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ABSTRACT

Analytical techniques applicable to the assay and remediation ofcuttinglmud matrices

have been developed, utilising soxhlet extraction with dichloromethane and a drying

agent followed by analysis using Gas Chromatography (FlO). Calibration curves of

oil content were produced for Novatec and Versaplus coated cuttings that were also

sized by wet and dry sieving techniques, demonstrating their variable nature. The oil

in each size fraction was assessed and showed that the finer fractions preferentially

adsorbed the oil. Bacteria were isolated from the cuttings, muds and the pure oils to

see if any indigenous species could, with optimum conditions, remediate the oil they

contained. The resulting isolates were batch-tested in the laboratory in a minimal

medium, with the drill cuttings providing the sole carbon source. Each isolate was

scored for remediation performance, with reduction in oil varying from 50% to 6%

within one week. Subsequently three bacteria (A,D & J) were identified using

16SrRNA sequencing; they were Bacillus Thuringiensls (A&D) and a novel species

related to Bacillus oleronius. These were then tested slurry-phase in a rotating drum

bioreactor designed and fabricated for the research against a known remediator,

Rhodococcus 9737, and a non-inoculated control for four weeks. All the reactors

remediated, but Rhodococcus 9737 reduced the oil to 35% of the original, A, D and

other isolates as a consortium to 83% and J, 90%. Further tests in the bioreactors,

after a modification to improve the air supply gave reductions of around 50% after

four weeks. The high clay content of the cuttings was detrimental to significant levels

ofbioremediation in a slurry-phase bioreactor. Manures were added to the drill

cuttings and tested in the bioreactors as a solid-phase system. These degraded the

cuttings oil to 2% (v/v), a 96% reduction. Composting was thus more applicable for a

high clay content drilling waste bioremediation system.



CHAPTER 1 Introduction

CHAPTER t:

INTRODUCTION

1.1. Principal Objectives

The principal objective of this research was to develop a practical scheme for the

biocleaning of drill cuttings contaminated with oil-based mud. This required cleaning

the cuttings from present discharge levels of -10 - 20% oil on cuttings to <1% v/v

residual oil and was to be achieved with minimum risk to health, the environment and

ecology, or oflitigation.

1.2. Development of the Project

The project commenced with a thorough review ofthe relevant literature; this was

continued episodically, as appropriate.

The hydrocarbon structure of the muds was examined to see ifthere was any

preferential degradation of a particular chain length, and to ensure the hydrocarbons

within the muds were not toxic to the bacteria.

Although commercial strains ofremediating bacteria were available, the microbiology

ofthe muds was explored to determine whether the natural mud flora would include

novel remediators.

The preliminary practical work involved the isolation of several strains of bacteria

from the oils and testing their ability to thrive in the mud and cuttings environment.

Their remediation capabilities were then assessed, and any potential remediators were

tentatively identified.

Further batch testing was carried out using bacteria isolated from the actual drill

cuttings and muds; these, along with other isolates, were frozen and stored in

readiness for the lab scale bioreactor experiments.

1



CHAPTER 1 Introduction

Analysis techniques were developed for the testing of the remediation capabilities of

the isolated bacteria and commercial strains, using solvent extraction and gas

chromatography with a flame ionising detector.

Successful remediators at the batch testing stage were taken forward and tested in the

lab scale bioreactors. The reactors were designed to accommodate either a slurry

material or a compost type material.

N.B. Although the UK has adopted S.I. units, the multinational oil industry still uses

a mixture of metric and imperiaVUS units. Both systems of units have been used in

this thesis and a conversion table is given below.

Table 1.1. Conversion Table

IMPERIAUUS UNITS METRIC UNITS

1 inch 25.4 mm

1 ft (foot) 0.3048 m

bbl (42 US Gallons) 0.15899 m3

1 psi 6.895 x 103 Pa

I lb/gal (pound/gallon) 119.826 kg m-3

2



CHAPTER2 Review of Oillndu~·try

CHAPTER2

REVIEW OF OIL INDUSTRY

2.t. Introduction

''No other single industry affected zo" Century civilization more rapidly or more

profoundly than the oil industry" (Howarth, 1997).

Oil, a single basic resource, has provided an array of products. These include fuels

for heating, lighting and combustion engines; lubricants for many mechanical moving

parts, and as bases for creams and lotions (human lubricants!), and more complex

products, ranging from textiles and plastics to perfumes. Oil is not a new product;

archaeologists have found evidence of the use of one or more of the component parts

or fractions of crude oil. The Dead Sea was known as Lake Asphaltites, from which

the term asphalt was derived, due to the lumps of semi-solid petroleum washed up on

its shores from underwater seeps (Britannica, 1995). Examples of the use of asphalt

and other hydrocarbons include, in what is now Iraq, asphalt used as an adhesive for

masonry and a sealant for water-craft (Lewis, 1995), dating back to 3500 BC;

bitumen, used as a waterproofing agent for baths in the Indus valley by 3000 BC, and,

from 2200 BC, the Babylonians built bridges, walls, tunnels, sewers, roads, the

Hanging Gardens and the Tower of Babel with asphalt as the bond (Howarth, 1997).

Mesopotamian bitumen was exported to Egypt where one of its uses was the

preservation of mummies (Britannica, 1995). The usage has continued from these

times to the modem day mostly by the Arabs, the Greeks and the Romans, for peace

and for war - bombs were made as early as 476 AD in the Byzantine Empire by

mixing petroleum with calcium oxide, which would spontaneously combust when

exposed to moisture (,Greek Fire'). Wars over oil are not a new thing either; they

date back to the Middle Ages (Howard, 1997).

It has been suggested that fire and light-worshipping cults and religions were

prompted by the eternal flames caused by the ignition of gas seeping from the earth -

3



CHAPTER2 Review of Oil Industry

Zoroastrianism, based in ancient Persia, is a religion still followed by the Parsees

(Sykes, 1982).

Oil lamps were used for domestic lighting and heating in the Middle East for

millennia before being introduced to Europe or North America. These times were

literally the dark ages; lamps made from animal fats were at best smoky, but often

smelly and inefficient.

Then, in 1859, the same year that Darwin's book The Origin ojSpecies was published

in London, Edwin Drake's drilling derrick bit into Pennsylvanian soil.

2.1. Drake's Derrick (tower), 1859.
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Although oil had been discovered before, this was the first indication that oil could be

produced commercially from drilling in the Western world. Before this, digging pits

or skimming oil from natural seepages from the surfaces of streams and lakes was the

main method of oil recovery in the West. China had been drilling for oil around 200

BC, with bamboo piping and brass attachments, penetrating as deep as 3,500 ft,which

makes Drake's 69Yz ft look trifling. Drake was filling 25 barrels daily in his first year

of production. Within 6 years production had increased to 7,000 barrels daily

worldwide, 6,800 from the US alone. This increased to 284,000 barrels by 1895; 7.1

million by 1945, and 1990 figures were estimated at 60 million - daily (Howard,

1997). Although still measured in barrels, which is 42 US gallons, the oil production

has long since outgrown this mode of containment.

2.2. Current Status

The industry has come a long way since Drake, not only in production, but also in

technical expertise, safety and accountability. Also many oil companies, with the

exception of Exxon, are looking towards renewable resources of energy as an

alternative to the finite resource of oil (Greenpeace, 2001). The advancing

technologies concerning recovery mean that no one is sure how much oil can be

recovered.

An example of technical advancement is the plan to take surplus gas via the Sullom

Voe oil terminal on Shetland to the North Sea's most Northerly oil platform on the

Magnus oilfield, 340 miles NE of Aberdeen, a £320 million project ofBP's

(Hydrocarbon online, 200 I). The gas will be injected into the oil reservoir, 8,900 ft

below seabed, to flush out an extra 50 million barrels of oil.

Well recovery rates have increased considerably over the last few decades, making

oil fields that were uneconomical now feasible. The Enhanced Oil Recovery (EOR)

technologies have increased the primary recovery life of a well from around 25% to

up to 75%.
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In the GulfofMexico half the oil comes from wells in water more than 1,000 ft deep

(Schrope, 200 I). Technological advances have now made it possible to drill in ultra-

deep waters of more than 5,000 ft; eight wells are currently being drilled in these

conditions, overcoming the immense pressures and low temperatures existing at that

depth in the ocean.

Deeps/ar, an industry-wide collaboration, is tackling the challenges of profitably

extracting oil in ocean depths up to 10,000 ft. The complications associated with this

are immense - the drilling fluids will have to handle extreme pressures and changes of

temperatures, from the heat within the crust to the cold of the deep ocean. Once the

oil is extracted, the extreme cold can impede its pumping across a cold sea floor. The

extreme cold can increase hydrate formation, which also inhibits pumping.

2.2.1. Production, Supply and Use of Crude Oil, Natural Gas Liquids (NGLs)

and Feedstocks, 2001

Table 2.1.1. illustrates that offshore development had reduced slightly from 1998 to

2000, but increased again in 200 I. Exploration and appraisal has increased since

1999. Generally, development of wells is often related to crude oil prices in that

prices can seriously affect the economical viability of extraction, thus E & P Rates can

fluctuate quite considerably.

The UK still retains its position as a net exporter overall of oil and oil products, and

even though figures are 18.7% lower than last year's (2000), they still stand at 10

million tonnes. Export of natural gas liquids increased in the same time period by

7.6% to 11.1 million tonnes.

The UK became a net importer this year (200 I) of petroleum products for the first

time since 1984, with net imports of 1.1 million tonnes in the second quarter. The

DTI claim this is related to refinery closures for maintenance and conversions of

refinery capacity to the production of Ultra Low Sulphur Petrol (DTI, 2001).
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Table 2.2.1. Drilling activities on tbe UK Continental Sbelf (DTI, 2001)

Number of WeUsIncluding Sidetracks

Quarterly Offshore Onshore
Figures

Year Quarter Exploration Appraisal E&A Development E&A Development

(E) (A)

1998 lSI 14 9 23 78 4 9
1998 2nd II 5 16 61 6 9
1998 3n1 14 8 22 71 3 1
1998 4th 8 11 19 71 1 2
1998 TOTAL 47 33 80 281 14 21
1999 lit 7 3 10 72 - 3
1999 2nd 4 4 8 60 3 2
1999 3n1 3 6 9 62 1 5
1999 4th 2 7 9 40 4 1
1999 TOTAL 16 20 36 234 8 11

2000 lit 3 8 11 51 - -
2000 2nd 10 7 17 51 8 7
2000 3n1 6 II 17 59 5 2
2000 4th 7 7 14 55 1 2
2000 TOTAL 26 33 59 216 14 11

2001 lit 5 8 13 54 1 2

2001 2nd 8 7 15 78 1 7

2001 3n1 6 10 16 67 1 8

However, even though the North Sea is now viewed as a mature prospect, it is thought

that the UK will remain a centre for expertise and a base for major multi-nationals

long after the North Sea ceases to be a major producer.

2.3. Development of Drilling Fluids

Many of the advances in recovery and availability have been enabled by the

development of the dri11ing fluids, which have allowed for better safety practices and

drilling techniques.
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In the early 1900's, while rotary drilling to a depth of300 ft for water in Wyoming,

friction and cuttings removal problems occurred. It was found then that the addition

of clays to the water, which was the drilling fluid at the time, gave good lubrication

properties and increased the fluid viscosity, helping lift the drill cuttings. Wyoming

bentonite was the only addition to the drill water for many years, but by the late

1930's crude oils were introduced. A significant problem associated with these fluids

was the low flash point of the volatile fractions within the crude, and the associated

safety concerns.

The 1950's and 1960's saw many advances on the original mud formulations and

recipes, and as time progressed more was expected from the drilling fluid.

To understand how this progression has come about it is important to know about the

drilling fluids, or 'muds', used for drilling for oil.

2.3.1. What are Drilling Fluids?

Drilling Fluids are usually non-Newtonian fluids (Moore, 1986). They were first

introduced with rotary drilling methods in 1900, with their initial primary purpose

being to continuously remove the rock cuttings. As time progressed, more was

expected from the fluids, with additives for almost any conceivable purpose being

introduced, which has led to a complicated mixture of liquids, solids and chemical

conditioning agents. There are two basic sorts of drilling fluid - water-based and oil-

based. Oil-based fluids can be further sub-divided into direct and invert emulsions,

depending on the dominant phase. Initially mineral oils were used, e.g. diesel, but

these were later replaced by synthetic drilling fluids to improve drilling, safety and

environmental performance.

2.3.2. The Primary Functions and Applications Of Drilling Fluids

Most drilling fluids are engineered for specific operating requirements, and are

required to perform the following actions with varying degrees of importance.
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2.3.2.1. Lifting Formation Cuttings

The rock is broken up through the action of the drill bit, and obviously needs to be

removed from the drill bit area or the hole wi11loadup and the whole operation would

grind to a halt. Drill solids general1yhave a specific gravity (SG) of2.5 - 3.0. If this

is heavier than the mud. they can slip downwards. Slip velocity is affected by

thickness or shear characteristics and density (Moore, 1986), so when annular mud

velocity is limited by the pump volume or enlarged hole sections, it is often necessary

to thicken the mud, which can, in turn, adversely affect other dri11ingconditions.

Thickening can be done by the addition of bentonite. drill solids, the reduction of

water in oil emulsions, or the addition of polymers. Ifmud circulation stops for any

reason, the cuttings have to be held in suspension, to prevent them settling and

burying the drill bit. This is done by the addition of ge11ingagents to the mud; when

the mud is not flowing, it sets. gel like, and prevents the descent of the drill cuttings.

This 'thixotropic' property is characterised by a fluid with a time dependent viscosity.

Muds are typical1ynon-Newtonian fluids with shear rate dependent viscosities.

2.3.2.2. Control Subsurface Pressure

Subsurface pressure is control1ed by the 'weight' of the mud. Minimum mud weights

are desirable, as they increase drilling rates and decrease lost-circulation problems

(Wa11er,1997). Abnorma11yhigh formation pressures require careful measurements

of pore pressure to determine mud weight requirements. Ifthe formation pressures

are higher than the annular fluid pressures, formation fluids can flow into the well-

bore. This is known as a 'kick' and can have severe safety implications.

An equation for calculating drilling rates and mud weights (Moore, 1986):

P2C logR2=PIc 10gRI

P2and PI=mud weights at two different times.

R2 and RI= drilling rates corresponding to respective mud weights, feet per

hour.

Log R2 =..Q! log RI

P2

9



CHAPTER2 Review of Oil Industrv

c = 1.5 in soft formations

c= 0.1 in hard formations.

To calculate mud weight:-

P = pw (I-X) + 20.8X = pw + X(20.8 - pw)

p = mud weight, lb/gal

pw = water weight, lb/gal

X = solids fraction

20.8 = weight oflow gravity solids, lb/gal

It is worth noting that if the pressure of the mud exceeds the total pressure of the

formation, the mud can be lost into the formation. Coastal formations often have

higher pressures than inland formations. As mud weight rises, drilling rates decrease,

mud costs increase and hole problems are more common. A reduction in circulation

rate will increase the mud weight, and vice versa. Fluid loss control additives, such as

shredded walnut hulls, can be added to the mud to aid loss control and give support to

the hole walls by producing caking action on the sidewalls.

2.3.2.3. Lubrication and Cooling of the Drill String

Lubrication prolongs the life of the equipment and reduces hole problems such as

torque, drag and differential pressure sticking (where a portion of the drill string sticks

in the filter cake). Lubricant additives include bentonite, oil, detergents, graphite and

other special surfactants.

2.3.2.4. Cleaning the Bottom of the Hole

This involves keeping the drill bit free from the build up of cuttings. Thin muds at

high shear rates through the bit are best for this, although viscous fluids are potentially

good ifthey have good shear thinning characteristics. Usually lower solids content

are preferred.
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2.3.2.5. Aid in Formation Evaluation

The mud can be utilised to evaluate the formation being drilled through. Special

flu ids can improve logging characteristics and formation testing. Properties that can

affect evaluation include saltwater, which makes using a self-potential log difficult,

thick filter cake, which makes information hard to obtain from sidewall coring and

water/oil invasion, which affects resistivity. To obtain better cuttings the viscosity

can be increased.

2.3.2.6. Protect Formation Productivity

There needs to be sufficient cake and pressure to prevent 'washout', i.e. the flow of

mud washing away the reservoir formation, causing instability and geo-technical

problems with reservoir. The ideal drilling conditions include keeping the downhole

formation in a virgin state, i.e. no fluid should enter this zone. This is quite difficult

to achieve, but using air with the drilling helps. Water/clay interactions can cause

clays to swell, thereby significantly reducing formation permeability. Oil based muds

successfully keep this zone water free, but this can cause complications in gas zones.

2.3.2.7. Aid to Formation Stability

This can be critical when drilling. Shales are inherently weak under tensile or

compressional stress (MIDF, 1998). If a clay or shale contains a pressure

significantly greater than the wellbore pressure, the shale will move toward the

wellbore (sloughing), causing instability and hole enlargement. Clays also absorb

water, swell and weaken the formation causing sidewall failure. The solution is to

alter the weight of the mud to balance the pressure between the wellbore and the

formation, or use oil-based muds to help prevent the clays swelling. Special hydration

suppression additives have been developed which also inhibit clay swelling. Other

causes of instability include natural fracturing, where the shale tends to fall into the

wellbore because the shale fragments are detached. Certain additives can aid with the

sealing of these fractures, but are not a panacea. Salt sections can also be unstable,

but can be stabilised by drilling with either saturated saltwater of the same type found

in the formation, or the use of oil-based muds.
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2.3.2.8. Corrosion Protection

Some formations contain fluids ofa corrosive nature, such as salt-waters or acids,

which can be detrimental to the drilling hardware and can, in the case of acidic waters,

cause flocculation of the fluids. The additives in the mud, for example lime for an

acidic formation to raise the pH, can help counteract these effects.

2.3.2.9. Mechanical Support

This includes jet-assisted cutting, where the mud transmits hydraulic power to the bit,

and drilling 0f down-hole motors, where the mud supports part of the weight of the

drill-pipe and casings.
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2.3.3. The Basic Types of Drilling Fluids

Table 2.3.2. Overview of Mud Types, Advantages and Disadvantages

MUD TYPE ADVANTAGES DISADVANTAGES

Fresh Water Common, cheap, accessible, Swelling of clays, sloughing of

easy to control, good shales, less cooling/lubricating

formation evaluation. ability, less wellbore stability.

Salt Water, Swelling of clays reduced, Higher mud costs, poor filter cake,

commonly used shales heave or slough less less effective formation

offshore, purpose than with fresh water. evaluation, corrosion due to

made muds. electrolytes being good conductors

of electricity and difficulties

raising the pH.

Oil, has been No hydration or swelling of Generally more expensive than

used almost as clays, formation damage water, not pleasant to work with

long as water, minimised, hole problems for the drilling crews, annular

in itially to minimised, better circulating pressures may be high,

protect lubrication, temperature gas kicks difficult to detect due to

potentially stable in deep wells (temps solubility in the oil, environmental

productive may exceed 350°C), where pollution problems.

formations. they are about 1/3 cheaper to

maintain than comparable

wt. water muds.

Synthetic, Can be adapted to almost Some can be costly. Product

'Second any drilling requirement, e.g. inertia - for example, training and

Generation' high temperatures, experience in dealing with a wide

Fluids, tailor environmentally sensitive range of products.

made to suit areas, shale stabilisation,

env ironmental water-sensitive formations.

and drilling Many are water-based.

requ irements. Some are cheaper than the

1st generation fluids.
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2.3.4. Oil-Based Drilling Muds

2.3.4.1. Requirements for Oil-Based Drilling Mud

There is a common view that oil wells are drilled vertically downwards from surface

to the oil reservoir. This could not be further from the truth, particularly in the North

Sea Oil Fields, where deviations of 60° from vertical and horizontal sections within

the reservoir are common. Drill strings 15,000 ft (4572 m) in length are sometimes

used; the losses generated by friction can be enormous, requiring lubrication greater

than could be provided by a standard water-based mud.

Drilling technology has been developed over the decades, and the drilling rates now

need the cooling and lubricating properties provided by oils as well as the superior

lifting abilities of oil-based muds for removal of the cuttings, attributed to the oil's

flow characteristics (Philp, 1982).

Poorly consolidated shales, a feature of many wells in the North Sea, particularly the

East Shetland Basin Wells, need the oil-based muds, which have had significant

effects on drilling rates (Philp, 1982). Bit balling is also often reduced (shale

drilling).

Well-engineered drilling fluids are a major contributor to well safety. Data brought to

surface from the drill bit allows the muds to be engineered specifically for the

formations being drilled through; this is key to safe practice, helping to manage

potentially lethal kicks or blowouts of gas or oil.

New challenges facing the Drilling Fluids Companies include low-toxicity muds with

reduced heavy metal content and easily degraded, and muds that can handle the very

high pressures and extreme temperatures when drilling in sea depths of'up to 10,000 ft

(3048 m) (Schrope, 200 I).
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2.3.4.2. Water/Oil Muds

A mixture of oil and water is an oil emulsion: a 'direct emulsion', if oil is added to a

continuous water phase, and an 'invert emulsion' if water is added to a continuous oil

phase. Torque, drag and pipe sticking problems are reduced by the addition of oil, at

rates of 4 - 10%, to water-based muds. Oil can be added in larger quantities to lower

mud weight water-based muds, and water may be used in oil-based muds to reduce

costs and give better control of mud viscosity.

The drilling fluids on the drill cuttings supplied for this project were invert emulsions,

which are typically over 40% oil, but normally 50% is the lowest oil content used in

most applications (Still, pers. comm., 1999).

2.3.5. Second Generation Synthetic Drilling Fluids (and beyond)

Included in these second generation fluids are the linear alpha olefins and isomerised

olefins, as well as linear paraffins, considered pseudo-oil rather than synthetic

(Friedheim et al., 1996). Drilling fluid systems have been developed to cover a

multitude of parameters, including chrome-free for improved environmental

performance and glycols and cationic polymer water-based muds for shale

stabilisation (MIDF, 2001; Baker Hughes, 2001). The organic cationic materials have

provided "economical technology for inhibiting the swelling and yielding of

hydratable shales" (Stamatakis et al., 1995). Ingredients from previous formulas have

been used in these fluids, such as lignosulfonates, bentonites and oils, as well as

newly developed products; each formation and environment is assessed, with the mud

tailor-made to requirements. These mud formulas are fiercely protected by the.

companies concerned, and are very dynamic in that products are developing

continually.

2.3.6. The History of Drilling Muds in the North Sea

Initially, in the sixties, the drilling fluids were water based. These early muds gave

poor drilling performance (UKOOA, 1999), especially in the shale formations

common in the North Sea. By the mid to late seventies and early eighties diesel muds
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were introduced; the improved lubrication reduced friction and enabled the

development of advanced drilling techniques, extending the range and precision of

wens and enhancing recovery rates. Further developments by the fluid companies

displaced diesel by low toxicity oils. These were in turn phased out between 1992

and 1996, in line with regulations, and replaced by synthetic muds, which have a

reduced environmental impact. Water-based muds have been improved for more

effective drilling of shales but still fall short of the synthetic muds on performance

and safety, particularly for the more challenging wens now tackled, as the more

accessible reserves are used up.

2.4. Development of Drilling Techniques

Once a site has been determined for drilling, the location of the reservoir and the rock

type will set the specification for the rock drilling equipment.

Cable-tool drilling has been used for drilling water wells and shallow formations, and

involves repeatedly raising and dropping a heavy metal bit, pounding a hole down

through the earth. Periodically the debris has to be removed from the hole by bailers

(Natural Gas, 2001).

The rotary drilling method uses a sharp bit to cut through the rocks, attached to a drill

pipe (drill string). The bits can be made from a variety of materials, examples include

steel tooth rotary bits, polycrystalline diamond compact bits and diamond bits, plus

many hybrids that combine features. Several different bits may be used when drilling

deep wells, due to the different rock formations. Changing a bit involves lifting the

drill string to surface, which, in deep wells, can be costly.

Casings were developed to prevent the sidewalls collapsing; the fITStrecorded use was

by David and Joseph Ruffuer; they used hollow tree trunks for wall reinforcement

when drilling through brine near Charleston, West Virginia in the early zo" Century
(Natural Gas, 2001). Today steel pipes are used.
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Slant or directional drilling has been conducted for years, particularly offshore where

the cost of construction prohibits multiple platforms. Several directional wells can be

drilled from a single platform, allowing one platform to give multiple intersections,

reaching other oil fields and traps. Technology has moved immensely in this field; a

slant well would take 2000 ft or more to bend from vertical to horizontal, whereas

today's technology is capable of a 90° shift within a few feet.

The advantages of directional drilling include:

• Penetration of multiple reservoirs and multiple intersections ofthe same

reservoir, producing up to seven times as much gas or oil as would be

produced from a vertical well

• Production of formation waters is minimised

• Increase of the primary recovery life ofa well by over 100%, from 25% to 50

-75%.

• Extraction can be performed concurrently with the horizontal drilling.

Some important developments concerning the drilling process involved optimising the

rate of penetration (ROP) and reducing costs (Galle & Woods, 1960).

In the late fifties and early sixties research focused on the relationships to predict

drilling performance from drilling parameters and a rock strength variable (drilling

strength), producing several different equations (Somerton, 1959; Galle & Woods,

1960); later, Simon (1963) and Gstalder & Raynal (1966) looked at energy balances

in rock breakage, when the term "Specific Disintegration" was coined. Wilhelmi &

Somerton (1967) arranged a number of drilling parameters into the term

"Drillability", reflecting the energy required to drill a volume of rock, which indicated

that the Specific Disintegration test caused significant over-breakage of the rock.

This, with other early work, produced several ROP prediction equations that help

optimise drilling.

17



CHAPTER] Review of Oil Industry

The downturn of the oil industry in the mid eighties saw a drive to develop accurate

predictions of drilling performance, with Amoco Production Co taking a leading role

by the development ofa drilling simulator. This enabled former theoretical data to be

proved with empirical data (Rowsell & Waller, 1991). From 1987 to the present there

have been seen significant amounts of research concerning logging while drilling

(LWD) (Jackson & Heysse, 1994; Efuik et al., 1999). Examples of its uses include:

• Geosteering the wellbore in horizontal sections, thus enabling the drilling to

follow the top of the reservoir thereby increasing the available length of

wellbore for reservoir drainage.

• Torque can be lost in pipe friction as opposed to requirements at the bit,

particularly in deep extended reach wells, causing twist offs (Kamaruddin et

al., 2000), but 'at the bit' information can help prevent this.

• The determination of downhole problems and bit wear (Vos & Reiber, 2000).

Other advances included using post analysis of drilling data to optimise performance

(Xu et al., 1995) and in-situ rock strength predictions (Rampersand et al., 1994).

LWD has made drilling more efficient, cost effective and considerably safer.

Automation of drilling rigs has reduced costs, time and has increased safety (Natural

Gas, 2001).

2.S. Historic Perspective on Waste Materials Created from Drillinl!

Spent drilling fluids and drill cuttings are among the most significant waste streams

from exploration and production drilling operations in the sea (Barke & Veil, 1995),

and, historically, were dumped straight into it. It has been estimated by Rubin in 1996

that 90% of the hydrocarbons in the North Sea are from the dumping of drilling muds

and cuttings on the sea floor near the drill-rigs. This figure is totally contradicted by

other sources such as Bennett (1995) who states that the majority of the 400,000

tonnes of oil reaching the North Sea every year predominantly comes from ships
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illegally washing out their tanks at sea Knowing that drilling activities are no longer

allowed to use diesel muds, and that the discharge of oily drill cuttings is no longer an

approved practice, it seems logical to assume that the latter may be more accurate than

the former; finding agreeing data from literature proved difficult. The drill-piles on

the sea floor of the North Sea are generally from past activities, as new laws and

regulations forbid their dumping (see 2.6. Regulations and Legislation). The United

Nations Report, "The State ofthe Marine Environment" (Schwaab, 1998) states that

the main sources of man-made (global) marine oil pollution are:

• Land-based discharges and run-off (including rivers) 44%

• The atmosphere 33%

• Maritime transport 12%

• Dumping 10%

• Offshore oil and gas production 1%

Input of petroleum pollution into the global marine environment has been estimated at

6 million tonnes annually, with the majority coming from daily influxes rather than

disasters (Okpokwasili &Nnubia, 1995). However, oil tanker accidents and oil well

blowouts result in serious damage, due to the concentration of the contamination; the

physical properties of oil lead to its coating of sea creatures, such as birds and

mammals, causing death, as well as the coating of any beach it happens to be washed

onto, sometimes destroying whole ecosystems (Pritchard & Costa, 1991). Although

these incidents only account for a small fraction ofthe total amount of oil that reaches

the sea, their impact can be massive. Oil-spill incidents have a powerful negative

impact on public opinion.

2.5.1. Drill Cuttings in tbe Nortb Sea

UKOOA reports give the sources of oil discharge into the North Sea as:-

26% Ships

21% Rivers and Runoff
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20% Offshore Oil and Gas (including oil on cuttings)

7% Atmospheric

7% Other Costal Effluent

6% Coastal Sewage

4% Dredged Spoil

3% Sewage Sludge

3% Coastal Refineries

3% Others

These reports have estimated 1 - 1.5 million tonnes of cuttings accumulated in the UK

sector of the North Sea over 30 years of drilling activity. To get this into some

perspective, it is equal to one twentieth of household waste per annum, and only one

fiftieth of that produced by mining and quarrying, which is around 74 million tonnes

annually.

1970's figures from the Department of Energy state that 212 wells were drilled on the

UK Continental Shelf in one year, with 76 of these drilled using oil-based muds,

resulting in approximately 7000 tonnes of diesel oil being discharged, mostly attached

to the drill cuttings, 9 1.6 tonnes per well. In 198 I223 wells were drilled, with

approximately 65% using oil-based muds, resulting in 7,700 tonnes of diesel oil and

10,400 tonnes of alternative base-oils discharged into the sea (Davies et al., 1984).

The drill piles left from this era of drilling are a legacy still haunting the North Sea Oil

Industry. The issues surrounding drill cuttings piles have been researched in detail by

the UKOOA 'Drill Cuttings Initiative Research and Development Programme' (1999,

2000), and by R. Artz, Aberdeen University (pers com, 2002). Table 2.2.1. illustrates

that the number of wells currently being developed are similar to those above, but

now the cuttings are not allowed to be discharged into the sea. The regulations and

legislation relating to this change of policy are discussed below.
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2.6. Regulations and Legislation

The content of drilling muds and their use have long been controlled by strict

regulation, as has the discharge of cuttings.

2.6.1. Responsibility for Marine Pollution

There are a number of government departments within the UK with responsibilities

that cover marine pollution. These include:

• The Marine Pollution Control Unit (MPC), responsible for counter-pollution

measures in the North Sea.

• The Department of Transport, whose remit includes the control of oil and

chemical pollution at sea. The Secretary of State for Transport is under a duty

to make an annual report to Parliament under section 26 of the Prevention of

Oil Pollution Act, 1971.

• What used to be the Ministry of Agriculture, Fisheries and Food (MAFF), now

the Department for Environment, Food and Rural Affairs (DEFRA) and the

Centre for Fisheries, Environment and Aquaculture Science (CEF AS), control

the dumping of waste at sea through a system of licences.

• The Department of Trade and Industry (DTl), responsible for the control of

pollution from offshore installations, working in conjunction with the MPC.

• The Secretary of State for the Environment, responsible for the protection of

wildlife in England.

Some of these have changed in 2001 due to reorganisation of Government

Departments during this year.

2.6.2. Sources of Law

The main sources are International Law, Community Law and the National Law of

the UK, covering matters as diverse as marine pollution and ownership of the seas.
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Marine pollution recognises no boundaries, but legal frontiers are helpful in defining

responsibility and regulations. International Laws assume that there can be co-

operation between states, and, through international regulations, ensure the protection

of the marine environment. Particular emphasis is on trans frontier pollution.

International law does not have the ultimate sanction of police prosecution or court

order (Read, 1988), but request that the signatory states incorporate the laws into their

National Laws.

2.6.2.1. International Law

The designation of ocean waters into zones is covered under International Law. In

1982, the diverse number of treaties and conventions was codified by a global

convention signed by the majority of states in the world (McEldowney, 1996). This

became the United Nations Convention on Law of the Sea (UNCLOS), and provided

5 distinct categories of marine space.

• The sovereignty of the coastal state is defined to include internal waters

consisting of ports, harbours and bays whose openings do not exceed 40 km.

• A coastal state may exercise its territorial sea as a sovereign zone up to 20 km;

foreign shipping may have rights of passage but the sovereign state may

legislate to protect its marine environment.

• A coastal state is defined as consisting of the sea and seabed to the outer limit

of the continental plateau, that is to the beginning of the deep seabed.

• An exclusive economic zone consists of the maritime area that extends

between the territorial sea and a line situated 360 km from the coast. This

designation has existed from the 1970s and gives the coastal state rights to

exploit the resources of marine life in the zone. The coastal state is under a

duty to ensure that there is environmental protection of the area.

• Waters outside the designated zones outlined above are described as the high

seas. These are open to exploitation by international shipping.
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Problems can occur when there is a pollution event in the high seas (there is a

tradition of freedom of the high seas). Coastal states can be reluctant to intervene

outside their territorial waters, even when there is an imminent threat of pollution

to their coasts (Read, 1988). There are powers of intervention, however, from the

International Convention relating to Intervention on the High Seas in Cases of Oil

Pollution Casualties (Public Law) 1969. giving states limited powers of

intervention when there is "a grave and imminent danger of pollution on a large

scale to their coasts or territorial water" (Read, 1988).

The International Maritime Organisation (IMO) is part ofthe United Nations (UN)

with a membership of about 125 states. The IMO acts as a facility to extend co-

operation between governments on shipping matters. The Marine Environment

Protection Division of the IMO draws up conventions concerning shipping and

marine pollution. The United Nations Convention on the Law of the Sea has been

ratified by over 60 states since its agreement in 1982.

The UN Environment Programme, established after the Stockholm Conference of

1972, where 113 states participated, is also concerned with the protection of the

marine environment.

There is an International Convention of the Prevention of Pollution from Ships

(MARPOL), signed in 1973, amended by Protocol in 1978, which came in force

in October 1983 which had the intention of eliminating International Pollution

from the marine environment.

International Law also consists ofa number of treaties and conventions with

certain environmental protection afforded to the various oceans of the world.

Examples include:

• The UN Environment Programme, which attempts to set out a programme

for regional seas, initiated in 1974. Covers 10 areas where regional plans

are under development or are operative.
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• The 1983 Treaty dealing with oil-based pollution in the North Sea and the

North-East Atlantic

• The 1972 Oslo Dumping Convention, amended by subsequent protocols,

applies to the North Sea, the North-East Atlantic and the adjacent Arctic

Seas.

• The 1974 Helsinki Convention for the Protection of the Marine

Environment of the Baltic Area adopted a comprehensive approach to

pollution control.

• The 1978 Barcelona Convention applies to the Mediterranean.

The aim is to extend the principles of combating pollution to other seas through a

series of framework conventions. These include the Persian Gulf, the Red Sea, the

Gulf of Aden, parts ofthe Indian Ocean, the South Pacific, the Caribbean and part of

the South Atlantic.

Regional conventions include the 1984 North Sea states meeting to discuss the

prevention of pollution in the North Sea. There have been conferences held in 1987,

1990 and 1995, resulting in a number of declarations and elaborations agreed in

general principles.

2.6.2.2. European Community Laws

When considering environmental policy, Article 130R (3) requires that the

Community should take account of available scientific and technical data.

Community Directives relating to the sea include Directive 76/4641EEC, which

applies to the pollution caused by certain dangerous substances discharged into the

aquatic environment ofthe Community. There are a number of Directives on the

quality of shell-fish and the Directive 76/160 on the quality of bathing waters. There

are Directives prohibiting the discharge of specific chemicals into an aquatic

environment.
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2.6.2.3. National Laws

National Laws are important in tackling marine pollution, for example the Merchant

Shipping Acts and Regulations. The Merchant Shipping (Salvage and Pollution) Act,

1994, implements the International Convention on Salvage, 1989, and various

International Conventions and Protocols for oil pollution damage. Other International

and European agreements are set out in National Laws.

2.6.3. Laws Specific to Petroleum Exploration and Production Operations

Until the eighties there was little in the way of legal instruments encompassing the

whole field of offshore operations (Ayers et al., 1982).

2.6.3.1. UNCLOS, 1982

Article 1 contains the following definition:

"Pollution of the marine environment means the introduction by man, directly or

indirectly, of substances or energy into the marine environment (including estuaries)

which results or is likely to result in such deleterious effects as harm to living

resources and marine life, hazards to human health, hindrance to marine activities,

including fishing and other legitimate uses of the sea, impairment ofthe quality for

use of sea water and reduction of amenities".

An UNCLOS convention that came into effect on November 16th 1994 reflects the

disparate economic circumstances of the International Community, in that it demands

only that states use the "best practicable means at their disposal" to prevent and

control marine pollution from any source. Responsibility to set any regulations and to

specify limits is given to the signing states (UNCLOC, 1995). This may appear to

justify poor countries polluting, but International Law cannot be policed and relies on

National Laws being introduced and therefore cannot enforce a harder line. However,

it reinforces the use of up to date scientific research in richer countries, technology

that will filter down to the less well oft: especially as many exploration and

production operations conducted in these countries are by Western companies.
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2.6.3.1.1. Article 81 (Drilling on tbe Continental Sbelf)

This grants coastal states the exclusive right to authorise and regulate drilling on the

continental shelf (see section 2.6.2.1. for definitions of coastal states) for all

purposes.

2.6.3.1.2. Article 208 (pollution from Seabed Activities Subject to National

Jurisdiction)

This requires states to adopt laws and regulations to prevent, reduce and control

pollution of the marine environment arising from or in connection with seabed

activities.

2.6.3.1.3. Article 209 (Pollution from tbe Activities in tbe Area)

This deals with National Regu lations.

2.6.3.2. Kuwait Convention, 1989

The Kuwait "Protocol Concerning Marine Pollution Resulting from Exploration and

Exploitation of the Continental Shelf' came into force on February 17'\ 1990 (Bates,

1997). It contains a general proh ibition on the use of oil-based drilling flu ids;

however, if the use of such a fluid is considered justified because of exceptional

circumstances, the coastal state can allow their use. The oil-based fluids do have to be

treated to minimise their oil content before disposal and may not be discharged at sea

[Article IX, 4(a) & 4(b)]. Water-based fluids being discharged from offshore

installations may not contain persistent systemic toxins [Article IX, 4(c)].

2.6.3.3. Tbe Nortb Sea

The first formalisation of co-operation between North Sea States occurred in 1969 at

the Bonn Convention, and implied that states should make equipment and information

available in cases of oil spill or other pollution events.

The eighties saw a focus on the need to control oil discharges from offshore

installations in the North Sea as a result of environmental damage (Read & Blackman,

1980). International Conferences ensued. The Bremen Conference gave a general
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reference to pollution from offshore installations on November 1st 1984, with more

specific instructions after the next one in 1987. This led to the restriction of oil-based

muds and chemicals to the 'Best Available Technology', and techniques were to be

implemented to reduce the impact of discharged drill cuttings.

2.6.3.3.1. The Paris Commission

Established by the Paris 'Convention for the Prevention on Marine Pollution from

Land-Based Sources', 1974, the Paris Commission adopted some resolutions in

respect of pollution from offshore installations concerning the North-East Atlantic.

Decision 88/1 of June 1988 made the use of oil-based muds subject to prior

authorisation by the coastal authority (essential for geological, safety or economic

reasons), prohibited the use of diesel-based muds, set specific standards for the

allowable oil content of cuttings discharged into the sea «10%) and prohibited the

dumping or discharge of oil-based muds at sea. It was proposed to outlaw drill

cuttings disposal at sea altogether.

In 1992, the Convention on the Protection on the North Sea and North East Atlantic

was signed in Paris, which replaced the Oslo Convention and the 1974 Paris

Convention. This led to a new Decision (92/2) setting an average limit of> 1% oil on

dry drill cuttings. This was put into the UK Continental Shelf Regulations, 1993,

1994 and 1997 (Ferguson et al., 1993; Schuh et al., 1993).

2.6.3.3.2. OSPAR

The convention for the Protection of the Marine Environment of the NE Atlantic

(ospar convention), Oslo, Paris, 22/9/92.

