
TheUniversity of

Nottingham

The Hybrid Model,
And

Adaptive Educational Hypermedia
Frameworks

By

Mohamed Ramzy Zakaria
BSc, MSc

Thesis Submitted to the
University of Nottingham .

for the degree of Doctor of Philosophy,
July 2003

Table of Contents

Abstract vii

Declara tio n viii

Dedication ix

Acknowledgments x

List of Figures xi

PART I: Literature Review

Chapter I: Introduction

1.1 Introduction 1

1.1.1 ITS background 2

1.1.2 Hypertext background 4

1.1.3 Why adaptive educational hypermedia? 6

1.2 Problems Under Study 8

1.3 Proposed Solution Overview 10

lA Research Motivation and Objectives 13

1.5 Thesis Structure 13

Chapter II: User Modelling and User Modelling Systems

2.1 Introduction 15

2.2 Types of User Modelling 18

2.2.1 Standard User Models and Individual User Models 18

2.2.2 Automatic (Implicit) Models and Collaborative (Explicit) Models 19

2.2.2.1 Automatic (implicit) user modelling 19

2.2.2.2 Collaborative (explicit) user models 23

2.2.3 Long-term Models and Short-term Models 24

2.3 Representation Techniques 25

2.3.1 Knowledge Representation Techniques 25

2.3.1.1 The overlay model. 26

2.3.1.2 The differential model 27

2.3.1.3 Perturbation and Bug Models 28

2.3.1.4 Constraint-based model. 29

2.3.2 Stereotyping 30

2.4 Generic User Modelling Systems 32

2.4.1 GUMS 33

2.4.1.1 Stereotypes 34

2.4.1.2 Default reasoning with rules 35

2.4.1.3 Failure as negation 36

2.4.2 Academic User Modelling Shells 36

2.4.3 Commercial User Modelling Servers 37

2.5 Summary 38

Chapter III:Adaptation in Hypermedia

3.1 Introduction 40

3.2 Content Level Adaptation 40

3.3 Links Level Adaptation 44

3.4 Summary 46

PART II: Technology Review

Chapter IV: Survey

4.1 Introduction: 48

4.2 Adaptive Educational Hypermedia Systems .49

4.2.1 AHA! 51

4.2.2 ELM-ART 61

4.2.3 NetCoach 65

4.2.4 Interbook 67

4.2.5 Metadoc 71

4.2.6 Hypadapter 73

4.2.7 CHEOPS 77

4.2.8 TANG OW 78

4.3 Systems Analysis 80

4.4 Summary 83

11

Chapter V: Technology

5.1 Introduction 85

5.2 XML and HTML 85

5.3 Related Technology 89

5.3.1 Cascading Style Sheets (CSS) 89

5.3.2 eXtensible Style Sheet (XSL) 90

5.3.2.1 eXtensible Style Sheet: Transformation (XSLT) 90

5.3.2.2 eXtensible Style Sheet: Formatting Object (XSL-FO) 92

5.3.3 XML 1anguages 93

5.3.3.1 XPath 93

5.3.3.2 XL INK 94

5.3.3.3 XPOINTER 95

5.3.4 Xinclude 95

5.4 Cocoon Publishing Framework 96

5.4.1 eXtensible Server Page (XSP) 98

5.4.2 ESQL tag library (ESQL logicsheet) 100

5.5 Summary 100

PART III: The Contribution

Chapter VI: The Hybrid Model

6.1 Introduction 102

6.2 The Hybrid Model Architecture 104

6.2.1 Overlay Model 104

6.2.2 Stereotype Mode1 105

6.2.3 Information Pool 106

6.3 The Hybrid Model and WHURLE 108

6.3.1 WHURLE Overview 108

6.3.2 The Hybrid Model Information Poo1 111

6.3.3 Knowledge Domains 111

6.3.4 Knowledge Levels 114

6.3.5 Adaptive Lesson Plans 115

6.3.6 Adaptation Mechanism 117

III

6.4 Summary 121

Chapter VII: Implementation

7.1 Introduction 123

7.2 Implementation Algorithm 123

7.3 Database Design 125

7.3.1 System's tab1es 126

7.3.2 Users' tables 127

7.4 System Components 130

7.4.1 Authentication system 131

7.4.2 Adaptation filter 133

7.4.3 Quiz engine 136

7.4.3.1 Quiz 136

7.4.3.2 Auto-marking engine 139

7.4.3.3 Upgrade engine 140

7.5 Administrative Too1s 141

7.5.1 Students' registration too1 142

7.5.2 Lessons' registration tool 143

7.6 Summary 145

PART IV: User Trial and Discussion

Chapter VIII: User Trial

8.1 Introduction 146

8.2 Experiment Design 146

8.2.1 Lesson plan design 146

8.2.2 Pre-quiz design 147

8.3 Methodology 149

8.4 Data Analysis 151

8.5 Students opinion 156

8.5.1 Quantitative questions 156

8.5.2 Qualitative question 157

8.6 Conclusion 159

IV

8.7 Summary 159

Chapter IX: Discussion

9.1 Introduction 161

9.2 Why the Hybrid Model? 161

9.3 The Hybrid Model- Implicit and Explicit.. 164

9.4 WHURLE-HM and Adaptation Techniques 165

9.5 Limitations 167

9.6 Further research 167

9.7 Conclusion 169

Appendices

Appendix A: Source Code 171

A.1 Authentication system files 171

A.2 Adaptation filter 180

A.3 History files 183

A.4 Quiz engine 185

A.4.1 Auto-marking 187

A.4.2 Upgrade engine 191

A.5 Administrative tools 196

A.5.1 Students' registration tool 196

A.5.2 Lessons' registeration tool 199

Appendix B: Database Tables 204

Appendix C: Snapshots 210

C.1 Authentication screens 210

C.2 Quiz 210

C.2.1 Quiz Screen 210

C.2.2 Results screen 212

C.3 Lessons screen 213

C.4 Administrative tools 214

Appendix D: Guideline 215

D.1 How to create an adaptive lesson Plan 215

v

D.2 How to create quiz questions 216

D.2.1 Pre-quizzes 217

D.2.2 Post-quizzes 217

Appendix E: Users Quotes 219

Appendix F: Related Publications 221

"The Hybrid Model for Adaptive Educational Hypermedia" 222

"User modelling, and Adaptive Hypermedia Frameworks for Education" 228

"Pluggable user models for adaptive hypermedia in education" 240

Bibliography 244

VI

Abstract

The amount of information on the web is characterised by being enormous, as is the

number of users with different goals and interests. User models have been utilized by

adaptive hypermedia systems generally and adaptive educational hypermedia systems

(AEHS) particularly to personalize the amount of information they have with respect

to each individual's knowledge, background and goals.

As a result of the research described herein, a user model called the Hybrid Model has

been developed. This model is both generic and abstract, and it extends other models

used by AEHS by measuring users' knowledge levels with respect to different

knowledge domains simultaneously by utilising well known techniques in the world

of user modelling, specifically the Overlay model (which has been modified) and the

Stereotype model. Therefore, using the Hybrid Model, AEHS will not be restricted to

a single knowledge domain at anyone time. Thus, by implementing the Hybrid

model, those systems can manage users' knowledge globally with respect to the

deployed knowledge domains.

The model has been implemented experimentally in an educational hypermedia

system called WHURLE (Web-based Hierarchal Universal Reactive Learning

Environment) to verify its aim - managing users' knowledge globally. Moreover, this

implementation has been tested successfully through a user trial as an adaptive

revision guide for a Biological Anthropology Course.

Furthermore, the infrastructure of the WHURLE system has been modified to

embrace the objective of the Hybrid Model. This has led to a novel design that

provides the system with the capability of utilising different user models easily

without affecting any of its component modules.

vu

Declaration

I hereby declare that this thesis illustrates my own research work and that I

composed this thesis fully myself

Mohamed Ramzy Zakaria
School of Computer Science and Information Technology
University of Nottingham
July 2003

Vlll

Dedication

This thesis is dedicated to my mother, Mrs Zeinab Zakaria, and my father, Dr.

Ramzy Zakaria. I am everlastingly thankful and grateful for the support, love, and

guidance you provided me to reach that stage. Thank you is not enough for what you

have offered and done for me. God bless you both.

ix

Acknowledgments

I would like to thank my supervisor Dr. Tim Brailsford for his help, support and

guidance during this long journey.

Special thanks are reserved to Dr. Helen Ashman and Dr. Peter Davies for their help

and valuable advice during this work.

I would also like to express my appreciation to Dr. Adam Moore, Craig Stewart, and

WTG (Web Technology Group) members for their valuable discussions.

I acknowledge with the deepest gratitude my family for their love, support and help

that I have received during this challenge.

At last but note least, my sincere thanks to my friends for their understanding and

moral support. You were great guys.

x

List of Figures

1.1 CAl Structure 3

1.2 Domains and Topics 8

2.1 Adaptation Process 15

2.2 Collaborative User Modelling 23

2.3 Overlay Model 26

2.4 Differential Model 27

2.5 Perturbation and Bug Models 28

2.6 Constraint-based Model 29

2.7 Stereotype Used in Grundy System 30

2.8 GUMS Interaction 33

2.9 GUMS Stereotypes 34

2.10 GUMS Stereotype Components 35

4.1 AHA! Domain Concepts 58

4.2 Used Adaptation Technique 81

4.3 Used User Modelling Methods , 82

5.1 Tree Diagram 87

5.2 XML Document Life Cycle 88

5.3 A Web server and Cocoon interaction 97

6.1 The Components of the Hybrid Model 106

6.2 WHURLE Components' architecture 109

6.3 An Example ofWLPML 110

6.4 Graphical representation for the code in Figure 6.3 110

6.5 The Hybrid Model Information Pool in WHURLE-HM 111

6.6 Knowledge Levels 115

6.7 A Simple Extraction from an adaptive lesson plan about HTML 116

Xl

6.8 Adaptation Snapshots 118

6.9 History Window 119

6.10 Choosing Lessons 120

6.11 Users Interaction 120

7.1 WHURLE-HM Flowchart 124

7.2 WHURLE-HM Components 131

7.3 WHURLE Old Infrastructure 133

7.4 WHURLE New Infrastructure 134

7.5 Adaptive Lesson Plan 134

7.6 Quiz Engine Components 136

7.7 Quiz File 137

8.1 An Extract from the Anthropology Lesson Plan 147

8.2 An Extract from the Anthropology Pre-quiz 148

8.3 Pre-quiz Results 149

8.4 Post-quiz Results 150

8.5 Normality Test 151

8.6 Distribution Graphs 153

8.7 Statistical Results 154

8.8 Times of Access 155

8.9 Quantitative Questions Results 156

0.1 Adaptive Lesson Map 216

xu

Part J- Chapter J (Introduction)

Chapter I: Introduction

1.1lntroduction

The brave new era of the information age has ramifications for all disciplines, at the

most fundamental of levels. From education, to commerce and music, the Internet

impinges on every field where data and knowledge are important. Arising out of this

world-wide network of communications comes the globalisation of information - in

which hypermedia tools are at the forefront enabling direct user access to

information. It is now easier than ever to create an interactive web site; and with the

rise of DHTML (Dynamic Hypertext Markup Language), the various XML

(eXtensible Markup Language) technologies, Java and others, this trend promises to

continue. As these technologies become more capable and widely accessible, the

most important area of research becomes the application of the technology rather

than the technology itself.

The application of web technology within the educational arena offers many

important benefits to both teachers and students - particularly in the realms of

classroom and platform independence. In Web-based educational systems, the

educational material can be installed, supported and maintained at one central

facility, while likely thousands of users can process it regardless of where they are,

what kind of computers they have, what kind of platform they use or what kind of

internet connection they have [Brusilovsky 1998].

To give a full background of the evolution of web-based educational systems, the

next subsections, Intelligent Tutoring systems (ITS) background and Hypertext

background, will give a brief history about Intelligent tutoring systems and hypertext

respectively. Both of these technologies contributed to the presence of what are

called adaptive educational hypermedia systems (explained below). Furthermore,

advantages of using adaptive educational hypermedia are explained in the 'Why

adaptive educational hypermedia?' subsection.

I

Part I· Chapter I (Introduction)

1.1.1 ITS background

The involvement of technology in education can be traced back to Pressy in 1926

[Pressy 1927, Pressy 1926] when he created his instructional machine that is packed

with teachers' multiple-choice questions and answers. This machine delivered

questions; thereby learners should answer each question correctly to be able to move

to the second one and so on (an immediate feedback). The size of that machine is the

same as a typewriter, and it is composed of a bar on the left hand side upon which a

sheet of questions is spinning. In addition, to the right hand side there are four keys

corresponding to the possible four answers of the given question where a user press

any of them to give the associated answer. Furthermore, that machine has two

different settings one for testing and the other for teaching. If the machine is set for

testing, therefore, every correct answer a user/student provides is counted by a small

counter, but if the user answered incorrectly the counter will not count and the user

can proceed to the following question. On the other hand, if the machine is set for

teaching, therefore, if a user answered a question incorrectly then he/she will not be

able to proceed to the following one unless the right answer is supplied. Albeit this

machine was mechanical, it incorporated modem learning theories, such as feedback,

and educational strategies in its design [Shute and Psotka 1996].

Skinner [Skinner 1954] argued that instrumentals' aid has a profound impact on

enhancing human learning. Furthermore, he described a machine, which is close in

functionality to Pressey's machine that provides immediate feedback to a student

when he/she gives a wrong answer to a question by not showing the following

question. He also added that this device "makes it possible to present carefully

designed material in which one problem can depend upon the answer to the

proceeding and where, therefore, the most efficient progress to an eventually

complex repertoire can be made. Provision has been made for recording the

commonest mistakes so that the tapes can be modified as experience

dictates"[Skinner 1954].

The principle upon which Skinner's machine acting towards an answered question

either by ringing a bell if the question is answered correctly or not to proceed to the

following question if the provided answer to the former one is wrong acts as a main

concept behind Computer Assisted Instruction (CAl) or Computer Based Training

2

Part I· Chapter I (Introduction)

(CBT). CAlor CBT is simply a computer program that embedded Programmed

Instruction (PI), where PI "refers to any instructional methodology that utilizes a

systematic approach to problem decomposition and teaching"[Shute and Psotka

1996, p 571].

CAl systems present to users/students materials to be studied and then presents a

problem belonging to that part of the material to be solved. If a student/user

answered correctly then he/she will move to the next one, but if not, remediation is

called for, which is a part of the program, that presents simpler problems to the user

that gradually move towards the depth of the original material. Figure 1.1 illustrates

the structure of CAL

Educational
Material

Student answer

Student's Right
Answer

Student's Wrong
AnswerFeedback

Figure 1.1 CAl Structure - CAl systems compare students' answers with
predefined answers (computer answers). If both of them matched then the answer
is correct and the student will then go to the next part in the curriculum, but if not
the remediation part of the system is activated. This diagram is a modification of
what is in [Shute and Psotka 1996].

It is important to notice that the system is not doing that intelligently, but the teacher

constructs all branches of the program ahead of time. CAl cannot differentiate

between different wrong answers, and it provides the same guidance for all students

that answer the same question incorrectly. For that reason, intelligent computer

assisted instruction (ICAI) programs evolved.

ICAI provides a kind of personalized tutoring for each student individually, I.e.,

different students may answer the same question incorrectly but according to the

3

Part J- Chapter J (Introduction)

given answer by each of them, tailored tutoring is provided. For ICAI to achieve that,

to view errors intellectually, much research in different fields related to artificial

intelligent area, such as efficient representation and knowledge retrieval techniques,

and to cognitive psychology area, such as knowledge representation in humans'

memory, are carried out [Shute and Psotka 1996].

ITS (Intelligent Tutoring system) considered to be a specific type of ICAI, because it

possess a domain model, knowledge about teaching strategies and a student model

(knowledge about learners) but leAl is a domain knowledge free. [Hartly and

Sleeman 1973, Ohlsson 1987, Kass 1989].

Albeit ITS or ICAI systems are keen about tutoring students in solving problems, the

presented educational material (manual) is the same for all users or students, despite

the fact that students themselves are different.

1.1.2 Hypertext background

The term "hypertext" was invented by Ted Nelson in 1965, when he defined it as: "a

body of written or pictorial material interconnected in such a complex way that it

could not conveniently bepresented or represented onpaper" [Nelson 1965].

From the above quotation, Nelson has described the structure of hypertext as

different materials connected to each other. The prefix "hyper" has been used to

emphasise the inability of these materials to be connected in a linear manner.

McKnight [McKnight et al. 1996] clarified that hyper means "more than"; therefore

hypertext means "more than text".

Smith and Weiss defined hypertext as: "an approach to information management in

which data is stored in a network of nodes connected by links" [Smith and Weiss

1988]. Moreover, Hypermedia is a more general concept than hypertext, as the

connected material could be text and other media [Conklin 1987].

Conklin indicated that reference books, dictionaries and encyclopaedia present an old

form of hypertext: "Another kind of manual hypertext is a reference book,

exemplified by the dictionary and the encyclopaedia. In the sense that each of these

4

Part 1-Chapter I (Introduction)

can be viewed as a graph oj textual nodes joined by referential links, they are very

oldJorms oJhypertext" [Conklin 1987].

Such kinds of documents "are linear sequences of independent units" [Smith and

Weiss 1988]. The reader, through that kind of complex document, usually searches

them to locate an article or a definition, and then starts reading that part sequentially.

Furthermore, the reader is likely to pass by various cross-references, such as "see the

article written by X". To follow those references, the reader must find the appropriate

volume, entry, and then the related article or definition. Therefore, that method of

linking documents together is found through references or "see also" lists.

"Hypertext electronic documents" [Smith and Weiss 1988] solved many problems of

conventional paper documents, for example, from the flexibility perspective, a reader

within seconds can follow a reference or find a definition or information without

searching through entire volumes. From the variety aspect, conventional paper

documents are limited to graphics and text, but electronic hypertext nodes, defined as

a network of linked nodes, could be sounds, animation, video sequencing and so on

[Smith and Weiss 1988].

The idea of applying the hypertext concept using machines could be traced back to

Bush (1945), in his article "As We May Think", when he described a machine called

Memex: "A memex is a device in which an individual stores all his books, records,

and communications, and which is mechanized so that it may be consulted with

exceeding speed andflexibility. It is an enlarged intimate supplement to his memory"

[Bush 1945]. From the above quotation, Bush stressed that the essential part of

Memex is the ability to join two items together. That machine proposed dry

photograph and photocells technology at that time to do this linking.

The first serious attempts to get the Memex machine into reality came two decades

after Bush's description when Douglas Engelbart in 1968 conducted a demonstration

for his Augment system at the Fall Joint computer Conference [Engelbart and

English 1968]. In that system, he demonstrated how files are organized in a

hierarchal form and linked together. Moreover, Engelbart demonstrated the mouse

and the chord key set.

5

Part 1-Chapter I (Introduction)

During Engelbart's development of his system, Ted Nelson was developing his

hypertext system Xanadu [Nelson 1967, Nelson 1980]. Xanadu system acts as a

repository publishing system; once a document is written it is not deleted. Therefore,

the original document remains, except if there is another new version(s) of it; that

would reference to the original one.

1.1.3 Why adaptive educational hypermedia?

Although hypertext has provided many advantages over conventional paper

documents, it has disadvantages as well. Conklin [Conklin 1987] has pointed to two

major problems in hypermedia/hypertext: disorientation - where a user could be

easily lost in the hyperspace (information network) - and cognitive overload - where

a user could find masses of information that mayor may not suit himlher.

From an educational prospective, Chen and Ford [Chen and Ford 1997] stressed that

the disorientation problem has a negative impact on education: "disorientation

prevents learners from getting to where they want to go; it slows down the access of

meaningful and relevant material; it confuses the learners reducing their patience

and diminishing motivation to learn" [Chen and Ford 1997].

Furthermore, they pointed out that the cognitive overhead also has a negative effect

upon learning, as students spend much of their time navigating through the presented

links; thereby, they have very little time to read and think about the information.

Moreover, Chen and Ford contemplated other problems such as a) lack of

comprehension - as hypermedia representing information in the form of a network of

interconnected concepts; there is some doubt for a user with a little experience with

the system to understand the interconnections and construct a "coherent overview";

b) problems with access - novice users will find difficulty in constructing

information about a subject they are not familiar with; and c) inefficient learning

strategies. r
'-'

Diana Laurillard in her book "Rethinking University Teaching" indicated that in

hypertext " ... there is no intrinsic feedback on the user's actions: the information in

the system does not change as a consequence of the user's actions on it; it only

changes if they change the system, by changing the information or the link directly"

[Laurillard 1993, p 121].

6

Part 1-Chapter I (Introduction)

From the above quotation, it can be understood that traditional/classical educational

hypermedia systems, which in tum include non-adaptive web-based systems, are

generally static, in that once written their content cannot be changed without external

intervention, thus providing only a single learning experience to each learner,

regardless of their needs and requirements. Hence, a web application that is designed

with a particular class of users in mind may not suit others [Eklund et al. 1997].

Because of the disadvantages found in hypermedia systems, adaptive hypermedia has

been developed. These kinds of systems can address those problems in the classical

hypertext systems by altering the information presented to each user depending upon

a defined set of characteristics, such as background, knowledge, etc [Brusilovsky

1996, Quentin-Baxter 1999]. Therefore, the problems of disorientation and cognitive

overload could be solved. As an example of such systems is ELM-ART system

[Brusilovsky et al. 1996b, Weber and Specht 1997b], which is considered one of the

earliest web-based adaptive educational hypermedia systems (explained in detail in

Chapter IV). In Chapter III various techniques of adaptation on two levels: contents

level and links level are explained.

In order for adaptive systems to be able to adapt their contents and links, information

about users' different traits such as knowledge, background, goals, etc. need to be

modelled and represented. Therefore, these systems could use such information to

provide their users with an appropriate kind of adaptation that suit their different

characteristics. Hence, user modelling is a prerequisite for any adaptive system. In

Chapter II, different techniques of user modeling are described.

Adaptive educational hypermedia systems are considered to be the most widespread

application of adaptive hypermedia [Brusilovsky 2000]. This popularity is probably,

in part at least, due to the disadvantages found in the traditional educational

hypermedia systems.

Adaptive educational hypermedia combine ITS and hypermedia together, as it

inherited from ITS the usage of the knowledge about students, domain and teaching

strategies, and from adaptive hypermedia systems the adaptation of contents and

links of the hyperdocuments to users according to different forms of user models

7

Part 1-Chapter I (Introduction)

[Brusilovsky 2001]_ There have been many adaptive educational hypermedia systems

developed in recent years, such as AHA! [De Bra et al. 2002b], Interbook [Eklund et

al. 1997], Metadoc [Boyle and Encarnacion 1994], etc., the characteristics of each of

these systems and more being explained in detail in Chapter IV and their analysis in

Chapter IX.

1.2 Problems Under Study

The main goal of adaptation is to deliver information to users in a way that suits their

different backgrounds and goals. To achieve that, a suitable user-model needs to be

developed.

By analysing the user model employed by many adaptive educational systems such

as those described in Chapter IV, it is found that they maintain the knowledge value

of each individual user, in addition to other characteristics, with respect to concepts

that belong to a single topic. According to De Bra [De Bra et al. 1999], concepts

could be divided into three kinds: atomic concepts (smallest information units),

pages that are composed of fragments, and abstract concepts that represent larger

units of information. In addition, these concepts are connected to each other through

different concept relationships, such as prerequisite relationships.

Concepts

Topic or Educational
curriculum

Semantic Domains

Figure 1.2 Domains and Topics - From this figure, it could be perceived that
Topics or educational curricula are composed of different concepts. Moreover,
these concepts belong to different semantic domains. For example, a concept
might belong to the chemistry domain, and another one may belong to the
biology domains. Hence, a topic or an educational curriculum may serve one or
more semantic domain(s) according to the integrated concepts. C: Concept, D:
Domain

8

Part 1-Chapter I (Introduction)

One question that arises here is: 'what if we want to have a framework that has the

capability to run different topics or courses simultaneously for users with different

educational levels, such as undergraduate students and postgraduate students?'

Furthermore, what if these topics/educational curricula have prerequisites that

depend on semantic domains not on topics? For example, there may be a topic about

the biochemistry domain and that topic may require certain knowledge in the biology

and chemistry domains a user may acquire after learning different concepts from

different educational curricula about each domain independently through different

educational stages, e.g. in his/her first year and second year as an undergraduate.

Thus, users who have that level of knowledge about biology and chemistry could

understand the topic's concepts, and thereby, they could reach the required level of

knowledge from that topic with respect to the biochemistry domain. Therefore, to be

able to manage users' knowledge globally the presented concepts that are embedded

in an educational curriculum should be mapped to comprehensive semantic domains

and not to the material that presents them.

It is important to clarify that a topic or an educational curriculum refers to the

teaching material to be taught and domains refer to semantic domains such as

biology, chemistry, etc. Moreover, from Figure 1.2 it could be perceived that an

educational curriculum/topic may contain concepts that belong to one or more

domains, and as a result, it integrates one or more semantic domain(s)

simultaneously.

During research about systems that considered that problem, a system called

Metadoc [Boyle and Encarnacion 1994] is found, which is described in detail in

Chapter IV. This system addresses these issues and solves them to a certain extent.

Metadoc classifies users with respect to their domain specific knowledge into four

classes: novice, beginner, intermediate, and expert. Likewise, AIXIUnix concepts

and general computer concepts are classified into different concept levels using the

same scale. Thus, users' knowledge level about UnixlAIX and general computer

concepts is independently stereotyped, i.e., a user may be a novice in UnixlAIX and

a beginner in general computer concepts. The problem in the user model used in that

system is that it cannot differentiate between users at different educational levels. For

example, if there are two users and one is an undergraduate and another one is a

9

Part 1-Chapter 1(introduction)

postgraduate, and both of them are intermediate in Unix/AfX domain. In reality, the

intermediate level of the postgraduate may be very advanced with respect to the

undergraduate one. Moreover, the learning style and rate of acquisition may be vary

also

Therefore, the problem under study could be summarized as follows:

How to create a user model that can be used with educational frameworks and

how that model can manage users' knowledge levels globally (i.e. with respect to

semantic domains) and not locally (i.e. with respect to topics). Furthermore, these

topics may require users with a certain knowledge level in certain domain(s) to

understand them. For example, if a user has a biology background and wants to

study a topic about law, it may be required that that user has a certain knowledge

level in the law basics domain. Furthermore, that domain, which is law basics,

may include several topics.

How to create a user model that can differentiate between its users that share the

same knowledge classes. For example, if there are two users who share the same

knowledge class, such as an intermediate in certain domains, and one of them is

an undergraduate and the other is a postgraduate.

As a possible solution to these problems, a novel user model - known as the Hybrid

Model (HM) has been developed [Zakaria et al. 2002, Zakaria and Brailsford 2002],

and this is described in detail in Chapter VI.

1.3 Proposed Solution Overview

By observing the user modelling that is central to many adaptive educational

hypermedia systems, in addition to the extensive research that has been done in the

user modelling field, it is found that two measure techniques have been used: the

overlay model [Carr and Goldstein 1977], and the stereotype model [Rich 1989].

Those two models will be explained in full detail in Chapter II. Briefly, the overlay

model is a widely used technique, which is used to measure the knowledge level of

students in certain topics. The knowledge level is represented in the form of a

"Concept-Value" pair. The stereotype model classifies users into groups according to

their knowledge, background or other selection criteria.

10

Part 1-Chapter I (Introduction)

The Hybrid Model has been constructed using aspects of both these models, as

follows:

The Overlay model: in order to extend a user's knowledge from a topic's concept

to domains, the classical definition of overlay as a "Concept-Value" pair needs to

be modified to "Domain-Value" pair [Zakaria and Brailsford 2002], where

domain means semantic domains such as chemistry or biology. Thus, educational

materials may involve one or more domain, such as biochemistry, which may

combine between the biology and chemistry domains. Based on that, users'

knowledge levels are examined with respect to the involved domains through

quizzes in addition to any other parameters that systems' authors may see

convenient, such as the time each student spent in studying a certain topic. In

Chapter VI, that modification in the overlay model and how it is carried out is

explained in much more depth.

The Stereotype model: in the Hybrid Model, the stereotype technique mainly

depends on the knowledge level of users with respect to the involved domains.

Moreover, classes in the stereotype are concerned with fixing certain weak points

the students might have. Each class defines an article or set of articles, a

linkllinks to external document/documents, or to lesson/lessons in other

course/courses. If a student belongs to one of the advanced classes, he/she will be

provided with advanced articles or links to help himlher find out more about the

topic. The number of classes will be defined according to the authors of the

system, as they can assign only three classes, as beginner, intermediate or

advanced, or more. In addition to those classes, there are other classes that are

concerned with the educational level of involved users. For example, a class for

undergraduates, another one for postgraduates and so on. The full details about

the number of stereotype sets used in the Hybrid Model and about their functions

are described in Chapter VI.

In addition to the overlay model and the stereotype model, the Hybrid Model

embraces what is called an information pool, which holds educational materials

to be adapted according to users' category and knowledge level.

Each time a student passes from one lesson/topic to another hislher knowledge

level will be updated according to the score the user get in the system assessment,

in addition to any other parameters due to the policy of the system's authors.

11

Part 1-Chapter I (Introduction)

According to the student's new knowledge level, his/her class might be changed

to another stereotype class or to remain the same in case the knowledge level is

not changed.

In fact, the overlay model and stereotype model together provide the main

components used to create the Hybrid Model. Furthermore, the novelty comes in the

way of modifying the overlay model and in mixing the two models together in a

unique and genuine method to serve adaptive educational frameworks. In Chapter

VI, the skeleton of the Hybrid Model is explained in detail.

In order to test this model, it was implemented using an experimental Integrated

Learning Environment called WHURLE (Web-based Hierarchical Universal

Reactive Learning Environment) [Brailsford et al. 2001, Brailsford et al. 2002].

This version of WHURLE is referred to in the rest of the thesis as WHURLE-HM1

(WHURLE - Hybrid Model).

The WHURLE system was initially derived from an earlier system called the

"Scholar's Desktop" (SD) that was developed by the TLTP (Teaching and Learning

Technology Program) Biodiversity Consortium in the mid-1990s. This system is an

Integrated Learning Environment, designed to deliver hypermedia courseware. The

content for the SD was structured as a "Study Unit" consisting of a number of Nodes,

each of which consisted of a single root/main page associated with a number of

child-nods. Each study unit represented an interactive learning resource that was

designed to promote specific learning objectives through the self-paced, interactive

engagement with tasks, information, problems, or all three.

WHURLE is the next generation of SD, which implements features that worked well

with SD along with a change in the pedagogy. Full details about the WHURLE

structure are explained in Chapter VI under section 3.1. Furthermore, in Chapter VI

and Chapter VII, the full details about how the system and the model are integrated

together without any change in the main design of the WHURLE system are

described. Also, in the implementation chapter (Chapter VII), a flow chart of the

implementation algorithm is given.

IWHURLE-HM is called "Adaptive WHURLE" in [Zakaria and Brailsford 2002], which is available
in Appendix F

12

Part 1-Chapter I (Introduction)

1.4 Research Motivation and Objectives

The main motivation behind this research is to enable the creation of an adaptive

educational hypermedia framework, where the users' knowledge should not be

limited around topics' concepts, but be extended to semantic domains - as each

domain may be involved through different topics that help to build users' knowledge

about that domain. Moreover, multiple domains should be involved and integrated

together in a single domain model, and there must be no limit to the number of

involved domains. Starting from that motivation, the objectives can be summarized

into:

Creating a user model that mixes between two well-known and widely used

techniques in a novel manner.

Building a user model that has the capability to track students' performance,

manage users' knowledge level with respect to the studied domains not topics,

point out students' weak areas and provide them with the right kind of

information that could fix these areas, and this all depends on the topics'/courses'

authors.

Testing how the Hybrid Model is flexible, by adapting it to integrate with the

WHURLE system without any deviation from its main goals. In addition,

applying different adaptation ideas to the resulting framework, such as those

described in Chapter III.

Testing the efficiency of the model by testing it with real students using real

educational material
'..

1.5 Thesis Structure

This thesis is divided into four parts:

PART I: Literature Review

Chapter /- Introduction: this chapter gives an introduction to the problem for which a

solution is being sought, in addition to the motivations and objectives of that

research.

Chapter l/- User modelling and user modelling systems: a review about the user

modelling techniques and systems

Chapter Il/- Adaptation in hypermedia: a review about vanous methods of

adaptation used in different systems.

13

Part 1-Chapter I (Introduction)

PART II: Technology Review

Chapter IV- Survey: describing different well-known systems from two angles: the

user modelling angle and the adaptation techniques angle.

Chapter V- Technology: a review about various existing technologies such as XML,

JAVA, Publishing frameworks, etc.

PART III: The Contribution

Chapter VI- The Hybrid Model: this chapter is considered to be the heart of the

thesis, as it describes the Hybrid Model and how it is conceptually implemented

inside WHURLE. Furthermore, this chapter has been published in the AH2002

conference proceedings and in the New Review of Hypermedia and Multimedia

Journal (NRHM'02, Volume 8) - both of them are available in Appendix F.

Chapter VII- Implementation: through this chapter, the technical mechanism of the

integration between the Hybrid Model and WHURLE is explained. In addition, the

flow chart of the implementation is provided. Moreover, the explained system

architecture in that chapter has been published in the Hypertext conference 2003 as a

short paper, which is available in Appendix F.

PART IV: User Trial and Discussion

Chapter VIII: User Trial: experimenting the model through the WHURLE-HM

system with real students using real teaching material is described here. The main

goal of this trial is to prove the applicability of the Hybrid model to adaptive

educational hypermedia systems and it is possible to be used in educational setting.

Chapter IX: Discussion: this chapter explains why the Hybrid Model is unique and

what is the main difference between it and other used models in different systems.

Moreover, an explanation is given as to how that system could be extended. This is

followed by the limitations, further research and conclusion.

14

Part I -Chapter II (User Modelling and User Modelling Systems)

Chapter II: User Modelling and User Modelling
Systems

2.1 Introduction

For adaptive hypermedia systems to be able to adapt their contents and links to their

users, information about users' knowledge, background, goals, traits, etc. are needed

to be modelled and represented through different techniques as will be described

later in the chapter. Therefore, these systems could use this information to provide

appropriate personalization for every individual user. Thus, user modelling is an

important aspect of human-machine systems and without it any personalization in

hypermedia systems will not be feasible.

According to Brusilovsky, adaptive hypermedia systems are:

".... the systems which can provide automatic adaptation on the basis of the user

model" [Brusilovsky 1996].

Moreover, he distinguished three stages in the adaptation process, as in Figure 2.1:

collecting data about the user, processing the data to build or update the user model,

and then applying the user model to provide adaptation.

~

cY~ ~~ 1..--- User Modeling

Isystem!Y ~

"'1 Adaptation

Adaptation Effect

Figure 2.1 Adaptation Process - Stages of adaptation process in Adaptive Hypermedia
[Brusilovsky 1996]

From the above figure, it could be perceived that the process of collecting data about

users to construct a user model could be explicit (provided by the user) or implicit

15

Part l=Chapter II (User Modelling and User Modelling Systems)

(inferred by the system), and this will be explained later. As a result, adaptive

hypermedia systems could perform adaptation based on this information for every

user individually.

Kobsa [Kobsa et al. 2001] also has distinguished three tasks in the adaptation!

"personalization" process: acquisition, representation and secondary inference, and

production task. Furthermore, he has differentiated between data about user (user

data), data about computer usage (usage data) and data about users' environments

(hardware and software). The term user data refers to information about personal

characteristics of a user, while usage data refers to user's interaction behaviour with

the system.

There are common features that could be considered to construct a user model and

related to the user data, and they are as follows: [Brusilovsky 1996, Brusilovsky

2001, Finin 1989, Kobsa et al. 2001]

Demographic data: such data is related to the characteristics that identify users

physically such as record data (name, address), geographical data (city, zip code),

etc. Commercial applications, like e-commerce sites, rely on this feature to

provide customers with support and promotion services. However, if

consumers'/users' data is not properly protected it could be subject to abuse (data

privacy).

Knowledge: Through this kind of information the adaptation could be

individualized, as each user may see the information that suits his/her knowledge

level without being perplexed if the presented information is much higher than

his level, or bored because of the unnecessary explanations. Many adaptive

hypermedia systems, especially educational ones, depend on this feature to

provide users with the appropriate kind of personalization. such as those

described in Chapter IV as CHEOPS [Ferrandino et al. 1997], AHA! [De Bra et

al. 2002b], HYPADAPTER [Hohl et al. 1996] and others. From the researcher's

point of view, this feature plays an important and fundamental role in educational

applications.

Skills and capabilities: a user's skills and capabilities can also play an important

role in the adaptation of a system to a user's needs. It is likely that a user knows

how to perform a certain task but he/she cannot do it because of a physical

16

,

Part I-Chapter II (User Modelling and User Modelling Systems)

disability or any other obstacle. For example some systems that deal with tourist

information, such as AVANTI [Fink et al. 1998], take into account the needs of

disabled people and recommend actions that are within their capabilities. From

the researcher's perspective, such a feature is very useful especially for systems

that deal with users who have special needs.

Interests and preferences: a user's interests and preferences are considered

important features for many systems such as information retrieval (IR) systems,

such as search engines, and recommender systems. Recommender systems

recommend items to users such as products, services, news, etc. therefore, users

can express their interest by rating the suggested items. Therefore, through these

rating actions the system could adapt itself to the interest of each user with

respect to the corresponding items. Moreover, a user's preferences, such as

hislher preferred learning style or language, are used heavily in adaptive

educational hypermedia systems such as those described in Chapter IV as

TANG OW [Carro et al. 1999, Carro et al. 2000], Hypadapter [Hohl et al. 1996]

and others. In WHURLE-HM this facility has been used so that students can

choose the interface style they prefer.

Goal and plans: a user's goal is the aim or the target the user wants to achieve,

while a user's plan is a sequence of steps he/she takes to achieve that goal.

However, each step in the plan may have its own sub-goal to realize.

Furthermore, goals could be classified into either a high-level goal or a low-level

goal. For example, in adaptive educational systems, a high-level goal is the

learning of a subject, and a low-level goal may be solving a current problem.

What is more, a user's goal may be directly specified by a user or deduced by the

system. This feature has been applied through different adaptive educational

hypermedia systems successfully such as Interbook [Brusilovsky et al. 1998a].

Background: background refers to all the relevant information related to the

user's previous experience outside the domain of the hypermedia system. This

background may include a user's profession, education, work experience in a

related area, etc. This feature has been utilised in Hybrid Model in the form of

categories where users are categorised according to their educational status and

background i.e. undergraduate, postgraduate, researcher, etc.

Experience: experience refers to users' familiarity with the structure of the

hyperspace. This has a positive effect on helping users to reach their goal swiftly

17

Part I -Chapter II (User Modelling and User Modelling Systems)

and obtain more in depth knowledge about the information the domain model is

presenting.

Knowledge about users held by a user model differs from one application to another

[Finin 1989]. For example, in e-commerce sites, a user's interest in a certain product

or a range of products is much more important than hislher knowledge level. On the

other hand, in educational systems, users' knowledge about concepts presented in the

domain model is vital compared to users' interest in a certain product. Furthermore,

most of the presented features are common keys used in building a user model for

adaptive educational hypermedia systems as described in Chapter IV. Nevertheless,

the knowledge feature is the most essential aspect used in all user-adaptive web-

based educational systems.

Throughout the rest of this chapter, different kinds of user modelling and

presentation techniques are discussed. Moreover, a background describing generic

user modelling systems is provided.

2.2 Types of User Modelling.

Rich [Rich 1999] has categorized the world of user modelling into three-dimensional

space. These dimensions are:

Standard user models and individual user models.

Explicit (collaborative) models and implicit (automatic) models.

Long-term models and short-term models.

2.2.1 Standard User Models and Individual User Models

Within that dimension, Rich has differentiated between two types of user model. One

of them is a standard or "canonical" user model. This kind of user model is not useful

for systems with heterogeneous users, as users are diverse in their traits such as

interests, preferences, knowledge, background, etc. An example of such systems built

using a standard model is WebCT [Piguet and Peraya 2000, Curtin 2002]. This is a

hypermedia educational system originally developed in 1995 at the University of

18

Part I -Chapter II (User Modelling and User Modelling Systems)

British Columbia, and subsequently developed as a commercial product'. It is an

environment for integrating and delivering educational materials over the web, and

for administering and supporting courses. The content model of WebCT presents a

static and inflexible pedagogic experience, without any kind of adaptation at the user

level. Hence web applications, such as those delivered via WebCT, tend to be

designed with a particular class of users in mind, and may not suit those even

marginally different from the original target [Eklund et al. 1997].

The other type is an individual user model. This kind of model enables systems to

provide adaptation to each user in a way that suits hislher preference, interest, and

knowledge, such as in CHEOPS [Ferrandino et al. 1997], AHA! [De Bra et al.

2002b] and NetCoach [Weber et al. 2001] and others described in Chapter IV. Those

systems are adaptive educational hypermedia systems, where their users are diverse

in their goals and background. Therefore, an individual user model for each user or

learner is essential in such a wide-ranging population.

2.2.2 Automatic (Implicit) Models and Collaborative (Explicit)

Models

In this dimension, two different approaches of user modelling are explored. The first

one is called automatic (implicit) user modelling, where the system deduces a user's

goal, knowledge, etc. by observing the user's behaviour while navigating the

hyperspace and processes this data to build a user model. The second one is called

collaborative (explicit) user modelling, where users have a role in the user modelling

process.

2.2.2.1 Automatic (implicit) user modelling

In the previous section, three steps in the adaptation process were described. In

classic or fully adaptive systems, the first two stages, collecting data and processing

it to build the user model, are automatically performed by the system in addition to

the adaptation process. Thus, the process of user modelling is totally implicit and the

user has no direct role in the process, which is why it is called automatic user

modelling.

I http://www.webct.com

19

http://www.webct.com

Part I -Chapter II (User Modelling and User Modelling Systems)

Fully adaptive systems watch users' behaviour and through this monitoring, these

systems could deduce different traits about each individual user such as: [Kobsa et al.

2001]

Interest: this characteristic could be deduced through different actions a user is

performing such as:

• Selection actions: a user may select a product or an article he/she

is interested at. Many systems use a user's action of selecting as

an indication for interest. For example, in Amazon.com if a user

chose to read an abstract of a book or navigate the table of

contents the system suggests others books related to the same

subject. However, this action does not give a strong indication of

whether the user is interested in a certain article/product or not.

For example, the user may choose a link because of curiosity. On

the other hand, although this feature is not accurate, it could

provide help to systems that do not have much information about

their users.

Viewing time: viewing time is difficult to be used as a positive

sign to deduce users' interest in the presented hyperdocument.

•

This is because people vary in their speed of reading; also it is

impossible to guarantee the time spent by the user in front of the

computer screen looking at a specific item. Therefore, the time

that a user spent viewing an article/item could be used as negative

indication. For example, if a user spent less than a specific time in

a certain page, this may indicate that the user is not interested in

this page or familiar with its contents. In case of hypermedia

streamed objects (video or audio objects), if a user terminated the

streaming, this gives strong evidence that the user is not

interested, but if he/she waited until the end of the presentation

this may give a positive sign about the user interest. From the

researcher's perspective, indicating user's interest through this

action is more accurate than selecting objects.

• Evaluating: evaluating an item could happen through rating this

item. A user's rating for an object could indicate explicitly how

this item suits hislher interest such as in the case in the previous

20

Part I-Chapter II (User Modelling and User Modelling Systems)

action (Viewing time). Therefore, this behaviour gives a strong

indication for users' interests.

• Purchasing actions: in e-commerce sites such as Amazon.com,

purchases made by users are regarded as strong evidence of the

user's interest; therefore the systems react adaptively by

suggesting related or similar products. Purchasing may not be an

indication of a user's interest if this product were a gift to other

people from the user. Amazon.com tried to solve that problem by

discarding purchase orders with a shipment address different from

that of the user, which is inadequate solution. For example, if a

user in one place whose address is registered by the system

ordered a product to be delivered to a holiday address in a

different name, the system would assume that the product is a gift

and therefore it does not fit in the preferences of that particular

user. The researcher proposes that if the user can imply explicitly

that such a purchase is a gift, such a problem could be solved

more efficiently and the user's interest could be indicated more

precisely.

• Further processing actions: if a user accessed certain document or

visited certain web site and then he/she did another actions such as

printing/saving/forwarding such an article (such as 10

my.yahoo. com) or bookmaking such a site, this behaviour could

give an indication about user's interest in this article or web site.

However, this behaviour cannot give a strong indication if a user

is interested in such site or article, because he/she may want to

forward/print/save such article/site for someone else such as a

colleague, a friend, etc.

Unfamiliarity: from a user's behaviour it could be inferred that he/she is not

familiar with information/product/service a system is providing. For example, the

MetaDoc [Boyle and Encarnacion 1994] system, which an adaptive educational

hypermedia system, allows its users to get more explanation about the technical

expressions they are not familiar with by means of the stretch text technology.

The MetaDoc system uses this action as an indication of the unfamiliarity of the

21

Part I---{;hapter II (User Modelling and User Modelling Systems)

user with that expression and consequently hislher user model is updated.

However, such behaviour cannot be relied on as a sign of unfamiliarity with

certain expressions, as a user may choose an explanatory link just for curiosity or

to assure hislher information. Metadoc system handled this problem by

considering a user as unfamiliar with an expression/concept if he/she chose to

expand the hot word that provides an explanation to that expression/concept or

jumped to the glossary more than once. From the researcher's perspective, this is

an adequate solution to confirm a user's unfamiliarity. Moreover, viewing time

action explained in the previous point could be used as an indication of a user's

unfamiliarity with the material the system is presenting. For example, if a user

waited till the end of a presentation then this action could indicate he is not

familiar with the presented material.

Preferences: selecting actions could be used to deduce users' preferences. For

example, by presenting different objects to a user to select from, hislher selection

may help the system to infer the user's preferences with respect to the selected

object type. However, this feature could also be difficult to be precisely inferred

by the system because a user might choose an object out of curiosity at that

particular time. Therefore, it is preferable to be explicitly specified by the user.

Knowledge: in adaptive educational hypermedia systems, such as those explained

in Chapter IV, users' knowledge could be deduced by a system through

monitoring their behaviour while navigating the presented material or through

quizzes and tests.

Brusilovsky [Brusilovsky 1996] argues that systems that perform adaptation without

a user's influence (automatic user modelling) cannot be completely relied upon.

These systems are likely to deduce a mistaken user model and consequently provide

mistaken adaptation. The researcher finds that this argument is a valid one, and

therefore, automatic user modelling should be used with caution. Therefore, systems

that implement such a kind of user modelling must have a way to be positive about

the facts they collect to build the user model, in addition to a way to resolve conflicts

between gathered facts about users [Rich 1999].

22

Part I -Chapter II (User Modelling and User Modelling Systems)

2.2.2.2 Collaborative (explicit) user models

In collaborative or cooperative user modelling [Barker et al. 2002, Kay 1995, Rich

1999], the user has a direct role in the user modelling process. Brusilovsky

[Brusilovsky 1996] has suggested how to involve users in the process of user

modelling, as in Figure 2.2.

System
Figure 2.2 Collaborative user modelling - involves users in the user modelling process, where
they have a role in each involved step. Modified from (Brusilovsky 1996]

From the above diagram, it is found that:

Users can provide the user modelling with the required data such as specifying if

a certain article is relevant to them through ratings.

Users could change the amount of the presented information. For example, in

Metadoc system [Boyle and Encarnacion 1994] users could changes the detail of

the presented information through the stretchtext technique. Therefore, they

change the adaptation effect.

Users could edit their user model. In many adaptive systems, this feature is used

to get information about a user's background such as hislher profession and

experience, which is difficult for the system to infer, such as in TANGOW [Carro

et al. 2000]. In addition to this information, users can set other influential data

like their current goal. To achieve that purpose, systems could provide a special

interface for their users in order to perform these tasks. Moreover, such systems

23

Part I-Chapter II (User Modelling and User Modelling Systems)

that allow their users to perform changes in their user model are called Adaptable

systems. However, some information in the user model is very critical and any

change in it could end up with an incorrect adaptation. Hence, this data needs to

be accessible only by an experienced user like the system administrator to set the

model correctly. From the researcher's perspective, in case of adaptive

.educational systems, the only exception could be given to systems that hold pre-

assumptions about the knowledge of their users. Therefore, if they (users) find

any of the presented concepts they are familiar with, they can inform the system

to update their model and future adaptation could be carried in the light of these

changes such as in Hypadapter [Hohl et al. 1996].

2.2.3 Long-term Models and Short-term Models

For a system to interact reasonably with a user, the system has to access a wide

variety of information about that user. This information ranges from short-term facts

like the subject of the article that a user has just finished reading, to long-term facts

like his/her experience/knowledge level in solving a particular problem.

Short-term models describe a user's specific goals and tasks in the current interaction

with the system. Such a kind of user modelling is widely implemented in e-

commerce applications. Long-term models express stable characteristics of a user

such as interest or expertise, which are derived from a series of interactions between

the system and the user [Rich 1989, Rich 1999].

From the above sections, it could be perceived that implicit user modelling is not

dependable as it presumes assumptions about users, which are subject to different

explanations, while they perform actions or navigate the hyperspace. However, this

kind of modelling could be useful for systems that use short-term models,

nevertheless, based on the fact that those system utilise different methods and

techniques to reassure consistency of the assembled beliefs about their users. On the

other hand, explicit user modelling shares users in collecting data from them.

Therefore, it has a small room for error. However, explicit user modelling methods is

not very practical for applications with which users interact for a short period of

time, such as e-commerce applications, as users do not have much time to fill out

forms, In different contexts, such as education where long-term models are used,

24

Part I -Chapter II (User Modelling and User Modelling Systems)

users react with the system many times and they could have time to feed the system

with their traits explicitly. Furthermore, in educational applications, integration

between explicit and implicit user modelling methods is useful as in the case of

WHURLE-HM [Zakaria and Brailsford 2002], NetCoach [Weber et al. 2001],

TANGOW [Carro et al. 2000], and others explained in Chapter IV. With this kind of

combination, users could supply a system with their traits that are difficult to be

inferred by the system, such as their preferences, background, etc., and the system

could deduce their knowledge about the presented curriculum through different

methods such as quizzes, tests, etc.

2.3 Representation Techniques

In general, a student model and a user model are quite similar, but they have

characteristic differences in the way they are generally viewed. A user model is a

model an adaptive system keeps for a user who is currently using it, while a student

model is a model for an individual the ITS views as a student [Kass 1989].

Moreover, a student model considers how a student represents or reasons the

knowledge he/she has. On the other hand, a user model is concerned with modeling a

user's goals, plans and beliefs. Thus, a user model focuses on what a user wants or

believes, and sometimes on how he/she plans to achieve his/her goal rather than

modeling how a user's belief might change or why a user holds a certain belief [Kass

1989].

In the following subsections the presentation techniques will be divided into two

categories: knowledge presentation techniques, and stereotyping. The reason for that

classification is that stereotyping could be used for different purposes rather than

representing a leamer's knowledge, which is why it is preferable to classify it

separately.

2.3.1 Knowledge Representation Techniques

Adaptive educational hypermedia systems are derived from Intelligent Tutoring

Systems (ITS) and adaptive hypermedia systems. ITS use the knowledge about

domain, student, and teaching strategies to provide each user with an individualized

learning experience. On the other hand, adaptive hypermedia systems apply various

25

Pari I-Chapter II (User Modelling and User Modelling Systems)

user models in order to adapt their contents and links to a user's needs, requirements

and knowledge [Brusilovsky 1998].

In the following subsections, an overview will be given about some common

knowledge representation techniques used by ITS and adaptive educational

hypermedia systems.

2.3.1.1 The overlay model

The overlay model was developed in MIT (Massachussets Institute of Technology)

as a part of the COACH project [Carr and Goldstein 1977], whose aim was to

develop an Artificial intelligence based Computer-aided Instruction (lCAI) program

for tutoring the abilities needed for successfully playing various computer games.

The idea of an overlay model is to represent a user's knowledge about any subject as

an overlay of the domain model. In other words, an overlay model presumes that a

user's knowledge is a subset of the domain knowledge, as shown in Figure 2.3. Thus,

for each concept in the domain model there is an individual overlay model that

measures how much a user knows about that concept. This measurement could be a

binary value (known - not known), or a qualitative or quantitative measure

[Brusilovsky 1996]. An overlay model of user knowledge could be represented in the

form of pairs (Concept - value) for each concept in the domain model. Overlay

modelling is easy to implement, as it does not require any information outside the

domain model content.

Concept

Figure 2.3 Overlay Model - user's knowledge in the overlay model is a subset of the domain
knowledge. C: Concept

26

Part l=-Chapter II (User Modelling and User Modelling Systems)

Kass [Kass 1989] argues that the overlay model has a fundamental drawback, in that

it cannot deal with the knowledge a user has if it is different from the knowledge

presented in the domain model. From the researcher's perspective, this point cannot

be seen as a drawback because this is the nature of overlay models, as they measure a

student's knowledge with respect to the concepts represented within the domain

model. Moreover, the Overlay model is widely used among adaptive educational

hypermedia systems such as those described in Chapter IV.

2.3.1.2 The differential model

The differential model is a different form of overlay model [Kass 1989]. However,

instead of representing the user/student knowledge as an overlay of the domain

model, as in the case of the overlay model, the differential model divides a leamer's

knowledge into two categories: knowledge that should be known by the user (such as

prerequisite concepts), which is presented in the domain knowledge, and knowledge

the learner is not expected to know [Kass 1989]. Figure 2.4 illustrates the

differential model. In adaptive educational hypermedia systems, this concept is

widely used, as a curriculum's authors expect students to be familiar with certain

concepts (studied before) upon which the new concepts presented in the educational

material are based.

Kass argues that the differential model suffers from the same problem that the

overlay model suffers from, which is the inability to handle user knowledge if it

differs from that presented in the domain model.

Domain Model

Concept

User overlay
model

User's expected
knowledge

Figure 2.4 Differential Model - the black area shows the knowledge expected to be
known by the user. C: Concept

27

Part I-Chapter II (User Modelling and User Modelling Systems)

2.3.1.3 Perturbation and Bug Models

Perturbation modelling does not represent learners in terms of correct knowledge

only, as in case of overlay model, but also represents their faulty knowledge - as

shown in Figure 2.5. Thus, it combines overlay modelling with a representation of

faulty knowledge [Holt et a1. 1991]. The most common technique used to represent

the perturbation model, is to set the domain knowledge, and then extend that

knowledge with the expected mistaken conceptions a user might have.

A bug library or a bug catalogue is a fixed collection of misconceptions that might be

held by learners. As the learner progresses, the perturbation model can be updated

with respect to the existence of known bugs in the bug library. Several approaches

have been found for the development and the representation of bug libraries. One

approach is to list or enumerate all the bugs based on observed analysis of learners'

mistakes/errors- enumerative theories of bugs. Another approach is to generate bugs

based on learners' misconceptions - generative theories of bugs [Holt et a!. 1991].

A bug library is useful in recognizing causes of errors and misconceptions. A

perturbation model adds an interpretation to a leamer's misconceptions; also, it uses

the bug library to define a range of likely misapprehensions in a student's learning at

some point. For example, a student is adding two numbers but one is positive and

the other is negative and he/she did it wrong. According to the bug library, the cause

for this misconception may be due to the reason that the user is not aware about

Figure 2.5 Perturbation and Bug Models - the dark grey area represents the misconceptions
the user has about certain concepts, while the light grey one is the knowledge the user has
and which is a subset of the knowledge represented through the domain model. C: Concept

28

Part l=-Chapter II (User Modelling and User Modelling Systems)

positive and negative numbers, or may be he/she needs to know more about

subtraction.

