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ABSTRACT 

This thesis contributes to the research issue pertaining to the management of 

multiple energy sources on-board a pure electric vehicle; particularly the energy 

dense traction battery and the power dense supercapacitor or ultracapacitor. This is 

achieved by analysing real world drive data on the interaction between lead acid 

battery pack and supercapacitor module connected in parallel while trying to fulfil 

the load demands of the vehicle. 

The initial findings and performance of a prototype electric vehicle conversion of a 

famous Malaysian city car; the perodual kancil, is presented in this thesis. The 660 

cc compact city car engine was replaced with a brushless DC motor rated at 8KW 

continuous and 20KW peak. The battery pack consists of eight T105 Trojan 6V, 225 

Ah deep cycle lead acid battery which builds up a voltage of 48V. In addition to this, 

a supercapacitor module (165F, 48V) is connected in parallel using high power 

contactors in order to investigate the increase in performance criteria such as 

acceleration, range, battery life etc. which have been proven in various literatures 

via simulation studies. A data acquisition system is setup in order to collect real 

world driving data from the electric vehicle on the fly along a fixed route. Analysis of 

collected driving data is done using MATLAB software and comparison of 

performance of the electric vehicle with and without supercapacitor module is 

made.    

Results show that with a parallel connection, battery life and health is enhanced by 

reduction in peak currents of up to 49%. Peak power capabilities of the entire 
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hybrid source increased from 9.5KW to 12.5KW. A 41% increase in range per charge 

was recorded. The author of this work hopes that by capitalizing on the natural 

peak power buffering capabilities of the supercapacitor, a cost effective energy 

management system can be designed in order to utilize more than 23.6% of the 

supercapacitor energy. 
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CHAPTER 1: INTRODUCTION  

1.1 INTRODUCTION TO THE THESIS 

This thesis is dedicated to the research, modelling and eventual implementation of 

a battery-supercapacitor hybrid energy source in order to power an electric vehicle. 

This is in recognition of the assertion that the electric vehicle will be a significant 

stakeholder in future transportation systems.   

A growing concern in today’s world is environmental protection and energy 

conservation. Automotive manufacturers are developing alternatives to existing 

fossil fuel-driven vehicles. This has paved way for the development of Electric 

Vehicles (EV) and Hybrid Electric Vehicles (HEV). While HEVs tend to reduce the 

emissions from internal combustion vehicles as a result of greater fuel efficiency, 

they do not completely solve the problem. Electric vehicles on the other hand are 

much more energy efficient, produce absolutely no tail pipe emissions and requires 

less maintenance as compared to the conventional internal combustion engine (ICE) 

vehicles [2]. However, the reason the automotive industry has not gone pure 

electric or able to compete favourably with existing gasoline cars, lies in the 

inherent problem of existing battery technologies. Even with ICE energy conversion 

efficiency figures of below 20%, the energy density (Joules/kg) of petroleum far 

surpasses the energy density of any known battery technology [2]. Batteries are the 

weak link in EVs at the moment [6]. The lack of a single reasonably priced energy 

storage device that can simultaneously provide high power density and high energy 
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density for EVs has been the main stumbling block to the acceptance of EVs as the 

main form of private and public transportation. 

Presently the only viable solution to this problem is to combine a high energy 

storage device such as an electrochemical battery or fuel cell with a high power 

device such as an Electric Double Layer Capacitor (EDLC) or ultracapacitor or more 

often called a supercapacitor [8]. In this work, we investigate the effect of 

integrating the supercapacitor with the main power source (deep cycle lead acid 

batteries) of an EV conversion. More so, at the University of Nottingham Malaysia 

Campus, we have a supercapacitor pilot production plant which is dedicated to the 

research and development of home grown supercapacitors and extensive materials 

research. Concerted efforts have been made by the research group to investigate 

the viable areas of application of supercapacitors such as consumer electronics, 

mobile phones, solar and of course, the electric vehicle. The latter forms the basis 

and also the genesis of the electric vehicle adventure at the University of 

Nottingham Malaysia.    
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1.2 RESEARCH ISSUES ADDRESSED BY THIS WORK 

The aim of this project is to address key issues that prevent electric vehicles from 

being widely accepted and adopted by public and private transportation system. 

Some of the research issues which may be regarded as problem statements are as 

follows: 

 The low power density of EV batteries. In order for the EV to approach, or 

try to approach, the performance of its conventional counterpart (ICE), the 

battery or energy storage system should have similar or equivalent power 

density as the ICE. The limitation of energy storage devices (batteries) to 

deliver energy at high power rates during acceleration and also accept 

energy during regenerative braking schemes.  This is not to say that high 

power density batteries do not exist, but at what cost and complexity for 

practical use in a consumer electric vehicle. 

 Due to the haphazard nature of the load profile of an EV (traffic condition, 

driver behaviour, etc), the battery suffers from inherent random high 

discharge and charge (regenerative braking) rates as well. This is detrimental 

to the shelf life of the battery 

 This led to the hybridization of batteries with supercapacitors as it becomes 

impractical and cost ineffective to size a single energy storage system 

(battery) for peak power demands several times higher than the mean 

power demand. However, effective control strategies are still being 

developed and redeveloped for energy management in a battery-

supercapacitor vehicle using various methods ranging from heuristics to 
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artificial neural networks to various learning algorithms. This power and 

energy management poses as the most challenging task as it is to be done 

without compromising the vehicles target performance. 

 The forecasting/prediction of driving load condition in advance is key to 

efficient energy management systems for electric vehicles. An energy 

management system for electric vehicles with multiple energy sources based 

on the prediction of driving conditions or by analysing drive cycles.  
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1.3 RESEARCH OBJECTIVES 

Based on the research issues highlighted above, the objectives of this research work 

include the following: 

 To design and implement a small electric vehicle which will be solely 

powered by a combination of deep cycle lead acid batteries and a 

supercapacitor module. This will serve as a foundation for future research 

work on electric vehicles at the university. 

 To design and implement an onboard data acquisition system to monitor 

and log critical data from the electric vehicle. 

 To provide first hand insight into the interaction between lead acid battery 

pack and supercapacitor module connected in parallel. This is achieved by 

analysing novel real world drive data obtained by driving the vehicle in the 

university’s premises. 

 To investigate and justify the reported increase in battery life, range per 

charge and vehicle acceleration by augmenting the battery pack with a 

supercapacitor module. This is also achieved using real world drive data and 

results. 
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1.4 RESEARCH SCOPE 

When the initial research objectives for this project were conceived, the main aim 

was to identify and propose an intelligent energy management system for electric 

vehicles powered by a battery and supercapacitor combination. Emphasis was on 

the optimum management of power and energy flow of multiple energy sources in 

order to meet the demand of the vehicle’s propulsion as well as its requirement for 

accessory loads. However, being the pioneer of the EV research team within the 

research division, we had to create a solid platform or basis on which testing, 

research and development can be carried out.  

Due to inherent cost constraints, an ideal Hardware-In-the-Loop, (HIL) based EV test 

bench could not be implemented. An experimental test vehicle would be 

constructed; basically a conversion from a conventional ICE to electric. It would be 

fitted with state of the art data acquisition system which monitors the interaction 

between the energy and power sources as it tries to fulfil the load requirements of 

the vehicle. In this case, the load on the propulsion system comes from 100% real 

world driving. The only downside envisaged from this setup is the inability to 

replicate the exact same driving pattern over a fixed route.        

Experimental data obtained from this work is limited to the fixed driving route 

within the university campus. Also the driving style of the driver could not be 

controlled. However, the same driver was used in all experiments. Starting form a 

pure battery driven vehicle, the energy system was then augmented with the 

addition of a supercapacitor bank. Apart from manufacturer’s information, there is 

very limited experimental data on supercapacitor field testing. As such, the vehicle 
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provided a means to obtain unbiased empirical data to substantiate research claims 

and also to serve as a test platform for further work. 

 1.5 THESIS CONTRIBUTION 

This dissertation contributes to the emerging field of pure electric vehicles that are 

powered by hybrid energy sources. This is achieved by providing first hand insight 

into the interaction between lead acid battery pack and supercapacitor module 

connected in parallel which is used to power a compact city car. Real world driving 

data along with instantaneous voltages and currents from the energy sources 

provide a novel and unique approach to obtaining unbiased empirical data to 

substantiate research claims and also to serve as a test platform for further work.  

The problems or challenges with having hybrid energy sources on-board a purely 

electric vehicle rests heavily on the successful management of these sources in 

order to meet the propulsion demand of the vehicle. As opposed to the general 

consensus of designing and implementing complex control systems, this work takes 

the basic parallel connection between battery and supercapacitor and investigates 

the reported increase in battery life, range per charge and vehicle acceleration. This 

is done with the hope that by analysing the natural power split between these two 

devices in parallel, a practical, cost effective energy management system can be 

developed in the future. Optimistically, several novel ideas will emerge from the 

collaborative efforts of many small but progressive research contributions such as 

this one.  
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1.6 THESIS ORGANIZATION 

Chapter 2: Background and Literature Review – This chapter provides a brief 

background on electric vehicles in terms of basic configurations, advantages and 

disadvantages and also the hybrid vehicle configurations as well as related battery 

chemistries. The basic structure and characteristics of the supercapacitor is tabled 

out as well as its inherent pros and cons. A thorough literature review is presented 

on multiple/hybrid energy sources for powering electric/hybrid vehicles with 

particular emphasis on supercapacitors. 

Chapter 3: Methodology – This chapter is divided into two parts. The first part 

describes the equations governing the movement of an electric vehicle on a level or 

inclined road surface. Using these equations, various software models were 

developed in MATLAB Simulink © environment in order to simulate the 

performance of the proposed experimental test electric vehicle conversion. The 

second part describes the step by step design and construction of the experimental 

test vehicle. Also, the traction and control wiring, sensor setup, data acquisition 

system, on-board real time display of circuit parameters were laid out in detail.  

Chapter 4: Results and Discussion – The results of the hardware implementation of 

the battery supercapacitor combination are described and analysed. First hand 

insight into the interaction between lead acid battery pack and supercapacitor 

module connected in parallel was provided. Investigation and justification of the 

reported increase in battery life, range per charge and vehicle acceleration by 

augmenting the battery pack with a supercapacitor module was done.   
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Chapter 5: Conclusion and future work – Conclusion is presented here where major 

accomplishments and research objectives achieved are summarised. The 

possibilities for future work and improvements to be carried out will also be 

discussed. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW  

This chapter begins by providing a brief background on electric vehicles in terms of 

basic configurations, advantages and disadvantages and also the hybrid vehicle 

configurations. It proceeds to describe various battery chemistries that are used in 

today’s electric vehicle and also the technical jargon associated with battery 

technologies. An important term called state of charge (SOC) of a battery is 

described as well as some methods to calculate it. 

A huge portion of this research is dedicated towards investigating a certain device’s 

use or relevance in the ever growing electric/hybrid vehicle industry; the 

supercapacitor or ultracapacitor or electric-double-layer capacitor (EDLC). The basic 

structure and characteristics of the supercapacitor is tabled out as well as its 

inherent pros and cons. One feature which sticks out is its high power density which 

is very complimentary to present day battery technologies.  

 A thorough literature review is presented on multiple/hybrid energy sources for 

powering electric/hybrid vehicles with particular emphasis on supercapacitors. The 

challenges faced by various researchers in this field are outlined which are 

associated with energy management of the multiple energy and power sources. 

Various combination algorithms have been proposed and results shown ranging 

from fuzzy logic, neural networks, genetic algorithms to support vector machines. 

Finally, the support vector machine (SVM) which has been identified as one of the 

leading classifiers in machine learning is described.   
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2.1 BACKGROUND  

2.1.1 Electric Vehicles 

Electric vehicles (EV) are propelled by an electric motor (or motors) powered by a 

stack of rechargeable batteries. In EV’s, the internal combustion engine (ICE) is 

replaced by an electric motor which gets its power from a controller circuit. 

The first EVs of the 18th century used non-rechargeable batteries and by the end of 

the 19th century, mass production of rechargeable batteries made EV’s fairly 

common[1]. At the start of the 20th century, EV’s seemed to be a strong contender 

for future road transport as ICE vehicles were at the time unreliable, extremely 

pollutive, and needed to be cranked manually to start. 

Hope for EV was dashed when in the early 1900’s, cheap oil was widely available 

and a self starter for ICE’s was developed. IC engines proved a more attractive 

option for powering vehicles and rechargeable batteries were ironically adopted for 

starting ICE’s [2]. 

Despite the above problems, electric vehicles always found its use in delivery vans, 

warehouse vehicles and golf carts etc. [2]. Environmental issues may well be the 

deciding factor in the adoption of EVs for town and highway uses coupled with the 

fact that tremendous technological developments have taken place in vehicle 

design, improvement to rechargeable batteries, motors and controllers. It is evident 

that electric vehicles have come to stay this time around.  
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FIG 1: The Basic Electric Vehicle Configuration (Source: HowStuffWorks[79]) 

Figure 1 represents the basic principle of operation of an electric vehicle. The 

accelerator pedal is connected to a potentiometer which determines how much 

power the controller must deliver to the motor. The electric motor can be either ac 

or dc type. 

A dc motor and controller system tends to be simpler and less expensive to install. 

They can also be overdriven i.e. accept up to ten times its rated power for a few 

seconds. This is useful for providing short bursts of acceleration. However the 

motor is bound to heat up [3]. 

On the other hand ac systems allow for the use of any industrial 240V three phase 

motor which is readily available. Also, regenerative braking is possible as ac motors 

can be turned into generators to recover braking energy. It is without doubt that ac 

controllers are more complicated due to the fact that dc has to be converted to 

three phase ac using inverters.  
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Advantages over ICEs 

I. They are more energy efficient; more than 50% of the chemical energy in a 

battery is converted to electrical energy which is used to power the wheels 

whereas only around 20% of the energy in petrol/diesel is converted to 

electrical energy 

II. Since no combustion takes place, there are no tail pipe emissions 

III. Electricity is a domestic source of energy; thus EVs can be recharged easily 

and conveniently. 

IV. Quiet smooth operation and requires less maintenance as compared to ICE 

counterpart 

The downside of EVs is usually battery related. Batteries are the weak link in EVs at 

the moment.  

I. The driving range is much less ; the battery needs to be recharged more 

often 

II. Usually recharge time for the batteries is too long (4-8 hours). 

III. Battery packs are expensive and need to be replaced more number of times  

IV. Battery packs are heavy, heavy and take up a lot of space. 

Researchers all over the world are working on improved battery technologies to 

make up for the disadvantages mentioned above. The results of this research will go 

a long way in determining whether EVs are fully adopted in the future. 

Electric cars are mechanically much simpler than both gasoline cars and fuel-cell 

cars. There is no motor oil, no filters, no spark plugs, and no oxygen sensors. The 

motor has one moving part, there is no clutch, and the transmission is much 
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simpler. Due to regenerative braking, even the friction brakes will encounter little 

wear. The only service that a well-designed electric car will need for the first 

100,000 miles is tire service and inspection [3]. 

Until an electric car manufacturer achieves high enough sales to approach a 

gasoline car manufacturer’s volume efficiencies, electric cars will need to compete 

on other grounds besides price. Aside from the obvious emissions advantage, there 

is another way that an electric car can vastly outperform a gasoline car – in a word, 

torque. A gasoline engine has very little torque at low rpm’s and only delivers 

reasonable horsepower in a narrow rpm range. On the other hand, an electric 

motor has high torque at zero rpm, and delivers almost constant torque up to about 

6,000 rpm, and continues to deliver high power beyond 13,500 rpm. This means 

that a performance electric car can be very quick without any transmission or 

clutch, and the performance of the car is available to a driver without special driving 

skills [3]. 

 

 

 

 

 

 

Fig 2: Emissions: EV vs. ICE (Source: Sustainability-ed.org.uk [80]) 
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The graph in the figure 2 compares the emissions from petrol cars and electric cars 

using electricity generated in conventional power stations. Overall, there are fewer 

emissions from electric cars. This could help to reduce global warming and also 

improve the air quality in our cities. According to the U.S. Environmental Protection 

Agency (EPA), vehicle emissions currently contribute between one third and one 

half of the total U.S. atmospheric burden of three major pollutants: carbon 

monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC) [4]. Their impact is 

even greater in many U.S. urban areas. This comparison does not include emissions 

from ICEs due to lack of maintenance. One school of thought argues that even 

though EVs do not produce tailpipe emissions, the electricity which is used to 

charge them comes from a power plant that burns fuel. Many researchers have 

studied this problem, and the general conclusion is that, including the power plant 

emissions, the electric vehicle is much less polluting. How much cleaner it is, 

depends on what energy source the power plant uses, coal being the dirtiest. But if 

you can transform the grid to run from a renewable source, then we may have 

something exciting to talk about. However, we're not there yet. 

Although this report is focused on the pure electric vehicle or sometimes called 

battery electric vehicle (BEV), it was mandatory to study about HEV’s which a trade-

off between EV’s and ICE engines. Also a lot of research literature has been 

published on energy management strategies for HEV’s which could be applicable to 

multiple energy sources on board an electric vehicle. 
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2.1.2 HEV drive configuration 

HEV’s capability of reducing fuel consumption and emissions while maintaining the 

same high performance as conventional vehicles lies in a key factor. This factor is 

being able to operate the ICE under near optimal conditions [5]. 

 

 

 

 

 

Fig. 3: Series Hybrid Drive (Adapted from US DoE Office of Transport [5]) 

Series Hybrid Drive 

The internal combustion engine drives an alternator to generate electricity that 

drives the traction motor (wheels) directly or it can be stored in a battery. The 

traction motor can be supplied solely from the battery (zero emissions mode), from 

the engine or from a combination of both. In the event that the battery discharges 

below a certain level, the engine turns on and recharges the battery. It should be 

noted that the internal combustion engine is not mechanically connected to the 

wheels thus less dependent on the vehicles changing power demands. In this drive 

configuration, the ICE can operate at optimum conditions but the efficiency of the 

electrical system suffers due to series connected components. 
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Fig.4: Parallel Hybrid Drive (Adapted from US DoE office of Transport [5]) 

Parallel Hybrid Drive 

In parallel hybrid drive configuration, both the internal combustion engine and the 

electric motor are mechanically connected to the transmission system i.e. the 

wheels.  A parallel HEV typically has two power paths; either the ICE or the electric 

motor or both can be used to provide the power to turn the wheels. A computer 

controls the electric motor depending on the power needs of the vehicle. For 

example, the electric system may be used for short trips while for longer trips the 

ICE would provide the vehicle’s main power with the electric system supporting in 

periods of sudden acceleration or other peak power demands. A drawback however 

is that the ICE load is more dependent on the actual driving situation. 
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Combined Switched Hybrid drive 

The combined switched drive allows for a purely series or parallel drive by the 

activation of the clutch. When driving at low speeds i.e. within the city, the series 

regime can be used and the ICE operated at optimum condition. For inter-city 

driving which requires higher output from the ICE, the parallel regime can be 

employed.    

Power Splitting Systems 

Propulsions with electric power splitting are based on ICE power splitting into two 

parts. One part is converted in electric power in generator, which supplies traction 

motor mechanically connected to drive wheels and remaining part is transmitted by 

electromagnetic forces in the air gap to the wheels mechanically without losses in 

electric machines. The splitting device can be realized mechanically by planetary 

gear or electrically by a special electric generator. 

Although HEVs are by now an industrial standard in the automotive industry 

experiencing an exponential growth, they will be no further discussion on them in 

this report. The sole focus will instead be on pure electric vehicles (no IC engine at 

all), which consists of the use of more than one type of electrical energy storage 

device. Fuel cell vehicles (FCV) and the related problems of hydrogen production 

and storage, although recognized as being an extremely interesting technology, are 

also beyond the scope of this thesis. However, it is pointed out that most of the 

concepts related to hybridization discussed in the following will readily apply to fuel 

cell vehicles, since in virtually every implementation the slow dynamics of the fuel 
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cell require the use of some kind of additional power source, like a battery or a 

supercapacitor bank. 

2.1.3 Battery Technologies for the Electric Vehicle 

Technological advances in the automotive industry have led to the demand for 

more power in today’s automobile. This has heaped a lot of pressure on battery 

manufacturers to produce batteries which can meet the demands of power hungry 

applications (anti-lock braking system, air conditioning, power steering, etc.) as well 

as improve fuel efficiency. 

The classic electric vehicle has only one energy storage unit; the battery. It is usually 

that component with the highest cost, weight and volume. Likewise, in hybrid 

vehicles the battery must continually supply or store electrical energy. The battery 

is of utmost importance; the key and enabling technology to the electric vehicle 

revolution. The basic requirements for a battery used in electric vehicles are as 

follows: 

(i) Low cost: the ultimate aim of the automotive industry 

(ii) Lowest possible weight to reduce load on drive train 

(iii) High cycle-life: ideally to last the lifetime of the vehicle, practically for a 

reasonably long period of time. 

(iv) High-energy density can be attained with one charge to provide a long 

range or mileage 

(v) High power delivery and fast recharge capability: this is a very desirable 

requirement as batteries could be fully recharged in 5-10mins; the time 
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it takes to refill a gas tank. Also, energy saving schemes such as 

regenerative braking can be easily incorporated. Energy can be captured, 

stored and delivered as soon as required. 

(vi) Safety is also a big concern in terms of overcharging, over heating etc. 

(vii) Wide acceptance as a recyclable battery from the environmental 

standpoint 

At the present time, the battery types being considered and developed for electric 

vehicles are relatively few, namely lead-acid, nickel metal hydride, lithium-ion and 

lithium polymer, and sodium nickel metal chloride (ZEBRA). Each of these battery 

types has some advantages and disadvantages and unfortunately none of them are 

attractive in all respects for electric vehicles. The main parameters that specify the 

behaviour and performance of a battery are given in the following section: 

Some Common Battery Parameters 

Ampere-hour Capacity:  This parameter, measured in coulombs (C) but usually 

expressed in Ampere-hour (Ah) capacity, is the total charge that can be discharged 

from a fully charged battery under specified conditions. The rated Ah capacity is for 

a new battery under the conditions predefined by the manufacturer. Watt-hour 

(Wh) or kWh is also used to represent battery capacity. 

                                                           

For example, a 48V 225 Ah pack will have a rate capacity of 10.8 Kwh. 

C-rate: The charge and discharge of a battery is measured in C-rate. The nominal C-

rate is used to represent a charge or discharge rate equal to the capacity of a 
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battery in one hour i.e. 1C. Most portable batteries, with the exception of the lead 

acid, are rated at 1C.  A 6V, 225Ah Trojan T105 lead acid battery is rated for 20hour 

discharge i.e. C20 or C/20 or 0.05C. This means that if the battery were to be 

discharged over a period of 20hours, then a current draw of 11.25A is 

approximately expected. 

Specific Energy (W/kg):  This is the nominal battery energy per unit mass; a 

characteristic of the battery chemistry and packaging. Along with the energy 

consumption of the vehicle, it determines the battery weight required to achieve a 

given electric range.  

Specific Power (W/kg): This is the maximum power per unit mass which is available. 

It determines the battery weight required to achieve a given performance target. 

Internal Resistance: Internal resistance is the overall equivalent resistance within 

the battery. It is different for charging and discharging and may vary as the 

operating condition changes. As internal resistance increases, the battery efficiency 

decreases and thermal stability is reduced as more of the charging energy is 

converted into heat. 

State of Charge (SOC):  It is a dimensionless parameter defined as the remaining 

capacity of a battery and it is affected by its operating conditions such as load 

current and temperature. For battery electric vehicles, it is synonymous to the fuel 

gauge in a conventional vehicle [6]. There are several methods of estimating the 

SOC of a battery such as voltage method, specific gravity, coulomb counting or 

current integration, impedance spectroscopy and newer methods like quantum 

magnetism. The SOC in simple terms is defined as:   
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SOC is a critical condition parameter for battery or energy management. Accurate 

gauging of SOC is very challenging, but the key to the healthy and safe operation of 

batteries. In the sections to come, various techniques from literature have been 

proposed on estimating this parameter. SOC is generally calculated using current 

integration to determine the change in battery capacity over time as described in 

the equation below: 

                    
  

           
       

 

  

 

Depth of Discharge (DOD): DOD is used to indicate the percentage of the total 

battery capacity that has been discharged. For deep-cycle batteries, they can be 

discharged to 80% or higher of DOD. Typically, it is desired that the DOD of a battery 

is kept within appropriate safe limits as specified by the manufacturers. 

          

State of Health (SOH): This gives an indication of the battery’s present condition in 

terms of its present energy capacity as compared to the rated energy capacity when 

it was new [7].SOH is an important parameter for indicating the degree of 

performance degradation of a battery and for estimating the battery remaining 

lifetime. 
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Cycle Life (number of cycles): Cycle life is the number of discharge–charge cycles the 

battery can handle at a specific DOD (normally 80%) before it fails to meet specific 

performance criteria. 

Battery Management System (BMS).: It is a network of sensors, controller, 

communication, and computation hardware with software algorithms designed to 

decide the maximum charge/discharge current and duration from the estimation of 

SOC and SOH of the battery pack. 