The Oslo and Paris Commissions, known as OSPAR, now formulate most of the

Recommendations concerning the marine environment in the North-East Atlantic,

superseding Parcom. Within OSPAR is a Working Group on Sea-Based Activities

(SEBA) who give guidelines on completing Decisions, for example the Harmonised

OfTshore Chemical Notification Format {HOCNF}, which is part of the Harmonised

Mandatory Control System for the use and the reduction of the discharge of offshore

27



CHAPTER 1 Review of Oi/lndustry

substances/preparations, as developed by OSPAR in 1995, and now the OSPAR

Decision 20012, which carne into force in 2001. The Offshore Chemical Regulations

2001 will have a major impact on offshore activities; the format can be found in full

on the OSPAR web site, www.ospar.org, but is beyond the scope of this research to

cover in detail. The flow chart in figure 2.6.3.3.2.1. sums up the processes involved

in the Regulations.
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2.6.3.3.3. National Regulations

The DTI deals with pollution control, pipelines, installations and abandoned

installations offshore. Oil exploration and production is licensed under the Petroleum

(Production) Act, 1934, and is judged according to the rules set out in the Petroleum

Regulations, 1982. The regulation of pipelines is provided by the Petroleum and

Submarine Pipelines Act, 1975, which states that authorisation must be obtained from

the Secretary of State to operate a pipeline system in controlled waters, i.e. UK

territorial waters and those adjacent to the seas under the Continental Shelf Act, 1964.

There are a variety of agreements that apply to prevent oil pollution and to prescribe

action to be taken when such an event occurs (McEldowney, 1996). The Merchant

Shipping (Prevention of Pollution) Regulations, as part of the Prevention of Oil

Pollution Act 1971, was updated in 1996 so that under Regulation 32(1) all offshore

installations, when engaged in the exploration or exploitation of oil must comply with

the requirements of the regulations as applicable to ordinary ships of>400 gross

tonnage. This involves oil filtering equipment [Regulation 14(2)(a)] and oil content

measuring equipment fitted with a 15 ppm alarm deveice [RegulationI4(2)(b)].

Installations have to provide tanks for the retention of oil residues and sludges

[Regulation 25(1)]. Regulation 32(2) prohibits discharges of any oil or oily mixture

with an oil content> 15 ppm.

In general, National Regulations in the UK have been issued due to the signing of

International Treaties, with different authorities being responsible depending on the

specific topic. This has lead to a huge quantity of regulations, becoming more and

more detailed, issued by authorities working within their specific area, hence

regulations on oily drill cuttings and muds differ depending on their specific

application. This causes problems in location of regulations applicable to specific

problems concerning the use of these drilling fluids.

Scientific knowledge is updated rapidly, leading to changes in International

Regulations; National Regulations are therefore also subject to changes. Due to these

changes, any of the laws and regulations above may have been updated in recent
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times. Application of the 'precautionary principle' may lead to stricter regulations

without absolute scientific basis.

2.7. Current Status of the Waste Problem

"Options for dealing with the 1.3 million cubic metres of drill cuttings which surround

the North Sea oil platforms were discussed at an oil industry stakeholders' meeting",

reported the February 2000 ENDS report. This doubles previous estimates, as

discovered by the industry's commissioned research project (UKOOA). 60% of the

piles are in the central North Sea, the remainder in the deep northern sectors.

The debate continues, with Greenpeace favouring a ship to shore policy and the

UKOOA reports favouring leaving the drill cuttings on the sea floor (UKOOA, 1999,

2000). Further research conducted by R. Artz confrrms this is very complex issue

(200 I). Moving the piles would obviously disturb the seabed and release pollution

into the area. Drilling the piles to allow aerobic bacteria to reach deep into the piles

will also cause the release of pollutants, as well as reducing the available oxygen to

the indigenous benthic communities, which could threaten their ecosystem.

Biological modification of the piles may increase the biological effects (Best et al.,

1985) by making the contaminant more accessible to marine flora and fauna.

Currently, the piles are not showing much evidence ofremediation - even after 20

years (Artz, pers. Comm., 2001), but do have sediment covering them and seem fairly

stable. Anaerobic micro-organism activity by sulphur reducing bacteria (SRB), as

discussed in the UKOOA report 1996, leads to the production of sulphides from

metabolic respiration. Their release magnifies the toxicity of the drill cuttings and

creates a corrosive, reducing environment.

Drill cuttings produced now are mostly shipped to shore where there are several

options available for their disposal or treatment.
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2.7.1. Disposal or Treatment Options for Drill Cuttings, Other Than

Bioremediation

2.7.1.1. Re-injection

Annular re-injection is now utilised in a number of current drilling operations

(Anderson et al., 1996). Reinjection is dependent on the formation, as a solid cap

rock is required to prevent returns to surface and contamination of other strata and

aquifers. Power costs for reinjection may be considerable if cheaper power generation

from produced gas is unavailable. Potential problems are re-emergence of the

cuttings and a lack of data for assessing the environmental impacts. There are a

number of contractors in the UK offering re-injection technology. The E & P Forum

(Campbell, 1999) have some expertise in this area.

2.7.1.2. La ndfill

Landfill is an option being utilised by some companies. This is not ideal; landfill is

not a treatment, but is simply moving an offshore problem onshore, where there is

already pressure on waste disposal. Any option that takes the cuttings onshore will

have an environmental impact. While ending discharge from the rig, it increases

pollution from shipping and heavy plant; the risk of spillages is higher and there is an

increased risk of onshore air and groundwater pollution.

2.7.1.3. Incineration

Incineration can create atmospheric pollutants and, unless the energy is harnessed

from the process, it is wasteful. Although technology has cleaned up emissions,

incineration is not at all popular onshore, with the public strongly opposed to plants

near any populated or environmentally sensitive areas. Fuel would have to be added

to sustain the process, making it a high cost option. Offshore incineration at source or

a modified installation elsewhere may be technically feasible, but is "not considered

cost-effective or environmentally acceptable" (Anderson et al., 1996). A licence

under the Food and Environmental Protection Act would be required for this

discharge. In spite of this, incineration has been utilised as a method of drill cutting
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disposal (Page, pers. comm., 1999). The cuttings can also be utilised as a co-fuel in

cement kilns and power stations for example.

2.7.1.4. Solvent Extraction

Solvent Extraction has been considered, but again has a contamination problem as the

pollutant is moved into the solvent. The pollutant then needs to be removed from the

solvent, and treated. Both extractions can prove expensive (E & P Forum Report No.

2.61/202).

2.7.1.5. Dlstillatien/Ihermal Desorption

This involves the use of heat to separate the oil from the cuttings, enabling the oil to

be reclaimed. Process costs may be high. Distillation is only suitable for mineral

oils, some paraffins and poly alpha olefins (PAD's) (Walker, ] 995). Most of the other

synthetics used, including esters and linear alpha olefins (LAO's), are unsuitable due

to the high water content in the cuttings; at temperatures used in distillation this may

cause the hydrocarbon chains to split, generating toxic or volatile fractions, which

would make them unsuitable for re-use (Walker, 1995). Thermal desorption is a

method utilised in many parts ofthe world and is currently being used in Aberdeen.

2.7.1.6. De-em ulsifica tion

Separating the oil and water by attacking the emulsifier, either chemically or

biologically, is an attractive option. Chemical separation can prove costly, and may

introduce another contaminant. Biological destruction of the oil/water bond seems a

novel option, and one that could benefit from further investigation. This could lead to

the oil's reuse and a clean-up that is good from all angles - the cost is low, the product

has the potential to be reused, and the cuttings may be disposed of offshore,

depending on legislation. Napier University, who are at the forefront of surfactant

technology, are conducting research into this area.

2.7.1.7. Flotation

Oil is used as a flotation agent for coal fines, and is especially efficient in water with

high chloride content. Oil is used in the coal industry for flotation, as the oil attaches
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itself to the coal. If the cuttings were cleaned in this fashion, the final product could

be sold as fuel, with the cuttings disposed of as a non-hazardous inert material. To

date there is no evidence of research using this method.

2.7.1.8. Sta bilisation

This process involves encapsulation of the cuttings using several solidifying agents,

forming a dry, solidified material, creating a stable matrix suitable for land farming or

landfill (Walker,1995). The risk of leachate production is therefore minimised,

Stabilisation has also been used in recycling and reuse (R & R) projects in America

(Sulivan et al., 1998). Stabilised products from hazardous and non-hazardous

materials have been used as engineered backfill or asphalt stabilised base, and the

process has been utilised with clay-rich soils that can be especially difficult to

remediate. In the USA the R & R process has provided construction materials for

roads, car parks, dikes and work areas. This method would depend on material

suitability - each formation waste would have to be assessed. Processing would be

expensive, for example transportation and encapsulation.

2.7.1.9. The Cleaned Cuttings

Itwas hoped to find a use for the cuttings, once cleaned, for example as a construction

material. However, the quantities of drill cuttings are miniscule compared to the

requirements of this industry. When interviewed, civil engineering companies in the

UK showed no interest whatsoever in taking the cuttings, particularly as they contain

clays (Hill, Pers Comm., 2000). One use could be to make up the temporary roads on

landfil1 sites. Further processing would be counterproductive, as stabilisation could

be conducted without any prior decontamination treatment, see 2.7.1.8. above.

2.8. Separation of Mud from Cuttings - Options at Source

All operators wish to achieve maximum recovery of mud adhered to the cuttings, as

the muds are recirculated to the mud pits and consequently reused in the drilling

operations. The footprint available for recovery equipment is small on offshore

installations, which limits how much recovery can be achieved.
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Most operations run the cuttings from the hole across 'primary shakers', which

remove some of the drilling fluid. Mud losses over these shakers vary depending on

the hole sections and depths drilling. For example, in a 17.5 inch hole section, there

are losses of approximately 0.5 - 0.6 bbls of mud per barrel of cuttings produced

(Wood, 1995); in 12.25 inch and 8.5 inch hole sections this loss rate increases to 1.5-

1 .6 bbls of mud per barrel of cuttings. These losses can be considerably reduced by

secondary treatment.

R.OWllNE

Figure 2.8.1. A Mud Separation and Solids Control System used on the
Magellan Drilling Platform

Swaco have done considerable research on solids control, which include fine-mesh

screen shakers, shakers in series, centrifuges and other mechanical solids removal;

dilution, displacement and sedimentation (gravity). Details are available in their

report, "Four Methods of Solids Control" (SW 96124 C). The reduction of solids in
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the mud and the recycling ofthe muds reduces costs; the separation systems can also

reduce the quantity of muds on the cuttings, thereby reducing the contamination

content.

2.S.1. Mud Recovery Systems

There is a variety of equipment used downstream of the shakers to enhance mud

recovery and solids removal. These include hydrocyclones, centrifuges and settling

tanks. The MUD lOis an example of secondary treatment of cuttings post shakers.

The system "induces a centrifugal force of up to 130 G on oil coated drill cuttings"

(Wood, 1995). The cuttings are fed into the distribution cone via gravity; the cone

then accelerates, spreading them evenly onto the inner circumference of the conical

wedge wire screen; the cuttings stay there, while the muds are forced through. The

mud is then suitable for recycling back into the active mud system after secondary

treatment to remove the fine drill solids. Wood (1995) claims that this achieves

recovery rates of90% of the whole mud normally discarded with drill cuttings off

primary shale shakers. The efficiency would be reduced to around 75% due to the

solids acquired post secondary treatment.

The value of increasing mud recovery is high in financial terms, with savings quoted

as over £11,000 per 1,000 ft depth (Wood, ]995); additionally, the cuttings

contamination is reduced, which may aid in future treatments.

Enaco End of Well Report for Well Number 29/14c, 1997, drilled from Magellan, an

Amoco rig, confirmed that the MUD ]0 and other centrifugal recovery systems

reduced the average oil on cuttings, quoting figures of 32.72 g/kg, with 14 tonnes of

oil recovered from the M I0 and 16 tonnes from the centrifuges. The shale shakers,

fitted with 200 mesh screens, discharged 114.4 g/kg of oil on cuttings, meaning the

secondary treatment has reduced the contamination by 81.68 g/kg, From that well

alone, 548 bbls of (expensive) synthetic oil-based mud (SOBM) were transferred back

to the active system. This well already had centrifuges installed for mud weight

control, which proved an advantage in minimising the reintroduction of drilled fines
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into the active mud. The shaker and MUD 10 system from the Magellan can be seen

in figure 2.8.1.

2.S.2. Drilling Fluid Advances

Some developments in the drilling fluid industry lead to the design of muds that

reduce residual oil on cuttings. Polymeric fluids have contributed towards this

(MIDF, 2001; Drill-Aid, 1990's); surfactant technology has been investigated, as

conventional oil-wetting surfactants encouraged the spontaneous infiltration of the oil

into the internal pores of the cuttings. This increases the oil on the cuttings and also

makes it more difficult to separate.

Low oil-water ratio invert fluids with low plastic viscosities have been introduced,

also reducing oil on cuttings. When these are polymer-based invert oil emulsion

muds, tests showed up to a 30% reduction of oil on cuttings (Schwaab, 1998).

2.9. Summary

For the foreseeable future, oil exploration and drilling activities will continue due to

the global utilisation of oil and oil products, and the lucrative nature of the industry.

Drilling fluids have developed over the last few decades to deliver products that

increase safety, productivity and have better environmental performance. Drill

cuttings piles coated with mineral oils such as diesel are an historic legacy in the

North Sea, and are being vigorously researched on several fronts; however, the issues

of the cuttings being brought to surface now are scrutinised legally, by environmental

bodies and by the industry itself. There is continuing research as to the best

treatments for the cuttings, and for minimising their environmental impact by

reducing the toxins and contaminants within the muds themselves. Methods of

treatment and disposal options have to consider space availability, costs,

effectiveness, materials recycling and disposal options post-treatments or without

treatments as hazardous wastes.
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CHAPTER3

MUDS: MUD AND HYDROCARBON CHEMISTRY

3.1. Introd Detion

The main pollutant in the muds to be remediated by bacteria was the hydrocarbon. To

understand the process of degradation, there had to be an understanding of

hydrocarbons in general, and then of the hydrocarbons used in the constituents ofthe

muds.

3.2. General Hydrocarbon Chemistry

The word petroleum was derived from petra, 'rock', and oleum, oil.

A hydrocarbon (HC) is a compound containing only carbon and hydrogen. The bonds

are almost entirely non-polar, making the hydrocarbon molecules lacking in overall

polarity (Holum, 1998). Hydrocarbons are therefore insoluble in water, but dissolve

well in nonpolar solvents, such as CCLt. Some mixtures of alkanes are in fact used as

solvents, such as lighter fluid used to remove tar spots. As hydrocarbons are

generally less dense than water they will float, hence oil spills floating on the sea

They are also known as non-aqueous phase liquids (NAPL).

3.2.1. Alkanes CPa raffins)

Paraffin is from the latin ''parum affinitas" - slight affinity.

When the proportion of hydrogen is high enough for single bonds to be possible

between each pair of carbon atoms, the resu lting hydrocarbon mo lecu les are saturated

(Goodger, 1975). A saturated HC contains only single bonds, i.e. each carbon has the

maximum number of hydrogen atoms bonded to it. These are open chain saturated

hydrocarbon molecules (Brown, 1997). They do not react readily with other

molecules, and are free to take up their most stable conformation in an open chain
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(that is, strain free). They are known as alkanes, but are commonly referred to as

aliphatic hydrocarbons because the physical properties ofthe higher members of this

class resemble those of the long carbon-chain molecules found in animal fats and

plant oils (Greek: aleiphar, means fat or oil). Alkanes have the general formula:

With methane as a starting point, additional hydrogen and carbon atoms can be built

on, to provide an homologous series of chain-like molecules, differing progressively

in physical properties but having similar chemical characteristics.

The low molecular weight alkanes - methane, ethane, propane and butane, are gases

at room temperature and atmospheric pressure (Brown, ] 997); higher-molecular-

weight alkanes such as gasoline and kerosene are liquids, and very high-molecular-

weight alkanes, such as paraffin wax, are solids.

Table3.2.1.1. The Homologous Series of Alkanes

Name Condensed mp bp Density of liquid
Structural °c °c (glml@O°C)
Formula

Methane C~ -182 -164 a gas
Ethane CH3CH3 -183 -88 a gas
Propane CH3CH2CH3 -190 -42 a gas
Butane CHJ(CH2hCH3 -138 0 a gas
Pentane CHJ(CH2)JCH3 -130 36 0.626
Hexane CH3(CH2)4CH3 -95 69 0.659
Heptane CH3{CH2)SCH3 -90 98 0.684
Octane CHJ(CH2)6CH3 -57 126 0.703
Nonane CH3(CH2):£H3 -51 151 0.718
Decane CH3{CH2)SCH3 -30 174 0.730

(Water = 1g/ml
atO°C)

Molecular structure can be open-chain (alkane) or closed-chain (cyclane) forms.

Alkanes can be straight chain (normal), or incorporate side chains. Alkyl groups, i.e.
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alkanes deprived of one hydrogen atom, are radicals, e.g. methane (Cl {of) goes to the

methyl radical CHJ·. Alkyl radicals are univalent (the symbol R is used), i.e. are

capable of combining with one atom of hydrogen or its equivalent, having an

oxidation/co-ordination number of one (Walker, Ed, 1995).

The intermolecular forces of attraction between particles enable compounds to exist as

a liquid or solid. The forces of attraction between non-polar molecules, such as those

in methane, are called dispersion forces, and they are very weak (0.02 - 2kcaVmol,

0.08 - 8 kJ/mol). To convert methane from a liquid to a gas at -164°C the process of

separating its molecules requires only a small amount of energy. Because interactions

between alkane molecules consist of only very weak dispersion forces, boiling points

of alkanes are lower than those of almost any other type of compound of the same

molecular weight. As the number of atoms, and therefore the molecular weight,

increases, boiling point also increases, as do melting points, but not in a direct

correlation. This is because of the ability of molecules to pack into ordered patterns

of solids changes as molecular size and shape change.

The average density is about O.7g!ml; that of higher-molecular-weight alkanes is

about O.8g/ml. All liquid and solid alkanes are less dense than water.

Alkanes that are constitutional isomers of each other are different compounds and

have different physical and chemical properties. The more "branches", the lower the

boiling point, e.g. hexane (Q,Hld b.p. = 68.rC; isomers ofQ,Hl4 (e.g. (a) 2-

methylpentane and (b) 2, 2dimethylbutalne) are lower at (a) 60.3°C and (b) 49.1'C.

Differences in boiling point relate to molecular shape, as the only forces of attraction

are dispersion forces in alkanes. As branching increases, alkane molecules' shape

becomes more compact, decreasing surface area. As surface area decreases, contact

among adjacent molecules decreases, the strength of dispersion force decreases,

decreasing boiling point.

Reactions that do occur with the addition of sufficient energy do so by dissociation of

a carbon-hydrogen bond and the hydrogen atom replaced, i.e. substitution. This is a

potential site for biodegradation.
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3.2.2. Alkenes

When there is multiple bonding between the carbon atoms they are unsaturated

compounds. Alkenes, or olefins (from Latin, meaning oil-forming), are hydrocarbons

that have double bonds consisting of four shared electrons (Manahan, 1994). This,

together with its greater exposure on either side ofthe molecule, make it reactive,

leading readily to additional compounds with other monovalent atoms or radicals.

Alkenes have the general formula:

ColIZn

The methylene radical CH2 is in all homologous series of alkenes. Individual

members are known as homologues. A radical is a group of atoms that remain

associated during a reaction but does not comprise a completely balanced molecule.

Alkenes incorporating two or more C=C bonds are dienes, trienes, etc., and are,

collectively, polyenes.

3.2.2.1. The C=C Double Bond

Bond energy is higher for C=C, and carbon atoms bond together more tightly due to

the shorter bond length. However, the bond is weaker in reactions due to the weak

link, which is usually a 1t bond. There are two different types of bonding, o and 1t

bonds. The c bond is rotationally symmetric about a linejoining the carbon nuclei,

whereas the 1t bond has a nodal plane in the plane of the molecule, which is in fact a

mirror plane (Beyer &Walter, t 991).

A variety of addition and oxidation reactions take place at the C=C double bond; it is

a reactive site in a molecule. An example is ethylene, where the double bond has a

tendency to add on other atoms and attain as saturated a state as a C-C bond,

justifying its description as an unsaturated He. It is also a preferred site for biological

reactions, i.e. biodegradation.
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3.2.3. Other Hydrocarbon Compounds

There are also triple bond compounds, known as alkynes, and the aromatics, which

are normally a resonance-stable benzene ring (C6) and can incorporate additional

carbon atoms inside the chains (Goodger, 1975).

As the hydrocarbon compounds used in the Versaclean and Novatec muds are alkane

and alkene, the other compounds were not focused on in this study.

3.3. Oil-Based Muds

The first oil-based muds (after the crude) were developed with diesel oil, which has a

molecular size Of>Ct2, and a boiling point between 250 and 400°C (Holum, 1998).

The industry, due to legislative pressures (see 2.6), then moved onto low-toxicity oils;

originally these were mineral oils, but these are also prohibited for use in the North

Sea (Oakley et al., 1993). Other low toxicity oils were then developed, such as the

use of esters. An ester is the central structural feature of all of the edible fats and oils,

as well as a number of constituents of body cells (Holum, 1998).

o
I I

I

(H)RC-OR' or
Two General Formulas for Esters

o I

~1_j_O-~-
I

1

Ester
IinkaQe

Ester group (carbonyl - oxygen - carbon system)

Figure 3.3.1. Ester formulas (Holum, 1998)
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Esters are broken apart by water in the presence of either an acid or base (Holum,

1998), or catalysed by enzyme activity.

As there were no cuttings available containing ester based oils, it was not possible to

examine which ester was used in the muds; the exact make-up and structure of the

specific ester was therefore not available, and, without cuttings, was beyond the scope

of this research.

By the mid nineties, the oils predominantly used were so called synthetic fluids.

Examples include Poly Alpha Olefins (Walker, 1995), and, more recently, Linear

Alpha Olefins (LAO), Internal Olefms (10) and Linear Paraffins. These second-

generation fluids have benefits over the older fluids, including a lower kinematic

viscosity, they are less expensive (Friedheim, 1997), have less environmental impact

and are less of an irritant when handling. The development of these fluid types

continues to evolve, increasing performance whilst using low toxicity additives,

allowing for the utilisation of biological methods of cleaning the drill cuttings, with

the possibility of having a usable product after remediation.

3.3.1. Bentonite Clays

Bentonite clays occur globally: the Americas, Africa, Europe, West and East. The

term bentonite was first applied to clays formed by the alteration of volcanic ash,

although some clays designated as bentonite on the basis of their composition and

properties now have other modes of origin (Grim & Guven, 1978). Wyoming

bentonite is still extensively used for drilling due to is smectite component (with Na

as major exchangeable cation) being made up of relatively large flakes which disperse

readily in water into very thin units, meaning less bentonite is needed to acquire the

desired viscosity. Smectite is a 'swelling' clay mineral that can take up water or

organic liquids between its layers. It also has very high gel strength and low filter

cake permeability.
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Bentonites are also used in many industries because of their emulsifying action and

their affinity for carbon particles (Grim & Guven, 1978). They are also excellent

water impeders, particularly the sodium variety from Wyoming.

Bentonites are also used in microbiology as non-specific inhibitors of ribonuclease

(RNase). A 2% clay solution is added as a suspension to the RNA extraction and then

removed. together with the absorbed RNase (Blumberg, 1987). This illustrates the

scope of bentonite utilisations and the incredible ability of this type of clay to 'hold

on' to substances as diverse as proteins, oils and water.

3.3.2. M-I Drilling Fluid's Muds

M-I Drilling Fluid sent four samples of oil.

• Novatec, LAO.

• Versaplus, linear paraffin.

• Ecogreen, ester based.

• Versaclean, a lox toxicity oil.

Of these, the only contaminated cuttings available for experimentation were from

drilling operations using Versaplus muds.

Versaplus is a linear paraffin; this indicates it is a straight chain alkane (see 3.2.1.),

with carbon chain lengths between Cl2 and C16. Experimentation was conducted on

a samp le of the oil using the GC to discover the chain lengths, see section 6.2.7., and

GC/MS see appendix A.

The general structure for a CI2 straight chain paraffin molecule would be:

Novatec, the LAO, has chain lengths C14 - C16; the double bond is located between

the first two carbon atoms in the chain, with the other carbons fully saturated.
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The general structure for the LAO would be:

CH3-(CH2)u-CH=CH2

The formulation ofthe fluids are confidential and will therefore be omitted from this

report.

3.4. Environmental Fate of the Hydrocarbons on Drill Cuttings from Oil-Based

Muds.

3.4.1. Fate of the Cuttings Post Discharge

When a hydrocarbon is released in water, it would normally float (see 3.2). However,

the hydrocarbons on drill cuttings are, by the nature of the waste, 'stuck' onto and

imbibed into the cuttings. Although the particle size of the cuttings and the prevailing

currents can influence the spread of cuttings, oily cuttings mostly have large fall

velocities due to them being aggregated particles, and settle in the immediate vicinity

of the rig (Oelvigne, 1996), where the major deleterious effects are recorded (Peterson

et al., 1987). A secondary 'plume' of lighter material will drift away with the current,

but contains only 5 - 7% ofthe solids discharged (Ayers et al., 1982). The general

elliptical shape of the area more thinly covered by the deposited cuttings is dependent

on the flow velocity and direction, i.e. the currents. The impacted areas can vary in

size, covering a radius of several hundred metres to several kilometres (Delvigne,

1996).

Once on the seabed, the cohesive nature of the deep piles means they tend to stay in

piles, and resist natural attenuation due to the cold, lack of nutrients such as N & P,

lack of electron acceptor and hydrostatic pressure, except sometimes on the exposed

surface of the pile where some breakdown and dispersion occurs. However, the larger

area of thinly deposited material changes over time, possibly by erosion,

resed imentation, leaching and degradation (Delvigne, 1996).
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3.4.2. Effects of the Contaminated Drin Cuttings on the Seabed

Environmental monitoring programmes, which are conducted during the majority of

North Sea oil developments when using oil-based muds, have confirmed that the

zones of seabed affected by these operations are confmed to the close vicinity of the

installations (Peterson et al., 1987).

Oil-based mud (OBM) drill cuttings can, as the E & P Forum and UKOOA agree,

have adverse effects on the seabed biological community. This has been attributed

initially by physical burial of the natural sediment, which is attributable when using

water-based muds as wen as OBM; however, the extent of biological effect is much

greater when drilling has been with OBM, suggesting that these muds are more toxic

(Berge, 1996).

Ecological data has been collated round a number of platforms using OBM (Peterson

et al., 1987), and reports that biological recovery is rapid in the area just beyond the

platform. This is illustrated in the graphs in figure 3.4.1.1. of redox potential, which

increased over time even near the platform, redox reflecting oxygenation ofthe

seabed, which can indicate biological recovery (there is a negative correlation

between base oil concentration and redox potential (Berge, 1996». Where the

conditions on the seabed are more dynamic there is a more rapid regeneration; this is

true for the Southern North Sea, where there were lower levels ofOBM discharges

per platform anyway.

Experimentation has indicated some leaching of oil and heavy metals on the sea floor

(Delvigne, ]996), with coarser particles having the highest leaching rates. This is

logical. as the fmer particles are mostly clays that 'hold on' to organics (section

3.3.1.). Leaching can be detrimental, making the pollutant bioavailable.

Experimentation by Berge, 1996, found that cuttings with a base oil content of 15 -

20% caused severe effects to the benthic community; cuttings with 2 - 3% base oil
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content caused significant, but less severe effects. The report concluded, based on the

total species matrix of a natural benthic community, that the threshold for gross

effects on community structure was a sediment base oil concentration of 1000 ppm.

Some individual species showed effects between 150 and 1000 ppm.

The effects from the OBM drill cuttings on the benthic communities can be a result of

toxins, by a change of particle composition of the sediment (Clark & Patrick, 1987),

or by anoxia caused by the heavy organic loading barrier (Barke & Veil, 1995).

Experiments conducted by Plante-Cuny et al. (1993) confirm that diesel-based oil on

drill cuttings had negative effects on macrofauna populations.
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Figure 3.4.1.1. Redox Potential Graphs at Measured Distances from a Platform
(peterson et aL, 1987).
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3.5. Toxicity Testing

The effects of the drilling fluids on the flora and fauna of the marine environment

have been tested using bioassay procedures. The EPA test involves the 96-hour LC50

- a procedure where a group of organisms are exposed to the drilling fluid at

increasing concentrations until a lethal concentration is reached with 50% ofthe

population dying. The EPA use the possum shrimp Mysidopsis bahia for this test

(MIDF, 1998). Other experiments have been conducted, measuring mortality, growth,

bioaccumulation of hydrocarbons and metals, histopathology, reproduction and

parasite infestation (Bowmer et al, 1996). According to the MIDF Drilling Handbook

the EPA toxicity limit was 30,000 ppm - this was the minimum acceptable value for a

dischargeable mud system.

There are manuals available relating to toxicity testing produced by OECD

concerning the screening ofchemicals for ready biodegradability in an aerobic

aqueous medium (OECD, 1992).

3.5.1. Open Ocean Waters

The 96-hour LC50's observed in liquid and suspended-particulate-phase bioassays

showed the discharges do not cause acute water column biological effects in the open

ocean, even for the mineral OBMs, which have a higher toxicity (Ayers et al, 1985?).

3.5.2. Seabed

Observations in the North Sea confirmed that sensitive species were absent up to 2 km

from the discharge site, with other less sensitive species absent 1 - 2 km away (Daan

et a/., 1992). The experimentation conducted on cuttings of different oil

concentrations by Bowmer et a/ (1996) suggested that impacts of exposure can be

correlated with those concentrations.

• High impact from cuttings ranging from 12 - 20%
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• Medium impact, 1.5 - 3%

• Low impact, 0.3%

Dab, a flat fish, was observed to assess the effects of drill cuttings by Stagg and

McIntosh (1996); they were found to bioaccumulate base oil and aromatics derived

from the oil in a concentration dependent manner. In both the Bowmer and Stagg

experiments. the heavy metals were almost entirely non-bioavailable,

3.6. Summary

The structure of the hydrocarbons used in the muds has a bearing on its behaviour and

interaction with other compounds, and therefore its degradation. Research confirms

the negative impact of oil based drilling fluids and drill cuttings contaminated with the

same on the natural flora and fauna of the oceans and particularly the sea-bed.

Chemicals utilised toward the exploration and production of oil have to be tested for

toxicity in Europe, the USA and other parts of the world. Drilling fluid development

continues to evolve with increased performance and reduced toxicity.

49



CHAPTER4 Microbiology

CHAPTER4

MICROBIOLOGY

4.1. Introduction

Bioremediation, within the remit of this project, involved the use of micro -organisms

to degrade or mineralise the organic contamination of the drill cuttings. To

accomplish this with any measure of success, the field of microbiology had to be

understood in a general sense, and then narrowed down to the specific requirements to

accomplish the objectives.

The term prokaryote is synonymous with bacteria, including archaebacteria and

eubacteria (Singleton & Sainsbury, 1997). Most ofthe prokaryotes are single celled

organisms with no nuclear membrane and a characteristic cell wall, performing all

functions necessary for life for themselves. They can thrive in almost any

conceivable environment, even in extreme conditions such as deep in the earth in

rocks, in the heat and sulphurous conditions around the 'black smokers' under the

ocean, halophilic locations such as salt lakes and within other living organisms, where

they can be symbionts or pathogenic. They are essential for life. for example the

Nitrogen Cycle, where dead organic proteinaceous material is recycled. Mostly their

sizes are between 1 - 10 urn, and their shapes vary; rod shape, coccus (spherical or

ovoid), spiral, filament and many deviations from these shapes. They are free living,

and many have a flagellum. a single helical tube of protein. allowing movement.

Although they are only single celled organisms they exhibit sensory behaviour, for

example phototaxis, sensing light and dark. They require nutrients to sustain life; the

class of bacteria appropriate for this research are heterotrophs, which require organic

carbon sources to make the amino acids and sugars which build up their cell

structures; they cannot fix their carbon from the atmosphere like autotrophs.

The cell wall of Gram-negative bacteria, for example Acinetobacter and

Pseudomonas. contain an outer membrane composed ofliposaccharide (see section

4.3.6.), lipoprotein and other complex macromolecules (Madigan et al., 1997), but
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little peptidoglycan; Gram-positive bacteria, for example Bacillus and Rhodococcus,

lack the outer membrane, the strength and shape of the cell wan maintained by a

higher content of the polysaccaride peptidoglycan. Many of the bacteria found in

environments utilising hydrocarbons as a food source are Gram-negative, for example

Pseudomonas (Koch et al., 1990; Canosa et al., 2000; Nieboer et al., 1993) .

4.2. Health and Safety CH& S) and Laboratory Practices

There are numerous techniques specific to the field of microbiology that needed to be

understood and implemented during the experimental procedures of the project.

4.2.1. Chemicals and Equipment

The H & S procedure for each chemical was laid out inControl of Substances

Hazardous to Health (COSHH) amd Material Safety Data (MSDS) sheets, and was

examined for each product before handling, and then handled in the manner

demonstrated on those safety sheets. It was forbidden to mouth pipette any

solutions, even sterile water.

Equipment was demonstrated before use, and, where appropriate, manuals were

available. The safe use of the -80°C freezer procedure was discussed, i.e. the

vacuum created when the temperature rises, and what to do when the alarm goes off.

Disinfectants (Trigcne II) were used for decontamination of bacterial cultures in

accordance with local rules and manufacturers' instructions.

4.2.2. Aseptic Technique

"The technique used in the prevention of contamination during manipulation of

cultures and sterile culture media is called aseptic technique" (Madigan et al., 1997, p

16). Aseptic technique is a process designed to exclude these unwanted micro-

organisms, predominantly involving the Bunsen burner. The hot flame of the Bunsen
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creates an updraft, so, for quick transfer work, this was the method adopted. For

drying plates, a sterile cabinet was used which had sterile air drawn through it. Other

techniques involved the sterilisation of equipment such as loops, blades and forceps,

by dipping in ethanol and then burning off the ethanol by ignition from the Bunsen.

When isolating a bacterium, a single colony was picked offwith a sterile implement

and re-streaked on sterile media; this is aseptic transfer. All other equipment, such as

bottles, flasks, test-tubes and so on were sterilised by putting into an autoclave. The

model of autoclave used was a Prior Clave Tactrol, which was programmed to heat

for 20 minutes at 121°C. This was also used to sterilise the media. Some equipment

was disposable, coming to the laboratory pre-sterilised in sealed packaging. This had

to be handled aseptically to ensure the products stayed sterile.

4.3. Microbiology, Rclating to Hydrocarbon Degradation

The samples of muds used for drilling in the North Sea were based on alkanes

(Versaplus) and alkenes (Novatec). The project needed to examine past research into

general hydrocarbon degradation, which could then be related to the specific oil in the

mud. At the onset of the project in January 1998 the literature available was quite

concise.

4.3.1. Microbiology Relating to Specific Hydrocarbons

Many alkanes and alkenes are of biogenic origin, being produced from a variety of

terrestrial plants and aquatic algae (Millero and Sohn, 1991). In marine systems, good

correlations have been documented between the presence of certain straight and

branched-chained alkanes and blooms of primary producers (Gordon et 01, 1978).

This means that many microorganisms have evolved to use hydrocarbons as growth

substrates, and have evolved specialised metabolic processes to degrade

hydrocarbons, illustrating their biodiversity (Pritchard et al. 1995). The strategy used

involves the insertion of molecular oxygen (in an aerobic organism) into these carbon-

rich structures, with the process catalysed by oxygenase enzymes, the enzymes being

specific to a particular hydrocarbon. Alkanes and alkenes are initially attacked,
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terminally (fig. 4.3.3.1) or subterminally (fig 4.3.3.2.), by a hydroxylase (a mixed

function oxidase) to produce the corresponding n-alcohol (Pritchard et al., 1995). The

alcohol is further oxidised to the corresponding monocarboxylic acid and metabolised

by l3-oxidation to provide acetate units for the cell's intermediary metabolism (fig.

4.3.3.3.).

The susceptibility of hydrocarbons to biodegradation is determined by the structure

and molecular weight of the hydrocarbon molecule (Atlas, 1993). N-Alkanes of

intermediate chain length (Cl 0 - C24) are degraded most rapidly; these are the length

of the carbon chains in the Versaplus mud. Short chain alkanes ofless that C9 are

toxic to many microorganisms, but can often be evaporated otT; there were little ifno

short chains expected in the drill cuttings as they came to the university; this was

confirmed by testing by Gas Chromatography (GC), see section 6.2.1.. As alkane

chain length increases. so does resistance to biodegradation. Branching in general

also reduces the rate of biodegradation because tertiary and quaternary carbon atoms

interfere with the degradation mechanisms or can block degradation altogether.

Aromatics are slower to degrade, and alicyclics are unable to serve as a sole carbon

source except via co-metabolism (Atlas, 1984; Dean-Ross et al., 2002). Co-

metabolism occurs when a substrate does not support the growth of a given micro-

organism, but the substrate may be modified or degraded by the organism in the

presence ofa second, growth-supporting substrate (Singleton and Sainsbury, 1997),

which can be produced by the activity of another micro-organism. There are few

complex hydrocarbons in the muds, as they are basically straight-chained hydrocarbon

compounds. "It is becoming clear that co-metabolism is important in nature although

this has been underestimated because of the difficulty in devising suitable enrichment

and selection procedures" (Slater et al. 1984) - obviously enrichment and selection

cannot be achieved on the basis of growth on the substrate alone.

The successful biodegradative removal of hydrocarbons from the sea depends on the

enzymatic capacities of micro-organisms and various abiotic factors. Suitable growth

temperatures and available supplies of fixed forms of N, P and 0 are required. In the

oceans, temperature and nutrient concentrations often limit the rates of hydrocarbon
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degradation. The low concentrations of nitrate and phosphate in seawater are

particularly limiting. Reisfeld et al. (1972) isolated a bacterium, tentatively

characterised as a member of the genus Arthrobacter, and found it brought about

significant dispersal of crude oil, but was "absolutely dependent" on exogenous

sources of nitrogen and phosphorus. Temperatures are also a limiting factor

(Mulkins-Phillips and Stewart, 1974).

These factors lead to this project looking at contained bioremediation using

bioreactors (see section 5.4.5.). Sea-floor is not an option due to legislation (see

section 2.6.); however, bioreactors could perhaps be adapted for either onshore

remediation, or offshore, either on barges or a designate platform which has finished

production, e.g. Brent Spar, Shell's defunct platform which caused so much angst

between the industry and environmentalists.

4.3.2. Aerobic Vs Anaerobic

Most muds contain halogens, with up to 2 - 3% as calcium chlorides. The method of

bioremediation needed for the drill cuttings had to be appropriate for the mud and

bacteria utilised.

Anaerobic processes are successfully used to slowly degrade organic compounds that

are highly saturated with halogens, as the bacteria utilise the compounds as electron

acceptors or reducing agents (Hoeppel and Hinchee, 1994). Anaerobic degradation

produces less biomass per unit of organic waste removed, as the substrate is converted

to methane. This may be harnessed as an energy source. However, most

hydrocarbons are known to preferentially biodegrade under aerobic conditions,

facilitated by a large, diverse group of aerobic micro-organisms (Leahy and Colwell,

1993). Madaigan et al. (1997) state that in the absence of oxygen, saturated

hydrocarbons are virtually unaffected by micro-organisms. However, recent research

has found this not to be correct, with harbour sediments contaminated with

hydrocarbons degrading anaerobically (Coates et al., 1996) and Zwolinski et al.

stating that ''we have only begun to reveal the diversity of organisms mediating

54



CHAPTER4 Microbiology

anaerobic hydrocarbon degradation" (2000, p 141). In slurry-phase bioremediation

systems, aerobic metabolism has distinct advantages over anaerobic, as listed by

Christodoulatos and Koutsospyros (1994).

• Reaction rates ofthe aerobic processes are much faster than those of anaerobic

systems.

• Aerobic processes generally induce production of the most oxidised end

products.

• Certain anaerobic microorganisms are more sensitive to heavy metal toxicity.

• Anaerobic processes are often associated with production of odorous gases.

• Costs and risks are higher, as are hazards to health from toxic by-products.

Aerobic eflluent treatment of sewage is the largest controlled use ofmicro-organisms

in the biotechnical industries (Best et al., 1985). The steps involved are

• Substrate adsorption to the biological surface.

• Adsorbed solid breakdown by extracellular enzymes.

• Dissolved material absorption into cells.

