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Abstract 

There is an increasing global demand to extend the life span of down-hole drilling tools in 

order to improve operation effectiveness and efficiency of oil and gas production. Laser 

cladding of tungsten carbide/Ni-based alloy metal matrix composite (MMC) coatings is 

currently being utilised for this purpose. However, the effect of tungsten carbide dissolution 

on the corrosion performance of the MMC coatings has not been completely understood. In 

this work, a study was carried out in which laser cladding of a stainless steel substrate using 

(i) Inconel 625 wire and (ii) tungsten carbide powder (Spherotene)/Inconel 625 wire was 

undertaken. This work was performed using a fibre laser system and has examined the 

process characteristics, the microstructure and the corrosion performance of the clad layers. 

Process characteristics studies were carried out by visual observation of the cladding process 

within a process window (laser power: 1-1.8 kW, traverse speed: 100-300 mm min
-1

, wire 

feed rate: 400-1000 mm min
-1

, powder feed rate: 25 g min
-1

). The microstructures were 

investigated using a combination of optical microscopy, scanning electron microscopy (with 

energy dispersive X-ray analysis) and X-ray diffraction. The volume fraction of tungsten 

carbide retained in the composite coatings was determined using image processing software. 

Corrosion performance was assessed using electrochemical corrosion testing in de-aerated 

3.5 wt.% NaCl solution.  Well bonded, minimally diluted, pore- and crack-free Inconel 625 

wire and Spherotene (WC/W2C) powder/Inconel 625 wire composite coatings were 

successfully deposited. Cladding process characteristics were categorised into wire dripping, 

smooth wire deposition and wire stubbing within the range of parameters used in this work. 

Process maps which predict the characteristic of Inconel 625 wire and Spherotene 

(WC/W2C)/Inconel 625 wire fibre laser cladding at varying cladding conditions within the 

process window were developed. The volume fraction of tungsten carbide (WC/W2C) 
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retained in the composite coatings was found to decrease with increasing laser power, 

traverse speed and wire feed rate. Tungsten carbide dissolution was found to result in the 

precipitation of intermetallic compounds including M6C and M23C6 in the γ-Ni matrix, which 

is rich in W and C. The increase in tungsten carbide dissolution was also found to increase 

the propensity for corrosion in the MMC coatings compared to the Inconel 625 wire coatings. 

As a result, the corrosion performance of the tungsten carbide/Ni based alloy MMC coatings 

can be improved by reducing the level of tungsten carbide dissolution through process 

control. 
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List of symbols and abbreviations 

A  Cross-sectional area of the wire (mm
2
) 

AISI  American Iron and Steel Institute 

ANOVA Analysis of variance 

ASTM  American Society for Testing and Materials 

BSE  Back scattered electrons 

C  Carbon 

MMC  Metal matrix composite  

CNC  Computer Numerical Control 

Cr  Chromium 

Dratio  Dissolution ratio 

DOF  Degree of freedom 

Eb  Breakdown potential (mV) 

Ecorr  Corrosion potential (mV) 

EL  Energy per unit length of track (J mm
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) 

Eoc  Open circuit potential (mV) 

EDM  Electrical-discharge machine 

EDX  Energy Dispersive X-ray 

FCC  Face-centred-cubic 

Fe  Iron 

G  Temperature gradient (K m
-1

) 

H  height of the track (mm) 

h  Melt depth into substrate (mm) 

HAZ  Heat affected zone 

HVOF  High velocity oxygen fuel 

Ip  Passive current density (mA cm
-2
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JCPDS   Joint Commission for Powder Diffraction Standards 

LASER Light amplification by stimulated emission of radiation 
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V  Traverse speed (mm min
-1

) 
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WFR  Wire feed rate (mm min
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1.0 Introduction 

1.1 Background and problem definition  

Surface modification of engineering components for protection against wear and corrosion is 

one of the growing fields of research in offshore industry. Among different coating methods 

for surface modification of ferrous metals, laser cladding offers advantages over thermal 

spraying and conventional arc welding. These include strong metallurgical bond at the 

coating-substrate interface [1, 2], minimal distortion of the substrate [3], low dilution [4], 

minimal porosity and controllable heat input often producing a small heat affected zone 

(HAZ) [5]. The use of lasers for cladding was first patented in 1976 by AVCO Everett 

research laboratory, USA [6]. In this method, laser acts as the heat source for creating a 

meltpool by simultaneously melting an additive material and a thin layer of a substrate. The 

relative movement of the laser beam and the substrate forms a track. The track is often 

referred to as a clad bead. The cladding can be carried out with wire or powder as the 

feedstock material. Overlapped tracks can be deposited for a complete coating of a 

component.  

Laser cladding is commonly performed with CO2 and various types of Nd:YAG lasers. 

Recently, fibre lasers are beginning to supplant the traditional lasers because of their better 

rewards in terms of cost, cladding efficiency and suitability to various working environments 

[7, 8]. Unlike CO2 lasers, fibre lasers can deliver their energy through an integrated optical 

fibre, giving substantial flexibility in terms of how the cladding is implemented. Also the 

fibre laser beam gives excellent beam quality and can be focused to a very small spot [7].   
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Extensive research in laser cladding using metal alloy of superior properties has been 

undertaken for enhanced surface performance of engineering (metallic) components [9]. 

Consequently, a range of highly corrosion and wear resistant materials has been processed in 

this way [5, 10].  Due to the high corrosion and oxidation resistance properties of Inconel 625 

alloy which contains Ni-Cr-Mo-Nb, Inconel 625 has always being a material of choice for 

coating components exposed to seawater for long-term protection [11, 12]. Consequently, 

engineering (metallic) components, particularly stainless steels, laser coated with Inconel-625 

are common in the offshore industry [13]. To date, a number of studies have been reported on 

laser cladding of Inconel 625 using powder as the feedstock material. However, laser 

deposition using Inconel 625 wire as a feedstock material rather than powder has not been 

widely undertaken. Compared with powder feeding, laser cladding with wire has the potential 

to give cleaner process environment, higher deposition rate and improved surface quality. 

Also, the cost of producing wire is lower compared to the powder. 

The application of laser cladding has also been extended to the deposition of metal matrix 

composite (MMC) coatings. This is currently being utilised in extending the life span of 

down-hole drilling tools in aggressive corrosive environment with the presence of suspended 

sand particles which contribute to overall abrasive wear of the component surface [14]. MMC 

coatings typically consist of at least two components. One is the matrix which is usually a 

metal alloy. The second is the reinforcement which is usually ceramic. The ceramics can be 

oxides or carbides or nitrides. Generally, there are wide combinations of ceramics and metal 

alloy materials, tungsten carbide (WC) embedded in a nickel-alloy (e.g. Inconel 625) matrix 

is mostly the material of choice for offshore applications. Ni-based self-fluxing alloys have 

been extensively used due to their high toughness and corrosion resistance [15].  Also, 

tungsten carbide is increasingly being used because it is known to be very hard (1.78 × 10
9
 kg 

m
-2

), possess a high melting point (2720
o
C) and high density(15630 kg m

-3
), and have a good 
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wettability with molten Ni alloys [11] [16]. The MMC coatings act as asphalt does on the 

roadway. The hard WC particles rub against the suspended soil therefore, protects the soft 

matrix from abrasive wear. The Inconel 625 alloy gives the coating a high resistance in the 

corrosive medium.   

However, the major issues of concern about achieving optimal performance of WC/Inconel 

625 composite coatings is the dissolution of reinforcing particles and substrate dilution [11, 

17]. The WC dissolution is susceptible to the corrosion and wear performance while the 

substrate dilution is detrimental to the corrosion behaviour of the coating. The ability to 

minimise the WC dissolution and substrate dilution requires a proper control of the 

processing parameters. A control of the volume of tungsten carbide delivered into the 

meltpool is also required. Prior work has established that WC dissolution and substrate 

dilution increases with increasing the laser input [18-20]. Also, it has been reported that WC 

dissolution promotes microstructural in-homogeneity which results in galvanic corrosion in 

the MMC coatings [11]. However, it has not been established whether the corrosion damage 

increases with increasing the WC dissolution. Therefore, this work will involve the fibre laser 

cladding of tungsten carbide reinforced Inconel 625 composite coating within a process 

window with the aim of establishing suitable cladding parameters and controlling the 

tungsten carbide dissolution. Thereafter, the effect of increased tungsten carbide dissolution 

on the corrosion performance of the MMC coating will be investigated. 

The amount of tungsten carbide fed into the molten Ni-matrix will be controlled by 

independently feeding the feedstock materials. Inconel 625 wire will be used because of its 

potential advantages over the powder. Also, special spherical cast tungsten carbide 

(commercially called Spherotene) will be used for this work. Spherotene is increasingly being 

used as hardfacing material in Ni alloy matrix because of its extremely high hardness 

(between 1800 and 3000 HV) and high density (16300 kg m-3) [21]. 
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1.2 Overall objectives of the research work 

This overall objective of this research can be broadly grouped into two areas. First, the fibre 

laser cladding of Inconel 625 wire will be investigated, within a window, for process 

stability, process characterisations, micro-hardness and corrosion behaviours. Secondly, 

concurrent fibre laser cladding of Spherotene-Inconel 625 composite will be studied, within 

the process window, with the aim of controlling the dissolution of Spherotene in the Inconel 

625 alloy binder. The effect of Spherotene dissolution on the corrosion performance of the 

coating will be determined. The specific objectives of this research work are to: 

1. Establish a process window within which continuous tracks of Inconel 625 wire fibre 

laser tracks can be deposited. A map which predicts Inconel 625 wire fibre laser 

deposition process characteristics at varying processing parameters will also be 

developed. 

2. Investigate the effect of the processing parameters such as laser power, traverse speed 

and wire feed rate, within the established window, on the dilution ratio, process 

characteristics and microstructure of the Inconel 625 wire laser tracks. The 

microstructure of the tracks will be related their micro-hardness. 

 

3. Deposit Inconel 625 powder laser tracks using similar process window. This is to 

compare laser cladding processes using wire and powder feeding system in terms of 

track qualities including degree of substrate (Fe) dilution ratio, microstructural 

evolution, micro-hardness and corrosion behaviours.  

 

4. Deposit continuous, well bonded, crack-free and pore-free Spherotene (WC/W2C) 

powder-Inconel 625 wire composite tracks via concurrent laser cladding. 
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5. Study the effects of Spherotene powder injection on the process characteristics and 

microstructures of Inconel 625 wire laser cladding.  

6. Investigate the extent of Fe dilution and amount of Spherotene particle dissolution in 

the composite tracks as a function of the processing parameters. The results obtained 

from these will be related to the micro-hardness and corrosion performances of the 

coatings.   

7. Identify the phases present and determine their effects on the micro-hardness and 

corrosion behaviour of the coatings.  

 

1.3  Proposed methodology 

The project methodology is sequentially described in Figure 1.1. Coating samples were 

produced by laser cladding of Inconel 625 using wire and powder feeding systems, and 

concurrent laser cladding of Inconel 625 wire and Spherotene (WC/W2C) powder. 304L 

stainless steel was used as the substrate material throughout the experiments. The geometrical 

characterisation, dilution measurements, microstructural characterisation, hardness testing 

and corrosion testing were the main analysis performed on the samples. Hardness and 

corrosion testing of bulk 304L stainless steel were performed so as to provide reference data 

for comparison. 
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Figure1.1: Experiments carried out on the coating samples and 304 stainless steel 

substrate 
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1.4  Thesis structure 

The thesis is organised into 7 chapters. Each chapter begins with the brief introduction of the 

contents and ends with the summary of the key findings. A list of references is provided at 

the end of the thesis. The 7 chapters are highlighted as follows. 

 Chapter 1 provides the frame of reference for the reader. 

 Chapter 2 presents a review of the existing literature about the research area. On the 

basis of the review, the research goals are defined after identifying the gaps in the 

literature. 

 Chapter 3 contains the information about the materials, equipment, experiments and 

testing procedures utilised for carrying out the research work. 

  Chapter 4-6 outline the results, each containing discussion of the relevant results. 

 Chapter 4 presents the study of the geometrical and microstructural characterisation, 

process characterisation and the micro-hardness of the laser cladding of Inconel 625 

by wire and powder feeding. 

 Chapter 5 reports the process and microstructural characterisation as well as the 

micro-hardness of the Spherotene-Inconel 625 wire composite deposited via 

concurrent laser cladding. 

 Chapter 6 presents the corrosion behaviour and microstructure before and after 

corrosion testing, of Inconel 625 laser coatings by wire and powder feeding, and 

concurrent laser deposited Spherotene-Inconel 625 wire composite at varying 

processing parameters   

 Chapter 7 summarises the results and includes further discussions and conclusions. It 

also identifies some areas for future work. 
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2.0 Literature review 

2.1 Introduction 

This chapter presents a review of the literature about the research works reported in this 

thesis. The chapter is divided into various sections namely: lasers, materials, coatings 

technology, laser cladding, microstructure and corrosion measurement. Past work in these 

research areas is presented with respect to the overall objective of this thesis. The chapter 

ends with a separate section containing the summary of the literature review. The gaps in the 

literature are identified and the aims of this research work are defined and highlighted based 

on the gaps found in the literature.   
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Laser 

2.2 Laser 

“Laser” is an acronym for “Light Amplification by Stimulated Emission of Radiation”. The 

name was coined by the laser pioneer Gordon Gould in 1957 [22]. This denotes its principle 

of operation and the term is now mostly used for devices generating light based on the laser 

principle. The term “optical MASER” (MASER = microwave amplification by stimulated 

emmision of radiation) was initially used and was later replaced with “laser”[22].  

The following combination of characteristics distinguishes laser radiation from all other light 

sources: 

 Highly monochromic – laser has narrow wavelength bandwidth which make gives it 

better materials process efficiency. 

 Low divergence- laser is the only light that is almost parallel with the resonator axis 

(i.e. the principal axis). The parallel nature of a laser beam enables it to be focused to 

a very small radius. 

 Highly coherent – Laser beam is said to be coherent because its waves are in phase. 

Two waves are said to be in phase if their crests and troughs meet at the same time 

whereas the waves are out of phase if the crests of one meet the troughs of another. 

2.2.1 The basic laser principle 

Figure 2.1 describes an excitation process of an atom. Laser operation involves the excitation 

of an atom from its ground state to a higher energy level.  An atom at higher energy level is 

relatively unstable and wants to return to its ground state. When this happens, a photon is 
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released in form of light energy. In laser, the way the energised atoms release photons is 

controlled [23] and the details is given in the next paragraph. 

 

Figure 2.1: Excitation of an atom [23] 

 

 

Figure 2.2: Laser gain medium [23] 

As described in Figure 2.2, laser usually comprises of an optical resonator (laser resonator, 

laser cavity) in which light can oscillate (e.g. between two mirrors). Within this resonator is 

a gain medium (e.g. a laser crystal) which serves to amplify the light. The gain medium is 

pumped either by a very intense flashes of light or electrical discharges. Once the lasing 

(gain) medium is pumped, a collection of atoms with some electrons sitting in excited levels 

is built up. A large collection of highly excited atom is necessary for the laser to work 
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effectively. As the atoms return to their ground state after excitation, energy is released in the 

form of photons. The photon emitted by an atom has a very specific wavelength that is 

dependent on the energy difference between the excited state and the ground state of the atom 

[22-24]. Therefore, the photon emitted by the first excited atom has a particular wavelength. 

In laser light production, subsequent photons are released by stimulated emission such that 

the first (stimulating) photon induces a new (emitted) photon from another atom that has its 

electron in the same excited state as the first atom. The stimulating and emitted photons are 

very identical and the waves associated with the two photons have the same energy, phase, 

wavelength, polarization and direction of travel. These photons, of the same waves’ 

properties, travel back and forth within the laser resonator. In the process, they stimulate 

other electrons to make the downward energy jump and cause the emission of more identical 

photons of the same waves’ properties. As the photons with same wavelength and phases 

build up and oscillate within the laser resonator, some photons in form of light make it 

through the partial mirror. The light that makes it through is emitted in a coherent beam of 

laser light [22-24]. 

2.2.2 Industrial Lasers 

Common industrial lasers include fibre lasers, diode lasers, CO2 lasers and Nd:YAG laser 

[25]. Fibre lasers are discussed in the next section however details of other industrial lasers 

are discussed by Rudiger [22]. A 2 kW IPG ytterbium doped fibre laser in the manufacturing 

laboratory of the University of Nottingham has a Gaussian beam delivery system. 

2.2.3 The fibre laser 

Fibre lasers are lasers with optical fibres as the gain media. Usually, the fibres are doped with 

rare earth ions such as erbium (Er
3+

), neodymium (Nd
3+

), ytterbium (Yb
3+

), thulium (Tm
3+

), 

or praseodymium (Pr
3+

) [22, 26]. Among all the rare earth ions, ytterbium doped fibre lasers 
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are the most powerful. They can be pumped at 975nm and give a laser output of 1070-

1080nm [26]. As shown in Figure 2.3, laser diodes are used for pumping the gain medium. 

 

Figure 2.3: A fibre laser [23] 

 

Figure 2.4: A fibre laser diagram showing the outer sheath containing the scattered 

diode laser [23] 

 

Diode lasers produce relatively low quality (scattered) beams therefore there are always 

problems in focusing the relatively scattered beams into an ytterbium doped small fibre core. 

As a result, the small fibre core shown in Figure 2.4 is clad with an outer sheath so as to 

contain the pumped laser beams [23, 26]. The diode laser beam reflects within the ytterbium 

doped fibre core. This excites the ytterbium atoms, therefore, increasing the population 

inversion. Through stimulated emission, more photons are emitted. The photons (light) that 

are transmitted through the fibre bragg grating (a laser resonator) are emitted in a coherent 
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beam of light called fibre laser.  As shown in Figure 2.3, fibre bragg grating (FBG) is a short 

segment of an optic fibre which by the periodical perturbation of the effective refractive 

index of the fibre core reflects a particular wavelength of light and transmits all others [22]. 

The emission of the fibre laser can either be pulsed or continuous [22]. The power of the 

pulsed laser is measured in Joules per pulse while the power unit of continuous wave fibre 

laser is Watts. 

Fibre lasers have some advantages over other existing industrial lasers. The advantages are 

stated below [22, 23, 26]; 

 Unlike other industrial lasers, fibre laser generates its beam inside the fibre which 

makes the beam delivery very easy without any complication or requirement of any 

sensitive optics. As a result, fibre laser is stable and easy to use.  

 Fibre laser gives beam of a very high quality because the generated beam is confined 

inside a small core of the fibre therefore can be focused to a very small spot. 

 Since the beams can be focused to a very small spot, fibre laser can produce a laser 

beam of a very high power from a small power input by the pump source. Therefore, 

they are very efficient. 

 Fibre lasers do not heat up quickly and are easy to cool since the heat is evenly 

distributed over the long length of the fibre. 

 

 

 



Chapter 2                                                                                                                                  14 

 

 

Materials-Inconel 625 

2.3 Superalloys 

Superalloys are usually used in high temperature applications. They are specifically 

developed to retain high mechanical strength and high resistance against surface degradation 

at temperatures up to ~85% of their melting points [27]. The need for the superalloys started 

in 1940s from the frequent material failure encountered in gas turbine engines [12, 28]. The 

choice of high turbine entry temperature (TET) (i.e. the temperature of the turbine hot inlet 

gases) is the dominant factor in determining engine performance since the inside temperature 

falls as mechanical work is extracted from the inlet gas stream. Consequently, there was a 

drive to develop special materials that retain their high mechanical strength at elevated 

temperature in excess of 540
o
C. 

Superalloys are of three types which are nickel-iron, nickel- and cobalt–base alloys [29, 30]. 

A common but special feature of these alloys is the γ face-centred-cubic (FCC) crystal 

structure of their matrix phases [31]. They are strengthened by at least one of the following 

strengthening mechanisms.  

 Solid solution strengthening 

 Precipitation hardening 

 Carbides precipitates 

2.3.1 Ni-based superalloys 

Ni-based superalloys usually contain more than ten alloying elements with Ni being the 

primary constituent (at least 50% composition). The density, resistance to oxidation and 

corrosion, and the creep-rupture strength of these superalloys are determined by their 
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chemical compositions. Therefore, the superalloys have been developed with a variety of 

alloying additions to provide high resistance to a wide variety of corrosive environments.  

The major alloying elements in Ni-based superalloys are Cr (10-20%), Al and Ti (combined 

up to 8%), Mo, Co, Nb and W [12, 28]. The choice of nickel as the principal element is due 

to its following properties[28, 29]  

 FCC crystal structure 

 High toughness and ductility 

 Moderate cost 

 Low rates of thermally activated processes 

Nickel-base superalloys can withstand loading at an operating temperature ‘To’ (1273K) 

closed to the nickel melting temperature ‘Tm’ (1718K) therefore having a homologous 

temperature ‘τ’ (see equation 2.1) of about 0.75[28]. A homologous temperature of above 0.6 

makes the alloy suitable for high strength service at elevated temperature[28].  

m

o

T

T
                    (2.1) 

These alloys also possess substantial resistance to mechanical degradation over extended 

periods of time. They possess high fracture toughness, ultimate tensile strength (UTS) and 

yield strength at room temperature while their creep resistance and rupture strength at 

elevated temperature are considerably high [28, 29].  

2.3.2 Inconel 625 

The chemical composition and the properties of the alloy 625 are presented in Table 2.1 and 

Table 2.2 respectively. 
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Table 2.1: Chemical compositions of Inconel 625 (wt.%) [32] 

Ni Cr Mo Nb Fe C Mn Si P S Al Ti Co 

58.0 

min 
20.0-

23.0 
8.0-

10.0 
3.15-

4.15 
5.0 

max 
0.1 

max 
0.5 

max 
0.5 

max 
0.015 

max 
0.015 

max 
0.4 

max 
0.4 

max 
1.0 

max 

 

Table 2.2: Typical properties of Inconel 625 [33]  

Property Value 

Density 8.44g/cm
3
 

Melting point 1350
o
C 

Coefficient of 

expansion 
12.8µm/m.

o
C  (20-100

o
C) 

Modulus of rigidity 79KN/mm
2
 

Modulus of  elasticity 205.8KN/mm
2
 

 

It is a non-magnetic nickel-chromium-molybdenum nickel-based superalloy strengthened 

mainly by solid solution hardening effect of the refractory metals, niobium and molybdenum 

in an austenitic FCC 𝛾 matrix. It is also precipitation hardenable due to the precipitation of 

fine metastable phase 𝛾′′ (Ni3Nb) after annealing over a long period in the temperature range 

550-580
o
C [34, 35]. It is known for its high temperature strength and excellent corrosion 

resistance in a wide range of corrosive media, being especially resistant to crevice and pitting 

corrosion [36].  

It maintains its mechanical strength and toughness in the temperature range cryogenic to 

1093
o
C. Chromium and nickel provide resistance in oxidising environments while 

molybdenum and nickel resist any form of non-oxidising corrosion [34, 35]. Chromium 

continuously passivates the external surface of the alloy by forming Cr2O3 which is the 

primary reason for resistance to corrosion. The presence of molybdenum (8-10%wt.) is good 

for resistance against crevice and pitting corrosion. Niobium stabilises the alloy against 

sensitisation during welding making it the choice for many diverse applications [34, 35]. The 
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alloy is highly resistant to chloride-stress corrosion cracking and oxidation at high 

temperature. The high ductility of Inconel 625 is responsible for its ability to withstand 

solidification and contraction after welding thereby reducing the possibility of cracking [37]. 

Inconel 625 alloy is a material of choice for gas turbine engine ducting, combustion liners, 

furnace hardware, spray bars and special seawater applications in aerospace, chemical, 

petrochemical and marine industries [35]. 

2.3.3  The metallurgy of Inconel 625 

2.3.3.1 Dendritic γ phase 

The solidification reaction of Inconel 625 usually begins with the formation of dendritic 𝛾 

phase (FCC) which is notably enriched in nickel, chromium and Fe. As this is being formed, 

elements of high atomic mass such as niobium and molybdenum are segregated to the 

interdendritic region. Due to the enrichment of the interdendritic liquid in niobium, there is 

formation of niobium rich Laves phase and/or niobium carbide during the final stage of the 

solidification [38, 39].  

2.3.3.2 Laves and NbC carbide formation 

The formation of either nobium rich Laves phase or niobium carbide in the microstructure of 

Inconel 625 is largely influenced by the composition of the alloy. The solidification path and 

the resultant microstructure of alloy 718 have been clearly defined in a pseudo ternary 

equilibrium diagram shown in Figure 2.5 [38]. Inconel 625 alloy which is considered as a 

modification of Inconel 718 has nearly the same microstructure and is believed to follow 

similar solidification path. As shown in Figure 2.5, three different paths can be followed. Path 

1 represents a high C/Nb ratios and leads to the formation of 𝛾 + NbC with no Laves phase. 

At intermediate C/NbC ratios, 𝛾 + NbC is first formed, followed by Laves phase formation at 

the end of the solidification. At low C/NbC ratios (i.e. path 3), 𝛾 + Laves with no NbC is 
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formed. Path 3 microstructures, without NbC particles, are not common but have been in the 

solidification of Inconel 625 containing less than 0.01% C [38].  

 

Figure 2.5: An extract from the pseudo-equilibrium diagram for Alloy 718 showing the 

formation of Laves phase during solidification [38] 

 

Laves phases are hexagonal close packed, of irregular shapes and usually contain significant 

amount of other alloying or impurity elements [40]. Table 2.3 gives the compositions of 

Laves particles found in three different product forms of Inconel 625. 

Table 2.3 Chemical compositions of Laves phase particles (at. %) from different Alloy 

625 materials [38] 

Element 
Banded 

plate stock 

Base plate 

heat treated 

48hrs at 

1600
o
F 

6 inch GTA 

weldment 

Ni 38 41 48 

Cr 17 20 22 

Mo 23 21 12 

Nb 19 6 11 

Fe 3 5 3 

Si 6 6 4 

 



Chapter 2                                                                                                                                  19 

 

 

Also, the carbides mostly appear as blocky and dendritic Chinese script morphology at the 

grain boundaries. Their compositions in various Alloy 625 weldments have been reported. 

These are presented in Table 2.4. 

Table 2.4: Composition of NbC phase (wt. %) in different Alloy 625 materials [38] 

Element 

GTA welds 

625 bar 
Wrought 625     

900
o
C/ 1 hr 

Wrought 625    

940
o
C/100 hr Blocky NbC Dendritic NbC 

Ni 0.1-4.1 2.1-4.5 2.6 -  6.7 

Cr 1.3-7.4 4.1-8.6 1.2 3.6 3.6 

Mo 4.4-13.2 6.5-17.6 2.8 20.1 4.4 

Nb 65.0-82.6 60.0-73.4 89.3 79.7 79.7 

Fe 0-0.4 0.1-0.3 -  -  -  

Ti -  -  4.0  - -  

 

Other compositional effect on the microstructure of Inconel 625 has been observed.  The 

formation of Laves has been observed to be promoted by increasing the Fe and Si. Therefore, 

lowering Fe and Si contents in Inconel 625 welding filler wire has been helpful to the 

ductility in weldments because the formation Laves phase is minimised [41]. There are no 

obvious benefits of the presence of Laves or NbC in the final microstructure of Inconel 625. 

Although carbides provide Alloy 625 limited strengthening by stabilizing the grain 

boundaries against shear. Nevertheless, it is important to control the evolution of the 

microstructure of so as to avoid the excessive or highly localised concentrations of these 

phases so as to promote the chemical stability of the alloy and improves its ductility [29]. 

2.3.3.3 Other precipitate phases during thermal exposures  

A time-temperature-transformation (T-T-T) diagram for Inconel 625 is presented in Figure 

2.6. It is shown that a number of different carbides and intermetallic compounds can 

precipitate in Inconel 625 after thermal exposures, for times on the order of 0.1 to 100 hours.  
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Figure 2.6: An approximate time-temperature-transformation diagram for phases 

forming at higher temperatures in Alloy 625 [38] 

 

Beyond this time range, further changes may be observed. The crystal structures and typical 

compositions in atomic percent values of these phases are summarised in Table 2.5. 

Table 2.5: Structures and typical compositions of the possible precipitate phases in 

Inconel 625 alloy during thermal exposures [38] 

Phase Structure Typical composition 

MC Cubic, Fm3m                          

Matrix blocky MC  

(Ti0.07Cr0.04Fe0.02Ni0.09Nb0.75Ni0.03)C     

(Ti0.53Cr0.03Ni0.04Nb0.39Mo0.01)C   

 

Globular MC                           

(Ti0.15Cr0.04Fe0.01Ni0.08Nb0.67Mo0.01)C 

  M6C  Cubic, Fd3m                          (Cr0.21Fe0.02Ni0.37Nb0.08Mo0.24Si0.08)6C  

M23C6  Cubic, Fm3m                          (Cr0.85Fe0.01Ni0.07Mo0.07)23C6  

γ"  Ordered tetragonal, 14/mmm  Ni3(Nb>0.5Ti<0.5Al<0.5)  

δ  Orthogonal, Pmmm  Ni3Nb  

 Laves Hexagonal, P63mmc   (Cr0.31Fe0.08Ni0.41)2(Si0.17Ti0.01Nb0.19Mo0.63) 

 

The precipitation of MC, M6C and M23C6 in the grain boundaries of Inconel 625 after heat 

treating depends upon the temperature [42]. At higher temperatures in the range of 1600-
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1900
o
F, the carbides are both NbC as thin grain boundary films and M6C. In this case, M is 

Ni, Cr and Mo. Between 1300-1600
o
F, the grain boundary carbides are mainly M23C6 where 

M is almost entirely Cr. All the three grain boundary carbides can be bound below the 

intermediate temperature range. The M6C and M23C6 carbides commonly have blocky, 

irregular shapes and form as series of separate, discrete grain boundary particles [38]. 

As shown in T-T-T diagram in Figure 2.6, prolonged thermal exposure (beyond 48 hrs) of the 

alloy in the temperature range 1300-1800
o
F, both Laves and Delta phase starts precipitating. 

The precipitation of these phases begins in the grain boundaries which already contain 

carbide particles. The Laves which is similar in morphology to M6C and M23C6 carbides are 

difficult to identity however, the Delta can be easily recognised because of its acicular 

morphology. Just like Laves particles, Delta is also detrimental to the mechanical properties 

of Alloy 625 [28, 38]. 

The precipitation of 𝛾" is the dominating reaction in the temperature range 1100-1400
o
F. 

Unlike Inconel 718, the precipitation of 𝛾" phase in Inconel 625 alloy may not be expected 

because it is not originally developed as a precipitation hardened alloy. However, with 

sufficient Nb + Ti + Al in its composition, significant 𝛾" phase precipitation can occur [38]. 

The 𝛾" is an ordered tetragonal structure that is usually described chemically as Ni3(Nb > 

0.05, Ti > 0.5, Al < 0.5). It typically precipitates as reasonably uniformly distributed plate or 

disc shaped particles. With increasing the time and temperature of the heat treatment, 𝛾" will 

increase in length from approximately 0.01 to 0.1 µm [40]. 

 

2.3.4 Weldability of Inconel 625 alloy 

The term weldability refers to the ability of a material to avoid metallurgical degradation 

(usually assessed by its susceptibility to cracking during welding or post heat treatment) and 
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its ability, after being welded, to perform in its intended service environment. Cracking of 

welded construction is a major problem limiting welding of materials during fabrication. The 

occurrence of cracking can be traced to two factors namely, (1) the presence of tensile stress 

and (2) a susceptible microstructure in the weld metal or heat affected zone (HAZ) [43]. 

Since it is difficult to eliminate or control the stresses during welding, cracking susceptibility 

is reduced by controlling the weldment microstructure. 

During welding of nickel-based alloys (including Inconel 625) and fully austenitic stainless 

steels, four types of weld cracking mechanism has been observed. These are weld 

solidification cracking, HAZ liquation cracking, ductility dip cracking and strain-age 

cracking [43].  

2.3.4.1 Weld solidification cracking 

It is a form of hot cracking which occurs during the final stages of solidification when tensile 

shrinkage stress accumulates and the liquid film still persists along the solidification grain 

boundaries in the welded structure. Cracking will occur whenever the imposed shrinkage 

strain exceeds the inherent ductility of the solidifying weld metal.  This usually occurs in the 

fusion zone. The propensity for this type of weld cracking can be reduced to welding under a 

low restraint and reduce the temperature range over which the welding is done [43]. A 

solidification crack in Inconel 625 weld overlay is shown in Figure 2.7. 
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Figure 2.7: A picture of solidification crack in Inconel 625 weld overlay [41]. 

2.3.4.2 HAZ liquation cracking 

It is another type of high-temperature weld cracking that occurs in the HAZ adjacent to the 

fusion boundary. The cracking is due to the presence and persistence of liquid films at grain 

boundaries and the inability of these films to accommodate the thermally and/or mechanical 

induced strain experienced during weld cooling. Although the precise mechanism of this type 

of weld cracking are not well understood, the simultaneous presence of a crack susceptibility 

microstructure and a high level restraint are known to promote cracking tendency [44]. 

Therefore, reduction in HAZ liquation cracking susceptibility can be achieved by adjusting 

the composition and microstructure of the weld metal.  

2.3.4.3 Ductility–dip cracking 

Ductility–dip cracking (DDC) refers to elevated temperature, solid-state cracking that occurs 

as a result of a sharp drop in ductility at temperatures above approximately half the melting 

temperature of the material [43]. This type of cracking is found in the re-heated weld metal or 

in the heat affected zone and fusion zone of highly restrained weldments. It is usually in 

connection with single phase austenitic alloys with large grain size and is intergranular in 
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nature. DDC can be found in Ni-base weld metal at a temperature of about 800
o
C [45]. It 

always occurs along the migrated grain boundaries, for example, as shown in Figure 2.8. 

Migrated grain boundaries (MGBs) are crystallographic, high angle boundaries that have 

migrated away from their parent solidification grain boundaries during cooling below the 

solidification temperature range and/or during reheating in multipass welds. 

 

Figure 2.8: Ductility-dip cracking along migrated grain boundaries in fully austenitic 

weld metal [43]. 

 

DDC in Ni-base alloys depends largely on the grain size, grain boundary character and 

precipitation behaviour. Weld metals having large grain size with straight MGBs and few 

grain boundary precipitates is more prone to DDC. However, higher amount of precipitates or 

second phases form at elevated temperatures within the parent solidification grain boundaries 

will reduce susceptibility to DDC. This is due to grain boundary locking effect which resists 

sliding at the grain boundaries. In Ni-base filler metals, impurity segregation to MGBs and 

addition of hydrogen to shielding gas increase susceptibility to DDC [43, 45]. 
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2.3.4.4 Strain-age cracking 

Strain-age cracking (SAC) is a problem that usually occurs during post-weld heat treatment 

of Ni–base alloys that are strengthened by precipitation of γ'. The susceptibility of these 

alloys to SAC is related to the precipitation of γ' (Ni3(Ti, Al)) [46]. The higher the amount of 

Ti + Al content (γ' forming elements), the more the alloys are prone to SAC. This is due to 

the fact that the precipitation of γ' reduces the ductility of the alloys to a very low level and 

cracking can occur if they are subjected to a level of strain that exceeds the available 

ductility. With a high level of restraint during welding, tensile stress is developed as a result 

of the volume contraction that is associated with the formation of γ' from solid solution along 

the grain boundaries. This problem is heightened by a coarse grain size, the presence of an 

oxidising atmosphere and constitutional liquation of carbides, which can further reduce 

ductility. Consequently, cracking will occur in the weldments because of the stress 

concentration along the grain boundaries in the HAZs [47].  

 

Figure 2.9: An optical micrograph of strain-age crack in Waspaloy [43] 

Also, SAC can occur in the unaffected base metal in addition to the weld metal and HAZs 

[46]. Figure 2.9 shows a strain-age crack in Waspaloy (a Ni-base superalloy). However, 

Inconel 625 and 718 are not prone to SAC because of the lower content of Ti + Al (< 6%) in 
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their composition. The relative weldability Ni-base alloys as a function of their Ti + Al 

composition is presented in the map shown in Figure 2.10.  

  

Figure 2.10: Relative weldability of various superalloys [47] 
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Coating technology 

2.4 Surface engineering techniques  

The surface properties of engineering materials have significant effects on the functionality 

and lifetime of a component, therefore, its importance in materials is paramount. Surface 

modification (i.e. surface engineering) of components is increasingly gaining attention in the 

manufacturing industry. Surface engineering refers to a wide range of technologies designed 

to modify the surface properties of metallic and non-metallic components for specific and 

sometimes unique engineering purposes. The role of surface engineering in the 

manufacturing of engineering components or products such as engine valves, petroleum 

pipes, etc is illustrated in Figure 2.11. 

 

Figure 2.11: Role of surface engineering in the manufacturing of engineering 

components [48] 

Modification of the surface properties of components can be achieved using a number of 

processes. Some processes involve the modification of the pre-existing surface without a 

change in composition whereas others involve the alteration of the composition of the pre-

existing surface. There are also some processes which involve the deposition of a new 

material on the pre-existing surface. This is generally termed as coating deposition [32]. 

Depending on the technique used, surface modification can change the initial dimensions of 

the substrate component. On this basis, surface modification techniques can be grouped as 

subtractive (decreasing the dimension, e.g. machining), non-subtractive (no change in 
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dimension, e.g. ion implantation), or additive (increasing the dimensions such as laser 

cladding) [32, 48]. Figure 2.12 illustrates this classification of surface engineering 

techniques. 

 

Figure 2.12: Different methods of obtaining modified superfacial layers, (a) subtractive, 

(b) non-subtractive and (c) additive or coating deposition [48]. 

 

2.4.1 Coating deposition 

Application of coatings to engineering components can be achieved by any of the following 

surface engineering techniques; 

 Thermal spraying 

 Weld overlays 

 Plasma and thermal spray 

 Friction surfacing 

 Chemical vapour deposition 

 Physical vapour deposition 

 Ion implantation 

 Electroplating, and now  

 Laser cladding 

 

2.4.2 Laser cladding 

Laser cladding has shown that high quality, distortion free clad layers, and even thick layers, 

can be deposited successfully on base materials (i.e. substrate) for enhanced surface 

performance [49]. The technique was first introduced to industrial applications in the 1970s 

for cladding valves and valve seats [14]. One of the earliest production applications was in 
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the Japanese car industry, where cladding the valve seats of aluminium alloy engines 

improved their wear properties while keeping the manufacturing cost in check. In this 

process, laser (heat source) is used to create a melt pool by simultaneously melting an 

additive material and a thin layer of a substrate. The relative movement of the heat source and 

the substrate forms a clad bead (or track). Figure 2.13 shows a schematic of a laser cladding 

process using powder as the feedstock. On the other hand, the feedstock material can be in a 

wire form.  

 

Figure 2.13: A schematic of laser cladding process with powder injection [50] 

Laser cladding has found applications for rapid manufacture, repair and surface modification 

of metallic components especially those with complex geometries [1, 50, 51]. Compared to 

other coating deposition techniques, laser cladding can potentially offer a number of 

advantages. These include strong metallurgical bond at the clad-substrate interface [52, 53], 

minimal distortion of the substrate when compared with arc welds [3, 54], low substrate 

dilution [4],  minimal porosity [5, 55] and controllable heat input often producing a small 
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heat affected zone (HAZ) and greater processing flexibility [56, 57]. All these are as a result 

of controllable low thermal input, high solidification rate of the process and focusability of 

the laser beam to a specific local area [58].  

Usually, the substrate (i.e. the metallic component, often made of a cheaper material 

compared to the coating or additive material) is held by a special fixture attached to a CNC 

table (especially for small to medium components) while the laser beam is fixed and directed 

towards the substrate. The CNC table can be moved in the x, y and z directions and/or rotated 

depending on the process requirements and component geometry. For large components 

and/or laser cladding using robotics, the substrate is generally fixed at a position while the 

laser beam position varies.  In order to prevent oxide formation, laser cladding process is 

performed in an oxygen-free environment. Accordingly, laser coating is deposited in a closed 

chamber usually filled with argon or helium gas. This technique is also called Laser Aided 

Rapid Manufacturing (LARM) or Laser Engineering Net Shaping (LENS) or Direct Light 

Fabrication (DLF) when it is applied in building metallic components [34].  

Laser cladding processes can also be used to deposit hybrid materials making it more suitable 

for some specialised applications. Currently, laser cladding of metal matrix composite 

coatings has been established as an effective surface engineering technique for improving the 

surface performance of metallic components operating in environments that are inherently 

corrosive and abrasive [17]. Depending on the nature of the feedstock material utilised, laser 

cladding techniques can be broadly classified into two namely laser cladding with powder 

and laser cladding with wire.      

2.4.2.1 Laser cladding with powder   

There are three powder feeding systems in laser cladding technique. They are: 

 Pre-placed powder  
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 Lateral or side feeding of powder 

 Co-axial feeding of powder 

Pre-placing powder feeding system: This type of material feeding system automatically 

makes laser cladding a two-stage process. With this method, additive material in powder is 

preplaced on the substrate as a powder bed or plasma spray coat before laser beam transfers 

its energy to the powdered metal and liquefies it. The second stage is the heat transfer of the 

liquid coating to the substrate. Compared with lateral side feeding and coaxially feeding of 

powder, this method of powder deposition for laser cladding is fading out because of its 

shortcomings. Apart from the fact that it is time consuming because of the multiple stages 

involved, it is difficult to pre-place powder on a complex geometrical shape [59]. Also, it is 

limited in its flexibility to produce an optimized clad quality due to the fact that it is difficult 

to vary the powder feeding in this laser cladding process [60].   

Lateral powder feeding technique: This involves setting a powder nozzle at an appropriate 

angle and depositing the powder directly into the melt pool created by laser beam as shown in 

Figure 2.13. Unlike pre-placed powder feeding, this method gives a higher cladding 

efficiency, larger processing window and it is suitable for complex geometrical shapes 

applications [18, 60]. 

The effect of feeding direction is very significant in laser cladding with lateral powder 

feeding system. Syed et al [61] reveals that front feeding, as described in Figure 2.14a, with 

LDL 160-1500 diode laser gave higher powder catchment efficiency of about 20–45% when 

compared to rear feeding orientation shown in Figure 2.14b. As shown in Figure 2.14b, the 

meltpool is partly shielded from the incoming powder stream by the solidifying track. This 

was reported to have caused the reduction in powder catchment efficiency for rear feeding of 

powder during laser cladding.  
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Figure 2.14: A schematic diagram for powder feeding orientation (a) front feeding (b) 

rear feeding [61] 

 

Coaxial powder feeding: Laser cladding with coaxial powder feeding system is sometimes 

preferred over the lateral powder feeding system because of its flexibility in deposition of 

materials and use of multidirectional feeding process [62]. For laser cladding with coaxial 

powder feeding, a cladding head like the one shown in Figure 2.15 is required to guide and 

focus both the laser beam and the powder jet simultaneously on the surface of the work piece 

resulting in homogeneous powder distribution in the meltpool. This is one of the most 

important criteria for achieving a good clad quality. The set-up is very suitable for online 

monitoring and control of the metal deposition process because different sensors and optical 

devices can be easily integrated to the cladding head [62], for example, as shown in Figure 

2.15. Consequently, co-axial laser cladding is utilised for building metallic parts from 3D 

designs thus increasing the scope of industrial application of laser cladding in the global 

manufacturing industry [60, 62]. In the set up shown in Fig 2.15, the shielding gas performs 

two functions. Firstly, it blows the powder through a coaxial nozzle surrounding the laser 

heat source and secondly, it envelopes the entire cladding process from the atmosphere thus 

preventing the formation of oxides. 
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Figure 2.15: A picture of laser cladding with coaxial cladding head 

 2.4.2.2 Laser cladding with wire  

This method is similar to lateral or side feeding powder delivery systems except that wire is 

fed into the meltpool in this case. Laser cladding by wire delivery is increasingly becoming 

popular and useful due to its advantages over powder feeding systems [63]. The advantages 

include increased material usage efficiency [64], improved surface quality of the deposit [61], 

lower cost of preparing the wire materials [64] and excellent material deposition rate [65]. 

However, laser cladding by wire delivery is highly sensitive to changes in processing 

condition. As a result, it is important to establish a balance of several impacting processing 

parameters such as wire tip position in the meltpool, feed angle, feed direction, laser spot 

size, laser power (P), wire feed rate (WFR) and traverse speed (V) before a stable deposition 

process, hence, a good quality track can be achieved. 

In wire feeding systems, the choice of the feeding angle, feeding direction and positioning of 

the wire tip relative to the meltpool largely influence the quality of the clad and stability of 

the process [64, 66, 67]. Comparing the front and rear feeding directions, it was established 

that the front feeding direction produced better surface roughness and higher clad quality 
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because little or no disturbance of the meltpool occurred as the table moved away from the 

feeding nozzle [67]. However, the perturbation of the meltpool in the case of rear feeding 

resulted in the deposition of clad of relatively higher surface roughness. Syed et al. [67] 

found that diode laser cladding with rear feeding orientation produced undulations called 

serrations on all clad surfaces for all wire positions and feeding angles whereas with the front 

orientation no serration was observed for all feeding angles. The undulations shown in Figure 

2.16 resemble periodic cuts across the track (clad). 

 

Figure 2.16: A picture showing serrations on a single track, rear fed diode laser 

cladding of 316L stainless steel with wire placement at the leading edge (a) sectioned 

view (b) top view [67] 
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Figure 2.17: Irregular shaped beads deposited at low wire feeding angles [61] 

 

Feed angle is critical for laser cladding with wire. When the feed angle (i.e. angle between 

the wire nozzle and the table) is below 20
o
, tracks with an irregular shape are produced, for 

example, as shown in Figure 2.17. Experimental work had found a range of 20-60
o
 as feed 

angle that can produce continuous track of uniform height [61].  Mok et al. [68] established 

that a feed angle of 45
o
 for a diode laser metal deposition of  Ti-6Al-4V with front feeding 

orientation produced the highest wire deposition volume.  

