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Abstract

This thesis explores various detailed improvements to semi-supervised learn-
ing (using labelled data to guide clustering or classification of unlabelled
data) with fuzzy c-means clustering (a ‘soft’ clustering technique which al-
lows data patterns to be assigned to multiple clusters using membership
values), with the primary aim of creating a semi-supervised fuzzy cluster-
ing algorithm that shows good performance on real-world data. Hence,
there are two main objectives in this work. The first objective is to explore
novel technical improvements to semi-supervised Fuzzy c-means (ssFCM)
that can address the problem of initialisation sensitivity and can improve
results. The second objective is to apply the developed algorithm on real
biomedical data, such as the Nottingham Tenovus Breast Cancer (NTBC)
dataset, to create an automatic methodology for identifying stable sub-
groups which have been previously elicited semi-manually.

Investigations were conducted into detailed improvements to the ss-
FCM algorithm framework, including a range of distance metrics, initiali-
sation and feature selection techniques and scaling parameter values. These
methodologies were tested on different data sources to demonstrate their
generalisation properties. Evaluation results between methodologies were
compared to determine suitable techniques on various University of Califor-
nia, Irvine (UCI) benchmark datasets. Results were promising, suggesting
that initialisation techniques, feature selection and scaling parameter ad-
justment can increase ssFCM performance.

Based on these investigations, a novel ssFCM framework was developed,
applied to the NTBC dataset, and various statistical and biological evalu-
ations were conducted. This demonstrated highly significant improvement
in agreement with previous classifications, with solutions that are biolog-
ically useful and clinically relevant in comparison with Sorias study [141].
On comparison with the latest NTBC study by Green et al. [63], similar
clinical results have been observed, confirming stability of the subgroups.

Two main contributions to knowledge have been made in this work.
Firstly, the ssFCM framework has been improved through various techni-
cal refinements, which may be used together or separately. Secondly, the
NTBC dataset has been successfully automatically clustered (in a single
algorithm) into clinical sub-groups which had previously been elucidated
semi-manually. While results are very promising, it is important to note
that fully, detailed validation of the framework has only been carried out
on the NTBC dataset, and so there is limit on the general conclusions that
may be drawn. Future studies include applying the framework on other
biomedical datasets and applying distance metric learning into ssFCM.

In conclusion, an enhanced ssFCM framework has been proposed, and
has been demonstrated to have highly significant improved accuracy on the
NTBC dataset.
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1 Introduction

This thesis describes the application of semi-supervised Fuzzy c-Means (ss-

FCM) algorithm on real-world biomedical data to assist clinicians in de-

cision making. Investigations in distance metric, initialisation, feature se-

lection and scaling parameter adjustment for improvement to ssFCM are

explored and tested on other popular datasets. Two applications of ss-

FCM are demonstrated. First, a novel integrated ssFCM framework which

incorporates other machine learning techniques, initialisation and feature

selection is applied on the NTBC dataset to assign new patients into the

six subgroups identified by Soria et al. [141] and to demonstrate how the

classification results are used to assist clinicians. Secondly, the integrated

ssFCM framework is applied to identify stable and clinically meaningful

subgroups in the data set. In this chapter, the background and motiva-

tion behind this research are described and its aims and objectives are

highlighted. The organisation of this thesis is also outlined.

1.1 Background and motivation

Clustering is a popular exploratory tool for identifying groups of interests

in biomedical data [46, 154, 3, 141]. It is a form of unsupervised learning

which organises unlabelled patterns of a data set into groups called clusters

based on their similarities. Classification, on the other hand, is supervised

because labelled patterns are used to train (teach) the algorithm. Once

trained, the algorithm can assign unlabelled patterns into categories called

classes, based on the model learned during training. While labelled patterns

provide more information than unlabelled ones, they take time to collect

and are often scarce. To overcome this, researchers have been developing

1
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semi-supervised learning techniques [30, 22, 166]. These techniques use

available labelled patterns to provide additional information to aid cluster-

ing or classification of unlabelled patterns. In a semi-supervised clustering

environment, the available class information from labelled patterns provide

additional structural information about the data, which makes simultane-

ous class assignment of unlabelled patterns possible. Thus, classification

can be achieved using semi-supervised clustering techniques [121].

Many semi-supervised clustering techniques have been proposed such

as those summarised in [84], but it is not feasible to investigate them all.

Instead, the study on semi-supervised Fuzzy c-Means (ssFCM) is focused

in this thesis. ssFCM involves the use of Fuzzy set theory where known

membership values of labelled patterns help organise unlabelled patterns

according to their similarities. Memberships between values of zero and one

are used to indicate the degree of “belongingness” a pattern has to clusters.

Not only does this form of representation gives a more realistic model as

compared to binary-valued representation, it also allows adjustment be-

tween generality and precision of pattern recognition [123]. This feature of

Fuzzy c-Means is favoured in clustering or classification of biomedical data

as there are often no distinctive boundaries separating the classes.

Much of the developments in ssFCM have been extended from the popu-

lar Fuzzy c-Means (FCM) algorithm due to its clustering capabilities which

can be enhanced by its flexibility to work with different techniques at dif-

ferent levels (objective function [103, 64, 47], cluster centre [15, 165] or

membership [21]). Fuzzy clustering with objective function such as FCM is

dynamic allowing patterns to move from one cluster to another to minimize

the objective function and knowledge about the shape or size of clusters can

be incorporated in the objective function using appropriate distance mea-

sure [56]. However, FCM faces several problems, which are also common

to ssFCM. The main problems are the unknown number of clusters, sensi-
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tivity to initialisation and sensitivity to noise. In a dataset where no labels

exist, the number of useful clusters is unknown. To overcome the unknown

number of clusters problem, several initial cluster numbers are tried and

the produced partitions are then evaluated using several cluster validity

indices such as partition coefficient, partition entropy coefficient [16], and

Xie-Beni index [161]. The optimal validity values indicate the correct num-

ber of clusters. While this has been a popular approach to find the number

of clusters, the approach has several problems [70], such as monotonous

dependency on the number of clusters. Sensitivity to initialisation refers

to the sensitivity of the algorithm to initial parameters such as the initial

membership values assigned to patterns or the initial cluster centres. The

sensitivity to noise refers to the sensitiveness of the algorithm to patterns

which may not reflect the true nature of the dataset. In ssFCM, some of

these problems remain unresolved in addition to other issues such as the

representation of high-dimensional data, balance of between supervised and

unsupervised training and equal population of clusters.

Many approaches involving the modification of objective function have

been employed to improve semi-supervised Fuzzy c-means clustering. This

can make the algorithm complex to use as they contain many user-defined

parameters. Our approach, however, focuses on integrating existing ini-

tialisation and feature selection techniques into an existing, simple-to-

implement semi-supervised Fuzzy c-means framework with investigation in

distance metric and scaling parameter adjustment α. While there are many

existing initialisation and feature selection techniques available, to the best

of our knowledge, no such study to improve ssFCM has been conducted and

this work aims to fill this research gap. Furthermore, investigation to de-

termine the most suitable distance metric is not usually done even though

distance metric is widely known to be important in data representation for

clustering. In addition, the adjustment of scaling parameter adjustment
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α has been reported to affect clustering [23] but, users of ssFCMs do not

always exploit this feature in ssFCM. Thus, the motivation for our work

is to demonstrate that ssFCM accuracy can be improved using a simple-

to-implement ssFCM with investigation in distance metric, initialisation,

feature selection and adjustment in scaling parameter.

Cancer is a leading cause of death worldwide, with breast cancer be-

ing the most common in women [51, 26, 139]. In 2008, more than 1.38

million women were diagnosed [51, 26, 139]. The severity of this disease

brings urgency to provide decision making support for clinicians to achieve

more accurate prognosis [154] and to administer specialised treatment for

patients based on the breast cancer subtypes (subgroups or classes) [1].

Prognosis is the prediction of the likely outcome of one’s current medical

condition such as survival rate or survival time. With more accurate prog-

nosis, predictions can to be made to patients belonging to similar subgroups

with possible risks of recurrence or death.

Due to advances in machine learning techniques [85, 75] and in biomed-

ical technologies for data collection, researchers are now applying machine

learning techniques to interpret complex biomedical data and to identify

important patterns in the data such as their subgroups that can give new in-

sights to the disease, in the hope to increase accuracy in prognosis. Recent

studies using high-throughput molecular technologies and machine learn-

ing methodologies are showing evidence of biological differences in breast

cancer subgroups and clinical relevance of these subgroups to survival out-

come [3, 141]. The task of identifying important subgroups is a complex

one as there are no standard correct answers to compare with. Instead, the

features (factors, biomarkers or genes) that characterise these subgroups

must be consistent with biological findings from existing literature subse-

quently indicating the biologically meaningfulness of these subgroups, and

that they must be clinically relevant [9].
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Six subgroups of breast cancer were found by applying hierarchical

clustering to the Nottingham Tenovus Breast Cancer (NTBC) immuno-

histochemical dataset. The sixth group, however, contained only four pa-

tients [3]. A subgroup with only four patients in a dataset of 1076 patients

may not be considered useful and may not hold sufficient evidence of its

actual existence. To identify breast cancer subgroups and address their

stability in NTBC, Soria et al. [141] used a consensus clustering methodol-

ogy where a consensus is reached from several different clustering solutions.

They identified six novel subgroups of breast cancer (Soria’s classification

for short) and determined the key biomarkers that characterise these sub-

groups. These subgroups are regarded as clinically useful as they are not

only biologically meaningful, but are also relevant to clinical data. How-

ever, the methodology used was semi-manual, involving visual inspection

and the use of heuristics and other techniques to aggregate results from

different unsupervised clustering techniques. As no single unsupervised

clustering technique has been found to do this so far, the development of a

fully automated method (post-initialisation) for identifying these same six

subgroups is necessary.

1.2 Aims and objectives

The main aim of this research is to develop novel ssFCM methodologies

that are applicable to real biomedical data such as the NTBC while ad-

dressing some of the ssFCM problems discussed. To fulfill the main aim,

the following main and sub-objectives are to be achieved:

1. Develop a novel ssFCM algorithm that can address the problem of

initialisation sensitivity and can improve clustering or classification

results. The sub-objectives are to:

(a) Investigate in the performance of different semi-supervised Fuzzy
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c-Means clustering algorithms such as distance-based ones by

Pedrycz and Waletzky [121], Zhang et al. [165], Li et al. [101]

and Endo et al. [47].

(b) Ensure robustness in the algorithms using various evaluation

techniques such as accuracy rate, Kappa’s Cohen Index, Nor-

malised Mutual Index and cross-validation.

(c) Investigate in the different initialisation techniques that can help

improve clustering or classification in ssFCM.

(d) Explore other techniques with ssFCM from those shown to be

successful in Fuzzy clustering or in machine learning algorithms

such as feature selection and distance metric learning.

(e) Apply the modified ssFCM algorithms on different data sets to

demonstrate generalisation of the algorithms to other datasets

such as popular UCI [54] datasets.

2. Apply the developed clustering algorithm on a real biomedical data,

such as breast cancer data. Ideally, the developed algorithm is an

automatic methodology for identifying the same six breast cancer

subgroups identified by Soria et al. [141] in the NTBC dataset, as part

of a confirmatory study to address the stability of the six subgroups.

To the best of our knowledge, no one clustering algorithm has been

applied on breast cancer immunohistochemical data for classification

into distinct biological subgroups. The sub-objectives are to:

(a) Investigate in the accuracy of ssFCM methodologies in the clus-

tering and classification of the NTBC dataset.

(b) Compare ssFCM performance with other well-known classifica-

tion techniques to determine its performance in comparison with

other techniques.
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(c) Solve real-world problems by building a framework that incorpo-

rate investigated approaches from the first objective in a working

system which can help provide support to clinicians in decision-

making based on the clustering or classification results.

(d) Address the issue of subgroup stability by consistently repro-

ducing the six subgroups using ssFCM and comparing agree-

ment with other clustering techniques, which in turns validate

the subgroups.

This research work is 1) an exploratory study from the technical point of

view with investigations into the application of ssFCM and other machine

learning techniques for classification and 2) a confirmatory study from a

clinical point of view with identification of the same six subgroups found

by Soria et al. [141] to demonstrate stability of these six subgroups.

In this work, however, the problems of unknown number of clusters and

noise sensitivity are not addressed. Soria et al. [141] had identified the

optimal cluster number to be six using cluster validity indices on K-means

and Partitioning Around Medoids clustering solutions. The current NTBC

dataset of 1076 patients is considered informative by clinicians [3] and has

been reduced from the original 1944 patients. Thus, any patients that are

not representative to the population have been assumed to be removed.

1.3 Organisation of the thesis

The organisation of this thesis is as follows. In Chapter 2, a literature

review touching on clustering techniques, ssFCM and breast cancer clas-

sification is presented. Initialisation and Evaluation techniques are also

reviewed. The motivation for the focus in ssFCM is explained, includ-

ing its developments and applications. As the research is focused in the

development of ssFCM for application on a real biomedical dataset, it is
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vital to understand the developments in the identification of breast can-

cer subgroups in the Nottingham Tenovus Breast Cancer dataset as well

as other similar dataset and their challenges, given there are no definite

correct subgroups to compare with.

In Chapter 3, three preliminary investigations are reported. The first

is a comparative study in distance-based ssFCM algorithms, the second

is the application of ssFCM for breast cancer classification with explo-

ration in distance metrics and lastly, a comparison of ssFCM classification

with other classifiers. As there are many existing ssFCM algorithms, sev-

eral algorithms shown to produce good classification results are chosen

and compared on popular benchmark datasets. The ssFCM deemed to be

best performing (in terms of average accuracy) is applied for breast cancer

classification. Further comparisons with other classifiers are conducted to

show its suitability for breast cancer classification. In this chapter, sub-

objectives 1a, 1b, 2a and 2b are fulfilled.

Three approaches for improvement of ssFCM classification are reported

in Chapter 4; initialisation techniques, feature selection and adjustment

of ssFCM’s scaling parameter α. Initialisation techniques are employed

to overcome the problem of initialisation sensitiveness in ssFCM. Feature

selection techniques are employed to identify important features and reduce

the number of features used for classification. Thus, the time and cost of

running clinical tests (or procedures) for collecting measurements of these

features are reduced. There has been no definitive guide as to the best

setting for α in ssFCM and thus, its choice is experimental. In these studies,

the positive experimental results based on applications on UCI datasets as

well as the NTBC dataset are presented. Sub-objectives 1c, 1d, 1e and 2a

are fulfilled in this chapter.

An integrated framework, using initialisation and feature selection, to

predict class labels of new or unlabelled breast cancer patients, for assisting
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clinicians in decision making is presented in Chapter 5. This framework is

based on the findings detailed in Chapters 3 and 4 and fulfill the second

objective of this research work. The strategy behind this integrated frame-

work is explained and experimental results that demonstrate the framework

are presented. Sub-objectives 2c and 2d are fulfilled in this chapter.

Based on previous investigations in approaches of improvement for ss-

FCM, a ssFCM methodology which incorporates these approaches, specifi-

cally nitialisation technique by Katsavounidis, Kuo and Zhang (KKZ) [90]

and adjustment of α, in Chapter 6 is applied to identify six stable breast

cancer subgroups. An investigation using two different reduced panels of

biomarkers, one panel identified in Chapter 4.2 and one identified in [140] is

conducted. The stability of the resulting subgroups are evaluated based on

agreement with subgroups identified by unsupervised clustering algorithms

Consensus K-means (CKM) and Model-based clustering via BIC (MBIC).

The stability of the subgroups from the different clustering solutions can

help ascertain which panel of biomarkers are relevant. Furthermore, the

stability of seven breast cancer subgroups (with the HER2 group split into

two) is investigated by comparing results based on clinical evaluation with

the latest breast cancer subgroups identified in [63]. Sub-objectives 2c

and 2d are fulfilled in this chapter.

In Chapter 7, this research work is concluded with a summary of results

including the main contributions, limitations and future work. In addition,

peer-reviewed, accepted papers and oral presentations derived from this

work are listed.

1.4 Contribution to knowledge

This research work has led to the development of a novel integrated ssFCM-

based framework with the incorporation of approaches such as initialisa-

tion, feature selection and/or adjustment of scaling parameter. These ap-
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proaches of improvement have been individually investigated with ssFCM

on other different UCI datasets and have shown to increase ssFCM accu-

racy. The framework has been applied in two ways; firstly, the ssFCM

framework is applied to perform a classification task of assigning class la-

bels to new or unlabelled patients and secondly, the framework performs

a clustering task of identifying clinically useful and stable breast cancer

subgroups with full retention of Soria’s classification using a reduced panel

of biomarkers. To evaluate whether the subgroups found are clinically use-

ful,the biomarker profiles of each subgroup are compared with those by

Soria et al. [141] for biological meaningfulness and conduct statistical anal-

ysis to measure clinical association. The subgroups identified demonstrated

stability, showing high agreement with other clustering algorithms. In

analysing clinical association of the identified subgroups, clinical data can

be stratified to allow clinicians to identify relevant clinical characteristics

(including survival outcome) which are associated with these subgroups.

Therefore, it is hoped such information interpreted through visual and sta-

tistical analysis based on the identified subgroups can assist clinicians in

predicting survival outcome of patients and in planning of treatments.

Thus, two main contributions can be drawn out of this work. Firstly,

the novel application of initialisation in ssFCM, which has shown promising

results to increase ssFCM results, in UCI datasets as well as in the NTBC

dataset. Secondly, the development of a novel integrated ssFCM-based

framework to classify new or unlabelled patients into the same six breast

cancer subgroups as Soria et al. [141]. Experimental findings show that

accuracy increased significantly using the ssFCM framework as opposed to

an unsupervised approach. By classifying new or unlabelled patients,it is

hoped that a more accurate model have been provided for the prediction

of breast cancer types for future patients. The framework is also applied

for the identification of stable breast cancer subgroups using the integrated
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framework, where no one single clustering algorithm has been able to do so

far. On comparison of clustering results with those obtained using CKM

and MBIC, higher agreement that those in [141] were found, indicating

higher stability in these subgroups. The second main contribution can be

used by clinicians as decision making support in two application areas.

Based on this research work, several refereed papers have been produced

two journal papers and six conference papers. A detailed list of these

publications is shown in Chapter 7.3.
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2 Literature Review

One major contribution of this work is the application of semi-supervised

Fuzzy c-Means on a real, biomedical dataset to assist clinicians in decision

support. Two application areas are focused on; 1) the automatic classifica-

tion of new breast cancer patients in the NTBC dataset with high accuracy

to Soria’s biological classification of breast cancer [141] and 2) the identi-

fication of stable breast cancer classes. Due to the focus in ssFCM, the

motivation for the development of ssFCM algorithm as an alternative to

predecessor clustering algorithms is reviewed. In addition, a study on ss-

FCM latest developments is presented. Some developments for tackling

problems in clustering approaches relevant to this research, particularly

with regards to initialisation (for centroid-based clustering algorithms, such

as ssFCM) is also reviewed. Other potential approaches of improvement

such as feature selection is also reviewed. As the aim is towards real medical

applications, relevant background work in the use of clustering techniques

for breast cancer classification and identify the issues faced by existing

methodologies are covered. In this way, it is hoped that the knowledge

gaps which this research aim to fill are identified.

2.1 Definitions

As this research is multidisciplinary covering data mining and biomedical

areas, the following terminologies are used:

Definition 1 (Data pattern.) A data pattern (data instance, feature

vector, object, observation or datum) xj is a vector representing data point

j in a data matrix X. The data matrix is of size N � n, containing data

patterns x1, ...,xN with n features.

13
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Definition 2 (Features.) Features (attributes, dimensions or biomark-

ers) are measurements of properties which describe data patterns. Each

data pattern has n number of features such that xj � txj1, ...xjnu. Hence,
n is the dimensionality of the data matrix or pattern.

Definition 3 (Labelled data.) Labelled data (examples or training data)

are data patterns that have prior knowledge of the clusters or classes they

belong to, while unlabelled data do not have such prior information. They

are referred to as xl
j and their labels (or classes) are referred as yi.

Definition 4 (Unsupervised learning.) Unsupervised learning involves

learning from data without labelled data. The data patterns are unlabelled,

that is, no prior knowledge on which clusters the data patterns belong to is

known. Clustering is a form of unsupervised learning. Further explanation

of clustering is found in Chapter 2.3.

Definition 5 (Supervised learning.) Supervised learning uses examples,

which have both inputs and known outputs, to learn a function in order

to map new examples to outputs. These examples are labelled data with

prior information such as cluster or class labels. Classification is a form of

supervised learning and is further explained in Chapter 2.2.

2.2 Pattern recognition

In machine learning, pattern recognition is the task of assigning labels to

data patterns by learning from data [17, 43]. There are several different

types of labels; real-value, categorical, sequenced and so forth [91]. For

assigning categorical labels to data patterns, two learning approaches can

be used; supervised (classification) and unsupervised (clustering) [43]. A

more recent approach is semi-supervised learning [30, 166].

Classification is a form of supervised learning which assigns data pat-

terns into known, meaningful categories called classes [43]. To do this,
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classification algorithms learn the mapping between the data patterns and

their classes from a training set made up of (xl
j, yi). The mapping f forms a

model for the different classes based on the values of predictor features such

that f : X � Y . Once this mapping is accurately learned, it can be applied

to new, unlabelled data patterns, also called a test set, to determine their

classes. The training set are made up of labelled data which have prior

knowledge of the data patterns’ classes (also known as class labels).

Labelled data are often scarce because they are time-consuming and

labour-intensive to collect. Due to their limited availability, they are often

not enough of them to learn an accurate mapping from and thus, to assign

data patterns accurately to their respective classes. To learn an accurate

mapping and discriminate between classes, there has to be enough training

data to represent the variability of feature values for data patterns in the

same class relative to the differences between feature values for data pat-

terns in different classes [43]. Often in biomedical datasets such as breast

cancer data, the clinicians do not know exactly how many subtypes of

breast cancer there are and it is hard to determine the number of useful

subgroups possibly exist and which labels to associate the data with.

In situations where labels are few or unknown, clustering techniques can

be used where data patterns that are most similar are grouped together and

the groups validated. Subsequently, meaningful class labels are manually

assigned. Thus, clustering produces initial categories [70]. However, clus-

tering is a more challenging problem than classification as the clusters that

are of interest may not be easily extracted or that the discovered clusters

may not be valid or meaningful [84]. Semi-supervised clustering techniques

allow 1) the use of a few labels to guide the identification of clusters that

are of interest and 2) the determination of classes for unlabelled or future

data patterns simultaneously.

The difference between classification and clustering can be confusing.
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Tan et al. [147] explained that clustering, when used for understanding

data, is the partitioning of data into groups, while classification is the as-

signing of data patterns to these groups based on a learned model. These

definitions are also used in machine learning. Tan et al. further explained

that clustering is a form of classification as it generates class (or cluster)

labels for data patterns from the data itself. The clusters discovered are

potential classes. In some fields such as biology and ecology, classification

refers to cluster analysis, a form of unsupervised learning (unsupervised

classification), which reflects Tan’s second definition for clustering as gen-

erators of class labels. A different distinction between clustering and clas-

sification is explained by Jain [84] such that these learning approaches use

unlabelled data (unsupervised) and labelled data (supervised) respectively.

Jain’s explanation are in line with the definitions used in machine learning

as labelled data are used in classification to learn a model.

The boundary between clustering and classification becomes a blur

in semi-supervised clustering algorithms. It is debatable whether semi-

supervised clustering algorithms is capable of directly performing classifi-

cation tasks (in machine learning terms) as there may be confusion between

the definition of clusters (geometrical structure) and classes (logical struc-

ture) of the data. This may not be a problem when a class is represented

by a cluster as demonstrated in several literatures such as by Pedrycz and

Waletzky [121] and by Li et al. [101], but classification task using a cluster-

ing algorithm becomes complicated when a class is represented by several

clusters as additional mechanism would be required to align these clusters

to a class [23], to reflect the classification and not the clustering. ssFCM

can be a classification or clustering technique depending on the intention

of application, which can either be to predict the class labels of new data

pattern or to identify meaningful clusters.

In this research, ssFCM is employed as a classification technique to
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assign new data patterns into known groups using a learned model (clas-

sification in machine learning) and as a clustering technique with the use

of labelled data to guide the identification of meaningful clusters (clus-

tering in machine learning for biological classification). In a classification

environment, the accuracy of ssFCM in assigning the new data patterns

(unlabelled) in the correct classes (known groups) is of interest. Whereas,

in a clustering environment, the subgroups formed by using all the data pat-

terns (both labelled and unlabelled) are of interest. Both the classification

and clustering tasks will be discussed in greater detail in Chapters 3, 4, 5

and 6 based on the investigations carried out.

These learning approaches have been popularly applied in many fields

such as ecology [48], logistics [146], economics [41] and medicine [46]. In

medical areas, these approaches are used to identify subgroups of a disease

in order to help predict survival outcomes and provide support in decision

making in the choice of specialised treatment for different subgroups [9].

2.3 Clustering

Clustering is an unsupervised learning approach. Clustering involves the

grouping of similar (unlabelled) data patterns that appear to form natural

clusters together. Mackay [105] highlighted the following motivations for

clustering. Clustering has predictive power allowing one to predict those

data patterns that share the same cluster will have similar properties. A

summary of clusters can be communicated using cluster centres, which are

representatives of the clusters. In addition, the interesting data patterns

that deserve further attention can be highlighted when there is a failure

to build a good cluster model. Furthermore, the competitive learning in

clustering means that clusters compete to own data patterns.

In data mining, clustering is a popular exploratory tool to find struc-

tural information hidden within the data that can identify groups of inter-
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est [121, 159]. It has also been used to perform classification tasks where the

discovered clusters are validated for meaningfulness or usefulness and la-

belled as classes. In this section, Hierarchical Clustering, K-means, Fuzzy

c-Means and model-based clustering via Bayesian information criterion,

which are applied in this work, are introduced.

2.3.1 Hierarchical clustering

Based on the similarity of data patterns, hierarchical clustering (HC) [50,

43] iteratively merges clusters, forming a hierarchy of clusters known as a

dendrogram. This type of HC is called agglomerative hierarchical clustering

and takes a bottom-up approach, with each data pattern initially located in

one cluster. The similarity of data patterns is determined using a distance

metric, dpq (such as Manhattan, Euclidean and Mahalanobis) [43] and a

linkage criterion of data patterns. Distance metrics are covered in further

details in Chapter 2.3.5. The algorithm is defined as follows:

1. Initialise with each data pattern in its own cluster.

2. Find the nearest cluster pair A, B such as d(A,B) is minimised.

3. Merge A and B to form a new cluster.

4. Repeat step (2) and (3) until the desired number of clusters or a dpq
threshold is achieved.

Table 2.1 shows some of the linkage criteria used in hierarchical clus-

tering:

Table 2.1: Linkage criteria in Hierarchical clustering.

Linkage criteria Formula
Complete linkage maxtdpa, bq : a P A, b P Bu
Single linkage mintdpa, bq : a P A, b P Bu
Average linkage 1|A||B| °aPA°bPB dpa, bq
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Other linkage criteria include the sum of all intra-cluster variance and

Ward’s criterion which uses minimum variance [50]. The divisive hier-

archical clustering takes a top-down approach and splits clusters instead.

The dendrogram reveals clusters, subclusters and subsubclusters at a much

greater detail. Once clusters have been merged or split, the clusters where

the data patterns belong to are locally determined and cannot be changed

unless in accordance with the path of the dendrogram in preceding itera-

tions [8]. This raises two issues; 1) the merge or split is final and 2) the

decision to merge or split clusters is based on local information of clusters,

rather than global information. This means, for instance, data patterns as-

signed to one parent cluster will not be reassigned to any clusters belonging

to another parent cluster in the divisive approach.

2.3.2 K-means

The K-means (KM) [106] is a centroid-based clustering technique which

partitions N data patterns into k clusters according to the closeness of

data pattern xj to cluster centre (or centroid) vi. A cluster centre is de-

termined based on the average of all the data patterns in the cluster. In

K-means, data patterns either belong or do not belong to a cluster. Thus,

the belongingness of a data pattern to a cluster is binary and its assign-

ment is known as hard assignment. The aim of K-means is to minimize the

intra-cluster squared distances given in (2.1) below:

JpV q � ķ

i�1

Ni̧

j�1

||xj � vi||2 (2.1)

where Ni is the number of data patterns belonging to cluster i, k is the

number of clusters and ||xj � vi|| is the Euclidean distance between data

pattern xj to cluster centre vi.

The algorithm is described in [105] as an iteration of two steps listed
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below, given some form of initialisation, such as a random initialisation of

cluster centres. The algorithm terminates when JpV q or vi stabilise:

1. Assignment step: a data pattern is given an assignment cj to the

closest cluster centre (mean) as follows:

cj � argmin
i
pdpxj,viq, �i P kq (2.2)

2. Update step: the cluster centres are updated as follows until they

stabilise:

vi � 1|i|
x̧jPixj (2.3)

Unlike hierarchical clustering, K-means can assign a data pattern to a

different cluster, where it previously belonged to or not, at different iter-

ations depending on the closeness to the cluster centres. Choosing initial

cluster centres for K-means is challenging as the common practice of ran-

domly selected initial centres leads to poor clustering solutions. One ap-

proach is to first cluster a small sample using hierarchical clustering and the

cluster centres generated are subsequently used to initialise K-means [147].

Another issue of K-means is the number of clusters requirement, which is

often unknown. A range of cluster validity techniques [158, 119, 19, 110]

are available to identify the optimal number of clusters. As cluster validity

in terms of number of clusters is out of the scope of the research aims, it will

not be further discussed. Due to K-means locality-based (using centroids)

and unstructured nature, it is not suitable for clustering non-globular clus-

ters, or clusters of different sizes and densities, and have difficulty with

data that contain outliers [8, 147].
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2.3.3 Fuzzy c-Means

An extension of the K-means is the Fuzzy c-Means (FCM) algorithm. FCM

was first proposed by Dunn [44] and was then improved by Bezdek [17].

Unlike the hard assignment in K-means, data patterns can be assigned

to multiple clusters using membership values (soft assignment) [17, 43].

The aim of FCM is to minimise the objective function (2.4) so that data

patterns similar in structure are assigned the same cluster.

The objective function is defined as:

J � ç

i�1

Ņ

j�1

u
p
ijd

2
ij (2.4)

where

• 1   p   8 is a fuzzifier parameter,

• uij is the membership value of data pattern j in cluster i with values

between 0 and 1 and

• dij denotes similarity between data pattern j and cluster i that can

be calculated using a distance metric dij.

The algorithm involves iteratively calculating the cluster centres and

the partition matrix to minimise the objective function until a termination

criterion is satisfied. It is summarised as follows:

1. Initialise partition matrix U � ruijs, Up0q.
2. Calculate cluster centres V � rvis with U using equation:

vi � °N

j�1
un
ijxj°N

j�1
um
ij

(2.5)

3. Update partition matrix, U using the following equation:

ugj � 1°c

i�1

� ||xj�vg||||xj�vi|| 	 2

m�1

(2.6)

4. If ||U1 �U||   ǫ, stop. Else, go to step 2.
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Like K-means, FCM also suffer from the number of clusters require-

ment and sensitivity to initialisation. For handling non-globular clusters,

researchers have devised ways to manipulate the distance metrics to adapt

to the different shapes of clusters, such as fuzzy c-rectangular shells algo-

rithm for the detection of rectangles [81].

2.3.4 Model-based clustering via Bayesian information criterion

Fraley and Raftery [53] implemented a model-based clustering (MBIC)

which uses the Maximum A Posteriori (MAP) estimate from a Bayesian

analysis to estimate model parameters, instead of Maximum Likelihood Es-

timation (MLE) in the Expectation-Maximization (EM) algorithm and a

modified Bayesian Information Criterion (BIC) for model selection. MAP

is used to avoid the failure of the EM algorithm in the presence of singular-

ities or degeneracies. The mixture model with density for generating data

y � py1, ..., ynq in model-based clustering is defined as:

fpyq � n¹
i�1

Ģ

k�1

τkfkpyi|θkq, (2.7)

where

• fkpyi|θkq is a probability distribution with parameters θk,

• τk is the probability of belonging to the kth component,

• θk � pµk,Σkq, µk are the means and Σk the covariances of fk.

These model parameters are estimated using MLE in the EM algorithm.

To eliminate EM failure to converge due to singularity in covariance es-

timate, the authors in [53] proposed a prior distribution on the parameters

that can eliminate the singularity problem while maintaining stability on

results obtainable without a prior probability . The Bayesian predictive
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density for the data is in the form:

LpY |τk, µk,ΣkqPpτk, µk,Σk|θq, (2.8)

where L is the mixture likelihood:

LpY |τk, µk,Σkq � n¹
j�1

Ģ

k�1

τkφpyi|µk,Σkq� n¹
j�1

Ģ

k�1

τk|2πΣk|� 1

2

exp

"�1

2
pyj � µkqTΣ�1

k pyj � µkq* ,

and P is a prior distribution on the parameters τk, µk, σk and θ. The fk

in (2.7) is the multivariate Gaussian density φ with parameters µk as its

mean and Σk as its covariance.

The BIC [138] selects the best fitted model from a finite set of models

using maximum likelihood. It is defined [53] as:

BIC � 2logLmax � klogpNq (2.9)

where Lmax is the maximum likelihood of the estimated model, k the num-

ber of parameters in the model and N the number of data patterns used

in the estimation. The BIC is modified by replacing the first term in (2.9),

2logLmax by twice the log-likelihood evaluated using MAP in (2.8).

2.3.5 Distance metrics

Similarity between data patterns is important in defining a cluster. Dis-

tance metrics are used to measure similarity of patterns and clusters. The

performance of a clustering algorithm can be greatly affected by how ac-

curately the selected distance metric represents similarity.
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Euclidean distance

The Euclidean distance metric [43] forms spherical clusters and does not

reflect scale differences among dimensions in high-dimensional datasets,

that is, it is not scale invariant. Dimensions with smaller scales will have

less influence on the distance than dimensions with larger scales [85]. With

a high number of dimensions having different scales, it can exponentially

affect the Euclidean distance, which in turn can negatively affect clustering

results. The Euclidean distance is computed as follows:

d2Epi, jq � ||xj � vi||2 (2.10)

where xj is a data pattern and vi is a cluster centre.

Mahalanobis distance

The Mahalanobis distance is formally defined [107, 43] as:

dMpxq �apx� µqTS�1px� µq (2.11)

It is the distance between a vector x � px1, x2, ...xnqT which belongs to a

group of vectors with mean µ � pµ1, µ2, ...µnqT and covariance matrix S of

the group. Due to the covariance matrix, it identifies ellipsoidal clusters. It

is scale-invariant as it takes into account of the correlation within the data.

The Euclidean distance is a special case of Mahalanobis distance where the

covariance matrix is an identity matrix [163].

