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Abstract 
In 2009, two large genome wide association studies (GWAS) found 

associations between common single nucleotide polymorphisms (SNPs) at 

three loci (CLU, PICALM and CR1) and Alzheimer’s disease (AD) risk. The 

causal variants underlying these associations and how these impact on AD 

susceptibility remain unclear. Target enrichment and next generation 

sequencing (NGS) were used to completely resequence the three associated 

loci in 96 AD patients in an attempt to uncover potentially causative and rare 

variants that may explain the observed association signals. A pipeline was 

developed for the handling of pooled NGS data following a comparison of 

several different combinations of programs. 33 exonic SNPs were found 

within the three genes, along with over 1000 non-coding variants. To identify 

the variants most likely to be affecting AD risk, a two pronged approach was 

adopted. The variants were imputed in a large case-control cohort (2067 cases, 

7376 controls) to test for association with AD, and the likely functional 

consequences of the variants were assessed using in silico resources. Several of 

the analysed variants showed suggestive or significant association with AD in 

the imputed data, and/or were predicted to have consequences on the function 

or regulation of the genes, suggesting avenues for future research in AD 

genetics. The whole method of pooled, targeted NGS and prioritisation using 

imputed data for association testing and in silico resources for functional 

analysis represents a new strategy for tracking down the illusive causation of 

GWAS signals.   
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1. Introduction 
 
1.1. Alzheimer’s Disease 
 

Alzheimer’s disease (AD) is a devastating, incurable, neurodegenerative 

disorder, with numerous genetic and environmental risk factors, first 

described by Dr Alois Alzheimer in the early 1900s. Its prevalence has 

escalated since its discovery: in 2006, the worldwide prevalence of AD was 

estimated to be around 26.6 million, and it is thought this figure could rise 

fourfold in coming decades, to a predicted 107 million cases in 2050, as life 

expectancies across the world increase (Brookmeyer et al. 2007).  

 

In the UK alone, it is estimated there are around 820,000 people living with 

dementia. AD is the most common form of dementia, the cost of which to the 

UK economy each year is estimated to be a staggering £23 billion (Alzheimer's 

Research UK 2013) – a figure which is set to increase along with the growing 

numbers of AD sufferers forecast over coming years.  

 

1.2. AD in the clinic 
 

Symptoms and diagnosis 
Symptoms of early AD include memory loss, language difficulties, 

disorientation and behavioural or mood changes. As the disease progresses, 

these changes become more severe, often resulting in a complete inability to 

perform daily tasks or recognise loved ones, and constant care becomes a 

necessity. The symptomatic decline is accompanied by a shrinking of the brain 

and neuronal cell death. On average, AD patients live for around 8 years 

following diagnosis, with increasing cognitive impairment and weakening 

defences leaving them vulnerable to secondary infections, often pneumonia. A 

clinical diagnosis of possible or probable AD can be provided during the 

patient’s lifetime, mainly on the basis of cognitive assessments, but there is 

considerable overlap with the symptoms of other forms of dementia, and a 

definitive diagnosis of AD can only be confirmed post mortem, upon the 

identification of the characteristic Aβ plaques and tau neurofibrillary tangles 

within the brain. The plaques and tangles are not specific features of AD, 

however, and can be seen in the brains of individuals without any cognitive 

impairment (Villemagne et al. 2008).  

 

Mini Mental State Examination 
There are a variety of tests used in the diagnosis of AD. The Mini Mental State 

Examination (MMSE) (Folstein et al. 1975) is often utilised as it is designed to 

be a quick way to establish an overview of a patient’s mental state. It is a 30 

question test designed to assess an individual’s mental abilities, including 

memory, attention and language skills. The test can be affected by educational 

status and cultural background, but in general, a score of over 27/30 is 
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indicative of normal cognitive function, while lower scores can be indicative 

of mild cognitive impairment (MCI, which can, but does not always progress 

to AD) or AD itself. Scores between 10 and 26 are suggestive of MCI or mild-

to-moderate AD, while scores below 10 are suggestive of severe AD. This can 

help guide treatment strategies. The test can be used over time to monitor 

decline or assess effectiveness of treatments (information from 

http://www.alzheimers.org.uk/site/scripts/documents_info.php?documentID=

121). 

 

Often, the results of such tests are taken in to consideration alongside other 

lines of evidence, such as personal and family history, physical examinations 

or brain scans (which can help identify alternative causes of AD-type 

symptoms, such as brain tumours, depression and infections). Patients with 

early stage dementia may require observation over a period of time to see if 

and how symptoms progress.  

 

A number of frameworks for the diagnosis of AD have been developed over 

the years, such as the NINCDS-ADRDA (National Institute of Neurological 

and Communicative Disorders and Stroke and Alzheimer’s Diseases and 

Related Disorders Association), seeking to standardise diagnostics of AD and 

other dementias, bringing together neuropsychological testing as well as 

biomarker profiling, MRI and PET scanning (McKhann et al. 1984; Dubois et 

al. 2007).  

 

Treatments and prevention 
Since the fundamental cause of AD remains unclear, it is difficult to develop 

effective treatments. Knowing what aspects of the pathology of the condition 

are causes and which are consequences might allow the development of 

therapies which could actually prevent or cure the disease. As it is, currently 

available treatments target the symptoms of the disease, so while they may be 

effective in reducing day to day manifestations of the disorder, they do not 

modify the course of the disease. 

 

NICE approved treatments 
Four drugs are currently approved by the National Institute for Health and 

Care Excellence (NICE) for the treatment of AD: acetylcholine esterase (AChE) 

inhibitors (donezepil, galantimine and rivastigmine) are recommended for the 

management of symptoms in mild to moderate AD, while memantine can be 

used in the treatment of severe AD, as well as for moderate AD in those 

patients that cannot be treated using AChE inhibitors (National Institute for 

Health and Care Excellence 2011). The aim of all these treatments is to manage 

the cognitive, behavioural and psychological symptoms of the condition in an 

attempt to maintain function, enabling independence for as great a time as 

possible. Aside from drug treatments, patients with AD may be aided in a 

variety of ways, depending on severity and circumstances, e.g. social support, 

community dementia care, home nursing, respite care and residential care 

homes.  
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The three AChE inhibitors, all similar in terms of treatment and cost 

effectiveness, share a common mechanism of action: increasing levels of 

acetylcholine (ACh) at the sites of neurotransmission in the brain. Such 

treatments arose following observations of reduced ACh release, reduced 

choline uptake and loss of cholinergic neurons in Alzheimer’s brains, which 

lead to the development of the cholinergic theory of AD (Francis et al. 1999). If 

dysfunction in the AD brain does arise from deficiencies in ACh, inhibiting its 

degradation (e.g. using AChE inhibitors) should increase the available level of 

the neurotransmitter, and thus reduce the cognitive impairment seen. 

However, since the AChE inhibitor treatments only provide symptomatic 

relief without slowing the progression of the disease, it seems unlikely that 

they are targeting the fundamental cause of the condition, making it unlikely 

that ACh deficiency alone is the root cause of AD. 

 

Memantine is a medium affinity, voltage-dependent, non-competitive N-

methyl-D-aspartate (NMDA) receptor antagonist, which works by blocking 

the effects of the increased levels of glutamate seen in AD patients, which is 

thought to contribute to neuronal dysfunction. 

 

Clearly the devastating effects and huge global burden of AD makes finding 

new treatments imperative, and a vast number of clinical and pre-clinical 

trials are currently underway for a plethora of drugs targeting various aspects 

of AD.  

 

Aβ related treatments 
Unsurprisingly, given its predominance as one of the major pathological 

hallmarks of AD, Aβ is the target of many drugs which have been developed 

in the fight against AD over the years.  Various approaches to reducing Aβ 

levels in the brain have been attempted: reducing its production; preventing 

its aggregation; or promoting its clearance.  

 

Since Aβ production occurs as a result of the sequential cleavage of APP by β- 

and then γ-secretases (discussed in greater detail later), they seem logical 

targets to inhibit to reduce Aβ production. The main issue with this is that 

each has multiple other target molecules, notably Notch for γ-secretase, which 

can lead to unacceptable side effects.  

 

Two γ-secretase inhibitors that have reached clinical trials include LY450139 

and Semagacestat, but both trials were halted. Treatment with LY450139 did 

appear to reduce plasma Aβ levels, but elicited unacceptable side effects and 

was discontinued at phase II (Fleisher et al. 2008). Semagacestat reached phase 

III trials, but was stopped when the treatment group showed worsening 

cognitive functions relative to the placebo group (Samson 2010). There 

remains potential for the use of γ-secretase modulators, which could shift Aβ 

production to smaller less toxic forms without interfering with the enzyme’s 

other target molecules (Ozudogru and Lippa 2012). 
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Inhibitors of the monomeric β-secretase (BACE1) are expected to have less 

severe side effects. Knock-out animals lacking the catalytic components of γ-

secretase (PSEN1 or PSEN2) fail to develop in to viable embryos, while gene 

knock-out of β-secretase is well tolerated (Luo et al. 2001). Despite this, and 

despite promising results of BACE1 inhibitors in animal models (Fukumoto et 

al. 2010; Chang et al. 2011), very few β-secretase targeted therapies have 

reached clinical trial. One promising result was obtained in the case of CTS-

21166, a well tolerated BACE1 inhibitor which passed phase I clinical trials in 

humans, eliciting a dose dependent decrease in plasma Aβ levels, although 

little has been published on the molecule (Panza et al. 2009). Further research 

will be needed to establish whether this is a safe and effective Aβ reducing 

therapy in humans, and whether this has any positive effect on AD symptoms 

and progression. 

 

The aim of Aβ aggregation inhibitors is to prevent or reverse the aggregation 

of Aβ in the brain, reducing the formation of the highly stable amyloid 

plaques. Whether this is a valid strategy, given increasing evidence that 

plaques may actually be the brain’s defensive mechanism for dealing with Aβ 

remains to be determined. Two such therapies have reached clinical trials, 

following promising results in animal studies (McLaurin et al. 2006; Gervais et 

al. 2007). Tramiprosate was shown to significantly reduce amyloid burden in 

Tg2576 mice (APP Swedish mutation transgenic strain) (Gervais et al. 2007), 

and was well tolerated in human clinical trials. However, in phase III trials, 

cognitive assessments and MRI measures were unaffected in response to the 

treatment, the reasons for which remain unclear (Aisen et al. 2011). The other 

therapy, ELND005 (scyllo-inositol) was well tolerated in humans at lower 

doses, but as yet the therapy’s effect on Aβ aggregation and on AD patients 

remains to be determined (Salloway et al. 2011; Schenk et al. 2012).  

 

Another approach that has received significant attention is that of Aβ 

immunisation. There are two broad strategies for this; active and passive 

immunisation. Active immunisation involves the introduction of antigens (e.g. 

synthetic Aβ42, either in full or fragmented form), to which the body then 

elicits its own immune response. The alternative to this is passive 

immunisation, where the antibodies themselves are introduced to the patient, 

circumventing their own immune system’s response. The mechanism by 

which these strategies work to reduce Aβ remains unclear, but may include 

prevention of aggregation or stimulation of phagocytosis by microglia (Schenk 

2002; Schenk et al. 2012). These approaches are generally trialled on animal 

models expressing familial AD mutations which result in excessive Aβ 

production, and some promising findings have been reported, with reductions 

in neuropathological features, and even some improvements to cognitive 

performance evidenced after various Aβ immunisation strategies (Schenk et 

al. 1999; Janus et al. 2000; Morgan et al. 2000). The crossover from these animal 

models in to humans has been problematic, however. Notably, AN 1792 was 

approved for human trials following extensive testing on animal models, and 
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was found to be well tolerated in Phase I human trials. The Phase IIa trial 

however, featuring 300 patients receiving AN 1792, was halted after a number 

of patients (18 (6%)) developed meningoencephalitis (Orgogozo et al. 2003), 

drawing scepticism from the public and scientific community with regards to 

this approach. Despite this, there are a number of investigations of both active 

and passive immunisation ongoing, and time will tell whether an acceptable 

level of adverse effects can be maintained, and whether this can actually help 

patients suffering from AD (Schenk et al. 2012).  

 

Under the traditional amyloid cascade hypothesis, Aβ is the actual causative 

factor for AD development, so the need to modulate its production would be 

crucial. However, over recent years, this theory has increasingly been called in 

to question, at least partly due to the failure of Aβ based therapies. Despite 

this, Aβ has been shown to have neurotoxic properties (Maltsev et al. 2011), so 

even if it is not the fundamental causative agent, reducing its presence early 

on in the disease process could help limit the damage seen in AD patients.  

 

Who to treat? 
One significant issue in attempting to combat AD is that of deciding who to 

treat. Currently therapies are given when patients present with symptoms of 

dementia and receive AD as a clinical diagnosis. However, it is thought that 

the damage which eventually manifests in this way has actually begun to 

occur much earlier, perhaps decades before any cognitive impairment is 

detected in the individual. Any treatment given at this time may simply come 

too late: neurons which have been lost cannot be replaced, and decimated 

neural connections cannot be repaired.  

 

As such it is imperative that treatments are given as early in the disease 

process as possible. At the very least, early diagnosis is crucial, but ideally 

high risk, pre-symptomatic individuals should be identified (e.g. through 

biomarker screening, scanning to detect early (pre-symptomatic) changes in 

the brain, and identification of those with high risk genetic profiles). It is 

possible that in the plethora of drugs which have failed to elicit sufficient 

responses in clinical trials, there are useful therapies which have been 

disregarded because they were applied to patients for whom it was already 

too late to address the damage caused by AD. Prevention, in such a condition, 

may be the only viable form of cure.  

 

It is interesting to note that aside from the prospect of an absolute cure, simply 

delaying the onset of the condition for a modest time period (1-2 years) could 

reduce the global case load and associated financial burden significantly 

(Brookmeyer et al. 2007). 

 

Prevention 
Longitudinal studies of individuals taking non-steroidal anti-inflammatory 

drugs (NSAIDs) for unrelated conditions, such as rheumatoid arthritis, reveal 

a lower incidence of AD when such medication is used before the typical age 
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of onset of AD (Breitner et al. 1994; Stewart et al. 1997). This has lead to trials 

treating AD patients with NSAIDs, but with disappointing results. It was 

demonstrated that when patients already diagnosed with AD are given such 

treatments, there is no improvement (or even a worsening) of symptoms 

(Aisen et al. 2003; Martin et al. 2008). Taken together, this suggests that before 

the symptoms of AD present, limiting inflammation can slow or prevent the 

development of AD, thus implying inflammation may play a key early role in 

AD pathogenesis. These drugs are relatively cheap, easily available and have 

demonstrably acceptable side effects, so may represent a promising strategy 

for reducing AD incidence in the future, if at risk individuals can be identified, 

and NSAIDs given before disease onset.  

 

Similarly, it has been shown that the use of statins, taken to reduce cholesterol, 

are associated with a decreased risk of AD (Zamrini et al. 2004). This may be 

an effect of the drugs themselves; there is some evidence that statins may lead 

to enhanced degradation of extracellular Aβ by triggering the release of 

insulin-degrading enzyme from microglia (Tamboli et al. 2010). However, it is 

also possible that the effect is indirect, with the drugs simply lowering 

cholesterol, high levels of which are a known risk factor for AD (Kivipelto and 

Solomon 2006).  

 

Exposure to environmental risk factors for AD can also affect susceptibility. 

Age is by far the most significant environmental risk factor for late onset AD, 

with risk increasing dramatically as aging occurs. Other factors include 

educational status, head injury, exercise, hypertension, and vitamin intake 

(Dosunmu et al. 2007; Dangour et al. 2010; Pogge 2010), although what effect 

modifications of these risk exposures could have on public health remains to 

be determined (Dangour et al. 2010). 

 

 

1.3. AD pathological hallmarks 
 

AD is a highly heterogeneous condition, with the physical manifestations of 

the disorder showing considerable overlap with other types of dementia (e.g. 

vascular and frontotemporal dementia). Indeed, the “pathological hallmarks” 

(Aβ plaques and tau tangles) generally taken to be diagnostic of AD can also 

be present in other types of dementia, as well as in non-demented brains.  

 

One of the major changes seen in AD is at the gross level, with shrinkage of 

the brain apparent as a result of neuronal and synaptic losses particularly in 

the hippocampus, an area which is implicated in the formation of new 

memories, and is particularly affected in early AD (see Figure 1.1). 
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Figure 1.1 - Healthy vs. advanced AD brain  

  
Image to show the difference in gross brain volume between healthy (left) and AD 

affected (right) brains, taken from http://www.alz.org/braintour/healthy_vs_ 

alzheimers.asp. Large lesions apparent on the AD image are typical and indicative of 

neuronal cell death. 
 

On a finer level, Aβ plaques and tau neurofibrillary tangles (NFTs) are two of 

the major characteristic features of AD. The structure and localisation of these 

is shown in figure 1.2.  

 

Figure 1.2 - Amyloid plaques and tau neurofibrillary tangles 

 
Image to show the differences in brain pathology in normal and AD affected brains, 

taken from http://www.brightfocus.org/alzheimers/about/understanding/plaques-

and-tangles.html. The image on the left depicts a region of healthy brain from an 

unaffected individual, featuring normally functioning neurons and no extracellular 

accumulations of protein. On the right, an AD affected brain is shown. Here the 

neurons contain clumps of hyperphosphorylated tau, and there is extracellular 

accumulation of amyloid and other components which form Aβ or amyloid plaques. 
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Aβ plaques  
Aβ or amyloid plaques are extracellular accumulations of protein, which are 

comprised of the hydrophobic Aβ peptide, along with a multitude of other 

proteins and cell constituents, including apolipoprotein E (ApoE), clusterin (or 

ApoJ) and several components of the complement cascade (Liao et al. 2004). 

Activated glial cells and immune complexes are often found in the vicinity of 

Aβ plaques, indicating immune involvement and activation (Eikelenboom et 

al. 2006).  

 

The Aβ peptide is produced when the amyloid precursor protein (APP) is 

processed, which can follow either the amyloidogenic or non-amyloidogenic 

pathway, summarised in Figure 1.3, depending on which secretase enzyme is 

involved in the first of the sequential cleavage steps.   

 

Figure 1.3 - APP processing 

  
Schematic diagram of APP processing, adapted from Thinakaran 2008 (Thinakaran 

and Koo 2008). In the non-amyloidogenic pathway, α-secretase cleaves within the Aβ 

peptide sequence, meaning Aβ cannot be produced. Instead, APPsα, peptide P3 and 

AICD are generated. In the amyloidogenic pathway, cleavage by β- then γ-secretase 

leads to the release of Aβ, plus APPsβ and AICD. 
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Both APP processing pathways produce the amyloid precursor protein 

intracellular domain (AICD), which is thought to have important roles in 

transcriptional control, although the genes on which it exerts these effects are 

yet to be established (Chang and Suh 2010). It is the amyloidogenic pathway – 

with cleavage first by β- then γ-secretase - that generates the aggregation 

prone Aβ peptide. There are several species of Aβ peptide, as γ-secretase can 

cleave the protein at several different amino acid residues: Aβ-40 and Aβ-42 

are the most common (~90% and <10% respectively), although shorter species 

have been reported (Selkoe and Wolfe 2007). Aβ-42 is particularly 

hydrophobic and prone to aggregation.  

 

Neurofibrillary tangles 
tau, the main component of neurofibrillary tangles, is a microtubule associated 

protein, which is involved in the stabilisation and regulation of microtubule 

bundles, crucial for cytoskeletal integrity and axonal transport (Roy et al. 

2005). Tau’s normal function is modulated by a fine balance between 

phosphorylation and dephosphorylation. When this balance is breached, tau 

hyperphosphorylation can occur, disrupting its normal functions, and giving 

the molecule a propensity to form paired helical filaments. These are the 

insoluble, aggregation prone building blocks of neurofibrillary tangles which 

form within the cytoplasm of neuronal cells (Goedert et al. 1995). Tau is also 

implicated in a number of other neurodegenerative disorders, such as frontal 

temporal dementia (Neumann et al. 2009). This can be caused by mutations 

within the gene encoding tau, microtubule associated protein tau (MAPT) 

(Goedert and Jakes 2005), which leads to neuronal cell loss and consequent 

cognitive decline. The formation of amyloid plaques is generally thought to 

precede the formation of tau tangles -  both plaques and tangles are found to 

arise from mutations in APP, while mutations in tau generally only give rise 

to tangles (Lovestone 2000).    

 

It is not clear how either of these signature lesions relate to AD pathology, and 

whether they are early, causative events in the development of AD, or late 

stage consequences of the disease process.  Additional to these, inflammation 

of the brain, vascular involvement and cerebral amyloid angiopathy (CAA) 

are also often observed in AD brains compared to normal controls, but none of 

these are specific or necessary for a diagnosis of AD.  

 

1.4. Types of AD 
 

There are two general forms of AD, classified on the basis of the time of onset 

of symptoms - those showing symptoms before the age of 65 (generally 

between 50-65, but can be much earlier (Bird et al. 1996)) are classified as early 

onset, and account for about 5% of total AD cases. Late onset AD (LOAD), 

which constitutes around 95% of cases, shows the onset of symptoms after the 

age of 65. Although this distinction is often made, it is a rather arbitrary cut off 
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dividing a whole spectrum of ages of onset, likely due to differing 

contributions of genetic and environmental risk factors, in to two discrete 

categories. 

 

Early onset AD 
Early onset AD can be divided in to two groups - early onset familial 

(EOFAD) and early onset sporadic AD. The first, EOFAD is a monogenic 

disorder caused by rare mutations in one of three genes (PSEN1, PSEN2, or 

APP), inherited in a Mendelian fashion, which almost guarantee the onset of 

symptoms before the age of 65. All three of these genes are tightly linked to 

APP processing (PSEN1 and PSEN2 encode components of the γ-secretase 

enzyme), which mutations then disrupt, giving an accumulation of Aβ and 

formation of amyloid plaques at an earlier age than is seen in LOAD. 

 

The first EOFAD causative mutation in APP was identified by Goate et al. in 

1991 (Goate et al. 1991). Multiple EOFAD affected families had mutations 

which showed linkage to chromosome 21. The variant, V717I was termed the 

London mutation (Goate et al. 1991). Subsequent to this, a large number of 

other causative mutations have been identified, including 24 in APP, 185 in 

PSEN1 and 14 in PSEN2 (Tanzi 2012). The majority are fully penetrant 

autosomal dominant mutations, with one APP recessive mutation reported to 

date (Tanzi 2012). Most of the mutations in APP alter the relative ratios of 

Aβ42:Aβ40. The Swedish mutation, notable as it is often used as a model for AD 

in transgenic animals, encodes an amino acid change within the Aβ domain of 

APP (Lannfelt et al. 1994), which increases the overall production of all Aβ 

species, as well as enhancing the molecule’s propensity to aggregate (Tanzi 

2012). There is also known to be an APP mutation (A673T) that is protective 

against both AD and cognitive decline in elderly AD unaffected individuals 

(Jonsson et al. 2012).  

 

Early onset sporadic AD is less easily defined. Individuals with this form of 

AD do not appear to follow the monogenic inheritance pattern typical of the 

familial form of AD but have an age at onset below 65 years. This may be due 

to complex interplay between different genetic and environmental risk factors, 

as for the late onset condition, or may be due to as yet undiscovered 

mutations, perhaps showing differing levels of penetrance, making it harder 

to track within families (Jin et al. 2012; Antonell et al. 2013). 

 

Late onset AD 
The vast majority of cases of AD are late onset (LOAD), with the onset of 

symptoms after the age of 65. LOAD is a complex disorder, caused by a 

combination of genetic and environmental risk factors, all of which alter risk 

for AD without alone being necessary or sufficient for the development of the 

disorder. Age is the most significant environmental risk factor for LOAD, and 

other factors which have been implicated in increasing or decreasing LOAD 

risk, affecting age of onset, or affecting disease progression include 
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educational status, head injury, hypertension, high cholesterol and vitamin 

intake (Dosunmu et al. 2007; Pogge 2010). 

 

1.5. Genetics of LOAD 
 

Since this thesis deals primarily with LOAD, LOAD shall simply be referred to 

as AD, and any mention of AD from this point forward refers to the late onset, 

complex disorder. 

 

Although the heritability of AD is estimated to be around 70%-80% (Gatz et al. 

2006), relatively little is understood about the genetics of the condition. None 

of the genes involved in EOFAD have been implicated in sporadic AD risk 

(Tanzi and Bertram 2005), and until recently, there was only one well 

established and replicated genetic risk factor for AD – the ε4 allele of 

Apolipoprotein E (APOE), which, due to its large effect size, was identified via 

linkage studies in the early 1990s (Pericak-Vance et al. 1991). 

 

ApoE is a 229 amino acid glycoprotein with three major isoforms, created by 

combinations of non-synonymous single nucleotide polymorphisms (SNPs) at 

two variant sites within the gene, which generate the ε2, ε3 and ε4 alleles. The 

ε4 allele has been associated with an increased risk of AD, with those in 

possession of a single copy at a 2-3 fold increased risk, and ε4 homozygotes at 

around 12 times greater risk than those with no ε4 alleles; while the rare ε2 

allele has a protective effect, and is associated with a decreased risk of AD 

(Farrer et al. 1997).   

 

The main site of ApoE expression is in the liver, with the brain second (Kim et 

al. 2009). Most of the expression in the brain is accounted for by astrocytes 

(Grehan et al. 2001), rather than neuronal cells, although these can be induced 

to express low levels of ApoE under certain conditions (Xu et al. 2006). Its 

normal biological function is not yet fully understood, so it is unknown 

whether the increased risk of AD conferred by the ε4 allele stems from a loss 

of neuroprotective function, the gain of neurotoxic function, or a combination 

of the two. There is evidence that the different ApoE isoforms may have 

differing effects on neuroinflammation (Kim et al. 2009), Aβ deposition in the 

brain (Reiman et al. 2009) and Aβ clearance from the brain (Deane et al. 2008), 

any of which could be related to an alteration in AD risk. The SNPs in APOE 

that generate the different protein isoforms have striking effects on the 

structure of the molecule (Mahley et al. 2006), so it is unsurprising that its 

function is affected; it is just yet to be elucidated how, and how this impacts 

on AD risk.  
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1.6. Genome wide association studies  
 

Despite two decades of research trying to find new genetic variants involved 

in AD risk, no other loci could be definitively confirmed and replicated as 

genetic risk factors for AD, although over 500 genes were investigated 

(Bertram et al. 2007),  largely identified as being plausible biological 

candidates, based on what is known about the aetiology of the condition.  

 

The problem with looking at biological candidate genes is that one is entirely 

limited by prior knowledge of the condition, and when that knowledge is 

limited or incomplete, such as is the case for AD (and many other complex 

disorders), genes which are involved, but do not necessarily fit with current 

understanding are bound to be overlooked. Additionally, any genes which are 

discovered via this approach are unlikely to greatly further the understanding 

of the aetiology of the condition since they will fit with mechanisms and 

pathways which are already thought to be involved.  

 

In order to combat this, an unbiased method of searching for loci involved in 

disease risk was needed - a way of considering all genes in the human genome 

simultaneously, without any assumption as to which might be involved.  

 

This much needed method was provided by the advent of genome wide 

association studies (GWAS), which became possible as a number of crucial 

components came together concurrently. Firstly, the HapMap project 

(HapMap 2003) was formed - an international collaboration that sought to 

catalogue all common human variation in a number of different populations, 

and document the patterns of linkage disequilibrium (LD) therein. Secondly, 

technology was developed that allowed hundreds of thousands of SNPs to be 

genotyped simultaneously, and relatively affordably. These two factors meant 

a panel of tag SNPs could be devised which would capture the majority of 

variance across the whole genome of an individual. Finally, sample sets that 

were large enough to give GWAS sufficient power became available through 

collaboration between different research groups. 

 

Essentially, a GWAS is based on hundreds of thousands (or millions, with the 

most recent technology) of SNPs being genotyped in large numbers of cases 

and controls (generally several thousand). Variants which are significantly 

more common in one group than the other are said to be associated with the 

particular trait being considered – more common in controls, and the variant 

is associated with decreased risk, more common in cases, and the variant is 

associated with increased risk. Because of the vast numbers of simultaneous 

independent tests being conducted, the rate of false positives would be 

unacceptably high at the standard level of significance (p < 0.05), so a 

conservative Bonferroni correction is applied, making the level generally 

classed as reaching genome wide significance p < 5x10-8, and anything falling 

between 5x10-5 to 5x10-8 is said to show suggestive significance.  
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Replication is crucial to ensure GWAS “hits” are not spurious false positives, 

both within the same population, and in different populations, although 

population specific differences in LD  may mean that a SNP tagging a causal 

variant in one population may not do so in a different population, and rare 

causative variants may be population specific. 

 

1.7. AD GWAS 
 

Although there had previously been a number of GWAS in AD, they failed to 

detect any signals reaching genome wide significance, other than APOE (Coon 

et al. 2007; Grupe et al. 2007; Abraham et al. 2008; Beecham et al. 2009; 

Carrasquillo et al. 2009), and loci showing suggestive significance did not 

replicate well. This was likely due the relatively small numbers of case and 

control samples used, meaning studies were underpowered to discover 

variants of modest effect sizes. Furthermore, early genotyping chips did not 

have a very comprehensive coverage of the genome, since tag SNPs were at 

first selected based on distance, rather than LD, which could mean causal 

variants simply were not represented in these studies.  

 

In September 2009, the first two truly large scale GWAS for AD, using the 

latest genotyping technologies, were simultaneously published in a single 

edition of Nature Genetics (Harold et al. 2009; Lambert et al. 2009). The two 

studies together identified three independent signals reaching genome wide 

significance, bringing the first major advancement in our knowledge of AD 

genetics in over 15 years. Each study used a two stage approach to garner 

compelling evidence for the loci identified, taking any SNPs showing evidence 

of association in the first stage, and replicating these in a second, independent 

sample set. The sample numbers and SNPs genotyped by each study are 

summarised in Table 1.1. Each paper found two genome wide significant hits: 

CLU and PICALM in the Harold et al. study (Harold et al. 2009), and CLU and 

CR1 in the Lambert et al. paper (Lambert et al. 2009), with odds ratios and 

significance values summarised in Table 1.2. Since CLU was identified by both 

papers, replication for this locus was immediately available. In addition to 

this, PICALM, identified as significant by Harold et al. showed suggestive 

significance (OR = 0.88, p = 2.8x10-3) in Stage 1 of the Lambert et al. paper, and 

CR1, identified as significant by the Lambert et al. paper showed suggestive 

significance (OR = 1.17, p = 8.3×10−6) in Stage 1 of the Harold et al. paper. Since 

then, further replication for all three loci has been published (Carrasquillo et 

al. 2010; Corneveaux et al. 2010; Jun et al. 2010; Seshadri et al. 2010), and a 

number of other genes have also been found to be associated with AD, 

including BIN1 (Seshadri et al. 2010), ABCA7, the MS4A locus, EPHA1, CD33 

and CD2AP (Hollingworth et al. 2011; Naj et al. 2011).  The basic design and 

summary results for CLU, PICALM and CR1 in some of the replication GWAS 

are presented in Table 1.3. 
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Although each of these new findings has received replication in independent 

Caucasian sample groups, replication in other populations has been less 

successful (Jun et al. 2010; Lee et al. 2010; Li et al. 2011; Logue et al. 2011). 

Whether this stems from genuine aetiological differences across populations, 

or whether these studies have simply been underpowered, with insufficient 

sample sizes to detect associations of the expected magnitude remains to be 

elucidated.  
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Table 1.1 – Study design of the two major 2009 AD GWAS 

 

 

 

 

 

 

 

 

 
 

Information on the number of SNPs genotyped, genotyping platform used, and post QC sample numbers in the two major AD GWAS published in September 

2009 (Harold et al. 2009; Lambert et al. 2009). 

 

Table 1.2 – Main results of the two major 2009 AD GWAS 

Gene SNP Paper p-value OR (combined) 95% CI 

CLU rs11136000 Harold et al. 8.5x10-10 0.86 0.82-0.90 

Lambert et al. 7.5x10-9 0.86 0.81-0.90 

CR1 rs6656401 Lambert et al. 3.7x10-9 1.21 1.14-1.29 

PICALM rs3851179 Harold et al.  1.3x10-9 0.86 0.82-0.90 

Results from the two major 2009 AD GWAS, including p-values and ORs of the SNPs reaching genome wide significance (Harold et al. 2009; Lambert et al. 

2009). 

 

 

 

 

Study Stage SNPs 

genotyped 

Genotyping Platform Cases Controls Total 

Samples 

Harold et al. 

2009 

1 529,205 Illumina HumanHap550/300 

BeadChips 

3941 7848 11789 

2 2 Sequenom assays 2023 2340 4363 

Lambert et al. 

2009 

1 537,029 Illumina Human610-Quad 

BeadChips 

2032 5328 7360 

2 11 Taqman (Applied Biosystems) 

or Sequenom assays 

3978 3297 7275 
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Table 1.3 – CLU, PICALM and CR1 replication GWAS 

Study Part/Design Samples Genotyped Results 

Cornevaux 

et al. 2010 

Case-control 1019 Cases, 591 Controls (White - 

USA, UK, Netherlands) 

34 SNPs CLU – rs11136000 – OR 0.86, p = 0.040 

PICALM – rs541458 – OR 0.81, p = 0.01 

CR1 – rs6656401 – OR 1.28, p = 0.008 

Carrasquillo 

et al. 2010 

Case-control 1819 Cases, 2565 Controls (White – 

USA) 

3 SNPs CLU – rs11136000 – OR 0.82, p = 8.6x10-5 

PICALM – rs3851179 – OR 0.80, p = 1.3x10-5 

CR1 – rs3818361 – OR 1.15, p = 0.014 

Jun et al. 

2010 

Meta-analysis 5935 Cases, 7034 Controls (9 white 

northern European cohorts) 

 

17 SNPs CLU – rs11136000 – OR 0.91, p = 0.0007 

PICALM – rs3851179 – OR 0.89, p = 3.9x10-5 

CR1 – rs3818361 – OR 1.14, p = 6.1x10-5 

Meta-analysis 1135 Cases, 1135 Controls (5 cohorts 

including African American, Israeli-

Arab and Caribbean Hispanic) 

17 SNPs No significant associations 

Schjeide et 

al. 2011 

Combined 

case-control 

2868 Cases, 1386 Controls (USA 

family samples, German unrelated 

cases and controls) 

5 SNPs CLU – rs11136000 – OR 0.88, p = 0.04 

PICALM – rs541458 – OR 0.82, p = 0.01 

CR1 – rs6656401 – OR 1.33, p = 0.001 

Naj et al. 

2011 

Combined 

case-control 

11840 Cases, 10931 Controls (14 

cohorts of European ancestry) 
9 Loci CLU – rs1532278 – OR 0.89, p = 8.3x10-8 

PICALM – rs561655 – OR 0.87, p = 7.0x10-11 

CR1 – rs6701713 – OR 1.16, p = 4.6x10-10 

Study design and results for some of the GWAS replicating the associations between SNPs in CLU, PICALM and CR1 and AD (Carrasquillo et al. 2010; 

Corneveaux et al. 2010; Jun et al. 2010; Naj et al. 2011; Schjeide et al. 2011). 
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The new genes which have been identified as AD risk factors via GWAS are 

all involved in a small number of pathways (see figure 1.4), which include 

lipid and Aβ metabolism, the immune response, and cell membrane processes. 

This gives new insights in to the aetiology of the condition, which may in turn 

lead to new targets for treatments.  

 

Figure 1.4 – Pathways of AD GWAS genes 

  
Diagram to show the way in which the new AD candidate genes identified by GWAS 

relate to potential pathways in AD pathogenesis, adapted from Morgan 2011 (Morgan 

2011). 

 

For the past two decades, the amyloid cascade hypothesis has been the 

dominant theory of AD pathogenesis. The amyloid cascade hypothesis (Hardy 

and Higgins 1992) centres on the belief that Aβ is the primary causative agent 

in the pathogenesis of AD, and all other features of the disease (neurofibrillary 

tangle formation, neuroinflammation, vascular damage, neuronal cell death 

etc.) are secondary consequences of this. The form of Aβ thought to be 

responsible for this has changed over the years since the hypothesis was first 

devised. Initially, it was thought that the Aβ plaques were responsible for the 

neurotoxic effects, however, since Aβ plaques can be seen in the brains of 

cognitively normal individuals (Villemagne et al. 2008); plaque presence and 

cognitive decline do not correlate well (Terry et al. 1991); and treatments 

which clear Aβ plaques from the brains of affected individuals give no long 

term symptomatic improvements (Holmes et al. 2008), this has become less 

popular than the theory that it may be pre-fibrillar, soluble oligomers of Aβ 

that are the source of the problem (Ferreira et al. 2007), perhaps via disruption 

of synaptic signalling. Under this version of the amyloid cascade hypothesis, it 

is possible that the Aβ plaques themselves are in fact the brain’s attempt to 

sequester these harmful Aβ oligomers away from neurons, thus limiting 

damage (Maltsev et al. 2011).  

 

There are numerous strands of support for the theory; individuals with 

trisomy 21 (with an extra copy of the APP gene), have increased Aβ 
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production and often develop AD at a young age (Olson and Shaw 1969), and 

the familial forms of AD involve disruptions to normal levels of Aβ 

production (Pimplikar 2009). Aβ has been shown to have neurotoxic effects 

both in vivo and in vitro (Maltsev et al. 2011).  

 

Most of the evidence against the amyloid cascade hypothesis is related to the 

version of the hypothesis that postulates the plaques to be the harmful species, 

however, even the revised version of the theory cannot explain all aspects of 

the condition (Pimplikar 2009), and consequentially, a number of alternative 

hypotheses have been proposed over the years, each claiming a different 

primary cause of the condition. These hypothesised initial insults include tau 

hyperphosphorylation (Maccioni et al. 2010), decreased acetylcholine 

production (Francis et al. 1999), oxidative stress (Markesbery 1997), 

mitochondrial disregulation (Swerdlow and Khan 2004), neuroinflammation 

(Tan and Seshadri 2010; Zotova et al. 2010) and vascular damage (Marchesi 

2011).  

 

Each of these theories has its own relative strengths and weaknesses, but none 

can fully explain the entire catalogue of neurological features and symptoms 

in AD. It is hoped that the new AD associated genes will help to create a more 

unified theory of AD pathogenesis, which will eventually explain fully how 

the disease forms and what the causative agents are.  

 

1.8. New genes in AD 
 

The three most significant genes which were implicated in AD risk by the 

Lambert et al. and Harold et al. GWAS were CLU, CR1 and PICALM (Harold 

et al. 2009; Lambert et al. 2009). As these three genes are the main focus of this 

thesis, they will be discussed in detail later (see CLU, PICALM and CR1 

sections 1.9, 1.10 and 1.11 respectively). Below is an overview of what is 

currently known about the other newly identified GWAS genes, and a brief 

review of the ways in which they may contribute to AD risk, given previous 

theories of the condition, and the pathways implicated by the new AD 

associated genes. 

 

1.8.1. BIN1 
The gene encoding bridging integrator 1 (BIN1, also known as amphiphysin 

II), was first implicated in AD risk by the Harold et al. 2009 GWAS, where a 

suggestive association (p<10-6) was detected between two SNPs, rs744373 and 

rs7561528 ~30kb upstream of the gene and AD (Harold et al. 2009). In later 

studies with larger sample sizes, both SNPs have since reached genome wide 

significance (rs744373 p =1.59×10−11, OR 1.13 (95% CI 1.06–1.21) (Seshadri et al. 

2010); rs7561528 p = 5.2x10-14, OR 1.17 (95% CI 1.12-1.22) (Naj et al. 2011); 

rs7561528 p = 2.6x10-14, OR 1.17 (95% CI 1.12-1.21) (Hollingworth et al. 2011)).  
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The gene, situated on chromosome 2q14 is comprised of 20 exons, which are 

alternatively transcribed to give ~10 protein isoforms (Pruitt et al. 2007). The 

isoforms of the protein are differentially expressed between tissue types, with 

some displaying brain-specific expression, and show differences in subcellular 

localisation (Wechsler-Reya et al. 1997; DuHadaway et al. 2003). BIN1 has 

tumour suppressor gene activity, and has been linked to both breast and 

prostate cancers (Kuznetsova et al. 2007). Like PICALM, BIN1 is implicated in 

the process of clathrin mediated endocytosis (CME), facilitating the recycling 

of neurotransmitters and synaptic vesicles (SVs) which is important for 

efficient signalling. CME is a complex process, with BIN1’s role apparently in 

the recruitment of dynamin to the site of CME at the membrane, which is 

needed to “pinch off” developing SVs (Pant et al. 2009). 

 

1.8.2. ABCA7 
The gene encoding ABCA7 is situated on chromosome 19p13.3, spanning a 

region of around 25.5kb. It is a member of the ATP binding cassette (ABC) 

transporter gene super-family, with 49 documented ABC proteins, and 12 

ABCA sub-family members. Members of these families are involved in the 

active transport of a range of substances (e.g. ions, sugars, peptides) across 

cellular and organelle membranes (Vasiliou et al. 2009). ABCA7, along with 

other ABCA family members, is expressed in the brain, and features two 

transmembrane domains, each comprised of six α helices. Although the 

function of ABCA7 is not completely understood, ABC transporters are 

thought to facilitate the uptake of glucose, amino acids and ions to the brain, 

as well as having lipid trafficking functions which may be relevant to AD 

pathology (Kim et al. 2008). Apolipoproteins A-I have been shown to be able 

to act as ligands for ABCA7, introducing the possibility that the transporter 

may be involved in Aβ clearance (Tanaka et al. 2011). 

 

The gene was first implicated in AD risk by a GWAS conducted by 

Hollingworth et al. in 2011. In this study, intronic SNP rs3764650, greatly 

surpassed the threshold for genome wide significance after replication and 

meta-analyses including data from a companion study (p = 5.0x10-21, OR 1.23 

(95% CI 1.17-1.28)) (Hollingworth et al. 2011; Naj et al. 2011). 

 

1.8.3. MS4A locus 
Several SNPs at the MS4A locus have been implicated in AD susceptibility by 

GWAS (Hollingworth et al. 2011; Naj et al. 2011). The MS4A gene region spans 

an area of around 800kb on chromosome 11q21, with 16 members of the MS4A 

family documented in this area to date, many encoding proteins with multiple 

isoforms (Liang and Tedder 2001). The SNPs implicating this region in AD 

risk fall within a block of high LD, making it difficult to pinpoint which of the 

many genes are involved, but implicating MS4A2, MS4A6A, MS4A4E and 

MS4A4A. MS4A6A, MS4A4E and MS4A4A are not well characterised, but 

homology in protein structure, and presence in a large gene cluster implies 

structural and functional similarities with MS4A1 and MS4A2 which have 

been experimentally characterised, and are thought to be involved in calcium 
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signalling via immunoglobulin receptor signalling complexes (Walshe et al. 

2008). Many of the MS4A genes have been shown to be expressed in the brain, 

and in cell types associated with immunity and neuroinflammation (Liang 

and Tedder 2001), which may suggest mechanisms by which the alteration in 

AD risk is invoked.  

 

This region was implicated in AD risk when two large GWAS published 

simultaneously in 2011 found several SNPs within the region reached genome 

wide significance. In a combined meta-analysis of data from both studies, 

three SNPs were found to have highly significant associations with AD 

(rs610932 - p = 1.2x10-16, OR 0.91 (95% CI 0.88-0.93); rs670139 - p = 1.1x10-10, OR 

1.08 (95% CI 1.06-1.11); rs4938933 - p = 8.2x10-12, OR 0.89 (95% CI 0.87-0.92)) 

(Hollingworth et al. 2011; Naj et al. 2011).  

 

1.8.4. EphA1 
The EphA1, or erythropoietin-producing human hepatocellular carcinoma 

gene spans a region of around 17.8kb on chromosome 7q34, featuring 18 exons 

which encode a 976 amino acid member of the receptor tyrosine kinase 

superfamily (Hirai et al. 1987; Maru et al. 1988). It was first implicated in AD 

risk by two GWAS published in 2011, where in the meta-analysis of data taken 

from each study, a SNP ~3kb upstream of the gene, rs11767557 reached 

genome wide significance (p = 6x10-10, OR 0.87 (95% CI 0.78-0.96) 

(Hollingworth et al. 2011; Naj et al. 2011), a finding which has subsequently 

been replicated (Carrasquillo et al. 2011).  

 

The product of the gene, which is expressed in multiple tissue types, is 

thought to be involved in cell-adhesion, cellular organisation and synaptic 

plasticity (Yamazaki et al. 2009; Hruska and Dalva 2012; Triplett and Feldheim 

2012). EphA1 is important in synapse development during embryogenesis 

(Hruska and Dalva 2012), which could suggest that underlying differences in 

neuronal circuitry dictated by differences in EphA1 during development may 

render the brain more or less able to cope with the changes associated with 

AD (Chen et al. 2012). Alternatively, the gene’s role in mature neurons, 

promoting maintenance of the synapse and synaptic plasticity could affect AD 

susceptibility (Chen et al. 2012).  

 

1.8.5. CD33 
The gene encoding CD33 or siglec-3, (sialic acid binding immunoglobulin-like 

lectin-3) is situated on chromosome 19q13.3, spanning a region of around 

14.9kb. CD33 is a transmembrane receptor for sialic acids, which is expressed 

in multipotent cells of the myeloid lineage, as well as in mature monocytes, 

macrophaghes, dendritic cells, basophiles and mast cells, with three isoforms 

validated to date (Andrews et al. 1983; Griffin et al. 1984; Valent and 

Bettelheim 1992; Yokoi et al. 2006). CD33 is thought to be involved in the 

body’s immune responses, and may be a key player in dampening any innate 

immune responses triggered by the “self” (Crocker et al. 2007; Varki 2009). 

Siglec family members have also been shown to be implicated in the 
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endocytosis of various ligands (Biedermann et al. 2007; Tateno et al. 2007; 

Walter et al. 2008), although not via CME, which is emerging as a common 

factor between several AD risk genes (Tateno et al. 2007). Either of these 

processes could be linked to the aetiology of AD development.  

 

CD33 was first implicated in AD when in a study looking at families with 

multiple affected individuals, Bertram et al. found an association between a 

variant (rs3826656) ~3kb upstream of the gene and AD risk (p = 4x10-6), but 

which failed replication in an independent cohort (Bertram et al. 2008). In 

2011, two companion GWAS papers were published, with meta-analysis of the 

combined data revealing a genome wide significant association between SNP 

rs3865444 and AD (p = 1.6x10-9, OR 0.91 (95% CI 0.88-0.93)) (Hollingworth et 

al. 2011; Naj et al. 2011), a finding which has subsequently been replicated 

(Carrasquillo et al. 2011). 

 

1.8.6. CD2AP 
The gene CD2AP (CD2-associated protein) was implicated in AD when the 

SNP rs9349407, within intron one showed association with AD in the 

combined data of two large companion GWAS from 2011(p = 8.6x10-9, OR 1.11 

(95% CI 1.07-1.15) (Hollingworth et al. 2011; Naj et al. 2011). Although this 

effect has failed to replicate in other studies of Caucasian populations 

(Carrasquillo et al. 2011), meta-analysis including the initial data showed a 

strengthened association (p = 6.5x10-11).  

 

CD2AP is a 149.5kb gene with 18 exons, situated on chromosome 6p12. 

Although the gene is known to be expressed in the brain (Su et al. 2004), the 

function of CD2AP is not completely understood. It has roles in the immune 

system (stabilising interactions between T cells and antigen presenting cells 

(Dustin et al. 1998)), cellular structural organisation (anchoring various 

cellular components to the actin cytoskeleton), cell adhesion, endocytosis and 

apoptosis (Monzo et al. 2005). Links to innate and adaptive immunity, vesicle 

trafficking, endocytosis and synaptic plasticity may provide insights in to how 

the gene is related to AD pathology. Alternatively, the gene is implicated in 

renal disease, which commonly leads to hypertension and can cause 

neurovascular damage, so the gene’s link with AD may be an indirect one, 

altering susceptibility to known AD risk factors (Shih et al. 1999; 

Grunkemeyer et al. 2005).   

