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Abstract

Currently, the data mining and machine learning fields are facing new challenges because of
the amount of information that is collected and needs processing. Many sophisticated learning
approaches cannot simply cope with large and complex domains, because of the unmanageable
execution times or the loss of prediction and generality capacities that occurs when the domains
become more complex. Therefore, to cope with the volumes of information of the current real-
world problems there is a need to push forward the boundaries of sophisticated data mining
techniques.

This thesis is focused on improving the efficiency of Evolutionary Learning systems in large
scale domains. Specifically the objective of this thesis is improving the efficiency of the Bioin-
formatic Hierarchical Evolutionary Learning (BioHEL) system, a system designed with the pur-
pose of handling large domains. This is a classifier system that uses an Iterative Rule Learning
approach to generate a set of rules one by one using consecutive Genetic Algorithms. This
system have shown to be very competitive so far in large and complex domains. In partic-
ular, BioHEL has obtained very important results when solving protein structure prediction
problems and has won related merits, such as being placed among the best algorithms for this
purpose at the Critical Assessment of Techniques for Protein Structure Prediction (CASP) in
2008 and 2010, and winning the bronze medal at the HUMIES Awards for Human-competitive
results in 2007. However, there is still a need to analyse this system in a principled way to
determine how the current mechanisms work together to solve larger domains and determine
the aspects of the system that can be improved towards this aim.

To fulfil the objective of this thesis, the work is divided in two parts. In the first part of the the-
sis exhaustive experimentation was carried out to determine ways in which the system could
be improved. From this exhaustive analysis three main weaknesses are pointed out: a) the
problem-dependancy of parameters in BioHEL's fitness function, which results in having a
system difficult to set up and which requires an extensive preliminary experimentation to de-
termine the adequate values for these parameters; b) the execution time of the learning process,
which at the moment does not use any paralielisation techniques and depends on the size of the
training sets; and c) the lack of global supervision over the generated solutions which comes
from the usage of the Iterative Rule Learning paradigm and produces larger rule sets in which
there is no guarantee of minimality or maximal generality.

The second part of the thesis is focused on tackling each one of the weaknesses abovemen-
tioned to have a system capable of handling larger domains. First a heuristic approach to



set parameters within BioHEL’s fitness function is developed. Second a new parallel evalu-
ation process that runs on General Purpose Graphic Processing Units was developed. Finally,
post-processing operators to tackle the generality and cardinality of the generated solutions are
proposed. By means of these enhancements we managed to improve the BioHEL system to
reduce both the learning and the preliminary experimentation time, increase the generality of
the final solutions and make the system more accessible for end-users. Moreover, as the tech-
niques discussed in this thesis can be easily extended to other Evolutionary Learning systems
we consider them important additions to the research in this field towards tackling large scale

domains.
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CHAPTER 1

Introduction

We are living in the “data deluge” era and the data processing capacity is falling far behind the data collection
rates. Therefore, improving the current data mining techniques to work with larger volumes of data becomes crucial.
This thesis is focused on improving Evolutionary Learning algorithms to perform data mining over large data.
Particularly we focus on improving the efficiency of the BioHEL system by means of setting parameters automatically
to reduce the preliminary experimentation, applying parallelisation techniques and improving the generality of the
final solutions obtained.

This chapter presents in greater detail the motivations for this thesis. Afterwards, we present the aims, scope and
contributions of this work. Finally, we present the roadmap for the rest of the thesis and the list of publications
related to each chapter.

1.1 Background and Motivation

The data mining research field, which is focused on automatically extracting knowledge or
abstractions from a set of raw data [Witten and Frank, 2005], is facing an enormous challenge:
the dizzying speed at which data is generated nowadays. With the decrease of the storage
costs and the developments in technology and communications in the last two decades, data
is now obtained and stored from almost anywhere (internet, medical records, biotechnology,
industrial records, telecommunications, military, etc.) [TheEconomist, 2010a]. For instance, a
lot of our activities as a society are being recorded in different databases, from enrolling on
a particular university course, to having a doctor’s appointment or simply clicking a search
result over the Internet. According to [TheEconomist, 2010b] humankind created 1200 exabytes
(billion gigabytes) of data in 2010. Important insights are hidden within this vast amount of
data that we are not yet capable of processing.

The main problem is that the data collection rate easily exceeds the data processing rate. This
is because the large scale data is often too big and complex to be mined by the available tech-
niques, and even if sometimes, it is possible to solve these problems, the approaches used either
take an undesirable amount of time or are very simple. Therefore, there is a general need to
develop more powerful data mining mechanisms specially designed to work with larger data
that scale well and also produce accurate and interpretable results.

But what does “large scale data” mean? There are different dimensions in which a problem can
be “large and complex”. The first dimension would be the amount of registers or examples to
learn from. According to [Lin, 2011] data used for machine learning at Google in 2011 contained
hundreds of billions of instances. The second dimension would be the number of features
analysed. For instance, some bioinformatics problems contain tens of thousands of variables to
analyse [Bacardit and Llora, 2012]. Other dimensions of difficulty would be the class imbalance,
number of classes, noise, among others. For example fraud detection datasets contain a very
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small fraction of positive examples, and this misrepresented class is actually the important one
to classify. In this thesis we explore the two first dimensions of difficulty presented, which are
the number of instances or registers available and the number of attributes or features in the
problem.

Particularly this thesis is focused on the application of Evolutionary Learning (EL) to large
scale data mining. EL is the application of a Genetic Algorithm (GA)[Coldberg, 1989; Holland,
1975] to extract patterns or rules from data. The GA acts upon a population of individuals
(encoded solutions or parts of the solution), evolving it through time using the Darwinian se-
lection principles. New individuals are generated through crossover and mutation and while
the population grows the individuals with lower fitness are deleted to give room to better ones.
When EL is used on its own to solve ML tasks (rather than in combinations with other methods)
it is possible to distinguish three learning paradigms. The first one is the Michigan approach
[Holland, 1975] in which the individuals of the population are independent rules which co-
operate to solve the problem and are generated by a combination of reinforcement learning
and genetic operators. The second one is the Pittsburgh approach [Smith, 1980, 1453} in which
the individuals represent a complete solution to the problem and new solutions are generated
recombining the existing ones. Finally, the last one is Iterative Rule Learning (IRL) [Venturini,
1993), which consists in learning one rule! at a time by means of consecutive GAs that work on
the subset of instances that have not been classified by the learned rules so far.

These algorithms have proven to be good candidates to solve large scale domains, because
of its intrinsic parallel nature (from the usage of a GA) and the interpretability power of the
generated solutions (which are often represented by sets of rules). But still there are challenges
these algorithms face when trying to handle large scale data [Bacardit and 1lora, 2012], such
as the execution time or the difficulty of finding complex inner problem structures. Therefore,
there are two general aspects in which the systems can be improved: efficiency and accuracy.
Tangentially to these two, the interpretability of the solutions is another aspect that can be
improved by trying to generate solutions that are general and easy to understand. To improve
the efficiency of these algorithms different approaches have been followed so far, such as par-
allelisation [Canti-Paz, 2000; Zaki and Ho, 2000], pre-processing and data selection techniques
[Derrac et al., 2010; Garcia et al,, 2012], windowing techniques [Bacardit, 2004; Ishibuchi et al,,
2012; Song et al., 2003], novel representations [Bacardit and Krasnogor, 2008a; Butz et al., 2008a),
data intensive computing [[.lora et al., 2010], among others. Moreover, to improve the accuracy
of the algorithms in more complex domains, other authors have tried to understand the theo-
retical limitations of the application of the GAs in the learning process [But., 2006; Goldberg,
2002; Orriols-Puig, 2008] to improve the algorithms in principled ways.

However, with the increase of the volume of data, there is still a gap between the state-of-the-
art EL algorithms and real-world complex domains. For example, some of the largest datasets
solved by EL systems have hundreds of thousands of registers [Bacardit et al., 2009b, 2012;
Marin-Blazquez and Martinez Pérez, 2008; Shafi and Abbass, 2009; Song et al., 2005). Moreover,
EL systems have also been capable of solving datasets with very large numbers of features
(14000 attributes) [Bacardit and Krasnogor, 2009a; Bassel et al., 2011]. However, as it was
mentioned before, there exist larger real-world problems that still fall out of the domains of
competence of the evolutionary computation approaches.

This thesis is focused on improving the efficiency of a particular EL system called BioHEL
(Bioinformatics-oriented hierarchical evolutionary learning) system [Bacardit et al,, 2009a],
which was speciﬁcally designed for mining large datasets. This system is the successor of a
Pittsburgh Learning Classifier System, GAssist [Bacardit, 2004], because it shares many mecha-
nisms with the latter. The main difference between them is the change in the learning paradigm
from Pittsburgh to IRL, which allows the system to tackle problems that require more complex
solutions (larger rule sets), but sacrificing the global perspective of the rule set that the Pitts-
burgh approach provides.

"Each individual of the population corresponds to one rule.
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The BioHEL system has obtained very good results and it has been shown to be competitive
against other machine learning algorithms [Bacardit et al., 2009b, 2012; Bassel et al., 2011; Glaab
et al,, 2012; Stout et al., 2008, 2009], but still there are some aspects in which this system could
be further analysed and improved:

¢ An exhaustive experimentation with the BioHEL system is still lacking to determine its
domains of competence, strengths and weaknesses and how the behaviours of the inher-
ited mechanisms vary with the change of the learning paradigm.

¢ To apply generality pressure, BioHEL's fitness function depends on a parameter called
coverage breakpoint, which determines how general (or extensive in terms of search space)
the rules should be. This parameter has helped BioHEL to find good solutions in com-
plex domains so far, but an extensive experimentation is still lacking to determine how
this parameter should be correctly set. This parameter is usually determined through a
preliminary experimentation process that may take a large amount of time.

¢ A formal theory is also missing to explain how the BioHEL system works. This means un-
derstanding theoretically the limitations of the system and the type of datasets over which
this system is expected to work correctly. Moreover, this theory should explain how to
parameterise the system to ensure learning according to the characteristics of the problem.

¢ Parallelisation techniques have not yet been applied to speed up the main bottleneck of
the algorithm: the evaluation process.

e Since this algorithm applies IRL, the rules are generated independently from each other
and there is no guarantee that the subset of rules generated is minimal or as general as
possible. Mechanisms that address this issue are still needed.

1.2 Aims and Scope

The general aim of this dissertation is to improve the competence of the BioHEL system in
large scale domains. The specific goals are: a) improving the efficiency of the BioHEL system
in terms of execution time (including the time spent in preliminary experiments), b) establish-
ing a methodology to set the coverage breakpoint correctly, c¢) develop a mechanism to set up
the coverage breakpoint automatically to avoid extensive parameter tuning experimentation,
d) improve the generality of the final rule sets obtained using IRL and e) present method-
ologies that are not only applicable to the BioHEL system but to other EL systems of similar
nature.

To fulfil these goals, an exhaustive analysis is performed over the BioHEL system. First to
understand further how the system works and how it should be parameterised, and then to es-
tablish how it should be improved. This analysis has two facets, an empirical and a theoretical
one. The empirical facet is based on experimenting with both real-world and synthetic datasets.
The theoretical facet is focused on modelling the initialisation stage of BioHEL to determine the
limitations of the system on certain domains. Afterwards, based on the conclusions from the
analysis, we develop an automated parameter setting approach that determines the character-
istics of the problem and sets the coverage breakpoint based on this knowledge. Moreover,
to improve the execution time of the algorithm a parallel evaluation process using GPGPUs is
developed. Finally, we introduce post-processing routines that can help reduce the amount of
rules and number of attributes in the rules, to increase the generality of the solutions generated
using the IRL approach.
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1.3 Structure of the Thesis

This thesis is organised into ten chapters: the introduction, two preliminary chapters that
present the context and background material on which the thesis builds upon, six content
chapters that contains the contributions of this work and one final chapter that underlines the
conclusions and further work.

Chapter 2 presents the general background work of this thesis. This includes the definitions
and taxonomy for machine learning and data mining. This chapter also introduces EL, the
representations commonly used and the state-of-the-art techniques used in this field to handle
large scale domains. Moreover, the two systems analysed extensively in this thesis, GAssist
and BioHEL, are explained in detail.

Chapter 3 presents the common methodological aspects shared among the different chapters.
These are the statistical tests used, the datasets (which can be divided in to real-world and
synthetic ones) and the basic configuration for the BioHEL system, which remains unchanged
unless stated otherwise.

Chapter 4 Pittsburgh vs. IRL: Identifying future challenges presents a thorough comparison
between the GAssist and the BioHEL system, it which the common mechanisms among the
two are analysed to determine if they can be set up in the same way, or they depend on the
learning paradigm used. Moreover, this chapter introduces a standard configuration that can
be used for both algorithms depending on the general characteristics of the problem (whether
the problem can be categorised as big or small). However, in the case of BioHEL it is shown
that better results can be achieved if the coverage breakpoint parameter is set up according to
the specific characteristics of the problem. Moreover, other areas of possible improvement in
BioHEL are the execution time and the length of the rule sets generated using IRL.

Chapter 5 Parameter impact in BioHEL's fitness function presents an exhaustive experimen-
tation over the coverage breakpoint parameter using synthetic boolean problems such as the
k-Disjunctive Normal Form formulas. These formulas are introduced in this chapter as a way
to characterise the structure of boolean problems based on the number of relevant attributes (k)
and the number of terms in the problem (r) (rules the system needs to learn). In this chapter
empirical conclusions are determined about how the coverage breakpoint parameter should be
set up according to the characteristics of the problem. The conclusions state that if the problem

has kkrelevant attributes in each term, the optimal coverage breakpoint for the system should
be 27",

Chapter 6 Modelling the initialisation stage of BioHEL derives theoretical models of the suc-
cess of the initialisation stage to understand better how the system should be configured. In
this chapter the schema bound (probability of obtaining good rules in an initial population)
and covering bound (probability of covering the whole search space) are calculated based on

system parameters and characteristics of the problems such as number of relevant attributes (k)
and number of terms (r).

Chapter 7 Automatic theory-based adjustment of the coverage breakpoint introduces an auto-
mated parameter setting approach that determines the characteristics of the problem based on
the models generated in Chapters 5 and 6 and observable characteristics in sample individuals.
The models are used to determine both the number of relevant attributes in the terms (k) and
the number of terms (r). Afterwards, based on this knowledge and the conclusions of Chapter
5, this method sets up the adequate coverage breakpoint for the problem.

Chapter 8 Fast evaluation process using GPGPUs tackles a different problem than previous
chapters: the efficiency of the evaluation process. This chapter introduces a methodology to
boost the evaluation process of BioHEL using the massively parallel computational capacity
of General Purpose Graphic Processor Units (GPGPUs). Two different strategies with different
degrees of parallelism are proposed and evaluated. The assessments of the efficiency improve-
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ment are done over the evaluation process independently and over the whole learning process.
Additionally, models that explain the results obtained are presented.

Chapter 9 Post-processing the final rule sets presents three post-processing operators that try
to improve the generality of the rules. Since the final solutions generated using IRL might
lack global supervision, it is probable that the solutions have more rules than necessary and
these rules have more attributes expressed than they should. This chapter introduces three
operators: rule cleaning, rule pruning and rule swapping. While the first two act on individual
rules to decrease the number of attributes expressed, the last one swaps the order of the rules
to find a new order in which unnecessary or redundant rules can be erased.

Chapter 10 contains the summary of the thesis, final remarks and further work.
1.4 Published Work

The work presented in this thesis have been published in three journal papers (two still under
review process) and three conference papers. Here we present the list of publications, their
relation with the chapters in this thesis and the associated prizes or awards received.

Journal papers

e Franco, M. A, Krasnogor, N., and Bacardit, J. (2012a). Analysing BioHEL using challeng-
ing boolean functions. Evolutionary Intelligence, 5:87-102. 10.1007/ 512065-012-0080 9
Chapter 5: Parameter impact in BioHEL's fitness function

e Franco, M. A,, Krasnogor, N., and Bacardit, J. (2013b). GAssist vs. BioHEL: critical assess-
ment of two paradigms of genetics-based machine learning. Soft Computing, pages 1-29.
Available online: http://dx.doi.org/10.1007/300500-013-1016-8
Chapter 4: Pittsburgh vs. IRL: Identifying future challenges

Journal papers under review process

e Franco, M. A., Krasnogor, N., and Bacardit, J. (2013a). Auto-tuning a rule-based machine
learning algorithm via problem structure identification. Journal of Machine Learning Re-
search. Submitted for review on January 2013
Chapter 7: Automatic theory-based adjustment of the coverage breakpoint

Conference papers

e Franco, M. A,, Krasnogor, N., and Bacardit, J. (2012b). Post-processing operators for deci-
sion lists. In Proceedings of the fourteenth international conference on Genetic and evolutionary
computation conference, GECCO 12, pages 847-854, New York, NY, USA. ACM Press
Chapter 9: Post-processing the final rule sets

e Franco, M. A,, Krasnogor, N., and Bacardit, J. (2011). Modelling the initialisation stage
of the ALKR representation for discrete domains and GABIL encoding. In Proceedings of
the 13th annual conference on Genetic and evolutionary computation, GECCO ’11, pages 1291-
1298, New York, NY, USA. ACM Press
Chapter 6: Modelling the initialisation stage of BioHEL
2011 Best paper award for the GBML conference track
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e Franco, M. A,, Krasnogor, N., and Bacardit, J. (2010a). Speeding up the evaluation of
evolutionary learning systems using GPGPUs. In GECCO “10: Proceedings of the 12th annual
conference on Genetic and evolutionary computation, pages 1039-1046, New York, NY, USA.
ACM
Chapter 8: Fast evaluation process using GPGPUs
2010 Best paper award for the GBML conference track



CHAPTER 2

Background Work

This chapter focuses on describing the state-of-the-art in Machine Learning and Data Mining which is the broad
context of this thesis. Additionally, the concepts of Evolutionary Computation and Genetic Algorithms are intro-
duced. Afterwards, the field of Evolutionary Learning, the specific context of this thesis, is throughly described.
The different problem domains over which Evolutionary Learning algorithms can be applied, rule-based knowledge
representations and the efficiency enhancement techniques proposed within this field in the past years are explained
in detail. Finally, this chapter explains in-depth the systems analysed in this thesis: BioHEL and GAssist.

2.1 Machine Learning and Data Mining

According to Mitchell [1997], Machine Learning (ML) corresponds to the research field that
develops algorithms which improve their performance over a certain task with experience.
However, there are many ways in which the concepts of task, performance and experience can
be interpreted. For example, for a program that plays a particular board game, the task is to
play the game, the performance measure is how good the program is at playing in a particular
moment and the experience corresponds to all the games the program has played so far to reach
its level of abstraction. In general ML algorithms are known from being able to obtain empirical
data as inputs and learn or identify patterns within this data.

So far machines cannot be programed to learn in the same way as humans do. However, there
are many different tasks that machines can learn how to perform nowadays such as playing
checkers, controlling robots, classifying and extracting knowledge from data, among others.
Even though the research in the ML field exists since the 1950’s, it was not until the 1980’s
considered an independent research field. Michalski et al. [1985] presents a compilation of the
early work on this area.

Data mining consists in the process of automatically extracting knowledge or abstractions from
a set of raw data [Witten and Frank, 2005]. Data mining can be considered as one of the usages
that ML can have. While the terms ML and data mining are strongly related, the difference
between the two is that data mining methods focus on extracting unknown knowledge from
data, while the ML methods are more focused in generating better and more accurate learning
algorithms, that might have a data mining purpose, but not necessarily.

There are many different ML paradigms and many different classification schemes [Langley,
1996). The most popular classification schemes for ML are based on which information is avail-
able during the learning process and which knowledge representation is used to represent the
final output. Depending on which information is available during the learning process, the
learning can be:
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Figure 2.1: Example of decision tree for the contact lens prescription problem taken from [Witten and
Frank, 2005]

Supervised when the inputs of the system have specific labels (the correct output for each
case), which is determined previously by a human. In this type of learning there is direct
feedback on how good is the underlined model so far. This type of learning is usually
used to solve classification problems which consist in classifying or separating the instance
space, based on a training instance set labelled with a finite number of classes. This thesis
is mainly focused on this type of learning.

Unsupervised when the inputs do not have labels, but instead the system needs to find rela-
tions or similarities between the inputs. In this case there is no feedback on the perfor-
mance of the model.

Semi-supervised is a middle point between the two previous types, in which some of the
inputs are labelled and some of the inputs are not.

Reinforcement learning when the inputs do not have explicit labels, but instead the system
receives an indirect feedback of how good or bad the prediction was (reward).

Furthermore, as it was mentioned before, the learning can be classified depending on the type
of knowledge representation used to express the output [Witten and Frank, 2005]. In supervised
learning (which is the focus of this thesis) the different knowledge representations are:

Decision trees. Consist in trees in which each node separates the instances according to an
attribute and the leaves correspond to the final classification or label. An example of a
decision tree can be found in Figure 2.1. Also decision trees can be used to predict nu-
meric values instead of categories, by averaging the outcome of the instances that reach a
particular leaf. This type of trees are called regression trees. One of the most representative
algorithms that use decision trees is C4.5 [Quinlan, 1993].

Classification rules. Consist in rules that classify all the instances that match a condition C into
a class A from a set of possible classes. The condition C corresponds to a boolean clause
that holds for a subset of the input space. The class A can be either a label or an action
to perform in the cases where the condition C holds. Therefore, the rules represent an
implication “IF C THEN A”. The output of the systems that use rules usually consists of
several classification rules that match different areas of the input space and can be applied
in a hierarchical or in a non-hierarchical way. When the rules are applied in a hierarchical
way the output is also referred as a decision list [Rivest, 1987], because the order of the rules

8
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attl: tear production rate
att2: astigmatism
att3: spectacle prescription

Rule 1: attl = reduced — none

Rule 2: attl = normal A att2 = no — soft

Rule 3: attl = normal A att2 = yes A att3 = myope — hard

Rule 4: att1 = normal A att2 = yes A att3 = hypermetrope — none

Figure 2.2: Example of rule set for the contact lens prescription problem

determines a precedence in the activation. This means that to classify an instance, the class
will be determined by the first rule in the rule set that matches the instance. An example
of rule set is given in Figure 2.2. Examples of modern systems that use classification rules
are JRip [Cohen, 1995] and PART [Frank and Witten, 1998]. Classification rules, and in
particular decision lists, are the type of knowledge representation used by the systems
analysed in this thesis. Therefore, more examples of systems that use classification rules
from an EL perspective will be provided further in this chapter.

Linear models. Consist in a mathematical model that, based on the input, is capable of sepa-
rating or classifying the solution space. In its simplest form consists of weighted sum of
the attribute values. The simplest method to generate linear models is a linear regression.
An example of a classification using a linear model can be found in Figure 2.3a. Among
the approaches that generate linear models we can find Neural Networks [McCulloch
and Pitts, 1943] and Support Vector Machines (SVM) [Vapnik, 1995]. Neural networks
consist in a series of perceptrons interconnected. A perceptron is the minimal form of
neural network which receives a series of inputs and produces an output that consists of
a weighted sum of the inputs. The perceptrons connected together determine a final out-
put as shown in Figure 2.3b. The weights are adjusted during the training process based
on the prediction error. On the other hand, SVM constructs a hyper-plane (or a series
of hyper-planes) that separates the instances. The hyperplanes are constructed trying to
maximise the distance to all the different points in space. Particularly, SVM can separate
non-linear spaces by means of using kernel transformations.

Instance-based representations is a type of representation that stores the observed instances
and, when trying to classify a new one, finds the instance(s) with more resemblance to
the observed one. Systems that used instance-based representations do not generalise,

A simple neural network
input hidden output
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Figure 2.3: Example of a linear model that separates the data in two classes (left) and a neural network
(right). Image taken from [Witten and Frank, 2005] and Wikipedia, respectively.
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but instead predict using previous specific knowledge (instances stored in memory). One
of the most popular algorithms that use this representation is the K-neighbours classifier
(IBk) [Aha et al, 1991}

Bayesian networks is a probabilistic representation in which the system underlines a model
that expresses the probability of a certain instance belonging to a certain class. This type
of representation could also be classified as a linear model. Among the systems that used
this type of representation we can find Naive Bayes [John and 1 anglev, 1995] and K2
[Cooper and Herskovits, 1992].

Ensembles is the combination of the prediction of several simple models [Rokach, 2010]. Tt can
be considered a meta-representation as it works on top of the representations mentioned
above. The combined prediction can be calculated using bagging (consensus prediction)
where each one of the models have a vote (or a weighted vote) which contributes to the
final prediction. At the end the class with more votes is selected as the winner. Other
form of ensemble technique is boosting, in which the models are generated incrementally
based on the instances that were poorly classified by the models already developed. This
technique tries to generate complementary models. An important representative of an
ensemble-based classifier is AdaBoost [}'reund and Schapire, 1996].

2.1.1 Data mining for large scale datasets

When the datasets become very large, there are limitations on the application of ML techniques
because of the memory requirements and the execution time. Particularly if the algorithms do
not scale linearly according to the size of the dataset, trying to solve bigger and bigger datasets
is soon unfeasible. In this section we provide a brief introduction of the techniques available
for general data mining over large scale datasets. Even though this section does not mention
particular details of the techniques, the ones are relevant to the work conducted in this thesis
will be explained better from an EL perspective later in this chapter.

To reduce the complexity of the datasets it is possible to work with a subgroup of attributes or
instances [Witten and Frank, 2005]. This does not only help decreasing the execution time, but
also for some problems it can improve the quality of the built models. Removing attributes that
are irrelevant and redundant from the data is called feature selection. This is a very important
step when working with problems with large amounts of attributes and very low number of
samples. Feature selection can be separated in two groups: feature ranking and subset selection
[Guyon and Elisseeff, 2003]. Feature ranking ranks the available variables by a metric and
eliminates or filters all those variables that achieve a score under a certain threshold. Subset
selection techniques use optimisation algorithms to search the set of possible variables and find
the optimal subset.

On the other hand, learning from a smaller sample of the training set is called subsampling. The
subsampling techniques can be separated in two big groups: the ones applied before the learn-
ing process and the ones applied during the leamning process. The subsampling can be done
either in a supervised way, determining which instances are better representatives of the data or
in a random way. The techniques that analyse and select the instances that are more important
or relevant fall into the category of instance selection techniques. Also the subsampling can be
performed during the learning process in a dynamic way. Windowing systems are examples
of these techniques, which either partition or select instances from the training set dynamically.
This means that the subset of the instances used change during the learning process.

Moreover, it is possible to reduce the execution time but adjusting parameters that regulate the
complexity of the solutions obtained. The more complex the solution the more time it takes
to generate it. An example of this is constraining the number of support vectors in SVM to
improve the scalability over large datasets [Wang ¢t al, 2012]. Many other examples of balanc-
ing the tradeoff between complexity and efficiency by means of parameters will be presented
throughout this thesis.

10
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Furthermore, parallelisation of the ML algorithms is possible. Some algorithms have a more
parallel nature than others so the benefit from the parallelism depends greatly on the type of
algorithm. Parallelism can be achieved via parallel programming tools, which allow distribut-
ing the work in different cores, or via high-level problem abstractions as the ones provided
by the data-intensive computing frameworks. [Zaki and Ho, 2000] presents a compilation of
parallel and distributed techniques to speed up data mining on large scale domains. Also other
examples of data mining of large scale datasets have benefit from the usage of cloud computing
(infrastructures that provide computational capacity services over the internet) [Grossman and
Gu, 2008).

If the problem is the memory requirements, streaming can be used to provide the system with
one instance at the time, without storing it in memory. However, this is only possible for al-
gorithms that do not need to memorise the instances seen (e.g. Neural Networks). Also it is
possible to perform data mining over data distributed in different physical places by means of
data-intensive computing.

Examples which handle large scale domains are the application of data mining to web pur-
poses, which usually involves large amounts of data [Liu, 2007]. For example, nowadays
many websites, social-networks and search engines focus on providing information to the users
according to their taste, which is defined by their previous actions [Chang, 2008; Shi et al.,
2011]. Likewise, data mining with medical purposes, such as the determination of relation-
ships among genes [Glaab et al., 2012; Urbanowicz and Moore, 2010] or the protein structure
prediction [Bacardit et al., 2009b, 2012}, involves really large amounts of data. Large scale data
mining has also been applied in astronomy for image processing and object identification (e.g
quasar detection, galaxy classification) [Ball and Brunner, 2010], in healthcare for treatment
effectiveness and healthcare management [Koh et al., 2011] and in fraud detection [Phua et al.,
2010]. Weiss and Indurkhya [1998] presents an interesting discussion of the revolution of big
data and the challenges encountered by the data mining and ML fields.

2.2 Evolutionary Computation and Genetic Algorithms

Evolutionary Computation (EC) refers to the artificial intelligence field concerned with the ap-
plication of Evolutionary Algorithms (EAs) to optimisation tasks. EAs are algorithms that ap-
ply metaphors taken from the natural evolution process. These algorithms try to simulate the
natural selection first proposed by Darwin [1909], and the transmission of information from
parents to offsprings according to the Mendel principles. Usually these algorithms develop a
population of individuals (each of them a candidate solution for the problem) according to a
pre-established objective. To do this they apply the Darwinian principles, such as the reproduc-
tion and survival of fittest and transmission of genetic information from parents to offsprings.
According to [Freitas, 2002] the EC field is now divided in four branches: Genetic Algorithms,
Evolutionary Strategies, Evolutionary Programming and Genetic Programming, being the first
one the most relevant in the context of this thesis. The following paragraphs explain briefly
each one of these paradigms.

Genetic Algorithms (GA) [Goldberg, 1989; Holland, 1975] Is the most widespread paradigm
of evolutionary computation. This paradigm applies most of the Darwinian principles
such as selection, crossover, mutation and inheritance. In a basic GA each one of the indi-
viduals in the population corresponds to a random solution for a given problem encoded
as a chromosome. Through crossover and mutation, new solutions are generated based on
good individuals of the population (recombining the information in their chromosomes),
or applying random changes, respectively. According to the selection principles, the
fittest individuals (the best solutions) stay in the population, while the worst ones should
disappear to give room for better offsprings. The selection is based on the fitness of the
individuals. GAs will be explained in greater detail in Section 2.3.1.2.

11
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Evolutionary Strategies (ES) [Rechenbery, 1973 Is a paradigm of evolutionary computation
that adopts the principles of mutation and adaptation. This paradigm characterises itself
for the adaptation of the parameters of the system with the encoded solutions by includ-
ing these parameters as features in the chromosome. This is also known as self-adaptation
which will be explained in greater detail in Chapter 7.

Evolutionary Programming (EP) {FFogel, 1964] This paradigm of evolutionary computation is
used to evolve finite state machines that act as predictors. It is very similar to Evolution-
ary Strategies, since the parameters of the program are evolved by means of EAs.

Genetic Programming (GP) [Cramer, 1985; Koza, 1992] Is the latest paradigm of evolutionary
computation to appear in time. It consist in the usage of the genetic principles to evolve
programs that solve a particular task. The difference between evolutionary programming
and genetic programming is that the latter evoives the structure of the program itself.

Within the field of EC, this thesis is focused in the application of GAs for the discovery of
classification rules. The following sections will explain in greater detail the field of EL, which
is the specific ML field to which this thesis belongs to.

2.3 Evolutionary Learning

The Evolutionary Learning (EL) term refers broadly to the application of GAs [Goldberyg, 1989;
Holland, 1975} to ML tasks. EL has gained the attention of the research community for its
ability to perform well in problem domains like classification tasks, reinforcement learning
and function approximation [Bacardit et al, 2007a; Lanzi, 2008; Urbanowics and Moore, 2000],
Moreover, there are a lot of successful applications of EL systems in robotics [Buts and Herbort,
2008; Hurst and Bull, 2006; Musilek et al, 2005; Stalph et al, 2009] biological data analysis
[Bacardit et al., 2009b, 2012; Bassel et al, 2011; Smith et al,, 2010; Stout et al, 2008, 2000}, medical
data mining [Alavén et al., 2006; Glaab et al, 2012; Holmes, 1995; [ Tora et al,, 2007; Urbanowics
and Moore, 2010], optimisation [Franco et al, 2010b; Stone and Bull, 2008; Tabacman et al,,
2008], among others.

The first method under the EL umbrella was first proposed by [Holland, 1975; Holland and
Reitman, 1978] under the name of Classifier System (CS) as a model of an automata that could
react to certain conditions in the environment. The way the automata or agent reacts to the
environment is by means of classification rules which have the structure IF condition THEN
action. All the rules learnt combined together form a behavioural model which is evolved by
means of a GA. However, since then many different types of systems that fall on this category
have been developed. In the following sections the main components of EL are underlined and
the three learning paradigms of EL are explained.

2.3.1 Components of Evolutionary Learning

Although there are many different types of EL systems there are common characteristics among
them that need to be highlighted. First, EL systems can be separated in two big groups: the
ones that apply reinforcement learning and the ones that apply supervised learing. In the
algorithms that apply reinforcement learning there are 4 basic components [Holmes et al., 2002;
Lanzi, 2008}

1. a population of classifiers that concentrates the knowledge of the system
2. adiscovery mechanism which finds new solutions based on the previous ones

3. acredit assignment or reinforcement learning component

12
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4. interaction between the classifier system and the environment (performance component)

In the algorithms that apply supervised learning the components 1 and 2 exist in the same way.
However, the credit assignment and the interaction with the environment can be considered
an unique process in which all the classifiers are evaluated against the whole training set and
the system determines how well each one of them classify the set of instances. The following
sections will explain each one of these components.

2.3.1.1 Population

EL systems usually handle a population of individuals which evolve through time following
an optimisation process. The individuals usually consist of a rule or a rule set that can be
encoded using many different knowledge representations as it will be explained later in Section
2.34. The representation consists of the genotype (the genes or encoding) and phenotype (its
interpretation) [Kovacs, 2011]. In some representations these two concepts are the same while
in some others the phenotype needs to be derived through a complex process.

When the individuals are rules, usually the whole population constitutes the solution of the
problem, and the individuals collaborate among themselves to create this solution. In other
systems, the individuals are rule sets. This mean, each individual constitutes an independent
solution of the problem. They do not collaborate directly but the entire solutions are recom-
bined to generate new ones.

23.1.2 The discovery component

The discovery component in EL is in general a GA [Goldberg, 1989; Holland, 1975]. As it was
explained before, the individuals, whether they are an individual rule or a rule set, are en-
coded in a chromosome which has a measure of quality associated to it (fitness). In the original
GAs this consists of a formula that evaluates the solutions. In EL the fitness of the individuals
depends on applying the rules to particular examples or inputs. When using reinforcement
learning the fitness tends to be related to the payoff (reward) or the accuracy at receiving a
particular payoff. When following this approach a credit assignment mechanism is necessary
to pass the environment’s feedback to the classifiers as it is going to be explained in the next
section. Moreover, in the supervised learning approaches the fitness is often based on the mis-
classifications over the whole training set.

The GA used by EL systems usually consists in the following steps or mechanisms:

Selection is the mechanism that determines which individuals are going to be evolved. This
mechanism gives preference to the fittest individuals to pass their information to the next
generations. This mechanism is stochastic with a probability that depends on the fitness
of the individuals.

Crossover is the random recombination of the chromosome information of two parent individ-
uals (determined by the selection mechanism) to generate two offsprings.

Mutation is the random alteration of the parent chromosomes, which is used to perform local
search around the selected solutions.

Replacement is the deletion of the worst individuals from the population to make room for
emerging offsprings, as the size of the population is finite. This mechanism is also stochas-
tic and occurs on each individual with a probability inversely proportional to their fitness.
The use of this mechanism should result in a global increase of the quality of the popula-
tion.
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These steps are repeated a fixed number of times or until the global quality of the population
has reached a certain threshold. Moreover, since the selection and deletion mechanisms are
stochastic with a probability that depends on the fitness of the individuals, the best individuals
of the population are kept at all times, which is also known as elitism.

2.3.1.3 Credit assignment or reinforcement learning component

The credit assignment or reinforcement learning component allows the systems that inter-
act with an environment to pass the feedback information back to the individuals [H{olland,
1986a,b]. Depending on the input the automata receives from the environment, certain rules
are applied. Based on the outcome of applying these rules, the fitness of the rules changes.
This information feeds the GA to differentiate between “good” and “bad” individuals, while
evolving the model that best fits the observable environment.

The first credit assignment method used in reinforcement learning was the “bucket brigade” al-
gorithm [Holland, 1986a]. This algorithm distributes the feedback among all the classifiers that
implied the chosen action. Afterwards, this credit assignment mechanism was extended to in-
clude temporal difference [Sutton, 1985]. Then, a modification of Watkins Q-Learning [Watkins,
1989] was proposed as the credit assignment mechanism of more complex systems.

In the case of supervised learning approaches there is no need for a sophisticated credit as-
signment mechanism. The “good” and “bad” rules or rule sets are determined based on the
accuracy at classifying the available examples.

2.3.1.4 Interaction with environment

The interaction with the environment is the application of the generated rules to the problem
at hand [Kovacs, 2011] to obtain a feedback on the classification quality from the environment.
However, in some systems that apply supervised learning, the interaction with the environment
does not exist explicitly, but only constitutes the calculation of prediction accuracy based on a
training set. However, for systems that apply reinforcement learning the interaction is explicit,
as the feedback depends on this interaction and the latter might even change the conditions of
the environment.

2.3.2 Paradigms of Rule-based Evolutionary Learning

Depending on the type of learning and representations used different types of EL systems exist
and they can be clustered in three main paradigms. The three different perspectives for learn-
ing rules in EL are: the Michigan approach [Holland, 1975), the Pittsburgh approach [Smith,
1980, 1983} and the IRL approach [Venturini, 1993]. The two first approaches were developed
in parallel while the last one appeared later inspired in the previous ones. Moreover, the first
paradigm usually applies reinforcement learning while the other two usually apply a super-
vised learning approach. However, hybrid systems can be also found in the literature. The
following sections will explain the characteristics of these paradigms.

2.3.2.1 The Michigan Approach

The Michigan approach was first described by Holland [1975] under the name of cognitive sys-
tems. Each individual in the population represents one rule which has a condition C, an action
A and an expected payoff. The population, as a whole, corresponds to the solution of the
problem. The main goal is to develop a population that represents a payoff map, by means
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of reinforcement learning. This means a model based on rules which express: if C happens
and A is carried out the expected reward or payoff is P. This approach also has the ability to
adapt itself to new examples that arrive to the training set and it is also referred to as “online
learning”.

The main cycle of Michigan LCS goes as follows. When the system receives a training example,
a match set [M] is constructed with all the rules in the population that match the incoming
example. If the match set is empty coverage occurs to generate random rules that cover the
example. From all the actions that can be found in [M], the payoff prediction is computed.
The prediction is computed as the weighted fitness average of the payoff of the classifiers that
imply this action. This means that the classifiers with higher fitness contribute more to the
payoff prediction than the rest. Then an action is selected and the action set [A] is constructed
with all the classifiers in [M] that implied this action. There are different methods to select the
action: a) exploitation, which is the selection of the action with the higher expected payoff or b)
exploration, in which a random action is selected to explore the solution space. Once the action
is carried out, a reward is obtained from the environment and all the classifiers inside [A] are
updated. After this point, a GA is applied and two parents are selected to generate offsprings
through mutation and crossover. Afterwards, the offsprings are introduced in the population
and the cycle starts again. Figure 2.4 shows an example of the functioning of this paradigm
taken from [Bacardit, 2004].

The first implementations of Michigan LCS used the payoff or strength as a measure of good-
ness of the classifier. One of the main representatives of Michigan LCS that used the payoff
is the Zeroth-level Classifier System (ZCS) [Wilson, 1994]. Since these implementations used
the payoff of the rules, they constructed a best action map instead of a complete landscape of
payoff. This means that the rules with the highest payoff take over the system, because they are
preferred without considering how accurate they are and the system does not know actually in
which cases the payoff might be low. As a consequence, if the problems have a deceptive payoff
the system will not be able to learn the most accurate solution to the problem. This changed
with the introduction of the accuracy as a measure of goodness in the XCS system [Wilson, 1995],
which helped the system not only to improve its performance but also its generalisation capa-
bilities. Additionally, XCS applies the GA on the action set only, instead of applying it over
the whole population. This comes from the idea that different niches of the environment can
have different payoffs. If the GA is then applied over the whole population, the niche with the
highest payoff will have more classifier resources explaining its behaviour than the rest of the
nieches.

While most of the systems that follow the Michigan approach use reinforcement learning, there
are hybrid systems that apply supervised learning such as UCS [Bernad6-Mansilla and Garrell,
2003; Orriols-Puig and Bernad6-Mansilla, 2008b]. This system is based in XCS but instead of
generating a complete action map, it generates a best action map, similar to the one generated in
strenght-based learning classifier systems. To do this they used a supervised learning scheme
instead of reinforcement learning. The difference is that the supervised learning scheme pro-
vides the correct class, while the reinforcement learning scheme only provides a reward. The
correct class determines which classifiers managed to classify correctly. Then UCS instead of
generating an action set it generates a correct set and an incorrect set depending on the correct
class. The GA is applied only on the correct set, since this represents the niches in UCS.

2.3.2.2 The Pittsburgh Approach

The Pittsburgh approach follows a more canonical supervised learning approach where a com-
plete training set is available and rule sets are learnt in a batch fashion. This approach was initi-
ated at the University of Pittsburgh by De Jong [1988] and Smith [1980, 1983]. In this approach
each individual is a rule set (usually of variable length) that constitutes a complete solution
of the problem. The performance of the rule sets is generally based on the misclassifications
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Figure 2.4: Flow of Michigan XCS taken from [Bacardit, 2004]

16



2.3. EVOLUTIONARY LEARNING

and the length, and it is calculated through supervised learning. This means that each one
of the rule sets is tested against the whole training set in each GA iteration, which involves a
higher computational cost than in the Michigan approach. While the latter rewards the rules
that are responsible for the last action, the Pittsburgh approach evaluates how well each one of
the solutions performs as a whole.

Since each individual constitutes a single solution (rule set), the way the Pittsburgh approach
works is very similar to a standard GA, as shown in Algorithm 2.3.1. As other EL systems a
GA is used to generate new solutions based on the existent ones. First, all the solutions all
evaluated. Afterwards, using a selection mechanisms two parent solutions are recombined,
mutated and reinserted in the population with a certain probability, taking the place of the
individuals with lower fitness. This process continues until a stop criteria is met, which is
usually reaching a fixed number of iterations. At the end of the execution, the best individual
in the population is considered the solution for the problem.

(Algorithm 2.3.1: PITTSBURGHMAINLOOP(k) )

pop + INITIALISEPOP()
EVALUATE(pop)

stop + TRUE
( pop2 « SELECT(pop)

RECOMBINE(pop2)

MUTATE(pop2)

// Inserts the new individuals in the population

// considering the elitism

MERGE (pop, pop2)

EVALUATE(pop)

| CHECKSTOPCONDITION(stop) )

while —stop <

\.

Important representatives of this approach are GABIL [Jong and Spears, 1991}, GIL [Janikow,
1993], GALE [Llora and Garrell, 2001] and GAssist [Bacardit, 2004].

2.3.2.3 Iterative Rule Learning Approach

The Iterative Rule Learning (IRL) approach, consists in generating iteratively a set of rules that
constitutes a complete solution of the problem. This approach was first used by Venturini [1993]
in the SIA system. Similarly to the Michigan approach, each individual is one rule. But instead
of having rules that cooperate to construct a solution, the solution is learnt incrementally, learn-
ing one rule at the time using consecutive GAs. Similar to the Pittsburgh approach the rules
learnt correspond to the best individual of the population in a particular iteration. Furthermore,
the fitness of the individuals is determined through a supervised leaming approach, comparing
the accuracy of the rules against the whole training set.

Algorithm 2.4.2 presents a pseudocode for the main loop of the IRL approach. The theory set
(set of rules) starts empty and the rules are added to this set after being learnt independently
by consecutive GAs. After each rule is learnt the examples covered by the new rule are erased
from the training set and the execution continues until a stop condition is reached. In general
this approach learns each one of the problem niches independently and ensembles the solution
at the end constructing a hierarchical decision list.

Some authors consider this approach a variant of Pittsburgh, while others consider it a middle
point between Michigan and Pittsburgh [Urbanowicz and Moore, 2009]. On one hand each
individual is a rule like in the Michigan approach, but the process of learning rules in each
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iteration correspond to the one in the Pittsburgh appraach. Moreover. this approach 1s quite
widespread in mainstream ML [Furnkrany, 1an],

Important representatives of this approach are HIDER [ \zuiiar Kooz ool 2 oS NAX [Hora
etal, 2009] and BioHEL [Bauardit et al, 2iv2a ], which is the subject of study in this thesis,

(Algorithm 2.3.2: ITERATIVERULELEARNING(E xam ples) )

Theory «- D

while Example / 2

Rule « FindBestRule( Examples

Covered « Cover(Rule, Examples,

if RuleStoppingCriterion({ Rule, Theory, Examples:
then exit

Examples « Examples  Covered

Theory « Theory . Rule

Lretum {Theory)

do

2.3.2.4 On the nomenclature of Evolutionary Learning paradigms

As we have observed in the previous sections the three main paradigms ot El. have many
characteristics is common. However, the two first paradigms Michigan and Pittsburgh, belong
a subgroup of EL. known as Learning Classifier Systems (1.CS). While [RI has many similanties
with the Pittsburgh and the Michigan approaches in my perspective it cannot be classified as
LCS. This is because the set of rules that works as a classifier is generated sequentially while in
the other approaches the classifier exists from the beginning and it 1s improved through time.
At the same time EL systems are also referred to in the literature by many authors as Genetics-
based Machine Learning (GBML) systems [Kovacs, 2011].

As it was explained before, Pittsburgh 1.CS and IRL. use GAs to perform batch leaming using a
supervised learning approach, while Michigan applies incremental learming often following a
reinforcement learning approach.! While this thesis is mainly focused on the IR approach, as
part of the broader context of this thesis there is the Pittsburgh approach, Supervised Leaming,
Genetic Algorithms and Evolutionary Leamning in general. To facilitate the reading Figure 25
presents a diagram that classifies all the techniques and paradigms presented so far and the
relations among them.

Having explain the research fields that are related to this thesis, the rest of the chapter will
be dedicated to explain the problem domains EL systems can tackle and some interesting re-
marks about knowledge representation and enhancement techniques, relevant to the work in
this doctoral program.

2.3.3 Problem domains

EL systems have been applied widely in plenty of prediction problems. These prediction prob-
lems can be separated in three big groups: classification problems, reinforcement leaming prob-
lems and function approximation problems [Buts, 2007].

' There are some examples in the hiterature 1n which Michigan apphies inc remental supervised learning as explained
in Section 2 32|
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Figure 2.5: Diagram of the fields of research presented in this thesis. Dark blue represents the specific
context of this thesis while light blue represents the broader context of the thesis

The classification problem is typically defined as a problem were the system has to identify areas
in the problem space and label them with a certain class. A common example of this type
of problem is to classify handwritten patterns by their meaning (letter or number expressed).
Examples of the application of EL systems in this domain are [Bacardit and Butz, 2007; Bernad6-
Mansilla and Garrell, 2003; Bernad6-Mansilla et al., 2006]. Moreover, the two system analysed
in this thesis have been tested before in this particular problem domain against other well-
known ML techniques in [Bacardit, 2004; Bacardit et al., 2009a]. The reinforcement learning prob-
lems is a type of problem where the system is expected to develop a behavioural model based
on rewards obtained from the environment. An example of this type of problem is finding
the shortest path to the food in a maze. Examples of the usage of EL systems in this area are
[Bull, 2001; Butz et al., 2005a]. The function approximation problems consist in fitting a continuous
function. EL systems are capable of doing this by evolving a piecewise linear approximation of
the function. The most important representative of EL applied to this type of problems is the
XCSF system [Wilson, 2002]. An example of the application of XCSF to robotics using function
approximation can be found in [Butz et al., 2009].

2.3.4 Knowledge representation

In the EL field a lot of effort have been focused in developing representations that are, not only
more adequate for the problems we want to solve, but more efficient in terms of generality,
expression power and performance. Even though, EL uses rules of the type condition — action,
both the way of representing the antecedent and the precedent are very flexible.

2.3.4.1 Representations for the condition

The representations for the condition part of the rules mostly depend on the type of problem
at hand. For binary inputs we have the ternary representation {0,1,#} [Holland and Reitman,
1978], which consists of three possible symbols per problem attribute: 1 and 0 which force the
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existence or non-existence of a particular attribute for the predicate to hold, and # (don’t care)
which represents that a particular attribute is irrelevant. For example the string 1#0# represents
the following condition: Att1 is true and Att3 is false. Even though this representation is not
very complex, it has been successfully used in [Goldberg, 1989; Lanzi, 2008; Wilson, 1995]. This
representation can be extended to nominal domains by having one symbol per possible value
per attribute. However, this increases dramatically the search space.

Also for binary (and nominal domains in general) it is possible to use the GABIL representation
Uong and Spears, 1991]. This representation has a higher representativity power in nominal
domains as the predicate for each attribute is a disjunctive formula with all the possible values
the attribute can take for the predicate to hold. In GABIL the attributes are represented by
binary strings of fixed length. The length correspond to the number of possible values the
feature can have. For example if the attribute F1 may have the values (A,B,C), F2 the values
(O,P), and F3 the values (W,Z,X,Y), a possible condition string for each one of the attributes
would look like:

F1 P2 B3
100 01 1101

Each attribute is read as a disjunctive clause between all the values that have their bit on. For
example, this condition can be interpreted as if F1is Aand F2 is Pand F3is Wor Zor Y.

For real-valued domains several encodings have been proposed. The simplest and most widely
used is the interval-based knowledge representation. In this representation a rule encodes an hyper-
rectangle, defining for each attribute in the problem a lower and upper bound which defines
the interval. Each interval corresponds to one side of the hyper-rectangle. Then all points
that fall within the hyper-rectangle are matched by the rule. To represent the hyper-rectangles
and determine the boundaries of the intervals during the learning process several representa-
tions have been proposed. First, we have the Centre-spread representation proposed by Wilson
[2000] which consists in defining the interval as a centre c and a spread 5. Then the lower and
upper bounds are calculated as (Ib, ub) = (c —s,¢ +s). Another way of defining the dynamic
intervals is the Min-max representation [Wilson, 2001b], in which each interval is explicitly rep-
resented by a lower and upper bound. Stone and Bull [2003] presented a throughout compar-
ison of these two representations, which are the most wide-spread ones. Other representation
for dynamic intervals is the Min-percentage representation [Dam et al., 2005a] which stores the
lower bound and the percentage of the interval which corresponds to the distance between the
lower bound and the upper bound. Also, other representations such as Adaptive Discretisation
Intervals (ADI) [Bacardit and Garrell, 2003b], use pseudo-fixed intervals which remain constant
for all the rules generated, but they can be adapted dynamically using multiple discretisation
algorithms.

