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Abstract

Thisthesis uses the Decision by Sampling model as a basis for examining effects of rank order
encodinginvalue judgementand preferential choice. Arange of experiments are reported, and
these employ avariety of methodologies including behavioural paradigms, eye trackingand
functional MRI. The results show that when there are a relatively small number of values used
duringan experiment, participants encode utility based upon the rank order of a potential outcome
withinthese values. By introducing different decision contexts where the experienced values have a
positive or negative skew, anindividual’s utility curve can be made concave and risk averse or
convex andrisk seeking. These different utility curves can be produced within the same individual
and same task simply by providing a contextual cue foreach trial. Two fMRI experiments
demonstrate the neural systems underlying this phenomenon. The results show that all regions of
the reward network encode reward as a function of the reward’s rank order within the current

context. Noregion of the brain was found to encode a reward’s absolute financial value.

Otherexperimentsinvestigated choice and valuation in more complex decision environments.
It was found that when the number of experienced values is significantly largerthan working
memory capacity DbS is a relatively poor predictor of behaviour. The Weighted ADDitive rule proved
to be more accurate throughout. However, in multi-attribute choice experiments whereone
attribute had a manipulated distribution, individuals use and weighting of the attribute value was
determined by rank orderrather thanits numerical value. The specific characteristics of this were
foundto be incompatible with an exemplarbased model of recall and binary comparison to specific
items. It was instead found to be compatible with non-exemplar, fuzzy trace theories of decision
making which are based upon estimates of the distribution. Eye tracking during multi-attribute
choice additionally shows that participants begin to attend more to their preferred choice as they
nearthe pointat whichtheyrespond. However, they do not attend more to the attributes which

they weight more highly intheir choices, questioning the validity of previous eye-tracking findings.



Acknowledgements

Firstly, wishtothank Richard Tunney for his support, feedback and constructive criticism
through all my years at Nottingham. Hopefully during our collaboration and frequent discussions |
have inched him closerto approving of cognitive neuroscience and other methods used during my
PhD. Also, | thank Peter Chapman for hisinsights when discussingissues relating to eye -tracking and

for his patience when training me to use the equipment.

| thank Lauren Marsh whose support has helped get me through the toughest times of the last
few years. Your confidence in my abilities was consistently greater than my own and convinced me
to keep going. Also, to the friends and family who offered support and advice, whetherit was by
sharing struggles and strife’sfrom their own PhDs or offering escape from statistics, dataand most

importantly from MatLab.

Most of all | owe thanks to my parents who have supported me through all my studies and
endeavoursinlife, even whentackling fargreateradversity intheirown lives. It saddens me greatly
that my Fathercannot be here toshare inthe happiness and acheivements that my studies have
brought me, because itisonly thanksto himand my Motherthat | have beenable toachieve so

much.



Contents

Decision by Sampling and Rank Order Effects in Judgement and Decision Making................... 1

Timothy Leslie Mullett, BSC., IMISC. ....iiiiiiiiiiiie et e et e e e e e e e et e e e e et e eaees 1

Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy... 1

1. Chapter 1 — Literature REVIEW .....cccuiu it e e e e et e e e et e e e et e e eeaaan 8
1.1. Introduction to Dedsion by Sampling: The Model and Its Rationale.................c............ 8
1.2. EXperimental EVIAENCE ....uuuuie it e e e e e et 14

1.2.1. Memory Constraints and SampPIe Size€ ........ceeviiiiiiiiiiiie e 14
1.2.2. Effect of Available AIternatives.........uuviiiiiiiiiiiiiiiiiiiiiiii e 19
1.2.3. Rank Ordering as a General Strategy......cccoeveiiiiiiiiiiiiie e 22
1.3. Criticisms of Decision by Sampling and Open QUESLIONS ........c.ccvueeeiiiiiieeiiiiieeeeiieeees 25
1.4. Comparisons with Alternative Models and Interpretations ............ccceeeeeeeeereveiiiienennn. 27
R O S o T oYYt B ¢ V=T o) o PPN 27
1.4.2. Heuristics and the Adaptive TOOIDOX.........ceeviiiiiiiiiiiieeiceecccee e 28
1.4.3. Drift DiffUSION..ccciiiiiiiiiiiiiiiiiiiiiei ittt 29
1.5, ThESIS FramMEWOIK ... . e e e e e e e e e e e e e e e e e e e e e e e eeeeneans 30

B o =1 o (=Y ol AP 32
2.1, Introduction @and OVEIVIEW .......coeeiiiiiiiiieieee e 32
B o 1= 4 1 41T o | At PP OPPRPTRRRt 32

2.2, 0 INEFOAUCTION Lt e e e e e e e e e e e e e e e e e e e e e e e e e e e e aeaaans 32
2.2. 2. MEEROM. e e e e 35
2.2.3 RESUIES .ttt e e e e e e e e e s 39



A B T ol U 1] [0 o I 49

2.3, EXPEIIMENT TWO . etuuiiiiiiiiie ettt ettt e e et e et s e et s e et e tanseesaseeaansannnseanaseasnnensnens 50
2.3, 0 INErOAUCTION et e e e e e e e e e e e e e e e e e e e e e e e e e e e e aeaaaas 50
P2 T |V =X i o o SRR 51
2.3.3 RESUIES ettt e e e e e e 52
P T N 1 ol U 11 [ o TP 58

2.4, Chapter DiSCUSSION.....iiiiiii et eeiiie e ettt e e et e e et e e e et e e e et e e e et e e eataeesssaaeesasnnaeaansnns 59

I O T o (=Y o TSP 64

3.1, Chapter INTrodUCTION. ... i e it e e e e et e e e e e e e e et e e e e e e eeeassbaeeeeaeeeeens 64

3.2. Experiment Three: Distributions and Weighting Functions.............ccccoovviiiiiiiiiininnnnn... 65
20728 I 1o o Yo [T o1 oo U PP R TP T PR 65
3.2.2. METNOAS .. 67
302,83 RESUIES e 70
S B =Y o{ U 11 (o I PP PP 75

3.3. Experiment Four: Mineral Valuation............ouoiiiiiiiii i 78
33,0 INErOAUCHION .ttt e et e e e e e e s e e e e e e e e e s 78
3.3.2. METhOAS .. 79
30303 RESUIES e 79
G N o B 1Tt ol U 1 (o IR P TP 83

3.4, Chapter DiSCUSSION. .. cieitiieeeiiee e ettt e e ettt e et e e ettt ee e e e e tte e e e et e e e e et e eesataeeeseraaeaesnans 84
3.4.1. Non-Linearity in Weighting and Distribution FUNCHONS ...........cccvvviiiiiiieieiiiiiinnnnn. 84
3.4.2. Attribute weighting estimates and aCCUracy........cceeeieeiiiieeiiiiieeeecee e, 86



3.4.3. Implications for Decision by Sampling..........ccooeiiiiiiiiii e, 87

@ F=T o) <1 U USPPPNt 89
4.1. Chapter INtrodUCLiON........oouui e e e e e e e e e e e 89
4.2. Experiment 5: Binary Comparisons and Weighting FUNCEiONS ..............uvuuiiiiiiiininiinnnne. 90

4.2. 1. INErodUCHION ...ceeiiiiiiiiiee e 90
4.2.2. MEthOAS ..o 94
B.2.3. RESUITS e 97
4.2.4. DISCUSSION c.eueiiitieeeeei ettt e et e ettt e e et e e e et s e et s e e eea s e e eean s e e eebnseeeenaseaes 102
4.3, EXperiment 6: EYe TraCKiNg. ... .ceeeeeeieeeiiiiiieeeeeeeeetiee e e e e e e e eeaat e e e e e e e ee e e e eeeesensaenas 104
43,1 INErodUCHION ...cceiiiii it 104
4.3.2. MEENOM. ...t 106
4.3.3. RESUITS . 107
4.3.4. DISCUSSION c.eueeeeitie ettt e ettt e et e ettt e e et e e e e e e e e e s e e eean s e e enna s eeeennseenenaaaees 117
4.4, Chapter DiSCUSSION....cuuuiiiiiiie e e et e e e et e e e et e e e et e e e et e e e eataeeesatnn e eeernnns 122

oI O F=1 o) (=Y o= TSRS 125
5.1, Chapter INTrodUCTION. ... .ci e et e e e e e e e et e e e e e e e e e eas e e aeaaaaes 125
oI 4 o 1= 1 =1 o} N 125

5. 2.1 INTrOAUCTION .t a e e e e e e e 125
5.2.2. METNOM. ... 128
52,3 RESUIES - 133
5.2.4. DISCUSSION c.uuiiiiiiiiiiiiiiiie ettt et et s e e 141
5.3. Experiment 8 —Recency vs CategorzatioN .......ccuvvuiiiiiiiiiie e 144



Lo 200 TR 10 e Yo [ ot Ao o N 144

5.3.2. MEENOAS et e s e e e e e e e e 145
5.3.3. Results and DiSCUSSION .......cceiiiiiiiiiiiiiiiiieieieieeeeeeeeeee et ee ettt ettt ee e eeaneeeeeeeeenes 147
oI J B 1Y o{ U 11T o PP 151
o g o110 aT=T 0} AR TSP 152
5. L INTrOAUCTION e e e e 152
542 IMEENOM. ..ttt e e et e e e e e e e 154
5.3 RESUIES - 156
54,4, DiSCUSSION ..euuiiiiiiiiiiiiiiiie ettt ettt e et e e s e e ar s 158

o T O =T o} =Y gl T Kol U1 o [ U 159
6. Chapter 6 — GENeral DISCUSSION ......uuuuuruiiiiiitiiiiiiiiitetieitaeee s 161
6.0, 1. INTEFOAUCTION ... e e e e e e e e e e e e e e e e e e e e e e eaeeeeeeeas 161
6.1.2. SUMMaAry Of FINAINGS ..vuunieiieeeee e 161
6.2. Judgement and Decision by Rank-Order..........cooeiiiiiiiiiiiiii e 163
6.3. Multiple Attribute Tasks and Information Integration...........cccccoeeviiiiiiiiiii e, 165
6.3.1. Attention as a Measure of Attribute Weighting .........cccooeeiiiiiiiiiiiiineeeeen, 168
6.4. Sampling and Memory Effects.........uee i 170
6.4, 1. SAMPIE SIZ e 170
6.4.2. Predicting Which Items are Sampled.............uoeeiiiiiiiiiiiin e 171
6.5. Neural ENcoding Of ValUeE..........oeiiiiiiiiiieii et eee 175
6.6. CONCIUSIONS AN SUMMAIY ....ciiiiiiiiiiiiie e ee e e e e e e e e e e e e e et e e e e e e e eeaasa e as 180
A =L =Y =10 =T 183



1. Chapter 1 - Literature Review

1.1. Introduction to Decision by Sampling: The Model and Its

Rationale
A large number of descriptive models of human value judgement and decision making have

been proposed andtestedinrecent decades, showingashiftaway from the economicprescriptive
models and towards a more explanatory psychological model. Many of these models have been
shown to predict choices with impressive accuracy. Although these descriptive models can predict
choice, thisis only the end result of the underlying process. These models are often incapable of
describingthe stages or mechanisms thatlead up to the choice being made and few make
predictions regarding other properties of decision making such as stochasticity, reaction times or
priming phenomenon. A complete model of choice and valuation must be able to explain the

processas a whole andinrecentyears there has been significant progress towards such amodel.

The model which will be the main focus of this thesisis Decision by Sampling, hereon DbS
(Stewart, Chater, & Brown, 2006). What makes the model so appealingis that DbS relies solely upon
basic psychological processes. The complexity of its predictionsis not a result of the process, but of
the environmentin which decisions are made and the distributions of values anindividual has
previously experienced. DbS predicts that when assessing the utility of avalue, arandom sample of
previously experienced values is drawn from memory. Each of these valuesis compared to the value
being considered. If the item under consideration is betterthan the one drawn from memory then
theitem’sscoreisincremented by 1. If the value isno betterthanthe sampleditemthenitsscoreis
not incremented. This essentially calculates the value’s rank order within those previously

experienced by the individual.

Considerasimplified example: Anindividualis shown or offered a potential gain of £5and a
potential gain of £10. To calculate the utility of these potential gains the individual thenrecallsa
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sample of previously experienced values from memory. Let us assume that the individual samples
£1, £3, £4, £7, £15 and £30 and compares these to each possible outcome. The DbS score of £5 is 4,
because there are 4 sampleditems with alower value. The score for£10 is 6, so according to DbS its
utility is only 50% greater, despite the 100% increase in financial value. The DbS score can be plotted
againstvalue foreach itemin the sample toreveal the predicted utility curve ( Figure 1.1). Although
the simplisticallysmall sample means the curve is not smooth, itis clear that the function produced
a concave shape similarto that of Expected Utility Theory (von Neumann & Morgenstern, 1944). This
isthe result of the skewed distribution of the sample. The greater frequency —or over-
representation —of smallervalues means the relative rankrises quickerthanin the uppersection of
the value range, where high values are comparatively rare. As we shall see, this sensitivity to skewed

distributionsis acharacteristicfundamental to the accuracy and success of DbS.

For the vast majority of choices and comparisons, each option has more than one quality or
attribute. Ina simple financial gamble, these are payout value and probability. DbS predicts the
same mechanism occurs for each attribute. Values are sampled randomly from asingle attribute
scale and then compared with the attribute value of the item under consideration. Sowhen
consideringagamble, apayout may initially be recalled andif its value is smaller than that of the
currentitemthenthe DbS score will be incremented by 1. Then a probability may be recalled from
memory and this will be compared to the probability of the currentitem. If the currentitemis
favourable thenits DbS score will again be incremented. Attribute values will continue to be
sampled randomly from either probability or payout. Note also that there isonly one DbS

accumulator for eachitem, meaning that the effect of each attribute is additive and equal.

Let us considera choice between £10 with a 0.5 chance otherwise nothing ora certain gain of
£5. Assume thatthe same payout values are sampled as above, but that the following probabilities
are alsorecalled:.0,.1, .2, .3,.7,.8,.9 and 1. For the risky option, the DbS score of the payout (6) is

addedto that of the probability (4) to equal 10. The same is performed forthe certain option (4 + 8)



for a total DbS score of 12. Therefore DbS predicts that the safe option would be preferred. Note
that the sample of probabilities recalled can also have a significant effect upon DbS’s weighting of

chance.

DbS Score

o B N W b U1 O N ©
o B, N W & U1 O N

0 5 10 15 20 25 30 0 0.2 04 0.6 0.8 1
Value (£) Probability

Figure 1.1 The DbS scores for hypothetical samples of values (left) and probabilities (right), plotted to reveal predicted
utility and weighting functions.

The concave utility function shownin Figure 1.1isthe result of a significant positive skew in
the sample usedtocreate it. If the sample were equally represented at all points alongthe scale
then utility would be alinear function and if the skew were negative then the curve would be
convex. Therefore, itis a critical prediction of DbS that if individuals exhibit a concave utility there
must be a significant skew inthe distribution of values an individual experiences. Specifically,
individuals should experience small financial transactions more frequently in daily life. Stewart et al
(2006) obtained currentaccountinformation fromamajor UK high street bank. By plotting the total
number of credit transactions of each value onalogscaleit is clear that individuals experience a
disproportionate number of small gains (Figure 1.2). Therefore thisreal world pattern means DbS
predictsthe risk averse behaviour exhibited by the majority of individuals, without relyingon an

opaque mathematical weighting function (Figure 1.3).
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Anotherpatternis evident when the debits are plotted in the same way as for gains: The skew
is much more extreme for debits than credits (Figure 1.2). Thisis because people are more likely to
experience largerregular credits such as a monthly/weekly salary and smallerregularlosses such as
grocery shoppingor petrol purchases. This has the important consequence thatlosses are
discounted more steeply than gains, so DbS also predicts loss aversion. Thisis something whichiis
not possible without assuming different utility functions for gains and losses (Rabin, 2000) and also
means that DbS can reproduce the utility curves central to so much of the success of Prospect

Theory (Kahneman & Tversky, 1979).
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Figure 1.2 The frequency with which specific values are credited and debited from individuals' current accounts. Both
show a significant positive skew, leading to risk aversion in DbS. The skew is also more severe for debits, meaning DbS
also predicts loss aversion. Reproduced from Stewart et al. (2006).

11



Relative Rank

0 T Y 1
0 500 1000 1500

Credit/

o
"
f

Relative Rank

0% : : :
0 500 1000 1500
Debit/g

Figure 1.3 DbS’s predicted utility curves as calculated using current account credits and debits. Reproduced from Stewart
et al. (2006)

It has been demonstrated that there is no shape of utility curve which can explain or predict
characteristics of choice —especially risk aversion —without also assuming a curvilinear weighting of
probability (Abdellaoui, 2000; Abdellaoui, Barrios, & Wakker, 2007). If DbS is to fully account for
prospecttheory and match itsimpressive predictive accuracy for choices between financial gambles
then the model must be able to predictthe overweighting of small probabilities and the
underweighting of large ones. DbS will show this patterninan environment where very high and
very low probabilities are experienced more often than probabilitiesin between. To also capture the
risk averse pattern of underweightinga 50% chance, the distribution also needs aslight bias towards

higher probabilities.
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Unfortunately there is noreal world analogue for the experience of probabilities which is as
good a measure as bank transfers are for experienced gains and losses. However, there are still
many measures which give valuableinsightsintoindividuals’ experience and perception of risk. One
of these is the frequency with which different chance or probability related words such as “likely” or
“doubtful” are usedin natural language. There is a significant existing literature which measures the
perceived numerical equivalent of these words (Budescu & Wallsten, 1995). The numerical values
can thenbe usedto calculate the rank order of these words. In orderto create the weighting
function predicted by DbS, theirfrequency of use in natural language can then be used to calculate
theirrelative rank and a weighting function can be plotted in the same mannerasfor the utility
curves shown above (Figure 1.4). This shows high and low probabilities are indeed underand over-
weighted respectively. There is also aslight bias towards probabilities greater than 50%, meaning

that the function predicts risk aversion and crosses the diagonal at p<0.5.

1.0 +
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> ++
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0 2 4 .6 8 1.0
Probability

Figure 1.4 DbS's predicted probability weighting function as extracted from relative frequency of risk related
descriptions in natural language. Reproduced from Stewart et al. (2006)

There are also otherreal world patterns which support DbS’s use of priorexperiences. The
most significantisthe over-reporting of rare events and of very likely events which failed to happen:

Although lottery winners are regularly photographed in newspapers, those who bought aticketand
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did not winare inevitably overlooked. Hence, individuals overestimate their chances of winning the
lottery. The fear of terrorist attack has beenfoundto be higheramongthose usedtolivinginthe
relatively safety of the USA, thanitis amongthose livinginlsrael (Yechiam, Barron, & Erev, 2005).
Thisis despite the residents of Israel having far more direct, personal experiences of such events.
This mismatch can be attributed to the fact that such attacks happen so ofteninlsrael that individual
eventsreceivelittle orno attentioninthe news media. Whereastheyare sonovel andrarein
Americathatany occurrence - or even a suggestion thatan attack may occur - isinvestigated,
debated and reported for protracted periods. What adds to the effect both in cases of lottery
winnersand terroristsisthatthe rare events are not only over-reported, but more salient. This
means that they are more likely to be remembered and recalled when anindividual is sampling prior
experiences (Brown & Matthews, 2011; Brown, Neath, & Chater, 2007). But see Pachur, Hertwig,
and Steinmann (2012), for evidencethat reports of others experience have minimal effects upon

judgements.

1.2. Experimental Evidence
1.2.1. Memory Constraints and Sample Size

Thereisnow a growingliterature, much of it from research on heuristics, that suggests the
characteristics of human memory actually aid accurate decision making (Schooler & Hertwig, 2005).
Many of these characteristics are assumed to be limitations because they preclude perfectrecall.
However, in many situations the patterns of experience inthe real world interact with the
“limitations” of memory toresultin betterrecall and sampling of events and information which are
more important to adaptive decision making (Anderson & Schooler, 1991). As will be covered below,
there are now several studies which supportthe hypothesis thatimperfect memory and recall
resultsin more accurate judgements. However, theseare still contentious and there are equally

convincing findings suggesting that memory constraints lead to sub-optimal behaviour. Importantly
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for DbS, there is one common argument from both sides of this debate: that memory does impact

decisions.

The suggestion that such complex decisions are made using simple comparisons with a
potentially small sample of alternatives may seem surprising. Thisis particularly sowhenone
considers the degree of discriminability humans are capable of and the confidence introspection
often attachesto decisions. However, despite individuals often having high confidence in their
judgements, there is significant stochastic noise in choice and individuals regularly make different
choiceswhenthe same dilemmais presented multiple times (Gléckner & Pachur, 2012; Hey, 2001;
Loomis, 1990; Mosteller & Nogee, 1951). DbS with a small sample size explains this effect simply as
differentitems beingretrieved from memory for each decision. When values experienced in atask
are drawn from idealised distributions, itis more likely thata small random sample will accurately
represent the population distribution. Experimental evidence shows that individuals’ decisions and
judgements becomesignificantly more accurate as a result (Giguere & Love, 2013). This patternis
not predicted by larger samples or by a fuzzy trace account where estimated meta-informationis

stored and updated (Brainerd & Reyna, 1990; Kiihberger, 1998).

A review by Juslin, Winman, and Hansson (2007) examined the findings of alarge number of
previous findingsinthe judgement and decision making literature. They concluded thatin situations
where there were sufficient previous experiences, results were compatible with a strategy of
drawing small stochasticsamples and then behaving as though these were accurate representations
of the true distribution of the environment. Otherstudiesalso demonstrate thatindividuals made
decisions based upon the observed distribution of values (Pachuretal., 2012) and that thisis true
even when participants are aware that these observations are not true representations of the
underlying distributions (Feiler, Tong, & Larrick, 2013). Thereisalso evidence that wheninanovel
environment, individuals at firstrely upon a simple mean of the values orinformation they have

experienced. Butonce a sufficient number of items and values have been observed they quickly
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switch to a strategy of drawing small stochastic samples from previous experiences (Lindskog,

Winman, & Juslin, 2013).

Otherresearch has explicitly investigated the link between short term memory and sample
sizes. Ithas beenshownthatin open ended decisions from experiences tasks individuals with larger
STMs sample more potential outcomes (i.e. collect more information from the environment), base
theirresponses onrelative frequencies and make more accurate judgements (Rakow, Newell, &
Zougkou, 2010). Those withsmaller STMs are foundtorely on the same qualitative strategy, but use
smallersamples, bothin explicitinformation search and covert sampling from memory. Othertasks
have used forced samplingand theninferred participants’ use of information and sampling from
theirresponses. Thesefind thatindividuals with larger STM capacity sample more information and
make more accurate probability estimates by virtue of considering more counterfactual events
(Dougherty & Hunter, 2003a). Increasing working memory load during encoding and responseina
relative frequency or a probability estimation task also increases errors in subadditivity in the
manner predicted by a sampling model. The memory interference causes individuals with high
capacity STM to behave more like those with low capacity (Dougherty & Hunter, 2003b). This effect
of working memoryisalso shown to be significantly larger for judgements of probability of mutually
exclusive events occurring than for pure frequency estimates (Sprenger & Dougherty, 2006),

suggestingthatthe latterrequireslessinformation sampling andis less cognitively demanding.

Despite the evidence suggesting that the amount of information sampled is constrained by
WM, thisis not explicitly predicted by DbS. The DbS model predicts that only accumulator values
needtobe heldin WM and that items can be sampled serially one at a time from memory until
sufficient evidence has been accumulated to make adecision. However, as DbS does not positan
explicitstoppingruleitis equally plausible that samples are drawn until WMis full and then the
decisionis made based upon this sample. The actual sample size and the stoppingrule are factors to

be investigatedinthe laterchapters.
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A mathematical consequence of relying upon small samplesis thatitsignificantly
underestimates variance. When using the variance of asample to estimate that of the population it
is necessary to performa correction (N/1-N). If individuals rely upon small samples then this
correction must be appliedin some way, otherwiseindividuals will systematically underestimate the
variance within adistribution. Evidence shows thatindividuals do reliably underestimate the
variance of an underlying distribution so cannot be applying such a correction (Hertwig, Barron,
Weber, & Erev, 2006; Kareev, 2003). Furthermore, the effectis largerinindividuals with smaller
capacity STM demonstrating the increased bias resulting from smaller sample sizes (Kareev,

Lieberman, & Lev, 1997).

Anotherconsequence of small samplesisacounterintuitive increase in sensitivity when
detectinga correlation between two scales. Although this sensitivity is generally only representative
of atype 2 error, itstill provides a useful diagnostictool in examining how individuals make their
decisions. In one study, participants were shown aseries of values from two different sources and
then asked whetherthey believed there was any relationship, or correlation, between the two.
Participants were then splitinto those with high and low short term memory capacity and it was
foundthat the latter were more likely toreportacorrelation (Kareevetal., 1997). It should be noted
that this also suggests individuals with asmaller STMwill be more sensitive tochange inthe
environmentand a change in correlation. However, this patternis notfound (Gaissmaier, Schooler,
& Rieskamp, 2006). The authors suggest that rather than STM constraints changing the sample used
by individuals, it may instead promote different and simpler strategies or heuristics. An alternative
account isthat thereislittle bias towards sampling more recentitems. Therefore, although
individuals with smaller STM’s are more sensitiveto correlation, the equal representation of older

experiencesinthe samples means thatthey would be no more sensitive to achange overtime.

The hypothesis described above is questioned by studies of decisions from experience which

do show a significantly larger effect forthe mostrecent experiences. Thisis unsurprising given
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recency’simportance within memory research (Anderson & Schooler, 1991; Ebbinghaus, 1913;
Malmberg & Annis, 2012). Although effects of preceding stimuli are recognised in decision making
research (Braidaetal., 1984; Hogarth & Einhorn, 1992; Matthews & Stewart, 2009; Mori & Ward,
1995; Tversky & Kahneman, 1974), they are not predicted or explained by standard models such as
Cumulative Prospect Theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). The fact that
DbS is built entirely upon memory recall means that one would expect asignificant bias towards
sampling of the mostrecentvaluesanditems. Thereforethe model does predictarecency effect
and accountsfor the anchor and adjust phenomenon. A series of experiments demonstrated that
providingindividuals withincidental values shortly before they answered a related dilemma
manipulated choices forvalue, probability and delay discounting (Ungemach, Stewart, & Reimers,
2011). What was particularly interesting was that the results forvalue could not be explained by
anchor and adjustment. They were best described by the relativerank of the valuesin the choice
alternatives comparedtothe priorincidental values. Though see Matthews (2012) fora failure to

replicate the effectsin delay discounting.

Ordereffects have also beenfoundin choices between serially experienced alternatives for
non-financial decisions. When fiveidentical glasses of wine were sampled sequentially, individuals
had a distinct preference forthe firstand last options (Mantonakis, Rodero, Lesschaeve, & Hastie,
2009). Whenthe second wine issampled and compared to the firstan individual may say they prefer
the first. When the third wine is sampled, the most salient memory will be that the first wine has
already compared favourably to one alternative, meaningthe first wine’s score is high according to
DbS. Asan individual continues tasting wines this score willbe incremented and it becomes
increasingly unlikely that a new wine will be preferred. However, if the individual does not prefer the
firstwine tothe second, thenitis less likely thatarunaway favourite will accumulateascore in this
manner. Therefore when the last wineis sampled, itis compared primarily to the one immediately
precedingitas well asthe factthat none of the previous experiences have alarge DbS score.
Therefore the chance of preferring the final wine is greatly increased. Furthermore, when two
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pleasant orhigh value items are considered one afterthe otherthenthe secondis generally
preferred. In this case the memory of the precedingitem experiences aregression to the mean.
Hence, the effectreverses when two undesirable options are presented (Biswas, Grewal, &

Roggeveen, 2010).

Many of these results come from the literature on decisions from experience but DbSis
primarily amodel of decisions from description. DbS essentially combines explanations from these
two modalities. Decisions from experience are the judgement of a single choice option orevent
based on previous experience of that specificchoice option orevent. One interpretation of DbSis
that the same processes which apply tojudgingan event, can also be generalised to judginga
description. Soinstead of sampling occurrences of option A, anindividual samples occurrences of
probabilities or of financial gains. Thisis arguably amore ecologically valid description as judgements
from description have only become common relatively recently in human evolutionary history and
descriptions of probabilities even more so. Hence, evidence that individuals are more accurate at
making decisions when descriptions are based upon relative frequencies compared to descriptions

using probabilities (Cosmides & Tooby, 1994; Sprenger & Dougherty, 2006).

1.2.2. Effect of Available Alternatives

There are alarge number of phenomenawhere itis not previous experiences that modify
individuals’ decisions and judgements but the set of current alternatives. One of the simplest of
these isthe dominance effect (Ariely & Wallsten, 1995; Huber, Payne, & Puto, 1982). Imagine a
situation where anitem can differontwo attributes, Xand Y. Anindividual hasto choose between
items Aand B. A has a highvalue on X, buta lowvalueonY, whereas B has a highvalueonY and low
value on X (Figure 1.5). The relative differences on scale Xand Y have roughly equal importance to
decision makers, meaning thatindividuals are split equally between the options. However, item Cis
thenintroducedtothe choice setand isslightly worse thanitem A on both X andY. A dominatesC

becauseitis betterinall possible ways. Now when individuals are asked to choose, asignificant
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majority preferoption Aand the proportion of choices for option B decreases significantly, despite

therelative difference between the two staying the same.

A

X

Figure 1.5 The dominance effect. A,B&C are multi attribute items, varying on scales X and Y.

DbS explains this as the simple result of binary comparisons between the available options.
When sampling alternatives the mostsalientitems will be those presented as direct alternatives as
these require no memory retrieval and minimal cognitive effort. Therefore option Chas a DbS score
of only 1 because itis betterthan one otheroption onone attribute. Option Ahasa score of 3
becauseitis betterthan C onboth attributesand betterthan B on one. Option B has a score of 2
becauseitisbetterthan both A and C on one attribute, butis worse than both on the other.

Therefore, option Ais judged mostfavourably and chosen most frequently. This effect also has
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longerterm consequences. When a previously dominated item such as Cis later seen outside of this
contextitisvaluedlowerthan whenadominatingoptionsuchasA isseen (Biswas etal., 2010). This
suggests that the itemsan option was originally seen with are relatively more likely to be sampled

whenthe optionisseenagain. Aphenomenon supported by memory research (Godden & Baddeley,

1980; Tulving & Thomson, 1973; Tunney, Mullett, Gardner, & Moross, 2012).

The distribution of itemsinadecision environment also shows more complex and nuanced
effects upon choices. Judgements of the severity of road accidents is significantly mod ified by the
distribution of other accidents presented at the same time (Robinson, Loomes, & Jones-Lee, 2001). If
the context within which valuations are made is disproportionately comprised of high severity
accidents thenitemsinthe centre of the scale received lower severity estimates. Thisistrue even
whenthe mostand least severe items are present in all conditions, meaning thatthe overall range is
constant. The effectis also found when judging raffletickets. Confidence of winning was not simply
dependentupon what proportion of the tickets were held by the individual, but also upon how the
others were distributed (Windschitl & Wells, 1998). If they were splitbetween alarge number of
individuals then participants were more confident as theirchances compared well to many other
people. However, if all the tickets were held by one otherperson then participants were less
confident of winning as the only other person with which they could compare themselves had a
greater chance of winning. Showingadditional individuals with very low probabilities of winning
servedtoincrease individuals’ confidence of winning themselves, despite reducing their actual
chance of doingso (Windschitl & Chambers, 2004). These effects also interact with STM capacity.
Adding more low probability alternatives has agreatereffect uponjudgementsinindividuals with a
larger STM capacity (Sprenger & Dougherty, 2006). However, itshould be noted that some argue
these effects are not explained by rank order, instead suggesting an anchor and adjust effect with

the next most likely outcome (Windschitl & Young, 2001).
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It is not just the distribution of the values themselves that can affect decisions. The
distribution of possible response options has a similareffect (Stewart, 2009). The average value
estimate fora gamble oritem can first be elicited using an unbiased method. Individuals are then
asked to choose the value of an item from a set of possible responses. If the possible responses start
at a value slightly below the average valueand extend very farabove it then participants’ responses
are higher. If the highest possible responseis only slightly above and the lowest is farbelow, then
responses are significantly lower (Stewart, Brown, & Chater, 2005; Stewart, Chater, Stott, & Reimers,
2003). The effectisalso apparent whenthe range of optionsis kept constant by usingthe same
maximum and minimum values. The values between can be positively or negatively skewed, such
that low or high values are over-presented. Estimates are subsequently higherand lower, inthe

direction predicted by DbS and rank encoding (Birnbaum, 1992).

The effects of possible response options have significant and possibly damaging real world
effects. One decision making task where this has been explicitly examined is allocation of pension
funds. When saving fora private pension, individuals have to decide what proportion of theirfunds
they wish to assign to different bonds, cash and stock options. The most common strategy is to split
theirfunds equally between all options availablein their particular pension scheme. However,
individuals do not adapt this strategy depending upon the split of different options (Benartzi &
Thaler, 2001; Vlaev, Chater, & Stewart, 2007). So if a particular pension scheme has many stock
options, but only one cash option, then the individual will use the decision environmentasa cue,
spreadingtheirassets “equally”, butthen leavingthemselves exposed to a disproportionately high

degree of risk.

