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Abstract 

This thesis uses the Decision by Sampling model as a basis for examining effects of rank order 

encoding in value judgement and preferential choice. A range of experiments are reported, and 

these employ a variety of methodologies including behavioural paradigms, eye tracking and 

functional MRI. The results show that when there are a relatively small number of values used 

during an experiment, participants encode utility based upon the rank order of a potential outcome 

within these values. By introducing different decision contexts where the  experienced values have a 

positive or negative skew, an individual’s utility curve can be made concave and risk averse or 

convex and risk seeking. These different utility curves can be produced within the same individual 

and same task simply by providing a contextual cue for each trial. Two fMRI experiments 

demonstrate the neural systems underlying this phenomenon. The results show that all regions of 

the reward network encode reward as a function of the reward’s rank order within the current 

context. No region of the brain was found to encode a reward’s absolute financial value.  

Other experiments investigated choice and valuation in more complex decision environments. 

It was found that when the number of experienced values is significantly larger than work ing 

memory capacity DbS is a relatively poor predictor of behaviour. The Weighted ADDitive rule proved 

to be more accurate throughout. However, in multi-attribute choice experiments where one 

attribute had a manipulated distribution, individuals use and weighting of the attribute value was 

determined by rank order rather than its numerical value. The specific characteristics of this were 

found to be incompatible with an exemplar based model of recall and binary comparison to specific 

items. It was instead found to be compatible with non-exemplar, fuzzy trace theories of decision 

making which are based upon estimates of the distribution. Eye tracking during multi-attribute 

choice additionally shows that participants begin to attend more to their preferred choice as they 

near the point at which they respond. However, they do not attend more to the attributes which 

they weight more highly in their choices, questioning the validity of previous eye-tracking findings. 
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1. Chapter 1 – Literature Review 

1.1. Introduction to Decision by Sampling: The Model and Its 
Rationale 
A large number of descriptive models of human value judgement and decision making have 

been proposed and tested in recent decades, showing a shift away from the economic prescriptive 

models and towards a more explanatory psychological model. Many of these models have been 

shown to predict choices with impressive accuracy. Although these descriptive models can predict 

choice, this is only the end result of the underlying process. These models are often incapable of 

describing the stages or mechanisms that lead up to the choice being made and few make 

predictions regarding other properties of decision making such as stochasticity, reaction times or 

priming phenomenon. A complete model of choice and valuation must be able to explain the 

process as a whole and in recent years there has been significant progress towards such a model.  

The model which will be the main focus of this thesis is Decision by Sampling, hereon DbS 

(Stewart, Chater, & Brown, 2006). What makes the model so appealing is that DbS relies solely upon 

basic psychological processes. The complexity of its predictions is not a result of the process, but of 

the environment in which decisions are made and the distributions of values an individual has 

previously experienced. DbS predicts that when assessing the utility of a value, a random sample of 

previously experienced values is drawn from memory. Each of these values is compared to the value 

being considered. If the item under consideration is better than the one drawn from memory then 

the item’s score is incremented by 1. If the value is no better than the sampled item then its score is 

not incremented.  This essentially calculates the value’s rank order within those previously 

experienced by the individual.  

Consider a simplified example: An individual is shown or offered a potential gain of £5 and a 

potential gain of £10. To calculate the utility of these potential gains the individual  then recalls a 
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sample of previously experienced values from memory. Let us assume that the individual samples 

£1, £3, £4, £7, £15 and £30 and compares these to each possible outcome. The DbS score of £5 is 4, 

because there are 4 sampled items with a lower value. The score for £10 is 6, so according to DbS its 

utility is only 50% greater, despite the 100% increase in financial value. The DbS score can be plotted 

against value for each item in the sample to reveal the predicted utility curve (Figure 1.1). Although 

the simplistically small sample means the curve is not smooth, it is clear that the function produced 

a concave shape similar to that of Expected Utility Theory (von Neumann & Morgenstern, 1944). This 

is the result of the skewed distribution of the sample. The greater frequency – or over-

representation – of smaller values means the relative rank rises quicker than in the upper section of 

the value range, where high values are comparatively rare. As we shall see, this sensitivity to skewed 

distributions is a characteristic fundamental to the accuracy and success of DbS.  

For the vast majority of choices and comparisons, each option has more than one quality or 

attribute. In a simple financial gamble, these are payout value and probability. DbS predicts the 

same mechanism occurs for each attribute. Values are sampled randomly from a single attribute 

scale and then compared with the attribute value of the item under consideration. So when 

considering a gamble, a payout may initially be recalled and if its value is smaller than that of the 

current item then the DbS score will be incremented by 1. Then a probability may be recalled from 

memory and this will be compared to the probability of the current item. If the current item is 

favourable then its DbS score will again be incremented. Attribute values will continue to be 

sampled randomly from either probability or payout. Note also that there is only one DbS 

accumulator for each item, meaning that the effect of each attribute is additive and equal.  

Let us consider a choice between £10 with a 0.5 chance otherwise nothing or a certain gain of 

£5. Assume that the same payout values are sampled as above, but that the following probabilities 

are also recalled: .0, .1, .2, .3, .7, .8, .9 and 1. For the risky option, the DbS score of the payout (6) is 

added to that of the probability (4) to equal 10. The same is performed for the certain option (4 + 8) 



10 
 

for a total DbS score of 12. Therefore DbS predicts that the safe option would be preferred. Note 

that the sample of probabilities recalled can also have a significant effect upon DbS’s weighting of 

chance. 

 
Figure 1.1 The DbS scores for hypothetical samples of values (left) and probabilities (right), plotted to reveal predicted 
utility and weighting functions. 

 

The concave utility function shown in Figure 1.1 is the result of a significant positive skew in 

the sample used to create it. If the sample were equally represented at all points along the scale 

then utility would be a linear function and if the skew were negative then the curve would be 

convex. Therefore, it is a critical prediction of DbS that if individuals exhibit a concave utility there 

must be a significant skew in the distribution of values an individual experiences. Specifically, 

individuals should experience small financial transactions more frequently in daily life. Stewart et al 

(2006) obtained current account information from a major UK high street bank. By plotting the total 

number of credit transactions of each value on a log scale it is clear that individuals experience a 

disproportionate number of small gains (Figure 1.2).  Therefore this real world pattern means DbS 

predicts the risk averse behaviour exhibited by the majority of individuals, without relying on an 

opaque mathematical weighting function (Figure 1.3).  
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Another pattern is evident when the debits are plotted in the same way as for gains: The skew 

is much more extreme for debits than credits (Figure 1.2). This is because people are more likely to 

experience larger regular credits such as a monthly/weekly salary and smaller regular losses such as 

grocery shopping or petrol purchases. This has the important consequence that losses are 

discounted more steeply than gains, so DbS also predicts loss aversion. This is something which is 

not possible without assuming different utility functions for gains and losses (Rabin, 2000) and also 

means that DbS can reproduce the utility curves central to so much of the success of Prospect 

Theory (Kahneman & Tversky, 1979).  

 

Figure 1.2 The frequency with which specific values are credited and debited from individuals' current accounts. Both 
show a significant positive skew, leading to risk aversion in DbS. The skew is also more severe for debits, meaning DbS 
also predicts loss aversion. Reproduced from Stewart et al. (2006). 
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Figure 1.3 DbS’s predicted utility curves as calculated using current account credits and debits. Reproduced from Stewart 
et al. (2006) 

It has been demonstrated that there is no shape of utility curve which can explain or predict 

characteristics of choice – especially risk aversion – without also assuming a curvilinear weighting of 

probability (Abdellaoui, 2000; Abdellaoui, Barrios, & Wakker, 2007). If DbS is to fully account for 

prospect theory and match its impressive predictive accuracy for choices between financial gambles 

then the model must be able to predict the overweighting of small probabilities and the 

underweighting of large ones. DbS will show this pattern in an environment where very high and 

very low probabilities are experienced more often than probabilities in between. To also capture the 

risk averse pattern of underweighting a 50% chance, the distribution also needs a slight bias towards 

higher probabilities.  
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Unfortunately there is no real world analogue for the experience of probabilities which is as 

good a measure as bank transfers are for experienced gains and losses. However, there are still 

many measures which give valuable insights into individuals’ experience and perception of risk. One 

of these is the frequency with which different chance or probability related words such as “likely” or 

“doubtful” are used in natural language. There is a significant existing literature which measures the 

perceived numerical equivalent of these words (Budescu & Wallsten, 1995). The numerical values 

can then be used to calculate the rank order of these words. In order to create the weighting 

function predicted by DbS, their frequency of use in natural language can then be used to calculate 

their relative rank and a weighting function can be plotted in the same manner as for the utility 

curves shown above (Figure 1.4). This shows high and low probabilities are indeed under and over-

weighted respectively. There is also a slight bias towards probabilities greater than 50%, meaning 

that the function predicts risk aversion and crosses the diagonal at p<0.5. 

 

Figure 1.4 DbS's predicted probability weighting function as extracted from relative frequency of risk related 
descriptions in natural language. Reproduced from Stewart et al. (2006) 

There are also other real world patterns which support DbS’s use of prior experiences. The 

most significant is the over-reporting of rare events and of very likely events which failed to happen: 

Although lottery winners are regularly photographed in newspapers, those who bought a ticket and 
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did not win are inevitably overlooked. Hence, individuals overestimate their chances of winning the 

lottery. The fear of terrorist attack has been found to be higher among those used to living in the 

relatively safety of the USA, than it is among those living in Israel (Yechiam, Barron, & Erev, 2005). 

This is despite the residents of Israel having far more direct, personal experiences of such events. 

This mismatch can be attributed to the fact that such attacks happen so often in Israel that individual 

events receive little or no attention in the news media. Whereas they are so novel and rare in 

America that any occurrence - or even a suggestion that an attack may occur - is investigated, 

debated and reported for protracted periods. What adds to the effect both in cases of lottery 

winners and terrorists is that the rare events are not only over-reported, but more salient. This 

means that they are more likely to be remembered and recalled when an individual is sampling prior 

experiences (Brown & Matthews, 2011; Brown, Neath, & Chater, 2007). But see Pachur, Hertwig, 

and Steinmann (2012), for evidence that reports of others experience have minimal effects upon 

judgements. 

1.2. Experimental Evidence 

1.2.1. Memory Constraints and Sample Size 

There is now a growing literature, much of it from research on heuristics, that suggests the 

characteristics of human memory actually aid accurate decision making (Schooler & Hertwig, 2005). 

Many of these characteristics are assumed to be limitations because they preclude perfect recall.  

However, in many situations the patterns of experience in the real world interact with the 

“limitations” of memory to result in better recall and sampling of events and information which are 

more important to adaptive decision making (Anderson & Schooler, 1991). As will be covered below, 

there are now several studies which support the hypothesis that imperfect memory and recall 

results in more accurate judgements. However, these are still contentious and there are equally 

convincing findings suggesting that memory constraints lead to sub-optimal behaviour. Importantly 
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for DbS, there is one common argument from both sides of this debate: that memory  does impact 

decisions.  

The suggestion that such complex decisions are made using simple comparisons with a 

potentially small sample of alternatives may seem surprising. This is particularly so when one 

considers the degree of discriminability humans are capable of and the confidence introspection 

often attaches to decisions. However, despite individuals often having high confidence in their 

judgements, there is significant stochastic noise in choice and individuals regularly make different 

choices when the same dilemma is presented multiple times (Glöckner & Pachur, 2012; Hey, 2001; 

Loomis, 1990; Mosteller & Nogee, 1951). DbS with a small sample size explains this effect simply as 

different items being retrieved from memory for each decision. When values experienced in a task 

are drawn from idealised distributions, it is more likely that a small random sample will accurately 

represent the population distribution. Experimental evidence shows that individuals’ decisions and 

judgements become significantly more accurate as a result (Giguere & Love, 2013). This pattern is 

not predicted by larger samples or by a fuzzy trace account where estimated meta-information is 

stored and updated (Brainerd & Reyna, 1990; Kühberger, 1998). 

A review by  Juslin, Winman, and Hansson (2007) examined the findings of a large number of 

previous findings in the judgement and decision making literature. They concluded that in situations 

where there were sufficient previous experiences, results were compatible wi th a strategy of 

drawing small stochastic samples and then behaving as though these were accurate representations 

of the true distribution of the environment.  Other studies also demonstrate that individuals made 

decisions based upon the observed distribution of values (Pachur et al., 2012) and that this is true 

even when participants are aware that these observations are not true representations of the 

underlying distributions (Feiler, Tong, & Larrick, 2013). There is also evidence that when in a novel 

environment, individuals at first rely upon a simple mean of the values or information they have 

experienced. But once a sufficient number of items and values have been observed they quickly 
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switch to a strategy of drawing small stochastic samples from previous experiences (Lindskog, 

Winman, & Juslin, 2013).  

Other research has explicitly investigated the link between short term memory and sample 

sizes. It has been shown that in open ended decisions from experiences tasks individuals with larger 

STMs sample more potential outcomes (i.e. collect more information from the environment), base 

their responses on relative frequencies and make more accurate judgements (Rakow, Newell, & 

Zougkou, 2010).  Those with smaller STMs are found to rely on the same qualitative strategy, but use 

smaller samples, both in explicit information search and covert sampling from memory. Other tasks 

have used forced sampling and then inferred participants’ use of information and sampling from 

their responses. These find that individuals with larger STM capacity sample more information and 

make more accurate probability estimates by virtue of considering more counterfactual events 

(Dougherty & Hunter, 2003a). Increasing working memory load during encoding and response in a 

relative frequency or a probability estimation task also increases errors in subadditivity in  the 

manner predicted by a sampling model. The memory interference causes individuals with high 

capacity STM to behave more like those with low capacity (Dougherty & Hunter, 2003b). This effect 

of working memory is also shown to be significantly larger for judgements of probability of mutually 

exclusive events occurring than for pure frequency estimates (Sprenger & Dougherty, 2006), 

suggesting that the latter requires less information sampling and is less cognitively demanding.  

Despite the evidence suggesting that the amount of information sampled is constrained by 

WM, this is not explicitly predicted by DbS. The DbS model predicts that only accumulator values 

need to be held in WM and that items can be sampled serially one at a time from memory until 

sufficient evidence has been accumulated to make a decision. However, as DbS does not posit an 

explicit stopping rule it is equally plausible that samples are drawn until WM is full and then the 

decision is made based upon this sample. The actual sample size and the stopping rule are factors to 

be investigated in the later chapters. 



17 
 

A mathematical consequence of relying upon small samples is that it significantly 

underestimates variance. When using the variance of a sample to estimate that of the population it 

is necessary to perform a correction (N/1-N). If individuals rely upon small samples then this 

correction must be applied in some way, otherwise individuals will systematically underestimate the 

variance within a distribution. Evidence shows that individuals do reliably underestimate the 

variance of an underlying distribution so cannot be applying such a correction (Hertwig, Barron, 

Weber, & Erev, 2006; Kareev, 2003). Furthermore, the effect is larger in individuals with smaller 

capacity STM demonstrating the increased bias resulting from smaller sample sizes (Kareev, 

Lieberman, & Lev, 1997).  

Another consequence of small samples is a counter intuitive increase in sensitivity when 

detecting a correlation between two scales. Although this sensitivity is generally only representative 

of a type 2 error, it still provides a useful diagnostic tool in examining how individuals make their 

decisions. In one study, participants were shown a series of values from two different sources and 

then asked whether they believed there was any relationship, or correlation, between the two. 

Participants were then split into those with high and low short term memory capacity and it was 

found that the latter were more likely to report a correlation (Kareev et al., 1997). It should be noted 

that this also suggests individuals with a smaller STM will be more sensitive to change in the 

environment and a change in correlation. However, this pattern is not found (Gaissmaier, Schooler, 

& Rieskamp, 2006). The authors suggest that rather than STM constraints changing the sample used 

by individuals, it may instead promote different and simpler strategies or heuristics. An alternative 

account is that there is little bias towards sampling more recent items. Therefore, although 

individuals with smaller STM’s are more sensitive to correlation, the equal representation of older 

experiences in the samples means that they would be no more sensitive to a change over time.  

The hypothesis described above is questioned by studies of decisions from experience which 

do show a significantly larger effect for the most recent experiences. This is unsurprising given 
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recency’s importance within memory research (Anderson & Schooler, 1991; Ebbinghaus, 1913; 

Malmberg & Annis, 2012). Although effects of preceding stimuli are recognised in decision making 

research (Braida et al., 1984; Hogarth & Einhorn, 1992; Matthews & Stewart, 2009; Mori & Ward, 

1995; Tversky & Kahneman, 1974), they are not predicted or explained by standard models such as 

Cumulative Prospect Theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). The fact that 

DbS is built entirely upon memory recall means that one would expect a significant bias towards 

sampling of the most recent values and items. Therefore the model does predict a recency effect 

and accounts for the anchor and adjust phenomenon. A series of experiments demonstrated that 

providing individuals with incidental values shortly before they answered a related dilemma 

manipulated choices for value, probability and delay discounting (Ungemach, Stewart, & Reimers, 

2011). What was particularly interesting was that the results for value could not be explained by 

anchor and adjustment. They were best described by the relative rank of the values in the choice 

alternatives compared to the prior incidental values. Though see Matthews (2012) for a failure to 

replicate the effects in delay discounting.  

Order effects have also been found in choices between serially experienced alternatives for 

non-financial decisions. When five identical glasses of wine were sampled sequentially, individuals 

had a distinct preference for the first and last options (Mantonakis, Rodero, Lesschaeve, & Hastie, 

2009). When the second wine is sampled and compared to the first an individual may say they prefer 

the first. When the third wine is sampled, the most salient memory will be that the first wine has 

already compared favourably to one alternative, meaning the first wine’s score is high according to 

DbS. As an individual continues tasting wines this score will be incremented and it becomes 

increasingly unlikely that a new wine will be preferred. However, if the individual does not prefer the 

first wine to the second, then it is less likely that a runaway favourite will accumulate a score in this 

manner. Therefore when the last wine is sampled, it is compared primarily to the one immediately 

preceding it as well as the fact that none of the previous experiences have a large DbS score. 

Therefore the chance of preferring the final wine is greatly increased. Furthermore, when two 
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pleasant or high value items are considered one after the other then the second is generally 

preferred. In this case the memory of the preceding item experiences a regression to the mean. 

Hence, the effect reverses when two undesirable options are presented (Biswas, Grewal, & 

Roggeveen, 2010).  

Many of these results come from the literature on decisions from experience but DbS is 

primarily a model of decisions from description. DbS essentially combines explanations from these 

two modalities. Decisions from experience are the judgement of a single choice option or event 

based on previous experience of that specific choice option or event. One interpretation of DbS is 

that the same processes which apply to judging an event, can also be generalised to judging a 

description. So instead of sampling occurrences of option A, an individual samples occurrences of 

probabilities or of financial gains. This is arguably a more ecologically val id description as judgements 

from description have only become common relatively recently in human evolutionary history and 

descriptions of probabilities even more so. Hence, evidence that indi viduals are more accurate at 

making decisions when descriptions are based upon relative frequencies compared to descriptions 

using probabilities (Cosmides & Tooby, 1994; Sprenger & Dougherty, 2006).  

1.2.2. Effect of Available Alternatives 

There are a large number of phenomena where it is not previous experiences that modify 

individuals’ decisions and judgements but the set of current alternatives. One of the simplest of 

these is the dominance effect (Ariely & Wallsten, 1995; Huber, Payne, & Puto, 1982). Imagine a 

situation where an item can differ on two attributes, X and Y. An individual has to choose between 

items A and B. A has a high value on X, but a low value on Y, whereas B has a high value on Y and low 

value on X (Figure 1.5). The relative differences on scale X and Y have roughly equal importance to 

decision makers, meaning that individuals are split equally between the opti ons. However, item C is 

then introduced to the choice set and is slightly worse than item A on both X and Y. A dominates C 

because it is better in all possible ways. Now when individuals are asked to choose, a significant 



20 
 

majority prefer option A and the proportion of choices for option B decreases significantly, despite 

the relative difference between the two staying the same.  

 

Figure 1.5 The dominance effect. A,B&C are multi attribute items, varying on scales X and Y. 

DbS explains this as the simple result of binary comparisons between the available options. 

When sampling alternatives the most salient items will be those presented as direct alternatives as 

these require no memory retrieval and minimal cognitive effort. Therefore option C has a DbS score 

of only 1 because it is better than one other option on one attribute. Option A has a score of 3 

because it is better than C on both attributes and better than B on one. Option B has a score of 2 

because it is better than both A and C on one attribute, but is worse than both on the other. 

Therefore, option A is judged most favourably and chosen most frequently. This effect also has 



21 
 

longer term consequences. When a previously dominated item such as C is later seen outside of this 

context it is valued lower than when a dominating option such as A is seen (Biswas et al., 2010). This 

suggests that the items an option was originally seen with are relatively more likely to be sampled 

when the option is seen again. A phenomenon supported by memory research (Godden & Baddeley, 

1980; Tulving & Thomson, 1973; Tunney, Mullett, Gardner, & Moross, 2012).  

The distribution of items in a decision environment also shows more complex and nuanced 

effects upon choices. Judgements of the severity of road accidents is significantly modified by the 

distribution of other accidents presented at the same time (Robinson, Loomes, & Jones-Lee, 2001). If 

the context within which valuations are made is disproportionately comprised of high severity 

accidents then items in the centre of the scale received lower severity estimates. This is true even 

when the most and least severe items are present in all conditions, meaning that the overall range is 

constant. The effect is also found when judging raffle tickets. Confidence of winning was not simply 

dependent upon what proportion of the tickets were held by the individual, but also upon how the 

others were distributed (Windschitl & Wells, 1998). If they were split between a large number of 

individuals then participants were more confident as their chances compared well to many other 

people. However, if all the tickets were held by one other person then participants were less 

confident of winning as the only other person with which they could compare themselves had a 

greater chance of winning. Showing additional individuals with very low probabilities of winning 

served to increase individuals’ confidence of winning themselves, despite reducing their actual 

chance of doing so (Windschitl & Chambers, 2004). These effects also interact with STM capacity. 

Adding more low probability alternatives has a greater effect upon judgements in individuals with a 

larger STM capacity (Sprenger & Dougherty, 2006). However, it should be noted that some argue 

these effects are not explained by rank order, instead suggesting an anchor and adjust effect with 

the next most likely outcome (Windschitl & Young, 2001). 
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It is not just the distribution of the values themselves that can affect decisions. The 

distribution of possible response options has a similar effect (Stewart, 2009). The average value 

estimate for a gamble or item can first be elicited using an unbiased method. Individuals are then 

asked to choose the value of an item from a set of possible responses. If the possible responses start 

at a value slightly below the average value and extend very far above it then participants’ responses 

are higher. If the highest possible response is only slightly above and the lowest is far below, then 

responses are significantly lower (Stewart, Brown, & Chater, 2005; Stewart, Chater, Stott, & Reimers, 

2003). The effect is also apparent when the range of options is kept constant by using the same 

maximum and minimum values. The values between can be positively or negatively skewed, such 

that low or high values are over-presented. Estimates are subsequently higher and lower, in the 

direction predicted by DbS and rank encoding (Birnbaum, 1992). 

The effects of possible response options have significant and possibly damaging real world 

effects. One decision making task where this has been explicitly examined is allocation of pension 

funds. When saving for a private pension, individuals have to decide what proportion of their funds 

they wish to assign to different bonds, cash and stock options. The most common strategy is to split 

their funds equally between all options available in their particular pension scheme. However, 

individuals do not adapt this strategy depending upon the split of different options (Benartzi & 

Thaler, 2001; Vlaev, Chater, & Stewart, 2007). So if a particular pension scheme has many stock 

options, but only one cash option, then the individual will use the decision environment as a cue, 

spreading their assets “equally”, but then leaving themselves exposed to a disproportionately high 

degree of risk. 

1.2.3. Rank Ordering as a General Strategy 

Evidence of judgements by rank order comes from many sources and domains, not just 

financial decisions or the JDM literature. The earliest evidence for rank order-encoding came from 

psychophysics, primarily volume judgements. Although human hearing allows for very accurate 
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discrimination between the volume of two sounds or the frequencies of tones, accuracy is poor 

when individuals are asked to provide an estimate of the absolute magnitude of a single example 

(Garner, 1954). These early findings inspired a line of research investigating why absolute 

judgements were so unreliable and this led to theories describing how these judgements were 

made. The most successful of these has been Range-Frequency Theory (hereafter RFT; Parducci, 

1965).  

RFT posits that when an individual assesses an item with an absolute magnitude or value and 

assigns it to one out of a set of ordinal categories they use both the range of values and the 

frequency with which items are assigned to each category. For example, when judging the loudness 

of a series of tones using the labels, very quiet, quiet, medium, loud and very loud. If tones range 

between 0dB and 100dB then a simple range adaptation account will split the scale into 5 bins with a 

width of 20dB each. However, if the stimuli set contains a large number of quiet tones then the 

frequency component of the model will adjust in order to keep relatively equal numbers of stimuli 

assigned to each category. Therefore, a smaller range of the scale will be assigned to the categories 

“very quiet” and “quiet” meaning they cover less of the scale. The range covered by the “medium” 

category may move lower down the scale, while “loud” and “very loud” essentially grow to 

encompass more of the scale. The overall effect is that tones in the mid-range are assigned to louder 

categories than they would be in a non-skewed environment. The obvious mechanism for extending 

the model from categorical judgements to absolute judgements is a model of valuation by rank 

order, with the range of possible responses setting the maximum and minimum of the scale. This 

maintains the fundamental properties of the range-frequency account, whilst also allowing it to be 

applied to judgements such as certainty equivalence. It also means that the model is very similar to 

the transform applied to value in DbS when an individual is making a decision rather than a 

judgement.  
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The early findings which inspired RFT have now been extended and many of them support 

absolute judgement by comparative mechanisms (Stewart et al., 2005).  The rank of a tone’s volume 

or loudness amongst preceding items has a significant effect upon the judgement of subsequent 

stimuli (Stewart & Brown, 2004). The effect is also found in the judgements of many other simple 

perceptual stimuli (Stewart, Brown, & Chater, 2002). These effects have also been shown in domains 

which blur the lines between psychophysics and cognition such as subjective ratings of pain 

(Watkinson, Wood, Lloyd, & Brown, 2013). It has even been shown in enjoyment and perception of 

music, with RFT predicting judgements’ of the most accurate and most pleasing tempo at which to 

listen to Beatles songs (Rashotte & Wedell, 2012). 

Effects of frequency and rank have been shown in a large number of domains and 

judgements. Many of the documented examples are in social judgements about the self. For 

example, individuals’ judgements of their own happiness or depression is explained by comparisons 

with other known individuals and an individual’s estimated rank within this sample (Melrose, Brown, 

& Wood, 2013). This is also true of judgements about different personality traits (Wood, Brown, 

Maltby, & Watkinson, 2012) and a number of other social scales (Galesic, Olsson, & Rieskamp, 2012). 

Individuals’ estimates of how their earnings compare with those of the general population are 

best explained by their rank within their peers and social group (Brown & Matthews, 2011). 

Employees well-being has also been found to rely upon how their earnings compare with those 

around them, rather than the financial amount (Brown, Gardner, Oswald, & Qian, 2008) and this is 

also true of general satisfaction with earnings (Boyce, Brown, & Moore, 2010). Particularly intriguing 

are findings regarding mental health issues and the lower psychological well-being associated with 

low socio-economic status. These risks are better predicted by an individual’s socio-economic rank 

within their local community than it is by their actual wealth and resources (Wood, Boyce, Moore, & 

Brown, 2012). This suggests that the risk factor associated low SES is not the result of lack of 
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resources, such as access to good nutrition, exercise etc. but is at least in part a psychological effect 

driven by comparison with others. 

Comparative and rank effects also predict judgements of potentially harmful behaviours. 

Individuals’ judgement of their actual alcohol consumption and the estimated harm of their own 

drinking is explained by their rank within other drinkers in their social ci rcles (Wood, Brown, & 

Maltby, 2012). This is also the case for behaviours which have a positive effect upon health, such as 

amount of exercise and the predicted positive impact of their exercise (Maltby, Wood, Vlaev, Taylor, 

& Brown, 2012). Even offers of help are judged in this way, with individuals displaying more or less 

gratitude depending upon how well an offer compares to other experienced offers (Wood, Brown, & 

Maltby, 2011). These findings have significant implications for promoting healthy behaviours and 

designing interventions. Whether such interventions or the design of decision environments can also 

aid better financial decision making, particularly in areas such as pension provision, is still a focus of 

much debate (Sunstein & Thaler, 2008).  

1.3. Criticisms of Decision by Sampling and Open Questions 
Despite the strong and growing body of evidence in favour of DbS’s core properties and 

predictions, there are still valid criticisms which can be levelled against i t. There are also a number of 

crucial questions and characteristics of the model which are currently open or unspecified. For DbS 

to become widely accepted as a model of human decision making and value judgement then these 

issues must first be addressed.  

Perhaps the most surprising issue given the otherwise strong base of evidence is that there is 

currently no published test of DbS’s predictive accuracy in financial decision making. Although 

individual phenomena have been closely examined and robustly demonstrated, there has not been a 

single study where DbS was explicitly modelled and used to predict behaviour. There are inevitable 

problems with such a test: the fact that DbS is a memory and experienced based model means that 

one cannot measure or control for experiences prior to beginning the experiment. Not being able to 
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measure these and enter them into the model will inevitably add noise. However, recall shows a 

steep forgetting curve (Ebbinghaus, 1913), effects of categorisation mean that items within the 

current task or block are most likely to be sampled (Brown et al., 2007) and the number of items 

sampled is potentially very small (Cowan, 2001). Therefore, the likelihood that individuals sample 

more temporally distant experiences from outside of the experiment is also likely to be very small. 

Given the inherent noise in human judgement, the effect of prior experiences is likely to have 

relatively little impact upon modelling accuracy. 

Another issue which makes modelling DbS difficult is that it is underspecified. The model 

makes no predictions regarding a stopping rule or the size of the sample used to make decisions. 

STM capacity has been shown to be very small (Cowan, 2001) and numerous studies detailed earlier 

in this chapter suggest that decisions are modified by the size of STM. However, as DbS is an 

accumulator model it does not predict that all sampled values are necessarily held in STM at once. 

Instead values are sampled sequentially, allowing for a much larger number of comparisons. There is 

already evidence that the differences in decision making that correlate with STM may not be a direct 

result of sampling or parallel sample representation (Gaissmaier et al., 2006). Therefore any 

modelling of DbS would have to estimate the size of the sample with which to make predictions.  

In addition to not specifying the size of the sample, DbS fails to specify a neurologically and 

psychologically plausible mechanism by which previous experiences are recalled and sampled. The 

assumption stated in the original model specification is that all prior experiences have equal random 

chance of being recalled (Stewart et al., 2006). This seems to be because the majority of the 

evidence presented in the paper relies upon long term measures of experiences and events.  

However, more recent and more targeted experiments have demonstrated the importance of 

recency, saliency and similarity. Therefore an unavoidable question is how memory phenomena and 

the differential likelihood of experiences being recalled are integrated into the DbS model.  
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One characteristic of the model which is fully specified is how items with multiple attributes 

are judged and how the different scales are integrated. Despite this, little attention has been paid to 

multi-attribute valuation, with evidence instead coming from single attribute tasks or financial 

gambles. This is an issue which can be easily addressed by modelling DbS’s predictions. The model 

currently predicts that information is sampled randomly from each attribute with equal chance. 