To use the generalisation capabilities of the systems, some EL implementations, such as NAX
[Llora et al., 2009], have a special encoding to represent the don’t care interval. In this system
the irrelevant interval is represented by a condition where the lower bound is larger than the
upper bound.

More complex representations for real-valued attributes include ellipsoids [Butz, 2005), hyper-
ellipsoids [Butz et al., 2006a], convex-hulls [Lanzi and Wilson, 2006] and neural networks [Bull,
2002; Bull and O’Hara, 2002; Howard et al., 2012]. However, our explanations are limited to the
interval-based representations which are the ones used in this thesis.

Moreover, there is work in developing representations that use a semantical approach such as
first order logic [Mellor, 2005], messy conditions [Lanzi and Perrucci, 1999a, fuzzy conditions
[Casillas et al., 2007; Orriols-Puig et al., 2009] and S-expressions [Browne and loannides, 2007;
Lanzi and Perrucci, 1999b]. This very particular representations are mainly developed to adapt
themselves better to the characteristics of the problem and improve the generalisation capabil-

ities of the systems.
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However, one known drawback of using complex representations is that the size of the rule sets
tends to increase. The way to tackle this problem is by developing post-processing routines that
remove rules that are redundant or have a high overlapping with the rest of the rules [Butz et al.,
2008b; Dixon et al., 2003; Fu and Davis, 2002; Wilson, 2001a]. These algorithms will be explained
in greater detail in Chapter 9 where a new rule set compaction approach is introduced.

2.3.4.2 Representations for the actions

The representations used for the actions in a classifier are not as varied as the ones used for the
condition. Usually the actions are represented by a set of symbols. However, there is recent
work in which the action is replaced by a computed action or a function. For example Tran
etal. [2007], implemented actions which are computed as a linear approximation using weights.
Later Lanzi et al. [2007] implemented a similar idea, but learning the weights using supervised
learning.

Also some approaches designed for function approximation such as XCSF [Wilson, 2002] do
not have an action, but only use a computed prediction calculated using weights that change
using reinforcement learning.

2.3.5 Efficiency enhancement methods

Given the need to tackle larger datasets each time, many efficiency enhancement techniques
have been proposed in the field of EL [Bacardit and Llora, 2012]. As it was explained be-
fore, running the GAs using training examples instead of a mathematical function to calculate
the fitness of the individuals involves a huge computational cost that needs to be taken care
of to maintain the scalability of the algorithms. These efficiency enhancement methods can
be characterised into four categories: software-based solutions, parallel learning paradigms,
hardware-based solutions, and data-intensive computing.

2.3.5.1 Software-based solutions

Software-based solutions are the ones in which particular algorithms or mechanisms have been
developed to improve the performance of the systems without relying on specific hardware.
Among these type of solutions we can find windowing mechanisms whose goal is to perform the
match process in a more efficient way. These techniques consist in the selection of a represen-
tative subset of the training set to perform the fitness calculations. There are many ways is
which this can be achieved. For example it is possible to select a fixed subset of instances of
the training set and use this subset along the learning process. This is also know as prototype
selection [Derrac et al., 2010; Garcia et al., 2012]. Also the subset of instances can be selected
dynamically by either selecting it randomly or selecting it based on observations over the in-
stances like “misclassification ratio” or “age” (how long it is been since the instance was used
for the last time). Moreover, smart stratification processes can be found in the literature such
as the ILAS windowing scheme [Bacardit et al., 2004], the Random/Dynamic Subset Selection
(RSS-DSS) [Song et al., 2005] and the Training Data Rotation [Ishibuchi et al., 2012]. The ILAS
windowing scheme consists in separating the training set into non-overlapping strata and us-
ing a different strata in each GA iteration following a round robin policy. Since this technique
is used by both systems analysed in this thesis it will be explained in greater detail in Section
2.4.1.3. On the other hand, the RSS-DSS approach performs two sampling process. First a Ran-
dom Subset Selection is performed in a similar way as in the ILAS, creating non-overlapped
blocks. Afterwards a Dynamic Subset Selection is performed within each block generated with
RSS based on the age of the instances and their misclassifications. Finally, the Training Data
Rotation consists of a windowing technique applicable to island model parallel EL algorithms
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(See Section 2.3.5.2), in which the training set is distributed among the different islands and
then rotated periodically among them.

Other software-based solutions are based on changing the representation of either the classifiers
or the instances to perform the match process more efficiently. For example in [Giraldez et al.,
2005] the instances were reorganised and stored in a tree structure that makes it very efficient
to determine which instances match a particular classifier. Regarding the classifiers represen-
tation, some approaches [Butz et al., 2008a] reorder the attributes in a rule so the more specific
ones appear first, and hence, decrease the time it takes to determine an example does not match
a rule. Moreover, other representations such as the Attribute List Knowledge Representation
[Bacardit and Krasnogor, 2009a] express only the relevant attributes in a list, avoiding the match
operations of the irrelevant attributes. Since this representation is used in the systems analysed
in this thesis it will be explained in greater detail in Section 2.4.2.1.

Furthermore, there are implementations of EL systems that use search mechanisms that try to
explore the search space more efficiently. This is the case of the usage of Estimation of Distri-
bution Algorithm (EDA) [Larragafia and Lozano, 2002] and Memetic Algorithms [Krasnogor
and Smith, 2005]. EDAs are optimisation methods that build a probabilistic model expressing
candidate solutions in an incremental manner. Examples of the application of EDAs to EL are
the XCS/ECGA and XCS/BOA [Butz et al., 2005b, 2006b], which apply the Extended Compact
Genetic Algorithm (ECGA) [Harik, 1999] and the Bayesian Optimisation Algorithm [Pelikan
et al., 1999], respectively. On the other hand, Memetic Algorithms are population-based al-
gorithms with local refinement mechanisms over the rules that have a particular goal and do
not act in a stochastic manner. Examples of the application of Memetic Algorithms in EL is
the MPLCS system [Bacardit and Krasnogor, 2009b], which is a Pittsburgh LCS with four extra
operators that try to modify the rules or the rule sets in an intelligent manner trying to minimise
the error.

Moreover, another way to speed up the evaluation process is to substitute it with a fitness
approximation or fitness surrogates [Jin, 2005; Llora et al., 2007; Orriols-Puig et al., 2008¢c]. The
fitness surrogates are usually based on a model of the problem previously determined using
EDAs.

2.3.5.2 Parallel learning paradigms

Some EL systems have been designed and developed with a parallel nature in order to dis-
tribute the load of the evaluation process in a transparent way. An example of this is the GALE
system [Llora and Garrell, 2000; Llora and Garrell, 2001] which combines the concepts of cellu-
lar automata and a supervised learning system. This system consists of a grid, in which each
cell contains either one or zero individuals, and each individual is a complete solution of the
problem. Each cell performs an evolutionary learning process in parallel over each individual,
and the communication between cells is restricted to the neighbours and it is only performed
during the recombination process.

Moreover, the main paradigms for GA parallelisation can also be applied to EL systems. The
different parallelisation paradigms for GAs [Canti-Paz, 1998] are:

Single population coarse-grained (Master-slave models). In these algorithms there is a single
population and only the fitness function is parallelised among different processors. After
the calculations are performed the information is returned to the master node to continue
with the GA.

Single population fine-grained. In these algorithms there is a single population as well, but

the individuals are organised in a spatial way, so the recombination operators are re-
stricted to neighbours, limiting in that way the necessary communications.
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Multi population coarse-grained (Island models): In these algorithms there are several pop-
ulations which evolve in parallel, and exchange individuals or information occasionally
through a “migration” operator.

Examples of EL systems that use classic parallelisation paradigms and/or Message Passing In-
terface (MPI; a communications protocol independent from the programming language used to
program parallel computers [Gropp et al., 1996]) are [Bull et al., 2007; Dam et al., 2005b; Galizia
et al., 2010; Llora et al., 2009, 2007]. Probably the most interesting and relevant example to this
thesis is the NAX system [Llora et al., 2009] which applies the master-slave model to IRL and
runs in parallel the same algorithm (using the same seed) over different parts of the population.
Also [Canti-Paz, 2000] developed a formal theory to set up parameters in parallel GAs, such
as the size and the number of populations (in case of multi population algorithms).

Moreover, ensemble techniques, although they were not created with a parallelisation purpose,
can help handling very large domains by generating independent models over different parts
of the data and then merge them to create a single prediction model [Bauer and Kohavi, 1999;
Breiman, 1999; Bull et al., 2007; Merz, 1999].

2.3.5.3 Hardware-based solutions

Hardware-based solutions correspond to the solutions that depend on a specific hardware to
run. Examples of this are the usage of General Purpose Graphic Processor Units (GPGPUs)
to parallelise the whole or parts of the GA. GPGPUs are graphics hardware initially designed
for image rendering which can perform high performance calculations relying on its massively
parallel architecture. The most widespread frameworks to program GPGPUs are NVIDIA’s
Computer Unified Device Architecture (CUDA) [NVIDIA, 2008] and its open source alternative
OpenCL [Scarpino, 2011].

There are many different examples of the implementation of GAs in GPGPUs. For instance,
Maitre et al. [2009] presented an implementation of a GA which performs in parallel (follow-
ing a master-slave model) the evaluation function of all the individuals using GPGPUs. Also,
[Pospichal et al., 2010] presented a GA that runs in GPGPUs following the island parallelisation
model. Moreover, [Li et al., 2007; Yu et al., 2005] present fine-grained parallelisation approaches
implemented in GPGPUs. In these approaches the whole GA is implemented within the device.
Since the communication between the GPGPU nodes are expensive, these approaches restrict
the communications to high speed communications (neighbour nodes). Regarding Michigan
LCS there are two works in the literature in which they parallelise the construction of the pre-
diction array [Lanzi and Loiacono, 2010; Loiacono, 2011]. The usage of GPGPUs in the literature
will be explained more extensively in Chapter 8 in which a novel approach to speed up the
evaluation process for supervised learning is introduced.

Also another example of the application of specialised hardware is the usage of vectorial proces-
sor units. A vector processor is a Central Processing Unit (CPU) which is capable of applying in
parallel a set of instructions to a vector or an array of elements, following the Single Instruction
Multiple Data (SIMD) paradigm. An example of the usage of vector operations is [Llora and
Sastry, 2006]. In this work they speed up the match of binary conditions by using compact
bitwise encodings for the rules and the instances. Afterwards, only bitwise and and equal op-
erations where needed to determine if the condition of the rule matched the instance. This not
only helps to perform the match faster but also reduces the amount of memory necessary to
encode the rules and individuals. This approach was also extended to work with real domains
in [Llora et al., 2009].
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2.3.5.4 Data-intensive computing

Data-intensive computing are paradigms of parallelism which use data parallel techniques to
process very large amounts of data. These techniques are usually applied to algorithms that are
data-bounded instead of computationally-bounded. This means that the algorithm is bounded
by the processing time of the I/O operations and the manipulation of the data. The main
characteristics of data-intensive computing frameworks are:

o The abstraction of the operations in a model that is independent to the architecture used
and it is expressed in high level data-oriented operations.

o The locality of the data. Since these approaches usually try to minimise the movement of
the data, they tend to run where the data is stored.

e They are robust to faults or errors. This is done by having redundant copies of the data,
storing the intermediate results and not only the final ones, and having a system capable
to automatically detect errors or failures.

e They can virtually scale linearly to process any amount of data by adding more comput-
ing nodes.

There are different data-intensive frameworks: MapReduce [Dean and Ghemawat, 2008], and
its open source implementation Hadoop [L.am, 2010], Meandre [Llora et al., 2008] and the ECL
programming language for the High Performance Computing Cluster (HPCC) [Yoo and Ka-
plan, 2009].

The MapReduce architecture consists of a problem abstraction to two functional programming
primitives that are independent from the architecture used: map and reduce. Both of these func-
tions are defined by the user. The map function is in charge of converting an input to an in-
termediate key-value pair. The reduce function is in charge of merging the possible values of a
particular key into one value. The way this is parallelised is by transparently distributing the
computation of both the map and reduce functions. However, the user of this architecture does
not need to understand the way the parallelisation works because the functions are written in
high-level language which is independent from the underneath architecture. An easy example
of the application of this architecture is counting the number of occurrences of a certain word
w in a text. In this case the map function is in charge of generating the pair (w, 1) every time
the word is found and the reduce function is in charge of counting how many pairs where
generated for the word w.

Moreover, Meandre [Llora et al., 2008] is a semantic enabled web-driven dataflow execution
environment, which provides the tools for assembling and executing data flows. Data flows are
software focused in processing data (accessing, transforming and analysing or visualising the
data and/or results). Each flow has a high-level representation as a graph that shows executable
components.

Furthermore, the ECL (Enterprise Control Language) [Yoo and Kaplan, 2009] is a data-centric
programming language in which programs do not exist, but only data and the operations to
perform on that data are declared. This programming language has primitives which have a
direct correlation to the MapReduce ones: project and rollup. Moreover, it was extra primitives
that allow to sort, distribute, parse, normalise the data, among others. These primitives run
transparently in parallel in the HPCC (High-Performance Computing Cluster), also known as
DAS (Data Analytics Supercomputer) [Middleton, 2011].

There are several examples of GAs implemented using data-intensive computing. [Verma et al.,
2009] shows an example of a simple selecto-recombinative GA implemented in Haddop. Later
in time, also the Extended Compact Genetic Algorithm (ECGA) [Harik, 1999] was implemented
over Hadoop in [Verma et al., 2010]. At the same time, implementations of the two previous
algorithms in Meandre were also proposed [Llora, 2009]. [Llora et al., 2010] presents a more
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extensive survey of the application of data-intensive computing to GAs.

2.4 GAssist and BioHEL

There are two systems which are analysed in this thesis, GAssist and BioHEL. GAssist [Bac-
ardit, 2004] is a Pittsburgh LCS with several characteristics to improve the scalability and the
quality of the learning for real-world data mining problems. Among these characteristics we
have a representation based on the discretisation of the real domain into intervals (using the
ADI representation), and a fitness function that improves the generalisation capabilities of the
system. However, its performance is limited in certain scenarios, such as problems with high
number of classes and large training set sizes [Bacardit and Krasnogor, 2006]. This lead to the
introduction of BioHEL [Bacardit et al., 2009a], a system that shares several characteristics with
GAssist, but changes the main learning paradigm to IRL in order to cope with these large scale
domains. Also BioHEL discarded the mechanisms which took most of the time in GAssist and
changed its fitness function to introduce the concept of coverage as an extra indicator of the
goodness of a rule. These changes helped the system to scale better in complex bioinformatic
domains. These two systems have been successfully applied to a very broad range of problems
[Bacardit and Butz, 2007; Bacardit and Krasnogor, 2008a, 2009b; Bacardit et al., 2009b; Orriols-
Puig et al., 2008a; Smith et al., 2010; Stout et al., 2008, 2009]. In particular, BioHEL has obtained
very important results when solving protein structure prediction problems and has won related
merits, such as being placed among the best algorithms for this purpose at the Critical Assess-
ment of Techniques for Protein Structure Prediction (CASP) in 2008 and 2010, and winning the
bronze medal at the HUMIES Awards for Human-competitive results in 2007.

While the focus of this thesis is to propose improvements for the BioHEL system, a comparison
between the two systems will be presented in Chapter 4 as the start point to determine possible
areas of improvement in BioHEL. Therefore, the following sections present in greater detail the
characteristics of these two systems in the order in which they were created.

241 GAssist

GAssist [Bacardit, 2004] is a Pittsburgh LCS which started as an implementation of GABIL
[Jong and Spears, 1991], hence it still uses the semantics of its representation and crossover
operator. In GAssist, the individuals consist in a set of rules that represent a complete (and
variable-length) problem solution. Solutions evolve using supervised learning and a standard
GA. Finally, at the end of the execution, the best individual in the population in terms of fitness
is considered to be the final solution to the problem.

The following section will explain in greater detail the characteristics of this system including
its representation, fitness function and other efficiency enhancement techniques.

2.4.1.1 Representation

The GAssist system is capable of handling discrete and continuous attributes, by using dif-
ferent representations for each case. To handle discrete attributes the system uses the GABIL
representation [Jong and Spears, 1991] as explained in Section 2.3.4.

To initialise GABIL attributes the the system relies on a parameter p which corresponds to the
probability of setting the bits in a GABIL string to 1. This parameter controls the specificity or
coverage of the initial rules. These are two concepts that are linked to the percentage of examples
covered by a rule. However, the relationship between them is inverse: the more specific the rule
is the less coverage it has.
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Moreover, if the covering mechanism is used a rule will be created setting the bits correspond-
ing to the values of a randomly sampled instance to 1. For example if the attribute F1 may
have the values (A,B,C), F2 the values (O,P), and F3 the values (W,Z,X,Y) and the instance
{C,P,W} is sampled, the generated rule through covering would have at least the following
bits on:

Fl F2.PB3

ﬁ"l .‘] 1”‘

The rest of the positions marked with * are set to 1 with probability p, similarly to when the
system does not use covering. Moreover, the match process of a GABIL condition is performed
as shown in Algorithm 2.4.1.

(Algorithm 2.4.1: GABILMATCH(Instance, Rule) )
match + TRUE

for att € Instance.atts A match

{match « match A Rule|att.index|[att.value]
return (match)

- J

On the other hand, to handle continuous attributes GAssist uses the Adaptive Discretisation
Intervals (ADI) rule representation [Bacardit and Garrell, 2003b]. This knowledge representa-
tion generates intervals based on the output of multiple discretisation algorithms. The learn-
ing process chooses the correct discretisation for each problem. Moreover, the final intervals
evolved in ADI can be the result of the merge of some of the original intervals produced by
the discretisation algorithms (micro-intervals). Semantically, the evolved intervals follow the
GABIL representation.

Moreover, this system uses a default rule mechanism [Bacardit et al., 2007b], which consists of a
rule that covers all the examples left in the training set. This mechanism was introduced to gen-
erate more compact rule sets, since the default class is not used in the evolved rules. Therefore,
if the problem has n classes the system will only generate rules for n — 1 classes. The default
class is defined by a user established policy that can have the following behaviours:

Majority: the class which has the largest amount of examples is considered the default class.

Minority: the class which has the minimum amount of examples is considered the default
class.

Automatic: the system automatically determines the most convenient default class.

Disabled: no default class is used. The system is able to evolve rules for all the classes in the
dataset.

2.4.1.2 Fitness function

The rule sets in GAssist, as in most Pittsburgh LCSs, have variable length. One of the problems
of the systems with variable length individuals is that the individuals might start growing
without control. This phenomenon is known as the bloat effect. GAssist uses a fitness func-
tion based on the Minimum Description Length (MDL) principle [Rissanen, 1978] and a rule
deletion mechanism to cope with this issue [Bacardit and Garrell, 2003a]. This fitness function
considers two important characteristics of the rules: the accuracy and complexity (generality).
It has two terms as shown in Equation (2.4.1).
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F(R) = TL(R) x W + EL(R) (2.4.1)

TL(R) (theory length) corresponds to the complexity (or generality) of rule set R, EL(R) (ex-
ceptions length) corresponds to the accuracy of rule set R and W is a weight that adjusts the
relation between the previous terms.

In particular, the term EL(R) corresponds to:

correctlyClassified(R) - 100
|T|
where | T| is the number of instances in the training set and correctlyClassi fied(R) is the number

of instances classified correctly by rule set R.2 The more accurate the rule is the smaller the term
EL(R) would be.

EL(R) =105 — (24.2)

On the other hand, the theory length term TL(R) penalises rule sets that have a complex rep-
resentation, and therefore are less general. Considering that there are NA attributes in the
problem and the rule set is of size |{R|, this term can be calculated as shown in Equation (2.4.3)
as the sum of the theory length of each one of the attributes belonging to the classifiers of
the rule set.> The definition of the theory length of each attribute depends on the employed
knowledge representation.

IRI-1NA

TL(R) = E );n,, (24.3)

i=1 j

When an attribute is continuous, GAssist uses the ADI representation. Therefore, it calculates
the term TL;; as follows:

TLj=1I;j + NI (244)
where [;; is the number of micro-intervals in the attribute j of rule i, NI;; corresponds to the

number of simulated intervals? in the same attribute.

On the other hand, if the attribute in the rule is discrete, the system uses the GABIL represen-
tation and calculates the theory length as follows:

TL,'}' = vjj + nyj (2.4.5)

where v;; is the number of possible values and n;; is the number of negative values in the
attribute j of rule i.

Moreover, as it was explained before the MDL formula depends on a weight W, which is ad-
justed dynamically throughout time using a heuristic defined in [Bacardit and Garrell, 2003a].
This value starts at a constant value equal to:

_ initialRatio x EL
"~ (1 — initial Ratio) * TL'

(2.4.6)

2This function sums 105 instead of 100 to handle border cases.

3This function only sums the theory length of the first [R| — 1 rules, since the last one corresponds to the default
rule.

4Contiguous bits that have the same value, either true or false in the ADI representation.
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Training Set

0 Iter
Figure 2.6: Example of the ILAS windowing partition and window usage.

, . NR
TL = Tlgs (247)

where initial Ratio is a parameter set by the user and the theory length TL is normalised as
shown multiplying by the number of active rules NR and dividing by the number of classes
NC. This is done to penalise rule sets with many dead rules (rules that don’t match any exam-
ples). Afterwards, whenever the best individual of the population stays the same for a certain
number of iterations the current weight is multiplied by a relaxation factor. Both the number of
iterations and the relaxing factor are parameters set by the user.

2.4.1.3 ILAS Windowing Scheme

GAssist incorporates an efficiency enhancement mechanism called Incremental Learning with
Alternative Strata (ILAS) [Bacardit et al., 2004], which is a windowing scheme that reduces
the computational costs of handling large scale datasets. This technique separates the training
set into strata, which have the same class distribution as the whole training set. Afterwards,
each iteration of the GA uses a different strata for its fitness computations based on a simple
round-robin policy as shown in Figure 2.6.

It has been shown empirically that this mechanism, not only improves considerably the exe-
cution time of the system, but also introduces more generalisation pressure over the system
by preventing the over-fitting of the data [Bacardit et al., 2004]. However, there are limitations
on its use since the correct functioning depends on each strata being a reliable representation
of the whole training set. In order to calculate the probability of success of this approach it is
necessary to calculate the probability of having an unrepresented niche as follows:

P(unrepresented niche)s = (1 — p)l-7 (24.8)

where s is the number of strata, D is the size of the training set and p represents the probability
that a random problem instance belongs to one niche. Based on the probability of having and
unrepresented niche the probability of success can be calculated by Equation 2.4.9 where r is
the number of niches in the problem.

P(success)s = (1 — P(unrepresented niche)s)™ (24.9)

2.4.14 Robust prediction using ensembles

Also ensemble techniques [Bacardit and Krasnogor, 2008a] were incorporated in GAssist to in-
crease the robustness of the predictions. The ensemble techniques used are based on consensus
prediction. This means that for a given training set several rule sets are generated using differ-
ent seeds. Afterwards, the different rule sets vote to classify each example of the corresponding
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test set. For each example the class that was predicted more frequently by the rule sets would be
the final classification. If the generated models are diverse they might complement each other
to improve the prediction. This ensemble scheme has shown to increase GAssist’s performance
across a broad range of problems [Bacardit and Krasnogor, 2008a; Stout et al., 2009]

@lgorithm 2.4.2: BIOHELIRL(Examples) )

Theory « @

noBestFound + 0
while Examples # @
 BestRule +— NULL
for i < 0 to numRepetitions
Rule + BESTRULEGA (Examples)
if BestRule < Rule
then BestRule < Rule
noBestFound + 0
do [ if COVERINGOK (BestRule)
C « COVER(BestRule, Examples)
then {

do

Examples « Examples — C
Theory < Theory U BestRule
noBestFound + noBestFound + 1
else < if noBestFound = 3
then exit

retum\(Theory)
\. J

242 BioHEL

The BioHEL (Bioinformatics-oriented Hierarchical Evolutionary Learning) system is an EL sys-
tem proposed by Bacardit et al. [2009a] to handle large scale bioinformatic datasets [Bacardit
et al., 2009b; Bassel et al., 2011; Stout et al., 2008, 2009]. As it was previously explained, this sys-
tem inherits some components from GAssist such as the ILAS windowing scheme, the default
rule mechanism and some parts of the fitness function, but instead of following the Pittsburgh
approach to generate rule sets, it uses IRL. As it was explained before, this learning approach
generates hierarchical rule sets with the particularity that rules are learnt sequentially, using a
standard GA to learn each rule. Once a rule is learnt (which corresponds to the best individual
in the GA population), it is added to the final rule set and all the examples covered by this rule
are removed from the training set. This process is repeated iteratively until there are no more
examples in the training set or the generated rules are not good enough. For instance if using
default class, the stop criteria consists in not being able to find a rule better than the default
rule three times in a row. The IRL paradigm used in BioHEL can be exemplified by the code in
Figure 2.4.2. The following sections will explain in greater detail the characteristics of BioHEL
that differ from GAssist.

24.2.1 Representation

BioHEL uses the Attribute List Knowledge Representation (ALKR) [Bacardit and Krasnogor,
2009a] to encode the individuals. ALKR is a meta-representation that is able to handle effi-
ciently continuous and discrete attributes at the same time. It reduces the computational cost of
matching the rules by representing in a list only the attributes that are relevant for the problem,
hence avoiding spending extra computer cycles evaluating irrelevant attributes during a match
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process. The relevant attributes may vary between the rules and they are determined inde-
pendently for each rule during the learning process. In order to explore the space of attributes
to identify the relevant ones, this representation has two extra operators, called generalise and
specialise. These operators drop or add attributes from/into the rule, respectively. To han-
dle discrete attributes within ALKR, BioHEL uses the GABIL representation [Jong and Spears,
1991] while a hyper-rectangle representation with explicit intervals [Wilson, 2001b] is used for
continuous attributes.

Figure 2.7 shows an example of an individual using this representation. Each classifier condi-
tion is formed by five structures: a) an integer with the number of attributes represented b) a list
of the identifiers of the represented attributes, c) a list of values for the represented attributes
(nominal and continuous), d) a list with the positions (or memory offset) where each attribute
can be found in the previous structure and e) the class of the classifier.

ALKR Classifier Example

numaAtt .
whichAtt .Z.
predicates - 1|1 _
offsetPred .z.
class -

Figure 2.7: Representation of a classifier using ALKR in BioHEL

Since the ALKR list usually does not represent all the attributes, the probability of an attribute to
appear in a randomly generated classifier depends on the parameter ExpAtts. This is an user-
defined parameter that determines the expected value for the number of relevant attributes in a
rule. Based on this value and the number of attributes d it is possible to calculate the probability
I of an attribute to appear in the attribute list as follows:

] d <= ExpAtt
L= { - (2.4.10)

E%'?E d > ExpAtts

After determining which attributes are going to appear in the list, the predicate for each at-
tribute is determined depending on its type. For the discrete attributes the initialisation follows
the same methodology explained in Section 2.4.1.1. In the case of continuous intervals a random
span s between 0.25 and 0.75 is selected. Afterwards, if using covering, the value of the instance
will represent the centre ¢ of the interval and the lower and upper bounds would be ¢ — s/2 and
c + /2, respectively. If covering is not used then the centre c is also selected randomly. It is
important to mention that when covering is used all classes have the same probability of being
selected for covering despite of the class imbalance which proved to be beneficial to increase
the probability of covering the whole search space [Bacardit, 2005].

In problems with both discrete and continuous attributes ALKR stores temporarily the nominal
and continuous attributes of the rules separately in two different vectors during the evaluation
process. Afterwards, two loops (one for each type of attribute) perform the match indepen-
dently for each type. This technique improved the performance of the match of mixed attributes
as shown in [Bacardit and Krasnogor, 2009a].
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2.4.2.2 Fitness function

BioHEL also uses a fitness function based of the MDL principle [Rissanen, 1978] inspired in
GAssist’s fitness function. This fitness function promotes accurate, general and compact rules
by combining three elements: accuracy, coverage and complexity of the rules [Bacardit et al.,
2009a,b]. This fitness function has two terms, as it was already shown in Equation (2.4.1) but
applied over a rule a instead of a rule set (since in BioHEL each individual is a rule). However,
the definition of the EL(a) term changes to include not only the accuracy, but also the coverage
of the rules. For BioHEL, EL(a) is defined as:

EL(a) = 2 — ACC(a) — COV(a) (2.4.11)
__correctlyClassified(a)
ACC(a) = matched (a) (24.12)
0 if RC(a) < CB{a.class)/3
COV(a) = { PenaltyCov(a) if RC(a) < CB(a.class) (2.4.13)
HighCov(a) if RC(a) > CB(a.class)
_ RC(a)
PanaltyCov(a) = CR * CB(aclass) (2.4.14)
, B (1 — CR) * (RC(a) — CB(a.class))
HighCov(a) = CR+ 1—RC(a) (2.4.15)
RC(a) = correctlyClassified(a) (2.4.16)
|Ta.class|
_ce T
CB(c) = CB « (24.17)
| Te|

ACC(a) corresponds to the accuracy of the rule 2 and COV () corresponds to the coverage of
the rule a, which is the key of BioHEL’s fitness function. As shown in Equation (2.4.13), the
value of COV (a) depends on RC(a) (recall; the ratio between the number of examples correctly
classified by the rule over the total number of examples in the training set belonging to the same
class as a) and CB(a.class) (the percentage of examples of its class that any rule should cover
to be considered a “good rule”). CB corresponds to the BioHEL parameter known as coverage
breakpoint. The coverage breakpoint parameter is set globally in the system, and afterwards it is
transformed for every class considering the class distribution. This is a very problem dependent
parameter which can affect the performance of the system, and it is difficult to set up. In the
original version of BioHEL, coverage (matched(a)/|T|) was employed instead of recall to define
RC(a). The change was due to recall being more robust in datasets with class imbalance. To
avoid changing the name of the parameters all the original formulations have been maintained
except for RC(a).

Moreover, CR (coverage ratio) corresponds to the percentage of “reward” awarded to a rule
with a coverage higher than the CB threshold. Figure 2.8 shows the value of the coverage
term COV (a), depending on the coverage of the rule. The rules that do not cover this minimal
percentage of examples are penalised.

Moreover, the TL(a) term in the fitness calculation also changes. In the case of BioHEL the
TL(a) term is calculated as follows:

LN TL
NA
where TL; is the theory length of the attribute i and NA is the number of attributes in the

TL(a) = (2.4.18)
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Figure 2.8: Coverage term COV (a) according to rule coverage. The minimum coverage corresponds to
one third of the coverage breakpoint

problem. At the same time, the definition of TL; changes depending on whether the attribute
is continuous or discrete. If the attribute is continuous the theory length is calculated as fol-
lows:

Size;
o (1 o MaxSize,') e

where Size; is the size of the interval i and MaxSize; is the size of the corresponding domain. On

the other hand, if the attribute is discrete, the theory length is calculated based on the number
of zeros in the GABIL string as follows:

PL; - (ﬂ) (2.4.20)

where n; is the number of negative values and v; is the number of possible values of attribute
i

Regarding the weight W in the MDL fitness function, the heuristic used to adjust is exactly the
same as the one used in GAssist. The only difference is that since BioHEL has individuals that
are rules instead of rule sets there is no need to normalise the theory length term.

2.4.2.3 Shared mechanisms with GAssist

The mechanisms BioHEL inherit from GAssist are: a) the ILAS windowing scheme, b) the de-
fault rule mechanism, c) basic fitness function structure and c) the ensemble consensus predic-
tion.

Both the ILAS windowing scheme and the consensus prediction using ensembles work in the
same way as in GAssist, as explained in Sections 2.4.1.3 and 2.4.1 4, respectively. However, the
strata are recalculated in each iteration of the IRL loop, given that the examples covered by
each rule learnt by the system are removed from the training set before the next IRL iteration
starts.
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Moreover, as explained in Section 2.4.2.2, BioHEL's fitness function uses the same principles
as GAssist fitness function, but it introduces the measure of coverage of the rules which helps
promote general rules in the new learning paradigm.

Moreover, the default rule mechanism in BioHEL is a little bit different since it does not accept
the automatic policy. As the rules in BioHEL are generated one at the time, it is not possible for
this system to determine automatically the most favourable default class as before, since there
is a lack of global supervision. Moreover, in the BioHEL system is possible to set a fixed default
class.



CHAPTER 3

Methodological aspects

This chapter presents the general methodological aspects that are common among the chapters throughout the thesis.
This includes the statistical tests used in our experiments and the background behind the decision of using these
particular tests. Furthermore, this chapter also explains in greater detail the datasets used throughout the thesis to
test the performance of the analysed systems and the default parameter configurations for BioHEL, which remains
fixed unless stated otherwise.

3.1 Statistical tools and performance measures

Statistical analysis is fundamental when trying to compare two or more different classifiers
correctly. In this thesis, a common statistical methodology is followed throughout all chapters.
The adopted methodology is based on previous studies that have aimed to determine which
are the most suitable statistical tests to compare two or more classifier implementations. For
instance, Dem3ar [2006] compared different parametrical and non-parametrical tests to estab-
lish comparisons and conclusions among two or more classifiers over multiple datasets. He
started from the idea that in many occasions the results in the ML community are presented
without a sound statistical basis, and this is very important when the conclusions state that one
classifier is better than other. In this work, he points out at the fact that the accuracy measures
do not usually comply with the restrictions to use a parametric test (independence, normal
distribution and homogeneity). Therefore, this study recommends non-parametric test which
are safer since they do not assume these characteristics. They recommend the Wilcoxon test
[Wilcoxon, 1945] for the comparison between two classifiers and the Friedman test [Friedman,
1937] for comparisons that involve more than two classifiers. He also warns against t-test which
is usually conceptually inappropriate and unsafe. As post-hoc tests this work presents the Ne-
menyi test [Nemenyi, 1963], the Bonferroni-Dunn test [Dunn, 1961], Holm [Holm, 1979] and
Hochberg [Hochberg, 1988] while the first one can determine significant differences between
each pair of classifiers at the same time, the rest are used to determine significant differences
between a control method and the rest.

Afterwards, Garcia and Herrera {2009] extended this study to deal with aspects that where not
fully analysed in Dem3ar’s paper, such as other methods to perform pairwise comparisons and
the adjustment of the p-values by the post-hoc procedures. Moreover, Garcia et al. [2009] also
extended this study by comparing different accuracy measures and interpretability measures
over the classifiers. The two accuracy measures presented is this work are the widely used
classification rate [Witten and Frank, 2005] and the Cohen’s kappa [Cohen, 1960]. The latter
is very similar to the classification rate but considers the random success. On the other hand,
the interpretability measures analysed are the total number of rules generated and the number
of antecedents of clauses in the condition (which were adopted as the performance measures
in Chapter 9). They analysed the impact of using different measures over the different tests.
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First they show that the conditions necessary to apply parametric test are rarely presented. No
matter the performance measure used the normality and homogeneity restrictions are seldom
satisfied, and they usually depend on the problem at hand. Another important reason for using
non-parametric tests is that when comparing with deterministic approaches it is difficult to
obtain large amounts of samples. The conclusions are very similar to the ones in [Demsar, 2006].
Moreover, as post-hoc tests for multiple comparisons they recommend the use of Holm [Holm,
1979] and Hochberg [Hochberg, 1988] procedures which were the ones they found capable of
distinguish slight differences between the algorithms.

Garcia et al. [2010] also extended Dems3ar [2006] to introduce other non-parametric methods
that can be used to perform comparisons between multiple classifiers. The new non-parametric
techniques (different from the Friedman test) presented in this work were the Mutiple Sign-test
[Steel, 1959] and the Contrast Estimation based on medians. Moreover, the also analyse other
alternatives to the Friedman test, the Friedman Aligned Ranks [Hodges and Lehmann, 1962]
and the Quade test [Quade, 1979]; and other post-hoc procedures such as Holland, Rom, Finner
and Li. However, in this thesis there was no need to use any of this advanced techniques.

In this thesis we use the Wilcoxon test to compare two different approaches (classifier versions).
To compare more than two approaches we used the Friedman test if the comparison is made across
different datasets. As post-hoc tests (when comparing more than two classifiers) we use the Nemenyi
test to determine significant differences without using a control method and the Holm test when a
control method is ruled out. When the comparison is between more than two approaches but it
is made between observations taken from the same dataset the Friedman test is not applicable. In
this case we apply the Kruskal-Wallis test followed by the Wilcoxon pairwise test using the Holm
correction. The following sections explain in greater detail how these statistical tests work.

3.1.1 Wilcoxon signed-ranked test

The Wilcoxon signed-ranked test [Wilcoxon, 1945] is a non-parametric test used in this thesis to
compare two classifiers. It ranks the difference in performance of the classifiers in each dataset,
separating the positive and negative differences. This test is the non-parametric alternative of
the commonly used t-test.

For this test the data should be paired, and each pair should correspond to an independent and
randomly obtained observation. The null hypothesis of this test states that the mean difference
between the two samples is zero. The statistic W is calculated as:

W =Y rank(\d;|) - sgn(d;) (3.1.1)
d;#0
d,’ =X1,i— X2,i (312)

where rank() is a function that ranks all the absolute values of the differences between the two
samples (and if there are ties awards the average ranking to both positions) and sign() is a
function that is equal to 1 if the difference was positive and equal to -1 if the difference was
negative.

3.1.2 Friedman test

The Friedman test [Friedman, 1937] is the non-parametric alternative to the ANOVA test for
normalised data. It is used to compare more than two classifiers at the time. Having a number
N of observations over k classifiers, this test ranks the classifiers per each observation block.
Then it compares the average ranks of the classifiers which is calculated as follows:
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1
= N ZI’,”]‘ (313)
i

where r; ; is the rank of the classifier j in the observation i. The null hypothesis of this test states
that the algorithms have equal ranks and the statistic (for N > 10 and k > 5) is calculated as
follows:

12N k(k +1
X¢ = k(k+1) (Z Ry )> =

After the null hypothesis is rejected a post-hoc test can be applied to determine significant
differences among the algorithms. When there is no need of comparing all algorithms against
a control method the Nemenyi test is used in this thesis and on the opposite scenario the Holm
post-hoc procedure is applied.

3.1.2.1 Nemenyi test

The Nemenyi test [Nemenyi, 1963] is a post-hoc test used to determine significant differences
among each pair of algorithms without considering a control method . This test is similar to
the Turkey test for ANOVA. According to this test the performance of two classifiers is signif-
icantly different if their ranks R; differ at least by the critical distance which is calculated as
follows:

k(k+1)
6N

where g, are critical values which depend of the number of classifiers and the significance level
a and they can be found in [Demsar, 2006].

CD = g, (3.15)

3.1.2.2 Holm post-hoc procedure

The Holm post-hoc test [Holm, 1979] it is used in this thesis to determine significant differences
between a control method and the rest of the methods. This test orders the null hypotheses of
the comparisons by their p-value p; from smallest to largest. Then if p; < a/k—i the comparison i
is statistically significant with a level of confidence «. The moment the inequality does not hold
all the subsequent hypotheses with larger p-values are automatically discarded. The Hochberg
procedure [Hochberg, 1988] is very similar but works in the opposite direction comparing the
hypotheses from largest p-value to lowest.

3.1.3 Kruskal-Wallis test

The Kruskal-Wallis test [Kruskal and Wallis, 1952] is it used in this thesis to perform compar-
isons between different classifiers when the observations come from a single dataset. This a
non-parametric method to test if more than two samples originate from the same distribution.
It can be considered an extension of the Wilcoxon test already explained.

This method ranks all the observations from all classifiers together. Then assigns any tied val-
ues the average of the ranks they would have received had they not been tied. The statistic for
this test is:
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E‘,gzx n;(ri — ')2
L Dy (rij — 7)2

K=(N-1) (3.1.6)

where g is the number of classifiers or groups, N is the total number of observations, n; is
the number of observations in group i, 7;; is the rank of the observation j from group i, 7| is the
average rank of group i and 7 is the average of all the ranks, which is equal to 1/2(N + 1).

The null hypothesis of equal population medians would then be rejected if K > Xiix-l‘l If

significant differences are found a Wilcoxon pairwise test with Holm correction for multiple
comparisons can be applied to determine these differences.

3.2 Datasets

Different types of datasets are used throughout the thesis to test the system with different pur-
poses. The aim of this section is to present the characteristics of these datasets and its classifi-
cation.

There are two main types of datasets used in this work: real-world datasets and synthetic
datasets. The difference between the two is that the latter were created with specific charac-
teristics that allows us to gather particular insights of the learning process. Moreover, since the
characteristics of the real datasets are very different, we separate them in two big groups (big
and small datasets) which serve different purposes. The following sections will explain these
two types of datasets.

3.2.1 Real-world datasets

Table 3.1 presents a list of the characteristics of the datasets used. The real datasets are only used
in Chapters 4,7, 8 and 9, since the other two chapters chapters present empirical analyses and
theoretical formulations that required the use of synthetic benchmarks. Since some chapters
only use a subset of them, this table shows a « if the dataset was used in that particular chapter.
Furthermore, these datasets can be classified in two big groups: small and large datasets. In this
thesis we consider small datasets those which have less than 40000 instances. All datasets are
used to test BioHEL's prediction capacity, but the big ones are also used to test the scalability
capacity of the system. It is worth mentioning that the concept of “large datasets” has been
evolving really fast in recent years. Even though there exist really big datasets nowadays, the
ML methods commonly used over these problems are very simple. The reason for using these
sizes of datasets in this thesis is because the aim is to test the scalability boundaries of more
sophisticated ML approaches. Moreover, some of these real benchmarks have been already
used in the past to test other characteristics of BioHEL, which makes it easier to compare with
previous states of the algorithm.

All the small datasets and the Adult (Adu), connect-4 (c-4) and KDDCup (kdd) problems were
taken from the UCI repository of ML datasets [Blake et al., 1998]. The CN, CNO, CN-bin, SS
and SA are Protein Structure Prediction (PSP) datasets compiled by the ICOS group at the Uni-
versity of Nottingham as part of its research in bioinformatics.? These datasets are interesting
and challenging because of the large number of instances and attributes and the high levels of
uncertainty they present. These datasets have been used already in [Bacardit et al., 2009a, 2006;
Bacardit and Krasnogor, 2008b, 2009a; Stahl et al., 2010]. The ParMX (par) dataset is a hybrid

! Exact values should be used when there less than 5 observations per group
2The complete benchmark suite can be accessed at http://icos.cs.nott .ac. uk/datasets/psp_benchmark.html
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Table 3.1: Characteristics and classification of the datasets used in this thesis. #Ins = Training set size,
#Att = Number of attributes, #Dis = Number of discrete attributes, #Con = Number of con-
tinuous attributes, #Cl = Number of classes. x means the dataset was used in that particular

chapter
Chapters
Name #Ins #Att #Dis #Con #Cl 4 7 8 9
bal 559 4 0 4 3 * *
bpa 311 6 0 6 2 * *
bre 257 9 9 0 2 * *
cme 1327 9 7 2 3 * *
col 332 22 15 7 2 * *
cr-a 622 15 9 6 2 * *
gls 193 9 0 9 6 * *
h-c1 274 13 7 6 2 * *
hep 139 19 13 6 2 * *
h-h 263 13 7 6 2 * *
h-s 243 13 0 13 2 * *
] ion 316 34 0 34 2 * *
& irs 135 4 0 4 30 * x
g lab 52 16 8 8 2 * *
= lym 133 18 15 3 4| = "
£ pen 9892 16 0 16 10 * * *
2 pim 691 8 0 8 2 * *
prt 300 17 17 0 21 * *
sat 5792 36 0 36 6 * * *
son 187 60 0 60 2 * *
thy 194 5 0 5 3 * *
vot 39 16 16 0 2 * *
wav 4539 40 0 40 3 * * *
wbcd 630 9 0 9 2 * *
wdbc 510 30 0 30 2 * *
wine 159 13 0 13 3 * *
wpbc 176 33 0 33 2 * *
Z0o 91 16 16 0 7 * *
SS 75583 300 0 300 3 * * *
Adu 43960 14 8 6 2 * * *
c-4 60803 42 42 0 3 * * *
o far 90868 29 24 5 8 *
b0 PMX 235929 18 18 0 2 * * *
3 kdd 444619 41 15 26 23 * * *
SA 493788 270 26 244 2 * *
CNO 234638 20 0 20 2 *
CN-bin 234638 0 10 10 2 * * *
CN 234638 180 0 180 2 * * *
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Output
Figure 3.1: Multiplexer with 8 inputs (string bits) and 3 select lines (address bits).

parity-multiplexer dataset already proposed by [Butz, 2006]. Finally, The FARS - Fatality Anal-
ysis Reporting System dataset (far) was taken from the U.S National Highway Traffic Safety
Administration.

3.2.2 Synthetic datasets

In Chapters 5, 6, 7 and 8 synthetic datasets were used because there was a need to test the
system under a controlled environment, under which either the correct answer (optimal set
of rules) is known and/or the degree of difficultly may be varied on a regular step. The syn-
thetic datasets used are the k-Disjunctive Normal Form (k-DNF) family of problems and the
multiplexer problem.

The k-DNF problems are boolean formulas generated randomly which have r disjunctive terms,
with k variables expressed each out of the d possible variables. Some of these variables can have
the - function applied to them. For example a random k-DNF function with r=3, k=2 and d=5
would be:

(x1Ax2)V (-x2Axq) V (~x1 Axs)

The importance of this family of datasets is that it is possible to generate randomly different
datasets with the same characteristics (k, r and d), and test the scalability of the system, not over
a particular problem, but over a particular set of problem characteristics. Also these formulas
are very useful to characterise boolean problems as it will be shown latter in this thesis. The
generation of k-DNF datasets and the theory around them will be explained in greater detail in
Chapter 5.

In Chapter 6 also multiplexer and ternary multiplexer problems were used. The concept of
multiplexer is taken from the electronic field and means a device which has 2" analog inputs,
n select lines and 1 output. The select lines determine which of the inputs will be passed as the
output. The combination of the select lines is usually called the address while the rest of the bits
are usually called the string. Figure 3.1 shows an example of multiplexer with 8 string bits and
3 address bits.

The ternary multiplexer is a variation of the original multiplexer problem used in this thesis to
test the BioHEL system in x-ary domains. The only difference is that instead of each one of the
input bits in the string and the address being boolean, this problem accepts three values (0,1,2).
This means that for each n bits in the address we will have 3" inputs.
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Table 3.2: Fixed parameters for the BioHEL system

Parameter Value
Population size 500
GA Iterations 50
Repetitions of rule learning (GA repetitions) 2
Default class majority
Number of windows in ILAS 2
Operators

Crossover operator 1 point
Prob. crossover 06
Prob. individual mutation 0.6
Selection algorithm tournament
Tournament size 4
MDL Fitness function

Coverage breakpoint CB <problem dependant>
Coverage ratio CR 0.90
Initial MDL TL ratio 0.025
Iterations to change MDL weight 10
MDL weight relax factor 0.90
ALKR Representation

Prob. one p 0.75
Expressed Attributes (ExpAtts) 15
Prob. generalize the ALKR list 0.10
Prob. specialize the ALKR list 0.10
Covering activated
Balanced class distribution activated

3.3 Basic parameter configuration for BioHEL

Along the thesis, tests are ran over BioHEL with different purposes in which several parameters
of the system are modified. However, there is a main configuration of the system that remains
fixed, which is tied to the aspects of the system that are not analysed in this thesis. Table 3.2
shows the configuration of the system for the experiments in this thesis, that remains the same
if not stated otherwise.

For GAssist, the configuration used is presented in Chapter 4 which is the chapter in which this
system is analysed.
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CHAPTER 4

Pittsburgh vs. IRL: Identifying
future challenges

This chapter reports an exhaustive analysis performed over BioHEL and its predecessor GAssist. These two systems
share many mechanisms and operators, but at the same time, they apply two different learning paradigms (the IRL
approach and the Pittsburgh approach, respectively). The aim of this analysis is to: a) propose standard configura-
tions for handling small and large datasets, b) compare the two systems in terms of learning capabilities, complexity
of the obtained solutions and learning time, c) determine the areas of the problem space where each one of these
systems performs better, d) compare them with other well-known ML algorithms, and e) determine limitations and
possible areas of improvement in BioHEL. The results show that it is possible to find standard configurations for both
systems. With these configurations the systems perform up to the standards of other state-of-the-art ML algorithms
such as SVM. However, when the systems are parameterised according to the problem characteristics better results
can be obtained. Moreover, we identify the problem domains where each one of these systems have advantages and
disadvantages and propose ways to improve BioHEL based on this analysis.

4.1 Introduction

Many different types of EL systems exist. Some of these systems, even though they use different
learning paradigms (i.e Michigan, Pittsburgh, IRL), might share some mechanisms such as rep-
resentations, fitness functions, efficiency enhancement techniques, among others. Therefore, it
is important to compare the systems among themselves to determine if the shared mechanisms
can be used in the same way despite the change of paradigm. Moreover, this type of compar-
isons helps us understand the advantages and disadvantages of the systems (as well as their
domains of competence) in order to improve and make better use of them. Finally, this type
of analysis is particularly important in the context of this thesis, because it is the start point to
determine weaknesses of the BioHEL system and the possible areas of improvement.

This chapter presents a thorough comparison between the BioHEL system, which is the focus
of study of the thesis, and its predecessor GAssist (see Sections 2.4.2 and 2.4.1, respectively).
As it was explained previously, these two systems share several mechanisms, such as smart ini-
tialisation operators, knowledge representations and efficiency enhancement approaches. The
main difference is that BioHEL uses IRL while GAssist is a Pittsburgh-style LCS. Therefore,
many questions arise. Can each of the shared components be used in the same way in systems
with different paradigms? Do these components affect each system in a very particular way?
Can these systems be applied to the same type of problems? Do these systems scale in a similar
way? How competitive are these systems compared to other state-of-the-art ML algorithms?
Where are the areas of improvement for BioHEL at this point? The aim of this chapter is to
answer these questions and get more insights into the advantages and disadvantages of the
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use of these two systems in different domains. We focus our efforts on determining a parame-
ter configuration for these systems, that works acceptably well on a broad range of problems,
and assessing the gap between these global settings and the problem-dependent optimal set-
tings.

