13 2 2 11 10 15 5 11 10 10 14	AGE ESS TU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 4.3 4.2 .8 11.7 .1 .4 6.7 4.2 5.4 3.9 .3 1.1 2.8 3.9 .3 1.1 2.8 3.9 .8 2.4 1.1 .4	227 208 224 204 209 210 222 202 21 EXIT NODE S S 211 200 212 213 214 218 198 215 217 214 218 196 259 215 217 214 219 220 221 217 214 219 220 221 221 223 200 221 225 226 226 226 226 226 226 226 226 226	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44 4 63 80 32 19 65 45 3 66 56 10 89 55 87 18 56 27 7 54 79 49 20 69 27 60 37 34 87 34 47
1840 1850 1860 1870 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1930 1940 1950 1960 1970 1980 1990 2010 2010 2010 2040 2050 2040 2050 2040 2050 2060 2080 2090 2110 2120 2120 2120 2130	2940< 197 507 2711< 2647 583 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 534 1931 2700 2618 702 2196 850 597 2161 534 1931 2035 521 1673 598 1994 953 598 1994 953 598 1994 953 598 1994 953 598 1994 953 598 1994 953 598 1994 953 598 1994 953 598 1994 953 598 1994 953 598 1994 953 598 1994 953 598 1994 1975 1975 1975 1975 1975 1975 1975 1975 1975 1977 1975 1977 1977 1977 1977 1977 1977 1977 2092 2196 1977 2092 2196 2017	9000 1600 1800 9000 2400 2500 2600 2500	52 55 799 62 57 711 91 91 45 57 45 55 74 45 57 4 5 100 28 8 3 8 1 52 100 28 8 8 79 84 8 79 84 8 79 84 8 79 69 52 59 106 75 75 83 81 52 100 26 83 75 75 74 45 57 76 10 91 91 91 91 91 91 91 91 91 91 91 91 91	12 25 28 9 10 25 30 * CENT: ES (SEC) 17 30 7 8 9 25 32 16 30 25 22 16 30 25 21 8 30 25 20 20 25 22 22 25 20 20 20 21 5	26 5 35 26 8 5 20 20 TIMES PCU E DELAY (SEC) 0 25 5 7 7 5 30 36 2 124 0 9 10 31 11 1 3 25 14 2 27 3 15 3 249 40 0 33	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 2.2 + .4 5.4 + .5 7.9 + 1.5 4.7 + 2.4 3.8 + 2.1 .5 + .5 2.0 + 16.4 .0 + .2 .2 + .5 5.2 + 1.8 3.8 + 2.5 5.2 + 1.8 3.4 + .7 4.7 + 1.1 .5 + .5 2.9 + .9 1.1 + .4 .9 + .7 5.0 + 60.9 4.3 + 1.2 4.9 + .1	(2.9) (2.1) (1.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) (4.7) (4.7) (4.7) (4.7) (4.7) (4.7) (7.8) (80 19 93 111 22 146 59 146 59 146 59 146 59 146 50 50 50 102 108 47 50 102 108 47 50 102 102 102 108 47 50 102 102 108 47 50 102 102 108 47 50 102 102 102 108 47 50 102 102 108 47 50 102 102 102 102 102 102 102 10	(.4) (1.7) (1.17) (1.17) (1.17) (1.16) (1.11) (.3) (1.0) OPS COST OF STOPS (\$/H) (.11) (.8) (2.0) (2.2) (3.4) (.2) (.2	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 15 21 40 40 30 22 13 2 23 13 2 23 13 2 23 13 2 23 13 2 23 13 2 23 13 2 23 13 2 2 3 1 3 2 3 1 3 2 3 1 3 2 3 1 1 5 1 1 1 5 1 1 1 5 1 3 1 6 1 3 1 6	AGE SSS CU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2 .8 11.7 .1 .4 6.7 4.2 5.4 3.9 .8 1.1 2.8 3.9 .8 2.4 1.1 2.8 3.9 .8 2.4 1.1 2.8 3.9 .8 2.4 1.1 2.8 3.9 .8 2.4 1.1 2.8 3.9 .8 2.4 1.1 2.8 3.9 .8 2.4 1.1 2.8 3.9 .8 2.4 1.1 2.8 3.9 .8 2.4 1.1 2.8 3.9 .8 2.4 3.1 2.8 3.9 .8 2.4 3.1 2.8 3.9 .8 2.4 3.5 4.2 .8 3.9 .8 2.4 .1 .1 .1 .1 .1 .1 .1 .1 .3 .3 .6 .3 .3 .1 .3 .3 .1 .3 .1 .1 .1 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	227 208 224 204 209 210 222 202 21 F EXIT NODE S S 211 200 212 213 214 219 215 217 214 219 225 225 221 214 219 221 221 221 221 221 221 222 223 200 221 223 200 222 223 200 222 223 200 222 223 200 222 223 200 222 223 225 225 225 225 225 225 225 225	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44 4 63 80 32 19 65 45 3 66 56 10 89 55 87 18 56 67 7 7 54 79 49 20 69 27 60 37 34 87 34 47 41 69
1840 1850 1860 1870 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1940 1950 1940 1950 1940 1950 2000 2010 2010 2020 2040 2050 2060 2060 2060 2050 2060 2050 2060 2050 205	2940< 197 507 2711< 2848< 567 583 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 534 1931 270 2618 721 2049 2101 2039 589 1934 9205 521 167 588 1994 994 994 994 994 994 994 99	9000 1600 1800 9000 2400 2500 2600 2500	52 55 799 62 57 711 45 515 DEGREE OF SAT 0 (%) 35 74 45 55 100 28 83 81 52 1000 28 83 81 52 1000 28 74 46 57 69 64 46 57 79 952 64 46 57 79 952 64 47 73 59 100 79 74 74 75 75 74 75 75 75 75 75 76 75 76 77 71 71 71 71 71 71 71 71 71 71 71 71	12 25 28 9 10 25 30 * CENT PER CRUIS (SEC) 17 30 7 7 8 9 9 255 352 16 300 7 7 8 9 9 255 352 16 300 20 20 20 20 20 20 20 20 20 20 20 20 2	26 5 35 26 8 5 20 52 RAL AR' TIMES PCU E DELAY (SEC) 0 25 5 7 15 30 36 24 0 9 10 31 13 11 1 3 25 14 4 2 27 3 15 3 24 9 40	4.3 + 1.0 3.4 + .5 1.3 + .6 1.8 + 1.9 4.9 + .8 3.1 + .7 1.9 + 1.2 3.8 + 4.7 TERIES * Optimi DELAY- UNIFORM RANDO OVERS (U+R+0=MEAN Q (PCU-H/H) .1 + .3 3.7 + 1.4 2.2 + .4 5.4 + .5 7.9 + 1.5 4.7 + 2.4 3.8 + 2.1 .5 + .5 2.0 + 16.4 .0 + .2 .2 + .5 5.2 + 1.8 3.8 + 2.5 5.2 + 1.8 3.4 + .7 4.7 + 1.1 .5 + .5 2.9 + .9 1.1 + .4 .9 + .7 5.0 + 60.9 4.3 + 1.2 4.9 + .1	(2.9) (2.1) (1.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation OI m+ cost AT OF) DELAY (4.7) (2.8) (2.8) (1.4) (3.3) (5.2) (3.3) (3.5) (3.3) (3.5) (3.1) (3.5) (3.1) (3.5) (3.2) (3.2) (3.1) (3.2) (3.	80 19 93 111 22 146 59 146 50 50 50 50 50 50 50 50 50 50	(.4) (1.7) (1.17) (1.17) (1.17) (1.16) (1.11) (.3) (1.0) OPS COST OF STOPS (\$/H) (.10) (2.0) (3.4) (.1) (.2) (.2) (.1) (.2) (.	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 15 21 40 22 13 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 23 1 2 2 30 22 13 2 2 1 3 4 4 1 8 3 4 3 1 8 1 8 1 8 1 8 1 8 1 1 8 1 1 8 1 1 8 1 1 1 8 1 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1	AGE SSS CU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE: (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2 .8 11.7 .1 .4 6.7 4.2 5.4 3.9 .3 1.1 2.8 3.9 .3 1.1 2.8 3.9 .3 1.1 .1 .4 .9 .8 2.4 1.1 .4 .9 .8 .4 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	227 208 224 204 209 210 222 202 21 EXIT NODE S S 211 212 213 214 218 198 215 196 259 215 217 214 218 196 259 215 217 214 218 196 259 215 217 214 210 222 223 200 221 225 225 225 225 225 225 226 226 226 226	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44 4 63 80 32 19 65 45 3 66 56 10 89 55 87 18 56 27 7 54 79 49 20 69 27 60 37 34 47 41 69 76 62 55 14
1840 1850 1860 1870 1980 1900 1900 0 LINK NUMBER 1910 1920 1930 1940 1950 1940 1950 1960 1970 1980 2000 2010 2020 2040 2020 2040 2050 2060 2080 2090 2110 2120 2130 2150 2161 2170 2171 2185 2190	2940< 197 507 2711< 2848< 567 583 4 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 807 201 203 597 2161 2039 597 2161 2039 597 2161 2039 597 2161 2039 2035 597 597 2035 597 2035 597 2035 597 2035 597 2035 597 2035 597 2035 597 2035 597 2035 597 2035 597 2035 597 2035 597 2035 597 2035 597 2035 598 1933 2035 598 1934 2035 598 1933 2035 598 1934 2035 598 1934 2035 598 1934 2035 598 1934 2035 598 1934 2035 598 1934 2035 598 1934 1947 107 2035 598 1948 107 107 107 107 107 107 107 107	9000 1600 1800 9000 2400 2500 2600 2500	52 55 799 62 57 711 ATHENS 45 55 DEGREE OF SAT 45 51 55 51 55 51 55 51 52 100 28 48 78 774 41 46 55 52 100 28 48 78 775 84 78 79 9 69 52 69 52 69 52 69 52 69 52 69 52 69 52 10 69 52 69 52 69 52 10 69 52 10 69 52 10 69 52 10 69 52 10 69 52 10 69 52 10 10 53 10 55 75 74 40 55 75 74 40 55 75 74 40 55 75 74 40 55 75 74 40 55 75 74 40 55 75 74 40 55 75 75 74 40 55 75 74 40 55 75 75 75 75 75 75 75 75 75 75 75 75	12 25 9 0 25 30 * CENT PER CRUIS (SEC) 17 30 7 7 8 9 9 25 32 16 30 20 20 20 20 20 25 20 20 25 20 20 22 25 20 20 22 25 20 20 20 25 20 20 25 20 20 25 20 25 20 20 25 20 20 25 20 25 20 25 20 25 20 25 20 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20	26 5 35 26 8 5 20 FCU PCU PCU E DELAY (SEC) 0 25 5 7 5 30 36 2 2 124 0 9 9 10 31 13 1 11 1 3 5 5 7 7 5 30 36 2 4 9 40 31 3 1 1 2 5 1 2 4 9 3 1 3 1 1 1 1 1 1 1 1 2 5 5 7 7 1 2 1 2 5 7 7 1 2 5 7 7 1 2 5 7 7 1 2 5 7 7 1 2 5 7 7 1 30 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 4.3 \ + \ 1.0 \\ 3.4 \ + \ .5 \\ 1.3 \ + \ .6 \\ 1.8 \ + \ .9 \\ 4.9 \ + \ .8 \\ 3.1 \ + \ .7 \\ 1.9 \ + \ 1.2 \\ 3.8 \ + \ 4.7 \\ \hline \begin{array}{c} \ DELAY- \\ 0 \ VERS \ + \ 0 \ VERS \\ \hline \begin{array}{c} \ DELAY- \\ 0 \ VERS \ + \ 0 \ + \ 1.1 \ .5 \ + \ .5 \\ 5.2 \ + \ 1.8 \\ 3.8 \ + \ 2.1 \\ .5 \ + \ .5 \\ 5.2 \ + \ 1.8 \\ 3.8 \ + \ 2.1 \\ .5 \ + \ .5 \\ 5.2 \ + \ 1.8 \\ 3.8 \ + \ 2.1 \\ .5 \ + \ .5 \\ 5.2 \ + \ 1.8 \\ 3.8 \ + \ 2.2 \\ .2 \ + \ .5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 3.8 \ + \ 2.5 \\ 5.6 \ + \ 1.8 \\ 4.6 \ + \ 1.7 \\ .1 \ + \ .4 \\ 1.1 \ + \ .4 \\ 1.1 \ + \ .4 \\ .9 \ + \ .7 \\ 5.0 \ + \ 60.9 \\ 4.3 \ + \ 1.2 \\ .8 \ + \ .4 \end{array}$	(2.9) (2.1) (1.1) (1.1) (2.0) (3.2) (2.1) (1.7) (4.7) sation OI 	80 19 93 111 22 146 59 146 50 50 50 50 50 50 50 50 50 50	(.4) (1.7) (.1) (.7) (1.6) (1.1) (.1.3) (1.0) OPS COST OF STOPS (.1.0) (.1.0) (.1.0) (.1.0) (.1.0) (.1.0) (.2.0) (.2.1) (.2.1) (.4.1) (.2.1) (.2.1) (.2.1) (.2.1) (.2.1) (.2.1) (.2.1) (.2.1) (.2.1) (.2.1) (.2.1) (.2.1) (.2.1) (.2.1) (.2.1) (.2.1) </td <td>15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 15 21 40 22 13 2 23 1 2 23 1 2 23 1 2 23 1 2 2 34 34 34 34 34 34 34 34 34 34</td> <td>AGE SSS CU)</td> <td>3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE. (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2 .8 11.7 .1 .4 6.7 4.2 5.4 3.9 .3 1.1 2.8 3.9 .8 2.4 1.1 .4 4.2 .4 4.2 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4</td> <td>227 208 224 204 209 210 222 202 21 EXIT NODE S S 211 200 212 213 214 218 198 215 217 214 218 196 259 215 217 214 219 220 221 213 214 219 220 221 213 210 222 223 200 221 210 222 202 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 210</td> <td>17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44 4 63 80 32 19 65 45 3 66 56 10 89 55 87 18 56 27 7 54 79 49 20 69 27 60 37 34 87 34 47 41 69 76 62</td>	15 17 5 8 21 11 10 14 QUEUE MEAN MAX. AVERJ EXCI (PCU) (PC 1 15 21 40 22 13 2 23 1 2 23 1 2 23 1 2 23 1 2 2 34 34 34 34 34 34 34 34 34 34	AGE SSS CU)	3.3 3.9 1.1 2.8 4.8 3.1 2.0 5.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE. (\$/H) .3 3.6 3.4 5.4 8.6 4.3 4.2 .8 11.7 .1 .4 6.7 4.2 5.4 3.9 .3 1.1 2.8 3.9 .8 2.4 1.1 .4 4.2 .4 4.2 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4	227 208 224 204 209 210 222 202 21 EXIT NODE S S 211 200 212 213 214 218 198 215 217 214 218 196 259 215 217 214 219 220 221 213 214 219 220 221 213 210 222 223 200 221 210 222 202 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 210	17 49 84 50 26 45 46 61 1 16 0 43 2 51 60 14 74 85 29 40 RUN ON 24/ 6/1993 GREEN TIMES START START END END 1ST 2ND (SECONDS) 15 1 79 3 34 48 37 86 39 19 39 73 69 11 66 76 21 31 49 8 40 55 85 10 47 40 11 44 4 63 80 32 19 65 45 3 66 56 10 89 55 87 18 56 27 7 54 79 49 20 69 27 60 37 34 87 34 47 41 69 76 62

								В	as	e Case	e So	cer	nario								
2206	826	4000	62	22	36	7.6		.8	(4.6)	95	(1.0)	20			5.6	226	1 51	30 87	
2215	2417	8000	73	24	24		+	1.4	(9.0)	81	(1.9)	51			10.9	226	49	15	
2225	2050	4500	72	25	13		+	1.3	(4.2)	63	(1.4)	35				178	49	28	53 73
2230	945	3200	63	22	12	2.4	+	.9	(1.8)	72	(.7)	10			2.4		26	76	53 13
2790	1999	5000	71	25	11		+	1.2	(3.4)	55	(.6)	32			4.0	216			
2800	301	1800	25	25	7	.4	+	.2	(.3)	27	(.1)	2			.4	260	68	38	
2805	2001	4000	52	28	1	.0	+	.5	(.3)	2	(.0)	1			.3	259	89	85	
2820	301	1800	84	15	63	2.8	+	2.5	(2.9)	126	(.8)	10			3.7	261	54	71	
2825	1699	5000	47	15	2	.4	+	.4	(.5)	16	(.2)	12			.7	260	74	48	
2830	1847	5500	46	15	6	2.7	+	.4	(1.7)	37	(.8)	19			2.5	193	31	5	
2845	617	1600	89	20	46	4.0	+	3.8	(4.3)	112	(.1)	18	+		4.5	261	77	25	
2846	1755	3500	76	20	14	5.2	+	1.6	(3.8)	68	(.3)	31	+		4.0	261	54	22	
3730	1520	5000	88	25	37	11.7	+	3.7	(8.5)	100	(.5)	39			9.0	216	82	22	
3850	1000	5000	86	20	44	9.2	+	2.9	(6.7)	102	(1.2)	27			7.9	261	29	49	
5800	330	1800	83	25	58	3.1	+	2.3	(2.9)	118	(.2)	10			3.1	217	67	86	
5930	420	1800	81	25	47	3.5	+	2.1	(3.0)	108	(.2)	12			3.3	219	13	38	
5940	50	1800	42	25	66	.6	+	.4	(.5)	119	(.0)	2			.5	221	5	10	
1PROGRAM	TRANSY	T8 ATH	ENS	* CENTR	AL A	RTERIES	+	Optim	isa	tion ON							PAGE	22	RUN ON	24/	6/1993
0 90	SECOND	CYCLE 45	STE	PS																	
0 TOTAL		TOTAL		MEAN		TOTAL		TOT	AL	TOTAL	a the	1	TATOT	PENA	LTY		TOTAL				
DISTAN	CE	TIME	JO	URNEY		UNIFORM	1	RAND	OM+	COST			COST	FC	R		PERFORMANCE				
TRAVELLI		SPENT		SPEED		DELAY	2	OVER	SAT	OF			OF	EXC	ESS		INDEX				
								DEL		DELAY		5	STOPS	QUE	UES						
(PCU-KM	(H)	(PCU-H/H)		(KM/H)		(PCU-H/H	I) ((\$/H)	(\$/	H)		(\$/H)				
0 13281.		1125.6		11.8		267.6	., ,	234.		(276.	1) +		72.6)	+ (.0)		348.7	T	OTALS		
0+++++++	*******	********	****	+++++++		*******		+++++	+++	*******	++++	++++	******	********	****	****	**********	****	******	****	******
+																					
0					RUIS				DE	LAY			STOPS	:		TOT	ALS				
						R HOUR		LTTR		PER HOUR		LI	TRES PER		LIT	RES	PER HOUR				
OFUEL CON	NSUMPTI	ON PREDICT	TONC		243.			+		2.7		+	208.6		-		4.7				
0	NSOME I I	ON FREDICI	TONS	1	. 443.	•		1.1		2											
	PNITD T PC	TO SUBPT:		142																	
		ECALCULATE																			
SYSTEM 3	TIME:	2	1:22	:10																	

EXECUTION TIME: 559 SECONDS PROGRAM TRANSYT8 FINISHED

Delay:stop weighting ratio of 0.01

OCARD NO.	CARD TYPE							Ũ	0								
(1)=	TITLE:-			ral Art	eries	· Opt on	DELAY:S	TOP WEIGHT		COULCE-SP	FEDS OPT	IMISE EXTRA	HILL-	DEI	LAY	STOP	P
OCARD NO.		CYCLE N	STEPS				SETTING		FLOW SCALE	CRUISE-SP SCALE C.	ARD32 0=N	IONE COPIES	CLIMB	VAI	LUE	VALU	UE
	12614	(SEC)	PER		STAR			2=CYCLE S CHOICE	10-200		TIMES 1=C SPEEDS 2=F		OUTPUT 1=FULL	PE		P PE 100	
2)=	1	90	45	120	2	3	1	0	0	0		2 0 PAGE	0 20 RU	N ON	5 29/	500	
	TRANSY		45 STE		al Art	eries * (Opt on; D	ELAY:STOP									
0 LINK NUMBER	FLOW INTO	SAT FLOW	DEGREE	MEAN	TIMES PCU		RANDOM+		AN COS		UEUE	PERFORMANCE INDEX.	EXIT		EN TI RT S		
	LINK	LTOW	SAT	CRUISI	3		OVERSAT	OF STO	OPS OF	MAX.		WEIGHTED SUM			END		ND
	(PCU/H)	(PCU/H)	(8)	(SEC)	DELAY	(U+R+O=) (PCU-)	MEAN Q) D	ELAY / H \$/H) (1	CU STO			OF () VALUES (\$/H)		151	T SECON	2ND IDS)	
	(FCU/H)	(FCU/H)	(5)	(350)	(320)											80	5
900 1060	222 142	1500 1500	42 53	18 18	17 31	.7 +	.4 (19 (1.			1.9	187 189	35 34	50 41		86
1210	1094	4000	68	17	15	3.4 +	1.1 (.2) 8	30 (8.	4) 12		8.7	185	7	24 68		69 23
1280 1300	361 307	1500 1500	77 66	18 18	31 25	1.4 +	1.7 (.2) 11	15 (4.			4.2	180 179	55 45	58		13
1330	993	3200	56	11	3	.2 +	.6 (.0)	12 (1.	9) 3		1.9 7.0	179 180	17 71	41		86 52
1340 1350	1300 1391	3200 3200	68 75	18 25	6 12	1.1 + 3.2 +	1.0 (34 (6. 59 (6.			6.8	181	34	59		14
1360	260	1500	87	22	61	1.4 +	3.0 (.2) 1	56 (3.	3) 6		3.6	205	63 45	71 76		26 31
1380 1390	1144 927	3200 3200	50 47	13 16	23	.3 +	.5 (13 (1.			2.0	183	14	41	59	86
1400	368	1800	51	20	15	1.1 +	.5 (.1)	39 (3.	2) 5		3.3	203 184	38 31	55 57		10 12
1420 1440	1004 1078	3200 3200	52 72	24 6	6 13	1.1 + 2.5 +	.5 (1.3 (37 (6. 52 (17.			6.3 17.6	185	28	48		3
1450	1051	3200	70	19	9	1.3 +	1.2 (.1)	11 (6.	2) 8		6.3 8.9	186 199	45 63	65 77		20 32
1460 1480	1120 812	4000 3200	84 46	20 10	22 3	4.3 +	2.6 (78 (8. 11 (-	5) 12 8) 1		.9	187	53	77		32
1490	842	3200	59	24	9	1.3 +	.7 (.1)	56 (3.	2) 7		3.3	188 197	81 56	10 62		55 17
1500 1520	192 945<	1500 3200	82 43	22 13	57 2	.9 +	2.2 (53 (2. 10 (1.			1.4	189	0	30	45	75
1540	220	1000	71	22	33	.8 +	1.2 (.1) 1	17 (2.	1) 4		2.2	195 194	30 28	43 29	75	88
1580 1590	22 190	1500 1500	66 67	18 9	191 53	.3 + 1.8 +	.9 (07 (.	5) 1 2) 5		2.4	193	10	26		
1610	1948	4300	58	12	3	.7 +	.7 (.1)	12 (4.	9) 10		4.9	194 260	39 48	18 56		
1620 1630	156 1970	1800 4300	87 79	25 9	83 8	.7 + 2.3 +	2.9 (57 (. 42 (8.			9.1	195	2	27		72
1640	2245	4300	76	13	4	.7 +	1.6 (.1)	18 (5.	3) 9		5.5	196 188	12 58	42 78		87 33
1650 1660	409< 2290<		58 77	26 14	14 4	.8 + 1.1 +	.7 (41 (1. 22 (11.			11.5	197	22	52	67	7
1670	2144<	4300	80	11	7	2.2 +	2.0 (.2)	42 (6.	5) 18		6.7 6.5	198 186	29 23	56 42		11 87
1680 1690	1187< 1894<		83 86	30 21	21 15	4.3 + 5.0 +	2.5 (95 (6. 74 (15.			16.3	199	37	59	82	14
1700	1941<	5500	69	7	8	3.1 +	1.1 (.2)	45 (23.			23.4 12.1	200 212	39 67	61 5	84	16
1710 1720	1081< 254	3800 1500	88 54	30 30	43 20	9.2 +	3.7 (97 (11. 92 (1.			1.7	184	60	73		28
1730	1893<	5500	43	12	1	.1 +	.4 (.0)	4 (2.	3) 2		2.3 7.2	201 202	4	39 61		84 16
1740 1750	1761< 237	5500 1500	90 55	20 20	25 20	7.6 +	4.4 (12 (6. 69 (2.			2.4	183	44	56	89	11
1760	1940<	5500	72	14	4	1.1 +	1.3 (.1)	22 (6.			6.3 7.3	203 204	14 20	35 43		80 88
1770 1780	2035< 515<		69 61	8 24	3 28	.5 + 3.2 +	1.1 (10 (7. 82 (6.			6.9	209	46	83		
1790	296	1500	59	18	17	.7 +	.7 (.1)	69 (2.			3.0 9.4	181 205	17 30	31 60		76 15
1800 1810	2234< 2338<		59 52	13 10	2 2	.7 +	.7 (15 (9. 10 (8.			8.8	206	36	19		
1820	538<		58	26	12	1.2 +	.7 (.1)	76 (3. 98 (4.			3.7	178 227	30 25	50 51	75	5
1830 1831	720< 711<	3000 3000	80 89	30 30	38 48	5.5 + 5.7 +	2.0 (98 (4. 09 (4.	.8) 21		5.3	227	25	48		
1840		9000	50	12	4	2.7 +	.5 (15 (14.			14.3	208 224	84	51		
1850 1860	196 504	1600 1800	73 79	25 28	55 25	1.6 +	1.4 (17 (1. 08 (7.					48	62		16
1870		9000	60	9	8				00 1			7.4	204	48 46	61	1	10
1880 1890	2825<					5.3 +	.7 (.3)	21 (15.	.9) 16	;	7.4 16.2	204 209	48 46 88	61 42	1	10
1900	558<		61 68	10 25	7	4.5 +	.8 (.3) .3)		.9) 16 .2) 14	;	7.4 16.2 13.4 4.3	204 209 210 222	48 46 88 2 73	61 42 47 28		
	581	1600 2400	68 84	25 30	7 21 32	4.5 + 2.3 + 2.6 +	.8 (1.1 (2.5 (.3) .3) .2) .3) 1	21 (15. 19 (13. 84 (4. 08 (7.	.9) 16 .2) 14 .1) 13 .4) 10	5	7.4 16.2 13.4 4.3 7.7	204 209 210 222 202	48 46 88 2 73 73	61 42 47 28 85	28	40
1PROGRA		1600 2400 T8	68 84 ATHENS	25 30 * Cent	7 21 32	4.5 + 2.3 + 2.6 +	.8 (1.1 (2.5 (.3) .3) .2)	21 (15. 19 (13. 84 (4. 08 (7.	$\begin{array}{c} .9) & 16\\ .2) & 14\\ .1) & 13\\ .4) & 10\\ = 0.01 \end{array}$	5 1 2	7.4 16.2 13.4 4.3 7.7 PAGE	204 209 210 222 202 21 RL	48 46 88 2 73 73 73 0N ON	61 42 47 28 85 29/	28 7/19	40
1PROGRA 0 9 0 LINK	581 M TRANSY 0 SECOND FLOW	1600 2400 T8 CYCLE SAT	68 84 ATHENS 45 STE DEGREE	25 30 * Cent EPS E MEAN	7 21 32 ral Art TIMES	4.5 + 2.3 + 2.6 + ceries *	.8 (1.1 (2.5 (Opt on; I	.3) .3) .2) .3) 1 DELAY:STOP	21 (15. 19 (13. 84 (4. 08 (7. WEIGHTS STOPS	$\begin{array}{c} 9) & 16\\ 2) & 14\\ 1) & 13\\ 4) & 10\\ = 0.01\\ \end{array}$	20EUE	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE	204 209 210 222 202 21 RU EXIT	48 46 88 2 73 73 73 JN ON GRE	61 42 47 28 85 29/	28 7/19	40
1PROGRA 0 9	581 M TRANSY 0 SECOND FLOW	1600 2400 T8 CYCLE	68 84 ATHENS 45 STE	25 30 * Cent EPS E MEAN PER CRUIS	7 21 32 ral Art TIMES PCU E	4.5 + 2.3 + 2.6 + ceries *	.8 (1.1 (2.5 (Opt on; I DELAY I RANDOM+ OVERSAT	.3) .3) .2) .3) 1 DELAY:STOP COST M OF ST	21 (15. 19 (13. 84 (4. 08 (7. WEIGHTS STOPS EAN COS OPS OF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2UEUE AVERAGE	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM	204 209 210 222 202 21 RU EXIT NODE	48 46 88 2 73 73 73 JN ON GRE STA	61 42 47 28 85 29/ EN T RT 5 END	28 7/19 IMES START E	40 993
1PROGRA 0 9 0 LINK	581 M TRANSY 0 SECOND FLOW INTO LINK	1600 2400 T8 CYCLE SAT FLOW	68 84 ATHENS 45 STH DEGREN OF SAT	25 30 * Cent EPS E MEAN PER CRUIS	7 21 32 ral Art TIMES PCU E DELAY	4.5 + 2.3 + 2.6 + teries * UNIFORM (U+R+0=	.8 (1.1 (2.5 (Opt on; I DELAY I RANDOM+ OVERSAT MEAN Q) I	.3) .2) .3) 1 DELAY:STOP COST M OF ST DELAY /	21 (15. 19 (13. 84 (4. 08 (7. WEIGHTS STOPS EAN COS OPS OF PCU STO	9) 16 2) 14 1) 13 4) 10 = 0.01 	QUEUE AVERAGE EXCESS	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX.	204 209 210 222 202 21 RU EXIT NODE	48 46 88 2 73 73 73 JN ON GRE STA 1S	61 42 47 28 85 29/ EEN T	28 7/19 IMES START E 2ND	40 993
1PROGRA 0 9 0 LINK NUMBER	581 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H)	1600 2400 T8 CYCLE SAT FLOW (PCU/H	68 84 ATHENS 45 STE DEGREE OF SAT) (%)	25 30 * Cent EPS E MEAN PER CRUIS (SEC)	7 21 32 ral Art TIMES PCU E DELAY (SEC)	4.5 + 2.3 + 2.6 + teries * UNIFORM (U+R+O= (PCU-	.8 (1.1 (2.5 (Opt on; I DELAY I RANDOM+ OVERSAT MEAN Q) I H/H)	.3) .3) .2) .3) 1 DELAY:STOP COST M OF ST DELAY / (\$/H) (21 (15. 19 (13. 84 (4. 08 (7. WEIGHTS STOPS EAN COS OPS OF PCU STO %) (\$)	9) 16 2) 14 1) 13 4) 10 = 0.01 	QUEUE AVERAGE EXCESS J) (PCU)	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE (\$/H)	204 209 210 222 202 21 RL EXIT NODE	48 46 88 2 73 73 73 0N ON GRE STA 1S (61 42 47 28 85 29/ EN T END T SECO	28 7/19 IMES START E 2ND	40 993
1PROGRA 0 9 0 LINK NUMBER 1910	581 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2652<	1600 2400 T8 CYCLE SAT FLOW (PCU/H 9000	68 84 ATHENS 45 STE DEGREE OF SAT) (%) 34	25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17	7 21 32 ral Art TIMES PCU E DELAY (SEC) 0	4.5 + 2.3 + 2.6 + teries * UNIFORM (U+R+O= (PCU- .1 +	.8 (1.1 (2.5 (Opt on; I DELAY I RANDOM+ OVERSAT WEAN Q) I -H/H) .3 (.3) .3) .2) .3) 1 DELAY:STOP COST M OF ST DELAY / (\$/H) ((\$/H) ()	21 (15. 19 (13. 84 (4. 08 (7. WEIGHTS STOPS EAN COS OPS OF PCU STO %) (\$, 1 (1.	9) 16 2) 14 1) 13 4) 10 = 0.01 5T MEAN F MAX. 5PS (H) (PCC .3)	QUEUE AVERAGE EXCESS J) (PCU)	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE	204 209 210 222 202 21 RU EXIT NODE	48 46 88 2 73 73 JN ON GRE STA 1S (17	61 42 47 28 85 29/ EN T END T SECO	28 7/19 IMES START E 2ND	40 993 SND
1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930	581 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2652< 732 1872<	1600 2400 T8 CYCLE SAT FLOW (PCU/H 9000 3000 7500	68 84 ATHENS 45 STE DEGREE OF SAT) (%)	25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7	7 21 32 ral Art TIMES PCU E DELAY (SEC)	4.5 + 2.3 + 2.6 + teries * UNIFORM (U+R+O= (PCU- .1 + 3.1 + 3.1 +	.8 (1.1 (2.5 (Opt on; I DELAY I RANDOM+ OVERSAT MEAN Q) I H/H) .3 (2.7 (.4 (.3) .2) .3) 1 DELAY:STOP COST M OF ST DELAY / (\$/H) (.0) .3) 1 .2)	21 (15. 19 (13. 84 (4. 08 (7. WEIGHTS STOPS EAN COS OPS OF PCU STO %) (\$/ 1 (1. 14 (8. 22 (12.	9) 16 2) 14 1) 13 4) 10 = 0.01 (ST MEAN F MAX. DPS (H) (PCL 3) 1 2.2 14 3.3 15	QUEUE AVERAGE EXCESS J) (PCU)	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE (\$/H) 1.3 8.5 12.5	204 209 210 222 202 21 RU EXIT NODE S	48 46 88 2 73 73 73 73 73 73 73 73 73 73 73 73 73	61 42 47 28 85 29/ EN T SECO 3 77 63	28 7/19 IMES START E 2ND NDS)	40 993 SND
1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940	581 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2652< 732 1872< 2958<	1600 2400 T8 SAT FLOW (PCU/H 9000 3000 7500	68 84 ATHENS 45 STH DEGREH OF SAT) (%) 34 84 42 51	25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8	7 21 32 ral Art TIMES PCU E DELAY (SEC) 0 28 7 3	4.5 + 2.3 + 2.6 + teries * UNIFORM (U+R+O= (PCU- (PCU- .1 + 3.1 + 3.1 + 1.8 +	.8 (1.1 (2.5 (Opt on; I DELAY 1 RANDOM+ OVERSAT MEAN Q) I H/H) .3 (2.7 (.4 (.5 (.3) .3) .2) .3) 1 DELAY:STOP 	21 (15. 19 (13. 84 (4. 08 (7. WEIGHTS STOPS EAN COS OPS OF PCU STO %) (\$/ 1 (1. 14 (8. 22 (12. 17 (7.	9) 16 2) 14 1) 13 4) 10 = 0.01 (ST MEAN F MAX. DPS /H) (PCI .3) 1 .2) 14 .3) 1 .9) 14	QUEUE AVERAGE EXCESS J) (PCU) I I	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE (\$/H) 1.3 8.5	204 209 210 222 202 21 RU EXIT NODE S	48 46 88 2 73 73 73 73 73 73 73 73 73 73 73 73 73	61 42 47 28 85 29/ EN T SECO 3 77 63 46	28 7/19 IMES START E 2ND NDS)	40 993 SND
1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940 1950 1960	581 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2652< 732 1872< 2958<	1600 2400 T8 CYCLE SAT FLOW (PCU/H 9000 3000 7500	68 84 ATHENS 45 STF DEGREN OF SAT) (%) 34 84 42 51 67 93	25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8 8 9 25	7 21 32 ral Art TIMES PCU E DELAY (SEC) 0 28 7	4.5 + 2.3 + 2.6 + :eries * UNIFORM (U+R+O= (PCU- .1 + 3.1 + 1.8 + 5.7 + 6.8 +	.8 (1.1 (2.5 (Opt on; I DELAY 1 RANDOM+ OVERSAT MEAN Q) I H/H) .3 (2.7 (.4 (.5 (1.0 (6.2 (.3) .2) .2) .3) 1 DELAY:STOP 	21 (15. 19 (13. 84 (4. 08 (7. WEIGHTS STOPS EAN COS OPS OI PCU STT %) (\$/ 1 (1. 14 (8. 22 (12. 17 (7. 28 (19) 03 (4. 19 (15. 19 (15. 1	$\begin{array}{c} 9) & 16\\ 2) & 14\\ 1) & 13\\ 14) & 16\\ = 0.01\\ \hline \\ \text{ST} & \text{MEAN}\\ \text{F} & \text{MAX}.\\ \text{OPS} & \text{MAX}.\\ 1000 & 10\\ 100$	QUEUE AVERAGE EXCESS J) (PCU) L L L L L	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE (\$/H) 1.3 8.5 12.5 8.0 19.5 4.6	204 209 210 222 202 21 RI EXIT NODE S 211 200 212 213 214 218	48 46 88 2 73 73 73 0N ON GRE STA 15 (17 65 10 68 72 83	61 42 47 28 85 29/ EN T END T SECO 3 77 63 46 20 21	28 7/19 IMES START E 2ND NDS) 20	40 993 C SND 2 32
1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940 1950 1950 1950	581 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2652< 732 1872< 2958< 2172< 840 596	1600 2400 T8 CYCLE SAT FLOW (PCU/H 9000 3000 7500 7500 2800 3000	68 84 ATHENS 45 STF DEGREE OF SAT) (%) 34 84 42 51 67 93 75	25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8 9 9 25 32	7 21 32 ral Art TIMES PCU E DELAY (SEC) 0 28 7 3 1 1 56 27	4.5 + 2.3 + 2.6 + 2.6 + 2.6 + 2.6 + UNIFORM (U+R+O= (PCU- .1 + 3.1 + 3.1 + 3.1 + 3.2 + 3.0 + .2 +	.8 (1.1 (2.5 (00t on; I DELAY I RANDOM+ OVERSAT MEAN Q) I -H/H) .3 (2.7 (.4 (.5 (1.0 (6.2 (1.5 (.3) .2) .3) 1 DELAY:STOP OF ST DELAY / (\$/H) ((\$/H) (.0) .3) 1 .2) .1) .3) .6) 1 .2)	21 (15. 19 (13. 84 (4.) 08 (7. WEIGHTS STOPS EAN COS OPS 01 PCU STC %) (\$, 1 (1. 14 (8. 22 (12. 17 (7. 28 (19. 03 (4.4)) 44 (7.))	9) 16 2) 14 1) 13 4) 10 = 0.01 (ST MEAN F MAX. DPS (H) (PCI .3) 1 .2) 14 .3) 1 .2) 14 .3) 1 .2) 14 .3) 1 .2) 14 .3) 10 .2) 14 .3) 10 .3) 14 .3) 14 .3] 14 .4] 14 .5] 14	QUEUE AVERAGE EXCESS J) (PCU) L L 4 8 4 2	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE (\$/H) 1.3 8.5 12.5 8.0 19.5 4.6 8.1	204 209 210 222 202 21 RU EXIT NODE S 211 200 212 213 214	48 46 88 2 73 73 73 73 73 73 73 51 5 15 (17 65 10 68 72	61 42 47 28 85 29/ EN T END T SECO 3 77 63 46 20	28 7/19 IMES START E 2ND NDS)	40 993 C SND 2 32
1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980 1980	581 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2652< 732 1872< 2958< 2172< 840 596	1600 2400 T8 SAT FLOW (PCU/H 9000 3000 7500 7500 7500 2800	68 84 ATHENS 45 STH DEGRED OF SAT) (%) 34 84 42 51 67 93 75 433 177	25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8 9 25 32 16 6 30	7 21 32 ral Art TIMES PCU E DELAY (SEC) 0 28 7 3 11 56	4.5 + 2.3 + 2.6 + teries + UNIFORM (U+R+O= (PCU- .1 + 3.1 + 1.8 + 5.7 + 6.8 + 3.0 + .3 + 8.5 + 2	.8 (1.1 (2.5 (Opt on; I DELAY I RANDOM+ OVERSAT MEAN Q) I H/H) .3 (2.7 (.4 (2.7 (.5 (1.0 (6.2 (1.5 (1.5 (2.3 (2.3 (2.3 (2.5 (.3) .3) .2) .3) 1 DELAY:STOP COST M OF ST DELAY / (\$/H) (.0) .3) 1 .2) .3) .6) 1 .2) .0) .0) 12.0) 2	21 (15. 19 (12. 19 (12. 19 (12. 19 (12. 19 (12. 19 (12. 10 (1	9) 16 2) 14 1) 13 4) 10 = 0.01 (5T MEAN F MAX. PFS (PCC) -3) 1 -2) 14 -3) 1 -2) 14 -3) 2 -2) 14 -3) 2 -2) 14 (2UEUE AVERAGE EXCESS J) (PCU) 1 4 8 4 4 2 2 5 +	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE (\$/H) 1.3 8.5 12.5 8.0 19.5 4.6 8.1 2.0 29.7	204 209 210 222 202 21 RL EXIT NODE S S 211 200 212 213 214 218 198 215 196	48 46 88 2 73 73 73 73 73 73 73 73 73 73 73 73 73	61 42 47 28 85 29/ ENT T SECO 3 77 63 46 20 21 70 45 53	28 7/19 IMES START E 2ND NDS) 20	40 993 C SND 2 32
1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000	581 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2652< 732 1872< 2958 2172< 840 596 2138< 531 1910<	1600 2400 T8 CYCLE SAT FLOW (PCU/H 9000 3000 7500 7500 7500 2800 3000 7500 1500 7500	68 84 ATHENS 45 STT DEGREI OF SAT) (%) 34 84 42 51 67 93 75 43 177 27	25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8 9 9 25 32 32 16 30 22	7 21 32 ral Art TIMES PCU E DELAY (SEC) 0 28 7 3 11 56 27 1 1628 1	4.5 + 2.3 + 2.6 + 2.6 + 2.6 + 2.6 + 000000000000000000000000000000000000	.8 (1.1 (2.5 (Opt on; I DDELAY I RANDOM+ OVERSAT MEAN Q) I H/H) .3 (2.7 (.4 (.5 (1.0 (6.2 (1.5 (.4 (231.7 (.3) .2) .2) .3) 1 DELAY:STOP OF ST DELAY / (\$/H) ((\$/H) (.0) .3) 1 .2) .1) .3) 1 .2) .0) 2 .0) 2	21 (15. 19 (13. 84 (4.) 08 (7. WEIGHTS STOPS EAN COS OPS 01 PCU STC %) (\$/ 1 (1. 14 (8. 22 (12. 17 (7. 28 (19. 03 (4. 94 (1. 157 (17. 4 (1.))	9) 16 2) 14 1) 13 4) 10 = 0.01 (ST MEAN F MAX. DPS (H) (PCC -3) 1 -2) 14 -3) 1 -2) 14 -2) 14 -2) 14 -2) 14 -3) -2 -3) -2 -3) -2 -3 -7) 24 -7) 24 -7) 24	20EUE AVERAGE EXCESS J) (PCU) L 4 4 8 4 2 2 5 5 4 3	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE (\$/H) 1.3 8.5 12.5 8.0 19.5 4.6 8.1 2.0 29.7 .7	204 209 210 222 202 21 RU EXIT NODE S 211 200 212 213 214 218 198 215	48 46 88 2 73 77 77 0 N ON STA 15 (17 65 10 68 72 3 359 77	61 42 47 28 85 129/ EN T SECO 3 77 63 46 20 20 21 70 45	28 7/19 IMES START 2ND NDS) 20 14	40 993 C SND 32 32
1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980 1980	581 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2652c 732 1872c 2956c 2178c 2456 2178c 2138c 2132c 2138c 2138c 2138c 2138c	1600 2400 78 CYCLE SAT FLOW (PCU/H 9000 3000 7500 7500 2800 3000 7500 2800 3000 7500 2800 3000 7500	68 84 ATHENS 45 STH DEGRED OF SAT) (%) 34 84 42 51 67 93 75 433 177	25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8 9 25 32 16 30 22 18	7 21 32 ral Art FRUS PCU E DELAY (SEC) 0 28 7 3 11 56 27 1 1628	4.5 + 2.3 + 2.6 + teries + UNIFORM (U+R+O= (PCU- .1 + 3.1 + 1.8 + 5.7 + 6.8 + 3.0 + .3 + 8.5 + 2	.8 (1.1 (2.5 (Opt on; I DELAY 1 RANDOM+ OVERSAT "MEAN Q) I H/H) .3 (2.7 (.4 (.5 (1.0 (.5 (1.0 (.5 (.4 (.2 (.4 (.4 (.5 (.5 (.5 (.5 (.5 (.5 (.3) .3) .2) .3) 1 DELAY:STOP OF ST DELAY (\$/H) ((\$/H) (.0) .3) 1 .2) .1) .3) .6) 1 .2) .0) .2) .0) .2) .0) .2) .1) 1 .1) 1 .1) 1 .1) 1	21 (15. 19 (12. 84 (4. 08 (7. WEIGHTS STOPS EAN COS OPS OI PCU STC *) (\$/ 1 (1. 14 (8. 22 (12. 17 (7. 28 (19) 03 (4. 94 (7. 4 (1. 157 (17. 4 (2. 106 (3. 34 (2. 106 (2.))	9) 16 2) 14 1) 13 4) 10 = 0.01 (ST MEAN F MAX. PS (H) (PCU .3) 1 .2) 14 .3) 1 .2) 14 .3) 1 .2) 14 .3) 2 .2) 14 .3) 1 .2) 14 .3) 2 .2) 14 .3) 15 .2) 14 .3) 15 .2) 14 .3) 15 .2) 14 .3] 15 .2] 14 .3] 15 .3] 15 15 15 15 15 15 15 15 15 15 15 15 15 1	2UEUE AVERAGE EXCESS J) (PCU) 1 4 8 4 2 2 5 4 3 7 8	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE (\$/H) 1.3 8.5 12.5 8.0 19.5 4.6 8.1 2.0 29.7 .7 3.2 20.5	204 209 210 222 202 21 RL EXIT NODE S S 211 200 212 213 214 218 198 215 196 259 215 217	48 46 88 2 73 73 73 73 73 73 73 73 73 73 73 73 74 55 75 77 45 65 77 45 65 83 9 77 74 5 65 83 9 77 77 83 9 77 77 77 77 73 73 73 73 73 73 73 73 73	61 42 47 28 85 29/ SEN T SECO 3 77 63 46 20 21 70 45 53 58 80	28 7/19 IMES START 2ND NDS) 20 14	40 993 C SND 32 32
1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1960 1970 1980 2000 2010 2020 2020 2040	581 M TRANSY 0 SECOND FLOW (PCU/H) 2652< 732 1872< 2958< 2172< 840 596 2138 531 1910< 270 2615 720	1600 2400 78 CYCLE SAT FLOW (PCU/H 9000 3000 7500 7500 2800 7500 2800 7500 1500 1500 1500 1500	68 84 ATHENSS 45 STF DEGREE OF SAT) (%) 34 84 422 51 67 93 75 43 177 27 65 766 92	25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8 9 25 5 32 32 16 30 0 22 18 20 20 20	7 21 32 ral Art TIMES PCU E DELAY (SEC) 0 28 7 3 11 56 27 1 1628 1 27 8 49	4.5 + 2.3 + 2.6 + 0.01FORM (U+R+O= (PCU- .1 + 3.1 + 1.8 + 5.7 + 6.8 + 3.0 + 2.6 +	.8 (1.1 (2.5 (Opt on; I DELAY I RANDOM+ OVERSAT MEAN Q) I H/H) .3 (2.7 (.4 (1.0 (6.2 (1.5 (.2 (.9 (.2 (.9 (.6 (.5 5) (.2 (.6 (.5 (.6	.3) .2) .2) .3) 1 DELAY:STOP OF ST DELAY / (\$/H) (.0) .3) 1 .2) .0) .6) 1 .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .2) .1] .2) .2) .2) .3) .1] .2) .2) .2) .2) .2) .3) .2) .2) .2) .2) .2) .2) .2) .2) .2) .2	21 (15. 19 (13. 84 (4.) WEIGHTS STOPS EAN COS OPS 01 PCU STC %) (\$/ 1 (1. 14 (8. 22 (12. 17 (7. 28 (19. 03 (4. 94 (1. 157 (17. 4 (1. 157 (17. 4 (1. 157 (17. 4 (1. 157 (17. 4 (1.)) 157 (17. 157 (17.	9) 16 2) 14 1) 13 4) 10 = 0.01 (5T MEAN F MAX. DPS (PCC -3) 1 -2) 14 -3) 1 -2) 14 -3) 1 -2) 14 -3) 2 -2) 14 -3) 2 -2) 14 -3) 2 -2) 14 -3) 2 -3) 2 -3] 2 -	20EUE AVERAGE EXCESS J) (PCU) 1 4 4 8 8 4 2 2 5 5 4 3 7 7 8 2 2 4	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE (\$/H) 1.3 8.5 12.5 8.0 19.5 4.6 8.1 2.0 29.7 .7 3.2 20.5 9.6	204 209 210 222 202 21 RU EXIT NODE S 211 200 212 213 214 213 214 213 214 215 198 215 198 259 215	48 46 88 2 73 73 73 73 73 73 73 73 75 85 55 48	61 42 47 28 85 29/ EN T T SECO 3 77 63 63 20 21 70 45 53 58 72	28 7/19 IMES START 2ND NDS) 20 14	40 993 C SND 32 32
1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2010 2010 2020 2040 2050 2050	581 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2652< 732 1872< 29582 21383 2172< 840 596 21384 531 1910< 2700 2615	1600 2400 T8 CYCLE SAT FLOW (PCU/H 9000 7500 7500 7500 7500 7500 7500 1500 7500 1500 7500	68 84 ATHENS 45 STT DEGREI OF SAT) (%) 34 84 42 51 67 93 75 433 177 27 65 76	25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 7 8 9 25 322 16 30 25 32 21 8 8 9 25 32 21 16 30 20 20 20 20 20 20 20 20 20 20 20 20 20	7 21 21 21 21 21 21 21 21 21 21 21 21 21	4.5 + 2.6 + 2.6 + teries * UNIFORM (U+R+O= (PCU) .1 + 3.1 + 1.8 + 5.7 + 3.0 + 3.0 + .3 + 8.5 +2 .1 + 1.4 + 8.5 +2 .1 + 4.0 + .1 + .3 + .1 + .3 + .3 + .3 + .4 +	.8 (1.1 (2.5 (Opt on; I DELAY 1 RANDOM+ OVERSAT MEAN Q) I H/H) .3 (2.7 (.4 (.5 (1.0 (6.2 (1.5 (.4 (231.7 (.2 (.9 (1.6 (.9 (1.6 (.9 (1.6 (.9 (1.6 (.1.6 (.3) .2) .2) .3) 1 DELAY:STOP OF ST DELAY / (\$/H) (.0) .3) 1 .2) .0) .6) 1 .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .2) .1] .2) .2) .2) .3) .1] .2) .2) .2) .2) .2) .3) .2) .2) .2) .2) .2) .2) .2) .2) .2) .2	21 (15. 19 (13. 84 (4. 08 (7. WEIGHTS STOPS EAN COS OPS OF PCU STC 1 (1. 14 (8. 22 (12. 17 (7. 28 (19) 03 (4. 94 (7. 4 (1. 157 (17. 4 (20. 17 (9. 334 (20. 17 (9. 35 (9. 86 (6. 86 (7.))	9) 16 2) 14 1) 13 10 13 10 14 10 16 10	2UEUE AVERAGE EXCESS J) (PCU) L L 4 8 8 4 2 2 5 4 8 8 4 2 2 5 4 8 8 4 8 8 4 8 8 4 8 8 4 8 8 4 8 5 4 8 8 8 8	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE (\$/H) 1.3 8.5 12.5 8.0 19.5 4.6 8.1 2.0 29.7 .7 3.2 20.5 9.6 9.5 7.4	204 209 210 222 202 21 RU EXIT NODE S 211 200 212 213 214 218 198 215 196 259 215 217 214 218 219	48 46 88 2 73 73 73 73 73 73 73 73 73 73 73 73 73	61 42 47 28 85 29/ EEN T 3 77 75 SECO 3 46 20 21 70 45 53 58 80 65 57 9 22	28 7/19 IMES START 2ND NDS) 20 14	40 993 C SND 32 32
1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980 2000 2010 2020 2040 2020 2040 2050 2060 2060	581 M TRANSY 0 SECOND FLOW (PCU/H) 2652< 732 1872< 2958< 2192 8400 596 2138 531 1910< 270 2615 720 2047 720 2047	1600 2400 78 CYCLE SAT FLOW (PCU/H 9000 3000 7500 7500 7500 3000 7500 1500 1500 1500 1500 5000 5000 5	68 84 ATHENSS 45 STT DEGREE OF SAT) (%) 34 84 42 51 67 93 75 43 177 27 65 766 92 72 82 41	25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8 9 25 525 322 16 30 22 18 20 20 18 30 20 20 18 30	7 21 32 ral Art TIMES PCU E DELAY (SEC) 0 28 7 3 11 56 27 1 56 27 1 1628 1 27 8 49 11 17 7 1	4.5 + 2.3 + 2.6 + teries * UNIFORM (U+R+O= (PCU- .1 + 3.1 + 1.8 + 5.7 + 3.0 + .3.8 + 3.0 + .1 + 1.1 + 4.3 + 5.7 + .1 + 1.1 + 4.3 + .1 + 1.6 + .1	.8 (1.1 (2.5 (Opt on; I DELAY I RANDOM+ OVERSAT MEAN Q) I H/H) .3 (2.7 (.4 (1.0 (6.2 (1.5 (.4 (1.5 (.2 (.9 (1.6 (1.3 (2.3 (2.3 (2.3 (.4 (.5 5 (1.3 (2.3 (.4 (.4 (.5 5 (.3 (.4 (.5 5 (.3 (.4 (.5 5 (.3 (.4 (.5 5 (.4 (.5 5 (.2 (.4 (.5 5 (.4 (.5 5 (.4 (.5 5 (.4 (.5 5 (.4 (.5 (.5 (.5 (.4 (.5 (.5 (.4 (.5 (.5 (.4 (.5 (.5 (.4 (.5 (.5 (.5 (.4 (.5 (.5 (.5 (.5 (.5 (.5 (.5 (.5 (.5 (.3 (.4 (.5 (.5 (.5 (.5 (.3 (.4 (.5 (.5 (.5 (.3 (.5 (.5 (.5 (.3 (.4 (.3 (.4 (.3 (.4 ())))))))))))))))))))))))))))))))))))	.3) .3) .2) .3) 1 DELAY:STOP OF ST DELAY / (\$/H) (.0) .3) 1 .2) .0) .3) 1 .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .2) .2) .2) .2) .2) .2) .2) .2) .2	21 (15. 19 (13. 84 (4.) 08 (7. WEIGHTS STOPS EAN COS OPS 01 PCU STC %) (\$, 1 (1. 14 (8. 22 (12. 17 (7. 28 (19. 03 (4. 94 (1. 157 (17. 4. 157 (17. 4. 10. 157 (9. 3. 157 (9. 157 (15.) 157 (15.	9) 16 2) 14 1) 13 4) 10 = 0.01 (5T MEAN F MAX. 5PS /H) (PCC .3) 1 .2) 14 .3) 1 .2) 14 .3) 1 .2) 14 .3) 2 .2) 14 .3) 1 .2) 14 .3) 1 .2) 14 .3) 1 .2) 14 .3) 14 .2) 14 .3) 15 .2) 14 .3) 15 .2] 14 .3] 15 .2] 24 .3] 25 .2] 24 .3] 25 .2] 24 .3] 25 .3] 25	2UEUE AVERAGE EXCESS J) (PCU) 1 4 8 4 2 2 5 5 7 8 2 2 4 8 2 2 5 4 8 2 2 4 8 8 2 4 8 8 2 2 4 8 8 2 4 8 8 8 8	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE (\$/H) 1.3 8.5 12.5 8.0 19.5 4.6 8.1 2.0 29.7 .7 3.2 20.5 9.6 9.5 7.4 .5	204 209 210 222 202 21 RI EXIT NODE S S 211 200 212 213 214 218 198 215 215 215 215 217 214 218 196 259 215 217 214 210 229 210 8 210 222 210 210 222 210 222 210 222 210 222 210 222 210 222 202 210 222 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 210 222 202 20	48 46 88 2 73 73 73 73 73 73 73 73 73 73 73 73 73	61 42 47 28 85 29/ ENT 3 5 5 5 5 5 5 3 77 6 3 46 20 21 70 45 53 5 80 65 79 9 22 77	28 7/19 IMES START 2ND NDS) 20 14	40 993 C SND 32 32
1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2010 2010 2020 2040 2050 2050	581 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2652< 732 1872< 2958 2172< 840 531 1910< 2700 2615 720 2047 2095	1600 2400 T8 CYCLE SAT FLOW (PCU/H 9000 3000 7500 7500 7500 2800 3000 7500 1500 7500 1500 7500 1500 7500 1500 5000	68 84 ATHENS 45 STF DEGREI OF SAT) (%) 34 84 84 42 51 67 93 75 433 177 27 66 72 72 76 92 722 82	25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 7 8 9 255 322 16 300 22 18 20 20 18 30 22 20	7 21 22 ral Art TIMES PCU E DELAY (SEC) 0 28 7 3 11 56 27 1 1628 1 27 8 49 117	4.5 + 2.3 + 2.6 + teries + UNIFORM (U+R+0- (PCU- (PCU- 1 + 3.1 + 1.8 + 5.7 + 3.0 + 3.0 + 3.3 + 1.8 + 5.7 + 4.6 + 4.5 + 1.4 + 1.4 + 1.6 + 1.4 + 1.4 + 1.6 + 1.4 + 1.6 + 1.4	.8 (1.1 (2.5 (Opt on; I DELAY 1 RANDOM+ OVERSAT MEAN Q) I H/H) .3 (2.7 (.4 (.5 (1.5 (.4 (2.2 (1.5 (.2 (1.5 (.2 (1.5 (.2 (1.6 (5.5 (1.3 (2.3 (.3) .3) .2) .3) 1 DELAY:STOP 	21 (15. 19 (13. 84 (4. 08 (7. WEIGHTS STOPS EAN COS OPS OH PCU STC 1 (1. 14 (8. 22 (12. 17 (7. 28 (19. 03 (4. 94 (7. 14 (1. 157 (17. 4 (1. 157 (17. 4 (20. 17 (9. 35 (9. 86 (6. 3 (20. 17 (1.)))))))))))))))))))))))))))))))))))	9) 16 2) 14 1) 13 4) 10 = 0.01 (5T MEAN F MAX. 5PS /H) (PCC .3) 1 .2) 14 .3) 1 .2) 14 .3) 1 .2) 14 .3) 2 .2) 14 .3) 1 .2) 14 .3) 1 .2) 14 .3) 1 .2) 14 .3) 14 .2) 14 .3) 15 .2) 14 .3) 15 .2] 14 .3] 15 .2] 24 .3] 25 .2] 24 .3] 25 .2] 24 .3] 25 .3] 25	2UEUE AVERAGE EXCESS J) (PCU) 1 4 4 8 4 2 2 5 + 3 7 8 8 2 4 2 2 5 4 8 8 4 2 2 5 4 8 8 4 2 2 5 4 8 8 8 6 6	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE (\$/H) 1.3 8.5 12.5 8.0 19.5 4.6 8.1 2.0 29.7 .7 3.2 20.5 9.6 9.5 7.4 .5 1.7 3.6	204 209 210 222 202 21 RU EXIT NODE S 211 200 212 213 214 218 198 215 196 259 215 217 214 218 219 220 221 214 218 219 220 221 210 221 210 221 210 222 210 222 21 RU RU RU RU RU RU RU RU RU RU RU RU RU	48 46 88 2 73 73 73 70 N ON GRE 55 10 65 10 65 10 65 10 65 10 65 10 65 10 67 2 83 359 927 77 45 65 65 83 83 59 927 75 51 55 55 83 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 83 85 85 85 85 85 85 85 85 85 85 85 85 85	61 42 47 28 85 29/ EEN T: SECO 3 77 63 63 20 21 77 63 46 20 21 77 63 58 80 65 53 58 80 65 57 9 22 77 16 87	28 7/19 IMES START 2ND NDS) 20 14	40 993 C SND 32 32
1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2010 2010 2020 2040 2050 2060 2060 2060 2080 2090 2110 2120	581 M TRANSY 0 SECOND FLOW (PCU/H) 2652< 732 1872< 2958< 21972 2958< 21972 2958 21172 840 596 2138 531 1910< 270 2615 720 2047 2095 2595 2034 88 1499	1600 2400 78 CYCLE SAT FLOW (PCU/H 9000 3000 7500 7500 7500 7500 3000 7500 1500 1500 1500 5000 5000 5000 5	68 84 ATHENSS 45 STT DEGREE OF SAT) (%) 34 84 42 51 67 93 75 43 177 27 65 766 92 72 84 147 46 92 72 84 1 77 72 77 72 72 72 72 72 72 72 72 72 72	25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 300 7 8 9 25 525 322 16 300 22 18 20 20 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 20 25 20 20 25 20 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20	7 21 22 ral Art TIMES PCU E DELAY (SEC) 0 28 7 3 11 56 27 1 56 27 1 1628 1 27 8 49 11 17 1 2 15 5 17	4.5 + 2.3 + 2.6 + teries + UNIFORM (U+R+O= (PCU- .1 + 3.1 + 1.8 + 5.7 + .1 + 4.3 + 5.7 + .1 + 4.3 + 5.6 + .1 + .1 + 4.3 + 5.6 + .1 + .5 + .2 - .1 + .1 + .5 + .5 - .5 + .5 +	.8 (1.1 (2.5 (Opt on; I DELAY I RANDOM+ OVERSAT MEAN Q) I H/H) .3 (2.7 (.4 (2.7 (.4 (1.0 (1.5 (.4 (2.5 (1.3 (2.3 (2.3 (.4 (.5 (1.3 (2.3 (.4 (.5 (.4 (.4 (.5 (.4 (.4 (.5 (.4 (.4 (.5 (.4 (.4 (.4 (.5 (.4 (.4 (.5 (.4 (.4 (.5 (.4 (.4 (.5 (.4 (.5 (.4 (.4 (.5 (.4 (.4 (.5 (.4 (.5 (.4 (.4 (.5 (.4 (.5 (.4 (.5 (.4 (.5 (.5 (.3) .3) .2) .3) 1 DELAY:STOP 	21 (15. 19 (13. 84 (4. 08 (7. WEIGHTS STOPS EAN COS OPS 01 PCU STC %) (\$, 1 (1. 14 (8. 22 (12. 17 (7. 28 (19. 03 (4. 94 (7. 157 (17. 4 (1.) 157 (17. 4 (1.) 157 (17. 4 (2.0) 34 (2.0) 157 (3. 47 (6. 55 (3. 47 (6. 37 (7.) 157 (1.) 157 (1.)	9) 16 2) 14 1) 13 10 = 0.01 (ST MEAN F MAX. PFS /H) (PCC .3) 1 .2) 14 .3) 15 .2) 14 .3] 15 .2] 24 .3] 15 .2] 24 .5] .5 .5] .5 .8] 11 .5] .5 .8] 11 .5] .5 .5] .5 .5 .5] .5 .5] .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	2UEUE AVERAGE EXCESS J) (PCU) 1 4 8 4 8 4 2 2 5 4 8 2 4 5 4 8 2 4 5 4 8 2 4 9 9 9	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE (\$/H) 1.3 8.5 12.5 8.0 19.5 4.6 8.1 2.0 29.7 .7 3.2 20.5 9.6 9.5 7.4 .5 1.7 3.6 7.2	204 209 210 222 202 21 RI EXIT NODE S S 211 200 212 213 214 218 198 215 196 259 215 215 219 215 219 229 217 214 210 221 210 RI 220 221 210 RI 222 202 210 RI 222 202 202 202 202 202 202 202 202 20	48 46 88 2 73 77 70 N STA 55 10 10 68 83 59 77 75 55 65 65 65 48 9 27 27 57 87 27 51 27 532	61 42 47 28 85 29/ EN T 5 END 5 SECO 3 77 63 46 20 21 70 63 45 53 58 80 65 57 22 77 16 63 58 63 65 79 22 77 76 63 65 77 63 65 78 65 77 63 77 63 63 78 77 63 77 63 78 77 63 78 77 63 77 77 63 78 77 63 78 77 77 63 77 63 77 63 77 63 77 63 77 63 77 63 77 63 77 63 77 63 77 63 77 63 77 63 77 63 77 63 77 63 77 63 77 77 63 77 63 77 63 77 77 63 77 77 63 77 63 77 77 63 77 63 77 63 77 63 77 77 63 77 77 63 77 77 63 77 77 63 77 77 63 77 77 63 77 77 63 77 77 63 77 77 63 77 77 77 63 77 77 63 77 77 63 77 77 63 77 77 77 63 77 77 63 77 77 63 77 77 77 63 77 63 77 77 63 78 77 63 78 76 77 77 77 63 77 77 63 78 77 77 63 77 77 63 78 77 77 63 78 77 77 63 78 77 77 63 77 77 63 77 77 63 78 77 77 63 78 77 77 63 78 76 77 77 77 63 77 77 63 77 77 77 63 77 77 77 63 77 77 77 63 77 77 77 63 77 77 77 63 77 77 77 77 63 77 77 77 77 77 77 77 77 77 77 77 77 77	28 7/19 IMES START 2ND NDS) 20 14	40 993 C SND 32 32
1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 2000 2010 2010 2010 2020 2040 2050 2060 2080 2090 2110	581 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2652< 732 1872< 29584 2172< 29584 2172< 840 596 2138< 531 1910< 2700 2615 720 2615 720 2045 2595 2034	1600 2400 78 CYCLE SAT FLOW (PCU/H 9000 3000 7500 7500 7500 7500 3000 7500 1500 1500 1500 5000 5000 5000 5	68 84 ATHENS 45 STF DEGREI OF SAT) (%) 34 84 84 42 51 67 93 75 433 177 27 665 76 92 72 76 92 82 82 82 41 46 51	25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 7 8 9 255 32 16 30 22 16 30 0 22 18 20 20 20 20 15 12	7 21 22 ral Art TIMES PCU E DELAY (SEC) 0 28 7 3 11 56 27 1 1628 1 27 8 49 11 17 1 2 7 5 15	4.5 + 2.3 + 2.6 + teries + UNIFORM (U+R+0- (PCU- (PCU- (PCU- 1 + 3.1 + 3.1 + 1.8 + 5.7 + 3.0 + 3.0 + 3.0 + 1.1 + 4.0 + 4.3 + 5.7 + 1.1 + 1.1 + 1.5 + 1.6	.8 (1.1 (2.5 (Opt on; I DELAY 1 RANDOM+ OVERSAT MEAN Q) I H/H) .3 (2.7 (.5 (1.0 (6.2 (1.5 (2.3 (.4 (.5 (1.3 (2.3 (.4 (.5 (1.3 (.5 (1.2 (.5 (.5 (1.2 (.5 ()))))))	.3) .3) .2) .3) 1 DELAY:STOP 	21 (15. 19 (13. 84 (4. 08 (7. WEIGHTS STOPS EAN COS OPS OF PCU STC 11 (1. 14 (8. 22 (12. 17 (7. 28 (19. 03 (4. 94 (7. 28 (19. 03 (4. 94 (7. 20 (1. 57 (7. 4. 1. 06 (3. 34 (20. 1. 20 (1. 55 (3. 55	9) 16 2) 14 1) 13 4) 10 = 0.01 	QUEUE AVERAGE EXCESS J) (PCU) 1 4 4 8 4 2 2 5 + 3 7 8 8 4 2 2 5 + 3 7 8 8 4 2 2 5 + 3 7 8 8 9 9 3	7.4 16.2 13.4 4.3 7.7 PAGE PERFORMANCE INDEX. WEIGHTED SUM OF () VALUE (\$/H) 1.3 8.5 12.5 8.0 19.5 4.6 8.1 2.0 29.7 .7 3.2 20.5 9.6 9.5 7.4 .5 1.7 3.6	204 209 210 222 202 21 RU EXIT NODE S 211 200 212 213 214 218 198 215 196 259 215 217 214 218 219 220 221 214 218 219 220 221 210 221 210 221 210 222 210 222 21 RU RU RU RU RU RU RU RU RU RU RU RU RU	48 46 88 2 73 73 70 N ON GRE STA STA 65 10 65 10 65 10 65 10 68 83 59 9277 45 65 65 83 83 9277 277 25 51 32 41 55	61 42 47 28 85 52 29/ 52 53 77 63 55 53 77 63 58 70 20 21 70 75 58 79 22 21	28 7/19 IMES START 2ND NDS) 20 14	40 993 C SND 32 32