However, it seems that in most decisions individuals do not weight information equally (Bröder, 

2002; Mellers, 1980; Pitz, Heerboth, & Sachs, 1980; Westenberg & Koele, 1994), although the impact 

of such weighting is debated (Dawes, 1979). It seems unlikely that these issues of information 

weighting will be overcome by using rank order encoding. Therefore, weighting parameters may 

need to be incorporated into the model. The most likely and parsimonious mechanism would appear 

to be preferential sampling of the attributes which are most salient and considered most relevant to 

the current decision. 

1.4. Comparisons with Alternative Models and Interpretations 

1.4.1. Prospect Theory 

The distribution of experienced values in the world means DbS predicts utility curves that 

closely match those of Prospect Theory. It would seem a natural assumption that CPT and DbS 

therefore make the same or similar choice predictions. However, they are subtly, but importantly 

different. The utility curves calculated using DbS were based upon population level data. When the 

gains and losses of a large number of individuals, from very rich to very poor are pooled then the 

familiar utility curves are indeed reproduced. However, when an individual is making decisions they 

can only sample from their own experiences meaning DbS predicts different individuals will have 

very different utility functions, as the very wealthy and the very poor will have experienced very 

different gains and losses. Furthermore, an individual will only sample a relatively small number of 

these items for a single decision, meaning that the utility function will not be accurately represented 

during each choice. However, it will become apparent when averaging over a large number of 
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choices. Furthermore, CPT predicts that utility functions are stable over time, whereas DbS predicts 

an adaptation and inherent updating of the information used to make decisions, meaning utility 

functions are dynamic and adjust to the decision maker’s environment.  

1.4.2. Heuristics and the Adaptive Toolbox 

The debate surrounding the relative merits of heuristic accounts of decision making and 

models with strong mathematical components is one of the most fundamental within contemporary 

JDM research. A full discussion is beyond the scope of this work, but many issues of the debate are 

relevant to DbS and the experiments reported here. The central argument in favour of a heuristics 

account of decision making is that the mathematical computations in mathematically complex 

models are incredibly cognitively demanding. So much so that, for many models individuals are 

incapable of performing the relevant mathematical transforms when explicitly asked to do so. 

Generally speaking, evolutionary processes do not result in any processes more complex or energy 

demanding than is necessary or possible. Therefore it is argued that the application of simple rules, 

which approximate the results of complex mathematical strategies, are more psychologically 

plausible (Gigerenzer & Goldstein, 1996; Gigerenzer & Selten, 2002; Gigerenzer & Todd, 2000).   

DbS is a particularly interesting case because it arguably sits astride the debate. The simple 

mechanism of recall and binary comparison is a more plausible cognitive process than complex 

discounting. It is arguably a model of bounded rationality as it considers cognitive limitations and yet 

produces the similar results to complex mathematical weighting functions. However, as DbS is a 

relatively general cognitive model rather than a specific rule, it still does not fit well within the 

adaptive toolbox (Bröder, 2003; Gigerenzer & Selten, 2002) alongside the matching (Dhami, 2003; 

Snook, Dhami, & Kavanagh, 2011), recognition (Goldstein & Gigerenzer, 1999) or priority heuristics 

(Brandstätter, Gigerenzer, & Hertwig, 2006). A potential result of this is that DbS may be able to fit 

findings compatible with simplistic, rule based heuristics, whilst also explaining the complex utility 

functions of mathematical models. For example, if attributes are differentially sampled due to 
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characteristics such as salience or similarity, then the model may be able to explain patterns of 

behaviour where individuals make complex use of information and appear to weight different 

attributes mathematically. Conversely, depending upon the assumed stopping rule, the model can 

explain effects compatible with matching and priority heuristics by assuming that the most 

influential attributes are sampled first or disproportionately more. If the accumulator then reaches 

its stopping rule, further attributes will not be sampled. Furthermore the most common explanation 

for recognition and representativeness heuristics is already that of preferential recall from memory 

(Goldstein & Gigerenzer, 1999; Kahneman & Tversky, 1972; Tversky & Kahneman, 1974). 

1.4.3. Drift Diffusion  

Drift diffusion is a stochastic model (or family of models) of choice which like DbS predicts that 

evidence for each item is accumulated over time unti l a stopping criterion is reached (Busemeyer & 

Townsend, 1993; Ratcliff, 2001; Ratcliff & McKoon, 2007). Where this model differs from DbS is in 

how the evidence is accumulated. Drift diffusion assumes that evidence for an item is accumulated 

at a rate dependent upon the relative differences in value between the options under consideration. 

So in a choice between two very similar items, the rate of evidence accumulation will be slow and 

decision times long, whereas in a choice between two items with very different values, evide nce is 

rapidly accumulated for the more valuable item and decisions are fast.  

There is a strong base of evidence for drift diffusion models, with many studies finding 

impressive predictive accuracy. However, a potential criticism is that many papers rely upon a 

generalised modelling procedure, averaging across trials and not capturing the potential signal on 

each choice. In addition, both decisions and response times are used when estimating model 

parameters and when testing the model’s predictive performance. This is indeed a good method of 

testing drift diffusion as a process model, but it also means that comparisons with competing models 

are not very informative, as most do not make specific predictions regarding reaction times. The 

modelling also estimates a varying number of free parameters depending upon the specific 
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implementation of the model (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006) and in some cases 

the model becomes very complex. Although this is best avoided in cognitive models, there  is 

evidence that the parameters have real psychological and neurological analogues. Specific 

parameters in the model are modified by relevant changes in task constraints (Milosavljevic, 

Malmaud, Huth, Koch, & Rangel, 2010), by neurological damage and aging (Ratcliff, Thapar, & 

McKoon, 2006; Starns & Ratcliff, 2010), and even sleep deprivation (Ratcliff & Van Dongen, 2009). 

Research on drift diffusion models is becoming more and more sophisticated over time and 

this work is also becoming more relevant to DbS as both posit a system of evidence accumulation. 

The major difference is in what evidence is being accumulated: binary comparisons or absolute 

differences. One line of research which is particularly interesting is that examining attention effects. 

By tracking decision makers’ eye gaze, it is possible to examine which item and attribute is being 

looked at and therefore attended to at any particular time during deliberation and decision making. 

This has enabled modelling of drift diffusion by providing a measure of which item evidence is 

currently being accumulated for (Krajbich, Armel, & Rangel, 2010). However, there is no reason this 

methodology could not also be applied to DbS. This would make it possible to compare the 

predictions of the two models. When attention is directed to one item in the choice set, is evidence 

accumulation best described by the attribute value’s rank order within previous experiences? Or is 

drift diffusion’s assumption correct that the accumulation rate depends upon absolute difference in 

value? If the latter then the issue remains of how this absolute difference is calculated, and whether 

a complex utility function is applied to it. 

1.5. Thesis Framework 
This thesis examines Decision by Sampling as a model of valuation and choice. It also assesses 

the more general role that rank ordering plays in judgement and decision making. Chapter Two uses 

a multi-attribute valuation task to examine the predictive accuracy of DbS when it is explicitly 

modelled upon the stimuli. It also tests predictions of range frequency theory and rank order in 
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value estimates using modified distributions of stimuli values. Chapter Three extends these findings, 

examining the predictions of DbS by modifying the distribution of values upon individual  attribute 

scales. It also examines the effect of prior experience by comparing value estimates in tasks where 

participants have prior knowledge or the stimuli are completely novel. Memory phenomena are also 

introduced to the DbS model to assess the most l ikely sample size used by individuals and whether it 

is possible to improve the models predictive accuracy by incorporating memory effects.  

Chapter Four extends the results of chapter two into multi -attribute choice, comparing the 

effect of binary comparison heuristics such as Dawes rule (Dawes, 1979) and the effect of absolute 

value differences between options. The paradigm is also used in combination with eye-tracking to 

provide an estimate of relative attention. This allows drift diffusion models to be simulated using a 

novel modelling method then compared to DbS and simpler behavioural models. Chapter five 

focusses on neuroscience findings and uses fMRI to dissociate the effects of absolute value and rank 

order in the neural encoding of value. The effect of context upon neural encoding is also examined 

as well as how context is defined in different neural systems. The final experiment takes the findings 

from the neuroimaging experiments and demonstrates an analogous behavioural effect outside of 

the scanner. This experiment shows a cross-modal replication; something which is all too rare 

between the neuroscience and psychology literatures. 
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2. Chapter 2 

2.1. Introduction and Overview 
 This chapter details two experiments which assess Decision by Sampling’s applicability to the 

valuation of single items with multiple attributes and the performance of the closely related range 

frequency theory (Parducci, 1965). These experiments allow for modelling of DbS and the 

exploration of several potential modifications or additions to the model which are inspired by the 

literature on memory phenomena. The design of both experiments also allows for examination of 

learning rates during multi-attribute valuation tasks. Previous research has suggested that 

participants are unable to use feedback and learn the effect of variables when the decision 

environment is difficult or there are more than two pieces of information havi ng an effect upon 

value (Harvey & Fischer, 2005). 

Experiment one required participants to estimate the rental value of a series of apartments 

based upon a number of pieces of information. Feedback was provided in the form of the correct 

rental value after each trial. This allowed an examination of participants’ learning and accuracy rates 

over the course of the experiment. The distribution of rental values experienced was also skewed. 

This means that the predictions of DbS and range frequency theory deviate significantly and 

systematically from the true rental values provided as feedback in the task. Experiment Two 

provides a further test of range frequency by presenting a distribution of rental values where a large 

portion of the range is under represented.  

2.2. Experiment 1 

2.2.1. Introduction 

Experiment One was a multi attribute value estimation task. Participants were shown the 

details of a series of apartments and asked to estimate the monthly rental price. Apartments were 

chosen due to the existing literature using such items to investigate information search and multi -
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attribute decision making (Payne, 1976). They are flexible and appropriate stimuli because they are 

gender neutral (unlike cars or shoes for example; Matthews & Stewart, 2009) and they have a large 

number of potential attributes which can be numerically quantified. Furthermore, our 

undergraduate participant pool would have reasonable understanding of the items as rental tenants 

but would not be experts with the strong, predefined expectations of estate agents or land-lords. 

The most basic aim of the experiment was to assess participants’ learning and to examine 

whether they could accurately extract weighting functions or information about individual attributes 

and thus improve the accuracy of their item valuations. There is debate surrounding individuals’ 

ability (or inability) to learn the relationships between individual cues and overall value. Some 

studies show that individuals have serious difficulties learning from simple outcome feedback  when 

there are more than two attributes (Olsson, Enkvist, & Juslin, 2006; Todd & Hammond, 1965). Others 

suggest that participants can only learn to make accurate use of cue-outcome relationships when 

provided with detailed feedback which often explicitly reveals the relationship between cue and 

output (Balzer, Doherty, & O'Connor, 1989). However, much of this evidence comes from multiple 

cue probability learning tasks where outcomes are binary and probabilistic. There are a number of 

studies which have used stable and deterministic environments with feedback given on a continuous 

scale. These show that participants can achieve high accuracy (Brehmer, 1994; DeLosh, Busemeyer, 

& McDaniel, 1997; Kalish, Lewandowsky, & Kruschke, 2004; Mellers, 1980). For a review see Harvey 

and Fischer (2005). 

The stimuli in this experiment were stable and each attribute had a deterministic 

mathematical relationship with item value. In order to provide the most powerful test of learning 

possible, the same 100 items were presented twice and in the same order, meaning participants 

essentially repeated the experiment. Therefore the accuracy of value estimates at each presentation 

of the same item could be compared to provide an accurate measure of learning. It also means that 
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once an asymptote is identified, it is also possible to assess the long-term stability of value 

estimates. 

In addition to this the experiment allowed a direct test of both DbS and RFT. RFT does not 

make specific predictions regarding the interpretation and integration of attributes onto single 

internal psychological scale. However, it does make predictions about the transformation from this 

internal value to a financial judgement, i.e. the response value. The distribution of rental values used 

in the experiment had a significant positive skew. This results in RFT predictions being significantly 

and systematically different from the true rental value. DbS makes specific predictions about the 

interpretation of individual attribute scales and the methodology here allows for modelling of DbS. 

The predictions of DbS can then be compared to participant responses and the accuracy compared 

to that of simply using true rental value. 

It is also possible to examine a number of potential improvements to the DbS model. The 

model currently predicts that all previous experiences have an equal chance of being sampled. 

However, previous results have shown that participants can adjust to a skewed environment after a 

relatively small number of trials and that the most recent experiences have a significant effect upon 

decisions (Stewart, 2009). Furthermore, findings in the recognition memory literature show that 

more recent experiences are more likely to be recalled from memory (Ebbinghaus, 1913). Others 

show both a recency and primacy effect (Glenberg et al., 1980; Mantonakis et al., 2009). Therefore 

the modifications of DbS tested here incorporate a weighting function to relatively over-sample 

either more recent items or both early and recent items. If either of these modifications shows an 

improvement then it would demonstrate that this short term adaptation is a fundamental aspect of 

a memory based decision making process. It would also rule out anchor and adjust (Tversky & 

Kahneman, 1974) as an explanation of previous findings. 
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2.2.2. Method 

2.2.2.1. Participants 

Participants were 12 Psychology undergraduates who were paid £5 for participation. Eight of 

these were female and four male, with an average age of 19. 8 (S.D. = 2.7).  

2.2.2.2. Stimuli 

The stimuli consisted of 100 apartments. Each apartment had five attributes: Number of 

Bedrooms, Number of Bathrooms, Floor Size, Land-Lord Rating and Distance from Town. Floor size 

was reported in square foot and distance from town centre in miles. Participants were informed that 

land-lord rating was a score between 0 and 10, calculated using feedback from previous tenants. 

Attribute values were created using the parameters detailed below. These were chosen so that 

items were a reasonably close approximation of the smaller apartments advertised to students in 

the Nottingham area.  

 

 Beds – random integer between 1-4 

 Baths – random integer between 1 and the number of bedrooms 

 Square footage – base of 500, plus a random amount up to 500 (drawn from a 

boxcar distribution), plus an additional 50-250 for each bedroom (also drawn from a 

boxcar distribution) 

 Land lord rating – continuous scale from 1 to 10, randomly drawn from a normal 

distribution with a mean of 7 and a S.D. of 3. Values drawn from outside of this 

range were re-sampled, to avoid a cluster of values at the extremes which would 

have occurred if values were instead rounded. 
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 Distance from town – values over 0.1m randomly drawn from a normal distribution 

with mean of 0 and S.D. of 2. Again, values less than 0 were re-sampled, resulting in 

a half-normal distribution. 

 

The rental value was then calculated using a set of mathematical formulae. Essentially, the 

starting value of £220 was multiplied using the formulae below, so that each attribute had a specific 

effect upon value. The product of the first equation was then multiplied by the next and so on, so 

that the output had a weighted multiplicative relationship with the stimuli values. This explicit 

mathematical function means that there was an objectively correct value for each item and a 

deterministic relationship between attributes and rental values. Therefore it was possible to 

measure how quickly participants responded to feedback and to the decision environment in order 

to improve their accuracy. The weighting functions were piloted on a small number of students in 

order to test their plausibility and underwent a number of refinements before the experiment was  

conducted. In the experiment itself no participants reported that they thought the values were odd 

and anecdotally, several apparently believed that the data was drawn from real adverts. 

 

Equation 1 
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Equation 2 
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 The parameters detailed above were used to create 90 stimuli. The remaining 10 had their 

attribute values specifically chosen such that there was an item with a rental value in every 10th 

percentile of the total range. These items were then placed at the end of the series of 90 items and 

were used as critical items or probe trials. This is particularly informative because the 10 items could 

be used to test for any systematic differences across the range of values after being exposed to the 

skewed distribution of the items experienced immediately prior. The overall distribution of rental 

values had a range of £371 to £1638 and a mean of £801. The distribution also had a significant 

positive skew (Figure 2.6, skewness = 0.71). Thus if DbS is correct then the skewed sample of 

experienced values will result in systematic deviations from perfect calibration. 
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Figure 2.6 Distribution of stimuli values. Continuous estimates calculated using nonparametric kernel-smoothing 
with 100 samples. 

 

2.2.2.3. Procedure 

 Participants completed 200 trials. This was composed of the 100 items described above. 

These 100 were repeated in the same order allowing analysis of the stability of participants’ value 

estimates over time. 

 Participants were told they were completing a prototype estate agent training task and 

would have to estimate the potential rental values of a series of apartments based on a small 

amount of preliminary information. For each trial participants were presented with the details of a 

flat and responded with their value estimate. Once this had been provided, the true rental value was 

displayed for 2 seconds before the next trial began. 
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2.2.3. Results 

2.2.3.1. Learning and Accuracy Rates 

 To assess accuracy over the duration of the experiment the percentage error rate was 

calculated for each trial. First the difference between each participant’s estimate of value on each 

trial and the true rental value was found. Then the difference on each trial was divided by the true 

stimuli value in order to find the percentage error. This measure was used in preference to simple 

subtraction because a difference score would inflate the influence of more valuable stimuli. Figure 

2.7 shows the change in accuracy over time and control for trial to trial variability a LOWESS 

smoothed curve was calculated and plotted in addition to the simple mean of the nearest 30 trials. 

Both were calculated using a window encompassing 15% of the data and the LOWESS regression 

used robust errors. This shows that accuracy is poorer early in the task but improves quickly, 

becoming relatively stable in the first half of the experiment. The percentage error then remains 

around 15%. To test for the stability of estimates over time, differences between value estimates for 

the first and second viewing of stimuli were used to calculate mean error percentage in the same 

manner (Figure 2.8). This reveals a very similar pattern but suggests that the difference in estimates 

stabilises slightly quicker: between the 30th and 40th trials. 
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Figure 2.7 Mean size of the error as a percentage of the stimuli's target value over the duration of the 
experiment. Different lines show two methods of smoothing, a simple local mean and a LOWESS smoothing method.  

 

Figure 2.8 Mean size of the difference between estimates to the same items when seen in the first and second 
half of the experiment. 
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 The critical items placed at the end of each half were then analysed: t-tests revealed no 

significant differences between the first and second estimates for any of the 10 items. Thus by the 

second half of the experiment there is no significant improvement or learning. So at least in this task, 

participants learning and adjustment to the decision environment reached (or is close to) an 

asymptote by 100 trials.  

2.2.3.2. Rank Order Effects and Range Frequency Theory 

RFT predicts that there will be a significant effect of the positively skewed distribution and 

that value estimates should be better predicted by an item’s rank order within the stimuli set than 

by its target value. Mean estimates of value were first plotted against stimuli target values (Figure 

2.9). This reveals what appears to be a good fit. However, one easily identified pattern is that lower 

value stimuli tend to be slightly (but reliably) over-valued while high value stimuli are under-valued. 

To test whether this is a deviation which can be explained by rank order, mean value estimates were 

calculated across participants for each item and plotted against their rank according to target values 

(Figure 2.10). This appears to be a worse fit. A correlation analysis confirms this as target values 

reveal a better fit to individual estimates (r = 0.847) than rank order(r = 0.835). A Fishers z-test 

reveals that this difference is not significant (z = 1.0, p>0.05) but this is potentially due to the 

inherently high correlation between value and rank order (r = 0.966). The result also cannot be 

argued as a simple lack of power as it is actually in the opposite direction to that predicted by RFT. 

The theory would predict an equal spreading of estimates across the range of values. The pattern 

observed here is in fact in the direction of regression to the mean.  
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Figure 2.9 Relationship between mean estimates and target value 

 

Figure 2.10 Relationship between mean estimates and rank order 
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2.2.3.3. Decision by Sampling 

As DbS posits that decisions are based upon repeated comparisons at the attribute level, 

calculating its predictions must be done by finding each item’s sum of favourable comparisons with 

other items and this must be done separately for each attribute. In order to calculate DbS scores, 

each attribute for each item was compared with every other item previously seen in the experiment. 

To control for the number of comparisons this score was then divided by the number of preceding 

items. The correlation with individual value estimates (r = 0.779, Figure 2.11) was weaker than the 

correlation between estimates and target values. A Fishers Z reveals the difference is significant (Z = 

4.96, p<0.001), suggesting that DbS is a worse predictor than the true  values participants are 

estimating.  

 

 

Figure 2.11 Predictions of DbS as it stands plotted against participants’mean value estimates 
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2.2.3.4. Decision by Sampling and Memory  

 Some aspects of DbS would seem to be implausible. The assumption that all previous 

memories, or at least a very large number of them, are sampled every time a new item is seen runs 

counter to evidence from both psychology and neuroscience. Is it the case that by imposing 

restraints upon the model to make it more plausible, it can also become more accurate? The first 

step is to control the number of previous items used in the comparison, i.e. limiting the sample size. 

To achieve this a cognitive model was created which simulated DbS but with constrained sample 

sizes. The mechanism of sampling was entirely random, with any previous attribute of any previous 

item having equal likelihood of being sampled and compared to the current one. The only constraint 

was that there was no re-sampling, meaning that for cases where the required sample size was 

larger than the number of previous attributes, all previous attributes were used. This model was 

used to create DbS scores for each item for sample sizes between 1 and 1000. For each sample size 

1000 iterations were performed and each of the predicted values from these iterations was 

correlated with individuals’ estimates. Then r-values were averaged across iterations to give a 

reliable estimate of the model’s predictive accuracy. 

 If DbS is fundamentally correct in all but sample size then there would be a peak in model fit 

at a reasonably small sample size before a decline as the sample size  becomes implausibly large. 

However, as seen in Figure 2.12 there is no such peak in fit when model predictions are correlated 

with participants’ estimates. The fit is very poor for smaller samples and increases with an 

asymptotic shape, showing the strongest fit with an implausibly large 1000 item sample. This sample 

size makes the model equivalent to unmodified DbS and as such no improvement can be found upon 

the original model. The same asymptotic pattern is also found in DbS’s correlation with target value, 

and this correlation is actually stronger. Thus it seems that the model’s predictive ability increases as 

more items are added only because this results in a stronger correlation with target value, not  with 

participants’ estimates. 
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Figure 2.12 The strength of correlation between DbS predictions and either target values or individual estimates 
when DbS is modeled using varying numbers of comparisons with previous attributes  
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participants know there will be a subsequent memory test and therefore make a conscious effort to 

memorize items (Marshall & Werder, 1972). Therefore, the effect of recency and primacy were 

modelled separately. The Ebbinghaus forgetting curve can be represented by a simple exponential 

decay function (Equation 6), with only memory strength left as a free parameter. Primacy can be 

modelled using the same equation, the anchor point is simply moved from the most recent item, to 

the first one encountered. The serial order position curve is the summed effect of the two 

exponential functions, one anchored at the first trial and the other anchored at the most recent.  

Equation 6 The Ebbinghaus forgetting curve. R is retention, or in the case of DbS the probability of being 
sampled, t is the time since the item was experienced and s is the memory strength. 

     
 
  

 

Figure 2.13 The correlation between value estimates and modified versions of DbS. Models weighted for recency 

and primacy were computed for memory strength parameters between 1 and 200 
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one, it was incremented by the sampled item’s associated weighting function value. Two separate 

model versions were computed: one for recency and one for primacy. For each of these, DbS was 

modelled with memory strength parameters between the values of 1 and 200. At lower values the 

weighting function is very sharply curved and the impact of an item decreases very quickly the 

further it is from the anchor point. At higher values, the curve becomes far less extreme and by 200 

is close to linear.  

 As can be seen in Figure 2.13 the primacy weighting function has an asymptotic shape with 

fit approaching a maximum of r = 0.78 as the weighting curve becomes more linear (this is the same 

fit to two decimal places as is found when using no weighting function). However, the fit for the 

Ebbinghaus curve is very different at low values. It shows a local maximum at s = 4 before declining 

and then becoming very similar to the asymptotic shape found for primacy, as the increasing 

linearity of the functions inherently makes their predictions more similar. This is initially 

encouraging, but examination shows that it is only a local maximum (r = 0.7749) and still lower than 

that found using a weighting function of 200 (r = 0.7789).  

 When recency and primacy are applied at the same time a serial order position curve is 

created.  The best fitting parameters were found using maximum likelihood estimation combined 

with annealing to avoid problems of local maxima. The results are very similar to that found for the 

separate weighting curves, but with the early maximum for recency now providing the best fit: 

recency = 3.02, primacy = 172.0, r = 0.78. Despite this, if we plot the fit against recency and primacy 

then the performance of the model is actually incredibly similar for the majority of the tested 

parameters (Figure 2.14). Therefore it seems very unlikely that the addition of this weighting curve 

will ever be able to solve the inherent problems of the model. 
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Figure 2.14 Correlation between value estimates and DbS predictions when weighted using a serial order 
position curve. The strength of correlation is shown at each value between 1 and 200 for memory strength  on both 
primacy and recency 
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a mode parsimonious and valid approach. The same analysis was performed but using stimuli values 

instead of DbS scores. This controls for the number of free parameters and also provides a direct test 

to the Weighted ADDitive model which is regularly used as a baseline measure in multi-attribute 

tasks as it is analogous to multiple linear regression (Dieckmann, Dippold, & Dietrich, 2009). This 

reveals that the predictive accuracy of the two models are not significantly different (r = 0.89, z = 

0.37, p>0.05). 

 

2.2.4. Discussion  

 The results show no support for either RFT or DbS. Mean estimates correlated more strongly 

with target value than with the rank order predicted by RFT. Furthermore, DbS was significantly 

worse than a simple baseline in predicting participants’ value estimates. This was true even when 

several modifications were made to the model to incorporate patterns of memory recall. The results 

for all but one version showed a trend towards worse predictions than baseline. The only version of 

the model which showed an improvement over simply correlating estimates with target values had a 

far greater number of free parameters. This model was no better than a baseline measure which 

was matched for degrees of freedom: simply regressing stimuli values.  

The results shown in Figure 2.9 do suggest a systematic deviation from target values, with 

higher values being underestimated and lower values being overestimated. However, these 

deviations cannot be explained by RFT or DbS. Simple regression to the mean seems a more 

parsimonious hypothesis. It seems sensible that when unconfident, participants anchored their 

estimates closer to the mean of the distribution. This would also account for the reduction of the 

effect in the second half of the experiment, when participants were better calibrated.  

A potential criticism of the experiment is high correlation between rank order and target 

values and also between DbS scores and target values. The distribution of values was created to 
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match the positive skew found in many real world environments, but it does not allow for easy 

separation or orthogonalisation of DbS and target values. It could be that when the distribution of 

values is particularly novel, and significantly different to target values, these models perform 

relatively better. However, the finding that RFT and DbS performed worse does suggest that their 

poor performance in this experiment was not a ceiling effect.  

 

2.3. Experiment Two 

2.3.1. Introduction 

 As DbS and RFT are inherently reliant upon the distribution of values an individual has 

experienced, their ability to predict value estimates should remain stable as the distribution that the 

individual encounters changes, whereas the performance of the baseline of target values should 

decrease. Therefore Experiment Two uses stimuli drawn from a non-normal distribution. If value 

estimates are predicated upon the distribution and rank order of previously experienced values then 

the models’ performance should remain relatively high whilst the correlation with target values 

declines significantly. This design directly tests a prediction drawn from RFT and increases the 

difference between predictions from RFT and target value compared to Experiment 1. Therefore, the 

experiment should provide a more powerful test. In addition, the 10 critical items were again 

presented at the end of each 100 trials. Because they remained the same on each presentation, their 

value did not change, but the difference in the distribution of preceding values meant several had a 

different rank. Thus RFT predicts that these items will elicit significantly different valuations on each 

presentation. 
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2.3.2. Method 

2.3.2.1. Participants 

Thirty-two members of the University of Nottingham community were recruited and were 

paid £5 inconvenience allowance. Their average age was 19.7 (S.D = 2.6). The sample size is larger 

than in Experiment one so that there is sufficient power for between subject analyses on order 

effects. 

2.3.2.2. Stimuli 

 The same apartment stimuli were used as in Experiment One; with the same equations and 

weighting functions. However, instead of repeating the same items twice in each half of the 

experiment, the 90 original stimuli were manipulated to create a non-normal distribution. In order 

to create a portion of the distribution which was significantly under-represented, the top 40% of 

stimuli were taken and their values increased as a proportion of the distance from the most valuable 

item. This essentially results in the top 40% of the distribution being “squashed” up into the top 

20%. The next lowest 5% of stimuli were then increased in a similar way so that that they occupied 

the under-represented portion of the distribution. This results in a broadly bi -modal distribution 

(Figure 2.15), which has the same rank order as the original distribution. 

 The stimuli values were changed whilst maintaining the relative influence of individual 

attributes between distributions. This was achieved by taking the outcome of the weighting 

functions of all continuous attributes for each stimulus and multiplying this by the third root of the 

ratio between original and modified rental vales. The resulting values were then entered into the 

reverse of equations 3,4 and 5 in order to calculate new attribute values on these scales.  
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Figure 2.15 a. The original distribution continuous and with a slight positive skew. b. The modified distribution, 
non-normal and bi-modal. 

2.3.2.3. Procedure 

 The same procedure was used as in Experiment One. The only difference was in the stimuli 

values presented to the participants. Half of the participants saw the stimuli drawn from the original 

distribution in the first and those drawn from the modified distribution in the second half. The rest 

of the participants saw the same stimuli, but with the block order reversed.  

2.3.3. Results 

2.3.3.1. Learning and Accuracy Rates 

 To confirm that participants were still able to learn from the feedback and calibrate to the 

stimuli values despite the altered distribution, error percentages were calculated in the same 

manner as in Experiment 1 and plotted by stimuli order. The data was separated by condition and 

Figure 2.16 shows that participants learn the stimuli values quickly regardless of whether they first 

saw the original or modified distributions.
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Figure 2.16 The percentage error rate over the course of the experiment for a. participants who saw the original 
distribution first and b. participants who saw the bi-modal distribution first 
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2.3.3.2. Rank Order Effects and Range Frequency Theory 

A 2(condition)X2(distribution) mixed model ANOVA was performed on each of the critical 

values placed at the end of each block. The stimuli and their values are identical at each 

presentation but for those with a value above £886 the change in distribution means their rank  

order is significantly different. Therefore RFT predicts a significant main effect of preceding 

distribution upon those with higher values but not for those with lower. Four of the ten critical 

stimuli do show a main effect. Three of these have higher target values and therefore have a 

significantly changed rank (£911, p = 0.022; £1291, p = 0.045; £1374, p = 0.016), but one is a lower 

value item where no difference is predicted (£413, p = 0.036). One must be careful of interpreting 

these results though, as none of these effects are large enough to survive correction for multiple 

comparisons. However what is particularly interesting is that all of these differences are again in the 

opposite direction to that predicted by RFT. Critical values have a lower rank within the modified 

distribution than the original but average value estimates are in fact higher. Curiously, this serves to 

keep the items’ rank by value estimate stable between conditions. This is despite the target value 

being different.  

The overall correlation between target values and value estimates in the second half of the 

experiment was then calculated. This was r = 0.79 for those who saw the modified then original 

distribution and r = 0.87 for those who saw original then modified (Figure 2.17). Both showed the 

same strength correlation with rank order (r = 0.79 and r = 0.87 respectively). This suggests that 

despite the unusual distribution, rank order and target values are equally good predictors of value 

estimates.  
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Figure 2.17 Relationship between target values and mean value estimates for a. participants who saw the 
original distribution first and b. participants who saw the bi-modal distribution first 

 

2.3.3.3. Decision by Sampling and Memory  
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Figure 2.18 Relationship between DbS predictions and average value estimates in the second half of the 
experiment only 
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small, but then shows a rapid increase before performing incredibly similarly for all other values 

tested. 