Three wire tip positions (i.e. the center, leading and trailing edges) in the meltpool have been 

identified [67]. The leading edge of the meltpool was found to produce the most stable 

deposition process and excellent clad (i.e. continuous track) quality during diode laser 

cladding with stainless steel 316 wire of Ø0.8 mm [67]. With this position and wire size, the 

feed wire interacted briefly with the laser beam outside the meltpool. Therefore, the melt pool 

heat was the main energy source that melted the wire. Discontinuous tracks were obtained 

when the wire tip pointed to the trailing edge of the meltpool.  
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Conversely, for laser cladding with stainless steel 308L wire (Ø 1.2 mm), wire tip pointing at 

the centre of the meltpool gave continuous tracks of uniform height [26]. A fibre laser of 

about 3.6 mm beam diameter was used. Due to the larger size of the wire (Ø 1.2 mm), aiming 

the wire tip at the meltpool centre allowed the feed wire to interact longer with the laser beam 

therefore gaining more heat energy. As a result, the wire melted at the point of its intersection 

with the meltpool resulting in a smooth wire transfer.  

Heralic et al. [65] reported that wire can be deposited in three ways which are: by droplet-like 

transfer, smooth transfer or by plunging. Only smooth wire transfer gives a stable laser 

deposition processes but it requires rather careful adjustment of the wire feeder and the 

process parameters such that the wire is melted close to the intersection with the melt pool. 

This ensures a smooth metal transfer from solid wire to liquid metal. Another parameter 

significant to achieving a high quality clad profile and component with appropriate 

metallurgical properties is the wire protrusion distance from the feeding nozzle. This must be 

carefully selected for a particular set-up. 

In general, both powder and wire cladding processes can produce high surface quality and 

defect-free clad beads at optimised cladding conditions. The optimised cladding conditions 

for each material system differs. Compared with the laser cladding with wire, higher surface 

roughness value (Ra) is found in powder cladding deposits. This can be attributed to some of 

the powder particles sticking to the solidified clad surfaces. 

2.4.3   Laser cladding of metal matrix composite coating 

Metal matrix composite (MMC) coating of metallic components has made significant 

progress, as a result of its potential applications in industries.  For example, the current 

challenge in the oil and gas industry is to manufacture low cost metallic components that can 

reduce incessant equipment failure usually caused by the combination of erosive and 
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abrasive-wear, and corrosive environment [69]. Hardfacing stainless steel components such 

as oil-drill bits, drilling cones, etc. with MMC is currently utilised as solution to this 

challenge.    

MMC coatings can withstand high tensile and compressive stresses depending on how the 

applied load is transferred from the ductile matrix to the reinforcement phase. Deuis et al. 

[70] reported that the transfer of load is possible due to the bond between the particulate 

reinforcement and the matrix metal. However, the nature of the interfacial bond between the 

ductile matrix and the reinforcement particulate depends on the processing route (i.e. the 

processing time and temperature) and the matrix composition. 

Over the years, a spectrum of processing techniques has evolved in an attempt to optimise the 

microstructure and surface properties of the composite coatings. The most commonly used 

processing techniques for depositing MMC on ferrous and non-ferrous substrates are thermal 

spraying, arc welding and laser cladding [70].  Due to its advantages over other techniques, as 

previously mentioned in section 2.4.2, laser cladding has been widely utilised [71]. Laser 

cladding has the potential to produce MMC coatings with minimal porosity, strong 

metallurgical clad-substrate bonding and absence of splat structures. Generally, the rapid 

solidification and high cooling rate which characterise the technique promotes homogeneity 

of the microstructure. This reduces the chances of forming intermetallic phases in the 

composite coating hence, improving their corrosion performance. On the other hand, high 

cooling rate creates stresses thus increasing cracking sensitivity in laser cladding process [50, 

72, 73]. The cracking tendency can be reduced by improving the toughness of the matrix 

which is often achieved by a good choice of highly ductile metal alloy.  

Aluminium and its alloys are commonly used as matrix material for MMC coatings and they 

are mostly used with SiC or Al2O3 in discontinuous reinforcement particulate [74]. In 
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aerospace industry especially gas-turbine aero-engine components, titanium alloys (α, β and 

metastable β alloys) are widely used as a matrix alloy because of their high tensile strength-

to-weight ratio as well as high strength retention at elevated temperatures (600-800
o
C) [75]. 

Ni-based alloys reinforced with WC reinforcement particulate are increasingly being applied 

for many industrial components in petrochemical industry, aerospace and offshore 

applications to provide long-time protection against wear and corrosion [17]. Ni-based alloys 

are generally known for high oxidation and corrosion resistance. More importantly, Inconel 

625, a Ni-Cr-Mo alloy, has a better combination of favourable properties including high 

temperature strength, high ductility and superior resistance to oxidation and corrosion.  

Just like the laser cladding of single metal, a high energy laser beam is used to melt a thin 

layer of the substrate as the ceramic and metal (which could be in powder or wire form) are 

simultaneously injected into the meltpool. A composite track is formed as the substrate 

moves relative to the laser source or vice versa. The metal which has lower melting point is 

melted first and then envelops the ceramic phase with high melting point.  

2.4.3.1 Feeding methods in metal matrix composite laser cladding 

The current of methods of feeding the ceramic particles and the matrix metal during laser 

cladding of MMC are: 

 Pre-placing a mixture of  the ceramic particles and the matrix metal powder on the 

substrate  

 Lateral feeding of pre-blended powders of the ceramic particles and the matrix metal 

 Coaxial feeding of pre-blended powders of the ceramic particles and the matrix metal 

Ceramic particles have been mixed with matrix metal powder in different proportions. For 

example, 80 wt. % Ni60A powder and 20 wt. % WC particles were pre-blended and laterally 

fed for microstructural investigation of Ni-based WC composite coatings by laser induction 



Chapter 2                                                                                                                                  39 

 

 

hybrid rapid cladding [19]. The microstructure and wear behaviour of laser clad composite 

coatings have been studied by pre-placing a mixture of 50 vol.% Ni based alloy powder 

(Ni35) and 50 vol.% nickel-clad WC powder (WC-Ni, 15-wt.% Ni and balance WC) on the 

substrate via powder flame gun [76].  Coaxial feeding of pre-mixed powders of WC and Ni-

based matrix with a volume fraction of 50% were utilised for the development and 

characterisation of composite Ni-Cr + WC laser cladding [77]. In the past, compositionally 

graded materials but not MMC coatings had been fabricated via coincident wire and powder 

laser deposition set-up. Wang et al. [78] demonstrated that the production of functionally 

graded materials is successful by simultaneously and laterally feeding Ti–25V–15Cr–2Al–

0.2C powder and a Ti–6Al–4V wire. Concurrent nickel wire and copper powder laser 

deposition on H13 tool steel using 1.5 kW diode laser power source has also been 

investigated [79]. The composition gradients within a layer and overall track properties were 

controlled by sequentially varying the feed rates of copper powder and nickel wire. 

2.4.4 Defects in laser cladding 

Clad-ability is defined as the formation of a continuous, high density deposit with a uniform 

or homogenous microstructure, possessing a strong metallurgical bond to the substrate but 

with low dilution [59]. Any deviation from this definition could be considered as a defect in 

laser clad coating. Defects limit the performance efficiency and lifespan of laser fabricated 

parts in service. Optimising the cladding parameters for the laser deposition process usually 

reduces the number of defects if not eliminating completely the defects in laser deposited 

layer. Therefore, searching for optimal laser cladding parameters which minimise amount of 

defects is always a key issue.  

Typical imperfections occurring in laser clad coatings can be divided into two major groups 

namely: geometrical and microstructural defects [80]. Geometrical defects include: 
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 Irregular track height or discontinuous track 

 Swollen track due to too high contact angle with the substrate 

 Deeper melted depth into substrate which can cause high dilution ratio  

 Serrations (in case of wire feeding)  

Microstructural defects are: 

 Lack of fusion 

 Porosity  

 Crack 

2.4.4.1 Geometrical defects in laser cladding 

As shown in Figure 2.18, the geometry of laser track is defined by its height (H), width (W), 

melted depth into substrate (h) and contact angle (β) with the substrate. 

 

Figure 2.18:  A typical laser track geometry 

The melted depth into substrate is positively affected by the amount of energy available to 

melt both the substrate and the additive material. The energy increased with increasing the 

laser power and/or decreasing the traverse speed. The material feed rate also affects the 

melted depth into the substrate. The higher the material feed rate, the lower the depth (h). If 
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the melt depth into the substrate is excessively high, it becomes a defect because it indicates 

high substrate dilution. Generally, dilution is the percentage of the total volume of the 

substrate material in the track contributed by melting of the substrate.  High dilution is not 

always wanted in a quality laser track. It must be kept to a minimum (5-8%) [81]  in order to 

preserve the initial properties of the laser track [4, 81, 82]. Dilution increases with increasing 

the laser energy input but decreased with increasing the material deposition rate. 

In the case of wire feeding, the position of the wire in the meltpool and the feed angle play 

key roles on the geometry of the track. Too low feed angle and positioning the wire tip in the 

trailing end of the meltpool result in discontinuous or irregular shaped tracks. This had been 

earlier explained in section 2.4.2.2. An ideal track/clad is defined as one with contact (or 

wetting) angle less than 90
o
. Swollen track (i.e. track with contact angle more than 90

o
), as 

shown in Figure 2.19, is not desirable therefore; it is a defect in laser cladding. Single track 

with swollen flank usually produces overlapped (i.e. multiple tracks) with inter-run porosity 

[60]. Inter-run porosity is detrimental to mechanical performance and corrosion behaviour of 

the tracks.  

 

Figure 2.19: Clad cross-section with swollen flank and obtuse contact angle. 
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 2.4.4.2 Microstructural defects in laser cladding 

Poor fusion at the track-substrate interface is mainly due to insufficient melting of the 

substrate. Insufficient energy for a given material deposition rate and excessively high 

material deposition rates for a given laser energy are main causes of this defect in laser 

cladding [83]. In wire fed tracks, the position of wire tip relative to the size of the feed wire is 

another factor to be considered for depositing track with excellent bonding at the substrate 

[80].  

Porosity is a serious problem that has been identified in laser cladding. This, depending on 

the causes, can be grouped into three. Inter-run porosity is caused by the horizontally aligned 

or offset tracks of incompatible aspect ratios (or undesirable contact angles) and forms near 

the base of deposited tracks [84]. Inter-layer lack of fusion porosity is caused by incomplete 

bonding between adjacent tracks. The third is intra-layer porosity. It is often spherical and 

exists within the track area. Its cause is thought to be related to gas dissolved or entrapped 

within the meltpool [84]. Generally, the causes of porosity include inconsistent specific 

energy, misplaced tracks, an oxide layer preventing or hindering fusion, and initial porosity in 

the powder. 
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Microstructure 

2.5 Microstructure of coatings 

Generally, the type and size of solidification structure observed in the microstructure of 

coatings is largely affected by the solidification conditions. The solidification conditions are 

affected by the processing parameters. In this work, the evolution of the microstructure of the 

coatings is particularly relevant therefore, the change in the solidification mode of the 

coatings as the solidification conditions vary is discussed in detail. 

2.5.1 Solidification mode  

According to Zhou et al. [19]
 
and Kou

 
[85], the temperature gradient (G, K. m

-1
) and 

solidification growth rate (R, m.s
-1

) determine the microstructure of solid parts formed 

through heating and solidification processes. The ratio G/R influences the mode of 

solidification while the product of G and R (i.e. GR) governs the size of the structure or grain 

formed. The temperature gradient principally depends on the temperature difference that 

occurs during the heating process while solidification growth rate mainly depends on the 

traverse speed (V) and the angle θ between the solidification front normal and the traverse 

direction, as expressed in equation 2.2.    

VcosθR                                   (2.2) 

According to Toyserkani et al. [86]and Zhou et al. [19],  R varies throughout the process 

from zero at the bottom of the meltpool (where θ approaches 90
o
) to a maximum at the 

coating surface (where θ approaches 0
o
) (See Figure 2.20). Also, it is known that G is highest 

at the bottom of the meltpool where R is zero and decreases towards the surface. This 

indicates that the solidification conditions vary throughout the meltpool. In order to 
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understand how the processing parameters affect the microstructure that forms during the 

solidification of molten alloys, the theory of constitutional supercooling must be followed. 

 

Figure 2.20: A diagram of angle relationship between the solidification front rate (R) 

and the traverse speed (V) [19]. 

 

2.5.2  Constitutional supercooling 

There are four solidification modes namely planar, cellular, columnar dendrites and equiaxed 

dendrites, as described in Figure 2.21. During the solidification of a pure metal, the 

solidification mode at the solid/liquid (S/L) interface is usually planar except, a severe 

undercooling is observed. However, in the case of an alloy, the solidification mode at the S/L 

interface could be any of the four modes depending on the solidification condition and the 

material system involved [85]. 
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Figure 2.21: Basic solidification modes: (a) planar solidification (b) cellular solidification (c) 

columnar dendritic solidification (d) equiaxed dendritic solidification [85] 

 

The binary phase diagram of an alloy Co at a steady state with a planar S/L interface is shown 

in Figure 2.18. A boundary layer consisting of the liquid phase alone is thermodynamically 

stable only if its temperature is above the liquidus temperature. On the other hand, if its 

temperature is below the liquidus temperature, solid and liquid should coexist. The shaded 

area under the liquidus line in Figure 2.22a is the region where the actual liquid temperature 

is below the liquidus temperature (i.e. the region of constitutional supercooling). At this 

region, the liquid and solid coexist. As a result, the liquid planar S/L interface should 

breakdown to cellular or dendritic one so that the solid cell or dendrite can coexist with the 

intercellular or interdendritic liquid.  
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Figure 2.22: Constitutional supercooling: (a) phase diagram (b) composition profile in 

liquid (c) liquidus temperature profile in liquid [85]. 

 

As shown in the Figure 2.22, the temperature difference across the boundary layer is the 

equilibrium freezing range ∆T = TL - TS. Also, the thickness of the boundary layer at the 

steady state is DL/R where DL is diffusion coefficient of the alloy and R is the solidification 

growth rate. As such, the slope of the tangent to the liquidus temperature distribution at the 

S/L interface is ∆T/ (DL/R) or R∆T/DL [85]. For the planar solidification mode to be stable at 

the interface, the temperature gradient G must be at least equal to R∆T/DL. Therefore, the 

criterion stated in equation 2.3 must be met before a planar structure is stable at the S/L liquid 

interface.  

LD

ΔT

R

G
                                           (2.3) 
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Now, the higher the temperature gradient and the lower the solidification growth rate, the 

easier for a planar S/L interfaces to be stable.  However, if the solidification condition 

changes such that the degree of constitutional supercooling increases or ratio G/R decreases, 

the solidification mode can change to cellular or columnar dendrites or equiaxed dendrites. 

Figure 2.23 shows that the changes in solidification mode from planar to cellular, to columnar 

dendritic, and finally to equiaxed dendritic as the degree of constitutional supercooling 

continues to increase. 

 

Figure 2.23: Effect of constitutional supercooling on solidification mode: (a) planar,(b) 

cellular, (c) columnar dendritic, (d) equiaxed dendritic (S, L, and M denote solid, liquid, 

and mushy zone, respectively) [85]. 

 

2.5.3 Effect of cooling rate 

It has been established that the higher the cooling rate, the shorter the solidification time and 

the smaller the cellular or dendritic structure becomes [85-87]. The cooling rate has been 
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found to decrease with increasing the meltpool energy. According to Hofmeister et al. [88], 

cooling rate was found to decrease with increasing the meltpool size and the meltpool size 

decreased with decreasing energy density. The expression shown in equation 2.4 [85] 

revealed that the dendrite arm spacing decreases with increasing the cooling rate.  

 

  nn

f Ebatd


                            (2.4) 

 

Where d is the secondary dendrite arm spacing, tf is the local solidification time, ε is the 

cooling rate, and a and b are proportional constants. Therefore, the higher the cooling rate, 

the finer the microstructure of the solidifying alloys. It is important to know that the product 

of G and R equals the cooling rate [19, 85]. Invariably, G and R are the two main parameters 

influencing the microstructure of the molten alloy after solidification.   

2.5.4 Microstructure of laser deposited Inconel 625 alloy 

The microstructure of laser coatings is somewhat different from that of the conventional 

processed materials because the materials involved undergo a rapid cooling cycle [42]. This 

usually results in fine microstructures and can lead to the formation of non-equilibrium 

phases and element distribution. There are several published articles on the Inconel 625 

powder coatings but only few authors have reported on the laser cladding of Inconel 625 

powder. Till date, no published article is found on the laser deposition of Inconel 625 using 

wire as the feedstock.  

Dinda et al. [34] has investigated the microstructural evolution of Inconel 625 powder thin 

walls built using direct metal laser deposition technique. The processing parameters strongly 

affect the geometry, microstructures and hardness of the deposited walls. Pore- and crack-free 

walls of good metallurgical bonding with the substrate were built. The microstructure of the 

walls mostly consists of near vertical columnar dendrites, which grew epitaxially from the 
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substrate, as shown in Figure 2.24. Moreover, the growth direction of the columnar dendrites 

depends to the laser scanning direction.  

 

 

Figure 2.24: Transverse-section microstructures at different locations of an Inconel 625 

powder thin wall sample built using direct laser metal deposition technique [34] 

 

 



Chapter 2                                                                                                                                  50 

 

 

 

Figure 2.25: The microstructure of the horizontal section of an Inconel 625 thin wall 

sample built using direct laser metal deposition technique [34] 

 

The columnar dendritic growth in the upper layer is caused by epitaxial growth of primary 

dendrite from the partially remelted grains of the previously deposited layer, which acts as 

pre-nuclei for directional growth of crystal. The morphology of the microstructure of the 

horizontal section (i.e. cross-section perpendicular to the build direction) was typically 

cellular/equiaxed dendrites, as shown in Figure 2.25. Near the surface region top layer of the 

deposited walls appeared horizontally growing columnar dendrites. The change in the 

dendrite orientation was attributed to the change in heat flux direction due to the 

hemispherical shape of the meltpool.  

Also, the microstructure in relation to structural integrity of a three-dimensional components 

built by laser metal deposition with powder has been reported [42]. The built component was 

without defects except for small spherical gas inclusions. The microstructure of the 

component, as shown in Figure 2.26, was characterised with fine cellular/equiaxed dendritic 

structure resulting from rapid solidification which is typical of the technique used. 
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Figure 2.26: Cross-sections (a) perpendicular and (b) parallel to the build direction in 

the middle of Inconel 625 sample fabricated by laser metal deposition [42] 

 

Mostly, other works on Inconel 625 powder laser cladding focused on corrosion behaviour 

investigations.  In all the published works, the interdendritic regions of Inconel 625 coatings 

are usually occupied by the precipitates which are rich in Mo and Nb. The formation of these 

precipitates is due to the micro-segregation of these elements (of high atomic number) into 

interdendritic regions during the solidification of the molten alloy. 

2.5.5 Solidification of Inconel 625 laser coatings 

The development of the microstructure of the weldments (including laser coatings) is 

intimately related to the segregation of the alloy elements during solidification. Terminal 

solidification constituents form when the solid solubility for particular elements in the 

growing cells or dendrites is exceeded. In cellular or dendritic growth, these phenomena lead 

to the distribution of the alloying elements in accordance with the thermodynamic 

requirements of the system. Therefore, any element having the distribution coefficient (k) less 

than unity will be depleted at the cores and enriched at the interdendritic regions [39]. 

During the solidification of Inconel 625 powder coating, the γ dendrite core is depleted in Mo 

and Nb and enriched in the interdendritic region. The dendrite core is enriched in the Cr, Ni 

and Fe. Due to the segregation of Mo and Nb to the interdendritic region, the solidification 
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process of molten Inconel 625 alloy usually ends with the formation of γ dendrite core and 

Laves constituents at the interdendritic regions (see equation 2.5) [39, 41]. Apart from Laves, 

the formation of NbC (MC carbide) has been observed in the as deposited Inconel 625 laser 

coatings [42, 89]. The presence of MC carbide was attributed to high temperature exposure of 

the solidified material during laser scanning. This is known to occur at a temperature around 

1250
o
C (see equation 2.6) and a relatively small amount of NbC is produced. 

LavesγL       (2.5)   

NbCγL      (2.6)   

       

The amount of Laves and NbC phases formed during solidification are sensitive to the C, Si 

and Fe contents. NbC is generally favoured by C whereas the presence of Laves is promoted 

by the Si and Fe additions [41].  

2.5.6  Microstructures of tungsten carbide reinforced Ni based MMC coatings 

obtained by laser cladding 

The use of tungsten carbide and in particular of Spherotene (WC/W2C) as reinforcing 

material in Ni based alloys has been extensively researched for improving the surface 

properties of industrial components. This is most useful in service environments where 

components are potentially subjected to a combination of wear and corrosion damage, for 

example, in oil drilling industry [17]. Currently, laser cladding is a preferred and mostly used 

technique to deposit these coatings because of its advantages over other conventional 

methods, as mentioned in section 2.4.2. 

Composite coatings (MMC) with Inconel 625 alloy as the matrix binder has not been well 

researched. However, other Ni-based alloys composite coatings reinforced with tungsten 

carbide have been extensively reported. Ni-based alloys are known to be tough, ductile and 
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possess high resistance to oxidation and corrosion attacks. Different ratios of the hard phase 

particle and the tough Ni-alloys binder may lead to a broad range of physical and mechanical 

properties of the coatings. The main factors affecting the surface properties of the tungsten 

carbide reinforced Ni-alloy composite coatings are: 

 Volume fraction of the tungsten carbide particles present  

 Extent of tungsten carbide particle dissolution 

 Size and distribution of the tungsten carbide particle used 

 Manufacturing route and shape of the tungsten carbide particle used 

 Composition of the Ni-alloy binder used 

Volume fraction of the tungsten carbide particles present: The effect of the tungsten 

carbide content on the microstructure and wear resistance of laser cladding Ni based alloys 

coating has been investigated [76, 90]. Wu et al. [76] and Liyanage et al. [91] have found that 

the volume fraction of the undissolved WC in the WC-Ni alloys composite coating increases 

with increasing the composition of the tungsten carbide (WC) powder in the prepared 

composite powder. Guo et al. [90] examined 6 different coating samples with 0%, 5%, 15%, 

25%, 35% and 50% WC compositions in NiCrBSi alloy. It was found that transverse cracks 

were visible in the coating with 35% WC content and increased in number for the coating 

sample with 50% WC content. This was traced to a higher volume composition of the hard 

but brittle secondary carbides resulting from more WC dissolution. Also, the surface hardness 

and abrasive wear resistance of the WC-Ni alloy coating improves with increases in the 

volume fraction of the undissolved WC particle [15, 90]. The greater the WC content, the 

more the WC dissolution and the harder the matrix binder.  

Also, higher volume fraction WC (undissolved) in MMC coatings results in reduced matrix 

binder mean free path (i.e. average distance in-between the WC phase in the composite 
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matrix) and this is significant for improved abrasive wear resistance. Three abrasive wear 

mechanism of MMC coatings had been identified [56]. They are micro-cutting of the matrix 

binder, plastic deformation due to ploughing action and fracture of hard phase debris in the 

matrix binder. Of the three types, micro-cutting is the dominant. Micro-cutting tends to occur 

when the abrasive particles degrade matrix binder of lower hardness thereby dislodging the 

WC particles of higher hardness from the coating surface. This is more significant whenever 

the matrix binder mean free path is larger than the WC phase [92].  

Extent of tungsten carbide particle dissolution: The tungsten carbide dissolution which 

increases with increasing specific laser heat energy [19] has been found to be detrimental to 

corrosion properties [11] of the WC-Ni alloy coatings. The WC dissolution usually results in 

the formation of the secondary carbides which increases the microstructural modification and 

compositional in-homogeneity in coatings. These promote development of galvanic coupling 

leading to a reduction in corrosion resistance.  

Shape of the tungsten carbide particle used: Huang et al [56] compared the abrasive wear 

performances of WC/Ni/Al (69.5 wt.% /29.5 wt.% / 1wt.%) composite coatings using two 

different WC particle shapes. The results revealed that a composite coating made with 

crushed (angular-shaped) WC particles exhibited better wear resistance than the clad samples 

made with spherical WC. The reason for the difference in the abrasive wear performances 

was traced to the manufacturing processes involved in the production of the two particles. 

Spherical powder was produced by eutectic melting of tungsten and carbon to form melt 

carbide. The morphology of the spherical particle contained mixture of WC and W2C 

depending on the carbon content. The W2C is less chemically stable compared to 

monocarbide (WC) and at high temperature dissolves easily in the molten matrix to form 

diverse intermetallic phases thus lowering the wear resistance property of the clad layer [56]. 
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On the other hand, the crushed WC powder was produced by the carburisation of elemental 

tungsten powder which essentially consists of pure monocarbide (WC). No melting is 

involved in the process resulting to no intermediary eutectic sub-carbides in the carbide 

composition. Consequently, there is higher volume fraction of undissolved WC particles in 

the clad layer hence an improved wear resistance property [56].  

Also, the composite coating formed with crushed WC experience significantly low micro-

cutting action whereas the Spherical WC-Ni alloy coating was degraded largely by micro-

cutting action. The reduced micro cutting effect in the crushed WC composite coating was 

due to the interlocked network of a large quantity of undissolved WC in the clad 

microstructure (see Figure 2.27) leaving a very small area of binder phase exposed to the 

abrasive action of sand particles[56, 76, 92]. However, it has been reported that the sharp 

edges of the crushed powder may initiate cracking in the coating because there is high stress 

concentration in this area [90]. 

 

Figure 2.27: Cross-sectional microstructures of the WC-Ni alloy laser clad layer formed 

with (a) Spherical and (b) crushed WC particles [56] 

 

 

Size and distribution of the tungsten carbide particle used: Van Acker et al [24] 

researched the effect of WC particle size on the wear resistance properties of WC/Ni coatings 

and it was found that the wear rate of the deposited coatings decreases with reducing the WC 
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particle size in the clad. However, the significance of the relationship depends on the wear 

mode the component is subjected to. Van Acker et al [24] reported that for the ball on disc 

tests with sliding of an Al2O3 ball against laser clad coatings the WC/Ni coatings made with 

smaller ceramic particles exhibited better wear performance. This is probably due to the 

stronger cohesion between the smaller WC particles (13.3-69.8µm) and the matrix binder 

compared to the larger carbide (115.9-206.8µm). However, the ball cratering wear test results 

showed no significant difference in wear rate with increasing the carbide sizes. 

Composition of the Ni-alloy binder used: The composition of the alloy contents such as Cr 

in the Ni alloy binder plays significant role in the dissolution of the tungsten carbide [91, 93]. 

Possibly due to the strong Cr-C affinity, the size and amount of the precipitated carbides in 

the Ni alloy matrix with the higher Cr content has been found to be larger in the laser 

cladding of WC-Ni (Cr) composite [93]. The effects of this are an increase in cracking 

susceptibility and higher wear rate compared to the cladding of Ni alloys with lower Cr 

content [91, 93].  

2.5.7 Phases in the tungsten carbide reinforced Ni based MMC coatings  

X-ray diffraction is used to identify the possible phases in the materials and coatings. In the 

past, many authors have reported similar results on the high degree of microstructural 

modification in the tungsten carbide reinforced Ni based alloy composite coatings due the 

dissolution of the reinforcing particles. This has led to the identification of a number of 

phases. The appearance of both WC (undissolved) and W2C phases is due to the dissolution 

of the tungsten carbide particles [11, 17, 19, 56, 90, 94]. 

Depending on the degree of WC dissolution and the level of substrate dilution in the Ni 

matrix, various secondary carbide formations had been identified by the XRD. Apart from 

WC and W2C phases, Liu et al. [17] identified the formation of eutectic carbides including 
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(Cr-Mo)2C and Fe3W3C-Fe4W2C in the interdendritic regions during the laser surface melting 

of HVOF–sprayed WC-Inconel 625 coating. Table 2.6 gives the review of the phases 

identified in WC-Ni based alloy composite coatings.   
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Table 2.6: A review of the phases identified in microstructure of WC-Ni based alloy composite coatings. 

 

Coating technique Matrix Substrate Phases present Reference 

Laser cladding Pure nickel H13 tool steel  WC, W2C, WC1-x, Ni2W4C, CrFeNi [56] 

Laser surface alloying  Ni and NiCr AISI 304L WC, W2C, M23C6, M6C, γ-Ni matrix [94] 

Laser cladding NiCrBSi Stainless steel (1Cr18Ni9Ti)  WC, W2C, Ni2W4C, CrB, Cr23C6, Ni4W, γ-Ni [90] 

Laser induction hybrid 

rapid cladding 
NiCrBSi A3 mild steel 

WC, W2C, Fe3W3C, Ni3B, Ni4B3, 

(W,Cr,Ni)23C6, γ-Ni   
[19] 

 Laser cladding Inconel 625 Inconel 625  WC, W2C, M2C, M6C, γ-Ni matrix  [11]  

 Laser cladding NiCrBSi  Low carbon steel  WC, W2C, Cr23C6, CrB2, Ni3B, Cr7C3, γ-Ni    [95] 

Laser surface melting Inconel 625 AISI 316L 
WC, W2C, WC1-x, Ni2W4C, (Cr-Mo)2C, 

Fe3W3C-Fe4W2C 
[17] 
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2.5.7.1 The W-C system 

Generally, there are two main phases present in the W-C system. They are the higher 

tungsten monocarbide δ-WC (WC) and the lower β-WC (W2C). Both have hexagonal 

structure and their XRD patterns are shown in Figure 2.28. It has been reported that, in the 

temperature range 300-1200 K, δ-WC undergoes no phase transformation and it is stable 

between 300 and 3030 K [96]. However, the W2C does not exist in the W-C system at 

temperatures below 1523 K. Above 1523 K, it exists in three polymorphs namely: low 

temperature (β"), intermediate (β') and high-temperature (β). Depending on the carbon atoms 

arrangement, W2C may be dis-ordered at high temperatures or ordered at low temperatures 

[96].  

 

Figure 2.28: XRD spectra of the hexagonal δ-WC (WC1.0) and hexagonal β-W2C (WC0.48) [96]. 

The phase diagram of the W-C system is shown in Figure 2.29. The special points in the 

phase diagram at temperatures above 1300K are summarised in Table 2.7. 
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Figure 2.29: Phase diagram of the W-C system [96]. 

Table 2.7: Special points in the phase diagram of the W-C system shown in Figure 2.4 at 

temperatures above 1300 K [96]. 

Reaction at % C in the phases involved 
Temperature 

(K) 
Reaction type 

L ↔ W 0 0 - 3755 ± 5 
Melting 

 

L ↔ β-W2C ≈ 30.6 ≈30.6 - 3058 ± 10 
Congruent melting 

 

L + C ↔ γ-WC1-x ≈ 42.0 100.0 50.0 3058 ± 5 
Peritectic 

 

L ↔ W + β-W2C ≈ 23.5 ≈ 1.2 ≈ 25.5 2988 ± 5 
Eutectic 

 

L ↔ β-W2C + γ-WC1-x ≈ 37.0 ≈ 34.3 ≈ 37.8 3028 ± 5 
Eutectic 

 

γ-WC1-x ↔ δ-WC ≈ 49.3 ≈ 49.3 - 3008 ± 5 
Polymorphic 

transformation 

γ-WC1-x ↔ δ-WC + C 50.0 ≈ 49.8 100.0 2993 ± 5 
Eutectoid 

decomposition 

γ-WC1-x ↔ β-W2C + δ-WC ≈ 38.2 ≈ 34.0 ≈ 49.5 2798 ± 5 
Eutectoid 

decomposition 

β-W2C ↔ W + β'-W2C ≈ 28.6 ≈ 0.7 ≈ 29.7 2673 ± 10 
Eutectoid 

decomposition 

β-W2C ↔ β'-W2C ≈ 31.6 ≈ 31.6 - 2768 ± 10 
Disorder-order 

transformation 

β-W2C ↔ β'-W2C + δ-WC ≈ 33.5 ≈ 32.8 ≈ 49.8 2657 ± 10 
Eutectoid 

decomposition 

β'-W2C↔ β"-W2C 30.0-32.5 30.0-32.5 - 2370 ± 15 
Order-order 

transformation 

β"-W2C ↔ W + δ-WC ≈ 32.6 0 50.0 1523 ± 5 
Eutectoid 

decomposition 

 



Chapter 2                                                                                                                                  61 

 

 

It is clear from the W-C phase diagram shown in Figure 2.29 that the δ-WC phase has an 

insignificant homogeneity range and is stable between 300-3028 K. However, the three 

polymorphs of W2C have broad homogeneity ranges. The dis-ordered high temperature β-

W2C has a homogeneity range from WC0.34 to WC0.52 and is stable in the range from 2670-

2720 K to its melting point (3000-3050 K). The intermediate β'-W2C has a homogeneity 

range from WC0.34 to WC0.49 and exists between 2370 and 2670-2750 K. The low temperature 

β"-W2C phase has a homogeneity range of WC0.34 to WC0.48. As the temperature reduces, the 

homogeneity range narrows down such that at 1523K, there is no homogeneity range. The 

composition of β"-W2C at this point is WC0.48. Below 1523 K, β"-W2C phase decomposes 

into W and δ-WC [96].   

2.5.8 Scanning electron microscopy (SEM) characterisation of the tungsten carbide 

reinforced Ni based MMC coatings 

SEM is frequently utilised to characterise the morphology and microstructure of the powder 

feedstock and coating. With the back scattered electron signal, one may see the contrast 

between the phases present due to the difference in the atomic number of the phase 

constituent. Secondary electron mode reveals clearly the morphology of a coating sample. In 

combination with the Energy-dispersive X-ray spectroscopy, the elemental composition of 

the phases present in a coating sample can be determined. 

In the past, several authors have discussed the dissolution mechanism of tungsten carbide in 

the molten Ni based alloys. The dissolution or carburisation of the WC has been identified as 

a surface phenomenon [11, 56]. This means that the dissolution occurs mainly at the edges of 

the tungsten carbide particles resulting in the production of W2C and graphite (see equation 

2.7), for example, as shown in the SEM/BSE micrograph presented in Figure 2.30. The W2C 

phase often appears predominantly around the edges of the undissolved WC, The phase is 

always of bright contrast because it is highly rich in tungsten.   
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Figure 2.30: The dissolution of tungsten carbide in the molten Ni alloy matrix [56] 

Another effect of the WC dissolution is the enrichment of the molten Ni-matrix alloy (Ni 

based) in W and C. According to Cooper et al. [11], the solidification of the W and C rich Ni 

matrix begins with the formation of continuous Ni rich dendrites followed by the 

precipitation of the eutectic carbides in the inter-dendritic regions. This is usually the case 

when the dissolution is moderate. This observation is supported by Liu et al. [17, 94] who 

explained that the solidification of the composite matrix of the partially melted HVOF 

sprayed WC-Inconel 625 coating started with the formation of dendritic γ-Ni matrix and 

followed by the precipitation of a mixture of various carbides (Ni2W4C, (Cr-Mo)2C, Fe3W3C-

Fe4W2C) termed as eutectic carbides in the interdendritic regions. However, if the WC 

dissolution is very high, the dendritic carbide which precipitates randomly within the coating 

is first formed. This is followed by Ni-rich dendrites formation and ends with the 

precipitation of various eutectic carbides in the interdendritic regions [11].  

The various eutectic and dendritic carbides formed during the solidification of the composite 

matrix are termed as M2C, M6C and M23C6 with M referring to the other elements present 

apart from C. M6C is formed randomly as angular (blocky) carbides within the coating. It 
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appears as Fe3W3C showing that the influence of Fe content (probably from the substrate) in 

the composite matrix is high or as Ni2W4C where the Fe composition of the molten matrix is 

low [17].  A typical microstructure of WC-Ni based alloy matrix composite formed by laser 

surface alloying showing the random precipitation of M6C blocky carbides is shown in Figure 

2.31 [90]. M23C6 mostly occurs as thin film within the interdendritic region. It occurs as 

frequently as Cr23C6 indicating that it is very rich in Cr. Usually, it is detected by the use of 

transmission electron microscopy (TEM) because of its tiny form. Figure 2.31c shows the 

high resolution TEM micrograph showing the presence of Cr- rich M23C6 carbide in-between 

the γ-Ni dendrites. 

 

Figure 2.31: Microstructure of laser surface alloyed AISI 304L stainless steel with 

70WC + 15Ni + 15NiCr lased with a power of 2.2kW and scan speed of 0.008m/s. (a) 

SEM/BSE image showing blocky and faceted M6C carbides, (b) SEM/BSE images 

showing undissolved WC in the Ni-matrix and (c) TEM micrograph showing the 

presence of Cr23C6 in the interdendritic regions [94] 
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2.5.9 Distribution of WC in the composite coating 

An even distribution of WC or other ceramics is essential not only for excellent wear 

resistance but also for the high quality and processing of the coatings [97]. WC, has often 

been found to be more concentrated in the base of the laser deposited coatings [97]. This is 

often caused by the high density of the hard phase ceramics and the stirring motion of the 

meltpool. However, a proper control and selection of cladding parameters have yielded 

uniform distribution of WC particles throughout the entire volume of the coatings [97]. It was 

discovered that rapid cooling rate and low meltpool temperature (higher viscosity) which can 

be obtained at high traverse speed restrict the time available for WC particles to sink to the 

bottom of the meltpool. Therefore, uniform distribution of ceramic particles is usually 

achieved at lower energy density.  

Amado et al. [21] researched the laser cladding of tungsten carbides (Spherotene) hardfacing 

alloys for the mining and mineral industry. It was discovered that the Gaussian mode of beam 

delivery of some high power laser (e.g. Fibre) can be responsible for the uneven distribution 

of hard particles in the matrix binder. Figure 2.32 presents micrographs showing the 

distribution of WC in Ni matrix at different cladding conditions. 
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Figure 2.32: Micrographs of cladding cross sections at varying process parameters [21] 

As described in Figure 2.32a, there is always a high dissolution rate of WC particles in the 

centre of the meltpool compared to any other part of the clad. This can be attributed to the 

Gaussian distribution mode of the laser beam. With a Gaussian delivery mode of the laser 

beam, heat energy is more intense in the centre especially when cladding at the focus. The 

effect is significant when cladding at high energy input, for example, as shown in Figure 

2.32a. The WC particles in the centre of the meltpool suffer more severely from the heat 

therefore dissolving completely in the molten matrix. However, the higher volume fraction of 

WC particles at the top and periphery of the clad volume in Figure 2.32a is due to faster 

cooling rate resulting from heat transfer to the atmosphere through convection and radiation 

(a) P=1100W, V=5mm/s and PFR =0.36g/s (b) P=700W, V=7mm/s and F=0.36g/s 

(c) P=1500W, V=11mm/s and F=0.48g/s 

Undissolved WC 
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modes. Few WC particles (undissolved) in the bottom of clad volume are due to faster 

cooling resulting from large heat rejection to the substrate.  

Nevertheless, a relatively more WC concentration can be found at the clad core by 

defocusing the laser beam thereby increasing the spread of the beam. Fig 2.33 presents a 

diagram showing the distribution of the laser beam (a) at the focus and (b) at some distance 

away from the focus. 

 

Figure 2.33: Laser beam distribution at the focus and some distance away from the 

focus 

 

 

 

Corrosion 

2.6 Definition and basic corrosion theory 

Generally, engineering metals are unstable in nature. They tend to react with the earth’s 

environment such as oxygen, water, warm temperatures etc. to form more stable compounds. 

Focused beam delivery 

Defocused beam delivery 

1mm 
4mm 
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Metals in the un-combined form are in high-energy states. Thermodynamically, they try to 

lower their energy by spontaneously reacting with their environment to form solutions or 

compounds that have greater thermodynamic stability. This is done through a process called 

corrosion. Corrosion has been defined as the degradation of a metal by an electrochemical 

reaction with its environment [98]. 

The driving force for metallic corrosion is the Gibbs energy change (∆G). This is the change 

in free energy of the metal brought about by the corrosion process [99]. A negative ∆G 

implies that the reaction is spontaneous (i.e. energy change is downhill). ∆G is measured in 

Joules per mole (J/mol). However, in corrosion measurements, the driving force is more often 

expressed in volts (V) which can be derived from equation 2.7 [99].  

nFEΔG                                         (2.7) 

Then,  

nF

ΔG
E


     (2.8) 

The symbol E is the driving force for the corrosion process, n is the number of moles of 

electrons per mole of metal involved in the process and F is a Faraday’s constant which is the 

electrical charge carried by a mole of electrons (= 96500 C). When this driving force (i.e. 

voltage ‘E’) is measured without the application of external voltage, it is referred to as the 

open circuit potential (Eoc). 

Aqueous corrosion is electrochemical. For this to occur, the following four components must 

be in place. 

 The anode, which is the corroding metal. 

 The cathode, which is a metal or other electronic conductor whose surface provides 

sites for the environment to react. 
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 The electrolyte (i.e. the aqueous environment), in contact with the anode and cathode. 

This provides the path for the ionic conduction. 

 The electrical connection between the electrodes (anode and cathode) allowing 

electrons flow between them. 

All these constitute an electrochemical corrosion cell as illustrated diagrammatically in 

Figure 2.34. The anodes and cathodes are usually located close to each other and in some 

cases, may be on the same piece of metal.  

 

Figure 2.34: The components of an electrochemical corrosion cell 

2.6.1 Corrosion reactions 

Corrosion normally occurs at a rate determined by equilibrium between two opposing 

electrochemical (corrosion) reactions. Corrosion reactions are divided into anode and cathode 

half-cell reactions.  
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2.6.1.1 Anodic reaction 

When an anode metal (denoted as M) is immersed in an electrolyte, it corrodes and goes into 

a solution as metal ions as described in equation 2.9. An example of anodic-half reaction for a 

steel corroding in seawater is given in equation 2.10. 

  neMM n     (2.9) 

  2eFeFe 2     (2.10)  

This is an oxidation reaction because there is loss of electrons by the metal. These electrons 

reside around the corroding metal where they migrate through electronic conductor to the 

cathode, as shown in Figure 2.28. 

2.6.1.2 Cathodic reaction 

Reduction occurs at the cathode because the electrons produced at the anode are consumed at 

the cathode. If this does not occur, the anode will be so much loaded with electrons and all 

the reactions would stop. The cathode itself does not react however, it is some reducible 

species (corrosive environments such as O2, H2, Cl
-
) in the electrolyte that reacts on the 

cathode. Since there many different corrosive environments, several cathode reactions are 

possible. Some common cathodic reactions are described in the following equations [99]. 

  4OH4eO2HO 22  (In neutral or basic solutions with dissolved oxygen)        (2.11)    

(g)H2e2H 2 
  (In acid solutions)                                     (2.12)

O2H4e4HO 22    (In aerated acids or oxidizing acids e.g. HNO3)                    (2.13) 

2.6.1.3 Cell reactions 

The cell reaction combines the anodic and cathodic reactions together. For example, a cell 

reaction for corroding steel in seawater is a combination of equations 2.10 and 2.11. This, as 

represented in equations 2.14 and 2.15, results in production of rust. 
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2

2

22 2Fe(OH)4OH2FeOO2H2Fe      (2.14)

OHOFeOHO2Fe(OH) 232222
1

2      (2.15) 

2.6.2 Corrosion products and passivity 

The corrosion products can be soluble or insoluble compounds or a gas (usually H2) [99, 

100]. Soluble compounds or gases do not usually affect subsequent corrosion reactions. 

However, insoluble compounds precipitate on the surface of the anode or cathode or 

somewhere in-between the two electrodes, depending on relative mobilities of the ions. If the 

cations (i.e. the negative ion produced at the cathode) reach the anode before the positive 

metal ions (i.e. anions) migrate from it, the insoluble compounds tends to form on the anode. 

Consequently, a deposit of the corrosion products on the anode will slow down the diffusion 

of the metal ions to the cathode therefore decreasing the rate at which corrosion is taking 

place. This can be referred to as passivity. In a simple term, passivity refers to the loss of 

chemical reactivity experienced by certain metals or alloys under particular environmental 

conditions [100]. This means that some metals, when in contact with corrosive environments, 

become essentially inert and act as if they were noble metals such as platinum and gold.  

If a metal demonstrates passivity, it reacts with its environment to form thin layer of 

corrosion products acting as a barrier and slowing the corrosion process by several order of 

magnitude [100]. For example, Cr2O3 is formed in a case of stainless steel. The behaviour of 

this type of metal including Inconel 625 alloy can be divided into three as presented in Figure 

2.35. In active region, the corrosion behaviour is similar to that of the normal metals or 

alloys. In the passive region, the corrosion rate decreases or showed no significant increase 

even with the addition of more oxidizing agents. Finally, at very high concentration of the 

oxidizing agents or in the presence of very powerful oxidizers, the corrosion increases with 

increasing the oxidizer power. The region at which this occurs is termed as transpassive 
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region. These characteristics are used to determine the corrosion resistance of metals and 

alloys.  

 

Figure 2.35: Corrosion behaviour of a metal exhibiting passivation in a corrosive 

environment 

 

2.6.3 Environmental factors affecting corrosion rates of metals 

Metals behaved differently in different environments. Environmental effects on the corrosion 

rate of the metals or alloys have been studied. The various factors affecting the corrosion 

rates are briefly discussed. 

Fluid velocity: The relative velocity between the corrosive environment and the metal can 

affect the corrosion rate. Going from stagnant to moderate velocities may lower the corrosion 

rate, especially localised corrosion. The reason is that the environment is more uniform and 

the settlement of suspended solids that may possibly cause localised corrosion.  The effect of 

localised corrosion can be reduced by increasing the velocity of environment, for example, in 

case of solution flowing through a duct [49]. 
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On the other hand, the corrosion rate of an active metal has been found to increase with 

increasing velocity. At higher velocity, the rate at which the reactants (e.g. O2) are supplied to 

the cathode increased. At a particular stage, an increase in velocity has no significant change 

in the corrosion rate. 