Kass [Kass 1989] claims that this model is a very reasonable method to model

learners/users' knowledge. However, the implementation of such a model requires

many empirical studies to obtain misconceptions that learners may have. Different

ITS used such model. On the other hand, it is not commonly used among web-based

educational hypermedia systems.

2.3.1.4 Constraint-based model

The constraint-based model represents learners' knowledge as constraints upon the

correct knowledge representation [Holt et al. 1991, Ohlsson 1994]. That model

extends the overlay approach by allowing more sophisticated reasoning about

domain concepts further than whether they are known or not. A violation of those

constraints indicates incorrect or incomplete knowledge of the student(s), shown in

Figure 2.6. This kind of information could be used by ITS to guide student(s) in the

learning process.

For example, a student has a problem of arithmetic that he/she is trying to solve,

which is the addition of XlY with Z/F, and there is a constraint that states if there are

two fractions with different denominators, then these denominators have to be

equalized before the fractions are added. If the student added the numerators before

equalizing the denominators, this means that he/she violated the constraint,

Constraint-
model

Concept

Figure 2.6 Constraint-based Model - the grey area represents the correct knowledge about
concepts (subset of those presented in the domain model) a user has since he/she did not
violate the associated constraints. On the other hand, the dark (black) area represents the
user's misconceptions about some concepts because he/she violated the associated constraints.

29

Part I -Chapter II (User Modelling and User Modelling Systems)

and this action implies that he/she lacks the knowledge about fraction additions and

needs to know about this type of addition.

From the researcher's perspective, the constraint-based model is close to the

perturbation and bug models. However, the difference is that the constraint-based

model refers users' misconceptions about the presented concepts to the violation of

the associated constraints defined within the domain model and not to a bug library

as in the perturbation model. The constraint model offers advantages over the

perturbation mode. This model does not need wide empirical studies such as in the

perturbation mode, as misconceptions about concepts presented in a problem could

be directly compared to the constraints the student violated. Moreover, this model

could identify user's creative answers as long as they do not violate any of the

presented constraints [Ohlsson 1994]. Even with these advantages, this model has

drawbacks as well. For example, any presented problem should be analysed

efficiently to identify the constraints that if violated indicate which concepts are

misinterpreted by the student [Ohlsson 1994]. Therefore, if the presented problem is

not analysed enough to obtain the right constraints that can indicate users'

misconceptions about which concepts, this model will not be effective.

2.3.2 Stereotyping

Stereotyping is a widely used technique in the world of user modelling. The idea

behind stereotyping is to infer information about users through one or more

observable event(s), trait(s) or action(s).

SPORTS-PERSON

Attribute
Motivation
Character-
strengths

Value
Excitement

Physical-
strength
Perseverance

Sports
5
4

Rating
600
900

Triggers (used-description "athletic")

Interests
Thrill
Tolerate-
violence

600
800
700
600

Generalizations
ANY-PF.RSON

Figure 2.7 a stereotype used in Grundy system (Rich 1989]

30

Part l=-Chapter II (User Modelling and User Modelling Systems)

The stereotype represents a collection of traits that could be presented as a set of

"attribute-value" pairs [Rich 1999]. For example, an attribute could be a user's

knowledge level, such as expertise in a certain topic and the value could be a scale

value between 1 and 5.

Rich [Rich 1989] stated that a stereotype is a "knowledge structure" and composed

of:

Body: holds information that is true for all users who belong to the stereotype

that hold this information.

Triggers: a trigger is a condition that a user met, therefore all the information in

the stereotype body is true for that particular user

Finin [Finin 1989] identifies stereotypes as a collection of both facts and rules and a

way for classifying people according to the common traits they share.

The structure of knowledge that is contained in a set of stereotypes may vary. Rich

has viewed the knowledge about users contained in these structures as a set of

assertions regardless the form of those assertions. For example, Figure 2.7 shows a

stereotype used in the Grundy system [Rich 1989], which is used to suggest novels to

potential readers. Grundy uses two collections of data: one of them is an individual

description for each book, each description being a set of facets filled with value, and

the other contains facts related to readers' taste in books.

The body of the SPORTS-PERSON stereotype (Figure 2.7), which is used within

Grundy system, contains a set of attributes/facets associated with values. All values

have an associated confidence measure called a rating. The rating is used to show the

system's confidence in each facet's value before allowing it to influence the

performance of the systems.

This stereotype is triggered when a user uses the term "athletic" in the self-

description (Trigger). The generalization relationship relates this stereotype to

another stereotype called ANY-PERSON. Thus, the class of people described by the

SPORTS-PERSON stereotype is a subclass of the class of people described by ANY-

PERSON.

31

Part l-Chapter II (User Modelling and User Modelling Systems)

Moreover, the stereotype model could be presented in a form of stereotype-value

pairs, where the value could be Boolean (true or false), i.e. the value determines if

the user belongs to that stereotype or not, or the value could be probabilistic, i.e. the

value represents the probability that the user belongs to that stereotype.

Brusilovsky [Brusilovsky 1996] sees a problem with the stereotype model of

knowledge, as adaptation techniques need a more detailed model like the overlay

model. To overcome this problem, Brusilovsky suggested mapping from the

stereotype to the overlay model by associating a fixed set of concept-value pairs with

each stereotype. For example, Metadoc uses two knowledge classifications and two

groups of stereotypes (novice, beginner, intermediate, expert); each group for each

classification. One classification describes a user's knowledge about general

computer concepts and the other one represents a user's knowledge about UNIX.

Hence, a user may belong to the intermediate stereotype in a computer's general

concepts and to the novice stereotype in UNIX. The combination between stereotype

modelling and overlay modelling has shown good results [Brusilovsky 1996]. That

combination could be achieved by applying stereotype modelling to classify new

users to initiate values for the overlay model and subsequently a regular overlay

model is used. It is important to notice that such mapping between overlay model and

stereotype model is used in many different adaptive educational hypermedia systems

such as WHURLE-HM [Zakaria and Brailsford 2002], CHEOPS [Ferrandino et al.

1997, Negro et al. 1998], and others described in Chapter IV, which proves that it is

widely accepted.

2.4 Generic User Modelling Systems

In early adaptive systems, there was no apparent difference between systems'

components that operate user-model services and other components that perform

other operations [Kobsa 2001]. This kind of separation has been increasingly made

since the mid-1980s onwards which led to the development of generic user

modelling systems that are not dedicated to any specific application domain. In 1986,

Finin introduced his GUMS 'General User Modelling System [Finin 1989], which is

considered to be the earliest generic user modelling system [Kobsa 2001]. Moreover,

that system sets the context for the basic functionality of generic user modelling

32

Part I -Chapter II (User Modelling and User Modelling Systems)

systems, as it provides selected user model services at run time that could be

configured during the development time. Generic user modelling systems serve as a

separate user modelling component in the relevant applications, as developers fill

these systems with the user modelling knowledge that suit the application domain. In

the following subsection, a brief overview about GUMS will be given.

2.4.1 GUMS

The General User Modelling System (GUMS) is a domain independent user-

modelling tool that is designed for building long-term models [Rich 1999, Rich

1989] of individual users [Finin 1989]. That system allows for building models of

individuals that are composed of a collection of facts that could be maintained. Users

in GUMS are assigned to one or more stereotypes, from which additional facts are

inferred using inference rules, which are associated with the stereotypes a user

belongs to. The contents of the user model are left to the application developers to

decide, as each application has its own needs. Any application using GUMS is

responsible for initiating stereotypes for its users, acquiring facts about them

(explicitly or implicitly) and providing services for model maintenance. The GUMS

system does not interact directly with the user, but it interacts with the application

and learns everything about the users through the application itself, as shown in

Figure 2.8.

GUMS ¢=:I Application ¢=:I USER

Figure 2.8 GUMS Interaction - GUMS interacts with the application and the application
interacts with the user. Hence, everything the GUMS learns about the user comes
through the application.

This user-modelling system has a separate knowledge base for each application it

serves. Each knowledge base is composed of two parts:

A collection of stereotypes

A collection of individual models installed in the stereotype hierarchy

33

Part I --Chapter II (User Modelling and User Modelling Systems)

One service that GUMS offers the application is the ability to store new information

about users, which the application has acquired through its interaction with those

users. This information may trigger one of the following:

Detection of any inconsistency in the user model and informing the application

The user model may infer a new fact about the user

The user model updates some previously deduced facts about the user.

Default reasoning of some kind or another is at the heart of all user modelling

systems, and that is because in some situations the system wants to draw some

reasonable and believable conclusions about a user from a small base of distinct

knowledge about himlher [Finin 1989]. GUMS used three forms of default reasoning

techniques: stereotypes, explicit default rules and failure as negation. In the

following subsections, the role of each of them within the GUMS will be explained.

2.4.1.1 Stereotypes

In GUMS stereotypes are used to capture general traits among large classes of users.

Stereotypes are composed of facts and rules that are believed to be true to all users

who belong to them. Those stereotypes are organized in a hierarchal form, as shown

in Figure 2.9. Within that hierarchy, a stereotype could include another stereotype(s)

if it is believed to be more general. For example, postgraduate students stereotype

subsumes both the research students stereotype and the master students stereotype,

because postgraduate students is a more general stereotype. Moreover, everything

that is true about postgraduate students is necessarily true for research students and

master students, i.e. a stereotype inherits from its direct parent that in tum inherits

from its direct parent also.

Figure 2.9 GUMS Stereotypes - Postgraduate Students stereotype includes under it
research students stereotype and master students stereotype. Therefore, postgraduate
students stereotype is more general than the research students and the master students
stereotypes.

34

Part I -Chapter II (User Modelling and User Modelling Systems)

Each stereotype in GUMS has two types of facts and rules, one is definite and the

other is default. The definite facts and rules determine what is true for anyone who

belongs to that stereotype. If the knowledge about a user contradicts this information,

then the user does not belong to that stereotype or any of its descendant stereotypes.

On the other hand, default facts and rules set the initial beliefs about any user who

belongs to that stereotype. These initial beliefs are changeable as long as new

information about the user could be obtained through hislher interaction with the

application. Positive facts about a user override default facts that are known or

inferred from the stereotype to which the user belongs. These certain facts must be

consistent with definite facts as, if there is any contradiction between these facts and

the definite ones, then the user must be reclassified to another stereotype.

The strategy that GUMS follows to reclassify a user to a new stereotype is to search

the ancestors of the current stereotype in order of specificity until it finds one in

which there are no contradictions. In addition to the default and definite knowledge,

stereotypes in GUMS have a third component called meta-level knowledge. That

third component is a collection of meta-knowledge about predicates used in the

definite and default knowledge base. Figure 2.10 shows the components of any

stereotype in GUMS.

Child Stereotype

Figure 2.10 GUMS Stereotype components - each stereotype in GUMS is composed of
definite facts and rules, default facts and rules, and meta-level knowledge. Stereotypes may
have a parent stereotype, unless it is the more general one, i.e. root stereotype. In addition
to that, any stereotype may have one or more children that inherit all its facts and rules.

2.4.1.2 Default reasoning with rules

In GUMS, each rule or fact in every stereotype, as described earlier, is either definite

(necessary) or default. GUMS represents this kind of knowledge within stereotypes

35

Part I -Chapter II (User Modelling and User Modelling Systems)

through: a) the predicate certain: to introduce the definite fact or rule, b) the predicate

default: to indicate a default fact or rule.

2.4.1.3 Failure as negation

Failure as negation is used as a general technique to collect weak evidence for

assumptions that a system might make about a user when no stronger evidence is

available. Hence, the default (rule or fact) is obtained from the lack of certain

information (Le. negation) as well as from the presence of certain information. For

example, as in [Finin 1989], if there is a programmer stereotype, there can be a rule

that can use the user's lack of knowledge about compilers as an indicator of what

he/she probably knows about interpreters.

Kobsa [Kobsa 2001] has classified generic user modelling tools or systems to be:

Academic user modelling shells and Commercial user modelling servers. In the next

subsections, a brief background about each approach will be given.

2.4.2 Academic User Modelling Shells

In the early 1990s, researchers started constructing user-modelling shells that were

provided with structures and processes, which were believed to be important for

adaptive systems at that time. However, These structures or processes were based

upon the experience of the developers of these user-modelling shells through their

previous work on adaptive systems [Kobsa 2001]. The term "shell" was borrowed

from the field of expert systems, and it was first used by Kobsa [Kobsa 1990] to refer

to these generic user modelling systems.

Academic user modelling shells are characterised by being domain independent,

therefore, they can serve as many application domains as possible. Moreover, these

shells are capable of inferring many facts about their users by stereotyping them

according to their different traits and by using their interaction history to deduce

additional facts. Furthermore, these shells maintain consistency among gathered facts

when contradictions are found by utilising several artificial intelligence techniques

such as reasoning with uncertainty and conflict resolution. [Kobsa 2001].

According to Kobsa, academic user modelling shells were not used outside the

institutes where they were developed, except the BGP-MS (Belief, Goal and Plan

36

Part I-Chapter II (User Modelling and User Modelling Systems)

Maintenance System) [Kobsa and Pohl 1995], which seems to be the only academic

user modelling shell that has broken this barrier and has a few reports on external

usage. Briefly, BGP-MS is an application-domain free user modelling shell. This

shell communicates with applications through inter-process communication, where it

can obtain observations regarding users' behaviour from applications and supply

them with information based on the held assumptions about users.

2.4.3 Commercial User Modelling Servers

Unlike academic user modelling systems, commercial shells have been applied to

real life applications through, for example, web-based applications such as e-

commerce. The architecture used among these systems is the client-server

architecture. That design gave the ability to these systems to communicate with more

than one application. Moreover, client-server architecture provided commercial

users' modelling systems with different advantages, such as users information could

be stored centrally. Therefore, different applications could share this information.

Moreover, that technique helps commercial user modelling systems to provide

consistency regarding users traits easily because all the stored information about a

particular user could be gathered through different applications. Furthermore, in a

user modelling server different methods and tools that protect users' data such as

encrypting data, authentication control, etc. could be used and all the applications

that communicate with that central repository could benefit from them when they

exchange data with that server [Kobsa 2001].

Nevertheless, systems based on client-server architecture have drawbacks as well.

For example, these systems require the network to operate efficiently, as any failure

in network transparency, such as delays or failures in server request and responses,

may affect the performance of the system.

Due the nature of e-commerce applications that use this kind of user modelling

systems new characteristics have been added to these systems which are not found in

the academic use modelling shells. For example, these systems adopted different

modelling methods to provide quick adaptations to users who interact with the e-

commerce application for a short period of time. Moreover, different methods and

techniques for exchanging information among different user modelling servers are

37

Part I -Chapter II (User Modelling and User Modelling Systems)

employed, such as interfaces and Application Programme Interface (API). In

addition to other characteristics such as deploying different mechanism in case of a

network break down and the ability to serve more applications and users through

load distribution techniques [Kobsa 2001]. There are many different tools for web

personalization with different capabilities on the market. For a comprehensive review

about commercial user modelling servers see [Fink and Kobsa 2000].

2.5 Summary
Throughout this chapter an overview has been given about user modelling from

different perspectives, considering its important characteristics, different techniques

of representation, and the diverse types of user modelling that are in common use.

Moreover, effort has been made to draw some borders, as user modelling commonly

involves areas of artificial intelligence such as Natural Language Dialogue (NLD)

systems, multiple-agent planning systems, text comprehension and generation,

intelligent help systems, game playing and expert systems [Wahlster and Kobsa

1989]. Within these boundaries the characteristics of user models, and some of the

representation techniques used in adaptive hypermedia systems and Intelligent

Tutoring Systems (ITS) have been discussed. Special attention has been given to the

representation techniques embodied in this chapter, as techniques that deal with the

certainty and uncertainty issues in user modelling have been avoided, as these issues

are out of the scope of this chapter and this thesis.

This chapter is deployed as follows:

1. Introduction: this section gives a general overview about what is meant by

user modelling and its important characteristics used in many adaptive

hypermedia systems and ITS.

2. Types of user modelling: in that section a discussion about different types of

user modelling is given in addition to the advantage and disadvantage of each

of these types.

3. Representation techniques: that section deals with representation techniques

which involve knowledge representation, which is important for any ITS and

adaptive educational hypermedia systems, and stereotyping, upon which most

of the generic user modelling systems are based. That section does not deal

with any certainty or uncertainty techniques.

38

Part I -Chapter II (User Modelling and User Modelling Systems)

4. Generic user modelling systems: characteristics and types of generic user

modelling systems are described here. These systems act as an independent

component/software with any application to provide user-modelling services.

39

Part 1- Chapter III (Adaptation in Hypermedia)

Chapter III: Adaptation in Hypermedia

3.1lntroduction

In the previous chapter user modelling types and techniques, which are important for

adaptive hypermedia systems to provide users with personalization, were explained.

The question that arises now is how could those systems provide such adaptation? To

be able to answer this question it is important to clarify that adaptive hypermedia

systems are composed of different nodes/pages, which include different sorts of

information, and those nodes/pages are connected together through links. Therefore,

adaptive hypermedia systems provide adaptation on two levels: content level and

links level. Content level adaptation means that the presented information is adapted

to suit users' knowledge, goals, etc. by including extra explanations, removing some

parts of the presented text, and so forth, as will be explained later. On the other hand,

links level adaptation means adapting links between nodes in the hyperspace by

annotating them, removing links to irrelevant nodes, etc. to provide users with links

to nodes that suit their different traits. Thus, it could be understood that adaptive

hypermedia augments the functionality of classical hypermedia from only presenting

information that could not be presented through conventional papers to more

effective role, which is personalizing this information to every individual's user

characteristics. Hence, adaptive hypermedia systems are very useful when they are

likely to be accessed by users who are diverse in their knowledge, background,

preferences, etc.

In the following sections, methods and techniques used to adapt information on the

content level and links level will be discussed.

3.2 Content Level Adaptation

The goal of content level adaptation is to provide each user with appropriate

information that suits his/her traits such as knowledge, goals, preferences, etc. For

example, users with less knowledge about presented concepts/materials can be

supplied with extra explanations while those who know more can access advanced

40

Part I - Chapter III (Adaptation in Hypermedia)

level materials without the need for these extra basic explanations. Moreover,

according to users' preferred learning styles, such as more examples than abstract

descriptions, or the converse, the form of the information (examples, case studies,

etc.) could be altered. Therefore, each user will access the form of information that

efficiently helps himlher to understand the presented material. It is important to

notice that this form of adaptation personalises text content through different

techniques as will be described later.

However, the content of any hypermedia page may be a text or a set of various

multimedia items. Therefore, multimedia items are also subject to personalization

through what is called 'Adaptation of modality' [Kobsa et al. 2001]. Through that

type of content adaptation, adaptive hypermedia systems could choose from different

types of media, such as video, animation, etc., to present information to users. This

kind of choice depends on users' different traits such as their preferences, learning

style and so forth. Thus, content level adaptation provides each user with a kind and

a form of information that suit hislher different characteristics. [Brusilovsky 1996,

Brusilovsky 2001].

Adaptive hypermedia systems may utilise different methods to apply content level

adaptation [Brusilovsky 1996], for example, providing extra explanations to users

who have less knowledge about the presented material, while those who have a

higher level of understanding may access more advanced information; this method is

called 'Additional Explanation'. Moreover, in adaptive educational hypermedia

systems such as WHURLE-HM [Zakaria and Brailsford 2002], this method is

usually combined with stereotyping users' knowledge into different classes and each

user can access information that suits his/her knowledge stereotype. Furthermore,

systems can provide content adaptation according to users' preference or learning

styles by storing different versions of the same hypermedia page or fragments of it,

this method is called 'Explanation variant'. Therefore, the presented material could

be presented in different format to different users who are diverse in their favoured

learning styles, preferred presenting language (such as in TANGOW [Carro et al.

1999]), etc. Another method that could be used is to order fragments of information

about a particular concept according to users' different traits - this method is called

41

Part I - Chapter III (Adaptation in Hypermedia)

"Sorting". Thus, fragments of information that are most relevant to a user's

knowledge and background are placed in a more prominent position followed by the

less relevant and so forth, such as in Hypadapter [Hohl et a1. 1996].

Combining these methods could provide a useful means of adaptation. For example,

the "additional explanation" method could be used to present users with information

that suits their knowledge stereotype, and the "explanation variant" could be used to

present this information in a way that users may prefer such as text only, pictures and

text, etc.

Different techniques have been used by many adaptive hypermedia systems in

different areas (education, e-commerce, etc) to implement these adaptation methods,

such as: [Brusilovsky 1996, Brusilovsky 200 1, Kobsa et a1. 200 1]

Conditional text: This technique is widely used to apply the "additional

explanation" method. The idea behind it is to break up the information about a

particular concept(s) into fragments (as in AHA! [De Bra et a1. 2002b]) or

independent chunks (as in WHURLE-HM [Zakaria and Brailsford 2002]).

Furthermore, each fragment or chunk is associated with a condition related to a

user's specific trait such as his/her knowledge level, preferences, languages, etc.

thus, if a user satisfied the condition(s) coupled with a particular fragment or

chunk, thereby, he/she can gain access to this piece of information.

Stretch text: In some hypermedia pages, hot words could be found within the

content of a page. These hot words acts like links. However, when a user

activates any of these hot words the related text (description for example) is

presented either in a new window or extends the content of the current page.

Adaptive educational hypermedia systems, such as Metadoc [Boyle and

Encarnacion 1994], employed this technique to provide content adaptation. In

this system, the content of a page is adapted by un-expanding explanations for

technical expressions/concepts and expanding those whose description is

important to be accessed by a user - depending on his/her user model.

Furthermore, users could participate in providing extra adaptation by expanding

an explanation for a specific concept by activating the associated hot word. Thus,

the system takes into account these changes for the presented concepts for future

42

Part I - Chapter III (Adaptation in Hypermedia)

adaptation. Such a technique could be utilised to implement the "additional

explanation" method. Nevertheless, users have the option to access extra

information if the need arises.

Page and Fragment variants: These techniques could be used to apply the

"explanation variants" method. The idea is to store different versions of the same

page (page variants) or the same fragments (fragment variants) of that page. Each

fragment or page version is presented to users based on their knowledge,

language, preferences, etc. The only difference between page variants and

fragment variants is that the latter is a fine-grained version for the former one.

However, fragment variants provide more flexibility than page variants. For

example, fragments could contain different language versions combined with

versions targeting users with different knowledge levels. Therefore, a page that is

composed of dynamic fragments could provide users with effective adaptation

because it could simultaneously merge different user-traits. On the other hand, a

page variant could be adapted to only one aspect of users' traits at a time and it is

difficult to combine different aspects of users' traits, such as learning style,

language, knowledge level, etc. at the same time unless a system that uses this

technique has different patterns for the same page, such as certain language

merged with a specific knowledge level for all the presented concepts and a

particular learning style, which is not feasible as in fragment variants.

Fragment colouring: in the fragment colouring approach, the content of the

hypermedia remains unchanged for all users. For each individual user, parts of

the presented hypermedia pages are marked out as being important, or not

important, etc. depending upon the users' characteristics. Therefore, this

technique acts like a marker that highlights sections in a "textbook", so that all

users can see all available information. Fragment colouring technique is not

practical in certain contexts such as in education where the offered information

cannot be presented in the same manner to all users. Fragment colouring has the

same function as linking annotation technology in links level adaptation (as

explained later). Thus, it is suggested calling this technique fragment annotation.

Moreover, it is proposed that such a technique could be used to apply the sorting

method more efficiently rather than any of the mentioned methods. For example,

43

Part I - Chapter III (Adaptation in Hypermedia)

the more relevant fragments are in the top with a specific colour, and the next

relevant one will have another colour, and so on.

Frame-based technique: this technique presents all information about a particular

concept in a frame. Slots of the frame may hold examples, extra explanations,

etc. The decision on allocating slots to a certain user is based on his/her

knowledge level, learning style and other characteristics such as in Hypadapter

[Hohl et al. 1996]. In this system, there are rules that calculate the priority of

each slot depending on a user's traits such as his/her knowledge level about a

presented concept, learning style, etc. According to these rules, the user receives

these slots ordered from the most relevant to the least relevant. This technique

could be used to apply the sorting method.

3.3 Links Level Adaptation

Links level adaptation is employed by different adaptive hypermedia systems to help

users find their paths in hyperspace by adapting the presented links according to their

goal, knowledge and other features. This is achieved using different techniques such

as [Brusilovsky 1996, Brusilovsky 200 1, Kobsa et al. 200 I]:

Direct guidance: using direct guidance, a hypermedia system guides users to the

next page to visit according to their characteristics that are presented in the user

model. Such a technique has been used by different adaptive educational

hypermedia systems such as Interbook [Brusilovsky et al. 1998] and ELM-ART

[Brusilovsky et al. 1996b]. These systems apply the direct guidance technique by

means of providing a "TEACH ME" button that is dynamically connected to the

best node that suit users' knowledge levels. According to Brusilovsky

[Brusilovsky 1996], such a technique does not provide users with the opportunity

to navigate the hyperspace without automatic guidance. On the other hand, direct

guidance could be useful especially for users who do not have experience with

the system's hyperspace structure and cannot choose the best node that suits their

knowledge to visit. Therefore, such a technique could help users to achieve their

goal more rapidly.

Sorting: using this technology, links within a particular page are sorted

according to the user model with the most relevant links located at the top. The

44

Pan I - Chapter III (Adaptation in Hypermedia)

sorting technique is widely used among information retrieval systems such as

web search engines (Google.com, infoseek.com, etc.) where links are sorted

according to their relevancy to a user's goal. Moreover, it has been used by

adaptive educational hypermedia systems such as Hypadapter [Hohl et al. 1996]

Link deactivation: the idea behind this technique is to conceal from users links

that guide them to pages that present information not relevant to their knowledge,

goals, etc. Link deactivation could be achieved through either: a) disabling links

by removing their functionality without any change in their appearances, such as

in TANGOW systems [Carro et al. 1999], b) hiding links by changing their

appearances to look like a normal text such as in AHA! [De Bra and Calvi

1998b], or c) removing links such as in CHEOPS [Ferrandino et al. 1997]. De

Bra and Calvi [De Bra and Calvi 1998a] have illustrated that when they used link

disabling in an early version of AHA! combined with some kind of hiding, users

were not satisfied as they could easily guess the presence of many links.

Therefore, the link hiding technique requires that hidden links should be difficult

to spot by users. On the other hand, such problem is not found in link disabling or

link removal.

Adaptive annotation: using the adaptive annotation technique, links to pages are

annotated according to the relevance of these pages to users' different traits such

as knowledge, goal, etc. therefore, through this technique, users become aware

about the status of information held by pages that these links point to.

Annotations could be provided in different forms, such as textual form or visual

form (colour, fonts, icons). The simplest form of annotation is found in web

browsers where they differentiate between visited and unvisited links by

changing links' colours. This technique has also been used widely in many

adaptive educational systems such as NetCoach [Weber et al. 2001] and AHA!

[De Bra et al. 2002b], and others, which suggests that it is a successful

technique. Moreover, this technique has been used with WHURLE-HM [Zakaria

and Brailsford 2002] to inform users about their lessons' status: a) not finished

lessons, b) finished lessons and c) new lessons.

Collateral structure adaptation: content adaptations in some way could implicitly

embrace link adaptation. For example, a fragment of a page may contain link(s)

that will not be presented to users because the fragment itself will not be

45

Part I - Chapter III (Adaptation in Hypermedia)

presented, such as in WHURLE-HM [Zakaria and Brailsford 2002]. Such a

technique is very efficient for systems whose data model is composed of

independent chunks where each chunk might hold text, picture, etc. in addition to

an external/internallink(s) such as in WHURLE [Brailsford et al. 2001].

Integration of different techniques could provide a flexible and efficient method of

link adaptation such as such as Interbook [Brusilovsky et al. 1998], which uses

adaptive annotation and direct guidance, Hypadapter [Hohl et al. 1996] that utilizes

link sorting, hiding and annotation, and AHA! [De Bra and Ruiter 2001] that uses

links removal and annotation, and others.

The following chapter (Chapter IV) demonstrates how content level adaptation and

link level adaptation are implemented in different popular adaptive educational

hypermedia systems. Moreover, a description about how such techniques are merged

together in some systems is given. Furthermore, Chapter VI illustrates how

WHURLE-HM implemented collateral structure adaptation to provide

personalisation to its users on content level and link level. Also, Chapter VI shows

how WHURLE-HM utilised links annotation technique using different font colours

and abbreviated words (for browsers that cannot render java scripts) to inform users

about the status of their lessons (new lessons, opened lessons, and finished lessons).

3.4 Summary
Throughout this chapter, an attempt has been made to draw a general overview of

adaptation techniques and methods on the level of content adaptation and link

adaptation. Moreover, examples have been given of systems that use these

techniques, which are described in detail throughout the survey chapter (Chapter IV).

This chapter is organized as follows:

Introduction: this section gives an idea about the general goal of the chapter.

Content level adaptation: throughout this section, different methods and

techniques used in adapting contents (adaptive presentation in [Brusilovsky

1996]) of hypermedia pages are discussed.

46

Part I - Chapter III (Adaptation in Hypermedia)

Links level adaptation: in this section, different links level adaptation

techniques (adaptive navigational support in [Brusilovsky 1996]) have been

explained.

47

Part 11-Chapter IV (Survey)

Chapter IV: Survey

4.1 Introduction:

Research in adaptive hypermedia dates back to the beginning of the 1990s, as at that

time the hypertext and user modelling fields, from which adaptive hypermedia came,

were active and mature. However, 1996 is considered to be a turning point in this

area of research, and since this time adaptive hypermedia has gone through a period

of rapid growth [Brusilovsky 2001]. This rapid development was a result of two

main factors. The first of these is the rapid growth in the WWW that occurred around

1996, which led to massive amounts of information being available to users who had

different goals and background knowledge, etc. This situation caused a demand for

personalization that boosted research into techniques of adaptation in hypermedia

and on the WWW. The second factor is the accumulation of research experiences

from field studies, as most earlier systems were experimental, and were only

implemented to explore new ideas in laboratories. However, it is important to note

that much of the research that has been published since 1996 is based upon these

early investigations. Nevertheless, systems that have been developed since that date

are dedicated to real world usage [Brusilovsky 2001].

Brusilovsky [Brusilovsky 1996, Brusilovsky 2001] has categorized the present

systems into six distinct classes:

On-line information systems: The goal of this group of systems is to provide

users with diverse backgrounds access to different sorts of information such as

products, history, support, etc. for example, e-commerce systems, such as

Amazon.com, and electronic encyclopaedia such as Microsoft Encarta.

Online help systems: this group of systems provides information about computer

applications, such as spreadsheets or programming environments. They are

similar to the former group but, unlike them, they are not self-contained. Rather,

they are attached to their parent application, and they have a relatively small

hyperdocument that is limited to that domain.

Information retrieval hypermedia systems: the goal of these systems is to retrieve

information or documents, and to provide hypertext links by the means of index

terms. The docuverse in such systems is potentially very large and thus difficult

48

Part 11-Chapter IV (Survey)

to be manually structured. For this reason links are automatically computed by

the system. As an examples of such systems are search engines such as

Google.com, infoseek.com, and others.

Institutional hypermedia systems: these systems serve the information required

by an institution to support the daily work online. Thus, these systems are

considered to be the medium for everyday work of many employees. Therefore,

according to their employee position in an enterprise, they may use only a

specific area of the hyperspace and, according to their current working goal, they

may need access to a very small subset of it. This kind of system was developed

as a loosely related database, but in recent systems these databases are gathered

into a single hyperspace that could be relatively large.

Systems for managing personalized views in information spaces: this kind of

system helps users to build their own personalized views of the entire

hyperspace, in order to protect them from its complexity. This group of system

is similar in some way to institutional hypermedia and other kinds of information

systems where users need a suitable access to a subset of information space for

daily work. Personalized views in the WWW require permanent management,

such as searching for new and relevant items and identifying expired or changed

items.

Adaptive educational hypermedia systems: these will be discussed in detail in the

following section.

Adaptive educational hypermedia systems, information retrieval hypermedia and on-

line information systems are the most widespread applications of adaptive hypertext

technology [Brusilovsky 2001]. Furthermore, adaptive educational hypermedia

systems are the most commonplace within these. The reason comes from the fact that

there is no clear-cut border between those systems, as on-line information systems

and information retrieval could also be used in the educational context.

4.2 Adaptive Educational Hypermedia Systems

In traditional web-based educational systems, the contents are generally static, in so

far as, once written, their contents cannot be changed without external intervention.

This provides a uniform learning experience, regardless of the needs and

requirements of the learners. One example of such a system that is in widespread use

49

Part 11-Chapter IV (Survey)

is WebCT [Curtin 2002, Piguet and Peraya 2000]. This is a hypermedia educational

system developed in 1995 at the University of British Columbia. It is an environment

for authoring and delivering educational materials over the web. WebCT presents a

static and inflexible pedagogic experience, without any kind of adaptation at the user

level. Hence web applications, such as WebCT, Blackboard', COSE-kI22 and

others, which tend to be designed with a particular class of users in mind, may not

suitable for those who are even marginally different from the original target [Eklund

et al. 1997].

Adaptive educational hypermedia systems can address these issues by altering the

information presented to each user depending upon a defined set of characteristic

[Brusilovsky 1996]. For adaptive systems to adapt their contents, a model for

interacting with users to deliver them the information that suits their knowledge,

goals and background is needed, as user-modelling is a prerequisite for any adaptive

system, including educational systems.

According to Brusilovsky [Brusilovsky 2000], most early Intelligent Tutoring

Systems (ITS), such as ELM-PE [Weber and Mollenberg 1994], provide almost no

material, as the main task for these systems is to help students in the problem solving

process, as described in Chapter I. In addition, it was believed that the required

knowledge is acquired from outside the system, such as classrooms or reading books.

On the other hand, hypertext or hypermedia provides the ability to organize

educational materials over the web.

Adaptive educational hypermedia, as explained in Chapter I, combined ITS and

hypermedia together, as it inherited from intelligent tutoring systems (ITS) the usage

of the knowledge about students, domain and teaching strategies, and from adaptive

hypermedia systems, the adaptation of contents and links of the hyperdocuments to

users according to different forms of user model [Brusilovsky 2001].

In the following subsections, examples of successful and popular systems that

employ many of the user modelling and adaptation techniques (discussed in Chapter

Iwww.blackboard.com
2 www7.nationalacademies.org/cose/

50

http://www.blackboard.com

Part 11-Chapter IV (Survey)

II and III) are described in detail. For example, the AHA! system that is a well

known system and extensively developed since it was introduced in 1996 is

investigated, Moreover, ELM-ART system, which is considered as one of the earliest

web-based educational hypermedia systems, in addition to NetCoach and Interbook

systems, which are derived from it and followed its approach, are explained. The

MetaDoc system that helped the researcher in developing the rational behind the

hybrid model through its ability to handle two knowledge domains is also illustrated.

Moreover, the CHEOPS system was chosen because of the unique approach it used

in representing its knowledge model as a knowledge pyramid. Furthermore, The

Hypadapter system shows an example of the frame-based technique described in

contents level adaptation, which was explained in Chapter III. In addition to this, the

TANGOW system was selected to demonstrate an example of the link disabling

technique in order to apply links level adaptation, which was discussed in Chapter

III.

4.2.1 AHA!

AHA! (Adaptive Hypermedia Architecture) system has been developed from a static

hyperdocument system that was used to deliver a hypertext course "2L670:

Hypermedia Structure and Systems" in the Eindhoven University of Technology, in

the department of computer science. That course did not have any hierarchal

structure, and it aimed to teach students how to create hyperdocuments that are easy

to use, and how to build hypermedia systems that are rich in terms of navigational

capabilities and tools. In this system, there was no adaptation, as all students had to

read the course content, which was the same for all students, and then answer a

multiple-choice quiz to prove that they had absorbed the course concepts well.

Students' grades were dependent on assignment work, as students were only allowed

to progress to an assignment if they answered all of the 20 multiple-choice questions

correctly [De Bra 1996]. In 1996 the AHA! System was introduced, where

adaptation techniques are employed. The adaptive hypermedia engine within AHA!

is responsible for maintaining the user model and performing adaptation for

information contents as well as link structure.

The user model in an early version of AHA! [De Bra and Calvi 1998a] was

composed of a set of Boolean values. Each of these values represents users'

51

Part 11-Chapter IV (Survey)

knowledge about each concept in the domain; also each page is associated with a

concept, as discussed later. Knowledge about concepts is generated when a user

reads a page or takes a test. For example, if a user accessed a page holding a concept

called 'introduction to hypermedia', the Boolean value for that concept with respect

to that user changes from false to true (i.e., known by the use).

Through that system, two levels of adaptation are applied: adaptive presentation

(contents level adaptation) and adaptive navigation support (links level adaptation).

Adaptive presentation techniques [Brusilovsky 1996] are used to adapt a document's

content, either textual or multimedia, according to the user model. Brusilovsky in

[Brusilovsky 1996, Brusilovsky 2001] has discussed many techniques used in

adaptive presentation, which are described in Chapter III. AHA! applies the

fragments variants technique through utilizing conditional texts. In AHA! the

conditional texts means pieces of HTML, which may include objects like applets or

pictures, that may be included or excluded from the presented page/node depending

on whether or not a condition of it is met. Conditions are written in the form of

HTML comments in the HTML files and the adaptive engine process these

conditions. For example, as stated in [De Bra and Calvi 1998b]:

<!- ~definition and history -->
this part appears if the two concepts (definition and
history) are both known according to the user model.
<!-- else -->
if this is not the case then this alternative is presented instead
<!-- endif -->

On the other hand, adaptive navigation support changes the link structure between

pages/nodes that together perform the hyperdocument [Brusilovsky 1996]. That

change mainly depends on a user model. AHA! supports link hiding and link

annotation. In link hiding, the user is guided by the system by not showing links to

pages/nodes the system believes are not relevant to the user. That kind of link

adaptation is implemented in AHA! by changing the colour of links to irrelevant

pages/nodes to that of the normal text (Black). Thus, links are still there, but a user

cannot distinguish between them and the rest of the text. Moreover, AHA! supports

link annotation by colouring links with respect to their relevance and access (if

visited or not) to the user. Thus, the links to nodes/pages that are relevant to a user

are annotated by a blue colour, visited links are in purple, while irrelevant links are in

52

Part 11-Chapter IV (Survey)

a dark grey colour. In AHA! users can choose between link hiding and link

annotation depending on the way they configure their web browsers (i.e., if a web

browser is configured to not underline links, therefore link hiding will be applied,

and if not, link annotation will be activated) [De Bra and Calvi 1998a]. Users in

AHA! can configure the colour scheme through a setup form, which will be stored in

their user model. In addition to link hiding and link annotation, link removal could

be realized as well, where link removal is a technique that links to nodes that the

system finds irrelevant to a user's knowledge level at that time are removed. In

AHA!, this kind of link adaptation is achieved by wrapping the HTML anchor tag

with a conditional text. For example, as in [De Bra and Calvi 1998b]

<!- - if desired - >
 here is the link anchor text ds»

<!- - else - - >
here is the link anchor text

<!- - endif - - >

Apart from link adaptation, AHA! supports non-adaptive links, which enable an

author to create static links that always present in addition to the adaptive links that

are dependant on the user model.

In that version of AHA! [De Bra and Calvi 1998b], each page consisted of four parts:

Header: contains the definition of the style-sheet with the link colouring scheme.

Body: starts with an author-defined header that is automatically included in every

page.

Page content.

Footer.

Pages that are delivered to users are assembled from these four parts by means of a

CGI-script. Each page has prerequisite concepts that have to be known before

accessing it as well as an outcome concept. These prerequisites and outcomes are

defined by the pages' authors as comments in the beginning of each page. For

example, a prerequisite could be defined as [De Bra and Calvi 1998b]:

<!- - requires readme and history but not (intro or definition) - ->

And the outcome concept could be as in [De Bra and Calvi 1998b]:

<!- - generates history - - >

53

Part 11-Chapter IV (Survey)

From these two lines in every page the system creates: a dependency file, which

contains pairs of page names and their prerequisites, and a concept list, which

contains all the concepts in the domain, where users have the ability to change the

user model by altering the value for each concept to true or false.

In AHA!, links are ranked into three levels:

Good/desired: links to unvisited relevant pages, which always hold the blue

colour (border colour in case of image).

Neutral: links to pages that have been visited previously, and for which the

prerequisites are satisfied, hold the purple colour (border colour in case of an

image).

Bad/undesired: links to pages where a user hasn't fulfilled their prerequisites hold

the black colour (border colour in case of image).

Also the AHA! script defines three types oflinking:

External: these are links to pages outside the AHA! hyperdocument. These links

are in a red colour and, if followed, change to dark grey.

Conditional: links that point to pages with prerequisites. If a user satisfied the

requirements to which a link points, this link changes to "good" level and its

colour becomes blue, but if the page is visited before its level changes to

"neutral", then its colour changes to purple. On the other hand, if the user did not

match the requirements of that page the link changes to level "bad" and its colour

turns to black.

Unconditional: links points to pages with no prerequisites, thereby they belong to

"good" or "neutral" level depending on the access state of the destination page(s)

(i.e., if a page has been visited before or not).

In a newer version of AHA! [De Bra et al. 2000], the way the user model is handling

users' knowledge has changed. Instead of representing knowledge about concepts as

a set of Boolean variables, a scale of integer numbers between 0 and 100 is used.

Moreover, in addition to fragments and concepts that are associated to pages, a new

term is added, abstract concepts, referring to concepts that are not pages [De Bra et

al. 2000]. Pages in that version of AHA! are written in XML files instead of HTML.

That version distinguishes three types of concepts relationship:

54

Part 11-Chapter IV (Survey)

Link relationships: AHA! realizes HTML anchor tags that represent links

between pages.

Generate relationships: in the new AHA! the access to a page may change several

elements in the user model (i.e., update the knowledge value of other concepts

with respect to a user). The generate relationship specifies these updates and they

are stored in a special XML file. In the early version of AHA! the generate

relationships could be considered as the outcome from accessing a page, i.e.,

from which students have learned. In addition, it was used to define HTML

comment inside that page.

Requirement relationships: the desirability for a fragment to be included in a

page or for a certain page to be linked to depends on conditions specified by

requirement relationships. These requirement relationships for pages and abstract

concepts are stored in a special XML file, while those for fragments are included

on inside pages.

That version of AHA! consists of three parts: domain model, user model and

adaptation model. The adaptation model consists of generate rules and requirement

rules, in addition to some system-defined adaptation rules that define the behaviour

of AHA!

The requirement rules could be defined as [De Bra et al. 2000]:

<concept>
econceptnamesfheconceptoconceptname»
erelatonexpresslonsreqt > 30 and req2 < 80 <lrelationexpression>

<lconcept>

In the above example, the requirement for concept "theconcept" is that the

knowledge value of concept "req I" is bigger than 30 and that of concept "req2" is

less than 80.

The generate rule also could be expressed as [De Bra et al. 2000]:

<genitem>
enamesconceptt <lname>
<genlist>concept2:+40 concept3:-30 concept4:50<lgenlist>

<genitem>

From the above example, it could be observed that the outcome of conceptI is an

increase in the knowledge value of concept2 by 40% of the knowledge value of

55

Part 11-Chapter IV (Survey)

conceptl (X), decrease concept3 by 30% of X and give an absolute value 50 to

concept4. In the early version of AHA! the outcome was just altering users'

knowledge with respect to a page's concept to true.

On the other hand, conditions for including fragments could be defined as [De Bra et

al. 2000]:

<if expre'reqt > 30 and req2 < 80" >
<block> here is the conditionally included fragment<lblock>

<lif>

In the above example, the XML fragment is included if the knowledge value of

concept "req 1" is bigger than 30 and that of concept "req2" is less than 80.

According to the new scale for knowledge values, if a user has followed a link to a

desirable/relevant page his/her knowledge level about the concept held by that page

increases to 100. On the other hand, if a user followed a link to an irrelevant page,

his/her knowledge value increases to 35, in a case ofO, or remains as it is ifit is 35 or

more [De Bra and Ruiter 2001]. In the early version of AHA!, if a user followed an

irrelevant link, his knowledge value about that undesirable page would not change.

As shown above, the generate rules change the knowledge value of concepts

associated with the updated concept with respect to a user that results from himlher

visiting a page or taking a test. Also these concepts change the knowledge values of

their associated concepts with respect to the same user and so on. Thus, the updating

process becomes recursive. Recursive updating could end with some problems like

infinite loops, continuous updating of the knowledge value of concepts which results

from visiting a page more than once, or if a concept updates two other concepts and

each of these concepts results in updating the same concept [De Bra et al. 2000].

In that version of AHA! [De Bra et al. 2000], four cases of updating have been

distinguished:

Monotonic update: a monotonic clause "+" in generate rule is only allowed to

update abstract concept and not page concept. Moreover, the updating algorithm

continues recursively for that concept.

56

Part 11-Chapter IV (Survey)

Non-monotonic update: a monotonic clause "-" in generate rule is only allowed

to update abstract concept and not page concept. Moreover, the update algorithm

performs the update but does not continue recursively for that concept.

Absolute update: page concepts only are allowed to have a generate rule with

absolute update, and the update algorithm performs the update but does not

continue recursively for those concepts.

Self-update: this kind of update is useful for concepts to update themselves. Page

concepts are only allowed to have a generate rule with self-update. The update

algorithm does not allow the rule for those concepts to be executed again.

As an example of these four types of updates, if a user visited a page that presents a

particular concept about milk products (conceptI), and this concept provokes or

generates other three concepts: cheese types (concept2), chocolate types (concept3)

and machines used in milk industry (concept4). Moreover, the generate rule for

conceptI is as follows:

<genitem>
enamesconceott <Iname>
<genlist>concept1:0 concept2:+60 concept3:-20 concept4:70</genlist>
<Igenitem>

By analysing this code, it could be observed that if the page concept (conceptI) is

augmented by value Y, then concept2 will be incremented by 60% of Y and the

generate rule for concept2 will be executed. Futhermore, concept3 will be

decremented by 30% of Y and concept4 will have an absolute value of 70. However,

the generate rules for concept3 and concept4 will not be executed. Finally, conceptI

will reset itself to 0, and as a result, when a user visits the same page again the same

effect will be carried on.

In AHA!, concepts of the domain are in a hierarchal form. For example, in generate

relationships, concepts are arranged automatically in top-down form as shown in

Figure 4.2, modified from [De Bra and Ruiter 200 I]:

57

Part 11-Chapter IV (Survey)

E' belgium

E products

~ chocolate
!. c.3liebaut

j j. meurisse
i ,. godi'la
E french_fries

Figure 4.1 AHA! Domain Concepts - concepts in generate relationships are in a hierarchal form.

From Figure 4.1, it could be perceived that reading about "godiva" shows interest in

chocolate and also means the user has learned something about chocolate [De Bra

and Ruiter 2001]. Moreover, learning something about chocolate means the user has

learned something about Belgian products. And learning about Belgian products

means the user has learned something about Belgium. AHAl provides an authoring

graphical interface for entering the generate relationships for which the given

concept is the source. Each time the author adds or updates generate relationships the

whole structure is updated accordingly.

In previous version of AHA!, users have the ability to change the Boolean value for

each concept from true to false or vice versa (i.e., unknown to known). In the newer

version, authors have the ability to determine which concept could be changed by

users by indicating if it is "changeable" or not via a graphical interface.

AHA! contains a module for multiple-choice tests. That module randomises tests to

make cheating among students somewhat difficult. These tests can be created using

plain HTML and are linked to pages that explain whether an answer is wrong or not.

When a user chooses a wrong answer, the explain-page reduces the knowledge value

for associated topics and resets the value of associated pages to O. After the user

reads the material again, his knowledge value about associated topics and pages

increases once more.

In the most recent version of AHA! [De Bra et al. 2002a], multiple attributes per

page are used, where authors can choose attributes' names that match the usage of

those attributes. Via this new approach, it became possible to indicate interest in a

certain concept as well as knowledge about that concept. Those attributes could have

58

Part 11-Chapter IV (Survey)

a string, numeric or Boolean variables. For example, the requirement for a certain

fragment to be included in a page, or a link to a certain page to be desirable, could be

defined as follows:

Chocolate. interest > 60 and French_fries.interest < 30

Moreover, unlike previous versions of AI:IA!, each rule in the generate rules

associated with every page and concept has a condition to be met before a certain

action may be performed. It is also possible to specify an alternative action to be

performed in case the condition is not met. For example, the interest in painting

should be high to understand everything on the page about Picasso.

Concept: painting.interest > 70
Action: Picasso. knowledge: = 100 (if interest level in painting more than 70)
Alternative Action: Picasso.knowledge: =35 (if interest level in painting less than 70)

All that has been described up to now belongs to AHA! version 1 and its extensions

until AHA! version 2 (AHA!2) [De Bra et al. 2002b] is reached. New features in

AHA!2 are based on the AHAM (Adaptive Hypermedia Application Model)

reference model [De Bra et al. 1999a], which is an extension to the Dexter [Halasz

and Schwartz 1990] hypertext reference model.

The Dexter reference model is an outcome from two small workshops on hypertext,

the first one organized by John Leggett and John Walker that brought experienced

hypertext system designers together in October 1988 at the Dexter Inn in Sunapee,

New Hampshire, and from which the model had its name [Halasz and Schwartz

1990].

Briefly, that reference model serves as a starting point for the design of hypertext

systems. The Dexter model divides a hypertext system into three layers: storage layer

- describes different components that form a hypertext system, such as links, chunks

of text, pictures, etc.; within-component layer - concerned with the contents and the

structure within these components; and the run-time layer - deals with the user

interface aspects in a hypertext system. Between the storage layer and the within-

component layer, there is an interface called anchoring, which is a mechanism that

refers to an item or location within the content of an individual component. For

example, linking to a certain paragraph in a text page. In addition, between the

59

Part 11-Chapter IV (Survey)

storage layer and the run-time layer there is another interface called specification

presentation, which holds information on how a component could be presented to a

user- For full information about the Dexter reference model refer to [Halasz and

Schwartz 1990].

InAHAM, as an extension to the Dexter, the storage layer is divided into three areas:

domain model, user model and teaching strategies. The teaching strategies hold

pedagogical rules that are used by an adaptive engine to create the specifications

presentation [De Bra et al. I999a].

AHA!2 deviates from AHAM by not separating the domain model from the

adaptation model - concepts are defined along with their perquisites and generate

rules. Generate rules in AHA!2 are condition-action based as illustrated in the above

example. Moreover, each user aspect, such as his knowledge, goal, interest, etc.,

could be represented through concepts or different attributes of a concept or

concepts. This means the combination between related adaptation aspects such as

knowledge about a concept and interest in a concept is possible. The attributes, as in

the previous version, can have Boolean values, string values, or numeric values.

AHA!2 supports storing the concept structure in XML files or in a mySQL database.

The problem of recursive updating in the user model in the previous version of

AHA! and the proposed solution for it is no more exist in AHA!2. In AHA!2, rules

are allowed to trigger each other provided that the "isPropagating" attribute is turned

to true. For example, a part from the code in [De Bra et al. 2002b] is listed below:

<generateListltem isPropagating="true">
creqschocolate.interestcsnand
chocolate.interesb4<1req>
drueActions>
<action>
econcepbchocolatecconcepts
<attribute>interest<lattribute>
cexpochocolate.interest-Soexpo
<laction>
<ltrueActions>
<lgeneratelistltem>

In the above example, the "isPropagating" attribute in turned to "true". This means

that the updating action in the "interest" attribute of the "chocolate" concept will

affect other concepts.

60

Part II· Chapter IV (Survey)

When a user logs on for the first time a special concept called "personal" is created

for himlher. In the concept, user related information such as name, address, e-mail,

etc., is stored, and therefore this information could be used in adaptation. In AHA!

version I login information was not used for adaptation purposes [De Bra et a1.

2002b]. For example, a part from the second code in [De Bra et a1. 2002b] is listed

below

<profile>
<record>

<key>personal. id<lkey>
<type>string<itype>
<persistent>true<ipersistent>
<value>debra</value>

</record>
<record>
<key>personal.email<ikey>
<type>string<itype>
cpersisterc-truecpersistent-
<value>debra@win.tue.ni</value>

<irecord>
<record>
<key>personal.goodlink</key>
<type>string<itype>
eperslstent-trueoperslstero
<value>OOOOff<lvalue>

<irecord>

<iprofile>

AHA!2 provides JAVA-based authoring tools for authors to enter the concept

structure as well as generate rules to update the user model [De Bra et a1. 2002b].

Moreover, whenever a user clicks on a link, the adaptive engine that is composed of

JAVA SERVLETS filters the requested page with respect to the user model, also the

user model is updated according to the generate rules that come from that page.

4.2.2 ELM-ART

ELM-ART (Episodic Learning Model-Adaptive Remote Tutor) [Brusilovsky et a1.

1996b, Weber and Specht 1997b] is a web-based introductory LISP course. That

system is based on ELM-PE (Episodic Learning Model-Programming Environment)

system [Weber and Mollenberg 1994], which is an intelligent learning environment

that supports example-based programming, intelligent analysis of problem solving,

and advanced testing and debugging facilities. ELM-PE is designed to support

beginners learning the programming language LISP, and was used for a long time in

61

Part JI- Chapter IV (Survey)

introductory LISP courses at the University of Trier [Brusilovsky et al. 1996b].

Course materials (printed) were presented to students in regular classes as well as to

self-studying students, and then they used the ELM-PE system to practise their

knowledge by working on exercises. The system is passive as long as help is not

requested. Immediate feedback from the system is given for syntactical error, and if a

student wants to work on further exercises while the solution to the previous one is

still incorrect [Brusilovsky et al. 1996b]. Moreover, ELM-PE is based on ELM

(Episodic Learning Model) model [Weber 1996] that stores knowledge about users in

the form of episodes or stages. ELM-ART is a web-based version of ELM-PE that is

used not only to solve exercises but to provide online adaptive materials as well. In

ELM-ART, the materials are written in HTML format, and de-composed into small

subsections and text pages that are associated with concepts to be taught.

Relationship between concepts is presented through a conceptual network where

concepts' prerequisites and outcomes are described. The user model in ELM-ART

records every interaction of the user with the system (implicit user modelling -

explained in Chapter II), as for every visited page the corresponding concept is

marked [Brusilovsky et al. 1996b]. ELM-ART uses the link annotation technique

(explained Chapter III) for the links level adaptation, where links are annotated

according to the information found in the user model. Next to each link there is a

coloured ball that indicates the status of a link as follows [Brusilovsky et al. 1996b]:

Red Ball: means the page or the section the link is pointing to not ready for the

user to visit it, as he/she hasn't fulfilled its prerequisites.

Green Ball: means the text page or the section the link is pointing to ready for the

user to visit as he/she has satisfied its requirements.

Yellow Ball: means the test page or the section the link is pointing to ready to be

visited but not recommended by the system.

In addition to the link annotation, ELM-ART also uses links sorting technique

(explained Chapter Ill) [Brusilovsky et al. 1996b], as links are sorted according to

their relevance to users.

Evaluation and diagnosis of problems' solutions are performed in the same way as in

ELM-PE. Moreover, the same feedback messages used in ELM-PE are used in ELM-

ART.

62

Part 11-Chapter IV (Survey)

ELM-ART had different shortcomings in different areas. For example, a user's

knowledge level is only updated when a user visits a page. Moreover, the annotation

technique adopted by the system does not give users enough information about the

state of concepts they visited and concepts they are going to visit, Because of these

problems ELM-ART II [Weber and Specht 1997] has been developed. In ELM-ART

II knowledge about units to be taught is represented in terms of conceptual network,

where concepts' prerequisites and outcomes are described as in the previous version.