• Growth and endogenous respiration at the expense of the contaminate.

• Release of excretory products.

• Ingestion of primary population by secondary grazers; these may be less

abundant in a hydrocarbon environment.

This ideally results in the complete mineralisation of the waste to simple salts, gases

and water.

Aerobic systems are more appropriate for hydrocarbon degradation and offer greater

and more uniform process control. They are generally safer and easier to handle in

both laboratory and industrial environments. After reviewing the evidence, the

project proceeded by the isolation and utilisation of aerobic bacteria, and used an

aerobic process for the bioreactors.
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4.3.3. Electron Acceptor

The project had aimed for an aerobic system, and in aerobic respiration, bacteria

utilise oxygen as the terminal acceptor of electrons removed from oxidising the

hydrocarbon.

The initial mud to arrive at the university for analysis and experimentation was the

Novatec, a linear alpha oleophin, which is an alkene. Alkene reduction tends to be

more intricate than alkane, partly due to the double bond. The process of bacterial

remediation needed to be examined, to reduce any limiting environmental factors.

Research on alkene oxidation focuses on the degradation ofterminal alkenes. The

products of l-alkenes oxidation are varied since the initial attack can occur at either

the methyl group or the double bond (Cookson, 1995, Britton, 1984, Atlas, 1993) to

form:-

• oi-unsaturated alcohols or fatty acids

• primary or secondary alcohols or methyl ketones

• 1,2 epoxides

• 1,2 diols.

Diols are dihydric alcohols, chiefly represented by the glycols in which the hydroxyl

groups are attached to adjacent carbon atoms (Walker, Ed., 1995).

It is not uncommon for a single culture to exhibit multiple modes of attack on 1-

alkenes.

Methyl group oxidation is considered a major degradative pathway, with 00-

unsaturated fatty acid as a metabolic intermediate; the mechanism of methyl group

oxidation is similar to that of n-alkanes. The initial oxidation step of alkanes takes

one of the 02 atoms and incorporates it into the oxidised hydrocarbon (Madigan et al.,

2000). This reaction occurs through the monooxygenase enzyme which is sometimes
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called hydroxylase. Enzymes are proteins that act as a specific biological catalyst,

decreasing the activation energy (Singleton & Sainsbury, 1997). As monooxygenase

enzymes catalyse reactions in which the main substrate becomes hydroxylated, they

are also called hydroxylases. They require two substrates to serve as reductants of the

two oxygen atoms (Nelson & Cox, 2000), with the main substrate accepting one and

the co-substrate provides the hydrogen atom to reduce the second oxygen atom to

water. For this reason, mono oxygenase can also be called mixed-function oxidases or

mixed function oxygenases. The general reaction equation is:

AH + BH2 + 0 - 0 -~ A - OH + B + H20

This second substrate can he NADH, as shown in figure 4.3.3.5.

Dioxygenases catalyse reactions where both the atoms of an 02 molecule are

incorporated into the organic substrate molecule (Nelson & Cox, 2000).

CH3 - (CH2)n- CH3
I
I...

(alcohol) CH3 - (CH2)n- CH 2 OH

I ~A ~
CH3 - (CH2)~- CHO CH3 - (CH2)n- CH2-D-C-(CH2)n - CH3

i /.
(fatty acid) CH3 - (CH2)n- COOH

~YdroXYlation

•
HOCH2-(CH2)n - COOH

I ......
HOOC -(CH2)n - COOH --~b-oxidation

Figure 4.3.3.1. Oxidation of n-alkanes by attack on the terminal methyl group
(Britton, 1984).
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OH

CH - CHiCH CH - CH
3 '2 '1-1 2 CH iCH I -CH =CH

2 2 r 2

J OH OH

CHJ -(CH 2) "·CH ·CH 2

~ OH

~oxldatlon or w-oxldation ..... _

Figure 4.3.3.2. Potential pathways for L-alkene degredation (Britton, 1984)

CH3- (CH:? ),..,- CH2- CH2- CH
2
- (CH

2
i,-CH 3

9H
CH - (CH ) - CH - CH

3 2 n 2 +
o
"CH3- (CH2 )n- CH2- C - CH2- (CH 2)n- CH3

- CH - (CH ) - CH
2 2 n 3

+

CH3- (CH2 }n - eOOH

Figure 4.3.3.3. AJiphatic hydrocarbon oxidation by subterminal attack (Britton,
1984)

b - oxidation
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Pseudomonas oleovorans uses a hydrocarbon monooxygenase enzyme system which

causes the epoxidation of simple, aliphatic terminal olefins (May & Katopodis, 1990).

An example of benzene hydroxylation is in figure 4.3.3.4.

OOH
+

OH
monooKygenase

Benzene Benzeneepoxide Benzenediol Catechol

Monooxygenase

Figure 4.3.3.4. Hydroxylation of benzene to catechol by a monooxygenase in
which NADH (dehydrogenase) is an electron donor (Madigan et aL 2000).

The isolation of products from both the methyl terminus and double-bond attack on 1-

alkenes primary alkenes) indicates that many organisms can carry out diterminal

oxidation of these substrates. An example is the formation of saturated fatty acids one

carbon shorter than the substrate, as well as the m-unsaturated acids in an

Acinetobacter (Britton, 1984). It was thought that the saturated fatty acid was

produced by decarboxylation of the a-hydroxy acid to C02 and a fatty acid one

carbon shorter than the alkene substrate. Reports on Pseudomonas (Britton, 1984;

May & Katopdis, 1990) found minor reactions at the double bond lead to the

formation of epoxides, diols, and a-hydroxy acids.

EPOXIDE

o
1\

R-C=C-R---+~ R-C C-R --.~ 2R-COOH
+ enzyme

Figure 4.3.3.5. Production of Epoxide from reaction at double bond

Jones and Howe (1968) isolated m-unsaturated acids, «i-l-hydroxyacids and a, m-

dicarboxylic acids both the same chain length and one carbon shorter than the

substrate from cultures of a yeast, Torulopsis gropengiesseri, grown on l-alkenes
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from CI4 - C18. Another possible type of diterminal attack of l-alkenes is suggested

from the finding of saturated, substrate-length fatty acids in I-alkene grown

Mycobacterium vaccae and Corynebacterium simplex, with a possible explanation

being saturation of the double bond of the m-unsaturated fatty acids.

Evidence has been found to suggest a carbon elongation process can occur;

Acintobacter incorporated the growth substrate into higher cell fatty acids by an

elongation mechanism (Britton, 1984), and C. /iplytica formed fatty acids via chain

elongation from CI4 - CI8 n-alkanes, Secondary alcohols reminiscent of

subterminal oxidation can also be formed, which illustrates how diverse the products

from I-alkene/alkane oxidation can be.

May and Abbott (1973) found the m-hydroxylase system of Pseudomonas oleovorans

catalysed the epoxidation of alkenes as well as methyl group hydroxylation (CH3 to

CH20H), which illustrates reaction at the double bond. Epoxides are intermediates in

the metabolism of olefins to glycols, and enzymatic hydration of epoxides to form

diols have been observed in a pseudomonad. Methyl ketones and aldehydes could be

formed directly by hydroxylation ofthe double bond. These compounds would then

be reduced to the 1- and 2-alkanols.

Once the initial oxidation process has occurred, if the product continues to be oxidised

by the enzyme activity of the bacteria, carbon atoms are removed in pairs (Acetyl with

the co-enzyme, CH3-C-O-CoA) and metabolised by the bacteria, producing biomass

and carbon dioxide.
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NAD(P)H

R-CH2-CH3 -- ~R-CH2-CH2-00H ~
+

R-CH2-CH2-0H + H20 + NAD(P) (1)

+ +R-CH2-CH3 + NAD(P) -_ ~R-CH=CH2 + NAD(P)H + H

R-CH=CH2 + H20 ~R-CH2-CH20H
(2)

+
R-CH2-CH3 + 02 + NAD(P)H + H --~R-CH2-CH20H +

NAD(P)H + H20
(3)

Figure 4.3.3.6. Some pathways for oxidation of n-alkanes (Gibson (Ed), 1984).

NAD is nicotinamide adenine dinucleotide, a coenzyme serving as an electron

acceptor (and two protons) for many dehydrogenases. The reduced form, NADH,

subsequently donates its electrons to the electron transport chain. NADP is a

phosphorylated derivative ofNAD, and serves as an electron carrier, but the electrons

are primarily used for reductive biosynthesis.

Equation (1) is from Acintobacter sp HOI-N, which did not have an alcohol

dehydrogenase, with the fatty acid formed without the primary alcohol being an

obligatory intermediate (Hypothesis, Britton, 1984).

Equation (2) proposes the involvement of water or molecular oxygen for

hydroxylation of alkenes to primary alcohols.

Equation (3) is a widely supported hydroxylation mechanism, with direct

incorporation of oxygen catalysed by a mixed-function oxidase or monooxygenase,

e.g. Pseudomonas oleovorans (Briton, 1984)
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RCHO ....-~ RCOOH

Figure 4.3.3.7. Pathway of alkane oxidation in Acintobacter sp HOI-N (Finnerty,
1990(a»

RCH2- OH + NAD + ....-~ RCHO + NADH + H+

Figure 4.3.3.8. Soluble NAD+ and NADP+ dependent primary alcohol
dehydrogenase pathway (Finnerty, 1990(b»

It has been proposed that primary alcohols are formed from epoxides by a reductase

that cleaved and reduced on the C-2 side of the oxygen in the epoxide group. Using

this same mechanism, Klug (1971) proposed that secondary alcohols are formed by

cleavage and reduction of the epoxide on the C-l side of oxygen. Primary alcohols

also could be formed directly from l-alkenes by an hydrase analogous to fumarase,

where water is added across the double bond. Fumarate reductase can, as reported by

Nieboer et al. (1993), change fatty acid composition in Pseudomonas oleovorans.

Fumarate Malate

COO- COO-

I H2O I
CH

~ HO-CH

II
~ ~

I•
HC HC-H

I I
COO- COO-

FUMARASE

Figure 4.3.3.9. Fumarase Enzyme activity

If the oxygen is derived from water, it indicates a hydrase mechanism. Some alkenes

cannot serve as sole carbon and energy sources, depending on how they are oxidised,
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as the metabolites can cause depletions in the bacteria (Britton, 1984). This can be

overcome by using mixed cultures, which led to the examination of co-metabolism.

The energy required by aerobic systems can be calculated based on stoichiometric

equations for the theoretical mineralisation of branched alkenes in catabolic reactions

- this is for complete mineralisation, skipping the intermediate steps of oxidation to

an alcohol and then a fatty acid (LaGrega et al., 1994). To realise this in a practical

application requires further development.

_27....:(~2_x_16....:...)_= 3.43mg02/mg alkene
(18xI2)x36

Density of oxygen = 1492g/m3
, = O.0023m302/g alkene.

Figure 4.3.3.10. Oxygen requirement for mineralisation of an alkene

Not all the oxygen put in a system is available to the micro-organisms, with the

concentration of oxygen that can be dissolved in water being very low, typically

O.0084g/L (Pirt, 1975). It is therefore necessary to supply oxygen continuously to a

growing culture, breaking the bubbles up as much as possible to allow the maximum

amount of gas to dissolve in the liquid medium.

The following equation describes the oxygen transfer rate (OTR) in a fermentation

medium:

OTR =KLa (C· - C)

KLa =mass transfer coefficient

C· = saturation concentration of oxygen

C = actual concentration of oxygen

KLa is specific to an individual bioreactor.
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4.3.4. Nutrient Amendments

Nutrients can be a limiting factor in biodegradation, particularly nitrogen and

phosphorus. In all studies concerning bioremediation, nutrient amendments or

enhancements encourage better growth of the bacteria, therefore improving the

chances of remediation (Jackson & Pardue, 1997; Piehler & Paerl, 1996; Atlas, 1993,

1995; Mitchell et al. 2000; Pinelli et al., 1997). Some of these have found it more

beneficial to use oleophilic fertilisers (Atlas, 1993), which have a similar structure to

the oils and are therefore suitable for the remediating bacteria. When used during the

Exxon Valdez, it was found the pellets did not wash away, but adhered to the oil and

slowly broke down, gradually releasing the nutrients. Examples include oleophilic

fertilisers containing paraffmized urea and octyl phosphate. Findings by Churchill et

al. (1995) suggest that addition of oleophilic fertiliser reduces the surface tension of

the hydrocarbon, thereby increasing its availability to the micro-organism. Another

example was Inipol EAP 22, developed by Elf Aquitaine, Paris, France. This fertiliser

enhanced rates of oil biodegradation in field tests, even in Arctic conditions.

However, Elf could not provide any of this fertiliser at the time of the project.

Other limiting nutrients include the mineral iron, particularly in open ocean areas,

where iron concentrations are particularly low (Atlas, 1993).

The C:N:P ratio for optimal growth is quoted at 100:10:1 (Verheul et al. 1993); 20:5:1

(LaGregaetal., 1994); 50:14:3 (Cookson, 1995). BOD:N:P is quoted as 100:5:1

(LaGrega et al., 1994). These, as can be seen, vary considerably. The project went

forward by experimentation using batch tests, and then scaling up the nutrients for the

bioreactors.

The addition of particulate organic carbon with the nutrients has proved beneficial in

some hydrocarbon bioremediation experiments (Phiehler & Paerl, 1996; Johnson &

Logan, 1995). Piehler & Paerl used Spartina alterniflora, a marsh grass, for

particulate organic carbon, and Johnson & Logan used Suwannee River Humic Acid
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and Soil Humic Acid to represent dissolved organic matter and sediment organic

matter. This additional carbon would be readily available in a compost system.

However, there are significant populations of micro-organisms in soils that can use

alkanes and alkenes as sole sources of carbon and energy (Cookson, 1995).

4.3.5. Solid Concentrations

Most bacteria need a liquid-based medium for cellular growth, diffusion and mixing.

Exceptions include bacteria in rocks. A dry environment will cause stresses to the

bacteria, aborting growth, with spore-forming bacteria resorting to this survival

technique. Moisture is essential. Obviously, the higher the solids content in a reactor

the better, to reduce throughput volume. Slurries up to 50% dry weight solids have

been used, but the optimum is stated at around 40% (Stroo, 1989, Brown, 1999,

Cookson, 1995), which was taken as the minimum for the drill cuttings to prevent

degradation being inhibited and to keep the slurry in suspension (more details in

section 5.4.5.3.). Fu and Alexander, 1995, found that slurrying the contaminant was

the best form of enhancement, even than the use of surfactants.

4.3.6. Surfactant

There has to be an intimate contact between the micro-organism and the substrate.

The rate at which the oil desorbs from the cuttings depends on the oil and the

mineralogy of cuttings. A portion of the oil is bound in a stable position along

micropores within the cuttings. The (relatively) large size of micro-organisms

excludes them from the micropores, preventing their direct access to the sorbed

contaminant. To be accessible, the contaminant must desorb to the micropore water

and then move by diffusion to the outer surface of the particle where it can be

degraded by the micro-organisms that often attach to the particle. Investigations in

the USA and Netherlands claim that desorption/diffusion from the sorbed phase to the

solute phase is the rate limiting factor for slurry phase treatment (LaGrega et al. 1994,

and references within), with the rate of degradation being a function of the

concentration of the contaminant in solution rather than the total sorbed mass.
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Volkering et al. (1998) concluded that some surfactants help, but not all, and more

research is required. Some oil dispersants, which are a type of surfactant, were tested,

together with drilling fluid, for their effects on marine bacteria (Okpokwasili &

Nnubia, 1995), and were found to affect the ability of the bacteria to metabolise these

substrates in the environment.

Cookson (1995) reported microbial cultures produce extracellular surfactants that aid

in solubilising hydrocarbons. Micro-organisms within a genus produce biosurfactants

with a similar structure, although there can be species-level differences in the amount

produced, with the capacity for enhancement of solubilisation and biodegradation

dependent on the biosurfactant structure (Miller and Zhang, 1997). The general

structure of a biosurfactant includes a hydrophilic moiety composed of amino acids or

peptides, anions or cations, or mono-, di- or polysaccarides. A few identified

surfactants are rhamnolipids, trehalose-containing glycolipids, phospholipids and

lipopolysaccharide (Cookson, 1995). Yield and composition are affected by growth

conditions including carbon source, culture medium nutrients, temperature, pH and

aeration. Interest has grown globally concerning biosurfactants due to their ability to

meet most synthetic surfactants' requirements. Biosurfactants may be a pathway to

remove the oil from the cuttings; as with surfactants in general they reduce surface

tension, critical micelle concentration (CMC) and interfacial tension in both aqueous

solutions and hydrocarbon mixtures (Banat, 1995). However, there are not yet many

available commercially, therefore they must be produced in the laboratory. Miller and

Zhang (1997) have found that "it is something of an art to maximise biosurfactant

production in the laboratory".

Another alternative would be to wash the drill cuttings with a nonbiological

surfactant. These have been used to promote hydrocarbon dispersion, for example

Triton X-I00, which is a nonionic alkylphenol ethoxylate surfactant (Cookson, 1995).

If concentrations of Triton are above 0.05% there is a risk of lysing the bacteria. This

product has now been phased out as the alkylphenol is toxic to marine life and has

been found in rig discharges. This has led to OSPAR banning the product in the
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North Sea (OSP~ 2001). Mulkins-Phillips et al. (1974) tested four chemical

dispersants and found that none of them were toxic to the degrading bacteria.

In situ production ofbiosurfactants is little recorded, yet there is evidence of large

particles of oil being degraded, which means the micro-organisms can adapt to their

food source. If bacteria were pre-conditioned in a medium containing the

hydrocarbon to be remediated, there was a strong possibility they would develop their

own surfactant or equivalent.

Once the oil is in aqueous phase, micro-organisms can cluster around a droplet of the

hydrocarbon or 'accommodate' the hydrocarbons as submicron droplets (see figure

6.4.10.3.). Below are some examples of how they prepare the oil for food (Britton,

1984).

• They can have a higher membrane lipid content, membrane 'extensions' and

alkane-binding capacity (not present in glucose fed cells of the same species),

known as a lipophilic edges

• A lipopolysaccharide moiety, which is responsible for alkane binding

• Use surfactants as part of the food transport system, e.g. Pseudomonas, by

producing rhamnolipids responsible for hydrocarbon emulsification (Koch et

al.,1991).

Emulsification of the hydrocarbon is approached in diverse ways by differing

microorganisms. Arthrobacter paraffineus and a number of other

hydrocarbonoclastic bacteria produce trehalose-containing glycolipids (Britton,

1984).
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6CH;.!OH H

Trehalose
a-n-glucopyranosyl a-n-glucopyranoside

Glc(al_la)GJc

Figure 4.3.6.1. Tetrahose glycolipid (Nelson & Cox, 2000)

Corynebacterium hydrocarboclastus emulsifiers are complex mixtures of protein,

lipid and carbohydrate.

It appears from this information that the micro-organisms must be acclimatised to the

contaminant before addition to the reactor vessel, or these lipids may not be there,

increasing the lag phase or possibly destroying the bacteria. The project used this

approach to aid in the development ofa bioremediation system. A small quantity of

cuttings was introduced to the culture media for a minimum of24 or 48 hours before

the culture was added to the main flasks or reactor vessels.

4.3.7. pH

pH is a parameter that can be organism-specific. It can affect basic cell processes, for

example cell membrane transport and the equilibrium of catalysed reactions.

The pH values of most natural environments fall between 5 and 9, resulting in the

optimum pH for most organisms being between this range (Madigan et al., 1997).

Outside these pH ranges, biological activity can be reduced due to the oxygenase

(mono/die) enzymes' activity being limited. There are always organisms that can

survive outside of the range - acidophiles such as Thiobacillus (Madigan et al., ]997;

Eweis et ai., 1998), and alkaliphiles, many of which are Bacillus species.
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The pH also affects the solubility of nutrients, such as phosphorus, which is

maximised at pH 6.5, and the mobility of hazardous metals, which decrease at pH

levels greater than 6 (Sims et al., 1990).

In batch cultures, the pH can be controlled by using buffers. For near neutral range,

i.e. pH 6 - 7.5, phosphate, usually in the form ofKH2P04, can be used. This will

keep the pH neutral even though the metabolic reactions ofthe micro-organisms with

the substrate may produce acid or alkaline by-products.

4.3.8. Temperature

Temperature can have a major influence on growth rate, with micro-organisms having

differing optimum temperatures (Atlas, 1975). High temperatures can be lethal, low

temperatures can lead to cells becoming dormant. Activity decreases when dropping

below the optimum because of reduced enzyme activity and a loss of the fluidity of

the cell membranes, restricting transport of substrate molecules (Irvine, 1988).

Whatever the temperature, bacteria do not like a sudden change - this produces a

much greater reduction in cell activity than a gradual one, which allows them to

acclimatise. Bioreactors can be temperature-controlled, but this requires an energy

input; it would be preferable for the bacteria to acclimatise to the ambient

temperature. The effect of temperature on cellular activity (rate of biodegradation)

can be expressed as (LaGrega et al., 1994),

r I r = 9(£-20)T 20

rT = activity rate at roe
r20 = activity rate at 200e

9 = temperature-activity coefficient

T = Temperature ee)
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For hydrocarbon degradation in contaminated soils, the temperature-activity

coefficient (e) has been experimentally verified over a temperature range of 15 - 42°C

(Cookson, 1995), and was found to be 1.088. e is the ratio of the rate of progress of a

reaction or process at a given temperature, to the rate at 1°C, or in the case ofe-Io,

10°C lower.

As temperatures increase beyond the optimum, activity decreases. Examples of

growth ranges for some species of bacteria are illustrated in figure 4.3.8.1.

Temperature - 0 C
Organism -la 0 10 20 30 40 50

Bllcillus globisporus
I I I 1 I I II

I I I 14 1 , .. IBsclllull subtilis

EscherIchia call 1 1 • I I I ·1 I
Mycobacterium sp I I I: I r t I
PhtmerochsBte chrysosporium

I • I IPh.nerochaete sordidB

I I. I I I .1 I
Pseudomonas av.nae I I i i I I I
Pseudomonas sp I. I .1 I I
XJJnthomonlJsphJJrmlcols I I .. I I I .. I I
XlInthomonss rlnlcols I I • I I I .. I I

Y - Reported Optimum I I I I I I I

Figure 4.3.8.1. Temperature growth ranges for some remediating micro-
organisms (Cookson, 1995)

4.4. Summary

Micro-organisms exhibit diverse and complex methods of utilising a growth substrate;

consideration and control of their environmental conditions is essential to maximise

their potential.
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CHAPTERS

BIOREMEDIATION ENGINEERING

5.1. Introduction

Industrial activities have brought about many deleterious effects on the environment.

Bioremediation has been described as a biological response to environmental abuse

(Sheehan. Ed. 1997). and is a process that can occur naturally. without anthropogenic

interference. However. if the environment can be manipulated to improve microbial

performance the process can be enhanced. leading to the bioconversion of recalcitrant

pollutants to microbial biomass and stable, non-toxic end products.

Historically, bioremediation has been used for millennia; the Romans were thought to

have developed the first sewage 'treatment plants'. at least in the UK. There was little

need for further development from that time up until the industrial revolution. when

anthropogenic activities really started having detrimental effects on the environment

and on the health of many workers involved in a number of industries. It was not

until the last century that the backlash from these activities was felt. dealt by a

concerned public to what appeared. both then and with hindsight. a fmancially driven

and unenlightened industrial body. Now legislation has tightened up, meaning that

industries have to consider the environmental impacts of their activities. Meanwhile,

there is a legacy of contaminated sites throughout the country that cannot be used

until some form of remediation has been carried out.

These sites have been a proving ground for many clean-up technologies, including

bioremediation. Bioremediation, a technology only just past infancy, has proved to be

an extremely cost effective alternative or companion technology to more conventional

ones.

The following illustrates the cost; the data is not new, but it does illustrate the

relationship between technologies.

71



CHAPTER5 Bioremediatlon Engineering

TECHNOLOGY COST RANGE (£)

Landfill UK 25 -220

USA 100 - 200

Incineration USA (on-site) 75 - 300

USA (off-site) 100 - 500

Air Stripping 20-50

Soil Washing 35 -100

Bioremediation 5 -75

Table 5.1.1. Cost estimates for remediation technologies (after Bull, 1992)

The biological processing of waste matter draws upon a number of scientific

disciplines, including biochemistry, genetics, chemistry, microbiology, chemical

engineering, mechanical engineering and computing (Best et a., 1985).

These disciplines have been brought together in three main areas:

• The degradation oftoxic wastes, organic and inorganic.

• The recovery of resources, including materials to recycle.

• The production of valuable organic fuels.

It took one major disaster to bring bioremediation, i.e. the degradation oftoxic waste

via microbial activity, to the forefront.

5.2. Case Study: Exxon Valdez Disaster, Prince Williams Sound

In March 1989, there was a massive oil spill from the Exxon Valdez, which

contaminated over 100 miles (160+ km) of Alaskan coastline. The clean-up task was

daunting; what could be used to remove oil from such a vast area, in cold conditions,

and not in itself contaminate the environment further (as chemical treatments can)?

Exxon firstly physically washed the bulk of the oil from the gravel and cobbled

beaches, but this still left a film of crude oil contaminant, which was ecologically

available and aesthetically unpleasant. The EPA decided to conduct direct research of

bioremediation on this disaster site. Pritchard, one of the principle researchers, has
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written numerous papers on the work carried out (Pritchard & Costa, 1991; Pritchard,

1993); also, the word 'bioremediation' had fmally come into the public and regulatory

domain, and thought of as a feasible method of cleaning hydrocarbon contamination

from sensitive sites. The disaster proved to be a good example of the problems and

successes associated with this technology.

5.2.1. Enhancing Bioremediation In-Situ

Atlas had done research to stimulate biodegradation of oil slicks since the seventies

(Atlas & Bartha, 1973), which focused on the use of oleophilic fertilisers; the

advantages of this fertiliser and other nutrient enhancements have been reviewed in

section 4.3.4. within this report. Pritchard and his colleagues utilised this research on

a grand scale in the aftermath of the spill (Pritchard, 1993). The first assumption was

that there would be a significant enrichment of oil-degrading micro-organisms in the

beach material following exposure to the oil (Atlas, 1981). This was authenticated by

Pritchard (1993), who confirmed up to a 10,OOO-fold increase in the number of oil

degraders within two months of the spill relative to beaches that had not been

contaminated. This suggested that some nitrogen and phosphorus were available to

support growth, and the low temperatures, between 10 and 16°C, were not limiting to

the indigenous bacteria. The possibility of accelerating the bioremediation became

feasible if the finite nitrogen and phosphorus could be provided via a fertiliser. Due

to the porosity of the gravel and the high oxygen content ofthe seawater oxygen

limitation was not considered. The team used granular fertiliser due to slower release

characteristics; the tidal action helped to disperse the nutrients, but did not wash them

away - granules were observed on the beach 2 - 3 weeks after application. There was

a visible disappearance of oil on the cobble surface within 2 - 3 weeks of fertiliser

application, in contrast to the untreated areas (Pritchard, 1991). Exxon eventually

used a combination ofliquid and granular in their final clean-up.
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5.2.2. Relation of the Exxon Valdez to Drill Cuttings

The above is a fine example of in-situ bioremediation. The pressure was on; the oil

spill had to be cleaned up within the short summer months of the North, as the severe

cold of an Alaskan winter would surely stop microbial activity. 160 km of gravel and

cobble beach could not feasibly be removed for ex-situ bioremediation. Although

legislation concerning the North Sea has prevented the dumping of drill cuttings

overboard, this is not necessarily the case globally. There are opportunities to

enhance remediation conditions for drill piles, particularly 'new' piles, whose

contaminant might be the new generation synthetic muds, by manipulation of the

environment. The drill cuttings produced from operations in the North Sea are

currently shipped to shore, often on barges. This leads to the view of ex-situ

bioremediation.

5.3. Requirements for Bioremediation to Occur

MOISTURE pH

MICROORGANISMS

ABSENCE
OF

TOXICITY

ELECTRON
ACCEPTOR

ENERGY
SOURCE

NUTRIENTS TEMPERATURE

REMOVAL ABSENCE OF
OF COMPETITIVE

METABOLITIES ORGANISMS

BIOREMEDIATION
Figure 5.3.1. Requirements for Bioremediation to Occur (Cookson, 1995)
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The environment influences the survival and growth of bacteria, and therefore their

ability to breakdown contaminants. Bioremediation engineering considers enrichment

and screening of the natural environment (in this research, the drill cuttings) for

biocatalysts through environmental selection (McEldowney et al., 1993), i.e. look at

what the micro-organisms need to tolerate, then look for the micro-organisms in the

appropriate environment. The environment can then be 'redesigned', or enhanced, to

ensure that the bacteria flourish. Conditions required for the bacteria to facilitate

bioremediation have been discussed in section 4.3.

The project needed to consider what micro-organisms capable of remediation were

likely to be indigenous in the drill cuttings, and thereby assess the conditions those

bacteria required. As commercial strains were to be used concurrently with the

indigenous isolates, conditions needed to be appropriate for them too. These

conditions were assessed initially in the batch tests (see 6.4.); conditions for the

reactors used this data.

The other parameter to assess was the contaminant itself. Drill cutting waste consists

predominantly of rock chippings, clays, water and oils, with other additives in smaller

quantities. A bioremediation system that could deal with these products was required.

5.4. Methods of Bioremediation

There are numerous approaches to bioremediation; an in-situ methodology was

discussed in the Exxon Valdez case study, 5.2. There is another approach to in-situ

biotreatment.

5.4.1. Gel Coating

This involves coating the cuttings after the Ml 0 unit (or equivalent) (see 2.8.1.) with a

polymer gel containing bacteria. Response Environmental Services (RES) have

developed a Bio-GeI™ which is a biological carrying medium that could be used to

treat the cuttings before disposing onto the sea floor. There are many questions

75



CHAPTERS Bioremediation Engineering

arising from this product, such as the biological oxygen demand (BOD) on the sea

floor - research has shown that the benthic community suffers from a lack of oxygen

when there is a substance deposited which has a high BOD (Pappworth, 1997). Elf

have also carried out research on gels, but are currently not following that option

(Waller after pers. Comm., Elf, 1999). John Bent, Technical Director from RES, has

discussed the merits of his company's gels, stating that the gels do not have a

detrimental effect on the sea floor or benthic communities. However, any organic

material discharged to sea will impact on oxygen (Pappworth, 1997), so more

evidence to substantiate that claim is needed, such as field tests on the sea floor at

depth. The bacteria used are a consortia produced by a Swiss company, which are

purchased on a slope, a common method of buying bacteria. These are then

inoculated using a medium containing the contaminant. The gels have proved

effective on other contaminants, such as on the railways and oil spill cleanups, but the

dynamics of the gels have not been fully investigated. The company does not have

the time or resources to undertake detailed research. Hydrogen peroxide is not used in

these gels, but would be a consideration as it does provide oxygen to the bacterial

environment and is removed rapidly by the bacteria degrading the hydrocarbons

(Urfer & Huck, 1997).

As the drill cuttings in the UK cannot be put overboard, the research was limited to an

ex-situ method of remediation.

5.4.2. Landfarming

Landfarming is a form of solid-phase treatment, involving the controlled

incorporation of waste into the upper soil zone and enhancing aerobic microbial

activity through the addition of nutrients, lime for pH amendment and moisture (EPA,

1998), plus tilling to increase aeration. The contaminated media is usually treated in

lifts up to 18 inches thick (FRTR(a), 2001). When the desired level of treatment is

achieved the lift is wholly or partly removed (allowing for the old lift to inoculate the

new) and a new one constructed. Liners may have to be incorporated to control

leachate.
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Landfarming is already popular in America and Canada for onshore disposal and

treatment of drill cuttings and other heavy petroleum hydrocarbons. Generally, the

higher the molecularweight of hydrocarbon, and the more rings with a PAH, the

slower the degradation rate. Chlorinated or nitrated compounds can prove difficult to

degrade (FRTR(a), 2001).

England does not have the space to exploit this technology efficiently, except on a

small scale.

There has been research concerning radiation and heavy metal levels on land that has

been contaminated from commercial oil well drilling activities in the USA (Spitz et

al., 1997). Spitz reported a significant rise in radium and other hazardous materials in

the vicinity of where sludge ponds and waste pits were. Radium bases salts are

known to be deposited as scales on pipe work in production operations. Although this

refers to the production wastes rather than the drilling wastes, heavy metals are a

serious consideration; they can build up in the soils of a land farming operation

(Kramer et al., 1980; Berge, 1996). Concentrating the drill cuttings in one area for

land farming could lead to a build up ofthese toxins; this would prevent any other land

use, and would eventually become a toxic environment for the micro-organisms and

most flora and fauna.

A feasible solution for this would be to conduct phytoremediation. Some plants are

particularly adept at removing heavy metals, chlorides and other contaminants from

the soil, concentrating them in their upper growth of twigs and leaves. These can then

be harvested, and, if incinerated, concentrates the contaminants further in the ash. In

soil samples from the rhizosphere of poplar trees there were an increased the number

of micro-organisms able to utilise hydrocarbons as food and carbon sources, thereby

aiding in the remediation (Jordahl et al., 1997). This may open up a new form of

remediating hydrocarbon contaminants; forest remediation.
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Table 5.4.2.1. Some Advantages and Disadvantages of Land farm Bioremediation

ADVANTAGES DISADVANTAGES

Effective on organic constituents with Presence of heavy metal concentrations
slow biodegradation rates (Chaineau et >2,500 ppm may inhibit microbial
al., 1996). growth.
Simple to design and implement. Requires a large land area; may require

lining to reduce leaching.
Treatment times < 2 years (Ladousse et Difficult to achieve reductions >95%;
al. 1996), sometimes 18 months; quicker contaminant concentrations less than 0.1
than non-catalysed system. ppm almost unachievable (EPA, 1998).
Costs very low; land rent, moving Dust and odour may reduce air quality
contaminant to land, occasional tilling, and influence planning permission.
occasional analysis. Evaporation ofvolatiJe components may

result in specific air pollution concerns.
Sustainable, long term; may be used for May not be effective where total
forestry after treatment. hydrocarbons exceed 50,000 ppm (EPA,

1998).
Inorganic contaminants may be degraded Inorganic contaminants generally not
by further treatment using degraded by micro-organisms.
phytoremediation.

Conditions affecting biological
degradation of contaminants (temp,
rainfall) uncontrolled.
Runoff collection facilities must be
constructed and monitored.

5.4.3. BiopiJes/windrows

Figure 5.4.3.1. Windrows (EPA, 1993)

Biopiles, or windrows, are a more intensive form oflandfarming. Contaminated

material such as drill cuttings would be mixed with soil or other bulking material, and

treated in aerated heaps or windrows which need turning periodically. These will

require a lined base to collect the leachate produced.
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Figure 5.4.3.2. Solid-phase bioremediation system (EPA, 1993)

Organic material is added, such as waste matter created from forestry, manure on

straw/shavings, hay or other organic bulking agents. These additions can help

stimulate remediation by breaking down themselves, often creating heat, which may

help the establishment of thermophilic and other bacteria that utilise the contaminant

as a food source.

Visqueen Cover
Nutrients
Aeration
Microorganisms;----~---,/

Soil

Asphal
Side View Plastic Piping

Top View

Figure 5.4.3.3. Biopile (EPA, 1993)

lfthe piles are covered or contained with an impermeable liner the risk of leaching is

reduced as well as giving greater control of heat, moisture and other parameters.

Aeration of static piles is conducted with blowers or vacuum pumps (FRTR(b), 2001).

Treatability testing needs conducting to assess the appropriate oxygenation and
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nutrient loading rates. Similar batch sizes require more time to degrade than slurry-

phase processes.

5.4.4. Composting

Composting is an ancient and proven method of breaking down many types of waste

into a reusable product, e.g. compost for the garden. When dealing with a

contaminant such as drill cuttings, this could be a very good technology. The clays

within the mud are a concern, as clays are so effective at 'holding' on to organic

solutes. Combining the cuttings with some form of organic matter that would

compost anyway should help reduce the hydrocarbon content. Ideally, with the new

generation muds being developed with low heavy metal content and lower salts

content, the end-product might be saleable, or at least a viable product for capping

landfill sites. Composting can be conducted using biopiles or windrows, as discussed

in 5.4.3., or in reactor vessels, see figures 5.4.4.1. - 5.4.4.3.

AIRFLOW

Figure 5.4.4.1. Compost reactor vessel with vertical flow (EPA, 1989)
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Figure 5.4.4.2. Compost reactor vessel with horizontal flow (EPA, 1989)
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Figure 5.4.4.3. Agitated bed compost reactor vessel (EPA, 1989)
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5.4.5. Bioreactors

Bioreactors are enclosed vessels in which various parameters can be controlled. They

can be complex, but often achieve rapid and complete results (Karamenev & Samson,

1998). Whether the system should be aerobic or anerobic has been discussed in

section 4.3.2.

5.4.5.1 Immobilisation of Micro-organisms

Immobilisation of bacteria in macro and microparticles (Sofer, 1997, Knaebel et al.,

1997) or biofilms has great advantages for a liquid medium, but doesn't allow

sufficient intimate contact with oils in the pore space of the drill cuttings (Fukuda

1995). There are many established and innovative methods ofimmobilisation from

polymer beads to fixed-film reactors. Immobilisation has several advantages.

• Maximises the retention time of the biomass (Armenante, 1993),

• Higher productivity per unit bacterial biomass (Sofer, 1997),

• Systems can sustain higher flow rates

• Occupies less space

• It is more resistant to contamination by microbes or excess contaminant.

Atmospheric pollutants can be treated by sheet-immobilised bacteria, with a residence

time of2 minutes (Sofer, 1997). However, with the drill cuttings, immobilisation

does not offer an intimate enough contact without a pre-treatment that would get the

contaminant into solution. The research suggests an inoculate added to a slurry as

free cells would be an option. As efficient recovery ofthe biomass may not be

practical, there would have to be an inoculate prepared for each batch. Organic

contaminants are well suited to a free-cell, suspended biomass system (LaGrega et al.,

1994).

More recent research conducted in Kuwait has discovered that the production of

exopolysaccharides by hydrocarbon degrading bacteria enable the micro-organisms to

adhere to a substrata, such as sawdust, Styrofoam or wheat bran (Obuekwe & AI-
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Muttawa, 2001). This form ofimmobilisation has been utilised to store the bacteria

for periods of 6 weeks - 6 months and more, even at high temperatures, ind icating a

potential for application as ready-to-use seeds for in-situ petroleum bioremediation.

By using the natural ability of the bacterial to attach to surfaces, the use of extraneous

chemical substances in immobilisation is avoided, and the cells are protected from

environmental chemical toxicity, excessive desiccation in dry, hot conditions and

from predation from other organisms. The technology may equally be utilised in cold

conditions.

5.4.5.2. Continuous Vs Batch Bioreactors

Continuous flow reactors would be more cost effective to treat a waste stream that is

generally continuous. With continuous flow stirred tank reactors, there is no control

over whether the particles just entering the tank will exit immediately, while other

particles may remain longer than necessary (LaGrega et al., 1994).

'-- -

I ~ r
........ ~

~,
-c

Figure 5.4.5.2.1. Continuous flow stirred tank reactor (basic principles)
(Arm enante, 1993).

This can lead to effluent concentrations that do not meet the required environmental

standards. Plug Flow Reactors are designed to keep mixing of the influent with the

entire contents to a minimum. They are often long, narrow tanks; the material moves
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across the reactor to the output in a given time, as a 'slug' of material. The rate of

feed will dictate the time spent in the reactor.

Figure 5.4.5.2.2. Plug flow continuous tank reactor (basic principles)
(Armenante, 1993).

Continuous reactors are commonly used for wastewater treatment (Armenante, 1993).

Batch reactors are appropriate for intermittent operations, and for biological

processing, particularly slurries. Bass, the brewers, have conducted research into

continuous processes for their biological reactors (brewing), but have found that the

batch process is still more applicable (Harrison, 1999). Batch processes are easier to

manage and control, they also reduce the danger of shock loading. The material can

be analysed before entering and leaving the reactor, allowing the time allocated for

each step of the treatment to be adjusted. This greater flexibility can lead to better

performance. Certainly, the lab-scale and pilot studies will utilise batch reactors.

However, after these tests, the most appropriate process will be reassessed.