Metals that passivate provide another scenario. First, increase in velocity cause increase 

corrosion until a condition is reached when passive film is formed on the metal surface. From 

this point, the velocity virtually has no effect until it become so great that it damages the film 

[99, 100]. When the metal is protected by a thick layer of corrosion products, the effect of the 

velocity on the corrosion rate presents another scenario. The velocity showed no noticeable 

effect until the thick layer is eroded away by a very high velocity. 

Temperature:  Since the increase in temperature increases the reaction rates, diffusion rates 

and the rate of dissolution of gases in water, it is expected that the corrosion rate will increase 

as the temperature increases. Increasing temperature also increases the oxidizing power, for 

example, of nitric acid solution [100]. It also increases the ionization of water therefore 

improves its ionic conduction.  

Other factors influencing the corrosion of metals are the effects of galvanic coupling, effect 

of oxidizers, corrosive concentration of the environment, grain structure of the metal, 

cathode/anode area ratio, presence of any crystal defects, solid solution alloys, etc [99, 100]. 

2.6.4 Classification of corrosion 

Based on the appearance of the corroded metal, corrosion has been classified into eight 

different forms [100]. They are: (1) Uniform or general attack, (2) galvanic, (3) crevice 

corrosion, (4) pitting, (5) intergranular, (6) selective leaching, (7) erosion and (8) stress 

corrosion. For the purpose of this work, the first four type of corrosion will be discussed in 
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terms of their formation mechanism and characteristics which have the most relevance to this 

study. 

2.6.4.1  Uniform attack 

 It is the most common type of corrosion and normally characterised by a chemical or 

electrochemical reaction that occurs uniformly over the surface of a metal. A typical example 

of this type of corrosion is the atmospheric corrosion of an old galvanised steel barn roof. 

This type of corrosion, from a technical point of view, is the least serious, because the 

corrosion rate can be easily determined and the lifespan of the equipment can be accurately 

estimated. Uniform attack can be prevented or reduced by coating the surface of the metal 

with a material of superior corrosion properties. 

2.6.4.2  Galvanic corrosion 

Electron flow is initiated whenever two dissimilar metals are immersed in a corrosive or 

conductive solution. This is due to a potential difference between the metals. A galvanic cell 

is said to have formed because of the electron flow between the metals. The less corrosion-

resistant metal acts as the anode and its corrosion is increased compared to the metal 

behaviour when a galvanic cell is not formed. On the other hand, the more corrosion-resistant 

metal corrodes a little or not at all because it acts as the cathode in the cell. The galvanic 

effect can be reduced or eliminated by insulating dissimilar wherever practicable in a 

conductive solution, selecting combinations of metals whose electrochemical potentials are 

very close in the galvanic series [100]. 

2.6.4.3  Crevice 

This type of corrosion is a localised attack and it occurred within the crevices and other 

shielded areas on metal surfaces exposed to corrosives, especially environments that are rich 

in chloride ions [100, 101]. Deposits such as sand, dirt, corrosion products and other solids do 
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cover the crevice thereby leaving small volume of stagnant solution underneath. For crevice 

corrosion to occur, a crevice must be wide enough to permit liquid entry but sufficiently 

narrow enough to maintain stagnant zone [100]. The corrosion starts as uniform attack over 

the entire surface, including the interior crevice of a metal exposed to seawater. As the metal 

ions are formed, the electrons produced are immediately consumed by the oxygen therefore 

producing hydroxyl ions. After some time, the oxygen is depleted in the crevice because of 

the restricted convection. Consequently, oxygen reduction will stop therefore leading to 

production of excess metal ion because the oxidation of the metal continues.  For corrosion to 

continue in the crevice, there is migration of chloride ions which combine with the metal ions 

to form metal chloride. The metal chloride hydrolyses in water producing insoluble 

hydroxide and acid. The PH value in the crevice is lowered and the dissolution of metal is 

increased. The corrosion within the crevice is increased because of the concentration of 

chloride and hydrogen ions whereas the metal surface adjacent to the crevice suffers little 

corrosion. Metals that passivate especially, stainless steels are susceptible to this type of 

corrosion. The passive films are usually destroyed by high concentration of chloride or 

hydrogen ions within a small surface region [100, 102]. To avoid crevice corrosion, crevice 

must be avoided on the metal surface [101]. 

Pitting corrosion: this form of corrosion is similar to crevice corrosion except that it creates 

its own holes. These holes may be small or large in diameter, but in most cases they are 

relatively small and their growth is in the direction of gravity. Pitting is one of the most 

destructive and insidious forms of corrosion. Just like the crevice form of corrosion, pitting is 

an autocatalytic process [100]. This means that the corrosion process within a pit produce 

conditions that are both stimulating and necessary for the continuing activity of the pit. Also, 

the mechanism is as a result of oxygen depletion leading to concentration of chloride ion 

within a localised area on the surface of anode (corroding metal). As explained before, this 
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may lead to increased metal dissolution due to high concentration of hydrogen ion and 

chloride ion resulting from hydrolysis of metal chloride in the localised area. Pitting is mostly 

associated with stagnant conditions such as corrosive liquid trapped in pipe. However, if the 

liquid is flowing through pipe, the chance of pitting formation is low because the locally high 

concentration of chloride and hydrogen ions will be swept away by the flowing liquid [49, 

100]. Pitting is very common in stainless steels, particularly type 304 and 316, when exposed 

to chloride rich solutions [103, 104]. The effect of pitting can be reduced by addition of some 

useful alloying elements into their compositions [105]. The effects of each alloying element 

on the corrosion resistance of stainless steels are summarised in Table 2.8. 

Table 2.8 Effects of alloying on pitting resistance of stainless steel alloys [100] 

Element Effect on pitting resistance 

Chromium Increases 

Nickel  Increases 

Molybdenum Increases 

Silicon  
Decreases but increases when present with 

Molybdenum 

Sulphur Decreases 

Carbon Decreases especially in sensitised condition 

Nitrogen  Increases 

 

2.6.5 Review of the past works on corrosion behaviour of Inconel 625 and tungsten 

carbide reinforced Ni based alloy composite coatings 

Many authors have reported on the corrosion behaviour of Inconel 625 powder deposited by 

thermal spraying techniques but significantly few articles are found using laser cladding as 

the coating technique. Tuominen et al. [106] investigated the electrochemical performance of 

Inconel 625 powder coatings deposited by HVOF and laser cladding techniques in de-aerated 
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3.5% NaCl solution. As shown in Figure 2.36, the laser deposited coating demonstrated better 

corrosion resistance in terms of lower passive current density and higher breakdown potential 

and corrosion potential. The relative lower performance of HVOF coating was attributed to 

inhomogeneous coating structure caused by pores and oxides formation and presence of 

interconnected paths in the coating deposition. 

 

Figure 2.36: Cyclic polarisation curves for laser clad and HVOF sprayed coatings of 

Inconel 625 powder in 3.5% NaCl solution [106]. 

 

However, the microstructure of the laser coating is unaffected therefore it is relatively more 

uniform. A rapid rise in the current density of HVOF coating after passive region signifies the 

occurrence of localised corrosion (pitting). The cause was found to be massive Fe dilution in 

the coating resulting in inability to form a dense oxide layer on top of the coating. Ahmed et 

al. [107] studied the corrosion performance of wrought Inconel 625, HVOF deposited Inconel 

625 powder coating and laser surface remelted HVOF Inconel 625 powder coating with the 
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purpose of providing a more detailed understanding of how specific microstructural features 

result in the performance gap between bulk and sprayed Inconel 625. 

 

 

Figure 2.37: Potentiodynamic scans of wrought Inconel 625, HVOF sprayed Inconel 625 

coating and laser treated HVOF sprayed Inconel 625 coating in 0.5M H2SO4 acid 

solution [107]. 

 

As shown in Figure 2.37, it was discovered that the HVOF coating exhibited much higher 

current density but the HVOF coatings subjected to laser surface remelting are found to have 

a lower passive current density close to that of wrought material. Laser surface melting of 

HVOF coatings of Inconel 625 eliminates the performance gap due to the elimination of both 

porosity and localised regions of material depleted in Cr in HVOF coatings. This observation 

is similar to the findings of Shrestha and Sturgeon [108] who established that the corrosion 

performance of thermally sprayed Inconel 625 powder coatings could, at best, match the 

performance of wrought  stainless steel (type 316). 
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Though there are several published articles on the wear performances of tungsten carbide 

reinforced Ni-based alloy composite coatings the corrosion behaviour of the composite 

coatings has not been well researched. Cooper et al. [11] studied the corrosion performance 

of the WC-Inconel 625 powder composite coatings. The corrosion damage was found to be 

complex and mainly resulted from the galvanic couple mechanism between intermetallic 

carbides, and between these carbides and the Cr-depleted region of the Ni-matrix adjacent to 

the carbides. Corrosion also occurred as a result of galvanic couples between the partially 

dissolved WC and the Ni-matrix surrounding it.  An investigation of the corrosion and wear 

performances of the HVOF-sprayed Inconel 625 and WC-Inconel 625 coatings by high 

power diode laser treatments has also been undertaken [17]. The type of corrosion 

mechanism found in these coatings is similar to the findings of Cooper et al [11]. The 

corrosion behaviour of the HVOF-sprayed composite coatings improve by homogenisation of 

their microstructure after laser treatments.  
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2.7  Summary of the literature review  

Laser 

 In the production of fibre laser, optical fibres are usually doped with rare earth ions 

such as erbium (Er
3+

), neodymium (Nd
3+

), ytterbium (Yb
3+

), thulium (Tm
3+

), or 

praseodymium (Pr
3+

). Ytterbium doped fibre lasers have been found as the most 

powerful. In general, fibre laser can produce beam of a very high power because fibre 

laser beam can be focused to a very small spot. 

Wrought Inconel 625 

 The superalloys (i.e. nickel-iron, cobalt- and nickel-base alloys) are specifically 

developed to retain high mechanical strength and high resistance against surface 

degradation at temperatures up to ~85% of their melting points. They are 

mechanically strengthened by solid solution strengthening and/or precipitation 

hardening and/or carbides precipitates.  

 Inconel 625 is a non-magnetic Ni-based superalloy containing significant proportion 

of Cr (20-23 wt. %), Mo (8-10 wt. %) and Nb (3-4 wt. %). It derives its unique 

mechanical properties such as high temperature strength, and creep-rupture strength 

mainly from the solution strengthening effect of the refractory metals, niobium and 

molybdenum in a FCC nickel (𝛾) matrix. Additional strengthening of the alloy is the 

precipitation hardening effect resulting from the formation of intermetallic 

compounds (i.e. ordered 𝛾′ and 𝛾′′) at high temperature in the continuous 𝛾 matrix. A 

small volume of carbide phases (M23C6, M6C, MC, etc) which can be present as 

globular, script or blocky grain boundary particles also provides additional strength to 

the superalloy. 
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 The high corrosion and oxidation resistance of Inconel 625 is derived from the high 

Cr (20-23%), Mo (8-10%) and Nb (3-4%) content of the superalloy. Cr forms Cr2O3 

with the atmosphere thus passivates the surface of the alloy against oxidizing 

environment, Mo and Ni resist any form of non–oxidizing corrosion. Nb stabilizes the 

alloy against sensitization at high temperature by preventing Cr from reacting with 

carbon thus avoiding any form of inter-granular corrosion at the grain boundaries. 

 The weldability of nickel-base superalloys including Inconel 625 is largely influenced 

by the composition of 𝛾′ forming element in the alloys.  Depending on its volume 

fraction, the 𝛾′ precipitate along the grain boundaries in the weld heat affected zones 

may result in hot cracking and post weld heat treatment (PWHT) cracking. Inconel 

625 is considered very weldable because the sum of the 𝛾′ forming element (i.e. 2Al + 

Ti) present in the alloy is much lower than 6wt. %. 

 WC is an extremely hard (1780Kg/mm
2
) ceramic having a melting point of 2720

o
C 

and quite stable at elevated temperature (2600
o
C). WC is much denser (15.63g/cm

3
) 

than any other commonly used carbide such as TiC, SiC and Cr3C2, thus having a 

higher powder flowability and catchment efficiency for laser cladding process. It has 

good wettability with Ni alloys 

Laser cladding 

 Laser cladding has several advantages over other competing coating deposition 

techniques such as plasma cladding, arc welding and thermal spraying. These include 

strong metallurgical bonding at the clad-substrate, minimal distortion of the substrate, 

low substrate dilution, minimal porosity and controllable heat input often producing a 

small heat affected zone (HAZ) and greater processing flexibility. 
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 Laser cladding with wire has not been widely used as powder feeding method. 

However, wire, as feedstock material, has a number of advantages over powder for 

laser cladding applications such as component surface modification, repair, 

manufacture and feature addition. Wire gives higher deposition rate, lower clad 

surface roughness and cleaner process environment, reduced material economy and 

lowers the processing cost and clad gas porosity content.  

 Laser cladding, especially using wire as the feedstock material, is sensitive to changes 

in processing conditions. Therefore, determining suitable processing conditions for 

attaining stable process is essential for producing high quality clads. 

 Laser cladding with front feeding orientation has been established as a better practice 

for both wire and powder feeding. Front feeding method produces process of higher 

powder catchment efficiency of about 20-45% and clads of improved surface 

roughness for both wire and powder since there is lower meltpool disturbance with 

this set-up.   

 Three wire tip positions in the meltpool have been identified. The leading edge for 

smaller wire diameter (Ø 0.8mm) and aiming at the centre of the meltpool for wire of 

about Ø 1.2mm can produce good deposits and stable processes whereas placing the 

wire tip at the trailing edge will produce irregular tracks. 

 It is found that wire feeding angle range of 20-60
o
 will produce good clad quality and 

stable process for front feeding orientation. 

 Laser cladding of metal matrix composite (MMC) coatings has been extensively 

researched, particularly WC-Ni based alloy composites, for improved wear resistance. 

The feedstock materials are usually pre-mixed powders.  
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Microstructure  

Inconel 625 coatings 

 The solidification mode and grain size in the microstructure of solidifying coatings 

are determined by the temperature gradient and solidification growth rate. In laser 

cladding, the cooling growth rate is rapid therefore the microstructure is somewhat 

finer and mostly dendritic compared to other coatings made by other techniques. 

 Usually, the microstructure of laser deposited Inconel 625 powder is finer and 

dendritic in morphology. The cracking tendency is very low because of the high 

ductility resulting from high Ni composition of the alloy. XRD has revealed 

continuous γ-Ni dendrites with some precipitates formation at the interdendritic 

regions. The precipitates, depending on the composition of the alloy, can be Laves or 

NbC. EDAX results showed that these precipitates are richer in Mo and Nb. 

Ni based alloy tungsten carbide reinforced composite coatings 

 Few authors have reported on the WC-Inconel 625 composite coatings, however, 

extensive work had been reported on Ni based alloys tungsten carbide reinforced 

composite coatings. The microstructure is more complex due to the dissolution of the 

hard tungsten carbide particles. XRD has revealed the formation of various secondary 

(intermetallic) carbides including M6C, M23C6, etc in the coating. The M6C usually 

appears as blocky carbide randomly formed within the continuous γ-Ni matrix 

whereas the M23C6 appears as tiny film in the interdendritic region. Other phases 

usually present are WC phase and tungsten rich W2C phase. 

 The extent of tungsten carbide particle dissolution increases with increasing the 

quantity of the particle injected and the amount of heat energy available for meltpool 
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creation. The more the dissolution, the greater the amount of the secondary carbides 

formed and the higher the cracking propensity of the coating. 

 

Corrosion properties 

Inconel 625 coatings 

 Inconel 625 powder coatings shows excellent resistance to corrosion in both acidic 

and chloride rich environments. Compared to thermal sprayed coatings, laser coatings 

made of Inconel 625 powder shows improved resistance to corrosion in 3.5% NaCl 

solution. The corrosion is usually a uniform attack.  

 The main contributing factors to the corrosion performance of Inconel 625 coatings 

are pores formation, the extent of Cr depletion in the continuous γ- Ni matrix and the 

amount of Fe dilution in the coating. These factors have deteriorating effect on the 

corrosion. 

 

 

Ni based alloy tungsten carbide reinforced composite coatings 

 The corrosion behaviours of Ni alloy tungsten carbide reinforced composite coatings 

are largely influenced by the micro-galvanic and interfacial mechanisms, as well as 

amount of porosity present in the coatings 

 WC-Inconel 625 coatings exhibited increased uniform corrosion damage compared to 

Inconel 625 alloys coating in seawater application. This was traced to the presence of 

different secondary carbides of different electrochemical potentials in the 

microstructure of the composite coating. 
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2.8 Gaps in Literature 

Despite the extensive work that has been undertaken on the laser cladding of Inconel 625 and 

WC/Ni-alloy MMC, there are still issues that need to be resolved. Based on the literature, it 

was discovered that: 

 An investigation of the process stability and characterisation of fibre laser cladding of 

Inconel 625 using wire as the feedstock material has not been achieved. 

 The effects of the processing parameters including laser power, traverse speed and 

wire feed rate on the geometry and microstructure of the Inconel 625 wire laser 

deposited coating have not been investigated. 

 The corrosion performance of laser clad Inconel 625 wire has not been investigated. 

 Tungsten carbide reinforced Ni based alloys composite laser coatings have been 

extensively studied for wear performance. The electrochemical properties of these 

coatings have not been well researched. 

 Till date, no literature on the study of laser deposition of metal matrix composite 

coatings has reported a case where metal matrix binder is fed in wire form with the 

aim of promoting the wettability at the ceramic-matrix interface. This is probably due 

to the high sensitivity of wire cladding process to the change in the processing 

parameters. 

 Inconel 625 alloy either in powder or wire forms has not been extensively used as the 

matrix binder for MMC coatings. As a result, the study of the microstructure of the 

tungsten carbide/Inconel 625 alloy composite laser coating at varying processing 

parameters has not been presented. 
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 The corrosion performance of the WC-Ni based alloys is affected by the complex 

galvanic couple mechanism occurring due to microstructural modification and 

compositional inhomogeneity resulting from carbide dissolution.  The direct effect of 

the amount of the tungsten carbide dissolution on the hardness and corrosion 

performance of the composite coating has not been explored. 
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3.0 Methodology 

3.1 Introduction 

This chapter details the materials and equipment used in the experimental work explored in 

this thesis. Processes including the laser cladding of Inconel 625 wire, Inconel 625 powder, 

and concurrent laser cladding of Spherotene (WC/W2C) powder-Inconel 625 wire composite 

as well as the parameters used for each experiment are presented. Process characterisation, 

geometrical characterisation, dilution analysis, microstructural characterisation and corrosion 

measurements of the samples were done using various methods. The procedure for each 

method is described in this chapter. 

3.2  Materials 

3.2.1 AISI 304L stainless steel (substrate) 

Austenitic stainless steel AISI 304 supplied by Smith Metals Nottingham was used as the 

substrate material. Plates of dimension 100 mm ×180 mm × 6 mm were prepared and then 

grit blasted and degreased with acetone before the cladding process so as to improve the 

substrate surface laser absorptivity and remove contaminants respectively. The chemical 

composition of the stainless steel, as received, is given in Table 3.1. 

Table 3.1: Chemical composition (wt. %) of AISI 304L stainless steel 

Ni Cr Mn Si Fe C P S 

7.86 18.58 1.78 0.42 71.15 0.08 0.10 0.03 
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3.2.2 Inconel 625 wire 

Inconel 625 wire of diameter 1.2 mm was supplied by VBC group, Loughborough, UK. The 

chemical composition of the wire, as received, is shown in Table 3.2. The chemical 

composition, especially the Fe content (0.14 wt. %) is within the limiting range of the alloy 

625, as given in Table 2.1 in chapter 2.3.2. 

Table 3.2: Chemical composition (wt. %) of Inconel 625 wire (as received) 

Ni Cr Mo Nb Fe C Al Ti 

64.56 22.46 8.84 3.46 0.14 0.02 0.26 0.26 

 

3.2.3 Inconel 625 powder 

Gas atomised Inconel 625 powder was obtained from Laser Cladding Technology, Sheffield, 

UK. The chemical composition of the powder, as determined by Energy Dispersive X-ray 

(EDX) analysis, is presented in Table 3.3. The values presented in Table 3.3 are averages of 

five measurements. The composition is within the limiting chemical composition of the alloy 

and very close to the values presented in Table 3.2.  

Table 3.3: Chemical composition (wt. %) of Inconel 625 wire (as received) 

Element Ni Cr Si Fe Nb Mo 

Mean 63.4 22.0 0.4 0.2 3.9 10.2 

Standard 
deviation 

± 0.6 ± 0.2 ± 0.1 ± 0.1 ± 0.3 ± 0.4 

 

As defined by the supplier, the powder particle size range was 35-140 µm. The powder is 

spherical in shape. Figure 3.1a shows the morphology of the Inconel 625 powder, as received 

from the supplier.  
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Figure 3.1: The morphology of the as-received (a) Inconel 625 powder and (b) 

Spherotene 

 

3.2.4 Spherotene (WC/W2C) powder 

The WC/W2C powder, commercially named as Spherotene, was supplied by Technogenia, 

France through laser cladding technology, Sheffield, UK. The powder is nearly spherical as 

shown in Figure 3.1b. It was produced using a unique, patented process called cold crucible 

induction fusion system. The powder size range is 40-260µm, as defined by the 

manufacturer. 

3.3  Powder size distributions 

The powder size distribution was determined using a Malvern Mastersizer-S (Malvern 

Instruments Limited, Malvern, UK). The powders are dispersed and circulated by water 

through the machine. The powder particles pass through the laser beam (optical unit) causing 

the light to scatter. The Mastersizers’ optical unit (comprises annular detectors) capture the 

actual scattering pattern from a field of particles. Based on the Fraunhofer diffraction model, 

the powder size is predicted from the scattering pattern (called measurement) of the light 

beam. The raw data contained in the measurement is analysed by the Malvern software (V 
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Fig 2 : WC Powder  (a) before deposition and (b) in a solidified coating
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2.18) interfaced with Mastersizer-S to obtain results in the form of particle vol % in different 

size ranges. 

3.4 Laser processing – Experimental set-up 

The laser cladding experiments were carried out with a 2-kW Ytterbium doped fibre laser 

(IPG Photonics) operating at 1070 nm ± 6 wavelength. The beam was focused to a round spot 

of about 3.1mm at 20 mm away from focus giving a 212 mm working distance with a 

Gaussian energy distribution. The fibre laser head (Prectec YW50) was mounted on a 4-axis 

gantry system with a worktable controlled by CNC. To prevent oxidation, all the deposition 

runs were performed inside a transparent enclosure which was evacuated and back-filled with 

high purity argon gas supplied at 25 l min
-1

.  A WF200DC wire feeder (Redman Controls and 

Electronic Ltd) and a Miller Thermal (Model 1264) powder feeder were used for all the 

depositions made in this work. The detailed procedure and the selected range of processing 

parameters for each laser cladding process are explained in the following sections. 

3.4.1 Laser deposition of Inconel 625 wire single tracks 

The objectives of the experiment were to: 

1) Develop a stable process for Inconel 625 wire laser cladding. This includes the 

development of a process window within which continuous laser tracks of Inconel 

625 can be deposited.  

2) Investigate the process characteristics of Inconel 625 wire laser cladding within the 

developed process window 

3) Control the Fe dilution in the deposited tracks which is known to affect corrosion 

properties.  
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4) Investigate the microstructural features of the tracks at a range of processing 

parameters, hence, determine their effect on the micro-hardness of the tracks. 

Figure 3.2 shows a picture of the experimental set-up for this experiment. Inconel 625 wire 

was “front fed” at an angle of 42
o 

±1 to the horizontal
 
so as to aim the wire tip at the centre of 

the meltpool. Single track depositions were performed at varying laser cladding parameters. 

Prior the start of the depositions, a working distance of 10 mm was kept between the 

substrate and the feed wire tip. In order to make sure that the substrate temperature is close to 

the room temperature for each deposition run, a minimum of 5 minutes cooling time was 

allowed between two successive runs. Also, a space of 10 mm was allowed between two 

consecutive tracks on the same plate. The ranges of processing parameters used were selected 

following preliminary trials so as to reduce the number of experimental runs required. The 

utilised parameters are given below: 

Laser power (kW) – 1, 1.2, 1.4, 1.6, 1.8 

Traverse speed (mm min
-1

) – 100, 200, 300 

Wire feed rate (mm min
-1

) – 400, 600, 800, 1000, 1200 
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Figure 3.2: Experimental set-up for Inconel 625 wire laser deposition 

 

 

Single tracks were deposited with combinations of laser powers and traverse speeds at 

varying wire feed rates ranging from 400 mm min
-1

 until stubbing was observed i.e. the wire 

hitting the substrate. This process was repeated for all possible parameters (i.e. processing 

conditions) within the selected range of laser power and traverse speed (totalling 84 

processing conditions). Two tracks were deposited at each processing condition to provide a 

degree of verification. Table A1 in Appendix A presents the processing conditions employed 

in this experiment.  

3.4.2 Laser deposition of Inconel 625 powder single tracks 

The objectives of this experiment are to: 

1. Deposit continuous single laser tracks of Inconel 625 powder at the processing 

conditions comparable with those utilised for the Inconel 625 wire laser cladding 

described in section 3.4.1. 
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2. Compare the laser cladding processes with wire and powder feeding system in terms 

of track qualities including degree of substrate (Fe) dilution ratio, microstructural 

evolution, micro-hardness and corrosion behaviour.  

3. The economy of the two processes will also be compared. 

Single laser tracks of Inconel 625 powder were deposited with an experimental set-up similar 

to the one in section 3.4.1 except that the wire feeding system was entirely replaced with the 

powder feeding system. The powder was fed by argon gas into the meltpool through a Praxair 

(Model 1264) powder feeder. The side-fed powder nozzle was oriented at 67

 to the 

horizontal so as to improve the deposition efficiency of the powder. The ranges of laser 

power and traverse speed used were similar to those utilised in section 3.4.1 above. However, 

due to the lower deposition efficiency of the powder, compared with the wire, the powder 

feed rate (PFR) was ranged between 10 and 30 g min
-1

. Table A3 in Appendix A presents the 

varying processing conditions utilised for the laser cladding of Inconel 625 powder. 

3.4.3  Laser cladding of Spherotene (WC/W2C) powder -Inconel 625 wire composite  

The objectives of the experiment are to: 

1) Deposit continuous and well bonded WC/W2C powder-Inconel 625 wire composite 

tracks that are crack- and pore-free. 

2) Study the effects of Spherotene powder injection on the process characteristics of  

Inconel 625 wire laser cladding  

3) Investigate the extent of Fe dilution and Spherotene particle dissolution in the 

composite tracks as a function of the processing parameters. The results obtained 

from these will be related to the micro-hardness and corrosion performance of the 

tracks.   
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4) Identify the phases present and determine their effects on the micro-hardness and 

corrosion behaviour of the tracks.  

 

Figure 3.3 shows a picture of the concurrent wire and powder laser deposition system used in 

this work. The wire was “front fed” (ahead of the laser) at an angle of 42
o
±1 to the horizontal

 

so as to aim the wire tip at the centre of the meltpool. Spherotene powder was simultaneously 

back-fed into the meltpool by argon gas flowing at 10 l min
-1

. The powder nozzle was set to 

an angle of 67
o
 to the horizontal. Single tracks were deposited at all processing conditions 

used for the Inconel 625 wire laser deposition except for those where wire stubbing was 

observed. The processing conditions are listed in Table A4 in Appendix A. In order to 

effectively study the extent of the Spherotene dissolution as a function of the laser power, 

traverse speed and wire feed rate, the powder feed rate was kept constant at 25 g min
-1

 

throughout this experiment. 

 

Figure 3.3: Experimental set-up for WC/W2C powder-Inconel 625 wire laser deposition 

 

3.4.4  Laser cladding of overlapped-track layers   

Overlapped-track layers of Inconel 625 wire, Inconel 625 powder and WC/W2C powder-

Inconel 625 wire composites were made from the continuous single tracks using the 
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procedures described in sections 3.4.1, 3.4.2 and 3.4.3 respectively. 60% overlapping ratio 

was used and at least five parallel tracks were deposited in each case. 

3.4.5 Combined deposition parameters for the process map 

One of the aims of this work is to develop maps which predict the process characteristics of 

Inconel 625 wire laser cladding and concurrent laser cladding of Spherotene powder-Inconel 

625 wire within a process window. In order to accommodate all the main processing 

parameters (i.e. laser power, traverse speed and wire feed rate) in the process maps, combined 

processing parameters was applied. Laser energy per unit length of track (EL) in J mm
-1

 and 

wire deposition volume per unit length of track (Wvol) in mm
3
 mm

-1
 were determined from 

equations 3.1 and 3.2 respectively. In the equations, P is the laser power in Watts, V is the 

traverse speed in mm min
-1

, WFR is the wire feed rate in mm min
-1

 and A is the cross-

sectional area of the feed wire in mm
2
.  

V

P
60EL 

                                      (3.1) 

                   V

WFRA
Wvol


                                (3.2) 

3.5 Track geometry: height and width measurement 

Typical track geometry is described in Figure 3.4 where H is the track height (mm), h is the 

depth of meltpool (mm), W is the track width (mm) and β is the contact angle (degrees). The 

heights and widths of the deposited tracks were measured using surface profiler Taylor 

Hobson Precision Machine (Talysurf CLI 1000).  

The surface profiler traversely scanned each track at three equally spaced points within a set 

travel range of 50 mm. With the aid of Talysurf CLI 1000 software, each track profile was 
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displayed graphically and levelled so as to eliminate errors due to distortion of the substrate 

after laser processing. The heights and widths at the three points along the length of a track 

were displayed on the profile. The three heights were averaged and the three width values 

were also averaged. The mean values represent the height and width of the track. The contact 

angle or clad angle was determined using equation 3.3 [52]. 

 
Figure 3.4: Typical track geometry 

                                             









W

2H
2arctanβ                                       (3.3) 

3.6 Metallographic techniques and sample preparation 

Each track sample underwent standard procedures of specimen preparation including cutting, 

mounting, grinding, polishing and etching. Thereafter, microstructural analysis and hardness 

tests were conducted.  

3.6.1 Cutting, mounting, grinding and polishing of samples 

In order to investigate the microstructural features across the track length, 10 mm long 

samples were transversely and longitudinally cut from the deposited tracks. The cuts were 

made around the mid-length of the track because experience has shown that it takes 2-3 

seconds for laser deposition process to become stable. Figure 3.5 describes how the tracks 

were sectioned.  
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For the purpose of carrying out X-ray diffraction analysis, some selected samples were 

further cut such that a planar surface was produced on the top of the samples. All samples 

were cut using wire electro-discharge machining (wire-EDM) and cut-off machine. There 

were no significant microstructural changes after cutting with EDM and if any change was 

present, it was removed after grinding and polishing of the samples.  

 

Figure 3.5: Sectioning of a track sample in (a) longitudinal and (b) traverse direction 

The cut samples were hot mounted in conductive resin. The mounted samples were 

sequentially polished with SiC papers of grades 240, 400, 800 and 1200 using a Struers 

Labopol-21 grinding machine. Thereafter, ground samples were polished using a 1 m 

diamond paste.  

3.6.2  Etching 

The samples were examined in polished and in etched conditions depending on 

microstructural features intended to be studied. Polished samples were etched electrolytically 

with 70% orthophosphoric acid in water with the cathode and anode being a stainless steel 

plate and the track sample respectively. The voltage was set at 6 V for 3-5 seconds depending 

on the time taken for the desired microstructure feature to be clearly revealed.   

(a)
(b)
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3.7 Metallographic techniques  

3.7.1 Optical microscopy 

Optical microscopy was utilised to reveal the microstructure of the samples. The grain growth 

and directions of the deposited samples were clearly revealed using a Nikon optical 

microscope with objective lens of 5, 10, 20 and 40 X.  The DXM1200F digital camera of the 

microscopy was connected to computer acquisition software so as to clearly view, capture, 

record and store the micrographs of samples in digital form. In order to obtain optimum 

resolution of the track microstructures, contrast was enhanced by adjusting the dark field 

illumination, polarised light and the phase contrast of the microscopic system.  

3.7.2  Scanning electron microscopy 

Further microstructural examination was performed on polished samples using scanning 

electron microscopy (SEM; FEI XL30) with both secondary electron (SE) and backscattered 

electron (BSE) signals. SEM was also used in combination with energy dispersive X-ray 

(EDX) so as to determine the elemental composition of microstructural features (or phases) 

observed in the track samples. 

3.7.3  X-ray diffraction 

X-ray diffraction (XRD) was utilised in order to identify the phases present in the track 

samples and determine their crystal structures. A Bruba D500 with Cu-Kα radiation of 

wavelength 0.1 nm was used. For all the analysis, XRD scans were performed at 40 kV with 

a step size of 0.01
o
 and a dwell time of 5.6 seconds per step in the 2θ range of 25-110

o
. 
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3.8  Dilution measurement 
 

Dilution of the Inconel 625 wire and Inconel 625 powder tracks were measured from the 

compositions of the track samples. Track samples were examined by scanning electron 

microscopy (SEM) using the BSE signal. Energy dispersive X-ray analysis was then utilised 

to determine the elemental composition of the sectioned track samples by conducting 200 μm 

x 200 μm  area scan along and across the track height, as shown in Figure 3.6.  Since Fe is the 

solvent element of the substrate and its content in Inconel 625 is nearly negligible, the 

dilution ratio was calculated from the increased Fe content in the deposited tracks. The 

average of Fe composition (wt.%) obtained from the scanned areas within a track area above 

the clad-substrate interface was determined. Thereafter, the clad-substrate dilution (D) was 

estimated using equation 3.4 [86]. 

 

Figure 3.6: SEM micrograph showing EDX area scan analysis conducted on a 

transversely sectioned Inconel 625 wire track 
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Where ρA and ρS are the densities in g mm
-3

 of the additive and substrate materials 

respectively. XT and XS are the mean weight percentage of Fe in the track and substrate 

respectively while XA is the weight percentage of Fe in the additive material. In this case, it is 

Inconel 625.  

3.9 Spherotene powder deposition efficiency 

The powder deposition efficiency in the composite tracks was determined using weighing 

method. However, the following underlying assumptions were made for this method. 

 The flow of powder is constant throughout the deposition process 

 There is zero dissolution of the injected Spherotene powder 

 Volume change during solidification process is negligible 

The step by step procedures for determining the Spherotene powder deposition efficiency are 

described below. 

(1) Mass of the substrate: Firstly, the volume (length × width × height, mm
3
) of the 

substrate was calculated and the result was multiplied by its density (8.0 × 10
-3

 g mm
-3

) to 

give the mass (g) of the substrate. Alternatively, the mass of the substrate was confirmed by 

weighing the substrate plate before the deposition. The mass difference in the results obtained 

from the two methods was negligible. The mass of the substrate was denoted as M1. 

(2) Mass of the deposited wire: 80 mm long Inconel 625 wire single track was deposited on 

the substrate whose weight had been pre-determined as M1. The deposited Inconel 625 wire 

track and the substrate were weighed and the mass (g) was recorded as M2.  The mass (g) of 

the deposited wire (Mwire) was determined as shown in equation 3.5. 

12wire MMM                                             (3.5) 
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(3) Mass of the Spherotene powder captured: Spherotene powder-Inconel 625 wire 

composite single track of length 80 mm was deposited on another but similar substrate of 

mass M1. The processing parameters used in step 2 above were the same except for the 

concurrent injection of Spherotene powder at PFR of 25 g min
-1

. The composite track 

including the substrate was weighed and the mass (g) was recorded as M3. The mass of the 

powder captured (MPC) was determined by mass difference as illustrated in equation 3.6. 

                                    23PC MMM                             (3.6) 

(4) Mass of Spherotene delivered: The mass of the Spherotene powder delivered (MPD) 

from the nozzle was calculated from the equation 3.7.  

                                     
V

LPFR
MPD


                            (3.7) 

L in equation 3.6 is 80 mm and it is the length of the composite track. V is the traverse speed 

in mm min
-1

. 

(5) Spherotene powder deposition efficiency: The Spherotene powder deposition efficiency 

(Peff) was determined using equation 3.8. 

                                100
M

M
P

PD

PC
eff                                    (3.8) 

3.10 Spherotene (WC/W2C) volume fraction 

3.10.1 Volume fraction of Spherotene captured in the composite track 

The percentage fraction of the volume of the Spherotene captured to the total volume of the 

composite track was defined as the volume fraction of the Spherotene captured. However, the 

following underlying assumptions were made in its calculation. 
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 There is no dissolution of Spherotene powder in the composited track 

 There is no volume expansion in the track 

 The flow of Spherotene is constant throughout the deposition 

 There is negligible substrate dilution 

The procedures involved are:  

(1) Volume of Spherotene Captured (VPC): The volume spherotene captured was 

determined by multiplying the mass of the Spherotene captured (MPC) by the density of the 

Spherotene powder (16.3 × 10
-3

 g mm
-3

). 

(2) Volume of the wire deposited (Vwire): Likewise, the volume of the Inconel 625 wire 

deposited was found by multiplying the mass of the wire deposited (Mwire) by the density of 

Inconel 625 (8.44 × 10
-3 

g mm
-3

).  

(3) Volume fraction of Spherotene captured (VFPC): This was determined using the 

equation 3.9 below. 

100
VV

V
VF

wirePC

PC
PC 


                     (3.9) 

3.10.2 Volume of Spherotene retained in the composite track  

This was measured from the cross-sectional areas of the deposited composite tracks. At least, 

14 BSE/SEM micrographs, each at 200 × magnification, were taken with a scanning electron 

microscope at different parts of the transversely sectioned single track samples, as shown in 

Figure 3.7. The volume fraction of the retained Spherotene (VFPR) in each micrograph was 

analysed using Image J processing software. The software measures the percentage fraction 

of bright contrast to the entire track area in the micrograph. The retained Spherotene particles 

appeared much brighter than the matrix.  The recorded volume fraction of the Spherotene 
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retained in each composite track is an average of at least 14 measurements taken randomly 

across the track cross-section. 

 

Figure 3.7: A transversely sectioned WC powder-Inconel 625 wire single track showing 

measurement areas for image analysis of WC. 

 

3.10.3 Dissolution ratio  

The term ‘dissolution ratio’ in this study indicates the relative amount of Spherotene 

dissolution in the composite tracks. It was determined using equation 3.10. The difference 

between the volume fractions of the Spherotene particle captured and Spherotene particle 

retained is considered as the volume fraction of the Spherotene particle dissolved in the 

composite tracks.  

PC

PRPC

Ratio
VF

VFVF
 D


                                        (3.10) 

This ratio of this difference to the volume fraction of the Spherotene particle captured is the 

dissolution ratio. It was later converted to a percentage.  
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3.11  Pores and cracks identification 

The transverse and longitudinal cross-sections of the continuous track samples and the 

deposited overlapped-track layers of Inconel 625 powder, Inconel 625 wire and WC/W2C 

powder-Inconel 625 wire composite were polished. These samples were examined under 

SEM for the crack and pores identification.                    

3.12  Hardness measurements 

Micro-hardness tests were conducted on polished cross-sectional area of the track using a 

LECO M400 Vickers micro-hardness tester with a load of 300 gf (i.e. 5N) applied for 15 

seconds. The indentations were made, starting from the substrate, along the centreline of the 

transversely cut tracks up to the track top at 150 μm intervals. In the case of the composite 

coating, indentations were randomly made on the matrix and the retained Spherotene 

particles separately.  

3.13  Corrosion study 

The corrosion behaviour of the AISI 304L substrate and coatings of Inconel 625 (Inconel 625 

wire and Inconel 625 powder laser coatings, and concurrently fed WC/W2C powder-Inconel 

625 wire composite laser coatings) were investigated using open circuit potential and 

potentiodynamic polarisation tests. These tests were carried out for all the samples according 

to the guidelines stated in ASTM standards G5-94 and G61-86 respectively [109]. 

3.13.1 Sample preparation 

At least, four 100 mm
2
 square samples were cut, using EDM, from the overlapped track 

layers of each of the coatings whose corrosion behaviours were to be measured. The samples 

from each coating were ground to the same thickness (mid-height from the substrate). This 
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was done so as to reduce variations in the microstructures of the samples’ top surfaces. The 

results obtained from the microstructural characterisation of the deposits show that the 

solidification mode changed along the height of the track. Therefore, it is believed that large 

variations in the microstructure could significantly alter the corrosion results of the samples 

obtained from the same track layer.  Thereafter, the samples were hot-mounted in non-

conductive resin. A hole was drilled through the back of the hot-mounted sample until there 

was a contact with the material sample in the resin. The hole was threaded and a brass rod 

was screwed into the hole until an electrical contact was established between the specimen 

and the rod. Plastic tubing was used to prevent contact between the rod and the electrolyte 

during the tests. 

The mounted samples were sequentially polished with SiC papers of grades 240, 400, 800 

and 1200 and then polished to 1 m surface finish using diamond paste. The boundary 

between each of the samples and the mounting resin was covered by applying stop-off 

lacquer. The reason was to avoid the possibility of crevice corrosion effects on the corrosion 

results. 

3.13.2 Corrosion test 

Electrochemical measurements of all the samples were performed in saline media (3.5% 

NaCl) at room temperature using a three electrode cell, as shown in Figure 3.8. The 

electrolyte was de-aerated by nitrogen gas purging for at least 30 minutes prior to sample 

immersion in order to ensure that the experiment is carried out in an oxygen free 

environment. This continued throughout the experiment.  
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Figure 3.8: A schematic diagram of experimental set-up for three-electrode cell utilised 

for corrosion tests 

 

The sample, which is the working electrode (WE), was immersed in the electrolyte and was 

allowed to stabilise for 60 minutes before polarising the potential against a reference 

electrode. Ag/AgCl electrode and the platinum plate were used as the reference and counter 

electrode, respectively. With the use of a potentiostat (ACM instruments, Cumbria, UK), 

potentiodynamic polarisation scans were performed for all the samples with the sweep rate of 

20 mV min
-1

 from 1-hour open circuit potential (Eoc). The potential scanned over the range of 

-200 mV to 1500 mV. The corresponding current flow between the WE and the platinum 

counter electrode (CE) was recorded for each scan. After each scan, the corroded area of the 

sample was measured using image J processing software. The recorded current values were 

divided by the measured area to give current density (mA cm
-2

). The polarisation curve for 

each scan was plotted with potential (mV wrt Ag/AgCl electrode) as ordinate and logarithm 
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of absolute current density as abscissa. For each track layer, the tests were repeated at least 

three times to verify the reproducibility.  

Table 3.4: Parameters used for the corrosion measurement 

Symbol Meaning Unit 

Ecorr Corrosion potential mV 

Eoc Open circuit potential mV 

Eb Breakdown potential mV 

Ip passive current density mA cm
-2 

 

 

 

Figure 3.9: Representative polarisation curve and location of different parameters 

Table 3.4 defines the different parameters used for the corrosion study. The representative 

polarisation curve showing the locations of these parameters is presented in Figure 3.9. It is 
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essential to know that the corrosion potential (Ecorr) and open circuit potential (Eoc) have been 

used interchangeably in the literature. In this study, the Eoc is defined as the corrosion 

potential without the application of any external potential source whereas Ecorr is taken as the 

potential when there is no current flow at cathodic to anodic transformation during the 

polarisation scan with external voltage source.  
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4.0 Process, geometrical and microstructural characterisations 

of Inconel 625 wire and Inconel 625 powder laser cladding 

4.1 Introduction 

This chapter investigates the fibre laser cladding with lateral feeding of Inconel 625 wire and 

Inconel 625 powder on AISI 304L stainless steel. Firstly, optimisation of the Inconel 625 

wire laser cladding within a process window was performed and is reported. Secondly, 

geometrical and microstructural characterisations of the continuous tracks, produced within 

the process window, are detailed. The results presented include dilution ratio, melt depth into 

the substrate, microstructural evolution and micro-hardness as a function of the processing 

parameters. Thereafter, the geometries, microstructure and micro-hardness of a typical 

Inconel 625 wire track are compared with the similar track qualities of a corresponding 

Inconel 625 powder single laser track formed using a comparable processing condition. The 

results of the microstructural examination of (1) Inconel 625 wire and (2) Inconel 625 powder 

overlapped-track layers including coating-substrate interfacial bonding, pore and crack 

formation and dilution ratio are also presented. This chapter contains the results, discussion 

and a summary of the important findings for fibre laser cladding using Inconel 625. 

4.2 Laser deposition of Inconel 625 wire 

4.2.1 Laser deposition with wire: Process stability 

Single laser tracks of Inconel 625 wire (Ø 1.2 mm) were deposited using the experimental set 

up described in section 3.4 with the wire tip aiming at the centre of the meltpool. This was 

achieved by creating a laser spot on the substrate prior wire depositions. Thereafter, the wire 
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tip was set to the centre of the spot. Most of the depositions performed with the wire tip 

aiming at the meltpool leading edge resulted in discontinuous tracks, for example, as shown 

in Figure 4.1a. When the wire tip was aimed at the centre of the meltpool, continuous laser 

tracks were formed at appropriate processing parameters, as shown in Figure 4.1b and 4.1c. 

This indicates that the stability of the wire cladding process is dependent on the position of 

the wire tip in the meltpool.  

 

Figure 4.1: Macrographs of Inconel 625 wire (Ø1.2 mm) laser tracks formed with wire 

tip aiming at the (a) leading edge and (b-c) centre of the meltpool 

 

In order to determine a suitable process window for Inconel 625 wire laser cladding, trial 

experiments were conducted at various processing parameters with the wire tip aiming at the 

meltpool centre. The laser power was varied between 1.0-1.8 kW and the selected range for 

the traverse speed was 100-500 mm min
-1

. Laser deposition was performed at various 

possible combinations of laser power and traverse speed. For each combination, wire feed 

rate was gradually increased from 400 mm min
-1

 until wire stubbing was observed.  

One of the reasons for the choice of laser power (1.0-1.8 kW) was that maximum output 

power of the fibre laser used is 2.0 kW. Also, experience has shown that with low laser power 

and/or high traverse speed, successful laser cladding process is usually not possible because 

P = 1 kW, V = 200 mm min-1, WFR = 400 mm min-1
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of low laser energy density which may result in insufficient melting of the large volume of 

material fed into the meltpool.  

