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Abstract

This dissertation studies the dynamics of atomic Bose-Einstein condensates (nEes)

and Bose gases in a suddenly modified potential.

Firstly, we investigate the correlation between vortex formation and interference

in merging Bose-Einstein condensates. This inherent correlation can explain some

experiments in which vortices are formed in interfering condensates. Furthermore: we

show the interference properties of merging condensates, particularly the relation of

interference among colliding, expanding, and merging condensates, which can explain

some complex interference phenomena in recent experiments.

Secondly, using the truncated Wigner approximation, we investigate the role of

quantum fluctuations in different forms on the transport properties of bosonic atoms

in a ID optical lattice. The dynamics of transport with respect to quantum fluctua-

tions in the plane-wave modes is distinct from that in the single-harmonic-oscillator

modes. The discrepancies are demonstrated in detail. Quantum fluctuations in Be-

goliubov modes lead to stronger damping behavior of the center-of-mass motion than

quantum fluctuations in the plano-wave and single-harmonic-oscillator modes, which

is in agreement with the experiment.

Thirdly, the role of the relative phase variation and velocity of two low-density

condensates, and quantum noise on interference properties are discussed. In partic-

ular, the incoherent atoms have significant effect on the interference visability and

microscopic dynamics. Although the interference pattern is not broken by quantum

fluctuations, indicating the robust character of this interference, the process of inner

correlations and dynamics is very complex and can not he understood purely with

mean-field theory.

Finally, we investigate the elementary excitation spectrum and mode functions

of a trapped Bose gas by numerically solving the Bogoliubov-De Gennes equation.

The characteristic form of the Bogoliubov matrix, determined by the interatomic

interactions, and the interaction between atoms and confining potential, specifies

excitation spectra and mode functions. The role of these interactions on the properties

of spectra and mode functions are shown.
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Definition of Symbols and Fundamental Constants

Fundamental Constants

h Plank's constant, Ii = hj(2n).

e The charge of an electron.

me The mass of an electron.

jloB The Bohr magneton.

ko Boltzmann's constant.

Symbols

m The mass of an atom.

T The temperature of the system.

T; The critical temperature for Bose-Einstein condensation.

N The number of atoms in the system.

No The number of condensed atoms in the system.

J.L The chemical potential of the system.

V The volume of the system.

d The period of an optical lattice.

a The s-wave scttering length.

RR The recoil energy of a particle.

() The phase of condensed atomic wave function.

AR de Broglie wavelength.

xw The Wigner characteristic function.
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CHAPTER 1

Introduction

Bose-Einstein Condensation (BEC) of dilute atomic gases is a macroscopic quantum

phenomenon with consequences for superfiuidity, superconductivity and the laser.

The realization of Bose-Einstein condensation in dilute atomic gases [1,2] achieved

several long-standing goals. First, since neutral atoms were cooled into the lowest en-

ergy state, the ultimate control over the motion and position of atoms can be limited

only by Heisenberg's uncertainty relation, explicitly b.xb.p ~ ~. Second, all atoms

occupy the same quantum state and this macroscopic system leads to the realization

of atom lasers, devices which generate coherent matter waves. An important appli-

cation of this kind of matter waves is to process quantum information and sculpt

wavefunctions by optical pulses or external fields [3]. Third, some possible measure-

ment techniques provide some ways of exploring properties of many-body states in the

dilute Bose gases which are difficult in the quantum liquids 3He and 4He. These have

stimulated the rapid development in some experimental techniques, such as cooling

atoms to extremely low-temperature, microscopic manipulation of atoms and preci-

sion measurements of the quantum properties of these atoms. Consequently, it is

immediately necessary to understand the principles of these techniques.

In this chapter, we will descibe some experimental developements and principles

used in the formation, control and measurement of BEes.
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1.1 Production and Trapping of Cold Atoms

In order to create a Bose condensate in a dilute gas, atoms must be cooled and com-

pressed in a trap until the thermal de Broglie wavelength, AT = ~ 1, is on the

order of the spacing between atoms. This can be achieved by trapping atoms with

magnetic fields or with laser light inside ultra-high vacuum chambers. To understand

the behaviour of atoms in a magnetic field and a laser field and how they are trapped,

the Zeeman effect and atomic interactions with laser fields are explored in the fol-

lowing section. Subsequently the primary features of magnetic and optical traps are

shown, particularly optical lattices produced by optical standing waves.

1.1.1 Magnetic-Optical Traps

The procedure for creating a BEe normally involves three steps. Firstly, non-charged

atoms are cooled down to temperatures near absolute zero using circularly polarised

laser light (Pre-cooling). Secondly, these atoms arc trapped at a certain place using

magnetic fields and laser light (Trapping). Thirdly, the final cooling of the atoms is

done by evaporation.

With the addition of a magnetic field gradient, the velocity reduction of Doppler

cooling (Pre-cooling) can be used to help confine and trap neutral atoms. In a weak

inhomogeneous magnetic field the internal energy levels of the atoms are split into

their Zeeman components. By using circularly polarized light to Doppler cool the

atoms in the presence of this magnetic field, these atoms can also feel a spatially-

dependent force that pushes them towards the zero of the magnetic field (Trapping).

Using a quadrupole magnetic field and retrorefiected, circularly polarized laser beams

in a 3-D geometry enables cooling and trapping in all three dimensions. This type of

magneto-optical trap, or MOT, was first demonstrated for the trapping and cooling

of alkali metal atoms, but the method can be easily extended to atomic states that

have broader <.:oolinglinewidths by increasing the applied magnetic field gradient.

IThis formula refers to the thermal de Broglie wavelength for a free ideal gas of massive particles
in equilibrium, k8 is Boltzmann's constant, m is the mass of one particle, and T is the temperature
of the gas
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Zeeman effect

To understand the mechanism of trapping it is crucial to briefly summarize the spin

properties which determine the interaction of atomic systems with an external mag-

netic field, B. The atomic Hamiltonian in the presence of an external magnetic field

has the following form

(1.1)

where A is a coupling constant, and I and J are the nuclear and electronic angular

momenta, respectively. J-LR = lelli/2m" is the Bohr magneton and z indicates the

direction of the magnetic field. Indeed, there exists also the interaction between

external magnetic field and nuclear magnetic moment. However, the contribution

from the nuclear magnetic moment is very small compared to the two terms in the

Eq.(1.1) so we can neglect it from this point onwards,

The first part of Eq.(1.1) is usually called by hyperfine interaction. This interac-

tion is related closely to the quantum numbers 1, J and F 2

1
I· J = 2[F(F + 1) - 1(1+ 1) - J(J + l)L (1.2)

where F = I + J and J = 1/2 for the alkali atoms. The energy splitting produced

by the interaction of the nuclear and electronic angular momenta between the two

hypcrfinc states F = J ± 1/2 is then easily calculated and is given by the formula

6.FJ = A(T + 1/2). Typical values range between 1 and 10 GHz.

We can consider two limits for Eq.(1.2). In weak magnetic fields, the second

term can be considered as a perturbing part and the following result derived for the

interaction energy between the atom and the external field :

(1.3)

where mF is the eigenvalue of Fz and

F(F + 1)+ J(J + 1) - 1(1 + 1)
fJL = 2F(F + 1) (1.4)

2Eq.(1.2) is equivalent to mathematical transformation, F2 = 12 + 21· J + J2. Since the unper-
turbed eigenstates of J2, 12, and F2 are known and their corresponding eigenvalues are J2 -+ J(J+1),
12 -+ 1(1+ 1), and F2 -+ F(F + 1), Eq.(1.2) can be deduced.
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is the Lande Factor. In strong magnetic fields, the nuclear and electronic angular

momenta, I, J arc magnetized so that the direction of I and J is antiparallcl or parallel

to the direction of the magnetic field B. Thus the eigenvalues of Jz are the same as

the eigenvalues of J: ±~. Thus for I = ~,the maximum total angular momentum

F = 2 so that there exist 2F+ 1 = 5 states for 1nF, namely 1nF = -2,-1,0,1,2.

From Eq.(1.1) and Eq.(1.2), the eigenvalues for these relevant states of the alkali

atoms in the strong magnetic field are,

3
EmF=±2 = '4A ± MEB

3
Emp=±l,O = -'4A ± MEB.

(1.5)

For arbitrary magnetic fields the cigcnstatcs and eigenvalues of Eq.{1.1) should

be determined by diagonalization, The structure of the group in the spin momentum

has the following character [lJ:: iy] = iht and [Jx, Jy] = ihJz. Thus we perform

angular transformation [i +, L] = 2hiz and [J+, j_] = 2hJz where the raising operator

i,= i,+ ily and the lowering operator i: = i,- ii; 3. By expressing I .J in terms

of the raising and lowering operators according to I .J = 1zJz+ U+J- + LJ+)/2,
one call easily construct the matrix elements of Eq.(l.l) 011 the basis Im[, 'Tn] > with

-I ~ 1n[ ~ +1 and m i = ±1/2. Thus Eq.{l.l) is rcwritcn as

(1.6)

For a nuclear spin I = 3/2: the maximum total angular momentum F = 2 so that

there exist 2F + 1 = 5 states for mv ; namely mF = -2, -1,0,1,2. The eigenvalues

3From the view of Lie group and Lie Algebra, this kind of transformation is similar to the
transformation of operators {fjl} => {u,ut}.
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for these relevant states of the alkali atoms are, thererfore",

3 1
(1.7)Emp=±2 -A±-C

4 2

Em",=+l - 1 J3 1 (1.8)--A ± _A2 + -(A + C)2
444

EmF=-l -~A ± J~A2 + ~(A - C)2 (1.9)
444

EmF=o - - ~A ± J A2+ ~C2: (1.10)

where C = 2J-lBB. From above analysis, one can see that for the maximum or mini-

mum value of TltF, the magnetic fields play the role of shifting the initial energy level

without the magnetic fields. For other m», the energy levels arc split by the external

magnetic fields. Meanwhile the width (gap) of split energy levels is increased with

raising magnetic fields but approaches the constant levels ±J-lnB for high magnetic

fields. When considering the magnetic trapping of atoms, the variation of the direc-

tion of the field experienced by an atom is assumed to take place slowly compared to

the inverse of the Larmor frequency [4]; consequently, atoms will remain in the same

quantum state. Thus: an atom ill a state whose energy increases with increasing field

will move towards a minimum in the field, referred to as low-field seeking, and the

reverse behavior referred to as high-field seeking.

From the above eigenvalues, we can see that EmF is determined by magnetic field

B2 under the condition of a fixed A. The existence of a maximum EmF requires

oB2/8xk = 0 and 82B2/0X% < 0 for each k. However, this is impossible for magnetic

traps because

'\12B2 = 2_j_(Bi OBi) = 2BS72Bi + 2(8Bi)2 > 0,
8Xk OXk 8Xk

where '\12B, = o. This means that the alkali metal atoms cannot be maintained in

a stable stationary equilibrium configuration solely after a magnetic field is applied

(1.11)

(Earnshow's theorem). The interaction between the magnetic field and the atoms

forces the atoms to move to the point of minimum EmF'.

4The Hamiltonian Eq.(1.6) conserves the z-component of total angular momentum F. mp = ±2
have one state respectively and the other mp have two different states
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Atomic Interaction w-ith Laser- fields

The atomic interaction with laser fields is of importance to understand the confine-

ment and manipulation of BECs by laser. Meanwhile it enriches the performances

already available with magnetic trapping. In the dipole approximation", the interac-

tion can be written as

V(r, t) = -d· E(r, t), (1.12)

where d is the electric dipole operator for a single atom and

E(r, t) = E(r)c-iwt + C.c. (1.13)

is a time-dependent electric field oscillating with frequency w. In this field, the electric

dipole moment is < d >= a:(w)E(r, t), where

(1.14)

is the dipole dynamic pol ariz ability and f. is the unit vector in the direction of the

electric field. In addition, the polarization produces a change in the energy of the

system and this change is called the A C Stark shift which can be calculated by using

second-order perturbation theory [4]. This energy change can be regarded as an

effective potential

(1.15)

felt by each atom, where the bar indicates a time average. Usually the time variation

of the laser field is much faster than the typical frequencies of the atomic motion ::;0

the time averaging of the potential is justified. Comparing Eq.(1.6) and Eq.(1.15), it

is easy to see that the magnetic interaction energy is linear in B due to the intrinsic

magnetic moment of atom while the electric interaction energy is quadratic in E as

a result of the dipole atomic polarizability.

SIn general, the wave-length of the type of electromagnetic radiation which induces, or is emitted
during, transitions between different atomic energy levels is much larger than the typical size of a
light atom. Thus, exp['i(w/c)n· r] = 1 + i~n· r +"', can be approximated by its first tenu, unity.
This approxirnatiou iHknown Il." tho electric dipole approximatiou.
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In classical mechanics, a potential generates a force F = - VU (r) if the potential

varies with position. So the effective potential (1.15) gives the force

(1.H.i)

which affects the motion of the atoms. The behaviour of the force is determined by

the spatial variation of the radiation intensity E2(r, t) and on the exact value of the

laser frequency. If the dipole pol ariz ability (1.14) is dominated by a single resonant

frequency WR, we define detuning 8 = W - WR (181 « WR), given by the difference

between the laser and the resonant frequencies. Thus the polarizability behaves like

n(w) = -I < Rid· 210 > 11./1i6, where IR > is the resonant state. Obviously if

8 > 0 (blue detuning) the energy change (1.15) is positive and the laser field will

force the atoms to move towards regions of low field (repulsive effect). In contrast,

if the detuning is negative (red detuning) atoms will be attracted to the regions

of higher electric field. In experiments, red detuning was employed to provide an

optical confinement of BEes, namely optical traps. The blue detuning was applied to

manipulate atoms away from the centre of quadrupole trap.

Optical Lattices

Optical traps, as discussed above, have many advantages. They can be employed to

investigate the coexistence of multi-spin components with the possiblo occurrence of

new magnetic phases. Also the value of the interaction between atoms can be tuned

by adding a magnetic field. Most importantly: optical traps can be modulated into

different traps like box traps, low-dimensional traps, optical lattices: rotating traps,

etc to manipulate cold atoms. Among these optical lattices are applied frequently.

When considering the radiation field of an applied standing wave along the z-
direction,

E(r, t) = RCo8(qz)e-iwt + c.c., (1.17)

the time-averaged effective field (1.15) takes the form

(1.18)
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FIGURE 1.1: Atomic scattering rate versus laser frequency.

As a result, a periodic potential along the a-direction with wavelength 'IT / q is formed

and called an optical lattice. If the intensity of the laser is sufficiently high, this

periodic potential with a magnetic trap can produce an array of condensates. Ex-

periments can create a 3-diIIlen~ional optical lattice through three orthogonal lasers.

Three optical standing waves Me aligned orthogonal to each other, with their crossing

point positioned at the centre of the atomic gas. Each standing wave laser field is

created by focusing a laser beam to a waist of about one hundred J.Lm at the position

of the gas. A second lens and a mirror are then used to reflect the laser beam back

onto itself, creating the standing wave interference pattern. Thus a 3-dimensional

optical lattice can be formed [5J.

1.1.2 Laser Cooling

The radiation-pressure force used in laser cooling and trapping is the recoil where

momentum is transferred from photons scattering off an atom. Despite the infinites-

imal momentum kick that the atom receives from each scattered photon, typically

about Icm/s, more than 107 photons per second are possibly scattered by exciting a

strong atomic transition so that large accelerations are produced. Consequently the

controlled radiation-pressure force can bring the atoms in a sample to a velocity near

zero ("cooling") and hold them at particular point in space ("trapping").
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The cooling is achieved by making the photon scattering rate velocity-dependent

using the Doppler effect. [6]. The principle is illustrated in Figure (1.1). If an atom

is moving with velocity v along the direction of a laser beam with frequency Wla.ser,

the shifted frequency is Wla.'f!r - (V/C)Wln."f!r where C is the speed of light. If the laser

frequency is below the atomic resonance frequency (8 < 0), the atom, as a result of this

Doppler shift, will scatter photons at a higher rate when it is moving toward the laser

beam (v negative), than when it is moving away. Iflaser beams impinge on the atom

from all six directions, the only remaining force OIl the atom is the velocity-dependent

part, which opposes the motion of the atoms. This provides strong damping of any

atomic motion and cools the atomic vapor.

1.1.3 Evaporative Cooling

Evaporative cooling is required because of the reality that to achieve BEe, the tem-

peratures of atoms must be lower than those reached by laser or magnetic cooling.

The essential ideas of evaporative cooling are to reach an extremely low temperature

through reducing the mean kinetic energy of atoms in the system. Evaporative cool-

ing is done by continuously removing the high-energy tail of the thermal distribution

from trap. If there were a hole, produced by inducing a spin transition via the ap-

plication of a radio frequency pulse, in the side of the trap, only atoms with kinetic

energy no less than the potential energy of the trap at the point of the hole would

escape [104]. These evaporated atoms carry away more than the average energy,

which means the temperature of the remaining atoms decreases. The high energy tail

must be constantly repopulated by collision, thus maintaining thermal equilibrium

and sustaining the cooling process [7]. The only requirement for evaporative cooling

to commence is a collisional re-thermalization time much shorter than the lifetime of

an atom in the trap.

1.2 Experimental Probes

Much theoretical work tends to explain some experiments as well as guide experiments

to realize some possible phenomena. It is fundamental and important to understand
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experimental probes. The two most important techniques for observing Bose-Einstein

condensates are in-situ and. time-of-flight imaging. In both cases, one obtains an image

which reflects the density distribution of the atoms either in a trapped state or in

ballistic expansion.

1.2.1 Free Expansion and Direct Imaging

Free Expansion Imaging

Free expansion imaging in BEC is naturally the imaging of the momentum distribu-

tion of cold atoms. The process of imaging is shown below. After the formation of

BEC, the trap spring constants were first adiabatically reduced and then suddenly

reduced to nearly zero so that the atom cloud essentially expands ballistically [8].
A field gradient remains and supports the atoms against gravity to allow longer ex-

pansion times. After a few milliseconds expansion, the spatial distribution of the

cloud was determined from the absorption of a few microseconds, polarized resonant

laser pulse. The shadow of the cloud was imaged. onto a charge-coupled device array,

digitized, and stored for analysis.

This shadow image contains a large amount of easily interpreted information [8].
In general: a time-of-flight measurement of the velocity distribution is performed by

experiments. At each point in the image, the optical density is proportional to the

column density of atoms at the corresponding part of the expanded cloud. Thus,

the recorded image is the initial velocity distribution projected onto the plane of the

image. For all harmonic confining potentials: including the TOP trap, the spatial

distribution is identical to the velocity distribution, if each axis is linearly scaled by

the harmonic oscillator frequency for that dimension. Thus, from the single image

one obtains both the velocity and coordinate-space distributions, and from these one

also extracts the temperature and central density, in addition to characterizing any

deviations from thermal equilibrium.



(A)

12

(8)

FIGURE 1.2: Dark-ground (A) and phase-contrast (B) imaging set-up. Probe light
from the left is dispersively scattered by the atoms. In the Focal plane of the lens,
the unscattered light is filtered. In dark-ground imaging (A), the unscattered light is
blocked, forming a dark-ground image on the camera. In phase-contrast imaging (B),
the unscattcrcd light is shifted by a phase plate (consisting of an optical flat with a
)../4 bump or dimple at the center), causing it to interfere with the scattered light in
the image plane.

Direct, Non-Destructive Imaging

After free expansion imaging was used in DEC, some groups commenced to explore

the direct and non-destructive observation of the spatially localized condensate. in

a gas of trapped atoms. The initial difficulty for this imaging was derived from

the fact that because of the high optical density of the atom cloud near the critical

temperature: direct observation by absorption imaging failed. For example, for typical

experimental parameters the peak optical density (Do) for resonant light is around

300, corresponding to a transmission coefficient of e-300 [9]. Thus the probe light is

completely absorbed even in the wings of the spatial distribution, preventing direct.

imaging of the condensate. One applicable way to reduce the absorption is to detune

the probe light. The light reveals major image distortions due to dispersive effects:

the condensate acts as a lens and strongly deflects the light. However, by employing

the "dark-ground" imaging technique the dispersively scattered light can be used to

clearly image the condensate [7].
The central idea of dark-ground imaging is to obtain the imaging of scattered light

and block the unscattcrod light by placing a small opaque object into the Fourier
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FIGURB1.3: Phasor diagram of dark-ground and phase-contrast imaging. A ray of
incident light with all electric field Eo is scattered by the atoms, causing the light to
be attenuated and shifted in phase, resulting in the electric field E, The dark-ground
method images ll.E = Edg, the difference between incident and scattered electric
fields. Phase-contrast methods cause ll.E and Eo to interfere by rotating the phase
of Eo by 90°, resulting in the field Epc

plane (Fig.1.2). In Fig.1.3, the probe light field after passing through the atoms can
be separaated into the scattered (ll.E) and unscattered radiation (Eo),

(1.19)

Blocking the unscattered light gives the dark-ground signal:
1< Irl.'l >= 21E - Eol2 = 10[1+ t2 - 2tcos4>1

For small 4> the dark-ground signal is quadratic in <p [7].

(1.20)

1.2.2 Phase-contrast Imaging

The purpose of phase-contrast imaging is to obtain the phase information by interfer-
ing the unscattered light (Eo) with the scattered radiation (ll.E). This is performed
by shifting the phase of the unscattered light by ±7r /2 in the focal plane of the imag-
ing lens (Fig.1.2). This is done with a "phase plate" which is an optical flat. with a
small bump or dimple in the center.

From Fig.1.3, the intensity of a point in the image plane is then

< t; >= ~IE - Eo + Eoe±i·fr I:.!= 10 [l:.!+ 2 - 2V2lms (</> ± ~)] (1.21)
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(a) (b)
z

2nhk

y

FIGURE 1.4: (a) Traditional geometry for Bragg scattering. The initial and final
atomic momenta are Pi and P" respectively. The fields' Rabi frequencies are denoted
by r, rI, and the fields' frequency by n. (b) In a reference frame moving with velocity
v = -n(hklrn)z, the atoms are incident orthogonal to the standing-wave field and the
frequency of the traveling-wave components of the standing-wave field arc Doppler
shifted by ±nwkl2 = ±nhk2/m.

For small <P one obtains

(1.22)

which is linear in <p. This makes phase-contrast imaging superior to dark-ground

imaging for small signals [7].

1.2.3 2-photon Bragg Scattering

The standard Bragg scattering is performed by using two countcrpropagating beams

aligned perpendicularly to the weak axis of the trap (see Fig.lA). A standing-wave

field with spatial period 1rIk = >";2is directed along the z axis. The initial momentum

components of scattered atomic beam are Piy' Pi., and final momentum components

are Ply' PI.' For off-resonant scattering by the field, the atoms remain in their ground

state. The momentum of the atoms can change by Pj. - Pi. = 2nhk (n = ±1, ±2,

etc.), since the scattering process can result ill an exchange of photons between the

two traveling-wave components of tho standing-wave field [11]. In general, tho out-

going channel contains values of Pl. corresponding to all values of n; however, in a

sufficiently long time, {P'iz + 2nlik)2 = P~", or Pi" = -nlik fulfills overall conservation
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of energy. For a given value of ti, resonant nth order Bragg scattering is achieved for

an incident direction of the atomic beam given by tanO = Pi./Piy = -nhk/Pi,,; all

other components of the scattering are suppressed.

Considering nth order Bragg scattering of atom beam with velocity

v = (-nhk/m)z,

where m is atomic mass, the field frequencies of the traveling-wave components of the

field are Doppler shifted by ±(nlik/m) = ±nwk/2, where Wk = 1i(2k)2j(2m) is the

recoil frequency associated with a two-photon process. In this frame (see Fig.1.4),

the atomic beam is incident in the y direction and the relative detuning of the two

traveling-wave components of the field is 0 = tuo«. Thus resonant Bragg scattering can

be viewed as arising from the interaction of an atomic beam with counter-propagating

"pump" and "probe" fields that are detuned from one another [11].
This method of Bragg scattering can be used to probe density fluctuations of the

system and thus to measure directly the dynamic structure factor 8(q, v), which is

the Fourier transform of the density-density correlation function and is central to the

theoretical description of many-body systems [10].

1.3 Superfiuidity

1.3.1 Overview of Physical Properties

Superfluidity is intimately connected with the phenomenon of Dose-Einstein con-

densation, a macroscopically occupied quantum state. In general: the property of

superfiuidity refers to the ability to flow through the narrowest capillaries without

apparent friction [4]. The superfluidity of liquid 4He: below the so-called A-point,

was discovered by Kapitza [12] and, independently, by Allen and Misener [13]. The

foundation for the description of superftuidity is a picture of the system as being com-
prised of a condensate and elemeniari) excitations. The earliest theory of superfluidity

was developed by Landau, who showed that, if the spectrum of elementary cxcita-

tions satisfies suitable criteria: the motion of the fluid below a critical How velocity

cannot give rise to dissipation. Landau's work marks the first explicit introduction
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into condensed-matter physics of the seminal notion of a "quasiparticle", that is, an

excitation of the system from the ground state, which is characterized hy a definite

energy and momentum, the total energy, momentum, etc., of the system can be re-

garded as the sum of that carried by the quasiparticles [48]. Next, Landau put forward

two-fluid hydrodynamics to construct a quantitative theory of the flow properties of

He-II: the "superfluid" component, which he identified, in an intuitive way, with the

part of the liquid that remained in its ground state, and a "normal" component,

which corresponded to the quasiparticlcs, Moreover, irrotationality of the supcrfiuid

plays a crucial role in this dissipationless motion. Irrotationality is directly related to

Bose-Einstein condensation: being naturally associated with the phase of the order

parameter which fixes the shape of the velocity potential.

1.3.2 Landau Criterion

Let us consider a liquid flowing along a capillary at a constant velocity v. If one

discusses the flow in a coordinate system moving with the liquid, the liquid helium

is at rest, and the walls of the capillary move with velocity -v. The entrainment of

the liquid by the walls of the tube cannot initiate movement of the liquid as a whole.

The motion must arise from a gradual excitation of internal motions, that is, from

the appearance of elementrary excitations in the liquid. As elementary excitation

appears in the liquid, the energy of the liquid E has the form

1
E = e+ p . v + 7.M v2, (1.23)

where M is the mass of the liquid and the expression t + p . v is the change in

oncrgy due to the appearance of the excitation. This change must be negative, since

the energy of the moving liquid must decrease. In the conditon that p and v are

antiparallel, one can get
u > e[p. (1.24)

The minimum value of clp is clearly given by the point at which the line from the

origin is a tangent to the curve. If this minimum is not zero, then, for velocities of

flow below a certain value, excitations cannot appear in the liquid. This means that
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the flow will not become slower, i.e. that the liquid exhibits the phenomenon of su-

pcrfluidity [15]. One can see that any spectrum in which sufficiently small excitations

are phonons will lead to superfiuidity. One should notice that the arguments given

above remain valid at any low temperature, since they made no direct use of the fact

that the liquid was originally in the ground state.

Next, we consider the movement of quasi-particle gas as a whole with respect

to the liquid, with a translational velocity v. The distribution function for the gas

moving as a whole is obtained from the distribution function n(c) for the gas at rest

by replacing the energy f. of R particle by f. - P .v. Thus the total momentum of the

quasi-particle gas per unit volume is

P = J pn(t - p .V)di. (1.25)

Assuming that the velocity v is small, one expands the integrand in powers of p . v.

The zero-order term gives zero on integration over the directions of the vector p,

leaving

J dn{t)
p = - p(p .V)a;-dT, (1.26)

or, on averaging over the directions of p,

(1.27)

From the fomula (1.27), one can see that the motion of the quasi-particle gas is

accompanied by a transfer of mass: the effective mass per unit volume of the gas

is determined by the proportionality coefficient between the rnomcnturn P and the

velocity v. On the othe hand, the fact that the quasi-particles collide with the walls

of the tube and exchange momentum with them indicates that the excitation gas will

be slowed down, like any ordinary gas flowing along a capillary.

Thus one fundamental result can be obtained. In a quantum Bose liquid there

can exist simultaneously two motions, each of which has a corresponding "effective

mass" such that the sum of these two masses is equal to the actual total mass of the

liquid. One of these motions is "normal", i.c. has the same properties as that of an

ordinary viscous liquid; the other is "superfluid". The two motions occur without
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transfer of momentum from one to the other. In the hydrodynamic sense the density

of a Dose liquid can be written as a sum P = Pn + Ps of normal and supcrfluid parts,

each corresponding to a hydrodynamic velocity Vn or VS. An important property of

superfiuid motion is that it is a potential fiow:

\l x v.•= o. (1.28)

This property is the macroscopic expression of the fact that the elementary excitations

with long wavelength (i.e. with small momentum) are sound quanta (phonons). When

T = 0, the normal part of the density Pn = 0; the liquid can have only super£l.uid

motion. For non-zero temperatures, Pn is given by (1.27):

(1.29)

If we consider phonon excitation € = up where u is the velocity of sound in the liquid,

1 1= dn 247fp2dp
(Pn)ph = - 3u 0 dpP (21rh)3

_ 4 roo 41rp2dp
- 3/1 io np (21rh)3

= 3~2 J cndr.