We analyse the impact of the policy selection in the default class mechanism, which is a mech-
anism shared among the two, tangentially to the two most important parameters in both sys-
tems. In the case of BioHEL, this is the coverage breakpoint parameter; and in the case of
GAssist, the number of GA iterations. Afterwards, we analyse in deep the ILAS windowing
scheme (see Section 2.4.1.3), which is the mechanism that allows both systems to scale success-
fully in problems with large training set sizes. Finally, we compare the two algorithms with
other well-known ML mechanisms.

The experiments showed that it is possible to find a standard configuration for both systems
that avoids the cost of hand tuning parameters and performs well in most problems. However,
the BioHEL system is more sensitive to the usage of a standard configuration than GAssist, and
specially to the choice of coverage breakpoint. Moreover, it is shown how the usage of win-
dows increases the scalability and generalisation capabilities of the systems, but also affects the
prediction capacity of both algorithms in terms of accuracy. Our results show how, by means
of using different sets of parameters, the user can find the right balance between generalisation
and accuracy to obtain good and compact solutions in less time. Also, the comparison with
other ML algorithms shows that our systems perform as good as SVM and better than other
well-known algorithms.

This chapter is organised as follows. Section 4.2 presents the existent comparisons between
GBML systems in the literature. Section 4.3 discusses the reasons why this chapter performs a
parameter sensitivity analysis instead of applying other parameter setting techniques. Section
4.4 presents the experimental design for the comparison. Section 4.5 presents the results sep-
arated in four stages: a) parameter sensitivity analysis, b) comparison of BioHEL vs. GAssist,
¢) analysis of the ILAS windowing scheme and d) comparison with other ML techniques; and
finally, Section 4.6 presents the final remarks and the discussion about possible improvements
in the BioHEL system.

4.2 Previous comparisons between GBML systems

Several comparisons have been made in the past between GBML systems. For instance, com-
parisons were made between XCS and two Pittsburgh-style LCS, GALE and GAssist. The
comparison between GALE and XCS, performed by Bernad6-Mansilla et al. [2006], is centred
around the performance of the algorithms, while the comparison between XCS and GAssist,
made by Bacardit and Butz [2007], pointed out the advantages and disadvantages of the sys-
tems when solving particular problems. Particularly, in the latter work, the results were pre-
sented not only in terms of accuracy, but also in terms of number of rules generated. The results
showed that GAssist had some problems handling too many classes while XCS had problems
because it tends to overfit the data.

A similar analysis was performed by Orriols-Puig et al. [2008a,b] comparing UCS and GAssist.
In terms of performance (test accuracy), the UCS system obtained the best results, while in
terms of interpretability of the solution, GAssist generated the most manageable models.

Comparisons between EL and other ML algorithms have also been carried out in [Bernado-
Mansilla et al., 2006; Fernandez et al., 2010; Orriols-Puig et al., 2008a,b]. In these experiments,
the genetic-based approaches proved to be good candidates to solve classification problems
when compared with other well-known data mining techniques, such as NaiveBayes [John and
Langley, 1995], C4.5 [Quinlan, 1993], PART [Frank and Witten, 1998], IBk [Aha et al., 1991],
SMO [Platt, 1999], Fuzzy AdaBoost [Alcala-Fdez et al.,, 2009] and Fuzzy LogitBoost [Alcala-
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Fdez et al, 2009]. Particularly in [Orriols-Puig et al., 2008a] GAssist is included in the set
of algorithms to compare, but without using ensembles which produced that this algorithm
ranked differently compared to the results in this chapter.

Moreover, comparisons have been performed between EL systems from a statistical point of
view in [Garcia et al., 2009]. This work was focused on establishing a statistical methodology for
the comparisons between classifiers. They analyse the performance measures used nowadays
and propose other performance measures for two-class and multi-class problems.

4.3 Parameter sensitivity analysis vs. self-adaptation

An often used approach to determine parameter settings in EL (particularly in Michigan LCS) is
self-adaptation [Bull and Hurst, 2000; Butz et al., 2008c; Hurst and Bull, 2001a, 2002]. However,
in this particular case it is not possible to apply such approach for many reasons. First, it is not
possible to apply self-adaptation over the coverage breakpoint because this parameter affects
the fitness directly and it will converge to a value that maximises the fitness without considering
the characteristics of the problem. The less restrictive the coverage breakpoint is the higher the
chances that an overgeneral rule has a higher fitness than an accurate one. Self-adapting the
coverage breakpoint then will tend to promote extremely general rules which maximise the
fitness, giving little consideration to their actual accuracy.

Moreover, the number of iterations in GAssist is a global parameter of the system instead of a
particular parameter of the classifiers, therefore it cannot be self-adapted. The default class is
also a global parameter of the system, and even though it is indeed adapted in GAssist (using
the automatic policy), in BioHEL this is not possible because this system does not have a global
overview of the generated rule sets. Finally, the number of ILAS windows could be adapted
online during the GA run. However, it is not completely clear if this would be beneficial.
Adapting the number of windows implies regenerating the windows each time, which would
increase greatly the computational cost, and important information, such as the elite individ-
uals of each window, would need to be discarded. This could affect the performance of the
learning process. Considering this, in this thesis we decided to instead perform a thorough
parameter sensitivity analysis above the variables mentioned above.

4.4 Experimental design

The experiments in this chapter are divided in four phases: a) parameter sensitivity analysis,
b) comparison of GAssist with BioHEL, c) analysis of the windowing scheme and d) compar-
ison against other ML techniques. This analysis is made using 35 real world datasets already
presented in Section 3.2, which can be classified in two groups: small datasets, with less than
40000 instances, and large datasets, with up to 500000 instances. This makes it essential to make
a distinction parameter-wise between the two groups.

The parameter sensitivity analysis will be focused on trying to find a standard configuration for
both systems that works well with the majority of the problems, as well as analysing some of
the shared mechanisms. In the case of the BioHEL system, we will analyse the coverage break-
point parameter, and in the case of GAssist, the number of iterations of the GA. In this section
we will also analyse different configurations for the default class mechanism incorporated in
both systems. We analyse this mechanism in this section and not independently because this
parameter can change the characteristics of the problem to solve, thus it is strongly related to
the other configuration parameters. Moreover, we analyse the coverage breakpoint parameter
and the number of GA iterations because these are the most influential parameters for BioHEL
and GAssist, respectively. Afterwards, the standard configurations will be compared with the
best possible configuration found for each problem. This will show how far are the results
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Figure 4.1: Summary of parameters analysed per system and their corresponding results sections.
*These parameters are linked to each other in the systems, hence their parameter-sensitivity
analysis is combined

using a standard configuration from the best results found if we hand-tune the system. More-
over, we show an exhaustive comparison between the two paradigms in terms of performance,
scalability and complexity of the solutions. Afterwards, a similar but less extensive analysis
will be performed independently over large problems, since the configurations used for these
two types of problems are different.

Afterwards we perform the analysis of the ILAS windowing scheme, which will be focused
on analysing the behaviours of the system when the number of windows increase. In this
stage we analyse the accuracy and number of rules against the execution time. Moreover, this
analysis is performed only over the large datasets, since this is the kind of datasets over which
the windowing would have a big impact in terms of execution time. To summarise, Figure 4.1
shows the parameters to analyse in both systems and its corresponding results section.

Furthermore, in the last phase, we compare our two systems with other well-known ML algo-
rithms. The comparison is made with tools taken from the WEKA package [Hall et al., 2009]
such as C4.5, PART, IBk, Naive Bayes and the SMO implementation of SVM with both polyno-
mial and Gaussian kernels. For the SVM and the IBk algorithms we performed a preliminary
statistical analysis to determine the best configuration for the problems we wanted to solve. For
polynomial SVM we tested kernels of order 1, 3, 5 and 10, resulting significantly better than the
rest using order 1. Moreover, for SVM with Gaussian kernels we tested v = {1,0.5,0.1}, where
7 = 0.5 resulted significantly better. The same process was followed with the IBk where we
tested k = {3,5,7}. The best results were obtained with k = 5.

The datasets used in these experiments are diverse. Therefore, they were separated in two
groups: small and big datasets. At the same time, the later group is separated into two cat-
egories: medium and large problems. Medium problems are the ones over which we could
perform the complete set of experiments. The large problems correspond to two very large
problems over which we could not test all the configurations because either the execution times
were impractical (about 10 days per run) or the memory requirements were too demanding.
Table 4.1 contains a list of the datasets that fall on each category. For a complete description of
the datasets please see Section 3.2.

The experiments reported in this chapter were performed in the High Performance Computing
facility at the University of Nottingham provided with 2 x Intel Xeon (Harpertown) 3.0 GHz
quad core with 2GB per core. Moreover, the experiments with the WEKA package that were
memory bounded were run in a dedicated machine with 4 x Intel(R) Core(TM) i7 CPU 3.07GHz
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Table 4.1: Datasets used to compare GAssist and BioHEL and its classification

Small bal, bpa, bre, cmc, col, cr-a, gls, h<1, hep, h-h, h-s, ion, irs, lab, lym,
pen, pim, prt, sat, son, thy, vot, wav, wbcd, wdbc, wine, wpbc, zoo

Medium Adu, c-4, PMX, kdd

Large SA,CN

with hyper threading and 12GB of RAM.

4.41 Evaluated scenarios

Both BioHEL and GAssist depend on parameters set beforehand by the user. In the case of
BioHEL the most influential parameter is the coverage breakpoint. For small problems, we
tested the coverage breakpoints CB = {0.5,0.25,0.1,0.05,0.01}. On the other hand, for larger
problems the coverage breakpoints tested are smaller CB = {0.1,0.05,0.01,0.005,0.001}. This
distinction was made due to the fact that in small problems each rule tends to cover a large
percentage of the search space while for large problems the solution tends to be more complex

and fine-grained.

The rule sets generated with GAssist depend on the number of GA iterations the system runs.
The number of iterations should be large enough to converge to a good solution but small
enough to avoid overfitting the data. Small problems converge faster, so for this type of prob-
lems we tested 100, 250, 500, 1000 and 1500 iterations. For larger problems, we tested slightly
larger numbers than before, such as 1000, 2500, 5000 and 10000 iterations.

Regarding the default class mechanism, for the BioHEL system we tested the majority, minority
and disabled policies. In the GAssist system, we tested the same policies as in BioHEL plus the
automatic policy, which cannot be used in BioHEL as it requires the whole rule set, hence global
supervision. For the big problems, only the majority default class policy was tested to reduce
the global execution time of the experiments. The majority class was chosen for these problems
because, as it was shown in the past [Bacardit, 2004], not allowing to generate rules for the
majority of the examples, reduces the number of examples that need to be fitted by rules which
could translate in a smaller execution times.

For the parameter sensitivity analysis over the coverage breakpoint and the default class mech-
anism, the number of windows remained fixed. For small problems we used only 2 windows
while for large problems we used 10 windows. Afterwards, the impact of the number of win-
dows is analysed using the best configurations found on the first stage. The rest of the param-
eters for BioHEL and GAssist remain fixed to the values shown in Table 4.2.

For the analysis of the ILAS windowing scheme only big datasets were used. We tested scenar-
ios using a number of windows w = {10,20,50,100,200} and we observed the test accuracy,
number of rules and execution time. During these experiments the rest of the parameters of the
system remained fixed as before. Finally, for the comparison with other ML techniques only
the best standard configuration found for GAssist and BioHEL was used.

4.4.2 Performance metrics and statistical analysis

The results in the parameter sensitivity stage and the ILAS windowing scheme analysis are
presented in terms of ensemble test and training accuracy, execution time and number of rules
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Table 4.2: Parameter configuration for GAssist and BioHEL

BioHEL GAssist
Population size 500 500
Crossover 1 point 1 point
»  Probability of crossover 0.6 0.6
£  Probability of mutation 0.6 06
£ Probability of one p 0.75 09
E Selection algorithm tournament  tournament
8. MDL initial ratio 025 0.075

T MDL iteration 10 25

£ MDL weight relax factor 0.90 0.90

 Tournament size 4 3
Class wise initialisation ves ves
Smart initialisation ves ves
GA iterations 50 -

1 Repetitions of rule learning 2 _

E Coverage ratio 0.90 -

2  Expressed attributes 15 -

@ Probability of generalise 0.1 -
Probability of specialise 0.1 -
Probability of merge - 0.05
Probability of split - 0.05

% Probability of reinitialise - 0.03

& Probability of reinitialise at end - 0.00

O  Pruning iteration - 5
Pruning minimum classifiers - 12
Penalise individuals less than - 4 classifiers

generated.! The test and training accuracies provide insights into the leaming capabilities or
over-fitting problems of the systems. Moreover, the execution time will provide a comparison
in terms of the scalability of the systems. Finally, the number of rules will compare the systems
in terms of how simple, compact and general were the solutions found. When comparing with
other ML methods only the test accuracy and the execution time will be considered.

For all our experiments we used a ten-fold cross validation. We performed 25 repetitions over
small datasets and 5 over large ones. Moreover, ensemble techniques were used to compute the
final accuracy per fold as explained in Section 2.4.1.4.

For the statistical analysis we follow the methodology described in Section 3.1. To determine
significant differences between more than two scenarios (different configurations) across sev-
eral datasets we used the Friedman test. If there are significant differences, we use the Holm
post-hoc test to find these particular differences between the control method and the rest. For
the analysis of the best problem-dependent configuration the Friedman test cannot be used as
the configurations are compared over non-independent observations over one single problem.
Therefore, in this case the Kruskal-Wallis test was used to determine significant differences
among the configurations and, where significant differences where encountered, the pairwise
Wilcoxon test was used to compared the control against the rest of the configurations. More-
over, to determine differences between the best configuration found per problem and the stan-
dard configuration, we used the one-tailed Wilcoxon signed-rank test. This test was applied
both per problem and over all datasets at the same time. For the comparison between our
algorithms and the WEKA package we used the Friedman test, followed by the analysis of

'Memory requirements are not reported in this chapter since the memory is mostly dominated by the size of the
training sets instead of the solutions generated
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the Nemenyi critical distance to determine significant differences between all the algorithms
among each other.

4.5 Results

In this section we present the results of comparing BioHEL with GAssist. The first two sec-
tions perform a parameter sensitivity analysis over small problems, to determine global and
problem-specific configurations. The next section presents a thorough comparison between
GAssist and BioHEL in terms of performance, scalability and complexity of the solutions. After-
wards, a similar, but less extensive analysis is performed over large scale datasets to determine
a global configuration in these cases. Later on, an analysis over the ILAS windowing scheme
is performed to determine the impact of this shared mechanism on each one of the systems.
Finally, we show how these two systems, using a standard configuration, compare with other
ML algorithms taken from the WEKA package.

4.5.1 Finding a global standard configuration

In this stage we analyse how the coverage breakpoint (for BioHEL) and the number of GA
iterations (for GAssist) affect the accuracy obtained with different default class policies in both
systems. The procedure used in the following sections to analyse the different configurations
in BioHEL and GAssist is the following:

1. The default class and a system dependant parameter (number of GA iterations in the
case of GAssist and coverage breakpoint in the case of BioHEL) was varied to construct
different configuration scenarios.

(a) For each scenario the ensemble test accuracy was computed for each small dataset
on Table 4.1 using 10-fold validation and 25 replications (please see Section 4.4.2)

(b) Using the accuracy as a performance metric, the different runs corresponding to dif-
ferent configuration scenarios are ranked in three different ways (ranking schemes):

i. within a particular default class
ii. within a particular system parameter
iii. overall ranking (comparing all configurations against each other)
(c) The average rank was computed per configuration scenario.

2. The Friedman test was applied to find significant differences between configurations us-
ing the average rankings for each ranking scheme.

(a) The average rankings per configuration are shown.
(b) Best ranked configuration is shown in bold and used as control.

(c) When significant differences are found a post-hoc test is applied to compare the con-
trol with the rest of the configurations.

This section is focused on finding relationships between these parameters and determining a
standard configuration for both systems. In this section we will only show the results of the
statistical tests. The complete set of results can be found in Appendix A.
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Table 4.3: Average rankings and p-values of the Friedman test to determine the best number of iterations
per default class policy in GAssist

Default Class Number of iterations for GAssist p-value
100 250 500 1000 1500

Majority 3.12 2.87 292 3.10 296 0.9644

Minority 2.87 3.01 2.82 3.25 3.03 0.8591

Disabled 3.26 3.32 3.05 2.57 2.78 0.2991

Automatic 3.42 3.28 3.08 2.44 2.75 0.1043

Table 4.4: Average rankings and p-values of the Friedman test to determine the best default class per
number of iterations in GAssist

Iterations Default class policies for GAssist p-value
Majority Minority Disabled Automatic

100 248 2.50 2.57 2.44 0.9851

250 2.66 2.46 241 2.46 0.8893

500 2.44 2.35 2.55 2.64 0.8416

1000 2.58 2.67 2.41 2.32 0.7007

1500 2.66 2.44 2.64 2.25 0.5779

45.1.1 GAssist

Table 4.3 shows the comparison (average rankings) of the number of iterations using different
default class policies in GAssist. The Friedman test was applied to each one of the default
class policies independently. In the last column of this table (p-value) we can observe that for
GAssist there are no significant differences between using different numbers of GA iterations.
Nevertheless, we can observe that, on average, the disabled and automatic policies need more
iterations to obtain slightly better results, while the majority and minority policies seem to
need less. This is due to the fact that learning without a default class policy or trying to adjust
it during the learning process means exploring a larger search space, and hence the need for
more GA iterations.

Table 4.4 presents the inverse analysis: for each one of the number of GA iterations we apply
the Friedman statistical test, to determine which one is the most convenient default class policy.
This table shows that for GAssist there are not significant differences between using different
default class policies.

To analyse further the dependency between the default class policies and the number of itera-
tions, we performed the Friedman test to compare all the different configurations at the same
time. In the case of GAssist, this consist in comparing 20 different scenarios as shown in Table

Table 4.5: Average rankings of the Friedman test over all the configurations in GAssist (p-value 0.5508).

Def. Class Number of iterations
100 250 500 1000 1500
Majority 12.00 11.46 10.44 11.16 10.58
Minority 10.48 10.82 9.44 10.75 9.80
Disabled 11.98 11.53 11.00 9.78 10.12
Automatic 11.30 10.75 10.10 7.87 8.57
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Table 4.6: Average rankings and p-values of the Friedman test to determine the best coverage break-
point per default class policy in BioHEL. The last column of the table shows the significant
differences determined by the post-hoc test with « = 0.05

Def. Class Coverage breakpoints p-value Relations

0.5 0.25 0.1 0.05 0.01 (« = 0.05)
Majority 3.50 3.16 2.58 2.60 3.14 0.1287
Minority 3.75 283 221 2.66 3.53 0.0009 0.1>0.5,0.01
Disabled 3.58 3.05 242 2.66 3.26 0.0447 01>05

Table 4.7: Average rankings and p-values of the Friedman test to determine the best default class for each
coverage breakpoint in BioHEL. The last column of the table shows the significant differences
determined by the post-hoc test with « = 0.05

Cov. break Default class policies (BioHEL) p-value Relations
Majority Minority Disabled (« = 0.05)
0.5 2.18 1.86 1.96 0.4353
0.25 2.23 2.09 1.68 0.0929
0.1 2.16 1.89 1.95 0.5610
0.05 2.30 212 1.57 0.0157 Dis > Major, Minor
0.01 221 2.09 1.70 0.1223

4.5. In this case no significant differences were found between the different scenarios (p-value
0.5508). This is consistent with the findings in the previous tables where no configurations
stand out significantly. At this point we could argue that the best parameters in GAssist are
either strongly problem dependent, thus it is more difficult to find a standard configuration
that works well with all the datasets, or there are no significant differences in general between
the presented scenarios. The next sections will be focused on proving or discarding each one of
these hypotheses while analysing the configurations per problem.

Nevertheless, the scenario with the best ranking was the automatic policy with 1000 iterations.
Even though this is not significantly better than the others, it is going to be used for further
analysis in the following sections to quantify the drawbacks of using a static configuration for
all problems.

45.1.2 BioHEL

Table 4.6 shows which is the more favourable coverage breakpoint value for each default class
policy. The Friedman test was applied to each one of the default class policies independently.
If there are significant differences, the rlghtmost column of the table shows the relationships
found by the post-hoc Holm test. We can see in this table that the preferred coverage breakpoint
by all the default class policies is 0.1. On the contrary to the observations over GAssist, BioHEL
does not seem to need different coverage breakpoints for the different default class policies.
Moreover, for the minority and disabled policies we observe that using a coverage breakpoint
of 0.1 is significantly better than using a very general or a very specific parameter value.

Table 4.7 presents the inverse analysis to determine which default class performs better with
each coverage breakpoint. In one case we found that the disabled policy performs significantly
better than the majority and minority policies. Also the disabled class is the one that obtains
the best ranking in 3 of the 5 coverage breakpoints values tested.

To determine if there is a relationship between the coverage breakpoint parameter and the
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Table 4.8: Average rankings of the Friedman test over all the configurations in BioHEL (p-value
5.607x1073). The bottom part of the table shows the significant differences determined by
the post-hoc test with & = 0.05

Coverage breakpoints
Default Class 0.5 0.25 0.1 0.05 0.01
Majority 10.05 9.14 7.35 8.07 9.30
Minority 9.96 7.67 5.75 7.30 9.41
Disabled 9.32 7.23 5.53 6.08 7.78

Relations (« = 0.05)
Disg1 > Majorg s, Minorgs, Disg 5, Minorg o1, Majorg 25, Majorg n

default class in BioHEL, we performed the Friedman test over the 15 possible configurations.
Table 4.8 shows the rankings of each configuration for BioHEL. According to this table, for small
problems the best scenario was the disabled policy with a coverage breakpoint of 0.1. This was
expected for the BioHEL system because, since it uses IRL. Therefore, discarding one class in
small problems could force the system to learn a more difficult problem. Instead of learning
the most simple rules, the system is pushed to learn rules from a subset of classes. Moreover,
this is also consistent with Table 4.6, which shows that when using the disabled policy, the
preferred coverage breakpoint was 0.1. This configuration is also statistically better than other
configurations like Majorgs, Minorgs, Disys, Minorg o1, Majorgas, Majorg o, that use either a
very large or very small coverage breakpoints.

The fact that some configurations performed significantly better than others suggests that the
BioHEL system is more sensitive to the selection of parameters than GAssist. This could be do
to the fact that the coverage breakpoint is a parameter of the system that is closely related to a
problem characteristic: the size of the rules.

In this section we have shown that for GAssist there are not significant differences between the
different configurations. However, the usage of the Automatic and Disabled default class policies
demands larger number of iterations than the rest of the policies. In the case of BioHEL, the usage
of a coverage breakpoint of 0.1 and the Disabled policy stands out from the rest of the configurations
when handling small problems. The previous analysis suggests that the BioHEL system is more
sensitive to changes in the configuration than GAssist. The best configuration found for GAssist
(even though not significantly different from the rest) is Autoypog while for BioHEL is Disg .

4.5.2 Comparison with the best parameters per problem

In this section, we determine the best parameter settings per problem independently, and show
how they compare to the fixed configurations obtained above for GAssist and BioHEL. First, we
determine the problem-dependant parameter configurations for each system independently.
Afterwards, we make the comparisons between the standard configurations and the best pa-
rameter settings found.

The procedure to determine the best parameters per problem in BioHEL and GAssist is the
following:

1. Using the ensemble test accuracy recorded per problem for each 10-fold cross validation
using 25 different seeds:

(a) The average accuracy per configuration is calculated as shown in Tables A.1 and A 4.
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(b) Independently per default class the best system parameter configuration is ruled out
(the one that produced the highest test accuracy) and shown in Tables 4.9 and 4.11.

(c) The best configuration across all the default classes is shown in bold

2. A Kruskal-Wallis test is used to determine significant differences between the configura-
tions within a particular default class.

3. If significant differences are found the Wilcoxon pairwise test is used to compare the con-
trol method with the rest of the configurations.

4. Frequency tables are constructed counting the cases in which particular scenarios pre-
sented significant differences with the rest (Tables 4.10 and 4.12).

In contrast to the previous section, the following analysis tries to find the best configuration per
problem instead of finding the best across problems. This is the reason why the Friedman test
is not suitable for this type of analysis as explain is Section 4.4.2.

4.5.2.1 Problem-dependent parameters for GAssist

In Table 4.9 we present the best results in terms of test accuracy for the 28 small problems for
GAssist. We present the results for each default class policy, specifying the number of itera-
tions that lead to that result. In this table we also emphasise the best results overall. Here we
can observe that the number of iterations that produced the best results vary from problem to
problem. However, in many cases the configuration that produces the best net results is not sig-
nificantly better than the others within the scope of that particular problem. The configurations
marked with a star are the ones that are in fact significantly different than others within the
same default class. Here we can observe that for GAssist only the pen and sat problems present
significant differences between using different configurations, which explains why a standard
configuration could not be found in the previous section.

Moreover, Table 4.10 shows the frequency in which each of the number of iterations produce
significantly results, taking also in account those configurations that where not significantly
better that the control (please see full set of results in Appendix A). In this table we can observe
that when a better configuration is ruled out this configuration corresponds to 1500 iterations.
This could be due to the fact that the pen and sat problems are then larger problems in the
small category. Larger problems require larger number of GA iterations as it will be shown in
the analysis over large-scale datasets.

Even though problem dependent parameters could not be found for most problems in GAssist,
we are going to use the configurations that produces the best results as a reference for later
analysis in this chapter.

4.5.2.2 Problem-dependent parameters for BioHEL

Table 4.11 presents the best configurations found per problem for BioHEL, separated among the
different default classes. In this case only the three default class policies accepted by the system
are presented. Here we can observe that for some problems, the best coverage breakpoint
differs among problems and default class policies. However, only for a subset of the problems
the configuration that obtained the best test accuracy is significantly better than others. This
subset is larger than the one found for GAssist and it also includes the pen and sat problems.
For BioHEL, the policy that produces the best results more frequently is the default class policy,
which is consistent with the results presented in Section 4.5.1.2. However, some problems still
work better with other default class policies.
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Table 4.9: Best test accuracy in GAssist using different default class policies. For each default class
we show the number of iterations that produced the best result on the right and emphasise
the best result overall default class policies. » appears only next to the configurations where
that particular coverage break was significantly better than other configurations within that
default class

Problem  Default class policy

Major Minor [Disabled Auto
Accuracy Best Accuracy Best Accuracy Best Accuracy Best
Case Case Case Case
bal 8222+433 250 85.01+3.13 100 85.17+:3.34 100 83682276 1500
bpa 658118.18 500 68.15£746 250 68441690 1000 65.57+10.21 1000
bre 74191690 250 7452+886 500 74.90£8.10 100 73451665 100
came 56.16+4.63 1000 54.66+3.10 100 55471423 100 56.00 +3.87 1000
col 96.46+3.42 1500 97.01£242 500 97.28+£2.27 500 97.00:3.06 250
cr-a 85631388 250 86.06+4.17 100 85621396 500 86.50 1 4.09 1000
gls 72.1918.51 1500 69.02+9.87 1000 69.07+12.30 1000 708041070 1300
h-c1 81.47+4.10 250 83.16+5.26 100 8311612 100 83.17 +5.42 100
hep 93.5417.38 250 92.25+659 250 93.5416.10 1000 92.29+7.23 100
h-h 96.60+3.93 1000 97.61+2.87 100 97274359 250 97.28 +3.14 1500
h-s 80.37+856 100 83.33+786 100 83.3346.36 1000 8296+ 8.4 100
ion 93.16+4.32 100 94.00+4.19 1000 93691509 500 94.29+3.36 250
irs 95.33+5.49 100 96.00+4.66 250 96.00+4.66 1500 96.00+5.62 500
lab 100.00£0.00 100 100.00£0.00 100 100.00+:0.00 100 100.004.0.00 100
lym 86.79+10.25 500 86.19+10.26 500 86121051 500 86.79 +10.25 500
pen 89.16+0.98 1500 » 89.37+1.53 1500 « 89.06+0.94 1500 + 88864133 1500 «
pim 75.9415.21 500 76.47+4.41 1000 7595+494 500 7581+500 500
prt 54.3818.26 1500 53.4846.91 1500 51.74+6.58 1000 51.95£430 500
sat 86.18+1.26 1500 = 84.02+1.22 1500 « 8376+1.11 1000 84.37+1.25 1500 «
son 86.53+7.13 1000 80.34+6.00 250 779549.15 1000 82.6818.66 1000
thy 93.51+3.88 500 93.48+5.85 500 93.511+4.93 1500 93.51¢£5.86 250
vot 96.33+398 250 97.92+230 250 97241213 100 97474203 500
wav 83.0612.47 1000 83.041+1.74 1500 83.28 +2.09 1500 8324164 1500
wbed 96.42+1.83 250 96.42+2.16 100 96.71+2.14 1000 96.851+2.11 100
wdbc 96311225 250 95.63+349 500 95.80+3.31 250 96.15£227 500
wine 98.82+2.48 100 97.68+3.00 100 97.161£398 1000 98.27 £2.79 100
wpbc 82.70+8.68 250 79.64+8.09 1000 80.231+9.14 100 82.70+8.32 500
200 96.35+4.73 100 95.98+5.21 250 95261502 250 96.98 +4.89 1500

Table 4.10: Frequency in which each one of the number of iterations in GAssist produced the best results
using different default class policies

Default Class Number of iterations for GAssist (frequency)

100 250 500 1000 1500
Majority 0 0 0 0 2
Minority 0 0 1 1 2
Disabled 0 0 0 0 1
Automatic 0 0 1 1 2
Total 0 0 2 2 7




4.5. RESULTS

Table 4.11: Best test accuracy in BioHEL using different default class policies. For each default class we
show the coverage breakpoint that produced the best result on the right and x appears only
next to the configurations where that particular coverage break was significantly better than
other configurations within that default class

Problem Default class policy

Major Minor Disabled
Average Best Case Average Best Case Average Best Case

bal 8334+382 0.05x 87.661+3.35 0.1« 87.53+3.77 0.1x
bpa 66.18+7.56  0.01 71.03+6.47 0.1 69.62+685 0.05
bre 70.30+1.23 05 74.12+7.88 0.25 70.2849.59 0.05
cme 53774366 0.1 x 54.14+424 005 55.141+3.28 0.05
col 98.36+142 0.05 97.58+2.31 01 97.57+197 0.25
cr-a 85.49+4.79 0.1 86.06+3.95 0.1 87.07+533 0.1
gls 78.59+11.91 0.05 76.84+1044 0.1 77.10+885 0.05
h-cl 82.23+6.26 0.05 8054+495 0.1 80.54+349 0.01
hep 88.58+10.09 0.1 89.75+7.44 0.05 91.75+8.40 0.1
h-h 97.26+3.59 0.5 95.55+2.89 0.01 97.27+2.69 0.05
h-s 78.89+820 0.05 81.48+9.24 025 80.37+9.41 0.01
ion 94.35+4.15 0.1 93444337 05 92.60+335 0.1
irs 94.67+526 0.25 94.67+5.26 0.25 96.001+5.62 025
lab 98.57+4.52 05 96.33+7.77 0.05 98.57+4.52 05
lym 85.33+795 05 8428+11.15 0.1 84.274+10.65 0.25
pen 98.93+0.42  0.01 98.97+0.26 0.01 « 98.961+0.29 0.01 x
pim 75.52+3.36 0.1 75.16+5.26  0.25 75.27+5.14 025
prt 45.79+7.77 0.01 48911634 005 49.831+7.80 0.05
sat 91.24+045 0.01 9141+0.69 0.01 » 91.70+094 0.01
son 83.13+10.79 0.25« 81741985 0.1 84.65+7.69 0.05
thy 93.98+3.02 001 94851559 0.25 95.41+6.43 0.05
vot 96.08+3.11 0.25 97.93+2.55 0.05 96.78+3.13 025
wav 84684195 0.05* 85.02+1.95 0.01x 85.80+1.67 0.05
wbcd 96.71+2.34  0.01 9544+229 0.1 96.57+2.63 0.01
wdbc 96.66+1.76  0.01 96.35+3.74 0.25 96.51+£3.43 0.1
wine 95.42+598  0.25 95.98+3.82 0.25 96.57+3.95 0.25
wpbc 77.36+12.27 0.1 82.55+8.04 0.05 78941707 005
200 92.25+7.3¢ 05 94981531 0.25 94.98+531 0.1

Moreover, Table 4.12 shows the frequencies in which each coverage breakpoint produced sig-
nificantly better results, also taking in account those configurations that where not dominated
by the control. Here we can observe that the minority and disabled policy obtain better results
with a coverage breakpoint of 0.01, while the the majority policy favours the coverage break-
point 0.05 in most of the problems where differences where found. According to this table, the
coverage breakpoints that produced the best results more frequently are 0.01 and 0.05, in con-
trast to the results obtained in the previous section. Our hypothesis is that when analysing the
configurations per problem, the problems that require specific configurations are more likely
the ones that need to develop a more complex solution and hence require using a more specific
coverage breakpoint.

If we compare the best results found for BioHEL and GAssist, we can see that the best default
class policies for each problem vary between systems. This is another indicator of the fact that
this mechanism affects the systems in a different way. Moreover, there is no link between the
coverage breakpoint used in BioHEL and the number of iterations used in GAssist for the same
problem. However, it is noticeable that the largest problems favour either the usage of more
specific coverage breakpoints or larger number of iterations.
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Table 4.12: Frequency in which each one of the coverage breakpoints produced the best results in BioHEL
using different default class policies

Def. Class Coverage breakpoint for BioHEL (frequency)

0.5 0.25 0.1 0.05 0.01
Majority 0 2 3 6 4
Minority 0 0 1 2 4
Disabled 0 0 3 3 4
Total 0 2 7 11 12

4.5.2.3 Comparison with the standard configurations

Having analysed the best scenarios found for each problem, we are interested in comparing
them with the standard configurations found in Section 4.5.1. In Table 4.13 we present the test
accuracy of the best configurations found per problem according to Tables 4.9 and 4.11 and the
results using the global default configuration for BioHEL (Disq ;) and GAssist (Autoypg). This
table also shows the percentage of accuracy loss considering the best solution and the results
of the one-tailed Wilcoxon test to determine if there are significant differences between both
configurations in each problem.

In this table we can see that the accuracy loss for both systems is not higher than 3% in 25 of the
28 problems presented, and not higher than 6% in the rest of the problems. Moreover, there are
no significant differences between using a standard configuration and the best configuration
in most of the problems. The only two problems that show significant differences are pen and
sat, which belong to the largest problems of the small category. This was expected as this is
consistent with the results shown in the previous section. At the end of the table we also show
the p-values of the one-tailed Wilcoxon test to compare both configurations over the multiple
datasets. For none of the systems there are significant differences, supporting the hypothesis
that in general for small problems it is possible to use a standard configuration without degrad-
ing significantly the accuracy.

It can be argued that this comparison is strongly biased towards finding differences because the
test accuracy of the best configuration per problem is the maximum of N trials, considering N
the number of configurations tested, while the global configuration is the maximum of 1 trial.
However, the fact that significant differences were not found makes stronger the assumption
that the configurations are not different.

The results presented in this section show that there are no significant differences between the best
configuration found per problem and the standard configuration found in Section 4.5.1. Therefore,
we could state that the standard configurations found for each system can remain fixed when solving
small problems.

453 GAssistvs. BioHEL

In this section we will compare BioHEL with GAssist over small problems in terms of learning
quality, solution complexity and scalability of both systems.

To analyse the quality of the learning, the relationship between the training and test accuracies
is shown in Table 4.14. The training and test accuracies help us determine whether one system
learned better than the other (the test and training accuracies are both higher) or whether one
system obtains worst results because it overfitted the data (the training accuracy is higher than
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Table 4.13: Comparison of the best test accuracy found per problem (Best prob) with the test accuracy
using the default configuration (Glob) for both systems. The W column shows a star if the
Wilcoxon test determined significant differences between configurations (a = 0.05) and the
Acc % column show the % of accuracy loss with respect to the best solution found

Prob. GAssist BioHEL

Best Prob Glob W  Acc% Best Prob Glob W  Acc%
bal 85.174+3.34 82.431+2.98 3.21 87.66+3.35 87.531+3.77 0.15
bpa 68.441+6.90 65.57+10.21 4.19 71.03+6.47 69.32+6.53 240
bre 74.90+8.10 72.781+5.36 2.84 74.12+7.88 69.57+8.31 6.13
cme 56.161+4.63 56.09+3.87 0.12 55.14+3.28 53.501+4.21 296
col 97.2842.27 96.461-3.21 0.84 98.36+1.42 97.57+1.51 0.80
cr-a 86.50+-4.09 86.50+4.09 0.00 87.07+5.33 87.07+5.33 0.00
gls 72.1948.51 68.46+11.89 517 785911191 76.45+10.07 273
h-1 83.17+5.42 82.81+4.97 0.44 82.2346.26 79.83+5.27 292
hep 93.5417.38 92.25+6.59 1.38 91.75+8.40 91.75+8.40 0.00
h-h 97.611+2.87 96.59+:3.93 1.04 97.27+2.69 95.26+3.67 207
h-s 83.33+7.86 81.85+7.08 1.78 81.481+9.24 79.26+7.03 273
ion 94.29+3.36 93.15+3.91 1.20 94.35+4.15 92.60+3.35 1.85
irs 96.00+4.66 96.00+5.62 0.00 96.00+5.62 94.00+4.92 2.08
lab 100.00+0.00 100.00+0.00 0.00 98.57+4.52 98.57+4.52 0.00
lym 86.79+1025 86.79+10.25 0.00 85.331+7.95 80.76+12.52 5.35
pen 89.37+1.53 87.274+1.51 * 2.35 98.97+0.26 94.94+0.58 * 4.07
pim 76.47+4.41 75.811£5.00 0.86 75.52+3.36 74.7412.77 1.02
prt 54.384+8.26 51.71+6.68 4.91 49.8347.80 49.001+8.03 1.67
sat 86.18+1.26 83.74+0.94 * 2.83 91.70+£0.94 88.141+1.50 * 3.88
son 86.53+7.13 82.6818.66 4.46 84.651+7.69 84.5618.85 0.11
thy 93.511+3.88 93.511+5.02 0.00 95.41+6.43 94.42+4.31 1.04
vot 97.92+2.30 97.46+2.30 047 97.93+2.55 96.08+4.11 1.89
wav 83.284:2.09 83.14+1.49 0.17 85.80+1.67 84.98+1.59 0.96
wbed  96.85+2.11 95.71+2.03 1.19 96.711+2.34 95.434+1.75 1.32
wdbe 96.31+2.25 96.141+2.69 0.18 96.66+1.76 96.51+3.43 0.15
wine 98.821+2.48 96.10+3.76 2.75 96.57+3.95 94 80+:5.77 1.83
wpbc  82.70+8.68 81.72+8.31 1.19 82.55+8.04 78.03+6.18 5.48
Z00 96.98+4.89 95.15+£5.16 1.89 94.98+5.31 94.98+5.31 0.00

Global comparison p-value
0.2206 0.1948

the other system, and the test accuracy is lower). In this table the first three rows correspond to
the comparison among the standard parameter configurations using the different default class
policies. This corresponds to 1000 iterations in case of GAssist and 0.1 coverage breakpoint in
the case of BioHEL. The three following rows show the comparison of the best configurations
per problem using the three different default class policies (as shown in Tables 4.9 and 4.11).
The last two rows compare the overall standard and best configurations of the two systems.
The symbols in table are the following: e BioHEL has better training and test accuracies, —
BioHEL overfits the data, GAssist has better test accuracy, o GAssist overfits the data, BioHEL
has better test accuracy and x GAssist has better training and test accuracies.?

In this table we can see that, in most cases, BioHEL obtains a better training accuracy than
GAssist. However, in half of these cases BioHEL overfits the data, and thus GAssist, overall,
obtains better results. We can see that this happens less often when BioHEL uses the best
coverage breakpoint found per problem. However, in general it seems that there are similar
patterns for both the global and the best configurations in most problems. Also the dominance

?The analysis shown is these tables is purely qualitative and with the aim to support the results of the previous
section. Hence it does not involve statistical tests.
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Table 4.14: Comparison of the test accuracy and training accuracy of both systems. Global corresponds
to the comparison of the standard configurations and Best corresponds to the comparison
of the best configuration for each particular problem. e: BioHEL has better training and
test accuracies, —: BioHEL overfits the data, GAssist has better test accuracy, <: GAssist
overfits the data, BioHEL has better test accuracy and »: GAssist has better traming and
test accuracies
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of one system above the other seems to depend on the characteristics of the system, rather than
the usage of specific parameters.

To continue with this line of analysis, Table 4.15 shows a similar comparison, but between the
test accuracy and the number of rules. The goal is to obtain solutions that are accurate, but
also as general and compact as possible. Therefore, if the solution has less rules and higher test
accuracy then it is better than the other. The symbology to read the table is the following: e
means BioHEL has better test accuracy and less number of rules, c means BioHEL has better
test accuracy but higher number of rules, means GAssist has better test accuracy but higher
number of rules, and » means GAssist has better test accuracy and less number of rules. In
this table it is noticeable that BioHEL usually has larger number of rules than GAssist, but in
many cases GAssist also has better test accuracy. Considering these two aspects there seems to
be a dominance of the GAssist system over BioHEL. Also this table seems to be the inverse of
Table +.14 in most cases. This was expected because when the training accuracy is higher, it is
usually because the system generated a more complex set of rules. Also, GAssist is a Pittsburgh
LCS, hence it has an overview of the rule set generation and penalises large rule sets. On the
other hand, BioHEL generates each rule independently, without a global supervision of the
constructed solution.

As it was already mentioned, the previous tables suggest that there is a connection between
the characteristics of the problems and the obtained results. In Figure 1.2 all the problems are
ordered by the number of classes in a radial graph (starting anticlockwise from the numbered
axis) and plotted the relative test accuracy of BioHEL with respect to GAssist. This means
that when the value in the figure is below 1, GAssist performed better, and when the value is
higher than 1, BioHEL performed better. In this figure we can observe that GAssist behaves
better when the system has less classes, while BioHEL behaves better when the system has
more classes, with the exception of some problems. It is also interesting to notice that in the
problem with 21 classes none of the systems presented good results. In BioHEL this problem is
particularly difficult, because when the system tries to adjust the coverage breakpoint according
to the class distribution the system loses specificity pressure. On the other hand, it was expected
that this problem was very difficult for GAssist. This particular weakness of GAssist when
handling a large number of classes was already reported in [Bacardit and But/, 2007).

Furthermore, we also ordered the problems according to the percentage of continuous at-
tributes as shown in Figure 4.3. We can see here that GAssist works better with problems
that have discrete attributes and BioHEL works better in problems that have more continuous

58



4.5. RESULTS

Table 4.15: Comparison of the test accuracy and number of rules of both systems. Global corresponds to
the comparison of the standard configurations and Best corresponds to the comparison of the
best configuration for each particular problem. o: BioHEL has better test accuracy and less
number of rules, o: BioHEL has better test accuracy but higher number of rules, —: GAssist
has better test accuracy but higher number of rules, and x: GAssist has better test accuracy
and less number of rules

Conf. Problems Summary
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Figure 4.2: Relative test accuracy of BioHEL according to GAssist in the small problems ordered by the
number of classes, starting anticlockwise from the numbered axis. Data points below one
represent that GAssist performs better and data points over one represent the opposite.
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Figure 4.3: Relative test accuracy of BioHEL according to GAssist in the small problems ordered by
the percentage of continuos attributes, starting anticlockwise from the numbered axis. Data
points below one represent that GAssist performs better and data points over one represent
the opposite.

Figure 4.4: Relative test accuracy of BioHEL according to GAssist in the small problems ordered by the
number of instances, starting anticlockwise from the numbered axis. Data points below one
represent that GAssist performs better and data points over one represent the opposite.
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attributes (with the exception of some problems). This difference is due to the different repre-
sentations used by the two systems, in the case of BioHEL hyper-rectangles and in the case of
GAssist the ADI representation. Moreover, if we order the problems by the number of instances
(Figure 4.4) we can see that GAssist performs better in the small problems (with the exception
of gls and thy, which have large number of classes). On the other hand, BioHEL seems to
dominate in the large ones. This was expected since BioHEL was developed to handle larger
domains than GAssist.

As it was explained before, BioHEL is based on GAssist. However, this system changed few
mechanisms along with the learning paradigm in order to cope with larger domains. In this
sense, BioHEL is known to be faster than GAssist. In Table 4.16 we present the speedup of
BioHEL over GAssist in all the cases analysed before. This table shows that, in very few cases,
GAssist performs faster than BioHEL. On the other hand, BioHEL achieves speedups up to
243X. This is because when the system needs to generate a small number of rules the learning
iterations are less in BioHEL than in GAssist. It is also worth noticing that the speedups change
drastically among configurations. The majority and the disabled policies tend to help BioHEL
achieve larger speedups. This could be because the majority policy reduces the amount of
rules the system needs to generate. Also, even though the disabled policy does not reduce the
amount of rules, the problem the system learns is easier.

Table 4.16: Speedup of the BioHEL system over GAssist for the different configurations. The configura-
tions where GAssist is faster are emphasised

Problem  Global Conf. Best Conf.

Major  Minor Dis Major  Minor Dis Global Best
bal 5.89 3.34 3.77 0.87 0.31 1.31 4.45 3.42
bpa 7.59 5.00 4.32 1.97 113 1.01 7.29 6.96
bre 4.20 1.11 0.95 2.55 092  0.36 1.65 0.40
cme 8.08 5.65 5.23 8.08 234 017 7.13 3.56
col 1472 13.25 15.56 2265 2580 964 19.04 6.93
cr-a 3.41 4.18 3.74 0.78 0.39 1.31 5.67 1.51
gls 6.83 5.11 5.73 972 1023 484 5.85 10.63
h-c1 5.97 5.13 5.04 1.33 047  0.85 6.82 0.79
hep 10.83 7.32 9.71 2.76 170 341 11.78 1599
h-h 11.16 9.51 10.01 20.06 9.99 2.18 14.14 5.53
h-s 14.02 12.74 1191 1.27 1.93 5.73 16.96 2.41
ion 3930 6728 6549 427 1119 3541 8833 243.62
irs 7.43 743 8.24 118 117 421 1036  17.69
lab 1452 1069 2285 1.66 146 278 24.81 22.96
lym 5.45 4.57 5.23 3.18 244 290 5.30 1.58
pen 2586 2605  27.76 1618 1620 1747 26.65  26.37
pim 13.49 5.55 4.80 634 1414 6.89 8.51 72.00
prt 1.32 0.94 0.90 0.74 134  0.60 0.79 1.60
sat 3948 4033 4991 1325 1746 945 5759  54.01
son 8160 8354 114.88 9112 8579 21.95 10438 162.61
thy 11.46 9.22 9.03 438 610 10.64 12.21 26.45
vot 1.60 1.28 112 0.49 033  0.72 1.48 1.97
wav 2409 2308  29.28 12.19 610 2241 3418 5242
wbed 13.20 1561 16.75 2.00 141 213 23.65 0.67
wdbc 4609 5075 5194 703 2986 1836 7216  23.50
wine 2920 2556 3248 353 313 3344 38.11 46.57
wpbc 3513 3014 3751 925 2669 975 39.68 8.63
Zoo 201 1.71 2.08 0.20 021 052 222 3.29
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Table 4.17: Test accuracy in BioHEL using different coverage breakpoints over large problems

Problem Coverage breakpoint (% Test accuracy)
0.001 0.005 0.01 0.05 0.1

Adu 86.09+0.39 86.33+0.46 86.14+0.41 83.95+0.83 83.08-+0.59
c-4 80.94+0.46 78.02+0.33 76.33+0.31 69.56+0.40 65.83+0.02
SS 71.19+1.13 70.33+1.01 68.65+1.34 61.26+1.20 47.70+1.22
PMX 100.00+0.00 92.58+1.22 85.924+1.94 50.00+0.00 50.00+0.00
kdd 99.95+-0.01 99.91+0.01 99.924-0.02 99.87+0.01 99.76+0.03
SA 79.30+0.33 78.79+0.34 78.44+0.33 76.96+0.34 75.84+0.51
CN 80.59+0.46 79.78+0.39 79.22+0.37 77.21+0.52 75.83+0.57

Table 4.18: Test accuracy in GAssist using different number of iterations over large problems

Problem Number of Iterations (% Test accuracy)
1000 2500 5000 10000

Adu 85.87+0.46 85.94+0.43 86.07+0.36 86.08 +0.49
c-4 76.174+0.59 77.95+0.44 78.98+0.24 79.77+0.37
SS 59.82+1.88 61.75+1.38 62.58+1.38 62.98 +1.53
PMX 67.361+1.58 74.69+1.88 82.68+1.98 87.50+2.17
kdd 99.05+0.11 99.17+0.09 99.21+0.14 99.25+0.12
SA 76.161+0.45 76.51+0.27 - =

CN 77.89+0.41 78.05-+0.45 - -

When comparing the systems to each other, GAssist shows superiority over BioHEL in small prob-
lems, since it generates more compact rule sets and obtains a higher accuracy. On the other hand,
BioHEL generates larger rule sets and overfits the data. Regarding the domains of competence
of each system, GAssist seems to behave better in problems with either less classes and/or less
instances, while BioHEL obtains good results in problems with opposite characteristics. Also Bio-
HEL seems to perform better in problems with continuous attributes, while GAssist presents better
results with discrete problems.

454 Parameter-sensitivity analysis over large scale datasets

In this section we perform a similar but less extensive analysis of parameter sensitivity over
large problems. For these problems we did not perform the analysis over all the default class
policies, but over the majority policy only. The usage of this policy reduces the search space
(by reducing the amount of instances that should be classified by the generated rules), which
is more convenient for big problems. Even though in some cases, especially in small problems,
this might make the problem more difficult, in large domains it is beneficial to pick a default
class [Bacardit, 2004].