A summary of the main battery technologies used in electric vehicles available 

today are as follows [8]: 

Lead-acid  

I. Lead as negative electrode, lead oxide as positive electrode and dilute 

sulphuric acid as electrolyte or in more advanced forms as gels 

II. Ruggedness, low cost, inherent safety, and temperature tolerance 

III. It is a mature technology  

IV. It reached the mass production stage a very long time ago 

V. The valve regulated lead-acid (VRLA) battery is maintenance-free and has 

good cyclability even at deep discharge; two types absorbed glass mat 

(AGM) based and gel based batteries 

VI. Limited depth of discharge DOD 

VII. Limited life cycle when deep discharged 

VIII. Low specific energy and power due to heavy lead collectors 

IX. Not environmentally friendly to dispose 
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Ni-MH (Nickel-Metal Hydride) 

I. Nickel Hydroxide as positive electrode, alloy as a negative electrode and an 

alkaline solution as electrolyte 

II. Most currently available hybrid electric vehicles use this chemistry as energy 

storage system 

III. High volumetric energy and power as this technology has experienced great 

advances in the past 15yrs 

IV. Safe operation at high voltages 

V. Environmentally friendly and recyclable 

VI. Longer cycle life when compared to lead acid as it has a reasonable 

tolerance over abusive overcharge and discharge  

VII. Wider Operating temperature due to better thermal properties 

VIII. The cost is a huge problem as the high price of the raw material, mainly 

nickel, will not come down in mass production 

Nickel Zinc (NiZn) 

I. Anode is Zinc, cathode is from Nickel and electrolyte is an alkaline solution 

II. Specific energy and power greater than lead acid chemistry 

III. NiZn batteries do not use mercury, lead, or cadmium, or metal hydrides that 

are difficult to recycle. Both nickel and zinc are commonly occurring 

elements in nature, and can be fully recycled. 

IV. suffer from poor lifetime due to the fast growth of dendrites 

Nickel Cadmium (NiCd) 

I. Nickel oxide as positive electrode (cathode), cadmium compound as 

negative electrode (anode) and potassium hydroxide as electrolyte 
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II. Where energy density is important, Ni–Cd batteries are now at a 

disadvantage compared with nickel–metal hydride and lithium-ion batteries 

III. Smaller and lighter than lead acid equivalents 

IV. Can endure high discharge rates without any significant loss of capacity or 

damage 

V. High cost of cadmium and nickel  

VI. Cadmium is an environmental hazard, and it is highly toxic to all higher 

forms of life hence requires special care during disposal 

Lithium Ion Batteries; Next Generation of Electric Vehicles 

Lithium is the lightest of all metals, has the greatest electrochemical potential and 

provides the largest energy density for weight. In 1991, the Sony Corporation 

commercialized the first lithium-ion battery. Lithium-ion batteries are incredibly 

popular these days. You can find them in laptops, PDAs, cell phones and iPods [9]. 

Lithium-ion is a low maintenance battery, an advantage that most other chemistries 

cannot claim. There is no memory effect and no scheduled cycling is required to 

prolong the battery's life. In addition, the self-discharge is less than half compared 

to nickel-cadmium, making lithium-ion well suited for modern fuel gauge 

applications. Lithium-ion cells cause little harm when disposed [10].  

Despite its overall advantages, lithium-ion has its drawbacks. It is fragile and 

requires a protection circuit to maintain safe operation. Built into each pack, the 

protection circuit limits the peak voltage of each cell during charge and prevents the 

cell voltage from dropping too low on discharge. This is because a total discharge of 

the Li-ion battery can irreversible as it may not be able to be recharged anymore. 
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Thus what will happen if a vehicle with a Li-ion battery pack is unused for say one 

month?  

In addition, the cell temperature is monitored to prevent temperature extremes. Li-

on does not fare well in very cold climates. Below zero temperature seriously 

impairs its battery capacity, or ability to provide its full discharge capacity at lower 

temperatures. Aging is a concern with most lithium-ion batteries and many 

manufacturers remain silent about this issue. Some capacity deterioration is 

noticeable after one year, whether the battery is in use or not. It should be noted 

that other chemistries also have age-related degenerative effects. Manufacturers 

are constantly improving lithium-ion. New and enhanced chemical combinations are 

introduced every six months or so. With such rapid progress, it is difficult to assess 

how well the revised battery will age. 

Lithium Iron Phosphate (LiFePO4) is proving to be a breakthrough for EV batteries. 

Based upon lithium ion technology, LiFePO4 batteries offer many advantages over 

lithium cobalt dioxide (LiCoO2) batteries which are commonly used in laptops, mp3 

players and cell phones. In EVs, LiFePO4 batteries offer greater range, power and 

safety. They provide full power until they are completely discharged, and recharge 

in just 2.5 hours. LiFePO4 chemistry is also environmentally friendly — it’s the least 

toxic of all the battery types. Lithium Nickel Manganese Cobalt Oxide technology is 

the preferred candidate for EVs [11], as it provides an excellent trade-off between 

specific energy and power, cost, performance, life span and cost. 

The figure 5 below shows the energy densities in Wh/kg of various battery 

technologies. 
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Fig. 5: A Comparison of Energy densities of various batteries (Source: Battery 
University [81]) 

2.1.4      Supercapacitors/ Ultracapacitors/ Electric Double Layered 

Capacitors (EDLC) 

As the name implies, a supercapacitor/ultracapacitor/EDLC (names used 

interchangeably) is a capacitor with capacitance greater than any other, usually in 

excess of up to 4000 Farad. They possess a greater specific energy density (Wh/kg) 

than conventional electrolytic capacitors and a higher specific power density (W/kg) 

than most battery technologies.  Supercapacitors do not have a traditional dielectric 

material like ceramic, polymer films or aluminum oxide to separate the electrodes 

instead a physical barrier made of activated carbon [12]. A double electric field 

which is generated when charged, acts as a dielectric. The surface area of the 

activated carbon is large thus allowing for the absorption of large amount of ions 

[13]. Figure 3 below is the basic structure of a supercapacitor. 
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Fig 6: Electric Double Layer Capacitor Structure (Source: EAMEX Capacitor [82]) 

Activated carbon is impregnated with electrolyte. Positive and negative charges are 

formed between the electrodes and the impregnate. The magnitude of voltage 

where charges begin to flow is where the electrolyte begins to break down. This is 

called the decomposition voltage. Supercapacitors have a low energy density of less 

than 15Wh/kg but a very high power density of up to 4000W/kg and capacitance 

values of thousands of Farads are possible [14]. 

As with conventional capacitors, the capacitance (C) of a supercapacitor is simply 

the ratio of the stored charge (Q) to the applied voltage (V). Also C is directly 

proportional to the surface area A of each electrode and inversely proportional to 

the distance D between the electrodes. This is described in the equation below: 

      
 

 
 



29 
 

   is the dielectric constant of free space and    is the dielectric constant of the 

insulating material between the electrodes or the electrically non permeable 

separator. They are constants which depend on the type of material being used. 

Since the surface area of the activated carbon electrodes is very high; 1000-2300 

m2/g, as compared to the distance between them; 10 Angstroms or less, the 

capacitance can be potentially very high [15]. Their voltage ratings are typically low 

(2.5V to avoid electrolysis of the electrolyte) thus they are combined in 

modules/banks (series connection) to handle higher voltages. 

The energy, E stored in a supercapacitor is directly proportional to its capacitance: 

  
 

 
   

 

 The greatest factor in determining the supercapacitor performance is the energy 

lost through internal resistance, represented by an ESR (equivalent series 

resistance). Thus reducing ESR increases the power density [16]. 

Variations in individual cell resistance and capacitance result in uneven voltage 

distribution in a bank causing destruction of the cell.  A circuitry which is able to 

spread the available charge evenly between the capacitors is necessary for a 

supercapacitor bank. This is called a voltage balancing or equalization circuit. There 

are two reasons for an imbalance of voltages in a serial string of supercapacitors: (i) 

deviations from the nominal capacitance of the capacitors and (ii) deviations in self 

discharge performance i.e. deviations in the leakage current. 
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Advantages of Supercapacitors 

I. Cell voltage determined by the circuit application not limited by cell 

chemistry 

II. Very high cell voltages possible 

III. High power density 

IV. Can withstand extreme temperatures 

V. Simple charging methods 

VI. Very fast charge and discharge 

VII. Long life cycle 

VIII. Low impedance 

Disadvantages/Shortcomings 

I. Linear discharge voltage characteristic prevents use in some applications 

II. Power only available for very short duration (short bursts of power) 

III. Low capacity 

IV. Low energy density 

V. Voltage balancing required when banking 

VI. High self discharge rate 

The EDLC stores charges in a different way as compared to the conventional 

electrolytic capacitor [17]. Thus traditional models are inadequate to describe the 

EDLC although the basic equations for capacitors still apply. The double layers 

formed on the activated carbon surfaces of a supercapacitor can be modeled as a 

series of parallel RC circuits as shown in the figure below. 
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Fig 7: Electric Double Layer Modeled as Series of Parallel RC Circuits 

Where R1, R2, R3 … Rn represent the series resistance and C1, C2..., Cn are the 

electrostatic capacitances of the activated carbons. When voltage is applied, 

current flows through each of the RC circuits.  

Figure 8 below represents the first order model of the supercapacitor which 

comprises of four ideal circuit elements: a capacitance C, a series resistor Rs, a 

parallel resistor Rp, and a series inductor L. Rs is called the equivalent series 

resistance (ESR) and contributes to energy loss during capacitor charging and 

discharging i.e. current flow. Rp simulates energy loss due to capacitor self-

discharge, and is often referred to as the leakage current resistance. Inductor L 

results primarily from the physical construction of the capacitor and is usually small. 

 

 

Fig 8: 1st Order Model of the Supercapacitor 

In actuality, Supercapacitors exhibit a non-ideal behaviour due to the porous 

material used to form the electrodes that cause the resistance and capacitance to 
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be distributed such that the electrical response mimics transmission line behaviour. 

This is shown in the figure below. 

 

 

 

Fig 9: Non Ideal (transmission line) Model of the Supercapacitor 

The most common supercapacitor applications are memory backup and standby 

power. In some special applications, the supercapacitor can be used as a direct 

replacement of the electrochemical battery. Additional uses are filtering and 

smoothing of pulsed load currents [18]. A supercapacitor can, for example, improve 

the current handling of a battery. During low load current, the battery charges the 

supercapacitor. The stored energy then kicks in when a high load current is 

requested [19]. This enhances the battery's performance, prolongs the runtime and 

even extends the longevity of the battery. The shortcomings of a supercapacitor 

may render them unsuitable as the primary source of power in an EV or HEV. 

However their unique features make them ideal for temporary energy storage such 

as storing energy via regenerative braking and also for providing a booster charge in 

response to sudden power demands in vehicles [20]. Thus the idea of combining the 

high power density features of a supercapacitor with the existing high energy 

density of a battery is very promising and thus a subject of intense research 

nowadays. 
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The best way to compare the capabilities of the storage devices mentioned above is 

by a Ragone chart. The values of energy density (in Wh/kg) are plotted versus 

power density (in W/kg). Both axes are logarithmic, which allows comparing 

performance of very different devices (for example extremely high, and extremely 

low power). From the chart below, it will be observed that the batteries are in the 

region of high energy density, low power density and longer discharge time while 

the ultracapacitor is in the region of high power density, low energy density and 

very fast discharge time. It should be noted that the diagonal lines across the chart 

represents discharge time.  

 

Fig 10: A Ragone Chart (Source: Don Tuite [83]) 
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Chemistry Nom. Voltage 
(V) 

Energy 
Density 
(Wh/kg) 

Power Density 
(W/kg) 

Cycle life 

Lead-acid 2 30-40 180 ≤800 
Ni-Cd 1.2 ~50 150 ≤500 
Ni-Mh 1.2 55-80 400-1200 ≤1000 
Li-Phosphate 3.2~3.3 80-125 1300-3500 ≤2500 
Li-ion 3.6 80-170 800-2000 ≤1500 
Li-Manganese 3.7 110-130  ≤2000 
Li-polymer 3.7 130-200 1000-2800 ≤1500 
     
     
     
Supercapacitor 2.5 or 2.7 5-10 4000-10,000 ≥1,000,000 

Table 1: Specific battery figures in comparison with supercapacitor figures (Sources: 

[21]-[28]). 

The table above clearly shows the disparity between batteries (all chemistries) and 

the supercapacitor. Batteries have an energy density varying from 30-200 Wh/kg 

while the supercapacitor has only 5% of that energy density. On the other hand, the 

power density of the supercapacitor is 4 to 10 times greater than that of any known 

battery chemistry to date. Also it can boast of 500 times more calendar life than its 

battery counterparts. Researchers have typically classified batteries and 

supercapacitors as electrochemical devices. However operating principles of both 

these devices are different which make their characteristics highly different. It 

becomes very obvious that a synergy between these two devices (battery and 

supercapacitor) will bring about an overall increase in efficiency and power delivery. 

It should be noted that this hybrid combination is not limited to electric or hybrid 

vehicles as it can be substituted for any conventional energy storage system which 

has a fluctuating load profile. However the aim of this research work is to be 

centred around battery electric vehicles only.  
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2.2  STATE-OF-THE-ART ON HYBRID/MULTIPLE ENERGY 

STORAGE SYSTEMS FOR ELECTRIC VEHICLES 

Usually when two or more energy sources are involved in a hybrid energy storage 

system for an electric vehicle, these sources can be distinguished by their energy 

storage and power delivery capacities respectively. For a pure electric vehicle, 

sources with high energy density would be considered as the main energy source 

such as battery packs and fuel cells. As such, they can solely power a vehicle from 

point A to point B even though the efficiency figures could be low. To boost these 

figures to a reasonable level, an auxiliary energy source synonymous with high 

power density or delivery is usually utilized. Popular choices for this source include 

high power batteries and supercapacitors. It should be noted that a vehicle may not 

be able to run solely on this auxiliary source albeit for a few kilometres only. Due to 

today’s requirement of maximum regenerative braking energy recapture, power 

batteries being a chemical energy conversion process are not as dynamic enough 

for this purpose. Supercapacitors on the other hand remain the only viable 

alternative for a powerful yet dynamic auxiliary source which is able to compliment 

the already stable main energy source. This provided a good motivation for this 

research work which aims to integrate and analyse the effects of supercapacitors as 

peak power buffer system for electric vehicles. 

Engineers generally address peak power needs by designing the primary energy 

source to the size needed to satisfy peak demands, even if those demands occur for 

only a few seconds. Sizing an entire system for peak power needs, rather than for 

the average power requirement may prove costly and inefficient. Such systems can 
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be significantly improved by storing electrical energy from a primary energy source 

such as a battery in a secondary energy storage device, and then delivering that 

energy in controlled high power bursts when required. Such high power delivery 

provides electrical systems with dynamic power range to meet peak power 

demands for periods of time ranging from fractions of a second to several minutes. 

Batteries are not designed to provide bursts of power over many hundreds of 

thousands of cycles. Supercapacitors perfectly meet this requirement. The general 

scope of an energy management system for multiple sources is described in the 

figure below. 

Fig 11: General Overview of an Energy Management System (Source: EEtimes Design 

[84]) 

The figure above represents what the EMS of an electric vehicle should effectively 

do i.e. main energy source (battery) for average power demand, auxiliary energy 
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source (supercap) for peak power demand and energy capture (regenerative 

braking) schemes.   

The issue of power arbitration or sharing between multiple sources to satisfy the 

load requirement may be seen in another light as in the figure below which was 

explained in L.C Rosario’s PhD thesis [54]  

 

 

 

 

 

 

 

 

 

Fig 12: Power arbitration concept for multiple energy sources (Source: L.C Rosario 

[54]) 

The figure above can be explained in very simple terms as follows: 

-    There are usually N storage devices 
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-     W:  weight factor for adjusting the rate at which energy is being drawn 

(power) from each source. 

-     ∑: algorithm to coordinate the power flow by dynamically varying the 

weight factors in response to the ever dynamic driving load. Also taking into 

consideration the system constraints such as depletion levels or limits of the 

energy storage systems 

-     The load requests fluctuate through a drive cycle in the case of an electric 

vehicle 

During the course of this research project, a few hundred literatures was collected 

including textbooks, journal papers, conference papers, application notes, patents 

and standards. A summary of work conducted by research groups in the area of 

energy/power management for electric vehicles with hybrid energy sources is 

presented in the sections below. The works presented range from a simple parallel 

connection, series configurations to complicated intelligent energy management 

systems using some sort of machine learning theory. It should be noted that in all 

literature surveyed, the supercapacitor was acting as the auxiliary source while a 

battery pack or fuel cell, as the case may be, was the main energy source. 

The most basic method of combining a supercapacitor with a battery pack is a 

simple parallel configuration. The performance of a battery–supercapacitor hybrid 

power source under pulsed load conditions was analytically described using 

simplified models in this work [29], to reveal potential gains in peak power, 

reduction of internal losses and extension of discharge life. A basic circuit shown in 
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the figure below, and its thevenin equivalent in frequency domain was used to 

perform a theoretical analysis.  

Fig 13: Supercapacitor-battery parallel circuit and its Thevenin equivalent in 

frequency domain (Source: Dougal et al [29]) 

CC is the supercapacitor nominal capacitance and RC, its equivalent series resistance 

or ESR. Vb is the battery’s ideal voltage and internal resistance is Rb. Based on the 

circuits above, the load, battery and supercapacitor currents were simulated with 

particular values of resistance and capacitance with pulse frequency of 0.1 Hz and 

load duty ratio of 0.1. It was observed that the current supplied by the capacitor 

during the load, on-state relieves peak stresses on the battery and therefore 

influences the performance of the entire system is a positive way. A number of 

factors affecting the amount of current supplied by the supercapacitor were 

identified as bank size and configuration, pulse rate and duty ratio of the load.  The 

peak power enhancement capability of the supercapacitor was theoretically 

analysed as the direct result of its current sharing capability; small series resistance 

which can be obtained cascading more capacitors in parallel than in series. This 

relates to the supercapacitor bank size and configuration. The result of this analysis 
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was used to optimize a system design case study and it resulted in a power loss 

saving of 74% from the battery and also an increase in run time of the entire system 

by 8.4 minutes. 

An insightful piece of practical research case study on the integration of batteries 

and supercapacitors for electric vehicle propulsion would be [30], carried out at 

Massachusetts Institute of Technology, MIT. It was a student driven project aimed 

at powering a go-kart with a combination of lead acid batteries and supercapacitor 

module in a series configuration. Figure [13] below describes this configuration. 

Fig 14: Battery + Supercapacitor Series Configuration (Source Colton.S [30]) 

In this configuration, the voltage present on the supercapacitor reduces the current 

demand from the battery at a given load current. The battery pack is connected to 

the traction motor via a half bridge converter which essentially acts as an isolation 

switch; pulse width modulation to turn on and off the switching circuit. A high 

power by-pass diode enables the go-kart to be powered solely by the battery pack 

while the capacitor contactor switch enables a boost mode whereby the 

supercapacitor is in series with the motor and contributes to the load demand. Also, 

regenerative braking is solely channelled into the supercapacitor. Positive attributes 
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of this configuration as observed on the go-kart implementation included the 

following: 

 Small supercapacitor and its entire voltage range utilized at a lower cost 

when compared to the traditional parallel configuration 

 No need for external inductors as all the switched current passed through 

the motor windings 

 Off-the-shelf dc to dc unidirectional converters may be used to connect the 

battery to the traction motor. 

The disadvantages highlighted in this work being no direct power transfer between 

the two power sources i.e. the battery cannot charge the supercapacitor and vice 

versa. Also the regenerative braking energy cannot be used to charge the battery 

pack.  

A direct parallel connection of the supercapacitor across the battery terminals does 

reduce transient currents in and out of the battery according to Pay et al. Figure 15 

below describes the direct parallel connection in which the supercapacitor has to be 

precharged to the battery’s terminal voltage first. This makes it impossible to 

control the power flow in and out of the supercapacitor bank because its terminal 

voltage is tied to that of the battery at all times. In effect, current division between 

these two devices solely rests on the value of their internal resistances [31]. An 

Experimental setup consisting of valve-regulated lead acid (VRLA) batteries to make 

up a total of 336VDC, 170Ah and a string of supercapacitors each 2.5V 2500F 

totalling 375VDC 16.67F were used for validation. Results such as a 40% reduction 

in battery pack current and 30% improvement in dc bus voltage regulation were 
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obtained. However, it was observed that the state of charge (SOC) of the 

supercapacitor dropped considerably after an acceleration. 

 

 

 

 

 

 

Fig 15: Direct Parallel Connection of Battery bank (b) with Supercapacitor Bank (c) 

supplying a load. (Source Pay.S et al [31]) 

Authors Gao, Dougal and Liu, went a step further with their original work [29], to 

produce a comparison between passive (direct paralleling) and active (via a 

converter) configurations between a battery and supercapacitor (see figure 15 

below) using a software simulation package called the Virtual Test Bench (VTB) [55]. 

A hardware implementation was also carried out using real time dSPACE controller, 

SonyUS18650 lithium ion battery pack, Maxwell PC100 supercapacitor and a 

programmable pulsed load.  
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Fig 16: Passive (left) and Active (right) Configurations (Source Gao et al [55]) 

Simulation results of both passive and active connections with respect to the 

current waveforms under the same pulsed load conditions. These are shown in the 

figure below to give a better picture of the difference in power delivery. 

Fig 17: Passive (left) and Active (right) Current waveforms (Source Gao et al [55]) 

In the passive configuration, the battery delivered power to the load during the 

pulse-on time and recharged the supercapacitor during pulse-off. The passive 

system was capable of delivering a power 2.3 times greater than the battery alone 

would have been able to supply. It was observed that battery current spikes were 

drastically reduced by the hybrid system but not entirely. The battery’s safe limit 
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was 2.4A but peak values of almost 5A were recorded. This could be detrimental to 

the battery life. 

In the active configuration, a higher battery voltage was used via a step down 

converter whose output was more or less the same as the supercapacitor voltage. 

The converter was made to output current at a constant rate throughout the load 

cycle which would either top off the supercapacitor (during pulse-off), or contribute 

towards the load current (pulse-on). The deliverable peak power capacity recorded 

was said to be 3 times greater than the passive configuration, and a whopping 7 

times greater than the battery alone. As great as these figures sound, it came at a 

cost. The total discharge time for the battery, i.e. the time it would take for the 

battery to discharge from 100% SOC to the rated cut-off voltage, was 14.4 minutes 

less than when the passive configuration was used. This was attributed to converter 

losses. In the electric vehicle world, this could result in a decrease in range. A 

comprise will have to be reached to get a right balance. 

D. Shin et al [32], describes the parallel connection as an intuitive way of reducing 

the load fluctuation effect on the voltage supply or dc bus. The supercapacitor in 

parallel is essentially a low pass filter that prunes out rapid voltage surges; the 

higher the capacitance, the better the filtering effect. To improve on this 

configuration, one involving a constant current regulator that separates the battery 

pack from the supercapacitor was proposed. This is shown in the figure below. 

Issues associated with this arrangement include the supercapacitor charging current 

control and terminal voltage control. With fixed charging current, the amount of 

delivered power from the battery to the load will depend on the terminal voltage of 
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the supercapacitor which must be maintained within an appropriate or optimal 

range in order to meet the load power demand. 

 

 

Fig 18: Constant Current Regulator based Configuration. (Source D.Shin et al [32]) 

ATT R&D Co. and Ness Capacitor Co. Ltd conducted tests on a neighbourhood 

electric vehicle (NEV); the Invita, to demonstrate the advantages of using 

supercapacitors alongside batteries [34]. With the aid of a high power contactor, a 

direct parallel connection between the battery pack (72V sealed lead acid) and 

supercapacitor module (92V, 50F) was achieved. The latter electronically limited to 

72V by a charge balancing circuit to match the dc bus voltage. The curb weight for 

the NEV was 545Kg and a data acquisition device was setup to log vehicle speed, 

battery voltage and current, supercapacitor voltage and current in real time. A fixed 

15km route with light traffic congestion and frequent stop-and-go situations was 

chosen to test the Invita. In each case (with and without supercapacitor), the 

vehicle was driven until the battery’s state of charge indicated a complete 

depletion. Results reported that on a full charge, energy consumption in Kwh/km 
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was 0.161 with supercapacitor on and 0.186 when off. This translated to a 15.4% 

increase in range per charge.  

Researchers in [35] have also attempted a parallel combination of a valve regulated 

lead acid (VRLA) cell with a string of supercapacitors to improve the former’s 

performance under realistic hybrid vehicle power demands. By logging voltage and 

current data from a Honda insight driven on a test track, a power demand profile 

was created and scaled down to represent the power profile experienced by a 

single cell within the battery pack. Hawker Cyclon 8Ah cells were used along with 

both EPCOS and MAXWELL supercapacitor cells. They were subjected to the same 

power demand profile on a purpose built test bench over 2400 seconds. Results 

show that cell current drawn was significantly reduced as the supercapacitor 

sources and sinks most of the transient current. The VRLA cell acted as bulk energy 

reservoir and supported the low energy storage deficiency of the supercapacitor. A 

comparison of rms and maximum cell current was done with and without 

supercapacitor combination. A 10% reduction was recorded with a 100F 

supercapacitor, 50% reduction with 1250F and 60% reduction with 2500F as 

compared to when the cell was used alone to fulfil the power demand profile. 