(1.30)

The remaining integral here is just the energy of the phonon gas per unit volume; If

one takes the form of the energy of the non-interacting liquid E = V . 1r2T4 /30 (hu? ,

the density of normal fluid contributed by phonon excitation has the form,

(1.31)

In a similar way, one can deduce the roton contribution to Pn. Another important

conclusion can he drawn. As the temperature increases, an increasing fraction of the

mass of the liquid becomes normal. At the point where Pn = p, the properties of

superfiuidity disappear entirely. This is called the A - point of the liquid, and is a

phase transition point of the second kind. One can notice that the quantitative for-

mulae (1.31) is inapplicable near the A - point, where the quasi-particle concentration

becomes large, so that even the concept of quasi-particles is largely meaningless [15].
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CHAPTER 2

Bose Gases

Since the experimental realization of Bose-Einstein condensation (BEC) in dilute

atomic gases was achieved in 1995 [1,2]' the study of quantum gases in conditions

of high degeneracy has become an emerging field of physics, attracting the interest

of scientists from different areas. Experiments in cold atom systems allow access to

regimes inaccessible in the Helium liquids, principally the weakly interacting limit.

In addition, quite different properties became experimentally measureable. In partic-

ular, in these novel systems DEC shows up not only in momentum space but also in

coordinate space, making the direct experimental investigation of the condensation

feasible and providing new opportunities for interesting studies.

For temperature T -7 0, the fraction of non-condensed atoms is extremely small,

for example, the number of particles in the condensate for a uniform ideal Bose gas

varies as

No(T) = N [1- (~) 3/2] , (2.1)

where N is total atom number and T" is the critical temperature at which the dilute

atomic gas undergoes the BEC phase transition. For T -7 0, the condensed atom num-

ber No -7 O. Consequently, the thermal fluctuations will be neglected and mean field

theory (Grosl:i-Pitaeviskii equation (GPE)) can be applied to describe a large variety

of physical phenomenon, including equilibrium configurations, collective oscillations,

expansion, interference, quantized vortices, solitons, etc [4]. On the other hand, the

number and distribution of noncondensed atoms can influence the properties of Bose
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gas. In many cases, this number and distribution of noncondensed atoms are deter-

mined hy the interatomic interaction and temperature in Dose gal". In general, the

interatomic interaction can be modified to a large value by Feshbach resonances [16]

or strong confinement [17], and the role played by finite temperature effects in the

properties of Bose gases is also of importance. For example, due to thermal excita-

tion, some quantities such as the spatial density of the condensate atoms [18] and the

distribution of the number of particles in the condensate [19] are modified in thermal

equilibrium. SOUlephenomena related to the role of finite temperature such as the

damping and frequency shifts of collective model" [20,21], the evolution of the recently

created vortices [22-24], must be explained by the noncondensed atoms and further

by the interatomic interaction and temperature.

In this chapter, I will summarize existing theoretical approaches to Bose Gases

upon which my work is based.

2.1 The Weakly-Interacting Bose Gases

As is well known, in the presence of Bose-Einstein condensation, an ideal Bose gas

has infinite compressibility 1. A weak interatomic interaction affects the properties

of a Bose gas in a dramatic way, even for very dilute samples. On the other hand,

the traditional perturbation techniques cannot be applied for uniform Bose gas be-

cause the ground state energy is zero in the absence of interactions. Therefore the

13ogoliubov theory is an effective means to solve this kind of problem.

2.1.1 Uniform Interacting Bose gas

Uniform means translationally invariant. In the regime T < Tel the typical atomic

momentum always satisfies the inequality pru/h« 1 where ro is the mean distance

lIn the BEe phase, the pressure formula of the ideal Bose gas in a box is P = kfl9!i/2(1).
I T

The Bose functions 9P(Z) = ri;;y Iooo dxxp-1 z l;z_l = 2:~1 fp, where z = exp(!3IJ) is the so-called

fugacity and r(p) is the factorial function (P-l)!. The thermal wavelength AT = r;'lC;;' [4). Since
the P does not depend on the volume, this implies that in the BEe phase the compressibility of the
gas is infinite.
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between atoms. At such momenta the scattering amplitude becomes independent

of energy as well as of the scattering' angle and can be safely replaced with its low-

energy value which, according to standard scattering theory, is determined by a single

parameter, the s-wave scattering length. First, we can consider a general Hamiltonian

for a uniform Bose gas including two-body interaction,

tt = !!_ /' \1~t(r)\1~(r)dr + ~ /'/' ~t(r)~t(r')V(r - r')~(r)~(r')drdr'. (2.2)
2m. ' ,

At low energy, the atomic interactions are essentially elastic, hard-sphere collisions

between two atoms, and can be modeled in terms of the pseudo-potential, V(r - r') =
g8(r-r'), where 9 = 41fh,2Na/m, with a the s-wave scattering length. Then, Eq.(2.2)

can be rewritten as

Eq. (2.3) can be rewritten in terms of the momentum basis by using

(2.4)

where V is the volume of the system. So the Hamiltonian of the system in terms of

the Bose field operators is simplified as

(2.5)

The crucial point of the theory now is to replace the operator ao with a C-number:

aD == ~ in the Eq.(2.5). The advantages of this description is that it is simple and

can explain some phenomenon in the Bose gas at extremely low temperature. But

one can find that the substitution breaks Gauge symmetry and actually

Thus the problem with this approximation is that it breaks the conservation of particle

number. In addition, the substitution, V(T - ,,./) -t g8(r' - ,,-/), can not be made for

a realistic potential sinco it would result in a poor approximation at short distances
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of order r'O, where the potential is strong and quantum correlations are important.

On the other hand, aolNo >= VWoINo - 1 > and ablNo >= v'No + 11No + 1 >. So

Bogoliubov approximation becomes applicable when No » 1 and No » N - No.
For dilute Bose gas at the temperature T -t 0, the interatomic interaction is very

weak and its perturbation is small at all distances so the replacement is accurate. In

the case of T -t 0, all atoms drop almost into condensated atoms, No -t N. In the

first approximation, the ground state energy takes the form

N2g
Eo = 2V' (2.6)

where we notice some conclusions for homogeneous Bose gas: Eo oc ~; Eo ex: N2.
Contrary to the ideal case, the pressure of a weekly-interacting Bose gas does not

vanish at zero temperature:

(2.7)

where n is the density. Accordingly, the compressibility is also finite:

an 1
-=-aP gn

(2.8)

which implies that it is more difficult to compress the gRS for larger interatomic

interaction gn. Using the hydrodynamic relatiorr'

1 an
mv2 = aP' (2.9)

we can obtain v = I"?i!E where v is sound speed.Vm'

2.1.2 Bose gas in the isotropic harmonic traps

Now we consider a BEC confined within an isotropic trap, the Hamiltonian is

(2.10)

2In classical hydrodyna.rnics, the mass density p = ~ and flux per unit time V = v x ::; where
the velocity u is in the direction of a driving force F acting on the fluid, orthogonal to the tra.nsverse
diroctton §of U rectangle shape of channel. Thus in an unit time: F = pv X S» ~ mv2 = Pin.
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For a trapped gas, we expand the field operators ~, ~t in the basis of simple harmonic

oscillator,

~(r) = (2.11)

where <I>n(r) = <Pnx(x)<Pn,,(Y)<Pnz(Z) satisfies the Schrodingcr equation

~ 1 3
__ V2<I> ('r) + -mw2r·2<I> ('r) = (n + ti + ti + -)~<I> ('r)2m n 2 n x y z 2 n'

= - ~ 2~:a~/an J J J <I>~,V<I>ndxdydz + ~ ~mw2a~/an J J J r2<I>~/<I>ndxdydz
n,n n,n

=~ ~(n:r. + n)J + nz; + ~)a;"an J J J <I>;./<I>ndxdydz
n,n

=L hw(nx + ny + ti; + ~)a~an
n

(2.12)

For the interaction part,

~J ~t~t~~dr = ~ I ~ a~/a~/anam / J J <I>~/<I>~/I>n<I>mdxdydz
n ,m ,n,7n

9
2

(2.13)

I In ,m ,n,fn

where

Am',n',m,T! = J J J <I>~/<I>':n,<I>n<I>mdxdydz.

When T ~ 0, the condensate fraction approaches 1, i.e., No ~ N. From the

Bogoliubov description: the ground state energy

R ,......N311 + N2gAo,o,o,o
JU""'" 2w 2

3 N2g
= N2~+ 2V

ef
/

(2.14)
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where VeIl = (27T)3j~l'1 is "effective volume" of the condensate. It is a little different

from the homogeneous case; for every atom, its ground state energy is increased with

zero-point energy. The chemical potential
oEo 3 Ng

J-L = oN = 2hw + v"ff' (2.15)

2.1.3 Penrose-Onsager Criterion for Bose-Einstein Condensation

Before demonstrating Penrose-Onsager Criterion for BEC, we first define the one-

body density function by

p(r,r';t) =< ~t(r,t)~(r',t) >, (2.16)

where the expection < ... > is taken in the initial state. We suppose that <pj(r', l) are

a set of eigenvectors of per, r';t) with their eigenvalues {j(t) depending on the index

(2.17)

If the eigenvalue ~j is macroscopic, i.e., O(N) where N is the total atom number,

there exists BEC state. There is no BEC if all eigenvalues are very small, i.c., 0(1).

This criterion is called Penrose-Onsager Criterion [26].

2.1.4 Off diagonal long-range order

We implement an example of a uniform and isotropic system of N particles occupying

a volume V in the absence of external potentials to demonstrate the concept of off

diagonal long-range order. In the thermodynamic limit, where N, V ~ oc with the

fixed density n = NjV, the one-body density depends only on the modulus of the

relative variable s = r - r': n(1)(r, r') =< ~t(r)~(r') >= n(l) (8), and one can write

n(1)(8) = ~ J dpn(p)e-ip.sjli. (2.18)

For a normal system the momentum distribution has a smooth behavior at small mo-

menta and consequently the one-body density vanishes when 8 ~ oc, The situation

is differ nt if instead the momentum distribution exhibits the singular behavior

n(p) = Noo(p) + n(p) (2.19)
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characterized by a 6 fundi on term with a weight No proportional to the total number

of particles. This singular term arises from the macroscopic occupation of the single-

particle state with momentum p = O. The macroscopic occupation of a single-particle

state serves as a general definition of BEC and the quantity No/ N ~ 1 is called the

condensate fraction. From Eq.2.18, one finds that, in the presence of BEC, the one-

body density matrix does not vanish at large distances but approaches a finite value:

(2.20)

fixed hy the parameter nu = Nu/V. This behavior is often referred to as off-diagonal

long-range order, since it involves the nondiagonal components (r =1= r) of one-body

density [4].

2.2 Approximation Schemes for Bose gas

2.2.1 Mean-field Approximation

We show the most simple way to derive the Gross-Pitaevskii equation (GPE) [27,28}.

If readers hope to know about rigorous derivation of GPE, this paper [29] would be

a nice work about it. The Hamiltonian of the weakly-interacting Bose gas has the

following form,

iI = J d3r{,t (r)Ho{, (r) +~J d3r{,t(r){,t(r){,(r){,(r),

where Ho = (h2/2m)"\l2 + Vext is the single particle Hamiltonian and Vext is the

(2.21)

external potential acting on the system. Using the Bose commutation relations,

[{,(r'), ~t(r)] = 8(r' - r), [~(r'), ~(r)] = [~t(r'), ~t(r)} = 0, (2.22)

then Heisenberg's time evolution equation becomes,

iha~~r') = [~(r'), il]

= [fru+ Vexl + .9~t(r')~(r')]~(r').
(2.23)
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Since the condensate state involves the macroscopic occupation of a single state it

is appropriate to decompose the Bose field operator in terms of a macroscopically-

populated mean field term 1jJ(r') =< ~(r') > and a fluctuation term ~' (r),

~(r') = 1jJ(r')+~' (r). (2.24)

Inserting Eq.2.24 into Eq.2.23 and taking only the leading order terms in 'lj;,Eq.2.23

leads to the time-dependent GPE,

. 8'lj; h2\l2 ;!

~h-a = (--2- + Vext+ gl'tPl ),tP·t m
(2.25)

Since the mean-field approximation neglects quantum fluctuation, i.e., neglects ther-

mal and quantum depletion of the condensate, this is a valid approximation when

(1) the temperature is much less than the transition temperature for the onset of

condensation, and (2) when the condensate is sufficiently weakly-interacting so that

s-wave scattering length a is much smaller than de Broglie wavelength of the particles

}.rlR.

2.2.2 Normal Bogoliubov Approximation

We describe our system of N interacting bosons using the second quantized Hamil-

tonian in terms of the Bose field operator ~. This operator is a function of space in

the Schrodinger picture. The second quantized Hamiltonian is then given by,

iI =J d3r~t(T)Ho~(r)

+ ~J d3.T'J d3T'~t(r.)~t(',.')VintCT', TI)~(".I)~C"),
(2.26)

Where Vint(r-, TI) is the interaction potential acting between the bosons and Ho =
- (Jt2 /2m)''iJ2 + Vext is the single particle hamiltonian, where m is the particle mass

and v:,xt is the external potential acting on the system. The bosonic creation and

annihilation operators ~t(r), ~(1') fulfill the commutation relations

[~(r), 1~t(r')1 = b(1' - 1")

['~(r')' ,~(',.')l = [,~t(T), ,~t(r/)l = o.
(2.27)
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The gas is sufficiently dilute that the atomic interactions are dominated by low

energy, two-body s-wave collisions. These arc essentially elastic, hard-sphere collisions

between two atoms, and can be modelled in terms of the pseudopotential

Vint(r, r') = g8(r' - r), (2.28)

where 9 = 41rh2Nafm, with a the s-wave scattering length. Through this potential,

the Hamiltonian (2.26) is of the form

if = .Id3r~t(r)Ho~(r) +~.ld3r~t(r)~t(r)~(r)~(r). (2.29)

We can expand the field operator ~(r, t = 0) in terms of the BEC ground-state

amplitude 0,0'1/;0 with < Q.bao >= No, and the excited states

(2.30)

The c-numbor function 1/)0(1') is the normalized one-body wave function for the con-

densate, and ao is the corresponding destruction operator. In the Bogoliubov approx-

imation, since the condensate contains most of the particles (N - No < < No) where

N is total number of particles and No the number in the condensate , the operator

0,0 is replaced by a c-number N~/2 [30]. As a result, Eq. (2.30) can be written as

(2.31)

It is convenient to work in the Grand Canonical ensenble so we introduce the chemical

potential j.J, and a modified Hamiltonian

iI' = if - J-lN = iI - J-l J d3T~t(r)~(1')' (2.32)
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Substituting Eq.(2.31) into Eq.(2.29) and then putting them into Eq.(2.32), we obtain

iI' =J d3r[No'l/J~(r)(Ho - J1 + ~1'l/Jo(r)12)'l/Jo(r)

+ N~/2'l/J~(r)(Ho - J1 + gNol'l/Jo(r)12)b"~(r)
1/2 At+ No o'\lI (r)(llo - J1 + gNoIVJo(r)12hbo(r)

+ b"~t(r)(Ho - J1 + 2gNol'l/Jo(r)12)b"~(r)]

+ ~J d3r[No1/J~2(r)b"~(r)c)~(r)

+ 2Nt/2'l/J~2(r)b"~t(r)8~(r)8~(r)

+ No'l/J~(r)b"{Jt (T)b"{Jt (r)

(2.33)

+ 2N~/2'¢0(r)6Wt(r)t5Wt(r)6W(r)

+ 6it(T)6{;t(r)6~(T)6~(r)]

Since the scenario in which the number of noncondcnsato atoms, N - No, is far less

than that of condensate, Nu, we consider terms up to second order in 8i and 8it and

ignore the interaction of noncondensate atoms. The linear terms vanish identically if

'¢o obeys the following constraint

(2.34)

where Eq. (2.34) is the time-independent Gross-Pitaevskii equation. Consequently the

Dogoliubov Hamiltonian can be written as

iI' = J d31'No'l/J~(r)[Ho - J1 + ~Nol'¢o(r)12J1Po(r)

+ J d3r6~t(r)[llo - J1 + 2gNol1/Jo(r)12J6~(r)

+ ~g J d3r[No'l/Jo2(r)6i(r)6{J(r)

+ No6it(r)6it(rNJ~(r)].

(2.35)

Introducing the "quasiparticle" creation and annihilation operators Uj, uj allows

us to diagonalize the Hamiltonian (2.35) via

6W(r) = L[uj(r)a,j - vj(r)n,}J.
j

(2.36)
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Imposing bosonic commutation relations on a and at leads to the constraints on

uj(r) MId vj(r)

I:[Uj(r)uj(r') - vj(r)vj(1")] = 8(r, r')
j

I:[uj(r)vj(r') - vj(r)uj(r')] = 0
j

(2.37)

I:[u;Vj(r') - Vj (r)u; (r')] = o.
j

Inserting Eq.(2.3G) into Eq.(2.35). the Bogoliubov Hamiltonian becomes

Here E is a Hermitian operator

(2.39)

which satisfies J d3ru*(r)£'v(r) = J d3r(£'*u*(r))v(r)

We require that Uj and Vj satisfy the Bogoliubov equations:

(2.40)

(2.41)

(2.42)
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Using these results, the Hamiltonian (2.38) can be written as

iI' =J d3rNo1/J~[Ho - J-L + ~Nol1/JoI21'IjJo

+ ~LJd~T'[(Ej + Ek)(u}UkUjUk - ujul'Uj'uz)
jk

(E E )(~ ~ ~t~t * *)]+ .i - k ajakUkVj - ajakUjVk

= J d3rNo1/J~[Ho - J-L + ~Nol1/JoI21'IjJo

-L Ej .f d3rlVjl2 +L E/L;aj.
J J

(2.43)

2.2.3 Elementary excitations of Bose gas in the isotropic harmonic traps

For elementary excitations of Bose gas in homogeneous system, readers can find it
easily in some textbooks. Here we show elementary excitations of Bose gas in the
isotropic traps. This work is the extended contents of section 2.1.2. The I3ogoliubov
scheme in homogeneous Bose gas can be extended to cover the harmonically trapped
gases. Here we consider one-dimension situation. Eq.(2.13) is written as

(2.44)

where one must notice that due to the eigenfunctions <p~(x) = <Pn(X),

A* = A = ( rnw )1/2 (_1)(:im,i+nj)/2 1 r('rnj + Ttj + 1)
tn.,n,O,O 1",1£,0,0 2 2} v' " ., 2

1f L mJ.nJ.
(2.45)

where mj,nj label excitation modes, mj+nj is even for all j and Am,n,o,O = 0 otherwise.
I'(») is Gamma function. In Bogoliubov approximation, the normalization relation
should be a60'o+ Ln;io a~ an = N, and neglecting higher-order terms",

(2.46)

3The conditions for Eq. (2.46) are the condensate number No > > 1 and the non-condensate
number N - Ne «; No
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Based 011 the new normalization relation, the sum of Eq.(2.2) and Eq.(2.44) yields

the following expression for the Hamiltonian:

,1 9N2(mW)1/2 ~ 1
H = 2liwN + -2- 21rh + L...J Iiw(n + 2)a~,an

n#O

(2.47)
n

The following ideas for dealing with Eq.(2.47) is based on Bogoliubov transformation,

expressed in the language of matrix theory [31]. Let the indices tti, n run over all the

states denoted by vector indices m, ti. To diagonalizc Eq.(2.47) in order to obtain the

energy spectrum, it is possible to write Eq.(2.47) in the following matrix form:

[1= atdl + 2>'VN (at An + aTAn)

+ >. (4atAm,na+ atAm,natT + aTAm,na).
(2.48)

In the above equation, a and An are vectors of infinite dimension:

(

(1 0 0 )
the diagonal matrix f = ~ cz 0 • and the matrix elements of A...." are the

coefficients Am:n,o,O. We have also written s!j- = >..
In order to obtaiu the Hamiltonian in a diagonal form,

(2.49)
n

which £ is the diagonal matrix with elements En, one can apply a generalization of

the well-known Bogoliubov transformation demanding

(2.50)

where X and Y are Hermitian square matrices of infinite dimension and z is a vector

with real components. The Bosonic commutation relation of a and at, & and & tT
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require that matrices X and Y obey the following condition

(2.51)

where I is a unit matrix. Inserting Eq. (2.50) into Eq, (2.48) and simplifying the

results, we can obtain separately the following parts if one hopes to eliminate the

linear terms of a, at and atatT and aTa terms,

(2.52)

and

XeY + 4)'XAm,1'Y + ).XAm,,,X + ).YAm,,,Y = 0

YeX+ 4,.\YAmnX +,.\YAmnY + ,XXAmnX = o., , ,

(2.53)

(2.54)

Finally the energy matrix e is

e = Xt;X + Yt;Y + 4,XXAm,nX + 4)'YAm,n Y + 2).XAm,nY + 2)'YAm,nX (2.55)

and its eigenvalues define the energy spectrum. If the interatomic interaction 9 is

zero, the solutions for Eqs.(2.51, 2.53, 2.54) are X = I, Y = o. In the condition that

). is very small, we apply matrix perturbation theory to expand the matrices X and

Y into series over ,.\ [31],

(2.56)

The matrices X, v, VI can be found from Eqs.(2 ..51, 2.53, 2.54):

(2.57)

In the approximation up to Xl we obtain the matrix E:

e = e + 4)'Am,n + ~2 {(e-'Am,n?e - 3Am,ne-'Am,n - 2e-'A~,n} (2.58)

and the energy levels are given by En = en + 4'xAn,n,o,O + O(,X2). For other situations,

it is hard to solve analytically the Eqs.(2.51, 2.53, 2.54) and in general we must

apply numerical methods to solve them. The details of numerical solutions and their

applications will be demonstrat d in Chapter 6.
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2.2.4 Number-conserving Bogoliubov Approximation

In real experiments, only a few BECs can be regarded as a homogeneous gas: most

are created in inhomogeneous potentials such as magnetic traps and optical lattice

potentials, So it should be more realistic and meaningful to explore a series of theories

for inhomogeneous Dose gases. Additionally, real condensates arc generally influenced

by the environments around them, resulting that few of them are completely "pure"

condensates; that is to say, there exist quantum (thermal) fluctuations and conden-

sates at the same time. In general, quantum (thermal) fluctuations play an important

role in the properties of condensates. Especially in low-dimensional system. For ex-

ample, the quantum damping of a Bose gas propagating in 1D optical lattices [17], the

BKT transition and thermalization ill 2D Bose gas [25]. Thus, these topics of interest

require 11S to develop some theories to explore some properties of pure condensate,

condensates with quantum/thermal fluctuation and more importantly, the dynamics

of these Bose gases in realistic conditions.

In this section, I will derive the Bogoliubov theory conserving the total number of

particles based on previous work [32]. This background knowledge is convenient for

readers to understand the work of Chapters 5 and 6. Also, readers can identify the

discrepancies between normal Bogoliubov theory and number-conserving Bogoliubov

theory.

Hamiltonian constitution

A pure, homogeneous Bose gas appears rarely in real experiments. Bose-Einstein

condensation in atomic gases was experimentally achieved in traps, where gases are

naturally nonuniform. This nouniformity give rise to a new series of phenomena where

the quantum nature of the system shows up in a peculiar way. The Hamiltonian of

an inhomogeneous Bos gas is formed by adding an external potential term in the

Hamiltonian of Eq.{2.3),

ff = J '1j;t(r) Ho-J;(r)dr + ~ J -J;t(r)-J;t(r)~(7·)-J;(r)dr, (2.59)

wher H0 = - :: \12 + UC%t (r) and Ucxt is the potential function.



34

Constitution of condensate and non-condensate states

As is well known, a density matrix can be used to analyse some properties of a

quantum system in thermal equilibrium or explore quantum decoherence of mixed

states. To describe the properties of condensates and noncondensates, we first define

the one-body density function by

Pl(r,r';t) =< -J}(r,t);j;(r',t) > (2.60)

where the expectation < ... > is taken in the initial state. We assume in this section

that the N-particle system is initially in thermal equilibrium at temperature T. I

suppose that ¢>o be the eigenvector of Pl with the largest eigenvalue No:

J d1"p(T, 1"; t)¢>o(1", t) = No¢>o(T, t) (2.61)

The eigenvector fulfills the normalization condition, i.e., < C/>O I¢>u >= 1. It is not

difficult to understand that in the presence of a Bose-Einstein condensate, ¢>o is the

condensate wave function and No :::::N. As a description of the condensate and

non-condensate in our system, the atomic field ;j; is split into two parts:

;j;(r) = ¢>oao+ o;j;(1') , (2.62)

where 0,0 annihilates a particle in the condensate CPo. The remainder 6;j;(r) is orthog-

onal to ¢>u:
(2.63)

For number cons rvation of particles, there is no single particle coherence between

the condensate and the non condensed modes:

< aZ6;j; >= O. (2.64)

Thus we define the operator A transferring one non condensed particle into the con-

densate:

(2.65)

Since the number of non-condensed particles 6N << N in the large N limit when the

temperature is mu h low r than the critical temperature of BEC, and the trapping
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potentials and mean interaction energy are fixed, one can make a systematic expansion
A At

of the exact condensate wavcfnnction cPo and of the fields A and A in powers of the

small parameter .J6N/N,,", l/VN. Formally,

(2.66)

(2.67)

Order v'N : Gross- Pitaevskii equation

In order to simplify the understanding of the relation between condensate and non-

condensate modes, we define the projector onto condensate wavefunction as

Qr.(1', r'; t) =< 1'1¢o(t) >< ¢o(t) 11">

and thus the non-condensate space is orthogonal to condensate space [32], written as

Qnon(1', 1"; t) = 8(1' - 1") - Qc(1', 1"j t). So

8'J(r', L) = ,Jet, L) - ¢oCt, i) J dr' ¢~C,.I, i),Jet', l)

= J dr' (6(r' - r) - ¢o(1', t)¢;(1", t))-J;(r', t)

J I , A I
= dr Qnon(1', r ; t)'Ij;(1' , t)

From Eq.(2.65) and Eq.{2.68), we get

(2.68)

d A_I At (J '( d Q ( ,.)) A{, ))dt A - v'Nao dr dt non r, r , t 'Ij; r , t

1 At J d'Q (, I. ) (d A (' ))+ V'Nao l' non 1, r ,t dt'ljJ r , t

1 (d At) '.7( )+ v'N dl ao d.p T, t .

Then w will simplify th thr e terms of Eq, (2.09). III the first term,

(2.69)

J d1"(:tQnon(r,1".t))-J;(r',t) = - J d1"(:tQc(r,r';t))?j;(1",t)

= - ¢o(r, t) J dr' (:t ¢; (1", t))( ¢o(1", t) 0.0 + 8?j; (1" , t)) - :t ¢o(1', t) 0.0 (t ) (2.70)



36

If the lowest approximation is considered, < <Polebo >= < <p(0) I<p(0) > and

d J 2dt drl<p(o)(r, t)1 = O. (2.71)

From Eq.(2.71), Eq.(2.70) can be rewritten

Eq.(2.70) = -( :t <p(o)(r, t))ao

+ <p(U)(r, l) [J dr'( :t <p(0) (r", L))<p(0) (r', l)ao - J dr'( :t <p(0) (1/, l))O'¢(1.i, l)]

= - ao.f dr' (:l <p(0) (1", t)) (6( r' - r) - <p(0) (1', t)<p(O) (r', t))

- <PCO)(r,t).l dr'(:l <p(0) (r', t))6~(r', t)]

= -ao.f dr' Qllon(r, r'; t) (:l <PCO) (r', t))

- <p(0) (r, t) ./ dr' (:l <p(0) ir', t) )6~(r', t)

(2.72)

In order to simplify the second term of Eq.(2.69), we first obtain a dynamic equation

of .(j;(r, t) through the Heisenberg equation of motion,

. d.(j;(r', t) A, A
?Ji dt = [v}(r ,t), H], (2.73)

and ins rt Eq.(2.59) into Eq.(2.73) so

d¢ (r' t) J A At 1 A t A Aiii dt' = dn/J(r', t)1/J (r, t)[Ho + 21/J (r, t)1/J(r, t)]1/J(r, t)

J At 1 At. A A A,- dr'lj) (r, t)[Hu + '2V) (1, t)v)(r, t)]v)(r, t)V)(r, t)

= J dr8(r - r')[Ho + g.(j;t (r, t).(j;(r, t)].(j;(r, t)

= Ho.(j;(r', t) + g~t(r', t)~(r', t)~(r', t).