 

The following sections (1.9. CLU, 1.10. PICALM and 1.11. CR1) are largely 

based on chapters written for the book Genetic Variants in Alzheimer’s 

disease, published in 2013 by Springer New York (Morgan 2013). 
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1.9. CLU 
 

An Introduction to CLU 
CLU is one of the most robustly evidenced genetic risk factors for AD after 

Apoε4, given its high level of significance in multiple large GWAS. Although 

these were not the first time CLU had been implicated in AD, the GWAS 

evidence brought a new fervour to the investigation of how CLU could be 

mechanistically involved in the pathology of AD, and a drive to discover the 

specific genetic variations which convey the observed alteration in disease 

risk. 

 

CLU is often referred to as an “enigmatic” molecule, as it plays a role in a 

wide variety of physiological functions, including lipid metabolism, 

complement inhibition, sperm maturation, DNA repair and cell cycle control. 

Cholesterol and Aβ metabolism, neuroinflammation and apoptosis are all 

strong candidate pathways linking CLU’s function to AD, but despite 

extensive study, it remains unclear which of CLU’s numerous biological roles 

is responsible for its relationship with AD risk.  

 

Clusterin – genetics and regulation 
CLU is also known as apolipoprotein J (ApoJ); complement lysis inhibitor 

(CLI); sulfated glycoprotein 2 (SGP-2); testosterone-repressed prostate 

message 2 (TRPM-2); and secreted protein 40,40 (SP-40,40). This spectrum of 

nomenclature has arisen as a consequence of CLU’s diverse physiological 

functions and wide-spread expression, which lead to independent 

“discovery” in a variety of species and contexts. CLU was originally identified 

in 1983 in the fluid of the rete testis of rams (Blaschuk et al. 1983), with ApoJ 

(de Silva et al. 1990), CLI (Jenne and Tschopp 1989) and SP-40,40 (Kirszbaum 

et al. 1992) subsequently identified in human serum, eventually coming to be 

considered a single protein species - CLU.  

 

The CLU gene (NCBI - NG_027845.1, Ensembl - ENSG00000120885), 

comprising 9 exons, is situated on chromosome 8p21-p12, spanning a region 

of around 18kb (see Figure 1.5). There is a certain discrepancy between 

reported isoforms of CLU in different online databases and in the literature. 

NCBI lists three different transcripts for CLU, only one of which is said to be 

coding: 2877bp Isoform 1 (NM_001831.3, encoding NP_001822.3). Ensembl 

lists 21 transcripts, three of which are classed as coding (ENST00000316403 at 

3080bp, ENST00000523500 at 2381bp and the 2098bp ENST00000405140), all of 

which are said to give rise to a single protein isoform of 449aa - CCDS47832. 

Reporting at the 5th International CLU workshop, Trougakos et al. stated 

there were two alternatively spliced CLU transcripts, the main gene transcript 

(termed isoform two) corresponding to  the major, secreted, form of the CLU 

protein, and a second transcript, alternatively spliced to exclude exon two 

(Trougakos et al. 2009). Ling et al., in a recent paper investigating CLU 

isoforms and AD risk, reported the expression of two transcripts in the brain 
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(termed CLU1 and CLU2 (with CLU2 analogous to Trougakos’s isoform two)). 

These were identical in exons 2-9 but had different, untranslated, first exons 

and different proximal promoters, and the expression of CLU2 was 

consistently higher than CLU1 (Ling et al. 2012). The structure of these 

isoforms is shown in Figure 1.6. This view of CLU transcripts differing in exon 

one but sharing identical translated exons is supported elsewhere in the 

literature, where a putative third transcript has been suggested which shares 

exons 2-9 with CLU1 and CLU2 but has another, different exon one (Andersen 

et al. 2007; Rizzi and Bettuzzi 2010). Leskov et al. have also reported a 

transcript lacking exon two (Leskov et al. 2003). Because the main isoforms 

only vary in the first, untranslated exon, differences between them are thought 

to be regulatory rather than coding. Indeed, there is evidence that different 

isoforms are differentially regulated by various stimuli (Cochrane et al. 2007; 

Schepeler et al. 2007), which could well be explained by the presence of 

alternative promoter regions for different transcripts. 

 

Figure 1.5 - Genetic location of CLU 

 
Location of the CLU gene on chromosome 8p21-p12 and the transcripts of the gene 

according to RefSeq. Image taken from UCSC Genome Browser (Kent et al. 2002) 

(http://genome.ucsc.edu/). 

 

Figure 1.6 - CLU Isoforms 

 
The structure of the two most commonly reported and experimentally confirmed 

isoforms of CLU, adapted from Rizzi 2010 (Rizzi and Bettuzzi 2010).  Black boxes 

represent exons which are consistent between the two transcripts, while the gray 

boxes indicate the differing first exons.  The translation start codon resides in the 

second exon, meaning both transcripts are thought to give rise to identical proteins. 

 

Expression of CLU occurs in almost all mammalian tissues, with different 

levels of expression characteristic of specific tissue types. Expression within 

the brain is relatively high, along with the liver, testes and ovaries (de Silva et 

al. 1990). Within the brain, expression appears to be highest in astrocytes, 

which secrete CLU (Pasinetti et al. 1994; Saura et al. 2003). CLU is expressed at 
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low levels by neurons (Charnay et al. 2008), and shows regional variation in 

expression in different areas of the brain (Pasinetti et al. 1994). Morgan et al. 

demonstrated expression of CLU changes over the course of normal aging, 

with expression increasing in the corpus callosum and caudate-putamen (both 

white matter rich regions) and decreasing in interior and peripheral regions of 

the hilus (Morgan et al. 1999). Expression of CLU in mammals begins 

prenatally (around the 14th day of gestation in mice (Charnay et al. 2008)) and 

persists throughout adult life. 

 

Lymar et al. demonstrated in rats that in cell types which normally express 

CLU at low levels, the proximal 266bp or 311bp of the CLU promoter are 

sufficient to give maximal expression of reporter genes (Lymar et al. 2000). 

However, in cell types which normally express high CLU levels, in this case 

Sertoli cells, a region from -426 to -311 was also needed for maximal reporter 

gene expression (Lymar et al. 2000). The CLU promoter features a number of 

binding sites for various stress related transcription factors, indicative that the 

expression of CLU can be modulated in response to various stressors, and it 

can also be affected by immune related molecules such as cytokines IL1β and 

IL2 (Zwain et al. 1994).  TGFβ has been shown to be able to up-regulate CLU 

expression (Jin and Howe 1997), and a number of TGFβ inhibitory elements 

exist within the promoter and first intron of the gene (Michel et al. 1995). A 

multitude of other molecules have been shown to be able to regulate CLU 

expression, including heat shock factors (Michel et al. 1997), c-myc (Thomas-

Tikhonenko et al. 2004), n-myc (Chayka et al. 2009),  NFκB (Li et al. 2002), 

members of the AP1 complex (Jin and Howe 1999), insulin-like growth factor-

1 and its receptor (Criswell et al. 2005) and H-ras (Kyprianou et al. 1991; Lund 

et al. 2006). 

 

CLU is also subject to epigenetic regulation. Nuutinen et al. showed that 

inhibiting histone deacetylase could induce CLU expression, while gene 

methylation and deacetylation silenced CLU expression in neuronal cell lines 

studied (Nuutinen et al. 2005). Lund et al. demonstrated that in H-ras 

transformed cells, which have decreased CLU expression, methylation levels 

at the clusterin gene were 20-40% higher than in non-transformed cells (Lund 

et al. 2006). The group identified a region -560 to -314 (relative to transcription 

start site) where methylation of CpG dinucleotides was significantly higher in 

the transformed cells, particularly between -385 and -376. No classical CpG 

island was found to be present within the CLU promoter, but there was one 

present 14.5kb upstream of the gene (Lund et al. 2006) which was shown to be 

hyper-methylated in H-ras transformed cell lines. This same region was also 

shown to have methylation levels two fold higher in the colon and small 

intestine (medium and low CLU expression respectively) compared to the 

testis (high CLU expression) (Lund et al. 2006). Hypo-methylation of the CLU 

promoter region had previously been demonstrated in cells with high overall 

levels of CLU expression (Rosemblit and Chen 1994). 
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Given CLU’s complex expression pattern and wide variety of postulated 

physiological roles, it is unsurprising such a range of molecules and 

mechanisms contribute to its regulation. 

 

Clusterin – the protein 
There are two forms of CLU – the major form is secreted (sCLU), but there is 

also a nuclear isoform (nCLU). sCLU is thought to have largely pro-survival 

functions, while nCLU is pro-apoptotic, expressed in response to the presence 

of certain stressors.  

 

sCLU is a heavily glycosylated heterodimer, both subunits of which are 

encoded by the CLU gene. Post-translational processing of the full 449 amino 

acid pre-protein (49kDa) results in a protein with the mature structure shown 

in Figure 1.7. A 22 amino acid hydrophobic signal sequence at the N-terminus 

of the full translated protein directs the molecule to the endoplasmic 

reticulum, where the signal peptide is cleaved and removed. A second 

cleavage site between Arg205 and Ser206 separates the α and β subunits, 

which are subsequently bound together by five disulphide bridges 

(Kirszbaum et al. 1992). On transit from the endoplasmic reticulum to the 

Golgi apparatus, from which sCLU will be secreted, the protein undergoes 

heavy glycosylation, giving the molecule its final molecular weight of 70-

80kDa.  

 

Figure 1.7 - sCLU Protein Structure 

 
Structure of the mature sCLU protein with domains and glycosylation sites shown, 

adapted from Rizzi 2010 (Rizzi and Bettuzzi 2010). Other groups have speculated 

slightly different domains may be present, e.g. Jones 2002 postulated the presence of 

two coiled coil domains within the protein sequence (Jones and Jomary 2002). 

 

sCLU has been shown to be able to interact with a wide variety of molecules, 

including lipids, Aβ, immunoglobulins and complement proteins, which has 

lead to it being implicated in a wide range of physiological processes. 

However, it has been speculated that rather than reflecting active involvement 

in these processes and genuine biological functions of CLU, interacting with 

such a range of molecules may rather reflect its capability to act as a 

chaperone (Humphreys et al. 1999).  
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Clusterin as a chaperone 
Chaperone molecules are important in managing the aggregation of proteins. 

Stressed proteins can become partially denatured and unfold, exposing 

hydrophobic regions which would normally be masked internally. The 

exposure of these hydrophobic regions confers a propensity to aggregate and 

precipitate, which if unchecked can have cytotoxic effects.  

 

It has been suggested that the structural and functional characteristics of CLU 

are indicative that the molecule’s main function is as a chaperone (Nuutinen et 

al. 2009). Since most of CLU is secreted, this chaperone activity would occur 

largely in the extracellular space, although it may be capable of acting as a 

nuclear chaperone in times of cellular stress, when the nCLU isoform of the 

protein (discussed later) is generated.  

 

The amphipathic α-helices seen in CLU’s protein structure are typical of 

chaperone proteins (e.g. small heat shock proteins) (Law and Griswold 1994; 

Lakins et al. 2002), while the large disordered regions, or molten globule 

domains, represent flexible protein-protein interacting regions which allow 

CLU to interact with a low specificity to a range of target molecules (Bailey et 

al. 2001).  

 

Unlike some chaperones, CLU cannot itself facilitate the refolding of stressed 

proteins, but can stabilise them, preventing aggregation (Poon et al. 2000). It 

may also be capable of enabling the clearance of such molecules from the 

extracellular space via receptor mediated endocytosis (Nuutinen et al. 2009). 

The stable regions of CLU can specifically interact with targets such as 

megalin/low density lipoprotein-related protein 2 (LRP2, a cell surface 

receptor which facilitates the endocytosis of various ligands) (Zlokovic 1996).  

 

In addition to AD, CLU has been implicated in other disorders which feature 

protein aggregation as a prominent characteristic, including Creutzfeldt-Jakob 

disease, where it has been detected in prion clusters (Freixes et al. 2004), and 

in familial amyloidosis, where it has been linked to the prevention of 

lysozyme aggregation (Kumita et al. 2007). 

 

As well as acting as a chaperone, CLU is speculated to be involved in a host of 

other processes that may link the protein to AD, including Aβ metabolism, 

lipid trafficking and metabolism, neuroinflammation and apoptosis. 

Additionally, CLU’s ability to facilitate the transport of various ligands across 

the blood brain barrier (BBB) may be relevant in AD pathology. 

 

nCLU 
The other form of clusterin, nCLU, is less well characterised. Reddy et al. first 

demonstrated the presence of a 43kDa protein, which they speculated was a 

non-secretary form of CLU (Reddy et al. 1996). The group identified a second, 

in frame, ATG codon within the third exon, 99 bases downstream of the ATG 

from which translation of sCLU begins in exon two. It is thought this arises 
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from a transcript where the first and third exons are joined by alternative 

splicing (Leskov et al. 2003), resulting in an mRNA lacking exon two, and thus 

the normal start codon. Ling et al. failed to find such a transcript in their 

recent investigation of CLU isoforms in the brain, however, they speculated 

that since its expression is associated with cell death, it would be transient and 

therefore not necessarily detectable in the context of high CLU1 and CLU2 

expression (Ling et al. 2012).  

 

The nCLU protein lacks the first 33aa of the pre-sCLU protein, the region 

which contains the hydrophobic signal sequence, meaning the protein is not 

targeted to the endoplasmic reticulum, and thus is not secreted. Three 

potential nuclear localisation signals exist in the nCLU protein sequence, but 

mutational analysis has indicated these are not necessary in establishing the 

cellular location of nCLU (Scaltriti et al. 2004). There is evidence that nCLU 

may exist in the cytoplasm as an inactive precursor molecule, with induction 

and translocation to the nucleus occurring in response to certain stressors (e.g. 

ionising radiation (Yang et al. 2000), or TGF-β (Reddy et al. 1996) exposure). 

nCLU contains two coiled coil domains. The N-terminal coiled coil domain 

appears to be able to bind to the C-terminal one, suggesting the protein may 

be capable of oligomerisation. nCLU has been shown to be able to bind to Ku-

70 (Yang et al. 2000), an interaction which appears dependent on three crucial 

leucine residues within the C-terminal coiled coil domain (Leskov et al. 2003). 

This interaction seems to be essential for nCLU’s pro-apoptotic functions. Ku-

70 is a crucial component of the double-strand DNA repair complex 

Ku70/Ku80. Binding of nCLU to Ku-70 could disrupt the repair complex, 

leading to a failure to repair damaged DNA, and ultimately apoptosis of the 

cell (Leskov et al. 2003). 

 

As CLU is expressed in virtually all tissues and shows a high degree of 

conservation across mammalian species (see Figure 1.7), it may be assumed 

that its role is one of fundamental importance biologically. However, despite 

this, and despite CLU’s suggested involvement in such a wide variety of 

physiological processes, experiments with CLU knockout mice have shown 

the absence of CLU is well tolerated, with mice developing and living 

normally (McLaughlin et al. 2000; Charnay et al. 2008). The lack of overt 

phenotype in CLU knockout mice may reflect the ability of other molecules to 

compensate for its absence. Other apolipoproteins may be able to fulfil some 

of CLU’s roles, similar to how CLU has been speculated to compensate for 

ApoE deficiency in knockout mice (Anderson et al. 1998). McLaughlin et al. 

initiated myosin-induced autoimmune myocarditis in wild type and CLU 

knockout mice, and found a similar initiation of humoural and cell mediated 

inflammatory responses between the two. However, the severity of the 

inflammatory response was significantly increased, and significantly more 

cardiac tissue injury and long term impairment of cardiac function was 

observed in the CLU deficient animals (McLaughlin et al. 2000). These results 

suggest CLU may play a protective role against post-inflammatory 

destruction of tissue in autoimmune myocarditis (McLaughlin et al. 2000). 
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Imhof et al. induced ischemic cerebral injury in mice, which gave rise to long 

lasting expression of CLU in the astrocytes of wild type animals. CLU 

knockout mice displayed significantly slower tissue remodelling during 

recovery from such injury than did wild type mice (Imhof et al. 2006). Each of 

these findings of impaired recovery in CLU knockout animals implies a 

protective role of CLU, aiding in the recovery of tissues from various assaults. 

Impairment of such mechanisms could well contribute to the tissue damage 

and neuronal cell death observed in AD.  
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Figure 1.7 - Conservation in the CLU region 

 
Image to show genetic conservation across selected vertebrate species in CLU and the surrounding chromosomal region, taken from ECR browser 

(Ovcharenko et al. 2004) (http://ecrbrowser.dcode.org/). Blue – exons, pink – introns, yellow – untranslated regions, red – intergenic regions, green – repetitive 

DNA elements. The height of the graph is proportional to the level of conservation between human and that particular species (shown on right). 
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As well as being associated with AD, there are a number of other disorders 

CLU has been implicated in, often showing altered expression levels in the 

disease condition versus controls. Such conditions include atherosclerosis 

(Ishikawa et al. 1998), systemic lupus erythematosus (Newkirk et al. 1999), 

type 2 diabetes (Kujiraoka et al. 2006), heart disease/myocardial infarction 

(Vakeva et al. 1993; Poulakou et al. 2008), polycystic kidney disease (Harding 

et al. 1991) and rheumatoid arthritis (Devauchelle et al. 2004), many of which 

feature inflammatory or autoimmune aspects. Gao et al. speculated that AD 

and Parkinson’s disease (PD) may share common genetic risk factors, given 

that many PD patients suffer from dementia, and Parkinsonian movements 

are often seen in AD patients (Gao et al. 2011). The group found that the same 

SNP within CLU that was associated with AD (rs11136000) was also 

associated with PD, an effect which seemed independent of CLU’s effect on 

dementia risk, suggesting the two disorders do indeed share some common 

aetiological factors (Gao et al. 2011). 

 

With roles in both promoting cell survival and inducing apoptosis, it is 

unsurprising CLU has drawn extensive attention in relation to cancer 

development, progression and susceptibility treatment. Changes in CLU 

expression levels are seen in many cancers, including those of the prostate 

(Miyake et al. 2000), breast (Redondo et al. 2000), colon (Pucci et al. 2004) and 

bladder (Miyake et al. 2001). In general, CLU expression often appears to be 

decreased in naive cancer cells, with increased expression in cancers which 

have developed resistance to conventional treatments (Miyake et al. 2000; 

Cappelletti et al. 2008).  It has been speculated that up-regulation of CLU may 

be part of the mechanism by which breast cancer cells become resistant to anti-

oestrogen therapies, and thus down-regulation of CLU, in combination with 

conventional cancer treatments, may help combat the ability of tumours to 

evade the cytotoxicity of anti-cancer therapies. OGX-011 is an antisense 21 

base oligonucleotide targeted against the exon two region of CLU mRNA, 

which contains the translation start site (Chi et al. 2005). A number of studies 

have been conducted using OGX-011 in combination with usual cancer 

therapies, but while some have yielded promising results (So et al. 2005; 

Laskin et al. 2012), others have seen little effect beyond the expected response 

to the conventional treatments alone (Chia et al. 2009).  

 

Clusterin and AD 
In addition to the evidence from GWAS that CLU is involved in AD risk, a 

host of other research connects the gene/protein to the disorder. CLU was first 

implicated in AD back in 1990, when May et al. demonstrated expression of 

the gene in the hippocampus was significantly increased in AD when 

compared to healthy controls (May et al. 1990). CLU protein levels have also 

been shown to be higher in the frontal cortex and hippocampus of AD patients 

(Lidstrom et al. 1998). Early studies failed to find a link between AD and CLU 

levels in cerebrospinal fluid (CSF) (Harr et al. 1996), however, using newer 

techniques, it has subsequently been shown that CLU is significantly 

increased in the CSF of AD patients (Nilselid et al. 2006; Sihlbom et al. 2008; 
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Thambisetty et al. 2012) thereby possibly indicating its utility as a diagnostic 

biomarker. The protective allele of rs11136000 has been shown to be associated 

with increased cognitive performance in the “oldest old” (92-93 years at 

recruitment) (Mengel-From et al. 2010). Recently, plasma clusterin levels have 

been shown to be associated with brain atrophy both in AD (Mengel-From et 

al. 2010) and in mild cognitive impairment (MCI) (Thambisetty et al. 2012), the 

latter of which is indicative of an early role for CLU in the neurodegeneration 

seen in AD patients. CLU expression was also shown to be linked to disease 

severity (Thambisetty et al. 2010; Schrijvers et al. 2011) and clinical 

progression (Thambisetty et al. 2010) in AD patients. CLU expression has been 

shown to be increased in neurons as aging (a major risk factor for AD) occurs 

(Grassilli et al. 1992). Disregulation of epigenetic control may be central in 

conditions such as AD (Wang et al. 2008), and as discussed previously, CLU 

expression may be controlled largely by epigenetic mechanisms, again, linking 

CLU to potential pathogenic mechanisms in AD. CLU has been shown to be 

present in the amyloid plaques characteristic of AD (McGeer et al. 1992), but is 

absent from neurons containing neurofibrillary tangles (Giannakopoulos et al. 

1998). 

 

Contradictory findings have been reported with regards to the effect of APOE 

genotype on CLU expression levels. Harr et al. reported a significant decrease 

in CLU expression in the frontal lobes of AD patients with the APOE ε4/ε4 

genotype (Harr et al. 1996). However, Bertrand et al. reported that the 

decreased APOE expression in ε4/ε4 AD patients was accompanied by an 

increase in CLU expression, speculating that this may be some kind of 

compensatory mechanism, since the two apolipoproteins have overlapping 

functions (Bertrand et al. 1995). These apparently contradictory findings could 

be due to a variety of factors. It could reflect the inconsistent roles of different 

CLU isoforms, or varying effects of CLU at different stages of the disease, but 

it may simply reflect differences in experimental design.  

 

Although it has been overwhelmingly demonstrated that CLU is a genetic risk 

factor for AD, the exact nature of its relationship with AD, and how this 

alteration in risk is conveyed remains unclear.  

 

Clusterin and Aβ 
Despite a recent shift away from the amyloid cascade hypothesis, it has been 

the prevailing theory of AD pathogenesis for around two decades, and 

amyloid plaques constitute one of the two major pathogenic hallmarks of AD. 

With this in mind, the relationship between any AD associated gene and Aβ 

cannot be ignored.  

 

There is a wealth of evidence linking CLU and Aβ. CLU is present in amyloid 

plaques (McGeer et al. 1992), CLU can bind to both Aβ peptides and fibrils in 

CSF (Ghiso et al. 1993), and CLU can interact with Aβ-40 and Aβ-42 in vitro 

(Matsubara et al. 1996). CLU and ApoE together have been shown to be 

capable of suppressing Aβ plaque formation, and levels of soluble and 
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insoluble Aβ in the brain (DeMattos et al. 2004). Recently, increased plasma 

CLU levels have been shown to be positively associated with the burden of 

fibrillar Aβ in the entorhinal cortex (Thambisetty et al. 2010). It has been 

suggested that CLU may be capable of masking early Aβ aggregates from 

recognition by the immune system, which could minimise the potentially 

harmful effects of invoking an immune response against protein clusters 

within the brain (Nuutinen et al. 2009). 

 

Many studies have been published which consider the effect of CLU on Aβ 

solubility and aggregation, with some apparently contradictory findings. 

Much evidence suggests CLU can enhance the solubility of Aβ, preventing its 

oligomerisation and inhibiting the formation of fibrillar structures (Oda et al. 

1994; Matsubara et al. 1996). However, DeMattos et al. demonstrated using a 

mouse model that CLU can actually enhance Aβ aggregation and plaque 

formation (DeMattos et al. 2002). It is thought the effect may be dependent on 

the relative proportions of CLU and Aβ present, with low CLU:Aβ ratios 

leading to a promotion of aggregation and plaque formation, and a high 

CLU:Aβ ratio decreasing aggregation and maintaining solubility (Yerbury et 

al. 2007).  

 

It has been speculated that CLU may be involved in the clearance of Aβ from 

the brain. The first way in which this could occur is via endocytosis. Hammad 

et al. demonstrated that complexes of CLU and Aβ can be internalised by cells, 

dependent on megalin, and that the Aβ can then be broken down via 

lysosomal degradation (Hammad et al. 1997). It has also been shown that 

accumulation of fibrillar Aβ increases CLU expression, and this is 

accompanied by an increase of endocytosis of fibrillar Aβ in astrocytic cell 

lines, although CLU is not itself necessary for this phagocytosis (Nuutinen et 

al. 2007). Endocytosis and Aβ degradation would reduce the overall levels of 

Aβ within the brain, potentially having a protective effect on cells. Secondly, 

CLU may be able to facilitate clearance of Aβ across the blood brain barrier 

(BBB). It has been demonstrated that CLU-Aβ complexes can cross the BBB 

(Zlokovic 1996). Bell et al. found that administering CLU-Aβ42 complexes to 

mouse brains gave an almost two-fold increase in clearance rate across the 

BBB compared to Aβ42 alone, an effect that was disrupted by antibodies 

against megalin (Bell et al. 2007). Interestingly, the known AD risk allele of 

APOE, ε4, has been shown to be less efficient in Aβ clearance via this 

mechanism (Bell et al. 2007). Taken together, this may suggest clearance of Aβ 

across the BBB, aided by CLU, represents an important means of reducing the 

brain burden of Aβ, resulting in a protection of the brain from the neurotoxic 

effects of Aβ. 

 

Of course, CLU’s relationship with Aβ could simply be a reflection of its 

capacity to act as a chaperone. It interacts with a plethora of other molecules 

but because Aβ is so strongly linked to AD, this particular relationship is 

subject to intense scrutiny, perhaps without being directly relevant to AD 

development at all.  
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Clusterin, the cell cycle and apoptosis 
The symptomatic changes seen in AD occur as a result of the massive 

neuronal loss associated with the condition, although the cause of this loss 

remains to be elucidated. Regulators of the cell cycle and apoptosis could 

affect the way in which cells cope with stress, and thus mediate the extent of 

the neuronal destruction incurred when neurons are exposed to these 

unknown AD triggers. DNA damage and apoptotic features have been linked 

to AD for many years, with speculation that neurons in AD-affected regions 

may be in a struggle between apoptosis and repair (Cotman and Su 1996).  

 

The major, secreted, form of CLU is known to have largely pro-survival 

functions, which could be of great significance to AD pathology, since the 

symptoms stem from cell death. Alteration of CLU’s pro-survival properties 

could affect the survival capacity of neurons, and thus affect how resilient a 

brain will be to AD type changes.  

 

Much research has been done on the effect of CLU on the cell cycle, but it is 

important to remember neurons are terminally differentiated, and thus post-

mitotic, therefore such effects are likely to be irrelevant to neuronal survival. 

However, it may be that CLU’s effect on the cell cycle can indirectly enhance 

neuronal survival. It has been demonstrated that CLU can increase the 

proliferation of primary astrocytes in culture (Shin et al. 2006; Shim et al. 

2009). Astrocytes in affected areas of AD brains have been shown to have up-

regulated CLU expression, which, if it causes similar proliferative effects in 

vivo as in vitro, could create a pro-survival feedback mechanism, supporting 

neuronal survival (Nuutinen et al. 2009). 

 

Clusterin and lipid metabolism 
Deregulation of processes involved in lipid metabolism and transport are 

increasingly being seen as potential causes of the pathogenic features seen in 

AD. It has long been observed that higher cholesterol levels in middle age are 

linked to an increased incidence of AD later in life, and that use of statins, 

which lower cholesterol, reduce AD risk (Jick et al. 2000). APOE, the longest 

established genetic risk factor for AD, is known to participate in lipid 

trafficking, and CLU has a similar role in this process, reflected in its 

alternative name of ApoJ. The ε4 allele of ApoE has been shown to be less 

efficient at transporting cholesterol (Gong et al. 2002), which may indicate 

impaired lipid transport is of importance in the development of AD. 

 

The brain is an organ rich in insoluble lipids. In order to be transported 

between cells, these lipids must be solubilised, which is achieved via the 

binding of various proteins, forming lipoprotein particles. ApoE and ApoJ are 

two of the main cholesterol transporting molecules within the brain (Beffert et 

al. 1998). CLU has also been shown to be present in lipoprotein particles in the 

CSF (Suzuki et al. 2002).  
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ApoE and CLU are thought to be present in different lipoprotein particles, 

with ApoE-containing particles being larger, and with higher lipid content 

than CLU-containing ones. The types of lipid also differ, with approximately 

equal proportions of phospholipid and cholesterol in ApoE-containing 

particles, while CLU-containing particles have more phospholipid than 

cholesterol (DeMattos et al. 2001). 

 

Two studies have previously reported potential associations between 

polymorphisms within CLU and lipid levels (Nestlerode et al. 1999; Miwa et 

al. 2005), raising the interesting possibility that CLU could exert its effect on 

AD indirectly, affecting susceptibility to other AD risk factors such as 

cardiovascular disease and atherosclerosis (Yu and Tan 2012).  

 

Clusterin and neuroinflammation 
It has long been observed that neuroinflammation is a key characteristic of 

AD. Plaques are commonly surrounded by inflammatory and immune 

antigens, activated microglia, astrocytes and complement. What is becoming 

increasingly appreciated is that instead of being incidental bystanders in AD, 

inflammation and the immune response could be early, possibly causative 

processes in AD pathology, as discussed in section 1.2. AD in the clinic –

Prevention.  

 

There are several links between CLU and inflammation/immunity. CLU is 

important in the regulation of complement activation (Jenne and Tschopp 

1989), it can modulate the membrane attack complex (Kirszbaum et al. 1992) 

and can activate microglia (Xie et al. 2005). It can also regulate important 

modulators of the immune response, such as NFκB (Takase et al. 2008), and its 

own expression in astrocytes can be regulated by cytokines such as IL-1β and 

IL-2 (Zwain et al. 1994). As mentioned previously, CLU is thought to be able 

to mask growing Aβ plaques from immune recognition (Nuutinen et al. 2009).  

 

It seems from the NSAID’s evidence that reducing immune responses within 

the brain is protective against AD risk. CLU is clearly able to limit the immune 

response, directly (e.g. by preventing complement activation) and indirectly 

(e.g. by masking Aβ aggregates), raising the possibility that CLU’s effect on 

AD risk is via its involvement in inflammation and immune responses. 

 

Clusterin as a neuroprotective guardian 
Many of CLU’s functions suggest a largely neuroprotective role for the 

protein. Neurofibrillary tangle-free neurons which express CLU have been 

shown to be resistant to cell death (Giannakopoulos et al. 1998). CLU is up-

regulated following many types of brain injury, including pathogenic 

conditions such as AD, and experimental lesions (May et al. 1990), implying a 

protective role. It has already been discussed that following experimental 

induction of ischemic cerebral injury, CLU knockout mice showed impaired 

tissue remodelling and had delayed recovery when compared to wild type 

mice, again supporting a protective role for CLU when faced with tissue 
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damage (Imhof et al. 2006). Interestingly, this protection could stem from 

CLU’s pro-survival functions, reducing apoptotic cell death, from its lipid 

transporting capacity, since cellular damage requires lipids for repair and 

remodelling, or from its relationship with the immune response, limiting 

inflammation and modulating damage in this way.  

 

However, CLU’s role as a neuroprotective factor is not undisputed. CLU has 

been shown to accumulate in dying neurons following seizures and neonatal 

hypoxic ischemia (a model for cerebral palsy), leading Han et al. to investigate 

the role of CLU in this cell death. The group found CLU knockout mice 

incurred around 50% less neuronal injury than WT mice following neonatal 

hypoxic ischemia, implying that CLU normally exacerbates cell death, a 

finding that was confirmed by CLU increasing cell death in response to 

oxygen/glucose starvation in vitro (Han et al. 2001). This was shown to be 

independent of caspase-3, a key protein in apoptosis (Han et al. 2001).  

 

Clusterin as a therapeutic target 
With an unequivocal role in AD, CLU must surely be considered as a potential 

target for therapeutic intervention. CLU based therapies are already under 

development for cancer (e.g. OGX-011). The major aim of these is to reduce 

levels of CLU, which has largely pro-survival properties, in the hope this will 

render cancer cells more susceptible to treatment. However, it is likely that in 

AD it is the pro-survival functions that would need to be enhanced, not 

diminished, so this approach is unlikely to be beneficial here.  

 

There has been some evidence of CLU based therapies having beneficial 

effects in treating atherosclerosis and peripheral neuropathies in animals 

(Navab et al. 2005; Dati et al. 2007), but AD presents the additional challenge 

of requiring a method of delivery that can traverse the blood brain barrier. 

Since it remains unclear which of CLU’s functions are important in the 

development of AD, it is difficult to know what aspect of its action to target, 

and how this would affect its other functions, perhaps leading to unacceptable 

side effects. The area is further complicated by the existence of different CLU 

isoforms with apparently opposing functions. Significant further research is 

needed in the area to explore the full therapeutic potential of CLU in AD. 

 

1.10. PICALM 
 

An introduction to PICALM 
The gene encoding phosphatidylinositol binding clathrin assembly protein 

(PICALM) has sometimes been overlooked by the scientific community, 

regarded as a homologue of the neuron specific Adaptor Protein 180 (AP180) 

with a more widespread expression but equivalent function. However, as 

increasing differences between the two proteins come to light, attention is 

turning to PICALM, whose roles in cancer, growth and development, 

haematopoiesis and now neurodegeneration make it a fascinating target for 
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study. One of PICALM’s major roles is in CME, an indispensible step in 

intracellular trafficking of proteins and lipids, to which other AD associated 

genes (namely BIN1) have also been linked. 

 

Despite speculation of late, it is yet to be determined how PICALM is 

mechanistically linked to AD risk, and what the genetic determinants 

underlying this relationship are.  

 

PICALM – genetics and regulation 
The ubiquitously expressed PICALM gene (NCBI Gene ID - 8301, Ensembl - 

ENSG00000073921), whose protein product is also known as clathrin assembly 

lymphoid myeloid leukaemia protein (CALM), is a ~112kb gene situated on 

chromosome 11q14 (see Figure 1.8). It was first identified in 1996 when it was 

found to be involved in a rare but recurrent translocation (t(10;11)(p13;q14)), 

creating a PICALM/AF10 fusion gene in acute myeloid leukaemia and acute 

lymphoblastic leukaemia patients (Dreyling et al. 1996).  

 

Figure 1.8 – Genetic location of PICALM 

 
Location of PICALM on chromosome 11q14, with the gene transcripts according to 

RefSeq shown below. Image taken from the UCSC Genome Browser (Kent et al. 2002) 

(http://genome.ucsc.edu/). 

 

At least three protein isoforms of PICALM exist (Baig et al. 2010), and 

debatably more. The generally uncontested isoforms are the full length protein 

at 652aa and a shorter isoform of 610aa. In the literature, a 632aa isoform is 

also documented (Baig et al. 2010). In online databases (Ensembl and NCBI’s 

RefSeq), this 632aa isoform is not included, and instead a 645aa isoform and a 

551aa isoform are reported. The RefSeq transcripts that give rise to these 

isoforms are shown in the lower panel of Figure 1.8. Clearly the discrepancies 

between the database and literature are in need of resolution. Table 1.4 shows 

the isoforms of PICALM as per the online databases. Figure 1.9 shows the level 

of conservation in the PICALM region across multiple vertebrate species. 
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Table 1.4 – PICALM isoforms 
Isoform* Encoded Protein 

Length (aa) 
RefSeq Transcript 
ID 

RefSeq Protein 
ID 

Ensembl Transcript 
ID 

Ensembl 
Protein ID 

1 652 NM_007166.3 NP_009097.2 ENST00000393346 CCDS8272 

2 610 NM_001008660.2 NP_001008660.1 ENST00000532317 CCDS31653 

3 645 NM_001206946.1 NP_001193875.1 ENST00000526033 CCDS55784 

4 551 NM_001206947.1 NP_001193876.1 ENST00000528398 CCDS55783 

Isoforms of PICALM, as reported in online databases, RefSeq and Ensembl. 

*Numbered consistent with NCBI RefSeq.  

 

Figure 1.9 - Conservation in the PICALM region 

 
Genetic conservation across selected vertebrate species in PICALM and the surrounding chromosomal region, taken from ECR browser (Ovcharenko et al. 

2004) (http://ecrbrowser.dcode.org/). Blue – exons, pink – introns, yellow – untranslated regions, red – intergenic regions, green – repetitive DNA elements. 

Height of graph proportional to level of conservation between human and that particular species (shown on right). 
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PICALM is ubiquitously expressed, unlike its neuronal cousin, AP180. Recent 

research has suggested that PICALM’s major site of expression within the 

brain is in the endothelial cells of vessel walls, with weak labelling in neurons 

and glial cells (Baig et al. 2010). Xiao et al., when considering PICALM 

expression in the brains of APP/PS1 transgenic mice found neurons were the 

major site of expression in the hippocampus and cortex, with no labelling of 

PICALM in astrocytes or microglia (Xiao et al. 2012). Yao et al. found 

expression of PICALM in hippocampal and cerebella neurons, dispersed in 

and around synapses, particularly at the sites of clusters of SVs, while 

expression of AP180 was largely restricted to the pre-synaptic region (Yao et 

al. 2005).  

 

Schwartz et al. found that in the rat, PICALM expression began as early as the 

twelfth day of development, in undifferentiated embryonic stem cells, neural 

stem cells and in post mitotic neurons, implying a role in the development of 

the nervous system (Schwartz et al. 2010). Indeed, Bushlin et al. had 

previously provided evidence that PICALM and AP180 were involved in the 

normal development and growth of hippocampal neurons (Bushlin et al. 

2008). Schwartz’s group also looked at the expression of both long and short 

isoforms of PICALM, and found expression of each, but following opposite 

trends. The long isoform increased in expression while the short isoform 

decreased in expression as the brain developed (between the twelfth and 

eighteenth days of gestation) (Schwartz et al. 2010). During this time there is a 

transition from neural progenitors being the predominant cell type to post-

mitotic neurons being most abundant. This may indicate two things. Firstly, 

that in these two cell types, PICALM plays differing roles, and secondly, that 

the two PICALM isoforms observed have themselves different roles, which 

should be considered when investigating the function of the protein. Only two 

transcripts were detected, despite the presence of a third PICALM protein 

with a higher molecular weight, speculated to be due to post translational 

modifications.  

 

PICALM - the protein 
The main function of PICALM appears to be in CME, a process which over 

expression of PICALM can inhibit (Tebar et al. 1999). CME allows the 

internalisation of surface bound ligands, such as proteins and lipids, 

facilitating their intracellular trafficking (Hollingworth et al. 2010). It has been 

reported to be involved in regulating the protein content of the cell membrane, 

managing the insertion and removal of receptors, which could be particularly 

important in neurons where it may provide a mechanism for modulating 

synaptic strength (Man et al. 2000; Wang and Linden 2000). It is also important 

in maintaining sustained neurotransmission, as CME is a mechanism for 

recycling SVs following neurotransmitter release (Jung and Haucke 2007). 

CME mainly traffics its cargo via clathrin coated vesicles (CCVs), which can 

transport molecules from the cell membrane to early endosomes, or from the 

trans golgi network to late endosomes (Nordstedt et al. 1993). These processes 
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are under tight regulation by a variety of factors, in order that transportation 

occurs efficiently and accurately. 

 

The clathrin coats of CCVs are formed from networks of clathrin triskelions, 

which consist of three clathrin heavy chains and three clathrin light chains 

(Wu and Yao 2009). The C-terminal region of PICALM can bind to the clathrin 

heavy chain, and to AP2, while the N-terminal region binds to 

phosphatidylinositol-4,5- bisphosphate, which is present in the plasma 

membrane, and thus PICALM may have a role in recruiting clathrin and AP2 

to the cell membrane (Ford et al. 2001).  It is the N-terminal, membrane 

binding, region of PICALM which shares the greatest homology with AP180 

(~82%) (Miller et al. 2011).  This is termed the ANTH (AP180 N-terminal 

homology) domain. 

 

Kim et al. showed that PICALM purified from rat livers was able to promote 

the assembly of clathrin triskelia into clathrin cages, a function it bears in 

common with AP180 (Kim and Kim 2000).  PICALM is able to interact with 

different sites of the clathrin heavy chain, allowing it to regulate the size and 

shape of the budding CCV by dictating the degree of curvature in the clathrin 

coat (Tebar et al. 1999). Meyerholz et al. demonstrated that knockdown of 

PICALM expression via RNA interference (RNAi) lead to an excess of 

particularly small vesicles forming, and the normally uniformly round 

vesicles showing a tendency to elongate and form tubular structures 

(Meyerholz et al. 2005). In Drosophila, deletion of an AP180/PICALM 

homologue was shown to lead to disruption of the normal localisation of 

clathrin in nerves, and reduced endocytosis of SVs (Zhang et al. 1998).  

 

Klebig et al. reported fit1 mice, with mutations in PICALM, showed a 

decreased lifespan and growth retardation, along with numerous 

haematopoietic abnormalities, manifesting in severe anaemia and a decreased 

white blood cell count (Klebig et al. 2003), suggesting potential roles for 

PICALM in growth, haematopoiesis and iron metabolism. There are a number 

of different fit1 mice, each with a different mutation within PICALM, and with 

phenotypic severity related to the severity of the mutations (Klebig et al. 2003).  

 

Suzuki et al. recently found similar results in their study investigating 

PICALM deficiency in murine development (Suzuki et al. 2012). While mice 

with heterozygote PICALM deficiency exhibited no discernable phenotype, 

the vast majority of homozygotes died between birth and weaning, with those 

that survived longer still having a shortened lifespan relative to wild type 

mice. PICALM deficient embryos were found to weigh just 74% of those with 

normal PICALM expression, and by 28days, they weighed just 30-40% of their 

wild type littermates, indicating PICALM is important for growth both in 

utero, and after birth. In PICALM deficient mice, there was evidence of cortical 

atrophy and enlargement of the ventricles, although the hippocampus 

appeared unchanged (Suzuki et al. 2012). The group also found an effect on 
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haematopoiesis – the mice were severely anaemic, with fewer red blood cells, 

and lower than normal haemoglobin levels (Suzuki et al. 2012).  

 

There is evidence that PICALM is important in early development and growth 

of neurons, since PICALM deficient cells have been shown to lack normal 

dendrite structures (Bushlin et al. 2008; Schwartz et al. 2010). Conversely, 

AP180 lacking cells develop normal dendrites but do not show normal axonal 

development (Schwartz et al. 2010). Neither of the genes appear to have an 

influence on the proliferation of neuronal progenitors, rather on their correct 

development and morphology (Schwartz et al. 2010). Whether this effect 

occurs as a result of the disruption of CME, or through some alternative 

mechanism, remains to be elucidated. 

 

Potential role in AD 
Since PICALM has been implicated in AD risk, a number of studies have been 

published which have looked for links between SNPs in PICALM and various 

aspects of the disease.  

 

Biffi et al. found significant associations between the GWAS SNP rs3851179 

and neuroimaging measures ascertained by MRI scan (Biffi et al. 2010). Both 

overall hippocampal volume and entorhinal cortex thickness were associated 

with the SNP. Indeed, this finding has been corroborated by a study in which 

Furney et al. found that the protective allele of the PICALM GWAS SNP was 

related to an increased thickness of the entorhinal cortex (Furney et al. 2010). 

 

A number of studies have looked for a relationship between PICALM SNPs 

and CSF biomarker levels. Schjeide et al. found that the risk allele of PICALM 

SNP rs541458 was associated with a dose dependent decrease in levels of CSF 

Aβ-42 (Schjeide et al. 2011), with homozygotes for the risk allele showing 

around a 20% reduction in CSF Aβ42 levels, which they speculated could give 

a clue as to the pathogenic mechanism by which PICALM is linked to AD 

(Schjeide et al. 2011). Kauwe et al., however, failed to find any associations 

between PICALM SNPs and CSF levels of Aβ-42 (Kauwe et al. 2011), and 

although there was some suggestion of an association between PICALM SNPs 

and levels of tau in the CSF, this was not strong enough to withstand 

correction for multiple testing (Kauwe et al. 2011). Kok et al. reported that 

rs3851179 was significantly associated with plaque load in post-mortem 

brains, with the allele associated with a lower risk of AD also emerging as 

protective against amyloid plaques (Kok et al. 2011). There is some evidence 

that the SNP rs3851179 may also be associated with cognitive function. 

Mengel-From et al. found the protective allele of the SNP was associated with 

better cognitive function in the “oldest old” (92-93 years of age at the time of 

enrolment), but in male subjects only (Mengel-From et al. 2010). 

 

Disruption to the endocytic pathway has been reported as one of the earliest 

detectable changes in AD, preceding the initiation of plaque deposition 

(Cataldo et al. 2000). Whilst there is no evidence that PICALM is present in 
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plaques and tangles (Baig et al. 2010), there is some evidence that PICALM 

expression is increased in the frontal cortex in AD (Baig et al. 2010). It was 

speculated this up regulation could be as a result of increased Aβ, but in that 

case, there would also be an increase in expression expected in the temporal 

cortex, which was not observed (Baig et al. 2010). Thomas et al. reported an 

approximately 2.4 fold increase in PICALM expression (along with increases 

in other CME related proteins, clathrin and dynamin) in the cortex of mice 

expressing the Swedish mutation form of human APP compared to wild type 

littermates (Thomas et al. 2011). In contrast to this, it has been shown that 

PICALM can be cleaved and degraded by calpain, a protease which is 

elevated and activated in AD brains, and has been shown to be able to block 

CME (Kim and Kim 2001; Rudinskiy et al. 2009). 

 

Disruption to APP processing  
Jun et al., in their meta-analysis (see Table 1.3), found that when data was 

adjusted for the presence of at least one APOE ε4 allele, the evidence for 

association between PICALM SNPs and AD was greatly reduced (Jun et al. 

2010). PICALM was seen to affect AD risk largely in ε4 positive subjects alone, 

leading to the speculation that APOE and PICALM may interact 

synergistically (Jun et al. 2010). It is worth noting that other groups seeking 

epistatic interactions between PICALM and ApoE have failed to detect an 

effect (Belbin et al. 2011; Lambert et al. 2011). However, if there is a genuine 

interaction between the genes, it suggests they both participate in a common 

pathway that contributes to the development of AD. Since there is compelling 

evidence linking each of the two genes to Aβ production and metabolism, this 

could constitute said pathway. As mentioned above, Schjeide et al. found a 

link between PICALM SNPs and levels of Aβ42 in CSF (Schjeide et al. 2011), 

while Kok et al. demonstrated a link between PICALM SNPs and plaque load 

(Kok et al. 2011). Both of these findings strengthen the evidence that 

PICALM’s effect on AD risk might arise through its relationship with Aβ 

metabolism. Some of the evidence linking PICALM to APP processing and the 

production of Aβ is documented below.  

 

The production of Aβ, generated by the cleavage of APP with β- and γ-

secretases, is reliant on the endocytic pathway and internalisation of APP (Koo 

and Squazzo 1994; Vetrivel and Thinakaran 2006). There is evidence that APP 

is subject to CME (Nordstedt et al. 1993), immediately linking the protein 

mechanistically with PICALM. Mutational analysis of the cytoplasmic domain 

of APP, thought to contain an internalisation signal (Chen et al. 1990), leads to 

decreased endocytosis of the protein, and consequentially, reduced Aβ release 

(Koo and Squazzo 1994). A number of other studies have also demonstrated 

decreasing endocytosis can decrease Aβ production or release (Carey et al. 

2005; Cirrito et al. 2008; Xiao et al. 2012), while the converse is also true, with 

increased levels of endocytosis increasing Aβ levels (Grbovic et al. 2003; 

Cirrito et al. 2008; Xiao et al. 2012).  
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Alterations in PICALM which affect endocytosis may affect the subcellular 

distribution of APP, or the secretase enzymes that process it, potentially 

leading to disturbances in Aβ production (Miller et al. 2011), but while 

endocytosis generally is clearly liked to APP processing and Aβ production, 

PICALM’s involvement in this remains more controversial.  