1.2.3. Rank Ordering as a General Strategy
Evidence of judgements by rank order comes from many sources and domains, not just
financial decisions orthe JDM literature. The earliest evidence for rank order-encoding came from

psychophysics, primarily volume judgements. Although human hearing allows forvery accurate
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discrimination between the volume of two sounds or the frequencies of tones, accuracy is poor
whenindividuals are asked to provide an estimate of the absolute magnitude of asingle example
(Garner, 1954). These early findings inspired a line of research investigating why absolute
judgements wereso unreliableand thisled totheories describing how these judgements were
made. The most successful of these has been Range-Frequency Theory (hereafter RFT; Parducci,

1965).

RFT posits that whenanindividualassesses anitem with an absolute magnitude orvalue and
assignsitto one out of a set of ordinal categories they use both the range of values and the
frequency with which items are assigned to each category. Forexample, when judging the loudness
of a series of tones using the labels, very quiet, quiet, medium, loud and very loud. If tones range
between 0dBand 100dB then a simple range adaptation account will splitthe scale into 5bins with a
width of 20dB each. However, if the stimuli set contains alarge number of quiettones thenthe
frequency component of the model willadjustin orderto keep relatively equal numbers of stimuli
assigned to each category. Therefore, asmallerrange of the scale will be assigned to the categories
“very quiet” and “quiet” meaningthey coverless of the scale. The range covered by the “medium”
category may move lowerdownthe scale, while “loud” and “very loud” essentially grow to
encompass more of the scale. The overall effectisthat tonesinthe mid-range are assigned to louder
categories thanthey would be ina non-skewed environment. The obvious mechanism forextending
the model from categorical judgements to absolute judgementsis a model of valuation by rank
order, with the range of possible responses setting the maximum and minimum of the scale. This
maintains the fundamental properties of the range-frequency account, whilst also allowingit to be
appliedtojudgements such as certainty equivalence. It also means that the modelis very similarto
the transform applied tovalue in DbSwhen an individual is making adecision ratherthana

judgement.
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The early findings which inspired RFT have now been extended and many of them support
absolute judgement by comparative mechanisms (Stewartetal., 2005). The rank of a tone’svolume
or loudness amongst preceding items has asignificant effect upon the judgement of subsequent
stimuli (Stewart & Brown, 2004). The effectisalsofoundinthe judgements of many othersimple
perceptual stimuli(Stewart, Brown, & Chater, 2002). These effects have also been shown in domains
which blurthe lines between psychophysics and cognition such as subjective ratings of pain
(Watkinson, Wood, Lloyd, & Brown, 2013). It has even been shownin enjoymentand perception of
music, with RFT predicting judgements’ of the most accurate and most pleasingtempo at which to

listen to Beatles songs (Rashotte & Wedell, 2012).

Effects of frequency and rank have been shownin a large number of domainsand
judgements. Many of the documented examples are in social judgements about the self. For
example, individuals’ judgements of theirown happiness ordepressionis explained by comparisons
with otherknownindividuals and anindividual’s estimated rank within this sample (Melrose, Brown,
& Wood, 2013). Thisisalso true of judgements about different personalitytraits (Wood, Brown,

Maltby, & Watkinson, 2012) and a number of othersocial scales (Galesic, Olsson, & Rieskamp, 2012).

Individuals’ estimates of how their earnings compare with those of the general population are
best explained by theirrank within their peers and social group (Brown & Matthews, 2011).
Employeeswell-being has also been found to rely upon how their earnings compare with those
around them, ratherthan the financial amount (Brown, Gardner, Oswald, & Qian, 2008) and thisis
alsotrue of general satisfaction with earnings (Boyce, Brown, & Moore, 2010). Particularly intriguing
are findings regarding mental health issues and the lower psychological well-being associated with
low socio-economicstatus. These risks are better predicted by an individual’s socio-economicrank
withintheirlocal community thanitis by theiractual wealth and resources (Wood, Boyce, Moore, &

Brown, 2012). This suggests thatthe risk factor associated low SESis not the result of lack of
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resources, such as access to good nutrition, exerciseetc. butis at leastin part a psychological effect

driven by comparison with others.

Comparative and rank effects also predict judgements of potentially harmful behaviours.
Individuals’ judgement of theiractual alcohol consumption and the estimated harm of theirown
drinkingis explained by theirrank within otherdrinkersin theirsocial circles (Wood, Brown, &
Maltby, 2012). This is also the case for behaviours which have a positive effect upon health, such as
amount of exercise and the predicted positiveimpact of theirexercise (Maltby, Wood, Vlaev, Taylor,
& Brown, 2012). Even offers of help are judged in this way, with individuals displaying more orless
gratitude depending upon how wellan offer compares to other experienced offers (Wood, Brown, &
Maltby, 2011). These findings have significantimplications for promoting healthy behaviours and
designinginterventions. Whether such interventions orthe design of decision environments can also
aid betterfinancial decision making, particularly in areas such as pension provision, is still afocus of

much debate (Sunstein & Thaler, 2008).

1.3. Criticisms of Decision by Sampling and Open Questions
Despite the strongand growing body of evidence in favour of DbS’s core properties and

predictions, there are stillvalid criticisms which can be levelled againstit. There are also anumber of
crucial questions and characteristics of the model which are currently open or unspecified. For DbS
to become widely accepted as a model of human decision making and value judgement then these

issues mustfirst be addressed.

Perhapsthe mostsurprisingissue given the otherwise strong base of evidence isthatthereiis
currently no published test of DbS’s predictive accuracy in financial decision making. Although
individual phenomena have been closely examined and robustly demonstrated, there has notbeena
single study where DbS was explicitly modelled and used to predict behaviour. There are inevitable
problems with such a test: the fact that DbS isa memory and experienced based model meansthat

one cannot measure or control for experiences priorto beginning the experiment. Not beingableto
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measure these and enterthemintothe model willinevitably add noise. However, recall shows a
steep forgetting curve (Ebbinghaus, 1913), effects of categorisation mean thatitems within the
currenttask or block are most likely to be sampled (Brown etal., 2007) and the number of items
sampledis potentially very small (Cowan, 2001). Therefore, the likelihood thatindividuals sample
more temporally distant experiences from outside of the experimentis also likely to be very small.
Giventheinherentnoisein human judgement, the effect of prior experiencesis likely to have

relatively little impact upon modelling accuracy.

Anotherissue which makes modelling DbS difficultis thatitis underspecified. The model
makes no predictions regarding astopping rule orthe size of the sample used to make decisions.
STM capacity has been shown to be very small (Cowan, 2001) and numerous studies detailed earlier
inthis chapter suggest that decisions are modified by the size of STM. However, as DbS isan
accumulatormodel it does not predict that all sampled values are necessarilyheldin STMat once.
Instead values are sampled sequentially, allowing fora much larger number of comparisons. There is
already evidencethat the differences in decision making that correlate with STMmay not be a direct
result of sampling or parallel sample representation (Gaissmaieretal., 2006). Therefore any

modelling of DbSwould have to estimate the size of the sample with which to make predictions.

In addition to not specifying the size of the sample, DbS fails to specify a neurologically and
psychologically plausible mechanism by which previous experiences are recalled and sampled. The
assumption stated in the original model specificationis thatall priorexperiences have equal random
chance of beingrecalled (Stewart etal., 2006). This seems to be because the majority of the
evidence presentedinthe paperrelies uponlongterm measures of experiences and events.
However, more recentand more targeted experiments have demonstrated the importance of
recency, saliency and similarity. Therefore an unavoidable questionis how memory phenomenaand

the differential likelihood of experiences being recalled are integrated into the DbS model.
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One characteristicof the model whichis fully specified is how items with multiple attributes
are judged and how the different scales are integrated. Despitethis, little attention has been paid to
multi-attribute valuation, with evidence instead coming from single attribute tasks or financial
gambles. Thisisan issue which can be easily addressed by modelling DbS’s predictions. The model
currently predicts thatinformationis sampled randomly from each attribute with equal chance.
However, it seems thatin most decisionsindividuals do not weightinformation equally (Bréder,
2002; Mellers, 1980; Pitz, Heerboth, & Sachs, 1980; Westenberg & Koele, 1994), although the impact
of such weightingis debated (Dawes, 1979). It seems unlikely that these issues of information
weighting will be overcome by using rank order encoding. Therefore, weighting parameters may
needtobe incorporated into the model. The mostlikely and parsimonious mechanism would appear
to be preferential sampling of the attributes which are most salient and considered mostrelevantto

the current decision.

1.4. Comparisons with Alternative Models and Interpretations
1.4.1. Prospect Theory

The distribution of experienced valuesin the world means DbS predicts utility curves that
closely match those of Prospect Theory. It would seem a natural assumption that CPT and DbS
therefore make the same orsimilar choice predictions. However, they are subtly, butimportantly
different. The utilitycurves calculated using DbS were based upon population level data. When the
gains and losses of a large number of individuals,from veryrich to very poorare pooled thenthe
familiar utility curves are indeed reproduced. However, when an individual is making decisions they
can only sample fromtheir own experiences meaning DbS predicts different individuals will have
very different utility functions, as the very wealthy and the very poor will have experienced very
different gains and losses. Furthermore, anindividual will only sample arelatively small number of
these itemsfora single decision, meaning that the utility function willnot be accurately represented

duringeach choice. However, it will become apparent when averaging overalarge number of
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choices. Furthermore, CPT predicts that utilityfunctions are stable overtime, whereas DbS predicts
an adaptation and inherent updating of the information used to make decisions, meaning utility

functions are dynamicand adjust to the decision maker’s environment.

1.4.2. Heuristics and the Adaptive Toolbox

The debate surroundingthe relative merits of heuristicaccounts of decision makingand
models with strong mathematical componentsis one of the most fundamental within contemporary
JDM research. Afull discussion is beyond the scope of thiswork, but manyissues of the debate are
relevantto DbS and the experiments reported here. The central argumentin favour of a heuristics
account of decision makingis that the mathematical computations in mathematically complex
models are incrediblycognitively demanding. So much so that, for many models individuals are
incapable of performingthe relevant mathematical transforms when explicitly asked to do so.
Generally speaking, evolutionary processes do not resultin any processes more complex orenergy
demandingthanis necessary orpossible. Therefore itisarguedthatthe application of simple rules,
which approximate the results of complex mathematical strategies, are more psychologically

plausible (Gigerenzer & Goldstein, 1996; Gigerenzer & Selten, 2002; Gigerenzer & Todd, 2000).

DbS isa particularly interesting case because it arguably sits astride the debate. The simple
mechanism of recall and binary comparisonisa more plausible cognitive process than complex
discounting. Itis arguably a model of bounded rationality as it considers cognitive limitations and yet
produces the similar results to complex mathematical weighting functions. However, as DbSis a
relatively general cognitive model ratherthan a specificrule, it stilldoes not fit well withinthe
adaptive toolbox (Broder, 2003; Gigerenzer & Selten, 2002) alongside the matching (Dhami, 2003;
Snook, Dhami, & Kavanagh, 2011), recognition (Goldstein & Gigerenzer, 1999) or priority heuristics
(Brandstatter, Gigerenzer, & Hertwig, 2006). A potential result of thisis that DbS may be able to fit
findings compatible with simplistic, rule based heuristics, whilst also explaining the complex utility

functions of mathematical models. Forexample, if attributes are differentially sampled due to
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characteristics such as salience orsimilarity, then the model may be able to explain patterns of
behaviourwhere individuals make complex use of information and appearto weight different
attributes mathematically. Conversely, depending upon the assumed stop ping rule, the model can
explain effects compatible with matching and priority heuristics by assuming that the most
influential attributes are sampled first or disproportionately more. If the accumulator then reaches
its stoppingrule, furtherattributes will not be sampled. Furthermore the most common explanation
for recognition and representativeness heuristics is already that of preferential recall from memory

(Goldstein & Gigerenzer, 1999; Kahneman & Tversky, 1972; Tversky & Kahneman, 1974).

1.4.3. Drift Diffusion

Driftdiffusionisastochasticmodel (orfamily of models) of choice which like DbS predicts that
evidence foreach itemisaccumulated overtime untilastoppingcriterion is reached (Busemeyer &
Townsend, 1993; Ratcliff, 2001; Ratcliff & McKoon, 2007). Where this model differsfrom DbSisin
how the evidence is accumulated. Drift diffusion assumes that evidence foranitemisaccumulated
at a rate dependentuponthe relative differencesinvalue between the options under consideration.
Soina choice between two very similaritems, the rate of evidence accumulation will be slow and
decisiontimeslong, whereasin achoice betweentwoitems with very different values, evide nce is

rapidly accumulated forthe more valuable item and decisions are fast.

Thereis a strong base of evidence for drift diffusion models, with many studies finding
impressive predictive accuracy. However, a potential criticism is that many papersrely upona
generalised modelling procedure, averaging across trials and not capturing the potential signal on
each choice. Inaddition, both decisions and responsetimes are used when estimating model
parameters and when testingthe model’s predictive performance. Thisisindeed a good method of
testing drift diffusion as a process model, butitalso means that comparisons with competing models
are notveryinformative, as most do not make specific predictions regarding reaction times. The

modelling also estimates avarying number of free parameters depending upon the specific

29



implementation of the model (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006) and in some cases
the model becomesvery complex. Although thisis bestavoided in cognitive models, there is
evidence thatthe parameters have real psychologicaland neurological analogues. Specific
parametersinthe model are modified by relevant changesin task constraints (Milosavljevic,
Malmaud, Huth, Koch, & Rangel, 2010), by neurological damage and aging (Ratcliff, Thapar, &

McKoon, 2006; Starns & Ratcliff, 2010), and even sleep deprivation (Ratcliff & Van Dongen, 2009).

Research on drift diffusion modelsis becoming more and more sophisticated overtime and
thisworkis also becoming more relevant to DbS as both posita system of evidence accumulation.
The major difference isin whatevidence is beingaccumulated: binary comparisons orabsolute
differences. One line of research whichis particularly interesting is that examining attention effects.
By tracking decision makers’ eye gaze, itis possible to examine whichitem and attribute is being
looked atand therefore attended to at any particulartime during deliberation and decision making.
This has enabled modelling of drift diffusion by providing a measure of whichitem evidence is
currently being accumulated for (Krajbich, Armel, & Rangel, 2010). However, there is no reason this
methodology could notalso be applied to DbS. This would make it possibleto compare the
predictions of the two models. When attention is directed to one item in the choice set, is evidence
accumulation best described by the attribute value’s rank order within previous experiences? Oris
driftdiffusion’s assumption correct thatthe accumulation rate depends upon absolute difference in
value? If the latterthen theissue remains of how this absolute differenceis calculated, and whether

a complex utility functionis appliedtoit.

1.5. Thesis Framework
This thesis examines Decision by Sampling as a model of valuation and choice. It also assesses

the more general role that rank ordering playsin judgementand decision making. Chapter Two uses
a multi-attribute valuation task to examine the predictive accuracy of DbS wheniitis explicitly

modelled upon the stimuli. It also tests predictions of range frequency theory and rank orderin
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value estimates using modified distributions of stimuli values. Chapter Three extends these findings,
examiningthe predictions of DbS by modifying the distribution of values upon individual attribute
scales. It also examines the effect of prior experience by comparing value estimates in tasks where
participants have prior knowledge orthe stimuli are completely novel. Memory phenomenaare also
introduced tothe DbS model to assess the mostlikely samplesize used by individuals and whetherit

ispossible toimprove the models predictive accuracy by incorporating memory effects.

Chapter Four extends the results of chaptertwo into multi-attribute choice, comparing the
effect of binary comparison heuristics such as Dawes rule (Dawes, 1979) and the effect of absolute
value differences between options. The paradigmis also used in combination with eye-tracking to
provide an estimate of relative attention. This allows drift diffusion models to be simulated usinga
novel modelling method then compared to DbS and simpler behavioural models. Chapterfive
focusses on neurosciencefindings and uses fMRI to dissociate the effects of absolute value and rank
orderin the neural encoding of value. The effect of context upon neural encodingis also examined
as well ashow contextis definedin different neural systems. The final experiment takes the findings
fromthe neuroimaging experiments and demonstrates an analogous behavioural effect outside of
the scanner. This experiment shows a cross-modal replication; something whichis all toorare

between the neuroscience and psychologyliteratures.
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2. Chapter 2

2.1. Introduction and Overview
This chapter details two experiments which assess Decision by Sampling’s applicability to the

valuation of single items with multiple attributes and the performance of the closely related range
frequency theory (Parducci, 1965). These experiments allowfor modelling of DbS and the
exploration of several potential modifications or additions to the model which are inspired by the
literature on memory phenomena. The design of both experiments also allows for examination of
learning rates during multi-attribute valuation tasks. Previous research has suggested that
participants are unable to use feedback and learn the effect of variables when the decision
environmentis difficult orthere are more than two pieces of information havingan effect upon

value (Harvey & Fischer, 2005).

Experiment one required participants to estimate the rental value of aseries of apartments
based upona number of pieces of information. Feedback was provided in the form of the correct
rental value after each trial. This allowed an examination of participants’ learning and accuracy rates
overthe course of the experiment. The distribution of rental values experienced was also skewed.
This meansthat the predictions of DbS and range frequency theory deviate significantly and
systematically from the true rental values provided as feedback in the task. Experiment Two
provides afurthertest of range frequency by presenting adistribution of rental values where alarge

portion of the range isunderrepresented.

2.2. Experiment 1

2.2.1. Introduction

Experiment One was a multi attribute value estimation task. Participants were shown the
details of a series of apartments and asked to estimate the monthly rental price. Apartments were

chosendue to the existingliterature using such items to investigate information search and multi -
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attribute decision making (Payne, 1976). They are flexible and appropriate stimuli because they are
genderneutral (unlike cars or shoes forexample; Matthews & Stewart, 2009) and they have a large
number of potential attributes which can be numerically quantified. Furthermore, our
undergraduate participant pool would have reasonable understanding of the items as rental tenants

but would not be experts with the strong, predefined expectations of estate agents orland-lords.

The most basicaim of the experiment was to assess participants’ learning and to examine
whetherthey could accurately extract weighting functions orinformation about individual attributes
and thusimprove the accuracy of theiritem valuations. There is debate surrounding individuals’
ability (orinability) to learn the relationships between individual cues and overall value. Some
studies show thatindividuals have serious difficulties learning from simple outcome feedback when
there are more than two attributes (Olsson, Enkvist, & Juslin, 2006; Todd & Hammond, 1965). Others
suggest that participants can only learn to make accurate use of cue-outcome relationships when
provided with detailed feedback which often explicitly reveals the relationship between cue and
output (Balzer, Doherty, & O'Connor, 1989). However, much of this evidence comes from multiple
cue probability learning tasks where outcomes are binary and probabilistic. There are a number of
studies which have used stable and deterministicenvironments with feedback given on a continuous
scale. These show that participants can achieve high accuracy (Brehmer, 1994; Delosh, Busemeyer,
& McDaniel, 1997; Kalish, Lewandowsky, & Kruschke, 2004; Mellers, 1980). For a review see Harvey

and Fischer (2005).

The stimuliinthis experiment were stableand each attribute had a deterministic
mathematical relationship withitem value. In orderto provide the most powerful test of learning
possible, the same 100 items were presented twice and in the same order, meaning participants
essentially repeated the experiment. Therefore the accuracy of value estimates at each presentation

of the same item could be compared to provide an accurate measure of learning. Italso means that
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once an asymptote isidentified, itis also possibleto assess the long-term stability of value

estimates.

In additionto this the experimentallowed adirect test of both DbS and RFT. RFT does not
make specificpredictions regarding the interpretation and integration of attributes onto single
internal psychological scale. However, it does make predictions about the transformation from this
internal value to a financial judgement, i.e. the responsevalue. The distribution of rental values used
inthe experiment had asignificant positive skew. This resultsin RFT predictions being significantly
and systematically different fromthe true rental value. DbS makes specific predictions about the
interpretation of individual attribute scales and the methodology here allows for modelling of DbS.
The predictions of DbS can then be compared to participant responses and the accuracy compared

to that of simply using true rental value.

Itisalso possible to examine a number of potentialimprovements tothe DbS model. The
model currently predicts that all previous experiences have an equal chance of being sampled.
However, previous results have shown that participants can adjust to a skewed environment aftera
relatively small number of trials and that the most recent experiences have asignificant effect upon
decisions (Stewart, 2009). Furthermore, findings in the recognition memory literature show that
more recent experiences are more likely to be recalled from memory (Ebbinghaus, 1913). Others
show both a recency and primacy effect (Glenberget al., 1980; Mantonakis et al., 2009). Therefore
the modifications of DbStested here incorporateaweighting function to relatively over-sample
eithermore recentitems orboth early and recentitems. If either of these modifications shows an
improvementthenitwould demonstrate that this shortterm adaptationis a fundamental aspect of
a memory based decision making process. [t would also rule outanchorand adjust (Tversky &

Kahneman, 1974) as an explanation of previous findings.
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2.2.2. Method

2.2.2.1. Participants

Participants were 12 Psychology undergraduates who were paid £5 for participation. Eight of

these were femaleand fourmale, with an average age of 19. 8 (S.D.= 2.7).

2.2.2.2. Stimuli

The stimuli consisted of 100 apartments. Each apartment had five attributes: Number of
Bedrooms, Number of Bathrooms, Floor Size, Land-Lord Rating and Distance from Town. Floorsize
was reportedin square footand distance from town centre in miles. Participants were informed that
land-lord rating was a score between Oand 10, calculated using feedback from previous tenants.
Attribute values were created using the parameters detailed below. These were chosen so that
items were areasonably close approximation of the smallerapartments advertised to studentsin

the Nottingham area.

e Beds—randomintegerbetween 1-4

e Baths—random integerbetween landthe numberof bedrooms

e Square footage —base of 500, plusarandom amount upto 500 (drawnfroma
boxcardistribution), plus an additional 50-250 for each bedroom (also drawn from a
boxcar distribution)

e landlordrating — continuous scale from 1 to 10, randomly drawn from a normal
distribution withamean of 7 and a S.D. of 3. Values drawn from outside of this
range were re-sampled, to avoid a cluster of values at the extremes which would

have occurred if values were instead rounded.
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e Distance fromtown — valuesover0.1m randomly drawn from a normal distribution
with mean of 0 and S.D. of 2. Again, valueslessthan O were re-sampled, resultingin

a half-normal distribution.

The rental value was then calculated using a set of mathematical formulae. Essentially, the
starting value of £220 was multiplied usingthe formulae below, so that each attribute had a specific
effectuponvalue. The product of the first equation was then multiplied by the nextand soon, so
that the output had a weighted multiplicative relationship with the stimulivalues. This explicit
mathematical function means thatthere was an objectively correctvalue foreachitem anda
deterministicrelationship between attributes and rental values. Thereforeit was possible to
measure how quickly participants responded to feedback and to the decision environmentin order
to improve theiraccuracy. The weighting functions were piloted on asmall number of students in
orderto testtheir plausibility and underwentanumber of refinements before the experiment was
conducted. Inthe experimentitself no participants reported that they thought the values were odd

and anecdotally, several apparently believed that the data was drawn from real adverts.

Equation 1
1+ 6(beds — 1)
Equation 2
3(baths — 1)
14— -
+ 20
Equation 3
1.2
0.5 (750 + 150bed5)
0.5sqft
Equation 4
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(llord rating — 5)
1
* 20

Equation 5

LR (10dist>

The parameters detailed above were used to create 90 stimuli. The remaining 10 had their
attribute values specificallychosen such that there was an item with a rental value in every 10™
percentile of the total range. These items were then placed at the e nd of the series of 90 items and
were used as critical items or probe trials. Thisis particularly informative because the 10items could
be usedto testfor any systematicdifferences across the range of values after being exposed to the
skewed distribution of the items experienced immediately prior. The overall distribution of rental
values had a range of £371 to £1638 and a mean of £801. The distribution also had a significant
positive skew (Figure 2.6, skewness=0.71). Thus if DbS is correct then the skewed sample of

experienced values will resultin systematic deviations from perfect calibration.
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Figure 2.6 Distribution of stimuli values. Continuous estimates calculated using nonparametric kernel-smoothing
with 100 samples.

2.2.2.3. Procedure

Participants completed 200 trials. This was composed of the 100 items described above.
These 100 were repeatedinthe same order allowing analysis of the stability of participants’ value

estimatesovertime.

Participants were told they were completing a prototype estate agent training task and
would have to estimate the potential rentalvalues of aseries of apartments based ona small
amount of preliminary information. For each trial participants were presented with the details of a

flatand responded with theirvalue estimate. Once this had been provided, the true rental value was

displayedfor2seconds before the nexttrial began.
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2.2.3. Results

2.2.3.1. Learning and Accuracy Rates

To assess accuracy overthe duration of the experiment the percentage error rate was
calculated foreach trial. First the difference between each participant’s estimate of value on each
trial and the true rental value was found. Then the difference on each trial was divided by the true
stimulivalueinordertofind the percentage error. This measure was used in preference to simple
subtraction because adifference score would inflate the influence of more valuable stimuli. Figure
2.7 shows the change in accuracy overtime and control for trial to trial variability a LOWESS
smoothed curve was calculated and plotted in addition to the simple mean of the nearest 30trials.
Both were calculated using awindow encompassing 15% of the data and the LOWESS regression
used robust errors. This shows that accuracy is poorer early in the task but improves quickly,
becomingrelatively stable inthe first half of the experiment. The percentage errorthen remains
around 15%. To test for the stability of estimates overtime, differences between value estimates for
the firstand second viewing of stimuli were used to calculate mean error percentage inthe same
manner (Figure 2.8). Thisrevealsavery similar pattern but suggests that the difference in estimates

stabilises slightly quicker: between the 30" and 40" trials.
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Figure 2.7 Mean size of the error as a percentage of the stimuli's target value over the duration of the
experiment. Different lines show two methods of smoothing, a simple local mean and a LOWESS smoothing method.
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Figure 2.8 Mean size of the difference between estimates to the same items when seen in the first and second
half of the experiment.
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The critical items placed at the end of each half were then analysed: t-tests revealed no
significant differences between the first and second estimates forany of the 10 items. Thus by the
second half of the experiment there is no significantimprovement orlearning. So at least in this task,
participants learning and adjustmentto the decision environment reached (oris close to) an

asymptote by 100 trials.

2.2.3.2. Rank Order Effects and Range Frequency Theory

RFT predicts that there will be a significant effect of the positively skewed distribution and
that value estimates should be better predicted by anitem’s rank order within the stimuli setthan
by itstarget value. Mean estimates of value were first plotted against stimuli target values (Figure
2.9). Thisreveals what appearsto be a good fit. However, one easily identified patternisthatlower
value stimuli tend to be slightly (but reliably) over-valued while high value stimuli are under-valued.
To testwhetherthisisa deviation which can be explained by rank order, mean value estimates were
calculated across participants foreach item and plotted against theirrank according to targetvalues
(Figure 2.10). This appears to be a worse fit. A correlation analysis confirms this as target values
reveal abetterfitto individual estimates (r=0.847) than rank order(r=0.835). A Fishers z-test
reveals thatthis difference is not significant (z= 1.0, p>0.05) butthisis potentially due tothe
inherently high correlation between value and rank order (r =0.966). The resultalso cannotbe
argued as a simple lack of powerasitisactually inthe opposite direction to that predicted by RFT.
The theory would predict an equal spreading of estimates across the range of values. The pattern

observedhereisinfactinthe direction of regression tothe mean.
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2.2.3.3. Decision by Sampling

As DbS posits that decisions are based upon repeated comparisons at the attribute level,
calculatingits predictions must be done by finding each item’s sum of favourable comparisons with
otheritemsand this must be done separately for each attribute. In orderto calculate DbS scores,
each attribute foreach item was compared with every otheritem previously seenin the experiment.
To control for the number of comparisons this score wasthen divided by the number of preceding
items. The correlation with individual value estimates (r=0.779, Figure 2.11) was weaker than the
correlation between estimates and target values. A Fishers Zreveals the difference is significant (Z=

4.96, p<0.001), suggestingthat DbSis a worse predictorthanthe true values participantsare

estimating.
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Figure 2.11 Predictions of DbS as it stands plotted against participants’mean value estimates
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2.2.3.4. Decision by Sampling and Memory

Some aspects of DbS would seemto be implausible. The assumption that all previous
memories, or atleasta very large number of them, are sampled every time anewitemisseenruns
counterto evidence from both psychology and neuroscience. Isitthe case that by imposing
restraints upon the model to make it more plausible, it can also become more accurate? The first
stepisto control the number of previousitems usedinthe comparison,i.e. limiting the samplesize.
To achieve thisacognitive model was created which simulated DbS but with constrained sample
sizes. The mechanism of sampling was entirely random, with any previous attribute of any previous
item having equal likelihood of being sampled and compared to the currentone. The only constraint
was thatthere was nore-sampling, meaningthatforcases where the required samplesize was
largerthan the number of previous attributes, all previous attributes were used. This model was
used to create DbS scores for eachitemforsample sizes between 1and 1000. For each sample size
1000 iterations were performed and each of the predicted values from these iterations was
correlated with individuals’ estimates. Then r-values were averaged across iterations to give a

reliable estimate of the model’s predictive accuracy.

If DbS is fundamentally correctin all but sample size thenthere would be a peakin model fit
at a reasonably small sample size before adeclineas the sample size becomes implausibly large.
However, asseenin Figure 2.12 there is no such peakin fitwhen model predictions are correlated
with participants’ estimates. The fitis very poorforsmallersamples andincreases with an
asymptoticshape, showingthe strongest fit with an implausibly large 1000 item sample. Thissample
size makesthe model equivalent to unmodified DbS and as such no improvementcan be found upon
the original model. The same asymptotic patternis alsofoundin DbS’s correlation with targetvalue,
and this correlationis actually stronger. Thus it see ms that the model’s predictive ability increases as
more items are added only because thisresultsin astrongercorrelation with targetvalue, not with

participants’ estimates.
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Figure 2.12 The strength of correlation between DbS predictions and either target values or individual estimates
when DbS is modeled using varying numbers of comparisons with previous attributes

Although constraining the sample size makes the model more psychologically plausible, this
isonly one questionableassumption. The prediction thata sample is draw entirely at random from
all previous experiences still ignores avast wealth of findings from memory research. Itis well
established that during recall, there is asignificant advantagefor information seen most recently
(Ebbinghaus, 1913) andinformation seen earliestinthe task or block (Glenbergetal., 1980). The
formeristhe recency effectand can be represented using the Ebbinghaus forgetting curve. This
curve representsarapid decay function whereby more recent experiences are most likely to be
recalled andthen decay quickly. In addition to the recency effectis the advantage forearly
experiences, i.e. aprimacy effect. Thesetwo phenomenacombinetoforma U shaped serial order
position curve. Inthis case, the earliestand most recent experiences are most likely to be recalled,

withthose inbetween beingthe leastlikely. There is evidence that primacy only occurs when
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participants know there will be a subsequent memory test and therefore make a conscious effortto
memorize items (Marshall & Werder, 1972). Therefore, the effect of recency and primacy were
modelled separately. The Ebbinghaus forgetting curve can be represented by asimple exponential
decay function (Equation 6), with only memory strength left as a free parameter. Primacy can be
modelled using the same equation, the anchor pointis simply moved from the mostrecentitem, to
the first one encountered. The serial order position curve is the summed effect of the two

exponential functions, one anchored at the firsttrial and the otheranchored at the most recent.

Equation 6 The Ebbinghaus forgetting curve. R is retention, or in the case of DbS the probability of being
sampled, t is the time since the item was experienced and s is the memory strength.
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Figure 2.13 The correlation between value estimates and modified versions of DbS. Models weighted for recency
and primacy were computed for memory strength parameters between 1 and 200

DbS was modelled using Ebbinghaus curve weighting functions for recency and primacy. If

the current item compared favourably on adimension thenratherthanincrementinga counter by
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one, itwas incremented by the sampled item’s associated weighting function value. Two separate
model versions were computed: one forrecency and one for primacy. For each of these, DbS was
modelled with memory strength parameters between the values of 1and 200. Atlowervaluesthe
weightingfunctionisvery sharply curved and the impact of an item decreases very quickly the
furtheritis fromthe anchor point. At highervalues, the curve becomes farless extreme and by 200

iscloseto linear.

As can be seenin Figure 2.13 the primacy weighting function has an asymptoticshape with
fitapproachinga maximum of r = 0.78 as the weighting curve becomes more linear (thisis the same
fitto two decimal placesasis found when using no weighting function). However, the fit forthe
Ebbinghaus curve isvery different at low values. It shows alocal maximum at s =4 before declining
and then becomingvery similarto the asymptoticshape found for primacy, as the increasing
linearity of the functions inherently makes their predictions more similar. Thisisinitially
encouraging, but examination showsthatitis only a local maximum (r=0.7749) and still lowerthan

that found using a weighting function of 200 (r = 0.7789).