 

Figure 2.19 Correlation between value estimates and modified DbS models using memory strength parameter 

values between 1 and 200 

 

Figure 2.20 Modified Distribution First 
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Figure 2.21 Original Distribution First 

2.3.3.4. Decision by Sampling and Attribute Weighting 

The same series of regression equations were used as in experiment 1 in order to estimate 

participants’ attribute weightings and then applying these to DbS scores in order to compute 

predicted valuations. This again showed better performance than simply regressing true values, for 

both modified then original (r = 0.90, z = 4.92, p<0.001) and original then modified (r = 85, z = 4.98, 

p<0.001). However, when compared to the same model using stimuli values there was no difference 

in accuracy for modified then original (r = 0.85, z = 0.06, p>0.05) or original then modified (r = 0.91, z 

= 0.81, p>0.05).  

2.3.4. Discussion 

This experiment modified the distribution of experienced values from the first to the second 

half of the task. Because both RFT and DbS are predicated upon the distribution of experiences and 

comparison with recent items, their predictions change when the distribution does. Therefore the 

models should perform better than the baseline measure of simply correlating estimates with target 

values. However, when the distribution changes, the performance of the DbS model declines at the 

same rate as that of the baseline measure.  
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The main finding from these two experiments is that the performance of RFT and DbS rests 

upon their high correlation with target values. When the correlation between target values and 

participants estimates becomes better or worse, there is a concomitant change in the performance 

of both models. Therefore the simplest conclusion is that these comparative models do not explain 

deviations from perfect accuracy. However, it is suprising that target values and rank order have 

virtually identical predictive accuracy in each presentation order. This is despite the two making 

significantly different predictions. Thus, there remains the possibility of an interaction between the 

two but an inability to rule out the possibility should not be mistaken for evidence in favour of it. 

One interesting finding is that, although not surviving correction for multiple comparisons, a 

number of the critical items suggest a difference in value estimates depending upon the preceding 

values. What is particularly interesting is that these are in the opposite direction to that predicted by 

RFT. Rather than a higher rank order by target value resulting in a higher valuation, average 

estimates become smaller. This higher value estimate in the modified distribution results in the 

items’ rank by value estimates staying relatively similar. Estimates rise relative to those in the 

original distribution along with that of other surrounding stimuli whose target value is also higher. 

This could be the result of a simple regression to the distribution mean, or using the mean of 

recently viewed values as an anchor. Hence when, as in the modified distribution, there are more 

values clustered around the higher end of the range the mean is higher and so the value estimates 

become higher. Alternatively, the increased number of items with higher values could simply be 

extending the perceived range of stimuli values. If this is assumed then the results would fit better 

with RFT. 

2.4. Chapter Discussion 
This chapter details two experiments which assess the ability of RFT and DbS to predict 

responses on a multi-attribute valuation task. Cognitive modeling techniques were also employed to 

assess potential modifications to the model inspired by findings from the memory research 
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literature. In summary, the results do not support either RFT or DBS. The models closer to the 

original models, with fewer free parameters, were consistently outperformed by a simple baseline 

measure. The only models which were not significantly worse than baseline were versions of DbS 

with a large number of free parameters. However, the performance of these models was not 

significantly different to that of a WADD model when matched for free parameters.  

The modifications to DbS which were tested were an attempt to reconcile the model with 

findings from memory research whilst also making the model more neurologically and 

psychologically plausible. The most basic modification was to restrict the number of previous 

experiences sampled when calculating value. However, rather than reveal an improvement at a 

plausible sample size, the performance of the model improved asymptotically as the sample size 

increased. The same relationship was found between model predictions and target values. Thus as 

the model used a larger proportion of items to calculate values, the resulting DbS scores became 

more similar to the target values. This was a pattern found throughout all analyses and it seems the 

model becomes better at predicting estimates only because it gets better at predicting the target 

values. If the model were predicting behaviour rather than the original stimuli values then its 

performance would not have such a reliable correlation with target values and would surpass the 

predictive abilities of those target values. 

Perhaps the most consistent finding within memory research is that more recent experiences 

are more likely to be recalled.  Therefore an Ebbinghaus forgetting curve was added to the model as 

a weighting function and a large range of curvature parameters tested. Despite the large number of 

values tested, the modification failed to improve performance. The data suggested a local peak in 

performance when using a weighting function with a steeper curve in Experiment One, but this still 

performed poorer than an unmodified version of DbS and no such peak was found in Experiment 

Two. Apart from this minor deviation, the shape of the fit was broadly asymptotic; with the model 
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performing better as the weighting function became more linear and was therefore using more 

information.  

In addition to recent items being more frequently recalled, many experiments also find an 

advantage for the first few items experienced. Applying a primacy weighting function revealed an 

asymptotic relationship between linearity of the function and the performance of the model, similar 

to that found when examining sample sizes. This is likely because the task was not explicitly 

described as a memory test and therefore the lack of rehearsal meant there was no primacy effect 

(Marshall & Werder, 1972). By combining both recency and primacy into a single weighting function 

a serial order position curve was created, but even with these  additional free parameters DbS did 

not achieve the same predictive accuracy as a simple correlation between estimates and target 

values. Furthermore, plotting the performance of the model against parameter values reveals that 

performance is very poor when both parameters have small values (so extreme curvature), but 

quickly asymptotes and has a very flat fit for all other values modelled. Substantial changes in 

parameter values result in little or no change in performance. This is a good indication that such a 

version of the model is inefficient or inaccurate, with very high variance in parameter estimates 

(Busemeyer & Diederich, 2010). 

As stated in the introduction, DbS is a model of decision making rather than valuation. One 

must therefore assume a mechanism for transforming a score from an internal psychological scale 

into a financial value. However, such a transformation cannot be driving the poor fit of the model 

here. If this were the case then value estimates would still have to increase monotonically w ith DbS 

scores. This is also true for a range frequency model. The shape of the relationship would not 

necessarily have to be linear but any transformation complex enough to violate monotonicity would 

necessitate an entirely different model. Plotting predictions against value estimates revealed no 

such pattern. 
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In Experiment two critical trials with values in the modified portion of the distribution received 

significantly different valuations depending upon the distribution of preceding values. When the 

distribution had been modified so that higher values were over-represented and mid-range values 

under-represented, value estimates for the higher value control items were higher. One potential 

explanation is that participants are simply using a method of anchor and adjustment (Tversky & 

Kahneman, 1974). When control items are viewed after the original distribution then the average of 

recently viewed items is lower than it is if the modified distribution immediately precedes them. 

Therefore anchoring to a higher or lower average, results in the higher and lower estimates 

observed here. 

 Another possible explanation is adjustment to the range of the values experienced. In the 

original distribution high values are under-represented, and as a result participants could perceive 

the range of values to be lower than in the modified distribution. Participants could potentially be 

adjusting to the perceived increase in range by increasing their estimates (although it should be 

noted that the actual range of estimations varies very little). Furthermore, many stimuli receive 

value estimates in the mid-portion of the range despite being significantly under-represented in the 

true stimuli values. This suggests an adjustment according to the frequency of estimates at different 

value ranges. These two phenomena are predicted by RFT (Parducci, 1965). The increase in 

perceived range results in the estimated value of critical items rising, whilst the uneven frequency 

distribution of experienced values results in a significant number of estimations within the under-

represented portion of the range. 

In both experiments, participants performance was remarkably high and had very high 

correlation with target values. Therefore it seems participants are able to incorporate feedback and 

develop weighting functions when there are more than two cues (Todd & Hammond, 1965). There 

are several likely reasons why participants in these studies were able to whilst those in others were 

not. Firstly, participants begin the experiment already aware of the valence for each attribute and 
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had reasonable expectations regarding each one’s relative impact based on real-world experience. 

This is analogous to having task information at the beginning of the task, which is known to 

dramatically improve performance (Balzer et al., 1989). In addition, the relationship between cues 

and outcomes was entirely deterministic. The majority of studies where individuals have not shown 

learning have been probabilistic and contained random noise (Harvey & Fischer, 2005). Some argue 

that individuals are not able to properly integrate probabilistic outcomes and cannot separate the 

random noise from the signal as would be required to abstract weighting functions (Brehmer, 1980). 

Our results support these previous findings: in an entirely deterministic task where participants do 

not have to separate signal from random noise, they perform with high accuracy.  

In chapter three the paradigm is modified to examine the effects of individual attributes and 

their distributions. The experiments directly address which has the greater effect upon value 

estimations: the true mathematical weighting function linking attributes and rental value, or the 

distribution of experienced attribute values. This detailed examination of attribute use also allows a 

comparison between heuristic accounts of valuation and mathematically compensatory accounts 

such as WADD. 
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3. Chapter 3 

3.1. Chapter Introduction 
In this chapter two experiments are reported which test the predictions of DbS by direct 

experimental manipulations. In the previous chapter the distribution of rental values was 

manipulated. This tested the predictive accuracy of RFT in multi -attribute tasks as the model makes 

predictions about how the value of an item is transferred from an internal psychological scale to an 

explicit financial valuation. However, DbS predicts that the same rank ordering strategies occur in 

the production of the internal psychological valuation, at the level of the attribute. Therefore the 

modified distribution of rental values resulted in very little change in the predictions of DbS. In this 

chapter, two experiments were conducted which again use multi -attribute valuation tasks. In each 

task two of the items’ attributes use the same scale; however one has a modified distribution, 

whereas the other has a modified weighting function. Thus, by extracting participants’ use of these 

attributes and their relative weighting, it is possible to directly test DbS.  

Experiment 4 also addresses the issue of prior expectations. Experiments 1-3 have used 

apartments on the basis that the undergraduate population would have limited experience with 

specific examples. However, they will undoubtedly have pre-conceptions and some experience of 

values from their life up until that point. These more distant experiences were predicted to have 

minimal effects during the task based upon memory phenomena (Ebbinghaus, 1913) and previous 

results in choice and valuation tasks which show large effects of immediately preceding items 

(Beckstead, 2008; Stewart, 2009; Ungemach et al., 2011; Vlaev & Chater, 2007). But the results of 

Experiments 1&2 did not support this. Therefore it is possible that values experienced prior to the 

experiment still had a significant effect upon value estimates and this could be the reason the 

distribution of values did not modify valuations in the manner predicted by DbS and RFT. Experiment 

4 addressed this by using exactly the same stimuli values, but with a very different cover story. By 

asking participants to estimate the values of mineral deposits based on levels of contamination etc. 
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it was possible to compare the use of information between situations with (some) existing 

knowledge and those with none.  

The detailed examination of attribute use and weighting functions in this chapter also allows 

the results to speak to one of the most fundamental debates within JDM research: Whether 

individuals use mathematical functions and compensatory weighting of information, or rely upon 

simpler heuristics and rules (Gigerenzer & Selten, 2002). Although most research into heuristics has 

focussed upon choice between alternatives (Brandstätter et al., 2006; Bröder, 2002; Glöckner & 

Betsch, 2008; Johnson, Schulte-Mecklenbeck, & Willemsen, 2008; Newell & Shanks, 2003), there are 

proponents of heuristics in single item valuation (Gigerenzer & Goldstein, 1996; Gigerenzer & Todd, 

2000). Furthermore, the experiments elicit explicit estimates of subjective importance of different 

attributes and information. Thus, if the results support a Weighted ADDitive (WADD) account, it is 

possible to examine whether people’s stated estimates of attribute importance are an accurate 

reflection of their actual use and weighting of the information.  

3.2. Experiment Three: Distributions and Weighting Functions 

3.2.1. Introduction 

This Experiment used a very similar task to that of Experiments 1 &2 with participants 

estimating the rental value of a series of apartments. However, the stimuli were changed so that the 

predictions of DbS could be directly tested. DbS predicts that the value of each attribute for the 

current item is compared to previously experienced values on that particular attribute. Thus it is the 

distribution of values within an attribute which dictate the estimated value, not the distribution of 

the overall rental values. So if RFT predicts that rank ordering is used to transform values from an 

internal psychological scale to an external response scale, DbS predicts that the rank effects occur 

earlier, during the valuation on the psychological scale 
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 The biggest change from the task in the previous chapter was that the number of bathrooms 

and land-lord rating were removed from the stimuli attributes. The bathrooms attribute was 

removed because it was not independent of the number of bedrooms. A property with 1 bedroom 

and 4 bathrooms is unrealistic, but constraining the number of bathrooms by the number of 

bedrooms means that there was significant correlation between the two attributes. The land-lord 

rating was removed because anecdotal reports from participants suggested it was the scale they 

found most difficult to interpret. It is also the only one which doesn’t have a credible real world 

analogue. These two attributes were replaced by a crime risk rating. This was a score between 0 and 

10 representing the risk of being the victim of crime in that postcode. By then constraining the 

maximum distance from town the values given to these two attributes could be interchangeable. It 

was then possible to manipulate the distribution of values for one attribute, whilst manipulating the 

mathematical effect of the other attribute upon rental value for the other. 

The experiment also explored a more general issue in the JDM literature by attaining 

subjective estimates of attribute importance. Previous research has suggested that participants are 

generally quite poor at estimating their own strategies and there is little correlation between their 

subjective reports of information use and the information weighting statistically extracted from their 

behaviour (Cook & Stewart, 1975; Reilly & Doherty, 1989; Snook et al., 2011; Zhu & Anderson, 1991). 

However, these weightings are extracted by regressing stimuli values against valuations/choices. I f 

individuals estimate values based upon rank order within attributes then it could be that the 

statistically abstracted weightings are simply calculated upon different information than that used 

by participants. This would explain why very different methods of extracting subjective estimates 

produce consistent measurements, but that these measured weights then do not correlate with 

those statistically extracted (Cook & Stewart, 1975). It is also a potential explanation for studies 

which find participants are far better at estimating a choice environment’s weighting functions if 

they are those abstracted from another individual, rather than created by an abstract mathematical 

relationship (Reilly & Doherty, 1992). 



67 
 

A further advantage of measuring subjective attribute weightings is that it provides a 

weighting which is independent of the data. These weights can then be used in models of DbS where 

attributes are given different weightings. In Experiments 1&2 weighted models performed well, but 

weightings were estimated directly from participants responses, adding a large number of free 

parameters. By constraining the model using independently measured weights the model may 

potentially retain this high level of predictive accuracy without the increase in free parameters. 

In testing the weighting functions used by participants there is an implicit assumption that 

they are using some form of mathematically compensatory system. However, these same analyses 

can provide evidence that a WADD model cannot properly describe the data (Busemeyer & 

Diederich, 2010). Thus, if participants make no significant use of any parameters or weight any single 

attribute highly enough that no combination of other attribute values can significantly alter the 

valuation, then these are strong indicators for a non-compensatory heuristic account (Brandstätter 

et al., 2006; Bröder, 2002; Gigerenzer & Selten, 2002; Gigerenzer & Todd, 2000; Glöckner & Betsch, 

2008). 

3.2.2. Methods 

3.2.2.1. Participants 

Thirty-two undergraduates at the University of Nottingham completed the experiment for 

course credit. Twenty were female and twelve male, with an average age of 20.4 (SD = 2.1).  

3.2.2.2. Stimuli 

The stimuli were 200 apartments. Four attributes were used in this experiment and their 

design differed from previous experiments in that they erred towards simplicity, sometimes at the 

expense of accurate representation of the real world. The variables use d were number of bedrooms, 

size in square ft, distance from town and crime risk score. Number of bedrooms was a random 
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integer between 1 and 4. Size was randomly selected between 750 and 2000ft using a boxcar 

function.  

Distance and crime were the two variables of interest. Distance was given a linear distribution 

and cubic weighting; crime was given a cubic distribution and a linear weighting. Size was the only 

continuous variable which had both a linear distribution and a linear weighting upon rental value. 

Thus it acted as a control variable. The linear distribution of distance was created by drawing 

numbers from a boxcar function between 0 and 10, rounded to one decimal place. The cubic 

distribution was calculated by starting with a random number from a boxcar function between 0 and 

10, rounded to one decimal place. The mean was then subtracted from each value creating an equal 

distribution around zero. This was then cubed before being linearly rescaled such that the smallest 

value was 0 and the largest 10. 

Each variable’s effect upon rental value was then calculated using the following equations 

Equation 7 

  
(      )

 
     

Equation 8 

  
(        )

    
     

Equation 9 

  
(        )

 
      

The effect of distance was calculated in the same manner as crime’s distribution was, being 

centred around zero, cubed and then re-scaled to between 0 and 10 before being divided by its 

mean and multiplied by 0.25. Figure 3. shows the weighting function of each variable. The result is 

that both distance and crime have the same overall effect upon rental values, but the cubic and 

linear components are provided by either distribution or weight. Figure 3.2 shows the relative rank 
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effects of the crime risk attribute. The cubic distribution results in DbS predictions of a steep 

increase in the centre of the scale with plateaus near the extremes of the range. 

 
Figure 3.1 The effect of distance from town (left) and crime risk (right) upon rental value. Note also the different 

distributions, with crime being under represented at the extremes of the scale 

 
Figure 3.2 The relative rank effect of the crime attribute, i.e. the attribute's effect upon value estimates as 

predicted by DbS 

3.2.2.3. Procedure 

 The procedure was similar to the previous experiments. Participants saw the details of an 

apartment and responded by typing their estimated rental value. They were then shown the true 

rental value for 2 seconds. There was then a 1 second interval of blank screen before the next item 

was presented. Participants were also asked to estimate how important each vari able is when 
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judging the value of an apartment. They responded using a slider on a scale of 1-100 labelled at 

either end as “not at all important” and “very important”. Participants provided these ratings twice: 

once at the beginning and once at the end of the experiment so that it was possible to identify any 

effects of learning. 

Participants were told that the task was part of an estate agent training programme. The 

crime variable was explained to participants as the crime risk in the property’s post code , as 

calculated by the government website “police.uk”, with a higher score indicating a higher likelihood 

of being the victim of crime. 

3.2.3. Results 

3.2.3.1. Accuracy and Learning Rates 

To examine participants’ accuracy and learning rates the average error rate was calculated for 

each item as a percentage of the item’s true value. When these were plotted by trial, participants 

showed rapid learning and an asymptote at around trial 60 (Figure 3.3).  Individual’s responses from 

the second half of the experiment were then correlated with true rental values and show that 

participants are performing with high accuracy (r = 0.708). Despite the strong correlation, accuracy 

was significantly lower than in Experiment 2 (z = 2.45, p<0.05).  
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Figure 3.3 Average error rate during the experiment. Results are smoothed using a local mean and a lowess local 
regression. 

3.2.3.2. Attribute Weighting Estimates 

Participants provided estimates of each attribute’s importance both at the beginning and end 

of the experiment. The aim was to investigate whether these estimates were an accurate 

representation of the true weighting functions that participants were trying to learn and whether 

they had insight into their own weightings. Standardised beta weights were first calculated by 

regressing the attribute values against the true rental values in order to serve as a measure of 

participants’ accuracy with respect to the  relationships they were trying to learn. Individuals’ 

estimates were then used to extract participants’ weighting of information when making estimates. 

A cluster corrected correlation then demonstrated that individuals were well calibrated when 

making their valuations and their use of information closely matched that of the mathematical 

relationship between stimuli and true values (r = 0.83, p<0.0001). There is a general pattern of 
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participants underweighting all attributes, but the relative importance attributed to each attribute 

still demonstrates the significant correlation.  

Participants’ subjective estimates of attribute importance were analysed to examine their 

accuracy, starting with ratings provided before beginning the task. There was no significant 

correlation between participants estimates of attribute importance and the true weightings (r = -

0.17, p>0.05). There was a significant correlation between estimates and participants own revealed 

weightings but it was actually negative (r = -0.26, p<0.05). This was primarily driven by participants 

underestimating their use of bedrooms and overestimating that of size (Table 3.1). In fact only 30.4% 

of participants correctly identified the attribute which they weighted most highly during their 

valuation estimates. Thus suggesting that participants are not using simple heuristics (Dawes, 1979) 

or prioritizing attributes in a hierarchical manner (Ayal & Hochman, 2009; Birnbaum & LaCroix, 2008; 

Brandstätter et al., 2006; Dhami, 2003).  

A similar pattern is revealed by estimates provided at the end of the experiment. There is no 

significant correlation with true weightings (r = -0.01, p>0.05). The relationship between estimates 

and subjective weightings was no longer significant (r = -0.09, p>0.05), but the trend is still towards a 

negative correlation. The proportion of participants correctly identifying the attribute they weighted 

most highly fell to 21.7%, suggesting that participants’ estimates of their own weightings did not 

significantly improve over time. 
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Table 3.1 The standardized betas when regressing stimuli values against true rental values, average estimates 
accross participants and the mean betas when regressions are performed separately for each participant. These are 
shown alongside the average subjective estimates of importance for each attribute. 

 Truevals Average 
separate 
regressions 

Pre-task 
estimate 

Post-task 
estimate 

Intercept 660.2 650.4   
Beds 0.770 0.658 72.5 74.6 
Size 0.312 0.174 82.1 71.6 
Crime -0.406 -0.143 77.0 90.2 
Town -0.412 -0.304 71.9 69.0 

 

3.2.3.3. Decision by Sampling and Modelling 

DbS scores were calculated by finding the number of previous stimuli which were worse than 

the current item on each attribute. This was then divided by the number of previous trials. 

Correlating these scores with individual value estimates for the second 100 items reveals that DbS is 

significantly worse at predicting valuations than simply correlating true rental values (r = 0.603, z = -

6.27, p <0.05).  

A multiple linear regression was performed to allow the weights for each attribute to vary 

freely within the model. This revealed a fit of r = 0.80, which was the same as the performance when 

stimuli values were entered as predictors (r = 0.80). The experiment also allows examination of 

whether the weighted DbS model could retain its increased predictive accuracy when the values of 

the additional free parameters were independently measured and constrained. The DbS scores for 

each attribute were multiplied by participants’ estimates of the attribute’s importance. The resulting 

correlations were poor and slightly weaker than the original unweighted model of DbS. This was the 

case both for estimates provided before the task (r = 0.55) and after it (r = 0.50). This poor 

performance is unsurprising given participants’ poor accuracy when providing these importance 

estimates (see above). As a further test of this assertion, the same model can be calculated using 

stimuli values rather than DbS scores. The importance weightings were divided by the standard 

deviation of their corresponding attribute scales before being multiplied by the attribute values and 

summed together for each item. This also revealed a very poor fit for weightings from before (r = 
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0.53) and after the task (r = 0.45). When the post-task weightings are used, DbS does significantly 

outperform the model using stimuli values (z = 2.26, p<0.05), suggesting that rank orders could be 

playing a larger role in participants subjective estimates than stimuli values. However, given the very 

poor fit of both models, the argument is not strong. Furthermore, the effe ct is not found when pre-

task estimates are used (z = 0.97, p>0.05). 

3.2.3.4. Rank Versus Weighting Function 

The central prediction of DbS is that the interpretation or use of an attribute is predicated 

upon rank order and distribution. Therefore an attribute with a distribution which is not equally 

represented at all points would result in a non-linear effect upon value estimates. A WADD account 

would predict that if individuals’ use of information is ever non-linear it is due to underlying 

weighting functions, not the distribution of values. The crime attribute uses a non-linear distribution, 

while the distance variable uses a non-linear weighting function. To test for these non-linear effects, 

a multiple regression was performed with both quadratic and cubic components included for all 

three continuous variables. Separate regression models were calculated for each participant and 

beta weights for each attribute were tested for significance across participants using a one sample t -

test with a null hypothesis of zero. The mean standardised betas and p-values are shown in Table 

3.2. There was a significant effect of the cubic component for both crime and distance. In order to 

plot the effect graphically a further four regression models were computed. Each of these were 

computed with one of the attributes removed from the model (along with its polynomial terms). By 

comparing the residuals to those of the original model it is possible  to plot the effect of each 

attribute (Figure 3.4). This shows that although the effect for the crime variable is a close visual 

match for the distribution of attribute values, rank order (and thus DbS) predicts the reverse 

curvature (Figure 3.2).  
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Table 3.2Results of regression analyses when predicting value estimates 

 beds crime size Distance Crime^2 Crime^3 Size^2 Size^3 Dist ̂ 2 Dist ̂ 3 
Beta 0.6445    -0.8868     1.9924    -1.2812     1.6965    -0.9990 -3.292 1.5176     1.7476    -0.777 
p-value <0.0001 <0.0001 0.0227     <0.0001 0.0001     0.0001 0.0559     0.0847     0.0003     0.0037 

 
Figure 3.4 Change in residuals caused by each attribute being added to the regression 

3.2.4. Discussion 

The results show that when calculating value estimates, participants were making good use of 

the information available and were weighting attributes in accordance with their effect upon true 

value. However, they were then very poor at estimating these weightings and subjectively reporting 

the relationship between attributes and item value. Value estimates also show a significant cubic 

relationship with crime, the attribute whose experienced values had a cubic distribution. However, 

the curvature of this cubic function was the inverse of that predicted by rank order.  

Correlations between revealed attribute weightings and those of the true model show that 

participants were accurate at weighting attributes and integrating information in accordance with 

the true underlying model. This suggests that in this multi-attribute valuation task participants were 
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making use of a Weighted Additive model rather than relying solely upon simpler heuristics. A 

criticism of previous studies using similar estimation methodologies is that they are especially prone 

to over-fitting the data (Busemeyer & Diederich, 2010; Pachur et al., 2012). In this case the larger 

numbers of free parameters in the regression model allow it to find marginally better fits than a 

simpler model, even if the simpler assumptions are true.   The estimation procedure does so by 

fitting a complex model using a large number of cues that then also explains or fits the noise in a 

specific data set. The analysis employed here reduces these risks by estimating parameters 

separately for each participant. This finds reliable patterns in parameter estimates across all 

participants, suggesting that it is not merely an effect of fitting response noise in a single data set. 

Furthermore, these parameter values correlate significantly with the specific predictions of the 

WADD model; a pattern unlikely to be the result of simple over-fitting.  

Although participants made accurate use of information when making their value estimates, 

the results show that they were not able to accurately introspect about their own weighting of 

information. As in previous studies, there was no significant correlation between estimates of 

attribute importance and the relative weight participants placed upon them during the task (Cook & 

Stewart, 1975; Reilly & Doherty, 1989; Snook et al., 2011; Zhu & Anderson, 1991). Previous studies 

of choice have found that when participants can be categorized as using heuristics strategies, they 

can accurately identify the most important single attribute (or two most important). However, this 

experiment found that only a relatively small minority of participants are able to identify the 

attribute they weight most highly in their decisions. For post-task estimates the proportion was 

actually slightly below chance. The majority of heuristic accounts predict that individuals make use 

of only a small number of attributes and thus should be able to identify these, as has been shown in 

other tasks (Snook et al., 2011).  

The poor accuracy of participants’ explicit estimates of attribute importance means the 

weighted models of DbS cannot be considered informative. It is not possible to know whether the 
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improved performance in Experiments 1&2 was due to the large number of free parameters. 

Alternatively it could still be that the underlying model is sound and that the estimation in previous 

experiments has found true underlying parameter values. 

The experiment allowed for a test of DbS’s prediction of rank order encoding of attribute 

scales. The crime attribute used a non-linear distribution, with values in the mid-range of the scale 

being relatively over-represented. A cubic regression showed that participants’ weighting of this 

scale did show a significant cubic function. However, plotting this effect reveals that the curvature is 

in fact in the opposite direction to that predicted by DbS. Rank order encoding predicts a steep slope 

in the mid-section of the scale where the high concentration of items makes the relative rank climb 

quickly, but a plateau at the extremes where there are few items. What is actually found is a plateau 

in the centre of the scale and values at the extremes being relatively over-weighted. 

One potential explanation for the crime weighting function could be that because the extreme 

values are comparatively rare, when they are seen they are a more salient cue. Therefore 

participants adjust their estimate up or down more than they otherwise would. However, a simpler 

potential explanation is that the observed pattern matches the most reasonable prior expectations. 

It seems reasonable to assume that the very safest locations will be in locations such as gated 

communities which are disproportionately expensive, whilst the most dangerous properties will be 

in especially dilapidated areas and therefore substantially cheaper. This suggestion is also supported 

by the weighting of an apartment’s distance from town. Although the cubic regressor does have a 

significant effect upon estimates it is significantly weaker than that for crime, with the quadratic 

component absorbing much of the variance. The revealed pattern is that of apartments particul arly 

close to the town centre being valued highly, but the effect of moving further away declining rapidly. 

It seems a reasonable assumption that city centre apartments will be disproportionately expensive. 

The impact of prior expectation and experience is investigated in Experiment 4. 
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3.3. Experiment Four: Mineral Valuation 

3.3.1. Introduction 

This experiment used the same stimuli and procedure as in Experiment 3, but used an entirely 

different cover story. The potential confounds of prior expectations and experiences  outside of the 

experiment environment were eliminated by instead asking participants to estimate the value of 

mineral deposits at mining sites. In the design of Experiments 1-3, it was assumed that the 

undergraduate subject pool would have minimal experience of apartment valuation. Furthermore, 

based upon previous evidence it was predicted that the more recent experiences of the stimuli items 

were far more likely to be sampled from memory (Ebbinghaus, 1913) and more likely to affect 

judgements (Beckstead, 2008; Stewart, 2009; Ungemach et al., 2011; Vlaev & Chater, 2007). 

However, the results of Experiment 3 are consistent with reasonable prior expectations and both 

Experiments 1&2 find no effect of recency when memory decay functions are added to the DbS 

model.  

The procedure used in this experiment makes it possible to test the cause of the cubic 

weighting of crime risk represented in valuations during Experiment 3. If this was caused by the 

relatively rare extreme values being more salient, then the effect will remain. If the effect was simply 

due to prior-expectations about the value of apartments then the effect will not be present.  

It is also possible to check whether participants are still able to accurately weight attributes 

when they have minimal existing knowledge about their relationship to item value. The task 

instructions only informed participants of the valence of each attribute’s effect, thus participants 

would have to extract all other information from task feedback. A significant correlation between 

elicited weighting and true weights would provide evidence that participants are learning from the 

feedback provided.  
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3.3.2. Methods 

3.3.2.1. Participants 

Twenty six undergraduates at the University of Nottingham participated in return for course 

credit. The average age was 19.5 (SD = 2.4), 9 were male and 17 female. 

3.3.2.2. Stimuli 

The stimuli used were the same as in the previous experiment but were  re-labelled. Instead of 

the rental value of apartments participants were now told they would be estimating the value per 

tonne of ore deposits at different mining sites. They were told that the ore contained a fictional 

mineral called milderite which was crucial to the processing of other precious metals, predominantly 

platinum. Each potential mining site had various characteristics which would either increase the 

value of the deposits or decrease them by virtue of increasing the costs of extracting the valuable 

mineral. Number of bedrooms was re-labelled UN government stability rating, with a better stability 

rating reducing costs and risks of operating in the region. Floor space became grams of extractible 

platinum per tonne of ore. Crime and distance from town were replaced with the severity of two 

contaminants: “gibbsite” and “ferrite” respectively.  

3.3.2.3. Procedure 

The procedure was exactly the same as in the previous experiment except that now 

participants were estimating the value per-ton of milderite ore at a series of potential mining sites. 

3.3.3. Results 

3.3.3.1. Accuracy and Learning Rates 

Correlation showed that value estimates were significantly less accurate than in Experiment 3 

(r = 0.599, z = 6.62, p<0.001). Plotting average error rates over time reveals that participants initial 

error rates are greater than in experiment 3 and initial learning appears somewhat slower ( Figure 
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3.5). This is unsurprising given the novel task and lack of valid expectations regarding the unfamiliar 

mineral deposits.  