Gustafson and Kessel [66] introduced the Fuzzy covariance matrix (2.14)

to generalise the distance metric in FCM’s Mahalanobis distance. This was

to represent patterns in a more natural manner as Fuzzy weights are used to

make the clusters more adaptive. This Mahalanobis distance is computed

as follows:

d2fMpi, jq � pxj � viqTMipxj � viq (2.12)
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where Mi is a positive definite matrix, its inverse defined as:

Mi
�1 � � 1

ρidetpPiq� 1

n

Pi (2.13)

and Pi is a Fuzzy covariance matrix defined as:

Pi � °N

j�1
u2
ijpxj � viqpxj � viqT°N

j�1
u2
ij

(2.14)

The Mahalanobis distance metric used by Gustafson and Kessel [66]

and by Pedrycz and Waletzky [121] is a Fuzzy version because it takes

into account the membership as well as the similarity between the data

pattern and the cluster center. The inverse covariance matrix, Mi in (2.12)

normalises dimensions of different scales, which prevents dominance from

dimensions with greater scales. Thus, it is scale-invariant.

Kernel-based distance

The kernel methods solve non-linear problems by mapping the input space

into higher dimensional space. Known as the ‘kernel trick’ and proposed by

Aizerman et al. [5], they are applied to distances metrics by Schölkopf [137].

The idea here is to transform xj, a data point from a n-dimensional input

space to a higher F -dimensional space resulting in Φpxjq. The kernel-based
distance between data pattern xj and cluster centre vi is defined as:

d2Kpi, jq � ||Φpxjq � Φpviq||2 (2.15)� Kpxj,xjq � 2Kpxj,viq �Kpvi,viq (2.16)

The Gaussian radial basis function can be used as a kernel function in the

form:

Kpa, bq � e
�||a�bq||2

σ2 (2.17)
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where a and b are two data patterns and σ is a free parameter, or in this

case, b is the cluster centre and σ is the standard deviation of all data

patterns belonging to cluster i [165]. Thus, a kernel-based distance using

Gaussian radial basis function yields a distance of the form:

d2Kpi, jq � 2p1�Kpxj,viqq (2.18)

2.3.6 Challenges of clustering

Jain [84] elaborated the problem of clustering due to the ambiguity in the

definition of a cluster as well-separatedness does not always yield useful

clusters. Furthermore, there is no definitive guide in the selection of data

representation best suited for the defined clusters. The definition of a clus-

ter and selection of the best data representation are determined by suitable

choice of features, similarity measure, number of clusters and cluster valid-

ity [16, 81, 85], all of which cannot be easily determined.

According to Jain [84],“... there is no universally good representation;

the choice of representation must be guided by the domain knowledge”.

Thus, the understanding of the data itself and what about the data to

be retrieved is important. Data representation is determined by how sim-

ilarities between data patterns are defined and by the choice of features

with the domain knowledge in mind. This is further discussed by unifying

the problem of clustering and the problem of identification of breast can-

cer subgroups through some of the existing work on finding useful breast

cancer subgroups using clustering techniques in Chapter 2.8.

2.4 Semi-supervised Fuzzy c-Means

Semi-supervised learning is a hybrid of unsupervised and supervised learn-

ing, where both labelled and unlabelled data are used [30, 166]. There are

many different types of semi-supervised learning settings; semi-supervised

classification, constrained clustering, regression with labelled and unla-
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belled data and dimensionality reduction [166]. The focus of this research is

in semi-supervised classification and clustering using the ssFCM algorithm.

The first ssFCM algorithm was first introduced by Pedrycz [122]. He ex-

tended the objective function of the Gustafson and Kessel’s FCM [66] to in-

clude supervised learning. Gustafson and Kessel’s FCM uses the Fuzzy Ma-

halanobis distance metric previously discussed in Chapter 2.3.5. Pedrycz

and Waletzky [121] improved the first ssFCM in [122] by modifying the

scaling parameters α to ensure that the smaller population of labelled pat-

terns can produce an impact in clustering. The resulting objective function

contains unsupervised learning in the first term and supervised learning in

the second term as follows:

J � ç

i�1

Ņ

j�1

u
p
ijd

2
ij � α

ç

i�1

Ņ

j�1

puij � fijbjqpd2ij , (2.19)

where

• uij is the membership value of data pattern j in cluster i,

• c is the number of clusters,

• dij the distance between data pattern j and cluster centre vi,

• fij the membership value of labelled data pattern j in cluster i,

• bj indicates if data pattern j is labelled,

• p is the fuzzifier parameter (which is commonly 2) and

• α is a scaling parameter for maintaining balance between the su-

pervised and unsupervised learning components such that supervised

learning does not dominate. The authors recommend α to be pro-

portional to N{M , where M is the number of labelled data.
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2.4.1 The Pedrycz and Waletzky [121] ssFCM algorithm

The objective function (2.19) is minimized using an optimization tech-

nique, i.e. the Lagrange multipliers, to derive equations for calculating

the partition matrix. The prototypes are calculated as an average of the

patterns with respect to the membership values. Like FCM, the algorithm

iteratively calculates the cluster centres and the membership matrix U to

minimise the objective function until a termination criterion is reached.

Memberships of labelled and unlabelled data are updated and these mem-

berships also contribute to the calculation of the cluster centres in (2.20).

The algorithm is summarised as follows:

1. Initialise labelled data membership matrix F and initial membership

matrix U0

2. Calculate the cluster centres V � rvis with the partition matrix U

using the following equation:

vi � °N

j�1
u2
ijxj°N

j�1
u2
ij

(2.20)

3. Update the partition matrix, U using the following equation:

uij � 1

1� α

$&%1� αp1� bj
°c

l�1
fljq°c

l�1
pdij
dlj
q2 � αfijbj

,.- (2.21)

4. If ||U1 �U||   ǫ, stop. Else, go to step 2 with U � U1
2.4.2 Developments and applications

Early ssFCM algorithms [122, 15, 121] have been shown to produce good

classification results. Today, new ssFCM algorithms are developed to ex-

ploit FCM [21, 29, 155, 101, 47, 165, 94]. In this subsection, some of these

developments and applications of ssFCM are reviewed.
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Modification of scaling parameter α

The first ssFCM proposed by Pedrycz [122]. Pedrycz and Waletzky im-

proved it by modifying the scaling parameter α [121]. The modification of

objective function using α allows control over supervised and unsupervised

learning of labelled and unlabelled data. Stutz and Runkler [146] have also

modified the scaling parameter of the first ssFCM by using two separate

parameters α and p1�αq to balance supervised and unsupervised learning

respectively. Their modification is considered to be more general than the

first ssFCM as labelled data undergo both supervised and unsupervised

learning based on the two modified parameters α and p1� αq.
Motivated by Stutz and Runkler’s work, Li et al. [101] modified Pedrycz

and Waletzkey’s objective function [121] to reduce redundancy in unsuper-

vised training. In [121], the unlabelled data patterns undergo unsupervised

training twice. The modified objective function ensures unsupervised train-

ing is performed once for unlabelled data.

A low availability of labelled data would result in a higher α value

(based on Pedrycz’ and Waletzky’s recommendation), giving a higher in-

fluence to the labelled patterns and therefore, there is more contribution

from supervised learning. This is a good configuration given that the few

labelled data are “good” to produce highly accurate classification. On the

other hand, the presence of potentially poor labelled data will negatively af-

fect clustering. Allowing some degree of unsupervised learning for labelled

patterns may be a way to overcome this [121]. Bouchachia and Pedrycz

in [23] observed that the scaling factor affected the well-separatedness of

the clusters and concluded that assigning higher values to α indicates high

confidence in the labelled data.
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Introduction of weights

Bensaid et al. [15] applied ssFCM in image segmentation of Magnetic Res-

onance Images. They observed that the least square objective function

of ssFCM tends to equalise cluster populations, which makes the repre-

sentation of data unrealistic. Weights are introduced in the calculation

of prototypes to counter this effect. The weights represent expert knowl-

edge on the significance of each labelled patterns. Similarly, Pedrycz and

Waletzky [121] introduce an additional weight termed as a confidence fac-

tor in the objective function instead of in the calculation of centroid [15].

A higher confidence factor for a pattern will result in a greater influence of

the pattern. While this was proposed as a possible extension of (2.19), no

supporting experiments have been presented.

The assignment of individual weights to labelled patterns is a tricky

task as no definitive guide is found. In image segmentation, some visual

guide can be obtained on how to assign weights based on areas of similar

colours. In data clustering, the complexity of this task is increased with

higher dimensions as it is not easily observable which labelled data is better.

Evolving membership

Bouchachia and Pedrycz [21, 23] modified the supervised component of

Pedrycz and Waletzky’s ssFCM algorithm [121] to counter the problem

in ssFCM of patterns being inaccurately labelled by replacing the labelled

pattern membership with evolving membership. The idea is to discriminate

between accurately labelled patterns from those that are not. The evolv-

ing membership learns from the previous evolving membership and from

the sum of differences between labelled pattern membership and previous

evolving membership in different clusters for all patterns. The technique

seems more computationally expensive because the evolving membership

runs in a nested loop within each iteration.
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Pairwise-constraints

Grira et al. [64] included supervision in the form of pairwise-constraints

for pairs of patterns belonging to the same or different cluster/s in unsu-

pervised FCM. The advantage of doing so is that experts can specify the

constraints, which is then used to automatically calculate the membership,

instead of manual or random initialisation. To tackle the number of clus-

ters issue, Competitive Agglomeration introduced by Frigui and Krisnapu-

ram [56] is incorporated, where a merging scheme based on cardinalities of

the clusters is used. To further reduce the number of pairwise constraints

used in their previous work [64], Grira et al. [65] incorporated active selec-

tion of constraints [12] into a ssFCM framework, allowing the selection to

focus on the least well-defined clusters that are believed to give the most

informative pairwise constraints. In these methods, however, it is unclear

how the partition matrix is updated when clusters are merged.

Due to the nonlinear capabilities of kernel-based distance metric in ss-

FCM [165], Wang et al. [155] applied it in Grira et al.’s [64] pairwise-

constrained competitive agglomeration (PCCA) ssFCM algorithm. Accord-

ing to them, the kernel-based pairwise-constrained technique could better

utilize available constraints than PCCA and that using PCCA is impracti-

cal as a large range of parameter value has to be selected for different data

sets. They further claimed that the imbalance between constraints and

unlabelled patterns caused by using Euclidean distance increases the dif-

ficulty in this selection. Their approach was shown to outperform PCCA.

However, discrepancies in PCCA’s clustering results of common datasets

in their paper [155] and the original paper [64] were found.

Motivated by the idea of preserving structure of neighbourhood in di-

mensionality reduction, Huang and Zhang [82] introduced a weighting sys-

tem to preserve locality in the pairwise constrained ssFCM algorithm pro-

posed by Grira et al. [65], but without competitive agglomeration. The
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kernel-like weighting system is claimed to make the representation of the

pattern more realistic by providing additional information about the struc-

ture of the neighbourhood. While comparison was made with other ssFCM

for image segmentation, no comparison was made with other ssFCM algo-

rithms for data clustering.

Distance metrics

In ssFCM algorithms [122, 121], the Fuzzy Mahalanobis distance was em-

ployed as it is able to represent non-linear data as compared to Euclidean

distance metric and it is able to adapt to the shape of the clusters.

Zhang et al. [165] replaced the Euclidean distance metric in FCM with a

kernel-based one because kernel functions could handle non-linear mapping

functions without knowing the actual structure of these functions. The

kernel-based distance metric is more desirable than the Euclidean distance

metric for dealing with high dimensional data. In [23], Bouchachia and

Pedrycz compared the effects of four different distance metrics on their

proposed ssFCM algorithm with evolving membership introduced in [21].

They found that using kernelised distance produced the best results because

new facts may be revealed and provide additional supervisory material to

clustering. They stated that the true structure of the data may not be fully

realised using Mahalonobis distance metric as there are only some labelled

patterns to reflect this.

Höppner et al. [81] showed the different developments in distance met-

rics for modelling Fuzzy clusters to represent different shapes such as linear

varieties or elliptotypes that best suit different datasets to solve application-

specific problems. In [146], Stutz and Runkler applied Fuzzy c-Mixed pro-

totypes in an ssFCM setting by replacing the distance metric with dproti for

the Fuzzy c-Mixed prototypes, which allows different types of prototypes

to be represented in one dataset. This distance metric was developed as it
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best represents the traffic data to classify and predict traffic statuses. For

elliptotypes, dellip, the distance measure is defined as follows:

dik �gffe||xk � vi||2A � α

ŗ

j�1

ppxk � viqTAsijq (2.22)

where

• α P r0, 1s specifies locality, where α � 0 indicates FCM (full locality)

and α � 1 for Fuzzy c-linear varieties (FCV) [18] (no locality).

• each sij, i � 1, ..., c, j � 1, ..., r is a cluster director vector such that

each cluster represents an r-dimensional linear subspace of R
p. If

r � 1, the algorithm can detect FCV Fuzzy c-lines (FCL) clusters.

Entropy regularisation

Endo et al. [47] introduced entropy regularised ssFCM objective func-

tion, which they claimed to be a simpler technique than Bouchachia and

Pedrycz’s ssFCM [21] technique since no evolving membership is required.

The objective function of FCM is modified to include an entropy regular-

ized term instead of a supervised FCM component. The study, however,

did not provide comparative results with the other ssFCM techniques, nor

provide experimental results tested on real datasets.

Summary

The developments in ssFCM that were discussed have a general aim of

achieving a higher accuracy when compared to other existing ssFCM algo-

rithms. There appears to be no clear, definitive guide as to when a par-

ticular approach should be used. There are application-specific proposals

where modifications are made based on domain knowledge, such as those

proposed for image segmentation and traffic flow prediction. However,

there is no evidence that these proposed techniques perform favourably on
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other datasets. One approach that performs favourably in some datasets

may perform poorly in others, which suggests the need for experimental

investigation in the exploration of a suitable approach for a dataset.

Furthermore, a standard evaluation methodology has not been estab-

lished for ssFCM. Some [121, 101, 47, 64] have calculated the accuracy

based on the number of matches from clustering solutions, while others use

cross-validation [23], visual evaluation [15] or evaluation indices [141] such

as Silhouette Index and Cohen’s Kappa Index .

This research work is expected to be similar to one done by Tari et al. [148].

They applied ssFCM algorithm on biological datasets, two yeast microarray

datasets to classify genes according to their gene functions using Gene On-

tology annotations as prior knowledge. Another similar study is by Stutz

and Runkler [146] where they demonstrated the use of ssFCM to identify

meaningful subgroups in traffic data and to predict traffic statuses based

on prior knowledge of these subgroups.

2.4.3 The motivation for study in semi-supervised Fuzzy c-Means

Jain [84] stated that one research direction of clustering is to achieve a

tighter integration between clustering algorithms and application needs.

This means that it is necessary to identify what the application require-

ments are and to tailor the clustering algorithm based on these require-

ments. One fundamental issue of clustering which he raised was the con-

sistency of solutions from different clustering algorithms, that is, the sta-

bility of these different clustering solutions. He explained the use of semi-

supervised clustering is beneficial in deciding (i) data representation and

(ii) appropriate objective function for data clustering using labelled data

and (user-specified) pair-wise constraints.

Based on Mackay’s [105] and Jain’s [84] discussions on clustering and

the nature of the NTBC dataset, the focus in the ssFCM clustering al-
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gorithm is chosen. Being semi-supervised, ssFCM can use both labelled

and unlabelled data during training. In addition, being FCM-based, ss-

FCM allows data patterns to be represented in more than one clusters

using Fuzzy memberships. Although ssFCM is a clustering technique, it

has been demonstrated to perform classification tasks successfully using

class labels [121, 101, 146] with the number of clusters equals the number

of classes. In this work, the practice of setting the number of clusters c to

the six classes identified by Soria et al. [141] is adopted. ssFCM has also

been successfully applied in areas of biomedicine [29, 148], where bound-

aries of classes are often unclear. The ability of ssFCM to represent data in

more than one cluster using membership values makes it highly suitable for

classifying biomedical dataset where the unclear boundary of classes can

be represented using Fuzzy membership. The ssFCM algorithm which is

intended to be applied can learn from labelled data provided from Soria’s

classification [141]. Another benefit of using ssFCM is that clustering is

not a statistical inference technique and therefore, is not affected by the

assumptions of normal distribution [69], which is suitable on the NTBC

dataset whose features are not normally-distributed [140]. ssFCM algo-

rithms have been demonstrated to perform classification tasks in both a

clustering and a classification setting, often with the number of clusters

equals the number of classes [121, 101, 23]. In a clustering setting, the ss-

FCM algorithm is run once while in a classification setting, the algorithm

is first trained and then tested [23].

2.5 Evaluation techniques

As a wide range of evaluation techniques are used across different literatures

in ssFCM, some is achieved in the following sections. The techniques re-

viewed are used for experiments and were chosen based on their application

in evaluating clustering and/or classification techniques [121, 141, 23, 109].
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2.5.1 Accuracy rate

Accuracy rate is the average number of matches between the cluster la-

bels and class labels of data patterns over total number of comparisons.

It ranges between values 0 and 1 where 0 indicates no agreement and 1

indicates complete agreement.

2.5.2 Cohen’s Kappa index

The Cohen’s Kappa index (κ) [35] is given by:

κ � po � pe

1� pe

where po is the ratio of agreements between the two sources and pe is the

ratio of chances of agreement. The pe ratio is calculated based on the sum

of the probabilities of the sources having agreements randomly. A κ value

of 0 indicates no agreement while 1 indicates complete agreement.

2.5.3 Normalised Mutual Information

Normalised Mutual Information (NMI) [145] calculates the comparison of

clustering solutions in terms of cluster-class (or cluster-cluster) matching

and distribution and normalises this calculation. The NMI equation is

defined as follows:

NMIpX, Y q � IpX ; Y qa
HpXqHpY q (2.23)

where IpX ; Y q denotes Mutual Information between variables X and Y

and HpXq and HpY q denote the entropy of variables X and Y respectively.

IpX ; Y q is computed as follows:

IpX ; Y q � HpX, Y q �HpX|Y q �HpY |Xq (2.24)
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where HpX|Y q and HpY |Xq are conditional entropies and H(X,Y) are joint

entropy. NMI values close to zero denotes low agreement while a near 1

value indicates otherwise.

2.5.4 Cross-validation

Cross-validation is used to evaluate the accuracy of a classification tech-

nique. It first divides the data into training and test sets. The training set

is used as examples to learn the best model. The model obtained is then

used to predict the labels of the data pattern in the test sets.

One common type of cross-validation is the k-fold cross validation (CV)

where the dataset is divided into k equally-sized subsets such that k-1 sets

are used as the training set and the remaining as the test set. The process is

repeated k times, with each of the k sets being used as test set at different

runs of the training process. In this way, all data patterns are used for

training and testing without being repeatedly used in both and they are

validated exactly once.

The accuracy rate tends to give a more optimistic view than the Kappa

Index and NMI because it only takes into account of the agreements and

completely disregards the disagreements. Both Kappa Index and NMI take

into account of the agreements and disagreements where there is some sort

of penalty for disagreements. In NMI, HpX|Y q and HpY |Xq represent the
disagreements. In Kappa, the disagreements are taken into account in the

form of a probability of random agreement pe. Cross-validation allows the

evaluation of classification tested on unseen data, which is more realistic

as the model built is being tested, and can be incorporated with the other

evaluation technique. Furthermore, it reduces overfitting.
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2.6 Initialisation techniques

In clustering algorithms such as K-means and FCM, the common prac-

tice of random initialisations often lead to different suboptimal solutions

in different runs [83]. In this section, some of the existing initialisation

techniques that can refine clustering methods are reviewed. These tech-

niques have been shown to improve clustering techniques such as K-means

or FCM [78, 32], but, to the best of our knowledge, no investigative studies

on using these techniques to improve ssFCM has been done.

2.6.1 Cluster Estimation

Proposed by Chiu [32], the Cluster Estimation (CE) technique estimates

both the number and location of cluster centres by specifying its neighbour-

hood size r. Based on the number of neighbouring patterns, a potential

value is calculated as follows:

Pi � ņ

j�1

e�α||xi�xj||2 (2.25)

where xi and xj are two data patterns and α � 4

r2a
. The pattern with the

highest potential value becomes the first cluster centre. Eq. ( 2.25) is then

revised to calculate the potential of patterns to be centres of other clusters,

as shown below:

Pi ð Pi � P �
k e

�β||xi�x�
k
||2 (2.26)

where β � 4

r2
b

, x�
k is the latest obtained cluster centre and P �

k its potential

calculated from (2.25). The positive constants ra and rb are radius defining

their respective neighbourhoods. The author recommended that rb=1.25ra.

In CE, the selection of the influence parameter becomes tricky in datasets

with highly overlapping clusters. Selecting a large range of influence value

r, causes similar neighbourhoods for each data patterns to form, causing

less variation in potential value of data patterns. If the value is too small,
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on the other hand, neighbours which could contribute to the potential value

of the data pattern (for it to qualify as cluster centre) may be disregarded.

CE is able to disregard noisy data by limiting its radius of influence. Noisy

data within this radius will fetch poor potential values and therefore, will

never be selected as centres.

2.6.2 Simple Cluster Seeking

The Simple Cluster Seeking (SCS) technique defined by Tou and Gonza-

les [153] is summarised as follows (as described by He et al. [78]:

1. The first pattern is initialised as the first cluster centre, i.e. v1 � x1.

2. For k � 2, ..., N , xk is the next cluster centre if ||xk� vi|| ¡ ρ for all

existing cluster centres, where ρ is a parameter specifying the distance

between two cluster centres. When c cluster centres are initialised,

stop. Else, decrease the value of ρ and repeat the steps.

SCS is sensitive to initial ρ value and the order of the data patterns.

It picks the first data pattern whose distance to all the cluster centres is

larger than a threshold value and this process repeated until all centres are

found. This means the next data pattern may be a better candidate as a

cluster centre, but would not be chosen.

2.6.3 Katsavounidis et al. initialisation

The initialisation technique by Katsavounidis, Kuo and Zhang (KKZ) [90]

takes on the following steps as described in [6]:

1. Initialise the first cluster centre with the data pattern that has the

maximum norm, v1 � argmax ||xk||.
2. Initialise the second cluster centre with the data pattern furthest from

v1.
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3. Compute the minimum distances between the remaining points with

all initialised cluster centres. The data pattern with the largest value

of these minimum distances are chosen as the next cluster centre.

4. Repeat step 3 until all cluster centres are found.

KKZ tends to choose centres located at the edge of the cluster. In the

presence of noisy data, KKZ’s choice in the centres becomes affected. This

means KKZ is highly susceptible to noise as it regards the noisy data as

part of the cluster. Despite its drawbacks, it is simple and fast [78].

Clustering techniques such as FCM or K-means can be used to initialise

clustering algorithms where the cluster centres or clustering solutions are

used [118, 101, 13].

2.7 Feature selection

While it makes sense that having more features give more discriminating

power to distinguish between classes, in practice, more features increase

time requirements. Furthermore, the irrelevant or redundant features can

worsen classification accuracy. Hall [71] has described these features as

“harmful redundancies”. So far, despite the high popularity in feature

selection, only a few studies have applied them in combination with ssFCM.

Benkhalifa and Bensaid applied a filter-based feature selection technique

using Information Gain with ssFCM in categorising text [14]. Park and

Yae [120] used ssFCM and Support Vector Machines to select and evaluate

features.

Feature selection is of interest to this research work for two reasons.

First, it has been shown to improve classification of learning algorithms [71,

68]. Secondly, in the case of the NTBC dataset, by reducing the number of

protein biomarkers while maintaining classification accuracy, the time and

cost to run clinical tests for data collection are reduced. Furthermore, the
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most relevant (important) protein biomarkers can be identified and in turn,

subgroup assignment of future breast cancer patients can be determined

using this reduced panel of the most relevant protein biomarkers.

Many feature selection techniques have been proposed. A general review

of the topic has been covered by Dash and Liu [39] and Saeys et al. [135].

Furthermore, Hall’s thesis [71] provides a thorough introduction to feature

selection. The following feature selection techniques which are used in this

research work are reviewed; Support Vector Machine-Recursive Feature

Elimination (SVM-RFE) [68], Random Forest-RFE (RF-RFE) [62, 95] ,

Naive bayes-RFE (NB-RFE) [95] and Correlation-based Feature Selection

(CFS) by Hall [72, 71]. These techniques are further discussed next.

2.7.1 Selected techniques

There are three types of feature selection methods; filter, wrapper and

embedded [67]. The filter method uses heuristics to evaluate the feature

subsets. Wrappers use machine learning algorithms based on CV to evalu-

ate the feature subsets. They repeatedly search through the feature subsets

find the subset that best fit the classification model. The search can be

based on best first search or greedy search. Embedded methods use ma-

chine learning and ranking technique based on weights (generated by the

machine learning algorithm) to select features during training. These meth-

ods are illustrated in Figure 2.1, as in [71, 135]. The CFS algorithm is a

filter method while NB-RFE and RF-RFE are wrappers and SVM-RFE is

an embedded method. These techniques are reviewed as follows.

Correlation-based Feature Selection

Correlation-based Feature Selection (CFS) [72] searches through the space

of feature subsets and evaluate the goodness of the feature subsets using a

heuristic. The heuristic takes into account the usefulness of each features
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Figure 2.1: The three types of feature selection: filter, wrapper and embedded

based on how well it predicts class labels and the intercorrelation among

them. It is formulated as follows:

rzc � krzia
k � kpk � 1qrii (2.27)

where rzc is the correlation between summed components and the outside

variable. The components are data from a set of selected features that

goes in a test to measure traits related to an outside variable (class). k is

the number of components (features), rzi is the average of the correlations

between the components and the outside variable and rii is the average

inter-correlation between components. The idea is to choose feature subsets

with maximum rzc.

Wrapper-based Recursive Feature Elimination

The recursive feature elimination (RFE) is an iterative backward selection

method which removes the feature based on a ranking criteria. It can be
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Algorithm 1 Wrapper-based RFE using resampling [95]

1: for Each Resampling Iteration do
2: Partition data into training and test sets via resampling
3: Train model on training set using all predictors with a machine learn-

ing algorithm
4: Predict using the test set
5: Calculate feature ranking
6: for Each subset size Si, i � 1...S do
7: Keep Si most important features
8: Train model on the training set using Si predictors
9: Predict the test set
10: Calculate ranking of each predictor
11: end for
12: end for
13: Calculate performance over Si using test set
14: Determine the appropriate number of predictors
15: Determine list of predictors to keep in the final model
16: Fit the final model based on optimal Si using original training set

used in a wrapper-based or in an embedded method. In a wrapper-based

method, the algorithm is shown in Algorithm 1 as described in [95] (for the

rfe function in R).

S is a sequence of ordered candidate values for the number of predictors

to be retained such that S1 ¡ S2, .... The Si top ranked predictors are

retained and the model is refitted and evaluated. In this way, features are

assessed on whether they are useful to be predictors. Wrapper methods are

prone to overfitting as the algorithm may focus on characteristics of training

data that are not found in future data. Thus, resampling (using CV, for

instance) is introduced in Algorithm 1 to take into account of variability

in the data. Despite being computationally expensive, RFE is expected to

produce higher accuracy. Classifiers such as Naive Bayes (NB-RFE) and

Random Forests (RF-RFE) are used to train the models.

Support Vector Machine - Recursive Feature Elimination

The Support Vector Machine - Recursive Feature Elimination (SVM-RFE)

technique was proposed by Guyon et al. [68] and is based on RFE using
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Algorithm 2 SVM-RFE [68]

1: for Subset of surviving features s � r1, 2, ...ns do
2: Restrict training examples X0 � rx1,x2, ...xk, ...xℓsT to good feature

indices: X � X0 p:, sq
3: Train the classifier using SVM where y � ry1, y2, ...yk, ...yℓsT are the

class labels: α � train pX,yq
4: Compute the weight vector of dimension length (s): w � °

k
αkykxk

5: Calculate the ranking criteria: ci � pwiq2, for all i
6: Find the feature with the smallest ranking criterion:

f � argminpcq
7: Update feature ranked list: r � rspfq, rs
8: Eliminate the feature with smallest ranking criterion:

s � sp1 : f � 1, f � 1 : lengthpsqq
9: end for

the weight magnitude of SVM as a ranking criterion. The algorithm is

described in Algorithm 2, where the output is a feature ranked list r.

2.7.2 Issues

There are two issues in feature selection; overfitting and stability of selected

features. Ng [115] warns of the dangers of overfitting from using cross-

validation data. According to Guyon and Elisseeff [67], wrapper-based

techniques are prone to overfitting. The cross-validation procedure used in

wrapper-based techniques may have attributed this, such that the selected

features will produce improved classification only for some classification

techniques. To prevent overfitting in wrapper-based techniques, Kuhn [95]

introduced resampling in the outer loop in Algorithm 1 so that different

training and test sets are used in each resampling.

According to Kalousis et al. [89], to select a suitable feature selection

technique to use with a classification technique, one approach is to use the

combination of feature selection and classifier with the most stable feature

selection technique. Stability measures have been used as evaluation of

feature selection. If a feature selection technique consistently selects the

same features, it builds confidence in the importance of selected features.
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With higher number of selected features, higher stability is expected as

there is higher probability of selecting common features. The stability

measure by Kalousis et al. [89] measures the amount of overlapping features

between two subsets of features. It is based on the Tanimoto distance [43]

and defined as:

Sps, s1q � 1� |s| � |s1| � 2|sX s1||s| � |s1| � |sX s1| (2.28)

where s and s1 are subsets of features. S values are in [0,1] where 0 indicates

no overlap and 1 indicates the two subsets are the same.

2.8 Clustering for breast cancer classification

Prognosis is the prediction of the likely outcome of one’s current medi-

cal condition such as survival rate or survival time. Current prognosis

techniques involve using clinical and pathologic prognostic and predictive

factors [136, 141]. According to Cianfrocca and Goldstein [34], prognos-

tic factors are measurements obtained during surgery that relates to the

disease-free or overall survival in the absence of therapy. These factors,

thus, can relate with the natural history of the disease. Predictive factors,

on the other hand, are measurements associated with response to a given

therapy. There are also factors that are both prognostic and predictive,

such as hormone receptors, HER2/neu overexpression and gene expression

profiles. Bundred [28] further explains that prognostic factors are either

chronological, which indicates how long the cancer has been present, such

as tumour size; or biological, which indicates the metastatic potential be-

haviour of a tumour, such as tumour grade. To determine prognosis, a

prognosis index for primary breast cancer was constructed based on prog-

nosis factors, lymph-node stage, tumour size and pathological (tumour)

grade [76, 57]. McGuire [111] identified a set of criteria to ensure that a
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prognostic factor have clinical relevance. It, therefore, must have biological

relevance, be reproducible, be validated using many patients, be indepen-

dently confirmed by other experts and have optimised cutoff values.

Clustering of biomedical data is becoming popular and increasingly im-

portant in assisting clinicians in the identification of specific types of ill-

nesses or diseases. These techniques, therefore, can support decision mak-

ing in prognosis and treatment [154, 1]. Eisen et al. [46] showed that gene

expression data can be organised into functional categories using hierar-

chical clustering and visual inspection of the dendrogram. The identifi-

cation of functional categories from clustering gene expression data moti-

vated the application of clustering algorithms on breast cancer gene expres-

sion data [124] where Perou et al. identified four breast cancer subgroups:

ER+/luminal-like, basal-like, HER2+ and normal breast. In a following

study [143], Sorlie et al. identified six subgroups where the ER+/luminal-

like group was further divided into three subgroups: luminal-A, B, and

C. Luminal-C was dropped in a later work [144] but, the reason for it is

unclear. Researchers moved on to cluster immunohistochemical data using

hierarchical clustering, where three subgroups were identified in [108] and

six subgroups were determined in [3]. However, there has been no fur-

ther investigations to address the stability of the proposed subgroups. The

reproducibility of these subgroups, therefore, has not been assessed using

different breast cancer datasets, such as those in [144], or using different

learning algorithms.

Clustering biomedical data is a complex procedure as the subgroups

found may not be correct or meaningful. Bair and Tibshirani [9] explained

the difficulty and importance of finding relevance between subgroups and

clinical parameters for accurate prognosis. As unsupervised approaches of-

ten do not use clinical data to find subgroups, there is no assurance that the

subgroups found would be related to the clinical outcome. Furthermore, in
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some cases the subgroups identified from clinical data may not be biolog-

ically meaningful. Statistical tests are, therefore, needed to determine the

relevance between the classification and clinical data, which in turn can

validate the subgroups identified.

Therefore, in order to validate the biomedical subgroups, the subgroups

have to be biologically meaningful and reproducible. This means that rele-

vance between the subgroups and clinical parameters have to exist and the

stability of these subgroups has to be addressed.

2.8.1 The Nottingham Tenovus Breast Cancer dataset

The Nottingham Tenovus Breast Cancer (NTBC) dataset contains im-

munohistochemical data of 1076 patients with primary operable (stages

I, II and III) invasive breast cancer between 1986 and 1998. The data is in

the form of modified histochemical score (H-score) based on immunohisto-

chemical reactivity of 25 proteins, determined using microscopical analysis.

The H-score is calculated based on a semiquantitative assessment of both

intensity of staining and percentage of positive cells at each intensity. The

intensity of staining is scored 0 to 3, which correspond to negative, weak,

moderate and strong positivity. The H-score ranges between 0 and 300,

based on the formula:

H-score � p1�% of cells with intensity 1q� p2�% of cells with intensity 2q� p3�% of cells with intensity 3q (2.29)

The 25 protein biomarkers (features) are the same ones listed in [141, 3]

and are shown in Table 2.2 on page 49. The dataset also contains clinical

data such as histologic grade, histologic tumour type, vascular invasion,

tumour size, lymph node stage, patient age and menopausal status. Sur-

vival (in months) from the date of primary treatment to the time of death
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is recorded at 3-months intervals initially, then every 6 months, and finally,

annually for a range of 1-192 months, with a median period of 58 months.

The Nottingham Prognostic Index (NPI) [57] score is also recorded. It is

calculated based on prognostic factors according to the formula:

NPI Score � p0.2� tumour sizeq � histologic grade� lymph node stage

(2.30)

A poor prognosis is indicated by a high NPI score. Table 2.3 on page 49

shows the NPI ranges and their interpretations.

2.8.2 Discovery of subgroups in the dataset

The Nottingham Tenovus Breast Cancer (NTBC) dataset has been clus-

tered using hierarchical clustering into five subgroups, with the sixth sub-

group containing only four patients [3]. To address the stability of the pro-

posed groups in NTBC, Soria et al. [141] first identify the optimal number

of clusters in the dataset using different cluster validity indices on clus-

tering solutions from K-means and Partitioning Around Medoids (PAM).

They found that the most stable number of clusters obtained by PAM is

four, and six by K-means. Then, a set of rules is used to determine consen-

sual classes with solutions obtained from hierarchical clustering, k-means

and Adaptive Resonance Theory (ART). The key biomarkers that char-

acterise these classes are identified [141] using visual inspection, Orthog-

onal Search Rule Extraction (OSRE) [49] and Artificial Neural Networks

(ANN) [113]. To automate the process of identifying the same six classes

and thereby address the stability issue, Soria et al. [140] used three different

classifiers, C4.5 [126], Multi Layer Perceptron- Artificial Neural Networks

(MLP-ANN) [77] and Naive Bayes [88].