 

Figure 4.2: Photographs of discontinuous Inconel 625 wire laser tracks caused by the 

feed wire tip hitting the base of the meltpool therefore oscillating about the meltpool 

centre 

 

 

Figure 4.3: A photograph of poor quality tracks showing un-melted Inconel 625 wire at 

low laser power and extremely high traverse speed 

 

For example, as shown in Figure 4.2, most of the cladding conducted at <1.0 kW laser power, 

at varying traverse speed and wire feed rate selected for the trial experiment, produced 

discontinuous tracks. Likewise, as shown in Figure 4.3, nearly all the depositions conducted 

in the trial experiment using the selected range of laser power (1.0-1.8 kW) and wire feed 

rates from 400 mm min
-1

 with traverse speed above 300 mm min
-1

 produced poor quality (i.e. 

un-melted wire) tracks. The reason can be attributed to extremely low energy density at high 

traverse speed.  

P = 0.8 kW, V = 100 mm min-1, WFR = 600 mm min-1

(a): P = 1.2 kW, V = 500 mm min-1, WFR = 600 mm min-1

(b): P = 1.2 kW, V = 500 mm min-1, WFR = 800 mm min-1
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4.2.2  Laser deposition with wire: Process characteristics 

Following initial trials, a process window for the laser deposition of Inconel 625 wire was 

established as shown below.  

Laser power (kW):  1.0, 1.2, 1.4, 1.6, 1.8 

Traverse speed (mm min
-1

):  100, 200, 300 

Wire fee rate (mm min
-1

):  400, 600, 800, 1000, 1200 

Single laser tracks were deposited with combinations of laser power (P) and traverse speed 

(V) with varying wire feed rate (WFR). All combinations of the processing parameters are 

within the established process window. Figure 4.4 presents some examples of single laser 

tracks deposited on an AISI 304L substrate. 

At each processing condition, the behaviour of wire at the point of entering the meltpool was 

observed. Three behaviours of wire including wire dripping, smooth wire transfer and wire 

stubbing were noticed. The process characteristics were defined based on these behaviours. 

Wire dripping often termed as droplet transfer of wire is the intermittent dropping of wire 

into the meltpool. This was caused whenever the incident energy was excessive for the wire 

feed rate. On the other hand, wire stubbing occurred whenever the wire feed rate was 

excessive for the available incident energy. At this condition, the feed wire entered the 

meltpool un-melted therefore, hitting the substrate at the base of the meltpool.  The cladding 

process was considered to be characterised by smooth wire deposition each time there was 

smooth flow of wire into the meltpool.    
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Figure 4.4:  Examples of Inconel 625 wire single laser tracks deposited within the 

process window 

 

In order to provide some degree of verification, the process was repeated for all possible 

combinations of the processing parameters within the process window. Table A1 of 

Appendix A presents each processing condition (i.e., a combination of the laser power, 

traverse speed and wire feed rate) and the corresponding process characteristic (i.e. behaviour 

of the feed wire). The summary of the results of the geometrical characterisation of the 

Inconel 625 wire laser tracks is presented in Table A2 of Appendix A. This includes the 

height, width, cross-sectional area, aspect ratio and contact angle of the single tracks. 
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4.2.3 A process map  

As shown in Figure 4.5, a process map which characterises the results of Inconel 625 laser 

cladding at varying processing conditions was developed. The map is valid for the process 

window established earlier in section 4.2.2 using the experimental set-up presented in 

Chapter 3.4.1. Five different regions are defined in the map with 1-5 representing: dripping, 

dripping may occur, smooth wire deposition, stubbing may occur and stubbing regions 

respectively. In order to accommodate all the three main processing parameters (i.e. laser 

power (P), traverse speed (V) and wire feed rate (WFR)) in the map, the combined processing 

parameters defined in section 3.4.5 of chapter 3 were used. Energy per unit length of track 

(60P/V) in J mm
-1

 was plotted against wire deposition volume per unit length of track 

(A*WFR/V) in mm
3 

mm
-1

. ‘A’ represents the cross-sectional area (mm
2
) of the feed wire. 

Each processing condition is represented by a point on the map.  
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(1) Dripping, (2) Dripping may occur, (3) Smooth wire deposition, (4) Stubbing may 

occur and (5) Stubbing regions  

 

Figure 4.5: A process map showing the process characteristics of Inconel 625 wire laser 

cladding 

 

 

Figure 4.6: Typical laser tracks of Inconel 625 laser cladding 

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18

100 mm min 200 mm min 300 mm minTraverse speed :

E
n

e
r
g

y
 p

e
r
 u

n
it

 l
e
n

g
th

 o
f 

tr
a
c
k
 {

(
=

6
0

P
/

V
)
, 

 J
 m

m
-1

}

Wire deposition volume per unit length of track {(A*WFR/V), mm3 mm-1}

R

S

U

V

-1 -1-1

(a)

(b)

(c)

Wire dripping

Smooth wire
deposition

Wire stubbing
13 mm



Chapter 4                                                                                                                                115 

 

 

Table 4.1 presents the processing conditions and the corresponding process characteristics of 

the points spotted ‘R’, ‘S’, ‘U’ and ‘V’ on the map.  Points R and S are contained in the 

dripping region and the tracks produced at these conditions are discontinuous, for example, as 

seen in Figure 4.6. The typical examples of tracks deposited by the cladding processes 

characterised by smooth transfer of wire (see points U and V in the map) and stubbing of 

wire are also presented in Figure 4.6. As evidenced in Figure 4.6, continuous tracks were 

formed only when there was smooth wire deposition. More of the continuous tracks were 

formed at higher energy per unit length of track and lower traverse speed. As the traverse 

speed increases and energy per unit decreases, the region 3 (i.e. smooth wire deposition 

region) becomes narrower. 

Table 4.1: The processing conditions and corresponding process characteristics of some 

marked points on the map shown in Figure 4.5 

Point 

Laser 

power 

(kW) 

Traverse 

speed       

(mm min
-1

) 

Wire feed 

rate         

(mm min
-1

) 

Energy 

per unit 

length of 

track           

(J mm
-1

) 

Wire 

deposition 

volume per 

unit length 

of track         

(mm
3
 mm

-1
) 

Deposition 

process 

characteristic 

without powder 

injection 

R 1.8 100 400 1080 4.5 wire dripping 

S 1.6 100 400 960 4.5 wire dripping 

U 1.8 100 1000 1080 11.3 
smooth wire 

transfer 

V 1.6 100 1000 960 11.3 
smooth wire 

transfer 

 

The main objective behind the development of the process window and map was to determine 

and predict the processing conditions that produce continuous single tracks of Inconel 625 

wire. The conditions that were characterised with wire stubbing and dripping are unsuitable 

for Inconel 625 wire laser cladding. The ideal scenario (i.e. smooth wire deposition) was 

observed whenever the feed wire melted at the point or close to the point of its intersection 
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with the meltpool. At these conditions (i.e. those represented in region 3 of the process map), 

the feed wire flows smoothly and continuously into the molten pool.  

It is observed in the map that as the wire deposition volume per unit length of track increases, 

the cladding process characteristics change from wire dripping to smooth wire deposition to 

wire stubbing. This shows that at conditions where wire dripping was observed, the 

deposition process characteristics can be changed to smooth wire depositions by increasing 

the wire feed rate (i.e. wire deposition volume per unit length of track). Likewise, decreasing 

the wire feed rate at laser processing conditions where stubbing was observed can reverse the 

process characteristics to an ideal scenario.  

As the energy per unit length of track increases, region 1 (i.e. wire dripping) and region 3 

widen whereas region 5 (wire stubbing) becomes narrower. This is probably due to additional 

heat energy gained by the feed wire at increased energy per unit of length of track. The 

increased energy gain is believed to have expedited the melting of the wire therefore reducing 

the propensity of wire stubbing to occur.  

Region 2 (i.e. dripping may occur region) formed the boundary between the dripping region 

and smooth wire deposition region. Laser deposition processes performed at the conditions 

corresponding to this region produced inconsistent characteristics because each of these 

processes were characterised with dripping and smooth wire transfer effects after at least two 

trials. As a result, it was difficult to correctly classify them either into dripping or smooth 

deposition region.   

Also, region 4 is the boundary between smooth deposition region and wire stubbing region. 

Due to inconsistencies in their process characteristics, processing conditions that gave 

deposition run of wire stubbing effect and smooth wire transfer phenomenon after at least two 

different trials were grouped in this region. Finally, the map predicts that smooth wire 
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transfer may not be possible, with this arrangement, when cladding below energy per unit 

length of track of 200 J mm
-1

. 

4.3 Effects of the processing parameters on the dilution ratio of the 

Inconel 625 wire laser tracks 

The substrate dilution should be controlled because Fe contamination in the Inconel 625 

coatings affects its corrosion performance [82]. In this study, the dilution ratio of each 

continuous track was determined from the amount of Fe measured in the track area (see 

equation 3.4). The Fe wt. % compositions in the feed wire and the substrate are both known. 

The reason behind this is that Fe (71.5 wt. %) is the bulk element in the AISI 304L substrate. 

Therefore, the composition of the Inconel 625 wire in the meltpool can mainly be 

contaminated by Fe through inter-mixing of the molten wire with the substrate. The detailed 

procedure used for calculating the substrate dilution ratio in the tracks can be found in 

Chapter 3.8. Within the process window used in this study, the minimum and maximum Fe 

contents of the deposited tracks are 0.3 ± 0.1 and 21.8 ± 0.4 wt. % respectively. This gave 

dilution ratios of 0.2 and 24% respectively. The result of the dilution ratio for the Inconel 625 

wire laser tracks is presented in Table B1 of Appendix B.    

As presented in Figure 4.7, the result obtained from the elemental composition analysis (i.e. 

EDXA) established that the Fe content, hence, the percentage dilution of the examined track 

samples increases with increasing laser power and traverse speed but with decreasing wire 

feed rate.  
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Figure 4.7: Main effects plot for dilution ratio of Inconel 625 wire laser tracks 

The relative significance of the effects of each of the processing parameters on the track 

dilution ratio was studied using analysis of variance (ANOVA). Three levels of each 

parameter (i.e. laser power, traverse speed and wire feed rate) were selected for the analysis 

(see Appendix B). The ANOVA was achieved by analysing the mean dilution ratio of the 

tracks using Minitab software. The results were validated using the procedure described in 

Appendix B. Table 4.2 presents the degree of freedom (DOF), sum of squares (SS), mean 

square (MS), F value and P value calculated for each factor (i.e. the main processing 

parameters).  

Table 4.2: Analysis of variance for dilution in the Inconel 625 wire tracks 

Source DOF SS MS F P FCritical 

Laser power (kW) 2 261.9 130.94 20.39 0.000 3.4928 

Traverse speed (mm min
-1

) 2 74.4 37.20 5.79 0.010 3.4928 

Wire feed rate (mm min
-1

) 2 388.7 194.35 30.27 0.000 3.4928 

Error 20 128.4 6.42       

Total 26 853.4         

S = 2.47207               R
2
 = 85.80%         R

2
(adj) = 81.54% 

 

V
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 From Table 4.1, the F value for each factor was compared with the critical F value as found 

in standard F-tables (see Table B2 in Appendix B) [110] for a significance level of α = 0.05 

(95% confidence). When the computed F value is lower than the critical value at the selected 

level of significance, the factor does not contribute to the sum of squares within the 

confidence level. As a result, it is considered insignificant. As seen in Table 4.2, the DOF for 

each of the three factors is 2 whereas the error term has 20 DOF. Therefore, at 95% 

confidence, critical F value F (2, 20) was found to be 3.5 for each factor. The computed F 

value of each of the three factors is greater than the critical showing that each of the three 

main processing parameters significantly influenced the dilution ratio. Wire feed rate with an 

F value of 30.27 has the most significant influence whereas the traverse speed with an F value 

of 5.79 relatively has the least significant influence on the dilution ratio of the Inconel 625 

wire tracks. The F value for laser power is 20.39. R
2
 of 0.86 obtained for this analysis 

indicates that there is a good correlation between the factors and the dilution ratio. The 

interaction effect was not considered because the intention was to study the individual effect 

of each of the parameters on the Fe dilution from the substrate.  

4.4 Microstructural characterisation of Inconel 625 wire single laser 

tracks 

Defects such as porosity, cracking and poor fusion at the track-substrate interface are 

important problems in laser cladding. Therefore, preventing these defects during laser 

processing is crucial to depositing high quality tracks. All the continuous tracks deposited 

with smooth wire deposition characteristics (as found in region 3 of the process map shown 

in Figure 4.1) were transversely sectioned. It was found that all were free of cracks and pores, 

and had good fusion with the substrate showing that it is possible to deposit defect-free 
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Inconel 625 tracks by laser cladding with wire. Figure 4.8 presents the optical images 

showing the transverse sections of some of the continuous tracks.  

 

Figure 4.8: Etched optical macro-photographs of laser tracks cross-sections for Inconel 

625 wire on AISI 304 stainless steel at traverse speed of 100 mm min
-1

. P is laser power 

in W, V is traverse speed in mm min
-1

, WFR is wire feed rate in mm min
-1

 and A is the 

cross-sectional area of the wire (Ø=1.2 mm).   
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Figure 4.9: Etched optical macro-photographs of laser tracks cross-sections for Inconel 

625 wire on AISI 304 stainless steel at different traverse speeds 

 

Apart from the absence of these common defects in the track samples shown in Figure 4.8, 

visual observation of the cross-sectioned track samples in Figure 4.8 shows that melt depth 

into the substrate decreased whereas contact angle and track height increased with increasing 

wire deposition volume per unit length of track. Conversely, melt depth into the substrate 

increased but contact angle and track height decreased with increasing energy per unit length 

of track. Figure 4.9 shows that track height and contact angle significantly decreased with 

increasing traverse speed. However, melt depth into the substrate decreased slightly with the 

traverse speed.  

As seen in Figures 4.8 and 4.9, the meltpool shape for all continuous tracks is convex to the 

substrate. This is thought to result from the interruption of the laser beam by the feed wire 

pointing to the centre of the meltpool.  As a result, the substrate at the centre of the meltpool 

was obscured from the laser beam source and so less heating was experienced at the centre of 

the substrate.  

 

Figure 4.10: A schematic diagram showing the top view of the meltpool during laser 

cladding with wire 

 

Schematic diagram of the top view of the meltpool is shown in Figure 4.10.  Evidently, more 

heat energy was available to melt the substrate at regions A and B whereas region C is partly 

obscured from the laser beam by the feed wire. 
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4.4.1  Microstructural characterisation of Inconel 625 wire single laser tracks at low 

and high traverse speed 

In order to investigate the effect of traverse speed on the microstructural evolution of the 

Inconel 625 wire laser track, two typical single track samples were selected for metallurgical 

analysis. The selected track samples were deposited at low (P = 1.8 kW, V = 100 mm min
-1

, 

WFR = 600 mm mm
-1

) and high (P =1.8 kW, V = 300 mm min
-1

, WFR = 600 mm mm
-1

) 

traverse speed settings.  Both tracks were continuous. Optical micrographs showing the 

longitudinal views of the two track samples are shown in Figure 4.11. 
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Figure 4.11: Optical micrographs showing longitudinal section of Inconel 625 wire laser 

tracks microstructures at different traverse speeds (a) 100 mm min
-1

 and (b) 300 

mm min
-1

 

 

P = 1.8 kW, V = 100 mm min-1, WFR = 600 mm min-1

P = 1.8 kW, V = 300 mm min-1, WFR = 600 mm min-1

Traverse direction
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From the track-substrate interface of both samples, there was an evolution of columnar 

dendrites growing nearly vertical to the substrate. At lower traverse speed, the dendrites were 

slightly inclined towards the laser beam scanning direction. Just above the interface, the 

inclination was not apparent. However, close to the surface of the track, the inclination was 

clear, as seen in Figure 4.11a. At the top region of the sample (100 mm min
-1

) was an 

evolution of near horizontal columnar dendrites. With a 300mm min
-1 

traverse speed, the near 

horizontal columnar dendrites were replaced by an equiaxed solidification mode, as shown in 

Figure 4.11b. 

Figure 4.12 and 4.13 show the respective tracks (at 100 and 300 mm min
-1

 traverse speeds) at 

higher magnification. The transition from near vertical to near horizontal columnar dendrites 

is seen in Figure 4.12. Figure 4.13 shows clearly the transition from vertically growing 

columnar dendrites to a predominantly equiaxed structure. 
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Figure 4.12: Optical images showing different regions of the Inconel 625 wire laser 

track of Figure 4.11(a). (a) Near surface region, (b) transition from vertical columnar 

dendrites to horizontal columnar dendrites and (c) bottom region  

P = 1.8 kW, V = 100 mm min-1, WFR = 600 mm min-1

Traverse direction
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 Figure 4.13: Optical images showing different regions of the Inconel 625 wire laser 

track of Figure 4.11(b). (a) Near surface region, (b) region of the transition of columnar 

dendrites into equiaxed dendrites and (c) bottom region  

P = 1.8 kW, V = 300 mm min-1, WFR = 600 mm min-1

Traverse direction
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4.4.2 Phase identification of Inconel 625 wire laser tracks 

 

Figure 4.14: XRD spectrum showing the FCC structure of Inconel 625 wire laser track 

The results obtained from the XRD analysis conducted on the top surface of the two track 

samples are identical. Figure 4.14 shows the XRD spectrum for the top surface of the two 

tracks. The major peaks in the spectra were found at 2θ = 43.5
o
, 50.7

 o
, 74.6

 o
, 90.5

 o
 and 95.8

 

o
. The JCPDS file number is presented in Appendix C (Figure 1) However, the peak positions 

for pure Ni from the ICDD-database were found at 2θ = 44.5
o
, 51.9

 o
, 76.4

 o
, 92.9

 o
 and 98.5

 o 

(see Appendix C, Figure 3). Apparently, pure FCC Ni phase occurred at slightly higher 

values of 2-theta when compared with the positions where major peaks were observed in the 

XRD spectra of the laser tracks of Inconel 625 wire. The difference in the lattice parameters 

is due to alloying elements in the solid solution of Inconel 625. This affected the inter-planar 

spacing of the γ-Ni present in the coating. No phases other than an FCC γ-Ni phase with 

lattice parameter close to pure Ni could be detected. However, the limit of detection for 

secondary phases by XRD is approximately 1-2%.  
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4.4.3 Elemental composition of phases present in a typical Inconel 625 wire laser track 

Scanning electron microscopy (SEM) images, with secondary electron (SE) signal, of the 

single track layers show a light contrast precipitate in the interdendritic regions, as seen in 

Figure 4.15. EDX spot analysis was performed on the dark continuous matrix region A and 

region B (light contrast precipitate). The results are summarised in Table 4.3 which is the 

average of 5 measurements. It is evident that matrix composition is significantly richer in Fe 

(9.2 wt. %) when compared with the wire feedstock which has a Fe composition of 0.14 wt. 

%. This can be attributed to dilution of Fe from the stainless steel substrate. It is also evident 

that the precipitate is richer in Mo and Nb compared to the matrix. However, the precipitate is 

depleted in Fe, Cr and Ni compared to the Ni-matrix. In the previous studies on solidification 

of Inconel 625 and Inconel 718, the secondary phase or the precipitates (most notably 

enriched in Mo and Nb) has been identified as either Laves phase or NbC depending on the 

composition of C, Si and Fe in the alloy composition [41]. In this case, the light contrast 

precipitate is considered to be Mo- and Nb-rich precipitate. 

 

 

Figure 4.15: Secondary electron images showing the phases in the microstructure of the 

typical Inconel 625 wire laser tracks  
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A

B 10 μm

A

B

A

(a) (b)



Chapter 4                                                                                                                                129 

 

 

Table 4.3: Elemental composition (wt. %) of phases present in single track deposit of 

Inconel 625 wire laser cladding 

Traverse 

speed 

setting   

Symbol Phase Cr Fe Ni Nb Mo 

100 

mm min
-1

 

A 
FCC Ni 

matrix 

23.2 ±0.2 9.2 ±0.4 56.4 ±0.5 2.3 ±0.4 8.6 ±0.3 

B Precipitate 
19.2 ±0.4 6.8 ±0.3 46.7 ±0.5 12.6 ±1.3 14.2 ±0.8 

 

At a traverse speed of 100 mm min
-1

 (P = 1.8 kW, WFR = 600 mm min
-1

), average Fe content 

in the track was 9.2 ± 0.4 wt. % (± SD). However, at higher traverse speed (300 mm min
-1

), 

the iron composition in the track varied from 10.15 to 11.11 wt. % giving an average 

composition of 10.5 ± 0.3% (±SD).  Dilution ratio of 11.9% and 13.3% were found for the Fe 

composition of 9.2 wt. % and 10.5 wt. % in the tracks. The increase in dilution ratio with 

increasing traverse speed is confirmed by the significant decrease in track height but only 

slight decrease in melted depth into the substrate at higher traverse speed, as shown in Figure 

4.9.  

4.4.4 Microstructural characterisation of Inconel 625 wire single laser tracks at high 

and low wire feed rates 

Figure 4.16 shows the optical micrographs of Inconel 625 wire single laser tracks at different 

settings of wire feed rate but the same laser power of 1.8 kW and traverse speed of 100 mm 

min
-1

. At a lower wire feed rate of 600 mm min
-1

, near vertical columnar dendrites developed 

from the track-substrate interface up to the near top region of the track. With a higher wire 

feed rate of 1000 mm min
-1

, cellular solidification mode was observed at the bottom region of 

the track. At about 0.3mm above the interface, there was a transition from cellular 

solidification mode to vertically growing columnar dendrites. Also, the microstructure of the 

track formed at the higher wire feed rate appeared to have a relatively coarse microstructure 

when compared with the microstructure of the track sample deposited at lower wire feed rate. 
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The reason for the coarser microstructure found at 1000 mm min
-1

 wire feed rate could be 

attributed to reduced cooling rate.   

 

Figure 4.16: Optical micrographs showing longitudinal section of Inconel 625 wire laser 

tracks microstructures at wire feed rates of (a) 600 mm min
-1

 (b) 1000 mm min
-1 

 

Figure 4.17 clearly shows the near horizontal dendrites occupying the entire top region of the 

track microstructures shown in Figure 4.16. The size of the region containing the near 

horizontal columnar dendrites decreased from 636 ± 20 μm to 383 ± 14 μm as the wire feed 

rate increased from 600 to 1000 mm min
-1

. 
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Figure 4.17: Formation of near horizontal columnar dendrites near the track surface at 

wire feed rates of (a) 600 mm min
-1

, (b) 800 mm min
-1

 and (c) 1000 mm min
-1

. 

 

4.4.5 Microstructural characterisation of Inconel 625 wire single laser tracks at high 

and low laser power 

Figure 4.18 presents the optical images of tracks deposited at low (1.4 kW) and high (1.8 

kW) laser power settings. Both tracks were deposited at the same traverse speed of 100 mm 

min
-1 

and wire feed rate of 600 mm min
-1

.  Comparing the two images, the microstructure of 

the track deposited at 1.4 kW was predominantly characterised by equiaxed dendrites from 

the interface up to the near top region. At the top region, the equiaxed dendrites were 

replaced with columnar dendrites growing parallel (i.e horizontally) to the track-substrate 

interface. On the other hand, the track formed at 1.8 kW appeared to be relatively coarse and 

mainly characterised with the vertical growth of columnar dendrites evolving from the track-

substrate interface. At the top regions of the two tracks, horizontal columnar dendrites 

blocked-off the vertical dendrites preventing them from reaching the tracks surfaces.  
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Figure 4.18: Optical micrographs showing longitudinal section of tracks 

microstructures at laser power settings of (a) 1.8 kW (b) 1.4 kW 

4.5  Micro-hardness of Inconel 625 wire single laser tracks  

Following the procedure detailed in Chapter 3.12, Vickers micro-hardness measurements 

were obtained, starting from the substrate, along the centreline of the transverse section of the 

track samples. Figures 4.19, 4.20 and 4.21 present the micro-hardness profiles of the typical 

tracks at low and high traverse speed, low and high wire feed rate, and low and high laser 

power settings respectively. It is apparent that all the coatings exhibit higher hardness than 

the substrate. The substrate hardness before the deposition was 201 ± 2.4 HV0.3.  

Single wire track deposited at higher traverse speed demonstrated higher hardness than the 

track formed at lower traverse speed. The average micro-hardness of track deposited at higher 

speed was 248 ± 3.8 HV0.3 whereas at lower traverse speed, an average of 232 ± 4.5 HV0.3 

was found. In addition, the hardness of the substrate, after cladding, was found to be 205 ± 

1.5 HV0.3 and 202 ± 1.4 HV0.3 for both high and low traverse speed settings. In other words, 

the substrate hardness was not significantly altered. 
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Figure 4.19: Micro-hardness profile of the Inconel 625 wire single laser tracks deposited 

(a) low (100 mm min
-1

) and (b) high (400 mm min
-1

) traverse speeds. Laser power and 

wire feed rate were fixed at 1.8 kW and 600 mm min
-1

 respectively 

 

Figure 4.20 shows the micro-hardness profile of the typical tracks deposited at low and high 

wire feed rates. The results revealed that at high wire feed rate setting (1000 mm min
-1

) laser 

track exhibited a lower hardness value of 224 ± 5.0 HV0.3. The micro-hardness of the track at 

lower wire feed rate of 600 mm min
-1

 was 232 ± 4.5 HV0.3. The average hardness values of 

the substrate after cladding was 204 ± 1.1 HV0.3 for the track formed at high wire feed rate 

setting. 

As shown in Figure 4.21, track formed at 1.4 kW laser power exhibited a slightly higher 

hardness than the track formed at 1.8 kW setting. At 1.4 kW laser power, track hardness 

value of 236 ± 4.4 HV0.3 was found whereas 232 ± 4.5 HV0.3 was demonstrated by the track 

formed at 1.8 kW laser power. The micro-hardness of the substrate after cladding was 204 ± 

1.0 HV0.3 when the laser power setting was 1.4 kW. 
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Figure 4.20: Micro-hardness profile of the Inconel 625 wire single laser tracks deposited 

at (a) low (600 mm min
-1

) and (b) high (1000 mm min
-1

) wire feed rates. Laser power 

and traverse speed were fixed at 1.8 kW and 100 mm min
-1

 respectively. 

 

 

Figure 4.21: Micro-hardness profile of the Inconel 625 wire single laser tracks deposited 

at (a) 1.8 kW and (b) 1.4 kW laser power. Traverse speed and wire feed rate were fixed 

at 100 mm min
-1

 and 600 mm min
-1

 respectively 
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4.6 Laser deposition of Inconel 625 powder 

Single laser tracks of Inconel 625 powder were formed using the process window established 

for Inconel 625 wire laser cladding except that the powder feed rate (PFR), in this case, 

ranged from 10 to 30 g min
-1

. All the Inconel 625 powder single laser tracks formed within 

the process window were continuous and of uniform heights, for example, as shown in Figure 

4.22. This shows that Inconel 625 powder laser cladding has a wider process window and is 

less sensitive to variation in process conditions than Inconel 625 wire laser cladding. As 

expected and revealed in Figure 4.22, the tracks surfaces were relatively rough compared 

with the single tracks formed with Inconel 625 wire.  

 

Figure 4.22: Examples of continuous single laser tracks of Inconel 625 powder showing 

relatively rough surface finish 

 

Likewise, the cladding environment was messy with powder feeding. The un-captured 

powder, due to powder spreading, resulted in the untidy environment while the rough surface 

finish was caused by the powder sticking to the solidifying track surface as the table 

traversed. The track geometries including the height, width, aspect ratio, contact angle and 
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cross-sectional area under varying processing conditions are presented in Table A3 of 

Appendix A. Also, the amount of Fe dilution (%) from the substrate at each condition is 

given in Table B2 of Appendix B. 

4.6.1 Effects of the processing parameters on the dilution ratio of the Inconel 625 

powder single laser tracks 

ANOVA was run for the Inconel 625 powder track dilution ratio using a similar method used 

for Inconel 625 wire. This was undertaken so as to determine the effect and relative level of 

significance of the effect of each processing parameter on the Fe dilution in the powder 

tracks. The result of the compositional (EDX) analysis (detailed in Chapter 3.8) shown in 

Table B3 in Appendix B revealed that the Fe content of the tracks varied between 8 ± 0.3 wt. 

% and 48 ± 0.6 wt. %. These give percentage dilution ratios of 10% and 41% in the tracks 

respectively. As shown in the main effect plots shown in Figure 4.23, the dilution ratio of the 

powder tracks is proportional with the laser power and traverse speed but varied inversely 

with the powder feed rate. Similar observations were found for the Inconel 625 wire laser 

tracks. However, the ANOVA results for the powder tracks showed something different in 

terms of the order of relative level of significance of the processing parameters. As presented 

in Table 4.4, the F values of all the factors are greater than the critical value (3.5) for 5% 

significant level implying that all the parameters are significant. The PFR has the most 

significant effect (F = 378) followed by the traverse speed with the F value of 184. The laser 

power has the least influence on the dilution of the track for the range of parameters used in 

this experiment. R
2
 of 0.97 obtained for this analysis indicates that there is a good correlation 

between the factors and the dilution ratio. The interaction effect was not considered because 

the intention was to study the individual effect of each of the parameters on the Fe dilution 

from the substrate. 
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Figure 4.23: Main effect plot for dilution ratio of powder laser tracks 

Table 4.4: Analysis of variance for dilution in the Inconel 625 wire tracks 

Source DOF SS MS F P FCritical 

Laser power (kW) 2 44.94 22.47 17.25 0.000 3.4928 

Traverse speed (mm min
-1

) 2 477.81 238.90 183.47 0.000 3.4928 

Powder feed rate (g min
-1

) 2 984.49 492.25 378.02 0.000 3.4928 

Error 20 26.02 1.30       

Total 26 1533.28         

S = 1.54760           R
2 

= 97.10%          R
2
 (adj) = 96.45% 
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4.7 Microstructural characterisation of Inconel 625 powder single laser 

tracks 

All the deposited Inconel 625 powder tracks had good fusion at the track-substrate interface, 

for example, as shown in Figures 4.24 and 4.25. As observed in Inconel 625 wire laser tracks, 

the tracks formed via Inconel 625 powder deposition system were without cracking and 

porosity. The cross-sections of Inconel 625 powder single laser tracks revealing their 

microstructures are presented in Figure 4.24 and 4.25. These observations thus reveal that 

Inconel 625 powder is a suitable material for laser deposition.  

 

Figure 4.24: Etched optical macro-photographs of laser tracks cross-sections for Inconel 

625 powder on AISI 304 stainless steel at traverse speed of 100 mm min
-1

. P is laser 

power in W, V is traverse speed in mm min
-1

, PFR is powder feed rate in g min
-1

 and ρ 

is the density of Inconel 625 (8.44 × 10
-3

 g mm
-3

).   
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Figure 4.25: Etched optical macro-photographs of laser tracks cross-sections for Inconel 

625 powder on AISI 304 stainless steel at powder feed rate of 10 g min
-1

 

 

Compared with the Inconel 625 wire laser tracks shown in Figures 4.8 and 4.9, Inconel 625 

powder laser tracks, due to lower laser beam attenuation by the powder stream, have 

significantly deeper melt depth into the substrate. This increased as the laser power increased 

but decreased with increasing powder feed rates (i.e. powder delivery volume per unit length 

of track). Also, the melt depth into the substrate decreased with the traverse speed.  

Additionally, the track cross-sections in Figure 4.24 revealed that the track height increased 

with increasing powder delivery volume per unit length of track. The powder delivery 

volume per unit length of track is directly proportional to the PFR. The height increased with 
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increasing the laser power but decreased as the traverse speed increased, as shown in Figure 

4.25. 

4.7.1 Microstructural characterisation of a typical Inconel 625 powder laser track 

In order to investigate and compare the microstructure and micro-hardness of Inconel 625 

powder laser track with the microstructure and micro-hardness of a corresponding single laser 

track formed using Inconel 625 wire, a typical Inconel 625 powder laser track was selected. 

For the purpose of effective and reasonable comparison, it was considered that the processing 

condition of the typical powder track must be similar to that of the wire track. 

The range of laser power and traverse speed utilized for the wire and powder laser deposition 

systems are the same. However, it was difficult to compare the tracks based on the material 

feed rates utilised because not all the powder was trapped in the laser meltpool but it was 

expected that all the feed wire entered the meltpool. As a result, track area (i.e. area of track 

above the substrate) was used in place of material feed rate as a criterion for comparison. 

Table 4.5 presents the processing parameters and track geometrical properties of the Inconel 

625 powder and Inconel 625 wire laser tracks selected for comparison. 

Table 4.5: Processing parameters and geometrical properties of Inconel 625 powder and 

Inconel 625 wire laser tracks selected for comparison 

a b c d e f g        h 

 

i = 

(g/h)*100 

Material 

form 

Laser 

power 

(kW) 

Traverse 

speed      

(mm mm
-1

) 

Material feed 

rate 

Average 

track 

height          

(mm) 

Average 

track 

width        

(mm) 

Average 

track 

area        

(mm
2
) 

Material 

volume 

deposited 

(mm
3
 mm

-1
) 

Material 

utilisation 

efficiency 

(%) 

Powder 1.8 100 20 g min
-1

 3.2 4.3 10.9 23.6 45 

Wire 1.8 100 
1000 mm min

-1 

( 12 g min
-1

) 
2.7 4.7 10.7 11.32 95 
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Figure 4.26: Etched optical macro-photographs of laser tracks cross-sections for (a) 

Inconel 625 powder and (b) Inconel 625 wire on AISI 304 stainless steel 

 

Figure 4.26 shows the transverse sections of the Inconel 625 powder and wire single laser 

tracks selected for comparison. Though there are clear differences in the heights and widths 

of the two tracks, the track cross-sectional area which is a function of the volume of material 

captured in the meltpool is 11mm
2 
for the two tracks.  

In order to investigate the microstructural evolution of the two tracks, the microstructures 

(longitudinal view) of the two tracks were compared. The longitudinal section of the selected 

Inconel 625 wire track, as shown in Figure 4.16, had been discussed in section 4.4.4. Figure 

4.27 presents the longitudinal view of the corresponding Inconel 625 powder laser track.  

 

 

 

 

P =1.8 kW, V = 100 mm min-1, PFR = 20 g min-1 P =1.8 kW, V = 100 mm min-1, WFR = 1000 mm min-1
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Figure 4.27: Optical micrographs showing a longitudinal section of a typical Inconel 625 

powder laser track 

 

As shown in the magnified views of Figure 4.27, the solidification mode of the typical 

Inconel 625 powder track appears to be entirely cellular/equiaxed dendrites. The banding in 

the microstructure is thought to result from irregular powder feeding. Actually, the mass of 

the powder delivered per unit time by the nozzle varied due to some melted powder particles 

sticking to the orifice of the nozzle. Generally, the microstructure of Inconel 625 powder 

200 µm

200 µm

200 µm

P = 1.8 kW, V = 100 mm min-1 , PFR = 20 g min-1
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laser track appeared to be finer than Inconel 625 wire laser track except for the banding. 

Magnified view of the track on the SEM, as seen in Figure 4.28, shows that the topmost 

region consisted of the partially melted powder particles. 

 

Figure 4.28: SEM image revealing the partially melted powder at the topmost region of 

the typical track shown in Figure 4.27. 

 

In order to confirm this observation, 200 × 200µm area scan EDX analysis was conducted 

randomly on the topmost region and near-top region of the track. The results, as presented in 

Table 4.6, revealed that the composition of the topmost region is very close to the 

composition of the as received Inconel 625 powder. This suggests that the powder particles at 

the topmost region were partially melted.  

Table 4.6: Compositions of the topmost and near-mid region of the typical Inconel 625 

powder laser track 

Element Ni Cr Si Fe Nb Mo 

Topmost 

region 
61.9 ±0.5 21.8 ±0.2 0.5 ±0.1 0.8 ±0.1 5.0 ±0.3 10.1±0.1 

Near-top    

region 
52.1 ±0.5 21.4 ±0.1 0.5 ±0.1 14.4 ±0.2 3.6 ±0.3 8.0 ±0.3 
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4.7.2  Phase Identification of typical Inconel 625 powder laser track 

 

Figure 4.29: XRD spectrum showing FCC structure of Inconel 625 powder laser track 

Figure 4.29 represents the XRD spectrum for the top surface of the typical Inconel 625 

powder laser track (see Appendix C, Figure 2 for the raw spectrum containing JCPDS file 

number). The spectrum is similar to the result obtained for the Inconel 625 wire laser track. 

The major peaks in the spectrum occurred at similar positions of 2-theta (2θ = 43.6, 50.8, 

74.7, 90.7 and 96.0) as found in the spectra obtained for Inconel 625 wire laser track and as 

received Inconel 625 powder. Similar to the result obtained for Inconel 625 wire laser tracks, 

no phases other than an FCC phase with lattice parameter close to pure Ni could be detected. 

However, the limit of detection for secondary phases by XRD is approximately 1-2%. 

Therefore, secondary phases of extremely low volume fraction (<2%) in the track may not be 

detected. 
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4.7.3 Elemental composition of phases present in typical Inconel 625 powder laser 

track 

SEM images (using secondary electron signal) of the core (see Figure 4.26) of the typical 

Inconel 625 powder laser track are shown in Figure 4.30. In the interdendritic regions exists a 

light contrast precipitate ‘B’ randomly dispersed in a continuous dark matrix ‘A’.  EDX 

analysis was performed on the matrix region A and precipitate region B. The results are 

summarised in Table 4.7 which is the average of 5 measurements.  

 

 

Figure 4.30: SEM/SE images showing the phases present in the microstructure of a 

typical Inconel 625 powder laser track 

 

 

 

Table 4.7: Elemental composition (wt. %) of phases present in a typical single track of 

Inconel 625 powder laser cladding 

Phase Si Cr Fe Ni Nb Mo 

FCC Ni 

matrix 
0.4  ±0.2 21.5 ±0.3 16.4 ±0.5 52.5  ±0.6 1.6 ±0.5 7.4 ±0.5 

Precipitate 0.5 ±0.2 20.4 ±0.2 12.2 ±0.7 43.2 ±0.2 10.6 ±1.8 11.6 ±1.1 

 

50 µm 10 µm
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It was found that the continuous dark matrix is richer in Ni and Fe whereas the precipitate 

was richer in Mo and most notably, Nb. This was also noticed in the composition of the laser 

tracks deposited using Inconel 625 wire. Similar to previous findings on the solidification of 

Inconel 625 alloy reported in the literature [39, 41, 42], the segregation of high atomic mass 

elements such as Nb and Mo resulted in the formation of precipitates within the boundaries 

between the dendritic cores (i.e. grains which are richer in Ni, Cr and Fe).  

For the purpose of determining the dilution ratio of the track, Fe content was measured by 

conducting 200 × 200µm area scan along and across the centreline of the track area. On the 

average, the Fe composition in the area above the interface was 15.8 ± 1.2 wt. % giving a 

dilution ratio of 18.9% for Inconel 625 powder laser track. However, the corresponding 

Inconel 625 wire track had Fe composition of 3.4 ± 0.5 wt. % producing a dilution ratio of 

4.6%. This observation shows that there was higher volume of the substrate elements in the 

composition of Inconel 625 powder laser track than the corresponding Inconel 625 wire laser 

track. The possible explanation for this is that relatively higher energy attenuation by the feed 

wire was observed in the laser cladding with wire. In the case of the powder feeding, there 

was relatively lower reflectivity of the laser beam causing increased melting of the substrate.  

4.8 Micro-hardness of typical Inconel 625 powder single laser track 

Vickers micro-hardness measurements of the typical Inconel 625 powder laser track were 

performed. The measurements were conducted along the centreline of the transverse cross-

section of the track. The micro-hardness profiles of the typical Inconel 625 powder laser track 

and the corresponding Inconel 625 wire laser track are shown in Figure 4.31. For the typical 

Inconel 625 powder track, the substrate hardness after cladding was 208 ± 1.2 HV0.3. At the 

fusion zone, the hardness increased to 233 ± 4.4 HV0.3 while the hardness value within the 

track area was 245 ± 3.0 HV0.3. The corresponding Inconel 625 wire laser track demonstrated 



Chapter 4                                                                                                                                147 

 

 

lower hardness value of 224 ± 5.0 HV0.3 within the track area and 204 ± 1.1 HV0.3 at the 

substrate. 

 

Figure 4.31: Micro-hardness profiles of the laser tracks deposited using (a) Inconel 625 

powder and (b) Inconel 625 wire  

From this analysis, it is apparent that the laser track formed by powder feeding demonstrated 

higher micro-hardness than the typical laser tracks formed by wire feeding. The difference in 

the hardness values of the two tracks can be related to their microstructures. In the case of the 

powder track, fine equiaxed/cellular dendrites were observed. However, long and coarse 

columnar dendrites constitute the microstructure of the typical Inconel 625 wire laser track.  

4.9 Laser cladding of overlapped-track layers of Inconel 625 

4.9.1  Laser cladding of Inconel 625 overlapped-laser tracks via powder and wire 

feeding 

Overlapped-track layers of the typical Inconel 625 powder and Inconel 625 wire single laser 

tracks were formed. The depositions were carried out at 60% overlapping ratio as described 

in Chapter 3.4.4. The transverse cross-sections (SE) of the two layers are shown in Figure 

4.32. No trace of cracks and pores were observed in the two layers. Although, inter-run 
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porosities are seen in the layer formed with wire feeding system, the two layers are well 

bonded with the substrate. 

 

Figure 4.32: Typical Inconel 625 overlapped-laser track layers formed by (a) powder 

and (b) wire feeding systems 

 

In industrial applications (e.g. protection of the oil drilling tools against corrosion and 

abrasion), the top surface area of the coating is essentially attacked by corrosion. As a result, 

the inter-run porosities which exist at the track-substrate interface will have negligible impact 

on the corrosion performance of the coatings surfaces. However, the clad integrity is affected. 

The Fe compositions of the overlapped-track layers were determined using EDAX. Area scan 

(200 × 200 µm) was conducted at a minimum of 20 locations within the cross-sections of the 

typical overlapped-track layers. On average, a significant reduction in the Fe dilution into the 

layers was noticed when compared with the Fe dilution found in the corresponding single 

P = 1.8 kW, V = 100 mm min-1, PFR = 20 g min-1

P = 1.8 kW, V = 100 mm min-1, WFR = 1000 mm min-1
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laser tracks. Table 4.8 presents the summary of dilution ratio observed in the overlapped-

track layers. 

 

Table 4.8: Summary of the Fe dilution into the Inconel 625 single and overlapped-laser 

track layers formed via powder and wire feeding systems 

Material 

feeding 

method 

Processing parameters Single track Overlapped tracks % 

reduction 

in 

substrate 

dilution 
Laser   

power    

(kW) 

Traverse 

speed     

(mm min
-1

) 

Material 

feed rate              

Fe 

content     

(wt.%) 

Dilution 

(%) 

Fe 

content     

(wt.%) 

Dilution 

(%) 

Powder 

delivery 
1.8 100 20 g min

-1
 15.8 ±1.2 18.9 9.9 ±4.1 12.6 35.2 

Wire 

delivery 
1.8 100 

1000 mm 

min
-1

 
3.4 ±0.5 4.6 1.1 ±1.1 1.4 69.6 

 

4.9.2 Overlapped-track layers of Inconel 625 wire and powder at varying processing 

parameters 

Photographs showing the top surfaces of some of the deposited overlapped layers of Inconel 

625 wire and Inconel 625 powder are shown in Figure 4.33. It can be seen that the surfaces 

are without cracks and rough. However, the layers made by wire feeding system are relatively 

smoother and neater. This is due to the smooth flow of the wire into meltpool. Good fusion 

between the Inconel 625 layer and the substrate and absence of inter-run porosity were 

achieved in some of the deposited overlapped-track layers, for example, as shown in Figure 

4.34.  Also, the cross-sections of the layers shown in Figure 4.34 reveal that they are free of 

cracking and exhibit low melt depth into the substrate.  
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Figure 4.33: Photographs of the top surfaces of the overlapped-track layers of (a) Inconel 625 wire and (b) Inconel 625 powder showing 

no cracking 

 

(a) (b)
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Figure 4.34: Secondary electron images showing the crack- and pore- free cross-sections 

of the Inconel 625 overlapped-laser track layers formed by (a-b) wire and (c-d) powder 

lateral feeding systems 
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Discussion 

4.10 Laser cladding with wire: process stability and characteristics 

Process stability: Laser cladding with wire is considered stable when there is smooth 

transfer of wire into the meltpool. This is possible in a situation where the feed wire melts at 

the point or close to the point of entering the meltpool. In this work, it was found that the 

stability of the laser cladding with wire process is very sensitive to the position of the wire tip 

in the meltpool. The reason is that the position of the wire tip in the meltpool influences the 

interaction time between the feed wire and the laser beam outside the meltpool, for example, 

as shown in Figure 4.35. Three positions of the wire tips including (1) trailing edge, (2) 

centre and (3) leading edge of the meltpool were identified in the literature [66]. However, 

stable laser cladding with wire process had been achieved only with wire tip pointing to the 

centre [26] and leading edge of the meltpool [67]. The positions, as utilised in the trial 

experiments, are described diagrammatically in Figures 4.35.  

 

Figure 4.35: Schematic diagrams illustrating different positions of wire tip in the 

meltpool (a) trailing end, (b) centre and (c) leading edge 

Due to excessively long interaction time between the feed wire and the laser beam outside the 

meltpool, as shown in Figure 4.35a, the feed wire absorbed a high amount of thermal energy. 

As a result the wire melted above the meltpool and dropped continually leading to formation 
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of a discontinuous track. A stable process was not achieved with the wire tip aimed at the 

trailing edge. 

With the position described in Figure 4.35c, the wire interacted for only a short time with the 

laser beam before entering the meltpool whereas the interaction time was considered 

appropriate when the wire tip was aimed at the meltpool centre, as shown in Figure 4.35b. 