 

Figure 3.5 The Average error rate over the duration of the Experiment 

3.3.3.2. Attribute Weighting Estimates 

Standard beta weights were extracted using multiple linear regression. A separate regression 

model was calculated for each individual. These beta weights correlated strongly with those 

calculated using the true deposit values (r = 0.87, p<0.001), but accuracy was worse than in 

Experiment 3 (z = 2.06, p<0.05). Unlike Experiment 3 the extractible amount attribute (formerly size) 

is now weighted accurately (Table 3.3) and is the only attribute that is not significantly 

underweighted (t(25) = 0.15, p>0.05). A series of two sample t-tests revealed that there is no 

significant change in the weighting of gibbsite/crime (t(47) = -1.03, p>0.05) or ferrite/distance (t(47) 

= 1.68, p>0.05). The increase in extractible amount/size is significant (t(47) = 3.62, p<0.001) as is the 

increase in the use of stability/bedrooms (t(47) = 3.9, p<0.001).  
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Table 3.3 The standardized betas when regressing stimuli values against true values, average estimates accross 
participants and the mean betas when regressions are performed separately for each participant. These are shown 
alongside the average subjective estimates of importance for each attribute. 

 

 Truevals Average Estimate 
Weightings 

Initial estimate Final estimate 

intercept 660.2 623.1   
Stability 0.770 0.460 64.7 74.4 
Extractible Amount 0.312 0.316 77.0 66.5 

Gibbsite -0.406 -0.178 69.1 77.9 
Ferrite -0.412 -0.230 67.4 72.7 

 

Standardized betas from true deposit values were correlated (using cluster correction) with 

individuals’ estimates of attribute importance. This revealed no significant correlation with the pre -

task estimates (r = -0 008, p>0.05) nor post-task estimates (r = -0.072, p>0.05). There was also no 

significant relationship between importance estimates and participants own extracted betas for pre 

task (r = -0.004, p>0.05) or post-task estimates (r = -0.08, p>0.05). The proportion of participants 

correctly identifying the most influential attribute did show an increase from 23.1% in pre -task 

estimates to 38.5% post-task. However, the proportion of participants giving their highest rating to 

the attribute they used least also rose from 11.5% to 34.6%.  

3.3.3.3. Decision by Sampling and Modelling 

Decision by Sampling’s predictions were calculated and correlated with participants’ value 

estimates. This revealed predictive accuracy was not significantly different to that for true values (r = 

0.572, z = -1.53, p>0.05). DbS scores were then calculated separately for each attribute and entered 

into separate multiple regression models for each participant to find the best fitting weighting 

functions. These were then used to calculate the overall model performance (r = 0.71). However, 

this was again no different to that found if stimuli values were used instead (r = 0.71).  

To reduce the number of free parameters, participants’ estimates of attribute importance 

were used to weight each attribute within the DbS model. When pre-task estimates were used 



82 
 

performance was significantly worse than the original DbS model (r = 0.47, z = -4.95, p<0.001) and 

this was also the case when using post-task estimates (r = 0.53, z = -2.01, p<0.05). Performing the 

same model using stimuli values reveals a fit which is significantly worse than DbS for pre-

experiment estimates (r = 0.41, z = -2.75, p<0.01) and trending in the same direction for post-task 

estimates (r = 0.50, z = -1.83, p = 0.06).  

3.3.3.4. Rank Order Versus Weighting Function 

In order to test whether the cubic distribution or weighting functions of stimuli attributes 

were represented in participants’ value estimates, a series of cubic regressions were performed in 

the same manner as the previous experiment (Table 3.4). This time the attribute with the modified 

distribution (gibbsite) has no significant cubic effect upon value estimates whereas the attribute with 

a cubic weighting function (ferrite) does (Figure 3.6). However, the strongest and most statistically 

significant cubic function is found for the variable for which both distribution and weighting function 

were linear (extractable amount). Plotting the change in residuals as a result of the attributes being 

removed from the model reveals that this pattern very closely matches that of crime in Experiment 3 

(Figure 3.6).  

Table 3.4 Regression results for mineral value estimates 

 Stability Gibbsite Extractable 
Amount 

Ferrite Gibbsite 
^2 

Gibbsite 
^3 

Extractable 
Amount ̂ 2 

Extractable 
Amount ̂ 3 

Ferrite 
^2 

Ferrite 
^3 

Beta 0.46 -0.56 6.32 -0.72 0.78 -0.42 11.56 5.63 1.19 -0.72 
p <0.001 0.005 <0.001 0.003 0.084 0.126 <0.001 <0.001 0.027     0.024 

 



83 
 

 
Figure 3.6 Change in residuals caused by each attribute being added to the regression 

3.3.4. Discussion 

This experiment investigated the extent to which prior expectations and knowledge regarding 

the stimuli and task shaped the responses and results of Experiment 3. The results show that the 

change in cover story had a significant effect upon the shape of participants’ attribute weighting 

functions. Gibbsite (formerly crime) had a cubic distribution and therefore DbS predicts a cubic 

influence upon value estimates. The cubic effect found in Experiment 3 (in the opposite direction to 

that predicted by DbS), is no longer present after the change in cover story. Ferrite (formerly 

distance) had a linear distribution and cubic weighting function, so the cubic function found in 

participants’ valuations in both experiments is predicted by a polynomial WADD model. However, no 

model predicts the strong cubic component found in the current experiment for extractible amount 

(formerly size) as it had both a linear distribution and linear weighting function. As in Experiment 3, 

these cubic functions show extreme values being relatively over-weighted in estimates. Therefore a 

potential explanation is that now participants cannot make use of existing knowledge about the 
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attributes, the extreme values become more salient. These more extreme values can then act as a 

qualitative cue to raise or lower estimates in a manner not captured by a linear WADD model. As 

extractable amount and ferrite are both weighted more strongly than gibbsite it seems that this 

saliency is not equal between attributes, but stronger for those which are more highly weighted. 

Furthermore the cubic distribution of gibbsite means there are fewer data points at the extremes of 

the scale, the regions most crucial to the analysis’ power.  

The finding most consistent with Experiment 3 was that participants were poor at estimating 

their usage and weighting of attributes. Furthermore, the accuracy with which participant valuation 

strategies matched the underlying relationships between attributes and true value was still high. 

Accuracy was significantly lower than the previous experiment, so prior expectations certainly had 

an influence. Although this influence appears to be relatively minor, the fact that accuracy over time 

does still asymptote before the mid-point of the task, suggests it may not simply be an effect of 

slower learning when there are no suitable pre-existing hypotheses (Harvey & Fischer, 2005).  

3.4. Chapter Discussion 
This chapter used multi-attribute valuation tasks to investigate how individuals make use of 

the relative rank of attribute values and the underlying mathematical relationships linking attributes 

to overall item value. It also examined the degree to which responses are shaped by expectations of 

real world values and experiences which occur prior to the task. This was achieved by changing the 

cover story, so although participants believed they were valuing a very different class of items the 

stimuli and values were in fact identical in each case. 

3.4.1. Non-Linearity in Weighting and Distribution Functions 

In Experiment 3 participants estimated the rental value of flats. The distribution of the crime 

risk attribute was shaped such that rank order encoding would predict a cubic curve, with an 

increase in value in the mid-portion of the scale providing a disproportionately large increase in DbS 

score compared to at the scale’s extremes. Although a cubic function was found in participants 
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responses, the curvature was in the wrong direction. There was a plateau in the mid-portion of the 

scale, with an increase in attribute value providing a disproportionately small increase in estimates 

of item value. Two suggestions seemed to be reasonable hypotheses: One was that the extreme 

values on the scale were made more salient by their relative rarity and were thus over-weighted 

when they were seen. The second was that participants could simply be using expectations from 

experience in the real world. This was because it seems reasonable to assume that the very safest 

and the most dangerous locations are disproportionately expensive and cheap. The latter was the 

favoured hypothesis, as the weighting of distance from town had a particularly strong quadratic 

curve and matched reasonable real world expectations: Locations very close to town were valued 

disproportionately highly, whilst the effect of moving further away from town diminished rapidly. 

The same pattern as city centre flats being disproportionately expensive.  

In Experiment 4 the same stimuli were used but participants were instead told they were 

estimating the value of deposits of a fictional mineral “milderite”. This largely eliminates the effect 

of prior expectations. Therefore if both experiments produced the same cubic encoding effects it 

could only be attributable to the distribution of attribute values. However, participants weighting of 

gibbsite (formerly crime), the attribute with a cubic distribution, became linear. Previous studies 

using multi-attribute tasks have shown that prior task knowledge can have a signif icant effect upon 

learning and accuracy (Balzer et al., 1989; Harvey & Fischer, 2005), so in this light these results are 

unsurprising. However, it was predicted that the effect of prior experience would be minimal and 

largely overshadowed by the values experienced in the first 100 trials (Beckstead, 2008; Ebbinghaus, 

1913; Stewart, 2009; Ungemach et al., 2011; Vlaev & Chater, 2007).The observed effects of prior 

expectations contradict the prediction that more recent experiences have a disproportionate effect 

upon judgement. This is also true of the modelling performed in experiments 1& 2 which showed no 

improvement when memory phenomena were incorporated into sampling models. Therefore, if 

judgements are made based upon comparisons with previous experiences it seems that more recent 
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experiences do not have the disproportionately large effect predicted by much of the memory 

literature. 

Although the pattern of encoding for distance from town supports prior expectations as an 

explanation, it cannot explain the cubic encoding of other scales in Experiment 4. The most 

significant cubic component (both statistically and in terms of size) was found for the linearly 

distributed and linearly weighted attribute: extractible amount. This was also the only continuously 

distributed attribute whose weighting in participants judgements significantly increased from 

Experiment 3. It seems an alternative explanation is that when participants saw an extreme value for 

an attribute they believed was influential, this would act as a cue to raise or lower their value 

estimate in addition to any WADD calculations. Gibbsite is the only continuous variable which does 

not display this pattern and it is also the one which has the lowest overall weighting in participants’ 

responses. Its distribution also means that the extremes of the scale are relatively under-

represented in the data and this serves to reduce the sensitivity of the cubic regression. The same 

argument cannot be made for Experiment 3 as crime also receives low weighting, but in this case a 

strong cubic component, hence the positing of different explanations for each experiment. 

3.4.2. Attribute weighting estimates and accuracy 

In Experiments 3&4, participants’ value estimates showed they were making appropriate use 

of information. The weight given to each attribute closely matched the relationships between 

attributes and true values suggesting that participants were using the feedback to accurately 

abstract the underlying model. This is a pattern which supports WADD and cannot be easily 

explained by heuristic accounts without relying upon criticisms such as over-fitting (Gigerenzer & 

Todd, 2000), the risks of which are minimised in these experiments.  

Despite making accurate use of the stimuli information when calculating their valuations, 

participants were extremely poor at providing subjective estimates of their own attribute 

weightings. This was true both before and after completing the task. This suggests that the cognitive 
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process is not available to introspection. This is not surprising in itself, given the existing literature 

(Cook & Stewart, 1975; Reilly & Doherty, 1989; Snook et al., 2011; Zhu & Anderson, 1991) and that 

introspection is not explicitly predicted by rational models. What is somewhat surprising is that 

participants were very poor at simply identifying the attribute they weighted most highly. Previous 

research has suggested that when participants are employing a heuristic strategy they are able to 

identify the one (or two) attribute(s) upon which they base their responses (Dhami, 2003; Snook et 

al., 2011). However, participants were not explicitly asked to identify the most important, this was 

inferred from their estimates of attribute importance provided on a continuous scale. It is possible 

that using an elicitation method more compatible with heuristic strategies will enable participants to 

improve their introspection, but this seems unlikely given the lack of other evidence for heuristic 

strategies in this task. 

3.4.3. Implications for Decision by Sampling 

Overall the results of this chapter do not support DbS. The use of attribute scales did not 

conform to rank order encoding. In Experiment 3 there was cubic encoding of the predicted 

attribute scale, but the curvature was in the opposite direction to that predicted by the model. In 

Experiment 4 there was no cubic encoding of the predicted scale and there was cubic encoding of 

attributes where it was not predicted; though the curvature was again in the wrong direction for the 

model. As in Experiments 1&2, modelling DbS revealed poorer accuracy than a simple baseline 

measure and when attribute weights were allowed to vary as free parameters the model performed 

no better than WADD. The results of setting these free parameters using participants’ explicit 

estimates was somewhat uninformative as the results reveal participants are unable to accurately 

introspect about these weightings.  

DbS is fundamentally a model of choice rather than valuation. The results presented in this 

chapter and the preceding one suggest that DbS cannot accurately predict value estimates in a 

multi-attribute task. However, there is a large body of evidence suggesting that there are qualitative 
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differences between strategies of single item valuation and choices between alternatives (Hsee, 

Loewenstein, Blount, & Bazerman, 1999; Lichtenstein & Slovic, 1971; Tunney, 2006; Tversky, Slovic, 

& Kahneman, 1990). In the next chapter participants are asked to make a binary choice between two 

alternatives and the accuracy of DbS is tested when applied to predicting de cisions. 
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4. Chapter 4 

4.1. Chapter Introduction 
Decision by Sampling is fundamentally a model of choice and was not specifically designed to 

explain single item valuations. Therefore the poor performance of this model in previous chapters 

could be because individuals use qualitatively different strategies for the different tasks (Gigerenzer 

& Selten, 2002; Lichtenstein & Slovic, 1971). This chapter presents two experiments which 

investigate decisions in a multi-attribute choice task. 

Experiment 5 compared the performance of a mathematically compensatory model of choice 

with a simple heuristic rule. It also tested the performance of DbS, investigating whether it can 

provide an appropriate link between mathematical and heuristic models. It tested the hypothesis 

that memory effects and sample size can explain why individuals are frequently categorized as using 

one of two very different cognitive strategies. The strategies for valuation and choice tasks were also 

compared, testing two different accounts of the differences between them: An adaptive toolbox of 

heuristics (Gigerenzer & Selten, 2002) and a single cognitive system with differences caused by the 

interpretability of the information in different tasks. 

Experiment 6 used eye tracking to examine the accuracy of drift diffusion models of choice 

which make specific predictions about individual’s patterns of attention  to information and the 

resulting effect upon choices. The behavioural effects of skewed distributions upon choice were also 

examined in order to test the predictions of DbS. Participants’ use of information was modelled to 

examine whether they made use of an attribute’s weighting function or its distribution.  
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4.2. Experiment 5: Binary Comparisons and Weighting Functions 

4.2.1. Introduction 

4.2.1.1. Compensatory Calculations and Heuristics 

Traditionally, models of value based decision making have fallen into one of two categories: 

Complex mathematically compensatory models and simple heuristic rules. The former includes 

models in which the decision maker calculates a score or utility for individual items using a system of 

weighted combination and trade-offs across all (or at least a large proportion) of the cues presented 

(e.g. LENS model; Brunswick, 1955; Weighted Additive rule/Franklin's rule, Gigerenzer & Todd, 2000; 

Cumulative Prospect Theory; Tversky & Kahneman, 1992; and Expected Utility Theory; von Neumann 

& Morgenstern, 1944). The models are described as compensatory because if an item has a low 

value on one attribute it can be compensated for by a high value on another. Heuristic accounts 

posit that decision makers use simple rules and that there is no (or minimal) mathematical 

computation (e.g. Priority Heuristic; Brandstätter et al., 2006; Matching Heuristic; Dhami, 2003; Take 

The Best; Gigerenzer & Goldstein, 1996;  and Elimination by Aspects; Tversky, 1972). A popular 

interpretation of heuristic accounts is the adaptive toolbox (Gigerenzer & Selten, 2002). This 

suggests that there are a potentially large number of simple heuristics which decision makers have 

at their disposal and that the task environment dictates which is used in a deterministic bottom up 

manner. Therefore, when the decision environment or the response mode changes, individuals will 

use different heuristics in the same manner that a camper will use a different tool on a Swiss army 

knife depending upon the problem they are faced with. 

Despite initially promising findings for some models of heuristic decision making (Brandstätter 

et al., 2006; Dhami, 2003; Gigerenzer & Goldstein, 1996), recent studies have found that these 

models perform poorly when items are created so that compensatory and non-compensatory 

models make opposing predictions (Birnbaum & LaCroix, 2008; Glöckner & Betsch, 2008; Johnson et 

al., 2008; Rettinger & Hastie, 2001). Although the weight of evidence would seem to support 
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compensatory models there are nonetheless a number of findings that these models alone cannot 

explain. When subjects are categorized according to the models that best explain their decision 

making (Bröder, 2002) the majority of individuals are identified as using a compensatory strategy. 

However, a significant minority are best explained by a non-compensatory heuristic or rule (Ayal & 

Hochman, 2009; Bröder, 2003; Glöckner & Betsch, 2008; Glöckner & Herbold, 2011; Newell & 

Shanks, 2003). Of course there remains the possibility that rather than falling into a distinct 

taxonomy, subjects may be using a dual process strategy that incorporates both compensatory 

valuation and a set of heuristic rules (Ayal & Hochman, 2009). Or individuals could actually be 

employing a different strategy altogether, one which lies somewhere in between the two extremes. 

The experiments reported here investigated mathematical and heuristic strategies using the 

Weighted ADDitive rule (Gigerenzer & Todd, 2000) and Dawes’ Rule (Dawes, 1979). Despite 

sometimes being referred to as a rule, WADD is actually a mathematically compensatory calculation 

whereby weights are applied to each attribute according to their relative importance. The values of 

each attribute are then multiplied by their respective weighting function and summed together to 

enable a single comparison between the options. Dawes' rule states that decisions are made by 

assessing each attribute in turn and making a binary judgement of which item has a higher value for 

that attribute. Whichever item is better has its score incremented by 1. If the attribute does not 

discriminate between the items then neither score is incremented. Once all the attributes have been 

assessed the item with the highest score is chosen. The overall Dawes’ score for each choice can also 

be calculated by subtracting one item’s score from the other.  

Although Dawes’ Rule was originally conceived as a prescriptive theory of how to improve 

decision making in complex real world situations, some descriptive theories of choice imply that 

there are situations where Dawes’ is a useful description of choice. One case in particular is Decision 

by Sampling (Stewart et al., 2006). Dawes is actually a special case of DbS, where the sample is so 

small that only the currently available information is used to calculate an item’s score. Therefore, a 
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valid question to ask is whether individuals should not be described as using qualitatively different 

strategies, but are in fact using DbS but calculate scores using different sample sizes. This is 

potentially a more parsimonious explanation as a single model could apply to all individuals. Only a 

single parameter would need to vary in order to explain individual differences.  

4.2.1.2. Valuation vs. Choices 

A question inherent in the mathematical versus heuristic debate is whether value estimates 

for a single item and choices between two or more alternatives are made using the same cognitive 

process. Mathematical models generally assume that the same cognitive process can be used to 

make value judgements and to make choices (Brunswick, 1955). They suggest that any apparent 

differences between choice and value judgements occur because of the interpretability of 

information being inherently different in the two tasks i.e. that the inputs are different, rather than 

the process itself. An example would be selecting a new set of speakers. When in a shop and 

comparing the sound of several different models it is easy to judge the relative sound quality of each 

model. However, if one is trying to assess the sound quality of a single set in isolation, it is very 

difficult to quantify how good it is with nothing to compare it against (Hsee et al., 1999). When then 

selecting the preferred option or judging the value of a single set, the individual is still weighing up 

the evidence in the same manner, but the evidence which has been accumulated is respectively 

more or less accurate. Conversely, a heuristic or adaptive toolbox account would posit that these 

differences arise because any one heuristic is specific to the task environment and there is no 

manner in which the same heuristic or decision rule can be applied to both response types.  

A strong line of argument in favour of a qualitative difference is the phenomena of preference 

reversals. This is where individuals express a choice preference for the item to which they previously 

assigned a lower value when they saw it alone (Lichtenstein & Slovic, 1971; Tversky et al., 1990). 

These findings have proven very robust and extend across a wide range of decision domains (Hsee et 

al., 1999; Tunney, 2006). However, most bid-choice reversals are found to occur when at least one 
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attribute value is difficult to evaluate in isolation, with relative di fferences only becoming apparent 

when an item is compared alongside others in the choice condition. This suggests that preference 

reversals may not require an explanation based upon qualitatively different processes. Studies that 

have assessed participants’ intensity estimates of single scales or attributes find that these individual 

scales are interpreted differently when presented alone and when presented with other comparable 

values. This difference in interpreting or encoding individual attributes then accounts for subsequent 

inconsistencies between choices and valuation of the multi-attribute item(s), (Johnson, Haubl, & 

Keinan, 2007; Sevdalis & Harvey, 2006). Either account allows for the possibility that DbS will provide 

a good explanation of decisions, despite experiments in previous chapters demonstrating poor 

predictive ability on valuation tasks. 

This experiment employed a multi-attribute choice task where subjects both value the 

individual items and then also make binary choices between pairs of items. Crucially, the pairs are 

constructed so that the predictions of the Dawes’ Rule and mathematical calculations of objective 

value are in opposition for a significant proportion of choices. We also compare the effect of 

attribute values upon both choices and valuation. If qualitatively different processes are recruited 

then one would expect only a minority of attributes to be used during choice and either a large 

majority or a different selection of attributes to influence single item valuation. However, if the 

same process is recruited to both judgements, then any differences will be in the manner in which all 

attributes are weighted. Two attributes are manipulated such that we can examine the relative 

effects of mathematical relationship with an item’s overall value and the distri bution of experienced 

attribute values. A standard WADD account predicts the former will be most influential, whilst DbS 

predicts it will be distribution. 
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4.2.2. Methods 

4.2.2.1. Participants 

Thirty-two students from the University of Nottingham participated in the study, 7 were male 

and 25 female. The average age was 22 years (S.D. = 4.9). Participants were paid £8 for participation. 

4.2.2.2. Stimuli 

Stimuli consisted of 125 hypothetical apartments and from these 124 pairs were selected 

based upon criteria detailed below. Each stimulus item consisted of five attributes that plausibly 

influence the rental value of apartments: the number of bedrooms, the number of bathrooms, the 

floor size in square feet, the distance from the town centre and the crime risk.  

Apartments were again used in this experiment because chapter 3 demonstrated that 

participants’ accuracy in estimating target value was significantly higher than for more abstract 

stimuli such as mineral deposits. Furthermore, all of the relevant hypotheses which this experiment 

tests are either orthogonal to the effects of prior knowledge or make predictions which are in the 

opposite direction to those demonstrated in Chapter 4. 

The number of bedrooms was a random number between 1 and 4 and the number of 

bathrooms was a random number between 1 and the number of bedrooms. The floor size was 

randomly selected between 750 and 2000 square feet and distance from town was also random, 

between 0 and 10 miles. Crime risk was given as a score between 0-10 and explained to subjects as 

the crime rating of the property’s postcode as calculated by the government statistics website 

“police.uk”. The distribution of crime risk values was derived using distance from town: the distances 

given to all stimuli were de-meaned, such that the distribution was centred at zero. These values 

were then cubed before the being re-scaled to between 0 and 10. This created a non-linear 

distribution with a cubic curve, meaning that values in the centre of the range were proportionally 

over-represented whereas the extremes were under-represented (Figure 4.1).  
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Figure 4.1 The cumulative frequency plots for the two modified attribute scales 

The rental value of each stimulus item was calculated from a base of £400. Each attribute had 

its own weighting function used to calculate its effect upon rental value, as shown below. The output 

of each was then multiplied against the starting value of £400 to obtain the rental value for each 

apartment. 

Equation 10 

  
(      )

 
      

Equation 11 

  
(       )

 
       

Equation 12 

  
(        )

    
     

Equation 13 

012345678910
0

20

40

60

80

100

120

140

 

 

Crime

Distance



96 
 

  
(        )

 
     

The cubic function used to create the non-linear distribution of crime risk was then used to 

create the weighting function for distance. The result is that both distance and crime have the same 

overall effect upon rental values, but the cubic and linear components are provided by either 

distribution or value weighting function respectively. 

The stimulus pairs were then selected from the resulting 125 items. The main aim of this 

experiment was to investigate choice behaviour when the score derived from a direct binary 

comparison of each attribute (hereon “Dawes score”)  favoured the item with the lower objective 

rental value. We will refer to these as “mismatch trials”. All potential pairings of all 125 stimuli were 

analysed as mismatch trials using the following criteria: Pairs where there was a mismatch and 

where the Dawes score was as high as 3, were required to have a difference in absolute value o f at 

least £50. These were inevitably rare and only 4 pairs met the criteria. For mismatch pairs with a 

Dawes score of 2 and 1, we required a minimum value difference of £100 and £200 respectively. We 

therefore selected 46 pairs with a Dawes score of 2 and 27 with a score of 1. The remaining 47 were 

“matched trials”, where Dawes score favoured the item which also had the higher objective rental 

value. These pairs were selected entirely at random, the only criteria was that there were no 

duplicate pairs within the stimuli set. 

4.2.2.3. Procedure 

The experiment took the form of a simulated estate agent (realtor) software package for 

apartments in the rental market. The subjects were told that the apartments were situated in a 

typical British city of a similar size and standard of living to the one in which the experiment was 

conducted (Nottingham), but that there were some differences which they would learn as they 

progressed. In the first part of the experiment the subjects saw each of the 125 stimulus items 

individually and were asked to estimate the monthly rental value of each one. The five attributes of 
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a single apartment were presented in a list and subjects simply typed their estimate of monthly rent. 

After each estimate the subjects received feedback in the form of the objective rental value 

(determined by the formulae described above). The trials were self -paced but feedback was visible 

for 2000msecs , followed by a 1500msec ITI. In the second half of the experiment the two items in 

an apartment pair were presented side by side and subjects were asked to indicate which of the two 

they thought was the more valuable using an on-screen button. No feedback was given during this 

part of the experiment. 

4.2.3. Results 

4.2.3.1. Behavioural data 

Responses from the first part of the experiment show that subjects were relatively accurate at 

estimating rental value. Estimates were an average of 14.25% off the true rental values across all 

individual responses and when estimates were averaged across subjects there was a very strong 

correlation with true values (r = 0.947, p<0.001). Estimates also became more accurate over time: 

The correlation for the first 50 items was weaker (r = 0.926, p<0.001) than for the remaining 75 (r = 

0.96, p<0.001) and correlating average error with trial number reveals a significant relationship (r = -

0.2, p<0.05). 

4.2.3.2. Categorizing Individuals’ Behaviour 

The next question was which of the candidate models provided the best fit of the observed 

data. This allows us to see if we have replicated previous reports in which the majority of subjects’ 

behaviour is best explained by mathematical models and only a small minority by heuristic models 

(Bröder, 2002; Glöckner & Betsch, 2008; Glöckner & Herbold, 2011). Logistic regressions were used 

to estimate WADD weights for each subject. These weights were then used to predict their choice 

behaviour. Across all the stimulus pairs the model predicted 88.4% (SD = 7.5) of responses. However, 

when this analysis was separated by trial type there was a significant difference in the model’s 

accuracy between matched (M = 93.5%, SD = 6.4%) and mismatched (M = 85.4%, SD = 9.5%) trials 
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(t(31) = 5.56, p<0.001). Using the same simulation method Dawes’ Rule provided a poorer fit and 

predicted an average of just 53.5% of choices (SD = 14%) across all trials. The rule also showed good 

accuracy on matched trials (M = 89.2%, SD = 6%), but a poorer fit for mismatched trials (M = 31.8%, 

SD = 22%). This would appear to support the mathematical model, as Dawes performs well when it’s 

predictions are in line with WADD, but performs significantly below chance when the two models 

make opposing predictions. However, this cannot be a complete explanation since that would result 

in an exact reversal in accuracy between matched and mismatched trials i.e. 11.8% in mismatched 

(100-89.2) or 69.2% in matched (100-31.8). 

Decision by Sampling was explicitly modelled from the data. For each choice, the number of 

favourable comparisons within all previously seen choices and single item valuations was calculated 

for each attribute. These were then summed to create a single score for each item. This resulted in 

the correct prediction of 78.0% (SD = 10.6) of choices across all trials. For mismatched trials this was 

69.7% (SD = 14.5) and matched trials 91.3% (SD = 7.5). The effect of recency was investigated by 

adding a weighting curve to the DbS model. Thus, a favourable compari son to a more recently 

experienced item would increment the item’s score more than a favourable comparison to a more 

temporally distant item. The size of this difference was controlled by a weighting function which 

took the shape of an Ebbinghaus forgetting curve. Maximum likelihood estimation was used to find 

the most appropriate rate of decay for each participant. This found that the best fitting decay rate 

on average was 0.032 (SD = 0.0057). This actually produces a concave weighting function, with the 

vast majority of items weighted very highly and similarly, except for the very oldest. This results in 

predictive accuracy which is identical to the unweighted model. Closer inspection reveals that the 

MLE search function terminates once the weighting function becomes so linear that there is no 

longer any predictive difference between the weighted and unweighted predictions. This is the case 

for all participants; there is no evidence that different individuals are simply using different sample 

sizes. As a result, the performance of WADD and DbS are significantly correlated (r = 0.66, p<0.001), 

but with DbS always performing slightly worse. 
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As with earlier studies (Bröder, 2002; Glöckner & Betsch, 2008; Glöckner & Herbold, 2011) 

participants were next categorized according to which model best predicted their responses.  Thirty-

one (96.9%) of the subjects were best described by WADD. None were categorized as responding 

according to DBS or Dawes’ rule and only one (3.1%) subject was predicted equally well by WADD 

and Dawes rule. We then analysed the Match and Mismatch trials separately. For the Matched trials 

26 (81.3%) subjects were best fit by WADD, 3 (9.4%) by Dawes’ and 3 (9.4%) were fit equally well by 

both, none were fit best by DbS. When only Mismatched trials were examined 30 (94.8%) subjects 

were best explained by WADD, none by DbS or Dawes’ rule and 2 (6.2%) equally well by WADD and 

Dawes. This pattern of individual differences in decision rules is similar to that reported in other 

studies that also show that the majority of subjects appear to utili ze mathematical compensatory 

models when making choices between items.  

When DbS was modelled with additional free parameters which allowed attributes to receive 

different weightings there was a marked improvement in accuracy, correctly predicting 86.3% of  

choices overall. However the model only performed better than WADD for 6 participants and was 

still significantly worse across participants (t(31) = 5.09, p<0.001). When split by trial type, DbS was 

less accurate for mismatched pairs, predicting 84.1%. It was the best performing model for only 3 

participants and significantly worse than WADD overall (t(31) = 4.92, p<0.001). The DbS model 

allowing different weightings performs better for matched trials, predicting 89.8% of choices and is 

the best performing model for 16 participants. However, its accuracy is not significantly different 

from that of WADD, with the relative differences between them forming an approximately normal 

distribution around zero (mean difference = 0.012, t(31) = 1.04, p>0.05).  
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Figure 4.2 Distribution of differences between percentage accuracy for weighted DbS and WADD models. The line shows 
the best fitting normal distribution curve. 

4.2.3.3. Are valuations and choices made using the same process? 

Now we investigate whether subjects make similar use of information when providing single 

item valuations and when choosing between alternatives. If qualitatively different rules or heuristics 

are used then subjects would use the information differently. I f the same compensatory process is 

used in both tasks then there should only be minimal differences in weightings. To allow for 

comparison between the continuous data of value estimates and binary choice responses the 

average choice proportions for each stimulus pair were entered into a linear regression with the 

difference between items on each attribute entered as predictors. This reveals that the overall 

pattern of information weighting is very similar in both tasks, with one major exception: The 

distance to town centre is significantly over-weighted during the choice task. This is in comparison to 

both the valuation task and to its objective influence upon rental value. This is particularly 

interesting because this attribute had a curvilinear weighting function with respect to rental value. 
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Therefore, it suggests that participants were correctly representing this weighting function in the 

valuation task, but then the constant distribution of values enlarged the perceived difference 

between the items in the choice task (Table 4.1 & Figure 4.3). 