When recency and primacy are applied atthe same time a serial order position curve is
created. The bestfitting parameters were found using maximum likelihood estimation combined
with annealingto avoid problems of local maxima. The results are very similarto that found forthe
separate weighting curves, but with the early maximum forrecency now providingthe best fit:
recency =3.02, primacy =172.0, r = 0.78. Despite this, if we plot the fit against recency and primacy
thenthe performance of the model isactually incredibly similar for the majority of the tested
parameters (Figure 2.14). Therefore it seems very unlikely that the addition of this weighting curve

will everbe able to solve the inherent problems of the model.
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Figure 2.14 Correlation between value estimates and DbS predictions when weighted using a serial order
position curve. The strength of correlation is shown at each value between 1 and 200 for memory strength on both
primacy and recency

2.2.3.5. Decision by Sampling and Attribute Weighting

As well as assumingthatthe relative recency of experiences has noimpact upon the likelihood
of an experience being sampled, DbS also assumes that all attributes and different types of
information are equally important. However this doesn’t seem plausible; when considering
apartmentsforexample,itishighly likely thatindividuals will place more emphasis and importance
upon attributes such as the number of bedrooms than they will upon whetherthey like the colour of
the walls. By performing amultiple linear regression using the separate DbS scores of each individual
attribute, the relative impact of each attribute can vary freely within the model. Furthermorea
separate regression model was computer for each participanttoallow forindividual differences in
weightings. DbS scores for each attribute are then multiplied by their calculated weight foreach

participant allowing a cluster corrected correlation to be performed to calculate the r-value.

Allowing attribute weightings to vary freely resultsin DbS showing asignificantly better fitto
the model than simply regressingthe target values (r=0.88, z = 3.47, p<0.001). However, the model
now has a large number of free parameters. There are anumber of statistical tools which could be

used to control for the effect of these additional parameters but the design of the task lends itself to
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a mode parsimonious and valid approach. The same analysis was performed but using stimuli values
instead of DbS scores. This controls forthe number of free parametersand also provides adirect test
to the Weighted ADDitive modelwhichis regularlyused as a baseline measure in multi-attribute
tasks as it is analogous to multiple linearregression (Dieckmann, Dippold, & Dietrich, 2009). This
reveals thatthe predictive accuracy of the two models are not significantly different (r=0.89, z =

0.37, p>0.05).

2.2.4. Discussion

The results show no support for either RFT or DbS. Mean estimates correlated more strongly
with targetvalue than with the rank order predicted by RFT. Furthermore, DbS was significantly
worse than a simple baseline in predicting participants’ value estimates. This was true even when
several modifications were made to the model toincorporate patterns of memoryrecall. The results
for all butone version showed atrend towards worse predictions than baseline. The only version of
the model which showed animprovement over simply correlating estimates with target values had a
far greater number of free parameters. This model was no better than a baseline measure which

was matched fordegrees of freedom: simply regressing stimuli values.

The results shownin Figure 2.9 do suggest a systematicdeviation fromtarget values, with
highervalues being underestimated and lower values being overestimated. However, these
deviations cannot be explained by RFT or DbS. Simple regression tothe mean seems amore
parsimonious hypothesis. It seems sensible that when unconfident, participants anchored their
estimates closerto the mean of the distribution. This would also account for the reduction of the

effectinthe second half of the experiment, when participants were better calibrated.

A potential criticism of the experimentis high correlation between rank orderand target

valuesand also between DbS scores and target values. The distribution of values was created to
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match the positive skew found in many real world environments, butit does notallow for easy
separation ororthogonalisation of DbS and target values. It could be that when the distribution of
valuesis particularly novel, and significantly different to target values, these models perform
relatively better. However, the finding that RFT and DbS performed worse does suggest thattheir

poor performance in this experiment was nota ceiling effect.

2.3. Experiment Two
2.3.1. Introduction

As DbS and RFT are inherently reliant upon the distribution of values anindividual has
experienced, theirability to predict value estimates should remain stable as the distribution that the
individualencounters changes, whereas the performance of the baseline of target values should
decrease. Therefore Experiment Two uses stimulidrawn from anon-normal distribution. If value
estimates are predicated upon the distribution and rank order of previously experienced values then
the models’ performance should remain relatively high whilst the correlation with target values
declinessignificantly. This design directly tests a prediction drawn from RFT and increases the
difference between predictions from RFT and target value compared to Experiment 1. Therefore, the
experiment should providea more powerful test. In addition, the 10 critical items were again
presented atthe end of each 100 trials. Because they remained the same on each presentation, their
value did not change, but the difference in the distribution of preceding values meant several had a
differentrank. Thus RFT predicts that these items will elicit significantly different valuations on each

presentation.
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2.3.2. Method

2.3.2.1. Participants

Thirty-two members of the University of Nottingham community were recruited and were
paid £5 inconvenience allowance. Theiraverage age was 19.7 (S.D= 2.6). The sample size islarger
than in Experiment one sothatthere is sufficient power for between subject analyses on order

effects.

2.3.2.2. Stimuli

The same apartment stimuli wereused asin Experiment One; with the same equations and
weighting functions. However, instead of repeating the same items twice in each half of the
experiment, the 90 original stimuli were manipulated to create a non-normal distribution. In order
to create a portion of the distribution which was significantly under-represented, the top 40% of
stimuli were taken and theirvaluesincreased as a proportion of the distance from the most valuable
item. This essentially results in the top 40% of the distribution being “squashed” up into the top
20%. The nextlowest 5% of stimuli were thenincreased in asimilarway so that that they occupied
the under-represented portion of the distribution. This resultsin abroadly bi-modal distribution

(Figure 2.15), which has the same rank orderas the original distribution.

The stimuli values were changed whilst maintaining the relativeinfluence of individual
attributes between distributions. This was achieved by taking the outcome of the weighting
functions of all continuous attributes for each stimulus and multiplying this by the third root of the
ratio between originaland modified rental vales. The resulting values werethen entered into the

reverse of equations 3,4and 5in orderto calculate new attribute values on these scales.
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Figure 2.15 a. The original distribution continuous and with a slight positive skew. b. The modified distribution,
non-normal and bi-modal.

2.3.2.3. Procedure

The same procedure was used asin Experiment One. The only difference was in the stimuli
values presented to the participants. Half of the participants saw the stimuli drawn from the original
distributionin the firstand those drawn from the modified distribution in the second half. The rest

of the participants saw the same stimuli, but with the block orderreversed.

2.3.3. Results

2.3.3.1. Learning and Accuracy Rates

To confirmthat participants were stillable tolearn fromthe feedback and calibrate to the
stimulivalues despite the altered distribution, error percentages were calculated in the same
manneras in Experiment 1and plotted by stimuli order. The data was separated by condition and
Figure 2.16 shows that participants learn the stimuli values quickly regardless of whetherthey first

saw the original or modified distributions.
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Figure 2.16 The percentage error rate over the course of the experiment for a. participants who saw the original
distribution first and b. participants who saw the bi-modal distribution first
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2.3.3.2. Rank Order Effects and Range Frequency Theory

A 2(condition)X2(distribution) mixed model ANOVA was performed on each of the critical
values placed at the end of each block. The stimuli and theirvalues are identical at each
presentation butforthose with avalue above £886 the change in distribution means theirrank
orderis significantly different. Therefore RFT predicts asignificant main effect of preceding
distribution upon those with highervalues but notforthose with lower. Four of the ten critical
stimuli do show a main effect. Three of these have highertargetvaluesandtherefore have a
significantly changed rank (£911, p = 0.022; £1291, p =0.045; £1374, p = 0.016), butoneis a lower
value item where no difference is predicted (£413, p = 0.036). One must be careful of interpreting
these results though, as none of these effects are large enough to survive correction for multiple
comparisons. Howeverwhatis particularly interestingis that all of these differences are againinthe
opposite direction to that predicted by RFT. Critical values have alowerrank within the modified
distributionthan the original but average value estimates are in fact higher. Curiously, this serves to
keepthe items’ rank by value estimate stable between conditions. Thisis despite the target value

beingdifferent.

The overall correlation between target values and value estimates in the second half of the
experiment was then calculated. Thiswasr=0.79 forthose who saw the modified then original
distributionandr= 0.87 forthose who saw original then modified (Figure 2.17). Both showed the
same strength correlation with rank order(r= 0.79 and r = 0.87 respectively). This suggests that
despite the unusual distribution, rank orderand target values are equally good predictors of value

estimates.
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Figure 2.17 Relationship between target values and mean value estimates for a. participants who saw the
original distribution firstand b. participants who saw the bi-modal distribution first

2.3.3.3. Decisionby Sampling and Memory

When DbS is explicitly modelled it again shows very slightly worse performance than simply
correlating target values (modified then original, r=0.75; original then modified, r=0.85). There
alsoappearsto be surprisingly little difference between the DbS scores of itemsin the two
distributions (Figure 2.18). Thisis largely because the model uses comparisons atthe level of the
attributesin orderto make its valuations, meaning the rank order effect of the overall value is
diluted. Inaddition, the model asit stands gives equal weight to all previous experiences, including
those inthe previous half of the experiment where the other distribution of values was experienced.
Therefore one would expect a more significantimprovement of the DbS model once recency is

added as a parameter.
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Figure 2.18 Relationship between DbS predictions and average value estimates in the second half of the
experiment only

When DbS was modelled with recency and primacy parameters, noimprovement was found
for either (Figure 2.19). All r-values were the same as the un-modified modelto 2 decimal places. For
the original then modified condition the best Ebbinghaus fitwasfoundats =119 (r =0.85), and for
primacy the best fitwas found at s = 200 (r = 0.85). For the modified then original condition the best
Ebbinghaus fitwasfoundat s =53 (r=0.75) and for primacy the bestwasfoundat s = 200 (r = 0.75).
Recency and primacy were then combined to form aserial order position curve. Maximum likelihood
modellingthenidentified the best fitting parameters. For original then modified, primacy s = 0.0072
and recency s =119.34 produced the bestfit. For the modified then original condition the best fit
was found at primacy s =1.678 * 10714 and recencys =99.7. The latterin particularseems
unrealisticand when the fit of the model at different parametervaluesis plotted the same patternis

found as in Experiment One (Figure 2.20). The model performs poorly when both parameters are
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small, butthen shows a rapidincrease before performingincrediblysimilarly for all othervalues

tested.
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2.3.3.4. Decision by Sampling and Attribute Weighting

The same series of regression equations were used asin experiment 1in orderto estimate
participants’ attribute weightings and then applying these to DbS scoresin orderto compute
predicted valuations. This again showed better performance than simply regressing true values, for
both modified then original (r=0.90, z =4.92, p<0.001) and original then modified (r=85, z = 4.98,
p<0.001). However, when compared to the same model using stimuli values there was no difference
inaccuracy for modified then original (r=0.85, z=0.06, p>0.05) or original then modified (r=0.91, z

= 0.81, p>0.05).

2.3.4. Discussion

This experiment modified the distribution of experienced values from the first to the second
half of the task. Because both RFT and DbS are predicated upon the distribution of experiences and
comparison with recentitems, their predictions change when the distribution does. Therefore the
models should perform better than the baseline measure of simply correlating estimates with target
values. However, when the distribution changes, the performance of the DbS model declines at the

same rate as that of the baselinemeasure.
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The main finding fromthese two experiments is that the performance of RFT and DbS rests
upontheirhigh correlation with target values. When the correlation between target values and
participants estimates becomes better orworse, there isaconcomitant change in the performance
of both models. Therefore the simplest conclusion is that these comparative models do n ot explain
deviations from perfect accuracy. However, itis suprising that target values and rank order have
virtually identical predictive accuracy in each presentation order. Thisis despite the two making
significantly different predictions. Thus, there remains the possibility of an interaction between the

two but an inability torule out the possibility should not be mistaken for evidence in favour of it.

Oneinterestingfindingis that, although not surviving correction for multiple comparisons, a
number of the critical items suggest adifference in value estimates depending upon the preceding
values. Whatis particularly interestingis thatthese are in the opposite direction to that predicted by
RFT. Ratherthan a higherrank order by target value resultingin a highervaluation, average
estimates become smaller. This highervalue estimate in the modified distribution resultsin the
items’ rank by value estimates staying relatively similar. Estimates rise relative to those in the
original distribution along with that of other surrounding stimuliwhose targetvalueis also higher.
This could be the result of a simple regression to the distribution mean, or using the mean of
recently viewed values as an anchor. Hence when, asinthe modified distribution, thereare more
values clustered around the higherend of the range the meanis higherand so the value estimates
become higher. Alternatively, the increased number of items with higher values could simply be
extending the perceived range of stimulivalues. If thisis assumed then the results would fit better

with RFT.

2.4. Chapter Discussion
This chapter details two experiments which assess the ability of RFT and DbS to predict

responses on a multi-attribute valuation task. Cognitive modeling techniques were also employed to

assess potential modifications to the model inspired by findings from the memory research
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literature. Insummary, the results do not supporteither RFT or DBS. The models closertothe
original models, with fewer free parameters, were consistently outperformed by asimple baseline
measure. The only models which were not significantly worse than baseline were versions of DbS
with a large number of free parameters. However, the performance of these models was not

significantly differentto that of a WADD model when matched for free parameters.

The modifications to DbS which were tested were an attemptto reconcile the model with
findings from memory research whilst also making the model more neurologically and
psychologically plausible. The most basic modification was to restrict the number of previous
experiences sampled when calculating value. However, rather than reveal animprovement ata
plausible sample size, the performance of the model improved asymptotically as the sample size
increased. The same relationship was found between model predictions and target values. Thus as
the model used a larger proportion of items to calculate values, the resulting DbS scores became
more similarto the target values. This was a pattern found throughoutall analysesanditseemsthe
model becomes betterat predicting estimates only because it gets betterat predicting the target
values. If the model were predicting behaviour ratherthan the original stimulivalues thenits
performance would not have such a reliable correlation with target values and would surpass the

predictive abilities of those target values.

Perhapsthe most consistent finding within memory research is that more recent experiences
are more likely to be recalled. Therefore an Ebbinghaus forgetting curve was added to the model as
a weighting function and a large range of curvature parameters tested. Despite the large number of
valuestested, the modification failed toimprove performance. The datasuggested alocal peakin
performance when usingaweighting function with asteepercurve in Experiment One, but this still
performed poorerthan an unmodified version of DbS and no such peak was foundin Experiment

Two. Apart from this minordeviation, the shape of the fit was broadly asymptotic; with the model
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performing betteras the weighting function became more linear and was therefore using more

information.

In additiontorecentitems being more frequently recalled, many experiments alsofind an
advantage forthe firstfew items experienced. Applying a primacy weighting function revealed an
asymptoticrelationship between linearity of the function and the performance of the model, similar
to that found when examining sample sizes. This is likely because the task was not explicitly
described asa memory test and therefore the lack of rehearsal meant there was no primacy effect
(Marshall & Werder, 1972). By combining both recency and primacy into a single weighting function
a serial order position curve was created, but even with these additional free parameters DbS did
not achieve the same predictive accuracy as a simple correlation between estimates and target
values. Furthermore, plotting the performance of the model against parametervalues reveals that
performanceisvery poorwhen both parameters have small values (so extreme curvature), but
quickly asymptotes and has a veryflatfitfor all othervalues modelled. Substantial changesin
parametervaluesresultinlittle ornochange in performance. Thisisagoodindicationthatsucha
version of the model isinefficient orinaccurate, with very high variance in parameter estimates

(Busemeyer & Diederich, 2010).

As statedintheintroduction, DbSisa model of decision making ratherthan valuation. One
must therefore assume a mechanismfortransformingascore from an internal psychological scale
into a financial value. However, such atransformation cannot be driving the poor fit of the model
here. If this were the case then value estimates would stillhave to increase monotonically with DbS
scores. Thisis alsotrue for a range frequency model. The shape of the relationship would not
necessarily have to be linear but any transformation complex enough to violate monotonicity would
necessitate an entirely different model. Plotting predictions against value estimates revealed no

such pattern.
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In Experiment two critical trials with values in the modified portion of the distribution received
significantly different valuations depending upon the distribution of preceding values. When the
distribution had been modified so that highervalues were over-represented and mid-rangevalues
under-represented, value estimates for the highervalue control items were higher. One potential
explanationisthat participants are simply usinga method of anchorand adjustment (Tversky &
Kahneman, 1974). When control items are viewed after the original distribution then the average of
recently viewed itemsislowerthanitisif the modified distribution immediately precedes them.
Therefore anchoringto a higherorloweraverage, resultsinthe higherand lower estimates

observed here.

Anotherpossible explanationis adjustmentto the range of the values experienced. Inthe
original distribution high values are under-represented, and as a result participants could perceive
the range of valuesto be lowerthaninthe modified distribution. Participants could potentially be
adjustingtothe perceivedincreaseinrange by increasing their estimates (althoughitshould be
noted that the actual range of estimationsvariesvery little). Furthermore, many stimuli receive
value estimates in the mid-portion of the range despite being significantly under-represented in the
true stimulivalues. This suggests an adjustmentaccording to the frequency of estimates at different
value ranges. These two phenomenaare predicted by RFT (Parducci, 1965). The increasein
perceived range results in the estimated value of critical items rising, whilst the uneven frequency
distribution of experienced values results in asignificant number of estimations within the under-

represented portion of the range.

In both experiments, participants performance was remarkably high and had very high
correlation with targetvalues. Therefore it seems participants are able toincorporate feedback and
develop weighting functions when there are more than two cues (Todd & Hammond, 1965). There
are several likely reasons why participantsin thesestudies were ableto whilstthose in others were

not. Firstly, participants begin the experiment already aware of the valencefor each attribute and
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had reasonable expectations regarding each one’s relative impact based on real-world experience.
Thisis analogous to havingtask information at the beginning of the task, whichis known to
dramatically improve performance (Balzeretal., 1989). In addition, the relationship between cues
and outcomes was entirely deterministic. The majority of studies where individuals have not shown
learning have been probabilisticand contained random noise (Harvey & Fischer, 2005). Some argue
that individuals are not able to properly integrate probabilisticoutcomes and cannot separate the
random noise from the signal as would be required to abstract weighting functions (Brehmer, 1980).
Our results supportthese previous findings: in an entirely deterministic task where participants do

not have to separate signal from random noise, they perform with high accuracy.

In chapterthree the paradigmis modified to examine the effects of individual attributes and
theirdistributions. The experiments directly address which has the greater effect upon value
estimations: the true mathematical weighting function linking attributes and rental value, or the
distribution of experienced attribute values. This detailed examination of attribute use alsoallows a
comparison between heuristicaccounts of valuation and mathematicallycompensatory accounts

such as WADD.
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3. Chapter 3

3.1. Chapter Introduction

In this chaptertwo experiments are reported which test the predictions of DbS by direct
experimental manipulations. In the previous chapterthe distribution of rental values was
manipulated. This tested the predictive accuracy of RFT in multi-attribute tasks asthe model makes
predictions about how the value of anitemis transferred fromaninternal psychological scale toan
explicit financial valuation. However, DbS predicts that the same rank ordering strategies occurin
the production of the internal psychological valuation, at the level of the attribute. Therefore the
modified distribution of rental values resulted in very little change in the predictions of DbS. In this
chapter, two experiments were conducted which again use multi-attribute valuation tasks. In each
task two of the items’ attributes use the same scale; howeverone has a modified distribution,
whereasthe other hasa modified weighting function. Thus, by extracting participants’ use of these

attributes and theirrelative weighting, itis possible to directly test DbS.

Experiment 4alsoaddressestheissue of priorexpectations. Experiments 1-3 have used
apartmentsonthe basis thatthe undergraduate population would have limited experience with
specificexamples. However, they will undoubtedly have pre-conceptions and some experience of
valuesfromtheirlife up until that point. These more distant experiences were predicted to have
minimal effects during the task based upon memory phenomena (Ebbinghaus, 1913) and previous
resultsin choice and valuation tasks which show large effects of immediately precedingitems
(Beckstead, 2008; Stewart, 2009; Ungemach et al., 2011; Vlaev & Chater, 2007). But the results of
Experiments 1&2 did not supportthis. Thereforeitis possible that values experienced priorto the
experimentstillhad asignificant effect upon value estimates and this could be the reason the
distribution of values did not modify valuations in the manner predicted by DbS and RFT. Experiment
4 addressed this by using exactly the same stimuli values, but with avery different coverstory. By

asking participants to estimate the values of mineral deposits based on levels of contamination etc.
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it was possible to compare the use of information between situations with (some) existing

knowledge and those with none.

The detailed examination of attribute use and weighting functionsin this chapteralso allows
the results to speak to one of the mostfundamental debates within JDMresearch: Whether
individuals use mathematical functions and compensatory weighting of information, or rely upon
simplerheuristics and rules (Gigerenzer & Selten, 2002). Although most research into heuristics has
focussed upon choice between alternatives (Brandstatter et al., 2006; Broder, 2002; Glockner &
Betsch, 2008; Johnson, Schulte-Mecklenbeck, & Willemsen, 2008; Newell & Shanks, 2003), there are
proponents of heuristics in single item valuation (Gigerenzer & Goldstein, 1996; Gigerenzer & Todd,
2000). Furthermore, the experiments elicit explicit estimates of subjective importance of different
attributes and information. Thus, if the results support a Weighted ADDitive (WADD) account, itis
possible to examine whether people’s stated estimates of attribute importance are an accurate

reflection of theiractual use and weighting of the information.

3.2. Experiment Three: Distributions and Weighting Functions
3.2.1. Introduction

This Experiment used avery similartask to that of Experiments 1 &2 with participants
estimating the rental value of aseries of apartments. However, the stimuli were changed so that the
predictions of DbS could be directly tested. DbS predicts that the value of each attribute for the
currentitemis comparedto previously experienced values on that particularattribute. Thusitis the
distribution of values within an attribute which dictate the estimated value, not the distribution of
the overall rental values. So if RFT predicts that rank orderingis used to transformvalues froman
internal psychological scale to an external response scale, DbS predicts that the rank effects occur

earlier, duringthe valuation onthe psychological scale
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The biggest change fromthe taskin the previous chapterwas thatthe number of bathrooms
and land-lord rating were removed from the stimuli attributes. The bathrooms attribute was
removed because it was notindependent of the number of bedrooms. A property with 1 bedroom
and 4 bathrooms is unrealistic, but constraining the number of bathrooms by the number of
bedrooms means that there was significant correlation between the two attributes. The land-lord
rating was removed because anecdotal reports from participants suggested it was the scale they
found mostdifficulttointerpret. Itisalso the only one which doesn’t have acredible real world
analogue. These two attributes werereplaced by a crime risk rating. This was a score between Oand
10 representing the risk of being the victim of crime in that postcode. By then constraining the
maximum distance from town the values given to these two attributes could be interchangeable. It
was then possible to manipulate the distribution of values for one attribute, whilst manipulating the

mathematical effect of the otherattribute upon rental value forthe other.

The experiment also explored amore general issueinthe JDM literature by attaining
subjective estimates of attribute importance. Previous research has suggested that participants are
generally quite poorat estimating their own strategies and there is little correlation between their
subjective reports of information use and the information weighting statistically extracted from their
behaviour (Cook & Stewart, 1975; Reilly & Doherty, 1989; Snook et al., 2011; Zhu & Anderson, 1991).
However, these weightings are extracted by regressing stimulivalues against valuations/choices. I f
individuals estimate values based upon rank order within attributes thenitcould be thatthe
statistically abstracted weightings are simply calculated upon differentinformation than that used
by participants. This would explain why very different methods of extracting subjective estimates
produce consistent measurements, butthatthese measured weights then do not correlate with
those statistically extracted (Cook & Stewart, 1975). It is also a potential explanation forstudies
which find participants are far better at estimating a choice environment’s weighting functions if
they are those abstracted from anotherindividual, ratherthan created by an abstract mathematical
relationship (Reilly & Doherty, 1992).
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A furtheradvantage of measuring subjective attribute weightingsisthatitprovidesa
weightingwhichisindependent of the data. These weights can then be used in models of DbS where
attributes are given different weightings. In Experiments 1&2 weighted models performed well, but
weightings were estimated directly from participants responses, adding alarge number of free
parameters. By constrainingthe model usingindependently measured weights the model may

potentially retain this high level of predictive accuracy without the increase in free parameters.

In testingthe weighting functions used by participants thereisanimplicitassumption that
they are using some form of mathematically compensatory system. However, these same analyses
can provide evidence thata WADD model cannot properly describe the data (Busemeyer &
Diederich, 2010). Thus, if participants make no significant use of any parameters or weight any single
attribute highly enough that no combination of other attribute values can significantly alter the
valuation, then these are strongindicators fora non-compensatory heuristicaccount (Brandstatter
et al., 2006; Broder, 2002; Gigerenzer & Selten, 2002; Gigerenzer & Todd, 2000; Glockner & Betsch,

2008).

3.2.2. Methods

3.2.2.1. Participants

Thirty-two undergraduates at the University of Nottingham completed the experiment for

course credit. Twenty were femaleand twelve male, with an average age of 20.4 (SD= 2.1).

3.2.2.2. Stimuli

The stimuli were 200 apartments. Four attributes were used in this experimentand their
design differed from previous experiments in that they erred towards simplicity, sometimes at the
expense of accurate representation of the real world. The variables use d were number of bedrooms,

sizeinsquare ft, distance fromtown and crime risk score. Number of bedrooms was a random
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integerbetween 1and 4. Size was randomly selected between 750and 2000ft using a boxcar

function.

Distance and crime were the two variables of interest. Distance was given alinear distribution
and cubicweighting; crime was given a cubicdistribution and alinear weighting. Size was the only
continuous variable which had both a linear distribution and alinear weighting upon rental value.
Thus itacted as a control variable. The linear distribution of distance was created by drawing
numbersfrom a boxcar function between Oand 10, rounded to one decimal place. The cubic
distribution was calculated by starting with arandom numberfrom a boxcarfunction between Oand
10, rounded to one decimal place. The mean was then subtracted from each value creatingan equal
distribution around zero. Thiswas then cubed before beinglinearly rescaled such that the smallest

value was 0 and the largest 10.

Each variable’s effect uponrental value was then calculated using the following equations

Equation 7
beds — 1
Ly oeds—=1 oo
4

Equation 8

(size — 750)

1250 0

Equation 9

(10 — crime)

1+ f * (.25

The effect of distance was calculated in the same manneras crime’s distribution was, being
centred around zero, cubed and thenre-scaled to between 0and 10 before being divided by its
mean and multiplied by 0.25. Figure 3. shows the weighting function of each variable. The resultis
that both distance and crime have the same overall effect upon rental values, but the cubicand

linearcomponentsare provided by eitherdistribution or weight. Figure 3.2 shows the relative rank
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effects of the crime risk attribute. The cubicdistribution results in DbS predictions of asteep

increase inthe centre of the scale with plateaus near the extremes of the range.
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Figure 3.2 The relative rank effect of the crime attribute, i.e. the attribute's effect upon value estimates as
predicted by DbS

3.2.2.3. Procedure

The procedure was similarto the previous experiments. Participants saw the details of an

apartment and responded by typing their estimated rental value. They were then shown the true

rental value for 2 seconds. There wasthen al secondinterval of blank screen before the nextitem

was presented. Participants were also asked to estimate how important each variable is when
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judgingthe value of an apartment. They responded usingaslideronascale of 1-100 labelled at
eitherend as “not at all important” and “very important”. Participants provided theseratings twice:
once at the beginningand once atthe end of the experiment so thatit was possible toidentify any

effects of learning.

Participants were told that the task was part of an estate agenttraining programme. The
crime variable was explained to participants as the crime riskinthe property’s post code, as
calculated by the government website “police.uk”, with a higherscore indicating a higherlikelihood

of beingthe victim of crime.

3.2.3. Results

3.2.3.1. Accuracy and Learning Rates

To examine participants’ accuracy and learning rates the average error rate was calculated for
each itemas a percentage of the item’s true value. When these were plotted by trial, participants
showed rapid learningand an asymptote at around trial 60 (Figure 3.3). Individual'sresponses from
the second half of the experiment werethen correlated with true rental values and show that
participants are performing with high accuracy (r =0.708). Despite the strong correlation, accuracy

was significantly lowerthanin Experiment 2 (z = 2.45, p<0.05).
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Figure 3.3 Average error rate during the experiment. Results are smoothed using a local mean and a lowess local
regression.

3.2.3.2. Attribute Weighting Estimates

Participants provided estimates of each attribute’s importance both at the beginningand end
of the experiment. The aim was to investigate whetherthese estimates were an accurate
representation of the true weighting functions that participants were trying to learn and whether
they had insightintotheirown weightings. Standardised beta weights were first calculated by
regressingthe attribute values against the true rental valuesin orderto serve as a measure of
participants’ accuracy with respectto the relationships they weretryingto learn. Individuals’
estimates were then used to extract participants’ weighting of information when making estimates.
A cluster corrected correlation then demonstrated thatindividuals were well calibrated when
makingtheirvaluations andtheiruse of information closely matched that of the mathematical

relationship between stimuli and true values (r=0.83, p<0.0001). There is a general pattern of
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participants underweighting all attributes, but the relative importance attributed to each attribute

still demonstrates the significant correlation.

Participants’ subjective estimates of attribute importance were analysed to examine their
accuracy, starting with ratings provided before beginning the task. There was no significant
correlation between participants estimates of attribute importance and the true weightings (r= -
0.17, p>0.05). There was a significant correlation between estimates and participants own revealed
weightings butit was actually negative (r=-0.26, p<0.05). This was primarily driven by participants
underestimating their use of bedrooms and overestimating that of size (Table 3.1). In fact only 30.4%
of participants correctly identified the attribute which they weighted most highly during their
valuation estimates. Thus suggesting that participants are not using simple heuristics (Dawes, 1979)
or prioritizing attributes in a hierarchical manner (Ayal & Hochman, 2009; Birnbaum & LaCroix, 2008;

Brandstatteretal., 2006; Dhami, 2003).

A similar patternisrevealed by estimates provided at the end of the experiment. There is no
significant correlation with true weightings (r=-0.01, p>0.05). The relationship between estimates
and subjective weightings was no longersignificant (r=-0.09, p>0.05), butthe trend is still towardsa
negative correlation. The proportion of participants correctly identifying the attribute they weighted
most highly fell to 21.7%, suggesting that participants’ estimates of their own weightings did not

significantly improve overtime.
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Table 3.1 The standardized betas when regressing stimuli values against true rental values, average estimates
accross participants and the mean betas when regressions are performed separately for each participant. These are
shown alongside the average subjective estimates of importance for each attribute.

Truevals Average Pre-task Post-task
separate estimate estimate
regressions

Intercept 660.2 650.4

Beds 0.770 0.658 72.5 74.6
Size 0.312 0.174 82.1 71.6
Crime -0.406 -0.143 77.0 90.2
Town -0.412 -0.304 71.9 69.0

3.2.3.3. Decision by Sampling and Modelling

DbS scores were calculated by finding the number of previous stimuliwhich were worse than
the current item on each attribute. This was then divided by the number of previous trials.
Correlatingthese scores with individual value estimates forthe second 100 items reveals that DbSis
significantly worse at predicting valuations than simply correlating true rental values (r=0.603, z = -

6.27, p <0.05).

A multiple linear regression was performed to allow the weights for each attribute to vary
freely within the model. Thisrevealed afit of r = 0.80, which was the same as the performance when
stimulivalues were entered as predictors (r=0.80). The experiment also allows examination of
whetherthe weighted DbS model could retainits increased predictive accuracy when the values of
the additional free parameters were independently measured and constrained. The DbS scores for
each attribute were multiplied by participants’ estimates of the attribute’simportance. The resulting
correlations were poorand slightly weakerthan the original unweighted model of DbS. This was the
case both for estimates provided before the task (r=0.55) and afterit (r = 0.50). This poor
performance is unsurprising given participants’ pooraccuracy when providing these importance
estimates (seeabove). Asafurthertest of thisassertion, the same model can be calculated using
stimulivalues ratherthan DbS scores. The importance weightings weredivided by the standard
deviation of their corresponding attribute scales before being multiplied by the attribute values and
summed togetherforeachitem. Thisalso revealed avery poorfit for weightings from before(r=

73



0.53) and afterthe task (r =0.45). When the post-task weightings are used, DbS does significantly
outperformthe model using stimuli values (z=2.26, p<0.05), suggestingthatrank orders could be
playingalarger rolein participants subjective estimates than stimuli values. However, given the very
poor fitof both models, the argumentis not strong. Furthermore, the effectis notfound when pre-

task estimates are used (z=0.97, p>0.05).

3.2.3.4. Rank Versus Weighting Function

The central prediction of DbSis that the interpretation or use of an attribute is predicated
upon rank orderand distribution. Therefore an attribute with adistribution which is notequally
represented atall points wouldresultinanon-linear effect upon value estimates. AWADD account
would predictthatifindividuals’ use of informationis ever non-linearitis due tounderlying
weighting functions, not the distribution of values. The crime attribute uses anon-linear distribution,
while the distance variable uses anon-linear weighting function. To test for these non-linear effects,
amultiple regression was performed with both quadraticand cubiccomponentsincluded forall
three continuous variables. Separateregression models were calculated for each participantand
betaweights for each attribute were tested forsignificance across participants usingaone sample t-
testwith a null hypothesis of zero. The mean standardised betas and p-values are shown in Table
3.2. There was a significant effect of the cubiccomponentforboth crime and distance. Inorderto
plotthe effect graphically afurtherfourregression models were computed. Each of these were
computed with one of the attributes removed from the model (along with its polynomial terms). By
comparingthe residuals to those of the original modelitis possible to plot the effect of each
attribute (Figure 3.4). This shows that although the effect forthe crime variable isaclose visual
match for the distribution of attribute values, rank order (and thus DbS) predicts the reverse

curvature (Figure 3.2).
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Table 3.2Results of regression analyses when predicting value estimates

beds crime size Distance Crime”2 Crime”3 Size”2 Size”3 Dist”2 Dist”3
Beta 0.6445 -0.8868 1.9924 -1.2812 1.6965 -0.9990 -3.292 1.5176 1.7476 -0.777
p-value <0.0001 <0.0001 0.0227 <0.0001 0.0001 0.0001 0.0559 0.0847 0.0003 0.0037
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Figure 3.4 Change in residuals caused by each attribute being added to the regression

3.2.4. Discussion

The results show that when calculating value estimates, participants were making good use of

the information available and were weighting attributes in accordance with their effect upon true

value

.However, they were then very poor at estimating these weightings and subjectively reporting

the relationship between attributes and itemvalue. Value estimates also show asignificant cubic

relationship with crime, the attribute whose experienced values had a cubicdistribution. However,

the curvature of this cubicfunction wasthe inverse of that predicted by rank order.