 

Xiao et al. looked at the relationship between PICALM, APP processing and 

plaque pathogenesis in a cell culture model of APP processing (neuroblastoma 

cells over expressing APP) and in APP transgenic mice (Xiao et al. 2012). In the 

cell line, the group found prior to the initiation of endocytosis, APP was 

largely confined to the cell membrane, and PICALM to cytosolic vesicles, but 

once endocytosis was initiated, APP and PICALM co-localised to intracellular 

vesicles. Similarly, in APP/PS1 transgenic mice, PICALM expression was 

detected in neurons, co-localising with APP in the hippocampus and cortex 

(Xiao et al. 2012). As mentioned above, the group were able to show in both 

their in vitro and in vivo systems that altering levels of PICALM would alter 

APP internalisation, and Aβ production and release, and that this was at least 

partly specific, since uptake of transferrin, also subject to CME, remained 

unchanged (Xiao et al. 2012). When the group altered the expression of 

PICALM in six month old mice, and investigated the effects on the brain four 

months later, they found that decreasing PICALM expression (by ~50% in the 

hippocampus) decreased levels of soluble and insoluble Aβ in the brain, and 

caused a trend towards non-amyloidogenic APP processing, while increasing 

PICALM expression increased hippocampal Aβ, and lead to a shift towards 

amyloidogenic APP processing. Levels of full length APP were consistent 

regardless of treatment, indicating that while PICALM affects processing of 

APP, it does not affect its production (Xiao et al. 2012). A failure to co-

immunoprecipitate PICALM and APP may indicate that any interaction 

between the two is either weak or indirect. The study also reported an effect of 

PICALM expression on Aβ plaque load in the hippocampus, with decreased 

expression leading to a decreased plaque load, and vice versa, likely due to the 

effects on Aβ levels (Xiao et al. 2012). Wu et al., however, found that while 

RNAi knock down of AP180 expression reduced the production of Aβ, knock 

down of PICALM did not, suggesting it may not have a direct role in the 

generation of Aβ (Wu et al. 2009). This could potentially have been due to the 

use of a cell line expressing the Swedish mutant form of APP, which may be 

processed differently to the wild type form (Wu et al. 2009; Xiao et al. 2012).  

 

Treusch et al. recently conducted a comprehensive study investigating 

modifiers of Aβ toxicity in yeast, and found twelve yeast genes notably 

affected Aβ toxicity and had clear human homologues. Three of these were 

involved in CME, including YAP1802, the yeast homologue of human 

PICALM (Treusch et al. 2011). Following up on this finding, the group 

investigated the C.elegans homologue of yeast YAP1802 and human PICALM; 

unc-11. Wild type C.elegans have five glutamatergic neurons in their tails, but 

when modified to express Aβ, there is an age dependent loss of these cells, 

with only 25% of worms having five intact neurons by day seven. 
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Simultaneous expression of unc-11 (the PICALM homologue) was shown to 

increase the number of C.elegans which had five intact neurons (Treusch et al. 

2011). The group additionally considered the toxic effect of Aβ on cultured 

cortical rat neurons, and found those containing a lentivirus engineered for 

PICALM expression were partially rescued from cell death caused by Aβ 

(Treusch et al. 2011). This group thus provided three separate lines of 

evidence, in three separate model systems, that PICALM is able to modulate 

Aβ toxicity. It was speculated that this may be due to PICALM targeting 

harmful Aβ for degradation, however, in yeast, no decrease in Aβ levels was 

detected in cells expressing YAP1802, rendering this unlikely. Aβ was found 

to affect the distribution of clathrin, decreasing the size of clathrin foci at cell 

membranes, but increasing the number and intensity of these (Xiao et al. 

2012), an effect which may be linked to PICALM, given its proposed ability to 

recruit clathrin to the cell membrane (Ford et al. 2001) .  

 

It has also been commented that since PICALM’s expression in the brain may 

be predominantly in the endothelial cells of vessel walls, it is perfectly situated 

for a role in the clearance of Aβ across the blood brain barrier (Baig et al. 

2010). This is consistent with the finding of Schjeide et al. that the risk allele of 

PICALM SNP rs541458 was associated with decreased levels of Aβ in CSF, 

perhaps implying the AD risk associated allele is poorer in clearing Aβ from 

the brain to the CSF (Schjeide et al. 2011). 

 

APP independent links with AD 
Although there is strong evidence PICALM may play a role in APP 

metabolism and transport, APP is just one of a wide range of molecules which 

are subject to CME. Because APP has been so intrinsically linked to AD 

historically, it is easy to see why such efforts have been made to characterise 

its relationship with PICALM. However, we are a long way from knowing all 

of the molecules with which PICALM interacts and affects, so it is impossible 

to say which might be involved in the development of AD, and how that 

involvement comes about.  

 

Perturbations of endocytosis could easily upset the homeostasis of any type of 

cell, but even more so for neurons, which must continually recycle receptors 

and neurotransmitters to maintain long term signalling and function (Jung 

and Haucke 2007).  

 

A number of molecules other than APP display disrupted endocytosis when 

expression levels of PICALM are altered. The GluR2 subunit of the AMPA 

receptor shows a small but significant increase in its cell surface levels when 

PICALM expression is repressed using RNAi (Harel et al. 2011). This had 

previously been implicated in AD since Aβ can increase AMPA’s rate of 

endocytosis, decreasing surface AMPA receptor presence, and leading to 

signalling abnormalities and structural changes in neurons (Hsieh et al. 2006). 

RNAi knockdown of PICALM also affects the endocytosis of EGFR (Huang et 

al. 2004) and R-SNARE proteins (Harel et al. 2008; Koo et al. 2011; Miller et al. 
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2011). Changes in PICALM expression levels can also alter the intracellular 

distribution of many other molecules, such as AP1, mannose-6-phosphate 

receptor, and transferrin (Meyerholz et al. 2005).  

 

As mentioned above, several studies have been published investigating the 

relationship between PICALM and SNARE proteins (soluble N-

ethylmaleimide-sensitive-factor attachment protein receptor). The SNAREs 

are a family of proteins, all containing the conserved 60-70 amino acid SNARE 

motif. They are generally membrane bound, tetramer complexes which are 

key in mediating the fusion of vesicles, organelles and membranes. There are 

multiple SNARE proteins in mammalian cells and in order for trafficking to 

occur accurately, it is imperative that the correct SNARE proteins are present 

both in the vesicle and the organelle membrane to which it needs to fuse 

(Miller et al. 2011). As there are a finite number of combinations of SNARE 

proteins, given the complexity of the sorting task, it is thought regulation of 

the localisation of the specific SNARE proteins is important in the regulation 

of the transport process as a whole. They are also crucial in mediating 

neurotransmitter release, allowing fusion of SVs with pre-synaptic 

membranes to facilitate signalling, thought to be important in memory 

formation (Yao 2004). Efficient recycling and sorting of SNAREs with high 

accuracy is crucial to ensure prolonged neurotransmitter release is possible. It 

was unclear how these SNARE proteins are endocytosed and sorted with such 

specificity, but it has recently reported that PICALM may be a key player in 

these processes (Koo et al. 2011).   

 

Harel et al. first reported a link between R-SNARE protein VAMP2 (vesicle 

associated membrane protein 2, also known as synaptobrevin 2), the most 

abundant synaptic vesicle protein (Koo et al. 2011), and PICALM when they 

demonstrated that over expression of PICALM lead to a reduction in surface 

VAMP2 by around 20%, while PICALM knockdown using siRNA increased 

the presence of surface VAMP2 by around 30% (Harel et al. 2008). They did 

not find co-localisation of the two molecules, leading to speculation that any 

interaction must be weak or indirect (Harel et al. 2008), although later studies 

have indicated that PICALM and VAMP2 (as well as VAMP3 and VAMP8) do 

physically interact via the N-terminal region of the SNARE motif in VAMP2 

and the ANTH domain common to both PICALM and AP180 (Koo et al. 2011; 

Miller et al. 2011). Koo et al. similarly reported a link between PICALM 

expression and surface VAMP2 – again, suppression of PICALM (and AP180) 

expression was shown to lead to an increase in VAMP2 present at the 

neuronal surface, indicative that it is failing to be retrieved and recycled 

effectively; an effect which seemed specific to VAMP2, since other SV proteins 

were unaffected (Koo et al. 2011). The effect was more pronounced when both 

PICALM and AP180 expression were suppressed, perhaps suggesting 

overlapping functionality in this context (Koo et al. 2011). Miller et al. found 

the interaction was strongest between PICALM and VAMP8, which is 

consistent with its higher rate of internalisation (Miller et al. 2011). VAMP8 

and VAMP3 are thought to be important in the fusion of endocytic vesicles 
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with the cell’s limiting membrane and early endosomes, while VAMP2 is 

involved in the rapid fusion and recycling of SVs with the plasma membrane 

(Antonin et al. 2000; Miller et al. 2011). Knockdown of PICALM was found to 

cause surface accumulation of all three of the highly related SNARE proteins 

considered (Miller et al. 2011). The group found PICALM can bind 

simultaneously to both VAMP8 (and so presumably VAMP2 and 3) and its 

other established binding partner, phosphatidylinositol-4,5-bisphosphate 

(Miller et al. 2011).  

  

These studies have provided compelling evidence that PICALM is involved in 

the endocytosis of at least three SNARE proteins, VAMP2, VAMP3 and 

VAMP8. Could disrupted endocytosis of these molecules be the underlying 

cause of PICALM’s involvement in AD development? The correct localisation 

of such molecules is pivotal in ensuring accurate transport of cargoes about 

the cell, and in facilitating neurotransmitter release.  

 

As already discussed, alterations in PICALM expression levels can upset the 

intracellular distribution of a variety of molecules, which could be due to 

deficiencies in PICALM mediated SNARE endocytosis leading to incorrect 

localisation of SNAREs, disrupting normal transportation, which could 

contribute to AD pathogenesis. 

 

Disruption of neurotransmitter release and normal synaptic function could 

also play a major role in the degeneration seen in AD. It has been observed 

that AD brains have fewer synapses than controls; that synaptic density 

actually correlates better with cognitive decline in AD patients than does 

plaque burden; and that synaptic dysfunction may begin in the AD brain at an 

early stage, even before the loss of synapses and neurons occurs (Fitzjohn et 

al. 2001; Masliah et al. 2001; Yao 2004). Schoch et al. studied the fusion of SVs 

with the pre-synaptic membrane in VAMP2 knockout mice, and found there 

was roughly a tenfold decrease in spontaneous and sucrose stimulated fusion 

in the absence of VAMP2, and a 100-fold decrease in Ca2+ stimulated fusion 

(Schoch et al. 2001). This highlights the importance of VAMP2 in facilitating 

neurotransmitter release. If PICALM is a major player in determining the 

endocytosis of VAMP2, as appears to be the case, genetic changes which alter 

its function or regulation could affect VAMP2, interfering with normal 

neurotransmitter release, disruption of which could result in failed 

communication between neurons, leading to issues with learning and 

memory, as are seen in AD (Yao 2004). The strongest phenotype in Fit1 mice is 

seen when there are nonsense mutations in PICALM’s ANTH domain – the 

very domain underlying its interaction with the SNARE proteins (Klebig et al. 

2003), perhaps indicative that it is the disruption of the PICALM/VAMP2 

interaction that so disrupts normal development and function (Miller et al. 

2011). Synaptic dysfunction could also underlie the observed relationship 

between PICALM and cognitive ability (Mengel-From et al. 2010).  
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1.11. CR1 
 

An introduction to CR1 
Complement Component (3b/4b) Receptor 1 (CR1) is a single chain type I 

transmembrane glycoprotein. Its main roles are in the regulation of the 

complement cascade, and in transporting opsonised immune complexes for 

removal from the circulatory system. It has been extensively studied due to its 

known genetic polymorphisms, different protein allotypes, and its significant 

number of disease associations, largely with autoimmune, infectious and 

inflammatory conditions. Variations within the CR1 protein also form the 

basis of the Knops blood group system. When CR1 was first implicated in AD 

risk by the 2009 GWAS published by Lambert et al., attention turned to its 

possible role in neurodegeneration (Lambert et al. 2009). Neuroinflammation 

has long been implicated in AD, often regarded as a harmless bystander. 

However, the identification of multiple genetic risk factors for AD that are 

related to immunity and inflammation may suggest inflammation plays a 

more sinister role in the neurodegenerative process, which genetic variation in 

CR1 could perhaps contribute to. The protein’s role in Aβ clearance has also 

emerged as a potential explanation for why genetic variation in CR1 affects 

AD risk.  

 

CR1 – genetics and regulation 
The gene encoding CR1 (also known as CD35) is located on chromosome 1q32 

(see Figure 1.10), amidst a cluster of complement related genes, often termed 

the regulators of complement activation (RCA) gene cluster, whose protein 

products belong to the RCA family. The genes surrounding CR1 are shown in 

Figure 1.11. The pattern of conservation at the region of the CR1 gene across 

various mammalian species is displayed in Figure 1.12. 

 

Figure 1.10 – Genetic location of CR1 

 
Location of the CR1 gene on chromosome 1q32 (above) and transcripts (blue tracks) of 

the gene according to RefSeq (below) – F allele is upper transcript, S allele below. 

Image taken from the UCSC Genome Browser (Kent et al. 2002) 

(http://genome.ucsc.edu/). 
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Figure 1.11 – Genetic neighbours of CR1 

 
Locations of CR1’s nearest genetic neighbours on chromosome 1, all members of the RCA gene cluster, taken from the NCBI website 

(http://www.ncbi.nlm.nih.gov/gene/1191). Chromosomal co-ordinates listed at the top of the figure, with genes and orientations displayed below. 

 

Figure 1.12 – Conservation in the CR1 gene region 

 
Image to show genetic conservation across selected vertebrate species in CR1, taken from the ECR browser (Ovcharenko et al. 2004) 

(http://ecrbrowser.dcode.org/). Blue – exons, pink – introns, yellow – untranslated regions, red – intergenic regions, green – repetitive DNA elements. Height 

of graph proportional to level of conservation between human and that particular species (shown on right). 
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CR1 was first identified as a membrane bound protein on the surface of 

erythrocytes, and is widely expressed on a number of blood cells, including 

neutrophils, eosinophils, monocytes, macrophages, B-lymphocytes and a sub-

population of CD4-positive T cells. Aside from these peripheral blood cells, 

CR1 is also expressed on lymph node follicular dendritic cells, Langerhan cells 

in the skin and glomerula podocytes (Yoon and Fearon 1985; Liu and Niu 

2009; Crehan et al. 2012). Expression of CR1 has also been reported on human 

astrocytes (Gasque et al. 1996) and neurons (Zanjani et al. 2005; Hollingworth 

et al. 2010), although elsewhere CR1 was not detected on these cells, and it 

was stated that CR1 expression in the brain was likely to be low, and 

potentially restricted to the phagocytic Kolmer cells of the choroid plexus 

(Singhrao et al. 1999). In addition to the membrane confined versions of the 

protein, a soluble form of CR1 (sCR1) exists at low levels (~30ng/ml) in the 

blood (Yoon and Fearon 1985), as well as a form of the protein found in urine, 

thought to be derived from vesicles from glomerula podocytes (Pascual et al. 

1994). 

 

The level of expression of CR1 varies between different cell types, and indeed 

shows vast variation in the figures reported in the literature, depending on the 

method of detection used (Moulds 2010). Expression levels of CR1 on 

erythrocytes show huge variation between healthy individuals (up to ten fold 

in Caucasians), an affect which is largely due to different expression level 

alleles associated with a Hind III restriction fragment length polymorphism 

(RFLP) site (Wilson et al. 1986). Although erythrocytes generally have lower 

expression levels than other cell types (e.g. leukocytes, with between 10,000 

and 30,000 molecules per cell (Moulds 2010), B cells and monocytes with 

around 20,000-40,000 molecules per cell (Krych-Goldberg and Atkinson 2001), 

and resting neutrophils, with around 5,000 molecules per cell, which can 

increase up to ten fold when stimulated (Fearon and Collins 1983)), because of 

their relative abundance in the circulation, the majority (>85%) of CR1 in the 

circulatory system is erythrocyte bound CR1 (E-CR1) (Moulds 2010). 

 

Due to the different expression levels of CR1, Kim et al. (Kim et al. 1999) 

sought to identify the regulatory elements which may control this expression 

within the promoter of the CR1 gene. They studied a region of ~2kb 5’ of the 

gene, and found no evidence of a typical TATA type promoter sequence, but 

did find a CAAT-box type sequence (TCAAAA, which had previously been 

shown to be capable of acting as a CAAT-box (Kunz et al. 1989)), which was 

observed around position -54 to -49. The 5’ flanking region was also found to 

contain a GC-rich region, particularly high in CpG dinucleotides (Kim et al. 

1999).  

 

As well as variation in expression in CR1 across different cell types, there is 

variation in the glycosylation levels of CR1, such that the molecular weight of 

CR1 can differ by around 6kDa between erythrocytes and neutrophils or T 

cells (Wong 1990; Crehan et al. 2012). Between different cell types on which 
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CR1 is expressed, its function varies, perhaps partially dependent on these 

different glycosylation patterns, and not all of the roles of CR1 have been fully 

elucidated yet.  

 

CR1 – protein structure and function 
CR1 is a single chain type I transmembrane glycoprotein. Four protein 

allotypes of CR1 exist, with varying molecular weights, showing codominant 

inheritance. The four alleles, termed CR1-A (sometimes referred to as the F 

allele), CR1-B (sometimes referred to as the S allele), CR1-C and CR1-D encode 

proteins of 190kDa, 220kDa, 160kDa and 250kDa respectively. The F/S allele 

naming system of the two most common isoforms, CR1-A and CR1-B, is a 

reflection of their motility in gel electrophoresis (Fast and Slow moving). In all 

populations, CR1-C and CR1-D are rare, perhaps indicative of a selective 

advantage of the two intermediately sized isoforms. CR1-A and CR1-B have 

frequencies of approximately 0.87 and 0.11 in Caucasian individuals (Crehan 

et al. 2012), frequencies which are relatively consistent across populations 

studied (see table 1.5 for population frequencies in different ethnic groups, 

and for a summary of the characteristics of the four different protein 

allotypes).  

 

Table 1.5 – CR1 isoform properties 
Allele Protein Size 

(non-reducing) 

(kDa) 

SCR 
Number 

LHR 
Number 

Frequency 
(Caucasian) 

Frequency 
(African 

American) 

CR1-C 160 23 3 Rare Rare 

CR1-A (F) 190 30 4 0.87 0.82 

CR1-B (S) 220 37 5 0.11 0.11 

CR1-D 250 44 6 Rare Rare 

Characteristics of CR1’s four protein allotypes, adapted from Crehan et al. (Crehan et 

al. 2012) and Krych-Goldberg and Atkinson (Krych-Goldberg and Atkinson 2001). 

Numbers of short consensus repeats (SCRs) and long homologous repeats (LHRs) are 

given for each allele. 

 

The CR1 protein has four main structural domains: a 41aa signal peptide; the 

extracellular domain; a 25aa transmembrane domain; and a 43aa cytoplasmic 

domain (Klickstein et al. 1987). The differences between the four CR1 allotypes 

lie within the extracellular domain, which is comprised of multiple short 

consensus repeats (SCRs), also known as complement control protein repeats 

(CCPs) or sushi domains. This type of motif is common to the extracellular 

regions of the RCA protein family, with varying numbers of SCRs in different 

proteins, ranging from just four in CR1’s genetic neighbour CD55, to 44 in the 

longest isoform of CR1. The 59-72aa SCRs have four common conserved 

cysteine residues, responsible for the formation of two disulphide bridges, and 

one conserved tryptophan, with looser conservation in the rest of the repeat, 

although a core of hydrophobic residues is also common to all SCRs 

(Klickstein et al. 1987; Crehan et al. 2012). The disulphide bridges flank an 

elongated region, featuring β-pleated sheets, and connecting loops (Liu and 

Niu 2009). In CR1, unlike in the other RCA family members, the SCRs are 



 50 

grouped in to long homologous repeats (LHRs). Each LHR is comprised of 

seven SCRs, with every eighth SCR being highly homologous (such that SCR 

1, 8, 15; 2, 9, 16 etc. are 65 - 100% identical) (Klickstein et al. 1987). The two 

SCRs proximal to the protein’s transmembrane domain are not included in the 

LHR structures. SCRs are also found in other, non-complement related 

proteins, indicating that although they can play a major role in the formation 

and function of complement related proteins, they are not restricted to this 

role (Klickstein et al. 1988). 

 

It is thought that the differences in the alleles arose from unequal crossover 

events during replication, that lead to deletions or duplications of the highly 

repetitive section of DNA encoding the LHR, such that the size difference 

between the alleles is equivalent to one LHR; around 18kb at the genetic level, 

and 1.4kb at the transcript level (Holers et al. 1987; Wong et al. 1989; Bettens et 

al. 2012). It is speculated that the crossover events resulting in the 

creation/deletion of the highly homologous LHRs occurred relatively recently 

in our evolutionary history, while duplication of the SCRs, which show looser 

conservation and are found throughout the RCA family, as well as other, non-

complement related proteins, arose through much older genetic events 

(Holers et al. 1987).  

 

The series of duplications and subsequent divergence has brought about the 

structure of the human CR1 protein – a large, multifunctional molecule. The 

LHR regions which define the different isoforms of CR1 encode a binding site 

for complement component C3b/C4b, sometimes termed site 2, so the larger 

isoforms have more copies of this binding site (one in CR1-C, two in CR1-A, 

three in CR1-B and four in CR1-D), the specificity of which is conferred by the 

NH2 terminal SCRs of LHR-B and C in the F allele  (Klickstein et al. 1988). 

Each isoform also includes a C4b binding site in LHR-A, sometimes termed 

site 1 (again, with specificity conferred by the NH2 terminal SCRs) and an 

additional active site in the centre of LHR-D (site 3), which is responsible for 

the protein’s ability to bind to mannan-binding lectin and complement protein 

C1q (Tas et al. 1999; Ghiran et al. 2000).  

 

A diagram of the structures of the two most common isoforms (CR1-A and 

CR1-B) is provided in Figure 1.13, demonstrating the locations of CR1’s 

binding sites.  
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Figure 1.13 – CR1 common protein isoforms 

Structure of the two most common CR1 isoforms, CR1-A (the F allele) above, and 

CR1-B (the S-allele) below. The active sites highlighted show the SCRs involved in the 

interaction between CR1 and its various binding partners. Adapted from figures in 

Crehan et al. (Crehan et al. 2012) and Liu and Niu (Liu and Niu 2009). 

 

According to information assimilated in Krych-Goldberg and Atkinson’s 2001 

paper (Krych-Goldberg and Atkinson 2001), site 1, in LHR-A, binds to C4b, 

weakly to C3b, has low cofactor activity for factor 1 mediated cleavage of C3b 

and C4b and has high decay accelerating activity for C3 convertases (Krych et 

al. 1994; Krych-Goldberg et al. 1999). Conversely, site 2, in LHR-B and C (in 

the F allele, with an additional LHR giving an additional copy of site 2 in the S 

allele) binds relatively strongly to C3b, more weakly to C4b (although affinity 

is comparable to that of site 1), has high cofactor activity for factor 1 mediated 

cleavage of C3b and C4b and has low decay accelerating activity for C3 

convertases (Krych et al. 1994; Krych et al. 1998; Krych-Goldberg et al. 1999). 

 

CR1 is the main receptor for complement components C3b (an inflammatory 

protein activated in AD (Bertram and Tanzi 2010)) and C4b, and is an 

important regulator of the classical and alternate complement cascades. C3b 

and C4b are thought to have arisen through a gene duplication event, and 

share around 29% homology (Krych-Goldberg and Atkinson 2001). It is 

thought the interaction between the two complement proteins and CR1 occurs 

through a highly conserved region of 27 amino acids proximal to the amino 

terminal end of the α-chain (Taniguchi-Sidle and Isenman 1994).  

 

On erythrocytes, CR1’s main function is in the transportation of opsonised 

immune complexes. Immune complexes present in the circulatory system 

which have activated complement are bound by C3b and C4b, for which CR1 

has multiple binding sites. C3b/C3b and C3b/C4b complexes are produced 

when the alternative and classical pathways (respectively) are activated.  

Although individually, each CR1 binding site has a low affinity for its target 

molecule (Arnaout et al. 1983), collectively, the presence of multiple CR1 

molecules, each with multiple ligand binding sites, allows interaction with 

complexes containing multiple C3b and C4b molecules to occur relatively 

strongly as the sites can act synergistically (Krych-Goldberg and Atkinson 



 52 

2001). This synergistic binding facilitates the transportation of immune 

complexes from the circulation to the liver and spleen, where they can be 

removed and degraded by fixed macrophages (Krych-Goldberg and Atkinson 

2001), eliminating the factor that triggered the complement response initially.  

 

Since different isoforms of the CR1 protein have different numbers of C3b 

binding sites, it has been postulated that the different isoforms may show 

differences in their capacity to clear immune complexes efficiently, with 

individuals in possession of smaller CR1 isoforms (fewer C3b binding sites) 

postulated to be worse at this clearance. Wong et al. demonstrated different 

allotypes of CR1, with different numbers of active sites varied up to 100 fold 

in their capacity to bind dimeric C3b (Wong and Farrell 1991).  

 

CR1 can act as a versatile inhibitor of the complement cascade, dampening 

immune responses. It is able to impair the function of C3 and C5 convertases, 

which feature in both the classical and alternative complement pathways, via 

its decay accelerating activity (Krych-Goldberg and Atkinson 2001). It can also 

act as a cofactor for Factor 1, facilitating the irreversible cleavage and 

inactivation of C3b and C4b (Krych-Goldberg and Atkinson 2001). 

 

As mentioned before, the function of CR1 differs between the different cell 

types on which it is expressed. E-CR1 is by far the most extensively studied, 

but other roles on other cell types have also been identified. 

 

On B-cells, CR1 is involved in proliferation and differentiation (Fingeroth et al. 

1989). When B-cell surface CR1 is bound by ligands, it appears to prevent B-

cell proliferation (Jozsi et al. 2002). This is suggested as a mechanism by which 

CR1 is involved in autoimmune disorders (Khera and Das 2009). 

 

On neutrophils and monocytes, particularly when these cells are activated 

(e.g. by cytokines), CR1 mediates phagocytosis (Wright and Silverstein 1982), 

and can stimulate the release of interleukins, indicating another mechanism by 

which CR1 may help mediate the immune response (Bacle et al. 1990). The 

role of CR1 expressed on T cells remains unclear (Khera and Das 2009). 

 

sCR1 
It was first discovered in 1985 by Yoon et al. that there existed a soluble form 

of CR1, termed sCR1, free in circulation, as well as the membrane confined 

forms of the protein (Yoon and Fearon 1985).  sCR1 is present in serum at low 

concentrations, and plasma and serum levels of sCR1 are identical, indicating 

the protein is not lost during the clotting process (Pascual et al. 1993). sCR1 

has been shown to be derived from the proteolytic cleavage of leukocyte 

membrane CR1, either during its transition through the golgi apparatus or at 

the cell membrane itself, giving a form of the protein which is around 5kDa 

smaller and lacks the intracellular domain of the complete protein (Danielsson 

et al. 1994; Hamer et al. 1998). 
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sCR1 is a potent local inhibitor of the classical, lectin and alternative 

complement pathways (Ramaglia et al. 2008). Its mechanism of action appears 

to be two-fold: firstly, it aids in the dissociation of C3 convertases, and 

secondly, it targets C3b and C4b for degradation, preventing excessive 

activation of the complement cascade. Ramaglia et al. looked at the effect of 

sCR1 treatment on rats with mechanical peripheral nerve crush injuries 

(Ramaglia et al. 2008). The group found that complement activation in the 

damaged nerve was almost completely inhibited by sCR1 treatment; 

deposition of the membrane attack complex was inhibited, as were deposition 

of C4c (an activation product of the classical complement pathway) and C3c 

(an activation product common to all complement pathways). The affected 

nerves were protected from axonal loss and myelin breakdown in the early 

stages following the trauma, demonstrating the protective capacity of the 

molecule, however, the effects were relatively short lived, with nerve damage 

becoming apparent around 7 days after the initial assault (Ramaglia et al. 

2008). Whether this phenomenon is relevant to AD pathology remains to be 

established. Indeed, at present it is unclear whether sCR1 is even present in 

the brain, and what effects it may have if it is.  

 

CR1 polymorphisms 
There are three types of well documented variation associated with CR1. The 

first of these is the structural polymorphism generating the different protein 

isoforms, as discussed above. Secondly, there are polymorphisms that alter the 

expression level of E-CR1. As mentioned previously, the number of CR1 

molecules per erythrocyte can vary 10-fold among healthy individuals, and 

one reason for this is the high (H) and low (L) expression alleles, which are 

associated with a Hind III RFLP site within intron 27 of the gene (reportedly 

due to a SNP, T520C (Liu and Niu 2009)), but the causative genetic basis of the 

differing expression remains unknown (Weis et al. 1987; Cockburn and Rowe 

2006). Different levels of expression of different allotypes of the protein have 

been observed on the erythrocytes of heterozygote donors (Dykman et al. 

1983; Wong et al. 1983), indicating that the variance stems from some genetic 

factor within those alleles, and not from some trans-acting genetic or global 

regulatory mechanism. It has also been demonstrated that the variance does 

not stem from polymorphisms within the 3’ untranslated region, or promoter 

of the gene (Cockburn and Rowe 2006). 

 

The RFLP site generates two fragments of different lengths – a 6.9kb fragment 

linked to the low expression (or L) allele, and a 7.4kb fragment linked to the 

high expression (or H) allele (Liu and Niu 2009). According to Krych-

Goldberg and Atkinson, LL homozygotes typically display ~100 CR1 

molecules per erythrocyte; for HH homozygotes, this figure is ~1000; while 

heterozygotes show an intermediate number (Krych-Goldberg and Atkinson 

2001). Liu and Niu, however, reported these figures to be <200 per erythrocyte 

for LL homoxygotes, with HH genotype individuals possessing erythrocytes 

with 3-4 times more than this, and again, heterozygotes being in between the 

two (Liu and Niu 2009). It is likely that the discrepancies between the figures 
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reported are largely due to methodological differences. The frequencies of the 

alleles are reported to be 0.73 for the H allele and 0.27 for the L allele (Krych-

Goldberg and Atkinson 2001) in Caucasians, and 0.51 and 0.49 in Indian 

subjects (Katyal et al. 2003): both populations in which there is an association 

between the RFLP site and expression (Xiang et al. 1999; Katyal et al. 2003). 

The RFLP site is not associated with expression levels of the protein in African 

populations (Xiang et al. 1999; Rowe et al. 2002). 

 

It is proposed that polymorphisms linked to the RFLP site may affect the 

stability of CR1 (Liu and Niu 2009), with L allele polymorphisms producing a 

protein more prone to degradation, and therefore resulting in a reduced 

quantity of the protein reaching the cell membrane of erythrocytes (Crehan et 

al. 2012).  

 

The biological consequence of the lower levels of expression is that there are 

fewer CR1 molecules available to fulfil E-CR1’s normal physiological function. 

Individuals with low expression levels are poorer at removing complement 

opsonised immune complexes from the circulatory system than are high 

expressing individuals (Gibson and Waxman 1994; Crehan et al. 2012). 

Complement activation in such individuals is likely to be consistently higher 

than for high expressing individuals, since immune complexes, bound by C3b 

and C4b will persist for longer in the circulation. 

 

Expression levels below ~100/cell, are termed the Helgeson phenotype 

(Moulds et al. 1992) (also referred to in the literature as Hegelson (Krych-

Goldberg and Atkinson 2001)), and are not associated with any overt disease 

phenotype (Krych-Goldberg and Atkinson 2001), in fact, it has been 

implicated in protection from severe malaria (Cockburn et al. 2004). 

 

The final group of polymorphisms associated with the CR1 locus are those 

that comprise the Knops blood group system. The antibodies which are 

formed against antigens in this system were previously classed as HTLA 

(high-titre, low avidity) antibodies, but as research progressed it became 

apparent that a group of these HTLA antibodies, sharing similar specificities 

and molecular origins actually belong to a discrete group – termed the Knops 

blood group system, the 22nd blood group system to be recognised by the ISBT 

(International Society of Blood Transfusion) Committee on Terminology for 

Red Cell Surface Antigens (Daniels et al. 1995). The antibodies themselves, 

raised against the Knops antigens are not regarded as clinically significant, as 

they do not cause adverse reactions following blood transfusions, or create 

haemolytic disease in babies (Moulds 2010).  

 

The Knops blood group antigens are named Kna and Knb; McCa and McCb; S11 

and S12 (also known as Sla and Vil); and S13, Yka and KCAM (previously 

known as KAM). Back in 1991, two groups (Moulds et al. 1991; Rao et al. 1991) 

identified the CR1 protein as the origin of the Knops blood group antigens, 

Kna, McCa and S11/Sla, and subsequently the other antigens of the system have 
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been attributed to the same protein. The molecular basis giving rise to the 

antigens at the genetic level have been identified, with 8 of the 9 antigens 

arising as a result of mutations in exon 29 (SCR 25), and Yka attributed to a 

SNP within exon 26 (SCR 22), both in LHR-D of CR1 (Moulds et al. 2001; 

Veldhuisen et al. 2011). Most of the antigens are generated by a single 

polymorphism, but S13 appears to be a conformational epitope which is 

formed by the combination of changes at amino acid positions 1601 and 1610 

(Moulds et al. 2002). There are also a postulated S14 and S15, which are not yet 

officially recognised (Moulds et al. 2002; Covas et al. 2007). All the antigens 

occur in exposed parts of the CR1 protein, where they are accessible by 

antibodies. Table 1.6 shows the properties of the different Knops blood group 

antigens, including ISBT number, molecular basis and frequency in Caucasian 

populations.  

 

Table 1.6 – Properties of the Knops Blood Group System 

Antigen 

ISBT 

Number Nucleotide* 

Amino 

Acid SNP 

Frequency 

(Caucasian) % 

Kna KN1 4681G 1561V 
rs41274768 

98 

Knb KN2 4681A 1561M 4.5 

McCa KN3 4768A 1590K 
rs17047660 

100 

McCb KN6 4768G 1590E 0 

S11/Sla KN4 4801A 1601R 
rs17047661 

100 

S12/Vil KN7 4801G 1601G 0 

S13 + 

 

       - 

KN8+ 4801A, 

4828T 

1601R, 

1610S rs17047661, 

rs4844609 

100 

KN8- 4801A, 

4828A 

1601R, 

1610T 

0 

Yka    + 

         - 

KN5+ 4223C 1408T 
rs6691117 

92 

KN5- 4223T 1408M 8 

KCAM + 

              - 

KN9+ 4843A 1615I 
rs3737002 

95 

KN9- 4843G 1615V 5 

Information about the Knops blood group Antigens, adapted from Moulds (Moulds 

2010) and Veldhuisen et al. (Veldhuisen et al. 2011). 

*Numbered from translation start site 

 

Ethnic differences in the frequencies of Knops antigens have long been 

recognised, with some showing vastly different frequencies between 

Caucasian and African populations (e.g. McCb is virtually absent in 

Caucasians but is found in around 50% of West Africans) (Moulds 2010). It is 

widely thought that this variance is due to differing selective pressures in 

different geographical regions. CR1 has numerous disease associations 

(discussed in further detail below), including certain polymorphisms within 

the gene conferring protection from conditions such as malaria and 

M.tuberculosis infection. Knops antigens associated with such a selective 

advantage are likely to have become significantly more frequent in African 
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populations, where such diseases are a serious threat to health, rather than in 

regions where these are not endemic.  

 

While the molecular basis of all the known Knops antigens has now been 

established, there are multiple other known polymorphisms within the CR1 

gene, suggesting the possibility that more, as yet undiscovered Knops 

antigens exist (Moulds 2010). 

 

CR1 – Other Disease Associations 
CR1 is largely involved in autoimmune and inflammatory disorders, as well 

as infectious diseases such as malaria and HIV. sCR1 has been linked to renal 

and hepatic failure, multiple cancers of the blood (Pascual et al. 1993) as well 

as SLE (Khera and Das 2009). 

 

It has been postulated that CR1 may play a role in preventing the 

inappropriate recognition of “self” antigens as foreign by B-cells, a mechanism 

which if disturbed, could lead to the development of autoimmune disorders 

(Khera and Das 2009).  

 

Acquired reduction in E-CR1 levels is observed in patients with systemic 

lupus erythematosis (SLE) (Walport et al. 1987; Kumar et al. 1995), rheumatoid 

arthritis (Kumar et al. 1994) and insulin dependent diabetes mellitus (Ruuska 

et al. 1992), and decreased CR1 expression correlates with disease severity in 

HIV patients (Jouvin et al. 1987). 

 

CR1 is known to be associated with rosetting behaviour in P.falciparum 

malaria, facilitating the invasion of erythrocytes, and thus spreading the 

infection within an individual (Rowe et al. 1997). Low E-CR1 expression levels 

appear to be protective against severe malaria (Cockburn et al. 2004). Infection 

of monocytes and macrophages by M. tuberculosis and a variety of Leishmania 

species is also thought to be linked to or mediated by CR1 on the surface of 

these cells (Moulds 2010). 

 

More recently, the SNPs rs6656401 and rs3818361, implicated in AD, have also 

been linked to susceptibility to depression (Hamilton et al. 2012). 

 

CR1 and AD 
Since CR1 was first implicated in AD risk, numerous studies have been 

conducted seeking links between SNPs within the gene and various aspects of 

AD.  Two independent studies seeking potential links between CR1 SNPs and 

levels of CSF biomarkers (Aβ and tau) failed to detect any significant 

associations (Kauwe et al. 2011; Schjeide et al. 2011). Brouwers et al. however, 

did find some evidence for an association between CR1 SNPs and levels of 

Aβ1-42 (Brouwers et al. 2012). 

 

When looking for a relationship between CR1 SNP rs6656401 and cognitive 

function in extremely old individuals (92-93 at age of intake), Mengel-From 
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found no significant association (Mengel-From et al. 2010). They did however 

find a suggestive association between the GWAS risk allele and poorer 

cognitive performance, in male subjects only (Mengel-From et al. 2010).  

 

Kok et al. found some evidence that CR1 rs1408077 may be linked to plaque 

load in the brain, since the CC genotype was found to be more likely than the 

AA genotype to have sparse senile plaques, rather than no senile plaques (OR 

2.1 (95% CI 1.01-4.43) p=0.048) (Kok et al. 2011). This is strengthened by reports 

from Chibnik et al., who found that the risk allele of SNP rs6656401 was 

associated with AD pathological traits (mainly neuritic amyloid plaque load, 

as well as diffuse plaque load, although not with neurofibrillary tangles) 

(Chibnik et al. 2011). Additionally, each risk allele at the SNP was linked to 

increased cognitive decline, both generally, and specifically with episodic and 

semantic memory, perceptual speed and visuospatial ability (Chibnik et al. 

2011). This is in agreement with the tentative link between memory and CR1 

risk SNPs observed by Mengel-From et al. (Mengel-From et al. 2010).  

 

Furthermore, Keenan et al. identified a coding SNP, rs4844609, within LHR-D 

of CR1 (in strong LD with rs6656401 (D’ 1)) which was associated with decline 

in episodic memory, accompanied by increased AD neuropathological 

features, and that the effect showed an interaction with APOE genotype 

(Keenan et al. 2012). 

 

Biffi et al. reported an association between CR1 SNP rs1408077 and entorhinal 

cortex thickness (p=0.03) (Biffi et al. 2010). However, when Furney et al. 

conducted a similar study investigating the effect of AD risk genes on various 

neuroimaging measures, no associations between CR1 SNPs and any of the 

parameters they considered were detected (including entorhinal cortex 

thickness) (Furney et al. 2010). This inconsistency highlights the requirement 

for further studies of sufficient power to detect what aspects of AD are 

affected by CR1 genotype. 

 

CR1 and Aβ 
Given the evidence for links between CR1 genotype and CSF Aβ levels 

(Brouwers et al. 2012), as well as brain plaque load (Chibnik et al. 2011; Kok et 

al. 2011; Keenan et al. 2012), it may be that the relationship between CR1 and 

AD stems from altered Aβ metabolism or clearance.  

 

Complement can be activated by Aβ, particularly oligomeric forms, in AD 

affected brains (Rogers et al. 1992), and complement opsonins (such as C3b) 

become bound to Aβ in an antibody independent fashion (Bradt et al. 1998; 

Rogers et al. 2006). 

 

CR1 may affect Aβ clearance in the brain, either directly, promoting removal 

of Aβ within the brain (e.g. by mediating phagocytosis (Brouwers et al. 2012)), 

or indirectly (clearing Aβ from the periphery (Rogers et al. 2006)). 
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It has already been discussed that a major function of E-CR1 is in the removal 

of opsonised immune complexes from the circulatory system, and Aβ, bound 

by complement component C3b, constitutes one such complex that can be 

removed in this way (Rogers et al. 2006). Individual differences in the CR1 

protein, either in its structure or expression levels, could therefore render 

individuals more or less capable of conducting such clearance (Rogers et al. 

2006).  

 

It has been suggested that the different alleles of CR1 may affect this process, 

with smaller isoforms in possession of fewer C3b binding sites perhaps being 

less efficient at this clearance. However, this is inconsistent with Brouwers et 

al.’s finding that the longer, S allele of CR1 is linked to an increased risk of AD 

(Brouwers et al. 2012). According to the above hypothesis, this longer form 

should be more capable of clearing circulating opsonised Aβ from the 

peripheral blood, and would be expected, therefore, to be linked to a reduced 

risk of AD (Brouwers et al. 2012). This casts some doubt on the “peripheral 

sink” theory, and perhaps suggests that CR1’s relationship with AD is not 

directly derived from its relationship with Aβ clearance. 

 

CR1 and neuroinflammation 
CR1 is involved in the regulation of the complement cascade on many levels, 

mainly acting to reduce activation of complement by a variety of mechanisms, 

so could prevent damage due to inflammation in the brain occurring. Larger 

forms of CR1, with increased numbers of active sites, would be expected to be 

more efficient at reducing complement activation, and would therefore be 

protective. However, this is contradicted by the findings of Brouwers et al. 

that the larger S allele of CR1 was associated with increased AD risk 

(Brouwers et al. 2012). 

 

There is evidence from mouse models, however, that inhibiting complement 

activation actually increases plaque deposition and neurodegeneration, while 

increasing complement C3 reduces plaque load, suggesting complement 

activation might actually be protective (Wyss-Coray et al. 2002), which is 

consistent with Brouwers et al.’s findings. Similarly, if clearance of Aβ from 

the brain relies on its opsonisation with C3b, and longer CR1 isoforms limit 

the availability of active C3b, the brain’s ability to clear Aβ could be 

compromised, exposing it to greater damage than do the shorter isoforms 

(Brouwers et al. 2012). 

 

Keenan et al.’s findings that a SNP within LHR-D of CR1 is linked to increased 

AD pathology and cognitive decline perhaps suggests an alternative 

mechanism for the relationship between CR1 and AD (Keenan et al. 2012). 

LHR-D is the domain responsible for CR1’s interactions with C1q and 

mannan-binding lectin, perhaps indicating that it is CR1’s interaction with one 

of these that mediates its relationship with AD risk. Although little is known 

about mannan-binding lectin in relation to AD, C1q has been shown to be 

present at high levels in AD brains relative to controls, particularly in areas 
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with a high predominance of pathological hallmarks (Yasojima et al. 1999). 

C1q is has been shown to associate with fibrillar Aβ and amyloid plaques 

(Fonseca et al. 2004), and when knocked out in transgenic animals, is shown to 

reduce deposition of Aβ, limiting plaque formation (Fonseca et al. 2011). 

 

Because inflammation in the brain is so closely linked to Aβ, disentangling the 

exact relationship between CR1 and AD – whether effects are exerted directly 

on Aβ, with knock-on effects on inflammation, or whether CR1’s relationship 

is with complement, independent of Aβ – will take extensive further research. 

 

CR1 and Brain Structure 
A final intriguing possibility is raised by a study in which Bralten et al. 

reported an association between CR1 genotype and entorhinal cortex volume 

in young, healthy adults (Bralten et al. 2011), using high resolution MRI 

technology to assess brain structures. In the discovery cohort, there was an 

association between CR1 genotype at SNP rs6656401 and gray matter volume 

in both the hippocampus and entorhinal cortex, with carriers of the risky A 

allele displaying lower gray matter volume in these regions. Although the 

hippocampal finding was not replicated in the second cohort, the entorhinal 

cortex volume link was replicated, with evidence that the effect may be dose 

dependent. Exploratory analysis of other brain regions found evidence the 

link between CR1 genotype and brain structure may extend into areas such as 

the amygdala, anterior medial temporal lobe and collateral sulcus, although 

further study will be necessary to confirm these suggestive findings (Bralten et 

al. 2011).  

 

The research suggests that variance in CR1 at the genetic level affects the 

structure of the brain, even in young healthy adults, perhaps making carriers 

of the risk allele more susceptible to AD in later life. As mentioned above, Biffi 

et al. (Biffi et al. 2010) reported an association between CR1 genotype and 

entorhinal cortex thickness in AD and MCI patients, in agreement with the 

findings of this study. In light of Bralten et al.’s findings, however, perhaps 

the effect seen by Biffi et al. was an almost “end stage” snapshot of a 

phenomenon which arose in these patients much earlier in their lives.  

 

APOE genotype has also been shown to have an effect on brain structure in 

young, healthy individuals, with ε4 allele carriers showing reduced entorhinal 

cortex thickness (Shaw et al. 2007). It was speculated that a smaller entorhinal 

cortex volume could leave individuals more prone to displaying symptoms of 

cognitive decline, while those with larger brain volumes may have an inherent 

resistance to neurodegenerative processes. It is a fascinating concept that 

perhaps rather than being mechanistically involved in AD per se, CR1 risk 

alleles may contribute to the formation of a neural environment more 

susceptible to the changes which bring about AD, while the protective alleles 

may contribute to the formation of brain structures more able to withstand the 

assaults of the disease.  
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1.12. Finding Causal Variants 
 

It is generally accepted that the SNPs identified as GWAS “hits” are not 

themselves the causative variants, but rather are tagging a variant or variants 

that are causal. All of the studies that have been conducted investigating the 

GWAS hits and various aspects of AD pathology are forced to use surrogate 

SNPs, since the true causative functional variants underlying the GWAS 

signals are not yet known, and this could undermine attempts disentangle AD 

aetiology. Knowing the true functional variant or variants underlying the 

association would not only give increased power to these types of study, but it 

could also give valuable insight into how this involvement in AD risk might 

come about. For example, if the causative variants lie in regulatory regions, 

the alteration in AD risk may stem from under or over expression of the gene, 

while non-synonymous coding changes could alter the biochemical properties 

of the protein molecule. 

 

Finding the causal variant(s), however, may not prove to be simple. There is 

currently debate over two competing hypotheses – the common disease, 

common variant hypothesis (CD/CV), and a hypothesis centred on rare SNPs 

being the actual causal variants underlying GWAS “hits”. It is common 

variants (>5% minor allele frequency (MAF)), with a small effect on disease 

risk (ORs ~1.2) that GWAS were designed to detect. It would be expected that 

if the functional variants behind GWAS associations were common, they 

should be relatively easy to identify, since their high MAF would allow them 

to be seen by sequencing a small number of cases and controls. Yet, despite 

hundreds of disease associated loci being found by GWAS for various 

complex disorders, almost no causative variants responsible for these 

association signals have been found. This lends support to the hypothesis that 

rare variants (MAF <5%) with greater odds ratios may be the true variants 

underlying GWAS hits, an effect which has been termed “synthetic 

association” (Goldstein 2009), and occurs when, by chance, more rare 

causative variants are associated with one allele of the common tag SNP than 

the other. If this is found to be correct in AD genetics, it could go some way to 

explaining the “missing heritability”(Manolio et al. 2009) of the condition, 

since the ORs of the rare variants could be significantly higher than those of 

the common SNPs with which they are linked (Wang et al. 2010).  

 

Several groups have attempted to pinpoint the true causative variants 

underlying the observed GWAS signals within CLU, PICALM and CR1, and 

the findings of some of these studies are reported below. 

 

CLU 
All the common variants  at the CLU locus which have been found to be 

associated with AD fall within the same ~13.4kb LD block, which is entirely 

contained within the boundaries of CLU. Figure 1.14 shows the pattern of LD 

in the CLU area, and indicates the location of the original GWAS SNPs. This 
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provides compelling evidence that CLU itself is the source of the association 

with AD, particularly given its strong biological candidacy.  