5.4.5.3. Slurry-Phase Treatment

The general processes involved in slurry-phase treatment are illustrated in figure

5.4.5.3.1. This research project will examine the pre-treatment of the solids before the

mixing bioreactors and the bioreactors themselves. The clarifier and filter press are

established technologies utilised in a number of industrial applications and are

therefore not covered in this research. Recycling of the filtrate would depend on the

levels of contamination contained therein - if the liquor proved high in heavy metals,

for instance, it should not be recycled back into the reactor as it may be toxic to the

bacteria. Advantages of recycling the filtrate include the reintroduction of the

bacterial cultures into the contaminated material in the bioreactor, reducing the need
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for an inoculate, and a reduction of waste material that may need further treatment

before disposal.

PRETREATMENT
OF SOLIDSr---,
MIXING REACTORS

,
CLARIFIERITH ICKENER

,
FILTER PRESS ~ FILTRATE RECYCLED

I,
SOLIDS <1% OIL TO DISPOSAL

Figure 5.4.5.3.1. Process flow sequence for slurry-phase treatment

Slurry-phase treatment degrades waste at a faster rate and requires less land area than

solid-phase treatment (Ross, 1991). This is illustrated by Stroo (1989), reproduced in

table 5.4.5.3.1., which summarises the population densities of bacterial cells

recovered from assorted samples of slurry treated, untreated and land treated

material, illustrating the capability of slurry-phase treatment for increasing biological

activity.

Table 5.4.5.3.1. Bacterial Cell Densities

Sample Source Contaminated Soils Waste Sludge
(cells/gram solids) (cells/gram solids)

Untreated 10° 10°

Land Treatment 10' -lOll 10' - lOll

Slurry-phase Treatment 1011-10" 1011-10"
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Slurry-phase bioremediation has several advantages over other methods of

bioremediation (Cookson, 1995).

• There is greater and more uniform process control

• Enhanced solubilisation of the organic chemicals

• Physical breaking of particles

• Increased contact between microorganisms and contaminants

• The ability to enhance solubility of contaminants with surfactant applications

• Improved distribution of nutrients, electron acceptors and primary substrates

• Faster biodegradation rates.

There are disadvantages, as described below.

• Additional energy requirements

• Increased material handling

• Possible physical separation and breaking down processes for the large

cuttings

• Liquid and solid separation processes

• Increased water supply, handling and treatment costs.

The effectiveness of slurry-phase treatment depends upon a number of theoretical

factors including pretreatment, desorption, solids concentration, mixer design and

retention time.
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Figure 5.4.5.3.3. A typical process flow sequence for slurry-phase treatment
(Cookson, 1995)

There are several options of slurry-phase treatment where the suspended solids are

inert, but apposite for drill cuttings may be the inclusion of a pre-treatment to reduce

the cuttings thereby increasing surface area. Post-treatment wou Id be needed for

dewatering after remediation.

Overall, slurry-phase treatment seems an appropriate technology for the contaminated

drill cuttings, especially considering the clays. A personal communication with

British Gas (Watler, 1999) confirmed that slurry-phase treatment was the best option

for contaminated clays.

5.4.5.3.1. The Process

The wastes are suspended with water or wastewater in a mixed reactor to form a

slurry. The agitation has several benefits.

• Homogenises the slurry

• Breakdown of the so lid particles

• Desorption of waste from solid particles
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• Contact between the organic waste and microorganisms

• Oxygenation of the slurry by aeration volatilisation of contaminants.

5.4.5.3.2. Particle Size Reduction

Material larger than 2.5 - 10 mm have been reported as too large within a slurry-type

reactor, and must therefore be screened out or broken down to create an aqueous

slurry (Cookson, 1995). The cuttings from the wells vary considerably in size and

make-up. A small sample of cuttings from the M-I 0 unit, using Novatec system mud,

Amoco well 30/11 b-5, showed that when water was added the cuttings broke down by

themselves quite considerably. However, evidence from cuttings piles indicates that

cuttings can be over 1 cm (UKOOA, 1999), in which case these may have to be pre-

treated. There are several types of mill that can do this such as a ball mill, roll

crushers, swing hammer mill (Jackson, 1999), or other attrition mills. An option

might be to wet the cuttings and screen to remove the larger particles, which could

then be milled. This would reduce the amount of material needing processing. The

contaminants generally preferentially adsorb to finer particles (LaGrega et al., 1994),

also confirmed in this study (6.3.2.). The advantage of breaking down the larger

particles would be a reduction in energy required to keep them in suspension. If the

contaminant is preferentially adsorbed onto the smaller particles, screening will

concentrate the contaminants prior to degradation. InDutch research projects (La

Grega et al., 1994), the mixing technique which reduced the soil particle size to 30

microns resulted in degradation rates several times greater than the technique which

yielded a particle size of 60 microns.

5.4.5.3.3. Types of Reactors for Aerobic Slurry-Phase Treatment

There are several examples of slurry-phase bioreactors, as this is a common way to

treat contaminated soils ex-situ. Reactors include Lagoons, open vessels and closed

systems (Cookson, 1995). The post reactor system would need to include dewatering

systems, as shown in figure 5.4.3.1.; these are established technologies that can be

adapted for the drill cuttings. Slurry reactor designs differ in the mechanics of

oxygenation and mixing of the suspension. Draft tube reactors use a floating aerator,

but can result in poor mixing near the reactor bottom, making them unsuitable for drill
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cuttings that can fall out of suspension easily; also the air spargers were reported to

have "significant clogging problems" (Cookson, 1995, p 339). Blade agitated reactors

(Pinelli et al., 1997), such as the turbine mixers with spargers as illustrated in figure

5.4.5.3.3.1. (Cookson, 1995), would be appropriate to maintain suspension of the

solids near the tank's bottom. There are air-lift reactors that use air to lift and stir the

slurry, with rotating rakes under the air diffusers to maintain solids mixing. The

slurry decontamination process touched upon by Kleijintjens et al., (1995) consists of

a series of compartments where the unseparated sediment is treated in a continuous

process. This method has been tested in a pilot plant at 3 m3 scale, with Petroleum

Harbour Contaminated Dredged Material (Stefess, 1998). However, the level of

remediation reported was below target, with the material still disposed of in a landfill.

It does suggest that this method of remediation may be practical, but difficult to

realise on a laboratory scale.

CHEMICAL FEED
PORTS

AIR OtlTLET
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DIFFUSER
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DISCHARGE
PORT

Figure 5.4.5.3.3.1. Turbine popeller slurry-phase bioreactor (Brox, 1993 in
Cookson, 1995)

Trommel or rotating drum bioreactors are also commonly used for soil slurries

(Cookson, 1995; Banerjee et al., 1995; Kruger et al., 1995; Pinelli et al., 1997). The
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advantages include ease of design and fabrication, and ability to handle high solids

levels. Air sparging can be a problem, as can clumping of material in the reactor.

The reactor design for this research is discussed in greater detail in chapter 7.

5.5. Summary

Bioremediation is a relatively young science, but has already proved itself as an

efficient and cost effective technology for the clean-up of some xenobiotics.

Difficulties can arise concerning optimising the environment for the micro-organisms,

which also has to be suitable for the matrix binding the contaminant. There are

various methods of conducting bioremediation both in-situ and ex-situ, such as

compo sting which includes the addition of organic matter to the contaminated

material and slurry-phase, which includes the addition of liquids.
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CHAPTER6

METHODS DEVELOPMENT AND RESULTS

6.1. Introduction

At the onset of this research in 1998 a succinct quantity of literature was available that

dealt directly with drill cuttings. As previously discussed in sections 2.3. and 3.3.,

muds contain a quantity of clays, specifically bentonite clay. The clay within the

cuttings added a complicated dimension to the research due to their physical and

chemical properties, as discussed in section 3.3.1.. At an early stage it was recognised

that a reliable method of analysis capable of resolving residual oil concentrations

below 1%was required. An efficient, reliable and repeatable method of extracting the

oils from the cutting and mud matrix needed development, within the constraints of

the equipment available at the university. The extracted hydrocarbons from the mud

and cuttings then needed analysing as accurately as possible. As a slurry system was

proposed, the particle size distribution within the cuttings needed to be analysed; the

concerns over particle sizing were outlined in section 5.4.5.3.2 •. Itwas thought that

there may have been some preferential adsorption of the contaminant on a given size

fraction; testing this might lead to a process reducing the quantity of cutting waste

needing treatment.

Once these parameters had been explored by experimentation, the microbiology of the

cuttings was assessed. If there were indigenous species within the cuttings that could

be grown in a laboratory environment they could be isolated to assess their potential

as remediators. These experiments did produce some isolates, which were batch

tested for remediation potential within the natural flora of the cuttings, and in

isolation. The knowledge acquired earlier in the research aided with optimising the

environment for the bacteria (see chapters 4 and 5), within the constraint of being able

to realise the results in a practical application. The most promising of these isolates

were used as inoculates in the bioreactors.
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6.2. Development and Calibration of Analytical Techniques

A commonly used method of analysing organic carbons is by gas chromatography

(GC). This method has been adopted by other researchers conducting bioremediation

of hydrocarbon contaminated soils and of drill cuttings. Examples include Angehm et

al. (1998), Mulkins-Phillips and Stewart (May and Dec 1974), Chaineau et al. (1996)

and Yeung et al., (1997) all using flame ionisation detectors (FlD). As the GC was an

accepted and well-documented method of analysis, this was the technique researched

and eventually adopted.

6.2.1. Gas Chromatography

The GC analysis was conducted on a Carlo Erba, type HRGC 5300 Mega Series Gas

Chromatograph. The capillary column was J & W, 30 m by 0.541 mm, with a film

thickness ofO.5 J.1m.The liquid phase was DB-5. DB-5 consists of95%

methylpolysiloxane and 5% phenylmethylpolysiloxane. It is aromatic in character,

and can be used for diverse types of hydrocarbons (pers comm., M Cooper, 2000).

Detection was by flame ionisation.

6.2.1.1. The Components of a Gas Chromatograph

The GC of the type used basically consists of the following components.

• An inlet, where the solute is injected into the apparatus.

• A surface coated capillary column, known as the stationary phase.

• A detector, which analyses the injected material as it elutes.

• A recording and data processing system.

• The column is heated in a temperature controlled oven.

• Gases are used in the system; helium as the mobile phase or carrier gas and

hydrogen as the combustion gas (with air).

• The column is connected between the injection port and the detector.
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Figure 6.2.1.1. Schematic of a Gas Chromatograph

6.2.1.2. The Process

The sample (0.5 Ill) was injected using a syringe via the injection port, which is a

rubber septum, where it contacted a heated block at 250°C, a higher temperature than

the boiling point of the least volatile component in the sample mixture. A stream of

helium gas (the mobile phase) flowing at 25 rnl/minute then carried it into the coiled

column, coated with the stationary phase, which was confined to that column. The

oven heated up; the partitioning behaviour is very temperature dependent. In the case

of the base oils, it was set to start at 40°C for 2 minutes, then increased by 10°C per

minute until it reached a temperature of 200°C, where it stayed for 7 minutes. The

whole programme lasted for 25 minutes. The design of the programme was aided and

optimised by the GC technician, K Wallgren, at the university.

The temperature of the column is critical to the analyisis (Jennings et al., 1987); too

low, and the material remains largely in the stationary phase, not separating or not

even eluting in extreme cases. Too high, and the solutes spend most or all of their

time in the mobile phase, rarely or never entering the stationary phase and eluting

from the column as an unseparated mixture. A wide working temperature range was

required to elute both low and high boiling components (Sigma, 2000).
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The components of the mixture moved through the column at different rates, having

different retention times (Atkins & Carey, 1997). The column was continuously

swept with the mobile phase, carrying the solute molecules in the gas phase to the

detector, an FID set at 250°C. Each solute within the mixture engaged in a highly

dynamic equilibrated partitioning between the stationary phase and the mobile phase,

according to its distribution constant (Jennings et al., 1987).

Kc=Cs/Cm

Cs = concentration in the stationary phase

Cm= concentration in the mobile phase

Kc = distribution constant

Molecules exhibiting higher vapour pressures or boiling points partition more towards

the mobile phase and are swept towards the detector more rapidly and are therefore

the first solutes to elute from the column. Lower vapour pressure molecules or

boiling points venture less frequently into the mobile phase, meaning the

concentrations in the mobile phase are lower and require more time to reach the

detector. This gives the peak separations. The detector feeds a signal to the recorder,

which indicates when a substance different from the pure carrier gas leaves the

column.

6.2.1.3. Quantitative Evaluation of the Chromatograms
The peaks generated during the elution are rarely proportional to the amounts of the

separated solutes (Schomburg, 1990); in practice, peak-height evaluation is not

usually applied. The peak height is dependent on retention, whereas the peak area is

independent ofretention. The total amount of an eluted solute can be determined via

the peak area. The shape of the peak has no significant influence on the accuracy of

the analysis providing that peak overlapping due to incomplete resolution or

extremely strong leading or tailing of the peaks does not occur.
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The syringe used for injecting the sample into the GC is highly accurate, but as it is

not always possible to inject exactly the same size sample, time after time, the internal

standard was used. This was acetophenone, as discussed in section 6.2.5.

The FID is a recommended detector because of its high sensitivity and consistent

response to most organic compounds (Sigma, 2000).

6.2.1.4. Method of Preparation of the Sample for the GC

Once the hydrocarbon had been extracted (see following sections), the solution was

evaporated down to the original volume of drill cuttings added to the soxhlet.

Samples of Y2ml were then measured using a 1 ml pipette into a GC vial, together

with 5 ul of acetophenone, a quantity that was commensurate with the peaks produced

from the sample of drilling oil, measured using a micropipette (see section 6.2.5.).

The vial is rapidly sealed to prevent further evaporation.

To inject into the GC, the syringe is filled from the vial several times and the solution

discarded. The syringe is filled again, and then the plunger is gently moved up and

down whilst still in the liquor to ensure the syringe is free from air. The syringe is

then filled to exactly 0.5 ul, and injected into the GC.

6.2.2. Soxhlet Extraction Method

There was little agreement amongst the literature concerning the method of extracting

the oil from the cuttings matrix for analysis; the semi-solid material cannot be

introduced into a GC due to the nature ofthe apparatus (see 6.2.1.). The oil needed to

be extracted into a suitable solvent, which could then be injected and run through the

GC. Investigation was conducted into methods of extraction and experimentation was

conducted regarding an appropriate solvent.

Extraction methods recommended by the EPA (methods 8020 and 8240) (API, 1996)

used methanol to dissolve the volatile organic constituents (VOC's). The drilling oils

are not suitable for this method, as they are not VOC fractions, and the university has
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no vapour trap injection systems available. Angehem et al., 1998, used soxhlet

extraction, which, in that research, was determined to be the most efficient extraction

method when compared with cold liquid/sonication extraction and supercritical fluid

extraction. The best performing solvent used in this report was tetrachloromethane.

Chaineau et al., 1996, also used the soxhlet for extraction. A soxhlet apparatus

involves a type of reflux (see figures 6.2.2.1. and 6.2.2.2.).

Figure 6.2.2.1. Soxhlet apparatus
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Figure 6.2.2.2. Flow diagram of soxhlet process

6.2.3. Extractions

The literature reviewed concerning the extraction solvent differed immensely.

Examples included hexane (Plumb, 1984; Rojas-Avelizapa et al., 1999), chloroform

(Chaineau et al., 1996), acetone (Pinelli et al., 1997) methylene chloride (Banerjee et

al. 1994), hexane/acetone mix (Jackson & Pardue, 1998), dichloromethane (Yeung, et

al., 1997) to name but a few; there appeared to be as many different solvents or
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combinations as there were reports. It therefore seemed appropriate to conduct

experimentation concerning the extraction solvent for the hydrocarbons contained

within the drilling muds.

When carrying out these experiments the drill cuttings had not arrived, so some

artificial cuttings were made up using the LAO and paraffin oils from MIDF.

Four solvents that were readily available and frequently used in analytical chemistry

relating to hydrocarbons were tested. They were:

• Toluene

• Dichloromethane

• n-Hexane

• Acetone

As the cuttings were made up in the laboratory, the exact quantity of oil and water

was known before extraction. The limestone cuttings were mixed to give a size

range:-

• 80% 1- 0.316 mm

• 10% 2.36-1mm

• 10% <0.316 mm

These ratios were calculated from the small sample of drill cuttings the university had

previously received. However, with hindsight, these cuttings would not have behaved

in the same manner as clay/shale cuttings.

The cuttings were dried at 80°C for 24 hours.

The final volumes, in percentages, after the addition of water and oil were:

• 10.8 % oil

• 16.2% water
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• 73% limestone chippings

Note that no emulsifiers were used with the mixture.

50 ml of mixture weighed 75 g, so 15 g of mixture was used for each of the

experiments (10 ml), with 50 ml of the respective solvents.

The test involved the four solvents, each run through a soxhlet extraction apparatus

for two hours respectively, with each test repeated. The resulting liquid was then

evaporated down to 5 ml.

6.2.3.1. Results from Extractions of Four Solvents

Table 6.2.3.1. Soxhlet Extraction Using Different Solvents.

SOLVENT OBSERVATIONS

TOLUENE Colour change - brown tinge, evidence of water.
Evaporation very long process.

DICHLOROMETHANE Colour change. No separation. Fairly rapid evaporation.

N-HEXANE Globules on bottom of flask after extraction. Sticky in
texture, and hard to remove. However, oil and solvent are
miscible when mixed together in a test tube. No colour
change, rapid evaporation.

ACETONE Oil comes out of the solvent as it evaporates, hard to
transfer. Even after shaking, the oil and solvent separates
in GC bottles and is therefore unreliable to test.

Dichloromethane was the solvent chosen for further experimentation for the following

reasons.

• Itwas more efficient at extracting the oil from the sample (see graph 6.2.3.2.).

• The oil stayed in the solvent after evaporation.

• Evaporation was done at a reasonable rate.

• With correct precautions (see safety data in appendix B), it is fairly safe to

handle.
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• The polarity of the solvent is the same as the hydrocarbons being extracted.

Dichloromethane proved the most efficient solvent when results were normalised

using the internal standard, acetophenone (see graph 6.2.3.1. and section 6.2.5.).

The graph uses the different data after calculations are carried out using the internal

standard in each sample (see section 6.2.5.)

This experiment was carried out before the calibration, so the resulting areas are read

as a comparison of solvents rather than exact percentages.

Corrections for spike

- :::::==:.- - - - - .-----'11
-+-Ace!one

-- -. -- _Hexane
III
!! __._ Toluene
cC

--*- Dichloro

dich corr. Hexcarr Tol corr Ace! corr

sample corrected to.

Figure 6.2.3.1. Soxhlet extraction usmg four different solvents - the figures after
acetophenone internal standard.
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CHAPTER6 Methods Development and Results

6.2.4. Calibration ofthe GC for the Paraffin and the LAO

The data from the GC is in the form ofa relative peak area (see figures 6.2.7.1. & 2

for examples ofGC traces) and needed calibration to enable the determination of

future percentage results. To assess the exact oil measurement, the GC was calibrated

using exact concentrations of the LAO and linear paraffin oils in dichloromethane.

This was conducted by measuring exact quantities of oil into the solvent, giving a

specific percentage, mixing thoroughly, then running the mixture through the GC.

The GC had, by this time, had a programme designed for the specific hydrocarbons

within the oils (see section 6.2.1.). The lines on the graphs produced from the data

both have an r2of -0.99. R2 is Pearson's Correlation Co-efficient, and indicates how

much of the variation within the dependent variable is accounted for by the

independent variable. At 0.9899,98.99% of the GC values are accounted for by the

change in oil percentages. The calibration graphs were therefore considered

acceptable. The graphs were then available to determine the percentages of oil.
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6.2.5. The Use of an Internal Standard for Analysis

To normalise the results from GC analysis an internal standard of known volume (5

).11)was added to the sample. This was used to correct for drift and occasional

spurious results, which are features ofGC analysis. Since the internal standard

volume is fixed for all samples, the area produced by the acetophenone in the GC

output can be used by simple ratioing using the calculation below. This approach was

relevant when comparing the reductions in oil concentration after bioremediation.

The standard chosen, after testing several products, was acetophenone, which elutes at

around 6.6 - 6.7 minutes, a time when there are no peaks from the oil.

The calculations to normalise the results is as follows:

1ST ACETOPHENONE AREA/2NDACETOPHENONE AREA x 2NDOIL TOTAL

AREA =AN OIL CORRECTED FIGURE

6.2.6. Timing and Confidence Testing of the Soxhlet Apparatus and the Gas

Chromatograph

The best extraction time was unknown, so additional experiments were conducted to

assess this, and to give confidence in the results - repeatability.

The same cuttings used in these extractions were run through the retort from MIDF, to

assess their approximate oil and water content. The internal standard, acetophenone,

was also used during these experiments.

6.2.6.1. The Retort

The retort is the industry standard field apparatus used to fmd the oil/water content of

a mud. The mud is poured into the 50 ml capacity container, the top is pushed on and

excess mud wiped away. This ensures that the container is full to capacity. The

problem with using the same system for cuttings is the pore space between the solids,

which may contain air pockets, giving a false indication as to the volume. However,
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the cuttings were packed in as tight as possible, and both test samples weighed in at

80.4 g.

The results from the retort were 17% and 18% oil, averaging 17.5%.

Figure 6.2.6.1.1. The Retort

6.2.6.2. The Timed Extractions

An identical quantity ofthe made-up drill cuttings using the linear paraffin oil were

put in a soxhlet thimble and refluxed for half, one and two hours.

The results from the timed extractions, when read off the calibration graph, were

between 16.5% (one hour), 17% (halfhour) and 17.75% (two hours). This indicates

that there may be other factors affecting these results, but that two hours gave results

that were closest to the retort.
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G C Values for given extraction times

23500000
23000000

en
CII 22500000::I
iii>
o 22000000e

21500000
21000000

half hour one hour two hours

Tine extracted

Figure 6.2.6.2.1. Extraction times using Versaplus oil.

These experiments were conducted on the made-up drill cuttings; the times did in fact

change considerably once the true 'mud on cuttings' arrived at the university. The

two-hour extraction was not long enough; the hydrocarbons were locked into the clay

within the mud and cuttings. The reflux time, after further experimentation, was as

follows:

• Run Soxhlet for 6 hours

• Leave to stand overnight

• Run for another 4 hours

This extracted all the hydrocarbons within the sample. When the sample was refluxed

again, using fresh solvent, no more hydrocarbons were extracted. With hindsight,

there could possibly have been some hydrocarbons that were inextricable. Using the

internal standard as an addition before extraction may have given a clearer indication

as to the efficiency of the extraction method.

The other parameter that caused problems with the extractions was the water within

the cuttings; this became more problematic with the slurry, which had increased water

content. A typical chemical traditionally used to absorb the water without affecting
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the extraction of the hydrocarbon was anhydrous sodium sulphate (pers comm.,

Cooper,2000). This was also used by Plumb (1984) when extracting non-aqueous

liquids. The quantity of anhydrous sodium sulphate was equal to that of the sample;

this was mixed thoroughly in a container before placing into the soxhlet thimble.

The final run through the soxhlet was dryer material (see 8.5.) and did not need the

anhydrous sodium sulphate.

The thimbles used to contain the sample during extraction processes were Whatman

cellulose extraction thimbles, single thickness, with internal dimensions 28 x 120 mm

and external, 30 x 120.

6.2.7. Carbon Chain Length Compostion of the Versaplus Linear Paraffin

The Versaplus mud reportedly contained carbon chain lengths between C12 - C14.

To assess the exact carbon chain length in the oil, a sample of pure paraffms

containing Cl 0, C12, C14 and C16 was run through the GC. This experiment was

conducted so the relevant information on the general structure of the oil was available,

plus to illustrate if any chain length is being preferentially degraded by the bacteria.

The two GC traces illustrate well the carbon chain lengths used in the linear paraffm

oil; see figures 6.2.7.1. and 6.2.7.2. The carbon chain lengths were predominantly

C12, Cl3, C14.

108



..l
~ Ii ~II:

'I "II!, "'i :;
1'" r-

t
~!O

Il'
~I

f
.: .::i

"
~, -,.. e

~ "''''!

'C •• HI' ~
~ ;;~II" = 0\

'Il
0

I •• '" ~ ......
;,~,. e .. -=,..7 =

'r
t""~ CIS

S .. ~ ~

~

_:.. . -: . =:; Qi =
"" i. ~-=! Cl... ,s.. sI.:'.. CIS

-=-·ti
rJ;

-==e
;. ~e -=-....

Q
~~
CIS...
~
u
~

'0

~

~

r-:", N

~
. ~

Q.,
:. ~

~
~ .. ~ :: ...

::: =.. r x .. I:)J)