The reason is that smooth wire transfer into the meltpool was achieved whenever the wire tip 

was directed to the meltpool centre. 

Due to the size of the wire used in this work, stable process was not achieved within the 

selected range of processing parameters with the set-up shown in Figure 4.35c (i.e. with the 

wire tip aiming at the leading edge of the meltpool). The heat energy gained outside the 

meltpool was not enough to melt the feed wire at the point of entry into the meltpool. As a 

result, the wire entered the meltpool un-melted therefore hitting the substrate. The wire hit the 

substrate and slipped sideways therefore forming a discontinuous track.  

With the wire tip directed to the meltpool centre, the feed wire gained sufficient heat energy 

as it was being fed into the meltpool. Therefore, the wire melted at the point of entry into the 

meltpool resulting in smooth flow of wire into the meltpool. 

Process characteristics: Having found the correct wire tip position for the laser cladding 

with wire process, the wire characteristics at the point of entering the meltpool can be altered 

with varying the processing parameters. In this research, three wire behaviours were 

identified as the parameters varied. The three process characteristics namely: wire dripping, 

smooth wire deposition and wire stubbing were defined based on the wire behaviour. The 

characteristics obtained at a particular condition depends on the relative amount of wire feed 

rate (i.e. wire deposition volume per unit length of track) to the available energy per unit 

length of track.  
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At the conditions where smooth wire deposition was observed, it is believed that the wire 

feed rate at such conditions gave correct laser beam-feed wire interaction time relative to the 

available energy per unit length of track. As a result, the wire absorbed the heat energy 

sufficient for its melting as it entered the meltpool. Continuous tracks were formed at these 

conditions because there was smooth wire transfer suggesting minimal meltpool disturbance.  

With a decrease in wire feed rate or increase in energy per unit length of track, the wire 

gained too much energy. This is because the interaction time increased with a decrease in 

WFR. A greater amount of energy was absorbed by the wire. Therefore, droplet wire transfer 

termed as wire dripping occurred at conditions when the WFR was excessively low relative 

to energy per unit length of track. Due to the fact that the wire melted too early, the molten 

wire dropped intermittently into the meltpool thus a forming discontinuous track. Similar 

results were observed whenever the available energy per unit length of track was excessively 

high relative to the wire feed rate. 

At excessively high WFRs, the laser beam-feed wire interaction time relative to the energy 

per unit of track was reduced. The heat energy absorbed by the wire outside the meltpool was 

not sufficient for its melting before reaching the meltpool. As a result, it entered the meltpool 

in a solid form hitting the substrate. Similar observations were made whenever the energy per 

unit length of track was excessively low relative to the wire feed rate. 

4.11 Melt depth into substrate and dilution ratio analysis 

Laser cladding quality is typically graded by the dilution ratio. Usually, low dilution ratio 

(about 3-8%) is preferred because of the influence of the substrate dilution on the coatings 

[44, 81].  The amount of dilution ratio depends on three main cladding parameters namely: 

laser power, traverse speed and material feed rate.   
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Laser power: The dilution ratio was found to increase with increasing laser power for the 

laser cladding with wire and powder feeding systems (see Figures 4.7 and 4.23). As the laser 

power increased, a higher volume of the substrate was melted because of the increase in 

energy available per unit length of track. Also, more energy was trapped within the meltpool 

producing a more energetic meltpool. As a result, there was increased mixing and vigorous 

meltpool movement. This is considered to have caused a higher volume of the molten 

substrate mixing with the coating thus producing increased Fe composition in the coating. 

The bulk of the substrate element is Fe (71.15 wt. %). A high Fe content is proposed as 

unfavourable for corrosion resistance of Inconel 625 alloy coatings [82].  

Traverse speed: As shown in Figures 4.7 and 4.23 respectively, the substrate dilution in the 

wire and powder tracks varied directly with the traverse speed. In both the wire and powder 

laser cladding processes, two things became apparent whenever the traverse speed was 

increased. First, the material deposition volume per unit length of track decreased therefore a 

smaller track area is produced. Secondly, the energy per unit length of track decreased 

resulting in reduced melt depth into the substrate. In both cladding processes (wire and 

powder feeding), the decrease in melt depth into the substrate with the change in traverse 

speed was relatively insignificant compared with the reduction in track area. This indicates 

that there was more volume fraction of the substrate material in the track area as the traverse 

speed increased.  As a result, dilution ratio increased with increasing the traverse speed. 

Material feed rates:  With increasing the WFR and PRF, it was discovered that the substrate 

dilution reduced, as shown in Figures 4.7 and 4.23 respectively. Whenever the wire feed rate 

or powder feed rate was increased, there was increased laser energy interruption by the feed 

material. This would have caused a significant reduction in the amount of energy reaching the 

substrate. Subsequently, lower melt depth into the substrate was found at higher WFR or 

PFR. Dilution ratio decreased with increasing the material feed rate because of the low 
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substrate melting and enlarged track area resulting from increased material deposition 

volume. 

Generally, the feed wire, because it is a continuous solid, interrupted the laser beam more 

than the powder feed. With the powder feeding system, the laser beam infiltrated through the 

powder stream. This is the reason for the deeper melt depth into the substrate and higher 

dilution ratio observed in the Inconel 625 powder laser tracks when compared with the 

corresponding wire tracks. 

4.12 Pores and crack formation    

Porosity: The absence of pores in the continuous single tracks of Inconel 625 powder and 

Inconel 625 wire indicates that all the combinations of laser power and traverse speed gave 

sufficient energy density for full melting of all deposited material volumes used within the 

selected process window. The possible explanation for the presence of inter-run porosity in 

some of the overlapped-track layers is high contact angle or low aspect ratio (< 2.5) of the 

single tracks from which the layers were built. As previously explained in the literature in 

chapter 2.4.4.1, the higher the contact angle or the lower the aspect ratio, the more spherical a 

single laser track becomes. Whenever the contact angle is more than 90
o
, a hollow groove or 

gap is formed at the base of the track with the substrate (see Figure 2.15). During the 

overlapped cladding process, it becomes difficult for the molten material to flow into this gap 

because the laser beam radiation is obstructed from reaching the area covered by this gap due 

to the protruded flanks of the adjacent track. 

Crack formation:  The presence of cracks in laser coatings has been a major drawback of 

laser cladding techniques [50, 73]. Cracks are formed as a result of residual stresses built-up 

during the molten track solidification. In laser cladding of metal alloys, the stress comprises 
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mainly of thermal stresses occurring at different regions of the meltpool.  The thermal stress 

occurs because of the large temperature gap (i.e. temperature gradient) between the 

solidifying clad and the substrate [73]. Also, in a case where the substrate material is different 

from the additive material, the mismatch in their thermal expansion always results in the 

development of thermal stress at the clad-substrate interface. Whenever the sum of the 

thermal stresses is beyond the toughness (strength) of the solidifying clad, crack is initiated. 

Due to the localised heating of the laser beam and rapid solidification which characterise 

laser cladding processes, crack propensity is very high in laser deposited coatings. In this 

study, the absence of cracking in both the Inconel 625 wire and Inconel 625 powder laser 

coatings can be attributed to high ductility of the alloy [28, 111]. The ductility, hence, 

fracture toughness of the alloy 625 is believed to withstand the thermal stresses built up 

during the solidification and contraction of the clads. Therefore, crack-free Inconel 625 laser 

coatings were formed.  

4.13:  Microstructural evolution 

4.13.1:  Comparison between typical Inconel 625 wire and Inconel 625 powder laser 

tracks 

The micro structures of the typical Inconel 625 powder and Inconel 625 wire tracks are 

somewhat different. The Inconel 625 powder track exhibited fine cellular/equiaxed dendrite 

grain structure with the occurrence of banding around the base region. The occurrence of fine 

cellular/equiaxed structure can be attributed to rapid cooling rates which are typical of laser 

cladding. Generally, there are four main solidification modes (grain structures) namely 

planar, cellular, columnar dendrite and equiaxed dendrites.  The type of grain structure and 

the grain size are influenced by the temperature gradient (G) and the solidification growth 

rate (R). This is described in the map shown in Figure 4.36. The temperature gradient is 
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principally a function of the temperature difference (∆T) during the process whereas the 

solidification growth rate is proportional to the cooling rate. 

 

Figure 4.36: Effect of temperature gradient (G) and Solidification growth rate (R) on 

the morphology and size of solidification microstructure [85] 

 

The ratio G/R determines the solid/liquid interface morphology (i.e. grain structure) while the 

product of the two (i.e. GR) governs the grain size.  Following the theory of constitutional 

supercooling, a planar solid/liquid interface is stable at the steady state provided the condition 

described in equation 4.1 is satisfied, where DL is the diffusion coefficient of the process 

material [85].  

LD

ΔT

R

G
      (4.1) 

It can be deduced from equation 4.1 that the higher the value of G and the lower the value of 

R, the higher the possibility of planar solidification mode at the solid/liquid interface. The 

absence of planar grain structure in all the tracks deposited with powder and wire feeding 



Chapter 4                                                                                                                                159 

 

 

systems in this work indicates that the condition given in equation 4.1 was not fulfilled. This 

is probably due to high cooling rate, hence, rapid solidification growth rate. The cooling rate 

during laser cladding process has been estimated to be 10
3
-10

4 
K/s [42, 112]. The 

cellular/equiaxed dendrites grain structure predominantly observed in the powder track 

confirmed that the solidification (cooling rate) was very rapid.  

On the other hand, the changes in the grain structure in the middle region exhibited by the 

typical Inconel 625 wire track can be explained by the variation in cooling rate (i.e. 

solidification rate) and temperature gradient at different regions within the track. When the 

lower region of the track was deposited the solidification growth rate was rapid and the 

temperature gradient was also high. However, the evolution of a relatively coarse cellular 

structure shows that the cooling rate was not as rapid, at the interface, as that of the powder 

laser cladding (see Figure 4.36). During laser cladding with wire, cooling at the bottom (near 

substrate) region of the coating mainly takes place by conduction mode into the substrate 

which is usually assumed to be at room temperature. However, in the case of powder, 

additional heat loss is believed to occur by radiation and convention through the space in-

between the molten powder particle before they joined together to form a larger pool.  

Usually, it is known that the temperature gradient decreases continuously as solidification 

occurs from the base to the top of the track. A transition in the grain structure around the mid-

region of the wire track indicates that the ratio G/R decreased as expected, at this position, to 

a value that promoted the formation of the columnar dendrites growing against the heat flux 

direction. Since cooling occurred mainly through the substrate at this position of the 

meltpool, the columnar dendrites are nearly vertical to the substrate.  
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For the upper part of the typical Inconel 625 wire track, there was change in dendrite 

orientation with the growth of columnar dendrites parallel to the substrate. This is most likely 

due to a change in heat flux direction at the near surface region of the meltpool.  

 

Figure 4.37: A diagram illustrating the heat flow direction in the meltpool 

As explained by Dinda et al. [34], the amount of heat flux to the back of the meltpool, at this 

region, is greater compared to the substrate due to hemispherical shape of the meltpool, for 

example, as illustrated in Figure 4.37. The reason is that the temperature of the core is usually 

very high. Therefore, most of the heat was rejected to the solidified track region at the back 

of the meltpool. This led to the directional growth of the dendrites from the back of the 

meltpool (growing against heat flux). 

4.13.2: Effect of traverse speed on microstructure evolution 

Figure 4.11 presents the microstructures of two Inconel 625 wire laser tracks deposited at two 

traverse speed settings. The growth of nearly vertical columnar dendrites from the interface 

of the two tracks shows that G/R ratio, at the interface, produced by the two parameters was 

low, as previously discussed. However, for higher speed, G/R would be much lower because 

R is proportional to the traverse speed (V) as described in equation 2.2 in chapter 2.5.1.  

 

Solidified deposit

Laser power

Clad base

Clad top

Substrate motion

Clad-substrate 
interface

Top surface 
of the track 

Laser 
beam

Solidified track

Substrate
Table motion



Chapter 4                                                                                                                                161 

 

 

Also, energy per unit length of track reduced with increasing the traverse speed. This implies 

that the temperature difference (∆T), hence, G at the track-substrate interface is lower at 

higher traverse speed. The transition from columnar dendrite to equiaxed dendrite observed 

around the mid region of the track formed at a speed of 300 mm min
-1

 (high) shows that the 

G/R ratio reduced, at this position, to a critical value that promotes the formation of equiaxed 

dendrite solidification mode. However, at lower speed (100 mm min
-1

), G/R ratio never 

reached the critical value to form these equiaxed dendrites. As a result, columnar dendrites 

were blocked-off from reaching the track top by the growth of nearly horizontal dendrites.  

If it is assumed that the heat flow in the track can be approximated by Rosenthal’s 3D 

equation (see equation 4.2), then the cooling rate, which determines the dendrite (grain) size, 

along the centre line of the track can be estimated as shown below.  

                                    
 

P

ΔT
KV2

dt

dT
rate Cooling

2

                                  (4.2) 

Where K is the thermal conductivity of the Inconel 625 (W m
-1

 K
-1

), P is the laser power (W), 

∆T is temperature difference between the substrate and the meltpool (K) and V is the traverse 

speed of the heat source (mm sec
-1

). A valuable deduction from this equation is that the 

cooling rate varies indirectly with the energy per unit length of track (P/V). As the traverse 

speed increased from 100 to 300 mm min
-1

, the energy per unit length of track decreased 

from 1080 to 360 J mm
-1

 and subsequently, the cooling rate increased. The fact that grain size 

decreases with increasing cooling rate [85] explains the finer microstructure observed at a 

traverse speed setting of 300 mm min
-1

. 

4.13.3  Effect of laser power on microstructure evolution 

As presented in Figure 4.18, there are differences in the grain structures and sizes of the 

selected Inconel 625 wire laser tracks deposited at low (1.4 kW) and high (1.8 kW) laser 
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power settings.  The differences are basically as a result of the effect of the laser power on the 

meltpool temperature. The lower the laser power, the lower the heat input and the lower the 

average meltpool temperature. Therefore, at low laser power (1.4 kW), a relatively lower G is 

believed to occur at the track-substrate interface compared to the high laser power (1.8 kW). 

Also, the cooling rate, hence, solidification growth rate (R) increases with decreasing laser 

power (see equation 4.2). Consequently, G/R is relatively lower for track formed at 1.4 kW 

than that of the 1.8 kW. The evolution of equiaxed dendrites from the track-substrate 

interface of the track formed at 1.4 kW suggests that the G/R ratio reduced to a critical value 

that promotes the growth of equiaxed dendrites. Conversely, columnar dendrites which are 

nearly vertical to the substrate evolved from the track-substrate interface of the track formed 

at 1.8 kW. 

Additionally, fine grain size observed at 1.4 kW is due to high cooling rate as explained by 

Rosenthal’s 3D equation. Similar findings had been reported in the literature by Hofmeister 

et. al [88]. In their study, cooling rate was estimated as a function of the meltpool size. It was 

discovered that cooling rate decreased with increase in meltpool size and the size of the 

meltpool increased with the laser power. Therefore, it was concluded that the higher the 

power, the wider the meltpool and the bigger the grain size. 

4.13.4:  Effect of wire feed rate on the microstructure evolution 

The microstructure of the Inconel 625 wire laser tracks at two wire feed rate settings are 

somewhat different, as shown in Figure 4.16. Since the laser power and traverse speed are the 

same for the two depositions, the total thermal energy absorbed by the meltpool will be 

determined by the material volume deposited in the meltpool. Higher thermal energy is 

believed to be retained in the meltpool containing higher material volume. This is evidenced 

by the negative dependency of the melt depth into the substrate with the wire feed rate, as 

plotted in Figure 4.38.  
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Figure 4.38: Effect of wire feed rate on melt depth into substrate 

Lower melt depth into the substrate at higher WFR indicates that a large fraction of the laser 

beam energy was absorbed by the meltpool. Therefore, there was reduced thermal energy 

available for substrate melting. On the other hand, significant increase in the melt depth into 

the substrate found at low WFR shows that smaller fraction of the thermal energy was 

retained in the meltpool. A larger fraction was used for melting the substrate.  

Due to a greater thermal mass, the track formed at high WFR will cool slower than the track 

formed at low WFR. This is probably the reason for the coarse grain structure found in the 

track formed at WFR of 1000 mm min
-1

 compared with the track formed at WFR of 600 mm 

min
-1

.  

4.14: Phase constitution and compositions 

From the XRD and EDS results of the wire and powder laser tracks, it can be concluded that 

only two phases are present in the laser deposited tracks. The phases are continuous FCC γ-
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Ni and light contrast Nb- and Mo-rich precipitate occurring in the interdendritic region. 

However, the XRD and EDS results obtained for the as received powder revealed that FCC γ-

Ni is only present. Therefore, it can be deduced that the presence of Nb- and Mo-rich 

interdendritic precipitate is as a result of meltpool solidification during laser cladding 

process. The rapid solidification of the molten Inconel 625 alloy has been reported in the 

literature.  

According to Rombouts et al. [42], the precipitation mechanism of Inconel 625 is complex 

and depends on the chemical composition and the time-temperature history of the alloy. The 

fractional presence of elements such as Nb, Si, and C in the chemical composition of the 

alloy influences the solidification products. This is due to strong propensity of these elements 

to form secondary phase (precipitates) within the grain boundaries at terminal stages of 

solidification [39, 41].  

Generally, the solidification of Inconel 625 deposit starts with the formation of γ dendrites 

which are depleted in high atomic elements most notably Nb and Mo at their cores. As 

solidification continues outward from the dendrite cores, Nb and Mo continue to segregate to 

the liquid phase while Fe, Ni and Cr elements migrate to the solidifying γ-Ni dendrites. As 

the solidification proceeds further, the interdendritic liquid increases in Nb and Mo 

composition until γ/Laves eutectic composition is reached.  At this stage, the solidification 

terminates with the formation of γ + laves constituents. Equation 4.3 [41] shows the 

solidification sequence of Inconel 625. 

LavesγLavesγLiquidγLiquidLiquid                       (4.3) 

In the past, the Nb- and Mo-rich precipitates have been identified as either Laves or NbC. For 

example, both Laves and NbC were found in the welds of Alloy 625 after exposure to 

temperatures in the range of 650-1050
o
C. The melt temperature of Inconel 625 is 1427

o
C [11] 
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showing that the meltpool temperature was above 1050
o
C during the laser cladding process. 

Consequently, at least either of these two phases would have been formed in this study. C 

promotes the formation of NbC whereas Laves is favoured by the amount of Si and Fe 

contained in the alloy [41]. In this work, the Nb- and Mo-rich precipitate in the typical 

powder track could be Laves phase because of the presence of Si and significant amount Fe 

(15.8 wt. %) resulting from substrate dilution. About 3.4 wt. % of Fe in the wire track might 

have favoured the precipitation of Laves phase. C in the track could not be quantified due 

inability of the SEM/EDAX technique to accurately quantify it. However, C composition in 

as-received Inconel 625 wire is 0.08 wt. % (negligible). 

4.15: Amount of precipitates, grain refinement and micro-hardness 

4.15.1: comparison between the Inconel 625 wire and Inconel 625 powder laser tracks 

The typical Inconel 625 powder track exhibited higher micro-hardness value (245 HV0.3) than 

the corresponding Inconel 625 wire track (224 HV0.3), as shown in Figure 4.31. Two main 

issues influencing the micro-hardness of Alloy 625 deposits are the amount of secondary 

precipitates (hard phases) present in the interdendritic regions and the grain size of the core 

dendrites. The higher the amount of the precipitates and/or the finer the grain size, the higher 

the micro-hardness. According to DuPont [41], one of the effects of Fe in Inconel 625 

deposits is to promote the precipitation of Laves (precipitates) phase. Following this finding, 

the volume fractions of the light contrast (interdendritic precipitate) phase present in the two 

tracks were determined using image processing analysis. The results, as presented in Table 

4.9, revealed that higher volume fraction of the precipitate are contained in the powder track. 

This was expected because of the higher Fe dilution observed in the powder track.  
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Table 4.9: Amount of the interdendritic precipitate present in the typical Inconel 625 

tracks via powder and wire feeding systems 

Coating 

Volume fraction of   

Mo- and Nb-rich 

precipitate                

(%) 

Volume fraction of 

γ-Ni                    

(%) 

Inconel 625 

powder track 
2.3 ± 0.6 97. 7 ± 0.6 

Inconel 625 wire 

track 
0.7 ± 0.4 99.3 ± 0.4 

 

Also, it has been discussed earlier in the previous section (chapter 4.13.1) that the typical 

Inconel 625 powder track is entirely characterised with finer grains compared to the 

corresponding Inconel 625 wire track because of the increased cooling rate. In summary, the 

higher micro-hardness exhibited by the powder track is mainly due to a finer grain structure 

and partly due to the higher volume fraction of interdendritic precipitates found in the track. 

4.15.2: Effects of the processing parameters on the track micro-hardness 

Traverse speed: The possible explanation for the rise in micro-hardness with increasing 

traverse speed, as observed in Inconel 625 wire track, is the finer grain structure found at 

higher traverse speed. The rise in Fe composition (from 3.2 to 15 wt.%), due to increased 

substrate dilution, probably led to more precipitation of the harder phase (Nb- and Mo-rich 

precipitate). This is believed to have partly contributed to the higher hardness noticed at a 

traverse speed of 300 mm min
-1

 (see Figure 4.19). 

Laser power: As shown in Figure 4.21, the lower micro-hardness (232 HV0.3) obtained for 

the track deposited at laser power setting of 1.8 kW when compared with that of 1.4 kW (236 

HV0.3) is due to the coarsening effect of increasing laser power. Though, more Fe content was 

found at 1.8 kW power, the decrease in micro-hardness with the increase in laser power 

shows that the grain refinement has a greater effect than the increase in the amount of the 

interdendritic precipitate. 
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Wire feed rate: The Fe composition, hence, the amount of interdendritic precipitate 

decreased with increasing the wire feed rate. Also, the grain structure became less refined as 

the wire feed rate increased from 600 to 1000 mm min
-1

. The combined effects of these 

therefore led to reduced micro-hardness (236 to 224 HV0.3) found at higher WFR, as 

presented in Figure 4.20.  
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4.16 Summary  

Stability and characteristics of Inconel 625 wire laser cladding 

 The stability of laser cladding with wire process depends on the position of the feed 

wire tip in the meltpool because the wire tip position influences the amount of heat 

gained by the wire outside the meltpool. In this study, a stable fibre laser cladding 

process was achieved for Inconel 625 wire of Ø 1.2 mm with the wire tip directed at 

the centre of the meltpool. At this position, smooth transfer of wire into the meltpool 

was obtained at suitable cladding conditions.     

 A map predicting the process characteristics of the Inconel 625 wire laser cladding 

within a process window was successfully developed. Three distinct characteristics 

namely wire dripping, smooth wire transfer and wire stubbing were found to occur 

depending on the balance between the energy per unit length of track and wire 

deposition volume per unit length of track. The main parameters have their individual 

influence but the map was better described by the use of the two combined 

parameters.  

 Smooth wire transfer into the meltpool was considered to be the ideal laser cladding 

process because continuous tracks of uniform height were formed with these 

characteristics. It occurred whenever there was correct balance between the energy 

per unit length of track (P/V, J min
-1

) and wire deposition volume per unit length of 

track (WFR*A/V, mm
3
 mm

-1
 ).  

 The wire melted and entered the meltpool as continual droplets whenever the energy 

per unit length of track (P/V) was excessive for the wire deposition per unit length of 

track. Tracks of uneven height and width are formed at these cladding conditions. 
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However, the process can be corrected to smooth wire deposition by either increasing 

the wire feed rate or reducing the laser power. 

 Wire stubbing occurred whenever an excess wire feed rate was used for a 

combination of laser power and traverse speed. Due to high wire feed rate, laser 

beam-wire interaction time was too short such that the wire entered the meltpool in a 

solid form hitting the substrate below. The feed wire oscillated and formed a 

discontinuous track.  

Dilution ratio and melt depth into the substrate 

 Wire feed rate and powder feed rate were found as the most significant factors 

affecting the dilution ratio in both wire and powder laser cladding processes. 

 Dilution ratio and melt depth into the substrate showed negative dependency on the 

wire feed rate or powder feed rate. This is because the reflectivity of the laser beam 

energy by the feedstock increased with increasing the material feed rates. 

 In the two processes, Fe dilution and melt depth into the substrate increased with 

increasing the laser power because there was more substrate melting resulting from 

increased energy per unit length of track.   

 The melt depth into the substrate showed no noticeable change with the traverse 

speed. However, the dilution ratio increased with increasing the traverse speed 

because the track volume decreased significantly as the traverse speed increased. 

 Significantly higher dilution (ranging from 10-41%) and deeper melt depth into the 

substrate were observed in powder laser tracks when compared with wire laser tracks 

(ranging from <1-24%).  
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Microstructures 

 Defect-free single laser tracks of Inconel 625 powder and Inconel 625 wire (only with 

smooth wire deposition) were successfully deposited. The absence of common defects 

including pores, cracks and poor fusion shows that the selected range of parameters 

were suitable for laser cladding of Inconel 625 powder and wire. 

 The microstructural characterisation of the Inconel 625 powder and wire laser tracks 

revealed the presence of γ-Ni (FCC) and light contrast interdendritic Mo- and Nb- rich 

precipitates in the tracks. The XRD analysis could detect only γ-Ni (FCC). The 

precipitates were not detected because the limit of detection for secondary phases by 

XRD is approximately 1-2%.  

 Inconel 625 powder track and Inconel 625 wire track, deposited at the same 

parameters, showed different solidification modes and grain sizes. The cause was 

attributed to different cooling rates occurring when cladding with wire and powder 

feeding systems.  

 Typical Inconel 625 powder laser tracks comprised entirely of fine cellular/equiaxed 

dendrites. Conversely, the corresponding (in terms of processing parameters) Inconel 

625 wire laser track showed cellular solidification mode near the substrate. This 

transited to vertical columnar dendrites which were blocked off by the horizontal 

dendrites, parallel to the substrate, near the top surface of the track.  

 The growth of the horizontal dendrites near the surface region of the Inconel 625 wire 

laser tracks is due to the change in the heat flux direction occurring at the top region 

of the meltpool. 
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 Due to increased cooling rates, Inconel 625 wire laser tracks formed at higher traverse 

speed exhibited finer microstructure. The grain structure is characterised with short 

growth of vertical columnar dendrites at the bottom clad region and transited to 

equiaxed dendrites at the clad top. The corresponding laser track formed at lower 

traverse speed was predominantly characterised with long growth of vertical columnar 

dendrites which was intercepted by horizontal columnar dendrites near the top region. 

 Inconel 625 wire track formed at higher WFR is coarser compared with the similar 

track formed at low WFR. The reason is that larger meltpools absorb more thermal 

energy resulting in slower solidification rate.  

 Fine equiaxed structure exhibited by the Inconel 625 wire formed at low laser power 

was also a result of rapid cooling rate. Cooling rate reduces with increasing laser 

power. 

Micro-hardness 

 The deposited Inconel 625 powder and wire laser tracks demonstrated higher micro-

hardness when compared to the AISI 304L substrate. 

 Typical Inconel 625 powder exhibited higher micro-hardness than the corresponding 

Inconel 625 wire track. This is because the powder laser tracks cool faster and contain 

higher volume fraction of interdendritic (Mo- and Nb- rich) precipitates. 

 Traverse speed showed positive influence whereas laser power showed negative 

influence on the micro-hardness of Inconel 625 wire tracks. This is due to the fact that 

better grain refinement is obtained at reduced energy per unit length of track (P/V).  

 The decreased micro-hardness at higher wire feed rate was as a result of the 

coarsening of the microstructure with increasing wire feed rate. 
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Overlapped tracks 

 Overlapped-track layers of Inconel 625 powder and wire were successfully deposited. 

Except for the presence of inter-run porosity in few layers, the layers were free of 

defects such cracks, poor fusion at the interface and lack of fusion porosity. 

 There was significant reduction in the total Fe content in the overlapped-track layers 

compared with the single tracks.  
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5.0 Process and microstructural characterisations of Spherotene 

(WC/W2C) powder-Inconel 625 wire composite laser 

coatings 

5.1 Introduction 

This chapter reports the laser cladding of WC/W2C (Spherotene) powder-Inconel 625 wire 

composite coatings on AISI 304L stainless steel. Single laser tracks and overlapped-track 

layers were deposited at varying processing parameters via concurrent lateral feeding of 

Spherotene powder and Inconel 625 wire. Effects of the simultaneous injection of the powder 

on the process characteristics of Inconel 625 wire laser cladding are reported. The Spherotene 

dissolution analysis, microstructural characterisation and micro-hardness of the single tracks 

are detailed using several techniques including image processing software, optical 

microscopy, SEM/EDAX, XRD and Vickers hardness test. The results presented are the 

dilution ratio, Spherotene particle dissolution and micro-hardness as a function of processing 

parameters. The typical phases present and their compositions are also reported. Overlapped-

track layers are mainly characterised for good fusion with the substrate, cracks, pores and 

even distribution of the retained Spherotene particles. This chapter presents the results and 

then the discussions. Summary of the important findings closes the chapter. 
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5.2 Spherotene (WC/W2C) powder analysis 

5.2.1  Size distribution of the Spherotene powder 

The WC/W2C powder, commercially named as Spherotene, was supplied by Technogenia, 

France. The powder size distribution was obtained by Malvern Mastersizer-S (Malvern 

Instruments Limited, Malvern, UK) using laser diffractometry. The powder size distribution 

is shown in Figure 5.1. The powder size ranged from +40 to 270 µm with a mean size of 

~150 µm. It is revealed in Figure 5.1 that 10% (d90) of the powder was above 190 µm and 

10% (d10) below 95 µm with a d50 (median size) of 140 µm. 

 

Figure 5.1: Plot of powder distribution and cumulative vol % against particle size for 

Spherotene (WC/W2C) powder 
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5.2.2 Spherotene powder morphology and composition 

The supplier (Technogenia) manufactured the spherical cast Spherotene powder using a 

unique, patented process called cold crucible induction fusion system [113]. The spherical 

powder is specified to have a micro-hardness of 3000 ± 500 HV. The phases present in the 

powder before laser processing were determined by X-ray diffraction. As shown in Figure 

5.2, W2C and WC phases were identified. WC peaks occurred at 2θ = 31.5, 36.6, 48.3, 64.0, 

65.8, 73.1, 75.5, 77.1, and 84.1 (JCPDS = 00-025-1047). The W2C phase gave a fit to peaks 

at 2θ = 34.5, 38.0, 39.6, 52.3, 61.9, 69.8, 72.8, 74.9, 75.9, 81.3 and 85.2 (JCPDS = 00-035-

0776). The corresponding raw spectrum containing the JCPDS files numbers of the two 

phases are shown in Appendix C (Figure 4). Evidently, W2C is the major phase because it has 

the highest peak at 2θ = 39.6
o
 (see Figure 5.2) 

 

 

Figure 5.2: XRD spectrum of the WC/W2C (Spherotene) powder before laser processing 
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Figure 5.3: Back scattered electron (BSE/SEM) image of the cross-section of the 

spherical cast Spherotene (WC/W2C) powder as supplied by Technogenia, France. 

 

Back scattered electron (BSE) images of the powder shown in Figure 5.3 revealed its main 

metallurgical feature termed, by the manufacturer [113], as tangled needles. The composition 

of the powder obtained from the London & Scandinavian Metallurgical Co Limited 

Rotherham, England showed 92.24 wt. % W and 3.96 wt. % C. The test certificate is included 

in Appendix D. The summation of the percentage composition of the two elements is lower 

than 100 suggesting that traces of other elements might be present in the Spherotene particle. 

As a result, EDX analysis (area scan) of the as received Spherotene was carried out. The 

result, as presented in Table 5.1, revealed that no other element apart from W and C was 

detected. Figure 5.4 shows the spectrum obtained from the EDX analysis showing the peaks 

corresponding to W and C only. 

Table 5.1: The composition of Spherotene by chemical and EDX analysis 

Analysis method 
Element (wt. %) 

W C 

Chemical 92.2 4 

EDX 92.9 ± 0.5 7.1 ± 0.5 
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Figure 5.4: EDX spectrum showing the peaks corresponding to W and C during 

Spherotene compositional analysis 

 

Since no additional element could be identified by EDX analysis method, the weight 

compositions obtained from the chemical analysis method was normalised to 100% giving 

95.8 wt. % W and 4.2 wt. % C. The weight fractions of WC and W2C in the Spherotene were 

then calculated from the normalised Spherotene compositions obtained via chemical analysis 

method. The procedure used is described in Appendix E. 35.3 wt. % and 64.7 wt. % of WC 

and W2C were found respectively. 

5.3 Laser deposition of Spherotene (WC/W2C) powder-Inconel 625 wire 

single tracks 

The experimental arrangement and procedure are detailed in chapter 3.4.3. In this study, 

powder feed rate (PFR) was kept constant for all combinations of laser power (P), traverse 

speed (V) and wire feed rate (WFR) so as to investigate the effects of the simultaneous 

injection of the Spherotene powder on the process characteristics and microstructures of the 

Inconel 625 wire laser cladding. The resulting process characteristics and geometries for all 

the experiments are summarised in Table A4 and A5 of Appendix A respectively. 
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Powder feed rate (PFR) of 25g min
-1

 was used for most of the work. The reason for this is 

that at higher PFR (e.g. 35 g min
-1

), micro-cracks were observed in nearly all the tracks as 

shown, for example, in Figures 5.5a and 5.5b. 

 

Figure 5.5: BSE/SEM images of the cross-sections of the concurrently fed WC/W2C 

powder-Inconel 625 wire single laser tracks showing micro-cracks at (a), (b) PFR of 35 

g min
-1

 and (c), (d) no cracks at PFR of 25 g min
-1

 

 

However, crack like defects were not found in nearly all the tracks formed at lower PFR (e.g. 

25 g min
-1

), for example, as shown in Figures 5.5c and 5.5d. In the few tracks where cracks 

were observed, the number of surface cracks was limited to 2 per 80 mm length of the track. 

Cracking, in this case, is possibly due to the build-up of residual stress resulting mainly from 

increased volume of carbides in the tracks.  

P = 1.8 kW, V = 100 mm min-1, 
WFR = 600 mm min-1, PFR = 35 g min-1

P = 1.6 kW, V = 200 mm min-1, 
WFR = 600 mm min-1, PFR = 35 g min-1

P = 1.8 kW, V = 100 mm min-1, 
WFR = 600 mm min-1, PFR = 25 g min-1

P = 1.6 kW, V = 200 mm min-1, 
WFR = 600 mm min-1, PFR = 25 g min-1



Chapter 5                                                                                                                                179 

 

 

5.4 Effects of the concurrent injection of Spherotene powder on the 

process characteristics of Inconel 625 wire laser cladding 

Concurrent laser cladding of Spherotene (WC/W2C) powder-Inconel 625 wire composite 

tracks were performed at similar conditions utilised for the cladding of Inconel 625 wire 

reported in Chapter 4.2.3. As mentioned earlier, the reason for this is to study the effects of 

simultaneous injection of Spherotene powder on the process characteristics of Inconel 625 

wire laser cladding.  

 

(1) Dripping, (2) Dripping may occur, (3) Smooth wire deposition, (4) Stubbing may 

occur and (5) Stubbing regions 

 

Figure 5.6: A process map showing the  fibre laser cladding characteristics of 

Spherotene (WC/W2C) powder-Inconel 625 wire single tracks at P = 1.0 - 1.8 

kW, V = 100 - 300 mm min
-1

, WFR = 400-1000 mm min
-1

 and PFR = 25 g min
-1

. 
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Figure 5.7: Typical Spherotene (WC/W2C) powder-Inconel 625 wire laser 

deposited single composite tracks  

 

Figure 5.6 shows the process map illustrating the characteristics observed, at all processing 

conditions employed in this experiment for the Spherotene powder-Inconel 625 wire 

composite cladding where A is the wire cross-sectional area. Five different regions are clearly 

defined in the map with 1–5 representing:  dripping, dripping may occur, smooth wire flow, 

stubbing may occur and stubbing regions respectively. Each processing condition (i.e. a 

combination of laser power, traverse speed and wire feed rate) was represented by a point on 

the map. PFR was kept at 25 g min
-1

 for all experiments. Continuous composite tracks of 

uniform heights were produced at processing conditions contained in region 3 (i.e. smooth 

wire deposition), for example, as shown in Figure 5.7. Both the wire dripping (region 1) and 

wire stubbing (region 5) process characteristics produced discontinuous tracks.  

Table 5.2: Examples of transition in the process characteristics of Inconel 625 laser 

cladding caused by the concurrent injection of WC powder into the meltpool 

 

Point 
Laser 

power 

(kW) 

Traverse 

speed       

(mm min
-1

) 

Wire feed 

rate         

(mm min
-1

) 

Energy 

per unit 

length 

of track           

(J mm
-1

) 

Wire 

deposition 

volume per 

unit length of 

track         

(mm
3
 mm

-1
) 

Deposition 

process 

characteristic 

without powder 

injection 

Deposition 

process 

characteristic 

with powder 

injection 

R 1.8 100 400 1080 4.5 wire dripping 
smooth wire 

transfer 

S 1.6 100 400 960 4.5 wire dripping 
smooth wire 

transfer 

U 1.8 100 1000 1080 11.3 
smooth wire 

transfer 
wire stubbing     

may occur 

V 1.6 100 1000 960 11.3 
smooth wire 

transfer 
wire stubbing 

Wire dripping

Smooth wire transfer

Wire stubbing

Wire dripping

Smooth wire
deposition

Wire stubbing

(1)

(3)

(5)
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Compared with the process map previously developed for Inconel 625 wire laser cladding 

(see Figure 4.5), a rightward shift is noticeable in the map shown in Figure 5.6. For example, 

the corresponding processing conditions for points marked ‘R’, ‘S’, ‘U’ and ‘V’ in the 

process map shown in Figure 5.6 are presented in Table 5.2. Without powder injection, 

Inconel 625 wire deposition performed at conditions marked as ‘R’ and ‘S’ were 

characterised with wire dripping, as shown in Figure 4.5 and Table 4.1. With simultaneous 

injection of Spherotene powder, the process characteristic changed to smooth wire 

deposition, as seen in Figure 5.6. Similarly, the Inconel 625 wire process characteristics 

transited from smooth wire deposition to wire stubbing may occur and wire stubbing with the 

concurrent injection of Spherotene powder at parameters corresponding to points ‘U’ and 

‘V’, respectively, in the process maps.  

5.5  Analysis of the Spherotene volume fraction in the composite track 

Usually, one of the major issues with the wear and corrosion performance of the WC/Ni alloy 

composite coating is the degradation or dissolution of the tungsten carbide particles. In this 

study, Spherotene particle dissolution was observed but at different degrees as the processing 

parameters varied, for example, as shown in Figure 5.8. Most of the analysis in this section 

will consider two typical continuous composite tracks whose cross-sections are shown in 

Figure 5.8.  
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Figure 5.8: BSE/SEM images of the composite track cross-sections showing Spherotene 

dissolution at (a,b) 1080 J mm
-1

 and (c,d) 720 J mm
-1

  energy per unit length of track 

 

They were deposited at high (corresponding to point W in Figure 5.6) and low 

(corresponding to point Z in Figure 5.6) energy per unit length of track. One of the reasons 

for their selection is that their cladding conditions are within the region 3 of the process map 

shown in Figure 5.6. Also, clear differences in the extent of Spherotene dissolution and other 

microstructural features were noticed between the two tracks. 

In order to effectively determine the amount of Spherotene dissolution in the composite 

tracks, the mass (g) of the Spherotene particle captured by the meltpool was calculated. The 

reason is that not all the Spherotene delivered from the powder nozzle was captured by the 

meltpool.  

P = 1.8 kW,  V = 100 mm min-1, WFR = 600 mm min-1, PFR = 25 g min-1

P = 1.2 kW,  V = 100 mm min-1, WFR = 600 mm min-1, PFR = 25 g min-1

Point W
on the
process

map

Point Z
on the
process

map
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5.5.1 Deposition efficiency and amount of Spherotene particle captured 

The procedure for this is detailed in Chapter 3.9. Mass of the Spherotene delivered (g) was 

calculated by dividing the PFR (g min
-1

) by the traverse speed (mm min
-1

) and then multiply 

the result by the track length (80 mm). Mass of the Spherotene captured was obtained by a 

weighing method whereas the deposition efficiency was a ratio of the mass of the Spherotene 

captured to the mass of the Spherotene delivered. The results, as presented in Table 5.3, give 

the powder deposition efficiency at each laser cladding condition. The conditions, in this 

case, include those used for depositing the tracks whose cross-sections are shown in Figure 

5.8 (printed in red colour) and some others which are contained in region 3 of the process 

map.   
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Table 5.3: The calculated values of the Spherotene powder deposition efficiency and 

volume captured in the meltpool assuming no dissolution 

 

Laser 

power 

(kW) 

Traverse 

speed       

(mm min
-1

) 

wire feed 

rate        

(mm min
-1

) 

Mass of 

Spherotene 

delivered          

(g) 

Mass of 

Inconel 625 

track + the 

substrate          

(g) 

Mass of 

composite 

track + the 

substrate          

(g) 

Mass of 

Spherotene 

captured            

(g) 

Spherotene 

powder 

deposition 

efficiency           

(%) 

W 1.8 100 600 20.0 42.2 48.9 6.4 ± 0.7 32 ± 3.3 

1.8 100 800 20.0 43.7 51.0 7.0 ± 0.3 35 ± 1.6 

1.8 100 1000 20.0 45.3 52.7 7.7 ± 0.3 38 ± 1.4 

1.8 200 600 10.0 39.9 42.1 2.4 ± 0.5 24 ± 4.7 

1.8 300 600 6.7 39.2 40.2 1.0 ± 0.2 15 ± 2.9 

X 1.6 100 600 20.0 42.2 48.3 5.7 ± 0.4 29 ±1.9 

Y 1.4 100 600 20.0 42.2 47.7 5.1 ± 0.5 25 ± 2.4 

1.2 100 400 20.0 40.7 45.3 4.4 ± 0.2 22 ± 1.0 

Z 1.2 100 600 20.0 42.2 46.9 4.7 ± 0.2 23 ± 0.8 

1.2 100 800 20.0 43.7 48.6 5.4 ± 0.5 27 ± 2.3 

1.2 200 600 10.0 39.9 41.4 1.7 ± 0.2 17 ± 2.2 

1.2 300 600 6.7 38.9 39.6 0.8 ± 0.2 12 ± 3.0 

1.0 100 600 20.0 42.1 45.7 3.6 ± 0.1 18 ± 0.3 

 

From Table 5.3, it is found that the Spherotene deposition efficiency ranged between 12 and 

38%. However, the wire deposition efficiency was ~ 100% since all the wire delivered were 

presumably captured by the meltpool.  

The variations of the Spherotene deposition efficiency and mass of spherotene captured in the 

meltpool with the processing parameters are plotted in Figure 5.9. Both the Spherotene 

deposition efficiency and mass of Spherotene captured show similar trends with the 

processing parameters. The amount of Spherotene captured is proportional to the laser power 

and wire feed rate. However, with the traverse speed, an inverse relationship was established.  

These changes could be attributed to the size of the meltpool which changed as the 

parameters varied. For example, the higher the laser power, the bigger the meltpool size and 

the higher the mass of Spherotene captured and the deposition efficiency. However, the 

higher the traverse speed, the smaller the meltpool size due to the decrease in energy per unit 
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length of track. Therefore, a reduced amount of Spherotene is expected to be captured. The 

increase in Spherotene deposition efficiency with the WFR can be attributed to variations in 

powder attenuation as the parameter changed. This is fully explained in section 5.12 of this 

chapter. 

 

 

Figure 5.9: Variation of the deposition efficiency and mass of Spherotene captured in 

the meltpool with the processing parameters assuming no carbide dissolution  

 

5.5.2  Amount of Spherotene dissolution in the composite track  

In this study, the dissolution ratio, as presented in Table 5.4, is considered to give relative 

amount of Spherotene dissolution at each processing condition. The dissolution ratio (%) was 

found by dividing the volume fraction of Spherotene dissolved by the volume fraction of 

(a) (b)

(c)
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Spherotene captured. The procedure for determining the volume fraction of Spherotene 

dissolved and captured is outlined below.  

 The volume fraction of Spherotene dissolved equals the difference between the 

volume fraction Spherotene captured and retained 

 The volume fraction of Spherotene retained was measured using image processing 

analysis (image J) 

 The volume fraction of Spherotene captured equals the volume of Spherotene 

captured divided by the total track volume (volume of Spherotene captured + volume 

of Inconel 625 wire deposited).    

Detailed procedures about these calculations are contained in Chapter 3.10 and the results are 

presented in Table 5.4. As shown in Table 5.4, the typical track deposited at high energy 

setting (1080 J mm
-1

, corresponding to point W) has the highest dissolution ratio of 57%. 

Relating the dissolution ratio to the BSE/SEM track images shown in Figure 5.8a-b, it is 

believed that, at this cladding condition, the Spherotene particles suffered intensely from laser 

beam energy. This had caused the smaller Spherotene particles to dissolve completely while 

the larger particles dissolved to smaller sizes.   

Conversely, in the case of the composite track formed at 720 J mm
-1 

(i.e. low energy setting 

corresponding to point  Z), the retained Spherotene particle was of higher number density and 

appeared relatively larger in the cross-sectioned track, as shown in Figure 5.8c-d. This 

indicates low Spherotene dissolution which is confirmed by the lower dissolution ratio of 

18%, as presented in Table 5.4.  