Ohmic losses which are effectively I2R losses are the major culprit of cell heating. By 

reducing the rms current from the cell i.e. heating effect, beneficial effects on cell 

lifetime, electrolyte loss, gassing and corrosion are obtained as they are all 

temperature dependent. 
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Control System and Energy Management Algorithms 

Researchers in [33] successfully developed a prototype EV powered by a 

combination of high energy sodium nickel chloride (ZEBRA) batteries (28Kwh) and 

supercapacitors. ZEBRA battery was chosen due to lower costs and safety factor 

even though it is known to have a low specific power density [16]. To solve this 

power problem, a supercapacitor bank (20F, 300V) was installed to provide peak 

power for driving the 53KW brushless dc motor, better acceleration and also 

improved regenerative braking capabilities. To manage the energy flow between 

the ZEBRA battery and supercapacitor bank, a buck boost type dc to dc converter 

which is implementing an energy management algorithm was used. Figure X below 

shows the block diagram and also the control scheme of the system. The algorithm 

is based on input parameters from sensors mounted in the vehicle such as battery 

voltage and current, drive current, supercapacitor voltage and current, input and 

output currents of the dc to dc converter, battery state-of-charge (SOC) and vehicle 

speed. The platform used is a TMS320F241 DSP from Texas Instruments which 

sends corresponding gating signals to the converter. Speed provides a useful insight 

into the vehicle’s energy requirement; low speeds means more energy required for 

an impending acceleration (i.e. keep the supercapacitor fully charged) while high 

speeds translate to more space for storing regenerative braking energy (i.e. empty 

out the supercapacitor). Predetermined charge curves for the supercapacitor bank 

based on the conditions mentioned above were also estimated using neural 

networks. Results from this work show that an improvement in acceleration was 

achieved as a result of the supercapacitors; 16.1% higher for 0-40 km/h 

acceleration, 31.3% for 0-60km/h and 38.5% for 0-80km/h. In terms of range, a 
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10.76% improvement was recorded on a fast track and a 16.67% improvement on a 

slow track. Fast track in this context refers to highway speeds with longer periods of 

acceleration with little or no stops (i.e. supercapacitor has little or no chance of 

recharging via regenerative braking). Slow track refers to city speeds; short bursts of 

acceleration as well as braking (i.e. the supercapacitor is constantly being topped 

off).  

 

 

 

 

 

Fig 19: Block Diagram and Control Scheme of Dixon et al ZEBRA + Supercapacitor 

[33] 

Researchers at the University of Strathclyde developed some control strategies 

based on some simple rules for a battery-supercapacitor power pack 

implementation in a Shelby cobra [56]. However, only a simulation was done using 

ADVISOR software which was developed by National Renewable Energy Labs 

(NREL). A 78V, 70Ah gel-type lead acid battery pack and a supercapacitor series 

pack of the same voltage, 83F were modelled. Two half-bridge DC to DC converters 

controlled the power flow from the battery and supercapacitor respectively with a 

by-pass option for when the battery solely powers the motor. This was to avoid the 
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losses associated with the converter usage. The control strategy was summarized in 

the figure below. 

 

Fig 20: Flow chart of Control developed for battery supercapacitor Shelby cobra 

(Source Carter et al [56]) 

Two control strategies were tested over simulated drive cycles (the New European 

Driving Cycle ECE); one for maximising system efficiency and the other intended to 

minimise peak battery currents. The results obtained were compared with the same 

simulation but using the battery as the sole power source which recorded a peak 

battery current of 240A and a yield of 6.26 km/kwh. It is tabulated below: 
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Strategy Pmin Pch Peak 
Battery 
Current 

Yield 

Max. system 
efficiency 

6800W 0W (Supercap 

only charged 
during Regen. 

105A (56.25% 

reduction) 
6.38 km/Kwh (3% 

increase) 

Optimised 
battery life 

4200W 1600W 66A (72.5% 

reduction 
6.11 km/Kwh (3% loss) 

Table 2: Comparing the two control strategies developed by Carter et al [56]. 

The tabulated results showed that it is not usually possible to simultaneously 

optimise the hybrid system for both efficiency and battery life; one must be 

prioritized over the other. Both strategies improve the vehicles ability to meet 

power demands.  

The current state-of-the-art of energy management algorithms for hybrid and 

electric vehicles is based on heuristics and gradually progressing towards artificial 

intelligence methods such as neural networks etc. [36].  The control strategy for 

battery + supercapacitor combination is largely a function of the supercapacitor 

capacity [37]. Cost constraint of large super-capacitors creates the need for 

advanced energy control strategies. Control strategies usually based on heuristics or 

an optimization model are translated into algorithms and implemented on an 

embedded system (microcontroller or digital signal processor). The embedded 

system acquires all relevant signals, processes data, and generates the PWM signals 

to commutate IGBTs in the DC-DC converter. Input signals include motor/vehicle 

speed and power, battery voltage and current, battery and supercapacitor State-of-

charge (SOC), system temperature among others.   

A heuristic energy management algorithm is based on the fact that the energy 

content of the supercapacitor must have an inverse relation to vehicle speed [38]. 
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Thus, when the vehicle runs at low speeds, energy is reserved to accelerate. On the 

other hand, when the vehicle runs at high speeds, space to store energy from 

braking is made available. This is achieved by injecting or extracting current from 

the ultracapacitors to reach a predefined state-of-charge reference, which depends 

on the vehicle speed. By limiting the current extracted from (or injected to) the 

battery pack, its lifecycle is effectively increased. The supercapacitor array supplies 

the currents whose limits are outside that of the battery pack.   

Optimal control energy management algorithm is based on the application of 

optimal control techniques to determine the optimal power support for a real-life 

power-demand-profile [38] i.e. minimizing the energy extracted from the battery 

and providing a power buffer from the supercapacitor in order to maximize system 

efficiency for a particular drive cycle. Power demand data series is obtained 

experimentally from driving an EV or a test bench under real driving conditions. This 

data series is used as a knowledge base to train an Artificial Neural Network (ANN).  

A neural network is a computer architecture modeled upon the human brain’s 

interconnected system of neurons which mimics its information processing, 

memory and learning processes. It imitates the brains ability to sort out patterns 

and learn from trial and error, discerning and extracting the relationships that 

underlie the data with which it is presented. As a result of this training, the network 

acquires the “knowledge” necessary to determine the most efficient supercapacitor 

current under different conditions. The optimality will depend on how many sets of 

data (or the driving conditions) are used to train the network.  



52 
 

Research work [39], combines a heterogeneous energy storage system consisting of 

low power; high capacity batteries and high power supercapacitors with a 

predictive control system that optimizes power flow. The “ChargeCar” project, 

which authors of this work have pioneered, was aimed at achieving optimized 

power management between the energy sources by utilizing information such as 

vehicle state, driver history, GPS coordinates and even information available on the 

web like traffic data, weather reports etc.  Variables that significantly impact the 

energy demands of a commuter electric vehicle (or any other vehicle) are highly 

variable speeds and traffic conditions, unique individual human driving style and 

elevation changes through the course of travel. Each one of these factors would 

affect the design of an optimal control system for a battery-supercapacitor 

combination. 

The ChargeCar project has collected driving data from normal petrol volunteer 

vehicles borne with GPS units and elevation data for the entire United States. This 

large repository was used to test various energy management algorithms rather 

than using standard drive cycles such as FUDS, UDDS etc.  A robust physics-based 

electric vehicle model was created which takes input GPS coordinates from the data 

repository and translates it into accurate power demand for equivalent electric 

vehicles. This power demand data along with vehicle, battery and supercapacitor 

state was used to test out algorithms which control power flow. The physics-based 

model described in this work is similar to the modelling done in chapter 3 of this 

thesis where the total tractive force required by the vehicle is equal to the sum of 

the acceleration force and the resistive forces due to air, rolling and gravitational 

resistance. The power required by the motor to propel the vehicle was thus 
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calculated by taking into account 85% drivetrain efficiency during forward 

movement and a 35% energy recovery during braking. The model for predicting the 

power required by the load was verified and validated by comparing data with 2002 

Toyota Rav4 EV, and using Bombardier’s large scale people mover vehicles.  

Various algorithms were tested out starting from an ideal case to predictive 

algorithms. In each case, current-squared (I2) demand on the battery as an indicator 

of efficiency was used as it is closely related to both internal efficiency as well as 

overall battery longevity. The ideal case algorithm or optimal bound as it was 

referred to, assumes, or provides the power demand profile of the particular vehicle 

for the entire trip beforehand thus serving as a benchmark to subsequent predictive 

algorithms. The energy management system uses rules to force the power flow to 

certain levels according to the demand profile and keeping the I2  losses to the 

minimum. A 70.06% reduction in current-squared was recorded which suggested a 

significant amount of battery life savings; however the exact savings figure 

calculation was beyond the scope of this work. Also a 15.56% increase in range was 

recorded.  The second algorithm tested could be referred to as a naïve buffer as it 

only utilizes the supercapacitor when necessary; for acceleration and it is recharged 

by regenerative braking only. There is no interaction between the battery and 

supercapacitor. In this scenario if the supercapacitor is completely depleted during 

a discharge or acceleration, the battery takes over the remaining responsibility. The 

results of this experiment were a 9.05% reduction in current-squared on the 

battery, and the 6.27% increase in range. This provided some insight as to what an 

“intelligent” energy management algorithm can achieve given the degree of 
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freedom of approximately 9% to 70% in current-squared and 6% to 15% increase in 

range. 

An improvement to the naïve buffer was developed and it was aimed at charging 

the supercapacitor at a constant rate whenever the load demand was low; during 

idle or stop conditions, to a maximum charge limit. This limit could be shifted based 

on the speed of the vehicle. For example, based on the present speed, leave enough 

room in the supercapacitor to store regenerative braking energy should the vehicle 

come to a stop. At the same time, let the energy present in the supercapacitor be 

sufficient for an acceleration, while at complete stop conditions, charge the 

supercapacitor fully for an impending acceleration. The algorithm was built around 

these rules and the results obtained came much closer to the optimal bound; 

40.15% reduction in I2 and 9.55% increase in battery pack range. 

In a bid to utilize the knowledge obtained from maps, routes, traffic signals and GPS 

coordinates, machine learning techniques were incorporated into an algorithm 

which uses the K-Nearest Neighbour (KNN) search to predict the upcoming duty of 

the vehicle. At each time-step in a trip, the algorithm searches for k, in this case,7, 

nearest, most similar data points in a particular driver’s history which consists of 

55hours of driving data for each driver. The nearest-neighbour search finds the 

most similar neighbours and then averages these upcoming duty curves with each 

other at each time slice into the future, discretized to one second. This yields an 

average future duty for seven points in a driver’s history most similar to his current 

state. This is used as the predicted duty for the energy management algorithm, 

which then simply assumes that this upcoming duty is absolute truth and calculates 
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the same brute force solution as in the optimal bound. Therefore, the gap between 

the optimal bound and the performance of this algorithm hinges simply on the 

accuracy of the predictions. The k-Nearest Neighbor search, which has very little 

semantic knowledge of the problem, nevertheless yields decent results: a 57.69% 

reduction in battery current-squared, and a 12.53% increase in range. 

Electric vehicles cannot compete with ICE’s yet in terms of driving range. An 

intelligent EMS needs to be adopted to maximize the utilization of the energy 

source. According to [40], making use of sensory inputs like current, voltage, speed 

as well as external factors like climate and environment, the EMS can realize many 

functions. Optimize system energy flow, predict the remaining energy and hence 

the residual driving range, suggest more efficient driving behavior, more efficient 

regenerative braking among others.  In order to increase the driving range, multiple 

energy sources may be adopted for modern EVs. The corresponding combination 

and hybridization ratio should be optimized on the basis of the vehicle performance 

and cost. 

The current state-of-the-art of energy management algorithms for hybrid and 

electric vehicles is based on heuristics and progressing rather rapidly towards 

artificial intelligence methods such as neural networks etc [38].  In this work both a 

heuristic based algorithm and optimal control technique applied to   neural 

networks were implemented on a battery – ultracapacitor hybrid energy storage 

system.  The vehicle’s yield (km/kWh) was increased in 5.2% and 8.9% with the first 

and second algorithms, respectively. An economic analysis of costs only was carried 

out and it showed that the present high cost of ultracapacitor energy storage 
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systems can only be compensated for, if it contributes to a 50% or more extension 

of battery life. 

Even though the cost of ultracapacitor cells are projected to fall in coming years,  

the challenge of this research project would be to justify the incorporation of 

ultracapacitors in an electric vehicle by showing at least a 50% increase in battery 

life. 

Real time control strategies and energy management system requirements of 

battery supercapacitor combination proposed in [37] include a current and speed 

restrained control strategy. The former ensures that the current drawn from the 

main battery pack is within a certain safe limit and extra current is drawn from the 

supercapacitor while the latter control strategy is based on the speed of the vehicle 

i.e. at high speed, the supercapacitor should be discharged and prepared for 

imminent regenerative braking while at low speeds the supercapacitor should be 

fully charged in anticipation of acceleration. The results of implementing the control 

strategies showed an increase in maximum speed of 68km/h without 

supercapacitor to 96km/h with supercapacitor. An important observation from this 

work is that the average energy consumption of the vehicle with auxiliary 

supercapacitor source is reduced in city driving conditions due to constant stop-

and-go regenerative braking while in highway driving, the energy consumption does 

not reduce as the speed is fairly constant.  

Machine learning algorithm combined with fuzzy logic for online power 

management of a multi powered source HEV based on minimizing the power loss 

from each source and placing system constraints to ensure good quality power 
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service [41]. This algorithm learns about the optimal combination of power sources 

(e.g. battery, fuel cell, supercapacitor etc) best suited for a given driver load request 

(drive cycle) and a fuzzy controller acts on this knowledge by delivering power as 

soon as the load request is made, bearing in mind all the system constraints like 

state of charge of battery, ultracapacitor etc. Each power source combination is 

associated with a power loss function at any time t during the load request. 

According to Y.L Murphey et al [42], driving patterns exhibited in a real world driver 

are the product of the instantaneous decisions of the driver to cope with the driving 

environment (road type, traffic congestion, driving style, vehicle operation mode). A 

neural network model was developed for predicting online driving patterns in the 

near future based on the short term history of the driver during a trip. A quasi 

optimal set of 14 statistical features (after a rigorous feature selection process 

involving the facility specific driving cycles) was used to characterize the speed 

profile of a vehicle (see table below). 
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Fig 21: 14 features selected for roadway prediction (Source Y.L. Murphey [42]) 

To realize real-time control, the historical data should be acquired online in a 

certain time window. If the time window is too short, the historical data may not 

reflect the driving cycle correctly; if the time window is too large, the computational 

burden may be too heavy for real-time control.  An optimal window size and time 

step was proposed to divide the speed profile into segments. The figure 22 below 

illustrates a segmented speed profile of the UDDS (Urban Dynamometer Driving 

Schedule) with a window size (∆W) of 150s and a time step (∆t) of 100s (in reality ∆t 

is much smaller).  
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Fig. 22: UDDS cycle segmented by a window size and a time step. Source Y.L 

Murphey [42] 

11 standard drive cycles were segmented as describes above for use as training and 

test data. PSAT©; a simulation software was used to simulate the drive cycles. Each 

segment contained a vector of 14 features which were randomly sampled into a 

training and test data sets. A multi layered, multiclass neural network of 14 input 

nodes, 11 output nodes with a hidden layer of 20 nodes was trained for the 

roadway type prediction. An intelligent vehicle power controller that incorporates 

the knowledge about the roadway type and traffic congestion level predicted by the 

neural network is used to make power management decisions in a conventional car. 

Significant reduction in fuel consumption was obtained even though an offline 

dynamic programming algorithm was used to optimize the power management 

strategy.  

Y.L Murphey et al [64] also did some work on driver style classification using jerk 

analysis. Jerk may be defined as the rate of change of acceleration or deceleration. 
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Mathematically, it is calculated as the derivative of acceleration/deceleration or the 

second derivative of the velocity. A true indication of a driver’s aggressiveness 

(which is directly related to power demand in electric vehicles) is its jerk profile 

rather than its acceleration profile. Appropriate feature extraction of jerk data can 

be utilised to develop a robust algorithm to classify drivers’ style. Fuel rate in 

conventional vehicles was compared with its respective jerk profile using software 

simulation packages; variation in jerk results in change in fuel rate. Mathematically, 

if a drive cycle is represented by DC (t), the jerk function J (t) is given as: 

      
       

   
 

A jerk feature was defined as: 

  
    

  
 

Where      , is the standard deviation of the jerk over certain specified window 

size and     is the mean jerk of the current road-type which the driver is on at that 

moment. The ratio mean used is statistically called the coefficient of variation and it 

is often used to depict the amount of variance between populations with different 

average values. In this case different road types have different average jerk values.  

Courtesy of sierra research [65], [66], 11 standard drive cycles were developed 

depicting driving style on different roadway types and traffic congestion levels. The 

11 cycles are divided into 4 categories; freeway, freeway ramp, arterial or urban 
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road and local roadways. A qualitative measure called the level of service (LOS) was 

introduced to further classify the freeway and arterial categories based on speed 

and travel time, freedom to manoeuvre, traffic interruptions, comfort and 

convenience.    was calculated for each of the 11 drive cycles and used in a driver 

style classification algorithm on a window by window basis. The algorithm is 

described in the figure 22 with the thresholds for normal and aggressive being 0.5 

and 1.0 respectively. 

 

 

 

 

 

 

  

 

Fig 23: Driver Style (DS) Classification Algorithm Proposed by Y.L. Murphey et al [64] 

The significance of determining a driver’s level of aggressiveness or calmness based 

on jerk feature may be used as a key feature in energy management algorithms for 

electric vehicles. Choosing the appropriate window size allows for accurate capture 

of transient behaviours or jerks. If the window size is too small, it may not be 
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enough time to capture the entire acceleration or deceleration event. On the other 

hand, if the window size is too big, it may capture multiple events which would lead 

to misclassification. 

Langari and Won [43] proposed a conceptual intelligent energy management agent 

(IEMA) to enable a hybrid vehicle to be driven in an economical and environmental 

friendly way while still satisfying the driver’s power requirement and also charge 

sustenance over the entire range of driving. This system incorporates a number of 

subsystems such as a driving information extractor (DIE) of driving patterns for 

characterizing the driving situation as well as developing a knowledge base for 

torque distribution. The driving situation identifier (DSII) consists of the roadway 

type identifier (RTI), driver style identifier (DSI), driving trend identifier (DTI) and 

driving mode identifier (DMI). Fuzzy torque distributor (FTD) effectively splits 

torque between the motor and the engine. A state-of-charge compensator was 

implemented to address the issue of charge sustenance over a prescribed range. 

The figure 24 below extracted from J.S Won’s PhD Thesis [44], gives a graphic 

explanation of the architecture of the IEMA. 
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Fig. 24:  Architecture of the Intelligent Energy Management Agent (IEMA). Source J.S 

Won Thesis [44] 

An interesting algorithm used in this work is the Learning Vector Quantization (LVQ) 

network; a prototype based supervised classification algorithm for roadway type 

classification. Compared to other neural networks, the main feature of the LVQ 

network is to classify input vectors into target class through a competitive layer for 

identifying subclasses of input vectors and a linear layer for combining them into 

the target classes.  The LVQ network was trained using the statistics from 9 facility 

specific driving cycles [65] to recognize driving patterns. Results were able to show 

that most of the patterns were correctly classified and even the misclassified ones 

were classified as the neighbour class or one with similar statistics. 

The DTI assesses short term/transient features of driving cycles such as low speed 

cruise, high speed cruise, and acceleration/deceleration. These features were 

described by magnitudes of the average speed and acceleration values. DMI 



64 
 

classifies the drivers operating mode into startup, acceleration, cruise, deceleration 

and stop or idling.  FTD takes input from RTI, DTI, DMI and the current state of 

charge of the energy storage device to compute an appropriate engine torque 

command. Also a fuzzy driver style identifier was implemented to study the effect 

of driver variability (calm, normal and aggressive driving) in the IEMA; average 

acceleration and ratio of standard deviation to average acceleration as inputs and a 

weight factor which compensates the torque distributor as output. A simulation 

study was carried out on a typical parallel hybrid power train to evaluate the 

performance of the IEMA and it was concluded that the length of window time for 

each of the subsystems was critical for proper classification.  

A multiple input power electronic converter (MIPEC) for interconnection among 

three power sources; fuel cell (FC), battery (BT) and ultra-capacitor (UC) to power a 

road electric vehicle was proposed by [45]. The control strategy of the MIPEC 

includes linear control of single bidirectional boost subconverters for each source 

and a supervisory system that coordinates the power flow among the power 

sources to the load. The 3 sources are all below the dc-link voltage of 320V dc; FC at 

150V, BT at 144V and UC at 116V. An efficiency analysis was carried out to 

determine the desired operating region of each device. The converter for FC and BT 

limits sudden/fast variations in charge/discharge currents. The energy management 

and fuzzy supervisory system proposed by the authors of this work is shown in the 

figure 25: 
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Fig. 25: Block diagram of Fuzzy Logic Supervisory Controller by A.A Ferreira et al [45] 

The fuzzy logic controller has three input variables (load current, battery energy and 

ultracapacitor energy) and two output variables (output correction term and fuel 

cell current reference). The rule base specification depends on the designer (expert) 

knowledge about the power sources and traction constraints. The rules developed 

were based on successive experiments to ensure the process’s robustness and 

reliability. A summary of the rule based is described below as this will give an insight 

to control algorithms which may be proposed by this thesis in future chapters: 
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Fig. 26: Fuzzy Membership Functions and Rule Base by A.A Ferreira et al [45] 

 Detailed information regarding the fuzzy rules can be obtained from [45]. It was 

acknowledged that fuzzy logic does not guarantee optimal results in all situations, 

but provides a satisfactory solution to control the overall system, allowing easy 

modifications for adding on more rules to improve the performance. 

An interesting work was presented by Jian Yang et al [46]; the estimation of the 

driving load of a HEV by a predicition model using discrete cosine transform (DCT) 

and support vector machines (SVM). The DCT was used to compress the data for 

reduction of dimensionality and filtering noise. It reduced the dimensionality of the 

drive cycle (historical part) data from 150 to 9 in this work. This not only 
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significantly reduced computational complexity, but also reduced the standard 

deviation and slightly improved the prediction accuracy. DCT uses fewer bases to 

transform the data than the FFT. Again Fuzzy logic approach was used to determine 

the average driving load levels during the forecasting period. This time the input 

membership functions were the vehicle speed and acceleration while the output is 

the driving load. In the step of de-fuzzification, centre of gravity method is adopted 

to convert the fuzzy value into numerical value. 

 The SVM with a radial basis function (RBF) kernel was adopted to classify the 

driving load sequence into five levels of driving load (VL=very low, L=low, 

M=medium, H=high, VH=very high) defined by fuzzy logic. LIBSVM [77], was utilized 

as an off-the-shelf software package for the implementation. To optimize the 

parameters of the SVM, a stochastic global optimization algorithm named CPSO was 

adopted. The SVM was compared with variants of Neural Networks (NN) with 3-

mixed training and testing datasets from standard driving cycles in the real world 

and it gives better prediction accuracy and lower computational complexity than 

NN. The SVM gets better generalization ability than the cascaded neural network 

with node decoupled extended kalman filtering (CNN-NDEKF), can be trained faster 

than NN. The block diagram describing the prediction model is shown in the figure 

27. 
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Fig. 27: Block diagram of driving load forecasting of HEV. Source Jian Yang et al [46] 

In a related work, Xi Huang et al [47] and [78] attempted at correctly discriminating 

driving condition which was described as an important premise to an optimal 

control strategy for HEVs. The driving condition of hybrid vehicle is a complicated 

variable dependent on numerous external factors such as wetness of road, terrain, 

traffic congestion and weather and these factors may not have exact numerical 

quantities. Thus, classifying driving conditions based on vague data is a key research 

issue. Feature extraction of randomly truncated standard driving cycles was carried 

out and statistically significant features such as average speed, average 

acceleration, and maximum speed were chosen. Feature selection was carried out 

using principal component analysis. Analysis of variance (ANOVA) was used to test 

the significance of the features selected. A classification was carried out to compare 

the performance of the multilayer neural network, linear classifier, k-nearest 

neighbour and the SVM. The results show that the SVM is fit for classification of 

linear non-separable samples giving the best accuracy of 97%. 
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Similarly, the SVM via the support vector regression (SVR) was used to estimate the 

SOC of a high capacity lithium ion manganese phosphate battery pack as a function 

of cell voltage, cell current and cell temperature [67]. Calculating and controlling the 

SOC for EV and HEV applications is critical in order to give users an indication of 

available runtime left or range, prevent detrimental over charging and over 

discharging which usually leads to reduction in battery life. Due to the 

unpredictability of both battery and user behaviour (driving style or pattern), 

accurate estimation of soc is not straightforward. Several techniques used include 

current integration (ampere/coulomb counting), artificial neural networks, fuzzy 

logic, kalman filter based calculators etc. are employed. Accuracy varies in each of 

these methods but the cost of higher accuracy comes with higher implementation 

cost due to high computational complexity. For example, in [74], [75] and [76], the 

extended kalman filter (EKF) soc estimator designed was able to achieve a ±5% 

accuracy compared to the ±15% of coulomb counting method. The dual filter 

tweaks the system so that the effects of battery aging and degradation are 

accounted for and incorporated into the battery model in real time. However, a full 

implementation of this scheme requires a 40 MHz, 32-bit floating point processor.   