U .. :r <! .. ._
,. ~

.i::J
~
~
~
~

rt
::~- (::~ "-E

~

~
~~~
~
~ .
<;:)

'S
:

~
A



-.
=-==. -_.........~.-"""l

~
---,_ -~_: .. U

"0
==~ 0- -, ~-. u -

:- M-U
Q

J -; U

;
'-'

" Q,)

g (,j.; ... =,_....
Uc
rIJ
"0,_
="0==r ....
rIJ

;~ as
rIJ=-=

I e=Q.
Q,)-=~

'C
~

~

r-:
It ~

f...j
• ~

~

6 I
.:

fill: "'l ~ i If, 4: '"
Q,)

N S ~ ...: -i 0: ""
,""

~
t;, '! =

U
... N .. OJ)

f;i;

=
~,____ 'I

I
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6.2.8. Final Analysis Process as Chosen for the Research

The analysis techniques were refmed throughout the research; reflection on errors and

non-quantifiable results led to an analysis procedure that improved with experience.

Using the information as discussed above, the final analysis process adopted is given

below.

• Retort test on original material before dilution (in slurry-phase experiments

and pre-screening tests); this gives an indication of the water and oil content of

the original cuttings.

• With the slurry-phase tests, a sample of the mixed material as it goes into the

reactor vessel is taken for extraction and GC.

• If sampling facilities are adequate, samples throughout the remediation period

to assess lag phase, degradation phase and discover when activity lessens -

this information can aid in optimising conditions in the reactor.

• At the end, thoroughly mix the material as it leaves the reactor, take more

samples for extraction and GC.

• Either run a retort test to assess the water content, or evaporate water from dry

matter and hydrocarbons by putting in an oven, 40 - 50°C, for 48 hours.

• Calibrate the GC data using the acetophenone spike for data correction.

• Insert the resulting peak area total from the end sample, minus the spike and

the dichloromethane peak, and corrected to the spike, into the calibration

graph.

• Read off the percentage of oil left on the cuttings.

• Correct the data by inserting the figures into the spreadsheet, which will alter

the percentage as given in the diluted sample to percentage left on dry matter,

percentage as for the original moisture content and also give percentage

reduction of hydrocarbon and changes in percentage moisture. These

percentages relate to volume and to mass.
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6.3. Size Analysis and Oil on the Size Fractions

As discussed in section 5.4.5.3.2., particles larger than 2.5 mm are difficult to process

in a slurry-phase system. Some of the rock fragments within the cuttings were larger

than this; the project needed to define whether these larger cuttings needed some form

of pre-treatment. Reports indicated that contaminants preferentially adsorb onto the

finer particles (LaGrega, et al., 1994); with clays being the fmer fraction, this was

almost guaranteed; the ability of clays to adsorb the oil are well documented and

outlined in this report in section 3.3.1 •. There was a possibility that the larger cuttings

contained relatively small amounts of oil, which could lead to a reduction of the

quantity of material needing remediation. This hypothesis was tested.

6.3.1. Particle Size Distribution of a Sample of Drill Cuttine;s

The Versaplus cuttings were separated into size fractions using both dry sieving, via a

stack system and by wet sieving, using a cascade of sieves (British Standards Institute,

1989).

Sieving is an established method of assessing size distribution within the mineral

processing industry. The sieve sizes are British Standard (British Standards Institute,

1989). Both wet and dry methods of sieving were used to see if the washing process

of wet sieving altered the size distribution within the cuttings; a previous sample of

cuttings broke down considerably with the addition of water and agitation. The dry

sieving samples were dried for 24 hours at 50°C.

6.3.1.1. Results of Size Analysis by Sieving

After dry sieving some tenacious clays remained on the surface of the cuttings; this

was left as it came off the shaker/sieve to mimic a genuine process. The wet sieving

left oil residue on all the equipment, especially the vacuum filter. This will have

affected the results, but also suggests that washing the cuttings (particularly with

warm water) may remove some of the oil from the cuttings as they come from the

drilling system.
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As can be seen from the graph (figure 6.3.1.1.), washing influences the particle size

distribution of the cuttings considerably. This could be due to the rock being in an

oil-wetted condition, protected by the OBM when it comes to surface. When the

cuttings are washed, some of the invert emulsion that protected them from hydration

would have been removed, which may have destabilised the cuttings leading to

hydration, causing the rock-chippings to break-up. Another possibility might have

been mechanical attrition.

These results cannot be extrapolated to all cuttings. Differing geologies, muds and

mud removal processes could have a massive impact on particle size and the effects of

washing. Each drill hole and mud system would have to be judged individually.
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6.3.2. Oil on the Size Fractions

The wet cuttings were dried for 48 hours in a 50°C oven after sieving to remove the

water; the dry cuttings were also dried, to ensure comparable conditions.

Equal volumes of the cuttings were weighed and extracted as described in section

6.1.. The results were averaged and plotted on a graph, see figure 6.3.2.1.

6.3.2.1. Results from Oil Analysis

Even though some of the oil was washed from the cuttings during the process of wet

sieving, the data indicates clearly that washing the cuttings affects the concentrations

of oil on the size fractions. The largest fraction of > 3.35 mm contained less than 1%

oil. The washing also reduced the amount of material of this size.

6.3.3. The Micro-Structure Within the Drill Cuttings

The surface texture and fracture system in the cuttings were examined to assess the

potential for the oil to be trapped in narrow spaces out of reach of the bacteria. To

execute this, scanning electron micrographs were taken of the Versaplus cuttings

sample supplied.

Initially the samples were coated with a thin layer of gold through vapour deposition.

The residual oil on the cuttings caused very poor deposition and the sample had to be

abandoned. A second set of samples were pre-washed with Acetone to remove the

residual oil but these completely disintegrated and were unusable. A third set of

samples were cleaned by placing them under vacuum for 72 hours to evaporate any

residual oil or moisture. These were then vapour deposited with gold, mounted and

examined under the electron microscope.

The following surface emission micrographs are examples of the surfaces found.

They exhibit a complex surface texture with a large potential volume of small voids

and recesses in which the mud could become entrained. The micrograph illustrated in
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figure 6.3.2.1. is a freshly broken sample; figure 6.3.2.2. is an unbroken sample.

Notice the deep fracture system in figure 6.3.3.1. with an opening ranging from

~201lm down to 51lm.

Figure 6.3.3.1. EM photograph of a sample of drill cuttings
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6.4. MICROBIOLOGY

INITIAL ISOLATIONS

T
Other Isolates frozen

T
Versaclean Isolates

•Testing of 9 isloates for remediation
via batch experiments (non-sterile drill cuttings)

I
T

Retesting of above

t
Worst performing
4 rejected

T
Best 5 taken on for retesting

I
T

Experiment repeated using sterile
drill cuttings

Isolations from Drill
Cuttings

I
Observa:ons in test tubes
with mineral media + oil

T
Most promising 4 carried
forward for batch testing

Isolations from
Drill Cuttings 2 batches

I
T

Unsuccessful

Identification of
J, A& D by 16S rRNA

T
Bioreactor experiment using
J, A & D + other isolates,
Rhodococcus and Control

1
T

Bioreactor experiment using
v,W, Rhodococcus and Control

Figure 6.4.1. Flow Chart of the Experimentation Conducted
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6.4.1. Initial Isolation

It was assumed that any remediating bacteria would be Gram-negative, as, with a few

exceptions, the literature reviewed suggested these were the most common

remediators (Bossert & Compeau, 1995). There are at least twenty-eight hydrocarbon

utilising bacteria that are gram negative and non fermentative, with coryneforms seen

to be the most frequently isolated hydrocarbon degrading bacteria (Bossert &

Compeau, 1995). Examples include Acinetobacter (Hanson et ai, 1997),

Pseudomonas ( Staijen and Witholt, 1998; May and Katopodis, 1990)and

Arthrobacter (Britton, 1984). Plasmids containing genes are well known to confer

bioremedation properties on several Gram-negative bacteria.

The drilling fluids are often saline, and the majority of drilling in the UK takes place

offshore, hence the consideration of salinity of the medium. The water phase salinity

of the muds are typically 200,000 mgll (MIDF, 1999).

Bacteria were isolated using enrichment procedures with Versaplus, Novatec,

Ecogreen and Versaclean muds. Enrichment increases the number ofa given micro-

organism in a mixed culture ( Singleton & Sainsbury, 1997) and have been widely

used in studies to isolate potential remediators (Lal & Khanna, 1996; Mercade et ai,

1996). By the addition of oil or drilling mud, it was hoped that micro-organisms able

to tolerate the high levels of hydrocarbon in the medium would have some potential as

remediators.

The enrichment was achieved by preparing a sterile nutrient broth, then adding the

hydrocarbon aseptically at the rate of 4 ml per 400 ml broth (Ball, 1998), followed by

an incubation period of7 days on a shaker at 28°C, or until the flasks showed

evidence of growth. Four flasks were sterile nutrient broth alone, four had the

addition of2% NaCI. The salt concentrations were lower than that of the muds, as it

was not the pure muds being remediated, but the drill cuttings coated with mud, which

would reduce the overall percentage of salt; also, ifadopting a slurry system, the mud

and cuttings would additionally be diluted with water.
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The concentration of mud was increased to 10% as the broths became turbid to ensure

that the 'right sort' of bacteria (possible remediators) outgrew other organisms.

After 7 days, all the cultures were turbid. A sample from Novatec + 2% salt and

Ecogreen + 2% salt were examined under the light microscope. There was evidence

of growth, so the concentration ofNaCI was increased to -3%, nearer that of

seawater.

Once the broths became turbid, the solution was serial diluted 10-1, 10-2, 10-3and 10-4,

then streaked out onto a solid nutrient agar media, the same salinity as the original

broths. Single colonies were then picked offand streaked out again individually. The

problem at this stage was the fact that a method to keep the oil contained within the

solid media had not been found. This was resolved later, as described in section

6.4.2.. However, some isolates were found, and these were then prepared for storage

in the freezer so as to retain their original characteristics and be tested later for

remediation potential.

These were revived at a later date by inoculating the defrosted bacterial broth inLuria

Bertani (LB) broth (see 6.4.2.1.), on a shaker at 180 rpm at 29°C for 48 hours. The

resulting turbid broths were then streaked onto LB agar plates, which were incubated

at 29°C for 48 hours. Observations were taken, then colonies were picked off and re-

incubated in LB broth for 24 hours; observations were taken. The samples were then

prepared for the freezer, as described in section 6.4.7.
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6.4.1.1. Results from Initial Isolation

These results were from cultures grown on LB plates.

Table 6.4.1.1. Growth Descriptions of Revived Bacteria from Initial Isolations
on LB plates.
CODE DESCRIPTION

Creamy white, round colonies; slight sheen.

Orange colonies; round; slight sheen.

Otfwhite, good individual colonies, very round, bright and shiny.

Off white, mucoid, clumpy colonies, matt.

Mucoid, otfwhite, large colonies, clumpy; slight sheen.

Off white, tight growth pattern. Only grows where streaked, tiny shiny

colonies.

F Well spread, irregular colonies, offwhite, covers most of the plate, slight

sheen.

Al

J

Bl &B2

Cl &C2

D

El &E2

G Covers nearly all the plate. Very fuzzy colonies, well spread, roundish but

appears blurred due to hazy appearance. Matt.

H Shiny offwhite colonies, but different to E. Small, slightly spread over the

plate but mostly concentrated where streaked.

The samples were put in a broth and left for 48 hours on a shaker at 180 rpm, in LB

broth. The observations are in table 6.4.1.2.

121



CHAPTER6 Methods Development and Results

Table 6.4.1.2. Descriptions of Broths of Initial Isolates
CODE DESCRIPTION
Al &Alb

BI & BIb

B2 &B2b

J

Cl &C2

D&Db

El, El b, E2

E2b

F&Fb

G

H

Turbid, good growth

Settled out, turbid at the bottom.

Settled out, turbid at the bottom.

No growth. Slight presence at the bottom of the tube.

Turbid, good growth.

Turbid, good growth.

Very minimal growth, just at the bottom of the tube.

Particles at the bottom of the tube, looks like it has perished.

Good growth throughout the tube. Sediment at the bottom.

Good growth throughout the tube. Sediment at the bottom.

Good growth but settled out

E and Jwere put back into the incubator to see if they were a slow growing species.

After 24 hours there was still no evidence of growth from J but a little from E.

E and Jwere re-incubated, with sterile oil to see if the addition of oil influenced their

growth; 2 at 1%; 2 at 2%. The results from this were quite surprising, with vigorous

growth from both percentages using the 'J' bacteria, and fairly good growth from E,

particularly at 1%. J was put into another broth with 4% oil, which grew vigorously

too.

The samples were frozen at -80°C ready for future experimentation.

6.4.2. Oil-Based Growth Media Development

A project objective was to utilise remediating bacteria from the microflora ofthe

muds and cuttings. The consideration when developing a medium was; would it

demonstrate bacterial growth on oil, not just survival? It is possible for some bacteria

to survive on plates with very little nutrition in a microbiology laboratory, utilising

any nutritional aerosols present in the atmosphere. There would possibly be some
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resting spores within the cuttings that would grow well using LB or Lab-Lemco, but

could they demonstrate strong growth using a minimal medium with the addition of

an oil as used in the manufacture of the MIDF muds?

The muds used in the drilling industry are basically an emulsion of water and oil, with

other ingredients added to give the mud various properties (see 2.3.). Mixing the oil

into the agar mix using a sterile flea proved totally ineffective, as the oil and medium

separated rapidly once the stirring stopped, unless the mixture was stirred up to the

point of setting. This made a lumpy medium, which was unusable.

The initial formulation was as follows (adapted from the MIDF drilling fluid

formulation & a standard microbiological nutrient/agar medium).

Agar 200ml (4g select agar, 2.6 g nutrient broth, 200m Iwater)

Novatec P 6.9 ml

Novatec S 4.9 ml

Novatec F 4.0 ml

Novatec BF 132.85 ml (Oil)

The Novatec P, Sand F are all types of emulsifier.

The recipe was then changed, leaving the select agar (setting agent) out until the

mixture was emulsified, having been mixed using a food mixerlliquidiser. It was not

possible to add the emulsifiers aseptically. The mixture was left for over two hours at

room temperature, and seemed to emulsify, remaining stable. However, when the

agar was added to the emulsion (in solution), the medium would not set properly, and

was therefore unsuitable for plates. There may not have been enough shear to create a

stable emulsion.

Further attempts at making a suitable medium were conducted using an emulsifier, as

seen in fig 6.4.2.1 •. The oil, emulsifiers and water, as per the MIDF formulation, with

the addition of agar, were added to one jar, on one side of the pump, the apparatus
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was switched on and the mixture pushed through the shearing action pump to

emulsify the mix. However, even after 20 minutes running the mixture through the

emulsifier, the two elements within the mix separated out within hours, plus the agar

lost its setting properties. Another run was carried out using the recipe described

below, along with the oils and emulsifiers above, minus the select agar; 500 ml of an

agar-based medium was added to the 500 ml after running through the emulsifier.

This was then sterilised by pressure cooker. Unfortunately, the mixture separated out

after the sterilisation process.

Figure 6.4.2.1. The emulsifier

The recipe used in the emulsifier was taken from NCIMB and described as an

inorganic liquid medium:

gil

K2HP04 1

MgS04 0.2

NaCI 0.1

FeCb 0.02

(NH4)S04 1

Trace Mineral 1 ml
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After these set backs, the previously used Lab-lemco (off the shelf product containing

amino acids and vitamins) was used for the plating out of the initial Versaplus

isolates, plus Luria Bertani (LB), a commonly used media in both liquid and solid

form. However, this was non-selective; it was just to get the isolates growing until a

formula was created. All the growth media are pre-sterilised by autoclaving at 121°C

for 20 minutes.

6.4.2.1. Luria Bertani (LB)

Yeast Extract 5 g

Tryptone 109

NaCI 5 g

Made up to 1 litre with sterilised distilled water, with agar at 1.5% in solid media.

Further investigation revealed a recipe for making an oil powder (Atlas, 1993). This

enabled the addition of oil to agar, and kept it in suspension. The powder could be

added to a mineral medium, autoclaved, then used in the petri dishes. When in this

type of media, the dominant carbon source is the oil.

6.4.2.2. Oil Powder

per 10 g

Hydrocarbon

Silica Gel

Diethyl ether

10 g

10 g

30 ml

Prepared weighing 109 of hydrocarbon, which was added to 30 ml of diethyl ether

(see appendix B for safety information) in the fume cupboard, and mixed thoroughly.

109 silica gel was then added, and the ether allowed to evaporate. This process was
carried out at room temperature.
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6.4.2.3. Mineral Medium

Another medium utilized was from Atlas's Media Handbook (Atlas, 1993), which

was described as being used for ''the cultivation and enumeration of hydrocarbon-

utilising bacteria by direct plating of estuarine water and sediment samples", and is as

follows:

Agar, purified 20 g

NaCI 10 g

Oil Powder 10 g

NH.NOJ 1 g

MgS04 0.5 g

*(Amphotericin B solution 10 ml)

K2HP04 solution 7 ml

KH2P04 solution 3 mI

FeCh 0.1 ml

Made up to 1 l with distilled water.

*Amphotericin B solution is a hazardous material. It is used as a fungal and protozoal

inhibitor (Singleton & Sainsbury, 1997), and as it is not an essential ingredient it was

decided to omit it. Vitamin stock was also added to the recipe, at the rate of 1ml per

litre.

For 100 ml of vitam in solution:

1 g Nicotinic Acid

0.5 g Thiamine-HCI

0.01 g Biotin

The iron chloride was described as a solution, but the lab only had this as powder.

There was no indication as to the concentration or method, so, after discussion (R E

Sockett, pers comm., 1999) 0.2 g of powder was mixed with 20 ml of distilled water

and added as described in the recipe. With hindsight this was not prepared correctly.

It should have been autoclaved separately and added as a sterile solution. The
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K2HP04 solution and the KH2P04 solution were made using the same method, as

follows (per 100 ml):

109 of powder was added to deionised/distilled water, bringing the volume up to 100

ml, and mixed thoroughly. This was then autoclaved for 15 minutes at15 psi pressure,

121°C, then cooled to room temperature.

All the components were combined except the vitamin solution, K2HP04 solution and

KH2P04 solution - with distilled/deionised water to bring the volume to 980 ml. It

was mixed thoroughly and heated gently up to boiling point, then autoclaved for 15

mins at 15 psi pressure, 121°C then cooled to 45 - 50°C. 1 ml of sterile vitamin

solution, 7 ml of sterile K2HP04 solution and 3 ml of sterile KH2P04 solution were

then added aseptically, and mixed in thoroughly. This was then ready to use in sterile

petri dishes or sterile tubes.

However, when used to grow-on some of the Versaplus isolates, the above recipe

failed to support any growth. One known problem was the preparation of the FeCh,

which may not have been correctly prepared (see above) and therefore may have

proved toxic to the bacteria.

A further examination of the literature provided another recipe (Livingston & Islam,

1999), which described the concentration of the FeCh solution.

0.2 g MgS04.7H20

0.02 g CaCh

1 g KH2P04

1 g Nl4NOJ

1 g K2HP04

2 drops of FeCLJ solution (1.5 g 125 ml aqueous solution)

1 1distilled water

The pH needed to be 6.5 - 7.0; in this case it was, so no butTer was needed.
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The FeCh was made up at the above concentration and autoclaved.

This recipe was used as a mineral base, with the addition of the oil powder and agar as

appropriate. It seemed the most appropriate medium as the bacteria grew readily on

plates and in the flask, with colonies up and visible in 48 - 72 hours. It was also used

in the batch and reactor experiments to supply appropriate nutrients for the bacteria

during remediation.

6.4.2.4. Oil Plates

The oil powder was tested to ensure that it was not toxic to the bacteria. Nine plates

were made up containing LB agar and oil powder (see subsection 6.4.2.2.), nine with

LB agar and silica gel powder. Also, all the initial isolates were inoculated into a

broth with the oil powder, 15 ml per sterile tube, and put onto a shaker. Both plates

and broths were incubated at 29°C.

The oil plates were prepared in two ways, both of which were efficient at growing the

oleophillic bacteria.

6.4.2.4.1. Oil Powder Plates

Using the mineral media, 15 g Agar and 109 oil powder were mixed per litre, and

autoclaved. This was then heated up in a microwave when required and poured into

the plates, which were left to set aseptically.

6.4.2.4.2. Oil Film Plates

Using the mineral media, 15 g Agar was added per litre, then autoclaved. This was

then heated and plated as above, but the oil was added as a liquid medium to the

surface of the set plate. The oil was filter sterilised using membranes of pore size

O.2Jlm.

Further plates were produced using the muds by streaking the mud onto the oil

powder plates, incubating them at 27°C, then picking off single colonies (where
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possible). These single colonies were then streaked onto some additional oil powder

and oil film plates.

6.4.2.4.3. Sterilisation of Oil

The oil was sterilised to ensure that it was not contaminated when testing the isolates.

This was achieved by filtration using a Millex filter with a pore size ofO.2 J..Lm,and

conducted as follows.

The filter container was opened aseptically, as was a 10 ml syringe. The plunger was

removed from the syringe, aseptically, and the syringe was attached to the filter. The

oil was then poured into the syringe and the plunger inserted, over a sterile container.

The oil was then gently passed through the filter into the container, which was then

sealed and ready for use.

6.4.2.5. Results from Oil Powder

The broths were turbid within 24 hours, demonstrating that the oil powder is non-

toxic to the bacteria. The plates all showed signs of growth within 48 hours, meaning

the silica is non toxic in an agar environment.

6.4.3. Identification ofIsolates

It was important to identify the isolated bacteria that were to be used for future

experimentation, for several reasons.

• To know the health and safety aspects of handling and utilising them in a

university laboratory environment, i.e. the ACDP classification. The

laboratory was licensed for groups 1 and 2, but any scaled up process might

require 1 only.

• To see if any of them were traditional remediators

• To see if there were any novel species

• To find out if they posed an environmental threat.
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The initial isolates, having had individual colonies picked from the plates and

streaked out, were left for 3 days incubation and Gram stained. As initial

identification was to involve API 20 NE, suited to Gram negative bacteria (see

6.4.3.1), only species that appeared to be Gram-negative strains were taken for further

analysis. Any results were noted; the bacteria were then prepared for freezing and

frozen at -80°C.

Later during the project, the isolates were revived from -80°C ready for identification.

Firstly, it had to be ensured that there was no contamination of the individual vials of

bacteria. This was done using a visual method, by plating out the subsequent broths

and examining the colonies for uniformity. Individual colonies were taken off the

plates and restreaked onto new ones. There appeared to be no contamination, with the

individual plates containing identical morphology.

6.4.3.1. API 20 NE Identification Tests

As many of the remediating bacteria are Gram-negative, an in vitro diagnostic test

known as the API 20 NE was used to give an indication as to the genus or species of

the isolated bacteria.

The API 20 NE is a strip consisting of20 microtubes, each containing various

dehydrated substrates and media, developed by BioMerieux. The test combines eight

conventional and twelve assimilation tests for the identification of non-fastidious,

Gram-negative rods not belonging to the enterobacteriacae. These tubes are

"inoculated with a saline based bacterial suspension which reconstitutes the media"

(BioMerieux, 2000) and then incubated in its closed incubation box for 24 hours at

30°C. During the incubation period, in the conventional tests the metabolism of the

bacteria produces either spontaneous colour changes or ones that are revealed by the

addition of reagents. In the assimilation tests, the bacteria grow if they are capable of

utilising the corresponding substrate. The data is compared to the "Reading Table",

using a points system, which is then compared to the Analytical Profile Index, or, as

at the University of Nottingham, the identification software. For more details of the

API 20 NE Identification System, please refer to Appendix C.
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The isolates A, D and J were run through the system as outlined above, after first

testing for Gram-stain; this was the first test, as the API can only give a positive

identification with Gram-negative rods. As they all tested Gram-negative, the rest of

the test was executed, with incubation periods of24 and 48 hours. Section 6.4.3.2.1.

will disclose that the Gram-negative results were correct but gave a false answer.

This is likely due to poor up-take of the first stain in the Gram reaction, possibly due

to secreted surface products such as polysaccharides or to wall properties - the lattice

of the peptidoglycan and peptides which form the mechanical strength of the cell wall

may not have been porous enough for the first stain to take up.

6.4.3.1.1. Results from API 20 NE

Table 6.4.3.1.1. API 20 NE results

BACTERIA Closest Match 0/0 TESTS AGAINST

A Aeromonas salmonicida 99.9 2

D Aeromonas salmonicida 98.9 1

J Aeromonas salmonicida 70 2

These test proved inconclusive due to the tests against the predicted identities and the

percentage confidence, particularly for J. Further confirmation was required, which

lead to examining other methods of identification. The literature reviewed suggested

that 16S rRNA was a more reliable method of identification.
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6.4.3.2. 16S rRNA

ORGANISM

llsolate

16S rDNA

I Heat + specific primers
T

SEPARATE STRANDS1 Primer extension with DNA

DUPLICATE STRANDS

REPEAT FOR MORE
PCR CYCLES = MULTIPLE
COPIES OF 16S rRNA GENE

i
RUN AGAROSE GEL &
CHECK SIZE OF PCR
PRODUCT

I
T

PURIFY PCR PRODUCT

T
SEQUENCE

Figure 6.4.3.2.1. Ribosomal RNA amplification process for sequencing using
DNA
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ORGANISM

. I Isolate RNA

•16S rRNA1 Heat + specific primers

SEPARATE STRANDS1 Primer extension with reverse tanscriptase

DUPLICATE STRANDS

~ DNA polymerase

REPEAT FOR MORE
PCR CYCLES = MULTIPLE
COPIES OF 16S rRNA GENE

I•
RUN AGAROSE GEL &
CHECK SIZE OF PCR
PRODUCT

~
PURIFY PCR PRODUCT

1
SEQUENCE

Figure 6.4.3.2.2. Ribosomal RNA amplification process for sequencing using
RNA

The process of identification using this method can be very time consuming when

undertaken in a standard microbiology laboratory. Suitable specific peR (polymerase

chain reaction) primers have to be designed, and used for amplification of 16SrDNA

or 16SrRNA directly. The complication for a non-specific laboratory is in the design

of the primer; it is preferable to have some prior knowledge of the genus of the

bacterium, as without this the process can be very time consuming, requiring a large
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bank of primers to test specific for different bacterial groups. There is a company in

the USA called Midilabs who have set up an identification service using a wide range

of primers for all genera.

The 16S rRNA is a test based on gene sequence similarity. Ribosomal RNA is

employed for identification and evolutionary chronometers for several reasons

(Madigan et al., 2000); they are ancient molecules, being protein synthesizers, are

functionally constant, universally distributed and fairly well "conserved in sequence

across broad phylogenetic distances" (Madigan et al., 2000, p 434). There are a large

number of possible sequences in such a large molecule that some similarity between

sequences indicates a phylogenetic relationship; how related they are depends on the

degree of similarity. To calculate this degree, phylogenetic trees are constructed. Of

the three ribosome RNA molecules ofprokaryotes (5S, 16S and 23S), 16S is used as

it is large enough to obtain proper sequence alignments but is more experimentally

manageable than the 23S RNA molecule.

Once the PCR product has been produced (see figures 6.4.3.2.1. and 6.4.3.2.2.), it is

ready for sequencing. The exact process that Midi Labs use can be found in appendix

C. The new raw data is aligned with previously known sequences and then imported

into a treeing programme, which compares the data. At Midilabs the sample

sequences were compared using the PE Applied Biosystem's MicroSeq ™ database

and sequence analysis software. The top ten alignment matches were presented in a

percent genetic distance format, which is basically the percent difference between two

aligned sequences.

The isolates were prepared for the process by being streak plated several times until a

plate with single colonies was produced. These plates were then sent to America for

16SrRNA identification.
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6.4.3.2.1. Results from 16S rRNA

Table 6.4.3.2.1.1. 16S rRNA results with confidence levels

Sample Closest Match % Difference Confidence Level

A Bacillus thuringiensis 0.37 Species

D Bacillus thuringiensis 0.09 Species

J Bacillus oleronius 3.92 Genus

A 16SrRNA sequence homology of greater than 99% indicated a 'species level

match', as with A and D.

Bacillus thuringiensis
Bacillus cereus

Bacillus mycoides
r---------Bacillus oleronius

Bacillus atrophaeus
Bacillus amyloliquefaciens

Bacillus subtilis subtilis
Bacillus mojavensis
Brevibacterium halotolerans

~--------Staphylococcus sciuri sciuri

Figure 6.4.3.2.1.1. Phylogenetic Tree including' A'

Bacillus cereus
Bacillus mycoides

r---------Bacillus oleronius
Bacillus atrophaeus
Bacillus amyloliquefaciens

Bacillus subtilis subtilis

Brevibacteriumhalotolerans
L--------Staphylococcus sciuri sciuri

Figure 6.4.3.2.1.2. Phylogenetic Tree including 'D'
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A 'genus level' match indicated that the sample appears to group within a particular

genus, as with J, but the alignment did not produces a species match, meaning it is not

in the database.

...---------Bacillus pseudofirmus
.--------C4266 J con

....---Bacillus oleroniusL..- ---I

L-----Bacillus sporothermodurans
.------Bacillu5 licheniformis

Bacillus atrophaeus
Bacillus amyloliquefaciens
Brevibacteriumhalotolerans

Bacillus mojavensis
Bacillus subtilis subtilis

L..-------Bacillus firmus

Figure 6.4.3.2.1.3. Phylogenetic Tree including 'J'

No match would indicate that the sample did not group well within any particular

genus found in that database, or the GenBank database. None of the isolates fell into

this category.

6.4.4. Second Isolations

The samples had arrived from MIDF. One had come from Getliff(M), and the other

from Aberdeen, provided by Still (I). There were obviously two different rock types.

The density of the samples was determined, which lead to 59.3 g and 47 g (equal

volumes) of I and M respectively being added to flasks with 100 ml ofLB broth.

These were left for 48 hours in the incubator on a shaker.

This proved a little too thick; the broths were diluted at a rate of 10: 1, and left for

another 24 hours as above.

The broths were streaked onto plates.
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6.4.4.1. Results from Second Isolations

The broths were extremely pungent, even though they had a foil cap and were

enclosed in an incubation unit, with the whole lab smelling. All the cuttings had

broken down, with no whole cuttings left, just small gritty pieces and sludge. The

M's were grey, and the I's brown. This reflected the differing mineralogy. They

proved difficult to extract, with lots of debris going into the solvent, which is totally

unacceptable for injecting into the GC due to contamination of the equipment.

The plates produced some interesting micro-organism morphology; the I's were very

typical of the type described in table 6.4.1.1., i.e. white irregular I spotted colonies.

However, the M's were very different, with white hairy strands; a Medusa type head,

typical of Bacillus cereus.

6.4.5. Third Isolation

The drill cuttings had arrived from MIDF; 4 'wet' batches and two dryer batches from

one source, plus another drum from a second source whose mineralogy appeared to be

different. The four wet drums and part of the two dry drums were thoroughly mixed

in the mineral resources laboratory to ensure an homogenous batch. These were put

back into the buckets, and frozen at between -SoC and -10°C, in a small chest freezer.

To ensure the constant temperature, a tube of frozen water was left inverted in the

freezer - if this migrated to the opposite end, then the freezer must have defrosted at

some point. This did not happen. The rest of the samples were kept at ambient

temperature. This enabled the utilisation of these samples for further isolation

experiments, as freezing bacteria without the correct preparation can burst the cell

walls (see 6.4.7.).

6.4.5.1. Method of Third Isolations

2 g ofthe unfrozen drilling mud with cuttings were added to flasks containing 25 ml

of mineral broth, and left on the shaker for one week; the flasks were coded Y, W. Y

and Z. The material from the flasks was then streaked onto plates of mineral media
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with sterile oil, both as powder and as a film, and incubated. The plates did not grow.

The flasks had another 2 g of drill cuttings and some LB broth, and left for another 48

hours; the material was streaked out again.

There was no growth within the first 48 hours; however, after another 48 hours, the

oil powder plates exhibited vigorous growth with the material from flasks V and W.

Individual colonies were picked from these plates, and put into LB and mineral

broths, both with oil, as W, WI, W2, W3, WW, WO; V, VI, V2.

The process was repeated for flasks Y and Z, which were 48 hours later going into

their respective flasks; the growth was not as vigorous as for V and W, and were also

slow to establish, but were put into the same broths as YI, Y2, Y3, Y4 and Z. A, D

and J were revived from the freezer and put into broths to grow alongside the other

isolates to compare growth rates.

The isolates that appeared the most vigorous in the broths were plated out onto LB

with sterile oil film plates.

Some of the broths had I ml taken from each to start new broths towards preservation

in the freezer with fmal concentration of 15% sterile glycerol. The rest of the broths

from these were added to flasks for batch testing.

6.4.5.2. Results from Third Isolations

The table 6.4.5.2.1. illustrates the progress of the bacteria grown in the broths. It

should be noted that V had to have another halfmillilitre of sterile oil added to it, as

the oil had either been metabolised or disappeared as an emulsion.

The broths were repeated several times, and plated out several times. After plating

onto the oil powder/mineral agar plates, the pigment in the bacteria seemed to fade.

V, W2 and Z grew more vigorously on the oil/mineral solid media over time.
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Table 6.4.5.2.1.Progress and descriptions of broths from third isolations.

Broth ID LB + oil, progress and Mineral media + oil, progress

descriptions and descriptions

A Turbid within 24 hours Slight. after 72 hours

D Turbid within 24 hours Moderate after 72 hours

J Minimal, but turbid after 72 hours Slight to moderate after 72 hours

W Turbid within 24 hours Slight. moderate after 72 hours,
bottom offlask

WI Turbid, yellow, within 24 hours Yellow at bottom of test-tube

W2 Turbid, no obvious pigment Better than A and 0 after 24
hours, risen to interface of
oillbroth by 72 hours

W3 Slight Slight, but on bottom of test tube

WW Turbid, rises to interface post Minimal growth, on bottom
shaking

WO Slight after 24 hours; turbid after Slight. after 72 hours
72 hours

V Turbid after 24 hours Slight after 24 hours, but very
turbid after 72 hours, plus
vigorous growth at broth/oil
interface

VI No Growth Slight. even after 72 hours

V2 None until 72 hours, then stringy Slight. even after 72 hours
growth within the broth

Yl Turbid within 24 hours Slight, even after 72 hours, on the
bottom

Y2 Turbid within 24 hours Slight. even after 72 hours, on the
bottom

Y3 Turbid within 24 hours Slight. even after 72 hours, on the
bottom

Y4 Turbid within 24 hours Slight. even after 72 hours, on the
bottom

Z Turbid within 24 hours, clumpy. Slight, even after 72 hours, on the
bottom
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Table 6.4.5.2.2. Plates from some of the broths.

Isolate Code Description, 72 hours

V No growth.

WW Creamy white, slight sheen.

WI Bright yellow, glossy, small colonies.

W2 Vigorous, whole plate covered, creamy colour, with sheen

YI Creamy to yellowish, blotchy, glossy.

Y2 Blotchy, 'splatter' like appearance, creamy colour, slight sheen

Z Creamy white, slight sheen

V would not grow on the plate, yet exhibited promising activity within the broths.

Figure 6.4.5.2.1. Test tubes containing cultures V, W2 and J, showing the
bacteria on the interface between the mineral medium and the oil, and in the oil
itself. Notice the breaking up of the oil globules in the tube containing J.

V displayed an unexpected reaction to the oil; in one of the test-tubes, the oil on the

surface changed colour to a dark grey/black. This oil was run through the GC/MS,

but no indication of the change could be interpreted from the trace; the peaks eluted

without separation, possibly illustrating a complex mix of hydrocarbon chain lengths.
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Figure 6.4.5.2.2. The media/oil interface with bacteria V and W2

6.4.6. Freezing

Once bacteria have been isolated, it is important that they are preserved so they can be

reused at a later date and to prevent adaptation to laboratory, non-oil media and loss

of remediation genes if subcultured. For this project, the bacteria were frozen at-

80°C. To prevent cell damage, the bacterial broth to be frozen has to be combined

with glycerol at 15 - 20%. The glycerol in the laboratory was 80%, which meant that

for every 4 rnl of broth there needed to be 1 ml of glycerol.
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6.4.7. Pre-Screening of the Nine Bacteria from the Initial Isolation

Screen Tests - General Overview

Grow culture in broth
(withlwithout oil); LB or
mineral media.

I 24.48 hours (OD 600 nm)

Inoculate tSks containing
broth and small quantity of
drill cuttings with culture.

24 hours

..
Add the rest of the broth and
Cuttings.

1week

Samples talen for analysis
(volume 20 ml).

I...
Anhydrous Sodium Sulphate
to remove water, mixed
thoroughly.

~
Soxhlet extraction using
dichloromethane.

I..
Evaporation to 20 ml •

I..
Samples of 0.5 ml spiked
with 5 III of acetophenone.

I..
Run through GC.

I..
Normalise results using spike.
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6.4.7.1. OD 600 om

A rapid method of obtaining estimates of cell growth is by measuring the turbidity

(Maligan et al. 2000). When a broth looks cloudy, or turbid, to the eye it is because

the cells scatter light passing through the suspension; the more cells, the more turbid.

This turbidity can be measured with a spectrophotometer, which pass light through a

cell suspension. The amount of un scattered light that emerges is measured. A

spectrophotometer will measure the optical density in 00 units, which, if a standard

curve is prepared with known cell numbers, can indicate cell number. It is a fixed

value for a fixed number of one cell type.

The apparatus used for measuring the optical density was a spectrophotometer

(Biorad).

The optical densities were measured so that there was a standard reproducible amount

of bacteria to add to the cuttings. It was conducted by picking offa colony from a

plate using a loop, and put into 15 ml of broth, which was incubated for 24 hours at

29°C. All the broths were then left to settle on the bench for half an hour - this

allowed the oil to rise and separate from the bacterial broth to prevent micelles of oil

affecting the OD readings. It was then diluted at a rate of 100 J.lI of bacterial broth to

900 J.lI ofLB broth. During the 00600 tests, each sample was blanked against the

identical media alone.
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6.4.7.2. Results from OD600 om Turbidity Tests

Table 6 4 7 2 1 Results from OD600 om. . . . .
Bacteria 1st Reading 2na Reading Average

A 1.382 1.377 1.3795

B 0.534 0.535 0.5345

C 1.536 1.536 1.536

D 1.409 1.393 1.401

E 0.111 0.098 0.1045

F 1.574 1.607 1.5905

G 1.625 1.625 1.625

H 0.568 0.574 0.571

J 0.020 0.017 0.0185

The broths were then used to inoculate the batch tests.

6.4.7.3. First Pre-Screenioe

To give an initial indication of the remediating potential ofthe bacteria before they

went into the bioreactors, pre-screening tests were undertaken with these initial

isolates. Bioreactors generally are dealing with much larger quantities, the bacterial

inoculate is a very small portion of the whole, so the process takes much longer than

flask tests. The results were for comparative evaluation of the inoculates and

therefore simple area evaluation was valid.

250 ml flasks were put onto a shaker, at ambient temperature, with 33 ml ofLB broth

and the inoculate in each flask. These were left for 24 hours, until they were turbid.

At this point, 66 ml of cuttings were added to the flasks; they were reinstalled onto the

shaker table and left for one week. A control was also made up with 33 ml ofLB and

66 ml of drill cuttings, unsterilised. Two further samples were made up prior to

analysis, to get some measure of possible remediation in the control flask with

unsterilised cuttings (made up mix, labelled MUM on the graph); do any of the
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natural flora within the cuttings perform as remediators when supplied with nutrients,

warmth, moisture and oxygen, even without enrichment and inoculation?

6.4.7.3.1. Results of First Pre-Screening

The data showed that there had been some remediation within the flasks in one week.

There were flasks that performed worse than the control, which would have contained

the natural flora within the drill cuttings. For examples of data, including remediation

rates (%) and peak areas (% of totals) see appendix D.

The percentage peak areas showed no particular trend in preferential HC chain-length

degradation. The results from these experiments were (from best to worse)

D, E, F, A, J, C, Control, B, H, G.
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CHAPTER6 Methods Development and Results

Further experimentation was justified on the best 5; E had a very poor SD. i.e. the

spread of data was large, one result very good, the other very poor.

6.4.7.4. Second Pre-Screening

The five best performers in the above tests were carried forward for further

experimentation. The method above was refmed to try to improve conditions for the

bacteria, particularly by introducing the cuttings slowly. The quantities were kept the

same.

The refinement of the technique involved putting the bacteria into test tubes

containing 10 ml ofLB broth for 24 hours. These were then transferred to the flasks

and the broth made up to 33 ml; 20 g of cuttings were added at this time and the

mixture was left on the shaker at ambient temperature. The rest ofthe cuttings were

added to the flasks 24 hours after that. This allowed the bacteria to become

acclimatised to the drill materials before a large quantity was added (total 116 g).

6.4.7.4.1. Results from Second Pre-Screening

All the inoculated flasks out-performed the control. The best remediators were A, D

and J, having the least area on the GC traces, meaning there was less oil left in the

flask, although J did have a larger spread of data. For examples of the data, see

appendix D.
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CHAPTER6 Methods Development and Results

6.4.8. Oil Enrichments of A. D & J

Test tubes were set up with different concentrations of sterile oil in LB. The

percentages were as follows.

Table 6.4.8.1. Oil Enrichment test tubes

%OIL 112 1 2 4 6

LBml 9.95 9.9 9.8 9.6 9.4

Sterile Oil 0.05 0.1 . 0.2 0.4 0.6
ml

The pH was tested using BDH Indicator Strips, pH 6.5 - 10; the highest value was at

7.5. This seemed suitable to support life, therefore the bacteria were added to the

tubes, using a sterile loop with colonies picked from plates. If the oil had made the

tubes acidic it could be toxic to the bacteria. If this had been the case a butTer solution

of phosphate would have been used. Three tubes were made for each percentage of