Chapter 5                                                                                                                                187 

 

 

Table 5.4: Summary of the analysis of the Spherotene dissolution in the composite tracks 

(Density of the Inconel 625 wire ‘ρwire’ = 8.44 × 10
-3

 g mm
-3

, Density of Spherotene ‘ρpowder’ = 16.3 × 10
-3

 g mm
-3

) 

 

 a b c d e = 
 80ρ

d

wire 
                     f g = 

 80ρ

f

powder
                       h =

 eg

g


 i j = 100







 

h

ih
 

Laser 

power 

(kW) 

Traverse 

speed       

(mm min
-1

) 

Wire feed 

rate        

(mm min
-1

) 

Energy per 

unit length 

of track        

(J mm
-1

) 

Mass of wire 

deposited in 

80 mm track 

length 
(g) 

Volume of wire 

deposited   

(mm
3 
mm

-1
) 

Mass of 

Spherotene 

captured  in 

80 mm track 

length             

(g) 

Volume of 

Spherotene 

captured 

(mm
3
mm

-1
) 

Volume fraction 

of Spherotene 

captured (%) 

Volume 

fraction of   

Spherotene 

retained    

(%) 

Dissolution 

ratio 

W 1.8 100 600 1080 4.6 6.8 6.4 ± 0.7 4.9 ± 0.5 42 ± 2.6 18 ± 2.4 57 

1.8 100 800 1080 6.1 9.0 7.0 ± 0.3 5.4 ± 0.3 37 ± 1.1 17 ± 0.9 54 

1.8 100 1000 1080 7.6 11.3 7.7 ± 0.3 5.9 ± 0.2 34 ± 0.8 16 ± 1.2 51 

1.8 200 600 540 2.3 3.4 2.4 ± 0.5 1.8 ± 0.4 35 ± 4.4 17 ± 0.9 50 

1.8 300 600 360 1.5 2.3 1.0 ± 0.2 0.7 ± 0.1 25 ± 3.7 16 ± 0.9 34 

1.6 100 600 960 4.6 6.8 5.7 ± 0.4 4.4 ± 0.3 39 ± 1.6 21 ± 1.7 47 

1.4 100 600 840 4.6 6.8 5.1 ± 0.5 3.9 ± 0.4 37 ± 2.2 23 ± 1.8 38 

1.2 100 400 720 3.1 4.5 4.4 ± 0.2 3.4 ± 0.2 43 ± 1.1 30 ± 1.9 31 

Z  1.2 100 600 720 4.6 6.8 4.7 ± 0.2 3.6 ± 0.1 35 ± 0.8 28 ± 1.5 18 

1.2 100 800 720 6.1 9.0 5.4 ± 0.5 4.1 ± 0.4 31 ± 1.9 27 ± 1.4 12 

1.2 200 600 360 2.3 3.4 1.7 ± 0.2 1.3 ± 0.2 28 ± 2.6 25 ± 1.1 8 

1.2 300 600 240 1.3 2.0 0.8 ± 0.2 0.6 ± 0.2 23 ± 4.5 22 ± 0.9 5 

1.0 100 600 600 4.6 6.8 3.6 ± 0.1 2.8 ± 0.1 29 ± 0.3 29 ± 1.1 2 
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Also, it can be deduced from Table 5.4 that the retained Spherotene volume fraction ranges 

between 16-30 vol.%. The transverse cross-sectional area of the track with the 30 vol. % of 

the retained Spherotene particle is shown in Figure 5.10.  

 

Figure 5.10: SEM image showing the cross-sectioned composite laser track with 30 vol. 

% of retained Spherotene particle  

 

The graphs showing the variations of the retained and captured Spherotene volume fractions, 

and the dissolution ratio with the processing parameters are shown in Figure 5.11. It was 

found the dissolution rate increases with increasing the laser power but decreases with 

increasing the traverse speed and wire feed rate.  

The captured Spherotene volume fraction also shows positive dependency on the laser power 

but decreases with the traverse speed and wire feed rate. The retained Spherotene volume 

fraction decreases as the laser power increases because more Spherotene dissolution occurred 

at higher energy per unit length of track. With increasing the traverse speed, the retained 

Spherotene volume fraction decreased. Although lower Spherotene dissolution is expected at 

higher traverse speed, the decreasing powder deposition efficiency plays a role.  

P = 1.2 kW, V = 100 mm min-1, WFR = 400 mm min-1, 
PFR = 25 g min-1

Point T
on the
process

map
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Figure 5.11: Variation of the captured and retained Spherotene volume fractions and dissolution ratio with the processing parameters: 

(a & d) V = 100 mm min
-1

, WFR = 600 mm min
-1

, PFR = 25 g min
-1

; (b & e) P = 1.2 kW, WFR = 600 mm min
-1

, PFR = 25 g min
-1

, (c & f) 

P = 1.2 kW, V = 100 mm min
-1

, PFR = 25 g min
-1 

 

(a) (b) (c)

(d) (e) (f)
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As shown in Figure 5.11, the volume fraction of the retained Spherotene particle decreases 

with increasing the wire feed rate. The reason is possibly due to increased deposition volume 

of the Inconel 625 wire at higher WFR. Though Spherotene powder deposition efficiency 

also increased with the WFR but the relatively higher deposition efficiency (100%) of the 

wire has greater impact. 

5.5.3 Distribution of retained Spherotene in the composite track 

The distribution of the retained Spherotene in the composites tracks was relatively uniform, 

for example, as shown in Figure 5.8. A more even distribution was observed at lower energy 

per unit length of track (e.g. at 720 J mm
-1

 corresponding to point Z on the process map).  A 

slightly higher concentration of the retained Spherotene was seen around the periphery of the 

tracks formed at higher energy per unit length of track, for example 1080 J mm
-1

 

corresponding to point W on the process map. At higher incident energy, more Spherotene 

dissolution occurred at the core of the track. This was probably due to Gaussian mode of 

beam delivery of the fibre laser utilised in this work (i.e. energy concentration is higher at the 

centre of the meltpool). Since the energy concentration at the meltpool core is higher, the 

surface tension is believed to be smaller compared to the periphery of the meltpool. Due to 

the surface tension gradient, a stirring effect called marangoni will set up. This probably 

caused the migration of some retained Spherotene particles from the clad core to the 

periphery. 

 

Figure 5.12 presents the BSE images of the boundary and core of the composite tracks 

formed at 1080 J mm
-1

. It was found that the retained Spherotene concentration decreased 

from the boundary to the core of the track. Also, severe dissolution of the Spherotene 

particles was noticed in the track core. 
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Figure 5.12: SEM image showing the WC distribution and dissolution amount at the centre and boundary of a cross-sectioned track 

formed at high energy density 

P = 1.8 kW, V = 100 mm min-1, WFR = 600 mm min-1, PFR = 25 g min-1
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5.5.4 Spherotene powder/Inconel 625 wire matrix interfacial bonding in the composite 

tracks 

At all processing conditions contained in region 3 of the process map, good interfacial 

bonding existed between the retained carbide (Spherotene) and Inconel 625 wire matrix in the 

composite tracks. This is evidenced by the formation of phases at the interface sections of the 

composite tracks, for example, as shown in Figure 5.13. 

  

 

Figure 5.13: SEM/BSE images showing new phases at the interface between the retained 

Spherotene particle and Inconel 625 wire matrix 

 

20 µm 20 µm

20 µm 20 µm

P =1.8 kW, V = 100 mm min-1, 
WFR = 600 mm min-1, PFR = 25g min-1

P =1.2 kW, V = 100 mm min-1, 
WFR = 600 mm min-1, PFR = 25g min-1

P =1.2 kW, V = 300 mm min-1, 
WFR = 600 mm min-1, PFR = 25g min-1

P =1.0 kW, V = 100 mm min-1, 
WFR = 600 mm min-1, PFR = 25g min-1

(a) (b)

(c) (d)
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All the micrographs shown in Figure 5.13 were taken around the centre of the tracks cross-

sections. The formation of light contrast secondary phases around the edges of the retained 

Spherotene powder suggests that there was partial dissolution of the powder which enhanced 

good bonding with the Ni-matrix. The identification of these phases in the composite tracks is 

reported in the next section. 

5.6 Microstructural characterisation of Spherotene (WC/W2C) powder–

Inconel 625 wire composite single laser tracks  

This section describes the microstructural features of the composite tracks at varying 

processing parameters. The results of the detailed microstructural characterisation carried out 

on the two typical composite tracks (corresponding to point W (1080 J mm
-1

) and point Z 

(720 J mm
-1

) on the process map shown in Figure 5.6) are presented.   

5.6.1 Identification of the phases present in the composite tracks 

Figure 5.14 presents the XRD spectra of the top surfaces of some selected Spherotene 

(WC/W2C) powder-Inconel 625 wire composite tracks. The raw spectra containing the 

JCPDS file numbers of each phase are presented in Appendix C (Figure 5-8). The tracks were 

formed at different processing conditions (i.e. varying energy per unit length of track) 

corresponding to points W, X, Y and Z on the process map shown in Figure 5.6. In order to 

properly identify all the phases present in the composite tracks, each of the XRD samples was 

ground from the top surface to the mid-region because more Spherotene dissolution occurred 

around the track core. Table 5.5 shows the processing conditions and the phases present in 

the corresponding composite tracks.  
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Figure 5.14: XRD spectra of the top surface of the concurrently laser deposited 

Spherotene (WC/W2C) powder-Inconel 625 wire composite single tracks (a) at different 

parameters (b) an expanded view of W showing peaks identification. 
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Table 5.5: Summary of XRD profiles of the concurrently deposited Spherotene powder-

Inconel 625 wire composite tracks 

Point 
Laser 

power 

(kW) 

Traverse 

speed       

(mm min
-1

) 

Wire feed 

rate         

(mm min
-1

) 

Energy 

per unit 

length of 

track           

(J mm
-1

) 

Phases identified 

W 1.8 100 600 1080 WC, W2C, Ni-matrix, Fe3W3C, Cr23C6 

X 1.6 100 600 960 WC, W2C, Ni-matrix, Fe3W3C, Cr23C6 

Y 1.4 100 600 840 WC, W2C, Ni-matrix, Fe3W3C, Cr23C6 

Z 1.2 100 600 720 WC, W2C, Ni-matrix, Fe3W3C, Cr23C6 

 

 

The XRD results presented in Figure 5.14 reveal that the composite tracks are constituted of 

five different phases. The phases are: Ni-matrix (FCC), WC (hexagonal), W2C (hexagonal), 

Fe3W3C (FCC) and Cr23C6. The peaks occurred at similar positions of 2θ in all the spectra. 

However, clear differences in the spectra are observed in the conditions corresponding to 

point W (1080J mm
-1

) and spectrum corresponding to Z (720 J mm
-1

). Possibly, the reason 

may be the difference in the volume fractions of the Spherotene captured which have 

dissolution ratios of 57 and 18% respectively. 

5.6.2 Elemental composition of the phases identified in the composite tracks 

Back scattered electron images of the two typical tracks (at 1080 J mm
-1

 (W) and 720 J mm
-1

 

(Z)) showing the phases present are revealed in Figure 5.15. The white contrast phase with 

near circular shape marked as ‘A’ is seen to be of high number density and relatively 

uniformly distributed in the tracks cross-sections. This phase is believed to be the retained 

Spherotene (WC/W2C) because of its light contrast, circular shape and its distribution within 

the tracks cross-sections. 

The dark phase dendritic core which is marked as ‘B’ is observed to be continuous 

throughout the track area. At the boundaries in-between the continuous dark phase dendrites 
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are film-like light contrast precipitate. This is marked as ‘C’ in Figure 5.15. The light grey 

phase with a trapezoidal shape marked as ‘D’ appears to be randomly distributed all over the 

track cross-section whereas the smaller sized but a light angular phase marked as ‘E’ is 

predominantly seen around the edges of the retained WC/W2C. Due to their light contrast and 

angular shapes, the phases marked as ‘D’ and ‘E’ are thought to be secondary carbides 

formed as a result of the dissolution of the Spherotene particles. The phase marked E is 

clearly seen and predominant around the retained Spherotene in the track formed at 1080 J 

mm
-1

 but is rarely found in the track formed at lower energy per unit length of track (720 J 

mm
-1

). 
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Figure 5.15: BSE/SEM images showing the identified phases present in the cross-sections of the typical composite tracks formed at (a) 

1080 J mm
-1

, and (b) 720 J mm
-1

 

P = 1.8 kW, V = 100 mm min-1, WFR = 600 mm min-1, PFR = 25 g min-1

P = 1.2 kW, V = 100 mm min-1, WFR = 600 mm min-1, PFR = 25 g min-1
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Table 5.6: Chemical composition (wt. %) of the phases identified in Figure 5.12 

 

Symbol 
Probable 

Phase 
W C Cr Fe Ni Nb Mo 

A WC/W2C  92.7 ± 0.9 7.3 ± 0.4 - - - - - 

B Ni matrix 13.0 ± 1.1 - 14.2 ± 1.1 7.9 ± 0.5 61.2 ± 1.3 1.3 ± 0.7 2.5 ± 0.5 

D Fe3W3C 63.2 ± 2.6 - 8.8 ± 0.9 2.5 ± 0.2 19.0 ± 1.1 - 6.5 ± 0.7 

E W2C 89.6 ± 3.2 - 7.3 ± 0.6 

 

3.2 ± 0.8 - - 
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The results of EDAX analysis conducted on each of the phases present in the composite 

tracks are presented in Table 5.6. All the data presented in Table 5.6 are averages of at least 

five measurements.  

Area scan analysis on the phase marked ‘A’ produced an average composition of 93 wt. % W 

and 7 wt. % C. This phase can be categorically identified as WC/W2C due to the fact that its 

composition (wt. %) is similar to that of the Spherotene particle (as received) (see Table 5.1). 

The dark phase marked as ‘B’ was also identified as Ni-matrix because of its high Cr (14 wt. 

%) and Ni (61 wt. %) contents. It is also the only phase having some quantity of Nb in its 

composition. Spherotene dissolution observed in the composite track is believed to have 

caused the Ni matrix to be enriched in W (13 wt. %). The phase also contains about 8 wt. % 

of Fe which must have resulted from the substrate dilution.   

The EDAX result obtained for the tiny phase marked ‘C’ in Figure 5.14 was believed to be 

inaccurate because of the larger interaction volume electron beam. It was considered that the 

compositions of the surrounding phases especially Ni-matrix dendrites were picked therefore 

the result was not included in Table 5.6. However, the phase could be M23C6 (Cr23C6) because 

it precipitated as films at the grain (Ni-matrix dendrites) boundaries. In the literature, M23C6 

has always appeared as a light contrast small precipitate existing usually at the grain 

boundaries of continuous Ni-matrix [91, 94]. Since this phase appeared predominantly in the 

interdendritic regions, it is termed eutectic carbide. 

The average composition (wt.%) of the light grey trapezoidal phase ‘D’ shows that it 

contained significant amount of W (63%) with some traces of other elements like Cr (9%), Fe 

(3%), Ni (19%) and Mo (7%). C was excluded because of the limitation of the SEM/EDAX 

technique for accurate quantification of the element. This phase is thought to be Fe3W3C 

(M6C) because it contains noticeable quantity of W and Fe. The presence of  other elements 
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such as Cr, Mo and Ni in its composition is normal because M element in M6C (FCC) is 

generally W with some solubility for Fe, Cr, Ni and Mo [29]. Also, M6C (FCC) is usually 

distributed randomly which is the case for the light grey trapezoidal phase ‘D’ in the 

composite track. Fe3W3C (considered to be the phase D) is believed to have precipitated, 

during the solidification of the track, from a Ni rich molten phase which contained significant 

quantities of dissolved W, C and Fe. 

The result of the EDX spot analysis carried out on the phase marked as ‘E’ is also presented 

in Table 5.6. The composition of the phase indicates that it is rich in W (89 wt. %). The light 

phase E also contains some amount of C but it was not quantified because of the limitation of 

SEM/EDAX technique to give accurate composition of carbon in a test sample. The fact that 

the phase is predominantly found around the edges of the WC/W2C phase suggests that it is a 

product of Spherotene dissolution. Therefore, the phase E is possibly W2C with other 

elements in solute. 

5.6.3 W enrichment and Cr depletion in the composite tracks  

The W and Cr compositions in the composite tracks were measured by determining the 

composition of the matrix in-between the retained Spherotene using SEM/EDAX technique. 

Area scans of about 50 × 50 µm were performed. The result, as shown in Table 5.7, is the 

average of 5 measurements. From table 5.7, it is observed that the more the matrix is enriched 

in W element the more the Cr element is depleted from the matrix.  

The variations of the W enrichment and Cr depletion with the processing parameters were 

plotted and are shown in Figure 5.16. 
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Table 5.7: Elemental composition of the matrix in-between the retained Spherotene particles 

Laser 

power 

(kW) 

Traverse 

speed    

(mm min
-1

) 

Wire feed 

rate        

(mm min
-1

) 

Energy per 

unit length 

of track        

(J mm
-1

) 

W Cr Ni Fe Mo Nb 

1.8 100 600 1080 50 ± 0.5 11 ± 0.2 29 ± 0.4 5 ± 0.3 4 ± 0.2 2 ± 0.1 

1.6 100 600 960 44 ± 0.2 12 ± 0.4 33 ± 0.5 4 ± 0.1 4 ± 0.4 1 ± 0.6 

1.4 100 600 840 41 ± 1.8 13 ± 0.4 36 ± 1.4 2 ± 0.3 5 ± 0.5 2 ± 0.3 

1.2 100 400 720 51 ± 0.18 11 ± 0.2 29 ± 2.5 5 ± 1.8 4 ± 0.6 1 ± 0.3 

1.2 100 600 720 35 ± 2.5 14 ± 0.6 42 ± 1.8 1 ±0.3 6 ± 0.3 2 ± 0.2 

1.2 100 800 720 31 ± 2.3 16 ± 1.1 45 ± 2.0 0.2 ± 0.1 6 ± 0.2 2 ± 0.1 

1.2 200 600 360 33 ± 1.6 15 ± 0.4 43 ± 1.1 2 ± 0.1 6 ± 0.3 2 ± 0.2 

1.2 300 600 240 30 ± 2.6 16 ± 0.6 44 ± 2.1 2 ± 0.2 6 ± 0.5 2 ± 0.3 

1 100 600 600 32 ± 0.9 16 ± 0.2 44 ± 0.4 0.3 ± 0.1 6 ± 0.1 2 ± 0.4 
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Figure 5.16: Plots of the variation of W and Cr content of the WC/W2C powder-Inconel 

625 laser tracks matrix with the processing parameters. (a) V = 100 mm min
-1

, WFR = 

600 mm min
-1

, PFR = 25 g min
-1

. (b) P = 1.2 kW, WFR = 600 mm min
-1

, PFR = 25 g min
-

1
. (c) P = 1.2 kW, V = 100 mm min

-1
, PFR = 25 g min

-1 

 

The W content of the matrix, after cladding, increased with the laser power but decreased 

with the traverse speed. This simply confirms the previous observation that the Spherotene 

dissolution increased with increasing energy per unit length of track (= 60P/V). Conversely, 

the Cr composition of the composite tracks decreased with increasing the laser power but 

increased with increasing the traverse speed. This indicates that increased Spherotene 

dissolution increases the Cr depletion. 

From Figure 5.16c, it can be deduced that, with this laser cladding set-up, increasing wire 

feed rate reduced the W composition but increased the Cr content of the composite tracks. 

(a) (b)

(c)
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5.7 Micro-hardness of the composite laser tracks 

Vickers micro-hardness measurements of the track samples were made randomly on their 

cross-sectional areas and the results are presented in the Table 5.8. Compared with the 

hardness value of the stainless steel plate (201 HV0.3) and laser deposited Inconel 625 wire  

and Inconel 625 powder single tracks (ranging between 224 and 248 HV0.3), the hardness of 

the matrix of the composite track ranged from 540-690 HV0.3. The average Spherotene 

particle hardness in the composite track ranged between 2100 and 2400 HV0.3. The improved 

hardness demonstrated by the matrix of the composite tracks is due to the injection of 

Spherotene particles whose dissolution resulted in the formation of hard secondary phases 

(W2C Fe3W3C and Cr23C6) [94] in the tracks.  

 

Table 5.8: A summary of the micro-hardness measurement for the WC powder-Inconel 

625 wire composite tracks 

 

Processing parameters Micro-hardness value (HV0.3) 

Laser power 

(kW) 

Transverse 

speed         

(mm min
-1

) 

Wire feed 

rate           

(mm min
-1

) 

Powder feed 

rate             

(g min
-1

) 

Matrix WC particle 

1.8 100 600 25 693 ±68 2276 ±363 

1.6 100 600 25 636 ±68 2267 ±226 

1.4 100 600 25 619 ±62 2113 ±209 

1.2 100 600 25 611 ±55 2146 ±193 

1 100 600 25 563 ±60 2235 ±260 

1.2 100 400 25 655 ±81 2332 ±200 

1.2 100 800 25 593 ±71 2308 ±431 

1.2 200 600 25 581 ±61 2408 ±167 

1.2 300 600 25 560 ±73 2153 ±212 
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Figure 5.17: Plots of the variation of the WC powder-Inconel 625 laser tracks matrix 

micro-hardness with the processing parameters. (a) V = 100 mm min
-1

, WFR = 600 mm 

min
-1

, PFR = 25 g min
-1

. (b) P = 1.2 kW, WFR = 600 mm min
-1

, PFR = 25 g min
-1

. (c) P = 

1.2 kW, V = 100 mm min
-1

, PFR = 25 g min
-1 

 

The results are graphically presented in Figure 5.17. It is evident that the hardness of the 

composite tracks varied directly with the laser power but inversely with the traverse speed. 

More so, the hardness was found to vary inversely with the wire feed rate. The variations can 

be related to the amount of Spherotene dissolution in the tracks at each processing condition. 

The hardness of the retained Spherotene particle did not show any particular pattern with the 

processing parameters. However, it was within the bracket of 2100 and 2400 HV0.3 for all the 

cross-sectioned tracks. 

 

(a) (b)

(c)
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5.8 Deposition of overlapped-track layers of WC powder-Inconel 625 

wire composite laser coatings 

Overlapped-track composite layers were formed from the single composite tracks deposited 

at the selected parameters listed in Table 5.9. Most of the conditions in Table 5.9 were chosen 

at low laser power (1.2 kW) because low Spherotene dissolution and significantly low 

substrate dilution (see Table 5.7) were noticed at low energy input.  

Table 5.9: Laser cladding parameters of the composite single tracks selected for 

overlapped-track layer depositions 

 

Laser 

power 

(kW) 

Traverse 

speed          

(mm min
-1

) 

wire feed 

rate        

(mm min
-1

) 

Powder feed 

rate                              

(g min
-1

) 

1.0 100 0.6 25 

1.2 100 0.6 25 

1.2 100 0.4 25 

1.2 200 0.6 25 

1.2 300 0.6 25 

1.8 100 0.6 25 

 

60% overlapping ratio was used for all the multi-track cladding. As seen in Figure 5.18, the 

pictures of the top surface of the overlapped-track layers show that they are nearly flat and 

free of cracks. Each of the deposited layers was about 25-30% thicker than its corresponding 

single track. 
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Figure 5.18: As-deposited overlapped track-layers of WC/W2C (Spherotene) powder-

Inconel 625 wire composite showing nearly flat and crack-free top surface 

 

The transverse and longitudinal cross-sections of each the overlapped-track layers were 

examined for defects such as pores, cracks and good fusion with the substrate. As seen in 

Figure 5.19, the composite layers formed at laser power of 1.0 kW and 1.2 kW with a 

combination of 100 mm min
-1

 traverse speed and 600 mm min
-1

 wire feed rate showed poor 

fusion with the substrate. This was considered unsuitable as poor fusion often leads to low 

coating-substrate bonding strength and sometimes delamination of the coating from the base 

component. The poor fusion found in both layers was due to the fact that the total material 

delivery volume was too high for the available energy input.    

 

 

 

 

(a) (b) (c) (d) (e)

(a): P = 1.2, V = 200 mm min-1, WFR = 600 mm min-1, PFR = 25 g min-1

(b): P = 1.2, V = 300 mm min-1, WFR = 600 mm min-1, PFR = 25 g min-1

(c): P = 1.2, V = 100 mm min-1, WFR = 400 mm min-1, PFR = 25 g min-1

(d): P = 1.2, V = 100 mm min-1, WFR = 600 mm min-1, PFR = 25 g min-1

(e): P = 1.2, V = 100 mm min-1, WFR = 800 mm min-1, PFR = 25 g min-1
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Figure 5.19: Longitudinal views showing poor fusion between the overlapped-track 

coating and the substrate due to high material deposition volume at low incident energy  

 

As shown in Figure 5.20, fully bonded overlapped-track layers were formed at all other 

processing conditions listed in Table 5.9. All the deposited layers were free of cracks and 

pores within the track layer. Absence of pores in the layer and good layer-substrate fusion 

shows that there was sufficient melting of the delivered material by the incident energy at 

these conditions.  

 

1mm

1mm

P = 1.0 kW, V = 100 mm min-1, WFR = 600 mm min-1, PFR = 25 g min-1

P = 1.2 kW, V = 100 mm min-1, WFR = 600 mm min-1, PFR = 25 g min-1

(a)

(b)
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 Figure 5.20: Transverse and longitudinal sections of overlapped-track composite coatings showing good fusion with the substrate and 

absence of cracks 
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Inter-run porosities were seen at the track-substrate region of some of the layers. There was a 

high concentration of the retained Spherotene particle at the top of the layer formed at 1.8 

kW. However, even distribution of the retained was noticeable at 1.2 kW. The better 

distribution found at low energy input can be attributed to reduced Spherotene dissolution at 

the track-core. 
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Discussion 

5.9 Concurrent laser cladding of Spherotene (WC/W2C) powder-Inconel 

625 wire composite-Process characteristics 

From the results presented in Figure 5.6, it was revealed that it is possible to deposit 

continuous single laser composite tracks via concurrent feeding of Spherotene powder and 

Inconel 625 wire. However, continuous tracks were not obtained at some cladding conditions 

because smooth wire deposition was not possible at those conditions. As explained 

previously in Chapter 4.2, wire dripping and wire stubbing occurred whenever the wire feed 

rate relative to the energy per unit of track is too low and excessively high, respectively.  

Due to the injection of Spherotene powder, there was rightward shift in the process map 

shown in Figure 4.4 (Inconel 625 wire process characteristics) compared with the process 

map developed for the process characteristics of concurrently fed Spherotene powder-Inconel 

625 wire laser cladding, as shown in Figure 5.6. The main effect of the Spherotene powder 

injection is that it reduced the amount of energy absorbed by the Inconel 625 wire outside the 

meltpool. This is because the powder covered some area fraction of the feed wire (due to 

powder spreading) outside the meltpool, therefore, interrupting the laser beam from reaching 

the feed wire. 

For this reason, at wire feed rates at which wire dripping was found in the case of Inconel 625 

wire laser cladding, there was higher tendency that smooth wire deposition may be found at 

the same condition during concurrent laser cladding of Spherotene powder-Inconel 625 wire 

composite. The combination of laser power and traverse speed remained the same.   Also, the 

injection of Spherotene powder increased the propensity for wire stubbing occurring at some 

conditions where smooth wire deposition was observed for Inconel 625 wire laser cladding. 
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Consequently, there was rightward shift in the process map of Inconel 625 wire laser 

cladding with the concurrent injection of Spherotene powder. 

5.10 Cracking phenomenon 

The presence of residual stress has been identified as the main cause of cracking in metal 

matrix composite (MMC) coatings. Fracture occurs whenever the residual stress is more than 

the strength (toughness) of the matrix of the coating [72]. In this study, the total residual 

stress built up during meltpool solidification is considered as the sum of the effects of the 

thermal stress and compressive stress due to volume expansion. The volume expansion 

occurred because of the Spherotene dissolution leading to the formation of secondary 

carbides in the track. The increase in the amount of these carbides is believed to have resulted 

in the development of compressive stress during meltpool solidification. Also, thermal stress 

is an inherent characteristic of laser cladding since rapid solidification and high cooling rates 

are typical of the process. The thermal stress is thought to be higher during rapid 

solidification of composite meltpool of this type because of the formation of large volume 

fraction of different secondary carbides with entirely different coefficients of expansion [72, 

114]. From this explanation, it can be established that the more the Spherotene dissolution, 

the higher the thermal stress and compressive stress built up during meltpool solidification. 

Now, the presence of cracks in the composite laser tracks formed at PFR of 35g min
-1

, as 

shown in Figure 5.5 (a, b), shows that the total residual stress built up as a result of 

Spherotene dissolution was very high. It was higher than the toughness of the matrix 

therefore cracks were found in most of the tracks formed at this value of PFR. When the PFR 

was 25 g min
-1

, there was a lower amount of Spherotene captured in the meltpool, for 

example, as seen in Figure 5.5 (c, d). The Spherotene dissolution was reduced and there was a 

decrease in the amount of secondary carbides formed. Consequently, the residual stress was 
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lower, even, lower than the toughness of the Inconel 625 matrix because cracks were not 

found in nearly all the tracks formed at this value of PFR (25 g min
-1

). 

5.11 Pore formation 

Spherotene powder-Inconel 625 wire single laser tracks: The absence of pores in the 

continuous single laser tracks shows that, at every cladding condition, the combination of 

laser power and traverse speed are suitable for complete melting of the total volume of wire 

and powder deposited. Apart from wrong choice of the processing condition, porosity can 

result from the entrapment of gas within the meltpool. According to Zhou et al. [72], pores 

were found at the clad-substrate interface and near the surface region of the laser cladded 

WC/Ni alloy coatings. The presence of pores in the coatings was considered to be caused by 

the entrapment of gas bubbles in the track. The bubbles could not escape due to the larger 

WC particles sinking to the bottom of the pool. Also, the bubbles do not have enough time to 

flee from the molten pool because laser cladding is characterised with rapid solidification. 

However, in this work, gas entrapment effect is absent or not significant because no pores 

were found in the continuous composite tracks.  In the work of Zhou et al. [72], gas bubbles 

may have been trapped in the powder during mixing of the WC and the Ni powders prior the 

laser deposition. In this present study, there was no pre-mixing of powder and even, the 

Spherotene powder captured in the meltpool was of lower volume fraction compared with the 

Inconel 625 wire. The possibility of gas being captured in the feed wire is low therefore the 

chances of gas bubble, hence, pores formation in the solidifying track is low. The fact that the 

laser processing was carried out in an argon filled transparent enclosure is another reason for 

the absence of gas bubble in the meltpool. 

Spherotene powder-Inconel 625 wire overlapped-track layers: The overlapped layers of 

the composite are free of pores within the coating layers. This, as explained above, indicates 
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that the selected processing conditions for the depositions were right and there was no gas 

entrapped in the meltpool. However, the occurrence of inter-run porosities at the base of the 

overlapped region in some of the layers is due to poor geometrical qualities including low 

aspect ratio and high contact angle of the single tracks from which the layers were formed.  

5.12 Spherotene powder deposition efficiency 

The variation in the mass of Spherotene captured in the meltpool was clearly observed with 

the processing parameters. This variation can be attributed to the changes in the meltpool size 

as the parameters varied. In the past, it has been established that meltpool size is positively 

dependent on the laser power.  This was confirmed by the increase in composite track width 

with increasing laser power, as shown in Figure 5.21. Due to wider meltpool obtained at 

higher laser powers, more Spherotene was captured resulting in higher deposition efficiency.  
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Figure 5.21: Variation of composite track width with the laser power 

As presented in Figure 5.9, the nonlinearity between the powder deposition efficiency and the 

traverse speed can be attributed to the two competing factors (i.e. amount of Spherotene (1) 

delivered and (2) captured) that determine the powder deposition efficiency. From equation 

3.8, powder deposition efficiency is effectively the mass ratio of the Spherotene captured to 

the mass of Spherotene delivered from the nozzle. Increasing the traverse speed lowers the 

material volume deposited (including the Spherotene captured in the meltpool) per unit length 

of track because the table moves faster with respect to the fixed position of the powder 

nozzle. Since the amount of Spherotene captured in the meltpool decreased and the amount of 

Spherotene blown from the nozzle is constant with the traverse speed, the powder deposition 

efficiency is expected to decrease. This observation is in agreement with the findings of 

Meacock and Villar [115] during the geometrical characterisation of CP2 titanium powder 

laser tracks.  

With the increase in wire feed rate, the Spherotene deposition efficiency was found to 

increase, as seen in Figure 5.9. The change in the Spherotene deposition efficiency with the 
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WFR can be attributed to the powder stream attenuation by the feed wire. As shown 

schematically in Figure 5.22, the higher the wire feed rate, the thicker the meltpool and the 

lower the powder stream attenuation by the concurrently fed wire. The meltpool thickness is 

higher at increased wire feed rate because of the increase in material deposition rate. Due to 

thicker size of the meltpool, the feed wire travelled a relatively shorter distance to reach the 

meltpool whereas the distance covered will be longer if the meltpool thickness is lower, as 

shown in Figure 5.22.  

 

Figure 5.22: A diagram showing the amount of powder stream interruption by the feed 

wire at (a) high and (b) low wire feed rate 

  

With this laser cladding arrangement involving the attenuation of the powder stream by the 

feed wire, shorter travel distance between the feed wire tip and the meltpool will be an 

advantage. The reason is that the attenuation is reduced with a decrease in the wire protrusion 

distance (i.e. the linear distance between the wire tip and the meltpool surface). When the 

attenuation is decreased, the amount of Spherotene captured in the meltpool increased 

resulting in increase in the Spherotene deposition efficiency. 

Additionally, it is known that the wire deposition efficiency is ~ 100% whereas the 

Spherotene deposition efficiency ranged between 12 and 38% for the parameters utilised in 

(a) (b)
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this study. The interpretation of this is that a greater volume of Inconel 625 wire than the 

Spherotene was captured in the meltpool.  

5.13 Spherotene dissolution and volume fraction of the retained 

Spherotene  

The variations of the volume fraction of Spherotene retained in the composite track with the 

processing parameters depend principally on two factors. Firstly, the amount of Spherotene 

dissolution and secondly, the amount of Spherotene particle captured in the composite track. 

As the particle dissolution increases due to increase in incident energy, the volume fraction of 

the Spherotene retained is bound to decrease. Also, any variation in processing parameter that 

brings about increase in the amount of Spherotene captured (or powder deposition efficiency) 

will tend to increase the amount, hence, volume fraction of the retained Spherotene. 

Laser power: An increase in laser power will definitely lead to increase in energy per unit 

length of track. This produced higher energy meltpool causing more Spherotene dissolution, 

as shown in Figure 5.8. As explained previously, increase in laser power increases the 

amount of Spherotene captured (or powder deposition efficiency) in the meltpool. However, 

the decrease in the volume fraction of the retained Spherotene particle with increasing laser 

power indicates that there was a very high Spherotene dissolution such that the effect of the 

increase in the powder deposition efficiency was insignificant.  

Traverse speed: In the past, an increase in the volume fraction of retained tungsten carbide 

(hard particulate) with increasing traverse speed during the laser cladding of pre-blended 

WC/Ni alloy composite powder has been reported [94]. This observation was attributed to 

low tungsten carbide dissolution at higher traverse speed. Similarly, low Spherotene 

dissolution at increased traverse speed was observed with this laser cladding arrangement 
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because energy per unit length track decreased. However, the Spherotene particle deposition 

efficiency which decreases with increasing traverse speed played a more significant role. The 

reason is because the volume fraction of retained Spherotene particle in the composite track 

decreased with an increase in traverse speed. This is a reverse of the previous findings as 

reported in the literature. Compared with the laser power, traverse speed has a lower 

influence on the energy per unit length of track. As a result, the gap in the amount Spherotene 

dissolution (dissolution ratio) is higher with changes in laser power than the traverse speed.  

Wire feed rate: Previously, a positive relationship between the powder deposition efficiency 

and the wire feed rate has been explained in the Chapter 5.12 of this report. Nevertheless, 

compared with wire deposition efficiency (~100%), the deposition efficiency of the 

Spherotene powder (12-38%) is significantly smaller. Consequently, any increase in WFR 

will lead to greater increase in Inconel 625 wire volume than the volume of Spherotene in the 

composite track. This is the reason for the decrease in the volume fraction of Spherotene 

retained with the increase in WFR. 

5.14 Spherotene distribution 

The distribution of the Spherotene retained in the composite track is believed to be influenced 

mainly by the magnitude of the heat energy incident on the meltpool and partly by the 

distribution mode of the laser beam delivery. A significant feature of the composite track 

microstructure deposited at a very high energy per unit length of track (1080 J mm
-1

), as 

shown in Figure 5.12, is the rare presence of relatively smaller Spherotene particles in the 

cladding core. This is not noticed at reduced energy per unit length of track (720 J mm
-1

) as 

there was more even distribution of Spherotene throughout the track area. It is, therefore, 

assumed that high heat energy accumulation in the track (1080 J mm
-1

), accompanied by an 

overall reduced thermal gradients in the track core and the slower solidification rates, gives 
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sufficient energy and time to the Spherotene particles to dissolve in the Inconel 625 matrix. 

Higher number density of Spherotene particles were retained at the track boundaries because 

of the higher thermal gradients due to increased heat transfer by convection and radiation 

modes to the surroundings. Also, at the track-substrate interface, heat energy was largely 

conducted to the substrate which acted as heat sink. As a result, some Spherotene particles 

were preserved near the substrate region of the composite track.  

Usually, due to the Gaussian delivery mode of the fibre laser utilised in this work, more heat 

energy is concentrated at the core of the track. The intensity of the energy decreases from the 

centre towards the track boundary, as shown in Figure 5.23. This type of laser beam delivery 

mode is believed to have enhanced more Spherotene dissolution at the track core. 

 

 

Figure 5.23: A diagrammatic representation of the Gaussian distribution mode of the 

fibre laser beam utilised in this study  

 

In the case of the track deposited at 720J mm-1, cooling and solidification rates increased 

leading to a more uniform distribution of the retained Spherotene particles. Significantly high 

dissolution of Spherotene at the track core often enhanced by the fibre laser Gaussian 

delivery mode was not noticed. This is because of the reduction in the energy per unit length 

of track from 1080 to 720 J mm
-1

. 

Decreasing energy intensity
Decreasing energy intensity

Highest energy 
intensity at the 
core of the laser 

spot
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5.15: Secondary phase (carbide) formation and Cr depletion in the matrix 

The introduction of the tungsten carbide into a meltpool, during laser processing of metal 

alloy often results in microstructural modifications and large extent of compositional in-

homogeneity. As suggested by Cooper et al. [11], these changes are usually a consequence of 

high melt temperature and the interaction between the tungsten carbide and the liquid metal. 

The interaction is in the form of carbide/melt mixing brought about by temperature gradient-

driven fluid flow and results in dissolution of the carbide into the melt. The amount of 

tungsten carbide dissolution, as found in the literature, increases with increasing the amount 

of the carbide delivered into the meltpool [90], and increasing the processing energy input 

[18, 76].   

In this study, more Spherotene dissolution occurred at higher energy per unit length of track 

because of the more intense heating from the higher energy meltpool. The dissolution started 

from the edges of the Spherotene particles resulting in the formation of W2C phase 

predominantly around the retained (i.e. partially dissolved) particles. Apart from the 

formation of W2C, W and C were also released into the molten Ni-matrix. As found in Table 

5.7, the higher the energy per unit length of track, the more the Inconel 625 matrix is enriched 

in these elements. This confirms that the Spherotene dissolution increased with increase in 

energy per unit length of track.  

As the molten track solidifies, the precipitation of a hard phase (Fe3W3C) termed as M6C 

carbide first began to occur from the Ni-matrix. The M6C, as shown in Figure 5.15, with 

other elements like Cr, Mo and Ni in solute precipitated randomly within the meltpool. 

Fe3W3C (dendritic carbide) around the retained Spherotene particle solidified around the 

smaller W2C phase therefore, encapsulating them. The solidification continued with the 

formation of Ni-rich dendrites (dark Ni-matrix) and ended with the growth of eutectic 
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carbides (M23C6) in the interdendritic regions. During rapid solidification of molten Inconel 

625 matrix, the interdendritic region becomes rich in Cr, Mo and Nb due to micro-

segregation of these elements from the dendrite core. The relieved carbon from the 

Spherotene dissolution is believed to have combined with the Cr (due to strong Cr-C affinity) 

to form a eutectic carbide (Cr23C6) in-between the dendrite cores of the Ni-matrix. The more 

the amount of the relieved carbon due to Spherotene dissolution, the more the formation of 

Cr23C6 phase. This confirms the occurrence of more of the phase C (Cr23C6) in the cross-

sectioned track shown in Figure 5.15c (higher (i.e. 1080 J mm
-1

) incident energy) than in 

Figure 5.15f (lower (i.e. 720 J mm
-1

) incident energy). This phenomenon explains the reason 

why there was increased depletion of Cr in the Ni-matrix whenever there was more 

Spherotene dissolution. From the EDX result presented in Table 5.7, the amount of 

Spherotene dissolution was a measure of the W content of the matrix region in-between the 

retained Spherotene particles. This is due to the fact that there was no trace of W element in 

the as-received Inconel 625 wire composition therefore, any presence of W in the composite 

matrix was considered to result from the Spherotene dissolution. Similar observation has 

been reported by Amado et al [93] during the deposition of crack free tungsten carbide 

(Spherotene) reinforced Ni(Cr) layers by laser cladding. 

5.16 Micro-hardness and secondary phase contents of the composite 

tracks 

Compared with the micro-hardness of the AISI 304L substrate (201HV0.3) and Inconel 625 

wire and powder laser tracks (224-248 HV0.3), the micro-hardness of the matrix of Inconel 

625 wire-Spherotene powder composite laser track (540-690 HV0.3) showed a significant 

improvement. The high micro-hardness of the composite tracks can be attributed to the 

formation of the various secondary carbides resulting from the Spherotene dissolution in 
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Inconel 625 wire matrix. According to Liyanage et al. [91], Fe3W3C and W2C had been 

identified as extremely hard but brittle phases. Also Cr23C7 is also known as a secondary 

strengthening phase [95].  

The variation of the micro-hardness of the composite tracks as a function of the laser 

parameters can be attributed to the amount of these secondary carbides present in the tracks. 

When the laser power was high power or the traverse was low, the energy per unit length of 

track was relatively high. There was more Spherotene dissolution leading to increased 

formation of these hard phases (secondary carbides) in the composite tracks, as shown in 

Figure 5.15. As a result, higher micro-hardness was found at high laser power or low traverse 

speed. Spherotene dissolution decreased with increasing WFR. Relating this to the inverse 

relationship between the composite matrix micro-hardness and WFR (see Figure 5.17), it is 

believed that the volume fraction of the secondary carbides in the composite track matrix 

decreased with increasing the WFR. This implies that at higher WFR there was higher 

percentage volume composition of the relatively soft Ni matrix than the strengthening 

secondary carbides in the track microstructure.  

5.17 Defects in overlapped-track layers of the composite 

Poor bonding:  Generally, poor fusion laser cladding is usually due to the fact that the total 

material delivery volume was too high for the supplied energy density. As shown in Figure 

5.19, poor fusion/bonding between the overlapped-track layer and the substrate were found at 

laser powers of 1.0 kW and 1.2 kW with traverse speed of 100 mm min
-1

 and wire feed rate 

of 600 mm min
-1

. This showed that the bond strength between the layers and the substrate is 

weak therefore rendering the layers unsuitable for intended application.  
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Cracking: As discussed earlier in section 5.11, cracking propensity increases with increasing 

the volume concentration of secondary carbides in the composite matrix. At the overlapped 

zones of the composite layers, it is expected that the volume concentration of the secondary 

carbides will be higher. This is due to the fact that the partially dissolved Spherotene in the 

overlapped region of the adjacent track will undergo additional heating during the overlapped 

cladding of another track. However, the absence of crack in the layers shows that the residual 

stress due to volume expansion in these regions is not greater than the strength of the matrix. 

This might be due to the high ductility of Inconel 625 wire and use of low incident energy.   
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5.18 Summary 

 It was found possible to concurrently deposit Spherotene (WC/W2C) powder-Inconel 

625 wire composite using fibre laser cladding. Overlapped-track layers can be built 

which in this study were found to be minimally diluted, well bonded to the substrate 

and free of cracks and pores except for inter-run porosity. 

 The process exhibited different characteristics including wire dripping, smooth wire 

deposition and wire stubbing. Continuous single tracks were formed only whenever 

there was smooth wire deposition.  

 A process map predicting these characteristics at different processing conditions 

utilised in this study was developed. Compared with the process map developed for 

Inconel 625 wire laser cladding, the concurrent injection of Spherotene caused a 

rightward shift in the process map. 

 The deposition efficiency of Spherotene particles ranging from 12 to 38% was found 

to vary with the processing parameters. It increased with increasing laser power and 

wire feed rate but decreased with increasing traverse speed. The wire deposition is 

believed to be nearly 100% because all the wire delivered entered the meltpool. 

 The Spherotene dissolution ratio varied between 2 and 57% for the range of 

parameters used in this work. The higher the energy per unit length of track, the 

higher the dissolution ratio. The higher the wire feed rate, the lower the dissolution 

ratio. 

 The volume fraction of Spherotene retained in the track ranged from 22 to 30 vol. % . 

Due to high Spherotene dissolution at high energy per unit length of track, the 

retained Spherotene volume fraction decreased with increasing the laser power. 

Although low Spherotene dissolution was observed at higher traverse speed, the 

volume fraction of the Spherotene retained decreased with increasing traverse speed 
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because of the greater impact of Spherotene deposition efficiency which decreased 

with the speed.  Similarly, the 100% deposition efficiency of wire compared with the 

Spherotene deposition efficiency (max 38%) accounted for the decrease in the volume 

fraction of Spherotene retained with increasing wire feed rate. 

 The distribution of the Spherotene retained was mainly influenced by the magnitude 

of the incident energy and partly by the Gaussian distribution mode of the fibre laser 

used in this work. At low energy per unit length of track, relatively uniform 

distribution of retained Spherotene was observed whereas at extremely high energy 

per unit length of track, a low number density of retained Spherotene was found in the 

track core.  

 The microstructure of the composite coating formed with smooth wire deposition are 

pore and crack free consisting of dispersion of retained  WC/W2C powder (partially 

dissolved Spherotene), W2C phase and  precipitates (M6C and M23C6) in continuous γ 

Ni-matrix. The phases were confirmed by XRD and SEM/EDAX techniques. 