Table 4.1 WADD weights for choice proportions as estimated using a standardized regression 

Attribute Standardized Betas t-value p-value 

Beds .668 -13.339 <.001 
Baths .208 -3.901 <.001 
Size .079 -1.549 .124 
Crime -.232 2.588 .011 
Distance to Town -.445 4.899 <.001 

 

Table 4.2 WADD weights for estimates of rental values as estimated using a cluster corrected standardized regression 

Attribute Standardized Betas t-value p-value 

Beds .506 17.35 <.001 
Baths .173 8.05 <.001 
Size .084 5.02 <.001 
Crime -.296 12.38 <.001 
Distance to Town -.074 2.94 .006 

 

 

 

Figure 4.3 WADD weights for each attribute as calculated for choices and item valuation. Error bars represent Parameter 
Estimates 
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The experiment had been designed such that participants weighting of crime and distance 

could be examined along the range of their scales. This would allow a direct test for a cubic 

component in individuals’ weighting of the information and for the resulting pattern to be plotted 

graphically. However, due to a programming error during stimuli creation there was a highly 

significant correlation between crime and distance (r = 0.9). Therefore, the effect of the two scales 

could not be sufficiently separated by non-linear modelling as originally planned. Experiment 6 

below corrects this error. 

4.2.4. Discussion 

This experiment examined whether compensatory models provide better explanations of 

choices than non-compensatory heuristic models and whether DbS can provide a link between the 

two. The results replicate the basic findings of other studies (Bröder, 2002; Glöckner & Betsch, 2008; 

Glöckner & Herbold, 2011) which found that the behaviour of a large majority of individuals is best 

explained by mathematically compensatory models. A very small number were better explained by 

Dawes rule, but none by unweighted DbS. Accuracy was improved when attribute weightings were 

allowed to vary within the DbS model but its accuracy was still significantly worse than WADD and it 

was only the best fitting model for 6 out of the 32 participants. However, within this modelli ng it 

should be noted that the matched trials provide the fairest comparison between DbS and WADD. In 

order to provide an accurate comparison between WADD and Dawes rule, stimuli pairs were 

carefully controlled using the mathematically calculated rental values. Thus, WADD predicted the 

same average difference between apartment valuations for matched and mismatched trials, i.e. a 

1:1 ratio. Because DbS scores are calculated on different information, the ratio of differences in its 

predicted values was 1:1.5, with the greater difference being found for mismatched trials. Therefore, 

DbS is at a relative disadvantage and one should be very careful when comparing its accuracy to that 

of WADD on mismatched trials.  



103 
 

It was hypothesised that DbS could explain why individuals are so frequently split between 

mathematical and heuristic models. DbS could potentially fit the responses of participants who are 

otherwise best explained by WADD and Dawes by fitting different size samples. A larger DbS sample 

would result in high correlation with WADD predictions, whilst a smaller sample would correlate 

with Dawes. However, as in valuation tasks, the best fitting DbS parameters were those which 

resulted in the highest correlation with WADD. This was true for all participants, e ven those for 

which Dawes rule predicted a high proportion of their responses. There was no evidence for any 

difference in sampling rates between individuals.  

4.2.4.1. Valuation vs. Choice 

These results show that subjects made different use of the same information when making 

single item valuations and when choosing between alternatives. Although the results do not suggest 

a broad and all-encompassing switch in strategy such as from a weighted compensatory judgement 

to a simple heuristic based mechanism (Brandstätter et al., 2006; Gigerenzer & Selten, 2002), the 

difference in the way particular attributes are used is interesting. The largest change in weightings 

was found for the distance from town attribute. This was the lowest weighted during valuation but 

second highest in the choice task. Crucially, this is one of the attributes where the relative influence 

of the experienced distribution and its weighting upon rental value were manipulated. Whilst it was 

equally represented at all points between 0 and 10 miles, the weighting function relating it to rental 

value was curvilinear. This means that for the majority of the centre portion of the scale a difference 

in distance corresponded to relatively little change in value and individuals seem to have 

represented this in their value estimates. However, the fact that it was equally represented at all 

points on the scale means that when two items are put side by side there is a greater chance of a 

large relative difference than there is for other attributes, particularly crime. Thus, the observation 

that subjects placed far more weight upon it in the choice task suggests that the relative difference is 

more evaluable or simply more salient during the choice task (Hsee et al., 1999). Unfortunately the 

programming error in stimuli creation means it is not possible to investigate whether a cubic 



104 
 

weighting function can be found in participants use of either scale. This is now addressed, along with 

other questions, in Experiment 6. 

4.3. Experiment 6: Eye Tracking  

4.3.1. Introduction 

Whether a choice requires selecting which apartment to rent in a new town or just a preferred 

snack in a shop, these decisions are not made immediately upon exposure to the options. Rather 

they recruit a form of deliberative decision making not explicitly captured by WADD. This experiment 

examines a family of models explicitly designed to describe such choice processes: Accumulator 

models. These generally assume that decision making is based upon a noisy stochastic process 

where evidence for each item is accumulated over time. A choice is made once enough evidence has 

been accumulated for one item to cross a threshold (Busemeyer & Townsend, 1993; Ratcliff & 

McKoon, 2007; Stewart et al., 2006; Usher & McClelland, 2001).  

In this experiment we focus upon one class of accumulator model: the drift diffusion model 

(DDM). DDM predicts that when making a choice between two alternatives individuals rely upon a 

single accumulator which accumulates evidence over time from each of the competing items 

(Ratcliff & McKoon, 2007). The value of the accumulator at any given time point represents the 

current difference in evidence accumulated for either option. A positive value indicates a current 

preference for item 1, whereas a negative indicates the same for item 2. A decision is made when 

the accumulator crosses a decision boundary at either 1 or -1. 

Although there are many versions and iterations of DDMs (Bogacz et al., 2006), the one which 

we will focus on here is that described in Krajbich, Armel, & Rangel (2010). This model posits that the 

rate of drift is a function of attention and relative item value as described by (       ) when 

attention is directed towards item A. This applies the weighting function   to the value of the 

unattended item. This weighting can vary between 0 and 1. Therefore, when   = 1 there is no effect 
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of attention and the rate of drift depends solely upon the options’ relative va lues. However, when   

= 0 then the value of the unattended item is irrelevant and evidence is accumulated for the attended 

item regardless of the relative appeal of the alternative. Many other accumulator models have a 

similar assumption, whereby the slope is a function of the information and item currently attended 

to (Busemeyer & Townsend, 1993). Eye tracking analysis is a useful tool when investigating such 

models because visual fixations can be used as a proxy for the attention term in the models. We 

chose to investigate the model above because it has previously performed well when applied to eye 

tracking data and can be easily extended to multiple attribute choices. 

By investigating multiple attribute choices we can extend previous findings and address 

additional questions of how attention is directed when collecting information and making a decision. 

One of the most reliable findings in eye tracking research is the gaze cascade. This is the finding that 

in the lead up to making their selection, individuals look more and more towards the item they 

subsequently select (Atalay, Bodur, & Rasolofoarison, 2012; Glaholt & Reingold, 2009; Shimojo, 

Simion, Shimojo, & Scheier, 2003). Several papers argue that this is evidence of a feedback loop 

between value judgement and attention or saccade planning processes (Shimojo et al., 2003; Simion 

& Shimojo, 2007). However, it seems desirable that attention is not only directed towards the most 

valuable option but also towards the more important or useful information. In a multi -attribute 

choice the relative importance of different pieces of information can differ from one choice to the 

next. For example, when choosing between a one-bedroom apartment and an alternative with four, 

one might expect individuals to attend more to this information than on trials where both options 

have the same number of bedrooms. Thus the multi attribute design means that the effects of item 

value and importance of information can be separated and the information upon which the 

attention feedback loop is predicated can be better elucidated.  
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4.3.2. Method 

4.3.2.1. Participants 

Twenty-four students at the University of Nottingham participated in return for course credit. 

There were 17 females and 7 males, with an average age of 19.2.  

4.3.2.2. Stimuli & Procedure 

 The stimuli were created using the same equations as in Experiment 5 (but with the previous 

programming error corrected). There were 125 apartments for which participants estimated the 

value in the first part of the experiment. Participants were also given feedback, being told what the 

true rental value was, so that they could improve their estimates and calibrate to the stimuli. In the 

second part of the experiment participants were shown 125 different item pairs and were asked to 

select which they thought was more valuable. 

 The stimuli were presented with attributes in a horizontal row. In choice trials, one item was 

at the top of the screen and the other at the bottom. The position of the attributes remained the 

same throughout, so participants quickly learnt which attribute would be present in each location on 

the screen. This means that when participants fixate on a piece of information we know that they 

intended to look at it and are not simply exploring the information to find the current location of the 

information they are actually interested in. The order of stimuli was not counterbalanced between 

participants, potentially leaving confounds with screen position (however these are minimised by 

individual differences in attribute weighting). 

4.3.2.3. Eye-Tracking  

Gaze position was measured using an SMI RED II with monocular sampling at a rate of 50Hz. 

Participants were seated with a chin rest at 50 cm from the screen and 45cm from the eye -tracker 

sensor.  
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Fixations were defined as any period of at least 100ms where gaze remained within a 50 pixel 

radius of the mean position of the fixation. A tolerance of up to 40ms missing data during a fixation 

was also allowed, providing that the gaze position for present data never left the fixation radius. This 

resulted in an average of 76.5% of all valid gaze location readings being classified as a fixation. Areas 

of Interest (AOIs) were defined as rectangles 155x155 pixels centred on each number. This resulted 

in 90.2% of fixations falling within an AOI. These classification rates are comparable to other 

experiments using similar methodology. 

4.3.3. Results 

4.3.3.1. Behavioural results 

Participants choices showed good calibration to the task environment, with the more valuable 

item selected on 79.5% (SD = 13.4) of trials. Participants took an average of 4.83 seconds (SD = 

1.74s) from trial onset to response. Cluster corrected correlation also showed that participants 

responded more slowly when rental values were more similar (r = -0.186, p < 0.001). When 

correlations were performed separately for each participant a t-test comparing all r-values to zero 

shows that the effect is also robust across individuals (t(23) = 5.66, p < 0.001).  

A modified regression equation was then used to estimate the relative importance 

participants placed upon each attribute. A standard regression was not appropriate because this 

would require the same attribute for the top and bottom items being entered as separate 

parameters. However, it is not reasonable to expect a particular attribute to have different 

weightings simply because it was presented on the top or bottom of the screen. The appropriate 

equation is very similar to that of standard regression but applies the same beta weighting to 

attribute values from item one and item two.  

Equation 14 
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This can then be rearranged to the following: 

Equation 15 

       (           )   (             )   (  
             )

   (             )    (                   ) 

This allows for estimation of the beta weights using a standard logistic regression ( Table 4.3). 

We wanted to test whether participants were successfully extracting the weighting functions used to 

calculate the true rental values given as feedback in the first part of the experiment. Therefore, the 

same analysis was performed but using the true rental values to determine the preferred item. This 

showed a very similar pattern to participants’ responses. Bedrooms and bathrooms were 

consistently underweighted, as they were in Experiment 5. However, participants’ behaviour 

appears reasonable and there is no reason to think this has any impact upon further analyses. 

Table 4.3 Revealed weighting of each attribute accross participants demonstrates that despite relatively good fit, 

participants are slightly underweighting bedrooms and bathrooms. 

 Bias Beds Baths Sq’Ft’ Crime Distance 
True Rent 0.02 0.52 0.35 0.13 -0.22 -0.3 
Estimated 
Weights 

0.01 0.42 0.23 0.17 -0.18 -0.33 

Significance 
of 
difference 

t(23) = -0.66 
p > 0.05 

t(23) = -2.79 
p < 0.05 

t(23) =-5.83 
p < 0.001 

t(23) = 1.54 
p > 0.05 

t(23) = 1.71 
p > 0.05 

t(23) =-1.26 
p > 0.05 

4.3.3.2. Categorizing Individuals’ Behaviour 

As in Experiment 5, participants were categorized according to which model out of WADD, 

Dawes rule and DbS, best predicted their choices. WADD predicted choices with an overall accuracy 

of 86.8%. When split by trial type, 89.1% of Matched trials were correctly predicted and 85.2% of 

mismatched trials. As in Experiment 5, Dawes rule performed close to chance, correctly predicting 

50.3% of all choices, and again had a significant split by trial type with 87.2% accuracy on matched 

trials but only 25.7% for mismatched trials.  DbS was again worse than WADD, predicting 72.8% of 

choices, with 85.8% accuracy for matched trials, but only 63.9% for mismatched.  
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When calculated across all trials, WADD was the most accurate predictor for all 24 

participants. This was also the case when the analysis was restricted to mismatched trials. For 

matched trials DbS was the best model for 2 participants, Dawes for 2 and 15 were again classified 

as WADD responders. The other participants were equally well explained by WADD and Dawes rule.  

DbS was then calculated allowing attribute weightings to vary freely within the model. This 

increased its accuracy to 85.1% across all trials. It also reduced the effect of trial type relative to the 

unweighted DbS model: Accuracy was 88.5% for matched trials and 82.8% for mismatched. When 

calculated across all trials the model was the best fit for 5 participants, with the other 19 still best 

explained by WADD and this difference was significant across all participants (t(23) = 3.98, p<0.001). 

For mismatched trials, 3 participants were classified as DbS responders, 18 as WADD and 3 were 

equally well explained by both. Across all participants, WADD is still significantly more accurate 

(t(23) = 4.16, p<0.001). For Matched trials the results are less clear cut. WADD is still the best 

predictor for 9 participants and Dawes rule is for 2. Of the remaining participants, only 4 are 

classified as DbS responders. Three participants responses are predicted equally well by WADD and 

DbS, 3 equally well by Dawes and WADD, 1 by Dawes and DbS. There are also 2 participants for 

whom there is a three way tie. Paired t-tests revealed that for matched trials there was no 

significant difference between the accuracy of Dawes rule and DbS (t(23) = 1.70, p>0.05), nor 

between DbS and WADD (t(23) = 1.36, p>0.05). WADD is still significantly more accurate than Dawes 

rule (t(23) = 2.11, p = 0.045), but this effect is weak and does not survive correction for multiple 

comparisons. 

4.3.3.3. Distribution vs Weighting 

As in the previous experiment, crime had a l inear effect upon value but a cubic distribution 

function whereas distance had the opposite linear and cubic patterns. Unlike the previous 

experiment, the values on either scale were completely independent. This allowed for a number of 

tests examining how individuals used the relative weighting and distributions in their choices. By 
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entering quadratic and cubic terms for different attributes into the regression equation it was 

possible to test whether they add significant explanatory power. Thus, is there a significant quadratic 

or cubic component in individuals’ use of stimuli values?  

To assess the relative influence of each attribute and its quadratic and cubic components, a 

Bayesian Inference Criterion was calculated. The BIC is a poorness of fit measure  and applies a 

penalty for each additional parameter entered into the model. Therefore a reduction in BIC value 

indicates that the additional parameter(s) significantly reduce the error in the model and that this is 

not simply due to the additional free parameter(s) fitting noise. One BIC was calculated for the 

difference between the full cubic model and the quadratic model and another BIC for the difference 

between the linear and quadratic model.  

Table 4.4 shows that both crime and floor space had a moderate quadratic component, but 

distance showed moderate support for the linear model. Only crime showed a significant cubic 

effect and this effect was very large. The l inear distribution of distance means that the BIC favours 

the linear model, despite its cubic effect upon value. This supports DbS, suggesting that a skewed 

distribution has a significant effect upon choices, whereas an identically skewed weighting function 

does not. Plotting the weighting functions estimated by the model shows that participants weighting 

functions are a close visual match for the cumulative frequency plots (Figure 4.4). 

 

For choices: 

Table 4.4 The difference in BIC when additional terms are added to the model. A negative BIC difference indicates that 
the additional parameter adds significant explanatory power to the model 

 SQFT crime Distance 

Quadratic - Linear BIC -4.79 (10.9) -2.05 (2.78) 1.43 (2.05) 
Cubic - Quadratic BIC 17.62 (6700) -13.5 (852) 3.89 (6.98) 
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Figure 4.4 The mean recovered weighting functions which participants applied to the crime and distance 
attributes when making their decisions 

 

4.3.3.4. Eye-Tracking Results 

4.3.3.4.1. Gaze Cascade 

Evidence accumulation models including drift diffusion often predict that individuals will 

attend more to the item they subsequently choose (Busemeyer & Townsend, 1993; Krajbich et al., 

2010), as do models of feedback loops (Shimojo et al., 2003; Simion & Shimojo, 2007). Therefore the 

first question is whether participants look more often towards their preferred item. Across all trials 

and participants, 53.8% of fixations were towards the preferred item. A bootstrapping analysis was 

conducted where the chosen item on each trial was randomly assigned on each iteration. This 

showed that although the effect was small it was highly reliable (p<0.0001). A further prediction of 

drift diffusion is the gaze cascade: do participants begin to look more towards their preferred item 

over time? To examine this, the proportion of fixations directed towards the preferred and non -
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preferred items were calculated in the period leading up to the decision. Figure 4.5 reveals that the 

difference did indeed increase over time. There was a general trend for several seconds before 

response and then a steep increase immediately prior to decision. Bootstrapping analysis was again 

used, this time to test the significance of the difference at each time point. The chosen item was 

randomly assigned for each trial on each bootstrap iteration. Points where p <= 0.01 are indicated in 

Figure 4.5.  

 

Figure 4.5 proportion of trials where fixations were directed at the preferred and non-preferred items in the lead 
up to response. 

4.3.3.4.2. Attribute Weighting and Looking Patterns 

The next question was whether participants were looking more at the information they 

weighted most highly when making their decisions. To examine this, the number of fixations on each 

attribute was used to calculated fixation proportions for each participant. These proportions were 

then correlated against the behavioural weightings revealed by participants’ choices (as described 

above). This revealed no significant correlation (r = 0.097, p = 0.29). One potential reason for this is 

that the relative importance of each attribute varies across trials depending upon the item values. 

For example, on some trials each apartment has the same number of bedrooms, meaning the 

attribute is not helpful in differentiating between the two. It could be that participants are directing 

their attention towards the attribute which best differentiates the two items on that particular trial.  
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An additional correlation analysis was conducted, but this time the attribute values were 

multiplied by participants (non-standardized) elicited weightings before the difference between 

them was calculated. This produces a measure of how well each attribute differentiates between the 

items on each trial. The correlation revealed a very small yet statistically significant negative 

correlation (r = -0.017, p<0.05), suggesting that participants were in fact looking less frequently at 

the information most important to their decisions. However, when separate correlation analyses 

were performed for each individual, only one showed a significant correlation (r = -0.157, p < 0.001) 

and when this individual was removed from the overall correlation, the effect disappeared (r = -

0.009, p = 0.25). This suggests that one individual was using a different strategy to the others in this 

experiment and that the majority of individuals did not attend more to information depending upon 

its importance.  

Participants did not look proportionally more at influential information across the entire trial 

duration. However, it is possible that the effect only becomes apparent as individuals near the 

decision point, essentially a gaze cascade towards more influential information. Drift diffusion 

predicts that the drift should be steeper when an individual is attending to an attribute where there 

is a larger difference between the two items. This means it is most likely that a threshold will be 

passed and a decision made when the most influential attribute is being attended to. Therefore, at 

the final fixation participants should be attending most frequently to the most influential 

information. To test this each attributes’ relative influence on each trial was first  calculated as 

described in the previous paragraph. This allowed for each attribute’s influence upon a decision to 

be calculated for each trial and then placed in a rank order of influence. Gaze towards the most and 

least influential attributes was then examined in the lead up to the decision point (Figure 4.6). Unlike 

with fixations to items, this shows no obvious pattern. Bootstrap analyses confirm that at the time of  

the response there is no significant bias to any attribute; in fact 1s prior to response it is the least 

influential attribute that is attended to significantly more than average. 
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Figure 4.6 Proportion of trials where fixations were directed at the most or least influential attributes in the lead 
up to response. 

4.3.3.4.3. Fixation Durations 

 A further prediction of drift diffusion models is that the final fixation before a decision will 

be significantly shorter than others. This is because as the accumulator crosses a decision boundary 

the fixation is interrupted. Contrary to some previous findings (Krajbich et al., 2010), we find 

participants final fixations were actually significantly longer (Figure 4.7).  

 

Figure 4.7 Duration of final fixations before decision. 
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4.3.3.4.4. Model Fitting 

Other papers which report modelling of drift diffusion use iterative simulations with random 

error terms and an assumption of random switching of attention between items and attributes 

(Busemeyer & Townsend, 1993). Even experiments that have measured visual attention on each trial 

have then gone on to model the data by drawing random fixation durations from all those measured 

during the experiment. As we have continuous eye-tracking data for all participants we chose to 

constrain the model according to the actual attention durations on each trial, for each individual. 

This provides a test which is deterministic and much better constrained in accordance with the 

model’s predictions. One consequence is that as the attention durations are determined, so are the 

reaction times, meaning the model can only be used to predict choices.  

A logistic regression was used to efficiently calculate the final resting state of the accumulator 

and the best fitting parameters for each participant. For the first model the accumulation of 

information was assumed to be entirely independent of the unattended item. This is essentially the 

same as setting   to zero. 

Equation 16 

                                     

 Where B is the estimated weighting individuals place upon attribute A, V is the value of a 

particular attribute for the top or bottom item and D is the total duration of time spent attending to 

that information on a trial. Individuals were modelled separately to account for individual 

differences in the weighting of attributes. The model appeared to perform well, correctly predicting 

74.1% of trials.  

 The next step was to incorporate the effects of attention reported in (Krajbich et al., 2010). 

This was achieved using a modified version of Equation 16: 
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Equation 17 

(                                  ) (                                        ) 

   

Allowing   to vary within the model revealed a mean value across participants of 0.25, which 

indicates a relatively strong effect of attention. However, there were significant individual 

differences. The standard deviation was 0.28 and the range of values covered the entire scale, 

including the imposed limits of 0 and 1. Overall, the model did provide a modest improvement, with 

76.3% of decisions correctly predicted. To ensure that this improvement was not simply due to the 

additional free parameter a Bayesian Inference Criterion (BIC) was calculated for each individual 

model. Importantly, it also incorporates a penalty for additional free parameters and allows a direct 

test between both nested and non-nested models. In this case, the BIC confirmed that the 

improvement in fit is not simply due to free parameters (Table 4.5). The BIC provides a parsimonious 

method for comparing the drift diffusion models to baseline measures and conceptually different 

models. The most obvious is WADD as it was the best performing model in Experiment 5 and makes 

no account for attention. Not only did this model show much better predictive accuracy (86.8%), but 

also a better BIC score. This raises the question of whether relative attention has any effect upon 

decisions. To examine whether fixation proportions were predictive of decisions an additional model 

was calculated using only the number of fixations on each attribute of  each item. This model 

correctly predicted 67.9% of choices, well above chance. However, the gaze cascade results reported 

above suggest that this may be due only to additional fixations upon the chosen item, with the 

attended attribute being irrelevant. When the model was simplified and the number of fixations 

upon each item used as the sole predictor, ignoring which attribute was attended, the model still 
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performed above chance (65.0% accuracy). Furthermore the BIC revealed that the small 

improvement found by the full fixation model was due only to the additional free parameters.  

To assess whether the predictive power of fixation proportions is independent of stimuli 

values, these were added to the original WADD model as additional parameters. Adding only item 

fixations resulted in next to no change in predictive power. Adding the full fixation model, also 

separating out fixations to different attributes as different predictors, slightly increased the 

percentage of choices predicted. However, once again the BIC revealed that this is simply due to the 

large number of additional free parameters.  

 

Table 4.5 Performance measures of alternative models. BIC is a poorness of fit measure which allows for 

comparison of models with varying numbers of free parameters and assumptions 

Model % Accuracy Bayesian Inference Criterion 
WADD 86.8 1246 
Item Fixations & WADD 86.7 1246 
Attribute Fixations & WADD 89.0 1411 
Attention Weighted Drift Diffusion 76.3 1889 
Simple Drift Diffusion 74.1 1898 
Item Fixations Only 65.0 1971 
Fixations Only 67.9 2127 

 

4.3.4. Discussion 

We report the results of a multi-attribute choice experiment conducted with concurrent eye 

tracking. Results were fitted to drift diffusion models of choice using visual fixations as a proxy for 

attention. The results show that whilst a number of findings from previous single-attribute choice 

experiments are replicated, drift diffusion models perform significantly worse than simpler models 

which do not account for attention. We also find that participants direct their attention more 

towards their preferred item over time; however they do not direct attention towards more 

influential information or the information on which they base their decisions. This means that 

attention based accumulator models will inevitably assume improper weighting of attributes. 
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Therefore the best performing model tested here is a simple WADD model using only stimuli values 

and behavioural responses. 

The experiment also calls into question the methods used to model previous drift diffusion 

experiments, particularly those using eye tracking. The largest difference is that reaction times were 

determined and the model used only choices to estimate the free parameters. Therefore the 

method of modelling employed here only estimates the final resting state of the accumulator at the 

point a decision is made. It does not explicitly model the accumulator over time and does not use a 

noise term or provide a distribution of responses. The reason this method is more applicable is that 

it allows for constraining the attention parameters of the model using the actual recordings of 

fixations during each specific decision. It seems a strange decision to lose the explanatory power 

provided by real time eye tracking in favour of an assumption of random sampling. This method is 

still in line with DDM, we are merely constraining free parameters with empirically recorded 

measures. One possibility is that visual attention is not an appropriate proxy for the attention terms 

within drift diffusion models. But if one accepts this then one must also accept that e ye tracking as a 

tool has very limited potential when modelling decisions and reassess previous findings (Krajbich et 

al., 2010; Orquin & Mueller Loose, 2013; Philiastides & Ratcliff, 2013). It also fails to explain the 

reliable phenomena which are found (Shimojo et al., 2003). 

An additional issue with the modelling of this particular version of DDM is the range of 

individual differences in estimations of the attention parameter. Large individual differences are 

nothing new in decision research (one need only think back to Experiment 5), but it is difficult to 

discern any sensible hypothesis for different people having such wildly different values in this 

particular instance. If attention bias is a real phenomenon at the population level then one would 

expect individual estimates to form a normal distribution of values around a mean. In fact what is 

found is a cluster at either extremes of the scale and others randomly distributed in between. This is 

more indicative of a mathematical model fitting noise. It is true that the BIC shows an improvement 
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over the unconstrained model despite the additional free parameter, but the effect size is small. One 

must also be very careful of modelling methods when there are such large differences. In the 

modelling performed here individuals were modelled separately, with an attention parameter 

calculated for each. Previous experiments have found similar individual differences but then collapse 

across individuals, using the average value for further modelling. 

The experiment also corrected the programming error of Experiment 5, allowing for complete 

modelling of participants’ weighting functions and use of attribute information. This revealed that 

the weighting function extracted from responses matched the distribution of the scale  as predicted 

by DbS. Crime, the attribute with a cubic distribution function but linear effect upon rental value, 

showed a cubic effect upon choice proportions. However, distance had a linear relationship which 

matched its linear distribution and this was despite its true effect upon value being cubic.  

The cubic function cannot be explained in the same manner as in the previous chapters. In the 

single item valuation tasks of Chapter 3 the cubic function was in the opposite direction to the one 

found here. The extremes were over-weighted with a plateau in the mid-range of the scale. This was 

the opposite to that predicted by rank order and therefore by DbS. However, in this experiment the 

cubic shape shows a steep curve in the central section of the scale but plateaus at the under-

represented extremes. 

When DbS was explicitly fitted to behavioural responses, the results were the same as in 

Experiment 5. It performed poorly when attributes were not weighted, then when weightings were 

estimated, its predictive accuracy was not different to that of WADD for matched trials, but it was 

significantly worse for mismatched. Although suggestive, the finding comes with the same caveat: 

the stimuli were specifically controlled to keep the difference in WADD valuations for paired items as 

similar as possible for matched and mismatched trials. Even when the uncontrolled matched trials 

are included the ratio of WADD differences between matched and mismatched trials is only 1:1.25. 

However, for DbS this is 1:2.4. Therefore, DbS makes disproportionately strong predictions, all in the 
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opposite direction to Dawes rule, simply because the stimuli were specifically controlled for 

differences in WADD predictions. 

One of the most robust findings of previous eye tracking studies has been the gaze cascade 

(Shimojo et al., 2003). Immediately prior to making a response, individuals look more towards the 

item they subsequently choose. There are two prominent hypotheses regarding this phenomenon. 

Drift diffusion models suggest that the final fixation is more likely to be directed towards the chosen 

item because evidence should be accumulating for the attended option as the accumulator crosses 

the decision barrier (Krajbich et al., 2010). The second hypothesis is that there is a feedback loop 

from reward processing to attention (Simion & Shimojo, 2007). In this experiment preferential 

looking towards the chosen item begins several fixations before response and shows a relatively 

gradual trend over time. A drift diffusion account predicts that only the final fixation should show 

this pattern, whereas a feedback loop supports a gradual build up. Furthermore, the drift diffusion 

account predicts a similar cascade effect towards more influential attributes but we find no such 

effect. 

It seems surprising that attention is not driven towards the more useful or influential 

information over time. This has significant implications for the feedback loop, suggesting that values 

are calculated for each item as a complete whole. The fact that attention does not tend to be 

directed towards more influential information over time suggests that this loop has no access to 

more fine grained information including that at the level of individual attributes. Findings from other 

disciplines suggest that this phenomena is somewhat unique to value based choices, as individuals 

were more likely to recall items they had fixated on for longer and to fixate longer upon more 

informative or task relevant objects in a complex visual scene (Henderson, Weeks Jr, & Hollingworth, 

1999; Loftus & Mackworth, 1978). Therefore we do not propose that individuals fail to attend more 

to important information in general. Simply that the calculation of importance is calculated at the 

level of the item, not the attributes. 



121 
 

Contrary to the predictions of several models of decision making, visual attention does not 

drive preferences. We argue that the reverse is in fact true. The best predictor of choices is the 

WADD model which takes no account of visual attention. Conversely, the worst performing models 

are those which use only attention as predictors. Crucially, combining these models using additional 

parameters does not improve the performance beyond that of the original simple model . The 

predictive properties of visual attention patterns are collinear with that of the attribute values and 

are not an independent or orthogonal predictor. If visual attention alone biased decisions towards 

an item then it should be an independent predictor and measures of attention would provide 

additional explanatory power. Therefore we must conclude that biases in visual attention are driven 

by how an individual values the item and its attributes. Put simply, individuals look more at the 

option they think is better; individuals do not think an item is better simply because they have 

looked at it more.  

As in Stewart et al (under review), we find that final fixations are significantly longer than 

mean duration. This is contrary to Krajbich et al and to the drift diffusion model in general: the 

crossing of a decision threshold should terminate a fixation early. Although there is little information 

at present, it seems likely that this effect is due to task complexity. Krajbich et al (2010) used a 

relatively simple, single attribute decision between foods. Stewart et al (under review) used financial 

gambles and this experiment used five attribute items. There is an increase in complexity in each just 

as there is a concomitant increase in the duration of final fixations between the three studies. 