						Dela	y:stop	weigh	nting	ratio of	£ 0.01				
0 TOTAL DISTAN	SECOND	CYCLE 4 TOTAL TIME	5 STE	PS MEAN URNEY		2.2 + 2.3 + 6.1 + 3.7 + 3.9 + .2 + 6.6 + 16.8 + 16.8 + 16.8 + 16.8 + 10.4 + .0 + 1.9 + 1.9 + 1.9 + 1.9 + 1.5 + 3.2 + 3.2 + 1.5	2.7 (9 (99.4 (1.0 (.6 (.3 (2.0 (.8 (1.2 (.2 (.2 (.2 (.2 (.2 (.2 (.2 (.2) .2) .2) .2) .2) .2) .2) .2) .2) .2)	89 25 254 91 76 11 4 118 87 43 87 43 81 41 46 1 66 8 34 147 70 113 98 144 120 COP WEI	(.9) (.9) (23.5) (4.4) (7.8) (4.7) (1.2) (1.2) (12.7) (20.3) (9.9) (20.3) (9.9) (20.3) (9.6) (7.4) (4.4) (1.8) (.3) (4.2) (.9) (7.4) (2.0) (2.7) (5.6) (2.1) (.3) GHTS = 0.0 TOTAL COST	14 14 14 115 12 13 17 1 25 19 56 25 11 1 24 4 1 5 3 18 24 32 44 425 13 11 2 201 PENA FC	R	1.2 1.0 28.3 4.7 8.0 4.8 1.2 13.3 10.2 21.2 9.8 7.6 4.6 1.8 .3 4.3 1.0 7.5 2.7 3.0 6.6 12.1 2.9 2.4 .4 PAGE TOTAL PERFORMANCE	225 225 226 225 227 226 227 226 227 226 227 178 216 259 261 259 261 260 259 261 213 261 216 219 221 221 222	83 34 74 44 34 85 34 48 48 83 76 63 54 22 89 30 52 85 48 23 8 26 53 71 42 4 60 33 13 9 67 86 67 44 31 7 2 37 67 34 10 38 41 62 84 11 32 60 22 27 RUN ON 29/ 7/1993
(PCU-KM 0 13281.	/H)	SPENT (PCU-H/H 1374.5		SPEED (KM/H) 9.7	(1	DELAY PCU-H/H) 280.0	OVERSAT DELAY (PCU-H/H) 470.9	DELAY (\$/H)		OF STOPS (\$/H) 618.5)	QUE (\$/		INDEX (\$/H) = 656.0	Т	OTALS
0******* * 0	• • • • • • • • •		*****		CRUISE	HOUD		ELAY	· · · · · · ·	STOPS	HOUR		TOTALS ES PER HOUR	• • • • • •	
0		ON PREDIC		1	S PER 1243.4	HOUR		PER HOUP	(I +	177.7			2472.3		
	LINKS RI	TO SUBPT ECALCULAT													
	ON TIME	: 488 S F8 FINISH	ECOND	S											