Correlations between revealed attribute weightings and those of the true model show that

participants were accurate at weighting attributes and integrating information in accordance with

the true underlying model. This suggests thatin this multi-attribute valuation task participants were
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making use of a Weighted Additive modelratherthanrelyingsolely upon simpler heuristics. A
criticism of previous studies using similar estimation methodologies is thatthey are especially prone
to over-fitting the data (Busemeyer & Diederich, 2010; Pachur et al., 2012). In this case the larger
numbers of free parametersinthe regression model allow it to find marginally better fitsthana
simplermodel, evenifthe simplerassumptions are true. The estimation proceduredoesso by
fittingacomplex model usingalarge number of cues that then also explains orfits the noiseina
specificdataset. The analysis employed here reduces theserisks by estimating parameters
separately foreach participant. This finds reliable patterns in parameter estimates across all
participants, suggesting thatitis not merely an effect of fittingresponse noise inasingle dataset.
Furthermore, these parametervalues correlate significantly with the specific predictions of the

WADD model; apattern unlikely to be the result of simple over-fitting.

Although participants made accurate use of information when making their value estimates,
the results show thatthey were not able to accurately introspect about theirown weighting of
information. Asin previous studies, there was no significant correlation between estimates of
attribute importance and the relative weight participants placed upon them during the task (Cook &
Stewart, 1975; Reilly & Doherty, 1989; Snooketal., 2011; Zhu & Anderson, 1991). Previous studies
of choice have found that when participants can be categorized as using heuristics strategies, they
can accurately identify the mostimportant single attribute (or two mostimportant). However, this
experimentfound that only arelatively small minority of participants are able toidentify the
attribute they weight most highly in their decisions. For post-task estimates the proportion was
actually slightly below chance. The majority of heuristicaccounts predict thatindividuals make use
of only a small number of attributes and thus should be able toidentify these, as has been shownin

othertasks (Snooketal., 2011).

The poor accuracy of participants’ explicit estimates of attribute importance meansthe

weighted models of DbS cannot be considered informative. Itis not possible to know whetherthe
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improved performancein Experiments 1&2 was due to the large number of free parameters.
Alternativelyit couldstill be that the underlyingmodel is sound and that the estimationin previous

experiments has found true underlying parametervalues.

The experimentallowed foratest of DbS’s prediction of rank order encoding of attribute
scales. The crime attribute used anon-lineardistribution, with values in the mid-range of the scale
beingrelatively over-represented. A cubicregression showed that participants’ weighting of this
scale did show a significant cubicfunction. However, plotting this effect reveals that the curvature is
infact in the opposite direction to that predicted by DbS. Rank orderencoding predicts asteep slope
inthe mid-section of the scale where the high concentration of items makes the relative rank climb
quickly, buta plateau at the extremes where thereare few items. Whatis actually foundis a plateau

inthe centre of the scale and values atthe extremes beingrelatively over-weighted.

One potential explanation forthe crime weighting function could be that because the extreme
values are comparatively rare, when theyare seenthey are amore salient cue. Therefore
participants adjust their estimate up ordown more than they otherwise would. However, asimpler
potential explanationisthatthe observed pattern matches the mostreasonable priorexpectations.
It seems reasonableto assume that the very safest locations will be inlocations such as gated
communities which are disproportionately expensive, whilst the most dangerous properties will be
in especially dilapidated areas and therefore substantially cheaper. This suggestionisalso supported
by the weighting of an apartment’s distance from town. Although the cubicregressordoes have a
significant effect upon estimatesitis significantly weaker than that for crime, with the quadratic
component absorbing much of the variance. The revealed patternis that of apartments particul arly
close to the town centre beingvalued highly, but the effect of moving furtheraway declining rapidly.
It seems areasonable assumption that city centre apartments will be disproportionately expensive.

The impact of prior expectation and experience is investigated in Experiment 4.

77



3.3. Experiment Four: Mineral Valuation
3.3.1. Introduction

This experiment used the same stimuliand procedure asin Experiment 3, but used an entirely
different cover story. The potential confounds of prior expectations and experiences outside of the
experimentenvironment were eliminated by instead asking participants to estimatethe value of
mineral deposits at miningsites. In the design of Experiments 1-3, it was assumed that the
undergraduate subject pool would have minimal experience of apartment valuation. Furthermore,
based upon previous evidenceit was predicted that the more recent experiences of the stimuliitems
were farmore likely to be sampled from memory (Ebbinghaus, 1913) and more likely to affect
judgements (Beckstead, 2008; Stewart, 2009; Ungemachetal., 2011; Vlaev & Chater, 2007).
However, the results of Experiment 3are consistent with reasonable priorexpectations and both
Experiments 1&2 find no effect of recency when memory decay functions are added to the DbS

model.

The procedure usedinthis experiment makes it possible to test the cause of the cubic
weighting of crime risk represented in valuations during Experiment 3. If this was caused by the
relatively rare extreme values being more salient, then the effect will remain. If the effect was simply

due to prior-expectations about the value of apartments then the effect willnot be present.

Itisalso possible to check whether participants are still ableto accurately weight attributes
when they have minimal existing knowledge about their relationship toitem value. The task
instructions only informed participants of the valence of each attribute’s effect, thus participants
would have to extractall otherinformation from task feedback. A significant correlation between
elicited weightingand true weights would provide evidence that participants are learning from the

feedback provided.
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3.3.2. Methods

3.3.2.1. Participants

Twenty six undergraduates at the University of Nottingham participatedin return for course

credit. The average age was 19.5 (SD =2.4), 9 were male and 17 female.

3.3.2.2. Stimuli

The stimuli used were the same asin the previous experiment but were re-labelled. Instead of
the rental value of apartments participants were now told they would be estimating the value per
tonne of ore deposits atdifferent mining sites. They were told that the ore contained afictional
mineral called milderite which was crucial to the processing of other precious metals, predominantly
platinum. Each potential mining site had various characteristics which would eitherincrease the
value of the deposits ordecrease them by virtue of increasing the costs of extractingthe valuable
mineral. Number of bedrooms was re-labelled UN government stability rating, with a better stability
rating reducing costs and risks of operatingin the region. Floor space became grams of extractible
platinum pertonne of ore. Crime and distance from town were replaced with the severity of two

contaminants: “gibbsite” and “ferrite” respectively.

3.3.2.3. Procedure

The procedure was exactly the same as in the previous experiment except that now

participants were estimating the value per-ton of milderite ore at a series of potential miningsites.

3.3.3. Results

3.3.3.1. Accuracy and Learning Rates
Correlation showed thatvalue estimates were significantly less accurate thanin Experiment 3
(r=0.599, z= 6.62, p<0.001). Plotting average errorrates overtime reveals that participantsinitial

error rates are greaterthan in experiment3and initial learning appears somewhat slower ( Figure
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3.5). Thisis unsurprising given the novel task and lack of valid expectations regarding the unfamiliar

mineral deposits.
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Figure 3.5 The Average error rate over the duration of the Experiment

3.3.3.2. Attribute Weighting Estimates

Standard beta weights were extracted using multiple linearregression. A separate regression
model was calculated foreach individual. These beta weights correlated strongly with those
calculated usingthe true depositvalues (r=0.87, p<0.001), butaccuracy was worse than in
Experiment 3(z=2.06, p<0.05). Unlike Experiment 3the extractibleamount attribute (formerly size)
isnow weighted accurately (Table 3.3) andis the only attribute thatis not significantly
underweighted (t(25) = 0.15, p>0.05). A series of two sample t-testsrevealed that thereis no
significant change in the weighting of gibbsite/crime (t(47) =-1.03, p>0.05) or ferrite/distance (t(47)
= 1.68, p>0.05). The increase in extractible amount/size is significant (t(47) = 3.62, p<0.001) as isthe

increase in the use of stability/bedrooms (t(47) =3.9, p<0.001).
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Table 3.3 The standardized betas when regressing stimuli values against true values, average estimates accross
participants and the mean betas when regressions are performed separately for each participant. These are shown
alongside the average subjective estimates of importance for each attribute.

Truevals Average Estimate Initial estimate Final estimate
Weightings
intercept 660.2 623.1
Stability 0.770 0.460 64.7 74.4
Extractible Amount 0.312 0.316 77.0 66.5
Gibbsite -0.406 -0.178 69.1 77.9
Ferrite -0.412 -0.230 67.4 72.7

Standardized betas fromtrue deposit values were correlated (using cluster correction) with
individuals’ estimates of attribute importance. This revealed no significant correlation with the pre -
task estimates (r=-0008, p>0.05) nor post-task estimates (r=-0.072, p>0.05). There was also no
significantrelationship between importance estimates and participants own extracted betas for pre
task (r=-0.004, p>0.05) or post-task estimates (r=-0.08, p>0.05). The proportion of participants
correctly identifying the mostinfluential attribute did show anincrease from 23.1% in pre-task
estimatesto 38.5% post-task. However, the proportion of participants giving their highest rating to

the attribute they usedleastalso rose from 11.5% to 34.6%.

3.3.3.3. Decision by Sampling and Modelling

Decision by Sampling’s predictions were calculated and correlated with participants’ value
estimates. This revealed predictive accuracy was not significantly different to that for true values (r=
0.572, z =-1.53, p>0.05). DbS scores were then calculated separately foreach attribute and entered
into separate multipleregression models for each participant to find the bestfitting weighting
functions. These were then used to calculate the overall model performance (r=0.71). However,

this was again no different to thatfoundif stimuli values were usedinstead (r=0.71).

To reduce the number of free parameters, participants’ estimates of attribute importance

were used to weight each attribute within the DbS model. When pre -task estimates were used
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performance was significantly worse than the original DbS model (r=0.47, z = -4.95, p<0.001) and
this was also the case when using post-task estimates (r=0.53, z = -2.01, p<0.05). Performingthe
same model using stimuli values reveals a fit which is significantly worse than DbS for pre-

experiment estimates (r=0.41, z = -2.75, p<0.01) and trendinginthe same direction for post-task

estimates (r=0.50, z=-1.83, p = 0.06).

3.3.3.4. Rank Order Versus Weighting Function

In orderto testwhetherthe cubicdistribution or weighting functions of stimuli attributes
were represented in participants’ value estimates, aseries of cubicregressions were performedin
the same manneras the previous experiment (Table 3.4). This time the attribute with the modified
distribution (gibbsite) has no significant cubiceffect upon value estimates whereas the attribute with
a cubic weighting function (ferrite) does (Figure 3.6). However, the strongest and most statistically
significant cubicfunctionis found forthe variable for which both distribution and weighting function
were linear (extractable amount). Plotting the change in residuals as aresult of the attributes being

removed fromthe model reveals that this pattern very closely matches that of crime in Experiment3

(Figure 3.6).

Table 3.4 Regression results for mineral value estimates

Stability Gibbsite Extractable Ferrite Gibbsite Gibbsite Extractable Extractable Ferrite Ferrite
Amount N2 A3 Amount”?2 Amount?3 A2 A3
Beta 0.46 -0.56 6.32 -0.72  0.78 -0.42 11.56 5.63 1.19 -0.72
p <0.001  0.005 <0.001 0.003 0.084 0.126 <0.001 <0.001 0.027 0.024
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Figure 3.6 Change in residuals caused by each attribute being added to the regression

3.3.4. Discussion

This experimentinvestigated the extentto which priorexpectations and knowledge regarding
the stimuli and task shaped the responses and results of Experiment 3. The results show that the
change in coverstory had a significant effect upon the shape of participants’ attribute weighting
functions. Gibbsite (formerly crime) had a cubic distribution and therefore DbS predicts a cubic
influenceupon value estimates. The cubiceffect foundin Experiment 3 (in the opposite direction to
that predicted by DbS), isnolonger present after the change in coverstory. Ferrite (formerly
distance) had a linear distribution and cubicweighting function, so the cubicfunctionfoundin
participants’ valuationsin both experimentsis predicted by a polynomial WADD model. However, no
model predicts the strong cubiccomponentfoundin the current experiment for extractibleamount
(formerlysize) asithad both a lineardistribution and linear weighting function. Asin Experiment 3,
these cubicfunctions show extreme values being relatively over-weighted in estimates. Therefore a
potential explanationis that now participants cannot make use of existing knowledge about the

83



attributes, the extremevalues become more salient. These more extremevalues canthenact as a
gualitative cue toraise orlowerestimatesinamannernot captured by a linear WADD model. As
extractable amount and ferrite are both weighted more strongly than gibbsiteit seems that this
saliencyis notequal between attributes, but strongerforthose which are more highly weighted.
Furthermore the cubicdistribution of gibbsite means there are fewer data points at the extremes of

the scale, the regions most crucial to the analysis’ power.

The finding most consistent with Experiment 3 was that participants were poor at estimating
theirusage and weighting of attributes. Furthermore, the accuracy with which participant valuation
strategies matched the underlying relationships between attributes and true value was still high.
Accuracy was significantly lowerthan the previous experiment, so prior expectations certainly had
an influence. Although this influence appears to be relatively minor, the fact thataccuracy overtime
does still asymptote before the mid-point of the task, suggests it may not simply be an effect of

slowerlearningwhen there are no suitable pre-existing hypotheses (Harvey & Fischer, 2005).

3.4. Chapter Discussion
This chapter used multi-attribute valuation tasks to investigate how individuals make use of

the relative rank of attribute values and the underlying mathematical relationships linking attributes
to overall itemvalue. Italso examined the degree to which responses are shaped by expectations of
real world values and experiences which occur priorto the task. This was achieved by changing the
coverstory, so although participants believed they were valuing avery different class of items the

stimuli and values were infactidentical in each case.

3.4.1. Non-Linearity in Weighting and Distribution Functions

In Experiment 3 participants estimated the rental value of flats. The distribution of the crime
risk attribute was shaped such that rank orderencoding would predict a cubiccurve, with an
increase invalue in the mid-portion of the scale providing adisproportionately large increasein DbS

score compared to at the scale’s extremes. Although a cubicfunction was foundin participants
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responses, the curvature wasinthe wrongdirection. There was a plateau inthe mid-portion of the
scale, withanincrease in attribute value providing adisproportionately smallincreasein estimates
of itemvalue. Two suggestions seemed to be reasonable hypotheses: One was that the extreme
valuesonthe scale were made more salient by theirrelative rarity and were thus over-weighted
whenthey were seen. The second was that participants could simply be using expectations from
experienceinthe real world. This was because it seems reasonable to assume that the very safest
and the most dangerouslocations are disproportionately expensive and cheap. The latter was the
favoured hypothesis, as the weighting of distance from town had a particularly strong quadratic
curve and matched reasonable real world expectations: Locations very close to town were valued
disproportionately highly, whilst the effect of moving further away from town diminished rapidly.

The same pattern as city centre flats being disproportionately expensive.

In Experiment4the same stimuli were used but participants were instead told they were
estimatingthe value of deposits of afictional mineral “milderite”. This largely eliminates the effect
of priorexpectations. Therefore if both experiments produced the same cubicencoding effects it
could only be attributable to the distribution of attribute values. However, participants weighting of
gibbsite (formerly crime), the attribute with a cubicdistribution, became linear. Previous studies
using multi-attribute tasks have shown that prior task knowledge can have a significant effect upon
learning and accuracy (Balzeretal., 1989; Harvey & Fischer, 2005), so in thislight these results are
unsurprising. However, it was predicted that the effect of prior experiencewould be minimal and
largely overshadowed by the values experienced in the first 100 trials (Beckstead, 2008; Ebbinghaus,
1913; Stewart, 2009; Ungemach etal., 2011; Vlaev & Chater, 2007).The observed effects of prior
expectations contradict the prediction that more recent experiences have a disproportionate effect
upon judgement. Thisisalso true of the modelling performedin experiments 1& 2 which showed no
improvement when memory phenomenawereincorporated into sampling models. Therefore, if

judgements are made based upon comparisons with previous experiences it seems that more recent

85



experiences do not have the disproportionately large effect predicted by much of the memory

literature.

Although the pattern of encoding for distance from town supports prior expectations as an
explanation, itcannot explain the cubicencoding of otherscalesin Experiment 4. The most
significant cubiccomponent (both statistically and in terms of size) was found forthe linearly
distributed and linearly weighted attribute: extractible amount. This was also the only continuously
distributed attribute whose weighting in participants judgements significantly increased from
Experiment 3. I[tseems an alternative explanationisthat when participants saw an extreme value for
an attribute they believed was influential, this would act as a cue to raise or lowertheirvalue
estimate in additionto any WADD calculations. Gibbsite is the only continuous variable which d oes
not display this patternanditis also the one which has the lowest overall weighting in participants’
responses. Its distribution also means that the extremes of the scale are relatively under-
representedinthe dataandthis servestoreduce the sensitivity of the cubicregression. The same
argument cannotbe made for Experiment 3as crime also receives low weighting, butin thiscase a

strong cubic component, hence the positing of different explanations for each experiment.

3.4.2. Attribute weighting estimates and accuracy

In Experiments 3&4, participants’ value estimates showed they were making appropriate use
of information. The weight given to each attribute closely matched the relationships between
attributes and true values suggesting that participants were using the feedback to accurately
abstract the underlying model. Thisis a pattern which supports WADD and cannot be easily
explained by heuristicaccounts without relying upon criticisms such as over-fitting (Gigerenzer &

Todd, 2000), the risks of which are minimised inthese experiments.

Despite makingaccurate use of the stimuliinformation when calculating theirvaluations,
participants were extremely poorat providing subjective estimates of their own attribute

weightings. This was true both before and after completing the task. This suggests that the cognitive
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processisnot available tointrospection. Thisis not surprisinginitself, given the existing literature
(Cook & Stewart, 1975; Reilly & Doherty, 1989; Snook etal., 2011; Zhu & Anderson, 1991) and that
introspectionis not explicitly predicted by rational models. What is somewhat surprisingis that
participants were very poorat simply identifying the attribute they weighted most highly. Previous
research has suggested that when participants are employing a heuristicstrategy they are able to
identify the one (ortwo) attribute(s) upon which they base theirresponses (Dhami, 2003; Snook et
al., 2011). However, participants were not explicitly asked to identify the mostimportant, this was
inferred fromtheir estimates of attribute importance provided on a continuousscale. Itis possible
that usingan elicitation method more compatible with heuristicstrategies will enable participants to
improve theirintrospection, but this seems unlikely given the lack of other evidence for heuristic

strategiesinthis task.

3.4.3. Implications for Decision by Sampling

Overall the results of this chapter do not support DbS. The use of attribute scales did not
conformto rank order encoding. In Experiment 3there was cubic encoding of the predicted
attribute scale, butthe curvature wasin the opposite direction to that predicted by the model. In
Experiment4there was no cubicencoding of the predicted scale and there was cubicencoding of
attributes where it was not predicted; though the curvature was againinthe wrongdirection forthe
model. Asin Experiments 1&2, modelling DbS revealed poorer accuracy than a simple baseline
measure and when attribute weights were allowed to vary as free parameters the model performed
no betterthan WADD. The results of setting these free parameters using participants’ explicit
estimates was somewhat uninformative as the results reveal participants are unable to accurately

introspectaboutthese weightings.

DbS isfundamentally amodel of choice rather than valuation. The results presented in this
chapterand the preceding one suggest that DbS cannot accurately predict value estimatesina

multi-attribute task. However, there is alarge body of evidence suggesting that there are qualitative
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differences between strategies of single item valuation and choices between alternatives (Hsee,
Loewenstein, Blount, & Bazerman, 1999; Lichtenstein & Slovic, 1971; Tunney, 2006; Tversky, Slovic,
& Kahneman, 1990). In the next chapter participants are asked to make a binary choice between two

alternatives and the accuracy of DbS is tested when applied to predicting de cisions.
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4. Chapter 4

4.1. Chapter Introduction

Decision by Samplingis fundamentally amodel of choice and was not specifically designed to
explainsingle item valuations. Therefore the poor performance of this model in previous chapters
could be because individuals use qualitatively different strategies for the different tasks (Gigerenzer
& Selten, 2002; Lichtenstein & Slovic, 1971). This chapter presents two experiments which

investigate decisionsin a multi-attribute choice task.

Experiment5compared the performance of a mathematically compensatory model of choice
with a simple heuristicrule. It also tested the performance of DbS, investigating whetherit can
provide an appropriate link between mathematical and heuristicmodels. It tested the hypothesis
that memory effects and sample size can explain why individuals are frequently categorized as using
one of twovery different cognitive strategies. The strategies for valuation and choice tasks were also
compared, testingtwo differentaccounts of the differences between them: An adaptive toolbox of
heuristics (Gigerenzer & Selten, 2002) and a single cognitive system with differences caused by the

interpretability of the information in different tasks.

Experiment 6used eye tracking to examine the accuracy of drift diffusion models of choice
which make specific predictions aboutindividual’s patterns of attention to information and the
resulting effect upon choices. The behavioural effects of skewed distributions upon choice were also
examinedinordertotestthe predictions of DbS. Participants’ use of information was modelled to

examine whetherthey made use of an attribute’s weighting function orits distribution.
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4.2. Experiment 5: Binary Comparisons and Weighting Functions

4.2.1. Introduction

4.2.1.1. Compensatory Calculations and Heuristics

Traditionally, models of value based decision making have fallen into one of two categories:
Complex mathematically compensatory models and simple heuristicrules. The formerincludes
modelsinwhichthe decision maker calculates ascore or utility forindividual items using a system of
weighted combination and trade-offs across all (oratleasta large proportion) of the cues presented
(e.g.LENS model; Brunswick, 1955; Weighted Additive rule/Franklin's rule, Gigerenzer & Todd, 2000;
Cumulative Prospect Theory; Tversky & Kahneman, 1992; and Expected Utility Theory; von Neumann
& Morgenstern, 1944). The models are described as compensatory because ifanitemhasalow
value onone attribute it can be compensated for by a high value on another. Heuristicaccounts
positthat decision makers use simple rules and that there is no (or minimal) mathematical
computation (e.g. Priority Heuristic; Brandstatteretal., 2006; Matching Heuristic; Dhami, 2003; Take
The Best; Gigerenzer & Goldstein, 1996; and Elimination by Aspects; Tversky, 1972). A popular
interpretation of heuristicaccountsis the adaptive toolbox (Gigerenzer & Selten, 2002). This
suggeststhatthere are a potentially large number of simple heuristics which decision makers have
at theirdisposal and that the task environment dictates which isused in adeterministicbottom up
manner. Therefore, when the decision environment or the response mode changes, individuals will
use different heuristics in the same mannerthata camper will use adifferent tool on a Swiss army

knife depending upon the problem they are faced with.

Despite initially promising findings for some models of heuristic decision making (Brandstatter
et al., 2006; Dhami, 2003; Gigerenzer & Goldstein, 1996), recent studies have found that these
models perform poorly whenitems are created so that compensatory and non-compensatory
models make opposing predictions (Birnbaum & LaCroix, 2008; Gléckner & Betsch, 2008; Johnson et

al., 2008; Rettinger & Hastie, 2001). Although the weight of evidence would seem to support
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compensatory models thereare nonetheless anumber of findings that these models alone cannot
explain. When subjects are categorized according to the models that best explain theirdecision
making (Broder, 2002) the majority of individuals are identified as using acompensatory strate gy.
However, asignificant minority are best explained by anon-compensatory heuristicorrule (Ayal &
Hochman, 2009; Broder, 2003; Glockner & Betsch, 2008; Glockner & Herbold, 2011; Newell &
Shanks, 2003). Of course there remains the possibility that ratherthan fallinginto a distinct
taxonomy, subjects may be using a dual process strategy that incorporates both compensatory
valuationand a set of heuristicrules (Ayal & Hochman, 2009). Or individuals could actually be

employingadifferent strategy altogether, one which liessomewhere in between the two extremes.

The experiments reported hereinvestigated mathematical and heuristicstrategies using the
Weighted ADDitive rule (Gigerenzer & Todd, 2000) and Dawes’ Rule (Dawes, 1979). Despite
sometimes beingreferredtoasa rule, WADD is actually a mathematically compensatory calculation
whereby weights are applied to each attribute according to theirrelative importance. The values of
each attribute are then multiplied by theirrespective weighting function and summed togetherto
enable asingle comparison between the options. Dawes'rule states that decisions are made by
assessing each attribute in turn and makinga binary judgement of which item has a highervalue for
that attribute. Whicheveritemis betterhasits score incremented by 1. If the attribute does not
discriminate between the items then neitherscore isincremented. Once all the attributes have been
assessed the item with the highest score is chosen. The overall Dawes’ score foreach choice canalso

be calculated by subtracting one item’s score from the other.

Although Dawes’ Rule was originally conceived as a prescriptive theory of how toimprove
decision makingin complexreal world situations, some descriptive theories of choice imply that
there are situations where Dawes’ is a useful description of choice. One case in particularis Decision
by Sampling (Stewart et al., 2006). Dawes is actually a special case of DbS, where the sampleisso

small that only the currently available informationis used to calculate anitem’s score. Therefore, a
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valid question to askis whetherindividuals should not be described as using qualitatively different
strategies, butare in fact using DbS but calculate scores using different samplesizes. Thisis
potentially amore parsimonious explanation as a single model could apply to all individuals. Only a

single parameterwould need tovaryin orderto explainindividual differences.

4.2.1.2. Valuation vs.Choices

A questioninherentinthe mathematical versus heuristicdebate is whether value estimates
for a single item and choices between two or more alternatives are made using the same cognitive
process. Mathematical models generally assume that the same cognitive process can be used to
make value judgements and to make choices (Brunswick, 1955). They suggest that any apparent
differences between choice and value judgements occur because of the interpretability of
information beinginherently differentinthe twotasksi.e. thatthe inputs are different, ratherthan
the processitself. An example would be selectinga new set of speakers. Wheninashop and
comparingthe sound of several different modelsitis easy tojudge the relative sound quality of each
model. However, if one is trying to assess the sound quality of a single setinisolation, itis very
difficultto quantify how gooditis with nothingto compare it against (Hsee etal., 1999). When then
selectingthe preferred option orjudging the value of asingle set, the individualis still weighing up
the evidence inthe same manner, but the evidence which has been accumulated is respectively
more or less accurate. Conversely, a heuristicoradaptive toolbox account would posit that these
differences arise becauseany one heuristicis specifictothe task environmentand thereis no

mannerinwhich the same heuristicordecisionrule can be applied to both response types.

A strongline of argumentinfavourof a qualitative difference isthe phenomena of preference
reversals. Thisis where individuals express a choice preference forthe item to which they previously
assigned alowervalue whentheysawitalone (Lichtenstein & Slovic, 1971; Tversky et al., 1990).
These findings have proven very robustand extend across a wide range of decision domains (Hsee et

al., 1999; Tunney, 2006). However, most bid-choice reversals are found to occur when at least one
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attribute value is difficult to evaluate inisolation, with relative differences only becoming apparent
whenan itemis compared alongside othersinthe choice condition. This suggests that preference
reversals may not require an explanation based upon qualitatively different processes. Studies that
have assessed participants’ intensity estimates of single scales or attributes find that these individual
scalesare interpreted differently when presented alone and when presented with other comparable
values. This differenceininterpreting or encodingindividual attributes then accounts forsubsequent
inconsistencies between choices and valuation of the multi-attributeitem(s), (Johnson, Haubl, &
Keinan, 2007; Sevdalis & Harvey, 2006). Eitheraccount allows for the possibility that DbS will provide
a good explanation of decisions, despite experimentsin previous chapters demonstrating poor

predictive ability on valuation tasks.

This experiment employed a multi-attribute choice task where subjects both value the
individualitems and then also make binary choices between pairs of items. Crucially, the pairsare
constructed so that the predictions of the Dawes’ Rule and mathematical calculations of objective
value are in opposition forasignificant proportion of choices. We also compare the effect of
attribute values upon both choices and valuation. If qualitatively different processes are recruited
thenone would expectonly aminority of attributes to be used during choice and eitheralarge
majority or a different selection of attributes to influence singleitem valuation. However, if the
same processisrecruited to both judgements, then any differences will be inthe mannerin which all
attributes are weighted. Two attributes are manipulated such that we can examine the relative
effects of mathematical relationship with anitem’s overall value and the distribution of experienced
attribute values. A standard WADD account predicts the former will be mostinfluential, whilst DbS

predictsitwill be distribution.
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4.2.2. Methods

4.2.2.1. Participants

Thirty-two students from the University of Nottingham participated in the study, 7 were male

and 25 female. The average age was 22 years (S.D. =4.9). Participants were paid £8 for participation.

4.2.2.2. Stimuli

Stimuli consisted of 125 hypothetical apartments and from these 124 pairs were selected
based upon criteria detailed below. Each stimulus item consisted of five attributes that plausibly
influencethe rental value of apartments: the number of bedrooms, the number of bathrooms, the

floorsize insquare feet, the distance from the town centre and the crime risk.

Apartments were again used in this experiment because chapter 3 demonstrated that
participants’ accuracy in estimating target value was significantlyhigherthan for more abstract
stimuli such as mineral deposits. Furthermore, all of the relevant hypotheses which this experiment
testsare eitherorthogonal to the effects of prior knowledge or make predictions which are in the

opposite direction to those demonstrated in Chapter 4.

The number of bedrooms was a random numberbetween 1and 4 and the number of
bathrooms wasa random numberbetween 1and the numberof bedrooms. The floorsize was
randomly selected between 750and 2000 square feet and distance from town was also random,
between0and 10 miles. Crime risk was given asascore between 0-10and explained to subjects as
the crime rating of the property’s postcode as calculated by the government statistics website
“police.uk”. The distribution of crime risk values was derived using distance from town: the distances
giventoall stimuli were de-meaned, such that the distribution was centred at zero. These values
were then cubed before the beingre-scaled to between 0and 10. This created a non-linear
distribution with acubiccurve, meaningthatvalues inthe centre of the range were proportionally

over-represented whereas the extremes were under-represented (Figure 4.1).
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Figure 4.1 The cumulative frequency plots for the two modified attribute scales

The rental value of each stimulus item was calculated from a base of £400. Each attribute had

itsown weighting function used to calculate its effect upon rental value, as shown below. The output

of each was then multiplied against the starting value of £400 to obtain the rental value foreach

apartment.

Equation 10

Equation 11

Equation 12

Equation 13
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The cubic function used to create the non-linear distribution of crime risk was then used to
create the weighting function for distance. The resultis that both distance and crime have the same
overall effect upon rental values, but the cubicand linear components are provided by either

distribution orvalue weighting function respectively.

The stimulus pairs were then selected from the resulting 125 items. The main aim of this
experiment was to investigate choice behaviour when the score derived froma direct binary
comparison of each attribute (hereon “Dawes score”) favoured the item with the lower objective
rental value. We will refertothese as “mismatch trials”. All potential pairings of all 125 stimuli were
analysed as mismatch trials using the following criteria: Pairs where there was a mismatch and
where the Dawes score was as high as 3, were requiredto have adifference in absolute valueof at
least £50. These were inevitably rare and only 4 pairs metthe criteria. For mismatch pairs witha
Dawes score of 2 and 1, we required a minimum value difference of £100 and £200 respectively. We
therefore selected 46 pairs with a Dawes score of 2 and 27 with a score of 1. The remaining 47 were
“matched trials”, where Dawes score favoured the item which also had the higher objective rental
value. These pairs were selected entirely atrandom, the only criteriawas that there were no

duplicate pairs within the stimuli set.

4.2.2.3. Procedure

The experimenttook the form of a simulated estate agent (realtor) software package for
apartmentsinthe rental market. The subjects were told that the apartments were situatedina
typical British city of a similarsize and standard of living to the one in which the experiment was
conducted (Nottingham), but that there were some differences which they would learn as they
progressed. Inthe first part of the experimentthe subjects saw each of the 125 stimulusitems

individually and were asked to estimate the monthly rental value of each one. The five attributes of
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a single apartment were presentedinalistand subjects simply typed their estimate of monthly rent.
After each estimate the subjects received feedbackin the form of the objective rental value
(determined by the formulae described above). The trials were self-paced but feedback was visible
for 2000msecs , followed by a 1500msec ITI. In the second half of the experimentthe twoitemsin
an apartment pair were presented side by side and subjects were asked to indicate which of the two
they thought was the more valuable usingan on-screen button. No feedback was given during this

part of the experiment.

4.2.3. Results

4.2.3.1. Behavioural data

Responses from the first part of the experiment show that subjects wererelatively accurate at
estimatingrental value. Estimates were an average of 14.25% off the true rental values across all
individualresponses and when estimates were averaged across subjects there was avery strong
correlation with true values (r=0.947, p<0.001). Estimates also became more accurate overtime:
The correlation forthe first 50 items was weaker (r= 0.926, p<0.001) than for the remaining 75 (r =
0.96, p<0.001) and correlatingaverage error with trial numberreveals asignificant relationship (r=-

0.2, p<0.05).