Tables 4.17 and 4.18 show the test accuracy over the big problems in BioHEL and GAssist,?
respectively. In BioHEL (Table 4.17) we can see that the best configuration is 0.001 for all prob-
lems with the exception of Adu, where the best coverage breakpoint is 0.005. Similar results
were found in GAssist, where the usage of 10000 iterations produces the highest test accuracy.
We can observe that these configurations are the ones that produce the more specific solutions.
This in general can cause data overfitting. However, BioHEL uses ensembles to perform the

3In the case of GAssist the results with some configurations are missing, since the runs for these configurations took
more than 10 days each, which is one of the constraints of our computational framework.
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Figure 4.5: Relative test accuracy (considering best value observed) and number of rules obtained with
different parameter configurations in large datasets

final classification, which benefit from having diverse specific models that together produce a
more robust prediction.

Figure 4.5 shows how the relative accuracy* and number of rules vary according to the cov-
erage breakpoint and the number of iterations. Figures 4.5a and 4.5b show how the BioHEL
system is more sensitive to changes in the parameters than the GAssist system. We can see
in these figures that even when BioHEL obtains better results than GAssist for all problems,
when using a non-adequate coverage breakpoint, the accuracy drops drastically. Moreover, in
Figures 4.5¢ and 4.5d it is noticeable that while the coverage breakpoint decreases (BioHEL) or
the number of iterations increase (GAssist), the number of rules also increase. This is because
these parameters increase the specificity pressure of the system, forcing the system to develop
more fine-grained solutions. This is even more noticeable in BioHEL, where the number of rules
generated increases in an exponential manner. Moreover, the number of rules in BioHEL is very
large compared to the number of rules generated by GAssist. This is because the learning of
each rule in BioHEL is independent from each other, while in GAssist it is a parallel process, in
which the size of the rule set is constraint by the algorithm via fitness penalties.

Moreover, in Figures 4.5a and 4.5b a horizontal line indicates when the relative accuracy drops
below 0.95. In real life problems sometimes the best solution is not the one that has the highest
accuracy, but the one that is close enough to the best one, but at the same time is compact and
simple. In these figures we can see that it is possible to apply more pressure over the systems
by increasing the coverage breakpoint or decreasing the number of iterations. The increase in

“The accuracy of the scenario divided by the largest accuracy obtained.
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Table 4.19: Test accuracy in BioHEL using different number of windows

Problem Number of Windows (% Test accuracy)
10 20 50 100 200
Adu 86.09+0.39 86.41+0.35 86.34+0.38 86.16+0.37 85.83+0.32
c-4 80.94+0.46 80.77+0.41 79.44+0.35 78.46+0.38 77.71+0.49
SS 71.19+1.13 70.83+1.00 69.78+1.14 68.86+0.94 68.04+1.19
PMX 100.004+0.00  100.00+0.00 100.00+0.00 92.93+1.54 86.67+0.48
kdd 99.95+0.01 99.94+0.01 99.94+0.01 99.93+4+0.02 99.91+0.02
SA 79.30+0.33 79.17+0.31 79.00+0.34 78.79+0.31 78.62+0.36
CN 80.59+0.46 80.49+0.36 80.26+0.41 79.96+0.41 79.64+0.44
Table 4.20: Test accuracy in GAssist using different number of windows
Problem Number of Windows (% Test accuracy)
10 20 50 100 200
10000 Adu 86.08+0.49 8595+0.39 85.83+0.48 85.66+0.59 85.63+0.49
iterations  c-4 79.774+0.37 78.96+0.46 77.47+040 76.29+0.42 74.96+0.53
SS 62.98+1.53 6250+0.98 61.65+:092 60.66+1.23 59.00+1.41
PMX 87.50+2.17 83.54+3.39 79.43+3.72 76.05+2.01 73.15+2.69
kdd 99.25+4+0.12 99.22+0.02 99.21+0.01 99.20+0.02 99.18+0.02
SA i A 76.76+0.26 76.52+0.34 76.49+0.32
CN = - 77.70+040 77.50+0.58 77.44+0.54
2500 SA 76.514+0.27 7647+034 76.30+0.33 76.31+0.27 76.13+0.28
iterations CN 78.05+0.45 77.72+0.55 77.67+0.26 77.38+0.56 77.25+40.55

the pressure helps obtain a solution that is also good but is much more compact. However, this
is not applicable to all problems. As we can see, in synthetic problems, such as PMX (parity
multiplexer problem), the accuracy drops much more drastically from one configuration to the
other.

In this section a comparison between the best configuration found and the standard config-
uration is not performed, since in all of the problems with the exception of one, both values
are the same. In the following sections we are going to present the analysis of another shared
mechanism between the systems: the ILAS windowing scheme.

For BioHEL, the coverage breakpoint that produces the best results for large problems is 0.001, while
for GAssist the number of iterations that produced the best results was 10000 iterations. Moreover,
in the large problems BioHEL obtains better results than GAssist in terms of test accuracy, but also
it is much more sensitive to changes in the configuration. It generates larger rule sets that grow ex-
ponentially when the coverage breakpoint deceases. Also it was shown that the coverage breakpoint
as well as the number of iterations are parameters that can be used to regulate the generalisation
pressure of the system. This is useful to find more compact rule sets without severely degrading the
accuracy.



4.5. RESULTS

(c) BioHEL - Number of rules (d) GAssist - Number of rules
500000 T
Adu —+—
C-4 -t
SS -
PMX — @&
CN - = -
400000 |- SA —o—

Number of windows

(e) BioHEL - Execution time (f) GAssist - Execution time

Figure 4.6: Relative test accuracy (considering best value observed), number of rules and execution time
obtained with different window sizes in large datasets
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4.5.5 Analysis of the ILAS windowing scheme

Tables 4.19 and 4.20 show the results of varying the number of ILAS windows in BioHEL and
GAssist, respectively. For the analysis of the ILAS windowing scheme we considered only a
coverage breakpoint value of 0.001 for BioHEL and 10000 GA iterations for GAssist, which
were the configurations that produced the best results in previous sections. Also for the SA
and CN problems in GAssist, we show the behaviour using 2500 iterations, since we do not
have data for 10000 iterations. In these tables we can see that, while the number of windows
increases, the accuracy decreases. Nevertheless, the usage of a higher number of windows in
BioHEL is beneficial in the Adu problem, since it helps the system to generalise. In the case
of BioHEL, we can observe that more generalisation pressure can be achieved by either using
a more strict coverage breakpoint or using a larger number of windows, as it was shown for
the Adu problem. The same behaviour is not observed in GAssist, were all the problems lose
accuracy with the increase of the number of windows.

In Figure 4.6 we show the changes in the relative accuracy, the number of rules and the total
execution time when using different number of windows. In Figures 4.6a and 4.6b we can
observe that the relative accuracy decreases with the number of windows in both systems in
a similar manner. Moreover, the accuracy decreases drastically in synthetic problems such as
PMX, behaviour that can be explained by ILAS’s theoretical models (see Section 2.4.1.3). This
figure also shows a line where the relative accuracy drops below 0.95. It is noticeable that
for all the problems except PMX it is possible to use a higher number of windows, without
compromising the accuracy of the system severely. Figures 4.6c and 4.6d show the effect of the
number of windows over the number of rules. The changes are more dramatic in GAssist than
in BioHEL, where the number of rules decrease exponentially with the number of windows.
This could be due to the fact that from the start GAssist generates much smaller rule sets than
BioHEL. Also, BioHEL does not reduce the rule set size drastically. On the contrary, for the
synthetic problem PMX, a high number of windows produces larger rule sets. It might happen
that some of the strata are not good representations of the whole training set and this prevents
the system from learning, either a correct rule (with 100% accuracy) or a general enough rule.
The latter case is the main reason for the generation of large rule sets.

Moreover, Figures 4.6e and 4.6f shows the decrease of the execution time with respect to the
number of windows. This was expected since the main goal of this technique is to decrease
the computational time during the match process. However, we can see in these figures that
the execution times for BioHEL are considerably smaller than the execution times for GAssist,
although the latter generates smaller rule sets.

In this section we showed how the windowing mechanism can help reduce the execution time of both
systems without degrading the accuracy severely. Moreover, the windowing can be used as a tool to
introduce generalisation pressure, in order to obtain solutions that are good enough, but are more
compact in terms of rules. Nevertheless, the impact of this mechanism in terms the compactness
of the rule sets differ from GAssist and BioHEL. While in GAssist the number of rules decrease
drastically with the number of windows in BioHEL the changes are not so noticeable. On the other
hand, BiocHEL generates larger rule sets, but the execution times over large problems are much
smaller than GAssist. This fundaments the hypothesis that the BioHEL system is more suitable for
larger domains.

4.5.6 Comparison against other ML techniques

In this section we compare the performance of GAssist and BioHEL with other ML algorithms
such as: C4.5, PART, IBk, Naive Bayes and the SMO implementation of SVM with both polyno-
mial and gaussian kernels.
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Figure 4.7: Clustering of the different ML algorithms using Nemenyi critical distance

Table 4.21 shows the results of the comparison of GAssist and BioHEL with the mentioned algo-
rithms. This table only shows the results using the standard configurations found for BioHEL
and GAssist in Section 4.5.1, in order to provide a fair comparison with the other methods.® In
this table we can see that GAssist and BioHEL are among the best algorithms. Only SVM with
gaussian kernels (SVNr) seems to achieve good solutions as frequently as our algorithms. It is
worth noticing that for the SA problem some of the ML algorithms did not manage to learn the
problem due to the lack of memory and impractical execution times. Moreover, since we do not
have results for the SA and CN problems using the standard configuration of GAssist (10000
iterations and 10 windows), we included the results using 50 windows instead.

When performing the Friedman test to determine if there were significant differences we ob-
tained a p-value of 9.1¢ 7. In Figure 4.7 we can visualise graphically the results of the post-hoc
test to compare all algorithms using the Nemenyi critical distance. In this case the critical
distance is equal to 1.827. It is worth noticing that for this statistical test the SA problem was
not considered since we did not have results for all the algorithms. In this test we can observe
that GAssist and BioHEL place first and second, respectively. Being in the cluster of the best
algorithms, along with SVM (with both polynomial and gaussian kernels) and IB5, there are
only significant differences between them and NaiveBayes, C4.5 and PART.

Moreover, when comparing the tested ML methods in terms of execution time, we can obtain
interesting insights. Table 4.22 shows the execution times over the large problems and the re-
spective rankings. Moreover, Figure 4.8 shows the information from the previous table plotted
independently per problem. In general, we can observe that the algorithms present consistent
rankings among each other and that SVMr and GAssist have the highest execution times. On
the other hand BioHEL, SVM and IB5 have similar execution times, except in the two largest
problems, where the polynomial kernels (SVM) scale much worse.® Only in the kddcup prob-
lem SVMr takes half the time than BioHEL and SVM takes only 2% of the time. For the rest
of the problems BioHEL seems to be faster. Moreover, C4.5, NaiveBayes and PART have very
small execution times compared to the other algorithms, but these algorithms do not give good
results in terms of accuracy, as it was shown before. Also, PART scales badly in problems with
large amount of attributes such as SS, SA and CN.

It can be arguable that no stratification techniques are applied to SVM and this is the reason
why these algorithms are not performing faster. However, the ILAS Windowing technique
is a built-in technique within BioHEL and GAssist, and the original implementation of SVM

SFor these algorithms an analysis to the determine the best standard configuration for all problem was performed
in a similar fashion as in Sections 4.5.1.1 and 4.5.1.2.

éFor the SA problem the execution time for SVM took more time than the allowed time of our computational frame-
work
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Figure 4.8: Execution time of the different ML algorithms over large problems
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Table 4.22: Comparison of GAssist and BioHEL with other ML algorithms in terms of execution time
(s). The configurations that obtained the best test accuracy in Table 4.21 are emphasised and
the rankings within a particular problem are shown on the right

Problem BioHEL SVM SVM, 1B5

Adu 1998.31+227.34 5 2987.77+536.19 6 20144.31+424421 8 450.20+156.87 4
c-4 7197.09+549.15 5 18218.58+3085.65 6 39210.92+2947.20 7 1096.81+180.30 4
Par 39422.64+9210.71 6 32354.57+5692.19 5 383081.72+58842.01 8 5562.40+65.50 4
SS 33430.59+14520.92 4 57132.69+12670.91 5 134243.30+17331.00 7 26407.76+3243.02 3
kdd 65806.99+15761.75 6 1346.724+299.21 4 32161.43+3106.12 5 96825.96+17485.70 7
SA 468821.161+64054.87 4 - - 146577.52+13366.74 3
Win 88696.09+19758.60 3  207982.69+37931.41 6 324807.90+34278.76 7 123638.76+17691.04 4
Problem GAssist C45 NB PART

Adu 7875.33+1361.80 7 13.79+0.96 2 1.884+0.10 1 248.18+14.03 3
c-4 44531.39+328693 8 9.324+0.52 2 2.29+0.14 1 962.33+110.26 3
Par 52775.03+10888.52 7 21.234+11.29 2 3.40+0.90 1 174.23+290.39 3
SS 289782.58+-21004.80 8 714.73+152.75 > 167.61+167.05 1 99650.51+19064.10 6
kdd 168481.84+-20360.71 8 262.31+14.50 2 167.9245.51 1 294.78+16.76 3
SA 271639.70+24879.49 5 6073.21+776.81 2 437.394+57.56 1 =

Win 164214.74+1210049 5 2873.90+214.96 2 156.85+18.96 1 562819.03+4624984 3

does not support these kind of efficiency enhancement techniques. Even though is it possible
to apply stratification (for example by learning different models using different subsets of the
data and then applying ensemble techniques to merge these models), a quantification of the
accuracy loss of applying this type of windowing would be necessary, which is a much more
extensive study out of the scope of this work.

From this analysis we can conclude that the BioHEL system obtains results similar in accuracy
to SVM and GAssist, but at a smaller computational cost. Moreover, the solutions provided by
GAssist and BioHEL, being rule sets, are easily interpretable by human beings, in contrast with the
models generated by SVM. Even though BioHEL generates larger rule sets, clustering techniques
can be applied to obtain additional insights as shown in Bassel et al. [2011]. Considering the
execution time and the accuracy, the BioHEL system seems to be the best candidate to solve large
problems.

4.6 Conclusions and Further Work

In this chapter a systematic and exhaustive analysis over BioHEL and its predecessor GAssist
was performed, in order to study the behaviour of the shared mechanisms applied to different
paradigms. A standard configuration was determined for both systems. In the case of BioHEL,
the best coverage breakpoint was 0.1 for small problems and 0.001 for big problems. In the
case of GAssist, the optimal number of iterations was 1000 for small problems and 10000 for
large problems. However, in the GAssist system no significant differences were found among
configurations. Regarding the usage of the default class, the results differ between the two
systems. While for the GAssist system the best results are obtained with the automatic policy,
BioHEL obtains the best results with the disabled policy. Considering that this analysis was
done over the small problems only, it was expected that the majority and minority policies did
not stand out. When the problems are small, BioHEL finds it easier to learn rules from any class
rather than limiting the possible classifier classes. However, the usage of the majority class is
beneficial when solving large problems since this decreases the amount of examples the system
needs to generate rules for.
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After determining standard configurations for both systems, we compared them with the best
configurations found per problem. We obtained significant differences in only two of the 28
small problems. Moreover, the percentage of accuracy loss in both systems was less than 3%
in 25 of the 28 problems, and less than 6% in the rest of the problems. This indicates that
the standard configuration found produce results similar to those obtained hand tuning the
system. Moreover, when considering all the problems at the same time, there are no significant
differences among the configurations, validating the previous hypothesis. However, for some
problems, slightly better results can be achieved when the coverage breakpoint is set according
to the problem.

When analysing the test accuracy against the training accuracy and number of rules in both
systems, BioHEL showed higher training accuracies and bigger rule sets than GAssist. The
cases where GAssist performed better where usually the cases where BioHEL overfitted the
data.

Furthermore, when considering the characteristics of the problem, BioHEL performs better in
problems with larger amount of classes and instances, while GAssist performs better with prob-
lems with fewer classes and less instances. Moreover, it was shown that GAssist performs better
over discrete problems and BioHEL performs better over continuous problems. This is due to
the differences in the representation used. Considering the execution times of both systems,
BioHEL is superior than GAssist obtaining speedups up to 243X over this system. Neverthe-
less, the execution times vary drastically depending on the parameters used.

When analysing the results over the large problems, we showed again that BioHEL generates
much more rules than GAssist. Moreover, the results show that the test accuracy and the num-
ber of rules are intimately related to the coverage breakpoint parameter in BioHEL, while in
GAssist changing the number of GA iterations only produced major changes in two problems.
This showed that the BioHEL system is slightly more sensitive to changes in the configuration
than GAssist. Also, it is worth noticing that in the largest problems the most exhaustive exper-
iments with GAssist (which are using 10 and 20 windows and 5000 and 10000 iterations) were
not completed since they took an unpractical amount of time.” On the other hand, BioHEL
stands out in these scenarios, as it was designed for this purpose.

Increasing the number of windows in large problems produced a significant reduction in the
execution time. Also the systems show a reduction in the test accuracy and the number of rules
generated, especially in synthetic problems such as PMX. In GAssist, increasing the number of
windows seems to have a bigger effect on the number of rules rather than in the accuracy, while
in BioHEL the opposite happens.

Nevertheless, the number of iterations in GAssist, the coverage breakpoint in BioHEL and the
number of windows can be used to apply generalisation pressure to the systems. Using more
restrictive parameters it is possible to obtain solutions that are close to the best solution found,
but consist of more compact rule sets evolved in considerably less time.

When comparing BioHEL and GAssist with other state-of-the-art ML algorithms taken from the
WEKA package, our algorithms are ranked first and second, followed by SVM using gaussian
(SVNr) and polynomial kernels (SVM). Significant differences were found between our systems
and NaiveBayes, C4.5 and PART. Even though there are no differences in terms of accuracy be-
tween SVM, SVMr, GAssist and BioHEL, the latter provides the best accuracy/speed tradeoff,
which suggest this system could be more adequate for this domain.

In summary, the tested EL systems are competent against other ML methods and, between
them, GAssist is more suitable for small datasets, while BioHEL is more suitable for larger ones.
Moreover, this chapter was not aimed only at identifying the best setting for each system, but
also to study the behaviour of the shared components between the two methods. In this sense,
we have shown that each system requires different policies for the usage of these components.

7 These experiments were constraint by the limitations of our computational framework.
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Large datasets => BioHEL

{ Few classes  => GAssist
Algorithm selection [ Many castes:. b MAOMNL.
Small datasets Discrete attributes = GAssist
Mixed attributes = BioHEL
Continuous attributes = BioHEL
Coverage breakpoint 0.1
Small datasets => { Default class disabled
ILAS windows 2

Coverage breakpoint 0.001
BioHEL Configuration { Large datasets = Default class majority
ILAS windows between 10 - 50

(Hint: A larger coverage breakpoint and/or a
larger number of windows increase the
L generalisation pressure of the system)

1000 GA iterations
Small datasets = Default class automatic
ILAS windows 2

10000 GA iterations
GAssist Configuration { Large datasets = { Default class majority
ILAS windows 50

(Hint: A smaller number of GA iterations and/or a
larger number of windows increase the
generalisation pressure of the system)

Figure 4.9: Algorithm selection scheme and recommended configurations for GAssist and BioHEL de-
pending on the characteristics of the problem instances

In Figure 4.9 we present a decision tree for selecting the appropriate algorithm and the further
system configuration depending on the characteristics of the problem.

Regarding the limitations of BioHEL encountered in this chapter we have the length of the final rule
sets, which is considerably high compared to GAssist. In this sense we determined that it could be
advantageous to apply techniques to reduce the cardinality of the rule sets. Moreover, the BioHEL
system is very sensitive to the choice of parameters, and especially to the selection of coverage
breakpoint, so it would be ideal to determine this parameter automatically. Finally, even though
the BioHEL system is fast compared with other algorithms that obtain similar results, it could
benefit from parallelisation techniques that have not been applied so far to speed up its learning

. These limitations are the motivation for the further improvements over the BioHEL system
presented along this thesis.

Finally, based on the results obtained in this chapter, it would be interesting to analyse the
ILAS Windowing mechanism thoroughly to determine when the usage of windowing becomes
not beneficial in terms of accuracy. There are some models already for the GAssist system
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that explain the behaviour of the windowing (See Section 2.4.1.3). These models assume the
problems have rules that cover uniformly the whole search space. In the future, we would
like to adapt these models to BioHEL, and cover problems where the rules are not uniformly
distributed, do not have the same amount of expressed attributes and involve noise.
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CHAPTER S5

Parameter impact in BioHEL's
fitness function

As shown in Chapter 4, BioHEL is highly parametrisable and better results can be achieved if the parameters are
adjusted according to the problem at hand. However, it is still not clear how the adequate parameter setting is depen-
dant on the characteristics of the problem. Therefore, this chapter presents an extensive parameter sensitivity analysis
of BioHEL's fitness function. Specifically, we study two aspects of BioHEL's fitness function: its sensitivity to the
coverage breakpoint parameter (that determines the degree of generality pressure applied by the fitness function) and
the impact of the default rule policy (which changes the characteristics of the problem to learn). The results show
that BioHEL is highly sensitive to the choice of coverage breakpoint and default class. While the right setting can
facilitate the learning process, an incorrect setting can also push the system towards overgeneralisation. Moreover,
it is shown how the coverage breakpoint parameter is closely related to characteristics of the problem itself such as
the number of relevant attributes in the terms of the optimal solution. The conclusions of this chapter will lead to the
proposal of a mechanism to adjust automatically the coverage breakpoint parameter later in the thesis.

5.1 Introduction

As it was explained in Chapter 2, BioHEL's fitness function is designed to generate accurate,
general and simple rules (in terms of the compactness of the predicate). To this aim, this fit-
ness function rewards the rules that cover (at least) a certain percentage of examples from the
training set, by means of the user-defined parameter coverage breakpoint. However, this param-
eter is very problem-dependant and it requires an extensive preliminary experimentation to
determine its adequate value, as it was shown in Chapter 4.

In this chapter we exhaustively analyse the impact of the coverage breakpoint parameter (with
respect to the default class?) in BioHEL's fitness function when learning challenging boolean
synthetic problems, such as k-Disjunctive Normal Form problems. Since we can generate these
problems with different number of relevant attributes (k) and different number of terms (7), it is
possible to vary their difficulty on a regular step and determine how the optimal settings change
with these small variations. The difficulty of these problems is based on the class imbalance and
rule overlapping. If the k of the problem is small, the terms will cover a large percentage of the
instance space and will tend to overlap. If k is large there is no overlapping but the positive
examples would be very scarce, which also makes the problem difficult. Considering that the
structure of the problem is known beforehand, we intend to asses the quality of the learning in
terms of discovering this structure.

The analysis is this chapter is separated in two stages. First we test the performance and scala-

'The usage of the default class can change completely the characteristics of the problem we are trying to solve as
different sets of rules can be generated depending on the policy chosen.
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bility of the system using different coverage breakpoints and default class policies. The aim is
to identify the areas of the problem space that are more difficult to solve for BioHEL (in terms of
number of relevant attributes k and number of problem terms r) for each coverage breakpoint
value and default class policy. We present the results in terms of the iterations necessary to
learn one of the k-DNF terms and the execution time. We also analyse the areas of the problem
space where the system overgeneralises or it is not able to learn at all. The results also show the
differences between using different default class policies. Even though the fixed class policy
performs slightly better than the majority class policy, the latter shows how the learning would
behave in situations where there is lack of crucial domain knowledge.

Moreover, these results show that depending on the characteristics of the problem the ade-
quate coverage breakpoint value changes. Considering this, in the second part of the chapter
an exhaustive experimentation is performed to determine the appropriate coverage breakpoint
for each scenario, aligning the parameter values to the used representation. In this section we
show a link between the characteristics of the problem (depending on the knowledge represen-
tation) and the adequate parameter value. This conclusion suggests the need to automatically
determine these problem characteristics in order to set the parameters correctly.

The rest of the chapter is organised as follows. Section 5.2 presents the k-DNF boolean func-
tions used in this study and the related work regarding the usage of these functions in the
analysis of EL systems. Section 5.3 presents the experimental design and results of the pre-
liminary parameter sensitivity analysis. Section 5.4 presents the second stage of experiments
to determine the appropriate coverage breakpoint aligning the parameter values to the used
representation. Finally, Sections 5.5 and 5.6 presents the conclusions and further work of this
chapter, respectively.

5.2 k-DNF boolean functions

k-DNF (k-Disjunctive Normal Form) functions [Kearns, 1990] are a broad family of boolean
functions which so far are a well known test suite in ML [Butz and Pelikan, 2006; Hernandez-
Aguirre et al., 2001] and in this thesis are used as a tool to characterise the structure of binary
problems. Given a space of d attributes or variables the k-DNF functions are a boolean formula
that presents the following form:

T1VTbV---VT, (5.2.1)

where r is the number of disjunctive terms and each term T, represents the conjunction of k
boolean variables out of the d possible options (x,x2,...,x;), where some of the variables
might have the not function (-) applied to them. Equation (5.2.2) represents an example of
k-DNF function for a space of 10 representable attributes (d), 2 terms (r) and 4 represented
attributes (k).

(x1 Axs A—xz Axg) V (x1 A —x3 A —x6 A Xqp) (5.22)

Since EL systems learn a set of rules as the solution of a problem, this generalisation of binary
problems into k-DNF formulas is really useful, as the systems are expected to learn one rule
per term in the problem and the rules should represent at least all the relevant attributes in
these terms. From this point onwards, every time we talk about “rules” we are referring to the
solution of the problem and when we talk about “terms” we refer to the problem itself.

5.2.1 Dimensions of difficulty

The difficulty of a k-DNF problem can be estimated by calculating the class imbalance, which
corresponds to the probability of finding a negative example in the dataset given its k and r
values, as represented in Equation (5.2.3). This formula holds under the assumption that the
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k attributes are randomly picked and hence there is no big overlap between any two terms.
Figure 5.1 shows the corresponding probability distribution.

P(neg) = (1 - %) (5.2.3)

(1-2%

COO000O0000
o“NMWrLOND©O =

v
-
-
-

Number of attributes - k

Figure 5.1: Probability of having a negative example in a k-DNF function according to the number of
attributes k and the number of terms r

Since the class imbalance makes the problem more difficult, the red area in Figure 5.1 represents
the problems that are easier to solve. Moreover, the class imbalance is not related to the size
of the problem d. However, the size of the problem can increase the number of examples in
the training set (as there are 27 possible strings), and this variable can make the problem more
difficult in terms of data volume.

As we can see from the previous formula the difficulty of the k-DNF problems depends on
the number of relevant attributes k and the number of terms r. These two parameters can
increase or decrease the number of positive examples in the training set and can potentially
create scenarios with very high class imbalance. For example, when k is low each term covers a
large proportion of the training set, and hence, just with a few terms (r), most of the examples
will be positive. With moderate k values but high r the same occurs. In both situations we
encounter a known source of difficulty in LCS: term overlap [Butz and Pelikan, 2006; loannides
et al,, 2011]. On the other hand, a high k and low r creates problems with very few positive
examples, as each term is very specific and overlap is unlikely. These cases, also not balanced,
essentially become scenarios of trying to find the needle in the haystack, because each term will
cover very few examples.

We want to remark that this is an estimation of difficulty and represents the average case for
randomly generated k-DNF problems. It can happen that for some problems depending on the
configuration, there might be more or less overlapping which will produce slightly more or less
negative examples. This is often the case in k-DNF problems with small d and a small k. The
terms in these datasets cover a very large percentage of examples and hence it is not possible
to generate smooth transitions of class balance.
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5.2.2 k-DNF as a Machine Learning benchmark

The k-DNF problems used in this thesis were created using the generator at http://icos.cs.
nott.ac.uk/datasets/kdnf.html. This generator works as follows. First, the user specifies
the values d, k and r. Given this information r terms are generated, by randomly selecting k
of the possible d attributes and checking that this combination has not been repeated already.
Then, the not function is applied to each one of the k represented attributes in the term with
50% probability. Afterwards, all the possible 2¢ binary strings (the instances of the dataset) are
generated. They are assigned to class 1 if the string makes the formula true. Otherwise, they
are assigned to class 0. The examples with class 1 are what we call “positive examples” and
the rest are “negative examples”. Figure 5.2 shows an example of a generated k-DNF dataset
in WEKA format. An example of a correct and an overgeneralized set of rules for this problem
written in the ternary alphabet {1,0,#} is shown in Figure 5.3.

Given that we know the optimal solution for a specific k-DNF problem, in the experiments
reported in this thesis the whole dataset has been used (rather than partitioning it into train-
ing and test sets) and the learning is assessed by checking that the correct k-DNF terms have
actually been learnt.

5.2.3 Previous Machine Learning studies using k-DNF functions

The k-DNF functions have already been used in the ML context to determine the learning com-
plexity [Kearns, 1990] and to derive lower an upper bounds for the sample complexity [Ehren-
feucht et al., 1988].2 Moreover, they have also been used to derive learning models [Hirschberg
et al., 1994] that predict the mean classification error of a given a distribution of the instance
space.

Regarding GAs, [Hernandez-Aguirre et al., 2001] used the Probably Approximately Correct
(PAC) learning to estimate the initial population of the GA necessary to learn a k-DNF func-
tion with a given error. They show how the system evolves the solutions using the ham-
ming distance of the individuals from the optimum. The results show that the population
size needed to assure the existence of an individual close (similar) to the target chromosome is
rather small.

Furthermore, this family of problems has already been used in the LCS context by Butz and
Pelikan [2006]. In this work these functions were used to investigate the influence of replacing
the crossover with other recombination algorithms based on EDAs. The goal is that the algo-
rithm learns the intrinsic structure of the problem, in order to tackle more difficult problems
like hierarchical ones. This research points out that one of the difficulties that LCS encounters
when handling this type of problems is the term overlapping. This factor leads to the gener-

ation of rules that are partially but not maximally accurate, which makes the problem more
difficult.

5.3 Parameter sensitivity analysis

This section is focused on performing an exhaustive experimentation using different values for
the coverage breakpoint parameter and the default class policy. The experiments presented on

this section are focused on the following two goals which correspond to independent result
sections.

1. Determining the impact of the coverage breakpoint and default class policies in the learn-
ing process.

The number of examples needed to learn a classification problem
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Figure 5.2: Example of a randomly generated k-DNF dataset withd = 5, k
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Correct Rule Set Overgeneralised Rule Set
1L##0# |1 ->100% 1##0# | 1 ->100%
#1##01 1 ->100% # #8801 ->81Y
#00## 11 ->100% #00##% |1t -> 100
Default Rule Default Rule

g sn| 0 ->100% s #aue| 0 ->100%

Figure 5.3: Example of a correct and an overgeneralized rule set which solve problem in Figure 5.2. The
number on the right represents the accuracy of each rule. 1 or 0 indicates that the attribute
should have that specific value. # corresponds to an irrelevant attribute in the predicate (don’t
care).

2. Determining the areas of the problem space that are more difficult for BioHEL.

5.3.1 Experimental design

For these experiments we tested four different values for the coverage breakpoint parameter
(0.1;0.01; 0.001; 0.0001). We also performed two sets of experiments with different default class
policies: a fixed class and the majority class. The first set of experiments used a fixed default
class equal to 0 which corresponds to the negative examples of the problem. Since in the used
k-DNF datasets all the terms map to class 1, this setting forces the system to learn exactly the
terms of the function. For the second set of experiments we used the majority class as the
default class. In this case the system might not learn the terms of the k-DNF function when
the default class is 1 but instead it will learn the inverse problem, whose structure is unknown.
These sets of experiments were designed to highlight the main differences in rule fitting when
the default class policy changes. These experiments are also interesting because they will reflect
how BioHEL will behave when handling a real problem, where we actually do not know which
one is the most suitable default class.

The results in the first section will be presented in terms of how many iterations of the GA
does it take to learn one of the terms of the k-DNF function. This will show if it gets harder
for BioHEL to find good rules when the problem gets harder and if the coverage breakpoint
can speed up or delay the learning process. This metric is only shown for the experiments
with default class 0, as it cannot be computed in a straight forward manner when using the
majority default class policy. When using the majority default class BioHEL is forced to learn
the inverse problem when the amount of positive examples is higher than the negative ones.
Even though the inverse problem can be calculated the characteristics of this problem in terms
of k and r differ from the original problem, which is the particular difficulty over which we
want to quantify BioHEL's effort. We also report the run-time of the overall learning process
for both policies.

The second section is focused on determining the areas of the problem space that are more
difficult for our system. For this purpose we generated learning maps. To determine the success
of the system on each particular scenario we counted the number of final rule sets that fell in
each one of the following categories:

Learning: the system learned the correct set of rules, in other words learned r rules which
correspond to the r terms in the k-DNF problem and therefore, they have 100% accuracy.

Overgeneralisation: the system learned some of the k-DNF terms and generalised others.
Even though, the system leamed some good rules, the rule set as a whole does not have
100% accuracy.

No Learning; the system was not able to generate any rules besides the default rule.
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Table 5.1: List of BioHEL's parameters different from the default configuration for the parameter sensi-
tivity analysis. For a complete list of parameters refer to Section 3.3

Parameter Value
GA Iterations 20
Initial MDL TL ratio 0.25
Number of strata in the ILAS windowing scheme 50

It is worth mentioning that the rule sets that present more rules but contain the correct ones,
plus some additional terms also fall into the learning category. These are over specific rules
which appear when the generalisation pressure is not high enough and they can be amended
by making small local searches as it will be shown in Chapter 9. This classification of the
rule sets can be considered a population-state metric (a metric that analyses the structure of
the generated solutions [Kovacs, 2004] instead of the accuracy). However, the accuracy is still
considered in this case to distinguish between overgeneral and correct rules.

The k-DNF problems used in this work haved = 20, k = {2..10} and r = {5, 10, 15, 20, 25, 30, 35,40, 45, 50}.
This translates in 90 different scenarios of problem difficulty. For each one of these scenarios

we generated 10 random problems and each one of them was run using 25 different seeds, so

the results are the average of 250 runs.

Since the system has a stochastic behaviour some of the runs for the same problem scenario
might have generated different rule sets and these rule sets might have fallen into different
categories. For a specific scenario we considered that the system learns the problem when 90%
of the 250 runs learned the correct set of rules. Moreover, we consider that the system does not
learn if more than 5% of the runs were not able to generate any rules. The rest of the cases are
considered overgeneralisation cases. In our experiments we have not observed any case where
the conditions of learning and no learning were true at the same time.

In this chapter we used BioHEL with the base parameters presented in Chapter 3, with the
exception of the parameters shown in Table 5.1. For a detailed explanation of these parameters
please see Section 2.4.2. Moreover, the experiments were run in the High Performance Com-
puting facility at the University of Nottingham each node with 2 AMD Opteron 2.2 GHz with
1GB per core.

5.3.2 GA iterations and execution time

In this section we measure how many GA iterations are required on average for BioHEL to
learn each of the optimal rules of a k-DNF problem. We would like to remind the reader that
BioHEL has two levels of iterations one embedded within the other. Rule learning iterations
(as it learns rules sequentially) and GA iterations (as it uses a GA to learn each rule). For
brevity, in this section whenever we use the word iterations we are always referring to GA
iterations.

Figure 5.4 shows how many iterations BioHEL needs to learn each term of the k-DNF problem
using default class 0 and different coverage breakpoints. For each one of the scenarios we only
considered the runs where the system learned the optimal solution to the k-DNF problem. In
this figure, the iterations needed to learn a term are proportional to k, the number of attributes
expressed in each term, and are also proportional to 7, the total number of terms to learn. Table
5.2 shows the best model that fits these points. A relationship between the number of iterations
and the number of relevant attributes was expected since more specialised rules are more diffi-
cult to learn. However, this model also shows a relationship between the number of iterations
and the number of terms. A possible explanation for this relationship is the overlapping be-
tween the terms. When the number of terms increases, the likelihood of overlapping increases
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Number of iterations to find a good rule
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Figure 5.4: Number of iterations necessary to learn a good rule according to the number of attributes k
and the number of terms r

as well and it takes more time to distinguish between the optimal and quasi-optimal (overgen-
eral) rules. Furthermore, when k is small it is possible that rules close to the optimal appear in
the initial population from the start. This is the reason why for smaller values of k and r the

number of iterations required to obtain a good rule with the required number of attributes is
close to 0.

Table 5.2: Model of the number of iterations necessary to learn a good rule. P-value shows if the fitting
of that particular variable is significant with respect to the data

Var Value Asymptotic Standard Error % Error P-value
a 1.39458 + 0.01586 (1.137%) <2-1071
b 0.980511 + 0.04387 (4.475%) <2-10°%
c -4.59467 + 0.1461 (3.181%) <2-107%

Model: iter =a-k+b-log(r) +c

Table 5.3 shows with greater detail the information presented in the previous graph. In this
table it is noticeable that while the coverage breakpoint increases the algorithm is able to solve
less problems. Also, the upper right corner is never solved because most of the instances in the
training set are positive.? In this area the system learns overgeneralised rules that cover bigger
areas of the search space. Particularly, in the configurations with r € {40,45,50} and k = 2 all
the examples are positive so the system learns only one rule that covers all the examples with
100% accuracy. Even though the accuracy is perfect, these cases were not considered when
reporting the number of iterations, because the system was not learning the exact terms of the
function. However, what the system is doing is not completely wrong as it is trying to solve the
problem with a less complex rule sets.

Furthermore, there are small changes in the number of iterations using different coverage
breakpoints. By highlighting the best configuration (in terms of iterations) for each scenario
in Table 5.3, we can see that the adequate coverage breakpoint varies among configurations.
Moreover, there is a relationship between the shape of the emphasised areas and the proba-

*See class imbalance model for k-DNF problems in Section 5.2.
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bility of having negative examples shown in Figure 5.1. Furthermore, for each of the tested

coverage breakpoint values, the region where a specific parameter value is the best is close
to the areas were the system cannot learn the correct rules. This indicates that the coverage
breakpoint value should be high enough to learn the problem quickly but low enough to avoid

overgeneral rules.

Average execution time to learn the problem

P 0.0001
Execution time (s)

0.1

x

14000
12000 %
10000 [

r - Number of rules Number of terms in the rule

(a) Default class 0

Average execution time to learn the problem
0.0001

Execution time (s) i
0.01
0.1

omXx+

r - Number of rules

(b) Default class majority

Figure 5.5; Average execution time to learn a k-DNF function with different coverage breakpoints. Hor-
izontally we present the coverage breakpoints tested and vertically the two default class poli-

cies.
The execution time of the learning process with both policies is shown in Figure 5.5. A signif-

icant model for the execution time could not be found but interesting patterns are present. As
€Xpected, using default class 0 the time increases with the number of terms the system needs
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to learn but also increases with the number of attributes expressed in each rule. Considering
that the number of iterations per GA run is fixed and remains the same for all the runs, we
could attribute this behaviour to an increase in the execution time during the match process.
Since BioHEL uses a representation where only the relevant attributes are represented in a list,
when k increases, the match process becomes slower. What is more interesting is that there
seems to be a relationship also between the time and the amount of negative examples in the
problem. We can observe in Figure 5.5 a similar shape as the one obtained in Figure 5.1 around
k € {2,3,4,5}. With the increase of negative examples the execution time increases, and partic-
ularly when using default class majority, there is a spiking behaviour on the area where there
are more positive examples than negative ones. This is because, since the default class changes,
the system is trying to learn a more difficult problem.

In general, the execution time does not seem to depend on the coverage breakpoint applied.
However, the are some cases with k = 10 where there is a considerable difference in the run-
time when using different coverage breakpoint values. These cases are very difficult to learn
because, each time a rule is learned, very few examples are deleted from the training set. Us-
ing an inadequate (too low) coverage breakpoint might delay the process even more. Using
default class majority we can see the execution time for some configurations (coverage break-
point 0.0001 and low values of k) is higher than using a fixed default class. However, for the
rest of the configurations the execution time is similar to using the default class 0. The reason is
that for low values of k the system is learning the inverse problem which is more difficult than
learning the exact k-DNF function.

5.3.3 Learning and overgeneralisation

Considering the number of cases where the system learned the complete set of rules, overgen-
eralised or did not learn anything at all, we generated learning maps as shown in Figure 5.6.
The left part of the figure corresponds to the experiments with default class 0 while the right
part corresponds to using the majority class as the default class. The figure shows 4 different
states: Blue [J: good learning (the system learned the k-DNF terms in more than 90% of the
runs), Red (): no learning (the system failed to generate rules in more than 5% of the runs),
Green A: overgeneralisation and (blank) incomplete scenarios (because the execution of each
run took more than 10 hours). In the latter cases the runs were cancelled as the learning process
was simply too slow and they are only present when using default class majority.

This figure shows that, for default class 0, the system tends to overgeneralise or simply not
learn at all when using large coverage breakpoints over problems with large k. Additionally, it
is noticeable that the two areas where the learning is more difficult are: a) the upper left corner
(low values of k and high number of terms r) and b) the right side (larger values of k). The first
region is very difficult because the number of positive examples is really high (see Figure 5.1).
In this case the system tends to generate one or few rules that cover all the examples, degrading
the accuracy slightly. The second region is difficult because there are few positive examples. In
these cases, unless the appropriate coverage breakpoint is set up correctly (low enough), the
system will generalise or not learn at all.

Regarding the usage of the majority class, using very small coverage breakpoint values pro-
duces difficulties in the area where the system is learning the inverse problem (low values of k).
We can notice a large number of incomplete experiments. This occurs in the zone where the k-
DNF problems are more balanced in terms of positive and negative examples but still the wrong
default class is chosen. This is because the system is learning very specific rules that delete few
examples from the population, but the actual amount of examples to learn is high. The area
of incomplete experiments shrinks with the usage of larger coverage breakpoints. However, in
these cases the system solves the problem overgeneralising.

The behaviour observed across increasing values of the coverage breakpoint parameter is sim-
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Figure 5.6: Learning and overgeneralisation maps using various k-DNF problems and coverage break-
pointg (0.1, 0.01, 0.001 and 0.0001). Blue [): good learning, Green /\: overgeneralisation,
Red (O): no learning, blank: incomplete runs (runs that took more than 10 hours).
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Figure 5.7: Learning and overgeneralisation maps aligned by coverage breakpoint values using various
k-DNF problems, default class 0 and coverage breakpoints (0.1, 0.01, 0.001 and 0.0001). The
groups represent different values of k (number of attributes). Blue [): good learning, Green
/\: overgeneralisation, Red (): no learning

ilar. The areas of good learning shrink with the usage of larger coverage breakpoints. This
indicates that a specific coverage breakpoint is necessary to solve certain scenarios.

Figure 5.7 shows the same results presented in the previous figure for default class 0, but tab-
ulated per coverage breakpoint. In this figure it is clear that the right coverage breakpoint to
solve the problem depends directly on k the number of attributes expressed. While k increases
the minimum coverage breakpoint necessary to solve the problem decreases.
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54 Towards a rationalisation of the coverage breakpoint set-
tings

The previous section has shown, across a broad set of k-DNF variants, that each problem sce-
nario requires a specific coverage breakpoint value. Moreover, something else was noticeable:
this value is not easy to identify. As it is shown in Figure 5.6, the 0.01 configuration was able
to solve just a fraction of the problems solved by the 0.001 configuration, and the 0.1 configu-
ration only solved a very small fraction of the scenarios solved by the 0.01 configuration. This
indicates that exploring the coverage breakpoint space using fractions of the training set size
(10%, 1%, 0.1% of 0.01%) is not good enough to identify the optimal settings for every single
k-DNF variant, as a single step change in the parameter can render the system unable to solve
a large group of datasets.

Considering this, a better parameter exploration policy that avoids an exhaustive search is to
align the explored coverage breakpoint values to the employed knowledge representation. For
a binary representation, this means using coverage breakpoint values equivalent to the different
number of expressed attributes the terms can have. If a term contains a single attribute (e.g. If
att; is 1 — class = 1) it will cover half of the search space, that is, a coverage of 0.5. If a term
contains the conjunction of two attributes it will cover a quarter of the search space (a coverage
of 0.25). Therefore, it would be much more efficient, for this representation, to explore coverage
breakpoint values in the form of 27* being x the different numbers of attributes possible in the
binary domain.

To this aim, the experiments were repeated on all the k-DNF datasets but in this case explor-
ing coverage breakpoint values 2~* where x = {2,3,4,5,6,7,8,9,10}. The learning status is
reported in the same manner as in Section 5.3.3, since we are only interested in checking if
BioHEL, using each of these coverage breakpoint values, can learn the evaluated datasets. As
in the learning maps from the previous section, Blue [J represents the cases where more than
90% of the rules generated the correct set of rules. The Green A represents the cases where the
system overgeneralised the problem but learned some rules, and the rest of the grid (Red )
represents the cases where the system was unable to generate any rules in more than 5% of the
runs.

Figure 5.8 shows the learning maps using aligned coverage breakpoints. As expected, using
this parameter sweep policy it is possible to create much richer and incremental learning maps,
as one step change in the explored coverage breakpoint values only changes a few cells in the
learning map. Moreover, it is noticeable that, besides few exceptions, to solve a certain k-DNF
problem the optimal coverage breakpoint setting is equal to 2~* where x is equal or larger than
the k of the dataset. The only drawback of using a coverage breakpoint smaller than needed is
that more GA iterations are required to learn the optimal rule (as it was shown in the previous
section).

There are few exceptions where this does not hold. These exceptions are the problems with high
overlapping. In this situation, even when using the appropriate coverage breakpoint, BioHEL
Creates a single rule or a very small number of overgeneral rules, as these rules will still have
very high accuracy. We can observe that for small values of k there is a limit in the number
of terms the problem can have to be solved by BioHEL due to the high class imbalance. Table
5.4 shows the number of positive examples existing on average in the training set for the last
solved scenario and the first unsolved scenario for k={2,3,4]. In this table we can observe that if
the number of positive examples is over 80% percent the system cannot solve the problem, but
instead overgeneralises it.

We can also observe that in problems with k > 7 the overgeneral zone becomes smaller or none-
existing. The learning map jumps almost directly from total learning to not learning. These
problems are almost as finding the needle in the haystack. The wrong coverage breakpoint
(larger than the size of the needle) renders the system unable to learn at all. An extreme case of
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Figure 5.8: Learning and overgeneralisation map using various k-DNF problems and coverage break-
points, where the coverage breakpoint is 1/2* and the default class is 0. The groups represent

different values of k (number of attributes). Blue L1: good learning, Green /\: overgenerali-
sation, Red (): no learning

Table 5.4: Percentage of positive examples for the last scenario solved and the first scenario not solved in
BioHEL according to Figure 5.8.

Last Solved Positive examples | First Unsolved Positive examples

Scenario Scenario

k=2 r=5 76% k=2 r=10 94%
k=3 r=10 73% k=3 r=15 86%
k=4 r=25 80% k=4 r=30 85%

this phenomenon are the datasets with k=10, where not even the appropriate coverage break-
point (2719 can solve the problem. In this case the ILAS windowing scheme is influencing the
performance of the system. We know from our ILAS theoretical models (See Section 2.4.1.3) that
in order for this mechanism to work well, each stratum should have representatives (instances)
of all niches in the problem. That is, instances associated to all the terms in the problem’s

89



CHAPTER 5: PARAMETER IMPACT IN BIOHEL'S FITNESS FUNCTION

;§' Type of Learning

= B No Learning

E Overgeneralisation
Er Learning

2

zv

N g ) o R o S Phagrl > >
A A DR A M A A A K A A
Coverage breakpoints

Figure 5.9: Learning and overgeneralisation map using various k-DNF problems and coverage break-
points, where the coverage breakpoint is 1/2* and the default class is the majority class. The
groups represent different values of k (number of attributes). Blue [): good learning, Green
/\: overgeneralisation, Red (): no learning

solution. When each term is so specific (as in the k = 10 case where each term is matching very
few instances in the training set) it is very difficult that, during the ILAS strata generation, the
random sampling process guarantees that each strata has enough representatives of all terms.
To fix this situation the number of strata employed by ILAS should be reduced.

Also the same experiments with default class majority instead of only fixing it to class 0 were
run and the results are shown in Figure 5.9. Similarly to the experiments in the previous section,
the learning maps using a majority default class are slightly worse than the ones fixing the
default class to 0. For larger values of k the results are similar to the ones using default class
0, since in these cases both versions are solving the exact k-DNF problem. For smaller values
of k, the system tries to learn the inverse problem and much smaller coverage breakpoints are
needed to at least learn an overgeneralised set of rules. The coverage breakpoint needed in
these cases seems to be inversely proportional to the number of terms the problem has.

Figure 5.10 shows the execution time of the whole learning process using different coverage
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Figure 5.10: Average execution time to learn a k-DNF function with different coverage breakpoints of

the type 2. Horizontally we present the coverage breakpoints tested and vertically the
two default class policies.

breakpoint values and default class policies. Here we can observe that the execution time is not
linked to the coverage breakpoint used and the spiking behaviour corresponds to using and
incorrect parameter value in some cases which can make the learning slower. The same patterns
observed in Figure 5.5 are presented in this figure for both default class policies. Considering
that the adequate coverage breakpoint value for a k-DNF problem in 2% where k is the number
of attributes expressed in the k-DNF terms, Figure 5.11 shows the average execution times for

the optimal configuration in each scenario. In this figure it is clear that the execution time
increases depending on k and r.
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Figure 5.11: Average execution time to learn a k-DNF function using the optimal coverage breakpoint
for each scenario

5.4.1 A general coverage breakpoint setting for binary domains

In this section we have observed that to solve a certain k-DNF problem we have to set up the
coverage breakpoint to be equivalent to 27K where k corresponds to the number of relevant
attributes in the problem. At this point it would be natural to think that what we have done
is just to align the parameter specifically to the k-DNF problem at hand. This is not the case
because our goal is to feed the system with structural information about the optimal solutions.
For instance, the terms in the 6-bit multiplexer have a k of 3 (two address bits and one data bit),
the terms in the 20-bit multiplexer have a k of 4, a k of 5 is present in the 37-bit multiplexer and
so on. The 18-bit hybrid Parity-Multiplexer problem [Butz, 2006] has a k of 9, as this problem

is composed by a 6-bit multiplexer where each of these “bits” is the result of a 3-bit parity
problem.