Delay:stop weighting ratio of 100

	YPE																	
	ITLE:-			ral Art	eries	* Opt on;	DELAY:S	TOP WEIGH	TS = 100 FLOW	CRUISE	-SPEEDS	OPTIM	ISE EXTRA	HILL-	DEL	AY	STOP	P
			O. OF STEPS	PERIOD	DISPL	ACEMENTS	SETTING	S INFO.	SCALE	SCALE		0=NON 1=0/S	E COPIES	CLIMB	VAL P P		VALU P PE	
	(SEC)	PER	1-1200 MINS.			0=NC 1=YE	S CHOICE	8	8	1=SPEEDS	2=FUI	L OUTPUT	1=FULL	PCU	-H	100	0
2) = 1PROGRAM		90 8 A	45 THENS	120 * Centr	2 al Art	aries * (Dot on; D	0 ELAY:STOP	0 WEIGHTS	0 = 100	0	2	0 PAGE	0 20 RU	500 N ON			
0 90	SECOND	CYCLE	45 STE	PS							QUEUE	PF	RFORMANCE	EXIT	GREE	N TI	MES	
0 LINK NUMBER	FLOW	SAT FLOW	DEGREE	MEAN PER			RANDOM+	COST M	IEAN COS	T ME	AN		INDEX.	NODE	STAR	T S	TART	
	LINK		SAT	CRUISE	DELAY	(11+P+O=)	OVERSAT MEAN Q) D		OPS OF		X. AVERA EXCE		() VALUES		157	ND	2ND	ND
(PCU/H)	(PCU/H)	(8)	(SEC)		(PCU-I			(8) (\$/		PCU) (PC	U)	(\$/H)		(S	ECON	DS)	
900	222	1500	35	18	13	.5 +	.3 (4.1)	69 (.	.0)	2		4.1	187			78	6
1060	142	1500	43	18	24	.6 + 3.4 +		4.8)		.0)	2 12		4.8 22.4	189 185	84 50	3 67		48
1210 1280	1094 361	4000 1500	68 68	17 18	15 23	3.4 + 1.2 +		1.4)	97 (.	.0)	5		11.4	180	55			25 12
1300	307 995	1500 3200	58 61	18 11	20 4	1.0 +		8.4) 6.2)		.0)	4 9		8.4 6.2	179 179	42 16			83
1330 1340	1302	3200	73	18	8	1.5 +	1.4 (1	.4.2)	43 (.	.1)	10		14.3 13.7	180 181	73 50	7 76		52 31
1350 1360	1392 260	3200 1500	73 65	25 22	7 29	1.4 + 1.2 +		(3.7) (0.6) 1		.0)	11 4		10.7	205	17	28	62 *	73
1380	1147	3200	50	13	3	.3 +	.5 (4.0)		.0)	3 6		4.0	182 183	17 35			3 14
1390 1400	929 369	3200 1800	52 62	16 20	5 17	.6 + .9 +		5.9) 8.5)	74 (.	.0)	4		8.5	203	41	55	86	10
1420	1007	3200	54	24	8	1.8 +		1.8)		.1)	10 13		11.9	184 185	24 71		69 26	4 4 6
1440 1450	1085 1058	3200 3200	73 78	6 19	12	1.5 + 1.6 +	1.8 (1	17.1)	55 (.	.1)	11		17.1 37.4	186 199	44 31			17 89
1460 1480	1121 818	4000 3200	90 52	20 10	24	3.1 +		4.2)		.1)	18 3		4.2	187		75	9 :	30
1490	848	3200	70	24	13	1.9 +	1.2 ()	15.3)	83 (.0)	10		15.3 10.4	188 197	41 57			12 19
1500 1520	192 1020	1500 3200	72 49	22 13	39 3	.8 +		10.3) 1 4.5)		.0)	4		4.5	189	52	80	7	35
1540	230	1000	74	22	34	.8 +				.0)	4		10.9	195 194	33 27	46 30	78	1
1580 1590	22 190	1500 1500	33 63	18 9	82 49	.3 + 1.7 +	.2 (105 (.0)	5		13.0	193	10 40	27 17		
1610	1948	4300 1800	60 60	12 25	3 30	.8 +	.7 (.1)	13		7.9 6.4	194 260	40	59		
1620 1630	156 1970	4300	79	9	7	2.2 +	1.9 (2	20.4)	43 (.1)	19		20.5	195 196	5 13			75 81
1640 1650	2255 606	4300 1500	98 76	13 26	36 14	3.2 +		13.7) 1 11.6)		.3)	49 + 6		11.6	188	15	38	60	83
1660	2457	4300	86	14	6	1.3 +	3.0 (3	21.6)	31 (.2)	14 20		21.7 19.9	197 198	24 35		69 80	8 18
1670 1680	2287 1230	4300 3200	83 79	11 30	6 16	1.6 + 3.5 +		19.9) 26.5)	90 (.1)	17		26.5	186	20	41		86 72
1690 1700	1994 2015	4300 5500	87 79	21 7	13 10	4.0 +		36.4) 29.2)		.2)	23 19		36.6 29.5	199 200	4 54	74		29
1710	1096	3800	74	30	26	6.5 +	1.4 (39.7)	83 (.1)	25 4		39.8 7.2	212 184	4 52	38 66	7	21
1720 1730	259 1961	1500 5500	52 45	30 12	20 1	.9 +	.5 (7.2) 2.5)		.0)	2		2.5	201	19	54	64	9
1740	1823	5500	88	20	15	4.1 +	3.5 (37.9)		.1)	25 3		38.0 5.3	202 183	45 62	61 77		16 32
1750 1760	240 2004	1500 5500	45 66	20 14	16 3	.7 +	.4 (5.3) 9.3)	24 (.1)	15		9.4	203	14 21	38 43		83 88
1770 1780	2100 526	5500 2000	75 66	8 24	4 27	.7 + 3.1 +		11.1) 20.1)		.1)	20		11.3 20.1	204 209	59	4		
1790	300	1500	64	18	23	1.1 +	.9 (9.8)	103 (.0)	4		9.8	181		47	79	2 59
1800 1810	2297 2397	5500	67	13 10	4 2	1.2 +	1.0 (11.2) 5.4)		.2)	15			205	34	14	32	
1820		5500	53		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.5 +			8 (.1)	7		11.3 5.5	205 206	77 84	14 67		
	551	5500 2000	53 65	26	14	.5 + 1.2 +	.9 (10.5)	82 (.0)	7		5.5 10.5	206 178	77		32 75	3
1830	738				14 26 29		.9 (.9 (82 (82 (87 (.0) .0) .0)	7 16 17		5.5 10.5 26.4 29.1	206 178 227 227	77 84 30 25 25	67 48 58 55		
1830 1831 1840	738 729 2940<	2000 3000 3000 9000	65 65 71 61	26 30 30 12	26 29 10	1.2 + 4.3 + 4.6 + 7.3 +	.9 (.9 (1.2 (.8 (10.5) 26.4) 29.0) 40.7)	82 (82 (87 (55 (.0) .0) .5)	7 16 17 50		5.5 10.5 26.4	206 178 227	77 84 30 25	67 48 58		
1830 1831	738 729	2000 3000 3000	65 65 71	26 30 30	26 29 10 32 22	1.2 + 4.3 + 4.6 +	.9 (.9 (1.2 (.8 (.5 (1.4 (10.5) 26.4) 29.0) 40.7) 8.6) 15.8)	82 (82 (87 (55 (87 (103 (.0) .0) .0) .5) .0) .1)	7 16 17 50 5 8		5.5 10.5 26.4 29.1 41.2 8.6 15.9	206 178 227 227 208 224 204	77 84 30 25 25 89 25 46	67 48 58 55 46 46 62		3
1830 1831 1840 1850 1860 1870	738 729 2940< 197 507 2711<	2000 3000 9000 1600 1800 9000	65 65 71 61 50 75 58	26 30 30 12 25 28 9	26 29 10 32 22 2	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 1.1 +	.9 (.9 (1.2 (.8 (.5 (1.4 (.7 (10.5) 26.4) 29.0) 40.7) 8.6) 15.8) 9.0)	82 (82 (87 (55 (87 (103 (10 (.0) .0) .0) .5) .0) .1) .1)	7 16 17 50 5		5.5 10.5 26.4 29.1 41.2 8.6	206 178 227 227 208 224 204 209 210	77 84 30 25 25 89 25 46 9 16	67 48 58 55 46 62 55 65	75	3
1830 1831 1840 1850 1860 1870 1880 1890	738 729 2940< 197 507 2711< 2848< 567	2000 3000 9000 1600 1800 9000 9000 1600	65 65 71 61 50 75 58 57 69	26 30 12 25 28 9 10 25	26 29 10 32 22 2 5 20	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 1.1 + 2.9 + 2.1 +	.9 (.9 (1.2 (.8 (.5 (1.4 (.7 (.7 (1.1 (10.5) 26.4) 29.0) 40.7) 8.6) 15.8) 9.0) 18.0) 16.0)	82 (82 (87 (55 (87 (103 (10 (18 (55 (.0) .0) .5) .0) .1) .1) .1) .0)	7 16 17 50 5 8 14 21 8		5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1 16.0	206 178 227 227 208 224 204 209 210 222	77 84 30 25 25 89 25 46 9 16 65	67 48 58 55 46 46 62 55 65 20	75	3 17
1830 1831 1840 1850 1860 1870 1880 1890 1900	738 729 2940< 197 507 2711< 2848< 567 583	2000 3000 9000 1600 1800 9000 9000 1600 2400	65 65 71 61 50 75 58 57 69 91	26 30 12 25 28 9 10 25 30	26 29 10 32 22 2 5 20 50	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 1.1 + 2.9 + 2.1 + 3.3 +	.9 (.9 (1.2 (.8 (.5 (1.4 (.7 (.7 (1.1 (4.7 (10.5) 26.4) 29.0) 40.7) 8.6) 15.8) 9.0) 18.0) 16.0) 40.2)	82 (82 (87 (55 (87 (103 (10 (18 (55 (152 (.0) .0) .0) .5) .0) .1) .1) .1) .1) .1)	7 16 17 50 5 8 14 21		5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1	206 178 227 227 208 224 204 209 210 222 202	77 84 30 25 25 89 25 46 9 16 65	67 48 58 55 46 62 55 65 20 84	75 1 28	3 17 39
1830 1831 1840 1850 1860 1870 1880 1890 1900 1PROGRAM 0 90	738 729 2940< 197 507 2711< 2848< 567 583 TRANSY SECOND	2000 3000 9000 1600 1800 9000 9000 1600 2400 18 CYCLE	65 65 71 61 50 75 58 57 69 91 ATHENS 45 STE	26 30 12 25 28 9 10 25 30 * Cent	26 29 10 32 22 2 5 20 50 ral Art	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 2.9 + 2.1 + 3.3 + teries *	.9 (.9 (1.2 (.8 (.5 (1.4 (.7 (.7 (.7 (.7 (1.1 (4.7 (Opt on;	10.5) 26.4) 29.0) 40.7) 8.6) 15.8) 9.0) 18.0) 16.0) 40.2) DELAY:STO	82 (82 (87 (55 (87 (103 (10 (18 (55 (152 (P WEIGHTS	.0) .0) .5) .0) .1) .1) .1) .1) .1) .1) .1) .1)	7 16 17 50 5 8 14 21 8 14	D	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1 16.0 40.3 PAGE	206 178 227 227 208 224 204 209 210 222 202	77 84 30 25 25 89 25 46 9 16 65 73 UN ON	67 48 58 55 46 62 55 65 20 84	75 1 28 7/19	3 17 39
1830 1831 1840 1850 1860 1870 1880 1890 1900 1PROGRAM	738 729 2940< 197 507 2711< 2848< 567 583 TRANSY	2000 3000 9000 1600 1800 9000 9000 1600 2400 18	65 65 71 61 50 75 58 57 69 91 ATHENS 45 STE	26 30 30 12 25 28 9 10 25 30 * Cent EPS E MEAN	26 29 10 32 22 2 5 20 50 ral Art	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 1.1 + 2.9 + 2.1 + 3.3 + teries *	.9 (.9 (1.2 (.8 (.5 (1.4 (.7 (1.1 (4.7 (0pt on; -DELAY 4 RANDOM+	10.5) 26.4) 29.0) 40.7) 8.6) 15.8) 9.0) 18.0) 16.0) 40.2) DELAY:STO 	82 (82 (87 (55 (87 (103 (10 (18 (55 (152 (P WEIGHTS STOPS- MEAN CC	.0) .0) .0) .5) .0) .1) .1) .1) .1) .1) .1) .1) .1) .1) .5] .0) .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .5] .0] .5] .5] .0] .5] .5] .0] .5] .5] .0] .5] .5] .5] .5] .5] .5] .5] .5] .5] .5	7 16 17 50 5 8 14 21 8 14 21 8 14		5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1 16.0 40.3 PAGE ERFORMANCE INDEX.	206 178 227 208 224 204 209 210 222 202 202 21 RI EXIT NODE	77 84 30 25 25 89 25 46 9 16 65 73 UN ON GRE STA	67 48 55 46 46 62 55 65 20 84 30/ EN TI RT 5	75 1 28 7/19 IMES START	3 17 39 993
1830 1831 1840 1850 1860 1870 1880 1900 1PROGRAM 0 90 0 LINK	738 729 2940< 197 507 2711< 2848< 567 583 TRANSY SECOND FLOW	2000 3000 9000 1600 1800 9000 1600 2400 T8 CYCLE SAT	65 65 71 61 50 75 58 57 69 91 ATHENS 45 STH DEGREE	26 30 30 12 25 28 9 10 25 30 * Cent EPS E MEAN	26 29 10 32 22 2 5 20 50 ral Art TIMES PCU E	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 1.1 + 2.9 + 2.1 + 3.3 + teries *	.9 (.9 (1.2 (.8 (.5 (1.4 (.7 (.7 (1.1 (4.7 (Opt on; CDELAY 4 RANDOM+ OVERSAT	10.5) 26.4) 29.0) 40.7) 8.6) 15.8) 9.0) 18.0) 16.0) 40.2) DELAY:STO 	82 (82 (87 (55 (87 (103 (10 (10 (18 (55 (152 (P WEIGHTS STOPS- MEAN CC TOPS C	.0) .0) .0) .5) .0) .1) .1) .1) .1) .1) .1) .1) .0) .1) .5) .0) .5) .0) .5) .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .0] .5] .5] .0] .5] .0] .5] .5] .5] .5] .5] .5] .5] .5] .5] .5	7 16 17 50 5 8 14 21 8 14 QUEUE- EAN AX. AVER	AGE W	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1 16.0 40.3 PAGE ERFORMANCE	206 178 227 227 228 208 224 204 209 210 222 202 21 80 EXIT NODE	77 84 30 25 25 89 25 46 9 16 65 73 UN ON GRE STA 1S	67 48 58 55 46 46 62 55 65 20 84 30/ EN TI RT S END T	75 1 28 7/19 IMES START E 2ND	3 17 39 993 F
1830 1831 1840 1850 1860 1870 1880 1900 1900 1PROGRAM 0 90 0 LINK NUMBER	738 729 2940< 197 507 2711< 2848< 567 583 TRANSY SECOND FLOW INTO	2000 3000 9000 1600 1800 9000 1600 2400 78 CYCLE SAT FLOW	65 65 71 61 50 75 8 57 69 91 ATHENS 45 STH DEGREH OF SAT	26 30 30 12 25 28 9 10 25 30 * Cent EPS E MEAN PER CRUIS	26 29 10 32 22 2 5 20 50 ral Art TIMES PCU	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 1.1 + 2.9 + 2.1 + 3.3 + teries *	.9 (.9 (1.2 (.8 (.5 (1.4 (.7 (1.1 (4.7 (0pt on; -DELAY 4 RANDOM+ OVERSAT	10.5) 26.4) 29.0) 40.7) 8.6) 15.8) 9.0) 18.0) 16.0) 40.2) DELAY:STO 	82 (82 (87 (55 (87 (103 (10 (15 (55 (152 (99 WEIGHTS STOPS- MEAN C 7PCU ST	.0) .0) .0) .5) .0) .1) .1) .1) = 100 	7 16 17 50 5 8 14 21 8 14 QUEUE- EAN AX. AVER	AGE W	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1 16.0 40.3 PAGE ERFORMANCE EIGHTED SUM	206 178 227 227 228 208 224 204 209 210 222 202 21 80 EXIT NODE	77 84 30 25 89 25 46 9 16 65 73 UN ON GRE STA 1S (67 48 58 55 46 62 55 65 20 84 30/ EN TI RT S END T SECOR	75 1 28 7/19 IMES START E 2ND	3 17 39 993 F
1830 1831 1840 1850 1860 1870 1880 1900 1900 1PROGRAM 0 90 0 LINK NUMBER 1910	738 729 2940< 197 507 2711< 2848< 567 583 TRANSY SECOND FLOW INTO LINK (PCU/H) 2673	2000 3000 9000 1600 9000 1600 2400 2400 16 CYCLE SAT FLOW (PCU/H 9000	65 65 71 61 50 75 58 57 69 91 ATHENS 45 STF DEGREE OF SAT) (%) 35	26 30 30 12 25 28 9 10 25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17	26 29 10 32 2 2 5 20 50 ral Art TIMES PCU E DELAY (SEC) 0	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 1.1 + 2.9 + 2.1 + 3.3 + teries * UNIFORP (U+R+O= (PCU- .1 +	.9 (.9 (1.2 (.8 (.5 (1.4 (.7 (.7 (.7 (1.1 (4.7 (Opt on; DELAY 4 RANDOM+ OVERSAT -MEAN Q) -H/H) .3 (10.5) 26.4) 29.0) 40.7) 8.6) 15.8) 9.0) 16.0) 16.0) 40.2) DELAY:STO 	82 (82 (87 (55 (87 (103 (10 (18 (55 (152 (P WEIGHTS STOPS- MEAN CC TOPS C 7/PCU ST (%) (\$ 3 (.0) .0) .0) .5) .0) .1) .1) .1) = 100 .0) ST M FF M OPS //H) .0)	7 16 17 50 5 8 14 21 8 14 14 14 QUEUE- EAN AX. AVER EXC (PCU) (P 4	AGE W	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 16.1 16.0 40.3 PAGE ERFORMANCE INDEX. ERFORMANCE INDEX. EIGHTED SUM F () VALUE (\$/H) 1.9	206 178 227 227 228 204 204 209 210 222 202 210 222 202 211 NODE S	77 84 30 25 25 89 25 46 9 16 65 73 UN ON GRE STA 1S	67 48 58 55 46 46 62 55 65 20 84 30/ EN TI SECON 19	75 1 28 7/19 IMES START E 2ND	3 17 39 993 F END D
1830 1831 1840 1850 1860 1870 1880 1900 1PROGRAM 0 900 0 LINK NUMBER 1910 1920	738 729 29402 197 507 2711< 2848- 567 583 TRANSY SECOND FLOW INTO LINK (PCU/H) 2673 738	2000 3000 9000 1600 1800 9000 1600 2400 1600 2400 1600 2400 1600 2400 1600 2400 1600 2400 1600 2400 1600 2400 1600	65 65 71 50 75 58 57 69 91 ATHENS 45 STE DEGREE OF SAT) (%) 35 74	26 30 30 12 25 28 9 10 25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30	26 29 10 32 22 2 5 50 ral Art TIMES PCU E DELAY (SEC) 0 19	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 1.1 + 2.9 + 2.1 + 3.3 + teries * UNIFORM (U+R+O= (PCU- .1 + 2.5 +	.9 (.9 (1.2 (.8 (.5 (1.4 (.7 (.7 (.7 (.7 (.7 (.7 (.7 (.7	10.5) 26.4) 29.0) 40.7) 8.6) 15.9) 15.0) 16.0) 16.0) 16.0) DELAY:STO COST 'OF S DELAY (\$/H)	82 (82 (87 (55 (87 (103 (103 (100 (18 (55 (152 (p) WEIGHTS STOPS- MEAN CC TOPS C /PCU ST (%) (\$.0) .0) .0) .5) .0) .1) .1) .1) .1) .1) .1) .1) .1) .1) .1	7 16 17 50 5 8 14 21 8 14 14 QUEUE EAN AX. AVER EXC (PCU) (P	AGE W	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1 16.0 40.3 PAGE ERFORMANCE INDEX. EIGHTED SUM (\$/H) 1.9 19.7 11.9	206 178 227 227 228 204 204 209 210 222 202 202 202 21 RI EXIT NODE S	77 84 30 25 25 89 25 46 9 9 16 65 73 UN ON GRE STA 15 ((33 78 43	67 48 58 55 46 46 62 55 65 20 84 30/ EN TI RT S END T T SECON 19 2 0	1 28 7/19 IMES START E 2NE NDS)	3 17 39 993 F END D
1830 1831 1840 1850 1860 1870 1880 1900 1900 0 LINK NUMBER 1910 1920 1930 1940	738 729 29402 197 507 2711< 2848< 567 583 TRANSY SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992	2000 3000 9000 1600 9000 1600 2400 2400 2400 2400 CYCLE SAT FLOW (PCU/H 9000 3000 7500 7500	65 65 71 61 50 75 58 57 69 91 ATHENS 45 STH DEGREI OF SAT) (%) 35 74 45 51	26 30 30 12 25 28 9 10 25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 7 8	26 29 10 32 22 20 50 ral Art TIMES PCU E DELAY (SEC) 0 19 4 4	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 1.1 + 2.9 + 2.1 + 3.3 + teries * UNIFORM (U+R+O= (PCU- .1 + 2.5 + 1.9 + 2.5 + 2.5 +	.9 (.9 (.9 (.3 (.5 (.7 (.7 (.7 (.7 (.7 (.7 (.7 (.7	10.5) 26.4) 29.0) 40.7) 8.6) 15.8) 9.0) 16.0) 40.2) DELAY:STO COST DELAY:STO OF S DELAY (\$/H) 1.8) 19.7) 11.8) 15.3)	82 (82 (87 (55 (87 (103 (10 (18 (55 (152 (P WEIGHTS STOPS- MEAN CC TOPS C 7/PCU ST (%) (\$ 3 (99 (25 (.0) .0) .5) .0) .1) .1) .1) .1) = 100 .0) .1) .0PS MOPS //H) .0) .1) .1) .2)	7 16 17 50 5 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 14 21 8 14 14 21 8 14 14 21 8 14 14 14 14 14 14 14 14 14 14	AGE W	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 16.0 40.3 PAGE ERFORMANCE INDEX. ERFORMANCE INDEX. EFICHTED SUM (\$/H) 1.9 19.7 1.9 15.5	206 178 227 227 228 204 204 209 210 222 202 211 NODE 5 211 200 212 213	77 84 30 25 25 89 25 89 25 89 25 73 16 65 73 73 UN ON STA STA 33 78 8 33 78 8 31 7	67 48 58 55 46 46 62 55 65 20 84 30/ EN TI RT \$ SECON 19 2 0 87	1 28 7/19 IMES START E 2NE NDS)	3 17 39 993 F END D
1830 1831 1840 1850 1860 1880 1890 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930	738 729 2940< 197 507 2711< 2848< 567 583 TRANSY SECOND FLOW INTO LINK (PCU/H) 2673 738 1887	2000 3000 9000 1600 9000 1600 2400 78 CYCLE SAT FLOW (PCU/H 9000 3000 7500	65 65 71 61 50 75 58 57 69 91 ATHENS 45 57 45 57 45 57 45 57 4 (%) (%) 35 74 47	26 30 30 12 25 30 • Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8 9	26 29 10 32 22 5 20 50 ral Art TIMES PCU E DELAY (SEC) 0 19 4	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 1.1 + 2.9 + 2.1 + 3.3 + teries + (U+R+O= (PCU- .1 + 2.5 + 1.9 + 1.9 +	.9 (.9 (1.2 (.8 (.5 (1.4 (.7 (10.5) 26.4) 29.0) 40.7) 8.6) 15.8) 9.0) 16.0) 16.0) 40.2) DELAY:STO COST	82 (82 (87 (55 (87 (103 (10 (18 (55 (152 (99 WEIGHTS STOPS- MEAN CC TOPS C /PCU ST (%) (\$ 3 (99 (25 (45 (84 (101 (.0) .0) .0) .5) .0) .1) .1) .1) = 100 .0) .0) .0) .0) .1) .1) .1) .1) .2) .6) .0)	7 16 17 50 5 8 14 21 8 14 14 14 14 EAN AX. AVER EXC (PCU) (P 4 14 16 46 51 22	AGE W ESS C CU)	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1 16.0 40.3 PAGE ERFORMANCE INDEX. EIGHTED SUM (\$/H) 1.9 19.7 11.9 15.5 61.3 36.9	206 178 227 227 224 204 209 210 222 202 202 202 202 202 202 202 202	77 84 30 25 25 89 25 46 55 73 46 65 73 46 57 30 0N 0N 0N 0N 5 5 5 46 5 73 25 5 89 9 25 25 89 9 25 25 89 25 25 25 89 25 25 25 25 25 25 25 25 25 25 25 25 25	67 48 58 55 46 46 62 55 65 20 84 30/ EN TI SECON 19 2 0 87 66 16	1 28 7/19 IMES START E 2NU NDS) 33	3 17 39 993 F END D 47
1830 1831 1840 1850 1860 1900 1900 1900 0 LINK NUMBER 1910 1920 1920 1930 1940 1950 1960 1970	738 729 29402 197 507 2711< 28484 567 583 TRANSY SECOND FLOW INTO LINK (PCU/H) 2673 738 7387 2992 2196 850 597	2000 3000 9000 1600 2400 2400 2400 2400 2400 2400 2400 2	65 65 711 61 50 75 58 57 69 91 ATHENS 45 ST DEGREF OF SAT 0F SAT) (%) 35 74 45 74 45 74 45 74 8 35 74 8 8 8 8 8 8 7 11 91 91 91 91 91 91 91 91 91 91 91 91	26 30 30 12 25 25 30 * 025 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8 9 9 225 32	26 29 32 22 5 7 20 50 ral Art TIMES PCU E DELAY (SEC) 0 19 4 4 20 31 1 29	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 1.1 + 2.9 + 2.1 + 3.3 + teries * UNIFORM (U+R+O= (PCU- .1 + 2.5 + 1.9 + 2.5 + 10.4 + 5.3 + 2.7 +	.9 (.9 (.9 (.1.2 (.8 (.5 (.7 (.7 (.7 (.7 (.7 (.7 (.7 (.7	10.5) 26.4) 29.0) 40.7) 8.6) 15.8) 9.0) 16.0) 16.0) 40.2) DELAY:STO 	82 (82 (87 (55 (87 (103 (10 (18 (55 (152 (P WEIGHTS STOPS- MEAN CC TOPS C 7/PCU ST (%) (% 3 (99 (25 (84 (101 (.0) .0) .5) .0) .1) .1) .1) .1) = 100 .0) .1) .0) .1) .1) .1) .2) .0) .1) .1) .1) .2) .0) .1)	7 16 17 50 5 8 14 21 8 14 14 14 QUEUE- EAN AX. AVER EXC (PCU) (P 4 16 46 51 22 11	AGE W ESS C CU)	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1 16.0 40.3 PAGE ERFORMANCE INDEX. (F () VALUE (\$/H) 1.9 19.7 11.9 15.5 61.3	206 178 227 208 224 204 209 210 222 202 21 RI EXIT NODE S 211 200 212 202 21 212 213 214	77 84 30 25 25 25 89 9 25 46 9 16 65 73 17 0 N ON STA 33 78 43 17 33	67 48 58 55 46 46 62 55 65 20 84 30/ EN TI SECON 19 2 0 87 66	1 28 7/19 IMES START E 2NU NDS) 33	3 17 39 993 r END 2 47 47
1830 1831 1840 1850 1860 1870 1880 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980	738 729 2940< 197 507 2711< 2848< 563 TRANSY SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2151 533	2000 3000 9000 1600 9000 1600 2400 2400 78 CYCLE SAT FLOW (PCU/H 9000 3000 7500 7500 7500 7500 2800	65 65 711 61 50 75 58 57 69 91 ATHENS 45 STI DEGREI OF SAT) (%) 35 74 4 47 51 78 80 81 52 2100	26 30 30 12 25 28 9 10 25 30 • Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8 9 25 32 17 30 30 30 30 30 25 32 32 30 30 30 30 30 30 30 30 30 30 30 30 30	26 29 10 32 22 5 20 50 ral Art TIMES PCU E DELAY (SEC) 0 19 4 4 20 0 31 29 2 122	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.1 + 2.9 + 2.1 + 3.3 + 1.1 + 2.9 + 2.1 + 3.3 + (U+R+O= (PCU- (PCU- ()))) (U+R+O= ())))))))))))))))))))))))))))))))))))	.9 (.9 (1.2 (.8 (.5 (1.4 (.7 (.7 (.7 (.7 (.7 (.7 (.7 (.7	10.5) 26.4) 26.7) 26.7) 8.6) 15.8) 9.0) 15.8) 9.0) 16.0) 40.2) DELAY:STO COST	82 (82 (87 (55 (87 (103 (10 (18 (55 (152 (9 WEIGHTS STOPS- MEAN CC TOPS C /PCU ST (%) (% 3 (99 (25 (84 (101 (101 (101 (84 (226 (.0) .0) .0) .5) .0) .1) .1) .1) = 100 .0) .1) .0) .0) .1) .1) .1) .2) .6) .0) .1) .1) .2) .0) .2)	7 16 17 50 5 8 14 21 8 14 14 14 14 14 14 14 16 51 22 11 3 24	AGE W ESS C CU)	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1 16.0 40.3 PAGE ERFORMANCE INDEX. EIGHTED SUM (\$/H) 1.9 19.7 11.9 15.5 61.3 36.9 24.3 5.0 90.7	206 178 227 227 224 204 209 210 222 202 202 202 202 202 202 202 202	77 84 30 25 25 25 46 9 9 65 73 00 00 00 00 00 00 00 00 00 00 00 00 00	67 48 58 55 46 46 62 55 65 20 84 30/ EN TI SECO 19 2 0 87 66 16 76 5 54	1 28 7/19 IMES START E 2NU NDS) 33	3 17 39 993 F END D 47
1830 1831 1840 1850 1860 1870 1880 1900 1900 1900 1900 1920 1920 1930 1940 1950 1950 1960 1970 1980 1990 2000	738 729 29402 197 507 2711< 28484 567 583 TRANSY SECOND FLOW INTO LINK (PCU/H) 2673 738 738 7887 2992 2196 850 597 2161 533 1931	2000 3000 9000 1600 1800 9000 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2500 7500 7500 7500 7500 7500	65 65 711 61 50 75 58 57 69 91 ATHENS 45 ST DEGREF OF SAT 0F SAT 0 (%) (%) 35 74 45 51 78 80 81 52 102 28	26 30 30 12 25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8 9 25 25 22 16 30 22	26 29 32 22 5 20 50 ral Art TIMES PCU E DELAY (SEC) 0 19 4 4 20 31 29 2 122 0	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 1.1 + 2.9 + 2.1 + 3.3 + teries * (UNIFORM (U+R+O= (PCU- (PCU- 1 + 2.5 + 1.5 +	.9 (.9 (.9 (.1.2 (.8 (.5 (.7 (.7 (.7 (.7 (.7 (.7 (.7 (.7	10.5) 26.4) 29.0) 40.7) 8.6) 15.8) 9.0) 16.0) 16.0) 40.2) DELAY:STO 	82 (82 (87 (55 (87 (103 (10 (18 (55 (152 (P WEIGHTS) STOPS- MEAN CO TOPS CO /PCU ST (%) (\$ 3 (99 (25 (84 (101 (10)	.0) .0) .5) .0) .1) .1) .1) = 100 .0) .1) .0) .1) .0) .1) .1) .2) .0) .1) .2) .0) .2) .0)	7 16 17 50 5 8 14 21 8 14 14 14 14 EAN AX. AVER EXC (PCU) (P 4 14 16 51 22 11 3	AGE W ESS C CU)	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1 16.0 40.3 PAGE ERFORMANCE INDEX. (F () VALUE (\$/H) 1.9 19.7 11.9 19.7 11.9 15.5 61.3 36.9 24.3 5.0	206 178 227 227 224 204 209 210 222 202 210 222 202 210 EXIT NODE S 211 200 212 213 214 213 214 218 198 215 196 259 215	77 84 30 25 25 25 46 65 73 0 N ON 8 9 9 9 9 9 9 9 9 9 9 5 33 73 66 5 33 73 66 33 9 49 8 8	67 48 58 55 46 46 62 55 65 20 84 30/ EN TI SECOR 19 2 0 87 66 76 54 42 41	1 28 7/19 IMES START E 2NU NDS) 33	3 17 39 993 r END 2 47 47
1830 1831 1840 1850 1860 1870 1880 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1940 1950 1960 1970 1960 1970 1980 1990 2000 2010 2020	738 729 2940 197 507 2711 2848 567 583 TRANSY' SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2196 850 597 2161 533 1931 270 2618	2000 3000 3000 1600 1800 9000 2400 2400 1600 2400 1600 2400 1600 2400 1600 2400 2400 3000 7500 7500 7500 3000 1500 7500 1500 5000 5000	65 65 711 61 50 758 58 57 69 91 ATHENS 45 STF DEGREF OF SAT) (%) 355 74 47 51 78 80 81 522 100 28 88 80	26 30 30 12 25 28 9 10 25 30 • Cent 5PS 6 MEAN 9ER CRUIS (SEC) 17 30 7 8 9 25 32 16 6 30 22 12 6 32 12 6 9 9 25 30 10 25 30 12 25 30 12 25 30 12 25 30 12 25 30 12 25 30 12 25 30 12 25 30 12 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 26 30 26 30 26 30 26 30 26 30 26 30 30 30 30 26 30 30 26 30 26 30 26 30 26 30 26 30 26 30 26 30 27 30 20 30 20 30 20 30 20 30 20 30 30 20 30 20 30 20 30 20 30 20 30 20 20 20 20 20 20 20 20 20 20 20 20 20	26 29 10 32 22 5 20 50 ral Art TIMES PCU E DELAY (SEC) 0 19 4 4 20 50 50 70 19 2 2 2 2 2 2 2 2 2 2 2 5 20 50 50 50 50 50 50 50 50 50 50 50 50 50	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.1 + 2.9 + 2.1 + 3.3 + 1.1 + 2.9 + 2.1 + 3.3 + 1.1 + 2.9 + 2.5 + 1.9 + 2.5 + 2.5 + 2.5 + 2.5 + 2.5 +	.9 (.9 (.9 (.3 (.5 (.1.4 (.7 (.7 (.7 (.7 (.7 (.7 (.7 (.7	10.5) 26.4) 26.7) 26.7) 26.0] 40.7) 8.6) 15.8) 9.0) 15.8) 9.0) 16.0) 40.2) DELAY:STO COST OF S DELAY 1.8) 19.7) 11.8) 15.3) 60.7) 36.8) 24.2) 5.0) 90.6) 1.0) 4.3) 40.1)	82 (82 (87 (55 (103 (10 (18 (55 (152 (9 WEIGHTS) STOPS- MEAN CC TOPS C /PCU ST (%) (%) 3 (99 (25 (45 (84 (101 (102 (102 (103 (10)	.0) .0) .0) .5) .0) .1) .1) .1) = 100 .0) .1) = 100 .0) .1) .1) .1) .2) .0) .1) .1) .2) .0) .2) .0) .0) .4)	7 16 17 50 5 8 14 21 8 14 14 14 14 14 14 16 46 51 22 11 3 24 0 5 46	AGE W ESS C CU)	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1 16.0 40.3 PAGE ERFORMANCE INDEX. EIGHTED SUM (\$/H) 1.9 19.7 11.9 15.5 61.3 36.9 24.3 5.0 90.7 1.0 4.3 40.4	206 178 227 227 227 224 204 209 210 222 202 202 202 202 202 202 202 202	77 84 30 25 25 25 46 65 73 73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	67 48 58 55 46 46 46 46 55 65 20 84 30/ ENTI SECOI 19 2 0 87 66 166 76 5 54 42 41 57	1 28 7/19 IMES START E 2NU NDS) 33	3 17 39 993 r END 2 47 47
1830 1831 1840 1850 1860 1870 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1950 1960 1970 1980	738 729 29402 197 507 2711<2 848< 567 583 TRANSY' SECOND FLOW INTO LINK (PCU/H) 2673 788 188 788 1887 2992 2196 597 2161 533 1931 270 2616 537 210	2000 3000 3000 1600 1800 9000 1600 2400 2400 1600 2500 7500 7500 7500 7500 7500 7500 1500	65 65 711 61 50 75 58 57 69 91 ATHENS 45 57 0F SAT 0F SAT) (%)) (%) 35 74 47 51 78 80 81 52 100 28 84 8	26 30 30 12 25 28 9 10 25 30 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8 9 9 25 32 16 30 22 18 20 20 20	26 29 32 22 5 20 50 ral Art TIMES PCU E DELAY (SEC) 0 19 4 4 20 50 50 7 21 22 2 122 (SEC) 0 12	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 1.1 + 2.9 + 2.1 + 3.3 + teries * UNIFORM (U+R+O= (PCU- .1 + 2.5 + 1.9 + 2.5 +	.9 (.9 (.9 (.1.2 (.8 (.5 (.7 (.7 (.7 (.7 (.7 (.7 (.7 (.7	10.5) 26.4) 26.7) 26.7) 8.6) 15.8) 9.0) 15.8) 9.0) 16.0) 40.2) DELAY:STO 	82 (82 (87 (55 (87 (103 (103 (10 (18 (55 (152 (P WEIGHTS STOPS- MEAN CC TOPS C TOPS C (%) (% 3 (99 (25 (84 (101 (101 (45 (226 (11 (60 (11 (101 (.0) .0) .0) .5) .0) .1) .1) .1) = 100 .0) .1) = 100 .0) .1) .1) .1) .1) .0) .1) .1) .1) .2) .0) .0) .2) .0) .0) .0) .0) .2) .0) .0) .0) .5) .0) .5) .0) .5) .0) .5) .0) .10 .10 .10 .10 .10 .10 .10 .10 .10 .10	7 16 17 50 5 8 14 21 8 14 14 14 14 14 EAN AX. AVER EXC (PCU) (P 4 14 16 51 22 11 3 24 0 5	AGE W ESS C CU)	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 16.1 16.0 40.3 PAGE ERFORMANCE INDEX. ERFORMANCE INDEX. ERIGHTED SUM (\$/H) 1.9 19.7 11.9 19.5 61.3 3.6.9 24.3 5.0 90.7 1.0 4.3 40.4 29.7 34.2	206 178 227 227 224 204 209 210 222 202 210 222 202 210 EXIT NODE S 211 200 212 213 214 218 198 215 198 215 198 2259 215 217 214 218	77 84 30 25 25 25 46 65 73 25 46 65 73 16 65 57A 18 ((33 73 66 63 9 73 33 73 66 63 99 88 99 23 24 23 24 24	67 48 58 55 46 46 46 46 20 84 30/ T SECON 19 20 87 66 16 54 42 41 57 66 9	1 28 7/19 IMES START E 2NU NDS) 33	3 17 39 993 r END 2 47 47
1830 1831 1840 1850 1860 1870 1880 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1940 1950 1960 1970 1960 2010 2010 2010 2020 2040 2050 2060	738 729 2940< 197 507 2711< 2848< 567 583 TRANSY' SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 533 1931 200 2618 721 2019 2101	2000 3000 3000 1600 1800 9000 1600 2400 18 CYCLE SAT FLOW (PCU/H 9000 3000 7500 7500 7500 2800 3000 1500 1500 1500 1500 1500 1500 5000 1500 5000 1500 5000 1500	65 65 711 61 50 758 58 57 69 91 ATHENS 45 STF DEGREE OF SAT) (%) 355 74 47 51 78 80 81 522 100 28 48 80 82 80 82 80 79	26 30 30 12 25 28 8 9 10 25 30 • Cent EPS 6 MEAN PER CRUIS (SEC) 17 30 7 8 9 25 32 166 30 30 22 18 8 30 30 12 25 30 30 30 30 30 30 30 30 30 30 30 30 30	26 29 10 32 22 5 20 50 ral Art TIMES PCU E DELAY (SEC) 0 19 4 4 20 0 19 4 4 20 5 20 5 0 5 0 5 0 5 0 5 0 5 20 5 2	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.1 + 2.9 + 2.1 + 3.3 + 1.1 + 2.9 + 2.5 + 1.9 + 2.5 + 1.9 + 2.5 + 1.9 + 2.5 + 1.9 + 2.5 + 1.0 + 3.3 + 2.7 + 1.7 + 2.5 + 1.7 + 1.7 + 2.5 + 1.7 + 1.7 + 2.7 + 1.7 + 2.9 + 2.7 + 1.7 + 2.9 + 2.5 + 1.7 + 2.9 + 2.5 + 1.7 + 2.9 + 2.5 + 1.7 + 2.9 + 2.5 + 2.7 + 1.7 + 2.9 + 2.5 + 2.7 + 2.9 + 2.5 + 2.5 + 2.6 +	.9 (.9 (.9 (.2 (.8 (.5 (.7 (.7 (.7 (.7 (.7 (.7 (.7 (.7	10.5) 26.4) 26.7) 26.7) 8.6) 15.8) 9.0) 15.8) 9.0) 16.0) 16.0) 16.0) 16.0) 16.0) 16.0) 16.0) 16.0) 20.2) DELAY (\$/H) 1.8) 19.7) 11.8) 15.3) 60.7) 36.8) 24.2) 5.0) 90.6) 1.0) 90.6) 1.0) 4.3) 40.1) 29.6) 1.0) 34.0) 34.0)	82 (82 (87 (55 (87 (103 (10 (18 (55 (152 (P WEIGHTS STOPS- MEAN CO TOPS C PCU ST (%) (% 3 (99 (25 (45 (84 (101 (101 (101 (101 (101 (101 (102 (102 (102 (103 (10)	.0) .0) .0) .5) .0) .1) .1) .1) = 100 .1) .1) = 100 .0) .1) .1) .0) .1) .1) .0) .1) .1) .2) .6) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .2) .2) .2) .2) .2) .2) .2) .2) .2	7 16 17 50 5 8 14 21 8 14 21 8 14 14 14 14 14 16 51 22 11 3 24 0 5 46 18 41 38	AGE W ESS C CU)	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1 16.0 40.3 PAGE ERFORMANCE INDEX. (F) () VALUE (\$/H) 1.9 19.7 11.9 15.5 61.3 36.9 24.3 5.0 90.7 1.0 4.3 40.4 29.7 34.2 34.1	206 178 227 208 224 204 209 210 222 202 21 RU EXIT NODE S 211 200 212 213 214 218 198 215 196 259 215 215 215 217 214 218 219	77 84 30 25 25 25 46 65 77 30 00 00 00 00 00 00 00 00 00 00 00 00	67 48 55 58 55 46 62 55 65 20 84 30/ EN TI SECOI 87 66 16 76 65 54 42 41 57 26	1 28 7/19 IMES START E 2NU NDS) 33	3 17 39 993 r END 2 47 47
1830 1831 1840 1850 1860 1870 1880 1990 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1950 1960 1970 1980 1990 2000 2010 2020 2040 2050	738 729 2940< 197 507 2711< 2848< 567 583 TRANSY SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2996 850 597 2161 533 1931 270 2618 721 200 2618	2000 3000 3000 9000 1600 1800 9000 2400 1600 2500 7500 7500 7500 7500 7500 2500 7500 7500 1500 7500 1500 7500 1500	65 65 711 61 50 75 58 57 69 91 ATHENS 45 57 0F SAT 0F SAT) (%)) (%) 35 74 47 51 78 80 81 52 100 28 848 80 82 80	26 30 30 12 25 28 9 10 25 30 * Cent EPS & MEAN PER CRUIS (SEC) 17 30 7 8 9 9 25 32 16 30 22 18 20 20 20 20 20 20 20 20 20 20 20 20 20	26 29 32 22 5 5 20 50 ral Art TIMES PCU E DELAY (SEC) 0 19 4 4 20 31 29 2 122 0 0 12 12 11 30 0 12	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.7 + 1.7 + 1.1 + 2.9 + 2.1 + 3.3 + teries * UNIFORP (U+R+O= (PCU- 1.1 + 2.5 + 1.9 + 2.5 +	.9 (.9 (.9 (.1.2 (.8 (.5 (.1.4 (.7 (.7 (.1.1 (.7 (.7 (.1.1 (.7 (.7 (.1.1 (.7 (.0 Opt on; .2 (.2 (.5 (.2 (.2 (.2 (.2 (.2 (.2 (.2 (.2	10.5) 26.4) 26.7) 8.6) 15.8) 9.0) 16.0) 40.2) DELAY:STO 	82 (82 (87 (55 (87 (103 (10 (18 (55 (152 (P WEIGHTS STOPS- MEAN CC TOPS C *STOPS C *	.0) .0) .0) .5) .0) .1) .1) = 100 .0) .1) = 100 .0) .1) .1) .1) .1) .0) .1) .1) .1) .2) .0) .0) .2) .0) .0) .2) .0) .1) .1) .1) .1) .1) .1) .1) .1) .1) .1	7 16 17 50 5 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 21 8 14 21 8 14 21 8 14 21 8 14 21 21 8 14 21 8 14 21 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 8 14 21 21 8 14 21 21 21 21 21 21 21 21 21 21	AGE W ESS C CU)	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 16.1 16.0 40.3 PAGE ERFORMANCE INDEX. ERFORMANCE INDEX. ERFORMANCE INDEX. (\$/H) 1.9 15.7 11.9 15.5 61.3 3.6.9 24.3 5.0 90.7 1.0 4.3 4.0.4 29.7 34.2 34.1 2.4 7.0	206 178 227 227 224 204 209 210 222 202 21 RI EXIT NODE 5 5 211 200 212 213 214 213 214 218 198 215 196 259 215 217 214 218 196 259 215 217 221 214 218 229 221 221 221 222 222 222 222 222 222	77 84 30 25 25 25 46 65 73 00 00 00 00 00 00 00 00 00 00 00 00 00	67 48 55 58 55 46 62 55 55 65 20 84 30/ T 55 84 7 87 66 16 55 87 66 16 55 42 41 55 54 20 87 66 16 55 87 66 20 76 55 20 87 66 20 87 87 87 87 87 87 87 87 87 87 87 87 87	1 28 7/19 IMES START E 2NU NDS) 33	3 17 39 993 r END 2 47 47
1830 1831 1840 1850 1860 1870 1880 1900 1PROGRAM 0 900 0 LINK NUMBER 1910 1920 1930 1940 1950 1940 1950 1960 1970 1960 2010 2010 2010 2020 2040 2050 2060 2080 2080 2090 2110	738 729 2940< 197 507 2711< 2848< 567 583 TRANSY' SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 533 1931 2000 2618 721 2019 2101 2601 2001 2001 2601 2001 2601 2001 2601	2000 3000 3000 1600 1800 9000 2400 1600 2500 2500 2500 2500 1500 2500	65 65 711 61 50 758 58 57 69 91 ATHENS 45 STE DEGREE 0F SAT) (%) 35 74 47 511 35 74 47 511 512 100 28 48 80 81 522 100 28 48 48 80 80 82 80 80 79 41 45 57	26 300 12 25 28 9 10 25 30 • Cent EPS 6 MEAN PER CRUIS (SEC) 17 30 7 8 9 25 32 166 30 22 18 18 20 20 18 18 30 20 20 20 20 20 20 20 20 20 20 20 20 20	26 29 10 32 22 5 20 50 ral Art TIMES PCU E DELAY (SEC) 0 19 4 4 20 31 29 2 122 0 122 122 0 122 122 122 0 2 122 2 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.2 + 4.3 + 4.6 + 7.3 + 1.2 + 1.1 + 2.9 + 2.1 + 3.3 + 1.1 + 2.9 + 2.1 + 3.3 + 2.5 + 1.9 + 2.5 + 1.7 + 1.1 + 2.9 + 2.1 + 3.3 + 1.1 + 2.9 + 2.5 + 1.1 + 2.5 + 1.0 + 2.5 +	.9 (.9 (.9 (.1.2 (.8 (.5 (.1.4 (.7 (.7 (.7 (.7 (.7 (.7 (.7 (.7	10.5) 26.4) 26.7) 8.6) 15.8) 9.0) 16.0) 40.2) DELAY:STO OF S DELAY (\$/H) 1.8) 19.7) 11.8) 15.3) 60.7) 36.8) 24.2) 5.0) 90.6) 1.0) 4.3) 40.1) 22.6) 34.0) 34.0) 22.7)	82 (82 (87 (55 (87 (103 (10 (18 (55 (152 (P WEIGHTS STOPS- MEAN CO TOPS C (%) (% 3 (99 (25 (45 (84 (101 (101 (101 (101 (101 (101 (101 (101 (105 (102 (102 (102 (102 (102 (103	.0) .0) .0) .5) .0) .1) .1) .1) = 100 .0) .1) = 100 .0) .1) .1) .0) .1) .1) .2) .6) .0) .1) .1) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .2) .0) .1) .1] .1] .1] .1] .1] .1] .1] .1] .1] .1]	7 16 17 50 5 8 14 21 8 14 14 14 14 14 14 16 46 51 22 11 3 24 0 5 46 18 14 38 3 22 14	AGE W ESS C CU)	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1 16.0 40.3 PAGE ERFORMANCE INDEX. EIGHTED SUM (\$/H) 1.9 19.7 11.9 19.7 11.9 19.7 11.9 15.5 61.3 36.9 24.3 5.0 90.7 1.0 4.3 40.4 29.7 34.1 2.4 7.0 23.8	206 178 227 227 227 208 204 209 210 222 202 202 202 202 202 202 202 202	77 84 30 25 25 25 46 57 70 30 31 67 63 73 33 73 66 43 17 73 33 66 43 99 99 99 73 24 50 72	67 48 55 58 55 46 62 55 20 84 30/ TS 55 20 84 30/ TS 55 65 20 84 30/ 19 2 0 87 66 55 46 65 54 46 55 84 55 830/ 19 20 87 66 56 57 87 87 87 87 87 87 87 87 87 87 87 87 87	1 28 7/19 IMES START E 2NU NDS) 33	3 17 39 993 r END 2 47 47
1830 1831 1840 1850 1860 1870 1880 1990 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1950 1960 1970 1980 1990 2010 2010 2010 2040 2050 2040 2050 2060 2080 2090 2110	738 729 2940< 197 507 2711< 2848< 567 583 TRANSY SECOND FLOW FLOW FLOW (PCU/H) 2673 738 1887 2992 2196 850 557 2161 533 1931 200 2618 721 200 2618 721 200 2618 59 2101 203 589 1503 2035	2000 3000 3000 1600 1800 9000 2400 1600 2400 1500 7500 7500 7500 7500 1500 7500 1500	65 65 711 61 50 75 58 57 69 91 ATHENS 45 57 45 51 DEGREI OF SAT) (%) 35 74 47 51 53 74 47 51 53 74 47 51 52 80 81 80 82 80 80 82 80 79 91 91 91 91 91 91 91 91 91 91 91 91 91	26 30 30 12 25 28 9 10 25 30 • Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8 9 25 32 16 10 22 8 9 9 25 32 12 8 9 9 10 25 30 10 25 8 9 9 10 25 30 10 25 8 9 9 10 25 30 10 25 8 9 9 10 25 8 9 9 10 25 8 9 9 10 25 30 10 25 8 9 9 10 25 8 9 10 25 8 9 9 10 25 8 9 9 10 25 8 9 9 9 10 25 8 9 9 10 25 8 9 9 10 25 8 9 9 9 10 25 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	26 29 10 32 22 5 50 ral Art TIMES PCU E DELAY (SEC) 0 19 4 4 20 31 29 2 122 0 0 12 12 12 12 12 12 12 12 29 15 2	1.2 + 4.3 + 4.3 + 4.3 + 7.3 + 1.2 + 1.7 + 2.9 + 2.1 + 3.3 + teries * UNIFORD (U+R+O= (PCU- .1 + 2.5 + 1.9 + 2.5 + 1.0 + 2.5 +	.9 (.9 (.9 (.1.2 (.8 (.5 (.1.4 (.7 (.7 (.7 (.1.1 (.7 (.7 (.7 (.1.1 (.7 (.7 (.1.1 (.7 (.2 (.5 (.2 (.2 (.2 (.2 (.2 (.5 (.2 (.2 (.5 (.2 (.2 (.5 (.2 (.2 (.2 (.5 (.2 (.2 (.2 (.2 (.5 (.2 (.2 (.2 (.2 (.2 (.2 (.2 (.2	10.5) 26.4) 26.7) 8.6) 15.8) 9.0) 16.0) 40.2) DELAY:STO 	82 (82 (87 (55 (87 (103 (10 (18 (55 (152 (P WEIGHTS STOPS- MEAN CC TOPS C TOPS C (%) (\$ 3 (99 (25 (45 (84 (101 (45 (226 (11 (60 (61 (95 (55 (31 (91 (57 (11 (57 (11 (57 (11 (57 (57 (11 (57	.0) .0) .0) .5) .0) .1) .1) = 100 .0) .1) = 100 .0) .1) .1) .1) .1) .0) .1) .1) .1) .1) .1) .2) .6) .0) .1) .1) .2) .0) .0) .1) .1) .1) .1) .1) .1) .1) .1) .1) .1	7 16 17 50 5 8 14 21 8 14 22 11 14 15 16 16 16 16 16 16 16 16 16 16	AGE W ESS C CU)	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 16.0 40.3 PAGE ERFORMANCE INDEX. ERFORMANCE INDEX. ERFORMANCE INDEX. (\$/H) 1.9 15.7 1.9 15.5 61.3 3.6.9 24.3 5.0 90.7 1.0 4.3 4.0.4 29.7 34.2 34.1 2.4 7.0 23.8 31.2 6.1	206 178 227 227 228 204 209 210 222 202 210 EXIT NODE S 211 200 212 213 214 218 198 215 196 259 215 217 214 218 196 259 215 217 214 218 229 221 217 221 210 222 223	77 84 30 25 25 25 46 65 73 73 00 0 88 9 9 66 55 73 00 0 8 9 65 73 00 0 8 73 00 0 8 73 00 0 73 00 0 73 00 0 73 00 0 25 25 25 25 25 25 25 25 25 25 25 25 25	67 48 55 55 46 62 55 55 65 20 84 30 7 55 84 7 55 84 7 66 55 84 7 7 62 21 11 57 62 21 11 7 7	1 28 7/19 IMES START E 2NU NDS) 33	3 17 39 993 r END 2 47 47
1830 1831 1840 1850 1860 1870 1880 1900 1PROGRAM 0 90 0 LINK NUMBER 1910 1920 1930 1940 1950 1940 1950 1960 1970 1960 1970 1980 2010 2010 2010 2010 2010 2040 2050 2060 2080 2090 2110 2120	738 729 2940< 197 507 2711< 2848< 567 583 TRANSY' SECOND FLOW INTO LINK (PCU/H) 2673 738 1887 2992 2196 850 597 2161 533 1931 270 2618 721 2049 2195 2618 721 2049 2105 2618 721 2049 2105 2039 559 71 2051 2051 2051 2051 2051 2051 2051 205	2000 3000 3000 1600 1800 9000 1600 2400 7500 7500 7500 7500 7500 7500 1500 7500 1500 7500 1500 5000 2800 3000 5000	65 65 711 61 50 75 58 57 69 91 ATHENS 45 STI DEGREI OF SAT) (%) 35 74 47 51 74 47 51 74 47 51 74 48 80 81 52 2100 28 848 80 82 80 79 941 46 57 77 71	26 300 12 25 28 9 10 25 300 * Cent EPS E MEAN PER CRUIS (SEC) 17 30 7 8 9 25 32 16 6 30 22 18 8 8 20 20 10 22 18 8 30 20 10 22 5 30 10 22 5 30 10 22 5 30 10 22 5 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 10 25 30 25 30 25 30 25 30 25 30 25 30 25 30 25 30 25 30 25 30 25 30 25 30 25 30 25 30 26 30 26 30 27 30 27 30 25 30 26 30 26 26 30 26 26 30 26 30 27 30 27 30 27 30 27 30 27 30 27 30 27 30 27 30 27 30 27 30 27 30 27 30 27 30 27 30 27 30 27 30 27 30 20 22 30 20 22 22 22 30 22 22 30 22 22 30 22 22 30 22 22 22 30 22 22 30 22 22 30 22 22 22 22 30 22 22 30 22 22 22 30 22 22 22 22 22 22 22 22 22 22 22 22 22	26 29 10 32 22 5 20 ral Art TIMES PCU E DELAY (SEC) 0 19 4 4 20 0 19 4 4 20 2 22 2 20 5 20 7 20 7 20 7 20 7 20 7	1.2 + 4.3 + 4.3 + 7.3 + 1.2 + 1.7 + 1.1 + 2.9 + 2.1 + 3.3 + teries * (UNIFORR (U+R+O= (PCU- (PCU	.9 (.9 (.9 (.1.2 (.8 (.5 (.1.4 (.7 (.7 (.7 (.7 (.7 (.7 (.7 (.7	10.5) 26.4) 26.0) 40.7) 8.6) 15.8) 9.0) 16.0) 40.2) DELAY:STO COST	82 (82 (82 (87 (55 (103 (10 (18 (55 (152 (P WEIGHTS STOPS- MEAN CC TOPS C /PCU ST (%) (% 3 (99 (25 (84 (101 (101 (84 (101 (101 (84 (101 (101 (84 (101 (101 (10 ())))))))))))))))))))))))))))))))))))	.0) .0) .0) .5) .0) .1) .1) .1) = 100 .0) .1) .1) .0) .1) .1) .1) .0) .0) .1) .1) .1) .2) .0) .0) .0) .0) .0) .0) .0) .1) .1) .1) .1) .1) .1) .1) .1) .1) .1	7 16 17 50 5 8 14 21 8 14 14 14 14 14 14 16 46 51 22 11 3 24 0 5 46 18 41 38 3 22 14 27	AGE W ESS C CU)	5.5 10.5 26.4 29.1 41.2 8.6 15.9 9.1 18.1 16.0 40.3 PAGE ERFORMANCE INDEX. EIGHTED SUM (\$/H) 1.9 19.7 11.9 15.5 61.3 36.9 24.3 5.0 90.7 1.0 4.3 40.4 29.7 34.2 3.4 2.3 8 31.2	206 178 227 227 227 208 204 209 210 222 202 202 202 202 202 202 202 202	77 84 30 25 25 25 46 65 70 70 0N GRE 57 70 0N STA 57 70 33 73 66 64 66 39 73 24 89 973 24 57 24 24 57 25 25 25 25 25 25 25 25 25 25 25 25 25	67 48 55 55 46 62 55 20 84 30/ T SECOI 19 2 0 87 66 54 42 41 76 55 42 41 76 55 42 11 61 61	1 28 7/19 IMES START E 2NU NDS) 33	3 17 39 993 r END 2 47 47

					D	elay:sto	op weig	hting	, ratio of	100				
	SECOND	CYCLE 4	5 STEP	20 22 22 15 23 22 22 22 22 22 22 25 22 25 25 25 25 20 25 25 20 25 25 25 25 25 25 25 25 25 25 25 25 25	13 .5 3 .6 48 4 41 4.4 34 5.1 1 .3 .61 .3 .12 5.1 .12 5.1 .12 5.1 .13 5.1 .62 .7 .62 .7 .62 .7 .62 .7 .62 .7 .64 .4 .44 9.5 .52 .4 .44 3.4 .66 .44 3 .66 .44 3	9 + 1.3 3 + .7 7 + 60.9 4 + 1.2 1 + 1.2 3 + .3 5 + .4 5 + 17.1 0 + .8 0 + 1.4 5 + 1.1 4 + .2 0 + .5 7 + 2.5 4 + .4 5 + .4 1.4 1 + .2 0 + .5 7 + 2.5 4 + .4 5 + .4 1.4 1 + .2 0 + .5 1.4 1 + .2 0 + .5 1.6 9 + 2.4 2 + .4 1.6 9 + .4 1.7 6 + .4 1.7 6 + .4 1.7 1.6 1	(11.0) (7.4) (328.2) (28.2) (31.7) (3.1) (4.9) (118.6) (33.6) (16.2) (33.6) (16.2) (33.6) (2.7) (2.7) (2.7) (2.7) (2.7) (2.7) (2.7) (26.0) (4.2) (14.5) (39.4) (34.2) (66.8) (60.7) (23.8) (25.4) (4.6)); DELAY:S	41 13 227 102 91 4 26 164 95 72 24 1 126 166 35 112 68 93 103 120 TOP WEI	(.0) (.0) (.2) (.0) (.1) (.1) (.2) (.1) (.2) (.1) (.2) (.1) (.1) (.1) (.0) (.1) (.0) (.1) (.0) (.1) (.1) (.2) (.1) (.0) (.1) (.1) (.0) (.1) (.1) (.0) (.1) (.0) (.1) (.0) (.1) (.0) (.0)(7 6 85 13 16 4 11 38 20 51 33 10 31 2 1 10 31 10 11 19 18 32 36 27 9 11 2	+ + +	11.0 7.5 328.4 28.3 31.8 3.1 5.0 118.8 39.0 82.1 33.7 16.3 36.0 2.7 2.6.0 4.2 14.6 39.4 34.2 66.8 60.8 23.8 25.4 4.6 PAGE	225 225 226 225 207 226 226 226 227 226 226 227 226 226 22	68 27 59 37 36 49 36 49 41 68 62 51 61 22 3 32 3 32 53 89 55 23 6 26 51 71 17 65 63 33 1 87 49 66 69 43 32 7 72 20 49 17 71 13 24 44 61 81 17 43 8 13 RUN ON 30/ 7/1993
0 TOTAL DISTAN TRAVELL	CE	TOTAL TIME SPENT	JOU	MEAN RNEY PEED	TOT. UNIFO DEL	RM RANDO	OM+ COS SAT OF	т	TOTAL COST OF	FO	R ESS	PERFORMANCE	3	
0 13281.2	2			KM/H) 11.9	(PCU-H. 262.	DEL/ (H) (PCU-H) 0 231.5	/H) (\$/H		STOPS (\$/H) (8.0)	QUE (\$/) + ((\$/H) 2475.4	Т	COTALS
0******* 0			•••••				DELAY		STOPS			TALS		
OFUEL CON	NSUMPTIO	N PREDIC	TIONS	LITRES 124	PER HOUR 3.4	LITRI +	ES PER HOU 690.9	R 1 +	LITRES PER 1 228.8			PER HOUR		
NO. OF	LINKS RE	TO SUBPT		91										
EXECUTIO	ON TIME:		ECONDS											
16.50	2242 1234	1200												