(2.74)
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Then inserting Eq.(2.62) into Eq.(2.73) gives,

iii :t'~(r'" l) = Ho¢o(r", Oao + gNj¢O(T', l)j2¢0(r.l, l)o'o

+ Ho8"j;(r', t) + 2gNj¢o(r', t)j28"j;(r', t)

+ g¢~(r', t)aoa06~~t(T', t) (2.75)

+ 2g¢0(r/, t)8"j;t(rl, t)8"j;(r', t)ao + g¢~8"j;(rl, t) 8"j;(r', t)ab
+ gJ"j;t(r', t)8"j;(r', t)8"j;(r', t)

In terms of the lowest approximation and ignoring all but terms of IN, Eq.(2.75) is

rewritten as

Due to

ao = J dr¢;{r, t)"j;(r, t), (2.77)

dd0,0= J dr[rI,d¢~(r, t)(¢o(r, t)ao + 8~(r, t)) + ¢~(T, t) dd1~(T,t)] (2.78)t t t
Combining Eq.{2.77) and the last term of Eq.(2.69), one can see that the last term

of Eq.(2.69) is of the order NO so it does not contribute to the present order IN.
From Eq.(2.69), Eq.(2.72), Eq.{2.76) and Eq.(2.77), one can get

dA,_ 1 ~t~JdJQ (.I.)d", (I)dt _ - JNaoao r non r,7 ,t dt 'fI(0) r ,t

- J-Nab¢(O)(r, t) J dr'(! ¢(o)(r', t)8~(r', t)

+ ~it6 J dr' Qnon (1', 1'1j t)[Ho¢(o) (1'': t) + gj¢(O) (1" ,t) j2¢(O) (1'1, t)abao]ito
iii, N
1 J d t At d A A+ IN dr[dt ¢o(r, l)(¢o('t, l)ao + J't/; Ct, l) + ¢oCt, l) dt't/;t(r, l))8't/;(T, l)

(2.79)

In the lowest approximation, we choose all terms of IN, resulting in

(2.80)
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From the requirement Eq.(2.64), (d/dt) < A >= 0, and the expectation value of

Eq.(2.80) determines the lowest-order approximation to <p(o):

v'N[J d1"Qnon(r, 1"; t)[Ho + gNI<p(o)(r', tW - ind
d
l¢(o)(r', t) = O. (2.81),t

Since the orthogonality relation between Qllon and <p(0), i.e.,

J dr' Qnon(r, 1"i t)~( t)<p(O)(1", t) = 0, (2.82)

where the ~(t) should be real constant because 1<p(0) > is the eigenstate of Hi, +
9N 14>(0) (1", t) 12: we therefore have

(2.83)

where the arbitrary real function ~(t) corresponds to an arbitrary global phase of the

wave function <p(0). The time-dependent Gross-Pitaevskii equation is recovered by

choosing ~(t) = O.

Order NO: Time-dependent Bogoliubov-De Gennes equations

As one can see, the term of <P(1) should contribute to the order of NO. In the next

section, we will di play the result of <P(1) = 0 and we will use directly this result to

deduce the corresponding equation for NO. In the first term of Eq.(2.69), only the

second term of Eq. (2.72) contributes to the order of NO. For the second term of

Eq.(2.69). we can apply two means of deriving the same results contributing to the

order NO and her we will prove the equivalence of two means. In first case,

:l8~(r, t) = .f dr'Qnon(r, 1"; t) 1~(r', t) - .f dr' (:t ¢~(r', t))<po(r, t)~(r', t)

- .f dr' 4>~ ( 1", t) ( :t <Po ( 1', t) ) ~ (1" , t) .
(2.84)
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Since 1i'~('" l) = (;t,rPoC", l))uo + rPoC,.,l);t,uo + ;t,6'~(T" l), the term of 1t6'~(T', l) can be

simplified as

:t8~(r,t) = !~(r,t) - (:trPo(r,t)) J dr'rP~(r',t)~(r',t)

- rPo(r,t) J dr'(!rP~(r')~(r"t) - rPo(r,t) J dr'rP~(r"t):t~(r"t)

d J A J d A= - (dt rPo(r, t)) dr' rP;(r', t)'ljJ(r', t) - rPo(r, t) dr' (dt rP~(r')'ljJ(r', t)

+ J dr'Qnon(r, 1"; t) :t ~(r', t)

(2.85)

where we have use the condition of ao = I dr'rP'O(r', t)~(r', t). Although we deduce

the same term: 1t8~(r, t) in two means shown separately in Eq.(2.84) and Eq.(2.85),

it demonstrates the applicability of physical qualities, such as Q, Qnon, and~. Since

we only collect those terms with the order NO, Eq.(2.84) is simplified as

Eq.(2.84) =.1 dr"i~Qnon(T,r';t){ [JIo+2ga6aol4>(o)(r',t)12] 8.J;(r',t)

+ grP~O)(r', t)a~8~t(r', t)} (2.86)

- J d7"(:~rP(U)(r"t))rP(0)(r,t)o~(r"t)

Through the previous results ;/;,"/;(0)(1", t) ~ 'ljJ(O) (r', t) so the last term of Eq.(2.8G)

is equal to zero.

In the same ord r approximation,
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Inserting Eq.(2.8o) and Eq.(2.87) into Eq.(2.o9) and we collect the previous results

and identify 4>0 and gii6iio with 4>(0) and gN, respectively, in a manner consistent with

the order NO of the calculation.

ih :/, ..= J-Niib J dr'Qnon(r, r', t) { [Ho + 2gii6iio 14>(0) (r'. t)12] 8-J;(r', t)

+ g4>(O)(r', t)iiG8'I/Jt(r', t)} - J-N~(t)ii6-J;(r" t)

Here, we utilize 6-J;(r', t) = J drQnon(r', r; t)8-J;(r, t) and Eq.(2.88) can be rewritten as

(2.88)

ili1A = J-Nii6[IIo + gNI4>(o) (r', tW - ~(t)]6-J;(r, t)

+ J-Nii6.l d1"Qnon(r, r', t)gNI¢>(o) (r', t)12./ drQnon(r', r; t)8-J;(r, t) (2.89)

+ J-NgfJ.l dr' Qnon (1', 1"; t)4>~O)(1",t)iio.l d1'Q~on(1", 1'; t)8~t(r, t)

Thus, we can obtain the time evolution of the operators A, At through Eq.(2.89),

. d ( A(t) ) ( A(t) )'th- = L t 0
dt At (t) ( ) At (t ) (2.90)

with

£(t) = (A B)
-H* -A*

(2.91)

where A = HGP(t) + gNQnonl4>(o)(r, t)12Qnon - ~(t) and HGP = Ho + gNI<p(o)(r', t)12
and B = gNQnon4>(O)(T,t)Q~on(t). The 0 describes the integral relation shown in

Eq.(2.89). Although the mans of writing in Eq.(2.90) is much simper than Eq.(2.89),

we should k ep clear in mind the integral relation shown in Eq.(2.90).

Order N-I/'}.: Oortections to the Gross-Pitaevskii cquaiioti

As one can ,th fact of 4>0 = 4>(0) in the lowest approximation permits to derive

the n xt order iv-1/2 by inserting 4>0 = 4>(0) + Jt4>(1) into Eq.(2.81) and ignoring
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other terms,

)-;v [J ds' Qnon (7',1" j t) [HO<P(l} (7", t) + 2gNI<p(0} (1", t) 12<p(1} (7", t)

+ yN ¢(O) (r', L)<P(l) ir', L) - iii :t<P(1} (7.1, L) - e¢(l} (r", L)] = O.

One needs to notice that the last. term corresponds to the global phase of the conden-

sate wavefunction <Pobecause of the orthogonality relation, J dr'Qnon(r, 1"; t)<po(r', t) =

(2.92)

O. Through minimal manipulation, one can obtain

(2.93)

where

(
n; + 2gNI<Po12 - e gN<p~ )

LGP=
-gN<pc/ -Ho - 2gNlcI>ol2 + e .

From the Eq.(2.93), one can see that <p(1)(t) = 0 if <P(l)(t = 0) = 0 in that <P(1) is

linear and homogeneous. This assumption is easily satisfied in real systems. The

(2.94)

system is initially in thermal equilibrium; in this case, from a time-reversal symmetry

argument, the N-partide wave function is real, consequently <p(0), <P(1) can be real.

However, the <P(1) must be orthogonal to ¢(O) because of the normalization condition.

The wave function <P(1) should be zero through the above equation.

2.3 Classical Field Method

2.3.1 Introduction

A key focus of the explo ion of interest in the dilute atomic gas Bose-Einstein conden-

sates has b n the study of the time evolution of condensates from some initial state.

Among many works, the description of condensate using the time-dependent Gross-

Pit aevski i quation (GPE) or coupled Gross-Pitaevskii equation ( or their equivalent

hydrodynamic versions) has succeeded in explaining some phenomena, such as shak-

ing the trap to excite R01md wave'...s [33,34], removing a potential barrier to allow two

condensates to interfere [35,36], applying electromagnetic fields to transfer conden-

sate population into oth r, po sibly untrapped states [37,42]' or stirring a condensate
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to excite vortices [43,44]. However, there is an increasing number of works which

focus on coherence [45] and the diffusion of relative phase between two condensates

held separately [46], probing for many-body states in two- or one-dimensional qua-

sicondensates [25] and the pairwise scattering of condensate atoms into unoccupied

modes [47]. Since the GPE can be derived as an equation for the condensate ampli-

tude assuming that the condensate state is multimode coherent state,it is impossible

to describe these phenomena. So we must seek an applicable theory to explore these

interests.

In research on quantum optics, early work suggested that the coherence proper-

ties in atom lasers may be strongly influenced by the nonlinear interactions and the

processing of quantum noise by nonlinearities leads to interesting statistical proper-

ties. In addition, it is well known that in quantum optics a classical electromagnetic

field obeying Maxwell's equations arises as an assembly of photons all in the same

quantum state. The motivation of the classical field method (Truncated Wigner

method) is that in the same way a Dose-Einstein condensate, composed of Bosonic

atoms all in the same quantum state, might behave very much like a classical field,

whose equation of motion is the Gross-Pitaevskii equation.

In this section, we will focus on a very useful method, the truncated Wigner

method (TWA), from quantum optics used in Bose-Einstein condensates. The trun-

cated Wigner method is one of the classical field methods. The basic idea of this

method is to expand a quantum field operator equation in the Wigner representa-

tion and derive a generalized Fokkor-Planck equation. The diffusion matrix of the

Fokker-Planck equation for the Wigner distribution vanishes identically and dynam-

ical quantum noise acts via third-order derivatives. These result in a deterministic

equation for the classical field, which coincides with the Gross-Pitaevskii equation.

We will give the derivation of the truncated Wigner method. Prior to this, the essen-

tial idea of the classical field method is shown in the flow diagrams and some recent

developments about this II1 thod will be shown in the middle part of this chapter.
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2.3.2 Truncated Wigner method

Hamiltonian constitution

In weakly-interacting Bose gas systems, the range TO of the interatomic forces is much

smaller than the average distance d = n-1/3 between particles, fixed by the density

n = NIV of the gas. This allows one to consider only configurations involving pairs

of interacting particles, while configurations with three or more particles interacting

simultaneously can be safely neglected [4]. Thus the Hamiltonian of the system in

terms of quantum fields ~t(r, t), ~(r, t) can be written:

(2.95)

where Uext(r) and 8Uext(r, t) are respectively a time-invariant external potential and

a time-dependent potential, while U2b(r - r') is the two-body scattering potential.

Under appropriate conditions, and with appropriate qualifications, the true intcrac-

tion potention U'l.b(r - r') may be replaced by a delta function 6(r - r') of strength

Uo, where Uo = 41Th2alm, where a is the s-wave scattering length [48]. The second-

quantized field operator ;j;(r) annihilates a particle from position r and obeys the

equal-time commutation relations for identical bosons,

[;j;(r), 1/~(r')]= [;j;t(r), ;j;t(r')] = 0

[;j;(r), ;j;t(r')] = 8(r - r'),
(2.96)

where O"(r)is the thrco-dimcnsional Dirac delta function.

Second quantization fOT bosonic field operator

By decomposing the field operator onto a single-particle basis

;j;(r, t) =L 'ljJj(r)Ctj(t),
j
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45

where the moue operators aj(l) and a}(l) also obey bosonic commutation relations",

we can obtain the full Hamiltonian on this basis, written as [j

(2.97)

One can notice that the application of TWA is similar for the plane-wave basis

(PW) and single-harmonic-oscillator basis (SRO) except that the quantum fluctu-

ations in the inital state are introduced by adding half an average quanta into a

limited number of different basis modes (PW and SRO) with a Gaussian distribution

in amplitude (here, we assume that Uext(r) is harmonic potential). Physics must. be

independent of choice of basis but, once approximations are made, some bases are

more natural than others and lead to more obvious approximation schemes. The

above point of view is one motivation for Chapter 5. Recently, the effect of the

plane wave basis and harmonic oscillator basis has been investigated with respect to

the equilibrium properties of a harmonically trapped BEC at finite temperature [50].

Here we choose the basis Ret. to be tho orthonormal cigcnstatos of the nonintcracting

and time-invariant pot ntial portions of the Hamiltonian, Eq.(2.95), i.e.,

h'J.\l'J
{- -2- + Ucxt(r)}1/Jj(r) = ~j1/Jj(r).m. (2.98)

Since in higher-energy modes, time dependence is so rapid as to be unobservable in

experiments on ultracold gases [51,52]' it is suitable to simplify Hamiltonian by using

an effective field theory, obtained hy eliminating higher-energy modes. Thus within

the Heisenberg picture, th effective low-energy Hamiltonian becomes

fleJ/(t) =L hW/l}aj +L < j!6Uext{t)!t > a}at
JET, jtET,

Uo ~ '! t At At A A+ 2' L...J < Jr s > ajarasat,
jf'.:,tEL

(2.99)

4Here, {,pj} is an orthog nal and complete set, i.e., J dr,pi (r)'l/Jj (r) = ai,j and Li 1/Ji(r)'l/Ji(r') =
a(r - r"). Under th e conditions,th commutation relation of field operator ,j;(r) , ,j;t(r) lead to the
bosonic commuta ion relations of mod operator a, a.t.

5Indeed, Eq.(2.97) is ob ained in the condition that the single-particle functions 'l/Jj(r) is the
eigenfunctions of - 1;~~~ + Ue:d(r}.
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where L describes the low-energy modes. It should be noticed that in numerical

calculations, the low-energy modes include both condensed modes and low-energy

excitation modes. Since the BEC is initially weakly interacting and confined in a

harmonic trap with no optical lattice: the main contribution to the matter wave

coherence comes from the thermal and quantum fluctuations of low-energy phonons

[55]. Here, the treatment of TWA gives a uniform average distribution of quantum

noise in every low-energy mode. This might be inappropriate for dealing with the

distribution of quantum fluctuation in a strongly confined harmonic trap. However,

the Bogoliubov theory can correct the distribution of quantum fluctuation in low-

energy excitation modes. Thus it provides further motivation for the work in Chapter

5. Let us define the density operator of the restricted basis field to be p(t), whose

time evolution is straightforwardly obtained using the Von Neumann equation

.~dp(t) [H~ () ~()]'In-;;;:- = eff t ,p t . (2.100)

The construction of dynamic equation in Wigner representation

In quantum mechanics, the role of harmonic oscillator arises from the fact that in

practice very many forces arc nearly harmonic as well as from the all pervading

nature of electromagnetic fields, which, like all Bose fields, are exactly equivalent to

assemblies of harmonic oscillators. The harmonic oscillator has an infinite number of

equally spaced energy levels. In general, systems with a finite number of energy levels

do not exist. However: in many situations it is possible to consider that interesting

processes involve only a few energy levels of some system, and in these situations

it is advantageous to consider all idealized Hamiltonian whose full range of energy

levels comprises only those of interest. As discussed in the above section, Bose-

Einstein condensates satisfy this situation: a large number of atoms occupy limited

low-energy stat 5, and the properties of high-energy states occupied by a few atoms

are hard to explor and m asur by experiments and thus can be neglected.

From the r gime of quantum optics there have been developed a very rich profusion

of techniques for d aling with these kinds of system. Much of the thrust of these tech-

niques lies in th ir ability to exploit classical analogues-most particularly analogues
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with classical nois theory. Using these techniques, namely phase space techniques,

such as tho P<rcprcsontation of Glauber and Sudarshan and tho Wigner represents-

tion, purely harmonic systems can be reduced to non-operator systems. However the

essentially quantum mechanical nature of the problem is present in terms of the inter-

pretation of the apparently classical variables. These phase space techniques are not

actually applicable to their fullest advantage until quantum noise systems are dealt

with but even in the case of non-noisy systems they bring a clarity to the problem of

the transition from the quantum world to the classical world. The central idea which

unifies all the harmonic oscillator techniques is the coherent state, first introduced

by Glauber, which is the quantum state which most closely approaches the classical

description of harmonic physics.

Since the earliest period when the phase space techniques, i.e., the positive-P

function and the Wigner distribution have been applied to trapped Bose-Einstein

condensates [53), the methods have played an important role in the regime of Bose

gases, such as the prediction of quantum turbulence [47Jand quantum correlations [54J

in colliding condensates, and damping quantum transport of 1D Bose gas in the

lattice [55J. To obtain the time evolution of p(t) we may represent p(t) in a suitable

phase-space. Here w mak use of the Wigner representation and the multimode

Wigner function is defined:

(2.101)

where the multirnodc Wigncr characteristic function is

xw(>'j, >'i, t) = Tr {fJ(t) fi exp[>'it} - >.;ajJ} .
J=1

(2.102)

Here aj(aj) creates (aunihilatcs) atoms in the jth single particle mode. For con-

verting between expectation values of the multimode density operator and averages

over the corresponding multimode Wigner function, we use the multimode operator
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correspondences [50]

a.jp(t) t-t (aj + -2
1
GO* )W(aj, 0:;, t)

O'.
J

a.jp(t) t-t (a; - ~a~)w(aj,o:j,t)
J

p(t)a.j t-t (aj - ~a:~)W(aj, aj, t)
J

p(t)a} t-t (a; + ~a~)W(aj, uj, L).
J

(2.103)

Here, we give a proof for one of them and others can be verified in a similar way. This

process of deducing correspondences can help us understand the nature of TWA and

know how to use them. For simplification, we consider the case of a single mode and

the Wigner characteristic function is expanded 011 coherent state,

(
\ \* ) - J dO'.*dO'. -O!·a I ADAI

W 1\, 1\ ,t - 2' e < 0: po:>1n
(2.104)

where b = exp[Aa.t - A*a.]. Thus

dXW(A,A*,L) =T.{A(_A ~)DA}
dA* . 7 P a + 2 (2.105)

Using partial integration, w can obtain

~ J dAdA*exp[-Ajuj + AjUj]Tr-{paD} = 21 . J oe»~2exp[-.AjO~;
21r'l m

+ Ajaj]Tr{pb} + o:W(a, o", t)

= - 2:0'.* lV(a, 0:*,t) + o:lV(a, 0:*,t).

(2.106)

so

pa t-t (a - 2:0:.) W (a l a * , t),

and other r ults an b obtain d in a similar way.

On the other hand, n an see easily the correspondences of time differentiation

of density op rator,
dp(t) aW(a, o", t)
-- +-+ _ _.:......_.:.........:......:..
dt at (2.107)
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Defining the rnultirnode Wigner function W(aj, aj, t) to be the quasiprobability ana-

loguc of the density operator {J(t), the quantum-mechanical Eq.(2.100)' inserted with

Eq. (2.99) can immediately be written in Wigner representation as

at
aWdillg oW pert Ownonlin

at + at + at (2.108)
oW

where the diagonal. perturbing and nonlinear portions of the partial differential equa-

tion correspond respectively to the first, second and third terms of dynamic equation

Eq. (2.99). The diagonal portion of the evolution, corresponding to the free rotation

of the modes, is obtained as

Owdiag a 0)ilL D = - L '!Wj ("?Ietj - '?j;etj W.
t . , Vaj vaj.JE,

(2.109)

Similarly, the Wigner function evolution due to the perturbing potential can be shown

to become
oH!pert ( a 0)

ih. Dt = - L < j\8Uext\t > Da .at - Da* a; W.
~E~ J t

The more complicated term is expanded and simplified as

(2.110)

(2.111)

where Rome commutation relations have been applied to deduce the above result, fl."
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shown below

a
[ai, -a ,.l = 0

a.j

[a.i, ail = o.
(2.112)

Due to the presence of the summations, the specific indices involved in each term are

mutable. We can therefore write the nonlinear Wigner function evolution component

(2.113)

In order to proceed analytically, we shall restrict ourselves to a multi-mode Wigner

function which at some time r is factorisable into single-mode functions, thus

(2.114)

Substituting the given Wigner function Eq.(2.114) into the nonlinear portion of

the equation of motion Eq.(2.113) gives the evolution at time r as

awnonlin
'iii at = U» L < jr-jsl > [rj(aj - ajo)at

jn;tEL

- rtaj(at - atO)] x {[a;as - br,s]

- ~ [~s (a; - a;o) (as - asO) - c5r,s]}W
(2.115)

Given that the process giving rise to the cubic noise is local in coordinate space, we

now introduce

W1'(r) =L 'ljJj(r)aj,
jEL

which represents a possibl tate of the total restricted basis field in coordinate space.

For the purpo s of th present analysis we also find it useful to define the wavefunc-

(2.116)

tion

(2.117)
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and the related

(2.118)

where we have calculated the (classical) expectation values using the particular form

of the multimode Wigner function given by Eq. (2.114). These definitions (Eq.(2.116),

Eq.(2.117), Eq.(2.118)) allow us to rewrite the evolution of the multimode Wigner

function due to the pairwise collisions at time T as

8W
fLUJ41

". Jin at, = 2Uo dX[(fp - ~po)Wp - Wp(~p - ~po)]

x { (lwpl2 - L l1/;jI2) - (I{p - {POI2
jEL

-L i l1/;jI2) },
jEL

(2.119)
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where w have suppressed the explicit spatial dependences and have retained the

previous ordering of terms on the second line.

As we have now evaluated all the operators acting on the Wigner function, the

evolution given by both Eq.(2.115) and Eq.(2.119) is uniform over that Wigner func-

tion. It would th r for be ufficient, in order to justify the truncation of the cubic

derivative t rms, to show that the total evolution imparted to the Wigner function

by these terms is small compared with the integrated linear derivative terms. Under

this local analysis then, the inequality

I
I~p - ~pol2 - L:jEL 1t1'I/JjI21 1

IWpl:.! - LjEL I'l/Jjl:.! «, (2.120)

must hold over all space. Using the multimode Wigner function Eq.(2.114), we find

expectation values of some terms in Eq.(2.120),

:.! :.! ,,",,1 :.!< IWpl , T >= IWpol + L..J r.14Jjl ,
jEL J

2 "",,rj 12< lep - ~pol >w= L..J "41'I/Jj ,
jEL

(2.121)

where

Wpo(r) =L 'l/Jj(r)ajO,
jEL

is the expectation valu of the coordinate space field, and can be identified as the

condensate wav function. Applying the multimode correspondence between Wigner

function av rag and mod operator expectation values [56],

(2.122)

we also find tha in the g'11 iral case

2 ~ t ~ 1< Iwp(r)1 >w=< wp(r)wp(r) > +'2bp(r,r), (2.123)

where c5p(r r') = L:jEL 'l/Jj(r')'I/J.i(r) is defined as the restricted delta function [52].

Using th r ult Eq.(2.120) and Eq.(2.123) we are led to the condition

(2.124)
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Thus ill order to justify the truncation it is required that the real particle density

he large compared with some function of the density of mode ... LjEL 11/)jI2. Based

on the above condition, th total Wigner function evolution given above (Eq.(2.109),

(2.110), (2.113)) an be writt n as the Fokker-Planck equation

oW 8 .inTt ~ - L OOt. [1iwjOtj +L < JI8U,,_T.tlt > at
jEL J tEL

+ Vo L < j1'lst > (Ot;Ots - 8r,s) at] W
rIJtEL

+L a~~[1U..,·jaj +L < jlc5Vextll >* a;
jEL J teL

+ Vo L < jTlsl >" (ara: - Dr,s)a;] W.

(2.125)

"stEL

Within th Ito calculus, the Fokker-Planck equation governing the evolution of a

multi-mod distribution function P(z, t) over the vector of variables z = {Zj} can be

written as [57]

DP(z,l) "Dat = - L- oz[A;(z, t)P(z, t)]
j J

1;:)2 T+ '2L 0 .[) .{[B(z, t)B (z: t)]ijP(z, t)}:
.. Z, zJ
t"

(2.126)

where A(z, t) and B(z, t) are resp ctively the drift vector and diffusion matrix. The

corresponding to hastic differential equation to Eq.(2.126) is 6

dz(t) = A(z, t)dt + B(z, t)dW(t), (2.127)

wh r dW(t) i a v tor f indep ndent Wiener processes, and describes gaussian

random fluctuations al out. the drift evolution. Our truncated Wigner Fokker-Planck

equation Eq.(2.125) on ain only drift terms, nabling us to write the stochastic

differential equation for 1 w- n rgy mode amplitude Otj using Eq, (2.127) straightfor-

GActually, it is n t difficult t und rstand Eq.(2.127) providing one applies the skills of partial
differential quation, dz = () (Z;N:.1i",t)dt + ~L:i 8z,:;(z,t) {[B(z, t)BT (z, t)]iP(Z, t)}.
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wardly as

, dCti(t) "',)t/i----:Jt' = !iwjCtj + Z:: < JloUext(t It > Ctt(t)
tEL

+ UoL < jTlst > (Ct;(t)Qs(t) - Or,s)Ctt(t),
rstEL

(2.128)

Introducing the time-dependent restricted basis wavcfunctiou,

W'P(r, t) =L 'l/Jj(r)CtjU),
jEL

(2.129)

we find that th mode amplitude evolutions can be rewritten as

ili~j =liwjQj +J dnpj{oUext + Uo[lw'PI'l

- 8'P(r, r)]}W'P (j E L),
(2.130)

where 81'(1',1') = EjEL Wj(T)'l/Jj(1'). 81'(1',1') depends on the low energy modes, L,

and are spatially invariant so on can remove the anomalous term from the evolution

by a simple n rgy r caling. Thus, the form of the stochastic differential equation

becomes

'/idCtj 1;., • J * [ I I'll () ('t dt = //JJ.)jaj + dX'l/Jj 6Uext + Uo W'P Wp j E L . 2.131)

Eq.(2.131) impli th volution of every mode satisfies the same equation of clas-

sical traj .tory and th modes display essentially Gaussian statistics at all times,

wit h minimal correlations between the modes. Consequently, the truncated Wigner

stochastic diff r n ial Eq.{2.131) expressed in a fully coordinate space form becomes

. 8w'P [1i2\l2] 2'tliat: = - 2m + Uext Wp + P[8Uext + Uolwpl ] 'lip. (2.132)

Finally, am one pts and central ideas about Truncated Wigner method will

be describ d blow w 11as som misunderstandings about the method and the

motivation of work in pres . of Chapter 6 will be discussed. Firstly, we must

identify the difference between many-body state W1.2, .."n = l'Ih, 7/12, ... , 'l/Jn > and the

mod state Ej j<Pj hr. i in lassical field refers to the amplitude function in the

j-th low- n rgy m d while n particl state Wi in many body state is constituted
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possibly by the states of several modes. Due to the noise part of aj with random

Gaussian distribution, it. causes some states in a single trajectory behavior like many

body states but th average effect of so many trajectories is equivalent to single

particle behavior. For understanding conveniently the central ideas and applicability

of Truncated Wigner m thad, we give a simple example in quantum physics. As is well

known, J ai'I/Ji(r)aj'I/Jj(r)dr = 8i,j in normal case where ai, aj are constant. However,

in the classical field, ai, aj are variables and the integral above might not be true

and is coufirrucd if the average of many trajectories i::;performed for these variables

< o.:o.j >w= Di,j' Secondly, in the condition of single trajectory, aj = ajU + Xj, where

ajO is cond nsate part and Xi is noise part: and

(2.133)

In many trajectories,

(2.134)

From Eq.(2.131) and Eq.(2.134), one infers that if the number of non-condensed

atoms is small ompar d with th condensed number, it will not affect the nature of

dynamics from lassical fi ld theory in every mode and the dynamics is independent

of the mode fun tions. How ver, we can see in Eq.(2.133) and Eq.(2.131) that if the

noise numb r is large and its contribution to the nonlinear term cannot be ignored,

a small chang might .aus dynamic instability ::;0 that the dynamics might depend

on the choice of basis.
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CHAPTER 3

Vortex Formation and Interference

Properties of Merging Bose-Einstein

Condensates

Interference is the sup rposition of two or more waves that result in a new wave

pattern. In gen ral, th term interference refers to the interaction of waves which are

cO'f'rdutcd or colter 'nt with ca ·h other. In TIEes, matter wave interference implies

the long-distance coherence of cold atoms in analogy to the coherence phenomena

exhibited by light. Distinguishing from light interference, this interference from many

massive atoms can be controlled and modulated freely, particularly in local regime

of position and in orne parameters. Meanwhile this interference might be sensitive

to som factors, su h emperature, interatomic interaction, the geometric shape of

atom clouds, t. Thu it is used to sense accelerations [93, 112], monitor quantum

dccoherencc [41] and m asure fundamental constants [112,113].