each bacteria. They were then put onto a shaker at ambient temperature (22 - 23°C)

at 180 rpm.

After 48 hours all the tubes were turbid; these were then serial diluted 10-4for OD 600

nm, and to 10-6for plate counts. The 0D600nm were measured for each culture as in

section 6.4.9. The plate counts were conducted by diluting the broth in LB at the rate

of 10-6. A 100 J.l.Idroplet was spread onto each LB and agar plate, making 15 plates in

total.

Bacteria in all the differing percentages of oil grew very well; all the tubes were turbid

within 48 hours. The plates were left 48 hours in an incubator at 29°C.
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Table 6.4.8.2. Plate Counts from Enrichment Plates

%OIL J D A
6 32 ALL ALL
4 1 PLATES PLATES
2 1 TOTALLY TOTALLY
1 24 COVERED COVERED
1/2 0

The plate counts were inconclusive.

All the tubes were left for a further week to observe the growth.

The interface between the oil and the water was starting to bubble, suggesting

em ulsification.

All the J strain bacteria (J's) were very vigorous after the extra time; all the test tubes

had turned very orange. This confirmed that J was a slow growing species. A & D's

had started to drop out of suspension, with cells building up at the bottom of the test

tubes. This can cause a cessation of growth by anoxia and the release of toxins from

the dead cells.

6.4.9. Third Pre-Screening - The Use of Sterilised Drill Cuttings

To date, all the batch tests had used the cuttings in their raw state, i.e. with indigenous

bacteria within the cuttings. This was to enable the measure ofremediation with these

as a natural consortium; not all bacteria within a sample can be grown in a laboratory

environment (McEldowney et al., 1993), implying that some of the indigenous

bacteria have not been observed in broths or plates. Also, this would be more

representative of the conditions that would prevail in a 'real' reactor treating field-

produced cuttings. By providing nutrients, a fairly warm environment (22°C),

increasing the moisture and gentle swirling on a shaker at around 180 rpm it was

hoped that there would be some remediation even in the control. However, the
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isolates needed testing in isolation to see how they could perform totally alone. The

flasks were set up as described in section 6.4.7.4., with the exception of the drill

cuttings, which were autoclaved to sterilise them, ensuring they were free from micro-

organisms. The flasks were left on the shaker for 1 week, and samples extracted and

prepared for GC as described in the previous sections.

6.4.9.1. Results from Pre-Screening using Sterilised Drill Cuttings

Results from Sterilised Drill Cuttings

13000000
12500000
12000000

1"11 11500000ell
"-
et
o 11000000o 10500000

10000000
9500000

A 0 J Control

I III Awrage I

Bacterial Treatment + Control

Figure 6.4.9.1. Results from Pre-Screening in flasks using sterile drill cuttings

Remediations were J, 15%; A, 4.5%; D, 0, as reduction of oil compared to the control.

Reading the data from the calibration graph gave the following approximate

percentage concentrations left in the flasks:

Control 9%

D 9%

A 7.5%

J 6%
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It was interesting that the worst remediator ofthe three when using non-sterile

cuttings became the best performer when the cuttings were sterilised. However, all

the remediation percentages were lower than when used with non-sterilised drill

cuttings. This lead to further investigations concerning J as well as A and D,

including the identification using 16S rRNA as described in section 6.4.3.2. and

testing its remediation abilities in the bioreactor experiments. J had proved to be a

species that was slow growing; the extra time in the reactor might have helped to

release its potential as a remediator.

6.4.10. Pre-Screening oftbe Tbird Set of Isolates

The flasks were set up as in section 6.4.7.4. with the exception of the ratio of cuttings

to mineral media, which was a 50/50 mix as would be used in the reactor. The flasks

were left on the shaker for one week to acclimatise. The samples were prepared as

described previously.

6.4.10.1. Results from tbe Pre-Screening oftbe Tbird Set of Isolates

The inoculates all performed better than the control at degrading the oil, as can be

seen in graph 6.4.10.1 •. Examples of the data can be viewed in appendix D.

v,Wand Y had reduced the oil content more than Z. However, all looked promising

for further testing. It was decided to examine these, as well as J, using an electron

microscope and take some slides, some of which were developed into photographs.

All these pre-screened isolates had potential for testing their remediation capabilities

using the bioreactor; initially V and W were tested. Time ran out before Y and Z

could be run in the reactors.
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CHAPTER6 Methods Development and Results

6.4.11. Transmission Electron Micrographs of Negatively Stained Bacteria

A Jeoll00S Transmission Electron Microscope was used to take the EM

photographs, at 80 KiloVolts operational voltage and magnifications of7 - 21,000

times.

The bacteria were required in a liquid medium at approximately the mid phase of the

culture, i.e. not heavily concentrated and turbid, but with enough growth to be viable.

The preparation was conducted by preparing test-tubes of an appropriate medium, i.e.

mineral media with oil or LB with oil, then adding one colony from the chosen plate

aseptically. These tubes were left for 48 hours. One drop from each broth was

transferred to another tube containing LB broth with no oil. This was because the oil

would affect the photographs. Plates were made up concurrently to ensure purity of

the tubes. Once these second test-tubes had started to become established, which was

after 24 hours, the grids were prepared using these cultures.

The grids were Agar Scientific, 200 mesh carbon-formvar coated copper grids, and

were prepared as follows.

• The grid was held in the jaws of dry, sterile forceps.

• One drop of the bacterial medium was pipetted onto the grid and left for 30

seconds to one minute.

• The excess liquid was drawn offwith blotting paper.

• Immediately after, one drop of sterile water was left on the grid for 15

seconds, after which it was once again drawn offwith the paper.

• One drop of stain, which was 1% phospho-tungstic acid or 0.5% uranyl acetate

(both were used), was then pipetted onto the grid, left for 15 seconds and

drawn offwith the paper.

• The jaws of the forceps were then dried with the paper.

• The grid was then stored and noted.
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The grids were inserted into the electron microscope and the view moved until

bacteria could be seen. The magnification was then set to allow a good photograph;

the magnifications used were 5.6K, 7K, 10K and 14K, depending on the size of the

bacteria. The photos were then scaled to enable the bacteria sizes to be assessed.

This was conducted by measuring the flagella on figure 6.4.11.1.; all flagella are the

same size, 15 - 25 nm wide (a nano is 10-9, or a thousandth of'a micro) and 1 - 3 um

long (Sockett, pers comm., 2001). The bacterium in that photograph was then

measured; a multiplying factor was used to fmd the scale. Knowing the magnification

used for the photograph allowed for extrapolation for the other magnifications. There

is a 40 mm bar on each photograph; the micron measurement is scaled to this bar.

This bar may change size, depending on the shrinkage of the photo for the report; the

scale of bar size to microns stays constant.

Table 6.4.11.1 Scales for the Electron Microscope

Magnifica tion Bar Scale
(micron)

14 1

10 1.4

7 2

5.6 2.5

,/ 6.4.11.1. Results of Electron Microscope

The bacteria displayed hydrophobic tendencies, and were therefore not easy to capture

on film. This propensity could be interpreted as an indication that the bacteria were

hydrocarbon-utilising species. This is emphasised by figure 6.4.11.3., which shows

the bacterium surrounded by micro-droplets of oil. The different isolates were

definitely separate species, with appearance and size varying. This can be noticed

particularly in figure 6.4.11.8. of the Y2 isolate, which is bigger than any of the

others. W2, a rounder rod like J, had only one flagellum, as can be seen in figure

6.4.11.4. V2 (figure 6.4.11.7.) was rod-like, as was Y2 (figure 6.4.11.8.), but much
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smaller. Not all the photographs were of an adequate quality to develop; hence none

of the Z isolates were available.

~
I

~- -
- - ---
''I, ,.,.

• •
1 micron

I I
Figure 6.4.11.1. Bacteria J (14K Magnification). Notice the two flagella .

• •
1 4 microns

Figure 6.4.11.2. Bacteria J (10K).
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• •
1 micron

I
Figure 6.4.11.3. Isolate W2 (14K); notice the micro-droplets of oil surrounding
the bacterium

- -.,. I."
..

..

• •
1 4microns

Figure 6.4.11.4. Isolate W2 (10K), with a single flagellum
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, , .2'; microns
•

•
•

Figure 6.4.11.5. Isolates W2 (5.6K). The bacteria like to form chains or associate
as pairs.

2 microns '. ''I .1
• •

Figure 6.4.11.6. Isolates W2 (7K)
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-.~ --,.......

I
• •

2.5 microns

Figure 6.4.11.7. Isolate V2 (5.6K)

•
2 microns

Figure 6.4.11.8. Isolate Y2 (7K). A very large species, over twice the size of J
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CHAPTER 7

BIOREACTOR DESIGN

7.1. Considerations

There were four main criteria to consider.

• The concentration ofthe oil on the cuttings needed a reduction to <1% v/v or

100 ppm.

• Reduction had to be effected through degradation and not through

volatilisation or any other means.

• The mean rate of transformation in the reactor needed to be as high as

possible.

• The ability to suspend and aerate high solids concentrations.

Based on prior experimentation and the literature the design of the bench scale reactor

needed to meet the following criteria.

• Aeration of the cuttings, and exhausting of air.

• Gentle mixing, to ensure homogenisation, but prevent hyperturbobiosis.

• Sampling facilities.

• Kept free of contamination.

• Minimise the risk of bacteria contaminating the local environment

7.2. Types of Reactor for Laboratory Scale Experimentation

The research aimed at utilising a type of reactor in the laboratory that could be scaled

up for an industrial application. However, the earliest experiments were conducted

using a reactor system made up from very basic components. This reactor was used

prior to the arrival of the genuine drill cuttings.
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7.2.1. First Basic Reactors

Continuously stirred aerobic bioreactors were designed using four 5 I plastic buckets

with lids. These were chosen because they pose no toxicological hazard to the

bacteria, were readily available, and the indentation in the bottom of the bucket served

to hold the aeration system. The lids kept them fairly free of contamination, although

they were not perfect in this respect.

The mixing system consisted of a stainless steel impeller and a motor/gearbox,

designed and manufactured in-house by utilising a power screwdriver, modified to

hold the impeller, adapted for mains power and suspended via a clamp. The rotational

speed was 10 rpm.

Air was delivered into the reactor using perforated tubes placed at the bottom of the

reactor vessel, just below the impeller. Two variable speed aquarium pumps provided

60 IIminute each into the four reactors.

Figure 7.2.1.1. The first basic reactor test set-up
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Figure 7.2.1.2. The mud and simulated drill cuttings being stirred in the reactor

7.2.2. The Reactor Design for Testing ofthe Isolates and Rhodococcus

Looking at all the parameters required for the bioreactor, the problems associated with

the first design and the condition of the contaminant, i.e. the hydrocarbon locked into

a rock and clay matrix, a change of design was required.

Figure 7.2.2.1. Bench-scale semisolid-phase bioreactor
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The author's past experience in the laboratory ofa construction materials

manufacturer led to the examination of bench-scale mixers of the type illustrated in

figure 7.2.2.1.

This design allows for high solids content in the mixture whilst keeping the cuttings

aerated and thoroughly mixed without damaging the bacteria by hyperturbobiosis.

The manufacturers of this type of reactor had gone into liquidation, and the design

was difficult to realise in a university workshop.

The second option was a domed bottom tank with a stirrer modelled on a marine

propeIler. This shape of propeller can rotate at slow speeds, induce better mixing than

a flat blade and eliminate the shearing problems that can lead to hyperturbobiosis.

The propeller would have gone into the reactor at an angle for improved mixing, and

the design should have managed solids content of -40%.

This design also proved difficult to realise practically, with problems encountered in

purchasing the tank and the chaIlenges of keeping the system free from contamination

and from contaminating the laboratory environment.

The third option was a rotating-drum type bioreactor. This design has been adopted in

a number of bench-scale experiments (pinelli et al., 1997; Kruger et al., 1995; Truax

et al., 1995). This may be due to its ease of manufacture; furthermore, scaling up is

relatively uncomplicated, it can be aerated, and measures can be taken to reduce the

risks of contamination.

This was the type of reactor finally adopted for this research.

The parameters required for bioremediation have been discussed in chapters 4 and 5

in this report.
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7.2.3. Rotating Drum Reactor

The reactor consisted of a bed with five drive rollers capable of housing four self-

contained reactor vessels (see figures 7.2.3.1. and 7.2.3.2.).

Figure 7.2.3.1. The reactor vessels on the rolling bed.

Figure 7.2.3.2. The reactor vessels OD the rolling bed
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The design is illustrated in figures 7.2.3.3., 7.2.3.4., 7.2.3.5., 7.2.3.6. and 7.2.3.7 •.

The reactors were housed in a laboratory with restricted access due to the potential for

biological contamination. There was no external light source for the laboratory, and

the reactors were designed to be predominantly dark, with only the end pieces clear to

allow some observations. This was because biodegradation can be inhibited by high

doses of solar UV-B radiation (Santas et al., 1999).

Note that the air sparge protection system was added after the first drum reactor

experiment. There were problems encountered with the material in the reactor being

carried up the air pipes, blocking them. The end caps were adapted to help minimise

this, by the addition of a Perspex cylinder to keep the mixing material away from the

air extraction pipes.

The system was designed for hazard group 2 organisms. It had to ensure bacteria

within the reactors could not escape into the external environment and that rogue

bacteria could not contaminate the reactors running with single species, i.e. to keep

them as isolates. These considerations were taken into account during fabrication.
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CHAPTER7 Bloreactor Design

7.2.3.1. Fabrication of the Reactor

The chassis was constructed from 25 mm angle and box steel, with a bracket welded

on to house a 30W AC motor (mains powered) directly coupled to a reduction

gearbox giving a final drive of approximately 4 rpm.

The rollers were stock items consisting of spindle roller bearings supporting a rotating

outer cylinder. There were grooves in the outer cylinder to take the drive belts, and

roller ends which slotted into the top of the frame.

The drive belts were a vacuum cleaner type, but these proved to have a very short

lifespan. Consequently custom-made belts that were constructed by splicing

elasticated cord replaced them.

Perspex brackets to clamp the air suction pipes were attached to the frame. The air

pipes went into the reactor vessels through rubber seals in the end caps to prevent

bacteria either entering or exiting the vessels.

The cylinders were 160 mm diameter plastic soil pipes with internal diameters of152

mm. They were cut to lengths of 594 mm and chamfer cut on the ends to enable the

insertion of the end caps. The capacity of the cylinders can be calculated using the

equation 1tr2.length.

2

1t x C~2) x 594 = 10.78 x 10-3m3

= 10.78 litres

Three lifting baffles per vessel were constructed from strips ofPerspex and bonded to

the inside of the cylinder.

The Perspex end caps for the inlet and sampling end were drilled as one hole eccentric

and one centre. A tap fitted with a 0.2 J.Il1l filter was bonded into the centre hole. The

tap was kept open during running, and shut during sampling. The eccentric hole had a
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tap bonded into it that served as the sampling port. The air outlet end cap had one

hole drilled in the centre, and was fitted with a rubber seal. The air pipes entered the

vessel here. Both end caps press-fitted tightly into the ends of the cylinders and were

secure.

Once constructed the reactors were tested for leakage by filling with water. There

appeared to be none.
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CHAPTER8

BIOREACTOR EXPERIMENTS

8.1. 1st Remediation Experiment - Continuously Stirred 5 I Vessels

The system was set up as described in 7.2.1. and illustrated in figure 7.2.1.1 ..

Drill cuttings were simulated by combining limestone chippings with Novatec drilling

fluid; the oil:water ratio in the mud was 83:17, and the cuttings were set to -7.5% v/v

oil on cuttings (for data see appendix E).

The bacteria used were Rhodococcus sp 11273 (RI and R2) and an unidentified strain

from the first set of isolations, henceforth known as X (Xl and X2).

The bacteria were revived from the freezer as described in chapter 6. They were

streaked on a plated and left at ambient temperature for 48 hours for examination.

Further plates with an oil film and mud film were made concurrently.

Three of the reactor vessels were inoculated; RI; Xl; R2 and X2 together; the fourth

was kept as a control.

Sampling was conducted on days 1,2,3,4 and 12, and frozen, with additional

samples for retort analysis on day 12.

150 ml of distilled water was added to each reactor vessel on day 4 to prevent

excessive dehydration.

Extraction was by soxhlet with dichloromethane for 2 hours; water was separated

after extraction using a separatory funnel and purified with anhydrous sodium

sulphate, then evaporated down from 100 ml to 2 ml.
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The samples were run through the GC (see section 6.2.1.2). The analysis

methodology was still being developed at this stage, so the readings were interpreted

in two ways, as recommended by K Wallgren (Pers. Comm., 1999).

8.1.2. GC Methods of Evaluation

1. The compounds in each sample were divided into groups with the following

retention times: 0 - 5 (>Carbon 10, short chain length)

5-10 (-CIO)

10 -12.5

12.5-15

+15

(- C12)

(- C14)

(> C16)

The total percentage areas in each group was calculated and tabulated, see tables

in appendix E.

2. Four areas with pertinent peaks common to all the analyses eluted within the

5th,11th,14thand 15thminute of the run. Total area of peaks within each minute

were tabulated against the dates of sampling, see tables in appendix E.

8.1.2.1. Assumption

The assumption was made that the longer chain hydrocarbons would remain fairly

constant, with the shorter ones being degraded first. This provided a constant value to

relate the rest of the data to.

All the values in the table, including the total areas, were divided by these constants

and the results recorded. The internal standard had not been used at this stage in the

experimentation.
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8.1.3. Results

8.1.3.1. Plates

The Rhodococcus was slow to adapt to the ambient temperature, the X was much

quicker. The plates with oil and drilling muds showed no evidence of growth.

8.1.3.2. GC and Retort Results

The results illustrate that the reactor containing Rhodococcus sp 11273 reduced the oil

better than the other reactors. The tables in appendix E show some evidence of an

increase in short chain length hydrocarbons, but is inconclusive. The production of

these shorter-chained hydrocarbons imply that some microbial activity was taking

place degrading some longer-chained hydrocarbons within the 10 - 12.5 minute

elution time (C12). All the vessels showed an increase in the 12.5 -15 minute elution

time (C14). The RI reactor was placed next to the control; there is no guarantee, with

the set up of the system, that bacteria did not contaminate the control reactor.

The magnitude of the reduction is not given by using this method of evaluation. For

example, if the reduction in total hydrocarbons was from 6 ppm to 2 ppm, the

percentage change would be 66.66%; this percentage would be identical for a

reduction from 60 ppm to 20 ppm. This means a small change in concentrations

could be interpreted as a large reduction, and vice versa.

Due to some erroneous data on the first day of sampling for RI, it is not possible to

get an accurate percentage reduction, but, even discounting this day's data the

reduction was 26.71% for the Rhodococcus.

Xl appeared to degrade shorter-chain hydrocarbons, with 71.36% reduction in the

five-minute elution band, with 36.91% degrading at the rate of 12.3% per day,

according to the data. 43.21% at 11 minutes elution and 7.8% at 14 minutes. Overall,

it possibly degraded 21.66% of the hydrocarbons. Given more time these results

might be enhanced.
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The combination of Rhodococcus and X did not perform well, but there appeared to

be an increase in short-chain hydrocarbons. This might have been due to the cleaving

of long-chain molecules.

The control remediated too, by 16.55%.

The assumption for the second set of tables was that the longer-chained hydrocarbons

would be degraded first. Although this was true for R2 +X2, it was not proved as an

hypothesis.

Although percentages are to two decimal points, they are only indications of

reductions due to some experimental errors.

• Adding water to the cuttings, but not knowing evaporation rates in the

reactors.

• Evaporation of the extracted solution was not always accurate; it was

performed on a hot plate, both inaccurate and risky!

• The oil may have preferentially stuck to a particular size fraction, making the

samples unrepresentative.

• The limestone cuttings, only just introduced to the mud before

experimentation, may not represent real drill cuttings at all.

The retort did corroborate the trend that all the samples, including the control,

underwent degradation. The table in appendix E illustrates reductions from the 7.5%

starting value. RI was the best performer. There could have been some competing in

the reactor containing both the bacterial species.

8.1.4. Summary

The reactor vessels were inadequate. There was poor mixing due to the shape, and an

extremely high risk of cross contamination due to the positive pressure sparge and no

mist extraction system. The mixture was not homogenous, making sampling difficult.
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At this stage the GC method of analysis had not been developed for this project; this

experiment illustrated some of the pitfalls in sample preparation and data

interpretation. There were definitely problems caused by the lack of control over the

evaporations, as volumetric reduction would have had a significant influence over the

concentrations in the residues and therefore the GC results.

8.2. 1st Rotating Drum Bioreactor Experiment: Method

8.2.1. Preparation of Bacteria for Remediation Testing in the Bioreactor

The bacteria chosen for the initial bioreactor experiment were:

• J (Bacillus oleronius).

• A, D (Bacillus thuringiensisy and other species isolated from the V, W, Yand

Z flasks, as a consortium.

• Rhodococcussp.9737.

• Control, with natural micro-flora.

The Rhodococcus was purchased freeze-dried from the National Collections of

Industrial, Food and Marine Bacteria (NCIMB) Ltd, and had to be resuscitated; details

of this procedure are in appendix C. The species was classified for Laboratory

Containment Levell (see appendix F). Rhodococcus sp. 9737 was described in the

UK National Culture Collections database as being able to utilise various paraffins,

which is why it was chosen. A known remediator would allow comparison of the

isolate, consortium and control, and would give an indication as to the effectiveness of

the bioreactor. The other species were treated as Laboratory Containment Levell 12
(see appendix F).

The Rhodococcus was resuscitated in LB broth and incubated at 29°C on a shaker; it

exhibited a lengthened lag period, but the broth turned turbid after 48 - 72 hours.

Once it was estab lished it was rebrothed and plated out to ensure a pure culture before

179



CHAPTER8 Bioreactor Experiments

enrichment procedures. A sample was prepared for preservation by freezing (see

section 6.4.6.). The second broth appeared well established within 24 hours, and was

prepared for the bioreactor experiments in the same manner as the other species.

The bacteria were prepared as for the batch cultures for the pre-screen tests. This

involved introducing the broths of culture, which were first grown in mineral media

with oil, into a 250 ml flask containing 2 g of drill cuttings and 25 ml of mineral

media. After 48 hours, further mineral media and drill cuttings were added, to make

the totals in each flask half media to cuttings (66ml cuttings: 33 ml mineral media).

These were left at ambient temperature (22 - 24°C) for one week. The contents were

then added to the drill cuttings and sterile nutrient water in the bioreactors.

8.2.2. Preparation of Material for the Reactor Vessels

The drill cuttings were from Stirling Pegasus and were dated 14/7/99 and 15/7/99.

They had already been thoroughly mixed to ensure homogenisation and frozen, as

mentioned in section 6.4.5., for storage. After defrosting the cuttings specific gravity

(SO) was tested.

With highly particulate drill cuttings the density was measured by displacement in

water, reading off the volume displaced by a mass of cuttings introduced into

measuring cylinder. The wet cuttings from the Sterling Pegasus could have their

density measured quite directly, i.e. by filling a measuring cylinder to an exact

volume and weighing. If50 ml of the mud weighed 68 g, that would mean 136 g

would equal I 00 ml, Scaled up, the mud SO would be 1.36. All tests were repeated.

Another way was to fill a container with exactly 50 ml of drill cuttings, then top up

with water, to 50 ml, The water fills in any air gaps in the container. The SO of water

is 1; the difference between 50 g and the weight of cuttings with water indicates the

approximate SO of the drill cuttings. The process has to be repeated and an average

taken.
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Assessing the sa allowed the material to be assessed as a volume for percentage oil

on cuttings, but be weighed for adding to the reactors, which was easier than trying to

measure the cuttings as volume.

The cuttings had a sa of 1.734; this lead to 1734 g of cuttings going into each reactor

vessel, which equalled a litre of cuttings.

The liquid addition to the vessels was sterile nutrient water. The mineral media, as

described in section 6.4.2.3., was made up in bulk and added to the vessels. This

media worked well for the pre-screen experiments, having a good balance of nitrates

and phosphates with additional minerals, so was used for the reactor experiments.

500 ml was added to the vessels, which gave a 2:1 cuttings to fluid ratio.

Within 24 hours, the material had gone extremely viscous and very sticky; this could

possibly have been due to clay hydration or alternatively to the mud reaching a critical

moisture level which lead to the plastic-like behaviour. Itwas decided at this point to

add another 500 ml of sterile water to increase the flow properties and stir-ability of

the material.
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8.2.3. The Reactor System

There was 1 I of cuttings and, after the additional nutrient water, 1 I of water, making

2 I in the 10 I vessel. The proportions ofwater/solidslhydrocarbons at the outset was:

1300 ml water 65%

520 ml solids 26%

180 ml hydrocarbons 9%

The system was set up as illustrated in figure 8.2.3.1., with the exception of the air

cleaning system. An exhaust cleaning system was set up as a trap for material

accidentally sucked up the air tubes, and to sterilise the exhaust air to prevent any

contamination of the laboratory environment - one of the species of bacteria was a

known bioinsecticide (details in discussion, 9.1.). Initially, the exhaust air was run

into a Buchner flask containing limestone rock-chippings, rock-wool and trigene.

Within 24 hours foam from the trigene had been sucked into the vacuum pump.

Also, too much mud was being sucked into the air pipes, blocking them and

preventing the material being aerated. The end caps were up against the baffle,

causing the mud to drop onto the pipe.

The trap system was altered to accommodate an inline filter ofO.2 mm, the same type

of filter as was fitted on the air inlet, and the trigene was removed from the trap. The

system could then filter any bacterial contamination from the exhaust, although the

filter did have to be changed quite regularly due to blockages caused by material

sucked up the air pipes.

The air pipes were removed from the vessels and cut off at 45° to try to prevent the

mud being sucked in. This was moderately successful, in that less mud was pulled up,

but the pipes had to be cleaned out every day of the experiment. The meters were

difficult to read, as material sucked into them had blocked the scale. However, the

vacuum pump was working at 9 l/minute for all four reactors.
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The calculations for oxygen were evaluated using the largest hydrocarbon molecule in

abundance in the linear paraffin, C14. There were traces oflonger chain carbon

molecules, but only in small quantities, see GC trace 6.2.7.1..

8.2.3.1. Air Requirements

11 drill cuttings = 1.7 kg (as m = p.V)

Contamination 18% Oil on cuttings

(18/100) x 1.7 = 0.306 kg oil

43
CI4H30+ - 02 __. 14C02 + 15H20

2

Relative molecular mass ofCI4H3o = 14(12) + 30 = 198

306No of moles of CI4H30= -
198

The molar ratio:

306 : 43 x 306 : 14 x 306 : 15 x 306
198 2 198 198 198

Volume of oxygen required:

[
43 306]Mass of oxygen = -x - x 32 =
2 198

1063.27 g

poxygen = 1492 g/m!

1063.27 x _1_ = 0.71 m)
1492

Air is 21% oxygen = 3.38 m3 of air per reactor.

Reactors will run for a maximum of28 days, minimum of21 days
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3.38 x_I ._1_._1_= 83.83 x 10-6m3 air per minute for mineralisation.
28 24 60

Worst-case scenario might be only 3% of the air used for degradation:

(83.83 x 10-6m3 /3) x 100 = 2.79 x 10-3m3 air per reactor per minute for 28 days at

3% uptake.

Convert to litres = 2.79 litres per minute per vessel.

If 5% of the air is used for degradation:

(83.83 x 10-6m3 /5) x 100 = 1.68 X 10-3m3 air per reactor per minute.

Convert to litres = 1.68 litres per minute per vessel.

This equation illustrates that at 3% utilisation there might not be quite enough air for

complete mineralisation in 28 days, but enough for a considerable reduction.

Considering the problems with the air pipes blocking, the lack of electron acceptor

may have been a limiting factor to biodegradation.

8.2.3.2. Running Conditions

The reactors were set to tum at 4 rpm.

The temperature was kept at ambient, which was mostly around 20°C. This

temperature iswarm enough for good microbial activity with both the Bacillus species

and the Rhodococcus.

The pH was tested, and found to be 7.5 ± 1.
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Figure 8.2.3.2.1. Tbe running reactors

The experiment ran for 28 days, with sampling via the tap conducted weekly and the

sample frozen at -5°C.

At the end of the 28 days there were no large drill cuttings whatsoever. The material

was smooth enough to measure its density directly; 50 ml weighed 68.6 g. As 20 ml

was required for the soxhlet, 27.5 g of the material was weighed and mixed with a

similar quantity of anhydrous sodium sulphate.

These, and some of the frozen samples, were prepared and solvent extracted as

described in section 6.2.2., and prepared for GC as described in section 6.2.1. at the

end of the experiment.

8.2.3.3. Problems Encountered witb tbe Reactor System Set-Up

The problems with air and exhaust gas have been discussed at the beginning of this

section. There were additional problems with the system.

Sampling was difficult using the tap due to the viscous nature of the mud. However,

samples were extracted and the tap was cleaned to keep contamination down to a

minimum.
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Testing viscosity was a major problem, as the H&S regulations at the university

forbade the reactors being opened in the laboratory and the material being bench

tested out in the open. It would also have allowed external micro-organisms into the

reactor vessel material, or, alternatively, reduced the amount of material in the reactor

to a ridiculously low level if the test substrate was not reintroduced to the vessel. The

decision was taken not to add extra water; this would reduce changes of the

parameters within the system.

As time went on the material started to build up on the reactor walls. This could have

been due to a lack of suspension of the material; a sedimentation effect.

At the end of the 28-day cycle, all the material was emptied out of the vessels into a

mixing container. The mixture was not homogenous. There was some wet and some

cake material. This was mixed up before sampling, but the end of the run was the

only opportunity to do this. The material looked as if it was trying to separate all the

time, having a watery phase and a more solid phase in the mixing container. The mud

was thoroughly mixed and samples taken for analysis. However, when trigene was

added, the material changed appearance rapidly, with the tendency to separate gone,

becoming an homogenous material. Trigene contains NP9 detergent and quaternary

ammonium salts; these salts make the mixture homogenous, ensuring that the biocide

contacts the bacteria (www.medichem.co.uk/environmentalprod_ycts.htm]). The

addition oftrigene instantly kills all the bacteria in the material. This may also have

some bearing on the change of behaviour of the material.

The residual material was disposed of in accordance with the university H&S

procedures.

The original hydrocarbon and water content of the cuttings for this experiment was

assessed using the retort, and was -18% oil, -30% water.
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8.2.4. lit Rotating Drum Bioreactor Experiment: Results

The vessels were coded as:

1. Rhodococcus

2. Control

3. Consortium

4. J

The vessels containing inoculums of bacteria performed better than the control

containing natural flora.

The results were calculated by assessing the oil content at the start ofthe experiment,

using the GC, and again at the end of the experiment. The start/end data were then

compared in each reactor individually.

The best remediator was the Rhodococcus, which reduced the oil content by 65.6% in

28 days; at 18 % original content, there was 6.2% oil left on the cuttings. That does

not include the dilution factor ofthe water, as that would be removed by post-reactor

treatments.
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The novel isolate, J, did not perform as well as hoped; the oil content was only

reduced by 19.2%, leaving the oil on cuttings at 14.5%. The consortium was slightly

better, reducing the oil by 25.5%, leaving oil on cuttings at 13.4%.

Data for the Rhodococcus bioremediation was processed, and can be seen in appendix
I

G, giving the following results.

Table 8.2.4.1. Percentage reduction in the Rhodococcus bioreactor using
d'ff, • tI ermg parame ers

As Whole START END
Cuttings % %

rnl (i.e. v/v) g (i.e. w/w) rnl (i.e. v/v) g (Le, wlw)

Water Content 30 17.20 33.99433 18.18

Dry Matter 52 74.54 58.92351 78.79

HC 18 8.26 7.082153 3.03

TOTAL 100 100.00 100 100.00

As Dry START END
Matter 0/0 %

Dry Matter 74.29 90.02 89.27 96.30

HC 25.71 9.98 10.73 3.70

TOTAL 100 100 100.00 100.00

None of these results gave encouragement for the prospect of an industrially viable

process, being 7.08% (v/v) and 3.03% (w/w) on the original cuttings; both over the

desired 1%. This equals a reduction from 180,000 ppm on the original cuttings down

to 70,800 ppm after 28 days in the bioreactor.

Before the second bioreactor experiment, the air sparge system was redesigned to

prevent air clogging up the pipes, which was a major problem during the first tests,

possibly inhibiting microbial transformation ofthe hydrocarbons due to lack of

electron acceptor.
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8.3. 2ndRotating Drum Bioreactor Experiment: Method

The first modification to the design was to make a cover for the air pipes to prevent

the mud material landing on the pipe and being sucked up, blocking the air flow; it

can be seen in the diagrams of the reactor design. This alteration solved the

restriction of air, resulting in a more adequate airflow, which should have reduced the

problems associated with lack of oxygen.

Bacteria were prepared as in section 8.2. The control and Rhodococcus were as

before although the Rhodococcus was revived from the freezer rather than from

freeze-dried. Two different isolates were tried for the other reactors: V and W, both

of which had performed fairly well in the batch tests. Y performed well too, but it

was hoped to utilise this in a third reactor experiment, if it responded to revival after

freezing. The enrichment procedure was altered slightly to accommodate the change

in drill cuttings to fluid ratio in the reactors, and was 50150 drill cuttings to mineral

media.

The materials were the same, and prepared as described in 8.1.2. The running

procedure was as described in 8.1.3.2. The enrichment flasks, drill cuttings and sterile

mineral water were added to each vessel, and left to run for 24 hours. A sample was

then extracted from the sampling tap, with difficulty. Attempts were made to take

samples weekly; the difficulty in extracting these got worse over time, until it was

almost impossible to guarantee a representative sample. When the reactors were

switched off, the material was extracted and mixed as described for the 1SI drum

reactor experiment and samples taken for analysis.

The samples were prepared for extraction and GC as described in the first drum

reactor experiment.
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8.3.1. 2ndRotating Drum Bioreactor Experiment: Results

The caking was considerably worse in this second test. This may be due to the drying

effect of the air sparge.

The results were calculated by assessing the oil content at the start of the experiment,

using the GC, and again at the end of the experiment. The start/end data were then

compared in each reactor individually.

Due to the sampling problems discussed in 8.3., the only data examined are the start

and end figures. At the beginning the problem was not so acute and at the end the

material was mixed in a container before the final sampling. It was very difficult to

extract a sample from the sampling tap, and H & S regulations prevented any

dismantling of the reactors before the end of the experiment.

The percentage of oil remaining on the cuttings can be examined in figure 8.4.1. The

Rhodococcus did not perform as well as in the first reactor experiments, however, the

control performed much better than in the first drum reactor experiment. It is difficult

to perceive why this should be so. The conditions were identical to the first

experiments with the exception of the air system which appeared to be much more

efficient, having cured the problem of mud blocking the pipes. This could account for

improvements, but not for deterioration in the performance. The worsening result

may be a reflection on the physical state of the material, which coated the sidewalls

therefore reducing the opportunity for the bacteria to be in intimate contact with the

oxygen or even the contaminant.. If the bacteria are trapped in the clays they can

only remediate the hydrocarbons they can contact. If the hydrocarbons are absorbed

onto the clays, and the bacteria is not a species that produces biosurfactants in

sufficient amounts then it would be difficult to get that hydrocarbon into solution.

Rate of degradation is a function of the concentration of the contaminant in solution

rather than the total sorbed mass.
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V and W both performed quite well considering the conditions of the material in the

reactor.

Data for the bioremediation performance of V, as the highest reducer of

hydrocarbons, was processed as in experiment I for the Rhodococcus.
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CHAPTER8 Bioreactor Experiments

Table 8.3.1.1. Percentage reduction in the 'V' bioreactor using differing
tparame ers

As Whole START END
Cuttings 0/0 0/0

ml (i.e. v/v) g (i.e, wlw) ml (i.e. v/v) g (Le, wlw)

Water Content 30.00 17.20 32.96 17.94

Dry Matter 52.00 74.54 57.12 77.74

HC 18.00 8.26 9.92 4.32

TOTAL 100.00 100.00 100.00 100.00

As Dry START END
Matter 0/0 0/0

Dry Matter 74.29 90.02 85.21 94.74

HC 25.71 9.98 14.79 5.26

TOTAL 100.00 100.00 100.00 100.00

Although the four-remediation levels were more grouped in this second experiment,

there was not one that out-degraded the Rhodococcus in the first experiment.

Reductions for V were from 180,000 ppm to 82,600 ppm on the original cuttings.

Discounting the water content, this would be 257,100 ppm to 9,980 ppm.

The best performer in the slurry-phase bioreactor still did not give encouragement for

the prospect of an industrially viable process.

The problem did not seem to be the bacteria, but rather the system itself. The drill

cuttings that had been sent from the Sterling Pegasus did seem very smooth in texture,

with very little in the way oflarge or even medium rock chippings, unlike the first

sample that the university received. As size fractions had already been conducted on

the first drill cuttings, it was decided to test the size fraction in the drill cuttings being

used for the drum bioreactors. It did appear that there was high percentage of clay,

judging by the behaviour of the material in the rotating reactors. The rotating drum

reactor system was designed to deal with more rock and less clay than there appeared

to be in these samples.
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8.4. Size Fractions in the Cuttings Used in the Rotatinr: Drum Bioreactor

Experiments

A sample of drill cuttings as used in the experiments discussed in 8.2 and 8.3 was

dried for 24 hours at 50°C. The sample was weighed, then dry sieved as described in

section 6.3 •.

The results can be seen in figure 8.4.1.; the graph illustrates the considerable

differences in size fraction percentages. The high percentage of clays in the Sterling

Pegasus drill cuttings samples could be due to:-

• Different rock formations. e.g. drilling through clays

• Different solids removal systems

• Equipment breakdown on the platform, leading to a higher percentage of fine

solids.

•
Whatever the cause, the change inmineralogy had a detrimental effect on the rotating

drum bioreactor system as run with slurry. Another approach was required.
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CHAPTER8 Bloreactor Experiments

8.5. 3n1 Experiment: Composting

As discussed in sections 8.3 and 8.4., major problems had been experienced with

processing the high clay content slurries in the small drum reactors. As time was a

very finite resource by this stage of the research, it was not possible to redesign and

manufacture a different bioreactor. Another approach was to redesign the material

within the reactor.

Composting drill cuttings had been utilised in other studies, but there were no reports

found on composting drill cuttings in a trommel or drum style reactor. MIDF also

expressed an interest in a compost system (Getliff pers comm., 2001), so an

experiment was designed using two of the reactors.

Organic matter has reportedly enhanced the transport of bacteria in porous media

(Johnson & Logan, 1996), such as the rock content of the drill cuttings waste.

Phiehler and Paerl (1996) experimented on enhanced biodegradation of diesel fuels

through the addition of Spartina alterniflora, a marsh grass, which, by its nature,

would be fibrous and oflow nutritional value. The marsh grass alone did not aid in

the biodegradation; however, when inorganic nutrients were added, specifically

ammonium (nitrogen) and phosphate, the degradation was enhanced. Another way of

adding these nutrients is by animal or poultry manures (Singleton & Sainsbury, 1997).

Manures are much higher in nutritional value than would be the marsh grass, and

when combined with a bulking agent such as straw or wood-shavings produce

nutritious compost, which can be utilised for plant growth. In organic farming and

gardening systems, manures can provide the total nutritional needs of the crops and

plants. Compost is created principally by the action of aerobic micro-organisms, as

described in the carbon and nitrogen cycles - the cyclical interconversion of carbon or

nitrogen and their compounds (Madigan et al., 1997).

The micro-flora able to degrade organic material are normally found within fresh'

manure; in fact, fresh is recommended rather than material that has already started

decomposing (Bird, 1993). Fresh poultry manure in particular is recognised as a
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powerful activator of microbial activity in compost heaps (Caplan, 1992). The drill

cuttings need to be introduced at the beginning of the composting, to allow adequate

mixing and to expose the possible degrading species ofmicro-organism to the

contaminant, encouraging them to 'prepare' for that nature offood source, such as

functional plasm ids and enzymes (more details in chapter 4). The wide and diverse

microbial populations within a composting system might tolerate and even degrade

the hydrocarbon within the drill cuttings.

The addition of this organic material might also reduce the problems associated with

the clays, i.e. the sedimentation causing a build up of material on the vessel walls.