Cycle time of 140 seconds

OCARD	CARD					C	ycie	time c	01 140	secon	lus				
NO.	TYPE	ATUENS	+ Cant	ral Art	arias 4	t Opt on	: CYCLE	TIME =	140 with	60 ster	DS				
OCARD	CARD	CYCLE N	10. OF	TIME	EFFECTI	IVE-GREEN	N EQUI	ISAT 1=CY	CLE FLO	OW CRU	UISE-SPEEL CALE CARL		TIMISE EXTRA NONE COPIES	HILL- CLIMB	
NO.	TYPE	TIME	STEPS PER		DISPLA STAR		SETTI 0=	INGS INF	CLE 10-		-200 0=TIM	1ES 1=	O/SET FINAL	OUTPUT	P PER P PER
21-	1012		CYCLE	MINS. 120	(SEC)			YES CHO		8	8 1=SPE		FULL OUTPUT	1=FULL 0	55 50
2) = 1PROGRAM	1 I TRANSY	140 T8 A	60 ATHENS	* Centr	ral Arte	eries *	Opt on;	CYCLE T	IME = 14	0 with			PAGE	20 R	UN ON 31/ 7/1993
0 140 0 LINK	FLOW		60 STE DEGREE		TIMES		DELAY		STO	PS	QUEL	JE	PERFORMANCE	EXIT	GREEN TIMES
NUMBER	INTO	FLOW	OF	PER	PCU	UNIFORM	RANDON	4+ COST	MEAN	COST OF	MEAN MAX. AV	FRACE	INDEX. WEIGHTED SUM	NODE	START START END END
	LINK		SAT	CRUISE	DELAY	(U+R+O=	OVERS! MEAN Q		STOPS /PCU	STOPS	1	EXCESS	OF () VALUES	:	1ST 2ND
	(PCU/H)	(PCU/H)	(8)	(SEC)	(SEC)	(PCU-		(\$/H)	(8)	(\$/H)	(PCU)	(PCU)	(\$/H)		(SECONDS)
900	222	1500	32	18	16	.7 +	.2	(.5)	63 (.2)	3		.7	187	35 66 105 136
1060	142	1500 4000	41 64	18 17	32 19	.9 +	.4	(7) (3.1)	92 (76 (.1)	3 17		.8 3.9	189 185	92 107 22 37 8 37 78 107
1210 1280	1094 361	1500	67	18	29	1.9 +	1.0	(1.6)	92 (.3)	7		1.9	180	91 115 21 45 78 104 8 34
1300 1330	307 995	1500 3200	53 59	18 11	23 4	1.4 +	.6 .7	(1.1)	80 (12 (.3)	5		1.3	179 179	38 74 108 4
1340	1302	3200	69	18	8	1.9 +	1.1	(1.7)	35 (.7)	11		2.4	180 181	118 18 48 88 66 109 136 39
1350 1360	1392 260	3200 1500	69 71	25 22	7 40	1.6 +	1.1	(1.5) (1.6)	30 (109 (.3)	10 6		1.8	205	79 95 9 25
1380	1147	3200	44	13	2	.1 +	.4	(.3)	6 (.1)	27		.4 1.3	182 183	7 63 77 133 94 132 24 62
1390 1400	929 369	3200 1800	52 48	16 20	7 16	1.2 +	.5	(.9)	34 (77 (.4)	6		1.2	203	51 80 121 10
1420	1007	3200	52	24	6	1.1 +	.6	(.9)	36 (.6)	10 12		1.5 3.7	184 185	47 88 117 18 41 74 111 4
1440 1450	1086 1059	3200 3200	70 77	6 19	14 14	3.0 + 2.3 +	1.2	(2.3) (2.2)	50 (62 (.9)	19		3.1	186	63 92 133 22
1460	1121	4000	85	20	23	4.2 +	2.9	(3.9)	63 (10 (.7)	19 2		4.6	199 187	93 115 23 45 69 102 139 32
1480 1490	819 848	3200 3200	53 66	10 24	4 13	.3 + 2.0 +	.6 1.0	(.5) (1.7)	73 (.4)	14		2.1	188	33 60 103 130 75 87 5 17
1500	192	1500	69	22	45	1.3 +	1.1	(1.3)	119 (12 (.2)	5		1.5	197. 189	75 87 5 17 41 88 111 18
1520 1540	1020 230	3200 1000	47 67	13 22	3 33	1.1 +	1.0	(1.2)	94 (.2)	4		1.3	195 194	52 75 122 5 53 61
1580	22	1500 1500	23 63	18 9	86 68	.4 + 2.7 +	.1 .9	(.3)	109 (100 ((0)	1 8	+	.3 2.2	194	32 59
1590 1610	190 1948	4300	56	12	3	.8 +	.6	(.8)	14 ((.6)	21		1.3	194 260	71 43 62 91
1620	156 1970	1800 4300	40 78	25 9	13 9	.2 + 3.1 +	.3	(.3)	45 (()	4 31	+	3.6	195	9 49 79 119
1630 1640	2255	4300	94	13	18	4.0 +	7.6	(6.4)	52 ((1.5)	45	+	7.9 1.7	196 188	12 50 82 120 133 30 63 100
1650 1660	606 2457	1500 4300	74 80	26 14	16 5	1.3 + 1.1 +	1.4	(1.5) (1.7)	49 ((.2) (1.0)	6 13		2.7	197	22 71 92 1
1670	2287	4300	81	11	6	2.0 +	2.1	(2.3)	35	(.6)	25	+	2.8 3.5	198 186	103 8 33 78 25 60 95 130
1680 1690	1230 1995	3200 4300	75 81	30 21	16 12	4.0 + 4.8 +	1.5	(3.0)	67 1 62 1	(.4) (1.3)	19 33		5.1	199	50 89 120 19
1700	2015	5500	67	7	10	4.7 +	1.0	(3.2)	46	(2.4)	19 37		5.6	200 212	44 81 114 11 40 101
1710 1720	1096 259	3800 1500	65 50	30 30	33 31	9.2 + 1.7 +	.9	(5.6) (1.2)	82 90	(.2)	5		1.4	184	91 114 21 44
1730	1961	5500	41	12	1	.1 +	.3	(.2)	2 58	(.1) (.3)	2 25		.3 4.0	201 202	51 111 121 41 74 104 4 34
1740 1750	1824 241	5500 1500	75 42	20 20	13 14	5.2 +	1.5	(.5)	43	(.1)	2		.7	183	135 21 65 91 14 48 84 118
1760 1770	2005	5500 5500	73 70	14 8	5 3	1.6 +	1.3	(1.6) (1.1)	17 8	(.5)	75		2.1 1.6	203 204	21 58 91 128
1780	526	2000	67	24	38	4.5 +	1.0	(3.0)	79	(.6)	17		3.7	209 181	30 84 42 63 112 133
1790 1800	301 2299	1500 5500	64 61	18 13	34 3	2.0 +	.9	(1.6) (1.0)	102 14	(.4) (.9)	6 8		2.0	205	29 76 99 6
1810	2398	5500	49	10	1	.4 +	.5	(.5)	6	(.5)	6		1.0 1.5	206 178	99 82 64 95 134 25
1820 1830	552 739	2000 3000	60 66	26 30	14 37	1.4 + 6.5 +	.8	(1.2) (4.1)	54 76	(.3)	6 23		4.5	227	127 38
1831	729	3000	69	30	39	6.8 +	1.1	(4.4)		(.3)	23 37		4.7	227 208	127 35 82 26
1840 1850	2952 198		54 52	12 25	10 49	8.0 + 2.2 +		(4.7) (1.5)		(2.7)	7		1.6	224	9 41
1860	508	1800	73	28	25	2.1 +	1.4	(1.9)		(.6)	10 19		2.5 2.6	204 209	61 87 131 17 89 26
1870 1880	2721 2858		54 61	9 10	4 10	2.7 + 7.3 +	.6 .8	(1.8) (4.4)		(1.4)	24		5.9	210	88 20
1890	568		68	25	27 28	3.1 +		(2.3) (2.5)	81	(.4)	18 11		2.7 3.0	222 202	67 139 116 138 46 68
1900 1PROGRA	584 M TRANS	2400 YT8	74 ATHENS	30 * Cent	ral Art	teries *	Opt or	; CYCLE	TIME = 1	40 with	60 steps		PAGE	21	RUN ON 31/ 7/1993
0 14 0 LINK	0 SECON	D CYCLE	60 ST		TIMES		-DELAY-		ST	OPS	QUI	EUE	PERFORMANCE	EXIT	
NUMBER	INTO	FLOW	OF	PEF	R PCU		M RANDO	DM+ COST	MEAN	COST	MEAN	UTRACE	INDEX. WEIGHTED SUM	NODE	START START END END
	LINK	•	SAT	CRUIS	DELAY	(U+R+O		SAT OF 2) DELAY	STOPS /PCU	OF STOPS		EXCESS	OF () VALUE	S	1ST 2ND
	(PCU/H	I) (PCU/H	H) (%)	(SEC)	(SEC)		-H/H)	(\$/H)	(8)	(\$/H)	(PCU)	(PCU)	(\$/H)		(SECONDS)
1910	2681	9000	33	17	0	.0 +				(.1)			.2	211	98 84 85 107 15 37
1920	740		75		27	4.0 + 3.8 +		(3.0) (2.4)		(.7)	19 12		3.7 3.2	200 212	106 36
1930 1940	1893		50 46		8	.5 +		(2.4)		(.2)	7		.8	213	111 91 31 95
1950 1960	2199 851		63		17 47	9.5 + 9.2 +		(5.7) (6.2)		(2.9)		+	8.6 6.5	214 218	120 32
1980	597		80 73		30	3.6 +		(2.7)	92	(.8)	13		3.5	198	11 29 81 99 42 116
1980	2164		54			.9 + 3.0 +		(.8)		(.2)			1.1 7.4	215 196	53 78 123 8
1990 2000	534 1933	3 7500	96 27	22	0	.0 +	.2	(.1)	1	(.0)	0		.1	259	14 7 119 37
2010 2020	270		43 78			1.0 + 9.1 +		(.8)	24	(.1) (3.7)			.8 9.7	215 217	19 112
2040	72:	1 1800	89	20	46	5.4 +	3.9	(5.1)	77	(.6)	22	+	5.7	214	102 24 40 116
2050 2060	2050		75 72			3.6 +		(2.8) (4.3)	35 65	(.9)		+	3.7 4.8	218 219	71 12
2080	2603	2 7000	40	25	1	.1 +	3	(.2)	2	(.0)	3		.2	220	46 36 5 131
2090 2110	204		45			2.0 +		(1.3) (1.9)		(.3)		+	1.7 2.3	221 210	24 83
2120	150	3 5000	69	15	19	6.9 +	. 1.1	(4.4)	49	(.7)	31		5.1	222	3 63 12 132
2130	203	7 5000	47	1 12	1	.2 +	4	(.4)	4	(.1)	4		.5	223	
2140							- 6	(2.4)	51		11		2.7	208	30 77
2140 2150	52 167	1 2800	54	22	31	3.8 4		(2.4) (1.1)	51 32	(.2) (.4)			2.7 1.5	208	45 3

2160						Cvcle t	time of 1	40 second	is				
5930 5940		4500 1500 4500 3000 9000 2500 4000 2500 4000 4500 3200 5000 1800 1800 5000 1600 3500 5000 1600 3500 1600 1800 1800	60 102 82 72 40 43 98 62 65 70 63 70 25 51 78 49 44 86 74 880 71 76 43	20 51 20 17 25 45 20 56 25 61 25 57 25 90	$\begin{array}{c} 1.4 \\ + \\ 1.6 \\ + \\ 4.4 \\ + \\ 9.5 \\ + \\ 8.0 \\ + \\ 1.1 \\ + \\ 10.6 \\ + \\ 10.6 \\ + \\ 10.3 \\ + \\ 9.0 \\ + \\ 3.0 \\ + \\ 10.2 \\ + \\ 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 25 73 21 24 2 5 47 20 72 52 14 56 1 3 11 2 26 24 44 56 38 13 16 2		1.3 1.4 23.2 6.9 6.1 .3 15.5 5.5 12.9 6.9 3.1 7.0 .2 .3 4.5 .5 2.7 5.0 4.9 10.9 9.7 3.2 3.9 .7 PAGE	225 225 226 226 227 227 227 226 226 226 226 226	64 8 55 18 38 124 38 56 22 64 78 66 41 124 128 34 128 34 128 34 128 34 128 34 128 34 128 34 128 34 125 98 60 98 130 38 117 95 48 81 77 90 119 101 58 64 29 125 47 90 44 123 34 51 85 116 11 22 64 137 5 RUN ON 31/ 7/1993
0 TOTAL DISTAN TRAVELL (PCU-KM. 0 13281.	SECOND CE ED /H) 2	CYCLE 60 TOTAL TIME	D STEPS ME JOURN SPE) (KM 11	EAN IEY EED 1/H)	TOTAL UNIFORM DELAY (PCU-H/H) 360.9	TOTAL RANDOM- OVERSAT DELAY (PCU-H/H)	TOTAL + COST T OF DELAY) (\$/H)	= 140 with 60 TOTAL COST OF STOPS (\$/H) + (59.4)	PENAL FOR EXCE QUEU (\$/H	P SS ES) 0) =	TOTAL ERFORMANCE INDEX (\$/H) 347.8	T	OTALS
0 NO. OF SYSTEM EXECUTION PROGRAM	NSUMPTI ENTRIES LINKS R TIME: ON TIME TRANSY	ON PREDICT TO SUBPT ECALCULATI	I FIONS : 125 ED: 3288 17:55:27 ECONDS		R HOUR		ELAY PER HOUR 34.0	STOPS LITRES PER + 170.7		TOTA LITRES P 2148	ER HOUR		

Hot CO links with delay weighting of 500 percent

				Ho	tCOI	inks w	rith d	elay we	eigntin	ig or s	ou per	cent				
OCARD NO.	CARD															
(1) = 0CARD NO.	TITLE: CARD TYPE		NO. OF	TIME EN	FFECTIVE	DDED DEL -GREEN MENTS S	EQUISAT ETTINGS	INFO.	FLOW	CRUISE- SCALE	CARD32	OPTIMIS 0=NONE	COPIES	HILL- CLIMB	DELAY VALUE	STOP
		(SEC)	PER CYCLE	1-1200 MINS.	START (SEC)	END (SEC)	0=NO 1=YES	2=CYCLE CHOICE	10-200 %	50-200 %	0=TIMES 1=SPEEDS	2=FULL	OUTPUT	OUTPUT 1=FULL	P PER PCU-H	P PER 100
2)= 0CARD	1 CARD	90	45	120	2	3 LIS	T OF	0 NODES TO	BE OP	0 TIMISED	0	2	0	0	55	50
NO.	TYPE	261	260	178	179	180	181	182	183	184	185	186	187	188	189	193
3) = 4) =	2 2	261 194	195	196	197	198	199	200	201	202	203 259	204 216	205 217	206 218	227 219	226 220
5)= 6)=	2 2	207 221	208 222	209 223	210 224	211 225	212 0	213 0	214 0	215 0	0	0	0	0	0	0
0 CARD	CARD	NODE	ST	NOI AGE 1	DE CARD	S: STA AGE 2		NGE TIME TAGE 3		MINIMUM AGE 4		TIMES AGE 5	ST	AGE 6	ST	AGE 7
NO.	TYPE	NO.	CHANGE	MIN	CHANGE 64		CHANG 90		CHANGE 0	MIN 0	CHANGE	MIN	CHANGE 0	MIN 0	CHANGE 0	MIN 0
7)= 8)=		261 260	35 44	10 10	55	10	66	10	33	10	0	0	0	0	0	0
9)= 10)=	22 22	178 179	7 14	10 10	26 33	10 10	0	0	0	0	0	0	0	0	0	0
11)= 12)=	22 22	180 181	39 16	10 10	13 34	10 10	0	0	0	0	0	0	0	0	0	0
13)=	22	182	28	10	39	10	0	0	0	0	0	0	0	0	0	0
14)= 15)=		183 184	9 17	10 10	38 43	10 10	0	0	0	0	0	0	0	0	0	0
16)= 17)=		185 186	3 19	10 10	21 40	10 10	0	0	0	0	0	0	0	0	0	0
18)=	22	187 188	31 12	10 10	4 32	10 10	0	0	0	0	0	0	0	0	0	0
19)= 20)=	22	189	35	10	20	10	0	0	0	0	0	0	0	0	0	0
21)= 22)=		193 194	30 30	10 10	89 9	10 10	0	0	0	0	0	0	0	0	0	0
23)= 24)=		195 196	0 10	10 10	31 36	10 10	0	0	0	0	0	0	0	0	0	0
25)=	22	197	16 13	10 10	1 40	10 10	0	0	0	0	0	0	0	0	0	0
26)= 27)=	22	198 199	31	10	11	10	0	0	0	0	0	0	0	0	0	0
28)= 29)=		200 201	31 2	10 10	16 37	10 10	0	0	0	0	0	0	0	0	0	0
30)= 31)=	22	202 203	40 10	10 10	19 37	10 10	0	0	0	0	0 0	0	0	0	0	0
32)=	22	204	16	10	43	10 10	0	0	0	0	0	0	0	0	0	0
33)= 34)=	12	205 206	22 28	10 10	9 17	10	0	0	0	0	0	0	0	0	0	0
35)= 36)=	12 13	227 226	75 49	10 10	41 80	10 10	0 25	0 10	0	0	0	0	0	0	0	0
37)= 38)=	12 12	207 208	65 80	10 10	76 57	10 10	0	0	0	0	0	0	0	0	0	0
39)=	12	209 210	83 85	10 10	55 60	10 10	0	0	0	0	0	0	0	0	0	0
40) = 41) =	12	211	11	10	1	10	0	0	0	0	0	0	0	0	0	0
42) = 43) =		212 213	33 15	10 10	88 85	10 10	0	0 0	0	0	0	0	0	0	0	0
44)= 45)=	12 12	214 215	26 46	10 10	82 26	10 10	0	0	0	0	0	0	0	0	0	0
46) = 47) =	12 12	259 216	85 86	10 10	45 41	10 10	0	0	0	0	0	0	0	0	0	0
48)=	12	217	7	10	76	10	0	0	0	0	0	0	0	0	0	0
49)= 50)=	12 12	218 219	12 43	10 10	72 21	10 10	0	0 0	0	0	0	0	0	0	0	0
51)= 52)=	12	220 221	23 35	10 10	12 18	10 10	0	0	0	0	0	0	0	0	0	0
53)=	12	222	35	10	4 11	10 10	0	0	0	0	0	0	0	0	0	0
54) = 55) =	12	223 224	29 59	10 10	33	10	0	0	0	0	0	0	0	0	0	
56) = 1PROGRA	13 M TRANS	225 SYT8	40 ATHENS				74 DED DEL	10 AY WT OF S	0 500 TO HO	OT CO LI	NKS	0	PAGE			
0				- Cally			LINK (CARDS: 1	FIXED DA	ATA						
CARD		LINK	EXIT	S	TART		END	:	START E LAG		END	LINK	STOP	SAT FLOW	DELAY WT.X100	DISPSN X100
	TYPE 31	NO. 2846	NODE 261	STAGE 2	5 LAG	1	S LAC	0	0	0	0	54	0	3500	500	0
58) = 59) =		2845 2820		3		1 3	3	0	0	0	0	54 120		1600 1800	500 0	0
60)=	31	3850	261	1	7		0	0	0 0	0	0	120 68	0	5000 5000	0	0
61)= 62)=	31	2825 2800	260		4	4	0	0	0	0	0	156	0	1800 1800	0	
63) = 64) =	31 31	1620 1820	260 178	1 2	4		0	0	0	0	0	64 130	0 0	2000	0	0
65) =	31	2230	178	1	3	2	0	0	0	0 0	0	118 75	0	3200 3200	0	
66) = 67) =	31	1330 1300	179 179	2	4	1	0	0	0	0	0	100	0	1500 3200	0	0
68) = 69) =		1340 1280	180 180	2 1	3	1 2	0	0	0	0	0	124 98	0	1500	0	0
70) = 71) =	31	1350 1790	181 181	2 1		1 2	0	0	0	0	0	114 116	0	3200 1500	0	0
72)=	31	1380	182	2	4	1	0	0	0	0	0	81	0	3200 3200	0	0
73)= 74)=		1390 1750	183 183	1 2	3	2 1	0	0	0 0	0		96 128	0	1500	0	0
75)= 76)=	31	1420 1720	184 184	1 2	3	2 1	0	0	0	0	0	172 140	0	3200 1500	0	0
77)=	31	1440	185	2	4	1	0	0	0	0	0	52	0	3200	0	0
78) = 79) =	31	1210 1450	185 186	1 2	43	2 1	0	0 0	0		0	92 124	0	3200	0	0
80)= 81)=		1680 1480	186 187	1 2	3	2 1	0	0	0	0	0	122 55	0	3200 3200	0	0
82)=	31	900	187	1	3	2	0	0	0	0	0	100 110	0	1500 3200	0	0
83)=	31	1490	188	2	3	1	0	U	0	0	0	110	0	3200		

		ц	ot CO li	inke w	ith del	av wei	ohting	of 500) ner	ent				
85) = 31 86) = 31 87) = 31 88) = 31 90) = 31 91) = 31 92) = 31	1520 1 1060 1 2830 1 1590 1 1610 1 1580 1 1630 1 1540 1	88 1 89 1 93 2 94 1 94 2 95 2 96 1	3 4 5 3 10 10 4 3 4	2 2 1 2 1 2 1 2 1 2 1 2	0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0	122 82 100 88 50 96 100 52 108 80 188		1500 3200 1500 5500 1500 4300 1500 4300 1500	0 0 0 0 0 0 500 0	
95) = 31 96) = 31 97) = 31 98) = 31 99) = 31 100) = 31	1660 1 1500 1 1670 1 1970 1 1690 1 1460 1 1700 2	96 2 97 1 97 2 98 1 98 2 99 1 .99 2 200 1 THENS * Cent	3 5 4 3 5 4 7 ral Arteria	1 2 1 2 1 2 1 2 2 5 * ADDE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 WT OF 500	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	112 108 50 208 118 110 62	0 0 0 0 0 0 PAGE	4300 1500 4300 3000 4300 4300 5500 4 RUN	500 0 0 500 0	0 0 0 0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1730 2 1740 2 1900 2 1760 2 1770 2 1860 2 1860 2 1860 2 1831 2 2200 2 2215 2 2170 2 2170 2 2140 2 1870 2 1880 2 1990 2 1910 2 2171 2 2206 2 2171 2 2190 2 1840 2 1930 2 1930 2 2040 2 2000 2 2790 3 3730 2 2050 2 2050 2 2060 5 2060 5 2060 5 2060 5 1960 2 <td< td=""><td>2000 2 2011 1 1002 1 1002 1 1002 1 1003 2 2003 1 2004 1 2005 1 2005 1 2005 1 2005 2 2006 1 2277 2 2266 2 2266 2 2266 2 2008 2 2009 1 212 2 210 1 212 2 213 1 214 2 215 1 214 2 215 1 217 1 218 1 218 1 219 2 219 2</td><td>4 0 6 12 4 3 4 3 7 3 6 0 4 4 3 7 3 6 0 4 4 4 4 0 5 4 5 4 5 4 5 4 10 7 7 5 3 7 4 4 6 8 4 8 4 7 0 5 4 5 4 10 7 7 5 7 7 9 7 7 9 7 9 7 7 9 7 9 7 7 9 7 9</td><td>1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td><td></td><td></td><td></td><td>160 108 64 180 90 106 82 178 106 104 130 130 240 140 132 138 138 138 138 130 120 140 140 140 140 142 144 114 114 114 114 114 114 114 114</td><td></td><td>3000 5500 2400 5500 1800 5500 1800 5500 3000 3000 4000 2500 4000 4500 4000 4500 9000 2800 9000 2800 9000 2800 9000 2800 9000 2800 9000 2800 9000 2800 9000 2800 9000 2800 9000 2800 9000 2800 5000 1800 5500 1800 5500 1800 2500 2800 9000 2800 9000 2800 2800 5500 2800 5500 2800 2800 2</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td></td<>	2000 2 2011 1 1002 1 1002 1 1002 1 1003 2 2003 1 2004 1 2005 1 2005 1 2005 1 2005 2 2006 1 2277 2 2266 2 2266 2 2266 2 2008 2 2009 1 212 2 210 1 212 2 213 1 214 2 215 1 214 2 215 1 217 1 218 1 218 1 219 2 219 2	4 0 6 12 4 3 4 3 7 3 6 0 4 4 3 7 3 6 0 4 4 4 4 0 5 4 5 4 5 4 5 4 10 7 7 5 3 7 4 4 6 8 4 8 4 7 0 5 4 5 4 10 7 7 5 7 7 9 7 7 9 7 9 7 7 9 7 9 7 7 9 7 9	1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					160 108 64 180 90 106 82 178 106 104 130 130 240 140 132 138 138 138 138 130 120 140 140 140 140 142 144 114 114 114 114 114 114 114 114		3000 5500 2400 5500 1800 5500 1800 5500 3000 3000 4000 2500 4000 4500 4000 4500 9000 2800 9000 2800 9000 2800 9000 2800 9000 2800 9000 2800 9000 2800 9000 2800 9000 2800 9000 2800 9000 2800 5000 1800 5500 1800 5500 1800 2500 2800 9000 2800 9000 2800 2800 5500 2800 5500 2800 2800 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
147) = 31 148) = 31 149) = 31 150) = 31 151) = 31 1PROGRAM TRANS	2080 2090 5940 2120 1890	220 1 221 1 221 2 222 1 222 2 THENS * Cent	0 0 6 4 4 4 cral Arteri	2 2 1 2 1 .es * ADD	0 0 0 0 ED DELAY	0 0 0 0 7 WT OF 50	0 0 0 0 0 TO HO	0 0 0 0 CO LINKS	0 0 0 0	118 70 100 82 128	0 0 0 0 PAGE	5000 1800 5000 1600	0 0 0 0	0 0 0 0 7 8/1993
152) = 31 153) = 31 154) = 31 155) = 31 156) = 31 157) = 31 0	2150 1850 2161 2160	223 1 224 1 224 2 225 3 225 2 225 2	10 4 6 1 10 4	2 2 1 2 1 3	0 0 0 0 10 LINK CAR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 .0W DATA		0 0 0 0 0	72 116 98 48 48 100	0 0 0 0	5000 5000 1600 4500 1500 3000		0 0 0 0
CARD CARD NO. TYPE 158) = 32 159) = 32 161) = 32 162) = 32 164) = 32 164) = 32 164) = 32 165) = 32 166) = 32 166) = 32 167) = 32 167) = 32 170) = 32 171) = 32 171) = 32 174) = 32 175) = 32	LINK T NO. 2846 1 2820 3850 1 2820 1620 1620 1330 1330 1340 1 1280 1350 1 1350 1 1360 1	OTAL UNIFO FLOW FLO 755 0 617 0 300 0 000 0 7700 0 300 0 945 0 550 0 307 0 3061 0 307 0 3061 0 302 0 302 0 302 0 242 0	W NO. 0 2800 0 2846 2000 1590 0 1810 2230 0 1330 0 1340 1350 1350 1380	1	CRUISE TIME 20 20 15 25 25 25 25 26 11 18 18 18 18 18 25 18 13 16 20		FLOW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ENTRY LINK NO. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 FLOW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CRUISE TIME 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ENTRY LINK NO. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FLOW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CRUISE TIME 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

				He	ot CO	links w	rith de	elay w	eightin	g of 5	00 per	cent				
76)= 32	2	1420	1010	0	1390	860	24	1750	150	24	0	0	0	0	0	0
77)= 32		1720	259	0	1920	159	30	1700	100	30	0	0	0	0	0	0
78)= 32		1440	1088	0	1420	832	6	1720	256	6	0	0	0	0	0	0
79)= 32	2	1210	1094	0	0	0	17	0	0	0	0	0	0	0	0	0
.80)= 32	2	1450	1059	0	1440	937	19	1210	122	19 30	0	0	0	0	0	0
.81)= 32		1680	1228	0	1970	545	30	1670 1680	683 40	10	0	0	0	0	0	0
.82)= 32		1480	820	0	1450	780	10 18	1000	0	0	0	0	0	0	0	0
.83)= 32		900	222	0	0	754	24	900	95	24	0	0	0	0	0	0
.84)= 32		1490	849	0	1480 1990	445	26	1640	160	26	0	0	0	0	0	0
(85) = 32 (86) = 32		1650 1520	605 1020	0	1490	805	13	1650	214	13	0	0	0	0	0	0
(86) = 32 (87) = 32		1060	142	0	0	0	18	0	0	0	0	0	0	0	0	0
.88)= 32		2830	1847	0	0	0	15	0	0	0	0	0	0	0	0	0
.89)= 32		1590	190	0	0	0	9	0	0	0	0	0	0	0	0	0
90)= 32		1610	1948	0	2830	1847	12	1590	101	12	0	0	0	0	0	0
91)= 32		1580	22	0	0	0	18	0	0	0	0	0	0	0	0	0
92)= 32	2	1630	1970	0	1610	1948	9	1580	22	9	0	0	0	0	0	0
(93)= 32	2	1540	230	0	1060	95	22	1520	135	22	0	0	0	0	0	0
(94)= 32	2	1640	2255	0	1630	2025	13	1540	230	13	0	0	0	0	0	0
(95)= 32	2	1990	530	0	2010	259	30	1980	271	30		0	0	0	0	0
196)= 3:	2	1660	2452	0	1640	2095	14	1990	357	14	0	U	PAGE			8/1993
ROGRAM	TRAN	ISYT8	ATHENS	* Centr	al Arter	ies * ADD	ED DELA	Y WT OF	500 TO HO	T CO LIN	NKS					
197)= 3	2	1500	192	0	900	127	22	1480	65	22	0	0	0	0	0	0
198)= 3		1670	2284	0	1660	2091	11	1500	193	11	0	0	0	0	0	0
199)= 3		1970	597	0	2040	597	32	0	0	0	0	0	0	0	0	0
200)= 3		1690	1995	0	1670	1601	21	1970	394	21	0	0	0	0	0	0
201)= 3		1460	1123	0	1210	972	20	1440	151	20	0	0	0	0	0	0
202) = 3		1700	2015	0	1690	1467	7	1460	548	7	0	0	0	0	0	0
203)= 3		1920	740	0	1910	740	30	0	0	0	0	0	0	0	0	0
204)= 3	2	1730	1960	0	1700	1789	12	1920	171	12 0	0	0	0	0	0	0
:05)= 3	12	1740	1823	0	1730	1823	20	0	0	30	0	0	0	0	0	0
206)= 3	12	1900	582	0	2110	373	30	1880	209		0	0	0	0	0	0
207) = 3		1760	2003	0	1740	1848	14	1900	155 0	14 0	0	0	0	0	0	0
208)= 3		1400	370	0	1380	250	20	0		8	0	0	0	0	0	0
209)= 3		1770	2100	0	1760	2000	8	1400	67	28	0	0	0	0	0	0
(10) = 3		1860	511	0	2140	231	28	1840	280 314	13	0	0	0	0	0	0
	32	1800	2300	0	1770	1903	13	1860 1340	135	22	0	0	0	0	0	0
(12)= 3		1360	260	0	1280	125	22	1340	260	10	0	0	0	0	0	0
(13) = 3		1810	2400	0	1800	2055	10	1360	200	0	0	0	0	0	0	0
	32	1831	729	0	1810	729	30 30	0	0	0	0	0	0	0	0	0
	32	1830	738	0	1810	738	25	2215	483	25	0	0	0	0	0	0
and the second se	32	2200	1043	0	2171 0	560 0	25	0	405	0	0	0	0	0	0	0
	32	2225	2050 2417	0	0	0	24	0	0	0	0	0	0	0	0	0
A REAL PROPERTY AND ADDRESS OF A REAL PROPERTY AND ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDR	32	2215	824	0	2225	568	22	1831	256	22	0	0	0	0	0	0
	32 32	2205 2206	827	0	2225	357	22	1831	470	22	0	0	0	0	0	0
	32	2170	955	0	2185	567	22	2160	388	22	0	0	0	0	0	0
	32	2171	500	0	2185	150	22	2160	350	22	0	0	0	0	0	0
	32	2190	3300	0	2215	1933	23	2205	833	23	2170	370	23	0	0	0
	32	1840	2955	0	2190	2955	12	0	0	0	0	0	0	0	0	0
	32	2140	523	0	2130	373	22	0	0	0	0	0	0	0	0	0
	32	1870	2725	0	1840	2666	9	2140	59	9	0	0	0	0	0	0
	32	1780	528	0	1400	182	24	1760	346	24	0	0	0	0	0	0
	32	1880	2861	0	1870	2500	10	1780	361	10	0	0	0	0	0	0
	32	2110	590	0	5940	10	20	2090	580	20	0	0	0	0	0	0
	32	1910	2681	0	1880	2475	17	2110	206	17	0	0	0	0	0	0
	32	1930	1895	0	1910	1895	7	0	0	0	0	0	0	0	0	0
	32	1710	1099	0	1460	638	30	1690	214	30	0	0	0	0	0	0
	32	1940	3000	0	1930	1100	8	1710	1895	8	0	0	0	0	0	0
234)= 3	32	1950	2200	0	1940	2200	9	0	0	0	0	0	0	0	0	0
235)= 3		2040	721	0	5800	307	20	2020	414	20	0	0	0	0	õ	0
236)= 3		1980	2165	0	1950	2095	16	2040	70	16		0	0	0	0	0
237) = 3		2010	268	0	3730	258	18	2790	10	18	0	0	0	0	0	0
238)= 3		2000	1933	0	1980	1883	22	2010	50	22		0	0	0	0	0
239)= 3		2805	2000	0	2825	1733	28	1620	256	28	0	0	0	0	0	0
240) = 3		2790	2000	0	2805	1624	25	2000	370	25	0	0	0	0	0	0
241)= 3		3730	1520	0	0	0	25	0	0	0	0	0	0	0	0	0
242)= 3		2020	2620	0	2790	1360	20	3730	1260	20	0	0	0	0	0	0
243)= 3		5800	330	0	0	0	25	0	0	0	0	0	0	0	0	0
244)= 3		2050	2050	0	2020	2021	18	5800	23	18		0	0	0	0	0
245)= 3		1960	850	0	1940	850	25	0	0	0	0	0	0	0	0	0
246) = 3 PROGRAM		2060	2100 ATHENS	0 + Cent	2050 ral Arte	1725 ries * ADI	30 DED DEL	1960 AY WT OF	375 500 TO H	30 OT CO LI	0 INKS	U	PAGE		JN ON 10/	
										0	0	0	0	0	0	0
247)=		5930	420	0	0	0	25	0	0		0	0	0	0	0	0
248) =		2080	2600	0	2060	2100	25	5930	500	25			0	0	0	0
249)=		2090	2038	0	2080	2038	20	0	0	0	0	0	0	0	0	0
250)=		5940	50	0	0	0	25	0	0	0	0	0	0	0	0	0
251) =		2120	1500	0	2090	1424	15	5940	50	15	0	0	0	0	Ő	0
252) =		1890	570	0	1780	352	25	1870	218	25	0	0	0	0	0	0
253)=		2130	2036	0	2120	1474	12	1890	562	12	0	0	0	0	0	0
254)=		2150	1675	0	2130	1625	25	0	0	0	0	0		0	0	0
255)=		1850	200	0	2190	180	25	0	0	0	0	0	0	0	0	0
256) =		2161	2000	0	2150	1900	20	1850	200	20	0	0	0	0	0	0
	32	2160	600	0	2150	600	20	1850	20	20 0	0	0	0	0	0	0
257) = 258) =		2185	667	0	0	0	15	0	0							

258)= 52 2165 667 0 0*****END OF SUBROUTINE TINPUT***** 263

Hot CO links with delay weighting of 500 percent

1PROGRAM	TRANSYT			* Centr					OF 500 T			perec	PAGE	20 F	UN ON	10/	8/19	93
0 90 0 LINK	SECOND FLOW		45 STE DEGREE		TIMES				STO			EUE	PERFORMANCE	EXIT	GREE			
NUMBER	INTO LINK	FLOW	OF SAT	PER		UNIFORM	OVERSA		MEAN STOPS	COST OF	MEAN MAX.	AVERAGE	INDEX. WEIGHTED SUM	NODE		ND		ND
					DELAY (SEC)	(U+R+O= (PCU-	MEAN Q)		/PCU (%)	STOPS (\$/H)	(PCU)	EXCESS (PCU)	OF () VALUE: (\$/H)	S	1ST (S	ECON	2ND)
	(PCU/H)	(PCU/H)	(8)										.7	187	34	51	79	6
900 1060	222	1500 1500	37 43	18 18	14 24	.6 + .6 +	.3 (.5)	72 (.2)	2 2		.7	189	83	2	38	47
1210	1094	4000	68	17	15	3.4 + 1.3 +	1.1 ((2.5)	80 (104 (.8)	12 5		3.3	185 180				68 25
1280 1300	361 307	1500 1500	72 58	18 18	26 20	1.0 +	.7	(.9)	89 (.3)	4		1.2	179		58 39		13 84
1330	994	3200	61	11	4	.3 + 1.3 +	.8	(.6)	17 (38 ((.3) (.8)	4 8		.9 2.2	179 180	17 73	8		53
1340 1350	1301 1392	3200 3200	70 72	18 25	77	1.5 +	1.3	(1.5)	43 (.4)	10		1.9	181	2			73 25
1360	260	1500	65	22	28	1.1 +	.9	(1.1)	110 ((.2)	4		1.3	205 182	59 12	42		87
1380 1390	1146 928	3200 3200	52 47	13 16	3	.4 +	.4	(.4)	19	(.2)	3		.6	183	72	9		54
1400	369	1800	58	20	14	.8 +	.7	(.8) (1.2)	72 58	(.3) (1.0)	4		1.1 2.2	203 184	40 28	55 55		10 10
1420 1440	1006	3200 3200	51 72	24 6	8 10	1.7 +	.5	(1.7)	55	(1.5)	9		3.3	185	27	47	72	2
1450	1055	3200	78	19	12	1.6 +	1.8	(1.9) (4.0)	64 106	(1.0) (1.2)	12 18		2.8	186 199	47 30	65 43	2 75	20 88
1460 1480	1121 816	4000 3200	90 50	20 10	23	2.9 +	4.4	(.4)	12	(.1)	1		.5	187	54	76	9	31
1490	846	3200	70	24	12	1.7 +	1.2	(1.6)	77 157	(.4) (.2)	10		2.0	188 197	41 58	57 64	86 13	12 19
1500 1520	192 1008<	1500 3200	82 49	22 13	57 3	.8 + .4 +	2.2	(.5)	16	(.2)	3		.7	189	51	79		34
1540	228	1000	68	22	29	.8 +	1.1	(1.0)	112	(.2)	4		1.2	195 194	32 27	46	77	1
1580 1590	22 190	1500 1500	33 60	18 9	82 46	.3 + 1.7 +	.2	(.3)	134 101	(.0) (.2)	5		1.5	193	52	70		
1610	1948	4300	60	12	6	2.6 +	.7	(1.8)	40	(1.7)	21		3.5 1.7	194 260	40	17 56		
1620 1630	156 1970	1800 4300	60 82	25 9	70 6	2.3 + 1.0 +	.7 2.3	(1.7) (1.9)	118 33	(.7)	23	+	2.5	195	5	29		74
1640	2253	4300	94	13	16	2.1 +	7.9	(5.5)*	54	(1.6)	30 5		29.0 1.3	196 188	13 15	37 38	58 60	82 83
1650 1660	578< 2433<		72 82	26 14	13 5	.7 + 1.1 +	1.3	(1.1) (1.8)*	53 25	(1.3)	11		10.5	197	24	54	69	9
1670	2266<	4300	85	11	8	2.6 +	2.7	(2.9)	43	(.7)	16 14		3.6 3.4	198 186	28 23	55 44	73 68	10 89
1680 1690	1224 1980<	3200 4300	78 86	30 21	15 13	3.4 + 3.9 +		(2.9) (3.9)*	81 75	(.5) (1.6)	24		21.0	199	3	26	48	71
1700	2004<	5500	75	7	9	3.5 +	1.5	(2.7)		(2.7)	17 20		5.4 20.8	200 212	7 87	28 32	52	73
1710 1720	1094 257	3800 1500	72 59	30 30	24 22	6.0 +	1.3	(4.0)*	72 85	(.8) (.2)	3		1.0	184	58	70	13	25
1730	1949<	5500	44	12	1	.1 +	.4	(.3)	4	(.2)	1		.5	201 202	62 45	7 61	17 0	52 16
1740 1750	1813 239	5500 1500	87 55	20 20	15 19	4.2 +	3.4	(4.2)	93 92	(.6)	24 3		1.0	183	12	24	57	69
1760	1993	5500	68	14	4	1.0 +	1.1	(1.1)	26	(.7)	18 5		1.9 2.1	203 204	14 20	37 42	59 65	82 87
1770 1780	2088<	5500 2000	74 76	8 24	4 35	.7 + 3.5 +		(1.2) (2.8)	13 88	(1.0) (.7)	12		3.5	209	65	5		
1790	298	1500	64	18	23	1.0 +	.9	(1.0)	101	(.4) (1.2)	5 10		1.5	181 205	76 29	89 56	31 74	44
1800 1810	2284< 2384<		67 53	13 10	3 2	1.1 +	1.0	(1.2)	19 9	(.8)	7		1.4	206	36	19		-
1820	548	2000	62	26	14	1.3 +		(1.2)	84	(.4)	7 14		1.6 3.2	178 227	31 52	50 85	76	5
1830 1831	734 725	3000 3000	65 70	30 30	26 31	4.4 + 5.0 +		(2.9) (3.4)	74 81	(.3) (.4)	15		3.7	227	52	82		
1840	2906<	9000	46	12	3	2.0 +		(1.3)*		(1.6)	18		8.2 1.1	208 224	11 38	73 58		
1850 1860	195 503	1600 1800	52 74	25 28	33 24	1.3 + 2.0 +	.5	(1.0) (1.9)	86 99	(.7)	9		2.5	204	45	61	0	16
1870	2680<	9000	52	9	7	4.4 +	.5	(2.7)	22	(1.6) (1.5)	15 16		4.4	209 210	10 13	61 62		
1880 1890	2818< 563	9000 1600	56 72	10 25	7 20	4.6 +		(2.9) (1.7)	22 52	(.3)	8		2.0	222	75	28		-
1900	581	2400	91	30	51	3.7 +	4.5	(4.5)	149	(1.0)	15		5.5 PAGE	202 21	73 RUN ON	84		39 993
	M TRANSY		ATHENS 45 ST		ral Ar	teries *	ADDED	DELAY WI	OF 500	TO HOT C	O LINKS							
0 LINK	FLOW	SAT	DEGRE	E MEAN	TIMES					OPS		UEUE	PERFORMANCE INDEX.	EXIT	GRE STA		IMES	
NUMBER	LINK	FLOW	OF	PER	PCU		M RANDO	M+ COST	MEAN STOPS	COST	MEAN MAX.	AVERAGE	WEIGHTED SUN	м		END		END
					DELAY	(U+R+0	MEAN C	2) DELAY	/PCU	STOPS	(DCI)	EXCESS (PCU)		ES		T	2N NDS)	
	(PCU/H)	(PCU/H) (§)	(SEC)	(SEC)	(PCU	I-H/H)	(\$/H)	(8)	(\$/H)	(PCU	(PCU)	(3/1)					
1910		9000	34		0	.1 +				(.1)	1 12		.3 3.3	211 200		13 45	77	0
1920 1930	730 1869<	3000 < 7500	78 48		23 6	2.9 + 2.8 +		(2.6) (1.8)		(.7) (1.4)	12		3.2	212	37	83		
1940	2977<	< 7500	50	8	2	1.3 +	.5	(1.0)	• 14	(.7)	12		5.7 30.7	213 214	73 21	53 59		
1950 1960	2185< 846		67 91		15 54			(5.1)	• 78 111	(5.3)	47 24		7.4	218	72	11		
1970	596	3000	75	32	25	2.6 +	- 1.5	(2.2)	90	(.8)	10		3.0	198 215	58 33	69 86	13	24
1980	2151-		48		1 285	.4 +	5	(.5) (23.1)		(.2)	3		.7 25.1	196	40	54	85	9
1990 2000	532 1922-	1500 < 7500	106 27		205	.0 +		(.1)		(.0)	C)	.1	259	46	39		
2010	270	1500	54		26	1.4 +		(1.1) (4.6)	+ 102 + 55	(.3) (3.3)	7		1.4 26.4	215 217	89 85	28 55		
2020 2040	2617 720	5000 1800	77 92		12 49	4.3 4		(4.6) (5.4)	117	(.9)	23	3 +	6.3	214	66	14		
2050	2049	5000	74	18	8	3.0 4		(2.4)		(1.3)	34		13.5 14.9	218 219	19 42	68 3		
2060 2080	2099 2598	5000 7000	73 41		9 1	4.0 4		(2.9)		(.3)	2		1.4	220	37	27		
2090	2037	5000	46	5 20	2	.6 4	+ .4	(.6)	16	(.1)	5		.7 3.3	221 210	40 66	29 8		
2110 2120	589 1501	2800 5000	57 68		31 19	4.4 4		(2.8) (4.4)	89 76	(.6)	14		5.5	222	32	71		
2130	2030	5000	51	12	2	.7 .	+ .5	(.7)	10	(.3)		7	.9	223	40	20 6		
2140 2150	520 1669	2800 5000	84 49		40 3	3.3		(3.2)	103 15	(.5)			3.6 1.0	208 224	62	32		
2160	596	1500	74	20	15	1.1	+ 1.5	(1.4)	65	(.1)	1:	1 +	1.5	225	83 74	40		
2161 2170	1987 952		59		3 138	.9	+ .7 + 33.0	(.9) (20.1)	+ 174	(.0)			.9 102.3	225 226	50	15		
			102		39		+ 1.0	(3.0)	101	(.5)		3	3.4	226 225	50 54	64 83		
2171	497					and the second se												
2185	667	3000	67	7 15	31		+ 1.0	(3.2)	* 2	(.9)			4.1	207	81	71		
	667 3243 1041	< 3000 < 9000 4000		7 15 0 23 5 25	31 1 9	.1	+ .3 + .4		* 2 63	(.9) (.1) (2.0) (2.6)	1	3 9				71 49		

Hot CO links with delay weighting of 500 percent

2206	823	4000	66	22	29	5.8	+	1.0	1	3.7)	91	(1.0)	19			4.7	226	19	46		
2215	2417	8000	72	24	23		+	1.3	i	8.6)	79	i	1.9)	51			10.5	226	68	15		
	2050	4500	69	25	12	5.6		1.1	ì	3.7)	58	i	1.3)	32			5.0	227	82	50		
2225		3200	66	22	14	2.6	1	1.0	i	2.0)	76	i	.7)	10			2.7	178	8	27	53	72
2230	945				28		+	2.9	1	8.6)	88	i	.9)	41			9.6	216	89	40		
2790	1998	5000	86	25	20			.2	1	.2)	14	;	.1)				.3	260	60	30		
2800	300	1800	25	25	4	.2	+		1	.21	14	1	.0)		195		.3	259	89	85		
2805	2001	4000	52	28	1	.0	+	.5	1		1 177			1	11123		4.4	261	51	67		
2820	300	1800	88	15	78		+	3.5	(3.6)	137	1	.9)				.4	260	66	40		
2825	1699	5000	47	15	1	.2	+	.4	(.3)	4	(.0)				2.5	193	75	49		
2830	1847	5500	46	15	6	2.7	+	.4	(1.7)	37	(.8)	19					73	24		
2845	617	1600	83	20	34		+	2.3	(3.2)*	98	(.1)	1		+	16.4	261				
2846	1755	3500	74	20	12	4.6	+	1.4	(3.3)*	63	(.2)	31		+	16.7	261	51	21		
3730	1520	5000	68	25	23	8.4	+	1.1	(5.2)*	78	(.4)	3			26.5	216	46	85		
3850	1000	5000	95	20	63	9.7	+	7.9	(9.7)	123	(1.5)	3.			11.1	261	28	46		
5800	330	1800	87	25	68	3.1	+	3.1	(3.4)	127	(.2)	1.	1		3.7	217	59	77		
5930	420	1800	91	25	73	3.8	+	4.7	(4.7)	133	(.3)	1	5		5.0	219	13	35		
5940	50	1800	42	25	66	.6	+	.4	i	.5)	119	(.0)		2		.5	221	35	40		
1PROGRAM			HENS *	Centr			+	ADDED	DE		OF 500	TO	HOT CC	LINK	5		PAGE	22	RUN ON	10/	8/	1993
	SECOND		5 STEP		at At	COLTOD		10000														
		TOTAL		MEAN		TOTAL		TOT	AT.	TOTAL	τ.	1	OTAL		ENAL	TY	TOTAL					
0 TOTAL						UNIFORM		RAND					COST		FOR		PERFORMANCE					
DISTAN		TIME		RNEY							-		OF		EXCE		INDEX					
TRAVELL	ED	SPENT	S	PEED		DELAY		OVER					TOPS		QUEU							
								DEL		DELA					(\$/H		(\$/H)					
(PCU-KM	(/H)	(PCU-H/H) (KM/H)	(PCU-H/H	I) ((\$/H)					-	TOTALS			
0 13281.	2	1160.5		11.4		271.1		265.	7	(606	.1) +	(74.6)	+ (0)	= 680.7		IOTALS		+++	++++
0++++++	******	********	*****	*****	*****	******	**	*****	***	*******	*****	***	******	*****								
0				C	DIITSE				DE	YAJ			STOPS	5			TOTALS					

0	CRUISE	DELAI	51015	
	LITRES PER HOUR	LITRES PER HOUR	LITRES PER HOUR	LITRES PER HOUR
OFUEL CONSUMPTION PREDICTIONS	1243.4	+ 751.5	+ 214.2	= 2209.2