The SVM’s kernel approach provides a modular framework which can be applied to 

various domains such as biomedicine, bioinformatics, image analysis, machine 

vision and non-linear function estimation ([68], [69], [70], and [71]) to solve 

classification and regression problems. A kernel is the bridge between software 

applications and the real data processing done at hardware level. Apart from [67], 

[72] and [73] also used the SVM to model the EV battery behaviour. [72] Proposed 

an SOC estimator for a lithium ion polymer battery which extracts support vectors 
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from a battery operation history then uses only these support vectors to estimate 

the SOC, resulting in minimal computation load and suitable for real-time 

embedded system applications. Basically thousands of training data from real 

battery packs are taken in by the SVM and condensed into a smaller set of support 

vectors which can then be manipulated by an inexpensive 8-bit microprocessor to 

estimate the SOC. The experimental procedure carried out by [72] is summarised 

below: 

Training 

 Training data should be different from test data.  

 Training data should cover the spread of operation of the battery under 

normal working conditions e.g. from 20% SOC to 85% SOC. 

 Data should be realistic and represent a continuous flow of measured data. 

 Data scaling/pre-processing is key to convergence; all vector elements in the 

range of 0.0~1.0 

Optimizing SVM Parameters 

 Cost parameter (C) controls the trade-off between allowing training errors 

and forcing rigid margins of classification. 

 K; type of kernel function used (linear, polynomial, radial basis and sigmoid). 

Polynomial kernel was used for this research. 

 Ɛ ; error constant 
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 SVM parameters used were: C= 13.86, Ɛ= 0.0001, s= 7.3 and r = 19.7. The 

last two are constants from the second degree polynomial kernel K(a,b)= s x 

(a.b)2+r . 

Testing Data and Results 

 Data from simple SOC tests and dynamic SOC tests are done to obtain robust 

results. 

 Optimal SVM tested with simple step input drive cycle; root-mean squared 

error is 5%, max. +ve error is 16% and max. –ve error is -9%. 

 Optimal SVM tested with US06 driving cycle; root-mean squared error is 

5.76%, max. +ve error is +12% and max. –ve error is -2%. 

 A root-mean squared error closer to zero means that the model is a better 

predicitor. 

The optimized SVM was implemented on an inexpensive 8-bit PIC18F8720 

microcontroller running at 20Mhz and the SOC was computed in about 54ms. In a 

related work, Wang Junping et al [73] produced a research which models an 80Ah 

NiMH battery pack in order to estimate its SOC. The least square (LS) SVM algorithm 

was used for non-linear dynamic estimation of battery SOC. The model has 3 inputs 

(charge/discharge current, temperature and SOC) and one output (load voltage). In 

battery testing, the FUDS test cycle was used to charge and discharge the NiMH 

battery pack with the capacity of 80 Ah. Using a training set of 3000 data pairs, the 

SVM model with the RBF kernel was obtained. Testing was carried out with 6500 

data pairs and the maximum relative error recorded was 3.61%. This shows that the 
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SVM model can simulate battery dynamics reasonably well even with small 

amounts of experimental data. 

 Variation in vehicle speed and acceleration represents driving behaviour which in 

turn determines the energy required to propel a vehicle [57]. In real life, driving 

behaviour is always constrained by traffic and road conditions, hence methods 

capable of modelling various generic driving behaviours are critical to trip oriented 

energy management systems. 

An optimal power management system (PMS) was proposed for HEV’s by utilizing 

the knowledge of future terrain and traffic conditions which will make more 

judicious use of the available electric energy [58]. While HEV experts acknowledge 

that such information can increase fuel or energy efficiency in vehicles, it has not 

been implemented yet. The figure below provides an overview of a predictive 

energy management system based on 3D terrain maps. 

 

 

 

 

 

Fig. 28: Forecasting energy usage in HEV based on 3D terrain maps (Source Chen 

Zhang et al [58]) 
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Rui Wang et al [59] identified three main techniques that were used to classify and 

predict future driving conditions. These are by using GPS or intelligent transport 

systems (ITS), statistical clustering analysis method and Markov chain based on 

stochastic process prediction technique. If the origin and destination of a trip is 

known a priori, GPS could be a useful tool for providing terrain information as 

described in [58]. In a series HEV, GPS data was used to predict the approximate 

driving distance, upcoming terrain data along with an estimated velocity [60]. Using 

a rule based strategy, 13% reduction in fuel consumption as well as 8% cost 

reduction was achieved. Statistic and clustering based classification involves 

collecting certain historical and current driving cycle parameters in order to predict 

the future pattern, typically 1-2 minutes ahead. Several literatures have identified 

various driving parameters or statistic features which affect the rate of fuel 

consumption and emissions. [61] Identified 10 parameters while [62] pointed out 

up to 62 parameters in total and classified them into 16 groups. On the other hand, 

[63] proposed only 2 parameters (average trip speed and distance per stop) which 

were used to cluster driving cycles into highway, suburban and urban respectively. 

The issue here is not the number of parameters identified, it is rather at what cost it 

comes at. Too many cause higher hardware cost and longer computational time 

which makes it not feasible to implement on board vehicles or in real time; on the 

other hand, too few parameters may misrepresent or misclassify driving conditions. 

Recent literature on this subject matter indicates that a reduction in the number of 

parameters is desired for real-time implementation and also maintaining good 

prediction accuracy. Rui Wang et al [59] concluded from extensive study that, 

ultimately, some parameters seem to be more prominent than others. They are 
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average speed, average acceleration/deceleration, maximum acceleration, 

maximum velocity, minimum deceleration and standard deviation of acceleration. 

In a work related to this report’s particular research interests, [48] relates 

battery/powertrain performance of an electric vehicle to its driving and usage 

patterns. A duty cycle in this work refers to a history of power usage of a vehicle i.e. 

power versus time curve while a drive pattern was used to describe a driving 

condition taking into account both road condition and driving behaviour. Time 

stamped trip data and charging data was collected by an automated on-board data 

acquisition device in a flash memory card during operation of the Hyundai Santa-Fe 

battery powered electric vehicle. 

Drive cycle is broken down into a series of sequential isolated drive pulses (DP). This 

paper defines the DP as an active driving period between two continuous stops in a 

trip. Distribution plot of Average speed Vs Distance is used as a basis to develop 

fuzzy logic membership functions and fuzzy rules to classify driving events using the 

variables of average speed and distance. By classifying a driving event for each DP, a 

drive cycle profile can be constructed. Driving events: STOP N GO (SnG), URBAN (U), 

SUBURBAN (SU), RURAL(R), HIGHWAY (H). The fuzzy rules for classifying driving 

events were manually tweaked until a proper interpretation of driving cycles among 

all trips in the database was achieved. The figure below is an example of how the 

fuzzy logic pattern recognition was used to categorize a drive cycle into the 5 driving 

events.  
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Fig. 29: Drive cycle analysis; fuzzy classification of drive pulses (DP).Source B.Y. Liaw 

et al [48]. 

The concept of microtrips was introduced by Shuming Shi et al [49], defined as the 

speed time profile between successive stops in a drive cycle. Principal component 

analysis (PCA) and fuzzy clustering was used separate real world drive data into 

microtrips. Interestingly raw velocity-time data was collected using Global 

Positioning Satellite (GPS) system as opposed to the traditional sensor system. 

Fifteen statsistical metrics/features based on previous research were chosen for 

cluster analysis. The core idea of PCA being dimension reduction as there is a 

certain correlation between these statistical features such that a linear combination 

could represent the majority of the whole original feature set. Principal components 

of microtrips corresponding to eigenvalues with a high sum of contribution rates 

were selected to represent information of all the original 15 metrics with a 

reduction in dimension. Results of the fuzzy clustering produced an optimal cluster 
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number of 11. Similarity was found between driving characteristics of the same 

cluster, but great difference exists among driving characteristics of different cluster. 

PCA was applied to get the most valuable coefficients from the data of drive cycles 

which can be used as control input variables for intelligent control strategies for 

HEVs by JianFu et al [50]. Statistical software was used to lower the dimension of 

the weight factors which correlate with fuel economy in HEVS. Here, 14 metrics 

were used to describe driving data. Time, distance, max speed, average speed, 

maximum acceleration, maximum deceleration, average acceleration, average 

deceleration, idle time, number of stops, maximum up gradeability, average 

gradeability, maximum down gradeability, average down gradeability. Drive cycle 

data can be quite redundant and finding a correlation between metrics of the data 

can be complicated. The feasibility of PCA was verified using Kaiser Meyer Olkin 

KMO and Bartlett’s test. Three principal components instead of multi-dimensional 

variables were derived and would be used for an intelligent control strategy to 

reduce fuel consumption in HEVs.  

Chan Chiao et al [51] tackled power management in hybrid electric vehicles from a 

stochastic viewpoint. A design method for the power management control 

algorithm for hybrid electric vehicles was developed by using Markov chain 

modeling and stochastic dynamic programming techniques.  The driver power 

demand was modeled as a Markov process to represent the future uncertainty of 

the driver power request under diverse driving conditions. As opposed to 

deterministic optimization over a given driving cycle, the stochastic approach 

optimizes the control policy over a family of diverse driving patterns. The infinite-
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horizon SDP solution generates a time-invariant state-dependent power split 

strategy, which governs the engine and battery operations. The algorithm can be 

directly implemented in simulations and vehicle testing. Simulation results indicate 

that the SDP control strategy achieves improved performance in almost all driving 

scenarios over the sub-optimal rule-based control strategy which is trained based 

on deterministic DP-results.  Furthermore, the proposed approach provides a 

directly implementable control design path, which is highly desirable because of its 

potential for a fully integrated optimal design and control process. 

Genetic Algorithm (GA) was used to tune the parameters of a fuzzy logic controller 

based on similar driving pattern recognition and prediction for the energy 

management of a HEV [52]. The concept of micro-trips described in previous work 

was used.  Driving pattern was classified based on the distribution of average speed 

for all collected microtrips; Congested condition (Average speed <7kph), urban 

(Average speed 7-15.5kph), Extra urban (15.5 – 23.5kph) and highway (> 23kph). A 

driving prediction model which contains traffic conditions of driving data history 

either offline or real time was proposed in this work using hidden markov model 

(HMM). In the case of an online (real time) operation, new driving experiences are 

used to update the model constantly. HMM is a popular stochastic tool for studying 

time series data. The control strategy was based on changing the membership 

function of the fuzzy logic control in response to changes in driving condition. The 

objective function to be minimized in this case was the integral of fuel consumption 

and engine emissions over a drive cycle. An appropriate fitness function was chosen 

to evaluate the status/fitness of each possible solution to the optimization problem. 

More information about the GA parameters used can be obtained from [52]. Finally, 
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simulation results show the effectiveness of the approach where reduction in the 

fuel consumption is achieved.  

The concept of self learning of driving cycle was described in this work [53]. Real 

time speed profile was collected by an in vehicle device and a statistical analysis was 

done to calculate 28 characteristic parameters of the drive cycle. These were used 

as inputs to a self organizing map (SOM) to classify into clusters of one of three 

drive cycle representatives. The result of the classification was used to manipulate 

the driving control strategy accordingly for optimum performance. Self learning 

here means the use of a general packet radio service (GPRS) to transmit drive cycle 

data and also receives control parameter updates in real time.  

On a rather theoretical level, several researchers have developed energy 

management and power management techniques that apply priory information 

regarding the vehicle propulsion power demands. These methods do provide a 

means to identify the maximum obtainable improvements in terms of energy 

efficiency and performance benefits. The findings also clearly support the grounds 

for further research in this area. However, in spite of significant contributions, there 

have not been many attempts to address the complete implementation process of a 

working system. The figure 30 sums up the literature survey. 
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Fig. 30: A mind map of the literature review conducted during the course of this research 
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CHAPTER 3: METHODOLOGY  

This chapter begins by describing the equations governing the movement of an 

electric vehicle on a level or inclined road surface. The propulsion system has to 

overcome certain forces (which consists of various components) in order to 

accelerate or retard the vehicle. 

Using these equations, various software models were developed in MATLAB 

Simulink © environment in order to simulate the performance of the proposed 

experimental test electric vehicle conversion.  

The third section of this chapter describes the step by step design and construction 

of the experimental test vehicle. Mechanical effort such as engine removal, motor 

coupling, battery and supercapacitor mounting are described. Also, the traction and 

control wiring, sensor setup, data acquisition system, on-board real time display of 

circuit parameters were laid out in detail. 

The section that follows is the on-the-road test of the electric vehicle along a fixed 

route in the university premises and important drive cycle data is collected and 

stored for analysis. Statistical feature extraction of drive cycle data by dividing 

driving data into suitable “microtrips” was done and also the description of driving 

conditions based on statistical features of microtrips (i.e. urban, highway, stop and 

go, idle). 
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Fig 33: An Overview of Chapter 3 

 

EV EQUATIONS 

 Acceleration force 

 Aerodynamic drag 

 Rolling Resistance force 

 Total Traction Force & Power 

 

 

SOFTWARE MODEL OF A SMALL EV 

 Modelling the EV equations in MATLAB ® 

 Simulating the total power required by a 
small EV 

 Simulating the range & battery discharge of a 
deep cycle lead acid battery 

 

EV CONVERSION; ELECTRIC KANCIL 

 Mechanical Coupling 

 Electrical Wiring 

 Instrumentation & Data acquisition  

 

DATA COLLECTION 

 Route specific drive cycle collection 

 Analysis 
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3.1 EV DESIGN CRITERIA 

The design of an electric vehicle should be based on the most important task it is 

required to accomplish; a high speed (performance) car, a long range vehicle or a 

utility commuter vehicle midway between the two i.e. with reasonable 

performance and acceptable range. 

An electric vehicle should be as light in weight as possible, streamlined with its body 

optimized for minimum drag, minimum rolling resistance from its tires, brakes and 

steering, and optimized for minimum drive-train losses [3]. 

 

Fig 33: The forces acting on a car (Adapted from L.C Rosario [54]) 

Figure 33 above describes the forces that a vehicle is subjected to as it tries to 

accelerate or decelerates. These forces consist of several components and are 

described below: 
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Acceleration force (   ) 

This force is derived from Newton’s second law of motion. 

     
 

  
           

Where a is the linear acceleration of the point mass m travelling at a varying 

tangential velocity   . 

Weight (mg) 

Weight affects acceleration, climbing, range and speed of the vehicle.      is the 

gravitational force acting on the vehicle on non-horizontal roads. When the vehicle 

is on a level road, this force is very close to zero. 

FgxT mgsin
 

An uphill acceleration of the vehicle results in a positive force while a downhill 

motion results in a negative force.   is the angle of inclination 

Aerodynamic drag of a vehicle     

This part of the force is due to the friction of the vehicle body moving through the 

air. It is a function of the frontal area, shape, protrusions such as side mirrors, ducts 

and air passages, spoilers, and many other factors. Vehicles with internal 

combustion engines didn’t need to be aerodynamically perfect as they packed 

enough horsepower at their disposal. However, batteries only provide about one 
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percent as much power per weight as gasoline and as such EVs need to be more 

aerodynamically aligned. The aerodynamic drag force can be expressed as: 

    
 

 
           

  

A is the vehicle equivalent frontal area in m2; the effective area a vehicle presents 

to the onrushing air stream.     is the coefficient of drag and it has to do with 

streamlining and air turbulence flows around the vehicle. The coefficient of drag is a 

measure of how easily a vehicle slides through the air. These characteristics are 

inherent in the shape and design of a vehicle. Typical values for    include: Cars 

0.30 – 0.35, Vans: 0.33-0.35, Trucks: 0.42-0.46. It should be noted that modern 

vehicles may have lower or even higher coefficients, for example the Toyota Prius 

has a    of 0.26. Lowering the coefficient of drag is very desirable even in internal 

combustion engines as it helps to save fuel. An optimized electric vehicle with a 

very low    should have a finely sculptured rear, covered wheels, thin tires, 

enclosed underbody, and low nose with sloping windshields.     is the vehicles 

speed ; since drag depends on velocity squared, increasing speed can have a 

dramatic negative effect.   is the air density in kg/m3, a typical value would be 1.25 

kg/m3. 
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Rolling Resistance (     ) 

The rolling resistance is primarily related to the tires of the vehicle and secondarily 

related to the bearings and gears. It is a constant usually approximated and is 

independent of the vehicle speed. The rolling resistance force (     ) is given as: 

             

Where     is the coefficient of rolling resistance. The main factors controlling     

are the type of tyre and the tyre pressure.     is estimated at 0.015 on a hard 

surface (concrete), 0.08 on a medium hard surface and 0.30 on a soft surface (sand) 

[Bob Brant]. Tires support the electric vehicle and battery weight while cushioning 

against shocks; develops front-to-rear forces for acceleration and braking and 

develop side-to-side forces for cornering. Ideally EV tires should be thin giving little 

contact area with the road, hard, and large diameter (higher mileage). 

 

Total Tractive force      

This is the minimum force required to move a vehicle from standstill and it is given 

as: 
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The instantaneous traction power      can be expressed as: 

                     

If  PTR  > 0 then the vehicle is in traction mode with positive traction 

If  PTR  < 0 then the vehicle is in braking mode with negative traction 

If  PTR  = 0 then either vehicle is coast mode (resistive forces equal to change in 

kinetic energy) or the vehicle is at rest. 
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3.2 SOFTWARE MODELLING OF A SMALL ELECTRIC VEHICLE 

Based on the equations described in the previous section, a custom routine was 

written in MATLAB® m-file to estimate the instantaneous traction power of a small 

electric vehicle (see appendix for detailed matlab code). The input to this model is 

the New York drive cycle (NYCC) which features a mainly low speed, idle and stop-

go condition. This drive cycle is ideal for this research work because the electric 

vehicle to be developed in the next section will be tested on a similar route. The 

outcome of this model is important because it serves as a yardstick for sizing the 

electric motor and batteries which will be used in order to meet the traction power 

demands of the vehicle. 

The parameters for a typical small EV are assumed as follows: 

Cd (coefficient of drag) = 0.19 A (frontal area) = 1.8m2 

Urr (rolling resis. Coeff) = 0.015 Mass of Vehicle + 2 Passengers = 820kg 

Tire radius = 0.261m 155/70R12 ng (estimated gear efficiency) = 0.91  

Density of Air = 1.25 kgm-3  Road gradient = 00   

In order to account for losses in transmission, gears, electric motor, accessory 

devices, etc, a total system efficiency of 91% was used to simulate the model. From 

the figure below, a peak power of 17.08KW was recorded and an average non idling 

power of 7.23KW. This means that a motor with an average power rating of 

between 8KW and 10KW with a peak of up to 20KW would be suitable to propel 

this vehicle in question. 
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 Fig 34: Simulating the Power (KW) needed by a Small Vehicle for low Speed Drive Cycle 
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The power required to make the vehicle move at a certain speed as described by a 

drive cycle in the figure above, directly relates to electrical power required by the 

electric motor from the battery pack. A deep cycle lead acid battery pack is 

simulated by coding the equations to calculate its open circuit voltage, state of 

charge and depth of discharge in matlab which have been described in chapter 2 of 

this work. Also the current which is drawn from the battery when it is operating at a 

certain power was simulated (see appendix for code).   

Fig 35: Simulating the Depth of Discharge of a Lead acid Battery pack versus 

distance travelled (range) 
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Fig 36: Simulating the Current drawn from the battery pack @ 48V 207Ah 

Usually deep cycle batteries are designed to be discharged from 50% to 80% of its 

rated capacity [113]. They can be discharged down to 20% but this is detrimental to 

the health of the battery. A healthy 50- 60% is usually desirable. From the figure 35 

above, the simulated EV can do a 27km route with the depth of discharge at about 

62% i.e. remaining charge is 38%; again following the New York drive schedule. The 

current drawn from the battery pack reached peaks of 329.2 amperes. Assuming 

instantaneous battery voltage of 48V, this roughly estimates the peak power 

demand as 15.8KW and average power of 2.2KW. 

The Modeling of the basic parameters or performance criteria of a small electric 

vehicle using matlab® has put things into perpective regarding the conversion of a 

small city electric vehicle.   
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3.3 INTEGRATION OF SUPERCAPACITORS INTO EV 

This part of the project aims at proving beyond any reasonable doubt that the 

integration of supercapacitor banks into electric vehicles is justified by the following 

performance criteria. 

(1) A significant improvement in battery life. 

(2) Increase in  range per charge  

(3) Improved acceleration 

In order to achieve the objectives above, we have to create a platform or basis on 

which testing, research and development can be carried out. The testing of the 

various system configurations may be done exclusively through software. The cost 

is relatively low as the resources needed are computers and specific software to 

carry out the simulation such as ADVISOR, PSAT, PSIM and VTB. Several researchers 

have already carried out similar simulation studies [105], [106], [107], [108]. In 

general, this procedure is simpler than the rest of approaches, but is also less 

accurate due to the impossibility to compare it to real world measurements. Most 

research simulations on EV configurations just end there without any real hardware 

implementation or breakthrough.   

A test bench may be setup to emulate an electric vehicle drive performance. The 

test setup can be roughly divided into four main components: a dynamometer 

(programmable load motor), a real time data acquisition & processing system, 

power source (batteries + supercapacitor), and the electric propulsion system; 

motor under test (electric motor). This could be termed as a Hardware-In-the-Loop 
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(HIL) simulation where part of the system is real hardware (batteries, 

supercapacitor, dc dc converters) and part is software or artificially simulated 

(electronic load to emulate real world driving conditions). The figure below shows a 

sample EV test bench which may be used for this project. On-road tests sometime 

are not always possible to thoroughly test each sub system. These tests are likely 

done during very later phase. It is not easy to change too much configuration of the 

propulsion system on a test vehicle. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 37: Setup for a Sample Electric Vehicle laboratory Test Bench 

For the purpose of this research work, real EV capable batteries, motor and 

supercapacitor module would be purchased. However, it was discovered that a 

single piece of equipment which is able to emulate the driving load of a real world 

EV (programmable load) was beyond the research group’s budget at the time. An 

experimental test vehicle would be constructed; basically a conversion from a 
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conventional ICE to electric. It would be fitted with state of the art data acquisition 

system which monitors the interaction between the energy and power sources as it 

tries to fulfil the load requirements of the vehicle. In this case, the load on the 

propulsion system comes from 100% real world driving. The only downside 

envisaged from this setup is the inability to replicate the exact same driving pattern 

over a fixed route.        

As a preliminary work, an electric bicycle to be powered by a battery -

supercapacitor hybrid combination was implemented. This is a scaled-down version 

of the actual electric vehicle to be implemented. Details of this work can be found 

in appendix c of this report. 
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Fig 38: Work flow for EV conversion 

 

 

EV CONVERSION 

 Mechanical mounting (adaptor plate, battery compartment, controller, 
brake system modification etc.) 

 Electrical Wiring (controller, battery, supercapacitor, charger circuits, 
dc dc converters etc) 

 

 

DATA ACQUISITION SYSTEM 

 Installing current, voltage sensors for battery and supercapacitor 

 GPS antenna for logging real time speed and elevation data 

 Datalogger module which collects and stores data automatically 

 

 

DATA COLLECTION 

 Collection of driving data over a fixed route  

 

 

OFFLINE DATA ANALYSIS 

 Statistical analysis of driving data 

 Determining significant drive cycle features  

 Classifying drive cycles into different driving loads 

 Quantifying the effect of the supercapacitor integration 
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3.3.1  Experimental Test Vehicle 

Being a pioneer researcher on electric vehicles at the University of Nottingham 

Malaysia campus, generating interest or general awareness about electric cars 

among undergraduate students as well as faculty members becomes important in 

order to build a good research team for the future. Hence the decision to build an 

actual electric vehicle by converting a regular compact ICE city car was reached. 

A considerable effort of this research work has been dedicated towards the 

development of an experimental vehicle to serve as a setup for investigating the 

effects of supercapacitor integration into electric vehicles. This section describes 

the experimental vehicle and the corresponding energy storage systems; deep cycle 

lead acid batteries and supercapacitor bank. Starting form a pure battery driven 

vehicle, the energy system was then augmented with the addition of a 

supercapacitor bank. Apart from manufacturer’s information, there is very limited 

experimental data on supercapacitor field testing. As such, the vehicle provided a 

means to obtain unbiased empirical data to substantiate research claims and also to 

serve as a test platform for further work. Most of all, it provided a hands on 

experience. 