8.5.1. Method

There were two types of manure used for the compost experiments; fresh horse

manure (dung and urine) on wood-shavings, and fresh poultry manure on wheat straw.

The mass of material into each reactor was:

1. 2 kg Versaplus Drill Cuttings

1 kg Horse Manure (as described above).

2. 2 kg Versaplus Drill Cuttings

1 kg Poultry Manure (as described above).

The dry matter within the manure was assessed to determine whether any additional

moisture was required.

1 kg of each type of manure was dried in an oven at 50°C for 72 hours, and

reweighed. The retort was used to assess the water and oil content of the drill

cuttings. The total moisture content in the reactor containing the horse manure was

55.86% and in the reactor containing the poultry manure was 48.6% (both including

the drill cuttings); this was judged to be adequate to support microbial growth.
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The system was set up as in the previous experiments, with the exception of the air

system. This was altered slightly in that air was pulled through directly to the vacuum

pump rather than through the flow meters, and was measured at 9 liminute for both

reactors. A flask to catch particulate material was located before an in-line filter set

before the vacuum pump to ensure that the pump was particulate free and bacteria

were filtered out of the exhaust air. A Y shaped pipe junction was used to split the air

supply to the two reactors.

The reactors were run for 24 days. Any material building up on the sidewalls of the

reactor vessels was removed weekly. Temperatures were checked weekly, but this

was possibly not frequent enough as a rise in temperature could easily be missed in

the interim period.

At the end of the run the reactors were emptied, the balls (see figure 8.5.2.2.1.) were

broken up as much as possible and samples of the mixture were taken for analysis.

The dry matter of the material was reassessed to see how much drying out had

occurred due to the air system, which ideally might have had some form of water

mister. Two 100 g samples from each vessel were dried in an oven at 50°C for 48

hours and reweighed. These were smaller samples and appeared quite dry, hence the

shorter drying time.

The material was assessed for density and was found to be -1; hence 2 x 20 g of

material from each vessel was solvent extracted using the soxhlet and

dichloromethane. The material was so dry it did not need the addition of anhydrous

sodium sulphate. Samples of the dried mud were also extracted, 24.63 g per thimble.

Samples were prepared and run through the GC as described in chapter 6.
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8.5.2. Results of Com posting Reactors

Table 8.5.2.1. Dry matter and moisture content

Horse Poultry Drill Cuttings
DM Moisture DM Moisture DM Moisture
% % % % % %

Beginning 12.42 87.58 34.20 65.80 60 40

End (I, 93.60 6.40 82.83 17.17 - -
including drill

cuttings)
End (2, 94.45 5.55 78.67 21.33 - -

including drill
cuttings)

Average End 94.00 6.00 80.75 19.25 - -

The reactor moisture content appeared to reduce considerably in the last 4 days of the

experiment; at this high dry matter content. the material would no longer support the

majority of microbial growth and activities.

8.5.2.1. Observations

During the whole process the temperature in the reactors never rose more than 2

degrees over ambient. which was 21°C - 23°C; this rise was in the poultry manure

reactor. It appeared that there was no thermophilic composting, but as previously

mentioned, the temperatures were only taken weekly and this heating activity may

have occurred unobserved.

After 96 hours, the contents of the reactor containing the horse manure and drill

cuttings had physically changed; some of the material had formed balls, which rattled

round as the drum rotated. This indicated the clays had accreted.

201



CHAPTER8 Bioreactor Experiments

Figure 8.5.2.1.1. Horse manure balls

The material in the poultry manure reactor was loose and looked well aerated. Some

balls did form in this reactor, but not so many and only after 2 weeks running. The

caking of the clays on the sidewalls of the reactors was still occurring but to a much

lesser degree than with the slurry system, and was initially worse in the poultry

reactor. However, by day 24, there was little caking in this reactor, except where the

baffle met the drum wall. This build up could have been reduced by the addition of a

fillet.

/
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Figure 8.5.2.1.2. The horse manure and drill (uttings as they came out of the
bioreactor.

Figure 8.5.2.1.3. The poultry manure and drill cuttings as they came out of the
bioreactor.
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8.5.2.2. Retort Analysis

The drill cuttings that were used in the compost experiments were tested for oil and

water content. The 50 ml cylinder was filled as described in section 6.2.6.1., and

weighed 80 g, The retort showed that there was 40% water and 20% oil on cuttings.

Assuming the water sa was 1and the oil sa was -0.8, the sa of the dry cuttings was

2.5.

8.5.2.3. Bioreactor Remediation Results

To calculate the remediation of the compost reactors, some assumptions were made.

• The dry matter within the mix stays constant, i.e. no dry matter is converted to

water or carbon dioxide by the bacteria or other micro-organisms.

• The SG of the drill cuttings combined with the manures was -2.0 and the oil

-0.8.

• The ratio of drill cuttings to manure was 2:1.

• The retort result of20% oil and 40% water on cuttings was correct.

• The GC calibration graph was correct.

bl 852.3 1 P t c f h PIC tTa e . . . . ercen age omposltion 0 t e ou try ompos
Content START END START END

% Volume % Volume %Mass %Mass
Water

59.05 48.60 10.7919.25
Dry matter
(Sa 2.0) 24.75 78.75 40.73 88.31

Hydrocarbon
(20%, sa 0.8) 16.20 2.00 10.67 0.90

TOTAL
100.00 100.00 100.00 100.00

This data is illustrated graphically in figures 8.5.2.3.1. - 8.5.2.3.4. The spreadsheet

calculations can be found in appendix G.

When looked at as ppm, including compostable material, the hydrocarbon content

went from 162,000 ppm to 20,000 ppm.
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Volume of Substances: Start of Poultry Compost
Bioremediation Experiment

CWater

.Dry Matter

IJHydrocarbons

Volumes of Substances: End of Poultry Compost
Bioremediation Experiment

2.00

Water
• DryMatter

IJ Hydrocarbons

Figures 8.5.2.3.1. & 2.: Volumes of water, dry matter and hydrocarbons at the
start and end of the poultry compost bioremediation experiment
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Mass of Substances: Start of Poultry Compost Bioremediation
Experiment

10.67

48.60
Water

• Dry Matter

D Hydrocarbons

Mass of Substances: End of Poultry Compost Bioremediation
Experiment

0.90 10.79

Figures 8.5.2.3.3. & 4.: Mass of water, dry matter and hydrocarbons at the start
and end of the poultry compost bioremediation experiment

.Water

.Dry Matter

D Hydrocarbons

88.31
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These figures were gained after GC analysis, followed by reading the resulting peak

area from the calibration graph.

T hi 85232 P t C f h H M Ca e . . . . . ereen age ompositton 0 t e orse anure omnost
Content START END START END

% Volume % Volume % Mass % Mass
Water

64.99% 6.00% 55.83% 3.22%
Dry matter
(SG 2.0) 19.50% 87.60% 33.50% 94.03%

Hydrocarbon
(20%, SO 0.8) 15.52% 6.40% 10.67% 2.75%

TOTAL
100.00% 100.00% 100.00% 100.00%

The percentages of oil were assessed by GC analysis; methods as discussed in section

6.2.1. and 6.2.2.. The total was calculated on total peaks minus the initial

dichloromethane peak and the acetophenone peak. This assumes that there were no

organics in the manure and that all the organics were sourced from the drill cuttings.

The data can be seen in appendix O. The peak area total was read off against the

calibration graph to get a percentage of the total hydrocarbons in the drill cuttings and

manure. The percentage oil on the composted material with cuttings was 2% (v/v)

from the reactor containing the poultry manure, and 6.4% (v/v) from the reactor

containing the horse manure.

When expressed as a percentage of the original quantity of hydrocarbons the

reduction in these compost reactor experiments was 96.12% in the bioreactor

containing the poultry manure and 90.82% in the horse manure bioreactor. In the last

three days of the experiment the material was so dry that little or no remediation could

have taken place, meaning these results were more likely from 21 days. Looking at

the poultry manure reactor, the resulting mean transformation is 4.58% per day, which

is 18.32 ml or 14.66 g of oil degraded per day from a 2 kg batch of drill cuttings

containing 20% oil (v/v). The initial lag phase characteristic ofbioremediation that

occurs while the bacteria acclimatise to their environment will mean the first few days

would be less than this, but rates midway through the experiment would be higher.
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The figures are erring on the cautious side, as there may be organic material within

the manures that would be picked up on the GC. Ideally, the manures should have

been extracted in isolation and the graphs compared to the manure/drill cuttings

graphs. This would have enabled peaks solely from the manure to be removed from

the data. These tests were not conducted due to time constraints.

The composting was a more efficient degrading system than the slurry-phase system

when using high percentage clay drill cuttings in a rotating drum bioreactor.

Although this experiment had not reduced the oil cuttings (dry) to below 1%, it was

considerably closer than previously attained using the slurry system. If the moisture

content had been kept up then there might have been more degradation. There were

problems encountered during the experiment, such as material build up between the

baffles and the reactor wall, and some caking of the reactor sidewalls. Solving these

problems would improve the results.
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CHAPTER9

DISCUSSION, CONCLUSIONS AND POTENTIAL FOR FUTURE
RESEARCH

9.1. Discussion Concerning the Microbiology

Three isolates were sent away for identification using 16S rRNA as discussed in

section 6.4.3.2 •. The results identified A and D as Bacillus thuringiensis, and J as

within the genus of Bacillus oleronius, but a novel species.

There are different strains of Bacillus thuringiensis, possibly illustrated by the slight

difference in alignment of A and D. Bacillus are typical endospore-forming bacteria;

vegetative growth ceases when a key nutrient, such as carbon or nitrogen, becomes

limited. Adjacent to the spore is a parasporal crystal which is toxic to insects; the

gene for this has been used in genetically modified crops. Spores of Bacillus

thuringiensis have been reported to survive in both sterile and mixed culture clay soils

(Vilas-Boas et al., 2000). This may account for its presence within the drilling mud,

which contains significant amounts of clay. These spores, being characteristically

resistant to adverse environmental conditions, would stay dormant until the

environment could support growth, when they would rapidly convert to vegetative

cells (Madigan et al., 1997).

There is conflicting research concerning the safety of exposure to Bacillus

thuringiensis (Bt), a known bioinsecticide. The toxin gene has been engineered into

genetically modified (GM) maize (corn) grown in North America; there has been

some concern as to its effect on the monarch butterfly (Danaus plexippus)

populations. However, the Bt expression in the pollen of most of the commercial

hybrids of the GM maize is low (Sears et al., 2001), and field and laboratory studies

indicated no acute toxic effects at the pollen densities encountered in the field ofthese

particular hybrids. It is toxic to the butterfly larvae, but as populations are widespread

and only a portion of the monarch population utilizes milkweed stands in and near
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cornfields, the impact is said to be negligible. The risk of gene transfer and soil and

plant contamination was not discussed in the report.

Bacillus thuringiensis is considered non-pathogenic for humans, and is widely

sprayed in urban areas as an insecticide. However, bacterial super-infections are the

main cause of complication and mortality after an influenza virus infection. Research

into combined infections, which typically occur during influenza outbreaks, suggest

that there is a possible risk to the workers spraying the Bt-based bioinsectide

(Hernandez et al., 2000) at concentrations of 10". This puts some doubt as to the

safety of the bacteria as used in the bioremediation experiments. For this reason, the

Bacillus thuringiensis was treated as a hazard group 2 organism, restricting the

methods of handling and sampling of the biologically active material.

Isolate J is most related to Bacillus oleronius, but is free-living. Bacillus oleronius is

known as a member of the hindgut flora of the termite Reticulitermes santonensis (

Kuhnigk et al., 1995), a species of termite found in, amongst other places, France.

The termites were collected and fed on pine or beech wood; the micro-organisms

within the termite gut were then cultured aerobically with a mixture ofdifferent

aromatic compounds. It can utilise lignin as a food source, which is a tough

recalcitrant material, as well as the pine-oils, which are complex aromatic molecules.

J, as isolated from the drill cuttings, had slightly different morphology to B. oleronius,

which is described as rod shaped. The EM pictures showed J to be rounder rods, with

two flagella. However, its presence in the drilling mud might be explained by the fact

that lignosulfonates, which are derivatives of lignin, are used within the drilling muds.

Lignosulfonates are obtained as by-products of the wood-pulp, paper-manufacturing

industry (Davis). Research concerning degradation of lignin monomers by the

hindgut flora ofXylophagous termites (Kuhnigk et al., 1994) conclude that the flora

could degrade lignin and aromatic compounds aerobically. This could mean that the

isolate J may be able to degrade more complex hydrocarbon rings; however, there was

no time to assess this.
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The isolate J did utilise the hydrocarbons within the drilling fluid, thereby degrading

them. The growth rate was low, however. There would still be potential for this

novel isolate, as the genes for oil remediation could be cloned out and introduced into

a Bacillus species that could grow more rapidly.

The Bacillus oleronius Gram-stained negative, just as J did, and both are therefore

Gram -variable .

..-----B.fastidiosus

...._-- B.megaterium
B.maroccanus
B.ps ychrosaccha ro/yticus

r--- B.firmus
...--- B.benzoevorans

B.circu/ans 'J'
r------B.oleronius sp.nov .
.....__- B./entus
,..------- B.cereus

.....--- B.pumi/us
B.subti/is
B.amy/o/iquefaciens
B./entimorbus
B.popilliae
B.atrophaeus

B.tautus
B.ticheniformis

'------ B.azotoformans
L..-------other Bacillus groups

Figure 9.1.1. Phylogenetic Tree containing Bacillus oleronius from termites

(Kuhnigk et al., 1995)

There has been increasing evidence of Gram-positive hydrocarbon degrading bacteria

within the vicinity of the J species on a phylogenetic distance tree. Gram-positive

bacteria are useful in environmental applications as many form dry resistant spores

which are easy to store and have very long shelf lives, and can therefore be used as an

alternative to freeze dried organisms. Bacillus lichenifomis, as can be seen near the

bottom ofthe phylogenetic tree in figure 9.1.1., has been described as a candidate for

microbial enhanced oil recovery (Sarkar et ai., 1994). A novel Planococcus, isolated

from beach sediment, was capable of extensive degradation of the alkanes within

crude oil (Engelhardt et al., 2000); its position on the phylogenetic tree can be seen in
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figure 9.1.2 .. The novel species had an obligate requirement for NaCI but could not

tolerate high saline concentrations. All known species of Planococcus have been

isolated from saline environments, particularly marine, including some in sensitive

Antarctic ecosystems; as a hydrocarbon degrader, it may have a role to play in future

contamination incidents in sensitive marine environments.

0-02 substitutions/site

r -lt~OOk==~KUrthia gibsonii NeIMB 9758
86 tOO Kurthia zopfii ATCC 33403 (1)

'---9-1~ BacH/us sphaericus NRS 592.....---------t 96 Baci/lus sphaericus 1013 (T)
91 Baci/lus fusiformis ATCC 7055 (T)

tOO ......------ Bacillus pasteuriiNCIMB 8841""--~95~ Bacll/us globisperus NCIMB 11434 (1)
Bacillus psychrophl/us W16A (T)
Bacillus psychrophilus W5

,...---- P/anococcus sp. IC024 ]"
99 P/anocoa;us mcmeekinlf S23F2 (T) ~~~
Planococcus okeanokoltes NCIMB 561 (T) ..

'"----MAE2
,.....----- P/anocOCCUBBp. MB&-16

,.....--- PlBnococcus kocurl; NelMB 629 (T)
'------ Planococcus c;t~B NelMB 1493 (T)

...----- Bacillus benzeovOfans NCIMB 12555

..... --- Bacillus circu/ans ATCC 4513
Bacillus megaterium ATC~~:!!4!i!5g_81L- _

too Bacillus mycoides D"SM 2048
L---------..;1~00:M79 Bacillus cereus F418Ofl2

78 Bacillus Ihuringiensis lAM 12077 (T) < A & D
...... ~';:00;.r- Brochothrix tharmosphacta ATCC 11509 (1)

tOO lOO Brochothrix campestris ATCC 43754 (T)
100 too Usteria monocytogenes ATCC 35152

Usteria innocu8 SLCC 3379 (T)_--------~I00~r-:_-Camobacterium gallinarum NCFB 2766 (1)
lOO Camobacterium pisciccla ATCC 43225 (T)

_------------ Enterococcus co/umbae STR 3451- Enterococcus faecalis

L__ ~93!;:======~=: Vagococcus sa/moninarum ATCC 51200 (T)
98 Vagococcus fluvial;s ATCC 49515 (T)

J

94

97

lOO

99
90

Ph)lo!(enNic distance tree or selected Grlm-po,":i\C bacteria. Booutrsp vaIue, for distance an.ly';, are given above the nodes and
bootm ..p values for p,,,,imon) an.l) i~ arc ~i,cn below the nodes, Boomrap values helm, 50"" have been omirted

Figure 9.1.2. Phylogenetic tree containing the Planococcus and Bacillus.

There is also evidence ofa reduction of biological activity due to substrate

diminution, accumulation of recalcitrant or toxic residues or a possible switch to

alternate substrates (Obuekwe & AI-Muttawa, 2001). At this point in the remediation

there is the option of introducing additional micro-organisms to augment the bacteria

in the contaminated substrate. To conduct this successfully, an inoculate would need

to be stable and resistant to adverse environmental conditions, tolerate periods of

storage and be able to survive and flourish in the hydrocarbon environment once

introduced. The Bacillus species isolated during this research can do all these things,
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being endospore-forming bacteria. Transportation and storage is simplified, plus

there are no complex preservation processes to undertake such as freeze drying or

keeping frozen at -80°C. The spores form when nutrition is limited; this starvation

can be conducted in a laboratory, and are then recalcitrant. This means that the

Bacillus could be used for in-situ hydrocarbon degradation; the spores could be spread

onto the contaminated area, or injected via a solution sub-surface. Providing the

limiting environmental factors had been assessed and conditions optimised, the spores

would begin vegetative growth.

Exopolysaccharides, as mentioned in section 5.4.5.1., are produced when some strains

of bacteria are cultured in a low nutrient medium and incubated with sawdust or other

low nutrient/high surface area carriers. The research conducted by Obuekwe and AI-

Muttawa (2001) on exopolysaccharides worked with a Gram-negative Bacillus, which

appeared to be very similar in appearance to the isolate J. The Gram-negative staining

of these strains of bacteria has been discussed in section 6.4.3.1. and this has possibly

led to a wrong assumption in the Obuekwe & AI-Muttawa report. J and the other

isolates V, W, Y and Z all have colony appearances indicative of exopolysaccharide

production - shiny and 'gloopy'. This may be indicative of a potential for the isolates

from this research to self-immobilise. The advantages of this include storage at

temperatures outside their normal survival range, reduced costs and resistance to

chemical toxicity, desiccation and predation. Additional uses for the drill cuttings

would be providing a low nutrient carbon-bulking agent that would be introducing a

highly concentrated and metabolically active culture into the cuttings, with the

beneficial effect of bulking up the clay material that may aid bacterial contact with the

hydrocarbon contaminant.

Drill cuttings can contain varying quantities of heavy metals, being heterogeneous

mixtures of differing strata; some drilling muds also contain heavy metals. Bacillus

have biodegraded hydrocarbons in the presence of heavy metals (Amor et al., 2001),

although at a slower rate. Hassen et al. (1998) looked at the effects of heavy metals

on Bacillus thuringiensis and found zinc concentrations of between 0.05 and 0.2 M

(zinc is highly toxic to many bacteria) and Cd concentrations below 1.5 mM had no
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substantial effects on its growth. Nickel was found to be the least toxic heavy metal

(Amor et al., 2001).

Bacillus megaterium can be seen on both the phylogenetic trees in figures 9.1.1. and

9.1.2., indicating it is closely related to the isolates from the drill cuttings. Research

has found this species a potential bioremediation and biocontrol agent (Lopez et al.,

1998). It is spore-forming and very persistent in soils, where it plays an important

role in the degradation of herbicides and insecticides; it is also a fungal inhibitor. The

accumulation of reserve polymers, such as poly-3-hydroxybutyrate (PHB), have

increased the survival of the bacteria in the research conducted by Lopez. The results

of this research were interesting, in that when the soil was sterile there was no

difference between the Pllll-wild-type strain and the PHB-negative strain (a mutant),

but in non-sterilised soil the survival of the PHB-wild-type strain was higher, and

numbers were greater even during the first part of the experiment. There was also a

higher tendency to sporulation in the sterile soil. The same results were noticed in

sterile and non-sterile river water microcosms. In a non-sterile environment there are

biological interactions and possible changes in substrate conditions, which may help

to stimulate the production of reserve polymers. The Bacillus thuringiensis, i.e. A and

D isolates, were particularly affected by a change in sterility of the drill cuttings. This

may suggest that there might be some transformation of the oil to PHB within the

cells of the bacteria.

The Bacillus megaterium enzyme CYPI 02 has been engineered into a mutant strain

for the degradation of polycyclic aromatic hydrocarbons (PAHs) (Carmichael &

Wong,2001). Bacilli in general are well characterised for cyclic organics.

Bacillus subtilis, as can be seen on the phylogenetic tree in figure 9.1.1., has produced

a biosurfactant preparation which was obtained from a 24 hour culture, that increased

biodegradation rates of aliphatic and aromatic hydrocarbons (Moran et al., 2000).

The enhancement was more noticeable in the complex molecules, the longer chain

alkanes, and when high biosurfactant concentrations were added to cultures of

indigenous microbial communities. The drill cutting degradation would probably
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have been enhanced by the addition ofa biosurfactant; with hindsight, a biosurfactant

might have been generated from the isolates themselves and reintroduced to the

contaminated material in high concentrations. Considering the nature of the clays,

and the fact that the clay content was particularly high in the drill cutting material sent

to the university to work with, a surfactant of some description would have been

advantageous.

When producing a suitable media for the bacteria (see 6.4.2.3.), vitamins were omitted

from the recipe fmally adopted. Recent research suggests the number of oil-utilising

bacteria grown on vitamin-containing media were several-fold higher than the

numbers counted on vitamin-free media (Radwan & AI-Muteirie, 2001). The

organisms grown on the vitamin media were tested for growth on the same medium

lacking any vitamins, and 90% failed to grow. The 10% that did had their growth

enhanced when vitamins were added. In view of this it might have been appropriate

to add vitamins to the mineral media recipe (Livingston & Islam, 1999).

Enrichment procedures were fairly basic for this research. The bacteria were cultured

in a mineral broth with the oil, added to flasks containing the mud/cuttings mix with

additional nutrients and left to acclimatise and multiply, Other researchers have used

more sophisticated methods of enrichment, for example a Biological Activated

Carbon system (BAC). The BAC includes an activated carbon column inoculated

with bacteria from the contaminant's environment, with the hydrocarbon contaminant

provided as their sole carbon source, and a nutrient supplying apparatus. This system

produces an eflluent containing an abundance of the indigenous bacteria that have the

ability to decompose the target hydrocarbons (Li et al., 2000).

This system has several advantages over the simple method utilised for the drill

cuttings research.

• Selection and retention of micro-organisms capable of degrading the target

compounds in the reactor. This would enable the researcher to examine the
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effiuent and possibly identify species; it also would be a massive advantage

in gaining knowledge of bacteria in consortia.

• The activated carbon offers a large interface area allowing for thorough

mixing of bacteria, water and target hydrocarbons (Weber & Corseuil, 1994).

• The system can work continuously to produce bacteria to be utilised for

bioremediation.

1-~~===11 Medium

-+-- Cultural solution

AirPump

Figure 9.1.3. BAC system (Li et al., 2000)

9.1.1. Conclusion

It appears that Bacilli able to utilise hydrocarbons are being discovered in diverse

environments, and are being utilised for bioremediation clean-ups. The Bacillus

species isolated from the drill cuttings appear, according to very recent research,

extremely useful and versatile hydrocarbon degraders. There were parameters that
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could have improved their chances ofbioremediation; these include the addition of a

surfactant, a more efficient enrichment technique and a media containing vitamins.

The late identification of the remediating species as Bacillus, just before the

bioremediation experiments were conducted, did not allow for specific conditions to

be optimised for this species. The main reason the pre-screen data did not scale up to

the bioreactor experiments was the condition of the drill cuttings; being of very high

clay content, the cuttings did not physically behave in a manner congruent with

bioremediation in the drum reactors as used for these experiments. Some

modification to enable the processing of clay-rich cuttings would be necessary.

9.2. Discussion Concerning the Analysis

Gas Chromatography (GC) is a recognised and frequently used method to quantify the

hydrocarbon (HC) content in a sample of material, once that HC has been extracted

into an appropriate solvent. A method specific to the HCs being analysed had to be

developed. However, the GC, which is an extremely sensitive apparatus, can

occasionally produce illogical or spurious results. There needed to be a reference

point. For this research, acetophenone was used as the internal standard as it eluted

from the GC at a different time to the HCs being assessed. To ease interpretation of

data, calibration graphs were developed to allow direct reference as to the percentage

HC in the sample.

Soxhlet is a system of extraction that works on the principle ofrefluxing a solvent

through the sample to extract the HCs. This is a documented and reliable method of

extraction. However, the water content in the cuttings can complicate this. The

research dealt with this complication by the use of a compound that holds onto the

water within the cuttings - anhydrous sodium sulphate (Plumb, 1984; Cooper, 1999).

However, there is the doubt that the addition of another compound may effect the

extraction. Another approach would be to dry the sample first in a low temperature

oven to remove the water, then to extract the hydrocarbons. This is the method as

adopted by Chaineau et al. (1996) during their research on contaminated drill cuttings.
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Initial remediation experiments used the data to assess the percentage reduction from

the start of the experiment to the end of the experiment. The problem with doing this

is that evaporation from the vessel is not taken into account, meaning that the data

looks worse than it might. To overcome this, a spreadsheet was designed to allow for

changes in moisture content. The moisture content has to be assessed in the material

at the end of the experiment as a percentage; the dry matter stays constant, the HC

content is expressed as a percentage as read off the calibration graph. The spreadsheet

computes an assortment of result data, for example percentage reduction ofHCs and

percentage HCs left on the cuttings, as a volume or a mass figure; also the exact

quantity ofHC, in millilitres or grams. The specific gravity (SO) of each fraction

needs to be known. This system is appropriate for the slurry-phase or for the

composting bioremediation experiments.

9.2.1. Conclusion

The methods developed and adopted for analysing the hydrocarbon content appeared

to be repeatable and reliable. The only doubts are the use of anhydrous sodium

sulphate, even though this compound is commonly utilised in other research and

analysis. More experimentation concerning this might be appropriate. The results are

reliant on the calibration graph being correct and the SO of the different fractions

within the cuttings/water matrix assessed.

9.3. Discussion Concerning the Design of the Bioreactor

Drum bioreactors have been utilised in past bioremediation research and for practical

bioremediation applications (Cookson, 1995; Pinelli et al., 1997; Kruger et al., 1995;

Truax et al., 1995). Truax et al. and Kruger et al. (1995) studied fuel contaminated

soils of a sandy nature, with very low levels of clay. The study by Pinelli et al. (1997)

was conducted on a silt-clay soil, but there was no discussion concerning the

behaviour of the material in the reactors.
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The reactors were quite simple to construct with readily available materials. The

motor/gearbox allowed for the speed to be varied, depending on requirements. The

frame, rollers and belts meant multiple reactors could run concurrently. The belts

initially used were not substantial enough for the work load; these were changed to

elasticated cords, which proved adequate.

The reactor was designed to keep ultraviolet radiation to a minimum, as this can

reduce microbial activity (Santas et al., 1999). They were of a practical size for

laboratory scale experimentation, and were ofa design that could be scaled up if the

experiments successfully remediated the contaminant in the drill cuttings. Initial

problems with the air pipes blocking were cured by the installation of a shield to

deflect material from the pipe ends.

The sampling facilities were appropriate for hazard group 2 organisms; however, the

mud-like substance lacked fluidity, which meant that sampling was not always

possible. Sampling through these ports was impossible during the compost reactor

experiments. There were difficulties in loading and unloading the material into and

out of the reactors via the end caps. The vessels were difficult to clean, and it was

difficult to ensure they were sterile.

The reactor design was appropriate for keeping contamination ofthe environment and

cross-contamination within the reactors to a minimum. They were constructed so as

to seal effectively, and the air system designed to ensure clean air into and out of the

reactor. A vacuum pump was used to 'pull' the air through the reactor rather than a

pump 'pushing' air in, as was used with the bucket and impeller reactors, which

would be difficult for contamination control. The vacuum pump model was

inappropriate, as it was not a low vacuum pump of continuous rating; this resulted in

some breakdowns. Each breakdown resulted in oxygen starvation in the reactors.

The baffle design was inadequate; material quickly accumulated in the area where the

baffle connected to the sidewall of the vessel, and the vessels were difficult to sterilise

here. This problem could easily be solved by the addition ofa fillet, which would
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round off the acute angle. These would need careful sealing, as bacteria could survive

between experiments in any crevices, contaminating the next experiment. The use of

the baftle for mixing the slurry-phase experiments was insufficient due to the caking

effect ofthe material. This might be solved in a drum reactor by removing the baftles

entirely and installing a plough in the vessel, which could scrap material from the

reactor sidewalls constantly. This would prevent cake build up and allow better

mixing of the material, facilitating improved aeration.

A more adaptable design would have been the scaled-down concrete-mixer type

reactor as mentioned in section 7.2.2. A reactor of a similar design to this was used

by Woo & Park (1999), with a stainless steel drum body and a two-part lid consisting

of a stationary centre part, which housed the air inlet and outlet ports, and a rotating

outer part. The reactor was housed at an angle of _160 and equipped with a screwed

baftle 3 em wide inside the reactor wall. The temperature was controlled via a

ceramic heating jacket. This style of reactor would have made loading and unloading

the vessel simple, but may not have withstood the rigors of the university'S H & S

officer if using hazard group 2 organisms.

9.3.1. Conclusion

The reactor was simple to construct, and some initial problems were cured after the

first experiments. However, further problems ensued; the mixing of the material in

the reactors was inadequate for slurry-phase bioremediation of the drill cuttings when

they are predominantly clays. The baftles were traps for material to lodge in and did

not achieve their purpose of stirring the material in the reactors. Operating conditions

were not fully optimised to ensure good mixing and suspension of the material.

Making the end caps the only entrance/exit into the reactors made materials

amendments during the experiments difficult. The length of the vessels and the

baftles did not allow for ease of cleaning. The reactor design was more appropriate

for solid or semi-solid-phase material, as used in the compost bioremediation

experiment.
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9.4. Discussion Concerning the Bioremediation Experiments

The drill cuttings are diverse by nature, making them a difficult material to design a

specific process for. Each well might drill through many differing rock formations;

the drill cuttings will reflect this e.g. mud-making or hydratable shales will produce

totally different cuttings to limestone formations. The differences in mineralogy were

illustrated well during this research, in that each sample received for testing was

different from the last. Some rocks break up rapidly in contact with water, others may

not, and may require pre-treatment to allow the release of hydrocarbons within the

micropores of the rock. Some drill cuttings, as discovered during the reactor

experiments, will be predominantly clays, which are renowned for absorbing organics,

making them less available for the bacteria to degrade. Having some prior knowledge

as to the mineralogy ofthe cuttings would have been useful, in that the behaviour of

the material might have been more predictable. Also, if experiments were conducted

on various types of cuttings, the data could be utilised to predict the best remediating

technology to adopt.

Ortega-Calvo et al., (1997) claimed in their paper "clays represent an important

hindrance for bioremediation technologies, as they may cause a retardation in the

biological removal of hydrophobic pollutants". This appeared to be the case during

the slurry-phase bioreactor vessel experiments. However, if a pollutant is too toxic

for the bacteria, as many xenobiotic organic contaminants can be, this property of the

clays can have advantages. 'Clay hutches' can be organised and occupied by bacteria

(Timmis,2001). The high adsorptive capacity of the clays for hydrophobic organics

is utilised by the bacteria - the clay hutch protects them from direct contact with

droplets of the toxic pollutant, with the clays acting as nutrient shuttles - the bacteria

get the substrate from the clay rather than directly from the droplets.

Another implication of clays adsorbing contaminants is that the hydrocarbons

adsorbed into the clays are not bioavailable and therefore have a reduced

environmental impact.
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As already discussed in section 9.1., the conditions for the bioreactor bioremediation

experiments might have been enhanced with prior knowledge of the species Bacillus,

which would have enabled the conditions to be specifically enhanced. However, the

isolates were not identified until just before the first reactor experiment. All the

bacteria, as discussed in section 9.1., were potential degraders of hydrocarbons. The

purchased Rhodococcus was a confirmed degrader ofparaffms, as stated in the

NCIMB catalogue. However, none of the species remediated to an adequate level in

these experiments. This could have been due to a number offactors, but the very high

clay content, which consisted of over 57% within the fine fraction <212).lm may have

been a major contributor. However, this is contradicted in other reports on

remediation which state that particle sizes of <30 microns gave higher degradation

rates than particles larger than that (La Grega et al., 1994) as well as being easier to

maintain in suspension. The muds are designed to coat sidewalls, as well as having

other properties (see section 2.3.2.), and contain additives other than oil and clay to

carry out this function. The combination of these additives with other factors, such as

the operating speed and water content in the mud slurry, led to the sedimentation of

the material, which then was deposited on the sidewalls of the bioreactors. The

swelling of the clays as the oil was remediated may have enhanced this tendency; it

was not observed until 7 - 14 days after its introduction into the reactors. The

material did not display this characteristic during the pre-screening experiments.

Also, the muds can reach a point of critical moisture, when they become extremely

thixotropic. The impact of this could perhaps have been reduced by the addition of

more water to make the slurry more aqueous. Although the experimental process did

not want to alter the parameters within the reactor, with hindsight this was a mistake.

With more time to conduct a series of experiments, the question of whether extra fluid

would solve the problem would have been answered. Humidifying the air might have

been a solution. The data can be calculated back to dry matter by assessment of the

water content at the end of the remediation experiment using the retort or by

evaporation of the moisture by drying a sample in a low temperature oven. The

addition of water would not affect the results as the data could be programmed into

the designed spreadsheet. However, adding more and more water to the system serves
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to increase the amount of material to process, and increase the amount of filtrate that

would need secondary treatment, meaning it is not an ideal solution.

Another approach would be to add another material into the reactor with the drill

cuttings. The addition of grinding beads would be one solution. The grinding beads

would help prevent the clays sticking to the sidewalls as they help prevent

agglomeration of soils (Scholz et al., 1998) providing the moisture content is kept

slightly above the plastic limit, but would also break up any lager size fraction rock

chippings. By stopping the sticking of the material in the reactors, aeration would be

more efficient, reducing one of the limiting factors in degradation - lack of electron

acceptors. The mechanical action of the grinding beads might also help release the

hydrocarbon from the mud/cuttings matrix, making it available for the bacteria. This

could increase the rate of degradation. Conducting more trials using grinding beads

would have been beneficial, if time had allowed. However, this system may not

easily scale up for an industrial process, and would mean even more post-treatment.

The beads would either have to be reclaimed, if possible, from the other solids waste,

or disposed of with the solids waste. More processing, or more waste.

The research took a different approach; as the slurry-phase system had proved to be

inappropriate for the type of drill cuttings sent for remediation, a solid-state bioreactor

bioremediation experiment was conducted. Clay surfaces are said to be a significant

contributor to hydrophobic sorption when other organic matter (such as straw,

manure, or humus in a soil) is below 6 - 8 % (Ortega-Calvo et al., 1997). Humic

acids within a soil can also contribute to the binding of organic compounds when in

combination with clays, which discouraged the use of a soil amendment to the drill

cuttings. The research then looked towards a compost type system, which utilised an

organic bulking agent and a biologically active material, in the form of poultry and

horse manure on straw and wood-shavings respectively (for conditions, refer to 8.5.).

The mixture in the reactors was kept solid. The problem of caking the sidewalls was

considerably reduced, but not eliminated. The area where there was significant build-

up of material was where the baffles met the reactor wall, as discussed in section 9.2.
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The compost system results were superior to the slurry-phase reactor experiments,

particularly the reactor containing the poultry manure, which is a powerful activator

of degradation (Caplan, 1992). When the mixed material was added to the reactor, it

was full; within 72 hours, the material had reduced size considerably due to the action

of the drum reactor and baffles. As it was only possible to conduct one experiment

using these materials, it was essential to set some parameters, and keeping the

material in its original state was one of them. However, if there had been time for

more experimentation on this system, then additional material (drill cuttings and

manure) could have been added to the vessel; water should also have been added, but

only enough to maintain the moisture levels. The restriction of airflow had been

solved by this stage of experimentation. It was not possible to assess the air

requirement per reactor for one experiment as there was a multitude of organics to

degrade beside the hydrocarbons, i.e. in the manures themselves. There needed to be

a high air input; this is why only two reactors were run concurrently instead of four

from the single vacuum pump. Considering that bacteria nearly always display a lag

phase when introduced to a new environment, and that the material at the end of the

three weeks was too dry to support microbial growth and metabolism, the degradation

was achieved in a reasonable time.

There is potential for a marketable material from bioremediation via composting. The

material would first have to be assessed for heavy metal content and comply with

statutory regulations.

9.4.1. Conclusion

The bacteria used for the experiments had the potential to remediate the hydrocarbons

in the slurry-phase bioremediation experiments; they did achieve a reduction in

hydrocarbons, but not enough to fulfil the prerequisite given at the onset of the

research, i.e. to below 1% (v/v). This was due to the reactor type being inappropriate

for the high clay content material used in the experiments. Clays can be particularly

difficult to remediate as slurries in drum reactors, as discovered during this research.

The caking of the sidewalls would have reduced oxygen and substrate availability to
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the micro-organisms trapped in the mud matrix. Considering the variable nature of

drill cuttings, the system needs to be able to remediate diverse substances. This also

includes the varying hydrocarbon types used in the drilling muds themselves.

However, changing the physical nature of the substance to be remediated in the

bioreactor to semi-solid/solid, via the addition of compostable matter, increased the

rate of degradation and reduced the final content of oil on drill cuttings to a figure that

was very close to the target of <1%. Further investigation into this type of system is

therefore justified.

9.5. Potential for Future Research

Some points related to the microbiology have already been discussed in section 9.1.,

and are include with the following ideas for future research.

• Conducting isolation experiment on a basic mineral media containing vitamins

as well.

• Analysis of plasmids to assess where the remediation gene is.

• Cloning oil remediation gene from the slower growing species J into a faster

growing species

• Identification of V and W isolates

• Testing ofY and Z isolates

• Testing of J to assess whether it can degrade more complex HCs, e.g. rings

• Analysis of bacteria to assess whether they produce exopolysaccharides

• Conducting bioremediation experiments using better enrichment techniques

• Looking at the microbiology ofthe reactors at the end of the experiment - if

the Bacillus had formed spores it would indicate that the environmental

conditions had limited its growth.

• Development of a consortia

• Analyse rates of degradation throughout the experiment, to assess optimum

conditions for bioremediation

• Conducting experiments with the addition of surfactants
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• Producing biosurfactants in the laboratory using the isolates

• Modification of the bioreactor, or using a different style of reactor altogether

for slurry-phase remediation

• Modification of the material in the reactor, e.g. by the addition of grinding

beads

• Tests to assess whether anhydrous sodium sulphate affects the extraction and

therefore the results of the experiments