0 NO. OF ENTRIES TO SUBPT: 125 NO. OF LINKS RECALCULATED: 2543 SYSTEM TIME: 19:25:29

5151EM 11ME. 19.23.29

EXECUTION TIME: 451 SECONDS PROGRAM TRANSYT8 FINISHED

Hot CO links with delay and stop weighting of 500 percent

OCARD	CARD																	
				ral Art	eries	* ADDED	DELAY &	STOP W	T OF 500	TO HOT	CO LINKS		TIMISE EXTRA	HILL-	DEI	LAY	STO	P
OCARD NO.	CARD	CYCLE 1 TIME	NO. OF STEPS			IVE-GREE ACEMENTS	SETTI		FO. SC	ALE S	CALE CAR	D32 0=1	NONE COPIES	CLIMB	VAI	LUE	VAI	
		(SEC)	PER	1-1200 MINS.				NO 2=C YES CH		-200 50 %	-200 0=TI % 1=SP	MES 1=0 EEDS 2=1	O/SET FINAL FULL OUTPUT	OUTPUT 1=FULL		PER J-H		DO
2) =	1	0.0	15	120	2	3		1	0	0		0	2 0 PAGE	0 20 RUN	55 N ON		50	
1PROGRAM 0 90	TRANS		ATHENS 45 STE		al Art	eries *	ADDED D	ELAY &	STOP WI C	0F 300 I	O HOT CO	LINKS						
0 LINK	FLOW	SAT	DEGREE	MEAN		UNIFORM			STC MEAN	COST	MEAN	UE	PERFORMANCE INDEX.	EXIT	GREE	EN TI	TAR	
NUMBER	INTO LINK	FLOW	OF SAT	PER			OVERSA	T OF	STOPS	OF	MAX. A		WEIGHTED SUM		151	END	E 2NI	END
	(DOI)/U	(DCII/H)	. /91	(SEC)	DELAY	(U+R+O= (PCU-		DELAY (\$/H)	/PCU (%)	STOPS (\$/H)		EXCESS (PCU)	OF () VALUE: (\$/H)	2		SECON		
	(PCU/H)	(PCU/H) (%)	(SEC)	(360)								.7	187	35	52	80	7
900 1060	222 142	1500 1500	37	18 18	14 27	.6 +	.3 (.5)	72 ((.2)	2 2		.7	189	84	2	39	47
1210	1094	4000	72	17	16	3.6 +	1.3 (2.7)	85 (.9)	13		3.6	185 180	12 55	28 69	57 10	73 24
1280 1300	361 307	1500 1500	72 58	18 18	26 20	1.3 + 1.0 +	1.3 ((1.4)	104 ((.4) (.3)	4		1.2	179	43	58	88	13
1330	994	3200	61	11	4	.4 +	.8 (.6)	18	(.3)	4 7		.9 2.2	179 180	17 72	39 7	62 27	84 52
1340 1350	1301 1392	3200 3200	70 70	18 25	78	1.4 + 1.9 +	1.2 ((1.4) (1.7)	38 47	(.8) (.4)	9		2.1	181	39	66	84	21
1360	260	1500	65	22	28	1.1 +	.9 ((1.1)	110	(.2)	4		1.3	205	58 48	69 79	13 3	24 34
1380 1390	1146 928	3200 3200	50 47	13 16	3	.4 +	.5 ((.5)	23	(.3)	3		.8	183	16	43	61	88
1400	369	1800	58	20	16	.9 +	.7	(.9)	84 I 39 I	(.3) (.7)	4		1.2	203	39 33	54 59	84 78	9 14
1420 1440	1006	3200 3200	52 69	24 6	6 11	1.2 + 2.1 +	.5	(1.0) (1.8)	57	(1.6)	10		3.3	185	32	53	77	8 20
1450	1055	3200	78	19	13	2.1 +	1.8	(2.1) (4.0)	55 108	(.8)	9 18		3.0 5.2	186 199	47 37	65 50	2 82	5
1460 1480	1121 816	4000 3200	90 50	20 10	23 3	2.9 +	.5	(.4)	13	(.1)	2		.5	187	55 41	77 57	10 86	32 12
1490	846	3200	70	24	13	1.8 +	1.2	(1.6) (1.7)	76 156	(.4) (.2)	10		2.1 1.9	188 197	58	64	13	19
1500 1520	192	1500 < 3200	82 47	22 13	57 3	.3 +	.4	(.4)	14	(.2)	2		.6 1.2	189 195	51 32	80 46	6 77	35 1
1540	228	1000	68 33	22 18	29 82	.7 +	1.1	(1.0) (.3)	112 133	(.2)	4		.3	195	26	29		-
1580 1590	22 190	1500 1500	60	9	46	1.7 +	.7	(1.3)	101	(.2)	5		1.5	193 194	51 39	69 16		
1610	1948	4300 1800	60 46	12 25	6 69	2.6 + 2.6 +	.7	(1.8) (1.6)	41 111	(1.7)	20 4		1.7	260	49	65		
1620 1630	156 1970	4300	82	9	7	1.3 +	2.3	(2.0)	47	(1.0)	23	+	3.0 34.6	195 196	5 13	29 37	50 58	74 82
1640 1650	2253 578	4300	94 72	13 26	16 13	2.0 +	7.9	(5.4)	51 53	(1.5) (.2)	21 5		1.3	188	15	38	60	83
1660	2433		82	14	5	1.1 +	2.3	(1.8)	• 25	(1.3)	11 27		15.6 3.8	197 198	24 39	54 67	69 84	9 22
1670 1680	2266 1224	< 4300 3200	82 78	11 30	8 15	2.7 +	2.2	(2.7) (2.8)	69 87	(1.1)	15	+	3.3	186	23	44	68	89
1690	1980	< 4300	86	21	12	3.3 +	3.1	(3.6)	* 64	(1.4) (2.8)	21 17		24.6 5.8	199 200	10 12	33 33	55 57	78 78
1700 1710	2004		75 56	7 30	10 20	3.9 + 5.6 +	1.5	(3.0) (3.4)	* 54 * 76	(.9)	22		21.6	212	21	66	17	20
1720	257	1500	55	30	19	.8 +	.6	(.8)	79	(.1)	3		.9	184 201	62 67	75 12	17 22	30 57
1730 1740	1949 1813		44 87	12 20	1 15	.1 + 4.4 +	.4 3.4	(.3) (4.3)	4 83	(.5)	24		4.7	202	45	61	0	16
1750	239	1500	55	20	19	.6 +	.6	(.7)	67 19	(.2)	2 8		.9 1.6	183 203	46	58 36	1 58	13 81
1760 1770	1993 2088		68 71	14 8	3	.9 +	1.1 1.2	(1.1) (1.0)	19	(.9)	4		1.9	204	19 63	42	64	87
1780	524	2000	67	24	28	3.1 +	1.0	(2.3)	80 102	(.6)	11 5		2.9	209 181	24	36	69	81
1790 1800	298 2284		69 67	18 13	24 3	.9 + 1.2 +	1.1	(1.1) (1.2)	20	(1.3)	9		2.5	205	28 34	55 17	73	10
1810	2384		53 65	10 26	2 16	.6 +	.6 .9	(.7) (1.4)	9 92	(.8)	7 7		1.5	206 178	32	50	77	5
1820 1830	548 734		65		26	4.4 +	.9	(2.9)	74	(.3)	14		3.3 3.8	227 227	50 50	83 80		
1831 1840	725		70 45		31 3	5.0 + 2.0 +		(3.4) (1.3)	* 13	(.4) (1.2)	15 11		12.7	208	5	68		
1840	195		52	25	33	1.2 +	.5	(1.0)	87	(.1)	5 9		1.1 2.7	224 204	38 45	58 60	0	15
1860 1870	503	1800	79 56		27 7	1.9 +		(2.1) (3.0)		(.7) (2.0)			5.0	209	12	59		
1880		< 9000	53	10	4	2.6 +	.6	(1.8)	17	(1.2)	19		2.9	210 222	19 71	71 26		
1890 1900	564 581		69 91	20	19 46	201	15	(1.6) (4.1)	147	(.3)	14		5.1	202	73	84		
1 PROGRA	M TRANS	SYT8	ATHENS	* Cent	ral Ar	teries *	ADDED	DELAY 5	STOP WT	OF 500	TO HOT CO	LINKS	PAGE	21 RU	JN ON	29/	8/1	993
0 9 0 LINK	0 SECON	ID CYCLE	45 ST DEGRE	EPS E MEAN	TIMES		-DELAY-		51	COPS		EUE	PERFORMANCE	EXIT		EEN 1		
NUMBER			OF SAT	PEI	R PCU			M+ COST		COST	MEAN MAX	AVERAGE	INDEX. WEIGHTED SUN	NODE		END		END
	LINF	`	SAI		DELAY	(U+R+C	MEAN C) DELAY	/PCU	STOPS	5	EXCESS	OF () VALU	SS		ST (SECO		D
	(PCU/H	 (PCU/I 	H) (%)	(SEC)	(SEC)	(PCU	(-H/H)	(\$/H)	(8)	(\$/H)	(PCU)	(PCU)	(\$/H)					
1910		/< 9000	34		1			(.4)		(.8)			1.2	211 200		80 50	82	5
1920 1930	731	3000 < 7500	78 61		22 20	2.7 +	1.8	(2.5)		(.7)			10.5	212	71	17		
1940		1< 7500	50	8	2	.8 +	.5	(.7)	* 9	(.4)	9		5.6 36.1	213 214	26 26	6 65		
1950 1960	2185	5< 7500 5 2800	66 94		13 57	6.9 + 6.7 +		(4.3) (7.4)		(2.9)		+	7.8	218	87	25		
1970	59	5 3000	81	32	28	2.5 +	2.1	(2.6)	106	(.9)	9		3.5	198 215	70 39	80 0	25	35
1980 1990	215:		50 106		2 285	.5 +		(.5)		(.3)		+	25.1	196	40	54	85	9
2000	1923	2< 7500	27	22	0	.0 +	2	(.1)	1	(.0)) 0		.1 2.3	259 215	49 3	42		
2010 2020	270		51 77		49 10	3.1 +		(2.0)		(.3)	Contraction of Contract		35.7	217	13	73		
2040	72	0 1800	95	20	60	4.3 +	7.6	(6.6)	109	(.8)) 22	+	7.4 14.5	214 218	72	19 83		
2050 2060	204				6 10	2.4 +		(2.0)		(.9)			17.1	219	57	18		
2080	259	8 7000	41	25	1	.1 +	.4	(.3)	* 4	(.1)) 3		1.7	220 221	53 15	43		
2090 2110	203					.7 4		(.7)	92	(.2)			3.5	210	75	14		
2120	150	1 5000	71	1 15	17	5.7 +	+ 1.2	(3.8)		(1.0)) 29		4.8	222 223	30 38			
2130 2140	203 52					.6 .	+ 3.5	(3.9)	109	(.5) 15		4.4	208	72	0		
2150	166							(.8) 15	(.2) 9		1.0	224	62	32		

			Hot	CO li	nks wi	th del	av and	stop	weighti	ing of 5	00 p	ercent		
2160 2161 2170 2185 2190 2205 2206 2205 2206 2215 2225 2230 2790 2800 2800 2800 2800 2800 2825 2830 2845 2846 3730 3850 5930 5940	596 1987< 952 497 667 3243< 1041 825 823 2417 2050 945 1997 300 2001 300 2001 300 2001 300 2001 300 1699 1847 617 1755 1520 1000 300 420 50 50 50 50 50 50 50 50 50 50 50 50 50	1500 4500 3000 9000 4000 2500 4000 3200 5000 3200 5000 5000 5500 1600 3500 5000 5000 5000 5000 5000	75 59 102 71 67 43 45 106 66 70 69 63 92 26 52 26 52 88 50 46 83 74 64 95 87 91	20 16 20 3 22 138 22 41 15 31 23 1 25 8 22 269 22 25 22 25 25 6 28 1 15 82 15 62 215 6 20 34 20 15 215 20 34 20 25 66 25 63 25 63 325 68 325 63 325 63 325 68 325 68 325 68 325 68	$\begin{array}{c} 1.2 + \\ .9 + \\ 3.6 + \\ 4.4 + \\ 4.8 + \\ 4.8 + \\ 6.9 + \\ 6.0 + \\ 5.6 + \\ 2.4 + \\ 12.3 + \\ 2.6 + \\ 2.4 + \\ .3 + \\ 0.4 + \\ 2.4 + \\ .4 + \\ 2.7 + \\ 3.4 + \\ 2.7 + \\ 3.1 + \\ 3.8 + \\ 3$	1.5 33.0 33.0 1.2 1.0 4 54.8 1.2 1.2 4 54.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	$ \left(\begin{array}{c} 1.4 \\ (\ .9 \right) \\ (\ 20.1) \\ (\ 20.1) \\ (\ 3.1) \\ (\ 3.2) \\ (\ .4) \\ (\ 1.3) \\ (\ 3.3) \\ (\ 3.3) \\ (\ 3.3) \\ (\ 3.3) \\ (\ .3) \\ (\ .3) \\ (\ .3) \\ (\ .5) \\ (\ .3) \\ (\ .5) \\ (\ .5) \\ (\ .3) \\ (\ .5) \\ (\ .3) \\ (\ .5) \\ (\ .3) \\ (\ .5) \\ (\ .3) \\ (\ .5) \\ (\ .$	70 13 175 104 87 5 59 240 93 78 58 72 100 18 1 139 6 37 98 63 73 98 63 7123 127 133	(.1) (.0) (1.6) (.5) (.9) (.2) (1.9) (2.6) (1.9) (1.0) (1.8) (1.3) (.7) (1.0) (.1) (.0) (.1) (.0) (.1) (.9) (.1) (.2) (.4) (.2) (.2) (.0)	12 6 51 13 15 6 17 76 20 49 32 10 52 1 11 3 19 16 30 29 32 11 15 1 HOT CO LI	* * *	1.5 .9 108.8 3.6 4.1 3.3 3.2 91.2 4.8 10.1 5.0 2.4 11.0 .3 4.6 .6 2.5 16.9 17.7 24.7 11.1 3.7 5.0 .4 PAGE	225 225 226 225 227 227 227 226 226 226 226 226 227 178 216 260 259 261 260 259 261 261 261 261 261 261 261 261 261 261	83 40 74 50 50 15 50 63 54 83 86 70 86 47 19 46 67 15 80 48 8 28 53 73 69 35 1 87 69 35 1 87 69 35 1 87 61 77 75 45 74 48 83 34 61 31 23 65 38 56 77 5 28 50 7 15 RUN ON 29/ 8/1993
0 90 0 TOTAL DISTAN TRAVELL) SECOND L ICE LED	CYCLE TOTAL TIME SPENT	45 STEPS MI JOURI SPI	EAN NEY EED	TOTAL UNIFORM DELAY	TOTA RANDO OVERS DELA	AL TOT. DM+ CO: SAT O AY DEL	AL ST F AY	TOTAL COST OF STOPS (\$/H)	PENAL FOR EXCE QUEU (\$/H	TY SS ES	TOTAL PERFORMANCE INDEX (\$/H)	5	
	2 ONSUMPTIC	TO SUBP	1 	CRUIS LITRES PE 1243. B	E IR HOUR	272.0	DELAY SS PER HOU 761.6	6.1) + (146.2)	HOUR	TO	742.2 TALS PER HOUR 21.7	T • • • • • •	007ALS
	ION TIME	: 441 T8 FINIS	17:37:14 SECONDS	4										
T ROOM														

Hot NOx links with stop weighting of -200 percent

				Hot	NOX	links	with s	stop we	eigntin	g 01 -	200 pe	rcent				
OCARD NO.	CARD															
(1)=	TITLE:			ral Arter	ies * H	OT NON I	LINKS WI	TH STOP W	EIGHTING	OF -200 CRUISE-	SPEEDS	OPTIMIS	E EXTRA	HILL-	DELAY	STOP
OCARD NO.	CARD	CYCLE	NO. OF STEPS	TIME EF PERIOD D			EQUISAT	1=CYCLE INFO.	FLOW	SCALE	CARD32	0=NONE	COPIES	CLIMB	VALUE	VALUE
NO.	TIFE	111115	PER	1-1200		END	0=NO	2=CYCLE	10-200		0=TIMES		FINAL	OUTPUT 1=FULL	P PER PCU-H	P PER 100
2)=	1	(SEC) 90	CYCLE 45	MINS. 120	(SEC) 2	(SEC)	1=YES 1	CHOICE 0	8	8	1=SPEEDS 0	2=FOLL	0	0	55	50
OCARD	CARD	90	40	120	-			NODES TO		TIMISED						
NO.	TYPE		250	178	179	180	181	182	183	184	185	186	187	188	189	193
3)= 4)=	2 2	261 194	260 195	196	197	198	199	200	201	202	203	204	205	206	227	226
5)=	2	207	208	209	210	211	212	213 0	214 0	215	259 0	216 0	217 0	218 0	219 0	220 0
6)=	2	221	222	223 NOD	224 E CARD	225 S: ST/	0 AGE CHA	NGE TIME		MINIMUM		TIMES				
CARD	CARD	NODE	ST	AGE 1	ST	AGE 2	S	TAGE 3		AGE 4		AGE 5 MIN	ST	AGE 6 MIN	CHANGE	AGE 7 MIN
NO.	TYPE	NO.	CHANGE 35	MIN 10	CHANGE 64	MIN 10	CHANG 90	E MIN 10	CHANGE 0	MIN 0	CHANGE 0	0	0	0	0	0
7)= 8)=	13 14	261 260	44	10	55	10	66	10	33	10	0	0	0	0	0	0
9)=	22	178	7	10	26 33	10 10	0	0	0	0	0	0	0	0	0	0
10)=	22 22	179 180	14 39	10 10	13	10	0	0	0	0	0	0	0	0	0	0
12)=	22	181	16	10	34	10	0	0	0	0	0	0	0	0	0	0
(13) = (14) =	22 22	182 183	28	10 10	39 38	10 10	0	0	0	0	0	0	0	0	0	0
15)=	22	184	17	10	43	10	0	0	0	0	0	0	0	0	0	0
16) = 17) =	22 22	185 186	3 19	10 10	21 40	10 10	0	0	0	0	0	0	0	0	0	0
18)=	22	187	31	10	4	10	0	0	0	0	0	0	0	0	0	0
19)=	22	188	12	10	32 20	10 10	0	0	0	0	0	0	0	0	0	0
20) = 21) =		189 193	35 30	10 10	89	10	0	0	0	0	0	0	0	0	0	0
22)=	12	194	30	10	9	10	0	0	0	0	0	0	0	0	0	0
23) = 24) =	22 22	195 196	0 10	10 10	31 36	10 10	0	0	0	0	0	0	0	0	0	0
25)=		197	16	10	1	10	0	0	0	0	0	0	0	0	0	0
26)=		198	13 31	10 10	40	10 10	0	0	0	0	0	0	0	0	0	0
27) = 28) =	22 22	199 200	31	10	16	10	0	0	0	0	0	0	0	0	0	0
29)=	22	201	2	10	37	10	0	0	0	0	0	0	0	0	0	0
30) = 31) =	22 22	202 203	40	10 10	19 37	10 10	0	0	0	0	0	0	0	0	0	0
32)=	22	204	16	10	43	10	0	0	0	0	0	0	0	0	0	0
33)=	22	205 206	22 28	10 10	9 17	10 10	0	0	0	0	0	0	0	0	0	0
34) = 35) =		227	75	10	41	10	0	0	0	0	0	0	0	0	0	0
36)=	13	226	49 65	10 10	80 76	10 10	25 0	10 0	0	0	0	0	0	0	0	0
37) = 38) =	12 12	207 208	80	10	57	10	0	0	0	0	0	0	0	0	0	0
39)=	12	209	83	10	55	10 10	0	0	0	0	0	0	0	0	0	0
40) = 41) =	12 12	210 211	85 11	10 10	60 1	10	0	0	0	0	0	0	0	0	0	0
42)=	12	212	33	10	88	10	0	0	0	0	0	0	0	0	0	0
(43) = (44) = (44) = (43)	12 12	213 214	15 26	10 10	85 82	10 10	0	0	0	0	0	0	0	0	0	0
45)=	12	215	46	10	26	10	0	0	0	0	0	0	0	0	0	0
46)=	12	259	85	10	45 41	10 10	0	0	0	0	0	0	0	0	0	0
47) = 48) =	12 12	216 217	86 7	10 10	76	10	o	0	0	0	0	0	0	0	0	0
49)=	12	218	12	10	72	10 10	0	0	0	0	0	0	0	0	0	0
50) = 51) =	12 12	219 220	43 23	10 10	21 12	10	0	0	0	0	0	0	0	0	0	0
52) =	12	221	35	10	18	10	0	0	0	0	0	0	0	0	0	0
53)=		222	35 29	10 10	4 11	10 10	0	0	0	0	0	0	0	0	0	0
54)= 55)=		223 224	59	10	33	10	0	0	0	0			0	0	0	0
			40	10	59	10	74	10 INKS WITH	O STOP WE	0	0 OF -200	0		3 F	UN ON 30/	
1PROGRJ	AM TRANS	SYT8	ATHENS	* Centra.	1 Arteri	Les · HC	T NOX L	INKS WIIN	STOP WE	10111110						
0							LINK	CARDS:	FIXED D.	ATA	-					
	CARD	LINK	EXIT	S	FIRST	r GREE	END		START			LINK	STOP	SAT	DELAY	DISPSN
	TYPE		NODE	STAGE	LAG	STAC	E LA	G STAG	E LAG	STAC	GE LAG		WT.X10	0 FLOW 3500	WT.X100	X100 0
	31	2846		2		1	03	0	0	0	0	54 54	0	1600	Ő	0
58) = 59) =	31 31	2845	261 261	3 2	6 5	3	0	0	0	0	0	120	0	1800	0	0
60)=	31	3850	261	1		2	0	0	0	0	0	120 68	0	5000 5000	0	0
61) = 62) =		2825 2800	260 260		0	1	0	0	0	0		156	0	1800	0	0
63)=		1620	260	1	4		0	0	0	0		64	0	1800	0	0
64)=		1820		2	4	1 2	0	0	0	0	0	130 118	0	2000 3200	0	0
65) = 66) =	31	2230 1330	178 179	1	3 4			0	0	0		75	0	3200	0	
67) =	31	1300	179	2	4	1	0	0	0	0		100	0	1500 3200	0	
	31	1340	180 180	2	3		0	0	0	0	0	124 98	0	1500	0	0
70)=	31	1280 1350	181	2	3	1	0	0	0	0	0	114	0	3200	0	0
71)=	31	1790	181	1	3			0	0	0	0	116 81	0	1500 3200	0	0
72) = 73) =		1380 1390	182 183	2	4	1 2	0	0	0		0	96	0	3200	0	0
	31	1750	183	2	3	1		0	0	0	0	128	0	1500	0	0
75)=	31	1420	184	1	3	2	0	0	0	0	0	172 140	0	3200 1500	0	0
	31	1720 1440	184 185	2 2	3	1	0	0	0	0	0	52	0	3200	0	0
78)=	31	1210	185	1	4	2	0	0	0	0	0	92	0	4000	0	0
79)=	31	1450	186	2	3	1	0	0	0	0	0	124 122	0	3200 3200	0	0
	31 31	1680 1480	186 187	1 2	3	2 1	0	0	0	0	0	55	0	3200	0	0
82)=	31	900	187	1	3	2	0		0	0	0	100	0	1500 3200	0	0
83)=	31	1490	188	2	3	1	0	0	0	0	0	110	0	3200	v	

				ITer	NO	linker	rith at		abtin	a of 20	0	roont				
941-		1650	100	Hot	NOX 3	links w		op wei	gnun	g of -20	open	122	0	1500	0	0
85)=	31 31	1650 1520	188 189	1	4	2	0	0	0	0	0	82	0	3200	0	0
86) = 87) =	31 31	1060 2830	189 193	2	4 5	1 2	0	0	0	0	0	100 88	0	1500 5500	0	0
88)=	31	1590	193	2	3 10	1 2	0	0	0	0	0	50 96	0	1500 4300	0	0
89) = 90) =	31 31	1610 1580	194 194	1 2	10	1	0	0	0	0	0	100	0	1500	0	0
91) = 92) =	31 31	1630 1540	195 195	1 2	4	2	0	0	0	0	0	52 108	0	4300 1000	0	0
93)=	31	1640	196	1	4	2	0	0	0	0	0	80	0	4300	0	0
94) = 95) =	31 31	1990 1660	196 197	2	3 5	1 2	0	0	0	0	0	188 112	0 -200	1500 4300	0	0
96)=	31	1500	197	2	4	1	0	0	0	0	0	108 50	0	1500 4300	0	0
97) = 98) =	31 31	1670 1970	198 198	1 2	4	2 1	0	0	0	0	0	208	0	3000	0	0
99)=	31	1690	199	1 2	5 4	2	0	0	0	0	0	118 110	-200	4300	0	0
	31 31	1460 1700	199 200	1	7	2	0	0	0	0	0	62	0 PAGE	5500	0 UN ON 30	0
1 PROGRAM	M TRANS	SYT8	ATHENS	* Central	Arteri	es * HOT					-200					0
102) = 103) =	31 31	1920 1730	200 201	2 1	4	1 2	0	0	0	0	0	160 108	0	3000 5500	0	0
104)=	31	1740	202	1	6	2	0	0	0	0	0	64 180	0	5500 2400	0	0
105)= 106)=	31 31	1900 1760	202 203	2	12 4	1 2	0	0	0	0	0	90	0	5500	0	0
107)=	31	1400	203	2	3	1 2	0	0	0	0	0	106 82	0	1800 5500	0	0
108) = 109) =	31 31	1770 1860	204 204	1 2	4 3	1	0	0	0	0	0	178	0	1800	0	0
110)=	31	1800	205	1	4	2	0	0	0	0	0	116 106	-200	5500 1500	0	0
111) = 112) =	31 31	1360 1810	205 206	2 1	7	2	0	0	0	0	0	104	-200	5500	0	0
113)=	31	1830	227	1	3	2 2	3	0	0	0	0	130 130	0	3000	0	0
114) = 115) =	31 31	1831 2200	227 227	2	6	1	0	0	0	0	0	240	-150	4000	0	0
116) = 117) =	31 31	2225 2215	227 226	2	0	1 2	1	0	0	0	0	140 132	-200 -200	4500 8000	0	0
118)=	31	2205	226	2	4	3	0	0	0	0	0	138	-150	2500	0	0
119)= 120)=	31 31	2206 2170	226 226	2	4	3	0	0	0	0	0	138 120	-150 0	4000 1500	0	0
120)=	31	2171	226	3	4	1	0	0	0	0	0	120	0	4500 9000	0	0
122) = 123) =	31 31	2190 1840	207 208	2	0	1 2	0	0	0	0	0	142 114	-200 -200	9000	0	0
124)=	31	2140	208	2	4	1	0	0	0	0	0	114	0	2800 9000	0	0
125) = 126) =	31 31	1870 1780	209 209	1 2	5	2	0	0	0	0	0	82 166	-200 0	2000	0	0
127)=	31	1880	210	1	5	2	0	0	0	0	0 0	84 114	-200	9000 2800	0	0
128) = 129) =	31 31	2110 1910	210 211	2 1	4	1 2	0	0	0	0	0	182	-200	9000	0	0
130)=	31	1930	212	1	5	2	0	0	0	0	0	66 172	0	7500 3800	0	0
131) = 132) =	31 31	1710 1940	212 213	2 1	4 10	1 2	0	0	0	0	0	54	0	7500	0	0
133)=	31	1950	214	1 2	7 7	2	0	0	0	0	0	86 114	0	7500 1800	0	0
134) = 135) =	31 31	2040 1980	214 215	1	5	2	0	0	0	0	0	134	-200	7500	0	0
136)=	31 31	2010 2000	215 259	2	37	1 2	0	0	. 0	0	0	100 120	0 -150	1500 7500	0	0
137)= 138)=	31	2805	259	1	4	1	0	0	0	0	0	156	-200	4000	0	0
139)= 140)=	31 31	2790 3730	216 216	2	4	1 2	0	0	0	0	0	100 82	0	5000 5000	0	0
141)=	31	2020	217	1	8	2	0	0	0	0	0	164	-200	5000 1800	0	0
142) = 143) =	31	5800 2050	217 218	2	4	1 2	0	0	0	0	0	100 110	0	5000	0	0
144)=	31	1960	218	2	4	1	0	0	0	0	0	92	0 -200	2800 5000	0	0
145)= 146)=	31 31	2060 5930	219 219	1 2	7 10	2	0	0	0	0	0	106 100	-200	1800	0	0
147)=	31	2080	220	1	0	2	0	0	0	0	0	118	-200	7000 5000	0	0
148)= 149)=		2090 5940	221 221	1 2	0 6	2	0	0	0	0	0	70 100	0	1800	0	0
150)=	31	2120	222	1	4	2	0	0	0	0	0	82 128	0	5000 1600	0	0
151) = 1PROGRA		1890 ISYT8	222 ATHENS	2 * Central	4 L Arteri	les * HOT	0 NOx LI	0 NKS WITH	0 STOP WE		-200	120	PAGE		RUN ON 30	
152)=		2130	223	1	10	2	0	0	0	0	0	72	0	5000	0	0
153)=	31	2150	224	1	4	2	0	0	0	0	0	116	0	5000 1600	0	0
154)= 155)=		1850 2161	224 225	23	6 1	1 2	0	0	0	0	0	98 48	0	4500	0	0
156)=	31	2160	225	3	10	1	0	0	0	0	0	48	0	1500 3000	0	0
157)= 0	31	2185	225	2	4	3	10 LINK CA	0 RDS: F	0 LOW DAT	0	0	100	U			v
				IBITRODU	ENTRY	1		ENTRY	2	CRUISE	ENTRY LINK	3	CRUISE	ENTR	¥ 4	CRUISE
CARD NO.	CARD	LINK NO.	TOTAL FLOW	UNIFORM	LINK NO.	FLOW	CRUISE	LINK NO.	FLOW	TIME	NO.	FLOW	TIME	NO.	FLOW	TIME
158)= 159)=		2846 2845	1755 617	0	0	0	20 20	0	0	0	0	0	0	0	0	0
160)=		2820	300	0	2800	300	15	1620	30	15	0	0	0	0	0	0
161)= 162)=		3850 2825	1000 1700	0	0 2846	0 1700	20 15	0	0	0	0	0	0	0	0	0
163)=	32	2800	300	0	2000	300	25	0	0	0	0	0	0	0	0	0
164)= 165)=		1620 2230	156 945	0	1590 0	156 0	25 22	0	0	0	0	0	0	0	0	0
166)=	32	1820	550	0	1810	550	26	0	0	0	0	0	0	0	0	0
167) = 168) =		1330 1300	995 307	0	2230 0	945 0	11 18	1820 0	50 0	11 0	0	0	0	0	0	0
169)=	32	1340	1302	0	1330	995	18	1300	307	18	0	0	0	0	0	0
170) = 171) =		1280 1350	361 1393	0	0 1340	0 1157	18 25	0 1280	0 236	0 25	0	0	0	0	0	0
172)=	32	1790	302	0	1860	205	18	1770	97	18	0	0	0	0	0	0
173)= 174)=		1380 1390	1147 930	0	1350 1380	1030 900	13 16	1790 0	117 0	13 0	0	0	0	0	0	0
175)=		1750	242	Ő	1900	182	20	1740	60	20	0	0	0	0	0	0

				Hot	t NOx	links	with	stop we	eightin	g of -	-200 per	rcent				
176)=	32	1420	1010	0	1390	860	24	1750	150	24	0	0	0	0	0	0
177)=	32	1720	259	0	1920	159	30	1700	100	30	0	0	0	0	0	0
178)=	32	1440	1088	0	1420	832	6	1720	256	6	0	0	0	0	0	0
179)=	32	1210	1094	0	0	0	17	0	0	0	0	0	0	0	0	0
180)=	32	1450	1059	0	1440	937	19	1210	122	19	0	0	0	0	0	0
181)=	32	1680	1228	0	1970	545	30	1670	683	30	0	0	0	0	0	0
182)=	32	1480	820	0	1450	780	10	1680	40	10	0	0	0	0	0	0
183)=	32	900	222	0	0	0	18	0	0	0	0	0	0	0	0	0
184)=	32	1490	849	0	1480	754	24	900	95	24	0	0	0	0	0	0
185)=	32	1650	605	0	1990	445	26	1640	160 214	26 13	0	0	0	õ	0	0
186)=	32	1520	1020	0	1490	805	13 18	1650 0	0	0	0	0	0	0	0	0
187)=	32	1060	142 1847	0	0	0	15	0	0	0	0	0	0	0	0	0
188)= 189)=	32	2830 1590	190	0	0	0	9	0	0	0	0	0	0	0	0	0
190)=	32	1610	1948	0	2830	1847	12	1590	101	12	0	0	0	0	0	0
191)=	32	1580	22	0	0	0	18	0	0	0	0	0	0	0	0	0
192)=	32	1630	1970	0	1610	1948	9	1580	22	9	0	0	0	0	0	0
193)=	32	1540	230	0	1060	95	22	1520	135	22	0	0	0	0	0	0
194)=	32	1640	2255	0	1630	2025	13	1540	230	13	0	0	0	0	0	0
195)=	32	1990	530	0	2010	259	30	1980	271	30	0	0	0	0	0	0
	32	1660	2452	0	1640	2095	14	1990	357	14	0	0	0	0	0 UN ON 30/	8/1993
1PROGRAM	M TRA	NSYT8	ATHENS *	Centra	al Arter	ies * HC	T NOX	LINKS WITH	STOP WEI	GHTING	OF -200		PAGE			
197)=		1500	192	0	900	127	22	1480 1500	65 193	22 11	0	0	0	0	0	0
198)=	32	1670	2284	0	1660	2091	11 32	1500	0	0	Ő	0	0	0	0	0
199)=	32	1970	597	0	2040	597	21	1970	394	21	0	0	0	0	0	0
200)=	32	1690	1995	0	1670	1601	20	1440	151	20	Ö	0	0	0	0	0
201)=	32	1460	1123	0	1210	972	20	1440	548	7	0	0	0	0	0	0
202)=	32	1700	2015	0	1690	1467 740	30	0	0	0	0	0	0	0	0	0
203)=	32	1920	740	0	1910 1700	1789	12	1920	171	12	0	0	0	0	0	0
204)=	32 32	1730 1740	1960 1823	0	1730	1823	20	0	0	0	0	0	0	0	0	0
205)=	32	1900	582	0	2110	373	30	1880	209	30	0	0	0	0	0	0
206)= 207)=	32	1760	2003	0	1740	1848	14	1900	155	14	0	0	0	0	0	0
207)=	32	1400	370	0	1380	250	20	0	0	0	0	0	0	0	0	0
209)=	32	1770	2100	0	1760	2000	8	1400	67	8	0	0	0	0	0	0
210)=	32	1860	511	0	2140	231	28	1840	280	28	0	0	0	0	0	0
211)=	32	1800	2300	0	1770	1903	13	1860	314	13	0	0	0	0	0	0
212)=	32	1360	260	0	1280	125	22	1340	135	22	0	0	0	0	0	0
213)=	32	1810	2400	0	1800	2055	10	1360	260	10	0	0	0	0	0	0
214)=	32	1831	729	0	1810	729	30	0	0	0	0	0	0	0	0	0
215)=	32	1830	738	0	1810	738	30	0	0	0	0	0	0	0	0	0
216)=	32	2200	1043	0	2171	560	25	2215	483	25	0	0	0	0	0	0
217)=	32	2225	2050	0	0	0	25	0	0	0	0	0	0	0	0	0
218)=	32	2215	2417	0	0	0	24	0	0	0	0	0	0	0	0	0
219)=	32	2205	824	0	2225	568	22		256	22	0	0	0	0	0	0
220)=	32	2206	827	0	2225	357	22		470	22	0	0	0	0	0	0
221)=	32	2170	955	0	2185	567	22		388	22	0	0	0	0	Ő	0
222)=	32	2171	500	0	2185	150	22		350	22 23	2170	370	23	0	0	0
223)=	32	2190	3300	0	2215	1933	23		833 0	23	0	0	0	0	0	0
224)=	32	1840	2955	0	2190	2955 373	12 22		0	0	0	0	0	0	0	0
225)=	32	2140	523	0	2130 1840	2666	22		59	9	0	0	0	0	0	0
226)=	32	1870 1780	2725	0	1400	182	24		346	24	0	0	0	0	0	0
227)=	32	1880	528 2861	0	1870	2500	10		361	10	0	0	0	0	0	0
228) = 229) =	32	2110	590	0	5940	10	20		580	20	0	0	0	0	0	0
230)=	32	1910	2681	0	1880	2475	17		206	17	0	0	0	0	0	0
231)=	32	1930	1895	0	1910	1895	7		0	0	0	0	0	0	0	0
232)=	32	1710	1099	0	1460	638	30		214	30	0	0	0	0	0	0
233)=	32	1940	3000	0	1930	1100	8		1895	8	0	0	0	0	0	0
234)=	32	1950	2200	0	1940	2200	9	0	0	0	0	0	0	0	0	0
235)=	32	2040	721	0	5800	307	20		414	20	0	0	0	0	0	0
236) =		1980	2165	0	1950	2095	16		70	16	0	0	0	0	0	0
237)=	32	2010	268	0	3730	258	18		10	18	0	0	0	0	0	0
238)=	32	2000	1933	0	1980	1883	22		50	22	0	0	0	0	0	0
239)=	32	2805	2000	0	2825	1733	28		256	28	0	0	0	0	0	0
240)=	32	2790	2000	0	2805	1624	25		370	25	0	0	0	0	0	0
241)=		3730	1520	0	0	0	25		0	0	0	0	0	0	0	0
242)=	32	2020	2620	0	2790	1360	20		1260	20	0	0	0	0	0	0
243)=		5800	330	0	0	0	25		0	0	0	0	0	0	0	0
244)=		2050	2050	0	2020	2021	18		23	18	0		0	0	0	Ő
245)=		1960	850	0	1940	850	25		0	0	0	0	0	0	Ő	0
246)=		2060	2100	0	2050	1725	30	1960	375	30		0	PAGE			/ 8/1993
1PROGRA	M TR	ANSYT8	ATHENS	* Centr				LINKS WITH						0	0	0
247)=		5930	420	0	0	0	25		0	0	0	0	0	0	0	0
248)=		2080	2600	0	2060	2100	25		500	25	0	0	0	0	0	0
249)=		2090	2038	0	2080	2038	21		0	0	0	0	0	0	0	0
250)=		5940	50	0	0	0	2		0	0	0	0	0	0	0	0
251)=		2120	1500	0	2090	1424	1		50	15	0	0	0	0	0	0
252) =		1890	570	0	1780	352	2!		218	25	0	0	0	0	Ő	0
253)=		2130	2036	0	2120	1474	1		562	12	0		0	0	0	0
254)=		2150	1675	0	2130	1625	2		0	0	0	0	0	0	0	0
255)=		1850	200	0	2190	180	2		0	0	0	0	0	0	0	0
256)=		2161	2000	0	2150	1900	2		200	20	0	0	0	0	0	0
257)=		2160	600	0	2150	600	2		20	20	0	0	0	0	0	0
258)=		2185	667	0	0	0	1	5 0	0	0	0	0	U			
0*****	END O	F SUBBOU	JTINE TINPU	T****												