Therefore, to solve problems with binary attributes it always makes sense to explore values of the
coverage breakpoint parameter of the type 27%. Moreover, this does not only apply to synthetic
problems but also to real-world ones. For instance, the rules generated for binary protein structure
prediction datasets present consistent and very similar number of attributes [Bacardit et al., 2009b].

5.4.2 Coverage breakpoint setting policies for more complex domains

For datasets that use more complex representations like x-ary discrete or continuous attributes
?t would not be enough to estimate the number of attributes represented in a term. For example,
In a x-ary discrete representation (more than two nominal values per attribute) and under the
assumption that each term would only activate a single value per attribute, the coverage break-
points to explore would have a shape of x ™ x, where yx is the cardinality of the attributes and x is
the number of relevant attributes in the optimal solution. On the other hand, if a term activates

all but one of the attribute values per attribute, we would need coverage breakpoint values of
the shape (5;—1)" . In general, if the average number of values appearing per attribute in a term
1s ¢, the explored coverage breakpoint values would be (¢/x)*. This value may not be that easy

to estimate in a global way. For instance, in some x-ary protein structure prediction datasets
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with a cardinality of 20 values per attribute [Bacardit et al., 2006], some of the attributes would
have an e value close to 20 while other attributes would require an e value around 7.

In the case of a hyper-rectangle-based continuous representation, if each (specified) side of
the hyper-rectangle occupies a fraction r of the attribute’s domain, the coverage breakpoint
values to explore would be in the form of r* where x is the number of relevant attributes per
term.

Overall, the problem of setting up the coverage breakpoint parameter is not solved, but it is trans-
lated to determining the structural characteristics of the problem based on the representation used.
Therefore, a parameter sweep process that considers these structural characteristics would be much
more effective.

5.5 Conclusions

In this chapter we have studied more in-depth the behaviour of the BioHEL evolutionary learn-
ing system using very diverse k-DNF boolean functions, which present different challenges to
the BioHEL system, such as high class imbalance and term overlapping.

The experiments showed that the execution time and the number of GA iterations necessary to
learn one of the k-DNF terms depend on the number of attributes expressed k and the number
of terms r. The execution time of the algorithm does not depend on the coverage breakpoint
used. However, the usage of the majority class can increase the execution times when the wrong
default class is selected. It was shown that the default class policies are very helpful when the
problem that we want to solve is unknown. Nevertheless, using the majority or minority class
might not always be the best policy. When the problem is balanced using the majority or the
minority class only discards half of the examples, which means that, if we are using a small
coverage breakpoint, the learning will be very slow. The system starts generating plenty of
rules that cover few examples, instead of generating a maximally accurate and general solution

to the problem.

In this chapter we have gained some insights about the parametrisation of BioHEL's fitness function:
a) each problem configuration needs a particular coverage breakpoint in order to solve the problem
and b) the performance of the algorithm depends on the adequate selection of the coverage breakpoint.
These problems get aggravated when trying to solve a real problem, since it could be very difficult
to determine which is the adequate value for this parameter. The coverage breakpoint should apply
enough pressure to learn rules that cover a considerable amount of examples but without forcing
the system to overgeneralise. According to our experiments the adequate coverage breakpoint for
boolean problems with k attributes expressed is 2. For problems with few positive examples
even smaller coverage breakpoints are required to force the system to learn the correct set of rules.
Moreover, when there is high overlapping (more than 80% of positive examples), even having the
right coverage breakpoint is not enough to solve the problem. At this point the generalisation
pressure is too strong and the system tends to overgeneralise.

To avoid an exhaustive exploration of the coverage breakpoint space it is necessary to align the
explored values to the characteristics of the knowledge representation and, if this knowledge
is available, to the characteristics of the problem itself (number of relevant attributes, the sizes
of the intervals for continuous attributes or the number of values per attribute on the x-ary
discrete representations). Still, in many cases this information is not available and a parameter
sweep process would be required.
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5.6 Future research directions

Towards the aim of determining the characteristics of the problem, Chapter 6 will describe
theoretical models that estimate the probability of generating a good initial population of our
ALKR+GABIL knowledge representation based on the problem characteristics (k and r). After-
wards, using this model and the negative instances model presented in this chapter it is possible
to estimate the problem’s k and r, and hence derive the appropriate coverage breakpoint value,
as it will be described in Chapter 7.

Regarding the extreme cases, where the class imbalance is too high it would be interesting to
revisit the work of Orriols et al. [Orriols-Puig and Bernad6-Mansilla, 2008a; Orriols-Puig et al.,
2009]. This work develops class imbalance models for XCS which perhaps could be helpful
to improve the BioHEL system. Moreover, it would be interesting to determine the impact of
the ILAS windowing scheme sampling over the problems that have very few positive examples.
Perhaps it could be possible to generate models that indicate the maximum number of windows
that ensures the learning, considering the class imbalance.

In general other techniques such as granular clustering [Pedrycz and Bargiela, 2002, 2012], min-
max clustering [Bargiela and Pedrycz, 2013; Simpson, 1993], and inclusion/exclusion clustering
[Bargiela et al., 2004] seem to hold the key to handle imbalanced data. In these techniques the
data is iteratively clustered together in hyperboxes (which are very similar to the hyperplane
representation of BioHEL). Depending on the technique used, the hyperboxes are generated in
different ways, but some concepts remain present: a) the membership or compatibility notion
that allows the hyperboxes to merge and expand while still trying to be as compact as possible,
and b) the concept of overlapping between classes. This allows to generate a representation
that simply adapts itself to the underlined model of the data (with hyperboxes that can vary
their size in different parts of the search space). Since these approaches are also supervised
learning approaches and they use a representation somehow similar to BioHEL's hyperplanes,
it would be very interesting to analyse these techniques in greater depth and try to apply these
concepts to BioHEL to improve its performance on imbalanced data. For example our current
rules can simulate hyperboxes and this hyperboxes can undergo a reorganisation phase (they
can be merge or split if they are too big, according to the previously mentioned clustering
concepts).

It would also be interesting to compare the k-DNF results obtained with BioHEL with other
ML systems, although the choice of a common performance metric across multiple learning
systems (e.g. XCS [Wilson, 1995], C4.5 [Witten and Frank, 2005], etc.) is far from simple. As
part of these experiments, we would like to compare the learning map of other systems to see
if they show the same patterns as BioHEL. Moreover, as we have shown that these datasets
present several interesting challenges, we believe that it would be interesting to use them as
standard benchmarks for EL.
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CHAPTER 6

Modelling the Initialisation Stage of
BioHEL

Models are commonly used to gain understanding of how EL systems work. To understand better how the structure
of the problem influences the behaviour of BioHEL, in this chapter we propose models for the probability of having
a good initial population in BioHEL for problems with discrete attributes; this means using the Attribute List
Knowledge Representation (ALKR) and the GABIL encoding. We base our work in the schema and covering bound
models previously proposed for XCS. These models are extended to: (a) deal with the combination of ALKR+GABIL
representation, (b) explicitly handle datasets with niche overlap and (c) model the impact of using the covering and
default rule mechanisms in the representation. The models in this chapter are based on the problem characteristics
and allow us to evaluate the challenges presented by problems with high cardinality (in terms of number of attributes
and values of the attributes) as well as the benefits contributed by each of the components of BioHEL's representation
and initialisation operators. Finally, since the models are based in structural characteristics of the problems, they
constitute the basis to determine this structure and adapt the coverage breakpoint automatically.

6.1 Introduction

As it was shown in Chapter 5, BioHEL is highly parametrisable and the adequate parameter
values depend on the structure of the problem at hand. However, it is still not clear how exactly
this inner structure of the problem makes the learning more difficult for BioHEL. Moreover, the
structure of the problem is unknown in real situations and we need to guess this structure to
be able to parameterise the algorithm correctly. In order to gain precise knowledge about how
the structure of the problem affects the learning process in BioHEL we performed an analysis
of the initialisation stage.

Facetwise analyses (which include analysis of the initialisation stage) have been performed
in the past over EL systems [Butz et al., 2004; Butz, 2006; Goldberg, 2002; Orriols-Puig, 2008;
Orriols-Puig et al., 2010; Stalph et al., 2012] to understand their domains of competence and the
requirements that should be fulfilled for their correct functioning. Using this methodology we
aim to determine the structure of the problem by observing the system’s behaviour during the
initialisation.

In this chapter we develop models that extend the covering and schema bounds proposed for
the XCS system [Butz et al., 2004; Butz, 2006], that is, the probabilities that an initial population
covers the whole search space and that it contains representatives from all niches in a problem,
respectively. These models were originally created for the ternary representation {0,1,#}, thus

we extended them to work with BioHEL's binary representation: ALKR which, for discrete
variables, uses the GABIL encoding (See Section 2.4.2.1). Moreover, the models explicitly take
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into account other characteristics of BioHEL such as its covering operator and the use of an
explicit default rule. Afterwards, specific models are developed for problems where there is
overlap between some of its niches (problem terms). Finally, these models are generalised to
deal with x-ary attributes, where the cardinality of each attribute is greater than two.

These models are empirically evaluated, in a first stage, using binary problems with and with-
out niche overlap. The experiments show the models are accurate in these two different scenar-
ios. Moreover, the models also show how the covering and default rule mechanisms of BioHEL
increase the probability of having a good initial population. In a second stage we validate those
models for x-ary attributes. The models show how the problem gets harder with the increase
of the cardinality of the problem attributes and the number of classes. Nevertheless, they also
show how the GABIL encoding can be more robust when the number of values per attribute in-
crease, since this decreases the probability of generating unmatchable rules, a known weakness
of this representation [Llora et al., 2007].

Finally, using the probabilistic models derived we calculate the corresponding schema and
covering bounds and show how the minimal theoretical population size for BioHEL changes
depending on the characteristics of the problem.

These models are useful, not only because they show insights about the strengths and weak-
nesses of BioHEL, but also because they are the start point to design principled methodologies
to automatically adjust some of the parameters of the system. This adjustment is particularly
desirable when handling large scale datasets, since it helps avoiding the high computational
costs involved in preliminary experimentation. A final discussion presents briefly how this
models can help discover the structure of the problem if the behaviour of the system on its
early stage is analysed. These models lead to the implementation of a heuristic to set the cov-
erage breakpoint parameter automatically which is one of the main contributions of this thesis,
shown in Chapter 7.

This chapter is structured as follows. Section 6.2 presents the previous work around modelling
GAs and EL systems, with special emphasis in the schema a covering bound models already
derived for XCS. Section 6.3 presents the derivation and validation of the probabilistic models
for the binary domain in which the schema and covering bounds are based. Section 6.4 presents
the extension of the models for the x-ary representation. Section 6.5 presents the derivation of
the schema and covering bounds from the probabilistic models derived. Section 6.6 presents
a brief discussion about how to use the models to derive the problem structure. Section 6.7

presents the final remarks and Section 6.8 presents the further research directions of this chap-
ter.

6.2 Evolutionary Learning modelling methodologies

Since GAs [Holland, 1975] were introduced by Holland in the 60’s theory was developed to
explain why and how GAs work. Holland first presented the definition of a schema which is a
subset of strings with similarities over a number of inputs or positions. In a binary domain, a
schema can be written as a sequence of ternary symbols that specifies some of the bits in a string
of size d (i.e 1*0*11) [Holland, 1975],! where d corresponds to the total number of attributes
Or inputs of the problem, each bit corresponds to an attribute and the “*” corresponds to the
attributes that are not relevant or can take any value. For example the schemata 1*0*11 groups
the following four strings {100011, 110011, 100111, 110111}. Moreover, the schemata can be use
to represent partial solutions to the problem and the subset of schemata that correspond to the
Inner structure or terms of the problem are known as the building blocks.

Based on this theory Goldberg [2002] proposed an approach to formalise the design and ap-

.‘ We use the ternary representation to explain the concept of schema as it is more compact. However, the represen-
tation used in BioHEL for nominal attributes is the GABIL representation.
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plication of GAs by employing a facetwise methodology in which the different aspects of the
system are analysed individually, assuming that the rest of the components are working cor-
rectly. According to Goldberg the problem of designing a competent GA can be decomposed
into the following seven subproblems:

1. Know what GA process (building blocks)

Know thy building block challengers (building-block-wise difficult problems)
Ensure an adequate supply of raw building blocks

Ensure increased market share for superior building blocks

Know building block takeover and convergence times

Make decisions well among competing building blocks

N oo o os W N

Mix building blocks well

This methodology was adapted by Butz et al. [2004]; Butz [2006] to the specific context of Michi-
gan LCS. In recent years, this methodology has been applied to specific, challenging, learning
scenarios such as problems with class imbalance [Orriols-Puig, 2008] or continuous domains
[Orriols-Puig et al., 2010; Stalph et al., 2012]. The work developed in this chapter is based on
the principles found in [Butz, 2006; Goldberg, 2002].

Furthermore, other formal analyses of LCS have been proposed from a more probabilistically
model-based perspective [Drugowitsch, 2008; Edakunni et al., 2009]. In this work the authors
model LCS as a Mixture of Experts (MoE), showing how this metaphor can generate a very
similar prediction models and explain how LCS works from a ML point of view.

Also, other analysis over the initialisation stage of the GABIL representation have been per-
formed in the past [Bacardit, 2005] in the context of the GAssist. In this work the probability
of covering the search space with the GABIL representation was modelled in order to propose
smart initialisation strategies for GAssist. Moreover, the GABIL representation has also been
analysed in terms of scalability in [Llora et al., 2007]. In this work the authors point out weak-
nesses of the GABIL representation, such as generating rules that are incapable of matching
any example. Here the authors show how the number of unmatchable rules increase expo-
nentially with the problem size, presenting scalability problems for the systems that use this
representation.

6.2.1 Facetwise analysis of the initialisation stage

To solve the third problem presented by Goldberg (ensure an adequate supply of raw building
blocks), there are two characteristics a good initial population needs to comply with, according
to Butz et al. [2004]; Butz [2006]. First, the building blocks of the problem should be present
in the initial population, meaning that there should be representatives of each niche (terms of
the problem). That is rules that belong to a niche and do not misclassify. Moreover, the whole
search space should be covered. These two requirements are referred as the schema and cover-
ing bounds respectively. In the following sections we present the corresponding probabilistic
models for the XCS classifier system using ternary representation.

6.2.1.1 Schema Bound

A representative is a classifier that specifies at least all the relevant attributes in a problem
schema. The representative, however, may be more specific than the schema, as some of the
irrelevant attributes can be specified as well. For example if a problem schema is 1*0** possible
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representatives would be 1#0## or 110#1. If we consider the schemata as the niches or terms
of the problem, the representatives are the rules that do not make mistakes and therefore, have
information about the building blocks of the problem.

The schema bound constraints the parameters of the system so the probability of having rep-
resentatives of each schema in the initial population is high enough [Butz et al., 2004; Butz,
2006]. This is important since having good building blocks in the initial GA population is
essential for the learning process [Goldberg, 2002], as it avoids falling into local optima. It is
worth mentioning that it is also possible to generate representatives along the learning process,
through crossover and mutation. However, the probabilities of this happening are enclosed
in the reproductive opportunity (probability of generating representatives along the learning
process) and sustenance (probability of survival of the good individuals) bounds, which are
not related with the initialisation stage.

The schema bound is based on modelling the probability of generating a rule that is a represen-
tative of a schema. For the ternary representation this is:

k
P(rep) = % (‘7[2—P1> (6.2.1)

where k is the number of relevant attributes or bits represented in the schemas, n is the number
of classes and ¢[P] is the specificity probability of the population. In initial populations this
value is equal to 1 — Py, the probability of specifying a value in a randomly generated rule,
while later in the run in converges to 2j, where y is the mutation probability. In [Butz, 2006]
the k is also regarded as the minimal order of difficulty of the problem.

Morever, the probability that a certain niche is represented is equal to Equation (6.2.2) where N
is the population size.

Kn N
P(rep exists) =1 — (1 - % (@) ) (6.2.2)

From this formula its is possible to derive lower bounds for the population size N, and the
specificity of the population ¢[P] that ensure that the probability of having the representative
in the population is high enough. After deriving the schema bound for the population size it
was shown that the smaller the value of o'[P| the smaller the population size needed. Moreover,
the population size grows exponentially according to k.

6.2.1.2 Covering bound

The covering bound assures that every possible instance of the problem is covered at least by
one classifier in the population. In this way, we will map the whole problem domain into an

initial population. The probability of this happening depends on how large and how general is
the initial population.

To calculate the covering bound we need to calculate the probability of matching an instance
Wwith a randomly generated classifier. According to Butz [2006], in a uniformly sampled prob-

lem space with d representable attributes, the probability of matching an instance with a ran-
domly generated classifier is:

d
P(match) = ( - @) (6.2.3)

98



6.3. PROBABILISTIC MODELS FOR ALKR+GABIL

Moreover, the probability that an instance is matched by a randomly initialised population of
size N is: i
P14
P(cover) =1 — (1 — < - %]) ) (6.2.4)

Since the covering is only applied when the rules are initialised, the specificity of the popula-
tion ¢[P] can be consider equal to 1 — P4. Based on the previous formula, and using the same
methodologies as with the schema bound, it is possible to derive boundaries for ¢'[P]. In Butz
[2006] it was shown that the population size increases linearly with the average specificity o[P]
and the size of the problem d.

6.3 Probabilistic models for ALKR+GABIL

In this section we will focus on calculating the probabilities on which the schema and covering
bounds are based for the binary case using the ALKR+GABIL representation. We will also
derive formulas for cases with overlapping for the schema bound. Afterwards, in Section 6.4 we
generalise the models for y-ary attributes. These probabilities can be used to specify restrictions
or bounds over system parameters, as it will be shown explicitly in Section 6.5.

6.3.1 Schema Bound: Probability of generating a representative

The schema bound is based on modelling the probability of generating a rule that is a rep-
resentative of a schema. The probability of a representative was already calculated for the
ternary alphabet as shown in Section 6.2.1 based on the global specificity of the population
and without considering overlapping. However, the probability for BioHEL is different since
this system uses the ALKR+GABIL encoding. The probability for BioHEL depends also on the
methodologies this system uses to create new classifiers (covering and default class) and two
user-defined parameters p and ExpAtts (See Section 2.4.2).

Considering the covering and the default rule mechanisms in BioHEL, there are four ways in
which a rule can be created:

(a) not using covering or default rule (base case)
(b) using default rule only

(c) using coverage only

(d) using coverage and default rule

For each one of these cases we derived the probability of having a representative in problems
that do not have overlapping. Afterwards, based on this probability we handle the niche over-
lapping case.

To calculate the probability of the representative we need to consider two types of at-

tributes:

Fully mapped attributes. Attributes for which all its possible values are specified within the
schemata.

Partially mapped attributes. Attributes for which only one of its possible values is specified in
the schemata, either 1 or 0.

We will refer to the number of fully mapped attributes as k; and the number of partially
mapped attributes as k. If the schemata have k attributes, then k¢ + kp = k.
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Considering that BioHEL uses the GABIL representation embedded within the ALKR, an at-
tribute is relevant if it was selected to be in the attribute list. This occurs with probability I
as shown in Equation 7.3.3. Moreover, an attribute can also be relevant if the attribute is fully
mapped and the strings generated are 01 or 10 (equivalent to 1 and 0 in ternary encoding), or if
the attribute is partially mapped and the “right” string is generated.

1 d <= ExpAtts
= 6.3.1
la { ExpAts 4 ExpAtts (6.3.1)

In the following sections we will show the final probability formulas for each one the the cases
mentioned before.

6.3.1.1 Base case (No covering and no default rule)

Considering that a representative should have at least the number of bits in the schema repre-
sented k, the size of the problem d, and the number of possible actions n, the probability of a
rule becoming a representative is:

(rg)k" (rg)*' (1 14P(00))* ¥

P(rep) = = (6.3.2)

where rg is the probability of relevance of a partially mapped attribute and rg is the probability
of relevance for a fully mapped attribute. Considering that the probability of setting a GABIL
value to 1 is p and the probability of setting it to 0 is 1 — p, then the probability of generating
all possible strings for the binary representation are:

P(01) = P(10) = p(1—p) —» String1lor0
P(11) = p? — Don't care string (6.3.3)
P(00) = (1—p)? — Unmatchable string

Sonsider'mg this, the probability of relevance of fully and partially mapped attributes would
e:

rh = 1,P(01 v 10) = 21,p(1 - p) (6.3.4)
rh = 1,P(01) = Izp(1— p) (6.3.5)

Moreover, the last term in Equation (6.3.2) avoids the string 00 in the d — k attributes that are
Not relevant. If one of the attributes has this string the classifier would not match any instance,
and consequently a representative would not be formed. Considering this we can derive the

Probability of having a representative without using covering or default rule mechanism as
shown in Equation (6.3.6).

k K d—k
. R 2% (lap(1 - p)) (,: —14(1 - p)?) 636)
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6.3.1.2 Default class case (no covering)

When there is a default class, there are only n — 1 possible actions for a new classifier. Including
this assumption, the probability of a representative in this case would be:

k k d—k
P(rep) = 2’“"’7(1—’7))”(_11_1"(1_")2) 63.7)

6.3.1.3 Covering case (no default rule)

To model the usage of covering we need to consider four new aspects over Equation (6.3.2):

1. The number of possible actions will be equal to 1. Since the action will be copied from the
example there is no choice besides using that action.

2. The probability of having a string 01 or 10 will depend on the probability of the attribute
in the instance being 0 or 1.

3. Using covering having an attribute 00 is not possible anymore.

4. Despite the fact that the classes might be imbalanced the covering opportunities for all
the classes are the same.

Considering that we are copying one value from a randomly sampled instance the values for
rg and rg will be the same as shown in (6.3.8).

P =rf=1d(1-p) (6.3.8)

The probability for fully mapped attributes being relevant in this case is reduced by half. This is
because since we are copying an instance we could only either generate the string correspond-
ing to the instance value with probability 1 — p or the string 11 with probability p.

However, the whole probability of generating a representative in this case depends on the re-
lation of classes mapped by the problem terms m over the total number of classes n. This is
because all the classes have the same probability of being selected for covering, but only the
classes represented in the schemata will produce representatives. Substituting this assump-
tions we obtain the probability of having a representative using covering as shown in Equation
(6.3.10).

P(rep) = — (I4P(01))F (6.3.9)

(la (1 - p))* (6.3.10)

I ==

6.3.1.4 Covering and default class case

The usage of a default rule mechanisms limits the number of classes that can be used for cover-
ing to n — 1. Also the number of mapped classes m would not include the default class. Includ-
ing these changes in Equation (6.3.10) we obtain the probability of generating a representative
using covering and default class:

P(rep) = ——(ls(1-p))* (63.11)
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Figure 6.1: Percentage of examples covered by a rule in relation with the total percentage of examples
covered

6.3.1.5 Modelling the impact of rule overlap

A randomly generated k-DNF problem (as those used in Chapter 5 to evaluate BioHEL's perfor-
mance) has a very high probability that some of its terms overlap among themselves, specially
if the number of terms r is very high and the number of specified attributes k is small. In
this sense, the multiplexer problem is an extremely rare case of k-DNF since none of the terms

overlap with each other. In this section, we will extend our models to consider the overlapping
between rules.

To calculate this probability we first have to calculate the probability that a rule belongs to a
specific niche P(niche). For a problem with no overlapping this probability consists in dividing
the probability of a representative by the number of niches or terms.

P(niche)y, = m (6.3.12)

When there is overlapping each term covers the same amount of examples as before. However,
the covered space shrinks because there are instances covered by more than one term. This
relation is exemplified in Figure 6.1. Considering this, the percentage of space covered by one
niche can be generalised by dividing the amount of examples covered by a niche EN among
the total number of examples covered EC.

For a randomly generated k-DNF problem with d representable attributes and 2¢ instances

we know the probabilistic estimation of the amount of positive examples (examples covered)
would correspond to:

EC =2*(1 - P(neg)) (6.3.13)

where P(neg) is the probability of generating a negative example. Using the derivation of
P(neg) shown in Chapter 5 we obtain:

ec=2(1-(1-27%)) (63.14)
Moreover, we know the amount of examples covered by each rule is:
EN =2'/2 (6.3.15)

Substituting the value 1/- with EN/EC we obtain that the probability of having a representative
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of certain niche when there is overlapping is:

P(niche) = Zuzp) (6.3.16)

2 (1- (1-274)")

Moreover, we can calculate the probability of having any representative under overlapping
conditions P’(rep) by forcing that at least one of the niches has a representative.

P'(rep) = (1 — (1 — P(niche))") (6.3.17)

Particularly in the IRL approach, there is no need that all the niches are represented, as we
are interested in learning one rule at the time. Moreover, the previous model is based on the
assumption that the rules of a problem cover random subsets of the problem attributes. If the
distribution of niches is not uniform, the model does not fully hold.

6.3.2 Covering bound: Probability of matching an instance

To calculate the covering bound we need to calculate the probability of matching an instance
with a randomly generated classifier. Although, this was already calculated for the ternary al-
phabet as shown in Section 6.2.1, in this section we adapt it to the ALKR+GABIL representation.
In the following sections we will calculate this probability using and not using the covering
mechanism. The default class mechanism in this case does not affect the results obtained in
terms of matching. Therefore, no specific formulas are presented for these cases.

6.3.2.1 Base case (No covering)

There are three ways in which a randomly generated attribute can match an example:

(a) the attribute does not appear in the list with probability 1 — 1,

(b) the attribute does appear in the list and the bit corresponding to the instance value is on.
Case (b) occurs with probability p of setting the right bit on. Therefore, the probability of match-

ing is:
P(match) = (1 — I, + Igp)* (6.3.18)

6.3.2.2 Covering Case

The usage of covering affects the probabilities of setting the right bit on. Therefore, we need to
consider two cases:

(a) the instance used for covering is similar to the one we want to match or
(b) the instance used for covering is different.

If the instance is similar the probability of matching is 1 and if the instance is different the
probability is p, because we need to activate the bit that was not copied through covering. Then
the probability of setting the right bit on considering these two cases is (1+p)/2. Substituting p
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Figure 6.2: Validation of the probability of a representative using the multiplexer problem.

with (1+p)/2 on Equation (6.3.18) we obtain:
d
P(match) = (1 wlatla (”T”)) (6.3.19)

For the worst case, matching an instance attribute when the example used for covering is dif-
ferent happens with probability 1/2. If the number of instances is smaller than the number of

classifiers this factor might grow up to 1, because it is more probable that instances will be
repeated during the covering process.

6.3.3 Model validation

To validate the previous models k-DNF and multiplexer problems are used. The k-DNF prob-
lems used are of size d = 10, with k = {2 — 10} and r = {1,5,10,20,40}. On the other hand,
the multiplexer problems used were of size 3, 6, 11 and 20. Is is worth mentioning that there
is a direct relationship in the multiplexer problem between the size of the problem d and the
number of relevant attributes k as follows: d = k — 1+ 25~ For the k-DNF problems we gen-
erated 5 different instances of each configuration and run each one of them with 25 different
seeds. In the case of the multiplexer problems we run each one of them with 125 seeds.? For
each run we generated a random population of 500 individuals and calculated different metrics.
To validate the probability of a representative we calculated the average number of classifiers
that had the bits in the schema represented. On the other hand, to validate the probability of

match we calculated the average number of classifiers that match each one of the instances in
the problem.

We tested the system under the 4 different combinations of covering and default class men-
tioned before. For all experiments the value for the ExpAtts parameter was 15. Moreover, for
the probability p we experimented with three values p = {0.25,0.5,0.75}.

In the following sections we will first validate the probability of finding a representative with-
out overlapping. Afterwards, we will validate the overlapping case and the probability of
matching a randomly selected instance.

2We used 125 seeds to obtain the same number of samples as with the k-DNF problems.
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Figure 6.3: Validation of the probability of a representative using the k-DNF problem with one rule

6.3.3.1 Probability of generating a representative

Figures 6.2 and 6.3 show the validation of the probability of finding a representative for non-
overlapping problems using the multiplexer and the k-DNF problems, respectively. For the
k-DNF models we only used problems with one rule to guarantee that there is no term overlap.
In these figures we can see that the models adjust to the empirical data. Moreover, while the
number of relevant attributes k increases the probability of having a representative decreases.
In particular for the multiplexer problem (Figure 6.2) the probabilities using and not using the
default rule mechanism are the same since these problems have schemata that map to all the
classes. Therefore, only the results for the covering and not covering cases are shown.

Also it is noticeable in these figures that the mechanisms of default rule and covering increase
the chances of creating representatives, which demonstrates the benefits of these techniques.
However, the best value of p changes depending on whether the system is using covering
or not. When the system does not use covering larger or medium values of p are beneficial.
However, when using covering a large p decreases the probability of having a representative,
as it raises the chances that a rule misclassifies because it is too general.

6.3.3.2 Probability of generating a representative with niche overlap

To validate the models for problems with niche overlap the k-DNF problems with more than
one term are used. Figures 6.4 and 6.5 show the validation of the models considering niche
overlap for p=0.75 and p=0.25, respectively. In these figures we can observe that the models fit
the empirical data. Moreover, the probability of generating a representative increases with the
number of terms, as there is a higher chance that one of the terms is represented. Also we can
observe the benefits of the usage of covering and default rule mechanisms, both of which help
increase the probability of obtaining good rules in an initial population. This is particularly no-
ticeable in Figure 6.5 where the usage of covering greatly increases the probability of obtaining
individuals that do not make mistakes.

6.3.3.3 Probability of matching a random instance

Figure 6.6 shows the validation for the probability of match using the multiplexer problem.
In this case the k-DNF problems were not used because all of them had the same number
of attributes d=10. We can see here that while the problem size increases the probability of
match decreases. Moreover, the higher the value of p the higher the probability of matching an
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Figure 6.4: Validation of the probability of a representative for k-DNF problem with rule overlap and
p = 0.75. The graphics show the probability of having a representative considering all the
niches

instance since the rules will be more general. The adequate value of p is the largest possible no
matter if the system is using covering or not.

Moreover, we can see that when the problem is very small the empirical probability is higher,
this is because the problem has less instances than classifiers in the population, so the proba-
bility of generating classifiers with the same instance increases. We can also observe a plateau
in the models when the number of dimensions in the problem is larger than ExpAtts, as at-
tributes that do not appear in the ALKR’s list are considered as irrelevant, hence matching any
value.

6.4 Towards generalised models for x-ary attributes

Having derived suitable models for the binary representation in BioHEL we now focus on
generalising these formulas to work with nominal attributes with more than two values. This
generalisation will show how the problem becomes more difficult when the cardinality of each
attribute increases. Also it will show how the GABIL representation gets more robust as the
number of values per attribute increase, since this decreases the probability of generating un-
matchable rules (rules where an attribute has all the bits set to 0). This is a particular issue that
has been identified in the literature as a weakness of this representation [Llora et al., 2007]. In
the following sections, we present the generalised formulas for the schema and covering bound
for x-ary attributes.
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6.4.1 Schema bound

Let’s call the number of possible values of an attribute t and the number of values that need to
be set to 1 in an attribute e. For example, for the binary representation considered previously
the corresponding values would be t = 2 and e = 1. In the y-ary representation with t = 4 and
e = 2 a possible GABIL string would look like:

F1 F2 F3 F4
0101 | 1100 | 0011 | 1001

A representative will be created then if we set to 1 e bits with probability p¢ and to 0 the rest
of t — e bits with probability (1 — p)'~¢. Considering this, the formula for the base case can be
generalised as follows:

7 (lap (1= p)')* (1= 11— p)H)*
n

P(rep) (6.4.1)

where X/ correspond to the number of possible strings that can be generated for fully map
attributes.

In this formula, we can see that the probability of creating unmatchable rules decreases
while t increases, because the probability of having 0 in all the positions of a GABIL at-
tribute is very small. Figure 6.7 shows how the probability of generating a matchable rule

Pirop)
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c-RNGsLBuBE -

(a) Base Case (b) Covering

(c) Default Class (d) Covering and Default Class

Figure 6.5: Validation of the probability of a representative for k-DNF problem with rule overlap and
p = 0.25. The graphics show the probability of having a representative considering all the
niches
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Figure 6.6: Validation of the probability of match using the multiplexer problems.

(a) p=0.75 (b) p=0.25

Figure 6.7: Probability of generating the schema attributes against the probability of generating a match-
able rule withe = 1and d = 10

(La(1-(- p)'))d—k compares to the probability of generating the right string (1;p°(1 — p)"‘)k
with e=1. We can see that while f and k increase it is less likely that we generate rules that do not
match. However, the probability of generating the right string decreases when t and k increase.
Moreover, as expected the usage of a small p without using covering lowers the probability of
generating a matchable rule.

Furthermore, the probability for the default class case is similar to Equation (6.4.1) but subtract-
ing 1 to the number of classes as shown in Equation (6.4.2).

& (ap*(1 - p)'=*)* (1 — a1 — p)*

n—1

P(rep) =

(6.4.2)

On the other hand, the usage of covering can be generalised from Equation (6.3.10) by assuming
that we copied one bit per attribute from a random instance but there are still ¢ — 1 bits to set
to 1. The right string will be created then if we put t — e bits in 0 and the other ¢ — 1 bits in
L
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(rap*~ (1 - P’ (6.4.3)

m
P(rep) = =

Similar as the case with no covering, the introduction of the default class only restricts the
classifiers considered for covering. Therefore, to calculate the probability for this case we only
need to substitute m/n for m/n-1 in (6.4.4).

k
Prep) = —— (L' (1=p)"™) (6.4.4)

Moreover, to handle the overlapping case we need to consider that the probability of generating
a negative example in the y-ary representation is:

P(neg) = (1 = (;)ky (6.4.5)

where (¢/t)¥ is the percentage of examples covered by one term of the problem. To summarise,
for the overlapping case P(niche) will be equal to:

ek P(rep)

# (1@

P(niche) = (6.4.6)

6.4.2 Covering bound

When no covering is used the probability of matching an instance is the same as Equation
6.3.18, as it does not depend on the number of values an attribute can accept. Simply with
probability p the right bit (the bit corresponding to the instance) will be set to 1. However,
when the covering mechanism is activated the probability of generating a matching individual
varies because one bit was already set according to a randomly sampled instance. Therefore,
this probability will be:

d
P(match) = (l -+ 1 (—H—(tt—ﬂ)> (6.4.7)

This means that if the attribute is selected to be in the list we face t possible cases. In one of
the t cases the instance used for covering is similar to the one that we want to match. Then the
probability of matching is 1. The following t — 1 cases refers to the cases where both instances
(the instance used for covering and the instance we want to match) are different and the rule
will match with probability p.

6.4.3 Model validation

To validate these extended models we generated ternary multiplexer problems, which instead
of only accepting values 0 and 1 in the attributes they accept an extra value. In this case the size
of the problem string would be d = k — 1 + 3¥~1, where k is the number of relevant attributes in
the schemata. We generated ternary multiplexer problems of size 4 and 11. We generated initial
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Figure 6.8: Validation of the probability of a representative using the ternary multiplexer problem.
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Figure 6.9: Validation of the probability of match using the ternary multiplexer problems

populations with 25 different seeds for each one of these problems and calculated the average
percentage of representatives and the average percentage of rules that cover an instance of the
training set. Again, the population size was 500 and ExpAtts was 15.

Figure 6.8 shows the validation for the generalised models for the probability of a representa-
tive. Since the multiplexer does not show any differences on the probabilities using the default
rule, these cases are not shown. In these figures we can see that the models fit the empirical data.
However, there is a subestimation in the models because the empirical measures do not filter
the cases where the attributes corresponding to the multiplexer address map to two values and
the model does. We can notice also that while the domains of the attributes expand the prob-
abilities of generating a representative are lower. Moreover, while a smaller p is better when
using covering, p = 0.50 gives the best results in the non-covering case, as expected.

Figure 6.9 shows the validation of the generalised models for the probability of match. We can
see that in this case the models also fit the empirical data. Moreover, we can notice that the
increase of t, the attribute domain, reduces the probabilities of matching compared to Figure
6.6. However, the covering mechanism, as it was shown before, slightly increases the chances
of covering the whole search space.
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6.5 Ensuring a good initial population in BioHEL

Once derived the probabilities of obtaining a representative and matching a random instance, it
is possible to calculate the probabilities of ensuring the existence of a representative and match-
ing the whole search space, which will actually determine the schema and covering bounds for
BioHEL.

As shown in Section 6.2.1 the probability of ensuring the existence of a representative or schema
supply P(rep exists) is equal to the complement of not finding any representatives in a popula-
tion of size N as follows:

P(rep exists) =1 — (1 — P(rep))N (6.5.1)

For this formula we can derive the population size bound to ensure the existence of representa-
tives or schema supply with a particular probability P(rep exists) = 1 — a (where « represents
the confidence interval) as follows:

log(1 — P(rep exists))

log(1 — P(rep)) B

N >

In Figure 6.10 we show the population size boundary with P(rep exists) = 0.95 and the whole
landscape for the schema supply (P(rep exists)) according to N and p, for binary problems
withk = {1,3,5,7}, r = 10 and d = 10. In this figure we can observe that for the cases without
covering the probability of obtaining representatives grows proportionally to N and p, until
p = 0.6 where the probability starts dropping again. Moreover, this probability can be very
small for large values of k and therefore, the necessary population size to ensure schema supply
is really large. In the cases that use covering the situation is different, while the probability of
the schema supply still grows proportionally to the population size N, it decreases with p.
The larger the problem k the decrease is more steep since the system is interested in generated
specific rules and not general ones. The consequence of this is that the necessary population to
ensure good individuals increases exponentially while the p increases.

Moreover, the probability that a randomly initialised population of size N covers a particular
instance in the training set is equal to the complement of no rule in the population covering
that example, as follows:

P(cover) =1—(1— P(match))N (6.5.3)

Similar to Equation (6.5.2) we can derive the covering bound for the population size as fol-
lows:

log(1 — P(cover))

e log(1 — P(match))

(6.5.4)

In Figure 6.11 the population size bound is shown assuming P(cover) = 0.95 and the whole
landscape of the probability of covering P(cover) for problems with d = {10,20,40} according
to N and p. In this figure we can observe that the probability of covering increases when p and
N increase. However, as expected, when the system is using covering the probability of cover-
ing the search space is higher, and even using lower values of p covering can be ensured if the
population is high enough. In this figure we can observe that the necessary population size to
ensure covering follows a totally different pattern that the one observed for the schema bound.
In this case the population size increases exponentially while p decreases. Other interesting
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Figure 6.11: Population size necessary to ensure P(cover) > 0.95 (left) and covering probabilities
(right) for the different BioHEL configurations in a binary domain t = 2 e = 1. While
p increases the population size needed to obtain representatives decreases.

thing to notice is that when the problem has 40 attributes the necessary populations are smaller
than when the problem has 20 attributes. This is because in ALKR the rules represent on aver-
age only 15 attributes and while the problem gets larger, there is a higher probability that the
attributes are not selected to be on the list and therefore, they will match any instance.

Considering both bounds it could be possible to determine the minimum population size and
the adequate value of p that ensures theoretically the existence of a good initial population in
BioHEL, equivalent to the work done for XCS [Butz, 2006]. Figure 6.12 shows the minimum
population size needed for problems with k = {3,5},r = 10and d = {10,20}. In this figure the
point where the two lines intersect can be considered the minimum population size that can be
used and the optimal value of p. In this figure we can observe that theoretically as k increases
the minimum population size increases and, as expected, the optimal value of p decreases.
Moreover, it is worth mentioning that theoretically the population sizes used in BioHEL are
really small compared to the ones needed for XCS in [Butz, 2006]. In this figure we can observe
that for a problem with 2! examples populations of less than 100 classifiers are enough while
for a problem with 220 examples, less than 300 classifiers are enough. On the other hand for
XCS the minimum populations necessary are of 3 or 4 orders of magnitude larger. This is due
to the fact that IRL learns the problem by learning each niche independently. Therefore, it
is not necessary to have all niches represented in the population at the same time, reducing
considerably the population resources needed to solve a problem.

Regarding the impact of t and e over the models in the x-ary representation Figure 6.13 shows
the schema supply probability and the covering probability when using covering and default
rule, N = 500 and p = 0.5. Regarding the schema supply we can see that while k increases the
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values of t and e that allow a high probability of supply are very restricted and around the lower
values. Moreover, it is noticeable that while e tends to f the probability of having representatives
increase. Regarding the covering probability, while ¢ increases covering the whole search space
becomes more difficult. Moreover, the covering probability does not depend on e.

6.6 Using the models to determine the problem structure

In the conclusions of Chapter 5 we established that in order to set the coverage breakpoint
accordingly for binary problems it is necessary to determine the structure of the problem, which
is defined with the number of attributes k and the number of terms r. It is noticeable that the
models of the probability of obtaining representatives presented in this chapter are dependant
on these two values. Therefore, they could be used to derive the structure of the problem if the
probabilities of generating a good rule are known beforehand.

However, two problems arise at this point. First, the probability of generating a represen-
tative for a problem for which we do not know it characteristics is unknown and we could
only estimate this value based on empirical observations. Second, even if we have an estimate
for the probability P(rep) these models will only provide a relationship between the k and r
values.

The next chapter is focused on overcoming these problems and combine the estimates given
by this probabilistic models and the probability of negative examples shown in Chapter 5 to
determine the structure of the problem and set the coverage breakpoint accordingly.

6.7 Conclusions and further work

The models presented in this chapter predict satisfactorily the probabilities of generating a
good initial population in terms of: (a) covering the search space and (b) generating accurate
representatives for each niche in a problem. The models were generated considering the ALKR
representation with GABIL encoding. The models show how the problem becomes more diffi-
cult depending on the problem characteristics k and r. Moreover, the right selection of the value
of p, the probability of setting bits to 1 in the GABIL representation, depends on the initialisa-
tion mechanisms uses. While a larger p is beneficial when covering is not used, a smaller p is

Necessary population size Necessary population size
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Figure 6.12: Minimum population size to ensure a good initial population according to p with problems
with k = {3,5},d = {10,20} and r = 10.
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Figure 6.13: Impact of t and e in the schema supply probability for d = 10 and r = 10 for BioHEL when
using covering and default rule.

more adequate when using covering to avoid having a population that is too general.

Moreover, we presented a generalisation of the models for x-ary attributes. This generalisation
showed how the GABIL representation becomes more robust with the increase of the cardinal-
ity of the attributes, in terms of generating matchable rules. However, the overall probability of
having a good initial population decreases when the number of values per attribute increases,
since it is more difficult to generate the right string.

The models overall also show how the covering and default mechanisms introduced in BioHEL im-
prove the chances of generating a better and more useful initial population for the system. Moreover,
we show theoretically the minimum population sizes necessary to ensure a good initial population
and the optimal values of p depending on the characteristics of the problem. Finally, since the
models depend on the problem structure they can possibly be used to determine this structure.

6.8 Further work

Based on these models we proposed a method to automatically determine the structure of the
problem and determine the coverage breakpoint accordingly, which will be explained in Chap-
ter 7.

Since we presented models which are based on the assumption that we could estimate several
characteristics of the problems. In a further work, we would like to study how can we simplify
these models so some of their parameters can be removed without producing a large impact
in the accuracy. Moreover, models for the reproductive opportunity, sustenance and learning
time should be developed in order to have an unified theory for the correct functioning of Bio-
HEL and, for instance, derive other boundaries for the population size and other user-defined
parameters. Furthermore, specific challenges for IRL should be identified in order to model
unique aspects of BioHEL's paradigm.
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CHAPTER 7

Automatic theory-based adjustment
of the coverage breakpoint

Previous chapters have shown that BioHEL has parameters that control its generalisation capacity and setting them
right is crucial to achieve a good prediction accuracy. Moreover, it was shown that the adequate parametrisation
of the system is strongly related to the characteristics of the problem at hand. As an improvement to the BioHEL
system, this chapter presents an automatic parameter setting mechanism that finds the adequate coverage breakpoint
value by automatically discovering the structure of the problem. This is done using the theoretical models derived
on Chapters 5 and 6. By using these models it is possible to characterise the behaviour of the system when solving
a particular problem and therefore determine the problem structure. This method is capable of finding the adequate
coverage breakpoint in a wide variety of synthetic and real-world binary problems, improving the system’s usability
for end-users. Moreover, in the final validation stage our heuristic is able to reduce the computational time of
preliminary experiments in up to 71% for a challenging real-world bioinformatics dataset.

7.1 Introduction

EL methods, are well-known for their ability to find solutions to very complex optimisation
and classification problems. Their performance, as happens with most methods (both within
the context of ML and EAs) is tied to a series of parameters in the system that need to be tuned,
and finding the adequate set of parameters can become a very expensive experimental process.
Therefore, automatic parameter setting approaches are necessary to avoid a time-consuming
preliminary experimentation stage and reduce the number of parameters that need to be set
up, making these techniques more accessible for end-users.

Parameter setting is common problem in the field of EL, since these systems use a genetics al-
gorithm and fitness functions that often involve many parameters. Many studies have focused
their efforts in finding automatic ways to adapt the parameters in EAs [Eiben et al., 2007b].
Several techniques have been used such as reinforcement learning [Eiben et al., 2007a; Pettinger
and Everson, 2002; Sakurai et al., 2010], meta-GAs [Clune et al., 2005; Grefenstette, 1986], self-
adaptive approaches [Bick, 1992; Huy et al., 2009; Krasnogor, 2004; Krasnogor and Gustafson,
2004; Krasnogor and Smith, 2000, 2001; Smith and Fogarty, 1996a,b], among others. In the LCS
context most parameter control studies use self-adaptation strategies [Bull and Hurst, 2000;
Butz et al., 2008¢; Hurst and Bull, 2001a, 2002].

The difficulty mentioned above is also present in BioHEL as it was shown on Chapters 4 and
5, where extensive parameter sensitivity analyses were performed. One of the main charac-
teristics of BioHEL is its fitness function, which tries to balance the accuracy, complexity and
coverage of the rules in the solution. The key element of this fitness function is the coverage
breakpoint parameter, which determines how many examples a rule should cover to be consid-
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ered good and general enough. Chapter 5 has shown that the learning can be facilitated when it
is correctly set up, but also an incorrect setting can push the system towards overgeneralisation.
Moreover, this parameter is very problem dependant and requires an extensive preliminary
experimentation to determine its adequate value.

Moreover, as it was shown in previous chapters, it is possible to set the adequate coverage
breakpoint for binary functions if the structure of the problem is known. In the case of binary
problems, their structure can be characterised using k-DNF boolean formulas, which main char-
acteristics are the number of relevant attributes (k) in each conjunctive term and the number of
conjunctive terms (r) in the k-DNF formula. Considering this, the problem of determining the
coverage breakpoint can be translated to determining the k and r. However, determining these
values is not straightforward and calculating their exact value would involve applying data
mining over the problem which is an extra computational cost that we wish to avoid.

This chapter introduces an automated heuristic approach to determine the structure of the prob-
lem (k and r) and set the coverage breakpoint parameter accordingly. This heuristic combines
observations over the actual data and over a sample of randomly initialised rules evaluated
against this data, to retro-feed the theoretical models of the behaviour of the system derived in
Chapters 5 and 6, and classify the problems into groups called kr-groups with a particular k and
r associated.

The results show that the proposed method is capable of characterising challenging binary
problems with and without noise. The additional effort incurred by the heuristic, in terms of
number of additional evaluation operations, is also analysed and techniques to regulate this
effort are discussed.

Moreover, the final test on a real-world protein structure prediction problem showed that the
system managed to adapt the coverage breakpoint parameter to the best value found through
exhaustive experimentation. Our approach not only reduced the execution time of the whole
experiment (including the parameter adjustment phase) in 71%, but also intrinsically adapts
other parameters of the system, such as the specificity used to initialise the rules.

The rest of the chapter is organised as follows. Section 7.2 introduces the previous studies
around automatic parameter adjustment in EAs and LCS. Section 7.3 describes our approach to
determine the problem structure and its corresponding coverage breakpoint value. Section 7.4
introduces the experimental design and results, and finally Section 7.5 summarises the conclu-
sions and further work.

7.2 Parameter setting and parameter control methodologies

Automatic parameter adjustment is a very challenging process in EL and, in general, in EAs,
where it has been studied in great length. In this section we first describe, from a general
EA perspective, the different approaches to parameter control (an some examples of each).
Afterwards, we focus on specific examples of parameter control in EL.

There are different types of parameter control algorithms. Eiben et al. [2007b] presented a clas-
sification for parameter control where the different techniques can be classified depending on
what is changing (representation, mutation of crossover rates, selection mechanisms, etc.), or
depending on how the change is made (deterministic, adaptive and self-adaptive). The deter-
ministic techniques are the ones where the parameter changes without having any feedback
from the search. The adaptive techniques are the ones that use some sort of feedback from the
search. The self-adaptive techniques are the ones which evolve the parameters along with the
rest of features of the problem. Using this classification our approach can be classified as a
deterministic one.
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Moreover, the parameter control can also be characterised by the evidence used to produce the
change: absolute evidence or relative evidence [Eiben et al., 2007b]. While the first one changes
a parameter based on a certain event, the latter compares information of the current state with
the information from other chromosomes.

In the area of EAs, the first approaches were presented by Rechenberg [1973] and Schwefel
[1975] were the mutation rate was adapted according to the 1/5th rule. If the rate of successful
mutation was over 1/5 the mutation rate was increased and if it was below this value it was
decreased. Other early approaches involve the adaptation of crossover rate depending on how
good were the resulting offsprings [Davis, 1989; Davis and Mitchell, 1991].

Regarding operator selection within EAs, Spears [1995] presented a very simple self-adaptive
crossover selection method. One extra bit in the classifier encoding represented the crossover
that should be applied. Other approaches [Carvalho and Araujo, 2009; DaCosta et al., 2008] use
rules to modify the parameters of local search operators (crossover and mutation). DaCosta
et al. [2008] presented a new adaptation rule that modifies the selection of both crossover and
mutation based on how well these operators have performed in terms of improving the fitness.
Their implementation is based on Multi-Armed Bandit [Auer et al., 2002], where they added
a Page-Hinkley statistical test to detect changes along with time. Afterwards, this study was
extended by Fialho et al. [2009] where he compared the four operator selection mechanisms of
the previous study with four different credit assignment mechanisms for the operators. More-
over, Carvalho and Araujo [2009] used rules based on the diversity of the population to adapt
the mutation rate for the NSGA-II system [Deb et al., 2000], a Multi-Objective Evolutionary Al-
gorithm (MOEA). Using the crowding distance! they calculate the diversity in the population
and then generate a probability distribution for mutating a value. This probability distribution
is dependant on the diversity in a way in which the mutation is strong when the solution are
disperse and far form the Pareto optimal front, but soft when the solutions are closer to the
Pareto optimal front.