Units are deployed hierarchically into lessons, sections, subsections, and terminal

pages that are used to introduce either new concepts or problems to be solved. Each

unit is an object that is composed of different parts. For example, a part represents

related concepts to that unit, outcome concepts and prerequisite concepts. Another

one for test items users have to perform. Moreover, information used to annotate

links with respect to a user's model is presented in another part.

The user model in ELM-ART II is updated with each interaction with the system. For

each page visited the corresponding unit is marked in the user model, and after a user

solves the test items in a test-group or a programming problem correctly, the

outcome concepts for that unit are marked as known to that particular user (implicit

user modeling).

Test-groups in ELM-ART are a collection of test items that are associated with page

units. ELM-ART II supports four kinds of test items [Weber and Specht 1997]:

Yes-No test items: user answers by clicking on yes or no to each answer.

Forced-choice test items: user answers by selecting one answer among the

alternative ones.

Multiple-choice test items: user answers by selecting all correct answers.

Free-Form test items: user types an answer to the asked question into a form.

Test items for a test-group are presented to a user as long as not enough correct

answers are given. ELM-ART II provides a feedback on the number of incorrectly

answered test items in the last page; also it presents those test items with the user's

incorrect answers and the system's correct answers with an explanation for those

correct answers. In the user model, all the correctly answered test items of a test-

63

Part 11-Chapter IV (Survey)

group are stored. Therefore, when enough test items are answered correctly the

outcome concepts of the corresponding unit are marked as known.

ELM-ART II provides two adaptation techniques for the adaptive navigation

support: adaptive annotation and direct guidance through the NEXT button

(explained in Chapter III).

As in the previous version, the coloured ball next to each link determines its state,

but instead of three colours ELM-ART II uses four colours [Weber and Specht

1997]:

Green Ball: this annotation means that the destination page or section the user

has satisfied its requirement and it is ready to be visited.

Red Ball: means that the destination node is not ready for the user to visit, as

he/she has not fulfilled its requirements. But if the user followed the link to that

page and he/she succeeded in solving the corresponding test or programming

problem, the system infers backwards that all prerequisites for that page are

known to that user.

Yellow Ball: it has a different meaning depending on the kind of destination

page:

• Terminal page with a test or problem page: means the problem or the test

has been solved correctly.

• Other terminal page: means the page has been visited before.

• Lesson, section or subsection: means the subordinated pages have been

learned or visited.

Orange Ball: it also has a different meaning depending on the kind of destination

node:

• Terminal page: means that the system infers from other successfully

learned pages that the user will be familiar with the content of this page.

• Lesson, section or subsection: means that some of the subordinated pages

are not visited or not worked at correctly.

On the other hand, ELM-ART II offers direct guidance by providing the NEXT

button, where the system suggests the next best step a user can follow depending on

the user model for that particular user.

64

Part 11-Chapter IV (Survey)

The direct guidance algorithm in ELM-ART II starts with searching for the next page

ready to be visited; that page may include a test or problem to be solved. If the

system did not find any page with fulfilled prerequisites, all pages from the

beginning of the course are checked to see if any have not been visited. Thus, the

first one found is annotated as ready to be visited and the user accesses it. In the case

where there is no next page to follow, this means that the user has successfully

completed the course.

In ELM-ART II users are allowed to use the code of pre-analysed examples when

solving a new problem. Similarity links between examples help users to find relevant

examples from their previous experience. In addition, the system can predict users'

ways of solving a problem and find the most relevant examples from the individual

learning history, which is an important feature for users who cannot find relevant

examples by themselves [Weber and Specht 1997].

Another feature that ELM-ART II provides, which is very useful for distance

learning students, where students and tutors are in different locations, is the code-

level suggestions. If a student failed to complete a solution of a problem or he/she

cannot find an error reported when the code is evaluated, the user can ask the system

to diagnose the code in its current state. Thus, the system provides a feedback by

providing a sequence of help messages of increasingly detailed explanations of an

error or non-optimal path [Weber and Specht 1997].

4.2.3 NetCoach

NetCoach [Weber et al. 2001] is an authoring system, which is derived from ELM-

ART. That system adapts to learners' knowledge, goal and preferences. The

knowledge base in NetCoach is composed of concepts, which are the internal

representation of pages that will be presented to learners, and test items. Those

concepts define two kinds of relationship between each other:

Prerequisite relationship: concepts required to be learned before the current one,

as a result of which the system guides users through these prerequisites before

suggesting the current concept.

Inference relationship: This relationship specifies which concepts will be

affected, inferred as known, if a user has finished other concepts successfully.

65

Part 11-Chapter IV (Survey)

The user model in NetCoach is a multi-layer overlay model that consists of four

layers:

Layer I: indicates whether a user visited a page corresponding to a concept.

Layer 2: contains information on which exercises and tests the user worked at

related to that concept; also whether he/she has successfully worked on them up

to a certain level.

Layer 3: describes whether the concept is known through inference links from

more advanced concepts the user has already worked on successfully.

Layer 4: describes if the user has marked the concept as already known (Overlay

model).

In addition, the layers' information is updated independently and each layer does not

override any other.

A concept is assumed to be learned by a user if it is either tested to be known,

inferred from other learned concepts, marked by the user, or visited in case it is not

associated with a test group, which is a group of test items. Therefore, the system

integrates explicit and implicit user modelling techniques.

A user's learning state in the user model is computed according to the user's success

on working on test items that are collected in test groups and assigned to concepts.

NetCoach employs an adaptive navigation support technique:

Direct guidance: depending on the user's general learning goal and his/her

learning state about concepts, the system suggests which is the next best page to

visit.

Adaptive Annotation: links that are in a table of contents or in an overview of

each page are visually annotated depending on users' learning states.

Moreover, users get a warning if they access a page with missing prerequisites. Thus,

accessing unsuitable pages is not restricted; also, warnings could be switched off.

Users differ in their goals; some of them may need to explore the introductory part of

a course, others may want to go to the advanced part of that course. Thus, learners

who decide not to work on a complete course but to fulfil a sub-goal will receive

66

Part 11-Chapter IV (Survey)

recommendations about which concept to visit to complete their sub-goal. Thus,

authors of courses specify the sub-goals in each course and the necessary concepts

that fulfil these sub-goals. Therefore, NetCoach supports global guidance (described

in Chapter III)

NetCoach provides tests and exercises in different formats, such as multiple-choice

questions, gap filling tests, open questions and email questions. Learners can

evaluate their answers with open questions, as this type of question has question-

answer examples, while tutors evaluate email questions. The remaining items have

hints that show the right answers in addition to the explanation for answers.

Test items are collected in test groups that are assigned to concepts. Test groups

could be used as an introductory and final questionnaire. Thus, users' learning state

in the user model depends on how they successfully worked on these test items.

NetCoach provides authoring tools that facilitate authoring learning materials,

composing tests, defining learning goals, and adapting the layout and behaviour of

interface. Moreover, NetCoach offers a chat module and discussion lists that help

learners to communicate together and to discuss topics and ask questions. In

addition, users could adjust many features in the system for their preferences, such as

warning and recommendations being disabled.

4.2.4Interbook

Interbook [Brusilovsky et a1. 1996a, Eklund et a1. 1997, Brusilovsky et a1. 1998] is

a subject-independent authoring tool that simplifies the process of creating adaptive

electronic textbooks over the web. Interbook follows the same approach that was

described in the ELM-ART system [Brusilovsky et a1. 1996a], but with a

generalized style - not dedicated to a knowledge domain as LISP programming as in

ELM-ART. Interbook uses knowledge about domain, which is represented in the

form of a domain model, and about users, which is represented in the form of a user

model, to provide adaptation. That system distinguishes two parts in adaptive

electronic textbooks: a glossary and a textbook. A glossary is considered as a

visualized domain network, as each glossary entry corresponds to one of the domain

concepts. Moreover, each glossary entry provides links to all available textbooks'

67

Part 11-Chapter IV (Survey)

sections that introduce or require the concept [Brusilovsky et al. 1996a]. Educational

material is represented in Interbook as a set of textbooks. Each textbook is

hierarchically structured into units of different levels: chapters, sections and

subsections. Moreover, each terminal level unit is an atomic presentation, example,

problem or test.

To connect textbooks to glossary, units in a textbook are indexed with domain model

concepts. Furthermore, textbooks that describe or explain the same subject form a

bookshelf [Brusilovsky et al. 1998]; so all books from the same bookshelf are

indexed with the same set of domain concepts.

For each unit there is an attached spectrum, which is a list of prerequisite concepts,

related concepts and outcome concepts. A concept is included as a prerequisite in the

spectrum if it is essential for the understanding of the content of that unit. On the

other hand, a concept is included as an outcome concept, if some part of the unit

presents a piece of knowledge assigned by the concept [Brusilovsky et al. 1996a].

For every concept in the domain model, there is an individual user knowledge model

that stores a value that represents an estimation of the user knowledge level about the

concept (i.e., Overlay Model). Therefore, every interaction a user makes with the

system, such as visiting a page, solving a problem, or answering a quiz, is tracked

and used to change the knowledge value of that user with respect to the involved

concept(s) [Brusilovsky et al. 1996a, Brusilovsky et al. 1998] - Implicit user

modeling as described in Chapter II.

Interbook sustains adaptive navigation support through utilizing adaptive annotation

technique and direct guidance (explained in Chapter III). Each link is annotated with

a colored ball next to it and with certain fonts with respect to users' knowledge level

about the unit the link is pointing to:

Red: content of a unit is not ready to be learned, as the user has not fulfilled all its

prerequisites.

Green: content of the unit is ready to be learned.

White: content of a unit does not present any new information.

In addition, there is a checkmark, which marks the visited pages.

68

Part 11-Chapter IV (Survey)

Following the same approach, Interbook distinguishes four different knowledge

levels about presented concepts: unknown, known (learning started), learned, and

well learned [Brusilovsky et al. 1998]. Each of these levels annotate the presented

concepts in the domain model with respect to each individual user model as follows:

No annotation: means unknown concept.

Small checkmark: means known concept.

Medium checkmark: means learned concept.

Big checkmark: means well-learned concept.

On the other hand, direct guidance is provided through the TEACHME button, to be

used by users who cannot make a choice for the next link to follow. Thus, the system

employs several heuristics to select the most suitable node for a user to learn

[Brusilovsky et al. 1996a].

Interbook provides a kind of help to users called prerequisite-based help. Within that

kind of assistance, students who have problems with understanding some

explanations, examples, or how to solve a problem, a list of links to all sections that

present information about the prerequisite concepts of the current section is

generated by the system when asked for. The links are sorted according to users'

knowledge represented in the user model. The higher the link the more informative it

is, i.e., links to sections that present information about an unknown concept are more

informative than links to sections that present information about a known concept,

and links to sections that present information about two unknown concepts are more

informative than links to sections that present information about one unknown

concept and so forth [Brusilovsky et al. 1996a]. Prerequisite-based help also

supports the backward learning mode for users who have certain interests in a course

and jump far ahead in the course until they reach the goal part of the material. In

other words, provide them with the minimal knowledge required to understand the

goal part [Brusilovsky et al. 1996a].

Interbook uses multiple windows and frames in its interface. The two main windows

used by the system are the glossary window and the textbook window. In the

glossary window, the upper part is a list of glossary concepts and the lower part is

69

Part 11-Chapter IV (Survey)

used to show the glossary entry for each concept. On the other hand, the textbook

window is the most important window in the Interbook interface, where the main

content of a textbook is viewed. The textbook window is divided into frames, each

performing a different task, such as Text Window that shows a particular section of

the text book, and navigation centre which shows the position of the current section

in the textbook.

Interbook helps authors to convert electronic textbooks to adaptive electronic

textbooks. That kind of conversion happens through a series of steps [Brusilovsky et

al. 1996a]:

Creating textbook in a structured MS Word file, i.e., titles of high-level sections

should have a pre-defined text style "Header I ", and titles of subsections are in a

"Header2" text style, and so forth.

Concept-based annotation of electronic textbook: this step helps Interbook to

know which concepts are behind each section. The result of this step is an

annotated structured MS Word file. An annotation is a piece of text with a special

style and format inserted at the beginning of each section. Moreover, for each

unit in the file the author has to define a set of prerequisite concepts and outcome

concepts. The format of the outcome concepts is: (out: concept-name 1, concept-

name 2, etc.), and the format of the prerequisite concept is: (pre: concept-name 1,

concept-name 2, etc.).

Translation to HTML. After annotation is finished the file is saved in RTF

format, and then translated to HTML by means of the RTF2HTML program with

special settings. The resulting file is an annotated HTML file, where the

extension is altered manually to ".inter" so it can be recognized by the Interbook

system.

When the Interbook server starts it parses all Interbook files and builds a list of

section frames. Each section holds the name and the type of the unit, its spectrum

as well as its position in the HTML file.

The content that is presented to users is generated on the fly using knowledge about

textbook, user model, and the extracted HTML fragments from the original HTML

file.

70

Part 11-Chapter IV (Survey)

Advanced authors who have some experience with HTML and LISP programming

can skip steps I and 2 by preparing the textbook directly using the HTML format

with annotations provided as especially formatted comments.

The web implementation of Interbook is based on the COMMON LISP Hypermedia

Server, which is an HTTP server completely implemented in LISP.

4.2.5 Metadoc

The Metadoc system provides hypertext documents to potential readers in an

adaptive way that suits their knowledge level. It is so called because it has

knowledge about documents it presents [Boyle and Encarnacion 1994]. Metadoc

provides its adaptive capability through the use of an interactive agent that stores

knowledge about users in a user model, and that knowledge is used to vary the level

of detail presented in the document for each user individually. Moreover, if a user

decided explicitly to modify the level of the presented details into more or less, the

user model is informed and future presentation of information may change. Thus,

Metadoc provides automatic and manual control of the amount of the presented

information [Boyle and Encarnacion 1994].

The system is used to present the content of two chapters of the technical manual

'Managing the AIX operating system' [Boyle and Encarnacion 1994]. According to

that manual, Metadoc classified users with respect to their knowledge of Unix!AIX

and general computer concepts into four classes: novice, beginner, intermediate, and

experts. Furthermore, Unix! AIX concepts and general computer concepts are

classified into different concept levels using the same scale. Thus, users' knowledge

level about Unix! AIX and general computer concepts is independently stereotyped,

i.e., a user may be a novice in Unix!AIX and a beginner in general computer

concepts.

To present the correct level of information, the system varies the amount of

explanation through the stretchtext technique as a way for providing contents level

adaptation (explained in Chapter II). Thus, users who belong to a classification

whose level is less than the difficultly of a given concept are assumed to be

unfamiliar with that concept and extra explanation via stretchtext is provided. On the

other hand, expert users/readers would rather want more in-depth detail than

71

Part 11-Chapter IV (Survey)

explanations. Boyle [Boyle and Encarnacion 1994] has defined four types of

stretchtext with respect to the positioning of the new text relative to the original one:

Prefix: new text appears at the beginning of the original one.

Embedded: new text becomes embedded within the original one.

Appended: new text appears at the end.

Replacement: new text completely replaces the old text.

The embedded type and the appended type are used with Metadoc. In Metadoc

concepts are associated with stretchtext buttons to facilitate the comparison between

the amount of information needed by a user and that presented by the system.

Moreover, recursive stretchtext buttons are allowed, i.e., an embedded stretchtext

button may contain an append button, and the append button may contain an embed

and an append button, etc.; in addition, a stretchtext button may contain a link to a

glossary node. Metadoc has default rules that control the depth of information

presented to users, which are [Boyle and Encarnacion 1994]:

Explanations to concepts associated with higher knowledge level are always

presented to lower knowledge level users.

Explanations to concepts associated with lower knowledge level are concealed

from higher knowledge level users.

Higher level details not necessary for understanding certain concepts are

concealed from users with lower knowledge level.

Details of equal or lower knowledge level concepts are presented to higher

knowledge level users.

A user's actions in Metadoc are not overridden. For example, if a user clicked on a

button for more detail, the detailed information associated with the button will

always be shown to the user. In addition, other buttons associated with the same

concept will follow the same behaviour, provided they have not been controlled by

the user.

One of the components of the MetaDoc system is the intelligent agent component.

This component functions as an assistant to the user in determining the correct level

of information provided, as it matches the depth of the presented information to the

72

Part 11-Chapter IV (Survey)

user model. in addition, it keeps track of a user's actions during the session to

determine their correct knowledge level. The utilized user model is composed of:

Long-term model: which keeps track of a user's knowledge state between

sessions depending on short-term model and user's initial knowledge level.

Short-term model: which maintains a user's immediate actions within a session.

In Metadoc two forms of user modelling are involved: explicit user modelling and

implicit user modelling. In explicit user modelling, users are required to indicate

their experience with computers before their first use, or they can use the system's

default assumption about their experience. Based on that, two expertise levels, which

correspond to a user's presumed knowledge of UniX/AIX and general computer

concepts, are sustained for each user. In addition, users have the option to explicitly

change the user model within sessions by specifying which concepts should be

explained and which should be shown with more detail through stretchtext

operations.

On the other hand, implicit user modelling is used throughout the session to upgrade

the user model. therefore, a request for an explanation or more detail about a concept

indicates the lack of familiarity with that concept. In addition, jumping to the

glossary for a definition gives the same indication as requesting further explanation

in the case of stretchtext. In Metadoc, the first request for further explanation is not

considered to indicate a lack of understanding about a particular concept, but any

subsequent requests are taken as a sign that the user lacks familiarity with this area of

study.

4.2.6 Hypadapter

Hypadapter [Hohl et al. 1996] is an adaptive hypertext system that supports

exploratory learning and programming activities in the domain of COMMON LISP.

Thus, typical users of that system are programmers with different programming skills

in COMMON LISP. Through exploratory learning, users independently explore the

hyperspace to discover information that is necessary for the solution to their current

problem and acquire new domain knowledge by extending their understanding of

new known subdomains. The system analyses users' navigational behaviour to

deduce users' learning progress and to adapt the presentation of topics and links

73

Part 11-Chapter IV (Survey)

while the user is navigating the hyperspace of topics. Users' programming skills in

COMMON LISP provide the basis for systems' initiated adaptation.

Hypadapter classifies users according to their knowledge level about COMMON

LISP into four stereotypes: novice, beginner, intermediate and expert, where each of

those stereotypes masters topics to a certain difficulty level. Each user is assigned to

only one stereotype based on the information already presented in the user model,

which is based on a general application independent user modelling framework

called MODUS [Schwab 1989]. For initial classification, users have to fill in

personal questionnaires that reflect their expertise and their personal preferences

concerning the presentation of learning material such as examples, additional notes,

and links to related topics. Questionnaires' entries could be modified dynamically at

any time to express changing needs regarding future adaptation. Moreover, the

system provides defaults for entries that can be changed later by users (system is

adaptable). For example, the system assigns users by default into novice stereotype

unless they change that assumption, as some users may consider themselves

intermediate rather than novice with COMMON LISP programming.

In Hypadapter, the domain model/knowledge base is composed of a network of

topics, which are small chunks of information that indicate an understanding by a

user and with independent self-meaning.

Topics are semi-structured entities defined with a set of attribute-value pairs. Every

topic has general attributes that describe a topic's name, level of difficulty and links

to prerequisite topics (which must be known before the current one), in addition to

descriptive attributes such as definitions, examples, notes and summaries. Moreover,

semantic relationships between topics are presented through link attributes that may

refer to for example, superior topics, content-related topics, and sister topics.

Furthermore, the knowledge base is composed of different types of topics such as

concept-topics that represent programming concepts.

In Hypadapter, a topic's knowledge value ranges numerically between 0 (unknown)

to 10 (well-known). Each time a user accesses a topic its knowledge value about it

increments. Thus, the user is re-classified to a higher level of expertise after reaching

74

Part 11-Chapter IV (Survey)

a certain knowledge level in a certain number of topics that differs from stereotypical

level to another, i.e., the system increases the knowledge value of any visited topic.

Moreover, Hypadapter gives users the option to customize certain aspects in their

models through user model inspector by invoking a personal questionnaire though it.

Therefore, the system is integrating implicit and explicit methods of user modeling as

explained in Chapter II.

One of the components of the architecture of the Hypadapter system, in addition to

the user model component and the knowledge base component, is the evaluation

component. That component identifies topic attributes and links that are relevant to a

user by applying selection rules. Selection rules enclose a teaching model that is

based on a scoring mechanism to determine those attributes and links that are mostly

relevant to the user's needs and interest. The selection rules for evaluating

descriptive attributes are:

Contents of attributes should correspond to the user's stereotypical level. For

example, explanations should be tailored to the user's current classification,

ranging from novice to expert.

A user's learning style and behaviour are considered. For example, in

presentation, curious users need more information.

A user's preferences regarding certain attributes such as examples and notes are

taken into consideration.

Different levels of detail such as in-depth description or short summaries should

be provided according to the user's preferences.

On the other hands, selection rules for link attributes to other topics are:

Avoiding mastered topics.

Avoiding topics that require a pre-knowledge a user does not yet have.

Topics that are needed immediately are preferred,

Topics that are related to known topics are preferred.

A topic's level of difficulty should match the user's qualification. Thus, for

example, beginners should not access topics with a difficulty level that matches

expert users.

Topics a user declared as bookmarks are preferred as they might be useful in the

future.

75

Part 11-Chapter IV (Survey)

The goal of these rules is to protect users from information that is not relevant to

their expertise level, and to support the incremental expansion of their knowledge by

topics that are suitable to them. Hence, according to these rules, links level

adaptation is provided in two forms: a) hiding - hiding links to topics that are not

relevant at all to the users' current knowledge state; b) sorting - relevant links are

sorted according to their priority with respect to users' knowledge in descending

order (from most relevant to less relevant); c) annotation - the most relevant sorted

link is annotated in a different font size than the next relative link, which is tum will

have a different font size than the following one and so forth.

Furthermore, on the contents level adaptation, the Hypadapter system uses a frame-

based technique (explained in Chapter III), where slots of a frame that hold different

information related to a certain concept are sorted according to users' knowledge

level and characteristics, such as preferred learning strategy and preferences.

Therefore, when a topic is presented to a user the system dynamically determines an

appropriate subset of attributes to be displayed depending on the user's

characteristics. In addition, it suggests links to topics that might be relevant or

interesting for users according to their current expertise level. For example, there are

two users, A, beginner in Lisp, and user B, advanced in Lisp, both of whom are

accessing the same topic. Thus, for user A, the contents of the descriptive attributes

such as notes and examples, will be for beginner users. On the other hand, user B

will be restricted to a short summary, expert level examples, and links to external

information resources. In both cases, non-relevant information will be hidden behind

an icon that can be expanded on demand.

The Hypadapter system provides a graphical user interface to help users to access

and explore the knowledge base, where navigation by link-based browsing is the

main way to access this information. Through this interface users can bookmark

topics that are already visited or think might become important in the near future. In

addition, topics are provided by alphabetically-sorted indices that facilitate direct

access to them. Moreover, users can revisit previously visited topics through topic

histories that record presentations of topics visited before. Furthermore, structure-

76

Part 11-Chapter IV (Survey)

oriented access to topics is presented via knowledge maps that provide graphical

overviews of parts of the underlying knowledge base structure. In addition, access to

topics known rather by name is provided by a command line interface

4.2.7 CHEOPS

The CHEOPS [Ferrandino et al. 1997, Negro et al. 1998] system is developed at

Dipartimento di informatica ed Applicazioni of the University of Salerno, Italy. That

system is a server-based implementation of a session-based interaction model.

The CHEOPS system represents its knowledge model as a knowledge pyramid. That

pyramid is composed of two polygons with different sizes, where the smaller one is

at the top, which represents the minimum knowledge level, while the bigger one,

which represents the maximum knowledge level, is at the bottom of the pyramid.

Users' knowledge levels are classified into three stereotypes: novice, amateur, and

expert. The edges of the pyramid represent these knowledge levels with respect to

each category, as hyperdocuments in CHEOPS are divided into categories to help

users in navigation though the presented information, where vertices of the

knowledge pyramid represent these categories. Thus, the experience gained by a user

could be represented as the surface obtained cut in the intersection of the current

experience level on each category. Moreover, categories could be dependent on each

other, which means, according to a user's knowledge level in some categories,

another category/categories could be accessible to that user. Therefore, the system

provides links level adaptation through using link removal technique (explained in

Chapter III). Furthermore, users' expertise level for each category depends on their

previous interaction within each category; in addition, they have the ability to alter

their own knowledge level for each category, i.e., the system is adaptable - users

could change the adaptation effect by altering their knowledge state about the

presented concepts. Therefore, the system integrates between implicit and explicit

user modelling techniques (explained in Chapter II) to obtain users' knowledge level

with respect to the presented material.

In this system, the adaptation mechanism takes the required document as an input,

and creates on the fly a document that has all the links changed according to the

user's profile, which is stored in a database and contains information about the

77

Part 11-Chapter IV (Survey)

current levels of expertise the user has reached during hislher interaction with each

category. Thus, a user's profile is modified each time the user chooses a link.

Furthermore, this system allows its users to annotate every visited page, by

evaluating it as "Interesting", "Not Interesting", or "Very Interesting", in addition to

a one-line comment, which could be considered as a user defined annotation to the

visited page.

In CHEOPS, to provide adaptivity to hyperdocuments, the author/authors of every

hyperdocument have to classify hyperdocument files into categories with knowledge

levels, and to fix the visibility of some categories. Also, he/she has to provide the

system with all information related to the hyperdocument, such as its directory,

names of the categories, and so on. In addition, the author has to build the category

summaries that contain links to all documents at the same level for a given category.

Afterwards, he/she has to specify an entry point to the hyperdocument.

4.2.8 TANGOW

TANGOW (Task-based Adaptive learNer Guidance On the WWW) is a tool for

creating internet-based courses, where courses are described as a set of teaching tasks

and rules [Carro et al. 1999, Carro et al. 2000]. A teaching task is the basic unit that

appears in the learning process. In other words, teaching tasks correspond to

concepts presented within a course. For example, if an HTML course holds three

major concepts: "introduction", "creating HTML pages", and "advanced HTML

issues", thus, each teaching task corresponds to one of these concepts. Moreover, any

of these concepts may hold subconcepts. For example, the "creating HTML pages"

concept may hold five other subconcepts. Thus, each teaching task corresponds to

each concept and each subtask of that task corresponds to each subconcept of that

concept. According to that description, each teaching task may be atomic, in case it

does not have subtasks, or composed in case it has subtasks. Furthermore, each

teaching task has a type, as it may be theoretical, practical or a set of examples. Also,

it may have a set of associated media elements. On the other hand, rules play an

important role in curriculum sequencing and adaptation. These rules describe how

teaching tasks are de-composed, in case they are of a composed type. There may be

several rules for the same teaching task, each of them representing a specific way of

78

Part 11-Chapter IV (Survey)

de-composing the teaching task into subtasks. It may be necessary to perform these

subtasks in a fixed order, in any order, or it may be enough to perform some of them

to accomplish the composed task itself. Moreover, each rule specifies the

prerequisites for the associated task, which depends on a user's profile and

information about achieved tasks as well as the learning strategy in use. Hence,

knowledge in TANGOW is represented by means of teaching tasks that need to be

accomplished.

For each student there is a task manager that takes control over the learning process

during the whole session. In addition, if a user is following more than one course

there will be a task manager for every course the user is involved in. The task

manager provides guidance to students by deciding the next set of tasks to be

accomplished depending on the chosen leaning strategies (such as theory

presentation first or practical exercises first), student personal data, and previous

performed actions. Moreover, actions performed by a user, such as the number of

visited pages, the number of finished exercises, and the number of exercises solved

correctly, are stored by means of the task manager.

When a user accesses the system, he/she is asked to identify him/herself through

supplying a user name and password, and then selects the course that he/she intends

to access. If the user is accessing the system for the first time he/she will be asked to

supply their preferred learning strategy, for example, presenting the theoretical part

of the topic first and then examples, his/her preferred language and personal data,

such as age. However, if he/she is not a new user, the system will restore the user's

profile from the database. It is important to clarify that the same scenario is used in

WHURLE-HM.

During the learning session, the task manager constructs a list of tasks to be

accomplished that presented to the student that fit hislher educational state from a

menu page. Thus, tasks for which a user has not fulfilled prerequisites, such as

accomplishing other tasks before it, will not be accessible. Two other adaptation

functionalities the TANGOW system performs:

HTML pages are built on the fly, as they are composed of different media, such

as text, animations, etc., that differ from one user to another depending on his/her

profile, through what is called page generator.

79

Part 11-Chapter IV (Survey)

According to the selected learning strategy, for example, such as choosing

examples first and then the theoretical parts of the course has an effect on the

decomposition of tasks. Thus, decomposition of tasks depends on the user

profile. For example, decomposition may include subtasks related to theory and

exercises while another one may include additional subtasks with examples.

It could be figured that the system is providing adaptive navigation support through:

a) link disabling - a link to a certain task will be disabled if a user has not fulfilled its

prerequisites, such as a minimum number of exercise about particular task should be

achieved before accessing the current one, or if the user has accomplished the task;

b) sorting - tasks that have not been finished by the user come first and those that the

user has not fulfilled their prerequisites or has accomplished (disabled links) come to

the end.

Furthermore, the system provides adaptive presentation support through explanation

variant, as according to the preferred language, learning style, etc. the material will

be presented adaptively. Moreover, the systems implicitly deduce users' knowledge

through accomplished tasks (implicit user modelling).

The general description of all teaching tasks that have been defined by a course

author are stored in the teaching tasks repository database. In addition, media

elements that appear in HTML pages and classified according to characteristics

defining students' profiles such as language and age are stored in the course content

database. In addition, users' profiles that include information about their age,

preferred language, and preferred learning strategy are stored in the user database.

4.3 Systems analysis

By analysing the above systems from two angles: adaptation techniques and user

modelling methods, the following could be obtained:

Figure 4.2 classifies the systems according to the used adaptation techniques as

follows:

80

>< '

Q)_ u

u c::
~ '"o~

OQ

c::o
.~
'0c::
~

, ><

..c::g
o
I:J
Q)z

Part 11-Chapter IV (Survey)

From the above table it could be perceived that the explained systems integrated

different adaptation techniques and methods to provide their users with a kind of

adaptation that suit their knowledge level, learning style, goals, etc. for example,

AHA! implemented link hiding, annotation and removing to supply its users with

personalization on the links level, while conditional text technique is used to

provide adaptation of contents. On the other hand, systems like ELM-ART,

Interbook and NetCoach used direct guidance technique beside annotation.

81

Part 11-Chapter IV (Survey)

Moreover, ELM-ART used sorting techniques. Furthermore, MetaDoc system

used stretch text techniques to provide its users with adaptation on contents level.

Hypadapter system used sorting, annotation, hiding and frame-based techniques.

Moreover, TANG OW system used disabling and sorting techniques for link

adaptation, while explanation variant method is used to provide its users with a

kind of personalization that suit their preferred language and learning style. What

is more, CHEOPS system used link removing to hide from its users links to

information that does not suit their knowledge at that time.

By analysing the mentioned systems from the user modelling perspective (using

explicit and implicit user modelling techniques) the following results could be

obtained as shown in Figure 4.3:

Explicit Implicit
AHA! X X

ELAM-ART - X
NetCoach X X
InterBook - X
Metadoc X X
CHEOPS X X
Hypadapter X X
TANGOW X X

Figure 4.3 Used user modelling methods - From the above table it could be seen AHA!,
NetCoach, etc. combined implicit and explicit user modelling methods. On the other hand,
ELM-ART and InterBook utilised implicit user modelling methods.

From the above table it could be perceived that the majority of the explained

systems integrated explicit and implicit methods to obtain information about their

users. By summarising the observed results the following could be obtained:

a) AHA!: the system monitors the navigation of users through the course

material and uses this information to infer their knowledge levels

implicitly. Furthermore, users could change their knowledge state about

specific concepts explicitly, if the course authors make the decision to

allow this. In addition, users can choose between link hiding and link

annotations.

b) NetCoach: in this system the educational state of presented concepts is

considered to be learned by users if it is implicitly deduced by the system

through tests, if it is inferred from other concepts, or if it is specified by

the user explicitly.

82

Part 11-Chapter IV (Survey)

c) Metadoc: the system implicitly infers users' knowledge about presented

concepts if they subsequently ask for more explanation regarding a

particular concept by means of either stretch text or by jumping to the

glossary for a definition. Users can also explicitly specify their experience

with respect to the knowledge domain the first time they use the system.

d) Hypadapter: users in that system can change the assumptions that the

system makes about their knowledge level with respect to the presented

information. Moreover, users can decide their preferred learning strategy

explicitly. From the implicit perspective, the system builds its

assumptions about users' knowledge state by monitoring their

navigational behaviour.

e) CHEOPS: users can change the system's assumptions regarding their

knowledge about the presented categories, as the educational material is

divided into different categories (as described in Chapter IV). In addition

to this, the system can infer their knowledge about the presented

categories through monitoring their navigational behaviour.

f) TANGOW: users in that system can explicitly set their preferences for

both language and learning strategy. Furthermore, the system implicitly

infers users' knowledge state through the accomplished teaching tasks (as

described in Chapter IV).

With the other two systems, their user model is implicit. These are:

a) ELM-ART: the system decides for a particular concept(s) to be known by

the user if he/she solved the associated quiz or a programming problem

correctly.

b) InterBook: follows the same approach as ELM-ART by inferring users'

knowledge about concepts through monitoring pages that users visited

and by means of the quizzes and problems that they solved.

4.4 Summary

Through this chapter, an overview has been given about different adaptive

hypermedia systems. Moreover, focus has been placed on adaptive educational

83

Part 11-Chapter IV (Survey)

hypermedia systems by illustrating different popular examples and discussing each

of them from two perspectives: adaptation techniques and user modelling.

The chapter is structured as follows:

Introduction: an attempt was given at a brief overview about the history of

research in adaptive hypermedia. Moreover, different categories of adaptive

hypermedia systems are explained.

Adaptive educational hypermedia: that section is the main focus of the chapter,

through which different kinds of adaptive educational hypermedia systems have

been illustrated, and the improvements that happened in each have been

discussed. A comparison between the described systems and between the

WHURLE-HM in addition to the shortage that these systems have in terms of

measuring users' knowledge is discussed in Chapter IX

Systems analysis: in this section a full analysis about the utilised adaptation and

user modelling techniques employed by the systems explained in the former

section is given.

84

Part 11-Chapter V (Technology)

Chapter V: Technology

5.1 Introduction

In the former chapters an overview about user modelling and adaptation techniques

is given. Furthermore, a survey concerning adaptive educational hypermedia systems

in addition to their analysis is provided. This chapter gives an idea about the

technology used to implement the Hybrid model in the WHURLE system to produce

WHURLE-HM, such as XML (eXtensible Mark-up Language), XSP (eXtensible

Server Page), the Cocoon publishing framework, etc. Moreover, the chapter will

clarify to the reader the technical expressions used in the implementation chapter

(Chapter VII), in addition to the system's code in Appendix A.

5.2 XML and HTML

Hypertext Markup Language (HTML) [Berners-Lee 1992] provides a standardized

way to create pages of formatted information that can be delivered to a global

audience via the Internet. HTML is mainly designed for formatting documents for

the web, as it consists of a set of elements that define how the data is to be displayed.

The following example represents a phone diary document written in HTML.

<H1>Mohamed Ramzy<IH1>
<bl'>
<1>mrz@cs.nott.ac.uk<l1>
<bl'>
<1>0998876<11>

It can be seen from the above example that the elements do not describe the data they

enclose. All the text in the document can be changed and can lose the fact that this

was originally a phone diary document. This is done because HTML is only

concerned about describing text formatting and layout. Authors of HTML are limited

to a particular set of elements and if this set does not meet a need, they have to either

find a way to work around or live with the inadequacy. HTML documents might not

be portable to other applications, because its only purpose is to be displayed over the

web, and that creates extra work for authors who must use several languages to

accommodate different applications.

85

Part 11-Chapter V (Technology)

On other hand, eXtensible Markup Language (XML)I is an open, text-based markup

language that provides structural and semantic information about hyperdocument

rather than the content itself [Pardi 1999, Gilchrist 2002]. XML is a powerful and

standard-based complement to HTML that could be as important to the future of

information delivery on the web as HTML was to its beginning. XML is a subset of a

popular Standard Generalized Markup Language (SGML), from which HTML is

created.

XML is a meta-language, i.e. a language used to describe another language. Thus,

XML authors can create elements that describe the text they contain as in the

following example:

<Phone>
<first·name> Mohamed </first·name>
<last-name> Ramzy <llast-name>
<email> mrz@cs.nott.ac.uk <lemail>
eph-nurr» 07947552<1ph-num>

<lPhone>

In the above example, a phone diary written in XML, the elements describe the texts

they include, not as in HTML, which just describes the layout. XML is more a tool

for creating documents structures than for applying those structures to a particular

interface.

The primary factor of designing of XML is to work well on the web, but XML is

intended to work in many environments outside the web as well, including data

interchange, commercial applications and publishing. In XML, the formatting of data

on a page is achieved by adding a style sheet to the document (as described later).

This leads to the significant advantage of XML over HTML; it distinguishes between

the contents and the style. XML is ideal for large complex documents, such as a

thesis, because that data is structured. Moreover, it is not only specifying a

vocabulary that defines the elements in the documents, it also establishes the relation

between elements; this is because at its heart is a hierarchical system. In the

hierarchical system, the elements are in the form of a tree, the nodes are in relation to

each other, as parents and children. For example, by considering the following XML

document about a phone diary:

1 http://www.w3c.orgIXML

86

mailto:mrz@cs.nott.ac.uk
http://www.w3c.orgIXML

Part 11-Chapter V (Technology)

<? xml version="1.0"?>

<?xml-stylesheet type ="text/xsl" href ="Phone.xsl"?>
<Phone-diary>

<Friend>
<Name>John</Name>
<Phone>12345</Phone>
<Location>UK<lLocation>

<lFriend>
<Colleague>

<Name>Sabstian</Name>
<Phone>54321 <lPhone>
<Location> France<lLocation>

<lColieague>
<lPhone-diary>

By representing the above code as a tree of node the following diagram in Figure 5.1

is obtained:

~ee
Figure 5.1: Tree Diagram

To understand the XML structure well it is necessary to know what is happening to

any XML document since it is written until it reaches users browsers, i.e. XML

document's life cycle. The life cycle of XML document, as shown in Figure 5.2,

starts when an editor creates it. After that, the XML parser (XML processor) reads

the document and converts it into a tree of elements. The parser passes the tree to the

browser, which displays it to the end user

87

Part 11-Chapter V (Technology)

XML Parser
XML reads the Browser

END USER-. ~ receives the ~document document and
tree from thecreated by converts into

Parses
tree elements

Figure 5.2- XML Document life cycle

As XML describes the structure of a document, this structure may have rules. A

DTD2 (Document Type Definition) specifies a set of rules for the structure of a

document. For example, a DTD determines that a book element has exactly one

ISBN child and exactly one title as well as one or more author children, and it mayor

may not contain a single subtitle. The DTD accomplishes this with a list of markup

declarations for particular element, attributes, entities and notations. DTD could be

included in the file that contains the document it describes, or it can be linked from

an external URL. Different documents and web sites can share such an external

DTD. Furthermore, a DTD shows how different elements of a page are arranged

without actually providing their data. The following example shows how DTD could

be written:
<!ELEMENT INVOICENO (#PCDATA»
<!ELEMENT PRODUCTID (#PCDATA»

The above example means that the two elements INOVICENO and PRODUCTID

will hold just normal text data, as they are not attributes or entities. In fact, the use of

a DTD has some drawbacks. Although DTD served SGML developers for a long

time, it has some severe restrictions. DTDs call for elements to consist of one of

three things: a text string, a text string with other child element mixed together or a

set of child elements. DTD does not have XML syntax and offers only limited

support for types or name space. For these reasons XML schema' is considered,

which has XML syntax and defines a set of new names such as the names of

elements, types, attributes and attribute group. For more information about XML

Schema refer to http://www.w3.orgIXMUSchema.

2 http://www.w3c.orgITRlREC-xm1#dt-doctype
3 http://www.w3c.orglXMUSchema

88

http://www.w3.orgIXMUSchema.
http://www.w3c.orglXMUSchema

Part 11-Chapter V (Technology)

5.3 Related Technology

XML does not operate by itself; to use it as more than a data format it requires

interaction with a number of related technologies. An overview about these

technologies is given in the following subsections.

5.3.1 Cascading Style Sheets (CSS)

CSS4 were introduced in 1996 as a standard means of adding information about style

properties such as fonts and borders to HTML documents [Harold 1999]. CSS

actually works better with XML than with HTML and that is because HTML is

loaded with backward compatibility between the CSS rules and the HTML elements.

Because XML elements do not have any predefined formatting, they do not restrict

which CSS styles can be applied to which elements. A CSS style sheet is a list of

rules. Each rule defines an element(s) and the style(s) that control the appearance of

that element(s). Multiple style sheets can be applied to a single document, and

multiple styles can be applied to a single element. An example of a CSS is:

POEM {DISPLAY: BLOCK}
TITLE {display: block; font-size: 16 pt; font-weight: bold}
POET {display: block; margin-bottom: 10 px}

This style sheet has three rules. Each rule has a selector - the name of the element, to

which it applies - and a list of properties to apply to the instance of that element. The

first rule says that the contents of the POEM should be displayed in a block by itself.

The second rule, says that the contents of the TITLE also should be displayed in a

block by itself with a font size 16 pt (points) and font weight bold. The third rule

says that the contents of the POET should be displayed in a block by itself and

should be set off from what follows it by 10 px (pixels).

In 1998, the W3C (World Wide Web Consortiumr' published a revised and expanded

specification for CSS called CSS Level 2 (CSS2). At the same time, they renamed

the original CSS to CSS Level 1 (CSS 1). CSS2 is mostly a superset of CSS 1 with a

few minor exceptions; so CSS2 is CSS 1 plus aural style sheets, media types, attribute

selectors and other new features [Harold 1999].

4 http://www.w3c.org/Style/CSS/
s http:// www.w3c.org

89

http://www.w3c.org/Style/CSS/
http://www.w3c.org

Part 11-Chapter V (Technology)

5.3.2 eXtensible Style Sheet (XSL)

XSL6 is itself an XML application. XSL is intended to define the formatting and

presentation of XML documents for display on screen, on paper, or in the spoken

word. With the development of XSL, it became clear that this was usually a two-

stage process. The first stage is a structural transformation in which elements are

selected, grouped and reordered. The second stage is a formatting process, in which

resulting elements are rendered. It was recognized that these two stages were quite

independent, so XSL was split into two parts, XSLT (eXtensible Style Sheet:

Transformation) and XSL-FO (eXtensible Style Sheet: Formatting Object) [Harold

1999].

5.3.2.1 eXtensible Style Sheet: Transformation (XSL T)

XSLT7 is primarily designed for transforming one XML document into another. It is

more than capable of transforming XML to HTML and many other text-based

formats, so in more general definition:

"XSLT is a language for transforming the structure of an XML document" [Kay

2000].

More precisely, an XSLT accepts as input a tree represented as an XML document

and produces as output a new tree, also represented as an XML document. XSLT

cannot be used to transform to or from non-XML formats like PDF, TeX, Microsoft

Word or others, as XSLT uses the structure of the XML node tree. The

transformation part of XSL is also called the tree construction part, as both the input

and the output must be XML documents.

HTML and SGML are borderline cases because they are so close to XML, so XSLT

can be used to transform to or from HTML and SGML if they meet XML's well-

formedness rules (rules in the Document Type Definition (DTD), will be explained

later). An XSLT document contains a list of template rules and other rules. A

template rule has a pattern specifying the trees it applies to and a template to be

output when the pattern is matched. When an XSL processor formats an XML

document using an XSL style sheet, it scans the XML document tree looking through

6 http://www.w3c.org/Style/XSL
7 http://www.w3c.org/TRlxslt

90

http://www.w3c.org/Style/XSL
http://www.w3c.org/TRlxslt

Part 11-Chapter V (Technology)

each sub-tree in tum. As each tree in the XML document is read, the processor

compares it with the pattern of each template rule in the style sheet. When the

processor finds a tree that matches a template rule's pattern, it outputs the rule's

template. This template generally includes some mark up, some new data and some

data copied out of the tree from the original XML document. For example, by

applying the following XSLT (Phone.xsl) to Phone-diary XML document.

The following is the XSLT style sheet, which specifies the look of the output tree.

<? xml version="1.0" ?>
cxsl :stylesheet xm Ins:xsl=http://www.w3.orq/XSUTransform/1 .0">
<xsl:template match ="Phone-diary">

<HTMl>
<body>
cxstapply-ternplates/s

</HTMl>
</xsl:template>
<xsl:template match="Friend">

<P>
exstapply-templates/s

</P>
</xsl:template>
cxsl.template matche'Colleaque'»

<P>
<xsl:apply-templatesi>

</P>
<ixsl:template>
</body>
</HTML>
-c/xsl:stylesheet-

After applying that former stylesheet, the output of the XML document will be as

follows in HTML format:

<HTML>
<body>
<p>John 12345 UK</p>
<p>Sabstian 54321 France<ip>

</body>
</HTML>

It can be observed in the second line that the XML document (href= "Phone.xsl")

calls the XSL style sheet. This XSL style sheet is very simple with two template

rules. The first one matches the root element Phone-diary. It replaces this element

with an HTML element. The contents of the HTML are the results of applying the

other templates in the document to the contents of the Phone-diary element.

91

Part 11-Chapter V (Technology)

5.3.2.2 eXtensible Style Sheet: Formatting Object (XSL-FO)

XSL formatting objects provides a more sophisticated visual layout than HTML +

CSS, even CSS2. Formatting supported by XSL formatting objects but not supported

by HTML + CSS includes a non-western layout, footnotes, margin notes, page

numbers in cross-references and more. In particular, while CSS is primarily intended

for use on the web, XSL formatting objects are designed for more general usage.

XSL formatting objects are a complete XML vocabulary used to arrange elements on

a page. A document that uses XSL formatting objects is simply a well-formed XML

document. That means it has an XML declaration, a root element, child element and

so forth. It must stick to all the well-fonnedness rules of any XML document or

formatters will not accept it. As an example of XSL formatting objects, the following

XSL style sheet is an XSL formatting object document for the previous XML

document to display it in a PDF fonn.

do:root xmlns:fo=''http://www.w3.org/xsl/format/1.0''>

do:layout-master-set>
do:simple-page-master page-master-name="only">
do:reigon-body/>

</fo:simple-page-master>
</fo: layout -master -sets

<fo:page-sequence>
do:sequence-specification>
do:sequence-specifier-single paqe-master-name=tonly">

</fo:sequence-specification>
do:flow>
do:block font-size="20 pt" font-family="serief'>

hydrogen
</fo:block>
do:block font-size="20 pt" tont-tarnilye'serief">

helium
</fo:block>

do:flow>
</fo:page-sequence>
<lfo:root>

The above XSL document is a simple document using XSL formatting objects. The

root of the document is a FO:ROOT. This element contains a FO:LAYOUT-

MASTER-SET and a FO:PAGE-SEQUENCE. The FO:LAYOUT-MASTER-SET

element contains the FO:SIMPLE-PAGE-MASTER child element. Each

FO:SIMPLE-PAGE-MASTER describes a kind of page on which the content will be

placed, the content is placed on copies of the master page using a FO:PAGE-

SEQUENCE. The FO:PAGE-SEQUENCE contains a FO:SEQUENCE-

92

Part 11-Chapter V (Technology)

SPECIFICATION specifying the order in which the different master pages should be

used. Next, it contains a FO:FLOW child that holds the actual content to be placed

on master pages in the specified sequence. The content here is given a font-size and a

font type by specifying the FONT -SIZE attribute and the FONT -FAMILY attribute

in the two FO:BLOCK child elements. This is a very simple XSL formatting object

document, however, documents that are more complex can have different master

pages for first page, right and left, body pages, etc.

5.3.3 XML languages

In the following subsections, a brief overview about XML languages such as XML

Path language (XPath), XML Linking language (XLink), and XML Pointer language

(XPointer) will be given. Each of these languages gives XML more power and

flexibility. For example, XML goes further than HTML link elements can go, as it

uses XLink for linking to documents and XPointers for addressing individual parts of

a document.

5.3.3.1 XPath

XPath8 was designed to be utilized by XSLT and Xl'ointer", The primary purpose of

XPath is to locate different parts of an XML document. Furthermore, it facilitates

manipulation of different data types such as strings, numbers and Booleans.

Moreover, it uses non-XML syntax to ease its use within URIs (Uniform Resource

Identifier) and XML attributes. XPath uses path notation to navigate through the

hierarchical structure of an XML document. Thus, it is used to direct an XSL T

processor when navigating through the hierarchal node tree of an XML source

document to produce desired nodes in the output tree [Cagle et a1. 2001].

Any XPath expression in its simplest form consists of:

An axis: which specifies how to find the target element(s) by moving along one

of the thirteen axes that XPath has (child, parent, descendant, ancestor,

descendant-self, ancestor-self, following-siblings, preceding-siblings, following,

preceding, attribute, namespace, self). Each of those axes specifies the relative

location of the context node (current node) with respect to other node(s) in the

node tree.

8 http://www.w3c.orgffRlxpath

93

http://www.w3c.orgffRlxpath

Part 11-Chapter V (Technology)

A node-test: it is used to check that the selected node is of the type specified. For

example, if a child node is to be selected, the node-test checks the selected node

to ascertain if it is of a child type with respect to the context node or not.

A predicate: this operation is optional, and it is used to refine the selected nodes

on the basis of their relative position or on the basis of some features they have

such as a certain attribute or value.

Recently W3C has released a specifications draft for XPath V2, which works with

XSLT V2. For more information about changes in XPath V2, refer to:
http://www.w3.orgITRl2002IWD-xsIt20-2002111510verview-ditf.html#XP ATH20.

5.3.3.2 XLINK

XLink10 enables any element to become a link, not just an element as in HTML, as

the links could be bi-directional, multidirectional or even point to multiple mirror

sites from which the nearest is selected. Elements that include links are called

Linking Elements (anchors in HTML). Linking elements are identified by an

xlink:type attribute with either the value simple or extended.

Simple XLinks are similar to standard HTML links and are likely to be supported by

application software. On the other hand, Extended links go beyond what HTML can

do, as it is possible with extended links to include multidirectional links between

many documents. One of the capabilities of extended links is to point to more than

one target; such a feature cannot be executed with HTML links.

XLink has the capability to store the links in a separate linking document. This might

be useful to maintain a slide show where each slide requires next and previous links.

By changing the order of the slides in the linking document, the targets of the

previous and next links on each page could be changed without having to edit the

slides themselves. XLink allows much more sophisticated connections between

documents with XPointer.

9 http://www.w3c.org/XMLlLinking
10 http://www.w3c.orgffRixlinkl

94

http://www.w3c.org/XMLlLinking
http://www.w3c.orgffRixlinkl

Part 11-Chapter V (Technology)

5.3.3.3 XPOINTER

XPointer is designed to be used as the basis for a fragment identifier for any URI

reference (which is not possible with XPath) that locates a resource with any of the

following media:

textlxml.

applicationlxml.

text/xml-extemal-parsed-entity,

applicationlxml-external-parsed-entity.

XPointer is based on Xpath. Therefore, it could scan the hierarchical structure of an

XML document to choose some of its internal parts based on different characteristics

such as attribute values and relative position. Thus, XPointer can refer to a particular

element of a document such as the first, second, or any such element and so on.

5.3.4 Xlnclude

By XIncludel1 a number of XML documents could be merged into a single

composite XML document. XInclude differs from the linking features in the XML

Linking Language (XLink), as XLink does not specify a specific processing model,

but simply facilitate the detection of links and recognition of associated metadata by

higher-level application. On the other hand, XInclude specifies a media-type specific

transformation. It defines a specific processing model for merging information sets,

as the processing occurs at a low level, often by a generic XInclude processor which

makes the resulting information set available to higher level applications. The

following is a simple example ofXInclude:

ex xmlns:xinclude="http://www.apache.org/1999IXMUXinclude">
<xinclude:include href="1stpg.xml"l>
<xinclude:include href="2ndpg.xml"l>

-dx»

In the above example, the XML document I stpg.xml will be replaced by its contents

as well as the second one (2ndpg.xml).

WHURLE and WHURLE-HM used such technology to include chunks involved in a

lesson plan when requested

95

Part 11-Chapter V (Technology)

5.4 Cocoon Publishing Framework

Having hundreds ofXML documents on a site does no good if there is no mechanism

to apply transformations on them when requested. The problem is that an engine

must exist to handle this generation, particularly in a dynamic sense. Just as a web-

server is responsible for responding to a URL request for a file, a web-publishing

framework is responsible for responding to a similar request; however, instead of

responding with a file, it often will respond with a published version of the file. In

case of XML, a published file refers to a file that may have been transformed with

XSL, massaged at an application level or converted into another format such as PDF.

The requester does not see the raw data that may underlie the published result, but

also does not have to explicitly request that the publication occur. Often a URI base

signifies that a publishing engine that sits on top of a web-server should handle

requests. To choose a publishing framework, many points should be in consideration

as it has to serve clients on any platform and it must not be tied to a specific parser or

processor. The Java language in particular, offers such an easy interface into

XMLIXSL transformation, and the other needed APIs. In addition, Java servlets offer

such a simple means of handling web requests and responses.

A Java servlet is a generic server extension, which means that a Java class can be

loaded dynamically to expand the functionality of a server [Hunter and Crawford

1998].

Servlets are commonly used with web servers, where they can take the place of CGI

(Common Gateway Interface) scripts. A servlet is similar to a proprietary server

extension, except that it runs inside a Java Virtual Machine (JVM) on a server, so it

is safe and portable. Unlike CGI, which uses multiple processes to handle separate

programs and/or separate requests, servlets are handled by separate threads within

the web server process. Because servlets run within the web server, they can interact

very closely with the server to do things that are not possible with CGI scripts. As

mentioned before, as servlets are portable, they are used both across operating

systems and across web servers.

II http://www.w3c.orgffRlXInclude/

96

http://www.w3c.orgffRlXInclude/

Part 11-Chapter V (Technology)

According to the advantages of servlets and the two main points in choosing a

publishing web server, the Cocoon 12 publishing framework from APACHE software

foundation will be considered as an example. Cocoon is a Servlet-based open-source

engine currently under heavy development and with a rapidly maturing feature set.

This includes database drivers and support for many of the developing associated

XML standards such as XLink and XPointer. Figure 5.3 shows how an interaction

between a web server and the Cocoon publishing framework is happening:

Request

Cocoon

XML Processing

XSL Rendering

Figure 5.3 A Web server and Cocoon interaction - when an end user sends a request to a Web
Server and this request is an XML file (for example), the Web server directs the request to the
Cocoon publishing framework. Therefore, the requested XML documented will be processed -
if it contains logic sheets (XSP, ESQL, ete.). After that, the document will be formatted to a
specific type (HTML, PDF, etc.) by applying an XSL style sheet to it - XSL Rendering. After
the XML processing and the XSL rendering, the published version of the file will be directed to
the Web server which will return to the end user.

From the above figure it could be perceived that the Cocoon framework after

receiving a request from the web server does two steps: a) processing any logic sheet

in the document such as XSP and ESQL (described below), b) rendering the

document to a specific type for publishing such as PDF, HTML, etc. by applying an

XSL style sheet to it. After these processes, Cocoon responds to the web server with

12 http://cocoon.apache.org/l.xJ

97

http://cocoon.apache.org/l.xJ

Part 11-Chapter V (Technology)

the published version of the XML document and consequently the web server sends

it back to the end user.