A quantum vortex is a topological defect exhibited in superfluids, superconductors

and BEes. In BEes, th r is the relation between the velocity of the condensate flow

v and th phas of ondensate (), v = ~ve, so that V x v = O. This implies that the

velocity fi ld i irrotati nal, unle s the phase of the order parameter has a singularity

[104]. Po ibl motions of the condensate are therefore very restricted. In terms of a

single-particle wav function of the condensate, around a closed contour the change

~O in the phase of the wave function must he a multiple of 211', or ~O = f "\10·dl = 211'l,
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where l is au integer. The corresponding cuculatum r around a dosed contour is given

hy r = J v . dl = ~27rl = l!;_, which shows that it is quantized in units of him. This

quantized circulation indicates the possibility of forming quantum vortices.

Considering purely azimuthal flow in a trap invariant under rotation about the

z axis, to satisfy th requirement of single-valuedness, the condensate wave function

must vary as eiUJ, where ()is the azimuthal angle. It is easy to obtain Ve = l2?f:'r' which

indicates that if l =J:. 0, the condensate wave function must vanish on the axis of the

trap r = 0 and the structure of the flow pattern is that of a vortex line. In the case of a

uniform medium, the analytic form 'Ij)(f) = v;~x1eilO, where n,2 is the BEC density far

from th vortex, x = k with ~ is healing length of the condensate. Correspondingly, a

singly-charg d vortex (l = 1) energy f,. is given by E" = 7rn~ln(1.464V where b is the

farthest distan from th vortex considered. For multiply-charged vortices (l > 1),

the energy is equal approximately to tv ~ l27rn ~ In (~), which is greater than that

of l singly-charged vortices. This implies that these multiply-charged vortices are

unstable to decay [4].

3.1 Introduction

Experiments in which a Bo condensed cloud of ultra-cold atoms is divided into

two spatially separated components and then allowed to overlap spatially have been

widely r port d [6 ,94,103]. These experiments have a fundamental interest, for

example, iu demonstrating th ' quantum nature of the condensate, and in investigating

decoherence. In addition . nch processes are central t.o matter wave interferometry

using ultra-cold at m ond nates: which may have many technological applications.

In general, th r ar two ways in which initially separated clouds can be made to evolve

so that they ub qu ntly ov rlap. Firstly: they can be allowed to expand by relaxing

the confining pot ntial that holds them apart [35, 94, 105J. Secondly, they can be

subjected to external pot ntial gradients that cause the douds to move together and

collide whils maint ining th ir form [10Gj. In realistic scenarios, a merging process

will, to m both of these mechanisms. The resulting interference

pattern will b mpl than in either of the idealized cases. To date, there
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has been little study of this general case or how it compares with either the purely

expanding or purely colliding scenarios.

It is now known that while the behaviour of very low density condensates in such

situations can be well d cribed using elementary single-particle quantum mechanics,

systems in which the int ractions are stronger show behaviour which is quantitatively,

and fr quently qualitatively, different. In particular it was shown by [86] that the in-

terference pattern form d when two counterpropagating interacting clouds overlap

can give rise to the formation of persistent dark solitary waves and. subsequently,

the nucleation of linear arrays of vortex rings. As well as having implications for

real matt r wave interf rometers, these processes are of intrinsic interest as an ex-

perimentally controllable route to homogeneous quantum turbulence [69]. Recently,

exp riments hav ob rved the formation of spontaneous vortcies in the merging and

interfering of three part BECs [38]. Correspondingly, some theoretical works focus on

the role of ramping down and phase imprinting in the formation of these spontaneous

vortices [39,40]. Alth ugh the role of interference in the formation of vortices has

been pointed out [39,40], the detailed description of how the interference affects the

formation of nonlin ar ex itations has not been shown.

In this part, we inv tigate the interference instability and vortex formation of

two merging BECs in a imple h uristic model, which is equivalent to curve a single

trap into a doubl minimum trap using an atom chip [94], optical barriers [103] or an

acousto-optic modulator [105]. Our results show that the formation of vortex rings

arises in the r gions whi h evolved from interference minimu. Through the analysis

of our simulations and known experiments, we argue that the role of the interference

in merging BEGs is of critical importance for the spontaneous vortex formation:

interference of atom clouds generates high-density peaks and extremely low-density

valleys. Th e additional d gr es of freedom might be produced by thermal/quantum

fluctuations [25], dynami instability [103], external potential or perturbation [86,92,

94]. Ther for th additional degr es of freedom excitate high-density region from

original peaks or condensate patches reeling around low-density regions evolved from

initial valleys, r ul ing in th formation of vortices. Moreover, an intrinsic relation

among colliding, expanding, and merging BEGs is deduced based on simulations using
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a large range paramet rs. Our interference formula derived from the analysis of these

simulations can explain well the spatial nonuniformity and dynamic properties of the

fringe patterns in some experiments [35] and our simulation. Finally, we propose that

the interfer nee dynamics of merging BECs can be observed experimentally under

presently available conditions [94, 105, 106].

Our g neral protocol involves preparing each of a pair of clouds such that it is

in the lowest (mean field) n rgy state of a harmonic trap. The prepared clouds

arc then displaced in opposite directions and allowed to evolve when subject to a

harmonic trap potential which need not he the same as that. used to prepare the

initial cloud. In general two dynamical processes will occur before the two clouds

overlap. Firstly th lauds can undergo (ballistic) centre-of-mass motion in response

to th trap potential. Secondly the clouds can change shape as they evolve (most

notably expanding or contra ting). In general, of course, both processes will occur

but we can identify two extreme limits. If two copies of a non-interacting Bose gas are

prepared ill th ' low' -t mcrgy state of a given harmonic trap and arc then placed at

symmetric points away from the centre of that trap, the douds will move ballistically

without changing volum until they overlap spatially. We refer to this as a "colliding

process". Alt rnativ ly two (interacting) clouds prepared as above can be placed a

fixed distance apart and then allowed to evolve in the absence of any trap potential.

In this case the cloud will expand until they overlap. We refer to such a process

as all "expanding" process. Intermediate cases where neither ballistic centre-of-mass

motion nor cxpan ion dominate will be referred to as "merging" processes. .

3.2 Simulations

In the most g neral as our simulations have the following general features. We

begin with a trap pot ntial of the form

( ) 1 2 1 2
Vo r, Z = 2"mW.l,Or + 2mwlI,OZ (3.1)
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(a)

FIGURE 3.1: Solid curve show the effective potential and Shaded areas in the two
pictures represent the initial atom density profile 1\It (x, 0, 0)12.

where (T, (), z) are polar coordinates of positions within the trap. We choose the form
for the function 4)(T, z) which minimizes the GP energy functional

(3.2)

subject to the constraint

N = 211" 1"'"dz 100

dTT 14>1:.! rdrdz
-00 0

(3.3)

where 9 = 47rIi:.!as/rn is the usual GP coupling constant and as is the s-wave scattering
length for inter-atomic collisions, In all of these simulations we use the value as =

2.9nm and m = 3.82 x 1O-2fikg, appropriate for a Sodium-23 condensate. In practice
the minimization is ffected by evolving an initially Gaussian form according to the
imaginary time Gro s-Pita v kii equation

84>(1', Z, 1') = _rbE[4>(1', z, 1')]
81' <>¢(1',z,r)

(3.4)

where r is a suitablly chos n friction co-efficient. To conserve the total particle
number, w normalize 4>(r, z: r) in every time step using Eq.(3.3).
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The initial condition for the main simulation is then obtained by setting the order

parameter to have the form

4>(r, Z, t = 0) = J 2 (1 ~ Q) (4j(r, Z - L\) + 4>(r, z+ L\)) , (3.5)

where

1 100 100

Q = N21r dz dn'¢(r, z - A)¢(r, z + A),
-00 0

(3.6)

representing a pair of .louds displaced in opposite directions along the z-axis. Q
ensures correct normalization of </J and might he important for tunneling and inco-

herence. It is worth pointing out that the representation in terms of a single order

parameter, 4> impli that the two clouds are fully coherent and it is not the case that

there are N /2 atoms in ach cloud. In all of the simulations described below, the two

clouds are spatially non-ov rlapping so that Q = O.
The subsequent evolution of the system is determined by numerically solving the

Gross-Pitaevskii equation

. a</J Ji2 2 2
l,Ji-a = --2 'V ¢+ VCr, z)¢ + 9 I¢I ¢

t m
assuming that the initial rotational symmetry in the xy-plane is preserved using a

2d Crank-Nicholson algorithm adapted to correctly treat the polar variable r. The

(3.7)

potential is now

( ) 1 2 1 2
V r, Z = 2mwJ.r + "2mwllz

where, in general wll :::; wlLO etc ..

(3.8)

3.3 General description of two condensates coming together

By analyzing th interference pattern generated by the merger of two condensates

we indetify thr ' type of behaviour and their corresponding parameter regimes.

We refer to the two extreme cases as colliding and F,xpanding, and to the generl-

ized interm diat ca as merging. To explore the role of the repulsive interatomic

int raction in h in en r nc fringes, we calculate the half center of mass (c.m.),

< X >+ (t) = fo xl1/;(x, t)12dx in a ID freely expanding single condensate through
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various atom Humber. From Fig.3.2, we observe that the strong interaction tends to

speed up linearly the expansion of condensate. Genuinely, onr simulations arc well in

agreement with ab initio calculation [110]. < x >+ (t) ~ VI + (wt)2R(0) where R(O)

is initial radius of condensate and w is trap frequency for generation of condensates

and is larger than 271"x 800 rads S-l here. Thus at t > 3J.1.s the second part in the

square is much larg r than I and < x >+ (t) is increased approximately linearly.

Therefore we take heuristically into account the atomic cloud internal expansion due

to the nonlinear term, approximate as a(x, t) ¢= ~11P(x, t)I~, where o.(z, t) is a modi-

fied coefficient dependent on the. density of the wavepackets. In real space, the state

of one conden ate can b describ d using a Guassian ansatz:

2.2r-;:::====~;------'

1 2

0.04-E 1.65
:i. 0.02 .....

- 1.1+

"X
V 0.55

00 0.025 0.05 0.075

t (ms)
0.1

FIGURE 3.2: Th c.m. trajectories of half condensate versus process time t from ID
simulation of fr ly expanding single condensate with parameters of 9 = 2hwra and
total number of atoms N varied from 10 (bottom) to 1000 (top); Insert: short-time
behavior of the traj ctory.

1 ",2

1/.o(x, t) = (271"l~tl/1 ato c- 4,,2(t)

where (j(t) = Jl~+ i(2'! + a,:). Xow we consider a pair of wavepackets initially

at position ±Lj2, \lI(x,O) = ~(1Po(x - ~,O) + 1Po(x + ~,O)) so that, this pair of

(3.9)
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wavepackets at later time L with the same speed u = hk'/,rn toward each other,
\T ( ) 1 (.1 ( L) -ik'x .1 ( L) ik' X) h k' . .J 1 .J.jf x, t = 'J2 '{'o x - 2' t c + '{'o X + 2' t c , were wavcvcctor ISmonu atcd

by the variation of trap potential. Thus, we can obtain the effective wavelength for

the interference fringes through 1W (x, t) 12,

(3.10)

Under the ondition that the nonlinear term is extremly small, there exists the

highest-visibility interference fringe with ,\ = f, = :v and the expansion of the atomic

cloud is almost zero; that is analogous to classical interference. We define this process

as colliding. In til oth r extreme condition, k' :::::0 and 91'¢1:.l ::::: 0, it describes

free expansion of two DEC WRVC packets without the interatomic interaction and
4 Ii.·~t~

interference fringe p riod ,\ = 211"(1In;;;{ -). In general, the first term in the bracket

can be neglected with respect to the second term in a fairly long time so that the fringe

spacing ,\ = ::.~u ed in explaning the experiments of expanding two condensates [35].

We refer this process as expanding. Except the two cases refered above, we define

the process of two condensates coming together as merging. Obviously the role of

interatomic interaction has involved with the interference pattern.

3.4 Distortion of fringes in interfering double condensates

We will b gin by describing in detail three simulations which illustrate "collision",

"merging" and "expanding" behaviour. In particular, we will emphasize the role of

the repulsiv interatomi interaction in the distortion of fringes in interfering dou-

ble condensates and the resulting spontaneous vortex formation. Furthermore, we
. h al relati h t "11""" ." d " d' ,.,J' bsummarize t e generai re a aons e .ween co ISIon , merging an "expan 111/', e-

haviour.

3.4.1 System I: Free Expansion of Well Separated Clouds

The initial ta is ch n such that the peak density in each component is no -
6.9 x 1019m-3, th trap frequencies are wlI,o = 27r x 180Hz and W.L,O = 27r x 120Hz,
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the displacment from the centre of the trap is ~ = 4.8111 = 9.5 x lO-6Ill where

(3.11)

is the oscillator length for the trap. The initial state corresponds to two well separated

low density clouds: the Thomas-Fermi lengths being RII = 3.5111 = 5.5 x 1O-6m and

R.l. = 8.2 x 1O-6m. Th total number of atoms being N '" 8 X 104. Hence we have,

initially, two well separated high density clouds. After preparation, the system is

allowed to rvolv , freely, i.c. with the trap frequencies set to wli = W.l.= O. Such free

expansions are well studied, in particular it is straightforward to show that, in the

absence of interactions: the order parameter has the form c/>o(r,z-~, t)+c/>o(r, z+~, t)
where [4J

rPo(-'"z, l) = (mhw)3/4 ~ ~
• 1T l+'/,w.l.tV~

x e- (O<Il (t)-ij311 (t) )z2 /21~ e -(f.>..l. -i,B..l.)r2 /2l1
(3.12)

and

1
1+ w2t2J

Wjt

1+ (;.,,'J.t2
J

(3j

Hence at arbitrary tim t we have

A.{ t) _ A(t)e-'J.O.l.(t)r2/11e-'J.Qllz2/lir.p r, Z,

( h (
2011 (t)L\Z) (2{3I1(t)L\Z))

x cos 12 + cos l2
'II 'II

(3.13)

(3.14)

From this w d duce that the length scale characterizing the interference fringes

is
lill + wOl'J.

A(t) = -----:.:-
2~ Wilt

which: at times larg r than 21T /wil behaves as >.(t) '" (l~/2L\)wllt as observed in our

(3.15)

simulations (se Fig.3.5 Ia and Ib). From our simulations, with the more overlapping,
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the more numb r of interference fringes appear and the period of fringes become

larger. Meanwhile the peak density of tho fringes also increases until the time of

point in which two cloud expand fully, i.e., the peak density of fringes is comparable

to the p ak d nsity in two clouds. After the time of point, the peak density of fringes

will redu but th width of fringes still increase.

15.8r--~-~--~---'
(a) ,',, ,, ,, ., \,........12.64

"'8
~ 9.48
o....

..
\ ..,

•x
~ 6.32

~
o 3.16

...,.,.,, ,

I ..,--__ "_'"
I ~. ~ ~-~- •

o 2.25 4.75 7.25 9.75
t(m)

(b)
12.64

E
~ 9.48

[
(/)

:g, 6.32
c
LL

2.25 4.75 7.25
t (ms)
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FIGURE 3.3: Left: The central density peak of interference versus time t in the
process of expansion with N = 3 X 104 (solid line) and 4 x 101\(dashed line). Right:
The central fring pacing v rsus tim t in the process of expansion with N = 3 X 104
(solid lin ) and 4 x 10° (circled line) and the first-order finge spacing for N = 3 X 104
(dashed line) and 4 x 105 (cro d line).

In Fig.3.3, the lin ar fringe spacing versus time in the weakly interacting regime

agrees qualitativ ly with th formula). = !~,where d refers to the separation of two

condensates and t process time [35]. However, beyond the weakly interacting regime,

the central and first-ord r fringe spacings become different and the uniform pattern

of interference in the weakly interacting regime is broken (sec Fig.3.3 (b)) 1'10 that

the distort d fring patt rn appears. Meanwhile the high-density clouds speed up

the the expan i n of cl ud and produce larger fringe spacings than the low-density

clouds ( Fig.3.3 (a)). B don Eq.(3.1O), the high-density central fringe has larger

a than th fir -ord r fring 0 that the larger fringe spacing occurs on the central

fringe. Thu ,th r I f int ratomic interaction has been involved in the interference

pattern so that thi ' pro . , 'S b . .orncs the process of merging. Suppose that there are

external potential gradi mts along the direction of merging and the initial density of
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the expanding .louds ar sufficient high, the nonlinear excitations in Fig.3.5 can be

produced,

3.4.2 System II: Collision of Well Separated Clouds

The clouds ar prepar d in the same manner as for system I.But by holding the traps,

two douds ar allow d to collide to each other. For the low-density condensates, the

system b haves at least over one period of the longitudinal trap, like an ideal Dose

gas. Sine the pr paration trap has the same frequencies as the main trap: the initial

state is a sup rposition f two coherent states of the oscillator potential so that

1/;Cr z,l) = ~Ce-T'~/:.!li(e-iK(t)e-(Z-Z(t»2/21~

(3.16)

where

z (t) - .Do cos (will)

K(t) - ~sin (Wilt)
II

Hence when h loud ar maximally overlapped (at t = 7r / 2wlI) the :tinge spacing is

given by

(3.17)

Fig.3.5 panel IIa shows the density distribution for the initial state, while Fig.3.5

panel lIb shows th fring form d wh n the clouds are maximally overlapping. Sub-

sequently th w loud s parate with their density peaks following classical trajec-

tories. Each tim th clouds ov rlap plane fringes form with the ideal spacing. The

classical argum nt bing that the velocity at i is given by

1 -2 1 2 2
2mv = 2mWII.Do (3.18)

which gives 'U = wlI.Do 1111d). = h/rnv = 27rIU.Do. In this case the collision velocity is

v = 6.0811lwll = 1.07 x 1O-2ms-l and >. = 1.036l11 = 1.62 x lO-Gm.

We incr as th ff et of th nonlinear term by increasing the number of atoms

in the initial stat. In Fig.3.4, for the initial peak density no in the low density
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FIGURE 3.4: The c ntral d nsity peak (dash curve), the first-order density peak (solid
curve) of interf r nc ,the ntral fringe spacing (crosses), and the first-order fringe
spacing (eirel s) v r u various initial peak density of condensates in the process of
collision with fix xl g .



68

regime, th amplifi .ation of the central and first-order peak of interference increases

linearly, which is analogous to optical interference where the power spectrum of in-

terference is rai d lin arly with the growth of optical resource power. In this regime,

once the initial doubl trap frequ ncies and separation are fixed, the fringe spacings

are indep ndent on th d nsity of initial condensates. However: when the nonlinear

interaction is suffici ntly trong, i.e. no is larger than 1.58 x l014cm-3: the central

and the first-ord r fring spacings become different and the uniform peak pattern is

broken so that 11,distort xl fringe pattern appears. The higher' the peak density,

the larqer fringe spacing. Correspondingly, the amplification of the density peaks in

the high d nsity r gime is not chang d linear with the inital peak density. Also, our

formula Eq.(3.10) an explain w 11 about the nonuniform fringes; the larger a with

respect to th high r d nsity in the central fringe results the larger fringe spacing.

Furthermor , one the no is sufficiently large, the interference becomes unstable so

that the d formation of the int rference pattern at high densities leads to the vortex

produ .tion.

3.4.3 System III: Merging of Well Separated Clouds

This initial stato i. chos en . nch that the peak density in each component is no

4.6 x l021m-:i, the di ple ment from the centre of the trap is .6. = 4.33 x lO-flm, the

trap frequ n i ax: wlI,o > 211"x 800Hz, Wol,O > 211"x 533Hz, wil = 211"x 180Hz and

Wol = 27rx 120Hz. B ua th trap u ed for the simulation is much less confining than

the trap u d in pr paring th clouds, each clouds expands due to internal pressure

as well as und rgoing bulk motion. Because the initial displacement from the centre

of the trap is smaller han in system I the relative velocity of the two douds when

they overlap is much .mall r, r = 2.8lllwll' Panels Illa - Illf of Fig.(3.5) show the

time volution of h density profil . As Call be seen in panel Illa, when the clouds

are maximally v rl pp d a fring pattern forms but it is distorted with "thicker"

n r of th loud and a larger fringe spacing, towards the edge of the

mu h low r 0 that interaction effects are negligible and the fringe

spacing is 1 r tis n n-int ra ting value.
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Ia Ib

FIGURE 3. r:: Gray-seal ' plots of atom density (black=high) in the X-T plane (axes in-
set) for double cond .nRfl.t.., , evolving with the process of expanding at t = 5.81ms(Ia),
lO.21ms(lb), colliding at t = Oms(II a) , 2.01ms(IIb), and merging at t = 1.21ms(IIla),
2.01ms(Illb), 2.41ms(IlI ), 3.61ms(IIId), 4. llms(IIIe) , 4.41ms(IIIf); The phase of
the BEC w v fun ti n within the dashed box in Illf is shown in the gray-scale plot
(black=21T, whit =0) to th bottom of the density profile; arrowed 'Om and 'Or show
the directions of motion in lcft-nppcr(bottom) part. of clouds depended on the postion
of sp d ordina
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From Eq.(3.10), in th pro .ess of merging, since the expanding speed of an atom

cloud Ve is initially much larger than it!'; speed of motion Vrn, the pattern of inter-

ference fring in h r gion of local strong interaction is dominated by the term

a(x, t)t/Ii in Eq.(3.10) a t < 2.1ms. Therefore, fringe spacings at the middle part

of int rfer nc ar larg r slightly than those at the edge as well as the density of

central p ale larg r than tho of high-order peaks, which can explain the results of

exp riments in fr ly-expanding BEes in short separation, as shown in Fig.l (left) in

ref. [35J : condensates with short separation tend to form large variations of density

in the region of m ,rgenr.e. With further mergence of two douds in later time, the

increasing k' and lit/2m pre minat gradually and the differences of fringe spacing

at the middl and dge have b n r duced correpondly (seen IlIa-IUb).

As can b n in Illb and lIIc the tronger interactions in the centre of the cloud

lead to a net radial flow of atoms in the high density fringes. The speed for BEes

to propagat radially from po ition 1 to 2, Vr :::::L1,2/ ll,2 = 11.076mms-1, is more

than twi . , as large as he . inter-of-mass speed Vrn :::::4.8971rnms-l. Thus the high

transven i spe ,d with r p .ct, to strong nonlinear interaction from merging two con-

dens at tends to fragm ntat the fringe peak, resulting in the formation of a dark

soliton as n in figur lIIc. Al 0 this rapid outflow leads to complete depletion of

the centr of rap aft h two clouds have passed through one another. As can be

seen in HId wh n th two louds recollide, at time 27" both are recollapsing radially

leading to an nhanc d d

dina! expansion and gr

of the fring thus

sity ill the bright fringes causing an even greater longitu-

t r d nsity gradients in the radial direction. The curvature

n gr at r than in th first collision: lIIe, and is sufficient

to generat a 11 cir ul tion around localized regions that are fully depleted: vor-

tices ar g nerat d n in UIf. In general, due to strong interatomic interaction

and the c mp ti ion b tw n Vrn and Vr, additional degrees of freedom are gener-

at d, r ulting th high- n it ar as from the s cond-time interference peaks reel

around extr III 1 lew-d J1 'it at as arising from the prior interference valleys (lIIe).

The positions of fOIlTvort ec rings correlate naturally with the previous positions of

interfer n vall ,A tuall ,th form tion of soliton and vortices from quantum re-

flection of high-d n it and I w-v 1 ity BEe is naturally analogous with our results;
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the low Vi 10 .ity nabl . th iut rfer nc between the incident and reflected parts of

the condensate, which has been shown as fringe patterns in Fig.2{h) in [86], and the

high density and rap potentials incite inner degree of freedom for high-density parts

of the conden at . Through analy is of much simulation and known experiments: we

argu that th rol of int rf r n of BECs is of critical importance for the sponta-

neous vortex formation: int rf r nc of atom clouds generates high-density peaks and

extrem ly I w-d n ity vall y , and additional degrees of freedom possibly produced

by thermal (quantum) flu ·tuations [2G],dynamic instability [103], external poten-

tial or perturbation [3 92.94] might, excitate high-density region from original peaks

or cond nsa pa ch r ling around low-density region evolved from initial valleys,

resulting in th formsti n f vortic .

3.5 General Features in the parameter space

Here, we id utify approxirnat ly thr " processes through their interference charac-

ters. In the proc ,.1'1 of ocpansion the interference fringes are time-dependent and

uniform, and in lliding pr a1' confirmed and uniform in the fully overlapping,

and the int rf r n patt rn in expanding process are time-dependent and nonuni-

form. Bas don imula i ns of a large range parameters, we describe heuristically the

r tion principles of nonlinear excitations shown in

pan ding process, the creation principles of soliton and vor-

tcx arc naturall d 'P '11<]'ll 011 tit' .oiupctition between expanding (merging) speed

and motion sp .. d of .ond m. t.. The moving speed is too large (position C in solid

line) and small (A): i is n t . to observ the excitations. Thus, we can explain

the exp rimen in whi h m r in merging and interfereing region except the

central vortex whi i f rm d b phas mechanics, are formed provided that three

compon nt of ) uds ar m rg d mor quickly. Due to high potential barrier, three

parts of WIld nsat . expand rapidly and fast merging might avoid the loss of rapidly

expanding nd and £ rm high-d nsity condensates in merging region so that

the strong nonlin ar in r tion can easily generate inner degrees of freedom. Mean-

whil ,th int rf r n p t rn i f ritical importance in the formation of vortices.
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FIGURE 3.6: Heuristic d ription of the parameter space for Vrn and gno(t = 0).
Dash lines are drawn through identifying different interference patterns: fringes vary
approximately lin arly with L for the case of expanding, are nonuniform and time-
dependent for merging, and uniform and fixed highest-contrast period for colliding.
Solid lines are drawn through identifying whether there exists nonlinear excitations.
We must emphasis that gnr.(t = 0) is determined by Vc and Vr. is determined by size
of condensate for which the dynamics and interference pattern corresponding to too
small separation is naturally equivalent to merging case.
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The faster merging produces more interference fringes so that there is the possibility

for the formation of more vortices, In addition, for a qualitative depict of differences

among colliding, merging and expanding processes in Fig.3.6, the dashed line can be

altered by different paramet rs. In general, for the small nonlinear constant with the

large atoms numb rs, it is more asy to observe the crossover from colliding process

to merging proc ss.

3.6 Summary

In summary, we have investigated vortex formation and interference instability of two

merging condensates. Our theoretical predictions should verify recent some experi-

mental work in which the pontaneous vortices are formed in merging BECs and the

nonuniform interference pattern forms in expanding BECs. The regularity of vortex

formation and interference might allow some experiments for vortex creation. Our

latest calculations show the more vortices are formed, the more interference fringes

occur in the unstable region and we propose to verify this experimentally. Addi-

tionally, the inter£ renee formula from many simulations and theoretical analysis can

explain well some phenomena in merging and expanding condensates. However, a

completely confirmed formula is needed from more rigorous theoretic deductions and

experimental tests.

3.7 Vortex Decay and Dynamics in Merging BEes

3.7.1 Motivation and Findings

As seen in the above 13 ction, the dynamics and decay of the spontaneous vortices

might he of importance for studios of quantum turbulence in the system of mixing

superfluids or classical :fluids. On the other hand, in the experiment [103], vortices

are observed by probing for merging dynamics by releasing all traps and viewing the

atom cloud using ab rption imaging after a period of ballistic expansion. In general,

the excitation n rgy of a vortex is macroscopically large and those off-center vortices

in merging clouds might d cay and vanish rapidly [4]. It is required to answer whether
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this measure of time of flight can reflect the production of vortices in merging BEGs.

In this work we study the factors affecting the spontaneous formation of vortices

when merging two atomic BEGs. In the non-uniform condensates, two factors are of

critical importance for the formation: interference and strong nonlinear interaction.

The interference of condensates plays an important role in the formation of the vortex

core. The strong nonlinear interaction triggers the interference peaks or condensate

patches reeling around the vortex core. Through simulation and analysis, a feasible

criteria for this formation has bC'CIl shown. In addition, our simulations show that

vortices decay from high-density regions into low-density regions, disappear ultimately

on the edge of the condensate, with their cores becoming correspondingly larger. The

fragmentation of atom clouds is caused by vortices with opposite rotation which

are analogous to magnets. Finally, we demonstrate that the measure results for

vortices through r leasing all traps can reflect the dynamics of BEGs with traps in

real experiments when vortex decays can be neglected. The role of two other factors

ill the formation of this kind of vortices, i.c., relative phase of merging two clouds and

quantum (thermal) fluctuations, has been discussed in the papers [39,86].

3.7.2 Exemplar Model

In this work, the dilut doubl condensates are realized with total number 4 x 10"

23Na atoms in th am traps used in the above part. The process I in this part

is similar to the proce s of merging in the above part. Process II is modulated by

the similar volution to sam experiments [103], where they removed all trapping

potential after m rging and viewed the atom cloud using absorption imaging. After

the formation of vorti . ", all trapping potentials are removed and the atomic douds

are relea.c;edcompletely from traps, expand freely. We record the dynamics of BECs

in this process during a 1 ng tim .