Reinforcement Learning (RL) has also been used widely to adapt parameters in EAs. This
means the implementation of an agent that adjust the parameters of the system based on the re-
sults obtained. For instance, Miiller et al. [2002] applied RL to identify the appropriate step size
for the 1/5th rule when adapting the mutation rate. The results in this case showed that the suc-
cess of this approach depends greatly on the reward function used for the RL mechanism. Eiben
etal. [2007a] also applied a RL approach, but to adapt all the parameters instead of the mutation
rate only. In this study the usage the new approach outperforms a benchmark GA, however
the number of evaluations needed is larger when using RL. Furthermore, other more complex
approaches [Sakurai et al., 2010] use RL to adapt the parameters of the GA considering not only
the quality of the solutions, but also the cost incurred by the selected search operators.

Other examples of parameter control involve de usage of meta-GAs to tune parameters within
a GA [Clune et al., 2005; Grefenstette, 1986]. In these studies a first GA was used to search
within the search space of parameters of a second GA, to determine the parameter combination
that works better for a certain problem while solving it.

Specifically in LCS, there are plenty of examples of self-adaptiveness. Bull and Hurst [2000]
implemented a self-adaptive mutation in ZCS. The self-adaptive mechanism consisted in giv-
ing an independent mutation rate to each classifier, which is stored and evolved within the
classifier. These experiments showed that the self-adaptive mutation performs as well as using
the optimal parameters. However, this was a prove of concept that it was possible to implement
self-adaptive mutation in ZCS and reduce the cost of finding the optimal parameters by trial
and error. Afterwards, this work was extended by self-adapting all the parameters in ZCS
(mutation, learning rate, tax rate and discount factor) at the same time [Hurst and Bull, 2001b].
While in stationary environments the results were as good as the ones obtained with fixed
parameters, in the more dynamical ones the self-adaptation improves the performance of the

The crowding distance of a solution is an estimate of the density of solutions surrounding that solution [Deb et al.,
2000]
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system. They also showed that it was more beneficial to adapt all the parameters at the same
time, than just the mutation rate. Afterwards, Hurst and Bull [20x:2] tried to self-adapt both the
mutation and the learning rate in XCS. The adaptive mutation rate solved some generalisation
problems on XCS. Nevertheless, the performance was still sub-optimal in this case. Also the
system showed worst performance when trying to adapt the learning rate.

Finally, Butz et al. [2008¢] also implemented the previous principles of self-adaptive mutation
to XCSF using hyper-ellipsoidal condition structures. In the first stage of experiments they
adapted only one value which was used to perform mutation uniformly over the different parts
of the hyper-ellipsoid (centre, stretch and rotation). Using this first approach there was no
improvement in the performance of the algorithm and the only benefit was that the system
was capable to learn the problem even with wrong initial mutation settings. Afterwards, they
also tested self-adapting individually the mutation rate for the different parts of the hyper-

ellipsoids and the results showed an improvement in the accuracy compared to XCSF using
fixed parameters.

Other novel and completely different approaches promote coding on top of an abstract frame-
work in which the programer focuses in developing the algorithms to solve a particular task (i.e
data mining tasks) and the framework performs the algorithmic optimisations and determines
the adequate parameter settings [Hoos, 2012} In this approach the parameter setting is just a
small part of the whole meta-algorithmic optimisation performed on top of an abstract coded
task. This approach so far has only been tested for solving integer programming, planning and

satisfiability problems, obtaining speedups up to 525X in the whole algorithm including the
parameter setting stage.

7.3 Automatic parameter setting of the coverage breakpoint

Considering the importance of the coverage breakpoint parameter in the performance of the
BioHEL system, it seems necessary to adjust it automatically for several reasons:

Run-time. Since BioHEL is a system mainly oriented to solve large scale datasets, finding the
correct setting for problem dependant parameters such as the coverage breakpoint in-
volves a time-consuming preliminary experimentation stage. The automatic setup of this
parameter can avoid preliminary experimentation and reduce the total experimental time.

Usability. In many cases end-users avoid exhaustive experimentation and settle for naive con-
figurations that do not produce the best results. This improvement could make the system
easier to use by an end-user and could also find better solutions for problems where the
adequate coverage breakpoint has not been determined yet.

According to Chapter 5 it is possible to determine the coverage breakpoint if the characteristics
of the problem (k-DNF formula) are known. These characteristics are the number of attributes
expressed in the terms (k) and the total number of terms in the formula (r). According to this
chapter if the number of attributes in the terms is k the adequate coverage breakpoint to solve
the problem is 2. To ensure learning the coverage breakpoint should be equal or smaller than

this value. This translates the problem of finding the adequate coverage breakpoint to finding
the k value of the problem.

But how it is possible to determine the structure of the problem by only observing the data?
To do this it is necessary to have models based on k and r that explain a) the characteristics of
the data and b) the behaviour of the system when working this data For example, the model
for the number of negative examples shown in Chapter 5 finds a correlation between k and r
and the proportion of negative examples in the problem Moreover, the probability of obtain-
ing good individuals in BioHEL shown in Chapter 6, also provides a relationship between a

characteristic of the initial population and the variables k and r This means that by observing
these characteristics we can have estimates of the k and r of the problem
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Figure 7.1: General diagram of the usage of the heuristic to determine the structure of the problem.

Since we need to retro-feed the models, each model independently will only indicate a relation-
ship between k and r. Therefore, many different values for k and r can satisfy the equation and
individually each model does not give too much information. Nevertheless, by combining the
results of different models together it is possible to determine the values for k and r that are
more likely to match the characteristics of the problem.

In this chapter we present a heuristic approach to determine the k and r of a given boolean
problem at run-time. This approach works by classifying the problems based on observations
made over the data and randomly sampled individuals. Using this information the problems
are classified into groups with a particular k and r associated, which we will call kr-groups. The
classification is done using a voting system. The space of k and r is divided uniformly in kr-
groups which have an associated expected value and standard deviation boundaries for each
one of the characteristics we intend to measure. When a problem presents a characteristic that
falls into the standard deviation boundaries of a particular kr-group the group gets awarded
points. At the end the kr-group that obtained more votes is considered the winner. Figure 7.1
illustrates how the heuristic works.

Particularly for BioHEL, three characteristics were considered to classify the problems:
¢ The number of negative examples in the problem.

e The number of good individuals in a random sample after evaluating them against the
given problem. These are individuals that do not make classification mistakes or have an

accuracy higher than a threshold.
e The number of attributes expressed in the good individuals.

The first two characteristics used are completely theory-driven. The last characteristic, even
though it does not come from a model, reinforces the two previous criteria in finding the correct
kr-group. Since the good individuals are already calculated for the second criteria, using the
number of attributes expressed in these individuals does not involve an extra computational

cost.

7.3.1 Classification criteria

The following sections will explain in greater detail each one of the criteria used to classify
the problems. Afterwards, we will show in more detail how the kr-space is partitioned in kr-
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groups and what makes a problem belong to a specific group. Finally, we explain the algorithm
step-by-step.

7.3.1.1 Number of negative examples in the problem

The negative examples are defined as the examples covered by the default class (examples that
are not going to be classified by the generated rules). Depending on the number of terms r
and number of attributes expressed in each term k, the k-DNF problem will present a different
percentage of negative examples.

For a randomly generated binary problem defined as the disjunction of r terms, where each
term is the conjunction of k randomly picked attributes, the probability of having a negative
example in the training set P(neg)¥ is equal to:

P(neg) = (1 - %) (7.3.1)

By counting the number of negative examples in the training set, it is possible to use this for-
mula inversely to determine possible combinations of k and r that are feasible for the given
problem. For example a problem with k = 2 and r = 1 has 75% of negative examples. But also
a problem with k = 6 and r = 18 has on average the same percentage of negative examples. If
we observe a particular problem with 75% of negative examples both of these kr-groups would
receive scores according to this criterion.

7.3.1.2 Number of good individuals in a randomly initialised sample

A good individual or a representative, as explained in Chapter 6, is a classifier that specifies
correctly all least all the attributes in one of the terms of the optimal solution to the problem.
Therefore, this rule does not make mistakes, but it can be more specific than the optimal rule
where only k attributes are specified. The probabilities of finding a representative were first
proposed by Butz [2006] for the ternary representation {0, 1,#} and extended in this thesis for
the binary domain using the ALKR+GABIL representation in Chapter 6.

Assuming the usage of the default rule and covering mechanisms, the probability of finding a
representative in BioHEL for a randomly generated binary problem depends on k and r, and it
is equal to Equation (7.3.2). This function states that the probability of having a good classifier
P(rep) is equal to the probability of having at least one of the terms in the k-DNF problem
represented, and to have a term represented the rule should expressed the k relevant attributes.
For more details about this model please see Section 6.3.1.

—k 1= k r
P(rep) =1 — (1 — (21_(21(—12_';))),)) (7.3.2)

In this formula p corresponds the probability of setting to 1 the values in a GABIL attribute,
and /d is the probability that an attribute appears in the ALKR attribute list (see Section 2.4.2).
This last value depends on the user-defined parameter ExpAtts as follows:

I — 1 d <= ExpAtts 733
.~ E%A'ﬁ d > ExpAtts oo
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Figure 7.2: Probability of generating a representative with different values of p in a problem with d = 10
and ExpAtts = 15.

Figure 7.2 shows an example of the landscape of this model using different values of p. By
counting how many representatives are found in a randomly initialised sample of individuals
it is possible to use the formula inversely to determine feasible pairs of k and r for the given
problem.

The individuals for the sample are not generated one by one, but by chunks of N individuals
(for all experiments in this chapter N=500). After evaluating N rules, it might be possible that
we do not find any representatives. This could happen due to several reasons. Either the sample
is too small and/ or the probability of a representative for a particular point is too small as well.
To solve these problems the system increases iteratively the total sample size (generate more
additional samples of size N) until a number of representatives R (parameter set by the user)
are found. This guarantees that the number of representatives found is not zero while checking
as few individuals as possible. A high value of R will involve checking a bigger sample size,
while a small value would have the opposite effect.

(Algorithm 7.3.1: SEARCHREPS(N) )

p < pmax

while p > pmin
(rep « @
whilei < 6Vrep # D
sample <~ GENSAMPLE(N, p)
for c € sample
if GETACCURACY(c) > minAcc

do ¢ do ¢ - PRUNING(c)
e 1 = {rep(—repUc
if [rep| > R
then rep < ERASEOUTLIERS(rep)
li=i+1
(P = p — pstep
kreturn (null) J

Moreover, we try to generate R representatives using the largest value of p (probability of set-
ting to 1 the bits in a GABIL string) possible, because that would create more general rules as
shown in Figure 7.2. However, more general rules are more likely to make mistakes. Therefore,
when the problem has a larger k, smaller values of p are needed to generate rules that do not
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make mistakes. The algorithm the system follows to adjust p, while finding the representa-
tives, is shown in Algorithm 7.3.1. The system first tries to obtain representatives generating
populations of size N created using the largest value of p: pmax. Then all these individuals are
evaluated against the training set. Afterwards, all the rules with accuracy higher or equal than
minAcc are considered representatives. When R or more representatives are found the system
returns the representatives found. If the system has already checked 6 samples and has not
found any representatives, the value of p is lowered globally across the system and the search
continues. If the value of p has reached its minimum value and and the system has not found
representatives yet, the search aborts.

The calculation of representatives from a given sample is interesting because it gives room for
our third criterion, which is the number of attributes observed in them. However, the calcula-
tion of the genuine representatives is not straight forward and some post-processing is needed
as it will be explained in the next section.

7.3.1.3 Number of attributes in the good individuals

According to the definition of a representative the number of relevant attributes in a candidate
representative cannot be less than k, because otherwise this rule will make mistakes. This gives
us at least an upper bound of the k of the problem. However, in order to use the characteris-
tics of the representatives we need to make sure that these “good rules” are actually genuine
representatives.

Two problems might arise with the good rules. First, it can happen that the good rules have
more attributes specified in the actual terms of the problem, which is misleading. Second, when
the problem consists of more than one rule, the system might find classifiers that do not make
any mistakes but they do not represent the terms of the problem. These classifiers instead
represent the union or intersection between two or more terms. They might have more or less
attributes expressed than k, and they are not really representatives of the problem. Therefore,
in order to find genuine representatives it is necessary to preprocess them.

To tackle the first problem we need to eliminate the attributes that do not affect the accuracy.
This process is called pruning and it tries to generalise the rules as much as possible. To prune
unnecessary attributes we perform an iterative search process as shown in Algorithm 7.3.2.
Each one of the attributes in the rule is eliminated, one by one. If the accuracy decreases, the
classifier is restored, if not the search continues over the resulting classifier. This local search
operator can also be used as a post-processing operator to refine the generality of the rules. This
will be studied in-depth in Chapter 9.

(Algorithm 7.3.2: PRUNING(Classifier c1) )

prevacc + GETACCURACY(c1)

for each att € GETATTRIBUTES(c1)
REMOVEATTRIBUTE(att,c1)
if GETACCURACY(c1) >= prevacc

— then prevacc <~ GETACCURACY(c1)
else RESTORE (att,c1)
Lretum (c1) e

To tackle the second problem we need to eliminate the deceptive representatives. That is, the
classifiers that do not make mistakes but do not really correspond to the terms of the problem
we want to learn. Since these rules usually have a number of attributes either larger or smaller
than k (but not exactly k), we keep only the ones that correspond to the most frequent number
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of attributes observed k*. This routine is exemplified in Algorithm 7.3.3. After erasing the
outliers, the rules left in the set are considered genuine representatives and they are the input
for the second criterion (as shown in Algorithm 7.3.1). Moreover, as we have already calculated
the most frequent number of attributes observed among the representatives, we can also use
this information k* as a third metric to award points to the kr-groups with k = k*.

(Algorithm 7.3.3: ERASEOUTLIERS(rep) )
k* = GETFREQK(rep)

forc c rep

do {if |c.atts| # k*
thenrep =rep—c¢

return (rep)
\_ J

73.2 How to classify the problems?

As we explained before, to use the model it is necessary to calculate the standard deviation
boundaries for each one of the possible combinations of k and r. Towards this aim, we sample
uniformly the kr — space and calculate the expected value, the lower bound and upper bound
for each point. To sample the space we calculate these values for k = {1.d} and r = {1..rmax}
using a step size for the rules rstep. According to our preliminary experimentation rmax should
be at least equal to the number of rules we expect to find in the problem.

Moreover, to calculate the lower and upper bounds for each point the probabilistic models
presented need to be analysed further. For the probability of a representative we can consider
that the probability of having a specific number of representatives in a sample of N classifiers
follows a binomial distribution with probability P(rep). This assumption comes from the fact
that the generated rules have the same probability of becoming representatives and they are
independent from each other. Therefore, the probability of having exactly x representatives in
a sample of size N can be written as follows:

p(trep =) = (1} ) (1= PCep)) " = (Plrep)* 734)

In this case we know that for each point the mean percentage of representatives is P(rep) and
the variance is var = P(rep) - (1 — P(rep)). So for a problem to belong to a specific kr-group, the
system has to check if the empirical percentage of representatives observed P’(rep) is between
the boundaries as follows:

P(rep)X — var < P'(rep) < P(rep)¥ + var (7.3.5)

In the case of the probability of having a negative example we do not know the probability
distribution, but we know the mean value given k and . We cannot assume that it is a binomial
distribution because the examples in a training set are not independent observations (usually
they are not repeated). In this case fixed intervals are used to determine if a problem belongs
to a certain group. To do this we calculate the empirical value P’(neg) and use a constant « to
classify the problems as follows:

P(neg)f —a < P'(neg) < P(neg)f +a (7.3.6)

125



CHAPTER 7: AUTOMATIC ADJUSTMENT OF THE COVERAGE BREAKPOINT

7.3.3 Parameter setting procedure step-by-step

To recapitulate and explain better how the concepts and methods presented are merged to-
gether to produce our approach, in this section we will explain step-by-step the algorithm used
within BioHEL to determine the k and r of a problem and its corresponding coverage break-
point. The algorithm consists of the following steps also shown graphically in Figure 7.3.

1. Determining the number of attributes in the problem d and the value /d.

2. Searching R representatives in randomly initialised populations. Finding representatives
involves the following sub-steps:

(a) Exhaustive search. Searching iteratively in populations of N classifiers until a total
of R representatives is found.

(b) Representative pruning. When a good rule is found, the system removes all the
attributes that can be eliminated without degrading the accuracy.

(c) Adjustment of initialisation parameters. If the system have checked already 6 pop-
ulations and have not yet found any representatives, the system re-adjusts the value
p (See Section 7.3.1.2).

3. Calculating the most frequent number of attributes activated in the candidate representa-
tives, erasing the misleading ones. This means keeping only the ones that have a k equal
to the most frequent value observed k*.

4. Determining the number of examples in the training set belonging to the default class

(P'(neg))-

5. Calculating the observed value P'(rep) as the number of representatives observed divided
by the total number of rules observed (total sample size).

6. Calculating the score of a kr-group (Scorek) with Equation (7.3.7) where k = kx, Neg* and
Repk are boolean variables that take the value of 1 if the empirical observation matches
the criteria of the kr-group.

Score¥ = A-(k ==k*) + B- Negk + C- Rept (7.3.7)
Negk = P(neg)k —a < P'(neg) < P(neg)* +« (7.3.8)
Rep’,‘ — P(rep)X — var < P'(rep) < P(rep) + var (7.3.9)

7. To finalise we calculate which is the smallest group (smallest k and r) that obtained the
highest coincidences between the 3 metrics (highest score). This k is transformed in the
coverage breakpoint as CB = 27k,

7.4 Experimental design and results

This section presents the experimental framework used to test our approach and the corre-
sponding results. First, the parameter setting approach is analysed over a wide variety of
synthetic k-DNF problems, with and without noise, created as explained in Section 5.2. After-
wards, an extra test of our approach over a binary protein structure prediction problem CN-bin
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Figure 7.3: Steps to find the adequate coverage breakpoint with and example of the final score grid.
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Table 7.1: Parameters for the heuristic used to characterise and find the coverage breakpoint for k-DNF

problems.
Parameter Value
Number of representatives needed - R 10
Evaluated pops to change p 6
Prob p initial value - pmax 0.75
Prob p minimum value - pmin 0.25
Prob p decreasing step - pstep 0.25
Most frequent k in representatives - Score A 2
Imbalance function - Score B 2
Prep function - Score C 1
Imbalance function tolerance - « 0.1
Maximum number of rules considered - rmax 100
Rule step size - rstep 5
Sample size - N 500

is presented, which constitutes an interesting challenge for our approach due to the high levels
of noise found in the problem.

74.1 Analysis of the parameter setting approach over binary problems

In this section we analyse the performance of our approach over a wide variety of k-DNF prob-
lems in terms of probability of success (finding the adequate parameter value). At the end, we
also comment on the additional effort incurred by the heuristic in terms of additional evaluation
operations, and how the effort can be regulated by some parameters.

The k-DNF problems used in this section have the following characteristics: d=20, k={2 — 9},
and r={5, 10, 20,40}. Moreover, output noise of 0%, 1%, 5% and 10% was introduced over the
problems to determine how robust was the classification process towards noise. 5 different
problems of each k-DNF configuration were generated, and each problem was run with 5 dif-
ferent seeds. Also, all these runs were performed using fixed default class 0, to prevent the
system form learning the inverse problem, over which calculating the success of the heuristic
would not be straightforward.

The learning process was not performed during this stage of experiments, but only the param-
eter setting stage. In these experiments we want to quantify how many times the heuristic
finds the k of the problem (or at least a larger one) which ensures that the system will learn the
problem.

We also experiment changing the parameter minAcc (the minimum accuracy demanded in a
rule to become a representative) to determine how this parameter affects the search, and show
how it can help tackling problems with noise more efficiently. In these experiments we tested
parameter values minAcc = {1.0,0.95,0.9}. To determine significant differences among these
three variants we used a Friedman test with its post-hoc Holm test.

The rest of the parameters in our approach are shown in Table 7.1 for clarity and replication
purposes. However, according to our preliminary experiments, the parameters shown in this
table can be considered constants and they can remain fixed. Only the minimum accuracy
minAcc and the number of representatives R have an important impact on the results, because
they are directly related to the problem noise and the additional search effort, respectively. For
simplicity in the first experiments we have set the R parameter to a value (10) that in prelim-
inary work showed to be suitable for all tested scenarios. Afterwards, we experiment with
different values of R to determine how this parameter affects the success rate and the effort of
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Figure 7.4: Final score grids in a problem withd = 20, k = 5and r = 20 for the 4 levels of noise

the heuristic. Moreover, it is worth noticing that the reason why the P(rep) function has a score
lower than the two other metrics is because, in preliminary experimentation, this metric was
not as reliable as the other two metrics.

7.4.1.1 Results

Table 7.2 presents the results for the different k-DNF configurations and different values of
minAcc in terms of percentage of success (finding the k of the problem or at least a larger one).
The cells emphasised represent the configurations where the success rate is less than 100%. For
minAcc < 1, the cells marked with red show the cases where the success rate is lower than the
base case (minAcc = 1.0), and the cells marked with green show the cases where the success
rate increased. In this table we can observe that using minAcc = 1 the heuristic is able to find
the appropriate coverage breakpoint for most of the configurations with no noise. Moreover, it
is noticeable that the output noise affects the performance of the heuristic.

On the other hand, we can observe that the heuristic fails in the cases where there is very high
overlapping. These problems are very difficult to solve (as shown in Chapter 5) by the system
because of the class imbalance, so it is not surprising that they are difficult for the heuristic
as well. Such large overlapping makes the heuristic think that the k is smaller than the real
one. In the case of a synthetic problem like the k-DNF where we know the correct answer, this
is incorrect. However, what the system is trying to do is not completely wrong, because it is
trying to solve the problem with less complex rules compromising the accuracy slightly, which
in real-life domains can be advantageous. To understand better these domains further research
focused specifically on rule overlapping is needed.

Figure 7.4 shows an example of the score grid for a problem with k = 5 and r = 20 with the 4
levels of noise and using minAcc = 1. The vertical stripe corresponds to the 2 points that are
awarded to the most frequent number of attributes observed in the representatives. The other
two other areas correspond to the scores awarded by the other two criteria. In this figure we can
see that while the problem increases the representatives present a higher number of attributes.
When this happens the area corresponding to the vertical stripe does not intersect the two other
areas, thus the heuristic fails to find the appropriate k value. This is because the constraint of
minAcc = 1.0 is too strict in these cases where the problem has noise. In the cases with noise
we should take in consideration that good rules will have a good accuracy, but not equal to 1.
Relaxing this parameter, as we can see in Table 7.2, helps finding adequate representatives for
problems with noise. We can observe here that the success rate increases in most cases, except
when the problem has no noise. As expected, when the problem has 5% noise, the best results

are obtained using minAcc = 0.95, and the same occurs when the problem has 10% noise and
we use minAcc = 0.9.

Moreover, Table 7.3 contains the statistical analysis to determine which value of minAcc pro-
duces better results depending on the amounts of noise. In this table we can observe that the
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Table 7.3: Results of the Friedman test performed to determine the best minAcc value depending on
the noise. Control shows which was the algorithm that obtained the best ranking. Dominance
shows the configurations that are significantly worst than the control configuration according
to the Holm post-hoc test with &= 0.05.

Control
d Noise p-value 10} 095] 09|  Dominance
200 0% 000050 * 09
20 1% pooion * 1.0
20 5% 189507 & 148,09
20 % 111911 | * 1.0, 0.95

control method changes as expected depending on the noise of the problem, and for the prob-
lems with high amount of noise (5% and 10%) the respective control method performs better
than the rest of the configurations.

Based on these results it is possible to state that for problems with noise we should use a mini-
mum accuracy equal to the percentage of noise observed in the problem (minAcc = 1 — Noise).
Even though this introduces a new parameter minAcc, the percentage of permitted noise is a
much more intuitive parameter to set up than the coverage breakpoint, since it is an structural
parameter of the problem, instead of being a parameter of the system.

One interesting thing to notice in Table 7.2 is that for problems with larger k and either too
many or too few terms (even when using the adequate minAcc value), the heuristic seems to
fail. When the problem has too many terms, it is possible to find representatives but these
representatives are likely to have a large k and this value might not intersect with the other
two areas, as it was exemplified in Figure 7.4. Moreover, if the problem has few terms finding
a representative becomes very difficult and it is possible that the system does not find any
representatives during the search process. In this case the mechanism will only rely on the
number of negative examples to make a decision.

Our hypothesis is that these difficulties can be overcome by changing the selection policy of the
k when there is not a single cell where the three metrics have intersected. Moreover, adjusting
the minimum accuracy along the search process or a more granular step size in the adaptation
of p could help obtain better results by finding representatives when this task is very difficult.
More experimentation is needed to validate these hypotheses.

Based on these results, we can conclude that our parameter control mechanism is able to find the
| appropriate k value for a wide variety of binary problems, including problems with noise. Howeuer,
other aspect in the parameter control we are yet to analyse is the overhead incurred by the local
search mechanisms used (i.e representative search and pruning).

74.1.2 Computational effort of the heuristic

As we already explained in previous sections, our parameter control method, involves an ad-
ditional computational effort before the learning process. This extra effort of the heuristic in-
chides the evaluation of the randomly initialised individuals used to find representatives plus
the number evaluations needed to prune the representatives.

Figure 7.5 shows the additional effort incurred by our approach for all the scenarios analysed
in the previous section. The effort is shown in terms of number of rule evaluations (matching
the rule with the complete training set and computing its accuracy). Execution time is not
shown as it is proportional to the number of evaluations. In this figure we can observe that in
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general while the k increases it becomes more expensive to run the parameter setting approach,
as more iterations are needed to find representatives. We can also observe that for high levels
of noise and when using the wrong minAcc the number of iterations to find representatives
also increase. Also we can observe that in most cases while the r of the problem increases less
iterations are necessary since it is easier to find representatives.

Moreover, it is also noticeable a spiking behaviour in the additional effort. This behaviour is
clarified by Figure 7.6, which shows the frequency in which each value of p is selected. As
it was explained before, our approach also adapts the p value to increase the probability of
finding representatives when this task becomes very difficult. As we can see, the different
stages in the behaviour of the effort observed in Figure 7.5 correspond to the transition stages
between different values of p. When the system uses a smaller p the additional effort to find
representatives becomes smaller. This is because, as shown in Chapter 6, as k increases the
adequate p to solve the problem decreases. We can also observe that in the most difficult cases
which are Noise > 1 — minAcc the system tends to reduce the value of p more than in the cases
where the parameter minAcc is setup correctly.

Furthermore, the effort incurred by our approach can in theory be reduced or increased by
changing R, the number of representatives needed to stop the search. To understand bet-
ter the effect of this parameter we performed additional experiments with a subset of the k-
DNF problems analysed before (k=5, r=20). We tested different numbers of representatives
R={1,3,7,10,15,20} and minAcc={1.0,0.9} (to show the impact over problems with noise). Our
results are shown in terms of success ratio and additional number of evaluations performed.
Moreover, we show the Pareto frontier between the effort and the success rate, to determine the
trade off between the extra evaluations and quality of the solution.

Figure 7.7a shows the success rate with respect to the number of representatives. It is worth
mentioning that in the previous experiments, the configurations where Noise > 1 — minAcc
were not solved. It is noticeable in this figure that when the minAcc parameter is configured
correctly according to the noise the number of representatives needed to find the right coverage
breakpoint value is very small. On the other hand, Figure 7.7b presents the number of extra
evaluations performed when using different number of representatives. Here it is possible to
observe that the number of evaluations increase linearly with the number of representatives,
except for the case with n=10% and minAcc=1. Also the evaluations increase depending on the
amount of noise, since this makes the problem more difficult. More interestingly, looking at
the Pareto frontier in Figure 7.7¢, it is noticeable that ~10000 additional evaluations are needed
to ensure success for this problem. Considering the number of evaluations reported in the
previous section, we can observe that by reducing the amount of representatives needed it is
possible to reduce the additional effort by more than half in the worst case.

7.4.2 Analysis over a real-world PSP problems

In order to test the performance of this method over real-world domains, we selected a binary
protein structure prediction problem CN-bin. It is worth mentioning that this problem has a
very high noise ratio, and there are no possible rules that have 100% accuracy. Therefore, in or-
der to test the heuristic, the minimum accuracy required for the classifiers to be representatives
was relaxed.

In this section we are going to analyse the results obtained with our approach by compar-
ing them with an exhaustive experimentation to determine the adequate coverage breakpoint
value. In the exhaustive experimentation to hand-tune the coverage breakpoint, we used values
ranging from 1/22 to 1/2° (as this is the maximum possible since the problem has 9 attributes),
and different values of p (0.75, 0.5 and 0.25). Since we are dealing with a real problem in this
section, the system is going to perform the whole learning process using the coverage break-
point selected and the success will be determined based on the final accuracy. The parameters
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Figure 7.7: Probability of success and number of additional evaluations using different number of repre-
sentatives R over k-DNF problems with d=20, k=5, r=20 and min Acc=1.0.

Table 7.4: Parameters for the BioHEL system different than its fixed configuration.

BioHEL Parameters Value | Heuristic Parameters Value
Default class fixed 0 Maximum number of rules considered 1000
Number of windows in ILAS 20 Rule step size 20

for the BioHEL system are the ones presented in Section 3.3, except only for three parameters
shown in Table 7.4. Moreover, this table also shows the parameters of the heuristic that vary

from the ones presented in the previous section.

For the analysis of the results, we will first apply a Wilcoxon pairwise test to determine if there
are significant differences between using different coverage breakpoints in this problem and
which is the most adequate parameter value to solve it. Having found the adequate coverage
breakpoint value, we will then compare it with the results found by our approach. The results
are going to be analysed in terms of accuracy, execution time and convergence time of both
methodologies.

Regarding the dataset, this problem was separated in 10 training and test sets for ten-fold cross-
validation and each one of the training sets contains approximately 233812 instances. Moreover,
each one of these problem instances was run with 5 different seeds, so the results are the average
of 50 runs.

Table 7.5 shows the results in terms of accuracy, average time per run and total time of the exper-
iments when applying different coverage breakpoints of the type cov = 1/2* where k = {2..9}.
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Figure 7.8: Average accuracy of the best classifier during the 50 iterations of the GA using different
values of p.

In this table, we can see that the coverage breakpoint that obtains the best results in terms of
accuracy is 1/2°. Also, for this problem there are no differences between using different values
of p in terms of accuracy or execution time. Moreover, in Table 7.6 we can see that the coverage
breakpoint 27 does not produce results significantly different than the results applying other
values such as 277 or 278, However, the maximum average accuracy is obtained with the
smaller coverage breakpoint.

In Table 7.7 we can observe the results obtained with our approach. Using a minimum accuracy
of 0.7 the system determined that the k of the problem is equal 9 in the majority of the cases
and applying the corresponding coverage breakpoint we obtain an accuracy equal to our best
results in preliminary experimentation. We also tested a more relaxed minAcc value without
obtaining good results.

Based on these results we can conclude that the heuristic, when using the appropriate noise ratio,
is able to categorise this real problem correctly and determine the appropriate coverage breakpoint
automatically. Regarding the computational time, the total amount of CPU time invested in per-
forming the preliminary experiments with the different coverage breakpoints and different values
of p is equal to ~285 hours. On the other hand, the amount of time invested in running the
experiments setting the coverage breakpoint automatically, with different min Acc values and in-
cluding the whole learning process was ~:81 hours. This constitutes 28% of the time invested in
the preliminary experiments, which means a reduction of 71% in the total experimental time.

Moreover, our method also adapts the value p, the probability of setting the bits in the GABIL
representation to 1. Figure 7.8 reports the average accuracy of the best rule along the 50 itera-
tions of the GA with different p values. So far the use of adapting this parameter was just to
find representatives during the parameter control stage, but the adaptation can also help find-
ing good rules faster within the GA. As Figure 7.8 shows, using p = 0.25 makes the system find
good classifiers quicker (although all three values of p eventually manage to learn the correct
rules). This is because in this particular problem using a small value of p increases the odds
of finding representatives. The spiking behaviour in the figure is a normal phenomena due
to the usage of ILAS windowing scheme [Bacardit, 2004], and it is not related to the approach
presented in this chapter.
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Table 7.5: Results over the binary CN-bin problem using fixed coverage breakpoints and different values
of p. The table shows for each p and coverage breakpoint value the average accuracy obtained,
the average experimental time of each run and the total experimental time.

Cov (k) Accuracy (%) Average time (s) Total time (s)

2 70.15+0.96 244.67+120.89 12233.71

3 70.27+0.84 427.00+207.95 21350.19

10 4 71.46+0.56 378.64+207.36 18932.08
S 5 71.79+0.47 386.40+147.90 19319.86
I 6 72.12+0.45 640.264+-238.88 32013.22
= 7 72.324+0.52 874.15:+322.80 43707.67
8 72.40+0.47 1469.141+496.96 73457.19

9 72.45+0.47 2526.63+723.67 126331.39

Total time (~96.48 h) 347345.31
2 70.15+0.96 247.72+101.81 12385.91

3 70.27+0.84 342.26+180.62 17112.77

" 4 71.47+0.56 390.89+208.98 19544.62
S 5 71.79+0.47 398.20+180.34 19909.83
I 6 72.12+0.45 639.17+240.29 31958.73
7 72.31+0.53 896.59+287.78 44829.29

8 72.40+0.48 1601.17+445.91 80058.71

9 72.45+0.47 2244.94+650.95 112246.99

Total time (~93.90 h) 338046.85
2 70.46+0.84 239.53491.12 11976.29

3 70.27+0.84 362.16+191.81 18107.84

i 4 71.46+0.56 332.23+183.90 16611.51
S 5 71.80+0.48 409.98+167.93 20498.96
I 6 72.12+0.45 622.01+230.56 31100.48
_ 7 72.31+0.53 846.66-+272.08 42333.25
8 72.40+0.48 1636.27+482.24 81813.37

9 72.45+0.47 2338.56+586.86 116927.77

Total time (~94.26 h) 339369.47
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Table 7.6: P-values of the Wilcoxon pairwise test to determine significant differences between the usage
of different coverage breakpoints of the type 27 in the binary CN-bin problem. The cells in
bold indicate the cases where significant differences were found.

P-values of the wilcoxon pairwise test

k 2 3 4 5 6 7 8
3 0.52092 - - - - - -
4 2.9e-07 1.2e-08 - - - - -
5 1.5e-11 2.9e-11 0.01510 - - - -
6 4.9e-15 4.9e-15 2.5e-06 0.00265 - - -
7 < 2e-16 < 2e-16 1.0e-08 0.00016 0.21071 - -
8 < 2e-16 < 2e-16 6.1e-10 6.1e-06 0.05857 0.57281 -
9 < 2e-16 < 2e-16 7.5e-11 2.8e-06 0.01079 0.21071 0.57281

Table 7.7: Performance of the heuristic over the binary CN-bin problem. The columns show the min-
imum accuracy used, the average k and p obtained by the heuristic, the test accuracy after
learning with the corresponding coverage breakpoint value and the total experimental time.

Min k p Test acc Ave. Exec Time Total time
Acc

0.7 8.98+0.14 0.28+0.08 72451047 2913.93+1356.41 145696.66
0.6 5.62+1.12 0.73+0.06 71.9410.74 902.29+382.38 45114.63
Total time (~80.94 h) 291393.32

In this sense, we can say that the heuristic reduces the computational time needed to set up
the algorithm properly, which for large problems can constitute a considerable amount of CPU
time. Moreover, it adapts other parameters of the system, such as the p value, which helps
finding good rules quicker within the GA.

7.5 Conclusions and Further Work

In this chapter we have presented an automatic procedure to learn the structure of the problem
and set the coverage breakpoint parameter in the BioHEL learning system for (a broad range
of) binary classification domains. Our procedure is able to estimate the problem’s structure (k
and r) in binary problems with and without noise and in real-world problems such as protein
structure prediction problems. Our approach exploits the theory developed in Chapters 5 and
6 over the BioHEL system within the binary domain to classify problems according to their
the class imbalance, probability of generating representatives in randomly initialised sample of
individuals and other characteristics observed in the sampled individuals along the search pro-
cess. Using this method we were able to set up the coverage breakpoint parameter in BioHEL,
facilitating in this way the learning process, reducing the computational time of preliminary
experiments and making the system easier to use for an end-user. The final validation stage
using a challenging protein structure prediction problem showed that the heuristics works for
real world problems as well, and that it is possible to reduce the total experimental time by 71%.
Moreover, our approach also adapts other parameters like p, the probability of settings bits to
1 in the GABIL representation, which can help finding good rules faster within the GA.

Even though the model for the probability of obtaining representatives used is only applicable
to the GABIL representation within ALKR, we think that the methodologies presented in this
chapter can be extended to other systems by using the models suitable for their knowledge
representations. Also, this methodology is not only useful to determine parameters within
BioHEL's fitness function, but also knowing in advance the characteristic of the problem at

the beginning of the learning process can be advantageous to guide the search and also set
parameters within the system.
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As a further work we would like to extend this work to x-ary discrete and continuous do-
mains. However, in these cases further post-processing mechanisms might be necessary to
refine the good rules since the relationship between coverage and number of attributes is not
strictly linear. In the case of the x-ary domain, the coverage would not only depend on k but
would also depend on e the number of values activated in an attribute (number of 1s in the
GABIL representation), while in the real domain the coverage will depend on the size of the
intervals.

Moreover, further research will be focused in develop different policies for selecting the k when
there is not a single cell where the three metrics have intersected. In these cases probably it is
better to select a k based on the average of the cells that obtained the highest score.

Finally, it would be interesting to recycle the representatives found within the learning pro-
cess by forcing these classifiers to appear in the initial populations of the subsequent GAs.
Including these good rules in the following initial populations can improve the convergence
time of the GA, by assuring a percentage of good individuals to work with during the search
process.
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CHAPTER 8

Fast evaluation process using
GPGPUs

This chapter is focused on reducing the execution time of BioHEL, which tends to be high (as in most supervised
learning approaches) when handling large scale datasets. In order to do this a method for computing the fitness in
BioHEL using NVIDIA CUDA is introduced. Both the match process of a population of classifiers against a training
set and the computation of the fitness of each classifier from its matches have been parallelised. This chapter discusses
the results obtained using two different parallelisation paradigms: a coarse-grained parallelism (which parallels the
evaluation of each classifier independently) and a fine-grained one (which performs the match of each attribute in the
classifier in parallel). Moreover, this chapter discusses how the speedup increases when this approach is combined
with other efficiency enhancement mechanisms, how the execution times obtained can be explained by simple models
and how this approach can be easily extended to other EL systems.

8.1 Introduction

As we observed in Chapter 4 one of the weaknesses of the BioHEL system is its execution time.
This is due to the fact that, as in most EL systems, the match process of the whole population
in BioHEL is computationally very expensive, specially when handling large scale datasets.
Moreover, as the problems become more complex the execution time increases since the system
needs to learn more rules. The objective of this chapter is to speed up the evaluation process!
in BioHEL to overcome these problems.

There is extensive efficiency enhancement work in the evolutionary computation context as it
was already mentioned in the background material of this thesis. Moreover, in the last years,
the usage of General-purpose Graphics Processing Units (GPGPUs) has become a popular prac-
tice in high performance computing. By exploiting hardware originally designed to render 3D
graphics at high speed it is possible to perform highly parallel general purpose computations.
GPGPUs have been used already to speed up the evaluation process in GAs [Maitre et al.,
2009; Pospichal et al., 2010], genetic programming [Chitty, 2007; Harding and Banzhaf, 2007;
Langdon and Harrison, 2008] and LCS [Lanzi and Loiacono, 2010; Loiacono, 2011], as it was
mentioned in Section 2.3.5.3.

In this chapter an efficient GPGPU-based parallel fitness computation process for the BioHEL
system is presented. Specifically, for its implementation NVIDIA CUDA [NVIDIA, 2008] is
used. The goal of this approach is to calculate the accuracy and coverage metrics (which are
the base of BioHEL's fitness function) as fast as possible. Two different implementations are
analysed. The first one, which will be referred as coarse-grained parallelisation, calculates the

1Since BioHEL uses a supervised learning approach, we will refer to the match process as the evaluation process for
the rest of the chapter.
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match between all the rules in the population and all the examples in the training set in paral-
lel. The second one, which will be called fine-grained parallelisation, expands the parallelism of
the previous one to a third dimension by performing the match of each attribute in the rules
in parallel as well. After the match is computed, both implementations compute in parallel

the accuracy and coverage metrics of the whole population by means of a parallel reduction
algorithm.

We test our parallel implementations against BioHEL's serial version using thirteen different
problems with a broad set of different characteristics. First we analyse the speedup of the
evaluation process independently and then we analyse the integration of the parallel fitness
function within the whole learning algorithm.

We also evaluated the combination between our CUDA implementations and the ILAS win-
dowing scheme, since it is one of the main techniques used to achieve speedups in BioHEL
(See Section 2.4.1.3). This comparison is aimed to determine whether the speedup obtained by
both methods is complementary and thus can be successfully combined, or whether there is
a trade off that might constraint their integration. Moreover, we generated empirical models
that explain the execution times obtained with our CUDA-based approach depending on the
training set size and the number of attributes of the problem.

This chapter is organised as follows. Section 8.2 describes the CUDA architecture and refer-
ences previous works that use GPGPUs in ML. Section 8.3 describes the implementation of
the CUDA-based evaluation process. Section 8.4 explains the experimental design followed.
Section 8.5 shows the results of the evaluation process independently and Section 8.6 shows
the results of the evaluation process integrated with BioHEL. Moreover, Section 8.7 shows the
execution time models for our CUDA approach. Finally, Section 8.8 presents the final remarks
and further work.

8.2 GPGPUs and CUDA

The programming tool used to parallelise the evaluation process in BioHEL is the Computer
Unified Device Architecture (CUDA) [NVIDIA, 2008], a parallel computing architecture devel-
oped by NVIDIA. CUDA allows the user to exploit in a general purpose manner the computing
capacity inside the NVIDIA GPGPUs. In this chapter we will refer the GPGPU as device and the
computer in which it is installed as host.

CUDA follows the Single Instruction Multiple Data (SIMD) paradigm which consists in run-
ning the same operations in each one of threads over different data. The thread is the most
granular processing unit inside a GPGPU. Each one of the threads run within a block, which is
the minimum unit processed by a single multiprocessor inside the GPGPU. All the threads in-
side the same block are able to share information through the shared memory. On the other hand
sharing memory among blocks is only possible through global synchronisation. Moreover, the
number of blocks that run in parallel in the GPGPU depends on the specifications of the card
and the amount of shared memory the blocks need to run.

CUDA provides an extension of the C language to implement the kernel functions, which is
the code that will run inside the threads. The kernel functions work in the device memory,
reason why it is necessary to copy the data we need to process from host to device and then
copy the results from device to host. Allocating memory in the device and copying in and

out of it can be computationally very expensive and it is necessary to take this limitation in
consideration.

Moreover, the wise usage of the memory in CUDA is crucial for the performance of the algo-
rithms. There are five types of memory in CUDA, each of them with a different aim. If any of
these types is not properly used, the performance drops dramatically. Furthermore, coalescence
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Figure 8.1: Example of coalesced and non-coalesced memory access.

is also important when accessing the memory in CUDA. Coalescence is achieved when the con-
secutive threads in a block are accessing consecutive positions in memory. Since CUDA reads
memory in chunks having a not coalesced memory access makes the system read unnecessary
parts of the memory as shown in Figure 8.1. This increases the execution time of the kernels,
since more read operations will be needed to read the same amount of data [NVIDIA, 2008;
Sanders and Kandrot, 2010].

The different types of memory in CUDA, ordered by access speed from slowest to fastest,
are:

e Device memory: is the part of the memory where all the data structures manipulated by
the kernels are stored. It is not cached, so this memory is readable and writable from the
device and from the host, and it depends on the total amount of memory the video card
has. From the point of view of the threads this memory is also known as global memory,
because it is readable from threads in different blocks. However, it cannot be used to send
information between threads in different blocks since there is no guarantee that one block

will be executed before another.

e Texture memory: is not a different part of the memory, but a different way of accessing
the global memory. Memory that is declared as textures is accessed through a read-only
cache which is optimised for spatial locality instead of memory locality. This part of the
memory is usually used to render textures and surfaces within graphic cards, and it is not
used within our evaluation approach.

¢ Shared memory: is the memory shared by all threads in one block. This memory is faster
than the previous one and it is commonly used to share information between threads of
the same block and perform preliminary computations at this level. If the access to this
memory is coalesced then the access speed will be as fast as accessing registers.

¢ Constant memory: is a part of the device memory visible by all the blocks but not writable
by the threads. This part of the memory can only be written by the host. This type of
memory should only be used to store information that is accessed constantly and does
not change during the execution of the program. Its usage is very limited due to the small
amount of constant memory in the GPGPUs.

e Local thread memory: is the part of the memory only visible by the thread itself, also
known as registers. The variables created inside the kernel code are stored in this mem-
ory. There is limit in the number of registers a thread can use without degrading the
performance. If the kernel uses a large number of registers then the data is stored in
global memory, which is slower to access.
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8.2.1 GPGPUs in Machine Learning

GPGPUs have been widely used in the last few years for high performance computations in ML.
For instance, they have been already used to speedup self-organising maps for pattern classifi-
cation [Prabhu, 2008], decision trees [Sharp, 2008], neural networks [Steinkraus et al., 2005], and
support vector classification [Catanzaro et al., 2008]. GP and GAs have also benefited from the
availability of GPGPU hardware. Chitty [2007] and Harding and Banzhaf [2007] independently
presented the first applications of GPGPUs to GP, which were developed contemporarily. These
works were a proof of concept and they highlight how the parallelisation should be done. How-
ever, they do not use large datasets for testing purposes. Afterwards, Langdon and Harrison
[2008] implemented the evaluation process of GP trees for bioinformatic purposes achieving an
speedup of approximately 8X. Moreover, Maitre et al. [2009] presented an implementation of
a GA which performs in parallel the evaluation function of all the individuals using CUDA.
The major difference between this work and our approach is that they do not have a training
set but a function instead, which they run in parallel over the different individuals. Our fitness
computation is based on managing a training set within the device (which implies a higher
memory occupancy) while they use a compact mathematical (algorithmic) representation as
the fitness function.

Also, [Pospichal et al., 2010] presented a GA that runs in CUDA following the island paralleli-
sation model (See Section 2.3.5.2). To implement this paradigm in CUDA each one of the blocks
correspond to an island and each one of the threads correspond to an individual. Moreover,
to apply global operators it is necessary to perform a global synchronisation. Also the same as
[Maitre et al., 2009], this approach does not use a training set but a mathematical function to
evaluate the individuals.

Moreover, [Li et al., 2007; Yu et al., 2005] present fine-grained parallelisation approaches imple-
mented in GPGPUs. In these approaches the whole GA is implemented within the device. This
means that each thread holds the information of a single individual and the communications
are restricted to high speed communications (neighbour threads).

Regarding speeding up LCS, Lanzi and Loiacono [2010] presented a work which parallelises
the creation of the prediction array in XCS. This work was mainly focus on improving the
match of interval attributes by means of bitwise operators following the methodologies in [Butz
et al., 2008a; Dorigo and Colombetti, 1997]. This work produced from 3 to 12X speedup in the
interval-based representations and between 20 and 50X speedup in the ternary representation.
Later, this work was extended to apply the concepts presented in this chapter [Loiacono, 2011],
which is to apply a reduction step to reduce the amount of the output structures and perform
more calculations inside the GPGPU. In this study the speedup of interval-based representa-
tions was higher than before and it ranged between 2X and 32X.

8.3 CUDA-based efficient fitness computation process

As it was mentioned in the introduction, the fitness calculation is one of the major bottlenecks
in terms of execution time for BioHEL, as well as for most EL systems. Computing the accuracy
and recall of each rule is the most computationally demanding part of BioHEL's fitness function.
To calculate these two values we need to compute three metrics per classifier:

1. The number of instances in the training set that match the condition of the rule.
2. The number of instances in the training set that match the class of the rule.
3. The number of instances in the training set that match the class and the condition at the

same time.

144



8.3. CUDA-BASED EFFICIENT FITNESS COMPUTATION PROCESS

The evaluation process of this system has a huge computational cost, because it involves com-
paring all the rules in the population with all the examples in the training set or strata (if using
the ILAS windowing scheme). Our goal is to parallelise the match of all the rules in the pop-
ulation with each one of the examples and to calculate the results for each rule in parallel.
Implementing this parallelism involves a greater challenge than the one presented by Maitre
et al. [2009], because it involves not only individuals (rules in this case) but a training set as
well. However, our learning paradigm has potentially a higher degree of parallelism, because
we can perform the match with each instance of the training set in parallel.

Considering that the population size is n and the training set size is m, we intend to make
n x m operations in parallel. The most naive way to do this is to perform the match operations
in the GPGPU, copy back the results of each match to the host and then count the matches and
mismatches there. However, this approach would be very slow because every time we calculate
the fitness it will be necessary to copy a structure of size O(n x m) from device memory to host
memory. This is very undesirable because the execution time of the memory copy operations is
proportional to the structure size. Therefore, the most feasible way to avoid this computational
cost is to calculate the final result for each classifier inside the GPGPU (and in parallel). By
doing this, we will only need to copy a structure of size O(n) containing the final results.

At this point our calculation involves two steps, which correspond to the main tasks of each
kernel:

1. Calculating the match between all the classifiers and all the instances

2. Calculate the final results per classifier by means of a parallel reduction (adding all the
elements within an array in parallel)

But as we explained previously the kernels work only on data stored in the device memory, so
it is necessary to flatten the data, copy the data into the device and get the results back to host
as well. Moreover, it is necessary to calculate if all the data is going to fit in the device memory.
Considering this, our fitness calculation involves five stages as shown in Figure 8.2. However,
the evaluation process step changes depending on the parallelisation paradigm used, since two
different paradigms were implemented. The first one, coarse-grained parallelisation compares all
the rules and the instances in the training set in parallel. The second one, fine-grained parallelisa-
tion, adds another dimension of parallelism to the previous approach by parallelism the match
of the rules by its attributes.