Cocoon is now in its second generation (Cocoon 2)13 as an XML publishing

framework and it is completely based on JAVA, also it allows any conformant XML

parser to be used. Moreover, Cocoon 2 relies on a pipeline model, this model acts as

the servlets chain concept. In this concept the output of one servlet class could be the

input for the another. There are other alternatives for Cocoon such as Websphere

from IBM. This publishing framework is mainly commercial and not such an open

source as Cocoon; in addition, Cocoon supports more technologies than Websphere

has supported recently. The following sections give an overview about technology

supported by Cocoon. Moreover, Cocoon is used by WHURLE and in tum by

WHURLE-HM.

5.4.1 eXtensible Server Page (XSP)

XSP14 is one of the important developments coming out of the Cocoon project. XSP

solves two problems found in JSP (JSP extends for Java Server Page, as it allows

elements and inline Java code to be inserted into a normal HTML page, and when a

JSP page is requested, the resulting code is executed and the results are inserted into

the output HTML). The first problem is that JSP does not provide a separation of

content and presentation. Secondly, there is no ability to transform the document into

any other format, or use it across applications. This is because the JSP specification

is designed primarily for the delivery of output only. The first problem is easily

handled by XSP, as at its heart, it is simply XML, so presentation is separated from

the contents. This allows developers to handle content generation, while XML and

XSL authors can handle presentation and styling through modification of the XSL

style sheet applied to an XSP page. As an example ofXSP:

13 http://cocoon.apache.org/2.1/
14 http:// http://cocoon.apache.org/l.xlxsp.htrnl

98

http://cocoon.apache.org/2.1/
http://cocoon.apache.org/l.xlxsp.htrnl

Part 11-Chapter V (Technology)

<?xml version="1.0"?>
<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>
<?xml-stylesheet href="style.xsl" typee'textxsl"?»

-osp.paqe language="java"
xmlns:xsp-"ht1p:/ /www.apache.org/1999/xsp/core">

exsp.lopk»
private static int numeO;
private synchronized int getnumO {

return ++num; }
oxsp.loqic»

<page>
<titile> hit counter </title>
<p> i've been requested osp.expn- getnumO</xsp:expr> times
</p>

</page>
</xsp:page>

It can be observed from the above example that the Java code part is included

between two elements <xsp:logic> </xsp:logic>, and the content between <page>

</page>, so a separation found here; also, in the Java code part, a function was

created and used inside the contents between the two elements <xsp:expr>

</xsp:expr>.

The second problem is also easily solved, as XSP processing occurs before any style

sheets are applied; the resultant XML document can be transformed into any other

format. For example, in the previous code, the Java code in the XSP page would be

processed and then the whole document would be transformed after that.

It is important to clarify that XSP technology is used extensively in producing

different components of WHURLE-HM, such as the authentication component, the

quiz engine, and importing custom JAVA classes. These components are explained

technically in detail in Chapter VII.

Cocoon also has produced other technologies to connect an XML document with

databases, such as ESQL tag library to do queries over the data in these databases as

insertion, deletion, updating and searching.

99

Part 11-Chapter V (Technology)

5.4.2 ESQL tag library (ESQL logicsheet)

ESQLI5 logicsheet is an XSP logicsheet and is the latest technology supported by

Cocoon. This technology has a number of important advantages over its

predecessors, such as SQL tag library and SQL processor that are not supported any

more by Apache, as it allows mixing with other logicsheets. It also supports prepared

statements, which gives automatic parameter escaping, and it allows encoding in a

single document. The ESQL namespace uses the same parameters as the SQL

namespace for getting a connection and a query. All of the formatting parameters

have been dropped. in ESQL the result data from a query is contained in <ESQL:

RESULTS> element. As an example of that:

<ESQL:EXECUTE-QUERY>
<ESQL:DRIVER>postgresql.Driver</ESQL.DRIVER>
<ESQL:DBURL>jdbc.postgresql://localhost/tst<lESQL:DBURl>
<ESOL:USERNAME>user<lESOL:USERNAME>
<ESOL:PASSWORD>password</ESOL:PASSWORD>
<ESOL:QUERY> SELECT * FROM CUSTOMER<lESOL:QUERY>
<ESQL:RESULTS>
<ID><ESOL:GET-STRING COLUMN="id"I></ID>
<NAME><SOL:GET-STRING COLUMN="name"/><lNAME>

<lESOL:RESULTS>
<lESQL:EXECUTE-QUERY>

An important advantage of ESQL is that it allows nested queries, which was not

possible before. ESQL technology has been used heavily in WHURLE-HM to

establish connections with the database and exchange queries, as will be explained in

Chapter VII.

5.5 Summary

Throughout this Chapter, an overview about the fundamental differences between

XML and HTML is explained. In addition, it has been explained why XML is more

powerful and why it provides a lot of flexibility. Moreover, different technologies,

used alongside XML such as XLink, XPointer, and XPath have been discussed.

Furthermore, the Cocoon publishing framework has been described with its related

technologies.

The chapter has been deployed as follows:

IS http://cocoon.apache.org/l.xlesql.html

100

http://cocoon.apache.org/l.xlesql.html

Part 11-Chapter V (Technology)

Introduction: the introduction section sets the reasons for presenting this

chapter.

XML and HTML: differences between HTML and XML are described. In

addition, a brief description for DTD and Schema is given.

Related Technology: that section briefly explains XSL, CSS, Xlnclude and other

XML languages such as XPath, XPointer, and XLink.

Cocoon publishing framework: Cocoon and its related technologies are

explained in this section.

For full information regarding XML and its related technology recommendation

drafts, in addition to CSS refer to http://www.w3.org. Also, for detailed information

about Cocoon development, refer to http://xml.apache.org.

101

http://www.w3.org.
http://xml.apache.org.

Part III - Chapter VI (The Hybrid Model)

Chapter VI: The Hybrid Model

6.1 Introduction

The Hybrid Model is an abstract generic user model developed for use by adaptive

educational hypermedia frameworks, and initially tested in a Higher Education

context. Thus, it handles users' knowledge levels in different knowledge domains

concurrently. By adaptive educational hypermedia frameworks it is meant systems

that: a) have the capability to deal with users with diverse knowledge, goals and

background, b) have the capability to handle different knowledge domains

simultaneously, c) can trace users' performance through different educational states,

such as moving from first year undergraduate to second year undergraduate. The

Hybrid Model is designed to be used by educational institutes to implement different

online courses concurrently, taking into account the knowledge status of each

individual student.

Different adaptive educational hypermedia systems, such as those described in

Chapter IV, work on the level of concepts, i.e. they store information about the

knowledge of each individual user, in addition to other characteristics, such as

hislher preferences, with respect to concepts that belong to a single domain -

knowledge domain-oriented. According to De Bra [De Bra et al. 1999], concepts

may be divided into three categories: atomic concepts that are the smallest

information units, pages that are composed of fragments, and abstract concepts that

represent larger units of information. In addition, these concepts are connected to

each other through different concept relationships, such as prerequisite relationships.

Adaptive hypermedia systems maintain a model of users' knowledge about each

involved domain's concept based upon the systems' observation, while a user is

navigating through the adaptive hyperdocuments. For example, in the Metadoc

system [Boyle and Encarnacion 1994], if a user changes the amount of detail in a

requested page by means of stretch text operations, the system uses these changes as

a basis for future adaptation according to the new inferred knowledge level.

The question that then arises is: what if we want to involve more than one knowledge

domain, such as mathematics, biology, chemistry, and so forth, at the same time? In

102

Part III - Chapter VI (The Hybrid Model)

addition, how do we maintain users' knowledge with respect to each involved

individual domain? (This is important because there are interdependencies between

concepts from different domains.) For example, in biochemistry, two domains might

be used - biology and chemistry. The system then has to be capable of handling the

prerequisites of any single involved domain in that subject, such as a certain

knowledge level in chemistry and in biology, with respect to each individual user.

Metadoc [Boyle and Encarnacion 1994] to a certain extent tried to solve this issue,

by classifying users with respect to their knowledge level into four stereotypes for

every involved domain. Thus, for an n number of involved domains, the system

should initiate an n number of four stereotype classes - each stereotype holds four

knowledge classes for each domain. This solution is not adequate because the system

cannot differentiate between users who have diverse educational state and share the

same knowledge stereotype. For example, let's consider if first year and second year

undergraduate students used the system simultaneously to teach them UNIX

concepts. The problem comes when two or more students (one from the first year and

the second from the second year) share the same knowledge stereotype. As a result,

the system will provide both students with the educational material adapted in a same

manner that suits the knowledge stereotype they belong to regardless their

educational state (first year or second year). Another scenario may happen, if a

second year undergraduate student accessing a certain curriculum/topic about UNIX,

and that topic requires the student to have a certain knowledge level from the first

year, such perquisites the system cannot handle as it cannot trace users' knowledge

through different educational states. Therefore, according to these problems Metadoc

system does not have the ability to manage users' knowledge globally through

different educational stages.

In order to create an adaptive educational hypermedia framework, the users'

knowledge should not be limited around a topic's concepts, but be extended to

domains - as each domain contains topics that help to build users' knowledge about

that domain [Zakaria and Brailsford 2002] as clarified in Chapter I. Moreover,

multiple domains should be involved and integrated together in a single domain

model, and there must be no limit to the number of involved domains. Furthermore,

the user model should be capable of maintaining users' knowledge about each

103

Part III - Chapter VI (The Hybrid Model)

involved domain, differentiate between users in different educational levels, and

trace users' performance in different stages of their learning experience. This thus

forms the fundamental rationale behind the Hybrid Model.

6.2 The Hybrid Model Architecture

The Hybrid Model [Zakaria and Brailsford 2002, Zakaria et al. 2002] is a generic

abstract user model for adaptive educational hypermedia frameworks that

simultaneously run different courses involving multiple knowledge domains for users

of different goals, knowledge and backgrounds. Thus, it is based on measuring and

classifying users' performance within knowledge domains, such as the biology

domain, the mathematics domain, or any other domains involved in an educational

curriculum. The Hybrid Model is composed of an overlay model, two sets of

stereotypes: level stereotypes and category stereotypes, and the information pool, and

as such represents a hybrid of the major techniques of user modelling. Figure 6.1

illustrates the component of this abstract model.

6.2.1 Overlay Model

The overlay model is currently perhaps the most widely used technique of user

modelling. This technique involves the measurement of the knowledge level of users

in any given topic or domain. A user's knowledge according to this model is

considered to be an overlay of the total knowledge representing that domain. This

knowledge level is represented in the form of "Concept-Value" pairs [Valley 1997,

Carr and Goldstein 1977], but in the case of the Hybrid Model it is in the form of

"Domain-Value" pairs [Zakaria and Brailsford 2002]. Moreover, this type of model

has been utilised by the majority of adaptive educational hypermedia systems.

In the Hybrid Model, the overlay measures the knowledge level of each learner

within certain subject domains. This knowledge level might represent the score

achieved in the system assessment at the end of each lesson, course, or topic,

although any other parameters the system authors may choose may also be used. For

example, the score achieved in self-assessment quizzes is a widely used and well-

accepted metric of the comprehension of information [Zakaria et al. 2002].

104

Part III - Chapter VI (The Hybrid Model)

6.2.2 Stereotype Model

This model assumes that knowledge is customised for specific groups, with each user

being assigned to one, and only one, group at any given time. Thus, users who share

the same background or knowledge should be assigned to the same group. Users are

not moved from one group (or class) to another until they trigger specific conditions

that denote the new group [Rich 1999]. The Hybrid Model utilizes two different sets

of stereotypes: level stereotypes and category stereotypes.

Level stereotypes: level stereotypes mainly depend on the knowledge level of

users. For example, they may simply be defined as Beginner, Intermediate

and Advanced, but any classes may be used as appropriate to each system.

According to the users' knowledge level, they are assigned to a single class of

the level stereotypes within any given domain that they study. For example, a

user studying biomechanics might be assigned simultaneously to the novice

class in biology and to the advanced class in mathematics. Classes in the level

stereotypes are concerned with providing assistance that is appropriate, and

adapting the contents of any lesson to suit the learner. Each class may define

an article or set of articles, links to external documents, or to lessons in other

courses. For example, if a user belongs to one of the advanced classes he/she

may be provided with advanced articles or links to help the user to find more

about the topic or domain he studies. Level stereotypes have been used by

many different systems such as CHEOPS [Ferrandino et al. 1996], Metadoc

[Boyle and Encarnacion 1994], and many others.

Category stereotype: the Hybrid Model has been designed for systems that

simultaneously run multiple courses for different levels of users. For

example, the system may be running courses for first year undergraduates as

well as postgraduate users. Thus, users need to be categorized, as the

knowledge level of undergraduate users in a certain stereotype level of a

certain domain may not be the same as that of postgraduate users in the same

stereotype level of the same domain. For example, consider two users: one of

them a first year undergraduate and the second one studying for a higher

degree. Both of these students are classified in the intermediate level

stereotype for the biology domain. In addition, both of them are in the same

level stereotype, however, the intermediate level of postgraduates will be

105

Part III ~ Chapter VI (The Hybrid Model)

much more advanced than that of first year undergraduates. Category

stereotypes solve that problem by assigning users according to their type of

study or occupation into different categories. For example, undergraduate

students belong to the undergraduate category and postgraduate students

belong to the postgraduate category. Thus, members of each category are

provided with information that suits their knowledge level with respect to

their category.

6.2.3 Information Pool

The information pool is categorised by the domain model, and consists of a pool of

articles, links, and other items that constitute the resources available to an adaptive

system for any given domains. Thus the information pool embraces all the items that

describe an educational curriculum and are subject for adaptation. It is likely that the

information pool will differ in both form and content from one system that

implements the model to another.

Level
Stereotypes

Overlay Model

.-------'~ Concept ~ End
~ ~User

Information pool B I A

Figure 6.1 The components of the Hybrid Model ~ In this abstract model the overlay model
combines with category stereotypes and level stereotypes to retrieve appropriate content
from the information pool to convey appropriate adapted materials to users. Users interact
with the system to inform and update the user model. BE ~ Beginner, B - Basic, I -
Intermediate, A - Advanced, C - Category.

106

Part III - Chapter VI (The Hybrid Model)

The overlay model, level stereotypes and category stereotypes combine to pick from

the information pool the most convenient articles and links that suit each user's level,

knowledge and background. Thus, according to a user's knowledge level and

category, the most appropriate materials will be chosen from the information pool.

It is important to clarify, that the information pool is different than the knowledge

domain of a framework that implement the model. This component embraces all the

concepts that an educational curriculum/topic is composed of and has to be taught to

potential students/users. On the other hand, the domain model of the framework that

implement that model may contain different educational curricula, however, all the

concepts that compose these curricula should be mapped to comprehensive semantic

domains such as biology, chemistry, computer science, etc.

To give an example about the advantages the Hybrid model could offer, by

considering a framework that implements the Hybrid model and has been applied to

first year and second year undergraduate students, the following scenarios could

happen:

Students from both educational levels (first year and second year) could use the

system at the same time and the system could provide each of them with

appropriate adaptation that suit their educational state, and this is because of the

category stereotypes.

Students who moved to the second year their knowledge level about the studied

curricula in the first year will be maintained and this is because the concepts that

these curricula include are mapped to semantic domains (such as programming,

mathematics, etc.), which are common among different educational stages. This

is because the Hybrid model is stereotyping users' knowledge with respects to

domains and uses the category stereotypes to differentiate between students'

educational levels.

By considering a student who is studying two curricula (A and B), and both

curricula involve common domains. Moreover, if this student performed badly in

one curriculum with respect to any of the presented domain(s)' concepts, the

framework will be able to reflect that weakness automatically on the other

curriculum, which will provide this student with additional

explanations/examples that the course/curriculum author suggests for users who

107

Part III - Chapter VI (The Hybrid Model)

belong to a knowledge level less than that of this particular student in this

particular domain(s). Therefore, the Hybrid model could trace students'

performance along the learning stages because it maps the involved concepts in

any educational curriculum to comprehensive semantic domains.

6.3 The Hybrid Model and WHURLE

To exploit the functionality of the Hybrid Model, it has to be implemented through a

strong educational hypermedia framework such as WHURLE (Web-based Hierarchal

Universal Reactive Learning Environment) [Brailsford et al. 2002, Brailsford et al.

2001], which is an XML-based integrated learning environment. In this section, a

conceptual view about the implementation of the Hybrid Model through WHURLE

will be given. It is important to clarify that the implementation of the Hybrid model

in the WHURLE system led to change the design of the system to produce

WHURLE-HM. This change is explained in the implementation chapter (Chapter

VII) particularly under the Adaptation filter subsection. Moreover, this new design is

published in [Zakaria et al. 2003].

6.3.1 WHURLE Overview

The WHURLE system was initially developed as a successor to a system called the

"Scholar's Desktop" (SD) [Davies 1994] that was developed by the TLTP (Teaching

and Learning Technology Program) Biodiversity Consortium in the early 1990s. This

system is an interactive learning environment designed to deliver hypermedia

content. The content is structured as a "Study Unit" consisting of a number of nodes,

which usually consist of a single root page surrounded with a number of children.

Each study unit represents an interactive learning resource that is designed to

promote specific learning objectives through the self-paced, interactive engagement

with tasks, information, problems, or all three.

The SD software is a content-free shell, designed as a model of distributed

development and delivery. WHURLE is the next generation of SD, where features

that worked well with SD, with a change in the pedagogy, are implemented.

WHURLE is a server-based system-delivering HTML (or possibly in the future

XHTML) dynamically generated from XML content by the use ofXSLT (Extensible

108

Part III - Chapter VI (The Hybrid Model)

Style Language: Transformation). In WHURLE the content consists of atomic

chunks, each of which consists of the smallest conceptually self-contained unit of

information that the author can envisage, where these chunks are totally transparent

to the userlleamer. All of the chunks available to any given instance of WHURLE

are enclosed in what is called the melange. This melange acts as a pool where all of

the chunks of all involved domains in the system are contained. What an end-user

will see is a lesson, which is an apparent docuverse created by the WHURLE system.

This contains the contents of any number of chunks together with navigational links

and an overlaid environment that is generated by the system. The lesson is defined by

another XML file that is called a Lesson Plan, which consists of WLPML

(WHURLE Lesson Plan Markup Language).

The lesson plan contains a hypermedia pathway through the melange that is created

by teachers using WHURLE (although default lesson plans are provided with a

melange distribution). In its simplest conceptual form, a lesson plan consists of a

hierarchy of levels, each containing one or more pages. Pages consist of chunks

transcluded by means of Xlnc1udel. Moreover, levels could be nested inside each

other. Figure 6.2 shows the architecture ofWHURLE system

L..-D_is_p_la......y_E_ng_in_e__.t-------t~~1 End User

f
Lesson Plan

Melange

Chunks

Figure 6.2 WHURLE components' architecture - from the above figure it could be seen
that the WHURLE system is composed of: a) Melange: embraces all the chunks in the
system, b) Lesson plan: composed of references to a subset of chunks (using XIncIude
technology) in the melange in addition to other information, c) the display engine:
responsible for displaying a virtual document (Lesson plan), which is composed of
different chunks, to the end user.

I http://www.w3.orgffRixinclude

109

http://www.w3.orgffRixinclude

Part III - Chapter VI (The Hybrid Model)

The processing of XInclude is orthogonal to both parsing and validation, and thus

chunks are retrieved as required, rather than during the parse phase. Thus, there is a

relatively modest processing overhead at parse time, and the server load is spread

evenly during use. Figure 6.3 shows a simple extract from a lesson plan about

HTML.

<lesson plan>

<level name='intrcrweb·basics' title='The Basics of HTML'>
<page><chunk> introweb008<1chunk><lpage>
<level name='intrcrweb·tech' title='lmportant computing technical details'>

<page><chunk >introweb009<1chunk><lpage>
<page><chunk>introweb010<lchunk><lpage>

<IIevel>
<page><chunk >introweb011<1chunk><lpage>
<page><chunk>introwebD12<1chunk><lpage>
<page>

<chunk >introweb015<1chunk>
<chunk>introweb015a<lchunk>

<lpage>
<IIevel>

<level name='intrcrweb·lags' title='Simple HTML Elements'>
<page><chunk >introweb016<1chunk><lpage>
<page><chunk >introweb017 <lchunk><lpage>
<page><chunk >introweb018<1chunk><lpage>

<IIevel>

<level name='intrcrweb·link' title='Linking in HTML'>
<page><chunk >introweb027 <lchunk><lpage>
<page><chunk >introweb028<1chunk><lpage>
<page><chunk >introweb029<1chunk><lpage>

<IIevel>

<IIesson plan>

Figure 6.3 An example of WLPML - This is an extract from a simple lesson plan about
HTML basics. It could be observed that levels include one or more pages. And each page
include one or more chunks. Also, levels could be nested inside each other.

If the code in Figure 6.4 is represented graphically as in Figure 6.3, it will be:

-- L.1 __ in_tro_-w_e_b-_ba_s_ic_s_ ----

-- L.1 in_tro_-_w_eb_-t_ag_s__ _.

-- L.1 in_tro_-_w_eb_-I_in_k__ _.

-- L.1 __ in_tT_o-_w_eb_-_im_a_ge_s_

--I~__i_nt_ro_-w_e_b_-a_d_va_n_ce_

intro-web-tech

Lesson Plan

Links Level I Links Level 2

Figure 6.4 Graphical representation for the code in Figure 6.3 - it could be observed from that
graph that level intro-web-basics (Links Levell) include another link's level called intro-web-
tech (Links Level 2).

110

Part III _ Chapter VI (The Hybrid Model)

6.3.2 The Hybrid Model Information Pool

Any lesson plan in the WHURLE system contains a number of chunks' references in

addition to other information (in WHURLE terms called default narratives). Thus,

the information pool, in the case of WHURLE-HM, embraces every chunk reference

(in addition to other related information such as the author(s) of the lesson) the

lesson plan has, as shown in Figure 6.5. On the other hand, the melange holds all

chunks available in the system, i.e. a lesson plan includes a subset of chunks

contained in the melange. Thus, the contents of the information pool differ from one

lesson to another.

Hybrid model ~ 0 0 0
Information Pool

11
Default narratives,
specified in a
Lesson plan

000
Melange {».____

~ U Lesson Plan

Chunk~'----O-O-O-O-O--o---'I--co 000000 .

Figure 6.5 The Hybrid Model Information Pool in WHURLE-HM - A lesson plan holds
references to a subset of chunks contained in the Melange in addition to other
information (default narratives). The Hybrid Model information pool includes all the
default narratives of the lesson DIan

6.3.3 Knowledge Domains

The Hybrid Model depends on measuring and classifying users' knowledge with

respect to involved domains in an educational curriculum. Thus, it is necessary to

find a way to classify domains into sub-domains and sub-sub-domains, i.e. hierarchal

classification. Because of this need, it was found that the best solution is to follow

the same concept behind ontology systems such as Dewey Decimal Classification'

(DDC).

Ontology is a fundamental branch of metaphysics, which is a branch of philosophy.

That branch is concerned with the study of existence and its basic categories.

Therefore, ontology has been defined by Guarino as "a particular system of

2 http://www.oclc.org/dewey/about/about_the_ddc.htm#history

111

Part III - Chapter VI (The Hybrid Model)

categories accounting for a certain vision of the world" [Guarino 1998]. An example

is the categorization of human knowledge that is fundamental to the DDC as

described below.

From the computer science perspective, especially AI (artificial intelligence) and

knowledge representation, ontology refers a specific vocabulary presented in the

form of concepts and relations' names utilised to describe certain facts [Guarino

1998]. Thus, ontology in its simplest form describes hierarchal relationships between

concepts [Guarino 1998]. Guarino called the AI definition of ontology

conceptualisation. Therefore, according to Gruber [Gruber 1993] ontology is an

"explicit specification of a conceptualisation", where conceptualisation is an abstract

overview about the domain to be presented. For example, in the DDC example,

although Mathematics and Chemistry are different branches of science, both of them

belong to the natural science and mathematics category but not to literature.

DDe is a general knowledge organization tool that is continuously revised to keep

pace with knowledge. DDC coordinates materials on the same subject and on related

subjects. That system has ten main classes which are [ANON 2003]:

000 Generalities

100 Philosophy and Psychology

200 Religion

300 Social Science

400 Language

500 Natural Science and Mathematics

600 Technology (Applied Sciences)

700 Arts

800 Literature

900 Geography and History

Each of these classes has its subclasses. For example, the Natural Science and

Mathematics category embraces eight other subclasses, which are:

112

Part III - Chapter VI (The Hybrid Model)

-510 Mathematics
-520 Astronomy
-530 Physics
-540 Chemistry
-550 Geology
-570 Biological Sciences
-580 Botany
-590 Zoology

Moreover, each of these subclasses is divided into others and so forth. Thus, the

Dewey classification system works in a hierarchical form (from more general classes

of knowledge to more specific in a hierarchal way). The DDC numbers are featured

in the national bibliographies of 60 countries. The system was established by Melvil

Dewey in 1873 and first published in 1876. Furthermore, many libraries around the

world to classify their collections have used this classification system.

InWHURLE- HM, domains and subdomains are referred to in the same numbering

concept such as in DDC example. However, the classification of the utilised domains

in the system is up to the vision of the system's authors. Details about how this

process is performed are explained in the implementation chapter (Chapter VII)

particularly under the Database design section.

Although the main scope of this thesis about the Hybrid Model, and that model could

use ontology, it is worth mentioning a new technology that relies heavily on ontology

as well that is called the Semantic web. Ontology is an important feature that the

vision behind semantic web [Berners-Lee 1998, Fensel and Musen 2001] relies.

According to Timothy Bemers-Lee, the head of W3C (World Wide Web

Consortium), semantic web is "a web of data, in some ways like a global database"

[Bemers-Lee 1998].

The fundamental idea behind semantic web is to add meaningful descriptions

(metadata) for web sites' pages that users visit by users themselves or by the creators

of websites and could be shared among others. Such metadata have an ontology that

facilitates computer software programs to understand and can infer new data from it.

Therefore, such metadata will help machines to understand the context of the

hyperdocuments. For example, if there is a web page of a certain company stating

that all of their managers hold a PhD degree. Moreover, there is a home page

113

Part III - Chapter VI (The Hybrid Model)

belonging to MR. X, who is a manager in this company. With the presence of such

metadata, special software programs (i.e. agents) could infer that MR.X holds a Ph.D

degree, although this information is not explicitly stated. In Chapter IX, a suggestion

about how the Hybrid Model could be integrated with the semantic web technology

will be given.

6.3.4 Knowledge Levels

Users' knowledge level, in the current implementation of the Hybrid Model, that is

used in WHURLE, is represented through three stereotypes: novice, intermediate,

and advanced. This kind of stereotyping is used by various other adaptive

educational hypermedia systems, such as CHEOPS [Ferrandino et al. 1996],

Hypadapter [Hohl et al. 1996] and many others.

The rationale behind stereotyping users' knowledge level is not only to provide

advanced users with advanced information, or novice users with basics, but also to

provide a kind of assistant. Thus, novice users could access other chunks from

different domains or the same domain, or access links to other resources over the

web, in addition to the presented concepts that suit their knowledge level. Likewise,

advanced users could find more interesting advanced information about the topic

they study. However, linking to other resources either within the system or outside it

relies on the lessons' authors.

Users' knowledge level about involved domains is updated through answenng

quizzes, and taking tests at the end and the beginning of each lesson (depending on

the lesson's author). Moreover, each question in a test or a quiz represents either one

or more of the involved domain(s). According to a user's correct answers with

respect to every involved domain question(s), his/her knowledge level about each

involved domain is determined through a knowledge scale, which is a numerical

value that ranges from 1 to 10. Additionally, for each range of scores, there is a

corresponding knowledge value. For example, the knowledge value 1 corresponds to

quiz scores that range from 0 to 10 (out of 100), and the knowledge value 2

corresponds to quiz scores that range from 11 to 20, and so forth, as shown in Figure

6.6.

114

Part III - Chapter VI (The Hybrid Model)

Level stereotypes rely on the knowledge value of each user with respect to each

individual domain to assign himlher to the appropriate expertise level. For example,

the novice level might embrace users with knowledge values ranging from 1 to 4, the

beginner level ranges from 5 to 8, and the advanced level ranges from 9 to 10.

Furthermore, according to users' knowledge value, their level of expertise changes

either positively or negatively, i.e. upgrading or downgrading. Thus, the system is

tracking the performance of each user in each domain, and provides help whenever it

is needed. Figure 6.6 shows how users' knowledge level is measured and

stereotyped.

Every individual
domain's Score

o 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
I I

Knowledge
Value

? 1 4 'i 7 q 10
I I

Level
Stereotypes

Beginner Intermediate Advanced

Figure 6.6 Knowledge Levels - Beginner level stereotype embraces knowledge values from 0 to
4, Intermediate level stereotype contains knowledge values from 5 to 8, while advanced
stereotype holds knowledge values from 9 to 10. Each knowledge value represents a set of a
quizzes' scores. For example, knowledge value 1 corresponds to scores from 0 to 10, knowledge
value 2 from 11 to 20, and so forth.

The reason for representing users' knowledge level in that way is to give the system

the maximum flexibility of changing the ranges that each knowledge level embraces.

Thus, the system authors have the ability to resize the range of each knowledge

value, and subsequently the range of each knowledge level will be resized. For

example, knowledge value 1 could embraces quiz scores from 1 to 15, knowledge

value 2 from 16 to 25, and so forth. Therefore, the level stereotypes ranges will be

augmented, and the vice versa could happen, i.e. shrinking level stereotypes ranges.

6.3.5 Adaptive Lesson Plans

In WHURLE-HM, each lesson plan (which is an XML file stored in the system

directory) has its own prerequisites, such as any mandatory lessons that must be

taken before it, which are stored in a MySQL database. Thus, for a user to access a

lesson plan he/she has to satisfy its prerequisites; also, he/she has to be a member of

the same category that that lesson plan serves. The approach of a mandatory lessons

115

Part III - Chapter VI (The Hybrid Model)

prerequisite helps in case of a topic or a course composed of more than one lesson

plan and they should be taught in a certain order; also in case an author of a lesson

plan has found that knowing a certain lesson before the user gains access will be

useful. Each lesson plan may contain one or more level(s), which could be nested

inside each other. Furthermore, levels are composed of one or more pages that

embrace one or more chunk(s), as shown above in Figure 6.3.

<level name="intro-web-tags" title="Simple HTML Elements">
<page><chunk domain="html" stereotype I="beg" stereotype2="int">introwebO 16</chunk></page>
<page><chunk domain="html" stereotype I="beg" stereotype2="">introwebO 17</chunk></page>
<page><chunk domain="html" stereotype I="beg" stereotype2="">introwebO 18</chunk></page>

</level>

<lesson plan>

<level name="intro-web-basics" title="The Basics ofHTML">
<page><chunk domain="html" stereotype I="beg" stereotype2="">introweb008</chunk></page>
<level name="intro-web-tech" title="lmportant computing technical details">
<page><chunk domain="general" stereotype I="" stereotype2="">introweb009</chunk></page>
<page><chunk domain="general" stereotype I='''' stereotype2="">introwebO IO</chunk></page>

<!level>
<page><chunk domain="html" stereotype I="beg" stereotype2="">introwebO II <lchunk></page>
<page><chunk domain="html" stereotype I="beg" stereotype2="">introwebO 12</chunk></page>
<page>
<chunk domain="html" stereotype I="beg" stereotype2="">introwebO 15</chunk>
<chunk domain="html" stereotype I="beg" stereotype2="int">introwebO 15a</chunk>

</page>
</level>

<level name="intro-web-link" title="Linking in HTML">
<page><chunk domain="html" stereotype I="beg" stereotype2="">introweb027</chunk></page>
<page><chunk domain="general" stereotype I="" stereotype2="">introweb028</chunk></page>
<page><chunk domain="general" stereotype I="" stereotype2="">introweb029<1chunk></page>

<!level>

<level name="intro-web-images" title="Images in HTML">
<page><chunk domain="html" stereotype I="beg" stereotype2="">introweb030</chunk></page>
<page><chunk domain="general" stereotype I="" stereotype2="">introweb031 </chunk></page>

<!level>

<level name="intro-web-advance" title="More advanced HTML">
<page><chunk domain="general" stereotype I ="" stereotype2="">introweb035</chunk></page>
<page><chunk domain="general" stereotype I="" stereotype2="">introweb036</chunk></page>

<!level>

Figure 6.7 A simple extraction from an adaptive lesson plan about html - Chunks with the
domain's attribute value "general" will be available to every user accessing this lesson
regardless of his/her knowledge level about the involved domain. Chunks with the domain's
attribute value "html" and stereotype "beg", means that the user should have a beginner
stereotype knowledge level to access this chunk, where "beg" abbreviates for Beginner and "int"
abbreviates for Intermediate

In adaptive lessons plans, two types of chunks are defined: non-conditional chunks,

which do not have prerequisites to be met, and conditional chunks that do have

prerequisites to be fulfilled by users before their inclusion. The type of each chunk is

defined through a domain attribute, which either holds the name of the domain the

chunk is serving, or the value "general" that indicates the non-conditional type of

that chunk. Moreover, every conditional chunk has two other attributes in addition to

116

Part III - Chapter VI (The Hybrid Model)

the domain attribute: stereotype I and stereotype2. Those attributes determine the

required knowledge level(s) to access that chunk, as at least one of them should not

hold a NULL value, as shown in Figure 6.7. Thus, a user has to fulfil one of them, if

both of them hold a knowledge level to be met, to gain access to that chunk.

The reason for these two stereotype attributes is that any chunk that is essential for

users with a lower knowledge level to know could be utilized by users with a higher

knowledge level to understand a new piece of information, and that depends on

lessons' authors to decide. Furthermore, just two attributes are used, not more or less,

because in the current implementation there are only three knowledge level

stereotypes. What is more, every lesson a user has finished is recorded into his model

for future revising, if needed.

6.3.6 Adaptation Mechanism

According to Brusilovsky [Brusilovsky 2000, Brusilovsky 1997, Brusilovsky 1996],

there are two kinds of adaptation widely used in adaptive systems: adaptive

presentation and adaptive navigational support. The idea of adaptive presentation is

to adapt the content of a page accessed by a user to suit hislher knowledge, goals and

other characteristics. On the other hand, the adaptive navigational support helps users

to find their path through hyperspace by adapting link presentation to the knowledge,

goals and other characteristics of each user.

Due to the nature of WHURLE's infrastructure, these two types of adaptation are

combined together in the adaptation process. When a user clicks on a level link, the

first associated page within that level will be included with its available chunks. If

any page within any level does not have any chunk to be included, the link to this

page is removed; the same thing happens if a level does not have any pages to be

included. Thus, this link removal technique is used to adapt the content of the lesson

plan, and thereby adaptive representation and adaptive navigational support are

combined together (collateral structure adaptation technique explained in Chapter

III), as shown in Figure 6.8.

117

Part III - Chapter VI (The Hybrid Model)

Welcome to: An introduction to Creating Web PagesjIIiiil,_,-,_, "_,, ~

A

Welcome to: An introduotioo to Creating Web Pages
~.__, _"..,,,_\, Co.:.>gk

re- TIIIr IIntL PM l!raflh TIIII;

,,.._ .. _ •• F .,WD(L,,._,,.~·IO.I,..__ 1 ""._rl ..._
.. I.~

....";.. 1,..._,. 1·.. "·10.,.., •• ,._,_ n.. '1"''''''''''~.--' ..1bo'''
• -- ~_'~_ N· .. '"' .. ,_.»oo .. ""'... _ .,...-·__ (ljo1),Tw_~"'

..., _--'"......._ , " _ ---.>

..... ,_._ ~.,. '0 ,.... _, ... ",,_ ~l"._ •• ,.. _ tOo .<_ to.

At

Welcome to: An introduction to Creating Web Pages
.--\-,-\,_\-\, CwsIt

B

Welcome to: An introduction to Creating Web Pages T... "'llOOl~'"

~,-''_'\"_"_\, "«We ~J(tdc:r~

re- ne In~IL rlluJ,,'upbTill
lyoo_" ro<..- .. l., 1!!'Ilt,... """*_,........._,_d__ot .. _

.. "",...-1If'h...... I,.. ,... ,..,_ _ .. ~ __ 'I\, ' ... r........h_ ,.I........
~_ ,_ "'__ k .. '_ •• ". _ _ • __ ~ONI.r._..

............ ..-__ .
q, _ " _ I.>

q, ."_'_ •• ,'>'I , ••• "" _, _ •• ,." < " , ,..~-~"'."--"-n.. •• _arIt

Bl

Figure 6.8 Adaptation Snapshots - Image A represents the first page of a non-adapted version of
the html lesson plan where links to all levels (6 levels) are found. Image Al represents the
content of the second level, as it is composed of 11 pages, and a user can access them by means
of the navigational buttons on the left frame. On the other hand, image B represents the adapted
version of the first page of the same lesson plan, where links to five levels only are found and the
sixth one is removed as none of its pages has chunks to include. Image Bl represents the content
of the same level that image Al represents, but with links to only seven pages not 11, whereby
on the other four pages the user has not met their prerequisites; in addition none of them is of
non-conditional type.

The adaptation engine in WHURLE-HM acts as a filter to lessons' content, where

conditional chunks whose prerequisites are met and non-conditional chunks are

included. Thus, a user will access information that is appropriate for his/her

knowledge level. Through the history links, which is on the toolbar at the far right

side in Figure 6.8 (images: Band B1), users may access all visited lessons in a non-

adaptable version (without excluding any chunk) through the pop-up history window,

as shown in Figure 6.9. The idea behind that approach is to build a kind of library for

every individual user, composed of all visited lessons in a row format without

118

Part III ., Chapter VI (The Hybrid Model)

adaptation, as he/she can refer back whenever he/she wants to maintain information

about studied domains.

!usson Name ~e !FinishedDate I
!basic.lesson-leveI3 ~jlO-S;=2002
!intro-web-am-Ol ro-I30-Jan.2003

Figure 6.9 History Window - When a user clicks on the history link, as in Figure 6.S Image B or
B1, a pop-up history window comes into view, which includes links to all visited lessons, in a
non-adapted version as in Figure 6.S-lmage A and AI, in addition to the total score the user got
at the end of each of them; also the date in which he/she finished each lesson.

In addition, adaptive navigation support is used through the use of colour annotation.

When a user accesses the system, all lessons that serve his/her category are listed in a

list box with different font colours. Three colours are used: Red - represents lessons

that the user has not accessed yet, Orange - represents lessons that are open but not

finished, and Green - represents finished lessons. For a lesson to change its state

from open to finished, the user has to take its final quiz. As a result, his knowledge

level(s) with respect to the involved domain(s) is/are updated and his/her old

knowledge level(s) is/are stored in the database. The reason in storing the old

knowledge levels is to give the user the ability to revise each finished lesson in its

old (before updating his/her knowledge level) adapted format. Thus, users have the

option to revise finished lessons either in a raw format through the history link (as in

Figure 6.9), or in its old adapted format by choosing it from the lessons' list. Figure

6.10 shows the annotated lessons according to their state. Moreover, the state of the

lesson changes from not-accessed to open if the user got the chosen lesson's pre-

quiz, or accessed it directly in case that lesson does not have a pre-quiz. The post-

quiz and pre-quiz are described in Chapter VII

119

Part 1II - Chapter VI (The Hybrid Model)

-WHURLE Authentication System
Choose .lesson to &Cecn:

No"
• Red cc .ored 1~~,onsJ[NOT)-Lesson not accessed yet
• OriU1£ccolored leuousJ(OPNJ-LuJons n' Imhed yet
• Green cclcred lenor.s/[FIN]-Ltu~ru alreldyfirushed

Figure 6.10 Choosing Lessons - In the list box, lessons' names are annotated according to their
state. Red font- lessons not accessed yet, Orange font- opened lessons, and Green font- finished
lessons.

The Hybrid Model used within WHURLE-HM is a cooperative [Kay 1995] type of

user model, because it collaborates with users in gathering information, The users

are required to supply the system with personal information when they access the

system for the first time, e.g. their occupation/category, preferences, and other

information items
I User login In

I User category stereotype and levels stereotype, with respect to the Iinvolved domains, are checked

D
I Adaptation takes place and then the user interacts with the system In

User's knowledge level with respect to the involved domains is updated according to
hislher score in the system assessment

n
Updating the user's level stereotypes for the involved

domains

Figure 6.11 Users Interaction - Once the user logs in, the system either adapts its material
according to the existing user model, or creates a new one. At the end of each lesson, the
user model is updated and the old knowledge levels are stored.

In Figure 6.11, when a user logs on to the system, he/she supplies his/her usemame

and password to verify his/her authentication. Subsequently, lessons that serve the

120

Part III - Chapter VI (The Hybrid Model)

same category the user belongs to are listed in colours in the list box as shown in

Figure 6.10. If a user chooses a lesson that is not accessed yet, the system starts to

check if that lesson has any prerequisite lessons; if it has, the system informs the user

to finish the prerequisite lesson(s) before accessing the current one. If the system

does not have any prerequisite or the user has fulfilled them, the system checks if the

lesson has a pre-quiz or not; if it has, the user is then directed to the quiz and then

he/she can access the lesson. In case of lessons that do not have pre-quizzes, users

can access them directly. Thereby, the lesson state will be changed from not-

accessed to open, the adaptation process takes place, and the user starts to navigate

through the adapted information. Hence, at the end of each lesson, the user may

answer a quiz or take a test, and depending on his/her score, his/her knowledge level

about each involved domain is specified. Therefore, the user is re-assigned to one of

the level stereotypes for each involved domain, and his old knowledge level(s) is/are

stored. Moreover, the lesson state will be changed from open to finished. In case a

user has chosen a finished lesson to access, the lesson will be adapted according to

the knowledge levels the user had before finishing that lesson. Thus, the user can

revise that lesson.

In the case of new users, they have to supply the system with personal information,

such as their name, category, etc, before accessing the system. Through this

information, the system knows which lessons each user can access and which they

cannot, and of course that depends on the category of each user.

6.4 Summary

Throughout this chapter, a detailed overview about the Hybrid Model, which is an

abstract and generic model, with its components has been given. In addition, an

overview about the WHURLE system has been described, and an explanation given

about how every component in the Hybrid Model is applied through WHURLE to

produce WHURLE-HM. Moreover, some implementation examples are given. In the

Implementation chapter (Chapter VII), full technical details are explained. An

attention is given to the new design by which the adaptation filter is integrated in

WHURLE to produce WHURLE-HM is explained in Chapter VII. It is important to

121

Part III - Chapter VI (The Hybrid Model)

notice that this chapter explained the conceptual implementation of the Hybrid

Model through WHURLE. This chapter is organized as follows:

Introduction: the introduction explained the motivation behind the Hybrid

Model, and why the Hybrid Model is created and for which purpose.

The Hybrid Model architecture: in that section, the Hybrid Model with all its

components is explained.

The Hybrid Model and WHURLE: this section gives a brief overview about

the WHURLE system and its origin. Furthermore, it explains the conceptual

implementation of the Hybrid Model through WHURLE including every

component the Hybrid Model embraces. Also, a brief description about the

system map is described. In the Implementation chapter (Chapter VII), this map

is explained in full detail.

122

Part III - Chapter VII (Implementation)

Chapter VII: Implementation

7.1 Introduction

In the Hybrid Model chapter, it is explained what is meant by the Hybrid Model and

how it is conceptually implemented through WHURLE. As explained in the former

chapters, especially in the technology chapter (Chapter V), in WHURLE-HM

different technologies have been used together, such as ESQL, XSP, and JAVA. In

this chapter, the logical mechanism of the different components of the system, in

addition to how the actual files cooperate with each other will be explained. Before

digging deep into technicalities, a full picture about how the whole system is

working will be discussed through describing the implementation algorithm of the

system.

7.2 Implementation Algorithm

WHURLE-HM is implemented according to the following algorithm:

When a user logs into the system he/she has to supply hislher user name and

password. If the user is not registered, he/she will be declined.

If the user is registered, hislher category will be checked. Thereby, all lessons

that serve that category will be listed in different coloured fonts as explained in

the Hybrid Model chapter (Chapter VI) (Red: new lessons, Orange: unfinished

lessons, Green: finished lessons).

In case the user has chosen a new lesson, the system looks for any prerequisites

associated with that lesson that the user has not finished. In other words, it looks

for mandatory lesson(s) for that lesson that the user has not completed. Ifthere is

one, the system directs the user to that particular lesson(s).

If the user chooses a new lesson to access, for which he fulfilled its

prerequisite(s), and that lesson has a pre-quiz, or he/she is directed to a

mandatory lesson that has a pre-quiz, then he/she will be directed to that quiz.

Moreover, that lesson's state will be changed from new to opened with respect to

that user. In case of opened lessons and finished lessons, the user will access

them directly even if they have a pre-quiz, which makes sense, as the user had

123

Part III - Chapter VII (Implementation)

Finished Lesson

Declined

Checking user's category and listing
corresponding lessons

Getting old
knowledge levels for
the corresponding
domains from

database

Yes
New Lesson

Adapting contents

No

Checking knowledge
levels ofthe

corresponding involved
domains

Change the state of the lesson to finished. update the database with the new knowledge levels. and store the old knowledge levels
in th,. n~tAh~IIi;P

Update corresponding
domains' knowledge

levels

Not
Exist

No

Stand Still

Yes

No

End

Figure 7.1 WHURLE-HM Flowchart

124

Part III - Chapter VII (Implementation)

supposedly finished the associated pre-quiz (if found) in order to access that

lesson.

After the user finishes the pre-quiz of a new lesson, he/she gets the option to

either access the lesson or to go back to the lessons list

The knowledge levels that the user attained in the pre-quiz with respect to the

involved domains in that lesson have their main effect in the adaptation process.

Thus, the lesson's contents will be adapted according to these levels - as

described in Chapter VI.

The change in knowledge levels will be reflected throughout all opened lessons.

For example, if a user with a beginner knowledge level in the Biology domain

and in a pre-quiz his level changed to intermediate. Thus, this kind of upgrade in

knowledge level will be reflected over opened lessons' adaptation process, which

include that domain. It is important to notice that that reflection is not applied to

finished lessons.

In case of new lessons and opened lessons, an additional hierarchal level will be

added to the body of these lessons called "final quiz". This level allows users to gain

access to the final quiz after finishing with the lesson. Nevertheless, in case of

finished lessons, that level does not exist

In case of opened lessons, when a user finishes the final quiz (post-quiz), the

lesson's state changes to finished. Moreover, the knowledge levels with respect

to the domains involved in that lesson, before taking the final quiz, will be stored

in the MySql database. Thereby, when a user accesses a finished lesson, that

lesson will be adapted according to those stored knowledge levels.

Figure 7.1 shows the flowchart for the current implementation.

7.3 Database Design

In the WHURLE-HM, the MySql DBMS (Data Base Managing System) is used, as it

is well supported by a huge and active mailing list, and also because it has been used

by many applications, which means it is a reliable DBMS, moreover the researcher

has an experience in using it. The WHURLE-HM database is composed of 13 tables.

Each of them will be explored, and then their functionality will be explained. The

tables will be divided into two categories: Systems' tables, Users' tables.

125

Part III - Chapter VII (Implementation)

7.3.1 System's tables

System's tables mean tables that are essential for configuring the system to carry the

adaptation process. These tables are:

Category: this table identify categories where the system is going to serve, and it

holds two fields:

o Category_name: a unique name for each category.

o Category _id: a unique ID for each category.

Con[:conf abbreviates for configuration file, which holds a skin and other

configurations. Thus, this table holds different configuration files that in tum

hold different skins a user may choose when he/she registers in the system. That

table holds two fields:

o Conf_ name: a description name of the file; for example,

Modem Style, Egyptian Style, etc.

o Conf_file: the actual physical name of the file without

extension.

Domain: that table introduce to the system the semantic domains that are

involved in the educational process, such as Biology domain, Physics Domain,

etc. That table could be incremented by means of lessons' authors as well. That

table holds two fields:

o Domain_name: the names of involved domains, such as

Chemistry, Biology and so forth.

o Domian_id: a unique ID for each involved Domain.

Knowledge _scale: this table hold ranges of quiz scores and their corresponding

knowledge values, as explained in Chapter VI. These knowledge values are

numerical values that range from 1 to 10. That tables holds three fields:

o Urange: holds the upper score in a range of scores.

o Lrange: holds the lower score in a range of scores.

o Knowledge: holds the corresponding knowledge value for

scores that come between the Urange and Lrange; for

example, if a user got any score between 10 (Urange) and

o (Lrange) its knowledge value is 1.

Stereotype _scale: that table holds stereotype classes that are based on the

knowledge values that could be obtained from the Knowledge_scale table. That

126

Part III - Chapter VII (Implementation)

kind of detaching between knowledge scale and stereotype scale gives a very

useful advantage, as system administrators could augment the stereotype classes'

ranges without affecting the knowledge value ranges, and the opposite could also

happen. Moreover, as described in Chapter VI, the stereotype classes could be

Beginner, Intermediate and Advanced. That table holds three fields as well:

o Urange: holds the upper knowledge value in a range of

knowledge values.

o Lrange: holds the lower knowledge value in a range of

knowledge values.

o Stereotype: holds the corresponding stereotype for

knowledge values that come between Urange and Lrange;

for example, if a user got a knowledge value between 5

(Urange) and I (Lrange), he/she would be considered to be

a beginner.

7.3.2 Users' tables

Users' tables means tables that are specifically oriented to lessons' authors and users

to feed more than a system administrator. Thus, after configuring the system by

supplying it with the necessary data as described in the system's tables section, the

requirement of each lesson needs to be supplied by its author(s); also users need to

register themselves to the system. So, users' tables include:

Lesson_jlow: that table holds the names of involved lessons in addition to other

related information through the following fields:

o Lesson_name: holds the name of the involved lessons.

o Lesson _id: a unique ID for each lesson that IS

automatically created by the system.

o Categ: that field holds the ID of each category that each

lesson serves.

o Closingdate: holds that date at which each lesson expires,

which of course depends on lessons' authors either to set

that date or to leave it open. In fact, in the current

implementation, that field is left for future usage if needed.

127

Part III - Chapter VII (Implementation)

Lesson_req: that table holds information about the requirements of each lesson,

which include:

o Lessonid: the ID of each involved lesson.

o Domainid: the ID of a domain(s) that each lesson

embraces.

o Pretest: that field holds the names of pre-quizzes' files, if

existing, or null.

o Postest: holds the name of final quizzes' files for every

involved lesson.

Lessons _record: when a user finishes a lesson the state of that lesson changes

from open to finished by registering itself with other related information in that

table, which holds four fields:

o Slid: holds the ID of every user who finished one or more

lesson.

o Lessonid: that field holds the ID of every finished lesson

with respect to every involved user.

o Score: that field holds the final score that every involved

user got with respect to every finished lesson.

o Finishdate: that field holds the dates at which every

involved user finished every involved lesson in the form of

dd-mmm-yyyy, such as 23-Sep-2003

Mand lessons: that table holds the name of mandatory lessons. In other words,

identifies the sequence of lessons. For example, as described in the Hybrid Model

chapter (Chapter VI), a lesson may need another lesson(s) to be taken by a user

before accessing that one. That table holds two fields:

o Lesson _id: that field holds the ID of every lesson that has a

mandatory lesson to be taken before it.

o Mand_lesson_id: that field holds the IDs of the

corresponding mandatory lessons.

Old_lvl: as described in the implementation algorithm section, when a user

finishes a certain lesson, by taking its final quiz, its old knowledge levels are

stored. The old_lvl table is responsible for storing these knowledge levels. That

table has four fields:

128

Part III - Chapter VII (Implementation)

o Slid: ID of involved students.

o Lesson _id: the ID of every finished lesson with respect to

every involved user.

o Dom_id: the ID of every domain associated with every

finished lesson.

o Dom_lvl: holds the stereotype of every user with respect to

every involved domain in every lesson that each user has

finished at the time when each lesson is finished, i.e.

before taking a final quiz.

Open_lessons: when a user chooses to access a new lesson, the status of that

lesson changes from new to open by registering itself in that table, which holds

two fields:

o Slid: the ID of every involved student; in other words,

every student who has an open lesson(s).

o Open_lesson: the ID of every open lesson with respect to

every involved user.

Stereotype: that table holds the stereotype class of every user with respect to

every domain he/she accessed through a lesson(s). Moreover, all the updates in

the stereotype classes for every user are registered in that table. Thus, the

stereotype table is considered as being the repository of the adaptation engine.

That table holds three fields:

o Stid: the ID of every involved student/user.

o Domain _id: that field holds the ID of every domain that

each individual user has accessed.

o Class: that field holds the stereotype class, such as

beginner, intermediate or advanced for every domain with

respect to every involved individual user.

User: that table holds related information for every user registered in the system.

It is composed of seven fields:

o Fname: the first name of every registered user.

o Lname: the last name of every registered user.

o Username: a user name that each user chooses to identify

himlherself to the system through the login screen.

129

Part III - Chapter VII (Implementation)

o Password: a password that each user chooses to identify

himlherself. It is important to notice that the combination

between the user name and password for every individual

user should be unique. Thus, it does not matter if two users

have the same user name or the same password.

o Slid: a unique ID for every student, such as his university

card number or his ID number.

o Categ: that field holds the category that each registered

student belongs to through the ID of that category.

o Confgfile: holds the name of the configuration file that

each student has chosen while registering in the system.

The full structure of the database and the tables with examples can be found in

Appendix B.

7.4 System Components

In addition to the melange, lessons' plans, the display engine (the same in

WHURLE), and the database (described above) WHURLE-HM is composed of

another three parts: Authentication system, Quiz engine, and Adaptation filter, as

shown in Figure 7.2. These parts plays an important role in:

Providing access to registered users.

Testing users' knowledge with respect to the domains involved in the chosen

lesson (first time access a lesson or after finishing it).

Providing adapted versions of a lesson according to users knowledge level with

respect to the involved domains.

From Figure 7.2, it could be observed that the whole communication process

between the three components of the system in addition to the other components is in

a black box, therefore, users would not see the underlying structure of the system. All

what an end user (student) can see is a quiz (post- or pre-) and an adapted lesson

plan. The following sections will describe each of these three parts technically, and

will explain how they communicate between each other and the database.

130

Part 111- Chapter VII (Implementation)

Lessons'
Plans

Adaptation
Filter

Adapted
Lesson Plan

Figure 7.2 WHURLE-HM Components - a) Authentication system - users have to be registered
to gain access to the system. Moreover, it is responsible for directing users either to the quiz
engine, in case of new lessons that have pre-quizzes, or to the adaptation filter, in case of open
lessons or new lessons that do not have pre-quizzes; b) Quiz Engine - if a user has chosen a
lesson that has a pre-quiz, than he/she will be directed to the quiz engine, which will produce the
quiz and then the knowledge levels of the corresponding domains will be updated; in case of a
post-quiz, the role of the quiz engine will be activated once more; c) Adaptation filter- it is
responsible for filtering the contents of a lesson plan (depending on users' knowledge level
stored in the database) and pass the adapted version to the display engine to present it to the
end user.