3.7.3 Results and discussion

We now explore the dynamics of vortices in two processes. As has been shown the

above part, the int rfer n of atom clouds generates high-density peaks and ex-
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FIGURE 3.7: Hot-scale plots of atom density (white=high) in the x-r plane for dou-
ble condensates, evolving with process I at t = 6.02ms(Ia), 6.46ms(Ib), 6.74ms(Ic),
7.46ms(Id), and process II at t = 6.74ms(IIa), 7.44ms(IIb) , 8.34ms(IIc), 9.74ms(IId),
1O.(j41I1~(IIe);The phase of the DEC wave function within the dashed box in lIe is
shown in the hot scale plot (white=Zn, black=O) to the right of the density profile;
Coordinate axes are inserted in IIa and length scales are labeled separately for both
processes (see Ia and IIa).
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tremely low-density valleys (Ia), and additional degrees of freedom produced by dy-

namical instabilities might excite high-density region from original peaks or conden-

sate patches reeling around low density region evolved from initial valleys, resulting

in the formation of vortices (Ib). Since four vortex rings are created at the ramp

located between the high-density region (around x = 0 and r = 0) and low-density

region (far from center of trap), they are highly unstable and thus tend to decay

into more "stable" areas. As seen in Fig.(3.7) Ie and Id, the vortex rings propagate

to the low-density region far from the center of trap although the trap potential in

z-axis direction compresses them into the center, and later disappear at the edge of

main clouds. The competition between the force of "dragging" the outer two vor-

tices into high-density region from trap potential and expelling force originating from

the variation of strongly interatomic interaction around them results in the clouds

fragmenting into three parts from the region of vortex disappearance. In process II,

the decay of vortices is similar to process I and the time of decay is a little shorter

(IIa dnd IIh), since strong interaction can cxcitatc faster dynamics in the abscnco of

a trap potential. Thereafter, three parts of the douds fragmented by the outer two

vortex rings expand further as well as the compressed central part (lIe). After lAms,

the outer two parts interfere with the expanding center part and a vortex pattern is

reformed in the fr ely expanding process. Contrasted with the rapid variation of the

vortex pattern in the interval of 6.74ms to 7.44ms, the latter interference and vortices

are more stable and last much a longer time. Indeed, the pattern of interference and

vortex reformation will r main unchanged because the interaction energy of atom

clouds is approximatly zero at t > lOms. Although the method of creating these

vortices has not b en chang d, the possibly results from releasing all traps might not

show the natur of initial vortex formation in a long time, i.e. t > 12ms, because

macroscopic nonlinear excitations might decay, merging, or disappear in this period.

It indicates that ther might exist some discrepancies between the dynamics of BECs

with traps and th results from experimental observation at cotnparatively long times,

in particular, in presence of nonlinear excitations [103], thermal fluctuation [25J and
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dynamical instabilities 1.

We explore the dynamics of vortices hy tracking one vortex (arrowed in Fig. (3.7))

in process I, based on two reasons: 1. due to the weak variation of the trap potential

and strong excitation energy including kinetic energy and interaction of nonlinear

excitation in the bottom of traps, the confining potential does not alter naturally

the results of vortex decay and the dynamics of a vortex in confined potential; 2.

four vortex rings decay entirely from high-density regions into low-density ones and

disappear at the edge of main condensates. We characterize the size of the core by

(a) (b)
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FIGURE 3.8: Vortex configuration arrowed in the Ib of Fig.(3.7) (a); Vortex core
trajectory in x dir etion (circle) and T direction (squares) versus time (b); The size
of core lx (circles), l; (squares) versus time (c); Density variation ~n12 (circles), ~n34
(squares) versus time (d).

lOur recent r sults demonstrate that thermal(quantum) fluctuations can alter strongly the dy-
namics of interference ill u .lrort time.
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integrating the smooth part of distribution function from core center 0 to position

2, where tho variation of density is very small, in Fig.(3.8) (a) along x direction

with z,,;{t) = Jx:2(X - xo)11p(X,t)12dx/ J:a~ 11f;(x,t)12dx and l,,.(t) is defined similarly to

IT. (t). To figure out the relation between the trajectory of a vortex and its surround-

ings, we define the variation of density function in x and r directions by calculating

~n12(t) = fh(t) - nl(t) and ~n34(t) = n3(t) - n4(t) separately. Here fii(=1,2,3,4) is

the mean density around the high-density position i. For convenient contrast in the

dynamics, we integrate lx(t) and lr(t) in a fixed interval of X2 - XO{T3 - TO) and usc

the mean value of 30 density points as fj'i' Because of the discrepancy of density dis-

tribution between the center of condensates 3 and the edge 4, the strong interatomic

interaction of condensates around T = 0 tends to expel the vortex ring from the

high-density ar a into the low-density area, i.e. far from r = 0, as shown in Fig. (3.8)

(b). Correspondingly the density variation ~n34{t) is reduced rapidly with respect

to process time, reflecting the" Gaussian-shaped l' configuration of condensates in

T direction. In the x dir .ction, the trap tends to compress two condensates toward

the center of the trap while interatomic interaction inclines to expel them. During

the domain of repelling (A -t B), the vortex rings move apart in the x direction and

the density variation ~n12(t) is reduced prior to t = 4.51ms. After that (B-tC),

compression causes the vortex rings to move toward the center of trap and conse-

quently the density is increased gradually. Despite the slight shake of characteristic

core size of vortex v rsus time, indicating local instability of the surroundings around

the vortex, the characterized core size of a vortex lx(t), lr(t) from generation of vortex

rings to disappearing are increased overall, as can be explained by classical dynamics:

fixed angle-velocity v rtex in the superfiuid of BEC balances reducing pressure force

with respect to low density by increasing the core size.

We analyz the vortex dynamics through macroscopic vortex-vortex interaction,

with analogy to spin-spin interaction. In Fig.{3.9), since vortex ring 1 (3) and 2 (4)

have the sam Spill dire .tion, and 2 and 3 have the different spin direction. vortex

ring 1 (3) and 2 (4) expel each other while 2 and 3 attract one other. Consequently,

vortex rings 2 and 3 mov toward each other and the fragmentation of atom clouds is

presented in the regions between vortex 1 (3) and 2 (4) as shown in Fig.(3.7) Id and
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FTGURB3.9: Vortex configuration of density at t = 6.46ms (left) and corresponding
phase plot (white= 0, black= 211")

lIc.

In condition of interference of merging two condensates, the possibility of forming

vortices is determined by the velocity direction of superfiuid. Oscillation, expansion

and compression respond to case (a) and (b) in Fig.(3.10) and there is little possibility

of forming a vortex. In case (c) and (d): there are enormously large possibility for
the formation of vortex.

! 1 1 !- -_ _--_
1 ! 1 1

(b) (c) (d)

FTGURFi3.10: Four possibilities ((a), (b), (c), (d)) of velocity directions of two con-
densates during the process of mergence: left (right) arrow labels velocity direction
arrowed separatively by 1 and 2 in the r = 0; up (down) arrow labels velocity direc-
tions in radial direction arrowed by 3 and 4.

3.7.4 Summary

In conclusion, we have inv tigated the spontaneous formation and dynamics of vor-

tices in two merging BEC. Interference and strong nonlinear interaction play an
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important role OIl the formation of vortices. Our results should guide experiments

to produce spontaneous vortices. Meanwhile it should be taken as a model for stud-
ies of quantum turbulence and topological defect formation in mixing superfluids or

classical fluids.
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CHAPTER 4

Interference Properties of Colliding

Bose-Einstein Condensates: from Mean

Field Theory to Classical Field Theory

4.1 Introduction

Atom interferometer technology has been developed for various novel applications

such as characterizing atomic and molecular properties [111], precision measurements

in fundamental physics [112,113]' and planetery gravity field mapping [114J. Research

on matter wave interference in Bose-Einstein condensates(DECs) has significant ef-

fect on the optimization of atom interferometer techonology, Previous studies of

interference phenomena in BEC were mainly based on freely expanding BECs. Ex-

perimentally, the techniques for division and manipulation of cold atom condensates

have evolved from early experiments in which a magnetically trapped condensate is

split with a blue-detuned laser beam [35], to later work in which a single laser beam is

passed through an acousto-optic modulator [105] and most recently to an experiment

in which a magnetically trapped condensate is split with an atom chip [94].

Recently, the evidence for quantum entanglement between matter waves generated

by these techniques has demonstrated that the collisional four-wave mixing process

is coherent. This coherent collision process indicates the applicability of quantum in-

terference in colliding BECs [115], as has been verified in the recent experiment [103].
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Thus this applicability stimulated huge interest in quantum interference and interfer-

ence instability in colliding DEes. On the one hand, previous experiments and theo-

ries for the interference based on freely expanding BECs have shown some correlations

between interference fringe spacing and initial separation [35], the relative phase be-

tween two separated condensates and the spatial phase of their interference [105], and

uniform and nonuniform interference fringe spacing [116]. To explore properties of

the interference in the colliding BECs, it might be valuable to understand previous

theories based 011 the interference in freely expanding I3ECl:l.Also the research in the

area of colliding BECs will extend further to understand the interference phenomena

such as instability, coherence and decoherence, and quantum collision effect. On the

other hand, some experiments in quantum interference in (quasi-) BEGs have revealed

that the true condensate cannot be described by a "pure" multimode coherent state 1

and it should also include the effect of quantum(or thermal) fluctuation [25,117]. In

general, the coherence of the condensate state can be suppressed during the collision

process, Thus, the bare Gross-Pitacviskii equation (GPE) based on a pure coherent

state can not explain completely all phenomenon that occnred in experiments, in

particular the case that the collision of many atoms is involved.

Indeed, a recent theoretical treatment in terms of a classical field with added

quantum fluctuations (Truncated Wigner Approximation; TWA) beyond the bare

-rr a condensate wave fuuctiou is constructed by 'IjJ(xt}. Such 11 coherent st.at.e is the cig<!llst.at.e
of the annihilation operators b(xd at the location Xl, and can be expressed explicitly as

(4.1)

where the normalization factor is A('IjJ) = exp[-~ J dxl'IjJ(xW]· Moreover if a condensate wave func-
tion is constructed by different functional forms 'IjJ(k), we can write the coherent state of condensate
corresponding to the wave packet 'IjJ(k) <IS

( N(k) (1i(k))t
1'IjJ k) >= Ake Ivac >, (4.2)

where N(k) = J dxlv'/k)(:J:)12 and h(k) = N{') J dx(v'P))"(x)b(x). ThllS the condensate st.at.e with
respect to all wave packets can be described as the multiple coherent state [132]

(4.3)
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GPE has produced the scattering halo and predicted the unobserved phenomenon of

quantum turbulence in the colliding BEGs [52,118J. The method of TWA for a bosonic

field originally devised for quantum optics and was first applied to BEGs by Steel [53].

Later, this method was applied successfully in describing the damping of a collective

excitation of a one-dimensional Bose gas [121] and disruption of reflection of three

dimensional BEGs [77]. Thus the introduction of quantum fluctuations to colliding

BEes probes the robustness of interference, which has been exhibited previously in

expanding BEGs. The underlying correlations in colliding BEGs, caused by quantum

fluctuations, are valuable to understand experimental phenomena and the detection of

coherence might have important implications for atom interferometers and quantum

entanglement.

In this chapter, within the region of coherence, we show that once the initial con-

finement and geometry of double condensates are formed, the relative phase variation

of condensates will not alter essentially the spatial fringe period, although the rel-

ative phase between the two separated condensates has a pronounced effect on the

spatial phase of interference pattern. Our results demonstrate the hyperbolic relation

between the absolute velocity of double condensates modulated by different trap sep-

arations, and the fringe period, which is expected for the behavior of single-particle

waves. This fringe pattern is determined by the center of mass motion unaffected

essentially by interactions up to the point where a nonuniform fringe pattern ap-

pears. Despite the reservation of hyperbolic fringe pattern versus displacement, due

to interatomic interaction, the velocity of atom clouds is reduced a little so that the

fringes are widened slightly. Moreover, we also discuss the effect of quantum noise

on the low-density BEGs interference in colliding condensates. The ratio of coherent

atom number to incoherent atom number affects essentially the visibility and phase

fluctuation of interference in the process of collision. The incoherent atom number is

increased rapidly during the process of merger while it is increased much more slowly

ill the other process. The detailed. analysis is shown through a correlation function.
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4.2 Model and Numerical Methods

For the bare GPE calculation, we consider initially very dilute BECs of 4 x 105 87Rb

atoms in two pancake-shaped traps with cylindrical symmetry and trap frequencies of

Wx = 21r X 50 rads S-l (longitudinal) and Wr = 21r x 35 rads s-l (radial) in the x and

r directions respectively, which produce two atom clouds of equilibrium peak density

no = 2.7 x 1011cm-1• The two condensates are realized by the double harmonic traps

in the x direction (Fig.1(a)):

and
z ~ 0,

where D.x is the distance from symmetry point x = 0 to the center of each trap, i.e.,

half the BEC seperation, and in the r direction: V (r) = ~mw:r2, so that the total trap

potential is V(x, T) = Vd(x) + VCr). Although there are some discrepancies between

our theoretical double traps and experimental traps, our double-well system can pr~

duce excellent insights for understanding substantially the process of interference of

double condensates in the experiments where a single well is curved into a double well

by a laser beam passing through an acousto-optic modulator (AO:\.1) [105]. At time

t = 0, we abruptly change the double trap into a single trap with the same frequency

along the x direction (Fig.(4.1) (b)), Vd(x, t = 0) = ~mw;x2, and hence accelerate the

two BECs toward one another. An interference pattern call be observed after the two

condensates meet and overlap well. The amplitude and contrast of the interference

pattern depends on the overlap between two condensates and our discussions in this

work are based on the highest-contrast interference pattern.

Within mean-field theory, we determine the dynamics of the BEC in two dimen-

sions by using the Crank-Nicolson method [78] to solve the time-dependent Gross-

Pitaevskii equation

(4.4)
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(a) (b)

FIGURE 4.1: Solid curves show the effective potential and Shaded areas in the two
pictures represent the initial atom density profile Iw(x, 0, 0)12.

where \72 is the Laplacian in cylindrical coordinates, a = 5.4nm is the s-wave scatter-

ing length of 87Rb, and w(x, T; L) is the axially symmetric condensate wave function

at time t :.I, normalized so that 1W 1:.1is the number of atoms per unit volume.

In the calculation of TWA on bosonic field, our model system is a little different

from the system of bare GPE calculation. Two quasi-condensates are formed by 4x 104

87Rb atoms in a two dimensional system with trap frequencies of Wx = 271" x 50rads S-1

and Wy = 271" x 35rads S-l. The separation of two quasi-condensates and the switch

from initial double trap into single trap in the treatment of TWA are identical to mean

field treatment. The critical difference is the coefficient of interatomic interaction

9 = li:1l ~ (See Appendix D) in the TWA rather than 9 = 4rr;:,,,2 in the treatment

of bare GPE. In order to avoid the effect of strong nonlinear interaction on the

interference (has been discussed before) and focus on the role of quantum noise in

the interference and colliding coherent atoms, we choose z-component trap frequency

Wz = 271" x 35rads S-l.

As is well known, a uniform two-dimensional fluid cannot undergo BEe, in con-

trast to the tluee-dirnellsional case. However the two-dimensional system can form

21n the initial condition, the condensate wave function \fJ(x: r, 0) is symmetric about x = 0, i.e.,
'\I1(-x:r:O) = '\I1(x:r, 0). Due to the symmetry of '\I1(x,r,O), Eq.(4.4) is symmetric about x = 0 at
time t = O. Since no external force alters the symmetry of 'It(x, r, t), the wave function w(x, r, t) is
symmetric about x = 0 for all time t.
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a 'quasi-condensate'. i.e., condensed atoms with fluctuations [25]. We hope to un-

derstand the role of strong quantum noise in interfering two atom clouds so that

two-dimensional system should be more reasonable. Additionally, we solve numer-

ically the Eq.(4.4) by the Projected Fourth-order Runge-Kutta in the Interaction

Picture (RK4IP-P) algorithm. Details of the numerical method are given in appen-

dix C. In this calculation, we choose a two dimensional harmonic-oscillator basis using

the mode expansion,

M

'I!(x,y,l) = 2:: a(n,n',l)¢n(x)<Pn'(Y)'
n,n'=O

(4.5)

where a(n, n', t) is the amplitude for the oscillator mode (n, n') and ¢n(x) is the

nth single harmonic-oscillator wave function. The quantum fluctuations are intro-

duced in the initial condition for 'I! (x, y, t), which is given by the sum 'i!(x, y, t =
0) = 'tf;(x, y) + X(x, y), where 'tf;(x, y) and X(x, y) are, respectively, the real and

virtual particle. fields. We express the field of virtual particles using X(x, y) =

L:~n,t=o x(n, n')</Jn(X)</Jn'(Y)' where the amplitude in each mode is Gaussian with the

properties < x*(n, n')x(m, m') >= ~8n.,m8n"m" < x(n, n')x(m, m') >= O. The mean

value of the total virtual population is thus M /2. To choose M; we confirm firstly

the minimum value of mode nl above which the energy is larger than the chemical

potential jJ, of groundstate. Due to the variation of traps, the potential energy is

increased with ~mw;(6x? for each atom in the cloud so that the maximum value of
mw (~x? h h ff t f 11" h b idn"tUX should satisfy nm= > nl + '"1;. were tee ect 0 co IRIon as een consi -

ered. Also nmax should be fulfilled in y direction. In order to satisfy the requirement,

we choose M ~ 11000 in this work.

4.3 Results and discussion

4.3.1 Mean field theory for colliding BECs

The initial ground state of the atomic clouds in the double well potential is calculated

numerically by an explicit imaginary time evolution [85]. For coupled condensates

this method unambiguously yields the nondegenerate ground state, However, for well
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separated condensates [94, 105], the ground state is virtually deqeneroie and can be

written as a coherent superposition

(4.6)

of the two independent condensate wave functions WI,2(X: r) with an(a priori) arbi-

trary relative phase fJ [4: 107, 108]. Here c is determined by the normalization condi-

tion, .r.r 1\lI(x, r)1227Trdxdr = N. It is worth noticing that numerically fJ = 0 in the

imaginary time evolution but we can choose the 0 in the initial state, corresponding

to the experiment where the phase in one condensate can be adjusted by applying

ac Stark phase shifts [105]. This state does not correspond to definite numbers in

each well. As is well known, even when the numbers in each well have definite values

(Fock states), interference patterns are still observed in experiments. It is supposed

that the imaging process used in the experiments, projects the state onto a coherent

state with a randomly chosen phase [4,107,108].

To confirm the effect of an alteration of the initial condensate's phase on the mat-

ter wave interference pattern, we adjust the phase () of the left condensate from 0 to

21T and switch rapidly the double trap into single trap at time t = Oms. Thus, the

potential energy of each BEC is increased by ~v ~ ~mw;~x2, causing the atoms

of each condensate to move toward the areas of lower potential field with a maxi-

mum velocity of Vx ~ wx~x = 2 mms>'. This evolution is equivalent to two isolated

condensates with different phase moving together. A::;seen in the FigA.2, the rel-

ative phase of two condensates is changed, however the fringe period is not altered

intrinsically and retains the same value of the fringe spacing, >'0 = 1.6jlm, indicating

that the interference period is not dependent on the initial phase, as would occur

in a noninteracting system. The interference plots reveal that the distance of two

closest-neighbor valleys is quite similar and all equal to >'0, which is consistent with

the recent theoretical prediction that the fringes are uniform for large separations and

weak interatomic interaction of the two BEC douds [116]. Furthermore, contrasting

the interference profiles from 0 = 0 to 0 = 3/27T, we can infer that when the initial

phase e of the left condensate is changed with a period of 27T,the atomic spatial dis-

tribution of the interference pattern is also moved forward to the positive x direction
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FIGURE 4.2: Dotted curves: atom density profiles of interference pattern at l
7.21mR with different initial relative phase 0 along T = O. Solid CurVCR: density
profiles of fitting our data to experimental formula with C = 5.625, D = 1: x; = 0,
(J'2 ~ 2/mw;, A = AO, and 0 = 0, tt /2, 7r,37r/2 respectively.
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with a length of fringe period AO; that is, the spatial phase of interference pattern

varies with a period of 27r again as occurs in a non-interacting system. A possible

theoretical interpretation in our system is that we initially show double condensates

with Gaussian distribution in x direction as follows:

[ (
(x + d/2 - vt)2) ( 27rvt )'l!(x, t) = Acxp - 20-2 cxp i-A- + iO

(
(x - d/2 + 'Ul)2) (.27rVl) ]+ Rexp - 20'2 erp -1.-A- ,

(4.7)

where d is the separation, v is the absolute speed of the two BECs, and A is the wave

length as well as A, B denote two condensates density. When the double condensates

move together and overlap fully at vt = d/2, we have

!'l!(:r:,l)!:.!= Cexp ( - ::) [1 + Dcos(2; (x - xc) - 0)] , (4.8)

where x" is the center of interference and C, Dare A2 + B2 and 2AB/(A2 + B2)
respectively. EqA.8 is fairly similar to experimental formula about double BEes

interference pattern in the ref. [105]. Comparing our result (Dotted curves) with the-

oretical prediction (Solid curves) in Fig.4.2, our results from numerically anomalous

quantum interference is quantitativly consistent with the conclusion of experiments

and thereby we demonstrate the correctness of this formula numerically. From an-

other angle, the spatial phase of interference occurs to change corresponding to the

variation of the relative phase of separated double condensates, which yields perfect

agreement for the results of the experiment [105] where the phase sensitivity of the

trapped-atom interferometer was demonstrated by applying ac Stark phase shifts to

two separated condensates.

Previous experiments [35J have revealed the hyperbolic relation between interfer-

ence fringe and expanding speed. In the ref. [35], the double condensate's relative

speed v at any point in space is dlt, where d refers to the separation between two

point-like condensates and t can be regarded as the time of atom cloud expansion.

The fringe period is the de Broglie wavelength), associated with the relative motion

of atoms with mass m,
h

A=-.
mv'
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FIGURE 4.3: Fringe period versus trap displacement ~x: Dashed red curve from the
results of theory formula, Open squared-lined curve without interatomic interaction,
Open circle-lined curve with interatomic interaction g, and Solid triangle-lined curve
for slightly larger interatomic interaction 5g.

where h is Planck's constant. A similar conclusion has been presented in the classical

interference for two colliding waves in which the interference fringe ). = .b: wherernv

v is the absolute speed for each wave. Thus this analogy should be replanted into

two colliding non-interacting BECs. However, the situation might be a little COIll-

plex for nonuniform interacting I3ECs. For the nonuniform spatial distribution of two

clouds, maximum contrast of the interference occurs when clouds are fully overlap-

ping. Distinguishing classical wave interference, the repulsive interatomic interaction

will decelerate the center-of-mass motion during the overlapping of two clouds so that

v < wx~x for 9 t o.
To quantify how the absolute velocity of two BECs affects their interference fringe

period, we produce a linearly increasing relative speed by regularly adjusting different

~x at the fixed frequencies [FigA.3]. Consequently, each condensate's velocity of

propagation can be regarded approximately as wx~.r.. FigA.3 shows that increasing

the separation of potential trap in the x direction tend to shorten the interference

fringe spacing. It i worth putting forward that there exists an explicitly hyperbolic

relation between the fringe period of the interference and ~x by contrasting the results
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from simulation and theoretical fomular ). = hjrnwx!:::.x, in agreement with our initial

prediction. However, one can see that the fringe spacing with interatomic interactions

is slightly larger than the fringe spacing without interatomic interaction. This implies

that the interatomic interaction tends to reduce the velocity of two clouds during

the merging process so that compared with the case without interaction, the slower

velocity contributes to a larger fringe pattern. Furthermore, we increase interatomic

interaction a little in the region of dynamic stability and find that the interatomic

interaction, during the merger of two clouds, dccclorates the velocity of two clouds

more for short separation than for large separation. Consequently, comparing the

interference pattern of 9 with 5g, the variation of fringe period is slightly larger for

short separation than for large separation. Here, we perform our analysis by modeling

the center-of-mass motion of one cloud as

x = -w;x - .,,(x)i;, (4.9)

where

{
2"( Ixl::; (1

.,,(x) = .
o [z] > (7

Here (7 is the width of the cloud, and the damping "( is related to the interaction

(4.10)

constant g and the spatial density distribution of two clouds during the mergence.

Thus the stronger interatomic interaction corresponds to the stronger damping. If we

suppose that at t = 0 we have x(O) = !:::. > (7 and i;(O) = 0, then the solution has the

form

{
!:::.cos(wxt) 0 < t ::; to

x(t) =
Ce-1'(t-to)cos(O(t - to) + '1/;) to < t

where n = Jw; - "(2, C and 'l/J are, as yet, undetermined constants and to is the

earliest time at which x(to) = (7. Calculating the velocity then gives

(4.11)

. { -wx!:::.sin(wxt)v(t) = :r;(t) =
-"(x(l) - COe-1'(t-to)sin(H(l- Lo) + '1/;)

o < t ::; to

Lo < l
(4.12)

Hence we have

x(to) = (1 = !:::.m.c;(wxto) = Cco.c;(VJ)

v(lo) = -D.wxs'in(wxLo) = "(a - COs-imp
(4.13)
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which can be solved to give

Ccossb = (J

Csin'lj; = ~ (WxV.62 - (J2 + '"'f(J)
(4.14)

or

(4.15)

Now we define T to be the first time at which x = 0 so that

x(T) = 0 = Ce--r(T-tu)cos(O(T - to) + 'Ij;) (4.16)

so that
7rneT - to) + 't/J = -2

(4.17)

and
(4.18)

where

f(a,fJ) = J1 - 2afJVl - a2

{ e [7r (VI - 0
2 + OfJ)] }x cxp - VI _ fJ'l. 2" - arctan oVI - fJ:l.

(4.19)

so that
h h 1

A = Tltv(T) = mwx.6 I(~, 2;)" (4.20)

From Fig.4.4, the interference pattern for, = 0 (corresponding to 9 = 0) satisfies the

hyperbolic relation. With increasing interatomic interaction (,), fringe period is also

growing for the different seperations. In addition, the variation of fringe period is

larger for small, eparation than for large separation. These results from our analytic

model are identical to our simulation, implying the applicability of this model for the

colliding BEes.
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FIGURE 4.4: Fringe period versus trap displacement ~ from our analytic formula
4.20.

4.3.2 Classical field theory for colliding BEes

There is considerable interest in the way that quantum and thermal fluctuation will

decrease the contrast of the interference patterns of two BECs and how the phase

coherence is broken when the BECs experience impurity and dynamic instability.

The following parts concentrate on the role of quantum noise in the interference

pattern of low-density colliding atom douds: using the Truncated Wigner method.

First, we show the spatial atomic density distribution from single realization in

the calculation of TWA. In Fig.(4.5(a)): in presence of quantum noise, the smooth

density distribution in the mean field theory is broken and there are some fragments

of atom clouds in the outer region of the main clouds. As the two clouds move

toward each other the initial interference fringe is created by the overlapping wings

of the two clouds ( Fig.(4.5(b))). One can see easily that the initial fringe is

obviously distort d, but with more merger of the two douds: the fringes are more

stable and visible [see Fig.] 4.5(r.))). Since the wings of the atom clouds are composed

of non conden d toms, the ratio of condensed atom number to noncondensed atom
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ceeds 3.

number in th initial area of mergence is very low so that the strong phase fiuctuations,

derived from nonconden ed atoms, distort the fringe pattern in the area. With more

condensed atoms merging and interfering in the later time, the ratio of condensed

atom number is ri ing rapidly in the merging area so that a stable and clear fringe

pattern appears. Correspondingly phase fluctuations are much weaker than in the

initial period of merger. Contrasting Fig. (4.5(a)) and (d), there is not much change in

the shape of atom loud. This implies that the collision and quantum noise cannot

significantly alt r th Bo gas in the current conditions and the interference is

robust.

Furthermor , through many ralizations in the calculation of TWA, the normalised

second-ord r '01'1' lation functiou, coherent and incoherent atom number can be ob-
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tained. These quantities are related directly to the measurement of experiments and

thus Rome re....snlts might be contracted with experimental results. In particular, the

second-order correlation function can be measured experimentally by detecting noise

correlation [70,71]. We evaluate these various quantum statistics of the colliding sys-

tem by using an ensemble of 100 individual trajectories. Following [56], we define the

normalised second-order correlation function in coordinate space

(4.21)

Now we show the underlying physical meaning of this correlation function. If the

regions of coherently distributed density are concerned, we define a coherent state in

coordinate space as la(r) > which has the form of P...r,p(- J a(r)~t(r)dr)lva.c > where

a is complex function. Thus it is easily seen that g(2) (r) = 1. For a thermal state,

one can define the Q-function corresponding to a density operator P [56]

Q(a, a*) = .!. < alpla >,
11"

(4.22)
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so that the Q-fundion for the thermal state

One can infer that the Q-function for the thermal state in coordinate space also satis-

fies the Gaussian distributed density [52J. For simplification, we use QT(a(x), a*(x)) ~
exp(-la(x)12) and neglect all other parameters. Thus

< ~~(r)~~(r)~p(r)~p(r) > (t) = J d2a(a*)2(a)2exp(-laI2)

= 2J d2()do:I2p,xp( _10:12) (4.24)

= 2 < '~~(r)'~p(r) > .