A famous city car in Malaysia, the Perodua Kancil, was chosen for conversion into a 

fully electric vehicle due to its light weight, readily available spare parts and also 

suitability for a lower voltage conversion. It has a 660 cc (1997 model), three 

cylinder carbureted engine rated at 31 Hp (22.1KW), other specifications can be 

found below: 
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length 3365mm  Engine 659cc, water cooled , 4 

stroke, in-line 3 cylinder 

Height 1405mm  Max Output 

power 

22.8 KW (31hp) / 6400rpm 

Wheel base 2280mm  Max Torque 49Nm /3200 rpm 

Kerb weight 681 kg  Fuel system Carburetor; 32 liter fuel tank 

Seating 5  Power train Clutch, 5-speed Manual 

Coeff. Of Drag 0.37  Tires 155/70R12 

Frontal Area 1.69m2  Gear ratio  

 

1st: 3.500 , 2nd : 2.111 , 3rd: 

1.392, 4th : 0.971, 5th: 0.794, 

Final: 4.722 

Table 4: Technical Specifications of the Perodua Kancil [100]   

The first stage in any EV conversion is usually very mechanical. This involves 

removing the engine block totally from the vehicle which will make way for the 

electric motor. Also, the fuel tank was taken out and there was a weight reduction 

of about 150kg. Battery racks made of solid cast iron were fabricated and fitted to 

the rear compartment of the vehicle as shown in the figure below. Eight (6V, 

225Ah) Trojan T105 deep cycle flooded type lead acid batteries were connected in 

series to produce a 48V, 225Ah battery pack. The overall weight of the battery pack 

was 240Kg; concentrated in the rear compartment due to convenience of 

installation and lack of space in the front compartment. However tougher coil 

springs were used instead of the normal springs installed in the vehicle in order to 

reinforce the rear suspension. The performance curves for the Trojan battery are 

simulated in the curves below. 
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Fig. 39: Estimated Discharge Curve for Trojan T105 deep cycle battery  

From the curve it can be deduced that for a constant discharge rate of 100A, the 

battery is able to sustain the load for approximately 100 minutes. Also if it is 

discharged between 40%-70% of its capacity, estimated cycle life is 800 – 1500 

cycles. 

 

 

 

 

 

 

Fig. 40: Estimated life cycle Curve for T105 battery  



98 
 

 

 

 

 

 

 

 

 

 

 

Fig 41: Mechanical Part of EV Conversion 
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3.3.2  Electric Motor Mounting & Coupling  

In an internal combustion engine (ICE), the clutch is used to disengage the 

transmission from the engine (idle) and also to bring the vehicle up to speed in 

gears. An electric motor’s RPM can be easily varied from zero to maximum at full 

torque eliminating the need for a clutch and also the flywheel which is used for 

building up inertia between the power strokes of the ICE. Hence drivability is only 

about shifting from second to third gears without a clutch which many cars can do 

rather smoothly. 

The clutch, flywheel and pressure-plate assembly was removed and the electric 

motor was attached directly to the transmission input shaft by using a custom 

made adapter plate. The plate itself bolts to the transmission, a spacer if required, 

and a coupler or hub to connect the shaft of the motor to the transmission shaft. 

One side of the coupler was attached to the electric motor by a keyed shaft while 

the other end was fitted with a splined shaft to match the spline on the drive shaft 

coming from the gearbox. This provided a simple yet sturdy coupling of the electric 

motor to the clutch- less transmission which is capable of transmitting a large 

torque .Custom-made adaptor plate was fabricated with 5/8 inch hardened steel 

that mates the electric motor to the original transmission by matching the bolt 

pattern of the transmission on one side, and that of the motor on the other side. It 

must hold the motor shaft in exact alignment with the transmission shaft. The 

original mounting points to the chassis of the car were used where possible, similar 

mounting points were created using standard engine mounting rubber. The motor 
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was finally placed in with the help of a jack and then locking the mounting points in 

place.  

 

  

 

 

 

 

 

Fig 42: Electric Motor with coupler (center), custom made adaptor plate (top right) 

and a spacer (bottom left). 

 

 

 

 

 

 

 

Fig. 43: Brushless DC Motor successfully mounted, adaptor plate matches the bolt 

pattern of the original transmission block. Reinforcement bracket is added to make 

the mount more stable. 
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The controller was mounted very close to the front grill of the vehicle as shown in 

the figure below on an aluminium heat sink plate. The vehicle will not be driven 

during wet or rainy conditions hence there was no need to make the controller 

waterproof. 

 

 

 

 

 

 

 

 

 

Fig 44: 500A Motor Controller successfully mounted in the same position as the 

radiator of a conventional vehicle  
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3.3.3  Electrical Wiring  

After all the main mechanical conversion part was done, the next stage was to wire 

it all up. The table below lists out all the parts which were used for this conversion 

and their specifications. 

 Equipment /Part Specification 

1 

 

Golden Motors HPM-

1OkW Brushless DC 

Motor 

 Model: HPM-10KW -- High Power BLDC 

Motor 

 Voltage:48V/72V/96V/120V 

 Rated Power:8KW-20KW 

 Peak up to 20KW 

 Efficiency: 91% 

 Phase Resistance (Milliohm): 3.1/48V; 

6.0/72V; 18.0/120V 

 Phase Induction(100KHZ): 34uH/48V; 

77uH/72V; 252uH/120v 

 Speed: 2000-6000rpm (customizable) 

 Weight:17Kgs Casing: Aluminium  

 Length (height): 170mm Diameter: 

206mm 

2 HPC Series Brushless 

DC Motor Controller 

 Voltage 

Ranges:48V(~60V)/72V(~90V)/96V(~140

V) 
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 Rated Current (Max):500A 

 Weight:2.9Kgs     Dimensions: 

192x208x77mm 

 Features: Programmable via USB port,  

 Regenerative  Braking 

 Temperature Protection circuit 

3 TROJAN T105 Deep 

cycle Flooded/wet 

lead-acid battery 

 6V ,225Ah (20hr rate) 

 185Ah (5hr rate) 

 28kg  

4  MAXWELL 

ultracapacitor module 

BMOD0165P048 

 165F, 48.6V 

 ESR 7.1 milliOhms 

 13kg 

 Individually balanced cells 

 Compact, rugged ,fully enclosed 

 Max. continuous current 150A 

5 12V  Albright contactor 

SW200B-84 12V 

 12VDC continuous duty coil with 

blowouts 

 Weld resistant silver alloy contact tips 

 70% duty 300A 

6 Foot Throttle  0-5V voltage output 

 micro switch 

 Casted aluminum 

 Water resistant 
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7 Emergency 

disconnect/kill switch  

 Heavy duty 500A 

 Key operated 

 

8 CR Magnetics Hall 

Effect Current and 

Voltage Transducer 

 0.001 precision 

  Input current:0-600A,output: 0- 5VDC 

 Input Voltage:0-60V , Output: 0-5V 

 Sensor Power Supply: 24V dc. 

9 Panel meters: Voltage 

,current  (analog and 

digital meters) 

 Voltage (0-80V) 

 Current (0-300A) with 50mv shunt 

 

10  Auxiliary DC- DC 

converter  

 

 Input: 40  64 VDC 

 Output: 13.2Vdc , 12A, 158W 

 Efficiency: 82% 

11 Automotive Lead acid 

battery charger 

 Input: 240Vac, 50Hz 

 No of batteries: 4 x 12Vdc or 8 x 6Vdc 

 Charging current: adjustable (20A Max) 

12 Data Acquisition Card; 

DataTaker DT82E 

 Low power design for remote 

applications 

  12-24V dc input  

 18 bit resolution 

  FTP for automatic data transfer 

  12V regulated output to power sensors  

 Up to 6 Analog (+- 30V) sensor inputs 
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 USB memory for easy data and 

program transfer 

 Interface with smart sensors such as GPS 

antenna. 

13 GPS antenna; EM-406A   Sirf star III chipset  

 Output NMEA 0183 and SirF binary 

protocol 

 20 channel receiver 

 Hot start 1s; warm start 38s; cold start 

42s 

 10m Positional accuracy 

 30mm x 30mm x 10.5mm, 16g 

 LED status indicator and battery backed 

RAM 

Table 5: EV conversion parts and specifications 

The parts listed in the table above were connected according to a certain wiring 

diagram (see figure 41). The thick lines represent 2/0 gauge welding cables which 

were used for the main traction wiring. It should be noted that wherever possible, 

fuses (10A, 5A) were used to protect the auxiliary circuit. The 12V chassis ground 

must be isolated from the 48V system. This is to ensure that through error, or 

accident, the chassis ground cannot complete a 48V potential loop. The 48V system 

has no common grounded chassis like the 12V system. 
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In conventional vehicles, the 12V auxiliary battery used for startup and accessories 

is usually charged by the alternator when the engine is running. In this EV 

conversion, a step down dc-dc converter was used to replace the alternator for 

charging the 12V battery. This converter taps 48V from the main battery pack and 

steps it down to 13.2V dc. Its operation is controlled by a relay which is activated by 

the ignition key switch of the car.  

For safety reasons, the micro switch on the throttle was used to turn the main 

contactor on and off, in other words if your foot is off the throttle, the main 

contactor goes off. If something goes wrong such as a runaway motor, then by 

releasing the throttle (usually happens on instinct), the main contactor is turned off 

and the circuit is broken. 

Also an emergency kill switch was installed in an accessible area (just beside the 

gear stick). This serves as emergency disconnect from battery pack in case of 

motor/controller failure. 
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Fig 45: Complete Wiring Diagram for Electric Vehicle Conversion 
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3.3.4  Installation and testing of Supercapacitor Module 

Custom made rack was fabricated to house the supercapacitor module in the front 

compartment, right above the electric motor mounting assembly. A 300A fuse was 

connected as well as digital voltmeters and ammeters in order to monitor the 

charging and discharging capabilities of the supercapacitor module. Figures below 

show the module before and after installation in the electric vehicle.  

 

  

 

 

 

Fig. 46: BMOD0165P048; 165F, 48.6V supercapacitor which weighs 15kg 

 

 

 

 

 

 

Fig 47: BMOD0165P048 installed just above the electric motor. Top right is the high 

current contactor which is activated by a 12V coil and a manual switch on the 

dashboard of the vehicle. 
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Using an online tool provided by the manufacturer [112], a constant current 

discharge profile was simulated for the supercapacitor module. This is shown in the 

figure below: 

 

 

 

 

 

 

Fig. 48 Constant Current Discharge Profile for BMOD0165P048 Supercapacitor 

Module 
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3.3.5  Brake system modification 

Almost all cars these days have vacuum assisted braking system. The perodua kancil 

does. Since the vacuum source; the engine, was removed, an alternative source of 

vacuum is needed to restore the functionality of the power brakes. A 12V vacuum 

pump which is controlled by a pressure switch was installed to act as vacuum 

booster for the power brakes. The figure below shows the wiring diagram. 

 

 

 

 

 

Fig. 49 Vacuum pump wiring diagram for brake system modification [111] 

 

 

 

 

 

Fig 50: Electric Vacuum Pump (left) connected to the vacuum reservoir on one side 

and the brake booster on the other. A pressure sensor turns the pump on and off 

depending on the set level. 
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The pressure switch monitors the pressure in the vacuum tank. Once the suction 

pressure drops to 400millibar, the switch turns on the pump via the relay. As soon 

as 600millibar is attained, the vacuum is switched off. This way, vacuum is 

automatically maintained between these two limits. The vacuum pump was 

mounted on brackets firmly welded on to the chassis. Rubber mounts were used to 

mount the pump in order to minimize the vibration which would otherwise be 

transmitted onto the body of the vehicle.  

Testing of the electric vacuum assist brakes was done and found to be satisfactory 

and on par with conventional vacuum assist from the engine. The vacuum pump 

turns on only after the brakes are depressed at least twice, draws a current of 3A at 

12Vdc (36W) during operation and turns off when sufficient vacuum pressure is 

achieved. 

 

 

 

 

 

 

Fig 51: front view of the EV with all the necessary connections in place. 

 

Fig.45: A close up of the vacuum pump 

mounting, pressure switch and vacuum 

reservoir tank.  



112 
 

3.4 DATA ACQUISITION SYSTEM AND TESTING 

For initial testing purposes, a fixed driving route within the university’s campus was 

chosen. A data logging device with external USB storage was setup in the car to 

collect data from current and voltage sensors which were used to monitor the 

power flow from the battery pack and the supercapacitor module respectively. 

Fig 52: DataTaker DT82E Data logger with flash USB storage logs battery pack 

current and voltage, supercapacitor current and voltage, GPS timestamps as well as 

GPS speed. 

The features of the data acquisition system include 

 DataTaker DT82E logger: The DT82E is a smart data logger designed 

especially for outdoor monitoring. It is a robust, low power data logger 

featuring USB memory stick support, 18-bit resolution, extensive 

communications capabilities and built-in display [101]. It has 6 analog input 

channels, 4 bi directional digital input output channels, a smart serial sensor 
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port which was connected to a GPS antenna in this project and a 12V 

regulated power output. 

 Hall Effect current transducers and voltage transducers: CR magnetic 

CR5210-600 provides a DC signal (between 0-5V) which is proportional to a 

DC sensed current. Two of these units were used to monitor the current 

drawn out of the battery pack and also supercapacitor module. This is 

shown in the figure below; the maximum dc current that can be sensed is 

600A [102]. CR5310-100 dc voltage transducers provide an output DC signal 

(also 0-5V) that is proportional to the input DC voltage of the battery pack 

and supercapacitor module respectively; the maximum dc input voltage 

allowed is 100V [103]. The wiring diagram for these 2 sensors are described 

in the circuit below; the sensors require a 24V power supply which is 

provided by 2 12V sealed lead acid rechargeable batteries housed in the 

glove compartment of the vehicle. The outputs for these sensors are fed 

into the analog input channels of the DT82E data logger module. 

 

 

 

 

 

 

Fig 53: Hall-effect current transducers used to monitor battery and supercapacitor 

currents. 
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Fig 54: Differential Wiring diagram for Current and Voltage Transducer to data 

logging device [102], [103]  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 55: Dashboard Mounted Display; Top left: Supercap Voltage, Top Right: 

Supercap Current, Bottom Left: Battery Voltage, Bottom Left: Battery Current 
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 GPS receiver module: The EM-406a is a 20 channel compact, high 

performance, low power consumption GPS engine board (see figure 52 

above). It uses the SiRF Star III low power Single GPS chipset which can track 

up to 20 satellites at a time, and can perform extremely fast time to first fix 

in weak signal environments. It is suitable for automotive navigation, 

personal positioning, mobile phone navigation, marine navigation among 

others [104]. 

 Analog and digital panel meters which were mounted on the dashboard (as 

shown in figure 55 above). The analog panels display the battery pack 

voltage and current while the digital panel meter displays the 

supercapacitor voltage and current. 

Fig 56: Wiring diagram for GPS antenna and MAX232 level converter pin-out 

to DB9 connector 
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Figure 56 above describes the connection between the GPS module and the serial 

port of the data logger module. A MAX 232 chip was used to convert the TTL output 

from the GPS module to RS-232 serial signal via a DB9 connector which plugs into 

the data logger serial port. A custom DataTaker code which is able to activate the 

GPS module, read the input strings and log important parameters such as GPS 

speed, altitude and total distance travelled was written. At the same time, readings 

from the current and voltage sensors are also logged following the same time 

stamp as with the GPS data. A copy of the program can be found in the index of this 

report. A real time display of the logged parameters was also displayed on the lcd 

screen of the data logger device. This can be seen in figure 52 where a battery pack 

voltage of 50.4V is displayed. 
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3.4.1  Driving Data Collection 

Two fundamental methods have been used in the past to collect driving data; the 

chase car method and the on-board vehicle instrumentation method [109]. As the 

name suggests, the chase car protocol involves the installation of a range-finder 

laser system on a chase vehicle which collects second-by-second speed-time 

profiles from target vehicles. The on-board vehicle instrumentation involves 

installing the test vehicle with all the necessary sensors and transducers to measure 

the vehicle’s real time speed-time profile. With the advent of GPS technology, non-

contact method of logging speed (as opposed to rpm sensors) can be implemented 

for collecting on-road data. This research work adopts the on-board 

instrumentation method coupled with GPS technology. A data acquisition device is 

integrated into the system to store on-road data continuously. In general, drive 

cycle construction methods typically include the following steps:  

 Collecting real world driving data  

 Segmenting the driving data  

 Constructing cycles 

 Evaluating and selecting the final cycle.  

Depending on the type of driving activity that is being using to construct the cycle, 

existing cycle construction methodologies for light-duty vehicles can be generalized 

into four types: micro-trip cycle construction; trip segment-based cycle 

construction, cycle construction based on pattern classification, and modal cycle 

construction [110].  Traditionally, drive cycles have been used to test conventional 

vehicle polluting emissions and fuel consumption.   
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Fig 57: The UDDS drive cycle and some of its features 

 

 

 

 

 

 

 

Fig 58: The HWFET drive cycle and some of its features 
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Figures 57 and 58 above represent existing standard driving schedules for city and 

highway driving in the United States. In comparison with ICE vehicles, the testing of 

electric and hybrid vehicles pose some unique problems that are specific to the 

technology used. For example, EV’s can be designed for route-specific applications 

i.e. low speed city driving or specific neighborhoods only, therefore they will 

perform badly when subjected to other types of drive cycle.  Standard driving cycles 

for ICE-vehicles are not necessarily adequate for vehicles with electric drive trains 

and provide insufficient basis for the comparison of different driveline technologies. 

For power sources such as batteries in electric and hybrid vehicles, assessments on 

their performance are, most of the time, conducted in laboratories on test bench 

setups. Similar to standard driving schedule tests and analyses, these laboratory 

tests and duty cycle analyses have constraints in their validity to real-life operation. 

A main issue exists in both cases due to the problem with real-life operation where, 

even under specific driving cycles or duty cycles, energy consumption strongly 

depends on ambient operating conditions that are typically uncontrolled [48]. 

It is with this mindset that we decided to create our own driving schedule called the 

UNMC cycle. Due to existing local traffic regulations, an electric converted vehicle is 

not road legal, so testing was done within the university’s campus. The route 

chosen is 1.04 km from the university’s engineering faculty (point A in fig 19) 

through point C (cafeteria), around the accommodation complex and back to the 

original starting point. This route is very similar to city driving conditions or speed 

restricted driving conditions such as in residential areas with a lot of speed bumps. 

We shall refer to this drive route (cycle) as UNMC cycle.   
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Fig 59: Fixed Driving route for EV testing at the University of Nottingham Malaysia. 

In order to verify the effects of integrating supercapacitor into the system, the 

vehicle was tested with and without the ultracap module as shown in the figure 

below. It should be noted that the schematic below is simplified for better 

understanding. In reality the switch is a high current contactor which is controlled 

by a 12V relay coil, also protection diodes, fuses have been left out of the 

schematic. 

Fig 60: Testing and Data Collection With and Without Supercapacitor 
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Timestamp Alt (m) GPS State Spd (kph) kph (mps) Trip (km) V_scap (V) V_bat (V) Iscap (A) Ibat (A)

17:18.0 38.4 1 0 0 0.0032 49 50.6 0 2.6

17:21.0 39.9 1 0 0 0.0032 48.9 50.5 0 6.9

17:24.0 44.9 1 0 0 0.0032 49 49 0 32.5

17:27.0 46.7 1 2.3 0.6 0.0041 48.9 46.5 0 84.1

17:30.0 45.4 1 8.9 2.5 0.0088 48.9 49.7 0 10.1

17:33.0 46.5 1 16.2 4.5 0.0192 49 49 0 26

17:36.0 45 1 17.4 4.8 0.0331 48.9 50.5 0 2.5

17:39.0 43.3 1 17.4 4.8 0.0477 48.9 50.6 0 1.6

17:42.0 45.3 1 12.4 3.5 0.0601 48.9 50.5 0 1.6

17:45.0 43.8 1 11.5 3.2 0.0701 48.9 50.6 0 2.4

17:48.0 43.6 1 11.9 3.3 0.0798 48.9 48.2 0 54

17:51.0 45.5 1 7.4 2 0.0878 48.9 49 0 15

17:54.0 46.9 1 14.4 4 0.099 48.9 48.7 0 34.7

17:57.0 48.1 1 18.6 5.2 0.1096 48.9 47.7 0 45.1

18:00.0 49 1 20.8 5.8 0.1261 48.9 50.4 0 2.5

18:03.0 48.2 1 23.3 6.5 0.1445 48.9 45.7 0 88.2

18:06.0 48.6 1 19.6 5.5 0.1624 48.9 48.8 0 33.1

18:09.0 50.2 1 23 6.4 0.1801 48.9 50.2 0 2.2

18:12.0 53.1 1 23.9 6.6 0.1995 48.9 48.7 0 33.6

18:15.0 53.8 1 25 6.9 0.22 48.9 48.3 0 45

18:18.0 53.6 1 24.3 6.7 0.2405 48.8 47.8 0 51.8

18:21.0 52.5 1 22 6.1 0.2598 48.8 47.4 0 58.4

The prototype electric kancil was driven through a specific route (figure 59) with 

the switch in the OFF position i.e. battery alone, to acquire reference data for 

comparison.  This was repeated, but with the switch ON. Although the test driver 

simulated the same driving pattern with or without the supercapacitor, the status 

of traffic congestion and receiving stop light signals slightly varied through the test 

time.  

Fig 61: Snapshot of the data obtained from the logging system at 0.33Hz 

Figure 61 above represents the time stamped raw drive data which is obtained 

from the data logging device via the USB storage. The accumulated trip in km was 

calculated by integrating the GPS speed over the time step between each sample. 

This was achieved by some custom programming code. A MATLAB ® program was 

written to calculate certain parameters from the above real world drive cycle in 

order to characterize it and compare it with existing standard drive cycles.  
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CHAPTER 4: RESULTS & DISCUSSION  

This chapter begins by presenting and describing the preliminary results of the 

electric vehicle conversion powered by a deep cycle lead acid battery and a 

supercapacitor module. 
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4.1 BATTERY-SUPERCAPACITOR IMPLEMENTATION 

This section presents the results of the integration of supercapacitor module into a 

converted city electric vehicle. Raw data from the on-board data acquisition system 

was collected as shown in the previous chapter. By running custom routines on 

MATLAB software, basic parameters such as altitude, drive cycle data, current, 

voltages etc. are plotted as well as some derived quantities such as power in 

kilowatts, acceleration and jerk which are visualised.  

A fixed driving route was adopted in the university’s premises which will be referred 

to as the UNMC cycle. A total of 5 trips shown in figures 62 to 66 below, were 

made. Each trip consists of approximately 10 cycles of the UNMC route which 

amounts to a total distance of 10.4 km per trip. GPS altitude data collected showed 

a variation from 53m to 96m with an average of 76m above sea level. It is 

important to note that altitude data from GPS is subject to error (10 – 20 m 

accuracy) [104], hence it is only used to prove that the test route was consistent 

with all test trips made. 

Due to existing local traffic regulations, an electric converted vehicle is not road 

legal, so testing was done within the university’s campus. This route is very similar 

to speed restricted driving conditions such as in residential areas with a lot of speed 

bumps. Trips were done at different times of the day and also different days of the 

week to see the effect on driving pattern. However, the same driver was 

maintained in all cases.  
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Fig 62 : UNMC Drive Cycle Trip 1 
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Fig 63 : UNMC Drive Cycle Trip 2 
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 Fig 64 : UNMC Drive Cycle Trip 3 
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Fig 65 : UNMC Drive Cycle Trip 4 
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 Fig 66 : UNMC Drive Cycle Trip 5 
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Fig 67 : Frequency distribution (histogram) of UNMC drive cycle TRIPS 1-5. 
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Table 6: Summary of the main characteristics of the UNMC drive cycle for 5 different trips 

  

 

  TRIP 1 TRIP 2 TRIP 3 TRIP 4 TRIP 5 

 1 Total time  
(seconds) 

2406 2181 2603 1538 1698 

2 Total Distance 
 (km) 

10.46 10.44 10.82 10.52 10.20 

3 Altitude (m)      

 Min|Mean|Max 50|75.8|90.4 60.3|80.6|100 48.1|75.8|93.7 58|78.8|103.6 49|68.5|90.6 

4 Average Speed  
(kph) 

15.63 17.23 12.98 17.01 17.01 

5 Max. Speed 
 (kph) 

31.3 36.4 37.6 37.8 37.8 

6  Stop + idle  
(%)  

9.6 0.7 12.54 1.68 5.29 

7 1< Speed < 10kph  
(%) 

15.9 16.9 26.6 18.2 15 

8 10 < Speed < 20kph  
(%) 

34.7 45.5 38.5 45.4 38.1 

9 20 < Speed < 45kph 
 (%) 

39.7 36.9 22.4 34.7 41.6 

10 Speed > 45kph 
 (%) 

0 0 0 0 0 
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Table 6 above summarizes the main characteristics of the UNMC drive cycle. For 

over 70% of the total drive cycle, speeds of between 10 kmh-1 and 45 kmh-1 were 

recorded and none above. Stop plus Idling time recorded was up to 12.5% which 

could vary depending on amount of traffic on campus at the time of testing. Taking 

a look at figure 67 above, trips 1 to 5 show very similar frequency distribution 

histograms except for the idling time i.e. between 0 and 5kph. This is particularly 

evident in trips 1 and 3 where the idling time is 9.6% and 12.5% respectively.  

Maximum speed recorded was about 38 km/h in all trips. In the real world, this 

could represent a driving trip in a residential community from say the house to the 

grocery shop encountering a lot of speed bumps on the way.  
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4.1.1  Results: Battery Only (Supercapacitor OFF) 

The electric kancil was driven over a fixed route as described in the section above, 

solely powered by the 48V, 225Ah (20-hour rating) Trojan T105 deep-cycle lead acid 

battery pack. The results of the power flow from the battery pack to the motor and 

vice versa is summarised in the table below. It should be noted that the battery 

pack is charged to 100% state of charge before carrying out the test.  