Based on classification by Soria et al., there are three main clinical

groups, Luminal, Basal and HER2. These main groups are further divided

into six subgroups where class 1, 2 and 3 belong to the Luminal group.
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Table 2.2: Protein biomarkers and their dilutions.
Antibody, clone Short nameDilution

Luminal phenotype
CK 7/8 [clone CAM 5.2] CK7/8 1:2
CK 18 [clone DC 10] CK18 1:50
CK 19 [clone BCK 108] CK19 1:100

Basal phenotype
CK 5/6 [clone D5/16134] CK5/6 1:100
CK 14 [clone LL002] CK14 1:100
SMA [clone 1A4] Actin 1:2000
p63 ab-1 [clone4A4] p63 1:200

Hormone receptors
ER [clone 1D5] ER 1:80
PgR [clone PgR 636] PgR 1:100
AR [clone F39.4.1] AR 1:30

EGFR family members
EGFR [clone EGFR.113] EGFR 1:10
c-erbB-2 HER2 1:250
c-erbB-3 [clone RTJ1] HER3 1:20
c-erbB-4 [clone HFR1] HER4 6:4

Tumour suppressor genes
p53 [clone DO7] p53 1:50
nBRCA1 Ab-1 [clone MS110] nBRCA1 1:150
Anti-FHIT [clone ZR44] FHIT 1:600

Cell adhesion molecules
Anti E-cad [clone HECD-1] E-cad 1:10/20
Anti P-cad [clone 56] P-cad 1:200

Mucins
NCL-Muc-1 [clone Ma695] MUC1 1:300
NCL-Muc-1 core [clone Ma552] MUC1co 1:250
NCL muc2 [clone Ccp58] MUC2 1:250

Apocrine differentiation
Anti-GCDFP-15 GCDFP 1:30

Neuroendocrine differentiation
Chromogranin A [clone DAK-A3] Chromo 1:100
Synaptophysin [clone SY38] Synapto 1:30

Table 2.3: Interpretation of the Nottingham Prognosis Index

NPI score Interpretation¤ 2.4 Excellent Prognosis(EPG)
2.4 NPI¤3.4 Good Prognosis (GPG)
3.4 NPI¤4.4 Moderate Prognosis 1 (MPG1)
4.4 NPI¤5.4 Moderate Prognosis 2 (MPG2) 5.4 Poor Prognosis (PPG)
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Table 2.4: Number of data patterns in each class and the number of not clas-
sified (n.c) and classified (c) data patterns according to classification by So-
ria et al. [141]

class 1 class 2 class 3 class 4 class 5 class 6 n.c c
202 153 80 82 69 77 413 663

Class 4 and 5 belong to the Basal group and class 6 to HER2. Each class

is named (in square brackets) and described by key features identified by

Soria et al. [141] as follows:

• class 1 [Luminal A]: ER+, PgR+, CK7/8+, CK18+, CK19+, HER3+,
HER4+

• class 2 [Luminal N]: ER+, PgR+, CK7/8+, CK18+, CK19+, HER3-,
HER4-

• class 3 [Luminal B]: ER+, PgR-, CK7/8+, CK18+, CK19+, HER3+,
HER4+

• class 4 [Basal - p53 altered]: ER-, p53+, CK5/6+, CK14+

• class 5 [Basal - p53 normal]: ER-, p53-, CK5/6+, CK14+

• class 6 [HER2]: ER-, HER2+

As shown on Table 2.2 on page 49, ER and PgR are hormone receptors.

CK7/8, CK18 and CK19 are luminal cytokeratins. CK5/6 and CK14 are

basal cytokeratins. HER2, HER3 and HER4 are EGFR family members.

p53 is a tumour suppressor gene. The + or - at the end of each feature

indicates high or low expressions respectively. In Soria’s classification [141],

663 data patterns are classified while 413 remains not classified (n.c) , as

shown in Table 2.4. While the consensus clustering methodology proposed

by Soria et al. has identified six clinically useful subgroups, this is at the

expense of not classifying the entire dataset where the 413 data patterns

(patients) belonging to mixed classes are not assigned to any class.

In [142], Soria et al. proposed a quantifier-based classification system

with a reduced panel of biomarkers to refine the previous classification

in [141], classifying the entire dataset into seven subgroups. Based on the

refined classification and same reduced panel of biomarkers, clinical associa-

tion between the seven subgroups were further examined by Green et al. [63]
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and key clinical breast cancer phenotypes for these subgroups were iden-

tified. By stratification of these seven biological subgroups using NPI-

like formulae on clinical parameters (called NPI+), Rakha et al. showed

that distinct prognostic groups can be identified [132]. Thus, the NPI has

evolved from using only clinical data to NPI+ which uses both biological

and clinical data for prognosis.

2.9 Summary

The development of ssFCM methodologies for application on real world

biomedical datasets is important. Semi-supervised clustering techniques

such as ssFCM are ideal for datasets where the availability of labels are

scarce and/or the collection of labels is complex and expensive. Fur-

thermore, ssFCM algorithms are capable of representing data patterns in

biomedical datasets where boundaries between subgroups are not clearly

defined with the use of memberships to indicate belongingness to more than

one cluster. They can also learn from available labelled data to identify

similar data patterns. In addition, the amount of labelled data can be

adjusted, which allows control over the amount of influence from labelled

data in ssFCM. If similar subgroups (previously found) can be reproduced

using ssFCM with some labelled data, the stability of the subgroups can be

demonstrated, which is a form of validation for the subgroups previously

identified. Furthermore, ssFCM have been shown to produce good classifi-

cation results on popular UCI and real-world datasets [121, 101, 15, 23].

The ssFCM algorithm can be a single-clustering-algorithm approach to

classify the dataset with guidance from Soria’s classification [141]. The

identification of similar biological subgroups as those found by Soria et al.

can further validate these subgroups. It has been established that there

should be relevance between subgroups found from clustering algorithms

in biomedical data and clinical parameters in order for the subgroups be
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be considered clinically useful. Furthermore, the subgroups themselves

should be biologically meaningful and this can be validated with existing

findings in related literatures. No one clustering technique provides the best

solution for all datasets. It is, therefore, vital to first understand the dataset

and the issues of considered techniques and subsequently investigate their

suitability through experimentation.

Furthermore, initialisation techniques can be applied to ssFCM to pro-

vide a better start for the algorithm than solely relying on Soria’s classi-

fication [141]. The hypothesis of this research is that the ssFCM can be

successfully applied on the NTBC dataset to identify stable breast cancer

subgroups, achieving good agreement (with percentage matches of 80%)

with Soria’s classification. In addition, the agreement with Soria’s classi-

fication can be further increased by incorporating other approaches such

as initialisation techniques and feature selection into ssFCM. Therefore,

in the next chapters, the investigations in ssFCM and in the application

of other approaches to improve ssFCM clustering or classification on the

NTBC dataset are described, given the research gap found.



3 Preliminary Studies

In this chapter, three investigations aimed at determining whether ssFCM

is suitable for clustering (identification of subgroups) or for classifying

(prediction of class labels for new patients) the NTBC dataset are con-

ducted. The first investigation is an exploratory study that compares

clustering performance of different ssFCM algorithms applied to popu-

lar UCI datasets [54]. As there are a number of different types of ss-

FCM, the distance-based ones are focused on because the first ssFCM by

Pedrycz [122] is of this type and many existing ssFCM algorithms [121, 165,

101, 47] are extended forms of this type. This study will help to uncover

the factors that affect accuracy of ssFCM and to identify the most suit-

able ssFCM for application on the NTBC dataset. Based on experimental

results, the ssFCM algorithm by Pedrycz and Waletzky [121] is the most

favourable as they produced the highest accuracy in a majority of UCI

datasets. Issues such as scale differences of dimensions, distance metrics,

objective functions and quality of labelled patterns have been observed to

affect classification results.

The second investigation explores different distance metrics with the

selected ssFCM from the previous investigation, the algorithm by Pedrycz

and Waletzky [121], to determine the most suitable distance metric for

representing the NTBC dataset. The ssFCM by Pedrycz and Waletzky

with Euclidean distance (which shall be referred as ssFCM in the rest of

the thesis for short) is observed to produce the highest average accuracy

than with Mahalanobis, Fuzzy Mahalanobis and kernel-based distance.

The third investigation is a comparative study to determine how well

ssFCM classifies the NTBC dataset in comparison with other classifiers

such as k Nearest Neighbours and Naive Bayes. The experimental results,

53
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based on a 10-fold CV, showed that ssFCM produced results with the

highest similarity to Soria’s classification.

The experimental results from these studies demonstrated that ssFCM

can successfully classify popular datasets and with selection of a suitable

distance metric, ssFCM can classify the NTBC dataset with high agreement

to Soria’s classification [141], outperforming other popular classifiers.

3.1 A comparative investigation in distance-based

semi-supervised Fuzzy c-Means

3.1.1 Background and motivation

Different ssFCM algorithms have previously been evaluated on different

datasets using various ranges of labelled patterns, which makes fair com-

parison difficult. This motivated the study into a comparison of four

distance-based semi-supervised Fuzzy c-Means (FCM) algorithms proposed

by Pedrycz and Waletzky [121], Zhang et al. [165], Li et al. [101] and

Endo et al. [47]. These were chosen as they were found to be simple in

operation and have been shown to produce good results. The objectives of

this section are (i) to compare their performances with varying quantities of

labelled patterns, and (ii) to explore how common issues to semi-supervised

Fuzzy clustering affect their performance. These issues include the number

of dimensions, application on different datasets, choice of initial member-

ship values, objective functions, distance metrics and labelled patterns.

Some of these issues have been discussed in [23] where different distance

metrics of similar objective functions were investigated. However, in this

section, comparisons are made between algorithms with different objective

functions with different distance metrics, and algorithms with similar objec-

tive functions that employed different forms of balance between supervised

and unsupervised learning, as described next.
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Table 3.1: Pedrycz-97 algorithm [121]

Objective Function
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Table 3.2: Li-08 algorithm [101]

Objective Function
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Table 3.3: Zhang-04 algorithm [165]

Objective Function Jm � 2
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k
,vjqqq1{pm�1q ,

1 ¤ i ¤ c, 1 ¤ k ¤ Nu
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3.1.2 The selected algorithms

Tables 3.1, 3.2, 3.3 and 3.4 illustrate the components in the ssFCM algo-

rithms selected for study; Pedrycz-97 [121], Li-08 [101], Zhang-04 [165] and

Endo-09 [47], respectively. The equations for calculating the centroid and

partition matrix are found in these tables. They are derived using a stan-

dard optimization technique called the Lagrange multipliers, the deriva-

tions are found in their respective papers and will not be discussed here as

they are not within the scope of the research aims.
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Table 3.4: Endo-09 algorithm [47]

Objective Function J � °c

i�1

°N

k�1
uik||xk � vi||2�λ�1
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°N

k�1
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Partition Matrix uik � ūik � e�λdik°c
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e
�λdjk

�
1�°c

j�1
ūjk

	
Distance Metric Euclidean

Differences

Both Pedrycz-97 and Li-08 use Fuzzy Mahalonobis distance to update their

partition matrix. In the objective function of Pedrycz-97, all labelled data

participate in unsupervised and supervised learning with parameter α to

maintain a balance between the two types of learning. α is recommended

to be proportional to N{M where M is the number of labelled patterns.

Li-08 is an improvement to avoid the redundant unsupervised learning for

labelled patterns in Pedrycz-97. Instead, it takes all unlabelled patterns

and p1 � aq of labelled patterns to participate in unsupervised learning,

and a of labelled patterns to undergo supervised learning. Li et al. rec-

ommended that a � 1 �M{N . Though presented separately for labelled

and unlabelled patterns in Li-08, the equation to update the partition ma-

trix is similar to Pedrycz-97 except for their balance parameters, a and

α, respectively. In Li-08, the unsupervised learning of labelled data are

reduced, thus more reliance on labelled data. Unlabelled patterns are not

used in the calculation of Li-09’s centroids, unlike the other algorithms.

Like Pedrycz-97, the objective function of Endo-09 trains both labelled

and unlabelled patterns in both unsupervised and supervised fashion, but

using the Euclidean distance metric. The supervised training function,

however, is entropy-regularised. Zhang et al. retained the objective func-

tion from the original FCM, but replaced the Euclidean distance metric

with a Gaussian kernel-based one. Unlike Pedrycz-97 and Li-08, in Zhang-

04 only unlabelled patterns undergo supervised learning. This means that
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labelled patterns never gets updated or improved. As the unlabelled pat-

terns do not contribute to the initial centroid, the labelled patterns act

as seeds to form initial clusters, applied in ssFCM learning [102] and non-

Fuzzy semi-supervised learning [11]. The trouble with using membership

values of labelled patterns in both the calculation of centroids and the par-

tition matrix, is that it makes the algorithm highly dependent on the initial

membership values of labelled patterns, which can negatively impact the

classification results if they contain errors. This highlights the importance

of balance (scaling) parameters like α and a. In Endo-09’s partition matrix

equation, the membership values of labelled patterns themselves, denoted

by ūik, are both learning components and balance parameters. In doing

so, the reliance on initial membership values of labelled patterns is higher

than the other three algorithms.

Summary

Three distance metrics are used by the four algorithms; Fuzzy Mahalanobis

distance by Pedrycz-97 and Li-08, kernel-based distance by Zhang-04 and

Euclidean distance by Endo-09. Pedrycz-97, Li-08 and Endo-09 algorithms

use different approaches to incorporate the supervised learning element

into the objective function of the original unsupervised FCM algorithm.

This supervised learning element is observed in the second component of

Pedrycz-97’s and Endo-09’s objective functions, and third component in Li-

08’s. The extended objective functions are then used to derive calculations

of centroids and the partition matrix. Rather than using this extension in

the objective function, Zhang-04 incorporated supervised learning during

the calculation of the centroids. Thus, variations of both unsupervised and

supervised learning components feature in these algorithms.
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Table 3.5: Datasets used in the experiments. The columns N , n and c specify
the number of patterns, features and clusters respectively.

dataset N n c
Iris-2 150 2 3
Iris-4 150 4 3
Wine-2 178 2 3
Wine-13 178 13 3
XOR-2 200 2 4
WOBC-8 699 8 2
WOBC-2 699 2 2
PID-8 768 8 2
PID-2 768 2 2
WDBC-30 569 30 2

3.1.3 Experimental methods

Each algorithm, implemented in R [128], a programming language and en-

vironment for statistical computing, was run on ten datasets taken from

non-linearly separable datasets Iris, Wine, XOR, Wisconsin Original Breast

Cancer (WOBC), Pima Indians Diabetes (PID) and Wisconsin Diagnostic

Breast Cancer (WDBC). Note that in Iris, the first class is linearly sep-

arable, but the other two are not. The specifications of the datasets are

shown in Table 3.5 on page 58. Apart from the XOR dataset which is

manually built, all datasets are obtained from the UCI Machine Learning

Repository [54]. For each dataset, experiments were repeated with different

percentages of labelled patterns, 2%, 4%, 6%, 8%, 10%, 15%, 20%, 25%,

30% and 40% to show the effect of the amount of labelled data has on per-

formance. Using the semi-supervised FCM algorithms, classification can

be performed by having the labels replaced with numerals and the labelled

patterns ordered such that the clusters and the numerically labelled classes

will match. In this way, the unlabelled patterns after clustering can be

matched (aligned) with the numerically labelled classes from the datasets

before counting the number of correctly matched patterns.

The following settings and modifications were made:

• Zhang et al. [165] used initial membership values of 1’s and 0’s to rep-

resent labelled and unlabelled patterns respectively. The assignment
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of initial membership values is not mentioned in the other algorithms.

However, unlabelled patterns are assumed to hold equal initial mem-

berships of all the clusters, having membership values of 1{c (where

c is the number of clusters), as was assumed by Bouchachia and

Pedrycz [23]. Based on the experiments with 1’s and 0’s membership

in [97], ssFCMs with Fuzzy Mahalanobis tend to run into singular-

ity problem when labelled data are very low due to the many zero

membership value in the partition matrix.

• The membership value of each randomly chosen labelled pattern be-

longing to a cluster is arbitrarily set to 0.9, with 0.1 membership

divided among the other clusters. The high membership indicates

high belongingness to a cluster. This is applied for the initial parti-

tion matrix of all datasets.

• For the Iris, Wine, WOBC and PID datasets, 2-dimensional datasets

are created from these datasets to observe the effects of the number of

attributes in the datasets on the final clustering outcomes. This was

not done for WDBC because arbitrarily reducing a 30-dimensional

dataset to 2 dimensions will unlikely improve clustering as the re-

duced dataset with 2 dimensions arbitrarily chosen will not be infor-

mative enough to retain the hidden structure within the data held

by 30 dimensions well. Proper feature selection techniques should be

employed in this case. As this is a preliminary study, the WDBC

dataset was not reduced.

• Dimensions with missing values in the WOBC datasets were removed.

• The boolean matrix in Pedrycz-97 was removed since labelled and

unlabelled patterns can be detected from the F matrix with unla-

belled data having 1{c membership. In the original ssFCM [121], all

data patterns are assigned memberships based on given labels and
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stored in F. They are then selected to be labelled or unlabelled using

the boolean vector b. In this case, the labelled data are selected and

their memberships are generated prior to running the algorithm. The

setting F � U0 is kept for the initial partition matrix which contain

memberships of labelled and unlabelled data. This setting is applied

to all experiments with Pedrycz-97 algorithm.

• The Endo-09 is modified to compute prototypes from the initial par-

tition matrix rather than manually initialising them as the original

algorithm did as the membership of labelled pattern in the initial

partition matrix will guide the prototype calculation. Manual initial-

isation may not give the algorithm a good start.

• Endo-09 ran into an infinity problem (the algorithm fails) with datasets

Wine-13, PID-8, PID-2 and WDBC-30. These datasets are modified

to Wine-10, PID-6, PID-2* and WDBC-23. The modified PID-2 is

different from those used by the other algorithms.

• The stopping criterion used in all four algorithms is taken from Pedrycz-

97 [121] as follows: ||U1�U|| � °c

i�1

°N

k�1
pu1ik�uikq2, ||U1�U| is the

sum of squared errors between memberships in previous and current

partition matrix U 1 and U and the threshold value is set to 0.01.

• In Pedrycz-97, scaling parameter α is assumed to be calculated by

N{M while a in Li-08 is calculated by 1 � M{N , where M is the

number of labelled patterns and N is the total number of patterns.

• Following the original algorithms, p in Pedrycz-97 and m in Zhang-04

and Li-08 are set to 2 and λ in Endo-09 is set to 1.

• At least one labelled pattern representing each cluster, is required for

the clustering to run properly (although semi-supervised algorithms

for incomplete labelled patterns already exist [11]).
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(a) Pedrycz-97 (b) Li-08

(c) Zhang-04 (d) Endo-09

Figure 3.1: Graph of percentage accuracy against % of labelled patterns.
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3.1.4 Results

Figure 3.1 (see Table 7.1 in the appendix on page 195) for more detailed

results) show the percentage of correct classifications produced by each

algorithm on different datasets. This is a preliminary experiment to get a

general understanding of ssFCM, where only one run is conducted for each

setting. Overall, Li-08 showed higher accuracy than the other algorithms,

achieving more than 80% correct classifications in seven out of ten datasets

with 4% of labelled patterns. With 4% of labelled patterns, it produced

similar results to Pedrycz-97 in the Wine dataset and Zhang-04 in the

WOBC dataset, but outperformed all in the XOR dataset. With 40%

labelled data, it produced nearly 100% correct classification in six out of ten

datasets. Pedrycz-97 achieved more than 80% correct classification in six

out of ten datasets with 6% labelled patterns, while Zhang-04 achieved this

with 15% labelled patterns and Endo-09 with 30% labelled patterns. Li-08

produced higher accuracy than Pedrycz-97 in most datasets, but Pedrycz-

97 produced higher accuracy than Li-08 in the PID dataset, where the

two classes greatly overlap, suggesting that Pedrycz-97 appears better at

dealing with clusters with unclear separation.

3.1.5 Discussion

The results of Pedrycz-97 and Li-08 are based on Fuzzy Mahalanobis dis-

tance metric, which measures similarity using the sum of squared errors and

the correlation with membership values of the patterns. The inverse covari-

ance matrix helps to normalise dimensions of different scales, preventing

dominance from dimensions with greater scales. Zhang et al. replaced

the Euclidean distance metric in FCM with a Gaussian kernel-induced

distance metric. The Gaussian kernel measures similarity by Kpx, yq �
expp�||x�y||2{σ2q, with the kernel width defined by the variance σ2. This

variance keeps the kernel value of patterns normalised. The idea behind
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kernel methods is their ability to solve non-linear problems by mapping

the input space into higher dimensional space (the ‘kernel trick’ [5]), which

is applied to distances [137]. Both Fuzzy Mahalanobis and kernel-based

distance metrics are competitive, each showing higher accuracy than the

other in different datasets with 2% of labelled patterns.

The ‘curse of dimensionality’ problem is apparent in the results pro-

duced by Endo-09 as the algorithm failed on Wine with 13 features and on

WDBC with 30 features. The Euclidean distance metric does not reflect

scale differences among dimensions in high-dimensional datasets. Dimen-

sions with smaller scales have less influence on the distance in the presence

of dimensions with larger scales. This results in distance values that are bi-

ased based on scales of the dimensions and this could decrease classification

accuracy. Furthermore, with increasing number of dimensions, distance in-

creases exponentially. This makes the Euclidean distance tricky to use in an

exponential function, derived from the Endo-09 objective function. Large

distance values yield a zero value in the exponential function of Endo-09

partition matrix update in Table 3.4, which in turn returns infinity. Hence,

the infinity problem arises in datasets with high dimensions, large scale dif-

ferences in dimensions and/or large scales in dimensions such as Wine-13,

PID-8, PID-6 and WDBC-30. When three dimensions (those with higher

scales) are removed from the Wine dataset, the accuracy drastically in-

creased, as shown in Table 7.1 found in the appendix on page 195. Du and

Urahama [42] tackled this problem using a parameter δ, which is computed

by the inverse sum of average distances with its nearest neighbours and

average distances with its furthest neighbours. They showed that their

proposed method outperformed semi-supervised kernel methods.

The algorithms did not always produce higher accuracy with datasets

that have more dimensions. For example, in Figure 3.1, Pedrycz-97, Li-08

and Zhang-04 produced higher accuracy for WOBC-2 than for WOBC-8.
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This is because some features have higher discrimination power than oth-

ers. Those with low discrimination power add more computational cost

and can deteriorate the classification results [85] because they do not pro-

vide useful information to discriminate between clusters. Benkhalifa and

Bensaid [14] applied feature selection to select subset of features with high

discrimination power into ssFCM to categorise text. Through the selection

of a subset of features, those that have high discrimination power can be

retained while others that deteriorate classification can be discarded.

All algorithms were able to cluster most of the non-linearly separable

datasets, achieving more than 80% correct classifications with at most 30%

labelled patterns, as shown in Table 7.1. Zhang-04 and Endo-09 achieved

less in the XOR dataset and none of the algorithms could achieve more than

80% classification accuracy with 40% labelled patterns in the PID datasets,

except for Pedrycz-97. According to Päivinen [117], the two classes in PID

are not well-separated, which makes it a challenge for the algorithms.

Interestingly and unexpectedly, increases in the number of labelled

patterns did not always increase classification accuracy, indicated by the

troughs in the graphs of Figure 3.1. This observation holds for all al-

gorithms except Pedrycz-97 in Wine-2 dataset with 8% to 10% labelled

patterns. Overall, there is still a general trend of increasing correct clas-

sifications with increase in labelled patterns. This may suggest that not

all labelled patterns are good candidates to guide clustering. The choice

of suitable labelled patterns, prior to clustering, lies in their features, their

initial membership values and the objective function of the algorithm. The

presence of labelled patterns that do not strongly belong to one class, but

have high membership values will hinder the clustering process, reducing

accuracy. The objective function of the algorithm must have some correc-

tive mechanism to handle such patterns, such as those established in [21].

The authors extended the objective function to include the relationship
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between classes and clusters, and parameterised the confidence in the ac-

curacy of data labels. The presence of labelled patterns with strong features

of a cluster helps give a solid definition of a class. The idea of manually

choosing suitable data patterns to be labelled data before they are used to

supervise clustering has been previously used in ssFCM learning [65].

Based on the results, Pedrycz-97 and Li-08 appear to perform most

favourably. However, this is not definitive as only one run is conducted.

Despite the many differences between four algorithms, the results gave a

general indication that ssFCMs can perform well on non-linearly separa-

ble data, often found in biomedical data. Furthermore, we conclude that

the number and scale of dimensions in the data set, distance metrics and

objective functions, together, affect clustering results. In addition, not all

labelled patterns were found good candidates for supervision.

3.2 Semi-supervised Fuzzy c-Means classification of

breast cancer: Investigating distance metrics

3.2.1 Background and motivation

Distance metrics are an important part of Fuzzy c-Means as they are used

to measure similarity between data patterns, which provide structural in-

formation in terms of the characteristics of data patterns relative to the

cluster. The degree of similarity can determine how strongly a data pattern

belong to a certain group. Euclidean, Mahalanobis, Fuzzy Mahalanobis and

Kernel-based distance metrics use different approaches to measure similar-

ity. They are chosen for investigation as they are popular distance metrics

in ssFCM [15, 121, 23, 148]. Hidden structural information can be uncov-

ered using suitable distance metrics that can improve classification results.

Semi-supervised Fuzzy c-Means is used as an automatic technique (post-

initialisation) to classify the NTBC dataset. Previously in [99], ssFCM with
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Fuzzy Mahalanobis was found to produce poor classification for NTBC.

This led to the exploration of different distance metrics to find one that

achieves good classification results. Experimental results from using ssFCM

with four different distance metrics Euclidean, Mahalanobis, Fuzzy Maha-

lanobis and Kernel-based are shown. The ssFCM algorithm Pedrycz-97 is

used because it has been shown from the work described in the previous

section to produce competitive results when compared with Li-08. More

importantly, Pedrycz-97 produced higher accuracy than Li-08 when classi-

fying the PID dataset which contain overlapping classes, also common in

biomedical datasets. In a separate study investigating initialisation tech-

niques with Li-08 (not included in the thesis), Li-08 was found to be more

reliant on the quality of the labels than Pedrycz-97. This is not considered

a favourable quality as poor quality labels may affect the results negatively.

For these reasons, Pedrycz-97 is chosen for further study.

3.2.2 Experimental methods

The NTBC is classified using ssFCM with Euclidean, Mahalanobis, Fuzzy

Mahalanobis and Kernel-based distances, with the purpose to explore how

able is ssFCM in finding the the six subgroups identified by Soria et al. [141].

Various amounts of labelled data are experimented with; 0%, 10%, 20%,

30%, 40%, 50% and 60% of the 663 classified data patterns. To select data

patterns to be labelled, random stratified sampling is applied across the

six classes. The experiment is run using each varying amount across 100

different sets of labelled data. The ssFCM setting is based on Pedrycz-

97 with the boolean matrix removed as its values are already represented

within the F matrix.

To initialise membership values in F, the selected labelled data patterns

belonging to their respective classes are given a membership of 0.9 and (1-

0.9)/(6-1)=0.02 for classes they do not belong to. The high 0.9 membership
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value is arbitrarily chosen to indicate a data pattern’s high possibility of

belonging to the class while a 0.02 value indicates otherwise. Unlabelled

data patterns have a membership value of 1{c � 0.1667 to indicate equal

possibility of belonging to the classes.

To determine the class of a data pattern xk, the class with the highest

membership value is chosen. To evaluate the accuracy of the algorithm,

the classes assigned by ssFCM to the 663 data patterns are then compared

with Soria’s classification [141] and the matches are counted and divided

by 663. An average is taken across 100 runs. This is the clustering setting.

The experiments are ran in a classification setting using 10-fold CV

where 90% of the 663 data patterns are training data and the remaining

10% is the test data. The algorithm is run 30 times on randomly selected

labelled data, across varying amount of labelled data; 0%, 10%, 20%, 30%,

40%, 50% and 60% of training data using the four distance metrics Eu-

clidean, Mahalanobis, Fuzzy Mahalanobis and kernel-based. The classifi-

cation result obtained from the training process is then used to initialise

the algorithm for the testing process. For evaluation, only matches from

test labels are counted and divided by the number of test data. An average

is subsequently taken across the 30 runs for all 10 folds. This average in-

dicates the agreement level of the solutions with Soria’s classification [141]

and is presented in terms of percentage. A 100% accuracy result is “opti-

mal” and means the solution completely matches with Soria’s classification.

Lower accuracy means less matches (similarity) with Soria’s classification.

Two evaluation settings have been used because in many ssFCM liter-

atures, experiments were run in a clustering setting, but evaluation con-

ducted in this setting is considered optimistic as it has not been tested

on unseen data. Hence, the cross validation technique is also used. For

completeness, results based on both evaluation settings are presented.

The solutions are presented using three different evaluation techniques
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discussed in Chapter 2.5, accuracy rate expressed in percentage (A), Cohen

Kappa Index denoted as κ and Normalised Mutual Index (NMI).

3.2.3 Results

Table 3.6 on page 69 shows the classification results in a clustering set-

ting using ssFCM with Euclidean, Mahalanobis, Fuzzy Mahalanobis and

kernel-based distances based on the average percentage of matching class

assignments with Soria’s classification [141] followed by � standard devi-

ation. ssFCM with Euclidean distance produced the highest average ac-

curacy, achieving 96.51% accuracy with 10% labelled data. With 50%

labelled data or more, almost complete agreement was achieved. This re-

sult is expected as the distance metric used in the clustering techniques by

Soria et al. [141] is the Euclidean distance.

Interestingly, higher accuracy was found using the Mahalanobis distance

when compared with the Fuzzy Mahalanobis distance. Fuzzy Mahalanobis

was found to produce the worst results in comparison with the other dis-

tance metrics on NTBC. To the best of our knowledge, such trend with

poorer accuracy using Fuzzy Mahalanobis than Mahalanobis distances has

never been reported, despite it being widely used in FCM and ssFCM.

At 0% labelled data, the classification results were very poor as the 1{c
initial membership was not useful for class discrimination. This caused all

data patterns to be assigned to the same class, as the membership remained

unchanged after classification. As κ penalises when there is no chance of

random agreement with all data patterns assigned to one class, κ becomes

zero. NMI fails when the algorithm fails to assign data patterns to all

classes, thus the NaN value.

Table 7.2 (on page 196 in the appendix) shows classification results

obtained from a classification setting using CV. In a clustering setting, the

classification results were observed to be more optimistic than in a CV set-
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Table 3.6: Accuracy of ssFCM using Euclidean (E), Mahalanobis(M), Fuzzy Mahalanobis (FM) and kernel-based (K) distances obtained in a
clustering setting. The distance metric with highest average accuracy, κ and NMI is indicated in italics, showing that Euclidean with ssFCM is
most suitable for NTBC.

DM1 ET2 0% 10% 20% 30% 40% 50% 60%

E
A3 30.47�0.46 96.51�1.32 97.74�0.68 98.41�0.53 98.73�0.43 99.05�0.45 99.24�0.29
κ 4 0 0.96�0.02 0.97�0.01 0.98�0.01 0.98�0.01 0.99�0.01 0.99�0.00

NMI5 NaN 0.91�0.02 0.94�0.02 0.95�0.01 0.96�0.01 0.97�0.01 0.98�0.01
M

A 30.47�0.46 77.45�2.49 85.89�1.66 89.68�1.21 92.54�0.99 94.24�0.92 95.68�0.74
κ 0 0.72�0.03 0.83�0.02 0.87�0.02 0.91�0.01 0.93�0.01 0.95�0.01

NMI NaN 0.55�0.04 0.68�0.03 0.75�0.02 0.81�0.02 0.85�0.02 0.88�0.02
FM

A 30.47�0.46 45.28�3.70 53.66�3.46 60.55�3.26 69.08�3.94 75.65�3.36 82.82�3.23
κ 0 0.29�0.03 0.40�0.04 0.50�0.04 0.61�0.05 0.69�0.04 0.78�0.04

NMI NaN 0.30�0.02 0.36�0.03 0.43�0.03 0.52�0.04 0.59�0.04 0.68�0.04
K

A 30.47�0.46 73.70�1.84 81.43�1.56 89.03 �1.20 92.66�0.98 94.85�0.77 96.40�0.55
κ 0 0.61�0.02 0.79�0.02 0.84�0.02 0.89�0.01 0.92�0.01 0.94�0.01

NMI NaN 0.51�0.03 0.68�0.02 0.73�0.02 0.80�0.02 0.85�0.02 0.89�0.01
1 Distance Metric
2 Evaluation Technique
3 Accuracy in percentage
4 Cohen’s Kappa Index
5 Normalised Mutual Index
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ting. Nevertheless, the trends in the results are similar with ssFCM with

Euclidean distance produced the highest average accuracy and ssFCM with

Fuzzy Mahalanobis distance the lowest. In the CV setting, ssFCM with

Fuzzy Mahalanobis did not assign data patterns to all classes in some runs,

resulting in NaN NMI output. These results have therefore been discarded.

Figure 3.2 on page 71 shows biplots of the classification results obtained

in a clustering setting. The grey points indicate the 413 not classified (n.c)

patients. The classification appears more scattered using the other dis-

tances as compared to Euclidean distance. For Fuzzy Mahalanobis dis-

tance, class 1 and 4 appear to dominate more than other classes. It is

clear from the biplots that the clusters found by Fuzzy Mahalanobis and

kernel-based are not those previously identified by Soria et al. [141].

3.2.4 Discussion

From the results in Tables 3.6 and 7.2, the choice in distance metrics was

demonstrated to greatly impact the accuracy of the classification results.

For instance, ssFCM with Euclidean distance produced the highest average

accuracy (similarity to Soria’s classification) when applied to the NTBC

dataset. However, the lowest results were found when employing Fuzzy

Mahalanobis distance.

Pedrycz and Waletzky’s ssFCM with Fuzzy Mahalanobis distance [121]

produced higher accuracy than with the original Mahalanobis distance for

UCI Iris dataset and XOR dataset. However, in a separate unpublished

study with five UCI datasets (Ionosphere, Page Blocks, Pima Indian Dia-

betes (PID), Wine and Wisconsin Original Breast Cancer (WOBC)), Fuzzy

Mahalanobis distance was found to perform less favourably than Maha-

lanobis distance for PID, Wine and WOBC datasets, suggesting that Fuzzy

Mahalanobis distance does not always produce favourable results than the

original Mahalanobis distance for all datasets.
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(a) Soria’s classification [141]
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(e) Kernel-based

Figure 3.2: Accuracy of various distance metrics on ssFCM with 10% labelled
data in a clustering setting.
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In another unpublished study, the same experiments were rerun with the

five UCI datasets normalised. Euclidean distance was expected to produce

the highest accuracy since the datasets were normalised to the same scale

for all datasets. Different distance metrics with ssFCM, however, were

found to produce best results for different datasets. It is, thus, crucial to

experiment with several distance metrics to find one that best represent the

dataset, be it normalised or not. Furthermore, Duda et al. [43] warned of

the dangers of imposing a fixed structure instead of finding it when making

a choice on distance metrics.