7.4.1 Authentication system

The authentication system is composed of five files: was.html, was_mid_les.xml,

was-tst.xsl, was_les2.xml, and was.xsl (the full code is found in Appendix A). When

a user logs on to the system, he/she will access was.html, which is responsible for the

design of the login screen (a snapshot of the login screen is in Appendix C). Thus,

he/she has to supply hislher user name and password to access the system, thereby,

being directed to was_mid_les.xml. In fact, the was_mid_les.xml file imports a

custom Java class, which is responsible for checking if the user name and password

are registered in the user table in the database. If they are registered then the user is

allowed to access the system, otherwise, he/she will be declined. Moreover, that file

is responsible for getting all the lessons that serve the same category the user belongs

to, once he/she is granted access to the system, from the database by means ofESQL

technology, as described in Chapter V. In addition, it is responsible for classifying

131

Part III - Chapter VII (Implementation)

them into three categories: new lessons, open lessons, and finished lessons (a

snapshot of the lessons' screen is in Appendix C). It does that by checking lessons in

the lessons_record table, open_lessons table and lesson_flow. Technically, lessons

that are in the open_lessons table are displayed in an orange coloured font, those in

the lessons_record table are in a green coloured font, and those in the lesson_flow

table are in a red coloured font. Moreover, was-tst.xsl is responsible for colouring the

font of lessons' names. Thus, users (students) have three options to choose from,

either to choose a new lesson (not-accessed yet), an opened lesson, or a finished

lesson to revise. In all cases, after choosing a lesson, users will be directed to the

was_les2.xml file, which will behave differently in each case, as follows:

Lessons not accessed yet: in the case of a new lesson, the was_les2.xml will

communicate with the database to check if that lesson has any mandatory

lesson(s) that the user has not finished. Then it checks if that lesson has a pre-

quiz or not. Hence, we have two cases:

• A mandatory lesson(s) exists: if the lesson has a mandatory lesson the

user has not finished yet, was_les2.xml directs that user to that particular

lesson and so forth through was.xsl.

• No mandatory lesson(s): if the lesson has no prerequisite lessons the user

has not fulfilled, was_les2.xml starts checking if that lesson has a pre-quiz

or not. Thus one of the two following routes the user will follow:

o Pre-quiz route: if that lesson has a pre-quiz, was_les2.xml

will direct the user via was.xsl to the quiz engine to access

the corresponding quiz.

o Normal route: in that case, that lesson has no qUIZ.

Thereby, was_les2.xml will communicate once more with

the database to get all related information, such as a

configuration file from the user table and knowledge

levels of domains associated with that lesson from the

stereotype table. After that, was.xsl will direct the user to

the chosen lesson that will be filtered by means of the

adaptation filter. Moreover, an additional hierarchal level

in the lesson's hierarchy called "quiz" will be added (a

snapshot of an adaptive lesson is in Appendix C), which

132

Part III - Chapter VII (Implementation)

directs users to the final quiz associated with the accessed

lesson.

Open lessons: in the case of open lessons, the normal route will be applied. The

only difference is that the system will acquire the knowledge levels of associated

domains directly from the database, instead of getting them from the quiz engine.

Finished lessons: with the finished lessons case the scenario differs, as

was les2.xml will not communicate with the stereotype table to get the
I

knowledge levels of the associated domains. Instead, it will get these values from

the oldIvl table. Moreover, the additional hierarchical level "quiz" will be

removed from the adapted lesson, which makes sense because this kind of lesson

is only for revising, and the user will supposedly have finished its final quiz in

order to change the lesson's state to finished.

7.4.2 Adaptation filter

The adaptation filter is considered to be the main gear of adaptation, as through it the

content of any lesson is filtered to suit users' knowledge, goals and background. In

fact, whurle-filter.xsl is the file that is responsible for this operation (the full source

code is in Appendix A). In WHURLE, before adaptation, the system was composed

of two parts, as shown in Figure 7.3.

A Lesson Display Engine
Plan

...

Figure 7.3 WHURLE Old Infrastructure - was composed of two parts: a) a lesson plan, which is
composed of a number of chunks, as described in Chapter VI; b) a display engine, which is
responsible for drawing the hierarchical levels of lessons, and displaying them according to the
chosen configuration files, as described in Chapter VI.

During the design process of the adaptation filter, it was important to detach the

adaptation filter from the display engine. Thus, any change or update in the

adaptation filter will not affect the display engine and vice versa, which in tum

provides the system with maximum flexibility [Zakaria et al. 2003]. Therefore, the

adaptation filter is fitted to the system as an intermediate stage between the involved

lessons' plans and the display engine as shown in Figure 7.4. Technically,

was_les2.xml file before activating the adaptation filter it puts in session variables the

133

Part III - Chapter VII (Implementation)

knowledge levels of a user with respect to every associated domain with the chosen

lesson. After that, the adaptation filter reads these variables, which may hold for

example, Biology = Intermediate, Chemistry = Beginner. Afterwards, it starts to

compare the required knowledge level for every chunk that serves a certain domain

with those found in session variables.

Lesson Plan
.. Display Engine_.'
Adaptation Filter

Was les2.xml

Figure 7.4 WHURLE New Infrastructure - the adaptation filter filters the contents of lessons' plans
based on the knowledge levels of users with respect to the associated domains, and then pass the
final adapted contents to the display engine to be displayed to the end users.

For example, let us consider the introduction to the html lesson plan in the Hybrid

Model chapter (Chapter VI). Figure 7.5 shows a part of it.

<lesson plan>

<level name="intro-web-basics" title="The Basics ofHTML">
<page><chunk domain="html" stereotype I="beg" stereotype2=''''>introweb008</chunk></page>
<level name="intro-web-tech" title="lmportant computing technical details">
<page><chunk domain="general" stereotype I="" stereotype2="">introweb009</chunk></page>
<page><chunk domain="general" stereotype 1="" stereotype2="">introwebO IO</chunk></page>

</level>
<page><chunk domain="html" stereotype 1="beg" stereotype2="">introwebO II </chunk></page>
<page><chunk domain="html" stereotype 1="beg" stereotype2="">introwebO 12</chunk></page>
<page><chunk domain="html" stereotype I="beg" stereotype2="">introwebO IS</chunk></page>

</level>

<level name="intro-web-tags" title="Simple HTML Elements">
<page><chunk domain="html" stereotype 1=''beg'' stereotype2="int">introwebO 16</chunk></page>
<page><chunk domain="html" stereotype I="beg" stereotype2=>introwebO 17</chunk></page>
<page><chunk domain="html" stereotype I="beg" stereotype2="">introwebO 18</chunk></page>

</lesson plan>

Figure 7.5 Adaptive Lesson Plan - a part of an adaptive lesson plan about introduction to HTML

From the above figure, as explained in the Hybrid Model chapter, each level may

nest other levels. In addition, each level may embrace pages and each page may hold

one or more chunks. We find that each chunk has three attributes: a) domain, which

134

Part III - Chapter VII (Implementation)

holds the name of the associated domain or "general" in case that chunk has no

specific domain and should be displayed to all users; b) stereotype I, which holds a

stereotype class for the associated domain; c) stereotype2, which also holds a second

stereotype class for the same domain.

Whurle-filter.xsl behaviour depends on a session variable that indicates if the system

is in the adaptation mode or not, as follows:

Adaptation Mode is off: in that case, the filter will not be active and will pass all

chunks to the display engine.

Adaptation mode is on: in that case, whurle-filter.xsl checks the domain attribute.

If it contains the value "general" then the chunk will be passed to the display

engine. On the other hand, if the domain attribute holds the name of a domain,

the filter will check for the session variable whose name is the same as the name

of that domain. Afterwards it checks for the value that variable holds and

compares it with stereotype 1 and stereotype2 attributes. If any of them matched

with the value of that variable, then the chunk would be passed to the display

engine, otherwise it would not. This passing process acts as UNIX pipeline and

XML pipeline concept, where the output of one programme is the input of

another. Therefore, the output of the adaptation filter is the input for the display

engine to present the chunks that passed the filter as they suit a user's knowledge

level [Zakaria et al. 2003].

Another factor that affects the behaviour of the adaptation filter is the type oflessons.

If a lesson is of the open or new type, then a new level will be added to the hierarchy

of that lesson. That level is called quiz, through which users find a link to the final

quiz associated with that lesson. On the other hand, if a lesson is of the finished type,

thereby that level will not be added. It is important to notice, as described in Chapter

VI, when a user accesses any kind of lessons, a dynamic link appears at the tool bar,

which is called "History". That link is responsible for providing lessons that a user

has finished in a raw format, i.e. without adaptation. In fact, the history.xml file is

responsible for communicating with the database and getting all lessons that a user

has finished. In addition, it switches the adaptation engine off for those lessons. On

the other hand, the history.xsl file is responsible for displaying a table in a separate

page to users, containing links to finished lessons (in a raw format) in addition to the

score they got in each lesson, and the dates at which they finished those lessons.

Thus, users could revise the full information in those lessons; also, they will have

135

Part III - Chapter VII (Implementation)

their personal library that may include different subjects, which may be used as

references if needed. The full code for history.xml and history.xsl is provided in

Appendix A.

7.4.3 Quiz engine

The quiz engine plays an important and crucial part in the adaptation process. As

explained in the Hybrid Model chapter, through quizzes, the system could infer

users' knowledge level with respect to the domains associated with lessons. The quiz

engine is composed of three parts: Quiz, Auto marking engine, and Upgrade engine,

as shown in Figure 7.6. Each part of the quiz engine has its own files. Thus, each of

them in more detail will be described individually.

1'-... .,../
Auto Upgrade..

marking
..

engine
__..

Quiz ... p .. Database
engine

.....

Figure 7.6 Quiz Engine Components - the quiz engine is composed of three parts. a) Quiz: this
is the quiz that a lesson author is creating to test the knowledge of involved users with respect
to the domains associated with the lesson. That quiz could be a pre-quiz or a post-quiz. b) Auto
marking engine: that engine auto marks the results and analyses the answers to obtain the
score a user attained with respect to every associated domain and with respect to the overall
quiz. c) Upgrade engine: compares the new knowledge levels with those in the database and
updates the database with the new levels, if any.

7.4.3.1 Quiz
Through a quiz, lessons' authors could find a way to know the knowledge level of

the involved users before accessing lessons, so the system can adapt the contents of

these lessons to each individual user's knowledge level, or can know what these

users have learned from a particular lesson if a quiz is a post-quiz. In fact, there are

two kinds of quizzes: pre-quiz - users could take that kind before accessing a lesson,

and post-quiz - users must take it after they finish any lesson. The code in Figure 7.7

shows a part of a quiz file.

From Figure 7.7, it can be seen that the quiz file is composed of five parts:
Quiz Name: holds the name of the quiz to be displayed on the screen for users.

Type: the type of the quiz identifies it either as a pre-quiz (pretest) or a post-quiz

(postest). Depending on the type, the upgrade engine behaves differently as will

be explained later.

136

Part III - Chapter VII (Implementation)

Domains: through that part, lessons' authors could identify the involved domains.

The top-level tag of that part called "domains", which has an attribute called

"num", That attribute holds the n number of the involved domains. Thus, inside

that level there is an n number of domain tags. Each domain tag holds the name

of a domain in addition to two other attributes:

a) id: that attribute holds a unique ID that a lesson author gives for that domain.

b) qid: that attribute holds the IDs of questions that represent that domain.

Mark-base: that part identifies the score that a user will get each time he/she

answers a question correctly. For example, if the mark-base is 5, and a user has

answered three questions correctly out of five, then his final score will be 5x3 =

15 out of 25. Thus, it is important to balance the score with the knowledge value

scale. As explained in Chapter VI, the knowledge value scale ranges from 1 to

10, and each value represents 10 score numbers. Therefore, lessons' authors have

to make sure that if a user has answered all questions, with respect to a certain

domain, correctly his/her score must be at maximum equals 100.

<quiz>
<quiz-name> Web Technologies Quiz l</quiz-name>
<type>pretest</type>
<domains num="4">

<domain id="l" qid="l,3">chemistry</domain>
<domain id="2" qid="l,2,3,4">biology</domain>
<domain id="4" qid="1,3,S">Physics</domain>

</domains>
<mark-base>20</mark-base>
<questions>

<question type="choice" media="text" id="l">
<question-text> Single Choice - True/False </question-text>
<answer type="no" id="l">first choice</answer>
<answer type="no" id="l">second choice</answer>
<answer type="yes" id="l">Third choice</answer>
<answer type="no" id="l">Fourth Choice</answer>

</question>
<question type="multiple" media="text" id="2" choices="2.1,2.2">
<question-text>Choose the best answer(s) </question-text>
<pic caption=·caption->image file name</pic>
<answer id="2.0">first choice</answer>
<answer id="2.0">second choice</answer>
<answer id="2.1">Third choice</answer>
<answer id="2.2">Fourth Choice</answer>

</question>

<question type="choice" media="image" id="s">
<question-text> Single Choice - True/False fifth choice</question-text>
<answer type="no" id="S">steel/st-down.gif</answer>
<answer type="no" id="S">steel/st-up.gif</answer>
<answer type="yes" id="S">steel/st-right.gif</answer>
<answer type="no" id="S">steel/left.gif</answer>

</question>
</questions>
</auiz>

Figure 7.7 Quiz File - this is a part of a quiz that was originally composed of five questions.
There are two kinds of questions: a) choice: single choice questions; b) Multiple: multiple
choice questions.

137

Part III - Chapter VII (Implementation)

They can do that by compromising between the number of questions and the

mark-base. For example if a quiz is composed of 20 questions and involved two

domains (10 questions for every domain), then the mark-base should be at

maximum 10, as in 10xlO=100.

Questions: the questions part embraces the questions that a lesson author wants to

ask. The "question" tags below the top level tag of this part, which is called

"questions", is composed of a different number of attributes depending on its

type attribute, also embracing other child tags. Thus, there is two types of

questions:

• Choice: this kind of question means choosing only one answer from the

other possible answers;

• Multiple: this kind means to choose more than one answer from the other

possible answers.

If a question is of the choice type, then there is other two other attributes:

a) media: that attribute holds the type of answer either being a text or an image

answer. It is important to notice that mixing between text and image in the

answers of the same question is not allowed.

b) id: this is a unique id for every question, which is used as a reference for a

question in the qid attribute in the "domain" tag.

Following that tag, another child tag that is called "question-text", which holds

the question text itself. After the "question-text" tag may come the "pic" tag.

That tag is responsible for displaying an image as a part of a question by holding

either the path or the name of the image file. The "pic" tag holds one attribute

that is called "caption", which could hold the caption of the associated image or

could be left empty, if no caption is required.

Afterwards come the "answer" tags, as each of which holds a different answer.

In addition, each of them holds two attributes:

a) type: that attribute either holds a ''yes'' value, which indicates that this

answer is the right one, or a "no" value, which indicates that this answer is a

wrong one.

b) Id: the id of the question that this answer belongs to.

In questions of type multiple, the "question" tag holds one more attribute than

choice questions, which is called "choices". That attribute holds the id of right

answers. Each answer of a question of type multiple holds only one attribute

138

Part III - Chapter VII (Implementation)

called "id". That id is composed of two parts separated by a dot. For example, the

second block of questions in the questions part in Figure 7.7, answer tags hold ids

with values "2.0", "2.0", "2.1" and "2.2". It could be observed that the first

number on the left is 2 and it doesn't change; that is because this is the id of the

question that these answers belong to. The right number, which varies between 0,

1 and 2, changes. If that right number is 0, this means that this is a wrong answer,

but if it has another value, such as 1 and 2, this means that this is the id of that

correct answer. The reason for that is because the auto-marking engine, in the

case of questions of multiple type, checks for the ids of coming answers and

questions. Thus, if it finds that the right side number is 0, it does not compare the

whole id with the set of ids in the choices attribute that that question tag holds.

The quiz-results.xsl file is responsible for the display style of questions to the final

users; also, it is responsible for delivering answers to the auto-marking engine. The

full code can be found in Appendix A. In addition, a snapshot of the quiz screen (of

the experiment described in Chapter VIII) can be found in Appendix C.

7.4.3.2 Auto-marking engine

After a user finishes a quiz and answers its question, quiz-results.xsl directs answers

to result.xml, which is responsible for marking the quiz. Thus, result.xml is the heart

of the auto-marking engine. The technical mechanism of that engine can be

summarized as follows:

The auto-marking engine starts by reading the number of involved domains in the

quiz, the IDs of those domains, and the IDs of the correct answers with respect to

every involved domain, in addition to the domains' names from the quiz.

Next, it starts building a two-dimensional vector, where the first column is the

names of the involved domains, and the remaining columns contain the IDs of

involved questions with respect to every domain. For example, the first row may

look like: Chemistry, 1, 2.3, 2.5, 6, and the second may look like: Biology, 1, 3,

4.3,4.6,4.8, 7, and so forth.

Afterwards, it starts by getting the questions' IDs into one dimension vector, after

removing any duplication. Moreover, it builds a sister vector to hold the result of

each corresponding question.

139

Part III - Chapter VII (Implementation)

Later, the auto-marking engine starts reading the IDs of the coming answers. At

that point, the auto-marking starts. Thus there are two cases depending on the

type of questions:

• Single choice questions: in case of single choice questions, the ID of the

question will be the same as its associated answers. Thus, the engine

starts to look for the type of the coming answer, to check if it is "yes".

Therefore, it is a right answer, and thereby the value of the base-mark will

be added for that question to the corresponding results vector, otherwise 0

will be added and so forth.

• Multiple-choice questions: in that case, the engine starts by reading the

IDs of correct answers. If a user has answered all of them, then the value

of the base-mark will be added for that question to the corresponding

results vector, otherwise 0 will be added and so on.

After building a vector that holds the IDs of questions, and another sister vector

that holds the score of each question, the scoring process starts, by matching the

questions' IDs with respect to every involved domain in the two-dimension

vector with those in the questions vector, and adding scores from the

corresponding results vector with respect to every associated domain.

Finally, the engine puts each domain and its score in a session variable; it also

adds the overall score to a session variable to be read by the upgrade engine.

The full code of result.xml, and result.xsl that is responsible for auto-directing to the

upgrade engine, is found in Appendix A.

7.4.3.3 Upgrade engine

At that stage, the auto-marking is completed, and the knowledge level stereotypes are

needed to identify the knowledge level of users with respect to the involved domains.

Thus, the role of the upgrade engine begins. In fact, uengine4.xml is the heart of that

engine. Thus, the mechanism of that engine could be summarized as follows:

uengine4.xml reads the names of involved domains and their scores from session

variables in addition to the overall score, which are created by the auto-marking

engine.

140

Part III - Chapter VII (Implementation)

Afterwards, the upgrade engine initiates a connection with the database, to get

the stereotype class of every involved domain by comparing its score with the

knowledge scale and then with the stereotype scale. Moreover, it reads the stored

knowledge level (before taking the quiz) of every involved domain from the

database.

Later, a comparison starts between the old knowledge level and the new one with

respect to every domain. If there is a difference it upgrades the database with the

new value, otherwise no upgrade takes place. For example, if there is a domain

called HTML, and from a quiz a user got an intermediate level. Therefore, if the

old knowledge level of that user with respect to that domain, which is stored in

the database, is beginner or advanced, thereby the database will be upgraded to

the new level, which is intermediate.

After this upgrade, another upgrade takes place, which is the status of the lesson

to which the quiz is associated. If that lesson is a new lesson and the quiz is of the

pre-quiz type, therefore its status will be changed to open. On the other hand, if

the quiz is of the post-quiz type, and the lesson is of the open type, therefore:

a) The lesson status changes to finished; and

b) The former knowledge levels with respect to the involved domains are stored

in the old_Ivl table in the database.

The full code of uengine4.xml and uengine.xsl (which is responsible for displaying

the final results) is found in Appendix A. Moreover, an example for the result screen

is in Appendix C.

7.5 Administrative Tools

From the earlier sections, it has been seen how the system components communicate

together and with the database. Thus, it is important to get all of these technicalities

hidden from the end user, such as system administrators and lessons' authors.

Therefore, two Administrative tools had been built: one for registering students, and

one for registering new lessons.

141

Part III - Chapter VII (Implementation)

7.5.1 Students' registration tool

It is known from the authentication component sub-section that the system needs to

identify users by recognizing certain information about them, such as their ID, user

name, password, etc. Moreover, it is difficult leave the task of registering every

user's information to the database on the shoulders of system administrators.

Because of that, this tool had been created. In fact, that tool is composed of four files:

streg.xml, streg.xsl, studreg.xmI, and studreg.xsl. Technically, the mechanism of that

tool could be summarized, as follows:

streg.xml and streg.xsl are responsible for creating a registration form that

students have to complete. The following are the required information to be

supplied:

• Student ID: a unique ID that each student has, such as hislher university

card number, or hislher student ID.

• First Name: the first name of the student/user.

• Last Name: the last name of the student/user.

• User Name: any user name a student chooses.

• Password: any password a student chooses.

• Confirming Password: a reconfirmation of the entered password.

• Category: this is a drop down menu list of categories, which is created

automatically by means of streg.xml. That file communicates with the

database and gets all categories listed in the category table. Thus, users

have to choose the category that suits their cases. For example,

undergraduate student, postgraduate student, etc.

• Style: this is also a drop down menu list, which contains a description for

the configuration files. Similar to the Category list, the streg.xml

communicates with the database and gets the description of all

configuration files from the conf table. Thus, users may choose the

configuration they like. For example, the description could point to the
-

skin that a configuration file may hold such as, Modem Style, Egyptian

Style, etc. It is important to notice that, if a user wants to change the

configuration/skin in the future, he/she has to contact the system

administrator for that, as they cannot do it by themselves. This process

needs the administrator to manually change that from inside the database.

142

Part III - Chapter VII (Implementation)

The reason for that is that some students may like to change the

configuration/skin each time they access the system, or many times

during the same session, which in turn may result in an overload on the

server, especially if a big number of users are using the system at the

same time.

After a user fills in this information and sends it, the streg.xsl (before directing

this information to the studreg.xml) checks that the user has entered all the

required information, Additionally it checks that the entered password matches

with the password that the user has re-entered. It does that by means of a

JavaScript code within the streg.xsl file.

When studreg.xml receives the entered information from the streg.xsl, it checks

for the combination of the user name and password that the user has entered with

those in the database. If that combination is found, then the user is asked to re-

enter a new user name. On the other hand, if the combination is not found, then,

this information will be inserted into the database. In fact, studreg.xsl is

responsible for displaying messages to the user. Therefore, in case the

information is registered, the user will see "registered" on the screen, in addition

to a link to the login screen to start accessing the system. The reason in offering a

link and not getting that user directly to the system is because it may be that the

user is just interested in only registering himlherself. Thus, in that way, there will

be no overhead on the server by not doing extra processes the user is not

explicitly asking for.

The full source code for streg.xml, streg.xsl, studreg.xml, and studreg.xsl may be

found in Appendix A. Also, a snapshot of the registration screen can be found in

Appendix C.

7.5.2 Lessons' registration tool

To register a new lesson to the system, certain information related to that lesson is

required, such as its name, associated domain(s), pre-quiz and post-quiz names. The

lessons' registration tool was build up for the same reason of building the Students'

registration tool. That tool is composed of four files: ladm in.xm I, ladm in.xsl,

143

Part III - Chapter VII (Implementation)

ladmin2.xml, and ladmin2.xsl. The technical mechanism of that tool could be briefed

as follows:

ladmin.xml and ladmin.xsl files are responsible for creating a form for lessons'

authors to register their lessons into the database. That form requires the

following information to be supplied:

• Lesson name: the name of the lesson file.

• Involved domains: this item is composed of a list of check box items, as

each one of them holds the name of a domain. Technically, ladmin.xml

communicates with the database and gets all registered domains in the

domain table, then, ladmin.xsl displays each of them in a check box form,

where lessons' authors may choose among them.

• Category: this is a drop down menu list. Through this list, lessons'

authors have to choose the category that their lesson serves. For example,

if that lesson is for undergraduate students, postgraduate students, etc.

ladmin.xml gets from the category table all the involved categories, and

ladmin.xsl displays them in the form of a list menu.

• Name of pre-quiz: here lessons' authors either enter the name of the pre-

quiz file or 0 (zero) in the case there is no pre-quiz for that lesson.

• Name of post-quiz: through that field, lessons' authors supply the system

with the name of the post-quiz file. It is important to notice, that the name

of the post-quiz and pre-quiz could include a full path, if they were not in

the same directory as ladmin.xml and the other associated files.

After filling in the required information, ladmin.xsl activates ladmin2.xml. That

file checks if the name of the lesson is found in the database or not (specifically

in the lesson flow table). If it is found, ladmin2.xsl asks the user to rename its

lesson's file and re-enter it again, but if not, the user sees "registered" on the

screen.

The full code of ladmin.xml, ladmin.xsl, ladmin2.xml, and ladmin2.xsl could be

found in Appendix A. In addition, a snapshot for the tool screen is provided in

Appendix C.

144

Part III - Chapter VII (Implementation)

7.6 Summary

Throughout this chapter, full technical details about the infrastructure of the

WHURLE-HM system is given. Technically, this infrastructure is composed of the

MySql database, which holds 13 tables, and 12 files that serve the adaptation

process, in addition to eight files that serve two Administrative tools. Moreover, the

12 files have been categorized according to their role in the system into: files that

serve the authentication part of the system, files that control the adaptation process,

and files that build the quiz engine and its components. The chapter is divided into

five sections:

Introduction: a brief introduction that establishes the nature of this chapter

Implementation Algorithm: this section describes the overall architecture of the

system. In addition, a flow chart that graphically describes the system

mechanism.

Database design: a description for every table in the database and its role in the

adaptation process.

System components: that section describes every component of the system and

how these components cooperate together to carry the adaptation process.

Administrative tools: this section describes two Administrative tools, which are

especially built to hide a major part of complexity from system administrators,

lessons' authors, and end users (students).

145

Part IV- Chapter VIII (User Trial)

Chapter VIII: User Trial

8.1 Introduction

In the previous two chapters (Chapters VI and VII), the Hybrid Model and its

implementation in WHURLE have been explained. In this chapter a user trial will be

described, where the system was used in support of a third year "Biological

Anthropology" module delivered in the School of Life and Environmental Sciences

of the University of Nottingham. This trial consisted of the detailed monitoring of the

activities of 32 students using the system during a period of about a month. The main

goal of this chapter is to demonstrate that the Hybrid model could be implemented in

adaptive educational hypermedia systems such as WHURLE-HM. Moreover, it can

be used to deliver educational materials to users based on the idea of mapping the

concepts presented in these materials to semantic domains, and measure users'

knowledge with respect to these involved domains. Furthermore, during this chapter

an attempt has been made to show if the model has contributed (even in a small

scale) to students' knowledge with respect to an educational curriculum. It is

important to stress that this chapter does not present an evaluation of the model, but

rather it is a user trial. InChapter IX (under further research section) a description for

how to create an evaluation for the model is described.

8.2 Experiment Design

8.2.1 Lesson plan design

A lesson plan called "Anthropology Revision Guide" was created for this module by

the module convenor (Dr. Peter Davies). This was intended for use as a revision

guide before the exams, and it was presented to the students in the last month of the

course. This lesson plan utilised two semantic domains: Fossils and Functions - as

classified by the author. The lesson is composed of two categories of information:

a) information that should be seen by all students regardless of their knowledge level

with respect to the Functions and Fossils domains; b) information that depends on

users' knowledge level with respect to the Fossils domain and Functions domain.

The code in Figure 8.1 illustrates a part of that lesson.

146

Part IV- Chapter VIII (User Trial)

<level name="Discovery" title="Discovery">
<page><chunk domain="60" stereotype I="beg" stereotype2="">primate-ad-OO I</chunk></page>
<page><chunk domain="60" stereotype I="beg" stereotype2="">primate-ad-002</chunk></page>
<page><chunk domain="60" stereotype I="beg" stereotype2="">primate-ad-003</chunk></page>
<page>

<chunk domain="60" stereotype I="beg" stereotype2="">primate-ad-004<1chunk>
<chunk domain="60" stereotype I="beg" stereotype2="">primate-ad-005<1chunk>

<lpage>
<page>

<chunk domain="60" stereotype I="beg" stereotype2="">primate-ad-006</chunk>
<chunk domain="60" stereotype I="beg" stereotype2="">primate-ad-007</chunk>

<lpage>
<llevel>

<level name="Description" title="Description">
<page><chunk domain="60" stereotype I="int" stereotype2="">primate-ad-008<1chunk></page>

</level>

<level name="Dating" title="Dating & Naming">
<page><chunk domain="general" stereotype I="" stereotype2=''''>primate-ad-009</chunk></page>
<page><chunk domain="general" stereotype I="" stereotype2="">primate-ad-OI O</chunk></page>
<page>

<chunk domain="general" stereotype 1="" stereotype2="">primate-ad-O II <lchunk>-
<chunk domain="general" stereotype I="" stereotype2="">primate-ad-O 12<1chunk>
<chunk domain="general" stereotype I="" stereotype2="">primate-ad-O 13<1chunk>

</page>
</level>

Figure 8.1 An extract from the Anthropology lesson plan - Full details about
lessons plans technical description are provided in Chapter VII.

As can be seen in the above code, only two knowledge levels are utilised:

intermediate and beginner. Detailed instructions on to how to build a lesson plan are

provided in Appendix D. Moreover, a snapshot of the lesson plan can be found in

Appendix C.

8.2.2 Pre-quiz design

As described in Chapter VI and Chapter VII, the pre-quiz plays a crucial role III

determining a user's knowledge level with respect to the domains utilised by a lesson

plan. Therefore, a pre-quiz composed of 20 questions (supplied by the lesson author)

was constructed. The questions were divided into two categories, according to the

two knowledge domains in use. As explained in Chapter VII, there are two types of

questions supported by the quiz engine: single choice questions and multiple-choice

questions. In that experiment the single choice question type is used. Moreover, some

of these questions were a combination of text and image. The code in Figure 8.2

illustrates part of that pre-quiz.

147

Part IV- Chapter VIII (User Trial)

<quiz>
<quiz-name> Anthropology Pre-Quiz<lquiz-name>
<type>pretest</type>
<domains num="2"><!-- important to set the number of invovled domains -->
<domain id="I" qid="1,2,3,4,5,6,7,9,10,11,12">fossiles</domain>
<domain id="2" qid="14, 15, 16, 17, 18, 19,20,21 ,22">functions<ldomain>

</domains>
<mark -base>5</mark -base>
<questions>
<question type="choice" media="text" id=" 1">
<question-text>Fossil bones are found only in igneous rocks </question-text>
<answer type="no" id=" I"> True</answer>
<answer type="yes" id="1 ">False<lanswer>
<answer type="no" id=" 1">1 don't know<lanswer>

<lquestion>

<question type="choice" media="text" id="2">
<question-text>Most fossils are made of stone, not organic matter<lquestion-text>
<answer type="yes" id="2">True</answer>
<answer type="no" id="2">False<lanswer>
<answer type="no" id="2">1 don't know</answer>

<lquestion>

<question type="choice" media="text" id="3">
<question-text>lndirect 'traces' of ancient life such as footprints are fossilse</question-text>
<answer type="yes" id="3"> True<lanswer>
<answer type="no" id="3">False<lanswer>
<answer type="no" id="3">J don't know</answer>

<lquestion>

Figure 8.2 An extract from the Anthropology pre-quiz - Full details about quizzes
technical description are provided in Chapter VII.

From the above code, it can be seen that, although there are nine questions dedicated

to the functions domain and 11 to the fossils domain, the mark-base is only five. The

reason for this is that only two knowledge levels are involved: intermediate and

beginner. Therefore, the highest level will be intermediate. Thus, 5 x 9 = 45 and 11 x

5 = 55, which ensures that the maximum a user will be is intermediate. For a user to

be intermediate he/she will be required to answer at least six questions correctly in

any associated domain. At the time of the experiment, the knowledge scale and the

stereotype scale was as follows:

The beginner level: embraced scores between 0 and 30.

The intermediate level: embraced scores ranging between 31 and 80.

The advanced level: contained a range of scores between 81 and 100.

A decision was made for the post-quiz to consist of the same questions that were

used in the pre-quiz, but presented on paper as a part of the module's assessment.

148

Part IV-Chapter VII I (User Trial)

A guideline on how to create a qUIZ is provided In Appendix D. In addition, a

snapshot of the pre-quiz is provided in Appendix C.

It is important to stress that the data presented here does not show any identifiable

personal information about students in the course, to ensure their privacy.

8.3 Methodology

Due to technical reasons (such as network congestion and server overload), students

were divided into two groups. The first group consisted of 22 students who were

instructed to register for use of the system using the registration form, and then log in

to the system, which would direct them automatically to the pre-quiz to solve. That

process took about 30 minutes. After that, the second group, consisting of 23

students, passed through the same experience. It could be observed that the total

number of students who registered in the tutorial time was 45 and one student

registered later. Therefore, the total count of students was 46. From the 46 students

only 32 students used the system, 12 did not and the remaining two students were

excluded because they registered to the system more than once with different user

names and passwords. Figure 8.3 shows the results obtained from the pre-quiz with

respect to the two involved domains, which are Functions and Fossils.

Pre-quiz Results

44

42

40

38

36

34

32

30

28
26
24

22

20

18
16

14
12

10

8
6

2

0

Figure 8.3 Pre-quiz Results - from the above figure it can be observed that the total number of
students who were assigned as beg (beginner) in the Fossils domain is 14 and those in the
Functions domain are 41. Furthermore, the number of students who were assigned to the int
(intermediate) level in the Fossils domain is 30 and those in the Functions domain are 3.

149

Part IV- Chapter VIII (User Trial)

To monitor the access of students to the system, an extra code was created, in the file

that is responsible for checking user names and passwords, together with a database

table called monitor. When a student accesses the login screen, that extra code

retrieves the student's ID, and the machine date and time, and then stores them in the

monitor table. In addition to this, the web server logs were also analysed. As a result,

it was found that 32 students accessed the system prior to the day of the post-quiz,

and 12 students registered but did not use the system. This means that now there are

two groups, a group accessed the system and another one that did not. This thus

provided an opportunity to try to find if the system had any effect upon the students'

performance. It is important to notice that students were entitled to use other

resources, such as books, lecture notes, etc., alongside the system, which was

optional. Therefore, the difference between these two groups is the usage of the

system. The focus of the experiment is on the students whose knowledge level, with

respect to any involved domain, is upgraded from beginner (beg) to intermediate

(int). Figure 8.4 shows users' new knowledge level after taking the post-quiz. It is

important to notice that these results include students who have not accessed the

system.

~~------------------------~--------------------------~
42~--~40~--~~~--------------~------------------------------------~
36 ~-----------

34~-----------
32 ~-----------

30~-----------
28~-----------
26 ~----------

24~------------c
22~---------------'

20~------------
18~------------
16 ~------------
14~------------
12~-----~----
10 ~-----r-----'-
8.j-----I
6+------1
4.j-----I
2.j---1o ~ __ .L- __

Post-quiz Results

Figure 8.4 Post-quiz Results - it can be observed from the above chart that the
students with beg (beginner) knowledge level in the Fossils domain are 10, and those
in the Functions domain are 36. In addition, students with int (intermediate)
knowledge level in the Fossils domain are 34, while those in the Functions domain
are 8.

150

Part IV-Chapter VIII (User Trial)

8.4 Data Analysis

To use a suitable statistical test, the distribution type of the data must be known

[Tabachnick and FideIl2001]. According to Bryman [Bryman and Cramer 1999], the

most important distribution is the normal distribution, which is known by its bell

shape curve. According to that bell shape, 50% of the cases (data) should lie in one

side of the middle of that curve (mean), and the other 50% lies on the other side

[Bryman and Cramer 1999]. To test the normality of the cases, two components

should be measured: a) Skewness, which deals with the symmetry of the distribution,

i.e. skewed cases are those whose mean is not at the centre of the distribution; b)

Kurtosis, which deals with the peak of the distribution, i.e. distribution is either very

peaked or very flat [Tabachnick and Fidell 2001]. The normally distributed data has

the skewness and the kurtosis components equal or close to zero [Bryman and

Cramer 1999, Tabachnick and FideIl2001]. Moreover, if the skewness value of cases

has a positive value that means that the cases are clustering to the left of the curve

with a long tail at the right, while the negative value indicates the opposite.

Furthermore, if the kurtosis value is more than zero that indicates that the curve is

too peaked, while below zero indicates that the curve is flat [Bryman and Cramer

1999, Tabachnick and Fide1l2001].

By using SPSS statistical package the normality of the data is measured as shown in

the table in Figure 8.5.

Diff-Fossils Diff-Functions log-num

N Valid 44 44 44
Missing 227 227 227

Skewness -.033 1.155 -1.057
Std. Error of Skewness .357 .357 .357
Kurtosis -.121 3.051 -.927
Std. Error of Kurtosis .702 .702 .702

Figure 8.5 Normality Test - it can be seen from the table that three sets of data were measured:
Diff-Fossils - the difference in knowledge with respect to the Fossils domain by subtracting the
knowledge level the students got after the post-quiz with the knowledge they got after the pre-
quiz; Diff-Functions: the same 8S the Diff-Fossils; log-num: it is a flag that indicates if a student
accessed the system (1) or not (0).

By analysing the results in Figure 8.5, it could be perceived that the skewness of

Diff-Fossils is close to zero (-0.033) and the kurtosis value is also close to zero (-

0.121). Therefore, the cases in the Diff-Fossils columns are almost normally

distributed. On the other hand, the skewness of the Diff-Functions is far from zero

151

Part IV-Chapter VIII (User Trial)

(1.155) and the kurtosis value also is far from zero (3.051). As a result, it can be seen

that the data the Diff-Functions holds is not normally distributed. By repeating the

same for the log-num, it could be observed also that it is not normally distributed as

the skewness is far from zero, although the kurtosis value is in some way close to

zero. Figure 8.6 shows the distribution of the three sets.

Diff-Fossils

10

>-o
c
Q)
::J
0"
~ 0LL

-1.00 -.50 0.00 .50

Diff-Fossils

A

Diff-Functions
40

20

Std. Dey = .60

Mean = .09

N = 44.00

1.00

30

Std. Dev = .39

Mean = .11

20

>- 10
oc
Q)

::J
0"
Q)
'-
LL

N = 44.00

-1.00 -.50 0.00 .50 1.00

Diff-Functions

B

152

Part IV- Chapter VIII (User Trial)

log-num
40~----------------------------~

10
i:)'
c
Q)
:J
0"
~u.. 0

Std. Dev = .45

Mean = .73

N= 44.00

30

20

0.00 .50 1.00

log-num

c
Figure 8.6 Distribution Graphs - in diagram A, the Diff-Fossils is almost normally distributed.
In diagram B, the Diff-Functions is not normally distributed, as the curve is too peaked; also the
curve is leaning to the left. In diagram C, the log-num is also not normally distributed as the
curve is leaning to the right. Std. Dev: standard deviation (distance from the mean), Mean:
average, N: number of cases.

According to Bryman [Bryman and Cramer 1999], In a case where data is not

normally distributed and the sampled population is below 15 and not equal (students

who accessed the system are 32 while those who did not are 12), it is more

appropriate to use the nonparametric/distribution-free tests. Nonparametric tests are

tests that do not depend on assumptions about the distribution form of the sampled

population [Bryman and Cramer 1999]. Therefore, a nonparametric statistical test

called the Mann-Whitney U test was chosen. According to Bryman, that test can be

used to "compare the number of times a score from one of the samples is ranked

higher than a scorefrom the other sample" [Bryman and Cramer 1999, p 137].

The hypothesis that the test is based on is that there is a difference between the two

groups with respect to their performance. The table in Figure 8.7 shows the result of

the test.

153

Part IV- Chapter VIII (User Trial)

Diff-Fossils Diff-Functions
Mann-Whitney U 176.000 183.500
Wilcoxon W 704.000 261.500
Z -.494 -.353
Asymp. Sig. (2-tailed) .621 .724

Grouping Variable: log-num

Figure 8.7 Statistical Results - measures the ranking in both Diff-Fossils and Diff-functions. The
Wilcoxon W: is the sum of the ranks of the smaller group, which can be ignored. The Z (Z-test)
gives the confidence level (Asymp. Sig. (2-tailed» for the tested hypothesis, which is the output
of the test the researcher is looking for.

From the above table, the Mann-Whitney U test is carried for both columns Diff-

Fossils and Diff-Functions with respect to the logging flag. It is important to notice

that to accept the presumed hypothesis the significance level must be less than 0.05

(the 0.05 means that the accidental rejection of the null hypothesis is no more than

5% of the time when it is true), which is a standard measure of acceptability

[Tabachnick and Fidell 200 I].

The significance level (Asymp. Sig. (2-tailed» given to the presumed hypothesis

against the null hypothesis (there is no difference between the two groups of users) is

more than 0.05 (greater the 5%) for both columns, which suggests the rejection of the

presumed hypothesis. Therefore, statistically there is no significant difference in the

performance between users who accessed the system and those who did not.

The reason for the obtained analysis is not statistically significant could be attributed

to the small size of the sampled population, the system being optional, and the

presence of networking congestion in addition to the server hardware limitation. The

latter factor (networking problems and hardware limitations) had a profound impact

over the number oftimes the students accessed the system as shown in Figure 8.8.

154

Part IV-Chapter VIII (User Trial)

TImes of Access

10

9

8 r- J------

7 t-- f---

6 r- J------

5 t-- J------

4 r- J------

3 r- r---- r----

2 t-- r---- r----

1 r- r---- ~ '--- J------ ~ -

I I r 1
0

1 I 2 I 3 I 4 I 5 I 6 I 7 I 9 I 24

leTota! 9 I 9 I 4 I 2 I 2 I 2 I 2 I 1 I 1

Figure S.S Times of Access - from the above figure it can be observed that the total number of
students who accessed the system only once is nine, and those who accessed it twice is also nine,
and who used it three times is four, four times is two, and so forth.

The following table converts the number of accesses presented in Figure 8.8 into

percentages as follows:

Access 1 2 3 4 5 6 7 9 24
times

Students' 28.125% 28.125% 12.5% 6.25% 6.25% 6.25% 6.25% 3.125% 3.125%
percentage

"

From the table it can be seen that the majority who accessed the system lie in the

interval of one and two times. By including students who accessed the system more

than two times only, the resulting sample will be 43.75% (14 students), and this

percentage is less than half of the group who accessed the system. Therefore, it is

difficult to predict any precise correlation between the times that users accessed the

system, and the changes that occurred in their knowledge level.

The following section will discuss the questionnaires that were given to the students

to answer and how those answers suggest the success of the system and the model to

an extent.

155

Part IV-Chapter VIII (User Trial)

8.5 Students' opinion

In light of the factors described in the former section, extra data was needed in order

to show if the system had any positive influence. Therefore, six questions, five

quantitative and one qualitative, were handed to students to answer. Out of 32

students who accessed the system, 30 students answered the quantitative questions

and 23 students answered the qualitative. It is important to notice that all the answers

provided were anonymous.

8.5.1 Quantitative questions

Five questions were designed to explore students' opinion with respect to the system.

30 students answered the following questions:

1. I found the revision aid useful.

2. Using it encourages me to probe topics more deeply.

3. The revision aid covered topics I already knew well.

4. I would like similar revision aids used in other modules/courses.

5. The revision aid did not really provide me with enough detailed information.

Students had a scale of five categories to choose from that ranged between strongly

agree to strongly disagree.

Quantitative Questionnaire

25~--~-----.----~----.-----'----'-----'-----r----~---'

20~--~-----+----~----+-----r---~--,-t+-----r----+---~

Figure 8.9 Quantitative Questions Results - the X-axis of the graph represents question
numbers and the V-axis represents the number of students. SA stands for Strongly Agree, A
Agree, N Neutral, D Disagree, and SD Strongly Disagree.

156

Part IV- Chapter VIII (User Trial)

It is important to stress that these five questions were integrated with other questions

that evaluate the whole module. Therefore, it was preferable to follow the same

answering categories.

Figure 8.9 shows students' answers to the questionnaire. It can be observed that the

number of students who found the system useful (question number 1) is 15, this

represents 50% of the group that answered the questions, which is the highest

evaluation in the first question. For the second question, 14 students, which

represents 46.6%, agreed that the system helped them to understand topics more

deeply; also, this is the highest response in the second question. Furthermore, it could

be observed that 11 students (36.6%) agreed that the system covered topics they were

not familiar with (by disagreeing (D) with the third question). However, the same

percentage was neutral, and this maybe because they found some information related

to any of the two-presented domains more familiar than the other. Therefore, the

response to the question provides some evidence that the system has successfully

carried out the adaptation process according to the author's intentions. In the fourth

question, which is a rider to question number 1, 20 students (66.66%) agreed that

they would like to see the same system used with other modules or courses, and this

is the highest response percentage in the overall questionnaire. Therefore, the system

was successful, which means the model was also successful. Finally, the fifth

question related to the amount of detailed information in the material, 10 students

(33.33%) agreed that more detailed information was needed. Nevertheless, 30% of

students remained neutral. Therefore, there is a very close percentage between

students who agreed and students who were neutral. However, students who agreed

that more details were needed support the notion that more detailed information

maybe required to increase students' knowledge. Therefore, this may be another

reason why there is no significant difference between students who used the system

and between those who did not.

8.5.2 Qualitative question

An open question was designed for students to give their opinions and suggestions

regarding the system and the content. The question was:

157

Part IV-Chapter VIII (User Trial)

If you used the online Revision Aid, we would welcome your comments and

suggestions.

Only 23 students answered the question and they represent 71.87% of the whole

group that accessed the system.

By categorising students into three categories:

a- Students with positive response (found the system useful).

b- Students with negative response (found the system not useful).

c- Students could not access the system.

The following table summarises the percentage of students in each category

Categories A B C
Percentages 73.91% 6.25% 17.39%

(17 students) (2 students) (4 students)

The table highlights that a high percentage of students found the system useful and a

low percentage found the system not useful. Students who found difficulty in

accessing the system as seen from the table are 17.39% (4 students). By analysing

the response of the 4 participants, it was found that two of them stated that the

system crashed frequently and was very slow; whereas of the other two, one of them

could not access because he/she could not get an authentication to enter despite the

fact he/she is registered. This feature is normal if the user registered his/her user

name and password in different letter cases (upper case or lower case) than that

he/she used to log in to the system (i.e. the authentication system is case sensitive).

Full quotes can be found in Appendix E categorised as A, Band C.

A common response that is found among students is that the system was very slow,

and this is related to external factors such as network congestion coupled with the

time of access. Therefore, this common ground justifies why the researcher could not

perform any kind of correlation between the times of access and the change In

knowledge levels.

Another common response from users related to the amount of presented

information. Around 47% of students who found the system useful suggested more

158

Part IV- Chapter VIII (User Trial)

detailed information needed to be presented. This provides support for the suggestion

that more in depth information maybe required.

B.6 Conclusion

From the user trial, it has been demonstrated that the Hybrid model is applicable to

adaptive educational hypermedia systems, such as WHURLE-HM, and it is possible

to be used in an educational setting, which is the primary goal of this experiment.

Moreover, suggestive evidence has been found to imply that the system (and in tum

the model) is successful in terms of adapting materials to users' knowledge levels,

despite technical difficulties, small sample sizes and the need for more detailed

information. However, the extent to which this success can be measured requires a

full evaluation, which should be carried out in a more controlled environment and

with a higher number of participants as described in the discussion chapter (Chapter

IX) under the further research section. In addition, the limitations that faced this trial

are described under the limitation section in Chapter IX.

B.7 Summary

This chapter presents an experiment that took place in the School of Life Science at

the University of Nottingham. The WHURLE-HM system, which implemented the

Hybrid Model, served as a revision guide for a module called Anthropology. The

material presented was written by the tutor of that module Dr. Peter Davis.

The Chapter is organised as follows:

Introduction: description for the chapter and its goal.

Experiment Design: this section explains the experiment with respect to the

presented material and the pre-quiz.

Methodology: this section describes how the experiment was carried out.

Data Analysis: a statistical analysis for students' knowledge level related to the

presented material is described here.

Students' opinion: analysing the response of students m relation to their

experience with the system is provided in this section.

159

Part IV-Chapter VIII (User Trial)

Conclusion: summary of the results obtained from the user trial.

160

PART IV- Chapter IX (Discussion)

Chapter IX: Discussion

9.1 Introduction

During the course of this research, the Hybrid Model [Zakaria and Brailsford 2002,

Zakaria et a1. 2002] that is a user model for adaptive hypermedia in education has

been developed, which is a hybrid of two major approaches in user modelling. That

model has been experimentally implemented and validated using the WHURLE

[Brailsford et a1. 2001, Brailsford et a1. 2002] system as a vehicle and as a result

WHURLE-HM [Zakaria and Brailsford 2002] has been produced. In this chapter,

comparisons are made between this model, and those that are utilised by various

other adaptive educational hypermedia systems. In addition to this, a comparison

between the adaptation techniques that are used by WHURLE-HM, and those used

by other systems are described.

9.2 Why the Hybrid Model?

The user models utilized by the systems explained in the survey chapter (Chapter

IV), can be classified into two categories: a) systems that use the overlay model, such

as AHA! [De Bra et a1. 2002], ELM-ART [Weber and Specht 1997], NetCoach

[Weber et a1. 2001], Interbook [Brusilovsky et a1. 1998] and TANGOW [Carro et

al. 2000]; and b) systems that mix the overlay model with the stereotype model, such

as CHEOPS [Negro et a1. 1998], Hypadapter [Hohl et al. 1996] and Metadoc [Boyle

and Encarnacion 1994].

One important feature that all of these systems have in common is their use of the

overlay model. As described in Chapter II, the overlay could be in the form of

"concept-value" pairs. All of the mentioned systems use a measurement of this type,

although with different parameters. For example, in NetCoach, the concept is

considered to be learned (value) if it is tested or inferred. It should be noted that

those systems are capable of utilizing only a single knowledge domain at anyone

time. An exception to this is provided by the Metadoc system. As described in

previous chapters, Metadoc has tried to solve the multi-knowledge domain problem

to a certain extent, by means of stereotyping the involved knowledge domains

independently. Regardless of this, the user model architecture used by Metadoc

161

PART IV- Chapter IX (Discussion)

cannot differentiate between users with different backgrounds and knowledge levels.

Metadoc categorized the knowledge level about Unix! AIX and general computer

concepts into different knowledge levels each. If that system, with its current

architecture is applied to users or students of two different educational levels - such

as postgraduate students and first year undergraduate students - and both of them

share the same knowledge class; the system will not be able to offer each of them the

right kind of adaptation because there is no method to use to differentiate between

users of the same stereotype.

The Hybrid Model modified the overlay model in order to measure users' knowledge

levels with respect to semantic domains and not with respect to topics' concepts, as

semantic domains embrace different topics and topics are composed of different

concepts as explained in Chapter I. Therefore, instead of the classical measurement

of the knowledge through "concept-value" pairs, it becomes a "Domain-value" pair

[Zakaria and Brailsford 2002, Zakaria et al. 2002]. As a result, The Hybrid Model is

capable of managing multiple knowledge domains concurrently. Furthermore,

systems that used the stereotype model mixed with the overlay model, such as

CHEOPS, Hypadapter and Metadoc, classify the users' knowledge level with respect

to the involved concepts into different classes such as novice, beginner, intermediate

and advanced. However, the Hybrid Model uses the stereotype to classify users'

knowledge with respect to semantic domains. Therefore, this type of stereotyping can

be called global stereotyping, as it is not dedicated to any particular topic.

Additionally, a very important characteristic of the Hybrid Model is that, in addition

to classifying users' knowledge, it classifies users with respect to their educational

level and profession. That classification, as described in Chapter VI, helps the model

to differentiate between users who share the same knowledge class of the same

domain and provides to each of them the appropriate kind of personalization.

The Hybrid Model has principle advantages over other user models utilised by the

described systems, and these are:

a) The Hybrid Model handles the overlay model in a way that can measure users'

knowledge with respect to semantic domains rather than educational curricula

(this is described in detail in Chapter VI). This provides the Hybrid Model with

the capability of measuring users' knowledge globally (Le. how much does a user

162

PART IV- Chapter IX (Discussion)

know about semantic domains which are involved in an educational curriculum)

rather than locally (Le. how much does a user know about an educational

curriculum), which has not happened before, as far as the researcher is aware. As

a result, the model could maintain user's knowledge about the involved domains

through different educational states, such as described in Chapter VI. For

example, if a student is studying certain curriculum about biochemistry and that

user is a second year undergraduate. Moreover, if that curriculum requires that

the user should have certain knowledge level in the chemistry domain while

he/she was in the first year. Therefore, the system that implements the model

could handle such kind of prerequisites because the hybrid model is managing

users' knowledge globally, i.e. with respect to semantic domains.

b) It is designed to be used by frameworks that make use of multiple knowledge

domains concurrently. Therefore, any change in a user's knowledge level with

respect to any of the domains that an educational curriculum involves will be

reflected to the other curricula that involve such domain(s). For example, by

considering the student's example, if this student is studying a curriculum about

programming, and he/she performed badly with respect to the concepts that

belong to the object oriented programming. As a result, the other curricula that

involve concepts about object oriented programming will present to the that

particular students more examples or explanations about that particular domain

which are suggested by the lesson's author(s) for students who belong to a

knowledge level with respect to that domain less than that of the student.

c) It has the capability of distinguishing between users with different educational

levels and background that share the same stereotypical knowledge level.

Therefore, the framework that implements that model could be used among

different educational states simultaneously. For example, by following the

student's example, if this student is in the second year and another one in the first

year. Furthermore, both students share the same knowledge level in programming

domain. Therefore, the framework that implements the model will be able to

provide each of them with the appropriate kind of adaptation that suits their

educational state, and this is because ofthe category stereotypes.

d) The model gives the opportunity for the frameworks that implement it to share

educational materials. However, the concepts that belong to these materials

should be mapped to the same semantic domains. Therefore, these frameworks

163

PART IV- Chapter IX (Discussion)

should use the same knowledge classification methodology such as DDC

(explained in Chapter VI).

9.3 The Hybrid Model- Implicit and Explicit

User models, such as those in systems described in Chapter IV, can be classified into

either: a) implicit models; b) a mixture of explicit and implicit models. Explicit or

cooperative user models (as described in Chapter II), are models that rely upon user

cooperation to obtain information about himlher, such as hislher preferences, hislher

knowledge, etc. On the other hand, implicit user models try to deduce these

characteristics through monitoring users' actions during navigating the hyperspace

(navigational behaviour). Of the eight systems described in Chapter IV, six of them

implement a mixture of explicit and implicit methods to obtain information about

their users that will provide the basis for adaptation. The analysis of these systems

with respect to the user modelling methods is discussed in Chapter IV.

The way the Hybrid Model is implemented is a combination of implicit and explicit

methodologies. Explicitly, when users access the system (WHURLE-HM) for the

first time, they are asked to supply personal information, such as their first name and

last name, as well as their student ID, which is used in the adaptation process.

Moreover, users are asked to specify the category that they belong to, for example,

first year undergraduate biology students, mathematics postgraduate students, etc.

This categorization plays a crucial rule in adaptation, as explained in Chapter VI.

Furthermore, they explicitly specify their preferred interface layout, using anyone of

a number of pre-defined skins. After providing this information, the system

implicitly starts to deduce users' knowledge levels about the specific semantic

domains that are involved in the chosen topic through a pre-quiz, which is used to

provide the basis for the adaptation. Furthermore, when users finish with that lesson

they take a final quiz through which the system once more deduces their new

knowledge levels with respect to the involved domains.

The reasons for mixing implicit and explicit methods in applying the Hybrid Model

are:

164

PART IV- Chapter IX (Discussion)

a) Some characteristics about users, such as their preferences, are difficult to

infer [Brusilovsky 1996]. Because of that, it is chosen to make the system

explicitly know users' preferred layout style and category.

b) To allow a user to change some aspects in the user model, such as hislher

knowledge level with respect to the domains involved in the chosen topic,

may result in a wrong way of adaptation for that particular user. Brusilovsky

[Brusilovsky 1996] argued that some information in the user model is very

critical and any change in it could end up with faulty adaptation. Therefore,

this information should be accessed only by an experienced user such as a

teacher or system administrator, to set the model correctly. The only

exception could be given to systems that have predefined assumptions about

users' knowledge, such as Metadoc and Hypadapter, as it is not compulsory

for their users to express their knowledge against the knowledge domain

before accessing these systems. Therefore, the users may find some concepts

they are familiar with, so they could tell the system about their familiarity

with that particular concept(s). In AHA! [De Bra and Ruiter 2001] there is a

kind of compromise regarding this issue, as authors may permit the

knowledge about particular concepts to be altered by users, but not all

concepts. However, in the case ofWHURLE-HM where the Hybrid Model is

implemented, there are no pre-defined assumptions about users' knowledge

levels, as the knowledge levels of users are inferred from their answers in the

pre-quiz and the post-quiz, which are produced by topics' authors. By this

way, each time a user chooses a topic the system reassures the user's

knowledge about the involved domains in that topic through these kinds of

quizzes.