 

The CLU SNP rs11136000 which has been reported so extensively to be 

associated with AD risk is intronic, and is not thought to have an effect on the 

function of the gene.  

 

In 1996, far before the association of the CLU gene and AD had been 

highlighted by GWAS, Tycko et al. conducted a study to discover 

polymorphisms within CLU and test these for association with AD, based on 

functional evidence implicating CLU in AD risk. Seven variants were 

discovered within the gene, including two non-synonymous changes, but 

none showed association with the disease in their sample set (Tycko et al. 

1996).  

 

Harold et al. made initial attempts to discover the underlying causal variants 

by looking for SNPs showing strong linkage disequilibrium (LD) with the 

GWAS SNP, and potentially functional variants within the gene from 

publically available data. The synonymous SNP rs7982 in exon 5 was found to 

be in strong LD with rs11136000 and showed a similarly significant 

association with AD (Harold et al. 2009). As no amino acid change is evoked 

by the polymorphism, it was speculated that the activity of a splicing 

enhancer signal could be affected by the variant, although no bioinformatics 

or experimental evidence for this was provided (Harold et al. 2009).  

 

To search for common coding variants that might explain the association 

signal with rs11136000, Guerreiro et al. sequenced the entire coding region of 

CLU in 495 cases and 330 controls, and exon 5, or exons 5 and 6, were 

sequenced in additional samples. The group found 24 variants in total, and the 

14 of those which occurred in more than one individual were tested for 

association with AD, but no significant associations were detected, although 

there was suggestive significance (uncorrected p=0.04) for rs3216167, a SNP 

which had previously been reported to be associated with cholesterol levels in 

serum (Miwa et al. 2005; Guerreiro et al. 2010). The non-synonymous variants 

found were also assessed in terms of likely functionality using bioinformatics 

tools, and several were deemed likely to be deleterious. However, such 

analyses should be interpreted with an element of caution since predicted 

effects are not always reliable, and even seemingly severe mutations can have 

little phenotypic effect. The study identified a nonsense mutation, which 

would be expected to obliterate the expression of CLU from that allele, yet the 

subject in which it was discovered was a 69 year old healthy control 

(Guerreiro et al. 2010).  
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Figure 1.14 - Linkage disequilibrium around GWAS SNPs in CLU 

 

Pattern of linkage 

disequilibrium (LD) at the CLU 

locus. Data from HapMap 

(HapMap 2003) release #28, 

image created using Haploview 

(Barrett et al. 2005). LD values 

are shown as r2. SNPs which 

were found to be significantly 

associated with AD in the 

Harold et al. and Lambert et al. 

GWAS are highlighted in red 

(rs11136000 - Harold et al. 

OR=0.86, p=8.5x10-10; Lambert 

et al. OR=0.86, p=7.5x10-9. 

rs9331888 - Lambert et al. 

OR=1.16, p=4x10-8. rs2279590 - 

Lambert et al. OR=0.86, 

p=8.9x10-9) (Harold et al. 2009; 

Lambert et al. 2009). 
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18 variants were detected in CLU by Ferrari et al. who sequenced the coding 

region of the gene in 342 AD patients and 277 controls (Ferrari et al. 2012). The 

18 variants included 10 missense mutations, 6 synonymous changes, a 

nonsense mutation and an intronic SNP. When analysed in silico, several of the 

changes were predicted to be damaging to the structure of the protein (Q15R, 

S16R, R234H, P286S, M302V, R338Q, N369H and T428M). Three variants (the 

nonsense mutation, E14X; Q15R and P265S) were found only in cases and not 

controls in this study (Ferrari et al. 2012), although the nonsense mutation had 

previously been reported by Guerreiro et al., as discussed above (Guerreiro et 

al. 2010). 

 

Bettens et al. conducted a comprehensive screen for rare variants in CLU, se-

quencing all coding regions in 1930 individuals (cases and controls). Exons 5-

8, which encode CLU’s β chain, were found to harbour a significant excess of 

rare variants in AD patients compared to controls, including a number of 

predicted deleterious changes, and so were sequenced in up to 2755 further 

samples (Bettens et al. 2012). Association was seen between rs11136000 and 

AD, which persisted even when these rare coding variants were excluded 

from analysis. This indicates that the association of the common and rare 

SNPs with AD are independent of each other, and the GWAS signal cannot be 

explained by these rare variants (Bettens et al. 2012). It remains, therefore, to 

be established what is, or are, the underlying variants generating this 

association. 

 

It is noteworthy that these studies have all focussed on coding variants; 

sequencing exonic regions alone. Variants outside of these areas may affect 

regulation or expression of the gene, but would have been missed by the 

studies published to date, and could play a major part in the involvement of 

CLU in AD risk, although their functional consequences would be even more 

difficult to establish. 

 

PICALM 
Although the gene PICALM is often said to be associated with AD, the SNP 

which first implicated the gene in AD risk (rs3851179) actually resides 88.5kb 

5’of the gene. Figure 1.15 shows the chromosomal location of PICALM, the 

SNP rs3851179, and the other genes which are in the vicinity. The nearest 

genetic feature to rs3851179 is the pseudogene, farnesyltransferase, CAAX 

box, alpha pseudogene 1 (FNTAP1). The active form of this gene, on 

chromosome 8, encodes the α-subunit of CAAX geranylgeranyltransferase 

and CAAX farnesyltransferase. Another related pseudogene resides on 

chromosome 13. rs3851179 actually falls approximately equidistant between 

PICALM and EED (embryonic ectoderm development), a gene which encodes 

a member of the Polycomb-group family, involved in maintaining 

transcriptional repression of genes across generations. Despite the two genes 

being almost the same distance from the original SNP found to be associated 
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with AD, PICALM presents a stronger biological candidate for involvement in 

AD pathogenesis than EED, and indeed, other SNPs close to and within 

PICALM have subsequently been shown to associate with AD risk, so it is 

unlikely EED could be the true source of the association despite its equivalent 

proximity. 

 

Figure 1.15 – PICALM’s genetic neighbours 

 
Locations of genes near to rs3851179 on chromosome 11 and relative distances to 

these, adapted from the NCBI website (http://www.ncbi.nlm.nih.gov/gene/8301). 

Chromosomal coordinates given above, with genes and orientations demonstrated 

with arrows.  

 

Figure 1.16 shows the LD block surrounding rs3851179, as well as the pattern 

of LD within the PICALM gene itself. The rs3851179 SNP is contained within a 

tight LD block of around 28kb, and is therefore not in strong LD with SNPs 

within PICALM. Harold et al. (Harold et al. 2009) however, did state that the 

SNP rs541458 which resides just 8kb from PICALM is in LD with rs3851179, 

and showed that this SNP was indeed strongly associated with AD with the 

genotyping of additional samples (as discussed above). 

 

Harold et al. made some preliminary attempts to establish the actual causative 

variants, looking at potentially functional SNPs at the PICALM  locus (in 

putative transcription factor binding sites and synonymous exonic SNPs 

which could affect splicing regulation), but found these to be more weakly 

associated with AD, and so unlikely to be altering AD risk themselves (Harold 

et al. 2009). 
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Figure 1.16 - Linkage disequilibrium around rs3851179 and the PICALM gene 
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Patterns of linkage disequilibrium (LD) surrounding rs3851179 and the PICALM gene. 

Data from HapMap (HapMap 2003) release #28, images created using Haploview 

(Barrett et al. 2005). LD values are shown as r2. A. LD in the full region, including 

PICALM, the ~28kb LD block within which the GWAS SNP rs3851179 falls, and the 

intervening region. B. LD shown within PICALM alone. C. Pattern of LD immediately 

surrounding the GWAS SNP rs3851179, showing the boundaries of the ~28kb LD 

block, with the location of rs3851179 highlighted in red (OR=0.86, p=1.3 x 10-9 (Harold 

et al. 2009)). 
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Uncovering the actual causative variants underlying altered AD risk could 

give vital clues as to how PICALM is aetiologically involved in AD risk. 

Schnetz-Boutaud et al. sequenced the coding region of PICALM in 48 cases 

and 48 controls in the quest for causal variation, but failed to discover any 

novel variants (Schnetz-Boutaud et al. 2012). They did, however, comment 

that synonymous SNP rs592297, in LD with GWAS SNP rs3851179, falls 

within a potential exonic splicing enhancer site within exon 5 of the gene, 

which could affect the splicing, and thus expression and function of PICALM. 

Whether this does indeed affect the splicing of the gene, and how this relates 

to AD remains to be determined. Ferrari et al. also sequenced the coding 

region of PICALM, this time in 342 LOAD and 277 control subjects (Ferrari et 

al. 2012). 16 variants (3 synonymous (Q174Q, T586T and A590A); 2 missense 

(A411P, H465R); and 11 non-coding) were detected within PICALM, however, 

all were found in both cases and controls, and none of the variants were likely 

to be damaging when assessed with in silico prediction programs, so it is 

unlikely these are relevant to AD pathology. 

 

Since the strongest signals of association are at the 5’ end of the gene, it has 

been speculated that the association with AD could be due to variants 

affecting regulation of gene expression (Sleegers et al. 2010), rather than being 

coding changes altering protein structure or function. 

 

CR1 
Both of the SNPs identified as significant GWAS hits by Lambert et al. 

(Lambert et al. 2009) fall within a ~127kb block of LD which is entirely 

encompassed by the CR1 gene, as shown in figure 1.17, strongly implying that 

the true causative variants underlying the signal reside within this large gene 

itself.
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Figure 1.17 – Linkage disequilibrium around CR1 GWAS SNPs 

 
Pattern of linkage disequilibrium (LD) at the CR1 locus. Data from HapMap (HapMap 2003) release #28, image created using Haploview (Barrett et al. 2005). 

LD values are shown as r2. Locations of the SNPs which were found to be significantly associated with AD in the Lambert et al. (Lambert et al. 2009) GWAS 

combined data set are highlighted by red arrows (rs6656401 OR=1.21 (95% CI 1.14-1.29), p-value of 3.5x10-9; rs3818361 OR=1.19 (95% CI 1.11-1.26), p-value of 

8.9 x10-8). 
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Brouwers et al. sought to fine map the association observed between AD and 

the CR1 SNPs from the Lambert et al. GWAS, looking at 26 SNPs spanning the 

CR1 locus, all falling outside of the gene’s repetitive regions, which were able 

to capture an estimated 87% of the total genetic variability at the locus 

(Brouwers et al. 2012). The SNPs associated with AD in the GWAS (rs6656401 

and rs9818361) were not genotyped as part of this study as they fall within 

CR1’s repetitive regions/LCRs. Two other SNPs (rs4844610 and rs1408077) 

however, in strong LD with each other, and the SNPs from the GWAS, 

showed significant allelic association with AD risk in the Flanders-Belgian 

cohort of 1883 individuals. The strongest association was seen in APOE ε4 

allele carriers. The group, as well as analysing the variants singly, combined 

their analyses to consider haplotypes, grouping the SNPs in to five LD blocks. 

Only the fourth LD block (spanning a region of around 130kb, including 

almost the entire gene, excepting the first and last exons) showed association 

with AD risk, again, strongest in the APOE ε4 carriers. Given the potential 

links between CR1 and Aβ metabolism/clearance, the group also considered 

the effect of the SNPs analysed with the levels of biomarkers (Aβ1-42, total tau 

and ptau181) in CSF. The SNPs associated with AD (rs4844610 and rs1408077) 

did not show any association with any of the tested biomarkers, however 

there was evidence that the minor alleles of four other SNPs (rs646817, 

rs1746659, rs11803956 and rs12034383), all within the same LD block, were 

associated with increased CSF levels of Aβ1-42 (Brouwers et al. 2012).  

 

As discussed previously, the group also used a multiplex amplicon 

quantification (MAQ) technique to allow them to distinguish the different 

alleles encoding the CR1 protein isoforms. Quantification of LCR1 copy 

number allowed the inference of the F- and S- allele genotypes (with one and 

two copies of this LCR respectively), with the caveat that S allele homozygotes 

would appear with the same LCR1 copy number as CR1-D/F allele 

heterozygotes. It was found that those with three copies of LCR1 (i.e. F- and S- 

allele heterozygotes) had around a 30% increase in AD risk than those with 

only two copies of LCR1 (i.e. F- allele homozygotes). This CNV was found to 

be in LD with the two SNPs (rs4844610 and rs1408077) which were also found 

to be associated with AD risk, suggesting the two actually represent a single 

common signal of association. The LCR1 CNV association with AD, but not 

the two SNP associations, were replicated in an independent French cohort 

(n=2003), with a meta-analysis of both data sets strengthening the evidence 

that the CNV is a genuine AD risk factor. The inconsistency of the SNP 

associations in contrast to the strength and replicability of the CNV 

association may suggest that the CNV itself is the underlying source of the 

association signal (Brouwers et al. 2012). It may be that the various SNPs at the 

CR1 locus which have shown association with AD have actually been tagging 

this CNV with which they are in LD.  

 

Ferrari et al. sequenced CR1’s coding regions in 342 AD patients and 277 

controls, and identified a total of 65 variants (39 missense, 15 synonymous 

variants, 9 intronic and 2 in the 3’ UTR) (Ferrari et al. 2012). Six of these 
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variants were both found only in cases, not controls, and were predicted to be 

probably or possibly damaging to the protein’s structure using in silico 

prediction programs (P110T, I127T, K113E, T1349I, L172M and G2109S). 

Further work is needed to establish whether these variants do in fact affect 

protein function, and how this in turn impacts on susceptibility to AD. 

 

Next generation sequencing 
Next generation sequencing (NGS) technologies allow an unprecedented way 

to characterise and catalogue all genetic variation within a given locus. A 

number of different NGS methods are currently available (Metzker 2010), and 

more are in the pipeline, leading to fierce competition in terms of cost, 

throughput and quality of data, driving these methods to become increasingly 

affordable and efficient. The majority of investigative studies looking for 

causative variants underling GWAS signals so far have relied on costly and 

time consuming Sanger sequencing. This has meant that only small regions, 

usually the protein coding exons of the genes have been included by most 

studies. The capacity of NGS technologies to produce millions or billions of 

short sequencing reads in a single run means that these constraints no longer 

apply. While we are still some way from having whole genome sequencing of 

individuals affordable in a practical way to researchers, methods of target 

enrichment allow already identified genetic regions to be deep resequenced, 

and all genetic variation at that locus within a sample to be detected.  

 

Target enrichment 
Target enrichment methods enable the filtering out of regions of interest from 

genomic DNA as a whole. A number of different techniques can be used to 

achieve this, from traditional and long range PCR to a number of 

commercially available strategies, each with its own relative strengths and 

weaknesses. There are various important parameters to consider when 

assessing the performance of target enrichment methods. These include how 

much of the region of interest is able to be targeted by the enrichment strategy, 

and the proportion of sequencing reads which can be mapped back to the 

region of interest (specificity), which is important since off target reads reduce 

the capacity for the production of usable data. The depth of coverage across 

the region of interest, and the uniformity of this coverage are important when 

it comes to calling variants. Around 10-20x coverage is generally seen as 

necessary for confident SNP calls; less than this, and variants may not pass QC 

filters; significantly more than this can be a waste of resources and sequencing 

capacity. Sensitivity in this context is the proportion of the region of interest 

for which sequence data is obtained. Also of importance when comparing 

different methods are the cost of reagents and any specialist equipment 

required, throughput, ease of use, and timescale of processing.  

 

At the time of the design of this experiment, two of the major commercially 

available target enrichment strategies were Agilent’s SureSelect (SS) solution 

based hybridisation, and Nimbegen’s (NG) array based hybridisation method. 

The NG method works by the synthesis of oligonucleotides complimentary to 
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the genomic region of interest directly on to an array, to which the prepared 

genomic library can then be hybridised, while the SS method uses biotinylated 

RNA baits, again, complimentary to the genomic region of interest, which 

hybridise with target sequences in solution, and can then be pulled out using 

streptavidin coated beads. With each method captured DNA undergoes an 

amplification step prior to sequencing.  

 

A number of papers were available which sought to compare the two methods 

on a number of different parameters. Practically, SS is faster, requires less in 

the way of specialist equipment and has lower DNA requirements than its 

array based counterpart (Mamanova et al. 2010; Teer et al. 2010). In terms of 

performance, SS’s recurrent downfall is that, due to the stringent repeat 

masker (discussed in greater detail in section 2.4) used in the generation of 

target regions for bait design, often less of the region of interest is targeted by 

this method when compared to NG, which uses its own, seemingly less 

conservative, repeat masking software. As a result of this, often a lower 

percentage of the region of interest is able to be sequenced using SS (Teer et al. 

2010; Hedges et al. 2011; Kiialainen et al. 2011). However, SS has been 

consistently found to have a higher proportion of reads mapping to the region 

of interest (Teer et al. 2010; Hedges et al. 2011; Kiialainen et al. 2011), 

indicating it is more specific than the NG method. In one study, SS was found 

to have an inferior read depth when compared to NG (Teer et al. 2010), but in 

two others (Hedges et al. 2011; Kiialainen et al. 2011), the depth of coverage 

was found to be greater when SS was used. SS was also found to give a greater 

level of consistency between samples than NG, demonstrating a greater 

reproducibility with Agilent’s method (Hedges et al. 2011; Kiialainen et al. 

2011). When sequenced regions are compared like for like, SS libraries have 

been shown to yield more SNP calls compared to NG, and these have been 

found generally to be more accurate (Kiialainen et al. 2011). For these reasons, 

SS was chosen for this project due to its cost efficiency and overall strengths in 

terms of specificity, coverage and reproducibility. 

 

Simply finding variants within a known associated locus, however, is 

insufficient. Countless SNPs exist within any given individual, harmful, 

protective and benign, and the effects of these are not easy to deduce. There 

are a plethora of bioinformatics tools available to predict the functions of 

variants, but these are never flawless, so functional characterisation is a must 

when determining whether any discovered variant is causative. Furthermore, 

a cautious attitude must be adopted since even when the effect of the variant 

on the gene or protein is known, the effect in vivo may not be clear – as shown 

by the non-sense mutation detected by Guerreiro et al., which may have been 

assumed to be strongly linked to the condition, had that subject not have been 

a healthy control (Guerreiro et al. 2010).  

 

The beauty of deep resequencing is that it offers an almost unparalleled 

opportunity to elucidate and begin to understand the true causative genetic 

basis of complex disorders, such as AD, at the very base level. This kind of 
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knowledge is likely, in time, to bring a better fundamental understanding of 

the aetiology of such conditions, which in turn could lead to huge progress in 

terms of diagnosis, treatment, and ultimately cures for some of these 

devastating conditions that are proving such a challenge to public health in 

modern society.  

 

1.13. Project Statement 
With the aim of detecting and cataloguing rare variation at the loci implicated 

in AD risk by the first two major AD GWAS (Harold et al. 2009; Lambert et al. 

2009), an NGS project was undertaken, using Agilent’s SS system to 

specifically target the CLU, PICALM and CR1 loci. This enrichment was 

designed to capture the whole locus, rather than just the coding regions on 

which previous studies had been based, since exonic sequencing alone has so 

far not yielded many answers as to the causative variants underlying GWAS 

signals. A number of different types of analysis software for NGS data were 

utilised, enabling an assessment of the relative strengths and weaknesses of 

each, and the development of a definitive pipeline using the best tools tested 

(Chapter 3). Once variants within the region were detected, Sanger sequencing 

was used to validate the methodology and highlight some issues arising from 

indels and mononucleotide repeats when using NGS technologies (Chapter 4). 

The exonic variants detected in the three genes were prioritised for further 

analysis as there are more reliable tools for assessing coding variants 

functionally, and it provided a modest number to focus on, minimising the 

necessary correction for multiple tests needed when testing for association. 

Various bioinformatic resources were utilised to assess likely functionality of 

the exonic variants, which were also tested for association with AD in a large 

imputed dataset, giving two independent methods of assessing each variant’s 

likely contribution to AD pathogenesis, and highlighting those warranting 

further, functional investigation (Chapter 5). As for the exonic variants, the 

non-coding variants found were also assessed using bioinformatic resources 

and association testing in the imputed data set where evidence from the tools 

used suggested functional consequences (Chapter 6).  
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2. Methods 
 

Sequencing Project One 
 

2.1. Patient Demographics and Sample Preparation 
 

96 Alzheimer’s disease (AD) samples were obtained from two UK centres – 

The University of Nottingham Brain Bank and Manchester Brain Bank (48.4% 

female, 51.6% male; mean age at onset 70.4 years; standard deviation 11.8; 

range 56-87. APOE alleles; ε2 - 5.7%; ε3 - 63.5%; ε4 - 30.8%). Both of these 

resources comprise part of the Alzheimer’s Research UK (ARUK) brain bank, 

which has been used in such projects as the GWAS that first implicated CLU 

and PICALM in AD risk (Harold et al. 2009). Cases with age of clinical onset 

over 56 and a confirmed or probable AD diagnosis, based on NINCDS-

ADRDA classification, were recruited. All subjects gave informed consent to 

be included in the study, which was granted approval by the local ethics 

committee.  

 

High quality, undegraded genomic DNA was required for the next generation 

sequencing (NGS) project. DNA was prepared from brain tissue samples, 

using a phenol chloroform based extraction procedure. Approximately 0.5cm3 

of brain tissue was manually chopped on dry ice, to prevent the tissue from 

thawing. This was incubated overnight (~18 hours, shaking at 380rpm, 50⁰C) 

with 500µl AL lysis buffer and 50µl proteinase K (both Qiagen). Next, 500µl of 

refrigerated phenol chloroform was added to the sample (Sigma), which was 

mixed by inverting before being subjected to centrifugation for 5 minutes at 

13,000rpm. The top phase of the resultant sample was then removed to a clean 

eppendorf, and the addition of phenol chloroform, mixing and centrifugation 

was repeated. The top phase of this was removed, and had 3M sodium acetate 

(pH 5.2) added to it in a 1:9 ratio of sodium acetate to sample. Chilled 100% 

ethanol was then added, at an equal volume to the sample, to precipitate out 

the DNA. Following centrifugation at 13,000rpm for 15 minutes, a wash was 

performed using 200µl 70% ethanol, before another centrifugation step, this 

time for 10 minutes (13,000rpm). The remaining ethanol was then discarded 

and the pellet air dried, before resuspension in 100µl AE buffer (Qiagen), 

heating to 50⁰C for one hour. A nanodrop spectrophotometer was used to 

assess the concentration and purity of the extracted DNA. The samples were 

assessed for degradation using gel electrophoresis (1% agarose gel). An 

example gel is shown in figure 2.1.  

 

Quantification of the 96 DNA samples was conducted using the Quant-iTTM 

dsDNA Broad Range Assay Kit from Invitrogen, following standard 

manufacturer’s method, with all samples run in triplicate. Pooling was 

conducted such that samples of similar concentration were grouped together 

(see Appendix section 2.1 for sample pools). For each pool of 12, 600ng of 
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DNA per sample were combined, giving an overall DNA quantity of 7.2µg per 

pool. 

 

Figure 2.1 – Quality control of DNA samples for NGS 

 
Representative gel from phenol chloroform DNA extractions, run against λHindIII 

ladder (sizes of marker in bp shown). Samples 1-4 and 6 show successful extractions 

with minimal degradation, exactly as needed for NGS experiments. Sample 5 shows a 

significant amount of degradation, and would not have been accepted in to the 

project. The extraction of sample 7 failed. 

 

2.2. Power 
 
The predominant aim of this study was to discover novel rare single 

nucleotide polymorphisms (SNPs), so it was important to ensure a sufficient 

sample size was used to give adequate power to do this. Typically, common 

SNPs are viewed as having a minor allele frequency (MAF) greater than 0.05, 

while rare SNPs have MAFs between 0.01 and 0.05. Anything below 0.01 is 

very rare. The following equation was used for power calculations, where n is 

the number of chromosomes:  

 

n = [log(1-power)] / [log(1-MAF)]  

 

Table 2.1 shows the power this study had to detect SNPs of various MAFs, 

given a sample size of 96. It was calculated that the study had 80% power to 

detect SNPs with a MAF down to ~0.85%, thus this study had sufficient power 

to fulfil its aim to discover rare novel SNPs. 
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Table 2.1 – Power Calculations 

MAF Power (%) 
0.001 17.5 

0.005 61.8 

0.01 85.5 
0.02 97.9 

0.03 99.7 

0.04 ~100 

0.05 ~100 
0.10 ~100 

0.20 ~100 

0.30 ~100 
0.40 ~100 

0.50 ~100 

Table to show the power this study has to detect SNPs of varying MAFs based on a 

sample size of 96 individuals, or 192 alleles. 

 
2.3. Defining Regions to Sequence 
 

The UCSC genome browser (Kent et al. 2002) was used to obtain the basic 

coordinates for the genes of interest (CLU, PICALM and CR1). These 

coordinates were then expanded to encompass any areas of notable 

conservation across vertebrate species, assessed by eye using ECR browser 

(Ovcharenko et al. 2004), since evolutionary constraint may suggest functional 

regions of DNA, such as gene regulatory elements.  

 

In addition to the three genes, a fourth region was targeted in the study; the 

area in which SNP rs3851179 (the PICALM GWAS SNP) is located. To 

visualise the pattern of linkage disequilibrium (LD) in the region, Haploview 

(Barrett et al. 2005) was used, with SNP genotype data downloaded from 

HapMap (HapMap 2003) (on 05.11.2010). A region of 500kb surrounding the 

GWAS SNP was downloaded, to ensure no variants in strong LD with the 

GWAS SNP would be missed (since it is unlikely anything exceeding this 

distance would be in LD with the variant). When defining LD blocks, an r2 of 

0.8 was selected as the LD parameter (as opposed to D’). Only SNPs with a 

MAF lower than 0.01 were excluded (default 0.05), and all other Haploview 

settings were left as default. The entire LD block was targeted (~29kb). 

 

An additional 150bp was added on either side of the final genomic 

coordinates to be sequenced, ensuring that the ends of the region of interest 

would be covered by the full 5x tiling used in the bait design (see below). The 

coordinates and sizes of the genes/regions targeted are given in table 2.2. 
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Table 2.2 – Target regions for NGS 

Gene Coordinates (hg19) Size (kb) 

CLU 8:27450849-27475277 24.43 

CR1 1:207667495-207816719 149.22 

PICALM 11:85665237-85783519 118.28 

rs3851179 LD block 11:85840998-85870094 29.10 

Total: 321.03 

Coordinates and sizes of the regions targeted by SureSelect baits for the first 

sequencing project. 

 

2.4. Enrichment and Sequencing 
 

Agilent’s SureSelect 
Agilent’s SureSelect (SS) system was the chosen method of target enrichment 

for the project, given its reported benefits over other commercially available 

target enrichment methods available at the time of study design (see 

Introduction section 1.12. Finding causal variants – Target enrichment) 

(Mamanova et al. 2010). SS is a method of target enrichment utilising a 

solution based hybridisation approach, whereby 120 base biotinylated RNA 

“baits”, complementary to the genomic regions of interest are designed and 

hybridised with the desired targets in a library of fragmented whole genomic 

DNA. Using streptavidin coated beads, these baits and their bound 

complimentary DNA can be extracted from the noise of whole genomic DNA 

using a magnetised system. This process is summarised in Figure 2.2.  

 

Once the genomic regions to be sequenced had been defined, the SS baits 

could be designed using Agilent’s online eArray program 

(https://earray.chem.agilent.com/earray/). In this, a number of different 

parameters can be specified, such as the sequencing platform to be used (in 

this case, Illumina single end short read), and the genomic coordinates (in 

hg19) of the regions of interest specified, in order for baits to be designed 

against them. Agilent specify a set of optimised parameters, and for the most 

part our study design adhered to these, however, instead of the default 2x 

tiling, we opted for 5x tiling (see figure 2.3), as it was hoped this would give a 

better enrichment of the target region, and was recommended by an Agilent 

eArray specialist (personal correspondence).  
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Figure 2.2 – SureSelect method of target enrichment 

 
Schematic diagram to show the processes involved in the SureSelect method of target 

enrichment, taken from Agilent’s SureSelect protocol v1.2. 

 

Figure 2.3 – SureSelect bait design with 2x and 5x tiling 

 
Genomic DNA represented by black bar, 120mer baits represented by gray bars. 

Arrow indicates a specific position in the region of interest. Under 2x tiling, each bait 

overlaps by 50% (60bp), meaning any given position in the target region is covered by 

two baits. For 5x tiling, the baits overlap by 24 bases, resulting in any given position in 

the DNA being represented by 5 baits. 
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As default in eArray, a repeat masker is used in the design of SS baits 

(Repeatmasker.org (Smit 1996-2010), which is based on the RepBase (Jurka et 

al. 2005) library of repeats). This is the same repeat masker upon which the 

UCSC Genome Browser’s RepeatMasker track is based. In order to investigate 

the proportion of the region of interest that would be not be targeted by baits 

due to this repeat masking software, repeatmasker.org (Smit 1996-2010) was 

used. The gene sequences for the regions of interest were uploaded to this 

website, and submitted to the program for analysis, using its default settings 

(on 11.01.11).  

 

When the SS baits were designed with the repeat masker on, the proportion of 

each of the genes that would not be targeted by baits seemed very high, 

leading to questions as to whether the repeat masker used by eArray was 

overly conservative. Using repeatmasker.org the percentage of each gene that 

would not be targeted by baits were the repeat masker used was quantified, 

and was 34% for CLU, 48% for CR1, 34% for PICALM and 42% for the 

rs3851179 LD block. This would have meant that between a third and half of 

each gene we were aiming to acquire complete sequence data on would not 

even have been targeted. Figure 2.4 shows the .bed file results of the CLU bait 

design process when uploaded to UCSC’s custom tracks, both with and 

without the repeat masker enabled in the design process (the other genes, and 

the rs3851179 LD block showed similar results). It was therefore decided that 

the repeat masker would not be utilised in the design of the baits for this 

project, the hope being that only truly repetitive regions would fail to be 

sequenced, giving an obvious drop out in coverage at these regions, and this 

would be less in reality than with the repeat masker utilised. 

The process of enrichment was outsourced to Source Bioscience 

(http://www.sourcebioscience.com/) for financial and practical regions, and 

was conducted by them, following Agilent’s standard protocol. 
 

Figure 2.4 – CLU bait design with and without repeat masker 

 
The upper panel shows CLU’s bait design conducted using the repeat masker, while 

the lower panel shows the targeted region when the repeat masker is not utilised. 

Genomic coordinates are shown at the top of each panel, with targeted region 

indicated with the custom “BaitTiling” track. RefSeq transcripts of the gene are shown 

in blue, while the lower region of each panel shows the locations of repeat regions 

according to RepeatMasker.org (Smit 1996-2010). 
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Illumina GaIIX Sequencing by Synthesis 
Illumina’s GaIIX was selected as the method of NGS to be utilised by the 

project, based on practical and financial reasoning, in combination with 

Illumina being one of the major players in NGS technologies at the time, 

offering many widely used and well respected platforms (Metzker 2010).  

 

Illumina’s sequencing technologies are based on the sequencing by synthesis 

method. The initial stage involves solid-phase amplification of single DNA 

molecules (in our case, fragments of DNA from loci of interest) via bridge 

amplification, generating 100-200 million molecular clusters of DNA, each of a 

single template DNA fragment. The free ends generated can then be 

hybridised with universal sequencing primers to enable NGS to be performed. 

The actual sequencing is conducted using a four-colour cyclic reversible 

termination method, with total internal reflection fluorescence imaging 

facilitated by two lasers allowing the distinction of the different colours, each 

associated with a different base. The fluorescently labelled bases, with 

terminal 3’ blocker, are added simultaneously, and DNA polymerase bound to 

the template adds a single specific modified base in each cycle. The base is 

then imaged, and unbound nucleotides are washed away, before the 

fluorescent dye and terminating group attached to the nucleotide are cleaved, 

leaving a base which can then be added to in subsequent cycles. These 

processes are depicted in figure 2.5.  

 

Illumina’s software, CASAVA (Consensus Assessment of Sequence and 

Variation) was used to convert the images read by the machine into intensity 

scores and base calls with quality scores. 

 

The sequencing was conducted by Source Bioscience, following standard 

manufacturer’s protocols.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

80 

Figure 2.5 – Illumina’s sequencing by synthesis method 

 

  
Illumina’s sequencing by synthesis method. Panel A shows the bridge amplification 

step, used to create clusters of template molecules. Panel B shows the four-colour 

cyclic reversible termination method used to obtain sequence information. 
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2.5. Data Analysis 
 

Data files for each pool were received from Source Biosciences in zipped .fastq 

format, which contains the nucleotide sequence and ASCII coded quality score 

for each of the sequencing reads produced. These files were processed along a 

pipeline comprised of various bioinformatic tools, designed to assess the 

quality of raw reads, align the data, assess the quality of the alignment and 

call variants. At the time, the pipeline was experimental, so several different 

software packages were utilised for many of the stages, but based on the data 

here presented, this has since been refined to a definitive pipeline (which is 

presented in the Section 3.4 - Defining the Pipeline).  

 

An initial assessment of the quality of the data was performed using the 

program FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), which analyses 

data (in Sam, Bam or FastQ format) for a number of parameters (e.g. read 

quality, GC content and over represented sequences), which may be indicative 

of issues with the data as a whole, such as poor quality of reads or systematic 

biases. 

 

Example command to run FastQC: 

 
$ ./fastqc  1_NoIndex_L001_R1.fastq.gz 

Where 1_NoIndex_L001_R1.fastq.gz is the zipped fastq file containing the 

data from the first lane of the flow cell used, i.e. pool 1 samples. 

 

Alignment 
Alignment is the process by which the millions (or billions) of short 

sequencing reads generated by NGS technologies are mapped to a reference 

sequence. It is typically the first stage in processing NGS data, on a pathway 

which will eventually lead to the identification of variant sites. There are a 

plethora of programs available to conduct this function, each with individual 

strengths and weaknesses in terms of speed, sensitivity and accuracy. For our 

project, two alignment programs were selected, MOSAIK (highly user 

friendly, and had been used by the 1000 genomes project) and BFAST (which 

was the best performing alignment algorithm in a comparison of programs 

from a previous NGS study conducted within our laboratory (data 

unpublished)).  

 

MOSAIK 
MOSAIK (http://code.google.com/p/mosaik-aligner/) produces gapped 

alignments based on the Smith-Waterman algorithm. The multistage program 

is intuitive to use, with a comprehensive user guide and sensibly chosen 

default values to minimise the necessary amount of user input. It is 

multithreaded, so can run simultaneously on multiple processors, speeding 
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up the process of alignment, and is suitable for use with a number of 

sequencing technologies. 

 

The following steps are needed to generate alignments: 

 

MosaikBuild: This module converts various types of input files to a binary 

format (.dat), allowing efficient data processing. Both the reference and the 

sequencing reads need to be processed in this way, with the sequence 

technology (-st) used to generate the data being specified for the reads.  

 

MosaikJump: MOSAIK uses a hashing strategy, comparing reference and read 

hashes to compute alignments. Creating and utilising a hash map of a 

mammalian genome, such as the human one, would be prohibitively memory 

intensive; therefore MosaikJump is used to create a Jump Database (-j). This is 

comprised of “positions” and “keys” files, storing the same information as a 

conventional hash map, but in a much more efficient format, allowing for 

faster and less computationally intensive mapping. The selected hash size (-

hs) used requires a trade off between the greater speed provided by larger 

hashes, and the greater sensitivity provided by smaller ones. MOSAIK’s 

manual recommends a hash size of 15 as a good compromise between the two. 

 

MosaikAligner: This component performs the pairwise alignment between the 

short sequencing reads (converted to a hashed format) and the reference file 

(stored in the jump database). “Hits” between the read and reference hashes 

are clustered, and any clusters above the user defined alignment candidate 

threshold (-act) are submitted for analysis by the Smith-Waterman algorithm 

and filtered to generate the final alignment file. Several parameters can be 

altered at this stage to tailor the output of the alignment software or the 

running speed. This includes, the maximum number of mismatches allowed (-

mm) between the read and the reference, which is set as default to 4. Two 

parameters can be specified which reduce the time taken to perform the 

alignment. The maximum hash positions (-mhp) can be set (-mhp 100 

recommended by manual), which means only 100 random potential hash 

matches are stored within the program, speeding up alignment with little cost 

to alignment accuracy. As mentioned above, the alignment candidate 

threshold (-act) can also be set, defining the minimum cluster size to be 

submitted to the Smith-Waterman algorithm, again speeding up alignment 

without compromising accuracy (manual suggests –act 20). The number of 

processors (-p) available to conduct the analysis can also be specified, 

allowing full utilisation of the available computational resources. 

 

MosaikText: This utility allows the conversion of the alignment .dat file to the 

more universally accepted .bam format, allowing the output to be used with 

other data analysis and handling software. 
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Example commands to run Mosaik: 

 

Convert reference file to .dat format: 
$ MosaikBuild –fr 

Homo_sapiens.GRCh37.59.dna.toplevel.chr_only.valid.fa –oa 

HG19_ref.dat  

Where -fr is the reference file to which alignment will be conducted 

(Homo_sapiens.etc.valid.fa), and -oa specifies the name of the output file. 
 

Convert sequencing reads to .dat format (run for each sequence file): 
$ MosaikBuild –q 1_NoIndex_L001_R1.fastq.gz –out 

sample1.dat –st illumina 

Where –q is the input file to be aligned and –st specifies the sequencing 

technology used. 

 

Create Jump Database: 
$ MosaikJump –ia HG19_ref.dat –out HG19_jump –hs 15 

 

Align reads with MosaikAlign (run for each sequence file): 
$ MosaikAligner –in sample1.dat –out sample1_aligned.dat 

–ia HG19_ref.dat –hs 15 –mm 4 –mhp 100 –act 20 –j 

HG19_jump –p8 

 

Convert .dat to .bam: 
$ MosaikText –in sample1_aligned.dat –bam 

sample1_aligned.bam 

 

BFAST 
BFAST (BLAT-like Fast Accurate Search Tool) (Homer et al. 2009) aims to 

provide a fast alignment program, without compromising on accuracy. Again, 

the program has multiple stages, with capability for multithreaded processing, 

allowing the full utilisation of available computational resources, and the 

benefits of increased speed which comes with this. The program works by 

creating indexes of the desired reference sequence, allowing the rapid 

generation of candidate alignment locations (CALs), with gapped local 

alignment then occurring according to a gapped Smith-Waterman algorithm, 

facilitating the selection of optimal alignments based on user specified 

parameters. This allows customisation of speed, sensitivity, and accuracy, 

depending on the needs of the user. 

 

The following steps are needed to generate the alignment: 

 

bfast fasta2brg: Generates a compressed binary version of the reference 

genome from a specified FASTA file. The only required inputs are the 

reference file (-f) and specification of –A 0 to indicate that the reads are not 

coded in colour space (-A 1 specifies colour space). 

 

bfast index: Creates indexes of the reference file (-f) and stores these in a 

compressed binary format. The command –m specifies the mask to use for this 
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index. The masks are strings of 1 and 0 which specify where mismatches are 

“allowed” to occur between the reads and reference, and vary depending on 

the sequencing technology and read length used. Figure 2.6 shows the indexes 

recommended for Illumina reads with a length less that 40bp. The command 

should be run 10 times, once for each of the masks, with the index number 

each time being specified by the -i command (-i 1 for first index, -i 2 for 

second, etc.). Lookup time is minimised via the incorporation of a hash into 

the index, the size of which is specified by -w (14 is recommended for short 

Illumina reads). Specifying the available number of processers (-n) allows the 

program to make full utilisation of the available resources. 

 

Figure 2.6 – Indexes for BFAST alignment of reads <40bp 

 
Indexes for BFAST indexing step when using Illumina data with a read length less 

than 40bp. 

 

bfast match: Searches the produced set of reference indexes for CALs for a set 

of reads (-r, with additional command –z if file is zipped).  

 

bfast localalign: Uses a Smith-Waterman algorithm to perform a local 

alignment of each read to the reference sequence, and assign each a quality 

score, based on the list of CALs, allowing for mismatches and gaps. Because 

this stage can be time consuming, it can be specified that reads with an 

excessive number of CALs be disregarded (-M 500 tells the program to ignore 

any reads with more than 500 CALs). 

 

bfast postprocess: Converts the file format to an output format which can be 

taken forward to use with other programs, in our case, the .sam format, which 

can easily be converted to the more universally accepted .bam format. This 

stage of processing can also be used to filter the alignments. 

 

Example commands to run BFAST: 

 

Make BFAST reference file: 
$ bfast fasta2brg –f 

Homo_sapiens.GRCh37.59.dna.toplevel.chr_only.valid.fa –A 

0 
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Index reference file: 
$ bfast index 

Homo_sapiens.GRCh37.59.dna.toplevel.chr_only.valid.fa –m 

111111111111111111 –w 14 –i 1 –n 8  

 

Find CALs: 
$ bfast match –f 

Homo_sapiens.GRCh37.59.dna.toplevel.chr_only.valid.fa –r 

1_NoIndex_L001_R1.fastq.gz –z –A 0 –n 8 > Sample1_CAL 

 

Run local alignment: 
$ bfast localalign –f 

Homo_sapiens.GRCh37.59.dna.toplevel.chr_only.valid.fa –m 

Sample1_CAL –A 0 –M 500 –n 8 > Sample1_aligned.baf 

 

Prioritise final alignments with bfast postprocess: 
$ bfast postprocess –f 

Homo_sapiens.GRCh37.59.dna.toplevel.chr_only.valid.fa –I 

Sample1_aligned.baf –A 0 –n 8 > Sample1.sam 

 

Data Manipulation and Analysis 
 
Samtools 
Samtools (Li et al. 2009) is arguably one of the most crucial pieces of software 

when dealing with NGS data. The majority of downstream analysis programs 

for NGS data require that aligned files are sorted (by position) and indexed 

before use. Samtools allows you to do this. It also enables the splitting of files 

from whole genomic alignments in to sections of interest to facilitate further 

analysis in a gene specific way. It can also be used to visualise and obtain basic 

statistics on data, and to convert between commonly used data formats such 

as SAM (Sequence Alignment/Map) and BAM (a binary form of SAM files). 

Samtools can be used for variant calling, however, it was not utilised in this 

way for this project, as our pooled sequencing data required programs 

specifically designed to handle variant calling in data where multiple 

individual’s genotypes were present.  

 

After the completion of data alignment, Samtools was used to sort and index 

the data, then divide it in to regions of interest.  Example commands to do this 

are given below: 

 
$ samtools sort sample1_aligned.bam 

sample1_aligned_sorted.bam 

Where sample1_aligned.bam is the input file, and 

sample1_aligned_sorted.bam is the sorted output file. 
 

$ samtools index sample1_aligned_sorted.bam 

This creates a .bai index file specific to that bam file. This allows the retrieval 

of reads in any given region quickly and efficiently. 
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$ samtools view sample1_aligned_sorted.bam 8:27450349-

27475777 -bo CLU_1.bam 

Where 8:27450349-27475777 are the genomic coordinates for CLU, and -bo 

specifies that the output file should be in .bam format. This creates a file of all 

the aligned data within the CLU locus. Coordinates for the other regions were 

1:207666995-207817219 for CR1, 11:85664737-85784019 for PICALM and 

11:85840498-85870594 for the rs3851179 LD block. These coordinates include 

the targeted region, plus 500bp either side, to ensure the maximum amount of 

useful data were included in analyses. 
 

The alignment from BFAST was outputted in .sam, not .bam format, therefore 

it was necessary to convert to .bam before these steps could be performed: 

 
$ samtools view -S sample1_bfast.sam -bo 

sample1_bfast.bam 

Where -S identifies the input file is in .sam format, and -bo specifies that the 

output file should be in .bam format.  

 

The split files for each of the gene regions were also sorted and indexed before 

utilisation in other programs (as above).  

 

SamStat  
SamStat (Lassmann et al. 2011) is a program that gives statistics on mapped 

NGS data files, allowing the quality of reads and alignments to be assessed, 

and any major issues or abnormalities within the data set to be identified. 

Usage is very simple:  

 
$ samstat CLU_1.bam CLU_2.bam ...  

 

The output includes information on base quality distribution, read lengths, 

mapping quality, nucleotide composition and di-nucleotide over-

representation.  

 

Integrative Genomics Viewer (IGV) 
IGV (Robinson et al. 2011) is a simple and intuitive high-performance data 

visualisation package from the Broad Institute. It can be used for a variety of 

different types of data, including NGS and array-based data, and enables the 

researcher to “see” their data on various scales, across the whole genome or at 

the single base pair level. It is a Java program which can be installed on 

Windows, Linux or Mac. Usage is very simple - the desired file is opened 

within the program (in our case, indexed .bam files) and coordinates can be 

specified to focus on the regions of interest.  

 

Variant Calling 
In this project, the main aim of the study was the detection of variant sites 

within the sequenced regions. A wide range of variant calling software exists, 

both commercial and freeware, and each with its own relative strengths and 
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weaknesses in speed and accuracy. For individual sequencing data, the 

genome analysis toolkit (GATK) (McKenna et al. 2010) is emerging as the 

“gold standard” for variant calling, but this method (at the time of writing) 

was not applicable to pooled sequencing data. Two methods were used for 

variant calling in our data, both specifically designed with pooled sequencing 

designs in mind – Syzygy and CRISP. 

 

Syzygy 
Syzygy (Rivas et al. 2011) is a piece of software developed at the Broad 

Institute for the identification of variants in either pooled or individual 

sequencing data. In addition to simple identification of variants, it offers 

information on a number of other parameters, such as estimation of allele 

frequencies, power evaluation, single and group-wise marker association 

testing and basic annotation of detected variants. 

 

Syzygy requires a number of input files, additional to the aligned sequencing 

data. A dbSNP (http://www.ncbi.nlm.nih.gov/SNP/) file containing known 

variants within the region was downloaded from the Tables section of the 

UCSC genome browser (Kent et al. 2002). A separate reference file for each 

chromosome was needed (for CLU, CR1 and PICALM; chromosomes 8, 1 and 

11 respectively), which again was downloaded from UCSC. For each gene, a 

manually created tab delimited .pif and .tgf file was also required, following 

the format shown in figure 2.7. The .pif file provides Syzygy with information 

on the pools/samples being analysed, while the .tgf file contains information 

on the targeted region. 

 

Figure 2.7 – Format of Syzygy’s .pif and .tgf input files 

 

 
The format for the .pif file is shown in the top panel. This gives Syzygy information on 

the pooling design used, firstly specifying the names and location of the .bam files, 

giving the phenotype (in our case, irrelevant, as only case samples were utilised), 

along with the number of individuals (12) and chromosomes (24) per pool. Below is 

the format for the .tgf file. This gives Syzygy information on the regions which have 

been sequenced (including gene/feature name, chromosomal coordinates, size, and 

which genome build these numbers refer to).  
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Example command to use Syzygy:  

 
$ syzygy --pif CLU.pif --tgf CLU.tgf --outputdir ./ --ref 

chr8.fa --hg19 --dbsnp CLU.dbsnp --power  

 

CRISP 
CRISP (or Comprehensive Read analysis for Identification of SNVs (and short 

indels) from Pooled sequencing data) (Bansal 2010) is a program designed for 

the identification of both common and rare variants from at least two pools of 

sequencing data, although at least five pools are recommended for optimal 

results. The principle of the program is centred around the concept of 

comparing variant distribution across multiple sequencing pools to 

distinguish genuine rare variants from sequencing errors. For common variant 

identification, individual base quality scores are utilised to evaluate the 

likelihood of observing that number of non-reference base calls due to 

sequencing errors alone. Rare variants are assessed by contingency table, 

comparing the distribution of variant calls across DNA pools, which also 

reduces the number of false positive variant calls occurring due to sequence 

context. A diagrammatical explanation of this concept is presented in figure 

2.8, taken from Bansal 2010 (Bansal 2010). The program also takes in to 

account the size of the pool used, and any biases in the distribution of reads 

on the forward and reverse strands.  