Without labelled data, the results were significantly poorer. ssFCM as-

signed all data patterns to one class. The significantly poor results without

labelled data was consistent with the findings by Soria et al. [141], where the

authors reported that poor clustering results were obtained using FCM (an

equivalent of ssFCM without labelled data). The significant improvement

by using just 10% labelled data is a strong indication that semi-supervised

learning can play an important role, even when only a small percentage of

the data is labelled. In another study [99], FCM using random initialisation

and Euclidean distance (with manual class assignments via visual inspec-

tion) achieved only 67.97% accuracy as compared to 96.51% using ssFCM

with 10% labelled data. The 1{c membership initialisation for the entire

partition matrix in experiments with 0% labelled data in [100] provided

a very inaccurate contribution from the data patterns into computing the

cluster centres. In addition, the clusters found using 0% labelled data are

not matched (aligned) to Soria’s classification [141] automatically, which is

another reason for poor results. The clusters found have to be manually

aligned with Soria’s classes before matching them with his classification to

calculate clusters’ agreement.

NMI fails when at least one class does not contain any patterns. As

there was limited test data (of 66 or 67 patients) to be classified in six
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classes, the disagreements become more exaggerated using NMI and κ.

Results from ssFCM with Euclidean distance evaluated using accuracy, κ

and NMI are not exceedingly different. This study confirmed the use of Eu-

clidean distance in ssFCM for the proceeding investigations as it produced

the highest average accuracy for NTBC. Moreover, the most suitable algo-

rithm can be determined using any of the three evaluation techniques. For

these reasons, investigations on classification NTBC are evaluated based

on accuracy in a 10-fold CV setting unless stated otherwise.

3.3 Comparisons of ssFCM with other classifiers for

breast cancer classification

3.3.1 Background and motivation

Previously, ssFCM with Euclidean distance was shown to produce accuracy

of above 90% using 10% labelled data for the NTBC dataset. In this

section, the objective is to determine whether ssFCM is a good technique

for classifying the NTBC dataset. To do this, popular supervised and

semi-supervised learning techniques are applied for classifying the NTBC

dataset and their results are compared to ascertain how relatively well the

techniques preserve the main clinical groups and ideally identify the same

subgroups as those identified by Soria et al. In so doing, ssFCM can be

demonstrated as a good choice for classifying the NTBC dataset and further

investigations in line with our research objectives can be carried out.

3.3.2 Selected algorithms

In this section, the algorithms selected for comparison are briefly reviewed.

Due to their popularity or their characteristics suitable for application on

the NTBC, these algorithms are selected.
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k-Nearest Neighbours

k-Nearest Neighbour (KNN) is one of the most fundamental and simple

classification methods. For this reason, it should be one of the first choices

of classification methods [125]. Its non-parametric nature means that it

makes no assumption about the data distribution. It classifies objects based

on majority vote of its closest data patterns (neighbours), where k is the

number of nearest neighbours. The neighbours are determined by a chosen

distance metric, which defines the similarity measure. For a query data

pattern xq to be classified, the nearest k neighbours of xq are computed

and the class represented by the majority of the neighbours is returned.

Care has to be taken in choosing a suitable k value. Larger values of k

reduce the effect of noise, but can make class boundaries less distinct.

C5.0

C5.0 is an improved version of C4.5 [126], both of which generate decision

trees for classification using tree induction methods. While the improve-

ments in C5.0 are documented in [127], the details of the extension remain

largely undocumented. Thus, the overall idea which is based on the C4.5

algorithm is explained instead.

Given a set of training data, S � s1, s2, ..., sn where each sample si

consist of p-dimensional vector px1,i, x2,i, ..., xp,iq, xj represents features of

the sample as well as which class si belongs to. Based on the normalised

information gain as a splitting criterion, the most effective attribute at each

node of the tree is chosen to split the data into subsets which represent the

classes. The algorithm is recursive and moves on to smaller subsets.

Random Forests

Random forests [27] construct a combination of classification (decision)

trees during training. To classify a new data pattern, an input vector is
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classified by each tree and the class with the most votes is selected. Each

tree is constructed as follows:

1. Let the number of training cases be N and the number of variables be

M . The training set is selected by choosing n times with replacement

from all N training cases, i.e choosing any training case from the

population more than once.

2. At each node, m variables out of M are randomly selected such that

m   M . To split the node, the best split based on the m variables

is used. The best split can be calculated using an impurity measure

such as information gain.

3. Each tree is fully grown and no pruning is performed.

Naive Bayes

The Naive Bayes is a probabilistic classification technique based on Bayes’

theorem and assumes independence between features. Consider a super-

vised learning problem where the aim is to find f : X ñ Y , or equivalently

P pY |Xq where X is a vector with features X1...Xn and Y its corresponding

class labels. One way to learn P pY |Xq is to use labelled data to estimate

P pX|Y q and P pY q. These estimates, with Bayes rule, can be used to find

P pY |X � xkq for a new data pattern xk. The aim is to train a classifier to

output the probability distribution over possible values of Y for each new

data pattern X . Assuming that Xi are conditionally independent given Y ,

and Y takes on its kth possible value, the fundamental equation for Naive

Bayes is expressed as:

P pY � yk|X1...Xnq � P pY � ykq±i P pXi|Y � ykq°
j P pY � yjq±i P pXi|Y � yjq (3.1)
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where X has n conditionally independent features given Y, expressed as:

P pX1...Xn|Y q � n¹
i�1

P pXi|Y q (3.2)

Generalised Linear Models with Elastic Nets

Friedman et al. [55] developed fast algorithms to estimate generalised lin-

ear models including multinomial regression problems with convex penalties

such as the lasso (ℓ1) [151] and ridge regression (ℓ2) [80]. These Generalised

Linear Models with Elastic Nets (GLMNET) algorithms use cyclical coor-

dinate descent, which is computed along a regularisation path. The idea of

GLMNET is to solve the lasso problem using coordinate descent. This is

done by optimising each parameters separately and holding all of the rest

fixed. This procedure is cycled until the coefficients stabilise.

Given a response variable (class labels) Y P R and a predictor vec-

tor X P R
p, the regression function is approximated using a linear model

EpY |X � xq � β0 � xTβ, there are N observation pairs pxi, yiq and xi is

a vector containing xij for j � 1, ..., p. The elastic net solves the following

problem:

minpβ0,βqPRp�1

�
1

2N

Ņ

i�1

pyi � β0 � xT
i βq2 � λPαpβq� , (3.3)

where
Pαpβq � p1� αq1

2
||β||2ℓ2 � α||β||ℓ1 (3.4)� p̧

j�1

�
1

2
p1� αqβ2

j � α|βj|� (3.5)

To solve (3.3), coordinate descent step is used such that estimates β̃0 and

β̃l for l � j and (3.3) are partially optimised with respect to βj .

Neural Networks

Neural networks (refers to artificial neural networks) are generally biologically-

inspired, adaptive systems which change their structure based on inputs
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and connections of the networks. They are made up of inter-connections

between neurons located in different layers of each system. Feed-forward

neural networks with a single hidden layer [133, 134], for instance, aim

to learn the weights of interconnections wi so that fpxq � Kp°i wigipxqq
where K is the activation function which compute a neuron’s output acti-

vation based on its weighted input and gipxq are a collection of functions.

By learning the weights, the algorithm can find a function f : X Ñ Y

where X is a data pattern represented by a vector and Y its class label.

Learning Vector Quantisation

Learning Vector Quantisation (LVQ) [93] is a supervised form of vector

quantisation and is a prototype-based classification algorithm. Built using

a self organizing map [92], with a winner-take-all approach, it aims to find a

set of prototypes (weights), wj that best represent each class using training

input vectors, x. The idea is to shift the Voronoi cell boundaries to achieve

better classification. The weight vector wj is updated by checking the input

classes against the Voronoi cell classes as follows:

1. If input x and weight wIpxq (where j � Ipxq is the winning output

neuron) have the same class label, then update the new weight vector

as wIpxq1 � wIpxq�αpx�wIpxqq to move w towards x. The class labels

of the output neurons are preassigned. The winning output neuron

is the one with weight vector wj�Ipxq closest to x, where the distance

used is Euclidean.

2. If x and wIpxq have different class labels, w is moved away from x

such that w1
Ipxq � wIpxq � αpx�wIpxqq,

where α is a learning rate that decreases at each iteration. The algorithm

stops when the learning rate reaches a threshold value.
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Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is often referred to as the Fisher’s

linear discriminant [52]. Its objective is to maximise class separability

by maximising the difference between the means, normalised by measure

of within-class scatter. The separation between the two distributions is

defined as the ratio of the variance between the classes to the variance

within the classes:

S � σ2
between

σ2
within

� pw � µ2 � w � µ1q2
wTΣ2w � wTΣ1w

� w � pµ2 � µ1qq2
wT pΣ1 � Σ2qw (3.6)

where µ1 and µ2 are the means of the two classes and their covariances are

Σ1 and Σ2. The linear combination of features w � x has means w � µi and

covariances wT � Σiw for i � 1, 2. The maximum separation can be shown

to occur when w � pΣ1 � Σ2q�1 pµ2 � µ1q.
Mixture Discriminant Analysis

Mixture Discriminant Analysis (MDA) [74] is a classification method based

on mixture models. It is an extension of LDA, aimed at improving LDA’s

restriction of linear boundaries which models a class using a single Gaus-

sian. Instead, a class can be represented using a mixture of Gaussians and

non-linear boundaries. The overall model is expressed as:

P pX,G � jq � Ŗ

r�1

πrφpX ;µr,ΣqPrpjq. (3.7)

The model is a mixture of joint-densities PrpX,Gq with R shared mix-

ture components where the rth mixture density has prior probability πr for

class j such that
°R

r�1
πr � 1 and Prpjq is the prior probability of class j.

φ is the multivariate Gaussian density function with parameters µr as its

mean and Σ as its covariance. The EM algorithm is used to estimate πr,

µr and Σ.



CHAPTER 3. PRELIMINARY STUDIES 79

High Dimensional Discriminant Analysis

The High Dimensional Discriminant Analysis (HDDA) [24] estimates spe-

cific subspaces within the data and the intrinsic dimension of these classes.

Thus, HDDA reduces the dimension for each class independently and per-

forms regularisation of class conditional covariance matrices to adapt the

Gaussian framework to high dimensional data. HDDA is based on the as-

sumption that high dimensional data exist in different subspaces with low

dimensionality. The idea is to work in class subspaces with lower dimen-

sionality, assuming the classes are spherical in these subspaces.

Kernel Support Vector Machines

The optimal hyperplane algorithm was originally a linear classifier intro-

duced by Vapnik [36]. To create non-linear classifiers, Boser et al. [20]

applied the “kernel trick” [5] to maximum-margin hyperplanes. The dot

product xzi,xy is replaced by a non-linear kernel function resulting in the

output for Kernel Support Vector Machines (KSVM) as follows:

F pxq � Ņ

i�1

wikpzi,xq � b (3.8)

where z1, z2, ..., zN are support vectors and w1, w2, ..., wN are weights. The

kernel trick allows kernel functions to map input vectors to a higher dimen-

sional space, useful for solving non-linear problems.

Transductive Support Vector Machines

The transductive SVM (TSVM) [87] is an extended technique of SVM.

TSVM depends on the construction of the classification hyper-plane by in-

ductive learning on labelled training samples, and getting the discriminate

function value for each unlabelled samples, following the discriminate func-

tion, fpxq � w0 �x�b0. By using current labelled samples, TSVM gets the

current split-plane and the discriminate function described previously, and
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calculates all current discriminate function values of the unlabelled sam-

ples [31]. The 2-norm for TSVM is methodically adopted. The standard

setting can be illustrated as:

Minimize over pY�
1 , ...,Y

�
k ,w, b, ξ1, ..., ξm, ξ

�
1 q

1

2
||w||22�C

m̧

i�1

ξi �C� ķ

j�1

ξ�j
Subject to:�mi�1 : Yi

�
wTØ pz � xiq1 � b

� ¥ 1� ξi, ξi ¥ 0�kj�1 : Y
�
j

�
wTØ

�
z � x�

j

�1 � b
	 ¥ 1� ξ�j , ξ�j ¥ 0 (3.9)

where Y�
j is the unknown label for x�

j which is one of the k unlabelled

samples, (3.9) takes the unlabelled data into consideration, by representing

the violation terms ξ�j caused by forecasting each unlabelled pattern Ø
�
x�
j

�
into Y�

j . The penalty to these violation terms is controlled by new constant

C� with unlabelled samples whileC consist of labelled samples only [86, 30].

Precisely solving the transductive problem involves searching all poten-

tial assignments of Y�
1 , ...,Y

�
k and identifying various terms of ξ� which is

regularly intractable for big data sets.

3.3.3 Experimental methods

Using 10-fold CV with 90% training data and 10% test data, the highest

results from ssFCM (with the most suitable distance metric) are compared

with other classifiers GLMNET, C5.0, LDA, HDDA, KNN, NNET, NB,

MDA, KSVM, RF, LVQ and TSVM. For TSVM, the experimental set-up

is similar to ssFCM where various amount of labelled data, 10% to 90% of

labelled data are chosen from training data.

TSVM is implemented in the SVMLight [4, 58]. The train function

in the caret R package [96] is used to implement the other classification
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Table 3.7: Accuracy comparison of Euclidean ssFCM (with 10% and 90% la-
belled data) with other classifiers.

ssFCM10 ssFCM90 GLMNET C5.0 LDA

96.12�2.04 97.80�1.49 96.50�3.07 86.42�6.06 95.17�1.57
HDDA KNN NNET NB MDA

93.97�1.72 94.58�3.02 59.90�11.69 80.56�5.95 94.27�2.84
KSVM RF LVQ TSVM10[79] TSVM90[79]

94.29�3.06 95.79�2.51 95.18�2.33 88.09�2.88 99.61�0.59
techniques, with default parameter settings based on the package. Thus,

no tuning parameters have been set apart from the number of classes. The

NNET used is a feed-forward single-hidden layer neural network.

A 100% accuracy result is “optimal” and means the solution completely

matches with Soria’s classification. Lower accuracy means less matches

(similarity) with Soria’s classification.

3.3.4 Results

Table 3.7 shows the accuracy of classification using the selected techniques

previously described. Apart from C5.0, NNET, NB and TSVM with 10%

labelled data, the other techniques performed competitively well on NTBC,

with accuracy of above 90%. GLMNET, LDA, RF and TSVM with 60%

labelled data, in particular, have achieved above 95% accuracy. ssFCM

with only 10% of labelled data produced one of highest matching results

to Soria’s classification.

Table 3.8 shows the accuracy comparison between Euclidean ssFCM

and TSVM using 10% labelled data to 90% labelled data. ssFCM was

observed to produce higher accuracy than TSVM at low amounts of labelled

data between 10% to 40%. For some runs, ssFCM was able to achieve a

maximum accuracy of 100% even with only 10% labelled data. However,

at 75% to 90% of labelled data, TSVM outperformed ssFCM. At 90% of

labelled data, TSVM achieved an average accuracy of 99.61% while ssFCM

achieved an average accuracy of 97.80%.
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Table 3.8: Accuracy comparison between Euclidean ssFCM and TSVM [79].

ssFCM 10 20 30 40 50 60 70 80 90

average 96.12 96.86 97.22 97.54 97.43 97.84 97.81 97.85 97.80

st.dev 2.05 1.94 1.78 1.62 1.64 1.53 1.53 1.52 1.49

TSVM [79] 10 20 30 40 50 60 70 80 90

average 88.09 91.33 96.01 96.41 97.36 97.71 98.06 98.90 99.61

st.dev 2.88 2.81 3.14 0.69 1.31 1.67 1.51 0.90 0.59

3.3.5 Discussion

Mitchell [114] explained that when using NB for continuous inputs, the

variable inputs are assumed to follow a Gaussian distribution. Due to this

assumption, NB was found to performed poorly on the NTBC dataset as the

feature values are highly non-normal. Interestingly, both MDA and KSVM

under non-linear settings have been slightly outperformed by LDA with

linear boundaries restriction. Perhaps, LDA had found good compromised

boundaries to provide a more generalised classification (less overfitting) for

the dataset as compared to more exacting boundaries of MDA and KSVM.

TSVM (with 60% of labelled data) outperformed KSVM (with 90% la-

belled data) despite TSVM having lesser labelled data than KSVM, show-

ing that a semi-supervised approach is favoured for classifying NTBC. Fur-

thermore, TSVM produces non-linear boundaries like MDA and KSVM.

C5.0 did not perform as well in comparison with the other classifiers stud-

ied. However, decision-tree-based RF performed well on the NTBC. This

suggests that having a voting system within a forest of decision trees such

as in RF improved classification for decision-tree-based classifiers. The sin-

gle hidden layer, the size of the hidden layer and random initialisations in

NNET may have caused the poor classification. Furthermore, default set-

tings were used without any regularisation, which could explain the poor

performance. More tuning and experimentation are therefore required to
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optimise the solution. On the contrary, LVQ, a special case of neural net-

works, is guided by prototypes in the competitive layer and this has pro-

duced high accuracy.

A comparison between ssFCM and TSVM showed that TSVM achieved

higher average accuracy at an almost completely supervised setting since

TSVM outperformed ssFCM when using 70% or more labelled data. ss-

FCM, on the contrary, outperformed TSVM significantly using only 10%

labelled data. The two techniques have the advantage at two different sit-

uations, ssFCM when availability of labelled data is low and TSVM when

availability is high. The Euclidean distance in ssFCM may have confined

data into hyperspherical clusters whose shapes stabilised at 60% labelled

data while TSVM continued to evolve the non-linear hyperplanes to pro-

duce good margins to separate between classes using more labelled data.

3.4 Summary

As preliminary investigative work in ssFCM, this study was aimed at in-

vestigating some existing distance-based semi-supervised Fuzzy c-Means

algorithms running on popular datasets to determine the common issues

that affect the clustering performance in ssFCM. The classification results

of four such algorithms, i.e, Pedrycz-97, Li-08, Zhang-04 and Endo-09, with

1{c initial membership value of unlabelled patterns, were compared. Based

on experimental results, issues such as scale differences of dimensions in the

data set, distance metrics, objective functions and quality of labelled pat-

terns were found to affect the classification results. Furtheremore, Fuzzy

Mahalanobis distance was observed to produce a more favourable perfor-

mance than Gaussian kernel-based distance, and that the Euclidean dis-

tance metric performed least well, on the selected data sets.

Despite arbitrarily selected features for experimentation, some algo-

rithms achieved higher accuracy on dataset with lesser features than the
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original number. An investigation using systematic feature selection with

ssFCM can therefore help determine if classification results can be improved

with less number of features. This is useful because the removal of features

with less discriminating power may actually improve classification and re-

duce data collection and processing time with less number of features.

Algorithms that can achieve very high percentage of correct classifi-

cations with few labelled patterns are desirable. Also, the percentage of

correct classifications should increase with increasing percentage of labelled

patterns since more examples are available to guide the clustering. It was

observed that increases in the number of labelled patterns did not always

increase classification accuracy, which suggests that not all labelled pat-

terns are good candidates to guide clustering. Some labelled patterns with

poor discriminating power, when used in some algorithms, can negatively

impact on classification results. The choice of suitable labelled patterns,

prior to clustering, lies in their features, their initial membership values

and the objective function of the algorithm.

Using Euclidean ssFCM, accuracy of near 100% could be achieved using

only 10% labelled data on the NTBC dataset. Thus, the same breast cancer

classes as those previously found by Soria et al. have been successfully

identified and with a high level of accuracy using ssFCM with Euclidean

distance. The ssFCM with Fuzzy Mahalanobis distance was found not

to always produce the most favourable results for some datasets. More

importantly, the accuracy can be greatly improved when a suitable distance

metric is used. It is thus crucial to investigate the various distance metrics

to identify the distance metric best suited for the dataset.

The NTBC dataset was classified using various popular classifiers and

the classification accuracies were compared between them and ssFCM. ss-

FCM was found to produce one of the highest results (indicating high sim-

ilarity to Soria’s classification), even when using only 10% labelled data,
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making it a suitable technique for classifying the NTBC dataset. Other

classifiers such as RF, GLMNET, LVQ and LDA have also produced com-

petitive results. It was observed that classification accuracy stabilised at

60% labelled data for ssFCM while it continued to increase for TSVM with

more labelled data, indicating that ssFCM performs most favourably where

labelled data are scarce while TSVM reaches near optimal performance at

near completely supervised setting for the NTBC.
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4 Approaches For Improving ssFCM

In this chapter, three approaches for improving ssFCM are investigated;

initialisation, feature selection and adjustment of scaling parameter α.

4.1 Initialisation techniques

4.1.1 Background and motivation

Fuzzy clustering algorithms are initialised by either supplying initial mem-

bership values or initial cluster centres (step 1 or 2 respectively of ssFCM

algorithm in Chapter 2.4.1). The initialisation of membership values in-

volves the assignment of membership values to data patterns. Whereas, the

initialisation of cluster centres involves assigning vectors to be representa-

tives of clusters. Traditionally, a number of clustering runs are conducted

with different sets of randomly initialised cluster centres or membership

values. Cluster validity indices such as Dunn index [45] or Davies-Bouldin

index [40] are then used to evaluate the clusters from these runs. The fi-

nal cluster centres or membership values that produce the best evaluation

scores are selected as the clustering solution. As the results produced by

the fuzzy clustering algorithms vary with different initialisations, they are

regarded as sensitive to initialisation.

In ssFCM, membership values can be initialised using available labelled

data patterns instead of using random initial membership values. Some-

times, poor initial membership values may be introduced which can nega-

tively affect classification results. Initialisation techniques have been pro-

posed to give clustering algorithms a good start and to produce favourable

results [33]. Yager and Filev proposed the mountain method [164], which

finds initial prototypes based on potential values of grid points. The po-

87
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tential values are calculated from grid points to data pattern distances.

As potential values of every grid points have to be calculated, the moun-

tain method is known to be computationally expensive. To counter this,

Chiu [32] proposed a prototype estimation technique based on potential

values of data patterns within a specified radius. While much of the ini-

tialisation research in clustering have been focused on K-means [25, 78],

little literature is found on initialisation techniques in ssFCM algorithms.

In this section, the effect of initialisation techniques on classification ac-

curacy of the ssFCM algorithm proposed by Pedrycz and Waletzky [121] is

investigated. By using initialisation techniques, the unsupervised-generated

cluster centres, in addition to labelled data, can be used as additional su-

pervision to improve classification accuracy. Application of initialisation

techniques in Fuzzy clustering using cluster estimation (CE) by Chiu [32]

was conducted by Liu et al. [104] and have produced favourable results.

However, this has not been applied in ssFCM algorithms. The objectives

of this study are of two-folds. Firstly, to investigate the effect of initialisa-

tion techniques on ssFCM classification of the UCI datasets and secondly,

to apply this approach on real-world biomedical data, the NTBC dataset,

to improve ssFCM classification results.

4.1.2 Experimental methods

Prior to running ssFCM, an initialisation technique is used to find the

initial cluster centres V0 for the entire dataset as illustrated on Figure 4.1.

F is the supervision matrix, U0 is the initial membership matrix, U1 is the
final membership matrix (partition matrix) and UUL is the membership

matrix of unlabelled data. The initial clusters replace step 2 of the ssFCM

algorithm for the first iteration on page 28. This means that instead of

using the labelled data to calculate the initial cluster centre as in (2.20) on

page 28, an initialisation technique that is external of ssFCM is used on
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Figure 4.1: ssFCM framework with initialisation techniques

the entire dataset to find the initial cluster centres, to give a good start to

the algorithm, aiming to improve accuracy. The initialisation techniques

selected for investigation are CE, SCS and KKZ (described in Chapter 2.6).

As a preliminary study, three different initialisation techniques with ss-

FCM are explored on three popular UCI datasets, Iris, Wine and Pima

Indian Diabetes (PID) in a clustering setting. The specifications for these

datasets can be found in Table 3.5 on page 58. Varying amounts of la-

belled data (10%, 20%,30%,40%, 50% and 60% of the total number of data

patterns) are used. Labelled data are chosen randomly using stratified

sampling and 30 runs are conducted. The three initialisation techniques

with ssFCM are subsequently applied on the NTBC dataset using 10-fold

CV where varying amounts of labelled data are chosen from the training

data. The framework using cross-validation is illustrated in Figure 4.1.

The cluster centres generated by the initialisation technique are used in

both the training and testing stage. Accuracy is expressed in percentage of

the amount of matching class labels over total number labels. For NTBC,

a 100% accuracy result is “optimal” and means the solution completely

matches with Soria’s classification. Lower accuracy means less matches

(similarity) with Soria’s classification.



90 4.1. INITIALISATION TECHNIQUES

The initial cluster centres and final cluster centres after ssFCM con-

verges are presented on a 2-dimensional biplot for further analysis. The

biplot is based on the first two principal components obtained from running

Principal Component Analysis (PCA) on the dataset. No PCA components

are used in the actual classification.

4.1.3 Results

From Table 4.1, some of the initialisation techniques were found to increase

the average accuracy of ssFCM on the UCI datasets. For Iris, results of

ssFCM with KKZ and CE shows increase in average accuracy when com-

pared with ssFCM. For Wine, results of ssFCM with KKZ shows increase in

average accuracy when compared with ssFCM. For PID, average accuracy

increased using SCS with ssFCM. Increase in average accuracy was found

particularly when using initialisation technique with ssFCM on datasets

with low amount of labelled data at 10%.

Table 4.2 shows the classification result of ssFCM using Euclidean dis-

tance with initialisation techniques SCS, KKZ and CE on NTBC. Using

KKZ, ssFCM was found to produced higher average accuracy results, es-

pecially when availability of labelled data is low, as shown in Table 4.2.

At higher availability of labelled data, although the average accuracy in-

creased slightly, this slight increase in average accuracy is still considered

important for prediction of breast cancer subgroups.

Figure 4.2 on page 92 shows the (cluster) centres generated by SCS,

KKZ and CE denoted by N and the centres after ssFCM iterations de-

noted by �. KKZ appears to generate centres at the edge of the clusters.

The centres by SCS appear to mostly locate on the left side of the biplot.

This was also observed with CE. Despite the centres having a larger con-

centration on the left side of the biplot, ssFCM was able to converge with

the final centres near the actual centres.
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Table 4.1: Accuracy of Fuzzy Mahalanobis ssFCM and initialisation techniques SCS, KKZ and CE on the UCI datasets. Where there is increase
in average accuracy using initialisation techniques, the results are indicated in italics.

10% 20% 30% 40% 50% 60%
Iris
FM-ssFCM 90.98�9.51 95.24�2.91 97.09�1.19 98.20�0.86 98.42�0.90 98.96�0.52
FM-SCS 92.40�7.34 95.47�2.04 96.73�1.68 97.96�1.06 98.20�1.12 98.87�0.56
FM-KKZ 92.42�11.31 97.36�0.73 97.93�0.75 98.51�0.62 98.69�0.73 99.00�0.49
FM-CE 95.09�2.58 95.78�2.19 97.13�1.30 98.24�0.88 98.47�0.91 98.98�0.52
Wine
FM-ssFCM 88.15�5.45 92.64�3.73 94.57�1.70 96.14�1.42 97.06�1.09 98.03�0.96
FM-SCS 90.88�3.16 93.78�2.26 94.83�1.75 96.12�1.47 97.10�1.03 98.11�0.96
FM-KKZ 89.29�5.51 93.46�3.15 95.02�1.72 96.46�1.29 97.28�1.02 98.26�0.91
FM-CE 88.37�4.74 92.77�3.62 94.98�1.89 96.10�2.10 97.28�1.03 98.01�0.99
Pima Indian Diabetes
FM-ssFCM 62.90�5.96 71.86�2.83 77.87�2.33 82.63�1.68 86.22�0.96 89.18�0.86
FM-SCS 63.73�5.73 72.04�2.48 77.64�2.51 82.72�1.63 86.26�0.93 89.32�0.87
FM-KKZ 59.54�6.33 69.61�3.88 75.83�2.16 81.68�1.69 86.04�0.98 88.75�1.12
FM-CE 62.46�4.76 71.68�3.85 76.93�2.14 82.01�1.49 86.04�0.96 88.90�0.89

Table 4.2: Accuracy of ssFCM using Euclidean (E) distance and initialisation techniques SCS, KKZ and CE on NTBC. Where there is increase in
average accuracy using initialisation techniques, the results are indicated in italics.

Dist. 10% 20% 30% 40% 50% 60%
E 96.12�2.04 96.86�1.94 97.22�1.77 97.54�1.61 97.64�1.55 97.84�1.53
E-SCS 96.38�1.96 96.94�1.85 97.24�1.76 97.55�1.58 97.61�1.52 97.77�1.54
E-KKZ 96.50�1.95 97.06�1.86 97.43�1.72 97.63�1.57 97.73�1.50 97.85�1.51
E-CE 95.87�2.04 96.69�1.94 97.04�1.81 97.40�1.64 97.46�1.60 97.77�1.59
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Figure 4.2: Cluster centres generated by initialisation techniques denoted by
triangles (N) and found by initialisation techniques with ssFCM (with 10% la-
belled data) denoted by squares (�). The coloured data patterns are based on
Soria’s classification to show where the clusters are.

4.1.4 Discussion

Using ssFCM with initialisation techniques, an increase in average accuracy

was found on the UCI datasets and on NTBC. In general, increase in aver-

age accuracy was found where amount of labelled data is less, which sug-

gests that initialisation techniques can help increase ssFCM accuracy where

labelled data are scarce. This is important as the initialisation techniques

are able to recommend data patterns that are potentially good representa-

tives of the clusters when labelled data are few. Although the increase in

accuracy may be considered slight, this is considered important especially

when the application focus is on biomedical data, such as the NTBC.

The biplot analysis of the cluster centres revealed that KKZ generates
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initial clusters at the edge of potential clusters, which is an advantage as

they can become cluster prototypes for the nearest clusters. This explains

their higher accuracy as compared to SCS and CE for a majority of the

datasets. SCS depends on the ordering of data patterns and the ρ threshold

to determine cluster centres. If ρ is too large, no cluster centre can be found.

On the other hand, if ρ is too small, the cluster centres will be near each

other, which explains a higher concentration of cluster centres at the left

side of the biplot in Figure 4.2(a). The r parameters in CE becomes tricky

to set as ”neighbourhoods” are not clearly defined with overlapping clusters

and suffers similar problems with SCS with smaller neighbourhoods.

One could argue that the use of initialisation techniques, originally

meant for clustering, for classification is not suitable as it carries no logical

structure between cluster centre and class labels. Perhaps, the nature of

KKZ in identifying initial cluster at the cluster edge makes it ideal to be

applied in a classification environment using a clustering algorithm where

each cluster represents a class. KKZ gives it that flexibility for a cluster

centre to belong to any of the adjacent clusters, which has brought about

an increase in average accuracy to the current ssFCM setting for the clas-

sification of NTBC.

4.2 Feature selection

4.2.1 Background and motivation

One motivation for this work is to “reproduce” Soria’s classification using

one clustering method. The long term goal of this chapter is to produce a

clinically useful classification using as few features (biomarkers) as possible.

Using only important features may not only improve classification accuracy,

but also saves time, effort and expense in running clinical tests to obtain

the measurable data.
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Consequently, the objectives of this work are to three-fold. Firstly,

to achieve high classification accuracy using ssFCM and feature selection.

Secondly, for clinical interests, the hope is to identify important features for

this dataset, reducing the number of features from 25 to a number where

increase in ssFCM accuracy can be obtained. Model fitting and stability

of selected features are also investigated. Thirdly, to show that improved

accuracy can be achieved on other datasets as well, by experimenting on

three UCI datasets; Arrhythmia, Cardiotocography and Yeast.

The approach in this chapter is based on a combination of two ap-

proaches by Benkhalifa and Bensaid [14] and by Park and Yae [120]. A

feature selection technique is first used to select important features. Next,

ssFCM is run with the selected features to investigate classification accu-

racy and evaluate the selected features. The ssFCM-based feature selection

methodology is different because the selected features are evaluated based

on the highest ssFCM classification results obtained from running ssFCM

with varying amount of labelled data, 10% to 60% labelled data. By having

this variation in labelled data, the hope is to pick out important features

that could achieve high accuracy even with little labelled data.

4.2.2 Experimental methods

The classification methodology is made up of three main processes and is

illustrated in Figure 4.3:

1. Feature selection: Labelled data from training set are used by a fea-

ture selection algorithm to find the important features.

2. ssFCM training

(a) Train with the selected features are used.

(b) F and U0 are initialised based on labelled data.
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Figure 4.3: Methodology using feature selection to improve ssFCM classification

(c) The ssFCM algorithm is run. The output is the partition matrix

from the last iteration, U1.
(d) The training accuracy is then evaluated.

3. ssFCM testing/ prediction

(a) The train and test data with selected features are combined.

(b) F is now made up of output from training and membership

matrix of unlabelled testing data UUL. The initial partition

matrix U0=F.

(c) ssFCM is run and the output U1 obtained.
(d) The classification accuracy is then evaluated.

A data pattern is classified based on the highest membership value it

has to a class. These class assignments are then compared with known class

labels, for instance, in the case of NTBC , classifications by Soria et al. [141],

and the number of matches are counted.
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So far, important feature set based on different labelled data for each

run is identified. To identify important features for the dataset, feature sets

from the best performing ssFCM-feature selection methodology are chosen.

In this case, the methodology should achieve highest average accuracy and

stability with nf number of selected features.

Stability measures have been used as evaluation of feature selection

techniques. If a feature selection technique consistently selects the same

features, it builds confidence in the importance of selected features.

To calculate stability, the stability measure by Kalousis et al. in (2.28)

is used. Next, scores based on the frequency and rank of selected features

that achieved 100% are generated in (4.1) and the selected features are

ranked according to these scores. The best nf number of selected features

will be chosen as the important features.

Given the frequency freqr of feature f with rank r, the score for each

feature is calculated as follows:

scoref � nf̧

r�1

freqr � pnf � 1� rq (4.1)

In short, the methodology used in this study bases its selection process

by investigating in various distance metrics (results not shown) and feature

selection techniques. The feature selection techniques being investigated

are CFS, NB-RFE, RF-RFE and SVM-RFE (which have been reviewed

in Chapter 2.7). Furthermore, the features that give the highest average

accuracy results were selected from those first selected by feature selection

techniques. This means that ssFCM did not have to permute through all

the combinations of 25 features to search for important features for each

run. For NTBC, we experimented with 10, 15 and 17 features. One reason

for choosing 10 features is that an earlier work by Soria et al. [140] has used

this number. Furthermore, without arbitrarily specifying the number of

features, different feature selection techniques will choose different number
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Table 4.3: UCI dataset specifications showing number of data patterns (N),
number of dimensions (n) and number of classes (c)

Dataset N n c
Arrhythmia 420 278 3
Cardiotocography 2126 21 3
Yeast 1484 8 10

of features. Thus, comparisons of accuracy and stability based on the

number of features will be difficult to analyse. For NTBC, a 100% accuracy

result is “optimal” and means the solution completely matches with Soria’s

classification. Lower accuracy means less matches (similarity).

The specifications of the three UCI datasets are shown in Table 4.3.

In Arrhythmia, feature 14 is removed as it contains many missing values.