 Initial Battery Voltage 49.6 V 

 Average Battery Voltage Drop 2.7 V 

 Max. Voltage Drop  9.9 V (47.4  37.6) 

 Average Current  43.8 A 

 Peak Current 228.1 A 

 Average Instantaneous Power 1934.7 W 

 Peak Instantaneous Power 8553.8 W 

 Average Acceleration 0.37 ms-2 

 Max. Acceleration 1.37 ms-2 

 Average deceleration 0.38 ms-2 

 Max. deceleration 2.01 ms-2 

Table 7: Summary of results (battery only) 

Figures 67 to 74 are graphical plots and frequency distribution charts of battery 

voltage, battery current (drawn by the load while driving), the instantaneous power 

and the acceleration of the vehicle. The supercapacitor module was disconnected 

via a high power contactor which operates on a 12V dc coil powered by the vehicles 

accessory circuit. A maximum voltage drop of 9.9V was recorded. At that point, it 
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resulted in a dip from 47.4V to a record low of 37.6V which drew a current of 228.1 

A from the battery pack. According to the Trojan T105 manufacturer’s datasheet, 

the lower voltage limit of each cell in the battery should not be below 1.75V at all 

times during constant discharge [114]. Per battery, this amounts to 5.25V and the 

entire pack’s lower voltage limit is 42V.  Therefore, any voltage below this limit is 

considered to be a severe deep discharge which is detrimental to the health of the 

battery in the long run. More so, these deep discharges are sudden and haphazard 

depending on the acceleration demand of the vehicle and last only for a couple (3-

5) of seconds. This adds more strain on the battery. 

An average current of 43.8 A was recorded for this particular trip which generally 

produced an average voltage drop of 2.7 V during the trip. An average acceleration 

of 0.37ms-2 up to a maximum of 1.37 ms-2 was recorded. The New York drive cycle 

(NYCC) which features a mainly low speed, idle and stop-go condition has an 

average acceleration of 0.62ms-2 and a maximum of 2.68 ms-2. Due to the low 

voltage used in the experimental vehicle, the acceleration is limited. The aim of the 

first phase of this research work was to investigate the effect of integrating a 

supercapacitor system into an electric vehicle to act as a power buffer system. The 

average instantaneous power delivered by the battery was approximately 1.9KW 

while it peaked to a maximum of 8.6KW.  
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Fig 68 : Battery Voltage     
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Fig 69: Frequency Distribution of Battery Voltage 

Bin Average (V) 38.2 39.5 40.8 42.1 43.4 44.7 46.0 47.3 48.6 49.9 

Freq (%) 0.3 1.4 3.2 4.3 7.1 9.3 9.9 12.1 26.1 26.4 

Table 8: Frequency table of Battery Voltage 
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Fig 70 : Battery Current   
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Fig 71: Frequency Distribution of Battery Current 

Bin Average(A) 0.6 24.5 48.5 72.4 96.4 120.3 144.3 168.2 192.2 216.1 

Freq (%) 42.4 13.7 12.2 10.0 8.8 6.3 3.6 1.4 1.1 0.4 

Table 9: Frequency table of Battery Current 
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Fig 72 : Instantaneous Power   
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Fig 73: Frequency Distribution of Instantaneous Power 

Bin Average (KW) -0.1 0.8 1.7 2.6 3.5 4.4 5.4 6.3 7.2 8.1 

Freq (%) 38.6 12.4 9.7 10.4 8.9 8.2 6.6 2.9 1.0 1.2 

Table 10: Frequency table of Instantaneous Power delivered by Battery 

 



140 
 

Fig 74 : Vehicle Acceleration   
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Fig 75: Frequency Distribution of Vehicle Acceleration 

Bin Average (ms-2) -1.8 -1.5 -1.2 -0.8 -0.5 -0.2 0.2 0.5 0.9 1.2 

Freq (%) 0.1 0.5 3.2 4.7 13.5 28.2 27.7 15.2 6.0 0.8 

Table 11: Frequency table of Vehicle Acceleration 
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4.1.2  Results: Battery + Supercapacitor in Parallel 

(48.3  45.8) 

  Battery Supercap 

 Initial Voltage (V) 49.7  49.7  

 Average Voltage Drop (V) 0.51 0.48 

 Max.  Voltage Drop during Drive Cycle (V) 2.5  2.2 

 Average Current delivered by : (A) 33.10 0.44 

 Peak Current delivered by : (A) 111.2  131.2 

 Average Instantaneous Power delivered by: (W) 1530.8  16.8 

 Average Instantaneous Power delivered by Bat + 

Supercap (W) 

1547.6  

 Peak Instantaneous Power delivered by: (W) 4714.9  5956.9 

 Peak Instantaneous Power delivered by Bat + 

Supercap : (W) 

9356.3  

 Average Acceleration (ms-2) 0.44  - 

 Max. Acceleration (ms-2) 2.57  - 

 Average deceleration (ms-2) 0.49  - 

 Max. deceleration (ms-2) 2.78  - 

Table 12: Summary of results (battery + supercapacitor) 

Figures 71 to 75 are graphical plots of battery voltage, battery current (drawn by 

the load while driving), the instantaneous power and the acceleration of the 

vehicle. The supercapacitor module was connected in parallel to the battery pack 

via a high power contactor which operates on a 12V dc coil powered by the 
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vehicle’s accessory circuit. A switch attached to the dashboard of the vehicle 

triggers this contactor. As suggested by Pay et al [31], the supercapacitor was pre 

charged to the battery’s terminal voltage (48V) before use. This is to ensure the 

former’s voltage is tied to the latter’s voltage at all times. A maximum battery 

voltage drop of 2.5V was recorded. At that point, it resulted in a dip from 48.3V to 

45.8V which drew a current of 111.2 A from the battery pack. This is a 49% 

reduction in peak current drawn as compared to battery alone.  An average current 

of 33.1 A was recorded for this particular trip which generally produced an average 

voltage drop of only 0.51 V during the trip. An Increase in acceleration was 

recorded with an average acceleration of 0.44ms-2 (18.9% increase) up to a 

maximum of 2.78 ms-2 (102.9% increase).  

Shifting our attention to the supercapacitor module, we compare the figures 68 and 

72 showing the current plots. In figure 68, large/sudden spikes or surges are 

observed to be drawn from the battery pack, 40% of the current drawn from the 

battery was above the 50A average while 17% of that current was above 100A. In 

figure 72 (blue plot indicates battery current), only 21% of the battery current 

logged was above 50A mark while a remarkable 0.38% of the 21% was above the 

100A mark. This means that for 79% of the trip the battery provided less than 50A 

which is not detrimental to its health. In the long run, this will result in prolonged 

battery life. On the other hand, looking at the red plot (supercapacitor current), the 

entire peak current demands (spikes) come from the buffer supercapacitor module; 

up to a peak of 131.2 A. However there is a significant amount of negative current, 

which indicates that its interaction (charging) with the battery pack is key to the 
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entire hybrid system’s ability to meet the load requirements of the vehicle. The 

average positive current drawn from the supercapacitor was found to be less than 

1A throughout the whole trip. 

Figure 74 plots the instantaneous total power of the hybrid power source i.e. 

battery + supercapacitor in a direct parallel combination. The total power delivered 

is equal to the sum of the powers delivered by the individual sources. The 

combined average power was equal to 1.5KW while the peak power was 9.4KW. 

This is equivalent to, or even surpasses the average power delivered by the battery 

alone with the extra advantage of diverting those high current surges from the 

battery pack.  
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Fig 76: Battery + Supercapacitor Voltage 
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Fig 77: Frequency Distribution of Battery + Supercapacitor Voltage 

Bin Average; Battery (V) 42.6 43.4 44.2 45.0 45.8 46.5 47.3 48.1 48.9 49.7 

Freq (%) 0.6 1.2 3.5 6.4 9.8 16.3 22.9 18.8 10.5 10.0 

 Table 13: Frequency table of Battery Voltage 

Bin Average ; Supercap(V) 42.7 43.5 44.3 45.0 45.9 46.6 47.4 48.2 49.0 49.8 

Freq (%) 0.5 1.3 3.3 6.5 10.0 16.8 22.6 18.6 10.3 10.0 

Table 14: Frequency table of Supercapacitor Voltage 
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Fig 78:Battery + Supercapacitor Current                
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Fig. 79: Frequency Distribution of Battery + Supercapacitor Current 

Bin Average; Battery(A) 7.9 18.8 29.8 40.5 51.4 62.3 73.2 84.0 94.9 105.8 

Freq (%) 19.3 20.1 23.9 12.3 8.7 6.3 5.22 2.8 1.0 0.4 

 Table 15: Frequency table of Battery Current 

Bin Average; Supercap(A) -70.6 -49.3 -28.1 -6.9 14.4 35.6 56.89 78.1 99.3 120.6 

Freq (%) 1.3 5.8 20.6 37.8 18.1 7.4 4.3 2.1 1.8 0.8 

Table 16: Frequency table of Supercapacitor Current 
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  Fig 80: Instantaneous Power delivered by Battery + Supercapacitor Hybrid      
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Fig 81: Frequency Distribution of Battery + Supercapacitor Instantaneous Power 

Bin Average; Battery (KW) 0.4     0.8     1.3     1.7     2.2     2.6     3.1 3.6     4.0     4.5 

Freq (%) 17.5 15.6 22.9 15.5 9.3 8.6 4.3 4.6 1.13 0.6 

Table 17: Frequency table of Power delivered by Battery 

Bin Average; Supercapacitor (KW) -3.1  -2.1 -1.1 -0.2 0.7 1.7 2.6 3.6     4.5  5.5 

Freq (%) 1.6 7.8 21.8 35.6 17.1 7.0 4.3 2.0 1.9 0.8 

 Table 18: Frequency table of Power delivered by Supercapacitor  
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Fig 82: Effective Instantaneous Power delivered by Battery + Supercapacitor Hybrid    
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Fig 83: Frequency Distribution of Effective Instantaneous Power 

Bin Average (KW) -0.3 0.7 1.7 2.7 3.8 4.8 5.8 6.8 7.8 8.8 

Freq (%) 42.6 16.4 13.1 9.8 6.2 5.7 2.7 1.7 1.1 0.8 

Table 19: Frequency table of Effective Power delivered by Hybrid Source 
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Fig 84: Vehicle Acceleration 
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Fig 85: Frequency Distribution of Vehicle Acceleration 

Bin Average (ms-2) -2.5 -2.0 -1.4 -0.9 -0.4 0.2 0.7 1.2 1.8 2.3 

Freq (%) 0.3 0.9 2.1 6.2 16.0 60 11.5 2.4 0.7 0.2 

Table 20: Frequency table of Vehicle Acceleration 
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4.1.3  Results: Battery + Supercapacitor in Parallel (Mixed cycle) 

The third part of the on-road vehicle testing experiment involves a mixed cycle i.e. 

switching on the supercapacitor module during the trip. As with previous tests, 

both sources are pre-charged to the same level before testing. Table 21 below 

summarizes the first 400 seconds of the trip which only utilizes the battery pack to 

power the electric vehicle. An average voltage drop of 1.98V was recorded while a 

whopping maximum of 8V drop was recorded which lead to a dip from 47.5V to 

39.5V. This is far below the battery’s safety net of 42V i.e. 1.75V per cell. An 

average current of 39.5A up to a maximum peak of 207.2A was drawn from the 

battery pack.  

0  400 Seconds: Battery ON, Supercap OFF 

  Battery 

 Initial Voltage (V) 49.0 

 Average Voltage Drop (V) 1.98 

 Max.  Voltage Drop during Drive Cycle (V) 8.0  

 Average Current delivered by : (A) 39.50 

 Peak Current delivered by : (A) 207.2  

 Average Instantaneous Power delivered by: (W) 1816.2  

 Peak Instantaneous Power delivered by: (W) 8495.2  

 Average Acceleration (ms-2) 0.29  

 Max. Acceleration (ms-2) 0.92 

 Average deceleration (ms-2) 0.49  
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 Max. deceleration (ms-2) 1.42  

Table 21: Summary of results (Mixed cycle I) 

While driving the electric vehicle, the supercapacitor module was switched on at 

401 seconds till the end of the trip (see figure 86 below).  Table 22 summarises the 

results which have been plotted in figures 86 to 90 below. An average voltage drop 

of 0.87V for the battery and 0.78V for the supercapacitor was recorded while a 

maximum of approximately 3V drop was recorded for both. This keeps the battery 

within the safety zone (> 42V) unlike during the first 400 seconds of the drive cycle. 

Figure 86 shows the voltage plots for both sources. The dashed green line divides 

the plot into two parts; battery ON, Supercap OFF and Battery ON Supercap ON. 

The difference between these two situations is very evident as the battery voltage 

is haphazard for the first 400 seconds and later is held to a more stable discharge 

rate by the supercapacitor module. The average current drawn from the battery 

pack remains the same as expected (39.3 A) while the peak demand drastically 

drops (207.2A to 89.9 A). On the other hand, the supercapacitor takes full 

responsibility for fulfilling peak power demands. 195A peak was recorded while 

only an average current of 0.55A was drawn from the supercapacitor. By comparing 

tables 21 and 22 respectively in terms of power delivered to the load, single source 

(battery only) was able to provide an average power of 1.8KW and a peak of 8.5KW 

while the hybrid source (battery + supercap) was able to deliver average power on 

par (1.8KW) and even surpass the peak power demand (12.5KW). An Increase in 

acceleration was recorded with an average acceleration of 0.29ms-2 to 0.87ms-2 and 

a maximum of 0.92 ms-2 to 1.25 ms-2 (see figure 90). 
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 401  2406 Seconds: Battery ON, Supercap ON 

  Battery Supercap 

 Initial Voltage (V) 48.7 48.9 

 Average Voltage Drop (V) 0.87 0.78 

 Max.  Voltage Drop during Drive Cycle (V) 3.2  2.9 

 Average Current delivered by : (A) 39.30 0.55 

 Peak Current delivered by : (A) 89.9  195.8 

 Average Instantaneous Power delivered by: (W) 1829.0  33.8 

 Peak Instantaneous Power delivered by: (W) 4049.9  9300.5 

 Average Instantaneous Power delivered by Bat + 
Supercap: (W) 

1795.2 

 Peak Instantaneous Power delivered by Bat + 
Supercap : (W) 

12520 

 Average Acceleration (ms-2) 0.87  - 

 Max. Acceleration (ms-2) 1.25 - 

 Average deceleration (ms-2) 0.49  - 

 Max. deceleration (ms-2) 1.48  - 

Table 22: Summary of results (Mixed Cycle II) 
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Fig 86: Battery + Supercapacitor Voltage (Mixed Cycle) 
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Fig. 87: Battery + Supercapacitor Current (Mixed Cycle) 
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Fig 88: Battery + Supercapacitor Instantaneous Power (Mixed Cycle) 
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Fig 89: Effective Instantaneous Power of Hybrid Source (Mixed Cycle). 
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Fig 90: Vehicle Acceleration (Mixed cycle) 
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4.1.4  Results: Range test 

Range anxiety is a major stumbling block to the popularity of EVs. There is a 

constant concern of running out of energy and being stranded on the way. This is 

caused by the limited amount of cruising range of the energy source.  For the 

purpose of this research work, we are constrained by the type of battery pack used 

i.e. Trojan T105 deep cycle lead acid batteries. A range test was carried out to 

determine the effect of the supercapacitor module on the vehicle’s range per 

charge. The same route was chosen i.e. the UNMC drive cycle and the same driver 

except for varying traffic conditions which generally could not be helped at the time 

of this experiment. In all cases the battery is charged to 100% SOC and the total 

range is estimated after the battery SOC swings to 50%. Table 23 below summarizes 

the results obtained from the range test.   

 TOTAL RANGE PER CHARGE (KM)  

TEST NO BATTERY ONLY BATTERY+ SUPERCAPACITOR % IMPROVEMENT 
1 35.7 44.1 25.5 
2 33.1 40.3 21.8 
3 32.4 39.9 23.1 
4 33.2 40.9 23.2 
5 29.5 38.2 29.5 
6 30.2 39.4 30.5 
7 29.0 38.1 31.3 
8 33.4 39.6 18.6 
9 29.3 38.9 32.8 

10 29.8 38.3 28.5 

Table 23: Summary of the Range Test for electric kancil 

From the results above, the battery can power the electric vehicle solely from 

between 29km to 35.7km with an average range per charge of 28.2km. However, 

with the supercapacitor module directly in parallel with the battery pack, there is a 

significant increase in range per charge (between 21.8% and 32.8%), which resulted 
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in an average increase in range per charge to 39.8km. It should be noted that both 

battery and supercapacitor are charged to 100% SOC before testing.  
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4.2 UNMC DRIVE CYCLE ANALYSES 

This section is concerned with the analysis of the UNMC drive cycle for the electric 

vehicle conversion. A drive cycle as we know it, is merely a representation of how 

any vehicle is driven (i.e. speed versus time). Actual On-the-road drive cycles are 

important for battery energy consumption and sizing studies in electric vehicles and 

they represent driving patterns much better than synthesized drive cycles [114]. 

Even though they are difficult to implement on standard dynamometer chassis and 

are plagued by poor repeatability issues, they are able to provide the most accurate 

situation in terms of power flow between battery pack, supercapacitor and the 

vehicles load demand for this research work. With the on-board data acquisition 

system setup for the electric vehicle, we are able to see firsthand, the interaction 

between the battery and the supercapacitor module during a drive cycle. 

We will divide the UNMC drive cycle as shown in the previous section into 

microtrips and analyse each trip based on some statistical features which have been 

determined by researchers as described in the literature review of this thesis. [116] 

describes a subsection of a drive cycle consisting of all data points between two idle 

periods as a driving pulse which we refer to as microtrip. They further go on to 

describe it as consisting of an acceleration phase, cruising phase and a subsequent 

phase deceleration phase. However, the time window size for each microtrip will 

vary based on the driving scenario. For example, idle + stop and go scenarios will 

have a small time window while highway scenarios will have a larger window size. A 

fixed time window may result in misrepresentation of actual driving scenario. A 

small window size may not be able to capture the entire acceleration and 
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deceleration event, while a large window size may record multiple events. The 

figure below shows UNMC drive cycle divided into 52 microtrips; 11 of which are 

shown.         

 

Fig 91: Dividing the UNMC Drive Cycle into Microtrips 

For each microtrip, 14 statistical features were calculated by a custom MATLAB 

program (see appendix). The results are shown in tables 24 to 28 below. Apart from 

the features described in [61]-[66] of the literature review, two additional features, 

the maximum positive jerk and the average positive jerk are calculated. This is to 

observe the driver aggressiveness which has an effect on amount of current drawn 

[64]. Columns highlighted in red represent a stop condition while columns in yellow 

represent stop and go i.e. < 10kph. 
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Table 24: Statistical features of UNMC drive cycle: Microtrips 1:10 

 

 

Microtrip 1 Microtrip 2 Microtrip 3 Microtrip 4 Microtrip 5 Microtrip 6 Microtrip 7 Microtrip 8 Microtrip 9 Microtrip 10

Trip Time (s) 14 10 38 44 20 44 18 10 26 28

Max. Speed (kph) 16.1 16.7 31.9 9.3 26.5 27.6 24.8 6.9 16.1 15.7

Max. Acceleration (m/s2) 0.78 1.39 1.79 0.90 1.36 1.82 1.58 0.04 0.93 0.49

Max. Decceleration (m/s2) -1.31 -1.31 -1.90 -1.29 -1.58 -1.88 -1.17 -1.11 -0.79 -0.65

Max. +ve Jerk (m/s3) 0.20 1.35 0.90 1.10 0.92 1.60 0.96 0.58 0.47 0.38

Mean Speed (kph) 6.93 10.44 18.99 3.23 14.83 17.57 17.37 6.84 10.38 10.15

Mean Acceleration (m/s2) 0.45 1.39 0.60 0.28 1.10 0.68 0.90 0.04 0.33 0.26

Std. Dev. Acceleration 0.21 0.00 0.58 0.27 0.29 0.64 0.66 0.00 0.43 0.15

Mean Decceleration (m/s2) -1.31 -0.63 -0.69 -0.25 -0.80 -0.54 -0.50 -1.11 -0.39 -0.28

Mean +ve Jerk (m/s3) 0.50 0.31 0.33 0.17 0.34 0.44 0.58 0.04 0.18 0.21

% idle (stops) 14.29 0.00 0.00 4.55 0.00 0.00 0.00 0.00 0.00 0.00

% < 10kph 57.14 60.00 21.05 95.45 30.00 18.18 22.22 100.00 61.54 42.86

% 10 < V< 20kph 28.57 40.00 36.84 0.00 40.00 22.73 33.33 0.00 38.46 57.14

% 20< V< 45kph 0.00 0.00 42.11 0.00 30.00 59.09 44.44 0.00 0.00 0.00
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Table 25: Statistical features of UNMC drive cycle: Microtrips 11:20 

 

Microtrip 11 Microtrip 12 Microtrip 13 Microtrip 14 Microtrip 15 Microtrip 16 Microtrip 17 Microtrip 18 Microtrip 19 Microtrip 20

Trip Time (s) 26 34 28 62 30 22 18 20 286 28

Max. Speed (kph) 16.80 32.60 21.30 36.90 25.40 16.40 9.50 17.00 7.60 18.40

Max. Acceleration (m/s2) 0.81 2.57 0.75 1.13 1.25 0.46 0.35 0.85 0.51 0.50

Max. Decceleration (m/s2) -0.74 -2.24 -0.94 -2.28 -2.28 -0.57 -0.39 -1.06 -0.51 -0.74

Max. +ve Jerk (m/s3) 0.37 1.28 0.63 0.57 1.28 0.24 0.20 0.42 0.26 0.35

Mean Speed (kph) 12.47 13.08 13.95 20.54 14.65 11.41 7.36 8.48 0.54 10.93

Mean Acceleration (m/s2) 0.27 1.14 0.56 0.41 0.76 0.35 0.18 0.55 0.17 0.24

Std. Dev. Acceleration 0.27 1.29 0.15 0.32 0.45 0.16 0.24 0.41 0.15 0.16

Mean Decceleration (m/s2) -0.33 -0.79 -0.43 -0.94 -0.67 -0.22 -0.14 -0.41 -0.19 -0.52

Mean +ve Jerk (m/s3) 0.19 0.52 0.43 0.38 0.43 0.09 0.04 0.03 0.09 0.18

% idle (stops) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.00 80.42 0.00

% < 10kph 23.08 29.41 28.57 9.68 46.67 36.36 100.00 60.00 19.58 42.86

% 10 < V< 20kph 76.92 64.71 50.00 35.48 26.67 63.64 0.00 30.00 0.00 57.14

% 20< V< 45kph 0.00 5.88 21.43 54.84 26.67 0.00 0.00 0.00 0.00 0.00
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 Table 26: Statistical features of UNMC drive cycle: Microtrips 21:30 

 

Microtrip 21 Microtrip 22 Microtrip 23 Microtrip 24 Microtrip 25 Microtrip 26 Microtrip 27 Microtrip 28 Microtrip 29 Microtrip 30

Trip Time (s) 110 12 132 26 24 36 56 16 24 120

Max. Speed (kph) 20.70 14.60 23.40 19.90 27.10 35.60 26.20 21.40 23.10 26.80

Max. Acceleration (m/s2) 0.67 0.88 1.06 2.03 1.54 1.35 1.28 1.21 0.94 0.93

Max. Decceleration (m/s2) -1.00 -0.58 -1.33 -1.75 -2.06 -2.25 -1.85 -1.07 -0.92 -1.21

Max. +ve Jerk (m/s3) 0.50 0.34 0.90 1.26 0.77 1.13 1.13 0.60 0.47 0.86

Mean Speed (kph) 9.60 10.25 14.93 9.65 18.33 20.70 14.22 14.95 14.38 17.74

Mean Acceleration (m/s2) 0.24 0.30 0.47 0.84 0.65 0.54 0.59 0.99 0.77 0.43

Std. Dev. Acceleration 0.23 0.39 0.33 0.85 0.63 0.44 0.51 0.31 0.26 0.27

Mean Decceleration (m/s2) -0.27 -0.56 -0.51 -0.77 -0.70 -0.93 -0.64 -0.52 -0.44 -0.45

Mean +ve Jerk (m/s3) 0.17 0.39 0.24 0.67 0.32 0.38 0.36 0.37 0.13 0.31

% idle (stops) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

% < 10kph 70.91 50.00 16.67 84.62 25.00 16.67 39.29 37.50 41.67 13.33

% 10 < V< 20kph 27.27 50.00 63.64 15.38 16.67 16.67 32.14 25.00 25.00 46.67

% 20< V< 45kph 1.82 0.00 19.70 0.00 58.33 66.67 28.57 37.50 33.33 40.00
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Table 27: Statistical features of UNMC drive cycle: Microtrips 31:40 

 

 

Microtrip 31 Microtrip 32 Microtrip 33 Microtrip 34 Microtrip 35 Microtrip 36 Microtrip 37 Microtrip 38 Microtrip 39 Microtrip 40