Furthermore, the data in the training set and in the population does not stay constant during
the execution of the algorithm. This is because every time we learn a rule some examples
are deleted from the training set and also, during the learning process the population changes
through crossover and mutation. This makes the implementation even more complex because
data will need to be copied multiple times into device memory and these operations are very
slow. The implementations presented in this chapter address this problem by attempting to
minimise the copies into device memory. Considering that in each GA run (learning a single
rule) the instances remain constant, and the algorithm will only use a subset of the instances
in each iteration, our implementation tries to store in device memory all the instances at the
beginning of each GA run. Then the windowing is handled inside the device passing the win-
dow offset as a parameter of the fitness function. The window offset is the pointer on device
memory in which the instances of that particular window are stored. If the global memory
is not big enough to store all the instances then further memory calculations are performed
as it will be shown later in this section. On the other hand, the classifiers need to be copied
into device memory in each iteration. However, this does not involve a considerable computa-
tional cost because in most cases the populations occupy relatively small amounts of memory
in comparison with the instances.

The following subsections explain first the evaluation process, in which we explain the two
parallel approaches and the implementation details particular to each approach. We will start
explaining the coarse-grained parallelisation and then we will explain the second approach
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Figure 8.2: Stages of the CUDA evaluation in each iteration of the GA

focusing on the differences with the first one. Afterwards, we mention common strategies
followed in the other stages.

8.3.1 Coarse-grained parallel approach

To perform the evaluation process in this approach we implemented two kernel functions. The
first kernel is in charge of performing the match operations between the rules and the examples.
Each thread carries out a single match operation and computes three boolean values per rule-
example pair: a) condition match, b) class match and c) both condition and class match. The
second kernel is in charge of counting the number of matches and mismatches of a classifier.
That is, counting (in a general sense, reducing) the results calculated in the previous kernel. To
do this we need to apply a reduction algorithm as it will be explained in Section 8.3.1.2.

However, since the threads in different blocks do not share memory the reduction is limited to
the number of elements accessible in a block. If the problem is big it will take more than one
step of reduction and global synchronisation to reduce the match information of a particular
classifier with all the instances. So at the most if we reduce M items per block, the smallest
number of items left to reduce would be y/m.

It would be intuitive to perform all the necessary reductions iteratively in the second kernel.
However, this means writing to global memory a large amount of data (all the matches and
mismatches per classifier) at the end of the first kernel, which has a large impact in the run-
time. To minimise the volume of the output data the first stage of the reduction is already
done in the first kernel in shared memory, before writing the values to the output memory.
This means that if we reduce the results of 512 instances in each block the maximum output
structure size that we need on the first kernel is:

y
x[ 1A 83.1)

where x is the number of classifiers, y is the number of instances and A corresponds to the
output structure (12 bytes since we are storing 3 ints per pair). For this kernel the grid structure
has 512 threads, which are used to check 1 classifier against 512 instances. This guarantees the
minimum output structure possible at the end of this kernel.

This reduction performed in the first kernel is slower because it reduces three values at the same
time (the condition match, the action match and the and between the previous two). Afterwards,
the subsequent reductions (for each of the three metrics) are performed independently in the
second kernel in a more efficient way. At the end of the execution of the second kernel we
will have three values per classifier to copy back to host memory. Also, at the end of each
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kernel the information is reorganised in order to minimise the run-time of subsequent kernels
and the memory copy operations from device to host. The following subsections will explain
more deeply the kernel functions of this approach and other implementations details, such as
handling different types of attributes at the same time.

Algorithm 8.3.1: COMPUTEMATCH(classi fiers, instances, numlIns, h
numClass, output,of fset)
Determine the thread index Tj;, the instance index f and the classifier index
C; to acces the global memory
Declare cond, action and match arrays in shared memory
if I[; < numlIns A C; < numClass
cond[T;] 1
for att € class|C;|.atts A cond|T;j]
then do cond|(Tj;] <— match(ins[l;].atts[att], class|C;].atts[att])
action|T;;| < ins|[Ij].action = class[C;].action 2 1: 0
match(T;] < action[T;;] A cond|T;;]
else if match(Tj;| < action|T;;| < cond[T;;] -0
Perform reduction over match|T;;], action|Tj;], cond[T;;]
comment: The first thread of a block copies the final value in global memory
ifj=0
Write match(Tj;, action[T;j] and cond[T;;] into global memory
then output|C;|[I;] = match|T;] ‘
(output + of fset)[Ci][I;] = action[T;j]
Y (output + 2 x of fset)[Ci][I;] = cond|[T;;] r

8.3.1.1 Kernel 1: Computing the matches

The first kernel is in charge of performing, in parallel, the match operations between all the
rules and all the examples. Algorithm 8.3.1 shows the pseudo-code for this function. After
calculating the three match values in each thread they are stored in a shared memory structure
over which a one-level parallel reduction will be performed. This reduction algorithm is based
on the parallel reduction algorithm proposed by Harris [2007] (which will be explained in the
next section) but, instead of reducing only one value, it reduces three values at the same time.
Now instead of having an output structure of size O(n x m) we have one of size O(b x n)
where b is the number of blocks used in this first kernel. This reduces the amount of time spent
in writing in global memory as well as the amount of global memory needed.

Bl B2 B3 Bl B2 B3 Bl B2 B3

Cl
Cc2
C3
Ca
CS5

Figure 8.3: Distribution of the global memory by the end of the first kernel function. C = condition
counter, A = class counter, M = total match counter. C; corresponds to the classifier index

and B; corresponds to the block index.
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Figure 8.4: CUDA parallel reduction algorithm.

At the end of the execution of this kernel, the result values are copied back into three separate
blocks as shown in Figure 8.3. This allows having three separate areas over which we can
perform a more efficient reduction with the second kernel.

8.3.1.2 Kernel 2: Adding up the results in parallel

The second kernel is in charge of reducing iteratively the information that was previously cal-
culated in the first kernel. This kernel will perform the CUDA parallel reduction algorithm
[Harris, 2007] without any major modification. Figure 8.4 shows an example of the reduction
process for the match information of one classifier. In this type of reduction each thread is in
charge of adding up two values. To guarantee coalesced access when summing 2¥ values the
first 2¢~1 threads with index t will add up their value with the corresponding thread t + 2¢~1.
Then the second half of the threads become inactive and the first half of threads add their value
with the corresponding thread index t + 2k-2, This is done iteratively until only one value is
left. When the number of elements that we need to reduce is not a power of 2, we simply fill the
memory with data that will not affect the calculations. This kernel always launches 512 threads,
1 in the axis of the classifiers and 512 in the axis of the integers to reduce.

This reduction is applied independently over each one of the three memory areas created by
the previous kernel. Preliminary experimentation showed that performing reduction of only
one value is faster than performing reduction over three values at the same time.

This kernel is called iteratively until the number of blocks used is equal to one. In the last
iteration the kernel will reorder again the data in memory copying all the information of each
classifier next to each other. After that, the information of the classifiers will be pack together
to make possible copying it back to host memory using a single memory copy operation. Al-
gorithm 8.3.2 shows the pseudocode for this kernel and Figure 8.5 shows the complete flow of
data in this approach.

8.3.1.3 Working with mixed attribute types

In the ALKR representation discrete and continuous attributes may coexist together. Since the
coarse-grained approach iterates over the attributes in a rule to match them with an example,
we implemented a slightly different match functions for problems with different types of at-
tributes. This helps keeping the code of the kernels as simple as possible in each case. If the
problem has only continuous attributes a kernel for continuous attributes is used. If not, a
kernel for mixed attributes is used. The latter includes an extra condition that checks if the
attribute is nominal o real to perform the match calculations accordingly, which can potentially
make the kernel slower. Moreover, the code used to match each attribute is exactly the same as
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the code of the serial version.

ﬁ\lgorithm 8.3.2: REDUCE(data, totalObjects)

Determine the thread index tid and the global index gid
Declare input array in shared memory
input|(tid] « 0
while gid < totalObjects
if gid + blockSize < totalObjects
then input|tid|+ = data(gid| + data[gid + blockSize]
else input(tid)+ = data(gid);
gid+ = gridSize;

SYNC()
if (tid < 256)

then input(tid|+ = input|tid + 256]
SYNC()
if (tid < 128)

then input|tid|+ = input[tid 4 128]
SYNC()
if (tid < 64)

then input(tid|+ = input(tid + 64]
SYNC()
if (tid < 32)
input(tid|+ = input(tid + 32]
input(tid|+ = input[tid + 16]
input(tid)+ = input(tid + 8|
input(tid|+ = input[tid + 4]
input(tid|+ = input(tid + 2|
input(tid|+ = input(tid + 1]
if (tid == 0)

Il

then

(!

if (gridDim.x == 1)
then then Compact memory per classifier in global memory
\_ else Store data in global memory )

In [Bacardit and Krasnogor, 2009a] an efficient CPU-based match process for mixed attributes
was proposed, which worked by separating the match of both types of attributes in two sep-
arate loops. This approach was also evaluated in our CUDA coarse-grained implementation.
Our preliminary experiments showed that in CUDA it is possible to achieve more speedup by
using only one loop that checks the attributes sequentially with an extra condition that checks
the type of attribute instead of using two loops. This is because the divergent code of the if
structure (which can slow the kernel by half) performs better than the non-coalesced memory
access produced by the two loops. If two loops are used the memory access is not coalesced
since the discrete attributes and the continuous attributes are interspersed in memory. The
approach of reordering the memory of the classifier and instances to put together attributes of
the same type is analysed in our fine-grained parallel approach, which will be explained in the
next section.

8.3.2 Fine-grained parallel approach

In this approach we extended the parallelism of the previous approach to an extra dimension by
parallelising the match of each one of the attributes in the rules. Since the ALKR representation
allows to have discrete and continuous attributes at the same time, to parallelise the match
of the attributes it is necessary to reorder them in memory by their type. This means to put
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together discrete and continuous attributes during the structure flattening process. This is done
over the instances and the classifiers. Moreover, the ALKR representation of the classifiers
is expanded to create a classifier’s structure of regular size. This means that in the CUDA
structure all the attributes in the rule will be represented.

Since the attributes are separated by its type, the match is done independently for discrete and
continuous attributes. Moreover, the class of the classifier is matched with the instance class in
a third kernel. This means that instead of using only one kernel as in the previous approach,
we are now performing the calculations with three simpler kernels.

Considering this, the fitness calculation using the fine-grained approach consists of four
steps:

1. Compute the condition match for discrete attributes
2. Compute the condition match for continuous attributes
3. Compute the class match

4. Calculate the and between the condition match and the class match to determine the third
variable and reduce the results per classifier iteratively.

Working with simpler kernels can potentially reduce the execution time by avoiding condi-
tionals or non-coalesced memory accesses. However, expanding the original structures can
also increase the execution time of the kernels since more memory will have to be read and
processed. Since the computations are being performed independently in different kernels it
is not possible to make a preliminary reduction to reduce the size of the output data as in the
previous approach. In this approach the output data will be of size x - y - A where A is 8 bytes
as we need to store one 1 integer for the condition match and 1 integer for the class match per
classifier-instance pair. Moreover, it is not necessary to have separate output structures for the
discrete and continuous match kernels as these kernels are performed sequentially one after the
other, and therefore, they can work over the same memory areas.

The following sections will explain how the ALKR representation is expanded to represent all
the attributes in a rule. Afterwards, each one of the kernels of this approach will be explained
further.

8.3.21 Expanding and reorganising the ALKR representation

To check discrete and continuous attributes independently and ensure coalesced memory ac-
cess it is necessary to reorganise the memory structures where the classifiers and the instances
are stored. Moreover, it is necessary to expand the representation of the rules so all the attributes
are expressed. To do this we first determine which are the continuous and discrete attributes in
the problem. In the case of the instances, no expansion is needed, so when creating the CUDA
structures we first copy the values for all the discrete attributes, and then we copy the values of
all the continuous attributes as shown in Figure 8.6.

In the case of the classifiers we also copy the discrete predicates first and then we copy the
continuous predicates, copying first all the lower boundaries of the predicates and afterwards
all the upper boundaries. In this new structure all the attributes will be represented, so for a
discrete attribute that was not on the list before we include a don’t care predicate (a predicate
of all 1s), to ensure that this attribute will match any example. In the case of a continuous
attribute that was not on the list before we copy the lower and upper bounds for the domain
of that attribute. Moreover, after expanding the classifiers we still keep track of which were
the attributes that were represented in the original lists using an extra structure of size equal
to the number of attributes. If this structure expresses 1 in the byte corresponding to the at-
tribute then the attribute was expressed in the original list. Otherwise, the attribute was not
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Figure 8.5: Complete flow of data for the coarse-grained parallel approach.
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Figure 8.6: Example of reorganisation of an instance in device memory
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Figure 8.7: Example of reorganisation of a classifier in device memory

expressed. Figure 8.7 shows an example of how a rule would be expanded and reorganised in
this approach.

8.3.2.2 Kernels 1 and 2: Discrete and continuous match

To match the attributes in this approach we launch one thread per classifier, attribute and in-
stance. The configuration of both of the kernels is the same and it is the one that maximises the
occupancy on the card. Each block will have 512 threads (8 threads for the attributes, 4 threads
for the classifiers and 16 threads for the instances). In total the continuous kernel will execute
x -y - numCon threads while the discrete kernel will execute x - y - numDis, where numCon
and numDis are the number of continuous and discrete attributes, respectively. In case the
number of instances is very big and the system needs more blocks in the instance axis than the
maximum allowed by the card,” the instances in this case are partitioned in groups which are
checked sequentially.

First a matrix of size x - y is initialised with ones (assuming that all the classifiers match all
the instances). Afterwards each kernel checks if a particular attribute in a classifier matches
a particular instance. If not this thread changes the position corresponding to that classifier-
instance pair to zero. If that particular position already had a zero the thread does not rewrite
the memory. This allows both kernels to work with the same output structure sequentially,
reducing the amount of memory that we need.

If the ALKR lists are expanded the amount of memory these kernels would need to read is
much larger than the kernels in the coarse-grained approach. To stop the kernels for accessing
memory corresponding to the attributes that were not expressed in the initial lists, these kernels
only activate the threads corresponding to the relevant attributes in the original lists. To do this
the threads access the additional structure created that shows if the attribute was relevant or

not, and only activate the corresponding threads. The pseudocode for these kernels is shown
in Algorithm 8.3.3.

2The maximum number of blocks alloweq in one axis is 65535.
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@lgorithm 8.3.3: COMPUTEMATCH(classifiers, instances, class Activation,
numliIns, numClass, numAtts, match)

Determine the thread index Tjj, the instance index I;, the classifier index
Ci and the attribute index Ay to access the global memory
Declare output array in shared memory
if I; < numlins A C; < numClass A Ay < numAtts

th {if class Activation[C;][ Ak

then output(T;;| « match(ins[Ij].atts[A], class[C;].atts[Ay])

else if output(T;j| « 0
Storing the final result in global memory
if match([[;][C;] #0
\ then match([;][C;] = output|T;;] )

8.3.2.3 Kernel 3: Class match

The code for this kernel is very simple as each thread is in charge to compare the class of a
particular classifier with the class of a particular instance. The resulting information at the end
is stored in a matrix of size x - y which is independent from the output matrix of the previous
kernel. The class match kernel launches 512 threads per block as well, 32 in the x-axis cor-
responding to the number of instances and 16 in the y-axis corresponding to the number of
classifiers. In total this kernel launches x - y threads.

8.3.24 Kernel 4: Reduction

Since we have the results of the condition match and the class match in separate structures, the
last kernel is in charge of performing the and operation to determine if a classifier matches both
the condition and the class of a particular instance. After this value is calculated the reduction
is performed in the same way as in the coarse-grained approach (see Section 8.3.1.2). In this
particular reduction kernel we use a 1024 threads per block (256 threads on the x-axis for the
instances and 4 threads in the y-axis for the classifiers). In this reduction we make the most
out of the functionalities of the newest CUDA cards of 2.0 capability, which allow up to 1024
threads per block. This allows us to reduce the values of more instances at the same time, but
also allow us the balance better the parallelism of the instances and the classifiers.

8.3.3 Handling the ILAS windowing scheme

In this chapter we also study the integration of our CUDA-based fitness computation and the
ILAS windowing scheme, to verify if both efficiency-enhancement techniques can be combined
efficiently. As we explained before, if all the instances left in the training set fit in global memory
we copy them into global memory at the beginning of each GA run. In case the window system
is activated, the CUDA fitness computation is called passing the offset of the window as an
extra parameter. This is possible because the windows are created at the beginning of the GA
run and all the windows are stored continuously in memory, hence it is just necessary to specify
the offset to know which window the system is using.

Since the instances tend to occupy more memory than the classifiers, we save a lot of compu-
tational effort by copying them into global memory once per GA run and handling the win-
dowing. However, when the GA finishes the instances that are covered by the new rule are
removed from the training set and the windows are created again. At this point it is necessary
to copy the instances again into global memory.
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Also, better results were obtained when the large memory structures used (necessary to store
instances and classifiers) were allocated only once at the beginning of the algorithm and were
used over and over again rewriting the memory.

8.3.4 Integration with the learning algorithm

The CUDA evaluation is integrated inside BioHEL in two different stages: during the normal
evaluation process of the whole population and during the elitism (where the best individuals
of each window are kept in the population and reevaluated with the current window). Even
though the latter only involves evaluating a few classifiers, preliminary experiments showed
improvements in the performance when this part of the code was parallelised.

8.3.5 Handling GPGPUs with small global memory

Some GPGPUs might not have enough memory to store the whole problem at once in memory.
Therefore, to consider this scenario at the beginning of the GA, it is necessary to calculate how
many classifiers and instances fit in memory. If all the instances do not fit in memory, we calcu-
late if it is possible to fit all the classifiers at once and revisit the instances in several iterations.
If none of this is possible, the number of classifiers and instances that minimise the memory
copy operations is calculated.

The heuristic we use to handle the worst case consists in assigning half of the memory for
storing classifier information and the other half for storing instance information. To calculate
this we solve a simple quadratic formula. So considering MI the memory occupied by each
instance, MC the memory occupied by each classifier, A the size of the output structure used
and MD the global device memory available, we try to calculate x the number of classifiers and
y the number of instances to fit in memory.

For example in the coarse-grained approach the occupancy formula would look like:

MD = xMC + yMI + x(s—{im (83.2)

Moreover, we can assume xMC = yMI and eliminate the ceiling by assuming the worst case
as follows:
r¥ Yy

513 <5 +1 (8.3.3)

Substituting both equations in the Equation (8.3.2) we find out the we need to solve the follow-
ing quadratic equation.
x*AMC

MD = x(2MC + A) + X AMC
*X(2MC + A) + ot

(8.3.4)

In the case of the fine-grained approach we can follow the same procedure, but considering that
there is no preliminary reduction on the first kernel. Therefore, the maximum output structure
used is x - y - A and the memory occupancy formula would look like:

MD = xMC + yMI + xyA (8.3.5)

This produces and even simpler equation to solve, which is the following:

2
MD =2.xMC + X ’:A?C (8.3.6)
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Table 8.1: Datasets used for testing GPGPU-based fitness computation. |T| = Training set size,
#Att = Number of attributes., Cov = Coverage breakpoint

Continuos Mixed Discrete
Name ITI #Att Cov | Name ITI #Att Cov | Name ITI  #Att Cov
sat 5790 36 0.1 adu 43960 14 0.01 CNbin 234638 10 0.001
wav 4539 40 01 far 90868 29 0.1 Par 235929 18 0.001
pen 9892 16 0.1 kdd 444619 41 0.1 c-4 60803 42 0.0025

SS 75583 300 0.0025 SA 493788 270 0.0025
CNO 234638 20 0.001
CN 234638 180 0.001

8.4 Experimental design

To test the performance of our implementation we decided to perform two stages of experi-
ments. First we evaluate the speedup of the evaluation process independently using the two
approaches explained. Afterwards, we evaluate the speedup of the overall system after incor-
porating the CUDA evaluation process (using the best approach in the previous section) inside
BioHEL.

For the first stage, we ran the evaluation process independently (both using the serial version
and our two parallel approaches) by evaluating a random population 50 consecutive times
(simulating a GA run but without selection nor exploration). We ran a complete GA per execu-
tion to test the advantage of copying the instances once at the beginning of each GA.

The speedup is compared over thirteen different problems explained in greater detail in Section
3.2. Table 8.1 contain a summarised list of the relevant characteristics of the datasets regarding
our analysis, along with the coverage breakpoint used (necessary for replication purposes). For
each problem, the original datasets were partitioned for ten-fold cross validation. The training
set size shown in Table 8.1 is the size of each one of the folds. Over each fold we ran the
evaluation process with 25 different seeds. To determine the impact of combining the ILAS
windowing scheme with the proposed evaluation process we did experiments with different
number of windows w = {1,2,4,6,8,10,15,20,25,30,35,40,45,50}. The rest of BioHEL's pa-
rameters remain the same as the base configuration shown in Section 3.3, except for the Initial
MDL Theory Length ratio which was set to 0.25.

For the second stage of experiments we compare the whole learning process of BioHEL using
the CUDA evaluation process integrated with the serial version of BioHEL used throughout
this thesis. In this stage we only use the parallel approach that obtained the best results in
the previous stage. We used the same problems as in the previous stage, with the addition of
CNbin and CNO, and we performed experiments with w = {1, 5,10, 25, 20, 25, 30, 35, 40, 45, 50}.
Because of the computational cost of each experiment, we ran each one of the folds only once
in this stage.

In the last section we present empirical models that explain the execution times obtained with
the approach that obtains the best results. These model are based on the training set size,
number of attributes in the problem and the number of windows used.

For the CUDA experiments we used two different architectures, which we intend to com-
pare. First, we used a Pentium 4 of 3.6GHz with hyper-threading, 2GB of RAM and a Tesla
C1060 with 4GB of global memory and 30 multiprocessors. Over this architecture only the
coarse-grained approach was tested which was the one implemented earlier in time [Franco
et al., 2010a]. For our most recent experiments which include the fined-grained and the coarse-
grained parallel approaches we used a newer hardware which consist of an Intel(R) Core(TM)
i7 CPU of 8 cores at 3.07GHz and 12GB of RAM with a Tesla C2070 with 6GB of internal memory
and 448 CUDA cores (14 multiprocessors x 32 CUDA Cores/MP). Moreover, for the serial ex-
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periments we used the High Performance Computing facility of the University of Nottingham
each node with 2 quad-core processors (Intel Xeon E5472 3.0GHz). For this experiments we
wanted to compare our implementation against the most likely architecture a user would use
if they do not have access to the GPGPU technology. '

Along the analysis the speedup of the CUDA evaluation process over the serial algorithm is
reported in order to determine the advantage of using the parallel architecture. For interpre-
tation and replication purposes we also report the execution time of the baseline cases (using
1 window). The accuracy of the system is not reported since both implementations behave
identical and obtain the same accuracy when run with the same random seed.

Table 8.2: Execution time in seconds of the evaluation process of the serial version and both CUDA
fitness functions using 1 window

Serial Coarse-grained Fine-grained

GPU Model - C1060 C2070 C2070
sat 36+ 02 1.9+0.0 0.6+0.0 0.84+0.01
o wav 26+ 0.1 1.6+0.0 0.4+0.0 0.70+0.01
& pen 49+ 02 2.2+0.0 0.5+0.0 0.70+0.01
o CNoO 4492+ 49.1 - 11.7+0.2 17.1840.08
CN 1555.94 452.8 42.4+0.6 24.1+£0.4 59.93+0.53
SS 770.6x 119.5 14.740.2 9.0+0.2 22.89+0.30
5 adu 1479+ 309 10.4£+0.1 2.6+0.0 2.59+0.01
e kdd 1715.7+ 632.4 95.9+1.4 102.4+1.7 51.66+0.20
S far 4208+ 90.6 23.1+1.0 8.7+0.2 8.69+0.02
SA 3776.4+1212.8 90.5+£1.2 55.0+1.0 144.81+1.30
. c-4 3438+ 719 17.910.2 12.840.2 7.07+0.03
é Par 863.7+ 163.1 60.0+0.6 18.0+0.2 15.7440.04
CNbin 544.5+ 150.9 - 8.6+0.1 11.1610.05

8.5 Performance of the evaluation process

In Table 8.2 we present the execution times for the evaluation process using one window of the
serial version and CUDA versions (the coarse-grained and fine-grained approach). This table
shows that the variance in the execution time of the CUDA algorithm is always smaller than
the serial one, which indicates that the average speedup reported later is statistically significant.
Moreover, for the coarse-grained approach we show the execution times for the former architec-
ture used in Franco et al. [2010a], the Tesla C1060, and the newest architecture, the Tesla C2070.
It is worth mentioning that the problems CNO and CNbin were added to the dataset pool later
in time, when the former architecture was not available anymore. This is the reason why results
using the C1060 over these problems are not reported. However, it was interesting to add these
datasets since they represent problems characteristics that we had not explore before.

Moreover, Figure 8.8 shows the speedups corresponding to the information in Table 8.2. In
this figure is it noticeable that even when both parallelisation approaches produce speedups
with respect to the serial approach, the coarse-grained approach produces more speedup than
the fine-grained approach in 5 problems (CNO, CN, S§, SA, CNbin), equal execution times in 5
problems (sat, pen, wav, Adu, far), and lower speedup in only 3 problems (c-4, kdd, Par). Partic-
ularly in the kdd problem the fine-grained approach doubles the speedup of the coarse-grained
approach. This could be do to the fact that the kdd problem has a balanced number of continu-
ous and discrete attributes which will distribute the computation of both match kernels evenly.

However, in general when the problem is big, the coarse-grained approach seems to perform
better.
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Table 8.3: Speedup of the CUDA evaluation using the coarse-grained approach (on the C1060 and
C2070) compared to the serial version using the same wmdow (first row) and the serial version

without using windowing (second row)

Number of Windows
1 2 4 6 8 10 15 20 25 30 35 40 45 50
Coarse-grained Tesla C1060
sat 19 13 08 0.6 0.5 0.4 03 0.2 0.2 0.2 0.2 0.1 0.1 0.1
19 25 28 29 29 30 31 31 31 31 31 31 3.1 3.1

16 11 06 04 03 03 02 0.2 01 0.1 01 0.1 0.1 0.1

E ™Y 16 19 21 21 21 22 22 22 22 22 22 22 22 22
2 .. 22 17 11 07 06 05 04 03 03 02 02 02 02 02
g Pe 22 31 37 36 35 36 41 42 42 42 42 42 42 42
£ oy 367 41 403 398 3 361 316 223 27 187 167 147 134 128
S 367 699 1284 1783 2207 2584 3278 3893 4329 4633 4887 5068 523 5367

s 524 525 500 461 386 303 152 121 102 84 82 83 85 86

524 969 168.0 2227 2641 293.7 344.7 3748 3943 4069 4168 4244 4300 435.2
adu 142 158 77 35 30 29 26 24 24 23 22 2.1 21 2.0
142 253 416 529 615 680 784 843 880 908 922 932 945 951

144 183 225 231 229 218 166 102 7.6 6.9 6.5 6.4 6.2 6.0
144 278 517 727 910 1072 1411 1684 1895 2083 2229 2351 2451 2556

kdd 179 231 263 276 279 282 270 264 246 224 19.7  16.7 14.8 13.1
179 349 653 919 1151 1383 1825 2189 2481 2727 2917 3114 3248 339.7

182 234 240 189 128 86 52 48 47 49 5.0 5.0 49 49

Par

Mixed problems

far 182 337 604 813 996 1158 1446 1645 1760 1864 1912 1970 2009 2035

4 192 241 248 181 97 66 50 45 44 43 45 47 47 44
¢ 192 356 633 864 1045 1200 1465 1627 1731 1806 1849 1894 1921 194.1
sa 418 369 370 358 355 347 383 321 310 2296 286 275 260 245

418 795 1462 2037 2528 2963 383.7 449.0 5023 5427 5780 6058 6304 6499
Coarse-grained Tesla C2070

t 6.3 5.2 39 31 27 23 19 1.6 14 1.2 11 0.9 0.9 0.9

sa 63 97 138 157 171 180 200 212 212 212 212 212 212 225

58 47 33 25 20 19 15 11 09 08 08 08 07 06
wav. 58 86 112 122 128 143 151 151 151 151 161 161 161 161

101 86 61 49 40 35 27 24 21 18 16 15 14 13
101 154 206 235 247 260 274 309 309 309 309 309 309 329

CNO 385 578 668 656 615 556 351 218 187 187 188 19.0 19.2 19.5
385 739 1378 1936 2428 286.1 380.7 4538 5105 5615 599.0 6327 6606 691.1

646 773 745 756 729 718 670 586 509 437 396 362 334 328
64.6 1253 2372 339.0 431.0 5135 6946 8365 9724 1080.5 1161.1 1244.7 1307.5 13769

857 896 922 901 804 673 381 335 306 271 275 284 293 305

Cont. problems
|

5 857 1654 3095 4354 5504 653.1 8659 10414 11855 1306.1 1401.1 14540 14819 15412
4 575 650 328 151 131 128 120 109 114 108 108 104 105 101
adu oo 1041 1760 2275 2688 301.8 360.6 3891 4225 4349 4481 4621 4770 4770
P 481 610 755 783 781 747 578 355 270 244 231 27 N3 26
ar 481 927 1738 2461 3107 3675 4908 5876 6696 7320 7924 8386 8814 9189

kdd 168 218 258 280 293 299 308 314 306 288 263 230 210 189
168 329 639 933 1207 1470 207.7 260.7 3086 3509 389.0 4278 461.2 490.2

481 638 675 547 375 254 156 147 149 157 164 168 166 169
481 921 1697 2351 2922 3421 4338 5009 5537 5926 6280 6575 6787 7013

268 363 423 349 202 141 114 106 107 109 117 126 128 122
268 537 1078 1669 2176 2585 330.5 3819 4244 4583 4842 5055 5208 5371

687 60.1 638 629 637 634 628 626 616 603 587 572 547 522
SA 68.7 1333 2521 3576 4539 5403 7248 8742 999.0 11042 11875 12588 1325.0 13884

633 988 1195 1200 1164 1088 712 400 304 272 271 270 279 270
63.3 1199 2213 3076 3835 450.0 5855 6806 7669 8250 8783 9229 9724 1008.4

far

c4

Mixed problems

CNbin
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Figure 8.8: Speedup against the serial algorithm without using windowing of the different parallelisation
approaches ran on different architectures

Regarding the usage of windows, in Table 8.3 we present the net speedup (speedup of the
CUDA evaluation against the serial version using the same window size) and the total speedup
(speedup of the CUDA evaluation against the serial version without using windowing) for the
coarse-grained approach using different GPGPU architectures. In this table we can notice that
the coarse-grained parallel evaluation process achieves speedups for all the problems when
not using windowing (using one window). Moreover, the speedup gets considerably higher
in the problems with more than 40000 instances. Also we can observe that the speedups vary
depending on the GPGPU used. The highest net speedup is achieved in the SS problem, where
with the Tesla C1060 we achieved 52.4X and with the Tesla C2070 we achieved 85.7X. Combined
with the ILAS windowing scheme the highest total speedup observed using the C1060 is 649.9X
in the SA problem. On the other hand, using the C2070 the highest total speedup is 1541.2X in
the SS problem. In general, the speedups using the C2070 are larger than the ones using the
C1060, which is expected since this GPGPU posses more cores. For small problems, it seems
like the speedup increases between 4 or 5 times with the use of a newer architecture, while for
larger problems the increase in the speedup seems to be problem dependant.

Table 8.4 shows the corresponding speedup results of the evaluation process using the fine-
grained approach on the Tesla C2070. The same as in the previous table, we can see that this
approach also obtains speedups for all problems, but the speedups follow a different pattern
that the one observed in the previous table. The largest net speedup is found in the Adu prob-
lem, which obtains 57.1X speedup. Moreover, the highest total speedup found combining the
ILAS windowing and the CUDA fitness function is of 949.2X in the Par problem.

In general in the two previous tables, we can also observe that the speedup varies with the
number of windows and for a higher number of windows the net speedup tend to decrease.
This is because the CUDA evaluation gets advantage of using large or medium size training
sets, since all the example comparisons are done in parallel. The same happens with the prob-
lems that are very small from the start (pen, sat and wav). In these datasets, the overhead of
parallelising the fitness function is sometimes greater that the advantage obtained when using
large windows. However, for small problems large windows should not be used (and neither

they are necessary) because, as discussed in Chapters 2 and 4, this produces a higher chance of
problem disruption.?

3Each window used is not a reliable partition of the problem to solve
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Table 8.4: Speedup of the CUDA evaluation using the fine-grained approach (on the C2070) compared
to the serial version using the same window (first row) and the serial version without using

windowing (second row)
Number of Windows
1 2 4 6 8 10 15 20 25 30 35 40 45 50
Fine-grained Tesla C2070

43 37 28 23 20 17 14 1.1 1.0 09 08 0.7 0.7 0.6

sat 43 69 100 116 129 133 144 150 157 157 164 164 164 164
E wav 3.7 32 23 19 15 14 1.0 0.8 07 0.6 0.6 05 0.5 0.5
%’ 37 5.7 7.8 9.2 95 103 107 112 112 117 117 117 117 117
cf‘ n 71 6.3 4.6 36 3.1 28 22 19 1.6 14 13 1.2 1.1 1.0
‘g‘ pe 7.1 112 154 176 190 206 225 235 235 235 247 247 247 247
O
CNO 261 395 460 453 426 388 244 151 131 130 131 134 136 138
26.1 505 948 1337 1683 199.7 2643 314.1 3565 390.6 4198 4448 4679 4883
N 260 312 301 305 294 29.1 271 238 204 17.5 159 14.5 134 131
260 505 959 1368 1740 2083 2803 3405 3899 4322 4672 498.7 5256 5498
s 33.7 352 362 353 314 262 14.8 128 11.6 10.3 104 109 115 1211
337 650 1214 1709 2153 2543 335.0 3993 450.6 494.0 5278 5584 5838 611.6
Adu 571 633 309 142 123 118 107 9.7 100 94 94 9.0 9.0 8.7
571 1013 166.1 2143 2506 279.0 3214 3439 369.6 379.1 389.1 399.6 410.7 4107
Par 549 694 855 878 868 824 627 381 285 257 239 236 230 223
g 549 1053 1967 2760 3455 4055 5332 6305 7080 771.2 8226 8725 909.2 9492
-]
g kdd 332 428 494 524 537 537 524 513 483 442 392 332 295 261
.§' 33.2 647 1225 1745 221.1 2635 353.7 425.7 4874 5378 5796 6171 6499 678.1
é far 484 633 649 518 346 231 141 131 132 139 142 145 143 145
484 915 1631 2226 2697 3117 3933 4476 4893 5260 5465 5686 584.4 601.1
4 486 618 648 473 255 172 137 127 127 128 137 148 148 142
486 914 1653 2262 2750 3154 399.7 4583 5055 537.1 563.5 5927 603.1 625.0
SA 261 229 244 242 245 245 244 245 242 237 233 228 218 208
261 508 963 1374 1747 2088 2820 3421 3917 4346 4709 501.5 5289 5537
. 488 772 933 940 908 80 552 310 234 211 210 210 214 208
CNbin

488 937 1729 2409 2992 3513 4538 528.7 5919 6406 680.6 7165 7459 7779

To analyse better the relation between the speedup obtained with different windows and the
characteristics of the problems (i.e. number of attributes, type of problem, training set size),
Figure 8.9 shows the relation between training set size and net speedup (on the left), and the
relation between the number of windows and the total speedup (on the right) for each one
of the problems and implementations analysed. For the different number of windows w we
consider the training set size Ty to be equal to the size of the strata (T, = IT|/w). We observe
that the relationship between the speedup and the training set is not linear and the behaviour of
the speedup changes depending on the type of problem and architecture used. Between 25000
and 50000 instances the speedup curves get their maximum value in most of the problems and
afterwards they get steady or decrease. A possible explanation for the decrease in the speedup
when the training set gets bigger is that the number of blocks needed to launch the match
kernel depends on the size of the problem. This produces an increase of the size of the output
structure copied into global memory at the end of this kernel. Moreover, there is a limit in
the number of blocks that can be processed in parallel. From a certain value, the blocks are
served sequentially. Iterative strategies to process more than one instance in a thread could be
analysed to avoid launching a large number of blocks.
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Figure 8.9: Net speedup against the training set size (left) and total speedup according to the number
of windows (right) of the independent evaluation process using different approaches and
architectures. Problems: Black = Continuous, Red = Mixed, Blue = Discrete.

Moreover, the steep decrease in the speedup when the training set gets very small is because
up to this point the serial algorithm can fit the examples in cache memory. Also the usage of
CUDA when the training set is small is less beneficial, because the constant overhead produced
by the memory copy operations cannot be hidden by the speedup gained.

The patterns of the coarse-grained approach in Figure 8.9 seem to be similar for both archi-
tectures tested, except for the Par problem which seems to gain considerably more speedup in
the C2070. However, the patterns of the fine-grained approach are considerably different than
the patterns of the coarse-grained approach. While for the coarse-grained approach using the
C2070, the continuos and the discrete problems seem to get the largest speedups, for the fine-
grained approach only the discrete problems seem to get the largest speedups, followed by the
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Figure 8.10: Largest speedup found for each one of the implementations and different architectures tested
depending on the number of attributes and training set size. The size of the circle represents
the speedup and the number besides it represents the window used to get that particular

speedup.

mixed ones. Moreover, the fine-grained approach seems to obtain higher speedups in problems
with less attributes.

Regarding the total speedup we can see it increases logarithmically with the number of win-
dows. Moreover, the patterns observed among the coarse-grained approach with both ar-
chitectures and the fine-grained approach are completely different. While in the coarse-
grained approach the problem with more continuous attributes obtain the largest speedups,
in the fine-grained approach the largest speedups are found in discrete problems with few
attributes.

Figure 8.10 shows the maximum speedup obtained according to the number of attributes and
training set size. In this figure we can see that the coarse-grained implementation seems to
benefit problems with large number of attributes, while the fine-grained approach seems to
obtain better results in problems with less attributes. Moreover, in both implementations we
can observe that the problems with medium training set sizes obtain the best results, and these
results are usually obtained when using a couple of windows. In particular the coarse-grained
approach obtains better results than the fined-grained approach in large problems. This is due
to the fact that the number of cores in a GPGPU is also limited and the best results are found
when we can find the right balance between parallelism and thread workload.

Moreover, the difference in the speedup patterns among problems is given also due to the fact
that the number of blocks that we launch is dependant on the characteristics of the problem. In
the case of the coarse-grained approach it is dependant only on the training set size, but in the
case of the fine-grained approach it is also dependant on the number of attributes. Some block
configurations depending on the architecture used might be more beneficial than others, which
explains the differences in the speedup among problems.
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Table 8.5: Execution time (s) of the integration of the CUIDA fitness function using the mmw»»gmmm
approach tn BioHEL and the serial BioHEL version in mv}z one of the problems using 1 win-
dow

Integration

Berial LA CIDND

In general we can conclude that the coarse-grained appronch oblains betler results in ferms of laree
scale datasets because if produces higher ﬁ;wdum Jor problems with lar f size ﬁﬂd
large number of attributes. Moreover, ]
speedups. Even though the speedup varies de
conficuration parameters {i.e number of zwmtmiw per fZ;A} e ?ww 5
meethodology presented improves the performance of the evaluation process when the training sel is
sufficiently big.
In the next section we are going to present the results of the performance of BlodEL after in-
mgmmng the CUDA-based fitness function using the coarse-grained approach. Later we will
analyse this approach more in deep generating models that explain its execution times.

8.6 BioHEL using CUDA-based evaluation

Table 4.5 shows the execution times of the base case [ window) of the whole Ewmmg prmm@
using both the CUDA version and the serial version of BioHEL. In “H

tained in [Franco et al., 2010a] are sbed, which were run o the Te

include the problems CNbin and CNO. However, we believe that the mﬁm%m i newer &mhlmﬁw
tures will follow similar patterns as the ones presented in this section.

Table 8.6 presents the speedup of the BioHEL system ummg the CLIDA evaluation over %%w serial
version. In this table we can notice that the speedup increases compared to the

raw evaluation. This is due to the usage of the IRL approach. While the previous mw&rizm
were done with the full training set, using IRL each time we learn one rule the training
decreases, When the training set gets slightly smaller the CUDA evaluation might obtain more
speedup as it was shown in the previous section. Nevertheless, there is also a downside, when
the training set is too small the overhead of performing the necessary memory copy operations
overcomes the advantage obtained by using a GPGPU. This aspect is niot considered in the
experiments of the previous stage. Using a Itmgv number of strata amplifies this phenomena

because the system performs less calculations in parallel but the memory copy overhead re-
maing constard

Using the integrated version of BioHEL with the GPGPU-based evaluation process, the §§
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Table 8.6: Speedup of the BioHEL system using the CUDA evaluation over the serial version

Number of Windows
1 5 10 15 20 25 30 35 40 45 50
- 37 16 12 1.0 0.8 0.8 0.7 0.7 0.7 06 0.8
37 58 6.3 84 8.3 9.5 8.2 9.4 9.7 88 106
g way 31 12 0.8 0.7 0.7 06 0.6 05 06 0.5 0.5
z 31 47 6.2 86 8.9 93 93 9.2 99 9.4 9.3
& . 37 17 1.0 10 0.7 0.7 0.6 06 05 06 0.5
g P 37 8.1 86 111 98 113 113 106 108 113 115
o oN M1 524 400 253 138 119 104 9.0 6.7 7.0 7.6
441 1889 2988 3941 4370 4664 5042 5525 5658 5880 6155
- 581 409 9.9 6.0 6.6 7.0 6.0 6.1 6.8 6.1 6.6
581 2560 3909 4987 5461 6201 6353 6719 7085 7140 7653
oy 200 7.9 6.9 6.4 71 63 6.5 6.4 6.8 6.7 5.4
200 838 1320 1652 1763 2011 1981 2049 2112 2181 2243
pay 268 253 134 7.4 56 47 32 29 29 3.0 36
a 268 776 998 1186 1307 1330 1338 1403 1417 1382 1399
U
2 g 364 %7 %63 42 7 207 203 181 156 114 9.4
£ 364 1617 2927 3767 4577 4808 5289 5714 5786 6086 6423
2 r 260 137 52 47 49 46 57 52 49 46 5.1
= 260 891 1234 1592 1663 1787 1819 1947 1801 1920 1820
oy 219 89 6.1 53 6.4 59 6.4 55 6.0 6.0 5.9
219 929 1571 1888 2209 2387 2574 2599 2710 2653 2775
sa 436 473 379 188 150 126 124 147 181 160 147
436 1489 2142 2596 2853 3091 3228 3381 3476 3502 3593
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Figure 8.11: Net speedup against the training set size (left) and total speedup according to the number
of windows (right) of the integrated learning process. Black = Continuous, Red = Mixed,

Blue = Discrete.

dataset obtained the best results, both without combining it with the ILAS windowing scheme
(with a maximum speedup of 58.1X) and in combination with it (with a maximum speedup
of 765.3X). Figure 8.11 shows the relation between the training set size and speedup of the
integrated system (on the left) and the total speedup of the learning process according to the
number of windows (on the right). We can observe similar behaviours in the speedup as the
ones explained in the previous section. In the case of the integration the maximum speedup for
most of the problems can be found around 50000 and 100000 examples. This shift is expected
because as some examples are deleted and the training set becomes smaller, its size gets closer
to the evaluation “sweetspot” that increases the speedup. In most datasets, specially the large
ones, we can observe that as the number of windows increases, the total speedup (compared
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Table 8.7: Table of fitted models for the match and the instance copy g?m esses where x 15 the number of
attributes and v is the number of instances in the traini

| Fungtion Madel
- Dis. Watch LE TR - LR
=3 Cont. Match 83334 . 2.450¢ 4
& i Copy LIt et
- Dhg Makch 430900y i
e Conit, Match 3655y : Lae e
5 Ins. Copy 1912078 4 175370 ok 702 oy < P2t 0.997

to the serial norewindowed BioHEL) i "“icmf:y»
enhancement mechanisms can be suc full }; mmbmmm mew m the pmi}mm@ thm give the
largest speedups using one window, might not be the ones that obtain the largest speedup
overall. It is noticeable that large problems in terms of number of instanc

increase their net speedup when using a couple of windows |

‘%’
, w}m learning process fmﬂawg ﬁw
same thmw z}%m&f fﬂ‘ tﬁzﬁ' miﬂatiﬁﬂ process. “mm' resul, ;ms;»}x the experimental boynd m
of BioHEL since as we can see for one of the lareest prollems ,
| from two weeks to eight hours.

8.7 CUDA execution time models

In order to understand better the results obtained in the two previc ns we generated
models to explain the execution times obtained with the coars ,m@d amwme% in the two
architectures analysed. To do this we ran the evaluation proces rined ap
independently with problems that vary their number of ,;mmbmwa agmﬁ:% ﬁ:ﬁw training sl

regular step, to sample uniformly the whole problem space.

For the match kernel we generated independent models for discrete and mmzmmm pmiﬁﬂmﬁ
Fow the discrete problems we used the k-DINE mmzz%y of problems with ¢

20,60, 100, 140, 180,220,260, 300} and training set i

instances.! For the continuous problems we use : : :
carybe found do botpy//icos op nottoag .mk/ d&mmts/ WW mmmm htwl and which bawz
a number of attributes d = {20,60, 100, 140, 180, 220,260,300 }. To use th ~

pled the training set to create samples from 234638 instances to 256 instances. CNO ami CN are
part of this benchmark set.

In preliminary experiments we realised that the operations that took most of the time were the
copy of the instances from host to device and the match kernel. Therefore, for simplicity the
models will only consider these 2 steps.

Figure 8.12 shows the fitted model of the execution time of the match kernel in seconds ac-
cording to the training set size and the number of attributes. The formulas corresponding to
the models are shown on Table 8.7. This figure shows that for the coarse-grained approach
the change of GPGPU produces a completely different pattern on the e Hon time. While
using the C1060 the model does not depend on on the number of attributes, while using the
C2070, the execution times get lower and also vary logarithmically depending on the number
of attributes.

4 A ramdom sarpling was used 1o shiorten the tralning set size whilé oversamphing was dsed o prodiuce the vpiposite
effect.
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Figure 8.12: Execution time model of the match kernel for different types of attributes
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Figure 8.13: Execution time model of the instance copy operations

Regarding the execution time of the instances’ copy operations (Figure 8.13) the models are very
similar even when changing the GPGPU. Particularly in this case the model grows linearly with
the number of attributes and the number of instances. However, it seems like the C1060 card

has slightly better memory bandwidth than the C2070.

Having an approximation of how much the match and the copy operation process take in the
device we can try to approximate how much will it take a simple GA evaluation with i itera-
tions. Assuming the simplest case, in which all iterations handle exactly the same number of

windows w the time taken by the evaluation process is:

eval (att,ins,i,w) = copyins(att,ins) + i - match (att, m?s) (8.7.1)

Figures 8.14 and 8.15 show the validation of the previous model against the data shown in
Section 8.5 for the continuous and discrete problems. Small problems are not shown as both
models underestimate these cases. In these figures we can observe that the model behaves as a
lower bound in most cases, which is expected since we only considered the operations that took
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Figure 8.14: Model validation over the data obtained in the previous sections for the coarse-grained ap-
proach over the Tesla C2070
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Figure 8.15: Model validation over the data obtained in the previous sections for the coarse-grained ap-
proach over the Tesla C1060

most of the time. For the model on the C2070 there are only two problems for which the model
does not fit the data accordingly: c-4 and CNbin. In the case of CNbin the problem with the
fitting might be because this problem has very little attributes and it is right at the border of the
sample space used to create the models. In the case of the model for the C1060 (Figure 8.15) we
can observe that since this model does not have an independent term there is a subestimation
when the training set gets very small.

Regarding the mixed attributes the most intuitive way to generate a model is assuming that if
the problem has n discrete attributes and m continuous attributes the evaluation time will be
equal to:

eval(n,m,ins,i,w) = copyins (n +m, %) +i- (dismatch(n, ins) + cmatch (m, %))
(8.7.2)

Figures 8.16 and 8.17 show the validation of this model over mixed problem on the C2070 and
the C1060, respectively. In these figures we can observe that generating a model for discrete
and continuous attributes independently is not sufficient to model the behaviour of the system
on mixed domains. In these domains the way the different types of attributes are interleaved
might affect the execution times. Moreover, the fact that a change in the GPGPU changes the
model introduces the idea of generating a model (if possible) that takes in consideration intrin-
sic characteristics of the device, in order to understand better these behavioural changes.
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Figure 8.16: Model validation over the mixed problems for the coarse-grained approach over the Tesla
C2070

8.8 Conclusions

We have successfully implemented a GPGPU-based evaluation process for the BioHEL system.
Two different parallelisation paradigms where analysed: the coarse-grained paradigm which is
more conservative and only parallelises the evaluation of instances and classifiers, and the fine-
grained paradigm which expands the parallelism of the previous one to the attribute dimension.
Even though it seems logical that the larger the parallelism the larger the speedup, this is not
entirely true, since the number of multiprocessors in the GPGPU is finite, and if we assign a
number of tasks way above its capacity they are going to be serialised.

In this work we have determined that the right balance between parallelism and thread workload
produces the best results. In this sense the coarse-grained approach is the one that gives the best
results. This paradigm (when run on a Tesla C1060) achieves a maximum speedup of 52.4X (when
evaluated on its own) and up to 58.1X when integrated within BioHEL. Even though these values
are dependant on the characteristics of the dataset and the architecture used, we have shown that
in general the CUDA architecture can be used to successfully speed up the evaluation process of
BioHEL when handling large problems. Moreover, the combination of the CUDA-based evaluation
and the ILAS windowing scheme also showed to be beneficial, obtaining a maximum combined
speedup of 765.3X on a Tesla C1060.

Thls implementation exploits the intrinsic parallelism in the evaluation process and can be
easily extended to other EL paradigms. The speedup obtained with CUDA in the evaluation
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Figure 8.17: Model validation over the mixed problems for the coarse-grained approach over the Tesla
C1060

process helps the system to handle larger problems faster, one of the limitations of the system
found on Chapter 4.