9.4 WHURLE-HM and Adaptation Techniques

The systems discussed in Chapter N used different adaptation techniques. For

example, AHA! used link annotation and link hiding for adaptive navigational

support, and conditional text for adaptive presentation. InHypadapter, hiding, sorting

and annotation are used for adaptive navigation support and frame based technique

for adaptive presentation, where frames are composed of slots that are sorted

according to users' preferences and knowledge. WHURLE-HM, as described in

Chapter VI, combined adaptive presentation and adaptive navigation support

165

PART IV- Chapter IX (Discussion)

together through using link removal. Lesson plans, which are explained in detail in

Chapter VI, in the WHURLE system (and in tum WHURLE-HM) are composed of

levels and these levels are composed of pages that are constituted of chunks.

Therefore, the materials are presented in the form of links to levels that in tum

present navigational buttons to the included pages. Also, each page may include one

or more chunk. As explained in Chapter VI, in WHURLE-HM, each chunk has

certain attributes that specify the domain that this chunk is serving and the required

knowledge level with respect to that particular domain. Therefore, excluding or

including any chunk is conditional, as it is based on the knowledge level. Therefore,

if a page has no chunks to present, a link to that page will be removed. Similarly, if a

level does not have any pages to include, the link to that level will be removed.

Hence, adaptive presentation is provided through the conditional assembly of

fragments of content Additionally, some chunks could contain links, and by

removing those chunks their associated links in tum will be removed. In adaptive

navigational support techniques, that technique is called collateral structure

adaptation, which is described in Chapter II.

De Bra [De Bra and Calvi 1998a], has reported that users of AHA! did not like the

link removal technique, as they could not access what is removed. Brusilovsky and

Pesin [Brusilovsky and Pesin 1998] have reported the use of link removal in

educational context reduced the amount of navigation required to learn part of a

course without reducing the quality of learning. However, they found that link

annotation is preferred more than link removal. To overcome this debate a

compromise solution is proposed. This solution offers the student the ability to revise

the topic(s) they have finished in a non-adaptive and adaptive format, as explained in

Chapter VI and Chapter VII. Therefore, by a non-adaptive format, users could use

the material as a kind of reference, and thereby, they can build their own library

where all information is available. By the adaptive format, they could retrieve the

previous adaptive status of the finished topics; if they just want to swiftly retrieve

certain information they have already studied without the need for extra explanations

or introductions they already know or remember.

In addition to the adaptive links, WHURLE-HM supports non-adaptive links such as

in AHA!. Those links, which are created by the lesson's author(s), are always found

166

PART IV- Chapter IX (Discussion)

on the menu bar and they refer to: a) other resources, which are external and internal,

related to the topic under study; b) search engines such as Google.

9.5 Limitations

In Chapter VIII a user trial is described. Albeit the primary goal of the trial - which

is the applicability of the Hybrid Model in educational setting and in adaptive

educational hypermedia systems - is established, some limitations faced this trial.

Those limitations can be summarised as follows:

a) University regulations and time constraints: for the WHURLE-HM, which

implements the Hybrid Model, to be tested with real students, it had to be

applied through a real course. However, due to the university regulations the

system is used as a revision guide. Moreover, the time taken to build the

material of one lesson (revision guide) took about two months to finish, and

two months for the trial, collecting data and analysing it.

b) Environment: the environment at which the experiment was held was not

controlled adequately. As explained in Chapter VIII, two main factors

affected the results of the experiment: a) Technically - users experienced

network congestion which affected the correlation between the number of

times they accessed and the upgrade in their knowledge level, in addition to

the server's hardware limitation; b) Sample size - the number of students

who accessed the system (32 students) was not equal to those who did not (12

students). Another factor that may have affected the results and influenced

the majority of students to access the system once or twice only is the fact

that the usage of the system was optional. Therefore, some of students may

have accessed the system just for curiosity and when they found technical

problems, they did not try again. Thus, this factor is correlated in some way

to the technical problem factor.

9.6 Further research

Many research areas related to the Hybrid Model deserve to be investigated. Those

areas can be as follows:

Evaluation: due to the nature of the Hybrid Model as being abstract and generic

user model it is difficult to evaluate its potential through implementing it in one

167

PART IV- Chapter IX (Discussion)

system. Therefore, the researcher suggests a simple methodology for testing the

model by applying it through a number of different systems using different

implementation and adaptation techniques. This methodology could be designing

different lessons (or courses) with common semantic domains among them, and

those lessons are dependent on each other. Two groups with same number of

subjects should be set up for that evaluation. One group would take the same

courses without using the system, and the other group would use the system only.

Moreover, all the technical issues such as network flow should be smooth and

controlled. The time scale of the evaluation should be at least one month for

every lesson, where students have to take a pre-quiz at the beginning of each

lesson and a post-quiz after it. After that, a comparison between the changes in

the knowledge level between users who accessed the system against those who

did not should be performed. Furthermore, a correlation between the number of

accesses, within the group who accessed the system, and the change in their

knowledge level should be investigated. Moreover, a general exam that includes

both groups should be done to see the impact of the system on students'

performance. Through that suggested design, concrete evidence could be drawn

from different involved systems regarding the success of the model. However,

other aspects should be taken in account before carrying out this evaluation, as

shown in the next two points.

Lesson plan design: another area that is worth investigating is to find the best

way to present information under the shadow of semantic domains. As explained

in former chapters, the model is heavily dependent on authors' vision about the

presented lessons and how they should be adapted. This area is very critical for

the success of the Hybrid Model.

Knowledge levels and learning styles: although many systems have classified

their students into novice, beginner and advanced, further research is needed for

that classification to find if it is enough or if more stereotypes are needed.

Moreover, the Hybrid Model could include different learning styles with the

knowledge levels. People who are involved in educational theories may be in a

better position to find the validity of that widely used classification and to

integrate proper learning styles.

Semantic web: as explained in Chapter VI, the Hybrid Model uses the same

approach of DOC (Dewey Decimal Classification) ontology to classify students'

168

PART IV- Chapter IX (Discussion)

knowledge. Furthermore, it is explained that the semantic web [Bemers-Lee

1998, Fensel and Musen 2001] relies heavily on ontology. Therefore, the Hybrid

Model could be used with semantic web to provide an adapted version of it. For

example, if the framework, which implements the model, stated that a certain

user is a beginner in a certain domain. Therefore, an agent can navigate the

semantic web, and get all the documents that present that domain and are suitable

for beginner users. This could happen by defining a standard ontology, such as

DDe, for documents with an educational purpose. Therefore, the information

pool of the Hybrid Model will not be dedicated to the available material within

any system that implements it, but it will comprise the whole web. The big

advantage in that integration is that users themselves can change the state of the

documents, for example from intermediate to beginner, through their comments

over the author(s) description for the document educational level- which is what

the semantic web is offering. Therefore, users with different knowledge

backgrounds will evaluate and change the presented material. Further research is

needed to find the best way to integrate the Hybrid Model with the semantic web

and to evaluate this new technology.

Other fields: the Hybrid Model could be applied in different fields such as e-

commerce. For example, if there is a company that sells mobile phones, instead

of presenting information about accessories, ring tones, logos, etc. at the same

time, the company web site could classify this information by using certain kind

of ontology. Therefore, by some way or another, the site should identify the type

of user that is accessing the site; for example if he/she is just interested in

accessories, ring tones, models, etc. and based on that, a proper kind of

information is presented. Hence, the overhead of information that is popular

among most commercial web sites will be reduced and users could find what they

want easily without jumping between different pages. In addition, if such kinds

of sites share the same ontology they could define a kind of cooperation between

them. Therefore, further research is needed to find how to use the advantages that

the model is presenting to serve other different areas.

9.7 Conclusion

The question that motivated the researcher and upon which the research is based is:

169

PART IV- Chapter IX (Discussion)

What form of user model is needed to build an adaptive web-based educational

framework, which has the ability to serve users with diverse goals and abilities; that

also has the capability to define users' knowledge globally and not to be restricted to

a particular topic or knowledge domain?

Answering this question has led to the development of the Hybrid Model that is

described herein. This model is an attempt to open the gates for more advanced web-

based educational applications with the use of techniques that are well examined in

previous researches and modifying them for its purpose.

The Hybrid Model is a user model that combines the most commonly used

techniques of user-modelling for adaptive hypertext. This utilises the various

benefits of each of these techniques in a novel manner - to provide a detailed

understanding of the user's needs and requirements on several different levels.

Furthermore, this model is a generic abstract model that is flexible, and applicable to

distinct knowledge fields as described in the user trial.

In addition to the Hybrid Model, another contribution is presented in this research,

which is the new structure design of the WHURLE sl'~m. This presented design

provides the system with the capability of implementing different user models easily.

Moreover, this infrastructure provides a clean separation between the layout and the

adaptation processes. Therefore, any changes in the display engine will not affect the

utilised user model, and the opposite is true.

Finally, through this research the researcher hopes that the Hybrid Model has

contributed to a new vision with regards to user modelling in adaptive educational

hypermedia systems. This is a vision whereby educational systems are not restricted

to a single knowledge domain but can employ different domains concurrently.

170

Appendices

Appendix A: Source Code

A.1 Authentication system files

was.html:
<html>
<head><title>WHURLE Authentication System</title></head>
<body>
<h1 align="Center" sytle="color:Green font-size:20 pt"><u>
WAS</u></h1>

<form method="post" action="was_mid_les.xml">
<table>
<tr>
<td> User Name :</td>
<td><input type="text" name="usnam"/></td>
</tr>
<tr>
<td>
Password :</td><td><input type="password" name="uspas"/></td>
</tr>
</table>

<input type="hidden" name="cmb" value="no"/>
<center><input type="submit" value="Verify"/></center>
<hr/>
New Users Need To Register
</form>
</body>
</html>

was mid_les.xml:
<?xml version="1.0"?>
<?xml-stylesheet href="was-tst.xsl" type="text/xsl"?>
<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>

<xsp:page
language="java"
xmlns:esql="http://apache.org/cocoon/SQUv2"
xmlns:xsp="hHp:/Iwww.apache.org/1999/XSP/Core"
xmlns:session="http://www.apache.org/1999/XSP/Session"
create-session="true">

<xsp:structure>
<xsp:include>wasmysql</xsp:include>
</xsp:structure>

<tst>
<xsp:logic>
String cmb=request.getParameter("cmb");
wasmysql chkk=new wasmysqlt);
String usnam="";
String uspas=":
if(cmb.equals("no"»
{
usnam=request.getParameter("usnam");
uspas=request.getParameter("uspas");
session.putValue("usnam", usnam);
session.putValue("uspas", uspas);
}
if(cmb.equals("yes"»

171

{
usnam= (String)session.getValue("usnam");
uspas=(String)session.getValue("uspas");
}
Vector Inames=new vectort):
Vector Irec=new Vecton):
Vector lopn=new Vectort):
Vector lid=new Vector();

if(chkk.tst(usnam.uspas»
{
<xsp:content><pass typ="yes"/></xsp:content>
<esql:connection>
<esql:driver>org.gjt.mm.mysql.Driver</esql:driver>
<esql:dburl>jdbc:mysql:lllocalhosVwhurle</esql:dburl>
<esql:usemame>mrz</esql:username>
<esql:password>zocka</esql:password>

<esql:execute-query>
<esql:query>
select lesson_flow.lesson_name. lesson_flow.lesson_id. user.stid from lesson_flow. user where
user.username='<xsp:expr>usnam</xsp:expr>' and
user.password='<xsp:expr>uspas</xsp:expr>' and user.categ = lesson_flow.categ
</esql:query>
<esql:results>
<esql:row-results>
String In = <esql:get-string column="lesson_name"/>;
String Id = <esql:get-string column="lesson_id"/>;
Inames.addElement(ln);
lid.addElement(ld);
String id = <esql:get-string column="stid"/>;
session.putValue("stid", id);
</esql:row-results>
</esql:results>
</esql:execute-query>

<!_ monitorng purposes _>
if(cmb.equalst'no'j)
{
Locale currentLocale= new Locale("en","GS");
Date today1 = new Datet):
SimpleDateFormat formatter1 = new SimpleDateFormat("hh:mm:ss a");
String time_c =formatter1.format(today1);

Date today = new Datet):
SimpleDateFormat formatter = new SimpleDateFormat("dd-MMM-yyyy");
String accdate = formatterJormat(today);

<esql:execute-query>
<esql:query>
insert into monitor
values('<xsp:expr>session .getValue("stid")</xsp:expr>', '<xsp:expr>accdate</xsp :expr>', '<xsp: expr>tim
e c</xsp:expr>')
</esql:query>
</esql:execute-query>
}
<!-- monitoring purposes _>

<esql:execute-query>
<esql:query>
select lesson_flow.lesson_name from lesson_flow. lessons_record where
lessons_record.stid='<xsp:expr>session.getValue("stid")</xsp:expr>' and lessons_record.lessonid =
lesson_flow.lesson_id
</esql:query>
<esql:results>
<esql:row-results>
String Ir = <esql:get-string column="lesson_name"/>;

172

Irec.addElement(lr);
</esql:row-results>
</esql:results>
</esql:execute-query>

<!- end of monitoring ->

<esql:execute-query>
<esql:query>
select lesson_flow.lesson_name from lesson_flow, open_lessons where
open_lessons.stid='<xsp:expr>session.getValue("stid")</xsp:expr>' and open_lessons.open_lesson =
lesson_flow.lesson_id
</esql:query>
<esql:results>
<esql:row-results>
String Ipn = <esql:get-string column="lesson_name"/>;
10pn.addElement(lpn);
</esql :row-results>
</esql:results>
</esql:execute-query>
</esql:connection>

for (int i=O; i &It; lnames.sizet): i++)
{
String chkl = (String)lnames.elementAt(i);
if (lopn.containstchklj)
{
Inames.removeElement(chkl);
lid.removeElementAt(i);
}

if (lrec.containsichklj)
{lnames.removeElement(chkl);
lid.removeElementAt(i);
}

}

for (int i =0; i &It; lnarnes.slzet); i++)
{
<xsp:content><lessons><xsp:expr>lnames.elementAt(i)</xsp:expr></lessons></xsp:content>;
}

for (int i =0; i &It; lrec.sizei); i++)
{
<xsp:content><finished><xsp:expr>lrec.elementAt(i)</xsp:expr></finished></xsp:content>;
}

for (int i =0; i &It; lopn.sizet); i++)
{
<xsp:content><open><xsp:expr>lopn.elementAt(i)</xsp:expr><lopen></xsp:content>;
}

session.putValue("lrec", Irec);
session.putValue("lopn",lopn);
session.putValue("lid", lid);
session.putValue("lnames",lnames);

}

if(!chkk.tst(usnam,uspas»
{<xsp:content><pass typ="no"/>
<err>Sorry You Are Not Authorized To Access The System</err>
</xsp:content>
}

</xsp:logic>
</tst>

173

</xsp:page>

was-tst.xsl:
<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl=''http://www.w3.org/1999/XSLlTransform">

<xsl:template match="/tst">
<html>
<body>
<center><h 1><u>WHURLE Authentication System</u></h 1></center>
<pI>
<pI>
<xsl:variable name="ushk">
<xsl:value-of select="child::pass/@typ"l>
</xsl:variable>
<xsl:if test=" $ushk = 'yes'">
<style type="textlcss">
option .Ies{ color:red}
option. fin{ color:green}
option.opn{color:orange}
</style>
Choose a lesson to access:
<center>
<form method="post" action="was_les2.xml">
<select name="lname" size="4">
<xsl:for-each select="lessons">
<xsl:variable name="ls 1">
<xsl:value-of select=" ."1>
</xsl:variable>
<option value="{$ls1}" class="les"I>[NOn <xsl:value-of select="."I>
</xsl :for -each>

<xsl:for-each select="open">
<xsl:variable name="ls2">
<xsl:value-of select=" ."1>
</xsl:variable>
<option value="{$ls2}" class="opn"I>[OPN) <xsl:value-of select="."I>
</xsl:for-each>

<xsl:for-each select="finished">
<xsl:variable name="ls3">
<xsl:value-of select="."I>
</xsl:variable>
<option value="{$ls3}" class="fin"I>[FIN) <xsl:value-of select="."I>
</xsl :for -each>

</select>

<input type="hidden" name="opnl" value="no"l>
<input type="submit" value="send"l>
</form>
</center>
<hr/>

Note:

<Ii> Red colored lessons/[NOn-Lesson not accessed yet<lIi>

<Ii> Orange colored lessons/[OPN)-Lessons not finished yet<lIi>

<Ii> Green colored lessons/[FIN)-Lessons already finished<lIi>

</xsl:if>

<xsl:if test=" $ushk = 'no">
<xsl:for-each select="err">

<center><xsl:value-of select="o"I></center>
</xsl:for-each>
</xsl:if>

174

</body>
</html>
</xsl:template>
</xsl:stylesheet>

was_les2.xml
<?xml version="1.0"?>
<?xml-stylesheet href="was.xsl" type="text/xsl"?>
<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>

<xsp:page
language="java"
xmlns:esql="http://apache.org/cocoon/SQUv2"
xmlns:xsp="http://www.apache.org!1999/XSP/Core"
xmlns:session="http://www.apache.org/1999!XSP!Session"
create-session="true">

<tst>
<xsp:logic>
String Iname=request.getParameter("lname");
session .putValue("lname" ,Iname);
String chkq="1";
String chkpost="O";
String stid = (String) session.getValue("stid");
Vector Irec2 = new Vectort):
Vector lopn2 = new Vectort):
Vector lid = new Vectort):
Vector Inames= new Vectort);
Irec2 =(Vector)session.getValue("lrec");
lopn2 =(Vector) session.getValue("lopn");
lid =(Vector) session.getValue("lid");
Inames =(Vector) session.getValue("lnames");
String rec="O";
String opnl= request.getParameter("opnl");
<esql:connection>
<esql:driver>org.gjt.mm.mysql.Driver</esql:driver>
<esql:dburl>jdbc:mysql:lllocalhostlwhurle</esql:dburl>
<esql:usemame>mrz</esql:usemame>
<esql:password>zocka</esql:password>

<esql:execute-query>
<esql:query>
select DISTINCT lesson_req.pretest, lesson_req.postest from lesson_req, lesson_flow where
lesson flow.lesson name =
'<xsp:expr>lname<lxsp:expr>' and lesson_flow.lesson_id = lesson_req.lessonid
</esql:query>
<esql:results>
<esql:row-results>
chkq = <esql:get-string column="pretest"/>;
chkpost = <esql:get-string column="postest"/>;
</esql:row-results>
</esql:results>
</esql:exeeute-query>

session.putValue("ptest", chkpost);

if (lrec2.contains(lname) IIlopn2.contains(lname) II opnl.equalst'yes'j)
{
if (lopn2.contains{lname) II opnl.equals("yes"»
{ree ="1";
session.putValue("rec", reel;

<xsp:content><direct tst="no"/><!xsp:content>
<esql:execute-query>
<esql:query>

175

select DISTINCT lesson_req.domainid, stereotype. class from lesson_flow, lesson_req, stereotype
where
lesson_flow.lesson_name='<xsp:expr>lname</xsp:expr>' and
stereotype.stid='<xsp:expr>session.getValue("stid")</xsp:expr>' and
stereotype.domain_id=lesson_req.domainid
</esql:query>
<esql:results>
<esql:row-results>
String dom = <esql:get-string column="domainid"/>;
String stype = <esql:get-string column="class"/>;
session.putValue(dom,stype);
</esql: row-results></esql :results>
</esql:execute-query>
}

else if (Irec2.contains(lname»
{session.putValue("rec", rec);
<xsp:content><direct tst="no"/></xsp:content>
<esql:execute-query>
<esql:query>
select old Ivl.dom id, old Ivl.dom Ivl from old lvi, lesson flow where
lesson_flow.lesson_nam97='<xsp:expr>lname</xsp:expr>,and
old_lvl.stid='<xsp:expr>session.getValue("stid")</xsp:expr>' and
old_lvl.lesson_id=lesson_flow.lesson_id
</esql:query>
<esql:results>
<esql: row-results>

String dom = <esql:get-string column="dom_id"/>;
String stype = <esql:get-string column="dom_lvl"/>;
session .putValue(dom,stype);
</esql:row-results></esql:results>
</esql:execute-query>
}

<info>
<esql:execute-query>
<esql:query>
select confgfile from user where stid='<xsp:expr>session.getValue("stid")</xsp:expr>'
</esql:query>
<esql:results><esql:row-results>
<conf><xsp:content><xsp:expr><esql:get-string

column="confgfile"/></xsp:expr></xsp:content></conf>
<lesname><xsp:content><xsp:expr>lname</xsp:expr></xsp:content></Iesname>
String conf=<esql:get-string column="confgfile"/>;
session.putValue("conf",conf);
<xsp:content><error>lname second<xsp:expr>lname</xsp:expr></error></xsp:content>

</esql:row-results>
</esql:results>
</esql:execute-query>

</info>

}

else{
rec = "1";
session.putValue("rec", rec);
int elid = Inames.indexOf(lname);
String eid = lid.elementAt(elid).toStringO;
Vector chkls = new Vecton):
Vector totin = new Vectort):
int richk = 0;
<esql:execute-query>
<esql:query>

176

select lesson_flow.lesson_name from mand_lessons, lesson_flow where
mand_lessonsJesson_id='<xsp:expr>eid</xsp:expr>' and
mand_lessons.mand_lesson_id=lesson_flow.lesson_id
</esql:query>
<esql:results>
<esql:row-results>
String mandls = <esql:get-string column="lesson_name"/>:
chkls.addElement(mandls):
</esql:row-results>
</esql:results>
</esql:execute-query>
for (int i=O: i &It: chkls.sizeO: i++)
{
String mandl2 = chkls.elementAt(i).toStringO:
if(!lrec2.contains(mandI2»
{ rlchk=t:
totin.addElement(mandI2):

}
}

if (rtchk == 1)
{

<xsp:content><error> You Should Finish The Following Lesson(s) First: </error></xsp:content>
for (int i=O; i &It; tofin.slzet); i++)
{
<xsp:content><totin><xsp:expr>totin.elementAt(i)</xsp:expr></totin></xsp:content>
}

}

if (rlchk == 0 && chkq.equals("O"»
{

int lind = Inames.indexOf(lname):
String lessid = Iid.elementAt(lind).toStringO;

<esql:execute-query>
<esql:query>
insert into open_lessons

values('<xsp:expr>session.getValue("stid")</xsp:expr>','<xsp:expr>lessid</xsp:expr>')
</esql:query>
</esql:execute-query>

<xsp:content><direct tst="no"/></xsp:content>
<esql:execute-query>
<esql:query>
select DISTINCT lesson_req.domainid, stereotype. class from lesson_flow, lesson_req, stereotype
where
lesson_flow.lesson_name='<xsp:expr>lname</xsp:expr>' and
stereotype.stid='<xsp:expr>session.getValue("stid")</xsp:expr>' and
stereotype.domain_id=lesson_req.domainid
</esql:query>
<esql:results>
<esql:row-results>
String dom = <esql:get-string column="domainid"/>:
String stype = <esql:get-string column="class"/>;
session .putValue(dom.stype);
</esql:row-results></esql:results>
</esql:execute-query>

<info>
<esql:execute-query>
<esql:query>
select confgtile from user where stid='<xsp:expr>session.getValue("stid")</xsp:expr>'
</esql:query>
<esql:results><esql:row-results>

177

<conf><xsp:content><xsp:expr><esql:get-string
column="confgfile"I></xsp:expr></xsp:content></conf>

<lesname><xsp:content><xsp:expr>lname</xsp:expr></xsp:content></lesname>
String conf=<esql:get-string column="confgfile"I>;
session.putValue("conr,conf);
<xsp:content><error>lname second<xsp:expr>lname</xsp:expr></error></xsp:content>
<Iesql:row-results>
</esql:results>
<Iesql:execute-query>

</info>

}

if (rlchk == 0 && !chkq.equals("O"»
{

<xsp:content><direct tst="yes"I></xsp:content>
<esql:execute-query>
<esql:query>
select DISTINCT pretest from lesson_req, lesson_f1ow where
lesson_f1ow.lesson_name='<xsp:expr>request.getParameter("Iname")</xsp:expr>' and

lesson_req.lessonid = lesson_f1ow.lesson_id
</esql:query>
<esql:results>
<esql:row-results>
String pretest = <esql:get-string column="pretest"I>;
<xsp:content><toqz><xsp:expr>pretest</xsp:expr></toqz><Ixsp:content>
</esql:row-results>
<Iesql:results>
</esql:execute-query>

}
}

<Iesql:connection>

</xsp:logic>
<Itst>
</xsp:page>

was.xsl:
<?xml version="1.0"?>
<xsl:stylesheet verslon=vl.O"
xmlns:xsl="http://www.w3.org/1999/XSLlTransform">

<xsl:template match="/tst">
<html>
<body>
<center><h 1><u>WHURLE Authentication System</u></h 1></center>
<pI>
<pI>
<xsl:for-each select="direct">
<xsl:variable name="chk">
<xsl:value-of select="@tst"l>
</xsl:variable>
<xsl:if test= "chk = 'no">
<xsl:apply-templates select="info"l>
</xsl:if>
<xsl:if test= "chk = 'yes'">
<xsl:apply-templates select="toqz"/>
</xsl:if>
</xsl:for-each>

<xsl:apply-templatesl>

178

</body>
</html>
</xsl:template>

<xsl:template match="toqz">
<xsl:variable name="chk2">
<xsl:value-of select="."I>
</xsl:variable>
<form name="yyy" method='post" action="{$chk2}.xml">
</form>
<script language="javascript">
document.yyy.submitO;
</script>
</xsl:template>

<xsl:template match="info">
<xsl:variable name="conf"><xsl:value-of select="conf"/></xsl:variable>
<xsl:variable name="lesname"><xsl:value-of select="lesname"I></xsl:variable>
<form name="xxx" method="post" action="{$lesname}.xml">
<input type="hidden" value=" {$Iesname r name="file"l>
<input type="hidden" value="whurle" name="sheet"l>
<input type="hidden" value="student-links" name="links"l>
<input type="hidden" value="{$conf}" name="conf"/>
<input type="hidden" value="on" name="adap"l>
</form>
<script language="javascript">
document.xxx.submit();
</script>
</xsl:template>

<xsl:template match="error">

<xsl:value-of select=" ."I>

</xsl:template>

<xsl:template match="tofin">
<xsl:variable name="bk">
<xsl:value-of select=". "I>
</xsl:variable>

<Ii><xsl:value-of select=" ."/></Ii>

</xsl:template>
</xsl:stylesheet>

179

A.2 Adaptation filter

whurle-filter.xsl:
<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSLlTransform"
xmlns:xinclude="http://www.w3.org/1999/XMUxinclude"
xmlns:xsp="http://www.apache.org/1999/XSP/Core">

<xsl:param name="adap"l>

<xsl:template match="lesson-plan">
<xsl:processing-instruction name="cocoon-process">type="xsp"</xsl:processing-instruction>
<xsl:processing-instruction name="cocoon-process">type="xinclude"</xsl:processing-instruction>
<xsl: processing-instruction name="cocoon-process">type="xslt"</xsl :processing-instruction>
<xsl:processing-instruction name="xml-stylesheet"> href="whurle-wrapper.xsl"
type="textlxsl"</xsl:processing-instruction>

<xsp:page language="java" xmlns:xsp=''http://www.apache.org/1999/XSP/Core"
xmlns:xinclude="http://www.w3.org/1999/XMUxinclude"
xmlns:request="http://www.apache.org/1999/XSP/Request"
create-session="true">

<wrapper>
<xsl:apply-templates/>
</wrapper>
</xsp:page>
</xsl:template>

<xsl:template match="versionlist">
<xsl:copy-of select=" ."1>
</xsl:template>

<xsl:template match="lesson">
<xsp:logic>
String chk = request.getParameter("adap");
</xsp:logic>
<xsl:copy>
<xsl:attribute name="title">
<xsl:value-of select="@title"l>
</xsl:attribute>
<xsl:attribute name="name">
<xsl:value-of select="@name"l>
</xsl:attribute>
<xsl:attribute name="xmlns:xinclude">
<xsl:value-of select="@xmlns:xinclude"/>
</xsl:attribute>
<xsl:apply-templates I>

<xsp:logic>
if(chk.equals("on"»
{
String rec = (String) session.getValue("rec");
if (rec.equals("1"»
{
String lesschk = (String) session.getValue("ptest");
if (!lesschk.equals("O"»
{
<xsp:content>
<xsl:call-template name="adlvl"/>
</xsp:content>
}
}

180

}
</xsp:logic>
</xsl:copy>
</xsl :template>

<xsl:template match="level">
<xsl:copy>
<xsl:attribute name="name">
<xsl:value-of select="@name"/>
</xsl:attribute>
<xsl:attribute name="title">
<xsl:value-of select="@title"/>
</xsl:attribute>
<xsl:apply-templates />
</xsl:copy>
</xsl:template>

<xsl:template match="page"> <!- cheking if the child chunks has something to display or not -->
<xsp:logic>
if(chk.equalsron"» <!- if adaptation is on ->
{
if("<xsl:value-of select=".Ichunkl@domain"/>".equals("general"»
{
<xsp:content>
<xsl:copy>
<xsl:apply-templates/>
</xsl:copy>
</xsp:content>
}
if r<xsl:value-of select=".Ichunkl@stereotype1"/>".equals(session.getValue("<xsl:value-of
select=".Ichunkl@domain"/>"» II "<xsl:value-of
select=".Ichunkl@stereotype2"/>".equals(session.getValue("<xsl:value-of
select=".Ichunkl@domain"/>"»)
{
<xsp:content>
<xsl:copy>
<xsl:apply-templates/>
</xsl:copy>
</xsp:content>
}}
if(chk.equals("otr» <!- if adaptation is off->
{
<xsp:content>
<xsp:content>
<xsl:copy>
<xsl:apply-templates/>
</xsl:copy>
</xsp:content>
</xsp:content>
}
</xsp:logic>
</xsl:template>

<xsl:template match="chunk">
<xsp:logic>
if(chk.equals("on"»
{
ifr<xsl:value-of select="@domain"/>".equals("general"»
{
<xsp:content>
<xsl:copy>
<xsl:apply-templates/>
</xsl:copy>
</xsp:content>
}
if ("<xsl:value-of select="@stereotype1"/>".equals(session.getValue("<xsl:value-of

181

select="@domain"I>")) II "<xsl:value-of select="@stereotype2"1>".equals(session.getValue("<xsl:value-
of
select="@domain"I>")))
{
<xsp:content>
<xsl:copy>
<xsl:attribute name="domain">
<xsl:value-of select="@domain"l>
</xsl:attribute>
<xsl:apply-templates I>
</xsl:copy>
</xsp:content>
}
}
if(chk.equals("off"))
{
<xsp:content>
<xsl:copy>
<xsl:attribute name="domain">
<xsl:value-of select="@domain"l>
</xsl:attribute>
<xsl:apply-templates I>
</xsl:copy>
</xsp:content>
}
</xsp:logic>
</xsl:template>
<xsl:template match="linkbase">
<xsl:copy-of select=" ."1>
</xsl:template>
<xsl:template match="more">
<xsl:copy-of select=" ."1>
</xsl:template>
<xsl:template match="resources">
<xsl:copy-of select="."I>
</xsl:template>
<xsl:template match="issues">
<xsl:copy-of select="."I>
</xsl:template>

<xsl:template match="objectives">
<xsl:copy-of select="."I>
</xsl:template>

<xsl:template match="briefing">
<xsl:copy-of select=" ."1>
</xsl:template>

<xsl:template name="adlvl"> <!-- adding quiz level -->
<xsl:element name="level">
<xsl:attribute name="name">
<xsl:text>web-quiz</xsl:text>
</xsl:attribute>
<xsl:attribute name="title">
<xsl:text>Final Quiz</xsl:text>
</xsl:attribute>
<xsl:element name="page">
<xsl:element name="chunk">
<xsl:text>quiz</xsl:text>
</xsl:element>
</xsl:element>
</xsl:element>
</xsl:template>

</xsl:stylesheet>

182

A.3 History files

history.xml:
<?xml version="1.0"?>
<?xml-stylesheet href="history.xsl" type="texVxsl"?>
<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>

<xsp:page
language="java"
xmlns:esql="http://apache.org/cocoon/SQUv2''
xmlns:xsp="http://www.apache.org/1999/XSP/Core"
xmlns:session="http://www.apache.org/1999/XSP/Session"
create-session="true">

<tst>
<esql:connection>
<esql:driver>org.gjt.mm.mysql.Driver</esql:driver>
<esql:dburl>jdbc:mysql:lllocalhosVwhurle</esql:dburl>
<esql:usemame>mrz</esql:username>
<esql:password>zocka</esql:password>
<esql:execute-query>
<esql:query>
select lesson_flow.lesson_name, lessons_record.score, lessons_record.finishdata from lesson flow,
lessons record where _
lessons=record.stid='<xsp:expr>session.getValue("stid")</xsp:expr>' and
lessons_record.lessonid=lesson_flow.lesson_id
</esql:query>
<esql:results>
<esql:row-results>
<Iname>

<name><esql:get-string column="lesson_name"/></name>
<conf><xsp:expr>session.getValue("conf')</xsp:expr></conf>

<score><esql:get-string column="score"/></score>
<date><esql:get-string column="finishdata"/></date>
</Iname>

</esql:row-results>
</esql:results>
</esql:execute-query>
</esql:connection>

</tst>
</xsp:page>

history.xsl:
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSLlTransform">

<xsl:param name="sheet">whurle</xsl:param>
<xsl:param name="links">student-links</xsl:param>
<xsl:param name="adap">off</xsl:param>

<xsl:template match="/tst">
<html>
<head>
<title>HISTORY</titie>
</head>
<body>
<center>
<table border-"1" cellpadding="3">
<tr><td>Lesson Name</td><td>Score</td><td>Finished Date</td></tr>
<xsl:for-each select="lname">
<lr>
<td>

183

<a>
<xsl:attribute narne=rhref">
<xsl :value-of select=" .Iname" I>.xml?sheet=<xsl :value-of select="$sheet" I>&file=<xsl:value-of
select=".Iname"I>&links=<xsl:value-of select="$links"I>&conf=<xsl:value-of
select=" .Iconr I>&adap=<xsl :value-of select="$adap" I>
</xsl:attribute>
<xsl:attribute name="target"> _blank</xsl:attribute>
<xsl:value-of select=" .Iname" I>
<la>
<ltd>
<td><xsl:value-of select=" .Iscore"{><{td>
<td><xsl:value-of select=".Idate"I></td>
</tr>
</xsl:for-each>
</table>
<{center>
<{body>
<{html>
</xsl:template>
</xsl:stylesheet>

184

A.4 Quiz engine

quiz-results.xsl:
<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSLffransform">

<xsl:template match="quiz">
<html>
<title>Quiz</title>
<body>
<form action="result.xml" method="post">
<xsl:apply-templates I>

<center><input type="submit" value="Send"/></center>
</form>
</body>
</html>
</xsl:template>

<xsl:template match="questions">
<xsl:for-each select="child::question[@type= 'choice']">

<xsl:value-of select="child::question-text"I>:<lIi>

<xsl:call-template name="pics"/> <!- for picuters if found -->
<xsl:for-each select="child::answer">
<xsl:variable name="chid">
<xsl:value-of select="@id"l>
</xsl:variable>
<xsl:variable name="chval">
<xsl:value-of select="@type"l>
</xsl:variable>
<input type="radio" name="{$chid}" value="{$chval}">
<xsl:if test=" parent::question[@media = 'image')">
<xsl:variable name="sr">
<xsl:value-of select="."I>
</xsl:variable>

</xsl:if>
<xsl:if test= " parent::question[@media = 'text]">
<xsl:value-of select=" ."1>
</xsl:if>
</input>

</xsl:for-each>
</xsl:for-each>

<center> --------------------</center>

<div style="color:green"><center> Choose More Than One Answer
</center></div>

<xsl:for-each select="child::question[@type= 'multiple']">
<xsl:variable name="mqid">
<xsl:value-of select="@id"l>
</xsl:variable>
<xsl:variable name="mqch">
<xsl:value-of select="@choices"/>
</xsl:variable>
<xsl:variable name="mtyp">
<xsl:value-of select="@type"l>
</xsl:variable>
<xsl:variable name="sid">
<xsl:value-of select="concat(@id, 'm')"1>
</xsl:variable>
<input type="hidden" name="{$mqid}" value="{$mtyp}"I>
<input type="hidden" name="{$sid}" value="{$mqch}"I>

<xsl:value-of select="child::question-text"I>:<lIi>

185

<xsl:call-template name="pics"l> <!- for picuters if found -->
<xsl:for-each select="child::answer">
<xsl:variable name="ansid">
<xsl:value-of select="@id"l>
</xsl:variable>
<xsl:variable name="anstyp">
<xsl:value-of select="@id"l>
</xsl:variable>
<input type="checkbox" name="{$ansid}" value="{$anstyp}">
<xsl:if test=" parent::question[@media = 'irnaqe']">
<xsl:variable name="sr1">
<xsl:value-of select=" ."1>
</xsl:variable>

</xsl:if>
<xsl:if test= " parent::question[@media = 'text'] ">
<xsl:value-of select=" ."1>
</xsl:if>
</input>

</xsl :for -each>
<Ixsl :for -each>
<Ixsl:template>

<xsl:template match="domains">
<xsl:variable name="dcnt">
<xsl:value-of select="@num"/>
<Ixsl:variable>
<input type="hidden" name="domcount" value="{$dcnt}"/>
<xsl:for-each select="child::domain">
<xsl:variable name="domn">
<xsl:value-of select="concat('domain', @id >"1>
</xsl:variable>
<xsl:variable name="nm">
<xsl:value-of select=". "I>
<Ixsl:variable>
<xsl:variable name="qids">
<xsl:value-of select="@qid"l>
</xsl:variable>
<input type="hidden" name="{$domn}" value="{$nm}"I> <!- sending domain names as domain1 =
html(value) ->
<input type="hidden" name="{$nm}" value="{$qids}"/> <!- sending question ids with domain name as
input name ->
</xsl:for-each>
<Ixsl:template>

<xsl:template match="mark-base">
<xsl:variable name="qnm">
<xsl:value-of select="."I>
</xsl:variable>
<input type="hidden" name="qstnum" value="{$qnm}"/>
<Ixsl:template>

<xsl:template match="quiz-name">

<div style="color:green ; border = thin blue solid; bgcolor:blue"><center>
<xsl:value-of select="."I>
</center></div>
</xsl:template>

<xsl:template match="type">
<xsl:variable name="typ">
<xsl:value-of select=" ."1>
</xsl:variable>
<input type="hidden" name="typ" value="{$typ}"/>
<Ixsl:template>

186

<xsl:template name="pics">
<xsl:for-each select="child::pic">
<xsl:variable name="srs">
<xsl:value-of select="."I>
</xsl:variable>
<center><table border=D">
<tr>
<td>
<center></center>
<ltd>
<Itr>
<tr>
<td>
<center><xsl:value-of select="@cap"I></center>
<ltd>
</tr>
<Itable>
</center>
</xsl :for -each>
</xsl:template>

</xsl:stylesheet>

A.4.1 Auto-marking

result.xml:
<?xml version="1.0"?>
<?xml-stylesheet href="result.xsl" type="textlxsl"?>
<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>

<xsp:page
language="java"
xmlns:xsp="http://www.apache.org/1999IXSP/Core"
xmlns:session="http://www.apache.org/1999/XSP/Session"
create-session="true">

<results>
<xsp:logic>
String dnumb=request.getParameter("domcount");
int dn = Integer.parselnt(dnumb);
String[] domain = new String[dn);
String[] qids= new String[dn);
String[][] domqs= new String[dn][50);
String type = request.getParameter("typ");
Vector chk = new Vectort):
Vector finalqs = new Vectort):
String ques = request.getParameter("qstnum");
String h;
String mqsts;
String qnchk;
String fnlchk;
String questchk;
String chktst;
String chktst2;
int mval = Integer.parselnt(ques);
int cntr = 0;
int x =0;
int k = 0;
int g =0;
int hh = 0;
int z = 0;
int u = 0;
boolean notok = false;

187

<!- getting domain names and questions ids -->

<![CDATA[
for(int i=1; i <= dn; i++)
]]>
{
domain[i-1) = request.getParameter("domain" + i);
qids[i-1] = request.getParameter(domain[i-1));
}

<!- spliting questions ids into 2 dim and 1 dim arrays ->

int[] qpos = new int[dn);
for(int i=O; i &It; dn ; i++)
{
x=O;
StringTokenizer quest = new StringTokenizer(qids[i), ",");
qpos[i) = quest.countTokensO;
x = x+1;

while(quest. has MoreT okenstj)
{
chk.add Element(quest.nextTokenO);
x=x+1;
}
}

<!- filtering 1 dim array for any questions' ids duplications -->
while (k &It; chk.sizeO)

{ questchk = chk.elementAt(k}.toStringO;

if (!finalqs.contains(questchk»

{

finalqs.addElement(questchk};

k = k + 1;

}

else

{k = k + 1;}

}

<!- auto-marking question part->
int[] qresults = new int[finalqs.sizeOJ;

for (int i=O; i &It; finalqs.sizeO ; i++)

{

try <!- using try and catch to handle h if nothing is checked -->

{
h = request.getParameter(finalqs.elementAt(i).toString(});

if (h != "multiple")
{ if (h.equals("yes"»
{
qresults[cntr]=mval;
}

if(h.equals("no"»

188

{qresults[cntr]=O;}
}

if (h.equalst'rnulttple'j)
{

mqsts = request.getParameter(finalqs.elementAt(i).toStringO + ".0"); <!-- to prevent choosing all
options ->

if(mqsts == null)
{
mqsts = request.getParameter(finalqs.elementAt(i).toStringO + "m");

<xsp:content>-domains:<xsp:expr>mqsts</xsp:expr>-</xsp:content>

StringTokenizer qanl = new StringTokenizer(mqsts , ",");
while (qanl.hasMoreTokens())
{ qnchk = qanl.nextToken();
fnlchk = request.getParameter(qnchk);

String fnlchks ="ch";
<xsp:content>-#domain:<xsp:expr>qnchk</xsp:expr>-#value:

<xsp:expr>fnlchk</xsp:expr></xsp:content>
if (lfnlchk.equalstqncnkj)

{ <xsp:content>-I'm empty-</xsp:content>
notok = true;
break;
}

}
if(notok)
{
qresults[cntr]=O;
notok = false;
}
else
{qresults[cntr]=mval;}

}
else
{qresults[cntr]=O;}

}
cntr = cntr + 1;

}
catch (NullPointerException e)
{
e.printStackTraceO; <!- if no data is sent put 0 in the qresults vector -->
qresults[cntr]=O;
cntr = cntr + 1;
}

}

<!-- adding scores with respect to the corresponding domains -->

x=o;
StringO score = new String[dn);

for (int i = 0; i &It; dn; i++)
{
g = qpos[i);
g = g + u;
while (hh &It; g)
{
chktst = chk.elementAt(hh).toStringO;

while(z &It; finalqs.size())
{
chktst2 = finalqs.elementAt(z).toStringO;

189

if (chktst2.equals(chktst))
{
x = x + qresults[z);

}
z=z+ 1;
}

hh = hh +1;
z=O;

}
u =g;
score[i) = Integer.toString(x);

x=O;
}

<!- Report ->

for (int i = 0; i &It; dn; i++)
{

<xsp:content><dom><xsp:expr>domain[i)</xsp:expr></dom><Ixsp:content>
<xsp:content><score><xsp:expr>score[i)</xsp:expr></score></xsp:content>
}

<!-- getting overall score ->
x=O;
for (int i = 0; i &It; flnalqs.sizet): i++)
{ x = x + qresults[i];}
sasslon.putvaluer'score", Integer.toString(x));
<xsp:content>
<total-score><xsp:expr>x</xsp:expr></total-score>
</xsp:content>
String dmns = Integer.toString(dn);
sesslon.putvaluet'ndorn", Integer.toString(dn));
<!- status = request.qetl=ararnetert'atatus"):
sasslon.putvaluet''status" ,status); ->
sesslon.putvaluer'qinvdorn", domain);
sssston.putvaluer'qlnvdomrs", score);
sssslon.putvaluet'fype", type);
</xsp:logic>

</results>

</xsp:page>

result.xsl:
<?xml version="1.0"?>

<xsl:stylesheet verslon=vt.O" xmlns:xsl="http://www.w3.org/1999/XSLlTransformw>

<xsl:template match=vresutts">
<html>
<body>
<form name='zzz" method=tpost" action="uengine4.xml">
<xsl:for-each select="error">
<div style="color:red ; font: 15pt; font-weight bold; border: thin solid blue">
<center>
<xsl:value-of select=".">
</center>
</div>

</xsl :for -each>
<center>
<table background="green">
<tr bgcolor="gree">

190

<xsl:for-each select='dom">
<td>
<center><xsl:value-of select=" ."/></center>
<ltd>
</xsl:for-each>
</tr>
<tr bgcolor-'yellow">
<xsl:for-each select='score">
<td><center><xsl:value-of select=' ."/></center></td>
</xsl :for-each>
</tr>
</table>
</center>

ToTal Score: <xsl:value-of select="total-score"/>
</form>
<script language="javascript">
document.zzz.submit();
</script>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

A.4.2 Upgrade engine

uengine4.xml:
<?xml version=·1.0·?>
<?xml-stylesheet href="uengine.xsl" type='textlxsl'?>
<?cocoon-process type='xsp'?>
<?cocoon-process type="xslt"?>

<xsp:page
language='java"
xmlns:esql=·http://apache.org/cocoon/SQUv2"
xmlns:xsp="http://www.apache.org/1999/XSP/Core"
xmlns:session="http://www.apache.org/1999/XSP/Session"
create-session="true'>

<tst>
<xsp:logic>
StringU complvl=new String(3);
complvl[O)="beg";
complvl[1)="int";
complvl(2)="adv";
intU comp=new int(3);
comp[O)=1;
comp(1)=2;
comp(2)=3;
int nlvl=O;
int nlvI2=O;
String contdom = (String)session.getValue("ndom");
int cont = Integer.parselnt(contdom);
String type = (String)session.getValue("type");
StringU stype=new String[cont);
intU scr-new int[cont);
StringU nlevel=new String[cont);
StringU domid=new String[cont);
StringU qinv = new String[cont);
StringU qinvr = new String[cont);
qinv= (StringU)session.getValue("qinvdom");
qinvr= (StringU)session.getValue("qinvdomrs");
String lid="O";

191

<esql:connection>
<esql:driver>org.gjt.mm.mysql.Driver</esql:driver>
<esql:dburt>jdbc:mysql:lllocalhostlwhurle</esql:dburl>
<esql:usemame>mrz</esql:username>
<esql:password>zocka</esql:password>

<![CDATA[
for(int i=O; i < cont; i++)
]]>
{
<esql:execute-query>
<esql:query>
select stereotype.class from stereotype, domain where
stereotype.stid='<xsp:expr>session.getValue("stid")</xsp:expr>' and
domain.domain_name='<xsp:expr>qinv[i)</xsp:expr>' and
domain.domain_id = stereotype.domain_id
</esql:query>
<esql:results>
<esql: row-results>
try{
stype[i) = <esql:get-string column="class"/>;
}
catch(NullPointerException e)
{
e.printStack Tracet):
}
</esql:row-results></esql:results>
</esql:execute-query>
}

<!- building arrays from the retuming domain array and their number (domains) ->
<![CDATA[
for (int i=O; i < cont; i++)
)]>
{
String ff = qinvr[i);
scr[i) = Integer.parselnt(ff);

}

<![CDATA[
for(int i=O; i < cont; i++)
)]>
{
if (scr[i) == 0)
{
scr[i)=1 ;}

<esql:execute-query>
<esql:query>
select stereotype_scale. stereotype from knowledge_scale, stereotype_scale where
knowledge_scale.lrange
&It; '<xsp:expr>scr[i)</xsp:expr>' and knowledge_scale.urange >=
'<xsp:expr>scr[i)</xsp:expr>' and knowledge_scale. knowledge >= stereotype_scale.lrange and
knowledge_scale. knowledge &It;= stereotype_scale.urange
</esql :query>
<esql:results>
<esql:row-results>

nlevel[i]= <esql:get-string column="stereotype"/>; <!- getting corresponding s-type for the present
scores ->
</esql:row-results></esql:results>
</esql:execute-query>

~!- getting domains ID ... ->
<![CDATA[

192

for(int i=O; i < cont; i++)
J]>
{
<esql:execute-query>
<esql:query>
select domain_id from domain where domain_name='<xsp:expr>qinv[i)</xsp:expr>'
</esql:query>
<esql:results>
<esql:row-results>
domid[i)= <esql:get-string column="domain_id"/>;
</esql:row-results></esql:results>
</esql:execute-query>
}

<!_ Comparison between old and new levels, then updating for the changed levels in involved domains
takes place ->

for(int i=O; i &It; cont; i++)
{

try {
for(int z=O; z &It; 3; z++)
{
if (stype[i).equals(complvl[z)))
{
nlvl = comp[z);

}
if (nlevel[i).equals(complvl[z)))
{
nlvl2 = comp[z);

}
}

if (nlvl2 > nlvl]] nlvl2 &It; nlvl)

{

<!- upgrading for user's stereotype takes place ->

<esql:execute-query>
<esql:query>
update stereotype set class='<xsp:expr>nlevel[i)</xsp:expr>' where

stid='<xsp:expr>session.getValue("stid") </xsp:expr>' and domain_id =
'<xsp:expr>domid[i)</xsp:expr>'

</esql:query>
<esql:results>
<esql:row-results/>
</esql:results>

</esql:execute-query>
}

Jatch (NullPointerException r)
{
r.printStackTraceO;
<esql:execute-query>

<esql:query>
insert into stereotype

values('<xsp:expr>session .getValue("stid")</xsp:expr>', '<xsp :expr>domid[i)</xsp :expr>', '<xsp:expr>nle
vel[ij</xsp:expr>')

</esql:query>
</esql:execute-query>
}
}

<!- Getting lesson ID ->

193

<esql:execute-query>
<esql:query>
select lesson_id from lesson_flow where lesson_name =

'<xsp:expr>session.getValue("lnamen)</xsp:expr>'
</esql:query>
<esql:results>
<esql:row-results>
lid = <esql:get-string column="lesson_id"/>;
</esql:row-results>
</esql:results>
</esql:execute-query>

for (int i=O; i &It; cont; i++)
{

<fresult>
<domain><xsp:content><xsp:expr>qinv[i]</xsp:expr></xsp:content></domain>

<score><xsp:content><xsp:expr>scr[i]</xsp:expr></xsp:content></score>
<olevel><xsp:content><xsp:expr>stype[i]</xsp:expr></xsp:content></olevel>
<nlevel><xsp:content><xsp:expr>nlevel[i]</xsp:expr></xsp:content></nlevel>

</fresult>
}

if(type.equals("pretest"»
{
<esql:execute-query>
<esql:query>
insert into open_lessons

values('<xsp:expr>session .getValue("stid")</xsp :expr>', '<xsp:expr>lid</xsp:expr>')
</esql:query>
</esql:execute-query>
<xsp:content><type
typ="pretest"><xsp:expr>session.getValue("lname")</xsp:expr></type></xsp:content>
}

<!- if it is a post-test update lessons_record, open_lessons, old_level -->

if (type.equals("postest"))
{
Date today = new Datet):
SimpleDateFormat formatter = new SimpleDateFormat("dd-MMM-yyyy");
String datetoday = formatterJormat(today);

<esql:execute-query>
<esql:query>
insert into lessons record

values('<xsp:expr>session.getValue("stid")</xsp:expr>', '<xsp:expr>lid</xsp:expr>', '<xsp:expr>session.
getValue("score")</xsp:expr>','<xsp:expr>datetoday</xsp:expr>')
</esql:query>
</esql:execute-query>

<esql:execute-query>
<esql:query>
delete from open_lessons where stid ='<xsp:expr>session.getValue("stid")</xsp:expr>' and
open_lesson='<xsp:expr>lid</xsp:expr>'
</esql:query>
</esql:execute-query>

for (int i =0; i &It; cont; i++)
{
<esql:execute-query>
<esql:query>
insert into old_lvl

values('<xsp:expr>session.getValue("stid")</xsp:expr>','<xsp:expr>lid</xsp:expr>','<xsp:expr>domid[i]<
Ixsp:expr>', '<xsp:expr>stype[i]</xsp:expr>')

</esql:query>
</esql:execute-query>
}

194

<xsp:content><type typ="postest"I></xsp:content>
}

</esql:connection>
</xsp:logic>
</tst>

</xsp:page>

uengine.xsl:
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSLlTransform">

<xsl:template match="/tst">
<html>
<head><title>Results Report</title></head>
<body>
<center>
<u>Report</u>
</center>

<center>
<table border-"1">
<tr>

<td>Domain name</td><td>Score</td><td>Old Level<ltd><td>New
Level</td></tr>
<xsl:for-each select="fresult">
<tr>
<td><xsl:value-of select=" ./domain"/></td>
<td><xsl:value-of select=" ./score"/></td>
<td><xsl:value-of select=" '/olevel"/></td>
<td><xsl:value-of select=" ./nlevel"I></td>
</tr>
</xsl:for-each>
</table>
</center>
<xsl:for-each select="type">
<xsl:if test= "@typ = 'pretest'">
<xsl:variable name="ln">
<xsl:value-of select="."/>
</xsl:variable>
If you want to access the lesson now press on the lesson name:
<xsl:value-of select="$ln"/>
</xsl:if>

If you want to return to lessons list
 Press Here

</xsl :for -each>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

195

A.5 Administrative tools

A.S.1 Students' registration tool

streg.xml:
<?xml version="1.0"?>
<?xml-stylesheet href="streg .xsl" type="textlxsl"?>
<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>
<xsp:page language="java" xmlns:xsp="http://www.apache.org/1999/XSP/Core"
xmlns:esql="htlp:l!apache.org/cocoon/SQUv2"
xmlns:session="htlp:/Iwww.apache.org/1999/XSP/Session"
create-session="true">

<tst>
<xsp:logic>
StringD catg=new String[10];
StringD catid=new String[1 0];
Strinqj] confn=new String[10];
StringD conff=new String[1 0];
int i=O;
int x=O;

<esql:connection>
<esql:driver>org.gjt.mm.mysql.Driver</esql:driver>
<esql:dburl>jdbc:mysql:lllocalhostlwhurle</esql:dburl>
<esql:username>mrz</esql:username>
<esql:password>zocka</esql:password>
<esql:execute-query>
<esql:query>
select category_name, category_id from category
</esql:query>
<esql:results>
<esql:row-results>
<cate><xsp:content><xsp:expr><esql:get-string
column="category_name"/></xsp:expr></xsp:content></cate>
catg[i] = <esql:get-string column="category_name"/>;
catid[i] = <esql:get-string column="category_id"/>;
i = i + 1;
</esql :row-results>
</esql:results>
</esql:execute-query>

session .putValue("allcat" ,catg);
session. putValue("allcatid" ,catid);

<esql:execute-query>
<esql:query>
select conf_name, conf_file from conf
</esql:query>
<esql:results>
<esql:row-results>
<confn><xsp:content><xsp:expr><esql:get-string
column="conf_name"/></xsp:expr></xsp:content></confn>
confn[x] = <esql:get-string column="conf_name"/>;
conff[x] = <esql:get-string column="conf_file"/>;
x=x+ 1;
</esql:row-results>
</esql:results>
</esql:execute-query>
session.putValue("allconfn",confn);
session.putValue("aliconff" ,contt);
</esql:connection>