Trip Time (s) 54 52 18 22 76 48 60 48 62 28

Max. Speed (kph) 23.80 26.40 21.40 17.40 26.30 21.20 23.60 21.00 10.30 17.80

Max. Acceleration (m/s2) 1.92 1.61 0.75 0.60 0.68 1.08 1.46 0.81 0.44 1.03

Max. Decceleration (m/s2) -1.28 -1.76 -1.57 -0.85 -1.74 -1.33 -1.65 -1.26 -0.51 -0.85

Max. +ve Jerk (m/s3) 0.96 0.88 0.50 0.31 0.68 0.65 0.83 0.63 0.63 0.65

Mean Speed (kph) 17.18 15.57 13.67 12.61 18.42 14.93 16.34 13.23 6.04 13.29

Mean Acceleration (m/s2) 0.57 0.55 0.65 0.42 0.35 0.54 0.32 0.33 0.26 0.43

Std. Dev. Acceleration 0.60 0.56 0.15 0.21 0.25 0.43 0.36 0.23 0.15 0.37

Mean Decceleration (m/s2) -0.52 -0.50 -0.56 -0.34 -0.61 -0.46 -0.56 -0.32 -0.20 -0.51

Mean +ve Jerk (m/s3) 0.33 0.43 0.03 0.22 0.24 0.29 0.21 0.24 0.02 0.34

% idle (stops) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.90 0.00

% < 10kph 22.22 34.62 44.44 27.27 13.16 16.67 13.33 16.67 83.87 21.43

% 10 < V< 20kph 29.63 26.92 22.22 72.73 39.47 79.17 46.67 70.83 3.23 78.57

% 20< V< 45kph 48.15 38.46 33.33 0.00 47.37 4.17 40.00 12.50 0.00 0.00
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Table 28: Statistical features of UNMC drive cycle: Microtrips 41:52 

Microtrip 41 Microtrip 42 Microtrip 43 Microtrip 44 Microtrip 45 Microtrip 46 Microtrip 47 Microtrip 48 Microtrip 49 Microtrip 50 Microtrip 51 Microtrip 52

Trip Time (s) 86.00 132.00 42.00 56.00 38.00 44.00 16.00 114.00 38.00 58.00 214.00 60.00

Max. Speed (kph) 9.30 37.60 25.90 23.70 27.50 26.10 9.20 27.70 23.60 23.60 33.90 18.50

Max. Acceleration (m/s2) 0.31 1.11 2.47 1.21 0.96 1.38 0.36 0.96 1.50 0.94 1.75 1.29

Max. Decceleration (m/s2) -0.85 -2.78 -2.78 -2.43 -1.61 -1.10 -0.36 -1.29 -1.65 -1.47 -1.88 -1.29

Max. +ve Jerk (m/s3) 0.41 0.41 2.63 1.22 1.22 0.69 0.36 0.63 0.75 0.74 0.95 0.65

Mean Speed (kph) 2.38 16.16 14.75 15.95 17.68 14.90 7.45 16.63 17.98 13.56 18.05 9.35

Mean Acceleration (m/s2) 0.13 0.51 0.55 0.48 0.45 0.47 0.26 0.34 0.54 0.58 0.48 0.51

Std. Dev. Acceleration 0.09 0.31 0.75 0.39 0.26 0.38 0.09 0.28 0.56 0.38 0.39 0.42

Mean Decceleration (m/s2) -0.34 -0.77 -1.35 -0.73 -0.83 -0.49 -0.14 -0.43 -0.73 -0.45 -0.55 -0.65

Mean +ve Jerk (m/s3) 0.08 0.04 0.31 0.34 0.14 0.17 0.08 0.30 0.13 0.23 0.36 0.17

% idle (stops) 34.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.67

% < 10kph 65.12 13.64 38.10 14.29 21.05 31.82 100.00 21.05 21.05 41.38 10.28 33.33

% 10 < V< 20kph 0.00 59.09 38.10 75.00 31.58 45.45 0.00 45.61 26.32 41.38 54.21 50.00

% 20< V< 45kph 0.00 27.27 23.81 10.71 47.37 22.73 0.00 33.33 52.63 17.24 35.51 0.00
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 Fig 92: Stem Plot of Max. Speed & Average Speed versus 52 Microtrips(UNMC drive cycle) 
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Fig 93: Stem Plot of Max. & Average Acceleration versus 52 Microtrips (UNMC drive cycle) 
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Fig 94: Stem Plot of Max. & Average Jerk versus 52 Microtrips (UNMC drive cycle) 
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Fig 95: Stem Plot of Max. & Average Power versus 52 Microtrips (UNMC drive cycle) 
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Figures 92 – 95 above represent the stem plots of the drive cycle features against 

the microtrips of the UNMC drive cycle. According to J.S Won’s driving trend 

identifier [44], the UNMC drive cycle falls under the category of low speed cruises 

whereby the average speed is under 40kph or 25mph. In order to identify the 

microtrips which contain aggressive driving i.e. rapid acceleration rates that draw 

peak currents from the energy source, a ratio called the acceleration feature is used 

[44]. This ratio is basically the standard deviation of positive acceleration divided by 

the mean positive acceleration per microtrip. This has enabled us to identify 

microtrips with high acceleration rates which correspond to peak power as shown 

in the step plot in figure 95 above. In order to analyse the energy contributed by 

the supercapacitor module during a peak load demand, exploded view of the power 

vs time graph (microtrips 2-6) is shown in the figures below. To calculate the energy 

contributed by the supercapacitor during peak load demands, the area under the 

power vs time plot (red shading) is found by numerical integration methods. 

According to [122], the usable energy of a supercapacitor cell or module is about 

75% of its total energy E. This is in line with the assumption that the voltage is 

allowed to vary to half of its rated value via a suitable dc to dc converter. However, 

in this project a pure parallel connection means that the terminal voltage of the 

supercapacitor is always dictated by the battery pack’s terminal voltage. Every 

discharge phase of the supercapacitor is always followed by a subsequent charge 

phase from the traction battery (negative red shaded area). Hence the 

supercapacitor is utilized on the average by about 23.6% of its total capability. 
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Figure 96: Comparing the Acceleration and Jerk Plots with the Instantaneous Power by Supercap & Battery.  
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CHAPTER 5: CONCLUSION AND FURTHER WORK 

This chapter concludes this thesis; the achievements are reviewed in terms of how 

much of the original research objectives set out initially, was achieved. Apart from 

the set objectives, this research work has contributed to the knowledge bank by 

providing first hand insight into the inner workings of a parallel battery-

supercapacitor powered electric vehicle. Rather than the normal simulation studies, 

a bold step was taken towards real world drive data analysis. On a positive note, 

several novel ideas will emerge from the joint efforts of many small but progressive 

research contributions such as this one.  

The first objective was to create a solid platform for the university’s electric vehicle 

team to carry out research and development for the present and future 

researchers.  A 660 cc compact city car engine was replaced with a brushless DC 

motor rated at 8KW continuous and 20KW peak. The battery pack consists of eight 

T105 Trojan 6V-225 Ah deep cycle lead acid battery which builds up a voltage of 

48V. In addition to this, a supercapacitor module (165F, 48V) is connected in 

parallel using high power contactors in order to investigate the increase in 

performance criteria such as acceleration, range, battery life etc which have been 

proven in various literatures via simulation studies. 

The second and third objectives were to collect real world drive data from the 

electric vehicle test bench cum electric car which will provide real and novel data 

for an in-depth study and analysis of the interaction between a deep-cycle lead-acid 
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battery pack and a supercapacitor module in parallel powering an electric vehicle. 

The findings are summarized in tables 29 and the subsequent write-ups below. 

 UNMC Drive Cycle Parameter Value 

 Total Trip Time  2085 seconds 

 Total Distance  10.50 km 

 Average Speed  16.00 kmh-1  

 Maximum Speed 37.80 kmh-1 

 % Stop/ Idling  0 – 12.5% 

 % 10< Speed < 20 kmh-1 34.4 – 45.5% 

 % 20< Speed < 45 kmh-1 22.4 – 39.7% 

 % Speed > 45 kmh-1 Nil  

 Average Acceleration 0.37 ms-2 

 Maximum Acceleration 1.37 ms-2 

 Average Deceleration 0.38 ms-2 

 Maximum Deceleration 2.01 ms-2 

Table 29: Characteristics of the UNMC drive cycle 

The UNMC drive cycle formed the basis for testing the battery –supercapacitor 

powered test vehicle. All results obtained are limited to this test cycle. 
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Improvement in Battery Life 

 Overall Peak currents delivered by the battery pack reduced from 228.1A to 

111.2A; this is a 49% reduction.   

 Voltage drops experienced by the battery pack reduced from 9.9V to 2.5V. 

With this, a relatively constant load profile is created for the battery pack 

which is good for its life and general health.  

 In comparison with existing research work by Pay et al [31], results such as a 

40% reduction in battery pack current and 30% improvement in dc bus 

voltage regulation were obtained. However, it was observed that the state 

of charge (SOC) of the supercapacitor dropped considerably after an 

acceleration. 

Improvement in System Average and Peak Power Capabilities 

 Average power demands are handled capably by the dense battery pack (1.8 

KW up to 5KW) while peak power caused by acceleration of the vehicle is 

diverted to the power dense supercapacitor (9.5KW up to 12.5KW). 

Improvement in Acceleration 

 An Increase in acceleration was recorded with an average acceleration from 

0.37 ms-2 to 0.44ms-2 (an 18.9% increase). The maximum acceleration 

increased from 1.37 ms-2 to 2.78 ms-2 (a 102.9% increase). 

 Results from Shin, Donghwa, et al [33] show that an improvement in 

acceleration was achieved as a result of the supercapacitors; 16.1% higher 

for 0-40 km/h acceleration, 31.3% for 0-60km/h and 38.5% for 0-80km/h. In 
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terms of range, a 10.76% improvement was recorded on a fast track and a 

16.67% improvement on a slow track. Fast track in this context refers to 

highway speeds with longer periods of acceleration with little or no stops 

(i.e. supercapacitor has little or no chance of recharging via regenerative 

braking). Slow track refers to city speeds; short bursts of acceleration as well 

as braking (i.e. the supercapacitor is constantly being topped off). 

Improvement in Range per Charge 

 With the limitations of driving style and traffic condition, the increase in 

average range per charge recorded was from 28.2km to 39.8km; this is a 

41% increase. 

 ATT R&D Co. and Ness Capacitor Co. Ltd [34] reported a 15.4% increase in 

range per charge. 

Results of UNMC drive cycle analysis 

 52 microtrips were obtained from the unmc cycle and 14 parameters were 

calculated including the acceleration and jerk ratios which enabled us to 

identify microtrips with aggressive driving features. These microtrips were 

analysed to estimate the amount of energy contributed by the 

supercapacitor module towards the load demand. By numerical integration 

methods, an average of 23.6% utilization was arrived at. 

As a final conclusion, this research work shows that electric vehicle load profiles are 

haphazard and meeting this load demand is very crucial to the vehicles 

performance as perceived by the driver. As seen from figure 96, being able to 
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respond to acceleration demands will affect the performance of the vehicle. Power 

electronics in terms of switching circuits are able to arbitrate power between 

battery and supercapacitor but the response time is very important. Complex 

control schemes, no matter how efficient or optimal they are, as long as they are 

unable to fulfil this requirement will be eventually inadequate for electric vehicles.    
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FURTHER WORK 

This research work formed the genesis of an entire research group dedicated to the 

research and development of supercapacitors in electric vehicles. This thesis 

produced novel real world experimental data that clearly shows the interaction 

between a battery pack and supercapacitor module while powering a pure electric 

vehicle. This hands-on approach was taken to create a strong background and 

generate interest for future researchers 

Given that this report contains a thorough literature survey on intelligent energy 

management techniques, future work would be to capitalize on the novel data 

produced in this work. Plans to develop an energy management system that 

exploits the predicted power by the drive cycle analysis are in order. For example, 

we can enhance the accuracy of the acceleration prediction by sensing the driver's 

motion on the acceleration pedal. Besides, we may employ more accurate power 

requirement models. Since these models are complex, it would be interesting to 

investigate how to adapt them for real-time prediction.  
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Software Modelling of a Small EV  
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APPENDIX B 

Drive Cycle Data Collection & Processing – Routine 

DataTaker logging Routine 
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Data Processing Routine MATLAB 

load unmcdrivecycle3 
figure(1); 
plot(unmcdrivecycle3(:,1),unmcdrivecycle3(:,7),'r'); 
title ('Battery + Supercapacitor current over a fixed drive cycle'); 
hold on 
plot(unmcdrivecycle3(:,1),unmcdrivecycle3(:,8),'b'); 
xlabel('time in seconds'); 
ylabel('battery current & supercap current in Amperes'); 
legend('supercap','battery'); 

  
hold off 

  
figure(2); 
plot(unmcdrivecycle3(:,1),unmcdrivecycle3(:,5),'r'); 
title ('Battery + Supercapacitor Voltage over a fixed drive cycle'); 
hold on 
plot(unmcdrivecycle3(:,1),unmcdrivecycle3(:,6),'b'); 
xlabel('time in seconds'); 
ylabel('battery voltage & supercap voltage in volts'); 
legend('supercap','battery'); 
hold off 

  
figure(3); 

  
plot(unmcdrivecycle3(:,1),unmcdrivecycle3(:,3),'b'); 
title ('drive cycle for ekancil with battery + supercap'); 
xlabel('time in seconds'); 
ylabel('GPS speed in kmh-1'); 

  
figure(4); 

  
plot(unmcdrivecycle3(:,1),unmcdrivecycle3(:,2),'b'); 
title ('drive cycle for ekancil with battery + supercap'); 
xlabel('time in seconds'); 
ylabel('GPS Altitude in meters(m)'); 

  

  

  
figure(5); 

  
[powerdata1]=(unmcdrivecycle3(:,5)).*unmcdrivecycle3(:,7); 
plot(unmcdrivecycle3(:,1),powerdata1,'r'); 
hold on 
[powerdata2]=(unmcdrivecycle3(:,6)).*unmcdrivecycle3(:,8); 
plot(unmcdrivecycle3(:,1),powerdata2,'b'); 
title ('Instantaneous Power for ekancil drive cycle'); 
xlabel('time in seconds'); 
ylabel('instantaneous power in Watts'); 
legend('supercap','battery'); 
hold off 
 peakcurrent = max(unmcdrivecycle3(:,8)); 
peakpower = max(powerdata2); 
minVdrop= min (unmcdrivecycle3(:,6)); 
peakcurrentscap = max(unmcdrivecycle3(:,7)); 
peakpowerscap = max(powerdata1); 
averagepowerbat= mean(powerdata2); 
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averagepowerscap = mean(powerdata1); 
minVdropscap= min (unmcdrivecycle3(:,5)); 
maxspeed = max(unmcdrivecycle3(:,3)); 
[totalpower]=[powerdata2]+[powerdata1]; 

  
figure(6); 

  
plot(unmcdrivecycle3(:,1),totalpower,'g'); 
title ('Total Instantaneous Power (Battery + Supercap) for ekancil 

drive cycle'); 
xlabel('time in seconds'); 
ylabel('instantaneous power in Watts'); 
legend('Battery + Supercap'); 

  
%time_=num_(:,1); 
kph=unmcdrivecycle3(:,3); 
ms1=(kph*10)/36; % kph to ms1 
a(1)=0; 
for i=1:length(ms1); 
    %for j=1:361; 
    V_ms(i)=ms1(i); 
    %t(j)=time_FUDS(j); 
    if i>1 %&& j>1; 
        a(i)=((V_ms(i)-V_ms(i-1))/2); 
    %end 
    end 
end 
ms2=transpose(a); 

  
a2(1)=0; 
for i=1:length(ms2); 
    %for j=1:361; 
    V_ms2(i)=ms2(i); 
    %t(j)=time_FUDS(j); 
    if i>1 %&& j>1; 
        a2(i)=((V_ms2(i)-V_ms2(i-1))/2); 
    %end 
    end 
end 
ms3=transpose(a2); 

  
V_bat= unmcdrivecycle3(:,6); 
for i=1:1315; 

    
    if i>0; %&& j>1; 
       V_drop(i)=V_bat(i)-V_bat(i+1); 
    %end 
    end 
end 
V_dropbat=transpose(V_drop); 

  
positiveV_dropindex= find (V_dropbat>0); 
%positiveV_drop= mean(V_dropbat(positiveV_dropindex)); 
positiveV_drop= (V_dropbat(positiveV_dropindex)); 
%positiveV_drop= mean(V_dropbat(positiveV_dropindex)); 

  
V_scap= unmcdrivecycle3(:,5); 
for i=1:1315; 
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  V_dropcap(i)=V_scap(i)-V_scap(i+1); 

    

     
end 
V_dropscap=transpose(V_dropcap); 

  
positiveV_dropscapindex= find (V_dropscap>0); 
positiveV_dropscap= mean(V_dropscap(positiveV_dropscapindex)); 
%positiveV_dropscap= (V_dropscap(positiveV_dropscapindex)); 
%positiveV_drop= mean(V_dropbat(positiveV_dropindex)); 

  
figure(7); 

  
plot(unmcdrivecycle3(:,1),ms2,'b'); 
title ('drive cycle for ekancil with battery + supercap'); 
xlabel('time in seconds'); 
ylabel('acceleration in ms-2'); 

  
figure(8); 

  
plot(unmcdrivecycle3(:,1),ms3,'b'); 
title ('drive cycle for ekancil with battery + supercap'); 
xlabel('time in seconds'); 
ylabel('jerk in ms-3'); 

  
av_speed = mean(V_ms); 
max_speed = max(V_ms); 
std_speed = std(V_ms); 
max_a = max(ms2); 
max_decc=min(ms2); 

  
sum_acc=0; 
sum_decc=0; 
acc_count=0; 
decc_count=0; 
for i=1:length(unmcdrivecycle3) 
    if ms2(i)>0.0; 
   sum_acc=sum_acc+ms2(i); 
   acc_count = acc_count + 1; 
    end 

   
   if ms2(i)<0.0 
   sum_decc=sum_decc+ms2(i); 
   decc_count = decc_count + 1; 
    end 
end 

  
mean_av_acc=sum_acc/acc_count; 
mean_av_decc=sum_decc/decc_count; 

  
idle_count=0; 
for i= 1: length(unmcdrivecycle3); 
    if V_ms(i)>=0 && V_ms(i)<= 0.3; 
        idle_count=idle_count+1; 
    end; 
end; 
percentidle = (idle_count/length(V_ms))*100; 
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% to find the percentage of time in speed interval PLS USE "FIND" 
% instruction 
count1=0; 
count2=0; 
count3=0; 
count4=0; 
for i= 1: length(V_ms); 
    if V_ms(i)>0.3 && V_ms(i)<= 2.7778 ; % 0 - 10km/h 
        count1=count1+1; 
    end; 
end; 
 percent010=(count1/length(V_ms))*100; 

  
 for i= 1: length(V_ms); 
    if V_ms(i)>2.7778 && V_ms(i)<= 5.5556 ; % 10km/h - 20km/h 
        count2=count2+1; 
    end; 
 end; 
 percent1020=(count2/length(V_ms))*100; 

  
  for i= 1: length(V_ms); 
    if V_ms(i)>5.5556 && V_ms(i)<= 12.5 ; % 20km/h - 45 km/h 
        count3=count3+1; 
    end; 
 end; 
  percent2045=(count3/length(V_ms))*100; 

  
for i= 1: length(V_ms); 
    if V_ms(i)>12.5 ; % above 45km/h 
        count4=count4+1; 
    end; 
 end; 
  percent45=(count4/length(V_ms))*100; 

 

Drive Cycle Analysis MATLAB 

clear all 
load trip3analysis 

  
%% microtrips for the UNMC drive cycle trip 3 
% microtrip 1 
utrip1=trip3analysis(4:10,2); 
utrip1_acc=trip3analysis(4:10,3); 
utrip1_jerk=trip3analysis(4:10,4); 
utrip1_triptime = length(utrip1)* 2; 
av_speed_utrip1=mean(utrip1); 
max_speed_utrip1=max(utrip1); 
max_acc_utrip1 = max(utrip1_acc); 
max_decc_utrip1=min(utrip1_acc); 

  
utrip1_power=trip3analysis(4:10,5); 
mean_power_utrip1=mean(utrip1_power); 
max_power_utrip1=max(utrip1_power); 

  
utrip1_acc_index = find(utrip1_acc > 0); 
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utrip1_acc_values = utrip1_acc(utrip1_acc_index); % list all the 

acceleration values 

  
utrip1_decc_index = find(utrip1_acc < 0); 
utrip1_decc_values = utrip1_acc(utrip1_decc_index); % list all the 

decceleration values 
std_acc_utrip1 = std(utrip1_acc_values); 
mean_acc_utrip1= sum(utrip1_acc_values)/length(utrip1_acc_values); 
mean_decc_utrip1=sum(utrip1_decc_values)/length(utrip1_decc_values); 

  
max_jerk_utrip1=max (utrip1_jerk); 
utrip1_jerk_index = find(utrip1_jerk > 0); 
utrip1_jerk_values = utrip1_acc(utrip1_jerk_index); % list all the 

postive jerk values 
mean_jerk_utrip1=sum(utrip1_jerk_values)/length(utrip1_jerk_values); 

  
% to find the percentage of time in speed interval PLS USE "FIND" 
% instruction 
percent010_utrip1_index = find(utrip1>0 & utrip1<=10); % 0-10 km/h 
percent010_utrip1_values=utrip1(percent010_utrip1_index); 
percent010_utrip1 = 

(length(percent010_utrip1_values)/length(utrip1))*100; 

  
percent1020_utrip1_index = find(utrip1>10 & utrip1<=20); % 10-20 

km/h 
percent1020_utrip1_values=utrip1(percent1020_utrip1_index); 
percent1020_utrip1 = 

(length(percent1020_utrip1_values)/length(utrip1))*100; 

  
percent2045_utrip1_index = find(utrip1>20 & utrip1<=45); % 20-45 

km/h 
percent2045_utrip1_values=utrip1(percent2045_utrip1_index); 
percent2045_utrip1 = 

(length(percent2045_utrip1_values)/length(utrip1))*100; 

  

  
percentidle_utrip1_index = find(utrip1==0); 
percentidle_utrip1_values = utrip1(percentidle_utrip1_index); 
percentidle_utrip1=(length(percentidle_utrip1_values)/(length(utrip1

)))*100; 

  

  
feature_utrip1 = 

[utrip1_triptime;max_speed_utrip1;max_acc_utrip1;max_decc_utrip1;max

_jerk_utrip1;av_speed_utrip1; 
    

mean_acc_utrip1;std_acc_utrip1;mean_decc_utrip1;mean_jerk_utrip1;per

centidle_utrip1;percent010_utrip1;percent1020_utrip1; 
    percent2045_utrip1]; 

                     

  
%% microtrip 2 

  
utrip2=trip3analysis(10:14,2); 
utrip2_acc=trip3analysis(10:14,3); 
utrip2_jerk=trip3analysis(10:14,4); 
utrip2_triptime = length(utrip2)* 2; 
av_speed_utrip2=mean(utrip2); 
max_speed_utrip2=max(utrip2); 
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max_acc_utrip2 = max(utrip2_acc); 
max_decc_utrip2=min(utrip2_acc); 

  
utrip2_power=trip3analysis(10:14,5); 
mean_power_utrip2=mean(utrip2_power); 
max_power_utrip2=max(utrip2_power); 

  

  
utrip2_acc_index = find(utrip2_acc > 0); 
utrip2_acc_values = utrip2_acc(utrip2_acc_index); % list all the 

acceleration values 

  
utrip2_decc_index = find(utrip2_acc < 0); 
utrip2_decc_values = utrip2_acc(utrip2_decc_index); % list all the 

decceleration values 

  
std_acc_utrip2 = std(utrip2_acc_values); 

  

  
mean_acc_utrip2= sum(utrip2_acc_values)/length(utrip2_acc_values); 
mean_decc_utrip2=sum(utrip2_decc_values)/length(utrip2_decc_values); 

  
max_jerk_utrip2=max (utrip2_jerk); 
utrip2_jerk_index = find(utrip2_jerk > 0); 
utrip2_jerk_values = utrip2_acc(utrip2_jerk_index); % list all the 

postive jerk values 
mean_jerk_utrip2=sum(utrip2_jerk_values)/length(utrip2_jerk_values); 

  

  
% to find the percentage of time in speed interval PLS USE "FIND" 
% instruction 
percent010_utrip2_index = find(utrip2>0 & utrip2<=10); % 0-10 km/h 
percent010_utrip2_values=utrip2(percent010_utrip2_index); 
percent010_utrip2 = 

(length(percent010_utrip2_values)/length(utrip2))*100; 

  
percent1020_utrip2_index = find(utrip2>10 & utrip2<=20); % 10-20 

km/h 
percent1020_utrip2_values=utrip2(percent1020_utrip2_index); 
percent1020_utrip2 = 

(length(percent1020_utrip2_values)/length(utrip2))*100; 

  
percent2045_utrip2_index = find(utrip2>20 & utrip2<=45); % 20-45 

km/h 
percent2045_utrip2_values=utrip2(percent2045_utrip2_index); 
percent2045_utrip2 = 

(length(percent2045_utrip2_values)/length(utrip2))*100; 

  

  
percentidle_utrip2_index = find(utrip2==0); 
percentidle_utrip2_values = utrip2(percentidle_utrip2_index); 
percentidle_utrip2=(length(percentidle_utrip2_values)/(length(utrip2

)))*100; 

  

  
feature_utrip2 = 

[utrip2_triptime;max_speed_utrip2;max_acc_utrip2;max_decc_utrip2;max

_jerk_utrip2;av_speed_utrip2; 
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mean_acc_utrip2;std_acc_utrip2;mean_decc_utrip2;mean_jerk_utrip2;per

centidle_utrip2;percent010_utrip2;percent1020_utrip2; 
    percent2045_utrip2]; 

 

. 