Data patterns in class 2 to 15 have been combined together as class 2 as

there is too little data patterns in classes 7, 8 and 11 to carry out 10-

fold cross validation properly. 22 data patterns which are unclassified are

classed as class 3. As there is not enough data patterns from some classes

to be split into 10 folds in Yeast, we carry out 2-fold cross validation. For

Arrhythmia, experiments with 5, 10, 15, 20 and 25 features are carried

out. For Cardiotocography, experiments with 5, 10, 15 and 20 features are

carried out and for Yeast, 4 to 7 features are experimented with.

Through comparisons of average accuracies obtained by ssFCM-feature

selection methodologies with ssFCM alone, we identify whether if there is

an increase in average accuracy, suggesting performance improvement.

4.2.3 Results

Table 4.4 on page 99 shows the average accuracy of using feature selection

with ssFCM on the NTBC dataset. To avoid clutter, we show only results

from using 10, 15 and 17 selected features. Accuracy using popular filter

techniques such as Info Gain (IG), Gain Ratio (GR) and Chi Square (CSQ)

where the goodness of the feature subsets are evaluated based on these

respective statistical measures were also compared.
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Table 4.4 on page 99 shows that there is increase in average accuracy

for ssFCM using 17 features selected by various feature selection techniques

than using all 25 features. NB-RFE with ssFCM was found to produce

the highest accuracy for both 15 and 17 features, as shown in Table 4.4.

In comparison with the other feature selection techniques, only NB-RFE

with ssFCM produced a higher average accuracy using 15 features while

the other techniques showed lower average accuracy than ssFCM alone.

Average accuracy is higher when using 17 features for other feature selection

techniques. For SVM-RFE, the average accuracy did not increase at all

using 10, 15 or 17 features.

The danger of overfitting in cross-validation data [115] have been re-

ported. To ensure that there is no overfitting in the cross-validation proce-

dure, the comparison between the training and testing accuracy are shown

in Tables 4.4 and 7.3 where no or little overfitting was found.

From Figure 4.4(a) on page 100, the 15 features selected by NB-RFE

produced the most favourable results with both high accuracy and sta-

bility (with point indicated by +15 located at the most top-right). In

Figure 4.4(b), NB-RFE showed the highest stability for 10 and 15 features.

InfoGain, GainRatio and ChiSq have increased stability with number of

selected dimensions while stability of NB-RFE, RF-RFE and CFS fluctu-

ate with number of features. In comparison, SVM-RFE was observed to

produce reduced feature sets that are less stable and of lower accuracy.
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Table 4.4: Average classification accuracy of ssFCM on NTBC using all, 10, 15 and 17 selected features. Where increase in average accuracy is
found, the result is indicated in italics. The highest average accuracy is indicated in bold.

10% 20% 30% 40% 50% 60%
All features 96.12�2.04 96.86�1.94 97.22�1.77 97.54�1.61 97.64�1.55 97.84�1.53
SVM-RFE-10 90.37�4.62 92.79�3.92 94.15�3.57 94.19�3.21 94.46�3.31 94.57�3.22
CFS-10 86.34�9.15 93.59�4.44 94.68�3.14 95.10�2.89 95.38�2.91 95.70�2.46
RF-RFE-10 92.20�5.89 94.54�3.73 94.87�3.92 95.26�3.78 95.89�3.26 96.15�2.59
NB-RFE-10 85.91�7.46 87.86�7.04 88.62�5.75 89.77�4.67 89.67�5.04 90.42�4.23
IG-10 79.82�9.36 77.45�9.50 77.31�7.64 79.71�8.07 80.28�7.26 81.18�6.79
GR-10 81.60�9.85 80.53�10.32 79.72�8.66 80.13�7.80 78.69�6.15 79.30�6.27
CSQ-10 81.24�9.66 79.43�10.04 79.41�8.30 81.78�8.66 82.25�7.80 84.20�7.21
SVM-RFE-15 95.15�3.24 96.33�2.47 96.66�2.15 96.76�1.96 96.89�1.99 96.99�1.76
CFS-15 95.94�2.58 96.28�2.29 96.59�1.84 97.12�1.76 97.23�2.21 97.33�1.76
NB-RFE-15 96.05�2.47 97.11�1.59 97.37�1.39 97.62�1.30 97.82�1.28 97.93�1.31
RF-RFE-15 95.97�2.61 96.85�1.95 97.06�1.80 97.39�1.61 97.39�1.59 97.60�1.62
IG-15 92.55�5.81 96.30�2.40 96.73�1.80 97.12�1.60 97.24�1.49 97.46�1.58
GR-15 92.99�5.57 96.00�2.75 96.35�2.19 96.80�2.15 96.61�2.07 96.97�1.79
CSQ-15 92.60�5.81 96.18�2.69 96.73�1.66 97.16�1.64 97.28�1.54 97.50�1.48
SVM-RFE-17 95.52�2.83 96.58�2.31 96.92�1.83 97.05�1.89 97.23�1.76 97.27�1.61
CFS-17 96.23�2.18 96.99�1.63 97.07�1.52 97.40�1.57 97.81�1.48 97.95�1.56
NB-RFE-17 96.30�2.08 97.14�1.73 97.44�1.59 97.70�1.47 97.75�1.44 97.98�1.37
RF-RFE-17 96.17�2.24 96.92�1.88 97.27�1.69 97.53�1.58 97.73�1.56 97.88�1.47
IG-17 96.21�2.36 96.97�1.55 97.23�1.45 97.60�1.41 97.90�1.39 97.99�1.36
GR-17 96.34�2.11 96.90�1.67 97.20�1.48 97.38�1.54 97.47�1.53 97.46�1.62
CSQ-17 96.20�2.31 96.93�1.60 97.26�1.46 97.56�1.40 97.89�1.36 97.99�1.43
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Figure 4.4: Average classification accuracy and stability of various feature se-
lection techniques with ssFCM using 60% labelled data.
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Figure 4.5: Frequency of selected features for 15 features in (a) and accuracy
using 10% labelled data VS number of features in (b).

In Figure 4.5(a) on page 100, frequencies of features selected when

choosing 15 features by the various feature selection techniques (only 3

techniques shown to avoid overcrowding) and the features being selected

that produced accuracy of 100% denoted by * (only 2 techniques shown)

are shown. ssFCM appears to disregard some of the features chosen by

SVM-RFE and CFS such as MUC2 and GCDFP. While both features were

occasionally selected, they did not achieve 100% accuracy with ssFCM.

The lower stability found in SVM-RFE and CFS, in comparison with NB-

RFE, which was reported earlier can also be observed here in greater detail

where the frequency of features selected by these techniques are scattered

between range of 250 and 1750.
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Figure 4.6: Average accuracy and stability of ssFCM with SVM-RFE on NTBC.
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Figure 4.7: Average accuracy and stability of ssFCM with NB-RFE on NTBC.

Figure 4.5(b) on page 100 shows the accuracy comparison between the

number of features ranging from 10 to 24. The highest accuracy was

achieved using 17 features selected by NB-RFE (as indicated by the red

dotted line). It appears that the threshold number of features to achieve

high accuracy is 14 where the knee of the graph is located and at this point,

average accuracy starts to converge.

From comparison between Figures 4.6 and 4.7, for 10 features, SVM-

RFE was able to produce a much higher accuracy than NB-RFE. In addi-
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tion, SVM-RFE stability obtained with 10 features was higher than with

15 or 17 features when 20% or more labelled data was used. Stability is

expected to increase with more features selected since the chances of select-

ing the same features increase as observed in Figure 4.7(b) with 10 and 15

features. But, this is not the case for using 17 features selected by NB-RFE

where stability was lower than using 10 or 15 features, which suggests that

different features are being selected as the 16th and 17th features. The

highest stability was found using 15 features selected by NB-RFE.

To identify the important features, scores were generated based on the

frequency and rank of selected features that achieved 100% with ssFCM, as

shown in Table 7.4. These scores were then ranked, as shown in Table 4.5.

The selected features were compared with those found by Rakha et al. [132].

Interestingly, EGFR, which did not appear in any of the feature lists in

Table 4.5, was one of the ten important features Rakha et al. found. The

method of selection, however, was not provided in detail.

To ensure that the feature selection methodology did not overfit, ac-

curacy comparisons between different classifiers using 25 features and the

15 ranked selected by NB-RFE that achieved ssFCM accuracy of 100% (in

Table 4.5) were conducted. The accuracy from the different classifiers are

shown in Table 4.6. It showed that nine out of 11 classifiers demonstrate in-

creased average accuracy (italicised) using the 15 ranked selected features,

which is evidence that features selected by NB-RFE and ssFCM are not

biased towards ssFCM alone.

Only the most favourable results (based on high average accuracy and

stability) on the three UCI datasets from ssFCM with feature selection in

comparison with using ssFCM alone are shown in Table 4.7 on page 105.

Increased average accuracy was found using feature selection and ssFCM

in all three datasets. For Arrhythmia, the most favourable results were

obtained using 5 selected features by SVM-RFE. Interestingly, increase in
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average accuracy was obtained using Mahalanobis distance in ssFCM with

SVM-RFE, even though Mahalanobis distance with ssFCM did not pro-

duce as good results as Euclidean with ssFCM using all features. This

suggests that a distance metric which previously performed worse than

another distance metric using all features could give higher average accu-

racy when using selected features, such that it outperforms other distance

metrics. For Cardiotocography, the highest average accuracy obtained in

this experiment was using Euclidean ssFCM with 10 features selected by

SVM-RFE. For Yeast, Euclidean ssFCM with 7 features selected by CFS

produced the highest average accuracy.

Figures 4.8, 4.9 and 4.10 on pages 106 show plots of stability against

accuracy and number of dimensions against stability. Note that the graphs

are not in the same scale to allow clearer presentation. To avoid clutter,

NB-RFE is omitted in Figure 4.8(a). The number labels on the points

indicate number of dimensions. The stability against accuracy plots show

which feature selection technique produce stable feature sets and which

ssFCM-feature selection produce high accuracy. Ideally, the feature selec-

tion technique that produces plots at the top right corner with high stability

and accuracy is chosen. This ensures that we pick a ssFCM-feature selec-

tion methodology that can produce high accuracy and that reduce set of

features are consistently selected.

Figures 4.8 (b), 4.9 (b) and 4.10 (b) shows whether the stability of

selected features increases with number of dimensions. Using both plots,

the most suitable feature selection to be selected for use with ssFCM on a

dataset can be determined.
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Table 4.5: Comparison of ranked selected features from NB-RFE with those used by Rakha et al. in [132].

10 important features (unranked) [132]

ER PgR CK7/8 CK5/6 EGFR HER2 HER3 HER4 p53 MUC1

rank

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CK7/8 CK18 p53 ER MUC1co MUC1 HER2 PgR CK19 HER4

CK18 CK7/8 p53 MUC1co ER MUC1 HER2 PgR CK19 HER4 AR HER3 nBRCA1 FHIT CK5/6

p53 HER2 CK18 MUC1co ER CK7/8 MUC1 PgR HER4 HER3 CK19 AR nBRCA1 CK5/6 FHIT GCDFP E-cad

Table 4.6: Accuracy comparison with other classifiers using feature selection. Results which shows higher average accuracy using a reduced set of
features than original set are italicised.

No. ssFCM10 GLMNET C5.0 LDA HDDA KNN

25 96.12�2.04 96.50�3.07 86.42�6.06 95.17�1.57 93.97�1.72 94.58�3.02
15 96.51�1.61 97.15�2.03 85.97�5.36 95.47�1.24 94.12�2.71 95.18�3.40
No. NNET NB MDA KSVM RF LVQ

25 59.90�11.69 80.56�5.95 94.27�2.84 94.29�3.06 95.79�2.51 95.18�2.33
15 67.02�11.45 92.75�2.67 95.34�2.11 97.30�1.95 95.19�2.68 94.14�3.68
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Table 4.7: Comparison of classification accuracy for the UCI datasets; Arrhythmia, Cardiotocography and Yeast, using ssFCM alone and using
ssFCM with feature selection. The highest average accuracy for each dataset is indicated in bold.

Method 10% 20% 30% 40% 50% 60%

Arrhythmia

Euclidean (E) 38.75�7.59 40.32�7.99 42.40�8.16 43.68�8.13 43.90�7.89 44.33�8.28
SVM-RFE-5+E 43.17�11.63 46.25�12.01 47.61�12.02 49.67�12.31 52.10�10.75 52.10�11.17
Mahalanobis (M) 35.37�7.42 34.13�7.43 33.25�7.39 33.62�7.03 32.68�6.48 32.84�6.72
SVM-RFE-5+M 43.30�9.72 46.63�10.46 49.22�9.88 52.13�10.42 53.99�10.10 55.92�9.83
Cardiotocography

Euclidean (E) 47.60�3.91 48.92�3.00 49.31�3.03 49.94�3.05 50.44�3.08 51.18�3.00
SVM-RFE-10+E 64.32�10.53 68.32�9.22 70.93�7.17 72.59�6.02 74.12�4.69 73.75�5.02
Mahalanobis (M) 52.55�16.09 55.60�16.42 58.56�15.41 59.23�15.75 61.42�15.18 64.37�13.38
NB-RFE-10+M 51.51�4.62 58.00�5.15 63.11�5.24 66.78�5.07 68.97�4.61 71.18�4.09
Yeast

Euclidean (E) 33.34�3.51 35.28�2.99 36.94�2.72 37.67�3.05 38.06�2.66 38.21�2.55
CFS-7+E 37.70�3.25 39.53�2.76 40.64�2.48 41.76�2.50 42.09�2.67 43.43�2.25
Mahalanobis (M) 34.61�2.62 35.28�2.10 36.55�2.53 37.14�2.53 37.55�3.07 37.44�2.55
CFS-7+M 37.54�1.57 38.39�1.60 39.54�2.03 40.69�1.81 41.87�1.96 42.73�2.02
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Figure 4.8: Accuracy, stability and dimension analysis for Arrhythmia dataset
classification with 60% labelled data and Mahalanobis distance.
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Figure 4.9: Accuracy, stability and dimension analysis for Cardiotocography
dataset classification with 60% labelled data and Euclidean distance.

Based analysis of stability against accuracy and stability against num-

ber of dimensions plots found in Figures 4.8, 4.9 and 4.10, the most suit-

able feature selection techniques are SVM-RFE for Arrhythmia and Car-

diotocography and CFS for Yeast. The average accuracy results are pre-

sented in Table 4.7 on page 105. Unlike NTBC where stability decreases

with increasing number of features, the general trend for these datasets is

that stability increases with number of features. For Arrhythmia, stability

is much lower compared to the other two UCI datasets because the chances

of choosing the same ones out of a high number of features are lower.
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Figure 4.10: Accuracy, stability and dimension analysis for Yeast dataset clas-
sification with 60% labelled data and Euclidean distance.

4.2.4 Discussion

Increase in average accuracy was found using ssFCM with feature selection

on NTBC and all three UCI datasets. It was observed that stability does

not always increase with higher number of selected features for NTBC.

Stability is related to redundancy of the feature selection technique. The

low stability and fluctuations in stability found in some selection techniques

may be caused by unreliable ranking of features. SVM does not account for

redundancy among features [162]. SVM-RFE uses weights as the feature

ranking criterion where features with small weights are retained in the

selected features list even though they are redundant. Although CFS allows

redundant features to be re-included in its list [71], the ranking criteria was

based on goodness of the feature subset rather than on individual features.

By looking at the goodness of subset, the best combination of features can

be identified and their intercorrelation measured although there is some

risk of redundancy. NB-RFE and RF-RFE tackle redundancy by having an

outer (resampling) and inner cross-validation (wrapper approach) so that

the feature subsets are tested and evaluated in the inner cross-validation
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such that the subset that produces the best fit model is chosen. Like

SVM, Naive Bayes cannot detect redundancy as it assumes independence

between features. NB-RFE uses outer and inner cross-validation so that

feature subsets are tested and evaluated in the inner cross-validation and

the best fit model selected in the other cross-validation [95]. For RF-RFE,

if the data contains groups of correlated features of similar importance,

then smaller groups are favoured over larger groups [152].

Comparison between the 15 selected features with Rakha’s ten features

revealed that EGFR was not considered an important feature based on the

ssFCM methodology. Apart from FHIT, the 15 ranked selected features

that were generated from the ssFCM methodology were in consistent with

overexpressed and underexpressed features presented by Soria et al. [141].

Furthermore, EGFR was reported as a modest prognostic indicator for

breast cancer [116]. Further investigation to rectify EGFR’s significance in

breast cancer classification is required.

The danger of overfitting in feature selection techniques [67] has been

reported, where the feature selection techniques may improve classification

for a few classifiers. It is vital that the selected features, irrespective of the

feature selection technique used, are tested on several classification tech-

niques to evaluate the selected features. Sometimes, the selected features

may be important to a particular classifier, but produce poor accuracy

with other classifiers. Comparisons between accuracies by different clas-

sifiers using the features selected by the ssFCM methodology and using

the original set of features showed that nine out of 11 classifiers produced

higher average accuracy, indicating that the ssFCM-based feature selection

methodology does not overfit.

In experiments on Arrhythmia, Euclidean ssFCM produced the high-

est average accuracy using all features. However, the average accuracy

increased using Mahalanobis ssFCM with SVM-RFE. A similar trend was
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found during tests on Cardiotocography where Mahalanobis ssFCM pro-

duced the highest results using all features, but Euclidean ssFCM with

SVM-RFE produced increased average accuracy with lesser features. Based

on this observation, it appears worthwhile to test the selected features on

the algorithm with investigation in other distance metrics.

The increase in average accuracy found when comparing results from ss-

FCM with feature selection and ssFCM alone suggests that feature selection

may improve classification accuracy. So far, the work done is exploratory

work where a large number of techniques (distance metric, initialisation

and feature selection) have been investigated in with varying amounts of

labelled data, making it infeasible to conduct statistical tests on all inves-

tigations across the different datasets. Full statistical analysis will be pro-

vided in more detailed studies on a specific case study, the NTBC dataset,

using different ssFCM methodologies in the following sections.

4.3 Investigating ssFCM’s scaling parameter α

4.3.1 Background and motivation

The scaling parameter α maintains the balance between supervised and

unsupervised learning in semi-supervised Fuzzy c-Means (ssFCM). The in-

terest in scaling parameter α is motivated by several analysis conducted

in other versions of ssFCM. In [21], Bouchachia and Pedrycz found that

the number of misclassification decreases when α increases in their ssFCM

algorithm with evolving membership. A higher value of α is viewed as an

indicator of higher confidence on the goodness of labelled data. Further-

more, it was shown that the clusters are better separated with higher α

values. In another study [23], they showed how higher α values improve

results as purity (ratio of the highest number of data patterns having the

same labels to the total number of data patterns in that cluster) increases
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and entropy (distribution of labels in a cluster) decreases on three datasets,

Diabetes, Wine and Cancer. A high purity value indicates more data pat-

terns of the same label within each cluster and low entropy value indicate

that each cluster produces a good split as it contains exclusively data pat-

terns of one particular label in comparison with data patterns of other

labels within that cluster. Bouchachia and Pedrycz [23] also showed the

different effects in noise detection of the algorithm with varying values of

α and using several distance metrics. However, high values of α are not

always favourable. In [59], Gao and Wu presented that α values in the

range [0.05, 0.2] gave the best clustering accuracy on the Iris dataset using

their pairwise-constrained ssFCM. Values above 0.2 gave less favourable

results. Wang et al. [155] expressed challenges in selecting suitable α val-

ues for pairwise-constrained ssFCM for different datasets where the range

α values can be very large.

From existing studies, it is established that high values of α can have

different effects on results for different ssFCMs. Thus, it is of interest to

khow how the changes in α affect the results of Pedrycz97 [121] using differ-

ent distance metrics for NTBC dataset and further ascertain if these effects

are prevalent in other popular datasets. By knowing these effects, better

selection of α values can be made to improve accuracy, taking into account

the distance metric and dataset used. Furthermore, it is of interest to this

research to know if α can have favourable effects on ssFCM with other

methodologies such as with KKZ and feature selection (NB and ssFCM)

which were previously investigated.

4.3.2 Experimental methods

In this study, the effects of different α values, 0.1, 0.5, 1, 10 and 20 in

Pedrycz and Waletsky’s ssFCM [121] are investigated with various amounts

of labelled data, 10%, 20%, 30%, 40%, 50% and 60%. Three distance
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metrics Euclidean, Mahalanobis and kernel-based are experimented with

on the Nottingham Tenovus Breast Cancer dataset and five popular UCI

datasets Ionosphere, Page Blocks, PID, Wine and WOBC in a clustering

setting with 100 runs.

Further tests are run using 10-fold CV for the NTBC dataset with α

values, 10, 20, 30, 40, 50. Tests using ssFCM methodologies with KKZ

(detailed in Chapter 4.1) and the 15 features identified using NB-RFE and

ssFCM (detailed in Chapter 4.2) are also conducted. Experiments using ss-

FCM with KKZ and the 15 features where both initialisation technique and

feature selection are incorporated into a ssFCM framework are performed.

The same KKZ-initialised clusters as those in Chapter 4.1 with their fea-

tures reduced to the 15 features identified (in Chapter 4.2) are used. The

results with the most favourable α value are compared with those by the

respective ssFCM methodologies with α � N{M .

For NTBC, a 100% accuracy result is “optimal” and means the solution

completely matches with Soria’s classification. Lower accuracy means less

matches (similarity) with Soria’s classification.

4.3.3 Results

Table 4.8 on page 112 shows the results of using various α values in ssFCM

with the best performing distance metric (in terms of average accuracy).

Only results of α values N{M , 0.1, 1 and 10 are shown to present the trends

found. There is a general trend of increased accuracy with higher α values,

particularly in PID. But, the increase in accuracy is dependent on the

amount of labelled data and α value, as observed in Ionosphere, Wine and

WOBC. In Page Blocks, ssFCM with α � N{M produced higher average

accuracy than with higher values of α. In Wine and WOBC, a higher α

value produced higher average accuracy with more labelled data. In Iono-
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Table 4.8: Accuracy using ssFCM with different distance metric and α values on UCI datasets in a clustering setting. The highest average accuracy
for each dataset is indicated in bold.

α 10% 20% 30% 40% 50% 60%

Ionosphere N{M 73.82�3.71 80.52�3.23 86.12�2.48 89.53�1.61 91.76�1.47 93.29�1.12
(Mahalanobis) 0.1 72.43�5.15 71.97�2.38 74.28�1.23 77.26�1.29 79.79�1.08 82.89�1.28

1 73.51�4.06 76.71�2.78 83.42�3.02 88.48�2.25 91.85�1.62 93.65�1.03
10 73.82�3.71 81.12�3.26 86.75�1.96 89.13�1.52 91.08�1.46 92.52�1.34

Page Blocks N{M 81.01�6.40 84.42�4.90 86.83�3.43 88.64�3.22 90.22�2.31 92.48�1.54
(Fuzzy Mahalanobis) 0.1 82.46�3.88 83.64�1.65 83.74�1.78 83.86�1.77 83.61�1.79 84.06�1.63

1 83.04�4.72 84.66�3.58 85.36�3.36 86.59�3.41 86.64�2.87 88.66�2.17
10 81.01�6.40 84.29�5.04 86.56�3.70 88.43�3.21 90.26�2.35 92.44�1.78

PID N{M 75.17�1.28 78.89�0.89 81.77�0.90 84.70�0.91 87.38�0.86 89.95�0.70
(Mahalanobis) 0.1 72.54�1.24 74.94�0.83 76.61�0.67 77.92�0.74 79.49�0.70 80.89�0.63

1 75.02�1.33 78.65�0.85 81.60�0.86 84.51�0.88 87.23�0.82 89.83�0.66
10 75.17�1.28 78.93�0.90 81.81�0.95 84.91�0.85 87.55�0.89 90.18�0.67

Wine N{M 86.90�3.93 93.97�2.25 95.45�1.89 97.31�1.31 98.47�0.98 98.97�0.80
(Mahalanobis) 0.1 87.07�4.04 94.39�2.05 96.22�1.78 97.23�1.31 98.39�0.94 98.79�0.87

1 86.13�4.14 93.54�2.27 95.51�1.82 97.30�1.32 98.48�0.94 98.93�0.81
10 86.90�3.93 93.96�2.26 95.50�1.84 97.31�1.33 98.53�0.98 98.99�0.78

WOBC N{M 96.64�0.25 96.75�0.31 96.98�0.37 97.39�0.36 97.81�0.33 98.25�0.39
(Kernel) 0.1 96.56�0.18 96.85�0.23 97.00�0.28 97.27�0.30 97.44�0.30 97.63�0.32

1 96.66�0.21 96.80�0.31 97.03�0.37 97.43�0.36 97.85�0.35 98.24�0.40
10 96.42�0.26 96.67�0.33 96.88�0.37 97.35�0.36 97.86�0.32 98.29�0.39
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Table 4.9: Accuracy using Euclidean ssFCM and α values on NTBC in a CV setting. Where there is increase in average accuracy when compared
to ssFCM(E) with α � N{M setting, the result is italicised. The highest average accuracy is in bold. p-values are calculated based on comparing
between using two different alpha settings for each methodology.

α 10% 20% 30% 40% 50% 60% 100%

ssFCM (E)

N{M 96.12�2.04 96.86�1.94 97.22�1.77 97.54�1.61 97.64�1.55 97.84�1.53 97.59�1.62
30 96.48�2.02 97.55�1.71 97.97�1.59 98.35�1.36 98.53�1.37 98.58�1.35 98.49�1.23
p + ++ ++ ++ ++ ++ 0.16

ssFCM with KKZ (EKKZ)

N{M 96.50�1.95 97.06�1.86 97.43�1.72 97.63�1.57 97.73�1.50 97.85�1.51 97.74�1.47
30 96.86�1.91 97.68�1.67 98.03�1.57 98.37�1.35 98.55�1.38 98.58�1.35 98.64�1.11
p + ++ ++ ++ ++ ++ 0.12

ssFCM with 15 features (ranked by ssFCM and NB-RFE) (ENB)

N{M 96.51�1.61 97.14�1.44 97.35�1.35 97.64�1.27 97.81�1.28 97.93�1.30 97.44�0.97
30 96.80�1.63 97.73�1.38 97.97�1.36 98.18�1.29 98.39�1.36 98.43�1.22 98.64�1.32
p + ++ ++ ++ ++ ++ 0.06

ssFCM with KKZ and 15 features (ranked by ssFCM and NB-RFE) (EKKZNB)

N{M 96.80�1.56 97.35�1.31 97.46�1.33 97.67�1.32 97.81�1.27 97.90�1.31 97.59�1.06
30 97.04�1.56 97.80�1.37 97.98�1.34 98.18�1.29 98.40�1.30 98.43�1.20 98.64�1.32
p 0.08 ++ ++ ++ ++ ++ 0.10

++ Highly significant improvement p 0.01
+ Significant improvement p 0.05
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sphere, however, α � 1 increased average accuracy with high amount of

labelled data while high α produced higher average accuracy with small

amount of labelled data.

Similar trends were found in PID where accuracy increased with higher

α values in ssFCM classification on the NTBC dataset, as shown in Ta-

ble 7.5 on page 198. This prompted further investigation on the application

of different α values in the different ssFCM methodologies previously in-

vestigated, including the extended experimentation combining initialisation

technique and feature selection into ssFCM.

Table 4.9 on page 113 shows classification results using different ssFCM

methodologies with α � 30 on NTBC in a CV setting. The highest average

results are in bold and average results that are higher than those produced

using the original setting (in the first line of the table) are in italics. A

two-sided Mann-Whitney test [131] was used to demonstrate significant

improvement between using α � N{M and α � 30 where the p-values

(indicated in italics) are presented in the table. Significant increase in

accuracy was found in all ssFCM methodologies with α � 30 but not when

amount of labelled data is 100% of training data.

A comparison between different ssFCMmethodologies reveals that, with

α � 30, ssFCM with KKZ outperformed ssFCM with feature selection and

produced the highest results between 30% to 60% labelled data. Previously

with α � N{M , ssFCM with feature selection outperformed ssFCM with

KKZ. The combined KKZ and 15 ranked features in ssFCM with α � 30

produced the highest results when there are 10% to 20% labelled data. At

100% labelled data, ssFCM with 15 selected features with α � N{M and

α � 30 produced results with lower accuracy than at 60% labelled data.

Lower accuracy was also found using ssFCM with α � N{M .

Table 4.10 show statistical significance that the ssFCM methodologies

proposed perform better than Euclidean ssFCM. However, no compelling
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Table 4.10: Significance test based on Mann-Whitney Test between Euclidean
ssFCM and the listed ssFCM methodologies. The results show there is highly
significant improvement using E30, EKKZ30, ENB30 and EKKZNB30.

10% 20% 30% 40% 50% 60% 100%

E301 + ++ ++ ++ ++ ++ 0.16

EKKZ2 + 0.28 0.16 0.50 0.40 0.94 0.78

EKKZ301 ++ ++ ++ ++ ++ ++ 0.10

ENB3 + + 0.10 0.14 + 0.26 0.96

ENB301 ++ ++ ++ ++ ++ ++ 0.12

EKKZNB4 ++ ++ ++ 0.06 + 0.32 0.76

EKKZNB301 ++ ++ ++ ++ ++ ++ 0.12
1 ssFCM methodologies with α � 30
2 ssFCM with KKZ
3 ssFCM with 15 features (ranked by ssFCM and NB-RFE)
4 ssFCM with KKZ and 15 features (ranked by ssFCM and NB-RFE)
++ Highly significant improvement p 0.01
+ Significant improvement p 0.05

evidence was found that EKKZ performed better than Euclidean ssFCM at

20% or more labelled data. This is not to say that EKKZ performed worse

or that no improvement was found, as observed previously on Table 4.2 on

page 91. A similar case was found with ENB. Interestingly at 50% labelled

data, significant improvement was found using all ssFCM methodologies

apart from EKKZ.

4.3.4 Discussion

Increasing α value increases the influence of labelled data. It may seem ob-

vious that increasing the influence of labelled data will improve accuracy.

But this is not always the case. Setting a suitable α value, depending on

the dataset and amount of labelled data, has been shown to increase aver-

age accuracy. In the experiments with the UCI datasets, three trends were

observed in its classification results. First, increasing α increased accuracy

as observed in PID and NTBC. Second, increasing α with increased amount

of labelled data can increase average accuracy as observed with Wine and

WOBC. Third, decreasing α with increased amount labelled data was ob-

served to bring increased average accuracy for Ionosphere.
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Further investigation in the effect of α with ssFCM methodologies on

NTBC shows that α � 30 improved accuracy. At α � 30, EKKZ fur-

ther improved accuracy, and outperformed all methodologies between 30%

to 60% labelled data while EKKZNB30 outperformed all methodologies for

lower amount of labelled data, at 10% and 20% labelled data. The higher α

value of 30 further improved accuracy, accuracy that was already improved

by incorporating other methodologies into ssFCM. More importantly, with

α � 30, results from ssFCM are competitive with those from EKKZ be-

tween 30% to 60% labelled data. This suggests that increasing α � 30 can

achieve accuracy as high as those achieved by incorporating other method-

ologies into ssFCM when 30% to 60% labelled data are available.

Therefore, for NTBC, setting α � 30 further improved classification

of ssFCM methodologies, depending on the amount of the labelled data.

When amount of labelled data were between 30% to 60%, classification with

ssFCM alone improved and can be as competitive as the highest results

obtained from EKKZ. When labelled data were ¤ 20%, the highest results

can be obtained using EKKZNB30. Based on experimental observation, a

decision making strategy for using suitable ssFCM methodologies on NTBC

with α � 30 based on the availability of labelled data is illustrated in

Figure 4.11. Here, when the availability of labelled data was more than

20%, the highest accuracy can be obtained using EKKZ with α � 30.

Lower accuracy with 100% labelled data than 60% was found for some

ssFCM methodologies with α � 30, which suggests that a complete super-

vised setting, even with α � 30, do not always produce favourable results.

Caution has to be practised on the amount of labelled data used and the α

settings. The lower accuracy in ssFCM when using ¥ 60% of labelled data

was already reported in the comparison with TSVM on page 82.

In a separate unpublished study (not included in this thesis), a com-

bined ssFCM methodology with α � N{M setting was used, running KKZ



CHAPTER 4. APPROACHES FOR IMPROVING SSFCM 117

 

 

 

 

 

 

Yes 

No 

Start 

Amount of 

Labelled Data > 

20%? 

Run ssFCM with KKZ and 15 

features by (NB-RFE and ssFCM) 

with α=30 

Run ssFCM with KKZ with α=30 

Figure 4.11: A decision making strategy for using suitable ssFCMmethodologies
on NTBC based on labelled data availability.

first and then, applying feature selection (and vice versa in another experi-

ment) with ssFCM. However, better classification results are obtained from

using ssFCM with KKZ applied first then feature selection.

4.4 Summary

Investigations using three initialisation techniques, SCS, KKZ and CE with

ssFCM on UCI datasets and on NTBC were conducted. Increase in average

accracy was found to be most apparent where the availability of labelled

data were very low, indicating the use of initialisation techniques in this

situation can greatly help improve classification accuracy. KKZ generates

initial clusters that are at the edge of every potential cluster, allowing a

better initialisation for all clusters than SCS or CE, which subsequently

resulted in higher accuracy. A slight increase in accuracy was found when

more than 50% of labelled data are used, which is still considered of great

importance when dealing with biomedical data.

Various feature selection techniques with ssFCM were investigated in

terms of accuracy, stability and overfittingness. Feature selection tech-

niques were found to increase average accuracy in ssFCM classification on

the NTBC dataset. NB-RFE with 15 features was found to produce the

most favourable results in terms of both accuracy and stability. Further-

more, the best 15 features are generated based on rank and frequency of
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being selected, that can achieve 100% accuracy with ssFCM. To ensure

these features do not overfit or are not biased to a small number of classi-

fication techniques, these 15 features were tested with different classifiers.

Nine out of 11 classifiers showed increased average accuracy. The experi-

mental results using feature selection with ssFCM on three UCI datasets

also showed that feature selection increased average accuracy in ssFCM

classification for these datasets.

The effects of scaling parameter α in different ssFCM methodologies on

several UCI datasets and NTBC were investigated. It was observed that

setting a suitable α value, depending on the dataset and the amount of

labelled data, can increase classification accuracy. Three trends in classi-

fication accuracy were identified with respect to α and amount of labelled

data for the different UCI datasets. Further investigation were conducted

with respect to α using 10-fold CV on NTBC, where the different ssFCM

methodologies previously investigated were used. Accuracy significantly

improved using all ssFCM methodologies with α � 30 when availability of

labelled data were between 10% to 60% of training data. Furthermore, the

highest results can be obtained using α � 30 in ssFCM with KKZ when

amount of labelled data were between 30% to 60% and 100% and in ssFCM

with KKZ and 15 ranked features when amount of labelled data were ¤
20%. Based on these observations, a decision making strategy was built

for using suitable ssFCM methodologies on NTBC based on labelled data

availability.



5 From Clustering To Classification

Previously, ssFCM has been shown to classify the NTBC dataset (663 pa-

tients) with high agreement with Soria’s classification using the Euclidean

distance. It has been demonstrated that higher accuracy can be achieved

using two approaches of improvement; initialisation and features selection

techniques. Furthermore, by setting the scaling parameter α in ssFCM to

30, the accuracy improves.

This chapter demonstrates how the different investigations that have

carried out previously fit together into an integrated framework. The ob-

jective of the integrated framework is to classify unlabelled or new patients

such that the classification result can assist clinicians in decision making.