196

</xsp:logic>
</tst>

</xsp:page>

streg.xsl:
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="htlp:l!www.w3.org/1999/XSLlTransform">

<xsl:template match="/tst">
<html>
<head>
<title>Registration</title>

<script>
function verfy(passform)
{
if(passform.stid.value==""II passform.fname.value== ""II passform.lname.value=="" II
passform.usname. value=="" II passform.password. value=="")
{alert("Some fileds are missing");
retum false;}

if (passform.password.value != passform.password2.value)
{alert("Entered password did not match");
return false;}
}
</script>

</head>
<body>
<center>
<h1 style="color:green">
<u>Registration Form</u></h 1></center>

<form onsubmit="retum verfy(this)" method="post" action="studreg.xml" align="center">
<p/>Student IO
<input type="text" name="stid"/>
<p/>First name
<input type="text" name="fname"/>
<p/>Last name
<input type="text" name="lname"/>
<p/>User name
<input type="text" name="usname"/>
<p/>Password
<input type="password" name="password"/>
<p/>Confirm Password
<input type="password" name="password2"/>
<pt>
Select a Category:
<select name="cat">
<xsl:for-each select="cate">
<xsl:variable name="catgo">
<xsl:value-of select="."/>
</xsl:variable>
<option value="{$catgo}"><xsl:value-of select="."/></option>
</xsl:for -each>
</select>
<pt>
Select Style:
<select narne=rconf">
<xsl:for-each select="confn">
<xsl:variable name="con">
<xsl:value-of select="."/>
</xsl:variable>
<option value="{$con}"><xsl:value-of select=" ."/></option>
</xsl:for-each>
</select>
<pt>
<center><input type="submit" value="Register" /></center>
</form>

197

</body>
</html>
</xsl:template>

</xsl:stylesheet>

studreg.xml:
<?xml version="1.0"?>
<?xml-stylesheet href="studreg.xsl" type="text/xsl"?>
<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>
<xsp:page language="java" xmlns:xsp="http://www.apache.org/1999/XSP/Core"
xmlns:esql="http://apache.org/cocoon/SQUv2"
xmlns:session="http://www.apache.org/1999/XSP/Session" create-session="true">

<xsp :structure>
<xsp:include>wasmysql</xsp:include>
<xsp:include>streg</xsp:include>
</xsp :structure>

<tst>
<xsp:logic>
wasmysql verf=new wasmysql();<!- test ->
streg inst=new streg(); <!- insdata ->
String stid=request.getParameter("stid");
String fname=request.getParameter("fname");
String Iname=request.getParameter("lname");
String usname=request.getParameter{"usname");
String password=request.getParameter("password");
String cat=request.getParameter("cat");
String conf=request.getParameter("conf);
String lIesson="O"; <!- next lesson Id ->
String catid=":
String confile="";
String pass1= password.toLowerCaseO;
String usname1 =usname.toLowerCaseO;
String[] catg=new String[10];
String[] catgid=new String[1 0];
String[] confn=new String[1 0];
String[] conff=new String[1 0];
catg = (String[])session.getValue("allcat");
catgid = (StringO)session.getValue("allcatid");
conff = (String[])session.getValue("allconff");
confn = (StringO)session.getValue("allconfn");

if(verf.tst(usname1. passtj)
{<xsp:content>
<out>your usemame is used, please press back and re-enter another one</out>
</xsp:content>
}
if(!verf.tst(usname1, passtj)
{
for (int i=O; i &It; 10; i++)
{
if (catg[i].equals(cat»

{
catid = catgid[i];
break;

}
}

for (int x=O; x &It; 10; x++)
{
if(confn[x].equals(conf)
{

198

confile = conff[x]:
break:

}
}

inst.insdata(fname.toLowerCaseO,lname.toLowerCase(),usname.toLowerCase(),password.toLowerCa
seO,stid,catid,confile);
<xsp:content><out>registered<lout><gotol></xsp:content>
}
</xsp:logic>
</tst>
</xsp:page>

studreg.xsl
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSLffransform">

<xsl:template match="/tst">
<html>
<body>
<xsl:for-each select="out">

<center>
<xsl:value-of select=" ."1>
</center>

</xsl:for-each>
<xsl:for-each select="goto">

You Need To Login To The System Press Here To Go To The Login Screen.
</xsl:for-each>
</body>
</html>
</xsl:template>
</xsl :stylesheet>

A.5.2 Lessons' registeration tool

ladmin.xml:
<?xml version="1.0"?>
<?xml-stylesheet href="ladmin.xsl" type="textlxsl"?>
<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>

<xsp:page
language="java"
xmlns:esql="http://apache.org/cocoon/SQUv2"
xmlns:xsp="http://www.apache.org/1999/XSP/Core"
xmlns:session="http://www.apache.org/1999/XSP/Session"
create-session="true">

<xsp:structure>
<xsp:include>ldom</xsp:include>
<xsp:include>domcount</xsp:include>
</xsp:structure>

<tst>
<xsp:logic>
StringO domain=new String[10];
StringQ domainid=new String[10J;
int i=O;

199

<esql:connection>
<esql:driver>org.gjt.mm.mysql.Driver</esql:driver>
<esql:dbur1>jdbc:mysql:/Ilocalhostlwhurle</esql:dburl>
<esql :usemame>mrz</esql:usemame>
<esql:password>zocka</esql:password>
<esql:execute-query>
<esql:query>
select domain_name, domain_id from domain
</esql:query>
<esql:results>
<esql:row-results>
<dname><xsp:content><xsp:expr><esql:get-string
column="domain_name"/></xsp:expr></xsp:content></dname>
domain[i]=<esql:get-string column="domain_name"/>;
domainid[i]=<esql:get-string column="domain_id"/>;
i=i+1;
</esql:row-results>
</esql:results>
</esql:execute-query>

session .putValue("alldom" ,domain);
session. putValue("alidomid" ,domainid);
<esql:execute-query>
<esql:query>
select countr') from domain
</esql:query>
<esql:results>
<esql:row-results>
<count><xsp:content><xsp:expr><esql:get-string
column="count(·)"/></xsp:expr></xsp:content></count>
</esql: row-results>
</esql:results>
</esql:execute-query>

<esql:execute-query>
<esql:query>
select category_name from category
</esql:query>
<esql:results>
<esql:row-results>
<cat><xsp:content><xsp:expr><esql:get-string
column="category _name"/></xsp:expr></xsp:content></cat>
</esql: row-results>
</esql:results>
</esql:execute-query>

</esql:connection>
</xsp:logic>
</tst>

</xsp:page>

ladmin.xsl:
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSLfTransform">

<xsl:template match="/tst">
<html>
<body>
<form method="post" action="ladmin2.xml">
Lesson Name: <input type="text" name="lsname"/><p/>
Choose involved Domains :

<xsl:for-each select="dname">
<xsl:variable name="dom">

200

<xsl:value-of select="."I>
</xsl:variable>
<table border-wOo>
<td width="100">
<input type="checkbox" name="{$dom}"I><xsl:value-of select="."I>
<ltd>
</table>
</xsl :for-each>
<xsl:for-each select="count">
<xsl:variable name="cnt">
<xsl:value-of select=" ."1>
</xsl:variable>
<input type="hidden" value="{$cnt}" name="cnt"l>
</xsl:for-each>
<pI>
Select a Category:
<select name="cats">
<xsl:for-each select="cat">
<xsl:variable name="cate">
<xsl:value-of select=" ."1>
</xsl:variable>
<option value="{$cate}"><xsl:value-of select="."I></option>
</xsl:for-each>
</select>

<pI>
Name Of The Pre-quiz <input type="text" name="pre"/> [Write 0 for None]

Name Of The Post-quiz <input type="text" name="pos"l> [Each lesson Should have
a
Post-quiz]
<pI>
<input type="submit"l>
</form>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

ladmin2.xml:
<?xml version="1.0"?>
<?xml-stylesheet href="ladmin2.xsl" type="text/xsl"?>
<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>

<xsp:page
language="java"
xmlns:esql="http://apache.org/cocoon/SQUv2"
xmlns:xsp="http://www.apache.org/1999/XSP/Core"
xmlns:session="http://www.apache.org/1999/XSP/Session"
create-session="true">

<xsp:structure>
<xsp:include>lesver</xsp:include>
</xsp:structure>

<tst>
<xsp:logic>
lesver ver-new lesvert);
String Iname=request.getParameter("lsname");
if(!ver.tst(lname))
{
String cat=request.getParameter{"cats");
String catid="";
String count= request.getParameter("cnt");

201

int cont=lnteger.parselnt(count);
StringO domain=new String[10];
StringO domainid=new String[10];
domain=(StringO)session.getValue("alldom");
domainid=(StringO)session.getValue("alldomid");
int lid=O;
String lid 1=":
String Dat="OOOO-OO-O";
String nleson="O";

<esql:connection>
<esql:driver>org.gjt.mm.mysql.Driver</esql:driver>
<esql:dburl>jdbc:mysql:lliocalhostlwhurle</esql:dburl>
<esql:usemame>mrz</esql:usemame>
<esql:password>zocka</esql:password>
<esql:execute-query>
<esql:query>
select MAX(lesson_id) as id from lesson_flow

</esql:query>
<esql:results>
<esql:row-results>
lid = Integer.parselnt«esql:get-string column="id"/»;
</esql: row-results>
</esql:results>
</esql:execute-query>

lid = lid + 1;

<esql:execute-query>
<esql:query>
select category_id from category where category_name =
'<xsp:expr>request.getParameter("cats")</xsp:expr>'
</esql:query>
<esql:results>
<esql: row-results>
catid = <esql:get-string column="category_id"/>;
</esql:row-results>
</esql:results>
</esql:execute-query>

<esql:execute-query>
<esql:query>
insert into lesson flow
values('<xsp:expr>lname</xsp:expr>', '<xsp :expr>lid</xsp:expr>', '<xsp:expr>catid</xsp:expr>', '<xsp:ex
pr>nleson</xsp:expr>','<xsp:expr>Dat</xsp:expr>')
</esql:query>
<esql:results>
<esql:row-results/>
</esql:results>
</esql:execute-query>

for (int i=O; i &It; cont ; i++)
{
if (request.getParameter(domain[ij) != null)
{
<dom><xsp:content>
Domain Name:<xsp:expr>domain[i]</xsp:expr>--Required
Level:<xsp:expr>request.getParameter(domain[i]+"1")</xsp:expr></xsp:content></dom>

<esql:execute-query>
<esql:query>
insert into lesson_req
values('<xsp:expr>lid</xsp:expr>', '0', '<xsp :expr>domainid[i]</xsp:expr>', '<xsp:expr>request.getParame
ter("pre")</xsp:expr>', '<xsp:expr>req uest.getParameter("pos")</xsp:expr>')
</esql:query>
<esql:results>
<esql:row-results/>
</esql:results>

202

</esql:execute-query>
}
}
</esql:connection>
}
else
{
<dom>Lesson's Name is used, Press Back and Choose another name. </dom>
}
</xsp:logic>
</tst>

</xsp:page>

ladmin2.xsl:
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xml ns:xsl="http://www.w3.org/1999/XSUTransform">

<xsl:template match="/tst">
<html>
<body>
<xsl:for-each select="count">
<xsl:value-of select="."I>
</xsl:for-each>
<xsl:for-each select="dom">
<xsl:value-of select="."I>

</xsl :for -each>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

203

Appendix B: Database Tables
Note I: the following is automatically created by the mysqldump command of the
MySQL server

Note 2: most of the data examples provided in the following tables is removed, as it
may identify personal information. Therefore, the provided data is a very small subset
of the real data stored by the database tables.

MySQL dump 7.1
#
Host: localhost Database: whurle#--
Server version 3.22.32

#
Table structure for table 'category'
#
CREATE TABLE category

category_name varchar(SO),
category_id varchar(S)

) i

#
Dumping data for table 'category'
#

INSERT INTO category VALUES ('Ph.D biology', '1');
INSERT INTO category VALUES ('1st year chemistry', '2');
INSERT INTO category VALUES ('undergraduate student', '3');
INSERT INTO category VALUES ('2nd year math', '4');

#
Table structure for table 'conf'
#
CREATE TABLE conf

conf_name varchar(SO),
conf_file varchar(SO)

) ;

#
Dumping data for table 'conf'
#

INSERT INTO conf VALUES ('Modern Style', 'intro-web-conf');
INSERT INTO conf VALUES ('Egyption Style', 'egypt-conf-file');
INSERT INTO conf VALUES ('Metalic Style', 'metalic-conf-file');

#
Table structure for table 'domain'
#
CREATE TABLE domain (

domain name varchar(30),
domain=id varchar(lO)

) ;

#
Dumping data for table 'domain'
#

204

INSERT INTO domain VALUES ('chemistry', '10');
INSERT INTO domain VALUES ('math' ,'20');
INSERT INTO domain VALUES ('physics', '30');
INSERT INTO domain VALUES ('biology', '40');
INSERT INTO domain VALUES (,fossiles' ,'60') ;
INSERT INTO domain VALUES ('html' ,'50');
INSERT INTO domain VALUES ('functions', '70');

#
Table structure for table 'knowledge_scale'
#
CREATE TABLE knowledge_scale

lrange int (3),
urange int(3),
knowledge int(3)

) ;

#
Dumping data for table 'knowledge_scale'
#

INSERT INTO knowledge_scale VALUES (0,10,1) ;
INSERT INTO knowledge_scale VALUES (11,20,2) ;
INSERT INTO knowledge_scale VALUES (21,30,3) ;
INSERT INTO knowledge_scale VALUES (31,40,4) ;
INSERT INTO knowledge_scale VALUES (41,50,5) ;
INSERT INTO knowledge_scale VALUES (51,60,6) ;
INSERT INTO knowledge_scale VALUES (61,70,7);
INSERT INTO knowledge_scale VALUES (71,80,8);
INSERT INTO knowledge_scale VALUES (81,90,9);
INSERT INTO knowledge_scale VALUES (91,100,10) ;

#
Table structure for table 'lesson flow'
#
CREATE TABLE lesson_flow (

lesson_name varchar(30),
lesson_id int(ll),
categ varchar(20),
nlessonid int(II),
closingdate date

) ;

#
Dumping data for table 'lesson flow'
#

INSERT INTO lesson flow VALUES ('test-from-home',13, '4',0, '0000-00-
00');
INSERT INTO lesson flow VALUES ('qu iz-1esson' ,14, '2',0, '0000-00-00 ');
INSERT INTO lesson flow VALUES ('intro-web-mr',15, '3',0, '0000-00-
00');
INSERT INTO lesson flow VALUES ('anthropology',16, '3',0, '0000-00-
00') ;

#
Table structure for table 'lesson_reg'
#
CREATE TABLE lesson_reg

lessonid varchar(10),

205

required_type varchar(10),
domainid varchar(10),
pretest varchar(20),
postest varchar(20)

) ;

#
Dumping data for table 'lesson_req'
#

INSERT INTO lesson_req VALUES ('13','int' ,'30','0','0');
INSERT INTO lesson_req VALUES (,13 ','beg' ,,SO ' , , 0 ','0');
INSERT INTO lesson_req VALUES (,14 ',,int ',,10 ',,0 ',,0 ');
INSERT INTO lesson_req VALUES ('14', 'beg', '30', '0', '0');
INSERT INTO lesson_req VALUES ('15', '0','30', 'pre', 'post') ;
INSERT INTO lesson_req VALUES ('15','0', 'SO' , 'pre' ,'post');
INSERT INTO lesson_req VALUES ('16', '0','60', 'Anthro-quiz-ft', 'quiz-
xincl');
INSERT INTO lesson_req VALUES ('16', '0', '70', 'Anthro-quiz-ft', 'quiz-
xincl');

#
Table structure for table 'lessons record'
#
CREATE TABLE lessons_record

stid varchar(20),
lessonid int(ll),
score int(ll),
finishdata varchar(12)

) ;

#
Dumping data for table 'lessons record'
#

INSERT INTO lessons_record VALUES ('123456' ,1,10, '10-Sep-2002');
INSERT INTO lessons record VALUES ('123456' ,3,30, '10-Sep-2002');
INSERT INTO lessons record VALUES ('123456' ,5,0, '30-Jan-2003');
INSERT INTO lessons record VALUES ('12345678' ,5,0, '30-Jan-2003');
INSERT INTO lessons record VALUES ('123456789' ,5,80, '31-Jan-2003');

#
Table structure for table 'mand lessons'
#
CREATE TABLE mand_lessons (

lesson_id varchar(5),
mand_lesson_id varchar(5)

) ;

#
Dumping data for table 'mand lessons'
#

INSERT INTO mand lessons VALUES ('8', '5');

#
Table structure for table 'monitor'
#
CREATE TABLE monitor

stid varchar(20),
date varchar(20),

206

time varchar (20)
) ;

#
Dumping data for table 'monitor'
#

INSERT INTO monitor VALUES (,12345678 ','24-Mar -2003 ','11:51 :30 AM');
INSERT INTO monitor VALUES ('123456', '02-Apr-2003', '10:53: 00 AM') ;
INSERT INTO monitor VALUES (,123456 ',,24 -Mar -2003 ',,11 :13 :15 AM') ;
INSERT INTO monitor VALUES ('12345678' ,'20-Mar-2003' ,'01:01: 18 PM') ;
INSERT INTO monitor VALUES ('12345678' ,'20-Mar-2003' ,'07:13: 32 PM');
INSERT INTO monitor VALUES ('123456', '23-Mar-2003', '02:32:02 PM') ;
INSERT INTO monitor VALUES ('123456', '24-Mar-2003', '12:10:13 PM') ;
INSERT INTO monitor VALUES ('654321' ,'25-Mar-2003' ,'02:35: 23 PM') ;
INSERT INTO monitor VALUES ('654321' ,'26-Mar-2003', 'II :42:57 AM') ;
INSERT INTO monitor VALUES ('654321','26-Mar-2003','Ol:29:22 PM') ;

#
Table structure for table 'old lvI'
#
CREATE TABLE old_Ivl (

stid varchar(20),
lesson_id varchar(lO),
dam_id varchar(lO),
dam lvl varchar(10)

) ;

#
Dumping data for table 'old lvI'
#

INSERT INTO old lvl VALUES ('12345678' ,'5','50' ,'int');
INSERT INTO old lvl VALUES ('12345678', '5','30', 'beg') ;
INSERT INTO old lvl VALUES ('12345678' ,'5','40' ,'int');
INSERT INTO old lvl VALUES ('12345678' ,'5','10' ,'beg');
INSERT INTO old lvl VALUES ('123456' ,'5','50' ,'int');
INSERT INTO old lvl VALUES ('123456' ,'5','30' ,'int');
INSERT INTO old lvl VALUES ('123456' ,'5','40' ,'int');
INSERT INTO old lvl VALUES ('123456' ,'5','10' ,'int');
INSERT INTO old lvl VALUES (,654321 ','5','10' ,'beg');
INSERT INTO old lvl VALUES (,654321 ','5','40 ','beg');
INSERT INTO old lvl VALUES ('654321','5','30','beg');
INSERT INTO old lvl VALUES (,654321 ','5',,50 ','beg');

#
Table structure for table 'open_lessons'
#
CREATE TABLE open_lessons

stid varchar(20),
open_lesson varchar(20)

) ;

#
Dumping data for table 'open_lessons'
#

INSERT INTO open_lessons VALUES ('123456', '16');
INSERT INTO open_lessons VALUES ('12345678', '5');
INSERT INTO open_lessons VALUES ('654321', '5');
INSERT INTO open_lessons VALUES ('123456', '1');

207

#
Table structure for table 'stereotype'
#
CREATE TABLE stereotype (

stid varchar(20),
domain_id varchar(10),
class varchar(10)

) ;

#
Dumping data for table 'stereotype'
#

INSERT INTO stereotype VALUES ('123456' ,'10' ,'beg');
INSERT INTO stereotype VALUES (,123456 ',,30 ','beg');
INSERT INTO stereotype VALUES ('654321', '30', 'int');
INSERT INTO stereotype VALUES (,654321 ','40 ','beg');
INSERT INTO stereotype VALUES (,123456 ','40 ','beg');
INSERT INTO stereotype VALUES ('123456', '50', 'beg');
#
Table structure for table 'stereotype_scale'
#
CREATE TABLE stereotype_scale

lrange int(3),
urange int(3),
stereotype varchar(4)

) ;

#
Dumping data for table 'stereotype_scale'
#

INSERT INTO stereotype_scale VALUES (1,3, 'beg');
INSERT INTO stereotype_scale VALUES (4,8, 'int');
INSERT INTO stereotype_scale VALUES (9,10, 'adv');

#
Table structure for table 'user'
#
CREATE TABLE user

fname varchar(20),
Iname varchar(20),
username varchar(20),
password varchar(10),
stid varchar(20),
categ varchar(20),
confgfile varchar(20)

) ;

#
Dumping data for table 'user'
#

INSERT INTO user VALUES
('Mohamed', 'Ramzy', 'moh', 'ram', '123456', '3', 'intro-web-conf');
INSERT INTO user VALUES
('ppp', 'av', 'plpmc', 'prsedf', '12345678', '3', 'intro-web-conf');
INSERT INTO user VALUES ('aa', 'aaa', 'aa', 'aa', '233456', '3', 'intro-
web-conf');
INSERT INTO user VALUES ('fff', 'fff', 'nnn', 'nnn', '333', '3', 'intro-
web-conf');

208

INSERT INTO user VALUES ('gg', 'ss', 'craig', 'nee', '654321', '3', 'intro-
web-conf') ;

209

Appendix C: Snapshots

C.1 Authentication screens

J

-
NewUJefllNeedTo~

Login screen

No te

• Red colored kuon.Ii(NOT]-uH >tl 1);,1accessed yet
~ Our~ colored lenQlU./(OPN]-I.cuoru 001 fblhed yet
• Gre~ cole-red Itnons.1Fmj.LellNu aInldy!DJhed ,

.-
'VHURLE Authentication SYstem

I:NOTJm eh-re m
NOi]illtro-web-mr,.
[FlN]e.nototOpololb'

Choosing lessons screen

C.2 Quiz

C.2.1 Quiz Screen
Note I: this is quiz had been used in the user trial experiment as a pre-quiz.
However, the post-quiz was paper based and held the same questions as the pre-quiz.

Note 2: the three following images show the full quiz in three parts.

210

• MoJtfou~aumadcofJtone,Dotocaam:matSer

rT~
('"Fme
r: Idoo't know

l
-

• FOftilbooc. are found only'lll,8rleous rOCKS

rT~
('Fake
r: I don't know

• Indr~ bees' of mcaeD1 life ruth iil5 footpnnb .. e fOlase
rT~
CF'"
("I doc't lmow

.MiIfmlotbsfrO.1efldl.nlgtbelaS'lu:t~areDl)tfonlls

rT~
rF.Jse
("!doG'tkDo_

• CnDlaleodocut,Mt~cllDedfofrilJ

rT~

('Idoo'tlcnow

• FOlrilisarion tends to OCCIII"OOfH-»omIy WOIIIId the iatld.cape

rT~
('False
r: I doci know

• The mnI\If'D.ll F~ 2" p~epbUc

('Idocliknow

• TbernaocbbleIlFIi3iIlustrateltbep!lmomenooof'molarulbOn'

rT~
('False
r Idoai IcDow

• 1'beJ lI bul'trtssed at.me pOSUlOCl oflbe uUDdmanmus

rT~
('Fake
('"Idotli know

• DeDtiol we .. pdienu: till! be used to T1:Yeal d<X'm3lloo .bout life Iulofy pallem:J
rT~
Cf'"

21]

-• Coprohtet till rr1CallnfonnillOfl about the diet of extinct speatr"
rT~
("False
e- Idoc; kDow

• 'The (oodylir IX'a!lOlllDdezmCUUftJ Ihe relGve POnllOIl oflhe occ!pI1al condyles.
rT~
("False
("Idon'tlcnow

• Biih rabol of pItS 10 1Q'"~i In miao-toothwe .. p~CflIS m e&tinct bonmiDs ruaesu a del nch ill nw and seeds

rT~
("hac
r Idoo't k:oow

• Trees shrubs _dhetbs Colo"" I C3 pboto~t p.lhwilY
rT~
('"False
r- I doo'1kDow

• ~ U evidence that the arborealy-lfIClined hODlllWlSat Makapansgal G'l South Amc. heavily exploited C4 gram:, aed sedges:
rT~
rF ...
r ldoo't know

• Eftitnct fi'om. mitro_at JtU&et ~portt the hypotheSIS lbat P .. andwopus (It least III louthtm Amc.) &:don t.rge qumtdltl oflUVtl, frurt and tnderground

""""rT~
("False
("1 doo'tknow

C.2.2 Results screen

-
Dol'tUllllname 'S<:ore IOOLevel New LeV1!l I

'rOfde, 15 '~

IUnclI.OCIJ 10 rbeg

rr,ou Willi to eccess Ille leuoo now pRll OIl!be leseon name Nlthr;:;-p:~
If you WiI:IIl to return to IUJoru hrtPrenHe:te

212

C.3 Lessons screen

Note: this is the Anthropology revision aid used in the user trial experiment.

Welcome to: Anthropology revision guide
-.l r_ \'\ \,,, _ \ 1

t..tYl. d:
SUI\Jun2P2003lt21:W

Coogle .=. xrefer I02i1

To prcwde fOU WIib an dfedNe iIInd efEicltr£revmon aid

To deepenyo!6U1lderrtmdit!&oftbe nan.e offo.rib IIldtheirvalue IllOl.nel ofinformallon abouttbe live. of!he: rpecie.lheyreprclent

To prode you WIllIan~. tnto IClIM of !be methods lOci reuC>DlllA U5edby ev~ODMJ arrthropoloSlSUsee~ 1IlSW"ento qutstiOOS
1b000twman e'r<IMIon

Users with beginner knowledge level in both domains see this screen (7 levels)

Welcome to: Anthropology revision guide
~F_''''''_' 'llwaty\Homa'?

L.,t ...~_d'
T,lwI2lXl3.UO

Go<'S1c .=. xreter IOo'iO
u.

To prOVlde)'OU WIth., eft'ecuve and efficient reVISIon cd

To dtepen1OlX\IrI~oflht ~e oCforM mdtbnrv..Jue as .ounn oCdOl'TlaIlOClabout the livel o£the IpeCltltbeyrepnStnl

To prOVIde ,00 wub 1Il1lU1&brlnto lome of the metbodl and rellOl'llll8 used by e9o!ution.aty aniliropoiogisu: .ecklna JIrlIWefI to qu.ertlolll
aMur hunun u'olut!.

Users with intermediate level in both domains see this screen (6 levels only)

213

I

-

J

-
,

C.4 Administrative tools

Registration FOI"m

II
StudemID

II
FirstUllle

II

II
U5ername

II
PUfWord

Select a Category IPh.ObloloQY ::oJ

Student's registration form -Le55OflNIme'!

ChO>Ost involved. Domains

r""....,.
r_
rphys:ics

rbLoiogy

rrontlel

Select. CueiOry IPhObloiOgy

Lessons' registration form

214

Appendix D: Guideline

0.1 How to create an adaptive lesson Plan

Lessons' authors may follow the following suggestions to create an adaptive lesson

plan:

Author(s) have to think about the associated domain(s) with a lesson to be

created. For example, if the goal of the lesson is to teach students the following

mathematical equation: X2 + 2*(X/Y) + square-root[(X*Y)*2] = Z, then,

author(s) may associate domains that deal with basic mathematical operations

such as addition, multiplication, square-root calculation, etc.

After specifying the involved domains and the main goal(s), authors need to

specify what kind of assistance they will provide for users, with respect to the

involved domain(s), to reach the level where they can understand the main goal.

For example, by following the above mathematical equation, users may need to

be aware about different mathematical operations. Thus, beginner users may need

a kind of brief explanation for addition, multiplication, square-root calculations,

etc. On the other hand, intermediate and advanced users may not need any

reVISIOn.

After specifying these major requirements, planning the lesson will start. In

WHURLE in general, information could be broken up into small pieces called

chunks, as each chunk is self-contained information. In Adaptive WHURLE,

these chunks have two types: either general or conditional. As a suggestion,

general chunks could be the chunk(s) that present the main goal(s) of the lesson

and every-one will be able to access it. On the other hand, conditional chunks are

those that have conditions to be fulfilled in order to be available.

215

A-+

~ Lesson's Main
Goal(s)

T

R

Figure 0.1 Adaptive Lesson Map - the bold vertical line (vertical side of the triangle) presents
the main goal(s) of the lesson. The first (lower) section shows how beginner users in any involved
domain(s) will need more explanations about the necessary basics in that involved domain(s)
that they may need to know to understand the main goal(s) of that lesson. The second (middle)
section shows that users with intermediate knowledge level in any involved domain(s) may need
fewer explanations about the basics that they have to know. In that case, those extra
explanations could be considered as a reminder for the main concepts that they (users) need to
remember to understand what the lesson is offering. The third (upper) section shows how
advanced users do not need any of these reminders (depending on lessons' Author decision) and
they could go directly to the new information the lesson is presenting in addition to some extra
advanced information. B: Beginner, I: Intermediate and A: Advanced.

For example, following the mathematical example, there may be chunk(s), which

belong to the addition domain, and provide a brief explanation about addition

calculations. These chunks can only be "SEEN" by users who have a beginner

knowledge level in addition. Thus, users who have a higher knowledge level will not

see that extra explanation.

From the above guideline, it can be perceived that any lesson plan provides help for

users who have a kind of shortage in certain areas to make them able to understand

what the lesson is offering. Figure 1 shows a diagram that presents the conceptual

idea about creating lessons.

In Adaptive WHURLE, each lesson could have a mandatory lesson to be finished

before accessing the current one, and that could be specified inside the database.

D.2 How to create quiz questions

There are two types of quizzes in Adaptive WHURLE: pre-quizzes and post-quizzes.

The type of each quiz is specified through the quiz itself. Moreover, authors have to

216

define what is called the mark-base. The mark-base is the base upon which the

scoring depends. For example if the mark-base is 20, thereby for every correctly

answered question the score will be added by 20 with respect to the overall quiz and

with respect to every domain that that question belong. Thus, it is very important that

in case a user has answered all hislher questions correctly, hislher overall score

should be 100 as a maximum. The knowledge level for every involved domain is

calculated as follows:

Scores: As mentioned before, the overall score for a quiz should be out of 100

and that could be achieved by balancing between the mark-base and the number

of questions. For example, if there are 10 questions then the mark-base should be

10, and in case of 20 questions, the mark-base should be 5 and so forth.

Knowledge scale: that scale ranges from 1 to 10 and each number in that scale

represents 10 numbers from the score. For example, a user answered some

questions correctly and his score is 40 with respect to a particular domain. Thus,

hislher knowledge will be 4 on the knowledge scale for that particular domain.

Knowledge stereotypes: the current implemented stereotypes are beginner,

intermediate and advanced. The beginner level embraces knowledge scales that

range from 1 to 4, intermediate embraces from 5 to 8, and advanced from 9 to 10.

In the current implementation of the quiz engine two formats are supported:

questions with image answers and questions with text answers.

0.2.1 Pre-quizzes

Every lesson in the system can be associated with a pre-quiz. That pre-quiz reflects

users' knowledge levels with respect to the involved domains through the adaptation

process of the presented material. Thus, authors have to specify questions about each

involved domain in the lesson to get users' knowledge state about those domains.

Moreover, each question could serve more than one domain up to all involved

domains.

0.2.2 Post-quizzes

Every lesson must be associated with a post-quiz. That post-quiz tests users with

respect to the main goal of the studied lesson and every involved domain. Users have

to finish the post-quiz of each lesson in order to update the system with their new

217

knowledge level with respect to every involved domain, which will be reflected on

other lessons that may use any, some of, or all ofthe involved domains in that lesson.

218

Appendix E: Users Quotes

A (positive response)
Good idea - could use more detailed inJormation though. It's quite short. Was
useJulJar revision purposes. (*)
More on morphometry, may be something on key workers in the field would be
good.(*)
Content l-VGS a bit patchy - was really good Jar somethings, not as good Jar
others. Also. Where were the results Jar the online exam? - I couldn't see them
on the website. (*)
Doesn't always work. I.e. problems logging in etc. otherwise good. Perhaps
provide journal reJerence list (*).
V.good. bit too slow, especially virtual lab. Good photos + links.
Would be good to have a short self-test to be down at the end in the style oj the
class test.
Good, can't think oj any suggestions.
Found it useJul and easy to work with but top links not necessary as got to it via
the website.
Needs to be quicker.
The First lesson was very useJul but the pages are painJully slow to turn and I
had problems accessing other lessons.
When its up and running is should be very useJul. A good idea
The appearance could be improved by using different Jont which is easier to
read. It would be better to have it in the same style as the learning support
centre.
A course test to practice Jar the MCQ would have been helpful
More quizzes and tests to evaluate progress or a section going over the questions
that were incorrectly answered in the first test with pointers oj where to find
inJormation Jar the right answers (*)
V.good. Perhaps more detail would be useJul (*)
Good. More depth required. (*)
Wasn't extensive but what was there was useJul (*)

*: Responses that indicated more detailed information is needed.

B (negative response)
Personally, I did notfind the revision aid useJul. It was very slow. Also, lfound it
very basic and not very taxing.
I only tried to use it once, but thought the online website was better Jar me in
aiding my learning and revision.

C (accessing problems response)
I tried to use my online revision aid but I had no record oj my user
name/password I chose, and there was no way to find out what it was. This meant
I couldn 't access the site.
Crashes a lot + quite slow.

219

Didn't work off campus near exam time. Very slow. Links don't work
Couldn't get it work.

220

Appendix F: Publications

Publications presented in this appendix are related to the Hybrid Model and to the

new infrastructure adopted by WHURLE system, and they are as follows:

"The Hybrid Model for Adaptive Educational Hypermedia". Publication

presented at the Adaptive Hypermedia 2002 (AH 2002) Conference. This is

the first publication about the Hybrid Model. (Page 222)

"User Modelling, and Adaptive Hypermedia Frameworks for Education".

Publication presented in New Review of Hypermedia and Multimedia

(NRHM) Journal, 2002 Volume 8. This publication introduces the Hybrid

Model and how it is implemented in the WHURLE system. NOTE: The

WHURLE-HM System Introduced throughout the thesis is referred to as

"Adaptive WlIURLE" in this publication. (Page 228)

"Pluggable user models for adaptive hypermedia in education". Publication

presented at the Hypertext 2003 Conference. This publication introduces the

new infrastructure of the WHURLE system. (Page 240)

221

The Hybrid l\lodel for Adaptive Educational Hypermedia.

Mohamed Ramzy Zakariat, Adam Moorei, Helen Ashman', Craig Stewart' and Tim Brailsford'

'School of Information Technology and Computer Science, University of Nottingham, Nottingham,
NG8IBB. UK
mrz@:cs.nott.ac.uk, [helen.ashman, tim.brailsford}@nottingham.ac.uk
lSchool of Civil Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
adam.moore@:nottingham.ac.uk
3School of Life and Environmental Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
craig. stewart@:notti ngham.ac. uk

Abstract

Web-based distance learning is becoming increasingly prevalent as the Internet
permeates every aspect of our culture, and many educational content management
systems are now in use on the web However, learners' experiences of these systems
are almost invariably static, with information being delivered regardless of their
background or knowledge. Due to variation between learners', it is suggested that
these web-based distance-learning systems would benefit from the capability of
adapting their content to meet individual needs. To effectively implement this
adaptation of educational material, we require a user model that supplies the system
with information about the learners using the system, such as their backgrounds,
knowledge, interests and learning styles. This paper focuses on presenting a user
model that combines the advantages of two techniques (overlay and stereotyping) in
a way that provides the system with the ability to deliver information that is fully
informed by the requirements of individual users.

Keywords: user modelling, adaptive hypermedia, educational systems, overlay,
stereotyping

1 Introduction
The brave new era of the information age has ramifications for all disciplines, at the
most fundamental of levels. From education, to commerce and music, the Internet
impinges on every field where data and knowledge are currency. Arising out of this
world-wide network of communications comes the globalisation of information - in
which hypermedia tools are at the forefront enabling direct user access to
information [1].
As the amount of information on the web continues its exponential increase, the
number of users with different goals and interests also expands. It therefore becomes
increasingly important that the information available be adapted to suit each user's
individual knowledge and aspirations.
For example, in traditional web-based educational hypermedia systems, the contents
are generally static, in so far as once written, their contents cannot be changed
without external intervention. This provides a uniform learning experience to all
learners, regardless of their needs and requirements. One example of such a system is
WebCT [2). This is a hypermedia educational system developed in 1995 at the
University of British Columbia. It is an environment for authoring and delivering
educational materials over the web. WebCT presents a static and inflexible
pedagogic experience, without any kind of adaptation at the user level. Hence a web

222

mailto:mrz@:cs.nott.ac.uk,
mailto:adam.moore@:nottingham.ac.uk

application, such as those delivered via WebCT, which are designed with a particular
class of users in mind, may not suit those even marginally different from the original
target audience [3].
In response to this clear need, adaptive hypermedia systems have been created such
as AHA[4] and CHEOPS[5] . They build a model of the goals, interests, preference
and knowledge of their users; so that they may present them with the information
they need in a timely and appropriate manner [I].

This paper describes a hybrid user model, which is cooperative [6], (i.e. it
collaborates with users in gathering information, as they are required to supply the
system with some personal information, e.g. their occupation and preferences). This
model also involves users in the user modelling process, as the contents of topics or
courses are adapted according to their knowledge level about the topic they study.
The hybrid model described below has the benefit that it should suit any adaptive
educational hypermedia system, and we suggest that it is likely to provide a powerful
addition to any technology-based learning programme.

2 The Hybrid Model
2.1 Architecture
The hybrid model combines the use of two major techniques that are prevalent within
the user modelling community. The first of these is the overlay model perhaps
currently the most widely used technique of user modelling. This is used to measure
the knowledge level of users in any given topic or domain. A user's knowledge
according to this model is considered to be an overlay of the total knowledge
representing that domain. This knowledge level is represented in the form of
"Concept-Value" pairs, [7,8].
The second model is the stereotype; this technique assumes that knowledge is
customised for specific groups, with each user being assigned to one and only one
group at any given time. Thus, users who share the same background or knowledge
should be assigned to the same group. Users can not change from one group (or
class) to another until they trigger the specific conditions of the new group[9,IO].
Aspects of each of these models are utilised by the hybrid model as follows:

Overlay technique: the overlay measures the knowledge level of each learner
within certain subject domains. This knowledge level might represent the
score achieved in the system assessment at the end of each lesson, although
any other parameters the system authors may choose may also be used. For
example, the score achieved in self-assessment quizzes is a widely used and
well-accepted metric of the comprehension of information.
Level stereotype: level stereotypes mainly depend on the knowledge level of
users. For example, they may simply be defined as Beginner, Intermediate
and Advanced, but any classes may be used as appropriate to each system.
According to the users knowledge level they will be assigned to a single class
of the level stereotype within any given domain they of study. For example, a
user studying biomechanics might be assigned simultaneously to the novice
class in biology and to the advanced class in mathematics. Classes in the level
stereotype are concerned with providing assistance that is appropriate, and
adapting the contents of the lesson to suit the learner. Each class may define
an article or set of articles, links to external documents, or to lessons in other
courses. For example, if a user belongs to one of the advanced classes he may

223

be provided with advanced articles or links to help the user to find more about
the topic or domain he studies. Level stereotypes not only adapt the contents
to suite a user's level, but they also facilitate learning by identifying domain
weaknesses in the topic under study.
Category stereotype: the hybrid model has been designed for systems that
simultaneously run multiple courses for different levels of users. For
example, the system may be running courses for first year undergraduate as
well as postgraduate users. For this reason the users need to be categorised, as
the knowledge level of undergraduate users in a certain stereotype level of a
certain domain may not be the same as that of postgraduate users in the same
stereotype level of the same domain. For example, consider two users, one of
them a first year undergraduate and the second one a studying for a higher
degree. Both of these students are classified in the intermediate level
stereotype for the biology domain. Both of them are in the same level
stereotype, but the intermediate level of postgraduates will be much more
advanced than that of first year undergraduates. The categories stereotype
helps the system to distinguish between different users in the same level
stereotype, and to provide each of them the appropriate adaptation and help.

There is one other important aspect of this hybrid model - the information pool. This
is categorised by the domain model, and consists of a pool of articles, links, and
other items that encapsulate the resources of an adaptive system. The information
pool is likely to differ in both form and content from one system to another.
The overlay technique, level stereotype and category stereotype combine to pick
from the information pool the most convenient articles and links that suit each user's
level, knowledge and background. Thus, according to a user's knowledge level and
category, the most appropriate materials will be chosen from the information pool.
Figure 1 shows the hybrid model's components, comprising of two stereotypes and
one overlay, to provide the maximum flexibility and to have the capability to serve a
wide range of users.

224

Overlay Model

Ca teg0ries r---_._---,--L_---,----~:a.--~
Stereo typ e '----------,.;;::---'---------=-__J'-- _ ____._~~--j

Levels
Stereotype

Information pool

>R~End7K User

B I A

Fig. 1. The components of the hybrid model. An overlay model combines with a category and
level stereotype to retrieve appropriate content from the information pool to convey concepts to
the user. The user interacts with the system to inform and update the user model. BE -
Beginner, B - Basic, I - Intermediate, A - Advanced.

2.2 Mechanism
When a user logs on to the system for the first time, he/she will be given an initial
knowledge level value according to an estimate of prior knowledge about the subject
under study. That recommends the user to a certain level stereotype, and the category
is determined according to any parameters that the system authors may choose such
as user's occupation. Each time a user passes from one lesson to another the
knowledge level for that user is updated according to the score in the system
assessment (as well as other parameters the system's authors may choose).
According to the user's new knowledge level, the class assigned according to the
level stereotype might be changed or might be the same (i.e. if the user still has the
same knowledge level). The adaptation of the contents and the supporting articles are
available according to the class of the user in the level stereotype as well as the
category. The steps involved in adaptation are illustrated in Figure 2.

225

Userlogin

User category stereotype and level stereotype are
checked then adaptation takes place

User know ledge level is updated at the end of each lesson according to
his score in system assessment in addition to any other

!
Updating user stereotypes

according to his new knowledge
level

Fig. 2. The hybrid model mechanism to adapt materials to users. Once the user logs in, the
system either adapts its material according to the existing user model, or creates a new one. At the
end of each lesson, the user model is updated.

3 Implementation of the hybrid model in a hypermedia learning environment
The hybrid model is currently being integrated into an adaptive educational
hypermedia system called WHURLE (Web-based Hierarchal Universal Reactive
Learning Environment), [11, 12, 13] an XML-based integrated learning environment.
In WHURLE the content consists of atomic chunks, each of which consists of the
smallest conceptually self-contained unit of information that the author can envisage.
The domain of WHURLE content is contained within the melange, which consists of
all the available chunks in any single installation. In WHURLE conditional
transclusion [14] is used to construct virtual documents, which contain one or more
of these chunks. The hybrid model is integrated into WHURLE as the filter for the
lesson plan. This filter generates an adapted virtual document dependant upon both
the adaptation rules within the lesson plan and user profile. WHURLE lesson plans
represent the information pool of the hybrid model [11, 12, 13].

4 Conclusion
The hybrid model is a user model that gathers together the most commonly used
techniques of user-modelling for adaptive hypertext. This utilises the advantages of
each of these techniques in a way to provide a full understanding for the user's needs
and requirements on several different levels. Using this technique we have
implemented adaptation within WHURLE to allow students to see pages of
information containing one or more chunks in a manner relevant to their skills,
knowledge and learning styles, following rules set by the author of the lesson that
they are viewing. Using this model we hope that the WHURLE system will provide a
strong pedagogic framework for a variety of web-based learning scenarios.

Acknowledgements
We wish to thank Peter Murray-Rust, Peter Davies, and Ban Seng Choo for many
useful discussions, and colleagues in the WTG, VSB and IBiS for their support and
encouragement. Craig Stewart is a research associate funded by the Hong Kong
University Grants Committee.

226

References
[1] Brusilovsky, P. (1996). "Methods and techniques of adaptive hypermedia". User
modeling and user-adapted interaction, 6(2-3), pp. 87-129.
[2] Beshears, Fred. "WebCT overview".
http://socrates. berkel ey.edu: 7521/ articles/webctIW ebCT -Presentati on
[3] Eklund.J; Brusilovsky,P; Schwarz,E.(1997). "Adaptive Textbooks on the World
WideWeb", Proceedings of AUSWEB97, the third Australian conference on the
world wide web, Queensland, Australia, July 5-9, 1997, Southern Cross University
press, pp. 186-192 .http://ausweb.scu.edu.au/proceedings/eklund/paper.html.
[4]De Bra,P;Calvi,L.(1998). "AHA Adaptive Hypermedia Architecture".NRHM
journal, VA, pp lIS - 139
[5] Ferrandino,S; Negro,A;Scarano,V.(I997). "CHEOPS .Adaptive Hypermedia on
the World Wide Web". Proceedings of the European Workshop on Interactive
Distributed Multimedia Systems and Telecommunicazion Services (IDMS '97).
[6] Kay, J. 1995,"The UM toolkit for cooperative user models". User Models and
User Adapted Interaction 4(3), 149-196.
[7] Valley,K. (1997). "Learning Styles and Courseware Design". Association of
Learning Technology Journal, 5(2), p42-51
[8] Carr,B; Goldstein, I. (1977). "Overlays, a theory of modelling for computer aided
instruction H. A technical report. AI memo 406, MIT, Cambridge, MA.
[9] Rich, E. (1983). "Users are individuals: individualizing user models", Journal of
man-machine studies vo1.l8, 199-214.
[10] Benaki,E; Karkalestsis,V; Spyropoulos,C. (1997). "User modelling in WWW:
the UMIE prototype H. Proceedings of sixth international conference on user
modelling, Chia Laguna, Sardinia, 2-5 June 1997
http://www.contrib.andrew.cmu.edu/~plb/UM97workshop/Benaki/Benaki.html
[11] Brailsford, TJ ; Moore, A ; Stewart, CD ; Zakaria, MR ; Choo, BS ; Davies,
PMC.(200I). "Towards a framework for effective web-based distributed learning".
WWW)0 proceedings, HongKong.
[12] Moore,A; Brialsford,TJ, Stewart, C.D. (2001). "Personally tailored teaching in
WHURLE using conditional transclusion". The twelfth ACM conference on
hypertext and hypermedia. August 14-13,2001, Denmark.
[13] Brailsford,T; Stewart,C; Zakaria,M; Moore,A.(2002)."Autonavigation, Links
and Narrative in an Adaptive Web-Based Integrated Learning Environment".
Proceedings of www2002, Hawaii, USA.
[14] Nelson, T.H. (1995). "The Heart of Connection: hypermedia unified by
transclusion". Communications of the ACM.

227

http://.http://ausweb.scu.edu.au/proceedings/eklund/paper.html.

User Modelling, and Adaptive Hypermedia Frameworks for
Education

Mohamed Ramzy Zakaria and Tim Brailsford
School of Information Technology and Computer Science, University of Nottingham, Nottingham,

NC8IBB, UK
e-mail: mrz@cs.nott.ac.uk;Tim.brialsford@nottingham.ac. uk

Abstract

In this paper, we give an overview about the hybrid model, which is a generic user
model that is based on measuring and classifying users' knowledge with respect to
multiple knowledge domains simultaneously. In addition, we demonstrate how that
model is implemented through the WHURLE (World Hierarchal Universal Reactive
Learning Environment) framework, which is an adaptive educational hypermedia
framework where different domains could be involved at the same time to
concurrently serve a wide range of users of different educational states and of
different abilities and backgrounds.

Keywords: User Modelling, Hybrid Model, Adaptive Hypermedia, Education,
Learning Environments.

1 Introduction

The amount of information on the web is continuing in its exponential increase, as is
the number of users with different goals and interests. It is thus becoming
increasingly important that the information provided be adapted to suit each user's
individual knowledge and aspirations. Adaptive hypermedia systems are achieving
this goal by employing individual user models. User models represent the individual
users' knowledge, background, goals and other features that enable these systems to
be adapted to the needs and the requirements of that user.

The educational area is considered to be the widest application arena where adaptive
hypermedia systems are deployed (1), as it has a wide variety of users with different
knowledge, background and goals.

The main purpose of this paper is to give an overview of the hybrid model Q), which
is a user model that is mainly designed for adaptive educational hypermedia
frameworks. These may run several courses - involving multiple knowledge
domains - for a wide range of users with diverse knowledge, backgrounds and goals.
We will also demonstrate the potential of this model by showing how it may be
implemented through the educational hypermedia framework WHURLE (Web-based
Hierarchal Universal Reactive Learning Environment) CD.

Before exploring the hybrid model and its implementation we will briefly review the
user models utilized in some of popular adaptive educational hypermedia systems,

228

mailto:mrz@cs.nott.ac.uk;Tim.brialsford@nottingham.ac.

such as Metadoc (1) and CHEOPS (2.), in section 2. In section 3, we will present an
overview about the hybrid model as an abstract model. Thereafter, in section 4 we
will introduce the hybrid model implementation through WHURLE.

2 Adaptive Hypermedia in Education

In recent years many adaptive educational hypermedia systems have been developed,
a good example of which is Metadoc (~). The Metadoc system provides hypertext
documents to potential readers in an adaptive way that suits their knowledge.
Moreover, it provides its adaptive capability through the use of an interactive agent
that stores knowledge about users in a user model, and that knowledge is used to
vary the level of detail presented in the document for each user individually.
Furthermore, if a user decided explicitly to modify the level of the presented details,
by means of stretchtext operations, the user model is informed and future
presentation of information may change. Metadoc classifies users with respect to
their knowledge about AIXJUnix and general computer concepts into four classes:
novice, beginner, intermediate, and experts. Likewise, AIXlUnix concepts and
general computer concepts are classified into different concept levels using the same
scale. Thus, users' knowledge level about AUXIUnix and general computer concepts
is independently stereotyped, i.e. a user may be a novice in AUXIUnix and a
beginner in general computer concepts.
To present the correct level of information, the system varies the amount of
explanation through the stretchtext technique depending on an individual user model.
Thus, users who belong to a classification whose level is less than the difficulty of a
given concept is assumed to be unfamiliar with that concept and extra explanation
via stretchtext is provided. On the other hand, expert users would want more in-depth
details rather than explanations.

At the Dipartimento di Informatica ed Applicazioni of the University of Salerno in
Italy, the CHEOPS system (~) has been developed. CHEOPS is a server side
implementation of a session-based interaction model. The hyperdocument in
CHEOPS is divided into categories to help users in navigation though the presented
information. CHEOPS uses a knowledge pyramid, which consists of two normal
polygons with vertices that represent the hyperdocument categories. The upper
polygon represents the minimum knowledge level and the lower one represents the
maximum knowledge level. The edges of the pyramid represent a user's knowledge
level in each category.

The user model in CHEOPS classifies the users' knowledge level into novice,
amateur and expert. Moreover, a user knowledge level in each category depends on
his previous interaction within the category, and this is called a confidence level. The
user has the ability to change the confidence level given to him by the system.
CHEOPS uses the knowledge pyramid as an important navigational aid to users; at
each step, users know their confidence level in each category and act upon that.
Categories could be dependent over each other. Hence, according to a user
knowledge level in other categories, another category/categories could be accessible
to him. The adaptation mechanism in CHEOPS takes the required document as an
input, and creates on fly a document that has all the links changed according to a user
profile, which is modified each time the user chooses a link.

229

By analysing the user model employed by these and other systems, we found that
they maintain the knowledge value of each individual user, in addition to other
characteristics, with respect to concepts that belong to a single domain.

The question that then arises is: what if we want to involve more than one domain,
such as mathematics, biology, chemistry, and so forth, at the same time? Also, how
do we maintain users' knowledge with respect to each individual domain? (which is
important because there are interdependencies between concepts from different
domains). For example, in biochemistry, we might use two domains - biology and
chemistry. The system then has to be capable of handling the prerequisites of any
single involved domain in that subject, such as a certain knowledge level in
chemistry and in biology, with respect to each individual user.

Metadoc in some way has tried to solve this issue, to a limited extent, by classifying
users with respect to their knowledge level into four stereotypes for every involved
domain. Thus, for an n number of involved domains, the system should initiate an n
number of four stereotypes, which is not an adequate solution.

We claim that, to create an adaptive educational hypermedia framework, the users'
knowledge should not be limited around a topic's concepts, but be extended to
domains - as each domain contains topics that help to build users' knowledge about
that domain. Moreover, multiple domains should be involved and integrated together
in a single domain model, and there must be no limit to the number of involved
domains. Furthermore, the user model should be capable of maintaining users'
knowledge about each involved domain. As a result, we came up with the
fundamental idea behind the hybrid model.

3 The Hybrid Model

The hybrid model (~) is a generic user model for adaptive educational hypermedia
frameworks that simultaneously run different courses involving multiple knowledge
domains for users of different goals, knowledge and backgrounds. Thus, it is based
on measuring and classifying a user's performance within knowledge domains, such
as the biology domain, the mathematics domain, or any other domains involved in an
educational curriculum.

Briefly, the hybrid model is composed of an overlay model, level stereotypes,
category stereotypes, and an information pool, as shown in Figure 1. The Overlay
model, the most widely-used technique in user modelling, measures the knowledge
level of each learner within subject domain (2) and is represented in the form of
"Concept- Value" pairs (1; ~), but in the case of the hybrid model it is represented in
the form of "Domain-Value" pairs. Moreover, evidence indicated that overlay
modelling significantly increases the appropriateness of material's explanation ~).

Level stereotypes depend on the knowledge level of users, as they may simply be
defined as Beginner, Intermediate and Advanced, or any other classes that systems'
authors may choose. According to users' knowledge level about different domains,
they are assigned to a single level stereotype with respect to every single involved
domain. For example, a user studying biomechanics might be assigned

230

simultaneously to the novice class in the biology domain and to the advanced class in
the mathematics domain.

What is more, category stereotypes play a crucial role with respect to the hybrid
model in differentiating between users that belong to the same level stereotype. For
example, consider two users: one of them is a first year undergraduate and the second
one is a student for a higher degree, and both of them are classified as intermediate in
the level stereotypes for the biology domain. Despite both students belonging to the
same level stereotype, the intermediate level of the postgraduate student is much
more advanced than the undergraduate one. Category stereotypes solve that problem
by assigning users according to their type of study or occupation into different
categories. For example, undergraduate students belong to the undergraduate
category and postgraduate students belong to the postgraduate category. Thus,
members of each category are provided with information that suits their knowledge
level with respect to their category. Finally, the information pool is categorised by
the domain model, and consists of a pool of articles, links, and other items that
encapsulate the resources of an adaptive system for the given domains. The
information pool is likely to differ in both form and content from one system to
another. Level stereotypes pick from the information pool the most convenient
articles and links that suit the knowledge and the category of each individual user.

Information
Pool

Figure 1: The components of the hybrid model. An overlay model combines with a level and
category stereotype to retrieve appropriate content from the information pool to convey
materials to the user. The user interacts with the system to inform and update the user model.

This section is divided into six subsections. The first one gives a brief background
about WHURLE, and the second subsection describes how the hybrid model
information pool is represented in WHURLE. Also, the third subsection describes
how knowledge domains are presented through the system, while the fourth one
discusses how knowledge level about each domain is classified, measured, and

231

updated. Subsection five explains how educational materials in WHURLE could be
adapted. Finally, in the sixth part the adaptation mechanism is explained.