4.2.3.2. Categorizing Individuals’ Behaviour

The next question was which of the candidate models provided the best fit of the observed
data. Thisallows usto see if we have replicated previous reports in which the majority of subjects’
behaviouris best explained by mathematicalmodels and only a small minority by heuristicmodels
(Broder, 2002; Glockner & Betsch, 2008; Glockner & Herbold, 2011). Logisticregressions were used
to estimate WADD weights foreach subject. These weights werethen used to predict theirchoice
behaviour. Across all the stimulus pairs the modelpredicted 88.4% (SD = 7.5) of responses. However,
when this analysis was separated by trial type there was a significant difference in the model’s

accuracy between matched (M=93.5%, SD = 6.4%) and mismatched (M= 85.4%, SD = 9.5%) trials
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(t(31) = 5.56, p<0.001). Using the same simulation method Dawes’ Rule provided a poorerfitand
predicted an average of just 53.5% of choices (SD = 14%) across all trials. The rule also showed good
accuracy on matchedtrials (M = 89.2%, SD = 6%), but a poorer fitfor mismatched trials (M= 31.8%,
SD = 22%). Thiswould appearto support the mathematical model, as Dawes performs well whenit’s
predictionsare inline with WADD, but performs significantly below chance when the two models
make opposing predictions. However, this cannot be a complete explanation since that would result
inan exact reversal in accuracy between matched and mismatched trialsi.e. 11.8% in mismatched

(100-89.2) or 69.2% in matched (100-31.8).

Decision by Sampling was explicitly modelled from the data. For each choice, the number of
favourable comparisons within all previously seen choices and single item valuations was calculated
for each attribute. These were then summed to create a single score foreachitem. Thisresultedin
the correct prediction of 78.0% (SD = 10.6) of choices across all trials. For mismatched trials this was
69.7% (SD = 14.5) and matched trials 91.3% (SD = 7.5). The effect of recency was investigated by
addinga weighting curve to the DbS model. Thus, a favourable comparison to a more recently
experienceditem would incrementthe item’s score more than afavourable comparison toamore
temporally distantitem. The size of this difference was controlled by a weighting function which
took the shape of an Ebbinghaus forgetting curve. Maximum likelihood estimation was used to find
the most appropriate rate of decay for each participant. This found that the best fitting decay rate
on average was 0.032 (SD=0.0057). This actually produces a concave weighting function, with the
vast majority of items weighted very highly and similarly, except for the very oldest. Thisresultsin
predictive accuracy whichisidentical to the unweighted model. Closerinspection reveals that the
MLE search functionterminates once the weighting function becomes solinearthatthereisno
longerany predictive difference between the weighted and unweighted predictions. Thisis the case
for all participants; there isno evidencethat differentindividuals are simply using different sample
sizes. Asa result, the performance of WADD and DbS are significantly correlated (r=0.66, p<0.001),

but with DbS always performingslightly worse.
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As with earlierstudies (Broder, 2002; Glockner & Betsch, 2008; Glockner & Herbold, 2011)
participants were next categorized according to which model best predicted their responses. Thirty-
one (96.9%) of the subjects were best described by WADD. None were categorized as responding
accordingto DBS or Dawes’ rule and only one (3.1%) subject was predicted equally well by WADD
and Dawes rule. We then analysed the Match and Mismatch trials separately. Forthe Matched trials
26 (81.3%) subjects were bestfit by WADD, 3 (9.4%) by Dawes’ and 3 (9.4%) were fitequally well by
both, none were fit best by DbS. When only Mismatched trials were examined 30(94.8%) subjects
were best explained by WADD, none by DbS or Dawes’ rule and 2 (6.2%) equally well by WADD and
Dawes. This pattern of individual differencesin decision rulesis similarto thatreportedin other
studies thatalso show that the majority of subjects appearto utilize mathematical compensatory

models when making choices between items.

When DbS was modelled with additional free parameters which allowed attributes to receive
different weightings there was amarked improvementin accuracy, correctly predicting 86.3% of
choicesoverall. Howeverthe model only performed betterthan WADD for 6 participants and was
still significantly worse across participants (t(31) =5.09, p<0.001). When split by trial type, DbS was
less accurate for mismatched pairs, predicting 84.1%. It was the best performing model foronly 3
participants and significantly worse than WADD overall (t(31) =4.92, p<0.001). The DbS model
allowing different weightings performs better for matched trials, predicting 89.8% of choicesandis
the best performing model for 16 participants. However, its accuracy is not significantly different
fromthat of WADD, with the relative differences between them formingan approximately normal

distribution around zero (mean difference =0.012, t(31) = 1.04, p>0.05).
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Figure 4.2 Distribution of differences between percentage accuracy for weighted DbS and WADD models. The line shows
the best fitting normal distribution curve.

4.2.3.3. Are valuations and choices made using the same process?

Now we investigate whether subjects make similar use of information when providing single
itemvaluations and when choosing between alternatives. If qualitatively different rules or heuristics
are usedthensubjects would use the information differently. | f the same compensatory processis
usedin both tasksthenthere should only be minimal differences in weightings. To allow for
comparison between the continuous data of value estimates and binary choice responses the
average choice proportions foreach stimulus pairwere entered into alinearregression with the
difference between items on each attribute entered as predictors. This reveals that the overall
pattern of information weightingis very similarin both tasks, with one majorexception: The
distance totown centre is significantly over-weighted during the choice task. Thisisin comparison to
both the valuationtask and to its objective influence upon rental value. This is particularly

interesting because this attribute had a curvilinear weighting function with respect to rental value.
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Therefore, it suggests that participants were correctly representing this weighting functionin the
valuation task, butthenthe constant distribution of values enlarged the perceived difference

betweentheitemsinthe choice task (Table 4.1 & Figure 4.3).

Table 4.1 WADD weights for choice proportions as estimated using a standardized regression

Attribute Standardized Betas t-value p-value
Beds .668 -13.339 <.001
Baths .208 -3.901 <.001
Size .079 -1.549 124
Crime -.232 2.588 .011
Distance to Town -.445 4.899 <.001

Table 4.2 WADD weights for estimates of rental values as estimated using a cluster corrected standardized regression

Attribute Standardized Betas t-value p-value
Beds .506 17.35 <.001
Baths 173 8.05 <.001
Size .084 5.02 <.001
Crime -.296 12.38 <.001
Distance to Town -.074 2.94 .006

0.8

B Valuation

B Choice

M True valuation

B True Choice

Beds Baths Size Crime Distance

Figure 4.3 WADD weights for each attribute as calculated for choices and item valuation. Error bars represent Parameter
Estimates
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The experiment had been designed such that participants weighting of crime and distance
could be examined along the range of theirscales. Thiswould allowadirect test for a cubic
componentinindividuals’ weighting of the information and for the resulting pattern to be plotted
graphically. However, due to a programming error during stimuli creation there was a highly
significant correlation between crime and distance (r=0.9). Therefore, the effect of the two scales
could not be sufficiently separated by non-linear modelling as originally planned. Experiment 6

below corrects this error.

4.2.4. Discussion

This experiment examined whether compensatory models provide better explanations of
choices than non-compensatory heuristicmodels and whether DbS can provide alink between the
two. The results replicatethe basicfindings of otherstudies (Broder, 2002; Glockner & Betsch, 2008;
Glockner & Herbold, 2011) which found thatthe behaviour of a large majority of individualsis best
explained by mathematicallycompensatory models. A very small number were better explained by
Dawesrule, but none by unweighted DbS. Accuracy was improved when attribute weightings were
allowed to vary within the DbS model butits accuracy was still significantly worse than WADD and it
was only the best fitting model for 6 out of the 32 participants. However, within this modellingit
should be noted that the matched trials provide the fairest comparison between DbS and WADD. In
orderto provide an accurate comparison between WADD and Dawes rule, stimuli pairs were
carefully controlled using the mathematically calculated rental values. Thus, WADD predicted the
same average difference between apartment valuations for matched and mismatched trials, i.e. a
1:1 ratio. Because DbS scores are calculated on differentinformation, the ratio of differencesinits
predicted valueswas 1:1.5, with the greater difference being found for mismatched trials. Therefore,
DbS is at a relative disadvantage and one should be very careful when comparingits accuracy to that

of WADD on mismatched trials.
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It was hypothesised that DbS could explain why individuals are so frequently split between
mathematical and heuristicmodels. DbS could potentially fit the responses of participants who are
otherwise best explained by WADD and Dawes by fitting different size samples. Alarger DbS sample
would resultin high correlation with WADD predictions, whilst asmaller sample would correlate
with Dawes. However, asinvaluation tasks, the best fitting DbS parameters were those which
resultedinthe highest correlation with WADD. This was true for all participants, e ven those for
which Dawes rule predicted a high proportion of theirresponses. There was no evidence forany

difference in sampling rates between individuals.

4.2.4.1. Valuation vs.Choice

These results show that subjects made different use of the same information when making
single item valuations and when choosing between alternatives. Although the results do not suggest
a broad and all-encompassing switch in strategy such asfrom a weighted compensatory judgement
to a simple heuristicbased mechanism (Brandstatteretal., 2006; Gigerenzer & Selten, 2002), the
difference inthe way particular attributes are usedisinteresting. The largest change in weightings
was found for the distance from town attribute. This was the lowest weighted during valuation but
second highestinthe choice task. Crucially, thisis one of the attributes where the relativeinfluence
of the experienced distribution and its weighting upon rental value were manipulated. Whilstit was
equally represented atall points between 0and 10 miles, the weighting function relatingitto rental
value was curvilinear. This means that for the majority of the centre portion of the scale a difference
indistance corresponded torelatively little change invalue and individuals seem to have
representedthisintheirvalue estimates. However, the fact thatit was equally represented at all
pointsonthe scale meansthatwhentwoitemsare put side by side there is a greaterchance of a
large relative difference than there is for otherattributes, particularly crime. Thus, the observation
that subjects placed far more weight uponitinthe choice task suggests that the relative differenceis
more evaluable or simply more salient during the choice task (Hsee etal., 1999). Unfortunately the
programmingerrorin stimuli creation meansitis not possible toinvestigate whethera cubic
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weighting function can be foundin participants use of eitherscale. Thisis now addressed, along with

other questions, in Experiment 6.

4.3. Experiment 6: Eye Tracking
4.3.1. Introduction

Whethera choice requires selecting which apartmenttorentina new town or justa preferred
snack inashop, these decisions are not made immediately upon exposure to the options. Rather
theyrecruita form of deliberative decision making not explicitly captured by WADD. This experiment
examines afamily of models explicitly designed to describe such choice processes: Accumulator
models. These generally assume that decision makingis based upon anoisy stochasticprocess
where evidence foreach itemisaccumulated overtime. A choice is made once enough evidence has
beenaccumulated forone itemto cross a threshold (Busemeyer & Townsend, 1993; Ratcliff &

McKoon, 2007; Stewartetal., 2006; Usher & McClelland, 2001).

In this experiment we focus upon one class of accumulator model: the drift diffusion model
(DDM). DDM predicts that when making a choice between two alternatives individuals rely upon a
single accumulator which accumulates evidence over time from each of the competingitems
(Ratcliff & McKoon, 2007). The value of the accumulator at any given time pointrepresents the
currentdifference in evidence accumulated for either option. A positive valueindicates a current
preference foritem 1, whereas anegative indicates the same foritem 2. A decision is made when

the accumulatorcrosses a decision boundary ateitherlor -1.

Althoughthere are many versions and iterations of DDMs (Bogacz et al., 2006), the one which
we will focuson hereis that described in Krajbich, Armel, & Rangel (2010). This model posits that the
rate of driftis a function of attention and relative item value as described by (V; — 6V5) when
attentionisdirected towardsitem A. This applies the weighting function 6 to the value of the

unattended item. This weighting can vary between Oand 1. Therefore, when 8 =1 thereisno effect
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of attention and the rate of drift depends solely upon the options’ relativevalues. However, when 8
= 0thenthe value of the unattendeditemisirrelevant and evidence is accumulated for the attended
itemregardless of the relativeappeal of the alternative. Many otheraccumulator models have a
similarassumption, whereby the slopeisafunction of the information and item currently attended
to (Busemeyer & Townsend, 1993). Eye tracking analysisis a useful tool when investigating such
models because visualfixations can be used as a proxy for the attention terminthe models. We
chose to investigatethe model above because it has previously performed wellwhen applied to eye

tracking data and can be easily extended to multiple attribute choices.

By investigating multiple attribute choices we can extend previous findings and address
additional questions of how attentionis directed when collectinginformation and making adecision.
One of the mostreliable findingsin eye tracking researchis the gaze cascade. Thisisthe findingthat
inthe lead up to makingtheirselection, individuals look more and more towards the item they
subsequently select (Atalay, Bodur, & Rasolofoarison, 2012; Glaholt & Reingold, 2009; Shimojo,
Simion, Shimojo, & Scheier, 2003). Several papers argue that this is evidence of afeedback loop
between valuejudgementand attention or saccade planning processes (Shimojo et al., 2003; Simion
& Shimojo, 2007). However, it seems desirable that attentionis not only directed towards the most
valuable option butalso towards the more important oruseful information. Ina multi-attribute
choice the relative importance of different pieces of information can differ from one choice to the
next. Forexample, when choosing between aone-bedroom apartment and an alternative with four,
one mightexpectindividuals to attend more to thisinformation than ontrials where both options
have the same number of bedrooms. Thus the multi attribute design means that the effects of item
value and importance of information can be separated and the information upon which the

attention feedback loopis predicated can be better elucidated.
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4.3.2. Method

4.3.2.1. Participants

Twenty-fourstudents atthe University of Nottingham participated in return for course credit.

There were 17 females and 7males, with an average age of 19.2.

4.3.2.2. Stimuli & Procedure

The stimuli were created using the same equations asin Experiment 5 (but with the previous
programmingerror corrected). There were 125 apartments for which participants estimated the
value inthe first part of the experiment. Participants were also given feedback, being told what the
true rental value was, so that they could improve their estimates and calibrate to the stimuli. In the
second part of the experiment participants wereshown 125 differentitem pairs and were asked to

select which they thought was more valuable.

The stimuli were presented with attributesinahorizontal row. In choice trials, one item was
at the top of the screenand the other at the bottom. The position of the attributes remained the
same throughout, so participants quickly learnt which attribute would be presentin each location on
the screen. This means that when participants fixate on a piece of information we know that they
intendedtolookatit and are not simply exploringthe information to find the currentlocation of the
information they are actually interested in. The order of stimuli was not counterbalanced between
participants, potentially leaving confounds with screen position (however these are minimised by

individual differencesin attribute weighting).

4.3.2.3. Eye-Tracking

Gaze position was measured usingan SMI RED Il with monocular sampling at a rate of 50Hz.
Participants were seated with achinrestat 50 cm from the screen and 45cm fromthe eye -tracker

sensor.
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Fixations were defined as any period of at least 100ms where gaze remained withina 50 pixel
radius of the mean position of the fixation. A tolerance of up to 40ms missing dataduringa fixation
was also allowed, providing that the gaze position for present data never left the fixation radius. This
resultedinanaverage of 76.5% of all valid gaze location readings being classified as afixation. Areas
of Interest (AOIs)were defined as rectangles 155x155 pixels centred on each number. This resulted
in 90.2% of fixations falling within an AOI. These classification rates are comparable to other

experiments using similar methodology.

4.3.3. Results

4.3.3.1. Behavioural results

Participants choices showed good calibration to the task environment, with the more valuable
itemselected on 79.5% (SD = 13.4) of trials. Participants took an average of 4.83 seconds (SD =
1.74s) fromtrial onsetto response. Cluster corrected correlation also showed that participants
responded more slowly when rental values were more similar (r=-0.186, p <0.001). When
correlations were performed separately for each participant at-test comparingall r-valuesto zero

shows that the effectis also robust across individuals (t(23) = 5.66, p < 0.001).

A modified regression equation was then used to estimate the relativeimportance
participants placed upon each attribute. A standard regression was not appropriate because this
wouldrequire the same attribute forthe top and bottom items being entered as separate
parameters. However, itis notreasonable to expect a particular attribute to have different
weightings simply because it was presented on the top or bottom of the screen. The appropriate
equationisvery similarto that of standard regression but applies the same beta weighting to
attribute valuesfromitemone anditem two.

Equation 14
Y = By + B,Beds; + B;Baths, + B3Sq'Ft'| + B4Crime; + BsDistance, — B; Beds, — B, Baths,

— B3Sq'Ft', — B,Crime, — BsDistance,
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This can then be rearranged to the following:

Equation 15

Y= BO + Bl(Bedsl - BedsZ) + Bz(Bathsl - BathSZ) + B3(Sq,Ft,1 - Sq’Ftlz)

+ B,(Crime, — Crime,) + Bs(Distance; — Distance,)

This allows for estimation of the betaweights using a standard logisticregression ( Table 4.3).
We wanted totest whether participants were successfully extracting the weighting functions used to
calculate the true rental values given as feedback in the first part of the experiment. Therefore, the
same analysis was performed but using the true rental values to determine the preferred item. This
showed avery similar patternto participants’ responses. Bedrooms and bathrooms were
consistently underweighted, as they were in Experiment 5. However, participants’ behaviour

appearsreasonable andthereisnoreasonto think this hasany impactupon furtheranalyses.

Table 4.3 Revealed weighting of each attribute accross participants demonstrates that despite relatively good fit,
participants are slightly underweighting bedrooms and bathrooms.

Bias Beds Baths Sq’'Ft’ Crime Distance
True Rent 0.02 0.52 0.35 0.13 -0.22 -0.3
Estimated 0.01 0.42 0.23 0.17 -0.18 -0.33
Weights
Significance t(23)=-0.66 t(23)=-2.79 t(23)=-5.83 t(23)=154 t(23)=1.71 t(23)=-1.26
of p > 0.05 p < 0.05 p < 0.001 p > 0.05 p > 0.05 p > 0.05
difference

4.3.3.2. Categorizing Individuals’ Behaviour

As in Experiment5, participants were categorized according to which model out of WADD,
Dawesrule and DbS, best predicted their choices. WADD predicted choices with an overallaccuracy
of 86.8%. When splitby trial type, 89.1% of Matched trials were correctly predicted and 85.2% of
mismatchedtrials. Asin Experiment 5, Dawes rule performed close to chance, correctly predicting
50.3% of all choices, and again had a significant split by trial type with 87.2% accuracy on matched
trials but only 25.7% for mismatched trials. DbS was again worse than WADD, predicting 72.8% of
choices, with 85.8% accuracy for matched trials, but only 63.9% for mismatched.
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When calculated across all trials, WADD was the most accurate predictorforall 24
participants. This was also the case when the analysis was restricted to mismatched trials. For
matched trials DbS was the best model for2 participants, Dawesfor 2 and 15 were again classified

as WADD responders. The other participants were equally well explained by WADD and Dawes rule.

DbS wasthen calculated allowing attribute weightings to vary freely within the model. This
increased its accuracy to 85.1% across all trials. It also reduced the effect of trial type relative to the
unweighted DbS model: Accuracy was 88.5% for matched trials and 82.8% for mismatched. When
calculated across all trialsthe model was the best fitfor 5 participants, with the other 19 still best
explained by WADD and this difference was significant across all participants (t(23) = 3.98, p<0.001).
For mismatchedtrials, 3 participants were classified as DbS responders, 18as WADD and 3 were
equally wellexplained by both. Across all participants, WADD s still significantly more accurate
(t(23) = 4.16, p<0.001). For Matched trialsthe results are less clearcut. WADD is still the best
predictorfor9 participants and Dawes rule is for 2. Of the remaining participants, only 4are
classified as DbSresponders. Three participants responses are predicted equally well by WADD and
DbS, 3 equally wellby Dawes and WADD, 1 by Dawes and DbS. There are also 2 participants for
whomthereisathree way tie. Paired t-tests revealed that for matched trials there was no
significant difference between the accuracy of Dawes rule and DbS (t(23) = 1.70, p>0.05), nor
between DbSand WADD (t(23) = 1.36, p>0.05). WADD is still significantly more accurate than Dawes
rule (t(23) = 2.11, p = 0.045), but this effectis weak and does not survive correction for multiple

comparisons.

4.3.3.3. Distribution vs Weighting

As inthe previous experiment, crime had alinear effect uponvalue butacubic distribution
function whereas distance had the opposite linear and cubic patterns. Unlike the previous
experiment, the values on either scale were completely independent. This allowed foranumber of

tests examining how individuals used the relative weighting and distributions in their choices. By
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entering quadraticand cubicterms for different attributes into the regression equation it was
possible totest whetherthey add significant explanatory power. Thus, is there a significant quadratic

or cubic componentinindividuals’ use of stimuli values?

To assess the relative influence of each attribute and its quadraticand cubic components, a
Bayesian Inference Criterion was calculated. The BICis a poorness of fit measure and appliesa
penalty foreach additional parameterentered into the model. Thereforea reductionin BICvalue
indicates that the additional parameter(s) significantly reduce the errorinthe model and that thisis
not simply due to the additional free parameter(s) fitting noise. One BIC was calculated for the
difference between the full cubicmodeland the quadratic model and another BIC for the difference

betweenthe linearand quadratic model.

Table 4.4 shows that both crime and floor space had a moderate quadraticcomponent, but
distance showed moderatesupportforthe linearmodel. Only crime showed a significant cubic
effectandthis effect wasverylarge. The linear distribution of distance means that the BICfavours
the linear model, despite its cubiceffect uponvalue. This supports DbS, suggesting that a skewed
distribution has asignificant effect upon choices, whereas anidentically skewed weighting function
does not. Plotting the weighting functions estimated by the model shows that participants weighting

functions are a close visual match forthe cumulative frequency plots ( Figure 4.4).

For choices:

Table 4.4 The difference in BIC when additional terms are added to the model. A negative BIC difference indicates that
the additional parameter adds significant explanatory power to the model

SQFT crime Distance
Quadratic- LinearBIC -4.79 (10.9) -2.05 (2.78) 1.43 (2.05)
Cubic- QuadraticBIC 17.62 (6700) -13.5 (852) 3.89 (6.98)
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Figure 4.4 The mean recovered weighting functions which participants applied to the crime and distance
attributes when making their decisions

4.3.3.4. Eye-Tracking Results

4.3.3.4.1. Gaze Cascade

Evidence accumulation modelsincluding drift diffusion often predict thatindividuals will
attend more to the itemthey subsequently choose (Busemeyer & Townsend, 1993; Krajbich et al.,
2010), as do models of feedback loops (Shimojo et al., 2003; Simion & Shimojo, 2007). Therefore the
firstquestionis whether participants look more often towards their preferred item. Across all trials
and participants, 53.8% of fixations weretowards the preferreditem. A bootstrapping analysis was
conducted where the chosenitem on each trial was randomly assigned on eachiteration. This
showed thatalthough the effect was small it was highly reliable (p<0.0001). A further prediction of
drift diffusionis the gaze cascade: do participants begintolook more towards their preferreditem

overtime? To examine this, the proportion of fixations directed towards the preferred and non -
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preferreditemswerecalculatedinthe period leading up to the decision. Figure 4.5reveals that the
difference didindeed increase overtime. There was a general trend for several seconds before
response and then a steepincrease immediately prior to decision. Bootstrapping analysis was again
used, thistime to test the significance of the difference at each time point. The chosenitem was
randomly assigned foreach trial on each bootstrap iteration. Points where p <= 0.01 are indicatedin

Figure 4.5.
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Figure 4.5 proportion of trials where fixations were directed at the preferred and non-preferred items in the lead
up to response.

4.3.3.4.2. Attribute Weighting and Looking Patterns

The next question was whether participants were looking more at the information they
weighted most highlywhen making their decisions. To examine this, the number of fixations on each
attribute was used to calculated fixation proportions for each participant. These proportions were
then correlated against the behavioural weightings revealed by participants’ choices (as described
above). Thisrevealed nosignificant correlation (r=0.097, p = 0.29). One potential reason forthisis
that the relative importance of each attribute varies across trials depending upon the itemvalues.
For example, on some trials each apartment has the same number of bedrooms, meaningthe
attribute is not helpful in differentiating between the two. It could be that participants are directing

theirattention towards the attribute which best differentiates the two items on that particulartrial.
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An additional correlation analysis was conducted, but this time the attribute values were
multiplied by participants (non-standardized) elicited weightings before the difference between
them was calculated. This produces ameasure of how well each attribute differentiates between the
items on each trial. The correlation revealed a very small yet statistically significant negative
correlation (r=-0.017, p<0.05), suggestingthat participants were infactlookinglessfrequently at
the information mostimportanttotheirdecisions. However, when separate correlation analyses
were performed foreach individual, only one showed asignificant correlation (r=-0.157, p <0.001)
and whenthisindividual was removed from the overall correlation, the effect disappeared (r= -
0.009, p = 0.25). Thissuggests thatone individualwas using a different strategy to the othersin this
experimentand that the majority of individuals did not attend more toinformation depending upon

itsimportance.

Participants did notlook proportionally more atinfluentialinformation across the entire trial
duration. However, itis possible that the effect only becomes apparent asindividuals near the
decision point, essentially a gaze cascade towards more influential information. Drift diffusion
predictsthatthe driftshould be steeperwhen anindividual is attendingto an attribute where there
isa largerdifference between the two items. This meansitis mostlikely thatathreshold will be
passed and a decision made when the mostinfluential attributeis being attended to. Therefore, at
the final fixation participants should be attending most frequently to the mostinfluential
information. Totest this each attributes’ relative influence on each trial was first calculated as
describedinthe previous paragraph. This allowed for each attribute’s influence upon adecisionto
be calculatedforeach trial and then placed in a rank order of influence. Gaze towards the mostand
leastinfluential attributes was then examinedin the lead up to the decision point (Figure 4.6). Unlike
with fixations toitems, this shows no obvious pattern. Bootstrap analyses confirm that at the time of
theresponse thereis nosignificant bias to any attribute;infact 1s priorto response itisthe least

influential attribute thatis attended to significantly more than average.
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Figure 4.6 Proportion of trials where fixations were directed at the most or least influential attributes in the lead
up to response.

4.3.3.4.3. Fixation Durations

A further prediction of drift diffusion modelsis that the final fixation before adecision will
be significantly shorterthan others. Thisis because as the accumulator crosses a decision boundary
the fixationisinterrupted. Contrary to some previous findings (Krajbich et al., 2010), we find

participants final fixations were actually significantly longer (Figure 4.7).
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Figure 4.7 Duration of final fixations before decision.
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4.3.3.44. Model Fitting

Other papers which report modelling of drift diffusion use iterative simulations with random
error terms and an assumption of random switching of attention between items and attributes
(Busemeyer & Townsend, 1993). Even experiments that have measured visual attention on each trial
have then gone on to model the data by drawing random fixation durations from all those measured
duringthe experiment. As we have continuous eye-tracking dataforall participants we chose to
constrainthe model accordingto the actual attention durations on each trial, for each individual.
This provides atest whichis deterministicand much better constrainedin accordance with the
model’s predictions. One consequenceis thatas the attention durations are determined, so are the

reactiontimes, meaningthe model can only be used to predict choices.

A logisticregression was used to efficiently calculate the final resting state of the accumulator
and the bestfitting parametersforeach participant. Forthe first model the accumulation of
information was assumedto be entirelyindependent of the unattended item. Thisis essentially the

same as setting 6 to zero.

Equation 16

B,4Vy top Dy top — B4V, bottomDA bottom

Where B is the estimated weighting individuals place upon attribute A, Vis the value of a
particularattribute forthe top or bottomitemand D isthe total duration of time spentattendingto
that information on atrial. Individuals were modelled separately to account forindividual

differencesinthe weighting of attributes. The model appeared to perform well, correctly predicting

74.1% of trials.

The next step was to incorporate the effects of attention reported in (Krajbich etal., 2010).

This was achieved usingamodified version of Equation 16:
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Equation 17

(BAVA topDA top — eBAVA bottomDA top) - (BAVA bottomDA bottom — HBAVA topDA bottom)

Allowing 6 tovary within the model revealed a mean value across participants of 0.25, which
indicates arelatively strong effect of attention. However, there were significantindividual
differences. The standard deviation was 0.28 and the range of values covered the entire scale,
includingthe imposed limits of 0and 1. Overall, the modeldid providea modestimprovement, with
76.3% of decisions correctly predicted. To ensure that thisimprovement was not simply due to the
additional free parameter a Bayesian Inference Criterion (BIC) was calculated for each individual
model. Importantly, italsoincorporates a penalty foradditional free parameters and allows adirect
testbetween both nested and non-nested models. In this case, the BIC confirmed that the
improvementinfitis notsimply due to free parameters (Table 4.5). The BIC provides a parsimonious
method forcomparing the drift diffusion models to baseline measures and conceptually different
models. The most obviousis WADD as it was the best performing model in Experiment 5and makes
no account forattention. Not only did this model show much better predictive accuracy (86.8%), but
alsoa betterBICscore. Thisraises the question of whether relative attention has any effect upon
decisions. To examine whether fixation proportions were predictive of decisions an additional model
was calculated using only the number of fixations on each attribute of eachitem. This model
correctly predicted 67.9% of choices, well above chance. However, the gaze cascade results reported
above suggest that this may be due only to additional fixations upon the chosenitem, with the
attended attribute beingirrelevant. When the model was simplified and the number of fixations

upon each item used as the sole predictor, ignoring which attribute was attended, the model still
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performed above chance (65.0% accuracy). Furthermore the BICrevealed that the small

improvementfound by the full fixation model was due only to the additional free parameters.

To assess whetherthe predictive power of fixation proportionsisindependent of stimuli
values, these were added to the original WADD model as additional parameters. Adding only item
fixations resulted in nextto no change in predictive power. Adding the full fixation model, also
separating out fixations to different attributes as different predictors, slightly increased the
percentage of choices predicted. However, once again the BICrevealed thatthisissimply due tothe

large number of additional free parameters.

Table 4.5 Performance measures of alternative models. BIC is a poorness of fit measure which allows for
comparison of models with varying numbers of free parameters and assumptions

Model % Accuracy Bayesian Inference Criterion
WADD 86.8 1246
Item Fixations & WADD 86.7 1246
Attribute Fixations & WADD 89.0 1411
Attention Weighted Drift Diffusion 76.3 1889
Simple Drift Diffusion 74.1 1898
Item Fixations Only 65.0 1971
Fixations Only 67.9 2127

4.3.4. Discussion

We reportthe results of a multi-attribute choice experiment conducted with concurrent eye
tracking. Results were fitted to drift diffusion models of choice using visual fixations as a proxy for
attention. The results show that whilst anumber of findings from previous single-attribute choice
experiments are replicated, drift diffusion models perform significantly worse than simpler models
which do not account for attention. We also find that participants direct their attention more
towards their preferred item overtime; howeverthey do notdirect attention towards more
influential information orthe information on which they base their decisions. This means that

attention based accumulator models will inevitably assumeimproper weighting of attributes.
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Therefore the best performing modeltested hereisasimple WADD model using only stimuli values

and behavioural responses.

The experiment also callsinto question the methods used to model previous drift diffusion
experiments, particularly those using eyetracking. The largest difference is that reaction times were
determined and the model used only choices to estimatethe free parameters. Therefore the
method of modellingemployed here only estimates the final resting state of the accumulatoratthe
pointa decisionis made. Itdoes notexplicitly modelthe accumulatorovertime and does notuse a
noise termor provide adistribution of responses. The reason this method is more applicable is that
it allows for constraining the attention parameters of the mode | using the actual recordings of
fixations during each specificdecision. It seems astrange decision to lose the explanatory power
provided by real time eye trackingin favour of an assumption of random sampling. This method is
stillinline with DDM, we are merely constraining free parameters with empiricallyrecorded
measures. One possibility is that visual attentionis notan appropriate proxy for the attention terms
within drift diffusion models. Butif one accepts this then one must also accept that e ye tracking as a
tool has very limited potentialwhen modelling decisions and reassess previous findings (Krajbich et
al., 2010; Orquin & MuellerLoose, 2013; Philiastides & Ratcliff, 2013). It also fails to explainthe

reliable phenomenawhich are found (Shimojo et al., 2003).

An additional issue with the modelling of this particular version of DDMis the range of
individual differences in estimations of the attention parameter. Large individual differences are
nothing new in decision research (one need only think back to Experiment5), butitis difficult to
discernanysensible hypothesis for different people having such wildly different valuesin this
particularinstance. If attention biasis areal phenomenon at the population level then one would
expectindividual estimatestoformanormal distribution of values around amean. In fact what s
foundisa clusterat either extremes of the scale and others randomly distributed in between. This is

more indicative of amathematical model fitting noise. Itis true that the BIC shows an improvement
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overthe unconstrained model despitethe additional free parameter, but the effect size is small. One
mustalso be very careful of modelling methods when there are such large differences. Inthe
modelling performed here individuals were modelled separately, with an attention parameter
calculated foreach. Previous experiments have found similarindividual differences but then collapse

across individuals, using the average value for further modelling.

The experimentalso corrected the programming error of Experiment 5, allowing for complete
modelling of participants’ weighting functions and use of attribute information. This revealed that
the weighting function extracted from responses matched the distribution of the scale as predicted
by DbS. Crime, the attribute with a cubic distribution function but linear effect upon rental value,
showed a cubic effect upon choice proportions. However, distance had a linear relationship which

matched its lineardistribution and this was despite its true effect upon value being cubic.