Since the integral .r dalal2exp( -laI2) = 1, the normalised second-order correlation

function ill coordinate space g(2) (r, L) = 2 for a thermal distributed density. If g(2) (r)

is bracketed in the regime (1,2), one can infer that one part of atoms at the position

r are thermalized.

Expanding Eq.4.21 in terms of harmonic-oscillator modes and using the multimode

correspondence between Wigner function averages and expectation values,

we find that the second-order normalized correlation function in coordinate space can

be expressed as

gC')(r, t) ~ < IIf!(r, t)14 >w -2 < IIf!(r, t)I' ~w op(rp + ~o~(r, r) (4.25)
[< 1\lI(r,t)12 >w -26p(r,r)

Here, the restricted delta, junction bp(r, r/) = ~jEL ¢;(r')¢j(r) where L means low-

energy modes. The coherent and incoherent population in all modes are defined

separately as

N~oh(t) =L: I < O!j(t) >w 1
2
,

jEL

(4.26)

and

(4.27)
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Some details of numerically solving the normalised second-order correlation func-

tion, coherent and incoherent atom number, are shown below. The coherent number

in the numerical process is calculated as

(4.28)

where Nm= is the number of realizations (100 in our calcuations), (m) labels tti +th.
realization, and Q:)7n\t) means the amplitude of j -th field mode at time t in (m) -th
realization, Also the incoherent number can be written as

(4.29)

In a similar way, one can deduce the numerical form of g(2)(r, t).

From Fig.4.6 (a) and (d), we can see that the second-order correlation functions

before and after interference are similar; that is to say, incoherent atoms occupy the

edge of the cloud (g(2)(r) > 1) and coherent condensate atoms (g(2)(r) = 1) are

located in the central areas of the cloud. Although the process of mergence and

interference for two atom douds is exceedingly stable, the incoherent atoms around

interference valley (Fig.4.G (b)) are expelled by condensed atoms to the edge of fringes

during the process and correspondingly the visibility of the interference at the edge of

condensates is much lower than in the central areas. Contrasting Fig.4.6 and Fig.4.5,

it is seen that although the visibility and phase fluctuations are affected by the ratio

of non-condens d atom number to condensed atom number, the detailed dynamics

and correlations are very complex. The non-condensed atoms at the beginning of

the merger and interference occupy the periphery of the cloud and interference val-

leys. Correspondingly, the visibility is very low where phase fluctuations are very

strong. How v r, with more merger, the non-condensed atoms are expelled by the

conden d atoms to th dge of the cloud so that the visibility becomes high and

phase fluctuations b com weak. Moreover, the effect of collision in the low-velocity

and low-density condensates is shown in Fig.4.7. The fact that the number of in-

coherent atoms is in r as d significantly during the process of the collision implies
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that, because in the process of collision the interaction between condensed atoms

and virtual particles is much stronger than other processes, the quantum flucutations

excite more condensed atoms into non-condensed atoms in this process than other

processes. Although the interference pattern is not broken by quantum fiuctuations,

indicating the robust character of this interference, the process of inner correlations

and dynamics is very complex and can not be understood purely within mean-field

theory.

4.4 Conclusion

In conclusion: in the mean-field approximation, the effect of variations of the relative

phase & separation of two clouds and trap frequency on quantum interference of two

BEes has been studied. Our results demonstrate the possibility of using a single-

particle wave function to describe some phenomena of interference of two BEes in

some experirn nts. Distinguishing classical wave interference, the fringe period of the

colliding condensates is slightly smaller than the fringe formula from classical wave

interference when the interatomic interaction becomes larger (still much smaller than

the point at which instabilities occur) although the classical character of the mat-

ter wave fringe pattern is preserved. Furthermore, the Truncated Wigner method

provides a description of the many-body state of two coherent BEes. The under-

lying dynamics of noncondensed atoms is of critical importance to understand the

properties of the interference of colliding nECs.
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CHAPTER 5

Quantum Transport of a ID Degenerate
Bose Gas in a Lattice: The Role of

Different Quantum Fluctuations

5.1 Introduction

An opticallattic provid s a versatile testbed for exploring the quantum transport of
Bose-Einstein condensates (BECs) through the energy bands of a periodic quantum
syst m. By acc lerating condensed atoms through an optical lattice, experimental-
ists have U1V 'stigated the quantum transport of' BEes ill periodic potentials, and.
successfully ob. erved Bloch oscillations [58,60,61, 93J. These experiments etimulated
considerable the r tical int rest, which focused on damping mechanisms and the dis-
ruption of th Bl h 0 illations. Much theoretical work has shown that the damping
of Bloch moti n i attribut d to strong nonlinear interactions [62-67]. Recently, the
strongly damp d 0 cillation of a ID Bose gas in a combined harmonic and optical
lattic potential has been observed experimentally [17], under conditions for which
undamped motion has been observed previously for 3D DECR [72]. Distingushing

som exp rim nt on th damping of transport in OL [73-75], the inhibited transport
of th d g n ra ID B gas is not due to Bloch oscillations, where transport is
frustrat d b Bra.ggr fl tion at the Brillouin zone boundary. Theoretical work has
suggest d that uantum flu tuations can strongly damp dipole oscillations of a 1D
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atomic Bose gas, providing an accessible manner to explain these observations [76].

The truncated Wigncr approximation (TWA) has been utilized extensively for the

dynamics of BECs with quantum fluctuations. It provides a description of quantum

field theory based on the Gross-Pitaevskii equation in which quantum-mechanical

vacuum fluctuations are simulated by adding appropriate classical fluctuations in ad-

dition to the coherent field of the initial state of the BEC. These amount to half a

quantum per degree of freedom, corresponding to the zero-point energy of the har-

monic oscillator which represents each mode of the field [47]. Recently, the TWA has

predicted quantum turbulence in the collisions of two condensates [47] and explained

the disruption of reflecting BECs from Silicon surface [77]. In these theoretical works,

zero-temperature quantum fluctuations, i.e. quantum noise, are modeled by adding,

on average, half quantum into low-energy plane-wave (PW) modes, with a Gaussian

distribution in amplitude. Therefore the average uniform quantum fluctuations in

the coordinate space are added into the nonuniform condensates. It seems that the

distribution of quantum fluctuations docs not depend OIl the shape of atom douds

and interatomic interaction, Although the mean-field dynamics without quantum

fluctuations does not depend on the choice of basis [79], initial wave functions are

definitely different in the treatment of TWA when noise is added into distinct limited

bases. These differences might cause some variation in local correlations and dynamic

properties, in particular when quantum fluctuations dominate physical phenomenon.

Moreover, the wave vector should not be a good quantum number for harmonically

trapped condensates [80].

Although some work has been involved in the limitation of TWA [81] and the effect

of cutoff [50], little work shows the discrepancies of quantum fluctuations in different

forms, especially in local correlation functions and microscopic dynamics. Quantum

fluctuations in corr ct form are of critical importance to explain some experimen-

tal phenomenon. Very recently, the distribution of quantum fluctuations of trapped

atoms, det rrnin d from the Bogoliubov approximation, has shown reasonable results

in the nonadiabatic dynamics and dissipative dynamics of quantum transport in op-

tical lattices [55J. Consequently, under the ultracold condition, Bogoliubov theory

might be 8J.1 appropriate way to consider the effect of quantum fluctuations, which
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depend on the shape of atom douds and interatomic interaction.

Motivated hy the effect. of quantum fluctuation in distinct forms on the transport

properties, in this chapter we demonstrate the discrepancies between the dynamics of

a 1D degenerate Bos gas with respect to quantum fluctuations separately in PW and

SRO modes. Despite light difference in two trajectories of the center of mass (c.m.)

motion: cal ulat d respectively in PW and SRO modes, there exists some intrinsic
differences which are characterized by phase coherence, number fluctuations and den-

sity distribution, especially ill the short-time behavior. These discrepancies in short

time indicate that local correlations depend definitely on the forms of initial quantum

fluctuations. Quantum fluctuations from PW modes tends to kick some atoms out

of the main part of atom cloud while quantum fluctuation from SRO modes break

slightly the structure of the whole cloud. In addition, the results in PW modes do not

agree completely with the observation in recent experiments [17]while the calculations

respectively bas d on SRO and Bogoliubov modes show rational density function in

agrocrncnt with experiments. Comparatively, in the same number of modes, Bogoli-

uhov theory can offer stronger damping of c.m. trajectory than PW and SRO and

thus the r ults from Bogoliubov theory is closer to the results of experiments [17].

This implies that quasiparticle excitation due to the strong confinement and optical

lattice is critical factor in the strong damping of c.m. trajectory. Finally, to show

robust proofs and a rigorous investigation of numerical methods, we contrast some

results from rn an-fi ld approximate Gross-Pitaeviskii equation solved numerically by

the Crank-Nicolson m thod [67,78,86] and TWA solved numerically by the Projected

Fourth-ord r Runge-Kutta in the Interaction Picture (RK4IP-P) algorithm [47,84].

We also calculat atistical results using different number of realizations. Since re-

sults from 100 ralizations are similar to ones from 200, we show results in this chapter

with r sp ct to 200 ralizations.

5.2 Theoretical model and numerical methods

Our theor tical mod 1 is based on the experiment [17]where an array of independent

1D atom :! ub "w r g nerated by applying a strong transverse 2D optical lattice
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potential, Next the tubes are corrugated by applying a very shallow 1D lattice along

the axial direction, The dipole oscillations of atoms along the weak axial lattice were

excited by udd ntly displacing the harmonic trap by means of applying a linear

magneti fi ld gradi nt and the center-of-mass (c.m.) velocity was imaged. In the

experim ntal condition, which the transverse 2D confining potential is much larger

than th axial potential, and the chemical potential p is smaller than the lowest

energy &JJ.. ontribut d by 2D confining potential, the 3D dynamics of the bosonic

atoms in caw tub' 'an b ' simplified into 1D dynamics.

We consider the potential energy profile of the 1D optical lattice is characterized

by VOL(x, t) = V(t) in2(1rx/d), where d = 405nm. The amplitude V(t) is set to zero

initially, ramp d up to half photon recoil energy E; in 2.653ms as exp(kt) -1 where k
is an constant d termin d from the ramping time, and after that remains unchanged.

Consequentl th total confining potential is V(x, t) = VOL(x, t) + ~mw2x2, where m

is 87Hb atom mas and w = 27r x 60Hz is angular frequency of the harmonic trap,

similar to cxp irirncntal parameters [17]. At time t = 2.G53ms, we abruptly displace

the harmonic trap through R distance Ax = 3p,m, and hence accelerate the BEC in

the optical lat ic .

To expl r th t of quantum fluctuation in different forms on the quantum

transport of BEC w consider four dissimilar dynamic cases. In case I, the atom

conden ate propagat in the optical lattice without any quantum fluctuation. Case

II is allow d for the transport of condensates with 1/2 amplitude of virtual particle

in every low- nergy PW mod in the initial state [47, 77]. That is to say, the c-

numb r fi ld amplitud w(x, t) satisfies Gross-Pitaeviskii Equation (GPE) and in the

initial ondition, w(x, t = 0) = 1j;(x) + e(x), where 'Ij;(x) and {(x) are, respectively,

the real and virtual parti 1 fi Ids. We express the field of virtual particles using

e(x) = L:~1{jexp(ikjx)/v'L, where kj is the wave vector in the j-th mode and the

arnplitud in ach mod i a Gaussian random variable with the properties < {:ej >=
~8i,j, < {iej >= 0, Th III all value of the total virtual population is thus M /2. In

case III quantum noi. e i. added into low-energy SHO modes. The field of virtual

parti I ~(x) = L!o~(n)4> .. (x), where the amplitude in each mode is a Gaussian
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random variable with the properties < e*(n)e(m) >= ~8n,m'< e(n)~(m) >= O. In

case IV we consider quantum fluctuation in the quasiparticlo modes of SHO energy

bas d on B goliub v h ry. We approximate the field operator ¢(x, t = 0), within

the Bogoliubo th ory:

-J;(x) = 'l/Jo(x)ao + I)Uj(x)aj - vj(x)a}].
j>U

(5.1)

Here 'l/Jo i th ground tat lution of the GPE and < abao >= No, the number of

ground stat atoms. w diagonalize the Bogoliubov equation,

['Uj(X) - !7uNo~)5(x)vj(x) = Rj1l.j(.r,)

C-Uj(x) - 90No,t/J~'2(x)'Uj(x) = -bjvj(:r;),
(5.2)

bas don th SHO mod in th subspace orthogonal to 7/)o(~) and get the quasiparticle

amplitud Uj(x), Vj(x) and excitation spectrum Ej. The detailed analysis of the

Bogliubov xcitation sp tra and mode functions is shown in next chapter. Here

E = Ho - J-L + 2go ol'I/Jo(x) 12 and Ho = - :: ~ + v.,xt· Since TWA is valid providing

the d nsity of r al parti I is much larger than the density of virtual particles, we

consid r th otal atom Humber N = 1.0 X 103 and virtual particle number is less

than 150 in all Cc ,.. Two groundstatcs with optical lattice amplitude Vet) = 0 and

R,./2 ar calculat d numerically by an explicit imaginary time propagation [85].

The dynami f quantum transport of the atom cloud in the lattice is studied

using th TWA m th d. Th basic idea of the TWA is shown below. We expand

the fi ld op ra ors ~(r), ~t(r) in suitable basis: i.e., PW or SHOo In Wigner rep-

resentation, m t rms among Heisenberg equation of density operator jJ(t) might

be trun 'at d und r . rtain ionditions, resulting ill deriving a generalized Fokker-

Planck sqn t,i n. The orresponding stochastic differential equation of Fokker-Planck

equation i implifi d into th Gross-Pitaevskii equation [55]

(5.3)

Her, Ho == -;::: +V( ,t) and go = 21iw.la (see appendix D) where W.L = 21rx38kHz

is d riv d fr m th r tical analysis for 2D optical lattice used in the experiments
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[17,55] (see apt> udix E). Here a = 5.4um is the s-wave scattering length of 87Hl:

and 'l1w is the ID classical stochastic field, The thermal and quantum fluctuations

are included in th initial state of Ww in Eq.(5.3), which represents an ensemble of

Wign r di tribut d wave fun tions [55]. The TWA and closely related approaches have

previou ly b n u c ssful in describing atomic BEes [47,53] and optical squeezing.

In ca IV, th initial tat can be obtained through Eq.{5.1) and the excited state

quantum op rators (aj, a}) (for j > 0) are replaced by the random variables (aj, a;),

obtained by sampling the corresponding Wigncr distribution of the quasiparticlcs in

R thermal hath.

(5.4)

wh r ~.i = Ej/2kRT. In thi chapter, we concentrate on the case T = 0 where the

Bogoliubov approximation can be justified.

To th pr i ion and validity of results, different numerical methods are applied

in our simulation. In cas I, we obtain dynamic results by using the Crank-Nicolson

method to int 'b'l.°at' the time ....d 'pendent Gross-Pitacvskii equation. In case II, we ap-

ply A. diatinctive numerical method, R.K4IP-P [47:84]. In case III-IV, both methods

are u din rd r a inv stigat their equivalence. For the solutions of c.m. trajectory,

phase coh r n and numb r fluctuation in truncated Wigner method, we have calcu-

lated them num ri all u ing different numbers of realizations. We found that some

results an b signifi antly different when the number of realizations is small, i.e. less

than 50. How v r, ail r ults have little difference when the number of realizations

is more han 100. Her w how all results in case II-IV based on 200 realizations.

Although mar realizations might increase the precision of results, it should not alter

the natur f ph si in our alculations.

5.3 R sults and discussion

5.3.1 Analysis of groundstate

We now pl r th prop rti of the groundstate of a quasi-H) Bose gas in a ID

tr m situation where the properties of the ultracold Bose gas
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are dominated by condensed atoms. This hypothesis is based on the fact that in TWA

the introduction of quantum fluctuations in the equilibrium state are determined

mainly by the groundstate of condensate wavefunction. Under the condition of atom

number conservation, we set the nonlinear term 9 to the value of 90 which is expected

by experiments [17]. Some corresponding ground states versus various 9 are obtained

through strict numerical calculations 1. If the nonlinear term is strong and the trap

~
~O.5

Z

FTGURB 5.1: Parameter space for which LDA is applicable (above red line) and our
method of calculations is applicable (below red line). In the regime of LDA, there are
two solvable areas: perturbative limit (between red and blue line) and Thomas-Fermi
limit (above black line).

potential in the axis direction is very weak, the local density approximation (LDA)

should be applied to explain the properties of the groundstate. The conditions of

applicability of the LDA is (N~)1/3 » 1 where a is s-wave scattering length and
a_L

az (al.) is the longitude (vertical] characteristic length corresponding to the harmonic

trap frequency Wz (Wl.) [4]. implying that the scattering length a should be large in

a fixed total atom number of N. But it is not true in our case though we take the

full value of 90 and (N~ )1/3 ~ 13.5. The regime of our calculations should be below
a_L

the red line in Fig.5.1. With 9 increased from 0 to 90, the interatomic interaction

, Unlike normal imaginary time method, we detect the variation of atomic number in every SRO
mode rather than the variation of density until an extremely small difference at one time step among
all SRO modes so that the stable groundstate is obtained.
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tends to smooth the middle part of density distribution and expels the "Gaussian-

shaped" part. far from the center of trap (Fip;.5.2(a)). Corrosponrlingly the central
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FIGURE 5.2: The configuration of groundstate density distribution (a), distribution
function in SHO modes (b) and PW modes (c); (insert) momentum distribution
function zoomed out. Different interaction coefficient 9 scaled by different color;
9 = O(black), O.Olgo(rnagenta), O.03go(red), and go(blue). The number of the largest
occupied modes in SHO presentation (Square) and PW presentation (Circle) versus
interaction coefficient 9 (d).

part of momentum distribution becomes more narrow, and more importantly, there

exist periodic tail waves of which the number becomes more, the amplitude becomes

narrow, and the spacings become smaller (Fig.5.2(c)). To explain this phenomenon,

we divide approximately the condensate into three parts:

~c < ~< 00

-~c < ~< ~c

-00 < ~ < -~r.

(5.5)
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where Nn is determined by the atom number of the central part and character of'

the wave function and Ns depends only on the atom number of the side part. 0"2

should be closely related with characteristic length l '-""yfh/mw. Eq.(5.5) is Fourier

transformed with respect to the position variable to give

1 () 1
2 0"2Ns -2lT2k2 2

'110 k = 21/21T3/2 e 2 cos (k~c)

O"lNl _~lT2k2+ 21/21T e 1 erf (~c) + other terms,
(5.6)

where the second term is frorn the middle part with n = 0, 0"1 is characteristic length

of Gaussian function and er f(x) is error funtion, From Eq.(5.6), one can see that with

9 ~ go, ~c is larger and the value of 0"2 is decreased so that more tail waves will occur,

their amplitude will be smaller and their fringe spacing will be smaller. Meanwhile the

value of 0"1 is increased and the integral of central part will be larger, resulting that

the central peak will be more narrow and higher. To prove our theoretical prediction,

we fit the data of wavefunction from numerical calculations with the preset function.

Although we find a solution to satisfy the solution of wavcfunction in the middle

part, we still do not satisfy the precise and thus the complexity of middle part of

wavefunction should be due to the nonlinear term. However, the fitting of Gaussian

formula is found to yield quantitative agreement with the side part of wavefunction

for varied g. In Fig.5.3, we show only the fitting results of 9 = go·

As is well known, there is no pure BEe state for a homogeneous one-dimensional

system. Most of ID degenerate Bose gas is treated approximately by using condensed

atoms with strong fluctuations. It should be true that the properties of quantum

fluctuations depend crucially on the form of interacting condensed atoms and pertur-

bations of external potential. Due to strong confinement of optical lattice potential,

the initial state should occupy more energy modes and the selection of suitable initial

state is of vital importance in the dynamics of transport with respect to quantum

fluctuation. We investigate the role of nonlinear terms on the wave function of ground-

state and the maximum number of occupied mode respectively in the SHU and PW

representation. In Fig.5.2(d), the largest occupied mode in the SRO representation

increases as a power of g, while the maximum modes in the PW representation is

reduced at small 9 and remains nearly constant at large g. It seems reasonable that
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FIGURE 5.3: The configuration of groundstate wave function in 9 = 90 (square). Data
fittings from formulas: Guassian formula for side part with N.. = 65) 0"2 = 0.63638pm,
{c = 24pmj the formula J(z) = Yo+ 111$r.;e-z2j2 (1+ IL;=3 -TI-Hi(Z) I) , where z = x:xc,

H3 = Z3 - 3z, H4 = Z4 - 6z3 + 3. The suitable parameters for middle part are
Yo = -1.45 X 105, Xc = 31.749pm, 11= 7.7347 X 108. W = 57pm, a3 = -1.98 X 103
and a4 = -1.0 x 104.

the stronger interatomic interaction should excite more noise which are determined

by more occupied modes in TWA. We argue that SRO representation in our system is

more suitable to investigate quantum fluctuation than PW representation, especially

for strong interactions. In order to include all information in low-energy modes and

compare the role of the similar number of quantum noise in three different modes, we

choose the number of low-energy modes as approximately 200.

5.3.2 Dynamics without fluctuation

Unlike previous work in which solitons and vortices cause the damping of the c.m. tra-

jectory [67,87,88]' the strong interaction here due to the lattice and the confinement

does not trigger these excitations. In addition, in absence of quantum fluctuations,

the extremely weak optical lattice in the axial direction can not damp the oscillation

of 1D gas. Thus the dipole oscillation of the gas without fluctuation should keep the

regularity that the matter wave oscillates in the space of energy modes 2. In terms of

2In order to doruoustratc this point of view, we define '!jJ(x, t) as the wave function of the gas
and thus < :r. > (t) = .r~oo1/)* (x, t)X1/I(:r:, t). In the treatment of semiclassicalmethod, we support
that the shape of wave function is not changed versus time exept its position so < :r: > (t) =
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FIGURE 5.4: Plots of atom number ICn(t)12 versus time t in one period in n-th SHO
mode from simulation (Cross plots), and theoretical formula (Red line): w = 27rX 60,
tf = 11.025ms, A = 2.1592 for all modes and B = 135.314078,270.0407,17.0516
respectively for n = 0, 1,2.
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-~'lIu(O = En Gne 2 Hn(O, we define

Cn(k) =1:Cneik{e-~ n:(e) d{ = (21T)1/2Cne-
k
; Hn(k)in, (.5.7)

we might infer that the distribution function ICn(k)12 in SHO modes should have

similar configuration to exp(-P) H~(k). In the undamped c.m. trajectory, the wave

vector k has similar behavior to semiclassical dynamics [67J. Considering the cos-

shaped < x > with period of 21T/w (Fig.5.6), we suppose k with the shape of Asin(wt),
where A is the constant amplitude of wave. Thus,

(5.8)

where t' is determined by the initial phase and C« depends critically on the initial

atom number in different modes.

Fig.5.2 shows that our simulation is well in agreement with this prediction. More

importantly, this analogy between semiclassical theory and quantum-mechanical sim-

ulation is crucial to understand the intrinsic dynamics of transport in the represen-

tation of energy. At time t = 11.025ms, the atom cloud moves up to the highest

potential and the velocity of the center of mass (k) is nearly equal to zero. Conse-

quently the properties that the distribution function have maximum value in n E even

and minimum value, i.e., nearly 0, in n E odd are embodied by the period 2 of distri-

bution function (Fig.5.3 top). With time, the variations of the distribution function

are increased with respect to increasing the velocity (k). Even at the same time

l = 15.2ms, the variations of distribution function are also increased versus larger ti

(Fig.5.3 inset). For simplification, the variations depended on k or t are named RoO;;

period; and the variations depended on SHO mode n as modulation period. Also the

variation of distribution function depends on the energy mode n; the larger modu-

lation period, the larger SHO mode. It is worth stressing that one can identify the

J~oo1/J* (x - As'iru.vt)x1/J(x - Asi',u.vt)dx where we regard the variation of position of the wave function
1:U> Acoswt. It is C1:U>y to sec that < x > (t) =< x > (t = 0) - Asinwt is C1 periodic function. In
n snnilur WILY, we dcfiuo the variatiou of at.ow number in one mode n of SHO base H.<; < n >
(t) = J ¢~(x)'1j)*(x; t)¢n(x)V,(x,t)dx where ¢n(x) is the eigen function of single harmonic osillator
in the energy level n and ¢~(x) = ¢n(x). In the semiclassical method, < n > (t) = J ¢;(x)1/J*(x-
Asiruut)1/J(x - Asiruut)dx. Since ¢n(X) is a localized function in a limited region of space and
1/J(x - Asiruut) is a. periodic function, < n > (t) should be a periodic function versus time t.
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FIGURE 5.5: PIotR of atom number IG(n)J2 versus mode n in time t = 11.025ms
(top) and 15.2ms (bottom); different scaled plots (Insert).

dissipative dynamics of condensates directly from distribution function in SHOmodes
rather than c.m. trajectory and phase coherence in the representation of coordinate
or momentum.

5.3.3 Dynamics with different fluctuations

Since there is an analogy between the explanation of semiclassical dynamics and
quantum mechani s on th transport of condensate without quantum fluctuation, we
hope to implem nt further semiclassical dynamics of dissipation to explain the role
of diverse quantum fluctuations on the c.rn. motion. We attempt to model the C.In.
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motion as a damped harmonic oscillator

.. . k
Xc.m. + 2, Xc.m. + -. Xc.TTL• = 0m (5.9)

where J~x xl'l/J(x, t)12dx
Xc.m. =< x > (t) = J~oo 1'l/J(xJ)12dx .

In uuderdamped case, Eq.(5.9) have a solution Xc.m. = -e-'Y(t-to)(Acosn(t - to) +
I3sinD(t - to)), with I3 = .:w- and D = y'k/m* - ,2, where to is determined by initial

phase.

From Fig.5.6(b) and (d), itis not possible to fit definite parameters through the

solution of Eq.(5.9) to our simulation, implying the complexity of the role of differ-

ent quantum fluctuation on the condensate transport. For convenient comparison,

we show the applicable parameters of theoretical solution that satisfy the results

of the first period in our simulation. Despite stronger damping amplitude prior to

t < 15.2ms in cases II and III, the damping ratio in CR.",C IV is much larger than in cases

II and III. To contrast the damping ratio versus time particularly in cases III and IV,

we perform the similar definition from ref. [89], ,0 =In(Do/ D1), ,1/2 =In(DI/2/ D3/2).

Our results give ,0 = 0.3049,0.2309, /1/2 = 0.2003,0.2745, /1 = 0.1873,0.2514 respec-

tively for cases III and IV. Although quantum fluctuations from the PW and the

SRO modes cause stronger damping behavior in the initial movement of clouds (To =
0.3049,0.2309), quantum fluctuations from the Bogoliubov theory trigger a stronger

damping movement in a long later time (/1/2 = 0.2003,0.2745, /1 = 0.1873,0.2514).

It demonstrates directly that quantum fluctuations from Bogoliubov calculation dis-

sipates the Bose gas more rapidly than the fluctuations from the low-energy PW and

SRO modes.

Additionally, one can s e in Fig.5.6(a) that there are slight differences of the

trajectories of c.m. motion according to two forms of quantum noise. Does it indicates

that there arc completely identical dynamics in case II and III?

Since the trajectory of the c.m, motion does not reflect the local correlations

and phase information of the condensate dynamics, we explore the properties of local

phase coherence and number fluctuations. In order to avoid the complications arising
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22.65 42.652.65
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FTGURB 5.6: The plots of c.m. trajectory of BEes versus time with ~x = 3p,m
in case I (black in (a)); in case II (red in (a) ); in case III (cross in (a), black in
(b) and red in (c))j in case IV (cross in (c) and black in (d)). Theoretical formula:
B = O.2218j.Lm, 0.1039j.Lm and I = 22.88632492,10.43904930 separately for cases III
(red in (b)) and IV (red in (d)); n = 21f x 60 and A = 3.0j.LIIl for both cases.
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FIGURE 5.7: Plots of phase coherence in different CCl.':iC1:i with the ::;aIIlC neighbor (top,
middle) and in case III with different neighbors (bot.tom).
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from the symmetrically ordered multimode field 'tPw [55], we define the ground state

operators aj for each individual lattice site j:

(5.10)

where 't/Jw(x, t) is the stochastic field, determined by Eq.(5.3) and 't/Jo(x) is the ground-

state wave function in the combined harmonic trap and optical lattice. The normal-

ized phase coherence between the central well and its jth neighbor and the atom

number fluctuations in the jth site are separately set as C, = I < a~aj > I/.;non;
and D.nj = [< (&,j&'1? > - < aJ&'j >2]1/2.