5.1 Background and motivation

The ultimate goal of performing classification (prediction of class labels)

of unlabelled or new patients in the NTBC dataset is to provide decision

making support to clinicians. As Bair and Tibshirani [9] have discussed,

biological data and clinical data are often processed separately. It is thus

important that the known subgroups new breast cancer patients are as-

signed to based on biological (immunohistochemical) data have relevance

to clinical data such as survival outcome, grade and NPI. The relevance

between the subgroups and clinical data not only help determines whether

the subgroups patients belong to have good or poor survival outcome, but

also provides a deeper understanding of the protein biomarkers that char-

acterise the different breast cancer subgroups. Furthermore, based on the

characteristics of the subgroups and their relevant survival outcome, spe-

cialised treatments for each subgroups can be administered.

119
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In building an integrated framework based from previous investigations,

the hope is to fulfill the third aim of this research, that is, to develop a

framework that allows the classification of breast cancer subgroups, which

can assist clinicians in providing decision making support.

To fulfill the aim of the integrated framework, it must be able to:

1. Reproduce the same six classes using the 663 classified patients data

and classify new or unlabelled patient data (in this case, the remain-

ing 413 patients) into subgroups that are biologically meaningful and

2. Show relevance between biological subgroups formed by the classifica-

tion of the 413 patients to their clinical data (age, stage, size, grade,

NPI and survival) and compare with those based on the already classi-

fied 663 patients for confirmation of common trends already identified

by Soria et al. in [141] and for further insights.

5.2 Strategy

Based on the studies in Chapters 3 and 4, the different approaches are in-

corporated into an integrated framework for automatic classification (post-

initialisation) of the breast cancer patients into the six subgroups. A con-

ceptual diagram of the integrated framework is shown in Figure 5.1. The

approaches of improvement are carried out prior to running ssFCM to

either generate initial cluster centres or determine the useful features in

the dataset. These parameters generated from the approaches of improve-

ment are then incorporated into the ssFCM framework. Within the ssFCM

framework, suitable distance metric for representing the structure in the

dataset is chosen and the scaling parameter α is adjusted to further im-

prove the performance of ssFCM. The ssFCM methodologies are extended

to include various visual assessment and statistical techniques (or analysis)

to interpret classification results in ways to show that the classes the new or
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Figure 5.1: Conceptual diagram of the integrated framework.

unlabelled patients are assigned to are biologically meaningful and to show

that these biological classes have relevance to clinical data that can assist

clinicians in decision-making support. These approaches for interpreting

classification results are illustrated in the green box in Figure 5.1.

To classify new or unlabelled data, the algorithms are trained using la-

belled data. The ssFCM algorithm is incorporated with two approaches of

improvement. Either methodologies, ssFCM with initialisation or ssFCM

with feature selection, can be used. In this case, both methodologies are ran

separately and their results compared. ssFCM using both methodologies,

initialisation [100] and feature selection [98], are illustrated in Figures 4.1

and 4.3 on pages 89 and 95 respectively. For ssFCM, different distance met-

rics were previously explored in Chapter 3 where Euclidean distance (E)
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was identified to be best suited to represent the NTBC dataset. To analyse

the classification results based on different α settings, both α � N{M and

α � 30 are used and their results compared. This is to investigate in the

clinical relevance between subgroups identified by the ssFCM methodolo-

gies with α � 30, in comparison with α � N{M , which was originally used

[121]. For classifying the 663 patients in NTBC, the highest results come

from ssFCM with α � 30 and KKZ when labelled data are more than 20%.

Initialisation techniques are incorporated to provide additional unsuper-

vised learning to ssFCM. If the data alone (without the labels) can show

where the cluster centres (prototypes) are using initialisation techniques,

ssFCM can have some knowledge of what represents the clusters initially

and the accuracy can be improved from having a good start. Initialisa-

tion based on labelled data may not be as accurate due to the availability

and goodness of the labelled data. The available labelled data may not

provide a good initial representation of the clusters. Cluster centres found

by initialisation techniques can be compared with Soria’s subgroups as a

form of validation of Soria’s subgroups. In this case, KKZ is used as it

has produced the highest results with ssFCM (as demonstrated in Chap-

ter 4.1). As KKZ is unsupervised, it is performed on the entire dataset of

1076 patients and the cluster centres are used to initialise those in ssFCM.

Feature selection is incorporated to reduce the number of biomarkers

while maintaining accuracy in classifying patients. The proposed ENB

methodology have improved accuracy (see Chapter 4.2). Using feature se-

lection, 15 key protein biomarkers are identified for classifying the NTBC

dataset. Furthermore, the reduction in number of protein biomarkers used

for classification decreases the number of clinical tests taken to obtain data,

thus, reducing time and expense and improving efficiency. Here, the same

15 important biomarkers identified using the NB-RFE and Euclidean ss-

FCM feature selection methodology detailed in Chapter 4.2 are used.
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The six classes identified by Soria et al. [141] have been shown to be

biologically meaningful. For this reason, Soria’s classification is used as

benchmark for comparison. Biplots, boxplots and cluster centres of the

six classes based on their protein biomarkers distributions are analysed

and compared with those by Soria et al. [141]. The analysis can help to

determine whether the classes identified are biologically meaningful and

to highlight anomalies in the classes, if present, further providing insight

about the classes.

To show relevance between the biological classes (classification result)

to clinical data, clinical evaluation and survival analysis are conducted.

This allows the clinical characteristics and survival outcomes associated

with the biological classes to be determined.

5.3 Experimental methods

Based on the strategy proposed in Figure 4.11 on page 117, ssFCM with

KKZ (EKKZ) is used as there are more than 20% of dataset labelled and

the objective is to achieve the highest accuracy. For comparison, the ex-

periment is conducted twice, one with N{M setting of α and another with

α � 30. For further investigation in the difference in results, the experiment

using ssFCM with the 15 features selected by NB-RFE and ssFCM (ENB)

is conducted. All methodologies were able to retain the whole labelled data

completely, meaning 100% training accuracy. The ENB methodology used

to find the 15 important features is detailed in Chapter 4.2.

The class labels assigned to these data patterns are based on the highest

membership value it has to a class. The results for the 413 patients are

referred as EKKZ or ENB classification based on their respective method-

ologies. EKKZ30 and ENB30 refers to classification with α � 30.

The classification obtained from the two methodologies with different

α settings are compared using confusion matrix and agreement measure.
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Table 5.1: Interpretation of Cramer’s V association measure based on [38].

Cramer’s V value Interpretation
0 to 0.1 Very weak if any association
0.1 to 0.3 Weak association
0.3 to 0.5 Moderate association¡0.5 High association

There are no prior labels to evaluate the correctness of the classification,

nor to evaluate the performance of the framework. Thus, visual compar-

isons of boxplots, biplots of biomarker distributions, and cluster centres

across the 6 classes with those by Soria and colleagues [141] are conducted

for evaluation. The cluster centres for the six classes are determined by

calculating the average of biomarker values for each class based on the

classification results of the 413 patients.

To demonstrate that the framework is capable of providing decision-

making support, clinical evaluation is performed by investigating in the

correlation between the class distributions and clinical parameters (such as

age and stage) using Cramer V. The Cramer V [37] is an association mea-

sure between two nominal variables, where both variables can have more

than 2 classes. It measure ranges from 0 to 1 with 0 indicating no associa-

tion and 1 for complete association. The interpretation of Cramer’s V val-

ues are presented in Table 5.1. This is implemented using the assocstats

function in the vcd R package [112].

Associations between the classifications with survival are analysed us-

ing Kaplan-Meier analysis. Surviving patients with less than 60 surviving

months are not used in the survival analysis as their outcome after the 60

months are currently unknown. Those that have unknown survival status

are also not included in the analysis. These conditions are enforced to en-

sure a more realistic survival analysis. The class distribution of patients

used in the survival analysis are tabulated in Table 7.6 in the appendix on

page 199. There are three main groups of breast cancer which are further
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Table 5.2: Confusion matrix of classifying 413 patients using EKKZ (rows) and
ENB (columns). The table shows high number of matching classification.

ENB
EKKZ 1 2 3 4 5 6 total
1 85 5 0 0 0 1 91
2 8 102 1 0 0 2 113
3 1 1 62 0 1 1 66
4 0 0 0 15 0 0 15
5 0 0 1 0 57 0 58
6 1 0 0 0 0 69 70
total 95 108 64 15 58 73 413

subdivided into six subgroups [3, 141]. Furthermore, it has been shown

that the Basal subgroups – classes 4 and 5 and HER2 subgroup – class 6

are associated with poor prognosis. If the survival curves for the six classes

can demonstrate similar survival trends as in [141], it can ascertain the

framework to be capable of providing decision-making support.

NPI boxplots are drawn up and compared with those by Soria et al. [141]

to study association between the biological classes and NPI. High NPI

values are often associated with poor prognosis. If classes 4-6 are shown to

have higher NPI values, this is another demonstration of the framework’s

capability as a decision-making support tool.

5.4 Results

Table 5.2 on page 125 shows the confusion matrix of classifying the 413

unlabelled patients using EKKZ and ENB. They both show highly similar

classification solutions achieving a κ agreement of 0.931. There is some

dissimilarity in classes 1, 2 and 6. Table 5.3 shows the confusion matrix

of classifying the 413 unlabelled patients using EKKZ30 and ENB30. In-

terestingly, they show near complete agreement with Cohen’s κ agreement

of 0.995. With α � 30, the classification results from both techniques are

almost the same, indicating more stable solutions. EKKZ30 and ENB30

completely agreed on classes 4-6 assignments of patients.
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(b) Clustering using FCM
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(c) EKKZ classification
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(d) ENB classification
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(e) EKKZ30 classification
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Figure 5.2: Biplots showing Soria’s classification (SC) [141] and not classified
(n.c) patients in (a), clustering of 413 patients into 6 clusters using FCM in (b),
the classification of 413 patients using EKKZ in (c), and using ENB in (d), using
EKKZ30 in (e) and ENB30 in (f).
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Table 5.3: Confusion matrix of classifying 413 patients using EKKZ30 (rows)
and ENB30 (columns). The table shows high number of matching classification.

ENB30
EKKZ30 1 2 3 4 5 6 total
1 107 0 0 0 0 0 107
2 1 110 0 0 0 0 111
3 1 0 55 0 0 0 56
4 0 0 0 13 0 0 13
5 0 0 0 0 59 0 59
6 0 0 0 0 0 67 67
total 109 110 55 13 59 67 413

Figure 5.2 on page 126 shows biplots of Soria’s classification in (a), clus-

tering result using FCM in (b), classification of 413 patients using EKKZ

in (c), using ENB in (d), EKKZ30 in (e) and ENB30 in (f). The biplots

were plotted using the first and second components from Principal Compo-

nent Analysis (PCA). Note that PCA was used to generate 2 dimensions

for visual analysis and no feature reduction was performed on the classifi-

cation. Classification results from both ssFCM methodologies were shown

to resemble Soria’s classification. For FCM clustering result, the clusters

were manually aligned with Soria’s classification to enable comparison. Fig-

ure 5.2(b) shows that FCM was not able to distinguish the two clusters in

the Basal region and instead clustered the whole region as cluster 4.

The boxplots in Figure 5.3 on page 128 show the distributions of the

25 protein biomarkers for the six classes based on EKKZ results. There ap-

pears to be no visible difference between boxplots of EKKZ, ENB, EKKZ30

and ENB30. Thus, only boxplots of EKKZ are shown. ENB and ENB30

were able to produce similar boxplots as those from EKKZ. For Basal sub-

groups in classes 4 and 5, it was observed that the CK14 expression (one

of the protein biomarkers that characterises them) was low, which was

contrary to that of Soria and colleague’s findings in [141]. However, the

boxplots for classes 4 and 5 still reflected other triple negative breast cancer

characteristics with high expression of Basal CK5/6 and low expression in
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Table 5.4: Cluster centres for each class (c) using EKKZ and ENB (in brackets)
with range (R) and standard deviation (SD). Where there is high value which
may indicate overexpression, the result is underlined.
c CK7/8 CK18 CK19 CK5/6 ER PgR AR HER2

1 285(284) 251(249) 222(221) 1(1) 152(152) 156(152) 103(102) 16(15)

2 267(268) 198(199) 198(200) 2(2) 135(135) 164(168) 97(98) 15(15)

3 267(267) 212(213) 188(187) 5(5) 144(147) 75(74) 76(76) 21(21)

4 134(134) 45(45) 86(86) 43(43) 7(7) 2(2) 8(8) 11(11)

5 115(115) 36 (36) 77(77) 39(39) 29(28) 11(13) 15(15) 11(11)

6 258(257) 206(206) 190(190) 8(8) 27(29) 20(22) 53(53) 174(173)

R 170(169) 215(213) 145(144) 42(41) 145(145) 162(165) 95(94) 164(162)
SD 76(72) 93(87) 62(57) 19(20) 68(67) 73(75) 41(39) 65(75)

c HER3 HER4 p53 nBR1 MUC1 MUC1c FHIT

1 202(202) 166(166) 12(11) 96(96) 219(220) 230(230) 129(128)

2 74(73) 31(30) 10(10) 160(162) 217(215) 227(227) 105(108)

3 159(158) 137(134) 17(17) 84(84) 76(74) 80(78) 87(85)

4 157(157) 117(117) 239(239) 61(61) 91(91) 84(84) 57(57)

5 117(116) 89(89) 22(22) 76(75) 106(107) 100(101) 47(47)
6 164(162) 162(160) 81(81) 63(63) 216(215) 203(204) 67(66)

R 128(129) 135(136) 229(229) 99(101) 143(147) 149(152) 82(80)
SD 44(41) 51(47) 90(103) 37(35) 70(64) 73(67) 12(28)

ER, similar to those by Soria et al. [141]. For the other classes, the box-

plots were found to maintain similar trends as Soria et al. [141] for the key

features of each classes described in Chapter 2.8.2. Another observation is

that the biomarker characteristics appears less distinctive as compared to

those in the boxplots of Soria et al. [141], which explains the very reason

they belong to mixed classes in the first place. For instance, class 6 (HER2

subgroup) in [141] showed boxplot of HER2 with median of above 200 and

an interquartile range of above 150 and below 300. In the results here, how-

ever, the HER2 distribution of class 6 shows a median of 150 with a more

dispersed interquartile range of 0 and 250. From Figure 5.2(a), the 413

patients (in grey points) were found bordering at the edges of clusters and

located further away from the cluster centres. This explains their weaker

characteristics (indicated by lower expression levels) than the 663 patients

observed in the biomarker distributions of the six classes.

Table 5.4 shows the cluster centres which are made up of average biomark-

ers values that characterise the six classes, based on the classification of the
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413 patients. Biomarkers with both standard deviation (SD) and range

(R) of less than 40 were removed as they did not appear to help discrim-

inate between classes. The underlined values show high expression of the

biomarkers. The results by ENB are presented within brackets and val-

ues not within brackets are results obtained from EKKZ. Both techniques,

as well as with α � 30, produced very similar cluster centres for the six

classes, despite slight dissimilarity in classification results as observed in

Tables 5.2 and 5.3. Very high p53 and HER2 expressions for classes 4 and

6 were respectively found. Classes 1-3 have high ER values while classes

4-6 have otherwise. Class 3 showed lower PgR, which differentiated it

from class 1 and 2 and class 2 had much lower HER3 and HER4, which

differentiated it from class 1 and 3. These characteristics mirror Soria’s

classification. Due to its low range and standard deviation value, CK14

was dropped. This is no surprise as the boxplots showed low CK14 ex-

pressions for the Basal subgroups. Interestingly, these more discriminative

biomarkers from EKKZ are the same 15 features selected using ssFCM and

NB-RFE (see Chapter 4.2). This indicates that the cluster centres can

help identify discriminative biomarkers from simple statistics, such as the

standard deviation and range. However, FHIT values between the classes

did not appear to help discriminate between classes.

Table 5.5 shows the class distribution of EKKZ (presented without

brackets) and ENB (presented in brackets) classifications based on clin-

ical parameters and their associations with clinical parameters measured

using the Cramer’s V coefficient. The Cramer’s V values are presented

in italics. Based on the interpretation of Cramer’s V values in Table 5.1,

weak association was found between the classifications and all the clini-

cal parameters except grade. Moderate association was found between the

classifications and grade. Once again, ENB was able to produce similar

distributions and Cramer’s V values as EKKZ.
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Table 5.5: Class distribution based on clinical parameters for 413 patients.
The values in italics denote the Cramer’s V value with those in brackets for
classification based on ENB and without brackets for classification based on
EKKZ.
Parameters Cramer’s V cla.1 cla.2 cla.3 cla.4 cla.5 cla.6

Age 0.15 (0.14)¤35 1 (0) 3 (3) 6 (6) 1 (1) 3 (3) 3 (4)
35 Age¤45 56 (61) 62 (57) 33 (33) 6 (6) 20 (20) 32 (32)
45 Age¤55 14 (11) 14 (16) 11 (10) 3 (3) 15 (16) 14 (15)¡55 20 (23) 34 (32) 16 (15) 5 (5) 20 (19) 21 (22)
Total 91 (95) 113 (108) 66 (64) 15 (15) 58 (58) 70 (73)

Grade 0.39 (0.38)
1 16 (18) 29 (27) 7 (6) 0 (0) 1 1() 1 (2)
2 48 (50) 53 (51) 16 (15) 1 (1) 4 (4) 13 (14)
3 27 (27) 31 (30) 43 (43) 14 (14) 53 (53) 56 (57)
Total 91 (95) 113 (108) 66 (64) 15 (15) 58 (58) 70 (73)

Size 0.13 (0.13)¤1.5cm 40 (39) 39 (39) 14 (14) 5 (5) 18 (18) 17 (18)
1.5cm Size¤2cm 7 (7) 13 (13) 10 (10) 0 (0) 8 (7) 15 (16)
2cm Size¤2.5cm 21 (22) 30 (29) 25 (25) 3 (3) 17 (17) 16 (16)
2.5cm Size¤3cm 11 (15) 19 (16) 11 (9) 3 (3) 11 (12) 14 (14) 3cm 12 (12) 12 (11) 6 (6) 4 (4) 4 (4) 8 (9)
Total 91 (95) 113 (108) 66 (64) 15 (15) 58 (58) 70 (73)

Stage 0.18 (0.16)
1 52 (56) 74 (66) 28 (30) 7 (7) 42 (41) 34 (37)
2 36 (37) 27 (29) 32 (28) 5 (5) 14 (15) 25 (25)
3 3 (2) 12 (13) 6 (6) 3 (3) 2 (2) 10 (10)
Total 91 (95) 113 (108) 66 (64) 15 (15) 58 (58) 69 (72)

Death 0.22 (0.20)
No 87 (89) 104 (101) 60 (57) 13 (13) 49 (50) 53 (56)
Yes 3 (5) 8 (6) 3 (4) 1 (1) 6 (5) 15 (15)
Total 90 (94) 112 (107) 63 (61) 14 (14) 55 (55) 68 (71)

NPI 0.21 (0.20)¤ 2.4 (EPG) 12 (14) 13 (11) 3 (3) 0 (0) 1 (1) 2 (2)
2.4 NPI¤3.4 (GPG) 25 (26) 37 (36) 14 (13) 1 (1) 3 (3) 7 (8)
3.4 NPI¤4.4 (MPG1) 21 (22) 34 (31) 11 (13) 3 (3) 23 (22) 16 (17)
4.4 NPI¤5.4 (MPG2) 25 (23) 16 (17) 18 (16) 6 (6) 22 (23) 22 (24) 5.4(PPG) 8 (10) 13 (13) 20 (19) 5 (5) 9 (9) 23 (22)
Total 91 (95) 113 (108) 66 (64) 15 (15) 58 (58) 70 (73)
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Table 5.6: Clinical evaluation by association between clinical parameters and
classification based on Soria et al. [141], EKKZ, ENB, EKKZ30, ENB30 mea-
sured by Cramer’s V.

Parameters Soria et al.[141] EKKZ ENB EKKZ30 ENB30
Age 0.15 0.15 0.14 0.13 0.13
Grade 0.47 0.39 0.38 0.39 0.38
Size 0.15 0.13 0.13 0.12 0.13
Stage 0.15 0.18 0.16 0.16 0.16
NPI 0.26 0.21 0.20 0.21 0.21
Death 0.30 0.22 0.20 0.20 0.20

A high percentage of patients (93%, 91% and 80%) with Grade 3 (char-

acterised by cancer cells that grow more quickly than Grades 1 and 2) were

found in the more aggressive subgroups, classes 4-6 respectively based on

EKKZ classification. Also based on EKKZ classification, there was a higher

percentage of deaths (22%) found in class 6 than the other classes (¤ 11%).

Similar trends were also found using ENB, EKKZ30 and ENB30.

Associations between clinical parameters with classification based on

Soria et al. [141], EKKZ, ENB, EKKZ30 and ENB30 were compared and

are shown in Table 5.6. EKKZ classification appeared to have slightly

higher association coefficients (for age, stage and death) as compared to

the other ssFCM methodologies. The categorisation of these clinical pa-

rameters were the same as those in Table 5.5.

The survival curves for each respective classes based on Soria’s classifi-

cation and classification by EKKZ30, EKKZ, ENB are found in Figure 5.4.

The survival curves of EKKZ30 and ENB30 are visually similar, thus, the

latter is not shown. Like survival curves of Soria’s classification, based

on visual analysis, survival curves of EKKZ classification at the 5-year

survival time showed distinction between the three main classes and their

subclasses, indicating strong association between survival outcomes and

classes. However, based on the log-rank test in Table 7.8 in the appendix

on page 200, the survival differences for the 6 subgroups based on pairwise

comparison between each survival curve are not always significantly differ-
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Figure 5.4: Kaplan-Meier analysis of overall survival.

ent even though overall comparison shows significant difference. There is

a stronger difference between survival curves based on the 3 main groups,

as indicated by the smaller p-values. The demonstration of these distinc-

tions in patients that were previously found in mixed classes is a very

positive indicator of the validity of Soria’s subgroups. For ENB, the sur-

vival curves show clearly the distinction between the three main groups,

but the distinction between the Basal subgroups are not clear (see Table

7.10 in the appendix on page 200 for p-values based on log-rank tests). For

EKKZ30 and ENB30 in Figure 5.4(b), class 3 shows poorer survival out-

look as compared to Soria’s classification, EKKZ and ENB classification.
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The distinction between Luminal and Basal groups are less clear and so is

the distinction between Basal subgroups. Table 7.7 to Table 7.11 in the

appendix on pages 200 and 201 show the difference between the survival

curves based on 6 subgroups and 3 main groups for Soria’s classification

and classifications by EKKZ, EKKZ30, ENB and ENB30. In general, there

is significant difference between Luminal (class 1) and HER2 (class 3), and

Basal (class 2) and HER2 (class 3) found in the survival curves based on

3 the main groups, which indicates there is some association between the

survival curves with the groups. Figure 7.1 in the appendix on page 199

shows the survival curves based on these three main groups generated by

EKKZ, EKKZ30, ENB and ENB30. The survival curves show visibly clear

distinction between the three groups for all four ssFCM methodologies.

For EKKZ and ENB classification, similar survival trends with Soria’s

were found in classes 1-3 and 6 (see Table 7.8 and 7.10 respectively for more

details). Although the survival curves based on the 6 subgroups are not

significantly different based on the log-rank tests, visually for EKKZ, it can

be observed that there is separability between the three main classes, which

is positive results, especially as the 413 patients are difficult to classify.

Survival curves for classes 4 and 5 from the classification show a more

optimistic survival outcome than Soria’s. The small class 4 population

may have produced a more optimistic outcome as there are only five class

4 patients and 25 class 5 patients could fulfill the condition to be used for

this analysis for the four ssFCM methodologies.

Associations between the classifications with NPI were analysed using

boxplots in Figure 5.5. The NPI boxplots show resemblance with Soria’s

classification for classes 1-2 and 4-6, but class 3 show a higher dispersion,

as further shown using the Kruskal-Wallis test in Table 7.12 in the ap-

pendix on page 201. The test is used to determine if the NPI distribution

of each class from Soria’s classification is identical to those from the dif-
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Figure 5.5: Boxplots showing NPI distribution for six subgroups based on clas-
sification of 413 patients.

ferent ssFCM methodologies. Class 3 is located beside all other 5 classes

(see biplots in Figure 5.2 on page 126) which may be the reason for the

higher dispersion. High NPI values indicate poor prognosis, which can

be observed with classes 4-6. Despite some discrepancies, these findings

not only support Soria’s classification, but confirm that the framework can

produce an accurate prognosis. Interestingly for NPI distribution based on

Soria’s classification [141], NPI distribution for class 3 is higher than classes

1 and 2. However, the survival curve for class 3 shows the best survival

outlook which is somewhat contradictory as high NPI value are associated

with very poor prognosis [57]. For ssFCM methodologies, the high NPI

distributions for classes 3-6 correspond with the lower survival curves in

Figure 5.4.
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5.5 Discussion

Based on observation in Table 4.9 on page 113, accuracy slightly improved

using EKKZ30 and ENB30 with 100% labelled data than using EKKZ

and ENB. The contrary was observed in the classification of 413 patients

where EKKZ30 and ENB30 produced less clinically relevant classification

than EKKZ and ENB classification, based on the separability of the sur-

vival curves which reflected their subgrouping. In this case, ssFCM with

α � 30 in a completely supervised setting (with 100% labelled data) pro-

duced less favourable results in comparison. With 100% labelled data and

α � 30, EKKZ30 and ENB30 modelled Soria’s classification very similarly,

which may suggest that the influence from KKZ or from feature selection

is overshadowed by influence from the labelled data. Furthermore, the 413

patients were mostly located at the borders of the six subgroups (see Fig-

ure 5.2(a) on page 126). The high contribution from supervised learning,

with 100% labelled data and α � 30, may not be suitable in this case as

it imposes strict cluster borders based on influence from labelled data. For

these reasons, a relaxed ssFCM with α � N{M allows more influence in

unsupervised learning of the unlabelled data and may be more appropriate

for this task, as observed in Figure 5.4(c) and (d) on page 133.

Using EKKZ and ENB, the same six classes of breast cancer types as

Soria’s classification can be identified for the 413 patients. This evalua-

tion showed that the ssFCM framework was able to accurately classify the

NTBC dataset. Furthermore, this confirmed Soria et al’s six classes and

addressed the issue of stability of their classification.

While all the features in NTBC are highly non-normally distributed,

the framework has been able to produce very good classification results.

Furthermore, Hair et al. stated that the requirement of normal distribu-

tion [69] has little effect in clustering techniques. More importantly, EKKZ
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and ENB were able to detect relevant areas of high concentration (see bi-

plots in Figure 5.2 (b) and (c) on page 126) that were of importance using

663 labelled data as training examples, irrespective of the distribution.

ENB was able to achieve similar results using only 15 selected features.

The initial reasoning for the more optimistic survival outcomes in Basal

groups classes 4 and 5 was due to very low expression of CK14 as observed

in the biplots in Figure 5.3 on page 126, shown only as outliers. On further

analysis of CK14 expressions with survival outcomes in both the 413 unla-

belled and 1076 total patient groups in Figure 5.6, the reasoning that Basal

subgroups with low CK expression would give a more optimistic survival

outcome did not hold. Instead, the optimistic survival outcomes may be

due to the lack of class 4 and 5 patients numbers (see Table 7.6). From Fig-

ure 5.6, those with CK14 expression above 150 have been observed to have

poorer prognosis than those with lesser CK14 expression in the 1076 group,

but this trend was not found simply due to lack of patient numbers with

high CK14 expressions. From Figure 5.6, there is only one patient with

CK14 ¡ 150 expression in the 413 group that satisfy the conditions to be

included in the survival analysis. Therefore, the more optimistic survival

outcomes in classes 4 and 5 in Figure 5.4.

Examination of the classification of the remaining 413 patients revealed

similar distribution of NPI values by class as found by Soria et al. [141]

which, not only supported earlier claims of NPI providing discriminant in-

formation, but also showed that the framework was capable of accurately

classifying the 413 patients. Despite these patients previously belonged

to mixed classes [141], the new classifications of the 413 patients showed

characteristics consistent with those by Soria et al. [141]. Furthermore,

the distinction between the three main classes found in the survival anal-

ysis of the classified breast cancer types for the 413 patients using EKKZ

and ENB not only showed an association between the survival and breast



138 5.5. DISCUSSION

0 50 100 150

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Months

S
ur

vi
va

l P
ro

po
rt

io
n

5−Yrs 10−Yrs

CK14<=150
CK14>150

(a) The 1076 group

0 50 100 150

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Months
S

ur
vi

va
l P

ro
po

rt
io

n

5−Yrs 10−Yrs

CK14<=150
CK14>150

(b) The 413 group

Figure 5.6: Survival curves of patients in the 1076 group and in the 413 unla-
belled group based on CK14 expressions.

cancer types, but it also supported Soria’s classification. In the analysis

of the biomarkers, their distinct values (shown in the cluster centres) and

distributions (comparisons of boxplots with Soria’s classification) verified

the framework as well as the importance of the protein biomarkers in char-

acterising the classes and discriminating between them. The analysis with

clinical information such as age, grade, NPI and survival showed significant

associations between the biological classes and these clinical information,

which can help provide support to a more accurate prognosis.

Caution needs to be exercised in trying not to “force” patients to belong

to a class by choosing solutions from one technique. It is the consistency

and thus, the stability of the solution from different techniques that is

sought after. Thus, two approaches have been used with ssFCM (with

investigation in α settings) for this framework and have shown that both

approaches highly agreed with each other. More importantly, using ENB

in the framework, accurate classification have been produced (based on

evaluation from the biplots, boxplots and survival curves) using 15 out of

the 25 features. In a separate study [100], various analysis from EKKZ



CHAPTER 5. FROM CLUSTERING TO CLASSIFICATION 139

classification of the 413 patients were compared with those of ssFCM-M-

KKZ (Mahalanobis ssFCM with KKZ) and more resemblance with Soria’s

classification was found with the former methodology.

5.6 Summary

The integrated framework incorporated initialisation techniques and/or fea-

ture selection technique into the ssFCM framework. Using EKKZ and

ENB, the same six classes of breast cancer types as Soria’s classification

can be identified for the 413 patients. This evaluation showed that the

framework was able to accurately classify the NTBC dataset. Further-

more, this confirmed the six subgroups identified by Soria et al. [141] and

addressed the issue of stability of their classification.

By classifying the 413 patients based on labelled data of the 663 patients

using ssFCM methodologies and performing different analysis on the classi-

fication result, the framework have been demonstrated to provide decision

making support for clinicians. The distribution of biomarkers by class pre-

sented on the boxplots showed similar key characteristics of the six classes

by Soria et al. The biplots showed the clusters generated from the classified

patients’ breast cancer type were located similarly to Soria’s classification.

Based on comparisons of boxplots of biomarkers, NPI values and biplots,

EKKZ and ENB produced classifications of patients (previously deemed

mixed classified) that closely resemble Soria’s classification.

Using the ssFCM methodologies with high contribution from supervised

learning using α � 30 and with 100% labelled data was observed to pro-

duced classification which were not as clinically relevant in terms of the

survival curves as with using α � N{M setting. The high contribution

from supervised learning may not be suitable in this case as it imposes

strict cluster borders. Furthermore, the 413 patients are located at the

borders of clusters.
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In addition, from a clinical point of view, it is hoped that a more accu-

rate model have been provided for the prediction of breast cancer types for

new patients, using both classification from Soria et al. and classification

of the remaining 413 patients, which previously belonged to a mixture of

classes, that can further help support decision making.

Emphasis has to be made on the importance in exercising caution so as

not to “force” patients to belong to a class by choosing solutions from one

technique [43]. Rather, the consistency and thus, stability of the solution

from different techniques should be maintained, a fundamental clustering

issue raised by Jain [84]. This motivated the next study on identifying the

six stable subgroups by reproducing them using ssFCM and unsupervised

clustering techniques.



6 Finding Stable Subgroups Using Reduced

Sets Of Protein Biomarkers

The objective of this chapter is to identify stable and clinically-useful breast

cancer subgroups using the integrated framework, previously introduced in

Chapter 5, through investigation of the two reduced sets of biomarkers. The

reduced sets of biomarkers to be investigated are 1) a set of 15 biomarkers

identified in [98] and 2) a set of 10 biomarkers [140].

6.1 Background and motivation

The 15 features identified using ssFCM and NB-RFE in Chapter 4.2 have

improved classification accuracy for classifying the 663 patients. Further-

more, when using these 15 features to test on the 413 patients, the same six

subgroups which these patients are assigned to are tested to be biologically

useful and clinically relevant. In [140], 10 important features have been

found using an exhaustive search of the best combination based on the

NB classification results. The same 10 important features were also used

to identify the key clinical phenotypes of breast cancer [63]. In addition,

these features are used in the generation of a linguistic rule set using a

fuzzy rule induction algorithm for breast cancer classification [142]. These

studies prompt the question as to whether these 10 important features will

produce better subgroups, in terms of stability, than using the 15 that

previously identified (in Chapter 4.2).

Using Pearson’s correlation [129], the biomarkers have been checked to

be not confounding factors as correlation with clinical data is found to

be weakly correlated [149] with coefficient values between -0.3 to 0.3 (see

Table 7.13 in the appendix on page 202. This ensures that the relationship

141
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between the biomarkers and clinical data, if any, does not cause a false

association between clinical data and the subgroups.

In this chapter, the effects of the two features sets on the identification

of stable breast cancer subgroups are investigated. The two different fea-

ture sets are the 15 features described in Chapter 4.2 and the 10 features

identified in [140, 132, 63]. To carry out this investigation, all 1076 pa-

tients in the NTBC dataset are clustered with the two considered features

sets using ssFCM, consensus K-means (CKM) and model-based clustering

via BIC (MBIC). The feature sets are evaluated based on the stability of

the subgroups that are produced. The stability are measured based on

agreement levels with Soria’s classification using Cohen’s Kappa index (κ).

The aim of this chapter is to identify the same subgroups using a rel-

evant reduced feature set using all 1076 patients. This means that the

same relevant feature set is able to produce stable subgroups using different

clustering algorithms. The stability of the subgroups based on agreement

levels helps ascertain whether the reduced feature set can reproduce the

same subgroups as with all 25 features (biomarkers). This investigation

using clustering algorithms, particularly unsupervised ones with no influ-

ence from Soria’s classification, will not only identify stable subgroups, but

ascertain the relevant feature set that characterises these subgroups. Fur-

thermore, these stable subgroups have to be biologically meaningful and

clinically relevant in order to be considered as clinically useful [9, 141], as

previously discussed in Chapter 5.

Previously in Chapter 4.2, the importance of stability in feature sets

was discussed as the consistency of the same features being selected indi-

cates confidence and therefore, importance in these features. In this chap-

ter, however, not only are the solutions from ssFCM evaluated, but also,

the solutions from unsupervised clustering algorithms and their agreement

across the different clustering algorithms. Furthermore, the evaluation of
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these feature sets are based not only on comparison with Soria’s classifica-

tion of the 663 patients, but also the comparison with the entire dataset

of 1076 patients. If high agreement could be found using completely unsu-

pervised clustering algorithms such as KM and MBIC, this would indicate

that stable subgroups have been found using the relevant feature set.