 The amount of Cr depletion from the Ni-matrix was found to increase with increasing 

the extent of Spherotene dissolution. The released C from Spherotene dissolution tied 

up the Cr in the interdendritic region to form Cr23C6 carbide. 

 The average micro-hardness of the composite matrix was significantly improved 

(540-690 HV0.3) as compared to the substrate (201 HV0.3) and Inconel 625 wire and 

powder laser tracks (224-248 HV0.3). It increased with increasing laser power but 

decreased with increasing traverse speed and wire feed rate. This was accounted for 

by the amount of the secondary carbides (W2C, M6C and M23C6) formed which has 

direct relationship with the micro-hardness. 
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6.0  Corrosion behaviours of laser deposited Inconel 625 powder, 

Inconel 625 wire and Spherotene-Inconel 625 wire composite 

coatings  

6.1 Introduction 

This chapter investigates and compares the corrosion behaviours of the substrate (AISI 

304L), the typical laser track layers of wire- and powder-fed Inconel 625 in de-aerated 3.5% 

NaCl solution. Also, the corrosion performances of the concurrently fed Spherotene powder-

Inconel 625 wire composite laser coatings at low and high energy per unit length of track are 

investigated. Their corrosion properties were obtained by carrying out open circuit potential 

and potentiodynamic polarisation tests as well as microstructural characterisation of the 

samples before and after the tests.  The differences in the corrosion performances of the 

deposited coatings are identified and the effects of the microstructural changes and Fe 

dilution (from the substrate) with respect to the differences are discussed. The chapter is 

divided into two sections, i.e. results and discussions, followed by a summary of the 

important findings.  

6.2 Corrosion behaviour of 304L stainless steel substrate 

As detailed in Chapter 3.13, the open circuit potential (Eoc) and potentiodynamic scan tests 

were performed based on the guidelines provided in ASTM standards G5-94 and G61-86 at 

room temperature. All surfaces were ground and polished before the tests. Similar tests were 

performed for the substrate and all the coatings with the potentiodynamic scan starting from 

1-hour Eoc position.  
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It was known from the literature [32] that there are some degrees of variations in the 

corrosion tests results (both immersion and potentiodynamic tests). Therefore, the tests were 

performed at least thrice for the substrate (and for each of the coatings). The average of the 

results including Eoc on immersion and after an hour, corrosion potential (Ecorr), breakdown 

potential (Eb) and passive current density (Ip) were determined and tabulated. These corrosion 

parameters have been defined in Chapter 3.13.2 (see Figure 3.9). 

6.2.1 Open circuit potential vs time 

In this study, the Eoc measurement of the 304L stainless steel substrate was measured over a 

period of an hour. Figure 6.1 shows the plots of change in Eoc with the time.  

 

 

Figure 6.1: Open circuit potential vs time for the 304L stainless steel substrate 
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As presented in Figure 6.1, there are some variations in the Eoc of the substrate. This is 

believed to be caused by the surface nature of the samples before the tests. The Eoc behaviour 

is hugely sensitive to sample surface details. However, in all cases, the Eoc initially decreased. 

Towards the end of 1hr-immersion in 3.5% NaCl solution, the potential became relatively 

constant with time. At this point, the Eoc was assumed to have reached a steady state.  

 

 Table 6.1: Summary of the results of the corrosion test for 304L stainless steel substrate 

Sample 

Eoc on 

immersion 

(mV) 

Eoc after     

     1 hour            

(mV) 

Ecorr       

(mV) 

Eb     

(mV) 

Ip          

(mA cm
-2

) 

304L Stainless 

steel 
-179 ± 11 -196 ± 12 -235 ± 16 340 ± 10 1.9 × 10

-3
 

 

The average values, as presented in Table 6.1, of Eoc on immersion in the electrolyte and after 

an hour was found to be -179 ± 11 and -196 ± 12 respectively (all values are with respect to 

Ag/AgCl reference electrode). 

6.2.2 Potentiodynamic polarisation scan 

This test was basically used to determine the passivation behaviour of the substrate and the 

coatings. All precautions were observed during sample preparation in order to avoid any 

crevice effects on the sample surface. Especially, the boundary between the sample and the 

resin was properly coated with stop-off lacquer. It is well known that this region is a potential 

site for crevice corrosion which often alters the passivation behaviour of the samples. Figure 

6.2 presents the potentiodynamic polarisation scans of the 304L stainless steel substrate in de-

aerated 3.5% NaCl solution at room temperature. 
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Figure 6.2: Cyclic polarisation curves of 304L stainless steel substrate in de-aerated 

3.5% NaCl solution at room temperature, (a) the selected polarisation curve (b) the 

amount of scatter in the repeated scans 
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The average value of the Ecorr measured from the polarisation curve was -235 ± 16. This 

shows a difference of 39 mV from the Eoc value obtained after 1 hour immersion in the 

electrolyte. Other deductions from the curves including the average passive current density 

and breakdown potential are summarised in Table 6.1. As expected, variations were observed 

in the polarisation scans of the substrate (see Figure 6.2b). However, the variation is believed 

to be moderate.  

The average passive current density was 1.9 ×10
-3 

mA cm
-2

. A rapid increase in current 

density was observed in the curve after a narrow passive region, precisely at 340 ± 10 mV 

(wrt Ag/AgCl electrode) which is the breakdown potential (Eb). The rapid increase in current 

density after passivation usually suggests pitting or crevice corrosion on the surface of the 

test metal. Also, the positive hysteresis observed in the polarisation curves (of the substrate 

samples) and corrosion pits visually detected on the stainless steel samples, after the test, 

confirmed the occurrence of localised (pitting) corrosion on the metal surface.   

6.2.3 Characterisation of the 304L stainless steel substrate after polarisation 

Figure 6.3 shows the SEM/BSE images, at different magnifications, of a 304L stainless steel 

sample after the potentiodynamic polarisation scan. Clearly, there was evidence of pitting 

corrosion occurring on the surface of the substrate. This shows that the corrosion was not 

uniform on the surface. As a result, the corrosion was very rapid at small areas and more 

intense than uniform corrosion [99]. The images in Figures 6.3c and 6.3d clearly show the 

corrosion pits and other corrosion products on the corroded surface of the substrate.  
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Figure 6.3: SEM/BSE images of the corroded surface of the 304L stainless steel 

substrate in 3.5% NaCl solution showing pits formation. 

 

6.3 Corrosion behaviour of the typical Inconel 625 coatings formed via 

wire and powder lateral feeding systems 

The results of the corrosion (one-hour immersion and potentiodynamic scan) tests on the 

typical Inconel 625 laser coatings formed via wire and powder feeding are presented in this 

section. All tests were conducted in a similar way as performed for the substrate. 

6.3.1 Open circuit potential vs time 

Figure 6.4 shows the comparison of the change in Eoc with time of Inconel 625 wire and 

Inconel 625 powder laser coatings in de-aerated 3.5% NaCl solution at room temperature. 

Relatively, the Eoc of the wire coating remained constant with time throughout the test. In the 
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case of the powder coating, the Eoc was inclined towards the negative potential. The slope of 

inclination reduced significantly towards the end of the 1hr-immersion. The decrease in Eoc 

with respect to time usually implies that there is dissolution of pre-formed oxide film on the 

surface of the sample on immersion in the electrolyte. However, a slight decrease of about 8 

mV in an hour was observed. This suggests that the pre-formed oxide film dissolved at a very 

slow rate.  

 

Figure 6.4: Change in Eoc with time of Inconel 625 wire and Inconel 625 powder 

coatings in de-aerated 3.5% NaCl solution at room temperature (a) comparison between 

the wire and powder coatings and (b) variations in the iterations.  

 

Table 6.2: Summary of the results of the corrosion test for Inconel 625 wire and Inconel 

625 powder laser coatings 

Sample 

Eoc on 

immersion 

(mV) 

Eoc after         

1 hour            

(mV) 

Ecorr    

(mV) 

Eb     

(mV) 

Ip         

(mA cm
-2

) 

Inconel 625 

wire 
-176 ± 4 -176 ± 2 222 ± 8 585 ± 5 3.0 × 10

-4
 

Inconel 625 

powder 
-186 ± 14 -194 ± 12 253 ± 56 584 ± 8 1.1 × 10

-3
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As shown in Figure 6.4, large scatter was seen in the Eoc vs time curves of the powder coating 

samples. Perhaps, the scatter may be caused by variations in the surface microstructure at 

different regions of the typical powder coating. The average Eoc on immersion and after 1-

hour Eoc for the Inconel 625 wire coating, as presented in Table 6.2, were -176 ± 4 mV and -

176 ± 2 mV respectively. The averages for the powder coating were -186 ± 14 mV and -194 

± 12 mV on immersion and after 1-hour Eoc respectively. 

6.3.2 Potentiodynamic polarisation scan 

The cyclic polarisation curves for the typical Inconel 625 coatings formed by wire and 

powder feeding as compared with the substrate are revealed in Figure 6.5. Generally, the two 

coatings exhibited better corrosion resistance in the 3.5% NaCl solution than the stainless 

steel substrate. Inconel 625 wire coating passivated at the lowest current density (3.0×10
-4

 

mA cm
-2

) followed by the corresponding powder coating (1.1×10
-3

 mA cm
-2

).  Since the 

formation of passive layer at low current density hinders the severe loss of material at higher 

current density, lower passive current density therefore connotes improved corrosion 

resistance. In the past, the passive current density (Ip) obtained for wrought Inconel 625 in de-

aerated 3.5% NaCl solution at room temperature is (4.6×10
-4

 mA cm
-2

) [116]. The Ip obtained 

for Inconel 625 wire coating is very close to this value. 
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Figure 6.5: Cyclic polarisation curves showing (a) comparison among Inconel 625 laser 

coatings by wire and powder feeding, and 304L stainless steel substrate (b) amount of 

scatter in wire coating (c) amount of scatter in powder coating 

 

 

As listed in Table 6.2, nearly equal breakdown potential (Eb) value of ~585 mV was found 

for the two coatings. This value is very close to a value quoted for wrought Inconel 625 (600 

mV using Ag/AgCl as reference electrode) but greater than Eb values (max = 487 mV wrt 

Ag/AgCl electrode) found for laser remelted HVOF Inconel 625 coatings in de-aerated 3.5% 

NaCl solution at room temperature [116].  As reported earlier in section 6.2, the Eb value 

(340 mV wrt Ag/AgCl electrode) found for the stainless steel is lower than the two coatings.  

(a)

(b) (c)
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Compared with the Inconel 625 wire coating and the substrate, Inconel 625 powder coating 

has the lowest Ecorr (-255 ± 56 mV). The deviations from the average Ecorr of the typical 

powder coating was very wide, as seen in Figure 6.6c. From the values presented in Table 

6.2, Inconel 625 wire coating appeared to be nobler than both the substrate and the Inconel 

625 powder coating because its Ecorr value (-220 ±8 mV) was the highest. 

In addition, the increase in current density after the passive region in the polarisation curves 

of the two typical coatings was not as rapid as that of the substrate. As explained previously, 

the sudden and rapid increase in current density after passive region suggests the possibility 

of corrosion pits in the test sample. Instead of pitting effect as observed in the corroded 

substrate surface, there was uniform corrosion of the Inconel 625 coatings in the transpassive 

region.  This was confirmed by the absence of pits in the corroded surfaces of the two 

coatings, for example, as shown in Figure 6.7. 

The average values of all corrosion results obtained for the two coatings are summarised in 

Table 6.2. As found in the literature [32, 116], all values deduced from the polarisation 

curves are close to the results found for the corrosion behaviour of wrought Inconel 625 

under nearly similar conditions.  

6.3.3 Characterisation of the wire- and powder-fed Inconel 625 laser coatings after 

polarisation 

The SEM/BSE images showing the top views of the typical Inconel 625 powder- and wire-

fed laser coatings before and after potentiodynamic polarisation scan are presented in Figures 

6.6 and 6.7 respectively. Interdendritic light phase precipitate and continuous dark dendritic 

phase were observed in the images presented in Figure 6.6. This is similar to the 

microstructure (longitudinal section) of Inconel 625 wire and powder previously reported in 

chapter 4.4.3 and 4.7.3 respectively. 
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As seen in Figures 6.6a and 6.6b, Inconel 625 wire laser coating comprised mainly long 

columnar dendrites growing in a particular direction. The light phase which is considered as 

Nb- and Mo-rich precipitate existed at the interdendritic regions.  

 

Figure 6.6: SEM/BSE images showing the plan views of the (a-b) Inconel 625 wire, and 

(c-d) Inconel 625 powder laser coatings before polarisation test. 

 

In the case of the Inconel 625 powder laser coating shown in Figures 6.6c and 6.6d, the 

microstructure was relatively finer consisting of cellular/equiaxed dendrites solidification 

mode. Accordingly, more interdendritic spaces existed at the boundaries between the core 

dendrites. Additionally, a higher number of Nb-and Mo-rich interdendritic precipitate was 

noticed in the powder coating. This is believed to have constituted to increased 

microstructural in-homogeneity in the powder coating, for example, as evidenced in Figures 

6.6 (c & d) and 6.7 (c & d).  

Inconel 625 wire laser coating

Inconel 625 powder laser coating
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Figure 6.7: SEM/BSE images showing the uniformly corroded surfaces of the (a-b) 

Inconel 625 wire, and (c-d) Inconel 625 powder laser coatings after polarisation test. 

 

Figures 6.7a and 6.7b shows the magnified SEM images of the surface of Inconel 625 wire 

coating after the potentiodynamic polarisation test. It is shown that the surface corroded 

uniformly since there is no evidence of pits on the surface. Likewise, uniform corrosion was 

observed on the surface of the Inconel 625 powder coating after the polarisation scan, for 

example, as shown in Figures 6.7c and 6.7d. The light phase (precipitate) in-between the 

grey-like matrix remained unaffected in the two typical coatings after the tests. 

Inconel 625 wire laser coating

Inconel 625 powder laser coating
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Figure 6.8: Cross-sectional view of (a, b) Inconel 625 powder, (c, d) Inconel 625 wire 

laser coatings after polarisation in 3.5% NaCl  

 

The corroded samples were sectioned transversely so as to show the thickness of the 

corrosion products formed on the top surface of the coatings. As shown in Figure 6.8, the 

total thickness of the corrosion products in the two coatings is a maximum of 0.1 mm 

probably indicating slow corrosion rates. Also, there was no ingress of the electrolyte or the 

existence of corrosion products within the coatings. This indicates that the substrate is fully 

protected by the two typical Inconel 625 laser coatings.  

After the tests, the SEM/EDX mapping of the top surface of the Inconel 625 powder coating 

was carried out, as shown in Figure 6.9. It was found that the grey region marked ‘A’ 

covering the core dendrite is very rich in Mo (34.5 wt.%) and O (36.3 wt. %). The significant 

presence of O indicates that the core dendrites suffered from oxidation leading to formation 

of probably oxides or compounds of molybdenum. The light contrast (precipitate) marked ‘B’ 

at the boundaries in-between the dendrite core contains negligible amount of O (0.9 wt. %) 

but still contain high proportion of Mo (12.8 wt. %) and Nb (14.0 wt. %). The negligible O 
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content and no noticeable change in contrast show that the phase ‘B’ suffered insignificantly 

from the corrosion attack.  

 

Figure 6.9: SEM/EDX mapping of the top surface of Inconel 625 powder laser coating 

after potentiodynamic polarisation scan in 3.5% NaCl solution 

 

The results of the detailed composition (EDX) analysis undertaken at the regions A and B are 

presented in Table 6.3.  The line scan analysis across the phases present on the surface of the 

corroded sample of Inconel 625 powder laser coating is shown in Figure 6.10.   

Table 6.3: Summary of the composition analysis (wt. %) of the different regions of the 

SEM image in Figure 6.9 

Symbol O Cr Fe Ni Nb Mo 

A 36.3 6.2 3.3 4.0 15.5 34.5 

B 0.9 20.1 1.0 51.4 14.0 12.8 
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Figure 6.10: Elements distribution profiles of O, Mo, Cr, Nb and Ni across the phases 

present in the SEM image shown in Figure 6.10 

 

EDX elemental compositional analysis was repeated for the corroded surface of Inconel 625 

wire laser coating sample. Similar to the results obtained for Inconel 625 powder coating, the 

core dendrites were attacked while the light precipitate in the interdendritic was not affected 

as indicated by the EDAX results presented in Table 6.4. However, compared to the results in 

Table 6.3, there was noticeable decrease in O, Mo and Fe contents and increase Ni and Cr 

contents in the composition of the region A (i.e. corroded region) of the wire coatings. The 

low O (19.5 wt. %) and high Cr (15.7 wt. %) and Ni (37.2 wt. %) suggest that there was 

reduced oxidation.  
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Figure 6.11: X-ray mapping of the top surface of Inconel 625 wire laser coating after 

potentiodynamic polarisation scan in 3.5% NaCl solution 

 

Table 6.4: Summary of the composition analysis (wt. %) of the different regions of the 

SEM image in Figure 6.11 

Symbol O Cr Fe Ni Nb Mo 

A 19.5 15.7 1.2 37.2 9.0 17.5 

B 2.6 21.6 0.9 58.8 5.3 10.8 

 

6.4 Corrosion behaviours of the concurrently fed Spherotene (WC/W2C) 

powder-Inconel 625 wire composite coatings 

The corrosion study of Spherotene (WC/W2C) powder-Inconel 625 wire laser coatings 

formed at two energy (J mm
-1

) levels was investigated. The selected layers were deposited at 

240 J mm
-1

 and 1080 J mm
-1

. The reason is that the dissolution ratio of the injected 

Spherotene particle varied significantly with the energy input. As shown in Figure 5.20 of 
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Chapter 5.8, the microstructures of the two coatings are somewhat different because of the 

varying amount of Spherotene dissolution in them. As a result, the effects of the Spherotene 

powder dissolution on the corrosion resistance of the composite coatings will be determined 

by comparing their corrosion performances at low (240 J mm
-1

) and high (1080 J mm
-1

) 

energy per unit length of track.  

6.4.1 Open circuit potential (Eoc) vs time 

Figure 6.12 presents the Eoc vs time curves of the Spherotene powder-Inconel 625 wire 

composite coatings formed at low and high energy per unit length of track.  

 

Figure 6.12: Eoc vs time curves of concurrently fed WC/W2C powder-Inconel 625 wire 

composite laser coatings formed at low (240 J mm
-1

, P = 1.2 kW, V = 300 mm min
-1

)  

and high (1080 J mm
-1

, P = 1.8 kW, V = 100 mm min
-1

) energy per unit length of track 

 

For all the samples, the Eoc (wrt to Ag/AgCl electrode) started to decrease in the negative 

direction on immersion into the de-aerated 3.5% NaCl solution. As explained previously in 
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section 6.3.1, this indicates the dissolution of pre-oxide film into the electrolyte.  Towards the 

end of 1 hour, the Eoc became nearly constant with the time. This shows that the open circuit 

potential has stabilised.  The average values of Eoc on immersion and after 1-hr immersion in 

the electrolyte for the two coatings are summarised in Table 6.5. 

Table 6.5: Summary of the results of the corrosion test for the concurrently fed 

WC/W2C powder-Inconel 625 wire composite coatings 

Energy 

input        

(J mm
-1

) 

Eoc on 

immersion 

(mV) 

Eoc after         

1 hour            

(mV) 

Ecorr    

(mV) 

1080 -278 ± 19 -297 ± 3 -309 ± 4 

240 -253 ± 10 -282 ± 5 -295 ± 5 

 

6.4.2 Potentiodynamic polarisation scan 

Figure 6.13 shows the corrosion performance of the Spherotene powder-Inconel 625 wire 

composite coatings in de-aerated 3.5% NaCl solution at room temperature. Compared to the 

cyclic polarisation curves obtained for Inconel 625 coatings (wire- and powder-fed), there 

was no evidence for passivation in the curves obtained for the composite coatings. This 

shows that the composite coatings demonstrated poor corrosion resistance compared with the 

Inconel 625 coatings. A transition from the active to transpassive region is noticed for the 

composite coatings. At 1080 J mm
-1

, a significant increase in current density with a little 

change in potential is observed. This indicates a possibility of pitting form of corrosion 

occurring. In the case of the composite coating formed at 240 J mm
-1

, the gradient of the 

current density against potential reduced in the transpassive region. Generally, the absence of 

passivation demonstrated by the composite coatings is possibly due to Spherotene dissolution 

resulting to increased microstructural in-homogeneity. 

The corrosion potential (Ecorr) value of the composite coating deposited at 240 J mm
-1

 is 

higher than the value obtained when the incident energy was 1080 J mm
-1

. This indicates that 
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the former is nobler than the latter. Table 6.5 presents the summary of the of the corrosion 

performances of the two composite coatings. 

 

Figure 6.13: Cyclic polarisation curves of concurrently fed WC/W2C powder-Inconel 

625 wire composite laser coatings. (a) Comparison of the coatings formed at low (240 J 

mm
-1

, P = 1.2 kW, V = 300 mm min
-1

) and high (1080 J mm
-1

, P = 1.8 kW, V = 100 mm 

min
-1

) energy per unit length of track, (b) amount of scatter at 1080 J mm
-1

, (c) amount 

of scatter at 240 J mm
-1

.  

 

6.4.3 Microstructural characterisation of the Spherotene-Inconel 625 wire coatings 

before and after corrosion 

The cross-section of the corroded samples of the composite coatings deposited at 240 J mm
-1

 

and 1080 J mm
-1

 are shown in Figures 6.14 and 6.15 respectively. The Figures reveal the 

microstructure of the two coatings and the depth of the corroded region on the top of the 
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coatings.  Their microstructures are very different. At 1080 J mm
-1

, there is large amount of 

Spherotene dissolution. Consequently, the coating is predominantly characterised by the 

formation of intermetallic compounds (mainly M6C, M23C6 and W2C carbides) and unevenly 

distributed few retained Spherotene particles. At 240 J mm
-1

, more Spherotene were retained 

and evenly distributed throughout the coating. This is because the Spherotene dissolution is 

reduced at low energy level. The formation of intermetallic compounds is not as predominant 

as found at 1080 Jmm
-1

.  

The corrosion damage in the two coatings is limited to the topmost region and there was not 

any damage to the substrate. The substrate, as shown in Figures 6.14 and 6.15, is well 

protected from the corrosion attack because there was no ingress of electrolyte, hence, a 

formation of corrosion products at the coating-substrate interface. However, in the case of the 

composite laser coating formed at 1080 J mm
-1

, the damage at the top region is relatively 

more severe because there is evidence of pit formation at the surface, as clearly shown in 

Figure 6.15c.  
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Figure 6.14: BSE/SEM images of the cross-section of the concurrently fed Spherotene-

Inconel 625 wire composite laser coating formed at 240 J mm
-1

 after the corrosion tests 
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Figure 6.15: BSE/SEM images of the cross-section of the concurrently fed Spherotene-

Inconel 625 wire composite laser coating formed at 1080 J mm
-1

 after the corrosion tests 
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The corroded surface of the samples were also characterised so as to know the corrosion 

mechanism that occurred in the coatings.  BSE/SEM images of the top surface of the two 

samples, at low and high energy levels, before and after the potentiodynamic polarisation 

scan are presented in Figure 6.16 and 6.17. 

As seen in Figure 6.16, the composite coating formed at 240 J mm
-1 

appears to be uniformly 

attacked in the corrosive environment (de-aerated 3.5% NaCl solution) because there is no 

evidence of pit formation within the corroded region. Compared to its initial microstructure 

before the tests, a faceted structure appeared clearly within the Spherotene particles in the  

 

Figure 6.16: SEM/BSE images showing the microstructure of the top surface of 

Spherotene powder-Inconel 625 wire composite laser coatings formed at 240 J mm
-1

 (a, 

b) before and (c, d) after the potentiodynamic polarisation scan test in de-aerated 3.5% 

NaCl solution. 
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Figure 6.17: SEM/BSE images showing the microstructure of the top surface of 

Spherotene powder-Inconel 625 wire composite laser coatings formed at 1080 J mm
-1

 (a-

c) before and (d-f) after the potentiodynamic polarisation scan test in de-aerated 3.5% 

NaCl solution. 

 

coating. The difference is believed to be a result of chemical attack on the Spherotene 

particles. Therefore, it is considered that the Spherotene particles showed moderate corrosion 

damage the severity of which is clearly shown in Figure 6.16c. Within the composite matrix 

in-between the retained Spherotene particles, some microstructural changes due to the 

corrosion attack was observed.  A new phase (marked as ‘A’) is seen to form on the dark Ni-

matrix phase. There is no significant change in the colour and shape of the blocky carbide 

previously identified as M6C (marked as ‘B’). The EDX analysis was conducted on the two 

phases identified as A and B respectively, as seen in Figure 6.16d. The results which are 

averages of 5 measurements are presented in Table 6.6. 
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Table 6.6: Chemical composition (wt. %) of the phases A and B identified in Figure 6.16 

Phase O Cr Fe Ni Nb Mo W 

A 22 ± 4 11± 2 1 ± 0.3 9 ± 2 4 ± 1 4 ± 1 50 ± 5 

B 1 ± 0.1 8 ± 1 0.1 ± 0.1 19 ± 2 2 ± 0.1 6 ± 1 65 ± 4 

 

It was found that the phase marked ‘A’ is richer in O indicating that it is a product of 

oxidation (corrosion). The other phase marked ‘B’ is composed of negligible amount of O (1 

wt. %) after polarisation test in de-aerated 3.5% NaCl. Also, there is no significant change in 

the composition of M6C (marked as ‘B’) after the test when compared with its composition 

before the test, as presented in Table 5.6. The SEM/EDX mapping in Figure 6.18 also reveals 

that there is more of oxygen and less of nickel in the phase marked A (i.e. corrosion product) 

whereas the blocky carbide ‘B’ contains more nickel and tungsten. 

Figure 6.18: SEM/EDX mapping of the top surface of WC/W2C powder-Inconel 625 

wire laser coating formed at 240 J mm
-1

 after potentiodynamic polarisation scan in de-

aerated 3.5% NaCl solution 
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The type of corrosion observed in the composite coating formed at 1080 J mm
-1

 is different. 

As shown in the Figure 6.17, pits were formed around the edges of the retained Spherotene 

powder. This indicates the occurrence of localised corrosion after the potentiodynamic 

polarisation scan test. Corrosion damage on the retained Spherotene was also observed.  
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Discussion 

6.5 Open circuit potential (Eoc) 

Prior to potentiodynamic polarisation test, the Eoc values were determined by immersing the 

coating samples in the 3.5% NaCl solution for 1 hour at open circuit condition. This was done 

in order to allow the electrochemical reaction to reach a steady state before continuing with 

the polarisation scan test. As illustrated in Figure 6.19, there are different reactions taking 

place at the metal-electrolyte interface on immersion in an electrolyte. These reactions are 

responsible for the changing Eoc value with the time.  

 

Figure 6.19: A diagram showing different processes taking place during surface 

corrosion (1) metal dissolution forming ions, (2) oxygen or proton reduction at metal 

surface, (3) transport of oxygen or ions to the surface, (4) metal ion transport from 

surface to the solution, (5) precipitation of corrosion product (6) metal ion transport 

through the product, (7) oxygen diffusion through solid corrosion product (8) 

oxygen/proton reduction at solid product layer [109] 
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An oxide film usually termed as native oxide is rapidly formed whenever a freshly prepared 

metal surface (sample) is exposed to the atmosphere. Upon immersion of the samples in the 

electrolyte, the native oxide tends to dissolve. If the initial dissolution of the native oxide is 

predominant, the Eoc will shift to a more negative value. On the other hand, the dissolving 

native oxide may be suppressed by the formation of passive film (corrosion product) which 

protects the metal surface from further oxidation. In this case, the Eoc starts to shift to a more 

positive value. Therefore, it can be concluded that the direction of the potential (Eoc) change 

with time is related to the initial dissolution of the native oxide and formation of the 

protective oxide (passive film) while inside the electrolyte. 

According to Niaz [109] and Ahmed [117], the native oxide dissolution depends on the 

thickness of the oxide before immersion. For this reason, similar duration was kept between 

the sample preparation and the start of the Eoc in all tests conducted. However, the variation 

in the negative dip in the samples of the same coating shows that oxide film formation on the 

metal surface cannot be precisely controlled. In all the tested samples except the Inconel 625 

wire coatings, the negative dip in the Eoc vs time curves indicates that native oxide 

dissolution was very dominant in the first 1hr before a steady state can be reached. The nearly 

parallel curve obtained for the Inconel 625 wire coatings probably suggests that the native 

oxide dissolution is minimal. This might be due to presence of thicker native oxide and/or 

rapid formation of passive film on immersion to electrolyte. The scatter in the average values 

of Eoc before and after immersion for each coating can be attributed to variations in the 

coating microstructure from one region to another. Different regions of the coating surface 

have different potential. This is due to different oxygen concentration, compositions of 

material and concentration of active species in solution from one part of the corroding surface 

to another [100, 109]. 
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6.6  Potentiodynamic polarisation scan tests  

Corrosion parameters including passive current density, breakdown potential and corrosion 

potential are often used for evaluating the corrosion resistance of materials using 

electrochemical analysis. All these parameters can be extracted from the polarisation curve 

(plot of E (mV) against Log I (mA cm
-2

)) generated during the polarisation scan test.  The 

differences in the curves obtained for the substrate and all other coatings including composite 

coatings can be attributed to the ability of each material (or coating) to form a protective 

oxide film (otherwise termed passive film) over its surface. Usually, a passive film was 

formed on samples’ surfaces prior to the polarisation scan test. This is confirmed by the Eoc 

behaviour as shown in Figures 6.1, 6.4 and 6.12. At the start of the polarisation scan, there is 

reduction of metal ions in the oxide film leading to alteration of the surface. After the 

completion of the reduction process, the metal ion began re-oxidising resulting in the re-

nucleation of the oxide film (passive film). The formation of passive film (i.e. passivation) on 

the corroding metal surface slows down or prevents further corrosion damage by the 

electrolyte. If the passivation is achieved at relatively lower current density, it can be 

interpreted as a positive characteristic in uniform corrosion resistance. The reason is that 

mass of material loss is related to the amount of current flowing through the anode in a 

corrosion cell (Faraday’s laws of electrolysis) [99, 100].  

On the other hand, any damage to the passive film can drastically reduce the corrosion 

resistance and initiate localised corrosion damage such as pitting [82]. The breakdown 

potential is the ability of the material to resist the formation of the localised attack on the 

passive film. A high Eb shows that the damage nuclei cannot readily initiate on the passive 

film at a relatively lower applied voltage. Also, any damage nuclei initiated at voltages under 

the repassivation potential can be healed therefore, not ending in local defects. Accordingly, a 

higher breakdown potential implies a better resistance against non-uniform (localised) 
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corrosion. In terms of corrosion potential, a sample with higher corrosion potential is 

believed to be nobler than a sample with relatively lower corrosion potential.  

6.6.1 304L stainless steel substrate 

The corrosion resistance of the stainless steels has been related to its composition in the past 

[118, 119]. Due to its high Cr content, a chromium enriched passive film (Cr2O3) formed on 

the surface gives the steel good resistance to corrosion. This was confirmed by the ability of 

the steel sample to passivate at low current density (1.9 × 10
-3

 mA cm
-2

), as presented in 

Table 6.1. However, the formation of pits randomly on the surface of the substrate, after the 

polarisation scan test, indicates that the film can easily be damaged at a reasonably high 

potential. In this study, the breakdown potential obtained for 304L stainless (340 mV wrt 

Ag/AgCl electrode) is somewhat low compared with the wrought Inconel 625 alloy (600 mV 

wrt Ag/AgCl electrode) [116] and Inconel 625 coatings (585 mV wrt Ag/AgCl electrode). 

This was expected because stainless steels (especially type 316 and 304L) demonstrate 

localised corrosion in specific environments, particularly in chloride ion rich solutions [120, 

121]. This is particularly due to the absence or significantly low amount of Mo (<1%) in the 

stainless steels [100, 122].   

6.6.2 Inconel 625 wire and Inconel 625 powder laser coatings 

As shown in Figure 6.5, the polarisation curves for both the Inconel 625 wire and Inconel 625 

powder laser coatings shows better corrosion properties than the stainless steel substrate. The 

absent of pitting in the two coatings can be related to the high Mo and Cr contents of the 

Inconel 625 alloy [9]. The formation of passive film (probably Cr2O3), by the two coatings, at 

relatively lower current densities compared to the substrate implies the material loss due to 

corrosion effect is reduced. The higher breakdown potential demonstrated by the two 

coatings implies that damage nuclei could not be easily initiated on the film. Even, at 
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transpassive region, the gradient of the current density against potential is significantly low 

indicating that there was not permanent damage on the passive film.  

The slight difference in the polarisation curves hence, corrosion behaviours of Inconel 625 

powder and Inconel 625 wire laser coatings can be traced to the difference in their 

microstructures. The type of grain structures and the grain size can influence the corrosion 

behaviours of metals [99, 121]. As shown in Figure 6.6, the microstructure of the top 

(exposed) surface of Inconel 625 powder is fully characterised with cellular/equiaxed 

dendrites of relatively finer grain sizes. This shows that the grain boundaries which are 

narrow regions of mismatch between the grains are more in number in the powder laser 

coating. On the other hand, the corresponding wire coating was characterised with coarser 

microstructure containing long growth of columnar dendrites. Relatively, the grain 

boundaries take up smaller fraction of the wire coating surface. According to Bradford [99], 

the grain boundaries act as collecting site for impurity atoms that do not fit well inside the 

metal crystals. Also, at moderate temperature, diffusion is much more rapid along the 

boundaries than within the grains. Therefore, atoms collect more rapidly and form precipitate 

at the boundaries otherwise called interdendritic regions. The combined effects of these result 

in increased inhomogeneity in the powder coating.  

Additionally, it has been previously established in Chapter 4.15 that the Fe composition in the 

meltpool relates directly with the amount of interdendritic precipitates (most likely Laves) 

formed during the solidification of liquid Inconel 625 alloy. This precipitate with different 

electrochemical potentials is expected to form galvanic couple with the surrounding Ni-

matrix dendrites therefore, initiating a galvanic form of corrosion around the interdendritic 

region. The Fe dilution was found to be 3.4 and 15.8% and the volume fraction of the 

interdendritic precipitates was estimated to be 0.7 and 2.3% in the typical Inconel 625 wire 

and powder laser coatings, respectively (see Table 4.9). Due to larger amount of 
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microstructural in-homogeneity in powder coating, more galvanic couple is believed to have 

formed in the coating than the corresponding Inconel 625 wire coating. Probably, this is the 

reason for higher passive current density and lower corrosion potential found for Inconel 625 

powder coating when compared with the corresponding wire coating. 

 For comparison, the results of the corrosion tests of wrought Inconel 625 alloy, as found in 

the literature, and Inconel 625 laser clads using wire and powder feedstock are presented 

together in Table 6.7. Generally, the corrosion performance of both Inconel 625 wire and 

Inconel 625 powder coatings are close to the wrought Inconel 625 alloy. 

Table 6.7: Corrosion properties of wrought Inconel 625 and laser clad Inconel 625 

coatings in de-aerated 3.5% NaCl solution 

Material Environmental condition Corrosion properties Reference 

  Temperature 
Reference 

electrode 
Electrolyte 

Ecorr                

(mV) 
Ip              

(mA cm
-2

) 
Eb          

(mV) 
  

Wrought 

Inconel 625 

alloy 

Room 

temperature 
Ag/AgCl 

de-aerated 3.5% 

NaCl solution 
-264 4.7 × 10

-4 600 [116]  

Wrought 

Inconel 625 

alloy 
30

o
C SCE 

de-aerated 3.5% 

NaCl solution 
-310 ± 6 1.5× 10

-3 650 [32]  

Inconel 625 

wire laser 

coating 

Room 

temperature 
Ag/AgCl 

de-aerated 3.5% 

NaCl solution 
-222 ± 8 3.0 × 10

-4 585 ± 5   

Inconel 625 

powder laser 

coating 

Room 

temperature 
Ag/AgCl 

de-aerated 3.5% 

NaCl solution 
-253 ± 56 1.1 × 10

-3 584 ± 8   

 

6.6.3: Spherotene-Inconel 625 wire composite laser coating 

The corrosion behaviour observed in the composite coating is complex and more severe 

compared to the Inconel 625 alloy laser coatings. In the composite coating formed at 240 J 

mm
-1

, corrosion damage was observed within the partially dissolved Spherotene particles and 

within the Ni-matrix phase in-between the secondary carbides. As discussed earlier in 

Chapter 5.15, Spherotene injection into molten Inconel 625 alloy, during laser processing, 
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resulted in microstructural modifications and large extent of compositional in-homogeneity. 

For example, precipitation of the secondary carbides such as Fe3W3C (M6C) and Cr23C6 

(M23C6) results in the depletion of useful alloy element such as Cr and Mo from the Ni-

matrix. Chromium, the main alloying elements in Inconel 625 alloy, is added to promote 

resistance to corrosion. Its role is to passivate the external surface of the alloy by forming a 

thin oxide film (Cr2O3) over it. Now, the Ni-matrix phase, especially those regions adjacent 

to the secondary carbides, is more vulnerable to corrosion damage because of the Cr 

depletion in this region.  

Accordingly, the Ni matrix phase was severely attacked. This is believed to be caused by two 

things. First, the Cr depletion from Ni matrix phase reduces the corrosion resistance of the 

matrix phase. Secondly, due to the differences in their electrochemical potentials, galvanic 

couples are believed to have been formed between the secondary carbides and the Cr depleted 

regions of the matrix adjacent to the carbides. Although there is no data stating the positions 

of the carbides including the Spherotene in the electrochemical series, the Ni matrix is 

believed to be the sacrificial anode in the galvanic cell mechanism because it was 

preferentially attacked whereas the blocky carbide showed no corrosion damage. 

Similarly, the corrosion damage within the partially dissolved Spherotene (i.e. retained) may 

be as a result the galvanic couple formed between the partially dissolved Spherotene and the 

secondary carbides phase at its interphase. In the past, corrosion of  tungsten carbide 

particulate has been observed by Cooper et al. [11] after six month exposure of laser melted 

WC-Inconel 625 powder composite laser coating to seawater. This type of corrosion was 

considered as unusual. 

The formation of pits around the retained Spherotene particles in the composite coating 

formed at high energy per unit length of track (1080 J mm
-1

) is a result of massive depletion 
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of Cr and Mo from these regions of the coating. In the microstructure of this coating detailed 

in Chapter 5.6, there was increased depletion of Cr in the Ni-matrix due to increased 

Spherotene dissolution. More C released into the matrix increased the formation of Cr23C6 

due to Cr-C affinity. Also, there was more amount of M6C which is enriched with Mo and Cr 

depending on the composition of the matrix region. All these collectively result in depletion 

of the matrix in Cr and Mo. Since the Spherotene dissolution is a surface phenomenon, it is 

expected that there will be more of these phases hence, higher Cr- and Mo- depletion around 

the edges of the retained Spherotene. It is known that Mo and Cr are the primary alloying 

elements resisting the alloy 625 against localised corrosion. The presence of localised 

corrosion around the Spherotene is therefore believed to be a result of extensive depletion of 

these elements around the partially dissolved Spherotene. In general, the corrosion in the two 

composite coatings is limited to the top surface of the coating and there were no corrosion 

products within the composite later and at the layer-substrate interface. This indicates that the 

substrate is well protected from corrosion by the laser clad layers of Spherotene-Inconel 625 

wire composite. 
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6.7 Summary 

 The corrosion behaviours of Inconel 625 powder, Inconel 625 wire and Spherotene-

Inconel 625 wire composite laser coatings as well as 304L stainless steel substrate 

were successfully examined and compared using 1hour open circuit potential 

immersion tests and potentiodynamic polarisation scan tests in de-aerated 3.5% NaCl 

solution. 

 The 304L stainless steel passivated at low current density (1.9 × 10
-3

 mA cm
-2

) but 

demonstrated high degree of localised (pitting) corrosion at a low potential (340 mV 

wrt Ag/AgCl electrode). 

 Compared to the stainless steel substrate, both the Inconel 625 wire and powder laser 

coatings exhibited improved corrosion resistance. They passivated at relatively lower 

current densities with wider passivation region and suffered from no localised 

corrosion attack as evidenced on their surfaces after the tests.  

 The Inconel 625 wire laser coating demonstrated better corrosion properties in terms 

of passive current density and corrosion potential than the corresponding Inconel 625 

powder laser coating. This was attributed to reduced microstructural inhomogeneity 

which is probably caused by low Fe dilution experienced by the Inconel 625 wire 

laser coating. 

 The corrosion performance of Inconel 625 wire laser coating is very close to that of 

wrought Inconel 625 alloy. 

 The corrosion mechanism is complex in the Spherotene-Inconel 625 wire composite 

laser coatings. This is a result of large amount of microstructural modification and 

compositional in-homogeneity caused by the Spherotene dissolution in the composite 

coating. 
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 The Ni-matrix regions adjacent to the secondary carbides (M6C, W2C and M23C6) are 

deficient in Cr therefore, causing them to be selectively corroded whenever galvanic 

couple is formed between these regions and the adjacent carbides. 

 Corrosion attack was observed within the retained Spherotene particles. This was due 

to the galvanic type of corrosion between the Spherotene and the secondary carbides 

at its interface of which the Spherotene is believed to act as anode. 

 Localised corrosion attack, evidenced by pits formation around the Spherotene edges, 

was observed in the composite laser coating formed at extremely high energy per unit 

length of track (1080 J mm
-1

). This is due to massive depletion of Cr and Mo around 

the edges of the retained Spherotene caused by large extent of Spherotene dissolution 

experienced at high energy input. 
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7.0 Conclusions and future work 

7.1 Conclusions 

The first aim of this work is to study the fibre laser cladding of Inconel 625 using wire and 

powder as the feedstock material. Secondly, the effect of the concurrent injection of 

Spherotene in the fibre laser cladding of Spherotene powder-Inconel 625 wire composite was 

investigated. The process characterisation, microstructural evolution, micro-hardness and 

corrosion properties variations related to the processing parameters, nature of the feedstock 

(Inconel 625) used and Spherotene dissolution arising from the composite cladding were 

analysed. The following sections conclude the results and discussion of this work. 

7.2 Laser cladding of wire and powder based Inconel 625 coatings  

7.2.1 Laser deposition 

This study has found that pore- and crack-free, minimally diluted and well bonded Inconel 

625 tracks deposited by laser cladding using wire and powder as the feedstock material are 

possible. Overlapped-track layers with similar qualities as the single tracks were built.   

7.2.2  Process characterisation 

The fibre laser deposition of Inconel 625 wire, at different processing parameters, are 

characterised with wire dripping, smooth wire transfer and wire stubbing. Within the range of 

parameters utilised in this research work, a map predicting the deposition process 

characteristics at varying processing parameters has been developed. Energy per unit length 

of track and wire feed rate influence the process characteristics. Smooth wire deposition 

(smooth wire transfer) was achieved at the processing conditions where the selected wire feed 
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rate is appropriate for the available energy per unit length of track. Continuous tracks of 

Inconel 625 wire were deposited whenever there was smooth transfer of wire. At energy per 

unit length of track below 200 J mm
−1

, it is impracticable, for the set up employed in this 

study, to successfully deposit continuous tracks. 

7.2.3 Substrate dilution 

Within the range of parameters used in this study, powder based tracks showed higher 

dilution ratio, ranging between 10-41%, than wire based tracks (<1% to 24%). For the two 

cladding processes, the dilution ratio showed positive dependency on laser power and 

traverse speed but varied inversely with the material feed rates (WFR and PFR). The 

significance level of the effect of each of the parameters on the dilution was carried out using 

ANOVA. The material feed rate (WFR or PFR) has the most significant effect. 

7.2.4 Microstructural characterisation of wire and powder based Inconel 625 coatings 

The powder and wire based Inconel 625 coatings deposited in this work comprised dendritic 

γ-Ni (FCC) phase and interdendritic Mo- and Nb- rich precipitates. The volume fraction of 

interdendritic precipitates in the coatings increased with increasing the Fe dilution. A typical 

powder based coating exhibited fine cellular/equiaxed dendritic solidification mode whereas 

the corresponding wire track comprised relatively coarse columnar grain structure. 

When the effects of traverse speed, laser power and wire feed rate on the coating 

microstructure were investigated, it was found that relatively finer microstructure is 

obtainable at higher traverse speed, lower laser power and lower wire feed rate. Also, this 

study revealed that the clad micro-hardness increases as the microstructure becomes finer. 

7.2.5 Corrosion performance of wire and powder based Inconel 625 coatings 

The corrosion behaviour of a typical Inconel 625 wire and corresponding Inconel 625 powder 

coatings were investigated. The wire based coating showed slightly improved corrosion 
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performance in terms of passive current density and corrosion potential. However, the two 

coatings have nearly equal breakdown potential and were uniformly attacked. The Inconel 

625 powder coating showed a large degree of scatter in the corrosion behaviour indicating 

some degree of in-homogeneity in its microstructure. The corrosion property of the laser clad 

Inconel 625 wire coating is close to that of the wrought Inconel 625 alloy. Compared with 

substrate which demonstrated localised corrosion attack, the two coatings showed improved 

corrosion resistance. 

7.3 Laser cladding of Spherotene powder/Inconel 625 wire composite 

coatings 

7.3.1 Laser deposition 

This study has established that well bonded, minimally diluted and pore- and crack-free 

composite coatings can be successfully deposited by using concurrent fibre laser cladding of 

Spherotene and Inconel 625 wire. Overlapped-track layers free of cracks and having good 

metallurgical bonding were also deposited. 