The cubic function cannot be explained in the same mannerasinthe previous chapters. In the
single item valuation tasks of Chapter 3 the cubic function wasinthe opposite direction tothe one
found here. The extremes were over-weighted with a plateauinthe mid-range of the scale. This was
the opposite tothat predicted by rank orderand therefore by DbS. However, in this experiment the
cubic shape shows asteep curve inthe central section of the scale but plateaus at the under-

represe nted extremes.

When DbS was explicitly fitted to behaviouralresponses, the results were the same asin
Experiment5. It performed poorly when attributes were not weighted, then when weightings were
estimated, its predictive accuracy was not different to that of WADD for matched trials, butit was
significantly worse for mismatched. Although suggestive, the finding comes with the same caveat:
the stimuli were specifically controlled to keep the difference in WADD valuations for paired items as
similaras possible for matched and mismatched trials. Even when the uncontrolled matched trials
are includedthe ratio of WADD differences between matched and mismatched trialsis only 1:1.25.

However, for DbSthisis 1:2.4. Therefore, DbS makes disproportionately strong predictions, all inthe
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opposite direction to Dawesrule, simplybecause the stimuli were specifically controlled for

differencesin WADD predictions.

One of the most robust findings of previous eye tracking studies has been the gaze cascade
(Shimojo etal., 2003). Immediately priorto makinga response, individuals look more towards the
itemthey subsequently choose. There are two prominent hypotheses regarding this phenomenon.
Drift diffusion models suggest that the final fixation is more likely to be directed towards the chosen
item because evidence should be accumulating for the attended option as the accumulator crosses
the decision barrier (Krajbich et al., 2010). The second hypothesisisthatthereisafeedbackloop
from reward processing to attention (Simion & Shimojo, 2007). In this experiment preferential
looking towards the chosenitem begins several fixations beforeresponse and shows arelatively
gradual trend overtime. A drift diffusion account predicts that only the final fixation should show
this pattern, whereas afeedback loop supports agradual build up. Furthermore, the drift diffusion
account predicts a similar cascade effect towards more influential attributes but we find no such

effect.

It seems surprisingthatattentionis not driven towards the more useful orinfluential
information overtime. This has significantimplications forthe feedback loop, suggesting that values
are calculated foreachitemas a complete whole. The fact that attention does nottend to be
directed towards more influential information over time suggests that this loop has no access to
more fine grained information including that at the level of individual attributes. Findings from other
disciplines suggest that this phenomenais somewhat unique to value based choices, asindividuals
were more likely to recall items they had fixated on forlongerand to fixate longer upon more
informative ortask relevant objectsinacomplexvisual scene (Henderson, Weeks Jr, & Hollingworth,
1999; Loftus & Mackworth, 1978). Therefore we do not propose thatindividuals fail to attend more
to importantinformation in general. Simply that the calculation of importanceis calculated atthe

level of the item, not the attributes.
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Contrary to the predictions of several models of decision making, visual attention does not
drive preferences. We argue thatthe reverseisinfact true. The best predictor of choicesis the
WADD model which takes no account of visual attention. Conversely, the worst performing models
are those which use only attention as predictors. Crucially, combining these models using additional
parameters does notimprove the performance beyond that of the original simple model. The
predictive properties of visual attention patterns are collinear with that of the attribute values and
are notan independent or orthogonal predictor. If visual attention alone biased decisions towards
an itemthenitshould be an independent predictorand measures of attention would provide
additional explanatory power. Therefore we must conclude that biasesin visual attention are driven
by how an individualvalues the item and its attributes. Put simply, individuals look more at the
optiontheythinkisbetter; individuals do notthinkanitemis bettersimply because they have

looked atit more.

As inStewartetal (underreview), we find that final fixations are significantly longerthan
mean duration. Thisis contrary to Krajbich et al and to the drift diffusion modelin general: the
crossing of a decision threshold should terminate afixation early. Although thereis littleinformation
at present, itseems likely that this effectis due to task complexity. Krajbich et al (2010) used a
relatively simple, single attribute decision between foods. Stewart et al (underreview) used finan cial
gambles and this experiment used five attributeitems. There isanincrease in complexity in each just
as thereisa concomitantincrease in the duration of final fixations between the three studies.
Evidence of previous studies investigating the effe ct of working memory load on fixation
characteristics also provides supportforsuch a hypothesis (Gould, 1973).This would suggest that
once individuals feel they have collected enough information to make a decision, they stop
attendingto attributesand considertheirdecision before responding. The gaze cascade and
revisiting of information suggests that this only happens when a preferencealready exists, so this

consideration period likely serves as a final check before response.
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4.4. Chapter Discussion
The experimentsin this chapter demonstrate that for the overwhelming majority of

participants, choices are best described by aweighted additive model. DbS provestobe a
comparatively poor predictor of individuals’ behaviour, when attributes are not weighted and equal
to that of WADD when weightings are applied. The results also suggest thatthere is no fundamental
or qualitative difference inthe cognitive processes employed during valuation and choices. However,
they show that the interpretation of individual attribute scales and participants’ weighting of
information does change. Experiment 5shows that differences between items can be accentuated
or camouflaged depending uponthe distribution of attributevalues. These effects supportthe
evaluability hypothesis (Hsee et al., 1999) of preferencereversals and further supportthe notion
that WADD is used for both choices and valuation. Experiment 6 goes further by identifying the
shape of participants’ weighting curve and theirinterpretation of attributes with skewed
distributions. The results show that participants’ use of attribute informationis dictated by the
shape of theirdistribution and the resulting rank order. The true shape of the effect of an attribute

uponitemvalueisnotrepresentedinindividuals’ choices.

Despite the finding of rank order encoding on individual attribute scales, DbS performed
poorly when usedto predict the ultimate choice. An obvious suggestion would be that thisis a result
of DbS’s simplistic, unweighted additive integration of multiple attributes. However, the model’s
performance was still poor when the attribute weightings were allowed to vary freely within the
model. Thisissurprising as the rank order characteristic of participant decision makingis something
which can only be captured by DbS, and not by the linear WADD model which often outperformedit.
An interesting consideration is the effect of matched and mismatched trials. WADD consistently
outperformed DbS on mismatched trials, but there was no significant difference betweenthemon
matchedtrials. Thisis because the stimuli were specifically created in orderto control for the size of

WADD’s predicted preference in each of the two trial types. The same constraints were notapplied

122



withrespectto DbS’s predictions, meaning that DbS made much stronger predictionsin the

mismatched trials than the matched.

Interestingly, foran asymmetry in DbS predictions to be affecting model accuraciesin the
mannerdescribed above, the Dawes rule must be manipulating choicesin some manner. When
examining Dawes’ predictive accuracy in differenttrials, the most striking findingis that the
performance in mismatched is significantly belowchance butitis close to the performance of WADD
in matched trials. This would suggestthat the rule gets all its predictive power from correlating
either negatively or positively with WADD, butthenthere would be a perfectreflectioninaccuracy
betweentrial types. Whatis actually foundis that the two accuracy rates sum to over 100 in both
experiments. Furthermore, the accuracy of WADD is also significantly affected by trial type,
performing worse when it makes opposing predictions to Dawes rule. This means that ratherthan
any one of the models tested providing a parsimonious explanation of participants, there are
multiple factors being considered. Therefore in task environments where the effect of Dawesruleis
controlled with respect to DbS’ predictions ratherthanthose of WADD, itis likely thatthe models’
relative performance will be very different, at least on trials where they make opposing predictions

to Dawes.

The results of eye trackingin Experiment 6 demonstrate drift diffusion models based upon
visual attention cannot predict multi-attribute decisions as accurately as simple behavioural models.
Notonly are direct comparisons between these models unfavourable for DDM, but many of the
attention and visual fixation effects they predict are not found or exhibita significant effectin the
opposite direction. The most fundamental and surprising of the se is thatindividuals do not attend
more to the most influentialinformation. This has significantimplications for models which rely
upon effects of attention and assume that the interpretation and weighting of information s

dictatedin some way by visual fixations (Busemeyer & Townsend, 1993; Krajbich et al., 2010).
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One possibility isthat the attention switchinginherentin such modelsis covertand this
attention switches between attributes which have already been viewed and are now storedin
memory. Indeed, thereis good evidence of aninteraction between memory load and fixations, with
individuals relying more on re-attending information when memory load is high (Droll & Hayhoe,
2007; Just & Carpenter, 1976). However, this still cannot explain the results of this experiment as it
still predicts a correlation between visual attention and importance of information. The only
difference is that memory capacity would attenuate the effect. Even allowing for such a model of
covert attention switching, the results here suggest that eye-trackingis aninappropriate
methodology forassessing drift diffusion models. Either way, the results call forareassessment of
previous eye tracking experiments which model drift diffusion, particularly those which use single -

attribute items.

An alternative explanation forthe visual attention effectsis the hypothesised feedback loop
between saccade/attention planning and reward sensitive neural systems (Shimojo etal., 2003;
Simion & Shimojo, 2007). As one item begins to be preferred, itis preferentially attended to, which
means they attend to more evidence inthatitem’s favour whichinturn makesit even more strongly
preferred and so on. The results of Experiment 6 support this model as the gaze cascade effectis not
confined to the final fixation. Instead it shows a more gradual development overtime. The
particularly interesting finding here is that the feedback loop is blind to attribute level information.
There is no cascade towards the more informative attributes orinformation on each trial. The gaze
cascade itselfisonly found forcomplete items. Therefore, the inputs to the fe edback loop are
necessarily the current value estimates of the options. Thisinturn suggests that the neural systems
processing reward representonly store a persistent estimate of the items’ overall value, not the
values of individual attributes. Chapter 5examinesthe neural correlates of reward processingin

more detail.
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5. Chapter 5

5.1. Chapter Introduction

Justas recentyears have seen an upsurge in attention to comparative models such DbSinthe
behavioural literature, the same is beginning to happen in neuroscience and neuroeconomics.
Researchisinstead movingtowards finding a truly explanatory model that describes the underlying
process or neural systems that cause patterns of responding (Louie & Glimcher, 2012; Vlaev, Chater,
Stewart, & Brown, 2011; Weber & Johnson, 2009). Much of this work in neuroeconomics has
focused upon the importance of previous experience and stresses the relative evolutionary
importance of action choice overthe comparatively very recent requirement for calculatingan
isolated scalarvaluation, i.e. afinancial judgement (forareview see Seymour & McClure, 2008; or

Vlaevetal., 2011).

In this chapter, two fMRI experiments examined neuralresponding to financialrewards. These
experiments tested the predictions of rank order encoding and examined the qualities of the task
environment which dictate the sample of previous experiences recalled. The results of these
experiments revealed novel findings relating to neural encoding of value. In Experiment 9these
neuroscience findings were then tested in an analogous behaviouraltask which successfully

demonstrated anovel manipulation of utility curves as well as providing a cross-modality replication.

5.2. Experiment 7

5.2.1. Introduction

The predictions of DbS map very intuitively onto neuroeconomics and neural systems. Itisa
widely accepted finding that there are value responsive regions which show greater activity to
highervalue rewards (Knutson & Bossaerts, 2007; Kringelbach & Rolls, 2004). However, neural firing
has biologically defined maxima whereas financial values can increase to infinity. This means that if

there were a one-to-one ratio between neural firing and value, individuals would be unable to
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differentiatethe relative benefits of 10pence vs 30pence as well as £1million vs £3million. Applying
behavioural models such as DbSwould predictthata scale is created anew for each valuation by
recallingfrom memory asample of items similarto the current one. The neural activity would then
representtheitem’s rank withinthe recalled sample. This closely corresponds to an often held
assumption that neural respondingis context specific, with activity representing the difference
between the current context/environment average and the currentitem’s value (Knutson &

Wimmer, 2007; Tobler, Fiorillo, & Schultz, 2005).

One source of evidence for context dependency comes from paradigms i nvestigating whatis
oftenreferredtoas “menu context”: so called because the tasks are analogous to choosing your
preferred dish from arestaurant menu. Two or more stimuli with different pre -trained values are
shown to participants and then oneis selected randomly and indicated as the reward to be received
fromthat trial. Both primate single cellrecording and human fMRI have shown that activity in the
Orbito-Frontal Cortex/ventral medial Pre-Frontal Cortex (OFC/vmPFC) reflects the stimuli’s value
relative tothe other possible rewards shown at the beginning of the trial (Elliott, Agnew, & Deakin,
2008; Tremblay & Schultz, 1999). The same stimuli can elicit maximalresponding when paired with
less preferred stimuliand minimal responding when paired with more preferred stimuli, even

thoughiits objective value remains the same.

The vmPFCis alsoimplicated when subjects make an active choice and select the most
valuable option (Knutson et al., 2008; Rangel & Hare, 2010) and has also been shown to have a more
general role inresponse selection and action planning (Rogers etal., 2004; Schoenbaum, Setlow, &
Ramus, 2003). However, the region also responds to the reward value of a single item, when there is
no choice required and noimmediate alternative with which to compare (Knutson, Taylor, Kaufman,
Peterson, & Glover, 2005; O'Doherty, Kringelbach, Rolls, Hornak, & Andrews, 2001). Thisis generally
interpreted asthe region beingimplicated in two entirely different processes: a parametric

calculation of independent value and comparison of available choice alternatives (Huntetal., 2012).
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However, the predictions of DbS provide another, more parsimonious and cognitively efficient
explanation: that the response elicited by asingle value is also calculated by the same comparative

process, but using alternatives retrieved from memory.

Many studies have used contextual manipulations that do notinvolve any menu contextand
presentonly one stimulus orvalue ata time. Some have used visual categorization cues such as
shape or colour. For example, using green cards to signify gain trials and red cards to signify loss
trials before they are turned overand the amountwon/lostis revealed (Cooper, Hollon, Wimmer, &
Knutson, 2009; Nieuwenhuis etal., 2005). In the critical comparison of SO winvs S0 loss, greater
respondingto the S0 loss was found most strongly in the ventral striatum and the best possible
outcomesinboth contexts activated the regiontoa comparable degree. As aresult of these studies,
it has been suggested thatthe brain calculates an average environmentvaluewhichisthenusedasa
baseline comparison forcurrentitems (Knutson & Wimmer, 2007). This is based upon the
compellingevidence thatthe activity in the Ventral Striatum relatingto value is context dependent,
but troublingly for this modelthe predicted baseline signal has notyet beenidentified. However, if
the response to each stimuliis calculated by comparison with othersimilar orrecently experienced
items then this makesthe response inherently context dependent, but withoutthe needforan
explicit baseline to be calculated. Infactif this baseline were found it would immediately raise the
original problem of how afinite activity range represents an infinite valuerange; it would merely

move theissue fromthe VSto whereverthe baseline was calculated.

A question raised by models such as DbS is whethersuch a system of comparison would be a
simple rank order, better/worse comparison ora more complex parametriccomparison whichis
able to representthe scalardifference between alternatives. Although there is existing evidence that
the vmPFCdoesrepresent absolute difference when attending to one of a pair of items (Basten,
Biele, Heekeren, & Fiebach, 2010; Lim, O'Doherty, & Rangel, 2011; Philiastides, Biele, & Heekeren,

2010), itisadditionally possible that thisis simply arepresentation of the rank difference within the

127



context of all experimenttrials. Indeed, if itis a representation of absolute difference then once
again we return to the question of how the infinite range of potential differences can be

represented.

The experiment described here presented pictures of cash, one stimulusatatimeina
mannerwhich did notrequire or overtly encourage comparison between them. These were splitinto
blocks of high and low value trials such that it was possible to examine whethervalue dependent
regions responded inacontextdependent mannersolely due to recency of stimuli exposure.
Furthermore, the experiment used adistribution of values which is non-linearso thatit is possible to
examine the pattern of respondingand test whetheritrepresents rank order orabsolute financial
value. The resultsrevealed that the VS and Thalamus are strictly context dependent within block,
showingsimilaractivation to the lowest and highest valuein each block. Furthermore, activityinthe
vmPFCand the Anterior Cingulate Cortex are not constrained by the context of block, but show a

stronglylinearincrease across all stimuliwhich can be interpreted as encodingrank order.

5.2.2. Method

5.2.2.1. Participants

Research was conducted with the ethical approval of The University of Nottingham's Medical
Ethics board and informed written consent was obtained from all participants. Fourteen individuals
fromthe Nottingham area participatedin the study: 9female and 5 male, aged between 20and 27.
Participants were told they would be paid a minimum of £10 with an additional amount dependent
upon their performance within the task. The lowest amount earned was £15.00 and the highest was

£23.80 with a mean of £20.67.

5.2.2.2. Procedure

A variant of the Monetary Incentive Delay (MID) task (Knutson, Fong, Adams, Varner, &

Hommer, 2001) was used (Figure 5.1). On every trial participants were shown a photograph of an
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amount of cash. Aftera randomized delay they responded with a rapid button pressinorderto win
the amount previously signified. Feedback was then given, informing participants of whetherthey
had responded before the deadline, thus winning on that trial as well as the amount that they had
won or failed towin. The advantage of the MID task isthat it required participants to engage in the
task and gave them a vestedinterestinthe value of the stimuli being presented, but did not
confound the value with any choice orresponse selection, as there was only everone responseto
make. Therefore any variationin BOLD signal at Conditioned Stimulus (CS) presentationis due to
differencesinvalue representation whichisindependent of choice and asis shown later,

independent of motoricaction planning.

The trials were splitintotwo block types: alow value block — 10p, 20p and 30p - and a high
value block—£5, £7 and £10. Each block contained 60 trials, with 4 blocks being presented during
the experimentand blocks 2 and 3 separated by anatomical image collection. Thus there were 240
trialsintotal. The order of block presentation was counterbalanced across participants with half
seeingthe high value blocks firstand the other half seeing the low value blockfirst. The length of the
response window was controlled by a1l up 2 down adaptive staircase, resultinginan accuracy rate
of ~66% foreach participantregardless of individual differences in average reaction times.
Participant payment was calculated by taking the outcome of a random subset of trials which would
add up to £30 thendividingthe total won from these trials by two. Asthiswas addedtothe

guaranteed £10 received simply for taking part, the average payout was designed to be £20.
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1240 - 3640ms

160 - 260ms

Specific to Individuals

2000 - 2500ms

Figure 5.1 - The Monetary Incetive Delay (MID) task employed in the experiment. Note that the duration of the
interval between the picture of money and the response is randomly varied to prevent anticipation and the response
window itself is controlled by an adaptive staircase. The Inter Trial Interval varies to accommodate these fluctuations,
maintaining the same total duration on each trial.

5.2.2.3. Scanning Parameters

Scanning was performedina 3T Phillips Achieva scanner with 32 channel phased array head
coil. To compensate forsignal dropoutin frontal regions adouble echo, echo planarimaging
sequence was employed during functional image acquisition. Previous research has demonstrated
that a weighted combination of fMRI timeseries from different echo times helps combat signal
dropoutdue to variationin peak T2* signal (Poser, Versluis, Hoogduin, & Norris, 2006).Each
functional scannerrun lasted 7 minutes and collected a total of 175 volumes of 36 slices foreach TE

using a voxel size of 3x3x3mm, TR = 2.5s, TE; = 20ms, TE, = 45ms, flip angle = 80°.

5.2.2.4. Functional Data Analysis

To ensure the accurate combination of data from both echoes realignment parameters were
calculated based onimages collected with the first echo sequence and were then applied identically
to image sequencesforboth echoes. Once realigned and corrected for head motion, aweighted

summation was calculated combining both echoesinto one time series upon which all subsequent
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processingand analysis was performed. This was performed using code developed by the Sir Peter
Mansfield MagneticResonance Centre (Gowland & Bowtell, 2007). Each voxel is weighted according
to its point on the BOLD sensitivity curve, with TE’s closerto the peak of the curve beinggiven
greater weight whenimagesare combined (Posseetal., 1999). Weighted images were then
transformed to MNI space using participants’ anatomical scans, before being smoothed with a 5mm

FWHM Gaussian kernel.

The onsets of each CS (10p, 20p, 30p, £5, £7, £10) within each block (early and late) formed
the 12 regressors of interest which were entered into the firstlevel GLM using SPM8 software to
control for unmodelled errorbetween scannerruns. A total of 24 nuisance regressors werealso
calculatedinthe same mannerto encompassall values of win and lose feedback events, as well as

fourfor button presses (one perscannerrun).

Pairwise comparisons were calculated within subjects before being entered into second level
random effects analyses. Comparisons were conducted for highest absolute value vs lowest absolute
value (£10vs 10p) and within block value (£10+30p) vs. (£5+10p). In addition, the highest low block
value was compared against the lowest high block value (30p vs £5) as if any respondingis solely
context dependentthen one would expect greaterresponding to 30p despite the large differencein
absolute value. Due to the greater number of data-pointsinthe within block contrast there was a
significant difference between the power of this contrast and the othertwo. Therefore, to allow us
to betterelucidate the patterns of responding a threshold of p<0.005 and k>77 was used for the
absolute value and overlap comparisons while p<0.001 and k>39 was used for within block value.
These clusterthresholds were calculated using AlphaSim (Cox, 1996) such that the corrected a =
0.01. Once regionsrespondingtovalue had been defined marsbar (Brett, Anton, Valbregue and
Poline, 2002) was used to extract the beta weights across all conditionsin orderto examine the
specificpattern of responding. Note that when identifying responding as representing absolute value

or rank orderrespondingall subsequent ROl and betaweight analyses are performed upon all data
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points while whole brain contrasts used only asubset of these conditions and trials. Furthermore,
these additional analyses are conducted to test a hypothesisindependent of thattested in the first
level model. Both absolute value encoding and rank order encoding predict the same difference
between the lowest and highestvalues, their predictions only differ with regards the four data
pointsin between, i.e.the independent data points used onlyinthe ROl analyses (Kriegeskorte,
Simmons, Bellgowan, & Baker, 2009). Thus the first level modelidentifies all regions where the
largestreward elicits greater responding than the lowest; these additional analyses serveto
categorize the pattern of respondingin the mid-range of this scale. The additionalanalyses are also
performed upon ROIs identified by the within block value contrast, which uses 4 of the 6 trial types.
Althoughinthis case a larger sub-set of the data is used inthe whole brain contrast, the subsequent
analysis of betaweightsisintended to ensure regions were responding with asimilar magnitude in
both high and low value blocks, thus ensuring that the hypothesis being tested isindependent of
that usedto selectthe ROI. Thisisincluded as a check and to ensure completeness of information

for the reader.

Correlations were performed upon extracted beta weights from each ROl for each potential
pattern of responding: within block context dependency(1/3, 2/33/3, 1/3, 2/3, 3/3), ordinal
rank(1/6, 2/6, 3/6, 4/6, 5/6, 6/6), and absolute value (0.01,0.02, 0.03, 0.5, 0.7, 1). The within block
predictions were entered only to control for the unlikely event that a context dependentareahad
been mis-categorized by the first-level analysis. A conservative bonferronicorrected a was used to
correct for the total number of correlations performed. Where regions showed a significant
correlation with two different potential responding patterns then they were entered into separate
GLM'’s and the deviance of the models extracted. The difference between these deviances was then
used to calculate a chi square statisticto testfora significant difference between them (Cohen,

2003).
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5.2.3. Results

5.2.3.1. Behavioural Results

Average response times ranged from 168ms for the quickest participantto 258ms for the
slowestandthe overall average was 202ms (S.D. 21ms). Accuracy ranged from 46% to 67% with a
mean of 59% (S.D.5.5%). A six level one-way ANOVA showed no effect of trial value on reaction
times (F(1,5) = 1.85). This demonstrates that differences in BOLD response are due to value

calculation and are not simply aresult of motoricaction planning.

5.2.3.2. fMRIResults - Early Blocks

5.2.3.2.1. Highvs Low:£10vs 10p

Firstanalysed were the results from the first two blocks where participants were not
expectingthe change invalue range. Initially the data was collapsed across both presentation orders
and respondingto absolute value was examined: £10>10p. If the neural response of any areais
specifically tuned to absolute financial values without relying on context orre-scaling thenit should
be evident here, butthe only activations found were inthe cerebellum and visual cortex (table 1).

There were nossignificant clustersinthe reverseanalysis.

Table 5.1 Significant Clusters for Early Blocks; Highest >Lowest Value Comparison: £10>10p

Anatomical Region Peak Activation (MNI
coordinates) ClusterSize Peakt-
X Y Z (voxels) value
Calcarine Fissure/Lingual Gyrus/Cuneus (L/R) 8 -90 12 3096 7.889
2 -88 -4 7.418
10 -66 6 6.023
Cerebellum(L/R) 28 -76 -18 290 6.233
22 -82 -18 5.912
16 -74 -18 5.619
Occipital Temporal Gyrus (L) -32 -72 8 280 5.642
-34 -78 -4 4,133
-38 -68 -16 4.032
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5.2.3.2.2. Context Dependent Responding: (£10+30p) vs (E5+10p) and 30p vs £5

Contrasts were then examined which tested for context dependence that would be
indicative of within-block scaling. Firstly, within block value revealed significant activation most
notably within the caudate, posterior cingulateand pre central gyrus (Table 5.2). The context
dependent nature of these activations is further evidenced by significant activation in the 30p>£5

(Table 5.3).

Table 5.2 Significant Clusters for Early Blocks; Within Block Comparison: (£10+30p) > (£5+10p)

Anatomical Region Peak Activation (MNI
coordinates) ClusterSize Peakt-
X Y Z (voxels) value
Visual Regions -6 -90 2 5502 9.081
0 -70 10 8.999
26 -96 18 8.888
Posterior Cingulate/white matter (R) 20 -22 30 143 6.051
24 -30 30 5.465
18 -34 36 5.195
Caudate Head (L/R) -4 6 0 122 5.590
-10 -2 -4 5.012
Precentral Gyrus (L) -16 -28 50 56 4.784
-28 -22 52 4.742
Superior Parietal Lobule (R) 22 -60 48 47 4.595
18 -54 52 4.415
Occipital Cortex (L) -22 -60 38 45 4.520
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Table 5.3 Significant Clusters for Early Blocks; Highest Low Block Value > Lowest High Block Value: 30p > £5

Anatomical Region Peak Activation (MNI
coordinates) ClusterSize Peakt-
X Y Z (voxels) value
SuperiorParietal Lobule/Posterior
Cingulate(L/R) -4 -46 54 828 7.556
-6 -30 34 5.182
-10 -66 48 5.021
Precentral/Middle frontal gyrus(R) 22 -4 46 836 7.377
26 -24 50 7.167
38 -6 50 7.045
Middle Frontal Gyrus(R)/Middle
Cingulate(L/R) 20 20 46 940 6.785
-2 8 32 5.409
8 18 46 5.367
Precentral Gyrus(L) -32 -8 46 101 6.264
ACC(L/R) -6 28 12 156 6.093
6 34 24 5.875
6 24 12 3.935
Middle Temporal Gryus/Occipital Gyrus(R) 54 -76 6 112 6.002
Middle Frontal Gyrus(L) -24 30 32 99 4.317
-28 38 30 3.594
-26 20 30 3.162
Superior Frontal Gyrus(R) 18 44 a4 77 4.281
8 46 42 3.637
26 40 42 3.585
Middle Frontal Gyrus(L) -28 54 12 78 4.250
-40 54 14 3.531

5.2.3.3. Late Block Results

5.2.3.3.1. High vs Low: £10vs 10p

By the start of the third block participants had experienced the whole range of values. The
non-linear distribution of our stimuliallowed examination of whetherthis responding was
predicated upon aratio scale or an ordinal scale of alternative preference as predicted by
behavioural models such as Decision by Sampling. To identify the regions that respond to high values
overlow, regions which were significantly active in the £10>10p contrast (Table 5.4) were examined.
The regions showingthe mostreliable activation were the ACCand vmPFC (Figure 5.2). No

significant clusters were inthe reverse analysis.
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Table 5.4 Significant Clusters for Late Blocks; Highest >Lowest Value Comparison: £10>10p

Anatomical Region Peak Activation (MNI
coordinates) ClusterSize Peakt-
X Y z (voxels) value
ventral medial PFC(R) 6 58 -4 98 7.277
Anterior Cingulate (L) -12 40 14 99 5.965
Inferior Frontal Gyrus (L) -28 36 12 94 5.395
-34 32 2 3.287
Supramarginal Gyrus (R) 30 -40 28 203 4.928
30 -36 14 4.332
40 -46 30 4.076
Cerebellum (R) 28 -68 -18 161 4.773
32 -58 -18 3.948
24 -80 -18 3.779
ventral medial PFC /ACC(L) -10 60 8 98 4.593
-14 52 -4 4,156
-18 50 4 3.705
Cerebellum (L/R) 6 -68 -8 159 4.540
-8 -84 -16 3.840
-18 -78 -18 3.643
Supramarginal Gyrus (L) -36 -36 16 110 4.485
-44 -38 26 3.560
-36 -46 22 3.444
Calcarine Fissure (L/R) -4 -92 -4 161 4.283
-2 -84 8 3.585
4 -82 14 3.425
Occipital Gyrus (R) 28 -68 36 140 3.950
34 -68 22 3.753
30 -62 28 3.579

Figure 5.2- The Anterior Cingulate Cortex and ventral medial Pre-Frontal Cortex activations in the high vs. low
value contrast
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5.2.3.3.2. Context DependentResponding: (£10+30p) vs (E5+10p) and £5vs 30p

When within block responding was examined strong activations were found in the thalamus
and caudate nucleus, aswell asthe same ACC and vmPFCregions which were active inthe high vs
low contrast (Figure 5.3& Table 5.5). Asin early block trials, this suggests that the thalamus and VS
are respondinginacontext dependent mannerthatis sensitive to block. Thisis continued by the
30p>£5 contrast (Table 5.3) which found significant contextual differences in the thalamic
activations (Figure 5.5). Thisis despite the fact that the stimulus that elicited lower responding

actually had a higherobjective value. There were also no effectsin the reverse analysis (i.e. £5>30p).

O PN W s Yy 9 @

Figure 5.3 - Regions of bilateral activation within the caudate nucleus and within the ventral medial Pre-Frontal
Cortex
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Figure 5.4 — Extracted beta weights for the latter blocks. The caudate and thalamus show local context
dependency, re-scaling depending upon the values within the current block. The ventral medial Pre-Frontal Cortex and
Anterior Cingulate Cortex demonstrate responding which represents a simulus’ rank order within all values experienced
during the experiment, independent of their true financial values.
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Table 5.5 Significant Clusters for Late Blocks; Within Block Contrast: (£10+30p) > (£5+10p)

Anatomical Region Peak Activation (MNI ClusterSize Peakt-
coordinates) (voxels) value
X Y VA
Cuneus/Occipital Gyrus/Lingual Gyrus (L/R) 14 -96 8 1761 8.833
-8 -90 -2 7.128
14 -88 32 6.265
Thalamus (L/R) 4 -12 10 232 7.939
16 6 16 5.119
2 -24 8 4.920
Occipital Gyrus (L) -28 -86 20 312 7.613
-26 -78 20 6.348
-34 -86 14 5.297
Superior Parietal Lobule (R) 32 -58 54 465 7.558
26 -66 58 6.636
38 -52 56 5.357
Middle Frontal Gyrus (R) 22 42 46 140 6.495
30 40 42 5.871
14 46 44 5.195
ventral medial PFC/ACC(R) 10 60 -6 78 6.417
16 50 -2 5.214
Superior Parietal Lobule (L) -36 -50 54 141 6.087
-30 -56 50 5.939
-42 -34 56 5.015
Lingual Gyrus (R) 8 -38 2 85 6.016
16 -36 8 4,902
Caudate Head (L) -10 6 -2 57 5.712
Medial Frontal Gyrus (R) 16 26 36 72 5.707
10 34 38 4.951
16 18 44 4,291
ACC(L/R) 8 50 32 146 5.076
-4 42 18 4,788
-10 48 16 4,511
Occipital Gyrus 22 -72 -14 60 5.060
Caudate Tail (L) -18 -2 24 62 5.055
-20 -10 18 4.297
Middle Frontal Gyrus (R) 36 0 52 58 4.887
28 -2 54 4.320
Caudate Head (R) 8 14 -4 47 4.515
12 24 0 4.190
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Table 5.6 Significant Clusters for Late Blocks; Highest Low Block Value > Lowest High Block Value: 30p > £5

Anatomical Region Peak Activation (MNI
coordinates) ClusterSize Peak
X Y Z (voxels) t-value
Ventral Lateral/Ventral Anterior Nucleus(R) 8 -8 10 128 6.715
0 -4 10 3.606
Inferior Frontal Gyrus (R) 44 46 -10 155 6.035
38 56 6 3.628
34 52 -10 3.297

Furtheranalyses were performed upon all regions found to be responding tovalue in either
the high vs low contrast or the within block contrast. A correlation was performed upon each ROl for
each potential pattern of responding: within block context dependency, ordinal rank and absolute
value. As stated in the method section, this analysis avoids the pitfalls of double dipping asit usesall
of the data points whereas the previously applied contrasts used only asubset. Inaddition, a
conservative Bonferroni correction was used to control for multiple comparisons. As one would
expect, significant context dependency was confirmed in the areas identified by the first level
contextdependency contrast: caudate (r(84) =0.29, p = 0.006), thalamus (r(84) = 0.28, p =0.009). Of
greaterinterest were the regionsidentified in the £10>10p contrast: significantlinear (rank order)
responding wasfoundinthe ACC(r(84) = 0.41, p<0.001), vmPFC (r(84) = 0.48, p<0.001) and IFG
(r(84) =0.53, p<0.001). However, the results are similar when testing for value dependent
responding: ACC(r(84) =0.4, p<0.001), vmPFC (r(84) = 0.47, p<0.001) and IFG (r(84) = 0.54, p<0.001),
therefore the data was entered into separate GLM models and the difference in deviance produced
by them was used to calculate a chi square statistic. Thisreveals that all regions are actually better
described by a pattern of rank order responding: ACC, x(1, N = 84) =66.4, p <0.001, vmPFCx (1, N =
84) =60.6, p <0.001, IFGX (1, N = 84) =48.8, p<0.001. Given previous findings, itis surprisingthat no
regionisfoundto be representingabsolutevalue. However, the ACCshows astronglinear
relationship withrank order, while the OFC shows the same patternin the right hemisphere and only

a small deviationinthe left (Figure 5.4). Thisis crucial for assumptions of basichuman value
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calculation as these areas are generally considered to deal with higherlevel processing orthe

amalgamation of various low level processes (Rangel & Hare, 2010).