6.2 Selected algorithms

As ssFCM is able to retain all Soria’s classification when used to classify the

remaining 413 patients in Chapter 5, it is therefore employed in a clustering

setting to identify the six clusters based on Soria’s classification.

The unsupervised clustering algorithms considered are consensus k-

means (CKM) and model-based clustering via BIC (MBIC). K-means is

well-known for its simplicity and good clustering performance. However,

it suffers from having suboptimal solutions due to different initialisations.

Thus, a simple algorithm to reach a consensual solution from the different

initialisations is devised. The fundamental idea is to place data patterns

that are frequently in the same cluster together.

The second considered unsupervised clustering algorithm is the model-

based clustering via Bayesian Information Criterion (MBIC). It is based

on the Expectation Maximisation (EM) algorithm with modified BIC for

model selection and has been described in detail in Chapter 2.

These two algorithms are chosen as they were found to reproduce the

same six subgroups using the 663 patients data with high agreement to

Soria’s classification with κ values of 0.920 and 0.947 respectively when dif-

ferent clustering algorithms were explored [99]. Consensus Fuzzy c-Means

was also explored but it was not able to find the same six subgroups and

is, thus, dropped from further investigation.
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6.2.1 Semi-supervised Fuzzy c-Means

For this study, the Pedrycz and Waletzky’s ssFCM is employed but with

several different modifications based on positive results from previous stud-

ies in Chapter 4 and 5. The Euclidean distance is used instead of the Fuzzy

Mahalanobis used in the original algorithm for all ssFCM methodologies,

as it produced favourable results as shown in Chapter 3.2.

To find a suitable ssFCM methodology which produces high agreement

with the reduced feature set, the initial cluster centres generated by KKZ

(detailed in Chapter 4.1) and an adjusted scaling parameter α value of 30

(detailed in Chapter 4.3) are experimented with. Previously in Chapter 4.3,

the incorporation of KKZ generated initial cluster centres and/or scaling

parameter α value of 30 in ssFCM have been observed to produce improved

accuracy than using ssFCM alone.

6.2.2 Consensus k-means

A simple algorithm is devised, which is referred as CKM for short, to reach

a consensus of K-means clustering solutions as follows:

1. Run K-means 5000 times to generate a pre-specified number of clus-

ters, six in this case. The output is a 5000 � N matrix containing

cluster labels c1, ...cN for data patterns x1, ..., xN for each run. The

number of runs is chosen to be 5000 to ensure similar data patterns

will belong to the same cluster for a majority of the runs.

2. For data pattern xi, count the number of times it is in the same

cluster as other data patterns, countij � countpci �� cjq, in all runs.

3. Repeat with different ǫ values until a biplot showing classes most

similar to those by Soria et al. is produced:

(a) For data pattern xi, a list, li for i � 1, ..., N is created containing

other data patterns that share the same clusters for countij ¡ ǫ.



CHAPTER 6. FINDING STABLE SUBGROUPS 145

(b) If xj P li ^ lengthpli X ljq ¡ 20, each list li is then updated

by performing a union with all other lists that share common

data patterns li � li Y lj , j � i . If the other list lj fulfills this

condition with li, lj is deleted.

(c) The largest six lists are chosen as the clusters and other lists,

usually with much smaller number of members are ignored.

(d) Present the six lists in a biplot.

The parameter ǫ is chosen by inspection of biplot of the six lists, which

are essentially the six clusters. The choice of ǫ is arbitrary. A ǫ which

produces clusters similar to Soria et al. is chosen because they have been

shown to be biologically meaningful [141]. Furthermore, a small ǫ will

increase the tendency for clusters to merge or overlap and a large ǫ will

create more compact clusters at the cost of ignoring some data patterns.

To avoid repetition of explanation on the MBIC algorithm, the reader can

turn to Chapter 2.3.4 where it has been described.

6.3 Experimental methods

In Chapter 5, ssFCM-25 (with 25 features) achieved high classification ac-

curacy on NTBC and can completely retain Soria’s classification. For this

reason, the solution from ssFCM-25 is used as the benchmark for compar-

ison with the selected clustering algorithms’ solutions.

Using ssFCM, CKM and MBIC, all 1076 patients are clustered with

experimentation using two reduced feature sets, the 15 identified using

NB-RFE and ssFCM based on 663 classified patients and the 10 identified

based on NB classification performance described in [140]. For ssFCM, all

663 labelled data from Soria’s classification are used for supervised learning.

Initialisation techniques and α � 30 are used to retain Soria’s classification

and increase level of agreement with solutions from ssFCM-25.



146 6.4. RESULTS

Agreement levels based on κ are compared between Soria’s classifica-

tion and clustering solutions, where only the same 663 patients Soria et al.

had classified are considered. As ssFCM retains all of Soria’s classification

(explained in Chapter 5), agreement levels between ssFCM clustering so-

lution using all 25 features (ssFCM-25) with the clustering solutions from

ssFCM, CKM and MBIC based on clustering NTBC with the two reduced

feature sets are compared. Confusion matrices based on the highest agree-

ment levels obtained using one of the two reduced feature sets are shown for

each clustering algorithm. To show where the disagreement occurs with re-

spect to individual subgroups (classes), sensitivity and specificity measures

[7] are used. Sensitivity measures the rate of true positives and speci-

ficity measures the rate of true negative. The confusion matrix, Cohen’s

κ Index and sensitivity and specificity measures are implemented using

confusionMatrix from the caret R package [95].

Further analysis is conducted on the ssFCM clustering solution to de-

termine that the subgroups generated from this investigation are stable,

biologically useful and clinically relevant. The analysis are based on agree-

ment measures, biological evaluation and clinical evaluation respectively.

The work is extended to find the same stable seven subgroups identified

by Green et al. [63], where the HER2 group represented as class 6 is split

into two subgroups, HER2/ER+ and HER2/ER-. These are manually split

where class/cluster 6 patients with ER expression of more than zero are

retained and those with zero ER expression are assigned to class/cluster

7. The biological usefulness and clinical relevance of these subgroups are

evaluated using agreement measures and clinical evaluation respectively.

6.4 Results

Table 6.1 on page 147 shows the agreement levels of the various clustering

methods using the 15 features identified using NB-RFE and ssFCM and
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Table 6.1: Agreement levels using Cohen’s κ Index between ssFCM, CKM and
MBIC with Soria et al. classification [141] and with ssFCM-25.

Method Soria’s classification (663) ssFCM-25 (1076)
ssFCM-15 1 0.977
ssFCM-KKZ-15 1 0.976
ssFCM-KKZ-15-alpha=30 1 0.968
ssFCM-10 1 0.873
ssFCM-KKZ-10 1 0.874
ssFCM-KKZ-10-alpha=30 1 0.881
CKM-25 0.693 0.597
CKM-15 0.763 0.727
CKM-10 0.755 0.650
MBIC-25 0.830 0.765
MBIC-10 0.769 0.625

10 features identified in [140]. To indicate which reduced feature set is

used, the number of features with the clustering method as well as any

other methodologies used are indicated. The number in brackets indicate

which patient population the comparison is being made with; either the

663 patients which Soria et al. classified [141] or all 1076 patients.

Figure 7.2 on page 201 (in the appendix) shows that CKM and MBIC

with the 15 features did not produce similar subgroups as those identified

by Soria and his colleagues. The difference between the subgroups made

it difficult to align their labels for direct comparison, particularly MBIC-

15. Thus, only biplots comparisons are presented. Although CKM-15 has

moderately high agreement with ssFCM-25 in Table 6.1, the biplot shows

that CKM-15 cannot distinguish between subgroups representing class 4

and class 5.

ssFCM-15 highly agree with ssFCM-25. This is expected as the 15

features found were based on Soria’s classification, whose labelled data

was also used in ssFCM. All ssFCM methodologies (using 10, 15 or 25

features) highly agree with each other as they clustered based on Soria’s

classification. Although labels from Soria’s classification were used, high

agreement (¡ 0.87) was maintained using ssFCM methodologies with 10

features. Agreement increased with the adoption of KKZ and α � 30.
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Table 6.2: Confusion matrices between clustering solutions from ssFCM-25 and
ssFCM-KKZ-10-alpha30, CKM and MBIC. The low sensitivity value is italicised.

1 2 3 4 5 6 total

ssFCM-KKZ-10-alpha30 ssFCM-25

1 275 12 7 0 0 8 302
2 7 241 4 0 4 4 260
3 15 5 125 0 3 3 151
4 0 1 2 92 0 6 101
5 0 4 1 1 119 5 130
6 4 2 1 2 2 121 132

Total 301 265 140 95 128 147 1076
Sensitivity 0.914 0.909 0.893 0.968 0.930 0.823
Specificity 0.965 0.977 0.972 0.991 0.988 0.988
P-value  0.01
CKM-10 ssFCM-25

1 186 2 33 0 1 1 223
2 13 208 8 0 4 0 233
3 98 49 68 0 15 25 255
4 0 1 1 87 3 5 97
5 0 1 22 4 94 2 123
6 2 1 2 2 2 102 111
o.c 2 3 6 2 9 12 34

Total 301 265 140 95 128 147 1076
Sensitivity 0.622 0.794 0.507 0.935 0.790 0.756
Specificity 0.950 0.968 0.794 0.989 0.969 0.990
P-value  0.01
MBIC-10 ssFCM-25

1 172 5 24 0 1 1 203
2 5 182 7 0 5 0 199
3 119 72 98 0 17 30 336
4 0 1 3 92 2 15 113
5 0 0 4 0 100 2 106
6 5 5 4 3 3 99 119

Total 301 265 140 95 128 147 1076
Sensitivity 0.571 0.687 0.700 0.968 0.781 0.673
Specificity 0.960 0.979 0.746 0.979 0.994 0.978
P-value  0.01

Using CKM-10 and MBIC-10, moderate agreement with Soria’s classifi-

cation and ssFCM-25 was obtained with κ ¡ 0.6. This indicates that more

stable subgroups were generated using the 10 features than using the 15

features in Chapter 4.2. For CKM-10, the agreement level is higher than

CKM-25. Due to the higher agreement of clustering solutions using 10

features than 15, further analysis was conducted on the clustering results

obtained from using the reduced set of 10 features [140].
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Table 6.2 on page 148 shows the confusion matrices between solu-

tions from ssFCM-25 and ssFCM-KKZ-10-alpha30, CKM-10 and MBIC-10.

Comparison between ssFCM-25 and ssFCM-KKZ-10-alpha30 shows that

there is only small disagreements between the three main groups, and the

disagreements within the main groups between their respective subgroups

are considered small. Based on the confusion matrices and the sensitivity

and specificity measures, it was observed that disagreements tended to oc-

cur within clusters 1 or 3 where there was low sensitivity (in italics) using

CKM-10 and MBIC-10. Nevertheless, they both achieved average sensitiv-

ity of above 0.7 and specificity of above 0.9. The p-value indicates whether

the overall accuracy rate is greater than the rate of the largest class.

Figure 6.1 on page 150 shows the biplots and survival curves using

clustering solution from Soria’s classification and clustering solution from

ssFCM methodology, CKM and MBIC using 10 important features. Using

the 10 features with the three different clustering methodologies, identical

subgroups (as shown on the biplots) could be identified. Furthermore, their

survival curves show clinical relevance in terms of overall survival outcome.

The separability between the six survival curves which corresponds to their

biological subgroups also reflects the three main breast cancer groups and

six subgroups, similar to Soria’s classification. These observations (from

the biplots and survival curves) indicate the stability of the subgroups.

As the 10 features produced stable subgroups using different clustering

algorithms and ssFCM was able to retain Soria’s classification completely,

clinical association of the subgroups found by ssFCM-KKZ-10-alpha30 is

presented in Table 6.3 on page 151. Based on Cramer’s V and, presented in

brackets, p-values (Pearson’s chi-squared test of independence), significant

association with clinical parameters that were not involved in clustering was

found. The clinical association between six subgroups identified by other

clustering methods were compared in Table 6.4. The subgroups identi-



150 6.4. RESULTS

−0.10 −0.05 0.00 0.05

−
0.

10
−

0.
05

0.
00

0.
05

PC1

P
C

2

PC1

P
C

2

CK7/8

CK18

CK5/6

ER

PgR

AR

HER2

HER3
HER4

p53

nBRCA1

MUC1

class 1
class 2
class 3
class 4
class 5
class 6
n.c

(a) Soria’s classification

0 50 100 150

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Months

S
ur

vi
va

l P
ro

po
rt

io
n

5−Yrs 10−Yrs

class 1
class 2
class 3
class 4
class 5
class 6

(b)

−0.10 −0.05 0.00 0.05

−
0.

10
−

0.
05

0.
00

0.
05

PC1

P
C

2

PC1

P
C

2

CK7/8

CK18

CK5/6

ER

PgR

AR

HER2

HER3
HER4

p53

nBRCA1

MUC1

cluster 1
cluster 2
cluster 3
cluster 4
cluster 5
cluster 6

(c) ssFCM-KKZ-10-alpha30
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Figure 6.1: Biplots based on Soria’s classification [141](a) and clustering 1076
patients using the 10 important features by ssFCM methodology in (c), by CKM
in (e) and by MBIC in (g) and their respective survival curves beside them.
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Table 6.3: Association between breast cancer biological clusters from ssFCM-
KKZ-10-alpha30 and clinical parameters. The values in italics denote the
Cramer’s V coefficient and p-values (based on Pearson’s chi-squared test of
independence) [2] are shown in brackets. p-values of  0.01 indicates there is
association between the subgroups and clinical data.

Parameter Cramer’s V cla.1 cla.2 cla.3 cla.4 cla.5 cla.6
Age 0.13 ( 0.01)¤35 12 6 5 12 8 5
35 Age¤45 150 123 92 30 47 53
45 Age¤55 50 41 20 27 35 29¡55 90 90 34 32 40 45
Total 302 260 151 101 130 132

Grade 0.42 ( 0.01)
1 71 70 15 0 3 1
2 129 142 37 2 13 20
3 101 48 99 99 114 111
Total 301 260 151 101 130 132

Size 0.12 ( 0.01)¤1.5cm 110 109 42 19 31 29
1.5cm Size¤2cm 31 19 21 9 24 28
2cm Size¤2.5cm 78 71 43 28 35 37
2.5cm Size¤3cm 52 44 25 24 27 23 3cm 31 17 20 21 13 15
Total 302 260 151 101 130 132

Stage 0.14 ( 0.01)
1 190 174 75 60 94 61
2 96 67 63 28 25 53
3 16 18 13 13 11 16
Total 302 259 151 101 130 130

Death 0.26 ( 0.01)
No 283 244 139 81 105 99
Yes 10 13 6 16 20 31
Total 293 257 145 97 125 130

NPI 0.23 ( 0.01)¤ 2.4 (EPG) 51 47 9 0 1 3
2.4 NPI¤3.4 (GPG) 74 93 21 1 8 9
3.4 NPI¤4.4 (MPG1) 78 60 38 35 44 37
4.4 NPI¤5.4 (MPG2) 62 39 46 35 55 38 5.4(PPG) 37 21 37 30 22 45
Total 302 260 151 101 130 132
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Table 6.4: Clinical evaluation by association between clinical parameters and
classification based on Soria et al. [141], ssFCM-KKZ-10-alpha30 (SKA-10 for
short), CKM-10 and MBIC-10 measured by Cramer’s V and their respective
p-values (calculated using [2]) in brackets.

Parameter Soria et al.[141] SKA-10 CKM-10 MBIC-10

Age 0.15 (*) 0.13 (*) 0.15 (*) 0.14 (*)

Grade 0.47 (*) 0.42 (*) 0.40 (*) 0.40 (*)

Size 0.15 (*) 0.12 (*) 0.13 (*) 0.12 (*)

Stage 0.15 (*) 0.14 (*) 0.10 (0.029) 0.11 (*)

NPI 0.26 (*) 0.23 (*) 0.22 (*) 0.21 (*)

Death 0.30 (*) 0.26 (*) 0.24 (*) 0.23 (*)

* p  0.01
fied by ssFCM-KKZ-10-alpha30 have clinical associations that are compet-

itive with Soria’s classification. Higher clinical associations were found for

subgroups by ssFCM-KKZ-10-alpha30 than by CKM-10 and MBIC-10 for

grade, stage, NPI and death. Note that Soria’s classification considers only

663 patients, while subgroups from ssFCM-KKZ-10-alpha30, CKM-10 and

MBIC-10 consider all 1076 patients.

Figure 6.2 on page 153 shows the NPI distribution of each subgroup

based on the different clustering algorithms. Subgroups from ssFCM-

KKZ-10-alpha30 produced similar NPI distributions as Soria’s classifica-

tion. While subgroups from CKM-10 and MBIC-10 have similar NPI distri-

butions as Soria’s classification, their cluster 3 have a higher NPI dispersion

than those from Soria’s classification and ssFCM-KKZ-10-alpha30.

Table 6.5 on page 153 shows the agreement between the different clus-

tering solutions using 10 and the original 25 features. As compared to Table

4 in [141], which shows the agreement between clustering solutions of HC

(agglomerative), ART, KM and PAM, the clustering solutions obtained

here have higher agreement with each other using the reduced feature set.

A slightly higher agreement was found when the HER2 group was split

into two. Agreement between clustering solutions of ssFCM and CKM and

between CKM and MBIC increased when using 10 features. But, MBIC

has higher agreement with ssFCM when using 25 features.
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Figure 6.2: NPI distribution based on clustering solutions with 10 features.

Table 6.5: Agreement between clustering solutions with 6 and 7 subgroups using
Cohen’s κ Index. SKA-10 is used as a short form for ssFCM-KKZ-10-alpha30.
Agreement level is generally higher using 10 features than using all 25.

6 subgroups 7 subgroups

SKA-10 CKM-10 SKA-10 CKM-10

CKM-10 0.699 CKM-10 0.701

MBIC-10 0.674 0.860 MBIC-10 0.676 0.861

ssFCM-25 CKM-25 ssFCM-25 CKM-25

CKM-25 0.587 CKM-25 0.600

MBIC-25 0.765 0.590 MBIC-25 0.767 0.592



154 6.4. RESULTS

0 50 100 150

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Months

S
ur

vi
va

l P
ro

po
rt

io
n

5−Yrs 10−Yrs

class 1
class 2
class 3
class 4
class 5
class 6
class 7

(a) Soria’s classification

0 50 100 150

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Months

S
ur

vi
va

l P
ro

po
rt

io
n

5−Yrs 10−Yrs

cluster 1
cluster 2
cluster 3
cluster 4
cluster 5
cluster 6
cluster 7

(b) ssFCM-KKZ-10-alpha30
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(c) CKM-10
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(d) MBIC-10
Figure 6.3: Survival curves based on 7 subgroups identified from Soria’s clas-
sification [141] (a) and using the 10 important features by ssFCM methodology
in (b), by CKM in (c) and by MBIC in (d).

Figure 6.3 shows the survival curves based on seven subgroups identi-

fied by the clustering algorithms with HER2 group divided into two. The

survival curve based on the new subgroup is presented in pink. Survival

curves based on subgroups by Soria’s classification and MBIC-10 distinc-

tively maintain both the 3 main groups and their respective subgroups. For

CKM-10, distinction between survival curves for Basal and HER2 group is

not clear while for ssFCM-KKZ-10-alpha30, the distinction between these

two main groups are not as clear as Soria’s or MBIC-10’s. For survival

curve analysis based on the three main groups, please refer to Figure 7.3

in the appendix on page 203.

Table 6.6 on page 155 shows the survival curve differences based on 7

subgroups and 3 main groups from ssFCM-KKZ-10-alpha30 using G-rho
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Table 6.6: Differences in survival curves in ssFCM-KKZ-10-alpha30 using
Kaplan-Meier p-values.

ssFCM-KKZ-10-alpha30 7 subgroups * 3 main groups *
Cluster 1 2 3 4 5 6 Cluster 1 2
2 0.743 2 *
3 0.989 0.785 3 * 0.104
4 * * *
5 * * 0.001 0.632
6 * * * 0.260 0.105
7 * * * 0.466 0.214 0.575
* p  0.001

family of tests proposed by Harrington and Fleming [73]. The test deter-

mines whether there is a difference between one or more survival curves

where a p-value of less than 0.05 means that they are different. It was im-

plemented using the survdiff function from the survival R package [150].

Survival curves differ significantly between Luminals (clusters 1-3) and the

other 2 groups, Basals (clusters 4 and 5) and HER2 (clusters 4 and 5), show-

ing poorer prognosis in the more aggressive groups Basals and HER2 [3].

This is also reflected in the survival curve differences tables for Soria’s clas-

sification, CKM-10 and MBIC-10 in Tables 7.14, 7.15 and 7.16 respectively,

found in the appendix on pages 202 to 204. More importantly, the separa-

bility between the survival curves which reflects the biological subgrouping

performed by the clustering algorithms indicates clinical relevance, which

means that these subgroups found were also clinically useful.

Table 6.7 on page 156 shows the association between biological sub-

groups and clinical parameters based on the different clustering algorithms

used and the number of subgroups found. The clinical association levels for

6 and 7 subgroups were similar and thus, similar observations as previously

discussed were found.

Figure 6.4 on page 156 shows the NPI distributions of the seven sub-

groups based on the different clustering algorithms. Apart from subgroup

3, similar NPI distributions were found on all other subgroups using the dif-

ferent clustering algorithms. Furthermore, similar NPI distributions for all

seven subgroups as those in [63] were found using CKM-10 and MBIC-10.
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Table 6.7: Clinical evaluation by association between clinical parameters and classification based on Soria et al. [141], ssFCM-KKZ-10-alpha30,
CKM-10 and MBIC-10 measured by Cramer’s V and their respective p-values in brackets based on 6 and 7 subgroups (SG).

Soria et al.[141] ssFCM-KKZ-10-alpha30 CKM-10 MBIC-10
Parameters 6 SG 7 SG 6 SG 7 SG 6 SG 7 SG 6 SG 7 SG
Age 0.15 (*) 0.16 (*) 0.13 (*) 0.13 (*) 0.15 (*) 0.16 (*) 0.14 (*) 0.14 (*)
Grade 0.47 (*) 0.47 (*) 0.42 (*) 0.42 (*) 0.40 (*) 0.40 (*) 0.40 (*) 0.40 (*)
Size 0.15 (*) 0.15 (*) 0.12 (*) 0.12 (*) 0.13 (*) 0.13 (*) 0.12 (*) 0.12 (*)
Stage 0.15 (*) 0.16 (*) 0.14 (*) 0.14 (*) 0.10 (0.029) 0.10 (0.036) 0.11 (*) 0.11 (0.011)
NPI 0.26 (*) 0.26 (*) 0.23 (*) 0.24 (*) 0.22 (*) 0.22 (*) 0.21 (*) 0.22 (*)
Death 0.30 (*) 0.30 (*) 0.26 (*) 0.26 (*) 0.24 (*) 0.25 (*) 0.23 (*) 0.23 (*)
* p  0.01
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(b) ssFCM-KKZ-10-alpha30
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cl
us

te
r1

cl
us

te
r2

cl
us

te
r3

cl
us

te
r4

cl
us

te
r5

cl
us

te
r6

cl
us

te
r7

2

3

4

5

6

7

8

N
P

I

(d) MBIC-10

Figure 6.4: Boxplots showing NPI distribution for 7 subgroups.
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6.5 Discussion

Using the 10 features identified in [140], stable subgroups were found us-

ing the three clustering algorithms, ssFCM-KKZ-10-alpha30, CKM-10 and

MBIC-10, with agreement of above 0.6 when compared with ssFCM-25.

Based on the clinical evaluation using association measure, survival anal-

ysis and NPI boxplot analysis, the subgroups identified using all three

clustering algorithms were found to be clinically relevant. The ssFCM sub-

groups had the highest association with grade, stage, NPI and death in

comparison with subgroups identified by CKM and MBIC.

Further comparison were made with the 7 subgroups identified by Green

et al. [63], the latest development of subgroup identification in the NTBC

dataset. The HER2 group was manually split into two such that those with

ER ¡ 0 belong to the HER2/ER+ group (class/cluster 6) and those with

ER � 0 belong to the HER2/ER- group (class/cluster 7). On compari-

son of clinical association with subgroups by Green et al. [63], competitive

association levels were found with the subgroups found using the ssFCM

framework. NPI distributions of subgroups based on CKM-10 and MBIC-

10 were similar to those of Green et al. [63]. This further ascertain the

importance of the 10-feature set in identifying stable subgroups using dif-

ferent clustering techniques and methodologies.

Based on the increased agreement observed between clustering solutions

from ssFCM, CKM and MBIC as compared to agreement levels of clustering

solutions in [141], this suggests that the subgroups from different clustering

algorithms stabilise with a suitable, reduced feature set. The significant

increase in agreement between CKM and MBIC with 10 features warrants

further investigation between agreeing solutions, which may produce clearer

distinction between Basal and HER2 group for the 7 subgroups of CKM-10.

The 15 features found using ssFCM and NB-RFE are useful for achiev-

ing high classification accuracy when assigning new patients to classes, but
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from this study, they were not useful for finding stable subgroups when used

with unsupervised clustering algorithms. This may be due to the following

two reasons. The 15 features were identified based on Soria’s classification

of the 663 patients, not all 1076 patients. There may be redundant features

still remaining in the 15 features and further feature selection from the 15

feature set is required.

The increased stability of subgroups generated by clustering algorithms

using a reduced panel of protein biomarkers opened up two research ques-

tions, which to the best of our knowledge, are currently not answered:

1. Can feature selection help clustering algorithms produce more stable

clusters?

2. Can the stability of clusters be an evaluation criteria for unsupervised

feature selection using clustering algorithms to find relevant features?

6.6 Summary

In this chapter, clustering was performed using ssFCM, CKM and MBIC

with experimentation on two different feature sets, one containing 10 fea-

tures and the other 15 features. Using 15 features, ssFCm achieved high

agreement with ssFCM-25. However, very poor agreement were found

using unsupervised clustering, indicating that using the 15 features, the

subgroups found were unstable. Using the 10 features on three different

clustering algorithms, stable breast cancer subgroups that are biologically

useful and clinically relevant were found.

The six subgroups found using 10 features were split into seven to make

comparison with other subgroups found in [63]. Competitive clinical asso-

ciation and similar NPI distributions in the seven subgroups were found.

This further confirms the importance of the 10 features in identifying stable

subgroups using different clustering algorithms and other methodologies for

the breast cancer data.



7 Conclusion

This thesis focused on the development of ssFCM-based techniques for

application on a real biomedical data. The incorporation of the three ap-

proaches initialisation techniques, feature selection and adjustment of scal-

ing parameter α into a ssFCM framework, resulting in a novel ssFCM-based

framework, has been demonstrated to address the problem of initialisation

sensitivity and improve clustering or classification results, thereby fulfill-

ing the first main objective. The framework has been applied to classify

new patients in the NTBC dataset into the six subgroups previously iden-

tified by Soria et al. [141]. Furthermore, the framework is applied on the

NTBC dataset with a reduced panel of 10 biomarkers to identify stable

breast cancer subgroups (both six and seven subgroups). Agreement with

Cohen’s κ index of near 0.7 between solutions from the framework and two

clustering algorithms indicate high stability in the identified subgroups.

Analysis showed that these subgroups are identical to Soria et al. [141].

The framework has demonstrated success in being applied as a classifica-

tion and clustering tool to assist clinicians in decision making, fulfilling the

second main objective.

In this chapter, the thesis is summarised by describing the contributions

to knowledge derived from this research and the limitations based on the

extent to which the sub-objectives have not fulfilled. Approaches to tackle

the limitations are discussed in the future work section. Furthermore, the

publications based on this research are also listed.

159
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7.1 Contributions to knowledge

In this section, the contributions to knowledge derived from this research

work and limitations, if any, are discussed. Publications that have been

generated from this research are listed and the potential avenues for future

exploration are described.

A comparison between ssFCM algorithms on popular datasets

A comparison between different ssFCM algorithms was conducted to select

the most suitable to be applied on a real biomedical dataset. Different

ssFCM algorithms have previously been evaluated on different datasets

using various amounts of labelled patterns, which makes fair comparison

difficult. This prompted the study into a comparison of four simple but

good-performing distance-based semi-supervised Fuzzy c-Means (FCM) al-

gorithms proposed by Pedrycz and Waletzky [121], Zhang et al. [165],

Li et al. [101] and Endo et al. [47]. The four algorithms were analysed

and applied over five popular UCI datasets. Scale differences of dimensions

in the dataset, distance metrics, objective functions and quality of labelled

patterns have been observed to affect classification results. For most of the

dataset tested on, ssFCMs with Fuzzy Mahalanobis distance were found to

be most suitable because they are scale-invariant given that there are scale

differences in the dimensions of the datasets, as compared to Euclidean

and kernel-based distances. By arbitrarily reducing the dimensions in the

dataset, WOBC in this case, improved ssFCM results were obtained. This

is one motivation towards the investigation of feature selection techniques

to improve ssFCM classification (as was conducted and described in Chap-

ter 4.2). In Li-08 [101], only labelled data are used to update the cluster

centre which makes the algorithm highly dependent on the initial mem-

bership values of labelled patterns, which if contain errors, can negatively
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impact the classification results. This brings the importance of scaling

(balance) parameters like α and a. In Zhang-04 [165], only memberships

of unlabelled patterns are updated and thus, memberships of labelled pat-

terns are never updated, nor improved. Endo-09 [47] performed the least

favourably due to the use of Euclidean distance on scale-variant datasets

which faced the ‘curse of dimensionality’ problem. Based on these observa-

tions, further investigation in Pedrycz-97 [121] is conducted for application

on a real biomedical dataset, the NTBC dataset.

It was observed that accuracy did not always increase with amount

of labelled data, indicating that some labelled data may not be good ex-

ample. The techniques for selecting “good” labelled data have not been

explored because there may be a danger of selecting labelled data that cre-

ates clusters that are thought to be correct, rather than let the data and

algorithm determine this. Moreover, given that labelled data are limited,

all labelled data are considered valuable in providing more information re-

garding the structure within the data. By filtering out “bad” labelled data,

finding anomalies which insights can be gained from may be hindered. Fur-

thermore, these labelled data “good” or “bad” are representatives of the

population. Besides, there is a general trend of increasing accuracy despite

slight fluctuations in accuracy as amount of labelled data increases. Based

on these reasons, all available labelled data are used rather than devising

a selection mechanism for labelled data in the NTBC dataset. This fulfills

sub-objective 1a of this research.

So far, the comparison was performed on four distance-based ssFCMs.

Pairwise-constrained ssFCMs [64, 59] are also distance-based ssFCMs but,

is not covered in this research. This is because additional parameters are

at play in these type of ssFCMs, which require further study.
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Demonstration of ssFCM robustness using evaluation techniques

The ssFCM was evaluated using accuracy rate, κ and NMI in two settings;

clustering and cross-validation in Chapter 3.2. The results generated using

the three evaluation techniques were consistent with each other, demon-

strating robustness of the algorithm. Thus, κ and NMI are dropped in

proceeding investigations. Furthermore, the relative accuracy (suggest-

ing improvement or otherwise) between different techniques or methodolo-

gies were more of interest than the actual accuracy when testing on other

datasets, which evaluation using accuracy rate suffices. This fulfills sub-

objective 1b of this research.

Investigation of distance metrics in ssFCM for breast cancer data

The investigation in distance metric was prompted by two factors. First,

a preliminary study on the application of ssFCM for breast cancer clas-

sification [99] showed low agreement with Soria’s classification [141] using

ssFCM algorithms with Fuzzy Mahalanobis distance on NTBC. Secondly,

based on literatures [85, 84] and on experimental results from the prelim-

inary studies (in Chapter 3.1) on comparing different ssFCM on different

UCI datasets, it is clear that the choice of distance metric strongly af-

fects the performance of ssFCM for different datasets. This led to the

exploration of different distance metrics to find one that best represent the

NTBC dataset. Unexpectedly, the Fuzzy Mahalanobis distance commonly

used in many ssFCM algorithms did not perform well for NTBC.

Soria’s classification [141] was used as a benchmark because the sub-

groups identified in [141] were shown to be biologically meaningful and

had significant clinical association. In Chapter 3.2, breast cancer classi-

fications based on using Euclidean, Mahalanobis, Fuzzy Mahalanobis and

kernel-based distances in ssFCM (Pedrycz-97) were compared. The highest

agreement was obtained from Euclidean ssFCM. Interestingly, the Maha-
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lanobis ssFCM was found to perform better than the Fuzzy Mahalanobis

one on the NTBC dataset. Similar experiments were ran on other UCI

datasets (not included in this thesis) where different distance metrics were

found to be suitable for different dataset. This suggests the importance of

experimenting an algorithm with different distance metrics to determine

one most suitable for a dataset. In many ssFCM literatures, the most com-

monly used distance metric is the Fuzzy Mahalanobis. However, it was

observed that Fuzzy Mahalanobis does not always produce better results

than the original Mahalanobis on all datasets but depends on the dataset.

This fulfills sub-objective 2a of this research.

So far, four distance measures were explored as they were found to be

most commonly used in classification or clustering of numerical data. One

limitation is that the selection of suitable distance metric for a dataset

is through trial and error as observed in Chapter 3.2. A distance metric

that is adaptive to the relationship in the data may improve clustering or

classification results.

Improving ssFCM classification of NTBC and UCI datasets using

initialisation techniques.

An investigation in initialisation techniques SCS, KKZ and CE, with ss-

FCM on the NTBC and three UCI datasets was conducted to improve clas-

sification, which to the best of our knowledge has never been done before.

ssFCM with KKZ initialisation was demonstrated to improve classification

accuracy for the NTBC dataset. It was observed that initialisation tech-

niques can improve ssFCM classification particularly when availability of

labelled data is very low. The initial cluster centres provided additional

information for ssFCM when labelled data is lacking. This indicates that

KKZ initialised cluster centres based on information from the dataset can

provide supplementary supervision in addition to labelled data to assist
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ssFCM classification. The biplot analysis of the KKZ cluster centres re-

vealed that they are located at the edge of clusters. Interestingly, despite

the clusters centres found by KKZ being at the edge of clusters, improve-

ment in accuracy is still achieved, showing the importance of employing

some heuristics (KKZ, in this case) to give ssFCM some clues of where

the clusters initially are, even though they may not be at the exact centre

of the clusters. Indeed, ssFCM classification of the NTBC dataset has al-

ready achieved high accuracy of above 90%. However, the incorporation of

initialisation technique added information that could help achieve a higher

accuracy, which is beneficial to classification of future breast cancer patients

and to the identification of useful clusters. Although the improvement in

classification accuracy was small for NTBC, this is considered important

as accuracy is critical when dealing with biomedical data. Furthermore,

ssFCM methodology with initialisation also showed improvement in popu-

lar UCI datasets Iris, Wine and Pima Indian Diabetes. This contribution

fulfills the sub-objectives 1c, 1e and 2a.

Improving ssFCM classification of NTBC using feature selection

techniques and identification of important biomarkers.