7.3.2 Effect of Spherotene injection on the process characterisation of Inconel 625 wire 

laser cladding 

When the Spherotene particles were introduced, a rightward shift was found in the process 

map developed for Inconel 625 wire laser cladding. Continuous laser tracks of 

Spherotene/Inconel 625 wire composite are possible only when there is smooth transfer of 

wire.   
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7.3.3 Macro-constituent of Spherotene powder/Inconel 625 wire composite laser 

coatings 

In this study, it was revealed that the volume fraction of the Spherotene retained in the 

composite track (ranging between 16 and 30%) depends mainly on (1) the amount of 

Spherotene dissolution and (2) amount of Spherotene captured in the meltpool. It was found 

that the volume fraction of the Spherotene retained decreased with increasing laser power, 

traverse speed and wire feed rate. 

The Spherotene deposition efficiency ranged between 12 and 38%. It varied directly with the 

laser power and wire feed rate but inversely with the traverse speed. The variation of  

Spherotene dissolution ratio (ranging between 2 and 57%) with the processing parameters 

indicates that the amount of Spherotene dissolution increases with increasing laser power but 

decreases with increasing traverse speed and wire feed rate.  

7.3.4 Micro-constituent of Spherotene powder/Inconel 625 wire composite laser 

coatings 

The microstructural examination of the Spherotene powder/Inconel 625 wire composite 

coatings revealed the presence of WC/W2C powder (partially dissolved Spherotene), W2C 

phase and precipitates (Fe3W3C and Cr23C6) in continuous γ Ni-matrix.  The γ-Ni matrix was 

increasingly enriched in W and C as the Spherotene dissolution increased. The more the 

Spherotene dissolution the more the amount of precipitates formed in the coatings. The 

precipitation of Cr23C6 and Fe3W3C resulted in the depletion of useful alloy contents such as 

Cr and Mo in the interdendritic regions and in the dendritic γ-Ni matrix around the carbides. 

The amount of the secondary carbides and Cr depletion was found to increase at higher 

energy per unit length of track. 
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7.3.5 Micro-hardness of the laser coatings of Spherotene powder/Inconel 625 wire 

composites 

The high micro-hardness of the matrix region of the composite coatings (more than 200% 

harder than Inconel 625 laser coatings) is due to the formation of the secondary carbides such 

as W2C, Fe3W3C and Cr23C6 in the matrix. The micro-hardness of the composite matrix 

increased with the laser power but decreased with increasing traverse speed and wire feed 

rate. 

7.3.6 Corrosion performance of Spherotene powder/Inconel 625 wire composite laser 

coatings 

The composite coatings deposited at two different energy levels demonstrated different 

corrosion performance in de-aerated 3.5% NaCl solution because of varying amount of 

Spherotene particle dissolution. Generally, the corrosion damage in the composite coating is 

complex and largely results from galvanic couples existing between the different phases 

present. The coating formed at higher energy level (1080 J mm
-1

) suffered more corrosion 

damage as there was evidence of pitting around the retained Spherotene particles. At lower 

energy level (240 J mm
-1

), the corrosion attack was rather uniform throughout the exposed 

surface of the coating. 

Compared with the Inconel 625 laser coatings, there was no evidence of passivation in the 

polarisation scan curves obtained for the Spherotene powder/Inconel 625 wire composite 

laser coatings deposited. The corrosion potentials were also of more negative values. The 

composite therefore showed lower resistance to corrosion as compared to Inconel 625 laser 

coatings. 
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7.3.7 Significance of the results 

It is shown in this work that the life span of stainless steel components can be extended in 

chloride ion rich corrosive environment (e.g. oil and gas environments) by coating them with 

Inconel 625 laser coatings. However, using Inconel 625 wire coatings is more advantageous 

because of better process economy and improved corrosion resistance. In industrial 

applications where a combination of wear and corrosion damage is the major problem, this 

work also demonstrates that Spherotene powder-Inconel 625 wire laser coating provides 

adequate protection against such damage. Significantly higher surface hardness shown by the 

MMC coatings is a potential evidence for a reduced wear rate.  Better protection of stainless 

steel components against high wear and corrosive damage is obtained by reducing the 

Spherotene dissolution and the degree of Fe dilution from the substrate which is possible 

through process control.  

7.4 Future work 

The basic questions relating to the objectives of this work have been answered in this thesis. 

Nevertheless, in the course carrying out this work, further questions arose. These questions 

can be studied for future research. 

1. The corrosion performance of the coatings was assessed mainly by potentiodynamic 

tests in this work. However, further tests can still be done to completely understand 

the corrosion behaviour of the coatings. These include salt spray test and long term 

immersion test. 

2. The type of corrosion oxide layer formed can be identified. The influence of the oxide 

layer on the corrosion behaviour of the coatings might qualify to be a topic for future 

research. 
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3. An increase in Spherotene dissolution was found to increase corrosion damage of the 

composite coatings in this work. It is considered that encapsulating the Spherotene 

with pure nickel alloy before laser deposition may further reduce its dissolution hence 

improves the corrosion performance of the coatings.  

4. Investigating the abrasive wear performance of the Spherotene (WC/W2C) 

powder/Inconel 625 wire composite laser coatings is another area of research.  

5. The feed rate of the Spherotene was fixed at 25 g min
-1

 for all the composite coatings 

deposited in this study. Further research can be done at lower feed rates such as 20, 

15, 10 and 5 g min
-1

.  
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APPENDIX A. PROCESSING PARAMETERS  

Table A1: Processing parameters and visual observations for Inconel 625 wire single 

track deposition 

S/N 

Laser 

power 

(kW) 

Transverse 

speed 

(mm min
-1

) 

Wire feed 

rate 

(mm min
-1

) 

Energy/ 

unit length  

 (J mm
-1

) 

Deposition 

volume/unit 

length  (mm
3
 

mm
-1

) 

Visual observation of 

the process 

1 1.8 100 400 1080 4.5 Dripping 

2 1.8 100 600 1080 6.8 Smooth flow of wire 

3 1.8 100 800 1080 9.1 Smooth flow of wire 

4 1.8 100 1000 1080 11.3 Smooth flow of wire 

5 1.8 100 1200 1080 13.6 Smooth flow of wire 

6 1.8 100 1400 1080 15.8 Stubbing  

7 1.8 200 400 540 2.3 Dripping 

8 1.8 200 600 540 3.4 Smooth flow of wire 

9 1.8 200 800 540 4.5 Smooth flow of wire 

10 1.8 200 1000 540 5.7 Smooth flow of wire 

11 1.8 200 1200 540 6.8 Stubbing may occur 

12 1.8 200 1400 540 7.9 Stubbing 

13 1.8 300 400 360 1.5 Dripping 

14 1.8 300 600 360 2.3 Dripping may occur 

15 1.8 300 800 360 3.0 Smooth flow of wire 

16 1.8 300 1000 360 3.8 Smooth flow of wire 

17 1.8 300 1200 360 4.5 Stubbing may occur 

18 1.8 300 1400 360 5.3 Stubbing 

19 1.6 100 400 960 4.5 Dripping 

20 1.6 100 600 960 6.8 Smooth flow of wire 

21 1.6 100 800 960 9.1 Smooth flow of wire 

22 1.6 100 1000 960 11.3 Smooth flow of wire 

23 1.6 100 1200 960 13.6 Stubbing 

24 1.6 100 1400 960 15.8 Stubbing 

25 1.6 200 400 480 2.3 Dripping 

26 1.6 200 600 480 3.4 Smooth flow of wire 

27 1.6 200 800 480 4.5 Smooth flow of wire 

28 1.6 200 1000 480 5.7 Stubbing may occur 

29 1.6 200 1200 480 6.8 Stubbing 

30 1.6 200 1400 480 7.9 Stubbing 

31 1.6 300 400 320 1.5 Dripping 

32 1.6 300 600 320 2.3 Smooth flow of wire 

33 1.6 300 800 320 3.0 Smooth flow of wire 

34 1.6 300 1000 320 3.8 Stubbing may occur 
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S/N 

Laser 

power 

(kW) 

Transverse 

speed 

(mm min
-1

) 

Wire feed 

rate 

(mm min
-1

) 

Energy/ 

unit 

length 

(J mm
-1

) 

Deposition 

volume/unit 

length 

(mm
3
 mm

-1
) 

Visual observation of 

the process 

35 1.6 300 1200 320 4.5 Stubbing 

36 1.6 300 1400 320 5.3 Stubbing 

37 1.4 100 400 840 4.5 Dripping may occur 

38 1.4 100 600 840 6.8 Smooth flow of wire 

39 1.4 100 800 840 9.1 Smooth flow of wire 

40 1.4 100 1000 840 11.3 Stubbing may occur 

41 1.4 100 1200 840 13.6 Stubbing 

42 1.4 100 1400 840 15.8 Stubbing 

43 1.4 200 400 420 2.3 Dripping may occur 

44 1.4 200 600 420 3.4 Smooth flow of wire 

45 1.4 200 800 420 4.5 Smooth flow of wire 

46 1.4 200 1000 420 5.7 Stubbing may occur 

47 1.4 200 1200 420 6.8 Stubbing 

48 1.4 200 1400 420 7.9 stubbing 

49 1.4 300 400 280 1.5 Dripping may occur 

50 1.4 300 600 280 2.3 Smooth flow of wire 

51 1.4 300 800 280 3.0 Stubbing may occur 

52 1.4 300 1000 280 3.8 Stubbing 

53 1.4 300 1200 280 4.5 Stubbing 

54 1.4 300 1400 280 5.3 Stubbing 

55 1.2 100 400 720 4.5 Smooth flow of wire 

56 1.2 100 600 720 6.8 Smooth flow of wire 

57 1.2 100 800 720 9.1 Stubbing may occur 

58 1.2 100 1000 720 11.3 Stubbing 

59 1.2 100 1200 720 13.6 Stubbing 

60 1.2 200 400 360 2.3 Dripping may occur 

61 1.2 200 600 360 3.4 Smooth flow of wire 

62 1.2 200 800 360 4.5 Stubbing may occur 

63 1.2 200 1000 360 5.7 Stubbing 

64 1.2 200 1200 360 6.8 Stubbing 

65 1.2 300 400 240 1.5 Dripping may occur 

66 1.2 300 600 240 2.3 Smooth flow of wire 

67 1.2 300 800 240 3.0 Stubbing may occur 

68 1.2 300 1000 240 3.8 Stubbing 

69 1.2 300 1200 240 4.5 Stubbing 

70 1.0 100 400 600 4.5 Smooth flow of wire 

71 1.0 100 600 600 6.8 Smooth flow of wire 

72 1.0 100 800 600 9.1 Stubbing 

73 1.0 100 1000 600 11.3 Stubbing 

74 1.0 100 1200 600 13.6 Stubbing 
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S/N 

Laser 

power 

(kW) 

Transverse 

speed 

(mm min
-1

) 

Wire feed 

rate 

(mm min
-1

) 

Energy/ 

unit 

length 

(J mm
-1

) 

Deposition 

volume/unit 

length 

(mm
3
 mm

-1
) 

Visual observation of 

the process 

75 1.0 200 400 300 2.3 Smooth flow of wire 

76 1.0 200 600 300 3.4 Stubbing may occur 

77 1.0 200 800 300 4.5 Stubbing 

78 1.0 200 1000 300 5.7 Stubbing 

79 1.0 200 1200 300 6.8 Stubbing 

80 1.0 300 400 200 1.5 Dripping  may occur 

81 1.0 300 600 200 2.3 Stubbing may occur 

82 1.0 300 800 200 3.0 Stubbing 

83 1.0 300 1000 200 3.8 Stubbing 

84 1.0 300 1200 200 4.5 Stubbing 
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Table A2: Results of geometrical characterisation for Inconel 625 wire single track 

deposition 

S/N 

Laser 

power 

(KW) 

Scanning 

speed        

(mm min
-1

) 

Wire feed 

rate         (mm 

min
-1

) 

Average 

Height  

(mm) 

Average 

Width  

(mm) 

Average 

Cross-

sectional 

area 

(mm
2
) 

Aspect 

ratio 

contact 

angle  

(degrees) 

1 1.8 100 400 n/a n/a n/a n/a n/a 

2 1.8 100 600 1.9 4.8 6.6 2.6 75 

3 1.8 100 800 2.4 4.6 8.6 1.9 92 

4 1.8 100 1000 2.7 4.7 10.7 1.7 99 

5 1.8 100 1200 3.1 4.8 12.6 1.5 105 

6 1.8 100 1400 n/a n/a n/a n/a n/a 

7 1.8 200 400 n/a n/a n/a n/a n/a 

8 1.8 200 600 1.1 4.5 3.3 4.2 50 

9 1.8 200 800 1.5 4.1 4.3 2.8 71 

10 1.8 200 1000 1.8 3.6 5.1 2.1 89 

11 1.8 200 1200 2.1 3.6 6.1 1.8 97 

12 1.8 200 1400 n/a n/a n/a n/a n/a 

13 1.8 300 400 n/a n/a n/a n/a n/a 

14 1.8 300 600 0.9 3.3 2.6 3.7 57 

15 1.8 300 800 1.1 3.5 2.9 3.1 66 

16 1.8 300 1000 1.4 3.3 3.5 2.4 79 

17 1.8 300 1200 1.6 3.1 4.1 1.9 93 

18 1.8 300 1400 n/a n/a n/a n/a n/a 

19 1.6 100 400 n/a n/a n/a n/a n/a 

20 1.6 100 600 1.9 4.2 6.5 2.2 86 

21 1.6 100 800 2.5 3.8 8.2 1.5 106 

22 1.6 100 1000 2.9 4.2 10.3 1.4 108 

23 1.6 100 1200 n/a n/a n/a n/a n/a 

24 1.6 100 1400 n/a n/a n/a n/a n/a 

25 1.6 200 400 n/a n/a n/a n/a n/a 

26 1.6 200 600 1.2 3.6 3.3 2.9 69 

27 1.6 200 800 1.5 3.5 4.2 2.2 83 

28 1.6 200 1000 1.9 3.3 5.1 1.7 99 

29 1.6 200 1200 n/a n/a n/a n/a n/a 

30 1.6 200 1400 n/a n/a n/a n/a n/a 

31 1.6 300 400 n/a n/a n/a n/a n/a 

32 1.6 300 600 0.9 3.4 2.2 3.7 57 
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S/N 

Laser 

power 

(KW) 

Scanning 

speed        

(mm min
-1

) 

Wire feed 

rate         (mm 

min
-1

) 

Average 

Height  

(mm) 

Average 

Width  

(mm) 

Average 

Cross-

sectional 

area 

(mm
2
) 

Aspect 

ratio 

contact 

angle  

(degrees) 

33 1.6 300 800 1.2 3.0 2.8 2.5 77 

34 1.6 300 1000 1.4 3.4 3.5 2.4 79 

35 1.6 300 1200 n/a n/a n/a n/a n/a 

36 1.6 300 1400 n/a n/a n/a n/a n/a 

37 1.4 100 400 1.6 3.7 4.4 2.3 82 

38 1.4 100 600 2.0 3.8 6.2 1.9 94 

39 1.4 100 800 2.5 3.8 8.2 1.5 106 

40 1.4 100 1000 2.9 4.0 10.0 1.4 111 

41 1.4 100 1200 3.4 4.3 12.6 1.3 116 

42 1.4 100 1400 n/a n/a n/a n/a n/a 

43 1.4 200 400 1.1 3.0 2.5 2.7 73 

44 1.4 200 600 1.3 3.1 3.1 2.5 78 

45 1.4 200 800 1.6 3.0 4.0 1.8 95 

46 1.4 200 1000 2.0 2.8 4.9 1.4 110 

47 1.4 200 1200 n/a n/a n/a n/a n/a 

48 1.4 200 1400 n/a n/a n/a n/a n/a 

49 1.4 300 400 0.8 2.8 1.7 3.5 59 

50 1.4 300 600 1.0 2.9 2.1 3.0 68 

51 1.4 300 800 1.3 2.7 2.7 2.2 85 

52 1.4 300 1000 n/a n/a n/a n/a n/a 

53 1.4 300 1200 n/a n/a n/a n/a n/a 

54 1.4 300 1400 n/a n/a n/a n/a n/a 

55 1.2 100 400 1.5 3.2 3.9 2.1 86 

56 1.2 100 600 2.2 3.3 6.1 1.5 107 

57 1.2 100 800 2.7 3.5 8.1 1.3 113 

58 1.2 100 1000 n/a n/a n/a n/a n/a 

59 1.2 100 1200 n/a n/a n/a n/a n/a 

60 1.2 200 400 1.0 2.8 2.1 2.7 73 

61 1.2 200 600 1.4 2.8 3.0 2.0 90 

62 1.2 200 800 1.7 2.7 3.8 1.6 103 

63 1.2 200 1000 n/a n/a n/a n/a n/a 

64 1.2 200 1200 n/a n/a n/a n/a n/a 

65 1.2 300 400 0.9 2.6 1.8 2.9 69 

66 1.2 300 600 1.1 2.7 2.1 2.5 77 

67 1.2 300 800 1.4 2.5 2.7 1.8 96 

68 1.2 300 1000 n/a n/a n/a n/a n/a 

69 1.2 300 1200 n/a n/a n/a n/a n/a 

70 1 100 400 1.6 3.3 4.2 2.1 88 
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S/N 

Laser 

power 

(KW) 

Scanning 

speed        

(mm min
-1

) 

Wire feed 

rate         (mm 

min
-1

) 

Average 

Height  

(mm) 

Average 

Width  

(mm) 

Average 

Cross-

sectional 

area 

(mm
2
) 

Aspect 

ratio 

contact 

angle  

(degrees) 

71 1 100 600 2.3 3.1 6.2 1.3 113 

72 1 100 800 n/a n/a n/a n/a n/a 

73 1 100 1000 n/a n/a n/a n/a n/a 

74 1 100 1200 n/a n/a n/a n/a n/a 

75 1 200 400 n/a n/a n/a n/a n/a 

76 1 200 600 1.5 2.5 3.0 1.7 98 

77 1 200 800 n/a n/a n/a n/a n/a 

78 1 200 1000 n/a n/a n/a n/a n/a 

79 1 200 1200 n/a n/a n/a n/a n/a 

80 1 300 400 1.0 2.1 1.9 2.1 87 

81 1 300 600 1.1 2.1 1.9 1.9 94 

82 1 300 800 n/a n/a n/a n/a n/a 

83 1 300 1000 n/a n/a n/a n/a n/a 

84 1 300 1200 n/a n/a n/a n/a n/a 
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Table A3: Processing parameters and results of geometrical characterisation for Inconel 

625 powder single track deposition 

 

 

S/N 

Laser 

power 

(kW) 

Traverse 

speed         

(mm min
-1

) 

Powder 

feed rate           

(mm min
-1

) 

Energy/ 

per unit 

length of 

track             

(J mm
-1

) 

Height 

(mm) 

Width 

(mm) 

Cross-

sectional 

area 

(mm
2
)  

Aspect 

ratio 

Contact 

angle     

(degrees) 

1 1.8 100 10 1080 2.0 3.9 5.4 1.9 92 

2 1.8 100 20 1080 3.2 4.3 10.9 1.3 113 

3 1.8 100 30 1080 3.3 4.7 12.7 1.4 116 

4 1.8 200 10 540 1.1 3.7 2.6 3.4 60 

5 1.8 200 20 540 1.6 3.5 4.4 2.2 85 

6 1.8 200 30 540 2.2 3.8 6.3 1.7 98 

7 1.8 300 10 360 0.7 3.4 1.7 4.5 47 

8 1.8 300 20 360 1.1 3.5 2.5 3.2 63 

9 1.8 300 30 360 1.5 3.6 3.8 2.4 79 

10 1.6 100 10 960 1.9 3.9 5.2 2.1 88 

11 1.6 100 20 960 2.6 4 7.9 1.5 106 

12 1.6 100 30 960 3.2 4.2 9.8 1.3 113 

13 1.6 200 10 480 1.0 3.5 2.3 3.5 59 

14 1.6 200 20 480 1.5 3.6 3.8 2.4 80 

15 1.6 200 30 480 1.9 3.4 4.9 1.8 95 

16 1.6 300 10 320 0.7 3.6 1.5 5.2 42 

17 1.6 300 20 320 1.0 3.4 2.3 3.2 63 

18 1.6 300 30 320 1.3 3.3 3.2 2.5 78 

19 1.4 100 10 840 1.8 3.6 4.7 2.1 88 

20 1.4 100 20 840 2.4 3.7 6.8 1.5 106 

21 1.4 100 30 840 2.9 4.2 8.3 1.5 107 

22 1.4 200 10 420 1.0 3.5 2.2 3.6 58 

23 1.4 200 20 420 1.5 3.4 3.5 2.2 83 

24 1.4 200 30 420 1.7 3.4 4.4 2.0 92 

25 1.4 300 10 280 0.7 3.3 1.5 5.0 44 

26 1.4 300 20 280 1.0 3.3 2.2 3.2 64 

27 1.4 300 30 280 1.3 3.3 2.9 2.6 76 

28 1.2 100 10 720 1.6 3.4 3.9 2.2 85 

29 1.2 100 20 720 2.2 3.4 5.5 1.5 105 

30 1.2 100 30 720 2.8 3.8 7.5 1.4 110 

31 1.2 200 10 360 0.9 3.1 1.9 3.5 59 

32 1.2 200 20 360 1.3 3.2 2.9 2.4 79 

33 1.2 200 30 360 1.7 3.2 4.0 1.8 95 

34 1.2 300 10 240 0.6 3.0 1.2 5.1 43 

35 1.2 300 20 240 0.9 3.1 1.8 3.4 61 

 



Appendices                                                                                                                            276 

 

 

 

 

S/N 

Laser 

power 

(kW) 

Traverse 

speed         

(mm min
-1

) 

Powder 

feed rate           

(mm min
-1

) 

Energy/ 

per unit 

length of 

track             

(J mm
-1

) 

Height 

(mm) 

Width 

(mm) 

Cross-

sectional 

area 

(mm
2
)  

Aspect 

ratio 

Contact 

angle     

(degrees) 

36 1.2 300 30 240 1.2 2.9 2.6 2.4 80 

37 1 100 10 600 1.4 3.3 3.3 2.3 83 

38 1 100 20 600 2.1 3.4 5.2 1.6 102 

39 1 100 30 600 2.6 3.6 6.8 1.4 111 

40 1 200 10 300 0.8 3.1 1.6 3.8 56 

41 1 200 20 300 1.3 3.0 2.6 2.4 81 

42 1 200 30 300 1.6 3.0 3.4 1.9 93 

43 1 300 10 200 0.5 2.8 1.0 5.3 41 

44 1 300 20 200 0.9 2.9 1.6 3.3 63 

45 1 300 30 200 1.1 2.9 2.2 2.6 76 
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Table A4: Processing parameters and visual observation for Spherotene (WC/W2C) 

powder-Inconel 625 wire composite single track deposition 

S/N 

Laser 

power 

(kW) 

Transverse 

speed 

(mm min
-1

) 

Wire feed 

rate 

(mm min
-1

) 

Powder 

feed rate  

(g min
-1

) 

Energy/ 

unit 

length  

 (J mm
-1

) 

Visual observation of 

the process 

1 1.8 100 400 25 1080 Smooth wire flow 

2 1.8 100 600 25 1080 Smooth wire flow 

3 1.8 100 800 25 1080 Smooth wire flow 

4 1.8 100 1000 25 1080 Stubbing may occur 

5 1.8 100 1200 25 1080 Stubbing 

6 1.8 200 400 25 540 Dripping may occur 

7 1.8 200 600 25 540 Smooth wire flow 

8 1.8 200 800 25 540 Smooth wire flow 

9 1.8 200 1000 25 540 Stubbing may occur 

10 1.8 200 1200 25 540 Stubbing 

11 1.8 300 400 25 360 Dripping may occur 

12 1.8 300 600 25 360 Smooth wire flow 

13 1.8 300 800 25 360 Smooth wire flow 

14 1.6 100 400 25 960 Smooth wire flow 

15 1.6 100 600 25 960 Smooth wire flow 

16 1.6 100 800 25 960 Smooth wire flow 

17 1.6 100 1000 25 960 Stubbing 

18 1.6 200 400 25 480 Dripping may occur 

19 1.6 200 600 25 480 Smooth wire flow 

20 1.6 200 800 25 480 Stubbing may occur 

21 1.6 200 1000 25 480 Stubbing 

22 1.6 300 400 25 320 Dripping may occur 

23 1.6 300 600 25 320 Smooth wire flow 

24 1.6 300 800 25 320 Stubbing may occur 

25 1.4 100 400 25 840 Smooth wire flow 

26 1.4 100 600 25 840 Smooth wire flow 

27 1.4 100 800 25 840 Stubbing may occur 

28 1.4 100 1000 25 840 Stubbing 

29 1.4 200 400 25 420 Smooth wire flow 

30 1.4 200 600 25 420 Smooth wire flow 

31 1.4 200 800 25 420 Stubbing may occur 

32 1.4 200 1000 25 420 Stubbing 
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S/N 

Laser 

power 

(kW) 

Transverse 

speed 

(mm min
-1

) 

Wire feed 

rate 

(mm min
-1

) 

Powder 

feed rate  

(g min
-1

) 

Energy/ 

unit 

length  

 (J mm
-1

) 

Visual observation of 

the process 

33 1.4 300 400 25 280 Dripping may occur 

34 1.4 300 600 25 280 Smooth wire flow 

35 1.4 300 800 25 280 Stubbing may occur 

36 1.2 100 400 25 720 Smooth wire flow 

37 1.2 100 600 25 720 Smooth wire flow 

38 1.2 100 800 25 720 Stubbing 

39 1.2 200 400 25 360 Smooth wire flow 

40 1.2 200 600 25 360 Smooth wire flow 

41 1.2 200 800 25 360 Stubbing 

42 1.2 300 400 25 240 Smooth wire flow 

43 1.2 300 600 25 240 Stubbing may occur 

44 1.2 300 800 25 240 Stubbing 

45 1.0 100 400 25 600 Smooth wire flow 

46 1.0 100 600 25 600 Smooth wire flow 

47 1.0 100 800 25 800 Stubbing  

48 1.0 200 400 25 300 Smooth wire flow 

49 1.0 200 600 25 300 Stubbing may occur 

50 1.0 200 800 25 300 Stubbing 

51 1.0 300 400 25 200 Smooth wire flow 

52 1.0 300 600 25 200 Stubbing may occur 

53 1.0 300 800 25 200 Stubbing 
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Table A5: Results of geometrical characterisation for Spherotene (WC/W2C) powder-

Inconel 625 wire composite single track deposition 

S/N 
Power 

(kW) 

Traverse 

speed        

(mm min
-1

) 

Wire feed 

rate        (mm 

min
-1

) 

Powder 

feed rate       

(g min
-1

) 

Average 

height 

(mm) 

Average 

width   

(mm) 

Average 

cross-

sectional 

area   (mm
2
) 

Aspect 

ratio 

Contact 

angle   

(degrees) 

1 1.8 100 400 25 2.0 4.8 9.5 2.4 80 

2 1.8 100 600 25 3.3 5.0 12.2 1.5 106 

3 1.8 100 800 25 4.0 4.8 14.6 1.2 118 

4 1.8 100 1000 25 4.4 4.9 16.7 1.1 122 

5 1.8 100 1200 25 n/a n/a n/a n/a n/a 

6 1.8 200 400 25 1.8 4.0 4.8 2.2 84 

7 1.8 200 600 25 2.1 3.9 6.0 1.9 94 

8 1.8 200 800 25 2.4 3.7 7.0 1.6 104 

9 1.8 200 1000 25 2.8 3.6 8.0 1.3 115 

10 1.8 200 1200 25 n/a n/a n/a n/a n/a 

11 1.8 300 400 25 1.2 3.6 3.2 3.0 67 

12 1.8 300 600 25 1.6 3.3 3.6 2.1 86 

13 1.8 300 800 25 1.8 3.5 4.5 2.0 91 

14 1.6 100 400 25 2.8 4.4 9.4 1.6 104 

15 1.6 100 600 25 3.3 4.6 12.0 1.4 110 

16 1.6 100 800 25 4.0 4.5 14.5 1.1 120 

17 1.6 100 1000 25 n/a n/a n/a n/a n/a 

18 1.6 200 400 25 1.8 3.8 4.7 2.1 87 

19 1.6 200 600 25 2.1 3.5 6.0 1.7 100 

20 1.6 200 800 25 2.4 3.6 6.9 1.5 106 

21 1.6 200 1000 25 n/a n/a n/a n/a n/a 

22 1.6 300 400 25 1.3 3.4 3.1 2.6 75 

23 1.6 300 600 25 1.5 2.9 3.6 2.0 91 

24 1.6 300 800 25 1.7 3.0 4.2 1.7 99 

25 1.8 100 400 25 3.0 4.1 9.5 1.4 111 

26 1.4 100 600 25 3.4 4.2 12.0 1.2 116 

27 1.4 100 800 25 3.9 4.2 14.0 1.1 123 

28 1.4 100 1000 25 n/a n/a n/a n/a n/a 

29 1.4 200 400 25 1.8 3.5 4.5 1.9 92 

30 1.4 200 600 25 2.1 3.2 5.8 1.5 107 

31 1.4 200 800 25 2.4 3.2 6.8 1.3 113 

32 1.4 200 1000 25 n/a n/a n/a n/a n/a 

33 1.4 300 400 25 1.3 3.2 2.9 2.5 78 

34 1.4 300 600 25 1.5 2.9 3.4 1.9 93 

35 1.4 300 800 25 1.9 2.6 4.0 1.4 110 
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S/N 
Power 

(kW) 

Traverse 

speed    

(mm min
-1

) 

Wire feed 

rate        (mm 

min
-1

) 

Powder 

feed rate       

(g min
-1

) 

Average 

height 

(mm) 

Average 

width   

(mm) 

Average 

cross-

sectional 

area    (mm
2
) 

Aspect 

ratio 

Contact 

angle   

(degrees) 

36 1.2 100 400 25 2.7 3.9 9.0 1.5 107 

37 1.2 100 600 25 3.2 4.1 11.6 1.3 115 

38 1.2 100 800 25 n/a n/a n/a n/a n/a 

39 1.2 200 400 25 1.6 3.2 4.2 1.9 92 

40 1.2 200 600 25 2.1 3.1 5.7 1.5 107 

41 1.2 200 800 25 n/a n/a n/a n/a n/a 

42 1.2 300 400 25 1.3 2.9 2.7 2.2 85 

43 1.2 300 600 25 1.6 2.4 3.2 1.5 104 

44 1.2 300 800 25 n/a n/a n/a n/a n/a 

45 1.0 100 400 25 2.7 3.5 8.5 1.3 114 

46 1.0 100 600 25 3.3 3.6 10.7 1.1 123 

47 1.0 100 800 25 n/a n/a n/a n/a n/a 

48 1.0 200 400 25 1.7 2.7 4.0 1.7 101 

49 1.0 200 600 25 2.4 2.8 4.8 1.2 119 

50 1.0 200 800 25 n/a n/a n/a n/a n/a 

51 1.0 300 400 25 1.4 2.2 2.6 1.6 102 

52 1.0 300 600 25 2.1 2.2 3.0 1.0 125 

53 1.0 300 800 25 n/a n/a n/a n/a n/a 
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APPENDIX B. ANOVA ANALYSIS OF DILUTION RATIO RESULTS 

Table B1: Mean dilution ratio for the Inconel 625 wire tracks 

S/N 

Laser 

power 

(kW) 

Traverse 

speed        

(mm min
-1

) 

Wire feed 

rate        (mm 

min
-1

) 

Mean Fe 

content 

(wt. %) 

Mean    dilution 

ratio         (%) 

Square of 

dilution ratio 

1 1.8 100 600 9 12 142 

2 1.8 100 800 6 7 55 

3 1.8 100 1000 3 5 21 

4 1.8 200 600 18 21 438 

5 1.8 200 800 8 10 102 

6 1.8 200 1000 3 5 22 

7 1.8 300 600 22 24 592 

8 1.8 300 800 9 11 122 

9 1.8 300 1000 5 6 40 

10 1.6 100 600 7 9 76 

11 1.6 100 800 2 3 10 

12 1.6 100 1000 2 2 5 

13 1.6 200 600 9 12 134 

14 1.6 200 800 4 5 27 

15 1.6 200 1000 2 3 10 

16 1.6 300 600 13 16 244 

17 1.6 300 800 5 6 41 

18 1.6 300 1000 4 5 23 

19 1.4 100 600 3 5 22 

20 1.4 100 800 2 2 4 

21 1.4 100 1000 1 1 2 

22 1.4 200 600 4 6 36 

23 1.4 200 800 2 3 8 

24 1.4 200 1000 2 2 5 

25 1.4 300 600 6 8 65 

26 1.4 300 800 3 4 13 

27 1.4 300 1000 2 2 6 

Total 195 2263 

 

4.1: Degrees of freedom (DOF) 

  26  1-27  1- conditions  trialofnumber  Total = :D DOF Total T   
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  2 = 1-3 =1-P of levels ofNumber  = :Dpower laser for  DOF P  

  2 = 1-3 =1-V of levels ofNumber  = D speed sefor traver DOF V  

  2 = 1-3 =1- WFRof levels ofNumber  = D rate feed for wire DOF WFR  

      20222 -26  D-D =D error termfor  DOF PTerror  WFRV DD  

4.2 Sum of squares total (SS) 

Sum of squares total is a measure of the deviations of the experimental data from the overall 

mean value of the data.  
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4.3 Mean square (MS) 

The mean square (i.e. variance) was determined by dividing the sum of squares total of each 

factor by the degrees of freedom of the factor. 
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 4.4 F value (Variance ratio) 

It is the ratio of the mean square for a factor to the mean square corresponding to the error 

term.  
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Table B2: F-table F0.05 (F1, F2), 95% confidence [105] 
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Table B3: Mean dilution ratio for the Inconel 625 powder tracks 

S/N 
Laser 

power 

(kW) 

Traverse 

speed        

(mm min
-1

) 

Powder  

feed rate        

(g min
-1

) 

Mean          

Fe content 

(wt. %) 

Mean        

dilution ratio                

(%) 

1 1.8 100 10 35 34 

2 1.8 100 20 20 23 

3 1.8 100 30 13 16 

4 1.8 200 10 41 38 

5 1.8 200 20 31 31 

6 1.8 200 30 21 23 

7 1.8 300 10 48 41 

8 1.8 300 20 36 35 

9 1.8 300 30 26 28 

10 1.6 100 10 31 31 

11 1.6 100 20 18 21 

12 1.6 100 30 12 15 

13 1.6 200 10 40 37 

14 1.6 200 20 29 30 

15 1.6 200 30 19 22 

16 1.6 300 10 44 40 

17 1.6 300 20 31 32 

18 1.6 300 30 25 27 

19 1.4 100 10 29 30 

20 1.4 100 20 17 20 

21 1.4 100 30 11 14 

22 1.4 200 10 38 36 
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S/N 
Laser 

power 

(kW) 

Traverse 

speed        

(mm min
-1

) 

Powder  

feed rate        

(g min
-1

) 

Mean          

Fe content 

(wt. %) 

Mean        

dilution ratio                

(%) 

23 1.4 200 20 26 28 

24 1.4 200 30 17 20 

25 1.4 300 10 41 38 

26 1.4 300 20 28 29 

27 1.4 300 30 24 26 

28 1.2 100 10 25 27 

29 1.2 100 20 16 19 

30 1.2 100 30 10 13 

31 1.2 200 10 33 33 

32 1.2 200 20 25 27 

33 1.2 200 30 14 17 

34 1.2 300 10 39 37 

35 1.2 300 20 27 29 

36 1.2 300 30 21 15 

37 1 100 10 21 24 

38 1 100 20 12 15 

39 1 100 30 8 10 

40 1 200 10 27 29 

41 1 200 20 20 22 

42 1 200 30 10 13 

43 1 300 10 33 33 

44 1 300 20 22 25 

45 1 300 30 17 20 
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APPENDIX C. RAW XRD SPECTRA INCLUDING THE JCPDS FILE NUMBER OF THE PHASES PRESENT 

 

Figure 1: XRD Spectrum for Inconel 625 wire laser coating

00-004-0850 (*) - Nickel, syn - Ni - Y: 89.76 % - d x by: 1. - WL: 1.5406 - Cubic - a 3.52380 - b 3.52380 - c 3.52380 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fm3m (225) - 4 - 43.7556 -

Operations: Import

D12 - File: D12.raw - Type: 2Th/Th locked - Start: 25.000 ° - End: 110.000 ° - Step: 0.050 ° - Step time: 2. s - Temp.: 25 °C (Room) - Time Started: 18 s - 2-Theta: 25.000 ° - Theta: 12.500 ° - Chi: 0.00 ° - Phi:
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Figure 2: XRD Spectrum for Inconel 625 powder laser coating

00-004-0850 (*) - Nickel, syn - Ni - Y: 85.12 % - d x by: 1. - WL: 1.5406 - Cubic - a 3.52380 - b 3.52380 - c 3.52380 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fm3m (225) - 4 - 43.7556 -

Operations: Import

R3 - File: R3.raw - Type: 2Th/Th locked - Start: 25.000 ° - End: 110.000 ° - Step: 0.050 ° - Step time: 2. s - Temp.: 25 °C (Room) - Time Started: 18 s - 2-Theta: 25.000 ° - Theta: 12.500 ° - Chi: 0.00 ° - Phi: 0.
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Figure 3: JCPDS data for pure Ni-phase
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Figure 4: XRD spectrum for Spherotene (WC/W2C) powder 

WC08062012

01-073-0471 (C) - Tungsten Carbide - WC - Y: 66.03 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 2.90640 - b 2.90640 - c 2.83690 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - P-6m2 (187) - 1 -

00-035-0776 (*) - Tungsten Carbide - alpha-W2C - Y: 97.19 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 2.99704 - b 2.99704 - c 4.72790 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - P-3m1 (16

Operations: Strip kAlpha2 0.500 | Import

WC08062012 - File: WC08062012.raw - Type: 2Th/Th locked - Start: 30.000 ° - End: 90.000 ° - Step: 0.050 ° - Step time: 4. s - Temp.: 25 °C (Room) - Time Started: 24 s - 2-Theta: 30.000 ° - Theta: 15.000 °
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Figure 5: XRD Spectrum for Spherotene-Inconel 625 wire laser coating formed at 1080 J mm
-1

. (This corresponds to W in Figure 5.14) 

00-035-0783 (*) - Chromium Carbide - Cr23C6 - Y: 47.92 % - d x by: 1.006 - WL: 1.5406 - Cubic - a 10.65990 - b 10.65990 - c 10.65990 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fm3

00-035-0776 (*) - Tungsten Carbide - alpha-W2C - Y: 83.35 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 2.98205 - b 2.98205 - c 4.72790 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - P-3m1 (16

00-004-0850 (*) - Nickel, syn - Ni - Y: 66.56 % - d x by: 1.0146 - WL: 1.5406 - Cubic - a 3.52380 - b 3.52380 - c 3.52380 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fm3m (225) - 4 - 43.7

00-025-1047 (*) - Unnamed mineral, syn [NR] - WC - Y: 25.88 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 2.90620 - b 2.90620 - c 2.83780 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - P-6m2 (

00-041-1351 (I) - Iron Tungsten Carbide - Fe3W3C - Y: 74.39 % - d x by: 1. - WL: 1.5406 - Cubic - a 11.08163 - b 11.08163 - c 11.08163 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fd3

Operations: Background 0.000,1.000 | Import

E'1 - File: E'1.raw - Type: 2Th/Th locked - Start: 25.000 ° - End: 110.000 ° - Step: 0.050 ° - Step time: 2. s - Temp.: 25 °C (Room) - Time Started: 30 s - 2-Theta: 25.000 ° - Theta: 12.500 ° - Chi: 0.00 ° - Phi: 0
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Figure 6: XRD Spectrum for Spherotene-Inconel 625 wire laser coating formed at 960 J mm
-1

. (This corresponds to X in Figure 5.14)  

00-035-0783 (*) - Chromium Carbide - Cr23C6 - Y: 54.15 % - d x by: 1. - WL: 1.5406 - Cubic - a 10.70432 - b 10.70432 - c 10.70432 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered 

00-035-0776 (*) - Tungsten Carbide - alpha-W2C - Y: 76.93 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 2.99704 - b 2.99704 - c 4.72790 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive -

00-004-0850 (*) - Nickel, syn - Ni - Y: 90.97 % - d x by: 1.0146 - WL: 1.5406 - Cubic - a 3.52380 - b 3.52380 - c 3.52380 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fm3m (22

00-025-1047 (*) - Unnamed mineral, syn [NR] - WC - Y: 31.85 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 2.90620 - b 2.90620 - c 2.83780 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitiv

00-041-1351 (I) - Iron Tungsten Carbide - Fe3W3C - Y: 81.22 % - d x by: 1. - WL: 1.5406 - Cubic - a 11.08163 - b 11.08163 - c 11.08163 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-cent

Operations: Import

F'11 - File: F'11b.raw - Type: 2Th/Th locked - Start: 25.000 ° - End: 110.000 ° - Step: 0.050 ° - Step time: 2. s - Temp.: 25 °C (Room) - Time Started: 20 s - 2-Theta: 25.000 ° - Theta: 12.500 ° - Chi
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Figure 7: XRD Spectrum for Spherotene-Inconel 625 wire laser coating formed at 840 J mm
-1

. (This corresponds to Y in Figure 5.14) 

00-035-0783 (*) - Chromium Carbide - Cr23C6 - Y: 55.57 % - d x by: 1. - WL: 1.5406 - Cubic - a 10.72652 - b 10.72652 - c 10.72652 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered 

00-035-0776 (*) - Tungsten Carbide - alpha-W2C - Y: 70.91 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 2.99329 - b 2.99329 - c 4.72790 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive -

00-004-0850 (*) - Nickel, syn - Ni - Y: 91.20 % - d x by: 1.0146 - WL: 1.5406 - Cubic - a 3.52380 - b 3.52380 - c 3.52380 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fm3m (22

00-025-1047 (*) - Unnamed mineral, syn [NR] - WC - Y: 34.25 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 2.90620 - b 2.90620 - c 2.83780 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitiv

00-041-1351 (I) - Iron Tungsten Carbide - Fe3W3C - Y: 73.36 % - d x by: 1. - WL: 1.5406 - Cubic - a 11.08160 - b 11.08160 - c 11.08160 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-cent

Operations: Import

G'8 - File: G'8.raw - Type: 2Th/Th locked - Start: 25.000 ° - End: 110.000 ° - Step: 0.050 ° - Step time: 2. s - Temp.: 25 °C (Room) - Time Started: 13 s - 2-Theta: 25.000 ° - Theta: 12.500 ° - Chi: 0.
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Figure 8: XRD Spectrum for Spherotene-Inconel 625 wire laser coating formed at 720 J mm
-1

. (This corresponds to Z in Figure 5.14) 

 

00-035-0783 (*) - Chromium Carbide - Cr23C6 - Y: 41.61 % - d x by: 1. - WL: 1.5406 - Cubic - a 10.69987 - b 10.69987 - c 10.69987 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered 

00-035-0776 (*) - Tungsten Carbide - alpha-W2C - Y: 58.87 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 2.99704 - b 2.99704 - c 4.72790 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive -

00-004-0850 (*) - Nickel, syn - Ni - Y: 54.51 % - d x by: 1.0146 - WL: 1.5406 - Cubic - a 3.52380 - b 3.52380 - c 3.52380 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-centered - Fm3m (22

00-025-1047 (*) - Unnamed mineral, syn [NR] - WC - Y: 38.32 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 2.90620 - b 2.90620 - c 2.83780 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitiv

00-041-1351 (I) - Iron Tungsten Carbide - Fe3W3C - Y: 51.59 % - d x by: 1. - WL: 1.5406 - Cubic - a 11.08163 - b 11.08163 - c 11.08163 - alpha 90.000 - beta 90.000 - gamma 90.000 - Face-cent

Operations: Import

H'2 - File: H'2.raw - Type: Locked Coupled - Start: 25.000 ° - End: 110.000 ° - Step: 0.050 ° - Step time: 2. s - Temp.: 25 °C (Room) - Time Started: 25 s - 2-Theta: 25.000 ° - Theta: 12.500 ° - Chi: 
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Figure 9: JCPDS data for Fe3W3C-phase 
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Figure 10: JCPDS data for WC-phase 
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Figure 11: JCPDS data for FCC Ni-matrix-phase 
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Figure 12: JCPDS data for W2C-phase 
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Figure 13: JCPDS data for Cr23C6-phase 
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APPENDIX D. TEST CERTIFICATE OF THE CHEMICAL ANALYSIS 

CONDUCTED FOR SPHEROTENE POWDER 
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APPENDIX E. DETERMINATION OF THE WEIGHT FRACTIONS OF WC AND 

W2C IN THE SPHEROTENE POWDER 

 

First, the sum of the W (92.2 wt. %) and C (4.0 wt. %) composition in the Spherotene, as 

obtained via chemical analysis, is not equal to 100%. Therefore, the Spherotene composition 

was normalised as follows: 

.%2.4100
2.96

0.4

.%8.95100
2.96

2.92

wtC

wtW





 

Note that the sum of the weight fractions of WC (FWC) and W2C (FW2C) will be equal to 1 

1
2
 CWWC FF  

Let x (g) be the amount of WC in 100g of Spherotene  

Let y (g) be the amount of W2C in 100g of Spherotene 

Therefore by weight fraction, 

1 yx  

Recall that, 

(1) The weight fraction of C in Spherotene is 4.2 wt. % 

(2) The weight fraction of W in Spherotene is 95.8 wt.% 

(3) The atomic mass of C is 12 and that of W is 184 
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Therefore, the weight fraction of C in x (g) of WC and y (g) of W2C should be equal to 4.2 

wt. %. Also, the weight fraction of W in x (g) of WC and y (g) of W2C should be equal to 

95.8 wt. %. This gives the simultaneous equations shown below: 

 

8.95
380

368

196

184

2.4
380

12

196

12





































yx

yx

 

Solving the simultaneous equation, we have x = 35.3g and y = 64.7g. 

Therefore, we have 35.3g of WC and 64.7g of W2C in 100g of Spherotene. 

By weight fraction, there is 35% of WC and 65% of W2C in the supplied Spherotene powder. 
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