4. 1 WHURLE background

To exploit the functionality of the hybrid model, it has to be implemented through a
strong educational hypermedia framework such as WHURLE, which is an XML-
based integrated learning environment. WHURLE is a server-based system
delivering HTML (or possibly in the future XHTML) dynamically generated by
XSLT (extensible style sheet: transformation). In WHURLE the content consists of
atomic chunks, each of which consists of the smallest conceptually self-contained
unit of information that the author can envisage, where these chunks are totally
transparent to the user/learner. All the available chunks are contained in a melange.
This melange acts as a huge pool where all the chunks of all involved domains are
contained. What an end-user will see is a lesson, which is an apparent docuverse
created by the WHURLE system. This contains the contents of any number of
chunks together with navigational links and an overlaid environment that is
generated by the system. The lesson is defined by another XML file that is called a
Lesson Plan, which consists of WLPML (WHURLE Lesson Plan Markup
Language).

The lesson plan contains a hypermedia pathway through the melange that is created
by teachers using WHURLE (although default lesson plans are provided with a
melange distribution). In its simplest conceptual form, a lesson plan consists of a
hierarchy of levels, each containing one or more pages. Pages consist of chunks
transcluded by means of Xinclude (2). The processing of Xinclude is orthogonal to
both parsing and validation, which means that chunks are retrieved as required,
rather than during the parse phase. Thus, there is a relatively modest processing
overhead at parse time, and the server load is spread evenly during use.

4.2 the hybrid model information pool

Any lesson plan in the WHURLE system is composed of a set of chunks (default
narratives). The information pool component in the hybrid model is composed of
those chunks, as shown in Figure 2. Thus, the contents of the information pool differs
form one lesson plan to another.

232

Lesson Plan default
narratives

Hybrid model ~
Information Pool

000

D
Melange

000

1J ._________ Lesson Plan

Figure 2: Lesson plan's default narratives are a subset of the Melange and the hybrid
model information pool includes all the default narratives of the lesson plan.

4.3 know/edge domains

The hybrid model depends on measuring and classifying users' knowledge with
respect to involved domains in an educational curriculum. Thus, we have to find a
way to classify domains into sub-domains and sub-sub-domains and so on. Because
of that, we decided to use the same approach used in the Dewey Decimal
Classification (lQ) (DDC). DDC is a general knowledge organization tool that is
continuously revised to keep pace with knowledge. The DDC numbers are featured
in the national bibliographies of sixty countries. The system was established by
Melvil Dewey in 1873 and first published in 1876. Furthermore, it is used by many
libraries around the world to classify their collections.

4.4 know/edge /evels

Users' knowledge level, m the current implantation, in WHURLE is represented
through three stereotypes: novice, intermediate, and advanced. This kind of
stereotyping is used by other adaptive educational hypermedia systems, such as
CHEOPS (~) and Metadoc (1).

The concept behind stereotyping users' knowledge level is not only to provide
advanced users with advanced information, or novice users with basics, but also to
provide a kind of assistant. Thus, novice users could access other chunks from
different domains or the same domain, or access links to other resources over the
web, in addition to the presented concepts that suit their knowledge level. Likewise,
advanced users could find more interesting advanced information about the topic
they study. However, linking to other resources either within the system or outside it
relies on the lessons' authors.

Users' knowledge level about involved domains is updated through answering
quizes, and taking tests at the end of each lesson. Moreover, each question in a test or
a quiz represents either one or more of the involved domain(s). According to a user's
correct answers with respect to every involved domain question(s), his/her
knowledge level about each involved domain is determined through a knowledge

233

scale, which is a numerical value that ranges from I to 10. Additionally, for each
range of scores, there is a corresponding knowledge value. For example, the
knowledge value 1 corresponds to quiz scores that range from 1 to 10 (out of 100),
and the knowledge value 2 corresponds to quiz scores that range from 11 to 20, and
so forth.

Level stereotypes rely on the knowledge value of each user with respect to each
individual domain to assign himlher to the appropriate expertise level. For example,
the novice level might embrace users with knowledge values ranging from I to 4, the
beginner level ranges from 5 to 8, and the advanced level ranges from 9 to 10.
Furthermore, according to users' knowledge value, their level of expertise changes
either positively or negatively, i.e. upgrading or downgrading. Thus, the system is
tracking the performance of each user in each domain, and provides help whenever it
is needed.

4.5 adaptive lesson plans

In adaptive WHURLE, each lesson plan has its own prerequisites, such as mandatory
lessons to be taken before it, which are stored in a MySQL database. Thus, for a user
to access a lesson plan he/she has to satisfy its prerequisites; also he/she has to be a
member of the same category that that lesson plan serves. That approach helps in
case of a topic or a course composed of more than one lesson plan and they should be
taught in a certain order; also in case an author of a lesson plan has found that
knowing a certain lesson before the user accesses will be useful.

In addition, each lesson plan may contain one or more level(s), which could be
nested inside each other. Furthermore, levels are composed of one or more pages that
embrace one or more chunk(s). In Adaptive lessons plans, two types of chunks are
defined: non-conditional chunks, which do not have prerequisites to be met, and
conditional chunks that do have prerequisites to be fulfilled by users before their
inclusion. The type of each chunk is defined through a domain attribute, which either
holds the name of the domain the chunk is serving, or the value "general" that
indicates the non-conditional type of that chunk. Moreover, every conditional chunk
has two other attributes in addition to the domain attribute: stereotype I and
stereotype2. Those attributes determine the required knowledge level(s) to access
that chunk, as at least one of them should not hold a NULL value, as shown in Figure
3.

234

<level name="introweb-intro" title="An outline of Internet History and Function">
<page>
<chunk domain="general" >introwebOO I</chunk>
<chunk domain="general" >introweb002</chunk>
<chunk domain="general" >introweb003</chunk>

</page>
<level name="design-intro" title="Introduction to Web Design">
<page>
<chunk domain="general" >webgrOOI</chunk>
<chunk domain="web _design" stereotype I="beg" stereotype2="int">webgr005</chunk>

</page>
</Ievel>
<page><chunk domain="html" stereotype I="beg" stereotype2="">introweb006</chunk></page>
<page><chu.nk domain="htrnl" stereotype 1="beg"

stereotype2="int">introweb007</chunk></page>
</Ievel>

Figure 3: A simple extraction from an adaptive lesson plan about html. Chunks with domain
attribute general will be available to every user accessing this lesson regardless of his/her
knowledge level about the involved domain. Chunks with domain attribute html and stereotype
"beg", means that the user should have a beginner stereotype knowledge level to access this
chunk, where "beg" abbreviates for Beginner and "int" abbreviates for Intermediate

Thus, a user has to fulfil one of them, if both of them hold a knowledge value to be
met, to gain access to that chunk. The reason we have these two stereotype attributes
is that we believe any chunk that is essential for users with lower knowledge level to
know could be utilized by users with higher knowledge level to understand a new
piece of information, and that depends on lessons' authors to decide. Furthermore,
two attributes are used, and not more or less, because in the current implementation
we only have three knowledge level stereotypes. What is more, every lesson a user
has finished is recorded into his model for future revising, if needed.

4.6 adaptation mechanism

According to Brusilovsky Q, 11. ll), there are two kinds of adaptation: adaptive
presentation and adaptive navigational support. The idea of adaptive presentation is
to adapt the content of a page accessed by a user to suit his/her knowledge, goals and
other characteristics. On the other hand, the adaptive navigational support helps users
to find their path through hyperspace by adapting link presentation to the knowledge,
goals and other characteristics of each user.
According to the nature of WHURLE's infrastructure, these two kinds of adaptation
are combined together in the adaptation process. As stated before, any lesson plan is
composed of a set of chunks organized under pages and these pages included inside
levels. When a user clicks on a level link, the first associated page within that level
will be included with its available chunks. If any page within any level does not have
any chunk to be included the link to this page is removed, and the same thing
happens if a level does not have any pages to be included. Thus, link removal
technique is used to adapt the content of the lesson plan, and thereby adaptive

235

representation and adaptive navigational support are combined together, as shown in
Figure 4.

Wcl~ to: An introduction 10Creetina Web Pages..... ,- \ -, .._, \. \, ~ ~-;

..... .,........-J.»

Bl

A

Welcome to: An introduction to Creating Web Pages.AIiiii1_,_,_, __"._" ('.....~
~ 11K IIUIL PlOno&r.,,1aT.1l

•__ .._",.,.,,!flWl..""...,_ """A>t/ -.I_01. ... _~ ,.,...
....... 1,.._ _""',..., _ ~n.. .,.06i 'f'Io" ...

:;:.,___ " ... _ N"' _ •• ~ _~ ·,_ .. __ (>I,:Lt._~..

...................... __ '
< _·" .. ,·, _...- __ 1.>

" :::.:::~::::..~:-.: ,••• _. _ ",_, ",.", " ,.. _" • ,.. "'''''M'

~, ,~,,-

WcJOOlOOto: An introduction to ('renting Web Pag(:l '_,,,'.Il0l1>
..... _, _ , _ \ ._,,, _ " co'ilt -.,:<Jdtt jiiiiir

Al

WelCOlllC to: An introduction to Creatine Web Pages 1...... ' •• '1)

~-_, _ \ _, ~ _"\ ,~ GooSk ..' xrdc:r ~

...n 1__ .. ""' "",... _ _ n.. .. 0t«6I_,..._ •• ~ ...
~_._ _ th _.,.. __ ,_ .. _ otll.f.- ..

....--

B

.._,....,.,........._I.~
;::~:::=!:!::.:::::!!~...:-::.:...=::"'~,,- -- _ ..",-
~_IIb __ .. w..a

Figure 4: Image A represents the first page of a non adapted version of the htmI lesson plan
where links to all levels (6 levels) are found. While Image At represents the content of the second
level, as it is composed of 1 t pages, a user can access them by means of the navigational buttons
on the left frame. On the other hand, image B represents the adapted version of the first page of
the same lesson plan, where links to five levels are only founds and the sixth one is removed as
none of its pages has chunks to include. Image Bl represents the content of the same level that
image AI represents, but with only links to 7 pages not 11, where the other 4 pages the user
hasn't met their prerequisites, in addition non of them is of non conditional type.

The adaptation engine in WHURLE acts as a filter to lessons' content, where
conditional chunks whose prerequisites are met and non-conditional chunks are
included, Thus, a user will access information that suits his/her knowledge level.
Through the history links, which could be found on the toolbar at the far right side in
Figure 4 (images: Band Bl), users may access all visited lessons in a non-adaptable
version (without excluding any chunk) through the pop up history window, as shown
in Figure 5. The idea behind that approach is to build a kind of library for every
individual user, composed of all visited lessons in a row format without adaptation,
as he/she can refer back whenever he/she wants to maintain information about
studied domains.

236

Figure 5: when a user clicks on the history link, as in Figure 4-1mage B or 81, a popup history
window come into view, which include links to all visited lessons, in a non adapted version as in
Figure 4-lmage A and AI, in addition to the total score the user got at the end of each of them,
also the date in which he/she finished each lesson.

User category stereotype and levels stereotype, with respect to the
involved domains. are checked

Adaptation takes place and then the user interacts with the system

User's knowledge level with respect to the involved domains is updated according to
hislher score in the system assessment

Updating the user's level stereotypes for the involved
domains

Figure 6. Once the user logs in, the system either adapts its material according to the
existing user model, or creates a new one. At the end of each lesson, the user model is
updated.

The hybrid model used within WHURLE is a cooperative CU) user model, because it
collaborates with users in gathering information, as they are required to supply the
system with personal information when they access the system for the first time, e.g.
their occupation/category, preferences, and other entities. Figure 6 illustrates the
involved steps in the adaptation process.
In Figure 6, when a user logs on to the system, he/she supplies his/her usemame and
password to verify his/her authentication. Subsequently, the user's category is
compared with the category of the lesson that he/she intends to access. Thus, if

237

categories do not match, the user will be declined. But if matching is defined, the
user's knowledge level about each involved domain in the lesson plan is checked.
Afterwards, the adaptation process takes place and the user starts to navigate through
the adapted information. Hence, at the end of each lesson, the user may answer a
quiz or take a test, and depending on his/her score, his/her knowledge level about
each involved domain is determined. Therefore, the user is re-assigned to one of the
level stereotypes for each involved domain.

In the case of new users, they have to supply the system with personal information,
such as their name, category, etc. Also, they have to answer a quiz with respect to the
lesson they like to access. According to this information and to the score they got in
the quiz, their knowledge level about every involved domain is maintained, and
thereby adaptation takes place.

The WHURLE system is implemented using the Cocoon (H) publishing framework
from APACHE software foundation (which is a servlet-based open-source engine
currently under heavy development and with a rapidly maturing feature set). The
MySQL ill) database is used to store the user model information, lessons'
sequences, knowledge scale, etc. The adaptation engine in WHURLE is implemeted
using XSP (l§) (extensible Server Pages), which allows the writing of lAVA code
inside an XML file, that is responsible for filtering lessons' content with respect to
users' knowledge level. Also, it is responsible for managing session variables.
Finally, esql (11), which is an XSP logicsheet, manages the communication between
the system and the database.

5 Conclusion

The hybrid model is an attempt to reinterpret the most common techniques utilized in
the world of user modelling. It combines these techniques together in a flexible way
that can be used in a wide variety of educational contexts. Although the components
of this model are derived from early researches, it has a number of novel features -
particularly:

It is capable of measuring and classifying users' knowledge with respect to every
domain involved in any educational hypermedia framework, which embraces
multiple different domains to teach, at the same time, users with different
backgrounds, educational states, and goals.
The systems' authors can choose any parameters that suit their application with
respect to any of the model's components. For example, level stereotypes could
be up to any number of classes and may include learning styles in addition to
knowledge levels, categories could be up to any number of involved categories as
those categories could be geographical, educational, etc., and also the way the
overlay model is updated is totally left open to the authors.

We have demonstrated these features by describing how the model is implemented
through the WHURLE system. Details about the technical implementations and user
interface are beyond of the scope of this paper. Rather, we tried to have focussed on
the core concepts underlying the WHURLE framework. Details about the
navigational system and the interface implementation within WHURLE are given
elsewhere 0.).

238

References
(1) Brusilovsky, P. Adaptive Hypermedia: from Intelligent Tutoring Systems To Web-
based Education. Proceeding of ITS 2000, Montreal, Canada, 2000, 1-7.
(2) Zakaria, M, R and Moore, A and Ashman, H and Stewart, C and Bria1sford, T. The
hybrid model for adaptive educational hypermedia. Proceedings of AH2002, The
Second International Conference on Adaptive Hypermedia, Malaga, Spain, 2002, 580-
585. Poster.
(3) Brailsford, T and Stewart, C and Zakaria, M, R and Moore, A. Autonavigation,
links and narrative in an adaptive web-based integrated learning environment.
Proceedings ofwww2002, Hawaii, USA, 2002.
(4) Boyle, C. and Encarcion, A. Metadoc: an adaptive hypertext reading System. User
Modeling and User-adapted Interaction, 4, 1994, 1-19.
(5) Negor, A and Scarano, V and Simari, R. User Adaptivity on the WWW through
CHEOPS. Proceedings oj the 2nd workshop on Adaptive Hypertext and Hypermedia,
Pittsburgh, USA, 1998.
(6) Brusilovsky, P and Eklund, J and Schwarz, E. A tool for developing adaptive
electronic textbooks on the WWW. Proceedings oj WebNet'96 - World Conference oj
the Web Society, San Francisco, CA, AACE, 1996,64-69.
(7) Valley, K. Learning Styles and Courseware Design. Association of Learning
Technology Journal, 5(2), 1997, 42-51.
(8) Carr, B and Goldstein, I. Overlays, a theory oj modeling Jor computer aided
Instruction. A Technical Report. AI Memo 406, MIT, Cambridge, MA, 1977
(9) http://www.w3.org/TRIxinciude
(10) http://www.oclc.orgldewey/about/abouttheddc.htm#history
(11) Brusilovsky, P. Efficient Techniques for Adaptive hypermedia. In: C. Nicholas
and J. Mayfield, eds. Intelligent Hypertext: Advanced techniques Jar the World Wide
Web. Lecture Notes in Computer Science, Berlin: Springer-Verlag, 1997, 12-30
(12) Brusilovsky, P. Methods and Techniques of adaptive hypermedia. User Modeling
and User-Adapted Interaction, 6 (2-3), 1996, 87-129
(13) Kay, 1. (1995), The UM toolkit for cooperative user models. User Models and
User Adapted Interaction, 4(3), 1995,149-196.
(14) http:// www.apache.org/cocoonl
(15) http://www.mysql.com
(16) http://www.apache.org/xsp
(17) http://www.apache.org/esql

239

http://www.w3.org/TRIxinciude
http://www.apache.org/cocoonl
http://www.mysql.com
http://www.apache.org/xsp
http://www.apache.org/esql

"Pluggable" user models for adaptive
hypermedia in education.

M.R.Zakaria
School of Computer Science and IT,

University of Nottingham,
Nottingham, U.K.
mrz@cs.nott.ac.uk

A.Moore
School of Computer Science and IT,

University of Nottingham,
Nottingham, U.K.

axm@cs.nott.ac.uk

C.D.Stewart
School of Computer Science and IT,

University of Nottingham,
Nottingham, U.K.
cds@cs.nott.ac.uk

T.J. Brailsford
School of Computer Science and IT,

University of Nottingham,
Nottingham, U.K.
tjb@cs.nott.ac.uk

ABSTRACT
Most adaptive hypermedia systems used in education implement a single user model
- inevitably originally designed for a specific set of circumstances. In this paper we
describe an architecture that makes use of XML pipelines to facilitate the
implementation of different user models.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: HypertextlHypennedia -
architectures, navigation, theory, user issues.

General Terms
Design, Experimentation, Human Factors.

Keywords
Adaptive hypermedia, education, system architecture, user modeling, XML

240

mailto:mrz@cs.nott.ac.uk
mailto:axm@cs.nott.ac.uk
mailto:cds@cs.nott.ac.uk
mailto:tjb@cs.nott.ac.uk

ADAPTIVE HYPERMEDIA IN EDUCATION
As on-line learning is becoming increasingly pervasive, so is an appreciation of the
difficulties and limitations of this approach to education. The most important issue
is that using the WWW to distribute resources - as though it were a distributed
photocopying machine - is of limited educational value. Although this approach can
be useful to support teaching, it is unlikely in itself to provide a sound learning
experience. One approach to addressing this is to develop on-line collaborative
systems that foster the creation of learning communities. Another approach - one
that
we are concerned with here - is to leverage the techniques and technologies of
adaptive hypermedia to deliver educational content that is appropriate to the needs of
individual students.
Education is currently the major application of adaptive hypertext, and is an area that
has been reviewed thoroughly by Brusilovsky [1]. A number of adaptive systems
have been developed for educational use - such as AHA! [2]; CHEOPS[3];
Interbook [4]; and WHURLE [5]. These systems use a variety of techniques -
operating at the level of the links, the content or both - to adapt the learning
experience to suit individuals. One feature that they all have in common is that they
construct a profile of individual users, and apply a set of criteria, the user model, to
inform the adaptation. There are significant differences between the approaches to
user modeling that these systems use [6]. Any user model is imperfect from an
educational point of view, in so far as it makes pedagogic assumptions that are
unlikely to be valid under all circumstances. Hence it would be highly advantageous
- both for research purposes, and for practical implementation in teaching - to design
adaptive systems in such a way that user models are independent modules that can be
"plugged" into the system. In this paper we shall describe part of the WHURLE
architecture that has been designed to do just this.

THE WHURLE SYSTEM
WHURLE is an XML-based adaptive learning environment [5]. In WHURLE
content is stored as conceptually self-contained "chunks" of information - each
chunk being described by a separate XML file.

The student experience - lessons - are defined by lesson plans, each of which
contains a list of all of the chunks utilised in that lesson, the default structure of the
information and various metainformation and configuration settings.
The WHURLE rendering engine is an XSLT style sheet that provides a navigational
overlay (navigation information being derived from the structure of the lesson) and a
user interface that is specified as a skin.

ADAPTATION BY FILTER
The concept of XML pipelines, are fundamental to the WHURLE architecture. An
XML pipeline is a series of events, generated at parse-time, that flow through a
predefined sequence of filters or processors. Just as a Unix pipeline uses the output
of one program as the input of another, an XML pipeline uses the output document
of one process as the input document of another. In WHURLE, the lesson plan is
constructed into a node-tree (using XInclude[7]) that contains all of the chunks that
might be required in that lesson. This is ultimately passed - in an XML pipeline to

241

the display engine, an XSL T style sheet that adds autonavigation and the user
interface, and finally generates an HTML output document. This pipeline is thus the
ideal place to implement a pluggable user model, as illustrated in Figure 1. XML
pipelines are discussed in the Cocoon documentation, found at:
http://cocoon.apache.org/2.0/userdocs/concepts/index .htm l#basi c-mechani sms.

The output document of the lesson plan contains all of the content that could
potentially be in the lesson. This is then filtered by an adaptation filter (ie an XSLT
style sheet that removes those chunks that are not required for the current user - as
determined by whichever user model is currently in use).

Teacher
--. XML Pipeline

- - - -. User Interaction

- . - ... Database Query

Figure I. The adaptation filter in WHURLE. A teacher creates a lesson plan, which defines all
possible content of the lesson. This is filtered, according to the user model, which makes use of
information stored in the user profile. The output of the filter is rendered by the display engine,
and student interactions update the user profile.

Although a larger node-tree is generated than will usually be delivered to any
individual user, the computational overhead is minimal due to the processing model
of Xlnc1ude [7]. Because the information is processed at the level of an XML
information set, the only elements processed are the top-level included items, unless
the child elements are required elsewhere in the pipeline.
Currently we use an adaptation filter that implements the "Hybrid Model" [8, 9],
although we have also used WHURLE as a framework to deliver non-adaptive
material by the simple expedient of passing the entire node-tree through to the
rendering engine. In order to implement a different user model, the only part of the
system that needs to be modified is the adaptation filter. It is, however, important to
note that depending upon the criteria used for adaptation, some user models might
require different meta-information to be stored in the chunks and/or lesson plans.

SUMMARY
The use of pluggable user models in WHURLE increases its flexibility, and also
provides us with a potentially powerful research tool for future evaluation studies.
User models are currently under development that operate on factors other than that
of knowledge and ability; such as preferred learning styles. Also, WHURLE is to be
a test system for user models developed by the Minerva:ADAPT project
(http://wwwis.win.tue.nl/~alex/HTMLlMinerva/). All of these applications are
facilitated by the flexibility of this architecture.

242

http://cocoon.apache.org/2.0/userdocs/concepts/index

ACKNOWLEDGEMENTS
We are grateful to the EU Minerva programme for funding under the ADAPT
project. We should also like to thank Helen Ashman, and other members of the Web
Technology Group in the University of Nottingham for their support and for many
helpful discussions

REFERENCES
[1] Brusilovsky, P. (1998). Adaptive Educational Systems on the World Wide Web: A review of

available technologies. Proceedings of the Workshop "WWW-Based Tutoring" at the 4th
International Conference on Intelligent Tutoring Systems (ITS'98).

[2] De Bra, P. & Calvi, L. (1998). AHA! An open Adaptive Hypermedia Architecture. The New
Review of Hypermedia 4, 115 - 139.

[3] Ferrandino, S; Negro, A & Scarano,V. (1997). CHEOPS: Adaptive Hypermedia on the World
Wide Web. Proceedings of the European Workshop on Interactive Distributed Multimedia
Systems and Telecommunicazion Services (IDMS '97), 210-219.

[4] Brusilovsky, P.; Eklund, J.; & Schwarz, E. (1998). Web-based education for all: A tool for
developing adaptive courseware. Computer Networks and ISDN Systems (Proceedings of Seventh
International World Wide Web Conference) 30 (1-7), 291-300.

[5] Brailsford, TJ.; Stewart, C.D.; Zakaria, M.R. & Moore, A. (2002). Autonavigation, Links and
Narrative in an Adaptive Web-Based Integrated Learning Environment. Eleventh International
World Wide Web Conference.

[6] Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and
User-Adapted Interaction 6 (2-3), 87-129.

[7] Marsh, J. & Orchard, D. (eds, 2002). XML Inclusions (XInclude) Version 1.0. W3C Candidate
Recommendation.

[8] Zakaria, M.R; Moore, A; Ashman, A; Stewart, C & Brailsford, T. (2002). The Hybrid Model for
Adaptive Educational Hypermedia. Proceedings of Second International Conference, AH2002,
580-585.

[9] Zakaria, M.R. & Brailsford, TJ. (2002). User Modelling and Adaptive Educational Hypermedia
Frameworks for Education. New Review of Hypermedia and Multimedia, (NRHM 2002) 8,83-97.

243

Bibliography

ANON (2003). Dewey Decimal Classification and Relative Index. 22 edn.
ISBN: 0-910608-70-9.

Anderson M, Jackson D (2000). Computer Systems for distributed and distance
learning. Journal of Computer Assisted Learning, 16, pp 213-228.

Atkinson S (2001). Cognitive Styles and Computer Aided Learning (CAL): Exploring
Designer and User Perspectives. Proceedings of PATT-11 Conference. pp 3-14.

Barker T, Jones S, Britton C, Messer D (2002). The Use of a Co-operative Student
Model of Learner Characteristics to Configure a Multimedia Application. User
Modeling and User-Adapted Interaction, 12, pp 207-241.

Benaki E, Karkaletsis V, Spyropoulos C (1997). User Modeling in WWW: the UMIE
Prototype. Proceedings of the workshop "adaptive systems and user modeling on the
world wide web", Sixth International Conference on User Modeling. Chia Laguna,
Sardinia. pp 13-22.

Benjamins VR, Fensel D, Pe'rez AG (1998). Knowledge Management through
Ontologies. Proceedings of Second International Conference on Practical Aspects of
Knowledge Management. pp 5.1-5.12

Benyon D, Murray D (1993). Adaptive Systems: from intelligent tutoring to
autonomous agents. Knowledge- Based Systems, 6(4), pp 197-219.

Benyon D, Stone D, Woodroffe M (1997). Experience with developing multimedia
courseware for the World Wide Web: the need for better tools and clear pedagogy.
International Journal of Human-Computer Studies, 47, pp 197-218.

Berners-Lee T (1992). Hypertext Markup Language (HTML).
http://www.w3.org/hypertextIWWWlMarkUplMarkUp.html.

Berners-Lee T (1998). Semantic Web Road Map.
http://www .w3 .org/Designlssues/Semantic.html,

Bernstein M (1998). Patterns of Hypertext. Proceedings of Hypertext '98, pp 21-29

Billsus D, Brunk C, Evans C, Gladish B, Pazzani, M (2002). Adaptive Interfaces for
Ubiquitous web access. Communications Of the ACM, 45(5), pp 34-38.

Bonfigli M, Casadei G, Salomoni P (2000). Adaptive Intelligent Hypermedia using
XML. Proceedings of ACM Symposium on Applied Computing, SAC 2000. Italy. pp
922-926.

244

http://www.w3.org/hypertextIWWWlMarkUplMarkUp.html.

Bontcheva K (2001). The Impact of Empirical Studies on the Design of an Adaptive
Hypertext Generation System. Proceedings of the Third workshop on adaptive
hypertext and hypermedia, Eight International Conference on User Modeling
(UM2001). Sonthofen, Germany. pp 201-204.

Boyle C, Encarnacion A (1994). Metadoc: an adaptive hypertext reading System.
User Modeling and User-Adapted Interaction, 4, pp 1-19.

Brailsford T, Stewart C, Zakaria M, R, Moore A (2002). Autonavigation, links and
narrative in an adaptive web-based integrated learning environment. Proceedings of
World Wide Web, (www 2002). Hawaii, USA.
http://www2002.org/CDROMlalternate1738/

Brailsford T, Moore A, Stewart C, Zakaria M, Choo BS, Davies P (2001). Towards a
frameworkfor effective web-based distributed learning. Proceedings of World Wide
Web 2001, (WWW 2001). Hong Kong. pp 120 - 121.

Brailsford T, Ashman H, Stewart C, Zakaria M, Moore A (2002). User Control of
Adaptation in an Automated Web-Based Learning Environment. Proceedings of First
International Conference on Information Technology & Applications (ICITA 2002).
Bathurst, Australia. pp 252.14-262.14.

Brajnik G, Tasso C, Vaccher A (1991). A Flexible Toolfor Assumption based user
modeling. Proceedings of Trends in Artificial Intelligence - 2nd Congress of the
Italian Association for Artificial Intelligence (AI*IA). pp 445-449.

Brown I (1998). The Effect of WWW Document Structure on Students' Information
Retrieval. Journal of Interactive Media in Education, 12.
http://www-jime.open.ac.ukl98/12lbrown-98-12.html

Brusilovsky P (1995). Intelligent Tutoring Systems for the World-Wide Web.
Proceedings of Third International WWW Conference. pp 42-45.

Brusilovsky P (2000). Adaptive Hypermedia: from Intelligent Tutoring Systems To
Web-based Education. Proceedings of ITS 2000. Montreal, Canada. pp 1-7.

Brusilovsky P (2001). Adaptive Hypermedia. User Modeling and User-Adapted
Interaction, 11, pp 87-110.

Brusilovsky P (1996). Methods and techniques of adaptive hypermedia. User
Modeling and User-Adapted Interaction, 6(2-3), pp 87-129.

Brusilovsky P (1997). Efficient Techniques for Adaptive hypermedia. In: Nicholas
C, Mayfield J (eds), Intelligent Hypertext: Advanced techniques for the World Wide
Web. Springer-Verlag, pp 12-30.

Brusilovsky P (2001a). Adaptive Educational Hypermedia. Proceedings of Tenth
International PEG conference. Tampere, Finland. pp 8-12.

245

http://www2002.org/CDROMlalternate1738/
http://www-jime.open.ac.ukl98/12lbrown-98-12.html

Brusilovsky P (1994). Student model centered architecture for intelligent learning
environments. Proceedings of Fourth international conference on User Modeling.
Hyannis, MA, USA. pp 31-36.

Brusilovsky P (1998). Adaptive Educational Systems on the World-Wide-Web: A
Review of Available Technology. Proceedings of the workshop "www-based
tutoring", 4th International Conference on Intelligent Tutoring Systems (ITS'98). San
Antonio, TX.
http://www-aml.cs.umass.edul-stern!webits/itsworkshoplbrusilovsky.html

Brusilovsky P, Eklund J, Schwarz E (1998). Web-based education for all: a tool for
development adaptive courseware. Computer Networks and ISDN Systems, 30(1-7),
pp 291-300.

Brusilovsky P, Maybury M (2002). From Adaptive Hypermedia to the Adaptive Web.
Communications Of the ACM, 45(5), pp 31-33.

Brusilovsky P, Pesin L (1998). Adaptive Navigation Support in Educational
Hypermedia: an Evaluation of the ISIS-Tutor. Journal of Computing and Information
Technology, 6(1), pp 27-38.

Brusilovsky P, Ritter S, Schwarz E (1997). Distributed Intelligent tutoring on the
Web. In: B. du Boulay and R. Mizoguchi (eds), Proceedings of 8th World
Conference on Artificial Intelligence in Education (AI-ED'97). Amsterdam. pp 482-
489.

Brusilovsky P, Schwarz E, Weber G (1996a). A Tool for developing adaptive
electronic textbooks on www. Proceedings of WebNet'96, World Conference of the
Web Society. San Francisco, USA. pp 64-69.

Brusilovsky P, Schwarz E, Weber G (1996b). ELM-ART: An Intelligent Tutoring
System on World Wide Web. Proceedings of Third International Conference on
Intelligent Tutoring Systems (ITS'96). pp 261-269.

Bryman, A, Cramer, D (1999). Quantitative Data Analysis with SPSS Release 8 for
Windows. Routledge, ISBN: 0-415-20697-9.

\

Bush V (1945). As WeMay Think. The Atlantic Monthly 176(1), pp 101-108.

Cabrera L, Fortiz MJ, Llorca J (2001). Hypermedia Systems: the Need/or Cognitive
Hypermedia Models. Proceedings of Taller de Evolucion del Software en VI
Jornadas de Ingenieria del Software y Bases de Datos. Spain. pp 71-87.

Cagle K, Coming D, Dynstee T, Gudmundsson 0, Mason M, Pinnock J, Spencer P,
Tang J, Watt A, Jirat J, Tchistopolskii P, Tennison J (2001). Professional XSL. Wrox
Press Ltd, ISBN: 1-861003-57-9.

246

http://www-aml.cs.umass.edul-stern!webits/itsworkshoplbrusilovsky.html

Calvi L (1997). Multifunctional (Hyper) Books: A Cognitive Perspective (or the
User's Side). Proceedings of the workshop "Adaptive systems and user modeling on
the World Wide Web", Sixth International Conference on User Modeling. Chia
Laguna, Sardinia. pp 23-30.

Calvi L, Cristea A (2002). Towards Generic Adaptive systems: Analysis of a case
Study. Proceedings of Second international conference on adaptive hypermedia and
adaptive web-based systems, AH 2002. Malaga, Spain. pp 79-89.

Carr B, Goldstein I (1977). Overlays, a theory of modeling for computer aided
Instruction. MIT, Cambridge, MA, Report number: 406.

Carro R, Pulido E, Quentin-Baxter M (2000). How Adaptivity Affects the
Development of TANGOW web-based courses. Proceedings of International
conference on Adaptive Hypermedia and adaptive web-based systems, AH 2000.
Trento, Italy. pp 280-283.

Carro R, Pulido E, Rodriguez P (1999). TANGOW: Task-Based Adaptive LearNer
Guidance on the www. Proceedings of Second Workshop on Adaptive Systems and
User Modeling on the Web. Banff, Canada. Pp 49-57.

Chappel R, Wilson D, Cahour B (1992). Engineering User Models to Enhance
Multimodal Dialogue. Proceedings of Engineering for Human-Computer Interaction.
Amsterdam. pp 297-313.

Chen S, Ford N (1997). Towards adaptive information systems: individual
differences and hypermedia. Information Research, 3(2).
http://informationr.netlir/3- 2/paper3 7.html

Chris W (1998). Towards an Ontology for Library Modalities. Proceedings of
AAAI-98 Workshop on Represenations for Multi-Modal Human-Computer
Interaction.
http://www.cs.vassar.edU/faculty/welty/papers/multi-modaI98.pdf

Conklin J (1987). Hypertext: An Introduction and Survey. IEEE Computer, 20(9), pp
17-41.

Curtin J (2002). WebCT and online tutorials: New possibilities for student
interaction. Australian Journal of Educational Technology, 18(1), pp 110-126.

Da Silva D, Durm R, Duval E, Olivie' H (1998). Concepts and documents for
adaptive educational hypermedia: a model and a prototype. Proceedings of 2nd
Workshop on Adaptive Hypertext and Hypermedia HYPERTEXT'98. Pittsburgh,
USA. http://wwwis.win.tue.nl/ah98/Pilar/Pilar.html

Davies P (1994). The Scholar's Desktop: A Specification Briefing (version 2). TLTP
Biodiversity Consortium

De Bra P (2002). Adaptive Educational Hypermedia on the WEB. Communications
Of the ACM, 45(5), pp 60-61.

247

http://informationr.netlir/3-
http://www.cs.vassar.edU/faculty/welty/papers/multi-modaI98.pdf
http://wwwis.win.tue.nl/ah98/Pilar/Pilar.html

De Bra P (1996). Teaching Hypertext and Hypermedia through the web.
Proceedings ofWebNet'96 conference. San Francisco, USA. pp 130-135.

De Bra P, Aerts A, Houben G, Wu H (2000). Making General-Purpose Adaptive
Hypermedia Work. Proceedings of AACE WebNet Conference. San Antonio,
Texas,USA. pp 117-123.

De Bra P, Aerts A, Smits D, Stash N (2002a). AHA! Meets AHAM. Proceedings of
Second international conference, AH 2002. Malaga, Spain. pp 388-391.

De Bra P, Aerts A, Smits D, Stash N (2002b). AHA! Version 2.0, More Adaptation
Flexibilityfor Authors. Proceedings of AACE ELearn'2002 conference. pp 240-246.

De Bra P, Aerts A, Smits D, Stash N (2002c). AHA! The Next Generation.
Proceedings of ACM Conference on Hypertext and Hypermedia, HT'02. pp 21-22.

De Bra P, Brusilovsky P, Houben G (1999). Adaptive Hypermedia: From Systems to
Frameworks. ACM Computing Surveys, 31(4).

De Bra P, Calvi L (1998a). AHA! An open Adaptive Hypermedia Architecture. New
Review of Hypertext and Multimedia, 4, pp 115-139.

De Bra P, Calvi L (1998b). AHA: a Generic Adaptive Hypermedia System.
Proceedings of 2nd Workshop on Adaptive Hypertext and Hypermedia
HYPERTEXT'98. Pittsburgh, USA. pp 5-12.

De Bra P, Calvi L (1997). Creating Adaptive Hyperdocumentsfor and on the Web.
Proceedings of AACE WebNet'97 Conference. Toronto, Canada. pp 149-154.

De Bra P, Houben G, Wu H (1999a). AHAM: A Dexter-based Reference Model for
adaptive Hypermedia. Proceedings of the ACM Conference on Hypertext and
Hypermedia. Darmstadt, Germany. pp 147-156.

De Bra P, Ruiter J (2001). AHA! Adaptive Hypermedia for All. Proceedings of
Proceedings of the WebNet Conference. pp 262-268.

Dede C (1996). Distance Learning to Distributed Learning: Making the Transition.
Learning and Leading with Technology, 23(7), pp 25-30.

Delestre N, Pecuchet J, Greboval C (1999). Why to use a dynamic adaptive
hypermedia for teaching, and how to design it? Proceedings of WebNet'99.
Honolulu.

Dubios, P (2000). MySQL. New Rides Publishing, USA. ISBN: 0-7357-0921-1.

Eklund J, Brusilovsky P (1998). The Value of Adaptivity in Hypermedia Learning
Environments: The Value of Adaptivity in Hypermedia Learning Environments: A
Short Review of Empirical Evidence. Proceedings of Second Workshop on Adaptive
Hypertext and Hypermedia HYPERTEXT'98. Pittsburgh, USA. pp 13-20.

248

Eklund J, Brusilovsky P, Schwarz E (1997). Adaptive Textbooks on the World
WideWeb. Proceedings of The Third Australian Conference on the World Wide Web
(AUSWEB'97). Queensland, Australia. pp 186-192.

Engelbart D (1995). Toward Augmenting the Human Intellect and Boosting our
Collective IQ. Communications Of the ACM, 38(8), pp 30-33.

Engelbart D, English WK (1968). A research centerfor augmenting human intellect.
Proceedings of Fall Joint Computer Conference. San Francisco, USA. pp 395-410.

Fensel D, Musen M (2001). The Semantic Web: A Brain for HumanKind. IEEE
Intelligent systems, 16(2), pp 24-25.

Ferrandino S, Negro A, Scarano V (1997). CHEOPS: Adaptive Hypermedia on the
World Wide Web. Proceedings of European Workshop on Interactive Distributed
Multimedia Systems and Telecommunication Services (IDMS'97). pp 210-219.

Finin T (1989). GUMS - A General User Modeling Shell. In: Kobsa A, Wahlster W
(eds), User Models in Dialog Systems. Springer-Verlag, New York, pp 411-430.

Fink J, Kobsa A (2000). A Review and Analysis of Commercial User Modeling
Servers for Personalization on the World Wide Web. User Modeling and User-
Adapted Interaction, 10, pp 209-249.

Fink J, Kobsa A, Nill A (1998). Adaptable and Adaptive Information Provision for
All Users, Including Disabled and Elderly People. New Review of Hypermedia and
Multimedia, 4, pp 163-188.

Fink J, Koenemann J, Noller S, Schwab I (2002). Putting Personalization into
practice. Communications Of the ACM, 45(5), pp 41-42.

Gilchrist A (2002). From Aristotle to the 'Semantic web'. Library Association
Record, 104(1). http://www.la-hq.org.ukldirectory/recordlr200201larticle2.html

Gonschorek M, Herzog C (1995). Using Hypertext for Adaptive Helpsystem in an
Intelligent Tutoring System. Proceedings of 7th World Conference on Artificial
Intelligence in Education, AI-ED'95. pp 274-281.

Grant S, Marshall A, Strivens J (1999). LUSID: a Web-based student profiling
system. Proceedings of the active web, British HCI Group Day Conference.
Staffordshire University, UK.
http://www.visualize.uk.com!conf/activeweb/proceedlpap 16/

Gruber T (1993). A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2), pp 199-220.

Guarino N (1998). Formal Ontology and Information Systems. Proceedings of
FOIS'98. Trento, Italy. pp 3-15.

249

http://www.la-hq.org.ukldirectory/recordlr200201larticle2.html
http://www.visualize.uk.com!conf/activeweb/proceedlpap

Halasz F, Schwartz M (1990). The Dexter Hypertext Reference Model. Proceedings
ofNIST Hypertext Standardization Workshop. http://ei.cs.vt.edu/-mm!pdf/dexter.pdf

Harold, E (1999). XML Bible. IDG Books Worldwide, ISBN: 0-7645-3236-7.

Hartly J, Sleeman D (1973). Towards more intelligent teaching systems. International
Journal of Man-Machine Studies, 2, pp 215-236.

Helie D, Maurer H, Scherbakov N (1999). Authoring and Maintaining of
Educational Applications on the Web. Proceedings of ED-MEDIA'99. Seattle, USA.
pp 1792-1797.

Helic D, Maurer H, Scerbakov N (2001). Knowledge Domains: A Global Structuring
Mechanism for Learning Resources in WET Systems. Proceedings of WebNet 2001.
Charlottesville, USA. pp 509-514.

Hohl H, Bocker H, Gunzenahuser R (1996). Hypadapter: An Adaptive Hypertext
System form Exploratory Learning and Programming. User Modeling and User-
Adapted Interaction, 6, pp 131-156.

Holt P, Dubs S, Jones M, Greer J (1991). The State a/Student Modelling. In: Greer J,
McCalla G (eds), Student Modelling: The Key to Individualized Knowledge-Based
Instruction. Springer, pp 3-35.

Hothi J, Hall W (1998). An Evaluation of Adapted Hypermedia Techniques Using
Static User Modelling. Proceedings of 2nd Workshop on Adaptive Hypertext and
Hypermedia HYPERTEXT'98. Pittsburgh, USA. pp 45-50.

Hughes G (1999). AIMS - Academic Information Management System. Proceedings
ofthe active web, British HCI Group Day Conference. Staffordshire University, UK.
http://www.visualize.uk.com!conf/activeweb/proceed/pap26/

Hunter l, Crawford W (1998). JAVA Servlet Programming. O'Reilly & Associates,
ISBN: 1-56592-391-X.

Joachims T, Freitag D, Mitchell T (1997). Webwatcher: A tour guide/or the World
Wide Web. Proceedings ofIJCA!-97 conference, pp 770-775.

lording T, Michel S (1999). Personalized Shopping in the Web by Monitoring the
Customer. Proceedings of the active web, British HC! Group Day Conference.
Staffordshire University, UK.
http://www.visualize.uk.com!conf/activeweb/proceed/pap6/

Kampa S, Miles-Board T, Carr L (2001). Linking with meaning: Ontological
hypertext for scholars. University of Southampton, Southampton, Report number: 0-
854327-37-1.

Kass R (1989). Student Modeling in Intelligent Tutoring systems. In: Kobsa A,
Wahlste W (eds), User Models in Dialog Systems. Springer, pp 386-410.

250

http://ei.cs.vt.edu/-mm!pdf/dexter.pdf
http://www.visualize.uk.com!conf/activeweb/proceed/pap26/
http://www.visualize.uk.com!conf/activeweb/proceed/pap6/

Kass R, Finin T (1988). A General UserModelling Facility. Proceedings of SIGCHI
conference on Human factors in computing systems. Washington, D.C, USA. pp
145-150.

Kay J (1995). The UM Toolkit for Cooperative user modelling. User Modeling and
User-Adapted Interaction, 4(3), pp 149-196.

Kay M (2000). XSLT-Programmer's Reference. Wross press LTD,

Kinshuk, Patel A (1997). A Conceptual Framework for Internet based Intelligent
Tutoring Systems. In: Behrooz A (eds), Knowledge Transfer (Volume II). pp 117-
124.

Klein M, Methlie L (1995). Knowledge-based Decision Support Systems with
Applications in Business. second edn. John Wiley & Sons Ltd, England. ISBN: 0-
471-95295-8.

Kobsa A (1990). Modeling the user's conceptual knowledge in BGP-MS, a user
modeling shell system. Computational Intelligence, 6, pp 193-208.

Kobsa A (2001). Generic UserModeling systems. User Modeling and User-Adapted
Interaction, 11, pp 49-63.

Kobsa A, Koenemann J, Pohl W (2001). Personalized Hypermedia Presentation
Techniques for Improving Online Customer Relationships. The Knowledge
Engineering Review, 16(2), pp 111-155.

Kobsa A, Pohl W (1995). The User Modeling Shell System BGP-MS, a user
modeling shell system. User Modeling and User-Adapted Interaction, 4(2), pp 59-
106.

Lashkari Y, Metral M, Maes P (1994). Collaborative Interface Agents. Proceedings
of the twelfth National Conference on Artificial Intelligence. pp 444-450.

Laurillard, D (1993). Rethinking University Teaching a Frameworkfor the Effective
use of Educational Technology. Routledge, London. ISBN: 0-415-09288-4.

Machado I, Martins A, Paiva A (1999). One for All and All in One A Learner
Modelling Server in a Multi-Agent Platform. Proceedings of the Seventh
International Conference on User Modeling, (UM'99). pp 211-221.

Maes P (1994). Agents that Reduce Work and Information Overload.
Communications Of the ACM, 37(7), pp 30-40.

McKnight C, Dillon A, Richardson J (1996). User-Centered Design of
Hypertext/Hypermedia for Education. In: Jonassen D (eds), Handbook of Research
for Educational Communications and Technology. pp 622-633.

Mclaughlin B (2000). Java and XML. 1st edn. O'Reilly, ISBN: 0596000162.

251

MICROSOFT (2001). MCSE Training Kit: Microsoft Windows 2000 Advanced
Server Clustring Services. Microsoft Press, ISBN: 0735612935.

Moore A, Brailsford T, Stewart C (2001). Personally tailored teaching in WHURLE
using conditional transclusion. Proceedings of The twelfth ACM conference on
hypertext and hypermedia, Denmark. pp 163-164.

Moore A, Stewart C, Zakaria MR, Brailsford T (2003). WHURLE - an adaptive
remote learningframework. Proceedings of International Conference of Engineering
Education. Valencia, Spain. http://www.etsid.upv.eslicee2003/pdf/ 5614. pdf

Murray T (1999). Authoring Intelligent Tutoring Systems: An Analysis of the State of
the art. International journal of Artificial Intelligence in Education, 10, pp 98-129.

Murray T, Shen T, Piemonte J, Condit C, Thibedeau J (2000a). Adaptivity in the
MetaLinks Hyper-Book Authoring Framework. Proceedings of the international
workshop on Adaptive and Intelligent Web-Based Education Systems, ITS 2000
Canada. Osnabrock: Technical Report of the Institute for Semantic Information
Processing. pp. 6r-72.

Murray T, Shen T, Piemonte J, Condit, C, Thibedeau J (2000). Adaptivity For
Conceptual and Narrative Flow in Hyperbooks: the Metalinks System. Proceedings
of Adaptive Hypermedia 2000, (AH2000). Trento, Italy. pp 155-166.

Negro A, Vittorio S, Simari R (1998). UserAdaptivity on WWW through CHEOPS.
Proceedings of 2nd Workshop on Adaptive Hypertext and Hypermedia
HYPERTEXT'98. Pittsburgh, USA. pp 57-62.

Nelson T (1965). A File Structure for The Complex, The Changing and the
Indeterminate. Proceedings of ACM 20th National Conference. pp 191-210.

Nelson T (1967). Getting out of our system. In: Shecter G (eds), Information
Retrieval: a Critical Review. Thompson Books, Washington D.C, pp 191-210.

Nelson T (1980). Replacing the printed word: a complete literary system.
Proceedings oflFIP congress. pp 1013-1023.

Nelson T (1995). The Heart of Connection: Hypermedia Unified by Transclusion.
Communications of the ACM, 38(8), pp 31-33.

Nelson T (1997). Transcopyright: Dealing with the dilemma of digital copyright.
Educom Review, 32, pp 32-35.

Nelson T (1999). Xanalogical Structure, Needed Now More Than Ever: Parallel
Documents, Deep Links to Content, Deep Versioning, and Deep Re-Use. ACM
Computing Surveys, 31(4).
http://www .cs.brown.edulmemexl ACM_ HypertextTestbed/papers/60.html

252

http://www.etsid.upv.eslicee2003/pdf/

Ohene-Djan J (2000). A Formal Approach to Personalisable, Adaptive Hyperlink-
Based Systems. PhD Thesis: Mathematical and Computing Science, Goldsmiths
College - University of London

Ohlsson S (1987). Some Principles of Intelligent Tutoring. Artificial Intelligent and
Education, 1, pp 203-238.

Ohlsson S (1994). Constraint-Based Student Modeling. In: Greer J, McCalla G (eds),
Student Modelling: The Key to Individualized Knowledge-Based Instruction.
Springer, pp 167-189.

Pardi W (1999). XML in Action Web Technology. Microsoft Press, ISBN: 0-7356-
0562-9.

Patel A, Kinshuk (1997). Intelligent Tutoring Tools in a Computer-Integrated
Learning Environment for Introductory Numeric Disciplines. International Journal
ofInnovations in Education and Training, 34(3), pp 200-207.

Pearcey M, Pywell D, Tattersall D (1999). Dynamic web-based Information
Management. Proceedings of the active web, British HCI Group Day Conference.
Staffordshire University, UK.
http://www.visualize.uk.com!conf/acti veweb/proceedlpap21

Piguet A, Peraya D (2000). Creating web-integrated learning environments: An
analysis of WebCT authoring tools in respect to usability. Australian Journal of
Educational Technology, 16(3), pp 302-314.

Pressy S (1926). A Simple Apparatus Which Gives Tests and Scores - and Teaches.
School and Society, 23(586), pp 373-376.

Pressy S (1927). A Machine for Automatic Teaching of Drill Material. School and
Society, 25(645), pp 549-552.

Quentin-Baxter M (1999). Quantitative Evidence for Differences Between Learners
Making Use of Passive Hypermedia Learning Environments. ACM Computing
Surveys,31 (4es).
http://www.cs.brown.edulmemexlACM _HypertextTestbedipapers/52.html

Ragnemalm E (1995). Student diagnosis in practice; Bridging a gap. User Modeling
and User-Adapted Interaction, 5(2), pp 93-116.

Rich E (1989). Stereotypes and UserModeling. In: Kobsa A, Wahlster W (eds), User
Models in Dialog Systems. pp 35-51.

Rich E (1999). Users are individuals: individualizing user models. International
Journal of Human-Computer studies, 51, pp 323-338.

253

http://www.visualize.uk.com!conf/acti
http://www.cs.brown.edulmemexlACM

Rutledge L, Hardman L, Ossenbruggen J, Bulterman C (1999). Adaptable
Hypermedia with Web Standards and Tools. Proceedings of the active web, British
HCI Group Day Conference. Staffordshire University, UK.
http://www.visualize.uk.comlconf/activeweb/proceed/pap 18/

Schwab T (1989). Methoden zur Dialog-und Benutzermodellierung in adaptive
Computersystemen. PhD Thesis: Fakultat Informatic, Universitat Stuttgart.

Shute V, Psotka J (1996). Intelligent Tutoring Systems: Past, Present, and Future. In:
Jonassen D (eds), Handbook of Research for Educational Communications and
Technology. First pp 570-600.

Skinner B (1954). The science of Learning And the Art of Teaching. Harvard
Educational Review, 24(2), pp 86-97.

Smith J, Weiss S (1988). Hypertext: Introduction to the Special Issue.
Communications Of the ACM, 31(7), pp 816-819.

Smyth B, Bradley K, Rafter R (2002). Personalization techniques for online
recruitment services. Communications Of the ACM, 45(5), pp 39-40.

Soloway E, Bielaczyc K (1995). Interactive Learning Environments: Where They've
Come From & Where They're Going. Proceedings of CHI 95 Conference
Companion. pp 347-348.

Specht M, Kravcik M, Klemke R, Pesin L, Hiittenhain R (2002). Adaptive Learning
Environment for Teaching and Learning in WINDS. Proceedings of Second
international conference, AH 2002. Malaga, Spain. pp 572-575.

Specht M, Kravcik M, Pesin L, Klemke R (2001). Authoring Adaptive Educational
Hypermedia in WINDS.Proceedings of ABIS-Workshop 2001. Dortmund, Germany.
http://www.kbs.uni-hannover.de/-henze/ABIS_ Workshop2001/final/Specht_final.pdf

Spiro R, Feltovich P, Jacobson M, Coulson R (1991). Cognitive Flexibility,
Constructivism, and Hypertext: Random Access Instruction for Advanced Knowledge
Acquisition in Ill-Structured Domains. Educational Technology, 3(51), pp 24-33.

Tabachnick B, Fidell L (2001). Using Multivariate Statistics. 4 edn. A Pearson
Education Company, ISBN: 0-321-05677-9.

Tsinakos A, Margaritis K (2000). Student Models: the transit to distance education.
European Journal of Open and Distance Learning (EURODL), 11.

Valley K (1997). Learning Styles and Courseware Design. Association of Learning
Technology Journal, 5(2), pp 42-51.

Wahlster W, Kobsa A (1989). Users Models in Dialog Systems. In: Kobsa A,
Wahlster W (eds), User Models in Dialog Systems. pp 5-34.

Weber G (1996). Episodic learner modeling. Cognitive Science, 20, pp 195-236.

254

http://www.visualize.uk.comlconf/activeweb/proceed/pap
http://www.kbs.uni-hannover.de/-henze/ABIS_

Weber G, Kuhl H, Weibelzahl S (2001). Developing Adaptive Internet Based
Courses with the Authoring System NetCoach. Pre-workshop proceedings of the third
workshop on adaptive hypertext and hypermedia, Eight International Conference on
User Modeling, (UM2001). Sonthofen, Germany. pp 41-54.

Weber G, Mollenberg A (1994). ELM-PE: A Knowledge-based Programming
Environment for Learning LISP. Proceedings of World Conference on Educational
Multimedia and Hypermedia (ED-MEDIA'94). Vancouver, Canada. pp 557-562.

Weber G, Specht M (1997). User modeling and adaptive navigation support in www-
based tutoring systems. Proceedings of User Modelling '97. pp 289-300.

Weinstein P (1998). Ontology-Based Metadata: Transforming the MARC Legacy.
Proceedings of Third ACM International Conference on Digital Libraries.
Pittsburgh, USA. pp 254-263.

Wilson BG (1995). Metaphors for instruction: Why we talk about learning
environments. Educational Technology, 35(2), pp 25-30.

Wu H, Houben G, De Bra P (1999). User modeling in adaptive hypermedia
applications. Proceedings of the Interdisciplinaire Conferentie
Informatiewetenschap. Amsterdam. pp 10-21.

Zakaria M, Brailsford T (2002). User Modelling, and Adaptive Hypermedia
Frameworks for Education. New Review of Hypermedia and Multimedia, 8, pp 83-
98.

Zakaria M, Moore A, Ashman H, Stewart C, Brailsford T (2002). The Hybrid Model
for Adaptive Educational Hypermedia. Proceedings of Second international
conference, AH 2002. Malaga, Spain. pp 580-585.

Zakaria M, Moore A, Stewart C, Brailsford T (2003). Pluggable user models for
adaptive hypermedia in education. Proceedings of The Fourteenth ACM Conference
on Hypertext and Hypermedia (HT'03). Nottingham, UK. pp 170-171.

255