0***** END OF SUBROUTINE TINPUT*****

270

Hot NOx links with stop weighting of -200 percent

1 PROGRAM	TRANSYT	8 A	THENS	Centr	al Art	OX HINKS WIL eries * HOT NOx	LINKS	WITH STOP	WEIGHTI	ING OF -200	PAGE	20	RUN ON	30/	8/19	93
0 90 0 LINK	SECOND FLOW	CYCLE	45 STEE DEGREE	MEAN		DELAY		STO		QUEUE	PERFORMANCE	EXIT		IN TI		
NUMBER	INTO	FLOW	OF	PER	PCU	UNIFORM RANDOM OVERSA	+ COST	MEAN STOPS	COST OF	MEAN MAX. AVERAGE	INDEX. WEIGHTED SUM	NODE	STAR	T S	TART	ND
	LINK		SAT		DELAY	(U+R+O=MEAN Q)	DELAY	/PCU	STOPS	EXCESS	OF () VALUE: (\$/H)	5	1ST (S	ECON	2ND)
	(PCU/H)	(PCU/H)	(8)	(SEC)	(SEC)	(PCU-H/H)	(\$/H)	(8)	(\$/H)			107				
900 1060	222 142	1500 1500	37 47	18 18	14 27	.6 + .3 (.5)	72 (.2)	2 2	.7 .7	187 189	34 84		79 39	6 47
1210	1094	4000	68	17	15	3.4 + 1.1 (2.5)	80 (.8)	12 5	3.3	185 180				65 24
1280 1300	361 307	1500 1500	72 58	18 18	26 20	1.3 + 1.3 (1.0 + .7 (.9)	104 (89 (.4) .3)	4	1.2	179	43	58	88	13
1330	995	3200	61	11	4	.4 + .8 (.6)	18 (.3)	5	.9 2.2	179 180	17 72	39		84 52
1340 1350	1302 1392	3200 3200	70 72	18 25	777	1.4 + 1.2 (1.5 + 1.3 ((1.4)	38 (44 (.8)	10	2.0	181	1	27	46	72
1360	260	1500	43	22	14	.7 + .4	.6)	69 (14 /	.1)	3	.7 .7	205	75 11			47 87
1380 1390	1146 929	3200 3200	50 47	13 16	3	.3 + .5	(5)	14 (21 (.2)	3	.7	183	72	9	27	54
1400	369	1800	58	20	14	.8 + .7	(.8)	74 (.3)	4 8	1.1 2.0	203 184	41 27	56 55		11 10
1420 1440	1007	3200 3200	49 73	24 6	7 10	1.5 + .5 1.8 + 1.3	(1.1) (1.7)	54 (54 (.9) 1.5)	8	3.2	185	24	44	69	89
1450	1057	3200	78	19	12	1.7 + 1.8	(1.9)	63 (.9)	12 14	2.9	186 199	44 65	62 79	89 20	17 34
1460 1480	1121 818	4000 3200	84 50	20 10	17 3	2.7 + 2.6	(2.9)	72 (15 (.0)	2	.5	187	54	76	9	31
1490	847	3200	70	24	13	2.0 + 1.2	(1.7)	86 (.5)	11	2.2	188 197	42 37	58 45	87 82	13
1500 1520	192 1019	1500 3200	64 48	22 13	35	1.0 + .9	(1.0) (.4)	122 (14 (.2)	2	.6	189	51	80	6	35
1540	230	1000	74	22	36	.9 + 1.4	(1.3)	128 (.2)	4	1.5	195 194	37 31	50 34	82	5
1580 1590	22 190	1500 1500	33 63	18	82 49	.3 + .2 1.7 + .9	(.3) (1.4)	134 (105 (.0)	5	1.6	193	14	31		
1610	1948	4300	60	12	3	.8 + .7	(.9)	14 (.6)	13	1.4	194 260	44 62	21 75		
1620 1630	156 1970	1800 4300	56 79	25 9	34 7	.9 + .6 2.2 + 1.9	(.8)	113 (43 (.0)	4 19	3.2	195	9	34		79
1640	2255	4300	98	13	36	3.1 + 19.5	(12.4)	113 (3.3)	48 +	15.7 1.6	196 188	64 16	87 39	19 61	42 84
1650 1660	606 2456	1500 4300	76 89	26 14	14 17	.9 + 1.5 7.8 + 3.9	(1.3) (6.4)	58 (100 (.2) 5.1)	5 33	-3.9	197	5	33	50	78
1670	2286	4300	85	11	7	1.8 + 2.9	(2.6)	33 (.5)	11	3.1 3.2	198 186	10 20	37 41	55 65	82 86
1680 1690	1230 1994	3200 4300	79 91	30 21	14 17	3.0 + 1.8 4.8 + 4.8	(2.6)	85 (94 (.5) 2.0)	16 30	1.2	199	39	61	84	16
1700	2015	5500	75	7	9	3.3 + 1.5	(2.6)	54 (2.8)	18	5.4	200 212	1 32	22 65	46	67
1710 1720	1096 258	3800 1500	76 65	30 30	26 25	6.3 + 1.6 .9 + .9	(4.3) (1.0)	76 (103 (.9)	23 4	1.2	184	58	69	13	24
1730	1960	5500	45	12	1	.1 + .4	(.3)	4 (.2)	1	.5 5.7	201 202	56 47	1 63	11 2	46
1740 1750	1823 240	5500 1500	88 55	20 20	18 19	5.8 + 3.5	(5.1) (.7)	107 (90 (.6)	26 3	1.0	183	12	24	57	69
1760	2003	5500	68	14	3	.8 + 1.1	(1.1)	19 (.5)	8	1.6	203 204	15 21	38	60 66	83 89
1770 1780	2099 526	5500 2000	72 48	8 24	3 15	.6 + 1.3 1.8 + .5	(1.0) (1.2)	12 (57 (.9)	4 8	1.9 1.7	209	71	29		
1790	300	1500	64	18	22	1.0 + .9	(1.0)	101 (.4)	4	1.5 -6.5	181 205	75 51	88 72	30	43
1800	2295	5500	85	13	18	8.7 + 2.9	(6.4)	102 (6.4)	31		200				
1810		5500	69	10	11	6.0 + 1.1	(3.9)	53 (4./)	32	-5.4	206	34	0		
1810 1820	2395 551	5500 2000	69 65	10 26	11 19	6.0 + 1.1 1.9 + .9	(3.9) (1.6)	96	.5)	10	2.0	178	32	50	77	5
1820 1830	551 738	2000 3000	65 58	26 30	19 12	1.9 + .9 1.8 + .7	(1.6) (1.4)	96 59				178 227 227	32 80 80	50 27 24	77	5
1820 1830 1831 1840	551 738 728 2927<	2000 3000 3000 9000	65 58 62 75	26 30 30 12	19 12 14 15	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.6) (1.4) (1.6) (6.9)	96 59 64 81	.5) .3) .3) (7.5)	10 12 13 66	2.0 1.6 1.9 -8.0	178 227 227 208	32 80 80 13	50 27 24 51	77	5
1820 1830 1831 1840 1850	551 738 728 2927< 196	2000 3000 3000 9000 1600	65 58 62 75 55	26 30 30 12 25	19 12 14 15 33	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.6) (1.4) (1.6)	96 59 64	.5) .3) .3)	10 12 13	2.0 1.6 1.9	178 227 227 208 224 204	32 80 80 13 36 47	50 27 24 51 55 62		5
1820 1830 1831 1840 1850 1860 1870	551 738 728 2927< 196 505 2698<	2000 3000 9000 1600 1800 9000	65 58 62 75 55 79 79	26 30 30 12 25 28 9	19 12 14 15 33 24 12	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.6) (1.4) (1.6) (6.9) (1.0) (1.9) (5.0)	96 59 64 81 94 99 88	(.5) (.3) (.3) (7.5) (.1) (.7) (6.6)	10 12 13 66 5 8 68	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2	178 227 227 208 224 204 204	32 80 13 36 47 34	50 27 24 51 55 62 67		
1820 1830 1831 1840 1850 1860 1870 1880	551 738 728 2927< 196 505 2698< 2837<	2000 3000 9000 1600 1800 9000 9000	65 58 62 75 55 79 79 79	26 30 30 12 25 28 9 10	19 12 14 15 33 24 12 13	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.6) (1.4) (1.6) (1.6) (6.9) (1.0) (1.9)	96 59 64 81 94 99	(.5) (.3) (.3) (7.5) (.1) (.7)	10 12 13 66 5 8	2.0 1.6 1.9 -8.0 1.1 2.5	178 227 208 224 204 209 210 222	32 80 13 36 47 34 51 75	50 27 24 51 55 62 67 86 27	2	17
1820 1830 1831 1840 1850 1860 1870 1880 1890 1900	551 738 728 2927< 196 505 2698< 2837< 566 582	2000 3000 3000 9000 1600 1800 9000 9000 1600 2400	65 58 62 75 55 79 79 79 79 79 74 91	26 30 30 12 25 28 9 10 25 30	19 12 14 15 33 24 12 13 22 45	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.6) (1.4) (1.6) (6.9) (1.0) (1.9) (5.0) (5.7) (1.9) (4.0)	96 59 64 81 94 99 88 86 66 141	(.5) (.3) (.3) (7.5) (.1) (.7) (6.6) (6.0) (.3) (1.0)	10 12 13 66 5 8 68 70 10 13	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9	178 227 208 224 204 209 210 222 202	32 80 13 36 47 34 51 75 75	50 27 24 51 55 62 67 86 27 86	2 30	17
1820 1830 1831 1840 1850 1860 1870 1880 1890 1900 1PROGRA	551 738 728 2927< 196 505 2698< 2837< 566 582 M TRANSY	2000 3000 9000 1600 1800 9000 9000 1600 2400 T8	65 58 62 75 55 79 79 79 79 74 91 ATHENS	26 30 30 12 25 28 9 10 25 30 * Cent	19 12 14 15 33 24 12 13 22 45	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(1.6) (1.4) (1.6) (6.9) (1.0) (1.9) (5.0) (5.7) (1.9) (4.0)	96 59 64 81 94 99 88 86 66 141	(.5) (.3) (.3) (7.5) (.1) (.7) (6.6) (6.0) (.3) (1.0)	10 12 13 66 5 8 68 70 10 13	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE	178 227 208 224 204 209 210 222	32 80 80 13 36 47 34 51 75 75 RUN ON	50 27 24 51 55 62 67 86 27 86 30/	2 30 8/1	17 41 993
1820 1830 1831 1840 1850 1860 1870 1890 1900 1900 1PROGRA 0 9 0 LINK	551 738 728 2927< 196 505 2698< 2837< 566 582 M TRANSY 0 SECOND FLOW	2000 3000 9000 1600 1800 9000 1600 2400 T8 T8 CYCLE SAT	65 58 62 75 55 79 79 79 79 79 79 74 91 ATHENS 45 STE DEGREE	26 30 30 12 25 28 9 10 25 30 * Cent EPS & MEAN	19 12 14 15 33 24 12 13 22 45 ral Art	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO	(1.6) (1.4) (1.6) (6.9) (1.0) (1.9) (1.9) (5.0) (5.7) (1.9) (5.7) (1.9) (4.0) X LINKS	96 59 64 81 94 99 88 86 66 141 WITH STON	(.5) (.3) (7.5) (.1) (.7) (6.6) (.3) (1.0) P WEIGHT	10 12 13 66 5 8 68 70 10 10 13 21NG OF -200 QUEUE	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE	178 227 208 224 209 210 222 202 21 EXI	32 80 80 13 36 47 34 51 75 75 RUN ON F GRE	50 27 24 51 55 62 67 86 27 86 30/	2 30 8/1 IMES	17 41 993
1820 1830 1831 1840 1850 1860 1870 1890 1900 1900 1900 1900 290 290 290 290 290 290 290 290 290	551 738 728 2927< 196 505 2698< 2837< 566 582 M TRANSY 0 SECOND FLOW INTO	2000 3000 9000 1600 9000 9000 1600 2400 T8 CYCLE	65 58 62 75 55 79 79 79 79 74 91 74 91 ATHENS 45 STH DEGREH OF	26 30 30 12 25 28 9 10 25 30 * Cent SPS * MEAN PER	19 12 14 15 33 24 12 13 22 45 ral Art TIMES PCU	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO DELAY- UNIFORM RANDO	(1.6) (1.4) (1.6) (6.9) (1.0) (1.9) (5.0) (5.7) (5.7) (1.9) (4.0) DX LINKS	96 59 64 81 94 99 88 86 66 141 WITH STOI STO MEAN	(.5) (.3) (.3) (7.5) (.1) (.7) (6.6) (6.0) (.3) (1.0) P WEIGHT	10 12 13 66 5 8 68 70 10 13 13 SING OF -200 QUEUE MEAN MAX. AVERAGE	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMACS WEIGHTED SUN	178 227 227 208 224 204 209 210 222 202 21 EXII NODI	32 80 80 13 36 47 34 51 75 75 RUN ON F GRE 5 STA	50 27 24 51 55 62 67 86 27 86 30/ EN T RT END	2 30 8/1 IMES STAR	17 41 993 T END
1820 1830 1831 1840 1850 1860 1870 1890 1900 1900 1PROGRA 0 9 0 LINK	551 738 728 2927 196 505 2698< 28376 582 M TRANSY 0 SECOND FLOW INTO LINK	2000 3000 9000 1600 1800 9000 2400 T8 CYCLE SAT FLOW	65 58 62 75 55 79 79 79 79 79 79 79 79 79 79 79 79 79	26 30 30 12 25 28 9 10 25 30 * Cent EPS CRUIS	19 12 14 15 33 24 12 13 22 45 ral Art TIMES PCU E DELAY	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO DELAY- UNIFORM RANDO OVERS (U+R+O=MEAN Q	(1.6) (1.4) (1.6) (6.9) (1.0) (1.9) (5.0) (5.7) (1.9) (5.7) (1.9) (4.0) wx LINKS 	96 59 64 81 94 99 88 86 66 141 WITH STOI STC MEAN STOPS /PCU	(.5) (.3) (.3) (7.5) (.1) (.7) (6.6) (6.0) (.3) (.0) PWEIGHT OPS COST OF STOPS	10 12 13 66 5 8 68 70 10 13 1NG OF -200 QUEUE MEAN MAX. AVERAGE EXCESS	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUI	178 227 227 208 224 204 209 210 222 202 21 EXII NODI	32 80 80 13 36 47 34 51 75 75 RUN ON r GRE 5 STA 1S	50 27 24 51 55 62 67 86 27 86 30/ EN T RT END T	2 30 8/1 IMES STAR 2N	17 41 993 T END
1820 1830 1831 1840 1850 1860 1870 1890 1900 1900 1PROGRA 0 9 0 LINK	551 738 728 2927 196 505 2698< 28376 582 M TRANSY 0 SECOND FLOW INTO LINK	2000 3000 9000 1600 1800 9000 1600 2400 T8 T8 CYCLE SAT	65 58 62 75 55 79 79 79 79 79 79 79 79 79 79 79 79 79	26 30 30 12 25 28 9 10 25 30 * Cent EPS CRUIS	19 12 14 15 33 24 12 13 22 45 ral Art TIMES PCU	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO DELAY- UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H)	(1.6) (1.4) (1.6) (6.9) (1.0) (5.0) (5.0) (5.7) (5.0) (5.7) (4.0) X LINKS M+ COST (AT OF 2) DELAY (\$/H)	96 59 64 81 94 99 88 86 66 141 WITH STOI STOPS	(.5) (.3) (.3) (7.5) (.1) (7.5) (6.6) (6.0) (.3) (1.0) PWEIGHT OF STOPS (\$/H)	10 12 13 66 5 8 68 70 10 13 700 13 700 13 700 10 13 700 10 13 700 10 10 10 10 10 10 10 10 10 10 10 10 1	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUN OF () VALUM (\$/H)	178 227 208 224 209 210 222 202 21 EXI ⁷ NODI	32 80 80 13 36 47 34 51 75 75 RUN ON F GRE 5 STA 1S (50 27 24 51 55 62 67 86 27 86 30/ EN T RT END T SECO	2 30 8/1 IMES STAR 2N	17 41 993 T END
1820 1830 1831 1840 1850 1870 1890 1900 1PROGRA 0 9 0 LINK NUMBER 1910	551 738 728 2927< 196 505 2698- 2837< 566 582 0 SECOND FLOW INTOK LINK (PCU/H) 2663<	2000 3000 3000 9000 1600 9000 9000 1600 2400 T8 CYCLE SAT FLOW (PCU/H 9000	65 58 62 75 55 79 79 74 91 ATHENS 45 STF DEGREE OF SAT) (%) 72	26 30 30 12 25 28 9 10 25 30 * Cent SPS * MEAN PER CRUIS (SEC) 17	19 12 14 15 33 24 12 45 ral Art 5 PCU E DELAY (SEC) 15	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO DELAY- UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3	(1.6) (1.4) (1.6) (1.6) (5.9) (1.0) (5.0) (5.7) (1.9) (4.0) x LINKS (4.0) x LINKS (5.7) (4.0) y LINKS (5.7) (4.0) (5.7) (4.0) (5.7) (4.0) (5.7) (4.0) (5.7) (5.7)	96 59 64 81 94 98 88 86 66 141 WITH STON STO MEAN STOPS /PCU (%) 92	(.5) (.3) (7.5) (.1) (.7) (.1) (.7) (.6.6) (6.0) (6.0) (.3) (1.0) P WEIGHT OFS COST OF STOPS (\$/H) (9.5)	10 12 13 66 5 8 68 70 10 13 21NG OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUM (\$/H) -13.2	178 227 227 208 224 204 209 210 222 202 21 EXII NODI	32 80 80 13 36 47 34 51 75 75 RUN ON F GRE 5 STA 1S (50 27 24 51 55 62 67 86 27 86 30/ EN T RT END T	2 30 8/1 IMES STAR 2N	17 41 993 T END D
1820 1830 1831 1840 1850 1870 1890 1990 1900 1PROGRA 0 90 1 LINK NUMBER 1910 1920	551 738 728 2927< 196 52698< 2837< 582 M TRANSY 0 SECON FLOW INTO LINK (PCU/H) 2663< 735	2000 3000 9000 1600 9000 2400 2400 2400 2400 2400 2400 24	65 58 62 75 55 79 79 79 79 79 74 91 ATHENS 45 STE DEGREE OF SAT) (%) 72 79	26 30 30 12 25 28 9 10 25 30 * Cent EPS * Cent EPS * CRUIS (SEC)	19 12 14 15 33 24 12 13 25 4 12 13 25 4 5 4 7 11 MES 6 PCU 5 5 0 DELAY (SEC)	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO OVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8	(1.6) (1.4) (1.6) (6.9) (1.0) (5.0) (5.0) (5.7) (5.0) (5.7) (4.0) X LINKS M+ COST (AT OF 2) DELAY (\$/H)	96 59 64 81 94 99 88 86 66 141 WITH STOP MEAN STOPS / PCU (%) 92 81	(.5) (.3) (.3) (.7.5) (.1) (.7.5) (.1) (.6.6) (.3) (.3) (.3) (.3) (.6) (.3) (.6) (.5) (.6) (.5) (.6) (.5) (.7)	10 12 13 66 5 8 68 70 10 13 700 10 13 700 CF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUI (\$/H) -13.2 3.0 1.1	178 227 208 224 209 210 222 202 21 EXIT NODI 4 SS	32 80 80 13 36 47 34 51 75 75 RUN ON C GRE 5 5 STA 15 (83 26 70	50 27 24 51 55 62 67 86 27 86 30/ EN T SECO 29 39 28	2 30 8/1 IMES STAR 2N NDS)	17 41 993 T END D
1820 1830 1831 1840 1850 1860 1890 1900 1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940	551 738 2927< 196 505 2698< 2837< 566 582 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2663< 735 1880 2988<	2000 3000 9000 1600 1800 9000 2400 2400 2400 CYCLE SAT FLOW (PCU/H 9000 3000 3000 7500	65 58 62 75 55 79 79 79 79 79 79 79 74 91 ATHENS 45 STE DEGREE OF SAT) (%) 72 79 46 651	26 30 30 12 25 28 9 10 25 30 * Cent EPS * MEAN PER CRUIS (SEC) 17 30 7 8	19 12 14 14 15 33 24 12 13 22 45 ral Art TIMES PCU E DELAY (SEC) 15 21 15 21 3 5	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5	(1.6) (1.4) (1.4) (1.6) (6.9) (1.9) (5.0) (5.7) (1.9) (4.0) X LINKS WH COST (4.0) X LINKS (5.7) (4.0) (5.7) (4.0) (5.7) (4.0) (5.7) (5.7) (2.4) (.8) (2.2)	96 59 64 81 94 99 88 86 66 141 WITH STON STOPS /PCU (%) 92 81 6 34	(.5) (.3) (.3) (7.5) (.1) (6.6) (6.0) (.3) (1.0) PWEIGHT OF STOPS (\$/H) (9.5) (.6) (.3) (1.6)	10 12 13 66 5 8 68 70 10 13 TING OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUH (\$/H) -13.2 3.0 1.1 3.7	178 227 227 208 224 204 209 210 222 202 21 EXIT NODI 4 SS	32 80 80 13 36 47 34 51 75 75 75 75 80 81 81 83 26 70 29	50 27 24 51 55 62 67 86 27 86 30/ EN T SECO 29 39 28 8 8	2 30 8/1 IMES STAR 2N NDS)	17 41 993 T END D
1820 1830 1831 1840 1850 1870 1890 1900 1900 1900 1900 1900 1900 1910 1920 1930 1940 1950	551 738 728 2927< 196 52698< 2837< 582 M TRANSY 0 SECON FLOW INTO LINK (PCU/H) 2663< 735 1880< 2988 2193	2000 3000 9000 1600 9000 2400 T8 CYCLE SAT FLOW (PCU/H 9000 3000 7500 7500	65 58 62 75 55 55 79 79 79 79 79 74 91 ATHENS 45 STE DEGREE OF SAT) (%) 72 79 46 57 71	26 30 30 12 25 28 9 10 25 30 * Cent EPS (SEC) 17 30 7 7 8 9	19 12 14 15 33 24 12 13 22 45 12 13 22 45 12 13 22 45 15 21 3 5 8	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO OVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2	(1.6) (1.4) (1.6) (6.9) (1.0) (5.0) (5.7) (1.9) (4.0) (4.0) (4.0) (*, *, *, *, *, *, *, *, *, *, *, *, *,	96 59 64 81 94 94 88 86 66 141 WITH STOPS /PCU (%) 92 81 6 34 29	(.5) (.3) (.3) (7.5) (.1) (.7) (6.6) (.3) (1.0) PWEIGHT COST COST (.4) (9.5) (.6) (.3) (1.6) (.3) (1.6) (.3) (1.6) (.3)	10 12 13 66 5 8 68 70 10 13 TING OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUI (\$/H) -13.2 3.0 1.1	178 227 208 224 209 210 222 202 21 EXIT NODI 4 SS	32 80 80 13 36 47 34 51 75 75 RUN ON C GRE 5 5 STA 15 (83 26 70	50 27 24 51 55 62 67 86 27 86 30/ ENT SECO 29 39 28 8 76 11	2 30 8/1 IMES STAR 2N NDS)	17 41 993 T END D
1820 1830 1831 1840 1850 1860 1890 1900 1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940	551 738 2927< 196 505 2698< 2837< 566 582 TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2663< 735 1880 2988<	2000 3000 9000 1600 1800 9000 2400 2400 2400 CYCLE SAT FLOW (PCU/H 9000 3000 3000 7500	65 58 62 75 55 79 79 79 79 79 79 79 74 91 ATHENS 45 STE DEGREE OF SAT) (%) 72 79 46 651	26 30 30 12 25 28 9 10 25 30 * Cent EPS * Cent EPS * MEAN PER CRUIS (SEC) 17 30 7 8	19 12 14 14 15 33 24 12 13 22 45 ral Art TIMES PCU E DELAY (SEC) 15 21 15 21 3 5	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5	(1.6) (1.4) (1.4) (1.6) (6.9) (1.9) (5.0) (5.7) (1.9) (4.0) x LINKS 	96 59 64 81 94 99 88 86 66 141 WITH STON STOPS /PCU (%) 92 81 6 34 29 95 102	(.5) (.3) (.3) (.75) (.1) (.7) (.6.6) (.3) (.0) 2 WEIGHT OF STOPS (.7) (.6) (.3) (.3)	10 12 13 66 5 8 68 70 10 13 TING OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUN OF () VALUH (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9	178 227 208 224 209 210 222 202 21 EXII NODI 4 SS 211 200 212 213 214 218 198	32 80 80 13 36 47 34 51 75 RUN ON F GRE 5 STA 15 (83 26 70 29 40 68 40	50 27 24 51 55 62 67 86 27 86 27 86 30/ ENT T END T SECO 29 39 28 8 76 11 51	2 30 8/1 IMES STAR 2N NDS)	17 41 993 T END D
1820 1830 1831 1840 1850 1870 1890 1900 1900 1900 1900 1900 1900 1910 1920 1930 1940 1950 1960	551 738 728 2927< 196 505 2698< 2837< 582 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2663< 735 1380< 2988% 2193 849 597 2158	2000 3000 9000 1600 1800 9000 2400 2500 2000 2000 2400 250 25	65 58 62 75 55 79 79 79 79 74 91 ATHENS 45 SAT 0F SAT 0F SAT 0 (%) 72 79 46 51 71 80 71 80 55	26 30 30 12 25 28 9 10 25 30 * Cent SPS (SEC) 17 30 7 8 9 25 32 25 23 26	19 12 14 15 33 24 12 13 22 45 12 13 22 45 12 13 25 25 21 3 5 8 20 23 20 23 10	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO DELAY- UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6	(1.6) (1.4) (1.6) (6.9) (1.0) (5.0) (5.7) (1.9) (4.0) xx LINKS 	96 59 64 81 94 94 88 86 66 141 WITH STOI MEAN STOPS /PCU (%) 92 81 6 34 29 95 102 83	(.5) (.3) (.3) (7.5) (.1) (6.6) (6.0) (.3) (1.0) P WEIGHT OF STOPS (S/H) (9.5) (.6) (.3) (1.6) (2.0) (4.3)	10 12 13 66 5 8 68 70 10 13 21NG OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12 51	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUM (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4	178 227 208 224 204 209 210 222 202 21 EXIT NODI 4 SS 211 200 212 213 213 214 218	32 80 80 13 36 47 34 51 75 75 75 RUN ON T GRE 5 STA 15 (83 26 70 29 40 68	50 27 24 51 55 62 67 86 27 86 30/ ENT SECO 29 39 28 8 76 11	2 30 8/1 IMES STAR 2N NDS) 71	17 41 993 T END D
1820 1830 1831 1840 1850 1890 1900 1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970	551 738 728 2927< 196 52698< 2837< 582 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 26633 735 1880< 2988< 2193 849 597 2158 8533	2000 3000 9000 1600 1800 9000 2400 2400 2400 CYCLE SAT FLOW (PCU/H 9000 3000 7500 7500 7500 2800 3000	65 58 622 75 55 79 79 79 74 41 45 51 0F SAT 0F SAT 0 (%) 72 79 46 51 71 71 85 71 72 79 79	26 30 30 12 25 28 9 10 25 28 9 10 25 5 8 9 10 25 5 8 9 10 25 28 9 10 25 28 9 10 25 28 9 10 25 28 9 10 25 28 9 10 25 28 28 9 10 25 28 28 9 10 25 28 28 9 10 25 28 28 9 10 25 28 28 9 10 25 28 28 28 28 28 28 28 28 28 28 28 28 28	19 12 14 15 33 24 12 13 22 45 ral Art TIMES PCU (SEC) 15 21 15 21 3 5 8 0 20 23	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO DELAY- UNIFORM RANDQ (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2	(1.6) (1.4) (1.4) (1.6) (6.9) (1.9) (5.0) (5.7) (1.9) (4.0) x LINKS 	96 59 64 81 94 99 88 86 66 141 WITH STON STOPS /PCU (%) 92 81 6 34 29 95 102 83 224 1	(.5) (.3) (.3) (.7) (.7)	10 12 13 66 5 8 68 70 10 13 TING OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12 51 23 0	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUH (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 .1	178 227 208 224 204 209 210 222 202 21 EXI' NODI 4 55 211 202 212 213 214 215 198 215 198 2259	32 80 80 13 36 47 34 51 75 RUN ON F GRE 5 STA 15 (83 26 70 29 40 67 70 29 40 67 73	50 27 24 51 55 62 67 86 30/ ENT T SECO 29 39 28 8 76 11 51 23 315 66	2 30 8/1 IMES STAR 2N NDS) 71 85	17 41 993 T END D 84
1820 1830 1831 1840 1850 1860 1990 1990 1990 1990 1990 1990 1920 1930 1940 1950 1950 1960 1970 1980 1990 2000 2010	551 738 728 2927< 196 505 2698< 2837< 566 582 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2663< 735 1880< 2988 2193 849 597 2158 533 1928 227	2000 3000 3000 9000 1600 2400 250 25	65 58 622 75 55 79 79 79 74 491 45 51 DEGREE OF SAT 0 (%) (%) 72 79 46 51 71 80 75 55 100 25 44	26 30 30 12 25 28 9 10 25 30 * Cent EPS (SEC) 17 30 7 8 9 9 25 22 16 30 25 21 21 22 25 28 9 10 25 28 9 10 25 28 28 28 28 28 28 28 28 28 28 28 28 28	19 12 14 15 33 24 12 13 22 45 45 45 45 45 45 45 45 45 45 45 45 45	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO DELAY- UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4	(1.6) (1.4) (1.4) (1.6) (6.9) (1.0) (5.0) (5.7) (1.9) (4.0) xx LINKS 	96 59 64 81 94 94 88 86 66 141 WITH STON STOPS /PCU (%) 92 81 6 34 29 95 102 83 224 1 58	(.5) (.3) (.3) (7.5) (.1) (6.6) (.7) (6.6) (.3) (1.0) PWEIGHT OF STOPS (S/H) (9.5) (.6) (.3) (1.6) (2.0) (.4) (4.3) (1.5) (.2) (.2)	10 12 13 66 5 8 68 70 10 13 21NG OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12 51 23 0 5	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUR OF () VALUM (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 .1 .6	178 227 208 224 204 209 210 222 21 EXI' NODI 455 211 200 212 213 214 218 215 196 259 215	32 80 80 13 36 75 75 RUN ON F GRE 5 STA 15 (83 26 70 29 9 40 68 40 67 0 73 326	50 27 24 51 55 62 67 86 27 86 27 86 30/ EN T T SECO 29 39 28 8 76 11 23 155 66 26 26 29 39 28 8 66 20 29 28 28 8 51 29 28 29 29 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	2 30 8/1 IMES STAR 2N NDS) 71 85	17 41 993 T END D 84
1820 1830 1831 1840 1850 1860 1870 1880 1990 1900 1PROGRA 0 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020	551 738 728 2927< 196 52698< 2837< 582 M TRANSY 0 SECON FLOW INTO LINK (PCU/H) 2663< 735 1880< 2988< 2193 849 597 2158 533 1928 270 0 2618	2000 3000 3000 1600 9000 1600 2400 T8 CYCLE SAT FLOW (PCU/H 9000 3000 7500 2800 3000 7500 2800 3000 7500 1500 7500 7500 7500 1500 7500 7500 1500 7500	65 58 62 75 55 79 9 79 79 74 91 ATHENS 45 STE DEGREE OF SAT) (%) 72 79 46 51 71 80 75 55 5 100 28 44 48 66	26 30 30 12 25 28 9 10 25 30 * Cent EPS (SEC) 17 30 7 8 9 25 32 16 6 30 22 16 30 22 23 22 16 30 22 23 20 25 22 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20	19 12 14 15 33 24 12 13 22 45 12 13 25 5 21 3 5 5 8 20 23 10 126 0 11 9	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO OVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0	(1.6) (1.4) (1.4) (1.6) (5.9) (1.9) (5.0) (5.7) (1.9) (4.0) %X LINKS (4.0) %X LINKS (4.0) %X T OF (4.0) %X T OF (4.0) %X	96 59 64 81 94 94 88 86 66 141 WITH STOPS /PCU (%) 92 81 6 34 29 95 102 83 224 1 58 84	(.5) (.3) (.3) (7.5) (.1) (.7) (6.6) (.7) (.7) (6.6) (.3) (1.0) PWEIGHT OFS COST OF STOPS (\$/H) (9.5) (.6) (.3) (1.6) (.3) (1.6) (.3) (1.6) (.3) (1.6) (.3) (1.5) (.6) (.3) (1.5) (.6) (.3) (1.5) (.6) (.3) (.3) (.5) (.6) (.3) (.6) (.3) (.6) (.6)(10 12 13 66 5 8 68 70 10 13 TING OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12 51 23 0	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUH (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 .1	178 227 208 224 204 209 210 222 202 21 EXI' NODI 4 55 211 202 212 213 214 215 198 215 198 215 219 215 217 2259 215 217 225 217 208 229 217 208 220 217 208 220 217 208 220 209 217 208 220 209 217 209 217 208 220 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 210 209 210 209 210 200 210 202 217 200 210 200 210 217 200 210 217 200 210 217 200 210 210 210 210 210 210 210 210 210	32 80 80 13 36 47 34 51 75 RUN ON r GRE 5 STA 15 (83 26 70 29 40 67 70 29 40 67 73 26 1 83	50 27 24 51 55 62 67 86 29 29 28 20 29 28 20 20 20 20 20 20 20 20 20 20 20 20 20	2 30 8/1 IMES STAR 2N NDS) 71 85	17 41 993 T END D 84
1820 1830 1831 1840 1850 1860 1990 1990 1990 1990 1990 1990 1920 1930 1940 1950 1960 1950 1960 2000 2010 2020 2040 2050	551 738 728 2927< 196 52698< 2837< 566 582 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2663< 735 1880< 2988 2193 849 597 2158 533 1928 270 2618 721 2049	2000 3000 3000 9000 1600 2400 2500	65 58 62 75 55 79 79 74 91 ATHENS 45 51 DEGREF OF SAT 0 (%) (%) 72 79 46 51 71 80 72 79 46 51 55 55 100 28 84 44 86 80 80	26 30 30 12 25 28 9 10 25 30 * Cent FPS (SEC) 17 30 7 8 9 9 25 25 316 30 22 216 30 22 216 30 23 217 30 30 25 25 28 20 20 20 20 20 20 20 20 20 20 20 20 20	19 12 14 15 33 24 12 13 22 45 7 12 15 21 3 5 8 20 20 126 0 126 0 11 19 4 18	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO DELAY- UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 2.0	(1.6) (1.4) (1.4) (1.6) (6.9) (1.9) (5.0) (5.7) (1.9) (4.0) x LINKS 	96 59 64 81 94 94 88 86 66 141 WITH STON STOPS /PCU (%) 92 81 6 34 29 95 102 83 224 1 58 84 105 26	(.5) (.3) (.3) (7.5) (.1) (6.6) (6.0) (.3) (1.0) PWEIGHT OF STOPS (S/H) (9.5) (.6) (.3) (1.6) (2.0) (.3) (1.6) (2.0) (.4) (.4) (.2) (.0) (.2) (.7) (.7)	10 12 13 66 5 8 68 70 10 13 21NG OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12 51 23 0 5 63 20 + 20	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUN (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 .1 .6 -2.3 3.2	178 227 208 224 204 209 210 202 21 EXI' NODI EXI' NODI 222 21 212 202 21 212 202 21 212 202 21 212 202 21 212 8 202 21 212 7 202 212 212 202 217 208 209 217 208 209 217 208 209 217 208 209 217 208 209 217 208 209 217 208 209 217 208 209 217 208 209 217 208 209 217 208 209 217 208 209 210 209 217 209 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 202 211 8 209 210 209 210 209 210 209 210 209 210 200 210 202 211 8 200 211 8 200 211 200 212 212 212 212 211 200 212 211 200 212 211 200 212 211 200 212 211 200 212 211 200 212 211 200 212 211 211	32 80 80 13 36 75 75 RUN ON 15 5 5 5 83 26 70 29 9 40 68 40 67 0 73 326 13 83 26 70 19	50 27 24 55 62 67 86 27 86 27 86 27 86 30/ ENT T SECO 29 39 28 8 76 61 23 15 51 55 62 62 55 33 64 64	2 30 8/1 IMES STAR 2N NDS) 71 85	17 41 993 T END D 84
1820 1830 1831 1840 1850 1860 1990 1900 1900 1900 1900 1900 1920 1930 1940 1950 1940 1950 1940 1950 1960 2010 2010 2020 2040 2050 2060	551 738 728 2927< 196 52698< 2837< 582 M TRANSY 0 SECON FLOW INTO LINK (PCU/H) 2663< 735 1880< 2988 2193 849 597 2158 533 1928 270 2618 721 2049 2101	2000 3000 3000 9000 1600 9000 2400 T8 CYCLE SAT FLOW (PCU/H 9000 3000 7500 2800 3000 7500 2800 3000 1500 7500 1500 1500 1500 5000 1800 5000 1800 5000 1800 5000 1800 5000	65 58 62 75 55 79 9 79 74 91 74 91 79 74 45 ST DEGREE OF SAT 0 (%) 72 79 46 51 71 80 75 55 5 100 28 44 486 88 88 80 79	26 30 30 12 25 28 9 10 25 30 * Cent EPS (SEC) 17 30 7 8 9 25 32 16 6 30 22 12 30 * Cent 25 8 9 10 25 25 30 20 20 20 20 20 20 20 20 20 20 20 20 20	19 12 14 15 33 24 12 13 12 13 22 45 71 12 5 72 13 5 5 8 20 23 10 126 0 11 9 9 41 8 3 13 20 23 10 126 12 13 13 21 14 12 13 22 45 14 12 13 22 45 14 12 13 22 45 14 12 13 22 45 14 14 15 13 22 45 14 14 15 13 22 45 14 14 15 13 22 45 14 14 15 13 22 45 14 14 15 13 22 45 14 14 15 13 24 14 14 15 13 24 15 14 14 15 15 14 14 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO DELAY- UNIFORM RANDO OVERS (U+R+O=MBAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 1.8	(1.6) (1.4) (1.4) (1.6) (6.9) (1.0) (5.0) (5.7) (1.9) (4.0) (4.0) (4.0) (2.4) (2.4) (2.6) (2.6) (2.6) (2.6) (2.1) (3.3) (10.3) (.4) (-3) (.4) (-3) (-3) (-3) (4.0)	96 59 64 81 94 94 88 86 66 141 WITH STOPS /PCU (%) 92 81 6 34 29 95 102 83 224 1 58 83 224 1 58 84 105 26 67	(.5) (.3) (.3) (7.5) (.1) (.7) (6.6) (.7) (.7) (6.6) (.3) (1.0) PWEIGHT COST COST (.4) (.5) (.6) (.3) (1.6) (.3) (.3) (1.5) (.6) (.3) (.6) (.3) (.6) (.3) (.6) (.3) (.6) (.6)(10 12 13 66 5 8 68 70 10 13 TING OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12 51 23 0 5 63 20 +	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUN OF () VALUH (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 .1 .6 -2.3 5.3	178 227 208 224 204 209 210 222 202 21 EXI' NODI 4 55 211 202 212 213 214 215 198 215 198 215 219 215 217 2259 215 217 225 217 208 229 217 208 220 217 208 220 217 208 220 209 217 208 220 209 217 209 217 208 220 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 217 209 210 209 210 209 210 200 210 202 217 200 210 200 210 217 200 210 217 200 210 217 200 210 210 210 210 210 210 210 210 210	32 80 80 13 36 47 34 51 75 RUN ON r GRE 5 STA 15 (83 26 70 29 40 68 70 29 40 67 73 26 1 1 83 19 51 19	50 27 24 55 62 67 86 27 86 30/ ENT SECO 29 28 8 6 29 28 8 76 11 51 23 55 55 33 66 65 55 33 64 8 9	2 30 8/1 IMES STAR 2N NDS) 71 85	17 41 993 T END D 84
1820 1830 1831 1840 1850 1860 1990 1900 1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980 1950 2000 2010 2020 2040 2050 2060 2080 2090	551 738 728 2927< 196 52698< 2837< 566 582 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2663< 735 1880< 2988 2193 849 597 2158 533 1928 270 2618 731 2049 2101 2049 2101 2049 2101	2000 3000 3000 9000 1600 2400 2500	65 58 62 75 55 79 97 49 1 79 74 45 51 0 70 45 51 71 80 72 79 46 51 71 80 72 79 46 51 55 55 100 28 44 88 80 79 47 47	26 30 30 12 25 28 9 10 25 30 * Cent EPS (SEC) 17 30 7 8 9 9 25 25 30 7 8 9 9 25 25 216 30 22 8 9 10 25 25 20 10 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	19 12 14 15 33 24 12 13 24 45 45 45 45 45 45 45 45 45 4	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 2.0 5.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 2.0 5.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.5 + 2.0 5.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.4 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 2.0 5.5 + 1.8 1.0 + .4 3.4 + .4 1.0 + .4 3.5 + 1.8 1.0 + .4 1.0 + .4	(1.6) (1.4) (1.4) (1.6) (6.9) (1.9) (5.0) (5.7) (1.9) (4.0) x LINKS 	96 59 64 81 94 94 88 86 66 141 WITH STON STOPS /PCU (%) 92 81 6 34 29 95 102 83 224 1 58 84 105 26 67 20 8	(.5) (.3) (.3) (7.5) (.1) (6.6) (.7) (6.6) (.3) (1.0) PWE-GHT OF STOPS (\$/H) (9.5) (.6) (.3) (1.6) (.2) (.4) (.2) (.2) (.2) (.2) (.2) (.2) (.2) (.3) (.2) (.2) (.3) (.2) (.2) (.3) (.2) (.3) (.2) (.3) (.2) (.3) (.2) (.3) (.3) (.2) (.3) (10 12 13 66 5 8 68 70 10 13 PING OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12 51 23 0 5 63 20 + 20 40 5 5	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUN (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 11. 6 -2.3 3.2 3.0 0 .5 3.2 3.0 0 .5 5 .5 .5 .5 .5 .5 .5 .5 .5	178 227 208 224 204 209 210 222 202 21 EXI' NODI 4 55 211 200 212 213 214 215 215 215 215 215 215 215 215 215 215	32 80 80 13 36 75 75 RUN ON 15 5 5 5 83 26 70 29 9 40 68 40 67 0 73 326 1 83 26 70 29 9 9 9 9 9 9 9 9 9 9 0 0 73 326 75 75 83 26 70 75 75 83 26 70 75 83 26 70 75 83 26 70 75 83 26 70 75 83 26 70 75 83 26 70 75 83 26 70 70 83 26 70 70 83 26 70 70 80 80 80 80 80 80 80 80 80 80 80 80 80	50 27 24 55 62 67 86 27 86 27 86 30/ ENT T END T END T S 29 39 28 8 76 62 23 39 28 8 751 55 55 30 4 8 8 9 80	2 30 8/1 IMES STAR 2N NDS) 71 85	17 41 993 T END D 84
1820 1830 1831 1840 1850 1860 1900 1900 1900 1900 1900 1900 1900 19	551 738 728 2927< 196 52698< 2837< 582 M TRANSY 0 SECON FLOW INTO LINK (PCU/H) 2663< 735 1880< 2988 2193 849 533 1928 2700 2618 721 2049 2101 2600 2019 2101 2600 2688	2000 3000 3000 9000 1600 2400 2500	65 58 62 27 55 55 79 9 79 79 74 91 45 51 DEGREE OF SAT 0 (%) 72 79 46 51 71 80 72 79 46 51 100 28 44 486 88 88 80 079 41 40 79 79 79 79 79 79 79 79 79 79 79 79 79	26 30 30 12 25 28 9 10 25 30 * Cent EPS (SEC) 17 30 7 8 8 9 25 32 16 6 30 7 22 16 30 20 20 20 20 20 20 20 20 20 20 20 20 20	19 12 14 15 33 24 12 13 12 13 22 45 12 13 22 45 12 15 21 3 5 5 21 3 20 21 3 20 21 3 21 21 21 21 21 21 21 21 21 21	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO DELAY- UNIFORM RANDO VVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 1.8 1.0 + .4 .3 + .4 2.4 + .3 1.0 + .4 .3 + .4 2.4 + .3 1.0 + .4 .3 + .4 2.4 + .3	(1.6) (1.4) (1.4) (1.6) (6.9) (1.0) (5.0) (5.7) (1.9) (4.0) xx LINKS 	96 59 64 81 94 94 88 86 66 141 WITH STOI ************************************	(.5) (.3) (.3) (.7.5) (.1) (.7.5) (.6.6) (.7.5) (.7.5	10 12 13 66 5 8 68 70 10 13 ING OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12 51 23 0 5 63 20 + 20 40 16 5 9	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE WEIGHTED SUN OF () VALUH (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 .1 .6 3.0 2.9 -5.4 11.8 .1 .1 .6 .2 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	178 227 208 224 204 209 210 222 202 21 EXI' NODI 4 55 211 200 212 212 213 214 215 198 215 198 215 259 215 259 215 217 214 218 229 212 217 218 220 217 218 227 218 227 218 227 208 220 220 220 220 220 220 220 220 220	32 80 80 13 36 47 34 51 75 RUN ON r GRE 5 STA 15 (83 26 5 70 29 40 67 70 29 40 67 73 26 1 18 3 19 51 19 3 0 31	50 27 24 51 55 62 67 86 30/ EN T RT T SECO 29 39 28 8 76 62 55 55 51 23 15 51 23 15 55 55 53 66 62 62 8 71 8 67 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 6 27 8 7 8 6 27 8 8 6 27 8 8 6 27 8 9 28 8 27 8 9 28 9 28 9 28 9 28 9	2 30 8/1 IMES STAR 2N NDS) 71 85	17 41 993 T END D 84
1820 1830 1830 1850 1860 1970 1980 1990 1900 1990 1900 1920 1930 1940 1950 1950 1960 1970 1980 1970 2010 2010 2010 2010 2010 2050 2060 2050 2060 2090 2110	551 738 728 2927< 196 52698< 2837< 566 582 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2663< 735 1880< 2988 2193 849 597 2158 533 1928 270 2618 731 2049 2101 2049 2101 2049 2101	2000 3000 3000 9000 1600 2400 2500	65 58 62 75 55 79 97 97 49 45 51 0 72 79 46 51 71 80 72 79 46 51 71 80 72 79 46 51 00 28 88 80 79 44 44 86 880 79 40 65 55 55 55 79 79 79 79 79 79 79 79 79 79 79 79 79	26 30 30 12 25 28 9 10 25 30 * Cent EPS (SEC) 17 30 7 7 8 9 9 252 32 16 30 20 20 18 30 20 20 15 12	19 12 14 15 33 24 12 13 22 45 12 13 22 45 12 15 21 3 5 8 20 15 21 3 5 8 20 15 21 15 21 15 22 45 15 22 45 15 22 45 15 22 45 17 18 18 22 45 19 19 19 19 10 10 10 10 10 10 10 10 10 10	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 UNIFORM RANDO VVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 2.0 5.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 2.0 5.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 2.0 5.5 + 1.8 1.0 + .4 .3 + .4 2.4 + .3 5.5 + 1.0 .5 + 1.8 1.0 + .4 .4 + .5 .5 + 1.8 1.0 + .2 .4 + .4 1.0 + .4 .5 + .1 .5 + .	(1.6) (1.4) (1.4) (1.6) (6.9) (1.0) (5.0) (5.7) (1.9) (4.0) x LINKS 	96 59 64 81 94 94 88 86 66 141 WITH STON STOPS /PCU (%) 92 81 6 34 29 95 102 83 224 1 58 84 105 26 67 20 85 67 10	(.5) (.3) (.3) (.7) (.7)	10 12 13 66 5 8 68 70 10 13 PING OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12 51 23 0 5 63 20 + 20 40 16 5 9 27 6	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUN (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 11 6 -2.3 3.2 3.0 0 .5 1.8 4.5 .9	178 227 208 224 204 209 210 222 202 21 EXII 8 000 212 212 213 214 215 215 215 215 215 215 215 215 215 215	32 80 80 13 36 75 75 RUN ON 1 5 5 5 75 RUN ON 1 5 5 75 83 26 70 29 40 68 40 67 0 73 26 1 83 26 70 9 40 67 1 83 26 70 9 9 9 9 9 0 0 3 26 75 75 83 26 75 75 83 26 75 75 83 26 70 75 83 26 70 75 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 70 83 26 70 70 83 26 70 70 83 26 70 70 83 26 70 70 70 83 26 70 70 70 70 70 83 26 70 70 70 70 70 70 70 70 70 70 70 70 70	50 27 55 62 67 86 30/ EN T 86 30/ EN T SECO 29 39 28 8 76 11 23 155 66 62 55 33 64 8 9 80 46 119	2 30 8/1 IMES STAR 2N NDS) 71 85	17 41 993 T END D 84
1820 1830 1831 1840 1850 1870 1890 1900 1900 1900 1900 1900 1900 1900 1920 1940 1950 1940 1950 1960 1970 1960 2010 2010 2010 2050 2060 2050 2060 2080 2090 2110 2120	551 738 728 2927< 196 52698< 2837< 582 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2663< 29884 2193 849 533 1928 270 2618 721 2049 2101 2600 2019 589 502 2010 2012	2000 3000 3000 9000 1600 2400 2500	65 58 62 75 55 79 97 49 1 ATHENS 45 57 0 F SAT 0 (%) 72 79 46 51 71 80 72 79 46 51 80 75 55 100 28 44 486 88 88 80 79 41 40 62 53 28 28 28 28 28 28 28 28 28 28 28 28 28	26 30 30 12 25 28 9 10 25 30 * Cent EPS (SEC) 17 30 7 8 8 9 25 32 16 6 30 7 22 16 30 22 17 30 7 8 9 25 32 26 30 20 10 20 5 20 20 20 20 20 20 20 20 20 20 20 20 20	19 12 14 15 33 24 12 13 12 13 22 45 12 13 24 5 5 21 3 5 5 21 3 20 21 3 20 21 3 20 21 3 21 21 21 21 21 21 21 21 21 21	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 Ceries * HOT NO DELAY- UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 1.8 1.0 + .4 3.5 + 1.2 2.5 + 1.8 1.0 + .4 3.5 + 1.2 3.5 + 1.2 3.5 + 1.0 3.5	(1.6) (1.4) (1.4) (1.6) (6.9) (1.0) (5.0) (5.7) (1.9) (4.0) xx LINKS 	96 59 64 81 94 94 88 86 66 141 WITH STOI ************************************	(.5) (.3) (.3) (.7.5) (.1) (.7.5) (.1) (.7.5) (.7.5)	10 12 13 66 5 8 68 70 10 13 21NG OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12 51 23 0 5 63 20 + 20 4 12 5 9 27 6 4	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUN OF () VALUH (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 .1 .6 -2.3 3.2 3.0 .5 .3 3.2 3.0 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	178 227 208 224 204 209 210 222 202 21 EXI' NODI 4 55 211 200 212 212 213 214 215 198 215 198 215 215 215 215 217 214 218 215 219 229 217 217 4 229 217 220 4 222 217 220 4 222 220 222 220 222 220 222 220 220	32 80 80 13 36 47 34 51 75 RUN ON r GRE 5 STA 15 (83 26 5 70 29 40 67 70 29 40 67 73 26 1 18 3 19 51 19 3 0 31	50 27 24 51 55 62 67 86 30/ EN T RT T SECO 29 39 28 8 76 62 55 53 15 51 23 15 51 23 15 51 23 15 51 51 51 55 62 67 86 30/ 86 30/ 86 27 86 30/ 86 30 87 86 30 86 87 30 86 87 30 86 87 87 87 87 87 87 87 87 87 80 87 87 80 80 80 80 80 80 80 80 80 80 80 80 80	2 30 8/1 IMES STAR 2N NDS) 71 85	17 41 993 T END D 84
1820 1830 1830 1850 1860 1970 1980 1990 1900 1900 1970 1930 1940 1950 1960 1950 1960 2010 2020 2040 2050 2060 2060 2080 2090 2110	551 738 728 2927< 196 52698< 2837< 566 582 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2663< 735 1880< 2988 2193 849 597 2158 533 1928 270 2618 731 2049 2101 2049 2101 2039 589	2000 3000 3000 9000 1600 1800 2400 2500	65 58 62 75 55 79 97 97 49 45 51 0 72 79 46 51 71 80 72 79 46 51 71 80 72 79 46 51 00 28 88 80 79 44 44 86 88 80 79 91 47 40 65 25 55 55 79 79 79 79 79 79 79 79 79 79 79 79 79	26 30 30 12 25 28 9 10 25 28 9 * Cent EPS (SEC) 17 30 * CRUIS (SEC) 17 30 7 7 8 9 9 25 26 32 16 30 22 18 20 20 20 20 20 20 20 20 20 20 20 20 20	19 12 14 15 33 24 12 13 22 45 12 13 22 45 12 15 21 3 5 8 20 15 21 3 5 8 20 15 21 15 21 15 22 45 15 22 45 15 22 45 15 22 45 17 18 18 22 45 19 19 19 19 10 10 10 10 10 10 10 10 10 10	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 UNIFORM RANDO VVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 2.0 5.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 2.0 5.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 2.0 5.5 + 1.8 1.0 + .4 .3 + .4 2.4 + .3 5.5 + 1.0 .5 + 1.8 1.0 + .4 .4 + .5 .5 + 1.8 1.0 + .2 .4 + .4 1.0 + .4 .5 + .1 .5 + .	(1.6) (1.4) (1.4) (1.6) (6.9) (1.0) (5.0) (5.7) (1.9) (4.0) x LINKS wh+ COST (4.0) x LINKS (4.0) (2.4) (3.3) (2.2) (2.6) (2.6) (2.6) (2.6) (2.1) (3.3) (10.3) (10.3) (10.3) (10.3) (1.5) (3.6) (3.6)(96 59 64 81 94 94 88 86 66 141 WITH STON STOPS /PCU (%) 92 81 6 34 29 95 102 83 224 1 58 84 105 26 67 20 83 56 67 10 30 91 44	(.5) (.3) (.3) (.7) (.7)	10 12 13 66 5 8 68 70 10 13 PING OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12 51 23 0 5 63 20 + 20 40 16 5 9 27 6 4 6 7	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUN (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 11 6 -2.3 3.2 3.0 0 .5 1.8 4.5 .9 1.0 1.1 1.6	178 227 208 224 204 209 210 222 202 21 EXI' NODI 4 55 211 200 212 213 214 215 215 215 215 215 215 215 215 215 215	32 80 80 13 36 75 75 RUN ON 1 5 5 5 83 26 70 0 29 40 683 26 70 0 29 40 683 26 70 0 29 40 67 1 83 26 70 19 51 19 51 19 51 30 0 39 55 57 70 70 70 70 70 70 70 70 70 70 70 70 70	50 27 24 51 55 62 67 86 30/ ENT 55 62 27 86 30/ 27 86 30/ 29 39 28 8 76 11 55 55 56 20 29 39 28 8 76 15 55 20 4 86 20 4 86 30/ 86 20 4 86 20 4 86 20 4 86 20 86 20 86 20 86 20 86 20 86 20 86 20 86 20 86 20 20 86 20 20 86 20 20 86 20 20 86 20 20 86 20 20 86 20 20 86 20 20 86 20 20 86 20 20 86 20 20 86 20 20 20 86 20 20 20 86 20 20 20 80 20 20 20 20 20 20 20 20 20 20 20 20 20	2 30 8/1 IMES STAR 2N NDS) 71 85	17 41 993 T END D 84
1820 1830 1831 1840 1850 1870 1880 1990 1900 1900 1900 1900 1900 1900 1910 1920 1930 1940 1950 1950 1950 1950 2010 2010 2020 2040 2050 2050 2060 2090 2110 2120 2130 2140 2150	551 738 728 2927< 196 52698< 2837< 582 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2663< 735 1380< 2988% 2193 849 533 1928 270 2618 721 2648 721 2649 2101 2649 205 275 2649 275 275 275 265 275 265 265 265 275 275 275 275 265 275 275 275 275 275 275 275 275 275 27	2000 3000 3000 9000 1600 2400 2500	65 58 62 75 55 79 97 49 1 ATHENS 45 57 0 F SAT 0 F SAT 0 (%) 72 79 46 51 71 80 72 79 46 51 71 80 75 55 55 100 28 44 88 88 80 79 41 40 66 55 55 55 55 55 55 55 55 79 79 79 79 79 79 79 79 79 79 79 79 79	26 30 30 12 25 28 9 10 25 30 * Cent SPS (SEC) 17 30 7 8 9 9 25 32 6 30 7 8 9 9 25 32 6 30 22 8 20 20 20 20 20 20 20 20 20 20 20 20 20	19 12 14 15 33 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 12 12 12 12 12 12 12 12 12	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO DELAY- UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 5.5 + 1.8 1.0 + .4 3.5 + 1.2 2.5 + 2.0 5.5 + 1.8 1.0 + .4 3.5 + 1.0 1.2 + .5 1.2 + .5 1.4 + 1.5 1.3 + .7	(1.6) (1.4) (1.4) (1.6) (6.9) (1.9) (5.0) (5.7) (1.9) (4.0) x LINKS 	96 59 64 81 94 94 88 86 66 141 WITH STON STOPS /PCU (%) 92 81 6 34 29 95 102 83 224 105 26 67 20 85 6 67 20 85 6 67 10 30 14 42 19	(.5) (.3) (.3) (7.5) (.1) (6.6) (.7) (6.6) (.3) (1.0) PWEIGHT OF STOPS (S/H) (9.5) (.6) (.3) (1.6) (2.0) (.3) (1.6) (2.0) (.3) (1.5) (.3) (1.5) (.2) (.3) (1.5) (.2) (.3) (.2) (.2) (.3) (.2) (10 12 13 66 5 8 68 70 10 13 PARA	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUM (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 .1 .6 -2.3 5.3 3.2 3.0 .0 .5 1.8 4.5 .9 1.0 1.1 1.6 1.2	178 227 208 224 204 209 210 222 21 EXI' NODI 425 212 202 21 EXI' NODI 425 213 214 213 214 213 214 215 215 217 214 219 225 217 214 219 221 210 221 210 221 210 221 210 221 210 222 210 222 21 210 222 21 222 222	32 80 80 13 36 47 34 51 75 RUN ON r GRE 5 STA 15 (83 26 6 29 40 68 83 26 6 70 29 40 68 83 26 1 1 83 26 1 1 83 19 5 59 59	50 27 24 51 55 62 67 86 30/ EN T RT T SECO 29 39 28 8 76 62 55 53 15 51 23 15 51 23 15 51 23 15 51 51 51 55 62 67 86 30/ 86 30/ 86 27 86 30/ 86 30 87 86 30 86 87 87 86 87 87 86 87 80 87 80 87 80 80 80 80 80 80 80 80 80 80 80 80 80	2 30 8/1 IMES STAR 2N NDS) 71 85	17 41 993 T END D 84
1820 1830 1830 1850 1860 1970 1980 1990 1900 1970 1920 1930 1940 1950 1960 1950 1960 2010 2020 2040 2050 2060 2080 2090 2110 2120 2130 2140	551 738 728 2927< 196 566 582 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2663< 735 1880 2988 2193 849 549 2158 533 1928 270 2618 7211 2049 2101 2609 2034 521 1670 2034 521	2000 3000 3000 9000 1600 1800 9000 2400 2500	65 58 62 75 55 79 9 79 74 45 511 71 80 72 79 46 51 71 80 72 79 46 51 71 80 75 55 55 100 28 44 86 88 80 79 47 40 652 38 49 47 52 38 79 79 79 79 79 79 79 79 79 79 79 79 79	26 30 30 12 25 28 9 10 25 28 9 5 MEAN (SEC) 17 30 * Cent PFR CRUIS (SEC) 17 30 7 7 8 9 5 25 20 20 20 20 20 15 12 25 20 20 20 20 20 20 20 20 20 20 20 20 20	19 12 14 15 33 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 12 12 12 12 12 12 12 12 12	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 2.0 5.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 2.0 5.5 + 1.8 1.0 + .4 .3 + .4 2.4 + .3 5.5 + 1.0 .5 + 1.8 1.0 + .4 .3 + .4 2.4 + .3 5.5 + 1.0 .6 + .5 1.2 + .3 1.2 + .5 1.4 + 1.5 1.3 + .7 4.2 + 46.4 4.3 + 1.6	(1.6) (1.4) (1.4) (1.6) (6.9) (1.0) (5.0) (5.7) (1.9) (4.0) x LINKS m+ COST (4.0) x LINKS (4.0) (2.4) (2.4) (2.4) (2.6) (2.6) (2.6) (2.6) (2.1) (3.3) (10.3) (10.3)	96 59 64 81 94 94 88 86 66 141 WITH STON STOPS /PCU (%) 92 81 6 34 29 95 102 83 224 1 58 84 105 266 67 20 85 66 67 10 30 14 42 9 90 95 102 83 224 105 26 104	(.5) (.3) (.3) (.7) (.6) (.7) (.6) (.7) (.6) (.7) (.7) (.6) (.3) (.0) PWEIGHT OF STOPS (.7) (.3) (.6) (.3) (.2) (.3) (.2) (.3) (.2) (.3) (.2) (.3) (.2) (.3) (.2) (.3) (.1) (.2) (.3) (.1) (.2) (.3) (.1) (.2) (.3) (.1) (.2) (.3) (.1) (.1) (.2) (.3) (.1) (.1) (.2) (.1) (.2) (.3) (.1) (.1) (.2) (.1) (.2) (.1) (.2) (.1) (.2) (.3)	10 12 13 66 5 8 68 70 10 13 TING OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12 51 23 0 5 63 20 + 20 40 16 5 9 27 6 4 6 7 10 17 17 10 13 10 10 13 10 10 13 10 10 10 10 10 10 10 10 10 10	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUE (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 1.1 6 -2.3 3.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 1.1 .6 3.2 3.0 1.1 1.1 .6 .2 3.0 .0 .5 .8 .2 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8	178 227 208 224 204 209 210 222 202 21 EXI' 800 4 55 211 202 212 213 214 215 215 215 215 215 215 215 215 215 215	32 80 80 13 367 75 RUN ON F GRE 5 STA 15 (83 26 70 29 40 67 73 26 1 83 26 70 73 26 1 83 26 70 73 26 1 83 26 73 29 40 67 73 29 40 67 73 29 40 67 73 29 40 67 73 29 40 67 73 29 40 67 73 29 40 67 73 29 40 67 73 29 40 67 73 29 40 67 73 29 40 67 73 29 40 67 73 75 75 75 75 75 75 75 75 75 75 75 75 75	50 27 24 51 55 62 67 86 30/ ENT 55 62 27 86 30/ 29 39 8 76 11 23 15 5 55 29 39 8 76 11 123 15 5 66 2 62 8 7 8 9 8 8 76 11 19 8 8 7 8 9 8 8 7 8 9 8 8 7 8 9 8 8 7 8 9 8 8 7 8 9 8 8 8 7 8 9 8 8 7 8 9 8 8 9 8 8 9 8 9	2 30 8/1 IMES STAR 2N NDS) 71 85	17 41 993 T END D 84
1820 1830 1830 1840 1850 1860 1970 1980 1990 1900 1900 1900 1900 1920 1930 1940 1950 1940 1950 1960 2010 2020 2040 2050 2060 2050 2060 2050 2060 2050 2060 2050 2060 2050 2060 2050 2060 2050 2150 2171 2171 2175	551 738 728 2927< 196 52698< 2837< 582 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2663< 735 1880< 2988 2193 849 597 2158 533 1928 289 2618 721 2648 721 2648 721 2648 533 1928 270 2618 721 2044 521 1672 2034 589 1502 2034 667	2000 3000 3000 9000 1600 1800 2400 25000 2500	65 58 62 22 75 55 79 97 97 49 1 45 51 0 53 79 46 51 71 80 72 79 46 51 71 80 72 79 46 51 71 80 72 79 46 51 71 80 72 79 46 51 71 80 72 79 46 55 55 55 55 55 57 99 79 79 79 79 79 79 79 79 79 79 79 79	26 30 30 12 25 28 9 10 25 30 * Cent SPS (SEC) 17 30 7 8 9 25 32 16 30 22 218 20 20 20 20 20 20 20 20 20 20 20 20 20	19 12 14 15 33 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 13 24 12 12 13 12 12 12 12 12 12 12 12 12 12	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 8.4 + 1.9 2.1 + 1.4 2.5 + 4.7 Ceries * HOT NO DELAY- UNIFORM RANDO OVERS (U+R+O=MEAN Q (PCU-H/H) 9.4 + 1.3 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 2.3 + 1.5 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.0 5.5 + .6 2.4 + 16.2 .0 + .2 .4 + .4 10.8 + 3.0 4.7 + 3.5 2.5 + 2.0 5.5 + 1.8 1.0 + .4 3.4 + .5 3.5 + 1.2 2.7 + 2.1 5.5 + .6 2.4 + 16.2 .0 + .4 3.5 + 1.0 4.7 + 3.5 1.2 + .5 1.2 + .3 1.2 + .5 1.4 + 1.5 1.3 + .7 4.2 + 46.4 4.3 + 1.0	(1.6) (1.4) (1.4) (1.6) (6.9) (1.0) (5.0) (5.7) (1.9) (4.0) x LINKS 	96 59 64 81 94 94 88 86 66 141 WITH STON STOPS /PCU (%) 92 81 6 34 29 95 102 83 224 1 58 84 105 26 67 20 85 6 67 10 30 14 26 67 10 30 14 87	(.5) (.3) (.3) (7.5) (.1) (6.6) (.7) (6.6) (.7) (.7) (6.6) (.3) (1.0) PWEIGHT OF STOPS (S/H) (9.5) (.6) (.3) (1.6) (2.0) (.3) (1.6) (2.0) (.3) (1.5) (.2) (.3) (.2) (.2) (.3) (.2) (.2) (.3) (.1) (.2) (10 12 13 66 5 8 68 70 10 13 PARA MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12 51 23 0 5 63 20 + 20 40 16 5 9 27 6 4 6 7 10 71 + 14 15	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUT (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 4.5 .9 1.0 1.1 1.1 3.7 4.6 3.0 2.9 -5.4 1.1 3.7 4.6 3.0 2.9 -5.4 1.1 1.1 3.7 4.6 3.0 2.9 -5.4 1.1 1.1 3.7 4.6 3.0 2.9 -5.4 1.1 1.1 3.7 4.6 3.0 0.5 1.8 4.5 .9 1.0 1.1 1.6 1.2 2.9.7 3.8 4.1	178 227 208 224 204 209 210 222 21 EXII 200 212 213 213 214 213 213 214 215 215 215 217 214 219 225 215 217 214 219 220 215 217 214 219 220 221 223 224 225 225 225 225 225 225 225 225 225	32 80 80 13 36 47 34 51 75 RUN ON r GRE 5 5 83 26 6 83 26 6 83 29 40 68 83 26 6 70 73 29 40 68 83 26 1 1 83 26 1 1 83 26 1 33 19 55 9 70 31 39 559 70 6 35	50 27 24 51 55 62 67 86 30/ EN T RR T SECO 29 39 28 8 76 62 29 39 28 8 76 62 51 55 29 39 28 8 76 62 51 55 55 62 62 77 86 30/ 86 27 86 30/ 87 86 30/ 86 27 86 30/ 86 27 86 30/ 86 30 86 30/ 86 30 87 30 86 30 30 86 30 86 30 30 30 86 30 86 30 30 87 30 86 30 30 86 30 30 87 30 87 30 87 30 87 30 80 30 87 30 87 30 87 30 80 30 87 30 80 30 80 30 80 30 80 30 80 30 80 30 80 30 80 30 80 30 80 80 30 80 80 80 80 80 80 80 80 80 80 80 80 80	2 30 8/1 IMES STAR 2N NDS) 71 85	17 41 993 T END D 84
1820 1830 1830 1850 1860 1870 1890 1900 1PROGRA 0 9 0 LINK NUMBER 1910 1920 1930 1940 1950 1960 1970 1980 1970 2020 2040 2050 2060 2080 2090 2110 2120 2130 2140 2150 2160 2161 2170	551 738 728 2927< 196 556 582 M TRANSY 0 SECOND FLOW INTO LINK (PCU/H) 2663< 735 1880 2988 2193 8497 2158 533 1928 270 2618 721 2049 2101 2609 2034 521 1672 2034 521 1672 2034	2000 3000 3000 9000 1600 1800 2400 25000 2500	65 58 62 75 55 79 9 79 74 45 511 71 80 72 79 46 51 71 80 72 79 46 51 71 80 72 79 46 51 71 80 72 79 46 51 71 80 72 79 40 65 55 55 55 9 104 47 40 65 23 88 80 79 91 47 79 79 79 79 79 79 79 79 79 79 79 79 79	26 30 30 12 25 28 9 10 25 28 9 5 MEAN (SEC) 17 30 * Cent PFR CRUIS (SEC) 17 30 7 7 8 9 5 25 20 20 20 20 20 20 20 20 20 15 12 22 5 20 20 20 20 20 20 20 20 20 20 20 20 20	19 12 14 15 33 24 12 13 22 45 12 13 22 45 15 21 15 21 15 21 15 21 3 3 5 8 20 15 21 10 126 0 126 0 11 19 126 0 126 0 11 19 127 13 126 0 11 15 21 15 21 15 21 15 21 15 21 15 21 15 21 15 21 15 21 15 21 15 21 15 21 15 21 15 21 15 21 15 21 15 21 15 21 17 16 0 126 0 11 17 16 2 11 17 16 2 11 17 16 2 11 17 16 2 11 17 16 2 11 17 16 2 11 17 16 2 11 17 16 2 11 17 16 2 11 17 16 2 11 17 16 16 2 11 15 2 11 15 2 11 15 2 11 15 2 11 15 2 11 15 2 11 15 2 11 15 2 11 15 15 15 15 15 15 15 15 15	1.9 + .9 1.8 + .7 2.1 + .8 11.1 + 1.5 1.2 + .6 1.5 + 1.8 7.1 + 1.9 2.1 + 1.4 2.5 + 4.7 teries * HOT NO DELAY	(1.6) (1.4) (1.4) (1.6) (6.9) (1.0) (5.0) (5.7) (1.9) (4.0) x LINKS 	96 59 64 81 94 94 88 86 66 141 WITH STON STOPS /PCU (%) 92 81 6 34 29 95 102 83 224 1 58 84 105 26 67 20 85 66 67 10 30 44 29 95 102 83 224 105 26 67 20 85 56 67 10 30 84 105 26 57 85 85 85 85 85 85 85 85 85 85 85 85 85	(.5) (.3) (.3) (.7) (.6) (.7) (.6) (.7) (.6) (.7) (.7) (.6) (.3) (.0) PWEIGHT OF STOPS (.7) (.3) (.6) (.3) (.2) (.3) (.2) (.3) (.2) (.3) (.2) (.3) (.2) (.3) (.2) (.3) (.1) (.2) (.3) (.1) (.2) (.3) (.1) (.2) (.3) (.1) (.2) (.3) (.1) (.1) (.2) (.3) (.1) (.1) (.2) (.1) (.2) (.3) (.1) (.1) (.2) (.1) (.2) (.1) (.2) (.1) (.2) (.3)	10 12 13 66 5 8 68 70 10 13 TING OF -200 QUEUE MEAN MAX. AVERAGE EXCESS (PCU) (PCU) 65 10 3 33 23 21 12 51 23 0 5 63 20 + 20 40 16 5 9 27 6 4 6 7 10 13 12 12 12 12 51 23 0 5 63 20 + 20 40 16 17 10 13 10 13 10 13 10 13 10 10 13 10 10 10 10 10 10 10 10 10 10	2.0 1.6 1.9 -8.0 1.1 2.5 -8.2 -6.3 2.3 4.9 PAGE PERFORMANCE INDEX. WEIGHTED SUD OF () VALUE (\$/H) -13.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 1.1 6 -2.3 3.2 3.0 1.1 3.7 4.6 3.0 2.9 -5.4 11.8 1.1 .6 3.2 3.0 1.1 1.1 .6 .2 3.0 .0 .5 .8 .2 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8	178 227 208 224 204 209 210 222 202 21 EXI' 800 4 55 211 202 212 213 214 215 215 215 215 215 215 215 215 215 215	32 80 80 13 36 75 75 RUN ON 5 5 5 75 RUN ON 75 83 26 70 29 9 40 68 40 67 0 73 326 1 83 26 70 29 9 9 40 68 40 67 1 83 26 70 29 9 9 9 9 9 9 9 9 9 9 9 9 9 1 3 0 6 7 5 5 5 5 5 5 5 5 7 5 8 3 26 7 5 7 5 8 3 26 70 70 8 3 26 70 70 8 3 26 70 70 8 3 26 70 70 8 3 26 70 70 8 3 26 70 70 8 3 26 70 70 8 3 26 70 70 8 3 26 70 70 8 3 26 70 70 70 70 70 70 70 70 70 70 70 70 70	50 27 24 51 55 62 67 86 30/ EN T RT END T SECO 29 39 28 8 76 62 55 33 15 56 66 25 55 33 64 8 9 80 46 71 19 80 27 37 9 80 27 47 77 70 0 62 77 80 77 77 77 80 77 77 77 77 77 77 77 77 77 77 77 77 77	2 30 8/1 IMES STAR 2N NDS) 71 85	17 41 993 T END D 84