 

Figure 2.8 – Detection of rare variants using CRISP 

 
Each box represents a sequencing pool, with the dots representing individual 

sequencing calls (white – reference, black – alternative). In scenario A, all alternative 

calls occur within a single pool. The p-value for the contingency table here would be 

0.02, indicating it is likely that this data did not arise from random chance alone, and a 

variant should be called. In scenario B, although there are the same number of 

alternative calls in the second pool, there are also alternative calls in other pools. The 

p-value for the contingency table in this instance would be 0.24, suggesting that this 

could have arisen through sequencing errors alone, and therefore should not be 

identified as a potential variant. Image taken from Bansal 2010 (Bansal 2010). 
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During the project, several different releases of CRISP were utilised for variant 

calling (v5, release 071812 and release 082412). The usage instructions below 

and the variants presented in this document pertain to the 082412 release of 

CRISP. 

 

Example command to run CRISP: 

 
$ ./CRISP_092412 –-bam CLU_1.bam --bam CLU_2.bam --bam 

CLU_3.bam --bam CLU_4.bam --bam CLU_5.bam --bam CLU_6.bam 

--bam CLU_7.bam --bam CLU_8.bam --ref 

Homo_sapiens.GRCh37.59.dna.toplevel.chr_only.valid.fa --

poolsize 24 --VCF CLU_variantcalls.vcf --qvoffset 33 --

regions 8:27450849-27475277 > CLU_variantcalls.log 

The poolsize specified is the haploid number of genomes per pool; in our case 

12 individuals = 24 haploid genomes. The command qvoffset specifies the 

quality value offset to be used in analysis, which should be 33 for data 

encoded in Sanger format, such as ours. This instructs the program how the 

quality scores of the data are coded, which varies across different sequencing 

platforms. Other commands can be incorporated to customise the algorithm, 

including altering the p-value thresholds for reporting SNPs, adjusting 

minimum base and minimum mapping quality. These options were left at 

their default settings. 

 

Coverage Calculations 
Average coverage for each of the regions of interest was calculated using the 

total reads aligned to the region (as outputted by SamStat) and the following 

equation: 

 

Average coverage = (number of reads * read length) / size of region (bp) 

 

This gave the average coverage for the region per pool, which could then be 

divided by 12 (i.e. the number of individuals in the sample) to calculate 

average coverage for the region per individual.  

 

% On Target 
The percentage of reads mapped to the target region was calculated for each 

pool, and an average for the whole experiment established, again using 

SamStat to obtain information on the number of reads which map to the target 

region, using the following equation: 

 

% on target = (number of reads on target / total number of reads generated) * 

100 

 

Enrichment factor calculations 
To assess the efficiency of the enrichment, enrichment factor calculations were 

performed, using the equation below: 
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Enrichment factor = average depth of coverage at region of interest (ROI)/ 

average depth of coverage across the rest of the genome 

 

Where: 

 

Average depth of coverage at ROI = reads mapping to ROI * read length (bp) / 

size of all ROIs (bp) 

 

Average depth of coverage across the rest of the genome = reads mapping to 

rest of genome * read length (bp) / size of genome (taken to be ~3,200,000,000 

bp) 

 
Ts/Tv Ratios 
Each SNP identified by CRISP was classified as a transition (A/G, T/C) or a 

transversion (A/C, A/T, G/C, G/T), and the ratio of transition to transverstions 

(Ts/Tv ratio) was calculated by dividing the number of transitions by the 

number of transversions. This was calculated separately for exonic and non-

exonic variants. 

 

Variant Effect Predictor 
Basic annotation of the polymorphisms called in the NGS data was conducted 

using Ensembl’s Variant Effect Predictor (VEP) (McLaren et al. 2010) (accessed 

November 2011), which provided information on where the variants lie in 

relation to the major transcripts of each gene and whether these were novel or 

had been documented in dbSNP. Additional information can be included for 

coding variants (e.g. position of affected amino acid in protein sequence, 

whether the variant is synonymous or non-synonymous, and SIFT/PolyPhen 

predictions of functional consequences for missense SNPs).  

 

The web based version of the program was utilised, ensuring the most up to 

date versions of the databases are interrogated, as the standalone perl script 

version relies on downloading datasets, which will quickly become dated.  

 

Uploading variants for assessment is simple, requiring a .vcf file of 

SNPs/indels of interest, such as the one generated by CRISP. The output file is 

typically a text document which can then be opened in Microsoft Excel on 

Windows or LibreCalc on Linux operating systems.  

 

The VEP gives the relative position of the variants compared to all of the 

transcripts Ensembl has in its database for that region. Many of these 

transcripts are not known and confirmed protein coding transcripts, so for 

each of the genes, the main transcripts of interest were identified, and data for 

these alone was utilised in further analysis. The selected transcripts were 

ENST00000316403 for CLU, ENST00000393346 for PICALM, and 

ENST00000400960 plus ENST00000367049 for CR1 (encoding the F and S 

isoforms respectively).  
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Uploading the variants to UCSC’s custom tracks function (Kent et al. 2002) 

was another way in which the variants detected could be put in context of the 

genes. This required the data to be in .bed format (a tab delimited format, with 

column one indicating the chromosome, and columns two and three 

specifying the start and end coordinates of the variant (for a SNP, these 

numbers will be the same)). Once the custom track is uploaded, navigating to 

the region of interest displays the variants where they fall within the gene.  

 

Tabix and the 1000 Genomes Project 
In order to obtain the most accurate and up to date frequency estimates from 

the 1000 genomes project data, a combination of Tabix and an in-house 

compiled perl script were used. The perl script is given in Appendix 2.2 

(written by former colleague, Hui Shi).  

 

The required input files are named Filename1 and Filename2. Filename1 gives 

details on the sample IDs and the population to which they belong. This is 

consistent for all genes and was obtained from the 1000 genomes project data 

site (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/). The second 

file, specified by filename2 is different for each gene, containing genotype 

information for a particular region. This was obtained using Tabix (example 

command shown below): 

 
$ ./tabix -hf 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521

/ALL.chr8.phase1_integrated_calls_20101123.snps_indels_sv

s.genotypes.vcf.gz 8:27450849-27475277 > CLU_Tabix_Out 

Where -hf specifies the location of the data of interest in the 1000genomes data 

ftp site, and the coordinates of interest are specified, pulling down the data for 

that region. Data for the four regions were obtained 04.01.2012. 

 

To run the script (example command): 

 
$ perl.pl  

(The input files are specified within the perl script itself) 

 

The output file can then be searched for coordinates of interest, and will give 

frequencies of variants at those positions for the four major 1000 genomes 

populations (EUR, AMR, AFR, ASN). 
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Sequencing Project Two 
 

2.6. CR1 Sequencing (Take Two) 
 

Due to the poor coverage obtained for the CR1 region in the first sequencing 

project, the gene was included in a second sequencing project conducted by 

the lab. Also included in this project were the other recently identified AD risk 

genes from GWAS (ABCA7, BIN1, the MS4A gene cluster, CD2AP, CD33 and 

EPHA1), in addition to other loci of interest to our group and collaborators 

(APOE, VAMP1, VAMP2, and the IDE/KIF locus). The details of these regions 

are presented in table 2.3.  

 

The basic methodology utilised in the second sequencing project was 

essentially the same as the first, but with a few differences and modifications. 

Firstly, following analysis of the initial sequencing project data, it was decided 

to utilise the repeat masker function offered in the design of the SureSelect 

baits, given that repetitive regions were poorly represented in the initial 

project, and that the inclusion of such regions was believed to contribute to the 

lower than expected percentage of reads mapping to the target regions. In the 

intervening time, a less stringent repeat masker had been incorporated into 

the eArray system, so this was utilised. Additionally, regions which can be 

problematic for sequencing, such as GC rich regions, were “boosted” in the 

design process, an option which Agilent’s online e-array system offers. This 

essentially means problematic regions were targeted by an increased number 

of baits, increasing the likelihood that these regions would be successfully 

sequenced.  

 

Given the advances in sequencing technology in the intervening time between 

the two projects, a different sequencing technology was utilised for the second 

sequencing project. Illumina’s HiSeq was used for the second project. With 

advances in technology and chemistry, this meant a greater quantity and 

quality of data were produced. Furthermore, a longer read length was utilised, 

and paired-end reads instead of single-end reads were used. Both of these 

factors contribute to more reliable alignment of reads to the reference genome. 

The use of 100bp reads, rather than 35bp makes alignment easier, with more 

reads uniquely matching to a single position in the genome. The use of paired-

end reads also enhances alignment. This is where a fragment of DNA of a 

known approximate length is sequenced from both ends, giving 100bp of 

sequence information for each, as well as positional information. Since it is 

known how far apart these reads should be it aids the mapping process, and 

improves the elucidation of structural rearrangements and copy number 

variation. 
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Table 2.3 – Regions targeted by second sequencing project 

Locus Coordinates bp 

Target bp 

Covered 

% bp 

Baited bp Excised Extra +/- ~150bp 

CR1 Chr1:207667495-207816719 149224 110252 73.88 1:207667345-207816869 

ABCA7 Chr19:1038952-1066720 27768 21472 77.32 19:1038800-1066850 

BIN1 Chr2:127778085-127895723 117638 98261 83.53 2:127777935-127895873 

MS4A_LD_Locus Chr11:59856028-60041296 185268 129093 69.68 11:59855878-60041446 

VAMP1 Chr12:6566406-6584843 18437 13059 70.83 12:6566256-6584993 

VAMP2 Chr17:8057465-8071293 13828 10852 78.47 17:8057315-8071443 

TRIM15 Chr6:30132298-30138448 6150 4426 71.96 6:30132148-30138598 

SPARCL1 A - Chr4:88442070-88447047 4977 3981 79.97   

  B - Chr4:88426174-88435612 9438 7011 74.28   

  C - Chr4:88403759-88416324 12565 5467 43.51   

CD2AP Chr6:47427281-47601015 173734 120861 69.56 6:47427131-47601165 

CD33 Chr19:51718317-51748546 30229 18690 61.83 19:51718167-51748696 

EPHA1 Chr7:143082382-143110385 28003 24275 86.68 7:143082232-143110535 

IDE_KIF11_HHEX Chr10:94192885-94491751 298866 169051 56.56 10:94192735-94491901 

APOE Chr19:45260160-45451160 191000 96074 50.30 19:45260010-45451310 

 

Total/Average 1,267,125 832,825 69.89 

 Details of the targeted regions from the second sequencing project, including genes and coordinates, the size of the target region, and the amount of the target 

region and percentage successfully baited. Coordinates in the last column indicate the final region actually targeted. For the SPARCL1 targets, 150bp had 

already been added to the ends of the region, so this was not repeated. 
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Data analysis was largely conducted as before. Based on the first project, 

BFAST was selected as the alignment method of choice (with slight 

modifications to adapt to the different sequencing technology used), while 

CRISP was utilised for variant calling (as before). For the justification of these 

decisions, see Section 3 – defining the pipeline.  

 

BFAST 
Because the data for the second project was paired end data, the files had to be 

interleaved before BFAST could be run. This process involved taking the two 

separate files (one for the first read set, one for the second read set (the pairs)) 

and generating a single file with both reads aligned to the same strand 

(requiring the reverse complement of the second read set to be generated), 

whilst maintaining the quality score information for both. 

 

The script (shuffle_fastq_new_100412.pl) used to do this was written in-house, 

with guidance from Nils Homer, the creator of BFAST. The contents of this 

script are shown in Appendix section 2.3. 

 

Example command to run script: 

 
$ perl shuffle_fastq_new_100412.pl 

Extracted_Reads/L001_R1.fq Extracted_Reads/L001_R2.fq 

Sample1_R1R2.fastq 

 

After the interleaving step, alignment was run as documented for project 1, 

except that the indexes used were different since the reads here were longer 

(see figure 2.9). 

 

Figure 2.9 – Indexes for BFAST alignment of reads >40bp 

 
Indexes for BFAST indexing step when using Illumina data with a read length greater 

than 40bp. 
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2.7. Prioritisation and Validation 
 
Sanger Sequencing 
PCR primers were designed to amplify a region including at least 100bp either 

side of the positions of interest using Primer3 (Rozen and Skaletsky 2000) 

v0.4.0 (http://frodo.wi.mit.edu/). Specificity for each primer pair was checked 

using UCSC’s (Kent et al. 2002) Virtual PCR function 

(http://genome.ucsc.edu/cgi-bin/hgPcr), and the primer binding sites were 

determined to be free of known polymorphisms using NGRL Manchester’s 

SNPCheck v2.1 (https://ngrl.manchester.ac.uk/SNPCheckV2/snpcheck.htm). 

 

PCR optimisation and amplifications were completed following the standard 

laboratory protocol (reaction mix: 1xPCR buffer (Roche Diagnostics Corp.); 

200μM dNTPs (Fermentas); 1μM of each primer (Eurogentec Biologics); 1 unit 

Taq DNA Polymerase (Roche Diagnostics Corp.); plus molecular grade water 

up to a final volume of 30μl. Primer concentrations were halved for 8:27466924 

and doubled for 1:207690803 after optimisation. Thermal cycling conditions 

used were 94°C for two minutes; 30 cycles of 94°C for 30 seconds, appropriate 

annealing temperature for 1 minute, 72°C for 1 minute; and finally 72°C for 7 

minutes). Primer sequences and annealing temperatures for the SNPs 

validated by this method are shown in Table 2.4. Sequencing was conducted 

using PCR primers with Applied Biosystems BigDye Terminator v3.1 

chemistry, run on the ABI 3130xl (Applied Biosystems). Chromas Lite v2.01  

(http://www.technelysium.com.au/chromas_lite.html) was used to visualise 

electropherograms which were assessed by eye to determine genotype. In 

each case, one pool of samples (12 individuals) was Sanger sequenced. The 

pool to be sequenced was selected based on having the highest proportion of 

alternative reads in the NGS data at the position of interest. 
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Table 2.4 – PCR primers and annealing temperatures 

Variant 

(Chr:coordinate) 

Forward Primer Sequence Reverse Primer Sequence Annealing 

Temperature 

8:27452179 GCG-GTG-AGC-TAT-GAT-TCC-AC GCT-CAG-GTG-CCC-AAT-CCT-AT 64ºC 

8:27466924 CTG-CAC-CCT-ACT-GCT-TAG-AAA TGC-ATT-TGT-CAC-CAG-TGC-TAT 54ºC 

8:27473743 ATG-AGG-AAT-CGG-GAA-TGG-AT GGA-GCG-AGC-TCA-AAA-ACA-AT 60ºC 

11:85668102 CAC-CCA-GCT-CCT-TTT-CTG-AT GGA-TCA-AAA-GCT-TTG-CAT-TGA 58ºC 

11:85692077 TGG-AAT-ATG-TCT-GGC-ACA-AAG GGG-ATC-TAA-CTG-GCA-ACC-AA 58ºC 

11:85774424 TGT-CTC-ACA-AAG-CGT-ATG-AAA-G GGC-AGA-ACA-GAA-TGC-CTG-AG 60ºC 

1:207690803 GTG-TGT-GCA-GGA-TTG-CTC-AT TGT-TAC-ACA-AAT-TGT-TCC-AGA-CA 62ºC 

Primers and annealing temperatures for the variants selected for Sanger validation from the NGS data. 
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Exome Project 
Validation by Sanger sequencing is both expensive and time consuming: 

impractical for the large number of variants detected by our NGS 

experiments.  

 

Through collaboration with John Hardy’s group at UCL (correspondence via 

Rita Guerriero), we were able to pseudo-validate our coding variants. The 

group at UCL had exome sequencing data for up to 143 cases and 183 controls, 

and were able to look up our exonic variants in their data set, providing 

immediate “validation” for our SNPs, since variants present in both data sets 

were assumed to be genuine (data as published in (Guerreiro et al. 2013)).  

 

Imputation 
Imputation was used to enable us to perform association testing on detected 

variants within GWAS data available to us. This was in the form of a 

combined ARUK/Mayo GWAS data set, comprised of 2067 AD cases and 1376 

controls, genotyped using Illumina’s HumanHap300v1. 6000 control samples 

from the WTCCC2 project (3000 from the 1958 birth cohort (58C), and 3000 

from the National Blood Service (NBS) cohort), genotyped using the Illumina 

1.2M (custom) chip were also utilised. These are population controls, so some 

may develop AD later in life.  

 

Both the merged data set and the WTCCC2 data sets were aligned to hg18, 

while the reference haplotypes to be used were aligned to hg19. To 

accommodate this, the GWAS data were converted to hg19 using plink 

(http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell et al. 2007) and UCSC’s 

liftOver program (available online at http://genome.ucsc.edu/cgi- 

bin/hgLiftOver or as a downloadable tool at http://hgdownload.cse.ucsc.edu 

/admin/exe/).  

 

To convert the Mayo/ARUK merged data set: 

 
$ ./plink --bfile MERGED_MAYO_ARUK --recode --out 

Merged_Mayo_ARUK_hg18 --noweb --allownosex 

Where MERGED_MAYO_ARUK specified the input files (.bed, .bim, .fam), 

and the output is in .map and .ped format. --noweb instructs plink not to 

connect to the web for updates, as this can disrupt the running of the 

program, and --allownosex allows individuals without gender information to 

be included. 

 

The input for liftOver required chromosome, start position, end position, and 

rsID. All of this information was extracted from the .map file using the 

following awk command: 

 
$ awk ‘{print “chr”$1, “\t”, $4, “\t”, $4+1 “\t”, $2}c’ 

Merged_Mayo_ARUK_hg18.map > out_chr.bed  
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liftOver was then used to change the coordinates in the file to hg19, using a 

chain file downloaded from UCSC (hg18Tohg19.over.chain.gz, from 

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/liftOver/): 

 
$ ./liftOver out_chr.bed hg18Tohg19.over.chain.gz 

Merged_hg19.bed unMapped 

The unMapped command means any coordinates that cannot be lifted over 

are printed to a separate file.  

 

To recode the actual GWAS data, plink required a file that was simply rsID 

and coordinate, separated by a tab. Again, awk commands were used to 

obtain this information: 

 
$ awk ‘{print $4, “\t”, $2}’ Merged_hg19.bed > 

hg19_Merged.txt 

 

Then plink was used to recode the GWAS data: 

 
$ ./plink --bfile MERGED_MAYO_ARUK --update-map 

hg19_Merged.txt --make-bed --out Merged_data_hg19 --noweb 

--allownosex 

 

This gave the .bed, .bim and .fam files for the combined data set in hg19. 

Regions of interest (in this case individual chromosomes) were then separated 

out of the whole genomic file: 

 
$ ./plink --bfile Merged_data_hg19 --chr8 --make-bed --

out chr8_Merged --noweb --allownosex 

Giving .bed, .bim and .fam for chromosome 8. 

 
$  ./plink --bfile chr8_Merged  --recode --out 

chr8_Merged --noweb --allownosex 

Giving .map and .ped files for the chromosome, which can then be converted 

via gtool (http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html) to 

the .gens and .samples files required by the imputation software. 

 
$ ./gtool -P --ped chr8_Merged.ped --map chr8_Merged.map 

--og chr8_Merged.gens --os chr8_Merged.samples 

 

This was done for all of the chromosomes of interest: 8, 1, 11, and 19, where 

the APOE locus lies. The .samples file required some editing (under 

“phenotype” P was changed to B to demonstrate that it is a binary trait, and 

plink’s 1+2 coding (for cases and controls) was altered to 0+1 coding. A final 

column was also added as a covariate called “centre”, with D on the second 

row (to demonstrate it was a discrete not continuous covariate). ARUK 

samples were coded 1, while Mayo samples were coded 4, allowing for 

correction based on centre when running association tests later. Any missing 

values were changed from plink’s default of -9 to “NA”, which is recognised 

as “value missing” when running the imputation and association testing.  
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For the WTCCC2 data, preparation was conducted slightly differently: firstly, 

the data was encrypted, so needed to be decrypted and unpacked using 

Kleopatra (http://www.kde.org/applications/utilities/kleopatra/) and the 

encryption key supplied. This data was also different in that each 

chromosome had a separate .gens file. To facilitate the alteration of the data 

from hg18 to hg19, a colleague, Christopher Medway, wrote a number of perl 

scripts.  

 

The first step was to unzip the .gens data file, then similar to above, use awk 

commands to extract the required information for the liftover step: 

 
$ awk ‘{print “chr8”, “\t”, “$3”, “\t”, $3+1, “\t”, $1}’ 

58C_chr8.gens > 58C_chr8.bed 

The chromosome number needed to be adjusted so that all chromosomes of 

interest, for both the NBS and 58C data were processed. 

 

This .bed file was then used in the liftOver process: 

 
$ ./liftOver 58C_chr8.bed hg18Tohg19_over.chain.gz 

chr8_hg19_58C.bed unMapped 

 

The output from this, plus the original .gens file (in this example, 

58C_chr8.gens) could then be called in to the perl script liftOverGen.pl (see 

Appendix section 2.4), which replaces the coordinate in the .gens file to match 

hg19 numbering: 

 
$ perl liftOverGen.pl chr8_58C.gens chr8_hg19_58C.bed 

N.B. The output file each time was named OUTPUT.txt, so needed renaming 

(in this case, to chr8_hg19_58C.gens) before running the program again, to 

ensure this is not overwritten. 

 

The WTCCC2 .samples files also required some recoding (e.g. recode 

phenotype, add centre information), which again, Christopher Medway 

compiled a perl script to complete - recode_WTCCC2.sample.pl (see 

Appendix section 2.5).  

 

To run the script: 

 
$ perl recode_WTCCC2.sample.pl WTCCC2_NBS.sample 

 

Once all the files were prepared, the imputation itself was run. Imputev2.2.2 

(http://mathgen.stats.ox.ac.uk/impute/impute_v2.html) (Howie et al. 2009) 

was used - with each data file requiring separate processing (i.e. each of the 

chromosomes of interest, for each of the three (ARUK/Mayo Merged, 58C and 

NBS) datasets).  
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Example command: 

 
$ ./impute2 -m genetic_map_chr8_combined_b37.txt -h 

ALL_1000G_phase1integrated_v3_chr8_impute.hap.gz -l 

ALL_1000G_phase1integrated_v3_chr8_impute.legend.gz -g 

chr8_58C_hg19_58C.gens -align_by_maf_g -int 26450849 

28475277 -Ne 20000 -o CLU_58C_phased.impute2 

Where -m gives a fine scale recombination map for the region to be analysed 

(in this case, chromosome 8 (downloaded from impute2 website)), -h is a file 

of known haplotypes and -l is the corresponding legend file (both also 

downloaded from impute2 website). -g is the data file containing genotypes 

for the GWAS data (in .gens format, as created above), and requires a 

corresponding .samples file (again, as discussed above). The format of these 

files is shown in Figure 2.10. -int specifies the region to be imputed (26450849-

28475277 for CLU, 84665237-86870094 PICALM, 206667495-208816719 for CR1, 

and 44394477-46412650 for APOE). -Ne specifies the effective size of the 

population from which the imputed data was sampled. When using the full 

panel of reference hapotypes (as recommended), an -Ne of 20,000 is suggested. 

The command -align_by_maf_g was used for the WTCCC2 data, as no strand 

file was available for this data. This instructs impute2 to deduce the strand for 

each variant. For the Merged data, the strand file BDCHP-1x10-

HumanHap300v1-1_11219278_C-b37-strand.zip was used (downloaded from 

http://www.well.ox.ac.uk/~wrayner/strand/). This had to be unzipped, then the 

necessary information extracted (impute2 strand files only need coordinate 

and a + or - to specify the strand, the file as downloaded contained extra 

information) using an awk command: 

 
$ awk ‘{print $3, $5}’ BDCHP-1x10-HumanHap300v1-

1_11219278_C-b37-strand > HumanHap300v1.stand 

 

Figure 2.10 – Format for .gens and .samples files for Impute2 

 

 
Above: Format of the .gens file taken from the Impute2 file format website 

(http://www.stats.ox.ac.uk/~marchini/software/gwas/file_format.html). There is one 

line of information per SNP, including variant ID, rs ID, coordinate, allele A and allele 

B. The next numbers are the probabilities of genotypes (homozygous allele A, 

heterozygous, homozygous allele B) for that individual at the SNPs in question. 

Below: Format of the .samples file, example shown is for chromosome 8 from the 

ARUK/Mayo merged data set. The top line is the header, specifying the contents of 

http://www.well.ox.ac.uk/~wrayner/strand/
http://www.stats.ox.ac.uk/~marchini/software/gwas/file_format.html
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each column, followed by a line describing the type of variable in each column where 

necessary (D for discrete covariates, B for binary phenotypes (0 = controls, 1 = cases)). 

The following lines contain the information specified in the header for each of the 

individuals being included in the imputation, with one line per individual. 

 

Once the imputation was run for all regions and all datasets, another perl 

script written by Christopher Medway (remove_dup_lines.pl) was used to 

remove duplicate positions. The datasets were generated using different chips, 

so the command -overlap will need to be used when association testing, but 

this will not work if the files have more than one variant at a given position. 

The contents of this perl script are given in Appendix section 2.6, and an 

example command is given below: 

 
$ perl remove_dup_lines.pl CLU_58C_phased.impute2 

 

The output from this script was named in the form of 

CLU_58C_phased.impute2_duplicates_removed. Snptest_v2.4.1 

(https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html) 

(Marchini and Howie 2010) was then used to test the imputed variants for 

association with AD. An example command is given below:  

 
$ ./snptest_v2.4.1 -data 

CLU_Merged_phased.impute2_duplicates_removed 

chr8_Merged.samples 

CLU_NBS_phased.impute2_duplicates_removed 

chr8_NBS.samples 

CLU_58C_phased.impute2_duplicates_removed 

chr8_58C.samples -o CLU_Full_snptest.out -frequentist 1 -

method threshold -pheno phenotype -cov_names centre -

overlap 

 

2.8. In Silico Functional Analyses of Coding Variants 
 

A number of in silico functional analyses were conducted on the coding 

variants to prioritise those likely to be having functional consequences on 

protein structure, expression or regulation of the gene. 

 

LD Calculations 
Calculating the level of LD between the GWAS SNP and detected variants can 

help disentangle which variants could be underlying the reported association 

with AD from GWAS, and which may be independent from this effect.  

 

Christopher Medway wrote a perl program (LD_calculator.pl – script contents 

shown in Appendix section 2.8), utilising VCFtools (http://vcftools.sourceforge 

.net/) and Tabix (http://samtools.sourceforge.net/tabix.shtml), to calculate the 

level of LD between a specified SNP (in our case, the main GWAS SNP(s) for 

the locus) and a list of variants of interest presented by chromosome number, 

coordinate and rs number (if available) in a tab delimited text format. The files 
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Phase1_Samples_GBR_CEU and vcf-subset were needed to filter the samples 

to give only data for GBR and CEU populations (the most relevant to our 

study samples). 

 

Example command: 

 
$ perl LD_calculator.pl rs11136000 chr8 27464519 

CLU_SNPs.txt 

Where rs___ gives the identity of the reference variant (here, the CLU GWAS 

SNP), followed by the chromosome and coordinate of that variant 

 

Output from the program gives LD scores in both D’ and r2 for the variants, as 

well as the number of samples on which this has been calculated. 

 

Prediction of Non-synonymous Functional 
Consequences 
Included in the output of Ensembl’s VEP (McLaren et al. 2010) were Polyphen 

(Adzhubei et al. 2010) predictions for the consequence of the variants detected 

on the structural integrity and function of the proteins.  

 

Splicing Investigations 
A number of different programs were utilised to assess any impact on the 

splicing of the gene likely to arise from the observed variants in our samples.  

 

Preparing the input for the programs involved obtaining the sequence of the 

affected exon, plus at least 100bp of surrounding intronic sequence, for each of 

the variants of interest, both synonymous and non-synonymous changes. The 

wild type and variant forms of the sequence were run through the programs, 

and any differences between the two recorded. The programs used were all 

web based interfaces, all functioning in a similar way. 

 

ESEfinder v3.0: ESEfinder (Cartegni et al. 2003) incorporates two different 

functions for the assessment of splicing variants, both of which were utilised. 

The first (SpliceSites) predicts the actual donor and acceptor sites within the 

sequence provided. Mouse splice sites, included as default, were not included 

in our analysis. The other function, SRProteins predicts binding sites for the 

serine/arginine-rich splicing regulatory protein family and was used with 

default settings.  

 

BDGP: The Berkeley Drosophila Genome Project site (BDGP) (Reese et al. 

1997) offers a tool for predicting splice donor and acceptor sites. Used 

“Human/other” option, all other settings as default. 

 

NetGene2: Again, NetGene2 (Hebsgaard et al. 1996) provides a program for 

the prediction of splice sites (again, used “Human” option, and all settings as 

default). 
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UTR variants and miRNAs 
Ten of the variants called at the CLU locus fell within the gene’s 3’ 

untranslated region (UTR). Knowing variants in this region can have an 

impact on the regulation and expression of a gene, partly through the binding 

of miRNAs, TargetScan v6.1 (Garcia et al. 2011) was used. This predicts the 

binding sites of miRNAs by searching for conserved 7-8bp regions that match 

the seed region of known miRNAs. Entering the desired species (Human) and 

gene ID (CLU) gave the locations of all miRNA binding sites predicted within 

the UTR of that gene. These were then overlaid with the variants detected to 

see if any of the variants fell within these sites, and how this may affect the 

gene. 

 

Any variants which fell within predicted miRNA sites via this method were 

then followed up in a second program, PITA from the Segal Lab of 

Computational Biology at the Weizmann Institute (Kertesz et al. 2007). This 

looks at miRNA binding sites in a given UTR sequence, so it was possible to 

run predictions for the wild type version of the sequence, as well as the 

sequence of the UTR with the variant positions included individually. The 

“Predict Your UTR” function was utilised, with default settings, for each of 

the UTR sequences. 

 

2.9. In Silico Functional Assessment of Non-coding 
Variants 
 

Due to the large number of detected non-coding variants, a number of in silico 

resources were utilised to assess which of the variants could be having 

functional consequences on gene regulation, and thus should be prioritised for 

further study. 

 

As above, levels of LD with the reference SNP were calculated. 

 

Conservation 
Conservation at the site of variants of interest could highlight potentially 

interesting SNPs, since those under strict genetic conservation are likely to be 

more damaging when altered. To assess the conservation at each of the variant 

sites, a perl script (conservation.pl, see Appendix section 2.7) was compiled by 

Christopher Medway to extract conservation information downloaded from 

the UCSC genome browser (tables > comparative genomics > conservation) for 

relevant positions. Two types of conservation score are contained within 

UCSC - Phastcons and PhyloP - mammalian conservation scores for each for 

the regions of interest were downloaded (Siepel et al. 2005; Pollard et al. 2010). 

To run the script, this data, plus a SNP list (bp coordinate only, in a text 

document) for the variants of interest were needed. An example command to 

run the script is shown below: 

 
$ perl conservation.pl CLU.phastcon CLU_SNPs.txt > 

CLU_phast.txt 
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ENCODE Data 
The UCSC genome browser contains a wealth of information from the 

Encyclopaedia of DNA Elements (ENCODE) project (ENCODE 2011). 

Colleague, Christopher Medway, wrote a perl script to extract information of 

interest (DNAseI hypersensitivity clusters, transcription factor binding sites 

(from ChIP-Seq) and acetylation/methylation data, all of which can imply 

functional activity) from the UCSC genome browser, based on Ensembl’s VEP. 

This program is pending publication, so the perl code is not given. 

 

TaqMan Assays 
TaqMan assays were used to genotype two potentially functional SNPs in the 

rs3851179 LD block region in an independent case-control cohort to test for 

association with AD.  

 

The TaqMan assays for the two variants were designed and synthesised by 

Applied Biosystems. Table 2.5 gives the details of these assays (including 

primer and probe sequences, and the number of individuals (cases and 

controls) genotyped using each assay). All genotyping was carried out by Ng 

See May, as the basis of her dissertation for her MSc in Molecular Diagnostics. 

TaqMan reactions were conducted in a total volume of 20µl, with 0.9xTaqMan 

Universal PCR Master Mix, 1xTaqMan SNP Genotyping Assay Mix (both from 

Applied Biosystems), plus 10ng of genomic DNA and nuclease free water to 

reach the final volume. No-template controls (NTCs) were included in each 

run to test for contamination. An MX3000P Real-Time PCR Thermocycler 

from Stratagene was used for the experiment, with cycling conditions of 50°C 

for 2 mins, followed by a denaturation cycle at 95°C for 10 mins, and 50 cycles 

of denaturation and annealing (respectively, 92°C for 15 seconds, 60°C for 1 

minute). Genotypes were analysed using Agilent’s MxProTM software.  

 

Association testing was performed by Fisher’s Exact Test using SPSSv19, and 

the power of the study was assessed using Quanto.  

 

Table 2.5 – TaqMan assay design for rs3851179 LD block variants 

 
Information on TaqMan assay design, and the number of individuals genotyped with 

each assay, conducted by Ng See May. 

 

Sanger validation of the two variants was also conducted, as described above. 

As the variants were only ~250bp apart, the same primers could be used in the 

sequencing of the two variants. Details of the PCR and sequencing primers 

used are given in Table 2.6. The sequencing provided positive control samples 

to use in the TaqMan genotyping assays where appropriate.  
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Table 2.6 – Sanger sequencing rs3851179 LD block variants 

 
Information on the variants and primers for the SNPs Sanger sequenced by Ng See 

May in the LD block containing rs3851179 near PICALM. 
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3. Data Analysis 
 

This chapter describes in detail the processing of the NGS data, from raw 

reads in FastQ format to identified variants. A number of different programs 

were utilised and compared, enabling the development of a pipeline of 

programs best suited to handling data of this type.  

 
3.1. Next Generation Sequencing 
 

From the first sequencing project, a total of 380,589,701 38bp single end reads 

were obtained from Source Biosciences from the Illumina GaIIX. Each pool of 

samples was run on a separate lane of the flow cell. A breakdown of the reads 

and qualities per pool is given in Table 3.1. 

 

Table 3.1 – Sequencing statistics from NGS project 1 

Pool Yield 

(Mbases) 

% Clusters 

that passed 

filtering 

Number of 

reads 

% of >=Q30 

bases 

Mean quality 

score 

1 1418 80.73 46,208,988 94.57 37.48 

2 1405 82.77 44,684,019 95.13 37.66 

3 1478 75.79 51,324,331 93.27 37.02 

4 1227 61.80 52,242,572 87.86 35.35 

5 1385 67.04 54,350,139 88.23 35.48 

6 1392 83.13 44,061,669 95.04 37.62 

7 1254 85.18 38,748,346 96.04 38.00 

8 1467 78.83 48,969,637 94.09 37.30 

Information on data produced by Source Biosciences from NGS project 1, including 

information on the number and quality of reads produced. 

 

From the second sequencing project, 2,170,649,020 100bp paired end reads 

were obtained from Source Biosciences from Illumina’s HiSeq. Again, each 

pool of samples was run on a separate lane of the flow cell, and a summary of 

reads and qualities per pool is provided in Table 3.2. 

 

Table 3.2 – Sequencing statistics from NGS project 2 

Pool Yield 

(Mbases) 

% Clusters 

that passed 

filtering 

Number of 

reads 

% of >=Q30 

bases 

Mean quality 

score 

1 21,981 92.48 237,697,912 86.02 34.26 

2 25,032 90.47 276,674,942 84.15 33.69 

3 22,541 92.44 243,847,388 85.89 34.23 

4 25,668 89.86 285,634,842, 84.56 33.80 

5 24,206 91.22 265,350,864 85.57 34.11 

6 27,729 87.26 317,781,166 81.25 32.81 

7 23,356 91.60 254,987,838 85.19 34.01 

8 25,850 89.55 288,674,068 83.13 33.38 
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Information on data produced by Source Biosciences from NGS project 2, including 

information on the number and quality of reads produced. 

 

 

 

 

3.2. FastQC 
 

An initial assessment of the quality of the data produced by each NGS run 

was conducted using FastQC.  

 

The program gives summary statistics for multiple parameters, classifying 

each file with a pass, warning or fail, designed to highlight any potential 

issues or biases with the data produced when compared to a “normal” NGS 

dataset. The summary information from FastQC for the first sequencing 

project is given in Table 3.3, with the same information for the second 

sequencing run presented in Table 3.4. The program also provides graphical 

representations of these parameters. The graphs for the per-base sequence 

quality scores for each sample, which provides the most insight in to the 

overall quality of the data, are presented in Figure 3.1 and Figure 3.2 for NGS 

projects 1 and 2 respectively.  
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Table 3.3 – FastQC summary statistics for NGS project 1 

Sample Per base 

sequence 

quality 

Per base 

sequence 

quality 

scores 

Per base 

sequence 

content 

per base 

GC 

content 

Per 

sequence 

GC 

content 

Per base 

N 

content 

Sequence 

length 

distribution 

Sequence 

duplication 

levels 

Over-

represented 

sequences 

1 Pass Pass Pass Pass Warning Pass Pass Pass Warning 

2 Pass Pass Pass Pass Warning Pass Pass Pass Warning 

3 Pass Pass Pass Pass Warning Pass Pass Pass Warning 

4 Fail Pass Pass Pass Warning Pass Pass Pass Warning 

5 Fail Pass Pass Pass Warning Pass Pass Pass Warning 

6 Pass Pass Pass Pass Warning Pass Pass Pass Warning 

7 Pass Pass Pass Pass Warning Pass Pass Pass Warning 

8 Pass Pass Pass Pass Warning Pass Pass Pass Warning 

FastQC summary statistics on raw data quality from NGS project 1 
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Table 3.4 – Fast QC summery statistics for NGS project 2 

Sample Per base 

sequence 

quality 

Per base 

sequence 

quality 

scores 

Per base 

sequence 

content 

per base 

GC 

content 

Per 

sequence 

GC 

content 

Per base 

N 

content 

Sequence 

length 

distribution 

Sequence 

duplication 

levels 

Over-

represented 

sequences 

1 (R1) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

1 (R2) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

2 (R1) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

2 (R2) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

3 (R1) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

3 (R2) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

4 (R1) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

4 (R2) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

5 (R1) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

5 (R2) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

6 (R1) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

6 (R2) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

7 (R1) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

7 (R2) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

8 (R1) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

8 (R2) Fail Pass Warning Pass Warning Pass Pass Fail Pass 

FastQC summary statistics on raw data quality from NGS project 2. Each sample has two data files this time – the forward and reverse reads generated by the 

use of paired end reads, indicated by R1 and R2.  
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Figure 3.1 – FastQC graphs for NGS project 1  

 
Graphical representation of the per-base sequence quality from FastQC for each of the 

8 pools of samples. The red line and blue line represent the median and mean quality 

values respectively, with the yellow box showing the interquartile range and the 

whiskers showing the 10% and 90% values. The background colours represent 

different quality scores, with green indicating very good quality, orange representing 

reasonable quality and red showing poor quality.  
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Figure 3.2 – FastQC graphs for NGS project 2 
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Graphical representation of the per-base sequence quality from FastQC for the 

forward and reverse reads of each of the 8 sample pools. The red line and blue line 

represent the median and mean quality values respectively, with the yellow box 

showing the interquartile range and the whiskers showing the 10% and 90% values. 

The background colours represent different quality scores, with green indicating very 

good quality, orange representing reasonable quality and red showing poor quality. 

 

3.3. Discussion of NGS and FastQC data 
 

The difference between the number of reads generated by the first and second 

sequencing projects (~380.6 million vs. ~2,170.6 million) is a direct reflection of 

the advancements in sequencing technology in the intervening time (around 9 

months). The improvements in chemical and engineering technologies utilised 

by the later Illumina HiSeq model resulted in the generation of around 5.7x 

more reads from the latter NGS project, and those reads of a longer read 

length. 

 

The first parameter assessed by FastQC is the per base sequence quality. This 

gives an overview of the range of quality scores across all positions of a read. 
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Graphical representations of these are shown in Figures 3.1 and 3.2. From the 

summary information given in Tables 3.3 and 3.4 it can be seen that samples 4 

and 5 from NGS project 1 and all of the samples from NGS project 2 failed on 

this parameter. A fail is given if the lower quartile for any position is below 5, 

or the median for any position is below a score of 20. For samples 4 and 5 from 

project 1, it can be seen in Figure 3.1 that the quartile does indeed dip below a 

score of 5, hence why a warning has been provided. However, the median 

score for these reads remains reasonably high, indeed, comparable to the 

median for the other samples which have not failed this measure. Taken 

together, this suggests that there are a greater number of poor quality reads 

within these sample pools, however, the median quality is still high, and 

particularly poor reads will simply not be aligned, so should not affect the 

quality of data in further processing.  

 

The second project featured a much longer read length than did the first 

(100bp rather than 38bp). It is expected that per base quality will decrease 

across the length of a read, which is more markedly apparent when using 

longer read lengths. The “fails” have been given because the lower quartiles 

fall below a quality score of 5. However, for the most part, the mean read 

qualities remain in the green section (indicative of good quality) until around 

the 80base mark, while the median remains in the green region for the full 

length of the read. Again, this shows that for the majority of the reads, the 

base quality is good across the full read, and the fail is more an indicator of a 

wider spread of qualities. As stated before, any particularly poor quality reads 

will simply fail to be aligned, so will not have an impact on data quality at 

further processing stages.  

 

The next parameter the program reports is the per sequence quality score, 

which identifies any subsets of reads that have unusually low quality scores. 

No warnings or failures were given for this parameter for any of the data files. 

Next is the per base sequence content, which all of the samples from the first 

project passed, and all of the files from the second project were given 

warnings for. This shows the proportion of each base at each position across 

the read, with strong differences potentially indicative of biases in the data. 

The score a sample is given for this can be biased by the sequencing primers 

that are added to each read, which are GC rich, and therefore the warnings 

given for the second sequencing project are not a cause for concern.  

 

The per base GC content shows the GC content for each position across the 

length of a read, which ideally should be consistent throughout. This was the 

case for our data, so no warnings or failures were issued for any of the 

samples. The per sequence GC content score compares the GC content across 

the sequence with a modelled normal distribution of GC content. All sample 

files for both sequencing projects received a warning for this parameter. 

Although unusually shaped distributions can be indicative of contamination 

of a sample, it is likely that in this case the deviation arose from the inclusion 

of the GC rich primer sequences, as mentioned above. The per base N content 
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shows the number of “N” calls at each position in the read, and should not 

exceed a few percent, which was the case for all samples from both projects. 

The sequence length distribution gives a score based on the consistency of 

read lengths within a file. For each of the projects, these were exactly as 

expected (38bp for project 1, 100bp for project 2). The sequence duplication 

levels for the first sequencing project all passed, but all files containing the 

second project’s data failed this parameter. This is a measure of the degree of 

duplication for each of the sequences in the set, low levels of which can 

indicate good coverage. However, when enriching for a particular region of 

the genome, such has been done for these projects, and multiple individuals 

are included in each sample pool, a reasonable level of sequence duplication is 

expected. Due to the vast increase in the number of reads in the second project 

over the first, it would be expected that the duplication levels would be 

higher. It may also be indicative that the enrichment process worked better for 

the second than first sequencing project. All of the second project’s samples 

passed the over-represented sequences tests, but the first project’s all received 

warnings. This test lists all sequences that make up more than 0.1% of the 

total, and can be indicative of contamination. However, the only sequence 

reported as featuring in this many reads was a string of “N”s, so actually 

indicates a quality issue with these reads. All this means is the base qualities 

in >0.1% of reads were not high enough to definitively indentify which bases 

were present, and were therefore called as “N”s. However, as discussed 

above, poor quality reads will not be aligned, and so will not affect 

downstream processing.  

 

Although sample files from both projects received warnings or failures for 

various parameters, these were largely for expected or justifiable reasons. 

FastQC is not designed to give an exact representation of the quality of the 

data, but rather a comparison to a standard NGS dataset, which ours, with its 

target enrichment and sample pooling is not.  

 

3.4. Defining the pipeline 
 

A number of different programs were utilised in processing the data from 

NGS project 1 to allow an assessment of the best available processing pipeline, 

given that there was no “gold standard” for handling pooled sequencing data. 

The optimal set of programs to meet our requirements was determined based 

on the results and analyses presented below. 

 

Alignment 
Both BFAST and MOSAIK took around six weeks to align the 8 sets of NGS 

data to the reference human genome, requiring approximately equivalent 

processing power. After the alignment, the files were split in to regions 

corresponding to the four loci of interest (CLU, CR1, PICALM and the 

rs3851179 LD block). Testing of programs presented from here on mainly 

utilises the CLU data, given that this was the smallest of the regions sequenced 
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and would therefore allow a quicker assessment of programs, with the best 

being applied to the other regions in due course. 

 

SamStat was used to allow a comparison of the quality of the alignments 

produced by BFAST and MOSAIK. The aligned data pertaining to the four 

targeted loci for each of the 8 aligned samples were analysed using SamStat. 

Graphical information on the quality of the alignments produced by SamStat 

for the CLU region is provided in Figure 3.3, and is representative of the data 

as a whole. Tables 3.5 and 3.6 show the data from SamStat’s output for each of 

the four regions targeted in project 1 for MOSAIK and BFAST respectively. 

 

From the pie charts shown in Figure 3.3, it is obvious that BFAST consistently 

has a higher proportion of reads achieving the greatest quality score, and a 

lower proportion of reads attaining the lower quality scores. Whilst this 

immediately suggests BFAST is producing better alignment, the data 

contained within Tables 3.5 and 3.6 gives a more complete picture of the 

situation. 

 

MOSAIK actually aligned more of the data from the files in to the regions of 

interest (33.4 million reads vs. 14.4 million reads). The BFAST alignment 

consistently gave a higher percentage of reads achieving the maximum 

mapping quality score (>=30) than did MOSAIK. In terms of the actual 

number of reads, the CLU, PICALM and rs3851179 LD block all had a greater 

number of reads reaching the highest quality score in the BFAST alignment, 

although the CR1 region had a greater number of reads achieving quality >=30 

in the MOSAIK rather than BFAST alignment. The BFAST alignment had a 

lower percentage and number of reads achieving the lower quality scores (3 or 

lower) in all four regions of interest than MOSAIK. 

 

One thing that is notable from the data within the tables is that the alignment 

of reads to the CR1 region was poorer with both alignment programs than for 

the other regions. While the other regions for each alignment had 84-89% 

(MOSAIK) and 94-95% (BFAST) of reads achieving the highest mapping 

quality score, for CR1 this figure was only 58.5% and 67.6% from the MOSAIK 

and BFAST alignments respectively.  
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Figure 3.3 – Quality of alignment: BFAST vs. MOSAIK
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Graphs from SamStat showing pie charts of data mapping statistics for MOSAIK on 

the left and BFAST on the right.  



 
 

 
 

118 

Table 3.5 - SamStat mapping quality assessment for MOSAIK alignment of project 1 data 

 Total reads 

(all samples) 

Average reads 

per sample pool 

Average reads 

MAPQ>=30  

Average reads 

MAPQ>=20  

Average reads 

MAPQ>=10  

Average reads 

MAPQ>=3  

Average reads 

MAPQ<3  

CLU 1153189 144148.6 126433.3 (87.7%) 2625.8 (1.8%) 2944.4 (2.0%) 3163.8 (2.2%) 8981.5 (6.23%) 

PICALM 6569781 821222.6 731134.5 (89.0%) 15880.9 (1.9%) 18748.6 (2.3%) 16612.9 (2.0%) 38845.8 (4.7%) 

rs3851179 

LD block 

1732734 216591.8 182499.9 (84.3%) 3602.4 (1.7%) 6461.9 (3.0%) 5864.4 (2.8%) 18063.3 (8.3%) 

CR1 23925338 2990667.3 1750134.3 (58.5%) 199074.1 (6.7%) 359176.5 (12.0%) 224171.1 (7.5%) 458111.3 (15.3%) 

Combined 33381042 

Information from SamStat assessing the quality of the alignment by MOSAIK. Total reads gives all the reads aligned to the region by the program for all 

sample pools. The other columns provide a breakdown on the mapping qualities of these reads.  