Evidence of previous studies investigating the effect of working memory load on fixation 

characteristics also provides support for such a hypothesis (Gould, 1973).This would suggest that 

once individuals feel they have collected enough information to make a decision, they stop 

attending to attributes and consider their decision before responding. The gaze cascade and 

revisiting of information suggests that this only happens when a preference already exists, so this 

consideration period likely serves as a final check before response. 
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4.4. Chapter Discussion 
The experiments in this chapter demonstrate that for the overwhelming majority of 

participants, choices are best described by a weighted additive model. DbS proves to be a 

comparatively poor predictor of individuals’ behaviour, when attributes are not weighted and equal 

to that of WADD when weightings are applied. The results also suggest that there is no fundamental 

or qualitative difference in the cognitive processes employed during valuation and choices . However, 

they show that the interpretation of individual attribute scales and participants’ weighting of 

information does change. Experiment 5 shows that differences between items can be accentuated 

or camouflaged depending upon the distribution of attribute values. These effects support the 

evaluability hypothesis (Hsee et al., 1999) of preference reversals and further support the notion 

that WADD is used for both choices and valuation. Experiment 6 goes further by identifying the 

shape of participants’ weighting curve and their interpretation of attributes with skewed 

distributions. The results show that participants’ use of attribute information is dictated by the 

shape of their distribution and the resulting rank order. The true shape of the effect of an attribute 

upon item value is not represented in individuals’ choices.  

Despite the finding of rank order encoding on individual attribute scales, DbS performed 

poorly when used to predict the ultimate choice. An obvious suggestion would be that this is a result 

of DbS’s simplistic, unweighted additive integration of multiple attributes. However, the model’s 

performance was still poor when the attribute weightings were allowed to vary freely within the 

model. This is surprising as the rank order characteristic of participant decision making is something 

which can only be captured by DbS, and not by the linear WADD model which often outperformed it. 

An interesting consideration is the effect of matched and mismatched trials. WADD consistently 

outperformed DbS on mismatched trials, but there was no significant difference between them on 

matched trials. This is because the stimuli were specifically created in order to control for the size of 

WADD’s predicted preference in each of the two trial types. The same constraints were not applied 



123 
 

with respect to DbS’s predictions, meaning that DbS made much stronger predictions in the 

mismatched trials than the matched.  

Interestingly, for an asymmetry in DbS predictions to be affecting model accuracies in the 

manner described above, the Dawes rule must be manipulating choices in some manner. When 

examining Dawes’ predictive accuracy in different trials, the most striking finding is that the 

performance in mismatched is significantly below chance but it is close to the performance of WADD 

in matched trials. This would suggest that the rule gets all  its predictive power from correlating 

either negatively or positively with WADD, but then there would be a perfect reflection in accuracy 

between trial types. What is actually found is that the two accuracy rates sum to over 100 in both 

experiments. Furthermore, the accuracy of WADD is also significantly affected by trial type, 

performing worse when it makes opposing predictions to Dawes rule. This means that rather than 

any one of the models tested providing a parsimonious explanation of participants, the re are 

multiple factors being considered. Therefore in task environments where the effect of Dawes rule is 

controlled with respect to DbS’ predictions rather than those of WADD, it is likely that the models’ 

relative performance will be very different, at least on trials where they make opposing predictions 

to Dawes. 

The results of eye tracking in Experiment 6 demonstrate drift diffusion models based upon 

visual attention cannot predict multi-attribute decisions as accurately as simple behavioural models. 

Not only are direct comparisons between these models unfavourable for DDM, but many of the 

attention and visual fixation effects they predict are not found or exhibit a significant effect in the 

opposite direction. The most fundamental and surprising of these is that individuals do not attend 

more to the most influential information. This has significant implications for models which rely 

upon effects of attention and assume that the interpretation and weighting of information is 

dictated in some way by visual fixations (Busemeyer & Townsend, 1993; Krajbich et al., 2010). 
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One possibility is that the attention switching inherent in such models is covert and this 

attention switches between attributes which have already been viewed and are now store d in 

memory. Indeed, there is good evidence of an interaction between memory load and fixations, with 

individuals relying more on re-attending information when memory load is high (Droll & Hayhoe, 

2007; Just & Carpenter, 1976). However, this still cannot explain the results of this experiment as it 

still predicts a correlation between visual attention and importance of information. The only 

difference is that memory capacity would attenuate the effect. Even allowing for such a model of 

covert attention switching, the results here suggest that eye-tracking is an inappropriate 

methodology for assessing drift diffusion models. Either way, the results call for a reassessment of 

previous eye tracking experiments which model drift diffusion, particularly those which use single-

attribute items.  

An alternative explanation for the visual attention effects is the hypothesised feedback loop 

between saccade/attention planning and reward sensitive neural systems (Shimojo et al., 2003; 

Simion & Shimojo, 2007). As one item begins to be preferred, it is preferentially attended to, which 

means they attend to more evidence in that item’s favour which in turn makes it even more strongly 

preferred and so on. The results of Experiment 6 support this model as the gaze cascade effect is not 

confined to the final fixation. Instead it shows a more gradual development over time. The 

particularly interesting finding here is that the feedback loop is blind to attribute level information. 

There is no cascade towards the more informative attributes or information on each trial. The gaze 

cascade itself is only found for complete items. Therefore, the inputs to the fe edback loop are 

necessarily the current value estimates of the options. This in turn suggests that the neural systems 

processing reward represent only store a persistent estimate of the items ’ overall value, not the 

values of individual attributes. Chapter 5 examines the neural correlates of reward processing in 

more detail. 
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5. Chapter 5 

5.1. Chapter Introduction 
Just as recent years have seen an upsurge in attention to comparative models such DbS in the 

behavioural literature, the same is beginning to happen in neuroscience and neuroeconomics. 

Research is instead moving towards finding a truly explanatory model that describes the underlying 

process or neural systems that cause patterns of responding (Louie & Glimcher, 2012; Vlaev, Chater, 

Stewart, & Brown, 2011; Weber & Johnson, 2009). Much of this work in neuroeconomics has 

focused upon the importance of previous experience and stresses the relative evolutionary 

importance of action choice over the comparatively very recent requirement for calculating an 

isolated scalar valuation, i.e. a financial judgement (for a review see Seymour & McClure, 2008;  or 

Vlaev et al., 2011).  

In this chapter, two fMRI experiments examined neural responding to financial rewards. These 

experiments tested the predictions of rank order encoding and examined the qualities of the task 

environment which dictate the sample of previous experiences recalled. The results of these 

experiments revealed novel findings relating to neural encoding of value. In Experiment 9 these 

neuroscience findings were then tested in an analogous behavioural task which successfully 

demonstrated a novel manipulation of utility curves as well as providing a cross-modality replication. 

5.2. Experiment 7 

5.2.1. Introduction 

The predictions of DbS map very intuitively onto neuroeconomics and neural systems. It is a 

widely accepted finding that there are value responsive regions which show greater activity to 

higher value rewards (Knutson & Bossaerts, 2007; Kringelbach & Rolls, 2004). However, neural firing 

has biologically defined maxima whereas financial values can increase to infinity. This means that if 

there were a one-to-one ratio between neural firing and value, individuals would be unable to 
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differentiate the relative benefits of 10pence vs 30pence as well as £1million vs £3million. Applying 

behavioural models such as DbS would predict that a scale is created anew for each valuation by 

recalling from memory a sample of items similar to the current one. The neural activity would then 

represent the item’s rank within the recalled sample. This closely corresponds to an often held 

assumption that neural responding is context specific, with activity representing the difference 

between the current context/environment average and the current item’s value (Knutson & 

Wimmer, 2007; Tobler, Fiorillo, & Schultz, 2005).  

One source of evidence for context dependency comes from paradigms i nvestigating what is 

often referred to as “menu context”: so called because the tasks are analogous to choosing your 

preferred dish from a restaurant menu. Two or more stimuli with different pre -trained values are 

shown to participants and then one is selected randomly and indicated as the reward to be received 

from that trial. Both primate single cell recording and human fMRI have shown that activity in the 

Orbito-Frontal Cortex/ventral medial Pre-Frontal Cortex (OFC/vmPFC) reflects the stimuli’s value 

relative to the other possible rewards shown at the beginning of the trial (Elliott, Agnew, & Deakin, 

2008; Tremblay & Schultz, 1999). The same stimuli can elicit maximal responding when paired with 

less preferred stimuli and minimal responding when paired with more preferred stimuli, even 

though its objective value remains the same.  

The vmPFC is also implicated when subjects make an active choice and select the most 

valuable option (Knutson et al., 2008; Rangel & Hare, 2010) and has also been shown to have a more 

general role in response selection and action planning (Rogers et al., 2004; Schoenbaum, Setlow, & 

Ramus, 2003). However, the region also responds to the reward value of a single item, when there is 

no choice required and no immediate alternative with which to compare (Knutson, Taylor, Kaufman, 

Peterson, & Glover, 2005; O'Doherty, Kringelbach, Rolls, Hornak, & Andrews, 2001). This is generally 

interpreted as the region being implicated in two entirely different processes: a parametric 

calculation of independent value and comparison of available choice alternatives (Hunt et al., 2012). 
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However, the predictions of DbS provide another, more parsimonious and cognitively efficient 

explanation: that the response elicited by a single value is also calculated by the same comparative 

process, but using alternatives retrieved from memory. 

 Many studies have used contextual manipulations that do not involve any menu context and 

present only one stimulus or value at a time. Some have used visual categorization cues such as 

shape or colour. For example, using green cards to signify gain trials and red cards to signify loss 

trials before they are turned over and the amount won/lost is revealed (Cooper, Hollon, Wimmer, & 

Knutson, 2009; Nieuwenhuis et al., 2005). In the critical comparison of $0 win vs $0 loss, greater 

responding to the $0 loss was found most strongly in the ventral stri atum and the best possible 

outcomes in both contexts activated the region to a comparable degree. As a result of these studies, 

it has been suggested that the brain calculates an average environment value which is then used as a 

baseline comparison for current items (Knutson & Wimmer, 2007). This is based upon the 

compelling evidence that the activity in the Ventral Striatum relating to value is context depende nt, 

but troublingly for this model the predicted baseline signal has not yet been identified. However, if 

the response to each stimuli is calculated by comparison with other similar or recently experienced 

items then this makes the response inherently context dependent, but without the need for an 

explicit baseline to be calculated. In fact if this baseline were found it would immediately raise the 

original problem of how a finite activity range represents an infinite value range; it would merely 

move the issue from the VS to wherever the baseline was calculated. 

 A question raised by models such as DbS is whether such a system of comparison would be a 

simple rank order, better/worse comparison or a more complex parametric comparison which is 

able to represent the scalar difference between alternatives. Although there is existing evidence that 

the vmPFC does represent absolute difference when attending to one of a pair of items (Basten, 

Biele, Heekeren, & Fiebach, 2010; Lim, O'Doherty, & Rangel, 2011; Philiastides, Biele, & Heekeren, 

2010), it is additionally possible that this is simply a representation of the rank difference within the 
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context of all experiment trials. Indeed, if it is a representation of absolute difference then once 

again we return to the question of how the infinite range of potential differences can be 

represented.  

 The experiment described here presented pictures of cash, one stimulus at a time in a 

manner which did not require or overtly encourage comparison between them. These were split into 

blocks of high and low value trials such that it was possible to examine whether value dependent 

regions responded in a context dependent manner solely due to recency of stimuli exposure. 

Furthermore, the experiment used a distribution of values which is non-linear so that it is possible to 

examine the pattern of responding and test whether it represents rank order or absolute financial 

value. The results revealed that the VS and Thalamus are strictly context dependent within block, 

showing similar activation to the lowest and highest value in each block. Furthermore, acti vity in the 

vmPFC and the Anterior Cingulate Cortex are not constrained by the context of block, but show a 

strongly linear increase across all stimuli which can be interpreted as encoding rank order. 

5.2.2. Method 

5.2.2.1. Participants 

Research was conducted with the ethical approval of The University of Nottingham's Medical 

Ethics board and informed written consent was obtained from all participants. Fourteen individuals 

from the Nottingham area participated in the study: 9 female and 5 male, aged between 20 and 27. 

Participants were told they would be paid a minimum of £10 with an additional amount dependent 

upon their performance within the task. The lowest amount earned was £15.00 and the highest was 

£23.80 with a mean of £20.67. 

5.2.2.2. Procedure 

A variant of the Monetary Incentive Delay (MID) task (Knutson, Fong, Adams, Varner, & 

Hommer, 2001) was used (Figure 5.1). On every trial participants were shown a photograph of an 
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amount of cash. After a randomized delay they responded with a rapid button press in order to win 

the amount previously signified. Feedback was then given, informing participants of whether they 

had responded before the deadline, thus winning on that trial as well as the amount that they had 

won or failed to win. The advantage of the MID task is that it required participants to engage in the 

task and gave them a vested interest in the value of the stimuli being presented, but did not 

confound the value with any choice or response selection, as there was only ever one response to 

make. Therefore any variation in BOLD signal at Conditioned Stimulus (CS) presentation is due to 

differences in value representation which is independent of choice and as is shown later, 

independent of motoric action planning. 

 The trials were split into two block types: a low value block – 10p, 20p and 30p - and a high 

value block – £5, £7 and £10. Each block contained 60 trials, with 4 blocks being presented during 

the experiment and blocks 2 and 3 separated by anatomical image collection. Thus there were 240 

trials in total. The order of block presentation was counterbalanced across participants with half 

seeing the high value blocks first and the other half seeing the low value block first. The length of the 

response window was controlled by a 1 up 2 down adaptive staircase, resulting in an accuracy rate 

of ~66% for each participant regardless of individual differences in average reaction times. 

Participant payment was calculated by taking the outcome of a random subset of trials which would 

add up to £30 then dividing the total won from these trials by two.  As this was added to the 

guaranteed £10 received simply for taking part, the average payout was designed to be £20.  
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Figure 5.1 - The Monetary Incetive Delay (MID) task employed in the experiment. Note that the duration of the 

interval between the picture of money and the response is randomly varied to prevent anticipation and the response 
window itself is controlled by an adaptive staircase. The Inter Trial Interval varies to accommodate these fluctuations, 
maintaining the same total duration on each trial. 

5.2.2.3. Scanning Parameters 

Scanning was performed in a 3T Phillips Achieva scanner with 32 channel phased array head 

coil. To compensate for signal dropout in frontal regions a double echo, echo planar imaging 

sequence was employed during functional image acquisition. Previous research has demonstrated 

that a weighted combination of fMRI timeseries from different echo times helps combat signal 

dropout due to variation in peak T2* signal (Poser, Versluis, Hoogduin, & Norris, 2006).Each 

functional scanner run lasted 7 minutes and collected a total of 175 volumes of 36 slices for each TE 

using a voxel size of 3x3x3mm, TR = 2.5s, TE1 = 20ms, TE2 = 45ms, flip angle = 80°. 

5.2.2.4. Functional Data Analysis 

To ensure the accurate combination of data from both echoes realignment parameters were 

calculated based on images collected with the first echo sequence and were then applied identically 

to image sequences for both echoes. Once realigned and corrected for head motion, a weighted 

summation was calculated combining both echoes into one time series upon which all subsequent 
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processing and analysis was performed. This was performed using code developed by the Sir Peter 

Mansfield Magnetic Resonance Centre (Gowland & Bowtell, 2007). Each voxel is weighted according 

to its point on the BOLD sensitivity curve, with TE’s closer to the peak of the curve being given 

greater weight when images are combined (Posse et al., 1999). Weighted images were then 

transformed to MNI space using participants’ anatomical scans, before being smoothed with a 5mm 

FWHM Gaussian kernel.  

The onsets of each CS (10p, 20p, 30p, £5, £7, £10) within each block (early  and late) formed 

the 12 regressors of interest which were entered into the first level GLM using SPM8 software to 

control for unmodelled error between scanner runs. A total of 24 nuisance regressors were also 

calculated in the same manner to encompass all values of win and lose feedback events, as well as 

four for button presses (one per scanner run). 

Pairwise comparisons were calculated within subjects before being entered into second level  

random effects analyses. Comparisons were conducted for highest absolute value vs lowest absolute 

value (£10 vs 10p) and within block value (£10+30p) vs. (£5+10p). In addition, the highest low block 

value was compared against the lowest high block value (30p vs £5) as if any responding is solely 

context dependent then one would expect greater responding to 30p despite the large difference in 

absolute value. Due to the greater number of data-points in the within block contrast there was a 

significant difference between the power of this contrast and the other two. Therefore, to allow us 

to better elucidate the patterns of responding a threshold of p<0.005 and k>77 was used for the 

absolute value and overlap comparisons while p<0.001 and k>39 was used for within block value. 

These cluster thresholds were calculated using AlphaSim (Cox, 1996) such that the corrected α = 

0.01.  Once regions responding to value had been defined marsbar (Brett, Anton, Valbregue and 

Poline, 2002) was used to extract the beta weights across all conditions in order to examine the 

specific pattern of responding. Note that when identifying responding as representing absolute value 

or rank order responding all subsequent ROI and beta weight analyses are performed upon all data 



132 
 

points while whole brain contrasts used only a subset of these conditions and trials. Furthermore, 

these additional analyses are conducted to test a hypothesis independent of that tested in the first 

level model. Both absolute value encoding and rank order encoding predict the same difference 

between the lowest and highest values, their predictions only differ with regards the four data 

points in between, i.e. the independent data points used only in the ROI analyses (Kriegeskorte, 

Simmons, Bellgowan, & Baker, 2009). Thus the first level model identifies all regions where the 

largest reward elicits greater responding than the lowest; these additional analyses serve to 

categorize the pattern of responding in the mid-range of this scale. The additional analyses are also 

performed upon ROIs identified by the within block value contrast, which uses 4 of the 6 trial types. 

Although in this case a larger sub-set of the data is used in the whole brain contrast, the subsequent 

analysis of beta weights is intended to ensure regions were responding with a similar magnitude in 

both high and low value blocks, thus ensuring that the hypothesis being tested is independent of 

that used to select the ROI. This is included as a check and to ensure completeness of information 

for the reader. 

Correlations were performed upon extracted beta weights from each ROI for each potential 

pattern of responding: within block context dependency(1/3, 2/3 3/3, 1/3, 2/3, 3/3), ordinal 

rank(1/6, 2/6, 3/6, 4/6, 5/6, 6/6),  and absolute value (0.01, 0.02, 0.03, 0.5, 0.7, 1). The within block 

predictions were entered only to control for the unlikely event that a context dependent area had 

been mis-categorized by the first-level analysis. A conservative bonferroni corrected α was used to 

correct for the total number of correlations performed. Where regions showed a significant 

correlation with two different potential responding patterns then they were entered into separate 

GLM’s and the deviance of the models extracted. The difference between these deviances was then  

used to calculate a chi square statistic to test for a significant difference between them (Cohen, 

2003). 
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5.2.3. Results 

5.2.3.1. Behavioural Results 

 Average response times ranged from 168ms for the quickest participant to 258ms for the 

slowest and the overall average was 202ms (S.D. 21ms). Accuracy ranged from 46% to 67% with a 

mean of 59% (S.D. 5.5%). A six level one-way ANOVA showed no effect of trial value on reaction 

times (F(1,5) = 1.85). This demonstrates that differences in BOLD response are due to value 

calculation and are not simply a result of motoric action planning. 

5.2.3.2. fMRI Results – Early Blocks 

5.2.3.2.1. High vs Low: £10 vs 10p 

First analysed were the results from the first two blocks where participants were not 

expecting the change in value range. Initially the data was collapsed across both presentation orders 

and responding to absolute value was examined: £10>10p. If the neural response of any area is 

specifically tuned to absolute financial values without relying on context or re -scaling then it should 

be evident here, but the only activations found were in the cerebellum and visual cortex (table 1). 

There were no significant clusters in the reverse analysis. 

 

Table 5.1 Significant Clusters for Early Blocks; Highest >Lowest Value Comparison: £10>10p 

Anatomical Region Peak Activation (MNI 
coordinates) Cluster Size 

(voxels) 
Peak t-
value X Y Z 

Calcarine Fissure/Lingual Gyrus/Cuneus (L/R) 8 -90 12 3096 7.889 
 2 -88 -4  7.418 
 10 -66 6  6.023 
Cerebellum (L/R) 28 -76 -18 290 6.233 
 22 -82 -18  5.912 
 16 -74 -18  5.619 
Occipital Temporal Gyrus (L) -32 -72 8 280 5.642 
 -34 -78 -4  4.133 
 -38 -68 -16  4.032 
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5.2.3.2.2. Context Dependent Responding: (£10+30p) vs (£5+10p) and 30p vs £5 

  Contrasts were then examined which tested for context dependence that would be 

indicative of within-block scaling. Firstly, within block value revealed significant activation most 

notably within the caudate, posterior cingulate and precentral gyrus (Table 5.2). The context 

dependent nature of these activations is further evidenced by significant activation in the 30p>£5 

(Table 5.3).  

Table 5.2 Significant Clusters for Early Blocks; Within Block Comparison: (£10+30p) > (£5+10p) 

Anatomical Region Peak Activation (MNI 
coordinates) Cluster Size 

(voxels) 
Peak t-
value X Y Z 

Visual Regions -6 -90 2 5502 9.081 
 0 -70 10  8.999 
 26 -96 18  8.888 
Posterior Cingulate/white matter (R) 20 -22 30 143 6.051 
 24 -30 30  5.465 
 18 -34 36  5.195 
Caudate Head (L/R) -4 6 0 122 5.590 
 -10 -2 -4  5.012 
Precentral Gyrus (L) -16 -28 50 56 4.784 
 -28 -22 52  4.742 
Superior Parietal Lobule (R) 22 -60 48 47 4.595 
 18 -54 52  4.415 
Occipital Cortex (L) -22 -60 38 45 4.520 
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Table 5.3 Significant Clusters for Early Blocks; Highest Low Block Value > Lowest High Block Value: 30p > £5 

Anatomical Region Peak Activation (MNI 
coordinates) Cluster Size 

(voxels) 
Peak t-
value X Y Z 

Superior Parietal Lobule/Posterior 
Cingulate(L/R) -4 -46 54 828 7.556 
 -6 -30 34  5.182 
 -10 -66 48  5.021 
Precentral/Middle frontal gyrus(R) 22 -4 46 836 7.377 
 26 -24 50  7.167 
 38 -6 50  7.045 
Middle Frontal Gyrus(R)/Middle 
Cingulate(L/R) 20 20 46 940 6.785 
 -2 8 32  5.409 
 8 18 46  5.367 
Precentral Gyrus(L) -32 -8 46 101 6.264 
ACC(L/R) -6 28 12 156 6.093 
 6 34 24  5.875 
 6 24 12  3.935 
Middle Temporal Gryus/Occipital Gyrus(R) 54 -76 6 112 6.002 
Middle Frontal Gyrus(L) -24 30 32 99 4.317 
 -28 38 30  3.594 
 -26 20 30  3.162 
Superior Frontal Gyrus(R) 18 44 44 77 4.281 
 8 46 42  3.637 
 26 40 42  3.585 
Middle Frontal Gyrus(L) -28 54 12 78 4.250 
 -40 54 14  3.531 

 

5.2.3.3. Late Block Results 

5.2.3.3.1. High vs Low: £10 vs 10p 

By the start of the third block participants had experienced the whole range of values. The 

non-linear distribution of our stimuli allowed examination of whether this responding was 

predicated upon a ratio scale or an ordinal scale of alternative preference as predicted by 

behavioural models such as Decision by Sampling. To identify the regions that respond to high values 

over low, regions which were significantly active in the £10>10p contrast (Table 5.4) were examined. 

The regions showing the most reliable activation were the ACC and vmPFC (Figure 5.2).  No 

significant clusters were in the reverse analysis. 
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Table 5.4 Significant Clusters for Late Blocks; Highest >Lowest Value Comparison: £10>10p 

Anatomical Region Peak Activation (MNI 
coordinates) Cluster Size 

(voxels) 
Peak t-
value X Y Z 

ventral medial PFC (R) 6 58 -4 98 7.277 
Anterior Cingulate (L) -12 40 14 99 5.965 
Inferior Frontal Gyrus (L) -28 36 12 94 5.395 
 -34 32 2  3.287 
Supramarginal Gyrus (R) 30 -40 28 203 4.928 
 30 -36 14  4.332 
 40 -46 30  4.076 
Cerebellum (R) 28 -68 -18 161 4.773 
 32 -58 -18  3.948 
 24 -80 -18  3.779 
ventral medial PFC /ACC (L) -10 60 8 98 4.593 
 -14 52 -4  4.156 
 -18 50 4  3.705 
Cerebellum (L/R) 6 -68 -8 159 4.540 
 -8 -84 -16  3.840 
 -18 -78 -18  3.643 
Supramarginal Gyrus (L) -36 -36 16 110 4.485 
 -44 -38 26  3.560 
 -36 -46 22  3.444 
Calcarine Fissure (L/R) -4 -92 -4 161 4.283 
 -2 -84 8  3.585 
 4 -82 14  3.425 
Occipital Gyrus (R) 28 -68 36 140 3.950 
 34 -68 22  3.753 
 30 -62 28  3.579 

 

 

Figure 5.2- The Anterior Cingulate Cortex and ventral medial Pre-Frontal Cortex activations in the high vs. low 
value contrast 
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5.2.3.3.2. Context Dependent Responding: (£10+30p) vs (£5+10p) and £5 vs 30p 

When within block responding was examined strong activations were found in the thalamus 

and caudate nucleus, as well as the same ACC and vmPFC regions which were active in the high vs 

low contrast (Figure 5.3 & Table 5.5). As in early block trials, this suggests that the thalamus and VS 

are responding in a context dependent manner that is sensitive to block. This is continued by the 

30p>£5 contrast (Table 5.3) which found significant contextual differences in the thalamic 

activations (Figure 5.5). This is despite the fact that the stimulus that elicited lower responding 

actually had a higher objective value. There were also no effects in the reverse analysis (i.e. £5>30p). 

 

 

Figure 5.3 - Regions of bilateral activation within the caudate nucleus and within the ventral medial Pre-Frontal 
Cortex 
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Figure 5.4 – Extracted beta weights for the latter blocks. The caudate and thalamus show local context 

dependency, re-scaling depending upon the values within the current block. The ventral medial Pre-Frontal Cortex and 

Anterior Cingulate Cortex demonstrate responding which represents a simulus’ rank order within all values experienced 
during the experiment, independent of their true financial values.  
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Table 5.5 Significant Clusters for Late Blocks; Within Block Contrast: (£10+30p) > (£5+10p) 

Anatomical Region Peak Activation (MNI 
coordinates) 

Cluster Size 
(voxels) 

Peak t-
value 

X Y Z 

Cuneus/Occipital Gyrus/Lingual Gyrus (L/R) 14 -96 8 1761 8.833 
 -8 -90 -2  7.128 
 14 -88 32  6.265 
Thalamus (L/R) 4 -12 10 232 7.939 
 16 6 16  5.119 
 2 -24 8  4.920 
Occipital Gyrus (L) -28 -86 20 312 7.613 
 -26 -78 20  6.348 
 -34 -86 14  5.297 
Superior Parietal Lobule (R) 32 -58 54 465 7.558 
 26 -66 58  6.636 
 38 -52 56  5.357 
Middle Frontal Gyrus (R) 22 42 46 140 6.495 
 30 40 42  5.871 
 14 46 44  5.195 
ventral medial PFC/ACC (R) 10 60 -6 78 6.417 
 16 50 -2  5.214 
Superior Parietal Lobule (L) -36 -50 54 141 6.087 
 -30 -56 50  5.939 
 -42 -34 56  5.015 
Lingual Gyrus (R) 8 -38 2 85 6.016 
 16 -36 8  4.902 
Caudate Head (L) -10 6 -2 57 5.712 
Medial Frontal Gyrus (R) 16 26 36 72 5.707 
 10 34 38  4.951 
 16 18 44  4.291 
ACC (L/R) 8 50 32 146 5.076 
 -4 42 18  4.788 
 -10 48 16  4.511 
Occipital Gyrus 22 -72 -14 60 5.060 
Caudate Tail (L) -18 -2 24 62 5.055 
 -20 -10 18  4.297 
Middle Frontal Gyrus (R) 36 0 52 58 4.887 
 28 -2 54  4.320 
Caudate Head (R) 8 14 -4 47 4.515 
 12 24 0  4.190 
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Table 5.6 Significant Clusters for Late Blocks; Highest Low Block Value > Lowest High Block Value: 30p > £5 

Anatomical Region Peak Activation (MNI 
coordinates) Cluster Size 

(voxels) 
Peak  
t-value X Y Z 

Ventral Lateral/Ventral Anterior Nucleus (R) 8 -8 10 128 6.715 
 0 -4 10  3.606 
Inferior Frontal Gyrus (R) 44 46 -10 155 6.035 
 38 56 6  3.628 
 34 52 -10  3.297 

 

Further analyses were performed upon all regions found to be responding to value in either 

the high vs low contrast or the within block contrast. A correlation was performed upon each ROI for 

each potential pattern of responding: within block context dependency, ordinal rank and absolute 

value. As stated in the method section, this analysis avoids the pitfalls of double dipping as it uses all 

of the data points whereas the previously applied contrasts used only a subse t. In addition, a 

conservative Bonferroni correction was used to control for multiple comparisons. As one would 

expect, significant context dependency was confirmed in the areas identified by the first level 

context dependency contrast: caudate (r(84) = 0.29, p = 0.006), thalamus (r(84) = 0.28, p = 0.009). Of 

greater interest were the regions identified in the £10>10p contrast: significant linear (rank order) 

responding was found in the ACC (r(84) = 0.41, p<0.001), vmPFC (r(84) = 0.48, p<0.001) and IFG 

(r(84) = 0.53, p<0.001). However, the results are similar when testing for value dependent 

responding: ACC (r(84) = 0.4, p<0.001), vmPFC (r(84) = 0.47, p<0.001) and IFG (r(84) = 0.54, p<0.001), 

therefore the data was entered into separate GLM models and the difference in deviance produced 

by them was used to calculate a chi square statistic. This reveals that all regions are actually better 

described by a pattern of rank order responding: ACC, χ(1, N = 84) = 66.4, p <0.001, vmPFC χ (1, N = 

84) = 60.6, p <0.001, IFG χ (1, N = 84) = 48.8, p<0.001. Given previous findings, it is surprising that no 

region is found to be representing absolute value. However,  the ACC shows a strong linear 

relationship with rank order, while the OFC shows the same pattern in the right hemisphere and only 

a small deviation in the left (Figure 5.4). This is crucial for assumptions of basic human value 
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calculation as these areas are generally considered to deal with higher level processing or the 

amalgamation of various low level processes (Rangel & Hare, 2010).  

5.2.4. Discussion 

This experiment tested some of the most basic properties of how value is represented in the 

brain. What role context and recent experience plays in the reward encoding of different regions 

and whether these regions are encoding objective absolute value, or a simpler representation of 

rank order within recently experienced values. It was found that the VS and thalamus are highly 

context dependent, with activity representing a stimulus’ value relative to others in that particular 

block. It was also shown that the ACC and vmPFC are not affected by block, but also are not 

representing absolute financial value. Instead the activity in these regions represents the current 

stimulus’ rank order within all values experienced during the experiment. No region was found with 

activity representing absolute financial value. 

The lack of response during the early blocks in regions more generally linked with value 

responding may seem surprising. It can in part be attributed to participants still learning the task 

itself, and although this does seem to reduce power across all comparisons there are still regions 

such as the posterior cingulate and caudate which are already demonstrating within block value 

responding. Therefore, when considered alongside the responding patterns found in later blocks it 

seems likely that regions such as the ACC and vmPFC are not yet responding linearly because the 

individual is still learning the entire range of stimuli values. As these regions integrate values from a 

longer time period, it is also likely that values experienced just prior to the experiment are still 

biasing responses. Conversely, those regions which demonstrate within block responding will by 

definition only incorporate the more recently experienced values, hence their presence in early 

block analyses. 