Fig,5.7 and Fig.5.8 show respectively the configuration of phase coherence and

number fluctuations in distinct cases (top and middle) and in case III with different

spatial neighbors (bottom). In the process of transport, phase coherence C, and

number fluctuation D.nj are closely correlated to damping amplitude and damping

rate of c.m. trajectories, the forms of quantum fluctuation and spatial length j. The

variation of phase coherence is reduced identically in cases II, III, IV corresponding

to the damping c.m, motion. Comparing phase coherence in cases III and IV (Fig.5.5

middle), the variation of C3 in case IV is definitely smaller than in case III. The

mean value c; = t2~tJ It:';! C:l(t)dt from 2.65ms to 42.65ms in case IV is 0.62973,

5.21% smaller than in case III (0.66435). The corresponding mean value of number

fluctuation D.n3 = t2~t' ft:2 n3(t)dt in the interval of time in case IV is 3.94849, a

little higher than 3.87862 in case III. These indicate that quantum fluctuations from

I3ogoliubov theory have stronger effect on the damping behavior of c.m. motion,

more loss of phase coherence, and stronger number fluctuation than quantum noise

in low-energy modes.

From Fig.5.7 bottom, we see that the larger the phase coherence and number fluc-

tuation, the closer is the referred site of the condensate to the central well. However,

from our full simulation, there is small difference of phase coherence from lOth neigh-

bor to 60th neighbor while there exists an obvious difference in D.n20 and D.n50. Since

we consider only the correlation functions in left sites from central well, the number

fluctuation in the site farther from the central well is affected more by low-density gas

when the clouds move to right site, so that there exists large variation of fluctuations
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FIGURE 5.9: Initial density distribution 1'ljJ(~:t = 0)12 in cases II (a) and III (b).
Density distribution for .6.x = 3J.Lm at t = 8.65ms in cases II (c): III (e), IV (g), and
their corresponding atom distribution in SHO modes (d), (f), (h).

over t.hewhole real space (Fig.5.9(a)) while the spacewit.hthe length, compared to the
width of atom cloud, is occupied by noise from SHO modes (Fig.5.9(b)). During the
transport process, one can see that some atoms, labeled by two ellipses (Fig.5.9(c)),
are kicked out of main part of atom cloud in case II while it is not present in case III
(Fig.5.9(d)). Correspondingly, there are a large number of atoms localized in some
energy modes in case III (arrowed) while this dues nut occur apparently in case II
(Fig.5.9(d)). Based on Fig.5.7, 5.8 and 5.9, we infer that the damping of c.m. tra-
jectory in case II is attributed to PW-mode quantum fluctuations which tend to kick
some atoms out of main region of atom cloud while SRO-mode quantum fluctuations
are included to break slightly the inner configuration of condensates 3. In addition,

3We also analyse dynamic distribution function from the mean of many trajectories and the



119

ill the experiments [17], C. D. Fertig, et al. did not I:leea significant difference in

TOF width between atoms that undergo damped harmonic motion and those that

are unexcited but held for an equal time. It is obviously not true for the calculations

in PWmodes. Those atoms which are kicked out and occupy high-energy potential

position can be observed in the experiments and the length of atom cloud should be

extended. Conversely, the results based on BRO and Bogoliubov modes do not modify

obviously the width of atom cloud, closer to the observation of the experiments.

5.4 Summary

In conclusion, we have studied the role of quantum fluctuations in different forms on

the transport behavior of the Bose gas. The intrinsic discrepancy with respect to

phase coherence, number fluctuation, and density distribution at short time behavior

demonstrates that the correct forms of fluctuations are of critical importance in the

dynamics of a Bose gas. Quasiparticle excitations from Bogliubov theory cause more

loss of phase coherence and more number fluctuation on the damping dynamics than

quantum noise from low-energy modes and condensate modes. Moreover, distribu-

tion function in SRO modes is an useful tool for identifying dissipative dynamics for

trapped condensates, even in 2D and 3D system.

function shows also th r ults similar to Fig.5.9 but plots are more smooth
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CHAPTER 6

Elementary excitations of a trapped Bose

condensed gas: the role of interatomic

interaction

6.1 Introduction

The term quasiparticle refers to a particle-like entity arising in a certain system of

interacting particles. Since the quasiparticle is one of the known ways of simplifying

the quantum mechanical many-body problem and is applicable to an extremely wide

range of many-body systems, the quasiparticle concept is one of the most important

in condensed matter physics. In the language of many-body quantum mechanics, a

quasiparticle is a type of low-lying excited state of the system (a state possessing

energy very close to the ground state energy) that is known as an elementary exci-

tation. This means that most of the other low-lying excited states can be viewed as

states in which multiple quasi particles are present. It turns out that the interactions

between quasiparticles become negligible at sufficiently low temperature, in which

case we can obtain a great deal of information about the system as a whole including

the flow properties and heat capacity by investigating the properties of individual

quasi particles.

The Bogoliubov approximation scheme leads naturally to a discussion of interact-

ing bosons in t rms of quasiparticles, As seen in chapter 2 the field operator for the
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real bosuns is expanded as

~(r) = Nuau +L {1Lj(r)a} + vj(r)aj}
j>O

where ao is an annihilation operator for the condensate and No the number of bosons

in the condensate. The mode functions Uj and Vj are chosen so that the aj and a}
operators satisfy boson inc commutation relations and such that the Hamiltonian can

be written in the form

it = Ru +L RjaJfij + ...
j>O

so that a} and aj can naturally be interpreted as creation and annihilation operators

for bosonic quasiparticles. The terms omitted in the Hamiltonian in the Bogoliubov

approximation can then naturally be interpreted in terms of processes involving qua-

siparticle scatt ring.

In this chapter we study the influence of interatomic. interactions on the Bogoli-

ubov mode functions and excitation spectra of a quasi-ID bose system confined to

a parabolic trap by numerically solving the Bogoliubov equation. We aim to under-

stand the distribution of quasiparticles. The intensive analysis of excitation spectra

and mode functions with respect to different nonlinear interactions are shown. Also

the details of numerical calculations of the Bogoliubov spectrum in single-harmonic-

oscillator basis are presented here.

6.2 Model and Numerical method

The Bogoliubov quations in real space were derived in chapter 2 and are reproduced

below

(
L - J-L + 2gl'tPo(x)12 -g('t/JO{X))2 ) ( U (x) ) ( 'U (x) )

g('t/Jo(x)):.! - (£ - J.L + 2gl'I/Jo(x) I:.!) V (x) = E v (x)
(6.1)

where the one-body Hamiltonian is

(6.2)
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If we work in terms of the dimensionless variables ~ = x/xo, E = E/itw, A = p/liw,

')'= g/xollJ..JJ, 'l/Jo(O = ..jXo'ljJo(x) where Xo = y'h/mw and 9 = 2hw.1.as is the effective

1d coupling constant (Wl.. being the frequency of the transverse confining potential)

then we have

(
-~~ + ~e- A + 2'Y I'l/Jo (012

')' ('1/;0 (~))2

(
u (~) )

= E 1J (c;)

(6.3)

To solve Eq.(6.3), one general method is to expand the condensate wavefunction

'1/;0(0 and the amplitudes of quasiparticle u(O and v(O in a suitable basis which is

related closely to the characters of these wave function. Thus we choose to use the

Simple-Harmonic-Oscillator (SHO) basis cPn(~) here. One might notice that it should

he much easier numerically to use the plane-wave basis in our system. However,

the momentum p (or wave vector k) is not good quantum number to describe the

condensate confined in a harmonic trap: and fewer basis states should be neccessary

in the SHO basis to give an accurate account of the Bogoliubov excitations. Now we

set
00

'u (~) =L ancPn (~) (6.4)
n=O
oo

v(O = LbncPn(~) (G.5)
n=O

so that

00 (1 £i2 1. 2) oc
Lan -"2 ~~ + "2e - A + 2')' I'I/Jo (01 Q>n(0 - "YL i; ('I/Jo (~))2 cPn (~)
n=O n=O

ec

= c:L UncPn (~)
n=O

(6.6)
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n=O

which simplifies using

(6.8)

to

00 ( 1) 00 oc
~ an n + 2 - A <Pn (e) + 2, ~ an 1'1/'0(e)12 <Pn (0 -, ~ bn ('1/'0 (e))2 <Pn ({)

00

= c :Lan<Pn (0
n=0

(6.9)

00

= -c:L bn<p,.(~)
n 0

(6.10)

Now we premultiply ach side of each equation by <Pi ({) and integrate over' to give,

using the result

(6.11)

f: (11. + ~- A) o".8",j + 2,f:an J d,<pj (e) IVJo(012 <Pro (0
nOn 0

- 'Yf:b" J d~<pj (e) ('1/'0 ({))2 <p" (e) =wn6n,j
n 0

(6.12)
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-,t,an J d!;<Pj (() (,p; (0)' <Pn (() +t,(n +~- A) un5n,j

+2,f:bn J d1;c!>j (~) 11P0(012 <Pn (0 = -cbn6n,j
n=O

(6.13)

Now we write
00

1/;0 (~) =L Cm<Pm (~)
m=O

(6.14)

so that

<Xl 2, J ~<Pj (~) l1Po {~)12 <Pn (~) = l'J ~<Pj (~) L em<Pm (~) <Pn (~)
m=O

= , J d(,<Pj (~) f:Cmc!>m (0 f: C:n/<Pm (~) <Pn (~)
m=O m'=O

= f: CmC:n" J d~<pj (0 <Pm (~) <Pm' (~) <Pn (~)
m,m'=O

ec

= L CmC:n,rj,m.,mi,n

(6.15)

m,m'=O

, J d!;<pj (() (,po (())' <Pn «:= 'Y J d!;<Pj (0 (t,Cm<Pm W) 2 <Pn (()

= f: CmCm', J d~<pj (0 <Pm (~) <Pm' (~) <Pn (~) (6.16)
7n,m'=O

oo

= L CnlC,n,rj,m,m',n
m,m.'=O

, J d!;<Pj (0 (,p. (0)' <Pn (() = , J d!;<Pj (0 (t,c;,.<Pm (()) , <PoW

= f: c:'nc:n" I d!;<Pj (~) <Pm (0 <Pm' (0 <Pn (~) (6.17)
m:m'=O .

= L C:nC:'l,rj,m,m',n
m,m'=O



where

Now we can use the standard form for the harmonic oscillator basis functions

where H'I(e) is the nth Hermite polynomial and

is the appropriate dimensionless normalization constant. Hence we have

ri,j,m,n - FiFjFnFm'Y

x J d~~_2f.2 Hi (e) Hj(e) Hm(O H,.(e)

The Bogoliubov equations thus become

00 00

L x.;«; - LYj,nbn = can&j,n
n=O n=O
00 00

- L ~i:nan+ L Xj,nbn= -c;bn6j,n
n=O n=O

where

ec

Y,' n = "" c,."c,.",r,'m. m.' n.).L... .l , ,

m,m'=O

or, in matrix form:
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(G.18)

(6.19)

(6.20)

(6.21)
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Notnuiiizatioti

As described in the last chapter, the "quasiparticle" creation and annihilation oper-

ators o'j, a} obey boson commutation relations which lead to the constraints on Uj (r)

and vj(r')

(6.22)
j

(6.23)
j

L[uj(r)Vj(r') - Vj (r)uj (r')] = o.
j

(6.24)

Here we will deduce the normalization condition for the mode functions in our nu-

merical calculation through Eq.(6.22). By analogy with 'l/Jo(X) , we expand u(j)(r) amd

v0) (r) (notic that to demonstrate the application of the normalization condition in

a numerical calculation clearly, we have changed the notation Uj (r) and Vj (r) into

u (j)(r) and v(j) (T)) ill the SH0 basis so that

u (j) (r) =La~j)¢>i ( r )
i

v(j)(r) = LbJj)¢i(r)
i

(6.25)

where a~j) is the j-th Bogoliubov mode amplitude coefficient of the SHO eigenstate

¢>i(r); that is to say, ev ry Bogoliubov mode is expanded in the SHO basis. Inserting

Eq.(6.25) into Eq.(6.22), one can obtain

LL(la~j)12 -lb?)12)¢:(r)¢i(r') = L<P;(r)<Pi(r').
j i

(6.26)

One can s asily that th condition Eq.(6.26) must be fulfilled as

L(la~j)l~ _lb~j)12)= 1
j

(6.27)

for v ry SHO basis ita . Compar d with the matrix (6.21) for Bogoliubov equation,

one can find that. the normalization condition for the mode functions a~), b~) for every
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energy level imust satisfy

(6.28)

The integrals Cm and fijrrtn which are needed for the matrix elements were calcu-

lated using the Gauss-Hermite quadrature method [130]. The matrix diagonalization

was carried out using the standard EISP ACK routines.

6.3 Results and Discussion

The standard structure of the matrix in Eq.(6.21L which is composed of four real

symmetric tridiagonal matrices Xi,n., -Xj,n: Yj,n.,-Yj,ll providing the phase of con-

densed atomic wave function is zero, determines essentially the Bogoliubov spec-

tra and mode functions. In principle, the mean-field nonlinear terms 21iw.Lal"p(x)12
influences the structure of matrices Xj,n, Yj,n, which has internal relation with the

Bogoliubov spectra ana mode functions. Thus the role of the nonlinear term in the

excitat.ion spectra and mode functions becomes an immediate requirement. of explain-

ing some elementary excitation phenomena in cold atoms. To discuss conveniently

50
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------------------
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10 20 30 40 50
n

10 20 30 40 50
j

FWURF: 6.1: The plot of the characterized matrix Xj,n (left) in the case of 9 = 0.05go;
plots of two energy part (right), (n +~- A) (solid line) and 2::,rrt'=oCm.Cm,fi,m,rrt/,.i
(dash line).

our results, we define some quantities to characterize the matrix Xj,n and mode func-

tions. In Fig.6.1, we how th distribution of elements in the real matrix Xi,n (Fig.6.1
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Left) 1 and the distribution of two parts of its diagonal elements (n + ~- A) 6j;n and

,"",00 , 0 c,nCm,rJ· m m'J' (Fig.G.1 Right). As will be seen in this part, the matrix XJ' nLJrn,7n , , , )

and its diagonal elements playa crucial role in the excitation spectra and mode func-

tions. In general, the width of nonzero elements in (sub)diagonal parts d (labeled in

Fig.6.1 left) and the width of high-amplitude modes (labeled in Fig.6.5) grow with

increasing interatomic interaction. Moreover, the competition between (n + ~- A)
and L::,m'=O cmCm,rj,m,m',j leads to some odd excitation energy and mode functions .

40

._30 b

20 1
10.:

..'
40 .

.'..'..'.'u..i~ 20 ..'.'....
o ro--<;-a
o 7 25

j
50 4 20 40

n
20 40

n

FIGURE 6.2: The plots of Bogoliubov excitation spectrum "bj (Left), mode functions
an (middle) and bn in the situation of 9 = 0

We explore firstly an extreme condition in which the nonlinear term gl'll-'o(x) 12 is
trivial, specifically the interatomic interaction energy ~I~:l'II-'o(x)14dx « tuc. The

matching groundstate wave function of the condensed atoms fulfills the criterion,

'll-'o{x) ~ co¢o(x) + C2¢2(X) V Co » C2 and en = 0 V n E odd with regard to the

symmetry of the wave function about. x = O. To explore the role of chemical potential

in the eigenvalue and igenstate, we adjust artificially 11= 4.9992nw much larger than

the true 11~ O.Snw. Fig.6.2 shows that U, = L:n aj,n = 1, Vj = L:n bj;n = 0 for each

e.xcitation en rgy Ej 0 that the mode function aj,n for every j is identical with

Kronecker d Ita function. Apparently d' = 1 for Uj in this case as well as d = 1.

The fad that th amplitude of mode functions is identical for all modes implies

1Since the global phas 0 in condensed wave function VJo(t.) cannot affect the elementary excitation
spectra, for simplification, w cho e () = O. One notices that mode functions are Gauge invarient
only for th numb r- n rving Bogoliubov equation [32]but it is not true for the normal Bogoliubov
equation.
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that quantum noises from TWA based 011 Bogoliubov modes do not depend on the

mode functions, and is determined merely by the number of modes. This property

coincides with the TWA used in ref. [47,77]. In addition, the positions of the kink

and V-junction, arrowed separately by a and bin Fig.6.2, demonstrate that the linear

structure of the excitation spectra and the distribution of mode elements is broken

with respect to the introduction of distinct chemical potential. Indeed, for some 11, of

which (11, + 1)hw < J-L, the value of the abscissa in the position of V-junction refers

to the specific value 11,1-' which satisfies (nl-' + ~)hw ~ J-L and the kink point to n' with

(n' + ~)lu» ~ 2/1" Consequently, the chemical potential /1. plays a role in displacing

the distribution of elements of mode functions aj,n and bj,n in the direction of abscissa

axis 11,.

An explanation from the matrix theory of the distribution of elements of mode

functions is shown below. The matrix elements satisfy Xj,n =I- 0 V j = 11, and 0

otherwise, and Yj,n = 0 so that

o
o

-X· - Ed·i» i»
= O. (6.29)

Eq.(6.29) can be simplified as

(X1,1 - c) (X2,2 - c)··· (XnmC>X,nmClx - c)( -xnmClX,n",o.", - c)··· (-Xl,l - c)( -X2,2 - c) = 0,
(6.30)

and correspondingly the eigenvalue E = ±Xn,n' According to the orthogonality and

normalization of an. and btl, for a given value of 11,' t = Xlll,n/, an = 1 V n = 11,' and

an = 0 otherwise while b.; = 0 for all values of n.
The next case, in which 9 = 0.0590 (a little stronger than the above case), is

considered and the matching grouudstate wave function 'I/Jo(x) = 2:,. en<Pn(x) where

Co~ 2.04c2, Co ~ GC4,and en ~ 0 V 11, =f:. 0,2,4. Our simulations show the width d ~ 8

for Xj.n- Since IC412is much smaller than leo 12,for brevity we ignore its contribution

to fj,n' Thu the analytic formula for diagonal elements and subdiagonal elements
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FIGURE 6.3: The plots of Bogoliubov excitation spectrum Ej (Left), mode functions
an (middle) and o; in the situation of.9 = 0.05.9u.

are respectively

i,j

,f(n - ~) [( 2 2 1 3
f(n + 1)23/21[ 2 Co+ c2)(n - 2)(n - 2)

(3 2 (2 CUC'.l) 3 ]+ 4C2) + c2 + J2 (n - 2)

" l'r(n-l)
rn.n+2 = c: CiCjfi,j,n.n+2 = r(n + 1)23/21[[(n +22)(n + 1)]1/2

,,)

[ 2 2 (2 1 15 2 2 COC2 1 ]
x 2(CO+C2) n -4)+ 16c2+3(C2+ J2)(n-2)'

where I'(z] function satisfies the property I'(z + 1) = xf(x).

Fig.6.3 (a) shows that rll,n and rn,nt2 from our simulations are identical to the

semi an alytic formulas (6.31), (6.32). A slight difference for fn,nl2 in the regime of

(6.31)

(6.32)

small n can be found while there does not exist for f",n in the whole regime. It is

derived from the fact that: due to ieoi2 » ic4i2, the contribution of C4 to I'n,n can be

neglected safely but the terms including C4 in rn,n+2 might not be neglected in that

C2 is not much larger than C4' However, the contribution of C4 for Tn,n and T'n,n+2 is

reduced rapidly with increasing n and there is little difference between the fornnlao

(6.31), (6.32) and our simulations for large n. Although we can not give the confirmed

value of d' for mode functions aj,t1l bj,n from Fig.6.3, it can be seen that d' grows with
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FIGURE 6.4: The plots of fj,n from our simulation and corresponding fittings from
our fomulars for r..,n and rn,nl2 in the situation with 9 = 0.0590 (a); The plots of
ri,n from our simulation in the situation with 9 = 90 (b).

increasing d. This demonstrates that the stronger interatomic interaction in Bose gas

tends to produce some excitations occupying more oscillator modes.

An explanation from matrix theory for 9 = 0.0590 is shown below. To simplify

the complex Bogoliubov matrix and confirm the validity of conclusions, we suppose

that the clements of Bogoliubov matrix Xn,n-2, Xn,n, Xn,n+2 (Yn,n-2, Yn,n, Yn,n+2) arc
nonzero and otherwise Xj,n = 0 (Yj,n = 0). We also assume Xn,n-'2 = Xn-'2,n « Xn,n

(Yn,n-2 = Yn-2,n < < Yn,n) and Yn,n < < Xn,n' In general, the constraint conditions are

valid for the case in which the condensate wave function occupies a limited number

of harmonic modes. The Bogoliubov equation (6.21) is written into

Xj.n - EOj,n

Yj,n

and also

-y.J,n =0, (6.33)
=X, - EO-.1 ,n. .1,n

(6.34)

If we define c! as the eigenvalue of IXj,n - E'Oj,nl . IXj,n + E'Oj,nl = 0, IYi,nl2 in the

Eq.(6.34), contributed by th nonlinear interaction, plays a role in "displacing" the

eigenvalue t'.
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Since Yj,n is similar to Xj,n in the form and Yn,n « Xn,n, the Eq.(o.34) is equiv-
alent approximately to

(6.35)

and thus is simplified into

IXj,n - £6j,11,1

IXj,n + £6"j,11,1

o
o.

(6.36)

(6.37)

Here we give an example about solving Eq.(6.36) and the way of solving Eq.(6.37) is

similar. Use Laplace's formula to expand Eq.(6.36) so

(6.38)

where Mj,1l is the minor of matrix Xj,n' If we define e" as the eigenvalue of (Xl,l -
£")IMl,ll = 0, the term of Xl,31Ml,31 in Eq.(6.38) plays the role in "displacing" the

eigenvalue -". Since XI:3 « XI,1 and IMI,31 « IMl,ll, Eq.(o.38) is changed into

(6.39)

In a similar way; one can deduce

(6.40)

Eq.(6.40) implies that when the excitation spectra with respect to weak nonlinear

interaction are perturbed around the excitation spectra in absence of the nonlinear

interaction. Furthermore, we give a deduction, which is not rigorous in mathematics,

about the eigenvector equations, The eigenvector equations are written as

Xj:nUn-20j,n-2 + (Xj,n - t)unbj,n + Xj,nun+26j,n+2+

Yj,nbn-26j,n-2 + Yj,nbnc5j,n + Yj,nbn+2bj,n+2 = 0 Vj E (1, nmax).
(6.41)

If we ignore the contribution of }j,n, Eq.(6.41) becomes the standard triangular

equations. Thus for a given eigenvalue fjf close to Xj',jf, aj is nonzero for j =

j' - m, ... ,j' - 2, i', j' +2, ... ,j' +m where tri is positive integer and close to 2. and
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approximately zero otherwise. n: should depend on the value of the non-diagonal ele-

ments. Consequently, we can infer that the width of clements in (sub )diagonru parts

d (see Fig.(6.1)) is related closely with the width of high-amplitude modes d'(see
Fig.(6.5)) through m.

The following analysis concentrates on the excitation spectra and mode function

in the case of 9 = 90, presented in the first: second and third row in Fig.6.5. For

the same paremeters and numerical calculation, a visible gap of excitation spectra

appears in the case of nmax = 50 but does not exist for nmax = 100. Indeed, since

the contribution to Bogoliubov matrix from strong nonlinear interaction does not

described completely by the limit number of modes, the existence of gap in Fig.(6.5)

is wrong. More essentially, the limit modes (for example nmm: = 50) do not fulfill

the condition (rnma""nma:z: - rnmax-l,nma:z;-l) « hw. As seen in Fig. (6.4), the one-

body part (n + ~)hw - J-L increases linearly with n while the two-body part rn,n
decreases approximately exponentially. This results in some special point ni where

rm,m is competitive to the one-body part. An important criteria for how many

modes would he sufficient to solve correctly the Bogoliubov excitation, is that the

minimum matrix dimension nmin must be larger than the level n; where n; satisfies

~~:nIn=nc ~ hw (see row two and three in Fig.{6.5)). Moreover, in second and third

row in Fig.(6.5), there are visible kink structures of Bogoliubov spectra, in which

the point of kink is independent on the number of modes provided the number of

modes is sufficiently large to describe the properties of system. Through the previous

analysis for I3ogoliubov matrix structure, the energy spectra below the point of kink

are contributed primarily from the nonlinear term of Hamiltonian and the part above

the point is from one-body term.

Although three dimensions produce more complex structure of rj,n in the Bogoli-

ubov equation, there exist some analogies for rj,n between 3D and ID in the case of

extremely week interatomic interaction. These analogies imply that some conclusions

drawn above for in situation might be also effective in 3D situation. If the occupied

modes of the condensate wave function in 3D arc only four and no,o,o is much larger
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than any one of n2,O,O, UO,2,O, and no,o,2
2
, the form of quantum noise from the TWA

in Bogoliubov modes should be independent on the mode and thus it is identical to

TWA in PW mode.

In conclusion, we have investigated different forms of quantum fluctuation con-

tributed by different interatomic interaction by solving numerically Bogoliubov equa-

tion. In the regime of extremely weak interaction, the contribution of quantum fluctu-

ations from the TWA based on Bogoliubov modes and the TWA based on plan-wave

modes are equivalent but they are definitely distinct in the regime of strong inter-

action, such 8.<; in the presentation of normal 1D Bose gas in experiments [17]. Our

analysis of eigenvalue and eigenvector for distinct matrix structure might be practical

for the Hamiltonian matrix in strongly correlated system such as spin-grid system

and superconduction system.

6.4 More work on rigorous mathematics for future

Our simulations have revealed some regularities in the excitation spectrum Rj and

mode functions an, b", derived from an underlying matrix configuration in the Bogoli-

ubovequation. For simplification, one can consider only the case of nondegenerated

energy. 3 In general, the equation has the form,

(6.42)

where Xj,n and Yj,n are N x N real symmetric tridiagonal matrices. Here we define d
is the width of band tridiagonal elements (see Fig.(6.1)); that is to say, d = 1 means

there are nonzero elements only in the diagonal part. d = 2 means there are nonzero

elements only in the diagonal and sub-diagonal parts. Meanwhile the matrix Xj,n has

the following characters,

2Here, we con ider the wave function describing Bose gas with center symmetry.
3In special case, i. . attractive interatominc interaction and low dimension, there exist some

complex excitations such as roton-like excitation.
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Also IAj,j+ml > IAj,j+m,1 \::1m< 'In' with tn, m' are positive integer.

Wc usc two matrices Mj,n, Nj:n to save cigcnstatcs an and bn separately for all

j-level energy under an ascending order; that is to say, the corresponding eigenstates

an and b.; for EI, defined the lowest excited energy, are deposited respectively into

MIn and Nln·, ,

Here, we define d' as the width of continuous high-amplitude modes in the an

or bn. One needs to investigate the way in which with increasing d, d' increases

correspondingly.



137

CHAPTER 7

Conclusion

7.1 Summary and overview

This thesis has explored the role of repulsive interatomic interaction in the sponta-

neous formation of vortices and interference pattern in merging BEeR, the role of

quantum fluctuation in colliding BEes and transport properties of 1D degenerate

Bose gas.

In the mean-fi ld approximation, the single particle wave, describing the BEe

state, is affect d strongly by interatomic interaction. The competition between the

centre of mass sp d due to an initial displacement and expansion speed due to

interatomic interaction. for merging BECs exhibits complex interference phenomenon

such as non-unit rm and distorted fringes. Meanwhile the essential relations between

the spontan ou formation of vortices and interference have been shown clearly in

Chapter 3. In many cas ,these results should motivate some experiments on vortex

creation.

Quantum flu tuation ar always present in real systems. Beyond mean-field

theory, th Trun .ated Wigner method described in Chapter 4, is one way of in-

cluding some fluctuations, shows that they have It significant. effect. on interference

visibility and int rnal c rr lations. In particular, the detailed dynamics of non-

condens d atoms and th int raction between non-condensed atoms and condensed

atoms ar of cri i al importanc to understand the phenomenon of interference in
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Finally, both mean-field method and the classical-field method with Bogoliubov

theory arc URea to discuss the quantum transport of DORegas in strongly confining

potential. We have shown the internal relation between interatomic interaction and

the form of excitations and have explored how the form of excitations influences the

dynamics of th transport.

7.2 Suggestions for further study

In Chapter 4, we find that the fringe spacing in colliding DECs is sensitive for the

repulsive short-rang interatomic interaction. This stimulates us to explore the in-

terference properties in m rging BECs with different interaction. For example novel

phenomena may oc ur in merging BECs when there are strong dipole-dipole inter-

actions (DDI). As distinct from the repulsive interatomic interaction in Alkali metal

atoms, the DDI is long-range and anisotropic (partially attractive) so that it leads

to some new int rf renee phenomena if two douds merge in different directions or in

different DDI.