 

Table 3.6 - SamStat mapping quality assessment for BFAST alignment of project 1 data 

 Total reads 

(all samples) 

Average reads 

per sample pool 

Average reads 

MAPQ>=30  

Average reads 

MAPQ>=20 
Average reads 

MAPQ>=10 

Average reads 

MAPQ>=3  

Average reads 

MAPQ<3 

CLU 1115695 139461.9 132052.4 (94.7%) 3788.4 (2.7%) 2552 (2.0%) 521.5 (0.4%) 122.625 (0.1%) 

PICALM 6437215 804651.9 753737.5 (93.7%) 29187.3 (3.6%) 18143 (2.2%) 2821.3 (0.4%) 762.5 (0.1%) 

rs3851179 

LD block 

1597505 199688.1 188102.4 (94.2%) 6569.8 (3.3%) 4159.5 (2.1%) 691.8 (0.3%) 164.8 (0.1%) 

CR1 5252304 656538.0 443405.5 (67.6%) 93126.3 (14.2%) 111849.3 (17.0%) 6989.9 (1.0%) 1167.1 (0.2%) 

Combined 14402719 

Information from SamStat assessing the quality of the alignment by BFAST. Total reads gives all the reads aligned to the region by the program for all sample 

pools. The other columns provide a breakdown on the mapping qualities of these reads.  
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Variant calling 
Two different variant calling platforms were utilised in the processing of the 

data from project 1 - Syzygy and CRISP. Again, CLU, the smallest of the genes 

targeted, was used as an example to determine which of these programs was 

most appropriate for our data.  

 

In the data, Syzygy identified a total of 73 variants within the BFAST aligned 

data, and 224 in the MOSAIK aligned data. CRISP identified 100 variants in 

the BFAST alignment, and 131 in the MOSAIK alignment. 

 

One way to compare the performance of the different variant calling 

algorithms is to look at the false negative and false positive rates in the 

variants identified. To look at the false negative rate, a list of known SNPs is 

needed. Although we cannot know which variants will be present within the 

samples sequenced, variants which are common within a similar population 

would be expected to be present, and so can be used to assess the false 

negative rate. A total of 24 variants with a frequency above 1% in the CEU 

population were contained within the dbSNP database at the time of analysis 

(22.09.11). The number of these SNPs which were identified in the aligned 

data for the CLU region using Syzygy and CRISP is presented in Table 3.7. 

Assessing the false positive rate is more problematic, as it is difficult to 

distinguish spurious from genuine variants without validation via an 

independent method. Table 3.7 also contains information on the number of 

novel variants (SNPs and indels) identified by each of the sequencing 

programs, which are necessarily genuine variants or false positive calls.  

 

Table 3.7 – Assessing false negative and positive variant call rates 

  No. of dbSNPs with 

MAF >1% detected 

No. of novel 

SNPs 

No. of novel 

indels 

MOSAIK Syzygy 20 142 23 

CRISP 21 20 44 

BFAST Syzygy 19 9 9 

CRISP 21 17 14 

Information on the number of false negative variant calls, and the numbers of novel 

variants detected by each of the variant calling algorithms. NB – the version of CRISP 

used in this analysis was the latest available at the time of processing. Subsequently a 

new version has been used, so the numbers of SNPs quoted here do not match the 

ones in subsequent analyses, which were run using the most up to date version of 

CRISP in November 2012. 

 

The locations of these variants were established by uploading the .bed file of 

the variants to the custom tracks section of the UCSC genome browser (Kent 

et al. 2002). Examples of the resultant images (MOSAIK aligned data, with 

variant calling by Syzygy and CRISP) are shown in Figure 3.4. 
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Figure 3.4 – Locations of variants called by Syzygy and CRISP 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Images to show the locations of some of 

the variants identified by Syzygy and 

CRISP in the MOSAIK alignment using the 

UCSC genome browser’s custom tracks 

(Kent et al. 2002). The two panels show the 

same genomic location, featuring a 

repetitive stretch of DNA, and the variants 

called within this region by Syzygy (top) 

and CRISP (below) are displayed under 

the heading “User Supplied Track”. SNPs 

identified by an rs number are known 

variants which have been detected within 

our data. Any identified by chromosomal 

coordinate (Syzygy) or snp:# (CRISP) are 

novel. 
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3.5. Discussion of the Pipeline 
 

The world of NGS has progressed rapidly in the past decade, and the 

advancements in technology have been accompanied by an explosion in the 

software available to process the generated data. While GATK has been 

widely accepted as the “gold standard” set of programs for processing NGS 

data for single individuals, it does not have the capacity to handle pooled 

data. It was therefore decided to try a number of different combinations of 

programs and establish what the best, most reliable combination of these was. 

Two different alignment programs and two different variant calling programs 

were utilised, and the best combination of programs was selected, as 

explained below.  

 

The first stage of processing NGS data is to align the data to a reference 

genome. BFAST and MOSAIK were the two programs selected for this stage. 

Each was comparable in terms of the processing power required and the time 

taken to perform the alignment, so this did not contribute to the decision 

between them.  

 

The number of dbSNP variants with MAFs >1% in the CEU population 

identified by CRISP was unaltered by the alignment program used, while 

Syzygy detected one less variant within the BFAST data than the MOSAIK 

data. In terms of the false negative rate, it was apparent from the data in Table 

3.7 that CRISP was able to identify a slightly greater number of the variants 

than Syzygy was. The maximum number of the 24 dbSNP variants detected 

was 21. It can be assumed that these are genuinely present within the samples 

sequenced; therefore anything below 21 is missing variants known to be 

present. Although the difference between variants identified by CRISP and 

Syzygy was small in the CLU region data, the same pattern was found in the 

data from the other three regions sequenced, with Syzygy consistently 

identifying fewer variants than CRISP. From this, it can be concluded that 

CRISP has a lower false negative rate than Syzygy. 

 

It is more difficult to assess the number of false positives found, since without 

comprehensive independent validation it cannot be known which variants are 

genuine and which are not. Although it is unknown how many genuine novel 

variants lay within the area, the vastly different numbers of variants called by 

the different combinations of alignment and variant calling algorithms 

highlighted that there were significant differences in performance, since only 

one (unknown) value represents the actual number of variants. The images 

presented in Figure 3.4 help explain these discrepancies. 

 

It can be seen from the top panel of Figure 3.4 that the combination of 

programs giving the highest number of novel variants (MOSAIK and Syzygy) 

is calling a vast excess of novel variants around the sites of repetitive regions 

within the gene when compared with CRISP (one example of many instances 

shown). The majority of these variants are likely to be false positive calls as a 
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result of difficulties aligning data around repetitive DNA (Treangen and 

Salzberg 2012). Although a much more modest number of putative SNPs were 

identified using the CRISP and MOSAIK combination, 44 novel indels were 

called. Such a high number within a small region is likely to be indicative of 

issues with alignment, rather than there being that number of genuine 

insertions and deletions present.  

 

It was therefore decided that BFAST and CRISP would be the programs of 

choice for both this NGS project, and for others going forward in the lab. The 

pipeline is displayed in Figure 3.5. 

 

Figure 3.5 – Pipeline for alignment and variant calling in NGS data 

 
Pipeline for processing NGS data as decided by a comparison of results from the 

different combinations of programs used. 

 

3.6. Applying the pipeline 
 

Once it had been decided which combination of programs would give the 

most reliable variant calls from the data we had, this was applied to the four 

loci sequenced in project 1, as well as the CR1 data from the second NGS 

project.  

 

Quality, coverage and enrichment 
The quality scores given by SamStat for the BFAST alignment of data from 

NGS project 1 were presented in Table 3.6. The same SamStat analysis was run 

when the CR1 locus data from the second NGS project was received. Table 3.8 

provides the mapping quality data for the CR1 locus from SamStat for both 

the first and second NGS projects. 

 

The data from SamStat enabled the calculation of the average depth of 

coverage per individual for each of the regions targeted. This information is 

presented in Table 3.9. 

 

However, although the average depth is reported here, the consistency of 

depth across the regions sequenced was by no means uniform. As mentioned 

previously, the repeat masker offered by Agilent was not utilised in the design 

of the first sequencing project but was in the second. However, in both 

sequencing projects, repetitive areas received virtually no coverage, even 

when directly targeted. Figure 3.6 shows images from the Integrated 

Genomics Viewer (IGV) displaying dropout in coverage around repetitive 

regions of DNA. This issue was particularly severe for CR1, which has a 

highly repetitive structure.  
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Table 3.8 - SamStat mapping quality assessment for BFAST alignment of CR1 locus from the two NGS projects 

 Total reads (all 

samples) 

Average reads 

per sample pool 

Average reads 

MAPQ>=30  

Average reads 

MAPQ>=20 
Average reads 

MAPQ>=10 

Average reads 

MAPQ>=3  

Average reads 

MAPQ<3 

Project 1 5252304 656538 443405.5 (67.6%) 93126.3 (14.2%) 111849.3 (17.0%) 6989.9 (1.0%) 1167.1 (0.2%) 

Project 2 148300000 18537500 7299770.7 (39.4%) 2702092.9 (14.6%) 3789404.8 (20.7%) 4124882.3 (22.3%) 604474.6 (3.3%) 

SamStat mapping quality score breakdown for the CR1 region from the first and second NGS projects. Total reads gives all the reads aligned to the region by 

BFAST for all sample pools. The other columns provide a breakdown on the mapping qualities of these reads. 

 

 

Table 3.9 – Average depth of coverage per individual  

 CLU PICALM rs3851179 LD block CR1 (project 1) CR1 (project 2) 

Coverage 18.1x 21.5x 21.7x 13.9x 1034.3x 

Average depth of coverage per individual across the entire targeted loci. 
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Figure 3.6 – Images from IGV to show dropout of coverage at repetitive regions 

 
                                                                                                                           ~44kb 

  Normal Coverage:                   

  Gap in CR1 (Pro1):                 

  Gap in CR1 (Pro2):                   
Images to show the dropout in coverage at repetitive regions. Top panel: representative section of CLU locus. Repetitive regions clearly coincide with reduced 

coverage in the IGV graph. Red boxes highlight these regions. Lower panel: three IGV graphs, the top showing a normal region of genomic DNA, with good 

coverage in general, but some areas of lower coverage where repetitive regions fall. The lower two show a region of CR1 coinciding with the tandem repeat 

responsible for the different isoforms of CR1 where coverage was particularly poor in each of the sequencing projects. 
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The information on reads from SamStat allowed for the analysis of the 

efficiency of the enrichment process. Firstly, the enrichment factor could be 

calculated. This is a comparison of the depth of coverage at the targeted 

regions versus the depth of coverage across the genome as a whole. For the 

first sequencing project, the enrichment factor was 321.9x, while for the second 

sequencing project, it was 6271.5x (data to calculate this provided by colleague 

James Turton: total reads 1949915034; reads mapping to regions of interest 

1209121676; combined size of regions of interest 832825bp). The percentage of 

reads mapping to the target region also signals how well the enrichment stage 

of the experiment worked. From the first sequencing project, 3.9% of the total 

reads produced mapped to the targeted regions. For the second project, this 

figure was 62.0%. 

 

Variants identified 
The number and types of variants detected by CRISP in each of the regions 

sequenced are presented in Figure 3.7, divided in to exonic and non-exonic 

variants, and containing details on the number of novel vs. known variants 

encountered. Excluding the 3'UTR SNPs, only 10% of the detected exonic 

variants were novel, while this figure was 23.8% for the non-coding ones. 

 

The numbers of HapMap SNPs with frequencies >5% identified in the regions 

is presented in Table 3.10.  

 

Table 3.10 – HapMap SNPs detected in NGS data 

 CLU PICALM rs3851179 

LD block 

CR1 

project 1 

CR1 

project 2 

No. of HapMap 

SNPs in region 

20 117 34 75 75 

No. detected in NGS 

data 

20 117 34 70 67 

Numbers of HapMap SNPs with frequencies >5% in the EUR population within the 

targeted loci, and how many of these were detected within the NGS data for those 

regions.  

 

Ts/Tv Ratios 
The Ts/Tv ratio was calculated separately for exonic and non-exonic regions. 

Across the four sequenced loci, there were 27 exonic transitions and 5 exonic 

transversions, while there were 555 non-exonic transitions and 352 non-exonic 

transversions. This gives a Ti/Tv ratio of 5.4 for exonic areas and 1.58 for non-

exonic ones.  
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Figure 3.7 – Variants identified at each locus sequenced 

 

 

 
Breakdown of the variants detected in the NGS data after the application of the data 

analysis pipeline. Panel A shows the variants in CLU, panel B shows the breakdown 

of variants at the PICALM locus, as well as the rs3851179 LD block (all variants non-

coding, as the region is ~88.5kb upstream of the gene). Panel C shows the results for 

the CR1 region from the first sequencing project, while panel D shows the variants 

detected in the data from the second NGS project.  Any variants described as “novel” 

were found to have no co-located variants by Ensembl’s VEP.  
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HapMap Correlation 
As mentioned previously, a good way to assess the reliability of NGS data is 

to compare it to known variants. In order to assess the accuracy of the 

frequency estimates from CRISP, MAF estimates (based on percentage of 

alternative reads – a surrogate for MAF) from CRISP for the common SNPs 

called in the three genes were compared with frequencies from HapMap (EUR 

population). The relationships between these frequencies for each of the 

targeted areas are shown in Figure 3.8.  

 

Figure 3.8 – Correlation between CRISP frequency estimates and HapMap 

frequency data 

CLU         PICALM 

 
rs3851179 LD block      CR1 – Project 1 

 
CR1 – Project 2 

 
Comparison of frequency estimates from CRISP with MAF data from the HapMap 

project (EUR population) for common SNPs within targeted loci. On each graph, the x 

axes show the variant’s frequencies in CRISP data, while the y axes show the HapMap 

CEU allele frequencies. 
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MAFs from the 1000 genomes project (European population) were also 

compared to the frequency estimates from CRISP for all of the detected 

variants in the targeted loci (data from NGS project 2 used for CR1). Due to 

the high number of variants this entails, the data is not shown here, but upon 

analysis in SPSS, a strong, significant positive correlation was observed 

between the frequencies of the two datasets (Spearman Correlation 

Coefficient=0.964, p=<0.001). 

 

3.7. Discussion of applied pipeline 
 

The major aim of this stage of the study was to identify variants, an aim which 

was clearly met with the detection of over 1000 variants in the four targeted 

loci, 239 of which were potentially novel variants. The inclusion of the CR1 

target locus in two separate sequencing project allowed an assessment of the 

advances in technology which had been achieved in just a small period 

(approximately 10 months between the running of the two projects).  

 

One of the major differences in the CR1 data from NGS projects 1 and 2 is in 

the sheer quantity of data generated. The total number of reads generated by 

the first project was ~380 million, while the second project generated ~1209 

million reads. When considering the aligned data, the 5.25 million 38bp reads 

mapped to the CR1 region from the first sequencing project are eclipsed by the 

148.3 million 100bp reads mapped to the equivalent region in the second 

project. The CR1 data from the first project had a greater proportion of reads 

awarded the highest quality scores than did the second project, but because 

the second generated such an increased quantity of data, far more reads in 

total from the second project achieved the highest mapping quality (>=30).  

 

From the first sequencing project, CLU, PICALM and the rs3851179 LD block 

received a reasonable level of coverage. Generally, between 20 and 30x per 

individual is considered to be adequate for reliable variant identification. 

PICALM and the rs3851179 LD block both exceeded this lower recommended 

limit of 20x per individual, while CLU was close to this (18.1x). CR1 however 

fell short of this target, receiving an average of just 13.9x per individual. 

Because of this particularly poor coverage, it was decided that CR1 would be 

included in the second NGS project being conducted by a colleague in the lab. 

It was hoped that the issues of the first project would not be repeated in the 

second (this time the repeat masker was utilised, the enrichment process was 

conducted by Agilent themselves, and a newer sequencing technology with 

far superior capacity was utilised, with a longer read length and paired-end 

reads). This was indeed shown to be the case, with CR1 receiving an average 

coverage of 1034.3x per individual in the second sequencing project.  

 

However, the second sequencing project did not successfully address the 

other coverage issue with CR1. This issue stems from the structure of the gene, 

and its highly repetitive nature. As the top panel of Figure 3.6 shows, even in 
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the first project where repetitive regions were included in the design of the 

baits, repetitive areas received virtually no coverage. The inclusion of such 

regions in the experimental design is likely to be in part responsible for the 

poorer than expected coverage of the targeted areas obtained, and the fact that 

only 3.9% of reads mapped to the target regions. This figure is far less than 

Agilent's estimated on target return of 60% (from the SureSelect product 

information) or 40-50% reported by Gnirke et al. (Gnirke et al. 2009), the 

publication of the SureSelect technique. Another study published in 2010 

explored the issue of the repeat masker. As with our explorations, this group 

also found Agilent's repeat masking strategy to be overly conservative, so 

opted for their own custom repeat masking approach, and reported around 

20% of reads mapping to target regions (Kenny et al. 2010).  

 

The inclusion of repetitive sequences in the bait design essentially wastes 

sequencing capacity. A run on an NGS machine will generate a specific, finite 

quantity of data. Whatever proportion of the reads are generated from 

repetitive regions of the genome is essentially a proportion of the reads that 

are lost. Reads with multiple matches across the genome during the alignment 

process cannot be successfully mapped, and will therefore be lost, reducing 

the sequencing capacity available for reads which can be mapped. 

Additionally, allowing these repetitive regions to be included in the bait 

design will have reduced the specificity of the capture, as non-target, similar 

DNA will also have been pulled down, reducing the recovery of the true 

target region, and limiting the number of reads which could be uniquely 

mapped. 

 

The utilisation of the repeat masker in the second sequencing project meant 

that a minimal amount of reads were lost in this way, which is reflected in the 

much more respectable percentage of reads on target of 62%.  

 

However, there was still a major issue with the coverage of CR1, which is 

shown in the lower panel of Figure 3.6. The IGV graph at the top of this panel 

shows what a normal region of the genome would be expected to look like 

when sequenced in this way, with a high level of coverage across the region in 

general, along with a few areas of lower coverage, likely to be due to 

repetitive sequence. The lower two IGV graphs show a region of CR1, 

spanning a region of around 44kb from each of the two NGS projects. Here 

there was virtually no coverage, with very few reads at all mapping to the 

area. This problematic region stems from the structure of the CR1 gene, which, 

believed to have arisen through a sequence of segmental duplication events 

over time, is highly repetitive. The CR1 protein isoforms differ in the number 

of C3b binding sites present, and the different alleles are thought to have 

arisen from unequal crossover events involving a stretch of DNA encoding 

this, making the region problematic for sequencing. 

 

This problem is only exacerbated by the utilisation of the pooled sequencing 

strategy. Given the frequencies of the F and S alleles in European populations 
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(0.83 and 0.15 respectively), it is highly likely that each pool of 12 individuals 

(and thus 24 alleles) contains both the F and S alleles of the gene. Across the 

experiment as a whole (96 individuals, or 192 alleles), it is likely that the rarer 

genotypes will also feature. There is currently no way to disentangle which 

individuals have which genotypes from the pooled data based on the NGS 

data alone, and  no way to tell which alleles are present in the sample pools. A 

recent study which used multiplex amplicon quantification to distinguish F- 

and S- alleles found an association between the S-allele (with an extra C3b 

binding site) and increased AD risk (Brouwers et al. 2012), however, with our 

methodology it was not possible to determine genotypes for this 

polymorphism within sample pools, let alone within individual samples. 

 

When repetitive DNA comprises such a large proportion (~50% (Treangen and 

Salzberg 2012)) of the human genome, these regions cannot simply be ignored, 

but nor can they be accurately sequenced, given the current technology and 

data analysis methodologies available. The CR1 example above demonstrates 

that repetitive DNA can be biologically important and disease relevant, but 

whether this is a common phenomenon or an isolated example remains to be 

seen. 

 

Aside from this region, the performance of the second project was 

significantly greater than the first, with a much greater volume of data 

generated; well over half of that data mapping to the regions of interest; a 

robust enrichment factor (almost 20x greater than that of the first project); and 

a high level of coverage across the targeted loci (with the exception of the CR1 

repeat region). It is likely that the reasons for these improvements are three 

fold. Firstly, the huge increase in data produced is a reflection of the vast 

advances in NGS in just a small amount of time (less than one year). Better 

technology and improvement in the chemistry of the sequencing reactions in a 

short space of time lead to a leap from a single sequencing run producing ~380 

million 38bp single-end reads to ~1209 million 100bp paired-end reads. 

Secondly, the enrichment performed by Source for the first sequencing project 

did not seem to have worked as effectively as the one performed by Agilent 

for the second sequencing project. Finally, the repeat masker not being utilised 

in the design of the first project almost certainly had a negative effect on the 

specificity of the enrichment, and on the following data analysis.  

 

Over 1000 variants were identified by CRISP in the four target loci. Given that 

a much smaller proportion of the targeted regions were coding than non-

coding, it is unsurprising that the majority of variants identified by CRISP fell 

either up- or down-stream of the genes, or in intronic regions. Only 10% of the 

coding variants detected were determined to be novel by the VEP, whilst 

almost a quarter of the non-exonic ones were. There are likely to be a number 

of reasons for this. Historically, and even now, reflected in the popularity of 

whole exome sequencing, non-coding regions have been far less extensively 

investigated than coding ones. Coding regions are more likely to have been 

subjected to sequencing, and thus coding variants are more likely to already 
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be known. By the same logic, non-coding variants are less likely to be known, 

and perhaps also suffer from a reporting bias, with coding variants more 

likely to have been recorded and reported in the literature. However, it is also 

likely that non-coding regions contain genetic features which predispose to 

false-positive variant calls, such as indels and mononucleotide repeats, which 

will be discussed in further detail in Chapter 4 – Sanger Validation.  

 

The Ts/Tv ratios calculated for the variants detected were 5.4 for exonic 

regions and 1.58 for non-exonic regions. The estimates from 1000 genomes 

data puts the genome average to be ~2.1, although exonic regions tend to be 

higher (Le and Durbin 2011). Our variants show a trend in the right direction, 

with exonic regions having a higher ratio than non-exonic regions, but the 

non-exonic rate is lower than expected, and the exonic rate higher than 

expected (although the latter was based on a small number of sites). Ts/Tv 

ratios deviating significantly from the expected can be an indicator of 

unreliable variant calls (e.g. high false-positive or false-negative rates), which 

should be kept in mind when assessing the reliability of our variants. 

 

When considering the amount of known HapMap SNPs with frequencies 

greater than 5% in the European population, all variants were detected in the 

NGS data for CLU, PICALM and the rs3851179 LD block. For CR1, the first 

project missed five of 75 variants, while the second missed eight. Since the 

extra three of these variants were identified in the first project, it can be 

assumed they are present in the samples sequenced. Two of the missing three 

fell close together within a repetitive area which was not targeted by the 

second project due to the repeat masker. The third of these was in a targeted 

area, but was not identified. The numbers of exonic variants identified in CR1 

was very similar between the two projects. The major difference in variant 

calls between the first and second projects was in the number of non-coding 

variants, and particularly in the novel ones. In the first project's data, out of 

the 425 variants identified in non-coding regions, 151 were novel, meaning 274 

known variants were also found. In the second project, out of the 280 non-

coding variants, just 58 were novel, with 222 known. This gives a percentage 

of novel variants of 35.5% for project 1 and 20.7% for project 2.  

 

The reduction in known variants found between the two projects stems 

mainly from the inclusion of the repeat masker in the second project – many of 

the variants found in project 1 but missed by project 2 were in repetitive 

regions, and therefore were not targeted in the second. This does provide an 

argument in favour of not using the repeat masker in the design of baits, since 

more variants were found when the repetitive areas were included, although 

the necessary trade off in reducing the specificity of the enrichment may not 

be worth the gain.  

 

Less novel variants being detected in CR1 by the second project is likely to 

signify a decrease in the number of false positive variant calls being made. The 

35.5% of variants identified in the non-coding region for the first sequencing 
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attempt of CR1 is much higher than for the other regions sequenced in that 

study (CLU – 25.3%, PICALM – 26.0%, rs3851179 LD block – 20.4%), while the 

figure of 20.7% of variants detected being novel from the second project is 

more consistent with these. The major difference in the design of the projects 

is in the inclusion of the repeat masker in the second project, which would be 

expected to decrease the novel and known SNPs identified approximately 

equally, so the percentage of novel variants identified should be 

approximately equal between the two projects. Since this is not the case, and 

the percentage of novel variants in the second project is much lower than that 

from the first, the most probable explanation for the pattern of data observed 

is that the second project gave less false positive calls.  

 

Although information was lost, in that more known common dbSNP variants 

were missed in the calling of the second project's variants, and around 50 

known variants were missed, the false positive rate being lower is reflective of 

the better quality enrichment, greater coverage, increased quantity of data and 

more robust sequencing technology. An average coverage of 13.9x (as from 

the first project) was bound to give false positive calls, as it is far below the 

recommended depth for accurate calls of 20-30x. It is arguably better to 

sacrifice the identification of a number of known variants, than to have a huge 

quantity of novel variants, if many of those are likely to be false positive calls.  

 

It has previously been reported that frequency estimates from pooled NGS 

data can be generally regarded as reliable (Ingman and Gyllensten 2009; 

Bansal et al. 2011; Day-Williams et al. 2011). Frequency estimates from CRISP 

rely on certain assumptions being made. Largely, it is assumed that the 

number of reads is a reliable reflection of the frequency of variants being 

detected. This in turn is based on the assumption that each individual's DNA 

has equal representation within the pool. Whilst steps were taken to ensure 

that was the case (e.g. quantification using QuantIT, pooling samples of 

similar concentrations together, and maintaining a minimum pipetting 

volume of 1μl to minimise pipetting errors), it cannot be guaranteed. 

Unreliable quantification or inaccurate pool preparation could lead to some 

individual's DNA samples being over- or under-represented in the initial 

sample pool. Even given equality at this stage, there is the possibility that 

naturally occurring variation may affect the efficiency of the enrichment 

process. The baits designed to capture the regions of interest by Agilent are 

complementary to the standard reference genome. Although their large size 

(120mer) is designed to minimise the chance of this happening, it is possible 

that deviance from the standard reference genome could destabilise the 

coupling of the RNA baits with the desired DNA targets, creating an enriched 

pool of DNA biased towards the wild type. While single SNPs are unlikely to 

have this effect in such large baits, insertions, deletions, or the occurrence of 

multiple variants within a specific bait's target could cause issues, and result 

in unequal representation of samples within the pools. Another potential 

source of such bias is differential amplification at the PCR stage of the 

enrichment process, which could lead to certain templates being under- or 
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over-represented. Any deviance from equal representation could skew the 

frequency estimates from CRISP, which are based on the number of reads in 

possession of alternate allele calls. In a pool of 12 individuals, or 24 alleles, 

each allele should contribute to 4.2% of reads. If the DNA of an individual 

with a specific variant is not equally represented within the pool, there will be 

deviance from this figure.  

 

Strong correlation scores were found between the frequencies of the common 

HapMap SNPs for CLU, PICALM and the rs3851179 LD block. The frequency 

correlation is stronger for the CR1 project one data than for the second 

project’s data. However, the second project is based on a smaller number of 

data points, since less common variants were found in the second project’s 

data. It is also likely that any biases in the pooling or enrichment in the second 

project would have been amplified by the vast quantity of data produced, 

explaining why the frequency estimates may be less reliable. Since reliable 

estimation of frequency was not the aim of this project, the lower reliability is 

not an important factor. The data from the second project appeared more 

reliable for variant identification, which was the aim of the study. 

 

The HapMap correlations are only based on a small number of variants, all of 

which can be classed as common. For a more complete picture, the frequencies 

of all known variants detected in the NGS data were compared with the 

frequency data from the 1000 genomes project. Here, a strong, positive, 

significant correlation was found, indicating that the CRISP frequency 

estimates can be regarded as reliable. A further assessment of the accuracy of 

CRISP frequency estimates is given in the discussion of Chapter 4 – Sanger 

validation. 

 

It is also worth noting that while a good correlation in frequencies is indicative 

of reliable frequency estimates, deviance from correlation can be not only an 

indicator of unreliable frequency estimates, but of association with AD. Since 

the 1000 genomes project used population controls for their samples and the 

NGS projects used AD samples only, differences in allele frequencies between 

the two could be an indicator of involvement in AD risk. However, in just 96 

samples, there is insufficient power to deduce any real information on this.  

 

To summarise, this chapter has explored the process of analysing pooled NGS 

data. A variety of programs were utilised and their performance compared to 

enable the development of a robust pipeline for analysing such data. When the 

pipeline was applied, over 1000 variants were detected within the data. The 

quality of the raw data, the alignments and the variant calls were assessed and 

were generally found to be good, although coverage in the CR1 region was 

extrememly uneven, leaving large areas of the gene effectively not sequenced. 
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4. Sanger validation 
 

Given the current high error rates of NGS technologies and issues achieving 

accurate alignment, particularly around repetitive regions (Treangen and 

Salzberg 2012), validation of putative variants detected in NGS data via an 

independent method is important. With over 1000 variants detected, 

independent validation of all variants would be prohibitively time consuming 

and expensive. This chapter explores the Sanger sequencing of certain 

variants, which were selected for validation based on the possession of 

unusual characteristics. 

 

4.1. Results of Sanger validation 
 

Within the data, there were a number of variants identified which were 

classed as novel by Ensembl’s VEP, but were identified within all or most of 

our sequencing pools, with MAF estimates ranging from 5% to 24%. It seemed 

highly unlikely that variants with such frequencies would not have been 

previously documented were they genuine SNPs, so they were highlighted as 

being potential false positive calls, and validation via Sanger sequencing was 

sought.  

 

Seven such variants were identified (those who’s inclusion in the project 

within Table 4.1 is classed as targeted). Since several other variants identified 

by CRISP fell within the region sequenced, these were also analysed, taking 

the total number of SNPs considered to 12. Information on all of these variants 

is provided in Table 4.1.  
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Table 4.1 - Information on SNPs for validation by Sanger sequencing  

Gene Chr Coordinate Alleles 

Frequency 

Alternative Calls 

Fold Coverage 

per individual Location in gene* rs number 

Inclusion in 

project 

CLU 

  

  

  

8 27452179 G/T 0.07 23.69 3.5kb downstream   Targeted 

8 27452243 A/T 0.05 24.13 3.5kb downstream   Incidental 

8 27466924 C/A 0.11 17.89 Intron 2   Targeted 

8 27473743 T/A 0.19 18.11 1.5kb upstream   Targeted 

PICALM 

  

  

  

  

  

11 85668102 G/A 0.11 16.74 1.5kb downstream    Targeted 

11 85668163 G/A 0.27 19.11 1.5kb downstream  rs622110 Incidental 

11 85692077 C/T 0.05 22.90 Intron 18 rs139710547 Targeted 

11 85692181 A/C 0.63 18.46 

Exon 18 

(synonymous) rs76719109 Incidental 

11 85774424 T/G 0.24 16.41 Intron 2   Targeted 

11 85774562 T/G 0.46 18.55 Intron 2 rs3016786 Incidental 

CR1 

  
1 207690803 T/C 0.07 19.57 Intron 4 rs144047769 Targeted 

1 207690871 G/C 0.19 18.40 Intron 4 rs10863358 Incidental 

Information on all of the SNPs for which validation by Sanger sequencing was attempted. Coordinates stated give genomic position in hg19. *Relative to CLU 

transcript ENST00000316403, PICALM transcript ENST00000447890, CR1 transcript ENST00000367049. Distances stated are approximate. 
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Of the 12 putative SNPs included in Sanger sequenced regions, six were found 

to be genuine (see Figure 4.1 and Table 4.2).  Reliability of frequency estimates 

could also be assessed once the number of actual alternative alleles in a pool 

was established by Sanger sequencing. Each alternative allele should 

contribute ~4.2% of reads to the pool total, assuming equal representation. The 

relationship between the number of actual alternative alleles and the 

proportion of NGS reads they make up is shown in Table 4.2. 

 

Figure 4.1 – Sanger validated SNPs 

PICALM 

11:85668163 – C/T 
WT                            Heterozygous       Homozygous Mutant 

     
 

11:85692077 – C/T                                      11:85692181 – A/C 
WT        Heterozygous                 WT         Heterozygous 

       

 

11:85774562 – T/G 
WT                          Heterozygous        Homozygous Mutant 

     
 

CR1 

1:207690803 – T/C                              1:207690871 – G/C 
WT                        Heterozygous             WT                      Heterozygous 

              
Images showing electropherogram traces from the successfully Sanger validated SNPs 

in PICALM and CR1. Where all three allelic combinations were found, all three are 

shown. 
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Table 4.2 – Successfully validated SNPs 

Chr Coordinate Alleles 

Alternative Allele 

Call Frequency 

(CRISP - all pools) 

1000 

genomes 

MAF (EUR) 

Alternative Allele Call 

Frequency (CRISP - 

sequenced pool) 

Alternative Alleles 

(Sanger - 

sequenced pool) 

Alternative Allele 

Frequency (Sanger 

– sequenced pool) 

11 85668163 G/A 0.268 0.244 0.707 10 0.417 

11 85692077 C/T 0.046 0.016 0.103 3 0.125 

11 85692181 A/C 0.632 0.583 0.929 19 0.792 

11 85774562 T/G 0.460 0.422 0.362 10 0.417 

1 207690803 T/C 0.067 0.021 0.333 3 0.125 

1 207690871 G/C 0.194 0.214 0.050 4 0.167 

SNPs which were successfully validated by Sanger sequencing. The number of alternative alleles within the pool sequenced facilitated the determination of 

the genuine MAF within that pool (assuming Sanger results reflect true allelic counts).  This was then compared to the alternative allele call frequency from 

the same pool in CRISP, giving a reflection of the accuracy of the CRISP frequency estimates at a much finer level than the total 96 samples allows. 
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Three of the remaining SNPs were not found to be present in the samples 

Sanger sequenced, but instead small indels were found at the suggested 

variant sites (all which were also called by CRISP). These variants are 

summarised in Table 4.3, with examples from the Sanger sequencing shown in 

Figure 4.2.  

 

Figure 4.2 – Sanger confirmed indels miscalled as SNPs 

CLU 

8:27452179 – Called as G/T SNP, actually +T indel 
WT                                        Homozygous +T 

       
 

8:27452243 – Called as A/T SNP, actually +T indel                                    
WT                         

 

Heterozygous +T 

      

 

PICALM 

11:85774424 – Called as T/G SNP, actually -TA deletion 

WT (3x TA repeats)                     Homozygous (2x TA repeats) 

    
Heterozygous (one allele with 2x TA and one with 3x TA repeats) 

 
Electropherograms showing the absence of the SNPs predicted by CRISP, but 

featuring genuine indels at the same site. Where individuals heterozygous for the 

indels are shown, the sequence traces for each allele following the site of the indel will 

be offset by the number of bases the indel contains.  
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Table 4.3 – Sanger validated indels 

Chr Coordinate 

CRISP 

called 

SNP 

Actual 

Variant 

Indel 

coordinate 

Indel 

MAF 

(CRISP) 

1000 

genomes 

MAF (EUR) rs number  

Indel MAF 

(CRISP - 

sequenced pool) 

Alternative 

Alleles (Sanger - 

sequenced pool) 

Indel MAF 

(Sanger – 

sequenced pool) 

8 27452179 G/T +T ins 27452180 0.145 0.26 rs146954978  0.232 3 0.125 

8 27452243 A/T +T ins 27452242 0.099 0.17 rs35598594 0.115 1 0.042 

11 85774424 T/G -TA del 85774420 0.42  Not 

available 

rs112671434  0.455 17 0.708 

Details of the indels discovered at the sites of false positive SNP calls, all of which were also identified by CRISP and had been previously recorded in dbSNP. 
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The final three SNPs (8:27466924, 8:27473743 and 11:85668102) were not 

validated by Sanger Sequencing. Figure 4.3 shows examples of some of the 

sequencing traces from these variants (NB – reverse primer used in 

sequencing of 8:27466924 and 11:85668102, so sequence shown is the reverse 

complement to the standard genome oriented sequence). All three of these 

putative variants occurred adjacent to mononucleotide polyA repeats, with 

numerous other potential variants in the immediate area, called by CRISP or 

present in dbSNP 134 (see Figure 4.4). Within each of the polyA repeats, 

CRISP also called a +A insertion. There are also multiple +A insertions 

reported in dbSNP for each of the mononucleotide repeat sites, which 

suggests these may be genuinely variant. Due to the issues even Sanger 

sequencing has in dealing with mononucleotide repeats, our findings were 

inconclusive as to whether there were genuine variations in the number of A 

nucleotides present at these sites. 

 

Figure 4.3 – Electropherograms showing mononucleotide repeat regions 

CLU 

8:27466924 – Called as G/T SNP                                        

 
8:27473743 – Called as T/A SNP 

 
PICALM 

11:85668102 – Called as C/T SNP 

 
Electropherograms to demonstrate the failure to validate SNPs identified in the data 

by CRISP. In each of the instances, the false positive SNP call occurred at the location 

of a stretch of mononucleotide repeats. The stars in each case mark positions which 

are potentially heterozygous, given the offsetting of the sequence for the two alleles 

beyond these points, but may just be due to slippage in the sequencing because of the 

repetitive nature of the region, making homozygous DNA appear heterozygous. NB – 

sequencing of variants 8:27466924 and 11:85668102 was conducted using the reverse 

sequencing primer as this gave a more clear picture of the sequence at the site of the 

variant (because the variant fell before the mononucleotide repeat stretch when 

sequenced from this direction) so the sequence shown for these two is the reverse 

complement of the sequences displayed in Figure 4.4. 
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Figure 4.4 - Sequence context of spurious SNPs called next to 

mononucleotide repeats 

 
Sequence context of the three SNPs next to mononucleotide repeats which failed 

validation by Sanger sequencing. The SNP shown in bold is the variant Sanger 

sequencing was designed to validate. Variants shown below the sequence are all 

present in dbSNP. A. False C/A variant call within CLU at position 8:27466924 

(8:27466910-27466925 shown). B. Spurious T/A SNP call in CLU at 8:27473743 

(8:27473741-27473756 shown). C. False positive SNP call at position 11:85668102 

within PICALM (11:85668090-85668104 shown). *Other variants called by CRISP. 

 

4.2. Discussion of Sanger validation 
 

Despite the immense power of NGS, and the capacity it has to revolutionise 

genetics, there is still a limitation in terms of the error rate, which compared to 

Sanger sequencing, is still very high. Although great progress has been made 

in terms of decreasing this error rate through technological and chemical 

advances, as well as through improvements to alignment and variant calling 

softwares, there still remains an uncertainty in variant calls, which can only 

really be alleviated by validating these variants via an independent method. 

Because even modestly sized NGS experiments can generate a huge quantity 

of variant calls, the cost and time involved in validating each by Sanger 

sequencing is prohibitively high. Whilst the comparison with the data from 

the exome project (discussed in Chapter 5 – Exonic variants) allowed a 

pseudo-validation of the majority of variants detected within the exons of the 

genes of interest, there were still a high number of unvalidated variants.  

 

Of the variants identified in the first sequencing project, a number stood out as 

having unusual characteristics. These were variants which Ensembl’s VEP 

identified as being novel (although some subsequently proved to have been 

given rs numbers), yet were identified within multiple pools in our cohort, 
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suggesting they would be at a high frequency in a comparable population, 

thus seeming unlikely they would not have been previously identified.   

 

Half of the putative SNPs in the Sanger sequenced regions were validated as 

being genuine SNPs, but this included only two which were deliberately 

targeted for validation, and almost all of the variants which were incidentally 

sequenced as they fell within the amplicons to be sequenced. Bansal et al. 

estimated a false positive rate of <1% using CRISP (Bansal et al. 2011), which is 

significantly lower than our 50% error rate. However, our rate would be 

expected to be higher than this, since many of the SNPs selected for validation 

were in possession of unusual characteristics (e.g. being present in all pools 

sequenced).  

 

The location of these variants relative to the major transcripts of their 

respective genes is given in Table 4.1. The majority are deeply intronic, so are 

unlikely to be affecting splicing activity. One variant (11:85668163) falls 

around 1.5kb downstream of PICALM, where it is not likely to be affecting the 

gene’s function or regulation. None of the variants show a high degree of 

conservation. The other SNP, at 11:85692181, is a synonymous exonic change, 

which whilst not affecting the primary sequence of the protein, could be 

having an effect on splicing regulatory elements. This will be discussed in 

further detail in Chapter 5 – Exonic variants. 

 

The remainder of the potential SNPs sequenced did not turn out to be 

genuine. These constitute false positives. However, three of these transpired to 

be next to genuinely variant sites of small indels; two +T insertions and a –TA 

deletion, all of which had been previously documented and were identified by 

CRISP.  

 

The final three putative SNPs which were not validated were each next to a 

string of polyA mononucleotide repeats. These repeats are too small for the 

issue to be solved by masking repeats in the design of SureSelect baits. Unlike 

longer repeats, short stretches of mononucleotide repeats do not make 

alignment of reads impossible, as enough unique sequence is present, even in 

short 38bp reads to allow mapping. It is likely that these are genuinely variant 

sites, since CRISP calls +A insertions within each of them, and all have 

multiple rs number +A insertions falling within the repeat region. However, 

the problems presented by repetitive DNA even to the relatively robust 

Sanger sequencing meant it was not possible to tell whether these sites were 

polymorphic in our samples, or whether apparent variance was simply an 

artefact of slippage during Sanger sequencing or PCR amplification (Clarke et 

al. 2001) 

 

The main message from these findings is that it is important to be aware of 

documented indels and mononucleotide repeats within regions being 

sequenced, as these could cause potential issues with accurate identification of 

variants, and any variants called at such sites should be pursued with caution 
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and independently validated before making any assumptions about their 

existence.  

 

Although the evidence from the correlations between our variant’s MAF 

estimates and those from the HapMap and 1000 genomes projects suggests in 

general our method was reasonably accurate at establishing the frequency of 

variants, Sanger sequencing allowed the determination of the exact number of 

alternative alleles within a pool. This meant that the actual percentage of 

variant reads determined by Sanger validation could be compared to CRISP’s 

estimate for that pool. Frequency estimates from pooled data are based on the 

assumption that each allele contributes equally to the total number of reads. If 

this assumption is incorrect, frequency estimations will not be accurate. For 

the majority of the variants considered in this study, there is a discrepancy 

between the number of alternative alleles within the Sanger sequenced pools, 

and the frequency estimation from CRISP, which could indicate the 

assumption is invalid and alleles are not equally represented. This could occur 

as a result of inaccurate pooling, resulting in DNA from certain subjects being 

over or under represented. Alternatively, it may reflect inherent biases in the 

target enrichment or NGS processes if DNA from certain individuals is 

captured or sequenced to a lesser extent. The more samples included in a 

study, the more accurate estimations of frequency will become (Ingman and 

Gyllensten 2009), so when the full 96 are considered, frequency estimates 

improve, but this does not mean samples are being equally represented, which 

should be acknowledged during analysis. Although keeping the number of 

samples per pool small maximises the chance of identifying variants, it 

reduces the reliability of frequency estimates for those pools. 

 

With a sample size of 96, no meaningful association testing can be conducted 

using the NGS data alone, as there would simply be insufficient power. A 

much larger cohort is needed to facilitate meaningful association testing. This 

could be achieved by genotyping detected variants in a large case-control 

cohort. However, given the financial and time costs of such a study, it is 

impractical to conduct this for all of the variants detected. Methods for 

prioritising variants, and of association testing without extensive genotyping 

are explored in Chapters 5 and 6.  

 

This chapter has detailed the Sanger sequencing experiments done to validate 

variants identified by CRISP within the NGS data. While six variants were 

established to be genuine SNPs, the majority of those with unusual 

characteristics (common in our samples, but novel) were revealed to be false 

positive SNP calls at the sites of either small indels or strings of 

mononucleotide repeats, highlighting the importance of awareness of such 

genetic features when conducting NGS experiments.   
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5. Exonic variants 
 

This chapter explores the exonic variants detected within the NGS data. 32 

such variants, falling within coding regions or UTRs of CLU, PICALM and 

CR1 were identified. These variants were investigated for any potential 

relationship with AD using a two-pronged approach, firstly, testing them for 

association with AD in an imputed data set, and secondly, exploring potential 

functional implications of the variants using various in silico resources.  

 

5.1. Identification of exonic variants 
 

Ensembl’s VEP was used to determine which of the identified variants within 

the three targeted genes fell within exonic regions (coding variants, and those 

in the 3’ and 5’ UTRs). These variants are given in Table 5.1, along with 

information on their frequencies, validation status and LD. Where the variants 

lie in relation to the genes is depicted in Figure 5.1. Testing the variants for 

association with AD was facilitated by imputing the variants in a GWAS 

dataset. The results of this are shown in Table 5.2. Table 5.3 is provided as a 

“proof of principle” that the imputed data set was capable of detecting 

genuine associations with AD, showing imputation and association testing 

outcomes for the three GWAS SNPs which first implicated CLU, PICALM and 

CR1 in AD risk, along with findings for the APOE SNPs rs429358 and rs7412 

which dictate the different alleles of APOE. A summary of the investigations 

of the variant’s likely functionality using in silico resources are presented in 

Table 5.4, followed by more detailed explanations of some of these.  
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Table 5.1 - Exonic variants detected in NGS data 

Variants Coordinate Ref/Alt rsID 

CRISP 

freq. 1kg freq. 

Exome 

validated 

LD with GWAS 

SNP (r2) 

LD with GWAS 

SNP (D’) 

CLU coding 27457477 G/A rs9331939 0.017 0.007 Yes 0.018 1 

27462481 A/G rs7982 0.609 0.606 Yes 0.976 0.998 

27462662 G/A rs41276297 0.005 0.004 Yes 0.006 1 

CLU 3’ UTR 27454493 T/C - 0.010 - Yes - - 

27454575 C/T rs10503814 0.047 0.042 Yes 0.024 0.852 

27454682 G/A rs9331950 0.207 0.219 Yes 0.171 1.000 

27454686 T/C rs9331949 0.030 0.033 Yes 0.015 0.790 

27454730 A/G rs150082283 0.013 0.008 Yes 0.004 1.000 

27454877 A/G rs9331947 0.026 0.050 Yes 0.055 0.816 

27454957 A/G rs9331945 0.005 0.013 Yes 0.008 1.000 

27455114 A/G rs9331942 0.027 0.038 Yes 0.017 0.806 

27455442 T/C rs3087554 0.131 0.161 Yes 0.134 1.000 

27455570 C/T - 0.004 - Yes - - 

PICALM 

coding 

85685793 G/A - 0.008 - Yes - - 

85685820 T/C - 0.005 - No - - 

85692181 A/C rs76719109 0.630 0.583 Yes 0.005 0.076 

85707933 C/A - 0.004 - Yes - - 

85725937 C/T rs592297 0.838 0.818 Yes 0.812 0.259 

CR1 coding 207669717 G/C - 0.508  - * - - 

207679307 A/G rs4844600 0.371 0.784 Yes 0.828 1 

207760772 A/G rs61734514 0.038 0.016 * 0.003 1 

207760773 C/T rs3737002 0.269 0.269 * 0.084 1 

207760906 T/C rs61734513 0.021 0.004 * 0.002 1 

207782707 A/G rs17259045 0.111 0.092 * 0.019 1 
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207782769 G/A rs41274768 0.017 0.037 * 0.010 1 

207782856 A/G rs17047660 0.006 0.000 * - - 

207782889 A/G rs17047661 0.005 0.003 * - - 

207782916 A/T rs4844609 0.955 0.980 * 0.120 1 

207782931 A/G rs6691117 0.196 0.216 * 0.063 1 

207790088 C/G rs3811381 0.111 0.174 Yes 0.049 1 

207791434 A/G rs41274770 0.060 0.020 * 0.005 1 

207795320 A/G rs2296160 0.489 0.805 * 0.742 0.908 

Information on the exonic variants detected in the NGS data.  

*CR1 received poor coverage in the Exome Project, so only a small number of our variants could be validated in this way. However, with the exception of one, 

all have rsIDs and so are likely to be genuine variants. 
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Figure 5.1 - Locations of coding variants relative to gene transcripts 

 
Ribbon diagram to show the locations of the detected variants within CLU, PICALM and CR1, relative to transcripts ENST00000316403, ENST00000393346, 

and ENST00000400960 respectively (Hubbard et al. 2002). CLU’s 3’UTR is entirely contained within exon 9, thus all of the variants in this region fall within 

exon 9.  