The motivation is to produce clinically useful classification of NTBC using

as few features as possible, thereby reducing cost and time in running clin-

ical tests. Feature selection is applied with ssFCM and investigations in

accuracy and stability of selected features are carried out. If a reduced fea-

ture set achieves high stability, it means that the same set is consistently

being selected and this builds confidence in the feature set. For NTBC,

ssFCM with the 15 features selected by NB-RFE achieved the highest av-

erage accuracy–stability combination. ssFCM with 17 features selected by

NB-RFE achieved the highest average accuracy but lower stability than

with 15 features.
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The best 15 features are identified by choosing the highest scoring fea-

tures based on their rank and frequency of belonging to a feature set that

achieve 100% ssFCM classification accuracy. To the best of our knowl-

edge, the application of NB-RFE with ssFCM as evaluation of the selected

features has never before been done. While improvement in accuracy was

found using ssFCM on the 15 selected features, it is crucial to test the same

15 features on different classifiers to ensure that these features are not bi-

ased to some classifiers only. Should a different classifier be used on NTBC

in the future, these features may not produce accurate results. Eleven clas-

sifiers were tested using the reduced feature set of 15 features and nine of

these classifiers showed improvement in accuracy compared with them us-

ing all 25 features. Apart from FHIT, these features are consistent with the

overexpressed and underexpressed features presented by Soria et al. [141].

To demonstrate the generalisation of the ssFCM methodology with fea-

ture selection on other datasets, the methodology is applied on three UCI

datasets Arrhythmia, Cardiotocography and Yeast with investigation in

distance metric, accuracy and stability. Accuracy increased on all three

datasets using the methodology. Unexpectedly, it was observed that ssFCM

with a poor performing distance metric (and original number of features)

when used with feature selection could obtained much improved accuracy,

higher than that with the most suitable distance metric and original num-

ber of features. This suggests that further investigation in different distance

metrics in ssFCM to determine one best for the dataset with reduced fea-

ture set is required. This finding, to the best of our knowledge, has never

been reported. This contribution fulfills the sub-objectives 1d, 1e and 2a.

With the newly selected features, the hidden structure within the re-

duced dataset has changed and may require the search of a suitable dis-

tance metric. This increases computation requirement and the uncertainty

of finding the right distance metric to produce useful clusters.
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Investigation of scaling parameter α for improving ssFCM

The scaling parameter α helps maintain a balance between supervised and

unsupervised learning in ssFCM. In [59] and [155], the selection of suit-

able α values were found to depend on the dataset and the amount of

labelled data used. This was demonstrated on UCI datasets Ionosphere,

Page Blocks , PID, Wine and WOBC as well as NTBC in Chapter 4.3.

Based on the experimental results, three trends in accuracy are identified

with respect to α and amount of labelled data for the different UCI datasets.

Accuracy can be improved by either 1) increasing α irrespective of amount

of labelled data, 2) increasing α with increasing amount of labelled data

and 3) decreasing α with increasing amount of labelled data, depending

on the dataset. The trends observed in the results suggest that accuracy

can be improved when a suitable configuration for α is employed, based on

prior experimentation of different α settings on the dataset. As accuracy

is of great importance, further increase in accuracy obtained from suitable

α configuration is desirable.

For the NTBC dataset, it was observed that increasing α increased ac-

curacy irrespective of amount of labelled data and that α � 30 improved

classification by ssFCM and ssFCM methodologies using KKZ, 15 best fea-

tures identified using ssFCM and NB-RFE and a combined methodology

of KKZ and feature selection. Based on comparison between experimental

results from the different ssFCM methodologies and on the amount of la-

belled data, a strategy is devised to use a suitable ssFCM methodology to

achieve a higher accuracy.

Chapter 4.3 showed that a strategy can be devised, through prior exper-

imentation with different α values and analysis of its effects on the result,

to exploit α in ways specific to the dataset to increase accuracy of ssFCM

classification. This contribution fulfills the sub-objectives 1d, 1e and 2a.
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Comparing breast cancer classification between ssFCM and other

classifiers

The comparison of ssFCM with other classifiers on NTBC determines how

well ssFCM work in comparison with other techniques and justify the choice

in ssFCM as a suitable algorithm for NTBC. So far, ssFCM has been shown

to outperform 11 out of the selected 12 classifiers in classifying the NTBC

dataset. With only 10% labelled data, ssFCM was found to be one of

the most favourable algorithm in close competition with GLMNET. With

60% labelled data, ssFCM produced the highest accuracy of 97.84%. To

the best of our knowledge, such a comparison between ssFCM and other

classifiers on the NTBC was never done before. This contribution fulfills

the sub-objective 2b.

So far, apart from specifying the number of classes or clusters, the clas-

sifiers are applied using default configurations. Other than for comparison,

further in-depth study of their application in breast cancer classification

should be considered which may improve classification and clustering re-

sults of the ssFCM framework on the entire dataset as was conducted in

Chapters 5 and 6.

An integrated framework for automatic classification (post-

initialisation) of new patients

An integrated framework was developed for automatically classifying the

NTBC dataset into the same six subgroups using one single clustering al-

gorithm as a tool to assist clinicians in decision making. The remaining 413

patients (belonging to mixed groups [141]) are classified using the frame-

work and the biological and clinical characteristics of the subgroups formed

by these patients, are analysed and compared with those of the 663 clas-

sified by Soria et al. [141]. The classification of the 413 patients exhibit

similar characteristics as those in the already found six classes. ssFCM clas-
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sified the 663 patients with Soria’s classification fully retained. Based on

clinical evaluation, clinical association was found in the six classes the 413

patients are assigned to, consistent with those reported by Soria et al. [141].

The resulting classification provided relevance (association) to clinical data,

allowing clinicians to draw conclusions from information about the biolog-

ical classes and their relevance to clinical data, hence, providing decision

making support.

In doing so, a tighter integration between the clustering algorithm and

application needs [84] is achieved. In classifying the remaining 413 patients,

it is hoped that a more accurate model is provided for the prediction of

breast cancer types for new patients that can help support decision making.

This contribution fulfills the sub-objectives 2a, 2c and 2d.

When using α � 30, ssFCM methodology with KKZ and with the 15

identified features produced highly similar classification. Although EKKZ30

and ENB30 appear not to be as clinically relevant based on their survival

curves as compared to those of EKKZ and ENB, these classification are

considered useful for comparing the effects α � 30 has on the classification

of the 413 patients and their eventual effect on the survival curves. Per-

haps, α � 30 is not the best configuration for classifying the 413 patients or

that there is insufficient test data to demonstrate the distinct separability

of the survival curves based on the subgroups assigned. Furthermore, the

setting α � 30 has been chosen based on experimentation with the 663 pa-

tients in Chapter 4.3. Further investigation is required in determining the

suitable setting of α for the classification of the 413 patients. In addition,

further investigation using more breast cancer data is needed.

The framework involves a two-step approach to link the subgroups to

survival data, both of which are separate. First, the patients are assigned

to the subgroup through classification and then survival curves based on

the subgroups they belong to are drawn to establish the link. It would be
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ideal if the survival data (and/or clinical data) can be incorporated into

the classification process to create subgroups that are both biologically

meaningful and clinically relevant directly.

While the framework is able to generate information required by clini-

cians for decision-making, it is currently not fully automatic. The classifi-

cation results have to be fed into different scripts to generate the statistical

information to serve the decision-making purpose.

In the clinical evaluation, missing data are ignored. Thus, patients

with missing clinical data are not included into the analysis for establishing

association between the subgroups and clinical parameters.

Identification of stable breast cancer subgroups using reduced

panel of biomarkers

The ssFCM framework is also applied to identify stable breast cancer sub-

groups using a reduced panel of 10 biomarkers. The framework incorporates

KKZ and the α � 30 setting. The stability of the identified subgroups by

ssFCM are evaluated based on agreement levels with two unsupervised clus-

tering algorithms, CKM and MBIC. Using the 10 biomarkers on three dif-

ferent clustering algorithms, a moderate agreement level of above 0.6 (near

0.7) were obtained between the three clustering solutions. These agreement

levels indicate that these subgroups are more stable than those in [141] us-

ing HCA, KM and ART where κ of below 0.5 were obtained. Furthermore,

all 1076 patients are assigned to one of the six subgroups. The biomarker

profiles for each subgroup represented in the boxplots showed biological

meaningfulness and the significant clinical association showed clinical rele-

vance of the subgroups. This study not only ascertained the importance of

the 10 biomarkers but also, six stable subgroups have been identified and

shown to be biologically useful, retaining all of Soria’s classification, and

clinically relevant, demonstrating significant clinical associations.
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Further analysis on seven subgroups are conducted by manually split-

ting the HER2 group into two subgroups based on high and low ER expres-

sions (HER2/ER+ and HER2/ER- subgroups respectively) and retaining

the other five subgroups to form a total of seven subgroups to make com-

parison with the seven identified by Green et al. [63]. Slightly higher agree-

ment between the ssFCM methodology with CKM and MBIC clustering

solutions were found, suggesting higher stability in the seven subgroups

than six. Furthermore, competitive clinical association and similar NPI

distributions in the seven subgroups from ssFCM were found when com-

pared with those by Green and his colleagues. This demonstrates that

the ssFCM methodology can identify stable and clinically useful breast

cancer subgroups. This study further confirms the importance of the 10

biomarkers in identifying stable subgroups (both six and seven) using vari-

ous clustering algorithms. The study of identifying stable subgroups using

these 10 biomarkers and ssFCM with comparison to unsupervised cluster-

ing solutions have so far not been done before. This contribution fulfills

the sub-objectives 2a, 2c and 2d.

The increased stability of subgroups generated by different clustering

algorithms from a reduced set of protein markers reported in Chapter 6

opens up two research questions which can bring about future technical

contributions and are also highly relevant to this research objectives:

1. Can feature selection help clustering algorithms produce more stable

clusters?

2. Can the stability of clusters be an evaluation criteria for unsupervised

feature selection using clustering algorithms to find relevant features?

So far, only two unsupervised clustering algorithms are compared with

the ssFCM framework. More unsupervised clustering algorithms should

be explore to strengthen the findings and verify whether feature selection
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can help clustering algorithms produce more stable clusters, as outline in

research question 1. Furthermore, the exploration of other unsupervised

clustering algorithms for the purpose of feature selection may help to answer

research question 2.

The 15 features identified were found to produce less stable subgroups

than compared with the 10 features from [140] when comparing clustering

solutions from ssFCM, CKM and MBIC based on clustering the entire

dataset of 1076 patients. The poor stability may be due to the fact that

the best 15 features found were based on classification of the 663 patients

and not on the entire dataset. Further investigation in feature selection

based on data and class labels of all 1076 patients is required.

Discussion

In this research work, the ssFCM is recognised as both a clustering and

classification technique. It does classification (prediction of class labels)

through clustering, that is based on similarity of data. This means that

the model (based on both train and test data) is updated even during test-

ing phase in classification. However, it is not a classification technique in

a machine learning sense because it does not learn the mapping between

labelled data and their class labels. In classification (machine learning),

the learned mapping (or model) does not change during the testing phase.

At what point do we move from clustering to classification (machine learn-

ing) is an important and difficult question. This depends on how ”useful”

or ”meaningful” are the clusters found and is not within the scope of this

research. This research has used known test labels to evaluate the mean-

ingfulness of the clusters. Where test labels are not available, association

measures between clusters and other additional features in the dataset are

employed as in the case of the NTBC dataset.

Based on experimental results, a simple-to-implement ssFCM by Pedrycz
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and Waletzky [121] have been demonstrated to further improve clustering

and classification through modifications using suitable distance metric and

suitable α setting and through integration of initialisation and feature selec-

tion techniques. Based on experiments on NTBC, significant improvement

was found using distance metric and feature selection, where improvement

can be further increased using a suitable α setting. In the individual exper-

iments investigating distance metric and feature selection, it was observed

that the average accuracy could vary greatly between the different distance

metric and feature selection technique chosen respectively. The initiali-

sation technique with a suitable α setting was found to be particularly

effective in improving ssFCM performance when labelled data are low (at

below 20% labelled data). While these techniques and modifications have

been widely reported and are available for use, no study has integrated

these into an ssFCM framework to improve its performance. Our research

have shown that a simple ssFCM can produce significant favourable results

on real-world biomedical data such as the NTBC through investigation in

these simple existing approaches.

In this research work, a more complex ssFCM, the pairwise-constrained

ssFCM with the competitive agglomeration feature removed, have been

explored. However, the user-specified parameters were found to be tricky to

set and they are dependent on the dataset. As a result, we were not able to

replicate the results obtained in [64] and the investigation is still ongoing.

Based on this experience, the intuition is that a simple ssFCM such as

Pedrycz and Waletzky [121] should first be explored and exploited using

existing approaches, particularly the suitable distance metric and feature

selection technique, to solve a complex problem such as clustering the breast

cancer dataset before venturing into more complex approaches. Simple

modifications such as using a suitable α setting can bring favourable results.

This research work has taken the direction as stated by Jain [84], that is to
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achieve a tighter integration between clustering algorithms and application

needs. Here, a range of different modifications and approaches to ssFCM

have been explored to provide improved clustering or classification result

tailored to different datasets.

7.2 Future work

The proposals for future work, some of which are currently ongoing, are

listed in this section. The type of contribution from each proposal is indi-

cated in brackets whether the aspect is technical, clinical or both.

Investigation into pairwise-constrained ssFCM for breast cancer

classification (technical)

So far, a modified ssFCM based on the ssFCM by Pedrycz and Walet-

zky [121] has been employed on NTBC where the distance metric used is

Euclidean and the scaling parameter is α � 30 with the incorporation of

KKZ and reduced panel of features. Similar investigations into a differ-

ent type of ssFCM, a pairwise-constrained ssFCM would help provide a

deeper understanding of how distance metric, scaling parameter, initialisa-

tion techniques and feature selection affect the algorithm in comparison to

the modified ssFCM. These ssFCM are of interest because they incorpo-

rate an agglomerative mechanism which do not require prior knowledge of

the number of clusters. It would strengthen this research work to employ

pairwise-constrained ssFCM for the purpose of determining the number of

clusters for the NTBC dataset and of further analysis in the generated clus-

ters, whether they are clinically useful or stable. This study also goes in line

with the aim of using ssFCM methodologies for application in biomedical

data, expanding to more complex algorithms. Furthermore, a comparative

study between our integrated framework with a more complex pairwise-
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constrained ssFCM help us strengthen our research work as to whether the

integration of approaches and modification of a simple ssFCM can achieve

as good or better results as more complex ssFCMs.

Further investigation into a more adaptive distance metric ap-

proach with ssFCM on the NTBC dataset (technical)

Distance metric learning One approach to improve the procedure of

selecting suitable distance metric for a dataset is to employ distance metric

learning (DML). Distance metric learning ensures that the distance relation

among the training data is preserved using labelled data to indicate whether

they are similar and dissimilar. By using distance metric learning, data

patterns are transformed such that similar data patterns are placed closer

and dissimilar ones are pushed further apart. Furthermore, distance metric

learning techniques also perform feature reduction which could remedy the

problem of trying to obtain improved classification results on datasets with

newly selected features through the search for a suitable distance metric.

But, the problem with distance metric learning, unlike feature selection, is

that the output is a transformation matrix which shows no indication of

which features exactly are important.

The distance metric learning (DML) techniques by Xing et al. [163],

Weinberger et al. [157], Goldberger et al. [61] and Globerson and Roweis [60]

have been applied with ssFCM on NTBC and UCI datasets Arrhythmia,

Cardiotocography, Yeast, PID and WOBC (results not presented) in a CV

setting. While accuracy was found to improved using DML on the UCI

datasets apart from WOBC, none of the techniques improved classification

accuracy for NTBC. For this reason, DML was not employed in the inte-

grated framework and further investigation has been dropped. The reason

DML has not improve ssFCM classification for the NTBC is still unclear

and this investigation is currently ongoing. Further investigation may also
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help to determine the types of datasets DML is suitable for or whether

parameters have to be adjusted to suit the datasets.

General distance metric Another investigation to improve the selec-

tion of distance metric is the application of a general distance metric for

ssFCM. The objective in applying a generalising distance metric function

with ssFCM classification is to automate the search of an adaptive distance

metric suitable to a dataset during the training process. A general distance

metric which can intelligently consider all relevant aspects of a dataset to

best represent a useful model would be ideal. One such study introduces

a general distance metric that is flexible to FCM has been published [160].

Another study which is of interest is the application of Bregman diver-

gence into ssFCM. The Bregman divergence holds a family of distance

metric functions, thus, providing generalisation of these functions, which is

relevant to this study of general distance metrics. Banerjee et al. [10] have

demonstrated clustering with Bregman divergence on EM, pioneering the

development of Bregman soft-clustering parametric algorithms. To apply

these algorithms for identifying breast cancer subgroups, the development

of a non-parametric version suitable for NTBC is needed.

Further investigation into scaling parameter for classifying the

413 patients (technical)

The adjustment of scaling parameter to suit NTBC is through trial and

error and based on experimentation on the 663 patients. Perhaps, a scaling

parameter that is proportional to M{N where M is the amount of labelled

data and N is the total number of data patterns, is more suitable for

classifying the 413 patients. Further investigation into selecting a suitable

scaling parameter, through parameter tuning methods or heuristics, for

classifying the 413 patients is required.
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Investigation into a clustering process to produce clinically mean-

ingful subgroups using both the survival (or clinical data) and

biological data (technical and clinical)

It has been observed that the breast cancer subgroups have relevance to

clinical parameters. For instance, the separability between the survival

curves reflects the different levels of survival outcomes of the different sub-

groups and main groups. Instead of trying to establish a link between

biological subgroups with survival or clinical parameters, outside of the

clustering process, can stable and clinically useful subgroups be found if

the biological data is linked with survival data for clustering, whether the

survival data can be categorised to be used as class labels or the survival

data be regarded as another feature? It would be ideal if the survival data

(and/or clinical data) can be incorporated into the clustering process to

classify patients into subgroups or create subgroups that are both biolog-

ically meaningful and clinically relevant directly. So far, we found that

latent supervised learning introduced by Wei and Kosorok [156] is able to

do this. They proposed a binary classifier which uses a data-driven sieve

maximum likelihood estimator for the separating hyperplane, which in turn

can be used to estimate the parameters of the Gaussian mixture.

Investigation into an unsupervised feature selection technique

based on the search for stable subgroups from different clustering

algorithms (technical)

In Chapter 6, stable and clinically-useful breast cancer subgroups have been

generated using a clustering algorithm on a reduced panel of 10 biomark-

ers [140]. When using ssFCM and the 15 features (obtained in Chapter 4.2

on all 1076 patients, Soria’s classification [141] is fully retained and thus, bi-

ologically useful and clinically relevant. But the subgroups identified using

ssFCM and the 15 features cannot be reproduced using unsupervised clus-
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tering from CKM and MBIC. An investigation into an unsupervised feature

selection technique based on stability of subgroups from different cluster-

ing algorithms as a feature selection criteria which will help answer the

question if feature selection helps produce stable subgroups. Furthermore,

it further ascertain whether the 10 features identified by Soria et al. [140]

are the best 10 features for producing stable subgroups, or whether other

features can be used to produce stable and clinically useful subgroups.

Application of integrated framework on other biomedical datasets

(technical)

So far, the integrated framework was applied on the NTBC dataset despite

the components within the framework being tested on several datasets.

This is because configuration and investigation, that are specific to the

dataset, are required (such as selection of suitable α setting and features se-

lection). To demonstrate that the framework can solve real-world problems

in other biomedical datasets, the application of the integrated framework

on other biomedical datasets is considered for future work.
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Table 7.1: Classification results from running four ssFCM algorithms. The
ssFCM with the highest result for each dataset is indicated in bold.

% labelled
dataset 2 4 6 8 10 20

Results produced by Pedrycz-97
Iris-4 77.33 81.33 82.00 86.00 84.00 90.00
Iris-2 62.00 75.33 74.00 77.33 79.33 85.33
Wine-13 55.06 65.17 71.91 71.91 78.65 84.27
Wine-2 80.34 80.90 81.46 80.90 81.46 82.58
XOR-2 56.00 74.50 84.00 93.00 86.50 91.50
WOBC-8 79.54 84.12 87.84 88.70 87.55 90.99
WOBC-2 89.84 94.99 94.85 94.56 94.85 96.14

PID-8 54.17 60.03 66.41 65.49 70.05 75.91

PID-2 51.30 53.26 54.17 54.43 54.82 57.55
WDBC-30 80.67 73.64 81.90 83.48 88.22 91.56

Results produced by Li-08
Iris-4 94.67 95.33 98.00 98.00 98.00 98.00

Iris-2 64.67 94.00 94.00 94.00 94.00 96.67

Wine-13 60.11 61.80 66.85 87.08 89.89 89.33
Wine-2 68.54 80.90 81.46 83.15 82.58 86.52

XOR-2 50.00 99.50 99.50 99.50 99.50 99.50

WOBC-8 88.27 88.70 80.54 80.97 81.55 89.99
WOBC-2 92.85 93.56 93.56 93.71 93.99 95.42
PID-8 43.23 47.92 50.39 53.78 56.51 70.31
PID-2 44.14 47.27 48.57 50.91 52.34 61.20
WDBC-30 85.59 92.79 90.86 90.69 89.81 93.67

Results produced by Zhang-04
Iris-4 66.67 72.00 72.00 74.00 75.33 85.33
Iris-2 68.00 72.67 73.33 76.00 76.67 84.67
Wine-13 55.62 56.18 56.18 57.30 74.16 76.40
Wine-2 29.21 75.28 76.40 81.46 80.90 84.27
XOR-2 48.50 60.50 54.00 60.50 63.00 66.50
WOBC-8 87.55 89.41 90.27 91.56 92.13 96.14

WOBC-2 92.56 92.56 92.70 93.13 93.42 94.13
PID-8 55.60 57.16 57.55 58.20 59.38 64.71
PID-2 56.12 57.81 58.72 58.98 60.29 64.84
WDBC-30 87.17 87.87 88.40 88.58 88.75 89.46

Results produced by Endo-09
Iris-4 67.33 69.33 74.00 74.00 74.00 78.67
Iris-2 66.67 68.67 70.00 72.67 74.00 76.67
Wine-10

1
87.64 89.89 91.01 86.52 89.33 91.57

Wine-2 50.56 71.35 79.21 82.58 82.02 83.71
XOR-2 26.50 28.00 29.50 31.00 32.50 40.00
WOBC-8 66.24 67.53 68.38 69.81 70.82 76.54
WOBC-2 66.24 67.53 68.38 69.81 70.82 76.54
PID-6 1 *
PID-2 65.36 66.02 66.93 67.45 68.62 71.61

WDBC-23 1 63.27 64.50 65.73 66.96 68.01 71.88
1 Features have to be reduced due to algorithm failure caused by
infinity problem

* Algorithm failure
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Table 7.2: Accuracy of ssFCM using Euclidean (E), Mahalanobis(M), Fuzzy Mahalanobis (FM) and kernel-based (K) distances based on CV. The
distance metric with highest average accuracy, κ and NMI is indicated in italics, showing that Euclidean with ssFCM is most suitable for NTBC.

DM1 ET2 0% 10% 20% 30% 40% 50% 60%

E
A3 30.47�0.46 96.12�2.04 96.86�1.94 97.22�1.77 97.54�1.61 97.64�1.55 97.84�1.53
κ4 0.00�0.00 0.95�0.03 0.96�0.02 0.97�0.02 0.97�0.02 0.97�0.02 0.97�0.02

NMI5 NaN 0.93�0.04 0.94�0.03 0.95�0.03 0.95�0.03 0.96�0.03 0.96�0.03
M

A 30.47�0.46 75.00�5.66 81.39�5.64 84.61�5.08 85.95�5.11 86.88�4.88 87.63�4.86
κ 0.00�0.00 0.69�0.07 0.77�0.07 0.81�0.06 0.83�0.06 0.84�0.06 0.85�0.06

NMI NaN 0.61�0.08 0.69�0.08 0.73�0.08 0.75�0.08 0.77�0.08 0.78�0.08
FM

A 30.47�0.46 35.12�7.41 38.89�6.45 41.93�5.26 43.71�4.91 46.09�4.83 48.02�5.46
κ 0.00�0.00 0.18�0.07 0.22�0.07 0.25�0.06 0.27�0.06 0.30�0.06 0.32�0.07

NMI NaN 0.34�0.06 0.36�0.06 0.40�0.06 0.38�0.06 0.41�0.06 0.43�0.06
K

A 30.47�0.46 69.59�6.20 76.46�5.12 81.35�5.09 82.14�4.99 82.28�5.25 83.47�4.85
κ 0.00�0.00 0.60�0.08 0.69�0.07 0.76�0.07 0.77�0.07 0.77�0.07 0.79�0.06

NMI NaN 0.55�0.08 0.63�0.07 0.69�0.08 0.70�0.07 0.70�0.08 0.72�0.07
1 Distance Metric
2 Evaluation Technique
3 Accuracy in percentage
4 Cohen’s Kappa Index
5 Normalised Mutual Index
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Table 7.3: Average training accuracy of ssFCM on NTBC using all features and 15 selected features

10% 20% 30% 40% 50% 60%

All features 96.71�1.03 97.93�0.66 98.52�0.49 98.95�0.41 99.23�0.30 99.48�0.24
SVM-RFE-15 95.68�2.17 97.19�1.03 97.92�0.64 98.29�0.65 98.73�0.41 99.09�0.32
CFS-15 96.49�1.72 97.21�0.98 97.97�0.80 98.46�0.73 98.79�0.64 99.14�0.44
NB-RFE-15 96.73�1.33 97.86�0.59 98.39�0.45 98.81�0.38 99.07�0.31 99.30�0.26
RF-RFE-15 96.57�1.17 97.73�0.68 98.28�0.56 98.75�0.49 99.00�0.37 99.31�0.30
IG-15 93.55�4.35 97.23�1.38 98.05�0.64 98.54�0.50 98.88�0.36 99.21�0.29
GR-15 93.79�4.33 97.07�1.30 97.65�1.17 98.29�0.69 98.55�0.88 99.10�0.39
CSQ-15 93.59�4.39 97.19�1.15 97.99�0.71 98.53�0.51 98.88�0.37 99.22�0.30
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Table 7.4: Rank count of 15 selected features from NB-RFE which achieved
100% accuracy with ssFCM on NTBC.

rank

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Score Rank

CK18 104 71 13 2 1 1 0 0 0 0 0 0 0 0 0 2768 1

CK7/8 73 94 16 7 2 0 0 0 0 0 0 0 0 0 0 2725 2

p53 6 14 122 27 9 8 4 1 0 1 0 0 0 0 0 2425 3

MUC1co 2 4 16 74 59 21 9 6 1 0 0 0 0 0 0 2177 4

ER 1 7 12 42 52 34 27 14 3 0 0 0 0 0 0 2061 5

MUC1 0 0 0 7 31 64 52 28 8 1 0 1 0 0 0 1823 6

HER2 6 2 8 19 20 30 34 39 22 5 3 2 1 1 0 1800 7

PgR 0 0 3 8 13 23 46 63 33 2 1 0 0 0 0 1674 8

CK19 0 0 2 5 5 9 16 35 104 15 0 0 1 0 0 1476 9

HER4 0 0 0 1 0 1 3 4 15 149 14 5 0 0 0 1170 10

AR 0 0 0 0 0 0 0 1 4 7 78 88 13 1 0 861 11

HER3 0 0 0 0 0 1 1 1 2 10 84 62 24 4 2 851 12

nBRCA1 0 0 0 0 0 0 0 0 0 1 11 29 116 26 9 586 13

FHIT 0 0 0 0 0 0 0 0 0 1 1 4 20 89 69 334 14

CK5/6 0 0 0 0 0 0 0 0 0 0 0 1 17 68 91 282 15

E-cad 0 0 0 0 0 0 0 0 0 0 0 0 0 2 14 18 16

EGFR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 17

Actin 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 17

GCDFP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 19

P-cad 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 19

CK14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 19

MUC2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22

p63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22

Synapto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22

Chromo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22

Table 7.5: Accuracy using Euclidean ssFCM and α values on NTBC in a clus-
tering setting.

α 10% 20% 30% 40% 50% 60%

N{M 96.51�1.32 97.74�0.68 98.41�0.53 98.73�0.43 99.05�0.45 99.24�0.29
0.1 90.00�4.85 94.74�1.07 96.48�0.59 97.16�0.39 97.69�0.39 98.12�0.35
1 95.05�2.93 97.19�0.66 98.10�0.58 98.54�0.45 98.94�0.46 99.19�0.30
10 96.51�1.33 97.83�0.67 98.52�0.52 98.83�0.43 99.13�0.41 99.31�0.28



199 APPENDIX

Table 7.6: Class distributions of patients used in survival analysis based on
methodology by Soria et al. [141], EKKZ, ENB, EKKZ30 and ENB30.

1 2 3 4 5 6 total

Soria 71(202) 90(153) 43(80) 36(82) 38(69) 44(77) 322 (663)

EKKZ 39(91) 68(113) 27(66) 5(15) 25(58) 32(70) 199 (413)

ENB 46(95) 60(108) 27(64) 5(15) 25(58) 33(73) 199 (413)

EKKZ30 48(107) 66(111) 21(56) 5(13) 25(59) 31(67) 199 (413)

ENB30 49(109) 65(110) 21(55) 5(13) 25(59) 31(67) 199 (413)
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Figure 7.1: Kaplan-Meier analysis of overall survival for classifying 413 patients
using various ssFCM methodologies, showing 3 main groups where the three
survival curves are visibly well-separated.
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Table 7.7: Survival curve differences using log-rank test [150] based on Soria’s
classification with 6 subgroups and 3 main groups. The first line shows p-value
based on comparison with all survival curves together using the two different
grouping.

Soria’s classification 6 subgroups * 3 main groups *
Class 1 2 3 4 5 Class 1 2
2 0.978 2 *
3 0.365 0.519 3 * 0.217
4 * * 0.001
5 * * 0.001 0.858
6 * * * 0.345 0.259
* p  0.001

Table 7.8: Survival curve differences using log-rank test [150] based on EKKZ
classification of 413 patients. The first line shows p-value based on comparison
with all survival curves together using the two different grouping.

EKKZ classification 6 subgroups * 3 main groups *
Class 1 2 3 4 5 Class 1 2
2 0.515 2 0.040
3 0.594 0.99 3 * 0.067
4 0.426 0.663 0.533
5 0.055 0.102 0.199 0.853
6 * * 0.002 0.286 0.100
* p  0.001

Table 7.9: Survival curve differences using log-rank test [150] based on EKKZ30
classification of 413 patients. The first line shows p-value based on comparison
with all survival curves together using the two different grouping.

EKKZ30 classification 6 subgroups * 3 main groups *
Class 1 2 3 4 5 Class 1 2
2 0.966 2 0.154
3 0.486 0.451 3 * 0.035
4 0.545 0.591 0.736
5 0.217 0.162 0.623 0.986
6 * * 0.009 0.286 0.051
* p  0.001

Table 7.10: Survival curve differences using log-rank test [150] based on ENB
classification of 413 patients. The first line shows p-value based on comparison
with all survival curves together using the two different grouping.

ENB classification 6 subgroups * 3 main groups *
Class 1 2 3 4 5 Class 1 2
2 0.863 2 0.158
3 0.609 0.479 3 * 0.043
4 0.599 0.577 0.709
5 0.25 0.157 0.581 0.986
6 * * 0.009 0.307 0.062
* p  0.001
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Table 7.11: Survival curve differences using log-rank test [150] based on ENB30
classification of 413 patients. The first line shows p-value based on comparison
with all survival curves together using the two different grouping.

ENB30 classification 6 subgroups * 3 main groups *
Class 1 2 3 4 5 Class 1 2
2 0.968 2 0.189
3 0.283 0.276 3 * 0.046
4 0.542 0.612 0.042
5 0.203 0.185 0.882 0.986
6 * * 0.042 0.307 0.065
* p  0.001

Table 7.12: Comparison of NPI distribution between Soria’s classification and
ssFCMs classification using Kruskal-Wallis test [130] where p¡� 0.01 accepts the
null hypothesis, indicating that the two populations have identical distribution.

c1 c2 c3 c4 c5 c6
EKKZ 0.125 0.024 0.826 0.693 0.559 0.980
ENB 0.197 0.010 0.661 0.693 0.656 0.784
EKKZ30 0.031 0.045 0.755 0.249 0.561 0.894
ENB30 0.037 0.034 0.922 0.249 0.561 0.860
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Figure 7.2: Biplots based on clustering 1076 patients using the 15 important
features with CKM in (a) and with MBIC in (b).
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Table 7.13: Correlation between protein biomarkers and clinical data.

Biomarker/ Clinical data Age Grade Size Stage NPI Death
CK7/8 * -0.376 * * * *
CK18 * -0.338 * * * *
CK19 * -0.340 * * * *
CK5/6 * * * * * *
CK14 * * * * * *
Actin * * * * * *
p63 * * * * * *
ER 0.340 -0.338 * * * *
PgR * -0.394 * * -0.300 *
AR * * * * * *
EGFR * * * * * *
HER2 * * * * * *
HER3 * * * * * *
HER4 * * * * * *
p53 * 0.365 * * * *
nBRCA1 * * * * * *
FHIT * * * * * *
E-cad * * * * * *
P-cad * * * * * *
MUC1 * * * * * *
MUC1co * -0.343 * * * *
MUC2d * * * * * *
GCDFP * * * * * *
Chromo * * * * * *
Synapto * * * * * *
* �0.3  coef  0.3 - very weakly related

Table 7.14: Survival curve differences using log-rank test [150] based on Soria’s
classification. The first line shows p-value based on comparison with all survival
curves together using the two different grouping, 7 subgroups and 3 main groups.

CKM-10 7 subgroups * 3 main groups *
Cluster 1 2 3 4 5 6 Cluster 1 2
2 0.978 2 *
3 0.365 0.519 3 * 0.217
4 * * 0.001
5 * * 0.001 0.858
6 0.001 * * 0.516 0.398
7 * * * 0.377 0.298 0.897
* p  0.001
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(a) Soria’s classification
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(b) ssFCM-KKZ-10-alpha30
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(c) CKM-10
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(d) MBIC-10

Figure 7.3: Survival curves based on 3 main groups identified from Soria’s clas-
sification [141] (a) and using the 10 important features by ssFCM methodology
in (b), by CKM in (c) and by MBIC in (d).

Table 7.15: Survival curve differences using log-rank test [150] based on CKM-10
clustering for all 1076 patients. The first line shows p-value based on comparison
with all survival curves together using the two different grouping.

CKM-10 7 subgroups * 3 main groups *
Cluster 1 2 3 4 5 6 Cluster 1 2
2 0.734 2 *
3 0.084 0.094 3 * 0.159
4 * * 0.002
5 * * 0.008 0.683
6 * * * 0.140 0.060
7 * * 0.001 0.689 0.483 0.276
* p  0.001
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Table 7.16: Survival curve differences using log-rank test [150] based on MBIC-
10 clustering for all 1076 patients. The first line shows p-value based on com-
parison with all survival curves together using the two different grouping.

MBIC-10 7 subgroups * 3 main groups *
Cluster 1 2 3 4 5 6 Cluster 1 2
2 0.591 2 *
3 0.052 0.090 3 * 0.334
4 * * 0.001
5 * * 0.001 0.996
6 * * * 0.477 0.461
7 * * * 0.492 0.529 0.883
* p  0.001

- End of thesis -
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