. 

. 

%% microtrip52 

  
utrip52=trip3analysis(1287:1316,2); 
utrip52_acc=trip3analysis(1287:1316,3); 
utrip52_jerk=trip3analysis(1287:1316,4); 
utrip52_triptime = length(utrip52)* 2; 
av_speed_utrip52=mean(utrip52); 
max_speed_utrip52=max(utrip52); 
max_acc_utrip52 = max(utrip52_acc); 
max_decc_utrip52=min(utrip52_acc); 

  
utrip52_power=trip3analysis(1287:1316,5); 
mean_power_utrip52=mean(utrip52_power); 
max_power_utrip52=max(utrip52_power); 

  
utrip52_acc_index = find(utrip52_acc > 0); 
utrip52_acc_values = utrip52_acc(utrip52_acc_index); % list all the 

acceleration values 

  
utrip52_decc_index = find(utrip52_acc < 0); 
utrip52_decc_values = utrip52_acc(utrip52_decc_index); % list all 

the decceleration values 

  
std_acc_utrip52 = std(utrip52_acc_values); 

  

  
mean_acc_utrip52= 

sum(utrip52_acc_values)/length(utrip52_acc_values); 
mean_decc_utrip52=sum(utrip52_decc_values)/length(utrip52_decc_value

s); 

  
max_jerk_utrip52=max (utrip52_jerk); 
utrip52_jerk_index = find(utrip52_jerk > 0); 
utrip52_jerk_values = utrip52_acc(utrip52_jerk_index); % list all 

the postive jerk values 
mean_jerk_utrip52=sum(utrip52_jerk_values)/length(utrip52_jerk_value

s); 

  
% to find the percentage of time in speed interval PLS USE "FIND" 
% instruction 
percent010_utrip52_index = find(utrip52>0 & utrip52<=10); % 0-10 

km/h 
percent010_utrip52_values=utrip52(percent010_utrip52_index); 
percent010_utrip52 = 

(length(percent010_utrip52_values)/length(utrip52))*100; 
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percent1020_utrip52_index = find(utrip52>10 & utrip52<=20); % 10-20 

km/h 
percent1020_utrip52_values=utrip52(percent1020_utrip52_index); 
percent1020_utrip52 = 

(length(percent1020_utrip52_values)/length(utrip52))*100; 

  
percent2045_utrip52_index = find(utrip52>20 & utrip52<=45); % 20-45 

km/h 
percent2045_utrip52_values=utrip52(percent2045_utrip52_index); 
percent2045_utrip52 = 

(length(percent2045_utrip52_values)/length(utrip52))*100; 

  

  
percentidle_utrip52_index = find(utrip52==0); 
percentidle_utrip52_values = utrip52(percentidle_utrip52_index); 
percentidle_utrip52=(length(percentidle_utrip52_values)/(length(utri

p52)))*100; 

  

  
feature_utrip52 = 

[utrip52_triptime;max_speed_utrip52;max_acc_utrip52;max_decc_utrip52

;max_jerk_utrip52;av_speed_utrip52; 
    

mean_acc_utrip52;std_acc_utrip52;mean_decc_utrip52;mean_jerk_utrip52

;percentidle_utrip52;percent010_utrip52;percent1020_utrip52; 
    percent2045_utrip52]; 
%% 
UDDS_parameters = [feature_utrip1 feature_utrip2 feature_utrip3 

feature_utrip4 feature_utrip5 feature_utrip6 feature_utrip7 

feature_utrip8 feature_utrip9 feature_utrip10 feature_utrip11 

feature_utrip12 feature_utrip13 feature_utrip14 feature_utrip15 

feature_utrip16 feature_utrip17 feature_utrip18 feature_utrip19 

feature_utrip20 feature_utrip21 feature_utrip22 feature_utrip23 

feature_utrip24 feature_utrip25 feature_utrip26 feature_utrip27 

feature_utrip28 feature_utrip29 feature_utrip30 feature_utrip31 

feature_utrip32 feature_utrip33 feature_utrip34 feature_utrip35 

feature_utrip36 feature_utrip37 feature_utrip38 feature_utrip39 

feature_utrip40 feature_utrip41 feature_utrip42 feature_utrip43 

feature_utrip44 feature_utrip45 feature_utrip46 feature_utrip47 

feature_utrip48 feature_utrip49 feature_utrip50 feature_utrip51 

feature_utrip52 ];  
UDDS_parameters=transpose(UDDS_parameters); 

  
avpower_drive_cycle = 

[mean_power_utrip1;mean_power_utrip2;mean_power_utrip3;mean_power_ut

rip4;mean_power_utrip5;mean_power_utrip6;mean_power_utrip7; 
    

mean_power_utrip8;mean_power_utrip9;mean_power_utrip10;mean_power_ut

rip11;mean_power_utrip12;mean_power_utrip13;mean_power_utrip14;mean_

power_utrip15; 
    

mean_power_utrip16;mean_power_utrip17;mean_power_utrip18;mean_power_

utrip19;mean_power_utrip20;mean_power_utrip21;mean_power_utrip22;mea

n_power_utrip23; 
    

mean_power_utrip24;mean_power_utrip25;mean_power_utrip26;mean_power_

utrip27;mean_power_utrip28;mean_power_utrip29;mean_power_utrip30;mea

n_power_utrip31; 
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mean_power_utrip32;mean_power_utrip33;mean_power_utrip34;mean_power_

utrip35;mean_power_utrip36;mean_power_utrip37;mean_power_utrip38;mea

n_power_utrip39; 
    

mean_power_utrip40;mean_power_utrip41;mean_power_utrip42;mean_power_

utrip43;mean_power_utrip44;mean_power_utrip45;mean_power_utrip46;mea

n_power_utrip47; 
    

mean_power_utrip48;mean_power_utrip49;mean_power_utrip50;mean_power_

utrip51;mean_power_utrip52]; 

  
maxpower_drive_cycle = 

[max_power_utrip1;max_power_utrip2;max_power_utrip3;max_power_utrip4

;max_power_utrip5;max_power_utrip6;max_power_utrip7; 
    

max_power_utrip8;max_power_utrip9;max_power_utrip10;max_power_utrip1

1;max_power_utrip12;max_power_utrip13;max_power_utrip14;max_power_ut

rip15; 
    

max_power_utrip16;max_power_utrip17;max_power_utrip18;max_power_utri

p19;max_power_utrip20;max_power_utrip21;max_power_utrip22;max_power_

utrip23; 
    

max_power_utrip24;max_power_utrip25;max_power_utrip26;max_power_utri

p27;max_power_utrip28;max_power_utrip29;max_power_utrip30;max_power_

utrip31; 
    

max_power_utrip32;max_power_utrip33;max_power_utrip34;max_power_utri

p35;max_power_utrip36;max_power_utrip37;max_power_utrip38;max_power_

utrip39; 
    

max_power_utrip40;max_power_utrip41;max_power_utrip42;max_power_utri

p43;max_power_utrip44;max_power_utrip45;max_power_utrip46;max_power_

utrip47; 
    

max_power_utrip48;max_power_utrip49;max_power_utrip50;max_power_utri

p51;max_power_utrip52]; 

  

  
figure (1); 
stem(UDDS_parameters(:,2),'r'); 
title ('Comparing drive cycle features'); 
hold on 
plot(UDDS_parameters(:,6),'b'); 
xlabel('microtrip'); 
ylabel('drive cycle feature'); 
legend('Max. speed (m/s)','Average speed (m/s)'); 
hold off 

  

  
figure (2); 
stem(UDDS_parameters(:,3),'r'); 
title ('Comparing drive cycle features'); 
hold on 
plot(UDDS_parameters(:,7),'b'); 
xlabel('microtrip'); 
ylabel('drive cycle feature'); 
legend('Max. acceleration (m/s^2)','Average acceleration (m/s^2)'); 
hold off 
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figure (3); 
stem(UDDS_parameters(:,5),'r'); 
title ('Comparing drive cycle features'); 
hold on 
plot(UDDS_parameters(:,10),'b'); 
xlabel('microtrip'); 
ylabel('drive cycle feature'); 
legend('Max. jerk (m/s^3)','Average Jerk (m/s)^3'); 
hold off 

  
figure (4); 
stem(maxpower_drive_cycle,'r'); 
title ('Comparing drive cycle features'); 
hold on 
plot(avpower_drive_cycle,'b'); 
xlabel('microtrip'); 
ylabel('drive cycle power in W'); 
legend('Max Power(W)','Av. Power (W)'); 
hold off 
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APPENDIX C 

Electric Bicycle with Supercapacitors as Peak Power Buffer 

This work implements a smart boost converter to enable an electric bicycle to be powered by 

a battery/supercapacitor hybrid combination. A 36V, 250W front hub motor was retrofitted 

onto a normal geared bike powered by a 36V; 12Ah lithium ion phosphate battery pack. A 

16.2V, 58F supercapacitor module was connected in parallel to the battery pack via a custom 

made microcontroller-based boost converter which arbitrates power between the battery 

and supercapacitor. The control algorithm for the boost converter was developed using a 

practical approach by using various sensor inputs (battery/supercapacitor current and 

voltage, bike speed) and comparing the robustness of control scheme. Also energy efficient 

components were used in designing the boost converter to ensure maximum power transfer 

efficiency. Based on the implemented system experimental results show an improvement in 

the up-hill acceleration of the bicycle as a direct result of the boost converter being 

responsive enough to harvest the extra current from the high power complementary 

supercapacitor module avoiding deep discharges from the battery. This enhanced battery 

life. The maximum speed remained unchanged while the improvement in range per charge 

was subjective to the terrain i.e. flat land; not significant improvement, hilly terrain; 

significant. However, recharging the supercapacitor via regenerative braking proved to be an 

arduous task since the boost converter was not designed to be bi-directional.  

 
I. INTRODUCTION. 

 

For much of the world; especially places like China, India, and Sweden etc. bicycles have been a 

transportation mainstay because the work place and housing areas in most of these densely 

populated cities are within walking or cycling distance. This reliable yet overlooked form of 

transportation has evolved over the years from simple utility bicycles to powerful geared mountain 

bikes and now electric assisted bicycles or pedelecs. Environmental concerns in terms of emissions 

and depleting fuel reserves has revived the electric vehicle industry and research community. China 

has produced 21 million of bicycles within nine years (1997-2005). In 2005 itself, China has produced 

10 million of bicycles (Alan Parker
1
).  

Electric assisted bicycles still retain the characteristics of a conventional bicycle with an added 

advantage of extra power, say when riding up a hill. This enables the elderly or not so physically fit 

people to still enjoy riding a bicycle up a slope.  

Batteries are the weak leak at the moment for any electrically propelled vehicle including the 

bicycle. The lack of a single reasonably priced energy storage device that can simultaneously provide 

high power density and high energy density has been the main stumbling block to the acceptance of 
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electric propulsion as the main form of private and public transportation (Manoj et al
2
, Schneuwly et 

al
5
)Presently the only viable solution to this problem is to combine a high energy storage device such 

as an electrochemical battery or fuel cell with a high power device such as an Electric Double Layer 

Capacitor (EDLC) or ultracapacitor or more often called a supercapacitor (Ortuzar et al
3
). Usually, 

some form of dc to dc converter executing an energy management control algorithm is used to 

interface the battery bank and supercapacitor array to the load bus (Payman et al
8
). It is the aim of 

this project to design a smart boost converter with a heuristic based energy management algorithm 

which will optimize the power flow from the battery pack to the load.   

As the name implies, a supercapacitor is a capacitor with capacitance greater than any other, 

usually in excess of up to 4000 Farad. Supercapacitors do not have a traditional dielectric material 

like ceramic, polymer films or aluminum oxide to separate the electrodes instead a physical barrier 

made of activated carbon. A double electric field which is generated when charged, acts a dielectric. 

The surface area of the activated carbon is large thus allowing for the absorption of large amount of 

ions (Dougal et al
4
). 

Advantages of Supercapacitors 

I. Cell voltage determined by the circuit application not limited by cell chemistry 

II. Very high cell voltages possible 

III. High power density 

IV. Can withstand extreme temperatures 

V. Simple charging methods 

VI. Very fast charge and discharge 

VII. Overcharging not possible 

VIII. Long life cycle 

IX. Low impedance 

Disadvantages/Shortcomings 

I. Linear discharge voltage characteristic prevents use in some applications 

II. Power only available for very short duration (short bursts of power) 

III. Low capacity 

IV. Low energy density 

V. Voltage balancing required when banking 

VI. High self discharge rate 

Despite the fact that Lithium-ion batteries are the superior most power sources as compared to 

other battery systems, the performance of the Li-ion battery is greatly affected when utilized under 

high current discharges. Lithium ion batteries have a high energy density of about 105 J/kg; however 

the power density is only around 100W/kg. As a result, the Li-ion battery cannot yield to high power 

demands. The addition of super capacitors in parallel to the battery can greatly augment the 

utilization of the battery especially at higher rates of discharge because of the high power density of 

super capacitors (~106 W/kg). So during high power demands, the supercapacitor aids in supplying 
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the power instantly while it gets recharged by the battery and thus the run time of the battery super 

capacitor hybrid is increased and higher utilization can be ensured. 

       Li-ion and supercapacitors are at opposite ends of the spectrum i.e. high energy density and high 

power density respectively. A combination of both technologies could bring about very desirable 

effects in terms of battery features. A Direct connection of the supercapacitor across the battery 

terminals does reduce transient currents in and out of the battery. However, the best way to utilize 

the supercapacitor bank is to be able control its energy content through a power converter (Pay & 

Baghzouz
5
).  Usually, a static bi-directional buck-boost converter is used to interface the 

supercapacitor bank (connected to the boost side) with the battery pack (connected to the buck 

side) because batteries work at relatively constant voltage levels while capacitors voltage is directly 

related to its state-of-charge (Dixon & Ortuzar
6
). 

 

A. Outline 

The objective of this project is to design and build a Pulse Width Modulated (PWM) DC/DC 

boost converter with the following ideal specifications: 

 Input Voltage: 12 - 16.2 VDC 

 Output Voltage: 36 - 39 VDC 

 Output Power: 200 – 300 W 

 Switching Frequency: 20 – 100 kHz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Overview of the proposed system 

 

Figure 1 above shows the block diagram of the proposed system. The main power source consists 

of a 36V~40V, 12Ah lithium ion Phosphate (LiFePo4) battery pack with cell balancing circuitry which 

weighs 5.5kg. This can comfortably provide a continuous discharge current of 12A. The 

supercapacitor consists of a 0.5kg POWERBUSRT© 16V, 58F module to be connected in parallel with 
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the battery pack via a boost converter which is designed to harvest the maximum energy from it. 

The propulsion device consists of a state of the art front hub motor rated at 250W (Golden 

Motors
11

), eliminating the need for transmission and the losses associated with it.  

Section 2 describes the sizing and design of the boost converter based on the specific energy 

requirements of the previously mentioned electric assisted bicycle. Section 3 discusses the results 

obtained from the implemented system using a portable data logger.  

 

II. BOOST CONVERTER DESIGN 

In order to size the boost converter appropriately, the electric bicycle was powered with the 36V 

12Ah LiFePo4 batteries initially, and certain figures were collected. The track used was a mixture of 

flat terrain, uphills and downhills. This is shown in the table below. 

 

 

 

 

TABLE I. E-bikes performance with battery 

Maximum Voltage 40.69 V 

Maximum Current 18.38 A 

Average Voltage  39.0 V 

Average Current 8.2 A 

Max. Voltage Drop 3.31 V 

Maximum Power 693.0 W 

Average Power 315.0 W 

 

From the table above, the maximum voltage is 40.69V. This voltage is actually equivalent to the 

total batteries voltage at full charge. Even though the datasheet mentions that each battery is only 

supplied 36V, however there is some tolerance in battery which causes each battery to go up to 40V. 

When the motor is running at maximum load (i.e. uphill), the maximum current drawn from the 

battery is 18.38A whereas when the motor is running at constant load (usually on a flat terrain) the 

average current is 8.2A. Thus, the supercapacitor is required to supply at least 10.18A to ensure that 

batteries only supplies average current.  
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Figure 2: Conventional PWM Boost Converter 

The conventional boost converter is shown in figure 2 above. It can be operated in two modes 

which are continuous current mode (CCM) and discontinuous current mode (DCM. This converter 

functions based on pulse width modulation (PWM); PWM is sent from a microcontroller/driver in 

order to control the IGBT to switch on or switch off (Farzanehfard & Beyragh
9
). 

During on time, IGBT will be turned on by setting the PWM to high. During the on time, current 

from the voltage source will flow through inductor and IGBT. This results in positive voltage across 

the inductor, thus inductor current is linearly increases. The capacitor will discharge through the 

load resistance in order to provide continuous supply to the load. 

During off time, current through the inductor cannot change instantaneously. It will try to oppose 

any drop in current by reversing its electromotive force (EMF) or polarity. Thus, the inductor will be 

treated as another voltage source which is in series with the input voltage. Energy stored in the 

inductor will add extra voltage to the input voltage. The current will flow into the capacitor to charge 

up the capacitor as well.  In short, output voltage will be boosted with extra voltage from the 

inductor. 

 

A. Supercapacitor Energy Analysis 

Total Energy      
 

 
                         (1) 

    
 

 
                           

Assume the minimum voltage can drop to 10V, maximum voltage is 16V 

Usable Energy;  Eu =    
  

   

  
   

                   (2) 

  Eu = 4.524 KJ (1.26Wh) 

Thus 452.4W (28.28A @ 16V) can be supplied for a period of 10seconds or 226.2W (14.14A @ 

16V) for 20 seconds. This is more than sufficient for an uphill acceleration keeping in mind that the 

battery is able to supply an average power. However the boost converter is required to output a 

voltage of between 38V~40V depending on the battery pack voltage leading to a lower output 

current. 

Assuming a 90% converter efficiency, 
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                             (3) 

                                        (4) 

 

Ioutput = 12.89A  @ Vinput =16V 

Ioutput = 8.06A  @ Vinput =10V 

 

B. Component Sizing 

The converter must be designed such that it is able to handle the worst case scenario. Thus, input 

voltage used in the design calculation will be the minimum whereas the output voltage will be the 

maximum. The design specifications are showed as below: 

           (Arbitrarily chosen) 

Duty cycle can be calculated by using the formula as follows: 

    
   

    
              (5) 

    
  

  
  

        

Since the output power is 500W and voltage is 39V, the resistive load can be calculated as  

  
  

 
 

  
   

   
        

Therefore, the minimum inductor value can be calculated by substitute the value as followed: 

     
        

  
                    

 (6) 

     
                      

         
 

              

The inductor must be selected such that it is able to handle input current. The converter is 

assumed to be 90% efficient, thus the output power will be nine-tenth of the input power.  

     
    
      

         

The selected inductor is J. Bournes and Miller 8121-RC which has 1mH inductance with maximum 

current of 20A.The output capacitance reduces the output ripple voltage. The filtering capacitance is 

selected by assuming the ripple voltage,       is equaled to 10% of the output voltage.  

     
 

   
 

  

 
        (7) 
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The selected output capacitance is 100µH. Capacitors with higher capacitance will actually reduce 

the ripple voltage, but higher capacitance will have a slower response time [6]. Table II below shows 

the list of other components used in this design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Control strategy for Boost Converter 

 

TABLE II. Components for boost converter 

  

 
 

 Component Function 

1 PIC16F877A Microcontroller Generate PWM signals based on 

input sensors 

2 HCPL 3120 Optocoupler  Gate driver for switching device 

3 IKP15N60T  IGBT (20A) Switching device for converter 

4 Vishay Schottky diode (30A) Prevent reverse current 

5 LTS-25NP LEM current sensor Sense load current give input to 

MCU 
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C. Control Algorithm 
 

Figure 3 above describes the simple control strategy adopted for calculating the duty cycle 

of the PWM pulse which is required to turn on the IGBT for the boost converter.  Inputs from a Hall 

Effect speed sensor and current sensors are required to turn on the converter. This ensures that the 

E-bike is on and ready for an impending acceleration and also prevents unnecessary usage of the 

supercapacitor’s limited energy. Voltage transducer circuits at the input side (supercapacitor) and 

output side (battery/converter out) feed input signals to the microcontroller. By comparing these 

two signals, the duty cycle can be appropriately adjusted. Figure 4 below shows the boost converter 

along with its control circuit (a PIC16f877a microcontroller) while figure 5 shows the complete 

system retrofitted onto a conventional bicycle. 

 

 

    

  

 

 

 

 

 

 

 

Figure 4: Boost Converter with control circuit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Ebike with battery supercapacitor hybrid via a boost converter. 
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Figure 6: Battery pack voltage of E-bike with only LiFePo4 as 

power source 

 

Figure 9: Battery pack voltage of E-bike with hybrid power 

source 

 

 

Figure 10: Current drawn from LiFePo4 battery with hybrid 

power source 

 

 

 

Figure 7: Current drawn from LiFePo4 only 

 

 

Figure 6: Battery pack voltage of E-bike with only LiFePo4 as 

power source 

 

Figure 8: Power Output from LiFePo4 battery 

 

Figure 9: Battery pack voltage of E-bike with hybrid power 

source 

 

 

Figure 11: Power Output from LiFePo4 battery with hybrid 

power source 
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III. RESULTS AND DISCUSSION. 

A portable data logging device was used to collect sensor data of bike speed, battery voltage 

and current, supercapacitor voltage and current. This was used to evaluate the performance of the 

electric assisted bicycle in terms of maximum speed, voltage drop of battery pack, peak current 

drawn from battery pack and up-hill acceleration. Figure 6 to figure 8 shows the battery parameters 

when the E-bike was powered solely by the battery pack.  An average voltage drop of 1.85V was 

recorded while riding on flat terrain while a maximum voltage drop of 3.31V was recorded when 

riding uphill. A peak current of 18.38A was recorded uphill. This is potentially dangerous for the 

battery as it only able to handle a maximum of 15A continuous discharge. An Average Power of 

315W and peak of 693W was subsequently recorded. Figure 9 to figure 11 plots the battery 

parameters when the E-bike was powered by hybrid battery/supercapacitor power source. A 

significant reduction in the maximum voltage drop from 3.31V to 1.64V occurred. This was a direct 

result of the supercapacitor being able to attend to the peak power requests from the load. Peak 

current from the battery pack reduced to 12.23A which was observed in figure 10. As a result, peak 

power reduced to 470W. Table III below summarizes the results.  

 

Battery  Parameter  

@ Peak conditions 

LiFePo4 only LiFePo4 + Supercap 

Volt. Drop  3.31V 1.64V 

Current 18.38A 12.23A 

Power 693W 470W 

Max Speed from GPS 

Speed sensor 

28Km/h 28.8Km/h 

 

 

For every instance in time, the current drawn from the battery-only power source is always 

greater than the current drawn from the battery + supercapacitor power source. However, there 

appears to be certain discrepancies which is caused by variation in driving pattern although data 

collection for both instances where taken by following exactly the same route. The voltage profile of 

the hybrid power source is smoother with less variations than the profile of the battery only power 

source. Since the voltage of the supercapacitor is always tied to the battery pack (direct parallel 

connection), we cannot fully unravel its true potential which is its ability to charge and discharge 

very fast. A simple efficiency analysis shows that only 23% of the total energy of the supercapacitor 

was used up. The remaining 77% cannot be utilized due to the direct parallel configuration. The 

parallel hybrid power source has no significant effect on the maximum speed achievable over a drive 

cycle except that the rider felt an improvement in uphill acceleration as compared to battery alone. 

This test was just part of comprehensive tests that was scheduled to be carried out in near 

future to optimize supercapacitor integration with an electric vehicle.   Significant amount of 

engineering work still remains for the optimization especially the “smart” control algorithm for the 

TABLE III. Summary of Results with Battery + Supercapacitor 
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supercapacitor to be switched “on” and “off” at most appropriate driving pattern. This would enable 

a wider range of usage of the supercapacitor’s energy of up to 75%. 

 

IV. CONCLUSION. 

In conclusion, this work has successfully implemented a battery/supercapacitor hybrid power 

source for an electric assisted bicycle using state of the art hub motor technology. A boost converter 

was designed and implemented based on the energy requirements of the system.  

Based on the implemented system experimental results show an improvement in the up-hill 

acceleration of the bicycle as a direct result of the boost converter being responsive enough to 

harvest the extra current from the high power complementary supercapacitor module avoiding deep 

discharges from the battery. This enhanced battery life. The maximum speed remained unchanged. 

The main battery pack was shielded from high discharge currents which would eventually enhance 

its life cycle. 
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