The cerebellar and visual activations found in the early blocks are not surprising. Other stud ies 

have explicitly investigated patterns of response to reward value in these regions, regularly finding 
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increased activation to higher rewards even in very low level visual processing (Serences, 2008). This 

is generally interpreted as feedback from value sensitive regions with the purpose of directing 

attention towards more preferable and more valuable stimuli (Shimojo et al., 2003). What is 

confusing is that the strongest anatomical links to the visual cortex come from the caudate nucleus 

and thalamus (Leh, Ptito, Chakravarty, & Strafella, 2007; Platt & Glimcher, 1999). These are the 

regions which demonstrate the strongest context dependency in their responding to value, but the 

visual cortex displays the reverse pattern with significant activation only in the highest vs lowest 

contrast. This suggests that there is additional mediation that is yet to be described, or that there is 

heterogeneity in VS neuron responding which is undetectable with fMRI’s spatial resolution.  

The later blocks showed responding in regions more traditionally linked with value 

computation: ventral striatum, vmPFC, ACC and thalamus. What is interesting is the manner in which 

context and the value of recently viewed stimuli modulated the response patterns of these different 

regions. The VS and thalamus were strongly context dependent, responding according to the relative 

rank value of a stimulus within a block. By these later blocks participants had experienced the entire 

range of stimuli and although the vmPFC and ACC showed no scaling to block, they instead 

demonstrated a linear pattern of responding across all stimuli in the experiment. Importantly, this 

ordinal responding was not modified by the very non-linear distribution of actual values, 

demonstrating that these regions only encoded rank order preference. To our knowledge, this has 

not been demonstrated before and provides further support for theories which are predicated 

entirely upon valuation by comparison with items in memory (Stewart et al., 2006).  

The finding that (unlike the lower function dopaminergic regions) the vmPFC and ACC are able 

to integrate  stimuli/values which are contextually differentiated, supports suggestions that these 

areas are further along the processing chain; that they act as input integrators (Basten et al., 2010; 

Philiastides et al., 2010; Rangel & Hare, 2010) and response-action selectors (Hadland, Rushworth, 

Gaffan, & Passingham, 2003; Rushworth, Noonan, Boorman, Walton, & Behrens, 2011) respectively. 
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This points to a distributed, hierarchical system where lower regions are modulated by local context 

and those further along the processing chain integrate a wider range of information. However, these 

results do not suggest context independence in these regions, just that the context is far less local 

and integrates more information. The fact that their activity represents rank order means that they 

are inherently context dependent and inherently re-scale to the range of stimuli (Kobayashi, Pinto de 

Carvalho, & Schultz, 2010). But, the contextual boundary is defined by the experiment as a whole, 

rather than by task blocks. This wider contextual definition is likely the reason that fewer 

experiments have reported contextual effects in these regions. 

It has been suggested that the ventral striatum calculates the difference between cue value 

and environment value: (CV – EV), (Knutson & Wimmer, 2007). However, previous experiments have 

not varied the environment value and the analyses have assumed a constant EV. Therefore it was 

not possible to dissociate whether activity is responding according to pure value or using 

environment value as a baseline. To our knowledge, this is the first human study which explicitly 

manipulates environment value during the experiment without confounding gains and losses. 

Although the results did show a pattern of responding in the VS corresponding to (CV – EV), it is 

telling that neither this nor any other experiment has found a region with activity corresponding to 

EV. Even if a region was found to have this pattern of responding, one would still be left with the 

problem that no system can represent an infinite range of values without some scaling mechanism. 

All that has been done is to move the problem from cue-dependent responding to environment or 

baseline dependent responding. If however one assumes the more parsimonious hypothesis, that 

there is no explicit baseline and that an individual valuation is predicated upon comparisons with 

similar items, then these issues are easily overcome.  
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5.3. Experiment 8 – Recency vs Categorization 

5.3.1. Introduction 

The results of Experiment 7 highlighted the effect of context in determining the neural 

response to a reward. However, the experiment cannot elucidate what defines those contextual 

boundaries. The following experiment answers at least one of these questions and in the process 

shows why some modelling techniques used in previous behavioural experiments were unsuccessful.  

In Experiment 7 there were several potential characteristics of the task which may have 

caused the contextual effects found in the thalamus and VS. The first is simple recency. If the 

memory sampling mechanism in DbS matches the properties found in memory research then one 

would expect that the most recent experiences are more frequently sampled. Therefore the simple 

fact that the trials were separated into high and low blocks causes the recent within block 

experiences to be preferentially sampled. Alternatively, it could be a simple categorization effect. 

The use of cash photographs means that there was an inherent visual difference between the coins 

of low value blocks and the notes of high value blocks. Furthermore, the large difference between 

the pence and pound values offered in the different blocks may have indicated a qualitative change 

in context. 

Several previous studies have found an effect of context between blocks, but these have also 

employed some form of salient categorisation cue. These include gains versus losses, squares vs 

circles, different stimuli colours and certain vs probabilistic payouts (Cooper et al., 2009; Knutson et 

al., 2008; Nieuwenhuis et al., 2005).There has never been a pure test of the effect of recency. That 

is, do the phenomena of memory research such as the Ebbinghaus curve generalise, does recency 

alone cause the contextual valuation effects?  

This experiment uses the same task as Experiment 7. However, different stimuli are used in 

order to eliminate the effects of psychological context: The values used in the low value block 

remain the same but those in the high block are reduced to 30p, 40p and 50p. This removes the 
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effect of value difference causing categorization. It also introduces an overlap value, as 30p is 

present in both blocks. This allows for a simple analysis when testing for context dependency as one 

can merely compare responding to the same value in the two different contexts. In addition, 

photographs are no longer used. Instead geometric shapes are used in order to eliminate visual 

contextual cues. Each shape has a unique associated value and participants are pre -trained on the 

task outside of the scanner to ensure they learn these values beforehand.  

5.3.2. Methods 

5.3.2.1. Participants 

Eleven individuals (4 males and 7 females) from the Nottingham area participated in the 

study, aged between 19 and 34 (with a mean of 25). One additional participant completed the study 

but their data had to be discarded due to data corruption. Each received a £3 inconvenience 

allowance for the behavioural training session and an amount dependent upon their performance in 

the scanning session that was weighted to average £10.  

5.3.2.2. Monetary Incentive Delay Task 

The same Monetary Incentive Delay (MID) task (Knutson et al., 2001) was used as in 

Experiment 7 (Fig. 1). However participants were shown a geometric shape with a pre-trained 

associated value rather than pictures of money. Feedback was given as before, so participants were 

provided with a repeated reminder of the associated values throughout the experiment. Trials were 

split into blocks of low values – 10, 20 and 30p - and high values– 30, 40 and 50p. Each block was 

presented for half of each scanner run with a length of 60 trials per block. Thus there were 120 trials 

in each scanner run and two scanner runs separated by anatomical image collection. Block order for 

low and high values was counterbalanced between participants, with half experiencing HLHL and 

LHLH for the others. Payment following the scanning task was calculated by taking the outcome of a 

random subset of trials which would add up to £15. The adaptive staircase was not used in this 

experiment. The pre-training session was used to measure the length of response window that 
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corresponded to 66% accuracy for each participant.  Response windows were set to a length 

corresponding to 66% accuracy for each participant so that the average payout would be £10.  

In order for participants to familiarise themselves with the task prior to the scanner and to 

learn the values of the Conditioned Stimuli used in the experiment, they completed a behavioural 

training session 4-7 days before scanning. In this session participants performed the same MID task 

they would complete in the scanner. This behavioural training was also used to set each participant’s 

reaction time threshold so they would achieve 66% accuracy during the scanning task. During 

training the duration of the response window was controlled by an adaptive staircase, starting at 

220ms then reducing by 1.5% for every two successful trials in a row and increasing by 1.5% 

following an unsuccessful trial.  

5.3.2.3. Scanning Parameters 

Scanning was performed in a 3T Phillips Achieva scanner with 8 channel phased array head 

coil. The same double echo, echo planar imaging sequence was employed as in the previous 

experiment. Each functional scanner run lasted 12 minutes and 15 seconds, collecting a total of 294 

volumes of 36 slices for each TE using a voxel size of 3x3x3mm, TR = 2.5s, TE1 = 20ms, TE2 = 45ms. 

5.3.2.4. Functional Data Analysis 

To ensure accurate combination of data from both echoes, realignment parameters were 

calculated based on images collected with the first echo sequence and were then applied identically 

to image sequences for both echoes. As before, a weighted summation was then calculated 

combining both echoes into one time series upon which all subsequent processing and analysis was 

performed. Weighted images were then normalised to MNI space using participants’ anatomical 

scans, before being smoothed with a 5mm FWHM Gaussian kernel.  
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The onsets of each CS formed the six regressors of interest (L10, L20, L30, H30, H40, H50) 

which were entered into the first level GLM. One regressor was entered representing button presses 

controlling for basic action preparation. A further twelve were entered representing win and lose 

feedback events of each value, controlling for effects in response to payout. Pairwise comparisons 

were calculated within subjects before being entered into second level analyses. Responding was 

compared for the effect of absolute highest vs lowest value: H50 vs. L10 and the effect of within 

block value: (H50+L30) vs. (H30+L10) to find regions which showed basic value dependent 

responding. Pure context effects independent of absolute value were also tested for by examining 

the overlap value: H30 vs. L30. A whole-brain uncorrected voxelwise threshold of p < 0.001 and an 

extent threshold of 31 voxels was applied in order to find significant activation clusters.  This cluster 

size was calculated using AplhaSim (Cox, 1996) such that the corrected α = 0.05. Once regions 

responding to value had been defined beta weights were extracted for all conditions so that it was 

possible to show the specific pattern of responding. Processing was performed using SPM8 and beta 

weights were extracted using marsbar (Brett, Anton, Valbregue and Poline, 2002). Weighted 

summation of echo signals was performed using code developed by the Sir Peter Mansfield 

Magnetic Resonance Centre. 

5.3.3. Results and Discussion 

5.3.3.1. Behavioural Results 

The average response window for 66% success calculated during the training task was 234ms 

(S.D. 24ms) and it ranged from 272ms to 202ms. Accuracy during the scanning task was between 

46.3% and 84.6% with a mean of 64.6% (S.D. 13.0%). This resulted in payments between £7.20 and 

£13.00 with an average of £9.85 (S.D. £2.06). As the range in performance was quite notable, a 

Pearson’s correlation was conducted comparing winnings with the length of each participant ’s 

response window to ensure the manner in which this window was calculated was not causing the 

seemingly large variance in accuracy, and no such relationship was found (r = 0.17, p > 0.05). A six 
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level, one-way ANOVA found no significant effect of trial value on reaction times (F(1,5) = 1.11) and a 

paired samples t-test showed no effect of block (t(11) = 0.07). 

5.3.3.2. fMRI Results 

5.3.3.2.1. Highest vs Lowest: H50 vs L10 

In order to verify that the experiment had elicited value dependent responding, the highest 

and lowest absolute values were compared: H50 > L10 (Table 5.7). In line with previous studies, 

there is bilateral activation with its peak in the OFC which extends up into the ventral striatum and 

another bilateral activation in the Thalamus (Figure 5.5). There is also a strong effect in the Medial 

Frontal Gyrus (MFG) which suggests stimulus value modulates motor preparation even when there is 

no response choice to be made. There were no significant effects in the reverse contrast.  

 

Figure 5.5 Significant clusters for Highest > Lowest Value: H50>L10 
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Table 5.7. Significant Clusters for, Highest > Lowest Value: H50>L10  

Anatomical Region Peak Activation (MNI 
coordinates) Cluster Size 

(voxels) 
Peak t-
value X Y Z 

Medial Frontal Gyrus (L/R) 4 14 50 38 10.5 
Precentral Gyrus (L) -44 -8 48 46 8.7 
Medial Frontal Gyrus (R)  6 4 54 31 8.6 
Fusiform Gyrus (L) -36 -28 -26 37 7.4 
Orbito-Frontal Cortex/ Caudate Head (R) 12 14 -14 31 7.4 
Orbito- Frontal Cortex/Caudate Head (L) -16 6 -16 82 6.8 

-12 16 -8  4.7 
Vental Lateral Nucleus (L) -12 -10 12 49 6.4 
Supramarginal Gyrus (R) 56 -38 24 41 6.1 

50 -32 30  5.8 
60 -36 34  4.4 

Thalamus/Caudate Head (R) 8 0 10 45 6.0 

5.3.3.2.2. Context Dependent Responding: (H50+L30) vs (H30+L10) and L30 vs H30 

As it was hypothesized that value responding would be context dependent responses were 

also tested for regions displaying higher responding to high vs low values within blocks i.e. (H50+L30) 

> (H30+L10). Interestingly OFC activation is not apparent in this comparison, but there is still 

significant MFG activation, albeit at a weaker level than in Experiment 7 where pictures of cash 

elicited a stronger response (Table 5.8). There is also activation in the cingulate, although this is 

more posterior than is usually reported in value judgment experiments (Figure 5.6). There were no 

significant activations in the reverse contrast. 

 

Figure 5.6 Significant Clusters for, Within Block Comparison: (H50+L30) > (H30+L10) 
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Table 5.8 Significant Clusters for, Within Block Comparison: (H50+L30) > (H30+L10) 

Anatomical Region Peak Activation (MNI 
coordinates) Cluster Size 

(voxels) 
Peak t-
value X Y Z 

Cingulate (L/R) -12 8 46 126 8.0 
4 0 46  7.4 

Brain Stem -2 -30 -6 70 7.7 
Precentral Gyrus (R) 60 -2 30 57 6.8 
Precentral Gyrus/Rolandic Operculum (R) 62 2 8 38 6.3 
Superior Temporal Gyrus (L) -50 -38 0 71 6.0 
MFG (L) -6 48 34 35 5.8 

-8 38 36  4.7 
Cuneus (L) -20 -76 -2 44 5.6 

 

Although one would expect context dependent responding to be evident in the within block 

comparison, many other patterns of context independent responding would also be apparent. To 

identify only those regions that are completely re-scaling their responding patterns with changes in 

context, responding to the overlap value was compared between blocks: L30 > H30. Crucially, there 

were no areas of significant activation nor were there any in the reverse contrast: H30 > L30. 

Beta weights for each area were then extracted and plotted so that overall patterns of 

responding could be assessed. Areas which respond to value do so either in a linear correlation with 

absolute value or in a manner which suggests higher responding to all values in high value blocks and 

lower responding to all values in low blocks (Figure 5.7).  
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Figure 5.7 Extracted beta weights for the latter blocks.  

5.3.4. Discussion 

This experiment employed the same task and similar methodology as Experiment 7. The 

crucial difference was in the stimuli used: In this experiment all categorical cues were removed from 

the task. More similar values were used in both blocks, reducing the possibility of a qualitative 

difference between pence and pounds. These values were then paired with neutral geometric 

shapes and participants underwent a pre-training task so they were familiar with these values. This 

removes the visual cues of notes vs coins. Thus, the only plausible explanation for effects of context 

could be the temporal recency with which the other values were experienced. The results 
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demonstrate that there is no longer an effect of block, therefore recency of experience (at least on 

the scale examined in this task) is not sufficient to create contextual effects. The recall bias for 

recent experiences does not generalise from memory experiments to valuation as one may expect. 

This has significant implications for DbS and future modelling of it and explains why efforts to apply 

an Ebbinghaus curve to the model in previous chapters have failed.  

One potential criticism could be that as participants had been pre-trained to learn the 

associated values of stimuli, they began the task already calibrated to the full range of values they 

were going to see. Furthermore, they were aware of the manner in which blocks would cycle and 

that all stimuli would be seen multiple times, thus arguably negating the need to re -scale. However, 

neither of these suggestions can explain the results of Experiment 7 where participants did not know 

the full range of values at the start of the experiment. Both the VS and thalamus showed context 

dependent responding not only in the first two blocks but in the 3rd and 4th blocks. By that point in 

the experiment they were aware of the range of values. Therefore, the contextual effect would not 

be evident in the latter blocks. 

The findings of Experiments 7 & 8 demonstrate a significant effect of rank ordering within 

context within the brain. They also show that recency of experience (at least on a shorter time scale) 

is not sufficient for these effects to occur. The next experiments address whether the effects of rank 

ordering can be replicated behaviourally and whether recency is necessary for such effects. 

5.4. Experiment 9 

5.4.1. Introduction 

Experiments 7 & 8 suggest that the effect of rank ordering may well be stronger when the 

stimuli and task are simpler. Birnbaum (1992) showed individuals a simple gamble and asked them 

to estimate its value (or certainty equivalent). The potential answers which could then be selected 

had either a positive skew or a negative skew. When choosing from a negatively skewed response 
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set participants were more likely to select higher values than when choosing from the positively 

skewed set. This was also observed by Stewart, Chater, Stott, & Reimers (2003), who manipulated 

the range and skew of the available responses showing that the rank order of options had a 

significant effect upon subsequent choice. Although consistent with DbS, findings relating to 

available response options could also be due to demand characteristics. Participants often avoid 

using the extremes of a response scale and many use the range of potential options as a cue towards 

what may be the “correct” answer (Kamenica, 2008; Prelec, Wernerfelt, & Zettelmeyer, 1997; 

Wernerfelt, 1995).  

In addition to the effects of response set, DbS requires that the effects have a memory 

component and are not simply a result of menu context. Other experiments have demonstrated that 

recently viewed values can cause preference reversals (Stewart, 2009; Ungemach et al., 2011). 

Individuals were exposed to amounts that were either in between or outside of the payout values 

immediately prior to a critical question. This served to respectively increase or decrease the 

difference between values’ relative rank within recent experiences. However, this technique also 

serves to increase and decrease the overall range. Thus it is not possible to know whether the effect 

is driven purely by rank. 

In a recent study Stewart et al., (in press) addressed both the issues of non-menu context and 

range effects. Participants answered a series of dilemmas based upon simple gambles. For half the 

participants the payout values had a significant positive skew whereas the remaining half 

experienced values with a negative skew. These two distributions result in very different predicted 

utility curves when calculated by DbS (Figure 5.8). When participants’ utility curves were extracted 

from their responses, there was a significant difference in the curvature of utility curves depending 

upon condition. The positive skew condition revealed a standard concave utility curve but 

participants in the negative skew condition actually exhibited a convex utility curve.  



154 
 

This experiment adapts the methodology used in Stewart et al ( in press) in order to test the 

hypothesis suggested by the results of Experiments 7 & 8: Is context defined only by categorical cues 

rather than mere recency of exposure?  If so, then it should be possible to replicate the results using 

a within subject design and concurrent exposure to different contexts.  

5.4.2. Method 

5.4.2.1. Participants 

Fifty undergraduates at the University of Nottingham participated in the study for course 

credit, 6 males and 44 females. Their mean age was 18.27. 

5.4.2.2. Stimuli 

For the positive skew condition the values £10, £20, £50, £100, £200 and £500 were crossed 

with probabilities .2, .4, .6, .8 and 1 to create 300 items. All non-dominant pairings of these items 

were selected i.e., pairs where the higher value was not also paired with a higher probability. This 

was then repeated for the negative skew condition where values were created by subtracting the 

positive skew values from £510 meaning £10, £310, £410, £460, £490 and £500. These stimuli values 

were selected because of their significant positive and negative skew. This means that DbS predicts a 

concave and a convex utility curve respectively (Figure 5.8). 

There were 150 non-dominant pairs for each condition. An additional 15 dominant pairs were 

also selected from each to serve as catch trials. Thus, participants made a total of 330 choices.  
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Figure 5.8 The utility curves predicted by DbS in positive and negative skew conditions 

5.4.2.3. Procedure 

The study was conducted online using open source software “Limesurvey”. Participants were 

recruited through the University of Nottingham’s online participant pool. When they signed up for 

the study they were then given a link which took them straight to the start of the experiment. They 

were then asked to complete the questions without breaks. They were also warned that although 

most questions had no right or wrong answer, there were catch questions which would be used to 

ensure they were paying proper attention. They were also informed that although they were free to 

complete the task at their own pace, if they provided no responses for a particularly long time the 

system would assume they had withdrawn and would time out.  

Participants were told they would be shown potential choices from two hypothetical 

gameshows. One game-show offered prizes of phones, the other offered adventure days. In each 

gameshow two prizes of differing value would be offered, each linked to urns with black and gold 

balls in. The contestant would know how many of the balls were winning gold balls and how many 

£0 £100 £200 £300 £400 £500

U
ti

lit
y 

Value 



156 
 

were losing black ones. The contestant must decide whether to pick from the urn with the more 

valuable prize but usually fewer gold balls or from the urn with the less valuable prize but with a 

greater chance of drawing a gold ball. Choices were phrased as “A 20% chance of winning a phone 

worth £500 or a 100% chance of winning a phone worth £10” or in the alternate gameshow “A 60% 

chance of winning an adventure day worth £310 or an 80% chance of winning an adventure day 

worth £490”. 

Questions were presented with five on each web-page and the gameshow in question 

alternated from one page to the next. Thus, participants would answer five questions from the 

positive skew condition, then five from the negative skew condition. The positive and negative skews 

were counterbalanced between gameshows, with half of participants seeing phones with positively 

skewed values and the other half seeing adventure days with positively skewed value. To make the 

current game-show as salient as possible pictures of either mobile phones or people on adventure 

days were shown at the top of each page. The background colour on either side of the questions was 

also alternated between red and black depending upon the current game-show.  

5.4.3. Results 

The probability of selecting the left option on any given choice can be estimated using 

Equation 1. This equation uses the subjective utility (U) of each individual payout of X for risky 

gambles and Y for safe gambles. These are then weighted by the probabilities Q and P for risky and 

safe gambles respectively so that the Luce decision rule can be used to calculate the probability of 

selecting the safe option. The   component controls the determinism of the equation, with values 

above 1 making the resulting predictions more confident for smaller differences in expected utilities. 
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By performing a log transform this can then be re-written as  
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Setting cond as a dummy variable representing experimental condition (positive or negative 

skew dilemma) gives 
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This is now a standard logarithmic regression equation and can be analysed with standard 

statistical packages. To simplify each term point by point,   is the overall bias towards choosing the 

safe option.       is the dummy variable indicating the bias towards selecting safe in one condition 

over the other. The term ∑        is a series of i dummy variables, one for each value used in the 

experiment. The dummy indicates the presence of each value in either gamble, 1 for the safe option, 

-1 for risky. The influence of the relative difference in probability between the two options is 

represented by  
   (

 

 
)    (

 

 
) and the difference between conditions represented by 

 
        (

 

 
)        (

 

 
). 

To extract the term u(X) from the beta weights the determinism had to be first controlled and 

then the exponent calculated to transform back into the original scale.  
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The analysis was applied to the results and the extracted utility curves are plotted in Figure 

5.9. There is a clear visual difference between the lines with mid-range payouts being weighted 

lower in the negative skew condition. This is confirmed using a two-sample z-test comparing utilities 

of £310 in the negative skew condition and £200 in the positive skew condition. Despite the former 

having a much higher objective value its estimated utility is significantly lower (Z = 9.65, p<0.001).

  

 

Figure 5.9 Weights for probability (left) and Utility of payouts (right). Error bars represent standard errors of parameter 
estimates. 

5.4.4. Discussion 

This experiment shows that the neuroimaging findings presented in Experiments 7 & 8 have 

demonstrable behavioural correlates. Previous studies have shown that the distribution of 

experiences can manipulate individuals’ utility curves. However, this is the first demonstration using 
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a within-subject design with concurrent exposure to different distributions. The design used here 

also controls for effects of range, as both distributions have the same maximum and minimum. 

Furthermore, as the differences in distribution are only apparent across several dilemmas, menu 

effects can also be ruled out along with their potential demand effects. 

5.5. Chapter Discussion 
This chapter presents strong support for rank order encoding of value using both 

neuroimaging and behavioural methods. Experiments 7 & 8 show that regions of the brain which are 

responsive to reward encode value by rank order. There was no region in which activity as measured 

by fMRI represented the true financial value of the current trial. The findings also show that value is 

encoded in a distributed network with varying levels of context dependency. Regions which are 

associated with lower level encoding such as the Thalamus and VS show a context dependency that 

is defined by categorical cues. However, regions such as the vmPFC and the ACC that are further 

along the processing chain and aggregate information from multiple inputs are unaffected by these 

cues. Instead, they encode value in terms of the item’s overall rank within the experiment. 

Experiment 9 used choices between simple gambles in different distributions and demonstrated a 

strong effect of rank with utility curves modified by the environment distribution. 

Both Experiment 8 & 9 demonstrate that the boundaries of contextual effects are defined by 

explicit cues of category membership. Experiment 8 demonstrates that simple recency of experience 

is not sufficient to cause contextual effects, whilst Experiment 9 shows that it is not necessary either. 

This finding explains why attempts in previous chapters to add forgetting functions such as the serial 

order position curve and Ebbinghaus curve were unsuccessful. It is likely that such recency effects 

will be apparent over very long durations, but this would be due to complete forgetting or inability 

to recall previous experiences. The effect here is attributable only to items being explicitly 

disregarded when they were still available to be sampled.  
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Experiment 9 also demonstrates a successful extension of neuroeconomic findings to novel 

behavioural effects. This is a troublingly rare occurrence. Many findings within neuroscience have 

not been demonstrated in a behavioural analogue and it seems there is a serious lack of cross 

modality replication. This chapter not only provides novel findings relevant to important and current 

topics of discussion but also presents a strong bridge between the fields of neuroscience and 

behavioural psychology. 
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6. Chapter 6 – General Discussion 

6.1. Introduction 
Recent years have seen a growing interest in describing human decision making and 

judgements using psychologically plausible process models. Progress towards this goal has speeded 

as more psychologists become interested in financial decision making and more economists become 

interested in results from psychology. This thesis adds to the debate and provides novel empirical 

findings relevant to the development of more accurate and plausible models. The main focus of the 

empirical research has been the Decision by Sampling model, but many of the results also speak to 

more general issues and debates within the JDM community. This chapter will begin with a summary 

of the empirical findings from each chapter before bringing together the findings from all 

experiments and discussing the implications for wider issues.  

6.1.1. Summary of Findings 

The overarching findings are that in complex multi-attribute decisions DbS is a relatively poor 

model of human judgement and decision making, but in more simple tasks, with small numbers of 

stimuli values and few attributes, DbS performs well. Both behavioural and neuroimaging findings 

strongly support rank order encoding and context dependency in simple decision environments. 

Chapter 2 employed a multi-attribute valuation task and uses participants’ estimates of 

apartment valuations to test the explanatory power of DbS by explicitly simulating the model. The 

distribution of item values is also modified in a manner that tests the predictions of RFT. The results 

show that DbS is a relatively poor predictor of value estimates, being outperformed by a simple 

baseline measure and a Weighted ADDitive model. Implementing a weighting function to simulate 

effects of recency in memory sampling did not improve the performance of DbS and parameter 

estimation revealed that the best fit was from a model closest to the original unweighted DbS. The 
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results were more supportive of RFT, but only when one assumes the full range of values was 

underestimated due to the higher values being comparatively rare in one condition.  

Chapter 3 again used a multi-attribute valuation task with apartments as the stimuli, but this 

time the distributions of individual attribute values were modified rather than the overall values of 

the items. Therefore, DbS made specific predictions about the way these scales would be 

interpreted and weighted in participants’ estimates of overall item value. The results showed that 

participants’ use of these attributes did not match the predictions of DbS, but nor did they match 

the predictions of other considered models. As the results could be explained by assumptions and 

information garnered from real world experience prior to the experiment, the same stimuli were 

used in Experiment 4 but with a different cover story. When participants believed they were judging 

the value of mineral deposits instead of apartments, their use of attributes changed significantly. 

The change suggested that the results of Experiment 3 were attributable to prior expectations. 

However, the results for valuations of mineral deposits were also not explained by any considered 

model. The pattern of responding suggested that the majority of variance could be explained by 

WADD. But, for attributes participants considered important, values near the extremes of the scale 

were relatively over-weighted suggesting they were especially salient and used as a qualitative cue 

to raise or lower estimates. The predictions of DbS were less accurate than simple baseline measures 

in both of the experiments. 

Chapter 4 used similar multi-attribute stimuli to Experiment 3, but employed a choice task 

rather than eliciting value estimates. DbS again performed relatively poorly. When modelled 

separately for each participant, DbS was always outperformed by either a WADD model, Dawes rule 

or both. However, there was some tentative support for encoding by rank ordering as when 

participants’ use of attribute values was recovered, the weighting function represented cumulative 

frequency. Experiment 6 also used concurrent eye tracking to examine whether participants visual 

attention to different attributes was a reliable analogue for the differential weighting they 
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subsequently applied to information when making their decisions. No such correlation was found. As 

a result, when attention weighted drift diffusion models were fitted to the data their accuracy was 

poor. This suggests that eye-tracking cannot serve as a meaningful analogue for attention terms in 

models such as DbS and Decision Field Theory (Busemeyer & Townsend, 1993). 

Chapter 5 focussed more closely upon the neuroscience evidence for rank encoding and 

context sensitivity. Experiment 7 used an fMRI paradigm with a distribution of values which meant 

rank order encoding predicted a different activation pattern than models assuming a simple linear 

transform of absolute value. The results showed that activity in value sensitive regions was highly 

context dependent and that response magnitudes were predicted better by rank order encoding 

than they were by absolute value. Experiment 8 then demonstrated that the context sensitivity 

found in dopaminergic reward regions including the VS and the thalamus were only sensitive to 

contextual shifts when there was an exogenous cue. That is to say that these regions were not 

disproportionately sensitive to the most recent events. Experiment 9 then sought to demonstrate 

these contextual effects and a basic effect of DbS by eliciting choices between risky gambles in 

different contexts. Each context presented values drawn from either a positively or negatively 

skewed distribution and participants’ utility curves showed significant concavity and convexity in 

these respective conditions. This is precisely the pattern predicted by DbS.  

6.2. Judgement and Decision by Rank-Order 
The behavioural results presented in the preceding chapters are mixed in their support of 

encoding by rank order. First let’s examine the results which support DbS and rank order effects 

before moving on to discuss those which do not. Experiment 6 shows that in a multi -attribute choice 

task when one of the attributes is given a non-linear distribution, the rank ordered cumulative 

frequency plot can be recovered from participants decisions using multiple regression. Put s imply, 

participants are using rank order not the attribute’s absolute value. Furthermore, Experiment 9 

demonstrates that participants’ utility curves are not stable over time but respond to the 
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distribution of values in the choice set. When making decisions in a context with a positive skew the 

recovered utility curves exhibit the concave shape familiar from EUT and CPT. However, when 

making decisions in a context with significant negative skew the utility curves exhibit a convex shape, 

suggesting risk seeking behaviour.  

Although Experiment 6 found that participants’ use of the crime attribute was best explained 

by rank ordering, the results of valuation tasks in Experiments 3&4 were very different. For both 

experiments, one attribute had a cubic distribution such that rank ordering would predict a cubic 

effect in participants’ use of the attribute when calculating their responses. In Experiment 3, a cubic 

effect was present, but the curvature was in the opposite direction to that predicted. Furthermore, 

the same effect was observed for an attribute with linear distribution, but curvilinear weighting 

upon true values. In Experiment 4 there was no cubic effect for the attribute with a cubic 

distribution, but there was for two others despite them having linear distributions. The difference 

between these results and those of the choice task show that participants make different use of 

information depending upon the type of response elicited.  

There is a significant literature investigating the difference between choice and valuation 

(Hsee et al., 1999; Lichtenstein & Slovic, 1971; Sevdalis & Harvey, 2006; Tversky et al., 1990). The 

results of Experiment 5 concur with the evaluability hypothesis, arguably the most widely supported 

explanation for the phenomenon. It is found that although the large majority of participants use the 

same WADD process for judgements and decisions, their interpretation and use of the attribute 

values differs between task modalities. When providing value estimates, participants relatively 

under-weight crime (the attribute with the cubic distribution) as the majority of its values cluster 

around the centre of the scale. This makes it harder to discriminate relatively small absolute 

differences when only one item is seen at a time. However, the attribute’s influence increases 

significantly during the choice task as presenting two side by side makes differences more apparent. 