 
 

 
 

148 

Table 5.2 – Association testing of exonic variants using imputed data 

Variants Coordinate 

Ref/

Alt rsID Info AD Freq 

Control 

Freq OR (95% CI) p-value 

CLU 

coding 

27457477 G/A rs9331939 0.924 0.0017 0.0076 0.224 (0.104-0.482) 0.85174 

27462481 A/G rs7982 0.995 0.3582 0.3979 1.184 (1.101-1.273) 0.00065 

27462662 G/A rs41276297 0.846 0.0007 0.0038 0.193 (0.060-0.617) 0.34400 

CLU 3’ 

UTR 

27454493 T/C - - - - - - 

27454575 C/T rs10503814 1.000 0.0375 0.0415 0.900 (0.751-1.078) 0.62956 

27454682 G/A rs9331950 0.980 0.2428 0.1969 1.308 (1.199-1.425) 0.00269 

27454686 T/C rs9331949 0.942 0.0144 0.0227 0.629 (0.470-0.841) 0.02268 

27454730 A/G rs150082283 0.780 0.0007 0.0036 0.205 (0.064-0.656) 0.07772 

27454877 A/G rs9331947 0.955 0.0165 0.0399 0.402 (0.308-0.526) 0.06516 

27454957 A/G rs9331945 0.891 0.0119 0.0110 1.083 (0.779-1.506) 0.07940 

27455114 A/G rs9331942 0.934 0.0150 0.0232 0.642 (0.482-0.855) 0.01555 

27455442 T/C rs3087554 0.980 0.1015 0.1673 0.562 (0.492-0.642) 0.76905 

27455570 C/T - - - - - - 

PICALM 

coding 

85685793 G/A - - - - - - 

85685820 T/C - - - - - - 

85692181 A/C rs76719109 0.999 0.4062 0.4125 1.026 (0.956-1.102) 0.36776 

85707933 C/A - - - - - - 

85725937 C/T rs592297 0.999 0.1771 0.1947 1.123 (1.027-1.230) 0.65868 

CR1 

coding 

207669717 G/C - - - - - - 

207679307 A/G rs4844600 0.958 0.1947 0.1837 0.931 (0.846-1.024) 0.06633 

207760772 A/G rs61734514 0.278 0.0000 0.0005 -1.000 0.07874 

207760773 C/T rs3737002 1.000 0.2554 0.2638 0.957 (0.884-1.036) 0.28854 

207760906 T/C rs61734513 0.766 0.0027 0.0014 1.877 (0.898-3.920) 0.69471 

207782707 A/G rs17259045 0.984 0.0495 0.1023 0.457 (0.387-0.540) 0.65984 
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207782769 G/A rs41274768 0.991 0.0221 0.0255 0.864 (0.685-1.091) 0.69434 

207782856 A/G rs17047660 0.954 0.0024 0.0011 2.137 (0.969-4.713) 0.51066 

207782889 A/G rs17047661 0.975 0.0041 0.0029 1.419 (0.805-2.500) 0.64195 

207782916 A/T rs4844609 0.975 0.0041 0.0029 1.419 (0.805-2.500) 0.64195 

207782931 A/G rs6691117 1.000 0.1997 0.1933 1.041 (0.955-1.136) 0.12276 

207790088 C/G rs3811381 0.995 0.1691 0.1637 1.040 (0.947-1.142) 0.09718 

207791434 A/G rs41274770 0.382 0.0000 0.0027 -1.000 0.04293 

207795320 A/G rs2296160 0.998 0.2006 0.1811 0.881 (0.807-0.962) 0.22102 

Association testing of exonic variants detected in the NGS data using imputed data. The OR and 95% CI given correspond to the allele listed as “alt”, but the 

MAF refers to which ever allele has the lower frequency, so these do not always correspond. Yellow highlighting indicates statistically significant finding, 

while orange highlighting indicates significance at the p<0.05 level. 

 

 

Table 5.3 – Imputation and association testing findings of GWAS and APOE SNPs 

Gene SNP Ref/Alt Info. MAF AD MAF Controls OR (95% CI) p-value 

CLU rs11136000 T/C 0.9999 0.3616 0.3990 1.172 (1.090-1.260) 0.00089 

PICALM rs3851179 T/C 0.9999 0.3313 0.3731 1.201 (1.116-1.292) 0.01913 

CR1 rs6656401 A/G 0.9824 0.1766 0.1628 0.907 (0.824-0.998) 0.04176 

APOE rs429358 T/C 0.9745 0.3351 0.1466 2.934 (2.691-3.198) 1.93x10-71 

rs7412 C/T 0.9755 0.0323 0.0795 0.386 (0.317-0.470) 1.13x10-9 

Findings from imputation and association testing of the originally identified AD GWAS risk variants, plus variants from the APOE locus which dictate APOE 

ε2, ε3 and ε4 alleles. The OR and 95% CI given correspond to the allele listed as “alt”, but the MAF refers to which ever allele has the lower frequency, so 

these do not always correspond.  
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Table 5.4 – Functional assessment of exonic variants using in silico resources 

Variants Coordinate 

Ref/

Alt rsID Consequence Exon AA change Polyphen-2 

CLU 

coding 

27457477 G/A rs9331939 Synonymous 8 - - 

27462481 A/G rs7982 Synonymous 6 - - 

27462662 G/A rs41276297 Missense 6 T255I Benign(0.013) 

CLU 3’ 

UTR 

27454493 T/C - 3’ UTR 9 - - 

27454575 C/T rs10503814 3’ UTR 9 - - 

27454682 G/A rs9331950 3’ UTR 9 - - 

27454686 T/C rs9331949 3’ UTR 9 - - 

27454730 A/G rs150082283 3’ UTR 9 - - 

27454877 A/G rs9331947 3’ UTR 9 - - 

27454957 A/G rs9331945 3’ UTR 9 - - 

27455114 A/G rs9331942 3’ UTR 9 - - 

27455442 T/C rs3087554 3’ UTR 9 - - 

27455570 C/T - 3’ UTR 9 - - 

PICALM 

coding 

85685793 G/A - Synonymous 19 - - 

85685820 T/C - Synonymous 19 - - 

85692181 A/C rs76719109 Synonymous 17 - - 

85707933 C/A - Missense 12 Q398H Probably damaging(0.987) 

85725937 C/T rs592297 Synonymous 5 - - 

CR1 

coding 

207669717 G/C - Synonymous 1 - - 

207679307 A/G rs4844600 Synonymous 2 - - 

207760772 A/G rs61734514 Missense 26 T1408A Probably damaging(0.974) 

207760773 C/T rs3737002 Missense 26 T1408M Probably damaging(0.997) 

207760906 T/C rs61734513 Synonymous 26 - - 

207782707 A/G rs17259045 Missense 29 N1540S Benign(0.001) 
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207782769 G/A rs41274768 Missense 29 V1561M Benign(0.039) 

207782856 A/G rs17047660 Missense 29 K1509E Probably damaging(0.988) 

207782889 A/G rs17047661 Missense 29 R1601G Possibly damaging(0.876) 

207782916 A/T rs4844609 Missense 29 T1610S Benign(0) 

207782931 A/G rs6691117 Missense 29 I1615V Benign(0) 

207790088 C/G rs3811381 Missense 33 P1827R Benign(0.033) 

207791434 A/G rs41274770 Missense 34 K1853R Possibly damaging(0.823) 

207795320 A/G rs2296160 Missense 36 T1969A Benign(0.001) 

Information on the exonic variants detected in the NGS data from various bioinformatic resources used to prioritise variants on likely functionality, including 

prediction of consequences in terms of the protein sequence and structure. Possibly and probably damaging effects on the protein predicted by Polyphen-2 

highlighted in orange and yellow respectively.  
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Functional investigations 
Polyphen-2 was used to predict whether any of the 13 missense mutations 

called by CRISP within the NGS data would have detrimental effects on the 

structure and/or function of the encoded protein, since some amino-acid 

changes can be tolerated while others can have a significant deleterious 

impact. As can be seen from Table 5.4, one variant within PICALM and three 

within CR1 were predicted to probably be damaging to the structure of the 

protein, while a further two in CR1 were classified as possibly damaging. 

 

Splicing 
As well as disrupting the sequence of the protein, non-synonymous SNPs may 

be affecting the splicing of the genes, while synonymous variants may be 

exerting an effect on the regulation of the genes via this mechanism. Three 

programs with four functions were used to investigate the effect the detected 

variants may be having on splicing, with the results of these investigations 

presented in Table 5.5. Further information on variants predicted to be 

affecting splicing is given in Figure 5.2. No significant effects on splicing were 

predicted by any of the programs, other than ESEfinder’s SRProtein prediction 

function. 
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Table 5.5 – Splicing investigations of variants detected by NGS 

Gene Variant rsID ESEfinder - SpliceSites 

ESEfinder - 

SRProteins BDGP NetGene2 

CLU 27457477 rs9331939 - - New (weak) acceptor site 

introduced by variant 

- 

27462481 rs7982 - - - - 

27462662 rs41276297 - Yes - - 

PICALM 85685793 - - - - Acceptor site slightly weaker in 

variant sequence 

85685820 - - - - Acceptor site slightly weaker in 

variant sequence 

85692181 rs76719109 Donor site slightly stronger 

in variant sequence 

Yes - - 

85707933 - Acceptor site slightly 

weaker in variant sequence 

Yes - - 

85725937 rs592297 - Yes - - 

CR1 207669717 - - Yes - New (weak) acceptor site 

introduced by variant 

207679307 rs4844600 - - - - 

207760772 rs61734514 - Yes - - 

207760773 rs3737002 - Yes - - 

207760906 rs61734513 - - - - 

207782707 rs17259045 - - - Acceptor site slightly weaker in 

variant sequence 

207782769 rs41274768 - - - - 

207782856 rs17047660 - - - - 

207782889 rs17047661 - - - Donor site slightly stronger in 
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variant sequence 

207782916 rs4844609 - - - Donor site slightly stronger in 

variant sequence 

207782931 rs6691117 - - - Donor site slightly stronger in 

variant sequence 

207790088 rs3811381 - Yes - Donor site slightly stronger in 

variant sequence 

207791434 rs41274770 - - - - 

207795320 rs2296160 - Yes New (weak) acceptor site 

introduced by variant 

Acceptor site slightly stronger 

in variant sequence 

Results from the in silico splicing investigations conducted on the coding variants detected in the NGS data. A dash (-) in the box signifies no notable 

differences between the wild type and variant versions of the sequence. Where strong differences were predicted, the results are highlighted in yellow. Where 

a “yes” is recorded, see Figure 5.2 for further explanation of the findings. 
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Figure 5.2 – Splicing results from ESEfinder’s SRProteins function 

Key -  

 
 

CLU - rs41276297 

Wild Type                       Variant 
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rs592297 
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Sequence at site:            TCAGATG      TCAAATG 

 

CR1 - 1:207669717 G>C 

Wild Type         Variant 

 
Sequence at site: 
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rs61734514 
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rs3737002 

Wild Type          Variant 

 
 

Sequence at site:       CTACGAT              CTATGAT 

 

rs3811381 

Wild Type                       Variant 

 
 

Sequence at site:           ACCCTCA        ACCGTCA 

 

rs2296160 

Wild Type                       Variant 

 
Sequence  

at site:   GGTACAC                               GGTACAC 
 

Figure showing the results from the splicing investigations conducted on the coding 

variants in NGS data using ESEfinder’s SRProtein function. For each variant, the 

SRProtein prediction for the wild type sequence is shown on the left, while the variant 

sequence’s prediction is shown on the right. The colours of the bar indicate the 

particular SRProtein(s) affected (see key at top of figure), while the height of the bars 

are proportional to the expected strength of the predicted sites. Differences are 

highlighted by arrows, and the sequences of the wild type and variant sites are shown 

below the graphs. 
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3’ UTR SNPs 
Ten of the variants detected in the NGS data at the CLU locus fell within the 

gene’s 3’UTR. To determine whether any of these variants were likely to be 

affecting the regulation of the gene by altering the binding sites of miRNAs, it 

was ascertained whether any of the variants fell within the predicted binding 

sites of any miRNAs listed in the TargetSan (www.targetscan.org) database 

(Garcia et al. 2011). The website listed 12 miRNA binding sites within the 

3’UTR of CLU on the date of analysis (16.04.13). When the locations of these 

were overlaid with the locations of the 3’UTR variants, two SNPs (rs9331945 

and rs9331947) were found to fall within miRNA sites, with rs9331947 

intersecting four potential binding sites. PITA enabled a comparison of the 

miRNA sites predicted for the wild type and variant sequences for each of the 

SNPs, using the “Predict Your UTR” function. A summary of the results of 

these investigations is given in Table 5.6. 

 

Table 5.6 – Investigations of miRNA binding sites in CLU’s 3’UTR 

rsID miRNA (TargetScan) PITA ΔΔG (WT) PITA ΔΔG (Variant) 

rs9331945 hsa-miR-3138 Not found Not found 

rs9331947 

 

hsa-miR-1184 -1.62 -1.05 

hsa-miR-4418 Not found Not found 

hsa-miR-509-3-5p -1.12 -1.02 

hsa-miR-509-5p -0.51 -0.41 

Co-located SNPs and predicted miRNA sites in CLU’s 3’ UTR region. The ΔΔG score 

from PITA is a measure of how strong the binding between the miRNA and the 

binding site would be expected to be. 

 

5.2. Discussion of exonic variants 
 

It is estimated that around 85% of variants with large effects on disease related 

traits are exonic, despite coding regions only comprising around 1% of the 

total genome (Choi et al. 2009). When even relatively small scale sequencing 

projects such as this can identify a large number of variants, prioritisation is 

crucial to ensure only variants likely to be affecting the phenotype in question 

are pursued. This ensures minimal time and resources are consumed 

investigating variants unlikely to be contributing to the disease process. 

Concentrating on coding variants is a simple way to reduce the total number 

of variants being investigated, while maintaining those more likely to be 

disease relevant. Exonic variants are simpler to predict and verify the 

functional consequences of. This chapter explores the exonic variants found in 

the NGS data. 

 

A two-pronged approach was adopted in the further prioritisation of coding 

variants in this study. Firstly, imputation was used to predict genotypes of 

SNPs of interest in a GWAS data set, enabling testing for association with AD. 

Secondly, likely functional consequences of the variants were assessed using 
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in silico prediction programs, which highlighted variants likely to be affecting 

the normal functioning of the gene. 

 

13 exonic variants were called within the NGS data for CLU, with three falling 

in coding exons, and the remaining ten in the gene’s 3’UTR. Five exonic 

variants were called within PICALM, while 14 were detected in CR1. In each 

of these genes, all of the detected exonic variants fell within coding regions.  

 

NGS notoriously has a high rate of false positive variant calls, due to the 

nature of the technology used, so validation of variants via an independent 

method is imperative (Lord et al. 2012). All of the variants bar one in the CLU 

and PICALM genes were confirmed as being genuine by comparison with 

data from the Exome Project at UCL. The PICALM SNP not validated, at 

position 11:85685820, is a putative synonymous variant which showed no 

evidence of functional effect on the gene, so was not deemed to be worth 

validating by Sanger sequencing.  

 

Validation via comparison with the Exome Project data was not possible for 

the majority of variants called in the NGS data in the CR1 region because of 

coverage issues they experienced in the area (again, reiterating how 

problematic the highly repetitive gene structure is for NGS). However, all but 

one of the CR1 coding variants identified already had rs numbers assigned, so 

can be assumed to be genuine, given their prior documentation. The 

remaining variant, at position 1:207669717 is a putative synonymous variant, 

which does show some evidence of affecting the activity of a splicing enhancer 

signal. However, despite being apparently novel, the alternative allele had an 

estimated frequency of 0.508 in the CRISP data, which as discussed in the 

previous chapter, is indicative of a false positive call. Upon closer inspection 

of the CRISP data, the average coverage at the position per individual was just 

0.28. These pieces of evidence combine to make it highly likely this is a false 

positive call, and thus not worthy of pursuit. 

 

In terms of the locations of the detected variants relative to the three gene’s 

transcripts, CLU’s three exonic variants all falling within exons 6-8 is 

consistent with Bettens’s findings that variants cluster within the region 

encoding the CLU β-chain (exons 5-8), although three variants is too small a 

number to draw any meaningful conclusions from this (Bettens et al. 2012). 

CLU’s exon 9 is home to the gene’s 3’UTR, so all ten of the 3’UTR variants fall 

within this exon. Clustering in to a small number of exons in this way can be 

indicative of involvement in a phenotype – could the 3’UTR of CLU be 

harbouring multiple risk affecting variants? Association testing in the imputed 

data and investigations of functionality using in silico resources of these 

variants is discussed later. The exonic variants detected within PICALM show 

a reasonable spread throughout the gene’s exons. In CR1, two variants were 

identified within the first two exons of the gene (although as discussed, one of 

these is not believed to be genuine), while the remainder fell between exons 26 

and 36, with the majority in exons 26 and 29. While such clustering can be 
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indicative of functional involvement of the gene in the disease process (e.g. the 

exons encode a particular domain of importance), it is likely in this case the 

apparent clustering is an artefact of the poor sequencing coverage of a large 

proportion of the CR1 gene. The ~44kb gap in sequencing spans the same 

region where a distinct lack of variants were detected, providing a much more 

mundane explanation for the apparent clustering.  

 

Imputation allowed a method for the variants to be tested for association with 

AD, without needing costly and time consuming direct genotyping of a large 

number of variants in a large sample cohort. The utilisation of our own 

combined Mayo/ARUK GWAS data, in combination with publically available 

control data from the WTCCC2 project gave a combined sample set of 2067 

AD cases and 7376 controls.  

 

There are certain caveats when using imputation in this way, which should be 

considered when analysing data from this methodology. The use of 

imputation reduces the power of association testing when compared to 

directly genotyped data, because of the inherent uncertainty in genotypic 

calls. This issue is particularly pronounced when imputing rare variants, since 

there are less of the variants present in the reference set on which to base the 

imputation, giving a higher level of uncertainty in the genotypic calls. 

Association testing has a lower power for rarer variants anyway (less variants 

to make comparisons between), which is only exacerbated by this uncertainty. 

Another potential issue with this particular methodology is the inclusion of 

the WTCCC2 project data, which are not ideal control samples for AD since 

the age of recruitment for such control cohorts are typically earlier than the 

average age at onset for AD. It is inevitable that some individuals being 

classed as controls here will actually develop AD in later life. This 

misclassification in phenotype is another source of loss of power in association 

studies. This is more likely to be a source of error in rarer variants than 

common, since small numbers of misclassifications will have more 

pronounced effects when the variants in question are rare.  

 

While it is not possible to know how these factors will affect our association 

testing, it was possible to look for positive controls to establish whether 

associations could be found via this methodology in a sample set of this size.  

 

Imputation using the same GWAS sample set was also conducted on the two 

APOE allele defining SNPs. The APOE locus is the longest known genetic risk 

factor for late-onset AD because of its strong effect size. As such, these SNPs 

should be clearly associated with AD in the imputation sample set.  

 

The three alleles of APOE are defined by genotype at two variant sites – 

rs429358 and rs74112. The protective ε2 allele is defined by T bases at each of 

the two positions; the neutral ε3 allele is defined by a T at the first variant 

position, and a C at the second position; while the other, risky, ε4 allele is 

defined by Cs at each position. Thus, within our imputed data, the C allele at 
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rs429358 would be expected to have an OR showing increased risk of AD (OR 

of 2.9), while the T allele at the second position, rs7412, would be expected to 

show a protective effect on AD risk (OR of 0.4). This was indeed found to be 

the case, with highly significant associations with AD in the expected 

directions for both variants (p=1.93x10-71 and p=1.13x10-9, respectively).  

 

Once it had been established that the imputation methodology was capable of 

finding associations of the magnitude of APOE, the original GWAS SNPs were 

also tested for association with AD. For each of the three genes, the original 

GWAS SNP did show association with AD in the imputed data (with nominal 

p-values of 0.0009, 0.0191, and 0.04176 for CLU, PICALM and CR1 

respectively). The directions of effect were consistent with those reported in 

the Harold et al. and Lambert et al. GWAS for all three SNPs (although the 

reporting in the GWAS papers was for the opposite allele to the one tested in 

our association test – our OR indicates the C allele at rs11136000 is risky, the 

GWAS papers reported the T allele at the same SNP to be protective. These 

equate to the same thing, thus our directions are consistent with the published 

data) (Harold et al. 2009; Lambert et al. 2009). This is good evidence that this 

methodology is capable of detecting associations of lower magnitudes. The 

GWAS variants, however, are all common, with MAFs >0.16, so it remained to 

be seen whether effects of this magnitude in rarer SNPs could be identified.   

 

The two coding variants successfully imputed within the PICALM region 

showed no evidence of association with AD. Just one out of the 13 successfully 

imputed coding SNPs within the CR1 locus (rs41274770) was found to be 

associated with AD at the p<0.05 level. No OR could be calculated for this 

variant given that no alternative alleles were imputed in the case samples. 

Another variant, rs61734514, which was only imputed in control samples and 

not cases also showed a suggestive association with the condition (p=0.0787). 

With 13 coding variants successfully imputed, 13 multiple tests of association 

are being conducted. A Bonferroni correction for this number of tests would 

require a p-value <0.0038 for statistical significance, which neither of these 

variants achieves, so they are at best suggestive. However, both of these are 

rare variants, with 1000 genomes project EUR MAFs of 0.020 and 0.016 

respectively. The known limitations of imputation of low frequency variants 

may be holding these SNPs back from achieving statistical significance. 

Although no alternative alleles of these variants were imputed in case 

samples, it is clear that these variants do occur in AD patients since they were 

found in the NGS data generated from AD patient samples only, which calls 

into question the apparent protective effect of the variants implied by the 

imputed data. To establish whether these variants are involved in AD risk, 

direct genotyping in a case-control cohort large enough to give sufficient 

power would be required.  

 

These two variants are in strong LD with the CR1 GWAS SNP (D’ is 1 for 

both). rs41274770 falls within exon 34 and rs61734514 lies within exon 26 (in 

the transcript of the common F allele). Both of these SNPs are missense 
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mutations, causing changes to the encoded protein of K1853R and T1408A, 

which are predicted by Polyphen-2 to be possibly and probably damaging 

respectively (0.823 and 0.974). Again, this renders the implied protective effect 

of the variants from the imputed data unlikely. There is additionally some 

evidence that rs61734514 may disrupt a binding site for the splicing SR-

protein SRSF1 (SF2/ASF). If this is indeed the case, it could offer another 

explanation as to how the variant may be causatively linked to AD, by 

disrupting the normal splicing of the gene. Given the known limitations of in 

silico functional prediction programs, it would be necessary to characterise 

these effects experimentally to assess whether the variants are indeed 

pathogenic to the structure of the protein or the expression of the gene, and 

how this could be related to AD pathology.  

 

None of the other variants predicted to be damaging to the protein structure 

in either PICALM or CR1 were suggestive of association with AD, so whether 

they are indeed having an effect on protein structure, and whether this is 

relevant to AD pathology remains unclear.  

 

Although none of the PICALM variants were found to be associated with AD 

in this dataset, only two of the variants were actually imputed; those which 

were not imputed successfully showed some evidence of potential 

functionality, so should also be considered. These are all variants without rs 

numbers. The unvalidated variant, at position 11:85685820 had no evidence of 

functional effects, and this is also true of the variant at 11:8568793 – both were 

synonymous with no evidence of effects on splicing. The other variant, at 

position 11:85707933, is a missense mutation within exon 12 of the gene, 

encoding the amino acid change Q398H, which Polyphen predicted would 

probably be damaging (0.987). The variant also showed evidence of affecting 

the binding site of splicing SR-protein SRSF1, so could potentially be 

influencing the splicing pattern of the gene. The variant had a frequency of 

0.004 in the CRISP data, which is indicative that just one alternate allele was 

present in the whole pool of 192 alleles. Without a listed frequency in the 1000 

genomes project data, it is likely that this allele is highly rare. Genotyping in a 

very large case-control cohort would be needed to establish if there was any 

association with AD, given the low frequency of the variant. Experimental 

characterisation of the predicted functional effects to the protein structure and 

splicing patterns could help ascertain whether the variant was likely to have a 

pathological role in the gene, and how this may related to AD pathogenesis.  

 

Although it has already been stated that PICALM SNP rs592297 was not 

associated with AD in the imputed data set, there is the suggestion that it may 

be having an effect on the splicing of the gene, with evidence that the variant 

may alter a splicing SR-protein binding site within exon 5 of the gene, such 

that an SRSF1 site is abolished, and a SRSF5 site is introduced. During the 

course of this project, another paper reported this as a possible splicing 

mutation relevant to AD based on in silico evidence, but again, found no  

association between the SNP and the condition (Schnetz-Boutaud et al. 2012). 
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Similarly, although rs76719109 showed no evidence of association with AD, it 

did show evidence of an effect on splicing, potentially altering a SRSF2 site 

within the gene’s 17th exon. Functional characterisation of the effects of these 

variants on splicing would allow it to be established whether these SNPs do 

indeed affect the splicing of the gene, and may help to determine whether and 

how this is of consequence in AD development.  

 

One of the three imputed coding variants within CLU (rs7982) showed 

association with AD in our imputed dataset (p=0.00065). Harold et al. in their 

GWAS paper had reported the variant as being in strong LD with rs11136000 

(r2 0.976, D’ 0.998), which showed a similar level of association with AD as 

rs11136000 in their data (Harold et al. 2009). In other studies, the SNP has not 

been found to be significantly associated with AD, perhaps due to insufficient 

sample sizes to give the power required (Guerreiro et al. 2010; Bettens et al. 

2012). In the imputed data, rs7982 showed a more significant association with 

AD than did rs11136000. This difference, although only marginal, may suggest 

that the variant is causative. As a synonymous variant, any effect on 

phenotype is not via the alteration of the amino acid sequence of the protein, 

and the in silico resources used did not suggest the variant was likely to be 

affecting the splicing of the gene, so it is unclear from these investigations how 

the variant could be related to AD pathogenesis. The greater significance of 

this SNP over the GWAS SNP in the imputed data set is only slight, so may 

simply be a quirk, and the SNP may simply be tagging the same unknown 

causative factor(s) tagged by rs11136000.  

 

Of the ten SNPs found in CLU’s 3’UTR in the NGS data, eight were 

successfully imputed, and three (rs9331950, rs9331949 and rs9331942) showed 

evidence of association with AD at the p<0.05 level. When corrected for the 

eight multiple tests being conducted, statistical significance would require 

p<0.0065, which only SNP rs9331950 surpassed. However, whilst rs9331950 is 

common (1000 genomes EUR MAF 0.197), the other two are rare, both with 

1000 genomes EUR MAFs of 0.023, so as before, it could be the limitations of 

imputing rare variants bringing the power of the association testing down, 

and preventing the variants from reaching significance. All three of these 

variants are in strong LD with rs11136000 (D’ scores all above 0.79), so may be 

further tags for the same source, or may themselves be causal in some way. 

 

To investigate the function of these 3’UTR variants, in silico resources were 

again utilised. The 3’UTRs of genes are known to harbour regulatory elements 

implicated in multiple regulatory process, including control of translational 

efficiency, transcript cleavage and stability, as well as polyadenylation (Barrett 

et al. 2012; Pichon et al. 2012). One method by which post-transcriptional 

regulation of gene expression is mediated is via the binding of miRNAs to 

sequences within a gene’s 3’UTR (Barrett et al. 2012). In silico prediction 

programs were used to determine whether any of the CLU 3’UTR SNPs 

identified in the NGS data could be having an effect on the expression of the 

gene via the disruption of miRNA binding.  
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Two of the variants (rs9331945 and rs9331947), which were not associated at 

the p<0.05 level, but were suggestive of association (with p-values of 0.079 and 

0.065 respectively) were found to fall within potential miRNA binding sites. 

Both of these are relatively rare variants (1000 genomes MAFs of 0.013 and 

0.050 respectively), so again the weakness of imputation in rarer variants may 

have affected this, and genotyping in a case-control cohort would be needed 

to clarify any association. The 3’UTR variants which were associated with AD 

at the p<0.05 level did not fall within any miRNA sites.  

 

For the two variants which did fall in miRNA binding sites according to 

Target Scan, PITA enabled the comparison of the wild type and variant UTR 

sequences in terms of miRNA binding site strengths. Two of the five sites 

predicted to be affected by Target Scan were not detected by PITA. This lack 

of concordance between programs is likely to indicate they are not genuine 

binding sites. The other three potential sites affected by the SNPs were 

recognised by PITA, and in each case, the ΔΔG score was weakened by the 

presence of the variant allele. However, all of the ΔΔG scores were low. The 

more negative the ΔΔG score is, the stronger the binding of the miRNA to the 

target site is expected to be, with -10 recommended as a rough cut-off point – 

any sites with a score more negative than -10 are likely to be functional at 

endogenous miRNA expression levels. None of the sites within the CLU 

3’UTR showed scores even approaching this cut-off, thus the sites are not 

likely to be actively used in the gene’s regulation, and the slight differences in 

ΔΔG scores between the sequences tested is unlikely to be of any consequence.  

 

This chapter has explored the exonic variants detected within the NGS data, 

with the aim of prioritising those variants most worthy of follow up research 

based on functional in silico investigations and testing for association with AD 

in an imputed data set. Within CLU, four variants either significantly or 

suggestively associated with AD were identified, but a lack of functional 

evidence from the in silico resources renders these a low priority for follow up. 

PICALM contained two variants with evidence of affecting splicing, but were 

not associated with AD in the imputed data set. A third variant within 

PICALM, a novel SNP which could not be imputed, was predicted to both 

affect splicing, as well as being a missense mutation, which Polyphen-2 

predicted would probably be damaging, rendering it a high priority for 

further study. Two missense variants within CR1, which were predicted to be 

damaging by Polyphen-2 also showed suggestive association with AD, 

considering their rarity (with p-values of 0.04 and 0.08 and frequencies of 

around 1-2%), and so present strong candidates for further research.  
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6. Non-coding variants 
 

This chapter explores the variants detected within the NGS data that did not 

fall within exonic regions. While non-coding variants are often overlooked, 

they can affect the regulation and expression of genes, and may well have an 

effect on disease risk. It is particularly important to consider such variants 

when there is evidence that the GWAS signal does not stem from coding 

changes, such as is the case for CLU. As with the coding variants discussed in 

the previous chapter, a two-pronged approach was adopted, combining data 

on potential functional activity from in silico resources with AD association 

testing in an imputed data set. 

 

6.1. Identification of non-coding variants 
 

When Ensembl’s VEP was used to ascertain the locations of the variants 

detected relative to the genes, it was established that over 850 of the variants 

detected were non-coding. It was decided that CLU and the region to the 5’ of 

PICALM, along with the rs3851179 LD block were likely to be the most 

interesting in terms of non-coding variation (see discussion 6.4 for details). 

The results of the investigations of these regions are presented below. 

 

6.2. CLU 
 

75 non-coding variants were detected within the targeted CLU locus, falling in 

the upstream, downstream and intronic regions. Of these, nine fell upstream 

of the gene (two of which were novel), 19 fell downstream (five novel), while 

the remaining 47 (including 12 novel) were situated in the intronic regions of 

the gene. It was necessary to prioritise these variants, so those in areas with 

multiple lines of evidence of functionality from ENCODE were selected, and 

are presented in Table 6.1. Table 6.2 shows the ENCODE data for these 

variants, upon which the prioritisation was based. Association testing of these 

variants in imputed data was performed, with the results presented in Table 

6.3. 
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Table 6.1 – Summary of CLU non-coding SNPs of interest 

Coordinate 

Ref/

Alt rsID 

CRISP 

freq. 

1kg 

freq. PhyloP Phastcons 

Location relative to 

CLU  

LD with GWAS 

SNP (r2) 

LD with GWAS 

SNP (D’) 

27466157 T/C rs1532276 0.593 0.603 -0.7211 0 Intronic 0.976 0.988 

27466181 T/C rs1532277 0.592 0.603 0.0564 0 Intronic 0.976 0.988 

27466315 T/C rs1532278 0.573 0.606 0.3340 0 Intronic 0.976 0.988 

27468503 C/A rs867230 0.597 0.591 0.0937 0 Intronic 0.930 0.988 

27469971 G/C rs9331883 0.007 0.003 -1.8881 0 Intronic 0.004 1.000 

27470010 G/T - 0.006 - 0.0037 0 Intronic  -  - 

27470597 G/A rs34109053 0.302 0.272 0.5443 0.0215 Intronic 0.178 0.887 

27471673 C/T - 0.004 - 2.0935 0.6673 Intronic  -  - 

27471748 C/A - 0.053 - -0.0156 0 Intronic  - -  

27472859 C/A rs76646010 0.022 0.033 0.1443 0 Upstream (311bp) 0.019 1.000 

27474202 A/G rs9314349 0.379 0.393 -0.5716 0 Upstream (1654bp) 0.099 0.467 

27474541 G/A rs117148275 0.009 0.007 -0.7374 0 Upstream (1993bp) 0.001 0.370 

27474587 C/G rs56025648 0.050 0.055 0.0914 0 Upstream (2039) 0.036 0.605 

27474599 C/T rs1982229 0.358 0.368 -0.0191 0 Upstream (2051bp) 0.108 0.503 

27474871 G/A rs77336101 0.010 0.021 -0.8479 0 Upstream (2323bp) 0.013 1.000 

Information on the non-coding SNPs identified in the NGS data for the CLU region. Variants shown are those filtered based on multiple lines of evidence 

from ENCODE (see Table 6.2) that the region in which they fall is functionally active. Variants showing conservation scores above 0.5 (by either measure) are 

highlighted in yellow. 
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Table 6.2 – ENCODE data on CLU’s non-coding variants 

Coordinate Ref/Alt rsID TFBS DNASE NHA_H3K4me1 NHA_H3K4me3 NHA_H3K27ac 

27466157 T/C rs1532276 * See Footnote 33 5.724864     

27466181 T/C rs1532277 * See Footnote 33 5.724864     

27466315 T/C rs1532278 * See Footnote 33 5.724864     

27468503 C/A rs867230  72 5.724864 4.907665   

27469971 G/C rs9331883 * See Footnote 11 5.724864     

27470010 G/T - * See Footnote 11 5.724864     

27470597 G/A rs34109053  4 5.724864   7.681592 

27471673 C/T - * See Footnote 135 5.724864 11.0377 7.681592 

27471748 C/A - * See Footnote 135 5.724864 11.0377 7.681592 

27472859 C/A rs76646010    5.724864 11.0377 7.681592 

27474202 A/G rs9314349 * See Footnote   5.724864   7.681592 

27474541 G/A rs117148275 * See Footnote 14 5.724864 8.594284 7.681592 

27474587 C/G rs56025648 * See Footnote   5.724864   7.681592 

27474599 C/T rs1982229 * See Footnote   5.724864   7.681592 

27474871 G/A rs77336101 * See Footnote 133 5.724864   7.681592 

ENCODE data for non-coding variants within the targeted CLU locus for parameters suggestive of regulatory activity. In the ENCODE data, TFBS is 

transcription factor binding sites, DNASE is DNaseI hypersensitivity clusters, NHA refers to normal human astrocytes (the most relevant cell type to AD 

available), with H3K4me1, H3K4me3 and H3K27a all being histone modifications indicative of active or potentially active DNA. A value for any of these may 

indicate the DNA position is in some way functionally active. *Each of these variants fell within the locations of multiple putative transcription factor binding 

sites. For details of which SNPs occurred at which TFBS, see Appendix section 6.1.  
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Table 6.3 – Association testing of non-coding variants at the CLU locus in imputed data 

Coordinate Ref/Alt rsID Info AD MAF Control MAF OR (95% CI) p-value 

27466157 T/C rs1532276 0.995 0.360 0.395 1.164 (1.083-1.252) 0.0009 

27466181 T/C rs1532277 0.993 0.352 0.393 1.194 (1.110-1.285) 0.0005 

27466315 T/C rs1532278 0.994 0.353 0.393 1.184 (1.101-1.274) 0.0008 

27468503 C/A rs867230 0.966 0.364 0.411 1.220 (1.126-1.321) 0.0094 

27469971 G/C rs9331883 0.193 0.001 0.001 0.988 (0.205-4.756) 0.0553 

27470010 G/T -          

27470597 G/A rs34109053 0.952 0.267 0.244 1.129 (1.027-1.242) 0.1154 

27471673 C/T -          

27471748 C/A -          

27472859 C/A rs76646010 0.725 0.004 0.007 0.597 (0.345-1.034) 0.4942 

27474202 A/G rs9314349 1.000 0.371 0.382 0.954 (0.888-1.025) 0.4274 

27474541 G/A rs117148275 0.938 0.009 0.007 1.324 (0.909-1.929) 0.2835 

27474587 C/G rs56025648 0.941 0.031 0.040 0.766 (0.626-0.936) 0.9849 

27474599 C/T rs1982229 0.988 0.356 0.367 0.952 (0.884-1.025) 0.4809 

27474871 G/A rs77336101 0.939 0.014 0.018 0.780 (0.585-1.040) 0.7197 

Results of association testing for the variants showing evidence of functionality in the targeted CLU locus using imputed data. The OR and 95% CI given 

correspond to the allele listed as “alt”, but the MAF refers to which ever allele has the lower frequency, so these do not always correspond. Statistically 

significant variants are highlighted in yellow, one variant significant at the p<0.05 level but not withstanding correction for multiple testing highlighted in 

orange. 
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6.3. PICALM and the rs3851179 LD block 
 

Given the evidence that the association signal within the PICALM gene tracks 

to the 5’ and upstream region, this was the focus of the search within PICALM. 

Of the 516 non-coding variants detected within the PICALM target locus, 14 

fell upstream of the gene and had multiple lines of evidence of falling in a 

functional region from the ENCODE data. These spanned a region from 102bp 

away from the transcription start site, to 3.25kb away. Nine of these had rs 

numbers already assigned, while the remaining five were novel. Details on 

these 14 variants and the investigation of their functionality are presented in 

Table 6.4, with data from the ENCODE project reported in Table 6.5. Results 

from the association testing using imputed data are given in Table 6.6.  

 

The other prioritised area of interest was the rs3851179 LD block. In this area, 

113 variants were identified, with 23 of those determined to be novel by 

Ensembl’s VEP. The eight variants with multiple lines of evidence for 

functionality are presented in Table 6.7, with data from the ENCODE project 

on these variants presented in Table 6.8. Highlighted within these tables are 

two variants of particular interest, which fell within a small region with strong 

evidence of regulatory activity.  

 

It was decided to validate these variants, and determine whether there was 

evidence of suggestive association with AD using TaqMan genotyping assays 

in a cohort of AD cases and controls. Figure 6.1 shows the results from the 

Sanger sequencing validation of the variants along with TaqMan genotyping 

assay output. Table 6.9 shows the results from the TaqMan genotyping assays, 

including the numbers of samples genotyped, and association testing for one 

of the SNPs with AD using Fisher’s exact test in the TaqMan data with 1000 

genomes data included to give additional control samples. 

 

Association testing in the imputed data set was also performed on all eight 

variants falling in regions with the best evidence of functionality or regulatory 

capacity. This data is provided in Table 6.10.  
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Table 6.4 – Summary of variants upstream of PICALM 

Coordinate Ref/Alt rsID CRISP freq. 1kg freq. PhyloP Phastcons 

Distance from 

PICALM (bp)  

LD with GWAS 

SNP (r2) 

LD with GWAS 

SNP (D’) 

85780073 G/T rs3016326 0.9999° 1.0000 -0.1086 0.9843 102 - - 

85780448 T/C rs3016327 0.8419 0.7889 -0.2136 0 477 0.199 0.676 

85780582 G/T rs10898433 0.1006 0.1504 -1.5252 0 611 0.013 0.337 

85780924 A/G - 0.0050 - 0.9596 1.0000 953 - - 

85780962 T/C rs188367538 0.0024 0.0013 2.1640 1.0000 991 - - 

85781279 C/G - 0.0048 - 0.7187 0.0157 1308 - - 

85781322 C/T rs669556 0.8563 0.8166 0.1165 0.8346 1351 0.268 0.833 

85781523 C/A rs75172533 0.0608 0.0567 -0.6663 0 1552 0.031 0.795 

85781597 CA/C rs5793180 0.8113 0.8166 -0.3652 0.0236 1627 0.268 0.833 

85781599 A/G rs11304990 0.2446 - 0.2370 0.0157 1628 - - 

85781600 G/T - 0.2316 - 0.5381 0.0157 1629 - - 

85781600 GT/G - 0.2699 - 0.5381 0.0157 1630 - - 

85781634 C/G rs55886146 0.0546 0.0172 0.8994 0.9921 1663 0.015 1 

85781856 C/G - 0.0049 - -1.4302 0 1885 - - 

Information on the variants upstream of PICALM including frequency estimates from CRISP and the 1000 genomes project, conservation scores from both 

PhyloP and Phastcons, and the distance from the transcription start site. Variants showing conservation scores above 0.5 (by either measure) are highlighted 

in yellow. 
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Table 6.5 – ENCODE data on variants upstream of PICALM 

Coordinate Ref/Alt rsID ENC_TFBS ENC_DNASE NHA_H3K4me1 NHA_H3K4me3 NHA_H3K27ac 

85780073 G/T rs3016326 See footnote*   28.941935 13.490137 

85780448 T/C rs3016327 See footnote*  8.547032 28.941935 13.490137 

85780582 G/T rs10898433 See footnote* 18 8.547032 28.941935 13.490137 

85780924 A/G - See footnote* 136 8.547032 28.941935 13.490137 

85780962 T/C rs188367538 See footnote* 136 8.547032 28.941935 13.490137 

85781279 C/G -   8.547032 28.941935 13.490137 

85781322 C/T rs669556  4 8.547032 28.941935 13.490137 

85781523 C/A rs75172533   8.547032 28.941935 13.490137 

85781597 CA/C rs5793180  37 8.547032 28.941935 13.490137 

85781599 A/G rs11304990  37 8.547032 28.941935 13.490137 

85781600 G/T -  37 8.547032 28.941935 13.490137 

85781600 GT/G -  37 8.547032 28.941935 13.490137 

85781634 C/G rs55886146  37 8.547032 28.941935 13.490137 

85781856 C/G -  37 8.547032 28.941935 13.490137 

ENCODE data for variants upstream of the PICALM gene for parameters suggestive of regulatory activity In the ENCODE data, TFBS is transcription factor 

binding sites, DNASE is DNaseI hypersensitivity clusters, NHA refers to normal human astrocytes (the most relevant cell type to AD available), with 

H3K4me1, H3K4me3 and H3K27a all being histone modifications indicative of active or potentially active DNA. A value for any of these may indicate the 

DNA position is in some way functionally active. *Each of these variants fell within the locations of multiple putative transcription factor binding sites. For 

details of which SNPs occurred at which TFBS, see Appendix section 6.2.  
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Table 6.6 – Association testing of variants upstream of PICALM in imputed data 

Coordinate Ref/Alt rsID Info AD MAF Control MAF OR (95% CI)b p-value 

85780073 G/T rs3016326 0.9037 0.0000 0.0075 -1.0000 0.3091 

85780448 T/C rs3016327 0.9781 0.1918 0.2044 1.0827 (0.9869 - 1.1878) 0.9138 

85780582 G/T rs10898433 0.9975 0.1329 0.1385 0.9530 (0.8603 - 1.0558) 0.4773 

85780924 A/G - - - - - - 

85780962 T/C rs188367538 0.0413 0.0000 0.0000 -1.0000 -1.0000 

85781279 C/G - - - - - - 

85781322 C/T rs669556 0.9994 0.1782 0.1951 1.1184 (1.0218 - 1.2241) 0.7498 

85781523 C/A rs75172533 0.9929 0.0659 0.0552 1.2069 (1.0458 - 1.3928) 0.1533 

85781597 CA/C rs5793180 0.9971 0.1744 0.1926 1.1298 (1.0318 - 1.2372) 0.7721 

85781599 A/G rs11304990 - - - - - 

85781600 G/T - - - - - - 

85781600 GT/G - - - - - - 

85781634 C/G rs55886146 0.9906 0.0292 0.0274 1.0663 (0.8661 - 1.3128) 0.0959 

85781856 C/G - - - - - - 

Results of association testing of the variants showing evidence of functionality upstream of PICALM in imputed data. The OR and 95% CI given correspond to 

the allele listed as “alt”, but the MAF refers to which ever allele has the lower frequency, so these do not always correspond. 
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Table 6.7 – Variants in areas with multiple lines of evidence of functionality in the rs3851179 LD block 

Coordinate Ref/Alt rsID CRISP freq. 1kg freq. PhyloP Phastcons 

LD with GWAS 

SNP (r2) 

LD with GWAS 

SNP (D’) 

85859598 G/A - 0.0041 - 0.7114 0.1012 - - 

85862491 A/G rs187016120 0.0261 0.0053 -0.5417 0 0.0090 1.0000 

85862739 G/A - 0.0054 - 0.5737 0 - - 

85863014 C/G rs3862786 0.1233 0.1781 1.3011 1.0000 0.0475 1.0000 

85863080 A/C rs56157503 0.1306 0.1306 0.2342 0.9843 0.1051 1.0000 

85863473 G/A rs34731047 0.1004 0.0594 0.2423 0.0236 0.0350 1.0000 

85863683 C/G rs3889743 0.0429 0.0343 0.5844 0.0866 0.0249 1.0000 

85863769 T/G rs11234562 0.2100 0.203 -2.5515 0 0.1823 1.0000 

Information on the variants upstream of PICALM including frequency estimates from CRISP and the 1000 genomes project, conservation scores from both 

PhyloP and Phastcons, and the distance from the transcription start site. The two yellow highlighted variants are those TaqMan genotyped to test for 

association with AD. . Variants showing conservation scores above 0.5 (by either measure) are highlighted in yellow. 
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Table 6.8 – ENCODE data on variants in the rs3851179 LD block 

Coordinate Ref/Alt rsID ENC_TFBS ENC_DNASE NHA_H3K4me1 NHA_H3K4me3 NHA_H3K27ac 

85859598 G/A - See footnote* 4 4.203475     

85862491 A/G rs187016120 See footnote* 116   7.903122 5.130389 

85862739 G/A - See footnote* 116 4.483236 7.903122 5.130389 

85863014 C/G rs3862786  116 4.483236 7.903122 5.130389 

85863080 A/C rs56157503 See footnote* 116 4.483236 7.903122 5.130389 

85863473 G/A rs34731047 See footnote* 116 4.483236 7.903122 5.130389 

85863683 C/G rs3889743 See footnote*     7.903122 5.130389 

85863769 T/G rs11234562 See footnote*     7.903122 5.130389 

ENCODE data for variants in the rs3851179 LD block for parameters suggestive of regulatory activity. In the ENCODE data, TFBS is transcription factor 

binding sites, DNASE is DNaseI hypersensitivity clusters, NHA refers to normal human astrocytes (the most relevant cell type to AD available), with 

H3K4me1, H3K4me3 and H3K27a all being histone modifications indicative of active or potentially active DNA. A value for any of these may indicate the 

DNA position is in some way functionally active. *Each of these variants fell within the locations of multiple putative transcription factor binding sites. For 

details of which SNPs occurred at which TFBS, see Appendix section 6.3. The two yellow highlighted variants are those TaqMan genotyped to test for 

association with AD. 
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Figure 6.1 – Sanger validation and TaqMan genotyping assays of rs3851179 LD block variants of interest 

rs187016120 

 
11:85872739 

  
TaqMan readouts and Sanger sequencing validation of SNPs at rs187016120 and 11:85872739 in each case showing wild type homozygous samples on the left, 

and heterozygous samples on the right. No individuals homozygous for the minor allele were detected for either SNP. 
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Table 6.9 – TaqMan genotyping assay results for rs3851179 LD block SNPs 

  TaqMan genotype 

distribution 

TaqMan and 1kg 

genotype distribution MAF 

  

Variant Genotype Case Control Case Control Case Control OR (95% CI) p-value 

rs187016120 AA 254 204 254 579 0.78% 0.34% 2.27 (0.57-9.11) 0.259 

AG 4 0 4 4 

11:85862739 GG 246 194 

GA 1 0 

Results from the TaqMan genotyping assay for variants 11:85862739 and rs187016120. As no minor alleles were found in the controls for either variant, 

association testing was not possible on this data alone. For the variant at rs187016120, 1000 genomes data was available and was combined with the 

genotyping data to allow a Fisher’s exact test to be conducted, the odds ratio, 95% CI and p-value for which are shown in the table above. As the variant at 

11:85862739 was novel, no extra control data was available for association testing.  