5.2.4. Discussion

This experiment tested some of the most basicproperties of how value isrepresentedinthe
brain. What role context and recent experience playsin the reward encoding of different regions
and whetherthese regions are encoding objective absolute value, orasimplerrepresentation of
rank orderwithin recently experienced values. It was found that the VSand thalamus are highly
contextdependent, with activity representing a stimulus’ valuerelative to othersin that particular
block. It was also shown that the ACC and vmPFCare not affected by block, but also are not
representing absolute financial value. Instead the activity inthese regions represents the current
stimulus’ rank order within all values experienced during the experiment. No region was found with

activity representing absolute financial value.

The lack of response duringthe early blocks in regions more generally linked with value
responding may seem surprising. It can in part be attributed to participants still learning the task
itself, and although this does seem to reduce power across all comparisons there are still regions
such as the posteriorcingulate and caudate which are already demonstrating within block value
responding. Therefore, when considered alongside the responding patterns foundin later blocks it
seems likely thatregions such as the ACC and vmPFCare not yetrespondinglinearly because the
individualis still learning the entire range of stimulivalues. As these regions integrate valuesfroma
longertime period, itisalso likely that values experienced just priorto the experiment are still
biasingresponses. Conversely, those regions which demonstrate within block responding will by
definition only incorporate the more recently experienced values, hence their presencein early

block analyses.

The cerebellarand visual activations found in the early blocks are not surprising. Other studies

have explicitly investigated patterns of response to reward value inthese regions, regularly finding
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increased activationto higherrewards eveninvery low level visual processing (Serences, 2008). This
isgenerallyinterpreted as feedback from value sensitive regions with the purpose of directing
attention towards more preferable and more valuable stimuli (Shimojo et al., 2003). What is
confusingisthatthe strongestanatomical links to the visual cortex come from the caudate nucleus
and thalamus (Leh, Ptito, Chakravarty, & Strafella, 2007; Platt & Glimcher, 1999). These are the
regions which demonstrate the strongest context dependency in theirrespondingtovalue, but the
visual cortex displays the reverse pattern with significant activation onlyinthe highest vs lowest
contrast. This suggests that there is additional mediation thatisyetto be described, orthatthere s

heterogeneityin VS neuronresponding which is undetectable with fMRI’s spatial resolution.

The later blocks showed respondingin regions more traditionally linked with value
computation: ventral striatum, vmPFC, ACCand thalamus. What is interestingis the mannerin which
context and the value of recently viewed stimuli modulated the response patterns of these different
regions. The VS and thalamus were strongly context dependent, responding according to the relative
rank value of a stimulus within ablock. By these later blocks participants had experienced the entire
range of stimuli and although the vmPFCand ACCshowed no scaling to block, they instead
demonstrated alinear pattern of responding across all stimuliin the experiment. Importantly, this
ordinal responding was not modified by the very non-linear distribution of actual values,
demonstratingthatthese regions only encoded rank order preference. To our knowledge, this has
not been demonstrated before and provides further support fortheories which are predicated

entirely upon valuation by comparison with itemsin memory (Stewart et al., 2006).

The finding that (unlike the lower function dopaminergicregions)the vmPFCand ACCare able
to integrate stimuli/values which are contextually differentiated, supports suggestions thatthese
areas are furtheralongthe processing chain; that they act as inputintegrators (Basten etal., 2010;
Philiastides etal., 2010; Rangel & Hare, 2010) and response-action selectors (Hadland, Rushworth,

Gaffan, & Passingham, 2003; Rushworth, Noonan, Boorman, Walton, & Behrens, 2011) respectively.
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This pointsto a distributed, hierarchical system where lower regions are modulated by local context
and those furtheralong the processing chainintegrate awider range of information. However, these
results do not suggest contextindependence inthese regions, just that the contextis far less local
and integrates more information. The fact that theiractivity represents rank order means that they
are inherently context dependent and inherently re-scaleto the range of stimuli (Kobayashi, Pintode
Carvalho, & Schultz, 2010). But, the contextual boundary is defined by the experimentasawhole,
rather than by task blocks. This wider contextual definitionis likely the reason that fewer

experiments have reported contextual effectsinthese regions.

It has been suggested that the ventral striatum calculates the difference between cue value
and environmentvalue: (CV —EV), (Knutson & Wimmer, 2007). However, previous experiments have
not varied the environmentvalue and the analyses have assumed a constant EV. Therefore it was
not possible to dissociate whether activity is responding according to pure value or using
environmentvalue as abaseline. To our knowledge, thisis the first human study which explicitly
manipulates environment value during the experiment without confounding gains and losses.
Although the results did show a pattern of respondinginthe VS correspondingto (CV —EV), itis
tellingthat neither this norany otherexperiment hasfound a region with activity corresponding to
EV. Evenifa region wasfoundto have this pattern of responding, one would still be left with the
problem that no system canrepresentaninfiniterange of values without some scaling mechanism.
Allthat has beendoneisto move the problem from cue-dependent responding to environment or
baseline dependent responding. If however one assumes the more parsimonious hypothesis, that
thereisno explicitbaseline and that anindividual valuationis predicated upon comparisons with

similaritems, then theseissues are easily overcome.
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5.3. Experiment 8 - Recency vs Categorization
5.3.1. Introduction

The results of Experiment 7 highlighted the effect of contextin determining the neural
response toareward. However, the experiment cannot elucidate what defines those contextual
boundaries. The following experiment answers atleast one of these questionsandinthe process

shows why some modelling techniques usedin previous behavioural experiments were unsuccessful.

In Experiment 7there were several potential characteristics of the task which may have
caused the contextual effectsfoundin the thalamusand VS. The firstis simple recency. If the
memory sampling mechanismin DbS matches the properties found in memory researchthenone
would expectthat the mostrecentexperiences are more frequently sampled. Thereforethe simple
fact that the trials were separated into high and low blocks causes the recent within block
experiencesto be preferentially sampled. Alternatively, it could be asimple categorization effect.
The use of cash photographs means that there was an inherent visual difference between the coins
of low value blocks and the notes of high value blocks. Furthermore, the large difference between
the pence and pound values offered in the different blocks may have indicated a qualitative change

in context.

Several previous studies have found an effect of context between blocks, but these have also
employed some form of salient categorisation cue. Theseinclude gains versus losses, squares vs
circles, different stimulicolours and certain vs probabilistic payouts (Cooperetal., 2009; Knutson et
al., 2008; Nieuwenhuis etal., 2005).There has neverbeen a pure test of the effect of recency. That
is, do the phenomena of memory research such as the Ebbinghaus curve generalise, does recency

alone cause the contextual valuation effects?

Thisexperiment uses the same task as Experiment 7. However, different stimuli are usedin
orderto eliminate the effects of psychological context: The values used in the low value block

remain the same but those inthe high block are reduced to 30p, 40p and 50p. Thisremovesthe
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effect of value difference causing categorization. Italsointroduces an overlap value, as 30p is
presentin bothblocks. This allows fora simple analysis when testing for context dependency as one
can merely compare responding to the same value in the two different contexts. In addition,
photographsare no longerused. Instead geometricshapes are usedin orderto eliminatevisual
contextual cues. Each shape has a unique associated valueand participants are pre -trained on the

task outside of the scannerto ensure they learn these values beforehand.

5.3.2. Methods

5.3.2.1. Participants

Elevenindividuals (4 malesand 7 females) from the Nottingham area participatedin the
study, aged between 19and 34 (with a mean of 25). One additional participant completed the study
but theirdatahad to be discarded due to data corruption. Each received a £3 inconvenience

allowance forthe behaviouraltraining session and an amount dependent upon their performancein

the scanning session that was weighted to average £10.

5.3.2.2. Monetary Incentive Delay Task

The same Monetary Incentive Delay (MID) task (Knutson etal., 2001) was used asin
Experiment 7 (Fig. 1). However participants were shown ageometricshape with a pre-trained
associated value ratherthan pictures of money. Feedback was given as before, so participants were
provided with arepeated reminder of the associated values throughout the experiment. Trials were
splitinto blocks of low values—10, 20 and 30p - and high values—30, 40 and 50p. Each block was
presented for half of each scannerrun with a length of 60 trials per block. Thus there were 120 trials
ineach scannerrun and two scannerruns separated by anatomical image collection. Block orderfor
low and high values was counterbalanced between participants, with half experiencing HLHL and
LHLH for the others. Paymentfollowing the scanning task was calculated by taking the outcome of a
random subset of trials which would add up to £15. The adaptive staircase was not used in this

experiment. The pre-training session was used to measure the length of response window that
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corresponded to 66% accuracy foreach participant. Response windows were settoalength

corresponding to 66% accuracy for each participant so that the average payout would be £10.

In orderfor participants tofamiliarise themselves with the task priorto the scannerand to
learn the values of the Conditioned Stimuli used in the experiment, they completed a behavioural
training session 4-7 days before scanning. In this session participants performed the same MID task
they would complete inthe scanner. This behavioural training was also used to set each participant’s
reactiontime threshold so they would achieve 66% accuracy during the scanningtask. During
training the duration of the response window was controlled by an adaptive staircase, starting at
220ms thenreducing by 1.5% for every two successful trialsinarow andincreasing by 1.5%

following an unsuccessfultrial.

5.3.2.3. Scanning Parameters

Scanning was performedina 3T Phillips Achieva scanner with 8 channel phased array head
coil. The same double echo, echo planarimaging sequence was employed asin the previous
experiment. Each functional scannerrunlasted 12 minutes and 15 seconds, collecting atotal of 294

volumes of 36 slices foreach TE usinga voxel size of 3x3x3mm, TR = 2.5s, TE; = 20ms, TE, = 45ms.

5.3.2.4. Functional Data Analysis

To ensure accurate combination of data from both echoes, realignment parameters were
calculated based onimages collected with the first echo sequence and were then applied identically
to image sequencesforboth echoes. As before, aweighted summation was then calculated
combining both echoesinto one time series upon which all subsequent processing and analysis was
performed. Weighted images were then normalised to MNI space using participants’ anatomical

scans, before being smoothed with a5mm FWHM Gaussian kernel.
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The onsets of each CS formed the six regressors of interest (L10, L20, L30, H30, H40, H50)
which were entered into the first level GLM. One regressor was entered representing button presses
controlling for basicaction preparation. Afurthertwelve were e ntered representingwin and lose
feedback events of each value, controlling for effects in response to payout. Pairwise comparisons
were calculated within subjects before being entered into second level analyses. Responding was
compared forthe effect of absolute highest vs lowest value: H50vs. L10 and the effect of within
block value: (H50+L30) vs. (H30+L10) to find regions which showed basicvalue dependent
responding. Pure context effectsindependent of absolutevalue werealso tested for by examining
the overlap value: H30 vs. L30. Awhole-brain uncorrected voxelwise threshold of p < 0.001 and an
extentthreshold of 31 voxels was appliedin orderto find significant activation clusters. This cluster
size was calculated using AplhaSim (Cox, 1996) such that the corrected a = 0.05. Once regions
respondingtovalue had been defined beta weights were extracted forall conditions so that it was
possible to show the specific pattern of responding. Processing was performed using SPM8and beta
weights were extracted using marsbar (Brett, Anton, Valbregue and Poline, 2002). Weighted
summation of echo signals was performed using code developed by the Sir Peter Mansfield

MagneticResonance Centre.

5.3.3. Results and Discussion

5.3.3.1. Behavioural Results

The average response window for 66% success calculated during the training task was 234ms
(S.D.24ms) and itranged from 272ms to 202ms. Accuracy duringthe scanningtask was between
46.3% and 84.6% witha mean of 64.6% (S.D. 13.0%). This resulted in payments between £7.20 and
£13.00 with an average of £9.85 (S.D. £2.06). Asthe range in performance was quite notable, a
Pearson’s correlation was conducted comparing winnings with the length of each participant’s
response windowto ensure the mannerin which this window was calculated was not causing the

seemingly large variance in accuracy, and no such relationship was found (r=0.17, p > 0.05). A six
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level, one-way ANOVAfound nosignificant effect of trial value on reaction times (F(1,5) =1.11) and a

paired samplest-test showed no effect of block (t(11) = 0.07).

5.3.3.2. fMRIResults

5.3.3.2.1. Highestvs Lowest: H50vs L10

In orderto verify that the experiment had elicited value dependent responding, the highest
and lowest absolutevalues were compared: H50> L10 (Table 5.7). Inline with previous studies,
thereis bilateral activation with its peakin the OFC which extends up into the ventral striatumand
anotherbilateral activation in the Thalamus (Figure 5.5). There is also a strong effectin the Medial
Frontal Gyrus (MFG) which suggests stimulus value modulates motor preparation even when there is

no response choice to be made. There were nosignificant effectsin the reverse contrast.

Figure 5.5 Significant clusters for Highest > Lowest Value: H50>L10
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Table 5.7. Significant Clusters for, Highest > Lowest Value: H50>L10

Anatomical Region Peak Activation (MNI
coordinates) ClusterSize Peakt-
X Y Z (voxels) value
Medial Frontal Gyrus (L/R) 4 14 50 38 10.5
Precentral Gyrus (L) -44 -8 48 46 8.7
Medial Frontal Gyrus (R) 6 4 54 31 8.6
Fusiform Gyrus (L) -36 -28 -26 37 7.4
Orbito-Frontal Cortex/ Caudate Head (R) 12 14 -14 31 7.4
Orbito- Frontal Cortex/Caudate Head (L) -16 6 -16 82 6.8
-12 16 -8 4.7
Vental Lateral Nucleus (L) -12 -10 12 49 6.4
Supramarginal Gyrus (R) 56 -38 24 41 6.1
50 -32 30 5.8
60 -36 34 4.4
Thalamus/Caudate Head (R) 8 0 10 45 6.0

5.3.3.2.2. Context DependentResponding: (H50+L30) vs (H30+L10) andL30 vs H30

As itwas hypothesized that value responding would be context dependent responses were
alsotested forregionsdisplaying higherrespondingto high vs low values within blocksi.e. (H50+L30)
> (H30+L10). Interestingly OFCactivationis notapparentinthis comparison, but thereis still
significant MFG activation, albeitata weakerlevel thanin Experiment 7where pictures of cash
elicited astrongerresponse (Table 5.8). There is also activationin the cingulate, although thisis
more posteriorthanis usually reportedin value judgment experiments (Figure 5.6). There were no

significantactivationsinthe reverse contrast.

Figure 5.6 Significant Clusters for, Within Block Comparison: (H50+L30) > (H30+L10)
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Table 5.8 Significant Clusters for, Within Block Comparison: (H50+L30) > (H30+L10)

Anatomical Region Peak Activation (MNI

coordinates) ClusterSize Peakt-

X Y Z (voxels) value
Cingulate (L/R) -12 8 46 126 8.0

4 0 46 7.4
Brain Stem -2 -30 -6 70 7.7
Precentral Gyrus (R) 60 -2 30 57 6.8
Precentral Gyrus/Rolandic Operculum (R) 62 2 8 38 6.3
Superior Temporal Gyrus (L) -50 -38 0 71 6.0
MFG (L) -6 48 34 35 5.8

-8 38 36 4.7
Cuneus(L) -20 -76 -2 44 5.6

Although one would expect context dependent respondingto be evidentin the within block
comparison, many other patterns of contextindependent responding would also be apparent. To
identify only thoseregionsthat are completely re-scaling their responding patterns with changesin
context, respondingtothe overlap value was compared between blocks: L30 > H30. Crucially, there

were no areas of significant activation nor were there any in the reverse contrast: H30 > L30.

Beta weights foreach areawere then extracted and plotted so that overall patterns of
responding could be assessed. Areas which respond tovalue doso eitherina linear correlation with
absolute value orina mannerwhich suggests higherrespondingto all valuesin high value blocks and

lowerrespondingtoall valuesinlow blocks (Figure 5.7).
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Figure 5.7 Extracted beta weights for the latter blocks.

5.3.4. Discussion

This experiment employed the same task and similar methodology as Experiment 7. The
crucial difference wasinthe stimuliused: Inthis experiment all categorical cues were removed from
the task. More similarvalues wereusedin both blocks, reducing the possibility of aqualitative
difference between pence and pounds. Thesevalues were then paired with neutral geometric
shapesand participants underwent a pre-training task so they were familiar with these values. This
removes the visual cues of notes vs coins. Thus, the only plausible explanation for effects of context

could be the temporal recency with which the othervalues were experienced. The results
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demonstrate thatthere isnolongeran effect of block, thereforerecency of experience (atleast on
the scale examined in thistask) is not sufficient to create contextual effects. The recall bias for
recentexperiences does not generalise from memory experiments to valuation as one may expect.
This has significantimplications for DbS and future modelling of it and explains why efforts to apply

an Ebbinghaus curve to the model in previous chapters have failed.

One potential criticism could be that as participants had been pre-trained tolearn the
associated values of stimuli, they began the task already calibrated to the full range of values they
were goingtosee. Furthermore, they were aware of the mannerin which blocks would cycle and
that all stimuli would be seen multipletimes, thus arguably negating the need tore-scale. However,
neither of these suggestions can explain the results of Experiment 7where participants did not know
the full range of values at the start of the experiment. Both the VS and thalamus showed context
dependent responding not only in the first two blocks butin the 3™ and 4™ blocks. By that pointin
the experimentthey were aware of the range of values. Therefore, the contextual effect would not

be evidentinthe latter blocks.

The findings of Experiments 7 & 8 demonstrate asignificant effect of rank ordering within
context within the brain. They also show that recency of experience (atleaston a shortertime scale)
isnot sufficientforthese effects to occur. The next experiments address whetherthe effects of rank

ordering can be replicated behaviourally and whetherrecencyis necessary for such effects.

5.4. Experiment 9

5.4.1. Introduction

Experiments 7 & 8 suggest thatthe effect of rank ordering may well be stronger when the
stimuliand task are simpler. Birnbaum (1992) showed individuals asimple gamble and asked them
to estimate itsvalue (or certainty equivalent). The potential answers which could then be selected

had eitherapositive skew oranegative skew. When choosing from a negatively skewed response
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set participants were more likely to select highervalues than when choosing from the positively
skewed set. Thiswas also observed by Stewart, Chater, Stott, & Reimers (2003), who manipulated
the range and skew of the available responses showingthatthe rank order of optionshad a
significant effect upon subsequent choice. Although consistent with DbS, findings relating to
available response options could also be due to demand characteristics. Participants often avoid
usingthe extremes of aresponse scale and many use the range of potential options asacue towards
what may be the “correct” answer (Kamenica, 2008; Prelec, Wernerfelt, & Zettelmeyer, 1997;

Wernerfelt, 1995).

In addition to the effects of response set, DbS requires that the effects have amemory
componentand are not simply aresult of menu context. Other experiments have demonstrated that
recently viewed values can cause preferencereversals (Stewart, 2009; Ungemach et al., 2011).
Individuals were exposed to amounts that were eitherin between oroutside of the payout values
immediately priortoacritical question. Thisserved torespectively increase ordecrease the
difference between values’ relativerank within recent experiences. However, this techniquealso
servestoincrease and decrease the overall range. Thusitis not possibleto know whetherthe effect

isdriven purely by rank.

In arecentstudy Stewartetal., (in press) addressed both the issues of non-menu contextand
range effects. Participants answered aseries of dilemmas based upon simple gambles. For half the
participants the payoutvalues had a significant positive skewwhereas the remaining half
experiencedvalues with a negative skew. Thesetwo distributions resultin very different predicted
utility curves when calculated by DbS (Figure 5.8). When participants’ utility curves were extracted
fromtheirresponses, there was asignificant difference in the curvature of utility curves depending
upon condition. The positive skew condition revealed a standard concave utility curve but

participantsinthe negative skew condition actually exhibited a convex utility curve.
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This experiment adapts the methodology usedin Stewartetal (in press)inordertotestthe
hypothesis suggested by the results of Experiments 7 & 8: |s context defined only by categorical cues
rather than mere recency of exposure? If so, thenitshould be possible toreplicatethe results using

a withinsubject design and concurrent exposure to different contexts.

5.4.2. Method

5.4.2.1. Participants

Fifty undergraduates at the University of Nottingham participatedin the study for course

credit, 6 males and 44 females. Their mean age was 18.27.

5.4.2.2. Stimuli

For the positive skew condition the values £10, £20, £50, £100, £200 and £500 were crossed
with probabilities .2, .4, .6, .8 and 1 to create 300 items. All non-dominant pairings of these items
were selectedi.e., pairswherethe highervalue was not also paired with a higher probability. This
was thenrepeated forthe negative skew condition where values were created by subtracting the
positive skew values from £510 meaning £10, £310, £410, £460, £490 and £500. These stimuli values
were selected because of theirsignificant positive and negative skew. This means that DbS predictsa

concave and a convex utility curve respectively (Figure 5.8).

There were 150 non-dominant pairs for each condition. An additional 15dominant pairs were

alsoselected from each to serve as catch trials. Thus, participants made a total of 330 choices.
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Figure 5.8 The utility curves predicted by DbS in positive and negative skew conditions
5.4.2.3. Procedure

The study was conducted online using open source software “Limesurvey”. Participants were
recruited through the University of Nottingham’s online participant pool. When they signed up for
the study they were then given alink which took them straight to the start of the experiment. They
were then asked to complete the questions without breaks. They were also warned that although
most questions had no right or wrong answer, there were catch questions which would be used to
ensure they were paying properattention. They were also informed that although they were freeto
complete the task at theirown pace, if they provided no responses for a particularly long time the

system would assume they had withdrawn and would time out.

Participants were told they would be shown potential choices from two hypothetical
gameshows. One game-show offered prizes of phones, the other offered adventure days. In each
gameshow two prizes of differing valuewould be offered, each linked to urns with black and gold

ballsin. The contestant would know how many of the balls were winning gold balls and how many
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were losing black ones. The contestant must decide whether to pick fromthe urn with the more
valuable prize but usually fewer gold balls orfromthe urn with the less valuable prizebut witha
greater chance of drawinga gold ball. Choices were phrased as “A 20% chance of winningaphone
worth £500 or a 100% chance of winningaphone worth £10” or inthe alternate gameshow “A 60%
chance of winningan adventure day worth £310 or an 80% chance of winningan adventure day

worth £490”.

Questions were presented with five on each web-page and the gameshowin question
alternated from one page to the next. Thus, participants would answer five questions from the
positive skew condition, then five from the negative skew condition. The positive and negative skews
were counterbalanced between gameshows, with half of participants seeing phones with positively
skewedvalues andthe other half seeingadventure days with positively skewed value. To make the
current game-show as salient as possible pictures of either mobile phones or people onadventure
days were shown at the top of each page. The background colour on eitherside of the questions was

alsoalternated between red and black depending upon the current game-show.

5.4.3. Results

The probability of selecting the left option on any given choice can be estimated using
Equation 1. This equation uses the subjective utility (U) of each individual payout of X for risky
gamblesandY for safe gambles. These are then weighted by the probabilities Qand P for risky and
safe gamblesrespectively sothatthe Luce decision rule can be used to calculate the probability of
selectingthe safe option. The y component controls the determinism of the equation, with values

above 1 makingthe resulting predictions more confident for smaller differences in expected utilities.

bias onalq.u(y)]¥eond
biasconalq. u(y)]¥eond + [p. u(x)]¥cond

Prob(Safe) =
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By performingalogtransformthiscan then be re-writtenas

[prob(safe)

, q
prob(safe)] = log(blascond) * Ycond log(u(}’)) — Ycond log(u(x)) + Yconalog (;)

One can then preformthe substitutions

log(biascond) = Beona + cond. Beona

And

= q + cond. q
Y cond ﬂlo‘gi Bcond.log(g)

Setting cond as a dummy variable representing experimental condition (positive or negative

skew dilemma) gives

log[ prob(safe) = Lo+ Beona + zﬁi.Xi + 0, (a\.log (ﬂ) +p q\cond.log (ﬂ)

1 —prob(safe) i “’9(5) p C""d-“’g(z) p
Thisis now a standard logarithmicregression equation and can be analysed with standard

statistical packages. To simplify each term point by point, Byis the overall bias towards choosing the

safe option. B.onq isthe dummy variable indicating the bias towards selecting safe in one condition

overthe other. The term }}; ;. X; is a series of i dummy variables, one foreach value used in the

experiment. The dummy indicates the presence of each value in eithergamble, 1forthe safe option,

-1forrisky. The influence of the relative difference in probability between the two optionsis

represented by 'Bzog(i)' log (%) andthe difference between conditions represented by
p

ﬁcondlog(q) cond.log (%).

P
To extractthe term u(X) fromthe beta weights the determinism had to be first controlled and

then the exponent calculated to transform back into the original scale.
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ulX) = exp( i )

cond

The analysis was applied to the results and the extracted utility curves are plottedin Figure
5.9. Thereisa clear visual difference between the lines with mid-range payouts being weighted
lowerinthe negative skew condition. Thisis confirmed using atwo-sample z-test comparing utilities
of £310 inthe negative skew condition and £200 in the positive skew condition. Despitethe former

havinga much higherobjective valueits estimated utility is significantly lower (Z=9.65, p<0.001).
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Figure 5.9 Weights for probability (left) and Utility of payouts (right). Error bars represent standard errors of parameter

estimates.
5.4.4. Discussion

This experiment shows that the neuroimaging findings presented in Experiments 7& 8 have
demonstrable behavioural correlates. Previous studies have shown that the distribution of

experiences can manipulateindividuals’ utility curves. However, thisis the first demonstration using
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a within-subject design with concurrent exposure to different distributions. The design used here
also controls for effects of range, as both distributions have the same maximum and minimum.
Furthermore, asthe differencesin distribution are only apparentacross several dilemmas, menu

effectscanalsobe ruled outalong with their potential demand effects.

5.5. Chapter Discussion
This chapter presents strong supportforrank order encoding of value using both

neuroimaging and behavioural methods. Experiments 7 & 8 show that regions of the brain which are
responsive toreward encode value by rank order. There was no regionin which activity as measured
by fMRI represented the true financialvalue of the current trial. The findings also show thatvalue is
encoded ina distributed network with varying levels of context dependency. Regions which are
associated with lowerlevel encoding such as the Thalamus and VS show a context dependency that
isdefined by categorical cues. However, regions such as the vmPFCand the ACC that are further
alongthe processing chain and aggregate information from multipleinputs are unaffected by these
cues. Instead, they encode value interms of the item’s overall rank within the experiment.
Experiment9used choices between simple gamblesin different distributions and demonstrated a

strong effect of rank with utility curves modified by the environment distribution.

Both Experiment 8 & 9 demonstrate that the boundaries of contextual effects are defined by
explicit cues of category membership. Experiment 8 demonstrates that simple recency of experience
is not sufficient to cause contextual effects, whilst Experiment 9shows thatit is not necessary either.
This finding explains why attempts in previous chapters to add forgetting functions such as the serial
order position curve and Ebbinghaus curve were unsuccessful. Itis likely that such recency effects
will be apparent oververylongdurations, but this would be due to complete forgetting orinability
to recall previous experiences. The effect here is attributable only toitems being explicitly

disregarded whenthey werestillavailableto be sampled.
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Experiment 9also demonstrates a successful extension of neuroeconomicfindings to novel
behavioural effects. Thisis a troublingly rare occurrence. Many findings within neuroscience have
not been demonstrated in abehavioural analogue and it seems there is aserious lack of cross
modality replication. This chapter not only provides novelfindings relevant toimportantand current
topics of discussion butalso presents astrong bridge between the fields of neuroscience and

behavioural psychology.
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6. Chapter 6 — General Discussion

6.1. Introduction
Recentyears have seena growinginterestin describing human decision makingand

judgements using psychologically plausible process models. Progress towards this goal has speeded
as more psychologists becomeinterested in financial decision makingand more economists become
interestedin results from psychology. This thesis adds to the debate and provides novel empirical
findingsrelevant tothe development of more accurate and plausible models. The main focus of the
empirical research has been the Decision by Sampling model, but many of the results also speak to
more general issues and debates within the JIDMcommunity. This chapter will begin with asummary
of the empirical findings from each chapterbefore bringing togetherthe findings from all

experiments and discussing the implications for widerissues.

6.1.1. Summary of Findings

The overarching findings are thatin complex multi-attribute decisions DbSis arelatively poor
model of human judgementand decision making, butin more simpletasks, with small numbers of
stimulivalues and few attributes, DbS performs well. Both behavioural and neuroimaging findings

strongly supportrank order encoding and context dependency in simple decision environments.

Chapter 2 employed a multi-attribute valuation task and uses participants’ estimates of
apartmentvaluationsto test the explanatory power of DbS by explicitly simulating the model. The
distribution of item valuesis also modified in amannerthat tests the predictions of RFT. The results
show that DbS is a relatively poor predictor of value estimates, being outperformed by asimple
baseline measure and a Weighted ADDitive model. Implementing a weighting function to simulate
effects of recency in memory sampling did notimprove the performance of DbS and parameter

estimation revealed thatthe best fit was froma model closest to the original unweighted DbS. The
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results were more supportive of RFT, but only when one assumes the full range of values was

underestimated due to the highervalues being comparatively rare in one condition.

Chapter 3 again used a multi-attribute valuation task with apartments as the stimuli, but this
time the distributions of individual attribute values were modified ratherthan the overall values of
the items. Therefore, DbS made specific predictions about the way these scales would be
interpreted and weighted in participants’ estimates of overallitem value. The results showed that
participants’ use of these attributes did not match the predictions of DbS, but nor did they match
the predictions of other considered models. As the results could be explained by assumptions and
information garnered from real world experience priorto the experiment, the same stimuli were
usedin Experiment4but with a different coverstory. When participants believed they were judging
the value of mineral depositsinstead of apartments, their use of attributes changed significantly.
The change suggested thatthe results of Experiment 3were attributable to prior expectations.
However, the results forvaluations of mineral deposits were also not explained by any considered
model. The pattern of responding suggested that the majority of variance could be explained by
WADD. But, for attributes participants considered important, values near the extremes of the scale
were relatively over-weighted suggesting they were especially salientand used as a qualitative cue
to raise or lowerestimates. The predictions of DbS were less accurate than simple baseline measures

inboth of the experiments.

Chapter4 used similar multi-attribute stimuli to Experiment 3, but employed a choice task
rather than eliciting value estimates. DbS again performed relatively poorly. When modelled
separately foreach participant, DbS was always outperformed by eithera WADD model, Dawesrule
or both. However, there was some tentative supportforencoding by rank orderingas when
participants’ use of attribute values was recovered, the weighting function represented cumulative
frequency. Experiment 6also used concurrent eye tracking to examine whether participants visual

attention to different attributes was areliableanalogue for the differential weighting they
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subsequently applied toinformation when making their decisions. No such correlation was found. As
aresult, when attention weighted drift diffusion models were fitted to the datatheiraccuracy was
poor. This suggeststhat eye-tracking cannot serve as ameaningful analogue for attentiontermsin

models such as DbS and Decision Field Theory (Busemeyer & Townsend, 1993).

Chapter5 focussed more closelyupon the neuroscience evidenceforrank encoding and
contextsensitivity. Experiment 7used an fMRI paradigm with a distribution of values which meant
rank order encoding predicted a different activation pattern than models assuming asimple linear
transform of absolute value. The results showed that activity in value sensitive regions was highly
contextdependentand that response magnitudes were predicted better by rank orderencoding
than they were by absolute value. Experiment 8then demonstrated that the context sensitivity
foundindopaminergicrewardregionsincludingthe VS and the thalamus were only sensitive to
contextual shifts when there was an exogenous cue. That is to say that these regions were not
disproportionately sensitive to the most recent events. Experiment 9then soughtto demonstrate
these contextual effects and a basiceffect of DbS by eliciting choices between risky gamblesin
different contexts. Each context presented values drawn from either a positively or negatively
skewed distribution and participants’ utility curves showed significant concavity and convexity in

these respective conditions. Thisis precisely the pattern predicted by DbS.

6.2. Judgement and Decision by Rank-Order

The behavioural results presented in the preceding chapters are mixed in their support of
encoding by rank order. First let’s examine the results which support DbS and rank order effects
before movingon to discuss those which do not. Experiment 6 shows that in a multi-attribute choice
task when one of the attributesis given anon-lineardistribution, the rank ordered cumulative
frequency plot can be recovered from participants decisions using multiple regression. Putsimply,
participants are using rank order not the attribute’s absolutevalue. Furthermore, Experiment9

demonstrates that participants’ utility curves are not stable overtime butrespondto the
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distribution of valuesin the choice set. When making decisionsin acontext with a positive skew the
recovered utility curves exhibit the concave shape familiar from EUT and CPT. However, when
making decisionsinacontext with significant negative skew the utility curves exhibita convex shape,

suggestingrisk seeking behaviour.