Another promising research direction is to explore the properties of BECs, or

Fermi gases wh n a disorder potential is present in these systems. It should be

meaningful to tudy how and why the internal correlations are lost with the disorder

potential and reform d without this potential. Obviously this work should be done

beyond m an-fi ld th ry. More theoretical tools and mathematical methods should

be required for this r 'gion. The Bogoliubov theory might be a possible way to begin

to study this kina of problem.
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ApPENDIX A

Derivation of equations 2.2, 2.5, 2.52,

2.53, 2.54

A.I Understanding Eq.2.2 and 2.5

The kinetic energy operator of Eq.2.2 is manipulated slightly with Green formula,

1i,2 J At :.! A 1i,2 J At A 1i,2 J At A-- W (r')V' 't/;(T)dT' = - V"t/; Cr)V"t/;(1')dT' - - V'('t/JCr)V"t/;Cr))dr. (A.l)
2m 2m 2m

The second part of Eq.A.l is changed by Gaussian formula into

(A.2)

If the integral area s is sufficient large so that there is no "current" (~t(r)V'~(r))

passing through the surrounding area s, the final result of Eq.A.2 is zero and thus

(A.3)

As a two-body op rator, V on a state ial ...an > of N particles is the sum of the

action of V on all distinct pairs of particles:

(A.4)

So

(A.5)
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where ?0I{3 = iLc/L{3 - ba.(3ha = alabaaa,a is counting-operator for pairs of particles

in the states [o > ('1.11(i l..a >. So the second term of Eq.(2.2) is similar to two-body
~ 1 ~

operator V = 2 L:n~Vo.{3Pa{3.
The deduction of Eq.(2.5) is shown below. Insert the Eq.{2.4) into Eq.(2.3),

(A.6)

A.2 Derivation of Eq.2.52, 2.53, and 2.54

Inserting Eq.(2.50) into Eq.(2.48): we can obtain the following parts

Eq.2.48 = &tx£X& + &tx£y&tT + &tx£z

+ &TYtX& +&TYty&tT +&TYtZ

+ z7'£X& + zT£y&tT + ZT£Z

+ 2>.VFi(&tXAn +&TYAn + ZTAn

+&TXT An + &tyT An + zT An)

+ x (4& tXAm,nX& + 4&tXAm,n Y&t
T + 4&tXAm,nZ

+ 4&TYA"., ..X& + 4&TYAm,ny&tT + 4&TYA,n,,,z
TAT ~tT TA+ 4z Am:nXa + 4z Am:nYa + 4z m:nZ

+ &tXAm:nXT &tT +&tXAm,n yT & +&tXAm,nz
ATYA XTAtT ~TYA yT~ ATYA+ a TfI,~t a + a tn," a + a m,nZ

'1' TAtT T T~ T+ Z Am,nX a + z Am,nY 0. + Z Am,nz
ATXTA XA ATXTA yAtT ATXTA+ a In,.. a + a m:n a + a m, .. z

AtyTA XA AtyTA yAtT AtyTA+a TIt,.. a +a tn,.. 0. + 0. m,nZ

r A T AtT T )+.z Am, ..Xa + Z Am,..Yo.' + z Am,nz

(A.7)
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Due to xr = X and yT = Y, we rearrange Eq.(A.7) in the order of & so

Eq.(2.51) = z1' (lZ + 4)"VN An + 6Am,nz)

+&Ty (fZ + 2)"VN An + 6)"Am,nZ)

+&TX (ez + 2)"VN An + G)"Am,nz)

+&tX(fZ + 2)"VNAn + 6)"Am,nZ)

+ &tY(fZ + 2)"VNAn + 6)"Am,nz)

+ &t (XeX + YeY + 4)"XAm,nX

+ 4)"YAm,n Y + 2)"XAm,n Y + 2)"YAm,nX)&

+ &t (XlY + 4)"XAm"nY + )"XAm,nX + )"YAm,n y)&t1'

+ &T (YeX + 4)"YAm,nX + )"YAm,n Y + )"XAm,nX)&.

(A.8)

We us th prop rty ATBCD = DTCBA where A, D are vectors and B, C are
Hermitian matric s. From Eq.(2.52), one can see that the linear terms in Eq.(2.48)
produc only a hift of he nergy levels but do not affect the distance between them.
Moreover, to eliminate the lin ar in & terms from h, the vector Z must be

(A.9)

For th purpo of & t&tT and &T& to vanish in the Hamiltonian, the followingmatrix
equation h uld be fulfill d,

XlV + 4)"XAm,n Y + )"XAm,nX + )..YAm,n Y = 0

YeX + 4)"YAm,nX + )"YAm,n Y + )"XAm,nX = O.

(A.l0)

(A.ll)

£ = XeX + eY + 4)" Am,n + 4)"YAm,n Y + 2)"XAm,n Y + 2)"YAm,nX (A.12)

and its 'ig '11 alu r d .fiu ' the nrcrgy spectrum.



142

ApPENDIX B

The Crank-Nicolson method for solving

numerically Gross-Pitaevskii equation

B.1 Three dimensition system

In general, th 3D time-indep ndent Gross-Pitaevskii equation with harmonic traps

can be writt n ~

. {}«/; _ h2
2 (1 2 2 1 2 2 1 2 2) 41T1i2a 2

1,n, at - - 2m \l + 2mwx·7: + 2mwy1J + 2mwzz + --;;;:-1'1,1;1 'ljJ, (B.l)

where Wx, wY' Wz ar trap frequenci s separately in x, y and z direction, and a is the

s-wave attering length of Alkali atom with mass m. 'ljJ(x, y, z, t) is normalized so

that 1'ljJ(x, y, Z t)12 is the number of atoms per unit volume.

In order to ensure maximum numerical accuracy and to identify the irreducible

minimum of ind p nd lit system parameters, it is custom my in computational treat-

ments of ph sical s.r- term to express the relevant equations in dimensionless compu-

tational uni s. H r , W 1 ct natural units of length, time and energy to be

(B.2)

(;0 = ru.v.T"

so that th riginal u ti n an b changed into

it = I-V:.! + ~[:e + (Ayy? + {-\zzr.!] + Uol'~(f, lWl~. (B.3)
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Here,
W, - y

/\" - -,
. Wx

, = Wz
/\z ,

W:r.- J2mW
xUo= 8rra-h-'

'¢(f, l) = 'tP(r, l)X~/2

(BA)

In ord r to maintain a simple relationship between the wavefunctiou at time step

n and the wavofunction at time step n + 1, the first order temporal derivative in

Eq.(B.3) i approxima ed by

a·l, . 1/;~+1 - 1/;~'I'],t,k J,t,k J,t,k
---a;:- ~ ~t '

(B.5)

where ~t is the si:i..e of each time step, and the integers j, I and k are the coordinates

of a particular point on th cubic wavefunction gride in the x, y and z direction. The

spatial deriva iv with re p t to x are approximated by taking the Taylor expansions

a'IjJ ~~ a2'IjJ
'tPj+l,I,k ~ 'tPj,l,k + ~x ax li,l,k + 2" ax'l.lj,l,k, (B.6)

and
D·tP ~; D2,tP

1/);-1,I,k ~ 1/);,I,k - Do", ax Ij,l,k + 2" ax21;,I,k, (B.7)

where Dox i th grid pacing in the z-direction. Adding Eq.(B.6) and Eq.(B.7) yields

_2_1 . '" 1/;;+1,I,k - 21/;;,I,k + 1/;;-l,l,k
Dx2 J.I,k '" Do2

x
(D.8)

Subtracting E .(B.7) from Eq.(B.6) yields

_j_ I . '" 1/;i+ 1 ,I,k - 1/;j-l,l,k
ax J,I,k '" 2Do

x

Using approxirna i us q.( .5), (B. ) and (B.9), together with equivalent expressions

for derivative with re, p . ,to to 11and z, the Eq, (B.3) can be rewrited as

(B.9)

./,':l+1 -1/J~ 1/J~ - 21/;~ + 1/;1'!- 1/;n - 21/;1!- + 1/;'!-: 'l'J,I,k J,I,k = _( 1+J.l,'" J,I,k J-1,I,k + 3,I+l,k 3,I,k 3,t-1,k
t Do ~'J. Do'l., x y

~/,,!- - 21/J'!- + 'Ij;'!-+ 'I'),I,k 1 ",I,k "I,k-1) + V!1 .t»
~ 2 J,l,k 'I'J,I,k'

%

(B.I0)
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and
"/,n+1 ./,n .I,n+l 2.I,n+l + .I,n+l .I,n+l 2.I,n+l + .I,n+l

: 'i"j,I,k - 'i"j,I,k = _( 'i"j+1:I,k - 'i"j,I,k o/j-l,I,k + 'i"j,l+l,k - 'i"j,l,k 'i"j,l-I,k
t t:11 Sl. A:.!

t x Y

'ljJ~'+~ - 24/'+: + 'IV'+!+ ),l,"+l .1,t,k .1,I,k-l) + V~+l1jJ,:,+1.
t:112 ],l,k ],U

z

(13.11)

Adding Eq.(B.10) and Eq.(B.11) and simplifying it to
't:11 "I,n 2.I,n + .I,n .I,n+l 2.I,n+l + .I,n+l

1//~11 = 1/)'!' + ~ ('i"j+l,l,k - 'i"j,l,k 'i"j-l,l,k + 'i"j+l,l,k - 'i"j,tk 'i"j-l,l:k
],l,k J,I,k 2 t:112 A 2

x x

1jJ~ - 2'IjJ~ + 'ljJI'!' 'IjJ,:,+1 - 2'1/;,:,+1 + 1jJ,:,+1+ ],l+1,k ],I,k ],I-l,k + J,I+l,k J,I,k J,I-l,k

Ll~ t:11~ (B,12)
"In 2.1n +.1 n .1nil 2.1nil + .1nil
'PJ'I k+l - 'P)'I Ie 'P]'l k-I '/')'1k+l - '/')'1 Ie '/')'1=:+" " " + II " I'A2 A2z z
ill, (vn .t» Vn+1.I,n+l)-2 j,l,k'i"j,I,k + j,I,k'i".i,l,k '

By using tlu« time' time-operator and spatial operator spldt'ing, the Eq,(I3.12) can

he splitt .d into three. mall .quations:

, .I,n 1 1/3 2.1.n 1 1/3 .i» 1 1/3
1/,~+1/3 = = + tAt ('i"j+l,l,k - 'i"j,l:k + 'i"j-1,I,k
J,I,k ],I,k 2 A2

x
,I.n _ 2,1." + .I,n .t:11+ 'i"j,ll U: 'i"j,I,1c 'i",i,L-Lk) _ ~ (v.n 1j;'!' + V~+1/3'1/;~+1/3)

t:112 6 ],l:k ],Lk ],l,k ],tk ,
Y

(B,13)

, pn+2/3 2.I.n+2/3 .I,n+2/3.i» 12/3 _ 'lj;n 11/3 + 'l.t:11t(1 1,1+I,k - 'i"j,l,k + 'i"j,l-l,k
'i"j,I,k - j,l It 2 A2

u
'lj;n+1/ _ 2'lj;n+l/3 + 'l/;n+l/3 ,+ i,l,HI i,l,k j,I,k-l) _ ~Llt (V7"+1/:1,¢'.'+1/:1 + v.n+2/:1,¢'.'+2/?)

A:.! 6 J,I,k J,l,k J,I,k J,l,k :
z

't:11 n+1 21jJn+l 'ljJn+l
'ljJn+l _ 1jJn12/3 +.:._:( j,I,Ie+l - j,I,Ie + j,l,k-l
i,l,k - j,l,k 2 A 2

z
~ 2/3 _ 21//1+2/3 + 1/;,:+2/3 ,+ J l,l,ie J,ll.: 1-1,l,l.:) _ tLlt(V!t+l'IjJ"t+1 + V7"+2/31jJn+2/3)

t:112 6 ],l,k ],l,k ],l,k ],(k ,
x

Rearrangin Eq,(B,13) (B,14) and (B.15) yields

(B.14)

(B,15)

n+1/ (1 it:11£ iAl Vn+l/3)1jJn+1/3 iA£ 1jJn+1/3
] l,l,k + + t:112+6 j,l,k j,l,k - 2A2 j-l,I,k =

x x

i t .I,n (iAt it:11tvn ).1 n it:11t .I,n
'22'i"j,1 l,k 1- t:112- 6 j,l,k 'Pj,I,k + 2Ll20/j,l-l,k:

y y

(B.16)
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_ iDoL 'ljJn+2/3. + (1+ iDoL + iDot V~+.2/3)'IjJ,:+~/3 _ iDot 'IjJ,:+2/3 =
2Do2 ),I+1.k Do2 6 ),/,k ),Lk 2A2 l,/-l,k

Y Y Y

iDot n+l/3 + (1 _ iDot _ iDot Vn+1/3)'ljJn+l/3 + iDot 'ljJn+l/3
2Do2 j,l,k+l Do2 6 j,l,k j,l,k 2A2 j,l,k-l'

z z z

iDot n+l ( iDot iDot 7tH nH iDot n+1
- 2Do'I.'IjJj,l,k I 1 + 1 + Do'l. +6 Vj,l,k )'tP j,l,k - 2A'I. 'tPj,l,k-l =

% % z

iDot 'ljJn+2/3 ( iAt iAt vn+2/3)'ljJn+2/3 io; 'ljJn+2/3
2Do2 j+1,I,k + 1- Do2 - 6 j,l,k j,l,k + 2A2 j-l,l,k'

x x x

The exa t pr of Crank-Nicolson method for numerically solving 3D Gross-

Pitaev kii qu i n h b 1 show above. The following thing is involved in the

gen ral r aliza i n f d . To olv Eq.B.16, B.17; and B.18 numerically, one can use

the t hnique fLU decomposition followed by forward and backward substitution [130]

(B.17)

(B.18)

qua ions. Th d tail d process has been shown in the thesis [131].

Also, on' 'all utilize mol" simpl ' tc .hniquc, T1idiagonal Systems of Equations to

solve them [130]. rmally, the first method is more stable than the second one but

ci nt than the former. Since the elements on the diagonal plus

and minu on olumn ar n rmally nonzero and a series of regular values, the second

method hould b uffi i n and tabl to solve these equations.

ar w m hod inpl mented to realize the code. The first method

n tural unit of length, time and energy to reduce constants

v proc ss of Crank-Nicolson method is attibuted to

method is to realize the code directly from the original

Ii,m, a can be adjusted in a rational range

om variables. According to two methods; they

y in r al applications. If one hopes to contrast

r ult or to explor some physical properties which

Mor v r,

is involv d in

as far p

this m .rhod.
equation and

so that th

num ri al r

.,1 with known pararn t rs, such as characteristic length of single

.rill t r, we. ngg st to realize the code in the first method. If one hope ...

ti fy W 11 th r ults of experiments, the second method

r al rim nts are generally not more "perfect" than

the riti pr al in pr p ly the valu of those constants might cause

mor id al r ul .
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We consid r th 3D ime-ind pendent Gross-Pitaevskii equation in the harmonic traps

with cylindri al ymm try as

oW h2 1 1 41fh2aih- = __ \72 + (_mw2r2 + _mw2z2) + --1'l/J12'l/J. (B.19)t 2m 2 r 2 Z m .

wh re Wr Wz ar trap fr qu n i respectively in the radial and longitudinal direc-

tions and a is the -wavc s .attcring 1mgth of Alkali atom with mass m. 'l/J(r, z, t) is

norm ali 7. ,0. th t. 1'1/)(1',Z t)12 i. the number of atoms per unit volume.

h unit f 1 ngth, tim and energy and evolve the process in analogy

to thr dim n i nal Crank-Nicol on method. Thus the orignal equation is split into

i'l/Jit -l/Jj,1 = _( j 1,1 - 21/Jj,l + 1/Jj-I,l + 1/Jj,I+I - 21/Jj,1+ 1/Jj,l-I
At A~ A~

+ 1/Jj,l+l - 1/;;'1-1) + V!L'.pn
2r AT J,t ),l'

and

(B.20)

(B.21)

(B.22)

By u -iug wo iin - im

b pli t din us. i
r and spatial operator splitting, the Eq.(B.22) can

.A .1,'."In - 21/J'.'11/2 + 'l/J~'I 1/2 'l/JTf - 2'l/JTf + nl_~
n+1/2 _" _((o/,+1.L "I ,-1,1 + J,I+I J,I o/J,I-I
i,l - i,' 2 A2 A2

% r

n n 'A+ JIl11 - ),1-1) _ ~ (v,n 1/2'1/}n+l/2 + V!l'l//!' )
2r ,. J 1 J,I ),1 ),1 ,

(B.23)



and

Rearranging Eq.{B.23) and Eq.(B.2 .) yi Ids

_ i6t ~+1/2 + (1 + i6t + i6t V~+1/2)~,,~+1/2 _ i6t ~,,~+1/2=
262 1 1,1 62 4 1,1 'f'J,l 262 'f'1-1,1

z z z

(i6t i t )"1," ( i6t iAt vn) .t» ( iAt i6t ) .i»
26:.! + 4r6 'f'j,l+l + 1- 6:.! - 4""" j,l ''f'.i,l+ 26:.! - 4rA ''f'j,l-l,

r r r r T

and
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(B.24)

(B.25)

(B.26)

Th r aliza i n f ically imilar to 3D case except that the normalization
of cond ns w:v fun i n i littl different.
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ApPENDIX

RK4IP-P algorithm for solving

numerically Gross-Pitaevskii equation

C.l Gr v kii quation in the mode space and inter-

i tur r pres ntation

A gen ,nili7. ,0 r - it ,. kii .quation hru the form as

. w(r.t) [ v . 2 2]'Lh at = - 2m \J + Uext(r, t) + oUext(r, t) + Uol\ll(r, t)1 W(r, t). (C.1)

N rmall w
wav fun i n

i t/>;(r) which are closest to the character of condense

p d w(r. t) in 1 w- n rgy mode space 1 , i.e.,

H r , rPj(r)

W p(r, t) =L t/>;(r)O!j(t).
j L

uation,

(C.2)

h2
- 2'11 \J2t/>;(r) + Uext(r, t)¢>j(r) = n.wjt/>j(r).

Thu q.(.1) i r wri

(C.3)
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Th Eq.] . ) ill It . rodinger picture representation can be simplified more in the

interaction pictur . repre. mtation. Defining

(C.S)

wh r th

is chang in

d{i~t(l) = _·e,wJ(t-t,./) J rlr¢j(r) [8U=L(r,t) +Uulw}J(r,t)12] wp(r,t) (j E TJ),

(C.6)

im tw n the pictures tref is choosn shortly, the Eq.(C.4)

wh r th pa fi ld i n w calculat d using

\{J (r t) = 2:: ¢j(r)e-iWj(t-tr</)&j(t).

jeL

(C.7)

C.2 RK4I- rithm for Eq.(C.6}

Th ar .d f urth- r Run Kutta (Rl{4) method C8J1 be used to deal with

uti wi ral f rm,

df(t)dt = g[f(t), t], (C.8)

wh 'r ' f(t) is he vc . - al .J. function. Then. we advance the vector f(t) between

di: cr r , • tim.. .p. such t.hA.t

in b tw n num rically integrated solutions. Thus in

tim i written

individu un u tao t ar alculat d as

h - [f(li) Li]6L

h2 = [f(t,) + i, t,+ ~t] bat

[
h2 l::.t]hs = ((ti) 2' ti +2' bat

II. = [(li) h3, l, + ball bal.

(C.lO)
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Coutras iug

ing tref = t,
tion . Th
the in r

quati n .

.( .. ). 10 ( .7) with Eq.(C.I0), one can see easily that when dlOOS-

6.t/2 we can remove a Inrge number of the exponential mnltiplica-

f th pr j ted fourth-order Runge-Kutta algorithm in
ri hm (RK4IP-P) for numerically sovling Gross-Pitaevskii

w. Th evolution of aj(t) in RK4 algorithm is

-,(t, d = -j(ti) + ~ [-;1 + 2(ar + a;3) + a;4] , (C.ll)

in' nu mt . to

-Ii ., =-

t -i""j~ J dr¢; [c5UCXL(ti) + UOIW~112]W~l

l J dr¢; [6Uext (li + ~t) + Uol'l1~I~] W~

tJ dr¢J [6Uext (ti + ~t) + Uol'l1~12] W~3

t i<.I;~ J dr¢; [M1cxL(ti + 6.t) + Uulwt412] '11';:.

(C.12)

Th rdin .fi darn w

, L

w~(r) = tPj(r) [-j(ti) ~aJl]
, L

W~ (r) = GIi>J(r) [ -.;(t,) +~ii~'l
~I(r)= tPj(r) -iWi-%, [aj(ti) + ~Q]:l].

, L

(C.13)
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App

Inter t i int raction in low dimensional
syst withi m an-field theory

Ul 11 III an-ti eld approximation for Bose-Einstein condensate

int = 9 D11J IWo(x, v, z, t)14dxdydz. (D.1)

nn U z- xnnponcnt is independent on time, the wave-

r. d ru 'ilu(x y, z, t) = 'ilo(x,?I, t)wo(z). With ansaz of

u ti n an b writen into

gO 1 -« 11 4ant = ~ <to dz Iwo(x, y, t)1 dxdy
1f(Jz _

= ;; = f J Iwo( :v. tWdxdy.
(D.2)

H r It ·h for the harmonic oscilla-

tor in z- mp n Of ('fa = '/h/(mwlI). ne can define new interatomic interaction

ffiin

Similnrl

'lO = 3D = li
2a J 7rmwz.

.j2;(J: m 11.

rl dn the inter [. mi interaction coefficient in 1D system

(D.3)

(D.4)



152

ApPENDIX E

Thomas-Fermi density envelope in a

strong 2D optical lattice and harmonic

potential

If the d nsity of a omi g changes slowly in space, the kinetic energy term in Gross-

Pitaevskii qu ti n ( r th quantum pressure term in the corresponding hydrody-

narnic iquations) ·W] be ncgl iet '<1 and the GPE can be simplified into

(E.1)

where jJ, is the '1 imical pot mtial. Eq. (E. 1) has the solution

n(r) = 11/J(r)12 = [/-L - V(r)]/Uo (E.2)

ill tit r gi 11wh r 11 righ hand 'ide is positive, while nCr) = 0 outside this region.

The boundary of the :l nd i. th ,r for given by

(E.3)

We hall ,t~rmin . th , ground-stat. energy for a gas trapped in an anisotropic

three-dim n . n h ill t r p t ntial V given by

1
y, z) = 2m(w~x2 + w~y2 + wiz2) (E.4)

wh r th i wi(i = 1,2,3) may differ from each other. In the

ud ill h thr dir ctions is given by the three semi-axes
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H; obtained by ins rtiug Eq.(E.4)into Eq.(E.3),

:.l 2J-l.Hi = --2,'t = 1,2,3.mWi
(E.5)

The normalization condition for nCr) in Eq.(E.2), yields a relation between the chem-

ical potential J-l and th total number of particles N, For a harmonic trap with a

potential given b Eq.(E.4), one finds

N = 87T ( 2J-l )3/2.!!:_
15 miiP U0

(E.G)

wher w'J = wxwywz.

The dedu " of Eq,(E.6) i. shown below, First, we set 1L = w",X, 1) = Wy1/, W = WzZ

to give

(E.7)

where w3 = wxwywz. Exchang the integral in the Cartesian coordinates into the

sph rical p lar ordinat and giv

47T 1~ 1N = -_- r2(J-l- -mr2)dr
Uow3 0 2

= ~ ( 2J-l )3/2.!:!:_.
15 mw2 u.

(E.B)

Through Eq. (E. ) and Uo = 41r!::a, one obtain the following relation between J.L and

N:

N = 4J2 ~ ("!!_)5/2
15 a hW

= l1iiJ (15aN )2/5
2 l '

(E.9)

(E.10)

wh rel= ~.
Ins rt q.( .10) in q.( .5) thr e semi-axes

Ri = li w (15a
l
N ?/5,

Wi
(E.11)

wh r
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- 1
The quantity R = (RIR2R3)"3 is a convenient measure of the spatial extent of the

cloud and through Eq.(E.2), R = (151'1aN)1/ri. Thus

{

15N(1 (X2 !I~ Z~)) (X2 1/2 Z~)
1'!jJ(r) I = 811'R3 - RI + ~ + Ri R! + ~ + ~ < 1

o (*+~+~»l
.,; !I Z

We now turn on a deep 2d optical lattice potential of strength v of the form

v(:c, y) = v(2 + cos(kx) + cos(ky)) (E.12)

where k = 27r/ d whi ·It generates all array of tubular minima at x, = (21 + 1)7r / k =

(21 + 1)d/2, Un = (2n + 1)7r / k: = (2n + 1)d/2. We suppose that this redistributes the

density so that h wav function becomes

'!jJ(X, v, z) =L '!jJt(XI, Yn., z)</J(x - Xl, Y - Yn)
lin

(E.13)

where </J(x - Xl, Y - Yn) is th ground state wavefunction of the potential within a

single unit 11. If th p t ntial is deep we can approximate

V(XI +~, Yn + 0) = v(2 + cos(k((2l + 1)d/2 + e))

+ cos(k((2n + 1)d/2 + 0)))
1 ., ., 1 .. 'I),....,(2 - 1+ -k~e - 1 + -k~(J~,...., 2 2

= ~mn2(e+ 02)
2

(E.14)

wh r

n=~
so that the tub. p to mtial is harmonic with natural frequency n and zero point

amplitud >. = .jh/m .H th ground state wave function is

(E.15)

Th ns an C mu b n that the presence of the lattice does not change

th t tal urn r fat m in giv unit cell. Hence we must have

d/'}. d/'J.r d~ {. dOI</J12 = d2
J-d/2 J-d/2

(E.16)
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which gives (assuming that A < < d so that the limits of the integration can be

extended to ±oo which leads to an error of order C-d2/).2)

dc=-A.fi
(E.17)

and, dose to the l, ti tube we have

(E.18)
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App

Nu ri lly

g •
1

lying time-dependent

equation for Bose

i trap

Bog Ii

rd in

( hap r )
. hrough number-conserving Bogobiubov the-

us. ion f m ion for quasiparticle wavefunction,

(F.I)

~ .qQ(~V)(x, t)2Q*(t)~ ) .
-H - gQ*(t)I'ljJ(x,t)12Q*(t)

(F.2)

ni

~2
H(t) - J!_ 1 -1nW'~·:.! gltJi(x, l)l:.! - J1.(l) ,

2m 2 (F.3)

f I I,(t) it nN. f; the gr und . tA.t . chemical potential 1£ when
'- it kii quati n. Sine the space of quasipar-

, Q pr j t orthogonally to 'ljJ(x, t):

= -I ><'ljJI· (FA)
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Eq.(F.2) 'orr "p nds to L ime volutiou operator

.c(t) = (Q(t) A 0 ) Lall(t) ( Q(t) 0 )
o Q*(t) 0 Q*(t) ,

(F.5)

wher , .ca.l.l(t) i. the full-s p ,. rvolntion operator. Now we explore the numerical skills

for Eq.(F.l). , d th fit gration f the Bogoliubov equation without the state

proj i n Q,

wh r appl

i1i8t ( IUj(t) > ) = LUII(t) ( IUj(l) > ) .
I jet) > IVj(t) >

. (IUj{t) > ) (Q(t)IUj(t) > )I n = A whenever we need to
I' j(t) > Q*(t)IVj(t) >

h t Lttll(t) i in principle time dependent through 1jJ(x, t).

lution may be adiabatical, given approximately by

(F.6)

(F.7)

The time .v Inti n p ,r t r e-i.c u(t)6.t/h can he split into position- and energy-
h i -i£'"u(t)At./1i = -iF:At/2/i,e-iGAt/1ie-iRAt/21i, where the energy-

(
( + 1)1'u..;/2 0 ) ../ = and position dependent part-en + 1)/lW/2

(
29' (1; t)12 9' (,,·.t)2 ) .

G = . Th n rgy part 1S
-9 "C t):.l -291 C t)l:.l

tp

depend ,nt p

(F.8)

ral m h d ransf r the tat back to real space. The position-

(
I, Jet

j t
t) > ) = -iG6.t/1i. ( IUj(t) > ) .

6t) > IVj(t) >
(F.9)

(F.lO)
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and the correspoudiug igenvectors are

for X= -v'3gl7/J12, where 0 is the phase of the ground state wavefunction '1/;. Therefore

the solution can b written as

From the initial onditions

(
e2i8 e

2iO
) ( A) ( Uj(t) ) (F.12)

-(J3 + 2) eJ3 - 2) B - 1ft(t) .

determine the coefficients

(F.13)

Finally: w hav

1 ( (2v'3cos('\~t) - 4isin('\~t))Uj(t) )
Ui(t+~t) =-
. 2v'3 +(-2i in('\~t)cos(20) + 2sin('\~t)sin(20))Vj(t)

1 ( (2v'3cos('\~t) + 4isin('\~t))1ft(t) )V;(t + ~t) = p; .
2y 3 +(2i.sin().~t)cos(20) + 2s'in('\~l)sin(2e))Uj(l)

(F.14)

Although he . n ral id 'a of solving numerically Dogoliubov-deGenne equation

have been shown, the . tability of this method is still of prohlem. We will not exhibit

the re ul of dynami ab ut Bogoliubov-deGenne equation here until we find an

elegent way t lv th pr blem of the stability.
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