Furthermore, individuals are more likely to recall items and values more similar to those presented 
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because they act as a cue (Brown et al., 2007; Howard & Kahana, 2002). In the valuation task there 

will be no particular effect of this bias. However, in choice the two items will cue recall of other 

similar values. As values are clustered around the centre of the scale the close proximity of many 

items to the cues means there will be a higher number of recalled values which lie between the two 

alternatives. 

Although there is no evidence for rank ordering of attribute values during valuation tasks, 

Experiment 2 does show evidence for range-frequency effects. RFT can provide a parsimonious 

explanation of the results if one makes the reasonable assumption that participants are prone to 

underestimating the upper bound when values at the extreme high end of a range are particularly 

rare. Several other accounts can explain why participants regularly provide value estimates that fall 

within the unrepresented portion of the value range, including a simple regression to the mean. 

However, RFT is the only theory which also predicts the control items’ rise in value estimates in the 

modified distribution condition. Thus, in valuation tasks the interpretation of attribute scales is not 

reliant upon rank order, but rank does have a significant impact upon value estimates. 

A variable which is undoubtedly a factor in the size of rank order effects is the complexity of 

the choice/judgement environments. The strongest behavioural effect is found for Experiment 9, the 

experiment with the simplest task and design. The only attributes are payout and probability, and 

there are only 6 possible payouts in each condition. This means that it is possible for – the majority 

of – participants to represent all potential payouts in working memory concurrently. Indeed, the vast 

majority of previous demonstrations of rank order effects have used either a manipulation with no 

memory requirement i.e. menu context, (Birnbaum, 1992) or distributions with a small number of 

values (Stewart, 2009; Stewart et al., 2005). This issue is discussed in more detail below. 

6.3. Multiple Attribute Tasks and Information Integration 
As stated above, the reported experiments demonstrate that the complexity of the task has a 

significant impact upon how closely participants’ choices match the predictions of DbS. Therefore 
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the obvious question is whether DbS can only make accurate predictions in simple decision 

environments. If true, this would suggest that participants switch to a qualitatively different strategy 

in more complex environments, in a manner similar to the adaptive toolbox account (Bröder, 2003; 

Gigerenzer & Selten, 2002).  Alternatively it may be that participants do not use different strategies, 

but specific characteristics of DbS are incorrect in its current formulation. If these inaccuracies were 

to have a minimal effect upon predictions in simpler environments but a more significant effect in 

more complex environments then one would expect the results found throughout this thesis.  

One of the components of complexity is the number of different values experienced for an 

attribute within a choice environment. When the task environment is simple and there are relatively 

few values which are repeated frequently throughout the task, DbS is far more accurate at 

predicting decisions. Another source of complexity is the number of attributes for which values are 

given. Again, in Experiment 9, there are only two attributes: value and probability. However, in 

Experiments 1-6, items have between 4 and 5 attributes. One effect of this additional complexity is 

to make the task more cognitively demanding through the retention, recall and examination of more 

information. It also raises the more specific question of how individuals judge the importance of 

each attribute and then combine very different kinds of information when calculating a valuation or 

decision for the item as a whole. Thus there are two general factors which may explain why the 

accuracy of DbS is sensitive to complexity: General cognitive load (especially the number of values 

which can potentially be sampled from memory) and the number of attributes to be considered.  

First consider the effect of general cognitive load and the number of values experienced on a 

single attribute scale during the task. DbS predicts choices most accurately in Experiment 9 where 

there are relatively few values experienced during the experiment. Accuracy is far lower in 

Experiments 5&6 where a large number of different values are sampled from a continuous scale 

with little repetition of values. However, Experiment 6 also shows that participants’ use of values on 

a single attribute is modified by rank order. This suggests that DbS correctly predicts aspects of the 
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early stages in the decision process. So the later steps must account for a large proportion of the 

drop in accuracy. Principally, the way DbS integrates information from different attributes. 

In its original form DbS predicts that individuals sample from each attribute  with equal 

probability. This essentially equates to an un-weighted additive model, where it is the rank positions 

which are being summed rather than the attribute values. In every experiment where this was 

examined here, the accuracy was significantly improved by allowing the weighting of attributes to 

vary freely within the model. This weighted formulation of DbS matches the predictive accuracy of 

WADD, but does not outperform it. This includes Experiments 5&6 where the non-linear attribute 

distribution should favour DbS, given the evidence for rank ordering.  

This is a curious result. One suggestion could be that the integration of information is 

multiplicative, not additive. However it is unlikely that this is driving the effect, as simulations show 

that multiplicative and additive models can reliably mimic each other (Stewart, 2011) . Another 

possibility is that participants are integrating information in a way which violates the independence 

of value perception on each attribute. For example it seems plausible that participants could think a 

particular floor space dimension is very good for a one bedroom apartment, but poor when there 

are four bedrooms. But this cannot be so easily argued for Experiment 4 where participants were 

instead valuing mineral deposits. Furthermore there is no reason to suspect that such violations of 

independence would have a disproportionate effect upon weighted DbS over WADD as they both 

predict the same mechanism for information integration. 

DbS and WADD have the same explanatory power even in experiments where their 

predictions are less highly correlated, which suggests that the models explain independent variance. 

This could be the result of over-fitting, as the independent weighting of each attribute adds a large 

number of free parameters to the models. If this is the case, then the results still show tentative 

support for WADD, as both have the same number of free parameters but more individuals are 
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categorized as responding using that strategy than DbS. However, this would not explain the rank 

ordering of attribute values. 

It is possible that participants use a variety of cues and arguments when making complex 

decisions. In Experiments 5&6, Dawes rule was shown to modulate the performance of other 

models, but was a poor predictor when considered alone. It was theoretically possible for DbS to 

explain this phenomenon with a recency weighting curve, negating any suggestion of separate cues 

or processes. However, adding such a weighting curve reduced DbS’s accuracy. Thus it seems that 

participants use a variety of cues/strategies including WADD, rank order and Dawes when making 

their decisions. This appears an unsatisfactory suggestion as it seems particularly complex and 

suggests a high level of processing if all are considered for each decision. However it seems more 

plausible that on any particular choice an individual may rely primarily on WADD. Then if they are 

relatively indifferent between options, the fact that one particular attribute value was better than a 

large number of previous items, or one of the current options is better on more attributes may be 

used as a reason or cue for choosing the favoured item. In essence, the results are compatible with a 

form of the adaptive toolbox (Bröder, 2003; Gigerenzer & Selten, 2002), but using tools or models 

which are more complex than proposed by the original heuristic approach. 

6.3.1. Attention as a Measure of Attribute Weighting 

Preferential looking toward the chosen item is a critical prediction of attention driven models  

such as decision field theory and several versions of drift diffusion (Busemeyer & Townsend, 1993; 

Krajbich et al., 2010). The gaze cascade supports these predictions, allowing such models to predict 

choices from eye movements with accuracy significantly better than chance (Atalay et al., 2012; 

Glaholt & Reingold, 2009; Shimojo et al., 2003; Simion & Shimojo, 2007). However, the models also 

make specific predictions of a correlation between attention towards information and subsequent 

information weighting in choice. Previous eye-tracking experiments which have found results in 

favour of such attention weighted models have used single attribute items or have used paradigms 
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in which the eye-tracking data did not discern which attributes were attended (Atalay et al., 2012; 

Glaholt & Reingold, 2009; Krajbich et al., 2010; Ratcliff & McKoon, 2007). This is a serious weakness, 

because this essentially confounds attention towards the item with attention towards information. 

Experiment 6 is the first study to orthogonalise item and information in a multi -attribute choice task 

and the results do not support these model’s predictions. There is no correlation between relative 

attention to attributes and their relative influence upon responses. Furthermore, when visual 

attention is used to weight a drift diffusion model (Krajbich et al., 2010), the resulting predictions are 

significantly less accurate than other baseline measures. 

One response to this negative finding could be to retain the existing models and their 

assumptions regarding attention, but to dismiss visual attention as a reliable analogue for 

individuals’ covert attention. However the gaze cascade effect is known to be a robust phenomenon 

(Shimojo et al., 2003; Simion & Shimojo, 2007) and relative visual attention between items does 

predict 65% of choices in Experiment 6. Therefore, to say that eye-tracking cannot predict any 

aspects of the decision process is to ignore these results and merely leave a different phenomenon 

without an explanation. What these results do suggest is that the feedback loop hypothesised in 

experiments on the gaze cascade (but for an opposing view see Orquin & Mueller Loose, 2013) is 

only sensitive to the item’s overall value. For the attention and saccade planning systems to be 

biased towards the preferred item in the lead up to a choice, suggests that there is a correlation 

between attention planning and the current relative evidence, or accumulator values for the i tems. 

It also suggests that the value of each item is represented as a whole at all time-points, rather than 

as separate accumulators for separate attributes and the information being integrated only when 

the choice is made. So the eye tracking results support a model of evidence accumulation for 

options, with value only being represented at the whole item level. But, there is no effect of 

attention to different information or attributes. Evidence accumulator models therefore need to be 

re-examined with respect to information weighting, as none currently make satisfactory predictions.  
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6.4. Sampling and Memory Effects 
One of the main aims of this thesis was to investigate the impact of memory phenomena upon 

decision making. Many of the characteristics of recall and sampling are unspecified in DbS, which is 

surprising given how important memory is to the model. The two undefined characteristics 

investigated in this thesis are how many items are sampled and which items are most likely to be 

recalled. 

6.4.1. Sample Size 

Previous experiments have suggested that judgements and decisions rely upon comparisons 

with a sample no larger than an individual’s WM capacity (Dougherty & Hunter, 2003a, 2003b; 

Kareev et al., 1997; Sprenger & Dougherty, 2006). However, DbS predicts a running total of 

accumulated evidence is represented for each item while alternatives are sampled sequentially. 

Therefore, DbS does not predict that all sampled alternatives must be concurrently represented in 

WM, so the number of sampled alternatives is potentially larger. The results of Experiment 9 show 

that when the number of previously experienced values is small enough to fit in WM, DbS accurately 

predicts choices. However, when the number of previous values is very large, such as in Experiments 

1-6, the model has poor predictive accuracy and explicitly estimating parameters shows that the 

best model fit comes from the largest possible sample. 

Experiments 1-6 used a larger number of values, meaning the best fitting sample size could 

only be estimated by explicitly modelling DbS. This means that any general inaccuracies in the DbS 

model would reduce the accuracy and validity of the estimated parameters. As other analyses have 

demonstrated that DbS is not accurate, particularly in multi -attribute tasks, it is perhaps not 

surprising that attempts at modelling the sample size found that the best fit came with the largest 

possible sample, which also resulted in the strongest correlation between DbS and WADD. However, 

the results of multi-attribute tasks in Experiments 1-6 show participants have far greater 

discriminability than would be possible using only the 7 +/-2 comparisons, or possibly fewer (Cowan, 
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2001), that could be concurrently represented in WM. Such a small number of comparisons would 

also result in the majority of attributes receiving only one comparison with alternative values. This 

would mean the weighting functions extracted for individual attributes would be far noisier than 

those which were found.  

Despite Experiments 1-6 rejecting very small samples, Experiment 9 shows reliable rank order 

and context effects when the relatively small number of alternative values can be represented 

simultaneously in WM. This can be interpreted as tentative support for the suggestion that 

participants switch strategies depending upon the number of values from which they can sample 

(Lindskog et al., 2013). However, having fewer potentially sampled values also makes it far easier to 

infer which are likely to be present in any single sample. This in turn reduces the noise in any 

modelling and estimation. This noise and uncertainty is an inherent problem when modelling a 

stochastic system such as covert memory recall, which cannot be directly measured. Thus in 

Experiments 1-6 it’s possible that participants are  sampling from memory (drawing a sample larger 

than WM) but this is not detected because simulations of the model must average across a large 

number of potential samples. For a direct test of sample sizes, future experiments must be designed 

with a specific manipulation which can test for effects of sample size. Many previous experiments 

have done so, but by comparing the response patterns of individuals with high WM capacity to those 

with low capacity  (Dougherty & Hunter, 2003a; Kareev et al., 1997) it is possible that the differences 

are caused by a more general underlying difference in cognitive ability or strategy at the individual 

level, rather than a within-individual switch from one strategy to another (Gaissmaier et al., 2006). 

6.4.2. Predicting Which Items are Sampled 

To date the research on DbS has focussed primarily upon the distribution of all values within 

the environment. As detailed in chapter one, this has found a strong correlation between the global 

distributions of values and average weighting or utility curves (Stewart, 2009; Stewart et al., 2006). 

However, this is only one mechanism which can systematically bias judgements based upon DbS. 
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Equally important is which values are sampled at each particular time point. If there is a systematic 

bias to recalling say, particularly high or low value items, then this will bias DbS judgements to be 

lower or higher respectively. This is true regardless of the overall distribution of values from which 

individuals’ sample. To examine the likely patterns of such biases, evidence and models were sought 

from the literature on memory research. 

Perhaps the most robust finding in all memory research is the recency effect. The likelihood of 

an item being successfully recalled is inversely proportional to the length of time which has passed 

since it was encoded (Ebbinghaus, 1913). Therefore it was hypothesised that values experienced 

most recently were more likely to be sampled and thus bias valuations and decisions. However, 

when DbS was modelled with either an Ebbinghaus or serial order position curve used to weight the 

probability of previous values being sampled, no improvement was found. The weighted model 

never surpassed the fit of the original instantiation of DbS. When the effect of different parameter 

values are examined the fit of the weighted model shows an asymptotic relationship with the 

performance of the unweighted model. The accuracy of the modified model approached that of the 

original DbS model as changes in the Ebbinghaus curve parameter reduced the strength of the 

relative recency bias. 

Other studies of value estimation have shown that the single most recent item value has a 

significant influence upon the next valuation (Matthews & Stewart, 2009). But this is essentially a 

demonstration of the anchoring effect (Simmons, LeBoeuf, & Nelson, 2010; Tversky & Kahneman, 

1974). It is also not a specific prediction of DbS, which is primarily intended to predict choices. If 

participants had a steep forgetting curve then the model would predict an anchoring effect from 

individual attribute values, but not from the overall item value. Although this pattern of insufficient 

adjustment has been found on individual attribute scales in relatively simple decisions (Ungemach et 

al., 2011), it is not found here in more complex multi-attribute tasks. Furthermore, these previous 
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studies merely demonstrate the effect of the single most recent experience. There was no attempt 

to show a continuous forgetting curve or an effect comparable to models of memory.  

In the experiments reported in this thesis there was only one situation where the results 

showed significant overweighting of recent binary comparisons. This was in chapter 4 where Dawes 

rule was show to add explanatory power orthogonal to both WADD and DbS, even when DbS was 

weighted with an Ebbinghaus curve. But this bias only occurs for the immediately available 

alternative, i.e. when there is no memory requirement. Therefore it cannot be argued as an effect of 

recency as there is no such bias for the immediately preceding items. 

Another reliable finding in memory research is that when one item has been provided as a 

cue, or is simply recalled first, then individuals are more likely to recall other items whi ch are more 

similar to it (Brown et al., 2007; Howard & Kahana, 2002) and more likely to recall other items 

experienced in the same context (Godden & Baddeley, 1980). In the context of DbS this seems 

logical: there is little point in an individual recalling the price of a chocolate bar they purchased last 

week when judging the relative merits of two differently priced cars. Experiment 9 demonstrates 

that this memory phenomenon is apparent in participants’ decision making. When participants 

alternated between choosing phones and adventure days of different values, their inferred utility 

curves closely matched the distribution of values within each item category. This creation of salient 

contextual boundaries had a strong effect, with the neuroscience evidence also showing the same 

pattern. There was no effect of recency or block, but a strong contextual distinction in neural 

responses when an exogenous context cue is present. This contextual finding is predicted by models 

of memory, however it is also compatible with more general models which suggest that the use of 

strategies and meta-information is specific to choice environments and tasks (Hertwig et al., 2006). 

6.4.3. Exemplar or Non-Exemplar Representation 

The findings that the best fitting sample size is one so large that it encompasses all values in 

the experiment and that there is no effect of recency seriously questions the role of memory in 
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decision making. It speaks to a debate more general than simply testing the specifics of DbS: Are 

experienced distributions represented in an exemplar or non-exemplar system (Camilleri & Newell, 

2013)? DbS clearly falls into the former category, as it predicts that specific instances and exemplars 

are recalled from memory for each decision. There are also other more general models which posit 

exemplar representation (Lejarraga, Dutt, & Gonzalez, 2012). 

Non-exemplar models suggest that rather than remembering or recalling the specific 

instances of previous items, values or experiences, individuals instead store meta-data. Depending 

upon the particular formulation of the model, this can include the mean, range, distribution and 

skew of the experienced values (Brainerd & Reyna, 1990; Hertwig et al., 2006; Kühberger, 1998). It is 

generally suggested that these models do not predict any recency bias (Camilleri & Newell, 2013) as 

specific items are not being recalled. Furthermore, as the meta-information is updated with each 

new experience, it makes predictions similar to that of an exemplar model with no limit on sample 

size. This means non-exemplar models can explain the lack of memory phenomena in Experiments 1-

6. And, as different meta-information would be stored for different choice environments, the 

context effects of Experiments 7 & 9 would still be predicted. Such a model could also explain the 

cubic weighting functions found in Chapter 4, if one posits that the meta-information represents (or 

is at least biased by) rank order or range-frequency effects. 

It would therefore seem that non-exemplar models are a more suitable hypothesis. However, 

they are by no means a perfect solution. For one, if the meta-information is updated with every new 

experience, it seems likely that there would still be a bias towards the most recent information. It 

would be a very difficult task to perfectly calculate the change which should be made to an 

estimated distribution based upon the importance of the new information and the importance of all 

previous information.  

When examining the results of previous experiments, the balance of findings also support an 

exemplar based model (Camilleri & Newell, 2013). For example, in recent model competitions for 
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decisions from experience, exemplar models have reliably outperformed non-exemplar alternatives 

(Erev et al., 2010; Gonzalez & Dutt, 2011; Hau, Pleskac, Kiefer, & Hertwig, 2008). Exemplar models 

also provide a more parsimonious explanation for idealised distributions of experiences producing 

more accurate judgements (Giguere & Love, 2013) and individuals acting as though the distribution 

of experienced examples is the true distribution, even when they have explicit knowledge that it is 

not (Feiler et al., 2013). 

What is most interesting with regards the results presented here are the effects of WM 

capacity. Non-exemplar models cannot explain the oversensitivity to correlations (Kareev et al., 

1997) and reduced accuracy in specific judgements (Dougherty & Hunter, 2003a, 2003b) found for 

individuals with smaller WM. The results of Experiments 7 & 9 showed that the exemplar model of 

DbS predicts the data very accurately when there are few values or items. However, in Experiments 

1-6 when there were more values than could be represented in WM, the exemplar model performed 

poorly and the results fit well with a non-exemplar account. Therefore, the results presented here 

suggest that when the number of values within a task or choice environment is low enough that they 

can all be represented concurrently in WM, participants rely upon the exemplar model of DbS. 

However, when there are too many values and items, individuals cannot rely upon such a strategy 

they instead use meta-information.  

6.5. Neural Encoding of Value 
Experiment 7 is the first fMRI study to directly compare the predictions of rank order and 

absolute financial value representations in neural encoding. The results are strongly in favour of rank 

order encoding in higher functioning regions including the vmPFC and the ACC. These are thought to 

be closest to the end of the information integration process and therefore the nearest neurological 

proxy for the final response (Chib, Rangel, Shimojo, & O'Doherty, 2009; Hare, O'Doherty, Camerer, 

Schultz, & Rangel, 2008). The response of lower, dopaminergic reward regions is also compatible 

with DbS, as responding rescales to represent the rank order of the current item within the current 
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context. This total re-scaling is incompatible with other models of relative difference from the 

average environment value, which would predict smaller activations when the differences from the 

average value were also smaller (Knutson & Cooper, 2005). 

Early fMRI experiments were limited by the quality of scanners and analysis techniques. The 

poor signal to noise ratio and high cost of testing large numbers of participants meant the most 

successful and popular paradigms were those which rel ied upon relatively simple comparisons 

(O'Doherty et al., 2001). These involved participants receiving gains and experiencing losses of large 

or small magnitudes, sometimes with varying degrees of risk attached. When greater activity was 

found for higher values or more preferable outcomes the simplest assumption was that these  areas 

responded with more activation to more valuable stimuli and opportunities. Thus there has been an 

implicit assumption running through subsequent research that there is a linear relationship between 

value and neural response. 

 As the accuracy of fMRI has improved, research has moved towards addressing more complex 

questions. These include the endowment effect (Plassmann, O'Doherty, & Rangel, 2007), menu 

effects in choice (Cooper et al., 2009; Elliott et al., 2008) and the interaction between visual 

attention and value signal (Lim et al., 2011); but the most basic assumptions and findings have not 

been re-visited. The original assumption of a linear relationship has persisted, not because there was 

strong evidence to support it, but because it was the simplest interpretations and there was no 

evidence to directly contradict it. Many researchers have also been reluctant to examine more basic 

characteristics when the field has moved on to relatively complex issues. Furthermore, despite the 

advances in scanners, researchers still tend to prefer simpler designs with qualitative comparisons 

and contrasts, in an attempt to ensure high power and minimise the chances of null -effects in what 

is still a very expensive methodology. It is thanks largely to the advances in scanner technology and 

to the new double echo procedures being pioneered at the University of Nottingham that it was 
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possible to conduct the experiments reported in Chapter 5 and re-examine this core building block 

of neuroeconomics.  

Previous papers have claimed to find evidence of absolute encoding (Knutson & Bossaerts, 

2007; Kringelbach & Rolls, 2004) and even specific patterns of prospect theory such as loss aversion 

(Nieuwenhuis et al., 2005; Tom, Fox, Trepel, & Poldrack, 2007). However, these studies have all 

contained characteristics which mean that DbS and rank ordering still predicts their findings. The 

experiments claiming to demonstrate an effect of loss aversion have not found disproportionately 

stronger activation to losses than to gains of identical value, as one might have assumed. Instead, 

they began from the assumption that loss aversion would exist and therefore deliberately biased the 

stimuli values to counteract the predicted effect. The studies used gains which were twice as large as 

the concomitant losses (Tom et al., 2007) or two thirds larger (Nieuwenhuis et al., 2005). When the 

same degree of deactivation and activation was found for losses and gains respectively, it was 

interpreted as evidence for loss aversion and prospect theory within the  brain. However, because 

the gains and losses had the same ranks within their distributions, DbS also predicts that they will 

elicit the same strength of neural signal. The results of Experiment 7 are relevant not only to these 

two particular experiments, but to all studies in neuroeconomics which rely upon the assumption of 

continuous value representation. Many experiments must now be re -evaluated and a significant 

proportion will subsequently be open to different interpretation.  

Chapter 5 also demonstrates a novel finding with regards context. In Experiment 7 the mid-

brain reward regions of the thalamus and ventral striatum responded not to the value’s rank order 

within the entire experiment, but to its rank within the current block. Possibly the most obvi ous 

suggestion if one is to take inspiration from the memory literature, is that the simple recency of 

experiences in the current block causes the effect. However, if this were the case then the same 

effect would also have been found in the VS during experiment 8, when the same blocks and timings 

were used but other exogenous contextual cues were removed. Furthermore, previous reports of 
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context dependency have all used some form of exogenous cue such as the colour of a card 

(Nieuwenhuis et al., 2005), buying vs. selling (De Martino, Kumaran, Holt, & Dolan, 2009; Knutson et 

al., 2008), whether the value is part of a gamble or not (Cooper et al., 2009) or the visual shape of 

the stimulus (Kringelbach & Rolls, 2004; O'Doherty et al., 2001).Thus Chapter 5 demonstrates that 

these exogenous cues are necessary to create the context dependent encoding found in Experiment 

7. 

The behavioural results of Experiment 9 also show that exogenous cues cause contextual 

dependency without any temporal component, demonstrating significantly different utility curves in 

different contexts. In this experiment the exogenous cues were present in the form of different 

visual cues (background colour) and cover story (gameshow for phones or adventure days), but 

questions were presented intermixed. Thus, the effect of recency and block was eliminated, and yet 

the effect remained, showing that these exogenous cues are both necessary and sufficient.  

One issue that is not addressed by these experiments is which specific exogenous cues cause 

context effects. Considering all available evidence, there are several possibilities: obviousness of 

block switch, cover story, visual cues, and the categorizability of values themselves.  Each of these 

possible explanations will now be addressed in turn. 

 The obviousness of the switch from one block or context to another may be a factor as there 

was a gap of ~20s between blocks in experiment 7 which was not present in Experiment 8. There 

was also a similar short gap between blocks in Cooper et al. (2009). However, given the lack of a 

general effect of recency and the successful findings of context dependency within a single scanner 

block (Elliott et al., 2008; Knutson & Cooper, 2005) it is certainly not necessary for creating context 

effects, and is unlikely to be sufficient.  

The cover story given for the different contexts seems an intuitively strong manipulation, and 

this characteristic is present in several studies including Experiment 9 (Cooper et al., 2009; De 
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Martino et al., 2009). The only study where this could arguably be the sole manipulation is De 

Martino et al. (2009) which relies upon the endowment effect. However, interpreting endowment as 

merely a cover story is troublesome and likely too simplistic given the evidence suggesting that 

endowment changes behaviour and perceptions of value (Horowitz & McConnell, 2002; Isoni, 

Loomes, & Sugden, 2011). Therefore it is not currently possible to isolate the effect of a change in 

cover story using solely neuroscience evidence. If behavioural evidence is considered  then the 

results of Experiments 3&4 suggest that the cover story is indeed sufficient. This is possibly only true 

when it has a direct influence upon individuals’ interpretation of the values themselves, as in 

Experiment 9, where such possibilities are (largely) removed, there are still vi sual cues. 

Visual cues are seemingly ubiquitous among demonstrations of context dependency. The only 

experiments which do not have an explicit visual cue are Experiment 8, which finds no effect, and 

Cooper et al. (2009). Including the latter is also debatable as one could easily argue that having a 

probability present next to the value, acts as a visual cue. Therefore it seems that the presence of a 

visual cue is likely sufficient and possibly necessary, but the null hypothesis has not been explicitly 

tested. 

Categorizability of values themselves is not an issue often addressed in the literature. 

However, it is potentially a very strong manipulation. In some experiments its presence is obvious. 

For example, in Experiment 7 the values in different blocks differed by an order of magnitude and 

the ranges did not overlap. In others it is not as intuitively obvious but still exists: In Experiment 9 

one has a situation where the positive skew values were all relatively round numbers (£10, £20, £50, 

£100 etc.), whereas those in the negative skew were not (£310, £410, £480, £490 etc.). In fact there 

is evidence that this difference alone is strong enough to cause the contextual  effects observed in 

Experiment 9, even when no other contextual cue or manipulation is applied (Stewart and Reimers, 

unpublished manuscript). Other tasks have used numbers which are similar in magnitude, but as the 

context is that of gains vs. losses it is the sign attached to the value which provides its categorization.  



180 
 

In summary, the available evidence suggests that the cover story and obviousness of the 

switch from one block to another may well be sufficient to cause context dependency, but the 

evidence is equivocal. Furthermore, there is enough evidence to say that neither characteristic is 

necessary. For visual cues and the categorizability of the values themselves, there is good evidence 

to say that they are sufficient to cause context dependency and there is also not currently enough 

evidence to rule them out as necessary characteristics. 

6.6. Conclusions and Summary 
The primary aim of this thesis was to examine Decision by Sampling as a model of human 

choice and value judgement. The results show a clear dichotomy, with the model accurately 

predicting responses in simple tasks and in environments with few values, but performing poorly in 

more complex task environments. Rank order effects are found in Experiments 7-9, exactly matching 

the predictions of DbS. For each of these tasks, the experiment or decision context had a maximum 

of 6 possible values, this means that all values could be represented in working memory at the same 

time, making the relative ranks more salient. However, in the more complex task environments of 

Experiments 1-6 the large number of values which could be potentially recalled means DbS must rely 

upon models of memory to predict which items will enter the sample. In this case, not only does DbS 

perform no better than a standard WADD model, but the results do not replicate the most universal 

findings of memory research: recently experienced items are sampled no more frequently than 

those very temporally distant. The fact that the core memory sampling assumption of the model 

cannot replicate such a common effect, strongly suggests that specific examples are not being 

recalled from memory. Thus the data suggest a switch in behaviour,  depending upon the properties 

of the task: Participants use DbS and rank ordering when all relevant values can be concurrently held 

in WM, but rely on a qualitatively different process when the number of values in the choice 

environment exceeds the capacity of WM. 
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One suggestion in the literature is that individuals instead hold meta-information about the 

distribution (Brainerd & Reyna, 1990). If one assumes that meta-information and utility curves are 

built upon the relative frequencies of experienced values then they would have the same global rank 

based predictions of DbS, but there is no memory component and specific examples are not recalled. 

There is some evidence suggesting that this is not the case and that explicit sampling takes place 

(Feiler et al., 2013; Kareev et al., 1997; Lindskog et al., 2013). However, it should be noted that the 

majority of this evidence comes from tasks which are again very simple and use a small number of 

values, or involve responses which cannot be calculated using only distribution data. Furthermore, 

Experiments 3-6 show that participants’ responses are not based upon stable underlying meta-data 

or estimates of the distribution. They are manipulated by both response mode and the cover story 

assigned to the task.  

The eye tracking evidence of Experiment 6 supports evidence accumul ation over time. The 

characteristics of the gaze cascade show that participants’ attention becomes more biased towards 

the preferred item in the last moments before a decision is made. This increase correlates with the 

hypothesised accumulation of evidence for the preferred item over time and the relative differences 

in the underlying item-wise accumulator values predicted by DbS and other evidence accumulation 

models. These models are also supported by the increased reaction times for choices where there 

was little relative difference between options (Glöckner & Betsch, 2008; Glöckner & Herbold, 2011). 

However, none of the evidence accumulation models considered here could explain participants’ 

weighting of attributes in light of the visual attention given to each.  

Experiment 6 is the first to examine the prediction common to several models, of attribute 

weighting by relative attention. The results strongly suggest that previous findings have been driven 

by a gaze cascade towards a preferred item. This means that existing eye tracking evidence needs to 

be fundamentally reconsidered as it does not separate the effects of item value and attribute 

weighting in measures of attention. Future research must first attempt to replicate this finding 
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across other types of decisions. If the result proves robust, then a new model must be developed. 

The most promising is an evidence accumulation model, as this will still explain the gaze cascade and 

reaction time effects. But, one which accumulates evidence based upon noisy weighted addition of 

the available information, as this best explains the behavioural results.  

  Future work will need to examine more closely the effect of environment complexity upon 

decisions. Research should investigate whether there is indeed a number of values at which 

individuals show a qualitative shift in their strategies. Based upon the existing evidence, this is likely 

to be at a number equal to or slightly higher than the capacity of an individual’s WM. Further to that 

line of research, the question then becomes what strategy individuals switch to. The best prediction 

based upon the behavioural data appears to be a standard WADD model. Furthermore, the eye 

tracking results suggest a noisy accumulator with evidence accumulation rates based upon a WADD 

integration of information, so the obvious starting point for future research is drift diffusion (Ratcliff, 

2001; Ratcliff & McKoon, 2007).  
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