				Ho	t N	Ox lir	ık	s w	ith	stor	o we	igl	nting o	f -2	200	per	ce	nt					
0005			~	22	26	5.1		.9	1	3.3)	67		.7)		14	•		2.2	226	3	31		
2206	826	4000 8000	64 70	24	22		+	1.2	i	8.3)	78		1.8)		19			4.6	226	51	89		
2215	2417			24	15		+	1.5	i	4.7)	67	i	1.5)		37			1.8	227	24	78		
2225	2050	4500	75	22	12		+	.9	1	1.8)	72	(.7)		10			2.4	178	8	28	53	73
2230	945	3200	63		15		+	2.0	;	4.5)	64	1	.7)		37			5.2	216	39	83		
2790	1999	5000	80	25	15	.5		.2	1	.3)	27	1	.1)		2			.4	260	79	48		
2800	301	1800	25	25	1		5	.5	1	.7)	30		.6)		26			6	259	27	23		
2805	2001	4000	52	28	2 60	2.6	+	2.4	1	2.8)	126		.8)		10			3.6	261	61	78		
2820	301	1800	84	15	60		+	.5	-	.9)	37		.4)		22			1.3	260	85	58		
2825	1699	5000	48	15	3	2.5	-		1	1.6)	35		.8)		19			2.4	193	36	11		
2830	1847	5500	46	15	6		*	3.8	1	4.3)	112		.1)		18	+		4.5	261	84	32		
2845	617	1600	89	20	46	4.0	*	1.6	1	3.8)	68		.3)		32	+		4.0	261	61	29		
2846	1755	3500	76	20	14	5.2	+	1.0	1	6.0)	84		.4)		34			6.4	216	89	35		
3730	1520	5000	74	25	26	9.5	+	2.9	;	6.7)	103		1.2)		27			7.9	261	36	56		
3850	1000	5000	86	20	44		+		1	2.0)	96		.2)		8			2.1	217	59	83		
5800	330	1800	66	25	39		+	1.0	1		103		.2)		11			3.0	219	18	44		
5930	420	1800	78	25	44	2.1	+	1.7	1	2.8)	103		.0)		1			.4	221	86	3		
5940	50	1800	31	25	55		+	.2	(.4)				NG O	F -2	0.0		PAGE	22	RUN ON	30/	8/19	993
1PROGRAM	TRANSY		HENS *	* Centr	al Ar	teries	*	HOT N	OX	LINKS	WITH S	TOP	WEIGHIL	140 0	r -2								
0 90	SECOND	CYCLE 4	5 STER										TOTAL		DEN	ALTY		TOTAL					
0 TOTAL		TOTAL		MEAN		TOTAL		TOT		TOT			TOTAL			OR		PERFORMANCE					
DISTAN	CE	TIME	JOL	URNEY		UNIFORM		RAND			ST		COST			CESS		INDEX					
TRAVELL	ED	SPENT	-	SPEED		DELAY		OVER			F		OF			EUES		INDER					
								DEL		DEI			STOPS			/H)		(\$/H)					
(PCU-KM	/H)	(PCU-H/H)	(KM/H)	(PCU-H/H	() ((\$/H)		, (9	.0)		210.6	1	TOTALS			
0 13281.	2	1167.7		11.4		304.8		239.	2	(29	9.2) +	- (-88.6)					**********	+++++	++++++		++++	
0******	******	********	*****	******	*****	******	**	*****	***	******	*****												
*																	-						

0	CRUISE	DELAY LITRES PER HOUR	STOPS LITRES PER HOUR	TOTALS LITRES PER HOUR
OFUEL CONSUMPTION PREDICTIONS	LITRES PER HOUR 1243.4	+ 761.6	+ 330.3	= 2335.3

NO. OF ENTRIES TO SUBPT: 147 NO. OF LINKS RECALCULATED: 2865 SYSTEM TIME: 19:26: 0

EXECUTION TIME: 474 SECONDS PROGRAM TRANSYT8 FINISHED

The driving modes modellast are discovered all modes, namely cruine, accelerated network emissions are desired by addate possible to specify any combination

The link data in the emissions for the second state of the second state of the second state of the second state st

The total delay and number of seconds of the second second

Average speed is derived by a source in the second state of the se

The delay, quote, stars and address that and the start of the start of

The tod of the file contains the actual accurate the same first of the second second

Appendix C PREMIT EMISSIONS DATA

The predictions of the PREMIT emissions model are included in this appendix. Files have been included for emissions corresponding to the scenarios included in the TRANSYT Data appendix.

These files contain three components:

- * header;
- * link data; and
- * network totals.

The header contains the name and version of the program, the time the results were generated by PREMIT, the title of the scenario and the driving modes modelled. The line following "Emissions based on:" corresponds to the scenario title included in the TRANSYT file. The following line is a title specified at PREMIT run time and also indicates the name of a control file, used to define which files were used in the run.

The driving modes modelled are also reported in the header. The default is to model all modes, namely cruise, acceleration, deceleration and idling. The link and total network emissions are derived by adding emissions from each mode modelled. It is possible to specify any combination of driving modes, or even just one driving mode.

The link data in the emissions file lists, for each uni-directional road segment between two nodes, the node numbers, total delay, number of vehicles in the queue, mean stops per pcu, average speed and emission rates, in grams per minute, for each pollutant.

The total delay and number of vehicles in the queue are derived by adding up the corresponding values on each TRANSYT link representing a particular segment of road. The mean stops per pcu and average speed are derived by obtaining the average of the corresponding values on each TRANSYT link. Although the average is derived by weighting link values by the corresponding link flow. These weighted values are then totalled and divided by the total flow on the segment of road.

Average speed is derived by dividing the link length by the total journey time over the link. Hence, this does not represent a cruise speed as such, because it includes the time spent idling.

The delay, queue, stops and average speed columns were, primarily, provided for feedback to the assignment model in the PREDICT model suite.

The end of the file contains the total network emissions of each pollutant in grams per minute.

Base Case Scenario

PREMIT EMISSIONS MODEL Version 3.07 Copyright (C) Castle Rock Consultants 1993. All rights reserved.

Run time: 19 Jul 93 20:56 Emissions based on: ATHENS * CENTRAL ARTERIES * Optimisation ON BASECASE.ctl ** BASE CASE ** Modes modelled are: cruising acceleration deceleration idling

A	В	total	number of	mean	average	Carbon	Hydrocarbons	Nitrogen
node	node	delay	vehicles in	stops	speed	Monoxide	(THC)	Oxides
			the queue	per PCU		(CO)	1-1-1-1	(NOX)
	(PCU-h/h) (PCU)	(8)	(km/h)	(g/min)	(g/min)	(g/min)
	22.9				11	15.76	1.68	0.71
151	187	0.9	2	72	11 8	13.05	1.38	0.47
160	189	1.0	2	104	10	76.62	7.95	3.10
171	185	4.5	12	80	10	32.33	3.44	1.10
175	180	2.6	5	104 89	9	24.83	2.59	0.95
176	179	1.7	4	18	17	33.65	3.76	2.31
178	179	1.2	4	38	17	75.80	8.18	4.89
179	180	2.6	7 9	45	12	86.98	10.43	5.08
180	181	3.0	4	111	7	24.83	2.77	0.92
180	205	2.0	3	16	17	38.83	4.53	2.88
181	182 183	1.0	3	23	16	39.32	4.60	2.78
182 182	203	1.6	4	84	10	28.33	2.98	1.21
183	184	1.9	6	40	20	73.09	7.87	5.24
184	185	3.7	10	61	10	62.03	5.68	2.12
185	186	3.5	11	58	14	73.42	7.76	3.89
185	199	7.1	18	101	9	99.93	10.53	3.70
186	187	0.8	2	13	14	21.69	2.67	1.45
187	188	2.9	9	72	10	61.44	6.92	2.96
187	197	2.1	3	123	6	21.25	2.49	0.74
188	189	0.8	3	15	17	34.52	4.06	2.60
189	195	2.2	4	125	6	23.93	2.75	0.85
191	194	0.7	1	153	2	4.31	0.57	0.11
192	193	2.4	5	101	3	18.35	2.05	0.35 5.51
193	194	1.4	23	15	22	68.72	7.27	0.39
193	260	1.4	5	114	3	12.77	1.66	2.94
194	195	4.1	19	43	11	72.85	7.38 20.79	3.90
195	196	22.6	47	108	5	198.28 45.42	5.39	2.35
196	188	2.3	6	60	10	45.42	12.56	8.11
196	197	4.3	14	30 39	19 10	77.96	8.42	3.48
197	198	3.7	18	93	9	103.21	11.71	4.52
198	186	5.7	17 25	73	12	143.07	15.12	6.68
198	199	7.3	19	60	12	111.99	10.05	4.12
199	200	5.8	24	79	10	118.39	13.85	5.78
199 200	212 184	1.4	3	83	9	24.81	2.90	1.20
200	201	0.5	2	4	29	62.22	6.86	6.45
200	201	7.5	25	90	6	108.29	12.42	3.68
202	183	1.3	3	69	11	20.17	2.18	0.96
202	203	2.0	9	19	18	76.40	8.70	5.56
203	204	1.9	5	12	26	65.82	6.86	5.47
203	209	4.0	11	81	11	54.44	5.94	2.48
204	181	2.0	5	105	9	28.14	2.85	1.02
204	205	2.2	8	21	24	101.02	10.23	7.97
205	206	1.2	8	10	30	79.48	8.44	7.67
206	178	2.3	7	90	11	46.35	4.96	2.11
206	227	10.3	30	78	8	139.28	16.84	6.17
207	208	3.9	17	19	24	129.29	13.35	10.14
207	224	1.9	5	93	5	19.38	2.34	0.68 2.63
208	204	3.7	8	111	11	57.48	6.20	6.86
208	209	5.7	21	22	17	109.35	11.42	7.22
209	210	3.8	11	16	20	99.32	10.51	2.21
209	222	3.1	10	59	10	45.36	5.40	3.40
210	202	8.5	14	146	7	84.65	10.11	14.86
210		0.4	1	1	38	115.84	14.01	3.54
211	200		15	105	10	79.08	8.78	4.11
211	212		21	36	19	79.30	7.05	4.65
212	213		40	47	12 12	118.99	11.12 13.96	6.16
213		9.4	30	50	12	145.34 73.04	8.58	2.30
213			22	102	5 10	80.30	8.97	3.79
214	198		13	108 4	26	80.30	9.77	8.83
214	215		2 23	227	4	116.40	15.34	3.25
215			23	1	19	79.61	10.82	7.29
215			2	22	13	13.45	1.68	0.87
216 216			44	49	19	185.05	18.59	11.50
216			18	96	7	64.80	6.99	1.92
217	214	0.3	10	50		01.00	0.00	

				Base	Case So	cenario		
217	218	7.4	34	50	12	126.66	13.88	6.38
218	219	6.3	34	52	8	137.00	17.68	6.88
219	220	0.5	3	3	15	120.33	16.57	9.95
220	221	1.5	23	35	10	80.31	10.11	4.45
221	210	4.1	14	89	9	52.53	5.71	2.01
221	222	5.8	21	47	9	83.27	9.51	3.79
222	223	1.0	5	8	18	55.98	6.98	4.57
223	208	3.8	11	71	8	45.85	5.41	1.94
223	224	1.6	8	15	14	86.33	11.38	6.32
224	225	4.1	17	24	6	89.05	13.24	4.48
225	226	71.4	99	185	3	369.82	51.41	7.04
226	207	1.2	26	16	21	167.09	20.08	14.24
226	227	1.1	4	11	29	74.07	8.29	7.64
227	226	32.4	58	130	6	243.93	29.87	7.24
228	178	3.3	10	72	12	69.39	7.50	3.39
228	227	7.6	35	63	13	153.46	17.10	8.10
259	216	6.2	32	55	9	122.39	14.57	6.03
259	260	0.6	2	27	17	19.83	2.37	1.47
260	259	0.5	1	2	19	104.40	14.03	9.74
260	261	5.3	10	126	5	41.30	4.79	1.09
261	193	3.1	19	37	15	84.44	9.23	4.89
261	260	0.8	12	16	14	53.44	6.68	3.69
262	261	14.6	49	79	4	120.91	14.90	2.98
331	216	15.4	39	100	4	131.24	16.33	3.64
338	261	12.1	27	102	6	114.13	12.98	3.66
463	217	5.4	10	118	4	40.76	5.16	1.17
470	219	5.6	12	108	4	45.71	5.62	1.33
471	221	1.0	2	119	3	7.34	0.96	0.22
473	225	6.0	16	89	7	62.26	6.65	1.93
491	226	16.4	51	81	9	219.25	24.81	9.33

Total pollution emission rates for this network (g/min) :

Carbon Monoxide (CO) :	7772.1
Hydrocarbons (THC) :	889.8
Nitrogen Oxides (NOx) :	404.7

Delay:stop weighting ratio of 0.01

PREMIT EMISSIONS MODEL Version 3.07 Copyright (C) Castle Rock Consultants 1993. All rights reserved.

Run time: 30 Jul 93 21:06 Emissions based on: ATHENS * Central Arteries * Opt on; DELAY:STOP WEIGHTS = 0.01 codelstl.ctl Delay:stop ratio 0.01 Modes modelled are: cruising acceleration deceleration idling

223	224							
A node	B node	total delay	number of vehicles in	mean stops	average speed	Carbon Monoxide	Hydrocarbons (THC)	Nitrogen Oxides
		PCU-h/h	the queue	per PCU (%)	(km/h)	(CO) (g/min)	(g/min)	(NOx) (g/min)
						17.00	1 00	0.71
151	187	1.1	2	79	10	17.06	1.82	
160	189	1.3	2	112	7	14.30	1.57	0.49
171	185	4.5	12	80	10	76.62	7.95	3.10
175	180	3.1	6	115	7	34.11	3.72	1.11
176	179	2.1	4	100	8	27.46	2.87	0.96
178	179	0.8	3	12	18	30.00	3.45	2.30
179	180	2.1	7	34	18	71.96	7.80	4.88
	181	4.7	13	69	10	99.87	11.34	4.90
180			6	166	4	34.37	4.26	1.03
180	205	4.4	3	13	19	37.22	4.43	2.88
181	182	0.8			17	36.95	4.42	2.77
182	183	0.8	3	18		28.50	2.94	1.17
182	203	1.6	5	89	10	70.79	7.65	5.24
183	184	1.6	5	37	20		5.75	2.12
184	185	3.8	10	62	9	62.65		3.96
185	186	2.5	8	41	15	64.05	7.04	3.96
185	199	6.9	12	78	9	94.20	10.54	
186	187	0.6	1	11	14	20.27	2.52	1.43
187	188	2.0	7	56	11	54.69	6.33	2.98
187	197	3.1	4	153	4	25.25	3.12	0.79
188	189	0.6	salo 1 state	10	19	29.95	3.64	2.42
189	195	2.0	4	117	6	22.46	2.57	0.81
191	193	1.2	and a 1000 M	207	1	6.40	0.89	0.14
	194	2.8	5	109	2	20.02	2.31	0.38
192		2.0	10	12	22	67.64	7.31	5.65
193	194		10	157	2	21.54	3.02	0.50
193	260	3.6		42	10	72.74	7.44	2.96
194	195	4.2	19	18	16	78.51	9.11	5.55
195	196	2.3	9			29.23	3.67	1.66
196	188	1.5	3	41	10		10.80	7.68
196	197	2.8	10	22	21	102.67	8.37	3.27
197	198	4.2	18	42	9	77.52		4.33
198	186	6.8	19	95	8	104.26	11.97	
198	199	8.1	24	74	11	141.61	15.17	6.44
199	200	4.2	14	45	14	89.20	8.19	3.89
199	212	12.9	27	97	8	139.68	16.49	5.76
200	184	1.4	3	92	9	25.00	2.87	1.18
200	201	0.5	2	4	29	60.14	6.64	6.22
201	202	12.0	27	112	5	125.71	14.82	3.70
202	183	1.3	2	69	11	20.11	2.18	0.96
202	203	2.4	9	22	17	77.77	8.78	5.39
			3	10	26	60.14	6.38	5.27
203	204	1.6	11	82	11	53.79	5.87	2.43
203	209	4.0			11	22.93	2.42	1.06
204	181	1.4	3	69			9.28	7.79
204	205	1.4	6	15	27	89.59	8.18	7.47
205	206	1.1	7	10	30	77.23		2.12
206	178	1.9	6	76	12	42.41	4.67	
206	227	17.0	40	103	6	166.87	20.37	6.00
207	208	3.2	12	15	25	120.12	12.66	10.13
207	224	3.0	6	117	4	23.98	3.02	0.73
208	204	3.5	8	108	11	56.40	6.05	2.60
208	209		16	21	17	108.89	11.53	6.85
209			14	19	17	107.74	11.51	7.19
		3.4	13	84	9	47.76	5.32	1.97
209				108	10	71.23	8.01	3.27
210			10			114.95	13.90	14.74
210			1	1	38	81.84	9.23	3.58
211	200		14	114	9			4.08
211	212		11	22	16	68.65	6.96	
212			14	17	17	74.56	7.96	4.84
213	214	6.7	18	28	15	107.66	11.12	6.01
213			24	103	4	96.23	12.23	2.59
214			12	94	12	73.55	8.07	3.74
214				4	28	86.57	9.48	8.72
214			245	257	0	1025.68	157.23	16.03
215				4	18	80.89	10.81	7.21
				106	8	24.13	2.53	0.79
216				34	20	172.09	17.94	12.39
216				117	5	77.50	8.92	1.87
217	214	9.8	22	11/	5	11.50	0.02	

Delay:stop weighting ratio of 0.01

			SC (0) 200 31 -	Delay.stop n	Gigning	g ratio or c		
217	218	6.3	20	35	13	117.11	13.53	6.88
218	219	10.0	48	86	7	149.17	17.68	5.74
219	220	0.5	2	3	15	120.07	16.54	9.93
220	221	1.0	16	20	10	75.04	10.14	4.67
221	210	2.4	9	55	11	40.81	4.65	2.09
221	222	7.0	19	47	9	88.51	10.33	3.90
222	223	0.8	3	6	18	53.65	6.78	4.55
223	208	5.5	10	77	6	53.71	6.52	2.04
223	224	0.9	6	10	14	80.98	10.85	6.26
224	225	8.1	28	40	5	104.27	14.71	4.23
225	226	100.2	127	198	3	488.61	70.07	8.92
226	207	0.9	17	11	21	160.35	19.72	14.26
226	227	0.5	1	4	31	67.72	7.75	7.61
227	226	19.3	44	105	7	191.80	21.83	6.79
228	178	4.0	11	81	11	74.24	7.94	3.36
228	227	4.1	25	43	15	132.08	15.28	8.52
259	216	5.1	24	41	10	115.91	14.37	6.37
259	260	0.6	4	46	17	21.24	2.37	1.41
260	259	0.5	1	1	19	103.77	14.02	9.74
260	261	3.3	5	66	7	30.51	3.51	1.15
261	193	2.7	18	34	15	81.30	8.96	4.91
261	260	1.0	3	8	14	51.47	6.83	3.79
262	261	21.3	56	90	4	147.13	18.88	3.25
331	216	20.2	44	113	3	148.25	18.98	3.73
338	261	11.1	25	98	7	109.97	12.40	3.66
463	217	7.9	13	144	3	50.18	6.64	1.25
470	219	4.4	11	97	5	40.96	4.91	1.30
471	221	1.0	2	120	3	7.34	0.96	0.22
473	225	4.5	13	76	9	54.11	5.71	1.96
491	226	18.8	56	87	8	230.69	26.09	9.19

Total pollution emission rates for this network (g/min) :

Hydr	cocarbons	ide (CO) : (THC) : des (NOx) :	8536.8 1036.3 418.8

PAGE MISSING IN ORIGINAL

Delay:stop weighting ratio of 100

PREMIT EMISSIONS MODEL Version 3.07 Copyright (C) Castle Rock Consultants 1993. All rights reserved.

Run time: 30 Jul 93 21:17 Emissions based on: ATHENS * Central Arteries * Opt on; DELAY:STOP WEIGHTS = 100 codelst4.ctl Delay:stop ratio 100 Modes modelled are: cruising acceleration deceleration idling

A node	B node	total delay	number of vehicles in	mean stops	average speed	Carbon Monoxide	Hydrocarbons (THC)	Nitrogen Oxides
nouc		PCU-h/h	the queue	per PCU (%)	(km/h)	(CO) (g/min)	(g/min)	(NOx) (g/min)
151	187	0.8	2	69	11 8	15.14 12.92	1.61	0.70
160 171	189 185	1.0	2 12	97 80	10	76.62	7.95	3.10
175	180	2.2	5	97	8	30.38	3.17	1.08
176	179	1.7	4	89	9	24.83	2.59	0.95
178	179	1.3	9	27	17	36.52 78.49	3.85 8.35	2.22 4.81
179	180	2.9	10 11	43 47	16 12	85.75	10.16	5.00
180 180	181 205	2.7	4	113	7	25.25	2.84	0.92
181	182	0.8	3	15	17	38.05	4.46	2.88
182	183	1.1	6	35	16	42.84	4.71	2.72
182	203	1.7	4	74	10	27.74 83.43	3.03 8.34	5.02
183	184	2.4	10 13	68 53	18 12	54.19	4.89	2.04
184 185	185 186	3.4	11	55	14	72.06	7.68	3.90
185	199	7.5	18	111	8	101.60	10.79	3.73
186	187	0.8	3	17	13	22.61	2.69	1.44 2.91
187	188	3.1	10	83	10 6	64.09 21.08	7.02 2.47	0.73
187 188	197 189	2.1	4	127 20	17	36.50	4.16	2.58
189	195	2.2	4	124	6	23.93	2.75	0.85
191	194	0.5	1	134.	3	3.48	0.44	0.10
192	193	2.6	5	105	3	19.19	2.18 7.39	0.37 5.61
193	194	1.5	13 4	14 109	22 4	69.18 12.14	1.57	0.39
193 194	260 195	4.1	19	43	11	72.85	7.38	2.94
195	196	22.7	49	106	5	197.52	20.70	3.79
196	188	2.3	6	62	10	45.68	5.39 12.59	2.35 8.09
196	197	4.3	14	31 45	19 10	122.35 81.10	8.46	3.36
197 198	198 186	3.9	20 17	90	9	100.95	11.47	4.52
198	199	7.3	23	71	12	142.83	15.22	6.79
199	200	5.8	19	61	12	112.88	10.09	4.12
199	212	7.9	25	83	10	116.75	13.43 2.88	5.68 1.19
200	184	1.4	4 2	83 4	9 29	24.61 62.22	6.86	6.45
200 201	201 202	0.5	25	91	6	108.95	12.48	3.67
202	183	1.1	3	88	12	20.78	2.09	0.93
202	203	1.9	15	24	18	78.66	8.66	5.45 5.54
203	204	2.2	20	19	24	76.58	7.47 6.00	2.49
203	209	4.1	11	80 103	11 10	54.72 28.37	2.88	1.05
204 204	181 205	2.0	4 15	25	24	104.25	10.30	7.83
204	205	1.1	7	8	30	75.94	8.26	7.66
206	178	2.1	7	82	11	44.49	4.83	2.13
206	227	11.0	33	84	8	142.93	17.14	6.09 9.12
207	208	8.1	50	55 87	18 6	193.54 18.31	17.23 2.21	0.68
207 208	224 204	1.7 3.1	5 8	103	12	54.98	5.81	2.59
208	209	1.8	14	10	26	78.89	8.35	6.76
209	210	3.6	21	18	20	99.92	10.39	7.11
209	222	3.2	8	55	10	45.85	5.55	2.29 3.37
210	202	8.0	14	152 3	8 38	82.57 119.46	9.78 14.13	14.85
210 211	211 200	0.4 3.9	4 14	99	11	74.21	8.04	3.49
211	212	2.3	16	25	21	67.08	6.35	4.05
212	213	3.0	46	45	16	104.97	9.18	4.50
213	214	12.1	51	84	10	196.06	17.28	6.20 2.31
213	218	7.3	22	101	5	73.87 76.17	8.71 8.32	3.77
214 214	198 215	4.8	11 3	101 4	12 26	88.70	9.77	8.83
214	196		24	226	4	114.66	15.08	3.18
215	259		0	1	19	79.61	10.82	7.29
216	215	0.9	5	60	11	16.99	1.83	0.82
216	217	8.0	46	61	18	196.72	19.24	10.99 1.90
217	214	5.9	18	95	8	63.01	6.74	1.50

Delay: stop weighting ratio of 100

				Julay. Stop	vergnum	5 ratio or	100	
217	218	6.8	41	67	13	130.15	13.13	5.72
218	219	6.9	38	55	8	138.35	17.73	6.73
219	220	0.5	3	3	15	120.33	16.57	9.95
220	221	1.4	22	31	10	79.04	10.14	4.51
221	210	4.8	14	91	8	55.75	6.16	2.05
221	222	6.2	27	57	9	87.22	9.59	3.59
222	223	1.2	6	11	18	58.67	7.15	4.56
223	208	2.6	6	44	10	37.87	4.67	1.98
223	224	1.7	7	16	13	87.24	11.47	6.33
224	225	3.7	13	19	6	88.20	13.40	4.64
225	226	71.2	98	184	3	368.99	51.28	7.03
226	207	0.6	4	4	21	153.19	19.50	14.45
226	227	1.0	11	26	30	81.13	8.46	7.51
227	226	31.5	58	130	6	240.18	29.29	7.18
228	178	3.3	10	72	12	69.39	7.50	3.39
228	227	6.7	33	59	13	148.53	16.63	8.19
259	216	7.2	31	57	9	127.50	15.24	6.09
259	260	0.6	2	24	17	19.54	2.36	1.47
260	259	0.5	1	1	19	103.77	14.02	9.74
260	261	5.2	10	126	5	40.88	4.73	1.08
261	193	2.9	19	35	15	82.54	9.08	4.90
261	260	0.8	11	16	14	53.53	6.69	3.70
262	261	14.6	50	79	4	120.13	14.77	2.93
331	216	13.3	36	93	5	123.62	15.42	3.74
338	261	12.1	27	103	6	114.13	12.98	3.66
463	217	4.8	9	111	4	38.59	4.81	1.15
405	219	5.1	11	103	5	44.05	5.35	1.33
471	221	1.0	2	120	3	7.34	0.96	0.22
473	225	6.3	16	91	7	63.89	6.85	1.93
491	226	16.4	51	81	9	219.25	24.81	9.33

Total pollution emission rates for this network (g/min) :

Carbon Monoxide (CO) :	7842.0
Hydrocarbons (THC) :	886.6
Nitrogen Oxides (NOx) :	401.0

Cycle time of 140 seconds

PREMIT EMISSIONS MODEL Version 3.07 Copyright (C) Castle Rock Consultants 1993. All rights reserved.