Also models were generated to explain the behaviour of the execution time according to the
type of problem, number of attributes and training set size. In this sense the models manage
to explain the behaviour for most problems. However, when the GPGPU changes the model
structure changes entirely which questions the benefits of having these types of models. In this
sense we conclude it is best to generate more complex models that include intrinsic character-

istics of the GPGPU to explain the algorithm’s behaviour.
8.9 Further work

As further work we would like to extend this implementation so it can use more than one
GPGPU at the time. By doing this, the system could schedule the matching of different groups
of classifiers and instances in different GPGPUs, if more than one device is available.

It could be also interesting to develop an implementation that copies the information only once
into device memory and synchronises the population and the instances when there are changes.
This way, the system would only perform small memory copy operations which would be
interesting to compare with the current system.

Finally, the use of GPGPUs opens the door to perform much extensive experiments that we
could not afford to perform before. For instance, it is known that increasing the number of strata
of the ILAS windowing scheme makes the problem more difficult to learn [Bacardit et al., 2004].
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Nevertheless, it was not possibly to exhaustively determine when this was producing a signif-
icant impact in the system’s performance in large scale domains because the experiments were
too computationally demanding. GPGPUs allow us to perform much larger experiments than
before, thus we are able to push forward the boundaries of evolutionary data mining.

In general, the parallelisation methodologies presented in this chapter can be easily extended
to speed up the match or the evaluation process in other EL systems. For systems which use
a supervised learning approach (Pittsburgh-like LCS, IRL, etc) the evaluation process involves
the match process and the fitness calculation of the classifiers while for Michigan LCS it only in-
volves the creation of the match set. While the first ones could potentially have more advantage
of this parallelisation techniques, the later could apply the techniques explained in this thesis
to match the examples that arrive through online learning.
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CHAPTER 9

Post-processing the final rule sets

One last weakness to tackle in BioHEL is the length and generality of the solutions generated by means of the IRL
paradigm. Towards this aim this chapter introduces three post-processing operators (rule cleaning, rule pruning and
rule swapping) which combined together in different ways can help reduce the complexity of the rule sets generated
with BioHEL. The first two operators edit individual rules to reduce their number of expressed attributes and hence
make them more general. The latter operator changes the order of the rules within the decision list (based on the
similarities between them) to identify and delete the unnecessary ones. The results show that it is possible to both
reduce the number of specified attributes per rule and the number rules by up to 30% in some problems without
producing significant accuracy changes.

9.1 Introduction

A frequent theme throughout the years in EL research is the proposal of methods to reduce
the complexity and/or improve the generality of the generated solutions (mostly rule sets) to
provide a more understandable solution for the user. After the learning process of all kinds of
EL systems, the generated rule sets may not be optimal. There are many reasons for this: a) In
IRL the greedy nature of the learning process makes it easy to generate suboptimal rule sets, b)
the Michigan approach usually generates very large rule sets of fixed size where some of the
rules are duplicated or irrelevant, and c) in all paradigms there is no guarantee that the solu-
tions are as optimal as possible (minimal rule sets). These problems get aggravated while the
problems become larger and complex, as the final solutions increase their complexity as well.
Therefore, it is important to edit the rules and rule sets to make them more general, without
compromising their prediction capacity. Towards this aim, some studies in the literature focus
their efforts in reducing the cardinality of the final rule sets [Dixon et al., 2003; Wilson, 2001a].
Other studies present intelligent operators to combine the rules in order to obtain less complex
solutions [Bacardit and Krasnogor, 2009b; Butz, 2006].

Throughout Chapter 4 we noticed that the rule sets generated with BioHEL present two prob-
lems. First, the rule sets generated by BioHEL, even though they are small compared to the ones
obtained with Michigan LCS, they might not be maximally general since they are generated in a
greedy fashion (without global supervision) and they are considerably larger than the ones ob-
tained with GAssist. By doing this the rules might be learned in the wrong order, which causes
the solution to be larger than the optimal solution. The second problem is that the individuals
in the initial populations in BioHEL are generated randomly with a user-defined specificity
(number of relevant attributes and instance space covered by these attributes, which in binary
domains are defined by the parameters ExpAtts and p, respectively) and the learning process
is in charge of evolving these rules and adapt them to the correct specificity of the problem
(which for binary domains is equal to the k of the problem). Even though this is accomplished
in most cases by means of the coverage breakpoint, it can happen that the good rules are more
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specific than what they should be and they need to be simplified, as shown in Chapter 7.

To overcome these two problems, this chapter proposes three local search operators (rule clean-
ing, rule pruning and rule swapping) which combined together in different ways can help reduce
the cardinality of the generated solutions as well as the number of attributes expressed in each
rule. While the first two act on individual rules to reduce the number of attributes expressed
without degrading the accuracy, the last one is a simple heuristic that changes the order of the
rules considering similarities (or overlapping) between them.

These rule editing operators are designed for the GABIL and hyper-rectangle knowledge repre-
sentations, which encode discrete and continuous attributes, respectively (See Section 2.4.2.1).
Even though these operators are evaluated in this chapter over rule sets obtained with BioHEL,
they can be applied directly to other systems employing decision lists and the GABIL or hyper-
rectangle representations (e.g. GAssist, GALE, NAX) and can easily be adapted to many other
rule representations.

In the first stage of experiments each operator is evaluated independently. Afterwards, combi-
nations between the operators were tested to determine if applying them together in a particu-
lar order improves the results. The improvements were measured based on the number of at-
tributes, number of rules and accuracy observed before and after applying the operators.

The results show that these operators can improve the final rule sets significantly without de-
grading the test accuracy. It is shown that when combining the operators in particular ways
it is possible to reduce both the number of attributes and rules in the initial solution by up to
30%. However, the reduction percentage varies among problems.

This chapter is organised as follows. Section 9.2 describes previous works that apply operators
or mechanisms to improve either individual rules or complete rule sets. Section 9.3 explains in
detail the proposed post-processing operators. Section 9.4 presents the experimental design to
evaluate these operators. Section 9.5 presents the results obtained after evaluating the operators
and Section 9.6 presents the conclusions and future research directions.

9.2 Related work: Rule optimisation algorithms

The operators presented in this chapter are local search operators that fall into the category of
Memetic Algorithms (MA) [Krasnogor and Smith, 2005]. However, instead of being applied
during the learning process, these operators are used to post-processes and compact the final
solution. The Memetic Pittsburgh LCS (MPLCS) [Bacardit and Krasnogor, 2009b] proposed
several operators with some similarities to the operators presented in this thesis. This work
presents four operators, three rule-wise operators and one rule-set-wise operator. Similarly to
the the operators presented in this chapter, they work with the GABIL representation. The first
rule-wise operator Rule Cleaning disables the literal in the GABIL string that makes the rule
cover the most misclassified examples and does not help to classify correctly any example at
all. The Rule Generalizing operator has the opposite effect, it activates the literal that correctly
classifies more examples and does not increase the misclassifications. The Rule Splitting oper-
ator separates the rule into two rules, over which the cleaning operator can be applied more
effectively. Moreover, this work also presents a rule-set-wise operator in which a new rule set
is generated by inserting the rules of parent rule sets in the order that increases the most the
accuracy of the offspring rule set.

The similarity between the rule cleaning mechanism presented in [Bacardit and Krasnogor,
2009b] and our work is given by the fact that both operators disable literals in the rule that con-
tribute to misclassify examples. The difference is that our cleaning operator does not attempt
to make one change in the rule, but to make all the necessary changes needed (according to
a predefined policy) in each one of the attributes. There is a similarity as well, between the
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rule generalising and the rule pruning mechanism presented in this chapter. While the rule
generalising operator tries to activate the bit that makes the classifier cover more examples
without compromising the accuracy, our pruning mechanism eliminates all the attributes from
the rule that can be deleted without compromising accuracy or covering negative examples.
In this sense we could say that our operators are more aggressive than the previous ones, but
this is needed since we are acting over final rule sets and we need to make all the necessary
changes in a single application of the operator. Moreover, we do not need to worry about the
balance between exploration and exploitation which is crucial for MPLCS. Finally, MPLCS's
rule-set-wise operator although also designed for decision lists is quite different from the rule
swapping presented in this chapter. The MPLCS operator creates a new rule set from scratch
from the rules of many parents, while our operator edits a single rule set swapping the order of
similar rules.

Other approaches of rule optimisation use Estimation of Distribution Algorithms (EDA) [Lar-
ragafia and Lozano, 2002] to model the structure of the problem and consider this knowledge to
generate new individuals. Examples of this are the crossover operators implemented by Butz
[Butz, 2006] that use either an ECGA [Harik, 1999] or a BOA [Pelikan et al., 1999] to determine
the structure of the building blocks of the problem. Also the Compact Classifier System (CCS)
[Llora et al., 2005] and its extension [Llora et al., 2006] uses EDAs within Pittsburgh LCS to

generate new individuals based on the generated model.

Regarding the compaction of the final rule sets a lot of work was done over Michigan LCS. The
first attempt to reduce the cardinality of the rule sets was presented in [Kovacs, 1997; Wilson,
1995], as a population condensation phase where mutation and crossover where disabled. After-
wards, the Compact Ruleset Algorithm (CRA) [Wilson, 2001a] was proposed, which orders the
rules from best to worst according to a certain characteristic (e.g. experience or numerosity),
and keeps only the necessary amount of rules that produces the same accuracy as before. This
algorithm reduces dramatically the number of rules but it also has very high complexity and
does not work well if the rule set has not reach maximum accuracy. To tackle the complexity
problem Dixon et al. [2003] presented an algorithm based on marking the “useful” rules. The
useful rules are the rules that after testing the whole training set, they fell into the action set
at least once. Two possible approaches can be followed: marking the only the rule with the
highest prediction accuracy in the action set, or marking all the rules in the action set. This ap-
proach produces similar results in much less computational time. Moreover, Orriols-Puig and
Bernadé-Mansilla [2004] presents a detailed analysis of the three reduction algorithms men-
tioned before, where they were compared using paired t-tests. In this analysis it was shown
that Wilson'’s algorithm produces the best compaction with less degradation, while the Dixon
approaches are more efficient in terms of computational time but produce more accuracy degra-
dation.

Other approaches of rule set compaction can be found in [Fu and Davis, 2002; Gao et al., 2006].
Fu and Davis [2002] present two modifications of the CRA specifically designed to handle not
well-trained rule sets (solutions that have not achieved maximum accuracy). The first modi-
fication was the deletion of classifiers incrementally. While the original algorithm works at a
macro-classifier level, this algorithm erases the classifiers one by one. The second modification
optimises the construction of the final set of rules, since this is the stage that takes more compu-
tational time. Moreover, Gao et al. [2006] also presents a version of the original CRA algorithm
that instead of trying to find the useful subset it erases classifiers one by one, reducing the
computational complexity of the algorithm. Statistical test were not performed in any of these
works to determine the differences with the previous approaches.

It is worth mention that in all these algorithms the rule set reduction is done at the cost of
reducing the test accuracy slightly. Also these methods can not be directly compared to the one

presented in this chapter because they are specifically designed for Michigan LCS, where an
order between the rules does not exist, in contrast to decision lists.
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Problem: x1 =1Ax3 =0 Good rule

000 = 0 100 = 1 x1=1Ax3=0

001 =0101 =0

010 = 0 110 = 1 Over-specific rules

011 =0 111 =20 xX1 =1Ax2 =1AXx3=0

x1=1Ax2--0Ax3=0

Figure 9.1: Example of good rules and over-specific rules for a particular problem with 3 attributes.

9.3 Post-processing operators for BioHEL

In this section we discuss three different rule set post-processing operators: a) rule pruning, b)
rule cleaning and c¢) rule swapping. The first two operators act on individual rules while the
last one is a rule set compaction operator. The next section explains each one of them in greater
detail.

9.3.1 Rule Pruning

The rule pruning operator acts by dropping attributes from the rule, making them more gen-
eral. Most learning systems introduce generality pressure in their functioning (by means of
their fitness function/subsumption mechanisms, etc.). In particular for the BioHEL system,
this generality pressure is applied by means of the coverage term (controlled by the coverage
breakpoint parameter) in the fitness function. Hence, at the end of the learning process the
generated rules are expected to be maximally general and specify only relevant attributes that,
if made irrelevant, will decrease the accuracy of the rule. However, this does not always hap-
pen. This operator tackles the scenarios where the maximal generality of the rules has not been
reached.

Figure 9.1 presents simple examples of over-specific rules for a small problem of 3 attributes.
As we can see having over-specific rules, not only makes the solution more complex, but also
makes the solution larger since each rule covers a smaller percentage of the training set.

This operator (identified as PR) works on individual rules iterating along each one of their
attributes. The system tries to erase each attribute, one at the time, and recalculates the accuracy.
If the accuracy decreases (because the rule mismatches more instances than before) the change
is reverted. The pseudocode for this operator can be found in Algorithm 9.3.1. This operator
is the same as the one applied in Chapter 7 to prune the candidate representatives found in an
initial population.

(Algorithm 9.3.1: PRUNING(Classifier c1) )

prevacc « GETACCURACY(c1)

for each att € GETATTRIBUTES(c1)
REMOVEATTRIBUTE(att, c1)
if GETACCURACY(c1) >= prevacc

do then prevacc + GETACCURACY(c1)
else RESTORE(att, c1)
return (c1)

\ J

This operator is very simple and does not depend on the representation used. It can be easily
translated to other representations that do not use attribute lists, by just generalising attributes
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Problem: Good Rule:

x1 nominal {a,b,c,d,e} x1=@Vb)Ax =w
X2 nominal {w,y,z}

x3 nominal {m,n} Generated Rule:

x1 =(@VbVc) Axy = wAx3 =m

Figure 9.2: Example of rule where it is not possible to erase irrelevant attributes because of the over-
generalisation of the relevant ones in a nominal problem with 3 attributes.

Continuous
(---- (((+-++++-+-4) ) ---)
OoLD CL2 CL CL CL2 oLD
Discrete
111011 Values covered by possitive examples: a,b,c
OLD abcdef Values covered by negative examples: c,e
111000 111001
e abcdef Ll abcdef

Figure 9.3: Example of different cleaning policies CL and CL2 for continuous and discrete attributes

completely. The greedy nature of this operator may not be effective in problems with a strong
interdependency between attributes, but in most problems this policy can be effective, as the
experiments will show.

However, when the cardinality of the attributes increase (more than two values per attribute)
or when we are working in continuous domains the effectivity of this operator decreases. If the
relevant attributes of the rule are over-generalised and they cover areas of the solution space
that they should not, it would be impossible in some cases to erase the irrelevant attributes.
Figure 9.2 shows an example of the situation mentioned above. Since attribute x; also spec-
ifies value ¢, when we attempt to erase attribute x3 it might be possible that the rule covers
more negative examples than before. If this happens the change will be reverted. To solve this
problem it is necessary to correct the specificity of the relevant attributes before the pruning.
Towards this aim we implemented the cleaning operator which will be explained in the next
section.

9.3.2 Rule Cleaning

This operator fits the predicates of each attribute in the rule so they only cover (if possible)
correctly classified examples. At the end of the evolutionary training process the generated
rules may cover areas of the search space that contain no examples (because of the generality
pressure introduced by the learning system), or that contain only misclassified examples. While
the latter is an obvious case that should be fixed, it is not clear if the former requires correcting,
as essentially it means decreasing the generality of the rules without a clear advantage. As we
will show later in this chapter, the advantage of this operator is not observed on its own but
when combined with the pruning operator, since it can boost its performance.

175



CHAPTER 9: POST-PROCESSING THE FINAL RULE SETS

(Algorithm 9.3.2: CLEANRULE(c) )

matchExamples + GETMATCHEDEXAMPLES(c)
fori € c.atts
(if i is continuous
sortedPositive = matchExamples.positive|i].sort()
then { c[i].lowerBound < sortedPositive|0]
{c[i].upperBound « sortedPositive[sorted Positive.length — 1]
for pred € i.values

=t {pos + i.values.index|pred)
do
\

doﬁ

if pred == 1 A matchExamples.positive|i|[pos| == @
then pred «+ 0

_return (c) 4

To “clean” rules, the system calculates the instances classified by this rule. Afterwards, it it-
erates along the attributes reducing the covered space to match preferably only the positive
examples (examples correctly classified). In the hyper-rectangle representation this involves
reducing the distance between the lower and upper bounds of an attribute’s interval, and in
the GABIL representation it involves disabling (setting to 0) some of the values of an attribute’s
predicate. Two different policies (shown in Figure 9.3) can be followed to shrink the domain of
an attribute:

CL - Focus on the positive examples. This policy reduces the predicate to cover only the posi-
tive values observed. In the case of continuous attributes this policy places the boundaries
right next to the first and last positive value observed. In the case of discrete attributes it
leaves activated only the literals that correspond to the values in the positive examples.
Algorithm 9.3.2 shows the pseudocode for this operator.

(Algorithm 9.3.3: CLEANRULE2(c) 2

matchExamples <— GETMATCHEDEXAMPLES(c)
fori € c.atts
(if i is continuous
(sorted Pos = matchExamples.positive[i].sort()
sortedNeg = matchExamples.negative[i].sort
8 8
lowNeg + CLOSESTNEGLEFT(matchExamples.negativeli],
sortedPos|0])

then { ,»Neg «+ CLOSESTNEGRIGHT(matchExamples.negativeli],
sorted Pos|sorted Pos.length — 1])
do ¢ cli]-lowerBound sortedPos(0] +lowNeg
C[i] upperBound < sortedPos|sortedPos.length—1]+upNeg
\ ¢ 2
for pred € i.values

pos « i.values.index|pred|

else d if pred == 1 A\ matchExamples.negative[i|[pos| # QA
5 matchExamples.positive[i][pos] == @
Sl then pred + 0 4

CL2 - Do not infer. This policy is more conservative than the previous one. In the case of the
continuous attributes, it places the boundaries between the first positive value observed
and the closes negative value. In the case of discrete attributes this policy only deactivates
the literals that appear in the negative examples and do not appear in the positive ones.
In order words, this policy tries not to infer what happens in the areas of the search space
where there is no input. Algorithm 9.3.4 shows the pseudocode for this operator.
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ﬁ\lgorithm 9.3.4: CLEANRULE2(c) )
matchExamples +— GETMATCHEDEXAMPLES(c)
fori € catts
(if i is continuous
sortedPos = matchExamples.positive[i].sort()
sortedNeg = matchExamples.negative|i].sort()
lowNeg < CLOSESTNEGLEFT(matchExamples.negativeli],
4 p 8
sorted Pos[0])
then { ) Neg « CLOSESTNEGRIGHT(matchExamples.negativeli,
sorted Pos[sorted Pos.length — 1))
do c[i]lowerBound sortedPos|0] +lowNeg
C[i] upperBound - sortedPos|sortedPos.length—1]+upNeg
. 2
for pred € i.values
pos < i.values.index|pred|
else do if pred == 1 A matchExamples.negative[i][pos] # @A
matchExamples.positive[i][pos| ==
L L then pred < 0 "

9.3.3 Rule Swapping

Rule swapping (SW) is a rule set modifier operator which main goal is to reduce the number of
rules in a decision list by changing their order. Particularly in IRL the rules are generated one
after another without having a global supervision of the generated rule sets. This could lead to
the generation of larger rule sets than necessary. Moreover, it could be the case that the system
makes mistakes while learning the first rules, and then more rules are necessary to cover the
rest of the examples left in the training set. An example of this situation is shown graphically
in Figure 9.4 where if Rule A is learned before Rule B, it is necessary to learn extra rules to cover
the rest of the examples. This does not happen if the rules are discovered in the inverse order.
Therefore, if we change the order of the rules in the final rule sets we could potentially fix some
of the errors the system made during the learning process and reduce the number of classifiers

of the final solution.

This simple heuristic iterates (from top to bottom) through the rules as shown in Algorithm
9.3.5. In each iteration the rule being evaluated is compared to all rules placed after it within
the decision list, in order to find the most “similar” rule to the observed, and swaps them.
Afterwards, the accuracy of the rule set is recalculated (considering the new order) and if the
accuracy decreases the change is reverted. If the change is approved, the system scans all the

Rule A
Rule B
ne + +
o+ % +
+
4 + + b
+ +
. g T N
+

Figure 9.4: Example case where rule swapping can be beneficial since it allows erasing extra rules
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rules that follow the first swapped rule, erasing the ones that are not active anymore (rules that
do not cover any example) because they have been subsumed by the change in order.

(Algorithm 9.3.5: RULESWAPPING(rs) )

accuracy < ACCURACY(rs)
forr €rs
(52 < FOLLOWINGRULES(r, rs)// Returns the set of rules placed after r in rs
rl - MOSTSIMILARRULE(r, rs2)
SWAP(rl,r, rs)
newAcc +- ACCURACY(rs)
if newAcc < accuracy
then SWAP(r, rl, rs)
else if newAcc > accuracy
then accuracy < newAcc
rs2 <~ FOLLOWINGRULES(r1,rs)
for f € rs2
do {1f f.coverage == 0
\

9 then DELETE(f, rs)// Deletes rules with no coverage y

do

The similarity metric between rules depends on the percentage of the space the rules match
in common, and its calculation is different for discrete and continuous attributes. Considering
rules i and j, both containing a continuous attribute ¢, the area this attribute matches in common
for both rules (intersection) is:

min(ubc (i), ubc(j)) — max(lbc(i), 1bc(j))
max (ube (i), ubc(j)) — min(lbe (i), Ibc(f))

Sc(inj) =

where Ib.(i) and ub.(i) can be read as lower and upper bound of attribute ¢ in rule i. For the
discrete attributes and GABIL representation the intersection between attributes is calculated
as Sc(i,j) = coincidentValsc(i, j), where coincidentVals.(i, j) is the number of values that are
activated in both predicates at the same time.

Moreover, to calculate the similarities using the ALKR representation we have to take into ac-
count that some attributes may not appear in the rules. Therefore, we have to consider three
cases: a) the attribute appears in both rules, b) the attribute appears only in one of the rules, and
c) the attributes does not appear in any of the rules. If the attribute appears in only one of the
predicates the intersection in done considering the second attribute covers the whole domain of
the attribute. If the attribute does not appear in any of the predicates a total coincidence is con-
sidered. Therefore, the similarities between rule i and rule j can be calculated as follows:

... _Dis TPes(i,j) Real Real M
SGi.j) = m):,?“ numVals(k) " NA ; Slb-j) + NA

where Dis is the number of discrete attributes observed in both rules, Real is the number of real
attributes observed, Mi is the number of attributes that do not appear in any of the predicates
(missing attributes), NA is the total number of attributes in the problem and numVals(k) is
the number of values of attribute k. This formula sums the similarities for the discrete and
continuous attributes independently, and then weights these values according to the number
of real or discrete attributes observed. Also, at the end, this formula considers a complete
intersection between all the attributes that do not appear in any of the lists. It is worth noticing
that we normalise the discrete attribute term according to the number of values observed after

summing the values for all attributes, to treat all attributes equally in problems with discrete
attributes of varying cardinality.
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9.4 Experimental design

The experiments in this chapter are divided in three parts. The first part shows the impact
of each operator independently. The two other parts show combinations of them (in terms of
the order of application) to better understand how these mechanisms interact between each
other.

We tested our post-processing operators (CL and CL2 -rule cleaning with both policies, PR -
rule pruning and SW -rule swap) over rule sets generated using BioHEL in the experiments
reported in Chapter 4. Specifically, we used the rule sets generated with BioHEL using the
standard configuration shown in Table 4.2 plus three parameters that vary depending on the
size of the problem according to Chapter 4: the coverage breakpoint, the number of ILAS
windows and the default class policy. For large problems (over 40000 instances) a coverage
breakpoint of 0.001, 10 windows and majority default class was used. For small problems (less
than 40000 instances) a coverage breakpoint of 0.1, 2 windows and disabled default class was
used. Moreover, in Chapter 4 stratified ten fold cross-validation was employed, and five rule
sets were generated from each training set. Thus, for each problem we tested our operators
on 50 (potentially different) rule sets. Furthermore, our operators are not stochastic, so we run
these only once per rule set.

Our results are presented in terms of the percentage of variance (with respect to the initial re-
sults) in test accuracy, number of rules and number of attributes. We also show the test accuracy
obtained after integrating the rule sets into a simple consensus ensemble (see Section 2.4.1.4).
We have included the ensemble accuracy because we were interested in determining if these
operators increase or reduce the diversity of the ensemble which is the key to its success. For the
comparison with the initial rule sets, we present their results in Table 9.1. Moreover, we show
the execution times of applying the different operators over large problems (experiments were
run in Intel Xeon E5472 3.0GHz processors) to determine how they scale in these domains. At
the end of our analysis, we determine if there are significant differences between the results ob-
tained with the different operators, the combinations of them and the initial results all together
using the Friedman test and the post-hoc Holm test.

9.5 Results

In this section we will first analyse the impact of the operators independently. Later, we analyse
the impact of combining the rule operators CL and PR. Afterwards, we analyse the combination
with the rule set operator SW. Finally, we analyse statistically the results obtained with all the

combinations of operators shown.

9.5.1 Independent operator analysis

Figure 9.5 shows the results of the first stage of experiments. We can observe that only a small
fraction of problems present large accuracy variations. Interestingly, the variations are larger
(both in terms of accuracy increase and decrease) when looking at the ensemble accuracy than
when looking at the average test accuracy, and this is a trend that will be observed also in
later stages of experiments. Moreover, we can see that the PR operator can reduce the number
of expressed attributes up to 23% in large problems and up to 13% in small problems. Even
though the number of attributes expressed per rule in BioHEL is not very high, this result shows
that is it possible to generate even more general solutions without varying the test accuracy.
On the other hand, SW could potentially reduce the number of attributes as a consequence of
deleting rules, but its impact over the attributes is not very big, it is only observed in the CN-bin
problem. Moreover, we can also observe that the SW operator is capable of erasing up to 30%
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Table 9.1: Test accuracy, test accuracy after ensembles, number of rules and number of attributes of the

rule sets before post-processing

Prob. Test acc Ensemble acc Rules Atts

Adult 85.19 + 0.55 86.09 + 0.39 194.24 + 10.26 10.18+2.80
C-4 79.20 + 0.50 80.94 + 046 316.14 + 19.10 9.96+3.23
KDDCup 99.93 + 0.02 99.95 + 0.01 188.84 + 13.52 4.254+2.99
ParMX 99.99 + 0.01 100.00 + 0.00 394.34 + 19.39 9.00+0.01
SS1 65.20 + 1.02 71.20 £ 1.06 773.26 + 30.42 11.491+3.40
CN 68.68 £+ 0.69 80.59 + 0.46 253.34 + 12.48 10.09+2.78
CN-bin 72.45 + 047 72.44 + 049 38.20 + 1.85 7.12+0.73
bal 85.34 4 4.55 86.55 + 3.64 30.34 + 2.03 3.09+0.49
bpa 62.67 +7.28 67.87 + 5.59 20.18 + 1.12 3.35+1.29
bre 66.69 + 8.22 68.56 + 8.51 2250+ 1.36 3.64+1.52
cme 53.30 + 4.50 54.18 + 4.64 14.28 + 5.71 2.58+1.39
col 95.07 &+ 3.07 97.32 + 2.15 638 + 0.78 2.404+1.37
cr-a 83.37 +- 542 84.90 4+ 549 20.22 + 1.57 3.98+1.71
gls 70.98 + 10.51 75.64 £ 9.22 17.14 £ 1.07 3.18+1.50
h-cl 78.07 + 6.54 81.23 4+ 495 13.16 £ 1.11 3.96+1.46
hep 87.40 4- 8.30 89.79 + 8.10 592 +0.70 2.72+1.03
h-h 94.97 + 3.58 95.92 + 3.52 5.76 + 0.89 2.20+1.29
h-s 76.44 £ 8.56 78.89 + 8.20 14.24 +1.13 4.041+1.55
ion 89.46 + 3.57 92.27 + 281 504 + 0.83 4.74+1.88
irs 93.87 £ 5.01 94.00 + 492 6.32 +1.02 1.57+0.56
lab 97.14 +5.77 97.14 + 6.02 200+ 0.00 1.60+0.49
lym 79.37 + 13.57 80.89 + 13.09 9.52 + 0.99 3.01+1.29
pen 92.31 +1.98 94.62 + 1.04 27.82 + 2.80 6.461+3.44
pim 71.19 &+ 5.11 73.97 +- 4.44 24.56 + 1.43 4.23+1.60
prt 45.95 + 8.63 47.56 + 8.99 28.32 + 4.43 4.34+1.99
sat 85.13 +1.52 86.99 + 1.39 31.02 + 2.32 5.681:3.57
son 73.85 +10.28 80.56 + 12.40 7.28 4: 0.67 3.72+1.51
thy 93.20 +-4.14 93.48 + 3.93 7.16 + 0.87 1.69+0.73
vot 96.09 + 3.42 96.10 + 3.79 13.66 + 2.22 2.22+0.97
wav 79.67 £ 1.85 83.10 + 1.75 3340 £ 1.65 6.40+2.55
wbced 94.85 4+ 2.33 95.57 +£ 217 6.70 + 1.43 3.66+1.94
wdbc 94.53 4+ 2.99 95.64 + 3.35 7.60 £+ 0.83 2.84+1.13
wine 91.75 £ 6.26 95.39 + 452 3.58 + 0.54 2.98+1.21
wpbc 69.96 + 10.43 75.57 +-9.78 9.44 + 0.95 3.68+1.99
Z00 94.78 + 5.09 94.98 + 5.31 7.00 + 0.00 1.394+0.49
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Figure 9.5: Results of the application of the different post-processing operators independently. CL - rule
cleaning policy 1, CL2 - rule cleaning policy 2, PR - rule pruning and SW - rule swapping

of the rules in the CN-bin problem, and we can observe that it has a bigger impact on the large
problems, which had (in general) larger initial rule sets. It is worth noticing that in the CN-
bin problem, which is the problem where SW erases most rules, the number of attributes also
decreases. This indicates that in this particular problem the SW operator managed to keep the
most general rules, erasing specific ones that, after changing the order, were not necessary any
more. Moreover, considering that CN-bin and ParMX are binary problems it is expected that
the SW operator works better on these domains, because finding similarities between rules in
these cases is easier. Finally, the CL operator does not have an effect on the number of attributes
or the number of rules by itself, and it concentrates the largest accuracy drops, but as it will be
shown later in this chapter, it can boost the performance of the PR operator. We can also observe
differences between the two cleaning policies studied. CL2 is much more conservative than CL,
and therefore the variations in the accuracy are smaller. In most cases the variations in accuracy
seem to depend on the problem rather than on the employed operator.

Table 9.2 shows the total execution times of the CL2, PR and SW operators applied over large
problems. The execution times for small problems are less than 1 second for any for the opera-
tors and they are not reported. Here we can see that for the three operators the execution time
increases proportionally to the size of the training sets and the analysed rule set. Moreover, it
is noticeable that the non-conservative cleaning is slightly more expensive than the conserva-
tive one. Perhaps because it allows more changes in the predicates. Considering these large
datasets, CL,CL2 and PR scale well, but SW involves considerably larger execution times. This
is because this operator is very greedy and tries to swap every rule in the solution, recalculating
the accuracy each time. Its execution time can be reduced by applying more selective policies
which only try to perform a change if the similarity is higher than a threshold. Another way
option would be to parallel the execution of this operator using GPGPUs. Ho\fvever, this would
not give good results in terms of speedup as the algorithm is mainly sequential. Nevertheless,
a different parallel approach to swap the rules could be investigated.
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Table 9.2: Execution time of the application of each one of the different operators independently

Prob CL CL2(s) PR (s) SW (s)

Adult 50.87+5.02 49.87+3.85 69.60+10.22 5855.04 +874.14
C4 130.87+17.43 96.49+8.33 192.214+24.76 18763.0312614.41
KDD 311.73+41.19 21395+18.25 375.85+59.00 23791.21+5041.45
ParMX 526.83+69.04 405.77+37.05 619.20+£82.02 106343.70+13094.78
SS1 453.14+45.55 293.70+23.26 649.511+85.94 133415.03+19160.27
CN 446.561+80.20 314.02+26.01 631.68+70.09 43097.441+5429.48
CN-bin 17.54+0.75 17.4440.76 20.52+0.82 157.51+76.42

9.5.2 Interactions between CL and PR

Considering the nature of the operators, when combining them, the SW operator should always
be applied last, since this operator acts over the whole rule set. Therefore, we will first analyse
the different ways in which our rule operators CL and PR can be combined together. The
results of the different combinations of PR with both cleaning policies CL and CL2 are shown
in Figure 9.6. It is noticeable that since CL2 is more conservative than CL it has less impact over
the number of attributes. Also we can notice that applying the cleaning before the pruning
increases the number of attributes erased. This is because to erase irrelevant attributes the
relevant ones should have the correct specificity. Otherwise, they will match examples that do
not belong to the domain of that classifier thus making the pruning process more difficult. Also
this figure shows that applying pruning twice with CL/CL2 in between, can erase even more
attributes than the previous combinations (up to 30%). This is because the PR mechanism can
help the CL operator and vice versa in a cyclic way. However, for some problems this involves
more variations in the test accuracy, specially in the gls and wine problems where the accuracy
drops 4% and 3%, respectively. It is also worth noticing that when using the conservative CL.2
operator, the usage of a previous pruning (PR-CL2-PR) increases dramatically the number of
attributes erased, up to a point that for small problems it erases as many attributes as PR-CL-
PR. However, the test accuracy stays less variable in PR-CL2-PR. For this reason we consider
that the combination PR-CL2-PR could be more appropriate to post-process rule sets.

9.5.3 Interactions of rule operators with SW

Figure 9.7 shows the combinations of the CL, CL2 and PR operators with the rule-set-wise
operator SW and also the combination PR-CL2-PR-SW to analyse the behaviour of the three
mechanism together under the configuration that provided the best results in the previous sec-
tion. In this figure we can observe that the number of deleted rules does not change when SW is
combined with other rule set operators. The only interesting change is presented in the CN-bin
problem, where the combination CL2-SW makes the system erase slightly less rules. Moreover,
the changes in accuracy remain the same for the CL-5W and CL2-SW operators, showing that
SW has no effect over the accuracy changes. In general the SW operator does not affect the
performance of the others. Once again the policy that deletes more attributes and more rules is
PR-CL2-PR-SW, which erases up to 27% of the attributes or 30% of the rules, depending on the
problem. However, this policy drops the test accuracy for some problems, which does not occur
with the PR-SW combination. In this sense, we could say that the PR-SW combination is the
safest one to use, while the PR-CL2-PR-SW is the best in terms of the obtained results.

9.54 Statistical evaluation of the operators

In this sect?ox) the differences between the original and post-processed rule sets will be studied
from a statistical perspective using the Friedman and Holm statistical tests. The tests have been
run separate}y for the average test accuracy, ensemble accuracy, number of rules and number
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Figure 9.7: Results of the application of the different combinations (in terms of order of application) of
post-processing operators with the SW operator. CL2 - rule cleaning (second policy), PR -
rule pruning and SW - rule swapping

of attributes in a rule. Table 9.3 reports (a) the p-values of the Friedman tests, (b) the results of
the Holm tests and (c) the average rank across datasets of each combination of post-processing
operators and the original rule sets (Base). We show  if the configuration in the row generates
rule sets that are significantly better than the original ones, using a confidence level of 99%. For
the comparison using the number of rules only the configurations that include SW were con-
sidered, and we can observe that all of them generate significantly smaller rule sets compared
to the original ones. In relation to the number of attributes per rule, we can observe that all
settings including PR (as expected) produce rule sets with significantly less attributes.

From the average ranks it is possible to conclude that the best configurations that erase both rules
and attributes are PR-CL2-PR-SW and PR-SW. While the first one is capable of erasing more
attributes, the second one does not produce major oscillations in the prediction accuracy. Moreover,
if the user is not interested in erasing rules but only attributes (and hence avoid the computational
cost of SW) the best configurations are PR-CL-PR and PR-CL2-PR.

9.6 Conclusions

In this chapter we have presented three post-processing operators capable of reducing the complexity
of rule sets in terms of rule set size and number of attributes expressed per rule. Our results across
both small and large problem, show that it is possible to reduce the number of rules and attributes
expressed up to 30% in some problems, without significantly degrading the accuracy.
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Table 9.3: Rankings of the Friedman statistical tests to compare the combinations of post-processing op-
erators. x indicates that the algorithm is significantly better than the initial results according
to the Holm test with 99% confidence. For the comparison between the number of rules only
the combinations with SW were considered in the statistical test

Test Test # Rules # Atts

acc ensem
P-Values 0.708 0.962 8.9e-09 2.2e-16
Base 7.80 7.07 3.73 10.84
CL 7:73 7.86 - 10.84
C12 7.64 7.84 - 10.84
PR 7.57 7.21 - 5.53 *
SW 7.51 6.60 2.59 * 11.30
CL-PR 6.37 7.29 - 3.97 *
PR -CL 6.67 7.31 - 5.53 *
PR-CL-PR 5.87 6.79 - 1.51 *
CL2-PR 6.59 6.79 - 5.81 *
PR -CL2 6.89 7.16 - 5.71 *
PR-CL2-PR 6.36 6.91 - 2.29 *
CL-SW 7.14 6.51 2.07 * 11.23
CL2-SW 7.46 6.83 2.40 * 1117
PR-SW 6.94 6.29 2.14 * 5.94 *
PR-CL2-PR-SW 6.46 6.54 2.07 * 247 “

Moreover, we have shown how the CL/CL2 and PR operator can help each other boost their
performance in a cyclic way and that the best configuration found to erase both attributes and
rules is PR-CL2-PR-SW. Furthermore, the CL/CL2 operator is the one that produces the biggest
changes in accuracy, and these changes seem to depend on the problem itself. It is still not clear
which characteristic of the problem or the rule sets themselves produces this behaviour.

9.7 Further work

In the future we would like to evaluate the application of CL and PR during the learning pro-
cess, to see if they could help finding better solutions along the learning process. In the specific
case of BioHEL, this means to apply them to each rule learned before inserting them into the
iteratively generated rule set. Moreover, we intend to determine why the accuracy drops in
some problems when using the CL operator and how to fix this. Also it could be interesting to
test other policies for the CL and PR attributes. For example, in the case of PR, we could test
a gradual generalisation instead of a drastic one presented in this chapter. This is instead of
trying to erase the whole attribute we could try to expand the domain of the attribute as much
as possible without making mistakes.

Moreover, other approaches can be studied for the CL and PR operators in which the attributes
are not checked iteratively, but the outcome of each possible change is calculated, similar to
how it is done in [Bacardit and Krasnogor, 2009b]. After calculating this, it is possible to fix the
attributes in an outcome-dependant order, starting from the ones that produce the best outcome
(the change makes the rule more general).

For the SW operator it would be interesting to test other metrics or policies to swap rules (differ-
ent from the similarity). Moreover, a more selective swapping policy could reduce the execution
time, by only trying to swap two rules when the similarity is higher than a threshold, avoiding
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diminishing returns. This could be done by analysing empirically the relationship between the
similarity (or any other metric used to swap rules) and the success in erasing rules after the
swap is performed. However, modelling this is not simple as the model would have to take
in account the characteristics of all the rules left in the rule set, and not only the two rules the
system tries to swap.

Furthermore, it is still necessary to determine systematically how the operators are affected by
noise and to compare them to other local search mechanisms such as the ones in present in
MPLCS [Bacardit and Krasnogor, 2009b].

Finally, we would like to evaluate these operators on rule sets generated by other systems (be-
side BioHEL) generating decision lists using GABIL/hyper-rectangle representations to deter-
mine (a) if the impact of the post-processing is larger or smaller and (b) determining if there
is another combination of operators more suitable to other systems. In addition, we think that
these operators can easily be adapted to other representations. In the case of rule cleaning, its
application can be translated to other continuous representations by reducing the covered area
with the aim of reducing as much as possible the misclassifications. The only domain where
this is not possible is the binary domain, since the specificity of the attribute does not vary
gradually. The pruning operator can also be translated to other representations by generalising
the boundaries (in the case of continuous representations) or setting don’tcares (in the case of
discrete representations).

In this chapter we have learned that is it possible to fix the possible mistakes made while using the
IRL paradigm, if the solution is revisited as a whole. This means we can have a shorter and more
general solution if the rules are put in the right order. Moreover, the generality of the individual
rules can be increased after the learning process by applying non-expensive operators and without
altering the prediction capacity of the system.
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CHAPTER 10

Summary, Conclusions
and Further Work

This chapter presents a summary of the work conducted in this thesis to improve the efficiency of the BioHEL system
when handling large scale domains. It recapitulates the methodologies followed and the conclusions achieved in each
chapter. Moreover, this chapter also highlights the contributions made to the area of rule-based EL and the further
research directions for BioHEL and the research field in general.

10.1 Summary of the thesis

With the decrease of the storage costs and the developments in technology in the last two
decades, humankind is collecting information from all aspects of our society at an increasing
speed. However, the capacity of sophisticated methods of performing data mining over large
amounts of data at a reasonable speed is still far behind. Therefore, there is a need to push
forward the boundaries of the current state-of-the-art mechanisms to make them able to work

with larger and more complex domains.

This thesis was focused on improving the efficiency of BioHEL, an EL system which applies the IRL
paradigm. In particular we focus on improving the system to handle larger domains in terms of
the number of instances available for training and number of attributes or features presented in the
problem.

Towards this aim, an exhaustive preliminary experimentation and analysis was carried out in
Chapters 4, 5 and 6.

Chapter 4 Pittsburgh vs. IRL: Identifying future challenges was particularly focused on deter-
mining strengths, weaknesses and domains of competence of both BioHEL and GAssist using
a wide variety of real-world problems. Two shared mechanisms between these systems, the de-
fault rule and the ILAS windowing scheme, were analysed tangentially to the most influential
parameters for BioHEL and GAssist. In the case of GAssist the number of GA iterations and in
the case of BioHEL the coverage breakpoint parameter. Also a standard parameter configura-
tion for both algorithms was identified.

Conclusions. This chapter shows that BioHEL is more suitable than GAssist to handle large
scale datasets. On the other hand, it also shows that BioHEL its more dependent on the choice
of parameters used (specially the coverage breakpoint) to obtain good results. It is shown that
this parameter can be very difficult to set up for an end-user and its right setting is determinant
for the success of the algorithm. Moreover, the execution time of BioHEL, even though it is
lower than that of the other learning approaches which produced similar results, is still high
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and dependent on the size of the problem and the number of rules in the final solution. Finally,
the number of rules this system generates is higher than GAssist, and in general there is no
guarantee that the solutions generated are minimal.

Chapter 5 Parameter impact in BioHEL's fitness function carries out a more in-depth and sys-
tematic analysis of the impact of using different coverage breakpoint settings. For this purpose
k-DNF boolean functions were used since, as synthetic problems, it is possible to control and
adjust their difficulty in regular incremental steps. The two dimensions of difficulty analysed
in this chapter are: a) the number of relevant attributes in the terms of the problem (k) and b)
the number of terms in the problem (r). These two dimensions generate a third dimension of
difficulty which is the overlapping between rules. This chapter analysed the limitations of the
BioHEL system in terms of these two dimensions and tries to determine empirically how the
coverage breakpoint parameter should be set.

Conclusions. The results of this analysis showed that if the relevant number of attributes of
the problem (k) is known it is possible to set the coverage breakpoint accordingly. Moreover, a
model of the probability of negative examples in the problem is presented, which can be used
to estimate the difficulty of the problem according to the class imbalance.

Chapter 6 Modelling the initialisation stage of BioHEL performed a theoretical analysis of
the learning capacity of BioHEL's knowledge representation. This chapter focused on deriving
the probability of having a good initial population. This is having individuals that contain
information about the solution of the problem and do not make mistakes, and having a pop-
ulation general enough to cover every possible training example. This formulation aimed to:
a) understand how the initialisation stage works, b) how the initialisation of the classifiers can
be affected by the problem difficulty, and c) understand how some parameters should be set
within the system to ensure a good initial population in BioHEL. The models were derived in
this chapter for the binary domain and extended afterwards for the x-ary domain.

Conclusions. The models generated in this chapter show that as k increases and r decreases
it becomes more difficult to generate a good initial population. Moreover, the value p (the
initialisation probability of GABIL values) should be set according to the k of the problem to
increase the chances of generating good individuals. Finally, since these models depend on k
and r it might be possible to measure the empirical number of good individuals and obtain
estimates of the characteristics of the problem.

Based on the previous conclusions three key enhancements were proposed and developed
within the BioHEL system:

¢ An automated procedure to determine the problem’s structure (based on the theoretical

models derived) and set the coverage breakpoint parameter accordingly, which is intro-
duced in Chapter 7.

o A fast GPGPU-based parallel evaluation process, introduced in Chapter 8.

¢ A set of post-processing operators to refine the generality of the decision lists created
using IRL, which is introduced in Chapter 9.

Chapter 7 Automatic theory-based adjustment of the coverage breakpoint presents a heuristic
approach to set the coverage breakpoint parameter automatically. Since the problem of deter-
mining the adequate coverage breakpoint can be translated to determining the characteristics of
the problem (k and r), this approach combines the models presented in Chapters 5 and 6 with
this purpose. These models, which correspond to the probability of negative examples and
the probability of finding good individuals in a population, are used in a reversed way. This
means that we can quantify these two values empirically within the problem and determine
feasible values for the number of attributes (k) and number of terms (r). Afterwards, using
this information and following the conclusions of Chapter 5, it is possible to set the coverage
breakpoint parameter accordingly.
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Conclusions. This approach is able to find the adequate coverage breakpoint value for a broad
set of problems with and without noise. Also the additional effort of the search mechanisms is
discussed and the experiments showed that for some problems it can be reduced by more than
half by relaxing some constraints in the heuristic. When testing our approach over a large scale
bioinformatic problem this mechanism also managed to adapt the coverage breakpoint param-
eter to the best value found using exhaustive experimentation, reducing the total experimental

time by 71%.

Chapter 8 Fast evaluation process using GPGPUs explores parallelisation techniques based on
GPGPUs to reduce the execution time of BioHEL. Two different strategies with varying degrees
of parallelism are proposed and evaluated. We evaluate the parallel fitness computation mech-
anism first on their own and then integrated into BioHEL'’s learning process. The interaction
between this approach and other efficiency enhancement techniques also existing in BioHEL
such as the ILAS windowing scheme are also studied. Last but not least, we presented models
of the execution time of our approach based on the number of instances in the training set and
number of attributes in the problem.

Conclusions. From the two approaches presented, this chapter shows that the approach with
the lower degree of parallelisation produces the best results. This is because this approach
balances better the load of each thread and the degree of parallelism. In particular, this ap-
proach produced speedups over the CPU-based evaluation of up to 85X using a Tesla C2070
and and 52X speedup using a Tesla C1060. Moreover, it was shown that the ILAS windowing
can be successfully combined with our approach and the speedups are cumulative. However,
the speedups depend on the characteristics of the problem as it was shown by the models. The
integration of the GPGPU-based evaluation with BioHEL's learning process obtained important
results on the biggest bioinformatic problem where the execution time was reduced from two

weeks to eight hours.

In Chapter 9 Post-processing the final rule sets we tackle the problem of refining the final
solutions of the BioHEL system, which might not be as general as possible due to the usage of
the IRL paradigm. In this chapter we introduce three post-processing operators that apply local
search to refine the rules: rule cleaning, rule pruning and rule swapping. The two first operators
are rule-wise operators which try to reduce the number of attributes in the rules, thus making
them more general. On the other hand, the last operator is a rule-set-wise operator that tries to
reduce the number of rules in the final rule sets by swapping their order based on similarities.
This operator considers that using IRL the rules might be learned in the wrong order which
produces larger rule sets.

Conclusions. The rule pruning and the rule cleaning operators combined together managed to
reduce the number of attributes in the rules by up to 30% in some problems without reducing
significantly the accuracy. Moreover, the rule swapping operator managed to reduce the num-
ber of rules up to 30% in real binary problems. This shows that it is possible to improve the
generality of the decision lists learned using IRL by revisiting the solution as a whole after the

learning process.

By the end of this thesis we have improved the BioHEL system to make it more efficient and usable.
In particular the system is now able to automatically adapt the coverage breakpoint parameter for
binary problems, which is a very problem dependent parameter, difficult to adjust by hand. Also the
system is more efficient in terms of execution time. Both the preliminary experimentation time and
the learning time were reduced, by means of adapting parameters automatically and speeding up
the evaluation process, respectively. Finally, the system provides solutions that are more compact,
general and readable for an end-user. Even though there is still the need to extend the parameter
setting heuristic to work with the whole range of domains BioHEL can accept, these improvements
have pushed forward some boundaries of the system making it more suitable to solve larger domains.
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10.2 Contributions to the area of Evolutionary Learning

This thesis presented the following contributions to the area of rule-based EL:

e An exhaustive analysis over the BioHEL system, on which its domains of competence
were determined and guidelines on how to set up the coverage breakpoint where estab-
lished according to the characteristics of the problem.

e Covering and Schema bounds were derived for a different representation apart from the
widely spread ternary representation. This representation corresponds to the GABIL rep-
resentation within the ALKR context.

e A heuristic to determine the structure of a problem and adapt the coverage breakpoint
parameter automatically was proposed.

e A method to speed up the evaluation process using GPGPUs was proposed which can be
combined with the ILAS windowing scheme, producing speedups that are cumulative.

e Three operators to post-process the individual rules and rule sets were proposed to gen-
eralise the final decision lists obtained.

Moreover, the methodologies presented in this thesis, although focused on the BioHEL system,
can be easily extended to other systems. For example, other systems that used the GABIL or
the ALKR representation (e.g GAssist, GABIL, HIDER) can use directly the theoretical models
presented in Chapter 6, since so far only models have been derived for the ternary representa-
tion {1,0,#}. Moreover, the heuristic approach presented in Chapter 7, although its aim is to
set up the coverage breakpoint parameter, what it does is to determine the characteristics of the
problem. From this perspective this methodology can be beneficial to set up any evolutionary
system in advance with a prior knowledge of the problem to solve. Moreover, the two vari-
ants of the GPGPU-based fitness function presented in Chapter 8 can be easily applicable to
other systems that use a supervised learning approach. Last by not least, the post-processing
operators presented in Chapter 9 can be either applicable to other systems that use decision
list, or can be applicable during the learning process as extra local search operators to boost the
efficiency of the GA.

10.3 Further work

Different future research steps have been underlined in this thesis. We first summarise the fu-
ture research directio