 
 

 
 

177 

Table 6.10 – Association testing of variants in areas with good evidence of functionality in the rs3851179 LD block in imputed data 

Coordinate Ref/Alt rsID Info AD MAF Control MAF OR (95% CI)b p-value 

85859598 G/A -      

85862491 A/G rs187016120 0.8133 0.0024 0.0023 1.0613 (0.5213 - 2.1607) 0.7442 

85862739 G/A -      

85863014 C/G rs3862786 0.9917 0.1697 0.1598 1.0746 (0.9784 - 1.1803) 0.4285 

85863080 A/C rs56157503 0.9880 0.1070 0.1102 0.9668 (0.8629 - 1.0833) 0.7670 

85863473 G/A rs34731047 0.9749 0.0641 0.0662 0.9675 (0.8369 - 1.1184) 0.7527 

85863683 C/G rs3889743 0.9897 0.0363 0.0315 1.1573 (0.9580 - 1.3981) 0.7080 

85863769 T/G rs11234562 0.9897 0.1850 0.1941 0.9423 (0.8597 - 1.0329) 0.7740 

Results of association testing of the variants with evidence of functionality in the rs3851179 LD block in imputed data. The two yellow highlighted variants are 

those TaqMan genotyped to test for association with AD. The OR and 95% CI given correspond to the allele listed as “alt”, but the MAF refers to which ever 

allele has the lower frequency, so these do not always correspond. 
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6.4. Discussion of non-coding variants 
 

Non-coding variants are sometimes overlooked in the search for 

causative mutations for a given genotype, and indeed, the vast majority 

of known detrimental variants are coding ones. It is harder both to 

predict and to prove the functional consequences of non-coding 

variants, and as there is such a vast quantity in the human genome, it is 

harder to know where to begin the search. 

 

Over 850 non-exonic variants were detected in the NGS data of the four 

targeted loci (taking CR1 variants from project two). To narrow down 

the quantity of variants to focus on, it was decided that only the non-

exonic variants within CLU; to the 5’ region of the PICALM gene; and in 

the rs3851179 LD block would be investigated. 

 

Several published studies have sought to characterise the source of the 

association signal within CLU, generally focussing on exonic regions, 

and consistently, no coding variants which can explain the GWAS signal 

have been found (Guerreiro et al. 2010; Bettens et al. 2012; Ferrari et al. 

2012). Given the assumption that the GWAS SNP is tagging a variant or 

variants implicated in AD risk at the CLU locus, it is logical to turn the 

search to non-coding variants. 

 

Attempts at tracking down the source of PICALM’s association signal 

have been less extensive than those for CLU, but again, no coding 

variants to date have been found to explain PICALM’s involvement in 

AD, so again, perhaps the regulatory regions hold the answers. The fact 

that the initial GWAS SNP fell so far from the actual gene (~88.5kb 

upstream) (Harold et al. 2009) implies the alteration in AD risk 

attributable to this region might be regulatory in nature, particularly 

from the 5’ end of the gene (Sleegers et al. 2010). 

 

For the CR1 association signal, there is evidence that suggests the 

alteration in AD risk may stem from the different isoforms of the 

protein, with the S allele associated with an increased risk of AD 

(Brouwers et al. 2012). Given that there are also many coding variants 

within CR1 which have not been thoroughly investigated for their 

potential functional role in the condition, CR1’s non-coding variants 

were not seen as a priority for pursuit. Since large quantities of non-

coding DNA in the CR1 region were not adequately covered by the 

sequencing, any analysis at this stage would be piecemeal at best. 

 

As was done for the assessment of coding variants, a two pronged 

strategy was adopted, using evidence of functionality, as well as 

association testing in the imputed case-control cohort. This time, 

however, only variants which had three separate lines of evidence of 

functionality from ENCODE’s data were tested for association, since the 
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large number of non-coding variants would have made the necessary 

correction for multiple testing prohibitively harsh, given the size of the 

cohort and the limitations of imputation, as discussed in the previous 

chapter.  

 

Five different parameters from ENCODE were used in this assessment 

of functionality – TFBS, DNASE, and three histone modifications, 

H3K4me1, H3K4me3 and H3K27ac. The data given for these latter three 

is based on the normal human astrocyte cell line, since this was the most 

relevant to AD of all the available cell lines. The first, TFBS, or 

transcription factor binding sites, gives details of any conserved TFBS, as 

determined by ChIP-seq, at the position of each variant. Any SNPs 

falling within these binding sites may be affecting the affinity of the 

sites, so could potentially disrupt the regulatory role the transcription 

factor normally fulfils. The binding motifs for transcription factors are 

normally degenerate, so the variants may or may not affect the site, but 

this would need to be determined. The next, DNASE, refers to DNAseI 

hypersensitivity clusters, based on 125 cell types. Regulatory regions 

and particularly promoters tend to be DNAseI hypersensitive, as the 

DNA here is not tightly wound around histones and being exposed, it is 

vulnerable to enzymatic cleavage. Variants falling within hypersensitive 

sites may therefore be falling in regions of regulatory activity, and may 

potentially be disrupting the normal regulatory function of the region, 

so could be of interest. Histone marks are specific modifications to 

histone proteins which contribute to gene regulation by altering the 

accessibility of the region to transcriptional activity. The levels given are 

of specific histone marks (H3K4me1, which is associated with enhancers; 

H3K4Me3, which is associated with active (or potentially active) 

promoters; and H3K27Ac, which is associated with active transcription, 

possibly via preventing the spread of another, repressive histone mark, 

H3K27Me3), at the sites of the variants detected, determined by ChIP-

seq in the ENCODE data.  

 

None of these parameters individually are conclusive evidence a variant 

could be functional, however, when multiple lines of evidence converge 

at the position of a certain variant, this can suggest functionality, and 

can flag up those variants worthy of further investigation.  

 

Out of the 75 non-coding variants detected within the targeted CLU 

locus, 15 met the filtering criteria ascribed, having at least 3 lines of 

evidence of function from ENCODE. 12 of these 15 variants were 

imputed in the GWAS dataset, although one (rs9331883) had a poor info 

score and a vast range in its 95% CI, thus despite a seemingly suggestive 

p-value of 0.055, it will be disregarded as a potential artefact of 

imputation.  
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Three variants (rs1532276, rs1532277 and rs1532278) showed an 

association with AD (p-values of 0.0009, 0.0005, and 0.0008 respectively), 

which remained significant after Bonferroni correction for the twelve 

multiple tests being conducted (0.05/12 = 0.0042). rs867230 fell short of 

this stringent significance threshold, but at p = 0.0094, it is certainly 

suggestive of significance. All four had strong info scores (>0.96), and all 

were common variants (MAFs in controls all around 0.4). Each of the 

variants appeared to convey a modest increase in AD risk, with ORs 

ranging from 1.16 to 1.22. All of these variants are in strong LD with the 

original GWAS SNP, rs11136000, which itself had a p-value of 0.00089, 

and an OR of 1.172 (95% CI 1.090-1.260). This signifies these variants do 

not represent new, independent association signals. Could any of these 

variants explain the association signal in terms of function, or are these 

merely further tag SNPs for the same elusive source of the original 

signal? 

 

Two of the variants (rs1532277 and rs1532278) had more significant p-

values than the GWAS SNP, which could suggest a causative role in the 

GWAS signal, but the difference was only marginal. That said, the 

GWAS SNP was directly genotyped in the majority of samples used for 

imputation, while the other variants were purely imputed, which 

despite the strong info scores, has an inherently lower power to detect 

associations, so perhaps with direct genotyping these variants would 

further exceed the significance of rs11136000.  

 

The three significantly associated variants, rs1532276, rs1532277 and 

rs1532278 all fall within the third intron of the gene, while the 

suggestive variant, rs867230, falls within intron 1. None of the variants 

showed strong evidence of being in a particularly conserved region, 

from the PhyloP and Phastcons scores. These are measures of 

conservation at a specific position (PhyloP) or across a small region, 

taking in to account neighbouring sites (Phastcons). The scores given for 

PhyloP reflect –log p-values under the null hypothesis of neutral 

evolution, with positive scores reflecting conservation. The score given 

for Phastcons is a compressed conservation score reflecting the 

likelihood of conservation in an area (on a scale of 0-1, with 1 being 

conserved). A combination of a large positive PhyloP score and a 

Phastcons score approaching 1 therefore gives good evidence a variant is 

affecting an area of high conservation. Such variants are more likely to 

be damaging functionally, as conservation implies evolutionary restraint 

and thus potential functional significance.  

 

The data from ENCODE for the four variants suggests they all fall 

within transcriptionally active DNA regions. All show moderate 

DNASE scores, and all are positive for H3K4me1 histone marks. The 

suggestive variant, rs867230 is also positive for the H3K4me3 histone 

mark. rs1532276, rs1532277 and rs1532278 all fall within potential TFBS 
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according to the ENCODE data. Experimental characterisation would be 

necessary to confirm whether these TFBS are actually actively utilised in 

the regulation of the CLU gene, and whether the presence of the 

detected variants has a detrimental effect on this process. The variants 

which show both evidence of association and evidence of functionality 

are the ones with highest priority for further pursuit.  

 

Of the 14 variants in the region immediately 5’ of the PICALM gene with 

multiple lines of evidence of functionality from ENCODE, eight were 

successfully imputed. None of the variants showed a significant 

association with AD at the p<0.05 level, let alone a Bonferroni corrected 

level of significance. One variant showing evidence of suggestive 

significance was rs55886146 (p=0.0959). This is a rare variant (1000 

genomes project EUR MAF 0.017), with strong evidence of conservation 

(PhyloP 0.8994, Phastcons 0.9921), showing a high level of LD with the 

original GWAS SNP (D’ 1). Because of the low MAF, it may be that the 

association test in the imputed data lacked power (due to the issues 

imputing rare variants covered in the previous chapter). The variant 

showed evidence of falling within a region of DNAseI hypersensitivity, 

and was positive for all three histone marks assessed, so is potentially 

falling within a regulatory region, although without falling in a 

predicted TFBS, how this regulatory effect could be mediated is unclear.  

 

There were two further variants of potential interest. These fell within 

multiple TFBS in the ENCODE data, had high evidence of falling in a 

DNAseI hypersensitive site, and were positive for all three histone 

marks. These two variants both fell in conserved DNA (PhyloP 2.1640 

and 0.9596 respectively, Phastcons 1 for both), so had strong evidence 

suggesting regulatory functionality. One of the variants, rs188367538, 

was classed as being imputed, but had a poor info score, so was not 

adequately tested for association with AD by our method. The other, at 

position 11:85780924, was a novel variant so could not be imputed. 

Direct genotyping of the variants would be necessary to adequately 

address whether they are associated with AD, while further in silico and 

experimental functional investigations would be needed to elucidate if 

and how they are related to AD pathology.   

 

Eight variants within the rs3851179 LD block showed three or more lines 

of evidence of functionality in the ENCODE data. When the project 

began, a choice was made whether to include simply PICALM, the gene 

tagged by the GWAS association signal, or whether to also include the 

region in which the GWAS SNP fell, in an LD block ~88.5kb upstream of 

the gene. Analysis of the information available, particularly ENCODE 

data, for the LD block suggested that the region may contain some 

regulatory activity. Of particular interest was a ~500bp span of DNA 

with high DNAseI hypersensitivity, multiple TFBS, and evidence of high 

levels of the three histone marks associated with regulatory activity 
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considered (H3K4me1, H3K4me3 and H3K27ac). For these reasons, the 

LD block was also targeted in the NGS project. When the variants were 

identified in the NGS data, two (rs187016120 and the variant at position 

11:85862739) fell within this ~500bp region, with high levels of evidence 

of functionality. An MSc student in Molecular Genetics and Diagnostics, 

Ng See May, undertook validation of these two variants via Sanger 

sequencing, and used TaqMan assays to genotype the variants in a case-

control cohort, to facilitate association testing. The novel variant, at 

position 11:85862739 was successfully validated in the sample from the 

NGS data, but no further alternative alleles were detected in the 440 case 

and control samples genotyped. Since it has also not been reported in 

the 1000 genomes project data, the variant is certainly rare, and may be a 

private mutation, whose relationship with AD would be difficult to 

assess. The other variant, rs187016120, was also successfully validated, 

and was found in four case samples out of 258 in the TaqMan data, and 

in none of the 204 control samples. Since no alternative alleles were 

found in the control samples, it was not possible to test for association 

with AD in the TaqMan data alone, but combining the TaqMan case 

data with 1000 genomes data for the variant enabled this. 379 control 

samples from the 1000 genomes EUR population had data available for 

this variant, including four heterozygotes. When this was tested for 

association with AD in the TaqMan and 1000 genomes data, no evidence 

of association was found, and the imputed data showed no suggestion 

of association either. Despite all of the suggestions of functional activity, 

this SNP, and indeed the other potentially functional SNPs within the 

region showed no evidence of association with AD, even when in strong 

LD with the GWAS SNP.  

 

This chapter has detailed the prioritisation of non-coding variants for 

follow up research. Those falling within the areas thought most likely to 

harbour functional variants (CLU, the region to the immediate 5’ of 

PICALM, and the rs3851179 LD block) were assessed for likely 

functionality using in silico resources, and any with multiple lines of 

evidence of functionality were tested for association with AD in the 

imputed data set. Three intronic variants within the targeted CLU region 

occurred at the sites of ENCODE database TFBS, and were significantly 

associated with AD, so were classed as a high priority for further 

research. A fourth showed suggestive significance but did not withstand 

correction for multiple testing, and had less compelling evidence of 

functionality, so was classed as a low priority for follow up. Only one 

variant in both of the regions 5’ of PICALM showed suggestive 

significance, but had limited evidence of functionality. Two variants 

upstream of PICALM coincided with the sites of ENCODE database 

TFBS. These were both inadequately tested for association with AD (one 

was novel so could not be imputed, and the other was poorly imputed), 

so were determined to be a high priority for future work.  
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7. General Discussion 
 
7.1. Summary of main findings 
 

There are take home messages from each of the chapters presented here, as 

well as from the project as a whole. Chapter 3 – Data analysis provided a 

robust pipeline for the analysis of pooled sequencing data. The development 

of the pipeline during the first sequencing project was crucial for the handling 

of the second, which had a significantly increased volume of data and thus 

was extremely time consuming to process. It also allowed the assessment of 

the quality of the data produced, and the reliability of variant calls, which was 

generally good, although problems of coverage in the CR1 region were 

identified. Chapter 4 – Sanger validation was based on a publication which 

highlighted some of the issues caused by indels and mononucleotide repeats 

for NGS (Lord et al. 2012). Chapters 5 and 6 (Exonic and Non-exonic variants) 

present a new method for prioritising variants based on combined evidence of 

functionality from in silico resources, and evidence of association from 

imputed data. The utilisation of these steps ensure only variants with the best 

evidence of involvement in AD risk are pursued with expensive and time 

consuming functional experimentation and direct genotyping. Several coding 

and non-coding variants within the three genes were identified as worthy of 

follow up research, which will be discussed in section 7.2. Next steps. The 

methods used in general provide a cost-effective framework for following up 

GWAS identified risk loci, in AD as well as other conditions. The utilisation of 

pooled targeted sequencing has been shown to be capable of identifying 

variants, significantly reducing the costs involved in individual sequencing. 

Whilst this project cannot claim to give a comprehensive catalogue of rare 

variation in the loci targeted, given the modest sample size, it contributes to 

the general body of knowledge of AD genetics, and may be a small stepping 

stone on the long path to understanding AD aetiology, and turning that 

understanding into advances for those affected by the condition.  

 

7.2. Next steps 
 

Out of more than 1000 variants detected within the NGS data, Table 7.1 shows 

the 16 variants deemed most worthy of further research, the reasons behind 

this prioritisation, and the vein in which follow up research would proceed. 

Each of the variants was given a level of priority for follow up research. Those 

with no evidence of functionality in the investigations conducted were 

deemed to be low priority, irrespective of their level of association with AD. 

Variants which did show evidence of functionality, but had been successfully 

imputed and not been found to be associated with AD were classed as 

medium priority. The SNPs were classed as high priority if they showed 

evidence of functional effects, directing the course of follow up studies, as well 

as evidence of association (significant or suggestive) in the imputed data. Rare 

variants showing suggestive association may be particularly promising 
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candidates for involvement in AD, given rarity is known to reduce power in 

imputed data. Also classed as high priority were those that showed evidence 

of functionality but had not been adequately tested for association with AD, 

either because they could not be imputed or were poorly imputed.  

 

The follow up research for the variants depends on what type of functional 

evidence was found for them. The list included four missense mutations, all of 

which were predicted by Polyphen-2 to be possibly or probably damaging. 

While Polyphen-2 normally compares favourably with other mutation 

prediction programs when tested alongside experimental functional data (Di 

et al. 2009; Adzhubei et al. 2010; Wei et al. 2010), no in silico prediction 

programs are 100% accurate. With estimated correct prediction rates ranging 

from 91.7% (Zou et al. 2011) to 66.7% (Di et al. 2009), a Polyphen-2 deleterious 

prediction alone is not confirmation a variant is functional. Experimental 

confirmation is necessary to clarify the accuracy of the predictions for these 

SNPs. Often, to achieve this validation, variant and wild type versions of the 

protein are expressed in a relevant cell line, and the function of the protein 

(e.g. enzymatic activity) is measured (Brunham et al. 2005; Di et al. 2009; Zou 

et al. 2011). However, for PICALM and CR1, it is not known what aspect of the 

protein’s function is actually implicated in AD pathology, so it would not be 

obvious what parameter to measure. Levels of extracellular Aβ may provide a 

useful measure, but it would be unclear whether a lack of effect indicated that 

the wild-type and variant sequences had the same effect on this level, or 

whether it indicated that the PICALM or CR1 proteins do not affect AD risk 

via this mechanism. Without a specific parameter to measure, a more 

generalised approach could be adopted. Transgenic mice can be created with 

specific mutations using homologous recombination. Replacing the wild-type 

gene with sequence containing the variant of interest, and monitoring the 

effect on the resultant animals in terms of brain development and cognitive 

function when compared to the wild type would allow a method to assess the 

consequences of the variants without knowing what specific molecular 

mechanism is involved. However, such experimentation is highly specialised 

and expensive to conduct, thus it could not be justified without stronger 

evidence supporting these variants roles in AD.  
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Table 7.1 – Variants of interest and future research directions 

Type Gene Variant Associated Functional  Priority Follow up functional research 

Exonic CLU rs7982 Yes No  Low  

rs9331950 Yes No  Low  

rs9331949 Suggestive (rare) No  Low  

rs9331942 Suggestive (rare) No  Low  

PICALM 11:85707933 Not imputed  Missense, probably damaging 

SRSF1 site disrupted 

High Investigate variant protein 

Investigate splicing 

rs592297 No SRSF1 site disrupted Medium Investigate splicing 

rs76719109 

 

No SRSF2 site disrupted Medium Investigate splicing 

CR1 rs41274770 Suggestive (rare) Missense, possibly damaging High Investigate variant protein 

rs61734514 Suggestive (rare) Missense, probably damaging 

SRSF1 site disrupted 

High Investigate variant protein 

Investigate splicing 

Non-

coding 

CLU rs1532276 Yes TFBS High Investigate TFBS 

rs1532277 Yes TFBS High Investigate TFBS 

rs1532278 Yes TFBS High Investigate TFBS 

rs867230 Suggestive No Low  

PICALM rs55886146 Suggestive (rare) No Low  

rs188367538 Low info score (rare) TFBS High Investigate TFBS 

11:85780924 Not imputed TFBS High Investigate TFBS 

Summary information on the variants with the strongest evidence of links to AD, either from association testing or the in silico functional prediction programs 

used. Ideas for further research on these variants designed to clarify associations and validate the predictions of the in silico resources are listed, along with the 

level of priority for follow up for each of the variants. For strengths of associations (ORs and p-values) see Table 5.2 for exonic SNPs and Tables 6.3 and 6.6 for 

CLU and PICALM‘s non-exonic variants respectively. 
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For the four variants which showed evidence of affecting the binding sites of 

SR-splicing proteins, an experimental approach utilising a mini-gene vector 

system would be adopted. This involves the introduction of wild-type and 

variant versions of the affected exon in to mini-gene vectors, and transfection 

in to a relevant cell line. The mRNA generated from the vectors can then be 

analysed (e.g. PCR and gel electrophoresis to assess large scale effects, Sanger 

sequencing to confirm or to check for smaller scale alterations), and any 

differences in the splicing of the exon would indicate that that variant does 

indeed have an effect on splicing.  These experiments are currently on going. 

 

Five of the variants fell within TFBS according to the ENCODE data. To follow 

up these variants further in silico analyses would be wise to guide 

experimental characterisation attempts. It would need to be established which 

of the putative disrupted sites were actually utilised in the regulation of the 

genes in question, and how the variants would affect these, since many TFBS 

are degenerate and the variants may be tolerated even if they fall within 

actively used sites. There are multiple other tools and databases available for 

the investigation of TFBS, such as TRANSFAC (Matys et al. 2006) and JASPAR 

(Sandelin et al. 2004), and collation of the predicted binding sites from each of 

these would strengthen the evidence. Several potential experimental 

approaches would be appropriate following thorough in silico investigations. 

EMSA (electrophoretic mobility shift assay) allows an in vitro method for 

assessing TF binding. The wild-type and variant sequences would need to be 

labelled, and incubated with relevant cell nuclear extracts (e.g. neuronal cells). 

When subjected to electrophoresis, labelled DNA alone will show a different 

motility than DNA bound by TFs, and any differences in pattern between the 

sequences could indicate disruption of TFBS. Alternatively, the wild-type and 

variant sequences could be cloned upstream of a reporter gene in a promoter 

construct plasmid and be transfected in to a relevant cell line, with any 

differences in reporter gene expression indicative of differential activity (de 

Vooght et al. 2009). 

 

Two of the prioritised variants were novel, and thus could not be imputed, 

and a third was poorly imputed within our dataset, so they were not 

adequately tested for association with AD via the methodology used. 

Genotyping of the variants (e.g. using TaqMan and/or KASP assays) could be 

conducted to facilitate association testing. However, as all of these variants are 

rare, the number of samples needed to give the study sufficient power would 

be very high, and this would therefore be very costly. For these variants, 

experimental characterisation of functional effects would be more cost 

effective as a first step rather than genotyping all in a large number of 

samples. Any which showed compelling evidence of functionality could then 

be followed up by genotyping.  

 

Direct genotyping would also be useful for those variants showing suggestive 

associations with AD in our imputed data. The greater power afforded by this 
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method over imputation would establish which variants were genuinely 

associated with the disease. Particularly for the rarer variants, on which the 

limitations of imputation would have had the greatest effect, this would allow 

thorough association testing, although the rarer variants would also require 

larger sample sizes to give sufficient power. Even for the variants which were 

associated with AD in the imputed data, replication in an independent cohort 

is important for any such genetic findings, and even more so when the 

associations are in imputed data, so genotyping in a case-control cohort would 

also be useful here, but this is not the top priority for future work.  

 

7.3. AD genetics - update 
 

Our results suggest some exciting potential directions for future work in 

exploring how these three genes relate to AD, but there are still no real 

answers as to how these genes are linked to the pathology of the condition, 

and which variants are responsible for these links. Four years on from the 

publication of the first two major GWAS, the source of the three association 

signals detected remains largely elusive.  

 

As mentioned previously, there is some evidence that the CR1 GWAS 

association signal may stem from the different alleles of the gene, essentially a 

copy number variation in the number of binding sites in the protein (Brouwers 

et al. 2012). The larger S allele is associated with an increased risk of the 

condition, while the smaller F allele appears to be protective. This is a 

contradiction to many of the hypothesised ways in which CR1 was thought to 

be related to AD pathology, such as the peripheral sink hypothesis. If CR1 was 

related to AD through its capacity to act as a peripheral sink, removing Aβ 

from the circulation, facilitating further removal of Aβ from the brain, it 

would be expected that the larger isoforms would be more efficient at this 

process, and thus would be protective. Since this is not the case, it strengthens 

arguments for CR1’s relationship with AD stemming from effects on 

neuroinflammation, or perhaps, as suggested by Bralten et al.’s research, by 

affecting the structure of the brain much earlier in life, affecting the brain’s 

ability to cope with AD processes when they occur later on (Bralten et al. 

2011). 

 

For CLU and PICALM, the causal source underlying the GWAS signals 

remains a mystery. Although attempts to track down the underlying causative 

variants have been more extensive for CLU (Harold et al. 2009; Guerreiro et al. 

2010; Bettens et al. 2012; Ferrari et al. 2012) than for PICALM (Harold et al. 

2009; Ferrari et al. 2012; Schnetz-Boutaud et al. 2012), neither have been 

particularly fruitful, with no real explanatory causal variation found.  

 

The lack of success in tracking down the source of the original three 

association signals is not a reflection of a lack of progress in the AD genetics 

field in general in the past four years. Indeed, the extensive exome and other 

next generation sequencing projects embarked on in the last three years are 
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beginning to reach fruition, and publication of their results in AD and other 

relevant traits are beginning to appear, identifying new variants and new 

genes which appear to be involved in AD risk. Pottier et al. conducted exome 

sequencing in 14 autosomal dominant early onset AD cases with no known 

APP, PSEN1 or PSEN2 mutations, as well as a further 15 replication cases 

(Pottier et al. 2012). 29 previously unknown variants were identified within 

the cases in the SORL1 gene, 7 of which were predicted to have pathogenic 

effects. SORL1’s protein product has been shown to be involved in Aβ 

production (Rogaeva et al. 2007). The gene had already been linked to the late 

onset form of AD (Rogaeva et al. 2007), which has recently received 

replication in several independent studies (Jin et al. 2013; Lambert et al. 2013; 

Miyashita et al. 2013; Wen et al. 2013). Using exome sequencing and genotype 

imputation in MCI patients, Nho et al. sought coding variants associated with 

rate of hippocampal volume loss in 16 patients, 8 of whom showed rapid rates 

of atrophy while 8 showed slow or steady rates of atrophy (Nho et al. 2013). 

Three variants were found that were present in at least 6 of the rapid atrophy 

samples, but absent from the slow atrophy group in the genes HYAL4, PARP1, 

and CARD10, the latter two of which were predicted to be damaging by 

Polyphen-2. Genetic variation within PARP1 and CARD10 was found to be 

associated with the rate of neurodegeneration in the hippocampus in APOE 

ε3/ε3 subjects (Nho et al. 2013). CARD10 is involved in regulation of apoptosis 

and inflammation (Wang et al. 2001; Nho et al. 2013), while PARP1 has roles in 

a number of cellular processes, such as DNA repair, cell proliferation and cell 

death (Menissier de Murcia et al. 2003; Nho et al. 2013). Its protein product 

had previously been reported to show enhanced activity in AD affected brains 

(Love et al. 1999). 

 

Following extensive exome and genome sequencing, imputation and 

genotyping, two independent studies were simultaneously published, 

reporting a number of variants within the TREM2 gene to be associated with 

AD (Guerreiro et al. 2013; Jonsson et al. 2013). Of particular interest was SNP 

rs75932628 (encoding the missense mutation R47H, which was predicted to be 

damaging by Polyphen-2). This was the most significantly associated variant 

in both studies. Homozygous loss of function of the TREM2 gene is known to 

cause the rare Nasu-Hakola disease, a severe condition characterised by bone 

cysts and early onset dementia resulting in premature death (Bianchin et al. 

2004). Within the brain, TREM2’s major site of expression is on microglia 

(Sessa et al. 2004), it is thought to be a mediator of inflammation in the brain, 

and may be involved in Aβ clearance (Piccio et al. 2007; Takahashi et al. 2007; 

Frank et al. 2008).  

 

Recently, the largest AD GWAS to date was published, comprised of a meta-

analysis of GWAS in individuals of European ancestry (Lambert et al. 2013). 

The two stage approach saw 7,055,881 SNPs genotyped or imputed in 17,008 

AD cases and 37,154 controls in stage one, with 11,632 SNPs genotyped in a 

second independent cohort consisting of 8572 AD cases and 11,312 controls. 19 

loci reached genome wide significance in the combined data set, of which 11 
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represented new AD risk loci (HLA-DRB5–HLA-DRB1, PTK2B, SORL1, 

SLC24A4-RIN3, INPP5D, MEF2C, NME8, ZCWPW1, CELF1, FERMT2 and 

CASS4) (Lambert et al. 2013). Many of these genes fit with previously 

identified AD pathways, such as the immune response and Aβ metabolism, 

with potential new pathways including cytoskeletal function, axonal transport 

and hippocampal synaptic function (Lambert et al. 2013). Use of the methods 

presented here, with pooled NGS to detect variants in coding and non-coding 

regions, and a combination of in silico functional analyses and imputed 

association testing to prioritise variants of interest would be an advisable way 

to begin to investigate these gene’s roles in AD.  

 

So how much do we now know about the genetics of Alzheimer’s disease, and 

what is there still to find out? Recently, Ridge et al. estimated the phenotypic 

variance in AD explained by common variants in the human genome to be 

33.1%, and that 7.78% of that was attributable to APOE and the nine AD 

associated genes from GWAS prior to the Lambert meta-analysis, leaving 

25.3% to be explained by as yet unidentified common variants (Ridge et al. 

2013). Although the 11 new loci found in the recent meta-analysis (Lambert et 

al. 2013) will also contribute to the explained variance, the effect sizes of the 

new variants were generally smaller than those for the nine previously known 

loci, so a large proportion of missing heritability still remains. Part of this 

discrepancy is likely to be due to the variants identified by GWAS not being 

the actual causative variants, but imperfect tags for them, which leads to an 

underestimation of the effect size. In Crohn’s disease (CD), over 70 loci 

associated with the condition have been found using GWAS, but only around 

23.3% of the condition’s heritability is explained by these. However, it was 

reported that at one of the loci (NOD2), the most significant SNP in the GWAS 

explained around 0.8% of CD risk, but three known coding mutations within 

the gene accounted for 5% (Franke et al. 2010). This is over six times greater 

than the value for the GWAS tag SNP alone. If a similar pattern is true in some 

of the known AD risk loci, this could render the total heritability explained by 

the known genes higher than current estimates suggest. Identifying the causal 

variants underlying the GWAS signals would enable a true assessment of the 

loci’s contribution to AD risk, but this is not proving to be an easy task. Other 

potential sources of missing heritability in AD include: unknown associated 

variants at known loci; other as yet unknown loci, which could be identified 

through further GWAS and meta-analyses (such as the 11 new loci Lambert et 

al. identified (Lambert et al. 2013)) or sequencing based investigations (e.g. the 

TREM2 locus); and epistatic interactions between variants or genes.  

 

Despite the vast quantity of disease associated loci that have been detected 

since the advent of GWAS, few causal variants underlying these association 

signals have been definitively established. Many of the attempts to track down 

causal variants underlying the AD GWAS signals have focussed on coding 

regions only, and have largely proved unfruitful (Guerreiro et al. 2010; Bettens 

et al. 2012; Ferrari et al. 2012). Bettens et al. did find evidence of rare variants 

within CLU impacting on AD risk, but these were independent of the GWAS 
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SNP (Bettens et al. 2012). This could be indicative that the GWAS SNPs are 

actually tagging non-coding, regulatory variants rather than coding ones. In 

order to find such variants, projects such as the one presented here will be 

important, focussing not just on coding variants but the entire gene and its 

surrounding regulatory regions. Assessing the involvement of such variants is 

less easy than assessing the impact of coding ones, but if coding variants are 

not responsible, then we have no choice but to pursue non-coding ones. It is 

also possible that other phenomena, such as the CNV underlying at least in 

part the CR1 GWAS signal (Brouwers et al. 2012), may play a greater role than 

anticipated.  

 

As for the common disease, common variant hypothesis versus the multiple 

rare variants hypothesis presented in the introduction, which has been an 

ongoing debate since the inception of GWAS, the answer appears to be both. 

The most extensively sequenced of the three genes from the first GWAS 

studies is CLU, and within CLU, it appears that there are multiple rare 

variants of large impact which affect AD risk (Bettens et al. 2012), but that 

these are independent of the common association signal found by GWAS, 

which is likely to be tagging regulatory variants. Perhaps most disease 

associated loci contain variants both common and rare, with varying levels of 

impact. Classing variants as “common” or “rare” creates a false dichotomy, 

over-simplifying a spectrum of different allele frequencies into two groups, 

and the same could be said for high and low impact classifications.  

 

The aetiology of AD is clearly very complex, and as it is a disease of old age, 

this is exacerbated – genes have a long time to interact, environmental factors 

have longer to act, interactions between genes and environmental factors 

whose exposure levels may be changing all the time may all contribute. Given 

this immense complexity, it seems unlikely the full aetiology of AD will ever 

be completely understood, but progress is being made, and with this increase 

in knowledge comes an improvement in prospects for treatments that could 

actually make a difference to individuals suffering from this devastating 

condition. 
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URLs: 
 

UCSC Virtual PCR - http://genome.ucsc.edu/cgi-bin/hgPcr 

 

UCSC - http://genome.ucsc.edu/ 

 

UCSC liftOver - http://genome.ucsc.edu/cgi-bin/hgLiftOver or downloadable from  

 

http://hgdownload.cse.ucsc.edu/admin/exe/ 

 

UCSC Tables - http://genome.ucsc.edu/cgi-bin/hgTables?command=start 

 

ENCODE @ UCSC - http://genome.ucsc.edu/ENCODE/ 

 

ECR browser - http://ecrbrowser.dcode.org/ 

 

dbSNP - http://www.ncbi.nlm.nih.gov/SNP/ 

 

Source Bioscience - http://www.sourcebioscience.com/ 

 

eArray - https://earray.chem.agilent.com/earray/ 

 

FastQC - http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

 

MOSAIK aligner - http://code.google.com/p/mosaik-aligner/ 

 

BFAST - http://bfast.sourceforge.net 

 

SAMtools - http://samtools.sourceforge.net/ 

 

SAMStat - http://samstat.sourceforge.net/ 

 

IGV - http://www.broadinstitute.org/igv/ 

 

Syzygy - http://www.broadinstitute.org/software/syzygy/ 

 

CRISP - https://sites.google.com/site/vibansal/software/crisp 

 

Impute2 File Formats: 

http://www.stats.ox.ac.uk/~marchini/software/gwas/file_format.html 

 

Impute2 - http://mathgen.stats.ox.ac.uk/impute/impute_v2.html#home 

 

Plink - http://pngu.mgh.harvard.edu/purcell/plink/ 

 

Gtool - http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html 

 

VCFtools - http://vcftools.sourceforge.net/ 

 

Tabix - http://samtools.sourceforge.net/tabix.shtml 
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SIFT - http://sift.jcvi.org/ 

 

Polyphen - http://genetics.bwh.harvard.edu/pph2/ 

 

ESEfinder - http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home 

 

BDGP - http://www.fruitfly.org/seq_tools/splice.html 

 

NetGene2 - http://www.cbs.dtu.dk/services/NetGene2/ 

 

TargetScan - http://www.targetscan.org/ 

 

PITA - http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html 

 

Quanto - http://hydra.usc.edu/gxe/ 

 

HapMap - http://hapmap.ncbi.nlm.nih.gov/ 

 

Haploview - http://www.broadinstitute.org/scientific-

community/science/programs/medical-and-population-genetics/haploview/haploview 

 

Repeat Masker - www.repeatmasker.org 

 

RepBase - http://www.girinst.org/repbase/ 

 

GATK - http://www.broadinstitute.org/gatk/ 

 

Ensembl - http://www.ensembl.org/index.html 

 

Ensembl's VEP - http://www.ensembl.org/tools.html 

 

1000 genomes project data site - http://www.1000genomes.org/data (for information), 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/ (for data access) 

 

Primer3 - http://bioinfo.ut.ee/primer3-0.4.0/ 

 

NGRL Manchester SNP check - 

https://ngrl.manchester.ac.uk/SNPCheckV3/snpcheck.htm 

 

Chromas lite - http://technelysium.com.au/?page_id=13 

 

SNPtest - https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html 
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Appendix 
 

2.1 – Sample pooling strategy 
Pool 

No. 

Sample 

No. ID 

Conc. 

(ng/µl) Dilution 

Volume added to 

pool (µl)* 

1 

 

1 AD219 106.08 - 5.66 

2 AD232 112.08 - 5.35 

3 M547 191.26 - 3.14 

4 AD218 225.07 - 2.67 

5 AD236 269.44 - 2.23 

6 M659 320.08 - 1.87 

7 AD221 320.08 - 1.87 

8 M523 349.18 - 1.72 

9 M551 394.15 - 1.52 

10 M641 400.98 - 1.50 

11 M604 414.92 - 1.45 

12 AD235 417.42 - 1.44 

2 

 

13 AD222 425.85 - 1.41 

14 AD224 447.25 - 1.34 

15 AD245 463.41 - 1.29 

16 AD233 479.74 - 1.25 

17 AD197 493.48 - 1.22 

18 M596 503.88 - 1.19 

19 M565 520.05 - 1.15 

20 AD220 524.70 - 1.14 

21 AD238 542.07 - 1.11 

22 M540 543.15 - 1.10 

23 M546 568.51 - 1.06 

24 AD257 612.08 1 in 2 1.96 

3 

 

25 AD231 618.17 1 in 2 1.94 

26 M605 644.26 1 in 2 1.86 

27 AD227 650.27 1 in 2 1.85 

28 AD251 667.24 1 in 2 1.80 

29 AD207 670.96 1 in 2 1.79 

30 AD246 686.33 1 in 2 1.75 

31 AD212 698.82 1 in 2 1.72 

32 M651 704.82 1 in 2 1.70 

33 M530 719.72 1 in 2 1.67 

34 AD253 738.23 1 in 2 1.63 

35 AD203 741.81 1 in 2 1.62 

36 AD210 780.08 1 in 2 1.54 

4 

 

37 AD255 792.41 1 in 2 1.51 

38 M571 820.01 1 in 2 1.46 

39 M094 821.84 1 in 2 1.46 

40 AD206 821.87 1 in 2 1.46 

41 AD249 886.29 1 in 2 1.35 

42 M589 889.20 1 in 2 1.35 

43 M531 890.77 1 in 2 1.35 

44 M593 895.00 1 in 2 1.34 

45 51/05 978.55 1 in 2 1.23 

46 AD201 1015.50 1 in 2 1.18 

47 AD216 1022.11 1 in 2 1.17 

48 M576 1031.98 1 in 2 1.16 
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5 

 

49 M643 1034.59 1 in 2 1.16 

50 AD243 1048.06 1 in 2 1.14 

51 M579 1057.61 1 in 2 1.13 

52 M562 1111.66 1 in 2 1.08 

53 M543 1134.91 1 in 2 1.06 

54 M522 1144.07 1 in 2 1.05 

55 AD213 1146.90 1 in 2 1.05 

56 AD244 1170.06 1 in 2 1.03 

57 AD225 1267.00 1 in 3 1.42 

58 AD199 1283.91 1 in 3 1.40 

59 M524 1294.32 1 in 3 1.39 

60 AD242 1301.59 1 in 3 1.38 

6 

 

61 AD248 1394.94 1 in 3 1.29 

62 M573 1455.10 1 in 3 1.24 

63 M526 1518.86 1 in 3 1.19 

64 M647 1679.06 1 in 3 1.07 

65 M528 1679.65 1 in 3 1.07 

66 M646 1719.55 1 in 3 1.05 

67 AD117 1768.54 1 in 3 1.02 

68 AD252 1802.82 1 in 3 1.00 

69 M577 1841.86 1 in 4 1.30 

70 M599 1848.20 1 in 4 1.30 

71 M590 2018.11 1 in 4 1.19 

72 AD254 2046.27 1 in 4 1.17 

7 

 

73 M637 2073.50 1 in 4 1.16 

74 M645 2124.15 1 in 4 1.13 

75 AD211 2130.62 1 in 4 1.13 

76 M648 2138.16 1 in 4 1.12 

77 M594 2214.87 1 in 4 1.08 

78 AD208 2225.99 1 in 4 1.08 

79 M575 2291.49 1 in 4 1.05 

80 M639 2346.48 1 in 4 1.02 

81 M527 2441.02 1 in 5 1.23 

82 M536 2531.52 1 in 5 1.19 

83 M649 2651.15 1 in 5 1.13 

84 M644 2882.31 1 in 5 1.04 

8 85 M529 2935.57 1 in 5 1.02 

86 AD115 3063.75 1 in 6 1.18 

87 M638 3096.46 1 in 6 1.16 

88 M642 3161.98 1 in 6 1.14 

89 AD141 4793.94 1 in 8 1.00 

90 AD146 4833.60 1 in 9 1.12 

91 AD112 5548.82 1 in 10 1.08 

92 AD107 5999.41 1 in 10 1.00 

93 AD123 6342.72 1 in 11 1.04 

94 AD125 7340.78 1 in 13 1.06 

95 AD157 7643.78 1 in 13 1.02 

96 AD109 7937.67 1 in 14 1.06 

Details of samples used in NGS project, their concentrations, and the pooling strategy 

utilised. *Where a dilution is stated in the previous column, this is the volume of 

diluted DNA added to the pool. 
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2.2 – Perl script for obtaining 1000 genomes project frequency data 

 
Contents of the perl script, written by Hui Shi, used for obtaining frequency estimates 

for variants of interest based on 1000 genomes phase 1 data. Shown above is the 

version of the script edited to obtain the 1000 genomes frequency data for the 

PICALM rs3851179 LD block. Toggling between “Yes” and “No” for the sections of 

the perl script print_allele_count and print_sample_ID determines whether these 

pieces of information are included in the output file. 

 

2.3 – Script to interleave paired-end reads 

 
The script opens read file A (i.e. the forward reads) and interrogates read file B for 

the read with the matching header (i.e. the pairs, aligned to the reverse strand), 

calculating the reverse complement of the second read and reversing the quality 
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scores. The output contains the interleaved reads in the format 1Read1, 1Read2; 

2Read1, 2Read2, which can then be used to run the BFAST alignment. 

 

2.4 – Perl script for converting WTCCC2 data from hg18 to hg19 

 
Contents of the perl script liftOverGen.pl used in the preparation of WTCCC2 data 

for imputation. The script converts the coordinates of variants from hg18 to hg19. 

 

2.5 – Perl script to recode WTCCC2 .samples files 

 
Contents of the perl script recode_WTCCC2.sample.pl, utilised in the preparation of 

WTCCC2 data for imputation. The script recodes phenotype information to a format 

which Impute2 will recognise, as well as adding centre information and changing the 
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format of missing values to ones Impute2 can process. The script is altered at line 27 

depending on the centre (58C = 2, NBS = 3). 

 

2.6 – Perl script to remove duplicate lines 

 
Contents of the perl script used to remove duplicate positions from the imputed data 

sets, enabling the –overlap command to be used when running association testing 

with snptest. 

 

2.7 – Perl script to calculate conservation at positions of interest 

 
Contents of the perl script used in calculating the level of conservation at the 

positions affected by variants found in the NGS data. 
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2.8 – Perl script to calculate LD between variants of interest 

 
Contents of the perl script used to calculate the level of LD between index GWAS 

SNPs and variants detected by NGS. 
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6.1 – CLU variants at the sites of ENCODE TFBS  

Coordinate rsID ENC_TFBS 

27466157 rs1532276 GATA-2,TAF1 

27466181 rs1532277 GATA-2,TAF1,USF-1 

27466315 rs1532278 GATA-2,Max,NANOG_(SC-33759),USF2,TAF1,USF-1,USF1_(SC-8983) 

27469971 rs9331883 FOXA2_(SC-6554),FOXA1_(SC-101058),FOXA1_(C-20) 

27470010 - FOXA2_(SC-6554),FOXA1_(SC-101058),FOXA1_(C-20) 

27471673 - BATF,eGFP-FOS,CEBPB,c-Fos,GATA-2,JunD,STAT3,c-Jun,RFX5_(N-494) 

27471748 - BATF,eGFP-FOS,FOSL2,eGFP-JunD,c-Fos,GATA-2,JunD,TCF4,STAT3,c-Jun,RFX5_(N-494) 

27474202 rs9314349 Pol2(b) 

27474541 rs117148275 TAF1,GR,AP-2alpha,AP-2gamma,Pol2,GATA-1 

27474587 rs56025648 GR,AP-2alpha,AP-2gamma,Pol2,GATA-1 

27474599 rs1982229 GR,GATA-2,AP-2alpha,AP-2gamma,Pol2,GATA-1 

27474871 rs77336101 p300_(N-15),Pol2-4H8,GATA-2,c-Fos,p300,YY1_(C-20),RFX5_(N-494),MafK_(ab50322),JunD,STAT3,c-Jun,GATA-1 

Full list of the ENCODE TFBS falling at the positions of variants of interest from the NGS project data in the CLU region. 
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6.2 - PICALM variants at the sites of ENCODE TFBS 

Coordinate rsID ENC_TFBS 

85780073 rs3016326 Egr-1,RFX5_(N-494),YY1,HEY1,USF2,SP1,HA-E2F1,PU.1,NRSF,GTF2F1_(RAP-74),TCF12,YY1_(C-

20),Pol2,NFKB,E2F6,USF1_(SC-8983),Pol2(phosphoS2),ETS1,TAF1,Pol2-4H8,TBP,Pbx3,GATA2_(CG2-

96),GABP,SRF,GATA-1,Sin3Ak-20,c-Myc,USF-1,ELF1_(SC-631) 

85780448 rs3016327 TAF1,Egr-1,Pol2,TCF12,ZBTB7A_(SC-34508),PAX5-N19,USF1_(SC-8983),IRF4_(M-

17),HEY1,RXRA,SP1,NFKB,USF-1,c-Myc,Pol2-4H8 

85780582 rs10898433 TAF1,Pol2,TCF12,ZBTB7A_(SC-34508),PAX5-N19,IRF4_(M-17),HEY1,E2F6_(H-50),SP1,NFKB,c-Myc,Pol2-

4H8,Oct-2,POU2F2 

85780924 - eGFP-JunD,TBP,c-Jun,TAF1,SRF,Pol2,YY1,Sin3Ak-20,NRSF,CEBPB,p300_(N-15),Pol2-4H8,GATA-2,YY1_(C-

20),GABP,ELF1_(SC-631),BCL11A,GATA2_(CG2-96),FOXA1_(C-20),CCNT2,Pol2(b),Mxi1_(bHLH),GATA3_(SC-

268),BATF,STAT3,SMC3_(ab9263),Rad21,JunD,GTF2F1_(RAP-74),c-Fos 

85780962 rs188367538 eGFP-JunD,TBP,c-Jun,TAF1,SRF,Pol2,YY1,Sin3Ak-20,NRSF,CEBPB,p300_(N-15),Pol2-4H8,GATA-2,NF-

YB,YY1_(C-20),GABP,ELF1_(SC-631),BCL11A,PU.1,GATA2_(CG2-96),FOXA1_(C-

20),CCNT2,Pol2(b),Mxi1_(bHLH),GATA3_(SC-268),BATF,STAT3,SMC3_(ab9263),Rad21,JunD,GTF2F1_(RAP-

74),c-Fos 

Full list of the ENCODE TFBS falling at the positions of variants of interest from the NGS project data in the PICALM region. 
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6.3 - rs3851179 LD block variants at the sites of ENCODE TFBS 

Coordinate rsID ENC_TFBS 

85859598 - MafK_(ab50322),eGFP-GATA2,p300_(F-4),GATA-1,Ini1,Pol2,CCNT2,TAL1_(SC-12984),GATA-2,Brg1 

85862491 rs187016120 CEBPB,TAL1_(SC-12984),IRF1,Brg1,STAT2,HDAC2_(SC-6296),Pol2,GATA-2,eGFP-JunD,p300_(F-4),GATA-1,eGFP-

GATA2,Mxi1_(bHLH),SMC3_(ab9263) 

85862739 - TAL1_(SC-12984),Brg1,Pol2,eGFP-JunD,GATA-1,eGFP-GATA2 

85863080 rs56157503 EBF1_(C-8) 

85863473 rs34731047 p300 

85863683 rs3889743 TFIIIC-110 

85863769 rs11234562 TFIIIC-110 

Full list of the ENCODE TFBS falling at the positions of variants of interest from the NGS project data in the rs3851179 LD block. 

 

 

 

 
 