Run time: 31 Jul 93 18:04 Emissions based on: ATHENS * Central Arteries * Opt on; CYCLE TIME = 140 with 60 steps cocyc.ctl Cruise time 140 Modes modelled are: cruising acceleration deceleration idling

1223	224	2,2				Cashan	Hydrocarbons	Nitrogen
A	В	total	number of	mean stops	average speed	Carbon Monoxide	(THC)	Oxides
node	node	delay	vehicles in the queue	per PCU	speed	(CO)	(1110)	(NOX)
	1	PCU-h/h		(%)	(km/h)	(g/min)	(g/min)	(g/min)
	000	£00-11/11	1 (2007					
151	187	0.9	3	63	10	15.05	1.65	0.70
160	189	1.3	3	92	7	13.85	1.55	0.48
171	185	5.7	17	76	9	79.26	8.55	3.08
175	180	2.9	7	92	7	32.26	3.55	1.09
176	179	2.0	5	80	8	25.09	2.75	0.96
178	179	1.1	3	12	17	31.30	3.65	2.33
179	180	3.0	11	35	16	75.53	8.32	4.86
180	181	2.7	10	30	12	80.73	10.17	5.12
180	205	2.9	6	109	6	28.11	3.29	0.93 2.89
181	182	0.5	2	6	19	33.51	4.17 5.07	2.75
182	183	1.7	7	34	14	44.94	2.97	1.18
182	203	1.7	6	77	10	27.57	7.64	5.19
183	184	1.7	10	36	20	70.38 58.54	5.73	2.13
184	185	4.2	12	50	9 13	74.79	7.86	3.69
185	186	4.0	19	62	9	89.11	10.41	3.92
185	199	7.1	19 2	63 10	13	21.40	2.72	1.46
186	187	0.9	14	73	10	60.59	6.78	2.84
187	188 197	2.4	5	119	5	22.15	2.64	0.73
187 188	189	0.8	3	12	17	33.54	4.04	2.61
189	195	2.1	4	94	6	23.17	2.68	0.85
191	195	0.5	inter 1	109	3	3.48	0.44	0.10
192	193	3.6	8	100	2	23.01	2.78	0.40
193	194	1.4	21	14	22	68.24	7.27	5.55
193	260	0.5	4	45	5	8.16	1.15	0.37
194	195	4.9	31	41	10	74.00	7.73	2.90
195	196	11.6	45	52	9	130.29	14.32	4.76
196	188	2.7	6	49	10	45.65	5.65	2.41
196	197	3.1	13	19	20	107.71	11.52	8.26 3.40
197	198	4.1	25	35	10	75.88	8.44	4.66
198	186	5.5	19	67	9	96.36	11.62 14.49	6.57
198	199	6.9	33	62	12	133.29 99.08	9.41	4.12
199	200	5.7	19	46 82	12 9	122.74	14.47	5.55
199	212	10.1	37 5	90	8	28.15	3.37	1.21
200	184 201	2.2	2	2	29	60.10	6.73	6.46
200	201	6.7	25	58	6	97.32	12.27	3.92
202	183	1.0	2	43	13	17.07	1.95	0.98
202	203	2.9	7	17	16	79.03	9.27	5.65
203	204	1.9	5	8	26	60.41	6.63	5.44
203	209	5.5	17	79	9	58.52	6.67	2.40
204	181	2.9	6	102	8	31.73	3.41	1.06
204	205	1.9	8	14	26	93.02	9.80	8.05
205	206	0.9	6	6	33	72.02	8.01	7.65
206	178	2.2	6	54	11	41.61	4.93	2.26
206	227	15.4	46	77	6	155.77	19.54	6.15
207	208	8.6	37	29	18	162.14	16.74	10.09
207	224	2.7	7	94	4	22.43	2.81	0.71 2.61
208	204	3.5	10	86	11	54.12	5.97	6.88
208	209	3.3	19	10	22	85.41	9.35	7.33
209	210	8.1	24	21	15	121.73	13.42	1.89
209	222	4.2	18	81	8	49.37	5.63 7.55	3.30
210	202	4.5	11	76	11	64.80 115.35	13.92	14.89
210	211	0.2	1	1	38 10	79.32	8.89	3.47
211	200	5.5	19	98		66.59	7.25	4.15
211 212	212 213	4.3	12 7	16 5	15 21	58.03	6.83	4.99
212	213	10.4	37	43	11	141.52	14.30	6.26
213	214	11.2	32	95	4	85.36	10.66	2.27
213	198	5.0	13	92	11	75.16	8.37	3.77
214	215	1.5	4	5	25	91.68	10.14	8.86
215	196	11.4	19	156	6	88.89	11.01	2.96
215	259	0.2	0	1	19	79.69	10.83	7.30
216	215	1.4	2	24	9	16.53	2.14	0.91
216	217	10.9	68	63	16	201.56	20.17	10.16
217	214	9.3	22	77	6	73.15	8.83	2.14

				Cycle tin	ne of 14	0 seconds		
217	218	5.1	41	35	14	108.30	12.25	6.43
218	219	7.8	59	65	8	132.96	16.38	5.77
219	220	0.4	3	2	15	119.26	16.49	9.95
220	221	2.4	36	40	10	81.46	10.03	4.15
221	210	3.5	16	61	9	45.43	5.24	2.05
221	222	8.0	31	49	8	91.12	10.66	3.72
222	223	0.6	4	4	19	51.84	6.66	4.57
223	208	4.4	11	51	7	45.77	5.77	2.03
223	224	2.0	29	32	13	91.54	11.28	5.97
224	225	4.7	43	31	6	86.08	12.34	3.98
225	226	51.0	94	146	3	283.70	38.03	5.62
226	207	0.4	2	2	21	150.81	19.38	14.51
226	227	1.8	5	12	27	77.48	8.76	7.68
227	226	34.3	67	99	5	241.34	30.63	7.27
228	178	4.4	14	73	10	73.06	8.06	3.34
228	227	10.2	52	61	11	157.65	18.03	7.76
259	216	11.4	56	69	7	136.84	16.14	5.21
259	260	0.3	1	10	19	17.03	2.14	1.47
260	259	0.5	3	2	19	104.38	14.03	9.74
260	261	7.2	11	96	4	48.72	6.00	1.20
261	193	3.6	26	33	14	83.55	9.40	4.88
261	260	0.8	2	3	14	48.42	6.65	3.78
262	261	17.3	68	72	4	126.54	15.96	2.88
331	216	19.0	56	91	4	136.24	17.48	3.35
338	261	15.7	38	95	5	125.09	14.94	3.67
463	217	5.5	13	97	4	40.05	5.09	1.10
403	219	6.7	16	96	4	48.45	6.12	1.29
470	221	1.3	2	113	3	8.59	1.15	0.24
471	225	9.3	24	91	5	74.55	8.57	1.94
491	226	20.2	72	74	8	225.03	26.46	9.14

Carbon Monoxide (CO) : Hydrocarbons (THC) :	7517.6 883.0
Nitrogen Oxides (NOx) :	399.7

Hot CO links with delay weighting of 500 percent

PREMIT EMISSIONS MODEL Version 3.07 Copyright (C) Castle Rock Consultants 1993. All rights reserved.

Run time: 10 Aug 93 19:38 Emissions based on: ATHENS * Central Arteries * ADDED DELAY WT OF 500 TO HOT CO LINKS cohot.ctl Hot CO links with delay weighting of 500 Modes modelled are: cruising acceleration deceleration idling

A	В	total	number of	mean stops	average speed	Carbon Monoxide	Hydrocarbons (THC)	Nitrogen Oxides
node	node (delay PCU-h/h	vehicles in the queue) (PCU)	per PCU (%)	(km/h)	(CO) (g/min)	(g/min)	(NOx) (g/min)
				70		15.76	1.68	0.71
151	187	0.9	2 2	72 97	11 8	12.92	1.37	0.47
160 171	189 185	4.5	12	80	10	76.62	7.95	3.10
175	180	2.6	5	104	7	32.33	3.44	1.10
176	179	1.7	4	89	9	24.83	2.59	0.95
178	179	1.1	4	17	17	32.88	3.69 8.09	2.30 4.86
179	180	2.5	8 10	38 43	17 12	75.15 85.22	10.26	5.05
180 180	181 205	2.8	4	110	7	24.83	2.77	0.92
181	182	0.9	3	16	17	38.80	4.53	2.88
182	183	0.8	3	19	17	37.28	4.43	2.77 1.22
182	203	1.5	4	72	11	26.71 79.58	2.89 8.16	5.09
183 184	184 185	2.2	9	58 55	18 11	56.34	5.13	2.06
185	185	3.4	12	64	14	74.46	7.68	3.80
185	199	7.3	18	106	9	100.76	10.66	3.71
186	187	0.8	1	12	14	21.44	2.67	1.45 2.91
187	188	2.9	10	77	10 4	61.99 24.83	6.87 3.05	0.79
187 188	197 189	3.0	4	157 16	17	34.90	4.10	2.57
189	195	1.9	4	112	7	22.55	2.55	0.83
191	194	0.5	instant 1	134	3	3.48	0.44	0.10
192	193	2.4	5	101	3	18.35	2.05	0.35 5.18
193	194	3.3 3.0	21 5	40 118	18 2	92.07 19.44	8.91 2.70	0.49
193 194	260 195	3.3	23	33	12	63.56	6.71	2.94
195	196	10.0	30	54	9	129.29	13.87	5.07
196	188	2.0	5	53	10	41.93	5.05	2.28 8.12
196	197	3.4	11	25 43	20 9	113.19 86.62	11.81 9.49	3.56
197 198	198 186	5.3	16 14	43	9	99.87	11.63	4.69
198	199	7.0	24	75	12	142.42	14.91	6.63
199	200	5.0	17	53	13	101.96	9.21	4.05
199	212	7.3	20	72	11	112.14 25.21	13.17 2.96	5.83
200 200	184 201	1.5	3 1	85 4	9 29	61.87	6.82	6.41
200	201	7.6	24	93	6	109.50	12.49	3.68
202	183	1.3	3	92	11	21.85	2.22	0.93
202	203	2.1	18	26	17	80.04	8.74	5.39 5.46
203	204	2.1	5	13	24 9	67.67 59.50	7.02 6.60	2.47
203 204	209 181	5.1 1.9	12 5	88 101	10	27.59	2.77	1.01
204	205	2.1	10	19	26	98.00	10.03	7.93
205	206	1.2	7	9	30	77.52	8.34	7.63
206	178	2.1	7	84	11	44.55	4.81	2.11 6.25
206	227	11.5	29	77	8	143.75	17.61 12.20	9.94
207 207	208	2.4	18 5	18 86	27 6	120.23 18.58	2.26	0.68
208	204	3.4	9	99	12	55.37	5.92	2.56
208	209	4.9	15	22	18	105.04	10.82	6.73
209	210	5.2	16	22	17	109.95	11.52	7.09 2.28
209	222	3.1 8.2	8 15	52 149	10 7	44.83 83.00	5.46 9.87	3.35
210 210	202 211	0.4	15	149	38	114.73	13.88	14.71
211	200	4.7	12	103	10	77.71	8.59	3.56
211	212	3.3	15	24	17	69.71	6.91	4.07
212	213	1.8	12	14	19	70.11	7.61	4.89 6.01
213 213	214 218	9.2 12.7	47 24	78 111	12 4	176.31 95.28	15.07 12.06	2.58
213	198	4.1	10	90	13	71.60	7.85	3.77
214	215	0.9	3	4	28	87.90	9.66	8.79
215	196	42.1	47	283	2	205.05	29.40	3.78
215	259		0	1	19	79.25	10.77	7.26
216 216	215 217	2.0	7 39	102 55	8 18	24.13 196.66	2.53	11.52
210	214	9.8	23	117	5	76.92	8.84	1.82

Hot CO links with delay weighting of 500 percent

			1101 00	mins with u	ciay we	Suring OI .	oo percent	
217	218	4.4	34	51	15	114.65	11.93	6.16
218	219	5.3	27	40	9	132.62	17.69	7.20
219	220	0.5	3	4	15	120.89	16.57	9.94
220	221	1.0	9	16	10	74.70	10.31	4.78
221	210	5.1	14	89	7	56.70	6.36	2.07
221	222	8.0	30	76	8	100.26	10.58	3.38
222	223	1.2	7	10	18	57.85	7.11	4.55
223		5.8	15	103	6	56.95	6.60	1.91
223	224	1.6	7	15	14	86.22	11.37	6.31
224	225	4.2	18	25	6	88.73	13.15	4.42
225	226	42.0	64	149	3	247.12	32.33	5.14
226	207	0.4	3	2	21	148.45	19.08	14.28
226	227	2.7	19	63	25	105.90	10.06	7.23
227	226	68.4	95	166	5	380.73	51.62	8.38
228	178	3.6	10	76	11	71.64	7.71	3.39
228	227	6.7	32	58	13	148.38	16.68	8.24
259	216	15.7	46	88	6	162.86	19.02	5.38
259	260	0.4	1	14	19	17.73	2.21	1.46
260	259	0.5	ĩ	1	19	103.77	14.02	9.74
260	261	6.6	11	137	4	46.44	5.61	1.15
261	193	3.1	19	37	15	84.44	9.23	4.89
261	260	0.6	2	4	15	48.04	6.53	3.77
262	261	11.9	46	72	4	112.25	13.81	3.10
331	216	9.5	31	78	5	108.68	13.70	3.89
338	261	17.6	32	123	5	135.73	16.37	3.89
463	217	6.2	11	127	3	43.76	5.63	1.19
405	219	8.5	15	133	3	56.53	7.32	1.42
471	221	1.0	2	119	3	7.34	0.96	0.22
473	225	5.8	15	87	7	61.27	6.54	1.95
491	226	15.8	51	79	9	215.68	24.44	9.34

Carbon Mon	oxide (CO) :	7880.2
Hydrocarbo	ns (THC) :	910.4
	xides (NOx) :	404.2

Hot CO links with delay and stop weighting of 500 percent

PREMIT EMISSIONS MODEL Version 3.07 Copyright (C) Castle Rock Consultants 1993. All rights reserved.

Run time: 30 Aug 93 14:00 Emissions based on: ATHENS * Central Arteries * ADDED DELAY & STOP WT OF 500 TO HOT CO LINKS cohot.ctl Hot CO links with stop&delay wt of 500 Modes modelled are: cruising acceleration deceleration idling

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(g/min) 0.71 0.47 3.08 1.10 0.95 2.30 4.88 5.07 0.92 2.88 2.77 1.21 5.23 2.08 3.97 3.71
161 189 1.0 2 104 8 13.05 1.38 171 185 4.9 13 85 9 79.52 8.20 175 180 2.6 5 104 7 32.33 3.44 176 179 1.7 4 89 9 24.83 2.59 178 179 1.2 4 18 17 33.62 3.76 179 180 2.6 7 38 17 75.75 8.17 180 181 3.1 9 47 12 88.03 10.50 180 205 2.0 4 110 7 24.83 2.77	0.47 3.08 1.10 0.95 2.30 4.88 5.07 0.92 2.88 2.77 1.21 5.23 2.08 3.97 3.71
171 185 4.9 13 85 9 79.52 8.20 175 180 2.6 5 104 7 32.33 3.44 176 179 1.7 4 89 9 24.83 2.59 178 179 1.2 4 18 17 33.62 3.76 179 180 2.6 7 38 17 75.75 8.17 180 181 3.1 9 47 12 88.03 10.50 180 205 2.0 4 110 7 24.83 2.77	3.08 1.10 0.95 2.30 4.88 5.07 0.92 2.88 2.77 1.21 5.23 2.08 3.97 3.71
175 180 2.6 5 104 7 32.33 3.44 176 179 1.7 4 89 9 24.83 2.59 178 179 1.2 4 18 17 33.62 3.76 179 180 2.6 7 38 17 75.75 8.17 180 181 3.1 9 47 12 88.03 10.50 180 205 2.0 4 110 7 24.83 2.77	1.10 0.95 2.30 4.88 5.07 0.92 2.88 2.77 1.21 5.23 2.08 3.97 3.71
176 179 1.7 4 89 9 24.83 2.59 178 179 1.2 4 18 17 33.62 3.76 179 180 2.6 7 38 17 75.75 8.17 180 181 3.1 9 47 12 88.03 10.50 180 205 2.0 4 110 7 24.83 2.77	2.30 4.88 5.07 0.92 2.88 2.77 1.21 5.23 2.08 3.97 3.71
179 180 2.6 7 38 17 75.75 8.17 180 181 3.1 9 47 12 88.03 10.50 180 205 2.0 4 110 7 24.83 2.77	4.88 5.07 0.92 2.88 2.77 1.21 5.23 2.08 3.97 3.71
179 180 2.0 7 12 88.03 10.50 180 181 3.1 9 47 12 88.03 10.50 180 205 2.0 4 110 7 24.83 2.77	5.07 0.92 2.88 2.77 1.21 5.23 2.08 3.97 3.71
100 101 5.1 180 205 2.0 4 110 7 24.83 2.77	0.92 2.88 2.77 1.21 5.23 2.08 3.97 3.71
	2.77 1.21 5.23 2.08 3.97 3.71
	1.21 5.23 2.08 3.97 3.71
182 183 1.0 3 23 16 39.28 4.60	5.23 2.08 3.97 3.71
182 203 1.6 4 84 10 28.33 2.98 183 184 1.7 6 39 20 71.86 7.73	2.08 3.97 3.71
183 184 1.7 6 39 20 71.86 7.73 184 185 3.2 10 57 10 57.78 5.24	3.71
185 186 3.9 9 55 13 74.43 8.04	
185 199 7.3 18 108 9 100.76 10.66	
186 187 0.8 2 13 14 21.64 2.67 187 188 3.0 10 76 10 62.21 6.93	1.44 2.92
187 188 3.0 10 76 10 62.21 6.93 187 197 3.0 4 156 4 24.83 3.05	0.79
188 189 0.7 2 14 17 33.47 3.95	2.57
189 195 1.8 4 112 7 22.14 2.48	0.82
191 194 0.5 1 133 3 3.48 0.44 192 193 2.4 5 101 3 18.35 2.05	0.10 0.35
192 193 2.4 5 101 3 18.35 2.05 193 194 3.3 20 41 18 92.87 8.95	5.18
193 260 3.0 4 111 2 19.64 2.73	0.50
194 195 3.6 23 47 11 71.86 6.94	2.76 5.39
1951969.921519129.8614.161961882.05531041.935.05	2.28
196 188 2.0 5 53 10 41.93 5.05 196 197 3.4 11 25 20 113.19 11.81	8.12
197 198 4.9 27 69 9 92.62 8.52	2.80
198 186 5.1 15 87 9 100.21 11.47	4.60
198 199 6.4 21 64 12 135.43 14.64 199 200 5.4 17 54 12 104.52 9.51	4.08
199 200 5.4 17 54 12 104.52 9.51 199 212 6.2 22 76 12 108.26 12.40	5.68
200 184 1.4 3 79 9 24.41 2.88	1.20
200 201 0.5 1 4 29 61.87 6.82	6.41 3.77
201 202 7.8 24 83 6 107.90 12.72 202 183 1.2 2 67 11 19.66 2.12	0.96
202 183 1.2 2 67 11 19.66 2.12 202 203 2.0 8 19 18 76.10 8.67	5.53
203 204 1.8 4 12 26 65.07 6.77	5.43
203 209 4.1 11 80 11 54.58 5.99	2.49
204 181 2.0 5 102 9 28.01 2.84 204 205 2.2 9 20 26 99.46 10.14	1.02 7.93
204 205 2.2 9 20 26 99.46 10.14 205 206 1.2 7 9 30 77.52 8.34	7.63
206 178 2.5 7 92 11 47.24 5.07	2.11
206 227 11.5 29 77 8 143.75 17.61	6.25
207 208 2.4 11 13 27 113.33 11.99 207 224 1.7 5 87 6 18.20 2.20	10.06 0.67
207 224 1.7 5 87 6 18.20 2.20 208 204 3.7 9 99 11 56.62 6.12	2.58
208 209 5.4 23 27 18 112.98 11.37	6.70
209 210 3.2 19 17 21 96.50 10.02	7.05
209 222 2.9 7 51 10 44.17 5.37	2.30 3.32
210 202 7.4 14 147 8 79.90 9.38 210 211 0.8 6 8 35 128.93 14.57	14.70
211 200 4.5 13 102 11 76.65 8.42	3.52
211 212 10.4 42 87 8 161.58 14.36	4.79
212 213 1.3 9 9 19 63.27 7.16 212 214 7.0 24 42 14 120.21 12.58	4.94 6.07
213 214 7.9 24 42 14 129.31 12.58 213 218 13.4 27 119 4 96.84 12.31	2.52
213 216 13.4 27 115 4 50.04 12.01214 198 4.6 9 106 12 75.71 8.24	3.79
214 215 1.0 4 5 26 89.08 9.76	8.78
215 196 42.2 48 282 2 205.05 29.41	3.75
215 259 0.2 0 1 19 79.25 10.77 216 215 3.6 7 106 5 30.81 3.57	0.89
216 217 7.0 40 56 19 191.19 18.79	11.36
217 214 11.9 22 109 5 86.26 10.28	2.01

Hot CO links with delay and stop weighting of 500 percent

					1	- · ·		
217	218	3.7	25	33	16	104.32	11.72	6.66
218	219	5.5	31	46	9	133.50	17.48	7.02
219	220	0.5	3	4	15	120.89	16.57	9.94
220	221	1.2	16	22	10	76.63	10.27	4.68
221	210	5.3	14	92	7	57.99	6.49	2.07
221	222	6.9	29	67	9	92.95	9.94	3.46
222	223	1.1		9	18	56.86	7.04	4.55
223	208	7.1	15	109	5	62.37	7.45	1.99
223	224	1.5	9	15	14	85.64	11.28	6.29
224	225	4.3	18	26	6	88.73	13.08	4.37
225	226	42.2	64	151	3	247.96	32.46	5.15
226	207	0.8	6	5	21	153.25	19.43	14.28
226	227	2.4	17	59	25	102.94	9.84	7.28
227	226	68.7	96	167	5	382.25	51.80	8.37
228	178	3.3	10	72	12	69.39	7.50	3.39
228	227	6.7	32	58	13	148.38	16.68	8.24
259	216	18.0	52	100	6	170.58	19.58	4.90
259	260	0.5	1	18	17	18.54	2.28	1.47
260	259	0.5	1	1	19	103.77	14.02	9.74
260	261	6.9	11	139	4	47.69	5.80	1.16
261	193	3.1	19	37	15	84.44	9.23	4.89
261	260	0.9	3	6	14	50.16	6.74	3.78
262	261	11.9	46	72	4	112.25	13.81	3.10
331	216	8.3	29	73	6	103.92	13.16	3.94
338	261	17.6	32	123	5	135.73	16.37	3.89
463	217	6.2	11	127	3	43.76	5.63	1.19
403	219	8.5	15	133	3	56.53	7.32	1.42
471	221	0.7	13	104	4	6.14	0.77	0.21
471	225	5.8	15	87	7	61.27	6.54	1.95
473	225	15.1	49	78	10	212.87	24.08	9.37
491	220	13.1	4.5	10	10			

Carbon Monoxide (CO) :	7928.4
Hydrocarbons (THC) :	915.0
Nitrogen Oxides (NOx) :	405.1

Hot NOx links with stop weighting of -200 percent

PREMIT EMISSIONS MODEL Version 3.07 Copyright (C) Castle Rock Consultants 1993. All rights reserved.

Run time: 30 Aug 93 19:38 Emissions based on: ATHENS * Central Arteries * HOT NOX LINKS WITH STOP WEIGHTING OF -200 cohot.ctl Hot NOX links with stop wt of -200 Modes modelled are: cruising acceleration deceleration idling

A node	B node	total delay	number of vehicles in	mean stops	average speed	Carbon Monoxide	Hydrocarbons (THC)	Nitrogen Oxides (NOx)
	(PCU-h/h	the queue) (PCU)	per PCU (%)	(km/h)	(CO) (g/min)	(g/min)	(g/min)
151	187	0.9	2	72 104	11 8	15.76	1.68	0.71 0.47
160 171	189 185	4.5	12	80	10	76.62	7.95	3.10
175	180	2.6	5	104	7	32.33	3.44	1.10
176	179	1.7	4	89	9	24.83	2.59	0.95
178	179	1.2	5	18	17	33.58	3.75	2.30 4.89
179	180	2.6	7	38 44	17 12	75.80 85.53	8.18 10.26	5.05
180 180	181 205	2.8	10 3	44 69	12	19.25	2.18	0.90
180	182	0.8	2	14	17	37.71	4.45	2.89
182	183	0.8	3	21	17	37.90	4.45	2.77
182	203	1.5	4	74	11	26.91	2.90	1.21
183	184	2.0	8	54	19	77.74	8.02	5.13 2.06
184	185	3.1	8	54	11 14	55.91 74.68	5.11 7.75	3.82
185 185	186 199	3.5	12 14	63 72	14	85.29	9.42	3.85
186	187	0.7	2	15	14	21.76	2.62	1.44
187	188	3.2	11	86	10	64.67	7.03	2.87
187	197	1.9	3	122	6	20.42	2.36	0.73
188	189	0.8	2	14	17	34.22	4.06 2.82	2.60 0.86
189	195	2.3	4	128 134	6 3	24.35 3.48	0.44	0.10
191 192	194 193	0.5	5	105	3	19.19	2.18	0.37
193	193	1.5	13	14	22	69.18	7.39	5.61
193	260	1.5	4	113	3	13.39	1.76	0.41
194	195	4.1	19	43	11	72.85	7.38	2.94 3.85
195	196	22.6	48 5	113 58	5 10	197.69 45.91	20.71 5.50	2.39
196 196	188 197	2.4 11.7	33	100	10	198.03	17.80	6.05
198	198	4.7	11	33	9	80.80	9.30	3.75
198	186	4.8	16	85	9	98.39	11.25	4.57
198	199	9.6	30	94	11	160.61	16.30	6.27
199	200	4.8	18	54	13	102.47	9.16 13.49	4.06 5.78
199	212	7.9 1.8	23 4	76 103	10 8	115.28 27.23	3.14	1.19
200	184 201	0.5	1	4	29	62.21	6.86	6.44
201	202	9.3	26	107	5	117.65	13.40	3.66
202	183	1.2	3	90	11	21.35	2.16	0.93
202	203	1.9	8	19	18	76.02	8.64	5.55 5.47
203	204	1.9	4 8	12 57	26 14	65.79 44.73	6.86 4.90	2.58
203 204	209 181	2.3	8 4	101	14	27.96	2.81	1.04
204	205	11.6	31	102	13	208.26	18.12	6.46
205	206	7.1	32	53	17	170.97	14.76	7.99
206	178	2.8	10	96	10	47.82	5.09	2.00 6.10
206	227	5.4	25	61	10	115.22 245.94	13.88 21.02	8.53
207	208 224	12.6	66 5	81 94	15 6	18.94	2.27	0.67
207 208	204	3.3	8	99	12	55.51	5.92	2.60
208	209	9.0	68	88	13	200.46	16.52	6.21
209	210	10.3	70	86	13	191.60	16.78	5.71
209	222	3.5	10	66	9	47.79	5.64	2.20 3.34
210	202	7.2	13	141 92	8 20	79.38 308.46	9.29 24.61	13.09
210 211	211 200	10.7	65 10	92	11	73.36	8.40	3.68
211	212	1.4	3	6	23	44.22	4.89	3.90
212	213	3.9	33	34	14	98.04	9.48	4.71
213	214	4.7	23	29	18	101.25	9.94	5.94
213	218	4.7	21	95	7	62.92	7.12	2.21 3.68
214	198	3.8	12	102 83	13 18	71.77 160.04	7.64 14.18	6.86
214 215	215 196	6.1 18.6	51 23	224	4	117.16	15.46	3.26
215	259		23	1	19	79.49	10.80	7.28
216	215	0.8	5	58	12	16.42	1.77	0.81
216	217	13.8	63	84	15	227.58	22.13	9.42
217	214	8.2	20	105	6	72.05	8.04	1.88

	Hot NOx links with stop weighting of -200 percent								
217	218	4.5	20	26	15	104.52	12.30	6.90	
218	219	7.3	40	67	8	140.90	17.44	6.42	
219	220	1.4	16	20	14	134.55	17.28	9.86	
220	221	0.7	5	8	11	70.72	10.15	4.82	
221	210	2.7	9	56	10	42.28	4.85	2.11	
221	222	6.5	27	67	9	91.90	9.76	3.48	
222	223	1.1	6	10	18	57.59	7.07	4.56	
223	208	1.5	4	30	12	31.45	3.94	1.95	
223	224	1.7	6	14	13	86.43	11.46	6.34	
224	225	4.9	17	24	6	94.06	14.04	4.64	
225	226	56.5	85	171	3	307.55	41.72	6.07	
226	207	4.9	50	51	18	210.69	22.41	13.31	
226	227	4.8	13	48	20	107.91	11.27	7.58	
227	226	46.6	68	136	6	292.33	38.44	7.89	
228	178	3.3	10	72	12	69.39	7.50	3.39	
228	227	8.6	37	67	12	158.72	17.62	8.01	
259	216	8.3	37	64	8	131.50	15.48	5.83	
259	260	0.7	2	27	17	20.25	2.44	1.47	
260	259	1.2	26	30	18	120.93	14.46	9.32	
260	261	5.0	10	126	5	40.05	4.60	1.07	
261	193	2.9	19	35	15	82.54	9.08	4.90	
261	260	1.6	22	37	13	63.17	7.01	3.45	
262	261	14.6	50	79	4	120.13	14.77	2.93	
331	216	10.9	34	84	5	113.76	14.25	3.79	
338	261	12.1	27	103	6	114.13	12.98	3.66	
463	217	3.6	8	96	5	33.70	4.09	1.11	
470	219	5.1	11	103	5	44.05	5.35	1.33	
471	221	0.7	1	109	4	6.14	0.77	0.21	
473	225	5.8	15	87	7	61.27	6.54	1.95	
491	226	15.1	49	78	10	212.87	24.08	9.37	

Carbon Monoxide (CO) :	8538.7
Hydrocarbons (THC) :	930.7
Nitrogen Oxides (NOx) :	388.9

Appendix D

LINK-NODE CROSS REFERENCE TABLE

A link-node cross reference table is required to map links numbers to node numbers and combine those TRANSYT links which are part of the same stretch of road.

The TRANSYT program refers to each stretch of road as a link which has an associated link number. Sometimes multiple TRANSYT links may be used to represent the same physical stretch of road between two intersections. The PREMIT emissions model produces one set of emissions data for a physical stretch of road. It refers to the section of road by listing the numbers of the nodes at each end of a given section of road. The link-node cross reference table maps between link numbers and node numbers.

The node layout is shown in Figure D.1. The TRANSYT link number refers to the section of road between nodes A and B, with traffic flowing from A to B. On leaving the link the traffic will turn into another link defined by the node numbers B and Cx, where Cx is C1 up to C4.

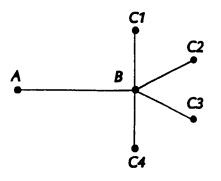


Figure D.1 Link nodes

The columns in the link-node cross reference file are: TRANSYT link number, and the nodes A, B, C1, C2, C3, C4. The contents of this file have been presented in two columns in this appendix. In the actual file there is only one column.

90 104 131 135 132	0	0	1720	200	184	172	185	0	0	2340 234 522 617 0 0 0
110 105 130 137 131	0	0	1730				0	0	0	2341 234 522 521 0 0 0
230 112 238 239 237	0	0	1740					0	0	2345 522 234 235 525 0 0
240 113 239 240 530	-	0	1750					0	0	2355 525 234 235 233 522 0
300 117 247 246 0 330 119 244 241 245	0	0	1760 1770					0	0	2360 235 233 121 232 0 0 2370 235 236 121 0 0 0
360 121 233 232 0	ŏ	õ	1780					ŏ	ŏ	2370 235 236 121 0 0 0 2371 235 236 237 0 0 0
370 121 236 235 237	ŏ	ŏ	1790					ŏ	ŏ	2375 236 235 233 234 0 0
420 124 232 234 231	Ō	Ó	1800				0	Õ	Õ	2380 236 237 238 0 0 0
440 125 231 521 230	0	0	1810	205	206	227	178	0	0	2385 237 236 121 235 0 0
490 128 129 139 130	0	0	1820				-	0	0	2390 237 238 112 0 0 0
500 129 130 131 137	0	0	1830				0	0	0	2391 237 238 239 0 0 0
510 129 139 142 140	0	0	1831 1840				200	0	0	2395 238 237 236 0 0 0 2400 238 239 244 0 0 0
520 130 131 132 135 530 130 137 138 0	0	0	1850				209	ő	0	2400 238 239 244 0 0 0 2401 238 239 530 240 0 0
540 131 132 244 103	ŏ	ŏ	1860				-	ŏ	ŏ	2405 239 238 237 112 0 0
550 131 135 145 136	-	õ	1870					ō	ō	2410 239 240 241 0 0 0
570 132 249 248 250	0	0	1880	209	210	202	211	0	0	2415 240 239 238 0 0 0
580 133 132 103 249	0	0	1890				0	0	0	2420 239 244 241 245 0 0
590 133 134 135 146	0	0	1900					0	0	
600 134 135 136 145	0	0	1910 1920					0	0	2445 241 240 239 0 0 0 2450 241 242 533 537 0 0
620 135 136 137 0 640 136 137 138 0	0	0 0	1920				04	ŏ	ŏ	2450 241 242 555 557 0 0
650 137 138 139 143	ŏ	ŏ	1940				-	ŏ	ŏ	2455 242 241 240 0 0 0
660 138 139 140 142	ō	õ	1950					ō	õ	2460 242 243 245 0 0 0
680 139 140 171 0	0	0	1960	213	218	468	219	0	0	2461 242 243 570 537 0 0
700 140 171 185 172	0	0	1970					0	0	2465 243 242 241 0 0 0
710 141 140 171 0	0	0	1980					0	0	2485 537 242 241 243 0 0
770 144 136 137 0	0	0	1990 2000					0	0	2490 243 245 119 0 0 0 2491 243 245 246 563 0 0
820 146 251 133 250 840 148 252 251 253	252	0	2000					0	ŏ	2495 245 243 570 0 0 0
900 151 187 188 197	ŏ	ŏ	2020					ŏ	ŏ	2496 245 243 242 0 0 0
1060 160 189 195 190	ō	ō	2040					Õ	Ō	2497 245 243 537 0 0 0
1110 163 257 256 258	0	0	2050	217	218	468	219	0	0	2505 537 243 570 245 0 0
1130 164 258 257 295		0	2060				0	0	0	2515 570 243 537 0 0 0
1170 166 264 265 341		0	2080					0	0	2516 570 243 245 0 0 0
1190 170 171 185 172 1200 171 172 173 129		0 0	2090 2110					0	0	2517 570 243 242 0 0 0 2520 244 241 242 240 0 0
1210 171 185 199 186		ŏ	2120				- 0	ŏ	ŏ	2530 244 245 243 563 246 0
1220 172 129 130 139		ō	2130					ŏ	ŏ	2550 245 246 247 0 0 0
1280 175 180 181 205	0	0	2140					0	0	2555 246 245 243 119 0 0
1300 176 179 180 0		0	2150				0	0	0	2565 563 245 246 0 0 0
1310 177 229 228 0	-	0	2160				0	0	0	2566 563 245 119 243 0 0
1311 177 229 523 230 1330 178 179 180 0	-	0	2161 2170				0	0	0	2580 246 247 248 0 0 0 2585 247 246 245 116 0 0
1340 179 180 181 205		ŏ	2171				471	ŏ	ŏ	2590 247 248 118 0 0 0
1350 180 181 182 174		ŏ	2180				ŏ	ŏ	ŏ	2591 247 248 562 249 0 0
1360 180 205 206 0	0	0	2185				Ō	0	Ö	2595 248 247 246 0 0 0
1380 181 182 203 0	-		2190				-	0	0	2610 248 249 250 0 0 0
1390 182 183 173 184		0	2200				0	0	0	2615 249 248 562 0 0 0
1400 182 203 209 204	_	0	2205					0	0	2616 249 248 247 118 0 0
1420 183 184 172 185 1430 184 172 129 173	-	0 0	2206 2210				0	0	0	2625 562 248 247 118 249 0 2630 249 250 133 0 0 0
1440 184 185 199 186		ŏ	2215					ŏ	ŏ	2631 249 250 251 0 0 0
1450 185 186 170 187		õ	2220				0	ŏ	ŏ	2635 250 249 248 0 0 0
1460 185 199 212 200		Ō	2225				Ō	Ō	Ō	2640 250 133 134 132 0 0
1480 186 187 188 197	0	0	2230				177	0	0	2650 250 251 252 0 0 0
1490 187 188 152 189		0	2240				0	0	0	2655 251 250 249 133 0 0
1500 187 197 198 0		0	2241				0	0	0	2660 251 133 134 132 0 0
1520 188 189 190 195		0	2245					0	0	2670 251 252 253 0 0 0 2675 252 251 250 133 0 0
1540 189 195 196 0 1580 191 194 195 0		0 0	2250 2255					0	0	2675 252 251 250 133 0 0 2680 252 253 254 302 0 0
1590 192 193 260 0		ŏ	2260							2685 253 252 251 0 0 0
1600 192 262 339 261		ō	2280							2690 253 254 255 0 0 0
1610 193 194 195 0	-	ō	2285							2695 254 253 302 0 0 0
1620 193 260 259 0	0	0	2290				0			2696 254 253 252 0 0 0
1630 194 195 196 0		0	2295					0	0	2710 254 255 155 0 0 0
1640 195 196 197 188		0	2300					0	0	2711 254 255 256 0 0 0
1650 196 188 152 189 1660 196 197 198 0	-	0	2305						0	2715 255 254 253 0 0 0 2730 255 256 257 0 0 0
1660 196 197 198 0 1670 197 198 199 186	-	0 0	2315 2320				0 525	0 235	0	
1680 198 186 170 187		0	2325	234	234	121	223	235	Ő	2750 256 257 258 0 0 0
1690 198 199 200 212	-	ŏ	2330					ŏ	ŏ	2755 257 256 255 0 0 0
1700 199 200 201 184		õ	2335					ŏ		2760 257 258 269 295 0 0
1710 199 212 213 0	0		2336	235	234	522	0	0	0	2765 258 257 256 0 0 0
2770 258 269 270 0		0	6190	492	475	476	0	0	0	6700 521 522 525 234 0 0
2771 258 269 268 0 2775 269 258 295 0	0	0 0	6200	492	493	494			0	6705 522 521 623 0 0 0
2113 207 230 293 0	v	J	6205	473	472	475	0	0	0	6706 522 521 520 0 0 0

2774 240 258 257 0 0 (0	6206 493 492 491 0 0	0 6715 623 521 522 231 0
	0	6210 493 494 495 0 0	0 6725 525 522 521 0 0
	õ	6215 494 493 492 0 0	0 6740 523 517 516 0 0
	0	6220 494 495 516 0 0	0 6750 523 524 520 0 0
2810 259 330 335 0 0 0	0	6221 494 495 496 0 0	0 6755 524 523 517 0 0
	0	6225 495 494 493 0 0 6230 495 496 477 0 0	0 6760 524 230 231 126 229 0 6830 529 236 237 121 235
	0 0	6230 495 496 477 0 0 6231 495 496 497 0 0	0 6860 531 240 241 239 0
	ŏ	6235 496 495 516 0 0	0 6880 532 241 242 240 0
	ŏ	6236 496 495 494 0 0	0 7210 561 250 249 133 251
	õ	6240 495 516 515 0 0	0 7760 626 514 515 497 513
	0	6241 495 516 517 0 0	0
	0	6245 516 495 494 0 0	0
	0	6246 516 495 496 0 0	0
	0	6250 496 497 514 0 0 6251 496 497 498 0 0	0 0
2875 264 263 262 0 0 0 2880 264 265 266 0 0		6255 497 496 495 0 0	0
		6260 497 498 499 0 0	0
	ŏ	6265 498 497 514 496 0	ō
2900 265 266 267 0 0	-	6270 497 514 513 636 0	0
2905 266 265 264 342 0	0	6275 514 497 496 0 0	0
2910 265 342 343 364 0	0	6290 498 499 512 0 0	0
2920 266 267 268 164 0		6291 498 499 500 0 0	0
2925 267 266 265 0 0		6295 499 498 497 0 0 6300 499 500 510 0 0	0
	0	6300 499 500 510 0 0 6301 499 500 501 0 0	0
2945 268 267 266 0 0 2950 268 269 270 0 0	0	6305 500 499 512 498 0	0
	ŏ	6310 499 512 511 636 513	ō
	ŏ	6325 501 500 510 499 0	0
	ō	6330 500 510 680 670 511	0
	Ō	6335 510 500 499 501 0	0
	0	6490 510 511 512 0 0	0
	0	6495 511 510 670 0 0	0
	0	6496 511 510 500 680 0	0
	0	6505 670 510 511 500 680 6515 680 510 670 0 0	0
	0	6516 680 510 500 0 0	0
	ŏ	6517 680 510 511 0 0	Ō
	Ō	6520 511 512 513 0 0	0
	0	6525 512 511 510 0 0	0
3030 200 201 110	0	6530 512 513 514 0 0	0
3000 330 307 0.0	0	6535 513 512 511 0 0	0
	0	6550 513 498 497 480 499 6560 513 514 515 636 0	0
	0	6565 514 513 498 512 0	0
	ŏ	6570 514 515 516 0 0	ō
3920 342 343 344 267 0	Õ	6590 515 516 495 0 0	0
	0	6591 515 516 517 0 0	0
3950 343 344 345 0 0	0	6600 516 514 636 0 0	0
3960 344 345 346 0 0	0	6601 516 514 497 0 0	0
4290 363 343 267 344 0	0	6602 516 514 513 0 0	0
4330 365 342 266 343 364	0	6610 516 517 518 0 0 6615 517 516 495 0 0	0
5080 420 336 337 0 0 5100 421 338 261 339 0	0	6616 517 516 514 0 0	0
5100 421 338 261 339 0 5800 463 217 218 214 0	_	6620 517 518 625 0 0	0
5890 467 476 494 493 0	-	6621 517 518 519 0 0	0
5930 470 219 220 0 0	ō	6625 518 517 516 0 0	0
5940 471 221 210 222 0	0	6630 518 519 524 0 0	0
5970 472 473 474 225 0	0	6631 518 519 520 0 0	0
5980 473 474 475 0 0	0	6635 519 518 517 0 0	0
5985 474 473 225 0 0	0	6645 625 518 519 517 0	0
6000 474 475 476 0 0	0	6650 519 520 524 0 0 6651 519 520 521 0 0	0
6010 475 476 494 493 0 6020 476 493 484 482 0	0 0	6655 520 519 524 518 0	0
6020 476 493 484 482 0 6030 476 494 495 0 0	0	6660 519 524 520 523 0	0
6060 477 496 497 0 0	ŏ	6670 520 521 624 522 0	0
6061 477 496 495 0 0	õ	6671 520 521 231 0 0	0
6140 487 499 500 512 498	Ō	6675 521 520 524 0 0	0
6170 491 474 473 475 0	0	6676 521 520 624 0 0	0
6180 491 492 475 493 0	0	6680 520 524 230 523 0	0
6185 492 491 474 0 0	0	6685 524 520 624 521 0	0
6186 492 491 226 0 0	0	6695 624 520 521 524 519	0

Appendix E

TRAFFIC REROUTING RESULTS

The PREDICT project, evaluated the impact of the traffic rerouting strategy on pollutant concentrations. This appendix shows the results of the strategy's impact in the environmentally sensitive area and on the peripheral links. The pollutant concentrations corresponded to a property line at a height of 1.5 metres. The average pollutant concentration within the environmentally sensitive area and on the peripheral links was reported.

Table E.1 shows the results of the pollutant concentration analysis for carbon monoxide, hydrocarbons and nitrogen oxides, before and after implementation of the strategy. These results corresponded to 30 percent of vehicles complying with the traffic rerouting instructions.

Table E.1 shows the average pollutant concentrations in the environmentally sensitive area. It clearly illustrates that the strategy is very effective at reducing the pollutant concentrations of all three pollutants in the environmentally sensitive area.

The strategy caused average pollutant concentrations to increase on the peripheral links. However, the increases on the peripheral links were much lower than the size of the decrease in the environmentally sensitive area.

Pollutant	Before (ppm)	After (ppm)	Change (%)
Environmental area			
СО	16.45	8.57	-47.9
НС	4.69	2.72	-42.0
NOx	0.67	0.35	-47.8
Peripheral links			
СО	12.67	16.02	+26.4
НС	3.37	4.60	+23.3
NOx	0.53	0.67	+26.4

Table E.1 Pollutant concentrations within environmental area