Although Experiment 6found that participants’ use of the crime attribute was best explained
by rank ordering, the results of valuation tasks in Experiments 3&4 were very different. For both
experiments, one attribute had a cubic distribution such that rank ordering would predict a cubic
effectin participants’ use of the attribute when calculating theirresponses. In Experiment 3, a cubic
effect was present, but the curvature wasinthe opposite direction to that predicted. Furthermore,
the same effect was observed foran attribute with linear distribution, but curvilinear weighting
upontrue values. In Experiment4there was no cubiceffectforthe attribute with a cubic
distribution, but there was fortwo others despite them havinglinear distributions. The difference
betweentheseresults and those of the choice task show that participants make different use of

information depending upon the type of responseelicited.

Thereisa significant literature investigating the difference between choice and valuation
(Hsee etal., 1999; Lichtenstein &Slovic, 1971; Sevdalis & Harvey, 2006; Tversky etal., 1990). The
results of Experiment 5 concur with the evaluability hypothesis, arguably the most widely supported
explanation forthe phenomenon. Itis found thatalthough the large majority of participants use the
same WADD process for judgements and decisions, theirinterpretation and use of the attribute
values differs between task modalities. When providing value estimates, participants relatively
under-weight crime (the attribute with the cubicdistribution) as the majority of its values cluster
around the centre of the scale. This makes it harderto discriminate relatively small absolute
differenceswhenonlyoneitemisseenatatime. However, the attribute’s influence increases
significantly during the choice task as presenting two side by side makes differences more apparent.

Furthermore, individuals are more likelyto recall items and values more similarto those presented
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because they act as a cue (Brown etal., 2007; Howard & Kahana, 2002). In the valuation task there
will be no particular effect of this bias. However, in choice the two items will cue recall of other
similarvalues. Asvalues are clustered around the centre of the scale the close proximity of many
items tothe cues meansthere will be ahighernumber of recalled values which liebetween the two

alternatives.

Althoughthereisnoevidence forrank ordering of attribute values during valuation tasks,
Experiment 2does show evidenceforrange-frequency effects. RFT can provide a parsimonious
explanation of the resultsif one makesthe reasonableassumption that participants are prone to
underestimating the upperbound when values atthe extreme high end of arange are particularly
rare. Several other accounts can explain why participants regularly provide value estimates that fall
withinthe unrepresented portion of the value range, including asimple regression to the mean.
However, RFTisthe only theory which also predicts the control items’ rise invalue estimates inthe
modified distribution condition. Thus, in valuation tasks the interpretation of attributescalesis not

reliantuponrank order, but rank does have a significantimpact upon value estimates.

A variable whichisundoubtedly afactor in the size of rank order effectsis the complexity of
the choice/judgement environments. The strongest behavioural effectis found for Experiment9, the
experiment with the simplest task and design. The only attributes are payout and probability, and
there are only 6 possible payoutsin each condition. This means thatitis possible for —the majority
of —participantstorepresentall potential payoutsin working memory concurrently. Indeed, the vast
majority of previous demonstrations of rank order effects have used either a manipulation with no
memory requirementi.e. menu context, (Birnbaum, 1992) or distributions with asmall number of

values (Stewart, 2009; Stewart et al., 2005). Thisissue is discussed in more detail below.

6.3. Multiple Attribute Tasks and Information Integration

As stated above, the reported experiments demonstrate that the complexity of the task has a

significantimpact upon how closely participants’ choices match the predictions of DbS. Therefore
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the obvious questionis whether DbS can only make accurate predictionsin simple decision
environments. If true, this would suggest that participants switch to a qualitatively different strategy
inmore complex environments, ina manner similarto the adaptive toolbox account (Bréder, 2003;
Gigerenzer &Selten, 2002). Alternatively it may be that participants do not use different strategies,
but specificcharacteristics of DbSare incorrectinits current formulation. If these inaccuracies were
to have a minimal effect upon predictions in simpler environments but amore significant effectin

more complex environments then one would expect the results found throughout this thesis.

One of the components of complexity is the number of different values experienced foran
attribute within a choice environment. When the task environmentis simple and there are relatively
few values which are repeated frequently throughout the task, DbSis far more accurate at
predicting decisions. Another source of complexity is the number of attributes for which values are
given. Again, in Experiment9, there are only two attributes: value and probability. However, in
Experiments 1-6, items have between 4and 5 attributes. One effect of this additional complexity is
to make the task more cognitively demanding through the retention, recall and examination of more
information. Italso raises the more specific question of how individuals judge the importance of
each attribute and then combine very different kinds of information when calculating a valuation or
decisionforthe itemasa whole. Thusthere are two general factors which may explain why the
accuracy of DbS is sensitive to complexity: General cognitive load (especially the number of values

which can potentially be sampled from memory) and the number of attributes to be considered.

First considerthe effect of general cognitive load and the number of values experiencedon a
single attribute scale during the task. DbS predicts choices most accurately in Experiment 9where
there are relatively fewvalues experienced during the experiment. Accuracy is farlowerin
Experiments 5&6where a large number of different values are sampled from a continuous scale
with little repetition of values. However, Experiment 6 also shows that participants’ use of values on

a single attribute is modified by rank order. This suggests that DbS correctly predicts aspects of the
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early stagesinthe decision process. So the later steps must account for a large proportion of the

drop inaccuracy. Principally, the way DbS integrates information from different attributes.

In its original form DbS predicts thatindividuals sample from each attribute with equal
probability. This essentially equates to an un-weighted additive model, where itis the rank positions
which are being summed ratherthan the attribute values. In every experiment where this was
examined here, the accuracy was significantly improved by allowing the weighting of attributes to
vary freely within the model. This weighted formulation of DbS matches the predictive accuracy of
WADD, butdoes not outperformit. Thisincludes Experiments 5&6 where the non-linear attribute

distribution should favour DbS, given the evidence forrank ordering.

Thisis a curious result. One suggestion could be that the integration of information is
multiplicative, notadditive. Howeveritis unlikely that thisis drivingthe effect, as simulations show
that multiplicativeand additive models can reliably mimiceach other (Stewart, 2011) . Another
possibility is that participants are integrating information in away which violates the independence
of value perception on each attribute. Forexample it seems plausible that participants could think a
particularfloorspace dimensionisvery good foraone bedroom apartment, but poorwhen there
are fourbedrooms. But this cannot be so easily argued for Experiment 4where participants were
instead valuing mineral deposits. Furthermore there is no reason to suspect that such violations of
independencewould have adisproportionate effect upon weighted DbS over WADD as they both

predict the same mechanism forinformation integration.

DbS and WADD have the same explanatory power evenin experiments wheretheir
predictions are less highly correlated, which suggests that the models explainindependent variance.
This could be the result of over-fitting, as the independent weighting of each attribute adds alarge
number of free parametersto the models. If thisis the case, thenthe results still show tentative

support for WADD, as both have the same number of free parameters but more individuals are
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categorized asresponding using that strategy than DbS. However, this would not explain the rank

ordering of attribute values.

Itis possible that participants use avariety of cues and arguments when making complex
decisions. In Experiments 5&6, Dawes rule was shown to modulate the performance of other
models, but was a poor predictor when considered alone. It was theoretically possible for DbS to
explain this phenomenon with arecency weighting curve, negating any suggestion of separate cues
or processes. However, adding such aweighting curve reduced DbS’s accuracy. Thus it seems that
participants use a variety of cues/strategies including WADD, rank order and Dawes when making
theirdecisions. This appears an unsatisfactory suggestion as it seems particularly complexand
suggestsa high level of processingif all are considered for each decision. Howeverit seems more
plausible that on any particular choice an individual may rely primarily on WADD. Then if they are
relatively indifferent between options, the fact that one particularattribute value was betterthana
large number of previousitems, orone of the current optionsis betteron more attributes may be
used as a reason or cue for choosingthe favoureditem. In essence, the results are compatiblewitha
form of the adaptive toolbox (Broder, 2003; Gigerenzer & Selten, 2002), but using tools or models

which are more complex than proposed by the original heuristicapproach.

6.3.1. Attention as a Measure of Attribute Weighting

Preferential looking toward the chosenitemisacritical prediction of attention driven models
such as decision field theory and several versions of drift diffusion (Busemeyer & Townsend, 1993;
Krajbich etal., 2010). The gaze cascade supports these predictions, allowing such models to predict
choicesfrom eye movements with accuracy significantly betterthan chance (Atalay et al., 2012;
Glaholt & Reingold, 2009; Shimojo etal., 2003; Simion & Shimojo, 2007). However, the models also
make specific predictions of a correlation between attention towards information and subsequent
information weightingin choice. Previous eye-tracking experiments which have found resultsin

favour of such attention weighted models have used single attribute items or have used paradigms
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inwhichthe eye-tracking data did not discern which attributes were attended (Atalay et al., 2012;
Glaholt & Reingold, 2009; Krajbich etal., 2010; Ratcliff & McKoon, 2007). This isa serious weakness,
because this essentially confounds attention towards the item with attention towards information.
Experiment 6is the first study to orthogonalise item and information in a multi-attribute choice task
and the results do not supportthese model’s predictions. There is no correlation between relative
attention to attributes and theirrelative influence upon responses. Furthermore, when visual
attentionisusedtoweightadrift diffusion model (Krajbich etal., 2010), the resulting predictions are

significantly less accurate than otherbaseline measures.

Oneresponse tothis negative finding could be toretain the existing models and their
assumptionsregarding attention, butto dismiss visual attention as areliable analoguefor
individuals’ covert attention. However the gaze cascade effectis knownto be a robust phenomenon
(Shimojoetal., 2003; Simion & Shimojo, 2007) and relative visual attention between items does
predict 65% of choicesin Experiment 6. Therefore, to say that eye-tracking cannot predictany
aspects of the decision processistoignore these resultsand merely leave a different phenomenon
withoutan explanation. What these results do suggestisthatthe feedback loop hypothesisedin
experiments on the gaze cascade (butforan opposingview see Orquin & Mueller Loose, 2013) is
only sensitivetothe item’s overallvalue. For the attention and saccade planning systems to be
biased towards the preferrediteminthe lead up to a choice, suggests thatthere isa correlation
between attention planningandthe current relative evidence, oraccumulatorvaluesforthe items.
It alsosuggeststhatthe value of eachitemisrepresented asawhole atall time-points, ratherthan
as separate accumulators forseparate attributes and the information beingintegrated only when
the choice is made. Sothe eye tracking results sup port a model of evidence accumulation for
options, with value only beingrepresented atthe whole item level. But, there is no effect of
attention to differentinformation orattributes. Evidenceaccumulator models therefore need to be

re-examined with respect toinformation weighting, as none currently make satisfactory predictions.
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6.4. Sampling and Memory Effects

One of the main aims of this thesis was to investigate the impact of memory phenomena upon
decision making. Many of the characteristics of recall and sampling are unspecified in DbS, whichis
surprising given how important memory is tothe model. The two undefined characteristics
investigatedin thisthesis are how manyitemsare sampled and which items are mostlikely to be

recalled.

6.4.1. Sample Size

Previous experiments have suggested thatjudgements and decisions rely upon comparisons
with a sample nolargerthan an individual’'s WM capacity (Dougherty & Hunter, 2003a, 2003b;
Kareevetal., 1997; Sprenger & Dougherty, 2006). However, DbS predicts arunningtotal of
accumulated evidence is represented for each item whilealternatives are sampled sequentially.
Therefore, DbS does not predict that all sampled alternatives must be concurrentlyrepresentedin
WM, sothe numberof sampled alternativesis potentially larger. The results of Experiment 9show
that whenthe number of previously experienced valuesis small enough to fitin WM, DbS accurately
predicts choices. However, when the number of previous valuesis very large, such as in Experiments
1-6, the model has poor predictive accuracy and explicitly estimating parameters shows that the

best model fit comes from the largest possible sample.

Experiments 1-6 used a larger number of values, meaning the best fitting sample size could
only be estimated by explicitly modelling DbS. This means thatany general inaccuraciesin the DbS
model would reduce the accuracy and validity of the estimated parameters. As otheranalyses have
demonstrated that DbSis not accurate, particularly in multi-attribute tasks, itis perhaps not
surprising that attempts at modellingthe samplesize found that the best fit came with the largest
possible sample, which alsoresulted in the strongest correlation between DbS and WADD. However,
the results of multi-attribute tasks in Experiments 1-6 show participants have far greater

discriminability than would be possible using only the 7+/-2 comparisons, or possibly fewer (Cowan,
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2001), that could be concurrently represented in WM. Such a small number of comparisons would
alsoresultinthe majority of attributes receiving only one comparison with alternative values. This
would mean the weighting functions extracted forindividual attributes would be far noisier than

those which were found.

Despite Experiments 1-6rejecting very small samples, Experiment 9shows reliablerank order
and context effects when the relatively small number of alternative values can be represented
simultaneously in WM. This can be interpreted as tentative support for the suggestion that
participants switch strategies depending upon the number of values from which they can sample
(Lindskogetal., 2013). However, having fewer potentially sampled values also makes it fareasierto
inferwhich are likely to be presentin anysingle sample. Thisinturn reduces the noiseinany
modelling and estimation. This noise and uncertainty isaninherent problem when modellinga
stochasticsystem such as covert memory recall, which cannot be directly measured. Thusin
Experiments 1-6it’s possible that participants are sampling from memory (drawing a sample larger
than WM) but thisis not detected because simulations of the modelmust average across a large
number of potential samples. Foradirect test of sample sizes, future experiments must be designed
with a specific manipulation which can test for effects of sample size. Many previous experiments
have done so, but by comparing the response patterns of individuals with high WM capacity to those
with low capacity (Dougherty & Hunter, 2003a; Kareev etal., 1997) it is possible thatthe differences
are caused by a more general underlying difference in cognitive ability or strategy at the individual

level, ratherthan a within-individual switch from one strategy to another (Gaissmaieretal., 2006).

6.4.2. Predicting Which Items are Sampled

To date the research on DbS has focussed primarily upon the distribution of all values within
the environment. As detailed in chapter one, this hasfound astrong correlation between the global
distributions of values and average weighting or utility curves (Stewart, 2009; Stewart et al., 2006).

However, thisis only one mechanism which can systematically bias judgements based upon DbS.
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Equallyimportantis which values are sampled at each particulartime point. If there is a systematic
bias to recalling say, particularly high orlow value items, then this will bias DbS judgements to be
loweror higherrespectively. Thisis true regardless of the overall distribution of values from which
individuals’ sample. To examine the likely patterns of such biases, evidence and models were sought

from the literature on memory research.

Perhapsthe mostrobustfindinginall memoryresearchisthe recency effect. The likelihood of
an itembeingsuccessfully recalledisinversely proportional to the length of time which has passed
since itwas encoded (Ebbinghaus, 1913). Therefore it was hypothesised that values experienced
most recently were more likely to be sampled and thus bias valuations and decisions. However,
when DbS was modelled with eitheran Ebbinghaus orserial order position curve used toweight the
probability of previous values being sampled, noimprovement was found. The weighted model
neversurpassed the fit of the original instantiation of DbS. When the effect of different parameter
values are examined the fit of the weighted model shows an asymptoticrelationship with the
performance of the unweighted model. The accuracy of the modified modelapproached that of the
original DbS model as changesin the Ebbinghaus curve parameter reduced the strength of the

relative recency bias.

Otherstudies of value estimation have shown that the single mostrecentitemvalue hasa
significantinfluence upon the nextvaluation (Matthews & Stewart, 2009). But thisis essentiallya
demonstration of the anchoring effect (Simmons, LeBoeuf, & Nelson, 2010; Tversky & Kahneman,
1974). It is also not a specific prediction of DbS, whichis primarily intended to predict choices. If
participants had a steep forgetting curve then the model would predict an anchoring effect from
individual attribute values, but not from the overall item value. Although this pattern of insufficient
adjustment hasbeenfound onindividual attribute scales in relatively simple decisions (Ungemach et

al., 2011), itis not found here in more complex multi-attribute tasks. Furthermore, these previous
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studies merely demonstrate the effect of the single most recent experience. There was no attempt

to show a continuous forgetting curve or an effect comparable to models of memory.

In the experiments reportedin this thesistherewas only one situation where the results
showed significant overweighting of recent binary comparisons. This was in chapter4 where Dawes
rule was show to add explanatory power orthogonal to both WADD and DbS, even when DbS was
weighted with an Ebbinghaus curve. But this bias only occurs for the immediately available
alternative, i.e. whenthereis no memory requirement. Therefore it cannot be argued as an effect of

recency as there is no such bias forthe immediately precedingitems.

Anotherreliablefindingin memory researchisthatwhenoneitemhasbeen providedasa
cue, oris simply recalled first, thenindividuals are more likely to recall otheritems which are more
similartoit (Brownetal., 2007; Howard & Kahana, 2002) and more likelytorecall otheritems
experiencedinthe same context (Godden & Baddeley, 1980). In the context of DbS this seems
logical:thereislittle pointinanindividualrecalling the price of achocolate bar they purchased last
week when judging the relative merits of two differently priced cars. Experiment 9demonstrates
that thismemory phenomenonis apparentin participants’ decision making. When participants
alternated between choosing phones and adventure days of different values, theirinferred utility
curves closely matched the distribution of values within each item category. This creation of salient
contextual boundaries had astrong effect, with the neuroscience evidence also showingthe same
pattern. There was no effect of recency orblock, but a strong contextual distinctionin neural
responses when an exogenous context cue is present. This contextual findingis predicted by models
of memory, howeveritisalso compatible with more general models which suggest that the use of

strategies and meta-information is specificto choice environments and tasks (Hertwig etal., 2006).

6.4.3. Exemplar or Non-Exemplar Representation
The findings that the best fitting sample size is one so large thatitencompassesallvaluesin

the experimentand thatthere is no effect of recency seriously questions the role of memoryin
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decision making. It speaks to a debate more general than simply testing the specifics of DbS: Are
experienced distributions represented in an exemplar or non-exemplar system (Camilleri & Newell,
2013)? DbS clearlyfallsintothe former category, as it predicts that specificinstances and exemplars
are recalled from memory foreach decision. There are also other more general models which posit

exemplarrepresentation (Lejarraga, Dutt, & Gonzalez, 2012).

Non-exemplar models suggest that ratherthan remembering orrecalling the specific
instances of previousitems, values or experiences, individuals instead store meta-data. Depending
uponthe particularformulation of the model, this caninclude the mean, range, distribution and
skew of the experienced values (Brainerd & Reyna, 1990; Hertwigetal., 2006; Kiihberger, 1998). It is
generally suggested that these models do not predict any recency bias (Camilleri & Newell, 2013) as
specificitemsare notbeingrecalled. Furthermore, as the meta-information is updated with each
new experience, it makes predictions similarto that of an exemplar model with no limit on sample
size. This means non-exemplar models can explain the lack of memory phenomenain Experiments 1-
6. And, as different meta-information would be stored for different choice environments, the
context effects of Experiments 7 & 9 would still be predicted. Such amodel could also explainthe
cubic weighting functionsfoundin Chapter4, if one posits that the meta-information represents (or

isat least biased by) rank order or range-frequency effects.

It would therefore seem that non-exemplar models are amore suitable hypothesis. However,
theyare by no meansa perfectsolution. Forone, if the meta-information is updated with every new
experience, itseems likely that there would still be a bias towards the most recentinformation. It
would be a very difficult task to perfectly calculate the change which should be made toan
estimated distribution based upon the importance of the new information and the importance of all

previousinformation.

When examiningthe results of previous experiments, the balance of findings also supportan

exemplarbased model (Camilleri& Newell, 2013). For example, in recent model competitions for
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decisions from experience, exemplar models have reliably outperformed non-exemplar alternatives
(Erevet al., 2010; Gonzalez & Dutt, 2011; Hau, Pleskac, Kiefer, & Hertwig, 2008). Exemplar models
also provide amore parsimonious explanation foridealised distributions of experiences producing
more accurate judgements (Giguere & Love, 2013) and individuals acting as though the distribution
of experienced examplesisthe true distribution, even when they have explicit knowledge thatitis

not (Feileretal., 2013).

What is most interesting with regards the results presented here are the effects of WM
capacity. Non-exemplar models cannot explain the oversensitivityto correlations (Kareevetal.,
1997) and reduced accuracy in specificjudgements (Dougherty & Hunter, 2003a, 2003b) found for
individuals with smaller WM. The results of Experiments 7 & 9 showed that the exemplar model of
DbS predictsthe datavery accurately when there are few values oritems. However, in Experiments
1-6 whenthere were more valuesthan could be represented in WM, the exemplar model performed
poorly and the results fitwell with anon-exemplaraccount. Therefore, the results presented here
suggest that when the number of values within atask or choice environmentislow enough that they
can all be represented concurrently in WM, participants rely upon the exemplar model of DbS.
However, whenthere are too many values anditems, individuals cannot rely upon such astrategy

theyinstead use meta-information.

6.5. Neural Encoding of Value

Experiment7isthe first fMRI study to directly compare the predictions of rank orderand
absolute financial value representations in neural encoding. The results are strongly in favour of rank
orderencodingin higherfunctioningregionsincludingthe vmPFCand the ACC. These are thought to
be closestto the end of the information integration process and therefore the nearest neurological
proxy for the final response (Chib, Rangel, Shimojo, & O'Doherty, 2009; Hare, O'Doherty, Camerer,
Schultz, & Rangel, 2008). The response of lower, dopaminergicreward regionsis also compatible

with DbS, as respondingrescalesto representthe rank orderofthe current item within the current
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context. This total re-scalingisincompatible with other models of relative difference from the
average environmentvalue, which would predict smaller activations when the differences from the

average value were also smaller (Knutson & Cooper, 2005).

Early fMRI experiments were limited by the quality of scanners and analysis techniques. The
poor signal to noise ratio and high cost of testinglarge numbers of participants meant the most
successful and popular paradigms were those which relied upon relatively simple comparisons
(O'Dohertyetal., 2001). These involved participants receiving gains and experiencing losses of large
or small magnitudes, sometimes with varying degrees of risk attached. When greateractivity was
foundforhighervalues or more preferable outcomes the simplest assumption was that these areas
responded with more activation to more valuable stimuliand opportunities. Thus there has beenan
implicitassumption running through subsequentresearch thatthereis a linearrelationship between

value and neural response.

As the accuracy of fMRI has improved, research has moved towards addressing more complex
qguestions. Theseincludethe endowment effect (Plassmann, O'Doherty, & Rangel, 2007), menu
effectsin choice (Cooperetal., 2009; Elliottetal., 2008) and the interaction between visual
attentionandvalue signal (Limetal., 2011); butthe most basicassumptions and findings have not
beenre-visited. The original assumption of alinearrelationship has persisted, not because there was
strong evidence tosupportit, but because itwas the simplestinterpretations and there was no
evidence todirectly contradict it. Many researchers have also been reluctant to examine more basic
characteristicswhen the field has moved ontorelatively complex issues. Furthermore, despite the
advancesinscanners, researchersstill tend to prefer simpler designs with qualitative comparisons
and contrasts, in an attemptto ensure high powerand minimisethe chances of null-effectsin what
isstill a very expensive methodology. Itis thanks largely to the advancesin scannertechnology and

to the new double echo procedures being pioneered at the University of Nottingham thatit was
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possible to conduct the experiments reportedin Chapter5and re-examine this core building block

of neuroeconomics.

Previous papers have claimed to find evidence of absolute encoding (Knutson & Bossaerts,
2007; Kringelbach & Rolls, 2004) and even specific patterns of prospecttheory such asloss aversion
(Nieuwenhuis etal., 2005; Tom, Fox, Trepel, & Poldrack, 2007). However, thesestudies have all
contained characteristics which mean that DbS and rank orderingstill predicts their findings. The
experiments claiming to demonstrate an effect of loss aversion have not found disproportionately
strongeractivationtolossesthan to gains of identical value, as one might have assumed. Instead,
they began from the assumption thatloss aversion would exist and therefore deliberately biased the
stimulivalues to counteract the predicted effect. The studies used gains which were twiceas large as
the concomitantlosses (Tometal., 2007) or two thirds larger (Nieuwenhuis et al., 2005). When the
same degree of deactivation and activation was found forlosses and gains respectively, it was
interpreted as evidence forloss aversion and prospect theory within the brain. However, because
the gainsand losses had the same ranks within their distributions, DbS also predicts that they will
elicitthe same strength of neural signal. The results of Experiment 7 are relevant not only to these
two particularexperiments, butto all studiesin neuroeconomics which rely upon the assumption of
continuous value representation. Many experiments must now be re-evaluated and a significant

proportion will subsequently be opento differentinterpretation.

Chapter5 also demonstrates a novel finding with regards context. In Experiment 7the mid-
brain reward regions of the thalamus and ventral striatum responded not to the value’s rank order
within the entire experiment, buttoits rank withinthe current block. Possibly the most obvious
suggestionif oneistotake inspiration fromthe memory literature, is that the simple recency of
experiencesinthe current block causes the effect. However, if this were the case then the same
effectwould also have beenfoundinthe VS duringexperiment 8, when the same blocks and timings

were used but otherexogenous contextual cues were removed. Furthermore, previous reports of
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context dependency have all used some form of exogenous cue such as the colourof a card
(Nieuwenhuis etal., 2005), buyingvs. selling (De Martino, Kumaran, Holt, & Dolan, 2009; Knutson et
al., 2008), whetherthe value is part of a gamble or not (Cooperetal., 2009) or the visual shape of
the stimulus (Kringelbach & Rolls, 2004; O'Doherty etal., 2001).Thus Chapter5 demonstrates that

these exogenous cues are necessary to create the context dependent encoding found in Experiment

The behavioural results of Experiment 9also show that exogenous cues cause contextual
dependency without any temporal component, demonstrating significantly different utility curvesin
different contexts. Inthis experiment the exogenous cues were presentinthe form of different
visual cues (background colour) and coverstory (gameshow for phones oradventure days), but
questions were presented intermixed. Thus, the effect of recency and block was eliminated, and yet

the effectremained, showingthat these exogenous cues are both necessary and sufficient.

Oneissue thatis notaddressed by these experimentsis which specificexogenous cues cause
context effects. Considering all available evidence, there are several possibilities: obviousness of
block switch, cover story, visual cues, and the categorizability of values themselves. Each of these

possible explanations willnow be addressed inturn.

The obviousness of the switch from one block or context to another may be a factor as there
was a gap of ~20s between blocks in experiment 7which was not presentin Experiment 8. There
was alsoa similarshortgap between blocksin Cooperetal.(2009). However, given the lack of a
general effect of recency and the successful findings of context dependency within asingle scanner
block (Elliottetal., 2008; Knutson & Cooper, 2005) it is certainly not necessary for creating context

effects, andis unlikely to be sufficient.

The cover story given for the different contexts seems an intuitively strong manipulation, and

this characteristicis presentin several studies including Experiment 9 (Cooperetal., 2009; De
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Martino etal., 2009). The only study where this could arguably be the sole manipulationis De
Martino etal. (2009) which relies upon the endowment effect. However, interpretingendowment as
merely acoverstory istroublesome and likely too simplisticgiven the evidence suggesting that
endowment changes behaviourand perceptions of value (Horowitz & McConnell, 2002; Isoni,
Loomes, & Sugden, 2011). Thereforeitis not currently possible toisolatethe effect of achange in
coverstory using solely neuroscience evidence. If behavioural evidence is considered then the
results of Experiments 3&4 suggest that the cover storyis indeed sufficient. Thisis possibly only true
whenithas a directinfluence uponindividuals’ interpretation of the values themselves, asin

Experiment9, where such possibilities are (largely) removed, there are still visual cues.

Visual cues are seemingly ubiquitous among demonstrations of context dependency. The only
experiments which do not have an explicitvisual cue are Experiment 8, which finds no effect, and
Cooperetal. (2009). Including the latteris also debatable as one could easily argue that having a
probability present next to the value, acts as a visual cue. Thereforeitseems thatthe presence of a
visual cue is likely sufficientand possibly necessary, but the null hypothesis has not been explicitly

tested.

Categorizability of values themselves is not an issue often addressed in the literature.
However, itis potentially avery strong manipulation. In some experimentsits presence is obvious.
For example, in Experiment 7 the valuesin different blocks differed by an order of magnitude and
the rangesdid not overlap. In othersitis notas intuitively obvious but still exists: In Experiment 9
one has a situation where the positive skew values were all relatively round numbers (£10, £20, £50,
£100 etc.), whereasthose inthe negative skew were not (£310, £410, £480, £490 etc.). Infact there
isevidence thatthis differencealone is strong enough to cause the contextual effects observedin
Experiment9, even when no other contextual cue ormanipulationisapplied (Stewartand Reimers,
unpublished manuscript). Other tasks have used numbers which are similarin magnitude, butasthe

contextisthat of gainsvs. lossesitisthe sign attached to the value which provides its categorization.
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In summary, the available evidence suggests that the coverstory and obviousness of the
switch from one block to another may well be sufficient to cause context dependency, butthe
evidenceisequivocal. Furthermore, thereis enough evidence to say that neither characteristicis
necessary. Forvisual cues and the categorizability of the values themselves, thereis good evidence
to say that they are sufficient to cause context dependency and thereisalso not currently enough

evidence torule them out as necessary characteristics.

6.6. Conclusions and Summary
The primary aim of this thesis was to examine Decision by Sampling as a model of human

choice and value judgement. The results show a clear dichotomy, with the model accurately
predicting responses in simple tasks and in environments with few values, but performing poorlyin
more complex task environments. Rank order effects are found in Experiments 7-9, exactly matching
the predictions of DbS. For each of these tasks, the experiment ordecision context had a maximum
of 6 possible values, this means that all values could be represented in working memory at the same
time, makingthe relative ranks more salient. However, in the more complex task environments of
Experiments 1-6the large number of values which could be potentially recalled means DbS mustrely
upon models of memory to predict whichitems will enterthe sample. In this case, notonly does DbS
performno betterthan a standard WADD model, butthe results do not replicate the most universal
findings of memory research:recently experienced items are sampled no more frequently than
those very temporally distant. The fact that the core memory sampling assumption of the model
cannot replicate such acommon effect, strongly suggests that specificexamples are not being
recalled from memory. Thus the datasuggest a switch in behaviour, dependinguponthe properties
of the task: Participants use DbS and rank ordering when all relevant values can be concurrently held
in WM, but rely on a qualitatively different process when the number of valuesin the choice

environment exceeds the capacity of WM.
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One suggestioninthe literatureis thatindividuals instead hold meta-information about the
distribution (Brainerd & Reyna, 1990). If one assumes that meta-information and utility curves are
builtuponthe relative frequencies of experienced values then they would have the same global rank
based predictions of DbS, but there isno memory componentand specificexamples are not recalled.
There is some evidence suggesting that thisis not the case and that explicit sampling takes place
(Feileretal., 2013; Kareevetal., 1997; Lindskogetal., 2013). However, it should be noted thatthe
majority of this evidence comes from tasks which are again very simple and use a small number of
values, orinvolve responses which cannot be calculated using only distribution data. Furthermore,
Experiments 3-6 show that participants’ responses are not based upon stable underlying meta-data
or estimates of the distribution. They are manipulated by both response mode and the coverstory

assigned to the task.

The eye tracking evidence of Experiment 6 supports evidence accumul ation overtime. The
characteristics of the gaze cascade show that participants’ attention becomes more biased towards
the preferreditemin the last moments beforeadecisionis made. Thisincrease correlates with the
hypothesised accumulation of evidence forthe preferred item overtime and the relative differences
inthe underlyingitem-wise accumulatorvalues predicted by DbS and otherevidence accumulation
models. These models are also supported by the increased reaction times for choices where there
was little relative difference between options (Gléckner & Betsch, 2008; Glockner & Herbold, 2011).
However, none of the evidence accumulation models considered here could explain participants’

weighting of attributesin light of the visual attention given to each.

Experiment 6is the first to examine the prediction common to several models, of attribute
weighting by relative attention. The results strongly suggest that previous findings have been driven
by a gaze cascade towards a preferred item. This means that existing eye tracking evidence needs to
be fundamentally reconsidered as it does not separate the effects of item value and attribute

weightingin measures of attention. Future research must first attempt to replicate this finding
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across othertypes of decisions. If the result proves robust, then anew model must be developed.
The most promisingis an evidence accumulation model, as this will still explain the gaze cascade and
reaction time effects. But, one which accumulates evidence based upon noisy w eighted addition of

the available information, as this best explains the behavioural results.

Future work will need to examine more closely the effect of environment complexity upon
decisions. Research should investigate whetherthere isindeed anumber of values at which
individuals show a qualitative shiftin theirstrategies. Based upon the existing evidence, thisis likely
to be at a numberequal to or slightly higher than the capacity of an individual’s WM. Furtherto that
line of research, the questionthen becomes what strategy individuals switch to. The best prediction
based upon the behavioural dataappearsto be a standard WADD model. Furthermore, the eye
tracking results suggest a noisy accumulator with evidence accumulation rates based upona WADD
integration of information, so the obvious starting point for future researchis drift diffusion (Ratcliff,

2001; Ratcliff & McKoon, 2007).
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