It would be advisable to analyse each batch of drill cuttings before any decision as to

method of remediation is taken to assess their mineralogy and heavy metal content.

Although not a biological method of remediation, flotation using coal fines may prove

efficient and is certainly worth considering for future research (see 2.7.1.7.).

An example ofa slurry system that might deal with a substrate predominantly clay in

nature can be seen in Figure 9.5.1 •. The problem of caking encountered with the drum

reactor might be eased, as the material is continuously pumped from the bottom of the

reactor, where solids often settle out. Air is introduced into the slurry as it travels

through the pipe, with the material pumped back into the tank about halfway up the

sidewall. Mixing within the vessel is achieved with angled jets. This would be

appropriate for a slurry-phase material; the clays, which are prone to settling out,

would be redistributed into the slurry constantly. Stirrage would be constant, and air

would be diffusing throughout the material, enabling a more intimate contact with the

micro-organisms. The size of the vessel would be smaller per unit input than for a

rotating drum reactor. The design would be difficult to realise on a laboratory scale.

However, during a meeting with the sponsors BP/Amoco and MIDF, there was some

discussion concerning some vessels of this shape that might have been available for

larger scale testing.
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Future experiments conducted on composting drill cuttings m ight take regular

samples and observations of the conditions in the reactor and discover when the peak

rate of transformation occurs. The conditions in the reactor during this period could

then be used to optimise the running conditions throughout; this would include

moisture content but would not necessarily apply to the initial lag phase. Most

compost systems become thermophilic, but did not in this experiment. There has to

be quite a bulk of material to create these conditions; in a larger scale reactor, this

could occur. The heat could increase the rate of degradation, but may cause the

complication of evaporation of some of the hydrocarbons in the drill cuttings, leading

to the necessity of air pollution clean-up equipment. However, most of the

hydrocarbons are above el2 and are therefore not VOCs, so unless the microbial

activity lessens the chain lengths considerably this should not occur. The compost

system lends itselfto a continuous process using bioreactors, or a low-tech process

such as biopiles, as discussed in section 5.4.3 •.

The research has included a possible design of compost bioreactor; this is illustrated

in figure 9.5.2 •. This reactor has a hopper with a mixing blade, where the manure and

drill cuttings are mixed before introduction into the reactor. This would reduce the

size as well as ensuring a more homogenous mix, which proved to be difficult to

achieve with large particles such as straw. The mix is then fed into the reactor, which

has an auger running down throughout the vessel. The auger is larger at the top to

accommodate the bulkier material, and becomes tighter as it feeds down the vessel;

this reflects the reduction in size of the mix as it degrades and mixes. An air pump

keeps the system aerobic by pumping air into the shaft, which has outlets into the

reactor itself. A water mister could be added to the air system to ensure the moisture

levels remained adequate for degradation. The shaft is attached to a motor/gearbox,

which could be run at a speed relative to the required retention time in relation to the

number of auger sections. The example in the diagram is a 20-day cycle, with 20 turns

of the auger turning at one revolution per day. Air can exhaust through the perforated

sidewalls of the reactor, providing that caking did not become an issue; this would

have to be assessed by experimentation. The material, at the end of its cycle, is fed

through an outlet pipe at the bottom of the reactor. Having the vessel upright allows
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gravity to help feed the material down, meaning less power would be needed than

using a similar but horizontal design. This also reduces the 'footprint' required by the

reactor. The material is continuously fed in and out ofthe bioreactor vessel. Another

modification might be a solar heating jacket that would heat up the material and may

increase the rates of degradation. A modification such as this would have to be

designed around the exhausting of the air, and would only be needed for the top

section of the vessel. Heat from the thermophilic activity in the vessel might be

circulated upward, encouraging the thermophiles in the upper part ofthe reactor.
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Figure 9.5.2.
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Page 1 of2

Software Version : 6.1.2.0.1 :019
Sample Name
Instrument Name : Carlo Mega
RackNial : 010
Sample Amount : 1.000000
Cyde : 1

Result File: \lpenkw3\Drill\Data\compostOO1.rst
Sequence File: \lpenkw3\Drill\Sequences\compost.seq

Date : 10/1210111:49:13
Data Acquisition Time: 10/1210111:23:51
Channel : B
Operator : Kate
Dilution Factor : 1.000000

Peak Component Time
# Name [min)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

0.277
0.517
1.145
1.505
2.870
3.403
4.052
5.157
5.618
5.696
5.893
6.133
6.907
7.394
7.572
8.068
8.362
8.594
8.751
9.045
9.444
9.564
9.836
9.987
10.143
10.660
11.103
11.257
11.447

-:
. I

I

I

Area
[uV*sec)

6226.94
3353225.01

3257.00
1494.55
282.00

1141.00
167.00

1789.00
6177.37
7280.13

21769.40
8525.10

4367431.98
33344.52
1374.00

22264.00
1017.00
1397.00
853.73

557614.27
988.50
189.00
549.22
642.78

1724.00
3906017.50

947.00
852.54

20188.72

12
Tome (min)

Drill oils report
Area
[%)

0.04
20.39
0.02
0.01
0.00
0.01
O~OO
0.01
0.04
0.04
0.13
0.05

26.56
0.20
0.Q1
0.14
0.01
0.D1
0.01
3.39
0.01
0.00
0.00
0.00
0.01

23.75
0.01
0.01
0.12

---I'



10/12/0111:4~:13 Result \\penkw3\Drill\Data\compost001.rst

Peak Component Time Area Area
# . Name (min] [uV"sec) [0/0]-
30 . 12.025 2384727.74 14.50
31 12.143 4894.00 0.03
32 12.520 10752.84 0.07
33 12.746 4601.66 0.03
34 13.243 217117.50 1.32
35 13.841 124824.50 0.76
36 14.390 199596.87 1.21
37 14.654 2895.13 0.02
38 14.857 675.00 0.00
39 15.002 913.00 0.01
40 15.330 108433.34 0.66
41 15.649 10874.66 0.07
42 16.013 1577.20 0.01 .
43 16.223 3854.10 0.02
44 16.471 11183.10 0.07
45 16.685 6875.80 0.04
46 16.757 6173.57 0.04
47 17.139 172417.00 1.05
48 17.467 5681.00 0.03
49 17.636 8351.92 0:05
50 17.817 3084.52 0.02
51 17.951 12046.29 0.07
52 18.271 607.95 0.00
53 18.454 14079.01 0.09
54 18.597 7712.78 0.05
55 18.793 234906.27 1.43
56 19.579 277925 0.02
57 19.786 8581.11. 0.05
58 20.043 2508.73 0.02
59 20.264 1260.90 0.01
60 20.914 246077.11 1.50
61 21.593 20290.00 0.12
62 22.015 4155.60 0.03
63 22.592 14714.45 0.09
64 23.128 5692.34 0.03
65 24.097 239314.64 1.46
66 24.785 13536.36 0.08-

16446497.50 100.00

___Waming - Signal level out-of-range in peak

,'.
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Software Version : 6.1.2.0.1:019
Sample Name
Instrument Name : Carlo Mega
RackMal : 010
Sample Amount : 1.000000
Cycle

Date : 1011210112:32:07
Data Acquisition Time: 10/1210112:06:45
Channel . : B
Operator : Kate
Dilution Factor : 1.000000

Result File: \\penkw3\Drill\Data\compostOO2.rst
Sequence File: \\penkw3\Drill\Sequences\compostseq

12
r.....[min)

Drill oils report
Peak Component Time Area Area
# Name [min) [uV*sec) [%]

1 0.288 1593.00 0.01
2 0.517 4252720.00 20.21
3 1.145 301.00 0.00
4 1.500 9n.00 0.00
5 2.835 269.00 0.00
6 3.362 1129.00 0.01
7 4.000 159.00 0.00
8 5.096 1868,50 0.01
9 5.540 7039.86 0.03

10 5.617 8041.30 0.04
11 5.814 24429.47 0.12
12 6.052 9922.48 0,05
13 6.823 4366671.52 20.75
14 7.313 37067.38 0.1B
15 7.4B7 1356,00 0.01
16 7.983 22549.50 0.11
17 8.280 1180.00 0.01
18 8.512 1539.00 0.01
19 8.668 683.00 0.00
20 8.966 672082.00 3.19
21 9.365 1005.00 0.00
22 9.477 180.50 0.00
23 9.767 1049.82 0.00
24 9.913 1736,67 0.D1
25 10.045 2443.51 0.01
26 10.622 6330887.50 3O.0B
27 11.035 1611.00 0.01
28 11.187 1360.81 0.01
29 11.374 30587.69 0.15

,
i
I
I
.\
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I
I
I
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10112101 12:32:07 Result \\penkw3\Drill\Data\composto02.rst

Peak Component Time Area Area
# Name [min] [uV*sec] [%]

30
31
32
33
34.
35
36
37
38
39
·40
41.
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

11.992
12.469
12.689
13.170
13.456
13.713
13.893
13.960
14.311
14.393
14.585
14.783
14.916
15.262
15.573
15.918
16.084
16.217
16.326
16.596
17.058
17.389
17.553
17.879
18.193
18.380
18.538
18.703
20.047
20.808
21.478
22.467
23.027
23.967
24.680

4321405.00
1282.68
4671.82

249067.64
869.70

1375.23 .
9130.85
9935.90

168620.91
51104.71
2923.00
2050.27
1439.01

14922.10
10655.18
1438.00
454.87
828.99

2176.63
9427.50

27684.47
1344.74
2482.29
4529.00
583.00

2594.95.
2538.35
41606.70
161891.52
62732.48 .
7314.00
1610.65
2264.85
m92.57
3241.43

20.53
0.01
0.02
1.18
0.00
0.01
0.04
0.05
0.80
0.24
0.01
0.01
0.01
0.07
0.05 .
0.01
0.00
0.00

. O.OL
0.04
0.13
0.01
0.01
0.02
0.00
0.01
0.01
0.20
0.77
0.30 .
0.03
0.01
0.01
0.37
0.02

21046431.50 100.00

Warning..; Signal level out-of-range in peak



Page 1of2

Software Version: 6.1.2.0.1:019
Sample Name
Instrument Name : Carto Mega
RackNial : 010
Sample Amount : 1.000000
Cycle

Result File: \\penkw3\Drill\Data\compost003.rst
Sequence File: \\penkw3\Drill\Sequences\compostseq

Date : 1011210113:29:41
Data Acquisition Time: 10/1210113:04:18
Channel : B
Operator : Kate
Dilution Factor : 1.000000

Peak Component Time
# Name (min]

1
2
3
4
5
6
7
,8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

0.278
0.500
1.480
2.821,
3.350
5.096
5.519
5.829
6.820
'7.322
7.505
7.899
8.006
8.295
8.522
8.681
8.966
9.159
9.377
9.485
9.n2
9.921
10.059
10.574
11.034
11.187
11.380·
11.949
12.068

I

I

'I
I

/1'',:

I
I

... V>... ..,
11

0"""-"' ....nll'i";
I II

12
Tme[min)

Drill oils report
Area
(%]

0.02
29.66
0.Q1
0.00
0.01
0.01
0.01
0.00

26.10
0.17
0.01
0.03
0.06
0.01
0.01
0.01
2.54
0.02
0.01
0.00
0.00
0.01
0.02

20.96
0.01
0.01
O.1~.
14.,3
0.04

Area
(uV*secJ

2438.81
4206223.74

1400.45
217.00
974.50

1503.50
1550.00
130.50

3700791.10
24257.90
1237.00
4854.99
8914.13
926.88

1459.13
996.59

360317.50
2481.00
1017.55
245.24
678,43
946.20

2209.22
2972718.15

1018.00
1172.68

20618,58
2004272.24
" 5506.00

I



10/1210113:29:41 Result \\penkw3\Drill\Data\compostOO3.rst

Peak Component Time Area Area
# Name [min] [uV"sec] [%]

30 12.472 662.23 0.00
31 12.695 4410.27 0.03
32 13.176 134387.53 0.95
·33 13.466 430.47 0.00
34 13.905 8772.31 0.06
35 13.973 8107.50 0.06
36 14.317 82341.13 0.58
37 14.397 35929.61 0.25
38 14.596 2561.00 0.02
39 14.794 1951.44 0.01
40 14.930 . 1454.77 0.01
41 15.270 19297.50 0.14
42 19.586 6992.73 0.05
43 15.929 .1045.00 0.01
44 16.223 970.33 0.01
45 16.408 1549.67 0.01 .
46 16.604 3300.00 0.02
47 17.069 33638.03 0.24
48 17.400 1028.35 0.01
49 17.566 1726.62 0.01

, SO. 17.888 3628.SO 0.03:>;,:-'i"
51 18.203 339.00 0.00...{· ::J 52 18.389 3212.08 0.02~......:. 53 18.546 3299.45 0.020{

.!.
54 18.715 55817.76 0.39;':-t 55 20.031 212514.36 1.50;J-
56 20.822 94245.72 0.66":;..

'f 57 21.518 5088.00 0.04
f 58 22.492 4359.46 0.03

' ../~~:." .. 59 23.046 2598.00 0.02
60 23.991 108753.93 0.77
61 24.696 5505.07 0.04

14180994.83 100.00
..

Warning - Signal level out-of-range in peak

..: 1
1
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SoftwareVe(~lon : 6.1.2.0.1:019
Sample Name
Instrument Name : Carlo Mega
RackMal : 010
Sample Amount : 1.000000
Cycle

Result File: \\penkw3\Dnll\Oatalcompost004.rst
Sequence File: \lpenkw3\Drill\Sequences\composlseq

Date : 1011210114:30:56
Data Acquisition Time: 10/1210114:05:33
Channel : B
Operator : Kate
Dilution Factor : 1.000000

1•
Ia:

Peak Component Time
# Name [min)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

'16
17
18
19
20
21
22
23
24
25
26
27
28
29

0.278
0.500
1.482
2.819
3.348
5.088
5.514
6.825
7.317
7.501
7.891
8.001
8.285
8.515
8.672
8.962
9.151
9.369
9.476
9.769
9.918

10.048
10.569
11.026
11.180
11.370
11.939
12.061
12.466

Area
[uV*sec]

1977.69
4288431.21

1293.10
231.50

1049.50
1720.00
2103.50

4154032.54
27323.46
1396.00
5217.51

10151.27
1315.22
1569.00
995.93

397163.05
2990.00
1134.15
264.37
671.67

1669.14
3059.89

3009338.30
1059.00
1109.52

19687.21
1918645.27

5734.00
582.64

"''''
~~
I I

12
Tme[min)

Drill oils report
Area
[%)

0.01
29.28
0.01
0.00
0.01
0.01
0.01

28.37
0.19
0.01
0.04
0.07
0.01
0.01
0.01
2.71
0.02
0.01
0.00
0.00
0.01
0.02

20.55
0.01
0.01
0.13
13.10
0.04
0.00

••••• ' ••~:T""'::".~



I
.: 'I'.~ .

'1

I
1

10/12101 14:30:56 Result \\penkw3\DriII\Data\compost004.rs

Peak Component Time Area Area
# Name [min] [uV*sec] [%]

30 12.683 4307.36 0.03
31 13.168 133025.n 0.91
32 13.463 435.23 0.00
33 13.730 808.01 0.01
34 13.901 6497.48 0.04
35 13.963. 7273.75 0.05
36 14.312 81515.82 0.56
37 14.394 34971.17 0.24
38 14.588 2133.00 0.01
39 14.786 1624.49 0.01
40 14.922 108727 0.01
41 15.264 18071.56 0.12
42 15.581 . 6554.45 0.04

.43 15.924 10n.50 0.01
44 16.090 342.86 0.00
45 16.217 616.89 0.00
46 16.326 590.45 . 0.00
47 16.402 769.79 0.01
48 16.599 3498.00 0.02
49 17.063 32030.41 0.22
50 17.395 1039.31 0.01
51 17.560 .1753.28 0.01
52 17.883 3808.00 0.03
53 18.196 376.00 0.00
54 18.383 3158.67 0.02
55 18.541 3472.78 0.02
56 18.706 51536.32 0.35
57 20.032 178590.78 . 1.22
58 20.813 81668.31 0.56
59 21.509 4680.00 0.03
60 22.482 3837.91 0.03
61 23.032 2285.09 0.02
62 23.9n 104040.39 0.71
63 24.687 5065.61 ·0.03

14644459.35 100.00

Warning - Signal level out-of-range in peak
. ,

I
i
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. "I~====.;.F.;.~.;.;,~;.:~HH=S=1=8==dlReviewed: 2. September 1997
Reviewer: K Wallgren

Chemical Engineering Department.

Substance

't'

Exposure.limlt ..,-

Synonyms
Sodium sulphate
Sulphuric acid disodium salt .

. -.:, . .'

. : .

Hazards Harmful if ingested in quantity.
Irritating to eyes, skin and respiratory system.

Exposure Control" Safety glasses, lab coat and' chemical-resistant
gloves.

End Storage

Disposal
••••••• __ ••• ••••••••• • •••• _ ••• ••••• ••• .. .. 0' '" •• _ ••• __ • _ •••• _ •• _ ••••••••••••••••••••

Chemical store:

Fire fighting
measures

Mix with a combustible material and incinerate.
Small amounts can be nm to drain with excess
water.

Noncombustible.
'" May emit toxic fumes in fire.'

First Aid

..
.'

~.. . ...' ...
. " ~~.".: ..
•• , •• z ' ....,

... ' ,'.' ..---~.., ..,_.- .. :.... -, ':- .... _._.__ . . ... :.-: .... :....

.':~'"Long term . '" .. '

, .

'" . ", ;.:~ . :.:.:..;.'.~' ....:"':'-':.;: .•. ':' :.:.~ .• :.,:,',:,::,:, .'_ ., .•.•. ", ,.,' '~;'" :.:. .•...•.. .. •••• -e .' .....

Ingestion -: .Wash' mouth with water and give'
. '. ···,····"plentyor-water to drink. In severe

...::.':.':-::: :::·...·cases obtain.medical attention: ... '.

Eye contact. - Immediately flush with copious.
.amounts of water at least' '15 min.

Inhalation - Remove to fresh air. .'

Skin contact=Wash with soapandcopious: ..
.. ; amounts of water.

.............

' ..

'Short 'term,

, .
'. ,



.•... __ ._, ._- __ ._ .. ..:...:..:.._" . ..:.:.,_ .•. " .. ,_: .• --.~ ..;=.:....:.:;...:_:....:. ......

I COSHH
Form: D7 ...LReviewed: 15. August 1997

Reviewer: K. Wallgren'

F='=-===..........-=== ........==p=======......-= ........=========-===========;=; .-."'''''':'.;-~'.'.,'c.'.

Substance Dichloromethane

..,

Synonyms Methylene chloride

. '. ",'.

....__ ..._. '7_: :':'.:.':__.. _.:.:

Haza rds ... Carcinogen, irritant.
May. causemutagenic .or teratogenic effects.
May be fatal if swallowed or·inhaled.'" ..
Harmful if absorbed through skin.

........~.

Exposure Control Safety glasses, lab coat and nitrile gloves.
Use only in fume cupboard. \

. _
. -- . . '. .

," ... - .._. __ .. '.... ' _- _ ....... _ - ...... " ..- .... .......

End Storage ...·:-·:.:·...:._.. Solvent store ..-··'.: .

Disposal. .... ., Mix' or dissolve with combustible solvent and .. '
..--..... - -.--~..~.~:...~_.~:~...incinerate," :.:::~-~='..~. . ... ., -..~. ..'" -.•

.. -' '" .

. "" .
: .;._; ...-.-----

.. ' -:':.-"_; .• ":_ :.' .

. -' .••... ~_ : "- :-.; ..~_.:..':":'::_:_:~:.::-'.:::. _.' , :.. :'.',':'':;'::-:;'':.:.'7-: - ... .....;.. : . , ..; ... _""- .
. .

•. •' ..... '__'M';' .'"measures '" . -."
.'."

Noncombustible.
May emit toxic. fumes in fire .

.--:-- . • .._... "._,,'. h.'_,·_··.
'. . .Fire fighting .-_......_.

" .. '

..~'.," - ~. . _ _. .. . . "_' .-; ,,-

First Aid-. :. .' _.:,::'-~,-,-;.EyecoritacteImmediately 'flush With copious':" .. -,.'
.-amounts of water at least ·15min. . .:'.

..
., .
:.- .- .:.. :~.. ,.: "'"

!" .' _...._._. Inhalation -v-Remove to fresh air'; rest and keep.· . ..._...._ ..
-.:~.-:-.::::-..::.:::::.:~:-~::-::.::~:~-...~....: :.....-:::'···.-:~warm.In severe casesobtainmedical '..:.~-::..-.'.....-

.............. -"-:':.::-:;::-:.~:',~.~:::,::;:~;:;,:.,,:..:;,.'-.'':",:-:';~::':.:~~"'~'~:attenH6n:".: ., :."-•...:~.~'.-..-:.::':.'.-.:--::::..~~_.~ " .
_ __,' •••••. '.. ~ •• ,•.•. ~. ,. ~01_ _.-:.;..::· .:.: •• ~~~~ .-: ; .. :".~_. • •••• __ .~ .•• _ •• _,,~._. ;._ ,'. 00". _;- : ~ •...:-.--~ ;,..-~ " : __ _;.. .: .. -...:.:....;..:~.- .. ---.-.
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COSHH
Form: D16 I

Substance

Chemical Engineering Department

Diethyl ether

o

r. .~..

Synonyms

Exposure Con~r~l. Safety glasses, lab coat and chemical-resistant
gloves'.
Use only in fume cupboard.

Hazards :

'..

Ether
Extremely flammable, possible mutagen.
May be harmful by inhalation or ingestion.
Irritating to eyes..respiratory sy~tem and skin.

End Storage Solvent store .:
Keep tightly closed, away from heat and open
flame.

Disposal

_', .

..
::::.'"

Contact chemical waste disposal company.
At no circumstances allow to enter drains .

."

Fire fighting
measures

Carbon dioxide, dry powder or vaporising liquids. .
Forms explosive mixtures in air.

Firs·, Aid

Exposure limit ..

Wash mouth with water provided . .
.person is conscious and give plerity
of water to drink. Obtain medical . .
attention. <D

Eye contact - Immediately flush with copious
amounts of water at least IS min. If
irritation persists, obtain medical
attention. .,...

Inhalation - Remove from exposure, rest and
keep warm. In severe cases obtairi
medical attention.

Skin contact - Wash with soap and copious
amounts of water. In severe cases
obtain medic~i attention.

" .. '

TWA (Shrs):
1200mg/m3

Short termLong term

.\.
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'HOotnt:
• Add 1 drop of NIT 1 and 1 drop of NIT 2 reagents to
1he NCb cupule.

• MM 5 minutes. • fed color IndIc:atn • po.ltIve
reaction 10 be recorded on the muIIlheet.

• A negative reac:tIon may be due 10 the prodUdIon or
nIIrogen : add 2-3 mg of Zn reagenlio the NCh cupula.

• MIK _S- - minutes. a cupula remaining coIorIeu
indicates a po.ltlve reac:tion 10 be recorded on the
IelUllIheet. If the aJpuIe turns pInk-mi. the reaction
II negative -at nilratet were presenl In the tube and
__ reduced ID nitrite by the zinc.

The reac:IIon used for the identification of the bacterium
la hi recIuctIon 01 nitrates. It Is poslIlve when efthar of
the above reactions (production of NCh Of tu) Is
PQIIINe.
The ptQdudIon of tu may. however. be uaefuI alone at
III lICIcI'iIIonaI test (refer to the AnaIyIIcaI Pro. Index).

'TRPtMt:
Add 1 drop 01 JAMES reagent. The reaction labs place
knmedIaIeIy : I pink color whk:ti develops In the whole
QIpIjIIndieates a positive reac:llon to be reconIed on
the ""* Iheet.

•Aaalmllatlon teals :
0bMrYe the - baderlaI growth. AA opaque c:upuIe
Indicates a poIltive reacllon.
CJccaIlonaIIy. • wpule may alloW weak gIOWIh. In this
case. the results ,houId be reeorded as + 011 ± by
comparing the intensity. ID IIl8I of the other lesII on the
1Ir1p;
Once these reacilnga have been .made. ldentlfic;allon
should be poIdIIe .. lildIcated In the paragraph
'derdIficaIIon" . ...__. in the following C88e1. the S1rip
I!IJIt be reInCubatecI :
• II the profile cannot be found In !ha ANIIytic:aI Profile
IndeIt •

• II the fo&JwIng noIe Is -indicated lor the profile
1lbIa!ned'
. • IDENTIFICATION NOT VAliD

8eFO~ 48-HR INCUBATION
Remove the NIT 1, Nii' 2 and JAMES reagentS by
IUdIon ind IrnrnediaIeIy cover testa NCh and TRP with
InInnI 011 10 thai II' COnvex rnenIsc:w Is formed.
Reklcubate the strip M WC for • furIher 24 hoUIs and
read !ha all the testa again. elIC8pt the fil'lt 3 (N03, TRP
and !!bW which should only be read onc:e at 2.. houri:

QUALITY CONTROL
The media, strips. and reagenta are syatemalicaly quality eontroIIed fIt'varIous stages of their manufactura. fOf those
~ wIsII to p8Iform their own ~ control tests with the Ilrip. It Is recommended thai the foIowIne IIDdI cuItu, .. be
Used, 10 obtain the resultS below :

Identification can be obtained :

...Jng the Analytical Profile Index : the pallem oIthe
reac:llonl obtained must be coded Into a numllical
pron'e.
On the mull aheet. the tests are aeparaled Inlo groupa
01 3 and • number 1. 2 or .. la IndIcatad for ead!. By
adding the value. corresponding 10 positive readlons
within each group. a 7-digit number la obIalned which
conatltutes the numerical profile. The clddase reaction
constitutes the 2111 teal and has a value of .. II • la
poaltive. -

• using the identification software by manually enIBring
the 7-dIgit numarlc:al pro1Ile via the keyboard.

DISPOSAL OF USED MATER1AL
After \ne. all ampoules. pIpetIea. .trips and Incubaticn
boxlll .houIcI be autoclaved. Inc:IneI1IIed. Of Invnarsed In
a disinfectant for decontamination prier 10 disposal.

UMITATIONS
The API 20 NE 1)'IIetil II InIended uniquely for the
Identification 01 those non-fastidlcua. non-enIeric Gram-
negetive rods Included In the databll8 <see Identification
Table at the arid of thll package inseIt). It cannot be used
10 identify any other microorganisms Of 10 exclude their~~. .

2.

--HO! frRF 2!J!~ URE ~sc GEL PNPG IGLul IARAI MNE IMAN NAG' IMAL 1t'.NT1 I,."D 1.. ",1 IMl.T letT PAC OX

+ + +. + - + + + + + + + + + + + - + - - +

• - - v v - + - + - - + + - + + • • • - +

- -. - - - - - - - - - - - - .- + - • + + +

- - - - + • - + + + + - + + - - - - - - +4

P,oflles fer teats &lli 10! PAC! cblalned .n_, 48 hours of Incuba~ afte, aJlture on Trypcaae Soy agar •
• WeliiaeadioN may cccur. . '.

1.Aeromonas hydropha. ATec 35854 3. AklII1gene$ faeca& ATCC 35655
2. PatudomCNi .... fIIglnoA ATCC 27853 ;... SphitlgobacteliummultiVOflim ATCC 35858

ATCC; Amerlcan Type Culture Colleetion, 10801 Univerlil)',~a'd. Manassas, VA 201 10-2209. USA.

··"":"iuMb~ ..

h. t. II. '.'". .
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ReSULTS

TESTS SUBSTRATES REACTlONSIENZYMES
NEGATIVE POSITIVE

tilT 1 +JiIT 2 15 mI.Jl
NO. potasaium nittate

redudlon of nitrates to ~ coIorten pink~

reduction of nitrates to nitrogen pink ~ coIor1eS$
JAMES I immediate .

TRP tryptophane Indole produc:tJon ooIoriess
pinkpale green I yellow

m.y gluooM acldifica1lon blue to green yellow

~ arginine arginine dihydrolaae yellow orange Ipink I red

~ urea - yellow orange J pink I red
ESC esaIIln hydrolysis ~se) yellow grey I brown I black

GEL gelatine hydroty&ls (protease) no pigment diffusion of
(with India Ink) diffusion black pigment

PNPG IHIlttcphenyJ+l). ~0$1dase c:oIortell yellow .galactopyranoside

IGLUI glUC058 assimilation transparent opaque

lARA! arabinose .&aimilation Iran8j:larent opaque

IMNE! l'II8M08e assimilation transparent 'paque

!MAN! mannitol aulmllation transparent opaque

!NAG! N-acetyl-glucosamlne .ssimilation transparent opaque

(MAL! 1118"OIe assimilation tranSparent opaque

(GNTI glucona1e ;mimIlation transparent opaque

!CAP! caprate assimilation transparent opaque

!AOI! adlpate assfmUa1ion lransparent opaque

!MLT! malate a»imllation transparent opaque

l£I!J citrate assimilation transparent cpaque

!PAC! phenyJ-eoetate U$lmilatlon 1ran~ent opaqUe
OX/1·2 min

OX
. tetramethyl-p-

C)'tochrome oxidase ooIor1esa violetphenylene dillmine

I

l
I ~

. .~

PROCEDUREp. I
IDENTlFtCATlONTABlE p. II
BIBLIOGRAPHY . p. III
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MIDI LABS

Enclosed are your sample results, including 16S rRNA gene alignment profiles and
phylogenetic tree dispJays.

The bacter!al .ide~tifications assigned i.n this report are based on 16S rRNA gene
se9uence slmll~nty ..Sequenc:s analysis was preformed using PE Applied Biosystem's
Micro Seq ~M microbial analysis software and database. The top ten alignment matches are
presented m a percent genetic distance format. In this format a low percent indicates a
close match.

Also provided with the report are neighbor joining (Saitou and Nei, Mol. BioI. Evol.
4(4):406-425, 1987) phylogenetic trees. The trees are generated using tlie top ten
alignment matches.

Concise alignments are also included. These illustrate positions that differ between your
sample and the first match in the database. The position of the mismatch is read
vertic any from top to bottom and the sequences are read horizontally from left to right.

The results provided in this report are intended for research use only and will be kept
confidential.

The protocol used to generate the 16S rRNA gene sequence data is as follows:

The 16S rRNA gene was PCR amplified from genomic DNA isolated from bacterial
colonies. Primers used for the amplification correspond to E. coli positions 005 and 1540
(full length packages) and 005 and 531 (500 bp packages). Amplification products were
purified from excess primers and dNTPs using Microcon 100 (Amicon) molecular weight
cut-off membranes and checked for quality and quantity by running a portion of the
products on an agarose gel.

Cycle sequencing of the 16S rRNA amplification-products was carried out using .
AmpliTaq FS DNA polymerase and dRhodamine dye terminators. Excess dye-labeled
terminators were removed from the sequencing reactions using a Sephadex 0-50 spin
column. The products were collected by centrifugation, dried under vacuum and frozen at
-20°C until ready to load. Samples were resuspended in a solution of formamidel blue
dextran! EDTA and denatured prior to loading. The samples were electrophoresed on a
ABI Prism 377 DNA Sequencer. Data was analyzed using PFlApplied Biosystems DNA
editing and assembly software.

Thank you very much for choosing MIDI Labs for your bacterial identification needs.
Do not hesitate to contact MIDI Labs should you have any questions or cominents
concerning the data reports .

. Please keep us in mind for your future identification or sequencing needs.

•• I I • _... ~ .. - 'I • • 1 .. ...."',._.. -.... ....... .. -:; .. , ., ... I M ... ~
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REVIVAL OF CULTURES

Care should be taken when opening ampoules of freeze-dried cultures as the contents are in a
vacuum.

Make a file cut on the ampoule at the mid-point of the cotton wool plug and crack the glass
by applying a red hot wire or glass rod to the fiJe cut. Allow air to enter slowly before gently
removing the pointed part. If the ampoule proves difficult to crack. use the ampoule snappers
provided (place one at either side of the file cut) and physically snap the ampoule using thick
wadding or gloves to protect the operator. Discard the upper part of the ampoule and the
cotton plug into a disinfectant solution.

After flaming the open end of the ampoule, up to 0.5 ml of a suitable liquid medium should
be added to the ampoule and the contents mixed, avoiding frothing. The suspension should
be sub-cultured into suitable solid and liquid media. The numbered filter paper strip should
be transferred on the tip of a Pasteur pipette or with a loop to the surface of the solid medium
with the number upwards. Ready recognition of the culture is thus ensured and confusion is
avoided if several ampoules are opened at the same time. If a liquid medium only is used for
resuscitation, then the paper strip should be placed into an inoculated tube of medium. It is
advisable to prepare more than one subculture from the ampoule contents as a precaution
against accidents. Sub-cultures should be incubated at the optimum temperature for the
organism under appropriate gaseous conditions.

Resuscitated freeze-dried cultures tend to exhibit a lengthened lag period, but if after
prolonged incubation the culture appears to be non-viable, the Collections should be
informed. The number and date on the paper strip should be quoted, together with details of
the growth medium and its pH, the incubation temperature and time, and any gas mixture
employed.

Ampoules not opened soon after receipt should be stored in a cool, dark place (e.g. a
refrigerator). They should not be stored exposed to light. particularly direct sunlight. N.B.
Organisms should be sub-cultured at least twice before they can be optimally used in
experiments.

The Catalogue numbe; of the culture is read from the rounded end of the ampoule: thus the above number is
9086 not 9806. The date the culture wasfreeze-dried is stamped on the reverse side of the paper slip.



Appendix

D



PRE-SCREENINGDATA
Sample correc.toFtotal spike
control1a7944728 7748430 5273614
control1b7708163 7345245 5152631
control2a7714481 8064014 5652209
control2b8158636 8142793 5396715
A1a 5883768 5822665 5351061
A1b 6578102 6051950 4974717
A2a 5071311 4885935 5209560
A2b 5000419 5025197 5434009
D1a 5118861 5073041 5358814
D1b 5269327 5315047 5454131
D2a 7507210 5790554 4170760
D2p . 5810359 5952999 5539958
E1 '1194950211351964 5136826
E2 1425599513618213 5165308
E3a 7116344 7072737 5374081
E3b 7091317 7083691 5401400
F1a 6174765 6174765 5407215
F1b 6229418 5754157 4994682
F2a 6792917 6615201 5265752
F2b 6854353 6837566 5393972
J1a 6028159 5916152 5306745
J1b 5852459 7460811 6893206
J2a 6694654 6972042 5631259
J2b 6657495 6918123 5618897
MuM1a 1565327617847459 6165166
MuM1b 1681848716943910 5447539
MuM2a 7731475 8779425 6140127



Sample Average
Control 7881502
A 5633400
D 5399516
E 7103831
F 6512863
J 6308192
Table of Results

correction
Sample to F1a Average SID total spike
controlla 7944728 7881502 186241.2 7748430 5273614
controllb 7708163 7345245 5152631
control2a 7714481 8064014 5652209
control2b 8158636 81427_93 5396715
Ala 5883768 5633400 646481.8 5822665 5351061
Alb 6578102 6051950 4974717
A2a 5071311 4885935 5209560 '
A2b 5000419 5025197 5434009
D1a 5118861 5073041 5358814
Dlb 5269327 5399516 296933.4 5315047 5454131
D2a 7507210 5790554 4170760
D2b 5810359 5952999 5539958
E3a 7116344 7103831 12513.5 7072737 5374081
E3b 7091317 7083691 5401400
F1a 6174765 6512863 312128.6 6174765 5407215
Flb 6229418 5754157 4994682
F2a 6792917 6615201 5265752
F2b 6854353 6837566 5393972
J1a 6028159 6308192 373321.7 5916152 5306745
J1b 5852459 7460811 6893206
J2a 6694654 6972042 5631259
J2b 6657495 6918123 5618897

D2a not used in averages - maybe an air bubble in the spike measurement, as it is
considerably less than all the other figures.
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Pre-screening of V, W, Y, Z
Area V W y
Total 843787 750487
Spike 479668 425335
Total-spike .364119 325152

Z
744501
440896
303605

Control
775398 1029665'
410248 441939
365150 587726

Area V W Y Z Control
Total-spike 364119 325152 303605 365150 587726

Cor. to V
Cor toW

V W Y
364119 366687
322874 325152

Z Control
330304 426939 637901
292890 378579 565645



" _.,,~}. Pre-screens2
Sample cor.to F1a Average SID total spike·
control1a 7944728 7881502 186241.2 7748430 5273614
control1b 7708163 7345245 5152631
control2a 7714481 8064014 5652209
control2b 8158636 8142793 5396715
A1a 5883768 5633400 646481.8 5822665 5351061
A1b 6578102 6051950 4974717
A2a 5071311 4885935 5209560
A2b 5000419 5025197 5434009
D1a 5118861 5926439 5073041 5358814
D1b 5269327 5399516 296933.4 5315047 5454131
D2a 7507210 5790554 4170760
D2b 5810359 5952999 5539958.
E1 11949502 11351964 5136826
E2 14255995 13618213 5165308
E3a 7116344 7103831 12513.5 7072737 5374081
E3b 7091317 7083691 5401400
F1a 6174765 6512863 312128.6 6174765 .5407215
F1b 6229418 5754157 4994682
F2a 6792917 6615201 5265752
F2b 6854353 6837566 5393972
J1a 6028159 6308192 373321.7 5916152 5306745
J1b 5852459 7460811 6893206
J2a 6694654 6972042 5631259
J2b 6657495 6918123 5618897
MuM1a 15653276 16235882 582605.5 17847459 6165166
'MuM1b 16818487 16943910 5447539 .

r MuM2a 7731475 7731475 8779425 6140127
I
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Bioremediation Data, Screening Tests (1)

Sample Total Peak Area Mean+SD % Remediation Peak Heights PH2
+ rating (1-10) 1 (%oftotal) (%)

Al 8049625 8722095; 34 621823(7.7) 4253154(52
A2 9394565 672470 (11) 725947(7.7) 5021030(53

4
A1+ 7944889 8349359; 37 592061 (7.5) 4050335(51'
A2+ 8753829 404470 (10) 675464(7.7) 4639132(53'

Bl 10921065 11273620; 14
B2 11626175 352555 (+15) 8

Bl+ o • 11005928 o 11048577; 16
B2+ o. 11091225 '42648 (+20)

Cl 8946055 9445541; 28
C2 9945026 499485 (3) 6

C1+ 8587125 8904493; 32
C2+ 9221861 317368 (4)

Dl 6844726 6978035; 47 535189(7.8) 3608009(52
D2 7111343 133309 (28) 559307(7.8) 3788041(53

1
Dl+ 6524743 6780098; 48 530733(8.1) 3591250(55
D2+ 6971052 187809 (27) 619562(8.9) 4246733(60
D2+ 6844500 524242(7.7) 3552126(51

El 9920948 8121804; 38 . 773247(7.8) 5258669(53
E2 6322660 1799144 (17) 2 495584(7.8) 3347301(52

El+ 8766136 7451324; 43 2 700839(8) 4811662(54
E2+ 6136512 1314812 (19) 467588(7.6) 3138872(51

Fl 8921951 8465340; 36 696388(7.8) 4778092(53
F2 8008729 456611 (13) 3 627537(7.8) 4274254(53

Fl+ 7807339 7698628; 42 633517(8.1) 4318672(55
F2+ 7589917 108711 . (17) 596427(7.9) 4066432(53

Gl 13790152 20209765; +53
G2 26629378 6419613 (+107%) .'

10
Gl+ 12421539 12351093; 6
G2+ 12280647 70446 (+34)

o'

HI 12649911 11307881; 14 ,



1-12 9965851 1342030 (+16) 9

H1+ 12523029 11432135; 13
H2+ 10341241 1090894 (+24)

11 9586784 9143122; 31 746515(7.8) 5134873(53.
J2 8699460 443662 (6) 5 678580(7.8) 4657082(53.

11+ 8614897 8677492; 34 663031(7.7) 4535975(52.
J2+ 8740087 62595 (6) 671685(7.7) 4621375(52.

Control 1 10916218 9749090; 26 7
Contro12 8581962 1167128 (0)

Controll+ 10597733 9242667; 30 7
ControI2+. 7887601 1355066 (0)

Made-up-rnix 1 12231460 13770465; 0 931775(7.6) 6602005(54:-_ ..
Md-up-rnx2 15309470 1539005 (+41) 1153017(7.5) 8289727(54

Md-up-rnx 1+ 11799410 13164072; 0 892680(7.6) 6288413(53
Md-up-rnx2+ 14528734 1364662 (+42) 1098486(7.6) 7841835(54:
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Drill Cutting Preparation for Simulated Drill Cuttings

Limestone (>1 mm, kg) = 1.421
«1 mm, kg) = 2.476

Drilling Fines (kg) = 2.355

0.982 kg of cuttings was 600 ml as a crushed rock density with drilling fluid.

Density = 0.982 = 1636.7 kg/m"
.0006

Volume of simulated cuttings
1.421+2.476+2.355 = 3.82 x 10-3m3

1636.7

= 3.821

Need 7.5% of oil on cuttings

• 0.075 = __ a_
a+3.82

a = 0.3091

Novatec 83:17

So 0.309 = 0.373 1= 373 m) oil
0.83



GC Analysis Results for 1sa Reactor Experiments

The following tables illustrate the ratio of shortlmediumllong chain hydrocarbons.

Retention Day I Day2 Day3 Day4 Day 12
Times 0/. Area %Area %Area %Area %Area
0-5 0.045 2.221 0.062 0.66 0.104
5 -10 0.81 19.686 1.072 3.727 0.146

10 -12.5 59.277 44.223 57.357 55.564 56.17
12.5-15 33.411 26.738 34.647 33.998 36.196

15+ 6.456 7.133 6.862 6.05 7.381
Table 1: RI

Retention . Day~. . Day2 Day3· . Day4 Day 12
·Times %Area %Area %Area %Area %Area
0-5 0.291 0.032 0.016 0.871 2.864
5 -10 3.694 0.59 2.585 7.519 1.351

10 - 12.5 58.441 59.853 57.814 53.718 51.722
12.5 - 15 32.1 33.53 33.967 32.223 37.767

15+ 5.472 5.993 5.473 5.668 6.297
Table 2: Xl

Retention Day 1 Day3 Day4 Day12
Times %Area %Area %Area %Area
0-5 0.020 0.221 0.353 5.420
5-10 0.345 3.500 6.038 2.080

10 - 12.5 60.309 57.297 54.442 51.890
12.5 - 15 32.857 33.089 33.281 34.610

15+ 1.489 5.892 5.886 5.996
Table 3: R2 +X2

Retention Day I Day2 Day3 Day4 Day 12
Times %Area %Area %Area %Area %Area
0-5 0.032 0.579 0.525 0.617 0.406
5 -10 2.105 10.253 6.975 8.328 0.359

10 - 12.5 58.931 51.16 54.203 52.029 56.301
12.5 -15 33.234 31.68 32.435 33.357 . 36.107

15+ 5.698 6.328 5.861 5.67 6.828
Table 4: Control

'OJ



Time Day 1 Day2 Day3 Day4 Day12
Eluted 0/0 Area %Area 0/0 Area %Area 0/0 Area

5 173312 113323 78745 271905 17575
11 2722157 17397645 1748322 1929863 673071
14 1490730 9475086 1021931 1124665 486665
16 231400 1509942 166648 204973 81938

Total 4691346 29270800 3044756 3616030 1301316
Constant 2.82 18.43 2.03 2.5 1

5 61369 6150 38718 108694 17575
11 963907 944095 859620 771463 673071
14 527863 514172 502466 449585 486665
16 81938 81938 81938 81938 81938

Total 1661191 1588399 1497055 1445509 1301316
Table 5:xi

Time Day 1 Day2 Day3 Day4 Day12
Eluted 0/0 Area %Area 0/0 Area %Area· 0/0 Area

5 63606 281844 666802 126942 -22807
11 5226979 633162 40081147 1881198 8732516
14 2844059 382822 23521382 1144026 5513833
16 502091 65574 3903889 206014 990069

Total 12086720 1431735 90627300 3405453 15632080
8878488 70326710

Constant 7.66 1 59.53 3.14 15.1
5 8307 281844 . 11200 126942 1511
11 682653 633162 673247 1881198 578370
14 371439 382822 395091 1144026 365191
16 65574 65574 65574 206014 65574

Total 1159547 1431735 1181285 1083951 1035340
Table 6:RI

Time Day I Day3 Day4 Day12
Eluted %Area 0/0 Area %Area %Area

5 61408 93560 118876 27040
11 39389209 1521734 1071710 1333~27
14 20947714 874864 649158 889610
16 '3476683 157495 115860 154996

Total 66057140 2673215 1968548 2585092
Constant 30.01 1.36 ' 1 1.34

5 2046 68827 118876 20212
11 1312640 1119452 1071710 996666
H 698080 643587 649158 664986
16 115860 115860 115860 115860

Total 2201345 1966530 .1968548 1932364
Table 7:X2 + R2



Time Day 1 Day2 Day3 Day4 Day 12
Eluted %Area %Area %Area %Area %Area

5 58620 196339 203988 110023 8075
11 1628797 971768 1573997 687355 1266232
14 914377 600903 936962 440667 812065
16 158652 101128 171371 74902 153563

Total 2784484 1914904 2924168 1321073 2249057
Constant 2.12 1.35 2.29 1 2.05

5 27675 145421 89158 110023 3939
11 768980 719755 687955 687355 617618
14 431691 445068 409523 440667 396093
16 74902 74902 74902 74902 74902

Total 1314597 1418303 1278081 1321073 1097002
Table 8:Control

Code Water Volume(ml) OilVolume (ml) %Oil
Blank 18 3.0 6
RI 18.5 1.5 3
Xl 16 2.S 5

R2+X2 18 2.0 4.Table 6:RetortAnalySIS,day 12

,
\..
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;~BORATORY CONTAINMENT LEVEL 1 •
CUSTOMER INFORMATION SHEET

Laboratory C~ntainment' Le'Ve1 1 is suitable for work with
agents in Group 11. Although defined as unlikely to cause
disease by infection, sorne agents in this group arc
nevertheless hazardous in other ways (i.e. arc allergenic or
may be toxigenic) and due precaudons must be taken.
Guidance on respiratory sensitisation is available2.
Laboratory personnel must receive suitable and sufficient
information. instruction and training in the procedures 10 be
conducted in the laboratory.

I. Tbe laboratory should be easy 10 clean. Bench
surfaces should be impervious to water and
resistant to acids. alkalis, sol'Vents and
disinfectants.

2. Effecti'Ve disinfectants should be available for
immediate use in the event of spillage.

3. If tbe laboralory is mechanically 'Ventilated. it is
preferable to maintain an inward airflow while
work is in progress by extracting room air to
atmosphere.

4. All procedures should be performed so as 10
minimise the production of aerosols.

s. Tbe laboratory door should be closed when work is
in progress.

6. Laboratory coats or gowns should be worn in the
laoor:llory and removed when leaving the
laboratory suite.

7. Personal protective equipment, including protective
clothing. must be:

(a)
(b)
(c)

stored in a well-defined place;
checked and cleaned at suitable intervals;
when discovered 10 be defective, repaired
or replaced before furIheT usc.

8. Personal protective equipment which may be
contaminated by biological agents must be:

(a> removed on leaving the working area;
(b) ke~ apart from uncontaminated clothing;
(c> decontaminated and cleaned or, if

necessary. destroyed.

I Some.,.as ....._lei qualiry rill' inclusion ill dais JIOIIP ""'7 be
pathocaIs c1.,imals 01' planlS1_ Appcndill 20)· of c:alegorisarion cl
poIIhoemIlICCCIdin, 10 Jw;anI :wIconIailllllClll "*IOria (HMSO I99S).
Ccnaia addirional conlllll __ spccitlcd by Apit1lIIU~ Dcponmcntsma, be IIeCCSS:IIY 10pmcnt !heir IeJease 10 dae Cllvironmen1.

1S« ~i", .. dama :IIWOIIt • how 10 conIn>I n:spinlory scns;rism
1994 HSE Boob ISBN0 1176 0661 9

• ....,.,. 31 a. 32 Advisory Comminee 011 ~ hlhoJcnl (Ref)

9. Eating chewing. drinking, taking medication,
smoking. storing food and applying cosmetics
should be forbidden.:

10. Mouth pipetting should be forbidden.

II. The laboratory should contain a basin or sink that
can be used for hand washing.

12. Hands sbould be decontaminated immediately
when centamination is suspected and before
leaving the laboratory.

13. Bench tops should be cleaned after use.

14. Used glassware and other materials awaiting
disinfection should be stored in a safe manner.
Pipettes, for example, if placed in disinfectant,
should he totally imrriersed.

IS. Contaminated materials whether for recycling or
disposal. should be Stored and transponcd in robust
and leakproof containers without spillage.

16. All waste malerial, if ROllO be incinerated. should
be disposed of safely by other appropriate means.

17. Accidents and incidents should be immediately
reported to and recorded by the person
responsible for the work or other delegated person.

Whilst NelMB believes the information contained herein to
be correct, it is the responsibility of the recipient 10 ensure it
is accurate. up to date and compliant with current Health &.
Safety legislations.



LABORATORY CONTAINMENT LEVEL 2

laboratory Containment level 2 must be used for work with biological agents in

Hazard Group 21. Laboratory personnel must receive suitable and sufficient
information. instruction and training in working safely with agents in Group 2.
A high standard of supervision of the work should be maintained.

1 Access to the laboratory is to be restricted to authorised persons.

2 There must be specified disinfection procedures.

3 If the laboratory is mechanically ventilated, it must be maintained at an
air pressure negative to atmosphere while work is in progress (see

paragraph 17 below).

. 4 Bench surfaces must be impervious to water, easy to clean and

resistant to acids, alkalis. solvents and disinfectants.

5 There must be safe storage of biological agents.

6 Laboratory procedures that give rise to infectious aerosols must be
conducted in a microbiological safety cabinet. isolator or be otherwise

suitably contained.

7 There must be access to an inCinerator for the disposal of infected
animal carcasses (see paragraph 24).

8 Personal protective equipment. including protective clothing. must be:

(a) stored in a well-defined place;

(b) checked and cleaned at suitable intervals:
(c) when discovered to be defective. repaired or replaced before

further use.

9 Personal protective equipment which may be contaminated by

biological agents must be:

(a) removed on leaving the working area:
(b) kept apart from uncontaminated clothing:
(c) decontaminated and cleaned or. if necessary, destroyed.

10 There should be adequate space (24 m3) in the laboratory for each

worker.

11 The laboratory door should be closed when work is in progress.

I Some agents in thiS group may be pathogens of animals isee Appendix 20). Celtain additional
control measures specified by Agricuhure Departments may be necessary to prevent their release
to the environment.
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Total
Spike
Cor.total

Rotating Drum Reactor 1
1Rhodlstar 1Rhodlend 2 start 2 end 3 start 3 end 3 end/tap 4 start
1190610 384508.4 1049453 931548.3 1053886 665768.7 967562.6 914821.4
446169.6 416692.6 450399.4 448300.8 439673.6 373003.3 42n71 419217.6

to 3 start 1173275 405714.4 1024461 913621.4 1053886 784767.6 995648.5 959460.7

% left 4end
1 34.6 Rhod 802653.6
2 89.2 control 454937.5 380080.9
3 74.5 Consotia
4 80.8 J 775723.3



Rotating drum reactor 2
SPIKE TOTAL

1, 1/6 462719.4 - 954688 22-Aug
1,2616 461914.4 478035 22-Aug

cor to each other
954688

·478868

corr to 1,1/6

2,1/6 464543 1171383 22-Aug 1171383 1166783
2,2616 439571.2 612548 22-Aug 647347 644805

3,1/6 517939.4 1496882 09-Aug 1496882 1337292
3,2616 483737.8 922447 09-Aug 987665 882365

4,1/6 619188.5 1071525 1~Aug 910758
4,2616 526288.3 765394 1~Aug 526288

%reduction %
Reactor 1 49.84 50.16
Reactor2 44.74 55.26
Reactor3 34 66
Reactor4 42.22 57.78

.·'"%reduction
V 49.84
W 44.74
Control 34
ROOd 42.22



Reactor Experiment 1 Rhodococcus
END percentage percentage % reduction % reduction
ml SG g ml g ml g

300.00 1.00 300.00 33.99% 18.18% 0.00% 0.00%
520.00 2.50 1300.00 ·58.92% 78.79% 0.00% 0.00%
62.50 0.80 50.00 7.08% 3.03% 65.28% 65.28%

882.50 1650.00 100.00% 100.00% 11.75% 5.39%

520.00 2.50 1300.00 89.27% 96.30% 0.00% 0.00%
62.50 0.80 50.00 10.73% 3.70% 65.28% 65.28%

582.50 1350.00 100.00% 100.00% 16.79% 6.51%

Reattor Experiment 2 \f
END percentage percentage % reduction % reduction
ml SG g ml 9 ml g

300.00 1.00 300.00 32.96% 17.94% 0.00% 0.00%
520.00 2.50 1.300.00 57.12% . 77.74% 0.00% 0.00%
90.29 0.80 72.23· 9.92% 4.32% 49.84% 49.84%

910.29 1672.23 100.00% 100.00% 8.97% 4.12%

520.00 2.50 1300.00 85.21% 94.74% 0.00% 0.00%
90.29 0.80 72.23 14.79% 5.26% 49.84% 49.84%

610.29 1372.23 100.00% 100.00% 12.82% 4.97%

Reactor Experiment 3 including manure (Poultry)
END percentage percentage % reduction % reduction
ml SG 9 ml 9 ml g

149.36 1.00 149.36 19.25% 10.79% 89,76% 89.76%
611.00 2.00 1222.00 78.75% 88.31% 0.00% 0.00%
15.52 0.80 12.42 2.00% 0.90% 96.12% 96.12%

775.88 1383.78 100.00% 100.00% 68.58% 53.87%

611.00 2.00 1222.00 97.52% 98.99% 0.00% 0.00%
15.52 0.80 12.42 2.48% 1.01% 96.12% 96.12%

626.52 1234.42 100.00% 100.00% 38.03% 19.95%

END percentage percentage %reduction % reduction
ml SG 9 ml 9 ml 9

34.42 1.00 34.42 6.00% 3.22% 97.95% 97.95%
502.50 2.00. 1005.00 87.60% 94.03% 0.00".4 0.00%
36.71 0.80 29.36 6.40% 2.75% 90.82% 90.83%

573.63 1068.78 100.00% 100.00% 77.74% 64.37%



Reactor Experiment 1 Rhodococcus
START percentage percentage
ml SG 9 ml 9we 300.00 1.00 300.06 30.00% 17.20%

OM 520.00 2.50 1300.00 52.00% 74.54%He 180.00 0.80 144.00 18.00% 8.26%
TOTAL 1000.00 1744.00 100.00% 100.00%

Remove we
OM 520.00 2.50 1300.00 74.29% 90.03%He 180.00 0.80 144.00 25.71% 9.97%
total 700.00 1444.00 100.00% 100.00%

Reactor Experiment 2 V
START
ml SG 9 ml 9we 300.00 1.00 300.00 30.00% 17.20%

OM 520.00 2.50 1300.00 52.00% --74.54%He 180.00 0.80 144.00 18.00% 8.26%
TOTAL 1000.00 1744.00 100.00% 100.00%

Remove we
OM 520.00 2.50 1300.00 74.29% 90.03%He 180.00 0.80 -144.00 25.71% 9.97%
total 700.00 1444.00 100.00% 100.00%

Reactor Experiment 3 including manure (Poultry)
START percentage percentage
ml SG 9 ml 9we 1458.00 1.00 1458.00 59.05% 48.60%

OM 611.00 2.00 1222.00 24.75% 40.73%He 400.00 0.80 320.00 16.20% 10.67%
TOTAL 2469.00 3000.00 100.00% 100.00%

Remove we
OM 611.00 2.00 1222.00 . 60.44% 79.25%
He 400.00 0.80 320.00 39.56% 20.75%
total 1011.00 1542.00 100.00% 100.00%

Reactor Experiment 3 including manure (Horse)
START percentage percentage
ml SG 9 ml 9we 1675.00 1.00 . 1675.00 64.99"A, 55.83%

OM 502.50 2.00 1005.00 19.50% 33.50%He 400.00 0.80 320.00 15.52% 10.67%
TOTAL 2577.50 3000.00 100.00% 100.00%
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Input Sheet

Title Compost

Strain Poultry
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